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20.25. Alternative view of the Čech complex 1480
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CHAPTER 1

Introduction

1.1. Overview

Besides the book by Laumon and Moret-Bailly, see [LMB00], and the work (in
progress) by Fulton et al, we think there is a place for an open source textbook
on algebraic stacks and the algebraic geometry that is needed to define them. The
Stacks Project attempts to do this by building the foundations starting with com-
mutative algebra and proceeding via the theory of schemes and algebraic spaces to
a comprehensive foundation for the theory of algebraic stacks.

We expect this material to be read online as a key feature are the hyperlinks giving
quick access to internal references spread over many different pages. If you use an
embedded pdf or dvi viewer in your browser, the cross file links should work.

This project is a collaborative effort and we encourage you to help out. Please email
any typos or errors you find while reading or any suggestions, additional material,
or examples you have to stacks.project@gmail.com. You can download a tarball
containing all source files, extract, run make, and use a dvi or pdf viewer locally.
Please feel free to edit the LaTeX files and email your improvements.

1.2. Attribution

The scope of this work is such that it is a daunting task to attribute correctly and
succinctly all of those mathematicians whose work has led to the development of the
theory we try to explain here. We hope eventually to generate enough community
interest to find contributors willing to write sections with historical remarks for
each and every chapter.

Those who contributed to this work are listed on the title page of the book version of
this work and online. Here we would like to name a selection of major contributions:

(1) Jarod Alper wrote Guide to Literature.

(2) Bhargav Bhatt wrote the initial version of Étale Morphisms of Schemes.
(3) Bhargav Bhatt wrote the initial version of More on Algebra, Section 15.63.
(4) Kiran Kedlaya contributed the initial writeup of Descent, Section 34.4.
(5) The initial versions of

(a) Algebra, Section 10.27,
(b) Injectives, Section 19.2, and
(c) the chapter Fields

are from The CRing Project, courtesy of Akhil Mathew et al.
(6) Alex Perry wrote the material on projective modules, Mittag-Leffler mod-

ules, including the proof of Algebra, Theorem 10.92.5.
(7) Alex Perry wrote Formal Deformation Theory.
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(8) Thibaut Pugin, Zachary Maddock and Min Lee took course notes which

formed the basis for Étale Cohomology.
(9) David Rydh has contributed many helpful comments, pointed out several

mistakes, helped out in an essential way with the material on residual
gerbes, and was the originator for the material in More on Groupoids in
Spaces, Sections 61.9 and 61.12.

(10) Burt Totaro contributed Examples, Sections 82.55, 82.56, and Properties
of Stacks, Section 77.12.

(11) The material in the chapter Pro-étale Cohomology is taken from a paper
by Bhargav Bhatt and Peter Scholze.

(12) Bhargav Bhatt contributed Examples, Sections 82.60 and 82.63.
(13) Ofer Gabber found mistakes, contributed corrections and he contributed

Formal Spaces, Lemma 65.9.5, the material in More on Groupoids, Section
39.14, the main result of Properties of Spaces, Section 48.14, and the proof
of More on Flatness, Proposition 37.24.13.

1.3. Other chapters
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CHAPTER 2

Conventions

2.1. Comments

The philosophy behind the conventions used in writing these documents is to choose
those conventions that work.

2.2. Set theory

We use Zermelo-Fraenkel set theory with the axiom of choice. See [Kun83]. We
do not use universes (different from SGA4). We do not stress set-theoretic issues,
but we make sure everything is correct (of course) and so we do not ignore them
either.

2.3. Categories

A category C consists of a set of objects and, for each pair of objects, a set of
morphisms between them. In other words, it is what is called a “small” category in
other texts. We will use “big” categories (categories whose objects form a proper
class) as well, but only those that are listed in Categories, Remark 4.2.2.

2.4. Algebra

In these notes a ring is a commutative ring with a 1. Hence the category of rings
has an initial object Z and a final object {0} (this is the unique ring where 1 = 0).
Modules are assumed unitary. See [Eis95].

2.5. Notation

The natural integers are elements of N = {1, 2, 3, . . .}. The integers are elements
of Z = {. . . ,−2,−1, 0, 1, 2, . . .}. The field of rational numbers is denoted Q. The
field of real numbers is denoted R. The field of complex numbers is denoted C.

2.6. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
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(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic

Spaces
(52) Limits of Algebraic Spaces
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CHAPTER 3

Set Theory

3.1. Introduction

We need some set theory every now and then. We use Zermelo-Fraenkel set theory
with the axiom of choice (ZFC) as described in [Kun83] and [Jec02].

3.2. Everything is a set

Most mathematicians think of set theory as providing the basic foundations for
mathematics. So how does this really work? For example, how do we translate the
sentence “X is a scheme” into set theory? Well, we just unravel the definitions: A
scheme is a locally ringed space such that every point has an open neighbourhood
which is an affine scheme. A locally ringed space is a ringed space such that
every stalk of the structure sheaf is a local ring. A ringed space is a pair (X,OX)
consisting of a topological space X and a sheaf of rings OX on it. A topological
space is a pair (X, τ) consisting of a set X and a set of subsets τ ⊂ P(X) satisfying
the axioms of a topology. And so on and so forth.

So how, given a set S would we recognize whether it is a scheme? The first thing
we look for is whether the set S is an ordered pair. This is defined (see [Jec02],
page 7) as saying that S has the form (a, b) := {{a}, {a, b}} for some sets a, b. If
this is the case, then we would take a look to see whether a is an ordered pair (c, d).
If so we would check whether d ⊂ P(c), and if so whether d forms the collection of
sets for a topology on the set c. And so on and so forth.

So even though it would take a considerable amount of work to write a complete
formula φscheme(x) with one free variable x in set theory that expresses the notion
“x is a scheme”, it is possible to do so. The same thing should be true for any
mathematical object.

3.3. Classes

Informally we use the notion of a class. Given a formula φ(x, p1, . . . , pn), we call

C = {x : φ(x, p1, . . . , pn)}
a class. A class is easier to manipulate than the formula that defines it, but it is not
strictly speaking a mathematical object. For example, if R is a ring, then we may
consider the class of all R-modules (since after all we may translate the sentence
“M is an R-module” into a formula in set theory, which then defines a class). A
proper class is a class which is not a set.

In this way we may consider the category of R-modules, which is a “big” category—
in other words, it has a proper class of objects. Similarly, we may consider the “big”
category of schemes, the “big” category of rings, etc.

59



60 3. SET THEORY

3.4. Ordinals

A set T is transitive if x ∈ T implies x ⊂ T . A set α is an ordinal if it is transitive
and well-ordered by ∈. In this case, we define α + 1 = α ∪ {α}, which is another
ordinal called the successor of α. An ordinal α is called a successor ordinal if there
exists an ordinal β such that α = β + 1. The smallest ordinal is ∅ which is also
denoted 0. If α is not 0, and not a successor ordinal, then α is called a limit ordinal
and we have

α =
⋃

γ∈α
γ.

The first limit ordinal is ω and it is also the first infinite ordinal. The first uncount-
able ordinal ω1 is the set of all countable ordinals. The collection of all ordinals is
a proper class. It is well-ordered by ∈ in the following sense: any nonempty set (or
even class) of ordinals has a least element. Given a set A of ordinals, we define the
supremum of A to be supα∈A α =

⋃
α∈A α. It is the least ordinal bigger or equal to

all α ∈ A. Given any well-ordered set (S,≥), there is a unique ordinal α such that
(S,≥) ∼= (α,∈); this is called the order type of the well-ordered set.

3.5. The hierarchy of sets

We define, by transfinite induction, V0 = ∅, Vα+1 = P (Vα) (power set), and for a
limit ordinal α,

Vα =
⋃

β<α
Vβ .

Note that each Vα is a transitive set.

Lemma 3.5.1. Every set is an element of Vα for some ordinal α.

Proof. See [Jec02, Lemma 6.3]. �

In [Kun83, Chapter III] it is explained that this lemma is equivalent to the axiom
of foundation. The rank of a set S is the least ordinal α such that S ∈ Vα.

3.6. Cardinality

The cardinality of a set A is the least ordinal α such that there exists a bijection
between A and α. We sometimes use the notation α = |A| to indicate this. We
say an ordinal α is a cardinal if and only if it occurs as the cardinality of some set
A—in other words, if α = |A|. We use the greek letters κ, λ for cardinals. The first
infinite cardinal is ω, and in this context it is denoted ℵ0. A set is countable if its
cardinality is ≤ ℵ0. If α is an ordinal, then we denote α+ the least cardinal > α.
You can use this to define ℵ1 = ℵ+

0 , ℵ2 = ℵ+
1 , etc, and in fact you can define ℵα

for any ordinal α by transfinite induction. We note the equality ℵ1 = ω1.

The addition of cardinals κ, λ is denoted κ⊕ λ; it is the cardinality of κ q λ. The
multiplication of cardinals κ, λ is denoted κ ⊗ λ; it is the cardinality of κ × λ. It
is uninteresting since if κ and λ are infinite cardinals, then κ ⊗ λ = max(κ, λ).
The exponentiation of cardinals κ, λ is denoted κλ; it is the cardinality of the set
of (set) maps from λ to κ. Given any set K of cardinals, the supremum of K is
supκ∈K κ =

⋃
κ∈K κ, which is also a cardinal.

http://stacks.math.columbia.edu/tag/000C
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3.7. Cofinality

A cofinal subset S of a partially ordered set T is a subset S ⊂ T such that ∀t ∈
T∃s ∈ S(t ≤ s). Note that a subset of a well-ordered set is a well-ordered set (with
induced ordering). Given an ordinal α, the cofinality cf(α) of α is the least ordinal
β which occurs as the order type of some cofinal subset of α. The cofinality of an
ordinal is always a cardinal (this is clear from the definition). Hence alternatively
we can define the cofinality of α as the least cardinality of a cofinal subset of α.

Lemma 3.7.1. Suppose that T = colimα<β Tα is a colimit of sets indexed by
ordinals less than a given ordinal β. Suppose that ϕ : S → T is a map of sets.
Then ϕ lifts to a map into Tα for some α < β provided that β is not a limit of
ordinals indexed by S, in other words, if β is an ordinal with cf(β) > |S|.

Proof. For each element s ∈ S pick a αs < β and an element ts ∈ Tαs which maps
to ϕ(s) in T . By assumption α = sups∈S αs is strictly smaller than β. Hence the
map ϕα : S → Tα which assigns to s the image of ts in Tα is a solution. �

The following is essentially Grothendieck’s argument for the existence of ordinals
with arbitrarily large cofinality which he used to prove the existence of enough
injectives in certain abelian categories, see [Gro57].

Proposition 3.7.2. Let κ be a cardinal. Then there exists an ordinal whose cofi-
nality is bigger than κ.

Proof. If κ is finite, then ω = cf(ω) works. Let us thus assume that κ is infinite.
Consider the smallest ordinal α whose cardinality is strictly greater than κ. We
claim that cf(α) > κ. Note that α is a limit ordinal, since if α = β + 1, then
|α| = |β| (because α and β are infinite) and this contradicts the minimality of α.
(Of course α is also a cardinal, but we do not need this.) To get a contradiction
suppose S ⊂ α is a cofinal subset with |S| ≤ κ. For β ∈ S, i.e., β < α, we have
|β| ≤ κ by minimality of α. As α is a limit ordinal and S cofinal in α we obtain
α =

⋃
β∈S β. Hence |α| ≤ |S| ⊗ κ ≤ κ ⊗ κ ≤ κ which is a contradiction with our

choice of α. �

3.8. Reflection principle

Some of this material is in the chapter of [Kun83] called “Easy consistency proofs”.

Let φ(x1, . . . , xn) be a formula of set theory. Let us use the convention that this
notation implies that all the free variables in φ occur among x1, . . . , xn. Let M be
a set. The formula φM (x1, . . . , xn) is the formula obtained from φ(x1, . . . , xn) by
replacing all the ∀x and ∃x by ∀x ∈ M and ∃x ∈ M , respectively. So the formula
φ(x1, x2) = ∃x(x ∈ x1 ∧ x ∈ x2) is turned into φM (x1, x2) = ∃x ∈ M(x ∈ x1 ∧ x ∈
x2). The formula φM is called the relativization of φ to M .

Theorem 3.8.1. Suppose given φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn) a finite collec-
tion of formulas of set theory. Let M0 be a set. There exists a set M such that
M0 ⊂M and ∀x1, . . . , xn ∈M , we have

∀i = 1, . . . ,m, φMi (x1, . . . , xn)⇔ ∀i = 1, . . . ,m, φi(x1, . . . , xn).

In fact we may take M = Vα for some limit ordinal α.

Proof. See [Jec02, Theorem 12.14] or [Kun83, Theorem 7.4]. �

http://stacks.math.columbia.edu/tag/05N2
http://stacks.math.columbia.edu/tag/05N3
http://stacks.math.columbia.edu/tag/000G
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We view this theorem as saying the following: Given any x1, . . . , xn ∈ M the
formulas hold with the bound variables ranging through all sets if and only if they
hold for the bound variables ranging through elements of Vα. This theorem is a
meta-theorem because it deals with the formulas of set theory directly. It actually
says that given the finite list of formulas φ1, . . . , φm with at most free variables
x1, . . . , xn the sentence

∀M0 ∃M, M0 ⊂M ∀x1, . . . , xn ∈M
φ1(x1, . . . , xn) ∧ . . . ∧ φm(x1, . . . , xn)↔ φM1 (x1, . . . , xn) ∧ . . . ∧ φMm (x1, . . . , xn)

is provable in ZFC. In other words, whenever we actually write down a finite list
of formulas φi, we get a theorem.

It is somewhat hard to use this theorem in “ordinary mathematics” since the mean-
ing of the formulas φMi (x1, . . . , xn) is not so clear! Instead, we will use the idea of
the proof of the reflection principle to prove the existence results we need directly.

3.9. Constructing categories of schemes

We will discuss how to apply this to produce, given an initial set of schemes, a
“small” category of schemes closed under a list of natural operations. Before we do
so, we introduce the size of a scheme. Given a scheme S we define

size(S) = max(ℵ0, κ1, κ2),

where we define the cardinal numbers κ1 and κ2 as follows:

(1) We let κ1 be the cardinality of the set of affine opens of S.
(2) We let κ2 be the supremum of all the cardinalities of all Γ(U,OS) for all

U ⊂ S affine open.

Lemma 3.9.1. For every cardinal κ, there exists a set A such that every element
of A is a scheme and such that for every scheme S with Size(S) ≤ κ, there is an
element X ∈ A such that X ∼= S (isomorphism of schemes).

Proof. Omitted. Hint: think about how any scheme is isomorphic to a scheme
obtained by glueing affines. �

We denote Bound the function which to each cardinal κ associates

(3.9.1.1) Bound(κ) = max{κℵ0 , κ+}.
We could make this function grow much more rapidly, e.g., we could set Bound(κ) =
κκ, and the result below would still hold. For any ordinal α, we denote Schα the
full subcategory of category of schemes whose objects are elements of Vα. Here is
the result we are going to prove.

Lemma 3.9.2. With notations size, Bound and Schα as above. Let S0 be a set of
schemes. There exists a limit ordinal α with the following properties:

(1) We have S0 ⊂ Vα; in other words, S0 ⊂ Ob(Schα).
(2) For any S ∈ Ob(Schα) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schα) such that T ∼= S′.
(3) For any countable1 diagram category I and any functor F : I → Schα, the

limit limI F exists in Schα if and only if it exists in Sch and moreover, in
this case, the natural morphism between them is an isomorphism.

1Both the set of objects and the morphism sets are countable. In fact you can prove the

lemma with ℵ0 replaced by any cardinal whatsoever in (3) and (4).

http://stacks.math.columbia.edu/tag/000I
http://stacks.math.columbia.edu/tag/000J
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(4) For any countable diagram category I and any functor F : I → Schα, the
colimit colimI F exists in Schα if and only if it exists in Sch and moreover,
in this case, the natural morphism between them is an isomorphism.

Proof. We define, by transfinite induction, a function f which associates to every
ordinal an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α + 1) to be
the least ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) For any S ∈ Ob(Schf(α)) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schβ) such that T ∼= S′.
(3) For any countable diagram category I and any functor F : I → Schf(α), if

the limit limI F or the colimit colimI F exists in Sch, then it is isomorphic
to a scheme in Schβ .

To see β exists, we argue as follows. Since Ob(Schf(α)) is a set, we see that
κ = supS∈Ob(Schf(α))

Bound(size(S)) exists and is a cardinal. Let A be a set of

schemes obtained starting with κ as in Lemma 3.9.1. There is a set CountCat of
countable categories such that any countable category is isomorphic to an element
of CountCat. Hence in (3) above we may assume that I is an element in CountCat.
This means that the pairs (I, F ) in (3) range over a set. Thus, there exists a set
B whose elements are schemes such that for every (I, F ) as in (3), if the limit or
colimit exists, then it is isomorphic to an element in B. Hence, if we pick any β
such that A ∪ B ⊂ Vβ and β > max{α + 1, f(α)}, then (1)–(3) hold. Since every
nonempty collection of ordinals has a least element, we see that f(α + 1) is well
defined. Finally, if α is a limit ordinal, then we set f(α) = supα′<α f(α′).

Pick β0 such that S0 ⊂ Vβ0 . By construction f(β) ≥ β and we see that also
S0 ⊂ Vf(β0). Moreover, as f is nondecreasing, we see S0 ⊂ Vf(β) is true for any
β ≥ β0. Next, choose any ordinal β1 > β0 with cofinality cf(β1) > ω = ℵ0. This is
possible since the cofinality of ordinals gets arbitrarily large, see Proposition 3.7.2.
We claim that α = f(β1) is a solution to the problem posed in the lemma.

The first property of the lemma holds by our choice of β1 > β0 above.

Since β1 is a limit ordinal (as its cofinality is infinite), we get f(β1) = supβ<β1
f(β).

Hence {f(β) | β < β1} ⊂ f(β1) is a cofinal subset. Hence we see that

Vα = Vf(β1) =
⋃

β<β1

Vf(β).

Now, let S ∈ Ob(Schα). We define β(S) to be the least ordinal β such that S ∈
Ob(Schf(β)). By the above we see that always β(S) < β1. Since Ob(Schf(β+1)) ⊂
Ob(Schα), we see by construction of f above that the second property of the lemma
is satisfied.

Suppose that {S1, S2, . . .} ⊂ Ob(Schα) is a countable collection. Consider the
function ω → β1, n 7→ β(Sn). Since the cofinality of β1 is > ω, the image of
this function cannot be a cofinal subset. Hence there exists a β < β1 such that
{S1, S2, . . .} ⊂ Ob(Schf(β)). It follows that any functor F : I → Schα factors
through one of the subcategories Schf(β). Thus, if there exists a scheme X that
is the colimit or limit of the diagram F , then, by construction of f , we see X is
isomorphic to an object of Schf(β+1) which is a subcategory of Schα. This proves
the last two assertions of the lemma. �
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Remark 3.9.3. The lemma above can also be proved using the reflection principle.
However, one has to be careful. Namely, suppose the sentence φscheme(X) expresses

the property “X is a scheme”, then what does the formula φVαscheme(X) mean? It
is true that the reflection principle says we can find α such that for all X ∈ Vα we
have φscheme(X)↔ φVαscheme(X) but this is entirely useless. It is only by combining
two such statements that something interesting happens. For example suppose
φred(X,Y ) expresses the property “X, Y are schemes, and Y is the reduction of
X” (see Schemes, Definition 25.12.5). Suppose we apply the reflection principle to
the pair of formulas φ1(X,Y ) = φred(X,Y ), φ2(X) = ∃Y, φ1(X,Y ). Then it is easy
to see that any α produced by the reflection principle has the property that given
X ∈ Ob(Schα) the reduction of X is also an object of Schα (left as an exercise).

Lemma 3.9.4. Let S be an affine scheme. Let R = Γ(S,OS). Then the size of S
is equal to max{ℵ0, |R|}.

Proof. There are at most max{|R|,ℵ0} affine opens of Spec(R). This is clear since
any affine open U ⊂ Spec(R) is a finite union of principal opens D(f1)∪ . . .∪D(fn)
and hence the number of affine opens is at most supn |R|n = max{|R|,ℵ0}, see
[Kun83, Ch. I, 10.13]. On the other hand, we see that Γ(U,O) ⊂ Rf1

× . . .×Rfn
and hence |Γ(U,O)| ≤ max{ℵ0, |Rf1

|, . . . , |Rfn |}. Thus it suffices to prove that
|Rf | ≤ max{ℵ0, |R|} which is omitted. �

Lemma 3.9.5. Let S be a scheme. Let S =
⋃
i∈I Si be an open covering. Then

size(S) ≤ max{|I|, supi{size(Si)}}.

Proof. Let U ⊂ S be any affine open. Since U is quasi-compact there exist finitely
many elements i1, . . . , in ∈ I and affine opens Ui ⊂ U ∩Si such that U = U1 ∪U2 ∪
. . . ∪ Un. Thus

|Γ(U,OU )| ≤ |Γ(U1,O)| ⊗ . . .⊗ |Γ(Un,O)| ≤ supi{size(Si)}

Moreover, it shows that the set of affine opens of S has cardinality less than or
equal to the cardinality of the set∐

n∈ω

∐
i1,...,in∈I

{affine opens of Si1} × . . .× {affine opens of Sin}.

Each of the sets inside the disjoint union has cardinality at most supi{size(Si)}. The
index set has cardinality at most max{|I|,ℵ0}, see [Kun83, Ch. I, 10.13]. Hence
by [Jec02, Lemma 5.8] the cardinality of the coproduct is at most max{ℵ0, |I|} ⊗
supi{size(Si)}. The lemma follows. �

Lemma 3.9.6. Let f : X → S, g : Y → S be morphisms of schemes. Then we
have size(X ×S Y ) ≤ max{size(X), size(Y ))}.

Proof. Let S =
⋃
k∈K Sk be an affine open covering. Let X =

⋃
i∈I Ui, Y =⋃

j∈J Vj be affine open coverings with I, J of cardinality ≤ size(X), size(Y ). For

each i ∈ I there exists a finite set Ki of k ∈ K such that f(Ui) ⊂
⋃
k∈Ki Sk. For

each j ∈ J there exists a finite set Kj of k ∈ K such that g(Vj) ⊂
⋃
k∈Kj Sk. Hence

f(X), g(Y ) are contained in S′ =
⋃
k∈K′ Sk with K ′ =

⋃
i∈I Ki ∪

⋃
j∈J Kj . Note

that the cardinality of K ′ is at most max{ℵ0, |I|, |J |}. Applying Lemma 3.9.5 we see
that it suffices to prove that size(f−1(Sk) ×Sk g−1(Sk)) ≤ max{size(X), size(Y ))}
for k ∈ K ′. In other words, we may assume that S is affine.

http://stacks.math.columbia.edu/tag/000O
http://stacks.math.columbia.edu/tag/000P
http://stacks.math.columbia.edu/tag/000Q
http://stacks.math.columbia.edu/tag/04T6
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Assume S affine. Let X =
⋃
i∈I Ui, Y =

⋃
j∈J Vj be affine open coverings with I,

J of cardinality ≤ size(X), size(Y ). Again by Lemma 3.9.5 it suffices to prove the
lemma for the products Ui ×S Vj . By Lemma 3.9.4 we see that it suffices to show
that

|A⊗C B| ≤ max{ℵ0, |A|, |B|}.
We omit the proof of this inequality. �

Lemma 3.9.7. Let S be a scheme. Let f : X → S be locally of finite type with X
quasi-compact. Then size(X) ≤ size(S).

Proof. We can find a finite affine open covering X =
⋃
i=1,...n Ui such that each

Ui maps into an affine open Si of S. Thus by Lemma 3.9.5 we reduce to the case
where both S and X are affine. In this case by Lemma 3.9.4 we see that it suffices
to show

|A[x1, . . . , xn]| ≤ max{ℵ0, |A|}.
We omit the proof of this inequality. �

In Algebra, Lemma 10.103.13 we will show that if A → B is an epimorphism of
rings, then |B| ≤ max(|A|,ℵ0). The analogue for schemes is the following lemma.

Lemma 3.9.8. Let f : X → Y be a monomorphism of schemes. If at least one of
the following properties holds, then size(X) ≤ size(Y ):

(1) f is quasi-compact,
(2) f is locally of finite presentation,
(3) add more here as needed.

But the bound does not hold for monomorphisms which are locally of finite type.

Proof. Let Y =
⋃
j∈J Vj be an affine open covering of Y with |J | ≤ size(Y ). By

Lemma 3.9.5 it suffices to bound the size of the inverse image of Vj in X. Hence
we reduce to the case that Y is affine, say Y = Spec(B). For any affine open
Spec(A) ⊂ X we have |A| ≤ max(|B|,ℵ0) = size(Y ), see remark above and Lemma
3.9.4. Thus it suffices to show that X has at most size(Y ) affine opens. This is clear
if X is quasi-compact, whence case (1) holds. In case (2) the number of isomorphism
classes of B-algebras A that can occur is bounded by size(B), because each A is
of finite type over B, hence isomorphic to an algebra B[x1, . . . , xn]/(f1, . . . , fm)
for some n,m, and fj ∈ B[x1, . . . , xn]. However, as X → Y is a monomorphism,
there is a unique morphism Spec(A)→ X over Y = Spec(B) if there is one, hence
the number of affine opens of X is bounded by the number of these isomorphism
classes.

To prove the final statement of the lemma consider the ring B =
∏
n∈N F2 and

set Y = Spec(B). For every ultrafilter U on N we obtain a maximal ideal mU
with residue field F2; the map B → F2 sends the element (xn) to limU xn. Details
omitted. The morphism of schemes X =

∐
U Spec(F2) → Y is a monomorphism

as all the points are distinct. However the cardinality of the set of affine open
subschemes of X is equal to the cardinality of the set of ultrafilters on N which is

22ℵ0
. We conclude as |B| = 2ℵ0 < 22ℵ0

. �

Lemma 3.9.9. Let α be an ordinal as in Lemma 3.9.2 above. The category Schα
satisfies the following properties:

http://stacks.math.columbia.edu/tag/04T7
http://stacks.math.columbia.edu/tag/04VA
http://stacks.math.columbia.edu/tag/000R
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(1) If X,Y, S ∈ Ob(Schα), then for any morphisms f : X → S, g : Y → S the
fibre product X ×S Y in Schα exists and is a fibre product in the category
of schemes.

(2) Given any at most countable collection S1, S2, . . . of elements of Ob(Schα),
the coproduct

∐
i Si exists in Ob(Schα) and is a coproduct in the category

of schemes.
(3) For any S ∈ Ob(Schα) and any open immersion U → S, there exists a

V ∈ Ob(Schα) with V ∼= U .
(4) For any S ∈ Ob(Schα) and any closed immersion T → S, there exists a

S′ ∈ Ob(Schα) with S′ ∼= T .
(5) For any S ∈ Ob(Schα) and any finite type morphism T → S, there exists

a S′ ∈ Ob(Schα) with S′ ∼= T .
(6) Suppose S is a scheme which has an open covering S =

⋃
i∈I Si such that

there exists a T ∈ Ob(Schα) with (a) size(Si) ≤ size(T )ℵ0 for all i ∈ I,
and (b) |I| ≤ size(T )ℵ0 . Then S is isomorphic to an object of Schα.

(7) For any S ∈ Ob(Schα) and any morphism f : T → S locally of finite type
such that T can be covered by at most size(S)ℵ0 open affines, there exists
a S′ ∈ Ob(Schα) with S′ ∼= T . For example this holds if T can be covered

by at most |R| = 2ℵ0 = ℵℵ0
0 open affines.

(8) For any S ∈ Ob(Schα) and any monomorphism T → S which is either lo-
cally of finite presentation or quasi-compact, there exists a S′ ∈ Ob(Schα)
with S′ ∼= T .

(9) Suppose that T ∈ Ob(Schα) is affine. Write R = Γ(T,OT ). Then any of
the following schemes is isomorphic to a scheme in Schα:
(a) For any ideal I ⊂ R with completion R∗ = limnR/I

n, the scheme
Spec(R∗).

(b) For any finite type R-algebra R′, the scheme Spec(R′).
(c) For any localization S−1R, the scheme Spec(S−1R).

(d) For any prime p ⊂ R, the scheme Spec(κ(p)).
(e) For any subring R′ ⊂ R, the scheme Spec(R′).
(f) Any scheme of finite type over a ring of cardinality at most |R|ℵ0 .
(g) And so on.

Proof. Statements (1) and (2) follow directly from the definitions. Statement (3)
follows as the size of an open subscheme U of S is clearly smaller than or equal
to the size of S. Statement (4) follows from (5). Statement (5) follows from (7).
Statement (6) follows as the size of S is ≤ max{|I|, supi size(Si)} ≤ size(T )ℵ0 by
Lemma 3.9.5. Statement (7) follows from (6). Namely, for any affine open V ⊂ T
we have size(V ) ≤ size(S) by Lemma 3.9.7. Thus, we see that (6) applies in the
situation of (7). Part (8) follows from Lemma 3.9.8.

Statement (9) is translated, via Lemma 3.9.4, into an upper bound on the cardi-

nality of the rings R∗, S−1R, κ(p), R′, etc. Perhaps the most interesting one is the
ring R∗. As a set, it is the image of a surjective map RN → R∗. Since |RN| = |R|ℵ0 ,
we see that it works by our choice of Bound(κ) being at least κℵ0 . Phew! (The
cardinality of the algebraic closure of a field is the same as the cardinality of the
field, or it is ℵ0.) �

Remark 3.9.10. Let R be a ring. Suppose we consider the ring
∏

p∈Spec(R) κ(p).

The cardinality of this ring is bounded by |R|2|R| , but is not bounded by |R|ℵ0 in
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general. For example if R = C[x] it is not bounded by |R|ℵ0 and if R =
∏
n∈N F2

it is not bounded by |R||R|. Thus the “And so on” of Lemma 3.9.9 above should
be taken with a grain of salt. Of course, if it ever becomes necessary to consider
these rings in arguments pertaining to fppf/étale cohomology, then we can change
the function Bound above into the function κ 7→ κ2κ .

In the following lemma we use the notion of an fpqc covering which is introduced
in Topologies, Section 33.8.

Lemma 3.9.11. Let f : X → Y be a morphism of schemes. Assume there exists
an fpqc covering {gj : Yj → Y }j∈J such that gj factors through f . Then size(Y ) ≤
size(X).

Proof. Let V ⊂ Y be an affine open. By definition there exist n ≥ 0 and a :
{1, . . . , n} and affine opens Vi ⊂ Ya(i) such that V = ga(1)(V1) ∪ . . . ∪ ga(n)(Vn).
Denote hj : Yj → X a morphism such that f ◦ hj = gj . Then ha(1)(V1) ∪ . . . ∪
ha(n)(Vn) is a quasi-compact subset of f−1(V ). Hence we can find a quasi-compact

open W ⊂ f−1(V ) which contains ha(i)(Vi) for i = 1, . . . , n. In particular V =
f(W ).

On the one hand this shows that the cardinality of the set of affine opens of Y
is at most the cardinality of the set S of quasi-compact opens of X. Since every
quasi-compact open of X is a finite union of affines, we see that the cardinality of
this set is at most sup |S|n = max(ℵ0, |S|). On the other hand, we have OY (V ) ⊂∏
i=1,...,nOYa(i)

(Vi) because {Vi → V } is an fpqc covering. HenceOY (V ) ⊂ OX(W )
because Vi → V factors through W . Again since W has a finite covering by affine
opens of X we conclude that |OY (V )| is bounded by the size of X. The lemma
now follows from the definition of the size of a scheme. �

In the following lemma we use the notion of an fppf covering which is introduced
in Topologies, Section 33.7.

Lemma 3.9.12. Let {fi : Xi → X}i∈I be an fppf covering of a scheme. There
exists an fppf covering {Wj → X}j∈J which is a refinement of {Xi → X}i∈I such
that size(

∐
Wj) ≤ size(X).

Proof. Choose an affine open covering X =
⋃
a∈A Ua with |A| ≤ size(X). For

each a we can choose a finite subset Ia ⊂ I and for i ∈ Ia a quasi-compact open
Wa,i ⊂ Xi such that Ua =

⋃
i∈Ia fi(Wa,i). Then size(Wa,i) ≤ size(X) by Lemma

3.9.7. We conclude that size(
∐
a

∐
i∈IaWi,a) ≤ size(X) by Lemma 3.9.5. �

3.10. Sets with group action

Let G be a group. We denote G-Sets the “big” category of G-sets. For any ordinal
α, we denote G-Setsα the full subcategory of G-Sets whose objects are in Vα.
As a notion for size of a G-set we take size(S) = max{ℵ0, |G|, |S|} (where |G|
and |S| are the cardinality of the underlying sets). As above we use the function
Bound(κ) = κℵ0 .

Lemma 3.10.1. With notations G, G-Setsα, size, and Bound as above. Let S0 be
a set of G-sets. There exists a limit ordinal α with the following properties:

(1) We have S0 ∪ {GG} ⊂ Ob(G-Setsα).
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(2) For any S ∈ Ob(G-Setsα) and any G-set T with size(T ) ≤ Bound(size(S)),
there exists a S′ ∈ Ob(G-Setsα) that is isomorphic to T .

(3) For any countable diagram category I and any functor F : I → G-Setsα,
the limit limI F and colimit colimI F exist in G-Setsα and are the same
as in G-Sets.

Proof. Omitted. Similar to but easier than the proof of Lemma 3.9.2 above. �

Lemma 3.10.2. Let α be an ordinal as in Lemma 3.10.1 above. The category
G-Setsα satisfies the following properties:

(1) The G-set GG is an object of G-Setsα.
(2) (Co)Products, fibre products, and pushouts exist in G-Setsα and are the

same as their counterparts in G-Sets.
(3) Given an object U of G-Setsα, any G-stable subset O ⊂ U is isomorphic

to an object of G-Setsα.

Proof. Omitted. �

3.11. Coverings of a site

Suppose that C is a category (as in Categories, Definition 4.2.1) and that Cov(C) is
a proper class of coverings satisfying properties (1), (2), and (3) of Sites, Definition
7.6.2. We list them here:

(1) If V → U is an isomorphism, then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C),

then {Vij → U}i∈I,j∈Ji ∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C, then Ui ×U V

exists for all i and {Ui ×U V → V }i∈I ∈ Cov(C).
For an ordinal α, we set Cov(C)α = Cov(C)∩Vα. Given an ordinal α and a cardinal
κ, we set Cov(C)κ,α equal to the set of elements U = {ϕi : Ui → U}i∈I ∈ Cov(C)α
such that |I| ≤ κ.

We recall the following notion, see Sites, Definition 7.8.2. Two families of mor-
phisms, {ϕi : Ui → U}i∈I and {ψj : Wj → U}j∈J , with the same target of C are
called combinatorially equivalent if there exist maps α : I → J and β : J → I such
that ϕi = ψα(i) and ψj = ϕβ(j). This defines an equivalence relation on families of
morphisms having a fixed target.

Lemma 3.11.1. With notations as above. Let Cov0 ⊂ Cov(C) be a set contained in
Cov(C). There exist a cardinal κ and a limit ordinal α with the following properties:

(1) We have Cov0 ⊂ Cov(C)κ,α.
(2) The set of coverings Cov(C)κ,α satisfies (1), (2), and (3) of Sites, Defini-

tion 7.6.2 (see above). In other words (C,Cov(C)κ,α) is a site.
(3) Every covering in Cov(C) is combinatorially equivalent to a covering in

Cov(C)κ,α.

Proof. To prove this, we first consider the set S of all sets of morphisms of C with
fixed target. In other words, an element of S is a subset T of Arrows(C) such that
all elements of T have the same target. Given a family U = {ϕi : Ui → U}i∈I of
morphisms with fixed target, we define Supp(U) = {ϕ ∈ Arrows(C) | ∃i ∈ I, ϕ =
ϕi}. Note that two families U = {ϕi : Ui → U}i∈I and V = {Vj → V }j∈J are
combinatorially equivalent if and only if Supp(U) = Supp(V). Next, we define
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Sτ ⊂ S to be the subset Sτ = {T ∈ S | ∃ U ∈ Cov(C) T = Supp(U)}. For
every element T ∈ Sτ , set β(T ) to equal the least ordinal β such that there exists a
U ∈ Cov(C)β such that T = Supp(U). Finally, set β0 = supT∈Sτ β(T ). At this point
it follows that every U ∈ Cov(C) is combinatorially equivalent to some element of
Cov(C)β0

.

Let κ be the maximum of ℵ0, the cardinality |Arrows(C)|,

sup{Ui→U}i∈I∈Cov(C)β0
|I|, and sup{Ui→U}i∈I∈Cov0

|I|.

Since κ is an infinite cardinal, we have κ⊗ κ = κ. Note that obviously Cov(C)β0 =
Cov(C)κ,β0 .

We define, by transfinite induction, a function f which associates to every ordinal
an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α+ 1) to be the least
ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) If {Ui → U}i∈I ∈ Cov(C)κ,f(α) and for each i we have {Wij → Ui}j∈Ji ∈

Cov(C)κ,f(α), then {Wij → U}i∈I,j∈Ji ∈ Cov(C)κ,β .
(3) If {Ui → U}i∈I ∈ Cov(C)κ,α and W → U is a morphism of C, then
{Ui ×U W →W}i∈I ∈ Cov(C)κ,β .

To see β exists we note that clearly the collection of all coverings {Wij → U} and
{Ui×UW →W} that occur in (2) and (3) form a set. Hence there is some ordinal β
such that Vβ contains all of these coverings. Moreover, the index set of the covering
{Wij → U} has cardinality

∑
i∈I |Ji| ≤ κ ⊗ κ = κ, and hence these coverings are

contained in Cov(C)κ,β . Since every nonempty collection of ordinals has a least
element we see that f(α + 1) is well defined. Finally, if α is a limit ordinal, then
we set f(α) = supα′<α f(α′).

Pick an ordinal β1 such that Arrows(C) ⊂ Vβ1
, Cov0 ⊂ Vβ0

, and β1 ≥ β0. By con-
struction f(β1) ≥ β1 and we see that the same properties hold for Vf(β1). Moreover,
as f is nondecreasing this remains true for any β ≥ β1. Next, choose any ordinal
β2 > β1 with cofinality cf(β2) > κ. This is possible since the cofinality of ordinals
gets arbitrarily large, see Proposition 3.7.2. We claim that the pair κ, α = f(β2) is
a solution to the problem posed in the lemma.

The first and third property of the lemma holds by our choices of κ, β2 > β1 > β0

above.

Since β2 is a limit ordinal (as its cofinality is infinite) we get f(β2) = supβ<β2
f(β).

Hence {f(β) | β < β2} ⊂ f(β2) is a cofinal subset. Hence we see that

Vα = Vf(β2) =
⋃

β<β2

Vf(β).

Now, let U ∈ Covκ,α. We define β(U) to be the least ordinal β such that U ∈
Covκ,f(β). By the above we see that always β(U) < β2.

We have to show properties (1), (2), and (3) defining a site hold for the pair
(C,Covκ,α). The first holds because by our choice of β2 all arrows of C are contained
in Vf(β2). For the third, we use that given a covering U = {Ui → U}i∈I ∈ Cov(C)κ,α
we have β(U) < β2 and hence any base change of U is by construction of f contained
in Cov(C)κ,f(β+1) and hence in Cov(C)κ,α.
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Finally, for the second condition, suppose that {Ui → U}i∈I ∈ Cov(C)κ,f(α) and
for each i we have Wi = {Wij → Ui}j∈Ji ∈ Cov(C)κ,f(α). Consider the function
I → β2, i 7→ β(Wi). Since the cofinality of β2 is > κ ≥ |I| the image of this function
cannot be a cofinal subset. Hence there exists a β < β1 such that Wi ∈ Covκ,f(β)

for all i ∈ I. It follows that the covering {Wij → U}i∈I,j∈Ji is an element of
Cov(C)κ,f(β+1) ⊂ Cov(C)κ,α as desired. �

Remark 3.11.2. It is likely the case that, for some limit ordinal α, the set of
coverings Cov(C)α satisfies the conditions of the lemma. This is after all what
an application of the reflection principle would appear to give (modulo caveats as
described at the end of Section 3.8 and in Remark 3.9.3).

3.12. Abelian categories and injectives

The following lemma applies to the category of modules over a sheaf of rings on a
site.

Lemma 3.12.1. Suppose given a big category A (see Categories, Remark 4.2.2).
Assume A is abelian and has enough injectives. See Homology, Definitions 12.5.1
and 12.23.4. Then for any given set of objects {As}s∈S of A, there is an abelian
subcategory A′ ⊂ A with the following properties:

(1) Ob(A′) is a set,
(2) Ob(A′) contains As for each s ∈ S,
(3) A′ has enough injectives, and
(4) an object of A′ is injective if and only if it is an injective object of A.

Proof. Omitted. �
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CHAPTER 4

Categories

4.1. Introduction

Categories were first introduced in [EM45]. The category of categories (which is a
proper class) is a 2-category. Similarly, the category of stacks forms a 2-category.
If you already know about categories, but not about 2-categories you should read
Section 4.26 as an introduction to the formal definitions later on.

4.2. Definitions

We recall the definitions, partly to fix notation.

Definition 4.2.1. A category C consists of the following data:

(1) A set of objects Ob(C).
(2) For each pair x, y ∈ Ob(C) a set of morphisms MorC(x, y).
(3) For each triple x, y, z ∈ Ob(C) a composition map MorC(y, z)×MorC(x, y)→

MorC(x, z), denoted (φ, ψ) 7→ φ ◦ ψ.

These data are to satisfy the following rules:

(1) For every element x ∈ Ob(C) there exists a morphism idx ∈ MorC(x, x)
such that idx ◦ φ = φ and ψ ◦ idx = ψ whenever these compositions make
sense.

(2) Composition is associative, i.e., (φ ◦ ψ) ◦ χ = φ ◦ (ψ ◦ χ) whenever these
compositions make sense.

It is customary to require all the morphism sets MorC(x, y) to be disjoint. In this
way a morphism φ : x → y has a unique source x and a unique target y. This is
not strictly necessary, although care has to be taken in formulating condition (2)
above if it is not the case. It is convenient and we will often assume this is the case.
In this case we say that φ and ψ are composable if the source of φ is equal to the
target of ψ, in which case φ ◦ ψ is defined. An equivalent definition would be to
define a category as a quintuple (Ob,Arrows, s, t, ◦) consisting of a set of objects,
a set of morphisms (arrows), source, target and composition subject to a long list
of axioms. We will occasionally use this point of view.

Remark 4.2.2. Big categories. In some texts a category is allowed to have a
proper class of objects. We will allow this as well in these notes but only in the
following list of cases (to be updated as we go along). In particular, when we say:
“Let C be a category” then it is understood that Ob(C) is a set.

(1) The category Sets of sets.
(2) The category Ab of abelian groups.
(3) The category Groups of groups.
(4) Given a group G the category G-Sets of sets with a left G-action.
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http://stacks.math.columbia.edu/tag/0014
http://stacks.math.columbia.edu/tag/0015


74 4. CATEGORIES

(5) Given a ring R the category ModR of R-modules.
(6) Given a field k the category of vector spaces over k.
(7) The category of rings.
(8) The category of schemes.
(9) The category Top of topological spaces.

(10) Given a topological space X the category PSh(X) of presheaves of sets
over X.

(11) Given a topological space X the category Sh(X) of sheaves of sets over
X.

(12) Given a topological space X the category PAb(X) of presheaves of abelian
groups over X.

(13) Given a topological space X the category Ab(X) of sheaves of abelian
groups over X.

(14) Given a small category C the category of functors from C to Sets.
(15) Given a category C the category of presheaves of sets over C.
(16) Given a site C the category of sheaves of sets over C.

One of the reason to enumerate these here is to try and avoid working with some-
thing like the “collection” of “big” categories which would be like working with the
collection of all classes which I think definitively is a meta-mathematical object.

Remark 4.2.3. It follows directly from the definition that any two identity mor-
phisms of an object x of A are the same. Thus we may and will speak of the identity
morphism idx of x.

Definition 4.2.4. A morphism φ : x → y is an isomorphism of the category C if
there exists a morphism ψ : y → x such that φ ◦ ψ = idy and ψ ◦ φ = idx.

An isomorphism φ is also sometimes called an invertible morphism, and the mor-
phism ψ of the definition is called the inverse and denoted φ−1. It is unique if it
exists. Note that given an object x of a category A the set of invertible elements
AutA(x) of MorA(x, x) forms a group under composition. This group is called the
automorphism group of x in A.

Definition 4.2.5. A groupoid is a category where every morphism is an isomor-
phism.

Example 4.2.6. A group G gives rise to a groupoid with a single object x and
morphisms Mor(x, x) = G, with the composition rule given by the group law in G.
Every groupoid with a single object is of this form.

Example 4.2.7. A set C gives rise to a groupoid C defined as follows: As objects
we take Ob(C) := C and for morphisms we take Mor(x, y) empty if x 6= y and equal
to {idx} if x = y.

Definition 4.2.8. A functor F : A → B between two categories A,B is given by
the following data:

(1) A map F : Ob(A)→ Ob(B).
(2) For every x, y ∈ Ob(A) a map F : MorA(x, y) → MorB(F (x), F (y)),

denoted φ 7→ F (φ).

These data should be compatible with composition and identity morphisms in the
following manner: F (φ◦ψ) = F (φ)◦F (ψ) for a composable pair (φ, ψ) of morphisms
of A and F (idx) = idF (x).
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Note that every category A has an identity functor idA. In addition, given a functor
G : B → C and a functor F : A → B there is a composition functor G ◦ F : A → C
defined in an obvious manner.

Definition 4.2.9. Let F : A → B be a functor.

(1) We say F is faithful if for any objects x, y of Ob(A) the map

F : MorA(x, y)→ MorB(F (x), F (y))

is injective.
(2) If these maps are all bijective then F is called fully faithful.
(3) The functor F is called essentially surjective if for any object y ∈ Ob(B)

there exists an object x ∈ Ob(A) such that F (x) is isomorphic to y in B.

Definition 4.2.10. A subcategory of a category B is a category A whose objects
and arrows form subsets of the objects and arrows of B and such that source,
target and composition in A agree with those of B. We say A is a full subcategory
of B if MorA(x, y) = MorB(x, y) for all x, y ∈ Ob(A). We say A is a strictly full
subcategory of B if it is a full subcategory and given x ∈ Ob(A) any object of B
which is isomorphic to x is also in A.

If A ⊂ B is a subcategory then the identity map is a functor from A to B. Fur-
thermore a subcategory A ⊂ B is full if and only if the inclusion functor is fully
faithful. Note that given a category B the set of full subcategories of B is the same
as the set of subsets of Ob(B).

Remark 4.2.11. Suppose that A is a category. A functor F from A to Sets is a
mathematical object (i.e., it is a set not a class or a formula of set theory, see Sets,
Section 3.2) even though the category of sets is “big”. Namely, the range of F on
objects will be a set F (Ob(A)) and then we may think of F as a functor between
A and the full subcategory of the category of sets whose objects are elements of
F (Ob(A)).

Example 4.2.12. A homomorphism p : G → H of groups gives rise to a functor
between the associated groupoids in Example 4.2.6. It is faithful (resp. fully faithful)
if and only if p is injective (resp. an isomorphism).

Example 4.2.13. Given a category C and an object X ∈ Ob(C) we define the cate-
gory of objects over X, denoted C/X as follows. The objects of C/X are morphisms
Y → X for some Y ∈ Ob(C). Morphisms between objects Y → X and Y ′ → X are
morphisms Y → Y ′ in C that make the obvious diagram commute. Note that there
is a functor pX : C/X → C which simply forgets the morphism. Moreover given a
morphism f : X ′ → X in C there is an induced functor F : C/X ′ → C/X obtained
by composition with f , and pX ◦ F = pX′ .

Example 4.2.14. Given a category C and an object X ∈ Ob(C) we define the
category of objects under X, denoted X/C as follows. The objects of X/C are
morphisms X → Y for some Y ∈ Ob(C). Morphisms between objects X → Y and
X → Y ′ are morphisms Y → Y ′ in C that make the obvious diagram commute.
Note that there is a functor pX : X/C → C which simply forgets the morphism.
Moreover given a morphism f : X ′ → X in C there is an induced functor F : X/C →
X ′/C obtained by composition with f , and pX′ ◦ F = pX .
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Definition 4.2.15. Let F,G : A → B be functors. A natural transformation, or a
morphism of functors t : F → G, is a collection {tx}x∈Ob(A) such that

(1) tx : F (x)→ G(x) is a morphism in the category B, and
(2) for every morphism φ : x→ y of A the following diagram is commutative

F (x)
tx //

F (φ)

��

G(x)

G(φ)

��
F (y)

ty // G(y)

Sometimes we use the diagram

A
F
%%

G

99�� t B

to indicate that t is a morphism from F to G.

Note that every functor F comes with the identity transformation idF : F → F .
In addition, given a morphism of functors t : F → G and a morphism of functors
s : E → F then the composition t ◦ s is defined by the rule

(t ◦ s)x = tx ◦ sx : E(x)→ G(x)

for x ∈ Ob(A). It is easy to verify that this is indeed a morphism of functors from
E to G. In this way, given categories A and B we obtain a new category, namely
the category of functors between A and B.

Remark 4.2.16. This is one instance where the same thing does not hold if A is
a “big” category. For example consider functors Sets→ Sets. As we have currently
defined it such a functor is a class and not a set. In other words, it is given by a
formula in set theory (with some variables equal to specified sets)! It is not a good
idea to try to consider all possible formulae of set theory as part of the definition of
a mathematical object. The same problem presents itself when considering sheaves
on the category of schemes for example. We will come back to this point later.

Definition 4.2.17. An equivalence of categories F : A → B is a functor such that
there exists a functor G : B → A such that the compositions F ◦G and G ◦ F are
isomorphic to the identity functors idB, respectively idA. In this case we say that
G is a quasi-inverse to F .

Lemma 4.2.18. Let F : A → B be a fully faithful functor. Suppose for every
X ∈ Ob(B) given an object j(X) of A and an isomorphism iX : X → F (j(X)).
Then there is a unique functor j : B → A such that j extends the rule on objects,
and the isomorphisms iX define an isomorphism of functors idB → F ◦j. Moreover,
j and F are quasi-inverse equivalences of categories.

Proof. This lemma proves itself. �

Lemma 4.2.19. A functor is an equivalence of categories if and only if it is both
fully faithful and essentially surjective.

Proof. Let F : A → B be essentially surjective and fully faithful. As by convention
all categories are small and as F is essentially surjective we can, using the axiom
of choice, choose for every X ∈ Ob(B) an object j(X) of A and an isomorphism
iX : X → F (j(X)). Then we apply Lemma 4.2.18 using that F is fully faithful. �
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Definition 4.2.20. Let A, B be categories. We define the product category A×B
to be the category with objects Ob(A× B) = Ob(A)×Ob(B) and

MorA×B((x, y), (x′, y′)) := MorA(x, x′)×MorB(y, y′).

Composition is defined componentwise.

4.3. Opposite Categories and the Yoneda Lemma

Definition 4.3.1. Given a category C the opposite category Copp is the category
with the same objects as C but all morphisms reversed.

In other words MorCopp(x, y) = MorC(y, x). Composition in Copp is the same as in
C except backwards: if φ : y → z and ψ : x→ y in Copp then φ ◦opp ψ := ψ ◦ φ.

Definition 4.3.2. Let C, S be categories. A contravariant functor F from C to S
is a functor Copp → S.

Concretely, a contravariant functor F is given by a map F : Ob(C) → Ob(S) and
for every morphism ψ : x → y in C a morphism F (ψ) : F (y) → F (x). These
should satisfy the property that, given another morphism φ : y → z, we have
F (φ ◦ ψ) = F (ψ) ◦ F (φ) as morphisms F (z)→ F (x). (Note the reverse of order.)

Definition 4.3.3. Let C be a category.

(1) A presheaf of sets on C or simply a presheaf is a contravariant functor F
from C to Sets.

(2) The category of presheaves is denoted PSh(C).

Of course the category of presheaves is a proper class.

Example 4.3.4. Functor of points. For any U ∈ Ob(C) there is a contravariant
functor

hU : C −→ Sets
X 7−→ MorC(X,U)

which takes an object X to the set MorC(X,U). In other words hU is a presheaf.
Given a morphism f : X → Y the corresponding map hU (f) : MorC(Y,U) →
MorC(X,U) takes φ to φ◦ f . We will always denote this presheaf hU : Copp → Sets.
It is called the representable presheaf associated to U . If C is the category of schemes
this functor is sometimes referred to as the functor of points of U .

Note that given a morphism φ : U → V in C we get a corresponding natural
transformation of functors h(φ) : hU → hV defined simply by composing with the
morphism U → V . It is trivial to see that this turns composition of morphisms in
C into composition of transformations of functors. In other words we get a functor

h : C −→ Fun(Copp,Sets) = PSh(C)
Note that the target is a “big” category, see Remark 4.2.2. On the other hand, h
is an actual mathematical object (i.e. a set), compare Remark 4.2.11.

Lemma 4.3.5 (Yoneda lemma). Let U, V ∈ Ob(C). Given any morphism of func-
tors s : hU → hV there is a unique morphism φ : U → V such that h(φ) = s. In
other words the functor h is fully faithful. More generally, given any contravariant
functor F and any object U of C we have a natural bijection

MorPSh(C)(hU , F ) −→ F (U), s 7−→ sU (idU ).
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Proof. Just take φ = sU (idU ) ∈ MorC(U, V ). �

Definition 4.3.6. A contravariant functor F : C → Sets is said to be representable
if it is isomorphic to the functor of points hU for some object U of C.

Choose an object U of C and an isomorphism s : hU → F . The Yoneda lemma
guarantees that the pair (U, s) is unique up to unique isomorphism. The object U
is called an object representing F .

4.4. Products of pairs

Definition 4.4.1. Let x, y ∈ Ob(C). A product of x and y is an object x × y ∈
Ob(C) together with morphisms p ∈ MorC(x × y, x) and q ∈ MorC(x × y, y) such
that the following universal property holds: for any w ∈ Ob(C) and morphisms
α ∈ MorC(w, x) and β ∈ MorC(w, y) there is a unique γ ∈ MorC(w, x × y) making
the diagram

w
β

**
γ

''
α

  

x× y
p

��

q
// y

x
commute.

If a product exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma as the definition requires x× y to be an object of C such that

hx×y(w) = hx(w)× hy(w)

functorially in w. In other words the product x × y is an object representing the
functor w 7→ hx(w)× hy(w).

Definition 4.4.2. We say the category C has products of pairs of objects if a
product x× y exists for any x, y ∈ Ob(C).

We use this terminology to distinguish this notion from the notion of “having prod-
ucts” or “having finite products” which usually means something else (in particular
it always implies there exists a final object).

4.5. Coproducts of pairs

Definition 4.5.1. Let x, y ∈ Ob(C). A coproduct, or amalgamated sum of x and
y is an object x q y ∈ Ob(C) together with morphisms i ∈ MorC(x, x q y) and
j ∈ MorC(y, x q y) such that the following universal property holds: for any w ∈
Ob(C) and morphisms α ∈ MorC(x,w) and β ∈ MorC(y, w) there is a unique γ ∈
MorC(xq y, w) making the diagram

y

j

�� β

��

x
i //

α

**

xq y
γ

''
w
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commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma (applied to the opposite category) as the definition requires x q y
to be an object of C such that

MorC(xq y, w) = MorC(x,w)×MorC(y, w)

functorially in w.

Definition 4.5.2. We say the category C has coproducts of pairs of objects if a
coproduct xq y exists for any x, y ∈ Ob(C).

We use this terminology to distinguish this notion from the notion of “having
coproducts” or “having finite coproducts” which usually means something else (in
particular it always implies there exists an initial object in C).

4.6. Fibre products

Definition 4.6.1. Let x, y, z ∈ Ob(C), f ∈ MorC(x, y) and g ∈ MorC(z, y). A
fibre product of f and g is an object x ×y z ∈ Ob(C) together with morphisms
p ∈ MorC(x×y z, x) and q ∈ MorC(x×y z, z) making the diagram

x×y z q
//

p

��

z

g

��
x

f // y

commute, and such that the following universal property holds: for any w ∈ Ob(C)
and morphisms α ∈ MorC(w, x) and β ∈ MorC(w, z) with f ◦ α = g ◦ β there is a
unique γ ∈ MorC(w, x×y z) making the diagram

w
β

**
γ

''
α

  

x×y z
p

��

q
// z

g

��
x

f // y

commute.

If a fibre product exists it is unique up to unique isomorphism. This follows from
the Yoneda lemma as the definition requires x×y z to be an object of C such that

hx×yz(w) = hx(w)×hy(w) hz(w)

functorially in w. In other words the fibre product x×y z is an object representing
the functor w 7→ hx(w)×hy(w) hz(w).

Definition 4.6.2. We say a commutative diagram

w //

��

z

��
x // y
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in a category is cartesian if w and the morphisms w → x and w → z form a fibre
product of the morphisms x→ y and z → y.

Definition 4.6.3. We say the category C has fibre products if the fibre product
exists for any f ∈ MorC(x, y) and g ∈ MorC(z, y).

Definition 4.6.4. A morphism f : x→ y of a category C is said to be representable,
if and only if for every morphism z → y in C the fibre product x×y z exists.

Lemma 4.6.5. Let C be a category. Let f : x→ y, and g : y → z be representable.
Then g ◦ f : x→ z is representable.

Proof. Omitted. �

Lemma 4.6.6. Let C be a category. Let f : x→ y be representable. Let y′ → y be
a morphism of C. Then the morphism x′ := x×y y′ → y′ is representable also.

Proof. Let z → y′ be a morphism. The fibre product x′ ×y′ z is supposed to
represent the functor

w 7→ hx′(w)×hy′ (w) hz(w)

= (hx(w)×hy(w) hy′(w))×hy′ (w) hz(w)

= hx(w)×hy(w) hz(w)

which is representable by assumption. �

4.7. Examples of fibre products

In this section we list examples of fibre products and we describe them.

As a really trivial first example we observe that the category of sets has fibred
products and hence every morphism is representable. Namely, if f : X → Y and
g : Z → Y are maps of sets then we define X ×Y Z as the subset of X × Z
consisting of pairs (x, z) such that f(x) = g(z). The morphisms p : X ×Y Z → X
and q : X ×U Z → Z are the projection maps (x, z) 7→ x, and (x, z) 7→ z. Finally,
if α : W → X and β : W → Z are morphisms such that f ◦α = g ◦ β then the map
W → X × Y , w 7→ (α(w), β(w)) obviously ends up in X ×Y Z as desired.

In many categories whose objects are sets endowed with certain types of algebraic
structures the fibre product of the underlying sets also provides the fibre product
in the category. For example, suppose that X, Y and Z above are groups and that
f , g are homomorphisms of groups. Then the set-theoretic fibre product X ×Y Z
inherits the structure of a group, simply by defining the product of two pairs by
the formula (x, z) · (x′, z′) = (xx′, zz′). Here we list those categories for which a
similar reasoning works.

(1) The category Groups of groups.
(2) The category G-Sets of sets endowed with a left G-action for some fixed

group G.
(3) The category of rings.
(4) The category of R-modules given a ring R.
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4.8. Fibre products and representability

In this section we work out fibre products in the category of contravariant func-
tors from a category to the category of sets. This will later be superseded during
the discussion of sites, presheaves, sheaves. Of some interest is the notion of a
“representable morphism” between such functors.

Lemma 4.8.1. Let C be a category. Let F,G,H : Copp → Sets be functors. Let
a : F → G and b : H → G be transformations of functors. Then the fibre product
F ×a,G,b H in the category Fun(Copp,Sets) exists and is given by the formula

(F ×a,G,b H)(X) = F (X)×aX ,G(X),bX H(X)

for any object X of C.

Proof. Omitted. �

As a special case suppose we have a morphism a : F → G, an object U ∈ Ob(C)
and an element ξ ∈ G(U). According to the Yoneda Lemma 4.3.5 this gives a
transformation ξ : hU → G. The fibre product in this case is described by the rule

(hU ×ξ,G,a F )(X) = {(f, ξ′) | f : X → U, ξ′ ∈ F (X), G(f)(ξ) = aX(ξ′)}

If F , G are also representable, then this is the functor representing the fibre product,
if it exists, see Section 4.6. The analogy with Definition 4.6.4 prompts us to define
a notion of representable transformations.

Definition 4.8.2. Let C be a category. Let F,G : Copp → Sets be functors. We say
a morphism a : F → G is representable, or that F is relatively representable over
G, if for every U ∈ Ob(C) and any ξ ∈ G(U) the functor hU ×G F is representable.

Lemma 4.8.3. Let C be a category. Let a : F → G be a morphism of contravariant
functors from C to Sets. If a is representable, and G is a representable functor,
then F is representable.

Proof. Omitted. �

Lemma 4.8.4. Let C be a category. Let F : Copp → Sets be a functor. Assume C
has products of pairs of objects and fibre products. The following are equivalent:

(1) The diagonal F → F × F is representable.
(2) For every U in C, and any ξ ∈ F (U) the map ξ : hU → F is representable.

Proof. Suppose the diagonal is representable, and let U, ξ be given. Consider any
V ∈ Ob(C) and any ξ′ ∈ F (V ). Note that hU × hV = hU×V is representable.
Hence the fibre product of the maps (ξ, ξ′) : hU × hV → F × F and F → F × F
is representable by assumption. This means there exists W ∈ Ob(C), morphisms
W → U , W → V and hW → F such that

hW

��

// F

��
hU × hV // F × F

is cartesian. We leave it to the reader to see that this implies that hW = hU ×F hV
as desired.
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Assume (2) holds. Consider any V ∈ Ob(C) and any (ξ, ξ′) ∈ (F ×F )(V ). We have
to show that hV ×F×F F is representable. What we know is that hV ×ξ,F,ξ′ hV is
representable, say by W in C with corresponding morphisms a, a′ : W → V (such
that ξ ◦ a = ξ′ ◦ a′). Consider W ′ = W ×(a,a′),V×V V . It is formal to show that W ′

represents hV ×F×F F because

hW ′ = hW ×hV ×hV hV = (hV ×ξ,F,ξ′ hV )×hV ×hV hV = F ×F×F hV .

�

4.9. Pushouts

The dual notion to fibre products is that of pushouts.

Definition 4.9.1. Let x, y, z ∈ Ob(C), f ∈ MorC(y, x) and g ∈ MorC(y, z). A
pushout of f and g is an object x qy z ∈ Ob(C) together with morphisms p ∈
MorC(x, xqy z) and q ∈ MorC(z, xqy z) making the diagram

y
g
//

f

��

z

q

��
x

p // xqy z

commute, and such that the following universal property holds: For any w ∈ Ob(C)
and morphisms α ∈ MorC(x,w) and β ∈ MorC(z, w) with α ◦ f = β ◦ g there is a
unique γ ∈ MorC(xqy z, w) making the diagram

y
g
//

f

��

z

q

�� β

  

x
p //

α

**

xqy z
γ

''
w

commute.

It is possible and straightforward to prove the uniqueness of the triple (xqy z, p, q)
up to unique isomorphism (if it exists) by direct arguments. Another possibility is
to think of the coproduct as the product in the opposite category, thereby getting
this uniqueness for free from the discussion in Section 4.6.

Definition 4.9.2. We say a commutative diagram

y //

��

z

��
x // w

in a category is cocartesian if w and the morphisms x → w and z → w form a
pushout of the morphisms y → x and y → z.
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4.10. Equalizers

Definition 4.10.1. Suppose that X, Y are objects of a category C and that a, b :
X → Y are morphisms. We say a morphism e : Z → X is an equalizer for the pair
(a, b) if a◦e = b◦e and if (Z, e) satisfies the following universal property: For every
morphism t : W → X in C such that a ◦ t = b ◦ t there exists a unique morphism
s : W → Z such that t = e ◦ s.

As in the case of the fibre product above, equalizers when they exist are unique up
to unique isomorphism. There is a straightforward generalization of this definition
to the case where we have more than 2 morphisms.

4.11. Coequalizers

Definition 4.11.1. Suppose that X, Y are objects of a category C and that a, b :
X → Y are morphisms. We say a morphism c : Y → Z is a coequalizer for the pair
(a, b) if c◦a = c◦ b and if (Z, c) satisfies the following universal property: For every
morphism t : Y → W in C such that t ◦ a = t ◦ b there exists a unique morphism
s : Z →W such that t = s ◦ c.

As in the case of the pushouts above, coequalizers when they exist are unique up
to unique isomorphism, and this follows from the uniqueness of equalizers upon
considering the opposite category. There is a straightforward generalization of this
definition to the case where we have more than 2 morphisms.

4.12. Initial and final objects

Definition 4.12.1. Let C be a category.

(1) An object x of the category C is called an initial object if for every object
y of C there is exactly one morphism x→ y.

(2) An object x of the category C is called a final object if for every object y
of C there is exactly one morphism y → x.

In the category of sets the empty set ∅ is an initial object, and in fact the only
initial object. Also, any singleton, i.e., a set with one element, is a final object (so
it is not unique).

4.13. Monomorphisms and Epimorphisms

Definition 4.13.1. Let C be a category and let f : X → Y be a morphism of C.
(1) We say that f is a monomorphism if for every object W and every pair

of morphisms a, b : W → X such that f ◦ a = f ◦ b we have a = b.
(2) We say that f is an epimorphism if for every object W and every pair of

morphisms a, b : Y →W such that a ◦ f = b ◦ f we have a = b.

Example 4.13.2. In the category of sets the monomorphisms correspond to injec-
tive maps and the epimorphisms correspond to surjective maps.

Lemma 4.13.3. Let C be a category, and let f : X → Y be a morphism of C. Then

(1) f is a monomorphism if and only if X is the fibre product X ×Y X, and
(2) f is an epimorphism if and only if Y is the pushout Y qX Y .

Proof. Omitted. �
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4.14. Limits and colimits

Let C be a category. A diagram in C is simply a functor M : I → C. We say that
I is the index category or that M is an I-diagram. We will use the notation Mi

to denote the image of the object i of I. Hence for φ : i → i′ a morphism in I we
have M(φ) : Mi →Mi′ .

Definition 4.14.1. A limit of the I-diagram M in the category C is given by an
object limIM in C together with morphisms pi : limIM →Mi such that

(1) for φ : i→ i′ a morphism in I we have pi′ = M(φ) ◦ pi, and
(2) for any object W in C and any family of morphisms qi : W → Mi such

that for all φ : i → i′ in I we have qi′ = M(φ) ◦ qi there exists a unique
morphism q : W → limIM such that qi = pi ◦ q for every object i of I.

Limits (limIM, (pi)i∈Ob(I)) are (if they exist) unique up to unique isomorphism by
the uniqueness requirement in the definition. Products of pairs, fibred products,
and equalizers are examples of limits. The limit over the empty diagram is a final
object of C. In the category of sets all limits exist. The dual notion is that of
colimits.

Definition 4.14.2. A colimit of the I-diagram M in the category C is given by an
object colimIM in C together with morphisms si : Mi → colimIM such that

(1) for φ : i→ i′ a morphism in I we have si = si′ ◦M(φ), and
(2) for any object W in C and any family of morphisms ti : Mi → W such

that for all φ : i → i′ in I we have ti = ti′ ◦M(φ) there exists a unique
morphism t : colimIM →W such that ti = t ◦ si for every object i of I.

Colimits (colimIM, (si)i∈Ob(I)) are (if they exist) unique up to unique isomorphism
by the uniqueness requirement in the definition. Coproducts of pairs, pushouts,
and coequalizers are examples of colimits. The colimit over an empty diagram is
an initial object of C. In the category of sets all colimits exist.

Remark 4.14.3. The index category of a (co)limit will never be allowed to have
a proper class of objects. In this project it means that it cannot be one of the
categories listed in Remark 4.2.2

Remark 4.14.4. We often write limiMi, colimiMi, limi∈IMi, or colimi∈IMi

instead of the versions indexed by I. Using this notation, and using the description
of limits and colimits of sets in Section 4.15 below, we can say the following. Let
M : I → C be a diagram.

(1) The object limiMi if it exists satisfies the following property

MorC(W, limiMi) = limi MorC(W,Mi)

where the limit on the right takes place in the category of sets.
(2) The object colimiMi if it exists satisfies the following property

MorC(colimiMi,W ) = limi∈Iopp MorC(Mi,W )

where on the right we have the limit over the opposite category with value
in the category of sets.

By the Yoneda lemma (and its dual) this formula completely determines the limit,
respectively the colimit.
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As an application of the notions of limits and colimits we define products and
coproducts.

Definition 4.14.5. Suppose that I is a set, and suppose given for every i ∈ I
an object Mi of the category C. A product

∏
i∈IMi is by definition limIM (if it

exists) where I is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = ∅ in which case the product is a final
object of the category. The morphisms pi :

∏
Mi → Mi are called the projection

morphisms.

Definition 4.14.6. Suppose that I is a set, and suppose given for every i ∈ I an
object Mi of the category C. A coproduct

∐
i∈IMi is by definition colimIM (if it

exists) where I is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = ∅ in which case the product is an initial
object of the category. Note that the coproduct comes equipped with morphisms
Mi →

∐
Mi. These are sometimes called the coprojections.

Lemma 4.14.7. Suppose that M : I → C, and N : J → C are diagrams whose
colimits exist. Suppose H : I → J is a functor, and suppose t : M → N ◦H is a
transformation of functors. Then there is a unique morphism

θ : colimIM −→ colimJ N

such that all the diagrams

Mi

ti

��

// colimIM

θ

��
NH(i)

// colimJ N

commute.

Proof. Omitted. �

Lemma 4.14.8. Suppose that M : I → C, and N : J → C are diagrams whose
limits exist. Suppose H : I → J is a functor, and suppose t : N ◦ H → M is a
transformation of functors. Then there is a unique morphism

θ : limJ N −→ limIM

such that all the diagrams

limJ N

θ

��

// NH(i)

ti

��
limIM // Mi

commute.

Proof. Omitted. �

Lemma 4.14.9. Let I, J be index categories. Let M : I × J → C be a functor.
We have

colimi colimjMi,j = colimi,jMi,j = colimj colimiMi,j

provided all the indicated colimits exist. Similar for limits.
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Proof. Omitted. �

Lemma 4.14.10. Let M : I → C be a diagram. Write I = Ob(I) and A =
Arrow(I). Denote s, t : A → I the source and target maps. Suppose that

∏
i∈IMi

and
∏
a∈AMt(a) exist. Suppose that the equalizer of

∏
i∈IMi

φ //

ψ
//
∏
a∈AMt(a)

exists, where the morphisms are determined by their components as follows: pa◦ψ =
M(a) ◦ ps(a) and pa ◦ φ = pt(a). Then this equalizer is the limit of the diagram.

Proof. Omitted. �

Lemma 4.14.11. Let M : I → C be a diagram. Write I = Ob(I) and A =
Arrow(I). Denote s, t : A → I the source and target maps. Suppose that

∐
i∈IMi

and
∐
a∈AMs(a) exist. Suppose that the coequalizer of

∐
a∈AMs(a)

φ //

ψ
//
∐
i∈IMi

exists, where the morphisms are determined by their components as follows: The
component Ms(a) maps via ψ to the component Mt(a) via the morphism a. The
component Ms(a) maps via φ to the component Ms(a) by the identity morphism.
Then this coequalizer is the colimit of the diagram.

Proof. Omitted. �

4.15. Limits and colimits in the category of sets

Not only do limits and colimits exist in Sets but they are also easy to describe.
Namely, let M : I → Sets, i 7→ Mi be a diagram of sets. Denote I = Ob(I). The
limit is described as

limIM = {(mi)i∈I ∈
∏

i∈I
Mi | ∀φ : i→ i′ in I,M(φ)(mi) = mi′}.

So we think of an element of the limit as a compatible system of elements of all the
sets Mi.

On the other hand, the colimit is

colimIM = (
∐

i∈I
Mi)/ ∼

where the equivalence relation ∼ is the equivalence relation generated by setting
mi ∼ mi′ if mi ∈Mi, mi′ ∈Mi′ and M(φ)(mi) = mi′ for some φ : i→ i′. In other
words, mi ∈Mi and mi′ ∈Mi′ are equivalent if there is a chain of morphisms in I

i1

|| ��

i3

��

i2n−1

$$
i = i0 i2 . . . i2n = i′

and elements mij ∈ Mij mapping to each other under the maps Mi2k−1
→ Mi2k−2

and Mi2k−1
→Mi2k induced from the maps in I above.

This is not a very pleasant type of object to work with. But if the diagram is
filtered then it is much easier to describe. We will explain this in Section 4.19.
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4.16. Connected limits

A (co)limit is called connected if its index category is connected.

Definition 4.16.1. We say that a category I is connected if the equivalence relation
generated by x ∼ y ⇔ MorI(x, y) 6= ∅ has exactly one equivalence class.

Here we follow the convention of Topology, Definition 5.6.1 that connected spaces
are nonempty. The following in some vague sense characterizes connected limits.

Lemma 4.16.2. Let C be a category. Let X be an object of C. Let M : I → C/X
be a diagram in the category of objects over X. If the index category I is connected
and the limit of M exists in C/X, then the limit of the composition I → C/X → C
exists and is the same.

Proof. Let M → X be an object representing the limit in C/X. Consider the
functor

W 7−→ limi MorC(W,Mi).

Let (ϕi) be an element of the set on the right. Since each Mi comes equipped with
a morphism si : Mi → X we get morphisms fi = si ◦ ϕi : W → X. But as I is
connected we see that all fi are equal. Since I is nonempty there is at least one fi.
Hence this common value W → X defines the structure of an object of W in C/X
and (ϕi) defines is an element of limi MorC/X(W,Mi). Thus we obtain a unique
morphism φ : W → M such that ϕi is the composition of φ with M → Mi as
desired. �

Lemma 4.16.3. Let C be a category. Let X be an object of C. Let M : I →
X/C be a diagram in the category of objects under X. If the index category I is
connected and the colimit of M exists in X/C, then the colimit of the composition
I → X/C → C exists and is the same.

Proof. Omitted. Hint: This lemma is dual to Lemma 4.16.2. �

4.17. Cofinal and initial categories

In the literature sometimes the word “final” is used instead of cofinal in the following
definition.

Definition 4.17.1. Let H : I → J be a functor between categories. We say I is
cofinal in J or that H is cofinal if

(1) for all y ∈ Ob(J ) there exists a x ∈ Ob(I) and a morphism y → H(x),
and

(2) given y ∈ Ob(J ), x, x′ ∈ Ob(I) and morphisms y → H(x) and y → H(x′)
there exists a sequence of morphisms

x = x0 ← x1 → x2 ← x3 → . . .→ x2n = x′

in I and morphisms y → H(xi) in J such that the diagrams

y

xx �� &&
H(x2k) H(x2k+1)oo // H(x2k+2)

commute for k = 0, . . . , n− 1.
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Lemma 4.17.2. Let H : I → J be a functor of categories. Assume I is cofinal in
J . Then for every diagram M : J → C we have a canonical isomorphism

colimIM ◦H = colimJ M

if either side exists.

Proof. Omitted. �

Definition 4.17.3. Let H : I → J be a functor between categories. We say I is
initial in J or that H is initial if

(1) for all y ∈ Ob(J ) there exists a x ∈ Ob(I) and a morphism H(x)→ y,
(2) for any y ∈ Ob(J ), x, x′ ∈ Ob(I) and morphisms H(x) → y, H(x′) → y

in J there exists n ≥ 0 and a commutative diagram

H(x)

++

H(x1)oo //

))

H(x2)

##

. . .oo // H(x2n−2)

zz

H(x2n−1)

tt

oo // H(x′)

rry

where all the horizontal morphisms come from morphisms in I, and the
vertical arrows in J .

This is just the dual notion to “cofinal” functors.

Lemma 4.17.4. Let H : I → J be a functor of categories. Assume I is initial
in J . Then for every diagram M : J → C the limit limJ M exists if and only if
limIM exists and if so these limits agree.

Proof. Omitted. �

Lemma 4.17.5. Let F : I → I ′ be a functor. Assume

(1) the fibre categories (see Definition 4.30.2) of I over I ′ are all connected,
and

(2) for every morphism α′ : x′ → y′ in I ′ there exist a morphism α : x → y
in I such that F (α) = α′.

Then for every diagram M : I ′ → C the colimit colimIM ◦ F exists if and only if
colimI′M exists and if so these colimits agree.

Proof. One can prove this by showing that I is cofinal in I ′ and applying Lemma
4.17.2. But we can also prove it directly as follows. It suffices to show that for any
object T of C we have

limIMorC(MF (i), T ) = limI′ MorC(Mi′ , T )

If (gi′)i′∈Ob(I′) is an element of the right hand side, then setting fi = gF (i) we
obtain an element (fi)i∈Ob(I) of the left hand side. Conversely, let (fi)i∈Ob(I) be
an element of the left hand side. Note that on each (connected) fibre category
Ii′ the functor M ◦ F is constant with value Mi′ . Hence the morphisms fi for
i ∈ Ob(I) with F (i) = i′ are all the same and determine a well defined morphism
gi′ : Mi′ → T . By assumption (2) the collection (gi′)i′∈Ob(I′) defines an element of
the right hand side. �

Lemma 4.17.6. Let I and J be a categories and denote p : I × J → J the
projection. If I is connected, then for a diagram M : J → C the colimit colimJ M
exists if and only if colimI×J M ◦ p exists and if so these colimits are equal.
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Proof. This is a special case of Lemma 4.17.5. �

4.18. Finite limits and colimits

A finite (co)limit is a (co)limit whose diagram category is finite, i.e., the diagram
category has finitely many objects and finitely many morphisms. A (co)limit is
called nonempty if the index category is nonempty. A (co)limit is called connected
if the index category is connected, see Definition 4.16.1. It turns out that there are
“enough” finite diagram categories.

Lemma 4.18.1. Let I be a category with

(1) Ob(I) is finite, and
(2) there exist finitely many morphisms f1, . . . , fm ∈ Arrows(I) such that

every morphism of I is a composition fj1 ◦ fj2 ◦ . . . ◦ fjk .

Then there exists a functor F : J → I such that

(a) J is a finite category, and
(b) for any diagram M : I → C the (co)limit of M over I exists if and only

if the (co)limit of M ◦ F over J exists and in this case the (co)limits are
canonically isomorphic.

Moreover, J is connected (resp. nonempty) if and only if I is so.

Proof. Say Ob(I) = {x1, . . . , xn}. Denote s, t : {1, . . . ,m} → {1, . . . , n} the
functions such that fj : xs(j) → xt(j). We set Ob(J ) = {y1, . . . , yn, z1, . . . , zn}
Besides the identity morphisms we introduce morphisms gj : ys(j) → zt(j), j =
1, . . . ,m and morphisms hi : yi → zi, i = 1, . . . , n. Since all of the nonidentity
morphisms in J go from a y to a z there are no compositions to define and no
associativity to check. Set F (yi) = F (zi) = xi. Set F (gj) = fj and F (hi) = idxi .
It is clear that F is a functor. It is clear that J is finite. It is clear that J is
connected, resp. nonempty if and only if I is so.

Let M : I → C be a diagram. Consider an object W of C and morphisms qi :
W → M(xi) as in Definition 4.14.1. Then by taking qi : W → M(F (yi)) =
M(F (zi)) = M(xi) we obtain a family of maps as in Definition 4.14.1 for the
diagram M ◦ F . Conversely, suppose we are given maps qyi : W → M(F (yi)) and
qzi : W →M(F (zi)) as in Definition 4.14.1 for the diagram M ◦ F . Since

M(F (hi)) = id : M(F (yi)) = M(xi) −→M(xi) = M(F (zi))

we conclude that qyi = qzi for all i. Set qi equal to this common value. The
compatibility of qs(j) = qys(j) and qt(j) = qzt(j) with the morphism M(fj) guar-
antees that the family qi is compatible with all morphisms in I as by assumption
every such morphism is a composition of the morphisms fj . Thus we have found a
canonical bijection

limB∈Ob(J ) MorC(W,M(F (B))) = limA∈Ob(I) MorC(W,M(A))

which implies the statement on limits in the lemma. The statement on colimits is
proved in the same way (proof omitted). �

Lemma 4.18.2. Let C be a category. The following are equivalent:

(1) Connected finite limits exist in C.
(2) Equalizers and fibre products exist in C.
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Proof. Since equalizers and fibre products are finite connected limits we see that
(1) implies (2). For the converse, let I be a finite connected diagram category. Let
F : J → I be the functor of diagram categories constructed in the proof of Lemma
4.18.1. Then we see that we may replace I by J . The result is that we may assume
that Ob(I) = {x1, . . . , xn} q {y1, . . . , ym} with n,m ≥ 1 such that all nonidentity
morphisms in I are morphisms f : xi → yj for some i and j.

Suppose that n > 1. Since I is connected there exist indices i1, i2 and j0 and
morphisms a : xi1 → yj0 and b : xi2 → yj0 . Consider the category

I ′ = {x} q {x1, . . . , x̂i1 , . . . , x̂i2 , . . . xn} q {y1, . . . , ym}
with

MorI′(x, yj) = MorI(xi1 , yj)qMorI(xi2 , yj)

and all other morphism sets the same as in I. For any functor M : I → C we can
construct a functor M ′ : I ′ → C by setting

M ′(x) = M(xi1)×M(a),M(yj),M(b) M(xi2)

and for a morphism f ′ : x → yj corresponding to, say, f : xi1 → yj we set
M ′(f) = M(f) ◦ pr1. Then the functor M has a limit if and only if the functor M ′

has a limit (proof omitted). Hence by induction we reduce to the case n = 1.

If n = 1, then the limit of any M : I → C is the successive equalizer of pairs of
maps x1 → yj hence exists by assumption. �

Lemma 4.18.3. Let C be a category. The following are equivalent:

(1) Nonempty finite limits exist in C.
(2) Products of pairs and equalizers exist in C.
(3) Products of pairs and fibre products exist in C.

Proof. Since products of pairs, fibre products, and equalizers are limits with
nonempty index categories we see that (1) implies both (2) and (3). Assume (2).
Then finite nonempty products and equalizers exist. Hence by Lemma 4.14.10 we
see that finite nonempty limits exist, i.e., (1) holds. Assume (3). If a, b : A → B
are morphisms of C, then the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2), and the lemma is proved. �

Lemma 4.18.4. Let C be a category. The following are equivalent:

(1) Finite limits exist in C.
(2) Finite products and equalizers exist.
(3) The category has a final object and fibred products exist.

Proof. Since products of pairs, fibre products, equalizers, and final objects are
limits over finite index categories we see that (1) implies both (2) and (3). By
Lemma 4.14.10 above we see that (2) implies (1). Assume (3). Note that the
product A × A is the fibre product over the final object. If a, b : A → B are
morphisms of C, then the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2) and the lemma is proved. �

Lemma 4.18.5. Let C be a category. The following are equivalent:
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(1) Connected finite colimits exist in C.
(2) Coequalizers and pushouts exist in C.

Proof. Omitted. Hint: This is dual to Lemma 4.18.2. �

Lemma 4.18.6. Let C be a category. The following are equivalent:

(1) Nonempty finite colimits exist in C.
(2) Coproducts of pairs and coequalizers exist in C.
(3) Coproducts of pairs and pushouts exist in C.

Proof. Omitted. Hint: This is the dual of Lemma 4.18.3. �

Lemma 4.18.7. Let C be a category. The following are equivalent:

(1) finite colimits exist in C,
(2) finite coproducts and coequalizers exist in C, and
(3) C has an initial object and pushouts exist.

Proof. Omitted. Hint: This is dual to Lemma 4.18.4. �

4.19. Filtered colimits

Colimits are easier to compute or describe when they are over a filtered diagram.
Here is the definition.

Definition 4.19.1. We say that a diagram M : I → C is directed, or filtered if the
following conditions hold:

(1) the category I has at least one object,
(2) for every pair of objects x, y of I there exists an object z and morphisms

x→ z, y → z, and
(3) for every pair of objects x, y of I and every pair of morphisms a, b : x→ y

of I there exists a morphism c : y → z of I such that M(c ◦ a) = M(c ◦ b)
as morphisms in C.

We say that an index category I is directed, or filtered if id : I → I is filtered (in
other words you erase the M in part (3) above.)

We observe that any diagram with filtered index category is filtered, and this is how
filtered colimits usually come about. In fact, if M : I → C is a filtered diagram,
then we can factor M as I → I ′ → C where I ′ is a filtered index category1 such
that colimIM exists if and only if colimI′M

′ exists in which case the colimits are
canonically isomorphic.

Suppose that M : I → Sets is a filtered diagram. In this case we may describe the
equivalence relation in the formula

colimIM = (
∐

i∈I
Mi)/ ∼

simply as follows

mi ∼ mi′ ⇔ ∃i′′, φ : i→ i′′, φ′ : i′ → i′′,M(φ)(mi) = M(φ′)(mi′).

In other words, two elements are equal in the colimit if and only if they “eventually
become equal”.

1Namely, let I′ have the same objects as I but where MorI′ (x, y) is the quotient of MorI(x, y)

by the equivalence relation which identifies a, b : x→ y if M(a) = M(b).
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Lemma 4.19.2. Let I and J be index categories. Assume that I is filtered and J
is finite. Let M : I × J → Sets, (i, j) 7→Mi,j be a diagram of diagrams of sets. In
this case

colimi limjMi,j = limj colimiMi,j .

In particular, colimits over I commute with finite products, fibre products, and
equalizers of sets.

Proof. Omitted. In fact, it is a fun exercise to prove that a category is filtered if
and only if colimits over the category commute with finite limits (into the category
of sets). �

We give a counter example to the lemma in the case where J is infinite. Namely, let
I consist of N = {1, 2, 3, . . .} with a unique morphism i→ i′ whenever i ≤ i′. Let
J consist of the discrete category N = {1, 2, 3, . . .} (only morphisms are identities).
Let Mi,j = {1, 2, . . . , i} with obvious inclusion maps Mi,j → Mi′,j when i ≤ i′. In
this case colimiMi,j = N and hence

limj colimiMi,j =
∏

j
N = NN

On the other hand limjMi,j =
∏
jMi,j and hence

colimi limjMi,j =
⋃

i
{1, 2, . . . , i}N

which is smaller than the other limit.

It turns out we sometimes need a more finegrained control over the possible con-
ditions one can impose on index categories. Thus we add some lemmas on the
possible things one can require.

Lemma 4.19.3. Let I be an index category, i.e., a category. Assume that for every
pair of objects x, y of I there exists an object z and morphisms x→ z and y → z.
Then colimits of diagrams of sets over I commute with finite nonempty products.

Proof. Let M and N be diagrams of sets over I. To prove the lemma we have to
show that the canonical map

colim(Mi ×Ni) −→ colimMi × colimNi

is an isomorphism. If I is empty, then this is true because the colimit of sets
over the empty category is the empty set. If I is nonempty, then we construct a
map colimMi × colimNi → colim(Mi ×Ni) as follows. Suppose that m ∈Mi and
n ∈ Nj give rise to elements s and t of the respective colimits. By assumption we
can find a : i → k and b : j → k in I. Then (M(a)(m), N(b)(n)) is an element
of Mk ×Nk and we map (s, t) to the corresponding element of colimMi ×Ni. We
omit the verification that this map is well defined and that it is an inverse of the
map displayed above. �

Lemma 4.19.4. Let I be an index category, i.e., a category. Assume that for every
pair of objects x, y of I there exists an object z and morphisms x→ z and y → z.
Let M : I → Ab be a diagram of abelian groups over I. Then the set underlying
colimiMi is the colimit of M viewed as a diagram of sets over I.
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Proof. In this proof all colimits are taken in the category of sets. By Lemma
4.19.3 we have colimMi × colimMi = colim(Mi ×Mi) hence we can use the maps
+ : Mi × Mi → Mi to define an addition map on colimMi. A straightforward
argument, which we omit, shows that the set colimMi with this addition is the
colimit in the category of abelian groups. �

Lemma 4.19.5. Let I be an index category, i.e., a category. Assume that for every
solid diagram

x

��

// y

��
z // w

in I there exists an object w and dotted arrows making the diagram commute. Then
I is a (possibly empty) disjoint union of categories satisfying the condition above
and the condition of Lemma 4.19.3.

Proof. If I is the empty category, then the lemma is true. Otherwise, we define a
relation on objects of I by saying that x ∼ y if there exists a z and morphisms x→ z
and y → z. This is an equivalence relation by the assumption of the lemma. Hence
Ob(I) is a disjoint union of equivalence classes. Let Ij be the full subcategories
corresponding to these equivalence classes. Then I =

∐
Ij as desired. �

Lemma 4.19.6. Let I be an index category, i.e., a category. Assume that for every
solid diagram

x

��

// y

��
z // w

in I there exists an object w and dotted arrows making the diagram commute. Then
an injective morphism M → N of diagrams of sets (resp. abelian groups) over I
gives rise to an injective map colimMi → colimNi of sets (resp. abelian groups).

Proof. We first show that it suffices to prove the lemma for the case of a diagram
of sets. Namely, by Lemma 4.19.5 we can write I =

∐
Ij where each Ij satisfies

the condition of the lemma as well as the condition of Lemma 4.19.3. Thus, if M
is a diagram of abelian groups over I, then

colimIM =
⊕

j
colimIj M |Ij

It follows that it suffices to prove the result for the categories Ij . Howeover, col-
imits of abelian groups over these categories are computed by the colimits of the
underlying sets (Lemma 4.19.4) hence we reduce to the case of an injective map of
diagrams of sets.

Here we say that M → N is injective if all the maps Mi → Ni are injective. In
fact, we will identify Mi with the image of Mi → Ni, i.e., we will think of Mi as
a subset of Ni. We will use the description of the colimits given in Section 4.15
without further mention. Let s, s′ ∈ colimMi map to the same element of colimNi.
Say s comes from an element m of Mi and s′ comes from an element m′ of Mi′ .
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Then we can find a sequence i = i0, i1, . . . , in = i′ of objects of I and morphisms

i1

|| ��

i3

��

i2n−1

$$
i = i0 i2 . . . i2n = i′

and elements nij ∈ Nij mapping to each other under the maps Ni2k−1
→ Ni2k−2

and Ni2k−1
→ Ni2k induced from the maps in I above with ni0 = m and ni2n = m′.

We will prove by induction on n that this implies s = s′. The base case n = 0 is
trivial. Assume n ≥ 1. Using the assumption on I we find a commutative diagram

i1

�� ��
i0

  

i2

~~
w

We conclude that m and ni2 map to the same element of Nw because both are the
image of the element ni1 . In particular, this element is an element m′′ ∈Mw which
gives rise to the same element as s in colimMi. Then we find the chain

i3

�� ��

i5

��

i2n−1

$$
w i4 . . . i2n = i′

and the elements nij for j ≥ 3 which has a smaller length than the chain we started
with. This proves the induction step and the proof of the lemma is complete. �

Lemma 4.19.7. Let I be an index category, i.e., a category. Assume

(1) for every pair of morphisms a : w → x and b : w → y in I there exists an
object z and morphisms c : x → z and d : y → z such that c ◦ a = d ◦ b,
and

(2) for every pair of morphisms a, b : x→ y there exists a morphism c : y → z
such that c ◦ a = c ◦ b.

Then I is a (possibly empty) union of disjoint filtered index categories Ij.

Proof. If I is the empty category, then the lemma is true. Otherwise, we define
a relation on objects of I by saying that x ∼ y if there exists a z and morphisms
x → z and y → z. This is an equivalence relation by the first assumption of the
lemma. Hence Ob(I) is a disjoint union of equivalence classes. Let Ij be the full
subcategories corresponding to these equivalence classes. The rest is clear from the
definitions. �

Lemma 4.19.8. Let I be an index category satisfying the hypotheses of Lemma
4.19.7 above. Then colimits over I commute with fibre products and equalizers in
sets (and more generally with finite connected limits).
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Proof. By Lemma 4.19.7 we may write I =
∐
Ij with each Ij filtered. By Lemma

4.19.2 we see that colimits of Ij commute with equalizers and fibred products. Thus
it suffices to show that equalizers and fibre products commute with coproducts in
the category of sets (including empty coproducts). In other words, given a set J
and sets Aj , Bj , Cj and set maps Aj → Bj , Cj → Bj for j ∈ J we have to show
that

(
∐

j∈J
Aj)×(

∐
j∈J Bj)

(
∐

j∈J
Cj) =

∐
j∈J

Aj ×Bj Cj

and given aj , a
′
j : Aj → Bj that

Equalizer(
∐

j∈J
aj ,
∐

j∈J
a′j) =

∐
j∈J

Equalizer(aj , a
′
j)

This is true even if J = ∅. Details omitted. �

4.20. Cofiltered limits

Limits are easier to compute or describe when they are over a cofiltered diagram.
Here is the definition.

Definition 4.20.1. We say that a diagram M : I → C is codirected or cofiltered if
the following conditions hold:

(1) the category I has at least one object,
(2) for every pair of objects x, y of I there exists an object z and morphisms

z → x, z → y, and
(3) for every pair of objects x, y of I and every pair of morphisms a, b : x→ y

of I there exists a morphism c : w → x of I such that M(a◦ c) = M(b◦ c)
as morphisms in C.

We say that an index category I is codirected, or cofiltered if id : I → I is cofiltered
(in other words you erase the M in part (3) above.)

We observe that any diagram with cofiltered index category is cofiltered, and this
is how this situation usually occurs.

As an example of why cofiltered limits of sets are “easier” than general ones, we men-
tion the fact that a cofiltered diagram of finite nonempty sets has nonempty limit
(Lemma 4.21.5). This result does not hold for a general limit of finite nonempty
sets.

4.21. Limits and colimits over partially ordered sets

A special case of diagrams is given by systems over partially ordered sets.

Definition 4.21.1. Let (I,≥) be a partially ordered set. Let C be a category.

(1) A system over I in C, sometimes called a inductive system over I in C is
given by objects Mi of C and for every i ≤ i′ a morphism fii′ : Mi →Mi′

such that fii = id and such that fii′′ = fi′i′′ ◦ fii′ whenever i ≤ i′ ≤ i′′.
(2) An inverse system over I in C, sometimes called a projective system over

I in C is given by objects Mi of C and for every i ≥ i′ a morphism
fii′ : Mi → Mi′ such that fii = id and such that fii′′ = fi′i′′ ◦ fii′
whenever i ≥ i′ ≥ i′′. (Note reversal of inequalities.)

We will say (Mi, fii′) is a (inverse) system over I to denote this. The maps fii′ are
sometimes called the transition maps.
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In other words a system over I is just a diagram M : I → C where I is the category
with objects I and a unique arrow i→ i′ if and only i ≤ i′. And an inverse system
is a diagram M : Iopp → C. From this point of view we could take (co)limits of any
(inverse) system over I. However, it is customary to take only colimits of systems
over I and only limits of inverse systems over I. More precisely: Given a system
(Mi, fii′) over I the colimit of the system (Mi, fii′) is defined as

colimi∈IMi = colimIM,

i.e., as the colimit of the corresponding diagram. Given a inverse system (Mi, fii′)
over I the limit of the inverse system (Mi, fii′) is defined as

limi∈IMi = limIoppM,

i.e., as the limit of the corresponding diagram.

Definition 4.21.2. With notation as above. We say the system (resp. inverse
system) (Mi, fii′) is a directed system (resp. directed inverse system) if the partially
ordered set I is directed: I is nonempty and for all i1, i2 ∈ I there exists i ∈ I such
that i1 ≤ i and i2 ≤ i.

In this case the colimit is sometimes (unfortunately) called the “direct limit”. We
will not use this last terminology. It turns out that diagrams over a filtered category
are no more general than directed systems in the following sense.

Lemma 4.21.3. Let I be a filtered index category. There exists a directed partially
ordered set (I,≥) and a system (xi, ϕii′) over I in I with the following properties:

(1) For every category C and every diagram M : I → C with values in C, de-
note (M(xi),M(ϕii′)) the corresponding system over I. If colimi∈IM(xi)
exists then so does colimIM and the transformation

θ : colimi∈IM(xi) −→ colimIM

of Lemma 4.14.7 is an isomorphism.
(2) For every category C and every diagram M : Iopp → C in C, denote

(M(xi),M(ϕii′)) the corresponding inverse system over I. If limi∈IM(xi)
exists then so does limIM and the transformation

θ : limIoppM −→ limi∈IM(xi)

of Lemma 4.14.8 is an isomorphism.

Proof. As mentioned in the beginning of the section, we may view partially ordered
sets as categories and systems as functors. Throughout the proof, we will freely
shift between these two points of view. We prove the first statement by constructing
a category I0, corresponding to a directed set, and a cofinal functor M0 : I0 → I.
Then, by Lemma 4.17.2, the colimit of a diagram M : I → C coincides with the
colimit of the diagram M ◦M0|I0 → C, from which the statement follows. The
second statement is dual to the first and may be proved by interpreting a limit in
C as a colimit in Copp. We omit the details.

A category F is called finitely generated if there exists a finite set F of arrows
in F , such that each arrow in F may be obtained by composing arrows from F .
In particular, this implies that F has finitely many objects. We start the proof
by reducing to the case when I has the property that every finitely generated
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subcategory of I may be extended to a finitely generated subcategory with a unique
final object.

Let ω denote the directed set of finite ordinals, which we view as a filtered category.
It is easy to verify that the product category I×ω is also filtered, and the projection
Π : I × ω → I is cofinal.

Now let F be any finitely generated subcategory of I × ω. By using the axioms of
a filtered category and a simple induction argument on a finite set of generators of
F , we may construct a cocone ({fi}, i∞) in I for the diagram F → I. That is, a
morphism fi : i→ i∞ for every object i in F such that for each arrow f : i→ i′ in
F we have fi = f ◦ fi′ . We also choose i∞ such that it is not contained in F . This
is possible since we may always post-compose the arrows fi with an arrow which is
the identity on the I-component and strictly increasing on the ω-component. Now
let F+ denote the category consisting of all objects and arrows in F together with
the object i∞, the identity arrow idi∞ and the arrows fi. Since there are no arrows
from i∞ in F+ to any object of F , the arrow set in F+ is closed under composition,
so F+ is indeed a category. By construction, it is a finitely generated subcategory
of I which has i∞ as unique final object. Since, by Lemma 4.17.2, the colimit of
any diagram M : I → C coincides with the colimit of M ◦Π , this gives the desired
reduction.

The set of all finitely generated subcategories of I with a unique final object is
naturally ordered by inclusion. We take I0 to be the category corresponding to
this set. We also have a functor M0 : I0 → I, which takes an arrow F ⊂ F ′ in
I0 to the unique map from the final object of F to the final object of F ′. Given
any two finitely generated subcategories of I, the category generated by these two
categories is also finitely generated. By our assumption on I, it is also contained
in a finitely generated subcategory of I with a unique final object. This shows that
I0 is directed.

Finally, we verify that M0 is cofinal. Since any object of I is the final object in
the subcategory consisting of only that object and its identity arrow, the functor
M0 is surjective on objects. In particular, Condition (1) of Definition 4.17.1 is
satisfied. Given an object i of I, F1,F2 in I0 and maps ϕ1 : i → M0(F1) and
ϕ2 : i → M0(F2) in I, we can take F12 to be a finitely generated category with
a unique final object containg F1, F2 and the morphisms ϕ1, ϕ2. The resulting
diagram commutes

M0(F12)

M0(F1)

99

M0(F2)

ee

i

ff 88

since it lives in the category F12 and M0(F12) is final in this category. Hence also
Condition (2) is satisfied, which concludes the proof. �

Remark 4.21.4. Note that a finite directed set (I,≥) always has a greatest object
i∞. Hence any colimit of a system (Mi, fii′) over such a set is trivial in the sense
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that the colimit equals Mi∞ . In contrast, a colimit indexed by a finite filtered
category need not be trival. For instance, let I be the category with a single object
i and a single non-trivial morphism e satisfying e = e ◦ e. The colimit of a diagram
M : I → Sets is the image of the idempotent M(e). This illustrates that something
like the trick of passing to I × ω in the proof of Lemma 4.21.3 is essential.

Lemma 4.21.5. If S : I → Sets is a cofiltered diagram of sets and all the Si are
finite nonempty, then limi Si is nonempty. In other words, the limit of a directed
inverse system of finite nonempty sets is nonempty.

Proof. The two statements are equivalent by Lemma 4.21.3. Let I be a directed
partially ordered set and let (Si)i∈I be an inverse system of finite nonempty sets
over I. Let us say that a subsystem T is a family T = (Ti)i∈I of nonempty subsets
Ti ⊂ Si such that Ti′ is mapped into Ti by the transition map Si′ → Si for all
i′ ≥ i. Denote T the set of subsystems. We order T by inclusion. Suppose Tα,
α ∈ A is a totally ordered family of elements of T . Say Tα = (Tα,i)i∈I . Then we
can find a lower bound T = (Ti)i∈I by setting Ti =

⋂
α∈A Tα,i which is manifestly

a finite nonempty subset of Si as all the Tα,i are nonempty and as the Tα form a
totally ordered family. Thus we may apply Zorn’s lemma to see that T has minimal
elements.

Let’s analyze what a minimal element T ∈ T looks like. First observe that the maps
Ti′ → Ti are all surjective. Namely, as I is a directed partially ordered set and Ti
is finite, the intersection T ′i =

⋂
i′≥i Im(Ti′ → Ti) is nonempty. Thus T ′ = (T ′i ) is a

subsystem contained in T and by minimality T ′ = T . Finally, we claim that Ti is a
singleton for each i. Namely, if x ∈ Ti, then we can define T ′i′ = (Ti′ → Ti)

−1({x})
for i′ ≥ i and T ′j = Tj if j 6≥ i. This is another subsystem as we’ve seen above
that the transition maps of the subsystem T are surjective. By minimality we see
that T = T ′ which indeed implies that Ti is a singleton. This holds for every i ∈ I,
hence we see that Ti = {xi} for some xi ∈ Si with xi′ 7→ xi under the map Si′ → Si
for every i′ ≥ i. In other words, (xi) ∈ limSi and the lemma is proved. �

4.22. Essentially constant systems

Let M : I → C be a diagram in a category C. Assume the index category I is
filtered. In this case there are three successively stronger notions which pick out
an object X of C. The first is just

X = colimi∈IMi.

Then X comes equipped with the coprojections Mi → X. A stronger condition
would be to require that X is the colimit and that there exists an i ∈ I and a
morphism X → Mi such that the composition X → Mi → X is idX . A stronger
condition is the following.

Definition 4.22.1. Let M : I → C be a diagram in a category C.
(1) Assume the index category I is filtered. We say M is essentially constant

with value X if X = colimiMi and there exists an i ∈ I and a morphism
X →Mi such that
(a) X →Mi → X is idX , and
(b) for all j there exist k and morphisms i→ k and j → k such that the

morphism Mj →Mk equals the composition Mj → X →Mi →Mk.

http://stacks.math.columbia.edu/tag/086J
http://stacks.math.columbia.edu/tag/05PU


4.22. ESSENTIALLY CONSTANT SYSTEMS 99

(2) Assume the index category I is cofiltered. We say M is essentially con-
stant with value X if X = limiMi and there exists an i ∈ I and a
morphism Mi → X such that
(a) X →Mi → X is idX , and
(b) for all j there exist k and morphisms k → i and k → j such that the

morphism Mk →Mj equals the composition Mk →Mi → X →Mj .

Which of the two versions is meant will be clear from context. If there is any
confusion we will distinguish between these by saying that the first version means
M is essentially constant as an ind-object, and in the second case we will say it
is essentially constant as a pro-object. This terminology is further explained in
Remarks 4.22.3 and 4.22.4. In fact we will often use the terminology “essentially
constant system” which formally speaking is only defined for systems over directed
partially ordered sets.

Definition 4.22.2. Let C be a category. A directed system (Mi, fii′) is an es-
sentially constant system if M viewed as a functor I → C defines an essentially
constant diagram. A directed inverse system (Mi, fii′) is an essentially constant
inverse system if M viewed as a functor Iopp → C defines an essentially constant
inverse diagram.

If (Mi, fii′) is an essentially constant system and the morphisms fii′ are monomor-
phisms, then for all i ≤ i′ sufficiently large the morphisms fii′ are isomorphisms.
In general this need not be the case however. An example is the system

Z2 → Z2 → Z2 → . . .

with maps given by (a, b) 7→ (a + b, 0). This system is essentially constant with
value Z. A non-example is to let M =

⊕
n≥0 Z and to let S : M →M be the shift

operator (a0, a1, . . .) 7→ (a1, a2, . . .). In this case the system M → M → M → . . .
with transition maps S has colimit 0, and a map 0 → M but the system is not
essentially constant.

Remark 4.22.3. Let C be a category. There exists a big category Ind-C of ind-
objects of C. Namely, if F : I → C and G : J → C are filtered diagrams in C, then
we can define

MorInd-C(F,G) = limi colimj MorC(F (i), G(j)).

There is a canonical functor C → Ind-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only F is isomorphic to a constant system. If we ever
need this material, then we will formulate this into a lemma and prove it here.

Remark 4.22.4. Let C be a category. There exists a big category Pro-C of pro-
objects of C. Namely, if F : I → C and G : J → C are cofiltered diagrams in C,
then we can define

MorPro-C(F,G) = limj colimi MorC(F (i), G(j)).

There is a canonical functor C → Pro-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only F is isomorphic to a constant system. If we ever
need this material, then we will formulate this into a lemma and prove it here.
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Lemma 4.22.5. Let C be a category. Let M : I → C be a diagram with filtered
(resp. cofiltered) index category I. Let F : C → D be a functor. If M is essentially
constant as an ind-object (resp. pro-object), then so is F ◦M : I → D.

Proof. If X is a value for M , then it follows immediately from the definition that
F (X) is a value for F ◦M . �

Lemma 4.22.6. Let C be a category. Let M : I → C be a diagram with filtered
index category I. The following are equivalent

(1) M is an essentially constant ind-object, and
(2) X = colimiMi exists and for any W in C the map

colimi MorC(W,Mi) −→ MorC(W,X)

is bijective.

Proof. Assume (2) holds. Then idX ∈ MorC(X,X) comes from a morphism X →
Mi for some i, i.e., X →Mi → X is the identity. Then both maps

MorC(W,X) −→ colimi MorC(W,Mi) −→ MorC(W,X)

are bijective for all W where the first one is induced by the morphism X →Mi we
found above, and the composition is the identity. This means that the composition

colimi MorC(W,Mi) −→ MorC(W,X) −→ colimi MorC(W,Mi)

is the identity too. Setting W = Mj and starting with idMj
in the colimit, we see

that Mj → X → Mi → Mk is equal to Mj → Mk for some k large enough. This
proves (1) holds. The proof of (1) ⇒ (2) is omitted. �

Lemma 4.22.7. Let C be a category. Let M : I → C be a diagram with cofiltered
index category I. The following are equivalent

(1) M is an essentially constant pro-object, and
(2) X = limiMi exists and for any W in C the map

colimi∈Iopp MorC(Mi,W ) −→ MorC(X,W )

is bijective.

Proof. Assume (2) holds. Then idX ∈ MorC(X,X) comes from a morphism Mi →
X for some i, i.e., X →Mi → X is the identity. Then both maps

MorC(X,W ) −→ colimi MorC(Mi,W ) −→ MorC(X,W )

are bijective for all W where the first one is induced by the morphism Mi → X we
found above, and the composition is the identity. This means that the composition

colimi MorC(Mi,W ) −→ MorC(X,W ) −→ colimi MorC(Mi,W )

is the identity too. Setting W = Mj and starting with idMj in the colimit, we see
that Mk → Mi → X → Mj is equal to Mk → Mj for some k large enough. This
proves (1) holds. The proof of (1) ⇒ (2) is omitted. �

Lemma 4.22.8. Let C be a category. Let H : I → J be a functor of filtered index
categories. If H is cofinal, then any diagram M : J → C is essentially constant if
and only if M ◦H is essentially constant.

Proof. This follows formally from Lemmas 4.22.6 and 4.17.2. �
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Lemma 4.22.9. Let I and J be filtered categories and denote p : I × J → J the
projection. Then I ×J is filtered and a diagram M : J → C is essentially constant
if and only if M ◦ p : I × J → C is essentially constant.

Proof. We omit the verification that I × J is filtered. The equivalence follows
from Lemma 4.22.8 because p is cofinal (verification omitted). �

Lemma 4.22.10. Let C be a category. Let H : I → J be a functor of cofiltered
index categories. If H is initial, then any diagram M : J → C is essentially
constant if and only if M ◦H is essentially constant.

Proof. This follows formally from Lemmas 4.22.7, 4.17.4, 4.17.2, and the fact that
if I is initial in J , then Iopp is cofinal in J opp. �

4.23. Exact functors

Definition 4.23.1. Let F : A → B be a functor.

(1) Suppose all finite limits exist in A. We say F is left exact if it commutes
with all finite limits.

(2) Suppose all finite colimits exist inA. We say F is right exact if it commutes
with all finite colimits.

(3) We say F is exact if it is both left and right exact.

Lemma 4.23.2. Let F : A → B be a functor. Suppose all finite limits exist in A,
see Lemma 4.18.4. The following are equivalent:

(1) F is left exact,
(2) F commutes with finite products and equalizers, and
(3) F transforms a final object of A into a final object of B, and commutes

with fibre products.

Proof. Lemma 4.14.10 shows that (2) implies (1). Suppose (3) holds. The fibre
product over the final object is the product. If a, b : A → B are morphisms of A,
then the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2). Finally (1) implies (3) because the empty limit is a final
object, and fibre products are limits. �

4.24. Adjoint functors

Definition 4.24.1. Let C, D be categories. Let u : C → D and v : D → C be
functors. We say that u is a left adjoint of v, or that v is a right adjoint to u if
there are bijections

MorD(u(X), Y ) −→ MorC(X, v(Y ))

functorial in X ∈ Ob(C), and Y ∈ Ob(D).

In other words, this means that there is a given isomorphism of functors Copp×D →
Sets from MorD(u(−),−) to MorC(−, v(−)). For any object X of C we obtain a
morphism X → v(u(X)) corresponding to idu(X). Similarly, for any object Y of
D we obtain a morphism u(v(Y )) → Y corresponding to idv(Y ). These maps are
called the adjunction maps. The adjunction maps are functorial in X and Y , hence
we obtain morphisms of functors idC → v ◦ u and u ◦ v → idD. Moreover, if
α : u(X)→ Y and β : X → v(Y ) are morphisms, then the following are equivalent
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(1) α and β correspond to each other via the bijection of the definition,

(2) β is the composition X → v(u(X))
v(α)−−−→ v(Y ), and

(3) α is the composition u(X)
u(β)−−−→ u(v(Y ))→ Y .

In this way one can reformulate the notion of adjoint functors in terms of adjunction
maps.

Lemma 4.24.2. Let u : C → D be a functor between categories. If for each
y ∈ Ob(D) the functor x 7→ MorD(u(x), y) is representable, then u has a right
adjoint.

Proof. For each y choose an object v(y) and an isomorphism MorC(−, v(y)) →
MorD(u(−), y) of functors. By Yoneda’s lemma (Lemma 4.3.5) for any morphism
g : y → y′ the transformation of functors

MorC(−, v(y))→ MorD(u(−), y)→ MorD(u(−), y′)→ MorC(−, v(y′))

corresponds to a unique morphism v(g) : v(y) → v(y′). We omit the verification
that v is a functor and that it is right adjoint to u. �

Lemma 4.24.3. Let u be a left adjoint to v as in Definition 4.24.1. Then

(1) u is fully faithful ⇔ id ∼= v ◦ u.
(2) v is fully faithful ⇔ u ◦ v ∼= id.

Proof. Assume u is fully faithful. We have to show the adjunction map X →
v(u(X)) is an isomorphism. Let X ′ → v(u(X)) be any morphism. By adjointness
this corresponds to a morphism u(X ′) → u(X). By fully faithfulness of u this
corresponds to a morphism X ′ → X. Thus we see that X → v(u(X)) defines a bi-
jection Mor(X ′, X)→ Mor(X ′, v(u(X))). Hence it is an isomorphism. Conversely,
if id ∼= v ◦ u then u has to be fully faithful, as v defines an inverse on morphism
sets.

Part (2) is dual to part (1). �

Lemma 4.24.4. Let u be a left adjoint to v as in Definition 4.24.1.

(1) Suppose that M : I → C is a diagram, and suppose that colimIM exists
in C. Then u(colimIM) = colimI u ◦M . In other words, u commutes
with (representable) colimits.

(2) Suppose that M : I → D is a diagram, and suppose that limIM exists
in D. Then v(limIM) = limI v ◦M . In other words v commutes with
representable limits.

Proof. A morphism from a colimit into an object is the same as a compatible
system of morphisms from the constituents of the limit into the object, see Remark
4.14.4. So

MorD(u(colimi∈IMi), Y ) = MorC(colimi∈IMi, v(Y ))
= limi∈Iopp MorC(Mi, v(Y ))
= limi∈Iopp MorD(u(Mi), Y )

proves that u(colimi∈IMi) is the colimit we are looking for. A similar argument
works for the other statement. �

Lemma 4.24.5. Let u be a left adjoint of v as in Definition 4.24.1.

(1) If C has finite colimits, then u is right exact.
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(2) If D has finite limits, then v is left exact.

Proof. Obvious from the definitions and Lemma 4.24.4. �

4.25. Localization in categories

The basic idea of this section is given a category C and a set of arrows S to construct
a functor F : C → S−1C such that all elements of S become invertible in S−1C and
such that F is universal among all functors with this property. References for this
section are [GZ67, Chapter I, Section 2] and [Ver96, Chapter II, Section 2].

Definition 4.25.1. Let C be a category. A set of arrows S of C is called a left
multiplicative system if it has the following properties:

LMS1 The identity of every object of C is in S and the composition of two
composable elements of S is in S.

LMS2 Every solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with t ∈ S can be completed to a commutative dotted square with s ∈ S.
LMS3 For every pair of morphisms f, g : X → Y and t ∈ S with target X such

that f ◦ t = g ◦ t there exists a s ∈ S with source Y such that s ◦ f = s ◦ g.

A set of arrows S of C is called a right multiplicative system if it has the following
properties:

RMS1 The identity of every object of C is in S and the composition of two
composable elements of S is in S.

RMS2 Every solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with s ∈ S can be completed to a commutative dotted square with t ∈ S.
RMS3 For every pair of morphisms f, g : X → Y and s ∈ S with source Y such

that s ◦ f = s ◦ g there exists a t ∈ S with target X such that f ◦ t = g ◦ t.
A set of arrows S of C is called a multiplicative system if it is both a left multiplicative
system and a right multiplicative system. In other words, this means that MS1,
MS2, MS3 hold, where MS1 = LMS1 + RMS1, MS2 = LMS2 + RMS2, and MS3
= LMS3 + RMS3.

These conditions are useful to construct the categories S−1C as follows.

Left calculus of fractions. Let C be a category and let S be a left multiplicative
system. We define a new category S−1C as follows (we verify this works in the
proof of Lemma 4.25.2):

(1) We set Ob(S−1C) = Ob(C).
(2) Morphisms X → Y of S−1C are given by pairs (f : X → Y ′, s : Y → Y ′)

with s ∈ S up to equivalence. (Think of this as s−1f : X → Y .)

http://stacks.math.columbia.edu/tag/04VC
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(3) Two pairs (f1 : X → Y1, s1 : Y → Y1) and (f2 : X → Y2, s2 : Y → Y2)
are said to be equivalent if there exists a third pair (f3 : X → Y3, s3 :
Y → Y3) and morphisms u : Y1 → Y3 and v : Y2 → Y3 of C fitting into the
commutative diagram

Y1

u

��
X

f1

>>

f3 //

f2   

Y3 Y

s1

__

s3oo

s2��
Y2

v

OO

(4) The composition of the equivalence classes of the pairs (f : X → Y ′, s :
Y → Y ′) and (g : Y → Z ′, t : Z → Z ′) is defined as the equivalence class
of a pair (h ◦ f : X → Z ′′, u ◦ t : Z → Z ′′) where h and u ∈ S are chosen
to fit into a commutative diagram

Y

s

��

g // Z ′

u

��
Y ′

h // Z ′′

which exists by assumption.

Lemma 4.25.2. Let C be a category and let S be a left multiplicative system.

(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative and hence S−1C is a category.

Proof. Proof of (1). Let us say two pairs p1 = (f1 : X → Y1, s1 : Y → Y1)
and p2 = (f2 : X → Y2, s2 : Y → Y2) are elementary equivalent if there exists a
morphism a : Y1 → Y2 of C such that a ◦ f1 = f2 and a ◦ s1 = s2. Diagram:

X
f1

// Y1

a

��

Y
s1
oo

X
f2 // Y2 Y

s2oo

Let us denote this property by saying p1Ep2. Note that pEp and aEb, bEc⇒ aEc.
Part (1) claims that the relation p ∼ p′ ⇔ ∃q : pEq∧p′Eq is an equivalence relation.
A simple formal argument, using the properties of E above shows that it suffices
to prove p3Ep1, p3Ep2 ⇒ p1 ∼ p2. Thus suppose that we are given a commutative
diagram

Y1

X

f1

>>

f3 //

f2   

Y3

a31

OO

a32

��

Y

s1

__

s3oo

s2��
Y2

http://stacks.math.columbia.edu/tag/04VD
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with si ∈ S. First we apply LMS2 to get a commutative diagram

Y

s1

��

s3
// Y3

s34

��
Y1

a14 // Y4

with s34 ∈ S. Then we have s34 ◦ s3 = a14 ◦ a31 ◦ s3. Hence by LMS3 there exists
a morphism s44 : Y4 → Y ′4 , s44 ∈ S such that s44 ◦ s34 = s44 ◦ a14 ◦ a31. Hence
after replacing Y4 by Y ′4 , a14 by s44 ◦ a14, and s34 by s44 ◦ s34 we may assume that
s34 = a14 ◦ a31. Next, we apply LMS2 to get a commutative diagram

Y3

a32

��

s34

// Y4

s45

��
Y2

a25 // Y5

with s45 ∈ S. Thus we obtain a pair p5 = (s45 ◦ s34 ◦ f3 : X → Y5, s45 ◦ s34 ◦ s3 :
Y → Y5) and the morphisms s45 ◦ a14 : Y1 → Y5 and a25 : Y2 → Y5 show that
indeed p1Ep5 and p2Ep5 as desired.

Proof of (2). Let p = (f : X → Y ′, s : Y → Y ′) and q = (g : Y → Z ′, t : Z → Z ′)
be pairs as in the definition of composition above. To compose we have to choose
a diagram

Y

s

��

g // Z ′

u2

��
Y ′

h2 // Z2

We first show that the equivalence class of the pair r2 = (h2◦f : X → Z2, u2◦t : Z →
Z2) is independent of the choice of (Z2, h2, u2). Namely, suppose that (Z3, h3, u3)
is another choice with corresponding composition r3 = (h3 ◦ f : X → Z3, u3 ◦ t :
Z → Z3). Then by LMS2 we can choose a diagram

Z ′

u2

��

u3

// Z3

u34

��
Z2

h24 // Z4

with u34 ∈ S. Hence we obtain a pair r4 = (h24 ◦h2 ◦ f : X → Z4, u34 ◦u3 ◦ t : Z →
Z4) and the morphisms h24 : Z2 → Z4 and u34 : Z3 → Z4 show that we have r2Er4

and r3Er4 as desired. Thus it now makes sense to define p ◦ q as the equivalence
class of all possible pairs r obtained as above.

To finish the proof of (2) we have to show that given pairs p1, p2, q such that p1Ep2

then p1 ◦q = p2 ◦q and q ◦p1 = q ◦p2 whenever the compositions make sense. To do
this, write p1 = (f1 : X → Y1, s1 : Y → Y1) and p2 = (f2 : X → Y2, s2 : Y → Y2)
and let a : Y1 → Y2 be a morphism of C such that f2 = a ◦ f1 and s2 = a ◦ s1.
First assume that q = (g : Y → Z ′, t : Z → Z ′). In this case choose a commutative
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diagram as the one on the left

Y

s2

��

g // Z ′

u

��
Y2

h // Z ′′

⇒

Y

s1

��

g // Z ′

u

��
Y1

h◦a // Z ′′

which implies the diagram on the right is commutative as well. Using these diagrams
we see that both compositions are the equivalence class of (h◦a◦f1 : X → Z ′′, u◦t :
Z → Z ′′). Thus p1 ◦ q = p2 ◦ q. The proof of the other case, in which we have to
show q ◦ p1 = q ◦ p2, is omitted.

Proof of (3). We have to prove associativity of composition. Consider a solid
diagram

Z

��
Y

��

// Z ′

��
X

��

// Y ′

��

// Z ′′

��
W // X ′ // Y ′′ // Z ′′′

which gives rise to three composable pairs. Using LMS2 we can choose the dotted
arrows making the squares commutative and such that the vertical arrows are in
S. Then it is clear that the composition of the three pairs is the equivalence class
of the pair (W → Z ′′′, Z → Z ′′′) gotten by composing the horizontal arrows on the
bottom row and the vertical arrows on the right column. �

We can “write any finite collection of morphisms with the same target as fractions
with common denominator”.

Lemma 4.25.3. Let C be a category and let S be a left multiplicative system of
morphisms of C. Given any finite collection gi : Xi → Y of morphisms of S−1C
we can find an element s : Y → Y ′ of S and fi : Xi → Y ′ such that gi is the
equivalence class of the pair (fi : Xi → Y ′, s : Y → Y ′).

Proof. For each i choose a representative (Xi → Yi, si : Y → Yi). The lemma
follows if we can find a morphism s : Y → Y ′ in S such that for each i there is a
morphism ai : Yi → Y ′ with ai ◦ si = s. If we have two indices i = 1, 2, then we
can do this by completing the square

Y

s1

��

s2
// Y2

t2
��

Y1
a1 // Y ′

with t2 ∈ S as is possible by Definition 4.25.1. Then s = t2 ◦ s2 ∈ S works. If we
have n > 2 morphisms, then we use the above trick to reduce to the case of n− 1
morphisms, and we win by induction. �

http://stacks.math.columbia.edu/tag/04VE
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There is an easy characterization of equality of morphisms if they have the same
denominator.

Lemma 4.25.4. Let C be a category and let S be a left multiplicative system of
morphisms of C. Let A,B : X → Y be morphisms of S−1C which are the equivalence
classes of (f : X → Y ′, s : Y → Y ′) and (g : X → Y ′, s : Y → Y ′). Then A = B
if and only if there exists a morphism a : Y ′ → Y ′′ with a ◦ s ∈ S and such that
a ◦ f = a ◦ g.

Proof. The equality of A and B means that there exists a commutative diagram

Y ′

u

��
X

f
>>

h //

g   

Z Y

s

``

too

s~~
Y ′

v

OO

with t ∈ S. In particular u◦s = v ◦s. Hence by LMS3 there exists a s′ : Z → Y ′′ in
S such that s′ ◦ u = s′ ◦ v. Setting a equal to this common value does the job. �

Remark 4.25.5. Let C be a category. Let S be a left multiplicative system. Given
an object Y of C we denote Y/S the category whose objects are s : Y → Y ′ with
s ∈ S and whose morphisms are commutative diagrams

Y

s

~~

t

  
Y ′

a // Y ′′

where a : Y ′ → Y ′′ is arbitrary. We claim that the category Y/S is filtered (see
Definition 4.19.1). Namely, LMS1 implies that idY : Y → Y is in Y/S hence Y/S
is nonempty. LMS2 implies that given s1 : Y → Y1 and s2 : Y → Y2 we can find a
diagram

Y

s1

��

s2
// Y2

t

��
Y1

a // Y3

with t ∈ S. Hence s1 : Y → Y1 and s2 : Y → Y2 both map to t ◦ s2 : Y → Y3 in
Y/S. Finally, given two morphisms a, b from s1 : Y → Y1 to s2 : Y → Y2 in Y/S
we see that a ◦ s1 = b ◦ s1 hence by LMS3 there exists a t : Y2 → Y3 such that
t ◦ a = t ◦ b. Now the combined results of Lemmas 4.25.3 and 4.25.4 tell us that

(4.25.5.1) MorS−1C(X,Y ) = colim(s:Y→Y ′)∈Y/S MorC(X,Y
′)

This formula expressing morphism sets in S−1C as a filtered colimit of morphism
sets in C is occasionally useful.

Lemma 4.25.6. Let C be a category and let S be a left multiplicative system of
morphisms of C.

(1) The rules X 7→ X and (f : X → Y ) 7→ (f : X → Y, idY : Y → Y ) define
a functor Q : C → S−1C.

http://stacks.math.columbia.edu/tag/04VF
http://stacks.math.columbia.edu/tag/05Q0
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(2) For any s ∈ S the morphism Q(s) is an isomorphism in S−1C.
(3) If G : C → D is any functor such that G(s) is invertible for every s ∈ S,

then there exists a unique functor H : S−1C → D such that H ◦Q = G.

Proof. Parts (1) and (2) are clear. To see (3) just set H(X) = G(X) and set
H((f : X → Y ′, s : Y → Y ′)) = G(s)−1 ◦G(f). Details omitted. �

Lemma 4.25.7. Let C be a category and let S be a left multiplicative system of
morphisms of C. The localization functor Q : C → S−1C commutes with finite
colimits.

Proof. This is clear from (4.25.5.1), Remark 4.14.4, and Lemma 4.14.9. �

Lemma 4.25.8. Let C be a category. Let S be a left multiplicative system. If
f : X → Y , f ′ : X ′ → Y ′ are two morphisms of C and if

Q(X)

Q(f)

��

a
// Q(X ′)

Q(f ′)

��
Q(Y )

b // Q(Y ′)

is a commutative diagram in S−1C, then there exists a morphism f ′′ : X ′′ → Y ′′ in
C and a commutative diagram

X

f

��

g
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y
h // Y ′′ Y ′

too

in C with s, t ∈ S and a = s−1g, b = t−1h.

Proof. We choose maps and objects in the following way: First write a = s−1g for
some s : X ′ → X ′′ in S and g : X → X ′′. By LMS2 we can find t : Y ′ → Y ′′ in S
and f ′′ : X ′′ → Y ′′ such that

X

f

��

g
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y Y ′′ Y ′
too

commutes. Now in this diagram we are going to repeatedly change our choice of

X ′′
f ′′−−→ Y ′′

t←− Y ′

by postcomposing both t and f ′′ by a morphism d : Y ′′ → Y ′′′ with the property
that d◦t ∈ S. According to Remark 4.25.5 we may after such a replacement assume
that there exists a morphism h : Y → Y ′′ such that b = t−1h. At this point we have
everything as in the lemma except that we don’t know that the left square of the
diagram commutes. However, we do know that Q(f ′′g) = Q(hf) in S−1D because
the right square commutes, the outer square commutes in S−1D by assumption,
and because Q(s), Q(t) are isomorphisms. Hence using Lemma 4.25.4 we can find
a morphism d : Y ′′ → Y ′′′ in S (!) such that df ′′g = dhf . Hence we make one more
replacement of the kind described above and we win. �

http://stacks.math.columbia.edu/tag/05Q2
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Right calculus of fractions. Let C be a category and let S be a right multiplica-
tive system. We define a new category S−1C as follows (we verify this works in the
proof of Lemma 4.25.9):

(1) We set Ob(S−1C) = Ob(C).
(2) Morphisms X → Y of S−1C are given by pairs (f : X ′ → Y, s : X ′ → X)

with s ∈ S up to equivalence. (Think of this as fs−1 : X → Y .)
(3) Two pairs (f1 : X1 → Y, s1 : X1 → X) and (f2 : X2 → Y, s2 : X2 → X)

are said to be equivalent if there exists a third pair (f3 : X3 → Y, s3 :
X3 → X) and morphisms u : X3 → X1 and v : X3 → X2 of C fitting into
the commutative diagram

X1

s1

~~

f1

  
X X3

s3oo

u

OO

v

��

f3 // Y

X2

s2

``

f2

>>

(4) The composition of the equivalence classes of the pairs (f : X ′ → Y, s :
X ′ → X) and (g : Y ′ → Z, t : Y ′ → Y ) is defined as the equivalence class
of a pair (g ◦ h : X ′′ → Z, s ◦ u : X ′′ → X) where h and u ∈ S are chosen
to fit into a commutative diagram

X ′′

u

��

h // Y ′

t

��
X ′

f // Y

which exists by assumption.

Lemma 4.25.9. Let C be a category and let S be a right multiplicative system.

(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative and hence S−1C is a category.

Proof. This lemma is dual to Lemma 4.25.2. It follows formally from that lemma
by replacing C by its opposite category in which S is a left multiplicative system. �

We can “write any finite collection of morphisms with the same source as fractions
with common denominator”.

Lemma 4.25.10. Let C be a category and let S be a right multiplicative system of
morphisms of C. Given any finite collection gi : X → Yi of morphisms of S−1C
we can find an element s : X ′ → X of S and fi : X ′ → Yi such that gi is the
equivalence class of the pair (fi : X ′ → Yi, s : X ′ → X).

Proof. This lemma is the dual of Lemma 4.25.3 and follows formally from that
lemma by replacing all categories in sight by their opposites. �

There is an easy characterization of equality of morphisms if they have the same
denominator.

http://stacks.math.columbia.edu/tag/04VH
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Lemma 4.25.11. Let C be a category and let S be a right multiplicative system of
morphisms of C. Let A,B : X → Y be morphisms of S−1C which are the equivalence
classes of (f : X ′ → Y, s : X ′ → X) and (g : X ′ → Y, s : X ′ → X). Then A = B
if and only if there exists a morphism a : X ′′ → X ′ with s ◦ a ∈ S and such that
f ◦ a = g ◦ a.

Proof. This is dual to Lemma 4.25.4. �

Remark 4.25.12. Let C be a category. Let S be a right multiplicative system.
Given an object X of C we denote S/X the category whose objects are s : X ′ → X
with s ∈ S and whose morphisms are commutative diagrams

X ′

s
  

a
// X ′′

t}}
X

where a : X ′ → X ′′ is arbitrary. The category S/X is cofiltered (see Definition
4.20.1). (This is dual to the corresponding statement in Remark 4.25.5.) Now the
combined results of Lemmas 4.25.10 and 4.25.11 tell us that

(4.25.12.1) MorS−1C(X,Y ) = colim(s:X′→X)∈(S/X)opp MorC(X
′, Y )

This formula expressing morphisms in S−1C as a filtered colimit of morphisms in C
is occasionally useful.

Lemma 4.25.13. Let C be a category and let S be a right multiplicative system of
morphisms of C.

(1) The rules X 7→ X and (f : X → Y ) 7→ (f : X → Y, idX : X → X) define
a functor Q : C → S−1C.

(2) For any s ∈ S the morphism Q(s) is an isomorphism in S−1C.
(3) If G : C → D is any functor such that G(s) is invertible for every s ∈ S,

then there exists a unique functor H : S−1C → D such that H ◦Q = G.

Proof. This lemma is the dual of Lemma 4.25.6 and follows formally from that
lemma by replacing all categories in sight by their opposites. �

Lemma 4.25.14. Let C be a category and let S be a right multiplicative system
of morphisms of C. The localization functor Q : C → S−1C commutes with finite
limits.

Proof. This is clear from (4.25.12.1), Remark 4.14.4, and Lemma 4.14.9. �

Lemma 4.25.15. Let C be a category. Let S be a right multiplicative system. If
f : X → Y , f ′ : X ′ → Y ′ are two morphisms of C and if

Q(X)

Q(f)

��

a
// Q(X ′)

Q(f ′)

��
Q(Y )

b // Q(Y ′)

http://stacks.math.columbia.edu/tag/04VJ
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is a commutative diagram in S−1C, then there exists a morphism f ′′ : X ′′ → Y ′′ in
C and a commutative diagram

X

f

��

X ′′
s

oo

f ′′

��

g
// X ′

f ′

��
Y Y ′′

too h // Y ′

in C with s, t ∈ S and a = gs−1, b = ht−1.

Proof. This lemma is dual to Lemma 4.25.8 but we can also prove it directly as
follows. We choose maps and objects in the following way: First write b = ht−1 for
some t : Y ′′ → Y in S and h : Y ′′ → Y ′. By RMS2 we can find s : X ′′ → X in S
and f ′′ : X ′′ → Y ′′ such that

X

f

��

X ′′
s

oo

f ′′

��

X ′

f ′

��
Y Y ′′

too h // Y ′

commutes. Now in this diagram we are going to repeatedly change our choice of

X
s←− X ′′ f

′′

−−→ Y ′′

by precomposing both s and f ′′ by a morphism d : X ′′′ → X ′′ with the property
that s ◦ d ∈ S. According to Remark 4.25.12 we may after such a replacement
assume that there exists a morphism g : X ′′ → X ′ such that a = gs−1. At this
point we have everything as in the lemma except that we don’t know that the right
square of the diagram commutes. However, we do know that Q(f ′g) = Q(hf ′′) in
S−1D because the left square commutes, the outer square commutes in S−1D by
assumption, and because Q(s), Q(t) are isomorphisms. Hence using Lemma 4.25.11
we can find a morphism d : X ′′′ → X ′′ in S (!) such that f ′gd = hf ′′d. Hence we
make one more replacement of the kind described above and we win. �

Multiplicative systems and two sided calculus of fractions. If S is a multi-
plicative system then left and right calculus of fractions given canonically isomor-
phic categories.

Lemma 4.25.16. Let C be a category and let S be a multiplicative system. The
category of left fractions and the category of right fractions S−1C are canonically
isomorphic.

Proof. Denote Cleft, Cright the two categories of fractions. By the universal
properties of Lemmas 4.25.6 and 4.25.13 we obtain functors Cleft → Cright and
Cright → Cleft. By the uniqueness of these functors they are each others inverse. �

Definition 4.25.17. Let C be a category and let S be a multiplicative system. We
say S is saturated if, in addition to MS1, MS2, MS3 we also have

MS4 Given three composable morphisms f, g, h, if fg, gh ∈ S, then g ∈ S.

Note that a saturated multiplicative system contains all isomorphisms. Moreover, if
f, g, h are composable morphisms in a category and fg, gh are isomorphisms, then
g is an isomorphism (because then g has both a left and a right inverse, hence is
invertible).

http://stacks.math.columbia.edu/tag/04VL
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Lemma 4.25.18. Let C be a category and let S be a multiplicative system. Denote
Q : C → S−1C the localization functor. The set

Ŝ = {f ∈ Arrows(C) | Q(f) is an isomorphism}
is equal to

S′ = {f ∈ Arrows(C) | there exist g, h such that gf, fh ∈ S}
and is the smallest saturated multiplicative system containing S. In particular, if
S is saturated, then Ŝ = S.

Proof. It is clear that S ⊂ S′ ⊂ Ŝ because elements of S′ map to morphisms in
S−1C which have both left and right inverses. Note that S′ satisfies MS4, and that
Ŝ satisfies MS1. Next, we prove that S′ = Ŝ.

Let f ∈ Ŝ. Let s−1g = ht−1 be the inverse morphism in S−1C. (We may use
both left fractions and right fractions to describe morphisms in S−1C, see Lemma
4.25.16.) The relation idX = s−1gf in S−1C means there exists a commutative
diagram

X ′

u

��
X

gf

==

f ′ //

idX !!

X ′′ X

s

aa

s′oo

idX}}
X

v

OO

for some morphisms f ′, u, v and s′ ∈ S. Hence ugf = s′ ∈ S. Similarly, using that
idY = fht−1 one proves that fhw ∈ S for some w. We conclude that f ∈ S′. Thus
S′ = Ŝ. Provided we prove that S′ = Ŝ is a multiplicative system it is now clear
that this implies that S′ = Ŝ is the smallest saturated system containing S.

Our remarks above take care of MS1 and MS4, so to finish the proof of the lemma
we have to show that LMS2, RMS2, LMS3, RMS3 hold for Ŝ. Let us check that
LMS2 holds for Ŝ. Suppose we have a solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with t ∈ Ŝ. Pick a morphism a : Z → Z ′ such that at ∈ S. Then we can use LMS2
for S to find a commutative diagram

X

t

��

g
// Y

s

��

Z

a

��
Z ′

f ′ // W

and setting f = f ′ ◦ a we win. The proof of RMS2 is dual to this. Finally, suppose
given a pair of morphisms f, g : X → Y and t ∈ Ŝ with target X such that ft = gt.

http://stacks.math.columbia.edu/tag/05Q9
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Then we pick a morphism b such that tb ∈ S. Then ftb = gtb which implies by
LMS3 for S that there exists an s ∈ S with source Y such that sf = sg as desired.
The proof of RMS3 is dual to this. �

4.26. Formal properties

In this section we discuss some formal properties of the 2-category of categories.
This will lead us to the definition of a (strict) 2-category later.

Let us denote Ob(Cat) the class of all categories. For every pair of categories
A,B ∈ Ob(Cat) we have the “small” category of functors Fun(A,B). Composition
of transformation of functors such as

A

F ′′

""�� t′

F ′
//
==

F

�� t
B composes to A

F ′′

((

F

66�� t◦t′ B

is called vertical composition. We will use the usual symbol ◦ for this. Next, we
will define horizontal composition. In order to do this we explain a bit more of the
structure at hand.

Namely for every triple of categories A, B, and C there is a composition law

◦ : Ob(Fun(B, C))×Ob(Fun(A,B)) −→ Ob(Fun(A, C))

coming from composition of functors. This composition law is associative, and
identity functors act as units. In other words – forgetting about transformations of
functors – we see that Cat forms a category. How does this structure interact with
the morphisms between functors?

Well, given t : F → F ′ a transformation of functors F, F ′ : A → B and a functor
G : B → C we can define a transformation of functors G ◦ F → G ◦ F ′. We
will denote this transformation Gt. It is given by the formula (Gt)x = G(tx) :
G(F (x)) → G(F ′(x)) for all x ∈ A. In this way composition with G becomes a
functor

Fun(A,B) −→ Fun(A, C).
To see this you just have to check that G(idF ) = idG◦F and that G(t1◦t2) = Gt1◦Gt2.
Of course we also have that idAt = t.

Similarly, given s : G → G′ a transformation of functors G,G′ : B → C and
F : A → B a functor we can define sF to be the transformation of functors G◦F →
G′ ◦ F given by (sF )x = sF (x) : G(F (x)) → G′(F (x)) for all x ∈ A. In this way
composition with F becomes a functor

Fun(B, C) −→ Fun(A, C).

To see this you just have to check that (idG)F = idG◦F and that (s1 ◦ s2)F =
s1,F ◦ s2,F . Of course we also have that sidB = s.

These constructions satisfy the additional properties

G1
(G2

t) = G1◦G2
t, (sF1

)F2
= sF1◦F2

, and H(sF ) = (Hs)F
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whenever these make sense. Finally, given functors F, F ′ : A → B, and G,G′ :
B → C and transformations t : F → F ′, and s : G → G′ the following diagram is
commutative

G ◦ F Gt //

sF
��

G ◦ F ′

sF ′

��
G′ ◦ F

G′ t
// G′ ◦ F ′

in other words G′t ◦ sF = sF ′ ◦Gt. To prove this we just consider what happens on
any object x ∈ Ob(A):

G(F (x))
G(tx) //

sF (x)

��

G(F ′(x))

sF ′(x)

��
G′(F (x))

G′(tx)

// G′(F ′(x))

which is commutative because s is a transformation of functors. This compatibility
relation allows us to define horizontal composition.

Definition 4.26.1. Given a diagram as in the left hand side of:

A
F
%%

F ′
99�� t B

G
%%

G′

99�� s C gives A
G◦F

((

G′◦F ′
66�� s?t C

we define the horizontal composition s ? t to be the transformation of functors

G′t ◦ sF = sF ′ ◦ Gt.

Now we see that we may recover our previously constructed transformations Gt and
sF as Gt = idG ? t and sF = s ? idF . Furthermore, all of the rules we found above
are consequences of the properties stated in the lemma that follows.

Lemma 4.26.2. The horizontal and vertical compositions have the following prop-
erties

(1) ◦ and ? are associative,
(2) the identity transformations idF are units for ◦,
(3) the identity transformations of the identity functors ididA are units for ?

and ◦, and
(4) given a diagram

A

F

""�� t

F ′
//
==

F ′′
�� t′

B

G

!!�� s

G′
//
==

G′′
�� s′

C

we have (s′ ◦ s) ? (t′ ◦ t) = (s′ ? t′) ◦ (s ? t).

Proof. The last statement turns using our previous notation into the following
equation

s′F ′′ ◦ G′t′ ◦ sF ′ ◦ Gt = (s′ ◦ s)F ′′ ◦ G(t′ ◦ t).

http://stacks.math.columbia.edu/tag/003E
http://stacks.math.columbia.edu/tag/003F


4.27. 2-CATEGORIES 115

According to our result above applied to the middle composition we may rewrite
the left hand side as s′F ′′ ◦ sF ′′ ◦ Gt′ ◦ Gt which is easily shown to be equal to the
right hand side. �

Another way of formulating condition (4) of the lemma is that composition of
functors and horizontal composition of transformation of functors gives rise to a
functor

(◦, ?) : Fun(B, C)× Fun(A,B) −→ Fun(A, C)
whose source is the product category, see Definition 4.2.20.

4.27. 2-categories

We will give a definition of (strict) 2-categories as they appear in the setting of
stacks. Before you read this take a look at Section 4.26 and Example 4.28.2. Basi-
cally, you take this example and you write out all the rules satisfied by the objects,
1-morphisms and 2-morphisms in that example.

Definition 4.27.1. A (strict) 2-category C consists of the following data

(1) A set of objects Ob(C).
(2) For each pair x, y ∈ Ob(C) a category MorC(x, y). The objects of MorC(x, y)

will be called 1-morphisms and denoted F : x → y. The morphisms be-
tween these 1-morphisms will be called 2-morphisms and denoted t : F ′ →
F . The composition of 2-morphisms in MorC(x, y) will be called vertical
composition and will be denoted t ◦ t′ for t : F ′ → F and t′ : F ′′ → F ′.

(3) For each triple x, y, z ∈ Ob(C) a functor

(◦, ?) : MorC(y, z)×MorC(x, y) −→ MorC(x, z).

The image of the pair of 1-morphisms (F,G) on the left hand side will be
called the composition of F and G, and denoted F ◦G. The image of the
pair of 2-morphisms (t, s) will be called the horizontal composition and
denoted t ? s.

These data are to satisfy the following rules:

(1) The set of objects together with the set of 1-morphisms endowed with
composition of 1-morphisms forms a category.

(2) Horizontal composition of 2-morphisms is associative.
(3) The identity 2-morphism ididx of the identity 1-morphism idx is a unit for

horizontal composition.

This is obviously not a very pleasant type of object to work with. On the other
hand, there are lots of examples where it is quite clear how you work with it. The
only example we have so far is that of the 2-category whose objects are a given
collection of categories, 1-morphisms are functors between these categories, and 2-
morphisms are natural transformations of functors, see Section 4.26. As far as this
text is concerned all 2-categories will be sub 2-categories of this example. Here is
what it means to be a sub 2-category.

Definition 4.27.2. Let C be a 2-category. A sub 2-category C′ of C, is given by a
subset Ob(C′) of Ob(C) and sub categories MorC′(x, y) of the categories MorC(x, y)
for all x, y ∈ Ob(C′) such that these, together with the operations ◦ (composition 1-
morphisms), ◦ (vertical composition 2-morphisms), and ? (horizontal composition)
form a 2-category.

http://stacks.math.columbia.edu/tag/003H
http://stacks.math.columbia.edu/tag/02X7


116 4. CATEGORIES

Remark 4.27.3. Big 2-categories. In many texts a 2-category is allowed to have
a class of objects (but hopefully a “class of classes” is not allowed). We will allow
these “big” 2-categories as well, but only in the following list of cases (to be updated
as we go along):

(1) The 2-category of categories Cat.
(2) The (2, 1)-category of categories Cat.
(3) The 2-category of groupoids Groupoids.
(4) The (2, 1)-category of groupoids Groupoids.
(5) The 2-category of fibred categories over a fixed category.
(6) The (2, 1)-category of fibred categories over a fixed category.

See Definition 4.28.1. Note that in each case the class of objects of the 2-category C
is a proper class, but for all objects x, y ∈ Ob(C) the category MorC(x, y) is “small”
(according to our conventions).

The notion of equivalence of categories that we defined in Section 4.2 extends to
the more general setting of 2-categories as follows.

Definition 4.27.4. Two objects x, y of a 2-category are equivalent if there exist
1-morphisms F : x→ y and G : y → x such that F ◦G is 2-isomorphic to idy and
G ◦ F is 2-isomorphic to idx.

Sometimes we need to say what it means to have a functor from a category into a
2-category.

Definition 4.27.5. Let A be a category and let C be a 2-category.

(1) A functor from an ordinary category into a 2-category will ignore the
2-morphisms unless mentioned otherwise. In other words, it will be a
“usual” functor into the category formed out of 2-category by forgetting
all the 2-morphisms.

(2) A weak functor, or a pseudo functor ϕ from A into the 2-category C is
given by the following data
(a) a map ϕ : Ob(A)→ Ob(C),
(b) for every pair x, y ∈ Ob(A), and every morphism f : x → y a 1-

morphism ϕ(f) : ϕ(x)→ ϕ(y),
(c) for every x ∈ Ob(A) a 2-morphism αx : idϕ(x) → ϕ(idx), and
(d) for every pair of composable morphisms f : x→ y, g : y → z of A a

2-morphism αg,f : ϕ(g ◦ f)→ ϕ(g) ◦ ϕ(f).
These data are subject to the following conditions:
(a) the 2-morphisms αx and αg,f are all isomorphisms,
(b) for any morphism f : x→ y in A we have αidy,f = αy ? idϕ(f):

ϕ(x)

ϕ(f)
**

ϕ(f)

44�� idϕ(f) ϕ(y)

idy
**

ϕ(idy)

44��αy ϕ(y) = ϕ(x)

ϕ(f)
**

ϕ(idy)◦ϕ(f)

44�� αidy,f ϕ(y)

(c) for any morphism f : x→ y in A we have αf,idx = idϕ(f) ? αx,
(d) for any triple of composable morphisms f : w → x, g : x → y, and

h : y → z of A we have

(idϕ(h) ? αg,f ) ◦ αh,g◦f = (αh,g ? idϕ(f)) ◦ αh◦g,f

http://stacks.math.columbia.edu/tag/003J
http://stacks.math.columbia.edu/tag/003L
http://stacks.math.columbia.edu/tag/003N
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in other words the following diagram with objects 1-morphisms and
arrows 2-morphisms commutes

ϕ(h ◦ g ◦ f)

αh,g◦f

��

αh◦g,f
// ϕ(h ◦ g) ◦ ϕ(f)

αh,g?idϕ(f)

��
ϕ(h) ◦ ϕ(g ◦ f)

idϕ(h)?αg,f // ϕ(h) ◦ ϕ(g) ◦ ϕ(f)

Again this is not a very workable notion, but it does sometimes come up. There
is a theorem that says that any pseudo-functor is isomorphic to a functor. Finally,
there are the notions of functor between 2-categories, and pseudo functor between
2-categories. This last notion leads us into 3-category territory. We would like to
avoid having to define this at almost any cost!

4.28. (2, 1)-categories

Some 2-categories have the property that all 2-morphisms are isomorphisms. These
will play an important role in the following, and they are easier to work with.

Definition 4.28.1. A (strict) (2, 1)-category is a 2-category in which all 2-morphisms
are isomorphisms.

Example 4.28.2. The 2-category Cat, see Remark 4.27.3, can be turned into a
(2, 1)-category by only allowing isomorphisms of functors as 2-morphisms.

In fact, more generally any 2-category C produces a (2, 1)-category by consider-
ing the sub 2-category C′ with the same objects and 1-morphisms but whose 2-
morphisms are the invertible 2-morphisms of C. In this situation we will say “let C′
be the (2, 1)-category associated to C” or similar. For example, the (2, 1)-category of
groupoids means the 2-category whose objects are groupoids, whose 1-morphisms
are functors and whose 2-morphisms are isomorphisms of functors. Except that
this is a bad example as a transformation between functors between groupoids is
automatically an isomorphism!

Remark 4.28.3. Thus there are variants of the construction of Example 4.28.2
above where we look at the 2-category of groupoids, or categories fibred in groupoids
over a fixed category, or stacks. And so on.

4.29. 2-fibre products

In this section we introduce 2-fibre products. Suppose that C is a 2-category. We
say that a diagram

w //

��

y

��
x // z

2-commutes if the two 1-morphisms w → y → z and w → x→ z are 2-isomorphic.
In a 2-category it is more natural to ask for 2-commutativity of diagrams than for
actually commuting diagrams. (Indeed, some may say that we should not work with
strict 2-categories at all, and in a “weak” 2-category the notion of a commutative
diagram of 1-morphisms does not even make sense.) Correspondingly the notion of
a fibre product has to be adjusted.

http://stacks.math.columbia.edu/tag/003I
http://stacks.math.columbia.edu/tag/003K
http://stacks.math.columbia.edu/tag/003M
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Let C be a 2-category. Let x, y, z ∈ Ob(C) and f ∈ MorC(x, z) and g ∈ MorC(y, z).
In order to define the 2-fibre product of f and g we are going to look at 2-
commutative diagrams

w
a
//

b

��

x

f

��
y

g // z.

Now in the case of categories, the fibre product is a final object in the category of
such diagrams. Correspondingly a 2-fibre product is a final object in a 2-category
(see definition below). The 2-category of 2-commutative diagrams is the 2-category
defined as follows:

(1) Objects are quadruples (w, a, b, φ) as above where φ is an invertible 2-
morphism φ : f ◦ a→ g ◦ b,

(2) 1-morphisms from (w′, a′, b′, φ′) to (w, a, b, φ) are given by (k : w′ → w,α :
a′ → a ◦ k, β : b′ → b ◦ k) such that

f ◦ a′
idf?α

//

φ′

��

f ◦ a ◦ k

φ?idk

��
f ◦ b′

idf?β // f ◦ b ◦ k

is commutative,
(3) given a second 1-morphism (k′, α′, β′) : (w′′, a′′, b′′, φ′′) → (w′, α′, β′, φ′)

the composition of 1-morphisms is given by the rule

(k, α, β) ◦ (k′, α′, β′) = (k ◦ k′, (α ? idk′) ◦ α′, (β ? idk′) ◦ β′),

(4) a 2-morphism between 1-morphisms (ki, αi, βi), i = 1, 2 with the same is
given by a 2-morphism δ : k1 → k2 such that

a′

α2 ""

α1

// a ◦ k1

ida?δ

��

b ◦ k1

idb?δ

��

b′
β1

oo

β2}}
a ◦ k2 b ◦ k2

commute,
(5) vertical composition of 2-morphisms is given by vertical composition of

the morphisms δ in C, and
(6) horizontal composition of the diagram

(w′′, a′′, b′′, φ′′)

(k′1,α
′
1,β
′
1) --

(k′2,α
′
2,β
′
2)

11�� δ′ (w′, a′, b′, φ′)

(k1,α1,β1)
,,

(k2,α2,β2)

22�� δ (w, a, b, φ)

is given by the diagram

(w′′, a′′, b′′, φ′′)

(k1◦k′1,(α1?idk′1
)◦α′1,(β1?idk′1

)◦β′1)

--

(k2◦k′2,(α2?idk′2
)◦α′2,(β2?idk′2

)◦β′2)

11�� δ?δ′ (w, a, b, φ)
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Note that if C is actually a (2, 1)-category, the morphisms α and β in (2) above
are automatically also isomorphisms2. In addition the 2-category of 2-commutative
diagrams is also a (2, 1)-category if C is a (2, 1)-category.

Definition 4.29.1. A final object of a (2, 1)-category C is an object x such that

(1) for every y ∈ Ob(C) there is a morphism y → x, and
(2) every two morphisms y → x are isomorphic by a unique 2-morphism.

Likely, in the more general case of 2-categories there are different flavours of final
objects. We do not want to get into this and hence we only define 2-fibre products
in the (2, 1)-case.

Definition 4.29.2. Let C be a (2, 1)-category. Let x, y, z ∈ Ob(C) and f ∈
MorC(x, z) and g ∈ MorC(y, z). A 2-fibre product of f and g is a final object
in the category of 2-commutative diagrams described above. If a 2-fibre prod-
uct exists we will denote it x ×z y ∈ Ob(C), and denote the required morphisms
p ∈ MorC(x×z y, x) and q ∈ MorC(x×z y, y) making the diagram

x×z y
p //

q

��

x

f

��
y

g // z

2-commute and we will denote the given invertible 2-morphism exhibiting this by
ψ : f ◦ p→ g ◦ q.
Thus the following universal property holds: for any w ∈ Ob(C) and morphisms
a ∈ MorC(w, x) and b ∈ MorC(w, y) with a given 2-isomorphism φ : f ◦ a → g ◦ b
there is a γ ∈ MorC(w, x×z y) making the diagram

w

a

**
γ

((

b

  

x×z y p
//

q

��

x

f

��
y

g // z

2-commute such that for suitable choices of a→ p ◦ γ and b→ q ◦ γ the diagram

f ◦ a //

φ

��

f ◦ p ◦ γ

ψ?idγ

��
g ◦ b // g ◦ q ◦ γ

commutes. Moreover γ is unique up to isomorphism. Of course the exact properties
are finer than this. All of the cases of 2-fibre products that we will need later on
come from the following example of 2-fibre products in the 2-category of categories.

Example 4.29.3. Let A, B, and C be categories. Let F : A → C and G : B → C
be functors. We define a category A×C B as follows:

2In fact it seems in the 2-category case that one could define another 2-category of 2-
commutative diagrams where the direction of the arrows α, β is reversed, or even where the

direction of only one of them is reversed. This is why we restrict to (2, 1)-categories later on.

http://stacks.math.columbia.edu/tag/003P
http://stacks.math.columbia.edu/tag/003Q
http://stacks.math.columbia.edu/tag/003R
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(1) an object of A×C B is a triple (A,B, f), where A ∈ Ob(A), B ∈ Ob(B),
and f : F (A)→ G(B) is an isomorphism in C,

(2) a morphism (A,B, f) → (A′, B′, f ′) is given by a pair (a, b), where a :
A → A′ is a morphism in A, and b : B → B′ is a morphism in B such
that the diagram

F (A)
f //

F (a)

��

G(B)

G(b)

��
F (A′)

f ′ // G(B′)

is commutative.

Moreover, we define functors p : A×C B → A and q : A×C B → B by setting

p(A,B, f) = A, q(A,B, f) = B,

in other words, these are the forgetful functors. We define a transformation of
functors ψ : F ◦ p → G ◦ q. On the object ξ = (A,B, f) it is given by ψξ = f :
F (p(ξ)) = F (A)→ G(B) = G(q(ξ)).

Lemma 4.29.4. In the (2, 1)-category of categories 2-fibre products exist and are
given by the construction of Example 4.29.3.

Proof. Let us check the universal property: let W be a category, let a : W → A
and b :W → B be functors, and let t : F ◦a→ G◦ b be an isomorphism of functors.

Consider the functor γ : W → A ×C B given by W 7→ (a(W ), b(W ), tW ). (Check
this is a functor omitted.) Moreover, consider α : a → p ◦ γ and β : b → q ◦ γ
obtained from the identities p ◦ γ = a and q ◦ γ = b. Then it is clear that (γ, α, β)
is a morphism from (W,a, b, t) to (A×C B, p, q, ψ).

Let (k, α′, β′) : (W,a, b, t) → (A ×C B, p, q, ψ) be a second such morphism. For an
objectW ofW let us write k(W ) = (ak(W ), bk(W ), tk,W ). Hence p(k(W )) = ak(W )
and so on. The map α′ corresponds to functorial maps α′ : a(W ) → ak(W ).
Since we are working in the (2, 1)-category of categories, in fact each of the maps
a(W ) → ak(W ) is an isomorphism. We can use these (and their counterparts
b(W )→ bk(W )) to get isomorphisms

δW : γ(W ) = (a(W ), b(W ), tW ) −→ (ak(W ), bk(W ), tk,W ) = k(W ).

It is straightforward to show that δ defines a 2-isomorphism between γ and k in
the 2-category of 2-commutative diagrams as desired. �

Remark 4.29.5. Let A, B, and C be categories. Let F : A → C and G : B → C
be functors. Another, slightly more symmetrical, construction of a 2-fibre product
A ×C B is as follows. An object is a quintuple (A,B,C, a, b) where A,B,C are
objects of A,B, C and where a : F (A) → C and b : G(B) → C are isomorphisms.
A morphism (A,B,C, a, b) → (A′, B′, C ′, a′, b′) is given by a triple of morphisms
A→ A′, B → B′, C → C ′ compatible with the morphisms a, b, a′, b′. We can prove
directly that this leads to a 2-fibre product. However, it is easier to observe that
the functor (A,B,C, a, b) 7→ (A,B, b−1 ◦ a) gives an equivalence from the category
of quintuples to the category constructed in Example 4.29.3.

http://stacks.math.columbia.edu/tag/02X9
http://stacks.math.columbia.edu/tag/06RL
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Lemma 4.29.6. Let

Y

I

��

K

��
X H //

L

  

Z
M

��

B

G
��

A F // C
be a 2-commutative diagram of categories. A choice of isomorphisms α : G ◦K →
M ◦ I and β : M ◦H → F ◦ L determines a morphism

X ×Z Y −→ A×C B

of 2-fibre products associated to this situation.

Proof. Just use the functor

(X,Y, φ) 7−→ (L(X),K(Y ), α−1
Y ◦M(φ) ◦ β−1

X )

on objects and

(a, b) 7−→ (L(a),K(b))

on morphisms. �

Lemma 4.29.7. Assumptions as in Lemma 4.29.6.

(1) If K and L are faithful then the morphism X ×Z Y → A×C B is faithful.
(2) If K and L are fully faithful and M is faithful then the morphism X ×Z
Y → A×C B is fully faithful.

(3) If K and L are equivalences and M is fully faithful then the morphism
X ×Z Y → A×C B is an equivalence.

Proof. Let (X,Y, φ) and (X ′, Y ′, φ′) be objects of X ×Z Y. Set Z = H(X) and
identify it with I(Y ) via φ. Also, identify M(Z) with F (L(X)) via αX and identify
M(Z) with G(K(Y )) via βY . Similarly for Z ′ = H(X ′) and M(Z ′). The map on
morphisms is the map

MorX (X,X ′)×MorZ(Z,Z′) MorY(Y, Y ′)

��
MorA(L(X), L(X ′))×MorC(M(Z),M(Z′)) MorB(K(Y ),K(Y ′))

Hence parts (1) and (2) follow. Moreover, if K and L are equivalences and M is
fully faithful, then any object (A,B, φ) is in the essential image for the following
reasons: Pick X, Y such that L(X) ∼= A and K(Y ) ∼= B. Then the fully faithfulness
of M guarantees that we can find an isomorphism H(X) ∼= I(Y ). Some details
omitted. �

Lemma 4.29.8. Let

A

��

C

�� ��

E

��
B D

http://stacks.math.columbia.edu/tag/02XA
http://stacks.math.columbia.edu/tag/02XB
http://stacks.math.columbia.edu/tag/02XC
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be a diagram of categories and functors. Then there is a canonical isomorphism

(A×B C)×D E ∼= A×B (C ×D E)

of categories.

Proof. Just use the functor

((A,C, φ), E, ψ) 7−→ (A, (C,E, ψ), φ)

if you know what I mean. �

Henceforth we do not write the parentheses when dealing with fibred products of
more than 2 categories.

Lemma 4.29.9. Let

A

��

C

��   

E

��
B

F ��

D

G~~
F

be a commutative diagram of categories and functors. Then there is a canonical
functor

pr02 : A×B C ×D E −→ A×F E
of categories.

Proof. If we write A×B C ×D E as (A×B C)×D E then we can just use the functor

((A,C, φ), E, ψ) 7−→ (A,E,G(ψ) ◦ F (φ))

if you know what I mean. �

Lemma 4.29.10. Let

A → B ← C ← D
be a diagram of categories and functors. Then there is a canonical isomorphism

A×B C ×C D ∼= A×B D

of categories.

Proof. Omitted. �

We claim that this means you can work with these 2-fibre products just like with
ordinary fibre products. Here are some further lemmas that actually come up later.

Lemma 4.29.11. Let

C3 //

��

S

∆

��
C1 × C2

G1×G2 // S × S
be a 2-fibre product of categories. Then there is a canonical isomorphism C3 ∼=
C1 ×G1,S,G2 C2.
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Proof. We may assume that C3 is the category (C1 × C2) ×S×S S constructed in
Example 4.29.3. Hence an object is a triple ((X1, X2), S, φ) where φ = (φ1, φ2) :
(G1(X1), G2(X2)) → (S, S) is an isomorphism. Thus we can associate to this the
triple (X1, X2, φ2 ◦ φ−1

1 ). Conversely, if (X1, X2, ψ) is an object of C1 ×G1,S,G2 C2,
then we can associate to this the triple ((X1, X2), G1(X1), (idG1(X1), ψ)). We claim
these constructions given mutually inverse functors. We omit describing how to
deal with morphisms and show they are mutually inverse. �

Lemma 4.29.12. Let
C′ //

��

S

∆

��
C G1×G2// S × S

be a 2-fibre product of categories. Then there is a canonical isomorphism

C′ ∼= (C ×G1,S,G2
C)×(p,q),C×C,∆ C.

Proof. An object of the right hand side is given by ((C1, C2, φ), C3, ψ) where φ :
G1(C1)→ G2(C2) is an isomorphism and ψ = (ψ1, ψ2) : (C1, C2)→ (C3, C3) is an
isomorphism. Hence we can associate to this the triple (C3, G1(C1), (G1(ψ−1

1 ), ϕ−1◦
G2(ψ−1

2 ))) which is an object of C′. Details omitted. �

Lemma 4.29.13. Let A → C, B → C and C → D be functors between categories.
Then the diagram

A×C B

��

// A×D B

��
C

∆C/D //// C ×D C
is a 2-fibre product diagram.

Proof. Omitted. �

Lemma 4.29.14. Let
U

��

// V

��
X // Y

be a 2-fibre product. Then the diagram

U

��

// U ×V U

��
X // X ×Y X

is 2-cartesian.

Proof. This is a purely 2-category theoretic statement, valid in any (2, 1)-category
with 2-fibre products. Explicitly, it follows from the following chain of equivalences:

X ×(X×YX ) (U ×V U) = X ×(X×YX ) ((X ×Y V)×V (X ×Y V))

= X ×(X×YX ) (X ×Y X ×Y V)

= X ×Y V = U
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see Lemmas 4.29.8 and 4.29.10. �

4.30. Categories over categories

In this section we have a functor p : S → C. We think of S as being on top and of
C as being at the bottom. To make sure that everybody knows what we are talking
about we define the 2-category of categories over C.

Definition 4.30.1. Let C be a category. The 2-category of categories over C is the
sub 2-category of Cat defined as follows:

(1) Its objects will be functors p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦G = p.
(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms

of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

In this situation we will denote

MorCat/C(S,S ′)

the category of 1-morphisms between (S, p) and (S ′, p′)

Since we have defined this as a sub 2-category of Cat we do not have to check any
of the axioms. Rather we just have to check things such as “vertical composition
of 2-morphisms over C gives another 2-morphism over C”. This is clear.

Analogously to the fibre of a map of spaces, we have the notion of a fibre category,
and some notions of lifting associated to this situation.

Definition 4.30.2. Let C be a category. Let p : S → C be a category over C.
(1) The fibre category over an object U ∈ Ob(C) is the category SU with

objects

Ob(SU ) = {x ∈ Ob(S) : p(x) = U}
and morphisms

MorSU (x, y) = {φ ∈ MorS(x, y) : p(φ) = idU}.

(2) A lift of an object U ∈ Ob(C) is an object x ∈ Ob(S) such that p(x) = U ,
i.e., x ∈ Ob(SU ). We will also sometime say that x lies over U .

(3) Similarly, a lift of a morphism f : V → U in C is a morphism φ : y → x in
S such that p(φ) = f . We sometimes say that φ lies over f .

There are some observations we could make here. For example if F : (S, p) →
(S ′, p′) is a 1-morphism of categories over C, then F induces functors of fibre cate-
gories F : SU → S ′U . Similarly for 2-morphisms.

Here is the obligatory lemma describing the 2-fibre product in the (2, 1)-category
of categories over C.

Lemma 4.30.3. Let C be a category. The (2, 1)-category of categories over C has 2-
fibre products. Suppose that F : X → S and G : Y → S are morphisms of categories
over C. An explicit 2-fibre product X ×S Y is given by the following description

(1) an object of X ×S Y is a quadruple (U, x, y, f), where U ∈ Ob(C), x ∈
Ob(XU ), y ∈ Ob(YU ), and f : F (x)→ G(y) is an isomorphism in SU ,
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(2) a morphism (U, x, y, f) → (U ′, x′, y′, f ′) is given by a pair (a, b), where
a : x → x′ is a morphism in X , and b : y → y′ is a morphism in Y such
that
(a) a and b induce the same morphism U → U ′, and
(b) the diagram

F (x)
f //

F (a)

��

G(y)

G(b)

��
F (x′)

f ′ // G(y′)

is commutative.

The functors p : X ×S Y → X and q : X ×S Y → Y are the forgetful functors in this
case. The transformation ψ : F ◦ p → G ◦ q is given on the object ξ = (U, x, y, f)
by ψξ = f : F (p(ξ)) = F (x)→ G(y) = G(q(ξ)).

Proof. Let us check the universal property: let pW : W → C be a category over
C, let X : W → X and Y : W → Y be functors over C, and let t : F ◦X → G ◦ Y
be an isomorphism of functors over C. The desired functor γ : W → X ×S Y is
given by W 7→ (pW(W ), X(W ), Y (W ), tW ). Details omitted; compare with Lemma
4.29.4. �

Lemma 4.30.4. Let C be a category. Let f : X → S and g : Y → S be morphisms
of categories over C. For any object U of C we have the following identity of fibre
categories

(X ×S Y)U = XU ×SU YU
Proof. Omitted. �

4.31. Fibred categories

A very brief discussion of fibred categories is warranted.

Let p : S → C be a category over C. Given an object x ∈ S with p(x) = U , and
given a morphism f : V → U , we can try to take some kind of “fibre product
V ×U x” (or a base change of x via V → U). Namely, a morphism from an object
z ∈ S into “V ×U x” should be given by a pair (ϕ, g), where ϕ : z → x, g : p(z)→ V
such that p(ϕ) = f ◦ g. Pictorially:

z

p

��

? //

p

��

x

p

��
p(z) // V

f // U

If such a morphism V ×U x → x exists then it is called a strongly cartesian mor-
phism.

Definition 4.31.1. Let C be a category. Let p : S → C be a category over C. A
strongly cartesian morphism, or more precisely a strongly C-cartesian morphism is
a morphism ϕ : y → x of S such that for every z ∈ Ob(S) the map

MorS(z, y) −→ MorS(z, x)×MorC(p(z),p(x)) MorC(p(z), p(y)),

given by ψ 7−→ (ϕ ◦ ψ, p(ψ)) is bijective.
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Note that by the Yoneda Lemma 4.3.5, given x ∈ Ob(S) lying over U ∈ Ob(C) and
the morphism f : V → U of C, if there is a strongly cartesian morphism ϕ : y → x
with p(ϕ) = f , then (y, ϕ) is unique up to unique isomorphism. This is clear from
the definition above, as the functor

z 7−→ MorS(z, x)×MorC(p(z),U) MorC(p(z), V )

only depends on the data (x, U, f : V → U). Hence we will sometimes use V ×U x→
x or f∗x→ x to denote a strongly cartesian morphism which is a lift of f .

Lemma 4.31.2. Let C be a category. Let p : S → C be a category over C.

(1) The composition of two strongly cartesian morphisms is strongly cartesian.
(2) Any isomorphism of S is strongly cartesian.
(3) Any strongly cartesian morphism ϕ such that p(ϕ) is an isomorphism, is

an isomorphism.

Proof. Proof of (1). Let ϕ : y → x and ψ : z → y be strongly cartesian. Let t be
an arbitrary object of S. Then we have

MorS(t, z)

= MorS(t, y)×MorC(p(t),p(y)) MorC(p(t), p(z))

= MorS(t, x)×MorC(p(t),p(x)) MorC(p(t), p(y))×MorC(p(t),p(y)) MorC(p(t), p(z))

= MorS(t, x)×MorC(p(t),p(x)) MorC(p(t), p(z))

hence z → x is strongly cartesian.

Proof of (2). Let y → x be an isomorphism. Then p(y) → p(x) is an isomor-
phism too. Hence MorC(p(z), p(y)) → MorC(p(z), p(x)) is a bijection. Hence
MorS(z, x) ×MorC(p(z),p(x)) MorC(p(z), p(y)) is bijective to MorS(z, x). Hence the
displayed map of Definition 4.31.1 is a bijection as y → x is an isomorphism, and
we conclude that y → x is strongly cartesian.

Proof of (3). Assume ϕ : y → x is strongly cartesian with p(ϕ) : p(y) → p(x) an
isomorphism. Applying the definition with z = x shows that (idx, p(ϕ)−1) comes
from a unique morphism χ : x→ y. We omit the verification that χ is the inverse
of ϕ. �

Lemma 4.31.3. Let F : A → B and G : B → C be composable functors between
categories. Let x → y be a morphism of A. If x → y is strongly B-cartesian and
F (x)→ F (y) is strongly C-cartesian, then x→ y is strongly C-cartesian.

Proof. This follows directly from the definition. �

Lemma 4.31.4. Let C be a category. Let p : S → C be a category over C. Let
x→ y and z → y be morphisms of S. Assume

(1) x→ y is strongly cartesian,
(2) p(x)×p(y) p(z) exists, and
(3) there exists a strongly cartesian morphism a : w → z in S with p(w) =

p(x)×p(y) p(z) and p(a) = pr2 : p(x)×p(y) p(z)→ p(z).

Then the fibre product x×y z exists and is isomorphic to w.
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Proof. Since x→ y is strongly cartesian there exists a unique morphism b : w → x
such that p(b) = pr1. To see that w is the fibre product we compute

MorS(t, w)

= MorS(t, z)×MorC(p(t),p(z)) MorC(p(t), p(w))

= MorS(t, z)×MorC(p(t),p(z)) (MorC(p(t), p(x))×MorC(p(t),p(y)) MorC(p(t), p(z)))

= MorS(t, z)×MorC(p(t),p(y)) MorC(p(t), p(x))

= MorS(t, z)×MorS(t,y) MorS(t, y)×MorC(p(t),p(y)) MorC(p(t), p(x))

= MorS(t, z)×MorS(t,y) MorS(t, x)

as desired. The first equality holds because a : w → z is strongly cartesian and the
last equality holds because x→ y is strongly cartesian. �

Definition 4.31.5. Let C be a category. Let p : S → C be a category over C. We
say S is a fibred category over C if given any x ∈ Ob(S) lying over U ∈ Ob(C) and
any morphism f : V → U of C, there exists a strongly cartesian morphism f∗x→ x
lying over f .

Assume p : S → C is a fibred category. For every f : V → U and x ∈ Ob(SU )
as in the definition we may choose a strongly cartesian morphism f∗x → x lying
over f . By the axiom of choice we may choose f∗x → x for all f : V → U = p(x)
simultaneously. We claim that for every morphism φ : x→ x′ in SU and f : V → U
there is a unique morphism f∗φ : f∗x→ f∗x′ in SV such that

f∗x
f∗φ
//

��

f∗x′

��
x

φ // x′

commutes. Namely, the arrow exists and is unique because f∗x′ → x′ is strongly
cartesian. The uniqueness of this arrow guarantees that f∗ (now also defined on
morphisms) is a functor f∗ : SU → SV .

Definition 4.31.6. Assume p : S → C is a fibred category.

(1) A choice of pullbacks3 for p : S → C is given by a choice of a strongly
cartesian morphism f∗x → x lying over f for any morphism f : V → U
of C and any x ∈ Ob(SU ).

(2) Given a choice of pullbacks, for any morphism f : V → U of C the functor
f∗ : SU → SV described above is called a pullback functor (associated to
the choices f∗x→ x made above).

Of course we may always assume our choice of pullbacks has the property that
id∗Ux = x, although in practice this is a useless property without imposing further
assumptions on the pullbacks.

Lemma 4.31.7. Assume p : S → C is a fibred category. Assume given a choice of
pullbacks for p : S → C.

3This is probably nonstandard terminology. In some texts this is called a “cleavage” but

it conjures up the wrong image. Maybe a “cleaving” would be a better word. A related notion
is that of a “splitting”, but in many texts a “splitting” means a choice of pullbacks such that

g∗f∗ = (f ◦ g)∗ for any composable pair of morphisms. Compare also with Definition 4.34.2.

http://stacks.math.columbia.edu/tag/02XM
http://stacks.math.columbia.edu/tag/02XN
http://stacks.math.columbia.edu/tag/02XO


128 4. CATEGORIES

(1) For any pair of composable morphisms f : V → U , g : W → V there is a
unique isomorphism

αg,f : (f ◦ g)∗ −→ g∗ ◦ f∗

as functors SU → SW such that for every y ∈ Ob(SU ) the following
diagram commutes

g∗f∗y // f∗y

��
(f ◦ g)∗y //

(αg,f )y

OO

y

(2) If f = idU , then there is a canonical isomorphism αU : id → (idU )∗ as
functors SU → SU .

(3) The quadruple (U 7→ SU , f 7→ f∗, αg,f , αU ) defines a pseudo functor from
Copp to the (2, 1)-category of categories, see Definition 4.27.5.

Proof. In fact, it is clear that the commutative diagram of part (1) uniquely de-
termines the morphism (αg,f )y in the fibre category SW . It is an isomorphism
since both the morphism (f ◦ g)∗y → y and the composition g∗f∗y → f∗y → y
are strongly cartesian morphisms lifting f ◦ g (see discussion following Defini-
tion 4.31.1 and Lemma 4.31.2). In the same way, since idx : x → x is clearly
strongly cartesian over idU (with U = p(x)) we see that there exists an isomor-
phism (αU )x : x → (idU )∗x. (Of course we could have assumed beforehand that
f∗x = x whenever f is an identity morphism, but it is better for the sake of gen-
erality not to assume this.) We omit the verification that αg,f and αU so obtained
are transformations of functors. We also omit the verification of (3). �

Lemma 4.31.8. Let C be a category. Let S1, S2 be categories over C. Suppose that
S1 and S2 are equivalent as categories over C. Then S1 is fibred over C if and only
if S2 is fibred over C.

Proof. Denote pi : Si → C the given functors. Let F : S1 → S2, G : S2 → S1 be
functors over C, and let i : F ◦ G → idS2

, j : G ◦ F → idS1
be isomorphisms of

functors over C. We claim that in this case F maps strongly cartesian morphisms to
strongly cartesian morphisms. Namely, suppose that ϕ : y → x is strongly cartesian
in S1. Set f : V → U equal to p1(ϕ). Suppose that z′ ∈ Ob(S2), with W = p2(z′),
and we are given g : W → V and ψ′ : z′ → F (x) such that p2(ψ′) = f ◦ g. Then

ψ = j ◦G(ψ′) : G(z′)→ G(F (x))→ x

is a morphism in S1 with p1(ψ) = f ◦ g. Hence by assumption there exists a unique
morphism ξ : G(z′) → y lying over g such that ψ = ϕ ◦ ξ. This in turn gives a
morphism

ξ′ = F (ξ) ◦ i−1 : z′ → F (G(z′))→ F (y)

lying over g with ψ′ = F (ϕ) ◦ ξ′. We omit the verification that ξ′ is unique. �

The conclusion from Lemma 4.31.8 is that equivalences map strongly cartesian
morphisms to strongly cartesian morphisms. But this may not be the case for an
arbitrary functor between fibred categories over C. Hence we define the 2-category
of fibred categories as follows.
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Definition 4.31.9. Let C be a category. The 2-category of fibred categories over C
is the sub 2-category of the 2-category of categories over C (see Definition 4.30.1)
defined as follows:

(1) Its objects will be fibred categories p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦G = p and such that G maps strongly cartesian morphisms to strongly
cartesian morphisms.

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

In this situation we will denote

MorFib/C(S,S ′)
the category of 1-morphisms between (S, p) and (S ′, p′)

Note the condition on 1-morphisms. Note also that this is a true 2-category and not
a (2, 1)-category. Hence when taking 2-fibre products we first pass to the associated
(2, 1)-category.

Lemma 4.31.10. Let C be a category. The (2, 1)-category of fibred categories over
C has 2-fibre products, and they are described as in Lemma 4.30.3.

Proof. Basically what one has to show here is that given F : X → S andG : Y → S
morphisms of fibred categories over C, then the category X ×S Y described in
Lemma 4.30.3 is fibred. Let us show that X ×S Y has plenty of strongly cartesian
morphisms. Namely, suppose we have (U, x, y, φ) an object of X×SY. And suppose
f : V → U is a morphism in C. Choose strongly cartesian morphisms a : f∗x→ x
in X lying over f and b : f∗y → y in Y lying over f . By assumption F (a) and
G(b) are strongly cartesian. Since φ : F (x) → G(y) is an isomorphism, by the
uniqueness of strongly cartesian morphisms we find a unique isomorphism f∗φ :
F (f∗x) → G(f∗y) such that G(b) ◦ f∗φ = φ ◦ F (a). In other words (G(a), G(b)) :
(V, f∗x, f∗y, f∗φ)→ (U, x, y, φ) is a morphism in X ×S Y. We omit the verification
that this is a strongly cartesian morphism (and that these are in fact the only
strongly cartesian morphisms). �

Lemma 4.31.11. Let C be a category. Let U ∈ Ob(C). If p : S → C is a fibred
category and p factors through p′ : S → C/U then p′ : S → C/U is a fibred category.

Proof. Suppose that ϕ : x′ → x is strongly cartesian with respect to p. We
claim that ϕ is strongly cartesian with respect to p′ also. Set g = p′(ϕ), so that
g : V ′/U → V/U for some morphisms f : V → U and f ′ : V ′ → U . Let z ∈ Ob(S).
Set p′(z) = (W → U). To show that ϕ is strongly cartesian for p′ we have to show

MorS(z, x′) −→ MorS(z, x)×MorC/U (W/U,V/U) MorC/U (W/U, V ′/U),

given by ψ′ 7−→ (ϕ ◦ ψ′, p′(ψ′)) is bijective. Suppose given an element (ψ, h) of
the right hand side, then in particular g ◦ h = p(ψ), and by the condition that ϕ
is strongly cartesian we get a unique morphism ψ′ : z → x′ with ψ = ϕ ◦ ψ′ and
p(ψ′) = h. OK, and now p′(ψ′) : W/U → V/U is a morphism whose corresponding
map W → V is h, hence equal to h as a morphism in C/U . Thus ψ′ is a unique
morphism z → x′ which maps to the given pair (ψ, h). This proves the claim.

Finally, suppose given g : V ′/U → V/U and x with p′(x) = V/U . Since p : S → C is
a fibred category we see there exists a strongly cartesian morphism ϕ : x′ → x with
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p(ϕ) = g. By the same argument as above it follows that p′(ϕ) = g : V ′/U → V/U .
And as seen above the morphism ϕ is strongly cartesian. Thus the conditions of
Definition 4.31.5 are satisfied and we win. �

Lemma 4.31.12. Let A → B → C be functors between categories. If A is fibred
over B and B is fibred over C, then A is fibred over C.

Proof. This follows from the definitions and Lemma 4.31.3. �

Lemma 4.31.13. Let p : S → C be a fibred category. Let x → y and z → y be
morphisms of S with x→ y strongly cartesian. If p(x)×p(y) p(z) exists, then x×y z
exists, p(x×y z) = p(x)×p(y) p(z), and x×y z → z is strongly cartesian.

Proof. Pick a strongly cartesian morphism pr∗2z → z lying over pr2 : p(x) ×p(y)

p(z)→ p(z). Then pr∗2z = x×y z by Lemma 4.31.4. �

Lemma 4.31.14. Let C be a category. Let F : X → Y be a 1-morphism of fibred
categories over C. There exist 1-morphisms of fibred categories over C

X
u // X ′ v //
w
oo Y

such that F = v ◦ u and such that

(1) u : X → X ′ is fully faithful,
(2) w is left adjoint to u, and
(3) v : X ′ → Y is a fibred category.

Proof. Denote p : X → C and q : Y → C the structure functors. We construct
X ′ explicitly as follows. An object of X ′ is a quadruple (U, x, y, f) where x ∈
Ob(XU ), y ∈ Ob(YU ) and f : y → F (x) is a morphism in YU . A morphism
(a, b) : (U, x, y, f) → (U ′, x′, y′, f ′) is given by a : x → x′ and b : y → y′ with
p(a) = q(b) : U → U ′ and such that f ′ ◦ b = F (a) ◦ f .

Let us make a choice of pullbacks for both p and q and let us use the same notation
to indicate them. Let (U, x, y, f) be an object and let h : V → U be a morphism.
Consider the morphism c : (V, h∗x, h∗y, h∗f) → (U, x, y, f) coming from the given
strongly cartesian maps h∗x→ x and h∗y → y. We claim c is strongly cartesian in
X ′ over C. Namely, suppose we are given an object (W,x′, y′, f ′) of X ′, a morphism
(a, b) : (W,x′, y′, f ′) → (U, x, y, f) lying over W → U , and a factorization W →
V → U of W → U through h. As h∗x→ x and h∗y → y are strongly cartesian we
obtain morphisms a′ : x′ → h∗x and b′ : y′ → h∗y lying over the given morphism
W → V . Consider the diagram

y′

f ′

��

// h∗y //

h∗f

��

y

f

��
F (x′) // F (h∗x) // F (x)

The outer rectangle and the right square commute. Since F is a 1-morphism of
fibred categories the morphism F (h∗x) → F (x) is strongly cartesian. Hence the
left square commutes by the universal property of strongly cartesian morphisms.
This proves that X ′ is fibred over C.
The functor u : X → X ′ is given by x 7→ (p(x), x, F (x), id). This is fully faithful.
The functor X ′ → Y is given by (U, x, y, f) 7→ y. The functor w : X ′ → X is given
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by (U, x, y, f) 7→ x. Each of these functors is a 1-morphism of fibred categories over
C by our description of strongly cartesian morphisms of X ′ over C. Adjointness of
w and u means that

MorX (x, x′) = MorX ′((U, x, y, f), (p(x′), x′, F (x′), id)),

which follows immediately from the definitions.

Finally, we have to show that X ′ → Y is a fibred category. Let c : y′ → y be a
morphism in Y and let (U, x, y, f) be an object of X ′ lying over y. Set V = q(y′) and
let h = q(c) : V → U . Let a : h∗x → x and b : h∗y → y be the strongly cartesian
morphisms covering h. Since F is a 1-morphism of fibred categories we may identify
h∗F (x) = F (h∗x) with strongly cartesian morphism F (a) : F (h∗x) → F (x). By
the universal property of b : h∗y → y there is a morphism c′ : y′ → h∗y in YV such
that c = b ◦ c′. We claim that

(a, c) : (V, h∗x, y′, h∗f ◦ b′) −→ (U, x, y, f)

is strongly cartesian in X ′ over Y. To see this let (W,x1, y1, f1) be an object of X ′,
let (a1, b1) : (W,x1, y1, f1)→ (U, x, y, f) be a morphism and let b1 = c ◦ c1 for some
morphism c1 : y1 → y′. Then

(a′1, c1) : (W,x1, y1, f1) −→ (V, h∗x, y′, h∗f ◦ b′)
(where a′1 : x1 → h∗x is the unique morphism lying over the given morphism
p(a1) = q(b1) : W → V such that a1 = a ◦ a′1) is the desired morphism. �

4.32. Inertia

Given fibred categories p : S → C and p′ : S ′ → C over a category C and a
1-morphism F : S → S ′ we have the diagonal morphism

∆ = ∆S/S′ : S −→ S ×S′ S
in the (2, 1)-category of fibred categories over C.

Lemma 4.32.1. Let C be a category. Let p : S → C and p′ : S ′ → C be fibred
categories. Let F : S → S ′ be a 1-morphism of fibred categories over C. Consider
the category IS/S′ over C whose

(1) objects are pairs (x, α) where x ∈ Ob(S) and α : x → x is an automor-
phism with F (α) = id,

(2) morphisms (x, α)→ (y, β) are given by morphisms φ : x→ y such that

x
φ
//

α

��

y

β

��
x

φ // y

commutes, and
(3) the functor IS/S′ → C is given by (x, α) 7→ p(x).

Then

(1) there is an equivalence

IS/S′ −→ S ×∆,(S×S′S),∆ S
in the (2, 1)-category of categories over C, and

(2) IS/S′ is a fibred category over C.
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Proof. Note that (2) follows from (1) by Lemma 4.31.10. Thus it suffices to prove
(1). We will use without further mention the construction of the 2-fibre prod-
uct from Lemma 4.31.10. In particular an object of S ×∆,(S×S′S),∆ S is a triple
(x, y, (ι, κ)) where x and y are objects of S, and (ι, κ) : (x, x, idF (x))→ (y, y, idF (y))
is an isomorphism in S ×S′ S. This just means that ι, κ : x→ y are isomorphisms
and that F (ι) = F (κ). Consider the functor

IS/S′ −→ S ×∆,(S×S′S),∆ S
which to an object (x, α) of the left hand side assigns the object (x, x, (α, idx)) of
the right hand side and to a morphism φ of the left hand side assigns the morphism
(φ, φ) of the right hand side. We claim that a quasi-inverse to that morphism is
given by the functor

S ×∆,(S×S′S),∆ S −→ IS/S′

which to an object (x, y, (ι, κ)) of the left hand side assigns the object (x, κ−1 ◦ ι) of
the right hand side and to a morphism (φ, φ′) : (x, y, (ι, κ)) → (z, w, (λ, µ)) of the
left hand side assigns the morphism φ. Indeed, the endo-functor of IS/S′ induced
by composing the two functors above is the identity on the nose, and the endo-
functor induced on S ×∆,(S×S′S),∆ S is isomorphic to the identity via the natural
isomorphism

(ι−1 ◦ κ, κ ◦ ι−1 ◦ κ) : (x, x, (κ−1 ◦ ι, idx)) −→ (x, y, (ι, κ)).

Some details omitted. �

Definition 4.32.2. Let C be a category.

(1) Let F : S → S ′ be a 1-morphism of fibred categories over C. The relative
inertia of S over S ′ is the fibred category IS/S′ → C of Lemma 4.32.1.

(2) By the inertia fibred category IS of S we mean IS = IS/C .

Note that there are canonical 1-morphisms

(4.32.2.1) IS/S′ −→ S and IS −→ S
of fibred categories over C. In terms of the description of Lemma 4.32.1 these simply
map the object (x, α) to the object x and the morphism φ : (x, α) → (y, β) to the
morphism φ : x→ y. There is also a neutral section

(4.32.2.2) e : S → IS/S′ and e : S → IS
defined by the rules x 7→ (x, idx) and (φ : x → y) 7→ φ. This is a right inverse to
(4.32.2.1). Given a 2-commutative square

S1

F1

��

G
// S2

F2

��
S ′1

G′ // S ′2
there is a functoriality map

(4.32.2.3) IS1/S′1 −→ IS2/S′2 and IS1 −→ IS2

defined by the rules (x, α) 7→ (G(x), G(α)) and φ 7→ G(φ). In particular there is
always a comparison map

(4.32.2.4) IS/S′ −→ IS
and all the maps above are compatible with this.
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Lemma 4.32.3. Let F : S → S ′ be a 1-morphism of categories fibred over a
category C. Then the diagram

IS/S′

F◦(4.32.2.1)

��

(4.32.2.4)
// IS

(4.32.2.3)

��
S ′ e // IS′

is a 2-fibre product.

Proof. Omitted. �

4.33. Categories fibred in groupoids

In this section we explain how to think about categories in groupoids and we see
how they are basically the same as functors with values in the (2, 1)-category of
groupoids.

Definition 4.33.1. We say that S is fibred in groupoids over C if the following two
conditions hold:

(1) For every morphism f : V → U in C and every lift x of U there is a lift
φ : y → x of f with target x.

(2) For every pair of morphisms φ : y → x and ψ : z → x and any morphism
f : p(z) → p(y) such that p(φ) ◦ f = p(ψ) there exists a unique lift
χ : z → y of f such that φ ◦ χ = ψ.

Condition (2) phrased differently says that applying the functor p gives a bijection
between the sets of dotted arrows in the following commutative diagram below:

y // x p(y) // p(x)

z

OO AA

p(z)

OO <<

Another way to think about the second condition is the following. Suppose that
g : W → V and f : V → U are morphisms in C. Let x ∈ Ob(SU ). By the first
condition we can lift f to φ : y → x and then we can lift g to ψ : z → y. Instead of
doing this two step process we can directly lift g ◦ f to γ : z′ → x. This gives the
solid arrows in the diagram

(4.33.1.1)

z′

��

γ

''
z

OO

ψ //

p

��

y
φ //

p

��

x

p

��
W

g // V
f // U

where the squiggly arrows represent not morphisms but the functor p. Applying
the second condition to the arrows φ ◦ ψ, γ and idW we conclude that there is a
unique morphism χ : z → z′ in SW such that γ ◦ χ = φ ◦ ψ. Similarly there is a
unique morphism z′ → z. The uniqueness implies that the morphisms z′ → z and
z → z′ are mutually inverse, in other words isomorphisms.
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It should be clear from this discussion that a category fibred in groupoids is very
closely related to a fibred category. Here is the result.

Lemma 4.33.2. Let p : S → C be a functor. The following are equivalent

(1) p : S → C is a category fibred in groupoids, and
(2) all fibre categories are groupoids and S is a fibred category over C.

Moreover, in this case every morphism of S is strongly cartesian. In addition, given
f∗x→ x lying over f for all f : V → U = p(x) the data (U 7→ SU , f 7→ f∗, αf,g, αU )
constructed in Lemma 4.31.7 defines a pseudo functor from Copp in to the (2, 1)-
category of groupoids.

Proof. Assume p : S → C is fibred in groupoids. To show all fibre categories SU
for U ∈ Ob(C) are groupoids, we must exhibit for every f : y → x in SU an inverse
morphism. The diagram on the left (in SU ) is mapped by p to the diagram on the
right:

y
f // x U

idU // U

x

OO

idx

@@

U

OO

idU

??

Since only idU makes the diagram on the right commute, there is a unique g : x→ y
making the diagram on the left commute, so fg = idx. By a similar argument there
is a unique h : y → x so that gh = idy. Then fgh = f : y → x. We have fg = idx,
so h = f . Condition (2) of Definition 4.33.1 says exactly that every morphism of
S is strongly cartesian. Hence condition (1) of Definition 4.33.1 implies that S is a
fibred category over C.

Conversely, assume all fibre categories are groupoids and S is a fibred category
over C. We have to check conditions (1) and (2) of Definition 4.33.1. The first
condition follows trivially. Let φ : y → x, ψ : z → x and f : p(z) → p(y) such
that p(φ) ◦ f = p(ψ) be as in condition (2) of Definition 4.33.1. Write U = p(x),
V = p(y), W = p(z), p(φ) = g : V → U , p(ψ) = h : W → U . Choose a strongly
cartesian g∗x→ x lying over g. Then we get a morphism i : y → g∗x in SV , which
is therefore an isomorphism. We also get a morphism j : z → g∗x corresponding to
the pair (ψ, f) as g∗x→ x is strongly cartesian. Then one checks that χ = i−1 ◦ j
is a solution.

We have seen in the proof of (1) ⇒ (2) that every morphism of S is strongly
cartesian. The final statement follows directly from Lemma 4.31.7. �

Lemma 4.33.3. Let C be a category. Let p : S → C be a fibred category. Let S ′ be
the subcategory of S defined as follows

(1) Ob(S ′) = Ob(S), and
(2) for x, y ∈ Ob(S ′) the set of morphisms between x and y in S ′ is the set of

of strongly cartesian morphisms between x and y in S.

Let p′ : S ′ → C be the restriction of p to S ′. Then p′ : S ′ → C is fibred in groupoids.

Proof. Note that the construction makes sense since by Lemma 4.31.2 the identity
morphism of any object of S is strongly cartesian, and the composition of strongly
cartesian morphisms is strongly cartesian. The first lifting property of Definition
4.33.1 follows from the condition that in a fibred category given any morphism
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f : V → U and x lying over U there exists a strongly cartesian morphism ϕ : y → x
lying over f . Let us check the second lifting property of Definition 4.33.1 for the
category p′ : S ′ → C over C. To do this we argue as in the discussion following
Definition 4.33.1. Thus in Diagram 4.33.1.1 the morphisms φ, ψ and γ are strongly
cartesian morphisms of S. Hence γ and φ◦ψ are strongly cartesian morphisms of S
lying over the same arrow of C and having the same target in S. By the discussion
following Definition 4.31.1 this means these two arrows are isomorphic as desired
(here we use also that any isomorphism in S is strongly cartesian, by Lemma 4.31.2
again). �

Example 4.33.4. A homomorphism of groups p : G → H gives rise to a functor
p : S → C as in Example 4.2.12. This functor p : S → C is fibred in groupoids if and
only if p is surjective. The fibre category SU over the (unique) object U ∈ Ob(C)
is the category associated to the kernel of p as in Example 4.2.6.

Given p : S → C, we can ask: if the fibre category SU is a groupoid for all U ∈
Ob(C), must S be fibred in groupoids over C? We can see the answer is no as follows.
Start with a category fibred in groupoids p : S → C. Altering the morphisms in
S which do not map to the identity morphism on some object does not alter the
categories SU . Hence we can violate the existence and uniqueness conditions on lifts.
One example is the functor from Example 4.33.4 when G → H is not surjective.
Here is another example.

Example 4.33.5. Let Ob(C) = {A,B, T} and MorC(A,B) = {f}, MorC(B, T ) =
{g}, MorC(A, T ) = {h} = {gf}, plus the identity morphism for each object. See
the diagram below for a picture of this category. Now let Ob(S) = {A′, B′, T ′}
and MorS(A′, B′) = ∅, MorS(B′, T ′) = {g′}, MorS(A′, T ′) = {h′}, plus the identity
morphisms. The functor p : S → C is obvious. Then for every U ∈ Ob(C), SU
is the category with one object and the identity morphism on that object, so a
groupoid, but the morphism f : A → B cannot be lifted. Similarly, if we declare
MorS(A′, B′) = {f ′1, f ′2} and MorS(A′, T ′) = {h′} = {g′f ′1} = {g′f ′2}, then the fibre
categories are the same and f : A→ B in the diagram below has two lifts.

B′
g′ // T ′ B

g // T

A′

??

OO

h′

>>

above

A

f

OO

gf=h

??

Later we would like to make assertions such as “any category fibred in groupoids
over C is equivalent to a split one”, or “any category fibred in groupoids whose
fibre categories are setlike is equivalent to a category fibred in sets”. The notion of
equivalence depends on the 2-category we are working with.

Definition 4.33.6. Let C be a category. The 2-category of categories fibred in
groupoids over C is the sub 2-category of the 2-category of fibred categories over C
(see Definition 4.31.9) defined as follows:

(1) Its objects will be categories p : S → C fibred in groupoids.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p (since every morphism is strongly cartesian G automatically
preserves them).
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(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually
a (2, 1)-category and not just a 2-category. Here is the obligatory lemma on 2-fibre
products.

Lemma 4.33.7. Let C be a category. The 2-category of categories fibred in groupoids
over C has 2-fibre products, and they are described as in Lemma 4.30.3.

Proof. By Lemma 4.31.10 the fibre product as described in Lemma 4.30.3 is a
fibred category. Hence it suffices to prove that the fibre categories are groupoids,
see Lemma 4.33.2. By Lemma 4.30.4 it is enough to show that the 2-fibre product
of groupoids is a groupoid, which is clear (from the construction in Lemma 4.29.4
for example). �

Lemma 4.33.8. Let p : S → C and p′ : S ′ → C be categories fibred in groupoids,
and suppose that G : S → S ′ is a functor over C.

(1) Then G is faithful (resp. fully faithful, resp. an equivalence) if and only if
for each U ∈ Ob(C) the induced functor GU : SU → S ′U is faithful (resp.
fully faithful, resp. an equivalence).

(2) If G is an equivalence, then G is an equivalence in the 2-category of cate-
gories fibred in groupoids over C.

Proof. Let x, y be objects of S lying over the same object U . Consider the com-
mutative diagram

MorS(x, y)

p
''

G
// MorS′(G(x), G(y))

p′vv
MorC(U,U)

From this diagram it is clear that if G is faithful (resp. fully faithful) then so is
each GU .

Suppose G is an equivalence. For every object x′ of S ′ there exists an object x
of S such that G(x) is isomorphic to x′. Suppose that x′ lies over U ′ and x lies
over U . Then there is an isomorphism f : U ′ → U in C, namely, p′ applied to the
isomorphism x′ → G(x). By the axioms of a category fibred in groupoids there
exists an arrow f∗x → x of S lying over f . Hence there exists an isomorphism
α : x′ → G(f∗x) such that p′(α) = idU ′ (this time by the axioms for S ′). All in all
we conclude that for every object x′ of S ′ we can choose a pair (ox′ , αx′) consisting
of an object ox′ of S and an isomorphism αx′ : x′ → G(ox′) with p(αx′) = idp′(x′).
From this point on we proceed as usual (see proof of Lemma 4.2.19) to produce an
inverse functor F : S ′ → S, by taking x′ 7→ ox′ and ϕ′ : x′ → y′ to the unique arrow
ϕϕ′ : ox′ → oy′ with α−1

x′ ◦ G(ϕϕ′) ◦ αy′ = ϕ′. With these choices F is a functor
over C. We omit the verification that G ◦ F and F ◦ G are 2-isomorphic (in the
2-category of categories fibred in groupoids over C).
Suppose that GU is faithful (resp. fully faithful) for all U ∈ Ob(C). To show that G
is faithful (resp. fully faithful) we have to show for any objects x, y ∈ Ob(S) that G
induces an injection (resp. bijection) between MorS(x, y) and MorS′(G(x), G(y)).
Set U = p(x) and V = p(y). It suffices to prove that G induces an injection (resp.
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bijection) between morphism x→ y lying over f to morphisms G(x)→ G(y) lying
over f for any morphism f : U → V . Now fix f : U → V . Denote f∗y → y a
pullback. Then also G(f∗y) → G(y) is a pullback. The set of morphisms from x
to y lying over f is bijective to the set of morphisms between x and f∗y lying over
idU . (By the second axiom of a category fibred in groupoids.) Similarly the set
of morphisms from G(x) to G(y) lying over f is bijective to the set of morphisms
between G(x) and G(f∗y) lying over idU . Hence the fact that GU is faithful (resp.
fully faithful) gives the desired result.

Finally suppose for all GU is an equivalence for all U , so it is fully faithful and
essentially surjective. We have seen this implies G is fully faithful, and thus to
prove it is an equivalence we have to prove that it is essentially surjective. This is
clear, for if z′ ∈ Ob(S ′) then z′ ∈ Ob(S ′U ) where U = p′(z′). Since GU is essentially
surjective we know that z′ is isomorphic, in S ′U , to an object of the form GU (z)
for some z ∈ Ob(SU ). But morphisms in S ′U are morphisms in S ′ and hence z′ is
isomorphic to G(z) in S ′. �

Lemma 4.33.9. Let C be a category. Let p : S → C and p′ : S ′ → C be categories
fibred in groupoids. Let G : S → S ′ be a functor over C. Then G is fully faithful if
and only if the diagonal

∆G : S −→ S ×G,S′,G S
is an equivalence.

Proof. By Lemma 4.33.8 it suffices to look at fibre categories over an object U of
C. An object of the right hand side is a triple (x, x′, α) where α : G(x) → G(x′)
is a morphism in S ′U . The functor ∆G maps the object x of SU to the triple
(x, x, idG(x)). Note that (x, x′, α) is in the essential image of ∆G if and only if
α = G(β) for some morphism β : x → x′ in SU (details omitted). Hence in
order for ∆G to be an equivalence, every α has to be the image of a morphism
β : x → x′, and also every two distinct morphisms β, β′ : x → x′ have to given
distinct morphisms G(β), G(β′). This proves one direction of the lemma. We omit
the proof of the other direction. �

Lemma 4.33.10. Let C be a category. Let Si, i = 1, 2, 3, 4 be categories fibred in
groupoids over C. Suppose that ϕ : S1 → S2 and ψ : S3 → S4 are equivalences over
C. Then

MorCat/C(S2,S3) −→ MorCat/C(S1,S4), α 7−→ ψ ◦ α ◦ ϕ

is an equivalence of categories.

Proof. This is a generality and holds in any 2-category. �

Lemma 4.33.11. Let C be a category. If p : S → C is fibred in groupoids, then so
is the inertia fibred category IS → C.

Proof. Clear from the construction in Lemma 4.32.1 or by using (from the same
lemma) that IS → S ×∆,S×CS,∆ S is an equivalence and appealing to Lemma
4.33.7. �

Lemma 4.33.12. Let C be a category. Let U ∈ Ob(C). If p : S → C is a category
fibred in groupoids and p factors through p′ : S → C/U then p′ : S → C/U is fibred
in groupoids.
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Proof. We have already seen in Lemma 4.31.11 that p′ is a fibred category. Hence
it suffices to prove the fibre categories are groupoids, see Lemma 4.33.2. For V ∈
Ob(C) we have

SV =
∐

f :V→U
S(f :V→U)

where the left hand side is the fibre category of p and the right hand side is the
disjoint union of the fibre categories of p′. Hence the result. �

Lemma 4.33.13. Let A → B → C be functors between categories. If A is fibred in
groupoids over B and B is fibred in groupoids over C, then A is fibred in groupoids
over C.

Proof. One can prove this directly from the definition. However, we will argue
using the criterion of Lemma 4.33.2. By Lemma 4.31.12 we see that A is fibred
over C. To finish the proof we show that the fibre category AU is a groupoid for U
in C. Namely, if x→ y is a morphism of AU , then its image in B is an isomorphism
as BU is a groupoid. But then x → y is an isomorphism, for example by Lemma
4.31.2 and the fact that every morphism of A is strongly B-cartesian (see Lemma
4.33.2). �

Lemma 4.33.14. Let p : S → C be a category fibred in groupoids. Let x → y
and z → y be morphisms of S. If p(x) ×p(y) p(z) exists, then x ×y z exists and
p(x×y z) = p(x)×p(y) p(z).

Proof. Follows from Lemma 4.31.13. �

Lemma 4.33.15. Let C be a category. Let F : X → Y be a 1-morphism of
categories fibred in groupoids over C. There exists a factorization X → X ′ → Y
by 1-morphisms of categories fibred in groupoids over C such that X → X ′ is an
equivalence over C and such that X ′ is a category fibred in groupoids over Y.

Proof. Denote p : X → C and q : Y → C the structure functors. We construct
X ′ explicitly as follows. An object of X ′ is a quadruple (U, x, y, f) where x ∈
Ob(XU ), y ∈ Ob(YU ) and f : F (x) → y is an isomorphism in YU . A morphism
(a, b) : (U, x, y, f) → (U ′, x′, y′, f ′) is given by a : x → x′ and b : y → y′ with
p(a) = q(b) and such that f ′ ◦ F (a) = b ◦ f . In other words X ′ = X ×F,Y,id Y with
the construction of the 2-fibre product from Lemma 4.30.3. By Lemma 4.33.7 we
see that X ′ is a category fibred in groupoids over C and that X ′ → Y is a morphism
of categories over C. As functor X → X ′ we take x 7→ (p(x), x, F (x), idF (x)) on
objects and (a : x→ x′) 7→ (a, F (a)) on morphisms. It is clear that the composition
X → X ′ → Y equals F . We omit the verification that X → X ′ is an equivalence of
fibred categories over C.
Finally, we have to show that X ′ → Y is a category fibred in groupoids. Let
b : y′ → y be a morphism in Y and let (U, x, y, f) be an object of X ′ lying over
y. Because X is fibred in groupoids over C we can find a morphism a : x′ → x
lying over U ′ = q(y′) → q(y) = U . Since Y is fibred in groupoids over C and
since both F (x′) → F (x) and y′ → y lie over the same morphism U ′ → U we
can find f ′ : F (x′) → y′ lying over idU ′ such that f ◦ F (a) = b ◦ f ′. Hence
we obtain (a, b) : (U ′, x′, y′, f ′) → (U, x, y, f). This verifies the first condition
(1) of Definition 4.33.1. To see (2) let (a, b) : (U ′, x′, y′, f ′) → (U, x, y, f) and
(a′, b′) : (U ′′, x′′, y′′, f ′′) → (U, x, y, f) be morphisms of X ′ and let b′′ : y′ → y′′

be a morphism of Y such that b′ ◦ b′′ = b. We have to show that there exists
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a unique morphism a′′ : x′ → x′′ such that f ′′ ◦ F (a′′) = b′′ ◦ f ′ and such that
(a′, b′) ◦ (a′′, b′′) = (a, b). Because X is fibred in groupoids we know there exists a
unique morphism a′′ : x′ → x′′ such that a′◦a′′ = a and p(a′′) = q(b′′). Because Y is
fibred in groupoids we see that F (a′′) is the unique morphism F (x′)→ F (x′′) such
that F (a′) ◦F (a′′) = F (a) and q(F (a′′)) = q(b′′). The relation f ′′ ◦F (a′′) = b′′ ◦ f ′
follows from this and the given relations f ◦F (a) = b◦f ′ and f ◦F (a′) = b′ ◦f ′′. �

Lemma 4.33.16. Let C be a category. Let F : X → Y be a 1-morphism of
categories fibred in groupoids over C. Assume we have a 2-commutative diagram

X ′

f   

X
a
oo

F

��

b
// X ′′

g
~~

Y

where a and b are equivalences of categories over C and f and g are categories
fibred in groupoids. Then there exists an equivalence h : X ′′ → X ′ of categories
over Y such that h ◦ b is 2-isomorphic to a as 1-morphisms of categories over C.
If the diagram above actually commutes, then we can arrange it so that h ◦ b is
2-isomorphic to a as 1-morphisms of categories over Y.

Proof. We will show that both X ′ and X ′′ over Y are equivalent to the category
fibred in groupoids X ×F,Y,id Y over Y, see proof of Lemma 4.33.15. Choose a
quasi-inverse b−1 : X ′′ → X in the 2-category of categories over C. Since the right
triangle of the diagram is 2-commutative we see that

X

F

��

X ′′
b−1

oo

g

��
Y Yoo

is 2-commutative. Hence we obtain a 1-morphism c : X ′′ → X ×F,Y,id Y by the
universal property of the 2-fibre product. Moreover c is a morphism of categories
over Y (!) and an equivalence (by the assumption that b is an equivalence, see
Lemma 4.29.7). Hence c is an equivalence in the 2-category of categories fibred in
groupoids over Y by Lemma 4.33.8.

We still have to construct a 2-isomorphism between c ◦ b and the functor d : X →
X ×F,Y,id Y, x 7→ (p(x), x, F (x), idF (x)) constructed in the proof of Lemma 4.33.15.

Let α : F → g ◦ b and β : b−1 ◦ b→ id be 2-isomorphisms between 1-morphisms of
categories over C. Note that c ◦ b is given by the rule

x 7→ (p(x), b−1(b(x)), g(b(x)), αx ◦ F (βx))

on objects. Then we see that

(βx, αx) : (p(x), x, F (x), idF (x)) −→ (p(x), b−1(b(x)), g(b(x)), αx ◦ F (βx))

is a functorial isomorphism which gives our 2-morphism d → b ◦ c. Finally, if the
diagram commutes then αx is the identity for all x and we see that this 2-morphism
is a 2-morphism in the 2-category of categories over Y. �

http://stacks.math.columbia.edu/tag/06N8
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4.34. Presheaves of categories

In this section we compare the notion of fibred categories with the closely related
notion of a “presheaf of categories”. The basic construction is explained in the
following example.

Example 4.34.1. Let C be a category. Suppose that F : Copp → Cat is a functor
to the 2-category of categories, see Definition 4.27.5. For f : V → U in C we will
suggestively write F (f) = f∗ for the functor from F (U) to F (V ). From this we
can construct a fibred category SF over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.
For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {(f, φ) | f ∈ MorC(V,U), φ ∈ MorF (V )(y, f
∗x)}

=
∐

f∈MorC(V,U)
MorF (V )(y, f

∗x)

In order to define composition we use that g∗◦f∗ = (f ◦g)∗ for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ψ : z → g∗y and φ : y → f∗x to be g∗(φ) ◦ ψ. The functor
pF : SF → C is given by the rule (U, x) 7→ U . Let us check that this is indeed
a fibred category. Given f : V → U in C and (U, x) a lift of U , then we claim
(f, idf∗x) : (V, f∗x)→ (U, x) is a strongly cartesian lift of f . We have to show a h
in the diagram on the left determines (h, ν) on the right:

V
f // U (V, f∗x)

(f,idf∗x)// (U, x)

W

h

OO

g

??

(W, z)

(h,ν)

OO

(g,ψ)

::

Just take ν = ψ which works because f ◦ h = g and hence g∗x = h∗f∗x. Moreover,
this is the only lift making the diagram (on the right) commute.

Definition 4.34.2. Let C be a category. Suppose that F : Copp → Cat is a
functor to the 2-category of categories. We will write pF : SF → C for the fibred
category constructed in Example 4.34.1. A split fibred category is a fibred category
isomorphic (!) over C to one of these categories SF .

Lemma 4.34.3. Let C be a category. Let S be a fibred category over C. Then S is
split if and only if for some choice of pullbacks (see Definition 4.31.6) the pullback
functors (f ◦ g)∗ and g∗ ◦ f∗ are equal.

Proof. This is immediate from the definitions. �

Lemma 4.34.4. Let p : S → C be a fibred category. There exists a functor F :
C → Cat such that S is equivalent to SF in the 2-category of fibred categories over
C. In other words, every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition 4.31.6). By Lemma 4.31.7
we get pullback functors f∗ for every morphism f of C.
We construct a new category S ′ as follows. The objects of S ′ are pairs (x, f)
consisting of a morphism f : V → U of C and an object x of S over U , i.e.,
x ∈ Ob(SU ). The functor p′ : S ′ → C will map the pair (x, f) to the source of

http://stacks.math.columbia.edu/tag/02XV
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the morphism f , in other words p′(x, f : V → U) = V . A morphism ϕ : (x1, f1 :
V1 → U1) → (x2, f2 : V2 → U2) is given by a pair (ϕ, g) consisting of a morphism
g : V1 → V2 and a morphism ϕ : f∗1x1 → f∗2x2 with p(ϕ) = g. It is no problem to
define the composition law: (ϕ, g)◦ (ψ, h) = (ϕ◦ψ, g ◦h) for any pair of composable
morphisms. There is a natural functor S → S ′ which simply maps x over U to the
pair (x, idx).

At this point we need to check that p′ makes S ′ into a fibred category over C,
and we need to check that S → S ′ is an equivalence of categories over C which
maps strongly cartesian morphisms to strongly cartesian morphisms. We omit the
verifications.

Finally, we can define pullback functors on S ′ by setting g∗(x, f) = (x, f ◦ g) on
objects if g : V ′ → V and f : V → U . On morphisms (ϕ, idV ) : (x1, f1) → (x2, f2)
between morphisms in S ′V we set g∗(ϕ, idV ) = (g∗ϕ, idV ′) where we use the unique
identifications g∗f∗i xi = (fi◦g)∗xi from Lemma 4.31.7 to think of g∗ϕ as a morphism
from (f1◦g)∗x1 to (f2◦g)∗x2. Clearly, these pullback functors g∗ have the property
that g∗1 ◦ g∗2 = (g2 ◦ g1)∗, in other words S ′ is split as desired. �

4.35. Presheaves of groupoids

In this section we compare the notion of categories fibred in groupoids with the
closely related notion of a “presheaf of groupoids”. The basic construction is ex-
plained in the following example.

Example 4.35.1. This example is the analogue of Example 4.34.1, for “presheaves
of groupoids” instead of “presheaves of categories”. The output will be a category
fibred in groupoids instead of a fibred category. Suppose that F : Copp → Groupoids
is a functor to the category of groupoids, see Definition 4.27.5. For f : V → U in
C we will suggestively write F (f) = f∗ for the functor from F (U) to F (V ). We
construct a category SF fibred in groupoids over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.

For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {(f, φ) | f ∈ MorC(V,U), φ ∈ MorF (V )(y, f
∗x)}

=
∐

f∈MorC(V,U)
MorF (V )(y, f

∗x)

In order to define composition we use that g∗◦f∗ = (f ◦g)∗ for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ψ : z → g∗y and φ : y → f∗x to be g∗(φ) ◦ ψ. The functor
pF : SF → C is given by the rule (U, x) 7→ U . The condition that F (U) is a
groupoid for every U guarantees that SF is fibred in groupoids over C, as we have
already seen in Example 4.34.1 that SF is a fibred category, see Lemma 4.33.2. But
we can also prove conditions (1), (2) of Definition 4.33.1 directly as follows: (1)
Lifts of morphisms exist since given f : V → U in C and (U, x) an object of SF
over U , then (f, idf∗x) : (V, f∗x) → (U, x) is a lift of f . (2) Suppose given solid
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diagrams as follows

V
f // U (V, y)

(f,φ) // (U, x)

W

h

OO

g

??

(W, z)

(h,ν)

OO

(g,ψ)

;;

Then for the dotted arrows we have ν = (h∗φ)−1 ◦ ψ so given h there exists a ν
which is unique by uniqueness of inverses.

Definition 4.35.2. Let C be a category. Suppose that F : Copp → Groupoids
is a functor to the 2-category of groupoids. We will write pF : SF → C for the
category fibred in groupoids constructed in Example 4.35.1. A split category fibred
in groupoids is a category fibred in groupoids isomorphic (!) over C to one of these
categories SF .

Lemma 4.35.3. Let p : S → C be a category fibred in groupoids. There exists a
functor F : C → Groupoids such that S is equivalent to SF over C. In other words,
every category fibred in groupoids is equivalent to a split one.

Proof. Make a choice of pullbacks (see Definition 4.31.6). By Lemmas 4.31.7 and
4.33.2 we get pullback functors f∗ for every morphism f of C.

We construct a new category S ′ as follows. The objects of S ′ are pairs (x, f)
consisting of a morphism f : V → U of C and an object x of S over U , i.e.,
x ∈ Ob(SU ). The functor p′ : S ′ → C will map the pair (x, f) to the source of
the morphism f , in other words p′(x, f : V → U) = V . A morphism ϕ : (x1, f1 :
V1 → U1) → (x2, f2 : V2 → U2) is given by a pair (ϕ, g) consisting of a morphism
g : V1 → V2 and a morphism ϕ : f∗1x1 → f∗2x2 with p(ϕ) = g. It is no problem to
define the composition law: (ϕ, g)◦ (ψ, h) = (ϕ◦ψ, g ◦h) for any pair of composable
morphisms. There is a natural functor S → S ′ which simply maps x over U to the
pair (x, idx).

At this point we need to check that p′ makes S ′ into a category fibred in groupoids
over C, and we need to check that S → S ′ is an equivalence of categories over C.
We omit the verifications.

Finally, we can define pullback functors on S ′ by setting g∗(x, f) = (x, f ◦ g) on
objects if g : V ′ → V and f : V → U . On morphisms (ϕ, idV ) : (x1, f1) → (x2, f2)
between morphisms in S ′V we set g∗(ϕ, idV ) = (g∗ϕ, idV ′) where we use the unique
identifications g∗f∗i xi = (fi◦g)∗xi from Lemma 4.33.2 to think of g∗ϕ as a morphism
from (f1◦g)∗x1 to (f2◦g)∗x2. Clearly, these pullback functors g∗ have the property
that g∗1 ◦ g∗2 = (g2 ◦ g1)∗, in other words S ′ is split as desired. �

We will see an alternative proof of this lemma in Section 4.39.

4.36. Categories fibred in sets

Definition 4.36.1. A category is called discrete if the only morphisms are the
identity morphisms.

A discrete category has only one interesting piece of information: its set of objects.
Thus we sometime confuse discrete categories with sets.
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Definition 4.36.2. Let C be a category. A category fibred in sets, or a category
fibred in discrete categories is a category fibred in groupoids all of whose fibre
categories are discrete.

We want to clarify the relationship between categories fibred in sets and presheaves
(see Definition 4.3.3). To do this it makes sense to first make the following definition.

Definition 4.36.3. Let C be a category. The 2-category of categories fibred in sets
over C is the sub 2-category of the category of categories fibred in groupoids over
C (see Definition 4.33.6) defined as follows:

(1) Its objects will be categories p : S → C fibred in sets.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category. Here is the obligatory lemma on the existence of 2-fibre
products.

Lemma 4.36.4. Let C be a category. The 2-category of categories fibred in sets
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
4.30.3 returns a category fibred in sets if one starts out with such.

Proof. Omitted. �

Example 4.36.5. This example is the analogue of Examples 4.34.1 and 4.35.1 for
presheaves instead of “presheaves of categories”. The output will be a category
fibred in sets instead of a fibred category. Suppose that F : Copp → Sets is a
presheaf. For f : V → U in C we will suggestively write F (f) = f∗ : F (U)→ F (V ).
We construct a category SF fibred in sets over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.

For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {f ∈ MorC(V,U) | f∗x = y}

Composition is inherited from composition in C which works as g∗ ◦ f∗ = (f ◦ g)∗

for a pair of composable morphisms of C. The functor pF : SF → C is given by
the rule (U, x) 7→ U . As every fibre category SF,U is discrete with underlying set
F (U) and we have already see in Example 4.35.1 that SF is a category fibred in
groupoids, we conclude that SF is fibred in sets.

Lemma 4.36.6. Let C be a category. The only 2-morphisms between categories
fibred in sets are identities. In other words, the 2-category of categories fibred in
sets is a category. Moreover, there is an equivalence of categories{

the category of presheaves
of sets over C

}
↔
{

the category of categories
fibred in sets over C

}
The functor from left to right is the construction F → SF discussed in Example
4.36.5. The functor from right to left assigns to p : S → C the presheaf of objects
U 7→ Ob(SU ).
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Proof. The first assertion is clear, as the only morphisms in the fibre categories
are identities.

Suppose that p : S → C is fibred in sets. Let f : V → U be a morphism in C and
let x ∈ Ob(SU ). Then there is exactly one choice for the object f∗x. Thus we see
that (f ◦ g)∗x = g∗(f∗x) for f, g as in Lemma 4.33.2. It follows that we may think
of the assignments U 7→ Ob(SU ) and f 7→ f∗ as a presheaf on C. �

Here is an important example of a category fibred in sets.

Example 4.36.7. Let C be a category. Let X ∈ Ob(C). Consider the representable
presheaf hX = MorC(−, X) (see Example 4.3.4). On the other hand, consider the
category p : C/X → C from Example 4.2.13. The fibre category (C/X)U has as
objects morphisms h : U → X, and only identities as morphisms. Hence we see
that under the correspondence of Lemma 4.36.6 we have

hX ←→ C/X.

In other words, the category C/X is canonically equivalent to the category ShX
associated to hX in Example 4.36.5.

For this reason it is tempting to define a “representable” object in the 2-category
of categories fibred in groupoids to be a category fibred in sets whose associated
presheaf is representable. However, this is would not be a good definition for use
since we prefer to have a notion which is invariant under equivalences. To make
this precise we study exactly which categories fibred in groupoids are equivalent to
categories fibred in sets.

4.37. Categories fibred in setoids

Definition 4.37.1. Let us call a category a setoid4 if it is a groupoid where every
object has exactly one automorphism: the identity.

If C is a set with an equivalence relation ∼, then we can make a setoid C as follows:
Ob(C) = C and MorC(x, y) = ∅ unless x ∼ y in which case we set MorC(x, y) = {1}.
Transitivity of ∼ means that we can compose morphisms. Conversely any setoid
category defines an equivalence relation on its objects (isomorphism) such that
you recover the category (up to unique isomorphism – not equivalence) from the
procedure just described.

Discrete categories are setoids. For any setoid C there is a canonical procedure to
make a discrete category equivalent to it, namely one replaces Ob(C) by the set of
isomorphism classes (and adds identity morphisms). In terms of sets endowed with
an equivalence relation this corresponds to taking the quotient by the equivalence
relation.

Definition 4.37.2. Let C be a category. A category fibred in setoids is a category
fibred in groupoids all of whose fibre categories are setoids.

Below we will clarify the relationship between categories fibred in setoids and cat-
egories fibred in sets.

4A set on steroids!?
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Definition 4.37.3. Let C be a category. The 2-category of categories fibred in
setoids over C is the sub 2-category of the category of categories fibred in groupoids
over C (see Definition 4.33.6) defined as follows:

(1) Its objects will be categories p : S → C fibred in setoids.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category.
Here is the obligatory lemma on the existence of 2-fibre products.

Lemma 4.37.4. Let C be a category. The 2-category of categories fibred in setoids
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
4.30.3 returns a category fibred in setoids if one starts out with such.

Proof. Omitted. �

Lemma 4.37.5. Let C be a category. Let S be a category over C.

(1) If S → S ′ is an equivalence over C with S ′ fibred in sets over C, then
(a) S is fibred in setoids over C, and
(b) for each U ∈ Ob(C) the map Ob(SU )→ Ob(S ′U ) identifies the target

as the set of isomorphism classes of the source.
(2) If p : S → C is a category fibred in setoids, then there exists a category

fibred in sets p′ : S ′ → C and an equivalence can : S → S ′ over C.

Proof. Let us prove (2). An object of the category S ′ will be a pair (U, ξ), where
U ∈ Ob(C) and ξ is an isomorphism class of objects of SU . A morphism (U, ξ) →
(V, ψ) is given by a morphism x→ y, where x ∈ ξ and y ∈ ψ. Here we identify two
morphisms x → y and x′ → y′ if they induce the same morphism U → V , and if
for some choices of isomorphisms x→ x′ in SU and y → y′ in SV the compositions
x → x′ → y′ and x → y → y′ agree. By construction there are surjective maps on
objects and morphisms from S → S ′. We define composition of morphisms in S ′
to be the unique law that turns S → S ′ into a functor. Some details omitted. �

Thus categories fibred in setoids are exactly the categories fibred in groupoids which
are equivalent to categories fibred in sets. Moreover, an equivalence of categories
fibred in sets is an isomorphism by Lemma 4.36.6.

Lemma 4.37.6. Let C be a category. The construction of Lemma 4.37.5 part (2)
gives a functor

F :

{
the 2-category of categories

fibred in setoids over C

}
−→

{
the category of categories

fibred in sets over C

}
(see Definition 4.27.5). This functor is an equivalence in the following sense:

(1) for any two 1-morphisms f, g : S1 → S2 with F (f) = F (g) there exists a
unique 2-isomorphism f → g,

(2) for any morphism h : F (S1)→ F (S2) there exists a 1-morphism f : S1 →
S2 with F (f) = h, and

(3) any category fibred in sets S is equal to F (S).
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In particular, defining Fi ∈ PSh(C) by the rule Fi(U) = Ob(Si,U )/ ∼=, we have

MorCat/C(S1,S2)
/

2-isomorphism = MorPSh(C)(F1, F2)

More precisely, given any map φ : F1 → F2 there exists a 1-morphism f : S1 → S2

which induces φ on isomorphism classes of objects and which is unique up to unique
2-isomorphism.

Proof. By Lemma 4.36.6 the target of F is a category hence the assertion makes
sense. The construction of Lemma 4.37.5 part (2) assigns to S the category fibred
in sets whose value over U is the set of isomorphism classes in SU . Hence it is clear
that it defines a functor as indicated. Let f, g : S1 → S2 with F (f) = F (g) be
as in (1). For each object U of C and each object x of S1,U we see that f(x) ∼=
g(x) by assumption. As S2 is fibred in setoids there exists a unique isomorphism
tx : f(x) → g(x) in S2,U . Clearly the rule x 7→ tx gives the desired 2-isomorphism
f → g. We omit the proofs of (2) and (3). To see the final assertion use Lemma
4.36.6 to see that the right hand side is equal to MorCat(C)(F (S1), F (S2)) and apply
(1) and (2) above. �

Here is another characterization of categories fibred in setoids among all categories
fibred in groupoids.

Lemma 4.37.7. Let C be a category. Let p : S → C be a category fibred in
groupoids. The following are equivalent:

(1) p : S → C be a category fibred in setoids, and
(2) the canonical 1-morphism IS → S, see (4.32.2.1), is an equivalence (of

categories over C).

Proof. Assume (2). The category IS has objects (x, α) where x ∈ S, say with
p(x) = U , and α : x→ x is a morphism in SU . Hence if IS → S is an equivalence
over C then every pair of objects (x, α), (x, α′) are isomorphic in the fibre category
of IS over U . Looking at the definition of morphisms in IS we conclude that α,
α′ are conjugate in the group of automorphisms of x. Hence taking α′ = idx we
conclude that every automorphism of x is equal to the identity. Since S → C is
fibred in groupoids this implies that S → C is fibred in setoids. We omit the proof
of (1) ⇒ (2). �

Lemma 4.37.8. Let C be a category. The construction of Lemma 4.37.6 which
associates to a category fibred in setoids a presheaf is compatible with products, in
the sense that the presheaf associated to a 2-fibre product X×YZ is the fibre product
of the presheaves associated to X ,Y,Z.

Proof. Let U ∈ Ob(C). The lemma just says that

Ob((X ×Y Z)U )/∼= equals Ob(XU )/∼= ×Ob(YU )/∼= Ob(ZU )/∼=

the proof of which we omit. (But note that this would not be true in general if the
category YU is not a setoid.) �

4.38. Representable categories fibred in groupoids

Here is our definition of a representable category fibred in groupoids. As promised
this is invariant under equivalences.
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Definition 4.38.1. Let C be a category. A category fibred in groupoids p : S → C is
called representable if there exists an object X of C and an equivalence j : S → C/X
(in the 2-category of groupoids over C).

The usual abuse of notation is to say that X represents S and not mention the
equivalence j. We spell out what this entails.

Lemma 4.38.2. Let C be a category. Let p : S → C be a category fibred in
groupoids.

(1) S is representable if and only if the following conditions are satisfied:
(a) S is fibred in setoids, and
(b) the presheaf U 7→ Ob(SU )/ ∼= is representable.

(2) If S is representable the pair (X, j), where j is the equivalence j : S →
C/X is uniquely determined up to isomorphism.

Proof. The first assertion follows immediately from Lemma 4.37.5. For the second,
suppose that j′ : S → C/X ′ is a second such pair. Choose a 1-morphism t′ :
C/X ′ → S such that j′ ◦ t′ ∼= idC/X′ and t′ ◦ j′ ∼= idS . Then j ◦ t′ : C/X ′ → C/X
is an equivalence. Hence it is an isomorphism, see Lemma 4.36.6. Hence by the
Yoneda Lemma 4.3.5 (via Example 4.36.7 for example) it is given by an isomorphism
X ′ → X. �

Lemma 4.38.3. Let C be a category. Let X , Y be categories fibred in groupoids
over C. Assume that X , Y are representable by objects X, Y of C. Then

MorCat/C(X ,Y)
/

2-isomorphism = MorC(X,Y )

More precisely, given φ : X → Y there exists a 1-morphism f : X → Y which
induces φ on isomorphism classes of objects and which is unique up to unique 2-
isomorphism.

Proof. By Example 4.36.7 we have C/X = ShX and C/Y = ShY . By Lemma
4.37.6 we have

MorCat/C(X ,Y)
/

2-isomorphism = MorPSh(C)(hX , hY )

By the Yoneda Lemma 4.3.5 we have MorPSh(C)(hX , hY ) = MorC(X,Y ). �

4.39. Representable 1-morphisms

Let C be a category. In this section we explain what it means for a 1-morphism
between categories fibred in groupoids over C to be representable. Note that the
2-category of categories fibred in groupoids over C is a “full” sub 2-category of the
2-category of categories over C (see Definition 4.33.6). Hence if S, S ′ are fibred in
groupoids over C then

MorCat/C(S,S ′)
denotes the category of 1-morphisms in this 2-category (see Definition 4.30.1).
These are all groupoids, see remarks following Definition 4.33.6. Here is the 2-
category analogue of the Yoneda lemma.

Lemma 4.39.1 (2-Yoneda lemma). Let S → C be fibred in groupoids. Let U ∈
Ob(C). The functor

MorCat/C(C/U,S) −→ SU
given by G 7→ G(idU ) is an equivalence.
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Proof. Make a choice of pullbacks for S (see Definition 4.31.6). We define a functor

SU −→ MorCat/C(C/U,S)

as follows. Given x ∈ Ob(SU ) the associated functor is

(1) on objects: (f : V → U) 7→ f∗x, and
(2) on morphisms: the arrow (g : V ′/U → V/U) maps to the composition

(f ◦ g)∗x
(αg,f )x−−−−−→ g∗f∗x→ f∗x

where αg,f is as in Lemma 4.33.2.

We omit the verification that this is an inverse to the functor of the lemma. �

Remark 4.39.2. We can use the 2-Yoneda lemma to give an alternative proof
of Lemma 4.35.3. Let p : S → C be a category fibred in groupoids. We define a
contravariant functor F from C to the category of groupoids as follows: for U ∈
Ob(C) let

F (U) = MorCat/C(C/U,S).

If f : U → V the induced functor C/U → C/V induces the morphism F (f) :
F (V ) → F (U). Clearly F is a functor. Let S ′ be the associated category fibred
in groupoids from Example 4.35.1. There is an obvious functor G : S ′ → S over C
given by taking the pair (U, x), where U ∈ Ob(C) and x ∈ F (U), to x(idU ) ∈ S.
Now Lemma 4.39.1 implies that for each U ,

GU : S ′U = F (U) = MorCat/C(C/U,S)→ SU

is an equivalence, and thus G equivalence between S and S ′ by Lemma 4.33.8.

Let C be a category. Let X , Y be categories fibred in groupoids over C. Let
U ∈ Ob(C). Let F : X → Y and G : C/U → Y be 1-morphisms of categories fibred
in groupoids over C. We want to describe the 2-fibre product

(C/U)×Y X //

��

X

F

��
C/U G // Y

Let y = G(idU ) ∈ YU . Make a choice of pullbacks for Y (see Definition 4.31.6).
Then G is isomorphic to the functor (f : V → U) 7→ f∗y, see Lemma 4.39.1 and its
proof. We may think of an object of (C/U)×YX as a quadruple (V, f : V → U, x, φ),
see Lemma 4.30.3. Using the description of G above we may think of φ as an
isomorphism φ : f∗y → F (x) in YV .

Lemma 4.39.3. In the situation above the fibre category of (C/U) ×Y X over an
object f : V → U of C/U is the category described as follows:

(1) objects are pairs (x, φ), where x ∈ Ob(XV ), and φ : f∗y → F (x) is a
morphism in YV ,

(2) the set of morphisms between (x, φ) and (x′, φ′) is the set of morphisms
ψ : x→ x′ in XV such that F (ψ) = φ′ ◦ φ−1.

Proof. See discussion above. �
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Lemma 4.39.4. Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. Let G : C/U → Y be a 1-morphism.
Then

(C/U)×Y X −→ C/U
is a category fibred in groupoids.

Proof. We have already seen in Lemma 4.33.7 that the composition

(C/U)×Y X −→ C/U −→ C
is a category fibred in groupoids. Then the lemma follows from Lemma 4.33.12. �

Definition 4.39.5. Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. We say F is representable, or that X is
relatively representable over Y, if for every U ∈ Ob(C) and any G : C/U → Y the
category fibred in groupoids

(C/U)×Y X −→ C/U
is representable over C/U .

Lemma 4.39.6. Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. If F is representable then every one of
the functors

FU : XU −→ YU
between fibre categories is faithful.

Proof. Clear from the description of fibre categories in Lemma 4.39.3 and the
characterization of representable fibred categories in Lemma 4.38.2. �

Lemma 4.39.7. Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. Make a choice of pullbacks for Y. Assume

(1) each functor FU : XU −→ YU between fibre categories is faithful, and
(2) for each U and each y ∈ YU the presheaf

(f : V → U) 7−→ {(x, φ) | x ∈ XV , φ : f∗y → F (x)}/ ∼=
is a representable presheaf on C/U .

Then F is representable.

Proof. Clear from the description of fibre categories in Lemma 4.39.3 and the
characterization of representable fibred categories in Lemma 4.38.2. �

Before we state the next lemma we point out that the 2-category of categories
fibred in groupoids is a (2, 1)-category, and hence we know what it means to say
that it has a final object (see Definition 4.29.1). And it has a final object namely
id : C → C. Thus we define 2-products of categories fibred in groupoids over C as
the 2-fibred products

X × Y := X ×C Y.
With this definition in place the following lemma makes sense.

Lemma 4.39.8. Let C be a category. Let S → C be a category fibred in groupoids.
Assume C has products of pairs of objects and fibre products. The following are
equivalent:

(1) The diagonal S → S × S is representable.
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(2) For every U in C, any G : C/U → S is representable.

Proof. Suppose the diagonal is representable, and let U,G be given. Consider
any V ∈ Ob(C) and any G′ : C/V → S. Note that C/U × C/V = C/U × V is
representable. Hence the fibre product

(C/U × V )×(S×S) S //

��

S

��
C/U × V

(G,G′) // S × S

is representable by assumption. This means there exists W → U × V in C, such
that

C/W

��

// S

��
C/U × C/V // S × S

is cartesian. This implies that C/W ∼= C/U×S C/V (see Lemma 4.29.11) as desired.

Assume (2) holds. Consider any V ∈ Ob(C) and any (G,G′) : C/V → S × S. We
have to show that C/V ×S×S S is representable. What we know is that C/V ×G,S,G′
C/V is representable, say by a : W → V in C/V . The equivalence

C/W → C/V ×G,S,G′ C/V

followed by the second projection to C/V gives a second morphism a′ : W → V .
Consider W ′ = W ×(a,a′),V×V V . There exists an equivalence

C/W ′ ∼= C/V ×S×S S

namely

C/W ′ ∼= C/W ×(C/V×C/V ) C/V
∼=

(
C/V ×(G,S,G′) C/V

)
×(C/V×C/V ) C/V

∼= C/V ×(S×S) S

(for the last isomorphism see Lemma 4.29.12) which proves the lemma. �

Biographical notes: Parts of this have been taken from Vistoli’s notes [Vis04].

4.40. A criterion for representability

The following lemma is often useful to prove the existence of universal objects in
big categories, please see the discussion in Remark 4.40.2.

Lemma 4.40.1. Let C be a big5 category which has limits. Let F : C → Sets be a
functor. Assume that

(1) F commutes with limits,
(2) there exists a family {xi}i∈I of objects of C and for each i ∈ I an element

fi ∈ F (xi) such that for y ∈ Ob(C) and g ∈ F (y) there exists an i and a
morphism ϕ : xi → y with F (ϕ(fi)) = g.

5See Remark 4.2.2.
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Then F is representable, i.e., there exists an object x of C such that

F (y) = MorC(x, y)

functorially in y.

Proof. Let I be the category whose objects are the pairs (xi, fi) and whose mor-
phisms (xi, fi) → (xi′ , fi′) are maps ϕ : xi → xi′ in C such that F (ϕ)(fi) = fi′ .
Set

x = lim(xi,fi)∈I xi

(this will not be the x we are looking for, see below). The limit exists by assumption.
As F commutes with limits we have

F (x) = lim(xi,fi)∈I F (xi).

Hence there is a universal element f ∈ F (x) which maps to fi ∈ F (xi) under F
applied to the projection map x → xi. Using f we obtain a transformation of
functors

ξ : MorC(x,−) −→ F (−)

see Section 4.3. Let y be an arbitrary object of C and let g ∈ F (y). Choose xi → y
such that fi maps to g which is possible by assumption. Then F applied to the
maps

x −→ xi −→ y

(the first being the projection map of the limit defining x) sends f to g. Hence the
transformation ξ is surjective.

In order to find the object representing F we let e : x′ → x be the equalizer of all
self maps ϕ : x→ x with F (ϕ)(f) = f . Since F commutes with limits, it commutes
with equalizers, and we see there exists an f ′ ∈ F (x′) mapping to f in F (x). Since
ξ is surjective and since f ′ maps to x we see that also ξ′ : MorC(x

′,−) → F (−) is
surjective. Finally, suppose that a, b : x′ → y are two maps such that F (a)(f) =
F (b)(f). We have to show a = b. Consider the equalizer e′ : x′′ → x′. Again we
find f ′′ ∈ F (x′′) mapping to f ′. Choose a map ψ : x→ x′′ such that F (ψ)(f) = f ′′.
Then we see that e ◦ e′ ◦ ψ : x→ x is a morphism with F (e ◦ e′ ◦ ψ)(f) = f . Hence
e ◦ e′ ◦ ψ ◦ e = e. This means that e : x′ → x factors through e′′ ◦ e : x′′ → x and
since e and e′ are monomorphisms this implies x′′ = x′, i.e., a = b as desired. �

Remark 4.40.2. The lemma above is often used to construct the free something
on something. For example the free abelian group on a set, the free group on a set,
etc. The idea, say in the case of the free group on a set E is to consider the functor

F : Groups→ Sets, G 7−→ Map(E,G)

This functor commutes with limits. As our family of objects we can take a family
E → Gi consisting of groups Gi of cardinality at most max(ℵ0, |E|) and set maps
E → Gi such that every isomorphism class of such a structure occurs at least once.
Namely, if E → G is a map from E to a group G, then the subgroup G′ generated
by the image has cardinality at most max(ℵ0, |G|). The lemma tells us the functor
is representable, hence there exists a group FE such that MorGroups(FE , G) =
Map(E,G). In particular, the identity morphism of FE corresponds to a map
E → FE and one can show that FE is generated by the image without imposing
any relations.
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Another typical application is that we can use the lemma to construct colimits once
it is know that limits exist. We illustrate it using the category of topological spaces
which has limits by Topology, Lemma 5.13.1. Namely, suppose that I → Top,
i 7→ Xi is a functor. Then we can consider

F : Top −→ Sets, Y 7−→ limIMorTop(Xi, Y )

This functor commutes with limits. Moreover, given any topological space Y and
an element (ϕi : Xi → Y ) of F (Y ), there is a subspace Y ′ ⊂ Y of cardinality at
most |

∐
Xi| such that the morphisms ϕi map into Y ′. Namely, we can take the

induced topology on the union of the images of the ϕi. Thus it is clear that the
hypotheses of the lemma are satisfied and we find a topological space X representing
the functor F , which precisely means that X is the colimit of the diagram i 7→ Xi.

Theorem 4.40.3 (Adjoint functor theorem). Let G : C → D be a functor of big
categories. Assume C has limits, G commutes with them, and for every object y of
D there exists a set of pairs (xi, fi)i∈I with xi ∈ Ob(C), fi ∈ MorC(y,G(xi)) such
that for any pair (x, f) with x ∈ Ob(C), f ∈ MorC(y,G(x)) there is an i and a
morphism h : xi → x such that f = G(h) ◦ fi. Then G has a left adjoint F .

Proof. The assumptions imply that for every object y of D the functor x 7→
MorD(y,G(x)) satisfies the assumptions of Lemma 4.40.1. Thus it is representable
by an object, let’s call it F (y). An application of Yoneda’s lemma (Lemma 4.3.5)
turns the rule y 7→ F (y) into a functor which by construction is an adjoint to G.
We omit the details. �
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CHAPTER 5

Topology

5.1. Introduction

Basic topology will be explained in this document. A reference is [Eng77].

5.2. Basic notions

The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) X is a topological space,
(2) x ∈ X is a point,
(3) x ∈ X is a closed point,
(4) E ⊂ X is a dense set,
(5) f : X1 → X2 is continuous,
(6) a continuous map of spaces f : X → Y is open if f(U) is open in Y for

U ⊂ X open,
(7) a continuous map of spaces f : X → Y is closed if f(Z) is closed in Y for

Z ⊂ X closed,
(8) a neighbourhood of x ∈ X is any subset E ⊂ X which contains an open

subset that contains x,
(9) the induced topology on a subset E ⊂ X,

(10) U : U =
⋃
i∈I Ui is an open covering of U (note: we allow any Ui to be

empty and we even allow, in case U is empty, the empty set for I),
(11) the open covering V is a refinement of the open covering U (if V : V =⋃

j∈J Vj and U : U =
⋃
i∈I Ui this means each Vj is completely contained

in one of the Ui),
(12) {Ei}i∈I is a fundamental system of neighbourhoods of x in X,
(13) a topological space X is called Hausdorff or separated if and only if for

every distinct pair of points x, y ∈ X there exist disjoint opens U, V ⊂ X
such that x ∈ U , y ∈ V ,

(14) the product of two topological spaces,
(15) the fibre product X ×Y Z of a pair of continuous maps f : X → Y and

g : Z → Y ,
(16) etc.

5.3. Hausdorff spaces

The category of topological spaces has finite products.

Lemma 5.3.1. Let X be a topological space. The following are equivalent

(1) X is Hausdorff,
(2) the diagonal ∆(X) ⊂ X ×X is closed.

155
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Proof. Omitted. �

Lemma 5.3.2. Let f : X → Y be a continuous map of topological spaces. If Y is
Hausdorff, then the graph of f is closed in X × Y .

Proof. The graph is the inverse image of the diagonal under the map X × Y →
Y × Y . Thus the lemma follows from Lemma 5.3.1. �

Lemma 5.3.3. Let f : X → Y be a continuous map of topological spaces. Let
s : Y → X be a continuous map such that f ◦ s = idY . If X is Hausdorff, then
s(Y ) is closed.

Proof. This follows from Lemma 5.3.1 as s(Y ) = {x ∈ X | x = s(f(x))}. �

Lemma 5.3.4. Let X → Z and Y → Z be continuous maps of topological spaces.
If Z is Hausdorff, then X ×Z Y is closed in X × Y .

Proof. This follows from Lemma 5.3.1 as X ×Z Y is the inverse image of ∆(Z)
under X × Y → Z × Z. �

5.4. Bases

Basic material on bases for topological spaces.

Definition 5.4.1. Let X be a topological space. A collection of subsets B of X is
called a base for the topology on X or a basis for the topology on X if the following
conditions hold:

(1) Every element B ∈ B is open in X.
(2) For every open U ⊂ X and every x ∈ U , there exists an element B ∈ B

such that x ∈ B ⊂ U .

Let X be a set and let B be a collection of subsets. Assume that X =
⋃
B∈B B and

that given x ∈ B1 ∩B2 with B1, B2 ∈ B there is a B3 ∈ B with x ∈ B3 ⊂ B1 ∩B2.
Then there is a unique topology on X such that B is a basis for this topology. This
remark is sometimes used to define a topology.

Lemma 5.4.2. Let X be a topological space. Let B be a basis for the topology on
X. Let U : U =

⋃
i Ui be an open covering of U ⊂ X. There exists an open covering

U =
⋃
Vj which is a refinement of U such that each Vj is an element of the basis

B.

Proof. Omitted. �

Definition 5.4.3. Let X be a topological space. A collection of subsets B of X
is called a subbase for the topology on X or a subbasis for the topology on X if the
finite intersections of elements of B forms a basis for the topology on X.

In particular every element of B is open.

Lemma 5.4.4. Let X be a set. Given any collection B of subsets of X there is a
unique topology on X such that B is a subbase for this topology.

Proof. Omitted. �
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5.5. Submersive maps

If X is a topological space and E ⊂ X is a subset, then we usually endow E with
the induced topology.

Lemma 5.5.1. Let X be a topological space. Let Y be a set and let f : Y → X be
an injective map of sets. The induced topology on Y is the topology characterized
by each of the following statements

(1) it is the weakest topology on Y such that f is continuous,
(2) the open subsets of Y are f−1(U) for U ⊂ X open,
(3) the closed subsets of Y are the sets f−1(Z) for Z ⊂ X closed.

Proof. Omitted. �

Dually, if X is a topological space and X → Y is a surjection of sets, then Y can
be endowed with the quotient topology.

Lemma 5.5.2. Let X be a topological space. Let Y be a set and let f : X → Y be
a surjective map of sets. The quotient topology on Y is the topology characterized
by each of the following statements

(1) it is the strongest topology on Y such that f is continuous,
(2) a subset V of Y is open if and only if f−1(V ) is open,
(3) a subset Z of Y is closed if and only if f−1(Z) is closed.

Proof. Omitted. �

Let f : X → Y be a continuous map of topological spaces. In this case we obtain
a factorization X → f(X) → Y of maps of sets. We can endow f(X) with the
quotient topology coming from the surjection X → f(X) or with the induced
topology coming from the injection f(X)→ Y . The map

(f(X), quotient topology) −→ (f(X), induced topology)

is continuous.

Definition 5.5.3. Let f : X → Y be a continuous map of topological spaces.

(1) We say f is a strict map of topological spaces if the induced topology and
the quotient topology on f(X) agree (see discussion above).

(2) We say f is submersive1 if f is surjective and strict.

Thus a continuous map f : X → Y is submersive if f is surjection and for any
T ⊂ Y we have T is open or closed if and only if f−1(T ) is so. In other words, Y
has the quotient topology relative to the surjection X → Y .

Lemma 5.5.4. Let f : X → Y be surjective, open, continuous map of topological
spaces. Let T ⊂ Y be a subset. Then

(1) f−1(T ) = f−1(T ),
(2) T ⊂ Y is closed if and only f−1(T ) is closed,
(3) T ⊂ Y is open if and only f−1(T ) is open, and
(4) T ⊂ Y is locally closed if and only f−1(T ) is locally closed.

In particular we see that f is submersive.

1This is very different from the notion of a submersion between differential manifolds! It is
probably a good idea to use “strict and surjective” in stead of “submersive”.
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Proof. It is clear that f−1(T ) ⊂ f−1(T ). If x ∈ X, and x 6∈ f−1(T ), then there
exists an open neighbourhood x ∈ U ⊂ X with U ∩ f−1(T ) = ∅. Since f is
open we see that f(U) is an open neighbourhood of f(x) not meeting T . Hence
x 6∈ f−1(T ). This proves (1). Part (2) is an easy consequence of (1). Part (3) is
obvious from the fact that f is open and surjective. For (4), if f−1(T ) is locally

closed, then f−1(T ) ⊂ f−1(T ) = f−1(T ) is open, and hence by (3) applied to the
map f−1(T )→ T we see that T is open in T , i.e., T is locally closed. �

Lemma 5.5.5. Let f : X → Y be surjective, closed, continuous map of topological
spaces. Let T ⊂ Y be a subset. Then

(1) f−1(T ) = f−1(T ),
(2) T ⊂ Y is closed if and only f−1(T ) is closed,
(3) T ⊂ Y is open if and only f−1(T ) is open, and
(4) T ⊂ Y is locally closed if and only f−1(T ) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f−1(T ) ⊂ f−1(T ). Then T ⊂ f(f−1(T )) ⊂ T is a closed
subset, hence we get (1). Part (2) is obvious from the fact that f is closed and
surjective. Part (3) follows from (2) applied to the complement of T . For (4), if

f−1(T ) is locally closed, then f−1(T ) ⊂ f−1(T ) = f−1(T ) is open, and hence by
(3) applied to the map f−1(T ) → T we see that T is open in T , i.e., T is locally
closed. �

5.6. Connected components

Definition 5.6.1. Let X be a topological space.

(1) We say X is connected if X is not empty and whenever X = T1

∐
T2 with

Ti ⊂ X open and closed, then either T1 = ∅ or T2 = ∅.
(2) We say T ⊂ X is a connected component of X if T is a maximal connected

subset of X.

The empty space is not connected.

Lemma 5.6.2. Let f : X → Y be a continuous map of topological spaces. If E ⊂ X
is a connected subset, then f(E) ⊂ Y is connected as well.

Proof. Omitted. �

Lemma 5.6.3. Let X be a topological space. If T ⊂ X is connected, then so is
its closure. Each point of X is contained in a connected component. Connected
components are always closed, but not necessarily open.

Proof. Let T be the closure of the connected subset T . Suppose T = T1

∐
T2 with

Ti ⊂ T open and closed. Then T = (T ∩ T1)
∐

(T ∩ T2). Hence T equals one of the
two, say T = T1 ∩ T . Thus clearly T ⊂ T1 as desired.

Pick a point x ∈ X. Consider the set A of connected subsets x ∈ Tα ⊂ X. Note
that A is nonempty since {x} ∈ A. There is a partial ordering on A coming from
inclusion: α ≤ α′ ⇔ Tα ⊂ Tα′ . Choose a maximal totally ordered subset A′ ⊂ A,
and let T =

⋃
α∈A′ Tα. We claim that T is connected. Namely, suppose that

T = T1

∐
T2 is a disjoint union of two open and closed subsets of T . For each

α ∈ A′ we have either Tα ⊂ T1 or Tα ⊂ T2, by connectedness of Tα. Suppose that
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for some α0 ∈ A′ we have Tα0
6⊂ T1 (say, if not we’re done anyway). Then, since A′

is totally ordered we see immediately that Tα ⊂ T2 for all α ∈ A′. Hence T = T2.

To get an example where connected components are not open, just take an infinite
product

∏
n∈N{0, 1} with the product topology. This is a totally disconnected

space so connected components are singletons, which are not open. �

Lemma 5.6.4. Let f : X → Y be a continuous map of topological spaces. Assume
that

(1) all fibres of f are connected, and
(2) a set T ⊂ Y is closed if and only if f−1(T ) is closed.

Then f induces a bijection between the sets of connected components of X and Y .

Proof. Let T ⊂ Y be a connected component. Note that T is closed, see Lemma
5.6.3. The lemma follows if we show that f−1(T ) is connected because any con-
nected subset of X maps into a connected component of Y by Lemma 5.6.2. Sup-
pose that f−1(T ) = Z1

∐
Z2 with Z1, Z2 closed. For any t ∈ T we see that

f−1({t}) = Z1 ∩ f−1({t})
∐
Z2 ∩ f−1({t}). By (1) we see f−1({t}) is connected we

conclude that either f−1({t}) ⊂ Z1 or f−1({t}) ⊂ Z2. In other words T = T1

∐
T2

with f−1(Ti) = Zi. By (2) we conclude that Ti is closed in Y . Hence either T1 = ∅
or T2 = ∅ as desired. �

Lemma 5.6.5. Let f : X → Y be a continuous map of topological spaces. Assume
that (a) f is open, (b) all fibres of f are connected. Then f induces a bijection
between the sets of connected components of X and Y .

Proof. This is a special case of Lemma 5.6.4. �

Lemma 5.6.6. Let f : X → Y be a continuous map of nonempty topological spaces.
Assume that (a) Y is connected, (b) f is open and closed, and (c) there is a point
y ∈ Y such that the fiber f−1(y) is a finite set. Then X has at most |f−1(y)|
connected components. Hence any connected component T of X is open and closed,
and p(T ) is a nonempty open and closed subset of Y , which is therefore equal to Y .

Proof. If the topological space X has at least N connected components for some
N ∈ N, we find by induction a decomposition X = X1q . . .qXN of X as a disjoint
union of N nonempty open and closed subsets X1, . . . , XN of X. As f is open and
closed, each f(Xi) is a nonempty open and closed subset of Y and is hence equal
to Y . In particular the intersection Xi ∩ f−1(y) is nonempty for each 1 ≤ i ≤ N .
Hence f−1(y) has at least N elements. �

Definition 5.6.7. A topological space is totally disconnected if the connected com-
ponents are all singletons.

A discrete space is totally disconnected. A totally disconnected space need not be
discrete, for example Q ⊂ R is totally disconnected but not discrete.

Lemma 5.6.8. Let X be a topological space. Let π0(X) be the set of connected
components of X. Let X → π0(X) be the map which sends x ∈ X to the connected
component of X passing through x. Endow π0(X) with the quotient topology. Then
π0(X) is a totally disconnected space and any continuous map X → Y from X to
a totally disconnected space Y factors through π0(X).
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Proof. By Lemma 5.6.4 the connected components of π0(X) are the singletons.
We omit the proof of the second statement. �

Definition 5.6.9. A topological space X is called locally connected if every point
x ∈ X has a fundamental system of connected neighbourhoods.

Lemma 5.6.10. Let X be a topological space. If X is locally connected, then

(1) any open subset of X is locally connected, and
(2) the connected components of X are open.

So also the connected components of open subsets of X are open. In particular,
every point has a fundamental system of open connected neighbourhoods.

Proof. Omitted. �

5.7. Irreducible components

Definition 5.7.1. Let X be a topological space.

(1) We say X is irreducible, if X is not empty, and whenever X = Z1 ∪ Z2

with Zi closed, we have X = Z1 or X = Z2.
(2) We say Z ⊂ X is an irreducible component of X if Z is a maximal irre-

ducible subset of X.

An irreducible space is obviously connected.

Lemma 5.7.2. Let f : X → Y be a continuous map of topological spaces. If E ⊂ X
is an irreducible subset, then f(E) ⊂ Y is irreducible as well.

Proof. Suppose f(E) is the union of Z1 ∩ f(E) and Z2 ∩ f(E), for two distinct
closed subsets Z1 and Z2 of Y ; this is equal to the intersection (Z1 ∪ Z2) ∩ f(E),
so f(E) is then contained in the union Z1 ∪ Z2. For the irreducibility of f(E) it
suffices to show that it is contained in either Z1 or Z2. The relation f(E) ⊂ Z1∪Z2

shows that f−1(f(E)) ⊂ f−1(Z1 ∪ Z2); as the right-hand side is clearly equal to
f−1(Z1)∪f−1(Z2) and since E ⊂ f−1(f(E)), it follows that E ⊂ f−1(Z1)∪f−1(Z2),
from which one concludes by the irreducibility of E that E ⊂ f−1(Z1) or E ⊂
f−1(Z2). Hence one sees that either f(E) ⊂ f(f−1(Z1)) ⊂ Z1 or f(E) ⊂ Z2. �

Lemma 5.7.3. Let X be a topological space.

(1) If T ⊂ X is irreducible so is its closure in X.
(2) Any irreducible component of X is closed.
(3) Every irreducible subset of X is contained in some irreducible component

of X.
(4) Every point of X is contained in some irreducible component of X, in

other words, X is the union of its irreducible components.

Proof. Let T be the closure of the irreducible subset T . If T = Z1 ∪ Z2 with
Zi ⊂ T closed, then T = (T ∩Z1)∪ (T ∩Z2) and hence T equals one of the two, say
T = Z1 ∩ T . Thus clearly T ⊂ Z1. This proves (1). Part (2) follows immediately
from (1) and the definition of irreducible components.

Let T ⊂ X be irreducible. Consider the set A of irreducible subsets T ⊂ Tα ⊂ X.
Note that A is nonempty since T ∈ A. There is a partial ordering on A coming
from inclusion: α ≤ α′ ⇔ Tα ⊂ Tα′ . Choose a maximal totally ordered subset
A′ ⊂ A, and let T ′ =

⋃
α∈A′ Tα. We claim that T ′ is irreducible. Namely, suppose
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that T ′ = Z1 ∪ Z2 is a union of two closed subsets of T . For each α ∈ A′ we have
either Tα ⊂ Z1 or Tα ⊂ Z2, by irreducibility of Tα. Suppose that for some α0 ∈ A′
we have Tα0 6⊂ Z1 (say, if not we’re done anyway). Then, since A′ is totally ordered
we see immediately that Tα ⊂ Z2 for all α ∈ A′. Hence T ′ = Z2. This proves (3).
Part (4) is an immediate consequence of (3) as a singleton space is irreducible. �

A singleton is irreducible. Thus if x ∈ X is a point then the closure {x} is an
irreducible closed subset of X.

Definition 5.7.4. Let X be a topological space.

(1) Let Z ⊂ X be an irreducible closed subset. A generic point of Z is a point

ξ ∈ Z such that Z = {ξ}.
(2) The space X is called Kolmogorov, if for every x, x′ ∈ X, x 6= x′ there

exists a closed subset of X which contains exactly one of the two points.
(3) The space X is called sober if every irreducible closed subset has a unique

generic point.

A space X is Kolmogorov if for x1, x2 ∈ X we have x1 = x2 if and only if {x1} =

{x2}. Hence we see that a sober topological space is Kolmogorov.

Lemma 5.7.5. Let X be a topological space. If X has an open covering X =
⋃
Xi

with Xi sober (resp. Kolmogorov), then X is sober (resp. Kolmogorov).

Proof. Omitted. �

Example 5.7.6. Recall that a topological space X is Hausdorff iff for every distinct
pair of points x, y ∈ X there exist disjoint opens U, V ⊂ X such that x ∈ U , y ∈ V .
In this case X is irreducible if and only if X is a singleton. Similarly, any subset of
X is irreducible if and only if it is a singleton. Hence a Hausdorff space is sober.

Lemma 5.7.7. Let f : X → Y be a continuous map of topological spaces. Assume
that (a) Y is irreducible, (b) f is open, and (c) there exists a dense collection of
points y ∈ Y such that f−1(y) is irreducible. Then X is irreducible.

Proof. Suppose X = Z1∪Z2 with Zi closed. Consider the open sets U1 = Z1\Z2 =
Y \ Z2 and U2 = Z2 \ Z1 = X \ Z2. To get a contradiction assume that U1 and U2

are both nonempty. By (b) we see that f(Ui) is open. By (a) we have Y irreducible
and hence f(U1)∩f(U2) 6= ∅. By (c) there is a point y which corresponds to a point
of this intersection such that the fibre Xy = f−1(y) is irreducible. Then Xy ∩ U1

and Xy∩U2 are nonempty disjoint open subsets of Xy which is a contradiction. �

Lemma 5.7.8. Let f : X → Y be a continuous map of topological spaces. Assume
that (a) f is open, and (b) for every y ∈ Y the fibre f−1(y) is irreducible. Then f
induces a bijection between irreducible components.

Proof. We point out that assumption (b) implies that f is surjective (see Defini-
tion 5.7.1). Let T ⊂ Y be an irreducible component. Note that T is closed, see
Lemma 5.7.3. The lemma follows if we show that f−1(T ) is irreducible because
any irreducible subset of X maps into an irreducible component of Y by Lemma
5.7.2. Note that f−1(T )→ T satisfies the assumptions of Lemma 5.7.7. Hence we
win. �

The construction of the following lemma is sometimes called the “soberification”.
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Lemma 5.7.9. Let X be a topological space. There is a canonical continuous map

c : X −→ X ′

from X to a sober topological space X ′ which is universal among continuous maps
from X to sober topological spaces. Moreover, the assignment U ′ 7→ c−1(U ′) is a
bijection between opens of X ′ and X which commutes with finite intersections and
arbitrary unions. The image c(X) is a Kolmogorov topological space and the map
c : X → c(X) is universal for maps of X into Kolmogorov spaces.

Proof. Let X ′ be the set of irreducible closed subsets of X and let

c : X → X ′, x 7→ {x}.

For U ⊂ X open, let U ′ ⊂ X ′ denote the set of irreducible closed subsets of X
which meet U . Then c−1(U ′) = U .

If U1 6= U2 are open in X, then U ′1 6= U ′2. Namely, if U1 6⊂ U2, then let Z be the
closure of an irreducible component of U1 \ U2. Then Z ∈ U ′1 but Z 6∈ U ′2. Hence c
induces a bijection between the subsets of X ′ of the form U ′ and the opens of X.

Let U1, U2 be open in X. Suppose that Z ∈ U ′1 and Z ∈ U ′2. Then Z ∩ U1 and
Z ∩U2 are nonempty open subsets of the irreducible space Z and hence Z ∩U1∩U2

is nonempty. Thus (U1 ∩U2)′ = U ′1 ∩U ′2. The rule U 7→ U ′ is also compatible with
arbitrary unions (details omitted). Thus it is clear that the collection of U ′ form a
topology on X ′ and that we have a bijection as stated in the lemma.

Next we show that X ′ is sober. Let T ⊂ X ′ be an irreducible closed subset. Let
U ⊂ X be the open such that X ′ \ T = U ′. Then Z = X \U is irreducible because
of the properties of the bijection of the lemma. We claim that Z ∈ T is a generic
point. Namely, any open of the form V ′ ⊂ X ′ which does not contain Z must come
from an open V ⊂ X which misses Z, i.e., is contained in U .

Finally, we check the universal property. Let f : X → Y be a continuous map to
a sober topological space. Then we let f ′ : X ′ → Y be the map which sends the
irreducible closed Z ⊂ X to the unique generic point of f(Z). It follows immediately
that f ′ ◦ c = f as maps of sets, and the properties of c imply that f ′ is continuous.
We omit the verification that the continuous map f ′ is unique. We also omit the
proof of the statements on Kolmogorov spaces. �

5.8. Noetherian topological spaces

Definition 5.8.1. A topological space is called Noetherian if the descending chain
condition holds for closed subsets of X. A topological space is called locally Noe-
therian if every point has a neighbourhood which is Noetherian.

Lemma 5.8.2. Let X be a Noetherian topological space.

(1) Any subset of X with the induced topology is Noetherian.
(2) The space X has finitely many irreducible components.
(3) Each irreducible component of X contains a nonempty open of X.

Proof. Let T ⊂ X be a subset of X. Let T1 ⊃ T2 ⊃ . . . be a descending chain of
closed subsets of T . Write Ti = T ∩Zi with Zi ⊂ X closed. Consider the descending
chain of closed subsets Z1 ⊃ Z1∩Z2 ⊃ Z1∩Z2∩Z3 . . . This stabilizes by assumption
and hence the original sequence of Ti stabilizes. Thus T is Noetherian.
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Let A be the set of closed subsets of X which do not have finitely many irreducible
components. Assume that A is not empty to arrive at a contradiction. The set A
is partially ordered by inclusion: α ≤ α′ ⇔ Zα ⊂ Zα′ . By the descending chain
condition we may find a smallest element of A, say Z. As Z is not a finite union of
irreducible components, it is not irreducible. Hence we can write Z = Z ′ ∪Z ′′ and
both are strictly smaller closed subsets. By construction Z ′ =

⋃
Z ′i and Z ′′ =

⋃
Z ′′j

are finite unions of their irreducible components. Hence Z =
⋃
Z ′i ∪

⋃
Z ′′j is a finite

union of irreducible closed subsets. After removing redundant members of this
expression, this will be the decomposition of Z into its irreducible components, a
contradiction.

Let Z ⊂ X be an irreducible component of X. Let Z1, . . . , Zn be the other irre-
ducible components of X. Consider U = Z \ (Z1 ∪ . . . ∪ Zn). This is not empty
since otherwise the irreducible space Z would be contained in one of the other Zi.
Because X = Z ∪ Z1 ∪ . . . Zn (see Lemma 5.7.3), also U = X \ (Z1 ∪ . . . ∪ Zn) and
hence open in X. Thus Z contains a nonempty open of X. �

Lemma 5.8.3. Let f : X → Y be a continuous map of topological spaces.

(1) If X is Noetherian, then f(X) is Noetherian.
(2) If X is locally Noetherian and f open, then f(X) is locally Noetherian.

Proof. In case (1), suppose that Z1 ⊃ Z2 ⊃ Z2 ⊃ . . . is a descending chain of
closed subsets of f(X) (as usual with the induced topology as a subset of Y ). Then
f−1(Z1) ⊃ f−1(Z2) ⊃ f−1(Z3) ⊃ . . . is a descending chain of closed subsets of X.
Hence this chain stabilizes. Since f(f−1(Zi)) = Zi we conclude that Z1 ⊃ Z2 ⊃
Z2 ⊃ . . . stabilizes also. In case (2), let y ∈ f(X). Choose x ∈ X with f(x) = y. By
assumption there exists a neighbourhood E ⊂ X of x which is Noetherian. Then
f(E) ⊂ f(X) is a neighbourhood which is Noetherian by part (1). �

Lemma 5.8.4. Let X be a topological space. Let Xi ⊂ X, i = 1, . . . , n be a finite
collection of subsets. If each Xi is Noetherian (with the induced topology), then⋃
i=1,...,nXi is Noetherian (with the induced topology).

Proof. Omitted. �

Example 5.8.5. Any nonempty, Kolmogorov Noetherian topological space has a
closed point (combine Lemmas 5.11.8 and 5.11.13). Let X = {1, 2, 3, . . .}. Define
a topology on X with opens ∅, {1, 2, . . . , n}, n ≥ 1 and X. Thus X is a locally
Noetherian topological space, without any closed points. This space cannot be the
underlying topological space of a locally Noetherian scheme, see Properties, Lemma
27.5.8.

Lemma 5.8.6. Let X be a locally Noetherian topological space. Then X is locally
connected.

Proof. Let x ∈ X. Let E be a neighbourhood of x. We have to find a connected
neighbourhood of x contained in E. By assumption there exists a neighbourhood
E′ of x which is Noetherian. Then E ∩ E′ is Noetherian, see Lemma 5.8.2. Let
E∩E′ = Y1∪. . .∪Yn be the decomposition into irreducible components, see Lemma
5.8.2. Let E′′ =

⋃
x∈Yi Yi. This is a connected subset of E ∩ E′ containing x. It

contains the open E ∩E′ \ (
⋃
x6∈Yi Yi) of E ∩E′ and hence it is a neighbourhood of

x in X. This proves the lemma. �
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5.9. Krull dimension

Definition 5.9.1. Let X be a topological space.

(1) A chain of irreducible closed subsets of X is a sequence Z0 ⊂ Z1 ⊂ . . . ⊂
Zn ⊂ X with Zi closed irreducible and Zi 6= Zi+1 for i = 0, . . . , n− 1.

(2) The length of a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂ X of irreducible closed
subsets of X is the integer n.

(3) The dimension or more precisely the Krull dimension dim(X) of X is the
element of {−∞, 0, 1, 2, 3, . . . ,∞} defined by the formula:

dim(X) = sup{lengths of chains of irreducible closed subsets}
Thus dim(X) = −∞ if and only if X is the empty space.

(4) Let x ∈ X. The Krull dimension of X at x is defined as

dimx(X) = min{dim(U), x ∈ U ⊂ X open}
the minimum of dim(U) where U runs over the open neighbourhoods of
x in X.

Note that if U ′ ⊂ U ⊂ X are open then dim(U ′) ≤ dim(U). Hence if dimx(X) =
d then x has a fundamental system of open neighbourhoods U with dim(U) =
dimx(X).

Example 5.9.2. The Krull dimension of the usual Euclidean space Rn is 0.

Example 5.9.3. Let X = {s, η} with open sets given by {∅, {η}, {s, η}}. In this
case a maximal chain of irreducible closed subsets is {s} ⊂ {s, η}. Hence dim(X) =
1. It is easy to generalize this example to get a (n + 1)-element topological space
of Krull dimension n.

Definition 5.9.4. Let X be a topological space. We say that X is equidimensional
if every irreducible component of X has the same dimension.

5.10. Codimension and catenary spaces

We only define the codimension of irreducible closed subsets.

Definition 5.10.1. Let X be a topological space. Let Y ⊂ X be an irreducible
closed subset. The codimension of Y in X is the supremum of the lengths e of
chains

Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Ye ⊂ X
of irreducible closed subsets in X starting with Y . We will denote this codim(Y,X).

The codimension is an element of {0, 1, 2, . . .} ∪ {∞}. If codim(Y,X) < ∞, then
every chain can be extended to a maximal chain (but these do not all have to have
the same length).

Lemma 5.10.2. Let X be a topological space. Let Y ⊂ X be an irreducible closed
subset. Let U ⊂ X be an open subset such that Y ∩ U is nonempty. Then

codim(Y,X) = codim(Y ∩ U,U)

Proof. The rule T 7→ T defines a bijective inclusion preserving map between the
closed irreducible subsets of U and the closed irreducible subsets of X which meet
U . Using this the lemma easily follows. Details omitted. �
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Example 5.10.3. Let X = [0, 1] be the unit interval with the following topology:
The sets [0, 1], (1− 1/n, 1] for n ∈ N, and ∅ are open. So the closed sets are ∅, {0},
[0, 1− 1/n] for n > 1 and [0, 1]. This is clearly a Noetherian topological space. But
the irreducible closed subset Y = {0} has infinite codimension codim(Y,X) = ∞.
To see this we just remark that all the closed sets [0, 1− 1/n] are irreducible.

Definition 5.10.4. Let X be a topological space. We say X is catenary if for
every pair of irreducible closed subsets T ⊂ T ′ we have codim(T, T ′) < ∞ and
every maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

has the same length (equal to the codimension).

Lemma 5.10.5. Let X be a topological space. The following are equivalent:

(1) X is catenary,
(2) X has an open covering by catenary spaces.

Moreover, in this case any locally closed subspace of X is catenary.

Proof. Suppose that X is catenary and that U ⊂ X is an open subset. The rule
T 7→ T defines a bijective inclusion preserving map between the closed irreducible
subsets of U and the closed irreducible subsets of X which meet U . Using this the
lemma easily follows. Details omitted. �

Lemma 5.10.6. Let X be a topological space. The following are equivalent:

(1) X is catenary, and
(2) for pair of irreducible closed subsets Y ⊂ Y ′ we have codim(Y, Y ′) < ∞

and for every triple Y ⊂ Y ′ ⊂ Y ′′ of irreducible closed subsets we have

codim(Y, Y ′′) = codim(Y, Y ′) + codim(Y ′, Y ′′).

Proof. Omitted. �

5.11. Quasi-compact spaces and maps

The phrase “compact” will be reserved for Hausdorff topological spaces. And many
spaces occurring in algebraic geometry are not Hausdorff.

Definition 5.11.1. Quasi-compactness.

(1) We say that a topological space X is quasi-compact if every open covering
of X has a finite refinement.

(2) We say that a continuous map f : X → Y is quasi-compact if the inverse
image f−1(V ) of every quasi-compact open V ⊂ Y is quasi-compact.

(3) We say a subset Z ⊂ X is retrocompact if the inclusion map Z → X is
quasi-compact.

In many texts on topology a space is called compact if it is quasi-compact and
Hausdorff; and in other texts the Hausdorff condition is omitted. To avoid confusion
in algebraic geometry we use the term quasi-compact. Note that the notion of
quasi-compactness of a map is very different from the notion of a “proper map” in
topology, since there one requires the inverse image of any (quasi-)compact subset of
the target to be (quasi-)compact, whereas in the definition above we only consider
quasi-compact open sets.

Lemma 5.11.2. A composition of quasi-compact maps is quasi-compact.
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Proof. This is immediate from the definition. �

Lemma 5.11.3. A closed subset of a quasi-compact topological space is quasi-
compact.

Proof. Let E ⊂ X be a closed subset of the quasi-compact space X. Let E =
⋃
Vj

be an open covering. Choose Uj ⊂ X open such that Vj = E ∩ Uj . Then X =
(X \E) ∪

⋃
Uj is an open covering of X. Hence X = (X \E) ∪ Uj1 ∪ . . . ∪ Ujn for

some n and indices ji. Thus E = Vj1 ∪ . . . ∪ Vjn as desired. �

Lemma 5.11.4. Let X be a Hausdorff topological space.

(1) If E ⊂ X is quasi-compact, then it is closed.
(2) If E1, E2 ⊂ X are disjoint quasi-compact subsets then there exists opens

Ei ⊂ Ui with U1 ∩ U2 = ∅.

Proof. Proof of (1). Let x ∈ X, x 6∈ E. For every e ∈ E we can find disjoint
opens Ve and Ue with e ∈ Ve and x ∈ Ue. Since E ⊂

⋃
Ve we can find finitely

many e1, . . . , en such that E ⊂ Ve1 ∪ . . .∪Ven . Then U = Ue1 ∩ . . .∩Uen is an open
neighbourhood of x which avoids Ve1 ∪ . . . ∪ Ven . In particular it avoids E. Thus
E is closed.

Proof of (2). In the proof of (1) we have seen that given x ∈ E1 we can find an
open neighbourhood x ∈ Ux and an open E2 ⊂ Vx such that Ux ∩ Vx = ∅. Because
E1 is quasi-compact we can find a finite number xi ∈ E1 such that E1 ⊂ U =
Ux1
∪ . . . ∪ Uxn . We take V = Vx1

∩ . . . ∩ Vxn to finish the proof. �

Lemma 5.11.5. Let X be a quasi-compact Hausdorff space. Let E ⊂ X. The
following are equivalent: (a) E is closed in X, (b) E is quasi-compact.

Proof. The implication (a) ⇒ (b) is Lemma 5.11.3. The implication (b) ⇒ (a) is
Lemma 5.11.4. �

The following is really a reformulation of the quasi-compact property.

Lemma 5.11.6. Let X be a quasi-compact topological space. If {Zα}α∈A is a
collection of closed subsets such that the intersection of each finite subcollection is
nonempty, then

⋂
α∈A Zα is nonempty.

Proof. Omitted. �

Lemma 5.11.7. Let f : X → Y be a continuous map of topological spaces.

(1) If X is quasi-compact, then f(X) is quasi-compact.
(2) If f is quasi-compact, then f(X) is retrocompact.

Proof. If f(X) =
⋃
Vi is an open covering, then X =

⋃
f−1(Vi) is an open

covering. Hence if X is quasi-compact then X = f−1(Vi1) ∪ . . . ∪ f−1(Vin) for
some i1, . . . , in ∈ I and hence f(X) = Vi1 ∪ . . . ∪ Vin . This proves (1). Assume f
is quasi-compact, and let V ⊂ Y be quasi-compact open. Then f−1(V ) is quasi-
compact, hence by (1) we see that f(f−1(V )) = f(X)∩V is quasi-compact. Hence
f(X) is retrocompact. �

Lemma 5.11.8. Let X be a topological space. Assume that

(1) X is nonempty,
(2) X is quasi-compact, and
(3) X is Kolmogorov.
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Then X has a closed point.

Proof. Consider the set

T = {Z ⊂ X | Z = {x} for some x ∈ X}
of all closures of singletons in X. It is nonempty since X is nonempty. Make T
into a partially ordered set using the relation of inclusion. Suppose Zα, α ∈ A is
a totally ordered subset of T . By Lemma 5.11.6 we see that

⋂
α∈A Zα 6= ∅. Hence

there exists some x ∈
⋂
α∈A Zα and we see that Z = {x} ∈ T is a lower bound

for the family. By Zorn’s lemma there exists a minimal element Z ∈ T . As X is
Kolmogorov we conclude that Z = {x} for some x and x ∈ X is a closed point. �

Lemma 5.11.9. Let X be a quasi-compact Kolmogorov space. Then the set X0 of
closed points of X is quasi-compact.

Proof. Let X0 =
⋃
Ui,0 be an open covering. Write Ui,0 = X0 ∩ Ui for some

open Ui ⊂ X. Consider the complement Z of
⋃
Ui. This is a closed subset of X,

hence quasi-compact (Lemma 5.11.3) and Kolmogorov. By Lemma 5.11.8 if Z is
nonempty it would have a closed point which contradicts the fact that X0 ⊂

⋃
Ui.

Hence Z = ∅ and X =
⋃
Ui. Since X is quasi-compact this covering has a finite

subcover and we conclude. �

Lemma 5.11.10. Let X be a topological space. Assume

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For any x ∈ X the connected component of X containing x is the intersection of
all open and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S =
⋂
α∈A Zα be the

intersection of all open and closed subsets Zα of X containing x. Note that S is
closed inX. Note that any finite intersection of Zα’s is a Zα. Because T is connected
and x ∈ T we have T ⊂ S. It suffices to show that S is connected. If not, then there
exists a disjoint union decomposition S = B

∐
C with B and C open and closed in

S. In particular, B and C are closed in X, and so quasi-compact by Lemma 5.11.3
and assumption (1). By assumption (2) there exist quasi-compact opens U, V ⊂ X
with B = S ∩ U and C = S ∩ V (details omitted). Then U ∩ V ∩ S = ∅. Hence⋂
α U ∩ V ∩ Zα = ∅. By assumption (3) the intersection U ∩ V is quasi-compact.

By Lemma 5.11.6 for some α′ ∈ A we have U ∩ V ∩ Zα′ = ∅. Since X \ (U ∪ V ) is
disjoint from S and closed in X hence quasi-compact, we can use the same lemma
to see that Zα′′ ⊂ U ∪ V for some α′′ ∈ A. Then Zα = Zα′ ∩ Zα′′ is contained in
U ∪ V and disjoint from U ∩ V . Hence Zα = U ∩ Zα

∐
V ∩ Zα is a decomposition

into two open pieces, hence U ∩Zα and V ∩Zα are open and closed in X. Thus, if
x ∈ B say, then we see that S ⊂ U ∩ Zα and we conclude that C = ∅. �

Lemma 5.11.11. Let X be a topological space. Assume X is quasi-compact and
Hausdorff. For any x ∈ X the connected component of X containing x is the
intersection of all open and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S =
⋂
α∈A Zα be

the intersection of all open and closed subsets Zα of X containing x. Note that
S is closed in X. Note that any finite intersection of Zα’s is a Zα. Because T is

http://stacks.math.columbia.edu/tag/08ZM
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connected and x ∈ T we have T ⊂ S. It suffices to show that S is connected. If not,
then there exists a disjoint union decomposition S = B

∐
C with B and C open

and closed in S. In particular, B and C are closed in X, and so quasi-compact by
Lemma 5.11.3. By Lemma 5.11.4 there exist disjoint opens U, V ⊂ X with B ⊂ U
and C ⊂ V . Then X \ U ∪ V is closed in X hence quasi-compact (Lemma 5.11.3).
It follows that (X \U ∪ V )∩Zα = ∅ for some α by Lemma 5.11.6. In other words,
Zα ⊂ U ∪V . Thus Zα = Zα ∩V qZα ∩U is a decomposition into two open pieces,
hence U ∩ Zα and V ∩ Zα are open and closed in X. Thus, if x ∈ B say, then we
see that S ⊂ U ∩ Zα and we conclude that C = ∅. �

Lemma 5.11.12. Let X be a topological space. Assume

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For a subset T ⊂ X the following are equivalent:

(a) T is an intersection of open and closed subsets of X, and
(b) T is closed in X and is a union of connected components of X.

Proof. It is clear that (a) implies (b). Assume (b). Let x ∈ X, x 6∈ T . Let
x ∈ C ⊂ X be the connected component of X containing x. By Lemma 5.11.10 we
see that C =

⋂
Vα is the intersection of all open and closed subsets Vα of X which

contain C. In particular, any pairwise intersection Vα ∩ Vβ occurs as a Vα. As T is
a union of connected components of X we see that C ∩T = ∅. Hence T ∩

⋂
Vα = ∅.

Since T is quasi-compact as a closed subset of a quasi-compact space (see Lemma
5.11.3) we deduce that T ∩ Vα = ∅ for some α, see Lemma 5.11.6. For this α we
see that Uα = X \ Vα is an open and closed subset of X which contains T and not
x. The lemma follows. �

Lemma 5.11.13. Let X be a Noetherian topological space.

(1) The space X is quasi-compact.
(2) Any subset of X is retrocompact.

Proof. Suppose X =
⋃
Ui is an open covering of X indexed by the set I which

does not have a refinement by a finite open covering. Choose i1, i2, . . . elements of
I inductively in the following way: If X 6= Ui1 ∪ . . . ∪ Uin then choose in+1 such
that Uin+1

is not contained in Ui1 ∪ . . . ∪ Uin . Thus we see that X ⊃ (X \ Ui1) ⊃
(X \ Ui1 ∪ Ui2) ⊃ . . . is a strictly decreasing infinite sequence of closed subsets.
This contradicts the fact that X is Noetherian. This proves the first assertion.
The second assertion is now clear since every subset of X is Noetherian by Lemma
5.8.2. �

Lemma 5.11.14. A quasi-compact locally Noetherian space is Noetherian.

Proof. The conditions imply immediately that X has a finite covering by Noether-
ian subsets, and hence is Noetherian by Lemma 5.8.4. �

Lemma 5.11.15 (Alexander subbase theorem). Let X be a topological space. Let B
be a subbase for X. If every covering of X by elements of B has a finite refinement,
then X is quasi-compact.
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Proof. Assume there is an open covering of X which does not have a finite refine-
ment. Using Zorn’s lemma we can choose a maximal open covering X =

⋃
i∈I Ui

which does not have a finite refinement (details omitted). In other words, if U ⊂ X
is any open which does not occur as one of the Ui, then the covering X = U∪

⋃
i∈I Ui

does have a finite refinement. Let I ′ ⊂ I be the set of indices such that Ui ∈ B.
Then

⋃
i∈I′ Ui 6= X, since otherwise we would get a finite refinement covering X

by our assumption on B. Pick x ∈ X, x 6∈
⋃
i∈I′ Ui. Pick i ∈ I with x ∈ Ui. Pick

V1, . . . , Vn ∈ B such that x ∈ V1∩. . .∩Vn ⊂ Ui. This is possible as B is a subbasis for
X. Note that Vj does not occur as a Ui. By maximality of the chosen covering we
see that for each j there exist ij,1, . . . , ij,nj ∈ I such that X = Vj∪Uij,1∪. . .∪Uij,nj .

Since V1 ∩ . . . ∩ Vn ⊂ Ui we conclude that X = Ui ∪
⋃
Uij,l a contradiction. �

5.12. Locally quasi-compact spaces

Recall that a neighbourhood of a point need not be open.

Definition 5.12.1. A topological space X is called locally quasi-compact2 if every
point has a fundamental system of quasi-compact neighbourhoods.

The term locally compact space in the literature often refers to a space as in the
following lemma.

Lemma 5.12.2. A Hausdorff space is locally quasi-compact if and only if every
point has a quasi-compact neighbourhood.

Proof. Let X be a Hausdorff space. Let x ∈ X and let x ∈ E ⊂ X be a quasi-
compact neighbourhood. Then E is closed by Lemma 5.11.4. Suppose that x ∈
U ⊂ X is an open neighbourhood of x. Then Z = E \ U is a closed subset of
E not containing x. Hence we can find a pair of disjoint open subsets W,V ⊂ E
of E such that x ∈ V and Z ⊂ W , see Lemma 5.11.4. It follows that V ⊂ E is
a closed neighbourhood of x contained in E ∩ U . Also V is quasi-compact as a
closed subset of E (Lemma 5.11.3). In this way we obtain a fundamental system
of quasi-compact neighbourhoods of x. �

Lemma 5.12.3. Let X be a Hausdorff and quasi-compact space. Let X =
⋃
i∈I Ui

be an open covering. Then there exists an open covering X =
⋃
i∈I Vi such that

Vi ⊂ Ui for all i.

Proof. Let x ∈ X. Choose an i(x) ∈ I such that x ∈ Ui(x). Since X \ Ui(x)

and {x} are disjoint closed subsets of X, by Lemmas 5.11.3 and 5.11.4 there exists
an open neighbourhood Ux of x whose closure is disjoint from X \ Ui(x). Thus

Ux ⊂ Ui(x). Since X is quasi-compact, there is a finite list of points x1, . . . , xm such
that X = Ux1

∪ . . . ∪ Uxm . Setting Vi =
⋃
i=i(xj)

Uxj the proof is finished. �

Lemma 5.12.4. Let X be a Hausdorff and quasi-compact space. Let X =
⋃
i∈I Ui

be an open covering. Suppose given an integer p ≥ 0 and for every (p + 1)-tuple
i0, . . . , ip of I an open covering Ui0 ∩ . . . ∩ Uip =

⋃
Wi0...ip,k. Then there exists an

open covering X =
⋃
j∈J Vj and a map α : J → I such that Vj ⊂ Uα(j) and such

that each Vj0 ∩ . . . ∩ Vjp is contained in Wα(j0)...α(jp),k for some k.

2This may not be standard notation. Alternative notions used in the literature are: (1) Every

point has some quasi-compact neighbourhood, and (2) Every point has a closed quasi-compact
neighbourhood. A scheme has the property that every point has a fundamental system of open

quasi-compact neighbourhoods.
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Proof. Since X is quasi-compact, there is a reduction to the case where I is finite
(details omitted). We prove the result for I finite by induction on p. The base
case p = 0 is immediate by taking a covering as in Lemma 5.12.3 refining the open
covering X =

⋃
Wi0,k.

Induction step. Assume the lemma proven for p − 1. For all p-tuples i′0, . . . , i
′
p−1

of I let Ui′0 ∩ . . . ∩ Ui′p−1
=
⋃
Wi′0...i

′
p−1,k

be a common refinement of the coverings

Ui0 ∩ . . . ∩ Uip =
⋃
Wi0...ip,k for those (p + 1)-tuples such that {i′0, . . . , i′p−1} =

{i0, . . . , ip} (equality of sets). (There are finitely many of these as I is finite.) By
induction there exists a solution for these opens, say X =

⋃
Vj and α : J → I. At

this point the coveringX =
⋃
j∈J Vj and α satisfies Vj ⊂ Uα(j) and each Vj0∩. . .∩Vjp

is contained in Wα(j0)...α(jp),k for some k if there is a repetition in α(j0), . . . , α(jp).
Of course, we may and do assume that J is finite.

Fix i0, . . . , ip ∈ I pairwise distinct. Consider (p + 1)-tuples j0, . . . , jp ∈ J with
i0 = α(j0), . . . , ip = α(jp) such that Vj0∩. . .∩Vjp is not contained in Wα(j0)...α(jp),k

for any k. Let N be the number of such (p+1)-tuples. We will show how to decrease
N . Since

Vj0 ∩ . . . ∩ Vjp ⊂ Ui0 ∩ . . . ∩ Uip =
⋃
Wi0...ip,k

we find a finite setK = {k1, . . . , kt} such that the LHS is contained in
⋃
k∈KWi0...ip,k.

Then we consider the open covering

Vj0 = (Vj0 \ (Vj1 ∩ . . . ∩ Vjp)) ∪ (
⋃

k∈K
Vj0 ∩Wi0...ip,k)

The first open on the RHS intersects Vj1 ∩ . . .∩ Vjp in the empty set and the other
opens Vj0,k of the RHS satisfy Vj0,k∩Vj1 . . .∩Vjp ⊂Wα(j0)...α(jp),k. Set J ′ = JqK.

For j ∈ J set V ′j = Vj if j 6= j0 and set V ′j0 = Vj0 \ (Vj1 ∩ . . . ∩ Vjp). For k ∈ K
set V ′k = Vj0,k. Finally, the map α′ : J ′ → I is given by α on J and maps every
element of K to i0. A simple check shows that N has decreased by one under this
replacement. Repeating this procedure N times we arrive at the situation where
N = 0.

To finish the proof we argue by induction on the number M of (p + 1)-tuples
i0, . . . , ip ∈ I with pairwise distinct entries for which there exists a (p + 1)-tuple
j0, . . . , jp ∈ J with i0 = α(j0), . . . , ip = α(jp) such that Vj0 ∩ . . . ∩ Vjp is not
contained in Wα(j0)...α(jp),k for any k. To do this, we claim that the operation
performed in the previous paragraph does not increase M . This follows formally
from the fact that the map α′ : J ′ → I factors through a map β : J ′ → J such that
V ′j′ ⊂ Vβ(j′). �

Lemma 5.12.5. Let X be a Hausdorff and locally quasi-compact space. Let Z ⊂ X
be a quasi-compact (hence closed) subset. Suppose given an integer p ≥ 0, a set I,
for every i ∈ I an open Ui ⊂ X, and for every (p+ 1)-tuple i0, . . . , ip of I an open
Wi0...ip ⊂ Ui0 ∩ . . . ∩ Uip such that

(1) Z ⊂
⋃
Ui, and

(2) for every i0, . . . , ip we have Wi0...ip ∩ Z = Ui0 ∩ . . . ∩ Uip ∩ Z.

Then there exist opens Vi of X such that we have Z ⊂
⋃
Vi, for all i we have

Vi ⊂ Ui, and we have Vi0 ∩ . . . ∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip.

Proof. Since Z is quasi-compact, there is a reduction to the case where I is finite
(details omitted). Because X is locally quasi-compact and Z is quasi-compact, we
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can find a neighbourhood Z ⊂ E which is quasi-compact, i.e., E is quasi-compact
and contains an open neighbourhood of Z inX. If we prove the result after replacing
X by E, then the result follows. Hence we may assume X is quasi-compact.

We prove the result in case I is finite and X is quasi-compact by induction on p.
The base case is p = 0. In this case we have X = (X \ Z) ∪

⋃
Wi. By Lemma

5.12.3 we can find a covering X = V ∪
⋃
Vi by opens Vi ⊂Wi and V ⊂ X \Z with

Vi ⊂ Wi for all i. Then we see that we obtain a solution of the problem posed by
the lemma.

Induction step. Assume the lemma proven for p − 1. Set Wj0...jp−1
equal to the

intersection of all Wi0...ip with {j0, . . . , jp−1} = {i0, . . . , ip} (equality of sets). By
induction there exists a solution for these opens, say Vi ⊂ Ui. It follows from our
choice of Wj0...jp−1

that we have Vi0 ∩ . . . ∩ Vip ⊂ Wi0...ip for all (p + 1)-tuples
i0, . . . , ip where ia = ib for some 0 ≤ a < b ≤ p. Thus we only need to modify our
choice of Vi if Vi0 ∩ . . .∩Vip 6⊂Wi0...ip for some (p+1)-tuple i0, . . . , ip with pairwise
distinct elements. In this case we have

T = Vi0 ∩ . . . ∩ Vip \Wi0...ip ⊂ Vi0 ∩ . . . ∩ Vip \Wi0...ip

is a closed subset of X contained in Ui0 ∩ . . . ∩ Uip not meeting Z. Hence we can
replace Vi0 by Vi0 \T to “fix” the problem. After repeating this finitely many times
for each of the problem tuples, the lemma is proven. �

5.13. Limits of spaces

The category of topological spaces has products. Namely, if I is a set and for
i ∈ I we are given a topological space Xi then we endow

∏
i∈I Xi with the product

topology. As a basis for the topology we use sets of the form
∏
Ui where Ui ⊂ Xi

is open and Ui = Xi for almost all i.

The category of topological spaces has equalizers. Namely, if a, b : X → Y are
morphisms of topological spaces, then the equalizer of a and b is the subset {x ∈
X | a(x) = b(x)} ⊂ X endowed with the induced topology.

Lemma 5.13.1. The category of topological spaces has limits.

Proof. This follows from the discussion above and Categories, Lemma 4.14.10. �

Lemma 5.13.2. Let I be a cofiltered category. Let i 7→ Xi be a diagram of topolog-
ical spaces over I. Let X = limXi be the limit with projection maps fi : X → Xi.

(1) Any open of X is of the form
⋃
j∈J f

−1
j (Uj) for some subset J ⊂ I and

opens Uj ⊂ Xj.

(2) Any quasi-compact open of X is of the form f−1
i (Ui) for some i and some

Ui ⊂ Xi open.

Proof. The construction of the limit given above shows that X ⊂
∏
Xi with the

induced topology. A basis for the topology of
∏
Xi are the opens

∏
Ui where

Ui ⊂ Xi is open and Ui = Xi for almost all i. Say i1, . . . , in ∈ Ob(I) are the
objects such that Uij 6= Xij . Then

X ∩
∏

Ui = f−1
i1

(Ui1) ∩ . . . ∩ f−1
in

(Uin)
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For a general limit of topological spaces these form a basis for the topology on X.
However, if I is cofiltered as in the statement of the lemma, then we can pick a
j ∈ Ob(I) and morphisms j → il, l = 1, . . . , n. Let

Uj = (Xj → Xi1)−1(Ui1) ∩ . . . ∩ (Xj → Xin)−1(Uin)

Then it is clear that X ∩
∏
Ui = f−1

j (Uj). Thus for any open W of X there is a set

A and a map α : A → Ob(I) and opens Ua ⊂ Xα(a) such that W =
⋃
f−1
α(a)(Ua).

Set J = Im(α) and for j ∈ J set Uj =
⋃
α(a)=j Ua to see that W =

⋃
j∈J f

−1
j (Uj).

This proves (1).

To see (2) suppose that
⋃
j∈J f

−1
j (Uj) is quasi-compact. Then it is equal to

f−1
j1

(Uj1) ∪ . . . ∪ f−1
jm

(Ujm) for some j1, . . . , jm ∈ J . Since I is cofiltered, we can

pick a i ∈ Ob(I) and morphisms i→ jl, l = 1, . . . ,m. Let

Ui = (Xi → Xj1)−1(Uj1) ∪ . . . ∪ (Xi → Xjm)−1(Ujm)

Then our open equals f−1
i (Ui) as desired. �

Lemma 5.13.3. Let I be a cofiltered category. Let i 7→ Xi be a diagram of topo-
logical spaces over I. Let X be a topological space such that

(1) X = limXi as a set (denote fi the projection maps),
(2) the sets f−1

i (Ui) for i ∈ Ob(I) and Ui ⊂ Xi open form a basis for the
topology of X.

Then X is the limit of the Xi as a topological space.

Proof. Follows from the description of the limit topology in Lemma 5.13.2. �

Theorem 5.13.4 (Tychonov). A product of quasi-compact spaces is quasi-compact.

Proof. Let I be a set and for i ∈ I let Xi be a quasi-compact topological space.
Set X =

∏
Xi. Let B be the set of subsets of X of the form Ui ×

∏
i′∈I,i′ 6=iXi′

where Ui ⊂ Xi is open. By construction this family is a subbasis for the topology
on X. By Lemma 5.11.15 it suffices to show that any covering X =

⋃
j∈J Bj by

elements Bj of B has a finite refinement. We can decompose J =
∐
Ji so that if

j ∈ Ji, then Bj = Uj ×
∏
i′ 6=iXi′ with Uj ⊂ Xi open. If Xi =

⋃
j∈Ji Uj , then there

is a finite refinement and we conclude that X =
⋃
j∈J Bj has a finite refinement. If

this is not the case, then for every i we can choose an point xi ∈ Xi which is not
in
⋃
j∈Ji Uj . But then the point x = (xi)i∈I is an element of X not contained in⋃

j∈J Bj , a contradiction. �

The following lemma does not hold if one drops the assumption that the spaces Xi

are Hausdorff, see Examples, Section 82.4.

Lemma 5.13.5. Let I be a category and let i 7→ Xi be a diagram over I in the
category of topological spaces. If each Xi is quasi-compact and Hausdorff, then
limXi is quasi-compact.

Proof. Recall that limXi is a subspace of
∏
Xi. By Theorem 5.13.4 this product

is quasi-compact. Hence it suffices to show that limXi is a closed subspace of
∏
Xi

(Lemma 5.11.3). If ϕ : j → k is a morphism of I, then let Γϕ ⊂ Xj ×Xk denote
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the graph of the corresponding continuous map Xj → Xk. By Lemma 5.3.2 this
graph is closed. It is clear that limXi is the intersection of the closed subsets

Γϕ ×
∏

l 6=j,k
Xl ⊂

∏
Xi

Thus the result follows. �

The following lemma generalizes Categories, Lemma 4.21.5 and partially generalizes
Lemma 5.11.6.

Lemma 5.13.6. Let I be a cofiltered category and let i 7→ Xi be a diagram over I
in the category of topological spaces. If each Xi is quasi-compact, Hausdorff, and
nonempty, then limXi is nonempty.

Proof. In the proof of Lemma 5.13.5 we have seen that X = limXi is the inter-
section of the closed subsets

Zϕ = Γϕ ×
∏

l 6=j,k
Xl

inside the quasi-compact space
∏
Xi where ϕ : j → k is a morphism of I and

Γϕ ⊂ Xj × Xk is the graph of the corresponding morphism Xj → Xk. Hence by
Lemma 5.11.6 it suffices to show any finite intersection of these subsets is nonempty.
Assume ϕt : jt → kt, t = 1, . . . , n is a finite collection of morphisms of I. Since I
is cofiltered, we can pick an object j and a morphism ψt : j → jt for each t. For
each pair t, t′ such that either (a) jt = jt′ , or (b) jt = kt′ , or (c) kt = kt′ we obtain
two morphisms j → l with l = jt in case (a), (b) or l = kt in case (c). Because I is
cofiltered and since there are finitely many pairs (t, t′) we may choose a map j′ → j
which equalizes these two morphisms for all such pairs (t, t′). Pick an element
x ∈ Xj′ and for each t let xjt , resp. xkt be the image of x under the morphism
Xj′ → Xj → Xjt , resp. Xj′ → Xj → Xjt → Xkt . For any index l ∈ Ob(I) which
is not equal to jt or kt for some t we pick an arbitrary element xl ∈ Xl (using the
axiom of choice). Then (xi)i∈Ob(I) is in the intersection

Zϕ1
∩ . . . ∩ Zϕn

by construction and the proof is complete. �

5.14. Constructible sets

Definition 5.14.1. Let X be a topological space. Let E ⊂ X be a subset of X.

(1) We say E is constructible3 in X if E is a finite union of subsets of the form
U ∩ V c where U, V ⊂ X are open and retrocompact in X.

(2) We say E is locally constructible in X if there exists an open covering
X =

⋃
Vi such that each E ∩ Vi is constructible in Vi.

Lemma 5.14.2. The collection of constructible sets is closed under finite intersec-
tions, finite unions and complements.

Proof. Note that if U1, U2 are open and retrocompact in X then so is U1 ∪ U2

because the union of two quasi-compact subsets of X is quasi-compact. It is also
true that U1 ∩ U2 is retrocompact. Namely, suppose U ⊂ X is quasi-compact
open, then U2 ∩U is quasi-compact because U2 is retrocompact in X, and then we

3In the second edition of EGA I [GD71] this was called a “globally constructible” set and a
the terminology “constructible” was used for what we call a locally constructible set.
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conclude U1 ∩ (U2 ∩ U) is quasi-compact because U1 is retrocompact in X. From
this it is formal to show that the complement of a constructible set is constructible,
that finite unions of constructibles are constructible, and that finite intersections
of constructibles are constructible. �

Lemma 5.14.3. Let f : X → Y be a continuous map of topological spaces. If the
inverse image of every retrocompact open subset of Y is retrocompact in X, then
inverse images of constructible sets are constructible.

Proof. This is true because f−1(U ∩V c) = f−1(U)∩ f−1(V )c, combined with the
definition of constructible sets. �

Lemma 5.14.4. Let U ⊂ X be open. For a constructible set E ⊂ X the intersection
E ∩ U is constructible in U .

Proof. Suppose that V ⊂ X is retrocompact open in X. It suffices to show that
V ∩U is retrocompact in U by Lemma 5.14.3. To show this let W ⊂ U be open and
quasi-compact. Then W is open and quasi-compact in X. Hence V ∩W = V ∩U∩W
is quasi-compact as V is retrocompact in X. �

Lemma 5.14.5. Let U ⊂ X be a retrocompact open. Let E ⊂ U . If E is con-
structible in U , then E is constructible in X.

Proof. Suppose that V,W ⊂ U are retrocompact open in U . Then V,W are
retrocompact open in X (Lemma 5.11.2). Hence V ∩ (U \W ) = V ∩ (X \W ) is
constructible in X. We conclude since every constructible subset of U is a finite
union of subsets of the form V ∩ (U \W ). �

Lemma 5.14.6. Let X be a topological space. Let E ⊂ X be a subset. Let X =
V1 ∪ . . .∪Vm be a finite covering by retrocompact opens. Then E is constructible in
X if and only if E ∩ Vj is constructible in Vj for each j = 1, . . . ,m.

Proof. If E is constructible in X, then by Lemma 5.14.4 we see that E ∩ Vj is
constructible in Vj for all j. Conversely, suppose that E ∩ Vj is constructible in Vj
for each j = 1, . . . ,m. Then E =

⋃
E ∩ Vj is a finite union of constructible sets by

Lemma 5.14.5 and hence constructible. �

Lemma 5.14.7. Let X be a topological space. Let Z ⊂ X be a closed subset such
that X \ Z is quasi-compact. Then for a constructible set E ⊂ X the intersection
E ∩ Z is constructible in Z.

Proof. Suppose that V ⊂ X is retrocompact open in X. It suffices to show that
V ∩ Z is retrocompact in Z by Lemma 5.14.3. To show this let W ⊂ Z be open
and quasi-compact. The subset W ′ = W ∪ (X \ Z) is quasi-compact, open, and
W = Z∩W ′. Hence V ∩Z∩W = V ∩Z∩W ′ is a closed subset of the quasi-compact
open V ∩W ′ as V is retrocompact in X. Thus V ∩ Z ∩W is quasi-compact by
Lemma 5.11.3. �

Lemma 5.14.8. Let X be a topological space. Let T ⊂ X be a subset. Suppose

(1) T is retrocompact in X,
(2) quasi-compact opens form a basis for the topology on X.

Then for a constructible set E ⊂ X the intersection E ∩ T is constructible in T .
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Proof. Suppose that V ⊂ X is retrocompact open in X. It suffices to show that
V ∩ T is retrocompact in T by Lemma 5.14.3. To show this let W ⊂ T be open
and quasi-compact. By assumption (2) we can find a quasi-compact open W ′ ⊂ X
such that W = T ∩W ′ (details omitted). Hence V ∩ T ∩W = V ∩ T ∩W ′ is the
intersection of T with the quasi-compact open V ∩W ′ as V is retrocompact in X.
Thus V ∩ T ∩W is quasi-compact. �

Lemma 5.14.9. Let Z ⊂ X be a closed subset whose complement is retrocompact
open. Let E ⊂ Z. If E is constructible in Z, then E is constructible in X.

Proof. Suppose that V ⊂ Z is retrocompact open in Z. Consider the open subset
Ṽ = V ∪ (X \ Z) of X. Let W ⊂ X be quasi-compact open. Then

W ∩ Ṽ = (V ∩W ) ∪ ((X \ Z) ∩W ) .

The first part is quasi-compact as V ∩W = V ∩ (Z ∩W ) and (Z ∩W ) is quasi-
compact open in Z (Lemma 5.11.3) and V is retrocompact in Z. The second part

is quasi-compact as (X \ Z) is retrocompact in X. In this way we see that Ṽ is
retrocompact in X. Thus if V1, V2 ⊂ Z are retrocompact open, then

V1 ∩ (Z \ V2) = Ṽ1 ∩ (X \ Ṽ2)

is constructible in X. We conclude since every constructible subset of Z is a finite
union of subsets of the form V1 ∩ (Z \ V2). �

Lemma 5.14.10. Let X be a topological space. Every constructible subset of X is
retrocompact.

Proof. Let E =
⋃
i=1,...,n Ui∩V ci with Ui, Vi retrocompact open in X. Let W ⊂ X

be quasi-compact open. Then E ∩W =
⋃
i=1,...,n Ui ∩ V ci ∩W . Thus it suffices

to show that U ∩ V c ∩W is quasi-compact if U, V are retrocompact open and W
is quasi-compact open. This is true because U ∩ V c ∩W is a closed subset of the
quasi-compact U ∩W so Lemma 5.11.3 applies. �

Question: Does the following lemma also hold if we assume X is a quasi-compact
topological space? Compare with Lemma 5.14.7.

Lemma 5.14.11. Let X be a topological space. Assume X has a basis consisting
of quasi-compact opens. For E,E′ constructible in X, the intersection E ∩ E′ is
constructible in E.

Proof. Combine Lemmas 5.14.8 and 5.14.10. �

Lemma 5.14.12. Let X be a topological space. Assume X has a basis consisting
of quasi-compact opens. Let E be constructible in X and F ⊂ E constructible in
E. Then F is constructible in X.

Proof. Observe that any retrocompact subset T of X has a basis for the induced
topology consisting of quasi-compact opens. In particular this holds for any con-
structible subset (Lemma 5.14.10). Write E = E1 ∪ . . . ∪ En with Ei = Ui ∩ V ci
where Ui, Vi ⊂ X are retrocompact open. Note that Ei = E∩Ei is constructible in
E by Lemma 5.14.11. Hence F ∩Ei is constructible in Ei by Lemma 5.14.11. Thus
it suffices to prove the lemma in case E = U ∩V c where U, V ⊂ X are retrocompact
open. In this case the inclusion E ⊂ X is a composition

E = U ∩ V c → U → X
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Then we can apply Lemma 5.14.9 to the first inclusion and Lemma 5.14.5 to the
second. �

Lemma 5.14.13. Let X be a topological space which has a basis for the topology
consisting of quasi-compact opens. Let E ⊂ X be a subset. Let X = E1 ∪ . . . ∪Em
be a finite covering by constructible subsets. Then E is constructible in X if and
only if E ∩ Ej is constructible in Ej for each j = 1, . . . ,m.

Proof. Combine Lemmas 5.14.11 and 5.14.12. �

Lemma 5.14.14. Let X be a topological space. Suppose that Z ⊂ X is irreducible.
Let E ⊂ X be a finite union of locally closed subsets (e.g. E is constructible). The
following are equivalent

(1) The intersection E ∩ Z contains an open dense subset of Z.
(2) The intersection E ∩ Z is dense in Z.

If Z has a generic point ξ, then this is also equivalent to

(3) We have ξ ∈ E.

Proof. Write E =
⋃
Ui∩Zi as the finite union of intersections of open sets Ui and

closed sets Zi. Suppose that E ∩ Z is dense in Z. Note that the closure of E ∩ Z
is the union of the closures of the intersections Ui ∩ Zi ∩ Z. As Z is irreducible we
conclude that the closure of Ui ∩ Zi ∩ Z is Z for some i. Fix such an i. It follows
that Z ⊂ Zi since otherwise the closed subset Z ∩ Zi of Z would not be dense in
Z. Then Ui ∩ Zi ∩ Z = Ui ∩ Z is an open nonempty subset of Z. Because Z is
irreducible, it is open dense. Hence E ∩Z contains an open dense subset of Z. The
converse is obvious.

Suppose that ξ ∈ Z is a generic point. Of course if (1) ⇔ (2) holds, then ξ ∈ E.
Conversely, if ξ ∈ E, then ξ ∈ Ui ∩Zi for some i = i0. Clearly this implies Z ⊂ Zi0
and hence Ui0 ∩Zi0 ∩Z = Ui0 ∩Z is an open not empty subset of Z. We conclude
as before. �

5.15. Constructible sets and Noetherian spaces

Lemma 5.15.1. Let X be a Noetherian topological space. Constructible sets in X
are finite unions of locally closed subsets of X.

Proof. This follows immediately from Lemma 5.11.13. �

Lemma 5.15.2. Let f : X → Y be a continuous map of Noetherian topological
spaces. If E ⊂ Y is constructible in Y , then f−1(E) is constructible in X.

Proof. Follows immediately from Lemma 5.15.1 and the definition of a continuous
map. �

Lemma 5.15.3. Let X be a Noetherian topological space. Let E ⊂ X be a subset.
The following are equivalent

(1) E is constructible in X, and
(2) for every irreducible closed Z ⊂ X the intersection E ∩ Z either contains

a nonempty open of Z or is not dense in Z.
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Proof. Assume E is constructible and Z ⊂ X irreducible closed. Then E ∩ Z is
constructible in Z by Lemma 5.15.2. Hence E ∩ Z is a finite union of nonempty
locally closed subsets Ti of Z. Clearly if none of the Ti is open in Z, then E ∩Z is
not dense in Z. In this way we see that (1) implies (2).

Conversely, assume (2) holds. Consider the set S of closed subsets Y of X such that
E ∩ Y is not constructible in Y . If S 6= ∅, then it has a smallest element Y as X
is Noetherian. Let Y = Y1 ∪ . . .∪ Yr be the decomposition of Y into its irreducible
components, see Lemma 5.8.2. If r > 1, then each Yi ∩E is constructible in Yi and
hence a finite union of locally closed subsets of Yi. Thus E ∩ Y is a finite union of
locally closed subsets of Y too and we conclude that E ∩Y is constructible in Y by
Lemma 5.15.1. This is a contradiction and so r = 1. If r = 1, then Y is irreducible,
and by assumption (2) we see that E ∩ Y either (a) contains an open V of Y or
(b) is not dense in Y . In case (a) we see, by minimality of Y , that E ∩ (Y \ V ) is a
finite union of locally closed subsets of Y \V . Thus E∩Y is a finite union of locally
closed subsets of Y and is constructible by Lemma 5.15.1. This is a contradiction
and so we must be in case (b). In case (b) we see that E ∩ Y = E ∩ Y ′ for some
proper closed subset Y ′ ⊂ Y . By minimality of Y we see that E ∩ Y ′ is a finite
union of locally closed subsets of Y ′ and we see that E ∩ Y ′ = E ∩ Y is a finite
union of locally closed subsets of Y and is constructible by Lemma 5.15.1. This
contradiction finishes the proof of the lemma. �

Lemma 5.15.4. Let X be a Noetherian topological space. Let x ∈ X. Let E ⊂ X
be constructible in X. The following are equivalent

(1) E is a neighbourhood of x, and
(2) for every irreducible closed subset Y of X which contains x the intersection

E ∩ Y is dense in Y .

Proof. It is clear that (1) implies (2). Assume (2). Consider the set S of closed
subsets Y of X containing x such that E ∩ Y is not a neighbourhood of x in Y . If
S 6= ∅, then it has a minimal element Y as X is Noetherian. Suppose Y = Y1 ∪ Y2

with two smaller nonempty closed subsets Y1, Y2. If x ∈ Yi for i = 1, 2, then
Yi ∩ E is a neighbourhood of x in Yi and we conclude Y ∩ E is a neighbourhood
of x in Y which is a contradiction. If x ∈ Y1 but x 6∈ Y2 (say), then Y1 ∩ E is a
neighbourhood of x in Y1 and hence also in Y , which is a contradiction as well.
We conclude that Y is irreducible closed. By assumption (2) we see that E ∩ Y is
dense in Y . Thus E ∩ Y contains an open V of Y , see Lemma 5.15.3. If x ∈ V
then E ∩ Y is a neighbourhood of x in Y which is a contradiction. If x 6∈ V , then
Y ′ = Y \ V is a proper closed subset of Y containing x. By minimality of Y we
see that E ∩ Y ′ contains an open neighbourhood V ′ ⊂ Y ′ of x in Y ′. But then
V ′ ∪ V is an open neighbourhood of x in Y contained in E, a contradiction. This
contradiction finishes the proof of the lemma. �

Lemma 5.15.5. Let X be a Noetherian topological space. Let E ⊂ X be a subset.
The following are equivalent

(1) E is open in X, and
(2) for every irreducible closed subset Y of X the intersection E ∩Y is either

empty or contains a nonempty open of Y .

Proof. This follows formally from Lemmas 5.15.3 and 5.15.4. �
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5.16. Characterizing proper maps

We include a section discussing the notion of a proper map in usual topology. It
turns out that in topology, the notion of being proper is the same as the notion of
being universally closed, in the sense that any base change is a closed morphism
(not just taking products with spaces). The reason for doing this is that in algebraic
geometry we use this notion of universal closedness as the basis for our definition
of properness.

Lemma 5.16.1 (Tube lemma). Let X and Y be topological spaces. Let A ⊂ X and
B ⊂ Y be quasi-compact subsets. Let A×B ⊂W ⊂ X×Y with W open in X×Y .
Then there exists opens A ⊂ U ⊂ X and B ⊂ V ⊂ Y such that U × V ⊂W .

Proof. For every a ∈ A and b ∈ B there exist opens U(a,b) of X and V(a,b) of Y
such that (a, b) ∈ U(a,b) × V(a,b) ⊂W . Fix b and we see there exist a finite number
a1, . . . , an such that A ⊂ U(a1,b) ∪ . . . ∪ U(an,b). Hence A × {b} ⊂ (U(a1,b) ∪ . . . ∪
U(an,b)) × (V(a1,b) ∩ . . . ∩ V(an,b)) ⊂ W . Thus for every b ∈ B there exists opens
Ub ⊂ X and Vb ⊂ Y such that A × {b} ⊂ Ub × Vb ⊂ W . As above there exist
a finite number b1, . . . , bm such that B ⊂ Vb1 ∪ . . . ∪ Vbm . Then we win because
A×B ⊂ (Ub1 ∩ . . . ∩ Ubm)× (Vb1 ∪ . . . ∪ Vbm). �

The notation in the following definition may be slightly different from what you are
used to.

Definition 5.16.2. Let f : X → Y be a continuous map between topological
spaces.

(1) We say that the map f is closed iff the image of every closed subset is
closed.

(2) We say that the map f is proper4 iff the map Z ×X → Z × Y is closed
for any topological space Z.

(3) We say that the map f is quasi-proper iff the inverse image f−1(V ) of
every quasi-compact subset V ⊂ Y is quasi-compact.

(4) We say that f is universally closed iff the map f ′ : Z ×Y X → Z is closed
for any map g : Z → Y .

The following lemma is useful later.

Lemma 5.16.3. A topological space X is quasi-compact if and only if the projection
map Z ×X → Z is closed for any topological space Z.

Proof. (See also remark below.) If X is not quasi-compact, there exists an open
covering X =

⋃
i∈I Ui such that no finite number of Ui cover X. Let Z be the

subset of the power set P(I) of I consisting of I and all nonempty finite subsets of
I. Define a topology on Z with as a basis for the topology the following sets:

(1) All subsets of Z \ {I}.
(2) The empty set.
(3) For every finite subset K of I the set UK := {J ⊂ I | J ∈ Z, K ⊂ J}).

It is left to the reader to verify this is the basis for a topology. Consider the subset
of Z ×X defined by the formula

M = {(J, x) | J ∈ Z, x ∈
⋂

i∈J
U ci )}

4This is the terminology used in [Bou71]. Usually this is what is called “universally closed”
in the literature. Thus our notion of proper does not involve any separation conditions.
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If (J, x) 6∈ M , then x ∈ Ui for some i ∈ J . Hence U{i} × Ui ⊂ Z × X is an open
subset containing (J, x) and not intersecting M . Hence M is closed. The projection
of M to Z is Z − {I} which is not closed. Hence Z ×X → Z is not closed.

Assume X is quasi-compact. Let Z be a topological space. Let M ⊂ Z × X be
closed. Let z ∈ Z be a point which is not in pr1(M). By the Tube Lemma 5.16.1
there exists an open U ⊂ Z such that U ×X is contained in the complement of M .
Hence pr1(M) is closed. �

Remark 5.16.4. Lemma 5.16.3 is a combination of [Bou71, I, p. 75, Lemme 1]
and [Bou71, I, p. 76, Corrolaire 1].

Theorem 5.16.5. Let f : X → Y be a continuous map between topological spaces.
The following condition is equivalent.

(1) The map f is quasi-proper and closed.
(2) The map f is proper.
(3) The map f is universally closed.
(4) The map f is closed and f−1(y) is quasi-compact for any y ∈ Y .

Proof. (See also the remark below.) If the map f satisfies (1), it automatically
satisfies (4) because any single point is quasi-compact.

Assume map f satisfies (4). We will prove it is universally closed, i.e., (3) holds.
Let g : Z → Y be a continuous map of topological spaces and consider the diagram

Z ×Y X
g′

//

f ′

��

X

f

��
Z

g // Y

During the proof we will use that Z ×Y X → Z ×X is a homeomorphism onto its
image, i.e., that we may identify Z×YX with the corresponding subset of Z×X with
the induced topology. The image of f ′ : Z×Y X → Z is Im(f ′) = {z : g(z) ∈ f(X)}.
Because f(X) is closed, we see that Im(f ′) is a closed subspace of Z. Consider a
closed subset P ⊂ Z ×Y X. Let z ∈ Z, z 6∈ f ′(P ). If z 6∈ Im(f ′), then Z \ Im(f ′)
is an open neighbourhood which avoids f ′(P ). If z is in Im(f ′) then (f ′)−1{z} =
{z} × f−1{g(z)} and f−1{g(z)} is quasi-compact by assumption. Because P is a
closed subset of Z×Y X, we have a closed P ′ of Z×X such that P = P ′∩Z×Y X.
Since (f ′)−1{z} is a subset of P c = P ′c∪ (Z×Y X)c, and since (f ′)−1{z} is disjoint
from (Z×Y X)c we see that (f ′)−1{z} is contained in P ′c. We may apply the Tube
Lemma 5.16.1 to (f ′)−1{z} = {z}× f−1{g(z)} ⊂ (P ′)c ⊂ Z×X. This gives V ×U
containing (f ′)−1{z} where U and V are open sets in X and Z respectively and
V × U has empty intersection with P ′. Then the set V ∩ g−1(Y − f(U c)) is open
in Z since f is closed, contains z, and has empty intersection with the image of P .
Thus f ′(P ) is closed. In other words, the map f is universally closed.

The implication (3)⇒ (2) is trivial. Namely, given any topological space Z consider
the projection morphism g : Z × Y → Y . Then it is easy to see that f ′ is the map
Z ×X → Z × Y , in other words that (Z × Y )×Y X = Z ×X. (This identification
is a purely categorical property having nothing to do with topological spaces per
se.)

Assume f satisfies (2). We will prove it satisfies (1). Note that f is closed as
f can be identified with the map {pt} × X → {pt} × Y which is assumed closed.
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Choose any quasi-compact subset K ⊂ Y . Let Z be any topological space. Because
Z ×X → Z × Y is closed we see the map Z × f−1(K) → Z ×K is closed (if T is
closed in Z × f−1(K), write T = Z × f−1(K) ∩ T ′ for some closed T ′ ⊂ Z ×X).
Because K is quasi-compact, K × Z → Z is closed by Lemma 5.16.3. Hence the
composition Z × f−1(K) → Z ×K → Z is closed and therefore f−1(K) must be
quasi-compact by Lemma 5.16.3 again. �

Remark 5.16.6. Here are some references to the literature. In [Bou71, I, p. 75,
Theorem 1] you can find: (2) ⇔ (4). In [Bou71, I, p. 77, Proposition 6] you can
find: (2) ⇒ (1). Of course, trivially we have (1) ⇒ (4). Thus (1), (2) and (4) are
equivalent. Fan Zhou claimed and proved that (3) and (4) are equivalent; let me
know if you find a reference in the literature.

Lemma 5.16.7. Let f : X → Y be a continuous map of topological spaces. If X
is quasi-compact and Y is Hausdorff, then f is proper.

Proof. Since every point of Y is closed, we see from Lemma 5.11.3 that the closed
subset f−1(y) of X is quasi-compact for all y ∈ Y . Thus, by Theorem 5.16.5 it
suffices to show that f is closed. If E ⊂ X is closed, then it is quasi-compact
(Lemma 5.11.3), hence f(E) ⊂ Y is quasi-compact (Lemma 5.11.7), hence f(E) is
closed in Y (Lemma 5.11.4). �

Lemma 5.16.8. Let f : X → Y be a continuous map of topological spaces. If f is
bijective, X is quasi-compact, and Y is Hausdorff, then f is a homeomorphism.

Proof. This follows immediately from Lemma 5.16.7 which tells us that f is closed,
i.e., f−1 is continuous. �

5.17. Jacobson spaces

Definition 5.17.1. Let X be a topological space. Let X0 be the set of closed
points of X. We say that X is Jacobson if every closed subset Z ⊂ X is the closure
of Z ∩X0.

Let X be a Jacobson space and let X0 be the set of closed points of X with the
induced topology. Clearly, the definition implies that the morphism X0 → X
induces a bijection between the closed subsets of X0 and the closed subsets of X.
Thus many properties of X are inherited by X0. For example, the Krull dimensions
of X and X0 are the same.

Lemma 5.17.2. Let X be a topological space. Let X0 be the set of closed points of
X. Suppose that for every irreducible closed subset Z ⊂ X the intersection X0 ∩ Z
is dense in Z. Then X is Jacobson.

Proof. Let Z ⊂ X be closed. According to Lemma 5.7.3 we have Z =
⋃
Zi with

Zi irreducible and closed. Thus is X0 ∩Zi is dense in each Zi, then X0 ∩Z is dense
in Z. �

Lemma 5.17.3. Let X be a sober, Noetherian topological space. If X is not Ja-
cobson, then there exists a non-closed point ξ ∈ X such that {ξ} is locally closed.

Proof. Assume X is sober, Noetherian and not Jacobson. By Lemma 5.17.2 there
exists an irreducible closed subset Z ⊂ X which is not the closure of its closed
points. Since X is Noetherian we may assume Z is minimal with this property. Let
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ξ ∈ Z be the unique generic point (here we use X is sober). Note that the closed

points are dense in {z} for any z ∈ Z, z 6= ξ by minimality of Z. Hence the closure
of the set of closed points of Z is a closed subset containing all z ∈ Z, z 6= ξ. Hence
{ξ} is locally closed as desired. �

Lemma 5.17.4. Let X be a topological space. Let X =
⋃
Ui be an open covering.

Then X is Jacobson if and only if each Ui is Jacobson. Moreover, in this case
X0 =

⋃
Ui,0.

Proof. Let X be a topological space. Let X0 be the set of closed points of X. Let
Ui,0 be the set of closed points of Ui. Then X0 ∩ Ui ⊂ Ui,0 but equality may not
hold in general.

First, assume that each Ui is Jacobson. We claim that in this case X0 ∩ Ui = Ui,0.

Namely, suppose that x ∈ Ui,0, i.e., x is closed in Ui. Let {x} be the closure in X.

Consider {x} ∩ Uj . If x 6∈ Uj , then {x} ∩ Uj = ∅. If x ∈ Uj , then Ui ∩ Uj ⊂ Uj is
an open subset of Uj containing x. Let T ′ = Uj \Ui ∩Uj and T = {x}

∐
T ′. Then

T , T ′ are closed subsets of Uj and T contains x. As Uj is Jacobson we see that the
closed points of Uj are dense in T . Because T = {x}

∐
T ′ this can only be the case

if x is closed in Uj . Hence {x}∩Uj = {x}. We conclude that {x} = {x} as desired.

Let Z ⊂ X be a closed subset (still assuming each Ui is Jacobson). Since now we
know that X0 ∩ Z ∩ Ui = Ui,0 ∩ Z are dense in Z ∩ Ui it follows immediately that
X0 ∩ Z is dense in Z.

Conversely, assume that X is Jacobson. Let Z ⊂ Ui be closed. Then X0∩Z is dense
in Z. Hence also X0 ∩ Z is dense in Z, because Z \ Z is closed. As X0 ∩ Ui ⊂ Ui,0
we see that Ui,0 ∩ Z is dense in Z. Thus Ui is Jacobson as desired. �

Lemma 5.17.5. Let X be Jacobson. The following types of subsets T ⊂ X are
Jacobson:

(1) Open subspaces.
(2) Closed subspaces.
(3) Locally closed subspaces.
(4) Finite unions of locally closed subspaces.
(5) Constructible sets.
(6) Any subset T ⊂ X which locally on X is a finite union of locally closed

subsets.

In each of these cases closed points of T are closed in X.

Proof. Let X0 be the set of closed points of X. For any subset T ⊂ X we let (∗)
denote the property:

(∗) For every closed subset Z ⊂ T the set Z ∩X0 is dense in Z.

Note that always X0 ∩ T ⊂ T0. Hence property (∗) implies that T is Jacobson. In
addition it clearly implies that every closed point of T is closed in X.

Let U ⊂ X be an open subset. Suppose Z ⊂ U is closed. Then X0 ∩ Z is dense in
Z. Hence X0 ∩ Z is dense in Z, because Z \ Z is closed. Thus (∗) holds.

Let Z ⊂ X be a closed subset. Since closed subsets of Z are the same as closed
subsets of X contained in Z property (∗) is immediate.
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Let T ⊂ X be locally closed. Write T = U ∩ Z for some open U ⊂ X and some
closed Z ⊂ X. Note that closed subsets of T are the same thing as closed subsets
of U which happen to be contained in Z. Hence (∗) holds for T because we proved
it for U above.

Suppose Ti ⊂ X, i = 1, . . . , n are locally closed subsets. Let T = T1 ∪ . . . ∪ Tn.
Suppose Z ⊂ T is closed. Then Zi = Z ∩ Ti is closed in Ti. By (∗) for Ti we see
that Zi ∩ X0 is dense in Zi. Clearly this implies that X0 ∩ Z is dense in Z, and
property (∗) holds for T .

The case of constructible subsets is subsumed in the case of finite unions of locally
closed subsets, see Definition 5.14.1.

The condition of the last assertion means that there exists an open covering X =⋃
Ui such that each T ∩ Ui is a finite union of locally closed subsets of Ui. We

conclude that T is Jacobson by Lemma 5.17.4 and the case of a finite union of
locally closed subsets dealt with above. It is formal to deduce (∗) for T from (∗) for
all the inclusions T ∩Ui ⊂ Ui and the assertions X0 =

⋃
Ui,0 and T0 =

⋃
(T ∩Ui)0

from Lemma 5.17.4. �

Lemma 5.17.6. A finite Jacobson space is discrete.

Proof. If X is finite Jacobson, X0 ⊂ X the subset of closed points, then, on the
one hand, X0 = X. On the other hand, X, and hence X0 is finite, so X0 =
{x1, . . . , xn} =

⋃
i=1,...,n{xi} is a finite union of closed sets, hence closed, so X =

X0 = X0. Every point is closed, and by finiteness, every point is open. �

Lemma 5.17.7. Suppose X is a Jacobson topological space. Let X0 be the set of
closed points of X. There is a bijective, inclusion preserving correspondence

{constructible subsets of X} ↔ {constructible subsets of X0}
given by E 7→ E ∩ X0. This correspondence preserves the subset of retrocompact
open subsets, as well as complements of these.

Proof. Obvious from Lemma 5.17.5 above. �

Lemma 5.17.8. Suppose X is a Jacobson topological space. Let X0 be the set of
closed points of X. There is a bijective, inclusion preserving correspondence

{finite unions loc. closed subsets of X} ↔ {finite unions loc. closed subsets of X0}
given by E 7→ E ∩X0. This correspondence preserves the subsets of locally closed,
of open and of closed subsets.

Proof. Obvious from Lemma 5.17.5 above. �

5.18. Specialization

Definition 5.18.1. Let X be a topological space.

(1) If x, x′ ∈ X then we say x is a specialization of x′, or x′ is a generalization

of x if x ∈ {x′}. Notation: x′  x.
(2) A subset T ⊂ X is stable under specialization if for all x′ ∈ T and every

specialization x′  x we have x ∈ T .
(3) A subset T ⊂ X is stable under generalization if for all x ∈ T and every

generalization x′ of x we have x′ ∈ T .
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Lemma 5.18.2. Let X be a topological space.

(1) Any closed subset of X is stable under specialization.
(2) Any open subset of X is stable under generalization.
(3) A subset T ⊂ X is stable under specialization if and only if the complement

T c is stable under generalization.

Proof. Omitted. �

Definition 5.18.3. Let f : X → Y be a continuous map of topological spaces.

(1) We say that specializations lift along f or that f is specializing if given
y′  y in Y and any x′ ∈ X with f(x′) = y′ there exists a specialization
x′  x of x′ in X such that f(x) = y.

(2) We say that generalizations lift along f or that f is generalizing if given
y′  y in Y and any x ∈ X with f(x) = y there exists a generalization
x′  x of x in X such that f(x′) = y′.

Lemma 5.18.4. Suppose f : X → Y and g : Y → Z are continuous maps of
topological spaces. If specializations lift along both f and g then specializations lift
along g ◦ f . Similarly for “generalizations lift along”.

Proof. Omitted. �

Lemma 5.18.5. Let f : X → Y be a continuous map of topological spaces.

(1) If specializations lift along f , and if T ⊂ X is stable under specialization,
then f(T ) ⊂ Y is stable under specialization.

(2) If generalizations lift along f , and if T ⊂ X is stable under generalization,
then f(T ) ⊂ Y is stable under generalization.

Proof. Omitted. �

Lemma 5.18.6. Let f : X → Y be a continuous map of topological spaces.

(1) If f is closed then specializations lift along f .
(2) If f is open, X is a Noetherian topological space, each irreducible closed

subset of X has a generic point, and Y is Kolmogorov then generalizations
lift along f .

Proof. Assume f is closed. Let y′  y in Y and any x′ ∈ X with f(x′) = y′

be given. Consider the closed subset T = {x′} of X. Then f(T ) ⊂ Y is a closed
subset, and y′ ∈ f(T ). Hence also y ∈ f(T ). Hence y = f(x) with x ∈ T , i.e.,
x′  x.

Assume f is open, X Noetherian, every irreducible closed subset of X has a generic
point, and Y is Kolmogorov. Let y′  y in Y and any x ∈ X with f(x) = y be
given. Consider T = f−1({y′}) ⊂ X. Take an open neighbourhood x ∈ U ⊂ X of
x. Then f(U) ⊂ Y is open and y ∈ f(U). Hence also y′ ∈ f(U). In other words,
T ∩U 6= ∅. This proves that x ∈ T . Since X is Noetherian, T is Noetherian (Lemma
5.8.2). Hence it has a decomposition T = T1∪ . . .∪Tn into irreducible components.
Then correspondingly T = T1 ∪ . . . ∪ Tn. By the above x ∈ Ti for some i. By
assumption there exists a generic point x′ ∈ Ti, and we see that x′  x. As x′ ∈ T
we see that f(x′) ∈ {y′}. Note that f(Ti) = f({x′}) ⊂ {f(x′)}. If f(x′) 6= y′, then
since Y is Kolmogorov f(x′) is not a generic point of the irreducible closed subset

{y′} and the inclusion {f(x′)} ⊂ {y′} is strict, i.e., y′ 6∈ f(Ti). This contradicts the
fact that f(Ti) = {y′}. Hence f(x′) = y′ and we win. �
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Lemma 5.18.7. Suppose that s, t : R → U and π : U → X are continuous maps
of topological spaces such that

(1) π is open,
(2) U is sober,
(3) s, t have finite fibres,
(4) generalizations lift along s, t,
(5) (t, s)(R) ⊂ U × U is an equivalence relation on U and X is the quotient

of U by this equivalence relation (as a set).

Then X is Kolmogorov.

Proof. Properties (3) and (5) imply that a point x corresponds to an finite equiv-
alence class {u1, . . . , un} ⊂ U of the equivalence relation. Suppose that x′ ∈ X is
a second point corresponding to the equivalence class {u′1, . . . , u′m} ⊂ U . Suppose
that ui  u′j for some i, j. Then for any r′ ∈ R with s(r′) = u′j by (4) we can find

r  r′ with s(r) = ui. Hence t(r)  t(r′). Since {u′1, . . . , u′m} = t(s−1({u′j})) we
conclude that every element of {u′1, . . . , u′m} is the specialization of an element of

{u1, . . . , un}. Thus {u1} ∪ . . .∪ {un} is a union of equivalence classes, hence of the
form π−1(Z) for some subset Z ⊂ X. By (1) we see that Z is closed in X and in

fact Z = {x} because π({ui}) ⊂ {x} for each i. In other words, x x′ if and only
if some lift of x in U specializes to some lift of x′ in U , if and only if every lift of x′

in U is a specialization of some lift of x in U .

Suppose that both x  x′ and x′  x. Say x corresponds to {u1, . . . , un} and
x′ corresponds to {u′1, . . . , u′m} as above. Then, by the results of the preceding
paragraph, we can find a sequence

. . . u′j3  ui3  u′j2  ui2  u′j1  ui1

which must repeat, hence by (2) we conclude that {u1, . . . , un} = {u′1, . . . , u′m},
i.e., x = x′. Thus X is Kolmogorov. �

Lemma 5.18.8. Let f : X → Y be a morphism of topological spaces. Suppose
that Y is a sober topological space, and f is surjective. If either specializations or
generalizations lift along f , then dim(X) ≥ dim(Y ).

Proof. Assume specializations lift along f . Let Z0 ⊂ Z1 ⊂ . . . Ze ⊂ Y be a chain of
irreducible closed subsets of X. Let ξe ∈ X be a point mapping to the generic point
of Ze. By assumption there exists a specialization ξe  ξe−1 in X such that ξe−1

maps to the generic point of Ze−1. Continuing in this manner we find a sequence
of specializations

ξe  ξe−1  . . . ξ0

with ξi mapping to the generic point of Zi. This clearly implies the sequence of
irreducible closed subsets

{ξ0} ⊂ {ξ1} ⊂ . . . {ξe}
is a chain of length e in X. The case when generalizations lift along f is similar. �

Lemma 5.18.9. Let X be a Noetherian sober topological space. Let E ⊂ X be a
subset of X.

(1) If E is constructible and stable under specialization, then E is closed.
(2) If E is constructible and stable under generalization, then E is open.
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Proof. Let E be constructible and stable under generalization. Let Y ⊂ X be an
irreducible closed subset with generic point ξ ∈ Y . If E ∩ Y is nonempty, then
it contains ξ (by stability under generalization) and hence is dense in Y , hence it
contains a nonempty open of Y , see Lemma 5.15.3. Thus E is open by Lemma
5.15.5. This proves (2). To prove (1) apply (2) to the complement of E in X. �

5.19. Dimension functions

It scarcely makes sense to consider dimension functions unless the space considered
is sober (Definition 5.7.4). Thus the definition below can be improved by considering
the sober topological space associated to X. Since the underlying topological space
of a scheme is sober we do not bother with this improvement.

Definition 5.19.1. Let X be a topological space.

(1) Let x, y ∈ X, x 6= y. Suppose x y, that is y is a specialization of x. We
say y is an immediate specialization of x if there is no z ∈ X \ {x, y} with
x z and z  y.

(2) A map δ : X → Z is called a dimension function5 if
(a) whenever x y and x 6= y we have δ(x) > δ(y), and
(b) for every immediate specialization x y in X we have δ(x) = δ(y)+

1.

It is clear that if δ is a dimension function, then so is δ+ t for any t ∈ Z. Here is a
fun lemma.

Lemma 5.19.2. Let X be a topological space. If X is sober and has a dimension
function, then X is catenary. Moreover, for any x y we have

δ(x)− δ(y) = codim
(
{y}, {x}

)
.

Proof. Suppose Y ⊂ Y ′ ⊂ X are irreducible closed subsets. Let ξ ∈ Y , ξ′ ∈
Y ′ be their generic points. Then we see immediately from the definitions that
codim(Y, Y ′) ≤ δ(ξ)−δ(ξ′) <∞. In fact the first inequality is an equality. Namely,
suppose

Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Ye = Y ′

is any maximal chain of irreducible closed subsets. Let ξi ∈ Yi denote the generic
point. Then we see that ξi  ξi+1 is an immediate specialization. Hence we see that
e = δ(ξ)− δ(ξ′) as desired. This also proves the last statement of the lemma. �

Lemma 5.19.3. Let X be a topological space. Let δ, δ′ be two dimension functions
on X. If X is locally Noetherian and sober then δ − δ′ is locally constant on X.

Proof. Let x ∈ X be a point. We will show that δ − δ′ is constant in a neigh-
bourhood of x. We may replace X by an open neighbourhood of x in X which
is Noetherian. Hence we may assume X is Noetherian and sober. Let Z1, . . . , Zr
be the irreducible components of X passing through x. (There are finitely many
as X is Noetherian, see Lemma 5.8.2.) Let ξi ∈ Zi be the generic point. Note
Z1 ∪ . . . ∪Zr is a neighbourhood of x in X (not necessarily closed). We claim that
δ − δ′ is constant on Z1 ∪ . . . ∪ Zr. Namely, if y ∈ Zi, then

δ(x)− δ(y) = δ(x)− δ(ξi) + δ(ξi)− δ(y) = −codim({x}, Zi) + codim({y}, Zi)

5This is likely nonstandard notation. This notion is usually introduced only for (locally)
Noetherian schemes, in which case condition (a) is implied by (b).
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by Lemma 5.19.2. Similarly for δ′. Whence the result. �

Lemma 5.19.4. Let X be locally Noetherian, sober and catenary. Then any point
has an open neighbourhood U ⊂ X which has a dimension function.

Proof. We will use repeatedly that an open subspace of a catenary space is cate-
nary, see Lemma 5.10.5 and that a Noetherian topological space has finitely many
irreducible components, see Lemma 5.8.2. In the proof of Lemma 5.19.3 we saw
how to construct such a function. Namely, we first replace X by a Noetherian open
neighbourhood of x. Next, we let Z1, . . . , Zr ⊂ X be the irreducible components of
X. Let

Zi ∩ Zj =
⋃
Zijk

be the decomposition into irreducible components. We replace X by

X \
(⋃

x 6∈Zi
Zi ∪

⋃
x6∈Zijk

Zijk

)
so that we may assume x ∈ Zi for all i and x ∈ Zijk for all i, j, k. For y ∈ X choose
any i such that y ∈ Zi and set

δ(y) = −codim({x}, Zi) + codim({y}, Zi).

We claim this is a dimension function. First we show that it is well defined, i.e.,
independent of the choice of i. Namely, suppose that y ∈ Zijk for some i, j, k. Then
we have (using Lemma 5.10.6)

δ(y) = −codim({x}, Zi) + codim({y}, Zi)

= −codim({x}, Zijk)− codim(Zijk, Zi) + codim({y}, Zijk) + codim(Zijk, Zi)

= −codim({x}, Zijk) + codim({y}, Zijk)

which is symmetric in i and j. We omit the proof that it is a dimension function. �

Remark 5.19.5. Combining Lemmas 5.19.3 and 5.19.4 we see that on a catenary,
locally Noetherian, sober topological space the obstruction to having a dimension
function is an element of H1(X,Z).

5.20. Nowhere dense sets

Definition 5.20.1. Let X be a topological space.

(1) Given a subset T ⊂ X the interior of T is the largest open subset of X
contained in T .

(2) A subset T ⊂ X is called nowhere dense if the closure of T has empty
interior.

Lemma 5.20.2. Let X be a topological space. The union of a finite number of
nowhere dense sets is a nowhere dense set.

Proof. Omitted. �

Lemma 5.20.3. Let X be a topological space. Let U ⊂ X be an open. Let T ⊂ U
be a subset. If T is nowhere dense in U , then T is nowhere dense in X.
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Proof. Assume T is nowhere dense in U . Suppose that x ∈ X is an interior point
of the closure T of T in X. Say x ∈ V ⊂ T with V ⊂ X open in X. Note that
T ∩ U is the closure of T in U . Hence the interior of T ∩ U being empty implies
V ∩U = ∅. Thus x cannot be in the closure of U , a fortiori cannot be in the closure
of T , a contradiction. �

Lemma 5.20.4. Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let T ⊂ X be a subset. If T ∩Ui is nowhere dense in Ui for all i, then T is nowhere
dense in X.

Proof. Omitted. (Hint: closure commutes with intersecting with opens.) �

Lemma 5.20.5. Let f : X → Y be a continuous map of topological spaces. Let
T ⊂ X be a subset. If f identifies X with a closed subset of Y and T is nowhere
dense in X, then also f(T ) is nowhere dense in Y .

Proof. Omitted. �

Lemma 5.20.6. Let f : X → Y be a continuous map of topological spaces. Let
T ⊂ Y be a subset. If f is open and T is a closed nowhere dense subset of Y , then
also f−1(T ) is a closed nowhere dense subset of X. If f is surjective and open,
then T is closed nowhere dense if and only if f−1(T ) is closed nowhere dense.

Proof. Omitted. (Hint: In the first case the interior of f−1(T ) maps into the
interior of T , and in the second case the interior of f−1(T ) maps onto the interior
of T .) �

5.21. Profinite spaces

Here is the definition.

Definition 5.21.1. A topological space is profinite if it is homeomorphic to a limit
of a diagram of finite discrete spaces.

This is not the most convenient characterization of a profinite space.

Lemma 5.21.2. Let X be a topological space. The following are equivalent

(1) X is a profinite space, and
(2) X is Hausdorff, quasi-compact, and totally disconnected.

If this is true, then X is a cofiltered limit of finite discrete spaces.

Proof. Assume (1). Choose a diagram i 7→ Xi of finite discrete spaces such that
X = limXi. As each Xi is Hausdorff and quasi-compact we find that X is quasi-
compact by Lemma 5.13.5. If x, x′ ∈ X are distinct points, then x and x′ map to
distinct points in some Xi. Hence x and x′ have disjoint open neighbourhoods, i.e.,
X is Hausdorff. In exactly the same way we see that X is totally disconnected.

Assume (2). Let I be the set of finite disjoint union decompositions X =
∐
i∈I Ui

with Ui open (and closed). For each I ∈ I there is a continuous map X → I
sending a point of Ui to i. We define a partial ordering: I ≤ I ′ for I, I ′ ∈ I if and
only if the covering corresponding to I ′ refines the covering corresponding to I. In
this case we obtain a canonical map I ′ → I. In other words we obtain an inverse
system of finite discrete spaces over I. The maps X → I fit together and we obtain
a continuous map

X −→ limI∈I I
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We claim this map is a homeomorphism, which finishes the proof. (The final as-
sertion follows too as the partially ordered set I is directed: given two disjoint
union decompositions of X we can find a third refining either.) Namely, the map is
injective as X is totally disconnected and hence {x} is the intersection of all open
and closed subsets of X containing x (Lemma 5.11.11), the map is surjective by
Lemma 5.11.6. By Lemma 5.16.8 the map is a homeomorphism. �

Lemma 5.21.3. Let X be a profinite space. Every open covering of X has a
refinement by a finite covering X =

∐
Ui with Ui open and closed.

Proof. Write X = limXi as a limit of an inverse system of finite discrete spaces
over a directed partially ordered set I (Lemma 5.21.2). Denote fi : X → Xi

the projection. For every point x = (xi) ∈ X a fundamental system of open
neighbourhoods is the collection f−1

i ({xi}). Thus, as X is quasi-compact, we may
assume we have an open covering

X = f−1
i1

({xi1}) ∪ . . . ∪ f−1
in

({xin})

Choose i ∈ I with i ≥ ij for j = 1, . . . , n (this is possible as I is a directed partially
ordered set). Then we see that the covering

X =
∐

t∈Xi
f−1
i ({t})

refines the given covering and is of the desired form. �

Lemma 5.21.4. Let X be a topological space. If X is quasi-compact and every con-
nected component of X is the intersection of the open and closed subsets containing
it, then π0(X) is a profinite space.

Proof. We will use Lemma 5.21.2 to prove this. Since π0(X) is the image of a
quasi-compact space it is quasi-compact (Lemma 5.11.7). It is totally disconnected
by construction (Lemma 5.6.8). Let C,D ⊂ X be distinct connected components
of X. Write C =

⋂
Uα as the intersection of the open and closed subsets of X

containing C. Any finite intersection of Uα’s is another. Since
⋂
Uα ∩ D = ∅ we

conclude that Uα ∩D = ∅ for some α (use Lemmas 5.6.3, 5.11.3 and 5.11.6) Since
Uα is open and closed, it is the union of the connected components it contains, i.e.,
Uα is the inverse image of some open and closed subset Vα ⊂ π0(X). This proves
that the points corresponding to C and D are contained in disjoint open subsets,
i.e., π0(X) is Hausdorff. �

5.22. Spectral spaces

The material in this section is taken from [Hoc69] and [Hoc67]. In his the-
sis Hochster proves (among other things) that the spectral spaces are exactly the
topological spaces that occur as the spectrum of a ring.

Definition 5.22.1. A topological space X is called spectral if it is sober, quasi-
compact, the intersection of two quasi-compact opens is quasi-compact, and the
collection of quasi-compact opens forms a basis for the topology. A continuous
map f : X → Y of spectral spaces is called spectral if the inverse image of a
quasi-compact open is quasi-compact.

In other words a continuous map of spectral space is spectral if and only if it is
quasi-compact (Definition 5.11.1).
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Let X be a spectral space. The constructible topology on X is the topology which
has as a subbase of opens the sets U and U c where U is a quasi-compact open of
X. Note that since X is spectral an open U ⊂ X is retrocompact if and only if
U is quasi-compact. Hence the constructible topology can also be characterized as
the coarsest topology such that every constructible subset of X is both open and
closed. Since the collection of quasi-compact opens is a basis for the topology on
X we see that the constructible topology is stronger than the given topology on X.

Lemma 5.22.2. Let X be a spectral space. The constructible topology is Hausdorff
and quasi-compact.

Proof. Since the collection of all quasi-compact opens forms a basis for the topol-
ogy on X, it is clear that X is Hausdorff in the constructible topology.

Let B be the collection of subsets B ⊂ X with B either quasi-compact open or
closed with quasi-compact complement. If B ∈ B then Bc ∈ B. It suffices to
show every covering X =

⋃
i∈I Bi with Bi ∈ B has a finite refinement, see Lemma

5.11.15. Taking complements we see that we have to show that any family {Bi}i∈I
of elements of B such that Bi1 ∩ . . . ∩Bin 6= ∅ for all n and all i1, . . . , in ∈ I has a
common point of intersection. We may and do assume Bi 6= Bi′ for i 6= i′.

To get a contradiction assume {Bi}i∈I is a maximal family of elements of B having
the finite intersection property but empty intersection. An application of Zorn’s
lemma shows that we may assume our family is maximal (details omitted). Let
I ′ ⊂ I be those indices such that Bi is closed and set Z =

⋂
i∈I′ Bi. This is a

closed subset of X. If Z is reducible, then we can write Z = Z ′ ∪ Z ′′ as a union
of two closed subsets, neither equal to Z. This means in particular that we can
find a quasi-compact open U ′ ⊂ X meeting Z ′ but not Z ′′. Similarly, we can
find a quasi-compact open U ′′ ⊂ X meeting Z ′′ but not Z ′. Set B′ = X \ U ′
and B′′ = X \ U ′′. Note that Z ′′ ⊂ B′ and Z ′ ⊂ B′′. If there exist a finite
number of indices i1, . . . , in ∈ I such that B′ ∩Bi1 ∩ . . .∩Bin = ∅ as well as a finite
number of indices j1, . . . , jm ∈ I such that B′′∩Bj1∩. . .∩Bjm = ∅ then we find that
Z∩Bi1∩. . .∩Bin∩Bj1∩. . .∩Bjm = ∅. However, the set Bi1∩. . .∩Bin∩Bj1∩. . .∩Bjm
is quasi-compact hence we would find a finite number of indices i′1, . . . , i

′
l ∈ I ′ with

Bi1 ∩ . . . ∩ Bin ∩ Bj1 ∩ . . . ∩ Bjm ∩ Bi′1 ∩ . . . ∩ Bi′l = ∅ a contradiction. Thus we

see that we may add either B′ or B′′ to the given family contradicting maximality.
We conclude that Z is irreducible. However, this leads to a contradiction as well,
as now every nonempty (by the same argument as above) open Z ∩Bi for i ∈ I \ I ′
contains the unique generic point of Z. This contradiction proves the lemma. �

Lemma 5.22.3. Let f : X → Y be a spectral map of spectral spaces. Then the
fibres of f are quasi-compact.

Proof. Let X ′ and Y ′ denote X and Y endowed with the constructible topology
which are quasi-compact Hausdorff spaces by Lemma 5.22.2. As f is spectral the
map X ′ → Y ′ is continuous too. Thus we get a commutative diagram

X ′ //

��

X

��
Y ′ // Y
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of continuous maps of topological spaces. Since Y ′ is hausdorff we see that the
fibres X ′y are closed in X ′. As X ′ is quasi-compact we see that X ′y is quasi-compact
(Lemma 5.11.3). As X ′y → Xy is a surjective continuous map we conclude that Xy

is quasi-compact (Lemma 5.11.7). �

Lemma 5.22.4. Let X be a spectral space. Let E ⊂ X be closed in the constructible
topology (for example constructible or closed). Then E with the induced topology is
a spectral space.

Proof. Let Z ⊂ E be a closed irreducible subset. Let η be the generic point of the
closure Z of Z in X. To prove that E is sober, we show that η ∈ E. If not, then
since E is closed in the constructible topology, there exists a constructible subset
F ⊂ X such that η ∈ F and F ∩ E = ∅. By Lemma 5.14.14 this implies F ∩ Z
contains a nonempty open subset of Z. But this is impossible as Z is the closure
of Z and Z ∩ F = ∅.
Since E is closed in the constructible topology, it is quasi-compact in the con-
structible topology (Lemmas 5.11.3 and 5.22.2). Hence a fortiori it is quasi-compact
in the topology coming from X. If U ⊂ X is a quasi-compact open, then E ∩ U
is closed in the constructible topology, hence quasi-compact (as seen above). It
follows that the quasi-compact open subsets of E are the intersections E ∩ U with
U quasi-compact open in X. These form a basis for the topology. Finally, given two
U,U ′ ⊂ X quasi-compact opens, the intersection (E ∩U)∩ (E ∩U ′) = E ∩ (U ∩U ′)
and U ∩ U ′ is quasi-compact as X is spectral. This finishes the proof. �

Lemma 5.22.5. Let X be a spectral space. Let E ⊂ X be a constructible subset.

(1) If x ∈ E, then x is the specialization of a point of E.
(2) If E is stable under specialization, then E is closed.
(3) If E is stable under generalization, then E is open.

Proof. Proof of (1). Let x ∈ E. Let {Ui} be the set of quasi-compact open
neighbourhoods of x. A finite intersection of the Ui is another one. The intersection
Ui∩E is nonempty for all i. Since the subsets Ui∩E are closed in the constructible
topology we see that

⋂
(Ui ∩E) is nonempty by Lemma 5.22.2 and Lemma 5.11.6.

Since X is a sober space and {Ui} is a fundamental system of open neighbourhoods
of x, we see that

⋂
Ui is the set of generalizations of x. Thus x is a specialization

of a point of E.

Part (2) is immediate from (1).

Proof of (3). Assume E is stable under generalization. The complement of E
is constructible (Lemma 5.14.2) and closed under specialization (Lemma 5.18.2).
Hence the complement is closed by (2), i.e., E is open. �

Lemma 5.22.6. Let X be a spectral space. Let x, y ∈ X. Then either there exists a
third point specializing to both x and y, or there exist disjoint open neighbourhoods
containing x and y.

Proof. Let {Ui} be the set of quasi-compact open neighbourhoods of x. A finite
intersection of the Ui is another one. Let {Vj} be the set of quasi-compact open
neighbourhoods of y. A finite intersection of the Vj is another one. If Ui ∩ Vj is
empty for some i, j we are done. If not, then the intersection Ui ∩ Vj is nonempty
for all i. The sets Ui∩Vj are closed in the constructible topology on X. By Lemma
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5.22.2 we see that
⋂

(Ui ∩ Vj) is nonempty (Lemma 5.11.6). Since X is a sober
space and {Ui} is a fundamental system of open neighbourhoods of x, we see that⋂
Ui is the set of generalizations of x. Similarly,

⋂
Vj is the set of generalizations

of y. Thus any element of
⋂

(Ui ∩ Vj) specializes to both x and y. �

Lemma 5.22.7. Let X be a spectral space. The following are equivalent

(1) X is profinite,
(2) X is Hausdorff,
(3) X is totally disconnected,
(4) every quasi-compact open is closed,
(5) there are no nontrivial specializations between points,
(6) every point of X is closed,
(7) every point of X is the generic point of an irreducible component of X,
(8) add more here.

Proof. The implication (1) ⇒ (2) is trivial. If every quasi-compact open is closed,
then X is Hausforff, so (4) ⇒ (2).

It is clear that (4), (5), and (6) are equivalent since X is sober. It follows from
Lemma 5.22.6 that this implies X is Hausdorff.

If X is totally disconnected, then every point is closed. So (3) implies (6).

Thus every condition implies that X is Hausdorff. Conversely, if X is Hausdorff,
then every quasi-compact open is also closed (Lemma 5.11.4). This implies that X
is totally disconnected. Hence it is profinite, by Lemma 5.21.2. This also implies
(4), (5), and (6) hold. �

Lemma 5.22.8. If X is a spectral space, then π0(X) is a profinite space.

Proof. Combine Lemmas 5.11.10 and 5.21.4. �

Lemma 5.22.9. The product of two spectral spaces is spectral.

Proof. Let X, Y be spectral spaces. Denote p : X × Y → X and q : X × Y → Y
the projections. Let Z ⊂ X × Y be a closed irreducible subset. Then p(Z) ⊂ X
is irreducible and q(Z) ⊂ Y is irreducible. Let x ∈ X be the generic point of
the closure of p(X) and let y ∈ Y be the generic point of the closure of q(Y ). If
(x, y) 6∈ Z, then there exist opens x ∈ U ⊂ X, y ∈ V ⊂ Y such that Z ∩U ×V = ∅.
Hence Z is contained in (X \ U)× Y ∪X × (Y \ V ). Since Z is irreducible, we see
that either Z ⊂ (X \U)× Y or Z ⊂ X × (Y \ V ). In the first case p(Z) ⊂ (X \U)
and in the second case q(Z) ⊂ (Y \V ). Both cases are absurd as x is in the closure
of p(Z) and y is in the closure of q(Z). Thus we conclude that (x, y) ∈ Z, which
means that (x, y) is the generic point for Z.

A basis of the topology of X × Y are the opens of the form U × V with U ⊂ X
and V ⊂ Y quasi-compact open (here we use that X and Y are spectral). Then
U × V is quasi-compact as the product of quasi-compact spaces is quasi-compact.
Moreover, any quasi-compact open of X×Y is a finite union of such quasi-compact
rectangles U×V . It follows that the intersection of two such is again quasi-compact
(since X and Y are spectral). This concludes the proof. �

Lemma 5.22.10. Let f : X → Y be a continuous map of topological spaces. if

(1) X and Y are spectral,
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(2) f is spectral and bijective, and
(3) generalizations (resp. specializations) lift along f .

Then f is a homeomorphism.

Proof. Since f is spectral it defines a continuous map between X and Y in the
constructible topology. By Lemmas 5.22.2 and 5.16.8 it follows that X → Y is a
homeomorphism in the constructible topology. Let U ⊂ X be quasi-compact open.
Then f(U) is constructible in Y . Let y ∈ Y specialize to a point in f(U). By the
last assumption we see that f−1(y) specializes to a point of U . Hence f−1(y) ∈ U .
Thus y ∈ f(U). It follows that f(U) is open, see Lemma 5.22.5. Whence f is a
homeomorphism. To prove the lemma in case specializations lift along f one shows
instead that f(Z) is closed if X \ Z is a quasi-compact open of X. �

Lemma 5.22.11. The inverse limit of a directed inverse system of finite sober
topological spaces is a spectral topological space.

Proof. Let I be a directed partially ordered set. Let Xi be an inverse system of
finite sober spaces over I. Let X = limXi which exists by Lemma 5.13.1. As a
set X = limXi. Denote pi : X → Xi the projection. Because I is directed we
may apply Lemma 5.13.2. A basis for the topology is given by the opens p−1

i (Ui)

for Ui ⊂ Xi open. Note that p−1
i (Ui) is quasi-compact as a profinite topological

space (Lemma 5.21.2). Since an open covering of p−1
i (Ui) is in particular an open

covering in the profinite topology, we conclude that p−1
i (Ui) is quasi-compact. Given

Ui ⊂ Xi and Uj ⊂ Xj , then p−1
i (Ui) ∩ p−1

j (Uj) = p−1
k (Uk) for some k ≥ i, j and

open Uk ⊂ Xk. Finally, if Z ⊂ X is irreducible and closed, then pi(Z) ⊂ Xi is
irreducible and therefore has a unique generic point ξi (because Xi is a finite sober
topological space). Then ξ = lim ξi is a generic point of Z (it is a point of Z as Z
is closed). This finishes the proof. �

Lemma 5.22.12. Let W be the topological space with two points one closed the
other not. A topological space is spectral if and only if it is homeomorphic to a
closed subspace of a product of copies of W .

Proof. Write W = {0, 1} where 0 is a specialization of 1 but not vice versa. Let
I be a set. The space

∏
i∈IW is spectral by Lemma 5.22.11. Thus we see that a

closed subspace of
∏
i∈IW is a spectral space by Lemma 5.22.4.

For the converse, let X be a spectral space. Let U ⊂ X be a quasi-compact open.
Consider the continuous map

fU : X −→W

which maps every point in U to 1 and every point in X \U to 0. Taking the product
of these maps we obtain a continuous map

f =
∏

fU : X −→
∏

U
W

If x′, x ∈ X are distinct, then since X is sober either x′ is not a specialization of x or
conversely. In either case (as the quasi-compact opens form a basis for the topology
of X) there exists a quasi-compact open U ⊂ X such that fU (x′) 6= fU (x). Thus
f is injective. Let Y = f(X) endowed with the induced topology. By construction
the map f : X → Y is spectral. Let y′  y be a specialization in Y and say
f(x′) = y′ and f(x) = y. Arguing as above we see that x′  x, since otherwise
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there is a U such that x ∈ U and x′ 6∈ U , which would imply fU (x′) 6 fU (x). We
conclude that f : X → Y is a homeomorphism by Lemma 5.22.10. �

Lemma 5.22.13. A topological space is spectral if and only if it is a directed inverse
limit of finite sober topological spaces.

Proof. One direction is given by Lemma 5.22.11. For the converse, assume X is
spectral. Then we may assume X ⊂

∏
i∈IW is a closed subset where W = {0, 1}

as in Lemma 5.22.12. We can write∏
i∈I

W = limJ⊂I finite

∏
j∈J

W

as a cofiltered limit. For each J , let XJ ⊂
∏
j∈JW be the image of X. Then we see

that X = limXJ as sets because X is closed in the product. A formal argument
(omitted) on limits shows that X = limXJ as topological spaces. �

Lemma 5.22.14. Let X be a topological space and let c : X → X ′ be the universal
map from X to a sober topological space, see Lemma 5.7.9.

(1) If X is quasi-compact, so is X ′.
(2) If X is quasi-compact, has a basis of quasi-compact opens, and the inter-

section of two quasi-compact opens is quasi-compact, then X ′ is spectral.
(3) If X is Noetherian, then X ′ is a Noetherian spectral space.

Proof. Let U ⊂ X be open and let U ′ ⊂ X ′ be the corresponding open, i.e., the
open such that c−1(U ′) = U . Then U is quasi-compact if and only if U ′ is quasi-
compact, as pulling back by c is a bijection between the opens of X and X ′ which
commutes with unions. This in particular proves (1).

Proof of (2). It follows from the above that X ′ has a basis of quasi-compact opens.
Since c−1 also commutes with intersections of pairs of opens, we see that the in-
tersection of two quasi-compact opens X ′ is quasi-compact. Finally, X ′ is quasi-
compact by (1) and sober by construction. Hence X ′ is spectral.

Proof of (3). It is immediate that X ′ is Noetherian as this is defined in terms of
the acc for open subsets which holds for X. We have already seen in (2) that X ′ is
spectral. �

5.23. Limits of spectral spaces

Lemma 5.22.13 tells us that every spectral space is a cofiltered limit of finite sober
spaces. Every finite sober space is a spectral space and every continuous map of
finite sober spaces is a spectral map of spectral spaces. In this section we prove some
lemmas concerning limits of systems of spectral topological spaces along spectral
maps.

Lemma 5.23.1. Let I be a category. Let i 7→ Xi be a diagram of spectral spaces
such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.

(1) Given subsets Zi ⊂ Xi closed in the constructible topology with fa(Zj) ⊂
Zi for all a : j → i in I, then limZi is quasi-compact.

(2) The space X = limXi is quasi-compact.

Proof. The limit Z = limZi exists by Lemma 5.13.1. Denote X ′i the space Xi

endowed with the constructible topology and Z ′i the corresponding subspace of
X ′i. Let a : j → i in I be a morphism. As fa is spectral it defines a continuous
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map fa : X ′j → X ′i. Thus fa|Zj : Z ′j → Z ′i is a continuous map of quasi-compact
Hausdorff spaces (by Lemmas 5.22.2 and 5.11.3). Thus Z ′ = limZi is quasi-compact
by Lemma 5.13.5. The maps Z ′i → Zi are continuous, hence Z ′ → Z is continuous
and a bijection on underlying sets. Hence Z is quasi-compact as the image of the
surjective continuous map Z ′ → Z (Lemma 5.11.7). �

Lemma 5.23.2. Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.

(1) Given nonempty subsets Zi ⊂ Xi closed in the constructible topology with
fa(Zj) ⊂ Zi for all a : j → i in I, then limZi is nonempty.

(2) If each Xi is nonempty, then X = limXi is nonempty.

Proof. Denote X ′i the space Xi endowed with the constructible topology and Z ′i
the corresponding subspace of X ′i. Let a : j → i in I be a morphism. As fa is
spectral it defines a continuous map fa : X ′j → X ′i. Thus fa|Zj : Z ′j → Z ′i is a
continuous map of quasi-compact Hausdorff spaces (by Lemmas 5.22.2 and 5.11.3).
By Lemma 5.13.6 the space limZ ′i is nonempty. Since limZ ′i = limZi as sets we
conclude. �

Lemma 5.23.3. Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.
Let X = limXi with projections pi : X → Xi. Let i ∈ Ob(I) and let E,F ⊂ Xi be
subsets with E closed in the constructible topology and F open in the constructible
topology. Then p−1

i (E) ⊂ p−1
i (F ) if and only if there is a morphism a : j → i in I

such that f−1
a (E) ⊂ f−1

a (F ).

Proof. Observe that

p−1
i (E) \ p−1

i (F ) = lima:j→i f
−1
a (E) \ f−1

a (F )

Since fa is a spectral map, it is continuous in the constructible topology hence the
set f−1

a (E) \ f−1
a (F ) is closed in the constructible topology. Hence Lemma 5.23.2

applies to show that the LHS is nonempty if and only if each of the spaces of the
RHS is nonempty. �

Lemma 5.23.4. Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.
Let X = limXi with projections pi : X → Xi. Let E ⊂ X be a constructible
subset. Then there exists an i ∈ Ob(I) and a constructible subset Ei ⊂ Xi such
that p−1

i (Ei) = E. If E is open, resp. closed, we may choose Ei open, resp. closed.

Proof. Assume E is a quasi-compact open of X. By Lemma 5.13.2 we can write
E = p−1

i (Ui) for some i and some open Ui ⊂ Xi. Write Ui =
⋃
Ui,α as a union

of quasi-compact opens. As E is quasi-compact we can find α1, . . . , αn such that
E = p−1

i (Ui,α1
∪ . . . ∪ Ui,αn). Hence Ei = Ui,α1

∪ . . . ∪ Ui,αn works.

Assume E is a constructible closed subset. Then Ec is quasi-compact open. So
Ec = p−1

i (Fi) for some i and quasi-compact open Fi ⊂ Xi by the result of the

previous paragraph. Then E = p−1
i (F ci ) as desired.

If E is general we can write E =
⋃
l=1,...,n Ul∩Zl with Ul constructible open and Zl

constructible closed. By the result of the previous paragraphs we may write Ul =
p−1
il

(Ul,il) and Zl = p−1
jl

(Zl,jl) with Ul,il ⊂ Xil constructible open and Zl,jl ⊂ Xjl

constructible closed. As I is cofiltered we may choose an object k of I and morphism
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al : k → il and bl : k → jl. Then taking Ek =
⋃
l=1,...,n f

−1
al

(Ul,il) ∩ f
−1
bl

(Zl,jl) we
obtain a constructible subset of Xk whose inverse image in X is E. �

Lemma 5.23.5. Let I be a cofiltered index category. Let i 7→ Xi be a diagram of
spectral spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is
spectral. Then the inverse limit X = limXi is a spectral topological space and the
projection maps pi : X → Xi are spectral.

Proof. The limit X = limXi exists (Lemma 5.13.1) and is quasi-compact by
Lemma 5.23.1.

Denote pi : X → Xi the projection. Because I is cofiltered we can apply Lemma
5.13.2. Hence a basis for the topology on X is given by the opens p−1

i (Ui) for
Ui ⊂ Xi open. Since a basis for the topology of Xi is given by the quasi-compact
open, we conclude that a basis for the topology on X is given by p−1

i (Ui) with
Ui ⊂ Xi quasi-compact open. A formal argument shows that

p−1
i (Ui) = colima:j→i f

−1
a (Ui)

as topological spaces. Since each fa is spectral the sets f−1
a (Ui) are closed in the

constructible topology of Xj and hence p−1
i (Ui) is quasi-compact by Lemma 5.23.1.

Thus X has a basis for the topology consisting of quasi-compact opens.

Any quasi-compact open U of X is of the form U = p−1
i (Ui) for some i and some

quasi-compact open Ui ⊂ Xi (see Lemma 5.23.4). Given Ui ⊂ Xi and Uj ⊂ Xj

quasi-compact open, then p−1
i (Ui) ∩ p−1

j (Uj) = p−1
k (Uk) for some k and quasi-

compact open Uk ⊂ Xk. Namely, choose k and morphisms k → i and k → j and
let Uk be the intersection of the pullbacks of Ui and Uj to Xk. Thus we see that
the intersection of two quasi-compact opens of X is quasi-compact open.

Finally, let Z ⊂ X be irreducible and closed. Then pi(Z) ⊂ Xi is irreducible and

therefore Zi = pi(Z) has a unique generic point ξi (because Xi is a spectral space).

Then fa(ξj) = ξi for a : j → i in I because fa(Zj) = Zi. Hence ξ = lim ξi is a point
of X. Claim: ξ ∈ Z. Namely, if not we can find a quasi-compact open containing ξ
disjoint from Z. This would be of the form p−1

i (Ui) for some i and quasi-compact

open Ui ⊂ Xi. Then ξi ∈ Ui but pi(Z) ∩ Ui = ∅ which contradicts ξi ∈ pi(Z). So

ξ ∈ Z and hence {ξ} ⊂ Z. Conversely, every z ∈ Z is in the closure of ξ. Namely,
given a quasi-compact open neighbourhood U of z we write U = p−1

i (Ui) for some
i and quasi-compact open Ui ⊂ Xi. We see that pi(z) ∈ Ui hence ξi ∈ Ui hence
ξ ∈ U . Thus ξ is the generic point of Z. This finishes the proof. �

Lemma 5.23.6. Let I be a cofiltered index category. Let i 7→ Xi be a diagram of
spectral spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is
spectral. Set X = limXi and denote pi : X → Xi the projection.

(1) Given any quasi-compact open U ⊂ X there exists an i ∈ Ob(I) and a
quasi-compact open Ui ⊂ Xi such that p−1

i (Ui) = U .

(2) Given Ui ⊂ Xi and Uj ⊂ Xj quasi-compact opens such that p−1
i (Ui) ⊂

p−1
j (Uj) there exist k ∈ Ob(I) and morphisms a : k → i and b : k → j

such that f−1
a (Ui) ⊂ f−1

b (Uj).

(3) If Ui, U1,i, . . . , Un,i ⊂ Xi are quasi-compact opens and p−1
i (Ui) = p−1

i (U1,i)∪
. . . ∪ p−1

i (Un,i) then f−1
a (Ui) = f−1

a (U1,i) ∪ . . . ∪ f−1
a (Un,i) for some mor-

phism a : j → i in I.
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(4) Same statement as in (3) but for intersections.

Proof. Part (1) is a special case of Lemma 5.23.4. Part (2) is a special case of
Lemma 5.23.3 as quasi-compact opens are both open and closed in the constructible
topology. Parts (3) and (4) follow formally from (1) and (2) and the fact that taking
inverse images of subsets commutes with taking unions and intersections. �

Lemma 5.23.7. Let W be a subset of a spectral space X. The following are
equivalent

(1) W is an intersection of constructible sets and closed under generalizations,
(2) W is quasi-compact and closed under generalizations,
(3) there exists a quasi-compact subset E ⊂ X such that W is the set of points

specializing to E,
(4) W is an intersection of quasi-compact open subsets,
(5) there exists a nonempty set I and quasi-compact opens Ui ⊂ X, i ∈ I such

that W =
⋂
Ui and for all i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩Uj.

In this case we have (a) W is a spectral space, (b) W = limUi as topological spaces,
and (c) for any open U containing W there exists an i with Ui ⊂ U .

Proof. Let E ⊂ X satisfy (1). Then E is closed in the constructible topology,
hence quasi-compact in the constructible topology (by Lemmas 5.22.2 and 5.11.3),
hence quasi-compact in the topology of X (because opens in X are open in the
constructible topology). Thus (2) holds.

It is clear that (2) implies (3) by taking E = W .

Let X be a spectral space and let E ⊂ W be as in (3). Since E ⊂ W is dense we

see that W is quasi-compact. If x ∈ X, x 6∈ W , then Z = {x} is disjoint from W .
Since W is quasi-compact we can find a quasi-compact open U with W ⊂ U and
U ∩ Z = ∅. We conclude that (4) holds.

If W =
⋃
j∈J Uj then setting I equal to the set of finite subsets of J and Ui =

Uj1 ∩ . . . ∩ Ujr for i = {j1, . . . , jr} shows that (4) implies (5). It is immediate that
(5) implies (1).

Let I and Ui be as in (5). Since W =
⋂
Ui we have W = limUi by the universal

property of limits. Then W is a spectral space by Lemma 5.23.5. Let U ⊂ X be
an open neighbourhood of W . Then Ei = Ui ∩ (X \ U) is a family of constructible
subsets of the spectral space Z = X \ U with empty intersection. Using that the
spectral topology on Z is quasi-compact (Lemma 5.22.2) we conclude from Lemma
5.11.6 that Ei = ∅ for some i. �

Lemma 5.23.8. Let X be a spectral space. Let E ⊂ X be a constructible subset.
Let W ⊂ X be the set of points of X which specialize to a point of E. Then
W \ E is a spectral space. If W =

⋂
Ui with Ui as in Lemma 5.23.7 (5) then

W \ E = lim(Ui \ E).

Proof. Since E is constructible, it is quasi-compact and hence Lemma 5.23.7 ap-
plies to W . If E is constructible, then E is constructible in Ui for all i ∈ I.
Hence Ui \ E is spectral by Lemma 5.22.4. Since W \ E =

⋂
(Ui \ E) we have

W \ E = limUi \ E by the universal property of limits. Then W \ E is a spectral
space by Lemma 5.23.5. �
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5.24. Stone-Čech compactification

The Stone-Čech compactification of a topological space X is a map X → β(X)
from X to a Hausdorff quasi-compact space β(X) which is universal for such maps.
We prove this exists by a standard argument using the following simple lemma.

Lemma 5.24.1. Let f : X → Y be a continuous map of topological spaces. Assume
that f(X) is dense in Y and that Y is Hausdorff. Then the cardinality of Y is at
most the cardinality of P (P (X)) where P is the power set operation.

Proof. Let S = f(X) ⊂ Y . Let D be the set of all closed domains of Y , i.e.,
subsets D ⊂ Y which equal the closure of its interior. Note that the closure of an
open subset of Y is a closed domain. For y ∈ Y consider the set

Iy = {T ⊂ S | there exists D ∈ D with T = S ∩D and y ∈ D}

Since S is dense in Y for every closed domain D we see that S ∩D is dense in D.
Hence, if D ∩ S = D′ ∩ S for D,D′ ∈ D, then D = D′. Thus Iy = Iy′ implies that
y = y′ because the Hausdorff condition assures us that we can find a closed domain
containing y but not y′. The result follows. �

Let X be a topological space. Let κ be the cardinality of P (P (X)) as in the lemma
above. There is a set I of isomorphism classes of continuous maps f : X → Y which
has dense image and where Y is Hausdorff and quasi-compact. For i ∈ I choose a
representative fi : X → Yi. Consider the map∏

fi : X −→
∏

i∈I
Yi

and denote β(X) the closure of the image. Since each Yi is Hausdorff, so is β(X).
Since each Yi is quasi-compact, so is β(X) (use Theorem 5.13.4 and Lemma 5.11.3).

Let us show the canonical map X → β(X) satisfies the universal property with
respect to maps to Hausdorff, quasi-compact spaces. Namely, let f : X → Y be such
a morphism. Let Z ⊂ Y be the closure of f(X). By Lemma 5.24.1 the cardinality
of Z is at most κ. Thus X → Z is isomorphic to one of the maps fi : X → Yi, say
fi0 : X → Yi0 . Thus f factors as X → β(X)→

∏
Yi → Yi0

∼= Z → Y as desired.

Lemma 5.24.2. Let X be a Hausdorff, locally quasi-compact space. There exists a
map X → X∗ which identifies X as an open subspace of a quasi-compact Hausdorff
space X∗ such that X∗\X is a singleton (one point compactification). In particular,
the map X → β(X) identifies X with an open subspace of β(X).

Proof. Set X∗ = X q {∞}. We declare a subset V of X∗ to be open if either
V ⊂ X is open in X, or ∞ ∈ V and U = V ∩X is an open of X such that X \ U
is quasi-compact. We omit the verification that this defines a topology. It is clear
that X → X∗ identifies X with an open subspace of X.

Since X is locally quasi-compact, every point x ∈ X has a quasi-compact neigh-
bourhood x ∈ E ⊂ X. Then E is closed (Lemma 5.11.3) and V = (X \E)q{∞} is
an open neighbourhood of∞ disjoint from the interior of E. Thus X∗ is Hausdorff.

Let X∗ =
⋃
Vi be an open covering. Then for some i, say i0, we have ∞ ∈ Vi0 . By

construction Z = X∗ \ Vi0 is quasi-compact. Hence the covering Z ⊂
⋃
i 6=i0 Z ∩ Vi

has a finite refinement which implies that the given covering of X∗ has a finite
refinement. Thus X∗ is quasi-compact.
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The map X → X∗ factors as X → β(X) → X∗ by the universal property of the
Stone-Čech compactification. Let ϕ : β(X) → X∗ be this factorization. Then
X → ϕ−1(X) is a section to ϕ−1(X)→ X hence has closed image (Lemma 5.3.3).
Since the image of X → β(X) is dense we conclude that X = ϕ−1(X). �

5.25. Extremally disconnected spaces

The material in this section is taken from [Gle58] (with a slight modification as
in [Rai59]). In Gleason’s paper it is shown that in the category of quasi-compact
Hausdorff spaces, the “projective objects” are exactly the extremally disconnected
spaces.

Definition 5.25.1. A topological space X is called extremally disconnected if the
closure of every open subset of X is open.

If X is Hausdorff and extremally disconnected, then X is totally disconnected (this
isn’t true in general). If X is quasi-compact, Hausdorff, and extremally discon-
nected, then X is profinite by Lemma 5.21.2, but the converse does not holds in
general. Namely, Gleason shows that in an extremally disconnected Hausdorff space
X a convergent sequence x1, x2, x3, . . . is eventually constant. Hence for example
the p-adic integers Zp = lim Z/pnZ is a profinite space which is not extremally
disconnected.

Lemma 5.25.2. Let f : X → Y be a continuous map of topological spaces. Assume
f is surjective and f(E) 6= Y for all proper closed subsets E ⊂ X. Then for U ⊂ X
open the subset f(U) is contained in the closure of Y \ f(X \ U).

Proof. Pick y ∈ f(U) and let V ⊂ Y be any open neighbourhood of y. We will
show that V intersects Y \ f(X \ U). Note that W = U ∩ f−1(V ) is a nonempty
open subset of X, hence f(X \ W ) 6= Y . Take y′ ∈ Y , y′ 6∈ f(X \ W ). It is
elementary to show that y′ ∈ V and y′ ∈ Y \ f(X \ U). �

Lemma 5.25.3. Let X be an extremally disconnected space. If U, V ⊂ X are
disjoint open subsets, then U and V are disjoint too.

Proof. By assumption U is open, hence V ∩U is open and disjoint from U , hence
empty because U is the intersection of all the closed subsets of X containing U .
This means the open V ∩ U avoids V hence is empty by the same argument. �

Lemma 5.25.4. Let f : X → Y be a continuous map of Hausforff quasi-compact
topological spaces. If Y is extremally disconnected, f is surjective, and f(Z) 6= Y
for every proper closed subset Z of X, then f is a homeomorphism.

Proof. By Lemma 5.16.8 it suffices to show that f is injective. Suppose that x, x′ ∈
X are distinct points with y = f(x) = f(x′). Choose disjoint open neighbourhoods
U,U ′ ⊂ X of x, x′. Observe that f is closed (Lemma 5.16.7) hence T = f(X \ U)
and T ′ = f(X \ U ′) are closed in Y . Since X is the union of X \ U and X \ U ′ we
see that Y = T ∪ T ′. By Lemma 5.25.2 we see that y is contained in the closure
of Y \ T and the closure of Y \ T ′. On the other hand, by Lemma 5.25.3, this
intersection is empty. In this way we obtain the desired contradiction. �

Lemma 5.25.5. Let f : X → Y be a continuous surjective map of Hausforff quasi-
compact topological spaces. There exists a quasi-compact subset E ⊂ X such that
f(E) = Y but f(E′) 6= Y for all proper closed subsets E′ ⊂ E.

http://stacks.math.columbia.edu/tag/08YI
http://stacks.math.columbia.edu/tag/08YJ
http://stacks.math.columbia.edu/tag/08YK
http://stacks.math.columbia.edu/tag/08YL
http://stacks.math.columbia.edu/tag/08YM


5.25. EXTREMALLY DISCONNECTED SPACES 199

Proof. We will use without further mention that the quasi-compact subsets of X
are exactly the closed subsets (Lemma 5.11.5). Consider the collection E of all
quasi-compact subsets E ⊂ X with f(E) = Y ordered by inclusion. We will use
Zorn’s lemma to show that E has a minimal element. To do this it suffices to show
that given a totally ordered family Eλ of elements of E the intersection

⋂
Eλ is

an element of E . It is quasi-compact as it is closed. For every y ∈ Y the sets
Eλ ∩ f−1({y}) are nonempty and closed, hence the intersection

⋂
Eλ ∩ f−1({y}) =⋂

(Eλ ∩ f−1({y})) is nonempty by Lemma 5.11.6. This finishes the proof. �

Proposition 5.25.6. Let X be a Hausdorff, quasi-compact topological space. The
following are equivalent

(1) X is extremally disconnected,
(2) for any surjective continuous map f : Y → X with Y Hausdorff quasi-

compact there exists a continuous section, and
(3) for any solid commutative diagram

Y

��
X

>>

// Z

of continuous maps of quasi-compact Hausdorff spaces with Y → Z sur-
jective, there is a dotted arrow in the category of topological spaces making
the diagram commute.

Proof. It is clear that (3) implies (2). On the other hand, if (2) holds and X → Z
and Y → Z are as in (3), then (2) assures there is a section to the projection
X ×Z Y → X which implies a suitable dotted arrow exists (details omitted). Thus
(3) is equivalent to (2).

Assume X is extremally disconnected and let f : Y → X be as in (2). By Lemma
5.25.5 there exists a quasi-compact subset E ⊂ Y such that f(E) = X but f(E′) 6=
X for all proper closed subsets E′ ⊂ E. By Lemma 5.25.4 we find that f |E : E → X
is a homeomorphism, the inverse of which gives the desired section.

Assume (2). Let U ⊂ X be open with complement Z. Consider the continuous
surjection f : U qZ → X. Let σ be a section. Then U = σ−1(U) is open. Thus X
is extremally disconnected. �

Lemma 5.25.7. Let f : X → X be a continuous selfmap of a Hausdorff topological
space. If f is not idX , then there exists a proper closed subset E ⊂ X such that
X = E ∪ f(E).

Proof. Pick p ∈ X with f(p) 6= p. Choose disjoint open neighbourhoods p ∈ U ,
f(p) ∈ V and set E = X \ U ∩ f−1(V ). �

Example 5.25.8. We can use Proposition 5.25.6 to see that the Stone-Čech com-
pactification β(X) of a discrete space X is extremally disconnected. Namely, let
f : Y → β(X) be a continuous surjection where Y is quasi-compact and Hausdorff.
Then we can lift the map X → β(X) to a continuous (!) map X → Y as X is
discrete. By the universal property of the Stone-Čech compactification we see that
we obtain a factorization X → β(X) → Y . Since β(X) → Y → β(X) equals the
identity on the dense subset X we conclude that we get a section. In particular,
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we conclude that the Stone-Čech compactification of a discrete space is totally dis-
connected, whence profinite (see discussion following Definition 5.25.1 and Lemma
5.21.2).

Using the supply of extremally disconnected spaces given by Example 5.25.8 we
can prove that every quasi-compact Hausdorff space has a “projective cover” in the
category of quasi-compact Hausdorff spaces.

Lemma 5.25.9. Let X be a quasi-compact Hausdorff space. There exists a con-
tinuous surjection X ′ → X with X ′ quasi-compact, Hausdorff, and extremally dis-
connected. If we require that every proper closed subset of X ′ does not map onto
X, then X ′ is unique up to isomorphism.

Proof. Let Y = X but endowed with the discrete topology. Let X ′ = β(Y ). The
continuous map Y → X factors as Y → X ′ → X. This proves the first statement
of the lemma by Example 5.25.8.

By Lemma 5.25.5 we can find a quasi-compact subset E ⊂ X ′ such that no proper
closed subset of E surjects onto X. Because X ′ is extremally disconnected there
exists a continuous map f : X ′ → E over X (Proposition 5.25.6). Composing f
with the map E → X ′ gives a continuous selfmap f |E : E → E. This map has
to be idE as otherwise Lemma 5.25.7 shows that E isn’t minimal. Thus the idE
factors through the extremally disconnected space X ′. A formal, categorical argu-
ment (using the characterization of Proposition 5.25.6 shows that E is extremally
disconnected.

To prove uniqueness, suppose we have a second X ′′ → X minimal cover. By
the lifting property proven in Proposition 5.25.6 we can find a continuous map
g : X ′ → X ′′ over X. Observe that g is a closed map (Lemma 5.16.7). Hence
g(X ′) ⊂ X ′′ is a closed subset surjecting onto X and we conclude g(X ′) = X ′′ by
minimality of X ′′. On the other hand, if E ⊂ X ′ is a proper closed subset, then
g(E) 6= X ′′ as E does not map onto X by minimality of X ′. By Lemma 5.25.4 we
see that g is an isomorphism. �

Remark 5.25.10. Let X be a quasi-compact Hausdorff space. Let κ be an infinite
cardinal bigger or equal than the cardinality of X. Then the cardinality of the
minimal quasi-compact, Hausdorff, extremally disconnected cover X ′ → X (Lemma
5.25.9) is at most 22κ . Namely, choose a subset S ⊂ X ′ mapping bijectively to X.
By minimality of X ′ the set S is dense in X ′. Thus |X ′| ≤ 22κ by Lemma 5.24.1.

5.26. Miscellany

The following lemma applies to the underlying topological space associated to a
quasi-separated scheme.

Lemma 5.26.1. Let X be a topological space which

(1) has a basis of the topology consisting of quasi-compact opens, and
(2) has the property that the intersection of any two quasi-compact opens is

quasi-compact.

Then

(1) X is locally quasi-compact,
(2) a quasi-compact open U ⊂ X is retrocompact,

http://stacks.math.columbia.edu/tag/090D
http://stacks.math.columbia.edu/tag/090E
http://stacks.math.columbia.edu/tag/0069


5.27. PARTITIONS AND STRATIFICATIONS 201

(3) any quasi-compact open U ⊂ X has a cofinal system of open coverings
U : U =

⋃
j∈J Uj with J finite and all Uj and Uj ∩ Uj′ quasi-compact,

(4) add more here.

Proof. Omitted. �

Definition 5.26.2. Let X be a topological space. We say x ∈ X is an isolated
point of X if {x} is open in X.

5.27. Partitions and stratifications

Stratifications can be defined in many different ways. We welcome comments on
the choice of definitions in this section.

Definition 5.27.1. Let X be a topological space. A partition of X is a decompo-
sition X =

∐
Xi into locally closed subsets Xi. The Xi are called the parts of the

partition. Given two partitions of X we say one refines the other if the parts of one
are unions of parts of the other.

Thus we can say that X has a partition into connected components and a partition
into irreducible components and that the partition into irreducible components
refines the partition into connected components.

Definition 5.27.2. Let X be a topological space. A good stratification of X is a
partition X =

∐
Xi such that for all i, j ∈ I we have

Xi ∩Xj 6= ∅ ⇒ Xi ⊂ Xj .

Given a good stratification X =
∐
i∈I Xi we obtain a partial ordering on I by

setting i ≤ j if and only if Xi ⊂ Xj . Then we see that

Xj =
⋃

i≤j
Xi

However, what often happens in algebraic geometry is that one just has that the
left hand side is a subset of the right hand side in the last displayed formula. This
leads to the following definition.

Definition 5.27.3. Let X be a topological space. A stratification of X is given by
a partition X =

∐
i∈I Xi and a partial ordering on I such that for each j ∈ I we

have
Xj ⊂

⋃
i≤j

Xi

The parts Xi are called the strata of the stratification.

We often impose additional conditions on the stratification. For example, we say a
stratification is locally finite if every point has a neighbourhood which meets only
finitely many strata.

Remark 5.27.4. Given a locally finite stratification X =
∐
Xi of a topological

space X, we obtain a family of closed subsets Zi =
⋃
j≤iXj of X indexed by I such

that
Zi ∩ Zj =

⋃
k≤i,j

Zk

Conversely, given closed subsets Zi ⊂ X indexed by a partially ordered set I such
that X =

⋃
Zi, such that every point has a neighbourhood meeting only finitely

many Zi, and such that the displayed formula holds, then we obtain a locally finite
stratification of X by setting Xi = Zi \

⋃
j<i Zj .
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Lemma 5.27.5. Let X be a topological space. Let X =
∐
Xi be a finite partition

of X. Then there exists a finite stratification of X refining it.

Proof. Let Ti = Xi and ∆i = Ti \Xi. Let S be the set of all intersections of Ti
and ∆i. (For example T1 ∩ T2 ∩∆4 is an element of S.) Then S = {Zs} is a finite
collection of closed subsets of X such that Zs ∩ Zs′ ∈ S for all s, s′ ∈ S. Define a
partial ordering on S by inclusion. Then set Ys = Zs \

⋃
s′<s Zs′ to get the desired

stratification. �

Lemma 5.27.6. Let X be a topological space. Suppose X = T1∪ . . .∪Tn is written
as a union of constructible subsets. There exists a finite stratification X =

∐
Xi

with each Xi constructible such that each Tk is a union of strata.

Proof. By definition of constructible subsets, we can write each Ti as a finite union
of U ∩ V c with U, V ⊂ X retrocompact open. Hence we may assume that Ti =
Ui∩V ci with Ui, Vi ⊂ X retrocompact open. Let S be the finite set of closed subsets
of X consisting of ∅, X, U ci , V ci and finite intersections of these. Write S = {Zs}.
If s ∈ S, then Zs is constructible (Lemma 5.14.2). Moreover, Zs ∩ Zs′ ∈ S for all
s, s′ ∈ S. Define a partial ordering on S by inclusion. Then set Ys = Zs \

⋃
s′<s Zs′

to get the desired stratification. �

Lemma 5.27.7. Let X be a Noetherian topological space. Any finite partition of
X can be refined by a finite good stratification.

Proof. LetX =
∐
Xi be a finite partition ofX. Let Z be an irreducible component

of X. Since X =
⋃
Xi with finite index set, there is an i such that Z ⊂ Xi. Since Xi

is locally closed this implies that Z∩Xi contains an open of Z. Thus Z∩Xi contains
an open U of X (Lemma 5.8.2). Write Xi = U qX1

i qX2
i with X1

i = (Xi \U)∩U
and X2

i = (Xi \U)∩U c. For i′ 6= i we set X1
i′ = Xi′ ∩U and X2

i′ = Xi′ ∩U
c
. Then

X \ U =
∐

Xk
l

is a partition such that U \ U =
⋃
X1
l . Note that X \ U is closed and strictly

smaller than X. By Noetherian induction we can refine this partition by a finite
good stratification X \ U =

∐
α∈A Tα. Then X = U q

∐
α∈A Tα is a finite good

stratification of X refining the partition we started with. �
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CHAPTER 6

Sheaves on Spaces

6.1. Introduction

Basic properties of sheaves on topological spaces will be explained in this document.
A reference is [God73].

This will be superseded by the discussion of sheaves over sites later in the docu-
ments. But perhaps it makes sense to briefly define some of the notions here.

6.2. Basic notions

The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) Let X be a topological space. The phrase: “Let U =
⋃
i∈I Ui be an open

covering” means the following: I is a set, and for each i ∈ I we are given
an open subset Ui ⊂ X. Furthermore U is the union of the Ui. It is
allowed to have I = ∅ in which case there are no Ui and U = ∅. It is also
allowed, in case I 6= ∅ to have any or all of the Ui be empty.

(2) etc, etc.

6.3. Presheaves

Definition 6.3.1. Let X be a topological space.

(1) A presheaf F of sets on X is a rule which assigns to each open U ⊂ X a
set F(U) and to each inclusion V ⊂ U a map ρUV : F(U) → F(V ) such
that ρUU = idF(U) and whenever W ⊂ V ⊂ U we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves of sets on X is a rule which assigns
to each open U ⊂ X a map of sets ϕ : F(U) → G(U) compatible with
restriction maps, i.e., whenever V ⊂ U ⊂ X are open the diagram

F(U)
ϕ //

ρUV
��

G(U)

ρUV
��

F(V )
ϕ // G(V )

commutes.
(3) The category of presheaves of sets on X will be denoted PSh(X).

The elements of the set F(U) are called the sections of F over U . For every V ⊂ U
the map ρUV : F(U)→ F(V ) is called the restriction map. We will use the notation
s|V := ρUV (s) if s ∈ F(U). This notation is consistent with the notion of restriction
of functions from topology because if W ⊂ V ⊂ U and s is a section of F over
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U then s|W = (s|V )|W by the property of the restriction maps expressed in the
definition above.

Another notation that is often used is to indicate sections over an open U by
the symbol Γ(U,−) or by H0(U,−). In other words, the following equalities are
tautological

Γ(U,F) = F(U) = H0(U,F).

In this chapter we will not use this notation, but in others we will.

Definition 6.3.2. Let X be a topological space. Let A be a set. The constant
presheaf with value A is the presheaf that assigns the set A to every open U ⊂ X,
and such that all restriction mappings are idA.

6.4. Abelian presheaves

In this section we briefly point out some features of the category of presheaves that
allow one to define presheaves of abelian groups.

Example 6.4.1. Let X be a topological space X. Consider a rule F that associates
to every open subset a singleton set. Since every set has a unique map into a
singleton set, there exist unique restriction maps ρUV . The resulting structure is a
presheaf of sets. It is a final object in the category of presheaves of sets, by the
property of singleton sets mentioned above. Hence it is also unique up to unique
isomorphism. We will sometimes write ∗ for this presheaf.

Lemma 6.4.2. Let X be a topological space. The category of presheaves of sets on
X has products (see Categories, Definition 4.14.5). Moreover, the set of sections
of the product F ×G over an open U is the product of the sets of sections of F and
G over U .

Proof. Namely, suppose F and G are presheaves of sets on the topological space
X. Consider the rule U 7→ F(U)× G(U), denoted F × G. If V ⊂ U ⊂ X are open
then define the restriction mapping

(F × G)(U) −→ (F × G)(V )

by mapping (s, t) 7→ (s|V , t|V ). Then it is immediately clear that F×G is a presheaf.
Also, there are projection maps p : F × G → F and q : F × G → G. We leave it
to the reader to show that for any third presheaf H we have Mor(H,F × G) =
Mor(H,F)×Mor(H,G). �

Recall that if (A,+ : A× A→ A,− : A→ A, 0 ∈ A) is an abelian group, then the
zero and the negation maps are uniquely determined by the addition law. In other
words, it makes sense to say “let (A,+) be an abelian group”.

Lemma 6.4.3. Let X be a topological space. Let F be a presheaf of sets. Consider
the following types of structure on F :

(1) For every open U the structure of an abelian group on F(U) such that all
restriction maps are abelian group homomorphisms.

(2) A map of presheaves + : F×F → F , a map of presheaves − : F → F and
a map 0 : ∗ → F (see Example 6.4.1) satisfying all the axioms of +,−, 0
in a usual abelian group.
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http://stacks.math.columbia.edu/tag/006H
http://stacks.math.columbia.edu/tag/006I
http://stacks.math.columbia.edu/tag/006J


6.5. PRESHEAVES OF ALGEBRAIC STRUCTURES 207

(3) A map of presheaves + : F × F → F , a map of presheaves − : F → F
and a map 0 : ∗ → F such that for each open U ⊂ X the quadruple
(F(U),+,−, 0) is an abelian group,

(4) A map of presheaves + : F ×F → F such that for every open U ⊂ X the
map + : F(U)×F(U)→ F(U) defines the structure of an abelian group.

There are natural bijections between the collections of types of data (1) - (4) above.

Proof. Omitted. �

The lemma says that to give an abelian group object F in the category of presheaves
is the same as giving a presheaf of sets F such that all the sets F(U) are endowed
with the structure of an abelian group and such that all the restriction mappings
are group homomorphisms. For most algebra structures we will take this approach
to (pre)sheaves of such objects, i.e., we will define a (pre)sheaf of such objects to
be a (pre)sheaf F of sets all of whose sets of sections F(U) are endowed with this
structure compatibly with the restriction mappings.

Definition 6.4.4. Let X be a topological space.

(1) A presheaf of abelian groups on X or an abelian presheaf over X is a
presheaf of sets F such that for each open U ⊂ X the set F(U) is endowed
with the structure of an abelian group, and such that all restriction maps
ρUV are homomorphisms of abelian groups, see Lemma 6.4.3 above.

(2) A morphism of abelian presheaves over X ϕ : F → G is a morphism
of presheaves of sets which induces a homomorphism of abelian groups
F(U)→ G(U) for every open U ⊂ X.

(3) The category of presheaves of abelian groups on X is denoted PAb(X).

Example 6.4.5. Let X be a topological space. For each x ∈ X suppose given an
abelian group Mx. For U ⊂ X open we set

F(U) =
⊕

x∈U
Mx.

We denote a typical element in this abelian group by
∑n
i=1mxi , where xi ∈ U

and mxi ∈ Mxi . (Of course we may always choose our representation such that
x1, . . . , xn are pairwise distinct.) We define for V ⊂ U ⊂ X open a restriction
mapping F(U) → F(V ) by mapping an element s =

∑n
i=1mxi to the element

s|V =
∑
xi∈V mxi . We leave it to the reader to verify that this is a presheaf of

abelian groups.

6.5. Presheaves of algebraic structures

Let us clarify the definition of presheaves of algebraic structures. Suppose that
C is a category and that F : C → Sets is a faithful functor. Typically F is a
“forgetful” functor. For an object M ∈ Ob(C) we often call F (M) the underlying
set of the object M . If M → M ′ is a morphism in C we call F (M) → F (M ′) the
underlying map of sets. In fact, we will often not distinguish between an object
and its underlying set, and similarly for morphisms. So we will say a map of sets
F (M) → F (M ′) is a morphism of algebraic structures, if it is equal to F (f) for
some morphism f : M →M ′ in C.

In analogy with Definition 6.4.4 above a “presheaf of objects of C” could be defined
by the following data:

http://stacks.math.columbia.edu/tag/006K
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(1) a presheaf of sets F , and
(2) for every open U ⊂ X a choice of an object A(U) ∈ Ob(C)

subject to the following conditions (using the phraseology above)

(1) for every open U ⊂ X the set F(U) is the underlying set of A(U), and
(2) for every V ⊂ U ⊂ X open the map of sets ρUV : F(U) → F(V ) is a

morphism of algebraic structures.

In other words, for every V ⊂ U open in X the restriction mappings ρUV is the
image F (αUV ) for some unique morphism αUV : A(U) → A(V ) in the category C.
The uniqueness is forced by the condition that F is faithful; it also implies that
αUW = αVW ◦ αUV whenever W ⊂ V ⊂ U are open in X. The system (A(−), αUV ) is
what we will define as a presheaf with values in C on X, compare Sites, Definition
7.2.2. We recover our presheaf of sets (F , ρUV ) via the rules F(U) = F (A(U)) and
ρUV = F (αUV ).

Definition 6.5.1. Let X be a topological space. Let C be a category.

(1) A presheaf F on X with values in C is given by a rule which assigns to
every open U ⊂ X an object F(U) of C and to each inclusion V ⊂ U a
morphism ρUV : F(U) → F(V ) in C such that whenever W ⊂ V ⊂ U we
have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves with value in C is given by a
morphism ϕ : F(U)→ G(U) in C compatible with restriction morphisms.

Definition 6.5.2. Let X be a topological space. Let C be a category. Let F : C →
Sets be a faithful functor. Let F be a presheaf on X with values in C. The presheaf
of sets U 7→ F (F(U)) is called the underlying presheaf of sets of F .

It is customary to use the same letter F to denote the underlying presheaf of sets,
and this makes sense according to our discussion preceding Definition 6.5.1. In
particular, the phrase “let s ∈ F(U)” or “let s be a section of F over U” signifies
that s ∈ F (F(U)).

This notation and these definitions apply in particular to: Presheaves of (not nec-
essarily abelian) groups, rings, modules over a fixed ring, vector spaces over a fixed
field, etc and morphisms between these.

6.6. Presheaves of modules

Suppose that O is a presheaf of rings on X. We would like to define the notion of
a presheaf of O-modules over X. In analogy with Definition 6.4.4 we are tempted
to define this as a sheaf of sets F such that for every open U ⊂ X the set F(U) is
endowed with the structure of an O(U)-module compatible with restriction map-
pings (of F and O). However, it is customary (and equivalent) to define it as in
the following definition.

Definition 6.6.1. Let X be a topological space, and let O be a presheaf of rings
on X.

(1) A presheaf of O-modules is given by an abelian presheaf F together with
a map of presheaves of sets

O ×F −→ F
such that for every open U ⊂ X the map O(U) × F(U) → F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).

http://stacks.math.columbia.edu/tag/006N
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(2) A morphism ϕ : F → G of presheaves of O-modules is a morphism of
abelian presheaves ϕ : F → G such that the diagram

O ×F //

id×ϕ
��

F

ϕ

��
O × G // G

commutes.
(3) The set of O-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves of O-modules is denoted PMod(O).

Suppose that O1 → O2 is a morphism of presheaves of rings on X. In this case, if
F is a presheaf of O2-modules then we can think of F as a presheaf of O1-modules
by using the composition

O1 ×F → O2 ×F → F .

We sometimes denote this by FO1
to indicate the restriction of rings. We call this

the restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf
of O2-modules O2 ⊗p,O1

G by the rule

(O2 ⊗p,O1
G) (U) = O2(U)⊗O1(U) G(U)

The index p stands for “presheaf” and not “point”. This presheaf is called the
tensor product presheaf. We obtain the change of rings functor

PMod(O1) −→ PMod(O2)

Lemma 6.6.2. With X, O1, O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from the fact that for a ring map A→ B the restriction functor
and the change of ring functor are adjoint to each other. �

6.7. Sheaves

In this section we explain the sheaf condition.

Definition 6.7.1. Let X be a topological space.

(1) A sheaf F of sets on X is a presheaf of sets which satisfies the follow-
ing additional property: Given any open covering U =

⋃
i∈I Ui and any

collection of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I

si|Ui∩Uj = sj |Ui∩Uj
there exists a unique section s ∈ F(U) such that si = s|Ui for all i ∈ I.

(2) A morphism of sheaves of sets is simply a morphism of presheaves of sets.
(3) The category of sheaves of sets on X is denoted Sh(X).

http://stacks.math.columbia.edu/tag/006R
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Remark 6.7.2. There is always a bit of confusion as to whether it is necessary to
say something about the set of sections of a sheaf over the empty set ∅ ⊂ X. It is
necessary, and we already did if you read the definition right. Namely, note that
the empty set is covered by the empty open covering, and hence the “collection of
section si” from the definition above actually form an element of the empty product
which is the final object of the category the sheaf has values in. In other words, if
you read the definition right you automatically deduce that F(∅) = a final object,
which in the case of a sheaf of sets is a singleton. If you do not like this argument,
then you can just require that F(∅) = {∗}.

In particular, this condition will then ensure that if U, V ⊂ X are open and disjoint
then

F(U ∪ V ) = F(U)×F(V ).

(Because the fibre product over a final object is a product.)

Example 6.7.3. Let X, Y be topological spaces. Consider the rule F wich asso-
ciates to the open U ⊂ X the set

F(U) = {f : U → Y | f is continuous}

with the obvious restriction mappings. We claim that F is a sheaf. To see this
suppose that U =

⋃
i∈I Ui is an open covering, and fi ∈ F(Ui), i ∈ I with fi|Ui∩Uj =

fj |Ui∩Uj for all i, j ∈ I. In this case define f : U → Y by setting f(u) equal to the
value of fi(u) for any i ∈ I such that u ∈ Ui. This is well defined by assumption.
Moreover, f : U → Y is a map such that its restriction to Ui agrees with the
continuous map Ui. Hence clearly f is continuous!

We can use the result of the example to define constant sheaves. Namely, suppose
that A is a set. Endow A with the discrete topology. Let U ⊂ X be an open subset.
Then we have

{f : U → A | f continuous} = {f : U → A | f locally constant}.

Thus the rule which assigns to an open all locally constant maps into A is a sheaf.

Definition 6.7.4. Let X be a topological space. Let A be a set. The constant
sheaf with value A denoted A, or AX is the sheaf that assigns to an open U ⊂ X
the set of all locally constant maps U → A with restriction mappings given by
restrictions of functions.

Example 6.7.5. Let X be a topological space. Let (Ax)x∈X be a family of sets
Ax indexed by points x ∈ X. We are going to construct a sheaf of sets Π from this
data. For U ⊂ X open set

Π(U) =
∏

x∈U
Ax.

For V ⊂ U ⊂ X open define a restriction mapping by the following rule: An
element s = (ax)x∈U ∈ Π(U) restricts to s|V = (ax)x∈V . It is obvious that this
defines a presheaf of sets. We claim this is a sheaf. Namely, let U =

⋃
Ui be an

open covering. Suppose that si ∈ Π(Ui) are such that si and sj agree over Ui ∩Uj .
Write si = (ai,x)x∈Ui . The compatibility condition implies that ai,x = aj,x in the
set Ax whenever x ∈ Ui ∩ Uj . Hence there exists a unique element s = (ax)x∈U in
Π(U) =

∏
x∈U Ax with the property that ax = ai,x whenever x ∈ Ui for some i. Of

course this element s has the property that s|Ui = si for all i.
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Example 6.7.6. LetX be a topological space. Suppose for each x ∈ X we are given
an abelian group Mx. Consider the presheaf F : U 7→

⊕
x∈U Mx defined in Example

6.4.5. This is not a sheaf in general. For example, if X is an infinite set with the
discrete topology, then the sheaf condition would imply that F(X) =

∏
x∈X F({x})

but by definition we have F(X) =
⊕

x∈XMx =
⊕

x∈X F({x}). And an infinite
direct sum is in general different from an infinite direct product.

However, if X is a topological space such that every open of X is quasi-compact,
then F is a sheaf. This is left as an exercise to the reader.

6.8. Abelian sheaves

Definition 6.8.1. Let X be a topological space.

(1) An abelian sheaf on X or sheaf of abelian groups on X is an abelian
presheaf on X such that the underlying presheaf of sets is a sheaf.

(2) The category of sheaves of abelian groups is denoted Ab(X).

Let X be a topological space. In the case of an abelian presheaf F the sheaf
condition with regards to an open covering U =

⋃
Ui is often expressed by saying

that the complex of abelian groups

0→ F(U)→
∏

i
F(Ui)→

∏
(i0,i1)

F(Ui0 ∩ Ui1)

is exact. The first map is the usual one, whereas the second maps the element
(si)i∈I to the element

(si0 |Ui0∩Ui1 − si1 |Ui0∩Ui1 )(i0,i1) ∈
∏

(i0,i1)
F(Ui0 ∩ Ui1)

6.9. Sheaves of algebraic structures

Let us clarify the definition of sheaves of certain types of structures. First, let us
reformulate the sheaf condition. Namely, suppose that F is a presheaf of sets on
the topological space X. The sheaf condition can be reformulated as follows. Let
U =

⋃
i∈I Ui be an open covering. Consider the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

Here the left map is defined by the rule s 7→
∏
i∈I s|Ui . The two maps on the right

are the maps∏
i
si 7→

∏
(i0,i1)

si0 |Ui0∩Ui1 resp.
∏

i
si 7→

∏
(i0,i1)

si1 |Ui0∩Ui1 .

The sheaf condition exactly says that the left arrow is the equalizer of the right two.
This generalizes immediately to the case of presheaves with values in a category as
long as the category has products.

Definition 6.9.1. Let X be a topological space. Let C be a category with products.
A presheaf F with values in C on X is a sheaf if for every open covering the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

is an equalizer diagram in the category C.
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Suppose that C is a category and that F : C → Sets is a faithful functor. A good
example to keep in mind is the case where C is the category of abelian groups and
F is the forgetful functor. Consider a presheaf F with values in C on X. We would
like to reformulate the condition above in terms of the underlying presheaf of sets
(Definition 6.5.2). Note that the underlying presheaf of sets is a sheaf of sets if and
only if all the diagrams

F (F(U)) // ∏
i∈I F (F(Ui))

//
//
∏

(i0,i1)∈I×I F (F(Ui0 ∩ Ui1))

of sets – after applying the forgetful functor F – are equalizer diagrams! Thus we
would like C to have products and equalizers and we would like F to commute with
them. This is equivalent to the condition that C has limits and that F commutes
with them, see Categories, Lemma 4.14.10. But this is not yet good enough (see
Example 6.9.4); we also need F to reflect isomorphisms. This property means that
given a morphism f : A→ A′ in C, then f is an isomorphism if (and only if) F (f)
is a bijection.

Lemma 6.9.2. Suppose the category C and the functor F : C → Sets have the
following properties:

(1) F is faithful,
(2) C has limits and F commutes with them, and
(3) the functor F reflects isomorphisms.

Let X be a topological space. Let F be a presheaf with values in C. Then F is a
sheaf if and only if the underlying presheaf of sets is a sheaf.

Proof. Assume that F is a sheaf. Then F(U) is the equalizer of the diagram above
and by assumption we see F (F(U)) is the equalizer of the corresponding diagram
of sets. Hence F (F) is a sheaf of sets.

Assume that F (F) is a sheaf. Let E ∈ Ob(C) be the equalizer of the two parallel
arrows in Definition 6.9.1. We get a canonical morphism F(U) → E, simply be-
cause F is a presheaf. By assumption, the induced map F (F(U)) → F (E) is an
isomorphism, because F (E) is the equalizer of the corresponding diagram of sets.
Hence we see F(U)→ E is an isomorphism by condition (3) of the lemma. �

The lemma in particular applies to sheaves of groups, rings, algebras over a fixed
ring, modules over a fixed ring, vector spaces over a fixed field, etc. In other words,
these are presheaves of groups, rings, modules over a fixed ring, vector spaces over
a fixed field, etc such that the underlying presheaf of sets is a sheaf.

Example 6.9.3. Let X be a topological space. For each open U ⊂ X consider the
R-algebra C0(U) = {f : U → R | f is continuous}. There are obvious restriction
mappings that turn this into a presheaf of R-algebras over X. By Example 6.7.3
it is a sheaf of sets. Hence by the Lemma 6.9.2 it is a sheaf of R-algebras over X.

Example 6.9.4. Consider the category of topological spaces Top. There is a
natural faithful functor Top→ Sets which commutes with products and equalizers.
But it does not reflect isomorphisms. And, in fact it turns out that the analogue
of Lemma 6.9.2 is wrong. Namely, suppose X = N with the discrete topology. Let
Ai, for i ∈ N be a discrete topological space. For any subset U ⊂ N define F(U) =∏
i∈U Ai with the discrete topology. Then this is a presheaf of topological spaces

whose underlying presheaf of sets is a sheaf, see Example 6.7.5. However, if each Ai
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has at least two elements, then this is not a sheaf of topological spaces according to
Definition 6.9.1. The reader may check that putting the product topology on each
F(U) =

∏
i∈U Ai does lead to a sheaf of topological spaces over X.

6.10. Sheaves of modules

Definition 6.10.1. Let X be a topological space. Let O be a sheaf of rings on X.

(1) A sheaf of O-modules is a presheaf of O-modules F , see Definition 6.6.1,
such that the underlying presheaf of abelian groups F is a sheaf.

(2) A morphism of sheaves of O-modules is a morphism of presheaves of O-
modules.

(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of
morphism of sheaves of O-modules.

(4) The category of sheaves of O-modules is denoted Mod(O).

This definition kind of makes sense even if O is just a presheaf of rings, although
we do not know any examples where this is useful, and we will avoid using the
terminology “sheaves of O-modules” in case O is not a sheaf of rings.

6.11. Stalks

Let X be a topological space. Let x ∈ X be a point. Let F be a presheaf of sets
on X. The stalk of F at x is the set

Fx = colimx∈U F(U)

where the colimit is over the set of open neighbourhoods U of x in X. The set
of open neighbourhoods is (partially) ordered by (reverse) inclusion: We say U ≥
U ′ ⇔ U ⊂ U ′. The transition maps in the system are given by the restriction
maps of F . See Categories, Section 4.21 for notation and terminology regarding
(co)limits over systems. Note that the colimit is a directed colimit. Thus it is easy
to describe Fx. Namely,

Fx = {(U, s) | x ∈ U, s ∈ F(U)}/ ∼

with equivalence relation given by (U, s) ∼ (U ′, s′) if and only if there exists an
open U ′′ ⊂ U ∩ U ′ with x ∈ U ′′ and s|U ′′ = s′|U ′′ . By abuse of notation we will
often denote (U, s), sx, or even s the corresponding element in Fx. Also we will say
s = s′ in Fx for two local sections of F defined in an open neighbourhood of x to
denote that they have the same image in Fx.

An obvious consequence of this definition is that for any open U ⊂ X there is a
canonical map

F(U) −→
∏

x∈U
Fx

defined by s 7→
∏
x∈U (U, s). Think about it!

Lemma 6.11.1. Let F be a sheaf of sets on the topological space X. For every
open U ⊂ X the map

F(U) −→
∏

x∈U
Fx

is injective.
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Proof. Suppose that s, s′ ∈ F(U) map to the same element in every stalk Fx for
all x ∈ U . This means that for every x ∈ U , there exists an open V x ⊂ U , x ∈ V x
such that s|V x = s′|V x . But then U =

⋃
x∈U V

x is an open covering. Thus by the
uniqueness in the sheaf condition we see that s = s′. �

Definition 6.11.2. Let X be a topological space. A presheaf of sets F on X is
separated if for every open U ⊂ X the map F(U)→

∏
x∈U Fx is injective.

Another observation is that the construction of the stalk Fx is functorial in the
presheaf F . In other words, it gives a functor

PSh(X) −→ Sets, F 7−→ Fx.
This functor is called the stalk functor. Namely, if ϕ : F → G is a morphism
of presheaves, then we define ϕx : Fx → Gx by the rule (U, s) 7→ (U,ϕ(s)). To
see that this works we have to check that if (U, s) = (U ′, s′) in Fx then also
(U,ϕ(s)) = (U ′, ϕ(s′)) in Gx. This is clear since ϕ is compatible with the restriction
mappings.

Example 6.11.3. Let X be a topological space. Let A be a set. Denote temporar-
ily Ap the constant presheaf with value A (p for presheaf – not for point). There is
a canonical map of presheaves Ap → A into the constant sheaf with value A. For
every point we have canonical bijections A = (Ap)x = Ax, where the second map
is induced by functoriality from the map Ap → A.

Example 6.11.4. Suppose X = Rn with the Euclidean topology. Consider the
presheaf of C∞ functions on X, denoted C∞Rn . In other words, C∞Rn(U) is the set
of C∞-functions f : U → R. As in Example 6.7.3 it is easy to show that this is a
sheaf. In fact it is a sheaf of R-vector spaces.

Next, let x ∈ X = Rn be a point. How do we think of an element in the stalk
C∞Rn,x? Such an element is given by a C∞-function f whose domain contains x. And
a pair of such functions f , g determine the same element of the stalk if they agree
in a neighbourhood of x. In other words, an element if C∞Rn,x is the same thing as
what is sometimes called a germ of a C∞-function at x.

Example 6.11.5. Let X be a topological space. Let Ax be a set for each x ∈ X.
Consider the sheaf F : U 7→

∏
x∈U Ax of Example 6.7.5. We would just like to point

out here that the stalk Fx of F at x is in general not equal to the set Ax. Of course
there is a map Fx → Ax, but that is in general the best you can say. For example,
suppose x = limxn with xn 6= xm for all n 6= m and suppose that Ay = {0, 1}
for all y ∈ X. Then Fx maps onto the (infinite) set of tails of sequences of 0s and
1s. Namely, every open neighbourhood of x contains almost all of the xn. On the
other hand, if every neighbourhood of x contains a point y such that Ay = ∅, then
Fx = ∅.

6.12. Stalks of abelian presheaves

We first deal with the case of abelian groups as a model for the general case.

Lemma 6.12.1. Let X be a topological space. Let F be a presheaf of abelian groups
on X. There exists a unique structure of an abelian group on Fx such that for every
U ⊂ X open, x ∈ U the map F(U)→ Fx is a group homomorphism. Moreover,

Fx = colimx∈U F(U)

http://stacks.math.columbia.edu/tag/007A
http://stacks.math.columbia.edu/tag/007B
http://stacks.math.columbia.edu/tag/007C
http://stacks.math.columbia.edu/tag/007D
http://stacks.math.columbia.edu/tag/007F


6.14. STALKS OF PRESHEAVES OF MODULES 215

holds in the category of abelian groups.

Proof. We define addition of a pair of elements (U, s) and (V, t) as the pair (U ∩
V, s|U∩V + t|U∩V ). The rest is easy to check. �

What is crucial in the proof above is that the partially ordered set of open neigh-
bourhoods is a directed system (compare Categories, Definition 4.21.2). Namely,
the coproduct of two abelian groups A,B is the direct sum A ⊕ B, whereas the
coproduct in the category of sets is the disjoint union A

∐
B, showing that colimits

in the category of abelian groups do not agree with colimits in the category of sets
in general.

6.13. Stalks of presheaves of algebraic structures

The proof of Lemma 6.12.1 will work for any type of algebraic structure such that
directed colimits commute with the forgetful functor.

Lemma 6.13.1. Let C be a category. Let F : C → Sets be a functor. Assume that

(1) F is faithful, and
(2) directed colimits exist in C and F commutes with them.

Let X be a topological space. Let x ∈ X. Let F be a presheaf with values in C.
Then

Fx = colimx∈U F(U)

exists in C. Its underlying set is equal to the stalk of the underlying presheaf of
sets of F . Furthermore, the construction F 7→ Fx is a functor from the category of
presheaves with values in C to C.

Proof. Omitted. �

By the very definition, all the morphisms F(U)→ Fx are morphisms in the category
C which (after applying the forgetful functor F ) turn into the corresponding maps
for the underlying sheaf of sets. As usual we will not distinguish between the
morphism in C and the underlying map of sets, which is permitted since F is
faithful.

This lemma applies in particular to: Presheaves of (not necessarily abelian) groups,
rings, modules over a fixed ring, vector spaces over a fixed field.

6.14. Stalks of presheaves of modules

Lemma 6.14.1. Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf of O-modules. Let x ∈ X. The canonical map Ox × Fx → Fx
coming from the multiplication map O×F → F defines a Ox-module structure on
the abelian group Fx.

Proof. Omitted. �

Lemma 6.14.2. Let X be a topological space. Let O → O′ be a morphism of
presheaves of rings on X. Let F be a presheaf of O-modules. Let x ∈ X. We have

Fx ⊗Ox O′x = (F ⊗p,O O′)x
as O′x-modules.

Proof. Omitted. �
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6.15. Algebraic structures

In this section we mildly formalize the notions we have encountered in the sections
above.

Definition 6.15.1. A type of algebraic structure is given by a category C and a
functor F : C → Sets with the following properties

(1) F is faithful,
(2) C has limits and F commutes with limits,
(3) C has filtered colimits and F commutes with them, and
(4) F reflects isomorphisms.

We make this definition to point out the properties we will use in a number of
arguments below. But we will not actually study this notion in any great detail,
since we are prohibited from studying “big” categories by convention, except for
those listed in Categories, Remark 4.2.2. Among those the following have the
required properties.

Lemma 6.15.2. The following categories, endowed with the obvious forgetful func-
tor, define types of algebraic structures:

(1) The category of pointed sets.
(2) The category of abelian groups.
(3) The category of groups.
(4) The category of monoids.
(5) The category of rings.
(6) The category of R-modules for a fixed ring R.
(7) The category of Lie algebras over a fixed field.

Proof. Omitted. �

From now on we will think of a (pre)sheaf of algebraic structures and their stalks,
in terms of the underlying (pre)sheaf of sets. This is allowable by Lemmas 6.9.2
and 6.13.1.

In the rest of this section we point out some results on algebraic structures that
will be useful in the future.

Lemma 6.15.3. Let (C, F ) be a type of algebraic structure.

(1) C has a final object 0 and F (0) = {∗}.
(2) C has products and F (

∏
Ai) =

∏
F (Ai).

(3) C has fibre products and F (A×B C) = F (A)×F (B) F (C).
(4) C has equalizers, and if E → A is the equalizer of a, b : A → B, then

F (E)→ F (A) is the equalizer of F (a), F (b) : F (A)→ F (B).
(5) A→ B is a monomorphism if and only if F (A)→ F (B) is injective.
(6) if F (a) : F (A)→ F (B) is surjective, then a is an epimorphism.
(7) given A1 → A2 → A3 → . . ., then colimAi exists and F (colimAi) =

colimF (Ai), and more generally for any filtered colimit.

Proof. Omitted. The only interesting statement is (5) which follows because A→
B is a monomorphism if and only if A → A ×B A is an isomorphism, and then
applying the fact that F reflects isomorphisms. �
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Lemma 6.15.4. Let (C, F ) be a type of algebraic structure. Suppose that A,B,C ∈
Ob(C). Let f : A→ B and g : C → B be morphisms of C. If F (g) is injective, and
Im(F (f)) ⊂ Im(F (g)), then f factors as f = g ◦ t for some morphism t : A→ C.

Proof. Consider A×B C. The assumptions imply that F (A×B C) = F (A)×F (B)

F (C) = F (A). Hence A = A ×B C because F reflects isomorphisms. The result
follows. �

Example 6.15.5. The lemma will be applied often to the following situation.
Suppose that we have a diagram

A // B

��
C // D

in C. Suppose C → D is injective on underlying sets, and suppose that the compo-
sition A→ B → D has image on underlying sets in the image of C → D. Then we
get a commutative diagram

A //

��

B

��
C // D

in C.

Example 6.15.6. Let F : C → Sets be a type of algebraic structures. Let X
be a topological space. Suppose that for every x ∈ X we are given an object
Ax ∈ ob(C). Consider the presheaf Π with values in C on X defined by the rule
Π(U) =

∏
x∈U Ax (with obvious restriction mappings). Note that the associated

presheaf of sets U 7→ F (Π(U)) =
∏
x∈U F (Ax) is a sheaf by Example 6.7.5. Hence

Π is a sheaf of algebraic structures of type (C, F ). This gives many examples of
sheaves of abelian groups, groups, rings, etc.

6.16. Exactness and points

In any category we have the notion of epimorphism, monomorphism, isomorphism,
etc.

Lemma 6.16.1. Let X be a topological space. Let ϕ : F → G be a morphism of
sheaves of sets on X.

(1) The map ϕ is a monomorphism in the category of sheaves if and only if
for all x ∈ X the map ϕx : Fx → Gx is injective.

(2) The map ϕ is an epimorphism in the category of sheaves if and only if for
all x ∈ X the map ϕx : Fx → Gx is surjective.

(3) The map ϕ is an isomorphism in the category of sheaves if and only if for
all x ∈ X the map ϕx : Fx → Gx is bijective.

Proof. Omitted. �

It follows that in the category of sheaves of sets the notions epimorphism and
monomorphism can be described as follows.

Definition 6.16.2. Let X be a topological space.
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(1) A presheaf F is called a subpresheaf of a presheaf G if F(U) ⊂ G(U) for
all open U ⊂ X such that the restriction maps of G induce the restriction
maps of F . If F and G are sheaves, then F is called a subsheaf of G. We
sometimes indicate this by the notation F ⊂ G.

(2) A morphism of presheaves of sets ϕ : F → G on X is called injective if
and only if F(U)→ G(U) is injective for all U open in X.

(3) A morphism of presheaves of sets ϕ : F → G on X is called surjective if
and only if F(U)→ G(U) is surjective for all U open in X.

(4) A morphism of sheaves of sets ϕ : F → G on X is called injective if and
only if F(U)→ G(U) is injective for all U open in X.

(5) A morphism of sheaves of sets ϕ : F → G on X is called surjective if and
only if for every open U of X and every section s of G(U) there exists an
open covering U =

⋃
Ui such that s|Ui is in the image of F(Ui) → G(U)

for all i.

Lemma 6.16.3. Let X be a topological space.

(1) Epimorphisms (resp. monomorphisms) in the category of presheaves are
exactly the surjective (resp. injective) maps of presheaves.

(2) Epimorphisms (resp. monomorphisms) in the category of sheaves are ex-
actly the surjective (resp. injective) maps of sheaves, and are exactly those
maps with are surjective (resp. injective) on all the stalks.

(3) The sheafification of a surjective (resp. injective) morphism of presheaves
of sets is surjective (resp. injective).

Proof. Omitted. �

Lemma 6.16.4. let X be a topological space. Let (C, F ) be a type of algebraic
structure. Suppose that F , G are sheaves on X with values in C. Let ϕ : F → G be
a map of the underlying sheaves of sets. If for all points x ∈ X the map Fx → Gx
is a morphism of algebraic structures, then ϕ is a morphism of sheaves of algebraic
structures.

Proof. Let U be an open subset of X. Consider the diagram of (underlying) sets

F(U) //

��

∏
x∈U Fx

��
G(U) // ∏

x∈U Gx

By assumption, and previous results, all but the left vertical arrow are morphisms
of algebraic structures. In addition the bottom horizontal arrow is injective, see
Lemma 6.11.1. Hence we conclude by Lemma 6.15.4, see also Example 6.15.5 �

Short exact sequences of abelian sheaves, etc will be discussed in the chapter on
sheaves of modules. See Modules, Section 17.3.

6.17. Sheafification

In this section we explain how to get the sheafification of a presheaf on a topological
space. We will use stalks to describe the sheafification in this case. This is different
from the general procedure described in Sites, Section 7.10, and perhaps somewhat
easier to understand.
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The basic construction is the following. Let F be a presheaf of sets F on a topo-
logical space X. For every open U ⊂ X we define

F#(U) = {(su) ∈
∏

u∈U
Fu such that (∗)}

where (∗) is the property:

(∗) For every u ∈ U , there exists an open neighbourhood u ∈ V ⊂ U , and a
section σ ∈ F(V ) such that for all v ∈ V we have sv = (V, σ) in Fv.

Note that (∗) is a condition for each u ∈ U , and that given u ∈ U the truth of
this condition depends only on the values sv for v in any open neighbourhood of u.
Thus it is clear that, if V ⊂ U ⊂ X are open, the projection maps∏

u∈U
Fu −→

∏
v∈V
Fv

maps elements of F#(U) into F#(V ). In other words, we get the structure of a
presheaf of sets on F#.

Furthermore, the map F(U) →
∏
u∈U Fu described in Section 6.11 clearly has

image in F#(U). In addition, if V ⊂ U ⊂ X are open then we have the following
commutative diagram

F(U) //

��

F#(U) //

��

∏
u∈U Fu

��
F(V ) // F#(V ) // ∏

v∈V Fv

where the vertical maps are induced from the restriction mappings. Thus we see
that there is a canonical morphism of presheaves F → F#.

In Example 6.7.5 we saw that the rule Π(F) : U 7→
∏
u∈U Fu is a sheaf, with

obvious restriction mappings. And by construction F# is a subpresheaf of this. In
other words, we have morphisms of presheaves

F → F# → Π(F).

In addition the rule that associates to F the sequence above is clearly functorial in
the presheaf F . This notation will be used in the proofs of the lemmas below.

Lemma 6.17.1. The presheaf F# is a sheaf.

Proof. It is probably better for the reader to find their own explanation of this
than to read the proof here. In fact the lemma is true for the same reason as why
the presheaf of continuous function is a sheaf, see Example 6.7.3 (and this analogy
can be made precise using the “espace étalé”).

Anyway, let U =
⋃
Ui be an open covering. Suppose that si = (si,u)u∈Ui ∈ F#(Ui)

such that si and sj agree over Ui∩Uj . Because Π(F) is a sheaf, we find an element
s = (su)u∈U in

∏
u∈U Fu restricting to si on Ui. We have to check property (∗).

Pick u ∈ U . Then u ∈ Ui for some i. Hence by (∗) for si, there exists a V open,
u ∈ V ⊂ Ui and a σ ∈ F(V ) such that si,v = (V, σ) in Fv for all v ∈ V . Since
si,v = sv we get (∗) for s. �

Lemma 6.17.2. Let X be a topological space. Let F be a presheaf of sets on X.
Let x ∈ X. Then Fx = F#

x .
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Proof. The map Fx → F#
x is injective, since already the map Fx → Π(F)x is

injective. Namely, there is a canonical map Π(F)x → Fx which is a left inverse to
the map Fx → Π(F)x, see Example 6.11.5. To show that it is surjective, suppose
that s ∈ F#

x . We can find an open neighbourhood U of x such that s is the
equivalence class of (U, s) with s ∈ F#(U). By definition, this means there exists
an open neighbourhood V ⊂ U of x and a section σ ∈ F(V ) such that s|V is the
image of σ in Π(F)(V ). Clearly the class of (V, σ) defines an element of Fx mapping
to s. �

Lemma 6.17.3. Let F be a presheaf of sets on X. Any map F → G into a sheaf
of sets factors uniquely as F → F# → G.

Proof. Clearly, there is a commutative diagram

F //

��

F# //

��

Π(F)

��
G // G# // Π(G)

So it suffices to prove that G = G#. To see this it suffices to prove, for every point
x ∈ X the map Gx → G#

x is bijective, by Lemma 6.16.1. And this is Lemma 6.17.2
above. �

This lemma really says that there is an adjoint pair of functors: i : Sh(X)→ PSh(X)
(inclusion) and # : PSh(X)→ Sh(X) (sheafification). The formula is that

MorPSh(X)(F , i(G)) = MorSh(X)(F#,G)

which says that sheafification is a left adjoint of the inclusion functor. See Cate-
gories, Section 4.24.

Example 6.17.4. See Example 6.11.3 for notation. The map Ap → A induces
a map A#

p → A. It is easy to see that this is an isomorphism. In words: The
sheafification of the constant presheaf with value A is the constant sheaf with value
A.

Lemma 6.17.5. Let X be a topological space. A presheaf F is separated (see
Definition 6.11.2) if and only if the canonical map F → F# is injective.

Proof. This is clear from the construction of F# in this section. �

6.18. Sheafification of abelian presheaves

The following strange looking lemma is likely unnecessary, but very convenient to
deal with sheafification of presheaves of algebraic structures.

Lemma 6.18.1. Let X be a topological space. Let F be a presheaf of sets on X.
Let U ⊂ X be open. There is a canonical fibre product diagram

F#(U)

��

// Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

where the maps are the following:
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(1) The left vertical map has components F#(U) → F#
x = Fx where the

equality is Lemma 6.17.2.
(2) The top horizontal map comes from the map of presheaves F → Π(F)

described in Section 6.17.
(3) The right vertical map has obvious component maps Π(F)(U)→ Π(F)x.
(4) The bottom horizontal map has components Fx → Π(F)x which come

from the map of presheaves F → Π(F) described in Section 6.17.

Proof. It is clear that the diagram commutes. We have to show it is a fibre product
diagram. The bottom horizontal arrow is injective since all the maps Fx → Π(F)x
are injective (see beginning proof of Lemma 6.17.2). A section s ∈ Π(F)(U) is in
F# if and only if (∗) holds. But (∗) says that around every point the section s
comes from a section of F . By definition of the stalk functors, this is equivalent to
saying that the value of s in every stalk Π(F)x comes from an element of the stalk
Fx. Hence the lemma. �

Lemma 6.18.2. Let X be a topological space. Let F be an abelian presheaf on X.
Then there exists a unique structure of abelian sheaf on F# such that F → F#

is a morphism of abelian presheaves. Moreover, the following adjointness property
holds

MorPAb(X)(F , i(G)) = MorAb(X)(F#,G).

Proof. Recall the sheaf of sets Π(F) defined in Section 6.17. All the stalks Fx
are abelian groups, see Lemma 6.12.1. Hence Π(F) is a sheaf of abelian groups by
Example 6.15.6. Also, it is clear that the map F → Π(F) is a morphism of abelian
presheaves. If we show that condition (∗) of Section 6.17 defines a subgroup of
Π(F)(U) for all open subsets U ⊂ X, then F# canonically inherits the structure
of abelian sheaf. This is quite easy to do by hand, and we leave it to the reader
to find a good simple argument. The argument we use here, which generalizes to
presheaves of algebraic structures is the following: Lemma 6.18.1 show that F#(U)
is the fibre product of a diagram of abelian groups. Thus F# is an abelian subgroup
as desired.

Note that at this point F#
x is an abelian group by Lemma 6.12.1 and that Fx → F#

x

is a bijection (Lemma 6.17.2) and a homomorphism of abelian groups. Hence
Fx → F#

x is an isomorphism of abelian groups. This will be used below without
further mention.

To prove the adjointness property we use the adjointness property of sheafification
of presheaves of sets. For example if ψ : F → i(G) is morphism of presheaves then
we obtain a morphism of sheaves ψ′ : F# → G. What we have to do is to check
that this is a morphism of abelian sheaves. We may do this for example by noting
that it is true on stalks, by Lemma 6.17.2, and then using Lemma 6.16.4 above. �

6.19. Sheafification of presheaves of algebraic structures

Lemma 6.19.1. Let X be a topological space. Let (C, F ) be a type of algebraic
structure. Let F be a presheaf with values in C on X. Then there exists a sheaf F#

with values in C and a morphism F → F# of presheaves with values in C with the
following properties:

(1) The map F → F# identifies the underlying sheaf of sets of F# with the
sheafification of the underlying presheaf of sets of F .
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(2) For any morphism F → G, where G is a sheaf with values in C there exists
a unique factorization F → F# → G.

Proof. The proof is the same as the proof of Lemma 6.18.2, with repeated appli-
cation of Lemma 6.15.4 (see also Example 6.15.5). The main idea however, is to
define F#(U) as the fibre product in C of the diagram

Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

compare Lemma 6.18.1. �

6.20. Sheafification of presheaves of modules

Lemma 6.20.1. Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf O-modules. Let O# be the sheafification of O. Let F# be the
sheafification of F as a presheaf of abelian groups. There exists a map of sheaves
of sets

O# ×F# −→ F#

which makes the diagram

O ×F //

��

F

��
O# ×F# // F#

commute and which makes F# into a sheaf of O#-modules. In addition, if G is
a sheaf of O#-modules, then any morphism of presheaves of O-modules F → G
(into the restriction of G to a O-module) factors uniquely as F → F# → G where
F# → G is a morphism of O#-modules.

Proof. Omitted. �

This actually means that the functor i : Mod(O#)→ PMod(O) (combining restric-
tion and including sheaves into presheaves) and the sheafification functor of the
lemma # : PMod(O)→ Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)

Let X be a topological space. Let O1 → O2 be a morphism of sheaves of rings on
X. In Section 6.6 we defined a restriction functor and a change of rings functor on
presheaves of modules associated to this situation.

If F is a sheaf of O2-modules then the restriction FO1
of F is clearly a sheaf of

O1-modules. We obtain the restriction functor

Mod(O2) −→ Mod(O1)

On the other hand, given a sheaf of O1-modules G the presheaf of O2-modules
O2 ⊗p,O1

G is in general not a sheaf. Hence we define the tensor product sheaf
O2 ⊗O1 G by the formula

O2 ⊗O1
G = (O2 ⊗p,O1

G)#
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as the sheafification of our construction for presheaves. We obtain the change of
rings functor

Mod(O1) −→ Mod(O2)

Lemma 6.20.2. With X, O1, O2, F and G as above there exists a canonical
bijection

HomO1
(G,FO1

) = HomO2
(O2 ⊗O1

G,F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from Lemma 6.6.2 and the fact that HomO2
(O2 ⊗O1

G,F) =
HomO2

(O2 ⊗p,O1
G,F) because F is a sheaf. �

Lemma 6.20.3. Let X be a topological space. Let O → O′ be a morphism of
sheaves of rings on X. Let F be a sheaf O-modules. Let x ∈ X. We have

Fx ⊗Ox O′x = (F ⊗O O′)x
as O′x-modules.

Proof. Follows directly from Lemma 6.14.2 and the fact that taking stalks com-
mutes with sheafification. �

6.21. Continuous maps and sheaves

Let f : X → Y be a continuous map of topological spaces. We will define the
pushforward and pullback functors for presheaves and sheaves.

Let F be a presheaf of sets on X. We define the pushforward of F by the rule

f∗F(V ) = F(f−1(V ))

for any open V ⊂ Y . Given V1 ⊂ V2 ⊂ Y open the restriction map is given by the
commutativity of the diagram

f∗F(V2)

��

F(f−1(V2))

restriction for F
��

f∗F(V1) F(f−1(V1))

It is clear that this defines a presheaf of sets. The construction is clearly functorial
in the presheaf F and hence we obtain a functor

f∗ : PSh(X) −→ PSh(Y ).

Lemma 6.21.1. Let f : X → Y be a continuous map. Let F be a sheaf of sets on
X. Then f∗F is a sheaf on Y .

Proof. This immediately follows from the fact that if V =
⋃
Vj is an open covering

in Y , then f−1(V ) =
⋃
f−1(Vj) is an open covering in X. �

As a consequence we obtain a functor

f∗ : Sh(X) −→ Sh(Y ).

This is compatible with composition in the following strong sense.
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Lemma 6.21.2. Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal (on both presheaves and sheaves
of sets).

Proof. This is because (g ◦ f)∗F(W ) = F((g ◦ f)−1W ) and (g∗ ◦ f∗)F(W ) =
F(f−1g−1W ) and (g ◦ f)−1W = f−1g−1W . �

Let G be a presheaf of sets on Y . The pullback presheaf fpG of a given presheaf G
is defined as the left adjoint of the pushforward f∗ on presheaves. In other words
it should be a presheaf fpG on X such that

MorPSh(X)(fpG,F) = MorPSh(Y )(G, f∗F).

By the Yoneda lemma this determines the pullback uniquely. It turns out that it
actually exists.

Lemma 6.21.3. Let f : X → Y be a continuous map. There exists a functor
fp : PSh(Y )→ PSh(X) which is left adjoint to f∗. For a presheaf G it is determined
by the rule

fpG(U) = colimf(U)⊂V G(V )

where the colimit is over the collection of open neighbourhoods V of f(U) in Y .
The colimits are over directed partially ordered sets. (The restriction mappings of
fpG are explained in the proof.)

Proof. The colimit is over the partially ordered set consisting of open subset V ⊂ Y
which contain f(U) with ordering by reverse inclusion. This is a directed partially
ordered set, since if V, V ′ are in it then so is V ∩V ′. Furthermore, if U1 ⊂ U2, then
every open neighbourhood of f(U2) is an open neighbourhood of f(U1). Hence the
system defining fpG(U2) is a subsystem of the one defining fpG(U1) and we obtain
a restriction map (for example by applying the generalities in Categories, Lemma
4.14.7).

Note that the construction of the colimit is clearly functorial in G, and similarly for
the restriction mappings. Hence we have defined fp as a functor.

A small useful remark is that there exists a canonical map G(U) → fpG(f−1(U)),
because the system of open neighbourhoods of f(f−1(U)) contains the element U .
This is compatible with restriction mappings. In other words, there is a canonical
map iG : G → f∗fpG.

Let F be a presheaf of sets on X. Suppose that ψ : fpG → F is a map of presheaves
of sets. The corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F .

Another small useful remark is that there exists a canonical map cF : fpf∗F → F .
Namely, let U ⊂ X open. For every open neighbourhood V ⊃ f(U) in Y there exists
a map f∗F(V ) = F(f−1(V ))→ F(U), namely the restriction map on F . And this
is compatible with the restriction mappings between values of F on f−1 of varying
opens containing f(U). Thus we obtain a canonical map fpf∗F(U) → F(U).
Another trivial verification shows that these maps are compatible with restriction
maps and define a map cF of presheaves of sets.

Suppose that ϕ : G → f∗F is a map of presheaves of sets. Consider fpϕ : fpG →
fpf∗F . Postcomposing with cF gives the desired map cF ◦ fpϕ : fpG → F . We
omit the verification that this construction is inverse to the construction in the
other direction given above. �
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Lemma 6.21.4. Let f : X → Y be a continuous map. Let x ∈ X. Let G be a
presheaf of sets on Y . There is a canonical bijection of stalks (fpG)x = Gf(x).

Proof. This you can see as follows

(fpG)x = colimx∈U fpG(U)

= colimx∈U colimf(U)⊂V G(V )

= colimf(x)∈V G(V )

= Gf(x)

Here we have used Categories, Lemma 4.14.9, and the fact that any V open in Y
containing f(x) occurs in the third description above. Details omitted. �

Let G be a sheaf of sets on Y . The pullback sheaf f−1G is defined by the formula

f−1G = (fpG)#.

Sheafification is a left adjoint to the inclusion of sheaves in presheaves, and fp is a
left adjoint to f∗ on presheaves. As a formal consequence we obtain that f−1 is a
left adjoint of pushforward on sheaves. In other words,

MorSh(X)(f
−1G,F) = MorSh(Y )(G, f∗F).

The formal argument is given in the setting of abelian sheaves in the next section.

Lemma 6.21.5. Let x ∈ X. Let G be a sheaf of sets on Y . There is a canonical
bijection of stalks (f−1G)x = Gf(x).

Proof. This is a combination of Lemmas 6.17.2 and 6.21.4. �

Lemma 6.21.6. Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)−1 and f−1 ◦ g−1 are canonically isomorphic. Similarly
(g ◦ f)p ∼= fp ◦ gp on presheaves.

Proof. To see this use that adjoint functors are unique up to unique isomorphism,
and Lemma 6.21.2. �

Definition 6.21.7. Let f : X → Y be a continuous map. Let F be a sheaf of sets
on X and let G be a sheaf of sets on Y . An f -map ξ : G → F is a collection of
maps ξV : G(V )→ F(f−1(V )) indexed by open subsets V ⊂ Y such that

G(V )
ξV

//

restriction of G
��

F(f−1V )

restriction of F
��

G(V ′)
ξV ′ // F(f−1V ′)

commutes for all V ′ ⊂ V ⊂ Y open.

Lemma 6.21.8. Let f : X → Y be a continuous map. Let F be a sheaf of sets
on X and let G be a sheaf of sets on Y . There are canonical bijections between the
following three sets:

(1) The set of maps G → f∗F .
(2) The set of maps f−1G → F .
(3) The set of f -maps ξ : G → F .

Proof. We leave the easy verification to the reader. �
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It is sometimes convenient to think about f -maps instead of maps between sheaves
either on X or on Y . We define composition of f -maps as follows.

Definition 6.21.9. Suppose that f : X → Y and g : Y → Z are continuous maps
of topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y , and H
is a sheaf on Z. Let ϕ : G → F be an f -map. Let ψ : H → G be an g-map. The
composition of ϕ and ψ is the (g ◦ f)-map ϕ ◦ ψ defined by the commutativity of
the diagrams

H(W )
(ϕ◦ψ)W

//

ψW %%

F(f−1g−1W )

G(g−1W )

ϕg−1W

77

We leave it to the reader to verify that this works. Another way to think about
this is to think of ϕ ◦ ψ as the composition

H ψ−→ g∗G
g∗ϕ−−→ g∗f∗F = (g ◦ f)∗F

Now, doesn’t it seem that thinking about f -maps is somehow easier?

Finally, given a continuous map f : X → Y , and an f -map ϕ : G → F there is a
natural map on stalks

ϕx : Gf(x) −→ Fx
for all x ∈ X. The image of a representative (V, s) of an element in Gf(x) is mapped

to the element in Fx with representative (f−1V, ϕV (s)). We leave it to the reader
to see that this is well defined. Another way to state it is that it is the unique map
such that all diagrams

F(f−1V ) // Fx

G(V ) //

ϕV

OO

Gf(x)

ϕx

OO

(for x ∈ V ⊂ Y open) commute.

Lemma 6.21.10. Suppose that f : X → Y and g : Y → Z are continuous maps of
topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y , and H is a
sheaf on Z. Let ϕ : G → F be an f -map. Let ψ : H → G be an g-map. Let x ∈ X
be a point. The map on stalks (ϕ ◦ ψ)x : Hg(f(x)) → Fx is the composition

Hg(f(x))

ψf(x)−−−→ Gf(x)
ϕx−−→ Fx

Proof. Immediate from Definition 6.21.9 and the definition of the map on stalks
above. �

6.22. Continuous maps and abelian sheaves

Let f : X → Y be a continuous map. We claim there are functors

f∗ : PAb(X) −→ PAb(Y )

f∗ : Ab(X) −→ Ab(Y )

fp : PAb(Y ) −→ PAb(X)

f−1 : Ab(Y ) −→ Ab(X)
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with similar properties to their counterparts in Section 6.21. To see this we argue
in the following way.

Each of the functors will be constructed in the same way as the corresponding
functor in Section 6.21. This works because all the colimits in that section are
directed colimits (but we will work through it below).

First off, given an abelian presheaf F on X and an abelian presheaf G on Y we
define

f∗F(V ) = F(f−1(V ))

fpG(U) = colimf(U)⊂V G(V )

as abelian groups. The restriction mappings are the same as the restriction map-
pings for presheaves of sets (and they are all homomorphisms of abelian groups).

The assignments F 7→ f∗F and G → fpG are functors on the categories of presheaves
of abelian groups. This is clear, as (for example) a map of abelian presheaves
G1 → G2 gives rise to a map of directed systems {G1(V )}f(U)⊂V → {G2(V )}f(U)⊂V
all of whose maps are homomorphisms and hence gives rise to a homomorphism of
abelian groups fpG1(U)→ fpG2(U).

The functors f∗ and fp are adjoint on the category of presheaves of abelian groups,
i.e., we have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).

To prove this, note that the map iG : G → f∗fpG from the proof of Lemma 6.21.3 is
a map of abelian presheaves. Hence if ψ : fpG → F is a map of abelian presheaves,
then the corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F
is also a map of abelian presheaves. For the other direction we point out that
the map cF : fpf∗F → F from the proof of Lemma 6.21.3 is a map of abelian
presheaves as well (since it is made out of restriction mappings of F which are all
homomorphisms). Hence given a map of abelian presheaves ϕ : G → f∗F the map
cF ◦fpϕ : fpG → F is a map of abelian presheaves as well. Since these constructions
ψ 7→ f∗ψ and ϕ 7→ cF ◦ fpϕ are inverse to each other as constructions on maps
of presheaves of sets we see they are also inverse to each other on maps of abelian
presheaves.

If F is an abelian sheaf on Y , then f∗F is an abelian sheaf on X. This is true
because of the definition of an abelian sheaf and because this is true for sheaves
of sets, see Lemma 6.21.1. This defines the functor f∗ on the category of abelian
sheaves.

We define f−1G = (fpG)# as before. Adjointness of f∗ and f−1 follows formally as
in the case of presheaves of sets. Here is the argument:

MorAb(X)(f
−1G,F) = MorPAb(X)(fpG,F)

= MorPAb(Y )(G, f∗F)

= MorAb(Y )(G, f∗F)

Lemma 6.22.1. Let f : X → Y be a continuous map.

(1) Let G be an abelian presheaf on Y . Let x ∈ X. The bijection Gf(x) →
(fpG)x of Lemma 6.21.4 is an isomorphism of abelian groups.

(2) Let G be an abelian sheaf on Y . Let x ∈ X. The bijection Gf(x) → (f−1G)x
of Lemma 6.21.5 is an isomorphism of abelian groups.
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Proof. Omitted. �

Given a continuous map f : X → Y and sheaves of abelian groups F on X, G
on Y , the notion of an f -map G → F of sheaves of abelian groups makes sense.
We can just define it exactly as in Definition 6.21.7 (replacing maps of sets with
homomorphisms of abelian groups) or we can simply say that it is the same as a
map of abelian sheaves G → f∗F . We will use this notion freely in the following.
The group of f -maps between G and F will be in canonical bijection with the groups
MorAb(X)(f

−1G,F) and MorAb(Y )(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -
maps of sheaves of sets. In addition, given an f -map G → F as above, the induced
maps on stalks

ϕx : Gf(x) −→ Fx

are abelian group homomorphisms.

6.23. Continuous maps and sheaves of algebraic structures

Let (C, F ) be a type of algebraic structure. For a topological space X let us intro-
duce the notation:

(1) PSh(X, C) will be the category of presheaves with values in C.
(2) Sh(X, C) will be the category of sheaves with values in C.

Let f : X → Y be a continuous map of topological spaces. The same arguments as
in the previous section show there are functors

f∗ : PSh(X, C) −→ PSh(Y, C)
f∗ : Sh(X, C) −→ Sh(Y, C)
fp : PSh(Y, C) −→ PSh(X, C)
f−1 : Sh(Y, C) −→ Sh(X, C)

constructed in the same manner and with the same properties as the functors
constructed for abelian (pre)sheaves. In particular there are commutative diagrams

PSh(X, C)
f∗ //

F

��

PSh(Y, C)

F

��

Sh(X, C)
f∗ //

F

��

Sh(Y, C)

F

��
PSh(X)

f∗ // PSh(Y ) Sh(X)
f∗ // Sh(Y )

PSh(Y, C)
fp //

F

��

PSh(X, C)

F

��

Sh(Y, C)
f−1

//

F

��

Sh(X, C)

F

��
PSh(Y )

fp // PSh(X) Sh(Y )
f−1

// Sh(X)
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The main formulas to keep in mind are the following

f∗F(V ) = F(f−1(V ))

fpG(U) = colimf(U)⊂V G(V )

f−1G = (fpG)#

(fpG)x = Gf(x)

(f−1G)x = Gf(x)

Each of these formulas has the property that they hold in the category C and that
upon taking underlying sets we get the corresponding formula for presheaves of
sets. In addition we have the adjointness properties

MorPSh(X,C)(fpG,F) = MorPSh(Y,C)(G, f∗F)

MorSh(X,C)(f
−1G,F) = MorSh(Y,C)(G, f∗F).

To prove these, the main step is to construct the maps

iG : G −→ f∗fpG

and

cF : fpf∗F −→ F
which occur in the proof of Lemma 6.21.3 as morphisms of presheaves with values
in C. This may be safely left to the reader since the constructions are exactly the
same as in the case of presheaves of sets.

Given a continuous map f : X → Y and sheaves of algebraic structures F on X,
G on Y , the notion of an f -map G → F of sheaves of algebraic structures makes
sense. We can just define it exactly as in Definition 6.21.7 (replacing maps of sets
with morphisms in C) or we can simply say that it is the same as a map of sheaves
of algebraic structures G → f∗F . We will use this notion freely in the following.
The set of f -maps between G and F will be in canonical bijection with the sets
MorSh(X,C)(f

−1G,F) and MorSh(Y,C)(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -
maps of sheaves of sets. In addition, given an f -map G → F as above, the induced
maps on stalks

ϕx : Gf(x) −→ Fx
are homomorphisms of algebraic structures.

Lemma 6.23.1. Let f : X → Y be a continuous map of topological spaces. Suppose
given sheaves of algebraic structures F on X, G on Y . Let ϕ : G → F be an
f -map of underlying sheaves of sets. If for every V ⊂ Y open the map of sets
ϕV : G(V )→ F(f−1V ) is the effect of a morphism in C on underlying sets, then ϕ
comes from a unique f -morphism between sheaves of algebraic structures.

Proof. Omitted. �

6.24. Continuous maps and sheaves of modules

The case of sheaves of modules is more complicated. The reason is that the natural
setting for defining the pullback and pushforward functors, is the setting of ringed
spaces, which we will define below. First we state a few obvious lemmas.
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Lemma 6.24.1. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

f∗O × f∗F −→ f∗F

which turns f∗F into a presheaf of f∗O-modules. This construction is functorial in
F .

Proof. Let V ⊂ Y is open. We define the map of the lemma to be the map

f∗O(V )× f∗F(V ) = O(f−1V )×F(f−1V )→ F(f−1V ) = f∗F(V ).

Here the arrow in the middle is the multiplication map on X. We leave it to the
reader to see this is compatible with restriction mappings and defines a structure
of f∗O-module on f∗F . �

Lemma 6.24.2. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y . Let G be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

fpO × fpG −→ fpG

which turns fpG into a presheaf of fpO-modules. This construction is functorial in
G.

Proof. Let U ⊂ X is open. We define the map of the lemma to be the map

fpO(U)× fpG(U) = colimf(U)⊂V O(V )× colimf(U)⊂V G(V )

= colimf(U)⊂V (O(V )× G(V ))

→ colimf(U)⊂V G(V )

= fpG(U).

Here the arrow in the middle is the multiplication map on Y . The second equality
holds because directed colimits commute with finite limits, see Categories, Lemma
4.19.2. We leave it to the reader to see this is compatible with restriction mappings
and defines a structure of fpO-module on fpG. �

Let f : X → Y be a continuous map. Let OX be a presheaf of rings on X and let
OY be a presheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)

fp : PMod(OY ) −→ PMod(fpOY )

These satisfy some compatibilities as follows.

Lemma 6.24.3. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y . Let G be a presheaf of O-modules. Let F be a presheaf
of fpO-modules. Then

MorPMod(fpO)(fpG,F) = MorPMod(O)(G, f∗F).

Here we use Lemmas 6.24.2 and 6.24.1, and we think of f∗F as an O-module via
the map iO : O → f∗fpO (defined first in the proof of Lemma 6.21.3).
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Proof. Note that we have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).

according to Section 6.22. So what we have to prove is that under this correspon-
dence, the subsets of module maps correspond. In addition, the correspondence is
determined by the rule

(ψ : fpG → F) 7−→ (f∗ψ ◦ iG : G → f∗F)

and in the other direction by the rule

(ϕ : G → f∗F) 7−→ (cF ◦ fpϕ : fpG → F)

where iG and cF are as in Section 6.22. Hence, using the functoriality of f∗ and fp
we see that it suffices to check that the maps iG : G → f∗fpG and cF : fpf∗F → F
are compatible with module structures, which we leave to the reader. �

Lemma 6.24.4. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. Let G be a presheaf
of f∗O-modules. Then

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(f∗O)(G, f∗F).

Here we use Lemmas 6.24.2 and 6.24.1, and we use the map cO : fpf∗O → O in
the definition of the tensor product.

Proof. This follows from the equalities

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(fpf∗O)(fpG,Ffpf∗O)

= MorPMod(f∗O)(G, f∗(Ffpf∗O))

= MorPMod(f∗O)(G, f∗F).

The first equality is Lemma 6.6.2. The second equality is Lemma 6.24.3. The third
equality is given by the equality f∗(Ffpf∗O) = f∗F of abelian sheaves which is
f∗O-linear. Namely, idf∗O corresponds to cO under the adjunction described in the
proof of Lemma 6.21.3 and thus idf∗O = f∗cO ◦ if∗O. �

Lemma 6.24.5. Let f : X → Y be a continuous map of topological spaces. Let O
be a sheaf of rings on X. Let F be a sheaf of O-modules. The pushforward f∗F ,
as defined in Lemma 6.24.1 is a sheaf of f∗O-modules.

Proof. Obvious from the definition and Lemma 6.21.1. �

Lemma 6.24.6. Let f : X → Y be a continuous map of topological spaces. Let O
be a sheaf of rings on Y . Let G be a sheaf of O-modules. There is a natural map
of underlying presheaves of sets

f−1O × f−1G −→ f−1G
which turns f−1G into a sheaf of f−1O-modules.

Proof. Recall that f−1 is defined as the composition of the functor fp and sheafifi-
cation. Thus the lemma is a combination of Lemma 6.24.2 and Lemma 6.20.1. �

Let f : X → Y be a continuous map. Let OX be a sheaf of rings on X and let OY
be a sheaf of rings on Y . So now we have defined functors

f∗ : Mod(OX) −→ Mod(f∗OX)

f−1 : Mod(OY ) −→ Mod(f−1OY )
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These satisfy some compatibilities as follows.

Lemma 6.24.7. Let f : X → Y be a continuous map of topological spaces. Let
O be a sheaf of rings on Y . Let G be a sheaf of O-modules. Let F be a sheaf of
f−1O-modules. Then

MorMod(f−1O)(f
−1G,F) = MorMod(O)(G, f∗F).

Here we use Lemmas 6.24.6 and 6.24.5, and we think of f∗F as an O-module by
restriction via O → f∗f

−1O.

Proof. Argue by the equalities

MorMod(f−1O)(f
−1G,F) = MorMod(fpO)(fpG,F)

= MorMod(O)(G, f∗F).

where the second is Lemmas 6.24.3 and the first is by Lemma 6.20.1. �

Lemma 6.24.8. Let f : X → Y be a continuous map of topological spaces. Let
O be a sheaf of rings on X. Let F be a sheaf of O-modules. Let G be a sheaf of
f∗O-modules. Then

MorMod(O)(O ⊗f−1f∗O f
−1G,F) = MorMod(f∗O)(G, f∗F).

Here we use Lemmas 6.24.6 and 6.24.5, and we use the canonical map f−1f∗O → O
in the definition of the tensor product.

Proof. This follows from the equalities

MorMod(O)(O ⊗f−1f∗O f
−1G,F) = MorMod(f−1f∗O)(f

−1G,Ff−1f∗O)

= MorMod(f∗O)(G, f∗F).

which are a combination of Lemma 6.20.2 and 6.24.7. �

Let f : X → Y be a continuous map. Let OX be a (pre)sheaf of rings on X and
let OY be a (pre)sheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)

f∗ : Mod(OX) −→ Mod(f∗OX)

fp : PMod(OY ) −→ PMod(fpOY )

f−1 : Mod(OY ) −→ Mod(f−1OY )

Clearly, usually the pair of functors (f∗, f
−1) on sheaves of modules are not adjoint,

because their target categories do not match. Namely, as we saw above, it works
only if by some miracle the sheaves of rings OX ,OY satisfy the relations OX =
f−1OY and OY = f∗OX . This is almost never true in practice. We interrupt the
discussion to define the correct notion of morphism for which a suitable adjoint pair
of functors on sheaves of modules exists.

6.25. Ringed spaces

Let X be a topological space and let OX be a sheaf of rings on X. We are supposed
to think of the sheaf of rings OX as a sheaf of functions on X. And if f : X → Y
is a “suitable” map, then by composition a function on Y turns into a function on
X. Thus there should be a natural f -map from OY to OX See Definition 6.21.7,
and the remarks in previous sections for terminology. For a precise example, see
Example 6.25.2 below. Here is the relevant abstract definition.

http://stacks.math.columbia.edu/tag/008Y
http://stacks.math.columbia.edu/tag/008Z


6.26. MORPHISMS OF RINGED SPACES AND MODULES 233

Definition 6.25.1. A ringed space is a pair (X,OX) consisting of a topological
space X and a sheaf of rings OX on X. A morphism of ringed spaces (X,OX) →
(Y,OY ) is a pair consisting of a continuous map f : X → Y and an f -map of
sheaves of rings f ] : OY → OX .

Example 6.25.2. Let f : X → Y be a continuous map of topological spaces.
Consider the sheaves of continuous real valued functions C0

X on X and C0
Y on Y , see

Example 6.9.3. We claim that there is a natural f -map f ] : C0
Y → C0

X associated
to f . Namely, we simply define it by the rule

C0
Y (V ) −→ C0

X(f−1V )

h 7−→ h ◦ f

Strictly speaking we should write f ](h) = h ◦ f |f−1(V ). It is clear that this is a
family of maps as in Definition 6.21.7 and compatible with the R-algebra structures.
Hence it is an f -map of sheaves of R-algebras, see Lemma 6.23.1.

Of course there are lots of other situations where there is a canonical morphism of
ringed spaces associated to a geometrical type of morphism. For example, if M , N
are C∞-manifolds and f : M → N is a infinitely differentiable map, then f induces a
canonical morphism of ringed spaces (M, C∞M )→ (N, C∞N ). The construction (which
is identical to the above) is left to the reader.

It may not be completely obvious how to compose morphisms of ringed spaces hence
we spell it out here.

Definition 6.25.3. Let (f, f ]) : (X,OX) → (Y,OY ) and (g, g]) : (Y,OY ) →
(Z,OZ) be morphisms of ringed spaces. Then we define the composition of mor-
phisms of ringed spaces by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).

Here we use composition of f -maps defined in Definition 6.21.9.

6.26. Morphisms of ringed spaces and modules

We have now introduced enough notation so that we are able to define the pullback
and pushforward of modules along a morphism of ringed spaces.

Definition 6.26.1. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed
spaces.

(1) Let F be a sheaf of OX -modules. We define the pushforward of F as the
sheaf of OY -modules which as a sheaf of abelian groups equals f∗F and
with module structure given by the restriction via f ] : OY → f∗OX of
the module structure given in Lemma 6.24.5.

(2) Let G be a sheaf of OY -modules. We define the pullback f∗G to be the
sheaf of OX -modules defined by the formula

f∗G = OX ⊗f−1OY f
−1G

where the ring map f−1OY → OX is the map corresponding to f ], and
where the module structure is given by Lemma 6.24.6.
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Thus we have defined functors

f∗ : Mod(OX) −→ Mod(OY )

f∗ : Mod(OY ) −→ Mod(OX)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 6.26.2. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX-modules. Let G be a sheaf of OY -modules. There is a
canonical bijection

HomOX (f∗G,F) = HomOY (G, f∗F).

In other words: the functor f∗ is the left adjoint to f∗.

Proof. This follows from the work we did before:

HomOX (f∗G,F) = MorMod(OX)(OX ⊗f−1OY f
−1G,F)

= MorMod(f−1OY )(f
−1G,Ff−1OY )

= HomOY (G, f∗F).

Here we use Lemmas 6.20.2 and 6.24.7. �

Lemma 6.26.3. Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal. There is a canonical isomorphism of
functors (g ◦ f)∗ ∼= f∗ ◦ g∗.

Proof. The result on pushforwards is a consequence of Lemma 6.21.2 and our
definitions. The result on pullbacks follows from this by the same argument as in
the proof of Lemma 6.21.6. �

Given a morphism of ringed spaces (f, f ]) : (X,OX) → (Y,OY ), and a sheaf of
OX -modules F , a sheaf of OY -modules G on Y , the notion of an f -map ϕ : G → F
of sheaves of modules makes sense. We can just define it as an f -map ϕ : G → F
of abelian sheaves such that for all open V ⊂ Y the map

G(V ) −→ F(f−1V )

is an OY (V )-module map. Here we think of F(f−1V ) as an OY (V )-module via

the map f ]V : OY (V ) → OX(f−1V ). The set of f -maps between G and F will be
in canonical bijection with the sets MorMod(OX)(f

∗G,F) and MorMod(OY )(G, f∗F).
See above.

Composition of f -maps is defined in exactly the same manner as in the case of
f -maps of sheaves of sets. In addition, given an f -map G → F as above, and x ∈ X
the induced map on stalks

ϕx : Gf(x) −→ Fx
is an OY,f(x)-module map where the OY,f(x)-module structure on Fx comes from

the OX,x-module structure via the map f ]x : OY,f(x) → OX,x. Here is a related
lemma.

Lemma 6.26.4. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let G be a sheaf of OY -modules. Let x ∈ X. Then

(f∗G)x = Gf(x) ⊗OY,f(x)
OX,x

as OX,x-modules where the tensor product on the right uses f ]x : OY,f(x) → OX,x.
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Proof. This follows from Lemma 6.20.3 and the identification of the stalks of
pullback sheaves at x with the corresponding stalks at f(x). See the formulae in
Section 6.23 for example. �

6.27. Skyscraper sheaves and stalks

Definition 6.27.1. Let X be a topological space.

(1) Let x ∈ X be a point. Denote ix : {x} → X the inclusion map. Let A be
a set and think of A as a sheaf on the one point space {x}. We call ix,∗A
the skyscraper sheaf at x with value A.

(2) If in (1) above A is an abelian group then we think of ix,∗A as a sheaf of
abelian groups on X.

(3) If in (1) above A is an algebraic structure then we think of ix,∗A as a sheaf
of algebraic structures.

(4) If (X,OX) is a ringed space, then we think of ix : {x} → X as a morphism
of ringed spaces ({x},OX,x)→ (X,OX) and if A is a OX,x-module, then
we think of ix,∗A as a sheaf of OX -modules.

(5) We say a sheaf of sets F is a skyscraper sheaf if there exists an point x of
X and a set A such that F ∼= ix,∗A.

(6) We say a sheaf of abelian groups F is a skyscraper sheaf if there exists an
point x of X and an abelian group A such that F ∼= ix,∗A as sheaves of
abelian groups.

(7) We say a sheaf of algebraic structures F is a skyscraper sheaf if there
exists an point x of X and an algebraic structure A such that F ∼= ix,∗A
as sheaves of algebraic structures.

(8) If (X,OX) is a ringed space and F is a sheaf of OX -modules, then we say
F is a skyscraper sheaf if there exists a point x ∈ X and a OX,x-module
A such that F ∼= ix,∗A as sheaves of OX -modules.

Lemma 6.27.2. Let X be a topological space, x ∈ X a point, and A a set. For
any point x′ ∈ X the stalk of the skyscraper sheaf at x with value A at x′ is

(ix,∗A)x′ =

{
A if x′ ∈ {x}
{∗} if x′ 6∈ {x}

A similar description holds for the case of abelian groups, algebraic structures and
sheaves of modules.

Proof. Omitted. �

Lemma 6.27.3. Let X be a topological space, and let x ∈ X a point. The functors
F 7→ Fx and A 7→ ix,∗A are adjoint. In a formula

MorSets(Fx, A) = MorSh(X)(F , ix,∗A).

A similar statement holds for the case of abelian groups, algebraic structures. In
the case of sheaves of modules we have

HomOX,x(Fx, A) = HomOX (F , ix,∗A).

Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for
the morphism ix : {x} → X. Then the adjointness follows from adjointness of i−1

x

and ix,∗ (resp. i∗x and ix,∗ in the case of sheaves of modules). �
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6.28. Limits and colimits of presheaves

Let X be a topological space. Let I → PSh(X), i 7→ Fi be a diagram.

(1) Both limi Fi and colimi Fi exist.
(2) For any open U ⊂ X we have

(limi Fi)(U) = limi Fi(U)

and
(colimi Fi)(U) = colimi Fi(U).

(3) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal
to the limit of the stalks. But if the diagram category is finite then it is
the case. In other words, the stalk functor is left exact (see Categories,
Definition 4.23.1).

(4) Let x ∈ X. We always have

(colimi Fi)x = colimi Fi,x.
The proofs are all easy.

6.29. Limits and colimits of sheaves

Let X be a topological space. Let I → Sh(X), i 7→ Fi be a diagram.

(1) Both limi Fi and colimi Fi exist.
(2) The inclusion functor i : Sh(X) → PSh(X) commutes with limits. In

other words, we may compute the limit in the category of sheaves as the
limit in the category of presheaves. In particular, for any open U ⊂ X we
have

(limi Fi)(U) = limi Fi(U).

(3) The inclusion functor i : Sh(X) → PSh(X) does not commute with col-
imits in general (not even with finite colimits – think surjections). The
colimit is computed as the sheafification of the colimit in the category of
presheaves:

colimi Fi =
(
U 7→ colimi Fi(U)

)#

.

(4) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal to
the limit of the stalks. But if the diagram category is finite then it is the
case. In other words, the stalk functor is left exact.

(5) Let x ∈ X. We always have

(colimi Fi)x = colimi Fi,x.
(6) The sheafification functor # : PSh(X)→ Sh(X) commutes with all colim-

its, and with finite limits. But it does not commute with all limits.

The proofs are all easy. Here is an example of what is true for directed colimits of
sheaves.

Lemma 6.29.1. Let X be a topological space. Let I be a directed partially ordered
set. Let (Fi, ϕii′) be a system of sheaves of sets over I, see Categories, Section
4.21. Let U ⊂ X be an open subset. Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)

(1) If all the transition maps are injective then Ψ is injective for any open U .
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(2) If U is quasi-compact, then Ψ is injective.
(3) If U is quasi-compact and all the transition maps are injective then Ψ is

an isomorphism.
(4) If U has a cofinal system of open coverings U : U =

⋃
j∈J Uj with J finite

and Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F ′ : V 7→ colimi Fi(V ) is separated (see Definition 6.11.2). By the discussion above
we have (F ′)# = colimi Fi. By Lemma 6.17.5 we see that F ′ → (F ′)# is injective.
This proves (1).

Assume U is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to
elements on the left hand side which have the same image under Ψ. Since U is
quasi-compact this means there exists a finite open covering U =

⋃
j=1,...,m Uj and

for each j an index ij ∈ I, ij ≥ i, ij ≥ i′ such that ϕiij (s) = ϕi′ij (s
′). Let i′′ ∈ I

be ≥ than all of the ij . We conclude that ϕii′′(s) and ϕi′i′′(s) agree on the opens
Uj for all j and hence that ϕii′′(s) = ϕi′i′′(s). This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of Ψ. Since U is quasi-compact there exists a finite open covering
U =

⋃
j=1,...,m Uj , for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj comes

from sj for all j. Pick i ∈ I which is ≥ than all of the ij . By (1) the sections
ϕiji(sj) agree over the overlaps Uj ∩ Uj′ . Hence they glue to a section s′ ∈ Fi(U)
which maps to s under Ψ. This proves (3).

Assume the hypothesis of (4). Let s be an element of the target of Ψ. By assumption
there exists a finite open covering U =

⋃
j=1,...,m Uj , with Uj ∩ Uj′ quasi-compact

for all j, j′ ∈ J and for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj
is the image of sj for all j. Since Uj ∩ Uj′ is quasi-compact we can apply (2) and
we see that there exists an ijj′ ∈ I, ijj′ ≥ ij , ijj′ ≥ ij′ such that ϕijijj′ (sj) and

ϕij′ ijj′ (sj′) agree over Uj ∩Uj′ . Choose an index i ∈ I wich is bigger or equal than

all the ijj′ . Then we see that the sections ϕiji(sj) of Fi glue to a section of Fi over
U . This section is mapped to the element s as desired. �

Example 6.29.2. Let X = {s1, s2, ξ1, ξ2, ξ3, . . .} as a set. Declare a subset U ⊂ X
to be open if s1 ∈ U or s2 ∈ U implies U contains all of the ξi. Let Un =
{ξn, ξn+1, . . .}, and let jn : Un → X be the inclusion map. Set Fn = jn,∗Z. There
are transition maps Fn → Fn+1. Let F = colimFn. Note that Fn,ξm = 0 if m < n
because {ξm} is an open subset of X which misses Un. Hence we see that Fξn = 0
for all n. On the other hand the stalk Fsi , i = 1, 2 is the colimit

M = colimn

∏
m≥n

Z

which is not zero. We conclude that the sheaf F is the direct sum of the skyscraper
sheaves with value M at the closed points s1 and s2. Hence Γ(X,F) = M ⊕M .
On the other hand, the reader can verify that colimn Γ(X,Fn) = M . Hence some
condition is necessary in part (4) of Lemma 6.29.1 above.

There is a version of the previous lemma dealing with sheaves on a diagram of
spectral spaces. To state it we introduce some notation. Let I be a cofiltered index
category. Let i 7→ Xi be a diagram of spectral spaces over I such that for a : j → i
in I the corresponding map fa : Xj → Xi is spectral. Set X = limXi and denote
pi : X → Xi the projection.
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Lemma 6.29.3. In the situation described above, let i ∈ Ob(I) and let G be a
sheaf on Xi. For Ui ⊂ Xi quasi-compact open we have

p−1
i G(p−1

i (Ui)) = colima:j→i f
−1
a G(f−1

a (Ui))

Proof. Let us prove the canonical map colima:j→i f
−1
a G(f−1

a (Ui))→ p−1
i G(p−1

i (Ui))
is injective. Let s, s′ be sections of f−1

a G over f−1
a (Ui) for some a : j → i. For

b : k → j let Zk ⊂ f−1
a◦b(Ui) be the closed subset of points x such that the image

of s and s′ in the stalk (f−1
a◦bG)x are different. If Zk is nonempty for all b : k → j,

then by Topology, Lemma 5.23.2 we see that limb:k→j Zk is nonempty too. Then
for x ∈ limb:k→j Zk ⊂ X (observe that I/j → I is initial) we see that the image

of s and s′ in the stalk of p−1
i G at x are different too since (p−1

i G)x = (f−1
b◦aG)pk(x)

for all b : k → j as above. Thus if the images of s and s′ in p−1
i G(p−1

i (Ui)) are the
same, then Zk is empty for some b : k → j. This proves injectivity.

Surjectivity. Let s be a section of p−1
i G over p−1

i (Ui). By Topology, Lemma 5.23.5

the set p−1
i (Ui) is a quasi-compact open of the spectral space X. By construction

of the pullback sheaf, we can find an open covering p−1
i (Ui) =

⋃
l∈LWl, opens

Vl,i ⊂ Xi, sections sl,i ∈ G(Vl,i) such that pi(Wl) ⊂ Vl,i and p−1
i sl,i|Wl

= s|Wl
.

Because X and Xi are spectral and p−1
i (Ui) is quasi-compact open, we may assume

L is finite andWl and Vl,i quasi-compact open for all l. Then we can apply Topology,
Lemma 5.23.6 to find a : j → i and open covering f−1

a (Ui) =
⋃
l∈LWl,j by quasi-

compact opens whose pullback to X is the covering p−1
i (Ui) =

⋃
l∈LWl and such

that moreover Wl,j ⊂ f−1
a (Vl,i). Write sl,j the restriction of the pullback of sl,i by

fa to Wl,j . Then we see that sl,j and sl′,j restrict to elements of (f−1
a G)(Wl,j∩Wl′,j)

which pullback to the same element (p−1
i G)(Wl ∩Wl′), namely, the restriction of s.

Hence by injectivity, we can find b : k → j such that the sections f−1
b sl,j glue to a

section over f−1
a◦b(Ui) as desired. �

Next, in addition to the cofiltered system Xi of spectral spaces, assume given

(1) a sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map ϕa : Fi → Fj

such that ϕc = ϕb ◦ ϕa whenever c = a ◦ b. Set F = colim p−1
i Fi on X.

Lemma 6.29.4. In the situation described above, let i ∈ Ob(I) and let Ui ⊂ Xi be
a quasi-compact open. Then

colima:j→i Fj(f−1
a (Ui)) = F(p−1

i (Ui))

Proof. Recall that p−1
i (Ui) is a quasi-compact open of the spectral space X, see

Topology, Lemma 5.23.5. Hence Lemma 6.29.1 applies and we have

F(p−1
i (Ui)) = colima:j→i p

−1
j Fj(p

−1
i (Ui)).

A formal argument shows that

colima:j→i Fj(f−1
a (Ui)) = colima:j→i colimb:k→j f

−1
b Fj(f

−1
a◦b(Ui))

Thus it suffices to show that

p−1
j Fj(p

−1
i (Ui)) = colimb:k→j f

−1
b Fj(f

−1
a◦b(Ui))

This is Lemma 6.29.3 applied to Fj and the quasi-compact open f−1
a (Ui). �
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6.30. Bases and sheaves

Sometimes there exists a basis for the topology consisting of opens that are easier
to work with than general opens. For convenience we give here some definitions and
simple lemmas in order to facilitate working with (pre)sheaves in such a situation.

Definition 6.30.1. Let X be a topological space. Let B be a basis for the topology
on X.

(1) A presheaf F of sets on B is a rule which assigns to each U ∈ B a set F(U)
and to each inclusion V ⊂ U of elements of B a map ρUV : F(U)→ F(V )
such that whenever W ⊂ V ⊂ U in B we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves of sets on B is a rule which assigns
to each element U ∈ B a map of sets ϕ : F(U) → G(U) compatible with
restriction maps.

As in the case of usual presheaves we use the terminology of sections, restrictions
of sections, etc. In particular, we may define the stalk of F at a point x ∈ X by
the colimit

Fx = colimU∈B,x∈U F(U).

As in the case of the stalk of a presheaf on X this limit is directed. The reason is
that the collection of U ∈ B, x ∈ U is a fundamental system of open neighbourhoods
of x.

It is easy to make examples to show that the notion of a presheaf on X is very
different from the notion of a presheaf on a basis for the topology on X. This does
not happen in the case of sheaves. A much more useful notion therefore, is the
following.

Definition 6.30.2. Let X be a topological space. Let B be a basis for the topology
on X.

(1) A sheaf F of sets on B is a presheaf of sets on B which satisfies the
following additional property: Given any U ∈ B, and any covering U =⋃
i∈I Ui with Ui ∈ B, and any coverings Ui∩Uj =

⋃
k∈Iij Uijk with Uijk ∈

B the sheaf condition holds:
(∗∗) For any collection of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I,

∀k ∈ Iij
si|Uijk = sj |Uijk

there exists a unique section s ∈ F(U) such that si = s|Ui for all
i ∈ I.

(2) A morphism of sheaves of sets on B is simply a morphism of presheaves
of sets.

First we explain that it suffices to check the sheaf condition (∗∗) on a cofinal system
of coverings. In the situation of the definition, suppose U ∈ B. Let us temporarily
denote CovB(U) the set of all coverings of U by elements of B. Note that CovB(U)
is partially ordered by refinement. A subset C ⊂ CovB(U) is a cofinal system, if
for every U ∈ CovB(U) there exists a covering V ∈ C which refines U .

Lemma 6.30.3. With notation as above. For each U ∈ B, let C(U) ⊂ CovB(U)
be a cofinal system. For each U ∈ B, and each U : U =

⋃
Ui in C(U), let coverings

Uij : Ui ∩ Uj =
⋃
Uijk, Uijk ∈ B be given. Let F be a presheaf of sets on B. The

following are equivalent
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(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) the sheaf

condition (∗∗) holds (for the given coverings Uij).

Proof. We have to show that (2) implies (1). Suppose that U ∈ B, and that
U : U =

⋃
i∈I Ui is an arbitrary covering by elements of B. Because the system

C(U) is cofinal we can find an element V : U =
⋃
j∈J Vj in C(U) which refines U .

This means there exists a map α : J → I such that Vj ⊂ Uα(i).

Note that if s, s′ ∈ F(U) are sections such that s|Ui = s′|Ui , then

s|Vj = (s|Uα(j)
)|Vj = (s′|Uα(j)

)|Vj = s′|Vj
for all j. Hence by the uniqueness in (∗∗) for the covering V we conclude that
s = s′. Thus we have proved the uniqueness part of (∗∗) for our arbitrary covering
U .

Suppose furthermore that Ui∩Ui′ =
⋃
k∈Iii′

Uii′k are arbitrary coverings by Uii′k ∈
B. Let us try to prove the existence part of (∗∗) for the system (U ,Uij). Thus let
si ∈ F(Ui) and suppose we have

si|Uijk = si′ |Uii′k
for all i, i′, k. Set tj = sα(i)|Vj , where V and α are as above.

There is one small kink in the argument here. Namely, let Vjj′ : Vj ∩ Vj′ =⋃
l∈Jjj′

Vjj′l be the covering given to us by the statement of the lemma. It is not a

priori clear that

tj |Vjj′l = tj′ |Vjj′l
for all j, j′, l. To see this, note that we do have

tj |W = tj′ |W for all W ∈ B,W ⊂ Vjj′l ∩ Uα(j)α(j′)k

for all k ∈ Iα(j)α(j′), by our assumption on the family of elements si. And since
Vj ∩ Vj′ ⊂ Uα(j) ∩Uα(j′) we see that tj |Vjj′l and tj′ |Vjj′l agree on the members of a
covering of Vjj′l by elements of B. Hence by the uniqueness part proved above we
finally deduce the desired equality of tj |Vjj′l and tj′ |Vjj′l . Then we get the existence

of an element t ∈ F(U) by property (∗∗) for (V,Vjj′).

Again there is a small snag. We know that t restricts to tj on Vj but we do not yet
know that t restricts to si on Ui. To conclude this note that the sets Ui ∩Vj , j ∈ J
cover Ui. Hence also the sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j) cover Ui. We leave it
to the reader to see that t and si restrict to the same section of F on any W ∈ B
which is contained in one of the open sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j). Hence by
the uniqueness part seen above we win. �

Lemma 6.30.4. Let X be a topological space. Let B be a basis for the topology on
X. Assume that for every pair U,U ′ ∈ B we have U ∩ U ′ ∈ B. For each U ∈ B,
let C(U) ⊂ CovB(U) be a cofinal system. Let F be a presheaf of sets on B. The
following are equivalent

(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) and for every

family of sections si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj there exists a
unique section s ∈ F(U) which restricts to si on Ui.
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Proof. This is a reformulation of Lemma 6.30.3 above in the special case where
the coverings Uij each consist of a single element. But also this case is much easier
and is an easy exercise to do directly. �

Lemma 6.30.5. Let X be a topological space. Let B be a basis for the topology on
X. Let U ∈ B. Let F be a sheaf of sets on B. The map

F(U)→
∏

x∈U
Fx

identifies F(U) with the elements (sx)x∈U with the property

(∗) For any x ∈ U there exists a V ∈ B, x ∈ V and a section σ ∈ F(V ) such
that for all y ∈ V we have sy = (V, σ) in Fy.

Proof. First note that the map F(U) →
∏
x∈U Fx is injective by the uniqueness

in the sheaf condition of Definition 6.30.2. Let (sx) be any element on the right
hand side which satisfies (∗). Clearly this means we can find a covering U =

⋃
Ui,

Ui ∈ B such that (sx)x∈Ui comes from certain σi ∈ F(Ui). For every y ∈ Ui∩Uj the
sections σi and σj agree in the stalk Fy. Hence there exists an element Vijy ∈ B,
y ∈ Vijy such that σi|Vijy = σj |Vijy . Thus the sheaf condition (∗∗) of Definition
6.30.2 applies to the system of σi and we obtain a section s ∈ F(U) with the desired
property. �

Let X be a topological space. Let B be a basis for the topology on X. There is a
natural restriction functor from the category of sheaves of sets on X to the category
of sheaves of sets on B. It turns out that this is an equivalence of categories. In
down to earth terms this means the following.

Lemma 6.30.6. Let X be a topological space. Let B be a basis for the topology on
X. Let F be a sheaf of sets on B. There exists a unique sheaf of sets Fext on X
such that Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.

Proof. We first construct a presheaf Fext with the desired property. Namely, for
an arbitrary open U ⊂ X we define Fext(U) as the set of elements (sx)x∈U such that
(∗) of Lemma 6.30.5 holds. It is clear that there are restriction mappings that turn
Fext into a presheaf of sets. Also, by Lemma 6.30.5 we see that F(U) = Fext(U)
whenever U is an element of the basis B. To see Fext is a sheaf one may argue as
in the proof of Lemma 6.17.1. �

Note that we have

Fx = Fextx

in the situation of the lemma. This is so because the collection of elements of B
containing x forms a fundamental system of open neighbourhoods of x.

Lemma 6.30.7. Let X be a topological space. Let B be a basis for the topology
on X. Denote Sh(B) the category of sheaves on B. There is an equivalence of
categories

Sh(X) −→ Sh(B)

which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 6.30.6 above. Checking the obvious
functorialities is left to the reader. �
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This ends the discussion of sheaves of sets on a basis B. Let (C, F ) be a type of
algebraic structure. At the end of this section we would like to point out that the
constructions above work for sheaves with values in C. Let us briefly define the
relevant notions.

Definition 6.30.8. Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F ) be a type of algebraic structure.

(1) A presheaf F with values in C on B is a rule which assigns to each U ∈ B
an object F(U) of C and to each inclusion V ⊂ U of elements of B a
morphism ρUV : F(U)→ F(V ) in C such that whenever W ⊂ V ⊂ U in B
we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves with values in C on B is a rule
which assigns to each element U ∈ B a morphism of algebraic structures
ϕ : F(U)→ G(U) compatible with restriction maps.

(3) Given a presheaf F with values in C on B we say that U 7→ F (F(U)) is
the underlying presheaf of sets.

(4) A sheaf F with values in C on B is a presheaf with values in C on B whose
underlying presheaf of sets is a sheaf.

At this point we can define the stalk at x ∈ X of a presheaf with values in C on B
as the directed colimit

Fx = colimU∈B,x∈U F(U).

It exists as an object of C because of our assumptions on C. Also, we see that the
underlying set of Fx is the stalk of the underlying presheaf of sets on B.

Note that Lemmas 6.30.3, 6.30.4 and 6.30.5 refer to the sheaf property which we
have defined in terms of the associated presheaf of sets. Hence they generalize
without change to the notion of a presheaf with values in C. The analogue of
Lemma 6.30.6 need some care. Here it is.

Lemma 6.30.9. Let X be a topological space. Let (C, F ) be a type of algebraic
structure. Let B be a basis for the topology on X. Let F be a sheaf with values
in C on B. There exists a unique sheaf Fext with values in C on X such that
Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.

Proof. By the conditions imposed on the pair (C, F ) it suffices to come up with
a presheaf Fext which does the correct thing on the level of underlying presheaves
of sets. Thus our first task is to construct a suitable object Fext(U) for all open
U ⊂ X. We could do this by imitating Lemma 6.18.1 in the setting of presheaves on
B. However, a slightly different method (but basically equivalent) is the following:
Define it as the directed colimit

Fext(U) := colimU FIB(U)

over all coverings U : U =
⋃
i∈I Ui by Ui ∈ B of the fibre product

FIB(U) //

��

∏
x∈U Fx

��∏
i∈I F(Ui) // ∏

i∈I
∏
x∈Ui Fx
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By the usual arguments, see Lemma 6.15.4 and Example 6.15.5 it suffices to show
that this construction on underlying sets is the same as the definition using (∗∗)
above. Details left to the reader. �

Note that we have
Fx = Fextx

as objects in C in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x.

Lemma 6.30.10. Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F ) be a type of algebraic structure. Denote Sh(B, C) the category of
sheaves with values in C on B. There is an equivalence of categories

Sh(X, C) −→ Sh(B, C)
which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 6.30.9 above. Checking the obvious
functorialities is left to the reader. �

Finally we come to the case of (pre)sheaves of modules on a basis. We will use the
easy fact that the category of presheaves of sets on a basis has products and that
they are described by taking products of values on elements of the bases.

Definition 6.30.11. Let X be a topological space. Let B be a basis for the
topology on X. Let O be a presheaf of rings on B.

(1) A presheaf of O-modules F on B is a presheaf of abelian groups on B
together with a morphism of presheaves of sets O×F → F such that for
all U ∈ B the map O(U)× F(U) → F(U) turns the group F(U) into an
O(U)-module.

(2) A morphism ϕ : F → G of presheaves of O-modules on B is a morphism of
abelian presheaves on B which induces an O(U)-module homomorphism
F(U)→ G(U) for every U ∈ B.

(3) Suppose that O is a sheaf of rings on B. A sheaf F of O-modules on B is a
presheaf of O-modules on B whose underlying presheaf of abelian groups
is a sheaf.

We can define the stalk at x ∈ X of a presheaf of O-modules on B as the directed
colimit

Fx = colimU∈B,x∈U F(U).

It is a Ox-module.

Note that Lemmas 6.30.3, 6.30.4 and 6.30.5 refer to the sheaf property which we
have defined in terms of the associated presheaf of sets. Hence they generalize
without change to the notion of a presheaf of O-modules. The analogue of Lemma
6.30.6 is as follows.

Lemma 6.30.12. Let X be a topological space. Let O be a sheaf of rings on B.
Let B be a basis for the topology on X. Let F be a sheaf with values in C on B. Let
Oext be the sheaf of rings on X extending O and let Fext be the abelian sheaf on
X extending F , see Lemma 6.30.9. There exists a canonical map

Oext ×Fext −→ Fext
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which agrees with the given map over elements of B and which endows Fext with
the structure of an Oext-module.

Proof. It suffices to construct the multiplication map on the level of presheaves of
sets. Perhaps the easiest way to see this is to prove directly that if (fx)x∈U , fx ∈ Ox
and (mx)x∈U , mx ∈ Fx satisfy (∗), then the element (fxmx)x∈U also satisfies (∗).
Then we get the desired result, because in the proof of Lemma 6.30.6 we construct
the extension in terms of families of elements of stalks satisfying (∗). �

Note that we have

Fx = Fextx

as Ox-modules in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x, or simply because it is true on the underlying sets.

Lemma 6.30.13. Let X be a topological space. Let B be a basis for the topology
on X. Let O be a sheaf of rings on X. Denote Mod(O|B) the category of sheaves
of O|B-modules on B. There is an equivalence of categories

Mod(O) −→ Mod(O|B)

which assigns to a sheaf of O-modules on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 6.30.12 above. Checking the obvious
functorialities is left to the reader. �

Finally, we address the question of the relationship of this with continuous maps.
This is now very easy thanks to the work above. First we do the case where there
is a basis on the target given.

Lemma 6.30.14. Let f : X → Y be a continuous map of topological spaces. Let
(C, F ) be a type of algebraic structures. Let F be a sheaf with values in C on X.
Let G be a sheaf with values in C on Y . Let B be a basis for the topology on Y .
Suppose given for every V ∈ B a morphism

ϕV : G(V ) −→ F(f−1V )

of C compatible with restriction mappings. Then there is a unique f -map (see
Definition 6.21.7 and discussion of f -maps in Section 6.23) ϕ : G → F recovering
ϕV for V ∈ B.

Proof. This is trivial because the collection of maps amounts to a morphism be-
tween the restrictions of G and f∗F to B. By Lemma 6.30.10 this is the same as
giving a morphism from G to f∗F , which by Lemma 6.21.8 is the same as an f -map.
See also Lemma 6.23.1 and the discussion preceding it for how to deal with the case
of sheaves of algebraic structures. �

Here is the analogue for ringed spaces.

Lemma 6.30.15. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX-modules. Let G be a sheaf of OY -modules. Let B be a basis
for the topology on Y . Suppose given for every V ∈ B a OY (V )-module map

ϕV : G(V ) −→ F(f−1V )
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(where F(f−1V ) has a module structure using f ]V : OY (V ) → OX(f−1V )) com-
patible with restriction mappings. Then there is a unique f -map (see discussion of
f -maps in Section 6.26) ϕ : G → F recovering ϕV for V ∈ B.

Proof. Same as the proof of the corresponding lemma for sheaves of algebraic
structures above. �

Lemma 6.30.16. Let f : X → Y be a continuous map of topological spaces. Let
(C, F ) be a type of algebraic structures. Let F be a sheaf with values in C on X. Let
G be a sheaf with values in C on Y . Let BY be a basis for the topology on Y . Let
BX be a basis for the topology on X. Suppose given for every V ∈ BY , and U ∈ BX
such that f(U) ⊂ V a morphism

ϕUV : G(V ) −→ F(U)

of C compatible with restriction mappings. Then there is a unique f -map (see Def-
inition 6.21.7 and the discussion of f -maps in Section 6.23) ϕ : G → F recovering
ϕUV as the composition

G(V )
ϕV−−→ F(f−1(V ))

restr.−−−→ F(U)

for every pair (U, V ) as above.

Proof. Let us first proves this for sheaves of sets. Fix V ⊂ Y open. Pick s ∈ G(V ).
We are going to construct an element ϕV (s) ∈ F(f−1V ). We can define a value
ϕ(s)x in the stalk Fx for every x ∈ f−1V by picking a U ∈ BX with x ∈ U ⊂ f−1V
and setting ϕ(s)x equal to the equivalence class of (U,ϕUV (s)) in the stalk. Clearly,
the family (ϕ(s)x)x∈f−1V satisfies condition (∗) because the maps ϕUV for varying U
are compatible with restrictions in the sheaf F . Thus, by the proof of Lemma 6.30.6
we see that (ϕ(s)x)x∈f−1V corresponds to a unique element ϕV (s) of F(f−1V ).
Thus we have defined a set map ϕV : G(V )→ F(f−1V ). The compatibility between
ϕV and ϕUV follows from Lemma 6.30.5.

We leave it to the reader to show that the construction of ϕV is compatible with
restriction mappings as we vary v ∈ BY . Thus we may apply Lemma 6.30.14 above
to “glue” them to the desired f -map.

Finally, we note that the map of sheaves of sets so constructed satisfies the property
that the map on stalks

Gf(x) −→ Fx
is the colimit of the system of maps ϕUV as V ∈ BY varies over those elements that
contain f(x) and U ∈ BX varies over those elements that contain x. In particular,
if G and F are the underlying sheaves of sets of sheaves of algebraic structures, then
we see that the maps on stalks is a morphism of algebraic structures. Hence we
conclude that the associated map of sheaves of underlying sets f−1G → F satisfies
the assumptions of Lemma 6.23.1. We conclude that f−1G → F is a morphism
of sheaves with values in C. And by adjointness this means that ϕ is an f -map of
sheaves of algebraic structures. �

Lemma 6.30.17. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX-modules. Let G be a sheaf of OY -modules. Let BY be a
basis for the topology on Y . Let BX be a basis for the topology on X. Suppose given
for every V ∈ BY , and U ∈ BX such that f(U) ⊂ V a OY (V )-module map

ϕUV : G(V ) −→ F(U)
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compatible with restriction mappings. Here the OY (V )-module structure on F(U)

comes from the OX(U)-module structure via the map f ]V : OY (V )→ OX(f−1V )→
OX(U). Then there is a unique f -map of sheaves of modules (see Definition 6.21.7
and the discussion of f -maps in Section 6.26) ϕ : G → F recovering ϕUV as the
composition

G(V )
ϕV−−→ F(f−1(V ))

restrc.−−−−→ F(U)

for every pair (U, V ) as above.

Proof. Similar to the above and omitted. �

6.31. Open immersions and (pre)sheaves

Let X be a topological space. Let j : U → X be the inclusion of an open subset U
into X. In Section 6.21 we have defined functors j∗ and j−1 such that j∗ is right
adjoint to j−1. It turns out that for an open immersion there is a left adjoint for
j−1, which we will denote j!. First we point out that j−1 has a particularly simple
description in the case of an open immersion.

Lemma 6.31.1. Let X be a topological space. Let j : U → X be the inclusion of
an open subset U into X.

(1) Let G be a presheaf of sets on X. The presheaf jpG (see Section 6.21) is
given by the rule V 7→ G(V ) for V ⊂ U open.

(2) Let G be a sheaf of sets on X. The sheaf j−1G is given by the rule V 7→
G(V ) for V ⊂ U open.

(3) For any point u ∈ U and any sheaf G on X we have a canonical identifi-
cation of stalks

j−1Gu = (G|U )u = Gu.
(4) On the category of presheaves of U we have jpj∗ = id.
(5) On the category of sheaves of U we have j−1j∗ = id.

The same description holds for (pre)sheaves of abelian groups, (pre)sheaves of al-
gebraic structures, and (pre)sheaves of modules.

Proof. The colimit in the definition of jpG(V ) is over collection of all W ⊂ X open
such that V ⊂ W ordered by reverse inclusion. Hence this has a largest element,
namely V . This proves (1). And (2) follows because the assignment V 7→ G(V ) for
V ⊂ U open is clearly a sheaf if G is a sheaf. Assertion (3) follows from (2) since
the collection of open neighbourhoods of u which are contained in U is cofinal in
the collection of all open neighbourhoods of u in X. Parts (4) and (5) follow by
computing j−1j∗F(V ) = j∗F(V ) = F(V ).

The exact same arguments work for (pre)sheaves of abelian groups and (pre)sheaves
of algebraic structures. �

Definition 6.31.2. Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let G be a presheaf of sets, abelian groups or algebraic structures on X.
The presheaf jpG described in Lemma 6.31.1 is called the restriction of G
to U and denoted G|U .

(2) Let G be a sheaf of sets on X, abelian groups or algebraic structures on
X. The sheaf j−1G is called the restriction of G to U and denoted G|U .
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(3) If (X,O) is a ringed space, then the pair (U,O|U ) is called the open sub-
space of (X,O) associated to U .

(4) If G is a presheaf of O-modules then G|U together with the multiplication
map O|U × G|U → G|U (see Lemma 6.24.6) is called the restriction of G
to U .

We leave a definition of the restriction of presheaves of modules to the reader. Ok,
so in this section we will discuss a left adjoint to the restriction functor. Here is
the definition in the case of (pre)sheaves of sets.

Definition 6.31.3. Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let F be a presheaf of sets on U . We define the extension of F by the
empty set jp!F to be the presheaf of sets on X defined by the rule

jp!F(V ) =

{
∅ if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be a sheaf of sets on U . We define the extension of F by the empty

set j!F to be the sheafification of the presheaf jp!F .

Lemma 6.31.4. Let X be a topological space. Let j : U → X be the inclusion of
an open subset.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
6.31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X)(j!F ,G) = MorSh(U)(F , j−1G) = MorSh(U)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf of sets on U . The stalks of the sheaf j!F are described

as follows

j!Fx =

{
∅ if x 6∈ U
Fx if x ∈ U

(4) On the category of presheaves of U we have jpjp! = id.
(5) On the category of sheaves of U we have j−1j! = id.

Proof. To map jp!F into G it is enough to map F(V ) → G(V ) whenever V ⊂ U
compatibly with restriction mappings. And by Lemma 6.31.1 the same description
holds for maps F → G|U . The adjointness of j! and restriction follows from this
and the properties of sheafification. The identification of stalks is obvious from the
definition of the extension by the empty set and the definition of a stalk. Statements
(4) and (5) follow by computing the value of the sheaf on any open of U . �

Note that if F is a sheaf of abelian groups on U , then in general j!F as defined
above, is not a sheaf of abelian groups, for example because some of its stalks are
empty (hence not abelian groups for sure). Thus we need to modify the definition
of j! depending on the type of sheaves we consider. The reason for choosing the
empty set in the definition of the extension by the empty set, is that it is the initial
object in the category of sets. Thus in the case of abelian groups we use 0 (and
more generally for sheaves with values in any abelian category).
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Definition 6.31.5. Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let F be an abelian presheaf on U . We define the extension jp!F of F by
0 to be the abelian presheaf on X defined by the rule

jp!F(V ) =

{
0 if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be an abelian sheaf on U . We define the extension j!F of F by 0

to be the sheafification of the abelian presheaf jp!F .
(3) Let C be a category having an initial object e. Let F be a presheaf on

U with values in C. We define the extension jp!F of F by e to be the
presheaf on X with values in C defined by the rule

jp!F(V ) =

{
e if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(4) Let (C, F ) be a type of algebraic structure such that C has an initial object

e. Let F be a sheaf of algebraic structures on U (of the give type). We
define the extension j!F of F by e to be the sheafification of the presheaf
jp!F defined above.

(5) Let O be a presheaf of rings on X. Let F be a presheaf of O|U -modules.
In this case we define the extension by 0 to be the presheaf of O-modules
which is equal to jp!F as an abelian presheaf endowed with the multipli-
cation map O × jp!F → jp!F .

(6) Let O be a sheaf of rings on X. Let F be a sheaf of O|U -modules. In this
case we define the extension by 0 to be the O-module which is equal to j!F
as an abelian sheaf endowed with the multiplication map O× j!F → j!F .

It is true that one can define j! in the setting of sheaves of algebraic structures (see
below). However, it depends on the type of algebraic structures involved what the
resulting object is. For example, if O is a sheaf of rings on U , then j!,ringsO 6=
j!,abelianO since the initial object in the category of rings is Z and the initial object
in the category of abelian groups is 0. In particular the functor j! does not commute
with taking underlying sheaves of sets, in contrast to what we have seen so far! We
separate out the case of (pre)sheaves of abelian groups, (pre)sheaves of algebraic
structures and (pre)sheaves of modules as usual.

Lemma 6.31.6. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. Consider the functors of restriction and extension by 0 for abelian
(pre)sheaves.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
6.31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorAb(X)(j!F ,G) = MorAb(U)(F , j−1G) = MorAb(U)(F ,G|U )

bifunctorially in F and G.
(3) Let F be an abelian sheaf on U . The stalks of the sheaf j!F are described

as follows

j!Fx =

{
0 if x 6∈ U
Fx if x ∈ U
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(4) On the category of abelian presheaves of U we have jpjp! = id.
(5) On the category of abelian sheaves of U we have j−1j! = id.

Proof. Omitted. �

Lemma 6.31.7. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. Let (C, F ) be a type of algebraic structure such that C has an initial
object e. Consider the functors of restriction and extension by e for (pre)sheaves
of algebraic structure defined above.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
6.31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X,C)(j!F ,G) = MorSh(U,C)(F , j−1G) = MorSh(U,C)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf on U . The stalks of the sheaf j!F are described as follows

j!Fx =

{
e if x 6∈ U
Fx if x ∈ U

(4) On the category of presheaves of algebraic structures on U we have jpjp! =
id.

(5) On the category of sheaves of algebraic structures on U we have j−1j! = id.

Proof. Omitted. �

Lemma 6.31.8. Let (X,O) be a ringed space. Let j : (U,O|U )→ (X,O) be an open
subspace. Consider the functors of restriction and extension by 0 for (pre)sheaves
of modules defined above.

(1) The functor jp! is a left adjoint to restriction, in a formula

MorPMod(O)(jp!F ,G) = MorPMod(O|U )(F ,G|U )

bifunctorially in F and G.
(2) The functor j! is a left adjoint to restriction, in a formula

MorMod(O)(j!F ,G) = MorMod(O|U )(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf of O-modules on U . The stalks of the sheaf j!F are

described as follows

j!Fx =

{
0 if x 6∈ U
Fx if x ∈ U

(4) On the category of sheaves of O|U -modules on U we have j−1j! = id.

Proof. Omitted. �

Note that by the lemmas above, both the functors j∗ and j! are fully faithful
embeddings of the category of sheaves on U into the category of sheaves on X. It
is only true for the functor j! that one can easily describe the essential image of
this functor.
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Lemma 6.31.9. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. The functor

j! : Sh(U) −→ Sh(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = ∅ for all x ∈ X \ U .

Proof. Fully faithfulness follows formally from j−1j! = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

j!j
−1G → G

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 6.31.10. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. The functor

j! : Ab(U) −→ Ab(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ U .

Proof. Omitted. �

Lemma 6.31.11. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. Let (C, F ) be a type of algebraic structure such that C has an initial
object e. The functor

j! : Sh(U, C) −→ Sh(X, C)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = e for all x ∈ X \ U .

Proof. Omitted. �

Lemma 6.31.12. Let (X,O) be a ringed space. Let j : (U,O|U ) → (X,O) be an
open subspace. The functor

j! : Mod(O|U ) −→ Mod(O)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ U .

Proof. Omitted. �

Remark 6.31.13. Let j : U → X be an open immersion of topological spaces as
above. Let x ∈ X, x 6∈ U . Let F be a sheaf of sets on U . Then Fx = ∅ by Lemma
6.31.4. Hence j! does not transform a final object of Sh(U) into a final object of
Sh(X) unless U = X. According to our conventions in Categories, Section 4.23
this means that the functor j! is not left exact as a functor between the categories
of sheaves of sets. It will be shown later that j! on abelian sheaves is exact, see
Modules, Lemma 17.3.4.
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6.32. Closed immersions and (pre)sheaves

Let X be a topological space. Let i : Z → X be the inclusion of a closed subset Z
into X. In Section 6.21 we have defined functors i∗ and i−1 such that i∗ is right
adjoint to i−1.

Lemma 6.32.1. Let X be a topological space. Let i : Z → X be the inclusion of
a closed subset Z into X. Let F be a sheaf of sets on Z. The stalks of i∗F are
described as follows

i∗Fx =

{
{∗} if x 6∈ Z
Fx if x ∈ Z

where {∗} denotes a singleton set. Moreover, i−1i∗ = id on the category of sheaves
of sets on Z. Moreover, the same holds for abelian sheaves on Z, resp. sheaves of
algebraic structures on Z where {∗} has to be replaced by 0, resp. a final object of
the category of algebraic structures.

Proof. If x 6∈ Z, then there exist arbitrarily small open neighbourhoods U of x
which do not meet Z. Because F is a sheaf we have F(i−1(U)) = {∗} for any such
U , see Remark 6.7.2. This proves the first case. The second case comes from the
fact that for z ∈ Z any open neighbourhood of z is of the form Z∩U for some open
U of X. For the statement that i−1i∗ = id consider the canonical map i−1i∗F → F .
This is an isomorphism on stalks (see above) and hence an isomorphism.

For sheaves of abelian groups, and sheaves of algebraic structures you argue in the
same manner. �

Lemma 6.32.2. Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. The functor

i∗ : Sh(Z) −→ Sh(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = {∗} for all x ∈ X \ Z.

Proof. Fully faithfulness follows formally from i−1i∗ = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

G → i∗i
−1G

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 6.32.3. Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. The functor

i∗ : Ab(Z) −→ Ab(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ Z.

Proof. Omitted. �

Lemma 6.32.4. Let X be a topological space. Let i : Z → X be the inclusion of
a closed subset. Let (C, F ) be a type of algebraic structure with final object 0. The
functor

i∗ : Sh(Z, C) −→ Sh(X, C)
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is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ Z.

Proof. Omitted. �

Remark 6.32.5. Let i : Z → X be a closed immersion of topological spaces as
above. Let x ∈ X, x 6∈ Z. Let F be a sheaf of sets on Z. Then (i∗F)x = {∗} by
Lemma 6.32.1. Hence if F = ∗q∗, where ∗ is the singleton sheaf, then i∗Fx = {∗} 6=
i∗(∗)x q i∗(∗)x because the latter is a two point set. According to our conventions
in Categories, Section 4.23 this means that the functor i∗ is not right exact as a
functor between the categories of sheaves of sets. In particular, it cannot have a
right adjoint, see Categories, Lemma 4.24.5.

On the other hand, we will see later (see Modules, Lemma 17.6.3) that i∗ on abelian
sheaves is exact, and does have a right adjoint, namely the functor that associates
to an abelian sheaf on X the sheaf of sections supported in Z.

Remark 6.32.6. We have not discussed the relationship between closed immer-
sions and ringed spaces. This is because the notion of a closed immersion of ringed
spaces is best discussed in the setting of quasi-coherent sheaves, see Modules, Sec-
tion 17.13.

6.33. Glueing sheaves

In this section we glue sheaves defined on the members of a covering of X. We first
deal with maps.

Lemma 6.33.1. Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let F , G be sheaves of sets on X. Given a collection

ϕi : F|Ui −→ G|Ui

of maps of sheaves such that for all i, j ∈ I the maps ϕi, ϕj restrict to the same
map F|Ui∩Uj → G|Ui∩Uj then there exists a unique map of sheaves

ϕ : F −→ G

whose restriction to each Ui agrees with ϕi.

Proof. Omitted. �

The previous lemma implies that given two sheaves F , G on the topological space
X the rule

U 7−→ MorSh(U)(F|U ,G|U )

defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the
setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules, Section 17.19.

Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering. For each i ∈ I

let Fi be a sheaf of sets on Ui. For each pair i, j ∈ I, let

ϕij : Fi|Ui∩Uj −→ Fj |Ui∩Uj
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be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices i, j, k ∈ I the following diagram is commutative

Fi|Ui∩Uj∩Uk ϕik
//

ϕij
''

Fk|Ui∩Uj∩Uk

Fj |Ui∩Uj∩Uk

ϕjk

77

We will call such a collection of data (Fi, ϕij) a glueing data for sheaves of sets with
respect to the covering X =

⋃
Ui.

Lemma 6.33.2. Let X be a topological space. Let X =
⋃
i∈I Ui be an open cover-

ing. Given any glueing data (Fi, ϕij) for sheaves of sets with respect to the covering
X =

⋃
Ui there exists a sheaf of sets F on X together with isomorphisms

ϕi : F|Ui → Fi
such that the diagrams

F|Ui∩Uj ϕi
//

id

��

Fi|Ui∩Uj
ϕij

��
F|Ui∩Uj

ϕj // Fj |Ui∩Uj
are commutative.

Proof. Actually we can write a formula for the set of sections of F over an open
W ⊂ X. Namely, we define

F(W ) = {(si)i∈I | si ∈ Fi(W ∩ Ui), ϕij(si|W∩Ui∩Uj ) = sj |W∩Ui∩Uj}.

Restriction mappings for W ′ ⊂ W are defined by the restricting each of the si to
W ′ ∩ Ui. The sheaf condition for F follows immediately from the sheaf condition
for each of the Fi.

We still have to prove that F|Ui maps isomorphically to Fi. Let W ⊂ Ui. In this
case the condition in the definition of F(W ) implies that sj = ϕij(si|W∩Uj ). And
the commutativity of the diagrams in the definition of a glueing data assures that
we may start with any section s ∈ Fi(W ) and obtain a compatible collection by
setting si = s and sj = ϕij(si|W∩Uj ). Thus the lemma follows. �

Lemma 6.33.3. Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let (Fi, ϕij) be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic
structures, resp. sheaves of O-modules for some sheaf of rings O on X. Then the
construction in the proof of Lemma 6.33.2 above leads to a sheaf of abelian groups,
resp. sheaf of algebraic structures, resp. sheaf of O-modules.

Proof. This is true because in the construction the set of sections F(W ) over an
open W is given as the equalizer of the maps∏

i∈I Fi(W ∩ Ui)
//
//
∏
i,j∈I Fi(W ∩ Ui ∩ Uj)

And in each of the cases envisioned this equalizer gives an object in the relevant
category whose underlying set is the object considered in the cited lemma. �
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Lemma 6.33.4. Let X be a topological space. Let X =
⋃
i∈I Ui be an open cov-

ering. The functor which associates to a sheaf of sets F the following collection of
glueing data

(F|Ui , (F|Ui)|Ui∩Uj → (F|Uj )|Ui∩Uj )
with respect to the covering X =

⋃
Ui defines an equivalence of categories between

Sh(X) and the category of glueing data. A similar statement holds for abelian
sheaves, resp. sheaves of algebraic structures, resp. sheaves of O-modules.

Proof. The functor is fully faithful by Lemma 6.33.1 and essentially surjective (via
an explicitly given quasi-inverse functor) by Lemma 6.33.2. �

This lemma means that if the sheaf F was constructed from the glueing data
(Fi, ϕij) and if G is a sheaf on X, then a morphism f : F → G is given by a
collection of morphisms of sheaves

fi : Fi −→ G|Ui
compatible with the glueing maps ϕij . Similarly, to give a morphism of sheaves
g : G → F is the same as giving a collection of morphisms of sheaves

gi : G|Ui −→ Fi
compatible with the glueing maps ϕij .
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CHAPTER 7

Sites and Sheaves

7.1. Introduction

The notion of a site was introduced by Grothendieck to be able to study sheaves
in the étale topology of schemes. The basic reference for this notion is perhaps
[AGV71]. Our notion of a site differs from that in [AGV71]; what we call a site
is called a category endowed with a pretopology in [AGV71, Exposé II, Définition
1.3]. The reason we do this is that in algebraic geometry it is often convenient to
work with a given class of coverings, for example when defining when a property
of schemes is local in a given topology, see Descent, Section 34.11. Our exposition
will closely follow [Art62]. We will not use universes.

7.2. Presheaves

Let C be a category. A presheaf of sets is a contravariant functor F from C to Sets
(see Categories, Remark 4.2.11). So for every object U of C we have a set F(U).
The elements of this set are called the sections of F over U . For every morphism
f : V → U the map F(f) : F(U)→ F(V ) is called the restriction map and is often
denoted f∗ : F(U)→ F(V ). Another way of expressing this is to say that f∗(s) is
the pullback of s via f . Functoriality means that g∗f∗(s) = (f ◦ g)∗(s). Sometimes
we use the notation s|V := f∗(s). This notation is consistent with the notion of
restriction of functions from topology because if W → V → U are morphisms in C
and s is a section of F over U then s|W = (s|V )|W by the functorial nature of F .
Of course we have to be careful since it may very well happen that there is more
than one morphism V → U and it is certainly not going to be the case that the
corresponding pullback maps are equal.

Definition 7.2.1. A presheaf of sets on C is a contravariant functor from C to
Sets. Morphisms of presheaves are transformations of functors. The category of
presheaves of sets is denoted PSh(C).

Note that for any object U of C the functor of points hU , see Categories, Example
4.3.4 is a presheaf. These are called the representable presheaves. These presheaves
have the pleasing property that for any presheaf F we have

(7.2.1.1) MorPSh(C)(hU ,F) = F(U).

This is the Yoneda lemma (Categories, Lemma 4.3.5).

Similarly, we can define the notion of a presheaf of abelian groups, rings, etc. More
generally we may define a presheaf with values in a category.

Definition 7.2.2. Let C, A be categories. A presheaf F on C with values in A is
a contravariant functor from C to A, i.e., F : Copp → A. A morphism of presheaves
F → G on C with values in A is a transformation of functors from F to G.
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These form the objects and morphisms of the category of presheaves on C with
values in A.

Remark 7.2.3. As already pointed out we may consider the category presheaves
with values in any of the “big” categories listed in Categories, Remark 4.2.2. These
will be “big” categories as well and they will be listed in the above mentioned
remark as we go along.

7.3. Injective and surjective maps of presheaves

Definition 7.3.1. Let C be a category, and let ϕ : F → G be a map of presheaves
of sets.

(1) We say that ϕ is injective if for every object U of C we have α : F(U)→
G(U) is injective.

(2) We say that ϕ is surjective if for every object U of C we have α : F(U)→
G(U) is surjective.

Lemma 7.3.2. The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of PSh(C). A map is an isomorphism if and
only if it is both injective and surjective.

Proof. Omitted. �

Definition 7.3.3. We say F is a subpresheaf of G if for every object U ∈ Ob(C)
the set F(U) is a subset of G(U), compatibly with the restriction mappings.

In other words, the inclusion maps F(U)→ G(U) glue together to give an (injective)
morphism of presheaves F → G.

Lemma 7.3.4. Let C be a category. Suppose that ϕ : F → G is a morphism of
presheaves of sets on C. There exists a unique subpresheaf G′ ⊂ G such that ϕ
factors as F → G′ → G and such that the first map is surjective.

Proof. Omitted. �

Definition 7.3.5. Notation as in Lemma 7.3.4. We say that G′ is the image of ϕ.

7.4. Limits and colimits of presheaves

Let C be a category. Limits and colimits exist in the category PSh(C). In addition,
for any U ∈ ob(C) the functor

PSh(C) −→ Sets, F 7−→ F(U)

commutes with limits and colimits. Perhaps the easiest way to prove these state-
ment is the following. Given a diagram F : I → PSh(C) define presheaves

Flim : U 7−→ limi∈I Fi(U) and Fcolim : U 7−→ colimi∈I Fi(U)

There are clearly projection maps Flim → Fi and canonical maps Fi → Fcolim.
These maps satisfy the requirements of the maps of a limit (reps. colimit) of Cat-
egories, Definition 4.14.1 (resp. Categories, Definition 4.14.2). Finally, if (G, qi :
G → Fi) is another system (as in the definition of a limit), then we get for every
U a system of maps G(U) → Fi(U) with suitable functoriality requirements. And
thus a unique map G(U) → Flim(U). It is easy to verify these are compatible as
we vary U and arise from the desired map G → Flim. A similar argument works in
the case of the colimit.
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7.5. Functoriality of categories of presheaves

Let u : C → D be a functor between categories. In this case we denote

up : PSh(D) −→ PSh(C)
the functor that associates to G on D the presheaf upG = G ◦ u. Note that by the
previous section this functor commutes with all limits.

For V ∈ ob(D) let IuV denote the category with

(7.5.0.1)
Ob(IuV ) = {(U, φ) | U ∈ Ob(C), φ : V → u(U)}

MorIuV ((U, φ), (U ′, φ′)) = {f : U → U ′ in C | u(f) ◦ φ = φ′}
We sometimes drop the subscript u from the notation and we simply write IV . We
will use these categories to define a left adjoint to the functor up. Before we do so
we prove a few technical lemmas.

Lemma 7.5.1. Let u : C → D be a functor between categories. Suppose that C has
fibre products and equalizers, and that u commutes with them. Then the categories
(IV )opp satisfy the hypotheses of Categories, Lemma 4.19.7.

Proof. There are two conditions to check.

First, suppose we are given three objects φ : V → u(U), φ′ : V → u(U ′), and
φ′′ : V → u(U ′′) and morphisms a : U ′ → U , b : U ′′ → U such that u(a) ◦ φ′ = φ
and u(b)◦φ′′ = φ. We have to show there exists another object φ′′′ : V → u(U ′′′) and
morphisms c : U ′′′ → U ′ and d : U ′′′ → U ′′ such that u(c) ◦ φ′′′ = φ, u(d) ◦ φ′′′ = φ
and a ◦ c = b ◦ d. We take U ′′′ = U ′×U U ′′ with c and d the projection morphisms.
This works as u commutes with fibre products; we omit the verification.

Second, suppose we are given two objects φ : V → u(U) and φ′ : V → u(U ′) and
morphisms a, b : (U, φ) → (U ′, φ′). We have to find a morphism c : (U ′′, φ′′) →
(U, φ) which equalizes a and b. Let c : U ′′ → U be the equalizer of a and b in the
category C. As u commutes with equalizers and since u(a) ◦ φ = u(b) ◦ φ = φ′ we
obtain a morphism φ′′ : V → u(U ′′). �

Lemma 7.5.2. Let u : C → D be a functor between categories. Assume

(1) the category C has a final object X and u(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then the index categories (IuV )opp are filtered (see Categories, Definition 4.19.1).

Proof. The assumptions imply that the assumptions of Lemma 7.5.1 are satisfied
(see the discussion in Categories, Section 4.18). By Categories, Lemma 4.19.7 we
see that IV is a (possibly empty) disjoint union of directed categories. Hence it
suffices to show that IV is connected.

First, we show that IV is nonempty. Namely, let X be the final object of C, which
exists by assumption. Let V → u(X) be the morphism coming from the fact that
u(X) is final in D by assumption. This gives an object of IV .

Second, we show that IV is connected. Let φ1 : V → u(U1) and φ2 : V → u(U2)
be in Ob(IV ). By assumption U1 × U2 exists and u(U1 × U2) = u(U1) × u(U2).
Consider the morphism φ : V → u(U1 × U2) corresponding to (φ1, φ2) by the
universal property of products. Clearly the object φ : V → u(U1 × U2) maps to
both φ1 : V → u(U1) and φ2 : V → u(U2). �
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Given g : V ′ → V in D we get a functor g : IV → IV ′ by setting g(U, φ) = (U, φ◦g)
on objects. Given a presheaf F on C we obtain a functor

FV : IoppV −→ Sets, (U, φ) 7−→ F(U).

In other words, FV is a presheaf of sets on IV . Note that we have FV ′ ◦ g = FV .
We define

upF(V ) := colimIoppV
FV

As a colimit we obtain for each (U, φ) ∈ Ob(IV ) a canonical map F(U)
c(φ)−−→

upF(V ). For g : V ′ → V as above there is a canonical restriction map g∗ :
upF(V ) → upF(V ′) compatible with FV ′ ◦ g = FV by Categories, Lemma 4.14.7.
It is the unique map so that for all (U, φ) ∈ Ob(IV ) the diagram

F(U)
c(φ) //

id

��

upF(V )

g∗

��
F(U)

c(φ◦g)// upF(V ′)

commutes. The uniqueness of these maps implies that we obtain a presheaf. This
presheaf will be denoted upF .

Lemma 7.5.3. There is a canonical map F(U)→ upF(u(U)), which is compatible
with restriction maps (on F and on upF).

Proof. This is just the map c(idu(U)) introduced above. �

Note that any map of presheaves F → F ′ gives rise to compatible systems of maps
between functors FY → F ′Y , and hence to a map of presheaves upF → upF ′. In
other words, we have defined a functor

up : PSh(C) −→ PSh(D)

Lemma 7.5.4. The functor up is a left adjoint to the functor up. In other words
the formula

MorPSh(C)(F , upG) = MorPSh(D)(upF ,G)

holds bifunctorially in F and G.

Proof. Let G be a presheaf on D and let F be a presheaf on C. We will show that
the displayed formula holds by constructing maps either way. We will leave it to
the reader to verify they are each others inverse.

Given a map α : upF → G we get upα : upupF → upG. Lemma 7.5.3 says that
there is a map F → upupF . The composition of the two gives the desired map.
(The good thing about this construction is that it is clearly functorial in everything
in sight.)

Conversely, given a map β : F → upG we get a map upβ : upF → upu
pG. We claim

that the functor upGY on IY has a canonical map to the constant functor with
value G(Y ). Namely, for every object (X,φ) of IY , the value of upGY on this object
is G(u(X)) which maps to G(Y ) by G(φ) = φ∗. This is a transformation of functors
because G is a functor itself. This leads to a map upu

pG(Y ) → G(Y ). Another
trivial verification shows that this is functorial in Y leading to a map of presheaves
upu

pG → G. The composition upF → upu
pG → G is the desired map. �
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Remark 7.5.5. Suppose that A is a category such that any diagram IY → A has
a colimit in A. In this case it is clear that there are functors up and up, defined in
exactly the same way as above, on the categories of presheaves with values in A.
Moreover, the adjointness of the pair up and up continues to hold in this setting.

Lemma 7.5.6. Let u : C → D be a functor between categories. For any object U
of C we have uphU = hu(U).

Proof. By adjointness of up and up we have

MorPSh(D)(uphU ,G) = MorPSh(C)(hU , u
pG) = upG(U) = G(u(U))

and hence by Yoneda’s lemma we see that uphU = hu(U) as presheaves. �

7.6. Sites

Our notion of a site uses the following type of structures.

Definition 7.6.1. Let C be a category, see Conventions, Section 2.3. A family
of morphisms with fixed target in C is given by an object U ∈ Ob(C), a set I and
for each i ∈ I a morphism Ui → U of C with target U . We use the notation
{Ui → U}i∈I to indicate this.

It can happen that the set I is empty! This notation is meant to suggest an open
covering as in topology.

Definition 7.6.2. A site1 is given by a category C and a set Cov(C) of families
of morphisms with fixed target {Ui → U}i∈I , called coverings of C, satisfying the
following axioms

(1) If V → U is an isomorphism then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C),

then {Vij → U}i∈I,j∈Ji ∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C then Ui ×U V

exists for all i and {Ui ×U V → V }i∈I ∈ Cov(C).

Remark 7.6.3. (On set theoretic issues – skip on a first reading.) The main
reason for introducing sites is to study the category of sheaves on a site, because
it is the generalization of the category of sheaves on a topological space that has
been so important in algebraic geometry. In order to avoid thinking about things
like “classes of classes” and so on, we will not allow sites to be “big” categories, in
contrast to what we do for categories and 2-categories.

Suppose that C is a category and that Cov(C) is a proper class of coverings satisfying
(1), (2) and (3) above. We will not allow this as a site either, mainly because we
are going to take limits over coverings. However, there are several natural ways to
replace Cov(C) by a set of coverings or a slightly different structure that give rise
to the same category of sheaves. For example:

(1) In Sets, Section 3.11 we show how to pick a suitable set of coverings that
gives the same category of sheaves.

(2) Another thing we can do is to take the associated topology (see Definition
7.46.2). The resulting topology on C has the same category of sheaves.
Two topologies have the same categories of sheaves if and only if they

1This notation differs from that of [AGV71], as explained in the introduction.
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are equal, see Theorem 7.48.2. A topology on a category is given by a
choice of sieves on objects. The collection of all possible sieves and even
all possible topologies on C is a set.

(3) We could also slightly modify the notion of a site, see Remark 7.46.4
below, and end up with a canonical set of coverings which is contained in
the powerset of the set of arrows of C.

Each of these solutions has some minor drawback. For the first, one has to check
that constructions later on do not depend on the choice of the set of coverings. For
the second, one has to learn about topologies and redo many of the arguments for
sites. For the third, see the last sentence of Remark 7.46.4.

Our approach will be to work with sites as in Definition 7.6.2 above. Given a
category C with a proper class of coverings as above, we will replace this by a set
of coverings producing a site using Sets, Lemma 3.11.1. It is shown in Lemma
7.8.6 below that the resulting category of sheaves (the topos) is independent of this
choice. We leave it to the reader to use one of the other two strategies to deal with
these issues if he/she so desires.

Example 7.6.4. Let X be a topological space. Let XZar be the category whose
objects consist of all the open sets U in X and whose morphisms are just the
inclusion maps. That is, there is at most one morphism between any two objects in
XZar. Now define {Ui → U}i∈I ∈ Cov(XZar) if and only if

⋃
Ui = U . Conditions

(1) and (2) above are clear, and (3) is also clear once we realize that in XZar

we have U × V = U ∩ V . Note that in particular the empty set has to be an
element of XZar since otherwise this would not work in general. Furthermore, it
is equally important, as we will see later, to allow the empty covering of the empty
set as a covering! We turn XZar into a site by choosing a suitable set of coverings
Cov(XZar)κ,α as in Sets, Lemma 3.11.1. Presheaves and sheaves (as defined below)
on the site XZar agree exactly with the usual notion of a presheaves and sheaves
on a topological space, as defined in Sheaves, Section 6.1.

Example 7.6.5. Let G be a group. Consider the category G-Sets whose objects
are sets X with a left G-action, with G-equivariant maps as the morphisms. An
important example is GG which is the G-set whose underlying set is G and action
given by left multiplication. This category has fiber products, see Categories, Sec-
tion 4.7. We declare {ϕi : Ui → U}i∈I to be a covering if

⋃
i∈I ϕi(Ui) = U . This

gives a class of coverings on G-Sets which is easily see to satisfy conditions (1), (2),
and (3) of Definition 7.6.2. The result is not a site since both the collection of ob-
jects of the underlying category and the collection of coverings form a proper class.
We first replace by G-Sets by a full subcategory G-Setsα as in Sets, Lemma 3.10.1.
After this the site (G-Setsα,Covκ,α′(G-Setsα)) gotten by suitably restricting the
collection of coverings as in Sets, Lemma 3.11.1 will be denoted TG.

As a special case, if the group G is countable, then we can let TG be the category
of countable G-sets and coverings those jointly surjective families of morphisms
{ϕi : Ui → U}i∈I such that I is countable.

Example 7.6.6. Let C be a category. There is a canonical way to turn this into a
site where {idU : U → U} are the coverings. Sheaves on this site are the presheaves
on C. This corresponding topology is called the chaotic or indiscrete topology.
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7.7. Sheaves

Let C be a site. Before we introduce the notion of a sheaf with values in a category
we explain what it means for a presheaf of sets to be a sheaf. Let F be a presheaf
of sets on C and let {Ui → U}i∈I be an element of Cov(C). By assumption all the
fibre products Ui ×U Uj exist in C. There are two natural maps

∏
i∈I F(Ui)

pr∗0 //

pr∗1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

which we will denote pr∗i , i = 0, 1 as indicated in the displayed equation. Namely,
an element of the left hand side corresponds to a family (si)i∈I , where each si is a
section of F over Ui. For each pair (i0, i1) ∈ I×I we have the projection morphisms

pr
(i0,i1)
i0

: Ui0 ×U Ui1 −→ Ui0 and pr
(i0,i1)
i1

: Ui0 ×U Ui1 −→ Ui1 .

Thus we may pull back either the section si0 via the first of these maps or the
section si1 via the second. Explicitly the maps we referred to above are

pr∗0 : (si)i∈I 7−→
(

pr
(i0,i1),∗
i0

(si0)
)

(i0,i1)∈I×I

and

pr∗1 : (si)i∈I 7−→
(

pr
(i0,i1),∗
i1

(si1)
)

(i0,i1)∈I×I
.

Finally consider the natural map

F(U) −→
∏

i∈I
F(Ui), s 7−→ (s|Ui)i∈I

where we have used the notation s|Ui to indicate the pullback of s via the map
Ui → U . It is clear from the functorial natural of F and the commutativity of the
fibre product diagrams that pr∗0((s|Ui)i∈I) = pr∗1((s|Ui)i∈I).

Definition 7.7.1. Let C be a site, and let F be a presheaf of sets on C. We say F
is a sheaf if for every covering {Ui → U}i∈I ∈ Cov(C) the diagram

(7.7.1.1) F(U) // ∏
i∈I F(Ui)

pr∗0 //

pr∗1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗0 and pr∗1.

Loosely speaking this means that given sections si ∈ F(Ui) such that

si|Ui×UUj = sj |Ui×UUj
in F(Ui ×U Uj) for all pairs (i, j) ∈ I × I then there exists a unique s ∈ F(U) such
that si = s|Ui .

Remark 7.7.2. If the covering {Ui → U}i∈I is the empty family (this means that
I = ∅), then the sheaf condition signifies that F(U) = {∗} is a singleton set. This
is true because in (7.7.1.1) the second and third sets are empty products in the
category of sets, which are final objects in the category of sets, hence singletons.

Example 7.7.3. Let X be a topological space. Let XZar be the site constructed
in Example 7.6.4. The notion of a sheaf on XZar coincides with the notion of a
sheaf on X introduced in Sheaves, Definition 6.7.1.
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Example 7.7.4. Let X be a topological space. Let us consider the site X ′Zar which
is the same as the site XZar of Example 7.6.4 except that we disallow the empty
covering of the empty set. In other words, we do allow the covering {∅ → ∅} but
we do not allow the covering whose index set is empty. It is easy to show that this
still defines a site. However, we claim that the sheaves on X ′Zar are different from
the sheaves on XZar. For example, as an extreme case consider the situation where
X = {p} is a singleton. Then the objects of X ′Zar are ∅, X and every covering if
∅ can be refined by {∅ → ∅} and every covering of X by {X → X}. Clearly, a
sheaf on this is given by any choice of a set F(∅) and any choice of a set F(X),
together with any restriction map F(X) → F(∅). Thus sheaves on X ′Zar are the
same as usual sheaves on the two point space {η, p} with open sets {∅, {η}, {p, η}}.
In general sheaves on X ′Zar are the same as sheaves on the space X q {η}, with
opens given by the empty set and any set of the form U ∪ {η} for U ⊂ X open.

Definition 7.7.5. The category Sh(C) of sheaves of sets is the full subcategory of
the category PSh(C) whose objects are the sheaves of sets.

Let A be a category. If products indexed by I, and I × I exist in A for any I that
occurs as an index set for covering families then Definition 7.7.1 above makes sense,
and defines a notion of a sheaf on C with values in A. Note that the diagram in A

F(U) // ∏
i∈I F(Ui)

pr∗0 //

pr∗1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

is an equalizer diagram if and only if for every object X of A the diagram of sets

MorA(X,F(U)) // ∏MorA(X,F(Ui))
pr∗0 //

pr∗1

//
∏

MorA(X,F(Ui0 ×U Ui1))

is an equalizer diagram.

Suppose A is arbitrary. Let F be a presheaf with values in A. Choose any object
X ∈ Ob(A). Then we get a presheaf of sets FX defined by the rule

FX(U) = MorA(X,F(U)).

From the above it follows that a good definition is obtained by requiring all the
presheaves FX to be sheaves of sets.

Definition 7.7.6. Let C be a site, let A be a category and let F be a presheaf on
C with values in A. We say that F is a sheaf if for all objects X of A the presheaf
of sets FX (defined above) is a sheaf.

7.8. Families of morphisms with fixed target

This section is meant to introduce some notions regarding families of morphisms
with the same target.

Definition 7.8.1. Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms of C with fixed target. Let V = {Vj → V }j∈J be another.

(1) A morphism of families of maps with fixed target of C from U to V, or
simply a morphism from U to V is given by a morphism U → V , a map
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of sets α : I → J and for each i ∈ I a morphism Ui → Vα(i) such that the
diagram

Ui //

��

Vα(i)

��
U // V

is commutative.
(2) In the special case that U = V and U → V is the identity we call U a

refinement of the family V.

A trivial but important remark is that if V = {Vj → V }j∈J is the empty family of
maps, i.e., if J = ∅, then no family U = {Ui → V }j∈I with I 6= ∅ can refine V!

Definition 7.8.2. Let C be a category. Let U = {ϕi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with fixed target.

(1) We say U and V are combinatorially equivalent if there exist maps α : I →
J and β : J → I such that ϕi = ψα(i) and ψj = ϕβ(j).

(2) We say U and V are tautologically equivalent if there exist maps α : I → J
and β : J → I and for all i ∈ I and j ∈ J commutative diagrams

Ui

��

// Vα(i)

}}

Vj

��

// Uβ(j)

}}
U U

with isomorphisms as horizontal arrows.

Lemma 7.8.3. Let C be a category. Let U = {ϕi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with the same fixed target.

(1) If U and V are combinatorially equivalent then they are tautologically
equivalent.

(2) If U and V are tautologically equivalent then U is a refinement of V and
V is a refinement of U .

(3) The relation “being combinatorially equivalent” is an equivalence relation
on all families of morphisms with fixed target.

(4) The relation “being tautologically equivalent” is an equivalence relation on
all families of morphisms with fixed target.

(5) The relation “U refines V and V refines U” is an equivalence relation on
all families of morphisms with fixed target.

Proof. Omitted. �

In the following lemma, given a category C, a presheaf F on C, a family U = {Ui →
U}i∈I such that all fibre products Ui ×U Ui′ exist, we say that the sheaf condition
for F with respect to U holds if the diagram (7.7.1.1) is an equalizer diagram.

Lemma 7.8.4. Let C be a category. Let U = {ϕi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with the same fixed target. Assume that
the fibre products Ui ×U Ui′ and Vj ×U Vj′ exist. If U and V are tautologically
equivalent, then for any presheaf F on C the sheaf condition for F with respect to
U is equivalent to the sheaf condition for F with respect to V.
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Proof. First, note that if ϕ : A → B is an isomorphism in the category C, then
ϕ∗ : F(B) → F(A) is an isomorphism. Let β : J → I be a map and let ψj : Vj →
Uβ(j) be isomorphisms over U which are assumed to exist by hypothesis. Let us
show that the sheaf condition for V implies the sheaf condition for U . Suppose
given sections si ∈ F(Ui) such that

si|Ui×UUi′ = si′ |Ui×UUi′
in F(Ui ×U Ui′) for all pairs (i, i′) ∈ I × I. Then we can define sj = ψ∗j sβ(j). For
any pair (j, j′) ∈ J × J ′ the morphism ψj ×idU ψj′ : Vj ×U Vj′ → Uβ(j) ×U Uβ(j′) is
an isomorphism as well. Hence by transport of structure we see that

sj |Vj×UVj′ = sj′ |Vj×UVj′
as well. The sheaf condition w.r.t. V implies there exists a unique s such that
s|Vj = sj for all j ∈ J . By the first remark of the proof this implies that s|Ui = si
for all i ∈ Im(β) as well. Suppose that i ∈ I, i 6∈ Im(β). For such an i we
have isomorphisms Ui → Vα(i) → Uβ(α(i)) over U . This gives a morphism Ui →
Ui ×U Uβ(α(i)) which is a section of the projection. Because si and sβ(α(i)) restrict
to the same element on the fibre product we conclude that sβ(α(i)) pulls back to si
via Ui → Uβ(α(i)). Thus we see that also si = s|Ui as desired. �

Lemma 7.8.5. Let C be a category. Let Covi, i = 1, 2 be two sets of families of
morphisms with fixed target which each define the structure of a site on C.

(1) If every U ∈ Cov1 is tautologically equivalent to some V ∈ Cov2, then
Sh(C,Cov2) ⊂ Sh(C,Cov1). If also, every U ∈ Cov2 is tautologically equiv-
alent to some V ∈ Cov1 then the category of sheaves are equal.

(2) Suppose that for each U ∈ Cov1 there exists a V ∈ Cov2 such that V refines
U . In this case Sh(C,Cov2) ⊂ Sh(C,Cov1). If also for every U ∈ Cov2

there exists a V ∈ Cov1 such that V refines U , then the categories of
sheaves are equal.

Proof. Part (1) follows directly from Lemma 7.8.4 and the definitions.

We advise the reader to skip the proof of (2) on a first reading. Let F be a
sheaf of sets for the site (C,Cov2). Let U ∈ Cov1, say U = {Ui → U}i∈I . Choose a
refinement V ∈ Cov2 of U , say V = {Vj → U}j∈J and refinement given by α : J → I
and fj : Vj → Uα(j).

First let s, s′ ∈ F(U). If for all i ∈ I we have s|Ui = s′|Ui , then we also have
s|Vj = s′|Vj for all j ∈ J . This implies that s = s′ by the sheaf condition for F
with respect to Cov2. Hence we see that the unicity in the sheaf condition for F
and the site (C,Cov1) holds.

Next, suppose given si ∈ F(Ui) such that si|Ui×UUi′ = si′ |Ui×UUi′ for all i, i′ ∈ I.
Set sj = f∗j (sα(j)) ∈ F(Vj). Since the morphisms fj are morphisms over U we
obtain induced morphisms fjj′ : Vj ×U Vj′ → Uα(i) ×U Uα(i′) compatible with the
fj , fj′ via the projection maps. It follows that

sj |Vj×UVj′ = f∗jj′(sα(j)|Uα(j)×UUα(j′)) = f∗jj′(sα(j′)|Uα(j)×UUα(j′)) = sj′ |Vj×UVj′
for all j, j′ ∈ J . Hence, by the sheaf condition for F with respect to Cov2, we get a
section s ∈ F(U) which restricts to sj on each Vj . We are done if we show s restricts
to si0 on Ui0 for any i0 ∈ I. For each i0 ∈ I the family U ′ = {Ui ×U Ui0 → Ui0}i∈I
is an element of Cov1 by the axioms of a site. Also, the family V ′ = {Vj ×U Ui0 →
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Ui0}j∈J is an element of Cov2. Then V ′ refines U ′ via α : J → I and the maps
f ′j = fj × idUi0 . The element si0 restricts to si|Ui×UUi0 on the members of the

covering U ′ and hence via (f ′j)
∗ to the elements sj |Vj×UUi0 on the members of the

covering V ′. By construction of s this is the same as the family of restrictions of
s|Ui0 to the members of the covering V ′. Hence by the sheaf condition for F with

respect to Cov2 we see that s|Ui0 = si0 as desired. �

Lemma 7.8.6. Let C be a category. Let Cov(C) be a proper class of coverings
satisfying conditions (1), (2) and (3) of Definition 7.6.2. Let Cov1,Cov2 ⊂ Cov(C)
be two subsets of Cov(C) which endow C with the structure of a site. If every covering
U ∈ Cov(C) is combinatorially equivalent to a covering in Cov1 and combinatorially
equivalent to a covering in Cov2, then Sh(C,Cov1) = Sh(C,Cov2).

Proof. This is clear from Lemmas 7.8.5 and 7.8.3 above as the hypothesis implies
that every covering U ∈ Cov1 ⊂ Cov(C) is combinatorially equivalent to an element
of Cov2, and similarly with the roles of Cov1 and Cov2 reversed. �

7.9. The example of G-sets

As an example, consider the site TG of Example 7.6.5. We will describe the category
of sheaves on TG. The answer will turn out to be independent of the choices made
in defining TG. In fact, during the proof we will need only the following properties
of the site TG:

(a) TG is a full subcategory of G-Sets,
(b) TG contains the G-set GG,
(c) TG has fibre products and they are the same as in G-Sets,
(d) given U ∈ Ob(TG) and a G-invariant subset O ⊂ U , there exists an object

of TG isomorphic to O, and
(e) any surjective family of maps {Ui → U}i∈I , with U,Ui ∈ Ob(TG) is com-

binatorially equivalent to a covering of TG.

These properties hold by Sets, Lemmas 3.10.2 and 3.11.1.

Remark that the map

HomG(GG,GG) −→ Gopp, ϕ 7−→ ϕ(1)

is an isomorphism of groups. The inverse map sends g ∈ G to the map Rg : s 7→ sg
(i.e. right multiplication). Note that Rg1g2

= Rg2
◦Rg1

so the opposite is necessary.

This implies that for every presheaf F on TG the value F(GG) inherits the structure
of a G-set as follows: g · s for g ∈ G and s ∈ F(GG) defined by F(Rg)(s). This is
a left action because

(g1g2) · s = F(Rg1g2
)(s) = F(Rg2

◦Rg1
)(s) = F(Rg1

)(F(Rg2
)(s)) = g1 · (g2 · s).

Here we’ve used that F is contravariant. Note that if F → G is a morphism of
presheaves of sets on TG then we get a map F(GG)→ G(GG) which is compatible
with the G-actions we have just defined. All in all we have constructed a functor

PSh(TG) −→ G-Sets, F 7−→ F(GG).

We leave it to the reader to verify that this construction has the pleasing property
that the representable presheaf hU is mapped to something canonically isomorphic
to U . In a formula hU (GG) = HomG(GG,U) ∼= U .
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Suppose that S is a G-set. We define a presheaf FS by the formula2

FS(U) = MorG-Sets(U, S).

This is clearly a presheaf. On the other hand, suppose that {Ui → U}i∈I is a
covering in TG. This implies that

∐
i Ui → U is surjective. Thus it is clear that the

map

FS(U) = MorG-Sets(U, S) −→
∏
FS(Ui) =

∏
MorG-Sets(Ui, S)

is injective. And, given a family of G-equivariant maps si : Ui → S, such that all
the diagrams

Ui ×U Uj

��

// Uj

sj

��
Ui

si // S

commute, there is a unique G-equivariant map s : U → S such that si is the
composition Ui → U → S. Namely, we just define s(u) = si(ui) where i ∈ I is any
index such that there exists some ui ∈ Ui mapping to u under the map Ui → U .
The commutativity of the diagrams above implies exactly that this construction is
well defined. All in all we have constructed a functor

G-Sets −→ Sh(TG), S 7−→ FS .

We now have the following diagram of categories and functors

PSh(TG)
F7→F(GG) // G-Sets

S 7→FS

zz
Sh(TG)

ee

It is immediate from the definitions that FS(GG) = MorG(GG,S) = S, the last
equality by evaluation at 1. This almost proves the following.

Proposition 7.9.1. The functors F 7→ F(GG) and S 7→ FS define quasi-inverse
equivalences between Sh(TG) and G-Sets.

Proof. We have already seen that composing the functors one way around is iso-
morphic to the identity functor. In the other direction, for any sheaf H there is a
natural map of sheaves

can : H −→ FH(GG).

Namely, for any object U of TG we let canU be the map

H(U) −→ FH(GG)(U) = MorG(U,H(GG))
s 7−→ (u 7→ α∗us).

Here αu : GG → U is the map αu(g) = gu and α∗u : H(U) → H(GG) is the
pullback map. A trivial but confusing verification shows that this is indeed a map
of presheaves. We have to show that can is an isomorphism. We do this by showing
canU is an isomorphism for all U ∈ ob(TG). We leave the (important but easy)
case that U = GG to the reader. A general object U of TG is a disjoint union of G-
orbits: U =

∐
i∈I Oi. The family of maps {Oi → U}i∈I is tautologically equivalent

2It may appear this is the representable presheaf defined by S. This may not be the case
because S may not be an object of TG which was chosen to be a sufficiently large set of G-sets.
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to a covering in TG (by the properties of TG listed at the beginning of this section).
Hence by Lemma 7.8.4 the sheaf H satisfies the sheaf property with respect to
{Oi → U}i∈I . The sheaf property for this covering implies H(U) =

∏
iH(Oi).

Hence it suffices to show that canU is an isomorphism when U consists of a single
G-orbit. Let u ∈ U and let H ⊂ G be its stabilizer. Clearly, MorG(U,H(GG)) =
H(GG)H equals the subset of H-invariant elements. On the other hand consider the
covering {GG→ U} given by g 7→ gu (again it is just combinatorially equivalent to
some covering of TG, and again this doesn’t matter). Note that the fibre product
(GG) ×U (GG) is equal to {(g, gh), g ∈ G, h ∈ H} ∼=

∏
h∈H GG. Hence the sheaf

property for this covering reads as

H(U) // H(GG)
pr∗0 //

pr∗1

//
∏
h∈H H(GG).

The two maps pr∗i into the factor H(GG) differ by multiplication by h. Now the
result follows from this and the fact that can is an isomorphism for U = GG. �

7.10. Sheafification

In order to define the sheafification we study the zeroth Cech cohomology group of
a covering and its functoriality properties.

Let F be a presheaf of sets on C, and let U = {Ui → U}i∈I be a covering of C. Let
us use the notation F(U) to indicate the equalizer

H0(U ,F) = {(si)i∈I ∈
∏

i
F(Ui) | si|Ui×UUj = sj |Ui×UUj ∀i, j ∈ I}.

As we will see later, this is the zeroth Cech cohomology of F over U with respect
to the covering U . A small remark is that we can define H0(U ,F) as soon as all
the morphisms Ui → U are representable, i.e., U need not be a covering of the
site. There is a canonical map F(U) → H0(U ,F). It is clear that a morphism of
coverings U → V induces commutative diagrams

Ui // Vα(i)

Ui ×U Uj //

;;

##

Vα(i) ×V Vα(j)

88

&&
Uj // Vα(j)

.

This in turn produces a map H0(V,F) → H0(U ,F), compatible with the map
F(V )→ F(U).

By construction, a presheaf F is a sheaf if and only if for every covering U of C the
natural map F(U) → H0(U ,F) is bijective. We will use this notion to prove the
following simple lemma about limits of sheaves.

Lemma 7.10.1. Let F : I → Sh(C) be a diagram. Then limI F exists and is equal
to the limit in the category of presheaves.
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Proof. Let limi Fi be the limit as a presheaf. We will show that this is a sheaf and
then it will trivially follow that it is a limit in the category of sheaves. To prove the
sheaf property, let V = {Vj → V }j∈J be a covering. Let (sj)j∈J be an element of
H0(V, limi Fi). Using the projection maps we get elements (sj,i)j∈J in H0(V,Fi).
By the sheaf property for Fi we see that there is a unique si ∈ Fi(V ) such that
sj,i = si|Vj . Let φ : i → i′ be a morphism of the index category. We would like to
show that F(φ) : Fi → Fi′ maps si to si′ . We know this is true for the sections
si,j and si′,j for all j and hence by the sheaf property for Fi′ this is true. At this
point we have an element s = (si)i∈Ob(I) of (limi Fi)(V ). We leave it to the reader
to see this element has the required property that sj = s|Vj . �

Example 7.10.2. A particular example is the limit over the empty diagram. This
gives the final object in the category of (pre)sheaves. It is the sheaf that associates
to each object U of C a singleton set, with unique restriction mappings. We often
denote this sheaf by ∗.

Let JU be the category of all coverings of U . In other words, the objects of JU are
the coverings of U in C, and the morphisms are the refinements. By our conventions
on sites this is indeed a category, i.e., the collection of objects and morphisms forms
a set. Note that Ob(JU ) is not empty since {idU} is an object of it. According to
the remarks above the construction U 7→ H0(U ,F) is a contravariant functor on
JU . We define

F+(U) = colimJ oppU
H0(U ,F)

See Categories, Section 4.14 for a discussion of limits and colimits. We point out
that later we will see that F+(U) is the zeroth Cech cohomology of F over U .

Before we say more about the structure of the colimit, we turn the collection of
sets F+(U), U ∈ Ob(C) into a presheaf. Namely, let V → U be a morphism of C.
By the axioms of a site there is a functor3

JU −→ JV , {Ui → U} 7−→ {Ui ×U V → V }.
Note that the projection maps furnish a functorial morphism of coverings {Ui ×U
V → V } → {Ui → U} and hence, by the construction above, a functorial map
of sets H0({Ui → U},F) → H0({Ui ×U V → V },F). In other words, there
is a transformation of functors from H0(−,F) : JU → Sets to the composition

JU → JV
H0(−,F)−−−−−−→ Sets. Hence by generalities of colimits we obtain a canonical

map F+(U) → F+(V ). In terms of the description of the set F+(U) above, it
just takes the element associated with s = (si) ∈ H0({Ui → U},F) to the element
associated with (si|V×UUi) ∈ H0({Ui ×U V → V },F).

Lemma 7.10.3. The constructions above define a presheaf F+ together with a
canonical map of presheaves F → F+.

Proof. All we have to do is to show that given morphisms W → V → U the
composition F+(U) → F+(V ) → F+(W ) equals the map F+(U) → F+(W ).
This can be shown directly by verifying that, given a covering {Ui → U} and
s = (si) ∈ H0({Ui → U},F), we have canonically W ×U Ui ∼= W ×V (V ×U Ui),
and si|W×UUi corresponds to (si|V×UUi)|W×V (V×UUi) via this isomorphism. �

3This construction actually involves a choice of the fibre products Ui ×U V and hence the
axiom of choice. The resulting map does not depend on the choices made, see below.
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More indirectly, the result of Lemma 7.10.6 shows that we may pullback an element
s as above via any morphism from any covering of W to {Ui → U} and we will
always end up with the same element in F+(W ).

Lemma 7.10.4. The association F 7→ (F → F+) is a functor.

Proof. Instead of proving this we state exactly what needs to be proven. Let
F → G be a map of presheaves. Prove the commutativity of:

F //

��

F+

��
G // G+

�

The next two lemmas imply that the colimits above are colimits over a directed
partially ordered set.

Lemma 7.10.5. Given a pair of coverings {Ui → U} and {Vj → U} of a given
object U of the site C, there exists a covering which is a common refinement.

Proof. Since C is a site we have that for every i the family {Vj ×U Ui → Ui}j is a
covering. And, then another axiom implies that {Vj ×U Ui → U}i,j is a covering of
U . Clearly this covering refines both given coverings. �

Lemma 7.10.6. Any two morphisms f, g : U → V of coverings inducing the same
morphism U → V induce the same map H0(V,F)→ H0(U ,F).

Proof. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J . The morphism f consists of
a map U → V , a map α : I → J and maps fi : Ui → Vα(i). Likewise, g determines
a map β : I → J and maps gi : Ui → Vβ(i). As f and g induce the same map
U → V , the diagram

Vα(i)

!!
Ui

fi
==

gi !!

V

Vβ(i)

==

is commutative for every i ∈ I. Hence f and g factor through the fibre product

Vα(i)

Ui
ϕ //

fi
99

gi
%%

Vα(i) ×V Vβ(i)

pr1

OO

pr2

��
Vβ(i).

Now let s = (sj)j ∈ H0(V,F). Then for all i ∈ I:

(f∗s)i = f∗i (sα(i)) = ϕ∗pr∗1(sα(i)) = ϕ∗pr∗2(sβ(i)) = g∗i (sβ(i)) = (g∗s)i,
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where the middle equality is given by the definition of H0(V,F). This shows that
the maps H0(V,F)→ H0(U ,F) induced by f and g are equal. �

Remark 7.10.7. In particular this lemma shows that if U is a refinement of V,
and if V is a refinement of U , then there is a canonical identification H0(U ,F) =
H0(V,F).

From these two lemmas, and the fact that JU is nonempty, it follows that the
diagram H0(−,F) : J oppU → Sets is filtered, see Categories, Definition 4.19.1.
Hence, by Categories, Section 4.19 the colimit F+(U) may be described in the
following straightforward manner. Namely, every element in the set F+(U) arises
from an element s ∈ H0(U ,F) for some covering U of U . Given a second element
s′ ∈ H0(U ′,F) then s and s′ determine the same element of the colimit if and only
if there exists a covering V of U and refinements f : V → U and f ′ : V → U ′ such
that f∗s = (f ′)∗s′ in H0(V,F). Since the trivial covering {idU} is an object of JU
we get a canonical map F(U)→ F+(U).

Lemma 7.10.8. The map θ : F → F+ has the following property: For every object
U of C and every section s ∈ F+(U) there exists a covering {Ui → U} such that
s|Ui is in the image of θ : F(Ui)→ F+(Ui).

Proof. Namely, let {Ui → U} be a covering such that s arises from the element
(si) ∈ H0({Ui → U},F). According to Lemma 7.10.6 we may consider the covering
{Ui → Ui} and the (obvious) morphism of coverings {Ui → Ui} → {Ui → U} to
compute the pullback of s to an element of F+(Ui). And indeed, using this covering
we get exactly θ(si) for the restriction of s to Ui. �

Definition 7.10.9. We say that a presheaf of sets F on a site C is separated if, for
all coverings of {Ui → U}, the map F(U)→

∏
F(Ui) is injective.

Theorem 7.10.10. With F as above

(1) The presheaf F+ is separated.
(2) If F is separated, then F+ is a sheaf and the map of presheaves F → F+

is injective.
(3) If F is a sheaf, then F → F+ is an isomorphism.
(4) The presheaf F++ is always a sheaf.

Proof. Proof of (1). Suppose that s, s′ ∈ F+(U) and suppose that there exists
some covering {Ui → U} such that s|Ui = s′|Ui for all i. We now have three
coverings of U : the covering {Ui → U} above, a covering U for s as in Lemma
7.10.8, and a similar covering U ′ for s′. By Lemma 7.10.5, we can find a common
refinement, say {Wj → U}. This means we have sj , s

′
j ∈ F(Wj) such that s|Wj

=
θ(sj), similarly for s′|Wj , and such that θ(sj) = θ(s′j). This last equality means
that there exists some covering {Wjk → Wj} such that sj |Wjk

= s′j |Wjk
. Then

since {Wjk → U} is a covering we see that s, s′ map to the same element of
H0({Wjk → U},F) as desired.

Proof of (2). It is clear that F → F+ is injective because all the maps F(U) →
H0(U ,F) are injective. It is also clear that, if U → U ′ is a refinement, then
H0(U ′,F)→ H0(U ,F) is injective. Now, suppose that {Ui → U} is a covering, and
let (si) be a family of elements of F+(Ui) satisfying the sheaf condition si|Ui×UUj =
sj |Ui×UUj for all i, j ∈ I. Choose coverings (as in Lemma 7.10.8) {Uij → Ui} such
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that si|Uij is the image of the (unique) element sij ∈ F(Uij). The sheaf condition
implies that sij and si′j′ agree over Uij×U Ui′j′ because it maps to Ui×U Ui′ and we
have the equality there. Hence (sij) ∈ H0({Uij → U},F) gives rise to an element
s ∈ F+(U). We leave it to the reader to verify that s|Ui = si.

Proof of (3). This is immediate from the definitions because the sheaf property
says exactly that every map F → H0(U ,F) is bijective (for every covering U of U).

Statement (4) is now obvious. �

Definition 7.10.11. Let C be a site and let F be a presheaf of sets on C. The
sheaf F# := F++ together with the canonical map F → F# is called the sheaf
associated to F .

Proposition 7.10.12. The canonical map F → F# has the following universal
property: For any map F → G, where G is a sheaf of sets, there is a unique map
F# → G such that F → F# → G equals the given map.

Proof. By Lemma 7.10.4 we get a commutative diagram

F //

��

F+ //

��

F++

��
G // G+ // G++

and by Theorem 7.10.10 the lower horizontal maps are isomorphisms. The unique-
ness follows from Lemma 7.10.8 which says that every section of F# locally comes
from sections of F . �

It is clear from this result that the functor F 7→ (F → F#) is unique up to unique
isomorphism of functors. Actually, let us temporarily denote i : Sh(C) → PSh(C)
the functor of inclusion. The result above actually says that

MorPSh(C)(F , i(G)) = MorSh(C)(F#,G).

In other words, the functor of sheafification is the left adjoint to the inclusion
functor i. We finish this section with a couple of lemmas.

Lemma 7.10.13. Let F : I → Sh(C) be a diagram. Then colimI F exists and is
the sheafification of the colimit in the category of presheaves.

Proof. Since the sheafification functor is a left adjoint it commutes with all colim-
its, see Categories, Lemma 4.24.4. Hence, since PSh(C) has colimits, we deduce that
Sh(C) has colimits (which are the sheafifications of the colimits in presheaves). �

Lemma 7.10.14. The functor PSh(C)→ Sh(C), F 7→ F# is exact.

Proof. Since it is a left adjoint it is right exact, see Categories, Lemma 4.24.5.
On the other hand, by Lemmas 7.10.5 and Lemma 7.10.6 the colimits in the con-
struction of F+ are really over the directed partially ordered set Ob(JU ) where
U ≥ U ′ if and only if U is a refinement of U ′. Hence by Categories, Lemma 4.19.2
we see that F → F+ commutes with finite limits (as a functor from presheaves to
presheaves). Then we conclude using Lemma 7.10.1. �

http://stacks.math.columbia.edu/tag/00WG
http://stacks.math.columbia.edu/tag/00WH
http://stacks.math.columbia.edu/tag/00WI
http://stacks.math.columbia.edu/tag/00WJ


274 7. SITES AND SHEAVES

Lemma 7.10.15. Let C be a site. Let F be a presheaf of sets on C. Denote
θ2 : F → F# the canonical map of F into its sheafification. Let U be an object of
C. Let s ∈ F#(U). There exists a covering {Ui → U} and sections si ∈ F(Ui) such
that

(1) s|Ui = θ2(si), and
(2) for every i, j there exists a covering {Uijk → Ui×U Uj} of C such that the

pullback of si and sj to each Uijk agree.

Conversely, given any covering {Ui → U}, elements si ∈ F(Ui) such that (2) holds,
then there exists a unique section s ∈ F#(U) such that (1) holds.

Proof. Omitted. �

7.11. Quasi-compact objects and colimits

To be able to use the same language as in the case of topological spaces we introduce
the following terminology.

Definition 7.11.1. Let C be a site. An object U of C is quasi-compact if every
covering of U in C can be refined by a finite covering.

The following lemma is the analogue of Sheaves, Lemma 6.29.1 for sites.

Lemma 7.11.2. Let C be a site. Let I → Sh(C), i 7→ Fi be a filtered diagram of
sheaves of sets. Let U ∈ Ob(C). Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)

With the terminology introduced above:

(1) If all the transition maps are injective then Ψ is injective for any U .
(2) If U is quasi-compact, then Ψ is injective.
(3) If U is quasi-compact and all the transition maps are injective then Ψ is

an isomorphism.
(4) If U has a cofinal system of coverings {Uj → U}j∈J with J finite and

Uj ×U Uj′ quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F ′ : V 7→ colimi Fi(V ) is separated (see Definition 7.10.9). By Lemma 7.10.13 we
have (F ′)# = colimi Fi. By Theorem 7.10.10 we see that F ′ → (F ′)# is injective.
This proves (1).

Assume U is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to
elements on the left hand side which have the same image under Ψ. Since U is
quasi-compact this means there exists a finite covering {Uj → U}j=1,...,m and for
each j an index ij ∈ I, ij ≥ i, ij ≥ i′ such that ϕiij (s) = ϕi′ij (s

′). Let i′′ ∈ I be ≥
than all of the ij . We conclude that ϕii′′(s) and ϕi′i′′(s) agree on Uj for all j and
hence that ϕii′′(s) = ϕi′i′′(s). This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of Ψ. Since U is quasi-compact there exists a finite covering {Uj →
U}j=1,...,m, for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj comes from
sj for all j. Pick i ∈ I which is ≥ than all of the ij . By (1) the sections ϕiji(sj)
agree over Uj ×U Uj′ . Hence they glue to a section s′ ∈ Fi(U) which maps to s
under Ψ. This proves (3).
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Assume the hypothesis of (4). Let s be an element of the target of Ψ. By assumption
there exists a finite covering {Uj → U}j=1,...,mUj , with Uj ×U Uj′ quasi-compact
for all j, j′ ∈ J and for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj is
the image of sj for all j. Since Uj ×U Uj′ is quasi-compact we can apply (2) and
we see that there exists an ijj′ ∈ I, ijj′ ≥ ij , ijj′ ≥ ij′ such that ϕijijj′ (sj) and

ϕij′ ijj′ (sj′) agree over Uj ×U Uj′ . Choose an index i ∈ I wich is bigger or equal

than all the ijj′ . Then we see that the sections ϕiji(sj) of Fi glue to a section of
Fi over U . This section is mapped to the element s as desired. �

We need an analogue of the above result in the case that the site is the limit of an
inverse system of sites. For simplicity we only explain the construction in case the
index sets of coverings are finite.

Situation 7.11.3. Here we are given

(1) a cofiltered index category I,
(2) for i ∈ Ob(I) a site Ci such that every covering in Ci has a finite index

set,
(3) for a morphism a : i→ j in I a morphism of sites fa : Ci → Cj given by a

continuous functor ua : Cj → Ci,
such that fa ◦ fb = fc whenever c = a ◦ b in I.

Lemma 7.11.4. In Situation 7.11.3 we can construct a site (C,Cov(C)) as follows

(1) as a category C = colim Ci, and
(2) Cov(C) is the union of the images of Cov(Ci) by ui : Ci → C.

Proof. Our definition of composition of morphisms of sites implies that ub◦ua = uc
whenever c = a◦b in I. The formula C = colim Ci means that Ob(C) = colim Ob(Ci)
and Arrows(C) = colim Arrows(Ci) . Then source, target, and composition are
inherited from the source, target, and composition on Arrows(Ci). In this way we
obtain a category. Denote ui : Ci → C the obvious functor. Remark that given
any finite diagram in C there exists an i such that this diagram is the image of a
diagram in Ci.

Let {U t → U} be a covering of C. We first prove that if V → U is a morphism
of C, then U t ×U V exists. By our remark above and our definition of coverings,
we can find an i, a covering {U ti → Ui} of Ci and a morphism Vi → Ui whose
image by ui is the given data. We claim that U t ×U V is the image of U ti ×Ui Vi
by ui. Namely, for every a : j → i in I the functor ua is continuous, hence
ua(U ti ×Ui Vi) = ua(U ti ) ×ua(Ui) ua(Vi). In particular we can replace i by j, if we
so desire. Thus, if W is another object of C, then we may assume W = ui(Wi) and
we see that

MorC(W,ui(U
t
i ×Ui Vi))

= colima:j→i MorCj (ua(Wi), ua(U ti ×Ui Vi))
= colima:j→i MorCj (ua(Wi), ua(U ti ))×MorCj (ua(Wi),ua(Ui)) MorCj (ua(Wi), ua(Vi))

= MorC(W,U
t)×MorC(W,U) MorC(W,V )

as filtered colimits commute with finite limits (Categories, Lemma 4.19.2). It also
follows that {U t ×U V → V } is a covering in C. In this way we see that axiom (3)
of Definition 7.6.2 holds.
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To verify axiom (2) of Definition 7.6.2 let {U t → U}t∈T be a covering of C and for
each t let {U ts → U t} be a covering of C. Then we can find an i and a covering
{U ti → Ui}t∈T of Ci whose image by ui is {U t → U}. Since T is finite we may
choose an a : j → i in I and coverings {U tsj → ua(U ti )} of Cj whose image by uj
gives {U ts → U t}. Then we conclude that {U ts → U} is a covering of C by an
application of axiom (2) to the site Cj .
We omit the proof of axiom (1) of Definition 7.6.2. �

Lemma 7.11.5. In Situation 7.11.3 let ui : Ci → C be as constructed in Lemma
7.11.4. Then ui defines a morphism of sites fi : C → Ci. For Ui ∈ Ob(Ci) and sheaf
F on Ci we have

(7.11.5.1) f−1
i F(ui(Ui)) = colima:j→i f

−1
a F(ua(Ui))

Proof. It is immediate from the arguments in the proof of Lemma 7.11.4 that the
functors ui are continuous. To finish the proof we have to show that f−1

i := ui,s is

an exact functor Sh(Ci)→ Sh(C). In fact it suffices to show that f−1
i is left exact,

because it is right exact as a left adjoint (Categories, Lemma 4.24.5). We first prove
(7.11.5.1) and then we decuce exactness.

For an arbitrary object V of C we can pick a a : j → i and an object Vj ∈ Ob(C)
with V = uj(Vj). Then we can set

G(V ) = colimb:k→j f
−1
a◦bF(ub(Vj))

The value G(V ) of the colimit is independent of the choice of b : j → i and of the
object Vj with uj(Vj) = V ; we omit the verification. Moreover, if α : V → V ′ is a
morphism of C, then we can choose b : j → i and a morphism αj : Vj → V ′j with
uj(αj) = α. This induces a map G(V ′)→ G(V ) by using the restrictions along the
morphisms ub(αj) : ub(Vj)→ ub(V

′
j ). A check shows that G is a presheaf (omitted).

In fact, G satisfies the sheaf condition. Namely, any covering U = {U t → U} in
C comes from a finite level. Say Uj = {U tj → Uj} is mapped to U by uj for some
a : j → i in I. Then we have

H0(U ,G) = colimb:k→j H
0(ub(Uj), f−1

b◦aF) = colimb:k→j f
−1
b◦aF(ub(Uj)) = G(U)

as desired. The first equality holds because filtered colimits commute with finite
limits (Categories, Lemma 4.19.2). By construction G(U) is given by the right hand
side of (7.11.5.1). Hence (7.11.5.1) is true if we can show that G is equal to f−1

i F .

In this paragraph we check that G is canonically isomorphic to f−1
i F . We strongly

encourage the reader to skip this paragraph. To check this we have to show there
is a bijection MorSh(C)(G,H) = MorSh(Ci)(F , fi,∗H) functorial in the sheaf H on C
where fi,∗ = upi . A map G → H is the same thing as a compatible system of maps

ϕa,b,Vj : f−1
a◦bF(ub(Vj)) −→ H(uj(Vj))

for all a : j → i, b : k → j and Vj ∈ Ob(Cj). The compatibilities force the maps
ϕa,b,Vj to be equal to ϕa◦b,id,ub(Vj). Given a : j → i, the family of maps ϕa,id,Vj
corresponds to a map of sheaves ϕa : f−1

a F → fj,∗H. The compatibilities between
the ϕa,id,ua(Vi) and the ϕid,id,Vi implies that ϕa is the adjoint of the map ϕid via

MorSh(Cj)(f
−1
a F , fj,∗H) = MorSh(Ci)(F , fa,∗fj,∗H) = MorSh(Ci)(F , fi,∗H)

Thus finally we see that the whole system of maps ϕa,b,Vj is determined by the
map ϕid : F → fi,∗H. Conversely, given such a map ψ : F → fi,∗H we can read
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the argument just given backwards to construct the family of maps ϕa,b,Vj . This

finishes the proof that G = f−1
i F .

Assume (7.11.5.1) holds. Then the functor F 7→ f−1
i F(U) commutes with finite

limits because finite limits of sheaves are computed in the category of presheaves
(Lemma 7.10.1), the functors f−1

a commutes with finite limits, and filtered colimits
commute with finite limits. To see that F 7→ f−1

i F(V ) commutes with finite limits
for a general object V of C, we can use the same argument using the formula for
f−1
i F(V ) = G(V ) given above. Thus f−1

i is left exact and the proof of the lemma
is complete. �

Lemma 7.11.6. In Situation 7.11.3 assume given

(1) a sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map ϕa : f−1

a Fi → Fj of sheaves on Cj
such that ϕc = ϕb ◦ f−1

b ϕa whenever c = a ◦ b. Set F = colim f−1
i Fi on the site C

of Lemma 7.11.4. Let i ∈ Ob(I) and Xi ∈ Ob(Ci). Then

colima:j→i Fj(ua(Xi)) = F(ui(Xi))

Proof. A formal argument shows that

colima:j→i Fi(ua(Xi)) = colima:j→i colimb:k→j f
−1
b Fj(ua◦b(Xi))

By (7.11.5.1) we see that the inner colimit is equal to f−1
j Fj(ui(Xi)) hence we

conclude by Lemma 7.11.2. �

7.12. Injective and surjective maps of sheaves

Definition 7.12.1. Let C be a site, and let ϕ : F → G be a map of sheaves of sets.

(1) We say that ϕ is injective if for every object U of C the map ϕ : F(U)→
G(U) is injective.

(2) We say that ϕ is surjective if for every object U of C and every section
s ∈ G(U) there exists a covering {Ui → U} such that for all i the restriction
s|Ui is in the image of ϕ : F(Ui)→ G(Ui).

Lemma 7.12.2. The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of the category Sh(C). A map of sheaves is
an isomorphism if and only if it is both injective and surjective.

Proof. Omitted. �

Lemma 7.12.3. Let C be a site. Let F → G be a surjection of sheaves of sets.
Then the diagram

F ×G F
//
// F // G

represents G as a coequalizer.

Proof. Let H be a sheaf of sets and let ϕ : F → H be a map of sheaves equalizing
the two maps F ×G F → F . Let G′ ⊂ G be the presheaf image of the map F → G.
As the product F ×G F may be computed in the category of presheaves we see
that it is equal to the presheaf product F ×G′ F . Hence ϕ induces a unique map
of presheaves ψ′ : G′ → H. Since G is the sheafification of G′ by Lemma 7.12.2 we
conclude that ψ′ extends uniquely to a map of sheaves ψ : G → H. We omit the
verification that ϕ is equal to the composition of ψ and the given map. �

http://stacks.math.columbia.edu/tag/09YN
http://stacks.math.columbia.edu/tag/00WM
http://stacks.math.columbia.edu/tag/00WN
http://stacks.math.columbia.edu/tag/086K


278 7. SITES AND SHEAVES

7.13. Representable sheaves

Let C be a category. The canonical topology is the finest topology such that all
representable presheaves are sheaves (it is formally defined in Definition 7.45.12
but we will not need this). This topology is not always the topology associated to
the structure of a site on C. We will give a collection of coverings that generates
this topology in case C has fibered products. First we give the following general
definition.

Definition 7.13.1. Let C be a category. We say that a family {Ui → U}i∈I
is an effective epimorphism if all the morphisms Ui → U are representable (see
Categories, Definition 4.6.4), and for any X ∈ Ob(C) the sequence

MorC(U,X) // ∏
i∈I MorC(Ui, X)

//
//
∏

(i,j)∈I2 MorC(Ui ×U Uj , X)

is an equalizer diagram. We say that a family {Ui → U} is a universal effective
epimorphism if for any morphism V → U the base change {Ui ×U V → V } is an
effective epimorphism.

The class of families which are universal effective epimorphisms satisfies the axioms
of Definition 7.6.2. If C has fibre products, then the associated topology is the
canonical topology. (In this case, to get a site argue as in Sets, Lemma 3.11.1.)

Conversely, suppose that C is a site such that all representable presheaves are
sheaves. Then clearly, all coverings are universal effective epimorphisms. Thus
the following definition is the “correct” one in the setting of sites.

Definition 7.13.2. We say that the topology on a site C is weaker than the canoni-
cal topology, or that the topology is subcanonical if all the coverings of C are universal
effective epimorphisms.

A representable sheaf is a representable presheaf which is also a sheaf. Since it is
perhaps better to avoid this terminology when the topology is not subcanonical,
we only define it formally in that case.

Definition 7.13.3. Let C be a site whose topology is subcanonical. The Yoneda
embedding h (see Categories, Section 4.3) presents C as a full subcategory of the
category of sheaves of C. In this case we call sheaves of the form hU with U ∈
Ob(C) representable sheaves on C. Notation: Sometimes, the representable sheaf
hU associated to U is denoted U .

Note that we have in the situation of the definition

MorSh(C)(hU ,F) = F(U)

for every sheaf F , since it holds for presheaves, see (7.2.1.1). In general the
presheaves hU are not sheaves and to get a sheaf you have to sheafify them. In this
case we still have

(7.13.3.1) MorSh(C)(h
#
U ,F) = MorPSh(C)(hU ,F) = F(U)

for every sheaf F . Namely, the first equality holds by the adjointness property of
# and the second is (7.2.1.1).

Lemma 7.13.4. Let C be a site. If {Ui → U}i∈I is a covering of the site C, then
the morphism of presheaves of sets∐

i∈I
hUi → hU
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becomes surjective after sheafification.

Proof. By Lemma 7.12.2 above we have to show that
∐
i∈I h

#
Ui
→ h#

U is an epi-

morphism. Let F be a sheaf of sets. A morphism h#
U → F corresponds to a section

s ∈ F(U). Hence the injectivity of Mor(h#
U ,F) →

∏
i Mor(h#

Ui
,F) follows directly

from the sheaf property of F . �

The next lemma says, in the case the topology is weaker than the canonical topology,
that every sheaf is made up out of representable sheaves in a way.

Lemma 7.13.5. Let C be a site. Let E ⊂ Ob(C) be a subset such that every object
of C has a covering by elements of E. Let F be a sheaf of sets. There exists a
diagram of sheaves of sets

F1
//
// F0

// F

which represents F as a coequalizer, such that Fi, i = 0, 1 are coproducts of sheaves

of the form h#
U with U ∈ E.

Proof. First we show there is an epimorphism F0 → F of the desired type. Namely,
just take

F0 =
∐

U∈E,s∈F(U)
(hU )# −→ F

Here the arrow restricted to the component corresponding to (U, s) maps the ele-

ment idU ∈ h#
U (U) to the section s ∈ F(U). This is an epimorphism according to

Lemma 7.12.2 and our condition on E. To construct F1 first set G = F0×F F0 and
then construct an epimorphism F1 → G as above. See Lemma 7.12.3. �

7.14. Continuous functors

Definition 7.14.1. Let C and D be sites. A functor u : C → D is called continuous
if for every {Vi → V }i∈I ∈ Cov(C) we have the following

(1) {u(Vi)→ u(V )}i∈I is in Cov(D), and
(2) for any morphism T → V in C the morphism u(T ×V Vi) → u(T ) ×u(V )

u(Vi) is an isomorphism.

Recall that given a functor u as above, and a presheaf of sets F on D we have
defined upF to be simply the presheaf F ◦ u, in other words

upF(V ) = F(u(V ))

for every object V of C.

Lemma 7.14.2. Let C and D be sites. Let u : C → D be a continuous functor. If
F is a sheaf on D then upF is a sheaf as well.

Proof. Let {Vi → V } be a covering. By assumption {u(Vi)→ u(V )} is a covering
in D and u(Vi ×V Vj) = u(Vi)×u(V ) u(Vj). Hence the sheaf condition for upF and
the covering {Vi → V } is precisely the same as the sheaf condition for F and the
covering {u(Vi)→ u(V )}. �

In order to avoid confusion we sometimes denote

us : Sh(D) −→ Sh(C)
the functor up restricted to the subcategory of sheaves of sets.

http://stacks.math.columbia.edu/tag/00WS
http://stacks.math.columbia.edu/tag/00WV
http://stacks.math.columbia.edu/tag/00WW


280 7. SITES AND SHEAVES

Lemma 7.14.3. In the situation of Lemma 7.14.2. The functor us : G 7→ (upG)#

is a left adjoint to us.

Proof. Follows directly from Lemma 7.5.4 and Proposition 7.10.12. �

Here is a technical lemma.

Lemma 7.14.4. In the situation of Lemma 7.14.2. For any presheaf G on C we
have (upG)# = (up(G#))#.

Proof. For any sheaf F on D we have

MorSh(D)(us(G#),F) = MorSh(C)(G#, usF)

= MorPSh(C)(G#, upF)

= MorPSh(C)(G, upF)

= MorPSh(D)(upG,F)

= MorSh(D)((upG)#,F)

and the result follows from the Yoneda lemma. �

Lemma 7.14.5. Let u : C → D be a continuous functor between sites. For any

object U of C we have ush
#
U = h#

u(U).

Proof. Follows from Lemmas 7.5.6 and 7.14.4. �

Remark 7.14.6. (Skip on first reading.) Let C and D be sites. Let us use the defi-
nition of tautologically equivalent families of maps, see Definition 7.8.2 to (slightly)
weaken the conditions defining continuity. Let u : C → D be a functor. Let us call
u quasi-continuous if for every V = {Vi → V }i∈I ∈ Cov(C) we have the following

(1’) the family of maps {u(Vi) → u(V )}i∈I is tautologically equivalent to an
element of Cov(D), and

(2) for any morphism T → V in C the morphism u(T ×V Vi) → u(T ) ×u(V )

u(Vi) is an isomorphism.

We are going to see that Lemmas 7.14.2 and 7.14.3 hold in case u is quasi-continuous
as well.

We first remark that the morphisms u(Vi)→ u(V ) are representable, since they are
isomorphic to representable morphisms (by the first condition). In particular, the
family u(V) = {u(Vi) → u(V )}i∈I gives rise to a zeroth Cech cohomology group
H0(u(V),F) for any presheaf F on D. Let U = {Uj → u(V )}j∈J be an element
of Cov(D) tautologically equivalent to {u(Vi) → u(V )}i∈I . Note that u(V) is a
refinement of U and vice versa. Hence by Remark 7.10.7 we see that H0(u(V),F) =
H0(U ,F). In particular, if F is a sheaf, then F(u(V )) = H0(u(V),F) because of the
sheaf property expressed in terms of zeroth Cech cohomology groups. We conclude
that upF is a sheaf if F is a sheaf, since H0(V, upF) = H0(u(V),F) which we just
observed is equal to F(u(V )) = upF(V ). Thus Lemma 7.14.2 holds. Lemma 7.14.3
follows immediately.

7.15. Morphisms of sites

Definition 7.15.1. Let C and D be sites. A morphism of sites f : D → C is given
by a continuous functor u : C → D such that the functor us is exact.
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Notice how the functor u goes in the direction opposite the morphism f . If f ↔ u
is a morphism of sites then we use the notation f−1 = us and f∗ = us. The functor
f−1 is called the pullback functor and the functor f∗ is called the pushforward
functor. As in topology we have the following adjointness property

MorSh(D)(f
−1G,F) = MorSh(C)(G, f∗F)

The motivation for this definition comes from the following example.

Example 7.15.2. Let f : X → Y be a continuous map of topological spaces.
Recall that we have sites XZar and YZar, see Example 7.6.4. Consider the functor
u : YZar → XZar, V 7→ f−1(V ). This functor is clearly continuous because inverse
images of open coverings are open coverings. (Actually, this depends on how you
chose sets of coverings for XZar and YZar. But in any case the functor is quasi-
continuous, see Remark 7.14.6.) It is easy to verify that the functor us equals the
usual pushforward functor f∗ from topology. Hence, since us is an adjoint and since
the usual topological pullback functor f−1 is an adjoint as well, we get a canonical
isomorphism f−1 ∼= us. Since f−1 is exact we deduce that us is exact. Hence u
defines a morphism of sites f : XZar → YZar, which we may denote f as well since
we’ve already seen the functors us, u

s agree with their usual notions anyway.

Lemma 7.15.3. Let Ci, i = 1, 2, 3 be sites. Let u : C2 → C1 and v : C3 → C2 be
continuous functors which induce morphisms of sites. Then the functor u◦v : C3 →
C1 is continuous and defines a morphism of sites C1 → C3.

Proof. It is immediate from the definitions that u ◦ v is a continuous functor. In
addition, we clearly have (u ◦ v)p = vp ◦ up, and hence (u ◦ v)s = vs ◦ us. Hence
functors (u◦v)s and us◦vs are both left adjoints of (u◦v)s. Therefore (u◦v)s ∼= us◦vs
and we conclude that (u ◦ v)s is exact as a composition of exact functors. �

Definition 7.15.4. Let Ci, i = 1, 2, 3 be sites. Let f : C1 → C2 and g : C2 → C3 be
morphisms of sites given by continuous functors u : C2 → C1 and v : C3 → C2. The
composition g ◦ f is the morphism of sites corresponding to the functor u ◦ v.

In this situation we have (g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)−1 = f−1 ◦ g−1 (see proof of
Lemma 7.15.3).

Lemma 7.15.5. Let C and D be sites. Let u : C → D be continuous. Assume all
the categories (IuV )opp of Section 7.5 are filtered. Then u defines a morphism of
sites D → C, in other words us is exact.

Proof. Since us is the left adjoint of us we see that us is right exact, see Categories,
Lemma 4.24.5. Hence it suffices to show that us is left exact. In other words we
have to show that us commutes with finite limits. Because the categories IoppY

are filtered we see that up commutes with finite limits, see Categories, Lemma
4.19.2 (this also uses the description of limits in PSh, see Section 7.4). And since
sheafification commutes with finite limits as well (Lemma 7.10.14) we conclude
because us = # ◦ up. �

Proposition 7.15.6. Let C and D be sites. Let u : C → D be continuous. Assume
furthermore the following:

(1) the category C has a final object X and u(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then u defines a morphism of sites D → C, in other words us is exact.
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Proof. This follows from Lemmas 7.5.2 and 7.15.5. �

Remark 7.15.7. The conditions of Proposition 7.15.6 above are equivalent to
saying that u is left exact, i.e., commutes with finite limits. See Categories, Lemmas
4.18.4 and 4.23.2. It seems more natural to phrase it in terms of final objects and
fibre products since this seems to have more geometric meaning in the examples.

Lemma 7.18.4 will provide another way to prove a continuous functor gives rise to
a morphism of sites.

Remark 7.15.8. (Skip on first reading.) Let C and D be sites. Analogously to
Definition 7.15.1 we say that a quasi-morphism of sites f : D → C is given by a
quasi-continuous functor u : C → D (see Remark 7.14.6) such that us is exact. The
analogue of Proposition 7.15.6 in this setting is obtained by replacing the word
“continuous” by the word “quasi-continuous”, and replacing the word “morphism”
by “quasi-morphism”. The proof is literally the same.

In Definition 7.15.1 the condition that us be exact cannot be omitted. For example,
the conclusion of the following lemma need not hold if one only assumes that u is
continuous.

Lemma 7.15.9. Let f : D → C be a morphism of sites given by the functor
u : C → D. Given any object V of D there exists a covering {Vj → V } such that
for every j there exists a morphism Vj → u(Uj) for some object Uj of C.

Proof. Since f−1 = us is exact we have f−1∗ = ∗ where ∗ denotes the final object
of the category of sheaves (Example 7.10.2). Since f−1∗ = us∗ is the sheafification
of up∗ we see there exists a covering {Vj → V } such that (up∗)(Vj) is nonempty.
Since (up∗)(Vj) is a colimit over the category IuVj whose objects are morphisms

Vj → u(U) the lemma follows. �

7.16. Topoi

Here is a definition of a topos which is suitable for our purposes. Namely, a topos
is the category of sheaves on a site. In order to specify a topos you just specify
the site. The real difference between a topos and a site lies in the definition of
morphisms. Namely, it turns out that there are lots of morphisms of topoi which
do not come from morphisms of the underlying sites.

Definition 7.16.1 (Topoi). A topos is the category Sh(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f from Sh(D) to Sh(C) is given by

a pair of functors f∗ : Sh(D)→ Sh(C) and f−1 : Sh(C)→ Sh(D) such that
(a) we have

MorSh(D)(f
−1G,F) = MorSh(C)(G, f∗F)

bifunctorially, and
(b) the functor f−1 commutes with finite limits, i.e., is left exact.

(2) Let C, D, E be sites. Given morphisms of topoi f : Sh(D) → Sh(C) and
g : Sh(E)→ Sh(D) the composition f ◦ g is the morphism of topoi defined
by the functors (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)−1 = g−1 ◦ f−1.

Suppose that α : S1 → S2 is an equivalence of (possibly “big”) categories. If S1,
S2 are topoi, then setting f∗ = α and f−1 equal to a quasi-inverse of α gives a

http://stacks.math.columbia.edu/tag/00X7
http://stacks.math.columbia.edu/tag/00X8
http://stacks.math.columbia.edu/tag/08H2
http://stacks.math.columbia.edu/tag/00XA


7.16. TOPOI 283

morphism f : S1 → S2 of topoi. Moreover this morphism is an equivalence in the
2-category of topoi (see Section 7.35). Thus it makes sense to say “S is a topos”
if S is equivalent to the category of sheaves on a site (and not necessarily equal to
the category of sheaves on a site). We will occasionally use this abuse of notation.

Two examples of topoi. The empty topos is topos of sheaves on the site C, where
C has a single object ∅ and a single morphism id∅ and a single covering, namely
the empty covering of ∅. We will sometimes write ∅ for this site. This is a site and
every sheaf on C assigns a singleton to ∅. Thus Sh(∅) is equivalent to the category
having a single object and a single morphism. The punctual topos is the topos of
sheaves on the site C which has a single object pt and one morphism idpt and whose
only covering is the covering {idpt}. We will simply write pt for this site. It is clear
that the category of sheaves = the category of presheaves = the category of sets.
In a formula Sh(pt) = Sets.

Let C and D be sites. Let f : Sh(D) → Sh(C) be a morphism of topoi. Note
that f∗ commutes with all limits and that f−1 commutes with all colimits, see
Categories, Lemma 4.24.4. In particular, the condition on f−1 in the definition
above guarantees that f−1 is exact. Morphisms of topoi are often constructed
using either Lemma 7.20.1 or the following lemma.

Lemma 7.16.2. Given a morphism of sites f : D → C corresponding to the functor
u : C → D the pair of functors (f−1 = us, f∗ = us) is a morphism of topoi.

Proof. This is obvious from Definition 7.15.1. �

Remark 7.16.3. There are many sites that give rise to the topos Sh(pt). A useful
example is the following. Suppose that S is a set (of sets) which contains at least
one nonempty element. Let S be the category whose objects are elements of S and
whose morphisms are arbitrary set maps. Assume that S has fibre products. For
example this will be the case if S = P(infinite set) is the power set of any infinite
set (exercise in set theory). Make S into a site by declaring surjective families of
maps to be coverings (and choose a suitable sufficiently large set of covering families
as in Sets, Section 3.11). We claim that Sh(S) is equivalent to the category of sets.

We first prove this in case S contains e ∈ S which is a singleton. In this case, there
is an equivalence of topoi i : Sh(pt)→ Sh(S) given by the functors

(7.16.3.1) i−1F = F(e), i∗E = (U 7→ MorSets(U,E))

Namely, suppose that F is a sheaf on S. For any U ∈ Ob(S) = S we can find
a covering {ϕu : e → U}u∈U , where ϕu maps the unique element of e to u ∈
U . The sheaf condition implies in this case that F(U) =

∏
u∈U F(e). In other

words F(U) = MorSets(U,F(e)). Moreover, this rule is compatible with restriction
mappings. Hence the functor

i∗ : Sets = Sh(pt) −→ Sh(S), E 7−→ (U 7→ MorSets(U,E))

is an equivalence of categories, and its inverse is the functor i−1 given above.

If S does not contain a singleton, then the functor i∗ as defined above still makes
sense. To show that it is still an equivalence in this case, choose any nonempty
ẽ ∈ S and a map ϕ : ẽ→ ẽ whose image is a singleton. For any sheaf F set

F(e) := Im(F(ϕ) : F(ẽ) −→ F(ẽ))

and show that this is a quasi-inverse to i∗. Details omitted.
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Remark 7.16.4. (Set theoretical issues related to morphisms of topoi. Skip on
a first reading.) A morphism of topoi as defined above is not a set but a class.
In other words it is given by a mathematical formula rather than a mathematical
object. Although we may contemplate the collection of all morphisms between two
given topoi, it is not a good idea to introduce it as a mathematical object. On the
other hand, suppose C and D are given sites. Consider a functor Φ : C → Sh(D).
Such a thing is a set, in other words, it is a mathematical object. We may, in
succession, ask the following questions on Φ.

(1) Is it true, given a sheaf F on D, that the rule U 7→ MorSh(D)(Φ(U),F)
defines a sheaf on C? If so, this defines a functor Φ∗ : Sh(D)→ Sh(C).

(2) Is it true that Φ∗ has a left adjoint? If so, write Φ−1 for this left adjoint.
(3) Is it true that Φ−1 is exact?

If the last question still has the answer “yes”, then we obtain a morphism of topoi
(Φ∗,Φ

−1). Moreover, given any morphism of topoi (f∗, f
−1) we may set Φ(U) =

f−1(h#
U ) and obtain a functor Φ as above with f∗ ∼= Φ∗ and f−1 ∼= Φ−1 (compatible

with adjoint property). The upshot is that by working with the collection of Φ
instead of morphisms of topoi, we (a) replaced the notion of a morphism of topoi
by a mathematical object, and (b) the collection of Φ forms a class (and not a
collection of classes). Of course, more can be said, for example one can work out
more precisely the significance of conditions (2) and (3) above; we do this in the
case of points of topoi in Section 7.31.

Remark 7.16.5. (Skip on first reading.) Let C and D be sites. A quasi-morphism
of sites f : D → C (see Remark 7.15.8) gives rise to a morphism of topoi f from
Sh(D) to Sh(C) exactly as in Lemma 7.16.2.

7.17. G-sets and morphisms

Let ϕ : G→ H be a homomorphism of groups. Choose (suitable) sites TG and TH
as in Example 7.6.5 and Section 7.9. Let u : TH → TG be the functor which assigns
to a H-set U the G-set Uϕ which has the same underlying set but G action defined
by g · u = ϕ(g)u. It is clear that u commutes with finite limits and is continuous4.
Applying Proposition 7.15.6 and Lemma 7.16.2 we obtain a morphism of topoi

f : Sh(TG) −→ Sh(TH)

associated with ϕ. Using Proposition 7.9.1 we see that we get a pair of adjoint
functors

f∗ : G-Sets −→ H-Sets, f−1 : H-Sets −→ G-Sets.

Let’s work out what are these functors in this case.

We first work out a formula for f∗. Recall that given a G-set S the corresponding
sheaf FS on TG is given by the rule FS(U) = MorG(U, S). And on the other hand,
given a sheaf G on TH the corresponding H-set is given by the rule G(HH). Hence
we see that

f∗S = MorG-Sets((HH)ϕ, S).

4Set theoretical remark: First choose TH . Then choose TG to contain u(TH) and such that
every covering in TH corresponds to a covering in TG. This is possible by Sets, Lemmas 3.10.1,

3.10.2 and 3.11.1.
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If we work this out a little bit more then we get

f∗S = {a : H → S | a(gh) = ga(h)}

with left H-action given by (h · a)(h′) = a(h′h) for any element a ∈ f∗S.

Next, we explicitly compute f−1. Note that since the topology on TG and TH is
subcanonical, all representable presheaves are sheaves. Moreover, given an object
V of TH we see that f−1hV is equal to hu(V ) (see Lemma 7.14.5). Hence we see

that f−1S = Sϕ for representable sheaves. Since every sheaf on TH is a coproduct
of representable sheaves we conclude that this is true in general. Hence we see that
for any H-set T we have

f−1T = Tϕ.

The adjunction between f−1 and f∗ is evidenced by the formula

MorG-Sets(Tϕ, S) = MorH-Sets(T, f∗S)

with f∗S as above. This can be proved directly. Moreover, it is then clear that
(f−1, f∗) form an adjoint pair and that f−1 is exact. So alternatively to the above
the morphism of topoi f : G-Sets→ H-Sets can be defined directly in this manner.

7.18. More functoriality of presheaves

In this section we revisit the material of Section 7.5. Let u : C → D be a functor
between categories. Recall that

up : PSh(D) −→ PSh(C)

is the functor that associates to G on D the presheaf upG = G ◦u. It turns out that
this functor not only has a left adjoint (namely up) but also a right adjoint.

Namely, for any V ∈ Ob(D) we define a category V I = u
V I. Its objects are pairs

(U,ψ : u(U)→ V ). Note that the arrow is in the opposite direction from the arrow
we used in defining the category IuV in Section 7.5. A morphism (U,ψ)→ (U ′, ψ′)
is given by a morphism α : U → U ′ such that ψ = ψ′ ◦ u(α). In addition, given
any presheaf of sets F on C we introduce the functor V F : V Iopp → Sets, which is
defined by the rule V F(U,ψ) = F(U). We define

pu(F)(V ) := lim
V Iopp V F

As a limit there are projection maps c(ψ) : pu(F)(V ) → F(U) for every object
(U,ψ) of V I. In fact,

pu(F)(V ) =

 collections s(U,ψ) ∈ F(U)
∀β : (U1, ψ1)→ (U2, ψ2) in V I
we have β∗s(U2,ψ2) = s(U1,ψ1)


where the correspondence is given by s 7→ s(U,ψ) = c(ψ)(s). We leave it to the
reader to define the restriction mappings pu(F)(V )→ pu(F)(V ′) associated to any
morphism V ′ → V of D. The resulting presheaf will be denoted puF .

Lemma 7.18.1. There is a canonical map puF(u(U))→ F(U), which is compat-
ible with restriction maps.

Proof. This is just the projection map c(idu(U)) above. �
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Note that any map of presheaves F → F ′ gives rise to compatible systems of maps
between functors V F → V F ′, and hence to a map of presheaves puF → puF ′. In
other words, we have defined a functor

pu : PSh(C) −→ PSh(D)

Lemma 7.18.2. The functor pu is a right adjoint to the functor up. In other words
the formula

MorPSh(C)(u
pG,F) = MorPSh(D)(G, puF)

holds bifunctorially in F and G.

Proof. This is proved in exactly the same way as the proof of Lemma 7.5.4. We
note that the map uppuF → F from Lemma 7.18.1 is the map that is used to go
from the right to the left.

Alternately, think of a presheaf of sets F on C as a presheaf F ′ on Copp with values in
Setsopp, and similarly on D. Check that (puF)′ = up(F ′), and that (upG)′ = up(G′).
By Remark 7.5.5 we have the adjointness of up and up for presheaves with values
in Setsopp. The result then follows formally from this. �

Thus given a functor u : C → D of categories we obtain a sequence of functors

up, u
p, pu

between categories of presheaves where in each consequtive pair the first is left
adjoint to the second.

Lemma 7.18.3. Let u : C → D and v : D → C be functors of categories. Assume
that v is right adjoint to u. Then we have

(1) uphV = hv(V ) for any V in D,
(2) the category IvU has an initial object,
(3) the category u

V I has a final object,
(4) pu = vp, and
(5) up = vp.

Proof. Proof of (1). Let V be an object of D. We have uphV = hv(V ) because
uphV (U) = MorD(u(U), V ) = MorC(U, v(V )) by assumption.

Proof of (2). Let U be an object of C. Let η : U → v(u(U)) be the map adjoint
to the map id : u(U) → u(U). Then we claim (u(U), η) is an initial object of IvU .
Namely, given an object (V, φ : U → v(V )) of IvU the morphism φ is adjoint to a
map ψ : u(U)→ V which then defines a morphism (u(U), η)→ (V, φ).

Proof of (3). Let V be an object of D. Let ξ : u(v(V )) → V be the map adjoint
to the map id : v(V ) → v(V ). Then we calim (v(V ), ξ) is a final object of uV I.
Namely, given an object (U,ψ : u(U) → V ) of uV I the morphism ψ is adjoint to a
map φ : U → v(V ) which then defines a morphism (U,ψ)→ (v(V ), ξ).

Hence for any presheaf F on C we have

vpF(V ) = F(v(V ))

= MorPSh(C)(hv(V ),F)

= MorPSh(C)(u
phV ,F)

= MorPSh(D)(hV , puF)

= puF(V )
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which proves part (2). Part (3) follows by the uniqueness of adjoint functors. �

Lemma 7.18.4. A continuous functor of sites which has a continuous left adjoint
defines a morphism of sites.

Proof. Let u : C → D be a continuous functor of sites. Let w : D → C be a
continuous left adjoint. Then up = wp by Lemma 7.18.3. Hence us = ws has a left
adjoint, namely ws (Lemma 7.14.3). Thus us has both a right and a left adjoint,
whence is exact (Categories, Lemma 4.24.5). �

7.19. Cocontinuous functors

There is another way to construct morphisms of topoi. This involves using cocon-
tinuous functors between sites defined as follows.

Definition 7.19.1. Let C and D be sites. Let u : C → D be a functor. The
functor u is called cocontinuous if for every U ∈ Ob(C) and every covering {Vj →
u(U)}j∈J of D there exists a covering {Ui → U}i∈I of C such that the family of
maps {u(Ui)→ u(U)}i∈I refines the covering {Vj → u(U)}j∈J .

Note that {u(Ui)→ u(U)}i∈I is in general not a covering of the site D.

Lemma 7.19.2. Let C and D be sites. Let u : C → D be cocontinuous. Let F be a
sheaf on C. Then puF is a sheaf on D, which we will denote suF .

Proof. Let {Vj → V }j∈J be a covering of the site D. We have to show that

puF(V ) // ∏
puF(Vj)

//
//
∏

puF(Vj ×V Vj′)

is an equalizer diagram. Since pu is right adjoint to up we have

puF(V ) = MorPSh(D)(hV , puF) = MorPSh(C)(u
phV ,F) = MorSh(C)((u

phV )#,F)

Hence it suffices to show that

(7.19.2.1)
∐
uphVj×V Vj′

//
//
∐
uphVj // uphV

becomes a coequalizer diagram after sheafification. (Recall that a coproduct in
the category of sheaves is the sheafification of the coproduct in the category of
presheaves, see Lemma 7.10.13.)

We first show that the second arrow of (7.19.2.1) becomes surjective after sheafi-
fication. To do this we use Lemma 7.12.2. Thus it suffices to show a section s
of uphV over U lifts to a section of

∐
uphVj on the members of a covering of U .

Note that s is a morphism s : u(U) → V . Then {Vj ×V,s u(U) → u(U)} is a
covering of D. Hence, as u is cocontinuous, there is a covering {Ui → U} such that
{u(Ui) → u(U)} refines {Vj ×V,s u(U) → u(U)}. This means that each restriction
s|Ui : u(Ui) → V factors through a morphism si : u(Ui) → Vj for some j, i.e., s|Ui
is in the image of uphVj (Ui)→ uphV (Ui) as desired.

Let s, s′ ∈ (
∐
uphVj )

#(U) map to the same element of (uphV )#(U). To finish the
proof of the lemma we show that after replacing U by the members of a covering
that s, s′ are the image of the same section of

∐
uphVj×V Vj′ by the two maps of

(7.19.2.1). We may first replace U by the members of a covering and assume that
s ∈ uphVj (U) and s′ ∈ uphVj′ (U). A second such replacement guarantees that s
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and s′ have the same image in uphV (U) instead of in the sheafification. Hence
s : u(U)→ Vj and s′ : u(U)→ Vj′ are morphisms of D such that

u(U)
s′
//

s

��

Vj′

��
Vj // V

is commutative. Thus we obtain t = (s, s′) : u(U) → Vj ×V Vj′ , i.e., a section
t ∈ uphVj×V Vj′ (U) which maps to s, s′ as desired. �

Lemma 7.19.3. Let C and D be sites. Let u : C → D be cocontinuous. The
functor Sh(D) → Sh(C), G 7→ (upG)# is a left adjoint to the functor su introduced
in Lemma 7.19.2 above. Moreover, it is exact.

Proof. Let us prove the adjointness property as follows

MorSh(C)((u
pG)#,F) = MorPSh(C)(u

pG,F)

= MorPSh(D)(G, puF)

= MorSh(D)(G, suF).

Thus it is a left adjoint and hence right exact, see Categories, Lemma 4.24.5.
We have seen that sheafification is left exact, see Lemma 7.10.14. Moreover, the
inclusion i : Sh(D) → PSh(D) is left exact by Lemma 7.10.1. Finally, the functor
up is left exact because it is a right adjoint (namely to up). Thus the functor is the
composition # ◦ up ◦ i of left exact functors, hence left exact. �

We finish this section with a technical lemma.

Lemma 7.19.4. In the situation of Lemma 7.19.3. For any presheaf G on D we
have (upG)# = (up(G#))#.

Proof. For any sheaf F on C we have

MorSh(C)((u
p(G#))#,F) = MorSh(D)(G#, suF)

= MorSh(D)(G#, puF)

= MorPSh(D)(G, puF)

= MorPSh(C)(u
pG,F)

= MorSh(C)((u
pG)#,F)

and the result follows from the Yoneda lemma. �

Remark 7.19.5. Let u : C → D be a functor between categories. Given morphisms
g : u(U)→ V and f : W → V in D we can define consider the functor

Copp −→ Sets, T 7−→ MorC(T,U)×MorD(u(T ),V ) MorD(u(T ),W )

If this functor is representable, denote U ×g,V,f W the corresponding object of
C. Assume that C and D are sites. Consider the property P : for every covering
{fj : Vj → V } of D and any morphism g : u(U)→ V we have

(1) U ×g,V,fi Vi exists for all i, and
(2) {U ×g,V,fi Vi → U} is a covering of C.
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Please note the similarity with the definition of continuous functors. If u has P
then u is cocontinuous (details omitted). Many of the cocontinuous functors we
will encounter satisfy P .

7.20. Cocontinuous functors and morphisms of topoi

It is clear from the above that a cocontinuous functor u gives a morphism of topoi in
the same direction as u. Thus this is in the opposite direction from the morphism
of topoi associated (under certain conditions) to a continuous u as in Definition
7.15.1, Proposition 7.15.6, and Lemma 7.16.2.

Lemma 7.20.1. Let C and D be sites. Let u : C → D be cocontinuous. The
functors g∗ = su and g−1 = (up )# define a morphism of topoi g from Sh(C) to
Sh(D).

Proof. This is exactly the content of Lemma 7.19.3. �

Lemma 7.20.2. Let u : C → D, and v : D → E be cocontinuous functors. Then
v ◦ u is cocontinuous and we have h = g ◦ f where f : Sh(C) → Sh(D), resp.
g : Sh(D)→ Sh(E), resp. h : Sh(C)→ Sh(E) is the morphism of topoi associated to
u, resp. v, resp. v ◦ u.

Proof. Let U ∈ Ob(C). Let {Ei → v(u(U))} be a covering of U in E . By as-
sumption there exists a covering {Dj → u(U)} in D such that {v(Dj)→ v(u(U))}
refines {Ei → v(u(U))}. Also by assumption there exists a covering {Cl → U}
in C such that {u(Cl) → u(U)} refines {Dj → u(U)}. Then it is true that
{v(u(Cl))→ v(u(U))} refines the covering {Ei → v(u(U))}. This proves that v ◦ u
is cocontinuous. To prove the last assertion it suffices to show that sv◦su = s(v◦u).
It suffices to prove that pv ◦ pu = p(v ◦ u), see Lemma 7.19.2. Since pu, resp. pv,
resp. p(v ◦ u) is right adjoint to up, resp. vp, resp. (v ◦ u)p it suffices to prove that
up ◦ vp = (v ◦ u)p. And this is direct from the definitions. �

Example 7.20.3. Let X be a topological space. Let j : U → X be the inclusion
of an open subspace. Recall that we have sites XZar and UZar, see Example 7.6.4.
Recall that we have the functor u : XZar → UZar associated to j which is continuous
and gives rise to a morphism of sites UZar → XZar, see Example 7.15.2. This also
gives a morphism of topoi (j∗, j

−1). Next, consider the functor v : UZar → XZar,
V 7→ v(V ) = V (just the same open but now thought of as an object of XZar).
This functor is cocontinuous. Namely, if v(V ) =

⋃
j∈JWj is an open covering in X,

then each Wj must be a subset of U and hence is of the form v(Vj), and trivially
V =

⋃
j∈J Vj is an open covering in U . We conclude by Lemma 7.20.1 above that

there is a morphism of topoi associated to v

Sh(U) −→ Sh(X)

given by sv and (vp )#. We claim that actually (vp )# = j−1 and that sv = j∗,
in other words, that this is the same morphism of topoi as the one given above.
Perhaps the easiest way to see this is to realize that for any sheaf G on X we have
vpG(V ) = G(V ) which according to Sheaves, Lemma 6.31.1 is a description of j−1G
(and hence sheafification is superfluous in this case). The equality of sv and j∗
follows by uniqueness of adjoint functors (but may also be computed directly).
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Example 7.20.4. This example is a slight generalization of Example 7.20.3. Let
f : X → Y be a continuous map of topological spaces. Assume that f is open.
Recall that we have sites XZar and YZar, see Example 7.6.4. Recall that we have
the functor u : YZar → XZar associated to f which is continuous and gives rise to
a morphism of sites XZar → YZar, see Example 7.15.2. This also gives a morphism
of topoi (f∗, f

−1). Next, consider the functor v : XZar → YZar, U 7→ v(U) = f(U).
This functor is cocontinuous. Namely, if f(U) =

⋃
j∈J Vj is an open covering in

Y , then setting Uj = f−1(Vj) ∩ U we get an open covering U =
⋃
Uj such that

f(U) =
⋃
f(Uj) is a refinement of f(U) =

⋃
Vj . We conclude by Lemma 7.20.1

above that there is a morphism of topoi associated to v

Sh(X) −→ Sh(Y )

given by sv and (vp )#. We claim that actually (vp )# = f−1 and that sv = f∗, in
other words, that this is the same morphism of topoi as the one given above. For
any sheaf G on Y we have vpG(U) = G(f(U)). On the other hand, we may compute
upG(U) = colimf(U)⊂V G(V ) = G(f(U)) because clearly (f(U), U ⊂ f−1(f(U))) is
an initial object of the category IuU of Section 7.5. Hence up = vp and we conclude
f−1 = us = (vp )#. The equality of sv and f∗ follows by uniqueness of adjoint
functors (but may also be computed directly).

In the first Example 7.20.3 the functor v is also continuous. But in the second
Example 7.20.4 it is generally not continuous because condition (2) of Definition
7.14.1 may fail. Hence the following lemma applies to the first example, but not to
the second.

Lemma 7.20.5. Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous, and
(b) u is continuous.

Let g : Sh(C)→ Sh(D) be the associated morphism of topoi. Then

(1) sheafification in the formula g−1 = (up )# is unnecessary, in other words
g−1(G)(U) = G(u(U)),

(2) g−1 has a left adjoint g! = (up )#, and
(3) g−1 commutes with arbitrary limits and colimits.

Proof. By Lemma 7.14.2 for any sheaf G on D the presheaf upG is a sheaf on C.
And then we see the adjointness by the following string of equalities

MorSh(C)(F , g−1G) = MorPSh(C)(F , upG)

= MorPSh(D)(upF ,G)

= MorSh(D)(g!F ,G)

The statement on limits and colimits follows from the discussion in Categories,
Section 4.24. �

In the situation of Lemma 7.20.5 above we see that we have a sequence of adjoint
functors

g!, g
−1, g∗.

The functor g! is not exact in general, because it does not transform a final object
of Sh(C) into a final object of Sh(D) in general. See Sheaves, Remark 6.31.13. On
the other hand, in the topological setting of Example 7.20.3 the functor j! is exact
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on abelian sheaves, see Modules, Lemma 17.3.4. The following lemma gives the
generalization to the case of sites.

Lemma 7.20.6. Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor g! above commutes with fibre products and equalizers (and
more generally with finite connected limits).

Proof. Assume (a), (b), and (c). We have g! = (up )#. Recall (Lemma 7.10.1)
that limits of sheaves are equal to the corresponding limits as presheaves. And
sheafification commutes with finite limits (Lemma 7.10.14). Thus it suffices to
show that up commutes with fibre products and equalizers. To do this it suffices
that colimits over the categories (IuV )opp of Section 7.5 commute with fibre products
and equalizers. This follows from Lemma 7.5.1 and Categories, Lemma 4.19.8. �

The following lemma deals with a case that is even more like the morphism associ-
ated to an open immersion of topological spaces.

Lemma 7.20.7. Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous, and
(c) u is fully faithful.

For g!, g
−1, g∗ as above the canonical maps F → g−1g!F and g−1g∗F → F are

isomorphisms for all sheaves F on C.

Proof. Let X be an object of C. In Lemmas 7.19.2 and 7.20.5 we have seen that
sheafification is not necessary for the functors g−1 = (up )# and g∗ = (pu )#. We
may compute (g−1g∗F)(X) = g∗F(u(X)) = limF(Y ). Here the limit is over the
category of pairs (Y, u(Y ) → u(X)) where the morphisms u(Y ) → u(X) are not
required to be of the form u(α) with α a morphism of C. By assumption (c) we see
that they automatically come from morphisms of C and we deduce that the limit
is the value on (X,u(idX)), i.e., F(X). This proves that g−1g∗F = F .

On the other hand, (g−1g!F)(X) = g!F(u(X)) = (upF)#(u(X)), and upF(u(X)) =
colimF(Y ). Here the colimit is over the category of pairs (Y, u(X)→ u(Y )) where
the morphisms u(X) → u(Y ) are not required to be of the form u(α) with α a
morphism of C. By assumption (c) we see that they automatically come from
morphisms of C and we deduce that the colimit is the value on (X,u(idX)), i.e.,
F(X). Thus for every X ∈ Ob(C) we have upF(u(X)) = F(X). Since u is co-
continuous and continuous any covering of u(X) in D can be refined by a covering
(!) {u(Xi) → u(X)} of D where {Xi → X} is a covering in C. This implies that
(upF)+(u(X)) = F(X) also, since in the colimit defining the value of (upF)+ on
u(X) we may restrict to the cofinal system of coverings {u(Xi)→ u(X)} as above.
Hence we see that (upF)+(u(X)) = F(X) for all objects X of C as well. Repeat-
ing this argument one more time gives the equality (upF)#(u(X)) = F(X) for all
objects X of C. This produces the desired equality g−1g!F = F . �

Finally, here is a case that does not have any corresponding topological example.
We will use this lemma to see what happens when we enlarge a “partial universe”
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of schemes keeping the same topology. In the situation of the lemma, the morphism
of topoi g : Sh(C) → Sh(D) identifies Sh(C) as a subtopos of Sh(D) (Section 7.42)
and moreover, the given embedding has a retraction.

Lemma 7.20.8. Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous,
(c) u is fully faithful,
(d) fibre products exist in C and u commutes with them, and
(e) there exist final objects eC ∈ Ob(C), eD ∈ Ob(D) such that u(eC) = eD.

Let g!, g
−1, g∗ be as above. Then, u defines a morphism of sites f : D → C with

f∗ = g−1, f−1 = g!. The composition

Sh(C)
g // Sh(D)

f // Sh(C)

is isomorphic to the identity morphism of the topos Sh(C). Moreover, the functor
f−1 is fully faithful.

Proof. By assumption the functor u satisfies the hypotheses of Proposition 7.15.6.
Hence u defines a morphism of sites and hence a morphism of topoi f as in Lemma
7.16.2. The formulas f∗ = g−1 and f−1 = g! are clear from the lemma cited and
Lemma 7.20.5. We have f∗ ◦ g∗ = g−1 ◦ g∗ ∼= id, and g−1 ◦ f−1 = g−1 ◦ g!

∼= id by
Lemma 7.20.7.

We still have to show that f−1 is fully faithful. Let F ,G ∈ Ob(Sh(C)). We have to
show that the map

MorSh(C)(F ,G) −→ MorSh(D)(f
−1F , f−1G)

is bijective. But the right hand side is equal to

MorSh(D)(f
−1F , f−1G) = MorSh(C)(f∗f

−1F ,G)

= MorSh(C)(g
−1f−1F ,G)

= MorSh(C)(F ,G)

(the first equality by adjunction) which proves what we want. �

Example 7.20.9. Let X be a topological space. Let i : Z → X be the inclusion
of a subset (with induced topology). Consider the functor u : XZar → ZZar,
U 7→ u(U) = Z ∩U . At first glance it may appear that this functor is cocontinuous
as well. After all, since Z has the induced topology, shouldn’t any covering of U ∩Z
it come from a covering of U in X? Not so! Namely, what if U∩Z = ∅? In that case,
the empty covering is a covering of U∩Z, and the empty covering can only be refined
by the empty covering. Thus we conclude that u cocontinuous ⇒ every nonempty
open U of X has nonempty intersection with Z. But this is not sufficient. For
example, if X = R the real number line with the usual topology, and Z = R \ {0},
then there is an open covering of Z, namely Z = {x < 0} ∪

⋃
n{1/n < x} which

cannot be refined by the restriction of any open covering of X.
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7.21. Cocontinuous functors which have a right adjoint

It may happen that a cocontinuous functor u has a right adjoint v. In this case it
is often the case that v is continuous, and if so, then it defines a morphism of topoi
(which is the same as the one defined by u).

Lemma 7.21.1. Let C and D be sites. Let u : C → D, and v : D → C be
functors. Assume that u is cocontinuous, and that v is a right adjoint to u. Let
g : Sh(C) → Sh(D) be the morphism of topoi associated to u, see Lemma 7.20.1.
Then g∗F is equal to the presheaf vpF , in other words, (g∗F)(V ) = F(v(V )).

Proof. We have uphV = hv(V ) by Lemma 7.18.3. By Lemma 7.19.4 this implies

that g−1(h#
V ) = (uph#

V )# = (uphV )# = h#
v(V ). Hence for any sheaf F on C we have

(g∗F)(V ) = MorSh(D)(h
#
V , g∗F)

= MorSh(C)(g
−1(h#

V ),F)

= MorSh(C)(h
#
v(V ),F)

= F(v(V ))

which proves the lemma. �

In the situation of Lemma 7.21.1 we see that vp transforms sheaves into sheaves.
Hence we can define vs = vp restricted to sheaves. Just as in Lemma 7.14.3 we see
that vs : G 7→ (vpG)# is a left adjoint to vs. On the other hand, we have vs = g∗
and g−1 is a left adjoint of g∗ as well. We conclude that g−1 = vs is exact.

Lemma 7.21.2. In the situation of Lemma 7.21.1. We have g∗ = vs = vp and
g−1 = vs = (vp )#. If v is continuous then v defines a morphism of sites f from
C to D whose associated morphism of topoi is equal to the morphism g associated
to the cocontinuous functor u. In other words, a continuous functor which has a
cocontinuous left adjoint defines a morphism of sites.

Proof. Clear from the discussion above the lemma and Definitions 7.15.1 and
Lemma 7.16.2. �

7.22. Cocontinuous functors which have a left adjoint

It may happen that a cocontinuous functor u has a left adjoint w.

Lemma 7.22.1. Let C and D be sites. Let g : Sh(C)→ Sh(D) be the morphism of
topoi associated to a continuous and cocontinuous functor u : C → D, see Lemmas
7.20.1 and 7.20.5.

(1) If w : D → C is a left adjoint to u, then
(a) g!F is the sheaf associated to the presheaf wpF , and
(b) g! is exact.

(2) if w is a continuous left adjoint, then g! has a left adjoint.
(3) If w is a cocontinuous left adjoint, then g! = h−1 and g−1 = h∗ where

h : Sh(D)→ Sh(C) is the morphism of topoi associated to w.

Proof. Recall that g!F is the sheafification of upF . Hence (1)(a) follows from the
fact that up = wp by Lemma 7.18.3.

To see (1)(b) note that g! commutes with all colimits as g! is a left adjoint (Cat-
egories, Lemma 4.24.4). Let i 7→ Fi be a finite diagram in Sh(C). Then limFi is
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computed in the category of presheaves (Lemma 7.10.1). Since wp is a right ad-
joint (Lemma 7.5.4) we see that wp limFi = limwpFi. Since sheafification is exact
(Lemma 7.10.14) we conclude by (1)(a).

Assume w is continuous. Then g! = (wp )# = ws but sheafification isn’t necessary
and one has the left adjoint ws, see Lemmas 7.14.2 and 7.14.3.

Assume w is cocontinuous. The equality g! = h−1 follows from (1)(a) and the defi-
nitions. The equality g−1 = h∗ follows from the equality g! = h−1 and uniqueness
of adjoint functor. Alternatively one can deduce it from Lemma 7.21.1. �

7.23. Existence of lower shriek

In this section we discuss some cases of morphisms of topoi f for which f−1 has a
left adjoint f!.

Lemma 7.23.1. Let C, D be two sites. Let f : Sh(D) → Sh(C) be a morphism of
topoi. Let E ⊂ Ob(D) be a subset such that

(1) for V ∈ E there exists a sheaf G on C such that f−1F(V ) = MorSh(C)(G,F)
functorially for F in Sh(C),

(2) every object of D has a covering by objects of E.

Then f−1 has a left adjoint f!.

Proof. By the Yoneda lemma (Categories, Lemma 4.3.5) the sheaf GV correspond-
ing to V ∈ E is defined up to unique isomorphism by the formula f−1F(V ) =

MorSh(C)(GV ,F). Recall that f−1F(V ) = MorSh(D)(h
#
V , f

−1F). Denote iV : h#
V →

f−1GV the map corresponding to id in Mor(GV ,GV ). Functoriality in (1) implies
that the bijection is given by

MorSh(C)(GV ,F)→ MorSh(D)(h
#
V , f

−1F), ϕ 7→ f−1ϕ ◦ iV
For any V1, V2 ∈ E there is a canonical map

MorSh(D)(h
#
V2
, h#
V1

)→ HomSh(C)(GV2
,GV1

), ϕ 7→ f!(ϕ)

which is characterized by f−1(f!(ϕ)) ◦ iV2 = iV1 ◦ ϕ. Note that ϕ 7→ f!(ϕ) is
compatible with composition; this can be seen directly from the characterization.

Hence h#
V 7→ GV and ϕ 7→ f!ϕ is a functor from the full subcategory of Sh(D) whose

objects are the h#
V .

Let J be a set and let J → E, j 7→ Vj be a map. Then we have a functorial bijection

MorSh(C)(
∐
GVj ,F) −→ MorSh(D)(

∐
h#
Vj
, f−1F)

using the product of the bijections above. Hence we can extend the functor f! to

the full subcategory of Sh(D) whose objects are coproducts of h#
V with V ∈ E.

Given an arbitrary sheaf H on D we choose an coequalizer diagram

H1
//
// H0

// H

where Hi =
∐
h#
Vi,j

is a coproduct with Vi,j ∈ E. This is possible by assumption

(2), see Lemma 7.13.5 (for those worried about set theoretical issues, note that the
construction given in Lemma 7.13.5 is canonical). Define f!(H) to be the sheaf on
C which makes

f!H1
//
// f!H0

// f!H
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Then

Mor(f!H,F) = Equalizer( Mor(f!H0,F)
//
// Mor(f!H1,F) )

= Equalizer( Mor(H0, f
−1F)

//
// Mor(H1, f

−1F) )

= Hom(H, f−1F)

Hence we see that we can extend f! to the whole category of sheaves on D. �

7.24. Localization

Let C be a site. Let U ∈ Ob(C). See Categories, Example 4.2.13 for the definition
of the category C/U of objects over U . We turn C/U into a site by declaring a
family of morphisms {Vj → V } of objects over U to be a covering of C/U if and
only if it is a covering in C. Consider the forgetful functor

jU : C/U −→ C.
This is clearly cocontinuous and continuous. Hence by the results of the previous
sections we obtain a morphism of topoi

jU : Sh(C/U) −→ Sh(C)
given by j−1

U and jU∗, as well as a functor jU !.

Definition 7.24.1. Let C be a site. Let U ∈ Ob(C).
(1) The site C/U is called the localization of the site C at the object U .
(2) The morphism of topoi jU : Sh(C/U) → Sh(C) is called the localization

morphism.
(3) The functor jU∗ is called the direct image functor.
(4) For a sheaf F on C the sheaf j−1

U F is called the restriction of F to C/U .
(5) For a sheaf G on C/U the sheaf jU !G is called the extension of G by the

empty set.

The restriction j−1
U F is the sheaf defined by the rule j−1

U F(X/U) = F(X) as
expected. The extension by the empty set also has a very easy description in this
case; here it is.

Lemma 7.24.2. Let C be a site. Let U ∈ Ob(C). Let G be a presheaf on C/U .
Then jU !(G#) is the sheaf associated to the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
G(V

ϕ−→ U)

with obvious restriction mappings.

Proof. By Lemma 7.20.5 we have jU !(G#) = ((jU )pG#)#. By Lemma 7.14.4 this
is equal to ((jU )pG)#. Hence it suffices to prove that (jU )p is given by the formula
above for any presheaf G on C/U . OK, and by the definition in Section 7.5 we have

(jU )pG(V ) = colim(W/U,V→W ) G(W )

Now it is clear that the category of pairs (W/U, V → W ) has an object Oϕ = (ϕ :
V → U, id : V → V ) for every ϕ : V → U , and moreover for any object there is a
unique morphism from one of the Oϕ into it. The result follows. �

Lemma 7.24.3. Let C be a site. Let U ∈ Ob(C). Let X/U be an object of C/U .

Then we have jU !(h
#
X/U ) = h#

X .
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Proof. Denote p : X → U the structure morphism of X. By Lemma 7.24.2 we see

jU !(h
#
X/U ) is the sheaf associated to the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
{ψ : V → X | p ◦ ψ = ϕ}

This is clearly the same thing as MorC(V,X). Hence the lemma follows. �

We have jU !(∗) = h#
U by either of the two lemmas above. Hence for every sheaf

G over C/U there is a canonical map of sheaves jU !G → h#
U . This characterizes

sheaves in the essential image of jU !.

Lemma 7.24.4. Let C be a site. Let U ∈ Ob(C). The functor jU ! gives an equiva-
lence of categories

Sh(C/U) −→ Sh(C)/h#
U

Proof. We explain how to get a functor from Sh(C)/h#
U to Sh(C/U). Suppose

that ϕ : F → h#
U is given. For any object a : X → U of C/U we consider

the set Fϕ(X → U) of elements s ∈ F(X) which under ϕ map to the image of

a ∈ MorC(X,U) = hU (X) in h#
U (X). It is easy to see that (X → U) 7→ Fϕ(X → U)

is a sheaf on C/U . The verification that (F , ϕ) 7→ Fϕ is an inverse to the functor
jU ! is omitted. �

The lemma says the functor jU ! is the composition

Sh(C/U)→ Sh(C)/h#
U → Sh(C)

where the first arrow is an equivalence.

Lemma 7.24.5. Let C be a site. Let U ∈ Ob(C). The functor jU ! commutes with
with fibre products and equalizers (and more generally finite connected limits). In
particular, if F ⊂ F ′ in Sh(C/U), then jU !F ⊂ jU !F ′.

Proof. This follows from the fact that an isomorphism of categories commutes

with all limits and the functor Sh(C)/h#
U → Sh(C) commutes with fibre products

and equalizers. Alternatively, one can prove this directly using the description of
jU ! in Lemma 7.24.2 using that sheafification is exact. (Also, in case C has fibre
products and equalizers, the result follows from Lemma 7.20.6.) �

Lemma 7.24.6. Let C be a site. Let U ∈ Ob(C). For any sheaf F on C we have

jU !j
−1
U F = F × h#

U .

Proof. This is clear from the description of jU ! in Lemma 7.24.2. �

Lemma 7.24.7. Let C be a site. Let f : V → U be a morphism of C. Then there
exists a commutative diagram

C/V

jV !!

j
// C/U

jU~~
C

of cocontinuous functors. Here j : C/V → C/U , (a : W → V ) 7→ (f ◦ a : W → U)
is identified with the functor jV/U : (C/U)/(V/U) → C/U via the identification

(C/U)/(V/U) = C/V . Moreover we have jV ! = jU ! ◦ j!, j−1
V = j−1 ◦ j−1

U , and
jV ∗ = jU∗ ◦ j∗.
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Proof. The commutativity of the diagram is immediate. The agreement of j with
jV/U follows from the definitions. By Lemma 7.20.2 we see that the following
diagram of morphisms of topoi

(7.24.7.1)

Sh(C/V )

jV $$

j
// Sh(C/U)

jUzz
Sh(C)

is commutative. This proves that j−1
V = j−1 ◦ j−1

U and jV ∗ = jU∗ ◦ j∗. The equality
jV ! = jU ! ◦ j! follows formally from adjointness properties. �

Lemma 7.24.8. Notation C, f : V → U , jU , jV , and j as in Lemma 7.24.7.

Via the identifications Sh(C/V ) = Sh(C)/h#
V and Sh(C/U) = Sh(C)/h#

U of Lemma
7.24.4 the functor j−1 has the following description

j−1(H ϕ−→ h#
U ) = (H×ϕ,h#

U ,f
h#
V → h#

V ).

Proof. Suppose that ϕ : H → h#
U is an object of Sh(C)/h#

U . By the proof of
Lemma 7.24.4 this corresponds to the sheaf Hϕ on C/U defined by the rule

(a : W → U) 7−→ {s ∈ H(W ) | ϕ(s) = a}

on C/U . The pullback j−1Hϕ to C/V is given by the rule

(a : W → V ) 7−→ {s ∈ H(W ) | ϕ(s) = f ◦ a}

by the description of j−1 = j−1
U/V as the restriction of Hϕ to C/V . On the other

hand, applying the rule to the object

H′ = H×ϕ,h#
U ,f

h#
V

ϕ′ // h#
V

of Sh(C)/h#
V we get H′ϕ′ given by

(a : W → V ) 7−→{s′ ∈ H′(W ) | ϕ′(s′) = a}

={(s, a′) ∈ H(W )× h#
V (W ) | a′ = a and ϕ(s) = f ◦ a′}

which is exactly the same rule as the one describing j−1Hϕ above. �

Remark 7.24.9. Localization and presheaves. Let C be a category. Let U be an
object of C. Strictly speaking the functors j−1

U , jU∗ and jU ! have not been defined
for presheaves. But of course, we can think of a presheaf as a sheaf for the chaotic
topology on C (see Example 7.6.6). Hence we also obtain a functor

j−1
U : PSh(C) −→ PSh(C/U)

and functors

jU∗, jU ! : PSh(C/U) −→ PSh(C)
which are right, left adjoint to j−1

U . By Lemma 7.24.2 we see that jU !G is the
presheaf

V 7−→
∐

ϕ∈MorC(V,U)
G(V

ϕ−→ U)

In addition the functor jU ! commutes with fibre products and equalizers.
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Remark 7.24.10. Let C be a site. Let U → V be a morphism of C. The cocon-
tinuous functors C/U → C and j : C/U → C/V (Lemma 7.24.7) satisfy property
P of Remark 7.19.5. For example, if we have objects (X/U), (W/V ), a morphism
g : j(X/U)→ (W/V ), and a covering {fi : (Wi/V )→ (W/V )} then (X ×W Wi/U)
is an avatar of (X/U)×g,(W/V ),fi (Wi/V ) and the family {(X×WWi/U)→ (X/U)}
is a covering of C/U .

7.25. Glueing sheaves

This section is the analogue of Sheaves, Section 6.33.

Lemma 7.25.1. Let C be a site. Let {Ui → U} be a covering of C. Let F , G be
sheaves on C. Given a collection

ϕi : F|C/Ui −→ G|C/Ui
of maps of sheaves such that for all i, j ∈ I the maps ϕi, ϕj restrict to the same
map F|C/Ui×UUj → G|C/Ui×UUj then there exists a unique map of sheaves

ϕ : F|C/U −→ G|C/U

whose restriction to each C/Ui agrees with ϕi.

Proof. Omitted. Note that the restrictions are always those of Lemma 7.24.7. �

The previous lemma implies that given two sheaves F , G on a site C the rule

U 7−→ MorSh(C/U)(F|C/U ,G|C/U )

defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the
setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules on Sites, Section 18.27.

Let C be a site. Let {Ui → U}i∈I be a covering of C. For each i ∈ I let Fi be a
sheaf of sets on C/Ui. For each pair i, j ∈ I, let

ϕij : Fi|C/Ui×UUj −→ Fj |C/Ui×UUj
be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices i, j, k ∈ I the following diagram is commutative

Fi|C/Ui×UUj×UUk ϕik
//

ϕij
))

Fk|C/Ui×UUj×UUk

Fj |C/Ui×UUj×UUk

ϕjk

55

We will call such a collection of data (Fi, ϕij) a glueing data for sheaves of sets with
respect to the covering {Ui → U}i∈I .

Lemma 7.25.2. Let C be a site. Let {Ui → U}i∈I be a covering of C. Given any
glueing data (Fi, ϕij) for sheaves of sets with respect to the covering {Ui → U}i∈I
there exists a sheaf of sets F on C/U together with isomorphisms

ϕi : F|C/Ui → Fi
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such that the diagrams

F|C/Ui×UUj

id

��

ϕi
// Fi|C/Ui×UUj

ϕij

��
F|C/Ui×UUj

ϕj // Fj |C/Ui×UUj
are commutative.

Proof. Let us describe how to construct the sheaf F on C/U . Let a : V → U be
an object of C/U . Then

F(V/U) = {(si)i∈I ∈
∏
i∈I
Fi(Ui ×U V/Ui) | ϕij(si|Ui×UUj×UV ) = sj |Ui×UUj×UV }

We omit the construction of the restriction mappings. We omit the verification
that this is a sheaf. We omit the construction of the isomorphisms ϕi, and we omit
proving the commutativity of the diagrams of the lemma. �

Let C be a site. Let {Ui → U}i∈I be a covering of C. Let F be a sheaf on C/U .
Associated to F we have its canonical glueing data given by the restrictions F|C/Ui
and the canonical isomorphisms(

F|C/Ui
)
|C/Ui×UUj =

(
F|C/Uj

)
|C/Ui×UUj

coming from the fact that the composition of the functors C/Ui ×U Uj → C/Ui →
C/U and C/Ui ×U Uj → C/Uj → C/U are equal.

Lemma 7.25.3. Let C be a site. Let {Ui → U}i∈I be a covering of C. The category
Sh(C/U) is equivalent to the category of glueing data via the functor that associates
to F on C/U the canonical glueing data.

Proof. In Lemma 7.25.1 we saw that the functor is fully faithful, and in Lemma
7.25.2 we proved that it is essentially surjective (by explicitly constructing a quasi-
inverse functor). �

7.26. More localization

In this section we prove a few lemmas on localization where we impose some addi-
tional hypotheses on the site on or the object we are localizing at.

Lemma 7.26.1. Let C be a site. Let U ∈ Ob(C). If the topology on C is subcanon-
ical, see Definition 7.13.2, and if G is a sheaf on C/U , then

jU !(G)(V ) =
∐

ϕ∈MorC(V,U)
G(V

ϕ−→ U),

in other words sheafification is not necessary in Lemma 7.24.2.

Proof. Let V = {Vi → V }i∈I be a covering of V in the site C. We are going to check
the sheaf condition for the presheaf H of Lemma 7.24.2 directly. Let (si, ϕi)i∈I ∈∏
iH(Vi), This means ϕi : Vi → U is a morphism in C, and si ∈ G(Vi

ϕi−→ U). The
restriction of the pair (si, ϕi) to Vi ×V Vj is the pair (si|Vi×V Vj/U ,pr1 ◦ ϕi), and
likewise the restriction of the pair (sj , ϕj) to Vi×V Vj is the pair (sj |Vi×V Vj/U ,pr2 ◦
ϕj). Hence, if the family (si, ϕi) lies in Ȟ0(V,H), then we see that pr1 ◦ ϕi =
pr2◦ϕj . The condition that the topology on C is weaker than the canonical topology
then implies that there exists a unique morphism ϕ : V → U such that ϕi is the
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composition of Vi → V with ϕ. At this point the sheaf condition for G guarantees

that the sections si glue to a unique section s ∈ G(V
ϕ−→ U). Hence (s, ϕ) ∈ H(V )

as desired. �

Lemma 7.26.2. Let C be a site. Let U ∈ Ob(C). Assume C has products of pairs
of objects. Then

(1) the functor jU has a continuous right adjoint, namely the functor v(X) =
X × U/U ,

(2) the functor v defines a morphism of sites C/U → C whose associated
morphism of topoi equals jU : Sh(C/U)→ Sh(C), and

(3) we have jU∗F(X) = F(X × U/U).

Proof. The functor v being right adjoint to jU means that given Y/U and X we
have

MorC(Y,X) = MorC/U (Y/U,X × U/U)

which is clear. To check that v is continuous let {Xi → X} be a covering of C. By
the third axiom of a site (Definition 7.6.2) we see that

{Xi ×X (X × U)→ X ×X (X × U)} = {Xi × U → X × U}
is a covering of C also. Hence v is continuous. The other statements of the lemma
follow from Lemmas 7.21.1 and 7.21.2. �

Lemma 7.26.3. Let C be a site. Let U → V be a morphism of C. Assume C has
fibre products. Let j be as in Lemma 7.24.7. Then

(1) the functor j : C/U → C/V has a continuous right adjoint, namely the
functor v : (X/V ) 7→ (X ×V U/U),

(2) the functor v defines a morphism of sites C/U → C/V whose associated
morphism of topoi equals j, and

(3) we have j∗F(X/U) = F(X ×V U/U).

Proof. Follows from Lemma 7.26.2 since j may be viewed as a localization functor
by Lemma 7.24.7. �

A fundamental property of an open immersion is that the restriction of the push-
forward and the restriction of the extension by the empty set produces back the
original sheaf. This is not always true for the functors associated to jU above. It
is true when U is a “subobject of the final object”.

Lemma 7.26.4. Let C be a site. Let U ∈ Ob(C). Assume that every X in C
has at most one morphism to U . Let F be a sheaf on C/U . The canonical maps
F → j−1

U jU !F and j−1
U jU∗F → F are isomorphisms.

Proof. If C has fibre products, then this is a special case of Lemma 7.20.7. In
general we have the following direct proof.

Let X/U be an object over U . In Lemmas 7.19.2 and 7.20.5 we have seen that
sheafification is not necessary for the functors j−1

U = (up )# and jU∗ = (pu)#. We

may compute (j−1
U jU∗F)(X/U) = jU∗F(X) = limF(Y/U). Here the limit is over

the category of pairs (Y/U, Y → X) where the morphisms Y → X are not required
to be over U . By our assumption however we see that they are automatically
morphisms over U and we deduce that the limit is the value on idX , i.e., F(X/U).
This proves that j−1

U jU∗F = F .
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On the other hand, (j−1
U jU !F)(X/U) = jU !F(X) = (upF)#(X), and upF(X) =

colimF(Y/U). Here the colimit is over the category of pairs (Y/U,X → Y ) where
the morphisms X → Y are not required to be over U . By our assumption however
we see that they are automatically morphisms over U and we deduce that the
colimit is the value on idX , i.e., F(X/U). This shows that the sheafification is not
necessary (since any object over X is automatically in a unique way an object over
U) and the result follows. �

7.27. Localization and morphisms

The following lemma is important in order to understand relation between local-
ization and morphisms of sites and topoi.

Lemma 7.27.1. Let f : C → D be a morphism of sites corresponding to the
continuous functor u : D → C. Let V ∈ Ob(D) and set U = u(V ). Then the
functor u′ : D/V → C/U , V ′/V 7→ u(V ′)/U determines a morphism of sites f ′ :
C/U → D/V . The morphism f ′ fits into a commutative diagram of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V )

jV // Sh(D).

Using the identifications Sh(C/U) = Sh(C)/h#
U and Sh(D/V ) = Sh(D)/h#

V of Lemma
7.24.4 the functor (f ′)−1 is described by the rule

(f ′)−1(H ϕ−→ h#
V ) = (f−1H f−1ϕ−−−→ h#

U ).

Finally, we have f ′∗j
−1
U = j−1

V f∗.

Proof. It is clear that u′ is continuous, and hence we get functors f ′∗ = (u′)s = (u′)p

(see Sections 7.5 and 7.14) and an adjoint (f ′)−1 = (u′)s = ((u′)p )#. The assertion

f ′∗j
−1
U = j−1

V f∗ follows as

(j−1
V f∗F)(V ′/V ) = f∗F(V ′) = F(u(V ′)) = (j−1

U F)(u(V ′)/U) = (f ′∗j
−1
U F)(V ′/V )

which holds even for presheaves. What isn’t clear a priori is that (f ′)−1 is exact,
that the diagram commutes, and that the description of (f ′)−1 holds.

Let H be a sheaf on D/V . Let us compute jU !(f
′)−1H. We have

jU !(f
′)−1H = ((jU )p(u

′
pH)#)#

= ((jU )pu
′
pH)#

= (up(jV )pH)#

= f−1jV !H

The first equality by unwinding the definitions. The second equality by Lemma
7.14.4. The third equality because u ◦ jV = jU ◦ u′. The fourth equality by Lemma
7.14.4 again. All of the equalities above are isomorphisms of functors, and hence we
may interpret this as saying that the following diagram of categories and functors
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is commutative

Sh(C/U)
jU!

// Sh(C)/h#
U

// Sh(C)

Sh(D/V )
jV ! //

(f ′)−1

OO

Sh(D)/h#
V

//

f−1

OO

Sh(D)

f−1

OO

The middle arrow makes sense as f−1h#
V = (hu(V ))

# = h#
U , see Lemma 7.14.5. In

particular this proves the description of (f ′)−1 given in the statement of the lemma.
Since by Lemma 7.24.4 the left horizontal arrows are equivalences and since f−1 is
exact by assumption we conclude that (f ′)−1 = u′s is exact. Namely, because it is
a left adjoint it is already right exact (Categories, Lemma 4.24.4). Hence we only
need to show that it transforms a final object into a final object and commutes with
fibre products (Categories, Lemma 4.23.2). Both are clear for the induced functor

f−1 : Sh(D)/h#
V → Sh(C)/h#

U . This proves that f ′ is a morphism of sites.

We still have to verify that (f ′)−1j−1
V = j−1

U f−1. To see this use the formula above
and the description in Lemma 7.24.6. Namely, combined these give, for any sheaf
G on D, that

jU !(f
′)−1j−1

V G = f−1jV !j
−1
V G = f−1(G × h#

V ) = f−1G × h#
U = jU !j

−1
U f−1G.

Since the functor jU ! induces an equivalence Sh(C/U)→ Sh(C)/h#
U we conclude. �

The following lemma is a special case of the more general Lemma 7.27.1 above.

Lemma 7.27.2. Let C, D be sites. Let u : D → C be a functor. Let V ∈ Ob(D).
Set U = u(V ). Assume that

(1) C and D have all finite limits,
(2) u is continuous, and
(3) u commutes with finite limits.

There exists a commutative diagram of morphisms of sites

C/U
jU

//

f ′

��

C

f

��
D/V

jV // D

where the right vertical arrow corresponds to u, the left vertical arrow corresponds
to the functor u′ : D/V → C/U , V ′/V 7→ u(V ′)/u(V ) and the horizontal arrows
correspond to the functors C → C/U , X 7→ X × U and D → D/V , Y 7→ Y × V as
in Lemma 7.26.2. Moreover, the associated diagram of morphisms of topoi is equal
to the diagram of Lemma 7.27.1. In particular we have f ′∗j

−1
U = j−1

V f∗.

Proof. Note that u satisfies the assumptions of Proposition 7.15.6 and hence in-
duces a morphism of sites f : C → D by that proposition. It is clear that u induces
a functor u′ as indicated. It is clear that this functor also satisfies the assump-
tions of Proposition 7.15.6. Hence we get a morphism of sites f ′ : C/U → D/V .
The diagram commutes by our definition of composition of morphisms of sites (see
Definition 7.15.4) and because

u(Y × V ) = u(Y )× u(V ) = u(Y )× U
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which shows that the diagram of categories and functors opposite to the diagram
of the lemma commutes. �

At this point we can localize a site, we know how to relocalize, and we can localize
a morphism of sites at an object of the site downstairs. If we combine these then
we get the following kind of diagram.

Lemma 7.27.3. Let f : C → D be a morphism of sites corresponding to the
continuous functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C) and c : U → u(V ) a
morphism of C. There exists a commutative diagram of topoi

Sh(C/U)
jU

//

fc

��

Sh(C)

f

��
Sh(D/V )

jV // Sh(D).

We have fc = f ′ ◦ jU/u(V ) where f ′ : Sh(C/u(V )) → Sh(D/V ) is as in Lemma
7.27.1 and jU/u(V ) : Sh(C/U) → Sh(C/u(V )) is as in Lemma 7.24.7. Using the

identifications Sh(C/U) = Sh(C)/h#
U and Sh(D/V ) = Sh(D)/h#

V of Lemma 7.24.4
the functor (fc)

−1 is described by the rule

(fc)
−1(H ϕ−→ h#

V ) = (f−1H×f−1ϕ,h#
u(V )

,c h
#
U → h#

U ).

Finally, given any morphisms b : V ′ → V , a : U ′ → U and c′ : U ′ → u(V ′) such
that

U ′
c′
//

a

��

u(V ′)

u(b)

��
U

c // u(V )

commutes, then the diagram

Sh(C/U ′)
jU′/U

//

fc′

��

Sh(C/U)

fc

��
Sh(D/V ′)

jV ′/V // Sh(D/V ).

commutes.

Proof. This lemma proves itself, and is more a collection of things we know at
this stage of the development of theory. For example the commutativity of the first
square follows from the commutativity of Diagram (7.24.7.1) and the commutativity
of the diagram in Lemma 7.27.1. The description of f−1

c follows on combining
Lemma 7.24.8 with Lemma 7.27.1. The commutativity of the last square then
follows from the equality

f−1H×h#
u(V )

,c h
#
U ×h#

U
h#
U ′ = f−1(H×h#

V
h#
V ′)×h#

u(V ′),c′
h#
U ′

which is formal using that f−1h#
V = h#

u(V ) and f−1h#
V ′ = h#

u(V ′), see Lemma

7.14.5. �
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In the following lemma we find another kind of functoriality of localization, in case
the morphism of topoi comes from a cocontinuous functor. This is a kind of diagram
which is different from the diagram in Lemma 7.27.1, and in particular, in general
the equality f ′∗j

−1
U = j−1

V f∗ seen in Lemma 7.27.1 does not hold in the situation of
the following lemma.

Lemma 7.27.4. Let C, D be sites. Let u : C → D be a cocontinuous functor. Let
U be an object of C, and set V = u(U). We have a commutative diagram

C/U
jU

//

u′

��

C

u

��
D/V

jV // D

where the left vertical arrow is u′ : C/U → D/V , U ′/U 7→ V ′/V . Then u′ is
cocontinuous also and we get a commutative diagram of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V )

jV // Sh(D)

where f (resp. f ′) corresponds to u (resp. u′).

Proof. The commutativity of the first diagram is clear. It implies the commuta-
tivity of the second diagram provided we show that u′ is cocontinuous.

Let U ′/U be an object of C/U . Let {Vj/V → u(U ′)/V }j∈J be a covering of u(U ′)/V
in D/V . Since u is cocontinuous there exists a covering {U ′i → U ′}i∈I such that the
family {u(U ′i) → u(U ′)} refines the covering {Vj → u(U ′)} in D. In other words,
there exists a map of index sets α : I → J and morphisms φi : u(U ′i) → Vα(i) over
U ′. Think of U ′i as an object over U via the composition U ′i → U ′ → U . Then
{U ′i/U → U ′/U} is a covering of C/U such that {u(U ′i)/V → u(U ′)/V } refines
{Vj/V → u(U ′)/V } (use the same α and the same maps φi). Hence u′ : C/U →
D/V is cocontinuous. �

7.28. Morphisms of topoi

In this section we show that any morphism of topoi is equivalent to a morphism of
topoi which comes from a morphism of sites.

Lemma 7.28.1. Let C, D be sites. Let u : C → D be a functor. Assume that

(1) u is cocontinuous,
(2) u is continuous,
(3) given a, b : U ′ → U in C such that u(a) = u(b), then there exists a covering
{fi : U ′i → U ′} in C such that a ◦ fi = b ◦ fi,

(4) given U ′, U ∈ Ob(C) and a morphism c : u(U ′) → u(U) in D there exists
a covering {fi : U ′i → U ′} in C and morphisms ci : U ′i → U such that
u(ci) = c ◦ u(fi), and

(5) given V ∈ Ob(D) there exists a covering of V in D of the form {u(Ui)→
V }i∈I .
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Then the morphism of topoi

g : Sh(C) −→ Sh(D)

associated to the cocontinuous functor u by Lemma 7.20.1 is an equivalence.

Proof. Assume u satisfies properties (1) – (5). We will show that the adjunction
mappings

G −→ g∗g
−1G and g−1g∗F −→ F

are isomorphisms.

Note that Lemma 7.20.5 applies and we have g−1G(U) = G(u(U)) for any sheaf G
on D. Next, let F be a sheaf on C, and let V be an object of D. By definition we
have g∗F(V ) = limu(U)→V F(U). Hence

g−1g∗F(U) = limU ′,u(U ′)→u(U) F(U ′)

where the morphisms ψ : u(U ′)→ u(U) need not be of the form u(α). The category
of such pairs (U ′, ψ) has a final object, namely (U, id), which gives rise to the map
from the limit into F(U). Let (s(U ′,ψ)) be an element of the limit. We want to
show that s(U ′,ψ) is uniquely determined by the value s(U,id) ∈ F(U). By property
(4) given any (U ′, ψ) there exists a covering {U ′i → U ′} such that the compositions
u(U ′i)→ u(U ′)→ u(U) are of the form u(ci) for some ci : U ′i → U in C. Hence

s(U ′,ψ)|U ′i = c∗i (s(U,id)).

Since F is a sheaf it follows that indeed s(U ′,ψ) is determined by s(U,id). This
proves uniqueness. For existence, assume given any s ∈ F(U), ψ : u(U ′) → u(U),
{fi : U ′i → U ′} and ci : U ′i → U such that ψ ◦ u(fi) = u(ci) as above. We claim
there exists a (unique) element s(U ′,ψ) ∈ F(U ′) such that

s(U ′,ψ)|U ′i = c∗i (s).

Namely, a priori it is not clear the elements c∗i (s)|U ′i×U′U ′j and c∗j (s)|U ′i×U′U ′j agree,

since the diagram

U ′i ×U ′ U ′j pr2

//

pr1

��

U ′j

cj

��
U ′i

ci // U

need not commute. But condition (3) of the lemma guarantees that there exist
coverings {fijk : U ′ijk → U ′i ×U ′ U ′j}k∈Kij such that ci ◦ pr1 ◦ fijk = cj ◦ pr2 ◦ fijk.
Hence

f∗ijk

(
c∗i s|U ′i×U′U ′j

)
= f∗ijk

(
c∗js|U ′i×U′U ′j

)
Hence c∗i (s)|U ′i×U′U ′j = c∗j (s)|U ′i×U′U ′j by the sheaf condition for F and hence the

existence of s(U ′,ψ) also by the sheaf condition for F . The uniqueness guarantees
that the collection (s(U ′,ψ)) so obtained is an element of the limit with s(U,ψ) = s.

This proves that g−1g∗F → F is an isomorphism.

Let G be a sheaf on D. Let V be an object of D. Then we see that

g∗g
−1G(V ) = limU,ψ:u(U)→V G(u(U))

By the preceding paragraph we see that the value of the sheaf g∗g
−1G on an object

V of the form V = u(U) is equal to G(u(U)). (Formally, this holds because we
have g−1g∗g

−1 ∼= g−1, and the description of g−1 given at the beginning of the
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proof; informally just by comparing limits here and above.) Hence the adjunction
mapping G → g∗g

−1G has the property that it is a bijection on sections over any
object of the form u(U). Since by axiom (5) there exists a covering of V by objects
of the form u(U) we see easily that the adjunction map is an isomorphism. �

It will be convenient to give cocontinuous functors as in Lemma 7.28.1 a name.

Definition 7.28.2. Let C, D be sites. A special cocontinuous functor u from C to
D is a cocontinuous functor u : C → D satisfying the assumptions and conclusions
of Lemma 7.28.1.

Lemma 7.28.3. Let C, D be sites. Let u : C → D be a special cocontinuous functor.
For every object U of C we have a commutative diagram

C/U
jU

//

��

C

u

��
D/u(U)

ju(U) // D

as in Lemma 7.27.4. The left vertical arrow is a special cocontinuous functor.
Hence in the commutative diagram of topoi

Sh(C/U)
jU

//

��

Sh(C)

u

��
Sh(D/u(U))

ju(U) // Sh(D)

the vertical arrows are equivalences.

Proof. We have seen the existence and commutativity of the diagrams in Lemma
7.27.4. We have to check hypotheses (1) – (5) of Lemma 7.28.1 for the induced
functor u : C/U → D/u(U). This is completely mechanical.

Property (1). This is Lemma 7.27.4.

Property (2). Let {U ′i/U → U ′/U}i∈I be a covering of U ′/U in C/U . Because u is
continuous we see that {u(U ′i)/u(U)→ u(U ′)/u(U)}i∈I is a covering of u(U ′)/u(U)
in D/u(U). Hence (2) holds for u : C/U → D/u(U).

Property (3). Let a, b : U ′′/U → U ′/U in C/U be morphisms such that u(a) = u(b)
in D/u(U). Because u satisfies (3) we see there exists a covering {fi : U ′′i → U ′′}
in C such that a ◦ fi = b ◦ fi. This gives a covering {fi : U ′′i /U → U ′′/U} in C/U
such that a ◦ fi = b ◦ fi. Hence (3) holds for u : C/U → D/u(U).

Property (4). Let U ′′/U,U ′/U ∈ Ob(C/U) and a morphism c : u(U ′′)/u(U) →
u(U ′)/u(U) in D/u(U) be given. Because u satisfies property (4) there exists a
covering {fi : U ′′i → U ′′} in C and morphisms ci : U ′′i → U ′ such that u(ci) =
c ◦ u(fi). We think of U ′′i as an object over U via the composition U ′′i → U ′′ → U .
It may not be true that ci is a morphism over U ! But since u(ci) is a morphism over
u(U) we may apply property (3) for u and find coverings {fik : U ′′ik → U ′′i } such
that cik = ci ◦ fik : U ′′ik → U ′ are morphisms over U . Hence {fi ◦ fik : U ′′ik/U →
U ′′/U} is a covering in C/U such that u(cik) = c ◦ u(fik). Hence (4) holds for
u : C/U → D/u(U).
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Property (5). Let h : V → u(U) be an object of D/u(U). Because u satisfies
property (5) there exists a covering {ci : u(Ui) → V } in D. By property (4)
we can find coverings {fij : Uij → Ui} and morphisms cij : Uij → U such that
u(cij) = h ◦ ci ◦u(fij). Hence {u(Uij)/u(U)→ V/u(U)} is a covering in D/u(U) of
the desired shape and we conclude that (5) holds for u : C/U → D/u(U). �

Lemma 7.28.4. Let C be a site. Let C′ ⊂ Sh(C) be a full subcategory (with a set
of objects) such that

(1) h#
U ∈ Ob(C′) for all U ∈ Ob(C), and

(2) C′ is preserved under fibre products in Sh(C).

Declare a covering of C′ to be any family {Fi → F}i∈I of maps such that
∐
i∈I Fi →

F is a surjective map of sheaves. Then

(1) C′ is a site (after choosing a set of coverings, see Sets, Lemma 3.11.1),
(2) representable presheaves on C′ are sheaves (i.e., the topology on C′ is sub-

canonical, see Definition 7.13.2),

(3) the functor v : C → C′, U 7→ h#
U is a special cocontinuous functor, hence

induces an equivalence g : Sh(C)→ Sh(C′),
(4) for any F ∈ Ob(C′) we have g−1hF = F , and

(5) for any U ∈ Ob(C) we have g∗h
#
U = hv(U) = hh#

U
.

Proof. Warning: Some of the statements above may look be a bit confusing at
first; this is because objects of C′ can also be viewed as sheaves on C! We omit the
proof that the coverings of C′ as described in the lemma satisfy the conditions of
Definition 7.6.2.

Suppose that {Fi → F} is a surjective family of morphisms of sheaves. Let G be
another sheaf. Part (2) of the lemma says that the equalizer of

MorSh(C)(
∐
i∈I Fi,G)

//
// MorSh(C)(

∐
(i0,i1)∈I×I Fi0 ×F Fi1 ,G)

is MorSh(C)(F ,G). This is clear (for example use Lemma 7.12.3).

To prove (3) we have to check conditions (1) – (5) of Lemma 7.28.1. The fact that
v is cocontinuous is equivalent to the description of surjective maps of sheaves in

Lemma 7.12.2. The functor v is continuous because U 7→ h#
U commutes with fibre

products, and transforms coverings into coverings (see Lemma 7.10.14, and Lemma
7.13.4). Properties (3), (4) of Lemma 7.28.1 are statements about morphisms f :

h#
U ′ → h#

U . Such a morphism is the same thing as an element of h#
U (U ′). Hence

(3) and (4) are immediate from the construction of the sheafification. Property (5)
of Lemma 7.28.1 is Lemma 7.13.5. Denote g : Sh(C) → Sh(C′) the equivalence of
topoi associated with v by Lemma 7.28.1.

Let F be as in part (4) of the lemma. For any U ∈ Ob(C) we have

g−1hF (U) = hF (v(U)) = MorSh(C)(h
#
U ,F) = F(U)

The first equality by Lemma 7.20.5. Thus part (4) holds.
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Let F ∈ Ob(C′). Let U ∈ Ob(C). Then

g∗h
#
U (F) = MorSh(C′)(hF , g∗h

#
U )

= MorSh(C)(g
−1hF , h

#
U )

= MorSh(C)(F , h#
U )

= MorC′(F , h#
U )

as desired (where the third equality was shown above). �

Using this we can massage any topos to live over a site having all finite limits.

Lemma 7.28.5. Let Sh(C) be a topos. Let {Fi}i∈I be a set of sheaves on C. There
exists an equivalence of topoi g : Sh(C)→ Sh(C′) induced by a special cocontinuous
functor u : C → C′ of sites such that

(1) C′ has a subcanonical topology,
(2) a family {Vj → V } of morphisms of C′ is (combinatorially equivalent to)

a covering of C′ if and only if
∐
hVj → hV is surjective,

(3) C′ has fibre products and a final object (i.e., C′ has all finite limits),
(4) every subsheaf of a representable sheaf on C′ is representable, and
(5) each g∗Fi is a representable sheaf.

Proof. Consider the full subcategory C1 ⊂ Sh(C) consisting of all h#
U for all U ∈

Ob(C), the given sheaves Fi and the final sheaf ∗ (see Example 7.10.2). We are
going to inductively define full subcategories

C1 ⊂ C2 ⊂ C2 ⊂ . . . ⊂ Sh(C)
Namely, given Cn let Cn+1 be the full subcategory consisting of all fibre products and
subsheaves of objects of Cn. (Note that Cn+1 has a set of objects.) Set C′ =

⋃
n≥1 Cn.

A covering in C′ is any family {Gj → G}j∈J of morphisms of objects of C′ such that∐
Gj → G is surjective as a map of sheaves on C. The functor v : C → C′ is given

by U 7→ h#
U . Apply Lemma 7.28.4. �

Here is the goal of the current section.

Lemma 7.28.6. Let C, D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi.
Then there exists a site C′ and a diagram of functors

C
v
// C′ D

u
oo

such that

(1) the functor v is a special cocontinuous functor,
(2) the functor u commutes with fibre products, is continuous and defines a

morphism of sites C′ → D, and
(3) the morphism of topoi f agrees with the composition of morphisms of topoi

Sh(C) −→ Sh(C′) −→ Sh(D)

where the first arrow comes from v via Lemma 7.28.1 and the second arrow
from u via Lemma 7.16.2.

Proof. Consider the full subcategory C1 ⊂ Sh(C) consisting of all h#
U and all f−1h#

V

for all U ∈ Ob(C) and all V ∈ Ob(D). Let Cn+1 be a full subcategory consisting
of all fibre products of objects of Cn. Set C′ =

⋃
n≥1 Cn. A covering in C′ is any
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family {Fi → F}i∈I such that
∐
i∈I Fi → F is surjective as a map of sheaves on

C. The functor v : C → C′ is given by U 7→ h#
U . The functor u : D → C′ is given by

V 7→ f−1h#
V .

Part (1) follows from Lemma 7.28.4.

Proof of (2) and (3) of the lemma. The functor u commutes with fibre products

as both V 7→ h#
V and f−1 do. Moreover, since f−1 is exact and commutes with

arbitrary colimits we see that it transforms a covering into a surjective family of
morphisms of sheaves. Hence u is continuous. To see that it defines a morphism
of sites we still have to see that us is exact. In order to do this we will show that
g−1 ◦ us = f−1. Namely, then since g−1 is an equivalence and f−1 is exact we will
conclude. Because g−1 is adjoint to g∗, and us is adjoint to us, and f−1 is adjoint
to f∗ it also suffices to prove that us ◦ g∗ = f∗. Let U be an object of C and let V
be an object of D. Then

(usg∗h
#
U )(V ) = g∗h

#
U (f−1h#

V )

= MorSh(C)(f
−1h#

V , h
#
U )

= MorSh(D)(h
#
V , f∗h

#
U )

= f∗h
#
U (V )

The first equality because us = up. The second equality by Lemma 7.28.4 (5). The
third equality by adjointness of f∗ and f−1 and the final equality by properties of
sheafification and the Yoneda lemma. We omit the verification that these identities
are functorial in U and V . Hence we see that we have us ◦ g∗ = f∗ for sheaves of

the form h#
U . This implies that us ◦g∗ = f∗ and we win (some details omitted). �

Remark 7.28.7. Notation and assumptions as in Lemma 7.28.6. If the site D
has a final object and fibre products then the functor u : D → C′ satisfies all the
assumptions of Proposition 7.15.6. Namely, in addition to the properties mentioned
in the lemma u also transforms the final object of D into the final object of C′. This
is clear from the construction of u. Hence, if we first apply Lemmas 7.28.5 to D
and then Lemma 7.28.6 to the resulting morphism of topoi Sh(C) → Sh(D′) we
obtain the following statement: Any morphism of topoi f : Sh(C)→ Sh(D) fits into
a commutative diagram

Sh(C)

g

��

f
// Sh(D)

e

��
Sh(C′)

f ′ // Sh(D′)
where the following properties hold:

(1) the morphisms e and g are equivalences given by special cocontinuous
functors C → C′ and D → D′,

(2) the sites C′ and D′ have fibre products, final objects and have subcanonical
topologies,

(3) the morphism f ′ : C′ → D′ comes from a morphism of sites corresponding
to a functor u : D′ → C′ to which Proposition 7.15.6 applies, and

(4) given any set of sheaves Fi (resp. Gj) on C (resp. D) we may assume each
of these is a representable sheaf on C′ (resp. D′).

http://stacks.math.columbia.edu/tag/03CJ
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It is often useful to replace C and D by C′ and D′.

Remark 7.28.8. Notation and assumptions as in Lemma 7.28.6. Suppose that in
addition the original morphism of topoi Sh(C) → Sh(D) is an equivalence. Then
the construction in the proof of Lemma 7.28.6 gives two functors

C → C′ ← D

which are both special cocontinuous functors. Hence in this case we can actually
factor the morphism of topoi as a composition

Sh(C)→ Sh(C′) = Sh(D′)← Sh(D)

as in Remark 7.28.7, but with the middle morphism an identity.

7.29. Localization of topoi

We repeat some of the material on localization to the apparently more general
case of topoi. In reality this is not more general since we may always enlarge the
underlying sites to assume that we are localizing at objects of the site.

Lemma 7.29.1. Let C be a site. Let F be a sheaf on C. Then the category Sh(C)/F
is a topos. There is a canonical morphism of topoi

jF : Sh(C)/F −→ Sh(C)

which is a localization as in Section 7.24 such that

(1) the functor j−1
F is the functor H 7→ H×F/F , and

(2) the functor jF ! is the forgetful functor G/F 7→ G.

Proof. Apply Lemma 7.28.5. This means we may assume C is a site with sub-

canonical topology, and F = hU = h#
U for some U ∈ Ob(C). Hence the material

of Section 7.24 applies. In particular, there is an equivalence Sh(C/U) = Sh(C)/h#
U

such that the composition

Sh(C/U)→ Sh(C)/h#
U → Sh(C)

is equal to jU !, see Lemma 7.24.4. Denote a : Sh(C)/h#
U → Sh(C/U) the inverse

functor, so jF ! = jU ! ◦ a, j−1
F = a−1 ◦ j−1

U , and jF,∗ = jU,∗ ◦ a. The description of

jF ! follows from the above. The description of j−1
F follows from Lemma 7.24.6. �

Remark 7.29.2. In the situation of Lemma 7.29.1 we can also describe the functor
jF,∗. It is the functor which associates to ϕ : G → F the sheaf

U 7−→ {α : F|U → G|U such that α is a right inverse to ϕ|U}

In order to prove that this works the introduction of Hom-sheaves is desirable,
hence we postpone this to a later time.

Lemma 7.29.3. Let C be a site. Let F be a sheaf on C. Let C/F be the category
of pairs (U, s) where U ∈ Ob(C) and s ∈ F(U). Let a covering in C/F be a family
{(Ui, si) → (U, s)} such that {Ui → U} is a covering of C. Then j : C/F → C is
a continuous and cocontinuous functor of sites which induces a morphism of topoi
j : Sh(C/F) → Sh(C). In fact, there is an equivalence Sh(C/F) = Sh(C)/F which
turns j into jF .
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Proof. We omit the verification that C/F is a site and that j is continuous and
cocontinuous. By Lemma 7.20.5 there exists a morphism of topoi j as indicated,
with j−1G(U, s) = G(U), and there is a left adjoint j! to j−1. A morphism ϕ : ∗ →
j−1G on C/F is the same thing as a rule which assigns to every pair (U, s) a section
ϕ(s) ∈ G(U) compatible with restriction maps. Hence this is the same thing as a
morphism ϕ : F → G over C. We conclude that j!∗ = F . In particular, for every
H ∈ Sh(C/F) there is a canonical map

j!H → j!∗ = F

i.e., we obtain a functor j′! : Sh(C/F)→ Sh(C)/F . An inverse to this functor is the
rule which assigns to an object ϕ : G → F of Sh(C)/F the sheaf

a(G/F) : (U, s) 7−→ {t ∈ G(U) | ϕ(t) = s}

We omit the verification that a(G/F) is a sheaf and that a is inverse to j′! . �

Definition 7.29.4. Let C be a site. Let F be a sheaf on C.
(1) The topos Sh(C)/F is called the localization of the topos Sh(C) at F .
(2) The morphism of topoi jF : Sh(C)/F → Sh(C) of Lemma 7.29.1 is called

the localization morphism.

We are going to show that whenever the sheaf F is equal to h#
U for some object

U of the site, then the localization of the topos is equal to the category of sheaves
on the localization of the site at U . Moreover, we are going to check that any
functorialities are compatible with this identification.

Lemma 7.29.5. Let C be a site. Let F = h#
U for some object U of C. Then

jF : Sh(C)/F → Sh(C) constructed in Lemma 7.29.1 agrees with the morphism
of topoi jU : Sh(C/U) → Sh(C) constructed in Section 7.24 via the identification

Sh(C/U) = Sh(C)/h#
U of Lemma 7.24.4.

Proof. We have seen in Lemma 7.24.4 that the composition Sh(C/U)→ Sh(C)/h#
U →

Sh(C) is jU !. The functor Sh(C)/h#
U → Sh(C) is jF ! by Lemma 7.29.1. Hence

jF ! = jU ! via the identification. So j−1
F = j−1

U (by adjointness) and so jF,∗ = jU,∗
(by adjointness again). �

Lemma 7.29.6. Let C be a site. If s : G → F is a morphism of sheaves on C then
there exists a natural commutative diagram of morphisms of topoi

Sh(C)/G

jG $$

j
// Sh(C)/F

jFzz
Sh(C)

where j = jG/F is the localization of the topos Sh(C)/F at the object G/F . In
particular we have

j−1(H → F) = (H×F G → G)

and

j!(E
e−→ F) = (E s◦e−−→ G).
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Proof. The description of j−1 and j! comes from the description of those functors
in Lemma 7.29.1. The equality of functors jG! = jF !◦j! is clear from the description
of these functors (as forgetful functors). By adjointness we also obtain the equalities
j−1
G = j−1 ◦ j−1

F , and jG,∗ = jF,∗ ◦ j∗. �

Lemma 7.29.7. Assume C and s : G → F are as in Lemma 7.29.6. If G = h#
V

and F = h#
U and s : G → F comes from a morphism V → U of C then the

diagram in Lemma 7.29.6 is identified with diagram (7.24.7.1) via the identifications

Sh(C/V ) = Sh(C)/h#
V and Sh(C/U) = Sh(C)/h#

U of Lemma 7.24.4.

Proof. This is true because the descriptions of j−1 agree. See Lemma 7.24.8 and
Lemma 7.29.6. �

7.30. Localization and morphisms of topoi

This section is the analogue of Section 7.27 for morphisms of topoi.

Lemma 7.30.1. Let f : Sh(C)→ Sh(D) be a morphism of topoi. Let G be a sheaf
on D. Set F = f−1G. Then there exists a commutative diagram of topoi

Sh(C)/F
jF

//

f ′

��

Sh(C)

f

��
Sh(D)/G

jG // Sh(D).

The morphism f ′ is characterized by the property that

(f ′)−1(H ϕ−→ G) = (f−1H f−1ϕ−−−→ F)

and we have f ′∗j
−1
F = j−1

G f∗.

Proof. Since the statement is about topoi and does not refer to the underlying sites
we may change sites at will. Hence by the discussion in Remark 7.28.7 we may as-
sume that f is given by a continuous functor u : D → C satisfying the assumptions
of Proposition 7.15.6 between sites having all finite limits and subcanonical topolo-
gies, and such that G = hV for some object V of D. Then F = f−1hV = hu(V ) by
Lemma 7.14.5. By Lemma 7.27.1 we obtain a commutative diagram of morphisms
of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V )

jV // Sh(D),

and we have f ′∗j
−1
U = j−1

V f∗. By Lemma 7.29.5 we may identify jF and jU and jG
and jV . The description of (f ′)−1 is given in Lemma 7.27.1. �

Lemma 7.30.2. Let f : C → D be a morphism of sites given by the continuous

functor u : D → C. Let V be an object of D. Set U = u(V ). Set G = h#
V , and

F = h#
U = f−1h#

V (see Lemma 7.14.5). Then the diagram of morphisms of topoi
of Lemma 7.30.1 agrees with the diagram of morphisms of topoi of Lemma 7.27.1
via the identifications jF = jU and jG = jV of Lemma 7.29.5.

http://stacks.math.columbia.edu/tag/04IS
http://stacks.math.columbia.edu/tag/04H1
http://stacks.math.columbia.edu/tag/04IU


7.30. LOCALIZATION AND MORPHISMS OF TOPOI 313

Proof. This is not a complete triviality as the choice of morphism of sites giving
rise to f made in the proof of Lemma 7.30.1 may be different from the morphisms
of sites given to us in the lemma. But in both cases the functor (f ′)−1 is described
by the same rule. Hence they agree and the associated morphism of topoi is the
same. Some details omitted. �

Lemma 7.30.3. Let f : Sh(C) → Sh(D) be a morphism of topoi. Let G ∈ Sh(D),
F ∈ Sh(C) and s : F → f−1G a morphism of sheaves. There exists a commutative
diagram of topoi

Sh(C)/F
jF

//

fs

��

Sh(C)

f

��
Sh(D)/G

jG // Sh(D).

We have fs = f ′ ◦ jF/f−1G where f ′ : Sh(C)/f−1G → Sh(D)/F is as in Lemma

7.30.1 and jF/f−1G : Sh(C)/F → Sh(C)/f−1G is as in Lemma 7.29.6. The functor

(fs)
−1 is described by the rule

(fs)
−1(H ϕ−→ G) = (f−1H×f−1ϕ,f−1G,s F → F).

Finally, given any morphisms b : G′ → G, a : F ′ → F and s′ : F ′ → f−1G′ such
that

F ′
s′
//

a

��

f−1G′

f−1b

��
F s // f−1G

commutes, then the diagram

Sh(C)/F ′
jF′/F

//

fs′

��

Sh(C)/F

fs

��
Sh(D)/G′

jG′/G // Sh(D)/G.
commutes.

Proof. The commutativity of the first square follows from the commutativity of the
diagram in Lemma 7.29.6 and the commutativity of the diagram in Lemma 7.30.1.
The description of f−1

s follows on combining the descriptions of (f ′)−1 in Lemma
7.30.1 with the description of (jF/f−1G)−1 in Lemma 7.29.6. The commutativity of
the last square then follows from the equality

f−1H×f−1G,s F ×F F ′ = f−1(H×G G′)×f−1G′,s′ F ′

which is formal. �

Lemma 7.30.4. Let f : C → D be a morphism of sites given by the continuous
functor u : D → C. Let V be an object of D. Let c : U → u(V ) be a morphism.

Set G = h#
V and F = h#

U = f−1h#
V . Let s : F → f−1G be the map induced by c.

Then the diagram of morphisms of topoi of Lemma 7.27.3 agrees with the diagram
of morphisms of topoi of Lemma 7.30.3 via the identifications jF = jU and jG = jV
of Lemma 7.29.5.

Proof. This follows on combining Lemmas 7.29.7 and 7.30.2. �

http://stacks.math.columbia.edu/tag/04IV
http://stacks.math.columbia.edu/tag/04IW


314 7. SITES AND SHEAVES

7.31. Points

Definition 7.31.1. Let C be a site. A point of the topos Sh(C) is a morphism of
topoi p from Sh(pt) to Sh(C).

We will define a point of a site in terms of a functor u : C → Sets. It will turn out
later that u will define a morphism of sites which gives rise to a point of the topos
associated to C, see Lemma 7.31.8.

Let C be a site. Let p = u be a functor u : C → Sets. This curious language is
introduced because it seems funny to talk about neighbourhoods of functors; so we
think of a “point” p as a geometric thing which is given by a categorical datum,
namely the functor u. The fact that p is actually equal to u does not matter. A
neighbourhood of p is a pair (U, x) with U ∈ Ob(C) and x ∈ u(U). A morphism of
neighbourhoods (V, y) → (U, x) is given by a morphism α : V → U of C such that
u(α)(y) = x. Note that the category of neighbourhoods isn’t a “big” category.

We define the stalk of a presheaf F at p as

(7.31.1.1) Fp = colim{(U,x)}opp F(U).

The colimit is over the opposite of the category of neighbourhoods of p. In other
words, an element of Fp is given by a triple (U, x, s), where (U, x) is a neighbourhood
of p and s ∈ F(U). Equality of triples is the equivalence relation generated by
(U, x, s) ∼ (V, y, α∗s) when α is as above.

Note that if ϕ : F → G is a morphism of presheaves of sets, then we get a canonical
map of stalks ϕp : Fp → Gp. Thus we obtain a stalk functor

PSh(C) −→ Sets, F 7−→ Fp.

We have defined the stalk functor using any functor p = u : C → Sets. No conditions
are necessary for the definition to work5. On the other hand, it is probably better
not to use this notion unless p actually is a point (see definition below), since in
general the stalk functor does not have good properties.

Definition 7.31.2. Let C be a site. A point p of the site C is given by a functor
u : C → Sets such that

(1) For every covering {Ui → U} of C the map
∐
u(Ui)→ u(U) is surjective.

(2) For every covering {Ui → U} of C and every morphism V → U the maps
u(Ui ×U V )→ u(Ui)×u(U) u(V ) are bijective.

(3) The stalk functor Sh(C)→ Sets, F 7→ Fp is left exact.

The conditions should be familiar since they are modeled after those of Definitions
7.14.1 and 7.15.1. Note that (3) implies that ∗p = {∗}, see Example 7.10.2. Hence
u(U) 6= ∅ for at least some U (because the empty colimit produces the empty set).
We will show below (Lemma 7.31.7) that this does give rise to a point of the topos
Sh(C). Before we do so, we prove some lemmas for general functors u.

Lemma 7.31.3. Let C be a site. Let p = u : C → Sets be a functor. There are
functorial isomorphisms (hU )p = u(U) for U ∈ Ob(C).

5One should try to avoid the case where u(U) = ∅ for all U .
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Proof. An element of (hU )p is given by a triple (V, y, f), where V ∈ Ob(C), y ∈
u(V ) and f ∈ hU (V ) = MorC(V,U). Two such (V, y, f), (V ′, y′, f ′) determine the
same object if there exists a morphism φ : V → V ′ such that u(φ)(y) = y′ and
f ′ ◦ φ = f , and in general you have to take chains of identities like this to get
the correct equivalence relation. In any case, every (V, y, f) is equivalent to the
element (U, u(f)(y), idU ). If φ exists as above, then the triples (V, y, f), (V ′, y′, f ′)
determine the same triple (U, u(f)(y), idU ) = (U, u(f ′)(y′), idU ). This proves that
the map u(U)→ (hU )p, x 7→ class of (U, x, idU ) is bijective. �

Let C be a site. Let p = u : C → Sets be a functor. In analogy with the constructions
in Section 7.5 given a set E we define a presheaf upE by the rule

(7.31.3.1) U 7−→ upE(U) = MorSets(u(U), E) = Map(u(U), E).

This defines a functor up : Sets→ PSh(C), E 7→ upE.

Lemma 7.31.4. For any functor u : C → Sets. The functor up is a right adjoint
to the stalk functor on presheaves.

Proof. Let F be a presheaf on C. Let E be a set. A morphism F → upE is given
by a compatible system of maps F(U)→ Map(u(U), E), i.e., a compatible system
of maps F(U) × u(U) → E. And by definition of Fp a map Fp → E is given by
a rule associating with each triple (U, x, σ) an element in E such that equivalent
triples map to the same element, see discussion surrounding Equation (7.31.1.1).
This also means a compatible system of maps F(U)× u(U)→ E. �

In analogy with Section 7.14 we have the following lemma.

Lemma 7.31.5. Let C be a site. Let p = u : C → Sets be a functor. Suppose that
for every covering {Ui → U} of C

(1) the map
∐
u(Ui)→ u(U) is surjective, and

(2) the maps u(Ui ×U Uj)→ u(Ui)×u(U) u(Uj) are surjective.

Then we have

(1) the presheaf upE is a sheaf for all sets E, denote it usE,
(2) the stalk functor Sh(C) → Sets and the functor us : Sets → Sh(C) are

adjoint, and
(3) we have Fp = F#

p for every presheaf of sets F .

Proof. The first assertion is immediate from the definition of a sheaf, assumptions
(1) and (2), and the definition of upE. The second is a restatement of the adjointness
of up and the stalk functor (but now restricted to sheaves). The third assertion
follows as, for any set E, we have

Map(Fp, E) = MorPSh(C)(F , upE) = MorSh(C)(F#, usE) = Map(F#
p , E)

by the adjointness property of sheafification. �

In particular Lemma 7.31.5 holds when p = u is a point. In this case we think of
the sheaf usE as the “skyscraper” sheaf with value E at p.

Definition 7.31.6. Let p be a point of the site C given by the functor u. For a set
E we define p∗E = usE the sheaf described in Lemma 7.31.5 above. We sometimes
call this a skyscraper sheaf.
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In particular we have the following adjointness property of skyscraper sheaves and
stalks:

MorSh(C)(F , p∗E) = Map(Fp, E)

This motivates the notation p−1F = Fp which we will sometimes use.

Lemma 7.31.7. Let C be a site.

(1) Let p be a point of the site C. Then the pair of functors (p∗, p
−1) introduced

above define a morphism of topoi Sh(pt)→ Sh(C).
(2) Let p = (p∗, p

−1) be a point of the topos Sh(C). Then the functor u : U 7→
p−1(h#

U ) gives rise to a point p′ of the site C whose associated morphism
of topoi (p′∗, (p

′)−1) is equal to p.

Proof. Proof of (1). By the above the functors p∗ and p−1 are adjoint. The functor
p−1 is required to be exact by Definition 7.31.2. Hence the conditions imposed in
Definition 7.16.1 are all satisfied and we see that (1) holds.

Proof of (2). Let {Ui → U} be a covering of C. Then
∐

(hUi)
# → h#

U is surjective,
see Lemma 7.13.4. Since p−1 is exact (by definition of a morphism of topoi) we
conclude that

∐
u(Ui) → u(U) is surjective. This proves part (1) of Definition

7.31.2. Sheafification is exact, see Lemma 7.10.14. Hence if U ×V W exists in C,
then

h#
U×VW = h#

U ×h#
V
h#
W

and we see that u(U ×V W ) = u(U) ×u(V ) u(W ) since p−1 is exact. This proves
part (2) of Definition 7.31.2. Let p′ = u, and let Fp′ be the stalk functor defined by
Equation (7.31.1.1) using u. There is a canonical comparison map c : Fp′ → Fp =
p−1F . Namely, given a triple (U, x, σ) representing an element ξ of Fp′ we think of σ

as a map σ : h#
U → F and we can set c(ξ) = p−1(σ)(x) since x ∈ u(U) = p−1(h#

U ).
By Lemma 7.31.3 we see that (hU )p′ = u(U). Since conditions (1) and (2) of

Definition 7.31.2 hold for p′ we also have (h#
U )p′ = (hU )p′ by Lemma 7.31.5. Hence

we have

(h#
U )p′ = (hU )p′ = u(U) = p−1(h#

U )

We claim this bijection equals the comparison map c : (h#
U )p′ → p−1(h#

U ) (verifica-
tion omitted). Any sheaf on C is a coequalizer of maps of coproducts of sheaves of

the form h#
U , see Lemma 7.13.5. The stalk functor F 7→ Fp′ and the functor p−1

commute with arbitrary colimits (as they are both left adjoints). We conclude c is
an isomorphism for every sheaf F . Thus the stalk functor F 7→ Fp′ is isomorphic to
p−1 and we in particular see that it is exact. This proves condition (3) of Definition
7.31.2 holds and p′ is a point. The final assertion has already been shown above,
since we saw that p−1 = (p′)−1. �

Actually a point always corresponds to a morphism of sites as we show in the
following lemma.

Lemma 7.31.8. Let C be a site. Let p be a point of C given by u : C → Sets. Let
S0 be an infinite set such that u(U) ⊂ S0 for all U ∈ Ob(C). Let S be the site
constructed out of the powerset S = P(S0) in Remark 7.16.3. Then

(1) there is an equivalence i : Sh(pt)→ Sh(S),
(2) the functor u : C → S induces a morphism of sites f : S → C, and
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(3) the composition

Sh(pt)→ Sh(S)→ Sh(C)

is the morphism of topoi (p∗, p
−1) of Lemma 7.31.7.

Proof. Part (1) we saw in Remark 7.16.3. Moreover, recall that the equivalence
associates to the set E the sheaf i∗E on S defined by the rule V 7→ MorSets(V,E).
Part (2) is clear from the definition of a point of C (Definition 7.31.2) and the
definition of a morphism of sites (Definition 7.15.1). Finally, consider f∗i∗E. By
construction we have

f∗i∗E(U) = i∗E(u(U)) = MorSets(u(U), E)

which is equal to p∗E(U), see Equation (7.31.3.1). This proves (3). �

Contrary to what happens in the topological case it is not always true that the
stalk of the skyscraper sheaf with value E is E. Here is what is true in general.

Lemma 7.31.9. Let C be a site. Let p : Sh(pt) → Sh(C) be a point of the topos
associated to C. For any set E there are canonical maps

E −→ (p∗E)p −→ E

whose composition is idE.

Proof. There is always an adjunction map (p∗E)p = p−1p∗E → E. This map
is an isomorphism when E = {∗} because p∗ and p−1 are both left exact, hence
transform the final object into the final object. Hence given e ∈ E we can consider
the map ie : {∗} → E which gives

p−1p∗{∗}
p−1p∗ie

//

∼=
��

p−1p∗E

��
{∗} ie // E

whence the map E → (p∗E)p = p−1p∗E as desired. �

Lemma 7.31.10. Let C be a site. Let p : Sh(pt) → Sh(C) be a point of the topos
associated to C. The functor p∗ : Sets → Sh(C) has the following properties: It
commutes with arbitrary limits, it is left exact, it is faithful, it transforms surjec-
tions into surjections, it commutes with coequalizers, it reflects injections, it reflects
surjections, and it reflects isomorphisms.

Proof. Because p∗ is a right adjoint it commutes with arbitrary limits and it is
left exact. The fact that p−1p∗E → E is a canonically split surjection implies that
p∗ is faithful, reflects injections, reflects surjections, and reflects isomorphisms. By
Lemma 7.31.7 we may assume that p comes from a point u : C → Sets of the
underlying site C. In this case the sheaf p∗E is given by

p∗E(U) = MorSets(u(U), E)

see Equation (7.31.3.1) and Definition 7.31.6. It follows immediately from this
formula that p∗ transforms surjections into surjections and coequalizers into co-
equalizers. �
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7.32. Constructing points

In this section we give criteria for when a functor from a site to the category of sets
defines a point of that site.

Lemma 7.32.1. Let C be a site. Assume that C has a final object X and fibred
products. Let p = u : C → Sets be a functor such that

(1) u(X) is a singleton set, and
(2) for every pair of morphisms U → W and V → W with the same target

the map u(U ×W V )→ u(U)×u(W ) u(V ) is bijective.

Then the opposite of the category of neighbourhoods of p is filtered. Moreover, the
stalk functor Sh(C)→ Sets, F → Fp commutes with finite limits.

Proof. This is analogous to the proof of Lemma 7.5.2 above. The assumptions
on C imply that C has finite limits. See Categories, Lemma 4.18.4. Assumption
(1) implies that the category of neighbourhoods is nonempty. Suppose (U, x) and
(V, y) are neighbourhoods. Then u(U × V ) = u(U ×X V ) = u(U) ×u(X) u(V ) =
u(U) × u(V ) by (2). Hence there exists a neighbourhood (U ×X V, z) mapping to
both (U, x) and (V, y). Let a, b : (V, y)→ (U, x) be two morphisms in the category
of neighbourhoods. Let W be the equalizer of a, b : V → U . As in the proof of
Categories, Lemma 4.18.4 we may write W in terms of fibre products:

W = (V ×a,U,b V )×(pr1,pr2),V×V,∆ V

The bijectivity in (2) guarantees there exists an element z ∈ u(W ) which maps to
((y, y), y). Then (W, z)→ (V, y) equalizes a, b as desired.

Let I → Sh(C), i 7→ Fi be a finite diagram of sheaves. We have to show that the
stalk of the limit of this system agrees with the limit of the stalks. Let F be the
limit of the system as a presheaf. According to Lemma 7.10.1 this is a sheaf and it
is the limit in the category of sheaves. Hence we have to show that Fp = limI Fi,p.
Recall also that F has a simple description, see Section 7.4. Thus we have to show
that

limi colim{(U,x)}opp Fi(U) = colim{(U,x)}opp limi Fi(U).

This holds, by Categories, Lemma 4.19.2, because we just showed the opposite of
the category of neighbourhoods is filtered. �

Proposition 7.32.2. Let C be a site. Assume that finite limits exist in C. (I.e.,
C has fibre products, and a final object.) A point p of such a site C is given by a
functor u : C → Sets such that

(1) u commutes with finite limits, and
(2) if {Ui → U} is a covering, then

∐
i u(Ui)→ u(U) is surjective.

Proof. Suppose first that p is a point (Definition 7.31.2) given by a functor u.
Condition (2) is satisfied directly from the definition of a point. By Lemma 7.31.3

we have (hU )p = u(U). By Lemma 7.31.5 we have (h#
U )p = (hU )p. Thus we see

that u is equal to the composition of functors

C h−→ PSh(C)
#

−→ Sh(C) ()p−−→ Sets

Each of these functors is left exact, and hence we see u satisfies (1).

Conversely, suppose that u satisfies (1) and (2). In this case we immediately see
that u satisfies the first two conditions of Definition 7.31.2. And its stalk functor
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is exact, because it is a left adjoint by Lemma 7.31.5 and it commutes with finite
limits by Lemma 7.32.1. �

Remark 7.32.3. In fact, let C be a site. Assume C has a final object X and fibre
products. Let p = u : C → Sets be a functor such that

(1) u(X) = {∗} a singleton, and
(2) for every pair of morphisms U → W and V → W with the same target

the map u(U ×W V )→ u(U)×u(W ) u(V ) is surjective.
(3) for every covering {Ui → U} the map

∐
u(Ui)→ u(U) is surjective.

Then, in general, p is not a point of C. An example is the category C with two
objects {U,X} and exactly one non-identity arrow, namely U → X. We endow
C with the trivial topology, i.e., the only coverings are {U → U} and {X → X}.
A sheaf F is the same thing as a presheaf and consists of a triple (A,B,A → B):
namely A = F(X), B = F(U) and A→ B is the restriction mapping corresponding
to U → X. Note that U ×X U = U so fibre products exist. Consider the functor
u = p with u(X) = {∗} and u(U) = {∗1, ∗2}. This satisfies (1), (2), and (3), but
the corresponding stalk functor (7.31.1.1) is the functor

(A,B,A→ B) 7−→ B
∐

A
B

which isn’t exact. Namely, consider (∅, {1}, ∅ → {1}) → ({1}, {1}, {1} → {1})
which is an injective map of sheaves, but is transformed into the noninjective map
of sets

{1}
∐
{1} −→ {1}

∐
{1}
{1}

by the stalk functor.

Example 7.32.4. Let X be a topological space. Let XZar be the site of Example
7.6.4. Let x ∈ X be a point. Consider the functor

u : XZar −→ Sets, U 7→
{
∅ if x 6∈ U
{∗} if x ∈ U

This functor commutes with product and fibred products, and turns coverings into
surjective families of maps. Hence we obtain a point p of the site XZar. It is
immediately verified that the stalk functor agrees with the stalk at x defined in
Sheaves, Section 6.11.

Example 7.32.5. Let X be a topological space. What are the points of the topos
Sh(X)? To see this, let XZar be the site of Example 7.6.4. By Lemma 7.31.7 a
point of Sh(X) corresponds to a point of this site. Let p be a point of the site XZar

given by the functor u : XZar → Sets. We are going to use the characterization
of such a u in Proposition 7.32.2. This implies immediately that u(∅) = ∅ and
u(U ∩ V ) = u(U) × u(V ). In particular we have u(U) = u(U) × u(U) via the
diagonal map which implies that u(U) is either a singleton or empty. Moreover, if
U =

⋃
Ui is an open covering then

u(U) = ∅ ⇒ ∀i, u(Ui) = ∅ and u(U) 6= ∅ ⇒ ∃i, u(Ui) 6= ∅.

We conclude that there is a unique largest open W ⊂ X with u(W ) = ∅, namely
the union of all the opens U with u(U) = ∅. Let Z = X \W . If Z = Z1 ∪ Z2 with
Zi ⊂ Z closed, then W = (X \Z1)∩ (X \Z2) so ∅ = u(W ) = u(X \Z1)×u(X \Z2)
and we conclude that u(X \ Z1) = ∅ or that u(X \ Z2) = ∅. This means that
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X \ Z1 = W or that X \ Z2 = W . In other words, Z is irreducible. Now we see
that u is described by the rule

u : XZar −→ Sets, U 7→
{
∅ if Z ∩ U = ∅
{∗} if Z ∩ U 6= ∅

Note that for any irreducible closed Z ⊂ X this functor satisfies assumptions (1),
(2) of Proposition 7.32.2 and hence defines a point. In other words we see that
points of the site XZar are in one-to-one correspondence with irreducible closed
subsets of X. In particular, if X is a sober topological space, then points of XZar

and points of X are in one to one correspondence, see Example 7.32.4.

Example 7.32.6. Consider the site TG described in Example 7.6.5 and Section 7.9.
The forgetful functor u : TG → Sets commutes with products and fibred products
and turns coverings into surjective families. Hence it defines a point of TG. We
identify Sh(TG) and G-Sets. The stalk functor

p−1 : Sh(TG) = G-Sets −→ Sets

is the forgetful functor. The pushforward p∗ is the functor

Sets −→ Sh(TG) = G-Sets

which maps a set S to the G-set Map(G,S) with action g ·ψ = ψ ◦Rg where Rg is
right multiplication. In particular we have p−1p∗S = Map(G,S) as a set and the
maps S → Map(G,S)→ S of Lemma 7.31.9 are the obvious ones.

Example 7.32.7. Let C be a category endowed with the chaotic topology (Example
7.6.6). For every object U0 of C the functor u : U 7→ MorC(U0, U) defines a point p
of C. Namely, conditions (1) and (2) of Definition 7.31.2 are immediate as the only
coverings are given by identity maps. Condition (2) holds because Fp = F(U0) and
since the topology is discrete taking sections over U0 is an exact functor.

7.33. Points and morphisms of topoi

In this section we make a few remarks about points and morphisms of topoi.

Lemma 7.33.1. Let f : D → C be a morphism of sites given by a continuous
functor u : C → D. Let p be a point of D given by the functor v : D → Sets, see
Definition 7.31.2. Then the functor v ◦ u : C → Sets defines a point q of C and
moreover there is a canonical identification

(f−1F)p = Fq

for any sheaf F on C.

First proof Lemma 7.33.1. Note that since u is continuous and since v defines a
point, it is immediate that v ◦u satisfies conditions (1) and (2) of Definition 7.31.2.
Let us prove the displayed equality. Let F be a sheaf on C. Then

Fq = colim(U,x) F(U)
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where the colimit is over objects U in C and elements x ∈ v(u(U)). Similarly, we
have

(f−1F)p = (upF)p

= colim(V,x) colimU,φ:V→u(U) F(U)

= colim(V,x,U,φ:V→u(U)) F(U)

= colim(U,x) F(U)

= Fq

Explanation: The first equality holds because f−1F = (upF)# and because Gp =
G#
p for any presheaf G, see Lemma 7.31.5. The second equality holds by the defi-

nition of up. In the third equality we simply combine colimits. To see the fourth
equality we apply Categories, Lemma 4.17.5 to the functor F of diagram categories
defined by the rule F ((V, x, U, φ : V → u(U))) = (U, v(φ)(x)). The lemma applies,
because F has a right inverse, namely (U, x) 7→ (u(U), x, U, id : u(U)→ u(U)) and
because there is always a morphism

(V, x, U, φ : V → u(U)) −→ (u(U), v(φ)(x), U, id : u(U)→ u(U))

in the fibre category over (U, x) which shows the fibre categories are connected.
The fifth equality is clear. Hence now we see that q also satisfies condition (3) of
Definition 7.31.2 because it is a composition of exact functors. This finishes the
proof. �

Second proof Lemma 7.33.1. By Lemma 7.31.8 we may factor (p∗, p
−1) as

Sh(pt)
i−→ Sh(S)

h−→ Sh(D)

where the second morphism of topoi comes from a morphism of sites h : S → D
induced by the functor v : D → S (which makes sense as S ⊂ Sets is a full
subcategory containing every object in the image of v). By Lemma 7.15.3 the
composition v ◦ u : C → S defines a morphism of sites g : S → C. In particular, the
functor v ◦ u : C → S is continuous which by the definition of the coverings in S,
see Remark 7.16.3, means that v ◦ u satisfies conditions (1) and (2) of Definition
7.31.2. On the other hand, we see that

g∗i∗E(U) = i∗E(v(u(U)) = MorSets(v(u(U)), E)

by the construction of i in Remark 7.16.3. Note that this is the same as the formula
for which is equal to (v◦u)pE, see Equation (7.31.3.1). By Lemma 7.31.5 the functor
g∗i∗ = (v ◦u)p = (v ◦u)s is right adjoint to the stalk functor F 7→ Fq. Hence we see
that the stalk functor q−1 is canonically isomorphic to i−1 ◦ g−1. Hence it is exact
and we conclude that q is a point. Finally, as we have g = f ◦h by construction we
see that q−1 = i−1 ◦ h−1 ◦ f−1 = p−1 ◦ f−1, i.e., we have the displayed formula of
the lemma. �

Lemma 7.33.2. Let f : Sh(D)→ Sh(C) be a morphism of topoi. Let p : Sh(pt)→
Sh(D) be a point. Then q = f ◦ p is a point of the topos Sh(C) and we have a
canonical identification

(f−1F)p = Fq
for any sheaf F on C.
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Proof. This is immediate from the definitions and the fact that we can compose
morphisms of topoi. �

7.34. Localization and points

In this section we show that points of a localization C/U are constructed in a simple
manner from the points of C.

Lemma 7.34.1. Let C be a site. Let p be a point of C given by u : C → Sets. Let
U be an object of C and let x ∈ u(U). The functor

v : C/U −→ Sets, (ϕ : V → U) 7−→ {y ∈ u(V ) | u(ϕ)(y) = x}

defines a point q of the site C/U such that the diagram

Sh(pt)

p

��

q

yy
Sh(C/U)

jU // Sh(C)

commutes. In other words Fp = (j−1
U F)q for any sheaf on C.

Proof. Choose S and S as in Lemma 7.31.8. We may identify Sh(pt) = Sh(S) as
in that lemma, and we may write p = f : Sh(S)→ Sh(C) for the morphism of topoi
induced by u. By Lemma 7.27.1 we get a commutative diagram of topoi

Sh(S/u(U))
ju(U)

//

p′

��

Sh(S)

p

��
Sh(C/U)

jU // Sh(C),

where p′ is given by the functor u′ : C/U → S/u(U), V/U 7→ u(V )/u(U). Consider
the functor jx : S ∼= S/x obtained by assigning to a set E the set E endowed with
the constant map E → u(U) with value x. Then jx is a fully faithful cocontinuous
functor which has a continuous right adjoint vx : (ψ : E → u(U)) 7→ ψ−1({x}).
Note that ju(U) ◦ jx = idS , and vx ◦ u′ = v. These observations imply that we have
the following commutative diagram of topoi

Sh(S)

a

&&
q

��

p

oo

Sh(S/u(U))
ju(U)

//

p′

��

Sh(S)

p

��
Sh(C/U)

jU // Sh(C)

Namely:

(1) The morphism a : Sh(S) → Sh(S/u(U)) is the morphism of topoi associ-
ated to the cocontinuous functor jx, which equals the morphism associated
to the continuous functor vx, see Lemma 7.20.1 and Section 7.21.

(2) The composition p ◦ ju(U) ◦ a = p since ju(U) ◦ jx = idS .
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(3) The composition p′ ◦ a gives a morphism of topoi. Moreover, it is the
morphism of topoi associated to the continuous functor vx ◦u′ = v. Hence
v does indeed define a point q of C/U which fits into the diagram above
by construction.

This ends the proof of the lemma. �

Lemma 7.34.2. Let C, p, u, U be as in Lemma 7.34.1. The construction of Lemma
7.34.1 gives a one to one correspondence between points q of C/U lying over p and
elements x of u(U).

Proof. Let q be a point of C/U given by the functor v : C/U → Sets such that

jU ◦ q = p as morphisms of topoi. Recall that u(V ) = p−1(h#
V ) for any object V of

C, see Lemma 7.31.7. Similarly v(V/U) = q−1(h#
V/U ) for any object V/U of C/U .

Consider the following two diagrams

MorC/U (W/U, V/U) //

��

MorC(W,V )

��
MorC/U (W/U,U/U) // MorC(W,U)

h#
V/U

//

��

j−1
U (h#

V )

��
h#
U/U

// j−1
U (h#

U )

The right hand diagram is the sheafification of the diagram of presheaves on C/U
which maps W/U to the left hand diagram of sets. (There is a small technical

point to make here, namely, that we have (j−1
U hV )# = j−1

U (h#
V ) and similarly for

hU , see Lemma 7.19.4.) Note that the left hand diagram of sets is cartesian. Since
sheafification is exact (Lemma 7.10.14) we conclude that the right hand diagram is
cartesian.

Apply the exact functor q−1 to the right hand diagram to get a cartesian diagram

v(V/U) //

��

u(V )

��
v(U/U) // u(U)

of sets. Here we have used that q−1 ◦ j−1 = p−1. Since U/U is a final object of
C/U we see that v(U/U) is a singleton. Hence the image of v(U/U) in u(U) is an
element x, and the top horizontal map gives a bijection v(V/U)→ {y ∈ u(V ) | y 7→
x in u(U)} as desired. �

Lemma 7.34.3. Let C be a site. Let p be a point of C given by u : C → Sets. Let
U be an object of C. For any sheaf G on C/U we have

(jU !G)p =
∐

q
Gq

where the coproduct is over the points q of C/U associated to elements x ∈ u(U) as
in Lemma 7.34.1.

Proof. We use the description of jU !G as the sheaf associated to the presheaf
V 7→

∐
ϕ∈MorC(V,U) G(V/ϕU) of Lemma 7.24.2. Also, the stalk of jU !G at p is equal

to the stalk of this presheaf, see Lemma 7.31.5. Hence we see that

(jU !G)p = colim(V,y)

∐
ϕ:V→U

G(V/ϕU)
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To each element (V, y, ϕ, s) of this colimit, we can assign x = u(ϕ)(y) ∈ u(U).
Hence we obtain

(jU !G)p =
∐

x∈u(U)
colim(ϕ:V→U,y), u(ϕ)(y)=x G(V/ϕU).

This is equal to the expression of the lemma by our construction of the points q. �

Remark 7.34.4. Warning: The result of Lemma 7.34.3 has no analogue for jU,∗.

7.35. 2-morphisms of topoi

This is a brief section concerning the notion of a 2-morphism of topoi.

Definition 7.35.1. Let f, g : Sh(C) → Sh(D) be two morphisms of topoi. A
2-morphism from f to g is given by a transformation of functors t : f∗ → g∗.

Pictorially we sometimes represent t as follows:

Sh(C)
f

++

g

33�� t Sh(D)

Note that since f−1 is adjoint to f∗ and g−1 is adjoint to g∗ we see that t induces
also a transformation of functors t : g−1 → f−1 (usually denoted by the same
symbol) uniquely characterized by the condition that the diagram

MorSh(C)(G, f∗F)

t◦−
��

MorSh(C)(f
−1G,F)

−◦t
��

MorSh(C)(G, g∗F) MorSh(C)(g
−1G,F)

commutes. Because of set theoretic difficulties (see Remark 7.16.4) we do not obtain
a 2-category of topoi. But we can still define horizontal and vertical composition and
show that the axioms of a strict 2-category listed in Categories, Section 4.27 hold.
Namely, vertical composition of 2-morphisms is clear (just compose transformations
of functors), composition of 1-morphisms has been defined in Definition 7.16.1, and
horizontal composition of

Sh(C)
f ++

g
33�� t Sh(D)

f ′ ++

g′
33��

s Sh(E)

is defined by the transformation of functors s?t introduced in Categories, Definition
4.26.1. Explicitly, s ? t is given by

f ′∗f∗F
f ′∗t // f ′∗g∗F

s // g′∗g∗F or f ′∗f∗F
s // g′∗f∗F

g′∗t // g′∗g∗F

(these maps are equal). Since these definitions agree with the ones in Categories,
Section 4.26 it follows from Categories, Lemma 4.26.2 that the axioms of a strict
2-category hold with these definitions.
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7.36. Morphisms between points

Lemma 7.36.1. Let C be a site. Let u, u′ : C → Sets be two functors, and let t :
u′ → u be a transformation of functors. Then we obtain a canonical transformation
of stalk functors tstalk : Fp′ → Fp which agrees with t via the identifications of
Lemma 7.31.3.

Proof. Omitted. �

Definition 7.36.2. Let C be a site. Let p, p′ be points of C given by functors
u, u′ : C → Sets. A morphism f : p→ p′ is given by a transformation of functors

fu : u′ → u.

Note how the transformation of functors goes the other way. This makes sense, as
we will see later, by thinking of the morphism f as a kind of 2-arrow pictorially as
follows:

Sets = Sh(pt)

p
++

p′
33�� f Sh(C)

Namely, we will see later that fu induces a canonical transformation of functors
p∗ → p′∗ between the skyscraper sheaf constructions.

This is a fairly important notion, and deserves a more complete treatment here.
List of desiderata

(1) Describe the automorphisms of the point of TG described in Example
7.32.6.

(2) Describe Mor(p, p′) in terms of Mor(p∗, p
′
∗).

(3) Specialization of points in topological spaces. Show that if x′ ∈ {x} in
the topological space X, then there is a morphism p→ p′, where p (resp.
p′) is the point of XZar associated to x (resp. x′).

7.37. Sites with enough points

Definition 7.37.1. Let C be a site.

(1) A family of points {pi}i∈I is called conservative if for every map of sheaves
φ : F → G which is an isomorphism on all the fibres Fpi → Gpi is an
isomorphism.

(2) We say that C has enough points if there exists a conservative family of
points.

It turns out that you can then check “exactness” at the stalks.

Lemma 7.37.2. Let C be a site and let {pi}i∈I be a conservative family of points.
Then

(1) Given any map of sheaves ϕ : F → G we have ∀i, ϕpi injective implies ϕ
injective.

(2) Given any map of sheaves ϕ : F → G we have ∀i, ϕpi surjective implies ϕ
surjective.

(3) Given any pair of maps of sheaves ϕ1, ϕ2 : F → G we have ∀i, ϕ1,pi = ϕ2,pi

implies ϕ1 = ϕ2.
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(4) Given a finite diagram G : J → Sh(C), a sheaf F and morphisms qj :
F → Gj then (F , qj) is a limit of the diagram if and only if for each i the
stalk (Fpi , (qj)pi) is one.

(5) Given a finite diagram F : J → Sh(C), a sheaf G and morphisms ej :
Fj → G then (G, ej) is a colimit of the diagram if and only if for each i
the stalk (Gpi , (ej)pi) is one.

Proof. We will use over and over again that all the stalk functors commute with
any finite limits and colimits and hence with products, fibred products, etc. We
will also use that injective maps are the monomorphisms and the surjective maps
are the epimorphisms. A map of sheaves ϕ : F → G is injective if and only if
F → F ×G F is an isomorphism. Hence (1). Similarly, ϕ : F → G is surjective if
and only if G qF G → G is an isomorphism. Hence (2). The maps a, b : F → G
are equal if and only if F ×a,G,b F → F × F is an isomorphism. Hence (3). The
assertions (4) and (5) follow immediately from the definitions and the remarks at
the start of this proof. �

Lemma 7.37.3. Let C be a site and let {(pi, ui)}i∈I be a family of points. The
family is conservative if and only if for every sheaf F and every U ∈ Ob(C) and
every pair of distinct sections s, s′ ∈ F(U), s 6= s′ there exists an i and x ∈ ui(U)
such that the triples (U, x, s) and (U, x, s′) define distinct elements of Fpi .

Proof. Suppose that the family is conservative and that F , U , and s, s′ are as in
the lemma. The sections s, s′ define maps a, a′ : (hU )# → F which are distinct.
Hence, by Lemma 7.37.2 there is an i such that api 6= a′pi . Recall that (hU )#

pi =
ui(U), by Lemmas 7.31.3 and 7.31.5. Hence there exists an x ∈ ui(U) such that
api(x) 6= a′pi(x) in Fpi . Unwinding the definitions you see that (U, x, s) and (U, x, s′)
are as in the statement of the lemma.

To prove the converse, assume the condition on the existence of points of the lemma.
Let φ : F → G be a map of sheaves which is an isomorphism at all the stalks. We
have to show that φ is both injective and surjective, see Lemma 7.12.2. Injectivity
is an immediate consequence of the assumption. To show surjectivity we have to
show that G qF G → G is an isomorphism (Categories, Lemma 4.13.3). Since this
map is clearly surjective, it suffices to check injectivity which follows as GqF G → G
is injective on all stalks by assumption. �

In the following lemma the points qi,x are exactly all the points of C/U lying over
the point pi according to Lemma 7.34.2.

Lemma 7.37.4. Let C be a site. Let U be an object of C. let {(pi, ui)}i∈I be a
family of points of C. For x ∈ ui(U) let qi,x be the point of C/U constructed in
Lemma 7.34.1. If {pi} is a conservative family of points, then {qi,x}i∈I,x∈ui(U) is
a conservative family of points of C/U . In particular, if C has enough points, then
so does every localization C/U .

Proof. We know that jU ! induces an equivalence jU ! : Sh(C/U) → Sh(C)/h#
U , see

Lemma 7.24.4. Moreover, we know that (jU !G)pi =
∐
x Gqi,x , see Lemma 7.34.3.

Hence the result follows formally. �

The following lemma tells us we can check the existence of points locally on the
site.
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Lemma 7.37.5. Let C be a site. Let {Ui}i∈I be a family of objects of C. Assume

(1)
∐
h#
Ui
→ ∗ is a surjective map of sheaves, and

(2) each localization C/Ui has enough points.

Then C has enough points.

Proof. For each i ∈ I let {pj}j∈Ji be a conservative family of points of C/Ui.
For j ∈ Ji denote qj : Sh(pt) → Sh(C) the composition of pj with the localization
morphism Sh(C/Ui) → Sh(C). Then qj is a point, see Lemma 7.33.2. We claim
that the family of points {qj}j∈∐ Ji is conservative. Namely, let F → G be a map
of sheaves on C such that Fqj → Gqj is an isomorphism for all j ∈

∐
Ji. Let W

be an object of C. By assumption (1) there exists a covering {Wa → W} and
morphisms Wa → Ui(a). Since (F|C/Ui(a)

)pj = Fqj and (G|C/Ui(a)
)pj = Gqj by

Lemma 7.33.2 we see that F|Ui(a)
→ G|Ui(a)

is an isomorphism since the family

of points {pj}j∈Ji(a)
is conservative. Hence F(Wa) → G(Wa) is bijective for each

a. Similarly F(Wa ×W Wb) → G(Wa ×W Wb) is bijective for each a, b. By the
sheaf condition this shows that F(W ) → G(W ) is bijective, i.e., F → G is an
isomorphism. �

7.38. Criterion for existence of points

This section corresponds to Deligne’s appendix to [AGV71, Exposé VI]. In fact it
is almost literally the same.

Let C be a site. Suppose that (I,≥) is a directed partially ordered set, and that
(Ui, fii′) is an inverse system over I, see Categories, Definition 4.21.1. Given the
data (I,≥, Ui, fii′) we define

u : C −→ Sets, u(V ) = colimi MorC(Ui, V )

Let F 7→ Fp be the stalk functor associated to u as in Section 7.31. It is direct
from the definition that actually

Fp = colimi F(Ui)

in this special case. Note that u commutes with all finite limits (I mean those
that are representable in C) because each of the functors V 7→ MorC(Ui, V ) do, see
Categories, Lemma 4.19.2.

We say that a system (I,≥, Ui, fii′) is a refinement of (J,≥, Vj , gjj′) if J ⊂ I, the
ordering on J induced from that of I and Vj = Uj , gjj′ = fjj′ (in words, the
inverse system over J is induced by that over I). Let u be the functor associated to
(I,≥, Ui, fii′) and let u′ be the functor associated to (J,≥, Vj , gjj′). This induces a
transformation of functors

u′ −→ u

simply because the colimits for u′ are over a subsystem of the systems in the colimits
for u. In particular we get an associated transformation of stalk functors Fp′ → Fp,
see Lemma 7.36.1.

Lemma 7.38.1. Let C be a site. Let (J,≥, Vj , gjj′) be a system as above with
associated pair of functors (u′, p′). Let F be a sheaf on C. Let s, s′ ∈ Fp′ be distinct
elements. Let {Wk →W} be a finite covering of C. Let f ∈ u′(W ). There exists a
refinement (I,≥, Ui, fii′) of (J,≥, Vj , gjj′) such that s, s′ map to distinct elements
of Fp and that the image of f in u(W ) is in the image of one of the u(Wk).
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Proof. There exists a j0 ∈ J such that f is defined by f ′ : Vj0 → W . For j ≥ j0
we set Vj,k = Vj ×f ′◦fjj0 ,W Wk. Then {Vj,k → Vj} is a finite covering in the site C.
Hence F(Vj) ⊂

∏
k F(Vj,k). By Categories, Lemma 4.19.2 once again we see that

Fp′ = colimj F(Vj) −→
∏

k
colimj F(Vj,k)

is injective. Hence there exists a k such that s and s′ have distinct image in
colimj F(Vj,k). Let J0 = {j ∈ J, j ≥ j0} and I = J q J0. We order I so that
no element of the second summand is smaller than any element of the first, but
otherwise using the ordering on J . If j ∈ I is in the first summand then we use Vj
and if j ∈ I is in the second summand then we use Vj,k. We omit the definition of
the transition maps of the inverse system. By the above it follows that s, s′ have
distinct image in Fp. Moreover, the restriction of f ′ to Vj,k factors through Wk by
construction. �

Lemma 7.38.2. Let C be a site. Let (J,≥, Vj , gjj′) be a system as above with
associated pair of functors (u′, p′). Let F be a sheaf on C. Let s, s′ ∈ Fp′ be distinct
elements. There exists a refinement (I,≥, Ui, fii′) of (J,≥, Vj , gjj′) such that s, s′

map to distinct elements of Fp and such that for every finite covering {Wk → W}
of the site C, and any f ∈ u′(W ) the image of f in u(W ) is in the image of one of
the u(Wk).

Proof. Let E be the set of pairs ({Wk → W}, f ∈ u′(W )). Consider pairs (E′ ⊂
E, (I,≥, Ui, fii′)) such that

(1) (I,≥, Ui, gii′) is a refinement of (J,≥, Vj , gjj′),
(2) s, s′ map to distinct elements of Fp, and
(3) for every pair ({Wk →W}, f ∈ u′(W )) ∈ E′ we have that the image of f

in u(W ) is in the image of one of the u(Wk).

We order such pairs by inclusion in the first factor and by refinement in the second.
Denote S the class of all pairs (E′ ⊂ E, (I,≥, Ui, fii′)) as above. We claim that
the hypothesis of Zorn’s lemma holds for S. Namely, suppose that (E′a, (Ia,≥
, Ui, fii′))a∈A is a totally ordered subset of S. Then we can define E′ =

⋃
a∈AE

′
a and

we can set I =
⋃
a∈A Ia. We claim that the corresponding pair (E′, (I,≥, Ui, fii′))

is an element of S. Conditions (1) and (3) are clear. For condition (2) you note
that

u = colima∈A ua and correspondingly Fp = colima∈A Fpa
The distinctness of the images of s, s′ in this stalk follows from the description
of a directed colimit of sets, see Categories, Section 4.19. We will simply write
(E′, (I, . . .)) =

⋃
a∈A(E′a, (Ia, . . .)) in this situation.

OK, so Zorn’s Lemma would apply if S was a set, and this would, combined with
Lemma 7.38.1 above easily prove the lemma. It doesn’t since S is a class. In order
to circumvent this we choose a well ordering on E. For e ∈ E set E′e = {e′ ∈ E |
e′ ≤ e}. By transfinite induction we construct pairs (E′e, (Ie, . . .)) ∈ S such that
e1 ≤ e2 ⇒ (E′e1 , (Ie1 , . . .)) ≤ (E′e2 , (Ie2 , . . .)). Let e ∈ E, say e = ({Wk → W}, f ∈
u′(W )). If e has a predecessor e−1, then we let (Ie, . . .) be a refinement of (Ie−1, . . .)
as in Lemma 7.38.1 with respect to the system e = ({Wk → W}, f ∈ u′(W )). If e
does not have a predecessor, then we let (Ie, . . .) be a refinement of

⋃
e′<e(Ie′ , . . .)

with respect to the system e = ({Wk → W}, f ∈ u′(W )). Finally, the union⋃
e∈E Ie will be a solution to the problem posed in the lemma. �
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Proposition 7.38.3. Let C be a site. Assume that

(1) finite limits exist in C, and
(2) every covering {Ui → U}i∈I has a refinement by a finite covering of C.

Then C has enough points.

Proof. We have to show that given any sheaf F on C, any U ∈ Ob(C), and any
distinct sections s, s′ ∈ F(U), there exists a point p such that s, s′ have distinct
image in Fp. See Lemma 7.37.3. Consider the system (J,≥, Vj , gjj′) with J = {1},
V1 = U , g11 = idU . Apply Lemma 7.38.2. By the result of that lemma we get a
system (I,≥, Ui, fii′) refining our system such that sp 6= s′p and such that moreover
for every finite covering {Wk → W} of the site C the map

∐
k u(Wk) → u(W ) is

surjective. Since every covering of C can be refined by a finite covering we conclude
that

∐
k u(Wk) → u(W ) is surjective for any covering {Wk → W} of the site C.

This implies that u = p is a point, see Proposition 7.32.2 (and the discussion at the
beginning of this section which guarantees that u commutes with finite limits). �

7.39. Weakly contractible objects

A weakly contractible object of a site is one that satisfies the equivalent conditions
of the following lemma.

Lemma 7.39.1. Let C be a site. Let U be an object of C. The following conditions
are equivalent

(1) For every covering {Ui → U} there exists a map of sheaves h#
U →

∐
h#
Ui

inverse to the sheafification of
∐
hUi → hU .

(2) For every surjection of sheaves of sets F → G the map F(U) → G(U) is
surjective.

Proof. Assume (1) and let F → G be a surjective map of sheaves of sets. For
s ∈ G(U) there exists a covering {Ui → U} and ti ∈ F(Ui) mapping to s|Ui ,
see Definition 7.12.1. Think of ti as a map ti : h#

Ui
→ F via (7.13.3.1). Then

precomposing
∐
ti :

∐
h#
Ui
→ F with the map h#

U →
∐
h#
Ui

we get from (1) we
obtain a section t ∈ F(U) mapping to s. Thus (2) holds.

Assume (2) holds. Let {Ui → U} be a covering. Then
∐
h#
Ui
→ h#

U is surjective

(Lemma 7.13.4). Hence by (2) there exists a section s of
∐
h#
Ui

mapping to the

section idU of h#
U . This section corresponds to a map h#

U →
∐
h#
Ui

inverse to the
sheafification of

∐
hUi → hU which proves (1). �

Definition 7.39.2. Let C be a site.

(1) We say an object U of C is weakly contractible if the equivalent conditions
of Lemma 7.39.1 hold.

(2) We say a site has enough weakly contractible objects if every object U of
C has a covering {Ui → U} with Ui weakly contractible for all i.

(3) More generally, if P is a property of objects of C we say that C has enough
P objects if every object U of C has a covering {Ui → U} such that Ui has
P for all i.

The small étale site of A1
C does not have any weakly contractible objects. On the

other hand, the small pro-étale site of any scheme has enough contractible objects.
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7.40. Exactness properties of pushforward

Let f be a morphism of topoi. The functor f∗ in general is only left exact. There are
many additional conditions one can impose on this functor to single out particular
classes of morphisms of topoi. We collect them here and note some of the logical
dependencies. Some parts of the following lemma are purely category theoretical
(i.e., they do not depend on having a morphism of topoi, just having a pair of
adjoint functors is enough).

Lemma 7.40.1. Let f : Sh(C) → Sh(D) be a morphism of topoi. Consider the
following properties (on sheaves of sets):

(1) f∗ is faithful,
(2) f∗ is fully faithful,
(3) f−1f∗F → F is surjective for all F in Sh(C),
(4) f∗ transforms surjections into surjections,
(5) f∗ commutes with coequalizers,
(6) f∗ commutes with pushouts,
(7) f−1f∗F → F is an isomorphism for all F in Sh(C),
(8) f∗ reflects injections,
(9) f∗ reflects surjections,

(10) f∗ reflects bijections, and
(11) for any surjection F → f−1G there exists a surjection G′ → G such that

f−1G′ → f−1G factors through F → f−1G.

Then we have the following implications

(a) (2) ⇒ (1),
(b) (3) ⇒ (1),
(c) (7) ⇒ (1), (2), (3), (8), (9), (10).
(d) (3) ⇔ (9),
(e) (6) ⇒ (4) and (5) ⇒ (4),
(f) (4) ⇔ (11),
(g) (9) ⇒ (8), (10), and
(h) (2) ⇔ (7).

Picture

(6)

�$

(9) +3

�%

(8)

(4) ks +3 (11) (2) ks +3 (7)

:B

�$

(10)

(5)

:B

(3) +3 (1)

Proof. Proof of (a): This is immediate from the definitions.
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Proof of (b). Suppose that a, b : F → F ′ are maps of sheaves on C. If f∗a = f∗b,
then f−1f∗a = f−1f∗b. Consider the commutative diagram

F //
// F ′

f−1f∗F //
//

OO

f−1f∗F ′

OO

If the bottom two arrows are equal and the vertical arrows are surjective then the
top two arrows are equal. Hence (b) follows.

Proof of (c). Suppose that a : F → F ′ is a map of sheaves on C. Consider the
commutative diagram

F // F ′

f−1f∗F //

OO

f−1f∗F ′

OO

If (7) holds, then the vertical arrows are isomorphisms. Hence if f∗a is injective
(resp. surjective, resp. bijective) then the bottom arrow is injective (resp. surjective,
resp. bijective) and hence the top arrow is injective (resp. surjective, resp. bijective).
Thus we see that (7) implies (8), (9), (10). It is clear that (7) implies (3). The
implications (7) ⇒ (2), (1) follow from (a) and (h) which we will see below.

Proof of (d). Assume (3). Suppose that a : F → F ′ is a map of sheaves on C
such that f∗a is surjective. As f−1 is exact this implies that f−1f∗a : f−1f∗F →
f−1f∗F ′ is surjective. Combined with (3) this implies that a is surjective. This
means that (9) holds. Assume (9). Let F be a sheaf on C. We have to show that
the map f−1f∗F → F is surjective. It suffices to show that f∗f

−1f∗F → f∗F is
surjective. And this is true because there is a canonical map f∗F → f∗f

−1f∗F
which is a one-sided inverse.

Proof of (e). We use Categories, Lemma 4.13.3 without further mention. If F → F ′
is surjective then F ′ qF F ′ → F ′ is an isomorphism. Hence (6) implies that

f∗F ′ qf∗F f∗F ′ = f∗(F ′ qF F ′) −→ f∗F ′

is an isomorphism also. And this in turn implies that f∗F → f∗F ′ is surjective.
Hence we see that (6) implies (4). If F → F ′ is surjective then F ′ is the coequalizer
of the two projections F ×F ′ F → F by Lemma 7.12.3. Hence if (5) holds, then
f∗F ′ is the coequalizer of the two projections

f∗(F ×F ′ F) = f∗F ×f∗F ′ f∗F −→ f∗F

which clearly means that f∗F → f∗F ′ is surjective. Hence (5) implies (4) as well.

Proof of (f). Assume (4). Let F → f−1G be a surjective map of sheaves on C. By
(4) we see that f∗F → f∗f

−1G is surjective. Let G′ be the fibre product

f∗F // f∗f−1G

G′

OO

// G

OO
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so that G′ → G is surjective also. Consider the commutative diagram

F // f−1G

f−1f∗F //

OO

f−1f∗f
−1G

OO

f−1G′

OO

// f−1G

OO

and we see the required result. Conversely, assume (11). Let a : F → F ′ be
surjective map of sheaves on C. Consider the fibre product diagram

F // F ′

F ′′

OO

// f−1f∗F ′

OO

Because the lower horizontal arrow is surjective and by (11) we can find a surjection
γ : G′ → f∗F ′ such that f−1γ factors through F ′′ → f−1f∗F ′:

F // F ′

f−1G′ // F ′′

OO

// f−1f∗F ′

OO

Pushing this down using f∗ we get a commutative diagram

f∗F // f∗F ′

f∗f
−1G′ // f∗F ′′

OO

// f∗f−1f∗F ′

OO

G′

OO

// f∗F ′

OO

which proves that (4) holds.

Proof of (g). Assume (9). We use Categories, Lemma 4.13.3 without further men-
tion. Let a : F → F ′ be a map of sheaves on C such that f∗a is injective. This
means that f∗F → f∗F ×f∗F ′ f∗F = f∗(F ×F ′ F) is an isomorphism. Thus by (9)
we see that F → F ×F ′ F is surjective, i.e., an isomorphism. Thus a is injective,
i.e., (8) holds. Since (10) is trivially equivalent to (8) + (9) we are done with (g).

Proof of (h). This is Categories, Lemma 4.24.3. �

Here is a condition on a morphism of sites which guarantees that the functor f∗
transforms surjective maps into surjective maps.

Lemma 7.40.2. Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. Assume that for any object U of C and any covering {Vj →
u(U)} in D there exists a covering {Ui → U} in C such that the map of sheaves∐

h#
u(Ui)

→ h#
u(U)
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factors through the map of sheaves∐
h#
Vj
→ h#

u(U).

Then f∗ transforms surjective maps of sheaves into surjective maps of sheaves.

Proof. Let a : F → G be a surjective map of sheaves on D. Let U be an object of C
and let s ∈ f∗G(U) = G(u(U)). By assumption there exists a covering {Vj → u(U)}
and sections sj ∈ F(Vj) with a(sj) = s|Vj . Now we may think of the sections s, sj
and a as giving a commutative diagram of maps of sheaves∐

h#
Vj ∐

sj

//

��

F

a

��
h#
u(U)

s // G

By assumption there exists a covering {Ui → U} such that we can enlarge the
commutative diagram above as follows ∐

h#
Vj ∐

sj

//

��

F

a

��∐
h#
u(Ui)

//

;;

h#
u(U)

s // G

Because F is a sheaf the map from the left lower corner to the right upper corner
corresponds to a family of sections si ∈ F(u(Ui)), i.e., sections si ∈ f∗F(Ui). The
commutativity of the diagram implies that a(si) is equal to the restriction of s to
Ui. In other words we have shown that f∗a is a surjective map of sheaves. �

Example 7.40.3. Assume f : D → C satisfies the assumptions of Lemma 7.40.2.
Then it is in general not the case that f∗ commutes with coequalizers or pushouts.
Namely, suppose that f is the morphism of sites associated to the morphism of
topological spaces X = {1, 2} → Y = {∗} (see Example 7.15.2), where Y is a
singleton space, and X = {1, 2} is a discrete space with two points. A sheaf F on
X is given by a pair (A1, A2) of sets. Then f∗F corresponds to the set A1 × A2.
Hence if a = (a1, a2), b = (b1, b2) : (A1, A2) → (B1, B2) are maps of sheaves on X,
then the coequalizer of a, b is (C1, C2) where Ci is the coequalizer of ai, bi, and the
coequalizer of f∗a, f∗b is the coequalizer of

a1 × a2, b1 × b2 : A1 ×A2 −→ B1 ×B2

which is in general different from C1×C2. Namely, if A2 = ∅ then A1×A2 = ∅, and
hence the coequalizer of the displayed arrows is B1 × B2, but in general C1 6= B1.
A similar example works for pushouts.

The following lemma gives a criterion for when a morphism of sites has a functor
f∗ which reflects injections and surjections. Note that this also implies that f∗ is
faithful and that the map f−1f∗F → F is always surjective.

Lemma 7.40.4. Let f : D → C be a morphism of sites given by the functor
u : C → D. Assume that for every object V of D there exist objects Ui of C and
morphisms u(Ui)→ V such that {u(Ui)→ V } is a covering of D. In this case the
functor f∗ : Sh(D)→ Sh(C) reflects injections and surjections.
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Proof. Let α : F → G be maps of sheaves on D. By assumption for every object
V of D we get F(V ) ⊂

∏
F(u(Ui)) =

∏
f∗F(Ui) by the sheaf condition for some

Ui ∈ Ob(C) and similarly for G. Hence it is clear that if f∗α is injective, then α is
injective. In other words f∗ reflects injections.

Suppose that f∗α is surjective. Then for V,Ui, u(Ui) → V as above and a section
s ∈ G(V ), there exist coverings {Uij → Ui} such that s|u(Uij) is in the image of
F(u(Uij)). Since {u(Uij)→ V } is a covering (as u is continuous and by the axioms
of a site) we conclude that s is locally in the image. Thus α is surjective. In other
words f∗ reflects surjections. �

Example 7.40.5. We construct a morphism f : D → C satisfying the assumptions
of Lemma 7.40.4. Namely, let ϕ : G→ H be a morphism of finite groups. Consider
the sites D = TG and C = TH of countable G-sets and H-sets and coverings count-
able families of jointly surjective maps (Example 7.6.5). Let u : TH → TG be the
functor described in Section 7.17 and f : TG → TH the corresponding morphism of
sites. If ϕ is injective, then every countable G-set is, as a G-set, the quotient of a
countable H-set (this fails if ϕ isn’t injective). Thus f satisfies the hypothesis of
Lemma 7.40.4. If the sheaf F on TG corresponds to the G-set S, then the canonical
map

f−1f∗F −→ F
corresponds to the map

MapG(H,S) −→ S, a 7−→ a(1H)

If ϕ is injective but not surjective, then this map is surjective (as it should ac-
cording to Lemma 7.40.4) but not injective in general (for example take G = {1},
H = {1, σ}, and S = {1, 2}). Moreover, the functor f∗ does not commute with
coequalizers or pushouts (for G = {1} and H = {1, σ}).

7.41. Almost cocontinuous functors

Let C be a site. The category PSh(C) has an initial object, namely the presheaf
which assigns the empty set to each object of C. Let us denote this presheaf by ∅.
It follows from the properties of sheafification that the sheafification ∅# of ∅ is an
initial object of the category Sh(C) of sheaves on C.

Definition 7.41.1. Let C be a site. We say an object U of C is sheaf theoretically

empty if ∅# → h#
U is an isomorphism of sheaves.

The following lemma makes this notion more explicit.

Lemma 7.41.2. Let C be a site. Let U be an object of C. The following are
equivalent:

(1) U is sheaf theoretically empty,
(2) F(U) is a singleton for each sheaf F ,
(3) ∅#(U) is a singleton,
(4) ∅#(U) is nonempty, and
(5) the empty family is a covering of U in C.

Moreover, if U is sheaf theoretically empty, then for any morphism U ′ → U of C
the object U ′ is sheaf theoretically empty.
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Proof. For any sheaf F we have F(U) = MorSh(C)(h
#
U ,F). Hence, we see that (1)

and (2) are equivalent. It is clear that (2) implies (3) implies (4). If every covering
of U is given by a nonempty family, then ∅+(U) is empty by definition of the plus
construction. Note that ∅+ = ∅# as ∅ is a separated presheaf, see Theorem 7.10.10.
Thus we see that (4) implies (5). If (5) holds, then F(U) is a singleton for every
sheaf F by the sheaf condition for F , see Remark 7.7.2. Thus (5) implies (2) and
(1) – (5) are equivalent. The final assertion of the lemma follows from Axiom (3)
of Definition 7.6.2 applied the empty covering of U . �

Definition 7.41.3. Let C, D be sites. Let u : C → D be a functor. We say u is
almost cocontinuous if for every object U of C and every covering {Vj → u(U)}j∈J
there exists a covering {Ui → U}i∈I in C such that for each i in I we have at least
one of the following two conditions

(1) u(Ui) is sheaf theoretically empty, or
(2) the morphism u(Ui)→ u(U) factors through Vj for some j ∈ J .

The motivation for this definition comes from a closed immersion i : Z → X of
topological spaces. As discussed in Example 7.20.9 the continuous functor XZar →
ZZar, U 7→ Z ∩ U is not cocontinuous. But it is almost cocontinuous in the sense
defined above. We know that i∗ while not exact on sheaves of sets, is exact on
sheaves of abelian groups, see Sheaves, Remark 6.32.5. And this holds in general
for continuous and almost cocontinuous functors.

Lemma 7.41.4. Let C, D be sites. Let u : C → D be a functor. Assume that u is
continuous and almost cocontinuous. Let G be a presheaf on D such that G(V ) is a
singleton whenever V is sheaf theoretically empty. Then (upG)# = up(G#).

Proof. Let U ∈ Ob(C). We have to show that (upG)#(U) = up(G#)(U). It suffices
to show that (upG)+(U) = up(G+)(U) since G+ is another presheaf for which the
assumption of the lemma holds. We have

up(G+)(U) = G+(u(U)) = colimV Ȟ
0(V,G)

where the colimit is over the coverings V of u(U) in D. On the other hand, we see
that

up(G)+(U) = colimU Ȟ
0(u(U),G)

where the colimit is over the category of coverings U = {Ui → U}i∈I of U in C and
u(U) = {u(Ui) → u(U)}i∈I . The condition that u is continuous means that each
u(U) is a covering. Write I = I1 q I2, where

I2 = {i ∈ I | u(Ui) is sheaf theoretically empty}

Then u(U)′ = {u(Ui) → u(U)}i∈I1 is still a covering of because each of the other
pieces can be covered by the empty family and hence can be dropped by Axiom
(2) of Definition 7.6.2. Moreover, Ȟ0(u(U),G) = Ȟ0(u(U)′,G) by our assumption
on G. Finally, the condition that u is almost cocontinuous implies that for every
covering V of u(U) there exists a covering U of U such that u(U)′ refines V. It
follows that the two colimits displayed above have the same value as desired. �

Lemma 7.41.5. Let C, D be sites. Let u : C → D be a functor. Assume that u
is continuous and almost cocontinuous. Then us = up : Sh(D) → Sh(C) commutes
with pushouts and coequalizers (and more generally finite connected colimits).
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Proof. Let I be a finite connected index category. Let I → Sh(D), i 7→ Gi by
a diagram. We know that the colimit of this diagram is the sheafification of the
colimit in the category of presheaves, see Lemma 7.10.13. Denote colimPsh the
colimit in the category of presheaves. Since I is finite and connected we see that
colimPsh

i Gi is a presheaf satisfying the assumptions of Lemma 7.41.4 (because a
finite connected colimit of singleton sets is a singleton). Hence that lemma gives

us(colimi Gi) = us((colimPsh
i Gi)#)

= (up(colimPsh
i Gi))#

= (colimPSh
i up(Gi))#

= colimi u
s(Gi)

as desired. �

Lemma 7.41.6. Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. If u is almost cocontinuous then f∗ commutes with pushouts
and coequalizers (and more generally finite connected colimits).

Proof. This is a special case of Lemma 7.41.5. �

7.42. Subtopoi

Here is the definition.

Definition 7.42.1. Let C and D be sites. A morphism of topoi f : Sh(D)→ Sh(C)
is called an embedding if f∗ is fully faithful.

According to Lemma 7.40.1 this is equivalent to asking the adjunction map f−1f∗F →
F to be an isomorphism for every sheaf F on D.

Definition 7.42.2. Let C be a site. A strictly full subcategory E ⊂ Sh(C) is a
subtopos if there exists an embedding of topoi f : Sh(D) → Sh(C) such that E is
equal to the essential image of the functor f∗.

The subtopoi constructed in the following lemma will be dubbed ”open” in the
definition later on.

Lemma 7.42.3. Let C be a site. Let F be a sheaf on C. The following are equivalent

(1) F is a subobject of the final object of C, and
(2) the topos Sh(C)/F is a subtopos of Sh(C).

Proof. We have seen in Lemma 7.29.1 that Sh(C)/F is a topos. In fact, we recall
the proof. First we apply Lemma 7.28.5 to see that we may assume C is a site
with a subcanonical topology, fibre products, a final object X, and an object U
with F = hU . The proof of Lemma 7.29.1 shows that the morphism of topoi
jF : Sh(C)/F → Sh(C) is equal (modulo certain identifications) to the localization
morphism jU : Sh(C/U)→ Sh(C).
Assume (2). This means that j−1

U jU,∗G → G is an isomorphism for all sheaves G on
C/U . For any object Z/U of C/U we have

(jU,∗hZ/U )(U) = MorC/U (U ×X U/U,Z/U)

by Lemma 7.26.2. Setting G = hZ/U in the equality above we obtain

MorC/U (U ×X U/U,Z/U) = MorC/U (U,Z/U)
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for all Z/U . By Yoneda’s lemma (Categories, Lemma 4.3.5) this implies U ×X U =
U . By Categories, Lemma 4.13.3 U → X is a monomorphism, in other words (1)
holds.

Assume (1). Then j−1
U jU,∗ = id by Lemma 7.26.4. �

Definition 7.42.4. Let C be a site. A strictly full subcategory E ⊂ Sh(C) is an
open subtopos if there exists a subsheaf F of the final object of Sh(C) such that E
is the subtopos Sh(C)/F described in Lemma 7.42.3.

This means there is a bijection between the collection of open subtopoi of Sh(C)
and the set of subobjects of the final object of Sh(C). Given an open subtopos there
is a ”closed” complement.

Lemma 7.42.5. Let C be a site. Let F be a subsheaf of the final object ∗ of Sh(C).
The full subcategory of sheaves G such that F × G → F is an isomorphism is a
subtopos of Sh(C).

Proof. We apply Lemma 7.28.5 to see that we may assume C is a site with the
properties listed in that lemma. In particular C has a final object X (so that
∗ = hX) and an object U with F = hU .

Let D = C as a category but a covering is a family {Vj → V } of morphisms such
that {Vi → V } ∪ {U ×X V → V } is a covering. By our choice of C this means
exactly that

hU×XV
∐∐

hVi −→ hV

is surjective. We claim that D is a site, i.e., the coverings satisfy the conditions (1),
(2), (3) of Definition 7.6.2. Condition (1) holds. For condition (2) suppose that
{Vi → V } and {Vij → Vi} are coverings of D. Then the composition∐(

hU×XVi
∐∐

hVij

)
−→ hU×XV

∐∐
hVi −→ hV

is surjective. Since each of the morphisms U ×X Vi → V factors through U ×X V
we see that

hU×XV
∐∐

hVij −→ hV

is surjective, i.e., {Vij → V } is a covering of V in D. Condition (3) follows similarly
as a base change of a surjective map of sheaves is surjective.

Note that the (identity) functor u : C → D is continuous and commutes with
fibre products and final objects. Hence we obtain a morphism f : D → C of
sites (Proposition 7.15.6). Observe that f∗ is the identity functor on underlying
presheaves, hence fully faithful. To finish the proof we have to show that the
essential image of f∗ is the full subcategory E ⊂ Sh(C) singled out in the lemma.
To do this, note that G ∈ Ob(Sh(C)) is in E if and only if G(U×XV ) is a singleton for
all objects V of C. Thus such a sheaf satisfies the sheaf property for all coverings of
D (argument omitted). Conversely, if G satisfies the sheaf property for all coverings
of D, then G(U ×X V ) is a singleton, as in D the object U ×X V is covered by the
empty covering. �

Definition 7.42.6. Let C be a site. A strictly full subcategory E ⊂ Sh(C) is an
closed subtopos if there exists a subsheaf F of the final object of Sh(C) such that E
is the subtopos described in Lemma 7.42.5.
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All right, and now we can define what it means to have a closed immersion and an
open immersion of topoi.

Definition 7.42.7. Let f : Sh(D)→ Sh(C) be a morphism of topoi.

(1) We say f is an open immersion if f is an embedding and the essential
image of f∗ is an open subtopos.

(2) We say f is a closed immersion if f is an embedding and the essential
image of f∗ is a closed subtopos.

Lemma 7.42.8. Let i : Sh(D) → Sh(C) be a closed immersion of topoi. Then i∗
is fully faithful, transforms surjections into surjections, commutes with coequaliz-
ers, commutes with pushouts, reflects injections, reflects surjections, and reflects
bijections.

Proof. Let F be a subsheaf of the final object ∗ of Sh(C) and let E ⊂ Sh(C) be the
full subcategory consisting of those G such that F ×G → F is an isomorphism. By
Lemma 7.42.5 the functor i∗ is isomorphic to the inclusion functor ι : E → Sh(C).

Let jF : Sh(C)/F → Sh(C) be the localization functor (Lemma 7.29.1). Note that
E can also be described as the collection of sheaves G such that j−1

F G = ∗.

Let a, b : G1 → G2 be two morphism of E. To prove ι commutes with coequalizers it
suffices to show that the coequalizer of a, b in Sh(C) lies in E. This is clear because
the coequalizer of two morphisms ∗ → ∗ is ∗ and because j−1

F is exact. Similarly
for pushouts.

Thus i∗ satisfies properties (5), (6), and (7) of Lemma 7.40.1 and hence the mor-
phism i satisfies all properties mentioned in that lemma, in particular the ones
mentioned in this lemma. �

7.43. Sheaves of algebraic structures

In Sheaves, Section 6.15 we introduced a type of algebraic structure to be a pair
(A, s), where A is a category, and s : A → Sets is a functor such that

(1) s is faithful,
(2) A has limits and s commutes with limits,
(3) A has filtered colimits and s commutes with them, and
(4) s reflects isomorphisms.

For such a type of algebraic structure we saw that a presheaf F with values inA on a
space X is a sheaf if and only if the associated presheaf of sets is a sheaf. Moreover,
we worked out the notion of stalk, and given a continuous map f : X → Y we
defined adjoint functors pushforward and pullback on sheaves of algebraic structures
which agrees with pushforward and pullback on the underlying sheaves of sets. In
addition extending a sheaf of algebraic structures from a basis to all opens of a
space, works as expected.

Part of this material still works in the setting of sites and sheaves. Let (A, s) be a
type of algebraic structure. Let C be a site. Let us denote PSh(C,A), resp. Sh(C,A)
the category of presheaves, resp. sheaves with values in A on C.

(α) A presheaf with values in A is a sheaf if and only if its underlying presheaf
of sets is a sheaf. See the proof of Sheaves, Lemma 6.9.2.
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(β) Given a presheaf F with values in A the presheaf F# = (F+)+ is a sheaf.
This is true since the colimits in the sheafification process are filtered,
and even colimits over directed partially ordered sets (see Section 7.10,
especially the proof of Lemma 7.10.14) and since s commutes with filtered
colimits.

(γ) We get the following commutative diagram

Sh(C,A)
//

s

��

PSh(C,A)
#

oo

s

��
Sh(C) //

PSh(C)oo

(δ) We have F = F# if and only if F is a sheaf of algebraic structures.
(ε) The functor # is adjoint to the inclusion functor:

MorPSh(C,A)(G,F) = MorSh(C,A)(G#,F)

The proof is the same as the proof of Proposition 7.10.12.
(ζ) The functor F 7→ F# is left exact. The proof is the same as the proof of

Lemma 7.10.14.

Definition 7.43.1. Let f : D → C be a morphism of sites given by a functor
u : C → D. We define the pushforward functor for presheaves of algebraic structures
by the rule upF(U) = F(uU), and for sheaves of algebraic structures by the same
rule, namely f∗F(U) = F(uU).

The problem comes with trying the define the pullback. The reason is that the
colimits defining the functor up in Section 7.5 may not be filtered. Thus the axioms
above are not enough in general to define the pullback of a (pre)sheaf of algebraic
structures. Nonetheless, in almost all cases the following lemma is sufficient to
define pushforward, and pullback of (pre)sheaves of algebraic structures.

Lemma 7.43.2. Suppose the functor u : C → D satisfies the hypotheses of Propo-
sition 7.15.6, and hence gives rise to a morphism of sites f : D → C. In this case
the pullback functor f−1 (resp. up) and the pushforward functor f∗ (resp. up) ex-
tend to an adjoint pair of functors on the categories of sheaves (resp. presheaves) of
algebraic structures. Moreover, these functors commute with taking the underlying
sheaf (resp. presheaf) of sets.

Proof. We have defined f∗ = up above. In the course of the proof of Proposi-
tion 7.15.6 we saw that all the colimits used to define up are filtered under the
assumptions of the proposition. Hence we conclude from the definition of a type
of algebraic structure that we may define up by exactly the same colimits as a
functor on presheaves of algebraic structures. Adjointness of up and up is proved
in exactly the same way as the proof of Lemma 7.5.4. The discussion of sheafifi-
cation of presheaves of algebraic structures above then implies that we may define
f−1(F) = (upF)#. �

We briefly discuss a method for dealing with pullback and pushforward for a general
morphism of sites, and more generally for any morphism of topoi.

Let C be a site. In the case A = Ab, we may think of an abelian (pre)sheaf on C as
a quadruple (F ,+, 0, i). Here the data are
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(D1) F is a sheaf of sets,
(D2) + : F × F → F is a morphism of sheaves of sets,
(D3) 0 : ∗ → F is a morphism from the singleton sheaf (see Example 7.10.2) to

F , and
(D4) i : F → F is a morphism of sheaves of sets.

These data have to satisfy the following axioms

(A1) + is associative and commutative,
(A2) 0 is a unit for +, and
(A3) + ◦ (1, i) = 0 ◦ (F → ∗).

Compare Sheaves, Lemma 6.4.3. Let f : D → C be a morphism of sites. Note that
since f−1 is exact we have f−1∗ = ∗ and f−1(F×F) = f−1F×f−1F . Thus we can
define f−1F simply as the quadruple (f−1F , f−1+, f−10, f−1i). The axioms are
going to be preserved because f−1 is a functor which commutes with finite limits.
Finally it is not hard to check that f∗ and f−1 are adjoint as usual.

In [AGV71] this method is used. They introduce something called an “espèce the
structure algébrique �définie par limites projectives finie�”. For such an espèce
you can use the method described above to define a pair of adjoint functors f−1 and
f∗ as above. This clearly works for most algebraic structures that one encounters
in practice. Instead of formalizing this construction we simply list those algebraic
structures for which this method works (to be verified case by case). In fact, this
method works for any morphism of topoi.

Proposition 7.43.3. Let C, D be sites. Let f = (f−1, f∗) be a morphism of topoi
from Sh(D) → Sh(C). The method introduced above gives rise to an adjoint pair
of functors (f−1, f∗) on sheaves of algebraic structures compatible with taking the
underlying sheaves of sets for the following types of algebraic structures:

(1) pointed sets,
(2) abelian groups,
(3) groups,
(4) monoids,
(5) rings,
(6) modules over a fixed ring, and
(7) lie algebras over a fixed field.

Moreover, in each of these cases the results above labeled (α), (β), (γ), (δ), (ε),
and (ζ) hold.

Proof. The final statement of the proposition holds simply since each of the listed
categories, endowed with the obvious forgetful functor, is indeed a type of algebraic
structure in the sense explained at the beginning of this section. See Sheaves,
Lemma 6.15.2.

Proof of (2). We think of a sheaf of abelian groups as a quadruple (F ,+, 0, i)
as explained in the discussion preceding the proposition. If (F ,+, 0, i) lives on
C, then its pullback is defined as (f−1F , f−1+, f−10, f−1i). If (G,+, 0, i) lives
on D, then its pushforward is defined as (f∗G, f∗+, f∗0, f∗i). This works because
f∗(G × G) = f∗G × f∗G. Adjointness follows from adjointness of the set based
functors, since

MorAb(C)((F1,+, 0, i), (F2,+, 0, i)) =

{
ϕ ∈ MorSh(C)(F1,F2)

ϕ is compatible with +, 0, i

}
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Details left to the reader.

This method also works for sheaves of rings by thinking of a sheaf of rings (with
unit) as a sixtuple (O,+, 0, i, ·, 1) satisfying a list of axioms that you can find in
any elementary algebra book.

A sheaf of pointed sets is a pair (F , p), where F is a sheaf of sets, and p : ∗ → F is
a map of sheaves of sets.

A sheaf of groups is given by a quadruple (F , ·, 1, i) with suitable axioms.

A sheaf of monoids is given by a pair (F , ·) with suitable axiom.

Let R be a ring. An sheaf of R-modules is given by a quintuple (F ,+, 0, i, {λr}r∈R),
where the quadruple (F ,+, 0, i) is a sheaf of abelian groups as above, and λr : F →
F is a family of morphisms of sheaves of sets such that λr◦0 = 0, λr◦+ = +◦(λr, λr),
λr+r′ = + ◦ λr × λr′ ◦ (id, id), λrr′ = λr ◦ λr′ , λ1 = id, λ0 = 0 ◦ (F → ∗). �

We will discuss the category of sheaves of modules over a sheaf of rings in Modules
on Sites, Section 18.10.

Remark 7.43.4. Let C, D be sites. Let u : D → C be a continuous functor which
gives rise to a morphism of sites C → D. Note that even in the case of abelian
groups we have not defined a pullback functor for presheaves of abelian groups.
Since all colimits are representable in the category of abelian groups, we certainly
may define a functor uabp on abelian presheaves by the same colimits as we have

used to define up on presheaves of sets. It will also be the case that uabp is adjoint
to up on the categories of abelian presheaves. However, it will not always be the
case that uabp agrees with up on the underlying presheaves of sets.

7.44. Pullback maps

It sometimes happens that a site C does not have a final object. In this case we
define the global section functor as follows.

Definition 7.44.1. The global sections of a presheaf of sets F over a site C is the
set

Γ(C,F) = MorPSh(C)(∗,F)

where ∗ is the final object in the category of presheaves on C, i.e., the presheaf
which associates to every object a singleton.

Of course the same definition applies to sheaves as well. Here is one way to compute
global sections.

Lemma 7.44.2. Let C be a site. Let a, b : V → U be objects of C such that

h#
V

//
// h

#
U

// ∗

is a coequalizer in Sh(C). Then Γ(C,F) is the equalizer of a∗, b∗ : F(U)→ F(V ).

Proof. Since MorSh(C)(h
#
U ,F) = F(U) this is clear from the definitions. �

Now, let f : Sh(D) → Sh(C) be a morphism of topoi. Then for any sheaf F on C
there is a pullback map

f−1 : Γ(C,F) −→ Γ(D, f−1F)
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Namely, as f−1 is exact it transforms ∗ into ∗. We can generalize this a bit by
considering a pair of sheaves F ,G on C,D together with a map f−1F → G. Then
we compose to get a map

Γ(C,F) −→ Γ(D,G)

A slightly more general construction which occurs frequently in nature is the fol-
lowing. Suppose that we have a commutative diagram of morphisms of topoi

Sh(D)

h $$

f
// Sh(C)

g
{{

Sh(B)

Next, suppose that we have a sheaf F on C. Then there is a pullback map

f−1 : g∗F −→ h∗f
−1F

Namely, it is just the map coming from the identification h∗f
−1F = g∗f∗f

−1F
together with the canonical map F → f∗f

−1F pushed down to B. Again, if we
have a pair of sheaves F ,G on C,D together with a map f−1F → G, then we
compose to get a map

g∗F −→ h∗G
Restricting to sections over an object of B one recovers the pullback map on global
sections in many cases, see (insert future reference here). A seemingly more general
situation is where we have a commutative diagram of topoi

Sh(D)

h

��

f
// Sh(C)

g

��
Sh(B)

e // Sh(A)

and a sheaf G on C. Then there is a map e−1g∗G → h∗f
−1G. Namely, this map is

adjoint to a map g∗G → e∗h∗f
−1G = (e ◦ h)∗f

−1G which is the pullback map just
described.

7.45. Topologies

In this section we define what a topology on a category is as defined in [AGV71].
One can develop all of the machinery of sheaves and topoi in this language. A
modern exposition of this material can be found in [KS06]. However, the case
of most interest for algebraic geometry is the topology defined by a site on its
underlying category. Thus we strongly suggest the first time reader skip this
section and all other sections of this chapter!

Definition 7.45.1. Let C be a category. Let U ∈ Ob(C). A sieve S on U is a
subpresheaf S ⊂ hU .

In other words, a sieve on U picks out for each object T ∈ Ob(C) a subset S(T ) of
the set of all morphisms T → U . In fact, the only condition on the collection of
subsets S(T ) ⊂ hU (T ) = MorC(T,U) is the following rule

(7.45.1.1)
(α : T → U) ∈ S(T )

g : T ′ → T

}
⇒ (α ◦ g : T ′ → U) ∈ S(T ′)
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A good mental picture to keep in mind is to think of the map S → hU as a
“morphism from S to U”.

Lemma 7.45.2. Let C be a category. Let U ∈ Ob(C).
(1) The collection of sieves on U is a set.
(2) Inclusion defines a partial ordering on this set.
(3) Unions and intersections of sieves are sieves.
(4) Given a family of morphisms {Ui → U}i∈I of C with target U there exists

a unique smallest sieve S on U such that each Ui → U belongs to S(Ui).
(5) The sieve S = hU is the maximal sieve.
(6) The empty subpresheaf is the minimal sieve.

Proof. By our definition of subpresheaf, the collection of all subpresheaves of a
presheaf F is a subset of

∏
U∈Ob(C) P(F(U)). And this is a set. (Here P(A)

denotes the powerset of A.) Hence the collection of sieves on U is a set.

The partial ordering is defined by: S ≤ S′ if and only if S(T ) ⊂ S′(T ) for all
T → U . Notation: S ⊂ S′.
Given a collection of sieves Si, i ∈ I on U we can define

⋃
Si as the sieve with

values (
⋃
Si)(T ) =

⋃
Si(T ) for all T ∈ Ob(C). We define the intersection

⋂
Si in

the same way.

Given {Ui → U}i∈I as in the statement, consider the morphisms of presheaves
hUi → hU . We simply define S as the union of the images (Definition 7.3.5) of
these maps of presheaves.

The last two statements of the lemma are obvious. �

Definition 7.45.3. Let C be a category. Given a family of morphisms {fi : Ui →
U}i∈I of C with target U we say the sieve S on U described in Lemma 7.45.2 part
(4) is the sieve on U generated by the morphisms fi.

Definition 7.45.4. Let C be a category. Let f : V → U be a morphism of C. Let
S ⊂ hU be a sieve. We define the pullback of S by f to be the sieve S ×U V of V
defined by the rule

(α : T → V ) ∈ (S ×U V )(T )⇔ (f ◦ α : T → U) ∈ S(T )

We leave it to the reader to see that this is indeed a sieve (hint: use Equation
7.45.1.1). We also sometimes call S ×U V the base change of S by f : V → U .

Lemma 7.45.5. Let C be a category. Let U ∈ Ob(C). Let S be a sieve on U . If
f : V → U is in S, then S ×U V = hV is maximal.

Proof. Trivial from the definitions. �

Definition 7.45.6. Let C be a category. A topology on C is given by a rule which
assigns to every U ∈ Ob(C) a subset J(U) of the set of all sieves on U satisfying
the following conditions

(1) For every morphism f : V → U in C, and every element S ∈ J(U) the
pullback S ×U V is an element of J(V ).

(2) If S and S′ are sieves on U ∈ Ob(C), if S ∈ J(U), and if for all f ∈ S(V )
the pullback S′ ×U V belongs to J(V ), then S′ belongs to J(U).

(3) For every U ∈ Ob(C) the maximal sieve S = hU belongs to J(U).
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In this case, the sieves belonging to J(U) are called the covering sieves.

Lemma 7.45.7. Let C be a category. Let J be a topology on C. Let U ∈ Ob(C).
(1) Finite intersections of elements of J(U) are in J(U).
(2) If S ∈ J(U) and S′ ⊃ S, then S′ ∈ J(U).

Proof. Let S, S′ ∈ J(U). Consider S′′ = S ∩ S′. For every V → U in S(U) we
have

S′ ×U V = S′′ ×U V
simply because V → U already is in S. Hence by the second axiom of the definition
we see that S′′ ∈ J(U).

Let S ∈ J(U) and S′ ⊃ S. For every V → U in S(U) we have S′ ×U V = hV by
Lemma 7.45.5. Thus S′×U V ∈ J(V ) by the third axiom. Hence S′ ∈ J(U) by the
second axiom. �

Definition 7.45.8. Let C be a category. Let J , J ′ be two topologies on C. We say
that J is finer than J ′ if and only if for every object U of C we have J ′(U) ⊂ J(U).

In other words, any covering sieve of J ′ is a covering sieve of J . There exists a finest
topology on C, namely that topology where any sieve is a covering sieve. This is
called the discrete topology of C. There also exists a coarsest topology. Namely,
the topology where J(U) = {hU} for all objects U . This is called the chaotic or
indiscrete topology.

Lemma 7.45.9. Let C be a category. Let {Ji}i∈I be a set of topologies.

(1) The rule J(U) =
⋂
Ji(U) defines a topology on C.

(2) There is a coarsest topology finer than all of the topologies Ji.

Proof. The first part is direct from the definitions. The second follows by taking
the intersection of all topologies finer than all of the Ji. �

At this point we can define without any motivation what a sheaf is.

Definition 7.45.10. Let C be a category endowed with a topology J . Let F be a
presheaf of sets on C. We say that F is a sheaf on C if for every U ∈ Ob(C) and for
every covering sieve S of U the canonical map

MorPSh(C)(hU ,F) −→ MorPSh(C)(S,F)

is bijective.

Recall that the left hand side of the displayed formula equals F(U). In other words,
F is a sheaf if and only if a section of F over U is the same thing as a compatible
collection of sections sT,α ∈ F(T ) parametrized by (α : T → U) ∈ S(T ), and this
for every covering sieve S on U .

Lemma 7.45.11. Let C be a category. Let {Fi}i∈I be a collection of presheaves of
sets on C. For each U ∈ Ob(C) denote J(U) the set of sieves S with the following
property: For every morphism V → U , the maps

MorPSh(C)(hV ,Fi) −→ MorPSh(C)(S ×U V,Fi)

are bijective for all i ∈ I. Then J defines a topology on C. This topology is the
finest topology in which all of the Fi are sheaves.
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Proof. If we show that J is a topology, then the last statement of the lemma
immediately follows. The first and second axioms of a topology are immediately
verified. Thus, assume that we have an object U , and sieves S, S′ of U such that
S ∈ J(U), and for all V → U in S(V ) we have S′ ×U V ∈ J(V ). We have to show
that S′ ∈ J(U). In other words, we have to show that for any f : W → U , the
maps

Fi(W ) = MorPSh(C)(hW ,Fi) −→ MorPSh(C)(S
′ ×U W,Fi)

are bijective for all i ∈ I. Pick an element i ∈ I and pick an element ϕ ∈
MorPSh(C)(S

′ ×U W,Fi). We will construct a section s ∈ Fi(W ) mapping to ϕ.

Suppose α : V → W is an element of S ×U W . According to the definition of
pullbacks we see that the composition f ◦α : V →W → U is in S. Hence S′ ×U V
is in J(W ) by assumption on the pair of sieves S, S′. Now we have a commutative
diagram of presheaves

S′ ×U V //

��

hV

��
S′ ×U W // hW

The restriction of ϕ to S′×U V corresponds to an element sV,α ∈ Fi(V ). This we see
from the definition of J , and because S′×U V is in J(W ). We leave it to the reader
to check that the rule (V, α) 7→ sV,α defines an element ψ ∈ MorPSh(C)(S×UW,Fi).
Since S ∈ J(U) we see immediately from the definition of J that ψ corresponds to
an element s of Fi(W ).

We leave it to the reader to verify that the construction ϕ 7→ s is inverse to the
natural map displayed above. �

Definition 7.45.12. Let C be a category. The finest topology on C such that all
representable presheaves are sheaves, see Lemma 7.45.11, is called the canonical
topology of C.

7.46. The topology defined by a site

Suppose that C is a category, and suppose that Cov1(C) and Cov2(C) are sets of
coverings that define the structure of a site on C. In this situation it can happen
that the categories of sheaves (of sets) for Cov1(C) and Cov2(C) are the same, see
for example Lemma 7.8.5.

It turns out that the category of sheaves on C with respect to some topology J
determines and is determined by the topology J . This is a nontrivial statement
which we will address later, see Theorem 7.48.2.

Accepting this for the moment it makes sense to study the topology determined by
a site.

Lemma 7.46.1. Let C be a site with coverings Cov(C). For every object U of C,
let J(U) denote the set of sieves S on U with the following property: there exists
a covering {fi : Ui → U}i∈I ∈ Cov(C) so that the sieve S′ generated by the fi (see
Definition 7.45.3) is contained in S.

(1) This J is a topology on C.
(2) A presheaf F is a sheaf for this topology (see Definition 7.45.10) if and

only if it is a sheaf on the site (see Definition 7.7.1).
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Proof. To prove the first assertion we just note that axioms (1), (2) and (3) of
the definition of a site (Definition 7.6.2) directly imply the axioms (3), (2) and (1)
of the definition of a topology (Definition 7.45.6). As an example we prove J has
property (2). Namely, let U be an object of C, let S, S′ be sieves on U such that
S ∈ J(U), and such that for every V → U in S(V ) we have S′ ×U V ∈ J(V ). By
definition of J(U) we can find a covering {fi : Ui → U} of the site such that S the
image of hUi → hU is contained in S. Since each S′ ×U Ui is in J(Ui) we see that
there are coverings {Uij → Ui} of the site such that hUij → hUi is contained in
S′×U Ui. By definition of the base change this means that hUij → hU is contained
in the subpresheaf S′ ⊂ hU . By axiom (2) for sites we see that {Uij → U} is a
covering of U and we conclude that S′ ∈ J(U) by definition of J .

Let F be a presheaf. Suppose that F is a sheaf in the topology J . We will show
that F is a sheaf on the site as well. Let {fi : Ui → U}i∈I be a covering of the site.
Let si ∈ F(Ui) be a family of sections such that si|Ui×UUj = sj |Ui×UUj for all i, j.
We have to show that there exists a unique section s ∈ F(U) restricting back to
the si on the Ui. Let S ⊂ hU be the sieve generated by the fi. Note that S ∈ J(U)
by definition. In stead of constructing s, by the sheaf condition in the topology, it
suffices to construct an element

ϕ ∈ MorPSh(C)(S,F).

Take α ∈ S(T ) for some object T ∈ U . This means exactly that α : T → U is
a morphism which factors through fi for some i ∈ I (and maybe more than 1).
Pick such an index i and a factorization α = fi ◦ αi. Define ϕ(α) = α∗i si. If i′,
α = fi◦α′i′ is a second choice, then α∗i si = (α′i′)

∗si′ exactly because of our condition
si|Ui×UUj = sj |Ui×UUj for all i, j. Thus ϕ(α) is well defined. We leave it to the
reader to verify that ϕ, which in turn determines s is correct in the sense that s
restricts back to si.

Let F be a presheaf. Suppose that F is a sheaf on the site (C,Cov(C)). We will
show that F is a sheaf for the topology J as well. Let U be an object of C. Let S
be a covering sieve on U with respect to the topology J . Let

ϕ ∈ MorPSh(C)(S,F).

We have to show there is a unique element in F(U) = MorPSh(C)(hU ,F) which
restricts back to ϕ. By definition there exists a covering {fi : Ui → U}i∈I ∈ Cov(C)
such that fi : Ui ∈ U belongs to S(Ui). Hence we can set si = ϕ(fi) ∈ F(Ui).
Then it is a pleasant exercise to see that si|Ui×UUj = sj |Ui×UUj for all i, j. Thus
we obtain the desired section s by the sheaf condition for F on the site (C,Cov(C)).
Details left to the reader. �

Definition 7.46.2. Let C be a site with coverings Cov(C). The topology associated
to C is the topology J constructed in Lemma 7.46.1 above.

Let C be a category. Let Cov1(C) and Cov2(C) be two coverings defining the struc-
ture of a site on C. It may very well happen that the topologies defined by these
are the same. If this happens then we say Cov1(C) and Cov2(C) define the same
topology on C. And if this happens then the categories of sheaves are the same, by
Lemma 7.46.1.
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It is usually the case that we only care about the topology defined by a collection
of coverings, and we view the possibility of choosing different sets of coverings as a
tool to study the topology.

Remark 7.46.3. Enlarging the class of coverings. Clearly, if Cov(C) defines the
structure of a site on C then we may add to C any set of families of morphisms with
fixed target tautologically equivalent (see Definition 7.8.2) to elements of Cov(C)
without changing the topology.

Remark 7.46.4. Shrinking the class of coverings. Let C be a site. Consider the
power set S = P (Arrow(C)) (power set) of the set of morphisms, i.e., the set of
all sets of morphisms. Let Sτ ⊂ S be the subset consisting of those T ∈ S such
that (a) all ϕ ∈ T have the same target, (b) the collection {ϕ}ϕ∈T is tautologically
equivalent (see Definition 7.8.2) to some covering in Cov(C). Clearly, considering
the elements of Sτ as the coverings, we do not get exactly the notion of a site as
defined in Definition 7.6.2. The structure (C,Sτ ) we get satisfies slightly modified
conditions. The modified conditions are:

(0’) Cov(C) ⊂ P (Arrow(C)),
(1’) If V → U is an isomorphism then {V → U} ∈ Cov(C).
(2’) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈

Cov(C), then {Vij → U}i∈I,j∈Ji is tautologically equivalent to an element
of Cov(C).

(3’) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C then Ui ×U V
exists for all i and {Ui ×U V → V }i∈I is tautologically equivalent to an
element of Cov(C).

And it is easy to verify that, given a structure satisfying (0’) – (3’) above, then after
suitably enlarging Cov(C) (compare Sets, Section 3.11) we get a site. Obviously
there is little difference between this notion and the actual notion of a site, at least
from the point of view of the topology. There are two benefits: because of condition
(0’) above the coverings automatically form a set, and because of (0’) the totality
of all structures of this type forms a set as well. The price you pay for this is that
you have to keep writing “tautologically equivalent” everywhere.

7.47. Sheafification in a topology

In this section we explain the analogue of the sheafification construction in a topol-
ogy.

Let C be a category. Let J be a topology on C. Let F be a presheaf of sets. For
every U ∈ Ob(C) we define

LF(U) = colimS∈J(U)opp MorPSh(C)(S,F)

as a colimit. Here we think of J(U) as a partially ordered set, ordered by inclusion,
see Lemma 7.45.2. The transition maps in the system are defined as follows. If
S ⊂ S′ are in J(U), then S → S′ is a morphism of presheaves. Hence there is a
natural restriction mapping

MorPSh(C)(S,F) −→ MorPSh(C)(S
′,F).

Thus we see that S 7→ MorPSh(C)(S,F) is a directed system as in Categories,
Definition 4.21.1 provided we reverse the ordering on J(U) (which is what the
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superscript opp is supposed to indicate). In particular, since hU ∈ J(U) there is a
canonical map

` : F(U) −→ LF(U)

coming from the identification F(U) = MorPSh(C)(hU ,F). In addition, the colimit
defining LF(U) is directed since for any pair of covering sieves S, S′ on U the sieve
S ∩ S′ is a covering sieve too, see Lemma 7.45.2.

Let f : V → U be a morphism in C. Let S ∈ J(U). There is a commutative
diagram

S ×U V //

��

hV

��
S // hU

We can use the left vertical map to get canonical restriction maps

MorPSh(C)(S,F)→ MorPSh(C)(S ×U V,F).

Base change S 7→ S ×U V induces an order preserving map J(U) → J(V ). And
the restriction maps define a transformation of functors as in Categories, Lemma
categories-lemma-functorial-colimit. Hence we get a natural restriction map

LF(U) −→ LF(V ).

Lemma 7.47.1. In the situation above.

(1) The assignment U 7→ LF(U) combined with the restriction mappings de-
fined above is a presheaf.

(2) The maps ` glue to give a morphism of presheaves ` : F → LF .

(3) The rule F 7→ (F `−→ LF) is a functor.
(4) If F is a subpresheaf of G, then LF is a subpresheaf of LG.
(5) The map ` : F → LF has the following property: For every section

s ∈ LF(U) there exists a covering sieve S on U and an element ϕ ∈
MorPSh(C)(S,F) such that `(ϕ) equals the restriction of s to S.

Proof. Omitted. �

Definition 7.47.2. Let C be a category. Let J be a topology on C. We say that a
presheaf of sets F is separated if for every object U and every covering sieve S on
U the canonical map F(U)→ MorPSh(C)(S,F) is injective.

Theorem 7.47.3. Let C be a category. Let J be a topology on C. Let F be a
presheaf of sets.

(1) The presheaf LF is separated.
(2) If F is separated, then LF is a sheaf and the map of presheaves F → LF

is injective.
(3) If F is a sheaf, then F → LF is an isomorphism.
(4) The presheaf LLF is always a sheaf.

Proof. Part (3) is trivial from the definition of L and the definition of a sheaf
(Definition 7.45.10). Part (4) follows formally from the others.

We sketch the proof of (1). Suppose S is a covering sieve of the object U . Suppose
that ϕi ∈ LF(U), i = 1, 2 map to the same element in MorPSh(C)(S,LF). We may
find a single covering sieve S′ on U such that both ϕi are represented by elements
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ϕi ∈ MorPSh(C)(S
′,F). We may assume that S′ = S by replacing both S and S′

by S′ ∩ S which is also a covering sieve, see Lemma 7.45.2. Suppose V ∈ Ob(C),
and α : V → U in S(V ). Then we have S ×U V = hV , see Lemma 7.45.5. Thus
the restrictions of ϕi via V → U correspond to sections si,V,α of F over V . The
assumption is that there exist a covering sieve SV,α of V such that si,V,α restrict
to the same element of MorPSh(C)(SV,α,F). Consider the sieve S′′ on U defined by
the rule

(f : T → U) ∈ S′′(T ) ⇔ ∃ V, α : V → U, α ∈ S(V ),

∃ g : T → V, g ∈ SV,α(T ),(7.47.3.1)

f = α ◦ g

By axiom (2) of a topology we see that S′′ is a covering sieve on U . By construction
we see that ϕ1 and ϕ2 restrict to the same element of MorPSh(C)(S

′′, LF) as desired.

We sketch the proof of (2). Assume that F is a separated presheaf of sets on C with
respect to the topology J . Let S be a covering sieve of the object U of C. Suppose
that ϕ ∈ MorC(S,LF). We have to find an element s ∈ LF(U) restricting to ϕ.
Suppose V ∈ Ob(C), and α : V → U in S(V ). The value ϕ(α) ∈ LF(V ) is given by
a covering sieve SV,α of V and a morphism of presheaves ϕV,α : SV,α → F . As in
the proof above, define a covering sieve S′′ on U by Equation (7.47.3.1). We define

ϕ′′ : S′′ −→ F

by the following simple rule: For every f : T → U , f ∈ S′′(T ) choose V, α, g as in
Equation (7.47.3.1). Then set

ϕ′′(f) = ϕV,α(g).

We claim this is independent of the choice of V, α, g. Consider a second such
choiceV ′, α′, g′. The restrictions of ϕV,α and ϕV ′,α′ to the intersection of the fol-
lowing covering sieves on T

(SV,α ×V,g T ) ∩ (SV ′,α′ ×V ′,g′ T )

agree. Namely, these restrictions both correspond to the restriction of ϕ to T (via
f) and the desired equality follows because F is separated. Denote the common
restriction ψ. The independence of choice follows because ϕV,α(g) = ψ(idT ) =
ϕV ′,α′(g

′). OK, so now ϕ′′ gives an element s ∈ LF(U). We leave it to the reader
to check that s restricts to ϕ. �

Definition 7.47.4. Let C be a category endowed with a topology J . Let F be
a presheaf of sets on C. The sheaf F# := LLF together with the canonical map
F → F# is called the sheaf associated to F .

Proposition 7.47.5. Let C be a category endowed with a topology. Let F be a
presheaf of sets on C. The canonical map F → F# has the following universal
property: For any map F → G, where G is a sheaf of sets, there is a unique map
F# → G such that F → F# → G equals the given map.

Proof. Same as the proof of Proposition 7.10.12. �
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7.48. Topologies and sheaves

Lemma 7.48.1. Let C be a category endowed with a topology J . Let U be an object
of C. Let S be a sieve on U . The following are equivalent

(1) The sieve S is a covering sieve.

(2) The sheafification S# → h#
U of the map S → hU is an isomorphism.

Proof. First we make a couple of general remarks. We will use that S# = LLS,

and h#
U = LLhU . In particular, by Lemma 7.47.1, we see that S# → h#

U is injective.

Note that idU ∈ hU (U). Hence it gives rise to sections of LhU and h#
U = LLhU

over U which we will also denote idU .

Suppose S is a covering sieve. It clearly suffices to find a morphism hU → S#

such that the composition hU → h#
U is the canonical map. To find such a map it

suffices to find a section s ∈ S#(U) wich restricts to idU . But since S is a covering
sieve, the element idS ∈ MorPSh(C)(S, S) gives rise to a section of LS over U which
restricts to idU in LhU . Hence we win.

Suppose that S# → h#
U is an isomorphism. Let 1 ∈ S#(U) be the element corre-

sponding to idU in h#
U (U). Because S# = LLS there exists a covering sieve S′ on

U such that 1 comes from a

ϕ ∈ MorPSh(C)(S
′, LS).

This in turn means that for every α : V → U , α ∈ S′(V ) there exists a covering sieve
SV,α on V such that ϕ(idV ) corresponds to a morphism of presheaves SV,α → S.
In other words SV,α is contained in S×U V . By the second axiom of a topology we
see that S is a covering sieve. �

Theorem 7.48.2. Let C be a category. Let J , J ′ be topologies on C. The following
are equivalent

(1) J = J ′,
(2) sheaves for the topology J are the same as sheaves for the topology J ′.

Proof. It is a tautology that if J = J ′ then the notions of sheaves are the same.
Conversely, Lemma 7.48.1 characterizes covering sieves in terms of the sheafification
functor. But the sheafification functor PSh(C) → Sh(C, J) is the right adjoint of
the inclusion functor Sh(C, J) → PSh(C). Hence if the subcategories Sh(C, J) and
Sh(C, J ′) are the same, then the sheafification functors are the same and hence the
collections of covering sieves are the same. �

Lemma 7.48.3. Assumption and notation as in Theorem 7.48.2. Then J ⊂ J ′ if
and only if every sheaf for the topology J ′ is a sheaf for the topology J .

Proof. One direction is clear. For the other direction suppose that Sh(C, J ′) ⊂
Sh(C, J). By formal nonsense this implies that if F is a presheaf of sets, and
F → F#, resp. F → F#,′ is the sheafification wrt J , resp. J ′ then there is a
canonical map F# → F#,′ such that F → F# → F#,′ equals the canonical map
F → F#,′. Of course, F# → F#,′ identifies the second sheaf as the sheafification
of the first with respect to the topology J ′. Apply this to the map S → hU of
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Lemma 7.48.1. We get a commutative diagram

S //

��

S# //

��

S#,′

��
hU // h#

U
// h#,′
U

And clearly, if S is a covering sieve for the topology J then the middle vertical map
is an isomorphism (by the lemma) and we conclude that the right vertical map is
an isomorphism as it is the sheafification of the one in the middle wrt J ′. By the
lemma again we conclude that S is a covering sieve for J ′ as well. �

7.49. Topologies and continuous functors

Explain how a continuous functor gives an adjoint pair of functors on sheaves.

7.50. Points and topologies

Recall from Section 7.31 that given a functor p = u : C → Sets we can define a stalk
functor

PSh(C) −→ Sets,F 7−→ Fp.

Definition 7.50.1. Let C be a category. Let J be a topology on C. A point p of
the topology is given by a functor u : C → Sets such that

(1) For every covering sieve S on U the map Sp → (hU )p is surjective.
(2) The stalk functor Sh(C)→ Sets, F → Fp is exact.
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CHAPTER 8

Stacks

8.1. Introduction

In this very short chapter we introduce stacks, and stacks in groupoids. See
[DM69], and [Vis04].

8.2. Presheaves of morphisms associated to fibred categories

Let C be a category. Let p : S → C be a fibred category, see Categories, Section
4.31. Suppose that x, y ∈ Ob(SU ) are objects in the fibre category over U . We are
going to define a functor

Mor(x, y) : (C/U)opp −→ Sets.

In other words this will be a presheaf on C/U , see Sites, Definition 7.2.2. Make a
choice of pullbacks as in Categories, Definition 4.31.6. Then, for f : V → U we set

Mor(x, y)(f : V → U) = MorSV (f∗x, f∗y).

Let f ′ : V ′ → U be a second object of C/U . We also have to define the restriction
map corresponding to a morphism g : V ′/U → V/U in C/U , in other words g :
V ′ → V and f ′ = f ◦ g. This will be a map

MorSV (f∗x, f∗y) −→ MorSV ′ (f
′∗x, f ′

∗
y), φ 7−→ φ|V ′

This map will basically be g∗, except that this transforms an element φ of the left
hand side into an element g∗φ of MorSV ′ (g

∗f∗x, g∗f∗y). At this point we use the
transformation αg,f of Categories, Lemma 4.31.7. In a formula, the restriction map
is described by

φ|V ′ = (αg,f )−1
y ◦ g∗φ ◦ (αg,f )x.

Of course, nobody thinks of this restriction map in this way. We will only do this
once in order to verify the following lemma.

Lemma 8.2.1. This actually does give a presheaf.

Proof. Let g : V ′/U → V/U be as above and similarly g′ : V ′′/U → V ′/U
be morphisms in C/U . So f ′ = f ◦ g and f ′′ = f ′ ◦ g′ = f ◦ g ◦ g′. Let φ ∈
MorSV (f∗x, f∗y). Then we have

(αg◦g′,f )−1
y ◦ (g ◦ g′)∗φ ◦ (αg◦g′,f )x

= (αg◦g′,f )−1
y ◦ (αg′,g)

−1
f∗y ◦ (g′)∗g∗φ ◦ (αg′,g)f∗x ◦ (αg◦g′,f )x

= (αg′,f ′)
−1
y ◦ (g′)∗(αg,f )−1

y ◦ (g′)∗g∗φ ◦ (g′)∗(αg,f )x ◦ (αg′,f ′)x

= (αg′,f ′)
−1
y ◦ (g′)∗

(
(αg,f )−1

y ◦ g∗φ ◦ (αg,f )x

)
◦ (αg′,f ′)x

353
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which is what we want, namely φ|V ′′ = (φ|V ′)|V ′′ . The first equality holds because
αg′,g is a transformation of functors, and hence

(g ◦ g′)∗f∗x
(g◦g′)∗φ

//

(αg′,g)f∗x

��

(g ◦ g′)∗f∗y

(αg′,g)f∗y

��
(g′)∗g∗f∗x

(g′)∗g∗φ // (g′)∗g∗f∗y

commutes. The second equality holds because of property (d) of a pseudo functor
since f ′ = f ◦ g (see Categories, Definition 4.27.5). The last equality follows from
the fact that (g′)∗ is a functor. �

From now on we often omit mentioning the transformations αg,f and we simply
identify the functors g∗ ◦ f∗ and (f ◦ g)∗. In particular, given g : V ′/U → V/U the
restriction mappings for the presheaf Mor(x, y) will sometimes be denoted φ 7→ g∗φ.
We formalize the construction in a definition.

Definition 8.2.2. Let C be a category. Let p : S → C be a fibred category, see
Categories, Section 4.31. Given an object U of C and objects x, y of the fibre
category, the presheaf of morphisms from x to y is the presheaf

(f : V → U) 7−→ MorSV (f∗x, f∗y)

described above. It is denoted Mor(x, y). The subpresheaf Isom(x, y) whose values
over V is the set of isomorphisms f∗x→ f∗y in the fibre category SV is called the
presheaf of isomorphisms from x to y.

If S is fibred in groupoids then of course Isom(x, y) = Mor(x, y), and it is customary
to use the Isom notation.

Lemma 8.2.3. Let F : S1 → S2 be a 1-morphism of fibred categories over the
category C. Let U ∈ Ob(C) and x, y ∈ Ob(SU ). Then F defines a canonical
morphism of presheaves

MorS1
(x, y) −→ MorS2

(F (x), F (y))

on C/U .

Proof. By Categories, Definition 4.31.9 the functor F maps strongly cartesian
morphisms to strongly cartesian morphisms. Hence if f : V → U is a morphism in
C, then there are canonical isomorphisms αV : f∗F (x) → F (f∗x), βV : f∗F (y) →
F (f∗y) such that f∗F (x)→ F (f∗x)→ F (x) is the canonical morphism f∗F (x)→
F (x), and similarly for βV . Thus we may define

MorS1
(x, y)(f : V → U) MorS1,V

(f∗x, f∗y)

��
MorS2

(F (x), F (y))(f : V → U) MorS2,V
(f∗F (x), f∗F (y))

by φ 7→ β−1
V ◦ F (φ) ◦ αV . We omit the verification that this is compatible with the

restriction mappings. �

Remark 8.2.4. Suppose that p : S → C is fibred in groupoids. In this case we
can prove Lemma 8.2.1 using Categories, Lemma 4.34.4 which says that S → C is
equivalent to the category associated to a contravariant functor F : C → Groupoids.
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In the case of the fibred category associated to F we have g∗ ◦ f∗ = (f ◦ g)∗ on the
nose and there is no need to use the maps αg,f . In this case the lemma is (even
more) trivial. Of course then one uses that the Mor(x, y) presheaf is unchanged
when passing to an equivalent fibred category which follows from Lemma 8.2.3.

Lemma 8.2.5. Let C be a category. Let p : S → C be a fibred category, see
Categories, Section 4.31. Let U ∈ Ob(C) and let x, y ∈ Ob(SU ). Denote x, y :
C/U → S also the corresponding 1-morphisms, see Categories, Lemma 4.39.1. Then

(1) the 2-fibre product S ×S×S,(x,y) C/U is fibred in setoids over C/U , and
(2) Isom(x, y) is the presheaf of sets corresponding to this category fibred in

setoids, see Categories, Lemma 4.37.6.

Proof. Omitted. Hint: Objects of the 2-fibre product are (a : V → U, z, a : V →
U, (α, β)) where α : z → a∗x and β : z → a∗y are isomorphisms in SV . Thus the
relationship with Isom(x, y) comes by assigning to such an object the isomorphism
β ◦ α−1. �

8.3. Descent data in fibred categories

In this section we define the notion of a descent datum in the abstract setting of a
fibred category. Before we do so we point out that this is completely analogous to
descent data for quasi-coherent sheaves (Descent, Section 34.2) and descent data
for schemes over schemes (Descent, Section 34.30).

We will use the convention where the projection maps pri : X × . . .×X → X are
labeled starting with i = 0. Hence we have pr0,pr1 : X × X → X, pr0,pr1,pr2 :
X ×X ×X → X, etc.

Definition 8.3.1. Let C be a category. Let p : S → C be a fibred category. Make
a choice of pullbacks as in Categories, Definition 4.31.6. Let U = {fi : Ui → U}i∈I
be a family of morphisms of C. Assume all the fibre products Ui ×U Uj , and
Ui ×U Uj ×U Uk exist.

(1) A descent datum (Xi, ϕij) in S relative to the family {fi : Ui → U} is given
by an object Xi of SUi for each i ∈ I, an isomorphism ϕij : pr∗0Xi → pr∗1Xj

in SUi×UUj for each pair (i, j) ∈ I2 such that for every triple of indices

(i, j, k) ∈ I3 the diagram

pr∗0Xi

pr∗01ϕij $$

pr∗02ϕik

// pr∗2Xk

pr∗1Xj

pr∗12ϕjk

::

in the category SUi×UUj×UUk commutes. This is called the cocycle condi-
tion.

(2) A morphism ψ : (Xi, ϕij)→ (X ′i, ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms ψi : Xi → X ′i in SUi such that all the diagrams

pr∗0Xi ϕij
//

pr∗0ψi

��

pr∗1Xj

pr∗1ψj

��
pr∗0X

′
i

ϕ′ij // pr∗1X
′
j

in the categories SUi×UUj commute.
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(3) The category of descent data relative to U is denoted DD(U).

The fibre products Ui×U Uj and Ui×U Uj×U Uk will exist if each of the morphisms
fi : Ui → U is representable, see Categories, Definition 4.6.4. Recall that in a site
one of the conditions for a covering {Ui → U} is that each of the morphisms is
representable, see Sites, Definition 7.6.2 part (3). In fact the main interest in the
definition above is where C is a site and {Ui → U} is a covering of C. However,
a descent datum is just an abstract gadget that can be defined as above. This is
useful: for example, given a fibred category over C one can look at the collection
of families with respect to which descent data are effective, and try to use these as
the family of coverings for a site.

Remarks 8.3.2. Two remarks on Definition 8.3.1 are in order. Let p : S → C be
a fibred category. Let {fi : Ui → U}i∈I , and (Xi, ϕij) be as in Definition 8.3.1.

(1) There is a diagonal morphism ∆ : Ui → Ui ×U Ui. We can pull back
ϕii via this morphism to get an automorphism ∆∗ϕii ∈ AutUi(xi). On
pulling back the cocycle condition for the triple (i, i, i) by ∆123 : Ui →
Ui×U Ui×U Ui we deduce that ∆∗ϕii ◦∆∗ϕii = ∆∗ϕii; thus ∆∗ϕii = idxi .

(2) There is a morphism ∆13 : Ui ×U Uj → Ui ×U Uj ×U Ui and we can
pull back the cocycle condition for the triple (i, j, i) to get the identity
(σ∗ϕji) ◦ ϕij = idpr∗0xi

, where σ : Ui ×U Uj → Uj ×U Ui is the switching
morphism.

Lemma 8.3.3. (Pullback of descent data.) Let C be a category. Let p : S → C be
a fibred category. Make a choice pullbacks as in Categories, Definition 4.31.6. Let
U = {fi : Ui → U}i∈I , and V = {Vj → V }j∈J be a families of morphisms of C with
fixed target. Assume all the fibre products Ui ×U Ui′ , Ui ×U Ui′ ×U Ui′′ , Vj ×V Vj′ ,
and Vj ×V Vj′ ×V Vj′′ exist. Let α : I → J , h : U → V and gi : Ui → Vα(i) be a
morphism of families of maps with fixed target, see Sites, Definition 7.8.1.

(1) Let (Yj , ϕjj′) be a descent datum relative to the family {Vj → V }. The
system (

g∗i Yα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum relative to U .

(2) This construction defines a functor between descent data relative to V and
descent data relative to U .

(3) Given a second α′ : I → J , h′ : U → V and g′i : Ui → Vα′(i) morphism of
families of maps with fixed target, then if h = h′ the two resulting functors
between descent data are canonically isomorphic.

Proof. Omitted. �

Definition 8.3.4. With U = {Ui → U}i∈I , V = {Vj → V }j∈J , α : I → J ,
h : U → V , and gi : Ui → Vα(i) as in Lemma 8.3.3 the functor

(Yj , ϕjj′) 7−→ (g∗i Yα(i), (gi × gi′)∗ϕα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

Given h : U → V , if there exists a morphism h̃ : U → V covering h then h̃∗ is
independent of the choice of h̃ as we saw in Lemma 8.3.3. Hence we will sometimes
simply write h∗ to indicate the pullback functor.
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Definition 8.3.5. Let C be a category. Let p : S → C be a fibred category. Make
a choice of pullbacks as in Categories, Definition 4.31.6. Let U = {fi : Ui → U}i∈I
be a family of morphisms with target U . Assume all the fibre products Ui ×U Uj
and Ui ×U Uj ×U Uk exist.

(1) Given an object X of SU the trivial descent datum is the descent datum
(X, idX) with respect to the family {idU : U → U}.

(2) Given an object X of SU we have a canonical descent datum on the family
of objects f∗i X by pulling back the trivial descent datum (X, idX) via the
obvious map {fi : Ui → U} → {idU : U → U}. We denote this descent
datum (f∗i X, can).

(3) A descent datum (Xi, ϕij) relative to {fi : Ui → U} is called effective
if there exists an object X of SU such that (Xi, ϕij) is isomorphic to
(f∗i X, can).

Note that the rule that associates to X ∈ SU its canonical descent datum relative
to U defines a functor

SU −→ DD(U).

A descent datum is effective if and only if it is in the essential image of this functor.
Let us make explicit the canonical descent datum as follows.

Lemma 8.3.6. In the situation of Definition 8.3.5 part (2) the maps canij :

pr∗0f
∗
i X → pr∗1f

∗
jX are equal to (αpr1,fj )X ◦ (αpr0,fi)

−1
X where α·,· is as in Cat-

egories, Lemma 4.31.7 and where we use the equality fi ◦ pr0 = fj ◦ pr1 as maps
Ui ×U Uj → U .

Proof. Omitted. �

8.4. Stacks

Here is the definition of a stack. It mixes the notion of a fibred category with the
notion of descent.

Definition 8.4.1. Let C be a site. A stack over C is a category p : S → C over C
which satisfies the following conditions:

(1) p : S → C is a fibred category, see Categories, Definition 4.31.5,
(2) for any U ∈ Ob(C) and any x, y ∈ SU the presheaf Mor(x, y) (see Defini-

tion 8.2.2) is a sheaf on the site C/U , and
(3) for any covering U = {fi : Ui → U}i∈I of the site C, any descent datum

in S relative to U is effective.

We find the formulation above the most convenient way to think about a stack.
Namely, given a category over C in order to verify that it is a stack you proceed to
check properties (1), (2) and (3) in that order. Certainly properties (2) and (3) do
not make sense if the category isn’t fibred. Without (2) we cannot prove that the
descent in (3) is unique up to unique isomorphism and functorial.

The following lemma provides an alternative definition.

Lemma 8.4.2. Let C be a site. Let p : S → C be a fibred category over C. The
following are equivalent

(1) S is a stack over C, and
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(2) for any covering U = {fi : Ui → U}i∈I of the site C the functor

SU −→ DD(U)

which associates to an object its canonical descent datum is an equivalence.

Proof. Omitted. �

Lemma 8.4.3. Let p : S → C be a stack over the site C. Let S ′ be a subcategory
of S. Assume

(1) if ϕ : y → x is a strongly cartesian morphism of S and x is an object of
S ′, then y is isomorphic to an object of S ′,

(2) S ′ is a full subcategory of S, and
(3) if {fi : Ui → U} is a covering of C, and x an object of S over U such that

f∗i x is isomorphic to an object of S ′ for each i, then x is isomorphic to
an object of S ′.

Then S ′ → C is a stack.

Proof. Omitted. Hints: The first condition guarantees that S ′ is a fibred category.
The second condition guarantees that the Isom-presheaves of S ′ are sheaves (as they
are identical to their counter parts in S). The third condition guarantees that the
descent condition holds in S ′ as we can first descend in S and then (3) implies the
resulting object is isomorphic to an object of S ′. �

Lemma 8.4.4. Let C be a site. Let S1, S2 be categories over C. Suppose that S1

and S2 are equivalent as categories over C. Then S1 is a stack over C if and only
if S2 is a stack over C.

Proof. Let F : S1 → S2, G : S2 → S1 be functors over C, and let i : F ◦G→ idS2 ,
j : G ◦F → idS1

be isomorphisms of functors over C. By Categories, Lemma 4.31.8
we see that S1 is fibred if and only if S2 is fibred over C. Hence we may assume that
both S1 and S2 are fibred. Moreover, the proof of Categories, Lemma 4.31.8 shows
that F and G map strongly cartesian morphisms to strongly cartesian morphisms,
i.e., F and G are 1-morphisms of fibred categories over C. This means that given
U ∈ Ob(C), and x, y ∈ S1,U then the presheaves

MorS1(x, y),MorS1(F (x), F (y)) : (C/U)opp −→ Sets.

are identified, see Lemma 8.2.3. Hence the first is a sheaf if and only if the second is
a sheaf. Finally, we have to show that if every descent datum in S1 is effective, then
so is every descent datum in S2. To do this, let (Xi, ϕii′) be a descent datum in
S2 relative the covering {Ui → U} of the site C. Then (G(Xi), G(ϕii′)) is a descent
datum in S1 relative the covering {Ui → U}. Let X be an object of S1,U such
that the descent datum (f∗i X, can) is isomorphic to (G(Xi), G(ϕii′)). Then F (X)
is an object of S2,U such that the descent datum (f∗i F (X), can) is isomorphic to
(F (G(Xi)), F (G(ϕii′))) which in turn is isomorphic to the original descent datum
(Xi, ϕii′) using i. �

The 2-category of stacks over C is defined as follows.

Definition 8.4.5. Let C be a site. The 2-category of stacks over C is the sub
2-category of the 2-category of fibred categories over C (see Categories, Definition
4.31.9) defined as follows:

(1) Its objects will be stacks p : S → C.
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(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that
p′ ◦G = p and such that G maps strongly cartesian morphisms to strongly
cartesian morphisms.

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Lemma 8.4.6. Let C be a site. The (2, 1)-category of stacks over C has 2-fibre
products, and they are described as in Categories, Lemma 4.30.3.

Proof. Let f : X → S and g : Y → S be 1-morphisms of stacks over C as defined
above. The category X ×S Y described in Categories, Lemma 4.30.3 is a fibred
category according to Categories, Lemma 4.31.10. (This is where we use that f and
g preserve strongly cartesian morphisms.) It remains to show that the morphism
presheaves are sheaves and that descent relative to coverings of C is effective.

Recall that an object of X ×S Y is given by a quadruple (U, x, y, φ). It lies over
the object U of C. Next, let (U, x′, y′, φ′) be second object lying over U . Recall
that φ : f(x)→ g(y), and φ′ : f(x′)→ g(y′) are isomorphisms in the category SU .
Let us use these isomorphisms to identify z = f(x) = g(y) and z′ = f(x′) = g(y′).
With this identifications it is clear that

Mor((U, x, y, φ), (U, x′, y′, φ′)) = Mor(x, x′)×Mor(z,z′) Mor(y, y′)

as presheaves. However, as the fibred product in the category of presheaves pre-
serves sheaves (Sites, Lemma 7.10.1) we see that this is a sheaf.

Let U = {fi : Ui → U}i∈I be a covering of the site C. Let (Xi, χij) be a descent
datum in X ×S Y relative to U . Write Xi = (Ui, xi, yi, φi) as above. Write χij =
(ϕij , ψij) as in the definition of the category X×SY (see Categories, Lemma 4.30.3).
It is clear that (xi, ϕij) is a descent datum in X and that (yi, ψij) is a descent
datum in Y. Since X and Y are stacks these descent data are effective. Thus we
get x ∈ Ob(XU ), and y ∈ Ob(YU ) with xi = x|Ui , and yi = y|Ui compatibly with
descent data. Set z = f(x) and z′ = g(y) which are both objects of SU . The
morphisms φi are elements of Isom(z, z′)(Ui) with the property that φi|Ui×UUj =
φj |Ui×UUj . Hence by the sheaf property of Isom(z, z′) we obtain an isomorphism
φ : z = f(x) → z′ = g(y). We omit the verification that the canonical descent
datum associated to the object (U, x, y, φ) of (X×SY)U is isomorphic to the descent
datum we started with. �

Lemma 8.4.7. Let C be a site. Let S1, S2 be stacks over C. Let F : S1 → S2 be a
1-morphism. Then the following are equivalent

(1) F is fully faithful,
(2) for every U ∈ Ob(C) and for every x, y ∈ Ob(S1,U ) the map

F : MorS1
(x, y) −→ MorS2

(F (x), F (y))

is an isomorphism of sheaves on C/U .

Proof. Assume (1). For U, x, y as in (2) the displayed map F evaluates to the
map F : MorS1,V

(x|V , y|V ) → MorS2,V
(F (x|V ), F (y|V )) on an object V of C lying

over U . Now, since F is fully faithful, the corresponding map MorS1(x|V , y|V ) →
MorS2

(F (x|V ), F (y|V )) is a bijection. Morphisms in the fibre category S1,V are
exactly those morphisms between x|V and y|V in S1 lying over idV . Similarly,
morphisms in the fibre category S2,V are exactly those morphisms between F (x|V )

http://stacks.math.columbia.edu/tag/026G
http://stacks.math.columbia.edu/tag/04WQ


360 8. STACKS

and F (y|V ) in S2 lying over idV . Thus we find that F induces a bijection between
these also. Hence (2) holds.

Assume (2). Suppose given objects U , V of C and x ∈ Ob(S1,U ) and y ∈ Ob(S1,V ).
To show that F is fully faithful, it suffices to prove it induces a bijection on mor-
phisms lying over a fixed f : U → V . Choose a strongly Cartesian f∗y → y in S1

lying above f . This results in a bijection between the set of morphisms x→ y in S1

lying over f and MorS1,U
(x, f∗y). Since F preserves strongly Cartesian morphisms

as a 1-morphism in the 2-category of stacks over C, we also get a bijection between
the set of morphisms F (x)→ F (y) in S2 lying over f and MorS2,U

(F (x), F (f∗y)).
Since F induces a bijection MorS1,U

(x, f∗y)→ MorS2,U
(F (x), F (f∗y)) we conclude

(1) holds. �

Lemma 8.4.8. Let C be a site. Let S1, S2 be stacks over C. Let F : S1 → S2 be a
1-morphism which is fully faithful. Then the following are equivalent

(1) F is an equivalence,
(2) for every U ∈ Ob(C) and for every x ∈ Ob(S2,U ) there exists a covering
{fi : Ui → U} such that f∗i x is in the essential image of the functor
F : S1,Ui → S2,Ui .

Proof. The implication (1)⇒ (2) is immediate. To see that (2) implies (1) we have
to show that every x as in (2) is in the essential image of the functor F . To do this
choose a covering as in (2), xi ∈ Ob(S1,Ui), and isomorphisms ϕi : F (xi) → f∗i x.
Then we get a descent datum for S1 relative to {fi : Ui → U} by taking

ϕij : xi|Ui×UUj −→ xj |Ui×UUj

the arrow such that F (ϕij) = ϕ−1
j ◦ ϕi. This descent datum is effective by the

axioms of a stack, and hence we obtain an object x1 of S1 over U . We omit the
verification that F (x1) is isomorphic to x over U . �

Remark 8.4.9. (Cutting down a “big” stack to get a stack.) Let C be a site.
Suppose that p : S → C is functor from a “big” category to C, i.e., suppose that
the collection of objects of S forms a proper class. Finally, suppose that p : S → C
satisfies conditions (1), (2), (3) of Definition 8.4.1. In general there is no way to
replace p : S → C by a equivalent category such that we obtain a stack. The
reason is that it can happen that a fibre categories SU may have a proper class of
isomorphism classes of objects. On the other hand, suppose that

(4) for every U ∈ Ob(C) there exists a set SU ⊂ Ob(SU ) such that every
object of SU is isomorphic in SU to an element of SU .

In this case we can find a full subcategory Ssmall of S such that, setting psmall =
p|Ssmall , we have

(a) the functor psmall : Ssmall → C defines a stack, and
(b) the inclusion Ssmall → S is fully faithful and essentially surjective.

(Hint: For every U ∈ Ob(C) let α(U) denote the smallest ordinal such that
Ob(SU ) ∩ Vα(U) surjects onto the set of isomorphism classes of SU , and set α =
supU∈Ob(C) α(U). Then take Ob(Ssmall) = Ob(S)∩Vα. For notation used see Sets,

Section 3.5.)

http://stacks.math.columbia.edu/tag/046N
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8.5. Stacks in groupoids

Among stacks those which are fibred in groupoids are somewhat easier to compre-
hend. We redefine them as follows.

Definition 8.5.1. A stack in groupoids over a site C is a category p : S → C over
C such that

(1) p : S → C is fibred in groupoids over C (see Categories, Definition 4.33.1),
(2) for all U ∈ Ob(C), for all x, y ∈ Ob(SU ) the presheaf Isom(x, y) is a sheaf

on the site C/U , and
(3) for all coverings U = {Ui → U} in C, all descent data (xi, φij) for U are

effective.

Usually the hardest part to check is the third condition. Here is the lemma com-
paring this with the notion of a stack.

Lemma 8.5.2. Let C be a site. Let p : S → C be a category over C. The following
are equivalent

(1) S is a stack in groupoids over C,
(2) S is a stack over C and all fibre categories are groupoids, and
(3) S is fibred in groupoids over C and is a stack over C.

Proof. Omitted, but see Categories, Lemma 4.33.2. �

Lemma 8.5.3. Let C be a site. Let p : S → C be a stack. Let p′ : S ′ → C be
the category fibred in groupoids associated to S constructed in Categories, Lemma
4.33.3. Then p′ : S ′ → C is a stack in groupoids.

Proof. Recall that the morphisms in S ′ are exactly the strongly cartesian mor-
phisms of S, and that any isomorphism of S is such a morphism. Hence descent
data in S ′ are exactly the same thing as descent data in S. Now apply Lemma
8.4.2. Some details omitted. �

Lemma 8.5.4. Let C be a site. Let S1, S2 be categories over C. Suppose that S1

and S2 are equivalent as categories over C. Then S1 is a stack in groupoids over C
if and only if S2 is a stack in groupoids over C.

Proof. Follows by combining Lemmas 8.5.2 and 8.4.4. �

The 2-category of stacks in groupoids over C is defined as follows.

Definition 8.5.5. Let C be a site. The 2-category of stacks in groupoids over C is
the sub 2-category of the 2-category of stacks over C (see Definition 8.4.5) defined
as follows:

(1) Its objects will be stacks in groupoids p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p. (Since every morphism is strongly cartesian every functor
preserves them.)

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that any 2-morphism is automatically an isomorphism, so that in fact the
2-category of stacks in groupoids over C is a (strict) (2, 1)-category.

http://stacks.math.columbia.edu/tag/02ZI
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http://stacks.math.columbia.edu/tag/042X
http://stacks.math.columbia.edu/tag/02ZK
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Lemma 8.5.6. Let C be a category. The 2-category of stacks in groupoids over C
has 2-fibre products, and they are described as in Categories, Lemma 4.30.3.

Proof. This is clear from Categories, Lemma 4.33.7 and Lemmas 8.5.2 and 8.4.6.
�

8.6. Stacks in setoids

This is just a brief section saying that a stack in sets is the same thing as a sheaf
of sets. Please consult Categories, Section 4.37 for notation.

Definition 8.6.1. Let C be a site.

(1) A stack in setoids over C is a stack over C all of whose fibre categories are
setoids.

(2) A stack in sets, or a stack in discrete categories is a stack over C all of
whose fibre categories are discrete.

From the discussion in Section 8.5 this is the same thing as a stack in groupoids
whose fibre categories are setoids (resp. discrete). Moreover, it is also the same
thing as a category fibred in setoids (resp. sets) which is a stack.

Lemma 8.6.2. Let C be a site. Under the equivalence{
the category of presheaves

of sets over C

}
↔
{

the category of categories
fibred in sets over C

}
of Categories, Lemma 4.36.6 the stacks in sets correspond precisely to the sheaves.

Proof. Omitted. Hint: Show that effectivity of descent corresponds exactly to the
sheaf condition. �

Lemma 8.6.3. Let C be a site. Let S be a category fibred in setoids over C. Then
S is a stack in setoids if and only if the unique equivalent category S ′ fibred in sets
(see Categories, Lemma 4.37.5) is a stack in sets. In other words, if and only if
the presheaf

U 7−→ Ob(SU )/∼=
is a sheaf.

Proof. Omitted. �

Lemma 8.6.4. Let C be a site. Let S1, S2 be categories over C. Suppose that S1

and S2 are equivalent as categories over C. Then S1 is a stack in setoids over C if
and only if S2 is a stack in setoids over C.

Proof. By Categories, Lemma 4.37.5 we see that a category S over C is fibred in
setoids over C if and only if it is equivalent over C to a category fibred in sets. Hence
we see that S1 is fibred in setoids over C if and only if S2 is fibred in setoids over
C. Hence now the lemma follows from Lemma 8.6.3. �

The 2-category of stacks in setoids over C is defined as follows.

Definition 8.6.5. Let C be a site. The 2-category of stacks in setoids over C is
the sub 2-category of the 2-category of stacks over C (see Definition 8.4.5) defined
as follows:

(1) Its objects will be stacks in setoids p : S → C.

http://stacks.math.columbia.edu/tag/02ZL
http://stacks.math.columbia.edu/tag/042Z
http://stacks.math.columbia.edu/tag/0430
http://stacks.math.columbia.edu/tag/0432
http://stacks.math.columbia.edu/tag/0431
http://stacks.math.columbia.edu/tag/0433
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(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that
p′ ◦ G = p. (Since every morphism is strongly cartesian every functor
preserves them.)

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that any 2-morphism is automatically an isomorphism, so that in fact the
2-category of stacks in setoids over C is a (strict) (2, 1)-category.

Lemma 8.6.6. Let C be a site. The 2-category of stacks in setoids over C has
2-fibre products, and they are described as in Categories, Lemma 4.30.3.

Proof. This is clear from Categories, Lemmas 4.33.7 and 4.37.4 and Lemmas 8.5.2
and 8.4.6. �

Lemma 8.6.7. Let C be a site. Let S, T be stacks in groupoids over C and let R
be a stack in setoids over C. Let f : T → S and g : R → S be 1-morphisms. If f
is faithful, then the 2-fibre product

T ×f,S,g R
is a stack in setoids over C.

Proof. Immediate from the explicit description of the 2-fibre product in Categories,
Lemma 4.30.3. �

Lemma 8.6.8. Let C be a site. Let S be a stack in groupoids over C and let Si,
i = 1, 2 be stacks in setoids over C. Let fi : Si → S be 1-morphisms. Then the
2-fibre product

S1 ×f1,S,f2 S2

is a stack in setoids over C.

Proof. This is a special case of Lemma 8.6.7 as f2 is faithful. �

Lemma 8.6.9. Let C be a site. Let

T2
//

G′

��

T1

G

��
S2

F // S1

be a 2-cartesian diagram of stacks in groupoids over C. Assume

(1) for every U ∈ Ob(C) and x ∈ Ob((S1)U ) there exists a covering {Ui → U}
such that x|Ui is in the essential image of F : (S2)Ui → (S1)Ui , and

(2) G′ is faithful,

then G is faithful.

Proof. We may assume that T2 is the category S2 ×S1 T1 described in Categories,
Lemma 4.30.3. By Categories, Lemma 4.33.8 the faithfulness of G,G′ can be
checked on fibre categories. Suppose that y, y′ are objects of T1 over the object
U of C. Let α, β : y → y′ be morphisms of (T1)U such that G(α) = G(β). Our
object is to show that α = β. Considering instead γ = α−1 ◦ β we see that
G(γ) = idG(y) and we have to show that γ = idy. By assumption we can find a cov-
ering {Ui → U} such that G(y)|Ui is in the essential image of F : (S2)Ui → (S1)Ui .
Since it suffices to show that γ|Ui = id for each i, we may therefore assume that we

http://stacks.math.columbia.edu/tag/0434
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have f : F (x) → G(y) for some object x of S2 over U and morphisms f of (S1)U .
In this case we get a morphism

(1, γ) : (U, x, y, f) −→ (U, x, y, f)

in the fibre category of S2 ×S1 T1 over U whose image under G′ in S1 is idx. As G′

is faithful we conclude that γ = idy and we win. �

Lemma 8.6.10. Let C be a site. Let

T2
//

��

T1

G

��
S2

F // S1

be a 2-cartesian diagram of stacks in groupoids over C. If

(1) F : S2 → S1 is fully faithful,
(2) for every U ∈ Ob(C) and x ∈ Ob((S1)U ) there exists a covering {Ui → U}

such that x|Ui is in the essential image of F : (S2)Ui → (S1)Ui , and
(3) T2 is a stack in setoids.

then T1 is a stack in setoids.

Proof. We may assume that T2 is the category S2 ×S1 T1 described in Categories,
Lemma 4.30.3. Pick U ∈ Ob(C) and y ∈ Ob((T1)U ). We have to show that the
sheaf Aut(y) on C/U is trivial. To to this we may replace U by the members of a
covering of U . Hence by assumption (2) we may assume that there exists an object
x ∈ Ob((S2)U ) and an isomorphism f : F (x) → G(y). Then y′ = (U, x, y, f) is an
object of T2 over U which is mapped to y under the projection T2 → T1. Because
F is fully faithful by (1) the map Aut(y′) → Aut(y) is surjective, use the explicit
description of morphisms in T2 in Categories, Lemma 4.30.3. Since by (3) the sheaf
Aut(y′) is trivial we get the result of the lemma. �

8.7. The inertia stack

Let p : S → C and p′ : S ′ → C be fibred categories over the category C. Let
F : S → S ′ be a 1-morphism of fibred categories over C. Recall that we have
defined in Categories, Definition 4.32.2 an relative inertia fibred category IS/S′ → C
as the category whose objects are pairs (x, α) where x ∈ Ob(S) and α : x → x
with F (α) = idF (x). There is also an absolute version, namely the inertia IS of
S. These inertia categories are actually stacks over C provided that S and S ′ are
stacks.

Lemma 8.7.1. Let C be a site. Let p : S → C and p′ : S ′ → C be stacks over the
site C. Let F : S → S ′ be a 1-morphism of stacks over C.

(1) The inertia IS/S′ and IS are stacks over C.
(2) If S,S ′ are stacks in groupoids over S, then so are IS/S′ and IS .
(3) If S,S ′ are stacks in setoids over S, then so are IS/S′ and IS .

Proof. The first three assertions follow from Lemmas 8.4.6, 8.5.6, and 8.6.6 and
the equivalence in Categories, Lemma 4.32.1 part (1). �

Lemma 8.7.2. Let C be a site. If S is a stack in groupoids, then the canonical
1-morphism IS → S is an equivalence if and only if S is a stack in setoids.

Proof. Follows directly from Categories, Lemma 4.37.7. �

http://stacks.math.columbia.edu/tag/05W9
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8.8. Stackification of fibred categories

Here is the result.

Lemma 8.8.1. Let C be a site. Let p : S → C be a fibred category over C. There
exists a stack p′ : S ′ → C and a 1-morphism G : S → S ′ of fibred categories over C
(see Categories, Definition 4.31.9) such that

(1) for every U ∈ Ob(C), and any x, y ∈ Ob(SU ) the map

Mor(x, y) −→ Mor(G(x), G(y))

induced by G identifies the right hand side with the sheafification of the
left hand side, and

(2) for every U ∈ Ob(C), and any x′ ∈ Ob(S ′U ) there exists a covering {Ui →
U}i∈I such that for every i ∈ I the object x′|Ui is in the essential image
of the functor G : SU → S ′U .

Moreover the stack S ′ is determined up to unique 2-isomorphism by these condi-
tions.

Proof by naive method. In this proof method we proceed in stages:

First, given x lying over U and any object y of S, we say that two morphisms
a, b : x → y of S lying over the same arrow of C are locally equal if there exists a
covering {fi : Ui → U} of C such that the compositions

f∗i x→ x
a−→ y, f∗i x→ x

b−→ y

are equal. This gives an equivalence relation ∼ on arrows of S. If b ∼ b′ then
a ◦ b ◦ c ∼ a ◦ b′ ◦ c (verification omitted). Hence we can quotient out by this
equivalence relation to obtain a new category S1 over C together with a morphism
G1 : S → S1.

One checks that G1 preserves strongly cartesian morphisms and that S1 is a fibred
category over C. Checks omitted. Thus we reduce to the case where locally equal
morphisms are equal.

Next, we add morphisms as follows. Given x lying over U and any object y of lying
over V a locally defined morphism from x to y is given by

(1) a morphism f : U → V ,
(2) a covering {fi : Ui → U} of U , and
(3) morphisms ai : f∗i x→ Y with p(ai) = h ◦ fi

with the property that the compositions

(fi × fj)∗x→ f∗i x
ai−→ y, (fi × fj)∗x→ f∗j x

aj−→ y

are equal. Note that a usual morphism a : x→ y gives a locally defined morphism
(p(a) : U → V, {idU}, a). We say two locally defined morphisms (f, {fi : Ui →
U}, ai) and (g, {gj : Ui → U}, bj) are equal if f = g and the compositions

(fi × gj)∗x→ f∗i x
ai−→ y, (fi × gj)∗x→ g∗jx

bj−→ y

are equal (this is the right condition since we are in the situation where locally
equal morphisms are equal). To compose locally defined morphisms (f, {fi : Ui →

http://stacks.math.columbia.edu/tag/02ZN
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U}, ai) from x to y and (g, {gj : Vj → V }, bj) from y to z lying over W , just take
g ◦ f : U →W , the covering {Ui ×V Vj → U}, and as maps the compositions

x|Ui×V Vj
pr∗0ai−−−→ y|Vj

bj−→ z

We omit the verification that this is a locally defined morphism.

One checks that S2 with the same objects as S and with locally defined morphisms
as morphisms is a category over C, that there is a functor G2 : S → S2 over
C, that this functor preserves strongly cartesian objects, and that S2 is a fibred
category over C. Checks omitted. This reduces one to the case where the morphism
presheaves of S are all sheaves, by checking that the effect of using locally defined
morphisms is to take the sheafification of the (separated) morphisms presheaves.

Finally, in the case where the morphism presheaves are all sheaves we have to add
objects in order to make sure descent conditions are effective in the end result. The
simplest way to do this is to consider the category S ′ whose objects are pairs (U , ξ)
where U = {Ui → U} is a covering of C and ξ = (Xi, ϕii′) is a descent datum
relative U . Suppose given two such data (U , ξ) = ({fi : Ui → U}, xi, ϕii′) and
(V, η) = ({gj : Vj → V }, yj , ψjj′). We define

MorS′((U , ξ), (V, η))

as the set of (f, aij), where f : U → V and

aij : xi|Ui×V Vj −→ yj

are morphisms of S lying over Ui ×V Vj → Vj . These have to satisfy the following
condition: for any i, i′ ∈ I and j, j′ ∈ J set W = (Ui ×U Ui′)×V (Vj ×V Vj′). Then

xi|W
aij |W

//

ϕii′ |W
��

yj |W

ψjj′ |W
��

xi′ |W
ai′j′ |W // yj′ |W

commutes. At this point you have to verify the following things:

(1) there is a well defined composition on morphisms as above,
(2) this turns S ′ into a category over C,
(3) there is a functor G : S → S ′ over C,
(4) for x, y objects of S we have MorS(x, y) = MorS′(G(x), G(y)),
(5) any object of S ′ locally comes from an object of S, i.e., part (2) of the

lemma holds,
(6) G preserves strongly cartesian morphisms,
(7) S ′ is a fibred category over C, and
(8) S ′ is a stack over C.

This is all not hard but there is a lot of it. Details omitted. �

Less naive proof. Here is a less naive proof. By Categories, Lemma 4.34.4 there
exists an equivalence of fibred categories S → S ′ where S ′ is a split fibred category,
i.e., one in which the pullback functors compose on the nose. Obviously the lemma
for S ′ implies the lemma for S. Hence we may think of S as a presheaf in categories.
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Consider the 2-category Cat temporarily as a category by forgetting about 2-
morphisms. Let us think of a category as a quintuple (Ob,Arrows, s, t, ◦) as in
Categories, Section 4.2. Consider the forgetful functor

forget : Cat→ Sets, (Ob,Arrows, s, t, ◦) 7→ Ob
∐

Arrows.

Then forget is faithful, Cat has limits and forget commutes with them, Cat has di-
rected colimits and forget commutes with them, and forget reflects isomorphisms.
Hence, according to the first part of Sites, Section 7.43 we can sheafify presheaves
with values in Cat, and the result commutes with forget. Applying this to S we
obtain a sheafification S# which has a sheaf of objects and a sheaf of morphisms
both of which are the sheafifications of the corresponding presheaves for S. In this
case it is quite easy to see that the map S → S# has the properties (1) and (2) of
the lemma.

However, the category S# may not yet be a stack since, although the presheaf of
objects is a sheaf, the descent condition may not yet be satisfied. To remedy this
we have to add more objects. But the argument above does reduce us to the case
where S = SF for some sheaf(!) F : Copp → Cat of categories. In this case consider
the functor F ′ : Copp → Cat defined by

(1) The set Ob(F ′(U)) is the set of pairs (U , ξ) where U = {Ui → U} is a
covering of U and ξ = (xi, ϕii′) is a descent datum relative to U .

(2) A morphism in F ′(U) from (U , ξ) to (V, η) is an element of

colim MorDD(W)(a
∗ξ, b∗η)

where the colimit is over all common refinements a :W → U , b :W → V.
This colimit is filtered (verification omitted). Hence composition of mor-
phisms in F (U) is defined by finding a common refinement and composing
in DD(W).

(3) Given h : V → U and an object (U , ξ) of F ′(U) we set F ′(h)(U , ξ) equal
to (V ×U U ,pr∗1ξ). More precisely, if U = {Ui → U} and ξ = (xi, ϕii′),
then V ×U U = {V ×U Ui → V } which comes with a canonical morphism
pr1 : V ×U U → U and pr∗1ξ is the pullback of ξ with respect to this
morphism (see Definition 8.3.4).

(4) Given h : V → U , objects (U , ξ) and (V, η) and a morphism between
them, represented by a : W → U , b : W → V, and α : a∗ξ → b∗η, then
F ′(h)(α) is represented by a′ : V ×UW → V ×U U , b′ : V ×UW → V ×U V,
and the pullback α′ of the morphism α via the map V ×U W →W. This
works since pullbacks in SF commute on the nose.

There is a map F → F ′ given by associating to an object x of F (U) the object
({U → U}, (x, triv)) of F ′(U). At this point you have to check that the correspond-
ing functor SF → SF ′ has properties (1) and (2) of the lemma, and finally that SF ′
is a stack. Details omitted. �

Lemma 8.8.2. Let C be a site. Let p : S → C be a fibred category over C. Let
p′ : S ′ → C and G : S → S ′ the stack and 1-morphism constructed in Lemma 8.8.1.
This construction has the following universal property: Given a stack q : X → C
and a 1-morphism F : S → S ′ of fibred categories over C there exists a 1-morphism

http://stacks.math.columbia.edu/tag/0435
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H : S ′ → X such that the diagram

S
F

//

G ��

X

S ′
H

>>

is 2-commutative.

Proof. Omitted. Hint: Suppose that x′ ∈ Ob(S ′U ). By the result of Lemma
8.8.1 there exists a covering {Ui → U}i∈I such that x′|Ui = G(xi) for some xi ∈
Ob(SUi). Moreover, there exist coverings {Uijk → Ui ×U Uj} and isomorphisms
αijk : xi|Uijk → xj |Uijk with G(αijk) = idx′|Uijk . Set yi = F (xi). Then you can

check that
F (αijk) : yi|Uijk → yj |Uijk

agree on overlaps and therefore (as X is a stack) define a morphism βij : yi|Ui×UUj →
yj |Ui×UUj . Next, you check that the βij define a descent datum. Since X is a stack
these descent data are effective and we find an object y of XU agreeing with G(xi)
over Ui. The hint is to set H(x′) = y. �

Lemma 8.8.3. Notation and assumptions as in Lemma 8.8.2. There is a canonical
equivalence of categories

MorFib/C(S,X ) = MorStacks/C(S ′,X )

given by the constructions in the proof of the aforementioned lemma.

Proof. Omitted. �

Lemma 8.8.4. Let C be a site. Let f : X → Y and g : Z → Y be morphisms of
fibred categories over C. In this case the stackification of the 2-fibre product is the
2-fibre product of the stackifications.

Proof. Let us denote X ′,Y ′,Z ′ the stackifications and W the stackification of
X ×Y Z. By construction of 2-fibre products there is a canonical 1-morphism
X ×Y Z → X ′ ×Y′ Z ′. As the second 2-fibre product is a stack (see Lemma 8.4.6)
this 1-morphism induces a 1-morphism h :W → X ′×Y′Z ′ by the universal property
of stackification, see Lemma 8.8.2. Now h is a morphism of stacks, and we may
check that it is an equivalence using Lemmas 8.4.7 and 8.4.8.

Thus we first prove that h induces isomorphisms of Mor -sheaves. Let ξ, ξ′ be objects
of W over U ∈ Ob(C). We want to show that

h : Mor(ξ, ξ′) −→ Mor(h(ξ), h(ξ′))

is an isomorphism. To do this we may work locally on U (see Sites, Section 7.25).
Hence by construction of W (see Lemma 8.8.1) we may assume that ξ, ξ′ actually
come from objects (x, y, α) and (x′, y′, α′) of X ×Y Z over U . By the same lemma
once more we see that in this case Mor(ξ, ξ′) is the sheafification of

V/U 7−→ MorXV (x|V , x′|V )×MorZV (f(x)|V ,f(x′)|V ) MorYV (y|V , y′|V )

and that Mor(h(ξ), h(ξ′)) is equal to the fibre product

Mor(i(x), i(x′))×Mor(k(f(x)),k(f(x′)) Mor(j(x), j(x′))

where i : X → X ′, j : Y → Y ′, and k : Z → Z ′ are the canonical functors. Thus the
first displayed map of this paragraph is an isomorphism as sheafification is exact
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(and hence the sheafification of a fibre product of presheaves is the fibre product of
the sheafifications).

Finally, we have to check that any object of X ′ ×Y′ Z ′ over U is locally on U
in the essential image of h. Write such an object as a triple (x′, y′, α). Then x′

locally comes from an object of X , y′ locally comes from an object of Y, and having
made suitable replacements for x′, y′ the morphism α of Z ′U locally comes from a
morphism of Z. In other words, we have shown that any object of X ′ ×Y′ Z ′ over
U is locally on U in the essential image of X ×Y Z → X ′ ×Y′ Z ′, hence a fortiori it
is locally in the essential image of h. �

Lemma 8.8.5. Let C be a site. Let X be a fibred category over C. The stackification
of the inertia fibred category IX is inertia of the stackification of X .

Proof. This follows from the fact that stackification is compatible with 2-fibre
products by Lemma 8.8.4 and the fact that there is a formula for the inertia in
terms of 2-fibre products of categories over C, see Categories, Lemma 4.32.1. �

8.9. Stackification of categories fibred in groupoids

Here is the result.

Lemma 8.9.1. Let C be a site. Let p : S → C be a category fibred in groupoids over
C. There exists a stack in groupoids p′ : S ′ → C and a 1-morphism G : S → S ′ of
categories fibred in groupoids over C (see Categories, Definition 4.33.6) such that

(1) for every U ∈ Ob(C), and any x, y ∈ Ob(SU ) the map

Mor(x, y) −→ Mor(G(x), G(y))

induced by G identifies the right hand side with the sheafification of the
left hand side, and

(2) for every U ∈ Ob(C), and any x′ ∈ Ob(S ′U ) there exists a covering {Ui →
U}i∈I such that for every i ∈ I the object x′|Ui is in the essential image
of the functor G : SUi → S ′Ui .

Moreover the stack in groupoids S ′ is determined up to unique 2-isomorphism by
these conditions.

Proof. Apply Lemma 8.8.1. The result will be a stack in groupoids by applying
Lemma 8.5.2. �

Lemma 8.9.2. Let C be a site. Let p : S → C be a category fibred in groupoids
over C. Let p′ : S ′ → C and G : S → S ′ the stack in groupoids and 1-morphism
constructed in Lemma 8.9.1. This construction has the following universal property:
Given a stack in groupoids q : X → C and a 1-morphism F : S → X of categories
over C there exists a 1-morphism H : S ′ → X such that the diagram

S
F

//

G ��

X

S ′
H

>>

is 2-commutative.

Proof. This is a special case of Lemma 8.8.2. �
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Lemma 8.9.3. Let C be a site. Let f : X → Y and g : Y → Z be morphisms
categories fibred in groupoids over C. In this case the stackification of the 2-fibre
product is the 2-fibre product of the stackifications.

Proof. This is a special case of Lemma 8.8.4. �

8.10. Inherited topologies

It turns out that a fibred category over a site inherits a canonical topology from
the underlying site.

Lemma 8.10.1. Let C be a site. Let p : S → C be a fibred category. Let Cov(S) be
the set of families {xi → x}i∈I of morphisms in S with fixed target such that (a)
each xi → x is strongly cartesian, and (b) {p(xi) → p(x)}i∈I is a covering of C.
Then (S,Cov(S)) is a site.

Proof. We have to check the three conditions of Sites, Definition 7.6.2.

(1) If x→ y is an isomorphism of S, then it is strongly cartesian by Categories,
Lemma 4.31.2 and p(x) → p(y) is an isomorphism of C. Thus {p(x) →
p(y)} is a covering of C whence {x→ y} ∈ Cov(S).

(2) If {xi → x}i∈I ∈ Cov(S) and for each i we have {yij → xi}j∈Ji ∈ Cov(S),
then each composition p(yij) → p(x) is strongly cartesian by Categories,
Lemma 4.31.2 and {p(yij) → p(x)}i∈I,j∈Ji ∈ Cov(C). Hence also {yij →
x}i∈I,j∈Ji ∈ Cov(S).

(3) Suppose {xi → x}i∈I ∈ Cov(S) and y → x is a morphism of S. As
{p(xi)→ p(x)} is a covering of C we see that p(xi)×p(x)p(y) exists. Hence
Categories, Lemma 4.31.13 implies that xi ×x y exists, that p(xi ×x y) =
p(xi) ×p(x) p(y), and that xi ×x y → y is strongly cartesian. Since also
{p(xi) ×p(x) p(y) → p(y)}i∈I ∈ Cov(C) we conclude that {xi ×x y →
y}i∈I ∈ Cov(S)

This finishes the proof. �

Note that if p : S → C is fibred in groupoids, then the coverings of the site S in
Lemma 8.10.1 are characterized by

{xi → x} ∈ Cov(S)⇔ {p(xi)→ p(x)} ∈ Cov(C)

because every morphism of S is strongly cartesian.

Definition 8.10.2. Let C be a site. Let p : S → C be a fibred category. We say
(S,Cov(S)) as in Lemma 8.10.1 is the structure of site on S inherited from C. We
sometimes indicate this by saying that S is endowed with the topology inherited
from C.

In particular we obtain a topos of sheaves Sh(S) in this situation. It turns out that
this topos is functorial with respect to 1-morphisms of fibred categories.

Lemma 8.10.3. Let C be a site. Let F : X → Y be a 1-morphism of fibred
categories over C. Then F is a continuous and cocontinuous functor between
the structure of sites inherited from C. Hence F induces a morphism of topoi
f : Sh(X ) → Sh(Y) with f∗ = sF = pF and f−1 = F s = F p. In particular
f−1(G)(x) = G(F (x)) for a sheaf G on Y and object x of X .
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Proof. We first prove that F is continuous. Let {xi → x}i∈I be a covering of X . By
Categories, Definition 4.31.9 the functor F transforms strongly cartesian morphisms
into strongly cartesian morphisms, hence {F (xi) → F (x)}i∈I is a covering of Y.
This proves part (1) of Sites, Definition 7.14.1. Moreover, let x′ → x be a morphism
of X . By Categories, Lemma 4.31.13 the fibre product xi×xx′ exists and xi×xx′ →
x′ is strongly cartesian. Hence F (xi ×x x′) → F (x′) is strongly cartesian. By
Categories, Lemma 4.31.13 applied to Y this means that F (xi×x x′) = F (xi)×F (x)

F (x′). This proves part (2) of Sites, Definition 7.14.1 and we conclude that F is
continuous.

Next we prove that F is cocontinuous. Let x ∈ Ob(X ) and let {yi → F (x)}i∈I
be a covering in Y. Denote {Ui → U}i∈I the corresponding covering of C. For
each i choose a strongly cartesian morphism xi → x in X lying over Ui → U .
Then F (xi)→ F (x) and yi → F (x) are both a strongly cartesian morphisms in Y
lying over Ui → U . Hence there exists a unique isomorphism F (xi) → yi in YUi
compatible with the maps to F (x). Thus {xi → x}i∈I is a covering of X such that
{F (xi)→ F (x)}i∈I is isomorphic to {yi → F (x)}i∈I . Hence F is cocontinuous, see
Sites, Definition 7.19.1.

The final assertion follows from the first two, see Sites, Lemmas 7.20.1, 7.19.2, and
7.20.5. �

Lemma 8.10.4. Let C be a site. Let p : X → C and q : Y → C be stacks in
groupoids. Let F : X → Y be a 1-morphism of categories over C. If F turns X into
a category fibred in groupoids over Y, then X is a stack in groupoids over Y (with
topology inherited from C).

Proof. Let us prove descent for objects. Let {yi → y} be a covering of Y. Let
(xi, ϕij) be a descent datum in X with respect to this covering. Then (xi, ϕij) is also
a descent datum with respect to the covering {q(yi)→ q(y)} of C. As X is a stack
in groupoids we obtain an object x over q(y) and isomorphisms ψi : x|q(yi) → xi
over q(yi) compatible with the ϕij , i.e., such that

ϕij = ψj |q(yi)×q(y)q(yj) ◦ ψ
−1
i |q(yi)×q(y)q(yj).

Consider the sheaf I = IsomY(F (x), y) on C/p(x). Note that si = F (ψi) ∈ I (q(xi))
because F (xi) = yi. Because F (ϕij) = id (as we started with a descent datum over
{yi → y}) the displayed formula shows that si|q(yi)×q(y)q(yj) = sj |q(yi)×q(y)q(yj).

Hence the local sections si glue to s : F (x)→ y. As F is fibred in groupoids we see
that x is isomorphic to an object x′ with F (x′) = y. We omit the verification that
x′ in the fibre category of X over y is a solution to the problem of descent posed
by the descent datum (xi, ϕij). We also omit the proof of the sheaf property of the
Isom-presheaves of X/Y. �

Lemma 8.10.5. Let C be a site. Let p : X → C be a stack. Endow X with the
topology inherited from C and let q : Y → X be a stack. Then Y is a stack over C.
If p and q define stacks in groupoids, then Y is a stack in groupoids over C.

Proof. We check the three conditions in Definition 8.4.1 to prove that Y is a stack
over C. By Categories, Lemma 4.31.12 we find that Y is a fibred category over C.
Thus condition (1) holds.
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Let U be an object of C and let y1, y2 be objects of Y over U . Denote xi = q(yi) in
X . Consider the map of presheaves

q : MorY/C(y1, y2) −→ MorX/C(x1, x2)

on C/U , see Lemma 8.2.3. Let {Ui → U} be a covering and let ϕi be a section of
the presheaf on the left over Ui such that ϕi and ϕj restrict to the same section
over Ui×U Uj . We have to find a morphism ϕ : x1 → x2 restricting to ϕi. Note that
q(ϕi) = ψ|Ui for some morphism ψ : x1 → x2 over U because the second presheaf
is a sheaf (by assumption). Let y12 → y2 be the stronly X -cartesian morphism of
Y lying over ψ. Then ϕi corresponds to a morphism ϕ′i : y1|Ui → y12|Ui over x1|Ui .
In other words, ϕ′i now define local sections of the presheaf

MorY/X (y1, y12)

over the members of the covering {x1|Ui → x1}. By assumption these glue to a
unique morphism y1 → y12 which composed with the given morphism y12 → y2

produces the desired morphism y1 → y2.

Finally, we show that descent data are effective. Let {fi : Ui → U} be a covering
of C and let (yi, ϕij) be a descent datum relative to this covering (Definition 8.3.1).
Setting xi = q(yi) and ψij = q(ϕij) we obtain a descent datum (xi, ψij) for the
covering in X . By assumption on X we may assume xi = x|Ui and the ψij equal
to the canonical descent datum (Definition 8.3.5). In this case {x|Ui → x} is a
covering and we can view (yi, ϕij) as a descent datum relative to this covering. By
our assumption that Y is a stack over C we see that it is effective which finishes the
proof of condition (3).

The final assertion follows because Y is a stack over C and is fibred in groupoids by
Categories, Lemma 4.33.13. �

8.11. Gerbes

Gerbes are a special kind of stacks in groupoids.

Definition 8.11.1. A gerbe over a site C is a category p : S → C over C such that

(1) p : S → C is a stack in groupoids over C (see Definition 8.5.1),
(2) for U ∈ Ob(C) there exists a covering {Ui → U} in C such that SUi is

nonempty, and
(3) for U ∈ Ob(C) and x, y ∈ Ob(SU ) there exists a covering {Ui → U} in C

such that x|Ui ∼= y|Ui in SUi .

In other words, a gerbe is a stack in groupoids such that any two objects are locally
isomorphic and such that objects exist locally.

Lemma 8.11.2. Let C be a site. Let S1, S2 be categories over C. Suppose that S1

and S2 are equivalent as categories over C. Then S1 is a gerbe over C if and only
if S2 is a gerbe over C.

Proof. Assume S1 is a gerbe over C. By Lemma 8.5.4 we see S2 is a stack in
groupoids over C. Let F : S1 → S2, G : S2 → S1 be equivalences of categories over
C. Given U ∈ Ob(C) we see that there exists a covering {Ui → U} such that (S1)Ui
is nonempty. Applying F we see that (S2)Ui is nonempty. Given U ∈ Ob(C) and
x, y ∈ Ob((S2)U ) there exists a covering {Ui → U} in C such that G(x)|Ui ∼= G(y)|Ui
in (S1)Ui . By Categories, Lemma 4.33.8 this implies x|Ui ∼= y|Ui in (S2)Ui . �
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We want to generalize the definition of gerbes a bit. Namely, let F : X → Y be
a 1-morphism of stacks in groupoids over a site C. We want to say what it means
for X to be a gerbe over Y. By Section 8.10 the category Y inherits the structure
of a site from C. A naive guess is: Just require that X → Y is a gerbe in the
sense above. Except the notion so obtained is not invariants under replacing X by
an equivalent stack in groupoids over C; this is even the case for the property of
being fibred in groupoids over Y. However, it turns out that we can replace X by
an equivalent stack in groupoids over Y which is fibred in groupoids over Y, and
then the property of being a gerbe over Y is independent of this choice. Here is the
precise formulation.

Lemma 8.11.3. Let C be a site. Let p : X → C and q : Y → C be stacks in
groupoids. Let F : X → Y be a 1-morphism of categories over C. The following are
equivalent

(1) For some (equivalently any) factorization F = F ′ ◦ a where a : X → X ′ is
an equivalence of categories over C and F ′ is fibred in groupoids, the map
F ′ : X ′ → Y is a gerbe (with the topology on Y inherited from C).

(2) The following two conditions are satisfied
(a) for y ∈ Ob(Y) lying over U ∈ Ob(C) there exists a covering {Ui → U}

in C and objects xi of X over Ui such that F (xi) ∼= y|Ui in YUi , and
(b) for U ∈ Ob(C), x, x′ ∈ Ob(XU ), and b : F (x) → F (x′) in YU there

exists a covering {Ui → U} in C and morphisms ai : x|Ui → x′|Ui in
XUi with F (ai) = b|Ui .

Proof. By Categories, Lemma 4.33.15 there exists a factorization F = F ′◦a where
a : X → X ′ is an equivalence of categories over C and F ′ is fibred in groupoids. By
Categories, Lemma 4.33.16 given any two such factorizations F = F ′ ◦ a = F ′′ ◦ b
we have that X ′ is equivalent to X ′′ as categories over Y. Hence Lemma 8.11.2
guarantees that the condition (1) is independent of the choice of the factorization.
Moreover, this means that we may assume X ′ = X ×F,Y,id Y as in the proof of
Categories, Lemma 4.33.15

Let us prove that (a) and (b) imply that X ′ → Y is a gerbe. First of all, by
Lemma 8.10.4 we see that X ′ → Y is a stack in groupoids. Next, let y be an
object of Y lying over U ∈ Ob(C). By (a) we can find a covering {Ui → U} in
C and objects xi of X over Ui and isomorphisms fi : F (xi) → y|Ui in YUi . Then
(Ui, xi, y|Ui , fi) are objects of X ′Ui , i.e., the second condition of Definition 8.11.1
holds. Finally, let (U, x, y, f) and (U, x′, y, f ′) be objects of X ′ lying over the same
object y ∈ Ob(Y). Set b = (f ′)−1 ◦ f . By condition (b) we can find a covering
{Ui → U} and isomorphisms ai : x|Ui → x′|Ui in XUi with F (ai) = b|Ui . Then

(ai, id) : (U, x, y, f)|Ui → (U, x′, y, f ′)|Ui
is a morphism in X ′Ui as desired. This proves that (2) implies (1).

To prove that (1) implies (2) one reads the arguments in the preceding paragraph
backwards. Details omitted. �

Definition 8.11.4. Let C be a site. Let X and Y be stacks in groupoids over C.
Let F : X → Y be a 1-morphism of categories over C. We say X is a gerbe over Y
if the equivalent conditions of Lemma 8.11.3 are satisfied.
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This definition does not conflict with Definition 8.11.1 when Y = C because in this
case we may take X ′ = X in part (1) of Lemma 8.11.3. Note that conditions (2)(a)
and (2)(b) of Lemma 8.11.3 are quite close in spirit to conditions (2) and (3) of
Definition 8.11.1. Namely, (2)(a) says that the map of presheaves of isomorphism
classes of objects becomes a surjection after sheafification. Moreover, (2)(b) says
that

IsomX (x, x′) −→ IsomY(F (x), F (x′))

is a surjection of sheaves on C/U for any U and x, x′ ∈ Ob(XU ).

Lemma 8.11.5. Let C be a site. Let

X ′
G′
//

F ′

��

X

F

��
Y ′ G // Y

be a 2-fibre product of stacks in groupoids over C. If X is a gerbe over Y, then X ′
is a gerbe over Y ′.

Proof. By the uniqueness property of a 2-fibre product may assume that X ′ =
Y ′×Y X as in Categories, Lemma 4.30.3. Let us prove properties (2)(a) and (2)(b)
of Lemma 8.11.3 for Y ′ ×Y X → Y ′.

Let y′ be an object of Y ′ lying over the object U of C. By assumption there exists
a covering {Ui → U} of U and objects xi ∈ XUi with isomorphisms αi : G(y′)|Ui →
F (xi). Then (Ui, y

′|Ui , xi, αi) is an object of Y ′ ×Y X over Ui whose image in Y ′ is
y′|Ui . Thus (2)(a) holds.

Let U ∈ Ob(C), let x′1, x
′
2 be objects of Y ′×YX over U , and let b′ : F ′(x′1)→ F ′(x′2)

be a morphism in Y ′U . Write x′i = (U, y′i, xi, αi). Note that F ′(x′i) = xi and
G′(x′i) = y′i. By assumption there exists a covering {Ui → U} in C and morphisms
ai : x1|Ui → x2|Ui in XUi with F (ai) = G(b′)|Ui . Then (b′|Ui , ai) is a morphism
x′1|Ui → x′2|Ui as required in (2)(b). �

Lemma 8.11.6. Let C be a site. Let F : X → Y and G : Y → Z be 1-morphisms
of stacks in groupoids over C. If X is a gerbe over Y and Y is a gerbe over Z, then
X is a gerbe over Z.

Proof. Let us prove properties (2)(a) and (2)(b) of Lemma 8.11.3 for X → Z.

Let z be an object of Z lying over the object U of C. By assumption on G there
exists a covering {Ui → U} of U and objects yi ∈ YUi such that G(yi) ∼= z|Ui . By
assumption on F there exist coverings {Uij → Ui} and objects xij ∈ XUij such that
F (xij) ∼= yi|Uij . Then {Uij → U} is a covering of C and (G ◦F )(xij) ∼= z|Uij . Thus
(2)(a) holds.

Let U ∈ Ob(C), let x1, x2 be objects of X over U , and let c : (G ◦ F )(x1) → (G ◦
F )(x2) be a morphism in ZU . By assumption on G there exists a covering {Ui → U}
of U and morphisms bi : F (x1)|Ui → F (x2)|Ui in YUi such that G(bi) = c|Ui . By
assumption on F there exist coverings {Uij → Ui} and morphisms aij : x1|Uij →
x2|Uij in XUij such that F (aij) = bi|Uij . Then {Uij → U} is a covering of C and
(G ◦ F )(aij) = c|Uij as required in (2)(b). �
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Lemma 8.11.7. Let C be a site. Let

X ′
G′
//

F ′

��

X

F

��
Y ′ G // Y

be a 2-cartesian diagram of stacks in groupoids over C. If for every U ∈ Ob(C) and
x ∈ Ob(YU ) there exists a covering {Ui → U} such that x|Ui is in the essential
image of G : Y ′Ui → YUi and X ′ is a gerbe over Y ′, then X is a gerbe over Y.

Proof. By the uniqueness property of a 2-fibre product may assume that X ′ =
Y ′×Y X as in Categories, Lemma 4.30.3. Let us prove properties (2)(a) and (2)(b)
of Lemma 8.11.3 for X → Y.

Let y be an object of Y lying over the object U of C. By assumption there exists
a covering {Ui → U} of U and objects y′i ∈ Y ′Ui with G(y′i)

∼= y|Ui . By (2)(a)
for X ′ → Y ′ there exist coverings {Uij → Ui} and objects x′ij of X ′ over Uij with
F ′(x′ij) isomorphic to the restriction of y′i to Uij . Then {Uij → U} is a covering of
C and G′(x′ij) are objects of X over Uij whose images in Y are isomorphic to the
restrictions y|Uij . This proves (2)(a) for X → Y.

Let U ∈ Ob(C), let x1, x2 be objects of X over U , and let b : F (x1) → F (x2) be a
morphism in YU . By assumption we may choose a covering {Ui → U} and objects
y′1i, y

′
2i of Y ′ over Ui such that there exist isomorphisms α1i : G(y′1i)

∼= F (x1)|Ui
and α2i : G(y′2i)

∼= F (x2)|Ui . Then we get objects x′1i = (Ui, y
′
1i, x1|Ui , α1i) and

x′2i = (Ui, y
′
1i, x1|Ui , α2i) of X ′ over Ui. The restriction b|Ui is a morphism F ′(x′1i)→

F ′(x′2i). By (2)(b) for X ′ → Y ′ there exist coverings {Uij → Ui} and morphisms
a′ij : x′1i|Uij → x′2i|Uij such that F ′(a′ij) = b|Uij . Unwinding the definition of
morphisms in Y ′×Y X we see that G′(a′ij) : x1|Uij → x2|Uij are the morphism we’re
looking for, i.e., (2)(b) holds for X → Y. �

8.12. Functoriality for stacks

In this section we study what happens if we want to change the base site of a stack.
This section can be skipped on a first reading.

Let u : C → D be a functor between categories. Let p : S → D be a category over
D. In this situation we denote upS the category over C defined as follows

(1) An object of upS is a pair (U, y) consisting of an object U of C and an
object y of Su(U).

(2) A morphism (a, β) : (U, y)→ (U ′, y′) is given by a morphism a : U → U ′

of C and a morphism β : y → y′ of S such that p(β) = u(a).

Note that with these definitions the fibre category of upS over U is equal to the
fibre category of S over u(U).

Lemma 8.12.1. In the situation above, if S is a fibred category over D then upS
is a fibred category over C.

Proof. Please take a look at the discussion surrounding Categories, Definitions
4.31.1 and 4.31.5 before reading this proof. Let (a, β) : (U, y) → (U ′, y′) be a
morphism of upS. We claim that (a, β) is strongly cartesian if and only if β is
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strongly cartesian. First, assume β is strongly cartesian. Consider any second
morphism (a1, β1) : (U1, y1)→ (U ′, y′) of upS. Then

MorupS((U1, y1), (U, y))

= MorC(U1, U)×MorD(u(U1),u(U)) MorS(y1, y)

= MorC(U1, U)×MorD(u(U1),u(U)) MorS(y1, y
′)×MorD(u(U1),u(U ′)) MorD(u(U1), u(U))

= MorS(y1, y
′)×MorD(u(U1),u(U ′)) MorC(U1, U)

= MorupS((U1, y1), (U ′, y′))×MorC(U1,U ′) MorC(U1, U)

the second equality as β is strongly cartesian. Hence we see that indeed (a, β) is
strongly cartesian. Conversely, suppose that (a, β) is strongly cartesian. Choose
a strongly cartesian morphism β′ : y′′ → y′ in S with p(β′) = u(a). Then bot
(a, β) : (U, y) → (U, y′) and (a, β′) : (U, y′′) → (U, y) are strongly cartesian and
lift a. Hence, by the uniqueness of strongly cartesian morphisms (see discussion in
Categories, Section 4.31) there exists an isomorphism ι : y → y′′ in Su(U) such that
β = β′ ◦ ι, which implies that β is strongly cartesian in S by Categories, Lemma
4.31.2.

Finally, we have to show that given (U ′, y′) and U → U ′ we can find a strongly
cartesian morphism (U, y) → (U ′, y′) in upS lifting the morphism U → U ′. This
follows from the above as by assumption we can find a strongly cartesian morphism
y → y′ lifting the morphism u(U)→ u(U ′). �

Lemma 8.12.2. Let u : C → D be a continuous functor of sites. Let p : S → D be
a stack over D. Then upS is a stack over C.

Proof. We have seen in Lemma 8.12.1 that upS is a fibred category over C. More-
over, in the proof of that lemma we have seen that a morphism (a, β) of upS is
strongly cartesian if and only β is strongly cartesian in S. Hence, given a mor-
phism a : U → U ′ of C, not only do we have the equalities (upS)U = SU and
(upS)U ′ = SU ′ , but via these equalities the pullback functors agree; in a formula
a∗(U ′, y′) = (U, u(a)∗y′).

Having said this, let U = {Ui → U} be a covering of C. As u is continuous
we see that V = {u(Ui) → u(U)} is a covering of D, and that u(Ui ×U Uj) =
u(Ui)×u(U) u(Uj) and similarly for the triple fibre products Ui×U Uj×U Uk. As we
have the identifications of fibre categories and pullbacks we see that descend data
relative to U are identical to descend data relative to V. Since by assumption we
have effective descent in S we conclude the same holds for upS. �

Lemma 8.12.3. Let u : C → D be a continuous functor of sites. Let p : S → D be
a stack in groupoids over D. Then upS is a stack in groupoids over C.

Proof. This follows immediately from Lemma 8.12.2 and the fact that all fibre
categories are groupoids. �

Definition 8.12.4. Let f : D → C be a morphism of sites given by the continuous
functor u : C → D. Let S be a fibred category over D. In this setting we write f∗S
for the fibred category upS defined above. We say that f∗S is the pushforward of
S along f .
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By the results above we know that f∗S is a stack (in groupoids) if S is a stack (in
groupoids). It is harder to define the pullback of a stack (and we’ll need additional
assumptions for our particular construction – feel free to write up and submit a
more general construction). We do this in several steps.

Let u : C → D be a functor between categories. Let p : S → C be a category over
C. In this setting we define a category uppS as follows:

(1) An object of uppS is a triple (U, φ : V → u(U), x) where U ∈ Ob(C), the
map φ : V → u(U) is a morphism in D, and x ∈ Ob(SU ).

(2) A morphism

(U1, φ1 : V1 → u(U1), x1) −→ (U2, φ2 : V2 → u(U2), x2)

of uppS is given by a (a, b, α) where a : U1 → U2 is a morphism of C,
b : V1 → V2 is a morphism of D, and α : x1 → x2 is morphism of S, such
that p(α) = a and the diagram

V1

φ1

��

b
// V2

φ2

��
u(U1)

u(a) // u(U2)

commutes in D.

We think of uppS as a category over D via

ppp : uppS −→ D, (U, φ : V → u(U), x) 7−→ V.

The fibre category of uppS over an object V of D does not have a simple description.
Moreover, it is in general not the case that uppS is a fibred category over D if S is
a fibred category over C.

Lemma 8.12.5. In the situation above assume

(1) p : S → C is a fibred category,
(2) C has nonempty finite limits, and
(3) u : C → D commutes with nonempty finite limits.

Consider the set R ⊂ Arrows(uppS) of morphisms of the form

(a, idV , α) : (U ′, φ′ : V → u(U ′), x′) −→ (U, φ : V → u(U), x)

with α strongly cartesian. Then R is a right multiplicative system.

Proof. According to Categories, Definition 4.25.1 we have to check RMS1, RMS2,
RMS3. Condition RMS1 holds as a composition of strongly cartesian morphisms
is strongly cartesian, see Categories, Lemma 4.31.2.

To check RMS2 suppose we have a morphism

(a, b, α) : (U1, φ1 : V1 → u(U1), x1) −→ (U, φ : V → u(U), x)

of uppS and a morphism

(c, idV , γ) : (U ′, φ′ : V → u(U ′), x′) −→ (U, φ : V → u(U), x)

with γ strongly cartesian from R. In this situation set U ′1 = U1 ×U U ′, and denote
a′ : U ′1 → U ′ and c′ : U ′1 → U1 the projections. As u(U ′1) = u(U1) ×u(U) u(U ′)
we see that φ′1 = (φ1, φ

′) : V1 → u(U ′1) is a morphism in D. Let γ1 : x′1 → x1 be
a strongly cartesian morphism of S with p(γ1) = φ′1 (which exists because S is a
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fibred category over C). Then as γ : x′ → x is strongly cartesian there exists a
unique morphism α′ : x′1 → x′ with p(α′) = a′. At this point we see that

(a′, b, α′) : (U1, φ1 : V1 → u(U ′1), x′1) −→ (U, φ : V → u(U ′), x′)

is a morphism and that

(c′, idV1
, γ1) : (U ′1, φ

′
1 : V1 → u(U ′1), x′1) −→ (U1, φ : V1 → u(U1), x1)

is an element of R which form a solution of the existence problem posed by RMS2.

Finally, suppose that

(a, b, α), (a′, b′, α′) : (U1, φ1 : V1 → u(U1), x1) −→ (U, φ : V → u(U), x)

are two morphisms of uppS and suppose that

(c, idV , γ) : (U, φ : V → u(U), x) −→ (U ′, φ : V → u(U ′), x′)

is an element of R which equalizes the morphisms (a, b, α) and (a′, b′, α′). This
implies in particular that b = b′. Let d : U2 → U1 be the equalizer of a, a′ which
exists (see Categories, Lemma 4.18.3). Moreover, u(d) : u(U2) → u(U1) is the
equalizer of u(a), u(a′) hence (as b = b′) there is a morphism φ2 : V1 → u(U2) such
that φ1 = u(d) ◦ φ1. Let δ : x2 → x1 be a strongly cartesian morphism of S with
p(δ) = u(d). Now we claim that α ◦ δ = α′ ◦ δ. This is true because γ is strongly
cartesian, γ ◦ α ◦ δ = γ ◦ α′ ◦ δ, and p(α ◦ δ) = p(α′ ◦ δ). Hence the arrow

(d, idV1 , δ) : (U2, φ2 : V1 → u(U2), x2) −→ (U1, φ1 : V1 → u(U1), x1)

is an element of R and equalizes (a, b, α) and (a′, b′, α′). Hence R satisfies RMS3
as well. �

Lemma 8.12.6. With notation and assumptions as in Lemma 8.12.5. Set upS =
R−1uppS, see Categories, Section 4.25. Then upS is a fibred category over D.

Proof. We use the description of upS given just above Categories, Lemma 4.25.9.
Note that the functor ppp : uppS → D transforms every element of R to an identity
morphism. Hence by Categories, Lemma 4.25.13 we obtain a canonical functor
pp : upS → D extending the given functor. This is how we think of upS as a
category over D.

First we want to characterize the D-strongly cartesian morphisms in upS. A mor-
phism f : X → Y of upS is the equivalence class of a pair (f ′ : X ′ → Y, r : X ′ → X)
with r ∈ R. In fact, in upS we have f = (f ′, 1)◦(r, 1)−1 with obvious notation. Note
that an isomorphism is always strongly cartesian, as are compositions of strongly
cartesian morphisms, see Categories, Lemma 4.31.2. Hence f is strongly cartesian if
and only if (f ′, 1) is so. Thus the following claim completely characterizes strongly
cartesian morphisms. Claim: A morphism

(a, b, α) : X1 = (U1, φ1 : V1 → u(U1), x1) −→ (U2, φ2 : V2 → u(U2), x2) = X2

of uppS has image f = ((a, b, α), 1) strongly cartesian in upS if and only if α is a
strongly cartesian morphism of S.

Assume α strongly cartesian. Let X = (U, φ : V → u(U), x) be another object,
and let f2 : X → X2 be a morphism of upS such that pp(f2) = b ◦ b1 for some
b1 : U → U1. To show that f is strongly cartesian we have to show that there exists
a unique morphism f1 : X → X1 in upS such that pp(f1) = b1 and f2 = f◦f1 in upS.
Write f2 = (f ′2 : X ′ → X2, r : X ′ → X). Again we can write f2 = (f ′2, 1) ◦ (r, 1)−1
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in upS. Since (r, 1) is an isomorphism whose image in D is an identity we see that
finding a morphism f1 : X → X1 with the required properties is the same thing as
finding a morphism f ′1 : X ′ → X1 in upS with p(f ′1) = b1 and f ′2 = f ◦ f ′1. Hence
we may assume that f2 is of the form f2 = ((a2, b2, α2), 1) with b2 = b ◦ b1. Here is
a picture

(U1, V1 → u(U1), x1)

(a,b,α)

��
(U, V → u(U), x)

(a2,b2,α2) // (U2, V2 → u(U2), x2)

Now it is clear how to construct the morphism f1. Namely, set U ′ = U ×U2
U1 with

projections c : U ′ → U and a1 : U ′ → U1. Pick a strongly cartesian morphism γ :
x′ → x lifting the morphism c. Since b2 = b◦b1, and since u(U ′) = u(U)×u(U2)u(U1)
we see that φ′ = (φ, φ1 ◦ b1) : V → u(U ′). Since α is strongly cartesian, and
a ◦ a1 = a2 ◦ c = p(α2 ◦ γ) there exists a morphism α1 : x′ → x1 lifting a1 such that
α ◦ α1 = α2 ◦ γ. Set X ′ = (U ′, φ′ : V → u(U ′), x′). Thus we see that

f1 = ((a1, b1, α1) : X ′ → X1, (c, idV , γ) : X ′ → X) : X −→ X1

works, in fact the diagram

(U ′, φ′ : V → u(U ′), x′)

(c,idV ,γ)

��

(a1,b1,α1)
// (U1, V1 → u(U1), x1)

(a,b,α)

��
(U, V → u(U), x)

(a2,b2,α2) // (U2, V2 → u(U2), x2)

is commutative by construction. This proves existence.

Next we prove uniqueness, still in the special case f = ((a, b, α), 1) and f2 =
((a2, b2, α2), 1). We strongly advise the reader to skip this part. Suppose that
g1, g

′
1 : X → X1 are two morphisms of upS such that pp(g1) = pp(g

′
1) = b1 and

f2 = f◦g1 = f◦g′1. Our goal is to show that g1 = g′1. By Categories, Lemma 4.25.10
we may represent g1 and g′1 as the equivalence classes of (f1 : X ′ → X1, r : X ′ → X)
and (f ′1 : X ′ → X1, r : X ′ → X) for some r ∈ R. By Categories, Lemma 4.25.11
we see that f2 = f ◦ g1 = f ◦ g′1 means that there exists a morphism r′ : X ′′ → X ′

in uppS such that r′ ◦ r ∈ R and

(a, b, α) ◦ f1 ◦ r′ = (a, b, α) ◦ f ′1 ◦ r′ = (a2, b2, α2) ◦ r′

in uppS. Note that now g1 is represented by (f1 ◦ r′, r ◦ r′) and similarly for g′1.
Hence we may assume that

(a, b, α) ◦ f1 = (a, b, α) ◦ f ′1 = (a2, b2, α2).

Write r = (c, idV , γ) : (U ′, φ′ : V → u(U ′), x′), f1 = (a1, b1, α1), and f ′1 =
(a′1, b1, α

′
1). Here we have used the condition that pp(g1) = pp(g

′
1). The equali-

ties above are now equivalent to a◦a1 = a◦a′1 = a2 ◦c and α◦α1 = α◦α′1 = α2 ◦γ.
It need not be the case that a1 = a′1 in this situation. Thus we have to precom-
pose by one more morphism from R. Namely, let U ′′ = Eq(a1, a

′
1) be the equalizer

of a1 and a′1 which is a subobject of U ′. Denote c′ : U ′′ → U ′ the canonical
monomorphism. Because of the relations among the morphisms above we see that
V → u(U ′) maps into u(U ′′) = u(Eq(a1, a

′
1)) = Eq(u(a1), u(a′1)). Hence we get a

new object (U ′′, φ′′ : V → u(U ′′), x′′), where γ′ : x′′ → x′ is a strongly cartesian
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morphism lifting γ. Then we see that we may precompose f1 and f ′1 with the ele-
ment (c′, idV , γ

′) of R. After doing this, i.e., replacing (U ′, φ′ : V → u(U ′), x′) with
(U ′′, φ′′ : V → u(U ′′), x′′), we get back to the previous situation where in addition
we now have that a1 = a′1. In this case it follows formally from the fact that α is
strongly cartesian (!) that α1 = α′1. This shows that g1 = g′1 as desired.

We omit the proof of the fact that for any strongly cartesian morphism of upS
of the form ((a, b, α), 1) the morphism α is strongly cartesian in S. (We do not
need the characterization of strongly cartesian morphisms in the rest of the proof,
although we do use it later in this section.)

Let (U, φ : V → u(U), x) be an object of upS. Let b : V ′ → V be a morphism of D.
Then the morphism

(idU , b, idx) : (U, φ ◦ b : V ′ → u(U), x) −→ (U, φ : V → u(U), x)

is strongly cartesian by the result of the preceding paragraphs and we win. �

Lemma 8.12.7. With notation and assumptions as in Lemma 8.12.6. If S is fibred
in groupoids, then upS is fibred in groupoids.

Proof. By Lemma 8.12.6 we know that upS is a fibred category. Let f : X → Y
be a morphism of upS with pp(f) = idV . We are done if we can show that f is
invertible, see Categories, Lemma 4.33.2. Write f as the equivalence class of a pair
((a, b, α), r) with r ∈ R. Then pp(r) = idV , hence ppp((a, b, α)) = idV . Hence
b = idV . But any morphism of S is strongly cartesian, see Categories, Lemma
4.33.2 hence we see that (a, b, α) ∈ R is invertible in upS as desired. �

Lemma 8.12.8. Let u : C → D be a functor. Let p : S → C and q : T → D be
categories over C and D. Assume that

(1) p : S → C is a fibred category,
(2) q : T → D is a fibred category,
(3) C has nonempty finite limits, and
(4) u : C → D commutes with nonempty finite limits.

Then we have a canonical equivalence of categories

MorFib/C(S, upT ) = MorFib/D(upS, T )

of morphism categories.

Proof. In this proof we use the notation x/U to denote an object x of S which
lies over U in C. Similarly y/V denotes an object y of T which lies over V in D.
In the same vein α/a : x/U → x′/U ′ denotes the morphism α : x→ x′ with image
a : U → U ′ in C.
Let G : upS → T be a 1-morphism of fibred categories over D. Denote G′ : uppS →
T the composition of G with the canonical (localization) functor uppS → upS.
Then consider the functor H : S → upT given by

H(x/U) = (U,G′(U, idu(U) : u(U)→ u(U), x))

on objects and by

H((α, a) : x/U → x′/U ′) = G′(a, u(a), α)

on morphisms. Since G transforms strongly cartesian morphisms into strongly
cartesian morphisms, we see that if α is strongly cartesian, then H(α) is strongly
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cartesian. Namely, we’ve seen in the proof of Lemma 8.12.6 that in this case the
map (a, u(a), α) becomes strongly cartesian in upS. Clearly this construction is
functorial in G and we obtain a functor

A : MorFib/D(upS, T ) −→ MorFib/C(S, upT )

Conversely, let H : S → upT be a 1-morphism of fibred categories. Recall that an
object of upT is a pair (U, y) with y ∈ Ob(Tu(U)). We denote pr : upT → T the
functor (U, y) 7→ y. In this case we define a functor G′ : uppS → T by the rules

G′(U, φ : V → u(U), x) = φ∗pr(H(x))

on objects and we let

G′((a, b, α) : (U, φ : V → u(U), x)→ (U ′, φ′ : V ′ → u(U ′), x′)) = β

be the unique morphism β : φ∗pr(H(x))→ (φ′)∗pr(H(x′)) such that q(β) = b and
the diagram

φ∗pr(H(x))

��

β
// (φ′)∗pr(H(x′))

��
pr(H(x))

pr(H(a,α))// pr(H(x′))

Such a morphism exists and is unique because T is a fibred category.

We check that G′(r) is an isomorphism if r ∈ R. Namely, if

(a, idV , α) : (U ′, φ′ : V → u(U ′), x′) −→ (U, φ : V → u(U), x)

with α strongly cartesian is an element of the right multiplicative system R of
Lemma 8.12.5 then H(α) is strongly cartesian, and pr(H(α)) is strongly cartesian,
see proof of Lemma 8.12.1. Hence in this case the morphism β has q(β) = idV
and is strongly cartesian. Hence β is an isomorphism by Categories, Lemma 4.31.2.
Thus by Categories, Lemma 4.25.13 we obtain a canonical extension G : upS → T .

Next, let us prove that G transforms strongly cartesian morphisms into strongly
cartesian morphisms. Suppose that f : X → Y is a strongly cartesian. By the
characterization of strongly cartesian morphisms in upS we can write f as ((a, b, α) :
X ′ → Y, r : X ′ → Y ) where r ∈ R and α strongly cartesian in S. By the above
it suffices to show that G′(a, bα) is strongly cartesian. As before the condition
that α is strongly cartesian implies that pr(H(a, α)) : pr(H(x)) → pr(H(x′)) is
strongly cartesian in T . Since in the commutative square above now all arrows
except possibly β is strongly cartesian it follows that also β is strongly cartesian
as desired. Clearly the construction H 7→ G is functorial in H and we obtain a
functor

B : MorFib/C(S, upT ) −→ MorFib/D(upS, T )

To finish the proof of the lemma we have to show that the functors A and B are
mutually quasi-inverse. We omit the verifications. �

Definition 8.12.9. Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition
7.15.6. Let S be a stack over C. In this setting we write f−1S for the stackification
of the fibred category upS over D constructed above. We say that f−1S is the
pullback of S along f .
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Of course, if S is a stack in groupoids, then f−1S is a stack in groupoids by Lemmas
8.9.1 and 8.12.7.

Lemma 8.12.10. Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition
7.15.6. Let p : S → C and q : T → D be stacks. Then we have a canonical
equivalence of categories

MorStacks/C(S, f∗T ) = MorStacks/D(f−1S, T )

of morphism categories.

Proof. For i = 1, 2 an i-morphism of stacks is the same thing as a i-morphism of
fibred categories, see Definition 8.4.5. By Lemma 8.12.8 we have already

MorFib/C(S, upT ) = MorFib/D(upS, T )

Hence the result follows from Lemma 8.8.3 as upT = f∗T and f−1S is the stacki-
fication of upS. �

Lemma 8.12.11. Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition
7.15.6. Let S → C be a fibred category, and let S → S ′ be the stackification of S.
Then f−1S ′ is the stackification of upS.

Proof. Omitted. Hint: This is the analogue of Sites, Lemma 7.14.4. �

The following lemma tells us that the 2-category of stacks over Schfppf is a “full
2-sub category” of the 2-category of stacks over Sch′fppf provided that Sch′fppf
contains Schfppf (see Topologies, Section 33.10).

Lemma 8.12.12. Let C and D be sites. Let u : C → D be a functor satisfying the
assumptions of Sites, Lemma 7.20.8. Let f : D → C be the corresponding morphism
of sites. Then

(1) for every stack p : S → C the canonical functor S → f∗f
−1S is an

equivalence of stacks,
(2) given stacks S,S ′ over C the construction f−1 induces an equivalence

MorStacks/C(S,S ′) −→ MorStacks/D(f−1S, f−1S ′)
of morphism categories.

Proof. Note that by Lemma 8.12.10 we have an equivalence of categories

MorStacks/D(f−1S, f−1S ′) = MorStacks/C(S, f∗f−1S ′)
Hence (2) follows from (1).

To prove (1) we are going to use Lemma 8.4.8. This lemma tells us that we have
to show that can : S → f∗f

−1S is fully faithful and that all objects of f∗f
−1S are

locally in the essential image.

We quickly describe the functor can, see proof of Lemma 8.12.8. To do this we
introduce the functor c′′ : S → uppS defined by c′′(x/U) = (U, id : u(U)→ u(U), x),
and c′′(α/a) = (a, u(a), α). We set c′ : S → upS equal to the composition of c′′ and
the canonical functor uppS → upS. We set c : S → f−1S equal to the composition
of c′ and the canonical functor upS → f−1S. Then can : S → f∗f

−1S is the functor
which to x/U associates the pair (U, c(x)) and to α/a the morphism (a, c(α)).
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Fully faithfulness. To prove this we are going to use Lemma 8.4.7. Let U ∈ Ob(C).
Let x, y ∈ SU . First off, as u is fully faithful, we have

Mor(f∗f−1S)U (can(x), can(y)) = Mor(f−1S)u(U)
(c(x), c(y))

directly from the definition of f∗. Similar holds after pulling back to any U ′/U . Be-
cause f−1S is the stackification of upS, and since u is continuous and cocontinuous
the presheaf

U ′/U 7−→ Mor(f−1S)u(U′)
(c(x|U ′), c(y|U ′))

is the sheafification of the presheaf

U ′/U 7−→ Mor(upS)u(U′)
(c′(x|U ′), c′(y|U ′))

Hence to finish the proof of fully faithfulness it suffices to show that for any U and
x, y the map

MorSU (x, y) −→ Mor(upS)U (c′(x), c′(y))

is bijective. A morphism f : x → y in upS over u(U) is given by an equivalence
class of diagrams

(U ′, φ : u(U)→ u(U ′), x′)

(c,idu(U),γ)

��

(a,b,α)
// (U, id : u(U)→ u(U), y)

(U, id : u(U)→ u(U), x)

with γ strongly cartesian and b = idu(U). But since u is fully faithful we can write
φ = u(c′) for some morphism c′ : U → U ′ and then we see that a ◦ c′ = idU and
c ◦ c′ = idU ′ . Because γ is strongly cartesian we can find a morphism γ′ : x → x′

lifting c′ such that γ ◦ γ′ = idx. By definition of the equivalence classes defining
morphisms in upS it follows that the morphism

(U, id : u(U)→ u(U), x)
(id,id,α◦γ′)

// (U, id : u(U)→ u(U), y)

of uppS induces the morphism f in upS. This proves that the map is surjective.
We omit the proof that it is injective.

Finally, we have to show that any object of f∗f
−1S locally comes from an object

of S. This is clear from the constructions (details omitted). �

8.13. Stacks and localization

Let C be a site. Let U be an object of C. We want to understand stacks over C/U
as stacks over C together with a morphism towards U . The following lemma is the
reason why this is easier to do when the presheaf hU is a sheaf.

Lemma 8.13.1. Let C be a site. Let U ∈ Ob(C). Then jU : C/U → C is a stack
over C if and only if hU is a sheaf.

Proof. Combine Lemma 8.6.3 with Categories, Example 4.36.7. �

Assume that C is a site, and U is an object of C whose associated representable
presheaf is a sheaf. We denote j : C/U → C the localization functor.

Construction A. Let p : S → C/U be a stack over the site C/U . We define a
stack j!p : j!S → C as follows:

(1) As a category j!S = S, and

http://stacks.math.columbia.edu/tag/04WU
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(2) the functor j!p : j!S → C is just the composition j ◦ p.
We omit the verification that this is a stack (hint: Use that hU is a sheaf to glue
morphisms to U). There is a canonical functor

j!S −→ C/U
namely the functor p which is a 1-morphism of stacks over C.
Construction B. Let q : T → C be a stack over C which is endowed with a
morphism of stacks p : T → C/U over C. In this case it is automatically the case
that p : T → C/U is a stack over C/U .

Lemma 8.13.2. Assume that C is a site, and U is an object of C whose associated
representable presheaf is a sheaf. Constructions A and B above define mutually
inverse (!) functors of 2-categories{

2-category of
stacks over C/U

}
↔

 2-category of pairs (T , p) consisting
of a stack T over C and a morphism

p : T → C/U of stacks over C


Proof. This is clear. �
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CHAPTER 9

Fields

9.1. Introduction

In this chapter, we shall discuss the theory of fields. Recall that a field is a ring
in which all nonzero elements are invertible. Equivalently, the only two ideals of a
field are (0) and (1) since any nonzero element is a unit. Consequently fields will
be the simplest cases of much of the theory developed later.

The theory of field extensions has a different feel from standard commutative al-
gebra since, for instance, any morphism of fields is injective. Nonetheless, it turns
out that questions involving rings can often be reduced to questions about fields.
For instance, any domain can be embedded in a field (its quotient field), and any
local ring (that is, a ring with a unique maximal ideal; we have not defined this
term yet) has associated to it its residue field (that is, its quotient by the maximal
ideal). A knowledge of field extensions will thus be useful.

9.2. Basic definitions

Because we have placed this chapter before the chapter discussing commutative
algebra we need to introduce some of the basic definitions here before we discuss
these in greater detail in the algebra chapters.

Definition 9.2.1. An field is a nonzero ring where every nonzero element is in-
vertible. Given a field a subfield is a subring that is itself a field.

For a field k, we write k∗ for the subset k \{0}. This generalizes the usual notation
R∗ that refers to the group of invertible elements in a ring R.

Definition 9.2.2. A domain or an integral domain is a nonzero ring where 0 is the
only zerodivisor.

9.3. Examples of fields

To get started, let us begin by providing several examples of fields. The reader
should recall that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely
when I is a maximal ideal.

Example 9.3.1 (Rational numbers). The rational numbers form a field. It is called
the field of rational numbers and denoted Q.

Example 9.3.2 (Prime fields). If p is a prime number, then Z/(p) is a field, denoted
Fp. Indeed, (p) is a maximal ideal in Z. Thus, fields may be finite: Fp contains p
elements.

387
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Example 9.3.3. In a principal ideal domain, an ideal generated by an irreducible
element is maximal. Now, if k is a field, then the polynomial ring k[x] is a principal
ideal domain. It follows that if P ∈ k[x] is an irreducible polynomial (that is, a
nonconstant polynomial that does not admit a factorization into terms of smaller
degrees), then k[x]/(P ) is a field. It contains a copy of k in a natural way. This
is a very general way of constructing fields. For instance, the complex numbers C
can be constructed as R[x]/(x2 + 1).

Example 9.3.4 (Quotient fields). Recall that, given a domain A, there is an imbed-
ding A→ K(A) into a field K(A) constructed from A in exactly the same manner
that Q is constructed from Z. Formally the elements of K(A) are (equivalence
classes of) fractions a/b, a, b ∈ A, b 6= 0. As usual a/b = a′/b′ if and only if
ab′ = ba′. This is called the quotient field or field of fractions or the fraction field of
A. The quotient field has the following universal property: given an injective ring
map ϕ : A→ K to a field K, there is a unique map ψ : K(A)→ K making

K(A)
ψ
// K

A

OO

ϕ

<<

commute. Indeed, it is clear how to define such a map: we set ψ(a/b) = ϕ(a)ϕ(b)−1

where injectivity of ϕ assures that ϕ(b) 6= 0 if b 6= 0.

Example 9.3.5 (Field of rational functions). If k is a field, then we can consider the
field k(x) of rational functions over k. This is the quotient field of the polynomial
ring k[x]. In other words, it is the set of quotients F/G for F,G ∈ k[x], G 6= 0 with
the obvious equivalence relation.

Example 9.3.6. Let X be a Riemann surface. Let C(X) denote the set of mero-
morphic functions on X. Then C(X) is a ring under multiplication and addition of
functions. It turns out that in fact C(X) is a field. Namely, if a nonzero function
f(z) is meromorphic, so is 1/f(z). For example, let S2 be the Riemann sphere;
then we know from complex analysis that the ring of meromorphic functions C(S2)
is the field of rational functions C(z).

9.4. Vector spaces

One reason fields are so nice is that the theory of modules over fields (i.e. vector
spaces), is very simple.

Lemma 9.4.1. If k is a field, then every k-module is free.

Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V
has a basis B ⊂ V , which defines an isomorphism from the free vector space on B
to V . �

Lemma 9.4.2. Every exact sequence of modules over a field splits.

Proof. This follows from Lemma 9.4.1 as every vector space is a projective module.
�

This is another reason why much of the theory in future chapters will not say
very much about fields, since modules behave in such a simple manner. Note
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that Lemma 9.4.2 is a statement about the category of k-modules (for k a field),
because the notion of exactness is inherently arrow-theoretic, i.e., makes use of
purely categorical notions, and can in fact be phrased within a so-called abelian
category.

Henceforth, since the study of modules over a field is linear algebra, and since the
ideal theory of fields is not very interesting, we shall study what this chapter is
really about: extensions of fields.

9.5. The characteristic of a field

In the category of rings, there is an initial object Z: any ring R has a map from Z
into it in precisely one way. For fields, there is no such initial object. Nonetheless,
there is a family of objects such that every field can be mapped into in exactly one
way by exactly one of them, and in no way by the others.

Let F be a field. Think of F as a ring to get a ring map f : Z→ F . The image of
this ring map is a domain (as a subring of a field) hence the kernel of f is a prime
ideal in Z. Hence the kernel of f is either (0) or (p) for some prime number p.

In the first case we see that f is injective, and in this case we think of Z as a subring
of F . Moreover, since every nonzero element of F is invertible we see that it makes
sense to talk about p/q ∈ F for p, q ∈ Z with q 6= 0. Hence in this case we may
and we do think of Q as a subring of F . One can easily see that this is the smallest
subfield of F in this case.

In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of
F . Clearly it is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is
either Q or finite equal to Fp for some prime number p.

Definition 9.5.1. The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if
p = 0 in F . The prime subfield of F is the smallest subfield of F which is either
Q ⊂ F if the characteristic is zero, or Fp ⊂ F if the characteristic is p > 0.

It is easy to see that if E ⊂ F is a subfield, then the characteristic of E is the same
as the characteristic of F .

Example 9.5.2. The characteristic of Fp is p, and that of Q is 0.

9.6. Field extensions

In general, though, we are interested not so much in fields by themselves but in
field extensions. This is perhaps analogous to studying not rings but algebras over
a fixed ring. The nice thing for fields is that the notion of a “field over another
field” just recovers the notion of a field extension, by the next result.

Proposition 9.6.1. If F is a field and R is a nonzero ring, then any ring homo-
morphism ϕ : F → R is injective.

Proof. Indeed, let a ∈ Ker(ϕ) be a nonzero element. Then we have ϕ(1) =
ϕ(a−1a) = ϕ(a−1)ϕ(a) = 0. Thus 1 = ϕ(1) = 0 and R is the zero ring. �

Definition 9.6.2. If F is a field contained in a field E, then E is said to be a field
extension of F . We shall write E/F to indicate that E is an extension of F .
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So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by Lemma
9.6.1 that it is injective, and F ′ can be regarded as an extension of F , by a slight
abuse of language. Alternatively, a field extension of F is just an F -algebra that
happens to be a field. This is completely different than the situation for general
rings, since a ring homomorphism is not necessarily injective.

Let k be a field. There is a category of field extensions of k. An object of this
category is an extension E/k, that is a (necessarily injective) morphism of fields

k → E,

while a morphism between extensions E/k and E′/k is a k-algebra morphism E →
E′; alternatively, it is a commutative diagram

E // E′

k

??__

The set of morphisms from E → E′ in the category of extensions of k will be
denoted by Mork(E,E′).

Definition 9.6.3. A tower of fields En/En−1/ . . . /E0 consists of a sequence of
extensions of fields En/En−1, En−1/En−2, . . ., E1/E0.

Let us give a few examples of field extensions.

Example 9.6.4. Let k be a field, and P ∈ k[x] an irreducible polynomial. We
have seen that k[x]/(P ) is a field (Example 9.3.3). Since it is also a k-algebra in
the obvious way, it is an extension of k.

Example 9.6.5. If X is a Riemann surface, then the field of meromorphic functions
C(X) (Example 9.3.6) is an extension field of C, because any element of C induces
a meromorphic — indeed, holomorphic — constant function on X.

Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest
subextension of F (that is, a subfield of F containing k) that contains S. To see this,
consider the family of subfields of F containing S and k, and take their intersection;
one checks that this is a field. By a standard argument one shows, in fact, that this
is the set of elements of F that can be obtained via a finite number of elementary
algebraic operations (addition, multiplication, subtraction, and division) involving
elements of k and S.

Definition 9.6.6. If F/k is an extension and S ⊂ F , we write k(S) for the smallest
subextension of F containing S. We will say that S generates the extension k(S)/k.

For instance, C is generated by i over R.

Exercise 9.6.7. Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

Lemma 9.6.8 (Classification of simple extensions). If a field extension F/k is
generated by one element, then it is k-isomorphic either to the rational function
field k(t)/k or to one of the extensions k[t]/(P ) for P ∈ k[t] irreducible.

We will see that many of the most important cases of field extensions are generated
by one element, so this is actually useful.
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Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There
is a morphism of rings

k[t]→ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime
ideal. Thus, it is either (0) or (P ) for P ∈ k[t] irreducible.

If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ),
and induces a morphism of fields k[t]/(P )→ F . Since the image contains α, we see
easily that the map is surjective, hence an isomorphism. In this case, k[t]/(P ) ' F .

If the kernel is trivial, then we have an injection k[t] → F . One may thus define
a morphism of the quotient field k(t) into F ; given a quotient R(t)/Q(t) with
R(t), Q(t) ∈ k[t], we map this to R(α)/Q(α). The hypothesis that k[t] → F is
injective implies that Q(α) 6= 0 unless Q is the zero polynomial. The quotient field
of k[t] is the rational function field k(t), so we get a morphism k(t) → F whose
image contains α. It is thus surjective, hence an isomorphism. �

9.7. Finite extensions

If F/E is a field extension, then evidently F is also a vector space over E (the
scalar action is just multiplication in F ).

Definition 9.7.1. Let F/E be an extension of fields. The dimension of F con-
sidered as an E-vector space is called the degree of the extension and is denoted
[F : E]. If [F : E] <∞ then F is said to be a finite extension of E.

Example 9.7.2. The field C is a two dimensional vector space over R with basis
1, i. Thus C is a finite extension of R of degree 2.

Lemma 9.7.3. Let K/E/F be a tower of algebraic field extensions. If K is finite
over F , then K is finite over E.

Proof. Direct from the definition. �

Let us now consider the degree in the most important special example, that given
by Lemma 9.6.8, in the next two examples.

Example 9.7.4 (Degree of a rational function field). If k is any field, then the
rational function field k(t) is not a finite extension. For example the elements
{tn, n ∈ Z} are linearly independent over k.

In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector
space. To show this, we claim that the family of elements {1/(t−α), α ∈ k} ⊂ k(t)
is linearly independent over k. A nontrivial relation between them would lead to
a contradiction: for instance, if one works over C, then this follows because 1

t−α ,
when considered as a meromorphic function on C, has a pole at α and nowhere
else. Consequently any sum

∑
ci

1
t−αi for the ci ∈ k∗, and αi ∈ k distinct, would

have poles at each of the αi. In particular, it could not be zero.

Amusingly, this leads to a quick proof of the Hilbert Nullstellensatz over the complex
numbers. For a slightly more general result, see Algebra, Theorem 10.34.11.

Example 9.7.5 (Degree of a simple algebraic extension). Consider a monogenic
field extension E/k of the form discussed in Example 9.6.4. In other words, E =
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k[t]/(P ) for P ∈ k[t] an irreducible polynomial. Then the degree [E : k] is just the
degree d = deg(P ) of the polynomial P . Indeed, say

(9.7.5.1) P = adt
d + a1t

d−1 + . . .+ a0.

with ad 6= 0. Then the images of 1, t, . . . , td−1 in k[t]/(P ) are linearly independent
over k, because any relation involving them would have degree strictly smaller than
that of P , and P is the element of smallest degree in the ideal (P ).

Conversely, the set S = {1, t, . . . , td−1} (or more properly their images) spans
k[t]/(P ) as a vector space. Indeed, we have by (9.7.5.1) that adt

d lies in the span of
S. Since ad is invertible, we see that td is in the span of S. Similarly, the relation
tP (t) = 0 shows that the image of td+1 lies in the span of {1, t, . . . , td} — by what
was just shown, thus in the span of S. Working upward inductively, we find that
the image of tn for n ≥ d lies in the span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k
is a field, and α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x]
allows one to construct an extension k[x]/(x2 − α) of degree two. We shall write
this as k(

√
α). Such extensions will be called quadratic, for obvious reasons.

The basic fact about the degree is that it is multiplicative in towers.

Lemma 9.7.6 (Multiplicativity). Suppose given a tower of fields F/E/k. Then

[F : k] = [F : E][E : k]

Proof. Let α1, . . . , αn ∈ F be an E-basis for F . Let β1, . . . , βm ∈ E be a k-basis
for E. Then the claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a
k-basis for F . Indeed, let us check first that they span F over k.

By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

i
aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together,

we find

f =
∑

i,j
bijαiβj ,

proving that the {αiβj} span F over k.

Suppose now that there existed a nontrivial relation∑
i,j
cijαiβj = 0

for the cij ∈ k. In that case, we would have∑
i
αi

(∑
j
cijβj

)
= 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the {αi}
shows that the inner sums are all zero. Then k-linear independence of the {βj}
shows that the cij all vanish. �

We sidetrack to a slightly tangential definition.

Definition 9.7.7. A field K is said to be a number field if it has characteristic 0
and the extension Q ⊂ K is finite.
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Number fields are the basic objects in algebraic number theory. We shall see later
that, for the analog of the integers Z in a number field, something kind of like
unique factorization still holds (though strict unique factorization generally does
not!).

9.8. Algebraic extensions

An important class of extensions are those where every element generates a finite
extension.

Definition 9.8.1. Consider a field extension F/E. An element α ∈ F is said to be
algebraic over E if α is the root of some nonzero polynomial with coefficients in E.
If all elements of F are algebraic then F is said to be an algebraic extension of E.

By Lemma 9.6.8, the subextension E(α) is isomorphic either to the rational function
field E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In
the latter case, α is algebraic over E (in fact, the proof of Lemma 9.6.8 shows that
we can pick P such that α is a root of P ); in the former case, it is not.

Example 9.8.2. The field C is algebraic over R. Namely, if α = a+ ib in C, then
α2 − 2aα+ a2 + b2 = 0 is a polynomial equation for α over R.

Example 9.8.3. Let X be a compact Riemann surface, and let f ∈ C(X)−C any
nonconstant meromorphic function on X (see Example 9.3.6). Then it is known
that C(X) is algebraic over the subextension C(f) generated by f . We shall not
prove this.

Lemma 9.8.4. Let K/E/F be a tower of field extensions.

(1) If α ∈ K is algebraic over F , then α is algebraic over E.
(2) if K is algebraic over F , then K is algebraic over E.

Proof. This is immediate from the definitions. �

We now show that there is a deep connection between finiteness and being algebraic.

Lemma 9.8.5. A finite extension is algebraic. In fact, an extension E/k is alge-
braic if and only if every subextension k(α)/k generated by some α ∈ E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements
{1, α, . . . , αn} are linearly dependent over E, or we would necessarily have [E :
k] > n. A relation of linear dependence now gives the desired polynomial that α
must satisfy.

For the last assertion, note that a monogenic extension k(α)/k is finite if and only
α is algebraic over k, by Examples 9.7.4 and 9.7.5. So if E/k is algebraic, then each
k(α)/k, α ∈ E, is a finite extension, and conversely. �

We can extract a lemma of the last proof (really of Examples 9.7.4 and 9.7.5):
a monogenic extension is finite if and only if it is algebraic. We shall use this
observation in the next result.

Lemma 9.8.6. Let k be a field, and let α1, α2, . . . , αn be elements of some extension
field such that each αi is algebraic over k. Then the extension k(α1, . . . , αn)/k is
finite. That is, a finitely generated algebraic extension is finite.
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Proof. Indeed, each extension k(α1, . . . , αi+1)/k(α1, . . . , αi) is generated by one
element and algebraic, hence finite. By multiplicativity of degree (Lemma 9.7.6)
we obtain the result. �

The set of complex numbers that are algebraic over Q are simply called the algebraic
numbers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact

that the algebraic numbers form a field, although it is not obvious how to prove this
from the definition that a number is algebraic precisely when it satisfies a nonzero
polynomial equation with rational coefficients (e.g. by polynomial equations).

Lemma 9.8.7. Let E/k be a field extension. Then the elements of E algebraic
over k form a subextension of E/k.

Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by
Lemma 9.8.6. It follows that k(α+β) ⊂ k(α, β) is a finite extension, which implies
that α + β is algebraic by Lemma 9.8.5. Similarly for the difference, product and
quotient of α and β. �

Many nice properties of field extensions, like those of rings, will have the property
that they will be preserved by towers and composita.

Lemma 9.8.8. Let E/k and F/E be algebraic extensions of fields. Then F/k is
an algebraic extension of fields.

Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that
α is algebraic over a finitely generated subextension of k. That is, there is a finite
set S ⊂ E such that α is algebraic over k(S): this is clear because being algebraic
means that a certain polynomial in E[x] that α satisfies exists, and as S we can
take the coefficients of this polynomial. It follows that α is algebraic over k(S). In
particular, the extension k(S, α)/k(S) is finite. Since S is a finite set, and k(S)/k is
algebraic, Lemma 9.8.6 shows that k(S)/k is finite. Using multiplicativity (Lemma
9.7.6) we find that k(S, α)/k is finite, so α is algebraic over k. �

The method of proof in the previous argument — that being algebraic over E was
a property that descended to a finitely generated subextension of E — is an idea
that recurs throughout algebra. It often allows one to reduce general commutative
algebra questions to the Noetherian case for example.

Lemma 9.8.9. Let E/F be an algebraic extension of fields. Then the cardinality
|E| of E is at most max(ℵ0, |F |).

Proof. Let S be the set of nonconstant polynomials with coefficients in F . For ev-
ery P ∈ S the set of roots r(P,E) = {α ∈ E | P (α) = 0} is finite (details omitted).
Moreover, the fact that E is algebraic over F implies that E =

⋃
P∈S r(P,E). It

is clear that S has cardinality bounded by max(ℵ0, |F |) because the cardinality of
a finite product of copies of F has cardinality at most max(ℵ0, |F |). Thus so does
E. �

9.9. Minimal polynomials

Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies
a (nontrivial) polynomial equation in k[x]. Consider the set of polynomials P ∈
k[x] such that P (α) = 0; by hypothesis, this set does not just contain the zero

http://stacks.math.columbia.edu/tag/09GI
http://stacks.math.columbia.edu/tag/09GJ
http://stacks.math.columbia.edu/tag/09GK


9.10. ALGEBRAIC CLOSURE 395

polynomial. It is easy to see that this set is an ideal. Indeed, it is the kernel of the
map

k[x]→ E, x 7→ α

Since k[x] is a PID, there is a generator P ∈ k[x] of this ideal. If we assume P
monic, without loss of generality, then P is uniquely determined.

Definition 9.9.1. The polynomial P above is called the minimal polynomial of α
over k.

The minimal polynomial has the following characterization: it is the monic poly-
nomial, of smallest degree, that annihilates α. Any nonconstant multiple of P will
have larger degree, and only multiples of P can annihilate α. This explains the
name minimal.

Clearly the minimal polynomial is irreducible. This is equivalent to the assertion
that the ideal in k[x] consisting of polynomials annihilating α is prime. This follows
from the fact that the map k[x]→ E, x 7→ α is a map into a domain (even a field),
so the kernel is a prime ideal.

Lemma 9.9.2. The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in Lemma 9.6.8: the observation
is that if P is the minimal polynomial of α, then the map

k[x]/(P )→ k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree
of such an extension (see Example 9.7.5). �

So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E
is isomorphic to k[x]/(P ).

9.10. Algebraic closure

The “fundamental theorem of algebra” states that C is algebraically closed. A
beautiful proof of this result uses Liouville’s theorem in complex analysis, we shall
give another proof (see Lemma 9.20.1).

Definition 9.10.1. A field F is said to be algebraically closed if every algebraic
extension E/F is trivial, i.e., E = F .

This may not be the definition in every text. Here is the lemma comparing it with
the other one.

Lemma 9.10.2. Let F be a field. The following are equivalent

(1) F is algebraically closed,
(2) every irreducible polynomial over F is linear,
(3) every nonconstant polynomial over F has a root,
(4) every nonconstant polynomial over F is a product of linear factors.

Proof. If F is algebraically closed, then every irreducible polynomial is linear.
Namely, if there exists an irreducible polynomial of degree > 1, then this generates
a nontrivial finite (hence algebraic) field extension, see Example 9.7.5. Thus (1)
implies (2). If every irreducible polynomial is linear, then every irreducible polyno-
mial has a root, whence every nonconstant polynomial has a root. Thus (2) implies
(3).
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Assume every nonconstant polynomial has a root. Let P ∈ F [x] be nonconstant.
If P (α) = 0 with α ∈ F , then we see that P = (x − α)Q for some Q ∈ F [x] (by
division with remainder). Thus we can argue by induction on the degree that any
nonconstant polynomial can be written as a product c

∏
(x− αi).

Finally, suppose that every nonconstant polynomial over F is a product of linear
factors. Let E/F be an algebraic extension. Then all the simple subextensions
F (α)/F of E are necessarily trivial (because the only irreducible polynomials are
linear by assumption). Thus E = F . We see that (4) implies (1) and we are
done. �

Now we want to define a “universal” algebraic extension of a field. Actually, we
should be careful: the algebraic closure is not a universal object. That is, the
algebraic closure is not unique up to unique isomorphism: it is only unique up to
isomorphism. But still, it will be very handy, if not functorial.

Definition 9.10.3. Let F be a field. We say F is algebraically closed if every
algebraic extension E/F is trivial, i.e., E = F . An algebraic closure of F is a field
F containing F such that:

(1) F is algebraic over F .
(2) F is algebraically closed.

If F is algebraically closed, then F is its own algebraic closure. We now prove the
basic existence result.

Theorem 9.10.4. Every field has an algebraic closure.

The proof will mostly be a red herring to the rest of the chapter. However, we will
want to know that it is possible to embed a field inside an algebraically closed field,
and we will often assume it done.

Proof. Let F be a field. By Lemma 9.8.9 the cardinality of an algebraic ex-
tension of F is bounded by max(ℵ0, |F |). Choose a set S containing F with
|S| > max(ℵ0, |F |). Let’s consider triples (E, σE , µE) where

(1) E is a set with F ⊂ E ⊂ S, and
(2) σE : E × E → E and µE : E × E → E are maps of sets such that

(E, σE , µE) defines the structure of a field extension of F (in particular
σE(a, b) = a+F b for a, b ∈ F and similarly for µE), and

(3) F ⊂ E is an algebraic field extension.

The collection of all triples (E, σE , µE) forms a set I. For i ∈ I we will denote
Ei = (Ei, σi, µi) the corresponding field extension to F . We define a partial ordering
on I by declaring i ≤ i′ if and only if Ei ⊂ Ei′ (this makes sense as Ei and Ei′ are
subsets of the same set S) and we have σi = σi′ |Ei×Ei and µi = µi′ |Ei×Ei , in other
words, Ei′ is a field extension of Ei.

Let T ⊂ I be a totally ordered subset. Then it is clear that ET =
⋃
i∈T Ei with

induced maps σT =
⋃
σi and µT =

⋃
µi is another element of I. In other words

every totally order subset of I has a upper bound in I. By Zorn’s lemma there
exists a maximal element (E, σE , µE) in I. We claim that E is an algebraic closure.
Since by definition of I the extension E/F is algebraic, it suffices to show that E
is algebraically closed.
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To see this we argue by contradiction. Namely, suppose that E is not alge-
braically closed. Then there exists an irreducible polynomial P over E of degree
> 1, see Lemma 9.10.2. By Lemma 9.8.5 we obtain a nontrivial finite extension
E′ = E[x]/(P ). Observe that E′/F is algebraic by Lemma 9.8.8. Thus the cardi-
nality of E′ is ≤ max(ℵ0, |F |). By elementary set theory we can extend the given
injection E ⊂ S to an injection E′ → S. In other words, we may think of E′

as an element of our set I contradicting the maximality of E. This contradiction
completes the proof. �

Lemma 9.10.5. Let F be a field. Let F be an algebraic closure of F . Let M/F be
an algebraic extension. Then there is a morphism of F -extensions M → F .

Proof. Consider the set I of pairs (E,ϕ) where F ⊂ E ⊂M is a subextension and
ϕ : E → F is a morphism of F -extensions. We partially order the set I by declaring
(E,ϕ) ≤ (E′, ϕ′) if and only if E ⊂ E′ and ϕ′|E = ϕ. If T = {(Et, ϕt)} ⊂ I is a
totally ordered subset, then

⋃
ϕt :

⋃
Et → F is an element of I. Thus every totally

ordered subset of I has an upper bound. By Zorn’s lemma there exists a maximal
element (E,ϕ) in I. We claim that E = M , which will finish the proof. If not, then
pick α ∈ M , α 6∈ E. The α is algebraic over E, see Lemma 9.8.4. Let P be the
minimal polynomial of α over E. Let Pϕ be the image of P by ϕ in F [x]. Since
F is algebraically closed there is a root β of Pϕ in F . Then we can extend ϕ to
ϕ′ : E(α) = E[x]/(P )→ F by mapping x to β. This contradicts the maximality of
(E,ϕ) as desired. �

Lemma 9.10.6. Any two algebraic closures of a field are isomorphic.

Proof. Let F be a field. If M and F are algebraic closures of F , then there exists
a morphism of F -extensions ϕ : M → F by Lemma 9.10.5. Now the image ϕ(M)
is algebraically closed. On the other hand, the extension ϕ(M) ⊂ F is algebraic by
Lemma 9.8.4. Thus ϕ(M) = F . �

9.11. Relatively prime polynomials

Let K be an algebraically closed field. Then the ring K[x] has a very simple ideal
structure as we saw in Lemma 9.10.2. In particular, every polynomial P ∈ K[x]
can be written as

P = c(x− α1) . . . (x− αn),

where c is the constant term and the α1, . . . , αn ∈ k are the roots of P (counted
with multiplicity). Clearly, the only irreducible polynomials in K[x] are the linear
polynomials c(x− α), c, α ∈ K (and c 6= 0).

Definition 9.11.1. If k is any field, we say that two polynomials in k[x] are
relatively prime if they generate the unit ideal in k[x].

Continuing the discussion above, if K is an algebraically closed field, two polyno-
mials in K[x] are relatively prime if and only if they have no common roots. This
follows because the maximal ideals of K[x] are of the form (x − α), α ∈ K. So if
F,G ∈ K[x] have no common root, then (F,G) cannot be contained in any (x−α)
(as then they would have a common root at α).

If k is not algebraically closed, then this still gives information about when two
polynomials in k[x] generate the unit ideal.
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Lemma 9.11.2. Two polynomials in k[x] are relatively prime precisely when they
have no common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only
if they generate (1) in k[x]. This is a piece of linear algebra: a system of linear
equations with coefficients in k has a solution if and only if it has a solution in any
extension of k. Consequently, we can reduce to the case of an algebraically closed
field, in which case the result is clear from what we have already proved. �

9.12. Separable extensions

In characteristic p something funny happens with irreducible polynomials over
fields. We explain this in the following lemma.

Lemma 9.12.1. Let F be a field. Let P ∈ F [x] be an irreducible polynomial over
F . Let P ′ = dP/dx be the derivative of P with respect to x. Then one of the
following two cases happens

(1) P and P ′ are relatively prime, or
(2) P ′ is the zero polynomial.

Then second case can only happen if F has characteristic p > 0. In this case
P (x) = Q(xq) where q = pf is a power of p and Q ∈ F [x] is an irreducible
polynomial such that Q and Q′ are relatively prime.

Proof. Note that P ′ has degree < deg(P ). Hence if P and P ′ are not relatively
prime, then (P, P ′) = (R) where R is a polynomial of degree < deg(P ) contradicting
the irreducibily of P . This proves we have the dichotomy between (1) and (2).

Assume we are in case (2) and P = adx
d + . . .+ a0. Then P ′ = dadx

d−1 + . . .+ a1.
In characteristic 0 we see that this forces ad, . . . , a1 = 0 which would mean P is
constant a contradiction. Thus we conclude that the characteristic p is positive.
In this case the condition P ′ = 0 forces ai = 0 whenever p 6 |i. In other words,
P (x) = P1(xp) for some nonconstant polynomial P1. Clearly, P1 is irreducible as
well. By induction on the degree we see that P1(x) = Q(xq) as in the statement of
the lemma, hence P (x) = Q(xpq) and the lemma is proved. �

Definition 9.12.2. Let F be a field. Let K/F be an extension of fields.

(1) We say an irreducible polynomial P over F is separable if it is relatively
prime to its derivative.

(2) Given α ∈ K algebraic over F we say α is separable over F if its minimal
polynomial is separable over F .

(3) If K is an algebraic extension of F , we say K is separable1 over F if every
element of K is separable over F .

By Lemma 9.12.1 in characteristic 0 every irreducible polynomial is separable, every
algebraic element in an extension is separable, and every algebraic extension is
separable.

Lemma 9.12.3. Let K/E/F be a tower of algebraic field extensions.

(1) If α ∈ K is separable over F , then α is separable over E.
(2) if K is separable over F , then K is separable over E.

1For nonalgebraic extensions this definition does not make sense and is not the correct one.
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Proof. We will use Lemma 9.12.1 without further mention. Let P be the minimal
polynomial of α over F . Let Q be the minimal polynomial of α over E. Then Q
divides P in the polynomial ring E[x], say P = QR. Then P ′ = Q′R+QR′. Thus
if Q′ = 0, then Q divides P and P ′ hence P ′ = 0 by the lemma. This proves (1).
Part (2) follows immediately from (1) and the definitions. �

Lemma 9.12.4. Let F be a field. An irreducible polynomial P over F is separable
if and only if P has pairwise distinct roots in an algebraic closure of F .

Proof. Suppose that α ∈ F is a root of both P and P ′. Then P = (x − α)Q for
some polynomial Q. Taking derivatives we obtain P ′ = Q + (x − α)Q′. Thus α
is a root of Q. Hence we see that if P and P ′ have a common root, then P does
not have pairwise distinct roots. Conversely, if P has a repeated root, i.e., (x−α)2

divides P , then α is a root of both P and P ′. Combined with Lemma 9.11.2 this
proves the lemma. �

Lemma 9.12.5. Let F be a field and let F be an algebraic closure of F . Let p > 0
be the characteristic of F . Let P be a polynomial over F . Then the set of roots of
P and P (xp) in F have the same cardinality (not counting multiplicity).

Proof. Clearly, α is a root of P (xp) if and only if αp is a root of P . In other
words, the roots of P (xp) are the roots of xp − β, where β is a root of P . Thus it
suffices to show that the map F → F , α 7→ αp is bijective. It is surjective, as F is
algebraically closed which means that every element has a pth root. It is injective
because αp = βp implies (α−β)p = 0 because the characteristic is p. And of course
in a field xp = 0 implies x = 0. �

Let F be a field and let P be an irreducible polynomial over F . Then we know that
P = Q(xq) for some separable irreducible polynomial Q (Lemma 9.12.1) where q
is a power of the characteristic p (and if the characteristic is zero, then q = 12 and
Q = P ). By Lemma 9.12.5 the number of roots of P and Q in any algebraic closure
of F is the same. By Lemma 9.12.4 this number is equal to the degree of Q.

Definition 9.12.6. Let F be a field. Let P be an irreducible polynomial over F .
The separable degree of P is the cardinality of the set of roots of P in any algebraic
closure of F (see discussion above). Notation degs(P ).

The separable degree of P always divides the degree and the quotient is a power of
the characteristic. If the characteristic is zero, then degs(P ) = deg(P ).

Situation 9.12.7. Here F be a field and K/F is a finite extension generated by
elements α1, . . . , αn ∈ K. We set K0 = F and

Ki = F (α1, . . . , αi)

to obtain a tower of finite extensions K = Kr/Kr−1/ . . . /K0 = F . Denote Pi the
minimal polynomial of αi over Ki−1. Finally, we fix an algebraic closure F of F .

Let F , K, αi, and F be as in Situation 9.12.7. Suppose that ϕ : K → F is a
morphism of extensions of F . Then we obtain maps ϕi : Ki → F . In particular,
we can take the image of Pi ∈ Ki−1[x] by ϕi−1 to get a polynomial Pϕi ∈ F [x].

2A good convention for this chapter is to set 00 = 1.
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Lemma 9.12.8. In Situation 9.12.7 the correspondence

MorF (K,F ) −→ {(β1, . . . , βn) as below}, ϕ 7−→ (ϕ(α1), . . . , ϕ(αn))

is a bijection. Here the right hand side is the set of n-tuples (β1, . . . , βn) of elements
of F such that βi is a root of Pϕi .

Proof. Let (β1, . . . , βn) be an element of the right hand side. We construct a map
of fields corresponding to it by induction. Namely, we set ϕ0 : K0 → F equal to
the given map K0 = F ⊂ F . Having constructed ϕi−1 : Ki−1 → F we observe
that Ki = Ki−1[x]/(Pi). Hence we can set ϕi equal to the unique map Ki → F
inducing ϕi−1 on Ki−1 and mapping x to βi. This works precisely as βi is a root
of Pϕi . Uniqueness implies that the two constructions are mutually inverse. �

Lemma 9.12.9. In Situation 9.12.7 we have |MorF (K,F )| =
∏n
i=1 degs(Pi).

Proof. This follows immediately from Lemma 9.12.8. Observe that a key ingredi-
ent we are tacitly using here is the well-definedness of the separable degree of an
irreducible polynomial which was observed just prior to Definition 9.12.6. �

We now use the result above to characterize separable field extensions.

Lemma 9.12.10. Assumptions and notation as in Situation 9.12.7. If each Pi is
separable, i.e., each αi is separable over Ki−1, then

|MorF (K,F )| = [K : F ]

and the field extension K/F is separable. If one of the αi is not separable over
Ki−1, then |MorF (K,F )| < [K : F ].

Proof. If αi is separable over Ki−1 then degs(Pi) = deg(Pi) = [Ki : Ki−1] (last
equality by Lemma 9.9.2). By multiplicativity (Lemma 9.7.6) we have

[K : F ] =
∏

[Ki : Ki−1] =
∏

deg(Pi) =
∏

degs(Pi) = |MorF (K,F )|

where the last equality is Lemma 9.12.9. By the exact same argument we get the
strict inequality |MorF (K,F )| < [K : F ] if one of the αi is not separable over Ki−1.

Finally, assume again that each αi is separable over Ki−1. Let γ = γ1 ∈ K
be arbitrary. Then we can find additional elements γ2, . . . , γm such that K =
F (γ1, . . . , γm) (for example we could take γ2 = α1, . . . , γn+1 = αn). Then we see
by the last part of the lemma (already proven above) that if γ is not separable over
F we would have the strict inequality |MorF (K,F )| < [K : F ] contradicting the
very first part of the lemma (already prove above as well). �

Lemma 9.12.11. Let K/F be a finite extension of fields. Let F be an algebraic
closure of F . Then we have

|MorF (K,F )| ≤ [K : F ]

with equality if and only if K is separable over F .

Proof. This is a corollary of Lemma 9.12.10. Namely, since K/F is finite we can
find finitely many elements α1, . . . , αn ∈ K generating K over F (for example we
can choose the αi to be a basis of K over F ). If K/F is separable, then each αi
is separable over F (α1, . . . , αi−1) by Lemma 9.12.3 and we get equality by Lemma
9.12.10. On the other hand, if we have equality, then no matter how we choose
α1, . . . , αn we get that α1 is separable over F by Lemma 9.12.10. Since we can
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start the sequence with an arbitrary element of K it follows that K is separable
over F . �

Lemma 9.12.12. Let E/k and F/E be separable algebraic extensions of fields.
Then F/k is a separable extension of fields.

Proof. Choose α ∈ F . Then α is separable algebraic over E. Let P = xd +∑
i<d aix

i be the minimal polynomial of α over E. Each ai is separable algebraic
over k. Consider the tower of fields

k ⊂ k(a0) ⊂ k(a0, a1) ⊂ . . . ⊂ k(a0, . . . , ad−1) ⊂ k(a0, . . . , ad−1, α)

Because ai is separable algebraic over k it is separable algebraic over k(a0, . . . , ai−1)
by Lemma 9.12.3. Finally, α is separable algebraic over k(a0, . . . , ad−1) because it
is a root of P which is irreducible (as it is irreducible over the possibly bigger field
E) and separable (as it is separable over E). Thus k(a0, . . . , ad−1, α) is separable
over k by Lemma 9.12.10 and we conclude that α is separable over k as desired. �

Lemma 9.12.13. Let E/k be a field extension. Then the elements of E separable
over k form a subextension of E/k.

Proof. Let α, β ∈ E be separable over k. Then β is separable over k(α) by Lemma
9.12.3. Thus we can apply Lemma 9.12.12 to k(α, β) to see that k(α, β) is separable
over k. �

9.13. Purely inseparable extensions

Purely inseparable extensions are the opposite of the separable extensions defined
in the previous section. These extensions only show up in positive characteristic.

Definition 9.13.1. Let F be a field of characteristic p > 0. Let K/F be an
extension.

(1) An element α ∈ K is purely inseparable over F if there exists a power q
of p such that αq ∈ F .

(2) The extension K/F is said to be purely inseparable if and only if every
element of K is purely inseparable over F .

Observe that a purely inseparable extension is necessarily algebraic. Let F be a
field of characteristic p > 0. An example of a purely inseparable extension is gotten
by adjoining the pth root of an element t ∈ F which does not yet have one. Namely,
the lemma below shows that P = xp − t is irreducible, and hence

K = F [x]/(P ) = F [t1/p]

is a field. And K is purely inseparable over F because every element

a0 + a1t
1/p + . . .+ ap−1t

p−1/p, ai ∈ F
has pth power equal to

(a0 + a1t
1/p + . . .+ ap−1t

p−1/p)p = ap0 + ap1t+ . . .+ app−1t
p−1 ∈ F

This situation occurs for the field Fp(t) of rational functions over Fp.

Lemma 9.13.2. Let p be a prime number. Let F be a field of characteristic p. Let
t ∈ F be an element which does not have a pth root in F . Then the polynomial
xp − t is irreducible over F .
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Proof. To see this, suppose that we have a factorization xp − t = fg. Taking
derivatives we get f ′g+ fg′ = 0. Note that neither f ′ = 0 nor g′ = 0 as the degrees
of f and g are smaller than p. Moreover, deg(f ′) < deg(f) and deg(g′) < deg(g).
We conclude that f and g have a factor in common. Thus if xp − t is reducible,
then it is of the form xp− t = cfn for some irreducible f , c ∈ F ∗, and n > 1. Since
p is a prime number this implies n = p and f linear, which would imply xp − t has
a root in F . Contradiction. �

We will see that taking pth roots is a very important operation in characteristic p.

Lemma 9.13.3. Let E/k and F/E be purely inseparable extensions of fields. Then
F/k is a purely inseparable extension of fields.

Proof. Say the characteristic of k is p. Choose α ∈ F . Then αq ∈ E for some
p-power q. Whereupon (αq)q

′ ∈ k for some p-power q′. Hence αqq
′ ∈ k. �

Lemma 9.13.4. Let E/k be a field extension. Then the elements of E purely-
inseparable over k form a subextension of E/k.

Proof. Let p be the characteristic of k. Let α, β ∈ E be purely inseparable over
k. Say αq ∈ k and βq

′ ∈ k for some p-powers q, q′. If q′′ is a p-power, then
(α + β)q

′′
= αq

′′
+ βq

′′
. Hence if q′′ ≥ q, q′, then we conclude that α + β is purely

inseparable over k. Similarly for the difference, product and quotient of α and
β. �

Lemma 9.13.5. Let E/F be a finite purely inseparable field extension of charac-
teristic p > 0. Then there exists a sequence of elements α1, . . . , αn ∈ E such that
we obtain a tower of fields

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ . . . ⊃ F (α1) ⊃ F
such that each intermediate extension is of degree p and comes from adjoining a
pth root. Namely, αpi ∈ F (α1, . . . , αi−1) is an element which does not have a pth
root in F (α1, . . . , αi−1) for i = 1, . . . , n.

Proof. By induction on the degree of E/F . If the degree of the extension is 1 then
the result is clear (with n = 0). If not, then choose α ∈ E, α 6∈ F . Say αp

r ∈ F
for some r > 0. Pick r minimal and replace α by αp

r−1

. Then α 6∈ F , but αp ∈ F .
Then t = αp is not a pth power in F (because that would imply α ∈ F , see Lemma
9.12.5 or its proof). Thus F ⊂ F (α) is a subextension of degree p (Lemma 9.13.2).
By induction we find α1, . . . , αn ∈ E generating E/F (α) satisfying the conclusions
of the lemma. The sequence α, α1, . . . , αn does the job for the extension E/F . �

Lemma 9.13.6. Let E/F be an algebraic field extension. There exists a unique
subextension F ⊂ Esep ⊂ E such that Esep/F is separable and E/Esep is purely
inseparable.

Proof. If the characteristic is zero we set Esep = E. Assume the characteristic if
p > 0. Let Esep be the set of elements of E which are separable over F . This is
a subextension by Lemma 9.12.13 and of course Esep is separable over F . Given
an α in E there exists a p-power q such that αq is separable over F . Namely,
q is that power of p such that the minimal polynomial of α is of the form P (xq)
with P separable algebraic, see Lemma 9.12.1. Hence E/Esep is purely inseparable.
Uniqueness is clear. �
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Definition 9.13.7. Let E/F be an algebraic field extension. Let Esep be the
subextension found in Lemma 9.13.6.

(1) The integer [Esep : F ] is called the separable degree of the extension.
Notation [E : F ]s.

(2) The integer [E : Esep] is called the inseparable degree, or the degree of
inseparability of the extension. Notation [E : F ]i.

Of course in characteristic 0 we have [E : F ] = [E : F ]s and [E : F ]i = 1. By
multipliciativity (Lemma 9.7.6) we have

[E : F ] = [E : F ]s[E : F ]i

even in case some of these degrees are infinite. In fact, the separable degree and
the inseparable degree are multiplicative too (see Lemma 9.13.9).

Lemma 9.13.8. Let K/F be a finite extension. Let F be an algebraic closure of
F . Then [K : F ]s = |MorF (K,F )|.

Proof. We first prove this when K/F is purely inseparable. Namely, we claim
that in this case there is a unique map K → F . This can be seen by choosing a
sequence of elements α1, . . . , αn ∈ K as in Lemma 9.13.5. The irreducible polyn-
mial of αi over F (α1, . . . , αi−1) is xp − αpi . Applying Lemma 9.12.9 we see that

|MorF (K,F )| = 1. On the other hand, [K : F ]s = 1 in this case hence the equality
holds.

Let’s return to a general finite extension K/F . In this case choose F ⊂ Ks ⊂ K
as in Lemma 9.13.6. By Lemma 9.12.11 we have |MorF (Ks, F )| = [Ks : F ] =
[K : F ]s. On the other hand, every field map σ′ : Ks → F extends to a unique
field map σ : K → F by the result of the previous paragraph. In other words
|MorF (K,F )| = |MorF (Ks, F )| and the proof is done. �

Lemma 9.13.9 (Multiplicativity). Suppose given a tower of algebraic field exten-
sions K/E/F . Then

[K : F ]s = [K : E]s[E : F ]s and [K : F ]i = [K : E]i[E : F ]i

Proof. We first prove this in case K is finite over F . Since we have multiplicativity
for the usual degree (by Lemma 9.7.6) it suffices to prove one of the two formulas.
By Lemma 9.13.8 we have [K : F ]s = |MorF (K,F )|. By the same lemma, given
any σ ∈ MorF (E,F ) the number of extensions of σ to a map τ : K → F is [K : E]s.
Namely, via E ∼= σ(E) ⊂ F we can view F as an algebraic closure of E. Combined
with the fact that there are [E : F ]s = |MorF (E,F )| choices for σ we obtain the
result.

If the extensions are infinite one can write K as the union of all finite subextension
F ⊂ K ′ ⊂ K. For each K ′ we set E′ = E ∩ K ′. Then we have the formulas of
the lemma for K ′/E′/F by the first paragraph. Since [K : F ]s = sup{[K ′ : F ]s}
and similarly for the other degrees (some details omitted) we obtain the result in
general. �

9.14. Normal extensions

Let P ∈ F [x] be a nonconstant polynomial over a field F . We say P splits completely
into linear factors over F or splits completely over F if there exist c ∈ F ∗, n ≥ 1,
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α1, . . . , αn ∈ F such that

P = c(x− α1) . . . (x− αn)

in F [x]. Normal extensions are defined as follows.

Definition 9.14.1. Let E/F be an algebraic field extension. We say E is normal
over F if for all α ∈ E the minimal polynomial P of α over F splits completely into
linear factors over E.

As in the case of separable extensions, it takes a bit of work to establish the basic
properties of this notion.

Lemma 9.14.2. Let K/E/F be a tower of algebraic field extensions. If K is
normal over F , then K is normal over E.

Proof. Let α ∈ K. Let P be the minimal polynomial of α over F . Let Q be the
minimal polynomial of α over E. Then Q divides P in the polynomial ring E[x],
say P = QR. Hence, if P splits completely over K, then so does Q. �

Lemma 9.14.3. Let F be a field. Let M/F be an algebraic extension. Let F ⊂
Ei ⊂M , i ∈ I be subextensions with Ei/F normal. Then

⋂
Ei is normal over F .

Proof. Direct from the definitions. �

Lemma 9.14.4. Let E/F be an algebraic extension of fields. Let F be an algebraic
closure of F . The following are equivalent

(1) E is normal over F , and
(2) for every pair σ, σ′ ∈ MorF (E,F ) we have σ(E) = σ′(E).

Proof. Let P be the set of all minimal polynomials over F of all elements of E.
Set

T = {β ∈ F | P (β) = 0 for some P ∈ P}
It is clear that if E is normal over F , then σ(E) = T for all σ ∈ MorF (E,F ). Thus
we see that (1) implies (2).

Conversely, assume (2). Pick β ∈ T . We can find a corresponding α ∈ E whose
minimal polynomial P ∈ P annihilates β. Because F (α) = F [x]/(P ) we can find
an element σ0 ∈ MorF (F (α), F ) mapping α to β. By Lemma 9.10.5 we can extend
σ0 to a σ ∈ MorF (E,F ). Whence we see that β is in the common image of all
embeddings σ : E → F . It follows that σ(E) = T for any σ. Fix a σ. Now let
P ∈ P. Then we can write

P = (x− β1) . . . (x− βn)

for some n and βi ∈ F by Lemma 9.10.2. Observe that βi ∈ T . Thus βi = σ(αi)
for some αi ∈ E. Thus P = (x − α1) . . . (x − αn) splits completely over E. This
finishes the proof. �

Definition 9.14.5. Let E/F be an extension of fields. Then Aut(E/F ) or AutF (E)
denotes the automorphism group of E as an object of the category of F -extensions.
Elements of Aut(E/F ) are called automorphisms of E over F or automorphisms of
E/F .

Here is a characterization of normal extensions in terms of automorphisms.
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Lemma 9.14.6. Let E/F be a finite extension. We have

|Aut(E/F )| ≤ [E : F ]s

with equality if and only if E is normal over F .

Proof. Choose an algebraic closure F of F . Recall that [E : F ] = |MorF (E,F )|.
Pick an element σ0 ∈ MorF (E,F ). Then the map

Aut(E/F ) −→ MorF (E,F ), τ 7−→ σ0 ◦ τ

is injective. Thus the inequality. If equality holds, then every σ ∈ MorF (E,F ) is
gotten by precomposing σ0 by an automorphism. Hence σ(E) = σ0(E). Thus E is
normal over F by Lemma 9.14.4.

Conversely, assume that E/F is normal. Then by Lemma 9.14.4 we have σ(E) =
σ0(E) for all σ ∈ MorF (E,F ). Thus we get an automorphism of E over F by
setting τ = σ−1

0 ◦ σ. Whence the map displayed above is surjective. �

9.15. Splitting fields

The following lemma is a useful tool for constructing normal field extensions.

Lemma 9.15.1. Let F be a field. Let P ∈ F [x] be a nonconstant polynomial.
There exists a smallest field extension E/F such that P splits completely over E.
Moreover, the field extension E/F is normal and unique up to (nonunique) isomor-
phism.

Proof. Choose an algebraic closure F . Then we can write P = c(x−β1) . . . (x−βn)
in F [x], see Lemma 9.10.2. Note that c ∈ F ∗. Set E = F (β1, . . . , βn). Then it is
clear that E is minimal with the requirement that P splits completely over E.

Next, let E′ be another minimal field extension of F such that P splits completely
over E′. Write P = c(x−α1) . . . (x−αn) with c ∈ F and αi ∈ E′. Again it follows
from minimality that E′ = F (α1, . . . , αn). Moreover, if we pick any σ : E′ → F
(Lemma 9.10.5) then we immediately see that σ(αi) = βτ(i) for some permutation
τ : {1, . . . , n} → {1, . . . , n}. Thus σ(E′) = E. This implies that E′ is a normal
extension of F by Lemma 9.14.4 and that E ∼= E′ as extensions of F thereby
finishing the proof. �

Definition 9.15.2. Let F be a field. Let P ∈ F [x] be a nonconstant polynomial.
The field extension E/F constructed in Lemma 9.15.1 is called the splitting field of
P over F .

The field constructed in the next lemma is sometimes called the normal closure of
E over F .

Lemma 9.15.3. Let E/F be a finite extension of fields. There exists a unique (up
to nonunique isomorphism) smallest finite extension K/E such that K is normal
over F .

Proof. Choose generators α1, . . . , αn of E over F . Let P1, . . . , Pn be the minimal
polynomials of α1, . . . , αn over F . Set P = P1 . . . Pn. Observe that (x−α1) . . . (x−
αn) divides P , since each (x− αi) divides Pi. Say P = (x− α1) . . . (x− αn)Q. Let
K/E be the splitting field of P over E. We claim that K is the splitting field of
P over F as well (which implies that K is normal over F ). This is clear because
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K/E is generated by the roots of Q over E and E is generated by the roots of
(x− α1) . . . (x− αn) over F , hence K is generated by the roots of P over F .

Uniqueness. Suppose that K ′/E is a second smallest extension such that K ′/F
is normal. Choose an algebraic closure F and an embedding σ0 : E → F . By
Lemma 9.10.5 we can extend σ0 to σ : K → F and σ′ : K ′ → F . By Lemma
9.14.3 we see that σ(K)∩σ′(K ′) is normal over F . By minimality we conclude that
σ(K) = σ(K ′). Thus σ ◦ (σ′)−1 : K ′ → K gives an isomorphism of extensions of
E. �

9.16. Roots of unity

Let F be a field. For an integer n ≥ 1 we set

µn(F ) = {ζ ∈ F | ζn = 1}

This is called the group of nth roots of unity or nth roots of 1. It is an abelian group
under multiplication with neutral element given by 1. Observe that in a field the
number of roots of a polynomial of degree d is always at most d. Hence we see that
|µn(F )| ≤ n as it is defined by a polynomial equation of degree n. Of course every
element of µn(F ) has order dividing n. Moreover, the subgroups

µd(F ) ⊂ µn(F ), d|n

each have at most d elements. This implies that µn(F ) is cyclic.

Lemma 9.16.1. Let A be an abelian group of exponent dividing n such that {x ∈
A | dx = 0} has cardinality at most d for all d|n. Then A is cyclic of order dividing
n.

Proof. The conditions imply that |A| ≤ n, in particular A is finite. The structure
of finite abelian groups shows that A = Z/e1Z ⊕ . . . ⊕ Z/erZ for some integers
1 < e1|e2| . . . |er. This would imply that {x ∈ A | ex = 0} has cardinality er1. Hence
r = 1. �

Applying this to the field Fp we obtain the celebrated result that the group (Z/pZ)∗

is a cyclic group. More about this in the section on finite fields.

One more observation is often useful: If F has characteristic p > 0, then µpn(F ) =
{1}. This is true because raising to the pth power is an injective map on fields of
characteristic p as we have seen in the proof of Lemma 9.12.5. (Of course, it also
follows from the statement of that lemma itself.)

9.17. Finite fields

Let F be a finite field. It is clear that F has positive characteristic as we cannot
have an injection Q→ F . Say the characteristic of F is p. The extension Fp ⊂ F
is finite. Hence we see that F has q = pf elements for some f ≥ 1.

Let us think about the group of units F ∗. This is a finite abelian group, so it has
some exponent e. Then F ∗ = µe(F ) and we see from the discussion in Section 9.16
that F ∗ is a cyclic group of order q − 1. (A posteriori it follows that e = q − 1 as
well.) In particular, if α ∈ F ∗ is a generator then it clearly is true that

F = Fp(α)
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In other words, the extension F/Fp is generated by a single element. Of course,
the same thing is true for any extension of finite fields E/F (because E is already
generated by a single element over the prime field).

9.18. Primitive elements

Let E/F be a finite extension of fields. An element α ∈ E is called a primitive
element of E over F if E = F (α).

Lemma 9.18.1 (Primitive element). Let E/F be a finite extension of fields. The
following are equivalent

(1) there exists a primitive element for E over F , and
(2) there are finitely many subextensions E/K/F .

Moreover, (1) and (2) hold if E/F is separable.

Proof. Let α ∈ E be a primitive element. Let P be the minimal polynomial
of α over F . Let E ⊂ M be a splitting field for P over E, so that P (x) =
(x − α)(x − α2) . . . (x − αn) over M . For ease of notation we set α1 = α. Next,
let E/K/F be a subextension. Let Q be the minimal polynomial of α over K.
Observe that deg(Q) = [E : K]. Writing Q = xd +

∑
i<d aix

i we claim that K is
equal to L = F (a0, . . . , ad−1). Indeed α has degree d over L and L ⊂ K. Hence
[E : L] = [E : K] and it follows that [K : L] = 1, i.e., K = L. Thus it suffices
to show there are at most finitely many possibilities for the polynomial Q. This is
clear because we have a factorization P = QR in K[x] in particular in E[x]. Since
we have unique factorization in E[x] there are at most finitely many monic factors
of P in E[x].

If F is a finite field (equivalently E is a finite field), then E/F has a primitive
element by the discussion in Section 9.17. Next, assume F is infinite and there are
at most finitely many proper subfields E/K/F . List them, say K1, . . . ,KN . Then
each Ki ⊂ E is a proper sub F -vector space. As F is infinite we can find a vector
α ∈ E with α 6∈ Ki for all i (a finite union of proper subvector spaces is never a
subvector space; details omitted). Then α is a primitive element for E over F .

Having established the equivalence of (1) and (2) we now turn to the final state-
ment of the lemma. Choose an algebraic closure F of F . Enumerate the elements
σ1, . . . , σn ∈ MorF (E,F ). Since E/F is separable we have n = [E : F ] by Lemma
9.12.11. Note that if i 6= j, then

Vij = Ker(σi − σj : E −→ F )

is not equal to E. Hence arguing as in the preceding paragraph we can find α ∈ E
with α 6∈ Vij for all i 6= j. It follows that |MorF (F (α), F )| ≥ n. On the other
hand [F (α) : F ] ≤ [E : F ]. Hence equality by Lemma 9.12.11 and we conclude that
E = F (α). �

9.19. Galois theory

Here is the definition.

Definition 9.19.1. A field extension E/F is called Galois if it is algebraic, sepa-
rable, and normal.

It turns out that a finite extension is Galois if and only if it has the “correct”
number of automorphisms.
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Lemma 9.19.2. Let E/F be a finite extension of fields. Then E is Galois over F
if and only if |Aut(E/F )| = [E : F ].

Proof. Assume |Aut(E/F )| = [E : F ]. By Lemma 9.14.6 this implies that E/F
is separable and normal, hence Galois. Conversely, if E/F is separable then [E :
F ] = [E : F ]s and if E/F is in addition normal, then Lemma 9.14.6 implies that
|Aut(E/F )| = [E : F ]. �

Motivated by the lemma above we introduce the Galois group as follows.

Definition 9.19.3. If E/F is a Galois extension, then the group Aut(E/F ) is
called the Galois group and it is denoted Gal(E/F ).

It turns out that if L/K is an infinite Galois extension, then one should think
of the Galois group as a topological group. We will return to this later (insert
future reference here). In this chapter we mainly restrict ourselves to finite Galois
extensions.

Lemma 9.19.4. Let K/E/F be a tower of algebraic field extensions. If K is Galois
over F , then K is Galois over E.

Proof. Combine Lemmas 9.14.2 and 9.12.3. �

Let G be a group acting on a field K (by field automorphisms). We will often use
the notation

KG = {x ∈ K | σ(x) = x ∀σ ∈ G}
and we will call this the fixed field for the action of G on K.

Lemma 9.19.5. Let K be a field. Let G be a finite group acting faithfully on K.
Then the extension K/KG is Galois, we have [K : KG] = |G|, and the Galois group
of the extension is G.

Proof. Given α ∈ K consider the orbit G · α ⊂ K of α under the group action.
Consider the polynomial

P =
∏

β∈G·α
(x− β) ∈ K[x]

The key to the whole lemma is that this polynomial is invariant under the action
of G and hence has coefficients in KG Namely, for σ ∈ G we have

Pσ =
∏

β∈G·α
(x− τ(β)) =

∏
β∈G·α

(x− β) = P

because the map β 7→ τ(β) is a permutation of the orbit G · α. Thus P ∈ KG.
Since also P (α) = 0 as α is an element of its orbit we conclude that the extension
K/KG is algebraic. Moreover, the minimal polynomial Q of α over KG divides
the polynomial P just constructed. Hence Q is separable (by Lemma 9.12.4 for
example) and we conclude that K/KG is separable. Thus K/KG is Galois. To
finish the proof it suffices to show that [K : KG] = |G| since then G will be the
Galois group by Lemma 9.19.2.

Pick finitely many elements αi ∈ K, i = 1, . . . , n such that σ(αi) = αi for i =
1, . . . , n implies σ is the neutral element of G. Set

L = KG({σ(αi); 1 ≤ i ≤ n, σ ∈ G}) ⊂ K
and observe that the action of G on K induces an action of G on L. We will show
that L has degree |G| over KG. This will finish the proof, since if L ⊂ K is proper,
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then we can add an element α ∈ K, α 6∈ L to our list of elements α1, . . . , αn without
increasing L which is absurd. This reduces us to the case that K/KG is finite which
is treated in the next paragraph.

AssumeK/KG is finite. By Lemma 9.18.1 we can find α ∈ K such thatK = KG(α).
By the construction in the first paragraph of this proof we see that α has degree at
most |G| over K. However, the degree cannot be less than |G| as G acts faithfully
on KG(α) = L by construction and the inequality of Lemma 9.14.6. �

Theorem 9.19.6 (Fundamental theorem of Galois theory). Let L/K be a finite
Galois extension with Galois group G. Then we have K = LG and the map

{subgroups of G} −→ {subextensions K ⊂M ⊂ L}, H 7−→ LH

is a bijection whose inverse maps M to Gal(L/M).

Proof. By Lemma 9.19.4 given a subextension L/M/K the extension L/M is Ga-
lois. Of course L/M is also finite (Lemma 9.7.3). Thus |Gal(L/M)| = [L : M ] by
Lemma 9.19.2. Conversely, if H ⊂ G is a finite subgroup, then [L : LH ] = |H| by
Lemma 9.19.5. It follows formally from these two observations that we obtain a
bijective correspondence as in the theorem. �

9.20. The complex numbers

The fundamental theorem of algebra states that the field of complex numbers is an
algebraically closed field. In this section we discuss this briefly.

The first remark we’d like to make is that you need to use a little bit of input
from calculus in order to prove this. We will use the intuitively clear fact that
every odd degree polynomial over the reals has a real root. Namely, let P (x) =
a2k+1x

2k+1 + . . .+a0 ∈ R[x] for some k ≥ 0 and a2k+1 6= 0. We may and do assume
a2k+1 > 0. Then for x ∈ R very large (positive) we see that P (x) > 0 as the term
a2k+1x

2k+1 dominates all the other terms. Similarly, if x � 0, then P (x) < 0 by
the same reason (and this is where we use that the degree is odd). Hence by the
intermediate value theorem there is an x ∈ R with P (x) = 0.

A conclusion we can draw from the above is that R has no nontrivial odd degree
field extensions, as elements of such extensions would have odd degree minimal
polynomials.

Next, let K/R be a finite Galois extension with Galois group G. Let P ⊂ G be
a 2-sylow subgroup. Then KP /R is an odd degree extension, hence by the above
KP = K, which in turn implies G = P . (All of these arguments rely on Galois
theory of course.) Thus G is a 2-group. If G is nontrivial, then we see that C ⊂ K
as C is (up to isomorphism) the only degree degree 2 extension of R. If G has
more than 2 elements we would obtain a quadratic extension of C. This is absurd
as every complex number has a square root.

The conclusion: C is algebraically closed. Namely, if not then we’d get a nontrivial
finite extension C ⊂ K which we could assume normal (hence Galois) over R by
Lemma 9.15.3. But we’ve seen above that then K = C.

Lemma 9.20.1 (Fundamental theorem of algebra). The field C is algebraically
closed.

Proof. See discussion above. �
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9.21. Kummer extensions

Let K be a field. Let n ≥ 2 be an integer such that K contains a primitive nth
root of 1. Let a ∈ K. Let L be an extension of K obtained by adjoining a root b of
the equation xn = a. Then L/K is Galois. If G = Gal(L/K) is the Galois group,
then the map

G −→ µn(K), σ 7−→ σ(b)/b

is an injective homomorphism of groups. In particular, G is cyclic of order dividing
n as a subgroup of the cyclic group µn(K). Kummer theory gives a converse.

Lemma 9.21.1 (Kummer extensions). Let K ⊂ L be a Galois extension of fields
whose Galois group is Z/nZ. Assume moreover that the characteristic of K is
prime to n and that K contains a primitive nth root of 1. Then L = K[z] with
zn ∈ K.

Proof. Omitted. �

9.22. Artin-Schreier extensions

Let K be a field of characteristic p > 0. Let a ∈ K. Let L be an extension of K
obtained by adjoining a root b of the equation xp − x = a. Then L/K is Galois. If
G = Gal(L/K) is the Galois group, then the map

G −→ Z/pZ, σ 7−→ σ(b)− b

is an injective homomorphism of groups. In particular, G is cyclic of order dividing
p as a subgroup of Z/pZ. The theory of Artin-Schreier extensions gives a converse.

Lemma 9.22.1 (Artin-Schreier extensions). Let K ⊂ L be a Galois extension
of fields of characteristic p > 0 with Galois group Z/pZ. Then L = K[z] with
zp − z ∈ K.

Proof. Omitted. �

9.23. Transcendence

We recall the standard definitions.

Definition 9.23.1. Let k ⊂ K be a field extension.

(1) A collection of elements {xi}i∈I of K is called algebraically independent
over k if the map

k[Xi; i ∈ I] −→ K

which maps Xi to xi is injective.
(2) The field of fractions of a polynomial ring k[xi; i ∈ I] is denoted k(xi; i ∈

I).
(3) A purely transcendental extension of k is any field extension k ⊂ K iso-

morphic to the field of fractions of a polynomial ring over k.
(4) A transcendence basis of K/k is a collection of elements {xi}i∈I which

are algebraically independent over k and such that the extension k(xi; i ∈
I) ⊂ K is algebraic.

Example 9.23.2. The field Q(π) is purely transcendental because π isn’t the root
of a nonzero polynomial with rational coefficients. In particular, Q(π) ∼= Q(x).

http://stacks.math.columbia.edu/tag/09DX
http://stacks.math.columbia.edu/tag/09DY
http://stacks.math.columbia.edu/tag/030E
http://stacks.math.columbia.edu/tag/09I8
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Lemma 9.23.3. Let E/F be a field extension. A transcendence basis of E over F
exists. Any two transcendence bases have the same cardinality.

Proof. Let A be an algebraically independent subset of E. Let G be a subset of
E containing A that generates E/F . We claim we can find a transcendence basis
B such that A ⊂ B ⊂ G. To prove this consider the collection of algebraically
independent subsets B whose members are subsets of G that contain A. Define
a partial ordering on B using inclusion. Then B contains at least one element
A. The union of the elements of a totally ordered subset T of B is an algebraically
independent subset of E over F since any algebraic dependence relation would have
occurred in one of the elements of T (since polynomials only involve finitely many
variables). The union also contains A and is contained in G. By Zorn’s lemma,
there is a maximal element B ∈ B. Now we claim E is algebraic over F (B). This is
because if it wasn’t then there would be an element f ∈ G transcendental over F (B)
since E(G) = F . Then B ∪ {f} wold be algebraically independent contradicting
the maximality of B. Thus B is our transcendence basis.

Let B and B′ be two transcendence bases. Without loss of generality, we can
assume that |B′| ≤ |B|. Now we divide the proof into two cases: the first case
is that B is an infinite set. Then for each α ∈ B′, there is a finite set Bα such
that α is algebraic over E(Bα) since any algebraic dependence relation only uses
finitely many indeterminates. Then we define B∗ =

⋃
α∈B′ Bα. By construction,

B∗ ⊂ B, but we claim that in fact the two sets are equal. To see this, suppose that
they are not equal, say there is an element β ∈ B \ B∗. We know β is algebraic
over E(B′) which is algebraic over E(B∗). Therefore β is algebraic over E(B∗), a
contradiction. So |B| ≤ |

⋃
α∈B′ Bα|. Now if B′ is finite, then so is B so we can

assume B′ is infinite; this means

|B| ≤ |
⋃

α∈B′
Bα| = |B′|

because each Bα is finite and B′ is infinite. Therefore in the infinite case, |B| = |B′|.

Now we need to look at the case where B is finite. In this case, B′ is also finite,
so suppose B = {α1, . . . , αn} and B′ = {β1, . . . , βm} with m ≤ n. We perform
induction on m: if m = 0 then E/F is algebraic so B = ∅ so n = 0. If m > 0, there
is an irreducible polynomial f ∈ E[x, y1, . . . , yn] such that f(β1, α1, . . . , αn) = 0
and such that x occurs in f . Since β1 is not algebraic over F , f must involve some
yi so without loss of generality, assume f uses y1. Let B∗ = {β1, α2, . . . , αn}. We
claim that B∗ is a basis for E/F . To prove this claim, we see that we have a tower
of algebraic extensions

E/F (B∗, α1)/F (B∗)

since α1 is algebraic over F (B∗). Now we claim that B∗ (counting multiplicity
of elements) is algebraically independent over E because if it weren’t, then there
would be an irreducible g ∈ E[x, y2, . . . , yn] such that g(β1, α2, . . . , αn) = 0 which
must involve x making β1 algebraic over E(α2, . . . , αn) which would make α1 alge-
braic over E(α2, . . . , αn) which is impossible. So this means that {α2, . . . , αn} and
{β2, . . . , βm} are bases for E over F (β1) which means by induction, m = n. �

Definition 9.23.4. Let k ⊂ K be a field extension. The transcendence degree of
K over k is the cardinality of a transcendence basis of K over k. It is denoted
trdegk(K).

http://stacks.math.columbia.edu/tag/030F
http://stacks.math.columbia.edu/tag/030G
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Lemma 9.23.5. Let k ⊂ K ⊂ L be field extensions. Then

trdegk(L) = trdegK(L) + trdegk(K).

Proof. Choose a transcendence basis A ⊂ K of K over k. Choose a transcendence
basis B ⊂ L of L over K. Then it is straightforward to see that A ∪ B is a
transcendence basis of L over k. �

Example 9.23.6. Consider the field extension Q(e, π) formed by adjoining the
numbers e and π. This field extension has transcendence degree at least 1 since both
e and π are transcendental over the rationals. However, this field extension might
have transcendence degree 2 if e and π are algebraically independent. Whether or
not this is true is unknown and whence the problem of determining trdeg(Q(e, π))
is open.

Example 9.23.7. Let F be a field and E = F (t). Then {t} is a transcendence
basis since E = F (t). However, {t2} is also a transcendence basis since F (t)/F (t2)
is algebraic. This illustrates that while we can always decompose an extension E/F
into an algebraic extension E/F ′ and a purely transcendental extension F ′/F , this
decomposition is not unique and depends on choice of transcendence basis.

Example 9.23.8. Let X be a compact Riemann surface. Then the function field
C(X) (see Example 9.3.6) has transcendence degree one over C. In fact, any finitely
generated extension of C of transcendence degree one arises from a Riemann surface.
There is even an equivalence of categories between the category of compact Riemann
surfaces and (non-constant) holomorphic maps and the opposite of the category of
finitely generated extensions of C of transcendence degree 1 and morphisms of
C-algebras. See [For91].

There is an algebraic version of the above statement as well. Given an (irreducible)
algebraic curve in projective space over an algebraically closed field k (e.g. the
complex numbers), one can consider its “field of rational functions”: basically,
functions that look like quotients of polynomials, where the denominator does not
identically vanish on the curve. There is a similar anti-equivalence of categories
(insert future reference here) between smooth projective curves and non-constant
morphisms of curves and finitely generated extensions of k of transcendence degree
one. See [Har77].

Definition 9.23.9. Let k ⊂ K be a field extension.

(1) The algebraic closure of k in K is the subfield k′ of K consisting of ele-
ments of K which are algebraic over k.

(2) We say k is algebraically closed in K if every element of K which is alge-
braic over k is contained in k.

Lemma 9.23.10. Let k ⊂ K be a finitely generated field extension. The algebraic
closure of k in K is finite over k.

Proof. Let x1, . . . , xr ∈ K be a transcendence basis for K over k. Then n =
[K : k(x1, . . . , xr)] < ∞. Suppose that k ⊂ k′ ⊂ K with k′/k finite. In this case
[k′(x1, . . . , xr) : k(x1, . . . , xr)] = [k′ : k] <∞. Hence

[k′ : k] = [k′(x1, . . . , xr) : k(x1, . . . , xr)] < [K : k(x1, . . . , xr)] = n.

In other words, the degrees of finite subextensions are bounded and the lemma
follows. �

http://stacks.math.columbia.edu/tag/030H
http://stacks.math.columbia.edu/tag/09I9
http://stacks.math.columbia.edu/tag/09IA
http://stacks.math.columbia.edu/tag/09IB
http://stacks.math.columbia.edu/tag/037I
http://stacks.math.columbia.edu/tag/037J
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9.24. Linearly disjoint extensions

Let k be a field, K and L field extensions of k. Suppose also that K and L are
embedded in some larger field Ω.

Definition 9.24.1. Consider a diagram

(9.24.1.1)

L // Ω

k //

OO

K

OO

of field extensions. The compositum of K and L in Ω written KL is the smallest
subfield of Ω containing both L and K.

It is clear that KL is generated by the set K ∪ L over k, generated by the set K
over L, and generated by the set L over K.

Warning: The (isomorphism class of the) composition depends on the choice of
the embeddings of K and L into Ω. For example consider the number fields K =
Q(21/8) ⊂ R and L = Q(21/12) ⊂ R. The compositum inside R is the field
Q(21/24) of degree 24 over Q. However, if we embed K = Q[x]/(x8 − 2) into
C by mapping x to 21/8e2πi/8, then the compositum Q(21/12, 21/8e2πi/8) contains
i = e2πi/4 and has degree 48 over Q (we omit showing the degree is 48, but the
existence of i certainly proves the two composita are not isomorphic).

Definition 9.24.2. Consider a diagram of fields as in (9.24.1.1). We say that K
and L are linearly disjoint over k in Ω if the map

K ⊗k L −→ KL,
∑

xi ⊗ yi 7−→
∑

xiyi

is injective.

The following lemma does not seem to fit anywhere else.

Lemma 9.24.3. Let E/F be a normal algebraic field extension. There exist subex-
tensions E/Esep/F and E/Einsep/F such that

(1) F ⊂ Esep is Galois and Esep ⊂ E is purely inseparable,
(2) F ⊂ Einsep is purely inseparable and Einsep ⊂ E is Galois,
(3) E = Esep ⊗F Einsep.

Proof. We found the subfield Esep in Lemma 9.13.6. We set Einsep = EAut(E/F ).
Details omitted. �

9.25. Review

In this section we give a quick review of what has transpired above.

Let k ⊂ K be a field extension. Let α ∈ K. Then we have the following possibilities:

(1) The element α is transcendental over k.
(2) The element α is algebraic over k. Denote P (T ) ∈ k[T ] its minimal

polynomial. This is a monic polynomial P (T ) = T d + a1T
d−1 + . . . + ad

with coefficients in k. It is irreducible and P (α) = 0. These properties
uniquely determine P , and the integer d is called the degree of α over k.
There are two subcases:

http://stacks.math.columbia.edu/tag/09ID
http://stacks.math.columbia.edu/tag/09IF
http://stacks.math.columbia.edu/tag/030M
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(a) The polynomial dP/dT is not identically zero. This is equivalent to
the condition that P (T ) =

∏
i=1,...,d(T − αi) for pairwise distinct

elements α1, . . . , αd in the algebraic closure of k. In this case we say
that α is separable over k.

(b) The dP/dT is identically zero. In this case the characteristic p of k
is > 0, and P is actually a polynomial in T p. Clearly there exists a
largest power q = pe such that P is a polynomial in T q. Then the
element αq is separable over k.

Definition 9.25.1. Algebraic field extensions.

(1) A field extension k ⊂ K is called algebraic if every element ofK is algebraic
over k.

(2) An algebraic extension k ⊂ k′ is called separable if every α ∈ k′ is separable
over k.

(3) An algebraic extension k ⊂ k′ is called purely inseparable if the character-
istic of k is p > 0 and for every element α ∈ k′ there exists a power q of p
such that αq ∈ k.

(4) An algebraic extension k ⊂ k′ is called normal if for every α ∈ k′ the
minimal polynomial P (T ) ∈ k[T ] of α over k splits completely into linear
factors over k′.

(5) An algebraic extension k ⊂ k′ is called Galois if it is separable and normal.

The following lemma does not seem to fit anywhere else.

Lemma 9.25.2. Let K be a field of characteristic p > 0. Let K ⊂ L be a separable
algebraic extension. Let α ∈ L.

(1) If the coefficients of the minimal polynomial of α over K are pth powers
in K then α is a pth power in L.

(2) More generally, if P ∈ K[T ] is a polynomial such that (a) α is a root of
P , (b) P has pairwise distinct roots in an algebraic closure, and (c) all
coefficients of P are pth powers, then α is a pth power in L.

Proof. It follows from the definitions that (2) implies (1). Assume P is as in (2).

Write P (T ) =
∑d
i=0 aiT

d−i and ai = bpi . The polynomial Q(T ) =
∑d
i=0 biT

d−i

has distinct roots in an algebraic closure as well, because the roots of Q are the
pth roots of the roots of P . If α is not a pth power, then T p − α is an irreducible
polynomial over L (Lemma 9.13.2). Moreover Q and T p−α have a root in common
in an algebraic closure L. Thus Q and T p − α are not relatively prime, which
implies T p−α|Q in L[T ]. This contradicts the fact that the roots of Q are pairwise
distinct. �
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CHAPTER 10

Commutative Algebra

10.1. Introduction

Basic commutative algebra will be explained in this document. A reference is
[Mat70].

10.2. Conventions

A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring
that does not have a prime ideal. The Kronecker symbol δij will be used. If R→ S
is a ring map and q a prime of S, then we use the notation “p = R∩ q” to indicate
the prime which is the inverse image of q under R → S even if R is not a subring
of S and even if R→ S is not injective.

10.3. Basic notions

The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) R is a ring,
(2) x ∈ R is nilpotent,
(3) x ∈ R is a zerodivisor,
(4) x ∈ R is a unit,
(5) e ∈ R is an idempotent,
(6) an idempotent e ∈ R is called trivial if e = 1 or e = 0,
(7) ϕ : R1 → R2 is a ring homomorphism,
(8) ϕ : R1 → R2 is of finite presentation, or R2 is a finitely presented R1-

algebra, see Definition 10.6.1,
(9) ϕ : R1 → R2 is of finite type, or R2 is a finite type R1-algebra, see Defini-

tion 10.6.1,
(10) ϕ : R1 → R2 is finite, or R2 is a finite R1-algebra,
(11) R is a (integral) domain,
(12) R is reduced,
(13) R is Noetherian,
(14) R is a principal ideal domain or a PID,
(15) R is a Euclidean domain,
(16) R is a unique factorization domain or a UFD,
(17) R is a discrete valuation ring or a dvr,
(18) K is a field,
(19) K ⊂ L is a field extension,
(20) K ⊂ L is an algebraic field extension,
(21) {ti}i∈I is a transcendence basis for L over K,
(22) the transcendence degree trdeg(L/K) of L over K,

417
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(23) the field k is algebraically closed,
(24) if K ⊂ L is algebraic, and K ⊂ k an extension with k algebraically closed,

then there exists a map ring map L→ k extending the map on K,
(25) I ⊂ R is an ideal,
(26) I ⊂ R is radical,

(27) if I is an ideal then we have its radical
√
I,

(28) I ⊂ R is nilpotent means that In = 0 for some n ∈ N,
(29) I ⊂ R is locally nilpotent means that every element of I is nilpotent,
(30) p ⊂ R is a prime ideal,
(31) if p ⊂ R is prime and if I, J ⊂ R are ideal, and if IJ ⊂ p, then I ⊂ p or

J ⊂ p.
(32) m ⊂ R is a maximal ideal,
(33) any nonzero ring has a maximal ideal,
(34) the Jacobson radical of R is rad(R) =

⋂
m⊂Rm the intersection of all the

maximal ideals of R,
(35) the ideal (T ) generated by a subset T ⊂ R,
(36) the quotient ring R/I,
(37) an ideal I in the ring R is prime if and only if R/I is a domain,
(38) an ideal I in the ring R is maximal if and only if the ring R/I is a field,
(39) if ϕ : R1 → R2 is a ring homomorphism, and if I ⊂ R2 is an ideal, then

ϕ−1(I) is an ideal of R1,
(40) if ϕ : R1 → R2 is a ring homomorphism, and if I ⊂ R1 is an ideal, then

ϕ(I) ·R2 (sometimes denoted I ·R2, or IR2) is the ideal of R2 generated
by ϕ(I),

(41) if ϕ : R1 → R2 is a ring homomorphism, and if p ⊂ R2 is a prime ideal,
then ϕ−1(p) is a prime ideal of R1,

(42) M is an R-module,
(43) for m ∈M the annihilator I = {f ∈ R | fm = 0} of m in R,
(44) N ⊂M is an R-submodule,
(45) M is an Noetherian R-module,
(46) M is a finite R-module,
(47) M is a finitely generated R-module,
(48) M is a finitely presented R-module,
(49) M is a free R-module,
(50) if 0→ K → L→ M → 0 is a short exact sequence of R-modules and K,

M are free, then L is free,
(51) if N ⊂M ⊂ L are R-modules, then L/M = (L/N)/(M/N),
(52) S is a multiplicative subset of R,
(53) the localization R→ S−1R of R,
(54) if R is a ring and S is a multiplicative subset of R then S−1R is the zero

ring if and only if S contains 0,
(55) if R is a ring and if the multiplicative subset S consists completely of

nonzerodivisors, then R→ S−1R is injective,
(56) if ϕ : R1 → R2 is a ring homomorphism, and S is a multiplicative subsets

of R1, then ϕ(S) is a multiplicative subset of R2,
(57) if S, S′ are multiplicative subsets of R, and if SS′ denotes the set of prod-

ucts SS′ = {r ∈ R | ∃s ∈ S, ∃s′ ∈ S′, r = ss′} then SS′ is a multiplicative
subset of R,
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(58) if S, S′ are multiplicative subsets of R, and if S denotes the image of S

in (S′)−1R, then (SS′)−1R = S
−1

((S′)−1R),
(59) the localization S−1M of the R-module M ,
(60) the functor M 7→ S−1M preserves injective maps, surjective maps, and

exactness,
(61) if S, S′ are multiplicative subsets of R, and if M is an R-module, then

(SS′)−1M = S−1((S′)−1M),
(62) if R is a ring, I and ideal of R and S a multiplicative subset of R, then

S−1I is an ideal of S−1R, and we have S−1R/S−1I = S
−1

(R/I), where
S is the image of S in R/I,

(63) if R is a ring, and S a multiplicative subset of R, then any ideal I ′ of
S−1R is of the form S−1I, where one can take I to be the inverse image
of I ′ in R,

(64) if R is a ring, M an R-module, and S a multiplicative subset of R, then
any submodule N ′ of S−1M is of the form S−1N for some submodule
N ⊂M , where one can take N to be the inverse image of N ′ in M ,

(65) if S = {1, f, f2, . . .} then Rf = S−1R and Mf = S−1M ,
(66) if S = R\p = {x ∈ R | x 6∈ p} for some prime ideal p, then it is customary

to denote Rp = S−1R and Mp = S−1M ,
(67) a local ring is a ring with exactly one maximal ideal,
(68) a semi-local ring is a ring with finitely many maximal ideals,
(69) if p is a prime in R, then Rp is a local ring with maximal ideal pRp,
(70) the residue field, denoted κ(p), of the prime p in the ring R is the quotient

Rp/pRp = (R \ p)−1R/p,
(71) given R and M1, M2 the tensor product M1 ⊗RM2,
(72) etc.

10.4. Snake lemma

The snake lemma and its variants are discussed in the setting of abelian categories
in Homology, Section 12.5.

Lemma 10.4.1. Suppose given a commutative diagram

X //

α

��

Y //

β

��

Z //

γ

��

0

0 // U // V // W

of abelian groups with exact rows, then there is a canonical exact sequence

Ker(α)→ Ker(β)→ Ker(γ)→ Coker(α)→ Coker(β)→ Coker(γ)

Moreover, if X → Y is injective, then the first map is injective, and if V → W is
surjective, then the last map is surjective.

Proof. The map ∂ : Ker(γ) → Coker(α) is defined as follows. Take z ∈ Ker(γ).
Choose y ∈ Y mapping to z. Then β(y) ∈ V maps to zero in W . Hence β(y) is
the image of some u ∈ U . Set ∂z = u the class of u in the cokernel of α. Proof of
exactness is omitted. �

http://stacks.math.columbia.edu/tag/07JW
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10.5. Finite modules and finitely presented modules

Just some basic notation and lemmas.

Definition 10.5.1. Let R be a ring. Let M be an R-module

(1) We say M is a finite R-module, or a finitely generated R-module if there
exist n ∈ N and x1, . . . , xn ∈M such that every element of M is a R-linear
combination of the xi. Equivalently, this means there exists a surjection
R⊕n →M for some n ∈ N.

(2) We say M is a finitely presented R-module or an R-module of finite pre-
sentation if there exist integers n,m ∈ N and an exact sequence

R⊕m −→ R⊕n −→M −→ 0

Informally this means that M is finitely generated and that the module of relations
among these generators is finitely generated as well. A choice of an exact sequence
as in the definition is called a presentation of M .

Lemma 10.5.2. Let R be a ring. Let α : R⊕n → M and β : N → M be module
maps. If Im(α) ⊂ Im(β), then there exists an R-module map γ : R⊕n → N such
that α = β ◦ γ.

Proof. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector of R⊕n. Let xi ∈ N
be an element with α(ei) = β(xi) which exists by assumption. Set γ(a1, . . . , an) =∑
aixi. By construction α = β ◦ γ. �

Lemma 10.5.3. Let R be a ring. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of R-modules.

(1) If M1 and M3 are finite R-modules, then M2 is a finite R-module.
(2) If M1 and M3 are finitely presented R-modules, then M2 is a finitely

presented R-module.
(3) If M2 is a finite R-module, then M3 is a finite R-module.
(4) If M2 is a finitely presented R-module and M1 is a finite R-module, then

M3 is a finitely presented R-module.
(5) If M3 is a finitely presented R-module and M2 is a finite R-module, then

M1 is a finite R-module.

Proof. Proof of (1). If x1, . . . , xn are generators of M1 and y1, . . . , ym ∈ M2 are
elements whose images in M3 are generators of M3, then x1, . . . , xn, y1, . . . , ym
generate M2.

Part (3) is immediate from the definition.

Proof of (5). Assume M3 is finitely presented and M2 finite. Choose a presentation

R⊕m → R⊕n →M3 → 0

By Lemma 10.5.2 there exists a map R⊕n →M2 such that the solid diagram

R⊕m //

��

R⊕n //

��

M3
//

id

��

0

0 // M1
// M2

// M3
// 0

http://stacks.math.columbia.edu/tag/0518
http://stacks.math.columbia.edu/tag/07JX
http://stacks.math.columbia.edu/tag/0519
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commutes. This produces the dotted arrow. By the snake lemma (Lemma 10.4.1)
we see that we get an isomorphism

Coker(R⊕m →M1) ∼= Coker(R⊕n →M2)

In particular we conclude that Coker(R⊕m → M1) is a finite R-module. Since
Im(R⊕m →M1) is finite by (3), we see that M1 is finite by part (1).

Proof of (4). Assume M2 is finitely presented and M1 is finite. Choose a pre-
sentation R⊕m → R⊕n → M2 → 0. Choose a surjection R⊕k → M1. By
Lemma 10.5.2 there exists a factorization R⊕k → R⊕n → M2 of the composition
R⊕k →M1 →M2. Then R⊕k+m → R⊕n →M3 → 0 is a presentation.

Proof of (2). Assume that M1 and M3 are finitely presented. The argument in the
proof of part (1) produces a commutative diagram

0 // R⊕n

��

// R⊕n+m

��

// R⊕m

��

// 0

0 // M1
// M2

// M3
// 0

with surjective vertical arrows. By the snake lemma we obtain a short exact se-
quence

0→ Ker(R⊕n →M1)→ Ker(R⊕n+m →M2)→ Ker(R⊕m →M3)→ 0

By part (5) we see that the outer two modules are finite. Hence the middle one is
finite too. By (4) we see that M2 is of finite presentation. �

Lemma 10.5.4. Let R be a ring, and let M be a finite R-module. There exists a
filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/Ii for some ideal Ii of R.

Proof. By induction on the number of generators of M . Let x1, . . . , xr ∈ M be
a minimal number of generators. Let M ′ = Rx1 ⊂ M . Then M/M ′ has r − 1
generators and the induction hypothesis applies. And clearly M ′ ∼= R/I1 with
I1 = {f ∈ R | fx1 = 0}. �

Lemma 10.5.5. Let R→ S be a ring map. Let M be an S-module. If M is finite
as an R-module, then M is finite as an S-module.

Proof. In fact, any R-generating set of M is also an S-generating set of M , since
the R-module structure is induced by the image of R in S. �

10.6. Ring maps of finite type and of finite presentation

Definition 10.6.1. Let R→ S be a ring map.

(1) We say R→ S is of finite type, or that S is a finite type R-algebra if there
exists an n ∈ N and an surjection of R-algebras R[x1, . . . , xn]→ S.

(2) We say R→ S is of finite presentation if there exist integers n,m ∈ N and
polynomials f1, . . . , fm ∈ R[x1, . . . , xn] and an isomorphism of R-algebras
R[x1, . . . , xn]/(f1, . . . , fm) ∼= S.
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Informally this means that S is finitely generated as an R-algebra and that the ideal
of relations among the generators is finitely generated. A choice of a surjection
R[x1, . . . , xn]→ S as in the definition is sometimes called a presentation of S.

Lemma 10.6.2. The notions finite type and finite presentation have the following
permanence properties.

(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given R → S′ → S with R → S of finite type, then S′ → S is of finite

type.
(4) Given R → S′ → S, with R → S of finite presentation, and R → S′ of

finite type, then S′ → S is of finite presentation.

Proof. We only prove the last assertion. Write S = R[x1, . . . , xn]/(f1, . . . , fm) and
S′ = R[y1, . . . , ya]/I. Say that the class ȳi of yi maps to hi mod (f1, . . . , fm) in S.
Then it is clear that S = S′[x1, . . . , xn]/(f1, . . . , fm, h1 − ȳ1, . . . , ha − ȳa). �

Lemma 10.6.3. Let R→ S be a ring map of finite presentation. For any surjection
α : R[x1, . . . , xn]→ S the kernel of α is a finitely generated ideal in R[x1, . . . , xn].

Proof. Write S = R[y1, . . . , ym]/(f1, . . . , fk). Choose gi ∈ R[y1, . . . , ym] which
are lifts of α(xi). Then we see that S = R[xi, yj ]/(fj , xi − gi). Choose hj ∈
R[x1, . . . , xn] such that α(hj) corresponds to yj mod (f1, . . . , fk). Consider the
map ψ : R[xi, yj ]→ R[xi], xi 7→ xi, yj 7→ hj . Then the kernel of α is the image of
(fj , xi − gi) under ψ and we win. �

Lemma 10.6.4. Let R → S be a ring map. Let M be an S-module. Assume
R → S is of finite type and M is finitely presented as an R-module. Then M is
finitely presented as an S-module.

Proof. This is similar to the proof of part (4) of Lemma 10.6.2. We may assume
S = R[x1, . . . , xn]/J . Choose y1, . . . , ym ∈ M which generate M as an R-module
and choose relations

∑
aijyj = 0, i = 1, . . . , t which generate the kernel of R⊕n →

M . For any i = 1, . . . , n and j = 1, . . . ,m write

xiyj =
∑

aijkyk

for some aijk ∈ R. Consider the S-module N generated by y1, . . . , ym subject to
the relations

∑
aijyj = 0, i = 1, . . . , t and xiyj =

∑
aijkyk, i = 1, . . . , n and

j = 1, . . . ,m. Then N has a presentation

S⊕nm+t −→ S⊕m −→ N −→ 0

By construction there is a surjective map ϕ : N →M . To finish the proof we show
ϕ is injective. Suppose z =

∑
bjyj ∈ N for some bj ∈ S. We may think of bj

as a polynomial in x1, . . . , xn with coefficients in R. By applying the relations of
the form xiyj =

∑
aijkyk we can inductively lower the degree of the polynomials.

Hence we see that z =
∑
cjyj for some cj ∈ R. Hence if ϕ(z) = 0 then the vector

(c1, . . . , cm) is an R-linear combination of the vectors (ai1, . . . , aim) and we conclude
that z = 0 as desired. �
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10.7. Finite ring maps

Definition 10.7.1. Let ϕ : R→ S be a ring map. We say ϕ : R→ S is finite if S
is finite as an R-module.

Lemma 10.7.2. Let R → S be a finite ring map. Let M be an S-module. Then
M is finite as an R-module if and only if M is finite as an S-module.

Proof. One of the implications follows from Lemma 10.5.5. To see the other assume
that M is finite as an S-module. Pick x1, . . . , xn ∈ S which generate S as an R-
module. Pick y1, . . . , ym ∈ M which generate M as an S-module. Then xjyj
generate M as an R-module. �

Lemma 10.7.3. Suppose that R → S and S → T are finite ring maps. Then
R→ T is finite.

Proof. If ti generate T as an S-module and sj generate S as an R-module, then
tisj generate T as an R-module. (Also follows from Lemma 10.7.2.) �

Lemma 10.7.4. Let R → S be a finite and finitely presented ring map. Let M
be an S-module. Then M is finitely presented as an R-module if and only if M is
finitely presented as an S-module.

Proof. One of the implications follows from Lemma 10.6.4. To see the other assume
that M is finitely presented as an S-module. Pick a presentation

S⊕m −→ S⊕n −→M −→ 0

As S is finite as an R-module, the kernel of S⊕n → M is a finite R-module. Thus
from Lemma 10.5.3 we see that it suffices to prove that S is finitely presented as
an R-module.

Pick x1, . . . , xn ∈ S which generate S as an R-module. Write x2
i =

∑
aikxk for

some aik ∈ R. Let J = Ker(R[X1, . . . , Xn] → S) where R[X1, . . . , Xn] → S is
the R-algebra map determined by Xi 7→ xi. Let hi = X2

i −
∑
aikXk which is an

element of J . Let I = (h1, . . . , hn) so that I ⊂ J . Note that

S′ = R[X1, ..., Xn]/I

is free as an R-module with basis the I-congruence classes of XE = Xe1
1 . . . Xen

n

where E = (e1, . . . , en) is a multi-index with ei ∈ {0, 1}. (Details omitted.) By
Lemma 10.6.3 there exist finitely many g1, . . . , gm ∈ J such that J = (g1, . . . , gm).
Denote g′j the image of gj in S′. Then S = S′/(g′1, . . . , g

′
m). Hence as an R-module

we have
S = S′/

∑
j=1,...,m

∑
E=(e1,...,en), ei∈{0,1}

RXEg′j

which is a finitely presented R-module. �

10.8. Colimits

Some of the material in this section overlaps with the general discussion on colimits
in Categories, Sections 4.14 – 4.21.

Definition 10.8.1. A partially ordered set is a set I together with a relation ≤
which is associative (if i ≤ j and j ≤ k then i ≤ k) and reflexive (i ≤ i for all i ∈ I).
A directed set (I,≤) is a partially ordered set (I,≤) such that I is not empty and
such that ∀i, j ∈ I, there exists k ∈ I with i ≤ k, j ≤ k.
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It is customary to drop the ≤ from the notation when talking about a partially
ordered set. This is the same as the notion defined in Categories, Section 4.21.

Definition 10.8.2. Let (I,≤) be a partially ordered set. A system (Mi, µij) of
R-modules over I consists of a family of R-modules {Mi}i∈I indexed by I and a
family of R-module maps {µij : Mi →Mj}i≤j such that for all i ≤ j ≤ k

µii = idMi
µik = µjk ◦ µij

We say (Mi, µij) is a directed system if I is a directed set.

This is the same as the notion defined in Categories, Definition 4.21.1 and Section
4.21. We refer to Categories, Definition 4.14.2 for the definition of a colimit of a
diagram/system in any category.

Lemma 10.8.3. Let (Mi, µij) be a system of R-modules over the partially ordered
set I. The colimit of the system (Mi, µij) is the quotient R-module (

⊕
i∈IMi)/Q

where Q is the R-submodule generated by all elements

ιi(xi)− ιj(µij(xi))
where ιi : Mi →

⊕
i∈IMi is the natural inclusion. We denote the colimit M =

colimiMi. We denote π :
⊕

i∈IMi →M the projection map and φi = π ◦ ιi : Mi →
M .

Proof. This lemma is a special case of Categories, Lemma 4.14.11 but we will
also prove it directly in this case. Namely, note that φi = φj ◦ µij in the above
construction. To show the pair (M,φi) is the colimit we have to show it satisfies the
universal property: for any other such pair (Y, ψi) with ψi : Mi → Y , ψi = ψj ◦µij ,
there is a unique R-module homomorphism g : M → Y such that the following
diagram commutes:

Mi

µij //

φi

  
ψi

��

Mj

φj

}}
ψj

��

M

g

��
Y

And this is clear because we can define g by taking the map ψi on the summand
Mi in the direct sum

⊕
Mi. �

Lemma 10.8.4. Let (Mi, µij) be a system of R-modules over the partially ordered
set I. Assume that I is directed. The colimit of the system (Mi, µij) is canonically
isomorphic to the module M defined as follows:

(1) as a set let

M =
(∐

i∈I
Mi

)
/ ∼

where for m ∈Mi and m′ ∈Mi′ we have

m ∼ m′ ⇔ µij(m) = µi′j(m
′) for some j ≥ i, i′

(2) as an abelian group for m ∈ Mi and m′ ∈ Mi′ we define the sum of the
classes of m and m′ in M to be the class of µij(m) +µi′j(m

′) where j ∈ I
is any index with i ≤ j and i′ ≤ j, and
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(3) as an R-module define for m ∈ Mi and x ∈ R the product of x and the
class of m in M to be the class of xm in M .

The canonical maps φi : Mi → M are induced by the canonical maps Mi →∐
i∈IMi.

Proof. Omitted. Compare with Categories, Section 4.19. �

Lemma 10.8.5. Let (Mi, µij) be a directed system. Let M = colimMi with µi :
Mi → M , then µi(xi) = 0 for xi ∈ Mi if and only if there exists j ≥ i such that
µij(xi) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 10.8.4.
�

Example 10.8.6. Consider the partially ordered set I = {a, b, c} with a < b and
a < c and no other strict inequalities. A system (Ma,Mb,Mc, µab, µac) over I
consists of three R-modules Ma,Mb,Mc and two R-module homomorphisms µab :
Ma →Mb and µac : Ma →Mc. The colimit of the system is just

M := colimi∈IMi = Coker(Ma →Mb ⊕Mc)

where the map is µab ⊕ −µac. Thus the kernel of the canonical map Ma → M is
Ker(µab) + Ker(µac). And the kernel of the canonical map Mb → M is the image
of Ker(µac) under the map µab. Hence clearly the result of Lemma 10.8.5 is false
for general systems.

Definition 10.8.7. Let (Mi, µij), (Ni, νij) be systems of R-modules over the same
partially ordered set I. A homomorphism of systems Φ from (Mi, µij) to (Ni, νij)
is by definition a family of R-module homomorphisms φi : Mi → Ni such that
φj ◦ µij = νij ◦ φi for all i ≤ j.

This is the same notion as a transformation of functors between the associated
diagrams M : I → ModR and N : I → ModR, in the language of categories. The
following lemma is a special case of Categories, Lemma 4.14.7.

Lemma 10.8.8. Let (Mi, µij), (Ni, νij) be systems of R-modules over the same
partially ordered set. A morphism of systems Φ = (φi) from (Mi, µij) to (Ni, νij)
induces a unique homomorphism

colimφi : colimMi −→ colimNi

such that

Mi
//

φi

��

colimMi

colimφi

��
Ni // colimNi

commutes for all i ∈ I.

Proof. Write M = colimMi and N = colimNi and φ = colimφi (as yet to be
constructed). We will use the explicit description of M and N in Lemma 10.8.3
without further mention. The condition of the lemma is equivalent to the condition
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that ⊕
i∈IMi

//

⊕
φi

��

M

φ

��⊕
i∈I Ni

// N

commutes. Hence it is clear that if φ exists, then it is unique. To see that φ exists,
it suffices to show that the kernel of the upper horizontal arrow is mapped by

⊕
φi

to the kernel of the lower horizontal arrow. To see this, let j ≤ k and xj ∈ Mj .
Then

(
⊕

φi)(xj − µjk(xj)) = φj(xj)− φk(µjk(xj)) = φj(xj)− νjk(φi(xj))

which is in the kernel of the lower horizontal arrow as required. �

Lemma 10.8.9. Let I be a directed partially ordered set. Let (Li, λij), (Mi, µij),
and (Ni, νij) be systems of R-modules over I. Let ϕi : Li →Mi and ψi : Mi → Ni
be morphisms of systems over I. Assume that for all i ∈ I the sequence of R-
modules

Li
ϕi // Mi

ψi // Ni
is a complex with homology Hi. Then the R-modules Hi form a system over I, the
sequence of R-modules

colimi Li
ϕ // colimiMi

ψ // colimiNi

is a complex as well, and denoting H its homology we have

H = colimiHi.

Proof. We are going to repeatedly use the description of colimits over I as in
Lemma 10.8.4 without further mention. Let h ∈ H. Since H = Ker(ϕ)/Im(ψ) we
see that h is the class mod Im(ψ) of an element [m] in Ker(ψ) ⊂ colimiMi. Choose
an i such that [m] comes from an element m ∈ Mi. Choose a j ≥ i such that
νij(ψi(m)) = 0 which is possible since [m] ∈ Ker(ψ). After replacing i by j and
m by µij(m) we see that we may assume m ∈ Ker(ψi). This shows that the map
colimiHi → H is surjective.

Suppose that hi ∈ Hi has image zero on H. Since Hi = Ker(ψi)/Im(ϕi) we may
represent hi by an element m ∈ Ker(ψi) ⊂Mi. The assumption on the vanishing of
hi in H means that the class of m in colimiMi lies in the image of ϕ. Hence there
exists an j ≥ i and a l ∈ Lj such that ϕj(l) = µij(m). Clearly this shows that the
image of hi in Hj is zero. This proves the injectivity of colimiHi → H. �

Example 10.8.10. Taking colimits is not exact in general. Consider the partially
ordered set I = {a, b, c} with a < b and a < c and no other strict inequalities, as in
Example 10.8.6. Consider the map of systems (0,Z,Z, 0, 0)→ (Z,Z,Z, 1, 1). From
the description of the colimit in Example 10.8.6 we see that the associated map of
colimits is not injective, even though the map of systems is injective on each object.
Hence the result of Lemma 10.8.9 is false for general systems.

Lemma 10.8.11. Let I be an index category satisfying the assumptions of Cate-
gories, Lemma 4.19.7. Then taking colimits of diagrams of abelian groups over I
is exact (i.e., the analogue of Lemma 10.8.9 holds in this situation).
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Proof. By Categories, Lemma 4.19.7 we may write I =
∐
j∈J Ij with each Ij

a filtered category, and J possibly empty. By Categories, Lemma 4.21.3 taking
colimits over the index categories Ij is the same as taking the colimit over some
directed partially ordered set. Hence Lemma 10.8.9 applies to these colimits. This
reduces the problem to showing that coproducts in the category of R-modules over
the set J are exact. In other words, exact sequences Lj →Mj → Nj of R modules
we have to show that⊕

j∈J
Lj −→

⊕
j∈J

Mj −→
⊕

j∈J
Nj

is exact. This can be verified by hand, and holds even if J is empty. �

For purposes of reference, we define what it means to have a relation between
elements of a module.

Definition 10.8.12. Let R be a ring. Let M be an R-module. Let n ≥ 0 and
xi ∈ M for i = 1, . . . , n. A relation between x1, . . . , xn in M is a sequence of
elements f1, . . . , fn ∈ R such that

∑
i=1,...,n fixi = 0.

Lemma 10.8.13. Let R be a ring and let M be an R-module. Then M is the
colimit of a directed system (Mi, µij) of R-modules with all Mi finitely presented
R-modules.

Proof. Consider any finite subset S ⊂ M and any finite collection of relations E
among the elements of S. So each s ∈ S corresponds to xs ∈ M and each e ∈ E
consists of a vector of elements fe,s ∈ R such that

∑
fe,sxs = 0. Let MS,E be the

cokernel of the map

R#E −→ R#S , (ge)e∈E 7−→ (
∑

gefe,s)s∈S .

There are canonical maps MS,E → M . If S ⊂ S′ and if the elements of E corre-
spond, via this map, to relations in E′, then there is an obvious mapMS,E →MS′,E′

commuting with the maps to M . Let I be the set of pairs (S,E) with ordering by
inclusion as above. It is clear that the colimit of this directed system is M . �

10.9. Localization

Definition 10.9.1. Let R be a ring, S a subset of R. We say S is a multiplicative
subset of R is 1 ∈ S and S is closed under multiplication, i.e., s, s′ ∈ S ⇒ ss′ ∈ S.

Given a ring A and a multiplicative subset S, we define a relation on A × S as
follows:

(x, s) ∼ (y, t)⇔ ∃u ∈ S such that (xt− ys)u = 0

It is easily checked that this is an equivalence relation. Let x/s (or x
s ) be the

equivalence class of (x, s) and S−1A be the set of all equivalence classes. Define
addition and multiplication in S−1A as follows:

x/s+ y/t = (xt+ ys)/st, x/s · y/t = xy/st

One can check that S−1A becomes a ring under these operations.

Definition 10.9.2. This ring is called the localization of A with respect to S.
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We have a natural ring map from A to its localization S−1A,

A −→ S−1A, x 7−→ x/1

which is sometimes called the localization map. In general the localization map is
not injective, unless S contains no zerodivisors. For, if x/1 = 0, then there is a
u ∈ S such that xu = 0 in A and hence x = 0 since there are no zerodivisors in S.
The localization of a ring has the following universal property.

Proposition 10.9.3. Let f : A→ B be a ring map that sends every element in S
to a unit of B. Then there is a unique homomorphism g : S−1A→ B such that the
following diagram commutes.

A
f //

""

B

S−1A

g

<<

Proof. Existence. We define a map g as follows. For x/s ∈ S−1A, let g(x/s) =
f(x)f(s)−1 ∈ B. It is easily checked from the definition that this is a well-defined
ring map. And it is also clear that this makes the diagram commutative.

Uniqueness. We now show that if g′ : S−1A → B satisfies g′(x/1) = f(x), then
g = g′. Hence f(s) = g′(s/1) for s ∈ S by the commutativity of the diagram.
But then g′(1/s)f(s) = 1 in B, which implies that g′(1/s) = f(s)−1 and hence
g′(x/s) = g′(x/1)g′(1/s) = f(x)f(s)−1 = g(x/s). �

Lemma 10.9.4. The localization S−1A is the zero ring if and only if 0 ∈ S.

Proof. If 0 ∈ S, any pair (a, s) ∼ (0, 1) by definition. If 0 6∈ S, then clearly
1/1 6= 0/1 in S−1A. �

Lemma 10.9.5. Let R be a ring. Let S ⊂ R be a multiplicative subset. The
category of S−1R-modules is equivalent to the category of R-modules N with the
property that every s ∈ S acts as an automorphism on N .

Proof. The functor which defines the equivalence associates to an S−1R-module
M the same module but now viewed as an R-module via the localization map
R → S−1R. Conversely, if N is an R-module, such that every s ∈ S acts via an
automorphism sN , then we can think of N as an S−1R-module by letting x/s act
via xN ◦ s−1

N . We omit the verification that these two functors are quasi-inverse to
each other. �

The notion of localization of a ring can be generalized to the localization of a
module. Let A be a ring, S a multiplicative subset of A and M an A-module. We
define a relation on M × S as follows

(m, s) ∼ (n, t)⇔ ∃u ∈ S such that (mt− ns)u = 0

This is clearly an equivalence relation. Denote by m/s (or m
s ) be the equivalence

class of (m, s) and S−1M be the set of all equivalence classes. Define the addition
and scalar multiplication as follows

m/s+ n/t = (mt+ ns)/st, m/s · n/t = mn/st

It is clear that this makes S−1M an S−1A module.
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Definition 10.9.6. The S−1A-module S−1M is called the localization of M at S.

Note that there is an A-module map M → S−1M , m 7→ m/1 which is sometimes
called the localization map. It satisfies the following universal property.

Lemma 10.9.7. Let R be a ring. Let S ⊂ R a multiplicative subset. Let M , N be
R-modules. Assume all the elements of S act as automorphisms on N . Then the
canonical map

HomR(S−1M,N) −→ HomR(M,N)

induced by the localization map, is an isomorphism.

Proof. It is clear that the map is well-defined and R-linear. Injectivity: Let α ∈
HomR(S−1M,N) and take an arbitrary element m/s ∈ S−1M . Then, since s ·
α(m/s) = α(m/1), we have α(m/s) = s−1(α(m/1)), so α is completely determined
by what it does on the image of M in S−1M . Surjectivity: Let β : M → N be a
given R-linear map. We need to show that it can be ”extended” to S−1M . Define
a map of sets

M × S → N, (m, s) 7→ s−1(m)

Clearly, this map respects the equivalence relation from above, so it descends to a
well-defined map α : S−1M → N . It remains to show that this map is R-linear, so
take r, r′ ∈ R as well as s, s′ ∈ S and m,m′ ∈M . Then

α(r ·m/s+ r′ ·m′/s′) = α((r · s′ ·m+ r′ · s ·m′)/(ss′))
= (ss′)−1(β(r · s′ ·m+ r′ · s ·m′)
= (ss′)−1(r · s′β(m) + r′ · sβ(m′)

= rα(m/s) + r′α(m′/s′)

and we win. �

Example 10.9.8. Let A be a ring and let M be an A-module. Here are some
important examples of localizations.

(1) Given p a prime ideal of A consider S = A \ p. It is immediately checked
that S is a multiplicative set. In this case we denote Ap and Mp the
localization of A and M with respect to S respectively. These are called
the localization of A, resp. M at p.

(2) Let f ∈ A. Consider S = {1, f, f2, . . .}. This is clearly a multiplicative
subset of A. In this case we denote Af (resp. Mf ) the localization S−1A
(resp. S−1M). This is called the localization of A, resp. M with respect
to f . Note that Af = 0 if and only if f is nilpotent in A.

(3) Let S = {f ∈ A | f is not a zerodivisor in A}. This is a multiplicative
subset of A. In this case the ring Q(A) = S−1A is called either the total
quotient ring, or the total ring of fractions of A.

Lemma 10.9.9. Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M be
an R-module. Then

S−1M = colimf∈SMf

where the partial ordering on S is given by f ≥ f ′ ⇔ f = f ′f ′′ for some f ′′ ∈ R in
which case the map Mf ′ →Mf is given by m/(f ′)e 7→ m(f ′′)e/fe.

Proof. Omitted. Hint: Use the universal property of Lemma 10.9.7. �
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In the following paragraph, let A denote a ring, and M,N denote modules over A.

If S and S′ are multiplicative sets of A, then it is clear that

SS′ = {ss′ : s ∈ S, s′ ∈ S′}

is also a multiplicative set of A. Then the following holds.

Proposition 10.9.10. Let S be the image of S in S′−1A, then (SS′)−1A is iso-

morphic to S
−1

(S′−1A).

Proof. The map sending x ∈ A to x/1 ∈ (SS′−1)A induces a map sending x/s ∈
S′−1A to x/s ∈ (SS′−1)A, by universal property. The image of the elements in S are

invertible in (SS′−1)A. By the universal property we get a map f : S
−1

(S′−1A)→
(SS′−1)A which maps (x/t′)/(s/s′) to (x/t′) · (s/s′)−1.

On the other hand, the map from A to S
−1

(S′−1A) sending x ∈ A to (x/1)/(1/1)

also induces a map g : (SS′−1)A→ S
−1

(S′−1A) which sends x/ss′ to (x/s′)/(s/1),
by the universal property again. It is immediately checked that f and g are inverse
to each other, hence they are both isomorphisms. �

For the module M we have

Proposition 10.9.11. View S′−1M as an A-module, then S−1(S′−1M) is isomor-
phic to (SS′)−1M .

Proof. Note that given a A-module M, we have not proved any universal property
for S−1M . Hence we cannot reason as in the preceding proof; we have to construct
the isomorphism explicitly.

We define the maps as follows

f : S−1(S′−1M) −→ (SS′)−1M,
x/s′

s
7→ x/ss′

g : (SS′)−1M −→ S−1(S′−1M), x/t 7→ x/s′

s
for some s ∈ S, s′ ∈ S′, and t = ss′

We have to check that these homomorphisms are well-defined, that is, independent
the choice of the fraction. This is easily checked and it is also straightforward to
show that they are inverse to each other. �

If u : M → N is an A homomorphism, then the localization indeed induces a
well-defined S−1A homomorphism S−1u : S−1M → S−1N which sends x/s to
u(x)/s. It is immediately checked that this construction is functorial, so that S−1

is actually a functor from the category of A-modules to the category of S−1A-
modules. Moreover this functor is exact, as we show in the following proposition.

Proposition 10.9.12. Let L
u−→M

v−→ N is an exact sequence of R-modules. Then
S−1L→ S−1M → S−1N is also exact.

Proof. First it is clear that S−1L → S−1M → S−1N is a complex since lo-
calization is a functor. Next suppose that x/s maps to zero in S−1N for some
x/s ∈ S−1M . Then by definition there is a t ∈ S such that v(xt) = v(x)t = 0 in
M , which means xt ∈ Ker(v). By the exactness of L→M → N we have xt = u(y)
for some y in L. Then x/s is the image of y/st. This proves the exactness. �
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Lemma 10.9.13. Localization respects quotients, i.e. if N is a submodule of M ,
then S−1(M/N) ' (S−1M)/(S−1N).

Proof. From the exact sequence

0 −→ N −→M −→M/N −→ 0

we have
0 −→ S−1N −→ S−1M −→ S−1(M/N) −→ 0

The corollary then follows. �

If, in the preceding Corollary, we take N = I and M = A for an ideal I of A, we
see that S−1A/S−1I ' S−1(A/I) as A-modules. The next proposition shows that
they are isomorphic as rings.

Proposition 10.9.14. Let I be an ideal of A, S a multiplicative set of A. Then

S−1I is an ideal of S−1A and S
−1

(A/I) is isomorphic to S−1A/S−1I, where S is
the image of S in A/I.

Proof. The fact that S−1I is an ideal is clear since I itself is an ideal. Define

f : S−1A −→ S
−1

(A/I), x/s 7→ x/s

where x and s are the images of x and s in A/I. We shall keep similar notations in
this proof. This map is well-defined by the universal property of S−1A, and S−1I
is contained in the kernel of it, therefore it induces a map

f : S−1A/S−1I −→ S
−1

(A/I), x/s 7→ x/s

On the other hand, the map A → S−1A/S−1I sending x to x/1 induces a map

A/I → S−1A/S−1I sending x to x/1. The image of S is invertible in S−1A/S−1I,
thus induces a map

g : S
−1

(A/I) −→ S−1A/S−1I,
x

s
7→ x/s

by the universal property. It is then clear that f and g are inverse to each other,
hence are both isomorphisms. �

We now consider how submodules behave in localization.

Lemma 10.9.15. Any submodule N ′ of S−1M is of the form S−1N for some
N ⊂M . Indeed one can take N to be the inverse image of N ′ in M .

Proof. Let N be the inverse image of N ′ in M . Then one can see that S−1N ⊃ N ′.
To show they are equal, take x/s in S−1N , where s ∈ S and x ∈ N . This yields
that x/1 ∈ N ′. Since N ′ is an S−1R-submodule we have x/s = x/1 · 1/s ∈ N ′.
This finishes the proof. �

Taking M = A and N = I an ideal of A, we have the following corollary, which can
be viewed as a converse of the first part of Proposition 10.9.14.

Lemma 10.9.16. Each ideal I ′ of S−1A takes the form S−1I, where one can take
I to be the inverse image of I ′ in A.

Proof. Immediate from Lemma 10.9.15. �

The next lemma concerns the spectrum and localization. FIXME: This should be
moved later in the manuscript.
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Lemma 10.9.17. Let S be a multiplicative set of A. Then the map

f : Spec(S−1A) −→ Spec(A)

induced by the canonical ring map A→ S−1A is a homeomorphism onto its image
and Im(f) = {p ∈ Spec(A) : p ∩ S = ∅}.

Proof. Denote the localization map by ϕ : A→ S−1A. We first show that Im(f) =
{p ∈ Spec(A) : p ∩ S = ∅}. For any ideal q of S−1A, ϕ−1(q) ∩ S = 0. Otherwise
if x 6= 0 ∈ ϕ−1(q) ∩ S, then x/1 ∈ q. But x ∈ S, hence x/1 is invertible in S−1A
which is impossible since q is a prime ideal. For any prime ideal p in A which does
not meet S, S−1p is an ideal in S−1A. Moreover it is a prime ideal. This is because

S−1A/S−1p is isomorphic to S
−1

(A/p) and the localization of an integral domain
is again an integral domain.

We still have to show that this map is open, i.e. we have to show that the image of
a standard open set is again open. For any x/s ∈ S−1A, we claim that the image
of D(x/s) is D(x) ∩ Im(f). First if x/s 6∈ S−1p for some prime ideal p of A, then
x 6∈ p. Conversely, if x 6∈ p and p does not meet S, then x/s 6∈ S−1p. This is due
to that fact that p ∩ S = ∅.

Thus f is indeed an homeomorphism onto its image. �

10.10. Internal Hom

If R is a ring, and M , N are R-modules, then

HomR(M,N) = {ϕ : M → N}

is the set of R-linear maps from M to N . This set comes with the structure of an
abelian group by setting (ϕ+ψ)(m) = ϕ(m)+ψ(m), as usual. In fact, HomR(M,N)
is also an R-module via the rule (xϕ)(m) = xϕ(m) = ϕ(xm).

Given maps a : M → M ′ and b : N → N ′ of R-modules, we can pre-compose and
post-compose homomorphisms by a and b. This leads to the following commutative
diagram

HomR(M ′, N)

−◦a
��

b◦−
// HomR(M ′, N ′)

−◦a
��

HomR(M,N)
b◦− // HomR(M,N ′)

In fact, the maps in this diagram are R-module maps. Thus HomR defines an
additive functor

ModoppR ×ModR −→ ModR, (M,N) 7−→ HomR(M,N)

Lemma 10.10.1. Exactness and HomR. Let R be a ring.

(1) Let M1 →M2 →M3 → 0 be a complex of R-modules. Then M1 →M2 →
M3 → 0 is exact if and only if 0 → HomR(M3, N) → HomR(M2, N) →
HomR(M1, N) is exact for all R-modules N .

(2) Let 0 → M1 → M2 → M3 be a complex of R-modules. Then 0 → M1 →
M2 →M3 is exact if and only if 0→ HomR(N,M1)→ HomR(N,M2)→
HomR(N,M1) is exact for all R-modules N .

Proof. Omitted. �
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Lemma 10.10.2. Let R be a ring. Let M be a finitely presented R-module. Let N
be an R-module.

(1) For f ∈ R we have HomR(M,N)f = HomRf (Mf , Nf ) = HomR(Mf , Nf ),
(2) for a multiplicative subset S of R we have

S−1 HomR(M,N) = HomS−1R(S−1M,S−1N) = HomR(S−1M,S−1N).

Proof. Part (1) is a special case of part (2). The second equality in (2) follows
from Lemma 10.9.7. Choose a presentation⊕

j=1,...,m
R −→

⊕
i=1,...,n

R→M → 0.

By Lemma 10.10.1 this gives an exact sequence

0→ HomR(M,N)→
⊕

i=1,...,n
N −→

⊕
j=1,...,m

N.

Inverting S and using Proposition 10.9.12 we get an exact sequence

0→ S−1 HomR(M,N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

and the result follows since S−1M sits in an exact sequence⊕
j=1,...,m

S−1R −→
⊕

i=1,...,n
S−1R→ S−1M → 0

which induces (by Lemma 10.10.1) the exact sequence

0→ HomS−1R(S−1M,S−1N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

which is the same as the one above. �

10.11. Tensor products

Definition 10.11.1. Let R be a ring, M,N,P be three R-modules. A mapping
f : M × N → P (where M × N is viewed only as Cartesian product of two R-
modules) is said to be R-bilinear if for each x ∈ M the mapping y 7→ f(x, y) of N
into P is R-linear, and for each y ∈ N the mapping x 7→ f(x, y) is also R-linear.

Lemma 10.11.2. Let M,N be R-modules. Then there exists a pair (T, g) where
T is an R-module, and g : M ×N → T an R-bilinear mapping, with the following
universal property: For any R-module P and any R-bilinear mapping f : M ×N →
P , there exists a unique R-linear mapping f̃ : T → P such that f = f̃ ◦ g. In other
words, the following diagram commutes:

M ×N
f //

g
##

P

T
f ′

??

Moreover, if (T, g) and (T ′, g′) are two pairs with this property, then there exists a
unique isomorphism j : T → T ′ such that j ◦ g = g′.

The R-module T which satisfies the above universal property is called the tensor
product of R-modules M and N , denoted as M ⊗R N .
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Proof. We first prove the existence of such R-module T . Let M,N be R-modules.
Let T be the quotient module P/Q, where P is the free R-module R(M×N) and Q
is the R-module generated by all elements of the following types: (x ∈M,y ∈ N)

(x+ x′, y)− (x, y)− (x′, y),

(x, y + y′)− (x, y)− (x, y′),

(ax, y)− a(x, y),

(x, ay)− a(x, y)

Let π : M × N → T denote the natural map. This map is R-bilinear, as implied
by the above relations when we check the bilinearity conditions. Denote the image
π(x, y) = x ⊗ y, then these elements generate T . Now let f : M × N → P be
an R-bilinear map, then we can define f ′ : T → P by extending the mapping
f ′(x⊗ y) = f(x, y). Clearly f = f ′ ◦π. Moreover, f ′ is uniquely determined by the
value on the generating sets {x⊗ y : x ∈M,y ∈ N}. Suppose there is another pair
(T ′, g′) satisfying the same properties. Then there is a unique j : T → T ′ and also
j′ : T ′ → T such that g′ = j ◦ g, g = j′ ◦ g′. But then both the maps (j ◦ j′) ◦ g
and g satisfies the universal properties, so by uniqueness they are equal, and hence
j′ ◦ j is identity on T . Similarly (j′ ◦ j) ◦ g′ = g′ and j ◦ j′ is identity on T ′. So j is
an isomorphism. �

Lemma 10.11.3. Let M,N,P be R-modules, then the bilinear maps

(x, y) 7→ y ⊗ x
(x+ y, z) 7→ x⊗ z + y ⊗ z

(r, x) 7→ rx

induce unique isomorphisms

M ⊗R N → N ⊗RM,

(M ⊕N)⊗R P → (M ⊗R P )⊕ (N ⊗R P ),

R⊗RM →M

Proof. Omitted. �

We may generalize the tensor product of twoR-modules to finitely manyR-modules,
and set up a correspondence between the multi-tensor product with multilinear
mappings. Using almost the same construction one can prove that:

Lemma 10.11.4. Let M1, . . . ,Mr be R-modules. Then there exists a pair (T, g)
consisting of an R-module T and an R-multilinear mapping g : M1× . . .×Mr → T
with the universal property: For any R-multilinear mapping f : M1× . . .×Mr → P
there exists a unique R-module homomorphism f ′ : T → P such that f ′ ◦ g = f .
Such a module T is unique up to unique isomorphism. We denote it M1⊗R. . .⊗RMr

and we denote the universal multilinear map (m1, . . . ,mr) 7→ m1 ⊗ . . .⊗mr.

Proof. Omitted. �

Lemma 10.11.5. The homomorphisms

(M ⊗R N)⊗R P →M ⊗R N ⊗R P →M ⊗R (N ⊗R P )

such that f((x⊗y)⊗z) = x⊗y⊗z and g(x⊗y⊗z) = x⊗(y⊗z), x ∈M,y ∈ N, z ∈ P
are well-defined and are isomorphisms.
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Proof. We shall prove f is well-defined and is an isomorphism, and this proof
carries analogously to g. Fix any z ∈ P , then the mapping (x, y) 7→ x ⊗ y ⊗ z,
x ∈ M,y ∈ N , is R-bilinear in x and y, and hence induces homomorphism fz :
M ⊗ N → M ⊗ N ⊗ P fz(x ⊗ y) = x ⊗ y ⊗ z. Then consider (M ⊗ N) × P →
M ⊗ N ⊗ P given by (w, z) 7→ fz(w). The map is R-bilinear and thus induces
f : (M ⊗RN)⊗R P →M ⊗RN ⊗R P and f((x⊗ y)⊗ z) = x⊗ y⊗ z. To construct
the inverse, we note that the map π : M ×N × P → (M ⊗N) ⊗ P is R-trilinear.
Therefore, it induces an R-linear map h : M ⊗N ⊗P → (M ⊗N)⊗P which agrees
with the universal property. Here we see that h(x⊗ y⊗ z) = (x⊗ y)⊗ z. From the
explicit expression of f and h, f ◦ h and h ◦ f are identity maps of M ⊗N ⊗P and
(M ⊗N)⊗ P respectively, hence f is our desired isomorphism. �

Doing induction we see that this extends to multi-tensor products. Combined with
Lemma 10.11.3 we see that the tensor product operation on the category of R-
modules is associative, commutative and distributive.

Definition 10.11.6. An abelian group N is called an (A,B)-bimodule if it is both
an A-module and a B-module, and the actions A → End(M) and B → End(M)
are compatible in the sense that (ax)b = a(xb) for all a ∈ A, b ∈ B, x ∈ N . Usually
we denote it as ANB .

Lemma 10.11.7. For A-module M , B-module P and (A,B)-bimodule N , the mod-
ules (M⊗AN)⊗BP and M⊗A(N⊗BP ) can both be given (A,B)-bimodule structure,
and moreover

(M ⊗A N)⊗B P ∼= M ⊗A (N ⊗B P ).

Proof. A priori M ⊗AN is an A-module, but we can give it a B-module structure
by letting

(x⊗ y)b = x⊗ yb, x ∈M,y ∈ N, b ∈ B
Thus M ⊗A N becomes an (A,B)-bimodule. Similarly for N ⊗B P , and thus for
(M ⊗A N)⊗B P and M ⊗A (N ⊗B P ). By Lemma 10.11.5, these two modules are
isomorphic as both as A-module and B-module via the same mapping. �

Lemma 10.11.8. For any three R-modules M,N,P ,

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P ))

Proof. An R-linear map f̂ ∈ HomR(M⊗RN,P ) corresponds to an R-bilinear map
f : M × N → P . For each x ∈ M the mapping y 7→ f(x, y) is R-linear by the
universal property. Thus f corresponds to a map φf : M → HomR(N,P ). This
map is R-linear since

φf (ax+ y)(z) = f(ax+ y, z) = af(x, z) + f(y, z) = (aφf (x) + φf (y))(z),

for all y ∈ N and for all a ∈ R, x, z ∈M . Conversely, any f ∈ HomR(M,HomR(N,P ))
defines an R-bilinear mapM×N → P , namely (x, y) 7→ f(x)(y). So this is a natural
one-to-one correspondence between the two modules. �

Lemma 10.11.9 (Tensor products commute with colimits). Let (Mi, µij) be a
system over the partially ordered set I. Let N be an R-module. Then

colim(Mi ⊗N) ∼= (colimMi)⊗N.
Moreover, the isomorphism is induced by the homomorphisms µi ⊗ 1 : Mi ⊗ N →
M ⊗N where M = colimiMi with natural maps µi : Mi →M .
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Proof. First proof. The functor M ′ 7→ M ′ ⊗R N is left adjoint to the functor
N ′ 7→ HomR(N,N ′) by Lemma 10.11.8. Thus M ′ 7→ M ′ ⊗R N commutes with all
colimits, see Categories, Lemma 4.24.4.

Second direct proof. Let P = colim(Mi ⊗ N), M = colimMi. Then for all i ≤ j,
the following diagram commutes:

Mi ⊗N
µi⊗1

//

µij⊗1

��

M ⊗N

id

��
Mj ⊗N

µj⊗1 // M ⊗N

By Lemma 10.8.8, these maps induce a unique homomorphism ψ : P → M ⊗ N ,
with λi : Mi ⊗N → P given by λi = π ◦ (ιi ⊗ 1).

To construct the inverse map, for each i ∈ I, there is the canonical R-bilinear

mapping gi : Mi ×N →Mi ⊗N . This induces a unique mapping φ̂ : M ×N → P

such that φ̂◦(µi×1) = λi◦gi. It is R-bilinear. Thus it induces an R-linear mapping
φ : M ⊗N → P . From the commutative diagram below:

Mi ×N
gi //

µi×id

��

Mi ⊗N
id
//

λi
��

Mi ⊗N

µi⊗id

��

λi

##
M ×N

φ̂ // P
ψ // M ⊗N

φ // P

we see that ψ ◦ φ̂ = g, the canonical R-bilinear mapping g : M ×N →M ⊗N . So
ψ ◦ φ is identity on M ⊗N . From the right-hand square and triangle, φ ◦ ψ is also
identity on P . �

Lemma 10.11.10. Let

M1
f−→M2

g−→M3 → 0

be an exact sequence of R-modules and homomorphisms, and let N be any R-
module. Then the sequence

(10.11.10.1) M1 ⊗N
f⊗1−−−→M2 ⊗N

g⊗1−−→M3 ⊗N → 0

is exact. In other words, the functor − ⊗R N is right exact, in the sense that
tensoring each term in the original right exact sequence preserves the exactness.

Proof. We apply the functor Hom(−,Hom(N,P )) to the first exact sequence. We
obtain

0→ Hom(M3,Hom(N,P ))→ Hom(M2,Hom(N,P ))→ Hom(M1,Hom(N,P ))

By Lemma 10.11.8, we have

0→ Hom(M3 ⊗N,P )→ Hom(M2 ⊗N,P )→ Hom(M1 ⊗N,P )

Using the pullback property again, we arrive at the desired exact sequence. �

Remark 10.11.11. However, tensor product does NOT preserve exact sequences
in general. In other words, if M1 → M2 → M3 is exact, then it is not necessarily
true that M1 ⊗N →M2 ⊗N →M3 ⊗N is exact for arbitrary R-module N .
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Example 10.11.12. Consider the injective map 2 : Z → Z viewed as a map of
Z-modules. Let N = Z/2. Then the induced map Z ⊗ Z/2 → Z ⊗ Z/2 is NOT
injective. This is because for x⊗ y ∈ Z⊗ Z/2,

(2⊗ 1)(x⊗ y) = 2x⊗ y = x⊗ 2y = x⊗ 0 = 0

Therefore the induced map is the zero map while Z⊗N 6= 0.

Remark 10.11.13. For R-modules N , if the functor −⊗RN is exact, i.e. tensoring
with N preserves all exact sequences, then N is said to be flat R-module. We will
discuss this later.

Lemma 10.11.14. Let R be a ring. Let M and N be R-modules.

(1) If N and M are finite, then so is M ⊗R N .
(2) If N and M are finitely presented, then so is M ⊗R N .

Proof. Suppose M is finite. Then choose a presentation 0→ K → R⊗n →M → 0.
This gives an exact sequence K⊗RN → N⊕n →M⊗RN → 0 by Lemma 10.11.10.
We conclude that if N is finite too then M ⊗R N is a quotient of a finite module,
hence finite, see Lemma 10.5.3. Similarly, if both N and M are finitely presented,
then we see that K is finite and that M ⊗RN is a quotient of the finitely presented
module N⊕n by a finite module, namely K ⊗RN , and hence finitely presented, see
Lemma 10.5.3. �

Lemma 10.11.15. Let M be an R-module. Then the S−1R modules S−1M and
S−1R⊗RM are canonically isomorphic, and the unique isomorphism f : S−1R⊗R
M → S−1M is given by

f((a/s)⊗m) = am/s,∀a ∈ R,m ∈M, s ∈ S

Proof. Obviously, the map f ′ : S−1R ×M → S−1M given by f((am, s)) = am/s
is bilinear, and thus by the universal property, this map induces a unique S−1R-
module homomorphism f : S−1R ⊗R M → S−1M as in the statement of the
lemma. Actually every element in S−1M is of the form m/s, m ∈ M, s ∈ S and
every element in S−1R ⊗RM is of the form 1/s⊗m. To see the latter fact, write
an element in S−1R⊗RM as∑

k

ak
sk
⊗mk =

∑
k

aktk
s
⊗mk =

1

s
⊗
∑
k

aktkmk =
1

s
⊗m

Where m =
∑
k aktkmk. Then it is obvious that f is surjective, and if f( 1

s ⊗m) =
m/s = 0 then there exists t′ ∈ S with tm = 0 in M . Then we have

1

s
⊗m =

1

st
⊗ tm =

1

st
⊗ 0 = 0

Therefore f is injective. �

Lemma 10.11.16. Let M,N be R-modules, then there is a canonical S−1R-module
isomorphism f : S−1M ⊗S−1R S

−1N → S−1(M ⊗R N), given by

f((m/s)⊗ (n/t)) = (m⊗ n)/st
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Proof. We may use Lemma 10.11.7 and Lemma 10.11.15 repeatedly to see that
these two S−1R-modules are isomorphic, noting that S−1R is an (R,S−1R)-bimodule:

S−1(M ⊗R N) ∼= S−1R⊗R (M ⊗R N)

∼= S−1M ⊗R N
∼= (S−1M ⊗S−1R S

−1R)⊗R N
∼= S−1M ⊗S−1R (S−1R⊗R N)

∼= S−1M ⊗S−1R S
−1N

This isomorphism is easily seen to be the one stated in the lemma. �

10.12. Tensor algebra

Let R be a ring. Let M be an R-module. We define the tensor algebra of M over
R to be the noncommutative R-algebra

T(M) = TR(M) =
⊕
n≥0

Tn(M)

with T0(M) = R, T1(M) = M , T2(M) = M ⊗R M , T3(M) = M ⊗R M ⊗R M ,
and so on. Multiplication is defined by the rule that on pure tensors we have

(x1 ⊗ x2 ⊗ . . .⊗ xn) · (y1 ⊗ y2 ⊗ . . .⊗ ym) = x1 ⊗ x2 ⊗ . . .⊗ xn ⊗ y1 ⊗ y2 ⊗ . . .⊗ ym
and we extend this by linearity.

We define the exterior algebra ∧(M) of M over R to be the quotient of T(M) by
the two sided ideal generated by the elements x⊗x ∈ T2(M). The image of a pure
tensor x1 ⊗ . . . ⊗ xn in ∧n(M) is denoted x1 ∧ . . . ∧ xn. These elements generate
∧n(M), they are R-linear in each xi and they are zero when two of the xi are
equal (i.e., alternating). The multiplication on ∧(M) is graded commutative, i.e.,
x ∧ y = −y ∧ x.

An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this
case ∧(M) is free over R with basis the elements

xi1 ∧ . . . ∧ xir
with 0 ≤ r ≤ n and 1 ≤ i1 < i2 < . . . < ir ≤ n.

We define the symmetric algebra Sym(M) of M over R to be the quotient of T(M)
by the two sided ideal generated by the elements x ⊗ y − y ⊗ x ∈ T2(M). The
image of a pure tensor x1 ⊗ . . .⊗ xn in Symn(M) is denoted just x1 . . . xn. These
elements generate Symn(M), these are R-linear in each xi and x1 . . . xn = x′1 . . . x

′
n

if the sequence of elements x1, . . . , xn is a permutation of the sequence x′1, . . . , x
′
n.

Thus we see that Sym(M) is commutative.

An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this
case Sym(M) = R[x1, . . . , xn] is a polynomial algebra.

Lemma 10.12.1. Let R be a ring. Let M be an R-module. If M is a free R-module,
so is each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. �

http://stacks.math.columbia.edu/tag/00DN
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Lemma 10.12.2. Let R be a ring. Let M2 →M1 →M → 0 be an exact sequence
of R-modules. There are exact sequences

M2 ⊗R Symn−1(M1)→ Symn(M1)→ Symn(M)→ 0

and similarly
M2 ⊗R ∧n−1(M1)→ ∧n(M1)→ ∧n(M)→ 0

Proof. Omitted. �

Lemma 10.12.3. Let R be a ring. Let M be an R-module. Let xi, i ∈ I be a given
system of generators of M as an R-module. Let n ≥ 2. There exists a canonical
exact sequence⊕

1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)⊕
⊕

1≤j1<j2≤n

⊕
i∈I

Tn−2(M)→ Tn(M)→ ∧n(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 in the first summand maps to

m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2 +m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2

and m1 ⊗ . . .⊗mn−2 in the second summand maps to

m1 ⊗ . . .⊗ xi ⊗ . . .⊗ xi ⊗ . . .⊗mn−2

There is also a canonical exact sequence⊕
1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)→ Tn(M)→ Symn(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 maps to

m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2 −m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2

Proof. Omitted. �

Lemma 10.12.4. Let R be a ring. Let Mi be a directed system of R-modules. Then
colimi T(M) = T(colimiMi) and similarly for the symmetric and exterior algebras.

Proof. Omitted. �

10.13. Base change

We formally introduce base change in algebra as follows.

Definition 10.13.1. Let ϕ : R → S be a ring map. Let M be an S-module.
Let R → R′ be any ring map. The base change of ϕ by R → R′ is the ring map
R′ → S ⊗R R′. In this situation we often write S′ = S ⊗R R′. The base change of
the S-module M is the S′-module M ⊗R R′.

If S = R[xi]/(fj) for some collection of variables xi, i ∈ I and some collection of
polynomials fj ∈ R[xi], j ∈ J , then S ⊗R R′ = R′[xi]/(f

′
j), where f ′j ∈ R′[xi] is the

image of fj under the map R[xi]→ R′[xi] induced by R→ R′. This simple remark
is the key to understanding base change.

Lemma 10.13.2. Let R→ S be a ring map. Let M be an S-module. Let R→ R′

be a ring map and let S′ = S ⊗R R′ and M ′ = M ⊗R R′ be the base changes.

(1) If M is a finite S-module, then the base change M ′ is a finite S′-module.
(2) If M is an S-module finite presentation, then the base change M ′ is an

S′-module of finite presentation.
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(3) If R→ S is of finite type, then the base change R′ → S′ is of finite type.
(4) If R → S is of finite presentation, then the base change R′ → S′ is of

finite presentation.

Proof. Proof of (1). Take a surjective, R-linear map R⊕n → M → 0. By Lemma

10.11.3 and 10.11.10 the result after tensoring with R′ is a surjection R′
⊕n →

M ′ → 0, so M ′ is a finitely generated R′-module. Proof of (2). Take a presentation
R⊕m → R⊕n →M → 0. By Lemma 10.11.3 and 10.11.10 the result after tensoring
with R′ gives a finite presentation R′

⊕m → R′
⊕n →M ′ → 0, of the R′-module M ′.

Proof of (3). This follows by the remark preceding the lemma as we can take I to
be finite by assumption. Proof of (4). This follows by the remark preceding the
lemma as we can take I and J to be finite by assumption. �

Let ϕ : R→ S be a ring map. Given a S-module N we obtain an R-module NR by
the rule r · n = ϕ(r)n. This is sometimes called the restriction of N to R.

Lemma 10.13.3. Let R → S be a ring map. The functors ModS → ModR,
N 7→ NR (restriction) and ModR → ModS, M 7→ M ⊗R S (base change) are
adjoint functors. In a formula

HomR(M,NR) = HomS(M ⊗R S,N)

Proof. If α : M → NR is an R-module map, then we define α′ : M ⊗R S → N by
the rule α′(m ⊗ s) = sα(m). If β : M ⊗R S → N is an S-module map, we define
β′ : M → NR by the rule β′(m) = β(m ⊗ 1). We omit the verification that these
constructions are mutually inverse. �

The lemma above tells us that restriction has a left adjoint, namely base change.
It also has a right adjoint.

Lemma 10.13.4. Let R → S be a ring map. The functors ModS → ModR,
N 7→ NR (restriction) and ModR → ModS, M 7→ HomR(S,M) are adjoint functors.
In a formula

HomR(NR,M) = HomS(N,HomR(S,M))

Proof. If α : NR →M is an R-module map, then we define α′ : N → HomR(S,M)
by the rule α′(n) = (s 7→ α(sn)). If β : N → HomR(S,M) is an S-module map,
we define β′ : NR →M by the rule β′(n) = β(n)(1). We omit the verification that
these constructions are mutually inverse. �

Lemma 10.13.5. Let R → S be a ring map. Given S-modules M,N and an
R-module P we have

HomR(M ⊗S N,P ) = HomS(M,HomR(N,P ))

Proof. This can be proved directly, but it is also a consequence of Lemmas 10.13.4
and 10.11.8. Namely, we have

HomR(M ⊗S N,P ) = HomS(M ⊗S N,HomR(S, P ))

= HomS(M,HomS(N,HomR(S, P )))

= HomS(M,HomR(N,P ))

as desired. �
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10.14. Miscellany

The proofs in this section should not refer to any results except those from the
section on basic notions, Section 10.3.

Lemma 10.14.1. Let R be a ring, I and J two ideals and p a prime ideal containing
the product IJ . Then p contains I or J .

Proof. Assume the contrary and take x ∈ I \ p and y ∈ I \ p. Their product is an
element of IJ ⊂ p, which contradicts the assumption that p was prime. �

Lemma 10.14.2 (Prime avoidance). Let R be a ring. Let Ii ⊂ R, i = 1, . . . , r,
and J ⊂ R be ideals. Assume

(1) J 6⊂ Ii for i = 1, . . . , r, and
(2) all but two of Ii are prime ideals.

Then there exists an x ∈ J , x 6∈ Ii for all i.

Proof. The result is true for r = 1. If r = 2, then let x, y ∈ J with x 6∈ I1 and
y 6∈ I2. We are done unless x ∈ I2 and y ∈ I1. Then the element x + y cannot be
in I1 (since that would mean x+ y − y ∈ I1) and it also cannot be in I2.

For r ≥ 3, assume the result holds for r − 1. After renumbering we may assume
that Ir is prime. We may also assume there are no inclusions among the Ii. Pick
x ∈ J , x 6∈ Ii for all i = 1, . . . , r − 1. If x 6∈ Ir we are done. So assume x ∈ Ir.
If JI1 . . . Ir−1 ⊂ Ir then J ⊂ Ir (by Lemma 10.14.1) a contradiction. Pick y ∈
JI1 . . . Ir−1, y 6∈ Ir. Then x+ y works. �

Lemma 10.14.3 (Chinese remainder). Let R be a ring.

(1) If I1, . . . , Ir are ideals such that Ia+Ib = R when a 6= b, then I1∩. . .∩Ir =
I1I2 . . . Ir and R/(I1I2 . . . Ir) ∼= R/I1 × . . .×R/Ir.

(2) If m1, . . . ,mr are pairwise distinct maximal ideals then ma + mb = R for
a 6= b and the above applies.

Proof. Let us first prove I1∩. . .∩Ir = I1 . . . Ir as this will also imply the injectivity
of the induced ring homomorphism R/(I1 . . . Ir)→ R/I1×. . .×R/Ir. The inclusion
I1∩ . . .∩ Ir ⊃ I1 . . . Ir is always fulfilled since ideals are closed under multiplication
with arbitrary ring elements. To prove the other inclusion, we claim that the ideals

I1 . . . Îi . . . Ir, i = 1, . . . , r

generate the ring R. We prove this by induction on r. It holds when r = 2. If
r > 2, then we see that R is the sum of the ideals I1 . . . Îi . . . Ir−1, i = 1, . . . , r − 1.

Hence Ir is the sum of the ideals I1 . . . Îi . . . Ir, i = 1, . . . , r − 1. Applying the
same argument with the reverse ordering on the ideals we see that I1 is the sum
of the ideals I1 . . . Îi . . . Ir, i = 2, . . . , r. Since R = I1 + Ir by assumption we see
that R is the sum of the ideals displayed above. Therefore we can find elements
ai ∈ I1 . . . Îi . . . Ir such that their sum is one. Multiplying this equation by an
element of I1 ∩ . . . ∩ Ir gives the other inclusion. It remains to show that the
canonical map R/(I1 . . . Ir) → R/I1 × . . . × R/Ir is surjective. For this, consider
its action on the equation 1 =

∑r
i=1 ai we derived above. On the one hand, a ring

morphism sends 1 to 1 and on the other hand, the image of any ai is zero in R/Ij
for j 6= i. Therefore, the image of ai in R/Ii is the identity. So given any element
(b̄1, . . . , b̄r) ∈ R/I1 × . . .×R/Ir, the element

∑r
i=1 ai · bi is an inverse image in R.
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To see (2), by the very definition of being distinct maximal ideals, we have ma+mb =
R for a 6= b and so the above applies. �

Lemma 10.14.4. Let R be a ring. Let n ≥ m. Let A = (aij) be an n×m matrix
with coefficients in R. Let J ⊂ R be the ideal generated by the m×m minors of A.

(1) For any f ∈ J there exists a m× n matrix B such that BA = f1m×m.
(2) If f ∈ R and BA = f1m×m for some m×m matrix B, then fm ∈ J .

Proof. For I ⊂ {1, . . . , n} with |I| = m denote EI the m × n matrix of the
projection

R⊕n =
⊕

i∈{1,...,n}
R −→

⊕
i∈I

R

and set AI = EIA, i.e., AI is the m×m matrix whose rows are the rows of A with
indices in I. Let BI be the adjugate (transpose of cofactor) matrix to AI , i.e., such
that AIBI = BIAI = det(AI). If f ∈ J then we can write f =

∑
cI det(AI) for

some cI ∈ R. Set B =
∑
cIBIEI to see that (1) holds.

If f1m×m = BA then by the Cauchy-Binet formula we have fm =
∑
bI det(AI)

where bI is the determinant of the m ×m matrix whose columns are the columns
of B with indices in I. �

Lemma 10.14.5. Let R be a ring. Let n ≥ m. Let A = (aij) be an n×m matrix
with coefficients in R, written in block form as

A =

(
A1

A2

)
where A1 has size m×m. Let B be the adjugate (transpose of cofactor) matrix to
A1. Then

AB =

(
f1m×m
C

)
where f = det(A1) and cij is (up to sign) the determinant of the m×m minor of

A corresponding to the rows 1, . . . , ĵ, . . . ,m, i.

Proof. Since the adjugate has the property A1B = BA1 = f the first block of the
expression for AB is correct. Note that

cij =
∑

k
aikbkj =

∑
(−1)j+kaik det(Ajk1 )

where Aij1 means A1 with the jth row and kth column removed. This last expression
is the row expansion of the determinant of the matrix in the statement of the
lemma. �

10.15. Cayley-Hamilton

Lemma 10.15.1. Let R be a ring. Let A = (aij) be an n × n matrix with coef-
ficients in R. Let P (x) ∈ R[x] be the characteristic polynomial of A (defined as
det(xidn×n −A)). Then P (A) = 0 in Mat(n× n,R).

Proof. We reduce the question to the well-known Cayley-Hamilton theorem from
linear algebra in several steps:

(1) If φ : S → R is a ring morphism and bij are inverse images of the aij under
this map, then it suffices to show the statement for S and (bij) since φ is
a ring morphism.

http://stacks.math.columbia.edu/tag/07DQ
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(2) If ψ : R ↪→ S is an injective ring morphism, it clearly suffices to show the
result for S and the aij considered as elements of S.

(3) Thus we may first reduce to the caseR = Z[Xij ], aij = Xij of a polynomial
ring and then further to the case R = Q(Xij) where we may finally apply
Cayley-Hamilton.

�

Lemma 10.15.2. Let R be a ring. Let M be a finite R-module. Let ϕ : M → M
be an endomorphism. Then there exists a monic polynomial P ∈ R[T ] such that
P (ϕ) = 0 as an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈M . Choose (ai1, . . . , ain) ∈ R⊕n such that ϕ(xi) =∑
aijxj . In other words the diagram

R⊕n

A
��

// M

ϕ

��
R⊕n // M

is commutative whereA = (aij). By Lemma 10.15.1 there exists a monic polynomial
P such that P (A) = 0. Then it follows that P (ϕ) = 0. �

Lemma 10.15.3. Let R be a ring. Let I ⊂ R be an ideal. Let M be a finite
R-module. Let ϕ : M → M be an endomorphism such that ϕ(M) ⊂ IM . Then
there exists a monic polynomial P = tn+a1t

n−1 + . . .+an ∈ R[T ] such that aj ∈ Ij
and P (ϕ) = 0 as an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈M . Choose (ai1, . . . , ain) ∈ I⊕n such that ϕ(xi) =∑
aijxj . In other words the diagram

R⊕n

A
��

// M

ϕ

��
I⊕n // M

is commutative where A = (aij). By Lemma 10.15.1 the polynomial P (t) =
det(tidn×n −A) has all the desired properties. �

As a fun example application we prove the following surprising lemma.

Lemma 10.15.4. Let R be a ring. Let M be a finite R-module. Let ϕ : M → M
be a surjective R-module map. Then ϕ is an isomorphism.

First proof. Write R′ = R[x] and think of M as a finite R′-module with x acting
via ϕ. Set I = (x) ⊂ R′. By our assumption that ϕ is surjective we have IM = M .
Hence we may apply Lemma 10.15.3 to M as an R′ module, the ideal I and the
endomorphism idM . We conclude that (1 + a1 + . . . + an)idM = 0 with aj ∈ I.
Write aj = bj(x)x for some bj(x) ∈ R[x]. Translating back into ϕ we see that
idM = −(

∑
j=1,...,n bj(ϕ)ϕ and hence ϕ is invertible. �
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Second proof. We perform induction on the number of generators of M over R.
If M is generated by one element, then M ∼= R/I for some ideal I ⊂ R. In this
case we may replace R by R/I so that M = R. In this case ϕ : R→ R is given by
multiplication on M by an element r ∈ R. The surjectivity of ϕ forces r invertible,
since ϕ must hit 1, which implies that ϕ is invertible.

Now assume that we have proven the lemma in the case of modules generated by
n − 1 elements, and are examining a module M generated by n elements. Let
A mean the ring R[t], and regard the module M as an A-module by letting t
act via ϕ; since M is finite over R, it is finite over R[t] as well, and since we’re
trying to prove ϕ injective, a set-theoretic property, we might as well prove the
endomorphism t : M → M over A injective. We have reduced our problem to the
case our endomorphism is multiplication by an element of the ground ring. Let
M ′ ⊂M denote the sub-A-module generated by the first n− 1 of the generators of
M , and consider the diagram

0 // M ′ //

ϕ|M′
��

M

ϕ

��

// M/M ′

ϕ mod M ′

��

// 0

0 // M ′ // M // M/M ′ // 0,

where the restriction of ϕ to M ′ and the map induced by ϕ on the quotient M/M ′

are well-defined since ϕ is multiplication by an element in the base, and M ′ and
M/M ′ are A-modules in their own right. By the case n = 1 the map M/M ′ →
M/M ′ is an isomorphism. A diagram chase implies that ϕ|M ′ is surjective hence
by induction ϕ|M ′ is an isomorphism. This forces the middle column to be an
isomorphism by the snake lemma. �

10.16. The spectrum of a ring

We arbitrarily decide that the spectrum of a ring as a topological space is part of
the algebra chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 10.16.1. Let R be a ring.

(1) The spectrum of R is the set of prime ideals of R. It is usually denoted
Spec(R).

(2) Given a subset T ⊂ R we let V (T ) ⊂ Spec(R) be the set of primes
containing T , i.e., V (T ) = {p ∈ Spec(R) | ∀f ∈ T, f ∈ p}.

(3) Given an element f ∈ R we let D(f) ⊂ Spec(R) be the set of primes not
containing f .

Lemma 10.16.2. Let R be a ring.

(1) The spectrum of a ring R is empty if and only if R is the zero ring.
(2) Every nonzero ring has a maximal ideal.
(3) Every nonzero ring has a minimal prime ideal.
(4) Given an ideal I ⊂ R and a prime ideal I ⊂ p there exists a prime

I ⊂ q ⊂ p such that q is minimal over I.
(5) If T ⊂ R, and if (T ) is the ideal generated by T in R, then V ((T )) = V (T ).

(6) If I is an ideal and
√
I is its radical, see basic notion (27), then V (I) =

V (
√
I).

(7) Given an ideal I of R we have
√
I =

⋂
I⊂p p.

http://stacks.math.columbia.edu/tag/00DZ
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(8) If I is an ideal then V (I) = ∅ if and only if I is the unit ideal.
(9) If I, J are ideals of R then V (I) ∪ V (J) = V (I ∩ J).

(10) If (Ia)a∈A is a set of ideals of R then ∩a∈AV (Ia) = V (∪a∈AIa).
(11) If f ∈ R, then D(f)

∐
V (f) = Spec(R).

(12) If f ∈ R then D(f) = ∅ if and only if f is nilpotent.
(13) If f = uf ′ for some unit u ∈ R, then D(f) = D(f ′).
(14) If I ⊂ R is an ideal, and p is a prime of R with p 6∈ V (I), then there

exists an f ∈ R such that p ∈ D(f), and D(f) ∩ V (I) = ∅.
(15) If f, g ∈ R, then D(fg) = D(f) ∩D(g).
(16) If fi ∈ R for i ∈ I, then

⋃
i∈I D(fi) is the complement of V ({fi}i∈I) in

Spec(R).
(17) If f ∈ R and D(f) = Spec(R), then f is a unit.

Proof. We address each part in the corresponding item below.

(1) This is a direct consequence of (2) or (3).
(2) Let A be the set of all proper ideals of R. This set is ordered by inclusion

and is non-empty, since (0) ∈ A is a proper ideal. Let A be a totally
ordered subset of R.

⋃
I∈A I is in fact an ideal. Since 1 /∈ I for all I ∈ A,

the union does not contain 1 and thus is proper. Hence
⋃
I∈A I is in A and

is an upper bound for the set A. Thus by Zorn’s lemma A has a maximal
element, which is the sought-after maximal ideal.

(3) Since R is nonzero, it contains a maximal ideal which is a prime ideal.
Thus the set A of all prime ideals of R is nonempty. A is ordered by
reverse-inclusion. Let A be a totally ordered subset of A. It’s pretty clear
that J =

⋂
I∈A I is in fact an ideal. Not so clear, however, is that it is

prime. Let xy ∈ J . Then xy ∈ I for all I ∈ A. Now letB = {I ∈ A|y ∈ I}.
Let K =

⋂
I∈B I. Since A is totally ordered, either K = J (and we’re

done, since then y ∈ J) or K ⊃ J and for all I ∈ A such that I is properly
contained in K, we have y /∈ I. But that means that for all those I, x ∈ I,
since they are prime. Hence x ∈ J . In either case, J is prime as desired.
Hence by Zorn’s lemma we get a maximal element which in this case is a
minimal prime ideal.

(4) This is the same exact argument as (3) except you only consider prime
ideals contained in p and containing I.

(5) (T ) is the smallest ideal containing T . Hence if T ⊂ I, some ideal, then
(T ) ⊂ I as well. Hence if I ∈ V (T ), then I ∈ V ((T )) as well. The other
inclusion is obvious.

(6) Since I ⊂
√
I, V (

√
I) ⊂ V (I). Now let p ∈ V (I). Let x ∈

√
I. Then

xn ∈ I for some n. Hence xn ∈ p. But since p is prime, a boring induction
argument gets you that x ∈ p. Hence

√
I ⊂ p and p ∈ V (

√
I).

(7) Let f ∈ R \
√
I. Then fn /∈ I for all n. Hence S = {1, f, f2, . . .} is

a multiplicative subset, not containing 0. Take a prime ideal p̄ ⊂ S−1R
containing S−1I. Then the pull-back p in R of p̄ is a prime ideal containing
I that does not intersect S. This shows that

⋂
I⊂p p ⊂

√
I. Now if a ∈

√
I,

then an ∈ I for some n. Hence if I ⊂ p, then an ∈ p. But since p is prime,
we have a ∈ p. Thus the equality is shown.

(8) I is not the unit ideal if and only if I is contained in some maximal ideal
(to see this, apply (2) to the ring R/I) which is therefore prime.
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(9) If p ∈ V (I)∪V (J), then I ⊂ p or J ⊂ p which means that I ∩J ⊂ p. Now
if I ∩ J ⊂ p, then IJ ⊂ p and hence either I of J is in p, since p is prime.

(10) p ∈
⋂
a∈A V (Ia)⇔ Ia ⊂ p,∀a ∈ A⇔ p ∈ V (∪a∈AIa)

(11) If p is a prime ideal and f ∈ R, then either f ∈ p or f /∈ p (strictly) which
is what the disjoint union says.

(12) If a ∈ R is nilpotent, then an = 0 for some n. Hence an ∈ p for any prime
ideal. Thus a ∈ p as can be shown by induction and D(f) = ∅. Now, as
shown in (7), if a ∈ R is not nilpotent, then there is a prime ideal that
does not contain it.

(13) f ∈ p⇔ uf ∈ p, since u is invertible.
(14) If p /∈ V (I), then ∃f ∈ I \ p. Then f /∈ p so p ∈ D(f). Also if q ∈ D(f),

then f /∈ q and thus I is not contained in q. Thus D(f) ∩ V (I) = ∅.
(15) If fg ∈ p, then f ∈ p or g ∈ p. Hence if f /∈ p and g /∈ p, then fg /∈ p.

Since p is an ideal, if fg /∈ p, then f /∈ p and g /∈ p.
(16) p ∈

⋃
i∈I D(fi)⇔ ∃i ∈ I, fi /∈ p⇔ p ∈ Spec(R) \ V ({fi}i∈I)

(17) If D(f) = Spec(R), then V (f) = ∅ and hence fR = R, so f is a unit.

�

The lemma implies that the subsets V (T ) from Definition 10.16.1 form the closed
subsets of a topology on Spec(R). And it also shows that the sets D(f) are open
and form a basis for this topology.

Definition 10.16.3. Let R be a ring. The topology on Spec(R) whose closed sets
are the sets V (T ) is called the Zariski topology. The open subsets D(f) are called
the standard opens of Spec(R).

It should be clear from context whether we consider Spec(R) just as a set or as a
topological space.

Lemma 10.16.4. Suppose that ϕ : R→ R′ is a ring homomorphism. The induced
map

Spec(ϕ) : Spec(R′) −→ Spec(R), p′ 7−→ ϕ−1(p′)

is continuous for the Zariski topologies. In fact, for any element f ∈ R we have
Spec(ϕ)−1(D(f)) = D(ϕ(f)).

Proof. It is basic notion (41) that p := ϕ−1(p′) is indeed a prime ideal of R. The
last assertion of the lemma follows directly from the definitions, and implies the
first. �

If ϕ′ : R′ → R′′ is a second ring homomorphism then the composition

Spec(R′) −→ Spec(R′) −→ Spec(R′′)

equals Spec(ϕ′ ◦ ϕ). In other words, Spec is a contravariant functor from the
category of rings to the category of topological spaces.

Lemma 10.16.5. Let R be a ring. Let S ⊂ R be a multiplicative subset. The map
R→ S−1R induces via the functoriality of Spec a homeomorphism

Spec(S−1R) −→ {p ∈ Spec(R) | S ∩ p = ∅}

where the topology on the right hand side is that induced from the Zariski topology
on Spec(R). The inverse map is given by p 7→ S−1p.

http://stacks.math.columbia.edu/tag/00E1
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Proof. Denote the right hand side of the arrow of the lemma by D. Choose a
prime p′ ⊂ S−1R and let p the inverse image of p′ in R. Since p′ does not contain
1 we see that p does not contain any element of S. Hence p ∈ D and we see that
the image is contained in D. Let p ∈ D. By assumption the image S does not

contain 0. By basic notion (54) S
−1

(R/p) is not the zero ring. By basic notion

(62) we see S−1R/S−1p = S
−1

(R/p) is a domain, and hence S−1p is a prime.
The equality of rings also shows that the inverse image of S−1p in R is equal to

p, because R/p → S
−1

(R/p) is injective by basic notion (55). This proves that
the map Spec(S−1R) → Spec(R) is bijective onto D with inverse as given. It is
continuous by Lemma 10.16.4. Finally, let D(g) ⊂ Spec(S−1R) be a standard open.
Write g = h/s for some h ∈ R and s ∈ S. Since g and h/1 differ by a unit we have
D(g) = D(h/1) in Spec(S−1R). Hence by Lemma 10.16.4 and the bijectivity above
the image of D(g) = D(h/1) is D ∩D(h). This proves the map is open as well. �

Lemma 10.16.6. Let R be a ring. Let f ∈ R. The map R → Rf induces via the
functoriality of Spec a homeomorphism

Spec(Rf ) −→ D(f) ⊂ Spec(R).

The inverse is given by p 7→ p ·Rf .

Proof. This is a special case of Lemma 10.16.5. �

It is not the case that every “affine open” of a spectrum is a standard open. See
Example 10.26.4.

Lemma 10.16.7. Let R be a ring. Let I ⊂ R be an ideal. The map R → R/I
induces via the functoriality of Spec a homeomorphism

Spec(R/I) −→ V (I) ⊂ Spec(R).

The inverse is given by p 7→ p/I.

Proof. It is immediate that the image is contained in V (I). On the other hand, if
p ∈ V (I) then p ⊃ I and we may consider the ideal p/I ⊂ R/I. Using basic notion
(51) we see that (R/I)/(p/I) = R/p is a domain and hence p/I is a prime ideal.
From this it is immediately clear that the image of D(f + I) is D(f) ∩ V (I), and
hence the map is a homeomorphism. �

Remark 10.16.8. A fundamental commutative diagram associated to ϕ : R→ S,
q ⊂ S and p = ϕ−1(q) is the following

κ(q) = Sq/qSq Sq
oo S //oo S/q // κ(q) = f.f.(S/q)

κ(p)⊗R S = Sp/pSp

OO

Sp

OO

oo S

OO

//oo S/pS

OO

// (R \ p)−1S/pS

OO

κ(p) = Rp/pRp

OO

Rp

OO

oo R

OO

//oo R/p

OO

// κ(p) = f.f.(R/p)

OO

In this diagram the arrows in the outer left and outer right columns are identical.
The horizontal maps induce on the associated spectra always a homeomorphism
onto the image. The lower two rows of the diagram make sense without assuming q
exists. The lower squares induce fibre squares of topological spaces. This diagram

http://stacks.math.columbia.edu/tag/00E4
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shows that p is in the image of the map on Spec if and only if S ⊗R κ(p) is not the
zero ring.

Lemma 10.16.9. Let ϕ : R → S be a ring map. Let p be a prime of R. The
following are equivalent

(1) p is in the image of Spec(S)→ Spec(R),
(2) S ⊗R κ(p) 6= 0,
(3) Sp/pSp 6= 0,
(4) (S/pS)p 6= 0, and
(5) p = ϕ−1(pS).

Proof. We have already seen the equivalence of the first two in Remark 10.16.8.
The others are just reformulations of this. �

Lemma 10.16.10. Let R be a ring. The space Spec(R) is quasi-compact.

Proof. It suffices to prove that any covering of Spec(R) by standard opens can
be refined by a finite covering. Thus suppose that Spec(R) = ∪D(fi) for a set
of elements {fi}i∈I of R. This means that ∩V (fi) = ∅. According to Lemma
10.16.2 this means that V ({fi}) = ∅. According to the same lemma this means
that the ideal generated by the fi is the unit ideal of R. This means that we can
write 1 as a finite sum: 1 =

∑
i∈J rifi with J ⊂ I finite. And then it follows that

Spec(R) = ∪i∈JD(fi). �

Lemma 10.16.11. Let R be a ring. The topology on X = Spec(R) has the following
properties:

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma 10.16.10. It has a
basis for the topology consisting of the standard opens D(f) = Spec(Rf ) (Lemma
10.16.6) which are quasi-compact by the first remark. The intersection of two
standard opens is quasi-compact as D(f) ∩ D(g) = D(fg). Given any two quasi-
compact opens U, V ⊂ X we may write U = D(f1) ∪ . . . ∪D(fn) and V = D(g1) ∪
. . . ∪D(gm). Then U ∩ V =

⋃
D(figj) which is quasi-compact. �

10.17. Local rings

Local rings are the bread and butter of algebraic geometry.

Definition 10.17.1. A local ring is a ring with exactly one maximal ideal. The
maximal ideal is often denoted mR in this case. We often say “let (R,m, κ) be a
local ring” to indicate that R is local, m is its unique maximal ideal and κ = R/m
is its residue field. A local homomorphism of local rings is a ring map ϕ : R → S
such that R and S are local rings and such that ϕ(mR) ⊂ mS . If it is given that R
and S are local rings, then the phrase “local ring map ϕ : R→ S” means that ϕ is
a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of
local rings.

Lemma 10.17.2. Let R be a ring. The following are equivalent:

http://stacks.math.columbia.edu/tag/00E7
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(1) R is a local ring,
(2) Spec(R) has exactly one closed point,
(3) R has a maximal ideal m and every element of R \m is a unit, and
(4) R is not the zero ring and for every x ∈ R either x or 1− x is invertible

or both.

Proof. Let R be a ring, and m a maximal ideal. If x ∈ R \ m, and x is not a
unit then there is a maximal ideal m′ containing x. Hence R has at least two
maximal ideals. Conversely, if m′ is another maximal ideal, then choose x ∈ m′,
x 6∈ m. Clearly x is not a unit. This proves the equivalence of (1) and (3). The
equivalence (1) and (2) is tautological. If R is local then (4) holds since x is either
in m or not. If (4) holds, and m, m′ are distinct maximal ideals then we may choose
x ∈ R such that x mod m′ = 0 and x mod m = 1 by the Chinese remainder theorem
(Lemma 10.14.3). This element x is not invertible and neither is 1 − x which is a
contradiction. Thus (4) and (1) are equivalent. �

The localization Rp of a ring R at a prime p is a local ring with maximal ideal pRp.
Namely, the quotient Rp/pRp is the fraction field of the domain R/p and every
element of Rp which is not contained in pRp is invertible.

Lemma 10.17.3. Let ϕ : R→ S be a ring map. Assume R and S are local rings.
The following are equivalent:

(1) ϕ is a local ring map,
(2) ϕ(mR) ⊂ mS, and
(3) ϕ−1(mS) = mR.
(4) For any x ∈ R, if ϕ(x) is invertible in S, then x is invertible in R.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2)
holds. Conversely, if (2) holds, then ϕ−1(mS) is a prime ideal containing the max-
imal ideal mR, hence ϕ−1(mS) = mR. Finally, (4) is the contrapositive of (2) by
Lemma 10.17.2. �

Let ϕ : R→ S be a ring map. Let q ⊂ S be a prime and set p = ϕ−1(q). Then the
induced ring map Rp → Sq is a local ring map.

10.18. The Jacobson radical of a ring

We recall that the Jacobson radical rad(R) of a ring R is the intersection of all
maximal ideals of R. If R is local then rad(R) is the maximal ideal of R.

Lemma 10.18.1. Let R be a ring and let I ⊂ R be an ideal. The following are
equivalent

(1) I ⊂ rad(R), and
(2) every element of 1 + I is a unit in R.

Proof. If f ∈ rad(R), then f ∈ m for all maximal ideals m of R. Hence 1 + f 6∈ m
for all maximal ideals m of R. Thus the closed subset V (1+f) of Spec(R) is empty.
This implies that 1 + f is a unit, see Lemma 10.16.2.

Conversely, assume that 1 + f is a unit for all f ∈ I. If m is a maximal ideal and
I 6⊂ m, then I + m = R. Hence 1 = f + g for some g ∈ m and f ∈ I. Then
g = 1 + (−f) is not a unit, contradiction. �

http://stacks.math.columbia.edu/tag/07BJ
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10.19. Nakayama’s lemma

We quote from [Mat70]: “This simple but important lemma is due to T. Nakayama,
G. Azumaya and W. Krull. Priority is obscure, and although it is usually called
the Lemma of Nakayama, late Prof. Nakayama did not like the name.”

Lemma 10.19.1 (Nakayama’s lemma). Let R be a ring, let M be an R-module,
and let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists a f ∈ 1 + I such that
fM = 0.

(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂M , M = N+IN ′, and N ′ is finite, then there exists a f ∈ 1+I

such that Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists a f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma 10.14.4 there exists an m×m matrix B such that BA = f1m×m. Writing
out we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates

M .

By Lemma 10.16.2 an element of 1 + rad(R) is invertible element of R. Hence we
see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as
N ′ is finite. We obtain (4) by applying (2) to M/N which is finite as N ′ is finite.
We obtain (5) by applying (3) to M and the submodules Im(N →M) and M . We
obtain (6) by applying (4) to M and the submodules Im(N → M) and M . We
obtain (7) by applying (5) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+anxn.
We obtain (8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+
anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. �
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10.20. Open and closed subsets of spectra

It turns out that open and closed subsets of a spectrum correspond to idempotents
of the ring.

Lemma 10.20.1. Let R be a ring. Let e ∈ R be an idempotent. In this case

Spec(R) = D(e)
∐

D(1− e).

Proof. Note that an idempotent e of a domain is either 1 or 0. Hence we see that

D(e) = {p ∈ Spec(R) | e 6∈ p}
= {p ∈ Spec(R) | e 6= 0 in κ(p)}
= {p ∈ Spec(R) | e = 1 in κ(p)}

Similarly we have

D(1− e) = {p ∈ Spec(R) | 1− e 6∈ p}
= {p ∈ Spec(R) | e 6= 1 in κ(p)}
= {p ∈ Spec(R) | e = 0 in κ(p)}

Since the image of e in any residue field is either 1 or 0 we deduce that D(e) and
D(1− e) cover all of Spec(R). �

Lemma 10.20.2. Let R1 and R2 be rings. Let R = R1 ×R2. The maps R→ R1,
(x, y) 7→ x and R → R2, (x, y) 7→ y induce continuous maps Spec(R1) → Spec(R)
and Spec(R2)→ Spec(R). The induced map

Spec(R1)
∐

Spec(R2) −→ Spec(R)

is a homeomorphism. In other words, the spectrum of R = R1 ×R2 is the disjoint
union of the spectrum of R1 and the spectrum of R2.

Proof. Write 1 = e1 + e2 with e1 = (1, 0) and e2 = (0, 1). Note that e1 and
e2 = 1−e1 are idempotents. We leave it to the reader to show that R1 = Re1 is the
localization of R at e1. Similarly for e2. Thus the statement of the lemma follows
from Lemma 10.20.1 combined with Lemma 10.16.6. �

We reprove the following lemma later after introducing a glueing lemma for func-
tions. See Section 10.22.

Lemma 10.20.3. Let R be a ring. For each U ⊂ Spec(R) which is open and
closed there exists a unique idempotent e ∈ R such that U = D(e). This induces a
1-1 correspondence between open and closed subsets U ⊂ Spec(R) and idempotents
e ∈ R.

First proof of Lemma 10.20.3. Let U ⊂ Spec(R) be open and closed. Since U
is closed it is quasi-compact by Lemma 10.16.10, and similarly for its complement.
Write U =

⋃n
i=1D(fi) as a finite union of standard opens. Similarly, write Spec(R)\

U =
⋃m
j=1D(gj) as a finite union of standard opens. Since ∅ = D(fi) ∩ D(gj) =

D(figj) we see that figj is nilpotent by Lemma 10.16.2. Let I = (f1, . . . , fn) ⊂ R
and let J = (g1, . . . , gm) ⊂ R. Note that V (J) equals U , that V (I) equals the
complement of U , so Spec(R) = V (I)

∐
V (J). By the remark on nilpotency above,

we see that (IJ)N = (0) for some sufficiently large integer N . Since
⋃
D(fi) ∪⋃

D(gj) = Spec(R) we see that I + J = R, see Lemma 10.16.2. By raising this
equation to the 2Nth power we conclude that IN + JN = R. Write 1 = x+ y with
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x ∈ IN and y ∈ JN . Then 1 = (x + y)2 = x2 + y2 because INJN = (0). Then
z = x − x2 ∈ IN ∩ JN . Thus zx = 0 and z2 = 0. Hence (x − z) − (x − z)2 =
x − x2 − z = 0. In other words, e = x − z is an idempotent contained in IN ⊂ I,
and the idempotent e′ = 1− e = y+ z is contained in JN ⊂ J . This shows that the
idempotent e maps to 1 in every residue field κ(p) for p ∈ V (J) and that e maps
to 0 in κ(p) for every p ∈ V (I).

To see uniqueness suppose that e1, e2 are distinct idempotents in R. We have to
show there exists a prime p such that e1 ∈ p and e2 6∈ p, or conversely. Write
e′i = 1− ei. If e1 6= e2, then 0 6= e1 − e2 = e1(e2 + e′2)− (e1 + e′1)e2 = e1e

′
2 − e′1e2.

Hence either the idempotent e1e
′
2 6= 0 or e′1e2 6= 0. An idempotent is not nilpotent,

and hence we find a prime p such that either e1e
′
2 6∈ p or e′1e2 6∈ p, by Lemma

10.16.2. It is easy to see this gives the desired prime. �

Lemma 10.20.4. Let R be a nonzero ring. Then Spec(R) is connected if and only
if R has no nontrivial idempotents.

Proof. Obvious from Lemma 10.20.3. �

Lemma 10.20.5. Let R be a ring. Let I be a finitely generated ideal. Assume
that I = I2. Then V (I) is open and closed in Spec(R), and R/I ∼= Re for some
idempotent e ∈ R.

Proof. By Nakayama’s Lemma 10.19.1 there exists an element f = 1 + i, i ∈ I
in R such that fI = 0. It follows that V (I) = D(f) by a simple argument. Also,
0 = fi = i+ i2, and hence f2 = 1 + i+ i+ i2 = 1 + i = f , so f is an idempotent.
Consider the canonical map R→ Rf . It is surjective since x/fn = x/f = xf/f2 =
xf/f = x/1 in Rf . Any element of I is in the kernel since fI = 0. If x 7→ 0 in Rf ,
then fnx = 0 for some n > 0 and hence (1 + i)x = 0 hence x ∈ I. �

10.21. Connected components of spectra

Connected components of spectra are not as easy to understand as one may think
at first. This is because we are used to the topology of locally connected spaces,
but the spectrum of a ring is in general not locally connected.

Lemma 10.21.1. Let R be a ring. Let T ⊂ Spec(R) be a subset of the spectrum.
The following are equivalent

(1) T is closed and is a union of connected components of Spec(R),
(2) T is an intersection of open and closed subsets of Spec(R), and
(3) T = V (I) where I ⊂ R is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.

Proof. By Lemma 10.16.11 and Topology, Lemma 5.11.12 we see that (1) and (2)
are equivalent. Assume (2) and write T =

⋂
Uα with Uα ⊂ Spec(R) open and

closed. Then Uα = D(eα) for some idempotent eα ∈ A by Lemma 10.20.3. Then
setting I = (1 − eα) we see that T = V (I), i.e., (3) holds. Finally, assume (3).
Write T = V (I) and I = (eα) for some collection of idempotents eα. Then it is
clear that T =

⋂
V (eα) =

⋂
D(1− eα).

Suppose that I is an ideal generated by idempotents. Let e ∈ R be an idempotent
such that V (I) ⊂ V (e). Then by Lemma 10.16.2 we see that en ∈ I for some n ≥ 1.
As e is an idempotent this means that e ∈ I. Hence we see that I is generated
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by exactly those idempotents e such that T ⊂ V (e). In other words, the ideal I is
completely determined by the closed subset T which proves uniqueness. �

Lemma 10.21.2. Let R be a ring. A connected component of Spec(R) is of the
form V (I), where I is an ideal generated by idempotents such that every idempotent
of R either maps to 0 or 1 in R/I.

Proof. Let p be a prime of R. By Lemma 10.16.11 we have see that the hypotheses
of Topology, Lemma 5.11.10 are satisfied for the topological space Spec(R). Hence
the connected component of p in Spec(R) is the intersection of open and closed
subsets of Spec(R) containing p. Hence it equals V (I) where I is generated by
the idempotents e ∈ R such that e maps to 0 in κ(p), see Lemma 10.20.3. Any
idempotent e which is not in this collection clearly maps to 1 in R/I. �

10.22. Glueing functions

In this section we show that given an open covering

Spec(R) =
⋃n

i=1
D(fi)

by standard opens, and given an element hi ∈ Rfi for each i such that hi = hj as
elements of Rfifj then there exists a unique h ∈ R such that the image of h in Rfi
is hi. This result can be interpreted in two ways:

(1) The rule D(f) 7→ Rf is a sheaf of rings on the standard opens, see Sheaves,
Section 6.30.

(2) If we think of elements of Rf as the “algebraic” or “regular” functions on
D(f), then these glue as would continuous, resp. differentiable functions
on a topological, resp. differentiable manifold.

At the end of this section we use this result to reprove the lemma describing open
and closed subsets in terms of idempotents.

Lemma 10.22.1. Let R be a ring, and let f1, f2, . . . fn ∈ R generate the unit ideal
in R. Then the following sequence is exact:

0 −→ R −→
⊕

i
Rfi −→

⊕
i,j
Rfifj

where the maps α : R −→
⊕

iRfi and β :
⊕

iRfi −→
⊕

i,j Rfifj are defined as

α(x) =
(x

1
, . . . ,

x

1

)
and β

(
x1

f1
, . . . ,

xn
fn

)
=

(
xi
fi
− xj
fj

in Rfifj

)
.

Proof. We first show that α is injective, and then that the image of α equals the
kernel of β. Assume there exists x ∈ R such that α(x) = (0, . . . , 0). Then x

1 = 0 in
Rfi for all i. This means, for all i, there exists a number ni such that

fnii x = 0

Since the fi generate R, we can pick ai so

1 =
∑n

i=1
aifi

Then for all M ≥
∑
ni, we have

1M =
(∑

aifi

)M
,
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where each term has a factor of at least fnii for some i. Therefore,

x = 1x = 1Mx =
(∑

aifi

)M
x = 0.

Thus, if α(x) = 0, x = 0 and α is injective. We check that the image of α equals
the kernel of β. First, note that for x ∈ R,

β(α(x)) = β
(x

1
, . . . ,

x

1

)
= (

x

1
− x

1
in Rfifj ) = 0.

Therefore, the image of α is in the kernel of β, and it remains only to verify that if

β

(
x1

f1
, . . . ,

xn
fn

)
= 0,

then there exists x ∈ R so that for all i,

x

1
=
xi
fi

Assume we have x1, . . . , xn such that

β

(
x1

f1
, . . . ,

xn
fn

)
= 0.

Then, for all pairs i, j, there exists an nij such that

f
nij
i f

nij
j (fjxi − fixj) = 0

Choosing N so N ≥ nij for all i, j, we see that

fNi f
N
j (fjxi − fixj) = 0

Define elements x̃i and f̃i as follows:

f̃i = fN+1
i , x̃i = fNi xi.

Notice that
x̃i

f̃i
=
xi
fi
.

Also, we can use this to rewrite the above equation to get the following equality,
for all i, j,

f̃j x̃i = f̃ix̃j .

Since f1, . . . , fn generate R, we clearly have that f̃1, . . . , f̃n also generate R. There-
fore, there exist a1, . . . , an in R so that

1 =
∑n

i=1
aif̃i

Therefore, we finally conclude that for all i,

xi
fi

=
x̃i

f̃i
=
∑n

j=1

aj f̃j x̃i

f̃i
=
∑n

j=1

aj f̃ix̃j

f̃i
=

∑n
j=1 aj x̃j

1
.

Thus, we have

α
(∑n

j=1
aj x̃j

)
=

(
x1

f1
, . . . ,

xn
fn

)
,

as required. There the sequence is exact. �
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Lemma 10.22.2. Let R be a ring. Let f1, . . . , fn be elements of R generating the
unit ideal. Let M be an R-module. The sequence

0→M
α−→
⊕n

i=1
Mfi

β−→
⊕n

i,j=1
Mfifj

is exact, where α(m) = (m/1, . . . ,m/1) and β(m1/f
e1
1 , . . . ,mn/f

en
n ) = (mi/f

ei
i −

mj/f
ej
j )(i,j).

Proof. The same as the proof of Lemma 10.22.1. �

Second proof of Lemma 10.20.3. Having assured ourselves (Lemma 10.22.1)
that for generators f1, . . . , fn for the unit ideal of a ring R the sequence

0→ R→
⊕n

i=1
Rfi →

⊕
i,j
Rfifj

is exact, we now provide an alternate proof of the surjectivity of the map from
idempotents e of R to open and closed subsets of Spec(R) presented in Lemma
10.20.3. Let U ⊂ Spec(R) be open and closed, and W be its complement. We can
write U and V as unions of standard opens such that U =

⋃n
i=1D(fi) and W =⋃m

j=1D(gj). Since Spec(R) =
⋃
D(fi) ∪

⋃
D(gj), we observe that the collection

{fi; gj} must generate the unit ideal in R by Lemma 10.16.2. So the following
sequence is exact.
(10.22.2.1)

0→ R
α→
⊕n

i=1
Rfi ⊕

⊕m

j=1
Rgj →

⊕
i1,i2

Rfi1fi2 ⊕
⊕

i,j
Rfigj ⊕

⊕
j1,j2

Rgj1gj2

However, notice that for any pair i, j, D(fi) ∩ D(gj) = ∅ since D(fi) ⊂ U and
D(gj) ⊂ W ). From part (15) of Lemma 10.16.2 we recall that D(figj) = D(fi) ∩
D(gj) = ∅. Therefore by Lemma 10.16.5 Spec(Rfigj ) = D(figj) = ∅, implying that
Rfigj is the zero ring for each pair i, j by part (3) of Lemma 10.16.2. Consider the

element (1, . . . , 1, 0, . . . , 0) ∈
⊕n

i=1Rfi ⊕
⊕m

j=1Rgj whose coordinates are 1 in each
Rfi and 0 in each Rgj . This is sent to 0 under the map

β :
⊕n

i=1
Rfi ⊕

⊕m

j=1
Rgj →

⊕
i1,i2

Rfi1fi2 ⊕
⊕

j1,j2
Rgj1gj2

so by the exactness of the sequence (10.22.2.1), there must be some element of R
whose image under α is (1, . . . , 1, 0, . . . , 0). Call it e. We see that α(e2) = α(e)2 =
(1, . . . , 1, 0, . . . , 0) = α(e). Since α is injective, e = e2 in R and e is an idempotent
of R. We claim that U = D(e). Notice that for arbitrary j, the map R→ Rgj maps

e to 0. Therefore there must be some positive integer kj such that g
kj
j (e−0) = 0 in

R. Multiplying by e as necessary, we see that (gje)
kj = 0, so gje is nilpotent in R.

By Lemma 10.16.2 D(gj)∩D(e) = D(gje) = ∅. So since V =
⋃
D(gj), D(e)∩V = ∅

and D(e) ⊂ U . Furthermore, for arbitrary i, the map R → Rfi maps e to 1, so

there must be some li such that f lii (e − 1) = 0 in R. Hence f lii e = f lii . Suppose

p ∈ Spec(R) contains e, then p contains f lii e = f lii , and since p is prime, fi ∈ p. So
V (e) ⊂ V (fi), implying that D(fi) ⊂ D(e). Therefore U =

⋃
D(fi) ⊂ D(e), and

U = D(e). Therefore any open and closed subset of Spec(R) is the standard open
of an idempotent as desired. �

The following we have already seen above, but we state it explicitly here for con-
venience.
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Lemma 10.22.3. Let R be a ring. If Spec(R) = U q V with both U and V open
then R ∼= R1 × R2 with U ∼= Spec(R1) and V ∼= Spec(R2) via the maps in Lemma
10.20.2. Moreover, both R1 and R2 are localizations as well as quotients of the ring
R.

Proof. By Lemma 10.20.3 we have U = D(e) and V = D(1− e) for some idempo-
tent e. By Lemma 10.22.1 we see that R ∼= Re×R1−e (since clearly Re(1−e) = 0 so
the glueing condition is trivial; of course it is trivial to prove the product decom-
position directly in this case). The lemma follows. �

Lemma 10.22.4. Let R be a ring. Let f1, . . . , fn ∈ R. Let M be an R-module.
Then M →

⊕
Mfi is injective if and only if

M −→
⊕

i=1,...,n
M, m 7−→ (f1m, . . . , fnm)

is injective.

Proof. The map M →
⊕
Mfi is injective if and only if for all m ∈ M and

e1, . . . , en ≥ 1 such that feii m = 0, i = 1, . . . , n we have m = 0. This clearly
implies the displayed map is injective. Conversely, suppose the displayed map is
injective and m ∈ M and e1, . . . , en ≥ 1 are such that feii m = 0, i = 1, . . . , n. If
ei = 1 for all i, then we immediately conclude that m = 0 from the injectivity of
the displayed map. Next, we prove this holds for any such data by induction on
e =

∑
ei. The base case is e = n, and we have just dealt with this. If some ei > 1,

then set m′ = fim. By induction we see that m′ = 0. Hence we see that fim = 0,
i.e., we may take ei = 1 which decreases e and we win. �

10.23. More glueing results

In this section we put a number of standard results of the form: if something is
true for all members of a standard open covering then it is true. In fact, it often
suffices to check things on the level of local rings as in the following lemma.

Lemma 10.23.1. Let R be a ring.

(1) For an element x of an R-module M the following are equivalent
(a) x = 0,
(b) x maps to zero in Mp for all p ∈ Spec(R),
(c) x maps to zero in Mm for all maximal ideals m of R.

In other words, the map M →
∏

mMm is injective.
(2) Given an R-module M the following are equivalent

(a) M is zero,
(b) Mp is zero for all p ∈ Spec(R),
(c) Mm is zero for all maximal ideals m of R.

(3) Given a complex M1 →M2 →M3 of R-modules the following are equiva-
lent
(a) M1 →M2 →M3 is exact,
(b) for every prime p of R the localization M1,p →M2,p →M3,p is exact,
(c) for every maximal ideal m of R the localization M1,m → M2,m →

M3,m is exact.
(4) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is injective,
(b) fp : Mp →M ′p is injective for all primes p of R,
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(c) fm : Mm →M ′m is injective for all maximal ideals m of R.
(5) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is surjective,
(b) fp : Mp →M ′p is surjective for all primes p of R,
(c) fm : Mm →M ′m is surjective for all maximal ideals m of R.

(6) Given a map f : M →M ′ of R-modules the following are equivalent
(a) f is bijective,
(b) fp : Mp →M ′p is bijective for all primes p of R,
(c) fm : Mm →M ′m is bijective for all maximal ideals m of R.

Proof. Let x ∈ M as in (1). Let I = {f ∈ R | fx = 0}. It is easy to see that I
is an ideal (it is the annihilator of x). Condition (1)(c) means that for all maximal
ideals m there exists an f ∈ R \ m such that fx = 0. In other words, V (I) does
not contain a closed point. By Lemma 10.16.2 we see I is the unit ideal. Hence x
is zero, i.e., (1)(a) holds. This proves (1).

Part (2) follows by applying (1) to all elements of M simultaneously.

Proof of (3). Let H be the homology of the sequence, i.e., H = Ker(M2 →
M3)/Im(M1 → M2). By Proposition 10.9.12 we have that Hp is the homology
of the sequence M1,p →M2,p →M3,p. Hence (3) is a consequence of (2).

Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining
(4) and (5). �

Lemma 10.23.2. Let R be a ring. Let M be an R-module. Let S be an R-algebra.
Suppose that f1, . . . , fn is a finite list of elements of R such that

⋃
D(fi) = Spec(R)

in other words (f1, . . . , fn) = R.

(1) If each Mfi = 0 then M = 0.
(2) If each Mfi is a finite Rfi-module, then M is a finite R-module.
(3) If each Mfi is a finitely presented Rfi-module, then M is a finitely pre-

sented R-module.
(4) Let M → N be a map of R-modules. If Mfi → Nfi is an isomorphism for

each i then M → N is an isomorphism.
(5) Let 0 → M ′′ → M → M ′ → 0 be a complex of R-module. If 0 → M ′′fi →

Mfi → M ′fi → 0 is exact for each i, then 0 → M ′′ → M → M ′ → 0 is
exact.

(6) If each Rfi is Noetherian, then R is Noetherian.
(7) If each Sfi is a finite type R-algebra, so is S.
(8) If each Sfi is of finite presentation over R, so is S.

Proof. We prove each of the parts in turn.

(1) By Proposition 10.9.10 this implies Mp = 0 for all p ∈ Spec(R), so we
conclude by Lemma 10.23.1.

(2) For each i take a finite generating setXi ofMfi . Without loss of generality,
we may assume that the elements of Xi are in the image of the localization
map M → Mfi , so we take a finite set Yi of preimages of the elements
of Xi in M . Let Y be the union of these sets. This is still a finite set.
Consider the obvious R-linear map RY →M sending the basis element ey
to y. By assumption this map is surjective after localizing at an arbitrary
prime ideal p of R, so it surjective by Lemma 10.23.1 and M is finitely
generated.
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(3) By (2) we have a short exact sequence

0→ K → Rn →M → 0

Since localization is an exact functor and Mfi is finitely presented we see
that Kfi is finitely generated for all 1 ≤ i ≤ n by Lemma 10.5.3. By
(2) this implies that K is a finite R-module and therefore M is finitely
presented.

(4) By Proposition 10.9.10 the assumption implies that the induced morphism
on localizations at all prime ideals is an isomorphism, so we conclude by
Lemma 10.23.1.

(5) By Proposition 10.9.10 the assumption implies that the induced sequence
of localizations at all prime ideals is short exact, so we conclude by Lemma
10.23.1.

(6) We will show that every ideal of R has a finite generating set: For this,
let I ⊂ R be an arbitrary ideal. By Proposition 10.9.12 each Ifi ⊂ Rfi is
an ideal. These are all finitely generated by assumption, so we conclude
by (2).

(7) For each i take a finite generating set Xi of Sfi . Without loss of generality,
we may assume that the elements of Xi are in the image of the localization
map S → Sfi , so we take a finite set Yi of preimages of the elements of Xi

in S. Let Y be the union of these sets. This is still a finite set. Consider
the algebra homomorphism R[Xy]y∈Y → S induced by Y . Since it is an
algebra homomorphism, the image T is an R-submodule of the R-module
S, so we can consider the quotient module S/T . By assumption, this is
zero if we localize at the fi, so it is zero by (1) and therefore S is an
R-algebra of finite type.

(8) By the previous item, there exists a surjective R-algebra homomorphism
R[X1, ..., Xn] → S. Let K be the kernel of this map. This is an ideal in
R[X1, ..Xn], finitely generated in each localization at fi. Since the fi gen-
erate the unit ideal in R, they also generate the unit ideal in R[X1, ..., Xn],
so an application of (2) finishes the proof.

�

Lemma 10.23.3. Let R → S be a ring map. Suppose that g1, . . . , gm is a finite
list of elements of S such that

⋃
D(gj) = Spec(S) in other words (g1, . . . , gm) = S.

(1) If each Sgi is of finite type over R, then S is of finite type over R.
(2) If each Sgi is of finite presentation over R, then S is of finite presentation

over R.

Proof. Omitted. �

The following lemma is better stated and proved in the more general context of flat
descent. However, it makes sense to state it here since it fits well with the above.

Lemma 10.23.4. Let R be a ring. Let f1, . . . , fn ∈ R be elements which generate
the unit ideal in R. Suppose we are given the following data:

(1) For each i an Rfi-module Mi.
(2) For each pair i, j an Rfifj -module isomorphism ψij : (Mi)fj → (Mj)fi .
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which satisfy the “cocycle condition” that all the diagrams

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk

ψjk

99

commute (for all triples i, j, k). Given this data define

M = Ker
(⊕

1≤i≤n
Mi −→

⊕
1≤i,j≤n

(Mi)fi

)
where (m1, . . . ,mn) maps to the element whose (i, j)th entry is mi/1− ψji(mj/1).
Then the natural map M →Mi identifies Mi with Mfi . Moreover ψij(m/1) = m/1
for all m ∈M (with obvious notation).

Proof. Omitted. �

10.24. Zerodivisors and total rings of fractions

The local ring at a minimal prime has the following properties.

Lemma 10.24.1. Let p be a minimal prime of a ring R. Every element of the
maximal ideal of Rp is nilpotent. If R is reduced then Rp is a field.

Proof. If some element x of pRp is not nilpotent, then D(x) 6= ∅, see Lemma
10.16.2. This contradicts the minimality of p. If R is reduced, then pRp = 0 and
hence it is a field. �

Lemma 10.24.2. Let R be a reduced ring. Then

(1) R is a subring of a product of fields,
(2) R→

∏
p minimalRp is an embedding into a product of fields,

(3)
⋃

p minimal p is the set of zerodivisors of R.

Proof. By Lemma 10.24.1 each of the rings Rp is a field. In particular, the kernel
of the ring map R → Rp is p. By Lemma 10.16.2 we have

⋂
p p = (0). Hence (2)

and (1) are true. If xy = 0 and y 6= 0, then y 6∈ p for some minimal prime p.
Hence x ∈ p. Thus every zerodivisor of R is contained in

⋃
p minimal p. Conversely,

suppose that x ∈ p for some minimal prime p. Then x maps to zero in Rp, hence
there exists y ∈ R, y 6∈ p such that xy = 0. In other words, x is a zerodivisor. This
finishes the proof of (3) and the lemma. �

The total ring of fractions Q(R) of a ring R was introduced in Example 10.9.8.

Lemma 10.24.3. Let R be a ring. Let S ⊂ R be a multiplicative subset consisting
of nonzerodivisors. Then Q(R) ∼= Q(S−1R). In particular Q(R) ∼= Q(Q(R)).

Proof. If x ∈ S−1R is a nonzerodivisor, and x = r/f for some r ∈ R, f ∈ S, then
r is a nonzerodivisor in R. Whence the lemma. �

We can apply glueing results to prove something about total rings of fractions Q(R)
which we introduced in Example 10.9.8.

Lemma 10.24.4. Let R be a ring. Assume that R has finitely many minimal
primes q1, . . . , qt, and that q1 ∪ . . . ∪ qt is the set of zerodivisors of R. Then the
total ring of fractions Q(R) is equal to Rq1

× . . .×Rqt .
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Proof. There are natural maps Q(R)→ Rqi since any nonzerodivisor is contained
in R \ qi. Hence a natural map Q(R) → Rq1 × . . . × Rqt . For any nonminimal
prime p ⊂ R we see that p 6⊂ q1 ∪ . . .∪ qt by Lemma 10.14.2. Hence Spec(Q(R)) =
{q1, . . . , qt} (as subsets of Spec(R), see Lemma 10.16.5). Therefore Spec(Q(R)) is
a finite discrete set and it follows that Q(R) = A1× . . .×At with Spec(Ai) = {qi},
see Lemma 10.22.3. Moreover Ai is a local ring, which is a localization of R. Hence
Ai ∼= Rqi . �

10.25. Irreducible components of spectra

We show that irreducible components of the spectrum of a ring correspond to the
minimal primes in the ring.

Lemma 10.25.1. Let R be a ring.

(1) For a prime p ⊂ R the closure of {p} in the Zariski topology is V (p). In

a formula {p} = V (p).
(2) The irreducible closed subsets of Spec(R) are exactly the subsets V (p),

with p ⊂ R a prime.
(3) The irreducible components (see Topology, Definition 5.7.1) of Spec(R)

are exactly the subsets V (p), with p ⊂ R a minimal prime.

Proof. Note that if p ∈ V (I), then I ⊂ p. Hence, clearly {p} = V (p). In particular
V (p) is the closure of a singleton and hence irreducible. The second assertion implies
the third. To show the second, let V (I) ⊂ Spec(R) with I a radical ideal. If I is not
prime, then choose a, b ∈ R, a, b 6∈ I with ab ∈ I. In this case V (I, a) ∪ V (I, b) =
V (I), but neither V (I, b) = V (I) nor V (I, a) = V (I), by Lemma 10.16.2. Hence
V (I) is not irreducible. �

In other words, this lemma shows that every irreducible closed subset of Spec(R) is

of the form V (p) for some prime p. Since V (p) = {p} we see that each irreducible
closed subset has a unique generic point, see Topology, Definition 5.7.4. In par-
ticular, Spec(R) is a sober topological space. We record this fact in the following
lemma.

Lemma 10.25.2. The spectrum of a ring is a spectral space, see Topology, Defini-
tion 5.22.1.

Proof. Formally this follows from Lemma 10.25.1 and Lemma 10.16.11. See also
discussion above. �

Lemma 10.25.3. Let R be a ring. Let p ⊂ R be a prime.

(1) the set of irreducible closed subsets of Spec(R) passing through p is in
one-to-one correspondence with primes q ⊂ Rp.

(2) The set of irreducible components of Spec(R) passing through p is in one-
to-one correspondence with minimal primes q ⊂ Rp.

Proof. Omitted. �

Lemma 10.25.4. Let R be a ring. Let p be a minimal prime of R. Let W ⊂
Spec(R) be a quasi-compact open not containing the point p. Then there exists an
f ∈ R, f 6∈ p such that D(f) ∩W = ∅.
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Proof. Since W is quasi-compact we may write it as a finite union of standard
affine opens D(gi), i = 1, . . . , n. Since p 6∈ W we have gi ∈ p for all i. By Lemma
10.24.1 each gi is nilpotent in Rp. Hence we can find an f ∈ R, f 6∈ p such that for
all i we have fgnii = 0 for some ni > 0. Then D(f) works. �

Lemma 10.25.5. Let R be a ring. Let X = Spec(R) as a topological space. The
following are equivalent

(1) X is profinite,
(2) X is Hausdorff,
(3) X is totally disconnected.
(4) every quasi-compact open of X is closed,
(5) there are no nontrivial inclusions between its prime ideals,
(6) every prime ideal is a maximal ideal,
(7) every prime ideal is minimal,
(8) every standard open D(f) ⊂ X is closed, and
(9) add more here.

Proof. First proof. It is clear that (5), (6), and (7) are equivalent. It is clear that
(4) and (8) are equivalent as every quasi-compact open is a finite union of standard
opens. The implication (7) ⇒ (4) follows from Lemma 10.25.4. Assume (4) holds.
Let p, p′ be distinct primes of R. Choose an f ∈ p′, f 6∈ p (if needed switch p with
p′). Then p′ 6∈ D(f) and p ∈ D(f). By (4) the open D(f) is also closed. Hence p
and p′ are in disjoint open neighbourhoods whose union is X. Thus X is Hausdorff
and totally disconnected. Thus (4) ⇒ (2) and (3). If (3) holds then there cannot
be any specializations between points of Spec(R) and we see that (5) holds. If X is
Hausdorff then every point is closed, so (2) implies (6). Thus (2), (3), (4), (5), (6),
(7) and (8) are equivalent. Any profinite space is Hausdorff, so (1) implies (2). If X
satisfies (2) and (3), then X (being quasi-compact by Lemma 10.16.10) is profinite
by Topology, Lemma 5.21.2.

Second proof. Besides the equivalence of (4) and (8) this follows from Lemma
10.25.2 and purely topological facts, see Topology, Lemma 5.22.7. �

10.26. Examples of spectra of rings

In this section we put some examples of spectra.

Example 10.26.1. In this example we describe X = Spec(Z[x]/(x2−4)). Let p be
an arbitrary prime in X. Let φ : Z→ Z[x]/(x2−4) be the natural ring map. Then,
φ−1(p) is a prime in Z. If φ−1(p) = (2), then since p contains 2, it corresponds to
a prime ideal in Z[x]/(x2 − 4, 2) ∼= (Z/2Z)[x]/(x2) via the map Z[x]/(x2 − 4) →
Z[x]/(x2− 4, 2). Any prime in (Z/2Z)[x]/(x2) corresponds to a prime in (Z/2Z)[x]
containing (x2). Such primes will then contain x. Since (Z/2Z) ∼= (Z/2Z)[x]/(x)
is a field, (x) is a maximal ideal. Since any prime contains (x) and (x) is maximal,
the ring contains only one prime (x). Thus, in this case, p = (2, x). Now, if
φ−1(p) = (q) for q > 2, then since p contains q, it corresponds to a prime ideal in
Z[x]/(x2−4, q) ∼= (Z/qZ)[x]/(x2−4) via the map Z[x]/(x2−4)→ Z[x]/(x2−4, q).
Any prime in (Z/qZ)[x]/(x2 − 4) corresponds to a prime in (Z/qZ)[x] containing
(x2 − 4) = (x− 2)(x+ 2). Hence, these primes must contain either x− 2 or x+ 2.
Since (Z/qZ)[x] is a PID, all nonzero primes are maximal, and so there are precisely
2 primes in (Z/qZ)[x] containing (x − 2)(x + 2), namely (x − 2) and (x + 2). In
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conclusion, there exist two primes (q, x − 2) and (q, x + 2) since 2 6= −2 ∈ Z/(q).
Finally, we treat the case where φ−1(p) = (0). Notice that p corresponds to a
prime ideal in Z[x] that contains (x2 − 4) = (x − 2)(x + 2). Hence, p contains
either (x − 2) or (x + 2). Hence, p corresponds to a prime in Z[x]/(x − 2) or one
in Z[x]/(x+ 2) that intersects Z only at 0, by assumption. Since Z[x]/(x− 2) ∼= Z
and Z[x]/(x+ 2) ∼= Z, this means that p must correspond to 0 in one of these rings.
Thus, p = (x− 2) or p = (x+ 2) in the original ring.

Example 10.26.2. In this example we describe X = Spec(Z[x]). Fix p ∈ X.
Let φ : Z→ Z[x] and notice that φ−1(p) ∈ Spec(Z). If φ−1(p) = (q) for q a prime
number q > 0, then p corresponds to a prime in (Z/(q))[x], which must be generated
by a polynomial that is irreducible in (Z/(q))[x]. If we choose a representative
of this polynomial with minimal degree, then it will also be irreducible in Z[x].
Hence, in this case p = (q, fq) where fq is an irreducible polynomial in Z[x] that
is irreducible when viewed in (Z/(q)[x]). Now, assume that φ−1(p) = (0). In this
case, p must be generated by nonconstant polynomials which, since p is prime, may
be assumed to be irreducible in Z[x]. By Gauss’ lemma, these polynomials are also
irreducible in Q[x]. Since Q[x] is a Euclidean domain, if there are at least two
distinct irreducibles f, g generating p, then 1 = af + bg for a, b ∈ Q[x]. Multiplying
through by a common denominator, we see that m = āf + b̄g for ā, b̄ ∈ Z[x] and
nonzero m ∈ Z. This is a contradiction. Hence, p is generated by one irreducible
polynomial in Z[x].

Example 10.26.3. In this example we describe X = Spec(k[x, y]) when k is an
arbitrary field. Clearly (0) is prime, and any principal ideal generated by an irre-
ducible polynomial will also be a prime since k[x, y] is a unique factorization domain.
Now assume p is an element of X that is not principal. Since k[x, y] is a Noetherian
UFD, the prime ideal p can be generated by a finite number of irreducible polyno-
mials (f1, . . . , fn). Now, I claim that if f, g are irreducible polynomials in k[x, y]
that are not associates, then (f, g) ∩ k[x] 6= 0. To do this, it is enough to show
that f and g are relatively prime when viewed in k(x)[y]. In this case, k(x)[y] is a
Euclidean domain, so by applying the Euclidean algorithm and clearing denomina-
tors, we obtain p = af+bg for p, a, b ∈ k[x]. Thus, assume this is not the case, that
is, that some nonunit h ∈ k(x)[y] divides both f and g. Then, by Gauss’s lemma,
for some a, b ∈ k(x) we have ah|f and bh|g for ah, bh ∈ k[x] since f.f.(k[x]) = k(x).
By irreducibility, ah = f and bh = g (since h /∈ k(x)). So, back in k(x)[y], f, g are
associates, as a

b g = f . Since k(x) = f.f.(k[x]), we can write g = r
sf for elements

r, s ∈ k[x] sharing no common factors. This implies that sg = rf in k[x, y] and so
s must divide f since k[x, y] is a UFD. Hence, s = 1 or s = f . If s = f , then r = g,
implying f, g ∈ k[x] and thus must be units in k(x) and relatively prime in k(x)[y],
contradicting our hypothesis. If s = 1, then g = rf , another contradiction. Thus,
we must have f, g relatively prime in k(x)[y], a Euclidean domain. Thus, we have
reduced to the case p contains some irreducible polynomial p ∈ k[x] ⊂ k[x, y]. By
the above, p corresponds to a prime in the ring k[x, y]/(p) = k(α)[y], where α is an
element algebraic over k with minimum polynomial p. This is a PID, and so any
prime ideal corresponds to (0) or an irreducible polynomial in k(α)[y]. Thus, p is
of the form (p) or (p, f) where f is a polynomial in k[x, y] that is irreducible in the
quotient k[x, y]/(p).
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Example 10.26.4. Consider the ring

R = {f ∈ Q[z] with f(0) = f(1)}.
Consider the map

ϕ : Q[A,B]→ R

defined by ϕ(A) = z2− z and ϕ(B) = z3− z2. It is easily checked that (A3−B2 +
AB) ⊂ Ker(ϕ) and that A3 −B2 +AB is irreducible. Assume that ϕ is surjective;
then since R is an integral domain (it is a subring of an integral domain), Ker(φ)
must be a prime ideal of Q[A,B]. The prime ideals which contain (A3−B2 +AB)
are (A3−B2+AB) itself and any maximal ideal (f, g) with f, g ∈ Q[A,B] such that
f is irreducible mod g. But R is not a field, so the kernel must be (A3−B2 +AB);
hence ϕ gives an isomorphism R→ Q[A,B]/(A3 −B2 +AB).

To see that ϕ is surjective, we must express any f ∈ R as a Q-coefficient polynomial
in A(z) = z2 − z and B(z) = z3 − z2. Note the relation zA(z) = B(z). Let
a = f(0) = f(1). Then z(z − 1) must divide f(z) − a, so we can write f(z) =
z(z − 1)g(z) + a = A(z)g(z) + a. If deg(g) < 2, then h(z) = c1z + c0 and f(z) =
A(z)(c1z + c0) + a = c1B(z) + c0A(z) + a, so we are done. If deg(g) ≥ 2, then
by the polynomial division algorithm, we can write g(z) = A(z)h(z) + b1z + b0
(deg(h) ≤ deg(g) − 2), so f(z) = A(z)2h(z) + b1B(z) + b0A(z). Applying division
to h(z) and iterating, we obtain an expression for f(z) as a polynomial in A(z) and
B(z); hence ϕ is surjective.

Now let a ∈ Q, a 6= 0, 1
2 , 1 and consider

Ra = {f ∈ Q[z,
1

z − a
] with f(0) = f(1)}.

This is a finitely generated Q-algebra as well: it is easy to check that the functions

z2 − z, z3 − z, and a2−a
z−a + z generate Ra as an Q-algebra. We have the following

inclusions:

R ⊂ Ra ⊂ Q[z,
1

z − a
], R ⊂ Q[z] ⊂ Q[z,

1

z − a
].

Recall (Lemma 10.16.5) that for a ring T and a multiplicative subset S ⊂ T , the
ring map T → S−1T induces a map on spectra Spec(S−1T )→ Spec(T ) which is a
homeomorphism onto the subset

{p ∈ Spec(T ) | S ∩ p = ∅} ⊂ Spec(T ).

When S = {1, f, f2, . . .} for some f ∈ T , this is the open set D(f) ⊂ T . We now
verify a corresponding property for the ring map R → Ra: we will show that the
map θ : Spec(Ra) → Spec(R) induced by inclusion R ⊂ Ra is a homeomorphism
onto an open subset of Spec(R) by verifying that θ is an injective local homeomor-
phism. We do so with respect to an open cover of Spec(Ra) by two distinguished
opens, as we now describe. For any r ∈ Q, let evr : R→ Q be the homomorphism
given by evaluation at r. Note that for r = 0 and r = 1−a, this can be extended to
a homomorphism ev′r : Ra → Q (the latter because 1

z−a is well-defined at z = 1−a,

since a 6= 1
2 ). However, eva does not extend to Ra. Write mr = Ker(evr). We have

m0 = (z2 − z, z3 − z),

ma = ((z − 1 + a)(z − a), (z2 − 1 + a)(z − a)), and

m1−a = ((z − 1 + a)(z − a), (z − 1 + a)(z2 − a)).

http://stacks.math.columbia.edu/tag/00F1
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To verify this, note that the right-hand sides are clearly contained in the left-hand
sides. Then check that the right-hand sides are maximal ideals by writing the
generators in terms of A and B, and viewing R as Q[A,B]/(A3 −B2 +AB). Note
that ma is not in the image of θ: we have

(z2 − z)2(z − a)(
a2 − a
z − a

+ z) = (z2 − z)2(a2 − a) + (z2 − z)2(z − a)z

The left hand side is in maRa because (z2 − z)(z − a) is in ma and because (z2 −
z)(a

2−a
z−a + z) is in Ra. Similarly the element (z2 − z)2(z − a)z is in maRa because

(z2 − z) is in Ra and (z2 − z)(z − a) is in ma. As a 6∈ {0, 1} we conclude that
(z2 − z)2 ∈ maRa. Hence no ideal I of Ra can satisfy I ∩ R = ma, as such an I
would have to contain (z2 − z)2, which is in R but not in ma. The distinguished
open set D((z − 1 + a)(z − a)) ⊂ Spec(R) is equal to the complement of the
closed set {ma,m1−a}. Then check that R(z−1+a)(z−a) = (Ra)(z−1+a)(z−a); calling
this localized ring R′, then, it follows that the map R → R′ factors as R →
Ra → R′. By Lemma 10.16.5, then, these maps express Spec(R′) ⊂ Spec(Ra)
and Spec(R′) ⊂ Spec(R) as open subsets; hence θ : Spec(Ra) → Spec(R), when
restricted to D((z − 1 + a)(z − a)), is a homeomorphism onto an open subset.
Similarly, θ restricted to D((z2+z+2a−2)(z−a)) ⊂ Spec(Ra) is a homeomorphism
onto the open subset D((z2 +z+2a−2)(z−a)) ⊂ Spec(R). Depending on whether
z2 + z + 2a − 2 is irreducible or not over Q, this former distinguished open set
has complement equal to one or two closed points along with the closed point ma.
Furthermore, the ideal in Ra generated by the elements (z2 +z+2a−a)(z−a) and
(z− 1 + a)(z− a) is all of Ra, so these two distinguished open sets cover Spec(Ra).
Hence in order to show that θ is a homeomorphism onto Spec(R)−{ma}, it suffices
to show that these one or two points can never equal m1−a. And this is indeed the
case, since 1− a is a root of z2 + z + 2a− 2 if and only of a = 0 or a = 1, both of
which do not occur.

Despite this homeomorphism which mimics the behavior of a localization at an
element of R, while Q[z, 1

z−a ] is the localization of Q[z] at the maximal ideal (z−a),

the ring Ra is not a localization of R: Any localization S−1R results in more units
than the original ring R. The units of R are Q×, the units of Q. In fact, it is easy
to see that the units of Ra are Q∗. Namely, the units of Q[z, 1

z−a ] are c(z− a)n for
c ∈ Q∗ and n ∈ Z and it is clear that these are in Ra only if n = 0. Hence Ra has
no more units than R does, and thus cannot be a localization of R.

We used the fact that a 6= 0, 1 to ensure that 1
z−a makes sense at z = 0, 1. We

used the fact that a 6= 1/2 in a few places: (1) In order to be able to talk about
the kernel of ev1−a on Ra, which ensures that m1−a is a point of Ra (i.e., that Ra
is missing just one point of R). (2) At the end in order to conclude that (z− a)k+`

can only be in R for k = ` = 0; indeed, if a = 1/2, then this is in R as long as k+ `
is even. Hence there would indeed be more units in Ra than in R, and Ra could
possibly be a localization of R.

10.27. A meta-observation about prime ideals

This section is taken from the CRing project. Let R be a ring and let S ⊂ R be
a multiplicative subset. A consequence of Lemma 10.16.5 is that an ideal I ⊂ R
maximal with respect to the property of not intersecting S is prime. The reason
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is that I = R ∩ m for some maximal ideal m of the ring S−1R. It turns out that
for many properties of ideals, the maximal ones are prime. A general method of
seeing this was developed in [LR08]. In this section, we digress to explain this
phenomenon.

Let R be a ring. If I is an ideal of R and a ∈ R, we define

(I : a) = {x ∈ R | xa ∈ I} .

More generally, if J ⊂ R is an ideal, we define

(I : J) = {x ∈ R | xJ ⊂ I} .

Lemma 10.27.1. Let R be a ring. For a principal ideal J ⊂ R, and for any ideal
I ⊂ J we have I = J(I : J).

Proof. Say J = (a). Then (I : J) = (I : a). Since I ⊂ J we see that any y ∈ I
is of the form y = xa for some x ∈ (I : a). Hence I ⊂ J(I : J). Conversely, if
x ∈ (I : a), then xJ = (xa) ⊂ I, which proves the other inclusion. �

Let F be a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements in the complement of F are prime.

Definition 10.27.2. Let R be a ring. Let F be a set of ideals of R. We say F is
an Oka family if R ∈ F and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F for
some a ∈ R, then I ∈ F .

Let us give some examples of Oka families. The first example is the basic example
discussed in the introduction to this section.

Example 10.27.3. Let R be a ring and let S be a multiplicative subset of R. We
claim that F = {I ⊂ R | I ∩ S 6= ∅} is an Oka family. Namely, suppose that
(I : a), (I, a) ∈ F for some a ∈ R. Then pick s ∈ (I, a) ∩ S and s′ ∈ (I : a) ∩ S.
Then ss′ ∈ I ∩ S and hence I ∈ F . Thus F is an Oka family.

Example 10.27.4. Let R be a ring, I ⊂ R an ideal, and a ∈ R. If (I : a) is
generated by a1, . . . , an and (I, a) is generated by a, b1, . . . , bm with b1, . . . , bm ∈ I,
then I is generated by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x ∈ I, then
x ∈ (I, a) is a linear combination of a, b1, . . . , bm, but the coefficient of a must lie
in (I : a). As a result, we deduce that the family of finitely generated ideals is an
Oka family.

Example 10.27.5. Let us show that the family of principal ideals of a ring R is
an Oka family. Indeed, suppose I ⊂ R is an ideal, a ∈ R, and (I, a) and (I : a)
are principal. Note that (I : a) = (I : (I, a)). Setting J = (I, a), we find that J is
principal and (I : J) is too. By Lemma 10.27.1 we have I = J(I : J). Thus we find
in our situation that since J = (I, a) and (I : J) are principal, I is principal.

Example 10.27.6. Let R be a ring. Let κ be an infinite cardinal. The family
of ideals which can be generated by at most κ elements is an Oka family. The
argument is analogous to the argument in Example 10.27.4 and is omitted.

Proposition 10.27.7. If F is an Oka family of ideals, then any maximal element
of the complement of F is prime.
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Proof. Suppose I 6∈ F is maximal with respect to not being in F but I is not prime.
Note that I 6= R because R ∈ F . Since I is not prime we can find a, b ∈ R − I
with ab ∈ I. It follows that (I, a) 6= I and (I : a) contains b 6∈ I so also (I : a) 6= I.
Thus (I : a), (I, a) both strictly contain I, so they must belong to F . By the Oka
condition, we have I ∈ F , a contradiction. �

At this point we are able to turn most of the examples above into a lemma about
prime ideals in a ring.

Lemma 10.27.8. Let R be a ring. Let S be a multiplicative subset of R. An ideal
I ⊂ R which is maximal with respect to the property that I ∩ S = ∅ is prime.

Proof. This is the example discussed in the introduction to this section. For an
alternative proof, combine Example 10.27.3 with Proposition 10.27.7. �

Lemma 10.27.9. Let R be a ring.

(1) An ideal I ⊂ R maximal with respect to not being finitely generated is
prime.

(2) If every prime ideal of R is finitely generated, then every ideal of R is
finitely generated1.

Proof. The first assertion is an immediate consequence of Example 10.27.4 and
Proposition 10.27.7. For the second, suppose that there exists an ideal I ⊂ R
which is not finitely generated. The union of a totally ordered chain {Iα} of ideals
that are not finitely generated is not finitely generated; indeed, if I =

⋃
Iα were

generated by a1, . . . , an, then all the generators would belong to some Iα and would
consequently generate it. By Zorn’s lemma, there is an ideal maximal with respect
to being not finitely generated. By the first part this ideal is prime. �

Lemma 10.27.10. Let R be a ring.

(1) An ideal I ⊂ R maximal with respect to not being principal is prime.
(2) If every prime ideal of R is principal, then every ideal of R is principal.

Proof. The first part follows from Example 10.27.5 and Proposition 10.27.7. For
the second, suppose that there exists an ideal I ⊂ R which is not principal. The
union of a totally ordered chain {Iα} of ideals that not principal is not principal;
indeed, if I =

⋃
Iα were generated by a, then a would belong to some Iα and a

would generate it. By Zorn’s lemma, there is an ideal maximal with respect to not
being principal. This ideal is necessarily prime by the first part. �

Lemma 10.27.11. Let R be a ring.

(1) An ideal maximal among the ideals which do not contain a nonzerodivisor
is prime.

(2) If every nonzero prime ideal in R contains a nonzerodivisor, then R is a
domain.

Proof. Consider the set S of nonzerodivisors. It is a multiplicative subset of R.
Hence any ideal maximal with respect to not intersecting S is prime, see Lemma
10.27.8. Thus, if every nonzero prime ideal contains a nonzerodivisor, then (0) is
prime, i.e., R is a domain. �

1Later we will say that R is Noetherian.
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Remark 10.27.12. Let R be a ring. Let κ be an infinite cardinal. By applying
Example 10.27.6 and Proposition 10.27.7 we see that any ideal maximal with respect
to the property of not being generated by κ elements is prime. This result is not so
useful because there exists a ring for which every prime ideal of R can be generated
by ℵ0 elements, but some ideal cannot. Namely, let k be a field, let T be a set
whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2
n, z

2
t,n, xnzt,n − zt,n−1)

This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot
be generated by countably many elements.

10.28. Images of ring maps of finite presentation

In this section we prove some results on the topology of maps Spec(S)→ Spec(R)
induced by ring maps R → S, mainly Chevalley’s Theorem. In order to do this
we will use the notions of constructible sets, quasi-compact sets, retrocompact sets,
and so on which are defined in Topology, Section 5.11.

Lemma 10.28.1. Let U ⊂ Spec(R) be open. The following are equivalent:

(1) U is retrocompact in Spec(R),
(2) U is quasi-compact,
(3) U is a finite union of standard opens, and
(4) there exists a finitely generated ideal I ⊂ R such that X \ V (I) = U .

Proof. We have (1)⇒ (2) because Spec(R) is quasi-compact, see Lemma 10.16.10.
We have (2) ⇒ (3) because standard opens form a basis for the topology. Proof
of (3) ⇒ (1). Let U =

⋃
i=1...nD(fi). To show that U is retrocompact in Spec(R)

it suffices to show that U ∩ V is quasi-compact for any quasi-compact open V of
Spec(R). Write V =

⋃
j=1...mD(gj) which is possible by (2) ⇒ (3). Each standard

open is homeomorphic to the spectrum of a ring and hence quasi-compact, see
Lemmas 10.16.6 and 10.16.10. Thus U ∩ V = (

⋃
i=1...nD(fi))∩ (

⋃
j=1...mD(gj)) =⋃

i,j D(figj) is a finite union of quasi-compact opens hence quasi-compact. To finish

the proof note that (4) is equivalent to (3) by Lemma 10.16.2. �

Lemma 10.28.2. Let ϕ : R → S be a ring map. The induced continuous map
f : Spec(S) → Spec(R) is quasi-compact. For any constructible set E ⊂ Spec(R)
the inverse image f−1(E) is constructible in Spec(S).

Proof. We first show that the inverse image of any quasi-compact open U ⊂
Spec(R) is quasi-compact. By Lemma 10.28.1 we may write U as a finite open
of standard opens. Thus by Lemma 10.16.4 we see that f−1(U) is a finite union
of standard opens. Hence f−1(U) is quasi-compact by Lemma 10.28.1 again. The
second assertion now follows from Topology, Lemma 5.14.3. �

Lemma 10.28.3. Let R be a ring and let T ⊂ Spec(R) be constructible. Then
there exists a ring map R → S of finite presentation such that T is the image of
Spec(S) in Spec(R).

Proof. Let T ⊂ Spec(R) be constructible. The spectrum of a finite product of
rings is the disjoint union of the spectra, see Lemma 10.20.2. Hence if T = T1 ∪ T2

and the result holds for T1 and T2, then the result holds for T . In particular we may
assume that T = U∩V c, where U, V ⊂ Spec(R) are retrocompact open. By Lemma
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10.28.1 we may write T = (
⋃
D(fi)) ∩ (

⋃
D(gj))

c =
⋃(

D(fi) ∩ V (g1, . . . , gm)
)
. In

fact we may assume that T = D(f) ∩ V (g1, . . . , gm) (by the argument on unions
above). In this case T is the image of the map R→ (R/(g1, . . . , gm))f , see Lemmas
10.16.6 and 10.16.7. �

Lemma 10.28.4. Let R be a ring. Let f be an element of R. Let S = Rf . Then
the image of a constructible subset of Spec(S) is constructible in Spec(R).

Proof. We repeatedly use Lemma 10.28.1 without mention. Let U, V be quasi-
compact open in Spec(S). We will show that the image of U ∩ V c is constructible.
Under the identification Spec(S) = D(f) of Lemma 10.16.6 the sets U, V correspond
to quasi-compact opens U ′, V ′ of Spec(R). Hence it suffices to show that U ′∩ (V ′)c

is constructible in Spec(R) which is clear. �

Lemma 10.28.5. Let R be a ring. Let I be a finitely generated ideal of R. Let
S = R/I. Then the image of a constructible of Spec(S) is constructible in Spec(R).

Proof. If I = (f1, . . . , fm), then we see that V (I) is the complement of
⋃
D(fi),

see Lemma 10.16.2. Hence it is constructible, by Lemma 10.28.1. Denote the map
R→ S by f 7→ f . We have to show that if U, V are retrocompact opens of Spec(S),

then the image of U ∩ V c in Spec(R) is constructible. By Lemma 10.28.1 we may
write U =

⋃
D(gi). Setting U =

⋃
D(gi) we see U has image U ∩ V (I) which

is constructible in Spec(R). Similarly the image of V equals V ∩ V (I) for some

retrocompact open V of Spec(R). Hence the image of U ∩V c equals U ∩V (I)∩V c
as desired. �

Lemma 10.28.6. Let R be a ring. The map Spec(R[x]) → Spec(R) is open, and
the image of any standard open is a quasi-compact open.

Proof. It suffices to show that the image of a standard open D(f), f ∈ R[x] is
quasi-compact open. The image of D(f) is the image of Spec(R[x]f ) → Spec(R).

Let p ⊂ R be a prime ideal. Let f be the image of f in κ(p)[x]. Recall, see Lemma
10.16.9, that p is in the image if and only if R[x]f ⊗Rκ(p) = κ(p)[x]f is not the zero

ring. This is exactly the condition that f does not map to zero in κ(p)[x], in other
words, that some coefficient of f is not in p. Hence we see: if f = adx

d + . . . a0,
then the image of D(f) is D(ad) ∪ . . . ∪D(a0). �

We prove a property of characteristic polynomials which will be used below.

Lemma 10.28.7. Let R→ A be a ring homomorphism. Assume A ∼= R⊕n as an R-
module. Let f ∈ A. The multiplication map mf : A→ A is R-linear and hence has
a characteristic polynomial P (T ) = Tn+rn−1T

n−1+. . .+r0 ∈ R[T ]. For any prime
p ∈ Spec(R), f acts nilpotently on A⊗R κ(p) if and only if p ∈ V (r0, . . . , rn−1).

Proof. This follows quite easily once we prove that the characteristic polynomial
P̄ (T ) ∈ κ(p)[T ] of the multiplication map mf̄ : A ⊗R κ(p) → A ⊗R κ(p) which

multiplies elements of A⊗Rκ(p) by f̄ , the image of f viewed in κ(p), is just the image
of P (T ) in κ(p)[T ]. Let (aij) be the matrix of the map mf with entries in R, using
a basis e1, . . . , en of A as an R-module. Then, A⊗R κ(p) ∼= (R⊗R κ(p))⊕n = κ(p)n,
which is an n-dimensional vector space over κ(p) with basis e1⊗ 1, . . . , en⊗ 1. The
image f̄ = f ⊗ 1, and so the multiplication map mf̄ has matrix (aij ⊗ 1). Thus,
the characteristic polynomial is precisely the image of P (T ).
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From linear algebra, we know that a linear transformation acts nilpotently on an n-
dimensional vector space if and only if the characteristic polynomial is Tn (since the
characteristic polynomial divides some power of the minimal polynomial). Hence,
f acts nilpotently on A⊗R κ(p) if and only if P̄ (T ) = Tn. This occurs if and only
if ri ∈ p for all 0 ≤ i ≤ n− 1, that is when p ∈ V (r0, . . . , rn−1). �

Lemma 10.28.8. Let R be a ring. Let f, g ∈ R[x] be polynomials. Assume the
leading coefficient of g is a unit of R. There exists elements ri ∈ R, i = 1 . . . , n
such that the image of D(f) ∩ V (g) in Spec(R) is

⋃
i=1,...,nD(ri).

Proof. Write g = uxd + ad−1x
d−1 + . . . + a0, where d is the degree of g, and

hence u ∈ R∗. Consider the ring A = R[x]/(g). It is, as an R-module, finite
free with basis the images of 1, x, . . . , xd−1. Consider multiplication by (the image
of) f on A. This is an R-module map. Hence we can let P (T ) ∈ R[T ] be the
characteristic polynomial of this map. Write P (T ) = T d + rd−1T

d−1 + . . .+ r0. We
claim that r0, . . . , rd−1 have the desired property. We will use below the property
of characteristic polynomials that

p ∈ V (r0, . . . , rd−1)⇔ multiplication by f is nilpotent on A⊗R κ(p).

This was proved in Lemma 10.28.7.

Suppose q ∈ D(f) ∩ V (g), and let p = q ∩ R. Then there is a nonzero map
A ⊗R κ(p) → κ(q) which is compatible with multiplication by f . And f acts as a
unit on κ(q). Thus we conclude p 6∈ V (r0, . . . , rd−1).

On the other hand, suppose that ri 6∈ p for some prime p of R and some 0 ≤ i ≤ d−1.
Then multiplication by f is not nilpotent on the algebra A ⊗R κ(p). Hence there
exists a maximal ideal q ⊂ A ⊗R κ(p) not containing the image of f . The inverse
image of q in R[x] is an element of D(f) ∩ V (g) mapping to p. �

Theorem 10.28.9 (Chevalley’s Theorem). Suppose that R→ S is of finite presen-
tation. The image of a constructible subset of Spec(S) in Spec(R) is constructible.

Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). We may factor R → S as R →
R[x1] → R[x1, x2] → . . . → R[x1, . . . , xn−1] → S. Hence we may assume that
S = R[x]/(f1, . . . , fm). In this case we factor the map as R → R[x] → S, and
by Lemma 10.28.5 we reduce to the case S = R[x]. By Lemma 10.28.1 suffices to
show that if T = (

⋃
i=1...nD(fi))∩V (g1, . . . , gm) for fi, gj ∈ R[x] then the image in

Spec(R) is constructible. Since finite unions of constructible sets are constructible,
it suffices to deal with the case n = 1, i.e., when T = D(f) ∩ V (g1, . . . , gm).

Note that if c ∈ R, then we have

Spec(R) = V (c)
∐

D(c) = Spec(R/(c))
∐

Spec(Rc)),

and correspondingly Spec(R[x]) = V (c)
∐
D(c) = Spec(R/(c)[x])

∐
Spec(Rc[x])).

The intersection of T = D(f) ∩ V (g1, . . . , gm) with each part still has the same
shape, with f , gi replaced by their images in R/(c)[x], respectively Rc[x]. Note
that the image of T in Spec(R) is the union of the image of T ∩V (c) and T ∩D(c).
Using Lemmas 10.28.4 and 10.28.5 it suffices to prove the images of both parts are
constructible in Spec(R/(c)), respectively Spec(Rc).

Let us assume we have T = D(f) ∩ V (g1, . . . , gm) as above, with deg(g1) ≤
deg(g2) ≤ . . . ≤ deg(gm). We are going to use descending induction on m, and
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on the degrees of the gi. Let d = deg(g1), i.e., g1 = cxd1 + l.o.t with c ∈ R not
zero. Cutting R up into the pieces R/(c) and Rc we either lower the degree of g1

(and this is covered by induction) or we reduce to the case where c is invertible.
If c is invertible, and m > 1, then write g2 = c′xd2 + l.o.t. In this case consider
g′2 = g2 − (c′/c)xd2−d1g1. Since the ideals (g1, g2, . . . , gm) and (g1, g

′
2, g3, . . . , gm)

are equal we see that T = D(f)∩ V (g1, g
′
2, g3 . . . , gm). But here the degree of g′2 is

strictly less than the degree of g2 and hence this case is covered by induction.

The bases case for the induction above are the cases (a) T = D(f) ∩ V (g) where
the leading coefficient of g is invertible, and (b) T = D(f). These two cases are
dealt with in Lemmas 10.28.8 and 10.28.6. �

10.29. More on images

In this section we collect a few additional lemmas concerning the image on Spec
for ring maps. See also Section 10.40 for example.

Lemma 10.29.1. Let R ⊂ S be an inclusion of domains. Assume that R → S
is of finite type. There exists a nonzero f ∈ R, and a nonzero g ∈ S such that
Rf → Sfg is of finite presentation.

Proof. By induction on the number of generators of S over R.

Suppose that S is generated by a single element over R. Then S = R[x]/q for
some prime ideal q ⊂ R[x]. If q = (0) there is nothing to prove. If q 6= (0), then
let g ∈ q be an element with minimal degree in x. Since K[x] = f.f.(R)[x] is
a PID we see that g is irreducible over K and that f.f.(S) = K[x]/(g). Write
g = adx

d+ . . .+a0 with ai ∈ R and ad 6= 0. After inverting ad in R we may assume
that g is monic. Hence we see that R→ R[x]/(g)→ S with the last map surjective.
But R[x]/(g) = R ⊕ Rx⊕ . . .⊕ Rxd−1 maps injectively into f.f.(S) = K[x]/(g) =
K ⊕Kx⊕ . . .⊕Kxd−1. Thus S ∼= R[x]/(g) is finitely presented.

Suppose that S is generated by n > 1 elements over R. Say x1, . . . , xn ∈ S generate
S. Denote S′ ⊂ S the subring generated by x1, . . . , xn−1. By induction hypothesis
we see that there exist f ∈ R and g ∈ S′ nonzero such that Rf → S′fg is of finite

presentation. Next we apply the induction hypothesis to S′fg → Sfg to see that

there exist f ′ ∈ S′fg and g′ ∈ Sfg such that S′fgf ′ → Sfgf ′g′ is of finite presentation.
We leave it to the reader to conclude. �

Lemma 10.29.2. Let R→ S be a finite type ring map. Denote X = Spec(R) and
Y = Spec(S). Write f : Y → X the induced map of spectra. Let E ⊂ Y = Spec(S)

be a constructible set. If a point ξ ∈ X is in f(E), then {ξ} ∩ f(E) contains an

open dense subset of {ξ}.

Proof. Let ξ ∈ X be a point of f(E). Choose a point η ∈ E mapping to ξ. Let
p ⊂ R be the prime corresponding to ξ and let q ⊂ S be the prime corresponding
to η. Consider the diagram

η //
_

��

E ∩ Y ′ //

��

Y ′ = Spec(S/q) //

��

Y

��
ξ // f(E) ∩X ′ // X ′ = Spec(R/p) // X

http://stacks.math.columbia.edu/tag/00FG
http://stacks.math.columbia.edu/tag/00FH


10.29. MORE ON IMAGES 471

By Lemma 10.28.2 the set E ∩ Y ′ is constructible in Y ′. It follows that we may
replace X by X ′ and Y by Y ′. Hence we may assume that R ⊂ S is an inclusion of
domains, ξ is the generic point of X, and η is the generic point of Y . By Lemma
10.29.1 combined with Chevalley’s theorem (Theorem 10.28.9) we see that there
exist dense opens U ⊂ X, V ⊂ Y such that f(V ) ⊂ U and such that f : V → U
maps constructible sets to constructible sets. Note that E ∩ V is constructible
in V , see Topology, Lemma 5.14.4. Hence f(E ∩ V ) is constructible in U and
contains ξ. By Topology, Lemma 5.14.14 we see that f(E ∩ V ) contains a dense
open U ′ ⊂ U . �

At the end of this section we present a few more results on images of maps on
Spectra that have nothing to do with constructible sets.

Lemma 10.29.3. Let ϕ : R→ S be a ring map. The following are equivalent:

(1) The map Spec(S)→ Spec(R) is surjective.
(2) For any radical ideal I ⊂ R the inverse image of IS in R is equal to I.
(3) For every prime p of R the inverse image of pS in R is p.

In this case the same is true after any base change: Given a ring map R→ R′ the
ring map R′ → R′ ⊗R S has the equivalent properties (1), (2), (3) also.

Proof. The implication (2) ⇒ (3) is immediate. If I ⊂ R is a radical ideal, then
Lemma 10.16.2 guarantees that I =

⋂
I⊂p p. Hence (3) ⇒ (2). By Lemma 10.16.9

we have p = ϕ−1(pS) if and only if p is in the image. Hence (1) ⇔ (3). Thus (1),
(2), and (3) are equivalent.

Assume (1) holds. Let R → R′ be a ring map. Let p′ ⊂ R′ be a prime ideal lying
over the prime p of R. To see that p′ is in the image of Spec(R′ ⊗R S)→ Spec(R′)
we have to show that (R′ ⊗R S)⊗R′ κ(p′) is not zero, see Lemma 10.16.9. But we
have

(R′ ⊗R S)⊗R′ κ(p′) = S ⊗R κ(p)⊗κ(p) κ(p′)

which is not zero as S ⊗R κ(p) is not zero by assumption and κ(p) → κ(p′) is an
extension of fields. �

Lemma 10.29.4. Let R be a domain. Let ϕ : R→ S be a ring map. The following
are equivalent:

(1) The ring map R→ S is injective.
(2) The image Spec(S)→ Spec(R) contains a dense set of points.
(3) There exists a prime ideal q ⊂ S whose inverse image in R is (0).

Proof. Let K be the field of fractions of the domain R. Assume that R → S is
injective. Since localization is exact we see that K → S ⊗R K is injective. Hence
there is a prime mapping to (0) by Lemma 10.16.9.

Note that (0) is dense in Spec(R), so that the last condition implies the second.

Suppose the second condition holds. Let f ∈ R, f 6= 0. As R is a domain we see
that V (f) is a proper closed subset of R. By assumption there exists a prime q of
S such that ϕ(f) 6∈ q. Hence ϕ(f) 6= 0. Hence R→ S is injective. �

Lemma 10.29.5. Let R ⊂ S be an injective ring map. Then Spec(S)→ Spec(R)
hits all the minimal primes of Spec(R).
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Proof. Let p ⊂ R be a minimal prime. In this case Rp has a unique prime ideal.
Hence it suffices to show that Sp is not zero. And this follows from the fact that
localization is exact, see Proposition 10.9.12. �

Lemma 10.29.6. Let R→ S be a ring map. The following are equivalent:

(1) The kernel of R→ S consists of nilpotent elements.
(2) The minimal primes of R are in the image of Spec(S)→ Spec(R).
(3) The image of Spec(S)→ Spec(R) is dense in Spec(R).

Proof. Let I = Ker(R → S). Note that
√

(0) =
⋂

q⊂S q, see Lemma 10.16.2.

Hence
√
I =

⋂
q⊂S R ∩ q. Thus V (I) = V (

√
I) is the closure of the image of

Spec(S) → Spec(R). This shows that (1) is equivalent to (3). It is clear that (2)
implies (3). Finally, assume (1). We may replace R by R/I and S by S/IS without
affecting the topology of the spectra and the map. Hence the implication (1) ⇒
(2) follows from Lemma 10.29.5. �

10.30. Noetherian rings

A ring R is Noetherian if any ideal of R is finitely generated. This is clearly
equivalent to the ascending chain condition for ideals of R. By Lemma 10.27.9 it
suffices to check that every prime ideal of R is finitely generated.

Lemma 10.30.1. Any finitely generated ring over a Noetherian ring is Noetherian.
Any localization of a Noetherian ring is Noetherian.

Proof. The statement on localizations follows from the fact that any ideal J ⊂
S−1R is of the form I ·S−1R. Any quotient R/I of a Noetherian ring R is Noetherian
because any ideal J ⊂ R/I is of the form J/I for some ideal I ⊂ J ⊂ R. Thus
it suffices to show that if R is Noetherian so is R[X]. Suppose J1 ⊂ J2 ⊂ . . . is
an ascending chain of ideals in R[X]. Consider the ideals Ii,d defined as the ideal
of elements of R which occur as leading coefficients of degree d polynomials in Ji.
Clearly Ii,d ⊂ Ii′,d′ whenever i ≤ i′ and d ≤ d′. By the ascending chain condition in
R there are at most finitely many distinct ideals among all of the Ii,d. (Hint: Any
infinite set of elements of N×N contains an increasing infinite sequence.) Take i0
so large that Ii,d = Ii0,d for all i ≥ i0 and all d. Suppose f ∈ Ji for some i ≥ i0.
By induction on the degree d = deg(f) we show that f ∈ Ji0 . Namely, there exists
a g ∈ Ji0 whose degree is d and which has the same leading coefficient as f . By
induction f − g ∈ Ji0 and we win. �

Lemma 10.30.2. If R is a Noetherian ring, then so is the formal power series
ring R[[x1, . . . , xn]].

Proof. Since R[[x1, . . . , xn+1]] ∼= R[[x1, . . . , xn]][[xn+1]] it suffices to prove the
statement that R[[x]] is Noetherian if R is Noetherian. Let I ⊂ R[[x]] be a ideal.
We have to show that I is a finitely generated ideal. For each integer d denote
Id = {a ∈ R | axd + h.o.t. ∈ I}. Then we see that I0 ⊂ I1 ⊂ . . . stabilizes as R
is Noetherian. Choose d0 such that Id0 = Id0+1 = . . .. For each d ≤ d0 choose
elements fd,j ∈ I ∩ (xd), j = 1, . . . , nd such that if we write fd,j = ad,jx

d + h.o.t
then Id = (ad,j). Denote I ′ = ({fd,j}d=0,...,d0,j=1,...,nd). Then it is clear that I ′ ⊂ I.
Pick f ∈ I. First we may choose cd,i ∈ R such that

f −
∑

cd,ifd,i ∈ (xd0+1) ∩ I.
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Next, we can choose ci,1 ∈ R, i = 1, . . . , nd0
such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i ∈ (xd0+2) ∩ I.

Next, we can choose ci,2 ∈ R, i = 1, . . . , nd0
such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i −
∑

ci,2x
2fd0,i ∈ (xd0+3) ∩ I.

And so on. In the end we see that

f =
∑

cd,ifd,i +
∑

i
(
∑

e
ci,ex

e)fd0,i

is contained in I ′ as desired. �

The following lemma, although easy, is useful because finite type Z-algebras come
up quite often in a technique called “absolute Noetherian reduction”.

Lemma 10.30.3. Any finite type algebra over a field is Noetherian. Any finite
type algebra over Z is Noetherian.

Proof. This is immediate from Lemma 10.30.1 and the fact that fields are Noether-
ian rings and that Z is Noetherian ring (because it is a principal ideal domain). �

Lemma 10.30.4. Let R be a Noetherian ring.

(1) Any finite R-module is of finite presentation.
(2) Any finite type R-algebra is of finite presentation over R.

Proof. Let M be a finite R-module. By Lemma 10.5.4 we can find a finite filtration
of M whose successive quotients are of the form R/I. Since any ideal is finitely
generated, each of the quotients R/I is finitely presented. Hence M is finitely
presented by Lemma 10.5.3. This proves (1). To see (2) note that any ideal of
R[x1, . . . , xn] is finitely generated by Lemma 10.30.1. �

Lemma 10.30.5. If R is a Noetherian ring then Spec(R) is a Noetherian topolog-
ical space, see Topology, Definition 5.8.1.

Proof. This is because any closed subset of Spec(R) is uniquely of the form V (I)
with I a radical ideal, see Lemma 10.16.2. And this correspondence is inclusion
reversing. Thus the result follows from the definitions. �

Lemma 10.30.6. If R is a Noetherian ring then Spec(R) has finitely many irre-
ducible components. In other words R has finitely many minimal primes.

Proof. By Lemma 10.30.5 and Topology, Lemma 5.8.2 we see there are finitely
many irreducible components. By Lemma 10.25.1 these correspond to minimal
primes of R. �

Lemma 10.30.7. Let k be a field and let R be a Noetherian k-algebra. If k ⊂ K
is a finitely generated field extension the K ⊗k R is Noetherian.

Proof. Write K = S−1B where B is a finite type k-algebra, and S ⊂ B is a
multiplicative subset. Then we have K ⊗k R = S−1(B ⊗k R). Hence K ⊗k R is
a localization of the finite type R-algebra B ⊗k R which is Noetherian by Lemma
10.30.1. �

Here is fun lemma that is sometimes useful.
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Lemma 10.30.8. Any surjective endomorphism of a Noetherian ring is an iso-
morphism.

Proof. If f : R→ R were such an endomorphism but not injective, then

Ker(f) ⊂ Ker(f ◦ f) ⊂ Ker(f ◦ f ◦ f) ⊂ . . .
would be a strictly increasing chain of ideals. �

10.31. Locally nilpotent ideals

Here is the definition.

Definition 10.31.1. Let R be a ring. Let I ⊂ R be an ideal. We say I is locally
nilpotent if for every x ∈ I there exists an n ∈ N such that xn = 0. We say I is
nilpotent if there exists an n ∈ N such that In = 0.

Lemma 10.31.2. Let R → R′ be a ring map and let I ⊂ R be a locally nilpotent
ideal. Then IR′ is a locally nilpotent ideal of R′.

Proof. This follows from the fact that if x, y ∈ R′ are nilpotent, then x + y is
nilpotent too. Namely, if xn = 0 and ym = 0, then (x+ y)n+m−1 = 0. �

Lemma 10.31.3. Let R be a ring map and let I ⊂ R be a locally nilpotent. An
element x of R is a unit if and only if the image of x in R/I is a unit.

Proof. Assume the image of y ∈ R in R/I is the inverse of the image of x. Then
xy = 1 + z for some z ∈ I. Then

(1 + z)(1− z)(1 + z2)(1− z4) . . . (1 + (−1)kz2k−1

) = 1 + (−1)kz2k

which is equal to 1 for sufficiently large k. Thus x is invertible in R. �

Lemma 10.31.4. Let R be a Noetherian ring. Let I, J be ideals of R. Suppose
J ⊂
√
I. Then Jn ⊂ I for some n. In particular, in a Noetherian ring the notions

of “locally nilpotent ideal” and “nilpotent ideal” coincide.

Proof. Say J = (f1, . . . , fs). By assumption fdii ∈ I. Take n = d1 + d2 + . . . +
ds + 1. �

Lemma 10.31.5. Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Then
R→ R/I induces a bijection on idempotents.

First proof of Lemma 10.31.5. As I is locally nilpotent it is contained in every
prime ideal. Hence Spec(R/I) = V (I) = Spec(R). Hence the lemma follows from
Lemma 10.20.3. �

Second proof of Lemma 10.31.5. First assume I is nilpotent. Suppose e ∈ R/I
is an idempotent. We have to lift e to an idempotent of R. Choose a lift e ∈ R
such that x = e2− e ∈ Ik for some k ≥ 1. Let e′ = e− (2e− 1)x = 3e2− 2e3, which
is another lift of e. Then

(e′)2 − e′ = (4e2 − 4e− 3)(e2 − e)2 ∈ I2k

by a simple computation. Hence e′ is an idempotent in R/I2k. By successively
improving the approximation as above we reach a stage where Ik = 0, and we win.

Next, suppose I is locally nilpotent. Let e ∈ R/I be an idempotent. Let f ∈ R
be any element lifting e. Denote R′ ⊂ R the Z-subalgebra of R generated by f .
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Denote I ′ = R′ ∩ I. Since R′ is Noetherian, see Lemma 10.30.3 we see that I ′ is
nilpotent, see Lemma 10.31.4. On the other hand we have R′/I ′ ⊂ R/I and hence
the image f ∈ R′/I ′ of f is an idempotent. Thus by the first part of the proof we
see that we can find an idempotent e ∈ R′ which is a lift of f . Then e ∈ R is also
a lift of e in R/I. �

Lemma 10.31.6. Let A be a possibly noncommutative algebra. Let e ∈ A be an
element such that x = e2 − e is nilpotent. Then there exists an idempotent of the
form e′ = e+ x(

∑
ai,je

ixj) ∈ A with ai,j ∈ Z.

Proof. Consider the ring Rn = Z[e]/((e2−e)n). It is clear that if we can prove the
result for each Rn then the lemma follows. In Rn consider the ideal I = (e2 − e)
and apply Lemma 10.31.5. �

10.32. Curiosity

Lemma 10.22.3 explains what happens if V (I) is open for some ideal I ⊂ R. But
what if Spec(S−1R) is closed in Spec(R)? The next two lemmas give a partial
answer. For more information see Section 10.104.

Lemma 10.32.1. Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume
the image of the map Spec(S−1R) → Spec(R) is closed. Then S−1R ∼= R/I for
some ideal I ⊂ R.

Proof. Let I = Ker(R → S−1R) so that V (I) contains the image. Say the image
is the closed subset V (I ′) ⊂ Spec(R) for some ideal I ′ ⊂ R. So V (I ′) ⊂ V (I). For
f ∈ I ′ we see that f/1 ∈ S−1R is contained in every prime ideal. Hence fn maps
to zero in S−1R for some n ≥ 1 (Lemma 10.16.2). Hence V (I ′) = V (I). Then this
implies every g ∈ S is invertible mod I. Hence we get ring maps R/I → S−1R and
S−1R → R/I. The first map is injective by choice of I. The second is the map
S−1R → S−1(R/I) = R/I which has kernel S−1I because localization is exact.
Since S−1I = 0 we see also the second map is injective. Hence S−1R ∼= R/I. �

Lemma 10.32.2. Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume
the image of the map Spec(S−1R) → Spec(R) is closed. If R is Noetherian, or
Spec(R) is a Noetherian topological space, or S is finitely generated as a monoid,
then R ∼= S−1R×R′ for some ring R′.

Proof. By Lemma 10.32.1 we have S−1R ∼= R/I for some ideal I ⊂ R. By
Lemma 10.22.3 it suffices to show that V (I) is open. If R is Noetherian then
Spec(R) is a Noetherian topological space, see Lemma 10.30.5. If Spec(R) is a
Noetherian topological space, then the complement Spec(R)\V (I) is quasi-compact,
see Topology, Lemma 5.11.13. Hence there exist finitely many f1, . . . , fn ∈ I such
that V (I) = V (f1, . . . , fn). Since each fi maps to zero in S−1R there exists a
g ∈ S such that gfi = 0 for i = 1, . . . , n. Hence D(g) = V (I) as desired. In
case S is finitely generated as a monoid, say S is generated by g1, . . . , gm, then
S−1R ∼= Rg1...gm and we conclude that V (I) = D(g1 . . . gm). �

10.33. Hilbert Nullstellensatz

Theorem 10.33.1 (Hilbert Nullstellensatz). Let k be a field.

(1) For any maximal ideal m ⊂ k[x1, . . . , xn] the field extension k ⊂ κ(m) is
finite.
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(2) Any radical ideal I ⊂ k[x1, . . . , xn] is the intersection of maximal ideals
containing it.

The same is true in any finite type k-algebra.

Proof. It is enough to prove part (1) of the theorem for the case of a polynomial
algebra k[x1, . . . , xn], because any finitely generated k-algebra is a quotient of such
a polynomial algebra. We prove this by induction on n. The case n = 0 is clear.
Suppose that m is a maximal ideal in k[x1, . . . , xn]. Let p ⊂ k[xn] be the intersection
of m with k[xn].

If p 6= (0), then p is maximal and generated by an irreducible monic polynomial P
(because of the Euclidean algorithm in k[xn]). Then k′ = k[xn]/p is a finite field
extension of k and contained in κ(m). In this case we get a surjection

k′[x1, . . . , xn−1]→ k′[x1, . . . , xn] = k′ ⊗k k[x1, . . . , xn] −→ κ(m)

and hence we see that κ(m) is a finite extension of k′ by induction hypothesis. Thus
κ(m) is finite over k as well.

If p = (0) we consider the ring extension k[xn] ⊂ k[x1, . . . , xn]/m. This is a
finitely generated ring extension, hence of finite presentation by Lemmas 10.30.3
and 10.30.4. Thus the image of Spec(k[x1, . . . , xn]/m) in Spec(k[xn]) is constructible
by Theorem 10.28.9. Since the image contains (0) we conclude that it contains a
standard open D(f) for some f ∈ k[xn] nonzero. Since clearly D(f) is infinite we
get a contradiction with the assumption that k[x1, . . . , xn]/m is a field (and hence
has a spectrum consisting of one point).

To prove part (2) let I ⊂ R be radical, with R of finite type over k. Let f ∈ R,
f 6∈ I. Pick a maximal ideal m′ in the nonzero ring Rf/IRf = (R/I)f . Let m ⊂ R
be the inverse image of m′ in R. We see that I ⊂ m and f 6∈ m. If we show that m
is a maximal ideal of R, then we are done. We clearly have

k ⊂ R/m ⊂ κ(m′).

By part (1) the field extension k ⊂ κ(m′) is finite. By elementary field theory we
conclude that R/m is a field. �

Lemma 10.33.2. Let R be a ring. Let K be a field. If R ⊂ K and K is of finite
type over R, then there exists a f ∈ R such that Rf is a field, and Rf ⊂ K is a
finite field extension.

Proof. By Lemma 10.29.2 there exist a nonempty open U ⊂ Spec(R) contained in
the image {(0)} of Spec(K)→ Spec(R). Choose f ∈ R, f 6= 0 such that D(f) ⊂ U ,
i.e., D(f) = {(0)}. Then Rf is a domain whose spectrum has exactly one point and
Rf is a field. Then K is a finitely generated algebra over the field Rf and hence a
finite field extension of Rf by the Hilbert Nullstellensatz (Theorem 10.33.1). �

10.34. Jacobson rings

Let R be a ring. The closed points of Spec(R) are the maximal ideals of R. Often
rings which occur naturally in algebraic geometry have lots of maximal ideals. For
example finite type algebras over a field or over Z. We will show that these are
examples of Jacobson rings.

Definition 10.34.1. Let R be a ring. We say that R is a Jacobson ring if every
radical ideal I is the intersection of the maximal ideals containing it.
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Lemma 10.34.2. Any algebra of finite type over a field is Jacobson.

Proof. This follows from Theorem 10.33.1 and Definition 10.34.1. �

Lemma 10.34.3. Let R be a ring. If every prime ideal of R is the intersection of
the maximal ideals containing it, then R is Jacobson.

Proof. This is immediately clear from the fact that every radical ideal I ⊂ R is
the intersection of the primes containing it. See Lemma 10.16.2. �

Lemma 10.34.4. A ring R is Jacobson if and only if Spec(R) is Jacobson, see
Topology, Definition 5.17.1.

Proof. Suppose R is Jacobson. Let Z ⊂ Spec(R) be a closed subset. We have
to show that the set of closed points in Z is dense in Z. Let U ⊂ Spec(R) be an
open such that U ∩Z is nonempty. We have to show Z ∩U contains a closed point
of Spec(R). We may assume U = D(f) as standard opens form a basis for the
topology on Spec(R). According to Lemma 10.16.2 we may assume that Z = V (I),
where I is a radical ideal. We see also that f 6∈ I. By assumption, there exists a
maximal ideal m ⊂ R such that I ⊂ m but f 6∈ m. Hence m ∈ D(f)∩V (I) = U ∩Z
as desired.

Conversely, suppose that Spec(R) is Jacobson. Let I ⊂ R be a radical ideal. Let
J = ∩I⊂mm be the intersection of the maximal ideals containing I. Clearly J is
radical, V (J) ⊂ V (I), and V (J) is the smallest closed subset of V (I) containing all
the closed points of V (I). By assumption we see that V (J) = V (I). But Lemma
10.16.2 shows there is a bijection between Zariski closed sets and radical ideals,
hence I = J as desired. �

Lemma 10.34.5. Let R be a ring. If R is not Jacobson there exist a prime p ⊂ R,
an element f ∈ R such that the following hold

(1) p is not a maximal ideal,
(2) f 6∈ p,
(3) V (p) ∩D(f) = {p}, and
(4) (R/p)f is a field.

On the other hand, if R is Jacobson, then for any pair (p, f) such that (1) and (2)
hold the set V (p) ∩D(f) is infinite.

Proof. Assume R is not Jacobson. By Lemma 10.34.4 this means there exists an
closed subset T ⊂ Spec(R) whose set T0 ⊂ T of closed points is not dense in T .
Choose an f ∈ R such that T0 ⊂ V (f) but T 6⊂ V (f). Note that T ∩ D(f) is
homeomorphic to Spec((R/I)f ) if T = V (I), see Lemmas 10.16.7 and 10.16.6. As
any ring has a maximal ideal (Lemma 10.16.2) we can choose a closed point t of
space T ∩D(f). Then t corresponds to a prime ideal p ⊂ R which is not maximal
(as t 6∈ T0). Thus (1) holds. By construction f 6∈ p, hence (2). As t is a closed point
of T ∩D(f) we see that V (p)∩D(f) = {p}, i.e., (3) holds. Hence we conclude that
(R/p)f is a domain whose spectrum has one point, hence (4) holds (for example
combine Lemmas 10.17.2 and 10.24.1).

Conversely, suppose that R is Jacobson and (p, f) satisfy (1) and (2). If V (p) ∩
V (f) = {p, q1, . . . , qt} then p 6= qi implies there exists an element g ∈ R such that
g 6∈ p but g ∈ qi for all i. Hence V (p)∩D(fg) = {p} which is impossible since each
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locally closed subset of Spec(R) contains at least one closed point as Spec(R) is a
Jacobson topological space. �

Lemma 10.34.6. The ring Z is a Jacobson ring. More generally, let R be a ring
such that

(1) R is a domain,
(2) R is Noetherian,
(3) any nonzero prime ideal is a maximal ideal, and
(4) R has infinitely many maximal ideals.

Then R is a Jacobson ring.

Proof. Let R satisfy (1), (2), (3) and (4). The statement means that (0) =⋂
m⊂Rm. Since R has infinitely many maximal ideals it suffices to show that any

nonzero x ∈ R is contained in at most finitely many maximal ideals, in other
words that V (x) is finite. By Lemma 10.16.7 we see that V (x) is homeomorphic
to Spec(R/xR). By assumption (3) every prime of R/xR is minimal and hence
corresponds to an irreducible component of Spec(R) (Lemma 10.25.1). As R/xR is
Noetherian, the topological space Spec(R/xR) is Noetherian (Lemma 10.30.5) and
has finitely many irreducible components (Topology, Lemma 5.8.2). Thus V (x) is
finite as desired. �

Example 10.34.7. Let A be an infinite set. For each α ∈ A, let kα be a field.
We claim that R =

∏
α∈A kα is Jacobson. First, note that any element f ∈ R has

the form f = ue, with u ∈ R a unit and e ∈ R an idempotent (left to the reader).
Hence D(f) = D(e), and Rf = Re = R/(1 − e) is a quotient of R. Actually, any
ring with this property is Jacobson. Namely, say p ⊂ R is a prime ideal and f ∈ R,
f 6∈ p. We have to find a maximal ideal m of R such that p ⊂ m and f 6∈ m.
Because Rf is a quotient of R we see that any maximal ideal of Rf corresponds
to a maximal ideal of R not containing f . Hence the result follows by choosing a
maximal ideal of Rf containing pRf .

Example 10.34.8. A domain R with finitely many maximal ideals mi, i = 1, . . . , n
is not a Jacobson ring, except when it is a field. Namely, in this case (0) is not the
intersection of the maximal ideals (0) 6= m1 ∩m2 ∩ . . .∩mn ⊃ m1 ·m2 · . . . ·mn 6= 0.
In particular a discrete valuation ring, or any local ring with at least two prime
ideals is not a Jacobson ring.

Lemma 10.34.9. Let R → S be a ring map. Let m ⊂ R be a maximal ideal. Let
q ⊂ S be a prime ideal lying over m such that κ(m) ⊂ κ(q) is an algebraic field
extension. Then q is a maximal ideal of S.

Proof. Consider the diagram

S // S/q // κ(q)

R //

OO

R/m

OO

We see that κ(m) ⊂ S/q ⊂ κ(q). Because the field extension κ(m) ⊂ κ(q) is
algebraic, any ring between κ(m) and κ(q) is a field (by elementary field theory).
Thus S/q is a field, and a posteriori equal to κ(q). �
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Lemma 10.34.10. Suppose that k is a field and suppose that V is a nonzero vector
space over k. Assume the dimension of V (which is a cardinal number) is smaller
than the cardinality of k. Then for any linear operator T : V → V there exists
some monic polynomial P (t) ∈ k[t] such that P (T ) is not invertible.

Proof. If not then V inherits the structure of a vector space over the field k(t).
But the dimension of k(t) over k is at least the cardinality of k for example due to
the fact that the elements 1

t−λ are k-linearly independent. �

Here is another version of Hilbert’s Nullstellensatz.

Theorem 10.34.11. Let k be a field. Let S be a k-algebra generated over k by the
elements {xi}i∈I . Assume the cardinality of I is smaller than the cardinality of k.
Then

(1) for all maximal ideals m ⊂ S the field extension k ⊂ κ(m) is algebraic,
and

(2) S is a Jacobson ring.

Proof. If I is finite then the result follows from the Hilbert Nullstellensatz, Theo-
rem 10.33.1. In the rest of the proof we assume I is infinite. It suffices to prove the
result for m ⊂ k[{xi}i∈I ] maximal in the polynomial ring on variables xi, since S
is a quotient of this. As I is infinite the set of monomials xe1i1 . . . x

er
ir

, i1, . . . , ir ∈ I
and e1, . . . , er ≥ 0 has cardinality at most equal to the cardinality of I. Because the
cardinality of I × . . .× I is the cardinality of I, and also the cardinality of

⋃
n≥0 I

n

has the same cardinality. (If I is finite, then this is not true and in that case this
proof only works if k is uncountable.)

To arrive at a contradiction pick T ∈ κ(m) transcendental over k. Note that the
k-linear map T : κ(m)→ κ(m) given by multiplication by T has the property that
P (T ) is invertible for all monic polynomials P (t) ∈ k[t]. Also, κ(m) has dimension
at most the cardinality of I over k since it is a quotient of the vector space k[{xi}i∈I ]
over k (whose dimension is #I as we saw above). This is impossible by Lemma
10.34.10.

To show that S is Jacobson we argue as follows. If not then there exists a prime
q ⊂ S and an element f ∈ S, f 6∈ q such that q is not maximal and (S/q)f is a field,
see Lemma 10.34.5. But note that (S/q)f is generated by at most #I+ 1 elements.
Hence the field extension k ⊂ (R/q)f is algebraic (by the first part of the proof).
This implies that κ(q) is an algebraic extension of k hence q is maximal by Lemma
10.34.9. This contradiction finishes the proof. �

Lemma 10.34.12. Let k be a field. Let S be a k-algebra. For any field extension
k ⊂ K whose cardinality is larger than the cardinality of S we have

(1) for every maximal ideal m of SK the field κ(m) is algebraic over K, and
(2) SK is a Jacobson ring.

Proof. Choose k ⊂ K such that the cardinality of K is greater than the cardinality
of S. Since the elements of S generate the K-algebra SK we see that Theorem
10.34.11 applies. �

Example 10.34.13. The trick in the proof of Theorem 10.34.11 really does not
work if k is a countable field and I is countable too. Let k be a countable field. Let
x be a variable, and let k(x) be the field of rational functions in x. Consider the
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polynomial algebra R = k[x, {xf}f∈k[x]−{0}]. Let I = ({fxf − 1}f∈k[x]−{0}). Note
that I is a proper ideal in R. Choose a maximal ideal I ⊂ m. Then k ⊂ R/m is
isomorphic to k(x), and is not algebraic over k.

Lemma 10.34.14. Let R be a Jacobson ring. Let f ∈ R. The ring Rf is Jacobson
and maximal ideals of Rf correspond to maximal ideals of R not containing f .

Proof. By Topology, Lemma 5.17.5 we see that D(f) = Spec(Rf ) is Jacobson and
that closed points of D(f) correspond to closed points in Spec(R) which happen to
lie in D(f). Thus Rf is Jacobson by Lemma 10.34.4. �

Example 10.34.15. Here is a simple example that shows Lemma 10.34.14 to be
false if R is not Jacobson. Consider the ring R = Z(2), i.e., the localization of Z
at the prime (2). The localization of R at the element 2 is isomorphic to Q, in a
formula: R2

∼= Q. Clearly the map R → R2 maps the closed point of Spec(Q) to
the generic point of Spec(R).

Example 10.34.16. Here is a simple example that shows Lemma 10.34.14 is false
if R is Jacobson but we localize at infinitely many elements. Namely, let R = Z and
consider the localization (R \ {0})−1R ∼= Q of R at the set of all nonzero elements.
Clearly the map Z → Q maps the closed point of Spec(Q) to the generic point of
Spec(Z).

Lemma 10.34.17. Let R be a Jacobson ring. Let I ⊂ R be an ideal. The ring
R/I is Jacobson and maximal ideals of R/I correspond to maximal ideals of R
containing I.

Proof. The proof is the same as the proof of Lemma 10.34.14. �

Proposition 10.34.18. Let R be a Jacobson ring. Let R → S be a ring map of
finite type. Then

(1) The ring S is Jacobson.
(2) The map Spec(S)→ Spec(R) transforms closed points to closed points.
(3) For m′ ⊂ S maximal lying over m ⊂ R the field extension κ(m) ⊂ κ(m′)

is finite.

Proof. Let A → B → C be finite type ring maps. Suppose Spec(C) → Spec(B)
and Spec(B) → Spec(A) map closed points to closed points, and induce finite
residue field extensions on residue fields at closed points. Then so does Spec(C)→
Spec(A). Thus it is clear that if we factor R → S as R → S′ → S for some finite
type R-algebra S′, then it suffices to prove the lemma for R→ S′ and then S′ → S.
Writing S = R[x1, . . . , xn]/I we see that it suffices to prove the lemma in the cases
S = R[x] and S = R/I. The case S = R/I is Lemma 10.34.17.

The case S = R[x]. Take an irreducible closed subset Z ⊂ Spec(R[x]). In other
words Z = V (q) for some prime q ⊂ R[x]. Set p = q ∩ R. Let U ⊂ Spec(R[x]) be
open such that U ∩ Z 6= ∅. We have to find a closed point in U ∩ Z. In fact, we
will find

(∗) a closed point y of U ∩Z which maps to a closed point x of Spec(R) such
that additionally κ(x) ⊂ κ(y) is finite.
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To do this we may assume U = D(f) for some f ∈ R[x]. In this case U ∩ V (q) 6= ∅
means f 6∈ q. Consider the diagram

R[x] // R/p[x]

R //

OO

R/p

OO

It suffices to solve the problem on the right hand side of this diagram. Thus we see
we may assume R is Jacobson, a domain and p = (0).

In case q = (0), write f = adx
d + . . . + a0. We see that not all ai are zero. Take

any maximal ideal m of R such that ai 6∈ m for some i (here we use R is Jacobson).
Next, choose a maximal ideal m′ ⊂ (R/m)[x] not containing the image of f (possible
because κ(m)[x] is Jacobson). Then the inverse image m′ ⊂ R[x] defines a closed
point of U ∩ Z and maps to m. Also, by construction κ(m) ⊂ κ(m′) is finite. Thus
we have shown (∗) in this case.

In case q 6= (0), let K be the fraction field of R. Write qK[x] = (g) for some
irreducible g ∈ K[x]. Clearing denominators, we may assume that g ∈ R[x], and
hence in q. Write g = bex

e + . . . + b0, bi ∈ R with be 6= 0. The maps R → Rbe
and R[x] → R[x]be satisfies the conclusion of the lemma, by Lemma 10.34.14 and
moreover induce isomorphisms on residue fields. Hence, in order to prove (∗), we
may replace R by Rbe and assume that g is monic. In this case we see that R[x]/q
is a quotient of the finite free R-module R[x]/(g) = R⊕Rx⊕ . . .⊕Rxe−1. But on
the other hand we have R[x]/(g) ⊂ K[x]/(g) = K[x]/qK[x]. Hence q = (g), and
Z = V (q) = V (g). At this point, by Lemma 10.28.8 the image of D(f) ∩ V (g) in
Spec(R) is D(r1) ∪ . . . ∪ D(rd) for some ri ∈ R (of course it is nonempty). Take
any maximal ideal m ⊂ R in this image (possible because R is Jacobson) and take
any prime m′ ⊂ R[x] corresponding to a point of D(f) ∩ V (g) lying over m. Note
that the residue field extension κ(m) ⊂ κ(m′) is finite (because g ∈ m′). By Lemma
10.34.9 we see that m′ is a closed point. This proves (∗) in this case.

At this point we are done. Namely, (∗) implies that Spec(R[x]) is Jacobson (via
Lemma 10.34.4). Also, if Z is a singleton closed set, then (∗) implies that Z = {m′}
with m′ lying over a maximal ideal m ⊂ R such that κ(m) ⊂ κ(m′) is finite. �

Lemma 10.34.19. Any finite type algebra over Z is Jacobson.

Proof. Combine Lemma 10.34.6 and Proposition 10.34.18. �

Lemma 10.34.20. Let R→ S be a finite type ring map of Jacobson rings. Denote
X = Spec(R) and Y = Spec(S). Write f : Y → X the induced map of spectra. Let
E ⊂ Y = Spec(S) be a constructible set. Denote with a subscript 0 the set of closed
points of a topological space.

(1) We have f(E)0 = f(E0) = X0 ∩ f(E).

(2) A point ξ ∈ X is in f(E) if and only if {ξ} ∩ f(E0) is dense in {ξ}.
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Proof. We have a commutative diagram of continuous maps

E //

��

Y

��
f(E) // X

Suppose x ∈ f(E) is closed in f(E). Then f−1({x}) ∩ E is nonempty and closed
in E. Applying Topology, Lemma 5.17.5 to both inclusions

f−1({x}) ∩ E ⊂ E ⊂ Y
we find there exists a point y ∈ f−1({x})∩E which is closed in Y . In other words,
there exists y ∈ Y0 and y ∈ E0 mapping to x. Hence x ∈ f(E0). This proves
that f(E)0 ⊂ f(E0). Proposition 10.34.18 implies that f(E0) ⊂ X0 ∩ f(E). The
inclusion X0 ∩ f(E) ⊂ f(E)0 is trivial. This proves the first assertion.

Suppose that ξ ∈ f(E). According to Lemma 10.29.2 the set f(E)∩{ξ} contains a

dense open subset of {ξ}. Since X is Jacobson we conclude that f(E)∩{ξ} contains
a dense set of closed points, see Topology, Lemma 5.17.5. We conclude by part (1)
of the lemma.

On the other hand, suppose that {ξ} ∩ f(E0) is dense in {ξ}. By Lemma 10.28.3
there exists a ring map S → S′ of finite presentation such that E is the image of
Y ′ := Spec(S′) → Y . Then E0 is the image of Y ′0 by the first part of the lemma
applied to the ring map S → S′. Thus we may assume that E = Y by replacing S
by S′. Suppose ξ corresponds to p ⊂ R. Consider the diagram

S // S/pS

R //

OO

R/p

OO

This diagram and the density of f(Y0) ∩ V (p) in V (p) shows that the morphism
R/p → S/pS satisfies condition (2) of Lemma 10.29.4. Hence we conclude there
exists a prime q ⊂ S/pS mapping to (0). In other words the inverse image q of q
in S maps to p as desired. �

The conclusion of the lemma above is that we can read off the image of f from the
set of closed points of the image. This is a little nicer in case the map is of finite
presentation because then we know that images of a constructible is constructible.
Before we state it we introduce some notation. Denote Constr(X) the set of con-
structible Let R → S be a ring map. Denote X = Spec(R) and Y = Spec(S).
Write f : Y → X the induced map of spectra. Denote with a subscript 0 the set of
closed points of a topological space.

Lemma 10.34.21. With notation as above. Assume that R is a Noetherian Ja-
cobson ring. Further assume R → S is of finite type. There is a commutative
diagram

Constr(Y )
E 7→E0 //

E 7→f(E)

��

Constr(Y0)

E 7→f(E)

��
Constr(X)

E 7→E0// Constr(X0)
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where the horizontal arrows are the bijections from Topology, Lemma 5.17.7.

Proof. Since R→ S is of finite type, it is of finite presentation, see Lemma 10.30.4.
Thus the image of a constructible set in X is constructible in Y by Chevalley’s
theorem (Theorem 10.28.9). Combined with Lemma 10.34.20 the lemma follows.

�

To illustrate the use of Jacobson rings, we give the following two examples.

Example 10.34.22. Let k be a field. The space Spec(k[x, y]/(xy)) has two irre-
ducible components: namely the x-axis and the y-axis. As a generalization, let

R = k[x11, x12, x21, x22, y11, y12, y21, y22]/a,

where a is the ideal in k[x11, x12, x21, x22, y11, y12, y21, y22] generated by the entries
of the 2× 2 product matrix (

x11 x12

x21 x22

)(
y11 y12

y21 y22

)
.

In this example we will describe Spec(R).

To prove the statement about Spec(k[x, y]/(xy)) we argue as follows. If p ⊂ k[x, y]
is any ideal containing xy, then either x or y would be contained in p. Hence the
minimal such prime ideals are just (x) and (y). In case k is algebraically closed,
the max-Spec of these components can then be visualized as the point sets of y-
and x-axis.

For the generalization, note that we may identify the closed points of the spectrum
of k[x11, x12, x21, x22, y11, y12, y21, y22]) with the space of matrices{

(X,Y ) ∈ Mat(2, k)×Mat(2, k) | X =

(
x11 x12

x21 x22

)
, Y =

(
y11 y12

y21 y22

)}
at least if k is algebraically closed. Now define a group action of GL(2, k) ×
GL(2, k)×GL(2, k) on the space of matrices {(X,Y )} by

(g1, g2, g3)× (X,Y ) 7→ ((g1Xg
−1
2 , g2Y g

−1
3 )).

Here, also observe that the algebraic set

GL(2, k)×GL(2, k)×GL(2, k) ⊂ Mat(2, k)×Mat(2, k)×Mat(2, k)

is irreducible since it is the max spectrum of the domain

k[x11, x12, . . . , z21, z22, (x11x22−x12x21)−1, (y11y22−y12y21)−1, (z11z22−z12z21)−1].

Since the image of irreducible an algebraic set is still irreducible, it suffices to
classify the orbits of the set {(X,Y ) ∈ Mat(2, k) ×Mat(2, k)|XY = 0} and take
their closures. From standard linear algebra, we are reduced to the following three
cases:

(1) ∃(g1, g2) such that g1Xg
−1
2 = I2×2. Then Y is necessarily 0, which as

an algebraic set is invariant under the group action. It follows that this
orbit is contained in the irreducible algebraic set defined by the prime
ideal (y11, y12, y21, y22). Taking the closure, we see that (y11, y12, y21, y22)
is actually a component.
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484 10. COMMUTATIVE ALGEBRA

(2) ∃(g1, g2) such that

g1Xg
−1
2 =

(
1 0
0 0

)
.

This case occurs if and only if X is a rank 1 matrix, and furthermore, Y
is killed by such an X if and only if

x11y11 + x12y21 = 0; x11y12 + x12y22 = 0;

x21y11 + x22y21 = 0; x21y12 + x22y22 = 0.

Fix a rank 1 X, such non zero Y ’s satisfying the above equations form an
irreducible algebraic set for the following reason(Y = 0 is contained the
previous case): 0 = g1Xg

−1
2 g2Y implies that

g2Y =

(
0 0
y′21 y′22

)
.

With a further GL(2, k)-action on the right by g3, g2Y can be brought
into

g2Y g
−1
3 =

(
0 0
0 1

)
,

and thus such Y ’s form an irreducible algebraic set isomorphic to the
image of GL(2, k) under this action. Finally, notice that the “rank 1”
condition for X’s forms an open dense subset of the irreducible algebraic
set detX = x11x22−x12x21 = 0. It now follows that all the five equations
define an irreducible component (x11y11 +x12y21, x11y12 +x12y22, x21y11 +
x22y21, x21y12 + x22y22, x11x22 − x12x21) in the open subset of the space
of pairs of nonzero matrices. It can be shown that the pair of equations
detX = 0, detY = 0 cuts Spec(R) in an irreducible component with the
above locus an open dense subset.

(3) ∃(g1, g2) such that g1Xg
−1
2 = 0, or equivalently, X = 0. Then Y can be

arbitrary and this component is thus defined by (x11, x12, x21, x22).

Example 10.34.23. For another example, consider R = k[{tij}ni,j=1]/a, where a

is the ideal generated by the entries of the product matrix T 2−T , T = (tij). From
linear algebra, we know that under the GL(n, k)-action defined by g, T 7→ gTg−1, T
is classified by the its rank and each T is conjugate to some diag(1, . . . , 1, 0, . . . , 0),
which has r 1’s and n−r 0’s. Thus each orbit of such a diag(1, . . . , 1, 0, . . . , 0) under
the group action forms an irreducible component and every idempotent matrix
is contained in one such orbit. Next we will show that any two different orbits
are necessarily disjoint. For this purpose we only need to cook up polynomial
functions that take different values on different orbits. In characteristic 0 cases,
such a function can be taken to be f(tij) = trace(T ) =

∑n
i=1 tii. In positive

characteristic cases, things are slightly more tricky since we might have trace(T ) = 0
even if T 6= 0. For instance, char = 3

trace

1
1

1

 = 3 = 0

Anyway, these components can be separated using other functions. For instance, in
the characteristic 3 case, tr(∧3T ) takes value 1 on the components corresponding
to diag(1, 1, 1) and 0 on other components.
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10.35. Finite and integral ring extensions

Trivial lemmas concerning finite and integral ring maps. We recall the definition.

Definition 10.35.1. Let ϕ : R→ S be a ring map.

(1) An element s ∈ S is integral over R if there exists a monic polynomial
P (x) ∈ R[x] such that Pϕ(s) = 0, where Pϕ(x) ∈ S[x] is the image of P
under ϕ : R[x]→ S[x].

(2) The ring map ϕ is integral if every s ∈ S is integral over R.

Lemma 10.35.2. Let ϕ : R→ S be a ring map. Let y ∈ S. If there exists a finite
R-submodule M of S such that 1 ∈M and yM ⊂M , then y is integral over R.

Proof. Let x1 = 1 ∈ M and xi ∈ M , i = 2, . . . , n be a finite set of elements
generating M as an R-module. Write yxi =

∑
ϕ(aij)xj for some aij ∈ R. Let

P (T ) ∈ R[T ] be the characteristic polynomial of the n × n matrix A = (aij).
By Lemma 10.15.1 we see P (A) = 0. By construction the map π : Rn → M ,
(a1, . . . , an) 7→

∑
ϕ(ai)xi commutes with A : Rn → Rn and multiplication by y. In

a formula π(Av) = yπ(v). Thus P (y) = P (y)·1 = P (y)·x1 = P (y)·π((1, 0, . . . , 0)) =
π(P (A)(1, 0, . . . , 0)) = 0. �

Lemma 10.35.3. A finite ring extension is integral.

Proof. Let R → S be finite. Let y ∈ S. Apply Lemma 10.35.2 to M = S to see
that y is integral over R. �

Lemma 10.35.4. Let ϕ : R → S be a ring map. Let s1, . . . , sn be a finite set of
elements of S. In this case si is integral over R for all i = 1, . . . , n if and only if
there exists an R-subalgebra S′ ⊂ S finite over R containing all of the si.

Proof. If each si is integral, then the subalgebra generated by ϕ(R) and the si
is finite over R. Namely, if si satisfies a monic equation of degree di over R,
then this subalgebra is generated as an R-module by the elements se11 . . . senn with
0 ≤ ei ≤ di − 1. Conversely, suppose given a finite R-subalgebra S′ containing all
the si. Then all of the si are integral by Lemma 10.35.3. �

Lemma 10.35.5. Let R→ S be a ring map. The following are equivalent

(1) R→ S is finite,
(2) R→ S is integral and of finite type, and
(3) there exist x1, . . . , xn ∈ S which generate S as an algebra over R such that

each xi is integral over R.

Proof. Clear from Lemma 10.35.4. �

Lemma 10.35.6. Suppose that R → S and S → T are integral ring maps. Then
R→ T is integral.

Proof. Let t ∈ T . Let P (x) ∈ S[x] be a monic polynomial such that P (t) = 0.
Apply Lemma 10.35.4 to the finite set of coefficients of P . Hence t is integral
over some subalgebra S′ ⊂ S finite over R. Apply Lemma 10.35.4 again to find
a subalgebra T ′ ⊂ T finite over S′ and containing t. Lemma 10.7.3 applied to
R→ S′ → T ′ shows that T ′ is finite over R. The integrality of t over R now follows
from Lemma 10.35.3. �
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Lemma 10.35.7. Let R→ S be a ring homomorphism. The set

S′ = {s ∈ S | s is integral over R}

is an R-subalgebra of S.

Proof. This is clear from Lemmas 10.35.4 and 10.35.3. �

Definition 10.35.8. Let R → S be a ring map. The ring S′ ⊂ S of elements
integral over R, see Lemma 10.35.7, is called the integral closure of R in S. If
R ⊂ S we say that R is integrally closed in S if R = S′.

In particular, we see that R→ S is integral if and only if the integral closure of R
in S is all of S.

Lemma 10.35.9. Integral closure commutes with localization: If A→ B is a ring
map, and S ⊂ A is a multiplicative subset, then the integral closure of S−1A in
S−1B is S−1B′, where B′ ⊂ B is the integral closure of A in B.

Proof. Since localization is exact we see that S−1B′ ⊂ S−1B. Suppose x ∈ B′

and f ∈ S. Then xd +
∑
i=1,...,d aix

d−i = 0 in B for some ai ∈ A. Hence also

(x/f)d +
∑

i=1,...,d
ai/f

i(x/f)d−i = 0

in S−1B. In this way we see that S−1B′ is contained in the integral closure of
S−1A in S−1B. Conversely, suppose that x/f ∈ S−1B is integral over S−1A. Then
we have

(x/f)d +
∑

i=1,...,d
(ai/fi)(x/f)d−i = 0

in S−1B for some ai ∈ A and fi ∈ S. This means that

(f ′f1 . . . fdx)d +
∑

i=1,...,d
f i(f ′)if i1 . . . f

i−1
i . . . f idai(f

′f1 . . . fdx)d−i = 0

for a suitable f ′ ∈ S. Hence f ′f1 . . . fdx ∈ B′ and thus x/f ∈ S−1B′ as desired. �

Lemma 10.35.10. Let ϕ : R → S be a ring map. Let x ∈ S. The following are
equivalent:

(1) x is integral over R, and
(2) for every prime ideal p ⊂ R the element x ∈ Sp is integral over Rp.

Proof. It is clear that (1) implies (2). Assume (2). Consider the R-algebra S′ ⊂ S
generated by ϕ(R) and x. Let p be a prime ideal of R. Then we know that
xd +

∑
i=1,...,d ϕ(ai)x

d−i = 0 in Sp for some ai ∈ Rp. Hence we see, by looking
at which denominators occur, that for some f ∈ R, f 6∈ p we have ai ∈ Rf and
xd +

∑
i=1,...,d ϕ(ai)x

d−i = 0 in Sf . This implies that S′f is finite over Rf . Since p

was arbitrary and Spec(R) is quasi-compact (Lemma 10.16.10) we can find finitely
many elements f1, . . . , fn ∈ R which generate the unit ideal of R such that S′fi
is finite over R. Hence we conclude from Lemma 10.23.2 that S′ is finite over R.
Hence x is integral over R by Lemma 10.35.4. �

Lemma 10.35.11. Let R→ S and R→ R′ be ring maps. Set S′ = R′ ⊗R S.

(1) If R→ S is integral so is R′ → S′.
(2) If R→ S is finite so is R′ → S′.
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Proof. We prove (1). Let si ∈ S be generators for S over R. Each of these satisfies
a monic polynomial equation Pi over R. Hence the elements 1⊗si ∈ S′ generate S′

over R′ and satisfy the corresponding polynomial P ′i over R′. Since these elements
generate S′ over R′ we see that S′ is integral over R′. Proof of (2) omitted. �

Lemma 10.35.12. Let R→ S be a ring map. Let f1, . . . , fn ∈ R generate the unit
ideal.

(1) If each Rfi → Sfi is integral, so is R→ S.
(2) If each Rfi → Sfi is finite, so is R→ S.

Proof. Proof of (1). Let s ∈ S. Consider the ideal I ⊂ R[x] of polynomials P such
that P (s) = 0. Let J ⊂ R denote the ideal (!) of leading coefficients of elements
of I. By assumption and clearing denominators we see that fnii ∈ J for all i and
certain ni ≥ 0. Hence J contains 1 and we see s is integral over R. Proof of (2)
omitted. �

Lemma 10.35.13. Let A→ B → C be ring maps.

(1) If A→ C is integral so is B → C.
(2) If A→ C is finite so is B → C.

Proof. Omitted. �

Lemma 10.35.14. Let A → B → C be ring maps. Let B′ be the integral closure
of A in B, let C ′ be the integral closure of B′ in C. Then C ′ is the integral closure
of A in C.

Proof. Omitted. �

Lemma 10.35.15. Suppose that R→ S is an integral ring extension with R ⊂ S.
Then ϕ : Spec(S)→ Spec(R) is surjective.

Proof. Let p ⊂ R be a prime ideal. We have to show pSp 6= Sp, see Lemma
10.16.9. The localization Rp → Sp is injective (as localization is exact) and integral
by Lemma 10.35.9 or 10.35.11. Hence we may replace R, S by Rp, Sp and we
may assume R is local with maximal ideal m and it suffices to show that mS 6= S.
Suppose 1 =

∑
fisi with fi ∈ m and si ∈ S in order to get a contradiction. Let

R ⊂ S′ ⊂ S be such that R → S′ is finite and si ∈ S′, see Lemma 10.35.4. The
equation 1 =

∑
fisi implies that the finite R-module S′ satisfies S′ = mS′. Hence

by Nakayama’s Lemma 10.19.1 we see S′ = 0. Contradiction. �

Lemma 10.35.16. Let R be a ring. Let K be a field. If R ⊂ K and K is integral
over R, then R is a field and K is an algebraic extension. If R ⊂ K and K is finite
over R, then R is a field and K is a finite algebraic extension.

Proof. Assume that R ⊂ K is integral. By Lemma 10.35.15 we see that Spec(R)
has 1 point. Since clearly R is a domain we see that R = R(0) is a field. The other
assertions are immediate from this. �

Lemma 10.35.17. Let k be a field. Let S be a k-algebra over k.

(1) If S is a domain and finite dimensional over k, then S is a field.
(2) If S is integral over k and a domain, then S is a field.
(3) If S is integral over k then every prime of S is a maximal ideal (see Lemma

10.25.5 for more consequences).

http://stacks.math.columbia.edu/tag/02JL
http://stacks.math.columbia.edu/tag/02JM
http://stacks.math.columbia.edu/tag/0308
http://stacks.math.columbia.edu/tag/00GQ
http://stacks.math.columbia.edu/tag/00GR
http://stacks.math.columbia.edu/tag/00GS


488 10. COMMUTATIVE ALGEBRA

Proof. The statement on primes follows from the statement “integral + domain
⇒ field”. Let S integral over k and assume S is a domain, Take s ∈ S. By Lemma
10.35.4 we may find a finite dimensional k-subalgebra k ⊂ S′ ⊂ S containing s.
Hence S is a field if we can prove the first statement. Assume S finite dimensional
over k and a domain. Pick s ∈ S. Since S is a domain the multiplication map
s : S → S is surjective by dimension reasons. Hence there exists an element s1 ∈ S
such that ss1 = 1. So S is a field. �

Lemma 10.35.18. Suppose R → S is integral. Let q, q′ ∈ Spec(S) be distinct
primes having the same image in Spec(R). Then neither q ⊂ q′ nor q′ ⊂ q.

Proof. Let p ⊂ R be the image. By Remark 10.16.8 the primes q, q′ correspond to
ideals in S ⊗R κ(p). Thus the lemma follows from Lemma 10.35.17. �

Lemma 10.35.19. Suppose R→ S is finite. Then the fibres of Spec(S)→ Spec(R)
are finite.

Proof. By the discussion in Remark 10.16.8 the fibres are the spectra of the rings
S⊗Rκ(p). As R→ S is finite, these fibre rings are finite over κ(p) hence Noetherian
by Lemma 10.30.1. By Lemma 10.35.18 every prime of S⊗Rκ(p) is a minimal prime.
Hence by Lemma 10.30.6 there are at most finitely many. �

Lemma 10.35.20. Let R → S be a ring map such that S is integral over R. Let
p ⊂ p′ ⊂ R be primes. Let q be a prime of S mapping to p. Then there exists a
prime q′ with q ⊂ q′ mapping to p′.

Proof. We may replace R by R/p and S by S/q. This reduces us to the situation
of having an integral extension of domains R ⊂ S and a prime p′ ⊂ R. By Lemma
10.35.15 we win. �

The property expressed in the lemma above is called the “going up property” for
the ring map R→ S, see Definition 10.40.1.

Lemma 10.35.21. Let R be a ring. Let x, y ∈ R be nonzerodivisors. Let R[x/y] ⊂
Rxy be the R-subalgebra generated by x/y, and similarly for the subalgebras R[y/x]
and R[x/y, y/x]. If R is integrally closed in Rx or Ry, then the sequence

0→ R
(−1,1)−−−−→ R[x/y]⊕R[y/x]

(1,1)−−−→ R[x/y, y/x]→ 0

is a short exact sequence of R-modules.

Proof. Since x/y · y/x = 1 it is clear that the map R[x/y]⊕R[y/x]→ R[x/y, y/x]
is surjective. Let α ∈ R[x/y] ∩ R[y/x]. To show exactness in the middle we have
to prove that α ∈ R. By assumption we may write

α = a0 + a1x/y + . . .+ an(x/y)n = b0 + b1y/x+ . . .+ bm(y/x)m

for some n,m ≥ 0 and ai, bj ∈ R. Pick some N > max(n,m). Consider the finite
R-submodule M of Rxy generated by the elements

(x/y)N , (x/y)N−1, . . . , x/y, 1, y/x, . . . , (y/x)N−1, (y/x)N

We claim that αM ⊂ M . Namely, it is clear that (x/y)i(b0 + b1y/x + . . . +
bm(y/x)m) ∈M for 0 ≤ i ≤ N and that (y/x)i(a0 + a1x/y + . . .+ an(x/y)n) ∈M
for 0 ≤ i ≤ N . Hence α is integral over R by Lemma 10.35.2. Note that α ∈ Rx,
so if R is integrally closed in Rx then α ∈ R as desired. �
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10.36. Normal rings

We first introduce the notion of a normal domain, and then we introduce the (very
general) notion of a normal ring.

Definition 10.36.1. A domain R is called normal if it is integrally closed in its
field of fractions.

Lemma 10.36.2. Let R → S be a ring map. If S is a normal domain, then the
integral closure of R in S is a normal domain.

Proof. Omitted. �

The following notion is occasionally useful when studying normality.

Definition 10.36.3. Let R be a domain.

(1) An element g of the fraction field of R is called almost integral over R if
there exists an element r ∈ R, r 6= 0 such that rgn ∈ R for all n ≥ 0.

(2) The domain R is called completely normal if every almost integral element
of the fraction field of R is contained in R.

The following lemma shows that a Noetherian domain is normal if and only if it is
completely normal.

Lemma 10.36.4. Let R be a domain with fraction field K. If u, v ∈ K are almost
integral over R, then so are u+v and uv. Any element g ∈ K which is integral over
R is almost integral over R. If R is Noetherian then the converse holds as well.

Proof. If run ∈ R for all n ≥ 0 and vnr′ ∈ R for all n ≥ 0, then (uv)nrr′ and
(u + v)nrr′ are in R for all n ≥ 0. Hence the first assertion. Suppose g ∈ K
is integral over R. In this case there exists an d > 0 such that the ring R[g] is
generated by 1, g, . . . , gd as an R-module. Let r ∈ R be a common denominator of
the elements 1, g, . . . , gd ∈ K. It is follows that rR[g] ⊂ R, and hence g is almost
integral over R.

Suppose R is Noetherian and g ∈ K is almost integral over R. Let r ∈ R, r 6= 0 be
as in the definition. Then R[g] ⊂ 1

rR as an R-module. Since R is Noetherian this
implies that R[g] is finite over R. Hence g is integral over R, see Lemma 10.35.3. �

Lemma 10.36.5. Any localization of a normal domain is normal.

Proof. Let R be a normal domain, and let S ⊂ R be a multiplicative subset.
Suppose g is an element of the fraction field of R which is integral over S−1R.
Let P = xd +

∑
j<d ajx

j be a polynomial with ai ∈ S−1R such that P (g) = 0.
Choose s ∈ S such that sai ∈ R for all i. Then sg satisfies the monic polynomial
xd +

∑
j<d s

d−jajx
j which has coefficients sd−jaj in R. Hence sg ∈ R because R

is normal. Hence g ∈ S−1R. �

Lemma 10.36.6. A principal ideal domain is normal.

Proof. Let R be a principal ideal domain. Let g = a/b be an element of the
fraction field of R integral over R. Because R is a principal ideal domain we may
divide out a common factor of a and b and assume (a, b) = R. In this case, any
equation (a/b)n + rn−1(a/b)n−1 + . . . + r0 = 0 with ri ∈ R would imply an ∈ (b).
This contradicts (a, b) = R unless b is a unit in R. �
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Lemma 10.36.7. Let R be a domain with fraction field K. Suppose f =
∑
αix

i

is an element of K[x].

(1) If f is integral over R[x] then all αi are integral over R, and
(2) If f is almost integral over R[x] then all αi are almost integral over R.

Proof. We first prove the second statement. Write f = α0 +α1x+ . . .+αrx
r with

αr 6= 0. By assumption there exists h = b0 + b1x + . . . + bsx
s ∈ R[x], bs 6= 0 such

that fnh ∈ R[x] for all n ≥ 0. This implies that bsα
n
r ∈ R for all n ≥ 0. Hence αr

is almost integral over R. Since the set of almost integral elements form a subring
(Lemma 10.36.4) we deduce that f − αrxr = α0 + α1x+ . . .+ αr−1x

r−1 is almost
integral over R[x]. By induction on r we win.

In order to prove the first statement we will use absolute Noetherian reduction.
Namely, write αi = ai/bi and let P (t) = td +

∑
j<d fjt

j be a polynomial with

coefficients fj ∈ R[x] such that P (f) = 0. Let fj =
∑
fjix

i. Consider the subring
R0 ⊂ R generated by the finite list of elements ai, bi, fji of R. It is a domain; let
K0 be its field of fractions. Since R0 is a finite type Z-algebra it is Noetherian, see
Lemma 10.30.3. It is still the case that f ∈ K0[x] is integral over R0[x], because
all the identities in R among the elements ai, bi, fji also hold in R0. By Lemma
10.36.4 the element f is almost integral over R0[x]. By the second statement of the
lemma, the elements αi are almost integral over R0. And since R0 is Noetherian,
they are integral over R0, see Lemma 10.36.4. Of course, then they are integral
over R. �

Lemma 10.36.8. Let R be a normal domain. Then R[x] is a normal domain.

Proof. The result is true if R is a field K because K[x] is a euclidean domain and
hence a principal ideal domain and hence normal by Lemma 10.36.6. Let g be an
element of the fraction field of R[x] which is integral over R[x]. Because g is integral
over K[x] where K is the fraction field of R we may write g = αdx

d + αd−1x
d−1 +

. . .+ α0 with αi ∈ K. By Lemma 10.36.7 the elements αi are integral over R and
hence are in R. �

Lemma 10.36.9. Let R be a domain. The following are equivalent:

(1) The domain R is a normal domain,
(2) for every prime p ⊂ R the local ring Rp is a normal domain, and
(3) for every maximal ideal m the ring Rm is a normal domain.

Proof. This follows easily from the fact that for any domain R we have

R =
⋂

m
Rm

inside the fraction field of R. Namely, if g is an element of the right hand side then
the ideal I = {x ∈ R | xg ∈ R} is not contained in any maximal ideal m, whence
I = R. �

Lemma 10.36.9 shows that the following definition is compatible with Definition
10.36.1. (It is the definition from EGA – see [DG67, IV, 5.13.5 and 0, 4.1.4].)

Definition 10.36.10. A ring R is called normal if for every prime p ⊂ R the
localization Rp is a normal domain (see Definition 10.36.1).

Note that a normal ring is a reduced ring, as R is a subring of the product of its
localizations at all primes (see for example Lemma 10.23.1).
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Lemma 10.36.11. A normal ring is integrally closed in its total ring of fractions.

Proof. Let R be a normal ring. Let x ∈ Q(R) be an element of the total ring of
fractions of R integral over R. Set I = {f ∈ R, fx ∈ R}. Let p ⊂ R be a prime.
As R ⊂ Rp is flat we see that Rp ⊂ Q(R) ⊗ Rp. As Rp is a normal domain we
see that x ⊗ 1 is an element of Rp. Hence we can find a, f ∈ R, f 6∈ p such that
x ⊗ 1 = a ⊗ 1/f . This means that fx − a maps to zero in Q(R) ⊗R Rp = Q(R)p,
which in turn means that there exists an f ′ ∈ R, f ′ 6∈ p such that f ′fx = f ′a in
R. In other words, ff ′ ∈ I. Thus I is an ideal which isn’t contained in any of the
prime ideals of R, i.e., I = R and x ∈ R. �

Lemma 10.36.12. A localization of a normal ring is a normal ring.

Proof. Omitted. �

Lemma 10.36.13. Let R be a normal ring. Then R[x] is a normal ring.

Proof. Let q be a prime of R[x]. Set p = R ∩ q. Then we see that Rp[x] is a
normal domain by Lemma 10.36.8. Hence (R[x])q is a normal domain by Lemma
10.36.5. �

Lemma 10.36.14. Let R be a ring. Assume R is reduced and has finitely many
minimal primes. Then the following are equivalent:

(1) R is a normal ring,
(2) R is integrally closed in its total ring of fractions, and
(3) R is a finite product of normal domains.

Proof. Let q1, . . . , qt be the minimal primes of R. By Lemmas 10.24.2 and 10.24.4
we have Q(R) = Rq1

× . . . × Rqt , and by Lemma 10.24.1 each factor is a field.
Denote ei = (0, . . . , 0, 1, 0, . . . , 0) the ith idempotent of Q(R).

If R is integrally closed in Q(R), then it contains in particular the idempotents ei,
and we see that R is a product of t domains (see Sections 10.21 and 10.22). Hence
it is clear that R is a finite product of normal domains.

If R is normal, then it is clear that ei ∈ Rp for every prime ideal p of R. Hence
we see that R contains the elements ei (see proof of Lemma 10.36.9). We conclude
that R is a product of t domains as before. Each of these t domains is normal by
Lemma 10.36.9 and the assumption that R is a normal ring. Hence it follows that
R is a finite product of normal domains.

We omit the verification that (3) implies (1) and (2). �

Lemma 10.36.15. Let (Ri, ϕii′) be a directed system (Categories, Definition 10.8.2)
of rings. If each Ri is a normal ring so is R = colimiRi.

Proof. Let p ⊂ R be a prime ideal. Set pi = Ri∩p (usual abuse of notation). Then
we see that Rp = colimi(Ri)pi . Since each (Ri)pi is a normal domain we reduce
to proving the statement of the lemma for normal domains. If a, b ∈ R and a/b
satisfies a monic polynomial P (T ) ∈ R[T ], then we can find a (sufficiently large)
i ∈ I such that a, b, P all come from objects ai, bi, Pi over Ri. Since Ri is normal
we see ai/bi ∈ Ri and hence also a/b ∈ R. �
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10.37. Going down for integral over normal

We first play around a little bit with the notion of elements integral over an ideal,
and then we prove the theorem referred to in the section title.

Definition 10.37.1. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal.
We say an element g ∈ S is integral over I if there exists a monic polynomial
P = xd +

∑
j<d ajx

j with coefficients aj ∈ Id−j such that Pϕ(g) = 0 in S.

This is mostly used when ϕ = idR : R → R. In this case the set I ′ of elements
integral over I is called the integral closure of I. We will see that I ′ is an ideal of
R (and of course I ⊂ I ′).

Lemma 10.37.2. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal. Let
A =

∑
Intn ⊂ R[t] be the subring of the polynomial ring generated by R⊕It ⊂ R[t].

An element s ∈ S is integral over I if and only if the element st ∈ S[t] is integral
over A.

Proof. Suppose st is integral over A. Let P = xd +
∑
j<d ajx

j be a monic poly-

nomial with coefficients in A such that Pϕ(st) = 0. Let a′j ∈ A be the degree d− j
part of ai, in other words a′j = a′′j t

d−j with a′′j ∈ Id−j . For degree reasons we still

have (st)d +
∑
j<d ϕ(a′′j )td−j(st)j = 0. Hence we see that s is integral over I.

Suppose that s is integral over I. Say P = xd +
∑
j<d ajx

j with aj ∈ Id−j . The

we immediately find a polynomial Q = xd +
∑
j<d(ajt

d−j)xj with coefficients in A
which proves that st is integral over A. �

Lemma 10.37.3. Let ϕ : R→ S be a ring map. Let I ⊂ R be an ideal. The set of
elements of S which are integral over I form a R-submodule of S. Furthermore, if
s ∈ S is integral over R, and s′ is integral over I, then ss′ is integral over I.

Proof. Closure under addition is clear from the characterization of Lemma 10.37.2.
Any element s ∈ S which is integral over R corresponds to the degree 0 element s
of S[x] which is integral over A (because R ⊂ A). Hence we see that multiplication
by s on S[x] preserves the property of being integral over A, by Lemma 10.35.7. �

Lemma 10.37.4. Suppose ϕ : R→ S is integral. Suppose I ⊂ R is an ideal. Then
every element of IS is integral over I.

Proof. Immediate from Lemma 10.37.3. �

Lemma 10.37.5. Let R be a domain with field of fractions K. Let n,m ∈ N and
a0, . . . , an−1, b0, . . . , bm−1 ∈ R. If the polynomial xn + an−1x

n−1 + . . .+ a0 divides
the polynomial xm + bm−1x

m−1 + . . .+ b0 in K[x] then

(1) a0, . . . , an−1 are integral over the subring of R generated by b0, . . . , bm−1,
and

(2) each ai lies in
√

(b0, . . . , bm).

Proof. Let K ⊃ R be the fraction field of R. Let L ⊃ K be a field extension such
that we can write xm+bm−1x

m−1 + . . .+b0 =
∏m
i=1(x−βi) with βi ∈ L. Each βi is

integral over the subring generated by b0, . . . , bm−1. Since each ai is a homogeneous
polynomial in β1, . . . , βm we deduce the same for the ai.
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Choose c0, . . . , cm−n−1 ∈ K such that

xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).

By the first part we see that the elements ci are integral over R. Let R′ be the sub
R-algebra of K generated by c0, . . . , cm−n−1. By Lemmas 10.35.15 and 10.29.3 we

see that R ∩
√

(b0, . . . , bm)R′ =
√

(b0, . . . , bm). Thus we may replace R by R′ and

assume ci ∈ R. Dividing out the radical
√

(b0, . . . , bm) we get a reduced ring R.

We have to show that the images ai ∈ R are zero. And in R[x] we have the relation

xm = xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).

It is easy to see that this implies ai = 0 for all i. For example one can see this by
localizing at all the minimal primes, see Lemma 10.24.2. �

Lemma 10.37.6. Let R ⊂ S be an inclusion of domains. Assume R is normal.
Let g ∈ S be integral over R. Then the minimal polynomial of g has coefficients in
R.

Proof. Let P = xm + bm−1x
m−1 + . . .+ b0 be a polynomial with coefficients in R

such that P (g) = 0. Let Q = xn + an−1x
n−1 + . . .+ a0 be the minimal polynomial

for g over the fraction field K of R. Then Q divides P in K[x]. By Lemma 10.37.5
we see the ai are integral over R. Since R is normal this means they are in R. �

Proposition 10.37.7. Let R ⊂ S be an inclusion of domains. Assume R is
normal and S integral over R. Let p ⊂ p′ ⊂ R be primes. Let q′ be a prime of S
with p′ = R ∩ q′. Then there exists a prime q with q ⊂ q′ such that p = R ∩ q. In
other words: the going down property holds for R→ S, see Definition 10.40.1.

Proof. Let p, p′ and q′ be as in the statement. We have to show there is a prime q,
q ⊂ q′ such that R∩q = p. This is the same as finding a prime of Sq′ mapping to p.
According to Lemma 10.16.9 we have to show that pSq′ ∩R = p. Pick z ∈ pSq′ ∩R.
We may write z = y/g with y ∈ pS and g ∈ S, g 6∈ q′. Written differently we have
zg = y.

By Lemma 10.37.4 there exists a monic polynomial P = xm + bm−1x
m−1 + . . .+ b0

with bi ∈ p such that P (y) = 0.

By Lemma 10.37.6 the minimal polynomial of g over K has coefficients in R. Write
it as Q = xn + an−1x

n−1 + . . .+ a0. Note that not all ai, i = n− 1, . . . , 0 are in p
since that would imply gn =

∑
j<n ajg

j ∈ pS ⊂ p′S ⊂ q′ which is a contradiction.

Since y = zg we see immediately from the above that Q′ = xn + zan−1x
n−1 +

. . . + zna0 is the minimal polynomial for y. Hence Q′ divides P and by Lemma
10.37.5 we see that zjan−j ∈

√
(b0, . . . , bm−1) ⊂ p, j = 1, . . . , n. Because not all

ai, i = n− 1, . . . , 0 are in p we conclude z ∈ p as desired. �

10.38. Flat modules and flat ring maps

One often used result is that if M = colimi∈IMi is a colimit of R-modules and if
N is an R-module then

M ⊗N = colimi∈IMi ⊗R N,
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see Lemma 10.11.9. This property is usually expressed by saying that ⊗ commutes
with colimits. Another often used result is that if 0 → N1 → N2 → N3 → 0 is an
exact sequence and if M is any R-module, then

M ⊗R N1 →M ⊗R N2 →M ⊗R N3 → 0

is still exact, see Lemma 10.11.10. Both of these properties tell us that the functor
N 7→ M ⊗R N is right exact. See Categories, Section 4.23 and Homology, Section
12.7. An R-module M is flat if N 7→ N ⊗RM is also left exact, i.e., if it is exact.
Here is the precise definition.

Definition 10.38.1. Let R be a ring.

(1) An R-module M is called flat if whenever N1 → N2 → N3 is an exact
sequence of R-modules the sequence M ⊗R N1 →M ⊗R N1 →M ⊗R N1

is exact as well.
(2) An R-module M is called faithfully flat if the complex of R-modules N1 →

N2 → N3 is exact if and only if the sequence M ⊗R N1 → M ⊗R N1 →
M ⊗R N1 is exact.

(3) A ring map R→ S is called flat if S is flat as an R-module.
(4) A ring map R → S is called faithfully flat if S is faithfully flat as an

R-module.

Lemma 10.38.2. Let R be a ring. Let {Mi, ϕii′} be a directed system of flat
R-modules. Then colimiMi is a flat R-module.

Proof. This follows as ⊗ commutes with colimits and because directed colimits
are exact, see Lemma 10.8.9. �

Lemma 10.38.3. A composition of (faithfully) flat ring maps is (faithfully) flat.
If R→ R′ is flat, and M ′ is a flat R′-module, then M ′ is a flat R-module.

Proof. Omitted. �

Lemma 10.38.4. Let M be an R-module. The following are equivalent:

(1) M is flat over R.
(2) for every injection of R-modules N ⊂ N ′ the map N ⊗RM → N ′ ⊗RM

is injective.
(3) for every ideal I ⊂ R the map I ⊗RM → R⊗RM = M is injective.
(4) for every finitely generated ideal I ⊂ R the map I ⊗RM → R⊗RM = M

is injective.

Proof. The implications (1) implies (2) implies (3) implies (4) are all trivial. Thus
we prove (4) implies (1). Suppose that N1 → N2 → N3 is exact. Let K =
Ker(N2 → N3) and Q = Im(N2 → N3). Then we get maps

N1 ⊗RM → K ⊗RM → N2 ⊗RM → Q⊗RM → N3 ⊗RM
Observe that the first and third arrows are surjective. Thus if we show that the
second and fourth arrows are injective, then we are done. Hence it suffices to show
that −⊗RM transforms injective R-module maps into injective R-module maps.

Assume K → M is an injective R-module map and let x ∈ Ker(K ⊗R M →
N ⊗RM). We have to show that x is zero. It is clear that the module N =

⋃
Ni

is the union of its finitely generated R-submodules Ni. Set Ki = K ∩Ni. For some
i our x comes from an element xi ∈ Ki ⊗R M . After increasing i the element xi
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maps to zero in Mi ⊗RM (because tensor product commutes with colimits). Thus
we may assume N is a finite R-module.

Assume N is a finite R-module. Write N = R⊕n/L and K = L′/L. It suffices to
prove that L ⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective. Namely, if so,
then we see that K ⊗RM = L′ ⊗RM/L⊗RM →M⊕n/L⊗RM is injective too.

Thus it suffices to show that L ⊗R M → M⊕n is injective when L ⊂ R⊕n is an
R-submodule. We do this by induction on n. The base case n = 1 we handle below.
For the induction step assume n > 1 and set L′ = L∩R⊕ 0⊕n−1. Then L′′ = L/L′

is a submodule of R⊕n−1. We obtain a diagram

L′ ⊗RM //

��

L⊗RM //

��

L′′ ⊗RM //

��

0

0 // M // M⊕n // M⊕n−1 // 0

By induction hypothesis and the base case the left and right vertical arrows are
injective. The rows are exact. It follows that the middle vertical arrow is injective
too.

The base case of the induction above is when L ⊂ R is an ideal. In other words,
we have to show that I ⊗R M → M is injective for any ideal I of R. We know
this is true when I is finitely generated. However, I =

⋃
Iα is the union of the

finitely generated ideals Iα contained in it. In other words, I = colim Iα. Since
⊗ commutes with colimits we see that I ⊗R M = colim Iα ⊗R M and since all
the morphisms Iα ⊗R M → M are injective by assumption, the same is true for
I ⊗RM →M . �

Lemma 10.38.5. Let {Ri, ϕii′} be a system of rings of the directed partially ordered
set I. Let R = colimiRi. Let M be an R-module such that M is flat as an Ri-
module for all i. Then M is flat as an R-module.

Proof. Let a ⊂ R be a finitely generated ideal. By Lemma 10.38.4 it suffices
to show that a ⊗R M → M is injective. We can find an i ∈ I and a finitely
generated ideal a′ ⊂ Ri such that a = a′R. Then a = colimi′≥i a

′Ri′ . Hence the
map a⊗RM →M is the colimit of the maps

a′Ri′ ⊗Ri′ M −→M

which are all injective by assumption. Since ⊗ commutes with colimits and since
colimits over I are exact by Lemma 10.8.9 we win. �

Lemma 10.38.6. Suppose that M is flat over R, and that R→ R′ is a ring map.
Then M ⊗R R′ is flat over R′.

Proof. For any R′-module N we have a canonical isomorphism N⊗R′ (R′⊗RM) =
N ⊗R M . Hence the exactness of − ⊗R′ (R′ ⊗R M) follows from the exactness of
−⊗RM . �

Lemma 10.38.7. Let R → R′ be a faithfully flat ring map. Let M be a module
over R, and set M ′ = R′ ⊗R M . Then M is flat over R if and only if M ′ is flat
over R′.
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Proof. By Lemma 10.38.6 we see that if M is flat then M ′ is flat. For the converse,
suppose that M ′ is flat. Let N1 → N2 → N3 be an exact sequence of R-modules.
We want to show that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We know that
N1⊗RR′ → N2⊗RR′ → N3⊗RR′ is exact, because R→ R′ is flat. Flatness of M ′

implies that N1⊗RR′⊗R′M ′ → N2⊗RR′⊗R′M ′ → N3⊗RR′⊗R′M ′ is exact. We
may write this as N1 ⊗RM ⊗R R′ → N2 ⊗RM ⊗R R′ → N3 ⊗RM ⊗R R′. Finally,
faithful flatness implies that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. �

Lemma 10.38.8. Let R be a ring. Let S → S′ be a faithfully flat map of R-
algebras. Let M be a module over S, and set M ′ = S′ ⊗S M . Then M is flat over
R if and only if M ′ is flat over R.

Proof. Let N → N ′ be an injection of R-modules. By the faithful flatness of
S → S′ we have

Ker(N ⊗RM → N ′ ⊗RM)⊗S S′ = Ker(N ⊗RM ′ → N ′ ⊗RM ′)

Hence the equivalence of the lemma follows from the second characterization of
flatness in Lemma 10.38.4. �

Lemma 10.38.9. Let R→ S be a ring map. Let M be an S-module. If M is flat
as an R-module and faithfully flat as an S-module, then R→ S is flat.

Proof. Let N1 → N2 → N3 be an exact sequence of R-modules. By assumption
N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We may write this as

N1 ⊗R S ⊗S M → N2 ⊗R S ⊗S M → N3 ⊗R S ⊗S M.

By faithful flatness of M over S we conclude that N1⊗R S → N2⊗R S → N3⊗R S
is exact. Hence R→ S is flat. �

Let R be a ring. Let M be an R-module. Let
∑
fixi = 0 be a relation in M . We

say the relation
∑
fixi is trivial if there exist an integer m ≥ 0, elements yj ∈ M ,

j = 1, . . . ,m, and elements aij ∈ R, i = 1, . . . , n, j = 1, . . . ,m such that

xi =
∑

j
aijyj ,∀i, and 0 =

∑
i
fiaij ,∀j.

Lemma 10.38.10 (Equational criterion of flatness). A module M over R is flat if
and only if every relation in M is trivial.

Proof. Assume M is flat and let
∑
fixi = 0 be a relation. Let I = (f1, . . . , fn), and

let K = Ker(Rn → I). So we have the short exact sequence 0→ K → Rn → I → 0.
Then

∑
fi ⊗ xi is an element of I ⊗R M which maps to zero in R ⊗R M = M .

By flatness
∑
fi ⊗ xi is zero in I ⊗RM . Thus there exists an element of K ⊗RM

mapping to
∑
ei⊗ xi ∈ Rn⊗RM . Write this element as

∑
kj ⊗ yj and then write

the image of kj in Rn as
∑
aijei to get the result.

Assume every relation is trivial, let I be a finitely generated ideal, and let x =∑
fi ⊗ xi be an element of I ⊗R M mapping to zero in R ⊗R M = M . This just

means exactly that
∑
fixi is a relation in M . And the fact that it is trivial implies

easily that x is zero, because

x =
∑

fi ⊗ xi =
∑

fi ⊗
(∑

aijyj

)
=
∑(∑

fiaij

)
⊗ yj = 0

�
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Lemma 10.38.11. Suppose that R is a ring, 0 → M ′′ → M ′ → M → 0 a short
exact sequence, and N an R-module. If M is flat then N ⊗R M ′′ → N ⊗R M ′ is
injective, i.e., the sequence

0→ N ⊗RM ′′ → N ⊗RM ′ → N ⊗RM → 0

is a short exact sequence.

Proof. Let R(I) → N be a surjection from a free module onto N with kernel K.
The result follows from the snake lemma applied to the following diagram

0 0 0
↑ ↑ ↑

M ′′ ⊗R N → M ′ ⊗R N → M ⊗R N → 0
↑ ↑ ↑

0 → (M ′′)(I) → (M ′)(I) → M (I) → 0
↑ ↑ ↑

M ′′ ⊗R K → M ′ ⊗R K → M ⊗R K → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the
free module R(I) is exact. �

Lemma 10.38.12. Suppose that 0 → M ′ → M → M ′′ → 0 is a short exact
sequence of R-modules. If M ′ and M ′′ are flat so is M . If M and M ′′ are flat so
is M ′.

Proof. We will use the criterion that a module N is flat if for every ideal I ⊂ R
the map N ⊗R I → N is injective, see Lemma 10.38.4. Consider an ideal I ⊂ R.
Consider the diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

M ′ ⊗R I → M ⊗R I → M ′′ ⊗R I → 0

with exact rows. This immediately proves the first assertion. The second follows
because if M ′′ is flat then the lower left horizontal arrow is injective by Lemma
10.38.11. �

Lemma 10.38.13. Let R be a ring. Let M be an R-module. The following are
equivalent

(1) M is faithfully flat, and
(2) M is flat and for all R-module homomorphisms α : N → N ′ we have

α = 0 if and only if α⊗ idM = 0.

Proof. If M is faithfully flat, then 0 → Ker(α) → N → 0 is exact if and only
if the same holds after tensoring with M . This proves (1) implies (2). For the
other, assume (2). Let N1 → N2 → N3 be a complex, and assume the complex
N1⊗RM → N2⊗RM → N3⊗RM is exact. Take x ∈ Ker(N2 → N3), and consider
the map α : R → N2/Im(N1), r 7→ rx+ Im(N1). By the exactness of the complex
−⊗RM we see that α⊗ idM is zero. By assumption we get that α is zero. Hence
x is in the image of N1 → N2. �

Lemma 10.38.14. Let M be a flat R-module. The following are equivalent:
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(1) M is faithfully flat,
(2) for all p ∈ Spec(R) the tensor product M ⊗R κ(p) is nonzero, and
(3) for all maximal ideals m of R the tensor product M ⊗R κ(m) = M/mM is

nonzero.

Proof. Assume M faithfully flat. Since R → κ(p) is not zero we deduce that
M →M ⊗R κ(p) is not zero, see Lemma 10.38.13.

Conversely assume that M is flat and that M/mM is never zero. Suppose that
N1 → N2 → N3 is a complex and suppose that N1⊗RM → N2⊗RM → N3⊗RM is
exact. Let H be the cohomology of the complex, so H = Ker(N2 → N3)/Im(N1 →
N2). By flatness we see that H⊗RM = 0. Take x ∈ H and let I = {f ∈ R | fx = 0}
be its annihilator. Since R/I ⊂ H we get M/IM ⊂ H ⊗R M = 0 by flatness of
M . If I 6= R we may choose a maximal ideal I ⊂ m ⊂ R. This immediately gives
a contradiction. �

Lemma 10.38.15. Let R→ S be a flat ring map. The following are equivalent:

(1) R→ S is faithfully flat,
(2) the induced map on Spec is surjective, and
(3) any closed point x ∈ Spec(R) is in the image of the map Spec(S) →

Spec(R).

Proof. This follows quickly from Lemma 10.38.14, because we saw in Remark
10.16.8 that p is in the image if and only if the ring S ⊗R κ(p) is nonzero. �

Lemma 10.38.16. A flat local ring homomorphism of local rings is faithfully flat.

Proof. Immediate from Lemma 10.38.15. �

Lemma 10.38.17. Let R→ S be flat. Let p ⊂ p′ be primes of R. Let q′ ⊂ S be a
prime of S mapping to p′. Then there exists a prime q ⊂ q′ mapping to p.

Proof. Namely, consider the flat local ring map Rp′ → Sq′ . By Lemma 10.38.16
this is faithfully flat. By Lemma 10.38.15 there is a prime mapping to pRp′ . The
inverse image of this prime in S does the job. �

The property of R→ S described in the lemma is called the “going down property”.
See Definition 10.40.1.

Lemma 10.38.18. If R→ S is a faithfully flat ring map then for every R-module
M the map M → S ⊗RM , x 7→ 1⊗ x is injective.

Proof. This is true because the base change S ⊗R M → S ⊗R S ⊗R M by the
faithfully flat ring map R → S is injective: It has a section, namely s⊗ s′ ⊗m 7→
ss′ ⊗m. �

We finish with some remarks on flatness and localization.

Lemma 10.38.19. Let R be a ring. Let S ⊂ R be a multiplicative subset.

(1) The localization S−1R is a flat R-algebra.
(2) If M is a S−1R-module, then M is a flat R-module if and only if M is a

flat S−1R-module.
(3) Suppose M is an R-module. Then M is a flat R-module if and only if Mp

is a flat Rp-module for all primes p of R.
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(4) Suppose M is an R-module. Then M is a flat R-module if and only if
Mm is a flat Rm-module for all maximal ideals m of R.

(5) Suppose R → A is a ring map, M is an A-module, and g1, . . . , gm ∈ A
are elements generating the unit ideal of A. Then M is flat over R if and
only if each localization Mgi is flat over R.

(6) Suppose R→ A is a ring map, and M is an A-module. Then M is a flat
R-module if and only if the localization Mq is a flat Rp-module (with p
the prime of R lying under q) for all primes q of A.

(7) Suppose R → A is a ring map, and M is an A-module. Then M is a
flat R-module if and only if the localization Mm is a flat Rp-module (with
p = R ∩m) for all maximal ideals m of A.

Proof. Let us prove the last statement of the lemma. In the proof we will use
repeatedly that localization is exact and commutes with tensor product, see Sections
10.9 and 10.11.

Suppose R → A is a ring map, and M is an A-module. Assume that Mm is a flat
Rp-module for all maximal ideals m of A (with p = R∩m). Let I ⊂ R be an ideal.
We have to show the map I ⊗R M → M is injective. We can think of this as a
map of A-modules. By assumption the localization (I ⊗RM)m → Mm is injective
because (I ⊗R M)m = Ip ⊗Rp

Mm. Hence the kernel of I ⊗R M → M is zero by
Lemma 10.23.1. Hence M is flat over R.

Conversely, assume M is flat over R. Pick a prime q of A lying over the prime p
of R. Suppose that I ⊂ Rp is an ideal. We have to show that I ⊗Rp

Mq → Mq is
injective. We can write I = Jp for some ideal J ⊂ R. Then the map I⊗Rp

Mq →Mq

is just the localization (at q) of the map J ⊗R M → M which is injective. Since
localization is exact we see that Mq is a flat Rp-module.

This proves (7) and (6). The other statements follow in a straightforward way from
the last statement (proofs omitted). �

Lemma 10.38.20. Let R be a ring. Let {Si, ϕii′} be a directed system of faithfully
flat R-algebras. Then S = colimi Si is a faithfully flat R-algebra.

Proof. By Lemma 10.38.2 we see that S is flat. Let m ⊂ R be a maximal ideal.
By Lemma 10.38.15 none of the rings Si/mSi is zero. Hence S/mS = colimSi/mSi
is nonzero either as 1 is not equal to zero. Thus the image of Spec(S) → Spec(R)
contains m and we see that R→ S is faithfully flat by Lemma 10.38.15. �

10.39. Supports and annihilators

Some very basic definitions and lemmas.

Definition 10.39.1. Let R be a ring and let M be an R-module. The support of
M is the set

Supp(M) = {p ∈ Spec(R) |Mp 6= 0}

Lemma 10.39.2. Let R be a ring. Let M be an R-module. Then

M = (0)⇔ Supp(M) = ∅.

Proof. Actually, Lemma 10.23.1 even shows that Supp(M) always contains a max-
imal ideal if M is not zero. �

Definition 10.39.3. Let R be a ring. Let M be an R-module.
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(1) Given an element m ∈M the annihilator of m is the ideal

AnnR(m) = Ann(m) = {f ∈ R | fm = 0}.
(2) The annihilator of M is the ideal

AnnR(M) = Ann(M) = {f ∈ R | fm = 0 ∀m ∈M}.

Lemma 10.39.4. Let R → S be a flat ring map. Let M be an R-module and
m ∈ M . Then AnnR(m)S = AnnS(m ⊗ 1). If M is a finite R-module, then
AnnR(M)S = AnnS(M ⊗R S).

Proof. Set I = AnnR(m). By definition there is an exact sequence 0 → I →
R → M where the map R → M sends f to fm. Using flatness we obtain an
exact sequence 0 → I ⊗R S → S → M ⊗R S which proves the first assertion. If
m1, . . . ,mn is a set of generators of M then AnnR(M) =

⋂
AnnR(mi). Similarly

AnnS(M ⊗R S) =
⋂

AnnS(mi ⊗ 1). Set Ii = AnnR(mi). Then it suffices to show
that

⋂
i=1,...,n(IiS) = (

⋂
i=1,...,n Ii)S. This follows by tensoring the injective map

R/(
⋂
i=1,...,n Ii)→

⊕
i=1,...,nR/Ii with S. �

Lemma 10.39.5. Let R be a ring and let M be an R-module. If M is finite, then
Supp(M) is closed. More precisely, if I = Ann(M) is the annihilator of M , then
V (I) = Supp(M).

Proof. We will show that V (I) = Supp(M).

Suppose p ∈ Supp(M). Then Mp 6= 0. Hence by Nakayama’s Lemma 10.19.1 we
have M ⊗R κ(p) 6= 0. Hence I ⊂ p.

Conversely, suppose that p 6∈ Supp(M). Then Mp = 0. Let x1, . . . , xr ∈ M be
generators. By Lemma 10.9.9 there exists an f ∈ R, f 6∈ p such that xi/1 = 0
in Mf . Hence fnixi = 0 for some ni ≥ 1. Hence fnM = 0 for n = max{ni} as
desired. �

Lemma 10.39.6. Let R be a ring, let M be an R-module, and let x ∈ M . Then
p ∈ V (Ann(m)) if and only if x does not map to zero in Mp.

Proof. We may replace M by Rm ⊂ M . Then (1) Ann(m) = Ann(M) and (2) x
does not map to zero in Mp if and only if p ∈ Supp(M). The result now follows
from Lemma 10.39.5. �

Lemma 10.39.7. Let R be a ring and let M be an R-module. If M is a finitely
presented R-module, then Supp(M) is a closed subset of Spec(R) whose complement
is quasi-compact.

Proof. Choose a presentation

R⊕m −→ R⊕n −→M → 0

Let A ∈ Mat(n × m,R) be the matrix of the first map. By Nakayama’s Lemma
10.19.1 we see that

Mp 6= 0⇔M ⊗ κ(p) 6= 0⇔ rank(A mod p) < n.

Hence, if I is the ideal of R generated by the n× n minors of A, then Supp(M) =
V (I). Since I is finitely generated, say I = (f1, . . . , ft), we see that Spec(R) \V (I)
is a finite union of the standard opens D(fi), hence quasi-compact. �

Lemma 10.39.8. Let R be a ring and let M be an R-module.
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(1) If M is finite then the support of M/IM is Supp(M) ∩ V (I).
(2) If N ⊂M , then Supp(N) ⊂ Supp(M).
(3) If Q is a quotient module of M then Supp(Q) ⊂ Supp(M).
(4) If 0 → N → M → Q → 0 is a short exact sequence then Supp(M) =

Supp(Q) ∪ Supp(N).

Proof. The functors M 7→Mp are exact. This immediately implies all but the first
assertion. For the first assertion we need to show that Mp 6= 0 and I ⊂ p implies
(M/IM)p = Mp/IMp 6= 0. This follows from Nakayama’s Lemma 10.19.1. �

10.40. Going up and going down

Suppose p, p′ are primes of the ring R. Let X = Spec(R) with the Zariski topology.
Denote x ∈ X the point corresponding to p and x′ ∈ X the point corresponding to
p′. Then we have:

x′  x⇔ p′ ⊂ p.

In words: x is a specialization of x′ if and only if p′ ⊂ p. See Topology, Section
5.18 for terminology and notation.

Definition 10.40.1. Let ϕ : R→ S be a ring map.

(1) We say a ϕ : R → S satisfies going up if given primes p ⊂ p′ in R and a
prime q in S lying over p there exists a prime q′ of S such that (a) q ⊂ q′,
and (b) q′ lies over p′.

(2) We say a ϕ : R→ S satisfies going down if given primes p ⊂ p′ in R and a
prime q′ in S lying over p′ there exists a prime q of S such that (a) q ⊂ q′,
and (b) q lies over p.

So far we have see the following cases of this:

(1) An integral ring map satisfies going up, see Lemma 10.35.20.
(2) As a special case finite ring maps satisfy going up.
(3) As a special case quotient maps R→ R/I satisfy going up.
(4) A flat ring map satisfies going down, see Lemma 10.38.17
(5) As a special case any localization satisfies going down.
(6) An extension R ⊂ S of domains, with R normal and S integral over R

satisfies going down, see Proposition 10.37.7.

Here is another case where going down holds.

Lemma 10.40.2. Let R → S be a ring map. If the induced map ϕ : Spec(S) →
Spec(R) is open, then R→ S satisfies going down.

Proof. Suppose that p ⊂ p′ ⊂ R and q′ ⊂ S lies over p′. As ϕ is open, for every
g ∈ S, g 6∈ q′ we see that p is in the image of D(g) ⊂ Spec(S). In other words
Sg⊗R κ(p) is not zero. Since Sq′ is the directed colimit of these Sg this implies that
Sq′ ⊗R κ(p) is not zero, see Lemmas 10.9.9 and 10.11.9. Hence p is in the image of
Spec(Sq′)→ Spec(R) as desired. �

Lemma 10.40.3. Let R→ S be a ring map.

(1) R → S satisfies going down if and only if generalizations lift along the
map Spec(S)→ Spec(R), see Topology, Definition 5.18.3.

(2) R → S satisfies going up if and only if specializations lift along the map
Spec(S)→ Spec(R), see Topology, Definition 5.18.3.
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Proof. Omitted. �

Lemma 10.40.4. Suppose R → S and S → T are ring maps satisfying going
down. Then so does R→ T . Similarly for going up.

Proof. According to Lemma 10.40.3 this follows from Topology, Lemma 5.18.4 �

Lemma 10.40.5. Let R → S be a ring map. Let T ⊂ Spec(R) be the image of
Spec(S). If T is stable under specialization, then T is closed.

Proof. We give two proofs.

First proof. Let p ⊂ R be a prime ideal such that the corresponding point of
Spec(R) is in the closure of T . This means that for ever f ∈ R, f 6∈ p we have
D(f) ∩ T 6= ∅. Note that D(f) ∩ T is the image of Spec(Sf ) in Spec(R). Hence
we conclude that Sf 6= 0. In other words, 1 6= 0 in the ring Sf . Since Sp is the
directed limit of the rings Sf we conclude that 1 6= 0 in Sp. In other words, Sp 6= 0
and considering the image of Spec(Sp)→ Spec(S)→ Spec(R) we see there exists a
p′ ∈ T with p′ ⊂ p. As we assumed T closed under specialization we conclude p is
a point of T as desired.

Second proof. Let I = Ker(R → S). We may replace R by R/I. In this case the
ring map R → S is injective. By Lemma 10.29.5 all the minimal primes of R are
contained in the image T . Hence if T is stable under specialization then it contains
all primes. �

Lemma 10.40.6. Let R→ S be a ring map. The following are equivalent:

(1) Going up holds for R→ S, and
(2) the map Spec(S)→ Spec(R) is closed.

Proof. It is a general fact that specializations lift along a closed map of topological
spaces, see Topology, Lemma 5.18.6. Hence the second condition implies the first.

Assume that going up holds for R → S. Let V (I) ⊂ Spec(S) be a closed set.
We want to show that the image of V (I) in Spec(R) is closed. The ring map
S → S/I obviously satisfies going up. Hence R → S → S/I satisfies going up, by
Lemma 10.40.4. Replacing S by S/I it suffices to show the image T of Spec(S)
in Spec(R) is closed. By Topology, Lemmas 5.18.2 and 5.18.5 this image is stable
under specialization. Thus the result follows from Lemma 10.40.5. �

Lemma 10.40.7. Let R be a ring. Let E ⊂ Spec(R) be a constructible subset.

(1) If E is stable under specialization, then E is closed.
(2) If E is stable under generalization, then E is open.

Proof. First proof. The first assertion follows from Lemma 10.40.5 combined with
Lemma 10.28.3. The second follows because the complement of a constructible
set is constructible (see Topology, Lemma 5.14.2), the first part of the lemma and
Topology, Lemma 5.18.2.

Second proof. Since Spec(R) is a spectral space by Lemma 10.25.2 this is a special
case of Topology, Lemma 5.22.5. �

Proposition 10.40.8. Let R→ S be flat and of finite presentation. Then Spec(S)→
Spec(R) is open. More generally this holds for any ring map R → S of finite pre-
sentation which satisfies going down.

http://stacks.math.columbia.edu/tag/00HX
http://stacks.math.columbia.edu/tag/00HY
http://stacks.math.columbia.edu/tag/00HZ
http://stacks.math.columbia.edu/tag/00I0
http://stacks.math.columbia.edu/tag/00I1


10.40. GOING UP AND GOING DOWN 503

Proof. Assume that R → S has finite presentation and satisfies going down. It
suffices to prove that the image of a standard open D(f) is open. Since S → Sf
satisfies going down as well, we see that R → Sf satisfies going down. Thus after
replacing S by Sf we see it suffices to prove the image is open. By Chevalley’s
theorem (Theorem 10.28.9) the image is a constructible set E. And E is stable
under generalization because R → S satisfies going down, see Topology, Lemmas
5.18.2 and 5.18.5. Hence E is open by Lemma 10.40.7. �

Lemma 10.40.9. Let k be a field, and let R, S be k-algebras. Let S′ ⊂ S be a sub
k-algebra, and let f ∈ S′ ⊗k R. In the commutative diagram

Spec((S ⊗k R)f )

''

// Spec((S′ ⊗k R)f )

ww
Spec(R)

the images of the diagonal arrows are the same.

Proof. Let p ⊂ R be in the image of the south-west arrow. This means (Lemma
10.16.9) that

(S′ ⊗k R)f ⊗R κ(p) = (S′ ⊗k κ(p))f

is not the zero ring, i.e., S′ ⊗k κ(p) is not the zero ring and the image of f in it
is not nilpotent. The ring map S′ ⊗k κ(p) → S ⊗k κ(p) is injective. Hence also
S ⊗k κ(p) is not the zero ring and the image of f in it is not nilpotent. Hence
(S ⊗k R)f ⊗R κ(p) is not the zero ring. Thus (Lemma 10.16.9) we see that p is in
the image of the south-east arrow as desired. �

Lemma 10.40.10. Let k be a field. Let R and S be k-algebras. The map Spec(S⊗k
R)→ Spec(R) is open.

Proof. Let f ∈ R ⊗k S. It suffices to prove that the image of the standard open
D(f) is open. Let S′ ⊂ S be a finite type k-subalgebra such that f ∈ S′ ⊗k R.
The map R → S′ ⊗k R is flat and of finite presentation, hence the image U of
Spec((S′ ⊗k R)f ) → Spec(R) is open by Proposition 10.40.8. By Lemma 10.40.9
this is also the image of D(f) and we win. �

Here is a tricky lemma that is sometimes useful.

Lemma 10.40.11. Let R→ S be a ring map. Let p ⊂ R be a prime. Assume that

(1) there exists a unique prime q ⊂ S lying over p, and
(2) either

(a) going up holds for R→ S, or
(b) going down holds for R → S and there is at most one prime of S

above every prime of R.

Then Sp = Sq.

Proof. Consider any prime q′ ⊂ S which corresponds to a point of Spec(Sp). This
means that p′ = R ∩ q′ is contained in p. Here is a picture

q′ ? S

p′ p R
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Assume (1) and (2)(a). By going up there exists a prime q′′ ⊂ S with q′ ⊂ q′′ and
q′′ lying over p. By the uniqueness of q we conclude that q′′ = q. In other words q′

defines a point of Spec(Sq).

Assume (1) and (2)(b). By going down there exists a prime q′′ ⊂ q lying over p′.
By the uniqueness of primes lying over p′ we see that q′ = q′′. In other words q′

defines a point of Spec(Sq).

In both cases we conclude that the map Spec(Sq)→ Spec(Sp) is bijective. Clearly
this means all the elements of S − q are all invertible in Sp, in other words Sp =
Sq. �

The following lemma is a generalization of going down for flat ring maps.

Lemma 10.40.12. Let R→ S be a ring map. Let N be a finite S-module flat over
R. Endow Supp(N) ⊂ Spec(S) with the induced topology. Then generalizations lift
along Supp(N)→ Spec(R).

Proof. The meaning of the statement is as follows. Let p ⊂ p′ ⊂ R be primes. Let
q′ ⊂ S be a prime q′ ∈ Supp(N) Then there exists a prime q ⊂ q′, q ∈ Supp(N)
lying over p. As N is flat over R we see that Nq′ is flat over Rp′ , see Lemma
10.38.19. As Nq′ is finite over Sq′ and not zero since q′ ∈ Supp(N) we see that
Nq′ ⊗Sq′ κ(q′) is nonzero by Nakayama’s Lemma 10.19.1. Thus Nq′ ⊗Rp′ κ(p′) is

also not zero. We conclude from Lemma 10.38.14 that Nq′ ⊗Rp′ κ(p) is nonzero.

Let J ⊂ Sq′⊗Rp′ κ(p) be the annihilator of the finite nonzero module Nq′⊗Rp′ κ(p).
Since J is a proper ideal we can choose a prime q ⊂ S which corresponds to a prime
of Sq′ ⊗Rp′ κ(p)/J . This prime is in the support of N , lies over p, and is contained

in q′ as desired. �

10.41. Separable extensions

In this section we talk about separability for nonalgebraic field extensions. This
is closely related to the concept of geometrically reduced algebras, see Definition
10.42.1.

Definition 10.41.1. Let k ⊂ K be a field extension.

(1) We say K is separably generated over k if there exists a transcendence
basis {xi; i ∈ I} of K/k such that the extension k(xi; i ∈ I) ⊂ K is a
separable algebraic extension.

(2) We say K is separable over k if for every subextension k ⊂ K ′ ⊂ K with
K ′ finitely generated over k, the extension k ⊂ K ′ is separably generated.

With this awkward definition it is not clear that a separably generated field exten-
sion is itself separable. It will turn out that this is the case, see Lemma 10.43.2.

Lemma 10.41.2. Let k ⊂ K be a separable field extension. For any subextension
k ⊂ K ′ ⊂ K the field extension k ⊂ K ′ is separable.

Proof. This is direct from the definition. �

Lemma 10.41.3. Let k ⊂ K be a separably generated, and finitely generated field
extension. Set r = trdegk(K). Then there exist elements x1, . . . , xr+1 of K such
that

(1) x1, . . . , xr is a transcendence basis of K over k,
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(2) K = k(x1, . . . , xr+1), and
(3) xr+1 is separable over k(x1, . . . , xr).

Proof. Combine the definition with Fields, Lemma 9.18.1. �

Lemma 10.41.4. Let k ⊂ K be a finitely generated field extension. There exists a
diagram

K // K ′

k

OO

// k′

OO

where k ⊂ k′, K ⊂ K ′ are finite purely inseparable field extensions such that k′ ⊂ K ′
is a separably generated field extension.

Proof. This lemma is only interesting when the characteristic of k is p > 0. Choose
x1, . . . , xr a transcendence basis of K over k. As K is finitely generated over k
the extension k(x1, . . . , xr) ⊂ K is finite. Let k(x1, . . . , xr) ⊂ Ksep ⊂ K be the
subextension found in Fields, Lemma 9.13.6. If K = Ksep then we are done. We
will use induction on d = [K : Ksep].

Assume that d > 1. Choose a β ∈ K with α = βp ∈ Ksep and β 6∈ Ksep. Let
P = T d+a1T

d−1 + . . .+ad be the minimal polynomial of α over k(x1, . . . , xr). Let
k ⊂ k′ be a finite purely inseparable extension obtained by adjoining pth roots such

that each ai is a pth power in k′(x
1/p
1 , . . . , x

1/p
r ). Such an extension exists; details

omitted. Let L be a field fitting into the diagram

K // L

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

We may and do assume L is the compositum of K and k′(x
1/p
1 , . . . , x

1/p
r ). Let

k′(x
1/p
1 , . . . , x

1/p
r ) ⊂ Lsep ⊂ L be the subextension found in Fields, Lemma 9.13.6.

Then Lsep is the compositum of Ksep and k′(x
1/p
1 , . . . , x

1/p
r ). The element α ∈

Lsep is a zero of the polynomial P all of whose coefficients are pth powers in

k′(x
1/p
1 , . . . , x

1/p
r ) and whose roots are pairwise distinct. By Fields, Lemma 9.25.2

we see that α = (α′)p for some α′ ∈ Lsep. Clearly, this means that β maps to
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α′ ∈ Lsep. In other words, we get the tower of fields

K // L

Ksep(β) //

OO

Lsep

OO

Ksep
//

OO

Lsep

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

k //

OO

k′

OO

Thus this construction leads to a new situation with [L : Lsep] < [K : Ksep]. By
induction we can find k′ ⊂ k′′ and L ⊂ L′ as in the lemma for the extension k′ ⊂ L.
Then the extensions k ⊂ k′′ and K ⊂ L′ work for the extension k ⊂ K. This proves
the lemma. �

10.42. Geometrically reduced algebras

The main result on geometrically reduced algebras is Lemma 10.43.3. We suggest
the reader skip to the lemma after reading the definition.

Definition 10.42.1. Let k be a field. Let S be a k-algebra. We say S is geomet-
rically reduced over k if for every field extension k ⊂ K the K-algebra K ⊗k S is
reduced.

Let k be a field and let S be a reduced k algebra. To check that S is geometrically
reduced it will suffice to check that k⊗kS is reduced (where k denotes the algebraic
closure of k). In fact it is enough to check this for finite purely inseparable field
extensions k ⊂ k′. See Lemma 10.43.3.

Lemma 10.42.2. Elementary properties of geometrically reduced algebras. Let k
be a field. Let S be a k-algebra.

(1) If S is geometrically reduced over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically reduced, then

S is geometrically reduced.
(3) A directed colimit of geometrically reduced k-algebras is geometrically re-

duced.
(4) If S is geometrically reduced over k, then any localization of S is geomet-

rically reduced over k.

Proof. Omitted. The second and third property follow from the fact that tensor
product commutes with colimits. �

Lemma 10.42.3. Let k be a field. If R is geometrically reduced over k, and S ⊂ R
is a multiplicative subset, then the localization S−1R is geometrically reduced over
k. If R is geometrically reduced over k, then R[x] is geometrically reduced over k.
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Proof. Omitted. Hints: A localization of a reduced ring is reduced, and localiza-
tion commutes with tensor products. �

In the proofs of the following lemmas we will repeatedly use the following observa-
tion: Suppose that R′ ⊂ R and S′ ⊂ S are inclusions of k-algebras. Then the map
R′ ⊗k S′ → R⊗k S is injective.

Lemma 10.42.4. Let k be a field. Let R, S be k-algebras.

(1) If R ⊗k S is nonreduced, then there exist finitely generated subalgebras
R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ is not reduced.

(2) If R ⊗k S contains a nonzero zerodivisor, then there exist finitely gener-
ated subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nonzero
zerodivisor.

(3) If R⊗k S contains a nontrivial idempotent, then there exist finitely gener-
ated subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nontrivial
idempotent.

Proof. Suppose z ∈ R ⊗k S is nilpotent. We may write z =
∑
i=1,...,n xi ⊗ yi.

Thus we may take R′ the k-subalgebra generated by the xi and S′ the k-subalgebra
generated by the yi. The second and third statements are proved in the same
way. �

Lemma 10.42.5. Let k be a field. Let S be a geometrically reduced k-algebra. Let
R be any reduced k-algebra. Then R⊗k S is reduced.

Proof. By Lemma 10.42.4 we may assume that R is of finite type over k. Then R,
as a reduced Noetherian ring, embeds into a finite product of fields (see Lemmas
10.24.4, 10.30.6, and 10.24.1). Hence we may assume R is a finite product of fields.
In this case it follows from Definition 10.42.1 that R⊗k S is reduced. �

Lemma 10.42.6. Let k be a field. Let S be a reduced k-algebra. Let k ⊂ K be
either a separable field extension, or a separably generated field extension. Then
K ⊗k S is reduced.

Proof. Assume k ⊂ K is separable. By Lemma 10.42.4 we may assume that S is
of finite type over k and K is finitely generated over k. Then S embeds into a finite
product of fields, namely its total ring of fractions (see Lemmas 10.24.1 and 10.24.4).
Hence we may actually assume that S is a domain. We choose x1, . . . , xr+1 ∈ K as
in Lemma 10.41.3. Let P ∈ k(x1, . . . , xr)[T ] be the minimal polynomial of xr+1. It
is a separable polynomial. It is easy to see that k[x1, . . . , xr] ⊗k S = S[x1, . . . , xr]
is a domain. This implies k(x1, . . . , xr) ⊗k S is a domain as it is a localization of
S[x1, . . . , xr]. The ring extension k(x1, . . . , xr) ⊗k S ⊂ K ⊗k S is generated by a
single element xr+1 with a single equation, namely P . Hence K ⊗k S embeds into
f.f.(k(x1, . . . , xn) ⊗k S)[T ]/(P ). Since P is separable this is a finite product of
fields and we win.

At this point we do not yet know that a separably generated field extension is
separable, so we have to prove the lemma in this case also. To do this suppose
that {xi}i∈I is a separating transcendence basis for K over k. For any finite set
of elements λj ∈ K there exists a finite subset T ⊂ I such that k({xi}i∈T ) ⊂
k({xi}i∈T ∪ {λj}) is finite separable. Hence we see that K is a directed colimit of
finitely generated and separably generated extensions of k. Thus the argument of
the preceding paragraph applies to this case as well. �
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Lemma 10.42.7. Let k be a field and let S be a k-algebra. Assume that S is
reduced and that Sp is geometrically reduced for every minimal prime p of S. Then
S is geometrically reduced.

Proof. Since S is reduced the map S →
∏

p minimal Sp is injective, see Lemma
10.24.2. If k ⊂ K is a field extension, then the maps

S ⊗k K → (
∏

Sp)⊗k K →
∏

Sp ⊗k K

are injective: the first as k → K is flat and the second by inspection because K is
a free k-module. As Sp is geometrically reduced the ring on the right is reduced.
Thus we see that S ⊗k K is reduced as a subring of a reduced ring. �

10.43. Separable extensions, continued

In this section we continue the discussion started in Section 10.41. Let p be a prime
number and let k be a field of characteristic p. In this case we write k1/p for the
extension of k gotten by adjoining pth roots of all the elements of k to k. (In other
words it is the subfield of an algebraic closure of k generated by the pth roots of
elements of k.)

Lemma 10.43.1. Let k be a field of characteristic p > 0. Let k ⊂ K be a field
extension. The following are equivalent:

(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced, and
(3) K is geometrically reduced over k.

Proof. The implication (1) ⇒ (3) follows from Lemma 10.42.6. The implication
(3) ⇒ (2) is immediate.

Assume (2). Let k ⊂ L ⊂ K be a subextension such that L is a finitely generated
field extension of k. We have to show that we can find a separating transcendence
basis of L. The assumption implies that L⊗k k1/p is reduced. Let x1, . . . , xr be a
transcendence basis of L over k such that the degree of inseparability of the finite
extension k(x1, . . . , xr) ⊂ L is minimal. If L is separable over k(x1, . . . , xr) then we
win. Assume this is not the case to get a contradiction. Then there exists an element
α ∈ L which is not separable over k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ] be
the minimal polynomial of α over k(x1, . . . , xr). After replacing α by fα for some
nonzero f ∈ k[x1, . . . , xr] we may and do assume that P lies in k[x1, . . . , xr, T ].
Because α is not separable P is a polynomial in T p, see Fields, Lemma 9.12.1. Let
dp be the degree of P as a polynomial in T . Since P is the minimal polynomial of
α the monomials

xe11 . . . xerr α
e

for e < dp are linearly independent over k in L. We claim that the element ∂P/∂xi ∈
k[x1, . . . , xr, T ] is not zero for at least one i. Namely, if this was not the case, then
P is actually a polynomial in xp1, . . . , x

p
r , T

p. In that case we can consider P 1/p ∈
k1/p[x1, . . . , xr, T ]. This would map to P 1/p(x1, . . . , xr, α) which is a nilpotent
element of k1/p ⊗k L and hence zero. On the other hand, P 1/p(x1, . . . , xr, α) is a
k1/p-linear combination the monomials listed above, hence nonzero in k1/p ⊗k L.
This is a contradiction which proves our claim.

Thus, after renumbering, we may assume that ∂P/∂x1 is not zero. As P is an
irreducible polynomial in T over k(x1, . . . , xr) it is irreducible as a polynomial in
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x1, . . . , xr, T , hence by Gauss’s lemma it is irreducible as a polynomial in x1 over
k(x2, . . . , xr, T ). Since the transcendence degree of L is r we see that x2, . . . , xr, α
are algebraically independent. Hence P (X,x2, . . . , xr, α) ∈ k(x2, . . . , xr, α)[X] is
irreducible. It follows that x1 is separably algebraic over k(x2, . . . , xr, α). This
means that the degree of inseparability of the finite extension k(x2, . . . , xr, α) ⊂ L
is less than the degree of inseparability of the finite extension k(x1, . . . , xr) ⊂ L,
which is a contradiction. �

Lemma 10.43.2. A separably generated field extension is separable.

Proof. Combine Lemma 10.42.6 with Lemma 10.43.1. �

In the following lemma we will use the notion of the perfect closure which is defined
in Definition 10.44.5.

Lemma 10.43.3. Let k be a field. Let S be a k-algebra. The following are equiv-
alent:

(1) k′ ⊗k S is reduced for every finite purely inseparable extension k′ of k,
(2) k1/p ⊗k S is reduced,
(3) kperf ⊗k S is reduced, where kperf is the perfect closure of k,
(4) k ⊗k S is reduced, where k is the algebraic closure of k, and
(5) S is geometrically reduced over k.

Proof. Note that any finite purely inseparable extension k ⊂ k′ embeds in kperf .
Moreover, k1/p embeds into kperf which embeds into k. Thus it is clear that (5) ⇒
(4) ⇒ (3) ⇒ (2) and that (3) ⇒ (1).

We prove that (1) ⇒ (5). Assume k′ ⊗k S is reduced for every finite purely insep-
arable extension k′ of k. Let k ⊂ K be an extension of fields. We have to show
that K ⊗k S is reduced. By Lemma 10.42.4 we reduce to the case where k ⊂ K is
a finitely generated field extension. Choose a diagram

K // K ′

k

OO

// k′

OO

as in Lemma 10.41.4. By assumption k′ ⊗k S is reduced. By Lemma 10.42.6 it
follows that K ′ ⊗k S is reduced. Hence we conclude that K ⊗k S is reduced as
desired.

Finally we prove that (2) ⇒ (5). Assume k1/p⊗k S is reduced. Then S is reduced.
Moreover, for each localization Sp at a minimal prime p, the ring k1/p ⊗k Sp is a

localization of k1/p⊗kS hence is reduced. But Sp is a field by Lemma 10.24.1, hence
Sp is geometrically reduced by Lemma 10.43.1. It follows from Lemma 10.42.7 that
S is geometrically reduced. �

10.44. Perfect fields

Here is the definition.

Definition 10.44.1. Let k be a field. We say k is perfect if every field extension
of k is separable over k.
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Lemma 10.44.2. A field k is perfect if and only if it is a field of characteristic 0
or a field of characteristic p > 0 such that every element has a pth root.

Proof. The characteristic zero case is clear. Assume the characteristic of k is p > 0.
If k is perfect, then all the field extensions where we adjoin a pth root of an element
of k have to be trivial, hence every element of k has a pth root. Conversely if every
element has a pth root, then k = k1/p and every field extension of k is separable by
Lemma 10.43.1. �

Lemma 10.44.3. Let k ⊂ K be a finitely generated field extension. There exists a
diagram

K // K ′

k

OO

// k′

OO

where k ⊂ k′, K ⊂ K ′ are finite purely inseparable field extensions such that k′ ⊂ K ′
is a separable field extension. In this situation we can assume that K ′ = k′K is the
compositum, and also that K ′ = (k′ ⊗k K)red.

Proof. By Lemma 10.41.4 we can find such a diagram with k′ ⊂ K ′ separably
generated. By Lemma 10.43.2 this implies that K ′ is separable over k′. The
compositum k′K is a subextension of k′ ⊂ K ′ and hence k′ ⊂ k′K is separable
by Lemma 10.41.2. The ring (k′ ⊗k K)red is a domain as for some n � 0 the
map x 7→ xp

n

maps it into K. Hence it is a field by Lemma 10.35.17. Thus
(k′ ⊗k K)red → K ′ maps it isomorphically onto k′K. �

Lemma 10.44.4. For every field k there exists a purely inseparable extension
k ⊂ k′ such that k′ is perfect. The field extension k ⊂ k′ is unique up to unique
isomorphism.

Proof. If the characteristic of k is zero, then k′ = k is the unique choice. Assume
the characteristic of k is p > 0. For every n > 0 there exists a unique algebraic
extension k ⊂ k1/pn such that (a) every element λ ∈ k has a pnth root in k1/pn

and (b) for every element µ ∈ k1/pn we have µp
n ∈ k. Namely, consider the ring

map k → k1/pn = k, x 7→ xp
n

. This is injective and satisfies (a) and (b). It is clear

that k1/pn ⊂ k1/pn+1

as extensions of k via the map y 7→ yp. Then we can take
k′ =

⋃
k1/pn . Some details omitted. �

Definition 10.44.5. Let k be a field. The field extension k ⊂ k′ of Lemma 10.44.4
is called the perfect closure of k. Notation k ⊂ kperf .

Note that if k ⊂ k′ is any algebraic purely inseparable extension, then k′ ⊂ kperf .
Namely, (k′)perf is isomorphic to kperf by the uniqueness of Lemma 10.44.4.

Lemma 10.44.6. Let k be a perfect field. Any reduced k algebra is geometrically
reduced over k. Let R, S be k-algebras. Assume both R and S are reduced. Then
the k-algebra R⊗k S is reduced.

Proof. The first statement follows from Lemma 10.43.3. For the second statement
use the first statement and Lemma 10.42.5. �
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10.45. Geometrically irreducible algebras

Let k ⊂ k′ be an algebraic purely inseparable field extension. Then for any k-
algebra R the ring map R → k′ ⊗k R induces a homeomorphism of spectra. The
reason for this is the slightly more general Lemma 10.45.2 below.

Lemma 10.45.1. Let p be a prime number. Let n,m > 0 be two integers. There
exists an integer a such that (x+ y)p

a

, pa(x+ y) ∈ Z[xp
n

, pnx, yp
m

, pmy].

Proof. This is clear for pa(x + y) as soon as a ≥ n,m. In fact, pick a � n,m.
Write

(x+ y)p
a

=
∑

i,j≥0,i+j=pa

(
pa

i, j

)
xiyj

The condition (x+ y)p
a ∈ Z[xp

n

, pnx, yp
m

, pmy] holds if

pnr+mr
′
|
(
pa

i, j

)
where i = qpn+r with r ∈ {0, . . . , pn−1} and j = q′pm+r′ with r′ ∈ {0, . . . , pm−1}.
If r = r′ = 0 then the divisibility holds. If r 6= 0, then we write(

pa

i, j

)
=
pa

i

(
pa − 1

i− 1, j

)
Since r 6= 0 the rational number pa/i has p-adic valuation at least a−(n−1) (because

i is not divisible by pn). Thus
(
pa

i,j

)
is divisible by pa−n+1 in this case. Similarly, we

see that if r′ 6= 0, then
(
pa

i,j

)
is divisible by pa−m+1. Picking a = npn+mpm+n+m

will work. �

Lemma 10.45.2. Let ϕ : R→ S be a ring map. If

(1) for any x ∈ S there exists n > 0 such that xn is in the image of ϕ, and
(2) for any x ∈ Ker(ϕ) there exists n > 0 such that xn = 0,

then ϕ induces a homeomorphism on spectra. Given a prime number p such that

(a) S is generated as an R-algebra by elements x such that there exists an
n > 0 with xp

n ∈ ϕ(R) and pnx ∈ ϕ(R), and
(b) the kernel of ϕ is generated by nilpotent elements,

then (1) and (2) hold, and for any ring map R → R′ the ring map R′ → R′ ⊗R S
also satisfies (a), (b), (1), and (2) and in particular induces a homeomorphism on
spectra.

Proof. Assume (1) and (2). Let q, q′ be primes of S lying over the same prime
ideal p of R. Suppose x ∈ S with x ∈ q, x 6∈ q′. Then xn ∈ q and xn 6∈ q′ for all
n > 0. If xn = ϕ(y) with y ∈ R for some n > 0 then

xn ∈ q⇒ y ∈ p⇒ xn ∈ q′

which is a contradiction. Hence there does not exist an x as above and we conclude
that q = q′, i.e., the map on spectra is injective. By assumption (2) the kernel
I = Ker(ϕ) is contained in every prime, hence Spec(R) = Spec(R/I) as topological
spaces. As the induced map R/I → S is integral by assumption (1) Lemma 10.35.15
shows that Spec(S) → Spec(R/I) is surjective. Combining the above we see that
Spec(S)→ Spec(R) is bijective. If x ∈ S is arbitrary, and we pick y ∈ R such that
ϕ(y) = xn for some n > 0, then we see that the open D(x) ⊂ Spec(S) corresponds
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to the open D(y) ⊂ Spec(R) via the bijection above. Hence we see that the map
Spec(S)→ Spec(R) is a homeomorphism.

Assume (a) and (b). Note that (b) is equivalent to (2). We claim that for any
x ∈ S there exists an integer n > 0 such that xp

n

, pnx ∈ ϕ(R). By assumption
(a) it suffices to show that the set of elements with this property forms a R-sub
algebra. Suppose x, y ∈ S and n,m > 0 such that xp

n

, yp
m

, pnx, pmy ∈ ϕ(R). Then

(xy)p
n+m

, pn+mxy ∈ ϕ(R) and we see that xy satisfies the condition. The condition
holds for x+ y by Lemma 10.45.1 and the claim is proved. In particular it follows
from the first part of the lemma that Spec(S)→ Spec(R) is a homeomorphism. In
particular it is surjective which is a property preserved under any base change, see
Lemma 10.29.3. Therefore for any R→ R′ the kernel of the ring map R′ → R′⊗RS
consists of nilpotent elements, see Lemma 10.29.6, in other words (b) holds for
R′ → R′ ⊗R S. Finally, it is clear that (a) is preserved under base change which
finishes the proof. �

Lemma 10.45.3. Let R→ S be a ring map. Assume

(a) Spec(R) is irreducible,
(b) R→ S is flat,
(c) R→ S is of finite presentation,
(d) the fibre rings S ⊗R κ(p) have irreducible spectra for a dense collection of

primes p of R.

Then Spec(S) is irreducible. This is true more generally with (b) + (c) replaced by
“the map Spec(S)→ Spec(R) is open”.

Proof. The assumptions (b) and (c) imply that the map on spectra is open, see
Proposition 10.40.8. Hence the lemma follows from Topology, Lemma 5.7.7. �

Lemma 10.45.4. Let k be a separably algebraically closed field. Let R, S be k-
algebras. If R, S have a unique minimal prime, so does R⊗k S.

Proof. Let k ⊂ k be a perfect closure, see Definition 10.44.5. By assumption
k is algebraically closed. The ring maps R → R ⊗k k and S → S ⊗k k and
R⊗k S → (R⊗k S)⊗k k = (R⊗k k)⊗k (S⊗k k) satisfy the assumptions of Lemma
10.45.2. Hence we may assume k is algebraically closed.

We may replace R and S by their reductions. Hence we may assume that R and S
are domains. By Lemma 10.44.6 we see that R⊗k S is reduced. Hence its spectrum
is reducible if and only if it contains a nonzero zerodivisor. By Lemma 10.42.4 we
reduce to the case where R and S are domains of finite type over k algebraically
closed.

Note that the ring map R→ R⊗k S is of finite presentation and flat. Moreover, for
every maximal ideal m of R we have (R ⊗k S) ⊗R R/m ∼= S because k ∼= R/m by
the Hilbert Nullstellensatz Theorem 10.33.1. Moreover, the set of maximal ideals is
dense in the spectrum of R since Spec(R) is Jacobson, see Lemma 10.34.2. Hence
we see that Lemma 10.45.3 applies to the ring map R → R ⊗k S and we conclude
that the spectrum of R⊗k S is irreducible as desired. �

Lemma 10.45.5. Let k be a field. Let R be a k-algebra. The following are equiv-
alent

(1) for every field extension k ⊂ k′ the spectrum of R⊗k k′ is irreducible, and
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(2) for every finite separable field extension k ⊂ k′ the spectrum of R⊗k k′ is
irreducible.

Proof. Let k ⊂ kperf be a perfect closure of k, see Definition 10.44.5. By Lemma
10.45.2 we may replace R by (R ⊗k kperf )reduction and k by kperf (some details
omitted). Hence we may assume that R is geometrically reduced over k.

Assume R is geometrically reduced over k. For any extension of fields k ⊂ k′ we see
irreducibility of the spectrum of R ⊗k k′ is equivalent to R ⊗k k′ being a domain.
Assume (2). Let k ⊂ k be a separable algebraic closure of k. Using Lemma 10.42.4
we see that (2) is equivalent to R ⊗k k being a domain. For any field extension

k ⊂ k′, there exists a field extension k ⊂ k
′

with k′ ⊂ k
′
. By Lemma 10.45.4 we

see that R⊗k k
′

is a domain. If R⊗k k′ is not a domain, then also R⊗k k
′

is not a
domain, contradiction. �

Definition 10.45.6. Let k be a field. Let S be a k-algebra. We say S is geomet-
rically irreducible over k if for every field extension k ⊂ k′ the spectrum of S ⊗k k′
is irreducible2.

By Lemma 10.45.5 it suffices to check this for finite separable field extensions k ⊂ k′.

Lemma 10.45.7. Let k be a field. Let R be a k-algebra. If k is separably alge-
braically closed then R is geometrically irreducible over k if and only if the spectrum
of R is irreducible.

Proof. Immediate from the remark following Definition 10.45.6. �

Lemma 10.45.8. Let k be a field. Let S be a k-algebra.

(1) If S is geometrically irreducible over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically irreducible,

then S is geometrically irreducible.
(3) A directed colimit of geometrically irreducible k-algebras is geometrically

irreducible.

Proof. Let S′ ⊂ S be a subalgebra. Then for any extension k ⊂ k′ the ring map
S′⊗k k′ → S⊗k k′ is injective also. Hence (1) follows from Lemma 10.29.5 (and the
fact that the image of an irreducible space under a continuous map is irreducible).
The second and third property follow from the fact that tensor product commutes
with colimits. �

Lemma 10.45.9. Let k be a field. Let S be a geometrically irreducible k-algebra.
Let R be any k-algebra. The map

Spec(R⊗k S) −→ Spec(R)

induces a bijection on irreducible components.

Proof. Recall that irreducible components correspond to minimal primes (Lemma
10.25.1). As R→ R⊗k S is flat we see by going down (Lemma 10.38.17) that any
minimal prime of R⊗k S lies over a minimal prime of R. Conversely, if p ⊂ R is a
(minimal) prime then

R⊗k S/p(R⊗k S) = (R/p)⊗k S ⊂ f.f.(R/p)⊗k S

2An irreducible space is nonempty.
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by flatness of R → R ⊗k S. The ring f.f.(R/p) ⊗k S has irreducible spectrum by
assumption. It follows that R⊗k S/p(R⊗k S) has a single minimal prime (Lemma
10.29.5). In other words, the inverse image of the irreducible set V (p) is irreducible.
Hence the lemma follows. �

Let us make some remarks on the notion of geometrically irreducible field exten-
sions.

Lemma 10.45.10. Let k ⊂ K be a field extension. If k is algebraically closed in
K, then K is geometrically irreducible over k.

Proof. Let k ⊂ k′ be a finite separable extension, say generated by α ∈ k′ over
k (see Fields, Lemma 9.18.1). Let P = T d + a1T

d−1 + . . . + ad ∈ k[T ] be the
minimal polynomial of α. Then K ⊗k k′ ∼= K[T ]/(P ). The only way the spectrum
of K[T ]/(P ) can be reducible is if P is reducible in K[T ]. Say P = P1P2 is a
nontrivial factorization of P into monic polynomials. Let b1, . . . , bt ∈ K be the
coefficients of P1. Then we see that bi is algebraic over k by Lemma 10.37.5. Hence
the lemma follows. �

Lemma 10.45.11. Let k ⊂ K be a field extension. Consider the subextension
k ⊂ k′ ⊂ K such that k ⊂ k′ is separable algebraic and k′ ⊂ K maximal with this
property. Then K is geometrically irreducible over k′. If K/k is a finitely generated
field extension, then [k′ : k] <∞.

Proof. Let k′′ ⊂ K be the algebraic closure of k in K. By Lemma 10.45.10 we see
that K is geometrically irreducible over k′′. Since k′ ⊂ k′′ is purely inseparable we
see from Lemma 10.45.2 that also the extension k′ ⊂ K is geometrically irreducible
(some details omitted). If k ⊂ K is finitely generated, then k′ is finite over k by
Fields, Lemma 9.23.10. �

Lemma 10.45.12. Let k ⊂ K be an extension of fields. Let k ⊂ k be a separable
algebraic closure. Then Gal(k/k) acts transitively on the primes of k ⊗k K.

Proof. Let k ⊂ k′ ⊂ K be the subextension found in Lemma 10.45.11. Note that
as k ⊂ k is integral all the prime ideals of k ⊗k K and k ⊗k k′ are maximal, see
Lemma 10.35.18. By Lemma 10.45.9 the map

Spec(k ⊗k K)→ Spec(k ⊗k k′)

is bijective because (1) all primes are minimal primes, (1) k⊗kK = (k⊗k k′)⊗k′K,
and (3) K is geometrically irreducible over k′. Hence it suffices to prove the lemma
for the action of Gal(k/k) on the primes of k ⊗k k′.

As every prime of k⊗k k′ is maximal, the residue fields are isomorphic to k. Hence
the prime ideals of k ⊗k k′ correspond one to one to elements of Homk(k′, k) with
σ ∈ Homk(k′, k) corresponding to the kernel pσ of 1⊗σ : k⊗k k′ → k. In particular
Gal(k/k) acts transitively on this set as desired. �

10.46. Geometrically connected algebras

Lemma 10.46.1. Let k be a separably algebraically closed field. Let R, S be k-
algebras. If Spec(R), and Spec(S) are connected, then so is Spec(R⊗k S).
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Proof. Recall that Spec(R) is connected if and only if R has no nontrivial idem-
potents, see Lemma 10.20.4. Hence, by Lemma 10.42.4 we may assume R and S
are of finite type over k. In this case R and S are Noetherian, and have finitely
many minimal primes, see Lemma 10.30.6. Thus we may argue by induction on
n+m where n, resp. m is the number of irreducible components of Spec(R), resp.
Spec(S). Of course the case where either n or m is zero is trivial. If n = m = 1,
i.e., Spec(R) and Spec(S) both have one irreducible component, then the result
holds by Lemma 10.45.4. Suppose that n > 1. Let p ⊂ R be a minimal prime
corresponding to the irreducible closed subset T ⊂ Spec(R). Let I ⊂ R be such
that T ′ = V (I) ⊂ Spec(R) is the closure of the complement of T . Note that
this means that T ′ = Spec(R/I) (Lemma 10.16.7) has n − 1 irreducible compo-
nents. Then T ∪ T ′ = Spec(R), and T ∩ T ′ = V (p + I) = Spec(R/(p + I)) is not
empty as Spec(R) is assumed connected. The inverse image of T in Spec(R⊗k S) is
Spec(R/p⊗kS), and the inverse of T ′ in Spec(R⊗kS) is Spec(R/I⊗kS). By induc-
tion these are both connected. The inverse image of T ∩T ′ is Spec(R/(p+ I)⊗k S)
which is nonempty. Hence Spec(R⊗k S) is connected. �

Lemma 10.46.2. Let k be a field. Let R be a k-algebra. The following are equiv-
alent

(1) for every field extension k ⊂ k′ the spectrum of R⊗k k′ is connected, and
(2) for every finite separable field extension k ⊂ k′ the spectrum of R⊗k k′ is

connected.

Proof. For any extension of fields k ⊂ k′ the connectivity of the spectrum of
R ⊗k k′ is equivalent to R ⊗k k′ having no nontrivial idempotents, see Lemma
10.20.4. Assume (2). Let k ⊂ k be a separable algebraic closure of k. Using Lemma
10.42.4 we see that (2) is equivalent to R ⊗k k having no nontrivial idempotents.

For any field extension k ⊂ k′, there exists a field extension k ⊂ k
′

with k′ ⊂ k
′
.

By Lemma 10.46.1 we see that R ⊗k k
′

has no nontrivial idempotents. If R ⊗k k′
has a nontrivial idempotent, then also R⊗k k

′
, contradiction. �

Definition 10.46.3. Let k be a field. Let S be a k-algebra. We say S is geomet-
rically connected over k if for every field extension k ⊂ k′ the spectrum of S ⊗k k′
is connected.

By Lemma 10.46.2 it suffices to check this for finite separable field extensions k ⊂ k′.
Lemma 10.46.4. Let k be a field. Let R be a k-algebra. If k is separably alge-
braically closed then R is geometrically connected over k if and only if the spectrum
of R is connected.

Proof. Immediate from the remark following Definition 10.46.3. �

Lemma 10.46.5. Let k be a field. Let S be a k-algebra.

(1) If S is geometrically connected over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically connected,

then S is geometrically connected.
(3) A directed colimit of geometrically connected k-algebras is geometrically

connected.

Proof. This follows from the characterization of connectedness in terms of the
nonexistence of nontrivial idempotents. The second and third property follow from
the fact that tensor product commutes with colimits. �
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The following lemma will be superseded by the more general Varieties, Lemma
32.5.4.

Lemma 10.46.6. Let k be a field. Let S be a geometrically connected k-algebra.
Let R be any k-algebra. The map

R −→ R⊗k S
induces a bijection on idempotents, and the map

Spec(R⊗k S) −→ Spec(R)

induces a bijection on connected components.

Proof. The second assertion follows from the first combined with Lemma 10.21.2.
By Lemmas 10.46.5 and 10.42.4 we may assume that R and S are of finite type
over k. Then we see that also R⊗k S is of finite type over k. Note that in this case
all the rings are Noetherian and hence their spectra have finitely many connected
components (since they have finitely many irreducible components, see Lemma
10.30.6). In particular, all connected components in question are open! Hence via
Lemma 10.22.3 we see that the first statement of the lemma in this case is equivalent
to the second. Let’s prove this. As the algebra S is geometrically connected and
nonzero we see that all fibres of X = Spec(R⊗k S)→ Spec(R) = Y are connected
and nonempty. Also, as R→ R ⊗k S is flat of finite presentation the map X → Y
is open (Proposition 10.40.8). Topology, Lemma 5.6.5 shows that X → Y induces
bijection on connected components. �

10.47. Geometrically integral algebras

Definition 10.47.1. Let k be a field. Let S be a k-algebra. We say S is geomet-
rically integral over k if for every field extension k ⊂ k′ the ring of S ⊗k k′ is a
domain.

Any question about geometrically integral algebras can be translated in a question
about geometrically reduced and irreducible algebras.

Lemma 10.47.2. Let k be a field. Let S be a k-algebra. In this case S is ge-
ometrically integral over k if and only if S is geometrically irreducible as well as
geometrically reduced over k.

Proof. Omitted. �

Lemma 10.47.3. Let k be a field. Let S be a geometrically integral k-algebra. Let
R be a k-algebra and an integral domain. Then R⊗k S is an integral domain.

Proof. By Lemma 10.42.5 the ring R ⊗k S is reduced and by Lemma 10.45.9 the
ring R ⊗k S is irreducible (the spectrum has just one irreducible component), so
R⊗k S is an integral domain. �

10.48. Valuation rings

Here are some definitions.

Definition 10.48.1. Valuation rings.

(1) Let K be a field. Let A, B be local rings contained in K. We say that B
dominates A if A ⊂ B and mA = A ∩mB .
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(2) Let A be a ring. We say A is a valuation ring if A is a local domain and if
A is maximal for the relation of domination among local rings contained
in the fraction field of A.

(3) Let A be a valuation ring with fraction field K. If R ⊂ K is a subring of
K, then we say A is centered on R if R ⊂ A.

With this definition a field is a valuation ring.

Lemma 10.48.2. Let K be a field. Let A ⊂ K be a local subring. Then there
exists a valuation ring with fraction field K dominating A.

Proof. We consider the collection of local subrings of K as a partially ordered
set using the relation of domination. Suppose that {Ai}i∈I is a totally ordered
collection of local subrings of K. Then B =

⋃
Ai is a local subring which dominates

all of the Ai. Hence by Zorn’s Lemma, it suffices to show that if A ⊂ K is a local
ring whose fraction field is not K, then there exists a local ring B ⊂ K, B 6= A
dominating A.

Pick t ∈ K which is not in the fraction field of A. If t is transcendental over A,
then A[t] ⊂ K and hence A[t](t,m) ⊂ K is a local ring dominating A. Suppose t is
algebraic over A. Then for some a ∈ A the element at is integral over A. In this
case the subring A′ ⊂ K generated by A and ta is finite over A. By Lemma 10.35.15
there exists a prime ideal m′ ⊂ A′ lying over m. Then A′m′ clearly dominates A and
we win. �

Lemma 10.48.3. Let A be a valuation ring with maximal ideal m and fraction
field K. Let x ∈ K. Then either x ∈ A or x−1 ∈ A or both.

Proof. Assume that x is not in A. Let A′ denote the subring of K generated
by A and x. Since A is a valuation ring we see that there is no prime of A′

lying over m. Hence we can write 1 =
∑d
i=0 tix

i with ti ∈ m. This implies that
(1 − t0)(x−1)d −

∑
ti(x

−1)d−i = 0. In particular we see that x−1 is integral over
A. Thus the subring A′′ of K generated by A and x−1 is finite over A and we see
there exists a prime ideal m′′ ⊂ A′′ lying over m by Lemma 10.35.15. Since A is a
valuation ring we conclude that A = (A′′)m′′ and hence x−1 ∈ A. �

Lemma 10.48.4. Let A ⊂ K be a subring of a field K such that for all x ∈ K
either x ∈ A or x−1 ∈ A or both. Then A is a valuation ring with fraction field K.

Proof. If A is not K, then A is not a field and there is a nonzero maximal ideal m.
If m′ is a second maximal ideal, then choose x, y ∈ A with x ∈ m, y 6∈ m, x 6∈ m′,
and y ∈ m′ (see Lemma 10.14.2). Then neither x/y ∈ A nor y/x ∈ A contradicting
the assumption of the lemma. Thus we see that A is a local ring. Suppose that A′

is a local ring contained in K which dominates A. Let x ∈ A′. We have to show
that x ∈ A. If not, then x−1 ∈ A, and of course x−1 ∈ mA. But then x−1 ∈ mA′

which contradicts x ∈ A′. �

Lemma 10.48.5. Let I be a directed partially ordered set. Let (Ai, ϕij) be a system
of valuation rings over I whose transition maps ϕij are local. Then A = colimAi
is a valuation ring.

Proof. It is clear that A is a domain. Let a, b ∈ A. Lemma 10.48.4 tells us we have
to show that either a|b or b|a in A. Choose i so large that there exist ai, bi ∈ Ai
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mapping to a, b. Then Lemma 10.48.3 applied to ai, bi in Ai implies the result for
a, b in A. �

Lemma 10.48.6. Let K ⊂ L be an extension of fields. If B ⊂ L is a valuation
ring, then A = K ∩B is a valuation ring.

Proof. We can replace L by f.f.(B) and K by K ∩ f.f.(B). Then the lemma
follows from a combination of Lemmas 10.48.3 and 10.48.4. �

Lemma 10.48.7. Let K ⊂ L be an algebraic extension of fields. If B ⊂ L is a
valuation ring with fraction field L and not a field, then A = K ∩B is a valuation
ring and not a field.

Proof. By Lemma 10.48.6 the ring A is a valuation ring. If A is a field, then A = K.
Then A = K ⊂ B is an integral extension, hence there are no proper inclusions
among the primes of B (Lemma 10.35.18). This contradicts the assumption that
B is a local domain and not a field. �

Lemma 10.48.8. Let A be a valuation ring. For any prime ideal p ⊂ A the
quotient A/p is a valuation ring. The same is true for the localization Ap and in
fact any localization of A.

Proof. Use the characterization of valuation rings given in Lemma 10.48.4. �

Lemma 10.48.9. Let A′ be a valuation ring with residue field K. Let A be a
valuation ring with fraction field K. Then C = {λ ∈ A′ | λ mod mA′ ∈ A} is a
valuation ring.

Proof. Note that mA′ ⊂ C and C/mA′ = A. In particular, the fraction field of C
is equal to the fraction field of A′. We will use the criterion of Lemma 10.48.4 to
prove the lemma. Let x be an element of the fraction field of C. By the lemma we
may assume x ∈ A′. If x ∈ mA′ , then we see x ∈ C. If not, then x is a unit of A′

and we also have x−1 ∈ A′. Hence either x or x−1 maps to an element of A by the
lemma again. �

Lemma 10.48.10. Let A be a valuation ring. Then A is a normal domain.

Proof. Suppose x is in the field of fractions of A and integral over A, say xd +∑
i<d aix

i = 0. By Lemma 10.48.4 either x ∈ A (and we’re done) or x−1 ∈ A. In

the second case we see that x = −
∑
aix

i−d ∈ A as well. �

Lemma 10.48.11. Let A be a normal domain with fraction field K. For every
x ∈ K, x 6∈ A there exists a valuation ring A ⊂ V ⊂ K with fraction field K
such that x 6∈ V . In other words, A is the intersection of all valuation rings in K
containing A.

Proof. Suppose x ∈ K, x 6∈ A. Consider B = A[x−1]. Then x 6∈ B. Namely, if
x = a0 + a1x

−1 + . . .+ adx
−d then xd+1− a0x

d− . . .− ad = 0 and x is integral over
A in contradiction with the fact that A is normal. Thus x−1 is not a unit in B.
Thus V (x−1) ⊂ Spec(B) is not empty (Lemma 10.16.2), and we can choose a prime
p ⊂ B with x−1 ∈ p. Choose a valuation ring V ⊂ K dominating Bp (Lemma
10.48.2). Then x 6∈ V as x−1 ∈ mV . �

An totally ordered abelian group is a pair (Γ,≥) consisting of an abelian group Γ
endowed with a total ordering ≥ such that γ ≥ γ′ ⇒ γ + γ′′ ≥ γ′ + γ′′ for all
γ, γ′, γ′′ ∈ Γ.
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Lemma 10.48.12. Let A be a valuation ring with field of fractions K. Set Γ =
K∗/A∗ (with group law written additively). For γ, γ′ ∈ Γ define γ ≥ γ′ if and only
if γ − γ′ is in the image of A − {0} → Γ. Then (Γ,≥) is a totally ordered abelian
group.

Proof. Omitted, but follows easily from Lemma 10.48.3. Note that in case A = K
we obtain the zero group Γ = {0} endowed with its unique total ordering. �

Definition 10.48.13. Let A be a valuation ring.

(1) The totally ordered abelian group (Γ,≥) of Lemma 10.48.12 is called the
value group of the valuation ring A.

(2) The map v : A − {0} → Γ and also v : K∗ → Γ is called the valuation
associated to A.

(3) The valuation ring A is called a discrete valuation ring if Γ ∼= Z.

Note that if Γ ∼= Z then there is a unique such isomorphism such that 1 ≥ 0. If the
isomorphism is chosen in this way, then the ordering becomes the usual ordering of
the integers.

Lemma 10.48.14. Let A be a valuation ring. The valuation v : A − {0} → Γ≥0

has the following properties:

(1) v(a) = 0⇔ a ∈ A∗,
(2) v(ab) = v(a) + v(b),
(3) v(a+ b) ≥ min(v(a), v(b)).

Proof. Omitted. �

Lemma 10.48.15. Let A be a ring. The following are equivalent

(1) A is a valuation ring,
(2) A is a local domain and every finitely generated ideal of A is principal.

Proof. Assume A is a valuation ring and let f1, . . . , fn ∈ A. Choose i such that
v(fi) is minimal among v(fj). Then (fi) = (f1, . . . , fn). Conversely, assume A is a
local domain and every finitely generated ideal of A is principal. Pick f, g ∈ A and
write (f, g) = (h). Then f = ah and g = bh and h = cf + dg for some a, b, c, d ∈ A.
Thus ac + bd = 1 and we see that either a or b is a unit, i.e., either g/f or f/g is
an element of A. This shows A is a valuation ring by Lemma 10.48.4. �

Lemma 10.48.16. Let (Γ,≥) be a totally ordered abelian group. Let K be a
field. Let v : K∗ → Γ be a homomorphism of abelian groups such that v(a + b) ≥
min(v(a), v(b)) for a, b ∈ K with a, b, a+ b not zero. Then

A = {x ∈ K | x = 0 or v(x) ≥ 0}
is a valuation ring with value group Im(v) ⊂ Γ, with maximal ideal

m = {x ∈ K | x = 0 or v(x) > 0}
and with group of units

A∗ = {x ∈ K∗ | v(x) = 0}.

Proof. Omitted. �

Let (Γ,≥) be a totally ordered abelian group. An ideal of Γ is a subset I ⊂ Γ such
that all elements of I are ≥ 0 and γ ∈ I, γ′ ≥ γ implies γ′ ∈ I. We say that such
an ideal is prime if γ + γ′ ∈ I, γ, γ′ ≥ 0⇒ γ ∈ I or γ′ ∈ I.
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Lemma 10.48.17. Let A be a valuation ring. Ideals in A correspond 1 − 1 with
ideals of Γ. This bijection is inclusion preserving, and maps prime ideals to prime
ideals.

Proof. Omitted. �

Lemma 10.48.18. A valuation ring is Noetherian if and only if it is a discrete
valuation ring or a field.

Proof. Suppose A is a discrete valuation ring with valuation v : A \ {0} → Z
normalized so that Im(v) ⊂ Z≥0. By Lemma 10.48.17 the ideals of A are the
subsets In = {0} ∪ v−1(Z≥n). It is clear that any element x ∈ A with v(x) = n
generates In. Hence A is a PID so certainly Noetherian.

Suppose A is a Noetherian valuation ring with value group Γ. By Lemma 10.48.17
we see the ascending chain condition holds for ideals in Γ. We may assume A is not
a field, i.e., there is a γ ∈ Γ with γ > 0. Applying the ascending chain condition to
the subsets γ + Γ≥0 with γ > 0 we see there exists a smallest element γ0 which is
bigger than 0. Let γ ∈ Γ be an element γ > 0. Consider the sequence of elements
γ, γ − γ0, γ − 2γ0, etc. By the ascending chain condition these cannot all be > 0.
Let γ − nγ0 be the last one ≥ 0. By minimality of γ0 we see that 0 = γ − nγ0.
Hence Γ is a cyclic group as desired. �

10.49. More Noetherian rings

Lemma 10.49.1. Let R be a Noetherian ring. Any finite R-module is of finite
presentation. Any submodule of a finite R-module is finite. The ascending chain
condition holds for R-submodules of a finite R-module.

Proof. We first show that any submodule N of a finite R-module M is finite. We
do this by induction on the number of generators of M . If this number is 1, then
N = J/I ⊂M = R/I for some ideals I ⊂ J ⊂ R. Thus the definition of Noetherian
implies the result. If the number of generators of M is greater than 1, then we can
find a short exact sequence 0 → M ′ → M → M ′′ → 0 where M ′ and M ′′ have
fewer generators. Note that setting N ′ = M ′ ∩ N and N ′′ = Im(N → M ′′) gives
a similar short exact sequence for N . Hence the result follows from the induction
hypothesis since the number of generators of N is at most the number of generators
of N ′ plus the number of generators of N ′′.

To show that M is finitely presented just apply the previous result to the kernel of
a presentation Rn →M .

It is well known and easy to prove that the ascending chain condition for R-
submodules of M is equivalent to the condition that every submodule of M is
a finite R-module. We omit the proof. �

Lemma 10.49.2 (Artin-Rees). Suppose that R is Noetherian, I ⊂ R an ideal. Let
N ⊂ M be finite R-modules. There exists a constant c > 0 such that InM ∩N =
In−c(IcM ∩N) for all n ≥ c.

Proof. Consider the ring S = R ⊕ I ⊕ I2 ⊕ . . . =
⊕

n≥0 I
n. Convention: I0 =

R. Multiplication maps In × Im into In+m by multiplication in R. Note that if
I = (f1, . . . , ft) then S is a quotient of the Noetherian ring R[X1, . . . , Xt]. The
map just sends the monomial Xe1

1 . . . Xet
t to fe11 . . . fett . Thus S is Noetherian.
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Similarly, consider the module M⊕IM⊕I2M⊕. . . =
⊕

n≥0 I
nM . This is a finitely

generated S-module. Namely, if x1, . . . , xr generate M over R, then they also
generate

⊕
n≥0 I

nM over S. Next, consider the submodule
⊕

n≥0 I
nM ∩N . This

is an S-submodule, as is easily verified. By Lemma 10.49.1 it is finitely generated
as an S-module, say by ξj ∈

⊕
n≥0 I

nM ∩ N , j = 1, . . . , s. We may assume by

decomposing each ξj into its homogeneous pieces that each ξj ∈ IdjM ∩N for some
dj . Set c = max{dj}. Then for all n ≥ c every element in InM ∩ N is of the
form

∑
hjξj with hj ∈ In−dj . The lemma now follows from this and the trivial

observation that In−dj (IdjM ∩N) ⊂ In−c(IcM ∩N). �

Lemma 10.49.3. Suppose that 0→ K →M
f−→ N is an exact sequence of finitely

generated modules over a Noetherian ring R. Let I ⊂ R be an ideal. Then there
exists a c such that

f−1(InN) = K + In−cf−1(IcN) and f(M) ∩ InN ⊂ f(In−cM)

for all n ≥ c.

Proof. Apply Lemma 10.49.2 to Im(f) ⊂ N and note that f : In−cM → In−cf(M)
is surjective. �

Lemma 10.49.4 (Krull’s intersection theorem). Let R be a Noetherian local ring.
Let I ⊂ R be a proper ideal. Let M be a finite R-module. Then

⋂
n≥0 I

nM = 0.

Proof. Let N =
⋂
n≥0 I

nM . Then N = InM ∩N for all n ≥ 0. By the Artin-Rees
Lemma 10.49.2 we see that N = InM ∩ N ⊂ IN for some suitably large n. By
Nakayama’s Lemma 10.19.1 we see that N = 0. �

Lemma 10.49.5. Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a
finite R-module. Let N =

⋂
n I

nM .

(1) For every prime p, I ⊂ p there exists a f ∈ R, f 6∈ p such that Nf = 0.
(2) If I ⊂ rad(R) is contained in the Jacobson radical of R, then N = 0.

Proof. Proof of (1). Let x1, . . . , xn be generators for the module N , see Lemma
10.49.1. For every prime p, I ⊂ p we see that the image of N in the localization
Mp is zero, by Lemma 10.49.4. Hence we can find gi ∈ R, gi 6∈ p such that xi maps
to zero in Ngi . Thus Ng1g2...gn = 0.

Part (2) follows from (1) and Lemma 10.23.1. �

Remark 10.49.6. Lemma 10.49.4 in particular implies that
⋂
n I

n = (0) when
I ⊂ R is a non-unit ideal in a Noetherian local ring R. More generally, let R be
a Noetherian ring and I ⊂ R an ideal. Suppose that f ∈

⋂
n∈N In. Then Lemma

10.49.5 says that for every prime ideal I ⊂ p there exists a g ∈ R, g 6∈ p such that
f maps to zero in Rg. In algebraic geometry we express this by saying that “f is
zero in an open neighbourhood of the closed set V (I) of Spec(R)”.

Lemma 10.49.7 (Artin-Tate). Let R be a Noetherian ring. Let S be a finitely
generated R-algebra. If T ⊂ S is an R-subalgebra such that S is finitely generated
as a T -module, then T is a finite type over R.

Proof. Choose elements x1, . . . , xn ∈ S which generate S as an R-algebra. Choose
y1, . . . , ym in S which generate S as a T -module. Thus there exist aij ∈ T such that
xi =

∑
aijyj . There also exist bijk ∈ T such that yiyj =

∑
bijkyk. Let T ′ ⊂ T be
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the sub R-algebra generated by aij and bijk. This is a finitely generated R-algebra,
hence Noetherian. Consider the algebra

S′ = T ′[Y1, . . . , Ym]/(YiYj −
∑

bijkYk).

Note that S′ is finite over T ′, namely as a T ′-module it is generated by the classes
of 1, Y1, . . . , Ym. Consider the T ′-algebra homomorphism S′ → S which maps Yi
to yi. Because aij ∈ T ′ we see that xj is in the image of this map. Thus S′ → S
is surjective. Therefore S is finite over T ′ as well. Since T ′ is Noetherian and we
conclude that T ⊂ S is finite over T ′ and we win. �

10.50. Length

Definition 10.50.1. Let R be a ring. For any R-module M we define the length
of M over R by the formula

lengthR(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi 6= Mi+1}.
In other words it is the supremum of the lengths of chains of submodules. There
is an obvious notion of when a chain of submodules is a refinement of another.
This gives a partial ordering on the collection of all chains of submodules, with the
smallest chain having the shape 0 = M0 ⊂M1 = M if M is not zero. We note the
obvious fact that if the length of M is finite, then every chain can be refined to
a maximal chain. But it is not as obvious that all maximal chains have the same
length (as we will see later).

Lemma 10.50.2. Let R be a ring. Let M be an R-module. If lengthR(M) < ∞
then M is a finite R-module.

Proof. Omitted. �

Lemma 10.50.3. If 0→M ′ →M →M ′′ → 0 is a short exact sequence of modules
over R then the length of M is the sum of the lengths of M ′ and M ′′.

Proof. Given filtrations of M ′ and M ′′ of lengths n′, n′′ it is easy to make a
corresponding filtration of M of length n′ + n′′. Thus we see that lengthRM ≥
lengthRM

′ + lengthRM
′′. Conversely, given a filtration M0 ⊂ M1 ⊂ . . . ⊂ Mn

of M consider the induced filtrations M ′i = Mi ∩M ′ and M ′′i = Im(Mi → M ′′).
Let n′ (resp. n′′) be the number of steps in the filtration {M ′i} (resp. {M ′′i }). If
M ′i = M ′i+1 and M ′′i = M ′′i+1 then Mi = Mi+1. Hence we conclude that n′+n′′ ≥ n.
Combined with the earlier result we win. �

Lemma 10.50.4. Let R be a local ring with maximal ideal m. Let M be an R-
module.

(1) If M is a finite module and mnM 6= 0 for all n ≥ 0, then lengthR(M) =∞.
(2) If M has finite length then mnM = 0 for some n.

Proof. Assume mnM 6= 0 for all n ≥ 0. Choose x ∈ M and f1, . . . , fn ∈ m
such that f1f2 . . . fnx 6= 0. By Nakayama’s Lemma 10.19.1 the first n steps in the
filtration

0 ⊂ Rf1 . . . fnx ⊂ Rf1 . . . fn−1x ⊂ . . . ⊂ Rx ⊂M
are distinct. This can also be seen directly. For example, if Rf1x = Rf1f2x , then
f1x = gf1f2x for some g, hence (1− gf2)f1x = 0 hence f1x = 0 as 1− gf2 is a unit
which is a contradiction with the choice of x and f1, . . . , fn. Hence the length is
infinite, i.e., (1) holds. Combine (1) and Lemma 10.50.2 to see (2). �
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Lemma 10.50.5. Let R → S be a ring map. Let M be an S-module. We always
have lengthR(M) ≥ lengthS(M). If R→ S is surjective then equality holds.

Proof. A filtration of M by S-submodules gives rise a filtration of M by R-
submodules. This proves the inequality. And if R → S is surjective, then any
R-submodule of M is automatically a S-submodule. Hence equality in this case. �

Lemma 10.50.6. Let R be a ring with maximal ideal m. Suppose that M is an
R-module with mM = 0. Then the length of M as an R-module agrees with the
dimension of M as a R/m vector space. The length is finite if and only if M is a
finite R-module.

Proof. The first part is a special case of Lemma 10.50.5. Thus the length is finite
if and only if M has a finite basis as a R/m-vector space if and only if M has a
finite set of generators as an R-module. �

Lemma 10.50.7. Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Then lengthR(M) ≥ lengthS−1R(S−1M).

Proof. Any submodule N ′ ⊂ S−1M is of the form S−1N for some R-submodule
N ⊂M , by Lemma 10.9.15. The lemma follows. �

Lemma 10.50.8. Let R be a ring with finitely generated maximal ideal m. (For
example R Noetherian.) Suppose that M is a finite R-module with mnM = 0 for
some n. Then lengthR(M) <∞.

Proof. Consider the filtration 0 = mnM ⊂ mn−1M ⊂ . . . ⊂ mM ⊂ M . All of
the subquotients are finitely generated R-modules to which Lemma 10.50.6 applies.
We conclude by additivity, see Lemma 10.50.3. �

Definition 10.50.9. Let R be a ring. Let M be an R-module. We say M is simple
if M 6= 0 and every submodule of M is either equal to M or to 0.

Lemma 10.50.10. Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) M is simple,
(2) lengthR(M) = 1, and
(3) M ∼= R/m for some maximal ideal m ⊂ R.

Proof. Let m be a maximal ideal of R. By Lemma 10.50.6 the module R/m has
length 1. The equivalence of the first two assertions is tautological. Suppose that
M is simple. Choose x ∈ M , x 6= 0. As M is simple we have M = R · x. Let
I ⊂ R be the annihilator of x, i.e., I = {f ∈ R | fx = 0}. The map R/I → M ,
f mod I 7→ fx is an isomorphism, hence R/I is a simple R-module. Since R/I 6= 0
we see I 6= R. Let I ⊂ m be a maximal ideal containing I. If I 6= m, then
m/I ⊂ R/I is a nontrivial submodule contradicting the simplicity of R/I. Hence
we see I = m as desired. �

Lemma 10.50.11. Let R be a ring. Let M be a finite length R-module. Let
` = lengthR(M). Choose any maximal chain of submodules

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M

with Mi 6= Mi−1, i = 1, . . . , n. Then

(1) n = `,
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(2) each Mi/Mi−1 is simple,
(3) each Mi/Mi−1 is of the form R/mi for some maximal ideal mi,
(4) given a maximal ideal m ⊂ R we have

#{i | mi = m} = lengthRm
(Mm).

Proof. If Mi/Mi−1 is not simple then we can refine the filtration and the filtration
is not maximal. Thus we see that Mi/Mi−1 is simple. By Lemma 10.50.10 the
modules Mi/Mi−1 have length 1 and are of the form R/mi for some maximal ideals
mi. By additivity of length, Lemma 10.50.3, we see n = `. Since localization is
exact, we see that

0 = (M0)m ⊂ (M1)m ⊂ (M2)m ⊂ . . . ⊂ (Mn)m = Mm

is a filtration of Mm with successive quotients (Mi/Mi−1)m. Thus the last statement
follows directly from the fact that given maximal ideals m, m′ of R we have

(R/m′)m ∼=
{

0 if m 6= m′,
Rm/mRm if m = m′

This we leave to the reader. �

Lemma 10.50.12. Let A be a local ring with maximal ideal m. Let B be a semi-
local ring with maximal ideals mi, i = 1, . . . , n. Suppose that A → B is a homo-
morphism such that each mi lies over m and such that

[κ(mi) : κ(m)] <∞.
Let M be a B-module of finite length. Then

lengthA(M) =
∑

i=1,...,n
[κ(mi) : κ(m)]lengthBmi

(Mmi),

in particular lengthA(M) <∞.

Proof. Choose a maximal chain

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M

by B-submodules as in Lemma 10.50.11. Then each quotient Mi/Mi−1 is isomor-
phic to κ(mj(i)) for some j(i) ∈ {1, . . . , n}. Moreover lengthA(κ(mi)) = [κ(mi) :
κ(m)] by Lemma 10.50.6. The lemma follows by additivity of lengths (Lemma
10.50.3). �

Lemma 10.50.13. Let A→ B be a flat local homomorphism of local rings. Then
for any A-module M we have

lengthA(M)lengthB(B/mAB) = lengthB(M ⊗A B).

In particular, if lengthB(B/mAB) < ∞ then M has finite length if and only if
M ⊗A B has finite length.

Proof. The ring map A → B is faithfully flat by Lemma 10.38.16. Hence if
0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M is a chain of length n in M , then the corresponding
chain 0 = M0⊗AB ⊂M1⊗AB ⊂ . . . ⊂Mn⊗AB = M⊗AB has length n also. This
proves lengthA(M) = ∞ ⇒ lengthB(M ⊗A B) = ∞. Next, assume lengthA(M) <
∞. In this case we see that M has a filtration of length ` = lengthA(M) whose
quotients are A/mA. Arguing as above we see that M ⊗A B has a filtration of
length ` whose quotients are isomorphic to B ⊗A A/mA = B/mAB. Thus the
lemma follows. �
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Lemma 10.50.14. Let A → B → C be flat local homomorphisms of local rings.
Let M be an A-module of finite length. Then

lengthB(B/mAB)lengthC(C/mBC) = lengthC(C/mAC)

Proof. Follows from Lemma 10.50.13 applied to the ring map B → C and the
B-module M = B/mAB �

10.51. Artinian rings

Artinian rings, and especially local Artinian rings, play an important role in alge-
braic geometry, for example in deformation theory.

Definition 10.51.1. A ring R is Artinian if it satisfies the descending chain con-
dition for ideals.

Lemma 10.51.2. Suppose R is a finite dimensional algebra over a field. Then R
is Artinian.

Proof. The descending chain condition for ideals obviously holds. �

Lemma 10.51.3. If R is Artinian then R has only finitely many maximal ideals.

Proof. Suppose that mi, i = 1, 2, 3, . . . are maximal ideals. Then m1 ⊃ m1 ∩m2 ⊃
m1 ∩ m2 ∩ m3 ⊃ . . . is an infinite descending sequence (because by the Chinese
remainder theorem all the maps R→ ⊕ni=1R/mi are surjective). �

Lemma 10.51.4. Let R be Artinian. The radical rad(R) of R is a nilpotent ideal.

Proof. Denote the radical I. Note that I ⊃ I2 ⊃ I3 ⊃ . . . is a descending sequence.
Thus In = In+1 for some n. Set J = {x ∈ R | xIn = 0}. We have to show J = R.
If not, choose an ideal J ′ 6= J , J ⊂ J ′ minimal (possible by the Artinian property).
Then J ′ = J + Rx for some x ∈ R. By NAK, Lemma 10.19.1, we have IJ ′ ⊂ J .
Hence xIn+1 ⊂ xI · In ⊂ J · In = 0. Since In+1 = In we conclude x ∈ J .
Contradiction. �

Lemma 10.51.5. Any ring with finitely many maximal ideals and locally nilpotent
radical is the product of its localizations at its maximal ideals. Also, all primes are
maximal.

Proof. Let R be a ring with finitely many maximal ideals m1, . . . ,mn. Let I =⋂n
i=1 mi be the radical of R. Assume I is locally nilpotent. Let p be a prime ideal of

R. Since every prime contains every nilpotent element of R we see p ⊃ m1∩. . .∩mn.
Since m1 ∩ . . .∩mn ⊃ m1 . . .mn we conclude p ⊃ m1 . . .mn. Hence p ⊃ mi for some
i, and so p = mi. By the Chinese remainder theorem (Lemma 10.14.3) we have
R/I ∼=

⊕
R/mi which is a product of fields. Hence by Lemma 10.31.5 there are

idempotents ei, i = 1, . . . , n with ei mod mj = δij . Hence R =
∏
Rei, and each

Rei is a ring with exactly one maximal ideal. �

Lemma 10.51.6. A ring R is Artinian if and only if it has finite length as a module
over itself. Any such ring R is both Artinian and Noetherian, any prime ideal of R
is a maximal ideal, and R is equal to the (finite) product of its localizations at its
maximal ideals.
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Proof. If R has finite length over itself then it satisfies both the ascending chain
condition and the descending chain condition for ideals. Hence it is both Noetherian
and Artinian. Any Artinian ring is equal to product of its localizations at maximal
ideals by Lemmas 10.51.3, 10.51.4, and 10.51.5.

Suppose that R is Artinian. We will show R has finite length over itself. It suffices
to exhibit a chain of submodules whose successive quotients have finite length. By
what we said above we may assume that R is local, with maximal ideal m. By
Lemma 10.51.4 we have mn = 0 for some n. Consider the sequence 0 = mn ⊂
mn−1 ⊂ . . . ⊂ m ⊂ R. By Lemma 10.50.6 the length of each subquotient mj/mj+1

is the dimension of this as a vector space over κ(m). This has to be finite since
otherwise we would have an infinite descending chain of sub vector spaces which
would correspond to an infinite descending chain of ideals in R. �

10.52. Homomorphisms essentially of finite type

Some simple remarks on localizations of finite type ring maps.

Definition 10.52.1. Let R→ S be a ring map.

(1) We say that R → S is essentially of finite type if S is the localization of
an R-algebra of finite type.

(2) We say that R → S is essentially of finite presentation if S is the local-
ization of an R-algebra of finite presentation.

Lemma 10.52.2. The class of ring maps which are essentially of finite type is
preserved under composition. Similarly for essentially of finite presentation.

Proof. Omitted. �

Lemma 10.52.3. Let R → S be a ring map. Assume S is an Artinian local ring
with maximal ideal m. Then

(1) R→ S is finite if and only if R→ S/m is finite,
(2) R→ S is of finite type if and only if R→ S/m is of finite type.
(3) R→ S is essentially of finite type if and only if the composition R→ S/m

is essentially of finite type.

Proof. If R → S is finite, then R → S/m is finite by Lemma 10.7.3. Conversely,
assume R → S/m is finite. As S has finite length over itself (Lemma 10.51.6) we
can choose a filtration

0 ⊂ I1 ⊂ . . . ⊂ In = S

by ideals such that Ii/Ii−1
∼= S/m as S-modules. Thus S has a filtration by R-

submodules Ii such that each successive quotient is a finite R-module. Thus S is a
finite R-module by Lemma 10.5.3.

If R → S is of finite type, then R → S/m is of finite type by Lemma 10.6.2.
Conversely, assume that R → S/m is of finite type. Choose f1, . . . , fn ∈ S which
map to generators of S/m. Then A = R[x1, . . . , xn] → S, xi 7→ fi is a ring map
such that A → S/m is surjective (in particular finite). Hence A → S is finite by
part (1) and we see that R→ S is of finite type by Lemma 10.6.2.

If R → S is essentially of finite type, then R → S/m is essentially of finite type
by Lemma 10.52.2. Conversely, assume that R → S/m is essentially of finite type.
Suppose S/m is the localization of R[x1, . . . , xn]/I. Choose f1, . . . , fn ∈ S whose
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congruence classes modulo m correspond to the congruence classes of x1, . . . , xn
modulo I. Consider the map R[x1, . . . , xn] → S, xi 7→ fi with kernel J . Set
A = R[x1, . . . , xn]/J ⊂ S and p = A ∩ m. Note that A/p ⊂ S/m is equal to the
image of R[x1, . . . , xn]/I in S/m. Hence κ(p) = S/m. Thus Ap → S is finite by
part (1). We conclude that S is essentially of finite type by Lemma 10.52.2. �

10.53. K-groups

Let R be a ring. We will introduce two abelian groups associated to R. The first
of the two is denoted K ′0(R) and has the following properties:

(1) For every finite R-module M there is given an element [M ] in K ′0(R),
(2) for every short exact sequence 0 → M ′ → M → M ′′ → 0 we have the

relation [M ] = [M ′] + [M ′′],
(3) the group K ′0(R) is generated by the elements [M ], and
(4) all relations in K ′0(R) are Z-linear combinations of the relations coming

from exact sequences as above.

The actual construction is a bit more annoying since one has to take care that
the collection of all finitely generated R-modules is a proper class. However, this
problem can be overcome by taking as set of generators of the group K ′0(R) the
elements [Rn/K] where n ranges over all integers and K ranges over all submodules
K ⊂ Rn. The generators for the subgroup of relations imposed on these elements
will be the relations coming from short exact sequences whose terms are of the form
Rn/K. The element [M ] is defined by choosing n and K such that M ∼= Rn/K
and putting [M ] = [Rn/K]. Details left to the reader.

Lemma 10.53.1. If R is an Artinian local ring then the length function defines a
natural abelian group homomorphism lengthR : K ′0(R)→ Z.

Proof. The length of any finite R-module is finite, because it is the quotient of Rn

which has finite length by Lemma 10.51.6. And the length function is additive, see
Lemma 10.50.3. �

The second of the two is denoted K0(R) and has the following properties:

(1) For every finite projective R-module M there is given an element [M ] in
K0(R),

(2) for every short exact sequence 0→M ′ →M →M ′′ → 0 of finite projec-
tive R-modules we have the relation [M ] = [M ′] + [M ′′],

(3) the group K0(R) is generated by the elements [M ], and
(4) all relations in K0(R) are Z-linear combinations of the relations coming

from exact sequences as above.

The construction of this group is done as above.

We note that there is an obvious map K0(R)→ K ′0(R) which is not an isomorphism
in general.

Example 10.53.2. Note that if R = k is a field then we clearly have K0(k) =
K ′0(k) ∼= Z with the isomorphism given by the dimension function (which is also
the length function).

Example 10.53.3. Let k be a field. Then K0(k[x]) = K ′0(k[x]) = Z.
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Since R = k[x] is a principal ideal domain, any finite projective R-module is free.
In a short exact sequence of modules

0→M ′ →M →M ′′ → 0

we have rank(M) = rank(M ′) + rank(M ′′), which gives K0(k[x]) = Z.

As for K ′0, the structure theorem for modules of a PID says that any finitely gener-
ated R-module is of the form M = Rr ×R/(d1)× . . .×R/(dk). Consider the short
exact sequence

0→ (di)→ R→ R/(di)→ 0

Since the ideal (di) is isomorphic to R as a module (it is free with generator di),
in K ′0(R) we have [(di)] = [R]. Then [R/(di)] = [(di)] − [R] = 0. From this it
follows that any torsion part “disappears” in K ′0. Again the rank of the free part
determines that K ′0(k[x]) = Z, and the canonical homomorphism from K0 to K ′0 is
an isomorphism.

Example 10.53.4. Let k be a field. Let R = {f ∈ k[x] | f(0) = f(1)}, compare
Example 10.26.4. In this case K0(R) ∼= k∗ ⊕ Z, but K ′0(R) = Z.

Lemma 10.53.5. Let R = R1×R2. Then K0(R) = K0(R1)×K0(R2) and K ′0(R) =
K ′0(R1)×K ′0(R2)

Proof. Omitted. �

Lemma 10.53.6. Let R be an Artinian local ring. The map lengthR : K ′0(R)→ Z
of Lemma 10.53.1 is an isomorphism.

Proof. Omitted. �

Lemma 10.53.7. Let R be a local ring. Every finite projective R-module is finite
free. The map rankR : K0(R)→ Z defined by [M ]→ rankR(M) is well defined and
an isomorphism.

Proof. Let P be a finite projective R-module. The n generators of P give a
surjection Rn → P , and since P is projective it follows that Rn ∼= P ⊕Q for some
projective module Q.

If m ⊂ R is the maximal ideal, then P/m and Q/m are R/m-vector spaces, with
P/m⊕Q/m ∼= (R/m)n. Say that dimP = p, dimQ = q, so p+ q = n.

Choose elements a1, . . . , ap in P and b1, . . . , bq in Q lying above bases for P/m and
Q/m. The homomorphism Rn → P ⊕Q ∼= Rn given by (r1, . . . , rn) 7→ r1a1 + . . .+
rpap + rp+1b1 + . . . + rnbq is a matrix A which is invertible over R/m. Let B be
a matrix over R lying over the inverse of A in R/m. AB = I + M , where M is
a matrix whose entries all lie in m. Thus detAB = 1 + x, for x ∈ m, so AB is
invertible, so A is invertible.

The homomorphism Rp → P given by (r1, . . . , rp) 7→ r1a1 + . . . + rpap inherits
injectivity and surjectivity from A. Hence, P ∼= Rp.

Next we show that the rank of a finite projective module over R is well defined: if
P ∼= Rα ∼= Rβ , then α = β. This is immediate in the vector space case, and so it is
true in the general module case as well, by dividing out the maximal ideal on both
sides. If 0→ Rα → Rβ → Rγ → 0 is exact, the sequence splits, so Rβ ∼= Rα ⊕Rγ ,
so β = α+ γ.
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So far we have seen that the map rankR : K0(R) → Z is a well-defined homomor-
phism. It is surjective because rankR[R] = 1. It is injective because the element of
K0(R) with rank ±α is uniquely ±[Rα]. �

Lemma 10.53.8. Let R be a local Artinian ring. There is a commutative diagram

K0(R) //

rankR

��

K ′0(R)

lengthR
��

Z
lengthR(R) // Z

where the vertical maps are isomorphisms by Lemmas 10.53.6 and 10.53.7.

Proof. By induction on the rank of M . Suppose [M ] ∈ K0(R). Then M is
a finite projective R-module over a local ring, so M is free; M ∼= Rn for some
n. The claim is that rank(M)lengthR(R) = lengthR(M), or equivalently that
nlengthR(R) = lengthR(Rn) for all n ≥ 1. When n = 1, this is clearly true.
Suppose that (n − 1)lengthR(R) = lengthR(Rn−1). Then since there is a split
short exact sequence

0→ R→ Rn → Rn−1 → 0

by Lemma 10.50.3 we have

lengthR(Rn) = lengthR(R) + lengthR(Rn−1)

= lengthR(R) + (n− 1)lengthR(R)

= nlengthR(R)

as desired. �

10.54. Graded rings

A graded ring will be for us a ring S endowed with a direct sum decomposition
S =

⊕
d≥0 Sd such that Sd · Se ⊂ Sd+e. Note that we do not allow nonzero

elements in negative degrees. The irrelevant ideal is the ideal S+ =
⊕

d>0 Sd. A
graded module will be an S-module M endowed with a direct sum decomposition
M =

⊕
n∈ZMn such that Sd ·Me ⊂ Md+e. Note that for modules we do allow

nonzero elements in negative degrees. We think of S as a graded S-module by
setting S−k = (0) for k > 0. An element x (resp. f) of M (resp. S) is called
homogeneous if x ∈Md (resp. f ∈ Sd) for some d. A map of graded S-modules is a
map of S-modules ϕ : M →M ′ such that ϕ(Md) ⊂M ′d. We do not allow maps to
shift degrees. Let us denote GrHom0(M,N) the S0-module of homomorphisms of
graded modules from M to N .

At this point there are the notions of graded ideal, graded quotient ring, graded
submodule, graded quotient module, graded tensor product, etc. We leave it to the
reader to find the relevant definitions, and lemmas. For example: A short exact
sequence of graded modules is short exact in every degree.

Given a graded ring S, a graded S-module M and n ∈ Z we denote M(n) the
graded S-module with M(n)d = Mn+d. This is called the twist of M by n. In
particular we get modules S(n), n ∈ Z which will play an important role in the
study of projective schemes. There are some obvious functorial isomorphisms such

http://stacks.math.columbia.edu/tag/00JK
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as (M ⊕ N)(n) = M(n) ⊕ N(n), (M ⊗S N)(n) = M ⊗S N(n) = M(n) ⊗S N . In
addition we can define a graded S-module structure on the S0-module

GrHom(M,N) =
⊕

n∈Z
GrHomn(M,N), GrHomn(M,N) = GrHom0(M,N(n)).

We omit the definition of the multiplication.

Let S be a graded ring. Let d ≥ 1 be an integer. We set S(d) =
⊕

n≥0 Snd.

We think of S(d) as a graded ring with degree n summand (S(d))n = Snd. Given
a graded S-module M we can similarly consider M (d) =

⊕
n∈ZMnd which is a

graded S(d)-module.

Lemma 10.54.1. Let R → S be a homomorphism of graded rings. Let S′ ⊂ S be
the integral closure of R in S. Then

S′ =
⊕

d≥0
S′ ∩ Sd,

i.e., S′ is a graded R-subalgebra of S.

Proof. We have to show the following: If s = sn + sn+1 + . . . + sm ∈ S′, then
each homogeneous part sj ∈ S′. We will prove this by induction on m− n over all
homomorphisms R → S of graded rings. First note that it is immediate that s0

is integral over R0 (hence over R) as there is a ring map S → S0 compatible with
the ring map R → R0. Thus, after replacing s by s − s0, we may assume n > 0.
Consider the extension of graded rings R[t, t−1] → S[t, t−1] where t has degree 0.
There is a commutative diagram

S[t, t−1]
s7→tdeg(s)s

// S[t, t−1]

R[t, t−1]

OO

r 7→tdeg(r)r // R[t, t−1]

OO

where the horizontal maps are ring automorphisms. Hence the integral closure C
of S[t, t−1] over R[t, t−1] maps into itself. Thus we see that

tm(sn + sn+1 + . . .+ sm)− (tnsn + tn+1sn+1 + . . .+ tmsm) ∈ C
which implies by induction hypothesis that each (tm−ti)si ∈ C for i = n, . . . ,m−1.
Note that for any ring A and m > i ≥ n > 0 we have A[t, t−1]/(tm − ti − 1) ∼=
A[t]/(tm − ti − 1) ⊃ A because t(tm−1 − ti−1) = 1 in A[t]/(tm − ti − 1). Since
tm − ti maps to 1 we see the image of si in the ring S[t]/(tm − ti − 1) is integral
over R[t]/(tm− ti−1) for i = n, . . . ,m−1. Since R→ R[t]/(tm− ti−1) is finite we
see that si is integral over R by transitivity, see Lemma 10.35.6. Finally, we also
conclude that sm = s−

∑
i=n,...,m−1 si is integral over R. �

10.55. Proj of a graded ring

Let S be a graded ring. A homogeneous ideal is simply an ideal I ⊂ S which is also
a graded submodule of S. Equivalently, it is an ideal generated by homogeneous
elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous parts in S then fi ∈ I for each i. To
check that a homogeneous ideal p is prime it suffices to check that if ab ∈ p with
a, b homogeneous then either a ∈ p or b ∈ p.

http://stacks.math.columbia.edu/tag/077G
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Definition 10.55.1. Let S be a graded ring. We define Proj(S) to be the set
of homogeneous, prime ideals p of S such that S+ 6⊂ p. As Proj(S) is a subset of
Spec(S) and we endow it with the induced topology. The topological space Proj(S)
is called the homogeneous spectrum of the graded ring S.

Note that by construction there is a continuous map

Proj(S) −→ Spec(S0)

Let S = ⊕d≥0Sd be a graded ring. Let f ∈ Sd and assume that d ≥ 1. We
define S(f) to be the subring of Sf consisting of elements of the form r/fn with
r homogeneous and deg(r) = nd. If M is a graded S-module, then we define the
S(f)-module M(f) as the sub module of Mf consisting of elements of the form x/fn

with x homogeneous of degree nd.

Lemma 10.55.2. Let S be a Z-graded ring. Let f ∈ Sd, d > 0 and assume f
is invertible in S. The set G ⊂ Spec(S) of Z-graded primes of S (with induced
topology) maps homeomorphically to Spec(S0).

Proof. First we show that the map is a bijection by constructing an inverse.
Namely, if p0 is a prime of S0, then p0S is a Z-graded ideal of S such that p0S∩S0 =
p0. And if ab ∈ p0S with a, b homogeneous, then adbd/fdeg(a)+deg(b) ∈ p0. Thus ei-
ther ad/fdeg(a) ∈ p0 or bd/fdeg(b) ∈ p0, in other words either ad ∈ p0S or bd ∈ p0S.
It follows that

√
p0S is a Z-graded prime ideal of S whose intersection with S0 is

p0.

To show that the map is a homeomorphism we show that the image of G ∩ D(g)
is open. If g =

∑
gi with gi ∈ Si, then by the above G ∩D(g) maps onto the set⋃

D(gdi /f
i) which is open. �

For f ∈ S homogeneous of degree > 0 we define

D+(f) = {p ∈ Proj(S) | f 6∈ p}.
Finally, for a homogeneous ideal I ⊂ S we define

V+(I) = {p ∈ Proj(S) | I ⊂ p}.
We will use more generally the notation V+(E) for any set E of homogeneous
elements E ⊂ S.

Lemma 10.55.3 (Topology on Proj). Let S = ⊕d≥0Sd be a graded ring.

(1) The sets D+(f) are open in Proj(S).
(2) We have D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . .+ gm be an element of S with gi ∈ Si. Then

D(g) ∩ Proj(S) = (D(g0) ∩ Proj(S)) ∪
⋃

i≥1
D+(gi).

(4) Let g0 ∈ S0 be a homogeneous element of degree 0. Then

D(g0) ∩ Proj(S) =
⋃

f∈Sd, d≥1
D+(g0f).

(5) The open sets D+(f) form a basis for the topology of Proj(S).
(6) Let f ∈ S be homogeneous of positive degree. The ring Sf has a natural

Z-grading. The ring maps S → Sf ← S(f) induce homeomorphisms

D+(f)← {Z-graded primes of Sf} → Spec(S(f)).

http://stacks.math.columbia.edu/tag/00JN
http://stacks.math.columbia.edu/tag/00JO
http://stacks.math.columbia.edu/tag/00JP


532 10. COMMUTATIVE ALGEBRA

(7) There exists an S such that Proj(S) is not quasi-compact.
(8) The sets V+(I) are closed.
(9) Any closed subset T ⊂ Proj(S) is of the form V+(I) for some homogeneous

ideal I ⊂ S.
(10) For any graded ideal I ⊂ S we have V+(I) = ∅ if and only if S+ ⊂

√
I.

Proof. Since D+(f) = Proj(S) ∩ D(f), these sets are open. Similarly the sets
V+(I) = Proj(S) ∩ V (E) are closed.

Suppose that T ⊂ Proj(S) is closed. Then we can write T = Proj(S) ∩ V (J) for
some ideal J ⊂ S. By definition of a homogeneous ideal if g ∈ J , g = g0 + . . .+ gm
with gd ∈ Sd then gd ∈ p for all p ∈ T . Thus, letting I ⊂ S be the ideal generated
by the homogeneous parts of the elements of J we have T = V+(I).

The formula for Proj(S)∩D(g), with g ∈ S is direct from the definitions. Consider
the formula for Proj(S) ∩ D(g0). The inclusion of the right hand side in the left
hand side is obvious. For the other inclusion, suppose g0 6∈ p with p ∈ Proj(S). If
all g0f ∈ p for all homogeneous f of positive degree, then we see that S+ ⊂ p which
is a contradiction. This gives the other inclusion.

The collection of opens D(g) ∩ Proj(S) forms a basis for the topology since the
standard opens D(g) ⊂ Spec(S) form a basis for the topology on Spec(S). By the
formulas above we can express D(g) ∩ proj(S) as a union of opens D+(f). Hence
the collection of opens D+(f) forms a basis for the topology also.

First we note that D+(f) may be identified with a subset (with induced topology)
of D(f) = Spec(Sf ) via Lemma 10.16.6. Note that the ring Sf has a Z-grading.
The homogeneous elements are of the form r/fn with r ∈ S homogeneous and have
degree deg(r/fn) = deg(r) − ndeg(f). The subset D+(f) corresponds exactly to
those prime ideals p ⊂ Sf which are Z-graded ideals (i.e., generated by homogeneous
elements). Hence we have to show that the set of Z-graded prime ideals of Sf maps
homeomorphically to Spec(S(f)). This follows from Lemma 10.55.2.

Let S = Z[X1, X2, X3, . . .] with grading such that each Xi has degree 1. Then it is
easy to see that

Proj(S) =
⋃∞

i=1
D+(Xi)

does not have a finite refinement.

Let I ⊂ S be a graded ideal. If
√
I ⊃ S+ then V+(I) = ∅ since every prime

p ∈ Proj(S) does not contain S+ by definition. Conversely, suppose that S+ 6⊂
√
I.

Then we can find an element f ∈ S+ such that f is not nilpotent modulo I. Clearly
this means that one of the homogeneous parts of f is not nilpotent modulo I, in
other words we may (and do) assume that f is homogeneous. This implies that
ISf 6= 0, in other words that (S/I)f is not zero. Hence (S/I)(f) 6= 0 since it is a
ring which maps into (S/I)f . Pick a prime q ⊂ (S/I)(f). This corresponds to a
graded prime of S/I, not containing the irrelevant ideal (S/I)+. And this in turn
corresponds to a graded prime ideal p of S, containing I but not containing S+ as
desired. �

Example 10.55.4. Let R be a ring. If S = R[X] with deg(X) = 1, then the
natural map Proj(S) → Spec(R) is a bijection and in fact a homeomorphism.
Namely, suppose p ∈ Proj(S). Since S+ 6⊂ p we see that X 6∈ p. Thus if aXn ∈ p
with a ∈ R and n > 0, then a ∈ p. It follows that p = p0S with p0 = p ∩R.

http://stacks.math.columbia.edu/tag/00JQ


10.55. PROJ OF A GRADED RING 533

If p ∈ Proj(S), then we define S(p) to be the ring whose elements are fractions
r/f where r, f ∈ S are homogeneous elements of the same degree such that f 6∈ p.
As usual we say r/f = r′/f ′ if and only if there exists some f ′′ ∈ S homogeneous,
f ′′ 6∈ p such that f ′′(rf ′−r′f) = 0. Given a graded S-module M we let M(p) be the
S(p)-module whose elements are fractions x/f with x ∈M and f ∈ S homogeneous
of the same degree such that f 6∈ p. We say x/f = x′/f ′ if and only if there exists
some f ′′ ∈ S homogeneous, f ′′ 6∈ p such that f ′′(xf ′ − x′f) = 0.

Lemma 10.55.5. Let S be a graded ring. Let M be a graded S-module. Let p be an
element of Proj(S). Let f ∈ S be a homogeneous element of positive degree such that
f 6∈ p, i.e., p ∈ D+(f). Let p′ ⊂ S(f) be the element of Spec(S(f)) corresponding to
p as in Lemma 10.55.3. Then S(p) = (S(f))p′ and compatibly M(p) = (M(f))p′ .

Proof. We define a map ψ : M(p) → (M(f))p′ . Let x/g ∈M(p). We set

ψ(x/g) = (xgdeg(f)−1/fdeg(x))/(gdeg(f)/fdeg(g)).

This makes sense since deg(x) = deg(g) and since gdeg(f)/fdeg(g) 6∈ p′. We omit
the verification that ψ is well defined, a module map and an isomorphism. Hint:
the inverse sends (x/fn)/(g/fm) to (xfm)/(gfn). �

Here is a graded variant of Lemma 10.14.2.

Lemma 10.55.6. Suppose S is a graded ring, pi, i = 1, . . . , r homogeneous prime
ideals and I ⊂ S+ a graded ideal. Assume I 6⊂ pi for all i. Then there exists a
homogeneous element x ∈ I of positive degree such that x 6∈ pi for all i.

Proof. We may assume there are no inclusions among the pi. The result is true
for r = 1. Suppose the result holds for r − 1. Pick x ∈ I homogeneous of positive
degree such that x 6∈ pi for all i = 1, . . . , r − 1. If x 6∈ pr we are done. So assume
x ∈ pr. If Ip1 . . . pr−1 ⊂ pr then I ⊂ pr a contradiction. Pick y ∈ Ip1 . . . pr−1

homogeneous and y 6∈ pr. Then xdeg(y) + ydeg(x) works. �

Lemma 10.55.7. Let S be a graded ring. Let p ⊂ S be a prime. Let q be the
homogeneous ideal of S generated by the homogeneous elements of p. Then q is a
prime ideal of S.

Proof. Suppose f, g ∈ S are such that fg ∈ q. Let fd (resp. ge) be the homogeneous
part of f (resp. g) of degree d (resp. e). Assume d, e are maxima such that fd 6= 0
and ge 6= 0. By assumption we can write fg =

∑
aifi with fi ∈ p homogeneous.

Say deg(fi) = di. Then fdge =
∑
a′ifi with a′i to homogeneous par of degree

d + e − di of ai (or 0 if d + e − di < 0). Hence fd ∈ p or ge ∈ p. Hence fd ∈ q or
ge ∈ q. In the first case replace f by f − fd, in the second case replace g by g− ge.
Then still fg ∈ q but the discrete invariant d+ e has been decreased. Thus we may
continue in this fashion until either f or g is zero. This clearly shows that fg ∈ q
implies either f ∈ q or g ∈ q as desired. �

Lemma 10.55.8. Let S be a graded ring.

(1) Any minimal prime of S is a homogeneous ideal of S.
(2) Given a homogeneous ideal I ⊂ S any minimal prime over I is homoge-

neous.

Proof. The first assertion holds because the prime q constructed in Lemma 10.55.7
satisfies q ⊂ p. The second because we may consider S/I and apply the first
part. �
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Lemma 10.55.9. Let R be a ring. Let S be a graded R-algebra. Assume that S is
of finite type over R. Then for every homogeneous f ∈ S+ the ring S(f) is of finite
type over R.

Proof. Choose f1, . . . , fn ∈ S which generate S as an R-algebra. We may as-
sume that each fi is homogeneous (by decomposing each fi into its homogeneous
components). An element of S(f) is a sum of the form∑

e deg(f)=
∑
ei deg(fi)

λe1...enf
e1
1 . . . fenn /fe

with λe1...en ∈ R. Thus S(f) is generated as an R-algebra by the fe11 . . . fenn /fe with
the property that e deg(f) =

∑
ei deg(fi). If ei ≥ deg(f) then we can write this as

fe11 . . . fenn /fe = f
deg(f)
i /fdeg(fi) · fe11 . . . f

ei−deg(f)
i . . . fenn /fe−deg(fi)

Thus we only need the elements f
deg(f)
i /fdeg(fi) as well as the elements fe11 . . . fenn /fe

with edeg(f) =
∑
ei deg(fi) and ei ≤ deg(f). This is a finite list and we win. �

Lemma 10.55.10. Let R be a ring. Let R′ be a finite type R-algebra, and let M
be a finite R′-module. There exists a graded R-algebra S, a graded S-module N and
an element f ∈ S homogeneous of degree 1 such that

(1) R′ ∼= S(f) and M ∼= N(f) (as modules),
(2) S0 = R and S is generated by finitely many elements of degree 1 over R,

and
(3) N is a finite S-module.

Proof. We may write R′ = R[x1, . . . , xn]/I for some ideal I. For an element
g ∈ R[x1, . . . , xn] denote g̃ ∈ R[x0, . . . , xn] the element homogeneous of minimal

degree such that g = g̃(1, x1, . . . , xn). Let Ĩ ⊂ R[X0, . . . , Xn] generated by all

elements g̃, g ∈ I. Set S = R[X0, . . . , Xn]/Ĩ and denote f the image of X0 in S.
By construction we have an isomorphism

S(f) −→ R′, Xi/X0 7−→ xi.

To do the same thing with the module M we choose a presentation

M = (R′)⊕r/
∑

j∈J
R′kj

with kj = (k1j , . . . , krj). Let dij = deg(k̃ij). Set dj = max{dij}. Set Kij =

X
dj−dij
0 k̃ij which is homogeneous of degree dj . With this notation we set

N = Coker
(⊕

j∈J
S(−dj)

(Kij)−−−→ S⊕r
)

which works. Some details omitted. �

10.56. Blow up algebras

In this section we make some elementary observations about blowing up.

Definition 10.56.1. Let R be a ring. Let I ⊂ R be an ideal.

(1) The blowup algebra, or the Rees algebra, associated to the pair (R, I) is
the graded R-algebra

BlI(R) =
⊕

n≥0
In = R⊕ I ⊕ I2 ⊕ . . .

where the summand In is placed in degree n.
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(2) Let a ∈ I be an element. Denote a(1) the element a seen as an element of
degree 1 in the Rees algebra. Then the affine blowup algebra R[ Ia ] is the
algebra (BlI(R))(a(1)) constructed in Section 10.55.

In other words, an element of R[ Ia ] is represented by an expression of the form x/an

with x ∈ In. Two representatives x/an and y/am define the same element if and
only if ak(amx− any) = 0 for some k ≥ 0.

Lemma 10.56.2. Let R be a ring, I ⊂ R an ideal, and a ∈ I. The image of a in
the blowup algebra R′ = R[ Ia ] is a nonzerodivisor and IR′ = aR′.

Proof. Immediate from the description of R[ Ia ] above. �

Lemma 10.56.3. Let R be a ring, I ⊂ R an ideal, and a ∈ I. Set R′ = R[ Ia ].
If f ∈ R is such that V (f) = V (I), then f maps to a nonzerodivisor in R′ and
R′f = R′a = Rf .

Proof. We will use the results of Lemma 10.56.2 without further mention. The
assumption V (f) = V (I) implies V (fR′) = V (IR′) = V (aR′). Hence an = fb and
fm = ac for some b, c ∈ R′. The lemma follows. �

Lemma 10.56.4. If R is a domain then every (affine) blowup algebra of R is a
domain.

Proof. Omitted. �

Lemma 10.56.5. If R is reduced then every (affine) blowup algebra of R is reduced.

Proof. Omitted. �

Lemma 10.56.6. Let R be a ring. Let I ⊂ R be an ideal. Let a ∈ I. If a is
not contained in any minimal prime of R, then Spec(R[ Ia ]) → Spec(R) has dense
image.

Proof. If akx = 0 for x ∈ R, then x is contained in all the minimal primes of R
and hence nilpotent, see Lemma 10.16.2. Thus the kernel of R → R[ Ia ] consists of
nilpotent elements. Hence the result follows from Lemma 10.29.6. �

Lemma 10.56.7. Let (R,m) be a local domain with fraction field K. Let R ⊂ A ⊂
K be a valuation ring which dominates R. Then

A = colimR[ Ia ]

is a directed colimit of affine blowups R→ R[ Ia ] with the following two properties

(1) a ∈ I ⊂ m,
(2) I is finitely generated, and
(3) the fibre ring of R→ R[ Ia ] at m is not zero.

Proof. Consider a finite subset E ⊂ A. Say E = {e1, . . . , en}. Choose a nonzero
a ∈ R such that we can write ei = fi/a for all i = 1, . . . , n. Set I = (f1, . . . , fn, a).
We claim that R[ Ia ] ⊂ A. This is clear as an element of R[ Ia ] can be represented
as a polynomial in the elements ei. The lemma follows immediately from this
observation. �
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10.57. Noetherian graded rings

A bit of theory on Noetherian graded rings including some material on Hilbert
polynomials.

Lemma 10.57.1. Let S be a graded ring. A set of homogeneous elements fi ∈ S+

generates S as an algebra over S0 if and only if they generate S+ as an ideal of S.

Proof. If the fi generate S as an algebra over S0 then every element in S+ is a
polynomial without constant term in the fi and hence S+ is generated by the fi as
an ideal. Conversely, suppose that S+ =

∑
Sfi. We will prove that any element

f of S can be written as a polynomial in the fi with coefficients in S0. It suffices
to do this for homogeneous elements. Say f has degree d. Then we may perform
induction on d. The case d = 0 is immediate. If d > 0 then f ∈ S+ hence we
can write f =

∑
gifi for some gi ∈ S. As S is graded we can replace gi by its

homogeneous component of degree d− deg(fi). By induction we see that each gi is
a polynomial in the fi and we win. �

Lemma 10.57.2. A graded ring S is Noetherian if and only if S0 is Noetherian
and S+ is finitely generated as an ideal of S.

Proof. It is clear that if S is Noetherian then S0 = S/S+ is Noetherian and S+ is
finitely generated. Conversely, assume S0 is Noetherian and S+ finitely generated
as an ideal of S. Pick generators S+ = (f1, . . . , fn). By decomposing the fi into
homogeneous pieces we may assume each fi is homogeneous. By Lemma 10.57.1
we see that S0[X1, . . . Xn]→ S sending Xi to fi is surjective. Thus S is Noetherian
by Lemma 10.30.1. �

Definition 10.57.3. Let A be an abelian group. We say that a function f : n 7→
f(n) ∈ A defined for all sufficient large integers n is a numerical polynomial if there
exists r ≥ 0, elements a0, . . . , ar ∈ A such that

f(n) =
∑r

i=0

(
n

i

)
ai

for all n� 0.

The reason for using the binomial coefficients is the elementary fact that any poly-
nomial P ∈ Q[T ] all of whose values at integer points are integers, is equal to a

sum P (T ) =
∑
ai
(
T
i

)
with ai ∈ Z. Note that in particular the expressions

(
T+1
i+1

)
are of this form.

Lemma 10.57.4. If A→ A′ is a homomorphism of abelian groups and if f : n 7→
f(n) ∈ A is a numerical polynomial, then so is the composition.

Proof. This is immediate from the definitions. �

Lemma 10.57.5. Suppose that f : n 7→ f(n) ∈ A is defined for all n sufficiently
large and suppose that n 7→ f(n)− f(n− 1) is a numerical polynomial. Then f is
a numerical polynomial.

Proof. Let f(n) − f(n − 1) =
∑r
i=0

(
n
i

)
ai for all n � 0. Set g(n) = f(n) −∑r

i=0

(
n+1
i+1

)
ai. Then g(n)− g(n− 1) = 0 for all n� 0. Hence g is eventually con-

stant, say equal to a−1. We leave it to the reader to show that a−1 +
∑r
i=0

(
n+1
i+1

)
ai

has the required shape (see remark above the lemma). �
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Lemma 10.57.6. If M is a finitely generated graded S-module, and if S is finitely
generated over S0, then each Mn is a finite S0-module.

Proof. Suppose the generators of M are mi and the generators of S are fi. By
taking homogeneous components we may assume that the mi and the fi are ho-
mogeneous and we may assume fi ∈ S+. In this case it is clear that each Mn is
generated over S0 by the “monomials”

∏
feii mj whose degree is n. �

Proposition 10.57.7. Suppose that S is a Noetherian graded ring and M a finite
graded S-module. Consider the function

Z −→ K ′0(S0), n 7−→ [Mn]

see Lemma 10.57.6. If S+ is generated by elements of degree 1, then this function
is a numerical polynomial.

Proof. We prove this by induction on the minimal number of generators of S1. If
this number is 0, then Mn = 0 for all n � 0 and the result holds. To prove the
induction step, let x ∈ S1 be one of a minimal set of generators, such that the
induction hypothesis applies to the graded ring S/(x).

First we show the result holds if x is nilpotent on M . This we do by induction on
the minimal integer r such that xrM = 0. If r = 1, then M is a module over S/xS
and the result holds (by the other induction hypothesis). If r > 1, then we can find
a short exact sequence 0 → M ′ → M → M ′′ → 0 such that the integers r′, r′′ are
strictly smaller than r. Thus we know the result for M ′′ and M ′. Hence we get the
result for M because of the relation [Md] = [M ′d] + [M ′′d ] in K ′0(S0).

If x is not nilpotent on M , let M ′ ⊂ M be the largest submodule on which x
is nilpotent. Consider the exact sequence 0 → M ′ → M → M/M ′ → 0 we see
again it suffices to prove the result for M/M ′. In other words we may assume that
multiplication by x is injective.

Let M = M/xM . Note that the map x : M →M is not a map of graded S-modules,
since it does not map Md into Md. Namely, for each d we have the following short
exact sequence

0→Md
x−→Md+1 →Md+1 → 0

This proves that [Md+1]− [Md] = [Md+1]. Hence we win by Lemma 10.57.5. �

Remark 10.57.8. If S is still Noetherian but S is not generated in degree 1, then
the function associated to a graded S-module is a periodic polynomial (i.e., it is a
numerical polynomial on the congruence classes of integers modulo n for some n).

Example 10.57.9. Suppose that S = k[X1, . . . , Xd]. By Example 10.53.2 we may
identify K0(k) = K ′0(k) = Z. Hence any finitely generated graded k[X1, . . . , Xd]-
module gives rise to a numerical polynomial n 7→ dimk(Mn).

Lemma 10.57.10. Let k be a field. Suppose that I ⊂ k[X1, . . . , Xd] is a nonzero
graded ideal. Let M = k[X1, . . . , Xd]/I. Then the numerical polynomial n 7→
dimk(Mn) (see Example 10.57.9) has degree < d− 1 (or is zero if d = 1).

Proof. The numerical polynomial associated to the graded module k[X1, . . . , Xn]

is n 7→
(
n−1+d
d−1

)
. For any nonzero homogeneous f ∈ I of degree e and any degree

n >> e we have In ⊃ f ·k[X1, . . . , Xd]n−e and hence dimk(In) ≥
(
n−e−1+d
d−1

)
. Hence

http://stacks.math.columbia.edu/tag/00K0
http://stacks.math.columbia.edu/tag/00K1
http://stacks.math.columbia.edu/tag/02CD
http://stacks.math.columbia.edu/tag/00K2
http://stacks.math.columbia.edu/tag/00K3


538 10. COMMUTATIVE ALGEBRA

dimk(Mn) ≤
(
n−1+d
d−1

)
−
(
n−e−1+d
d−1

)
. We win because the last expression has degree

< d− 1 (or is zero if d = 1). �

10.58. Noetherian local rings

In all of this section (R,m, κ) is a Noetherian local ring. We develop some theory
on Hilbert functions of modules in this section. Let M be a finite R-module. We
define the Hilbert function of M to be the function

ϕM : n 7−→ lengthR(mnM/mn+1M)

defined for all integers n ≥ 0. Another important invariant is the function

χM : n 7−→ lengthR(M/mn+1M)

defined for all integers n ≥ 0. Note that we have by Lemma 10.50.3 that

χM (n) =
∑n

i=0
ϕM (i).

There is a variant of this construction which uses an ideal of definition.

Definition 10.58.1. Let (R,m) be a local Noetherian ring. An ideal I ⊂ R such

that
√
I = m is called an ideal of definition of R.

Let I ⊂ R be an ideal of definition. Because R is Noetherian this means that
mr ⊂ I for some r, see Lemma 10.31.4. Hence any finite R-module annihilated by
a power of I has a finite length, see Lemma 10.50.8. Thus it makes sense to define

ϕI,M (n) = lengthR(InM/In+1M) and χI,M (n) = lengthR(M/In+1M)

for all n ≥ 0. Again we have that

χI,M (n) =
∑n

i=0
ϕI,M (i).

Lemma 10.58.2. Suppose that M ′ ⊂ M are finite R-modules with finite length
quotient. Then there exists a constants c1, c2 such that for all n ≥ c2 we have

c1 + χI,M ′(n− c2) ≤ χI,M (n) ≤ c1 + χI,M ′(n)

Proof. Since M/M ′ has finite length there is a c2 ≥ 0 such that Ic2M ⊂M ′. Let
c1 = lengthR(M/M ′). For n ≥ c2 we have

χI,M (n) = lengthR(M/In+1M)

= c1 + lengthR(M ′/In+1M)

≤ c1 + lengthR(M ′/In+1M ′)

= c1 + χI,M ′(n)

On the other hand, since Ic2M ⊂ M ′, we have InM ⊂ In−c2M ′ for n ≥ c2. Thus
for n ≥ c2 we get

χI,M (n) = lengthR(M/In+1M)

= c1 + lengthR(M ′/In+1M)

≥ c1 + lengthR(M ′/In+1−c2M ′)

= c1 + χI,M ′(n− c2)

which finishes the proof. �
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Lemma 10.58.3. Suppose that 0→M ′ →M →M ′′ → 0 is a short exact sequence
of finite R-modules. Then there exists a submodule N ⊂ M ′ with finite colength l
and c ≥ 0 such that

χI,M (n) = χI,M ′′(n) + χI,N (n− c) + l

and
ϕI,M (n) = ϕI,M ′′(n) + ϕI,N (n− c)

for all n ≥ c.

Proof. Note that M/InM → M ′′/InM ′′ is surjective with kernel M ′/M ′ ∩ InM .
By the Artin-Rees Lemma 10.49.2 there exists a constant c such that M ′ ∩ InM =
In−c(M ′ ∩ IcM). Denote N = M ′ ∩ IcM . Note that IcM ′ ⊂ N ⊂ M ′. Hence
lengthR(M ′/M ′ ∩ InM) = lengthR(M ′/N) + lengthR(N/In−cN) for n ≥ c. From
the short exact sequence

0→M ′/M ′ ∩ InM →M/InM →M ′′/InM ′′ → 0

and additivity of lengths (Lemma 10.50.3) we obtain the equality

χI,M (n− 1) = χI,M ′′(n− 1) + χI,N (n− c− 1) + lengthR(M ′/N)

for n ≥ c. We have ϕI,M (n) = χI,M (n)−χI,M (n−1) and similarly for the modules
M ′′ and N . Hence we get ϕI,M (n) = ϕI,M ′′(n) + ϕI,N (n− c) for n ≥ c. �

Lemma 10.58.4. Suppose that I, I ′ are two ideals of definition for the Noetherian
local ring R. Let M be a finite R-module. There exists a constant a such that
χI,M (n) ≤ χI′,M (an) for n ≥ 1.

Proof. There exists an integer c such that (I ′)c ⊂ I. Hence we get a surjection
M/(I ′)c(n+1)M →M/In+1M . Whence the result with a = c+ 1. �

Proposition 10.58.5. Let R be a Noetherian local ring. Let M be a finite R-
module. Let I ⊂ R be an ideal of definition. The Hilbert function ϕI,M and the
function χI,M are numerical polynomials.

Proof. Consider the graded ring S = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . =
⊕

d≥0 I
d/Id+1.

Consider the graded S-module N = M/IM⊕IM/I2M⊕ . . . =
⊕

d≥0 I
dM/Id+1M .

This pair (S,N) satisfies the hypotheses of Proposition 10.57.7. Hence the result
for ϕI,M follows from that proposition and Lemma 10.53.1. The result for χI,M
follows from this and Lemma 10.57.5. �

Definition 10.58.6. Let R be a Noetherian local ring. Let M be a finite R-
module. The Hilbert polynomial of M over R is the element P (t) ∈ Q[t] such that
P (n) = ϕM (n) for n� 0.

By Proposition 10.58.5 we see that the Hilbert polynomial exists.

Lemma 10.58.7. Let R be a Noetherian local ring. Let M be a finite R-module.

(1) The degree of the numerical polynomial ϕI,M is independent of the ideal
of definition I.

(2) The degree of the numerical polynomial χI,M is independent of the ideal
of definition I.

Proof. Part (2) follows immediately from Lemma 10.58.4. Part (1) follows from
(2) because ϕI,M (n) = χI,M (n)− χI,M (n− 1) for n ≥ 1. �
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Definition 10.58.8. Let R be a local Noetherian ring and M a finite R-module.
We denote d(M) the element of {−∞, 0, 1, 2, . . .} defined as follows:

(1) If M = 0 we set d(M) = −∞,
(2) if M 6= 0 then d(M) is the degree of the numerical polynomial χM .

If mnM 6= 0 for all n, then we see that d(M) is the degree +1 of the Hilbert
polynomial of M .

Lemma 10.58.9. Let R be a Noetherian local ring. Let I ⊂ R be an ideal of
definition. Let M be a finite R-module which does not have finite length. If M ′ ⊂M
is a submodule with finite colength, then χI,M − χI,M ′ is a polynomial of degree <
degree of either polynomial.

Proof. Follows from Lemma 10.58.2 by elementary calculus. �

Lemma 10.58.10. Let R be a Noetherian local ring. Let I ⊂ R be an ideal of
definition. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finite
R-modules. Then

(1) if M ′ does not have finite length, then χI,M−χI,M ′′−χI,M ′ is a numerical
polynomial of degree < the degree of χI,M ′ ,

(2) max{deg(χI,M ′),deg(χI,M ′′)} = deg(χI,M ), and
(3) max{d(M ′), d(M ′′)} = d(M),

Proof. We first prove (1). Let N ⊂ M ′ be as in Lemma 10.58.3. By Lemma
10.58.9 the numerical polynomial χI,M ′ −χI,N has degree < the common degree of
χI,M ′ and χI,N . By Lemma 10.58.3 the difference

χI,M (n)− χI,M ′′(n)− χI,N (n− c)
is constant for n� 0. By elementary calculus the difference χI,N (n)−χI,N (n− c)
has degree < the degree of χI,N which is bigger than zero (see above). Putting
everything together we obtain (1).

Note that the leading coefficients of χI,M ′ and χI,M ′′ are nonnegative. Thus the
degree of χI,M ′ + χI,M ′′ is equal to the maximum of the degrees. Thus if M ′ does
not have finite length, then (2) follows from (1). If M ′ does have finite length, then
InM → InM ′′ is an isomorphism for all n � 0 by Artin-Rees (Lemma 10.49.2).
Thus M/InM → M ′′/InM ′′ is a surjection with kernel M ′ for n � 0 and we see
that χI,M (n) − χI,M ′′(n) = length(M ′) for all n � 0. Thus (2) holds in this case
also.

Proof of (3). This follows from (2) except if one of M , M ′, or M ′′ is zero. We omit
the proof in these special cases. �

10.59. Dimension

Definition 10.59.1. The Krull dimension of the ring R is the Krull dimension of
the topological space Spec(R), see Topology, Definition 5.9.1. In other words it is
the supremum of the integers n ≥ 0 such that there exists a chain of prime ideals
of length n:

p0 ⊂ p1 ⊂ . . . ⊂ pn, pi 6= pi+1.

Definition 10.59.2. The height of a prime ideal p of a ring R is the dimension of
the local ring Rp.
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Lemma 10.59.3. The Krull dimension of R is the supremum of the heights of its
(maximal) primes.

Proof. This is so because we can always add a maximal ideal at the end of a chain
of prime ideals. �

Lemma 10.59.4. A Noetherian ring of dimension 0 is Artinian. Conversely, any
Artinian ring is Noetherian of dimension zero.

Proof. By Lemma 10.30.5 the space Spec(R) is Noetherian. By Topology, Lemma
5.8.2 we see that Spec(R) has finitely many irreducible components, say Spec(R) =
Z1 ∪ . . . Zr. According to Lemma 10.25.1, each Zi = V (pi) with pi a minimal ideal.
Since the dimension is 0 these pi are also maximal. Thus Spec(R) is the discrete
topological space with elements pi. All elements f of the radical I = ∩pi are
nilpotent since otherwise Rf would not be the zero ring and we would have another
prime. Since I is finitely generated we conclude that I is nilpotent, Lemma 10.31.4.
By Lemma 10.51.5 R is the product of its local rings. By Lemma 10.50.8 each of
these has finite length over R. Hence we conclude that R is Artinian by Lemma
10.51.6.

If R is Artinian then by Lemma 10.51.6 it is Noetherian. All of its primes are
maximal by a combination of Lemmas 10.51.3, 10.51.4 and 10.51.5. �

In the following we will use the invariant d(−) defined in Definition 10.58.8. Here
is a warm up lemma.

Lemma 10.59.5. Let R be a Noetherian local ring. Then dim(R) = 0⇔ d(R) = 0.

Proof. This is because d(R) = 0 if and only if R has finite length as an R-module.
See Lemma 10.51.6. �

Proposition 10.59.6. Let R be a ring. The following are equivalent:

(1) R is Artinian,
(2) R is Noetherian and dim(R) = 0,
(3) R has finite length as a module over itself,
(4) R is a finite product of Artinian local rings,
(5) R is Noetherian and Spec(R) is a finite discrete topological space,
(6) R is a finite product of Noetherian local rings of dimension 0,
(7) R is a finite product of Noetherian local rings Ri with d(Ri) = 0,
(8) R is a finite product of Noetherian local rings Ri whose maximal ideals

are nilpotent,
(9) R is Noetherian, has finitely many maximal ideals and its radical ideal is

nilpotent, and
(10) R is Noetherian and there are no strict inclusions among its primes.

Proof. This is a combination of Lemmas 10.51.5, 10.51.6, 10.59.4, and 10.59.5. �

Lemma 10.59.7. Let R be a local Noetherian ring. The following are equivalent:

(1) dim(R) = 1,
(2) d(R) = 1,
(3) there exists an x ∈ m, x not nilpotent such that V (x) = {m},
(4) there exists an x ∈ m, x not nilpotent such that m =

√
(x), and
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(5) there exists an ideal of definition generated by 1 element, and no ideal of
definition is generated by 0 elements.

Proof. First, assume that dim(R) = 1. Let pi be the minimal primes of R. Because
the dimension is 1 the only other prime of R is m. According to Lemma 10.30.6
there are finitely many. Hence we can find x ∈ m, x 6∈ pi, see Lemma 10.14.2. Thus
the only prime containing x is m and hence (3).

If (3) then m =
√

(x) by Lemma 10.16.2, and hence (4). The converse is clear as
well. The equivalence of (4) and (5) follows from directly the definitions.

Assume (5). Let I = (x) be an ideal of definition. Note that In/In+1 is a quotient
of R/I via multiplication by xn and hence lengthR(In/In+1) is bounded. Thus
d(R) = 0 or d(R) = 1, but d(R) = 0 is excluded by the assumption that 0 is not an
ideal of definition.

Assume (2). To get a contradiction, assume there exist primes p ⊂ q ⊂ m, with both
inclusions strict. Pick some ideal of definition I ⊂ R. We will repeatedly use Lemma
10.58.10. First of all it implies, via the exact sequence 0 → p → R → R/p → 0,
that d(R/p) ≤ 1. But it clearly cannot be zero. Pick x ∈ q, x 6∈ p. Consider the
short exact sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.

This implies that χI,R/p − χI,R/p − χI,R/(xR+p) = −χI,R/(xR+p) has degree < 1.
In other words, d(R/(xR + p) = 0, and hence dim(R/(xR + p)) = 0, by Lemma
10.59.5. But R/(xR+ p) has the distinct primes q/(xR+ p) and m/(xR+ p) which
gives the desired contradiction. �

Proposition 10.59.8. Let R be a local Noetherian ring. Let d ≥ 0 be an integer.
The following are equivalent:

(1) dim(R) = d,
(2) d(R) = d,
(3) there exists an ideal of definition generated by d elements, and no ideal of

definition is generated by fewer than d elements.

Proof. This proof is really just the same as the proof of Lemma 10.59.7. We
will prove the proposition by induction on d. By Lemmas 10.59.5 and 10.59.7 we
may assume that d > 1. Denote the minimal number of generators for an ideal of
definition of R by d′(R). We will prove that the inequalities dim(R) ≥ d′(R) ≥
d(R) ≥ dim(R), and hence they are all equal.

First, assume that dim(R) = d. Let pi be the minimal primes of R. According
to Lemma 10.30.6 there are finitely many. Hence we can find x ∈ m, x 6∈ pi, see
Lemma 10.14.2. Note that every maximal chain of primes starts with some pi,
hence the dimension of R/xR is at most d − 1. By induction there are x2, . . . , xd
which generate an ideal of definition in R/xR. Hence R has an ideal of definition
generated by (at most) d elements.

Assume d′(R) = d. Let I = (x1, . . . , xd) be an ideal of definition. Note that

In/In+1 is a quotient of a direct sum of
(
d+n−1
d−1

)
copies R/I via multiplication by

all degree n monomials in x1, . . . , xn. Hence lengthR(In/In+1) is bounded by a
polynomial of degree d− 1. Thus d(R) ≤ d.
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Assume d(R) = d. Consider a chain of primes p ⊂ q ⊂ q2 ⊂ . . . ⊂ pe = m,
with all inclusions strict, and e ≥ 2. Pick some ideal of definition I ⊂ R. We
will repeatedly use Lemma 10.58.10. First of all it implies, via the exact sequence
0 → p → R → R/p → 0, that d(R/p) ≤ d. But it clearly cannot be zero. Pick
x ∈ q, x 6∈ p. Consider the short exact sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.

This implies that χI,R/p − χI,R/p − χI,R/(xR+p) = −χI,R/(xR+p) has degree < d.
In other words, d(R/(xR + p)) ≤ d − 1, and hence dim(R/(xR + p)) ≤ d − 1, by
induction. Now R/(xR+p) has the chain of prime ideals q/(xR+p) ⊂ q2/(xR+p) ⊂
. . . ⊂ qe/(xR + p) which gives e − 1 ≤ d − 1. Since we started with an arbitrary
chain of primes this proves that dim(R) ≤ d(R).

Reading back the reader will see we proved the circular inequalities as desired. �

Let (R,m) be a Noetherian local ring. From the above it is clear that m cannot
be generated by fewer than dim(R) variables. By Nakayama’s Lemma 10.19.1
the minimal number of generators of m equals dimκ(m) m/m

2. Hence we have the
following fundamental inequality

dim(R) ≤ dimκ(m) m/m
2.

It turns out that the rings where equality holds have a lot of good properties. They
are called regular local rings.

Definition 10.59.9. Let (R,m) be a Noetherian local ring of dimension d.

(1) A system of parameters of R is a sequence of elements x1, . . . , xd ∈ m
which generates an ideal of definition of R,

(2) if there exist x1, . . . , xd ∈ m such that m = (x1, . . . , xd) then we call R a
regular local ring and x1, . . . , xd a regular system of parameters.

The following two lemmas are clear from the proofs of the lemmas and proposition
above, but we spell them out so we have convenient references.

Lemma 10.59.10. Let R be a Noetherian ring.

(1) Let x ∈ R, p, q ∈ Spec(R). Suppose that p ⊂ (p, x) ⊂ q and q minimal
over (p, x). Then there is no prime strictly between p and q.

(2) If x ∈ R and x ∈ p is minimal over (x) then the height of p is 0 or 1.

Proof. Consider the situation of the first assertion. The primes containing p and
contained in q correspond to primes of Rq/pRq, and the primes containing x corre-
spond to the ones containing the image of x. Thus we may assume R is a Noetherian
local domain, p = (0) and q maximal. Now since

√
(x) is the intersection of the

prime ideals containing it, and since q is the only prime containing x by minimality,
we see that

√
(x) = q. Hence Lemma 10.59.7 applies. The second assertion follows

from the first. �

Lemma 10.59.11. Suppose that R is a Noetherian local ring and x ∈ m an element
of its maximal ideal. Then dimR ≤ dimR/xR+ 1. If x is not contained in any of
the minimal primes of R then equality holds. (For example if x is a nonzerodivisor.)

Proof. If x1, . . . , xdimR/xR ∈ R map to elements of R/xR which generate an ideal
of definition for R/xR, then x, x1, . . . , xdimR/xR generate an ideal of definition for
R. Hence the inequality by Proposition 10.59.8. On the other hand, if x is not
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contained in any minimal prime of R, then the chains of primes in R/xR all give
rise to chains in R which are at least one step away from being maximal. �

Lemma 10.59.12. Let (R,m) be a Noetherian local ring. Suppose x1, . . . , xd ∈ m
generate an ideal of definition and d = dim(R). Then dim(R/(x1, . . . , xi)) = d− i
for all i = 1, . . . , d.

Proof. Follows either from the proof of Proposition 10.59.8, or by using induction
on d and Lemma 10.59.11. �

10.60. Applications of dimension theory

We can use the results on dimension to prove certain rings have infinite spectra and
to produce more Jacobson rings.

Lemma 10.60.1. Let R be a Noetherian local domain of dimension ≥ 2. A
nonempty open subset U ⊂ Spec(R) is infinite.

Proof. To get a contradiction, assume that U ⊂ Spec(R) is finite. In this case
(0) ∈ U and {(0)} is an open subset of U (because the complement of {(0)} is
the union of the closures of the other points). Thus we may assume U = {(0)}.
Let m ⊂ R be the maximal ideal. We can find an x ∈ m, x 6= 0 such that
V (x) ∪ U = Spec(R). In other words we see that D(x) = {(0)}. In particular we
see that dim(R/xR) = dim(R)− 1 ≥ 1, see Lemma 10.59.11. Let y2, . . . , ydim(R) ∈
R/xR generate an ideal of definition of R/xR, see Proposition 10.59.8. Choose lifts
y2, . . . , ydim(R) ∈ R, so that x, y2, . . . , ydim(R) generate an ideal of definition in R.
This implies that dim(R/(y2)) = dim(R) − 1 and dim(R/(y2, x)) = dim(R) − 2,
see Lemma 10.59.12. Hence there exists a prime p containing y2 but not x. This
contradicts the fact that D(x) = {(0)}. �

The rings k[[t]] where k is a field, or the ring of p-adic numbers are Noetherian
rings of dimension 1 with finitely many primes. This is the maximal.

Lemma 10.60.2. A Noetherian ring with finitely many primes has dimension ≤ 1.

Proof. Let R be a Noetherian ring with finitely many primes. If R is a local
domain, then the lemma follows from Lemma 10.60.1. If R is a domain, then Rm

has dimension ≤ 1 for all maximal ideals m by the local case. Hence dim(R) ≤ 1
by Lemma 10.59.3. If R is general, then dim(R/q) ≤ 1 for every minimal prime q
of R. Since every prime contains a minimal prime (Lemma 10.16.2), this implies
dim(R) ≤ 1. �

Lemma 10.60.3. Let S be a nonzero finite type algebra over a field k. Then
dim(S) = 0 if and only if S has finitely many primes.

Proof. Recall that Spec(S) is sober, Noetherian, and Jacobson, see Lemmas 10.25.2,
10.30.5, 10.34.2, and 10.34.4. If it has dimension 0, then every point defines an ir-
reducible component and there are only a finite number of irreducible components
(Topology, Lemma 5.8.2). Conversely, if Spec(S) is finite, then it is discrete by
Topology, Lemma 5.17.6 and hence the dimension is 0. �

Lemma 10.60.4. Noetherian Jacobson rings.

(1) Any Noetherian domain R of dimension 1 with infinitely many primes is
Jacobson.
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(2) Any Noetherian ring such that every prime p is either maximal or con-
tained in infinitely many prime ideals is Jacobson.

Proof. Part (1) is a reformulation of Lemma 10.34.6.

Let R be a Noetherian ring such that every non-maximal prime p is contained in
infinitely many prime ideals. Assume Spec(R) is not Jacobson to get a contradic-
tion. By Lemmas 10.25.1 and 10.30.5 we see that Spec(R) is a sober, Noetherian
topological space. By Topology, Lemma 5.17.3 we see that there exists a non-
maximal ideal p ⊂ R such that {p} is a locally closed subset of Spec(R). In other
words, p is not maximal and {p} is an open subset of V (p). Consider a prime
q ⊂ R with p ⊂ q. Recall that the topology on the spectrum of (R/p)q = Rq/pRq

is induced from that of Spec(R), see Lemmas 10.16.5 and 10.16.7. Hence we see
that {(0)} is a locally closed subset of Spec((R/p)q). By Lemma 10.60.1 we con-
clude that dim((R/p)q) = 1. Since this holds for every q ⊃ p we conclude that
dim(R/p) = 1. At this point we use the assumption that p is contained in infinitely
many primes to see that Spec(R/p) is infinite. Hence by part (1) of the lemma we
see that V (p) ∼= Spec(R/p) is the closure of its closed points. This is the desired
contradiction since it means that {p} ⊂ V (p) cannot be open. �

10.61. Support and dimension of modules

Lemma 10.61.1. Let R be a Noetherian ring, and let M be a finite R-module.
There exists a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R.

Proof. By Lemma 10.5.4 it suffices to do the case M = R/I for some ideal I.
Consider the set S of ideals J such that the lemma does not hold for the module
R/J , and order it by inclusion. To arrive at a contradiction, assume that S is not
empty. Because R is Noetherian, S has a maximal element J . By definition of S,
the ideal J cannot be prime. Pick a, b ∈ R such that ab ∈ J , but neither a ∈ J nor
b ∈ J . Consider the filtration 0 ⊂ aR/(J ∩ aR) ⊂ R/J . Note that aR/(J ∩ aR) is
a quotient of R/(J + bR) and the second quotient equals R/(aR + J). Hence by
maximality of J , each of these has a filtration as above and hence so does R/J .
Contradiction. �

Lemma 10.61.2. Let R, M , Mi, pi as in Lemma 10.61.1. Then Supp(M) =⋃
V (pi) and in particular pi ∈ Supp(M).

Proof. This follows from Lemmas 10.39.5 and 10.39.8. �

Lemma 10.61.3. Suppose that R is a Noetherian local ring with maximal ideal m.
Let M be a nonzero finite R-module. Then Supp(M) = {m} if and only if M has
finite length over R.

Proof. Assume that Supp(M) = {m}. It suffices to show that all the primes pi
in the filtration of Lemma 10.61.1 are the maximal ideal. This is clear by Lemma
10.61.2.
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Suppose that M has finite length over R. Then mnM = 0 by Lemma 10.50.4.
Since some element of m maps to a unit in Rp for any prime p 6= m in R we see
Mp = 0. �

Lemma 10.61.4. Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a
finite R-module. Then InM = 0 for some n ≥ 0 if and only if Supp(M) ⊂ V (I).

Proof. It is clear that InM = 0 for some n ≥ 0 implies Supp(M) ⊂ V (I). Suppose
that Supp(M) ⊂ V (I). Choose a filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M as
in Lemma 10.61.1. Each of the primes pi is contained in V (I) by Lemma 10.61.2.
Hence I ⊂ pi and I annihilates Mi/Mi−1. Hence In annihilates M . �

Lemma 10.61.5. Let R, M , Mi, pi as in Lemma 10.61.1. The minimal elements
of the set {pi} are the minimal elements of Supp(M). The number of times a
minimal prime p occurs is

#{i | pi = p} = lengthRp
Mp.

Proof. The first statement follows because Supp(M) =
⋃
V (pi), see Lemma 10.61.2.

Let p ∈ Supp(M) be minimal. The support of Mp is the set consisting of the max-
imal ideal pRp. Hence by Lemma 10.61.3 the length of Mp is finite and > 0. Next
we note that Mp has a filtration with subquotients (R/pi)p = Rp/piRp These are
zero if pi 6⊂ p and equal to κ(p) if pi ⊂ p because by minimality of p we have pi = p
in this case. The result follows since κ(p) has length 1. �

Lemma 10.61.6. Let R be a Noetherian local ring. Let M be a finite R-module.
Then d(M) = dim(Supp(M)).

Proof. Let Mi, pi be as in Lemma 10.61.1. By Lemma 10.58.10 we obtain the
equality d(M) = max{d(R/pi)}. By Proposition 10.59.8 we have d(R/pi) =
dim(R/pi). Trivially dim(R/pi) = dimV (pi). Since all minimal primes of Supp(M)
occur among the pi we win. �

10.62. Associated primes

Here is the standard definition. For non-Noetherian rings and non-finite modules
it may be more appropriate to use the definition in Section 10.65.

Definition 10.62.1. Let R be a ring. Let M be an R-module. A prime p of R is
associated to M if there exists an element m ∈ M whose annihilator is p. The set
of all such primes is denoted AssR(M) or Ass(M).

Lemma 10.62.2. Let R be a ring. Let M be an R-module. Then Ass(M) ⊂
Supp(M).

Proof. Ifm ∈M has annihilator p, then in particular no element ofR\p annihilates
m. Hence m is a nonzero element of Mp, i.e., p ∈ Supp(M). �

Lemma 10.62.3. Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short
exact sequence of R-modules. Then Ass(M ′) ⊂ Ass(M) and Ass(M) ⊂ Ass(M ′) ∪
Ass(M ′′).

Proof. Omitted. �
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Lemma 10.62.4. Let R be a ring, and M an R-module. Suppose there exists a
filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R. Then Ass(M) ⊂ {p1, . . . , pn}.

Proof. By induction on the length n of the filtration {Mi}. Pick m ∈ M whose
annihilator is a prime p. If m ∈ Mn−1 we are done by induction. If not, then m
maps to a nonzero element of M/Mn−1

∼= R/pn. Hence we have p ⊂ pn. If equality
does not hold, then we can find f ∈ pn, f 6∈ p. In this case the annihilator of fm
is still p and fm ∈Mn−1. Thus we win by induction. �

Lemma 10.62.5. Let R be a Noetherian ring. Let M be a finite R-module. Then
Ass(M) is finite.

Proof. Immediate from Lemma 10.62.4 and Lemma 10.61.1. �

Proposition 10.62.6. Let R be a Noetherian ring. Let M be a finite R-module.
The following sets of primes are the same:

(1) The minimal primes in the support of M .
(2) The minimal primes in Ass(M).
(3) For any filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M with

Mi/Mi−1
∼= R/pi the minimal primes of the set {pi}.

Proof. Choose a filtration as in (3). In Lemma 10.61.5 we have seen that the sets
in (1) and (3) are equal.

Let p be a minimal element of the set {pi}. Let i be minimal such that p = pi.
Pick m ∈Mi, m 6∈Mi−1. The annihilator of m is contained in pi = p and contains
p1p2 . . . pi. By our choice of i and p we have pj 6⊂ p for j < i and hence we have
p1p2 . . . pi−1 6⊂ pi. Pick f ∈ p1p2 . . . pi−1, f 6∈ p. Then fm has annihilator p. In
this way we see that p is an associated prime of M . By Lemma 10.62.2 we have
Ass(M) ⊂ Supp(M) and hence p is minimal in Ass(M). Thus the set of primes in
(1) is contained in the set of primes of (2).

Let p be a minimal element of Ass(M). Since Ass(M) ⊂ Supp(M) there is a
minimal element q of Supp(M) with q ⊂ p. We have just shown that q ∈ Ass(M).
Hence q = p by minimality of p. Thus the set of primes in (2) is contained in the
set of primes of (1). �

Lemma 10.62.7. Let R be a Noetherian ring. Let M be an R-module. Then

M = (0)⇔ Ass(M) = ∅.

Proof. If M = (0), then Ass(M) = ∅ by definition. If M 6= 0, pick any nonzero
finitely generated submodule M ′ ⊂ M , for example a submodule generated by a
single nonzero element. By Lemma 10.39.2 we see that Supp(M ′) is nonempty. By
Proposition 10.62.6 this implies that Ass(M ′) is nonempty. By Lemma 10.62.3 this
implies Ass(M) 6= ∅. �

Lemma 10.62.8. Let R be a Noetherian ring. Let M be an R-module. Any
p ∈ Supp(M) which is minimal among the elements of Supp(M) is an element of
Ass(M).
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Proof. If M is a finite R-module, then this is a consequence of Proposition 10.62.6.
In general write M =

⋃
Mλ as the union of its finite submodules, and use that

Supp(M) =
⋃

Supp(Mλ) and Ass(M) =
⋃

Ass(Mλ). �

Lemma 10.62.9. Let R be a Noetherian ring. Let M be an R-module. The union⋃
q∈Ass(M) q is the set of elements of R which are zerodivisors on M .

Proof. Any element in any associated prime clearly is a zerodivisor on M . Con-
versely, suppose x ∈ R is a zerodivisor on M . Consider the submodule N = {m ∈
M | xm = 0}. Since N is not zero it has an associated prime q by Lemma 10.62.7.
Then x ∈ q and q is an associated prime of M by Lemma 10.62.3. �

Lemma 10.62.10. Let ϕ : R → S be a ring map. Let M be an S-module. Then
Spec(ϕ)(AssS(M)) ⊂ AssR(M).

Proof. If q ∈ AssS(M), then there exists an m in M such that the annihilator of
m in S is q. Then the annihilator of m in R is q ∩R. �

Remark 10.62.11. Let ϕ : R→ S be a ring map. Let M be an S-module. Then it
is not always the case that Spec(ϕ)(AssS(M)) ⊃ AssR(M). For example, consider
the ring map R = k → S = k[x1, x2, x3, . . .]/(x

2
i ) and M = S. Then AssR(M) is

not empty, but AssS(S) is empty.

Lemma 10.62.12. Let ϕ : R→ S be a ring map. Let M be an S-module. If S is
Noetherian, then Spec(ϕ)(AssS(M)) = AssR(M).

Proof. We have already seen in Lemma 10.62.10 that Spec(ϕ)(AssS(M)) ⊂ AssR(M).
For the converse, choose a prime p ∈ AssR(M). Let m ∈ M be an element such
that the annihilator of x in R is p. Let I = {g ∈ S | gm = 0} be the annihilator of
m in S. Then R/p ⊂ S/I is injective, hence there exists a prime q ⊂ S lying over
p, see Lemma 10.29.5. By Proposition 10.62.6 we see that q is an associated prime
of S/I, hence an associated prime of M by Lemma 10.62.3 and we win. �

Lemma 10.62.13. Let R be a ring. Let I be an ideal. Let M be an R/I-module.
Via the canonical injection Spec(R/I)→ Spec(R) we have AssR/I(M) = AssR(M).

Proof. Omitted. �

Lemma 10.62.14. Let R be a ring. Let M be an R-module. Let p ⊂ R be a prime.

(1) If p ∈ Ass(M) then pRp ∈ Ass(Mp).
(2) If p is finitely generated then the converse holds as well.

Proof. If p ∈ Ass(M) there exists an element m ∈ M whose annihilator is p. As
localization is exact (Proposition 10.9.12) we see that the annihilator of m/1 in Mp

is pRp hence (1) holds. Assume pRp ∈ Ass(Mp) and p = (f1, . . . , fn). Let m/g be
an element of Mp whose annihilator is pRp. This implies that the annihilator of m
is contained in p. As fim/g = 0 in Mp we see there exists a gi ∈ R, gi 6∈ p such
that gifim = 0 in M . Combined we see the annihilator of g1 . . . gnm is p. Hence
p ∈ Ass(M). �

Lemma 10.62.15. Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have

(1) AssR(S−1M) = AssS−1R(S−1M),
(2) AssR(M) ∩ Spec(S−1R) ⊂ AssR(S−1M), and
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(3) if R is Noetherian this inclusion is an equality.

Proof. The first equality follows, since if m ∈ S−1M , then the annihilator of m
in R is the intersection of the annihilator of m in S−1R with R. The displayed
inclusion and equality in the Noetherian case follows from Lemma 10.62.14 since
for p ∈ R, S ∩ p = ∅ we have Mp = (S−1M)S−1p. �

Lemma 10.62.16. Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

AssR(M) = AssR(S−1M).

Proof. As M ⊂ S−1M by assumption we get the inclusion Ass(M) = Ass(S−1M)
from Lemma 10.62.3. Conversely, suppose that n/s ∈ S−1M is an element whose
annihilator is a prime ideal p. Then the annihilator of n ∈M is also p. �

Lemma 10.62.17. Let R be a Noetherian local ring with maximal ideal m. Let
I ⊂ m be an ideal. Let M be a finite R-module. The following are equivalent:

(1) There exists an x ∈ I which is not a zerodivisor on M .
(2) We have I 6⊂ q for all q ∈ Ass(M).

Proof. If there exists a nonzerodivisor x in I, then x clearly cannot be in any
associated prime of M . Conversely, suppose I 6⊂ q for all q ∈ Ass(M). In this case
we can choose x ∈ I, x 6∈ q for all q ∈ Ass(M) by Lemmas 10.62.5 and 10.14.2. By
Lemma 10.62.9 the element x is not a zerodivisor on M . �

Lemma 10.62.18. Let R be a ring. Let M be an R-module. If R is Noetherian
the map

M −→
∏

p∈Ass(M)
Mp

is injective.

Proof. Let x ∈M be an element of the kernel of the map. Then if p is an associated
prime of Rx ⊂ M we see on the one hand that p ∈ Ass(M) (Lemma 10.62.3) and
on the other hand that (Rx)p ⊂ Mp is not zero. This contradiction shows that
Ass(Rx) = ∅. Hence Rx = 0 by Lemma 10.62.7. �

10.63. Symbolic powers

We only make the following definition in the case of a Noetherian ring although the
formula itself makes sense in general.

Definition 10.63.1. Let R be a Noetherian ring. Let p be a prime ideal. For
n ≥ 0 the nth symbolic power of p is the ideal p(n) = Ker(R→ Rp/p

nRp).

Note that pn ⊂ p(n) but equality does not always hold.

Lemma 10.63.2. Let R be a Noetherian ring. Let p be a prime ideal. Let n > 0.
Then Ass(R/p(n)) = {p}.

Proof. If q is an associated prime of R/p(n) then clearly p ⊂ q. On the other hand,
any element x ∈ R, x 6∈ p is a nonzerodivisor on R/p(n). Namely, if y ∈ R and
xy ∈ p(n) = R∩pnRp then y ∈ pnRp, hence y ∈ p(n). Hence the lemma follows. �
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10.64. Relative assassin

Discussion of relative assassins. Let R→ S be a ring map. Let N be an S-module.
In this situation we can introduce the following sets of primes q of S:

A with p = R ∩ q we have that q ∈ AssS(N ⊗R κ(p)),
A′ with p = R ∩ q we have that q is in the image of AssS⊗κ(p)(N ⊗R κ(p))

under the canonical map Spec(S ⊗R κ(p))→ Spec(S),
Afin with p = R ∩ q we have that q ∈ AssS(N/pN),
A′fin for some prime p′ ⊂ R we have q ∈ AssS(N/p′N),

B for some R-module M we have q ∈ AssS(N ⊗RM), and
Bfin for some finite R-module M we have q ∈ AssS(N ⊗RM).

Let us determine some of the relations between theses sets.

Lemma 10.64.1. Let R → S be a ring map. Let N be an S-module. Let A, A′,
Afin, B, and Bfin be the subsets of Spec(S) introduced above.

(1) We always have A = A′.
(2) We always have Afin ⊂ A, Bfin ⊂ B, Afin ⊂ A′fin ⊂ Bfin and A ⊂ B.

(3) If S is Noetherian, then A = Afin and B = Bfin.
(4) If N is flat over R, then A = Afin = A′fin and B = Bfin.

(5) If R is Noetherian and N is flat over R, then all of the sets are equal,
i.e., A = A′ = Afin = A′fin = B = Bfin.

Proof. Some of the arguments in the proof will be repeated in the proofs of later
lemmas which are more precise than this one (because they deal with a given module
M or a given prime p and not with the collection of all of them).

Proof of (1). Let p be a prime of R. Then we have

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p))

the first equality by Lemma 10.62.13 and the second by Lemma 10.62.15 part (1).
This prove that A = A′. The inclusion Afin ⊂ A′fin is clear.

Proof of (2). Each of the inclusions is immediate from the definitions except perhaps
Afin ⊂ A which follows from Lemma 10.62.15 and the fact that we require p = R∩q
in the formulation of Afin.

Proof of (3). The equality A = Afin follows from Lemma 10.62.15 part (3) if S
is Noetherian. Let q = (g1, . . . , gm) be a finitely generated prime ideal of S. Say
z ∈ N ⊗RM is an element whose annihilator is q. We may pick a finite submodule
M ′ ⊂M such that z is the image of z′ ∈ N⊗RM ′. Then AnnS(z′) ⊂ q = AnnS(z).
Since N ⊗R − commutes with colimits and since M is the directed colimit of finite
R-modules we can find M ′ ⊂ M ′′ ⊂ M such that the image z′′ ∈ N ⊗R M ′′ is
annihilated by g1, . . . , gm. Hence AnnS(z′′) = q. This proves that B = Bfin if S is
Noetherian.

Proof of (4). If N is flat, then the functor N⊗R− is exact. In particular, if M ′ ⊂M ,
then N ⊗RM ′ ⊂ N ⊗RM . Hence if z ∈ N ⊗RM is an element whose annihilator
q = AnnS(z) is a prime, then we can pick any finite R-submodule M ′ ⊂ M such
that z ∈ N ⊗RM ′ and we see that the annihilator of z as an element of N ⊗RM ′ is
equal to q. Hence B = Bfin. Let p′ be a prime of R and let q be a prime of S which
is an associated prime of N/p′N . This implies that p′S ⊂ q. As N is flat over R we
see that N/p′N is flat over the integral domain R/p′. Hence every nonzero element
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of R/p′ is a nonzerodivisor on N/p′. Hence none of these elements can map to an
element of q and we conclude that p′ = R ∩ q. Hence Afin = A′fin. Finally, by

Lemma 10.62.16 we see that AssS(N/p′N) = AssS(N ⊗R κ(p′)), i.e., A′fin = A.

Proof of (5). We only need to prove A′fin = Bfin as the other equalities have been

proved in (4). To see this let M be a finite R-module. By Lemma 10.61.1 there
exists a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R. Since N is flat we obtain a filtration by S-submodules

0 = N ⊗RM0 ⊂ N ⊗RM1 ⊂ . . . ⊂ N ⊗RMn = N ⊗RM
such that each subquotient is isomorphic to N/piN . By Lemma 10.62.3 we conclude
that AssS(N ⊗RM) ⊂

⋃
AssS(N/piN). Hence we see that Bfin ⊂ A′fin. Since the

other inclusion is part of (2) we win. �

We define the relative assassin of N over S/R to be the set A = A′ above. As a
motivation we point out that it depends only on the fibre modules N ⊗R κ(p) over
the fibre rings. As in the case of the assassin of a module we warn the reader that
this notion makes most sense when the fibre rings S ⊗R κ(p) are Noetherian, for
example if R→ S is of finite type.

Definition 10.64.2. Let R → S be a ring map. Let N be an S-module. The
relative assassin of N over S/R is the set

AssS/R(N) = {q ⊂ S | q ∈ AssS(N ⊗R κ(p)) with p = R ∩ q}.
This is the set named A in Lemma 10.64.1.

The spirit of the next few results is that they are about the relative assassin, even
though this may not be apparent.

Lemma 10.64.3. Let R → S be a ring map. Let M be an R-module, and let N
be an S-module. If N is flat as R-module, then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS(N/pN)

and if R is Noetherian then we have equality.

Proof. If p ∈ AssR(M) then there exists an injection R/p→M . As N is flat over
R we obtain an injection R/p ⊗R N → M ⊗R M . Since R/p ⊗R N = N/pN we
conclude that AssS(N/pN) ⊂ AssS(M ⊗RN), see Lemma 10.62.3. Hence the right
hand side is contained in the left hand side.

Write M =
⋃
Mλ as the union of its finitely generated R-submodules. Then also

N ⊗RM =
⋃
N ⊗RMλ (as N is R-flat). By definition of associated primes we see

that AssS(N ⊗RM) =
⋃

AssS(N ⊗RMλ) and AssR(M) =
⋃

Ass(Mλ). Hence we
may assume M is finitely generated.

Let q ∈ AssS(M ⊗R N), and assume R is Noetherian and M is a finite R-module.
To finish the proof we have to show that q is an element of the right hand side.
First we observe that qSq ∈ AssSq

((M ⊗RN)q), see Lemma 10.62.14. Let p be the
corresponding prime of R. Note that

(M ⊗R N)q = M ⊗R Nq = Mp ⊗Rp
Nq
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If pRp 6∈ AssRp
(Mp) then there exists an element x ∈ pRp which is a nonzerodivisor

in Mp (see Lemma 10.62.17). Since Nq is flat over Rp we see that the image of x in
qSq is a nonzerodivisor on (M⊗RN)q. This is a contradiction with the assumption
that qSq ∈ AssS((M ⊗R N)q). Hence we conclude that p is one of the associated
primes of M .

Continuing the argument we choose a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R, see Lemma 10.61.1. (By Lemma 10.62.4 we have pi = p for at least one i.) This
gives a filtration

0 = M0 ⊗R N ⊂M1 ⊗R N ⊂ . . . ⊂Mn ⊗R N = M ⊗R N
with subquotients isomorphic toN/piN . If pi 6= p then q cannot be associated to the
module N/piN by the result of the preceding paragraph (as AssR(R/pi) = {pi}).
Hence we conclude that q is associated to N/pN as desired. �

Lemma 10.64.4. Let R → S be a ring map. Let N be an S-module. Assume N
is flat as an R-module and R is a domain with fraction field K. Then

AssS(N) = AssS(N ⊗R K) = AssS⊗RK(N ⊗R K)

via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

Proof. Note that S ⊗R K = (R \ {0})−1S and N ⊗R K = (R \ {0})−1N . For any
nonzero x ∈ R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma 10.62.16 combined with Lemma 10.62.15 part (1). �

Lemma 10.64.5. Let R → S be a ring map. Let M be an R-module, and let N
be an S-module. Assume N is flat as R-module. Then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

where we use Remark 10.16.8 to think of the spectra of fibre rings as subsets of
Spec(S). If R is Noetherian then this inclusion is an equality.

Proof. This is equivalent to Lemma 10.64.3 by Lemmas 10.62.13, 10.38.6, and
10.64.4. �

Remark 10.64.6. Let R→ S be a ring map. Let N be an S-module. Let p be a
prime of R. Then

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p)).

The first equality by Lemma 10.62.13 and the second by Lemma 10.62.15 part (1).

10.65. Weakly associated primes

This is a variant on the notion of an associated prime that is useful for non-
Noetherian ring and non-finite modules.

Definition 10.65.1. Let R be a ring. Let M be an R-module. A prime p of R is
weakly associated to M if there exists an element m ∈ M such that p is minimal
among the prime ideals containing the annihilator Ann(m) = {f ∈ R | fm = 0}.
The set of all such primes is denoted WeakAssR(M) or WeakAss(M).
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Thus an associated prime is a weakly associated prime. Here is a characterization
in terms of the localization at the prime.

Lemma 10.65.2. Let R be a ring. Let M be an R-module. Let p be a prime of R.
The following are equivalent:

(1) p is weakly associated to M ,
(2) pRp is weakly associated to Mp, and
(3) Mp contains an element whose annihilator has radical equal to pRp.

Proof. Assume (1). Then there exists an element m ∈ M such that p is minimal
among the primes containing the annihilator I = {x ∈ R | xm = 0} of m. As
localization is exact, the annihilator of m in Mp is Ip. Hence pRp is a minimal
prime of Rp containing the annihilator Ip of m in Mp. This implies (2) holds, and

also (3) as it implies that
√
Ip = pRp.

Applying the implication (1) ⇒ (3) to Mp over Rp we see that (2) ⇒ (3).

Finally, assume (3). This means there exists an element m/f ∈ Mp whose annihi-
lator has radical equal to pRp. Then the annihilator I = {x ∈ R | xm = 0} of m in

M is such that
√
Ip = pRp. Clearly this means that p contains I and is minimal

among the primes containing I, i.e., (1) holds. �

Lemma 10.65.3. Let R be a ring. Let 0→M ′ →M →M ′′ → 0 be a short exact
sequence of R-modules. Then WeakAss(M ′) ⊂ WeakAss(M) and WeakAss(M) ⊂
WeakAss(M ′) ∪WeakAss(M ′′).

Proof. We will use the characterization of weakly associated primes of Lemma
10.65.2. Let p be a prime of R. As localization is exact we obtain the short exact
sequence 0 → M ′p → Mp → M ′′p → 0. Suppose that m ∈ Mp is an element
whose annihilator has radical pRp. Then either the image m of m in M ′′p is zero
and m ∈ M ′p, or the annihilator of m is pRp. This proves that WeakAss(M) ⊂
WeakAss(M ′) ∪WeakAss(M ′′). The inclusion WeakAss(M ′) ⊂ WeakAss(M) is
immediate from the definitions. �

Lemma 10.65.4. Let R be a ring. Let M be an R-module. Then

M = (0)⇔WeakAss(M) = ∅

Proof. If M = (0) then WeakAss(M) = ∅ by definition. Conversely, suppose
that M 6= 0. Pick a nonzero element m ∈ M . Write I = {x ∈ R | xm = 0}
the annihilator of m. Then R/I ⊂ M . Hence WeakAss(R/I) ⊂ WeakAss(M) by
Lemma 10.65.3. But as I 6= R we have V (I) = Spec(R/I) contains a minimal
prime, see Lemmas 10.16.2 and 10.16.7, and we win. �

Lemma 10.65.5. Let R be a ring. Let M be an R-module. Then

Ass(M) ⊂WeakAss(M) ⊂ Supp(M).

Proof. The first inclusion is immediate from the definitions. If p ∈WeakAss(M),
then by Lemma 10.65.2 we have Mp 6= 0, hence p ∈ Supp(M). �

Lemma 10.65.6. Let R be a ring. Let M be an R-module. The union
⋃

q∈WeakAss(M) q

is the set elements of R which are zerodivisors on M .
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Proof. Suppose f ∈ q ∈ WeakAss(M). Then there exists an element m ∈ M
such that q is minimal over I = {x ∈ R | xm = 0}. Hence there exists a g ∈ R,
g 6∈ q and n > 0 such that fngm = 0. Note that gm 6= 0 as g 6∈ I. If we take
n minimal as above, then f(fn−1gm) = 0 and fn−1gm 6= 0, so f is a zerodivisor
on M . Conversely, suppose f ∈ R is a zerodivisor on M . Consider the submodule
N = {m ∈ M | fm = 0}. Since N is not zero it has a weakly associated prime q
by Lemma 10.65.4. Clearly f ∈ q and by Lemma 10.65.3 q is a weakly associated
prime of M . �

Lemma 10.65.7. Let R be a ring. Let M be an R-module. Any p ∈ Supp(M)
which is minimal among the elements of Supp(M) is an element of WeakAss(M).

Proof. Note that Supp(Mp) = {pRp} in Spec(Rp). In particular Mp is nonzero,
and hence WeakAss(Mp) 6= ∅ by Lemma 10.65.4. Since WeakAss(Mp) ⊂ Supp(Mp)
by Lemma 10.65.5 we conclude that WeakAss(Mp) = {pRp}, whence p ∈WeakAss(M)
by Lemma 10.65.2. �

Lemma 10.65.8. Let R be a ring. Let M be an R-module. Let p be a prime ideal
of R which is finitely generated. Then

p ∈ Ass(M)⇔ p ∈WeakAss(M).

In particular, if R is Noetherian, then Ass(M) = WeakAss(M).

Proof. Write p = (g1, . . . , gn) for some gi ∈ R. It is enough the prove the impli-
cation “⇐” as the other implication holds in general, see Lemma 10.65.5. Assume
p ∈ WeakAss(M). By Lemma 10.65.2 there exists an element m ∈ Mp such that
I = {x ∈ Rp | xm = 0} has radical pRp. Hence for each i there exists a smallest
ei > 0 such that geii m = 0 in Mp. If ei > 1 for some i, then we can replace m

by gei−1
i m 6= 0 and decrease

∑
ei. Hence we may assume that the annihilator of

m ∈Mp is (g1, . . . , gn)Rp = pRp. By Lemma 10.62.14 we see that p ∈ Ass(M). �

Remark 10.65.9. Let ϕ : R→ S be a ring map. Let M be an S-module. Then it
is not always the case that Spec(ϕ)(WeakAssS(M)) ⊂ WeakAssR(M) contrary to
the case of associated primes (see Lemma 10.62.10). An example is to consider the
ring map

R = k[x1, x2, x3, . . .]→ S = k[x1, x2, x3, . . . , y1, y2, y3, . . .]/(x1y1, x2y2, x3y3, . . .)

and M = S. In this case q =
∑
xiS is a minimal prime of S, hence a weakly

associated prime of M = S (see Lemma 10.65.7). But on the other hand, for any
nonzero element of S the annihilator in R is finitely generated, and hence does not
have radical equal to R ∩ q = (x1, x2, x3, . . .) (details omitted).

Lemma 10.65.10. Let ϕ : R → S be a ring map. Let M be an S-module. Then
we have Spec(ϕ)(WeakAssS(M)) ⊃WeakAssR(M).

Proof. Let p be an element of WeakAssR(M). Then there exists an m ∈ Mp

whose annihilator I = {x ∈ Rp | xm = 0} has radical pRp. Consider the radical
J = {x ∈ Sp | xm = 0} of m in Sp. As ISp ⊂ J we see that any minimal prime
q ⊂ Sp over J lies over p. Moreover such a q corresponds to a weakly associated
prime of M for example by Lemma 10.65.2. �
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Remark 10.65.11. Let ϕ : R→ S be a ring map. Let M be an S-module. Denote
f : Spec(S)→ Spec(R) the associated map on spectra. Then we have

f(AssS(M)) ⊂ AssR(M) ⊂WeakAssR(M) ⊂ f(WeakAssS(M))

see Lemmas 10.62.10, 10.65.10, and 10.65.5. In general all of the inclusions may be
strict, see Remarks 10.62.11 and 10.65.9. If S is Noetherian, then all the inclusions
are equalities as the outer two are equal by Lemma 10.65.8.

Lemma 10.65.12. Let ϕ : R→ S be a ring map. Let M be an S-module. Denote
f : Spec(S) → Spec(R) the associated map on spectra. If ϕ is a finite ring map,
then

WeakAssR(M) = f(WeakAssS(M)).

Proof. One of the inclusions has already been proved, see Remark 10.65.11. To
prove the other assume q ∈ WeakAssS(M) and let p be the corresponding prime
of R. Let m ∈ M be an element such that q is a minimal prime over J = {g ∈
S | gm = 0}. Thus the radical of JSq is qSq. As R → S is finite there are finitely
many primes q = q1, q2, . . . , ql over p, see Lemma 10.35.19. Pick x ∈ q with x 6∈ qi
for i > 1, see Lemma 10.14.2. By the above there exists an element y ∈ S, y 6∈ q
and an integer t > 0 such that yxtm = 0. Thus the element ym ∈M is annihilated
by xt, hence ym maps to zero in Mqi , i = 2, . . . , l. To be sure, ym does not map
to zero in Sq.

The ring Sp is semi-local with maximal ideals qiSp by going up for finite ring maps,
see Lemma 10.35.20. If f ∈ pRp then some power of f ends up in JSq hence for
some n > 0 we see that f tym maps to zero in Mq. As ym vanishes at the other
maximal ideals of Sp we conclude that f tym is zero in Mp, see Lemma 10.23.1. In
this way we see that p is a minimal prime over the annihilator of ym in R and we
win. �

Lemma 10.65.13. Let R be a ring. Let I be an ideal. Let M be an R/I-module.
Via the canonical injection Spec(R/I) → Spec(R) we have WeakAssR/I(M) =
WeakAssR(M).

Proof. Omitted. �

Lemma 10.65.14. Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have
WeakAssR(S−1M) = WeakAssS−1R(S−1M) and

WeakAss(M) ∩ Spec(S−1R) = WeakAss(S−1M).

Proof. Suppose that m ∈ S−1M . Let I = {x ∈ R | xm = 0} and I ′ = {x′ ∈
S−1R | x′m = 0}. Then I ′ = S−1I and I ∩ S = ∅ unless I = R (verifications
omitted). Thus primes in S−1R minimal over I ′ correspond bijectively to primes in
R minimal over I and avoiding S. This proves the equality WeakAssR(S−1M) =
WeakAssS−1R(S−1M). The second equality follows from Lemma 10.62.14 since for
p ∈ R, S ∩ p = ∅ we have Mp = (S−1M)S−1p. �

Lemma 10.65.15. Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

WeakAss(M) = WeakAss(S−1M).
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Proof. AsM ⊂ S−1M by assumption we obtain WeakAss(M) ⊂WeakAss(S−1M)
from Lemma 10.65.3. Conversely, suppose that n/s ∈ S−1M is an element with
annihilator I and p a prime which is minimal over I. Then the annihilator of n ∈M
is I and p is a prime minimal over I. �

Lemma 10.65.16. Let R be a ring. Let M be an R-module. The map

M −→
∏

p∈WeakAss(M)
Mp

is injective.

Proof. Let x ∈ M be an element of the kernel of the map. Set N = Rx ⊂
M . If p is a weakly associated prime of N we see on the one hand that p ∈
WeakAss(M) (Lemma 10.65.3) and on the other hand that Np ⊂ Mp is not zero.
This contradiction shows that WeakAss(N) = ∅. Hence N = 0, i.e., x = 0 by
Lemma 10.65.4. �

Lemma 10.65.17. Let R→ S be a ring map. Let N be an S-module. Assume N
is flat as an R-module and R is a domain with fraction field K. Then

WeakAssS(N) = WeakAssS⊗RK(N ⊗R K)

via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

Proof. Note that S ⊗R K = (R \ {0})−1S and N ⊗R K = (R \ {0})−1N . For any
nonzero x ∈ R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma 10.65.15. �

10.66. Embedded primes

Here is the definition.

Definition 10.66.1. Let R be a ring. Let M be an R-module.

(1) The associated primes of M which are not minimal among the associated
primes of M are called the embedded associated primes of M .

(2) The embedded primes of R are the embedded associated primes of R as
an R-module.

Here is a way to get rid of these.

Lemma 10.66.2. Let R be a Noetherian ring. Let M be a finite R-module. Con-
sider the set of R-submodules

{K ⊂M | Supp(K) nowhere dense in Supp(M)}.
This set has a maximal element K and the quotient M ′ = M/K has the following
properties

(1) Supp(M) = Supp(M ′),
(2) M ′ has no embedded associated primes,
(3) for any f ∈ R which is contained in all embedded associated primes of M

we have Mf
∼= M ′f .

Proof. Let q1, . . . , qt denote the minimal primes in the support ofM . Let p1, . . . , ps
denote the embedded associated primes of M . Then Ass(M) = {qj , pi}. There are
finitely many of these, see Lemma 10.62.5. Set I =

∏
i=1,...,s pi. Then I 6⊂ qj

for any j. Hence by Lemma 10.14.2 we can find an f ∈ I such that f 6∈ qj for
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all j = 1, . . . , t. Set M ′ = Im(M → Mf ). This implies that Mf
∼= M ′f . Since

M ′ ⊂ Mf we see that Ass(M ′) ⊂ Ass(Mf ) = {qj}. Thus M ′ has no embedded
associated primes.

Moreover, the support of K = Ker(M → M ′) is contained in V (p1) ∪ . . . ∪ V (ps),
because Ass(K) ⊂ Ass(M) (see Lemma 10.62.3) and Ass(K) contains none of the
qi by construction. Clearly, K is in fact the largest submodule of M whose support
is contained in V (p1) ∪ . . . ∪ V (pt). This implies that K is the maximal element of
the set displayed in the lemma. �

Lemma 10.66.3. Let R be a Noetherian ring. Let M be a finite R-module. For
any f ∈ R we have (M ′)f = (Mf )′ where M → M ′ and Mf → (Mf )′ are the
quotients constructed in Lemma 10.66.2.

Proof. Omitted. �

Lemma 10.66.4. Let R be a Noetherian ring. Let M be a finite R-module without
embedded associated primes. Let I = {x ∈ R | xM = 0}. Then the ring R/I has
no embedded primes.

Proof. We may replace R by R/I. Hence we may assume every nonzero element
of R acts nontrivially on M . By Lemma 10.39.5 this implies that Spec(R) equals
the support of M . Suppose that p is an embedded prime of R. Let x ∈ R be
an element whose annihilator is p. Consider the nonzero module N = xM ⊂ M .
It is annihilated by p. Hence any associated prime q of N contains p and is also
an associated prime of M . Then q would be an embedded associated prime of M
which contradicts the assumption of the lemma. �

10.67. Regular sequences and depth

There is a characterization of depth in terms of Ext-groups that we will discuss in
Section 10.69. Here we develop some basic properties of regular sequences and we
prove the inequality between depth and dimension.

Definition 10.67.1. Let R be a ring. Let M be an R-module. A sequence of
elements f1, . . . , fr of R is called M -regular if the following conditions hold:

(1) fi is a nonzerodivisor on M/(f1, . . . , fi−1)M for each i = 1, . . . , r, and
(2) the module M/(f1, . . . , fr)M is not zero.

If I is an ideal of R and f1, . . . , fr ∈ I then we call f1, . . . , fr a M -regular sequence
in I. If M = R, we call f1, . . . , fr simply a regular sequence (in I).

Please pay attention to the fact that the definition depends on the order of the
elements f1, . . . , fr (see examples below). Some papers/books drop the requirement
that the module M/(f1, . . . , fr)M is nonzero. This has the advantage that being a
regular sequence is preserved under localization. However, we will use this definition
mainly to define the depth of a module in case R is local; in that case the fi are
required to be in the maximal ideal – a condition which is not preserved under
going from R to a localization Rp.

Example 10.67.2. Let k be a field. In the ring k[x, y, z] the sequence x, y(1 −
x), z(1− x) is regular but the sequence y(1− x), z(1− x), x is not.
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Example 10.67.3. Let k be a field. Consider the ring k[x, y, w0, w1, w2, . . .]/I
where I is generated by ywi, i = 0, 1, 2, . . . and wi − xwi+1, i = 0, 1, 2, . . .. The
sequence x, y is regular, but y is a zerodivisor. Moreover you can localize at the
maximal ideal (x, y, wi) and still get an example.

Definition 10.67.4. Let R be a ring, and I ⊂ R an ideal. Let M be an R-
module. The I-depth of M is the supremum in {−∞, 0, 1, 2, . . . ,∞} of the lengths
of M -regular sequences in I. We denote it depthI(M). If (R,m) is local we call
depthm(M) simply the depth of M .

Elucidation: By Definition 10.67.1 the empty sequence is not a regular sequence
on the zero module. Hence depthI(0) = −∞ and in fact the zero module is the
only module whose I-depth is −∞ (in references using the modified definition of
regular sequences — see discussion above — the depth of the zero module is +∞).
A module M has I-depth 0 if and only if M is nonzero and I does not contain an
M -regular element.

Example 10.67.2 shows depth does not behave well even if the ring is Noetherian,
and Example 10.67.3 shows that it does not behave well if the ring is local but non-
Noetherian. We will see later depth behaves well if the ring is local Noetherian.
The following two lemmas are an indication of this.

Lemma 10.67.5. Let R be a local Noetherian ring. Let M be a finite R-module.
Let x1, . . . , xc be an M -regular sequence. Then any permutation of the xi is a
regular sequence as well.

Proof. First we do the case c = 2. ConsiderK ⊂M the kernel of x2 : M →M . For
any z ∈ K we know that z = x1z

′ for some z′ ∈ M because x2 is a nonzerodivisor
on M/x1M . Because x1 is a nonzerodivisor on M we see that x2z

′ = 0 as well.
Hence x1 : K → K is surjective. Thus K = 0 by Nakayama’s Lemma 10.19.1.
Next, consider multiplication by x1 on M/x2M . If z ∈ M maps to an element
z ∈ M/x2M in the kernel of this map, then x1z = x2y for some y ∈ M . But then
since x1, x2 is a regular sequence we see that y = x1y

′ for some y′ ∈ M . Hence
x1(z − x2y

′) = 0 and hence z = x2y
′ and hence z = 0 as desired.

For the general case, observe that any permutation is a composition of transposi-
tions of adjacent indices. Hence it suffices to prove that

x1, . . . , xi−2, xi, xi−1, xi+1, . . . , xc

is an M -regular sequence. This follows from the case we just did applied to the
module M/(x1, . . . , xi−2) and the length 2 regular sequence xi−1, xi. �

Lemma 10.67.6. Let R be a Noetherian local ring. Let M be a finite R-module.
Then dim(Supp(M)) ≥ depth(M).

Proof. By Lemma 10.61.6 it suffices to prove that if f ∈ m is a nonzerodivisor on
M , then d(M/fM) ≤ d(M) − 1. The existence of f shows that M does not have
finite length. Consider the exact sequence

0→M
f−→M →M/fM → 0

and apply Lemma 10.58.10. It shows that d(M/fM) < d(M). �

Here are a few more results on depth.
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Lemma 10.67.7. Let R,S be local rings. Let R→ S be a flat local ring homomor-
phism. Let x1, . . . , xr be a sequence in R. Let M be an R-module. The following
are equivalent

(1) x1, . . . , xr is an M -regular sequence in R, and
(2) the images of x1, . . . , xr in S form a M ⊗R S-regular sequence.

Proof. This is so because R→ S is faithfully flat by Lemma 10.38.16. �

Lemma 10.67.8. Let R be a Noetherian ring. Let M be a finite R-module. Let
p be a prime. Let x1, . . . , xr be a sequence in R whose image in Rp forms an Mp-
regular sequence. Then there exists a g ∈ R, g 6∈ p such that the image of x1, . . . , xr
in Rg forms an Mg-regular sequence.

Proof. Set

Ki = Ker (xi : M/(x1, . . . , xi−1)M →M/(x1, . . . , xi−1)M) .

This is a finite R-module whose localization at p is zero by assumption. Hence there
exists a g ∈ R, g 6∈ p such that (Ki)g = 0 for all i = 1, . . . , r. This g works. �

Lemma 10.67.9. Let A be a ring. Let I be an ideal generated by a regular sequence
f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form a
regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a regular sequence in A.

Proof. This follows immediately from the definitions. �

Lemma 10.67.10. Let R be a ring. Let M be an R-module. Let f1, . . . , fr ∈ R be
M -regular. Then for e1, . . . , er > 0 the sequence fe11 , . . . , ferr is M -regular too.

Proof. We will prove this by induction on r. If r = 1 this follows from the fact
that a power of an M -regular element is an M -regular element. If r > 1, then by
induction applied to M/f1M we have that f1, f

e2
2 , . . . , ferr is an M -regular sequence.

Thus it suffices to show that fe1 , f2, . . . , fr is an M -regular sequence if f1, . . . , fr is
an M -regular sequence. We will prove this by induction on e. The case e = 1 is
trivial. Since f1 is a nonzerodivisor we have a short exact sequence

0→M/f1M
fe−1
1−−−→M/fe1M →M/fe−1

1 M → 0

By induction the elements f2, . . . , fr are M/f1M and M/fe−1
1 M -regular sequences.

It follows from the snake lemma that they are also M/fe1M -regular sequences. �

Lemma 10.67.11. Let R be a ring. Let f1, . . . , fr ∈ R which do not generate the
unit ideal. The following are equivalent:

(1) any permutation of f1, . . . , fr is a regular sequence,
(2) any subsequence of f1, . . . , fr (in the given order) is a regular sequence,

and
(3) f1x1, . . . , frxr is a regular sequence in the polynomial ring R[x1, . . . , xr].

Proof. It is clear that (1) implies (2). We prove (2) implies (1) by induction on r.
The case r = 1 is trivial. The case r = 2 says that if a, b ∈ R are a regular sequence
and b is a nonzerodivisor, then b, a is a regular sequence. This is clear because the
kernel of a : R/(b)→ R/(b) is isomorphic to the kernel of b : R/(a)→ R/(a) if both
a and b are nonzerodivisors. The case r > 2. Assume (2) holds and say we want
to prove fσ(1), . . . , fσ(r) is a regular sequence for some permutation σ. We already
know that fσ(1), . . . , fσ(r−1) is a regular sequence by induction. Hence it suffices to
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show that fs where s = σ(r) is a nonzerodivisor modulo f1, . . . , f̂s, . . . , fr. If s = r
we are done. If s < r, then note that fs and fr are both nonzerodivisors in the ring

R/(f1, . . . , f̂s, . . . , fr−1) (by induction hypothesis again). Since we know fs, fr is a
regular sequence in that ring we conclude by the case of sequence of length 2 that
fr, fs is too.

Note that R[x1, . . . , xr]/(f1x1, . . . , fixi) as an R-module is a direct sum of the
modules

R/IE · xe11 . . . xerr
indexed by multi-indices E = (e1, . . . , er) where IE is the ideal generated by fj for
1 ≤ j ≤ i with ej > 0. Hence fi+1xi is a nonzerodivisor on this if and only if fi+1

is a nonzerodivisor on R/IE for all E. Taking E with all positive entries, we see
that fi+1 is a nonzerodivisor on R/(f1, . . . , fi). Thus (3) implies (2). Conversely, if
(2) holds, then any subsequence of f1, . . . , fi, fi+1 is a regular sequence by Lemma
10.67.10, i.e., hence fi+1 is a nonzerodivisor on all R/IE . In this way we see that
(2) implies (3). �

10.68. Quasi-regular sequences

There is a notion of regular sequence which is slightly weaker than that of a regular
sequence and easier to use. Let R be a ring and let f1, . . . , fc ∈ R. Set J =
(f1, . . . , fc). Let M be an R-module. Then there is a canonical map

(10.68.0.1) M/JM ⊗R/J R/J [X1, . . . , Xc] −→
⊕

n≥0
JnM/Jn+1M

of graded R/J [X1, . . . , Xc]-modules defined by the rule

m⊗Xe1
1 . . . Xec

c 7−→ fe11 . . . fecc m mod Je1+...+ec+1M.

Note that (10.68.0.1) is always surjective.

Definition 10.68.1. Let R be a ring. Let M be an R-module. A sequence of
elements f1, . . . , fc of R is called M -quasi-regular if (10.68.0.1) is an isomorphism.
If M = R, we call f1, . . . , fc simply a quasi-regular sequence.

So if f1, . . . , fc is a quasi-regular sequence, then

R/J [X1, . . . , Xc] =
⊕

n≥0
Jn/Jn+1

where J = (f1, . . . , fc). It is clear that being a quasi-regular sequence is independent
of the order of f1, . . . , fc.

Lemma 10.68.2. Let R be a ring.

(1) A regular sequence f1, . . . , fc of R is a quasi-regular sequence.
(2) Suppose that M is an R-module and that f1, . . . , fc is an M -regular se-

quence. Then f1, . . . , fc is an M -quasi-regular sequence.

Proof. Set J = (f1, . . . , fc). We prove the first assertion by induction on c. We
have to show that given any relation

∑
|I|=n aIf

I ∈ Jn+1 with aI ∈ R we actually

have aI ∈ J for all multi-indices I. Since any element of Jn+1 is of the form∑
|I|=n bIf

I with bI ∈ J we may assume, after replacing aI by aI − bI , the relation

reads
∑
|I|=n aIf

I = 0. We can rewrite this as∑n

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

http://stacks.math.columbia.edu/tag/061P
http://stacks.math.columbia.edu/tag/00LN


10.68. QUASI-REGULAR SEQUENCES 561

Here and below the “primed” multi-indices I ′ are required to be of the form I ′ =
(i1, . . . , id−1, 0). We will show by descending induction on l ∈ {0, . . . , n} that if we
have a relation ∑l

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

then aI′,e ∈ J for all I ′, e. Namely, set J ′ = (f1, . . . , fc−1). Observe that
∑
|I′|=n−l aI′,lf

I′

is mapped into (J ′)n−l+1 by f lc. By induction hypothesis (for the induction on c)
we see that f lcaI′,l ∈ J ′. Because fc is not a zerodivisor on R/J ′ (as f1, . . . , fc is a
regular sequence) we conclude that aI′,l ∈ J ′. This allows us to rewrite the term

(
∑
|I′|=n−l aI′,lf

I′)f lc in the form (
∑
|I′|=n−l+1 fcbI′,l−1f

I′)f l−1
c . This gives a new

relation of the form∑
|I′|=n−l+1

(aI′,l−1 + fcbI′,l−1)f I
′
)f l−1
c +

∑l−2

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

Now by the induction hypothesis (on l this time) we see that all aI′,l−1 +fcbI′,l−1 ∈
J and all aI′,e ∈ J for e ≤ l − 2. This, combined with aI′,l ∈ J ′ ⊂ J seen above,
finishes the proof of the induction step.

The second assertion means that given any formal expression F =
∑
|I|=nmIX

I ,

mI ∈ M with
∑
mIf

I ∈ Jn+1M , then all the coefficients mI are in J . This is
proved in exactly the same way as we prove the corresponding result for the first
assertion above. �

Lemma 10.68.3. Let R → R′ be a flat ring map. Let M be an R-module. Sup-
pose that f1, . . . , fr ∈ R form an M -quasi-regular sequence. Then the images of
f1, . . . , fr in R′ form a M ⊗R R′-quasi-regular sequence.

Proof. Set J = (f1, . . . , fr), J
′ = JR′ and M ′ = M ⊗R R′. We have to show

the canonical map µ : R′/J ′[X1, . . . Xn]⊗R′/J′M ′/J ′M ′ →
⊕

(J ′)nM ′/(J ′)n+1M ′

is an isomorphism. Because R → R′ is flat the sequences 0 → JnM → M and
0 → Jn+1M → JnM → JnM/Jn+1M → 0 remain exact on tensoring with R′.
This first implies that JnM ⊗RR′ = (J ′)nM ′ and then that (J ′)nM ′/(J ′)n+1M ′ =
JnM/Jn+1M ⊗R R′. Thus µ is the tensor product of (10.68.0.1), which is an
isomorphism by assumption, with idR′ and we conclude. �

Lemma 10.68.4. Let R be a Noetherian ring. Let M be a finite R-module. Let
p be a prime. Let x1, . . . , xc be a sequence in R whose image in Rp forms an Mp-
quasi-regular sequence. Then there exists a g ∈ R, g 6∈ p such that the image of
x1, . . . , xc in Rg forms an Mg-quasi-regular sequence.

Proof. Consider the kernelK of the map (10.68.0.1). AsM/JM⊗R/JR/J [X1, . . . , Xc]
is a finite R/J [X1, . . . , Xc]-module and as R/J [X1, . . . , Xc] is Noetherian, we see
that K is also a finite R/J [X1, . . . , Xc]-module. Pick homogeneous generators
k1, . . . , kt ∈ K. By assumption for each i = 1, . . . , t there exists a gi ∈ R, gi 6∈ p
such that giki = 0. Hence g = g1 . . . gt works. �

Lemma 10.68.5. Let R be a ring. Let M be an R-module. Let f1, . . . , fc ∈
R be an M -quasi-regular sequence. For any i the sequence f i+1, . . . , f c of R =

R/(f1, . . . , fi) is an M = M/(f1, . . . , fi)M -quasi-regular sequence.
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Proof. It suffices to prove this for i = 1. Set J = (f2, . . . , f c) ⊂ R. Then

J
n
M/J

n+1
M = (JnM + f1M)/(Jn+1M + f1M)

= JnM/(Jn+1M + JnM ∩ f1M).

Thus, in order to prove the lemma it suffices to show that Jn+1M +JnM ∩ f1M =

Jn+1M+f1J
n−1M because that will show that

⊕
n≥0 J

n
M/J

n+1
M is the quotient

of
⊕

n≥0 J
nM/Jn+1 ∼= M/JM [X1, . . . , Xc] by X1. Actually, we have JnM∩f1M =

f1J
n−1M . Namely, if m 6∈ Jn−1M , then f1m 6∈ JnM because

⊕
JnM/Jn+1M is

the polynomial algebra M/J [X1, . . . , Xc] by assumption. �

Lemma 10.68.6. Let (R,m) be a local Noetherian ring. Let M be a nonzero finite
R-module. Let f1, . . . , fc ∈ m be an M -quasi-regular sequence. Then f1, . . . , fc is
an M -regular sequence.

Proof. Set J = (f1, . . . , fc). Let us show that f1 is a nonzerodivisor onM . Suppose
x ∈M is not zero. By the Artin-Rees lemma there exists an integer r such that x ∈
JrM but x 6∈ Jr+1M , see Lemma 10.49.4. Then f1x ∈ Jr+1M is an element whose
class in Jr+1M/Jr+2M is nonzero by the assumed structure of

⊕
JnM/Jn+1M .

Whence f1x 6= 0.

Now we can finish the proof by induction on c using Lemma 10.68.5. �

Remark 10.68.7 (Koszul regular sequences). In the paper [Kab71] the author
introduces two more regularity conditions for sequences x1, . . . , xr of elements of
a ring R. Namely, we say the sequence is Koszul-regular if Hi(K•(R, x•)) = 0 for
i ≥ 1 where K•(R, x•) is the Koszul complex. The sequence is called H1-regular if
H1(K•(R, x•)) = 0. If R is a local ring (possibly nonnoetherian) and the sequence
consists of elements of the maximal ideal, then one has the implications regular ⇒
Koszul-regular ⇒ H1-regular ⇒ quasi-regular. By examples the author shows that
these implications cannot be reversed in general. We introduce these notions in
more detail in More on Algebra, Section 15.21.

Remark 10.68.8. Let k be a field. Consider the ring

A = k[x, y, w, z0, z1, z2, . . .]/(y
2z0 − wx, z0 − yz1, z1 − yz2, . . .)

In this ring x is a nonzerodivisor and the image of y in A/xA gives a quasi-regular
sequence. But it is not true that x, y is a quasi-regular sequence in A because
(x, y)/(x, y)2 isn’t free of rank two over A/(x, y) due to the fact that wx = 0 in
(x, y)/(x, y)2 but w isn’t zero in A/(x, y). Hence the analogue of Lemma 10.67.9
does not hold for quasi-regular sequences.

Lemma 10.68.9. Let R be a ring. Let J = (f1, . . . , fr) be an ideal of R. Let M
be an R-module. Set R = R/

⋂
n≥0 J

n, M = M/
⋂
n≥0 J

nM , and denote f i the

image of fi in R. Then f1, . . . , fr is M -quasi-regular if and only if f1, . . . , fr is
M -quasi-regular.

Proof. This is true because JnM/Jn+1M ∼= J
n
M/J

n+1
M . �
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10.69. Ext groups and depth

In this section we do a tiny bit of homological algebra, in order to establish some
fundamental properties of depth over Noetherian local rings.

Lemma 10.69.1. Let R be a ring. Let M be an R-module.

(1) There exists an exact complex

. . .→ F2 → F1 → F0 →M → 0.

with Fi free R-modules.
(2) If R is Noetherian and M finite over R, then we can choose the complex

such that Fi is finite free. In other words, we can find an exact complex

. . .→ R⊕n2 → R⊕n1 → R⊕n0 →M → 0.

Proof. Let us explain only the Noetherian case. As a first step choose a surjection
Rn0 → M . Then having constructed an exact complex of length e we simply
choose a surjection Rne+1 → Ker(Rne → Rne−1) which is possible because R is
Noetherian. �

Definition 10.69.2. Let R be a ring. Let M be an R-module.

(1) A (left) resolution F• →M of M is an exact complex

. . .→ F2 → F1 → F0 →M → 0

of R-modules.
(2) A resolution of M by free R-modules is a resolution F• → M where each

Fi is a free R-module.
(3) A resolution of M by finite free R-modules is a resolution F• →M where

each Fi is a finite free R-module.

We often use the notation F• to denote a complex of R-modules

. . .→ Fi → Fi−1 → . . .

In this case we often use di or dF,i to denote the map Fi → Fi−1. In this section we
are always going to assume that F0 is the last nonzero term in the complex. The ith
homology group of the complex F• is the group Hi = Ker(dF,i)/Im(dF,i+1). A map
of complexes α : F• → G• is given by maps αi : Fi → Gi such that αi−1 ◦ dF,i =
dG,i−1 ◦ αi. Such a map induces a map on homology Hi(α) : Hi(F•)→ Hi(G•). If
α, β : F• → G• are maps of complexes, then a homotopy between α and β is given
by a collection of maps hi : Fi → Gi+1 such that αi− βi = dG,i+1 ◦ hi + hi−1 ◦ dF,i.

We will use a very similar notation regarding complexes of the form F • which look
like

. . .→ F i
di−→ F i+1 → . . .

There are maps of complexes, homotopies, etc. In this case we set Hi(F •) =
Ker(di)/Im(di−1) and we call it the ith cohomology group.

Lemma 10.69.3. Any two homotopic maps of complexes induce the same maps
on (co)homology groups.

Proof. Omitted. �
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Lemma 10.69.4. Let R be a ring. Let M → N be a map of R-modules. Let F• →
M be a resolution by free R-modules and let N• → N be an arbitrary resolution.
Then

(1) there exists a map of complexes F• → N• inducing the given map

M = Coker(F1 → F0)→ Coker(N1 → N0) = N

(2) two maps α, β : F• → N• inducing the same map M → N are homotopic.

Proof. Proof of (1). Because F0 is free we can find a map F0 → N0 lifting the
map F0 → M → N . We obtain an induced map F1 → F0 → N0 which ends up in
the image of N1 → N0. Since F1 is free we may lift this to a map F1 → N1. This in
turn induces a map F2 → F1 → N1 which maps to zero into N0. Since N• is exact
we see that the image of this map is contained in the image of N2 → N1. Hence
we may lift to get a map F2 → N2. Repeat.

Proof of (2). To show that α, β are homotopic it suffices to show the difference
γ = α− β is homotopic to zero. Note that the image of γ0 : F0 → N0 is contained
in the image of N1 → N0. Hence we may lift γ0 to a map h0 : F0 → N1. Consider
the map γ′1 = γ1 − h0 ◦ dF,1. By our choice of h0 we see that the image of γ′1 is
contained in the kernel of N1 → N0. Since N• is exact we may lift γ′1 to a map
h1 : F1 → N2. At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. �

At this point we are ready to define the groups ExtiR(M,N). Namely, choose a
resolution F• of M by free R-modules, see Lemma 10.69.1. Consider the (cohomo-
logical) complex

HomR(F•, N) : HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ . . .

We define ExtiR(M,N) to be the ith cohomology group of this complex.3 The
following lemma explains in what sense this is well defined.

Lemma 10.69.5. Let R be a ring. Let M1,M2, N be R-modules. Suppose that F•
is a free resolution of the module M1, and G• is a free resolution of the module
M2. Let ϕ : M1 → M2 be a module map. Let α : F• → G• be a map of complexes
inducing ϕ on M1 = Coker(dF,1)→ M2 = Coker(dG,1), see Lemma 10.69.4. Then
the induced maps

Hi(α) : Hi(HomR(F•, N)) −→ Hi(HomR(G•, N))

are independent of the choice of α. If ϕ is an isomorphism, so are all the maps
Hi(α). If M1 = M2, F• = G•, and ϕ is the identity, so are all the maps Hi(α).

Proof. Another map β : F• → G• inducing ϕ is homotopic to α by Lemma 10.69.4.
Hence the maps HomR(F•, N) → HomR(G•, N) are homotopic. Hence the inde-
pendence result follows from Lemma 10.69.3.

Suppose that ϕ is an isomorphism. Let ψ : M2 → M1 be an inverse. Choose
β : G• → F• be a map inducing ψ : M2 = Coker(dG,1) → M1 = Coker(dF,1), see
Lemma 10.69.4. OK, and now consider the map Hi(α)◦Hi(β) = Hi(α◦β). By the
above the map Hi(α ◦ β) is the same as the map Hi(idG•) = id. Similarly for the
composition Hi(β)◦Hi(α). Hence Hi(α) and Hi(β) are inverses of each other. �

3At this point it would perhaps be more appropriate to say “an” in stead of “the” Ext-group.
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Lemma 10.69.6. Let R be a ring. Let M be an R-module. Let 0 → N ′ → N →
N ′′ → 0 be a short exact sequence. Then we get a long exact sequence

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)
→ Ext1R(M,N ′)→ Ext1R(M,N)→ Ext1R(M,N ′′)→ . . .

Proof. Pick a free resolution F• → M . Since each of the Fi are free we see that
we get a short exact sequence of complexes

0→ HomR(F•, N
′)→ HomR(F•, N)→ HomR(F•, N

′′)→ 0

Thus we get the long exact sequence from the snake lemma applied to this. �

Lemma 10.69.7. Let R be a ring. Let N be an R-module. Let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence. Then we get a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)
→ Ext1R(M ′′, N)→ Ext1R(M,N)→ Ext1R(M ′, N)→ . . .

Proof. Pick sets of generators {m′i′}i′∈I′ and {m′′i′′}i′′∈I′′ of M ′ and M ′′. For each
i′′ ∈ I ′′ choose a lift m̃′′i′′ ∈ M of the element m′′i′′ ∈ M ′′. Set F ′ =

⊕
i′∈I′ R,

F ′′ =
⊕

i′′∈I′′ R and F = F ′ ⊕ F ′′. Mapping the generators of these free modules
to the corresponding chosen generators gives surjective R-module maps F ′ → M ′,
F ′′ →M ′′, and F →M . We obtain a map of short exact sequences

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′ → F → F ′′ → 0

By the snake lemma we see that the sequence of kernels 0→ K ′ → K → K ′′ → 0 is
short exact sequence of R-modules. Hence we can continue this process indefinitely.
In other words we obtain a short exact sequence of resolutions fitting into the
diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′• → F• → F ′′• → 0

Because each of the sequences 0→ F ′n → Fn → F ′′n → 0 is split exact (by construc-
tion) we obtain a short exact sequence of complexes

0→ HomR(F ′′• , N)→ HomR(F•, N)→ HomR(F ′•, N)→ 0

by applying the HomR(−, N) functor. Thus we get the long exact sequence from
the snake lemma applied to this. �

Lemma 10.69.8. Let R be a ring. Let M , N be R-modules. Any x ∈ R such that
either xN = 0, or xM = 0 annihilates each of the modules ExtiR(M,N).

Proof. Pick a free resolution F• of M . Since ExtiR(M,N) is defined as the coho-
mology of the complex HomR(F•, N) the lemma is clear when xN = 0. If xM = 0,
then we see that multiplication by x on F• lifts the zero map on M . Hence by
Lemma 10.69.5 we see that it induces the same map on Ext groups as the zero
map. �

Lemma 10.69.9. Let R be a Noetherian ring. Let M , N be finite R-modules.
Then ExtiR(M,N) is a finite R-module for all i.
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Proof. This holds because ExtiR(M,N) is computed as the cohomology groups of
a complex HomR(F•, N) with each Fn a finite free R-module. �

Lemma 10.69.10. Let R be a Noetherian local ring with maximal ideal m. Let M
be a nonzero finite R-module. Then depthR(M) is equal to the smallest integer i
such that ExtiR(R/m,M) is nonzero.

Proof. Let δ(M) denote the depth of M and let i(M) denote the smallest integer i
such that ExtiR(R/m,M) is nonzero. We will see in a moment that i(M) <∞. By
Lemma 10.62.17 we have δ(M) = 0 if and only if i(M) = 0, because m ∈ Ass(M)
exactly means that i(M) = 0. Hence if δ(M) or i(M) is > 0, then we may choose
x ∈ m such that (a) x is a nonzerodivisor on M , and (b) depth(M/xM) = δ(M)−
1. Consider the long exact sequence of Ext-groups associated to the short exact
sequence 0→M →M →M/xM → 0 by Lemma 10.69.6:

0→ HomR(κ,M)→ HomR(κ,M)→ HomR(κ,M/xM)
→ Ext1

R(κ,M)→ Ext1
R(κ,M)→ Ext1

R(κ,M/xM)→ . . .

Since x ∈ m all the maps ExtiR(κ,M)→ ExtiR(κ,M) are zero, see Lemma 10.69.8.
Thus it is clear that i(M/xM) = i(M)−1. Induction on δ(M) finishes the proof. �

Lemma 10.69.11. Let R be a local Noetherian ring. Let 0→ N ′ → N → N ′′ → 0
be a short exact sequence of nonzero finite R-modules.

(1) depth(N ′′) ≥ min{depth(N), depth(N ′)− 1}
(2) depth(N ′) ≥ min{depth(N), depth(N ′′) + 1}

Proof. This is easy using the results above. Hint: Use the characterization of
depth using the Ext groups Exti(κ,N), see Lemma 10.69.10, and use the long
exact cohomology sequence

0→ HomR(κ,N ′)→ HomR(κ,N)→ HomR(κ,N ′′)
→ Ext1

R(κ,N ′)→ Ext1
R(κ,N)→ Ext1

R(κ,N ′′)→ . . .

from Lemma 10.69.6. �

Lemma 10.69.12. Let R be a local Noetherian ring. Let M be a finite R-module.
If x ∈ m is a nonzerodivisor on M , then depth(M/xM) = depth(M)− 1.

Proof. By the short exact sequence 0 → M → M → M/xM → 0 and Lemma
10.69.11 we see that the depth drops by at most 1. On the other hand, if x1, . . . , xδ ∈
m is a regular sequence for M/xM , then x, x1, . . . , xr is a regular sequence for M .
Hence we see that the depth drops by at least 1. �

10.70. Functorialities for Ext

In this section we briefly discuss the functoriality of Ext with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given R → R′, an R-module M and an R′-module N ′ the R-module
ExtiR(M,N ′) has a natural R′-module structure. Moreover, there is a
canonical R′-linear map ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′).

(2) Given R → R′ and R-modules M , N there is a natural R-module map
ExtiR(M,N)→ ExtiR(M,N ⊗R R′).
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Lemma 10.70.1. Given a flat ring map R → R′, an R-module M , and an R′-
module N ′ the natural map

ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′)

is an isomorphism for i ≥ 0.

Proof. Choose a free resolution F• of M . Since R→ R′ is flat we see that F•⊗RR′
is a free resolution of M ⊗R R′ over R′. The statement is that the map

HomR′(F• ⊗R R′, N ′)→ HomR(F•, N
′)

induces an isomorphism on homology groups, which is true because it is an isomor-
phism of complexes by Lemma 10.13.3. �

10.71. An application of Ext groups

This section should briefly discuss the relationship between Ext1
R(Q,N) and exten-

sions (see Homology, Section 12.6). Omitted.

Lemma 10.71.1. Let R be a Noetherian local ring with maximal ideal m. Let N →
M be a homomorphism of finite R-modules. Suppose that there exists arbitrarily
large n such that N/mnN →M/mnM is a split injection. Then N →M is a split
injection.

Proof. Assume ϕ : N →M satisfies the assumptions of the lemma. Note that this
implies that Ker(ϕ) ⊂ mnN for arbitrarily large n. Hence by Lemma 10.49.4 we
see that ϕ is injection. Let Q = M/N so that we have a short exact sequence

0→ N →M → Q→ 0.

Let

F2
d2−→ F1

d1−→ F0 → Q→ 0

be a finite free resolution of Q. We can choose a map α : F0 → M lifting the map
F0 → Q. This induces a map β : F1 → N such that β ◦ d2 = 0. The extension
above is split if and only if there exists a map γ : F0 → N such that β = γ ◦ d1. In
other words, the class of β in Ext1

R(Q,N) is the obstruction to splitting the short
exact sequence above.

Suppose n is a large integer such that N/mnN →M/mnM is a split injection. This
implies

0→ N/mnN →M/mnM → Q/mnQ→ 0.

is still short exact. Also, the sequence

F1/m
nF1

d1−→ F0/m
nF0 → Q/mnQ→ 0

is still exact. Arguing as above we see that the map β : F1/m
nF1 → N/mnN

induced by β is equal to γn ◦ d1 for some map γn : F0/m
nF0 → N/mn. Since F0 is

free we can lift γn to a map γn : F0 → N and then we see that β− γn ◦ d1 is a map
from F1 into mnN . In other words we conclude that

β ∈ Im
(

HomR(F0, N)→ HomR(F1, N)
)

+ mn HomR(F1, N).

for this n.

Since we have this property for arbitrarily large n by assumption we conclude
(by Lemma 10.49.2) that β is actually in the image of the map HomR(F0, N) →
HomR(F1, N) as desired. �
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10.72. Tor groups and flatness

In this section we use some of the homological algebra developed in the previous
section to explain what Tor groups are. Namely, suppose that R is a ring and that
M , N are two R-modules. Choose a resolution F• of M by free R-modules. See
Lemma 10.69.1. Consider the homological complex

F• ⊗R N : . . .→ F2 ⊗R N → F1 ⊗R N → F0 ⊗R N

We define TorRi (M,N) to be the ith homology group of this complex. The following
lemma explains in what sense this is well defined.

Lemma 10.72.1. Let R be a ring. Let M1,M2, N be R-modules. Suppose that F•
is a free resolution of the module M1 and that G• is a free resolution of the module
M2. Let ϕ : M1 → M2 be a module map. Let α : F• → G• be a map of complexes
inducing ϕ on M1 = Coker(dF,1)→ M2 = Coker(dG,1), see Lemma 10.69.4. Then
the induced maps

Hi(α) : Hi(F• ⊗R N) −→ Hi(G• ⊗R N)

are independent of the choice of α. If ϕ is an isomorphism, so are all the maps
Hi(α). If M1 = M2, F• = G•, and ϕ is the identity, so are all the maps Hi(α).

Proof. The proof of this lemma is identical to the proof of Lemma 10.69.5. �

Not only does this lemma imply that the Tor modules are well defined, but it also
provides for the functoriality of the constructions (M,N) 7→ TorRi (M,N) in the
first variable. Of course the functoriality in the second variable is evident. We
leave it to the reader to see that each of the TorRi is in fact a functor

ModR ×ModR → ModR.

Here ModR denotes the category of R-modules, and for the definition of the product
category see Categories, Definition 4.2.20. Namely, given morphisms of R-modules
M1 →M2 and N1 → N2 we get a commutative diagram

TorRi (M1, N1) //

��

TorRi (M1, N2)

��
TorRi (M2, N1) // TorRi (M2, N2)

Lemma 10.72.2. Let R be a ring and let M be an R-module. Suppose that 0 →
N ′ → N → N ′′ → 0 is a short exact sequence of R-modules. There exists a long
exact sequence

M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0

TorR1 (M,N ′)→ TorR1 (M,N)→ TorR1 (M,N ′′)→

Proof. The proof of this is the same as the proof of Lemma 10.69.6. �
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Consider a homological double complex of R-modules

. . .
d // A2,0

d // A1,0
d // A0,0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

This means that di,j : Ai,j → Ai−1,j and δi,j : Ai,j → Ai,j−1 have the following
properties

(1) Any composition of two di,j is zero. In other words the rows of the double
complex are complexes.

(2) Any composition of two δi,j is zero. In other words the columns of the
double complex are complexes.

(3) For any pair (i, j) we have δi−1,j ◦ di,j = di,j−1 ◦ δi,j . In other words, all
the squares commute.

The correct thing to do is to associate a spectral sequence to any such double
complex. However, for the moment we can get away with doing something slightly
easier.

Namely, for the purposes of this section only, given a double complex (A•,•, d, δ)
set R(A)j = Coker(A1,j → A0,j) and U(A)i = Coker(Ai,1 → Ai,0). (The letters R
and U are meant to suggest Right and Up.) We endow R(A)• with the structure
of a complex using the maps δ. Similarly we endow U(A)• with the structure
of a complex using the maps d. In other words we obtain the following huge
commutative diagram

. . .
d // U(A)2

d // U(A)1
d // U(A)0

. . .
d // A2,0

d //

OO

A1,0
d //

OO

A0,0
//

OO

R(A)0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1
//

δ

OO

R(A)1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2
//

δ

OO

R(A)2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

(This is no longer a double complex of course.) It is clear what a morphism Φ :
(A•,•, d, δ) → (B•,•, d, δ) of double complexes is, and it is clear that this induces
morphisms of complexes R(Φ) : R(A)• → R(B)• and U(Φ) : U(A)• → U(B)•.
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Lemma 10.72.3. Let (A•,•, d, δ) be a double complex such that

(1) Each row A•,j is a resolution of R(A)j.
(2) Each column Ai,• is a resolution of U(A)i.

Then there are canonical isomorphisms

Hi(R(A)•) ∼= Hi(U(A)•).

The isomorphisms are functorial with respect to morphisms of double complexes
with the properties above.

Proof. We will show that Hi(R(A)•)) and Hi(U(A)•) are canonically isomorphic
to a third group. Namely

Hi(A) :=
{(ai,0, ai−1,1, . . . , a0,i) | d(ai,0) = δ(ai−1,1), . . . , d(a1,i−1) = δ(a0,i)}
{d(ai+1,0)− δ(ai,1), d(ai,1)− δ(ai−1,2), . . . , d(a1,i)− δ(a0,i+1)}

Here we use the notational convention that ai,j denotes an element of Ai,j . In other
words, an element of Hi is represented by a zig-zag, represented as follows for i = 2

a2,0
� // d(a2,0) = δ(a1,1)

a1,1

_

OO

� // d(a1,1) = δ(a0,2)

a0,2

_

OO

Naturally, we divide out by “trivial” zig-zags, namely the submodule generated by
elements of the form (0, . . . , 0,−δ(at+1,t−i), d(at+1,t−i), 0, . . . , 0). Note that there
are canonical homomorphisms

Hi(A)→ Hi(R(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of a0,i

and

Hi(A)→ Hi(U(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of ai,0

First we show that these maps are surjective. Suppose that r ∈ Hi(R(A)•). Let
r ∈ R(A)i be a cocycle representing the class of r. Let a0,i ∈ A0,i be an element
which maps to r. Because δ(r) = 0, we see that δ(a0,i) is in the image of d. Hence
there exists an element a1,i−1 ∈ A1,i−1 such that d(a1,i−1) = δ(a0,i). This in turn
implies that δ(a1,i−1) is in the kernel of d (because d(δ(a1,i−1)) = δ(d(a1,i−1)) =
δ(δ(a0,i)) = 0. By exactness of the rows we find an element a2,i−2 such that
d(a2,i−2) = δ(a1,i−1). And so on until a full zig-zag is found. Of course surjectivity
of Hi → Hi(U(A)) is shown similarly.

To prove injectivity we argue in exactly the same way. Namely, suppose we are
given a zig-zag (ai,0, ai−1,1, . . . , a0,i) which maps to zero in Hi(R(A)•). This means
that a0,i maps to an element of Coker(Ai,1 → Ai,0) which is in the image of δ :
Coker(Ai+1,1 → Ai+1,0)→ Coker(Ai,1 → Ai,0). In other words, a0,i is in the image
of δ⊕d : A0,i+1⊕A1,i → A0,i. From the definition of trivial zig-zags we see that we
may modify our zig-zag by a trivial one and assume that a0,i = 0. This immediately
implies that d(a1,i−1) = 0. As the rows are exact this implies that a1,i−1 is in the
image of d : A2,i−1 → A1,i−1. Thus we may modify our zig-zag once again by a

http://stacks.math.columbia.edu/tag/00M1
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trivial zig-zag and assume that our zig-zag looks like (ai,0, ai−1,1, . . . , a2,i−2, 0, 0).
Continuing like this we obtain the desired injectivity.

If Φ : (A•,•, d, δ) → (B•,•, d, δ) is a morphism of double complexes both of which
satisfy the conditions of the lemma, then we clearly obtain a commutative diagram

Hi(U(A)•)

��

Hi(A) //oo

��

Hi(R(A)•)

��
Hi(U(B)•) Hi(B) //oo Hi(R(B)•)

This proves the functoriality. �

Remark 10.72.4. The isomorphism constructed above is the “correct” one only
up to signs. A good part of homological algebra is concerned with choosing signs for
various maps and showing commutativity of diagrams with intervention of suitable
signs. For the moment we will simply use the isomorphism as given in the proof
above, and worry about signs later.

Lemma 10.72.5. Let R be a ring. For any i ≥ 0 the functors ModR ×ModR →
ModR, (M,N) 7→ TorRi (M,N) and (M,N) 7→ TorRi (N,M) are canonically isomor-
phic.

Proof. Let F• be a free resolution of the module M and let G• be a free resolution
of the module N . Consider the double complex (Ai,j , d, δ) defined as follows:

(1) set Ai,j = Fi ⊗R Gj ,
(2) set di,j : Fi ⊗R Gj → Fi−1 ⊗Gj equal to dF,i ⊗ id, and
(3) set δi,j : Fi ⊗R Gj → Fi ⊗Gj−1 equal to id⊗ dG,j .

This double complex is usually simply denoted F• ⊗R G•.
Since each Gj is free, and hence flat we see that each row of the double complex is
exact except in homological degree 0. Since each Fi is free and hence flat we see
that each column of the double complex is exact except in homological degree 0.
Hence the double complex satisfies the conditions of Lemma 10.72.3.

To see what the lemma says we compute R(A)• and U(A)•. Namely,

R(A)i = Coker(A1,i → A0,i)

= Coker(F1 ⊗R Gi → F0 ⊗R Gi)
= Coker(F1 → F0)⊗R Gi
= M ⊗R Gi

In fact these isomorphisms are compatible with the differentials δ and we see that
R(A)• = M ⊗RG• as homological complexes. In exactly the same way we see that
U(A)• = F• ⊗R N . We get

TorRi (M,N) = Hi(F• ⊗R N)

= Hi(U(A)•)

= Hi(R(A)•)

= Hi(M ⊗R G•)
= Hi(G• ⊗RM)

= TorRi (N,M)
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Here the third equality is Lemma 10.72.3, and the fifth equality uses the isomor-
phism V ⊗W = W ⊗ V of the tensor product.

Functoriality. Suppose that we have R-modules Mν , Nν , ν = 1, 2. Let ϕ : M1 →
M2 and ψ : N1 → N2 be morphisms of R-modules. Suppose that we have free
resolutions Fν,• for Mν and free resolutions Gν,• for Nν . By Lemma 10.69.4 we may
choose maps of complexes α : F1,• → F2,• and β : G1,• → G2,• compatible with ϕ
and ψ. We claim that the pair (α, β) induces a morphism of double complexes

α⊗ β : F1,• ⊗R G1,• −→ F2,• ⊗R G2,•

This is really a very straightforward check using the rule that F1,i⊗RG1,j → F2,i⊗R
G2,j is given by αi ⊗ βj where αi, resp. βj is the degree i, resp. j component of α,
resp. β. The reader also readily verifies that the induced maps R(F1,•⊗RG1,•)• →
R(F2,•⊗RG2,•)• agrees with the map M1⊗RG1,• →M2⊗RG2,• induced by ϕ⊗β.
Similarly for the map induced on the U(−)• complexes. Thus the statement on
functoriality follows from the statement on functoriality in Lemma 10.72.3. �

Remark 10.72.6. An interesting case occurs when M = N in the above. In this
case we get a canonical map TorRi (M,M) → TorRi (M,M). Note that this map
is not the identity, because even when i = 0 this map is not the identity! For
example, if V is a vector space of dimension n over a field, then the switch map
V ⊗k V → V ⊗k V has (n2 + n)/2 eigenvalues +1 and (n2 − n)/2 eigenvalues −1.
In characteristic 2 it is not even diagonalizable. Note that even changing the sign
of the map will not get rid of this.

Lemma 10.72.7. Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) The module M is flat over R.

(2) For all i > 0 the functor TorRi (M,−) is zero.

(3) The functor TorR1 (M,−) is zero.

(4) For all ideals I ⊂ R we have TorR1 (M,R/I) = 0.

(5) For all finitely generated ideals I ⊂ R we have TorR1 (M,R/I) = 0.

Proof. Suppose M is flat. Let N be an R-module. Let F• be a free resolution of
N . Then F• ⊗RM is a resolution of N ⊗RM , by flatness of M . Hence all higher
Tor groups vanish.

It now suffices to show that the last condition implies that M is flat. Let I ⊂ R
be an ideal. Consider the short exact sequence 0 → I → R → R/I → 0. Apply
Lemma 10.72.2. We get an exact sequence

TorR1 (M,R/I)→M ⊗R I →M ⊗R R→M ⊗R R/I → 0

Since obviously M ⊗R R = M we conclude that the last hypothesis implies that
M ⊗R I → M is injective for every finitely generated ideal I. Thus M is flat by
Lemma 10.38.4. �

Remark 10.72.8. The proof of Lemma 10.72.7 actually shows that

TorR1 (M,R/I) = Ker(I ⊗RM →M).
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10.73. Functorialities for Tor

In this section we briefly discuss the functoriality of Tor with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given a ring map R → R′, an R-module M and an R′-module N ′ the

R-modules TorRi (M,N ′) have a natural R′-module structure.
(2) Given a ring map R → R′ and R-modules M , N there is a natural R-

module map TorRi (M,N)→ TorR
′

i (M ⊗R R′, N ⊗R R′).
(3) Given a ring map R → R′ an R-module M and an R′-module N ′ there

exists a natural R′-module map TorRi (M,N ′)→ TorR
′

i (M ⊗R R′, N ′).

Lemma 10.73.1. Given a flat ring map R→ R′ and R-modules M , N the natural

R-module map TorRi (M,N)⊗RR′ → TorR
′

i (M ⊗RR′, N ⊗RR′) is an isomorphism
for all i.

Proof. Omitted. This is true because a free resolution F• of M over R stays exact
when tensoring with R′ over R and hence (F•⊗RN)⊗RR′ computes the Tor groups
over R′. �

10.74. Projective modules

Some lemmas on projective modules.

Definition 10.74.1. Let R be a ring. An R-module P is projective if and only if
the functor HomR(P,−) : ModR → ModR is an exact functor.

The functor HomR(M,−) is left exact for any R-module M , see Lemma 10.10.1.
Hence the condition for P to be projective really signifies that given a surjection of
R-modules N → N ′ the map HomR(P,N)→ HomR(P,N ′) is surjective.

Lemma 10.74.2. Let R be a ring. Let P be an R-module. The following are
equivalent

(1) P is projective,
(2) P is a direct summand of a free R-module, and
(3) Ext1R(P,M) = 0 for every R-module M .

Proof. Assume P is projective. Choose a surjection π : F → P where F is a free
R-module. As P is projective there exists a i ∈ HomR(P, F ) such that i ◦ π = idP .
In other words F ∼= Ker(π)⊕ i(P ) and we see that P is a direct summand of F .

Conversely, assume that P ⊕Q = F is a free R-module. Note that the free module
F =

⊕
i∈I R is projective as HomR(F,M) =

∏
i∈IM and the functor M 7→

∏
i∈IM

is exact. Then HomR(F,−) = HomR(P,−)×HomR(Q,−) as functors, hence both
P and Q are projective.

Assume P ⊕ Q = F is a free R-module. Then we have a free resolution F• of the
form

. . . F
a−→ F

b−→ F → P → 0

where the maps a, b alternate and are equal to the projector onto P and Q. Hence
the complex HomR(F•,M) is split exact in degrees ≥ 1, whence we see the vanishing
in (3).

Assume Ext1
R(P,M) = 0 for every R-module M . Pick a free resolution F• → P .

Set M = Im(F1 → F0) = Ker(F0 → P ). Consider the element ξ ∈ Ext1
R(P,M)
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given by the class of the quotient map π : F1 → M . Since ξ is zero there exists a
map s : F0 →M such that π = s ◦ (F1 → F0). Clearly, this means that

F0 = Ker(s)⊕Ker(F0 → P ) = P ⊕Ker(F0 → P )

and we win. �

Lemma 10.74.3. A direct sum of projective modules is projective.

Proof. This is true by the characterization of projectives as direct summands of
free modules in Lemma 10.74.2. �

Lemma 10.74.4. Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let P be a
projective R-module. Then there exists a projective R-module P such that P/IP ∼=
P .

Proof. We can choose a set A and a direct sum decomposition
⊕

α∈AR/I = P⊕K
for some R/I-module K. Write F =

⊕
α∈AR for the free R-module on A. Choose a

lift p : F → F of the projector p associated to the direct summand P of
⊕

α∈AR/I.

Note that p2−p ∈ EndR(F ) is a nilpotent endomorphism of F (as I is nilpotent and
the matrix entries of p2 − p are in I; more precisely, if In = 0, then (p2 − p)n = 0).
Hence by Lemma 10.31.6 we can modify our choice of p and assume that p is a
projector. Set P = Im(p). �

Lemma 10.74.5. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) I is nilpotent,
(2) M/IM is a projective R/I-module,
(3) M is a flat R-module.

Then M is a projective R-module.

Proof. By Lemma 10.74.4 we can find a projective R-module P and an isomor-
phism P/IP →M/IM . We are going to show that M is isomorphic to P which will
finish the proof. Because P is projective we can lift the map P → P/IP →M/IM
to an R-module map P →M which is an isomorphism modulo I. By Nakayama’s
Lemma 10.19.1 the map P → M is surjective. It remains to show that P → M is
injective. Since In = 0 for some n, we can use the filtrations

0 = InM ⊂ In−1M ⊂ . . . ⊂ IM ⊂M
0 = InP ⊂ In−1P ⊂ . . . ⊂ IP ⊂ P

to see that it suffices to show that the induced maps IaP/Ia+1P → IaM/Ia+1M
are injective. Since both P and M are flat R-modules we can identify this with the
map

Ia/Ia+1 ⊗R/I P/IP −→ Ia/Ia+1 ⊗R/I M/IM

induced by P → M . Since we chose P → M such that the induced map P/IP →
M/IM is an isomorphism, we win. �
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10.75. Finite projective modules

Definition 10.75.1. Let R be a ring and M an R-module. We say that M is
locally free if we can cover Spec(R) by standard opens D(fi), i ∈ I such that Mfi

is a free Rfi-module for all i ∈ I. We say that M is finite locally free if each Mfi is
finite free.

Note that a finite locally free R-module is automatically finitely presented by
Lemma 10.23.2.

Lemma 10.75.2. Let R be a ring and let M be an R-module. The following are
equivalent

(1) M is finitely presented and R-flat,
(2) M is finite projective,
(3) M is a direct summand of a finite free R-module,
(4) M is finitely presented and for all p ∈ Spec(R) the localization Mp is free,
(5) M is finitely presented and for all maximal ideals m ⊂ R the localization

Mm is free,
(6) M is finite and locally free,
(7) M is finite locally free, and
(8) M is finite, for every prime p the module Mp is free, and the function

ρM : Spec(R)→ Z, p 7−→ dimκ(p)M ⊗R κ(p)

is locally constant in the Zariski topology.

Proof. First suppose M is finite projective, i.e., (2) holds. Take a surjection Rn →
M and let K be the kernel. Since M is projective, 0→ K → Rn →M → 0 splits.
Hence (2) ⇒ (3). The implication (3) ⇒ (2) follows from the fact that a direct
summand of a projective is projective, see Lemma 10.74.2.

Assume (3), so we can write K ⊕M ∼= R⊕n. So K is a direct summand of Rn and
thus finitely generated. This shows M = R⊕n/K is finitely presented. In other
words, (3) ⇒ (1).

Assume M is finitely presented and flat, i.e., (1) holds. We will prove that (7)
holds. Pick any prime p and x1, . . . , xr ∈ M which map to a basis of M ⊗R κ(p).
By Nakayama’s Lemma 10.19.1 these elements generate Mg for some g ∈ R, g 6∈ p.
The corresponding surjection ϕ : R⊕rg → M⊕rg has the following two properties:
(a) Ker(ϕ) is a finite Rg-module (see Lemma 10.5.3) and (b) Ker(ϕ)⊗ κ(p) = 0 by
flatness of Mg over Rg (see Lemma 10.38.11). Hence by Nakayama’s lemma again
there exists a g′ ∈ Rg such that Ker(ϕ)g′ = 0. In other words, Mgg′ is free.

A finite locally free module is a finite module, see Lemma 10.23.2, hence (7)⇒ (6).
It is clear that (6) ⇒ (7) and that (7) ⇒ (8).

A finite locally free module is a finitely presented module, see Lemma 10.23.2,
hence (7)⇒ (4). Of course (4) implies (5). Since we may check flatness locally (see
Lemma 10.38.19) we conclude that (5) implies (1). At this point we have

(2) ks +3 (3) +3 (1) +3 (7) ks +3

�$��

(6)

(5)

KS

(4)ks (8)
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Suppose that M satisfies (1), (4), (5), (6), and (7). We will prove that (3) holds. It
suffices to show that M is projective. We have to show that HomR(M,−) is exact.
Let 0 → N ′′ → N → N ′ → 0 be a short exact sequence of R-module. We have to
show that 0→ HomR(M,N ′′)→ HomR(M,N)→ HomR(M,N ′)→ 0 is exact. As
M is finite locally free there exist a covering Spec(R) =

⋃
D(fi) such that Mfi is

finite free. By Lemma 10.10.2 we see that

0→ HomR(M,N ′′)fi → HomR(M,N)fi → HomR(M,N ′)fi → 0

is equal to 0→ HomRfi
(Mfi , N

′′
fi

)→ HomRfi
(Mfi , Nfi)→ HomRfi

(Mfi , N
′
fi

)→ 0

which is exact as Mfi is free and as the localization 0 → N ′′fi → Nfi → N ′fi → 0

is exact (as localization is exact). Whence we see that 0 → HomR(M,N ′′) →
HomR(M,N)→ HomR(M,N ′)→ 0 is exact by Lemma 10.23.2.

Finally, assume that (8) holds. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈ M
which map to a κ(m)-basis of M ⊗R κ(m) = M/mM . In particular ρM (m) = r.
By Nakayama’s Lemma 10.19.1 there exists an f ∈ R, f 6∈ m such that x1, . . . , xr
generate Mf over Rf . By the assumption that ρM is locally constant there exists
a g ∈ R, g 6∈ m such that ρM is constant equal to r on D(g). We claim that

Ψ : R⊕rfg −→Mfg, (a1, . . . , ar) 7−→
∑

aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that (7)
holds. To see the claim it suffices to show that the induced map on localizations
Ψp : R⊕rp → Mp is an isomorphism for all p ∈ D(fg), see Lemma 10.23.1. By our

choice of f the map Ψp is surjective. By assumption (8) we have Mp
∼= R

⊕ρM (p)
p

and by our choice of g we have ρM (p) = r. Hence Ψp determines a surjection
R⊕rp → Mp

∼= R⊕rp whence is an isomorphism by Lemma 10.15.4. (Of course this
last fact follows from a simple matrix argument also.) �

Remark 10.75.3. It is not true that a finite R-module which is R-flat is automat-
ically projective. A counter example is where R = C∞(R) is the ring of infinitely
differentiable functions on R, and M = Rm = R/I where m = {f ∈ R | f(0) = 0}
and I = {f ∈ R | ∃ε, ε > 0 : f(x) = 0 ∀x, |x| < ε}.

Lemma 10.75.4. (Warning: see Remark 10.75.3.) Suppose R is a local ring, and
M is a finite flat R-module. Then M is finite free.

Proof. Follows from the equational criterion of flatness, see Lemma 10.38.10.
Namely, suppose that x1, . . . , xr ∈ M map to a basis of M/mM . By Nakayama’s
Lemma 10.19.1 these elements generate M . We want to show there is no relation
among the xi. Instead, we will show by induction on n that if x1, . . . , xn ∈ M are
linearly independent in the vector space M/mM then they are independent over R.

The base case of the induction is where we have x ∈ M , x 6∈ mM and a relation
fx = 0. By the equational criterion there exist yj ∈ M and aj ∈ R such that
x =

∑
ajyj and faj = 0 for all j. Since x 6∈ mM we see that at least one aj is a

unit and hence f = 0.

Suppose that
∑
fixi is a relation among x1, . . . , xn. By our choice of xi we have

fi ∈ m. According to the equational criterion of flatness there exist aij ∈ R and
yj ∈ M such that xi =

∑
aijyj and

∑
fiaij = 0. Since xn 6∈ mM we see that

anj 6∈ m for at least one j. Since
∑
fiaij = 0 we get fn =

∑n−1
i=1 (−aij/anj)fi. The

relation
∑
fixi = 0 now can be rewritten as

∑n−1
i=1 fi(xi+(−aij/anj)xn) = 0. Note
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that the elements xi + (−aij/anj)xn map to n− 1 linearly independent elements of
M/mM . By induction assumption we get that all the fi, i ≤ n− 1 have to be zero,

and also fn =
∑n−1
i=1 (−aij/anj)fi. This proves the induction step. �

Lemma 10.75.5. Let R → S be a flat local homomorphism of local rings. Let M
be a finite R-module. Then M is finite projective over R if and only if M ⊗R S is
finite projective over S.

Proof. Suppose that M ⊗R S is finite projective over S. By Lemma 10.75.2 it is
finite free. Pick x1, . . . , xr ∈ M whose residue classes generate M/mRM . Clearly
we see that x1 ⊗ 1, . . . , xr ⊗ 1 are a basis for M ⊗R S. This implies that the
map R⊕r →M, (ai) 7→

∑
aixi becomes an isomorphism after tensoring with S. By

faithful flatness of R→ S, see Lemma 10.38.16 we see that it is an isomorphism. �

Lemma 10.75.6. Let R be a semi-local ring. Let M be a finite locally free module.
If M has constant rank, then M is free. In particular, if R has connected spectrum,
then M is free.

Proof. Omitted. Hints: First show that M/miM has the same dimension d for all
maximal ideal m1, . . . ,mn of R using the spectrum is connected. Next, show that
there exist elements x1, . . . , xd ∈ M which form a basis for each M/miM by the
Chinese remainder theorem. Finally show that x1, . . . , xd is a basis for M . �

Here is a technical lemma that is used in the chapter on groupoids.

Lemma 10.75.7. Let R be a local ring with maximal ideal m and infinite residue
field. Let R → S be a ring map. Let M be an S-module and let N ⊂ M be an
R-submodule. Assume

(1) S is semi-local and mS is contained in the radical of S,
(2) M is a finite free S-module, and
(3) N generates M as an S-module.

Then N contains an S-basis of M .

Proof. Assume M is free of rank n. Let I = rad(S). By Nakayama’s Lemma
10.19.1 a sequence of elementsm1, . . . ,mn is a basis forM if and only ifmi ∈M/IM
generate M/IM . Hence we may replace M by M/IM , N by N/(N ∩ IM), R by
R/m, and S by S/IS. In this case we see that S is a finite product of fields
S = k1 × . . . × kr and M = k⊕n1 × . . . × k⊕nr . The fact that N ⊂ M generates
M as an S-module means that there exist xj ∈ N such that a linear combination∑
ajxj with aj ∈ S has a nonzero component in each factor k⊕ni . Because R = k

is an infinite field, this means that also some linear combination y =
∑
cjxj with

cj ∈ k has a nonzero component in each factor. Hence y ∈ N generates a free
direct summand Sy ⊂ M . By induction on n the result holds for M/Sy and the
submodule N = N/(N ∩ Sy). In other words there exist y2, . . . , yn in N which
(freely) generate M/Sy. Then y, y2, . . . , yn (freely) generate M and we win. �

10.76. Open loci defined by module maps

The set of primes where a given module map is surjective, or an isomorphism is
sometimes open. In the case of finite projective modules we can look at the rank
of the map.
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Lemma 10.76.1. Let R be a ring. Let ϕ : M → N be a map of R-modules with
N a finite R-module. Then we have the equality

U = {p ⊂ R | ϕp : Mp → Np is surjective}
= {p ⊂ R | ϕ⊗ κ(p) : M ⊗ κ(p)→ N ⊗ κ(p) is surjective}

and U is an open subset of Spec(R). Moreover, for any f ∈ R such that D(f) ⊂ U
the map Mf → Nf is surjective.

Proof. The equality in the displayed formula follows from Nakayama’s lemma.
Nakayama’s lemma also implies that U is open. See Lemma 10.19.1 especially part
(3). If D(f) ⊂ U , then Mf → Nf is surjective on all localizations at primes of Rf ,
and hence it is surjective by Lemma 10.23.1. �

Lemma 10.76.2. Let R be a ring. Let ϕ : M → N be a map of finitely presented
R-modules. Then

U = {p ⊂ R | ϕp : Mp → Np is an isomorphism}
is an open subset of Spec(R).

Proof. Let p ∈ U . Pick a presentation N = R⊕n/
∑
j=1,...,mRkj . Denote ei the

image in N of the ith basis vector of R⊕n. For each i ∈ {1, . . . , n} choose an
element mi ∈ Mp such that ϕ(mi) = fiei for some fi ∈ R, fi 6∈ p. This is possible
as ϕp is an isomorphism. Set f = f1 . . . fn and let ψ : R⊕nf →M be the map which

maps the ith basis vector to mi/fi. Note that ϕf ◦ψ is the localization at f of the
given map R⊕n → N . As ϕp is an isomorphism we see that ψ(kj) is an element of
M which maps to zero in Mp. Hence we see that there exist gj ∈ R, gj 6∈ p such
that gjψ(kj) = 0. Setting g = g1 . . . gm, we see that ψg factors through Nfg to give
a map Nfg → Mfg. By construction this map is inverse to ϕfg. Hence ϕfg is an
isomorphism, which implies that D(fg) ⊂ U as desired. �

Lemma 10.76.3. Let R be a ring. Let ϕ : P1 → P2 be a map of finite projective
modules. Then

(1) The set U of primes p ∈ Spec(R) such that ϕ ⊗ κ(p) is injective is open
and for any f ∈ R such that D(f) ⊂ U we have
(a) P1,f → P2,f is injective, and
(b) the module Coker(ϕ)f is finite projective over Rf .

(2) The set W of primes p ∈ Spec(R) such that ϕ⊗ κ(p) is surjective is open
and for any f ∈ R such that D(f) ⊂W we have
(a) P1,f → P2,f is surjective, and
(b) the module Ker(ϕ)f is finite projective over Rf .

(3) The set V of primes p ∈ Spec(R) such that ϕ ⊗ κ(p) is an isomorphism
is open and for any f ∈ R such that D(f) ⊂ V the map ϕ : P1,f → P2,f

is an isomorphism of modules over Rf .

Proof. To prove the set U is open we may work locally on Spec(R). Thus we may
replace R by a suitable localization and assume that P1 = Rn1 and P2 = Rn2 , see
Lemma 10.75.2. In this case injectivity of ϕ ⊗ κ(p) is equivalent to n1 ≤ n2 and
some n1 × n1 minor f of the matrix of ϕ being invertible in κ(p). Thus D(f) ⊂ U .
This argument also shows that P1,p → P2,p is injective for p ∈ U .

Now suppose D(f) ⊂ U . By the remark in the previous paragraph and Lemma
10.23.1 we see that P1,f → P2,f is injective, i.e., (1)(a) holds. By Lemma 10.75.2 to
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prove (1)(b) it suffices to prove that Coker(ϕ) is finite projective locally on D(f).
Thus, as we saw above, we may assume that P1 = Rn1 and P2 = Rn2 and that some
minor of the matrix of ϕ is invertible in R. If the minor in question corresponds to
the first n1 basis vectors of Rn2 , then using the last n2 − n1 basis vectors we get a
map Rn2−n1 → Rn2 → Coker(ϕ) which is easily seen to be an isomorphism.

Openness of W and (2)(a) for d(f) ⊂W follow from Lemma 10.76.1. Since P2,f is
projective over Rf we see that ϕf : P1,f → P2,f has a section and it follows that
Ker(ϕ)f is a direct summand of P2,f . Therefore Ker(ϕ)f is finite projective. Thus
(2)(b) holds as well.

It is clear that V = U ∩W is open and the other statement in (3) follows from
(1)(a) and (2)(a). �

10.77. Faithfully flat descent for projectivity of modules

In the next few sections we prove, following Raynaud and Gruson [GR71], that the
projectivity of modules descends along faithfully flat ring maps. The idea of the
proof is to use dévissage à la Kaplansky [Kap58] to reduce to the case of countably
generated modules. Given a well-behaved filtration of a module M , dévissage allows
us to express M as a direct sum of successive quotients of the filtering submodules
(see Section 10.81). Using this technique, we prove that a projective module is a
direct sum of countably generated modules (Theorem 10.81.5). To prove descent
of projectivity for countably generated modules, we introduce a “Mittag-Leffler”
condition on modules, prove that a countably generated module is projective if
and only if it is flat and Mittag-Leffler (Theorem 10.90.3), and then show that the
property of being a flat Mittag-Leffler module descends (Lemma 10.92.1). Finally,
given an arbitrary module M whose base change by a faithfully flat ring map is
projective, we filter M by submodules whose successive quotients are countably
generated projective modules, and then by dévissage conclude M is a direct sum
of projectives, hence projective itself (Theorem 10.92.5).

We note that there is an error in the proof of faithfully flat descent of projectivity
in [GR71]. There, descent of projectivity along faithfully flat ring maps is deduced
from descent of projectivity along a more general type of ring map ([GR71, Ex-
ample 3.1.4(1) of Part II]). However, the proof of descent along this more general
type of map is incorrect. In [Gru73], Gruson explains what went wrong, although
he does not provide a fix for the case of interest. Patching this hole in the proof of
faithfully flat descent of projectivity comes down to proving that the property of
being a flat Mittag-Leffler module descends along faithfully flat ring maps. We do
this in Lemma 10.92.1.

10.78. Characterizing flatness

In this section we discuss criteria for flatness. The main result in this section is
Lazard’s theorem (Theorem 10.78.4 below), which says that a flat module is the
colimit of a directed system of free finite modules. We remind the reader of the
“equational criterion for flatness”, see Lemma 10.38.10. It turns out that this can
be massaged into a seemingly much stronger property.

Lemma 10.78.1. Let M be an R-module. The following are equivalent:

(1) M is flat.
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(2) If f : Rn → M is a module map and x ∈ Ker(f), then there are module
maps h : Rn → Rm and g : Rm →M such that f = g ◦h and x ∈ Ker(h).

(3) Suppose f : Rn → M is a module map, N ⊂ Ker(f) any submodule, and
h : Rn → Rm a map such that N ⊂ Ker(h) and f factors through h.

Then given any x ∈ Ker(f) we can find a map h′ : Rn → Rm
′

such that
N +Rx ⊂ Ker(h′) and f factors through h′.

(4) If f : Rn → M is a module map and N ⊂ Ker(f) is a finitely generated
submodule, then there are module maps h : Rn → Rm and g : Rm → M
such that f = g ◦ h and N ⊂ Ker(h).

Proof. That (1) is equivalent to (2) is just a reformulation of the equational cri-
terion for flatness. To show (2) implies (3), let g : Rm →M be the map such that

f factors as f = g ◦ h. By (2) find h′′ : Rm → Rm
′

such that h′′ kills h(x) and
g : Rm →M factors through h′′. Then taking h′ = h′′ ◦h works. (3) implies (4) by
induction on the number of generators of N ⊂ Ker(f) in (4). Clearly (4) implies
(2). �

Lemma 10.78.2. Let M be an R-module. Then M is flat if and only if the
following condition holds: if P is a finitely presented R-module and f : P → M a
module map, then there is a free finite R-module F and module maps h : P → F
and g : F →M such that f = g ◦ h.

Proof. This is just a reformulation of condition (4) from Lemma 10.78.1. �

Lemma 10.78.3. Let M be an R-module. Then M is flat if and only if the
following condition holds: for every finitely presented R-module P , if N → M is
a surjective R-module map, then the induced map HomR(P,N)→ HomR(P,M) is
surjective.

Proof. First suppose M is flat. We must show that if P is finitely presented, then
given a map f : P → M , it factors through the map N → M . By Lemma 10.78.2
the map f factors through a map F → M where F is free and finite. Since F is
free, this map factors through N →M . Thus f factors through N →M .

Conversely, suppose the condition of the lemma holds. Let f : P → M be a
map from a finitely presented module P . Choose a free module N with a surjection
N →M onto M . Then f factors through N →M , and since P is finitely generated,
f factors through a free finite submodule of N . Thus M satisfies the condition of
Lemma 10.78.2, hence is flat. �

Theorem 10.78.4 (Lazard’s theorem). Let M be an R-module. Then M is flat if
and only if it is the colimit of a directed system of free finite R-modules.

Proof. A colimit of a directed system of flat modules is flat, as taking directed
colimits is exact and commutes with tensor product. Hence if M is the colimit of
a directed system of free finite modules then M is flat.

For the converse, first recall that any module M can be written as the colimit of
a directed system of finitely presented modules, in the following way. Choose a
surjection f : RI → M for some set I, and let K be the kernel. Let E be the set
of ordered pairs (J,N) where J is a finite subset of I and N is a finitely generated
submodule of RJ ∩ K. Then E is made into a directed partially ordered set by
defining (J,N) ≤ (J ′, N ′) if and only if J ⊂ J ′ and N ⊂ N ′. Define Me = RJ/N
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for e = (J,N), and define fee′ : Me → Me′ to be the natural map for e ≤ e′.
Then (Me, fee′) is a directed system and the natural maps fe : Me →M induce an

isomorphism colime∈EMe

∼=−→M .

Now suppose M is flat. Let I = M×Z, write (xi) for the canonical basis of RI , and
take in the above discussion f : RI →M to be the map sending xi to the projection
of i onto M . To prove the theorem it suffices to show that the e ∈ E such that Me

is free form a cofinal subset of E. So let e = (J,N) ∈ E be arbitrary. By Lemma
10.78.2 there is a free finite module F and maps h : RJ/N → F and g : F → M

such that the natural map fe : RJ/N → M factors as RJ/N
h−→ F

g−→ M . We are
going to realize F as Me′ for some e′ ≥ e.

Let {b1, . . . , bn} be a finite basis of F . Choose n distinct elements i1, . . . , in ∈ I
such that i` /∈ J for all `, and such that the image of xi` under f : RI →M equals
the image of b` under g : F → M . This is possible by our choice of I. Now let
J ′ = J ∪ {i1, . . . , in}, and define RJ

′ → F by xi 7→ h(xi) for i ∈ J and xi` 7→ b` for

` = 1, . . . , n. Let N ′ = Ker(RJ
′ → F ). Observe:

(1) RJ
′ → F factors f : RI →M , hence N ′ ⊂ K = Ker(f);

(2) RJ
′ → F is a surjection onto a free finite module, hence it splits and so

N ′ is finitely generated;
(3) J ⊂ J ′ and N ⊂ N ′.

By (1) and (2) e′ = (J ′, N ′) is in E, by (3) e′ ≥ e, and by construction Me′ =

RJ
′
/N ′ ∼= F is free. �

10.79. Universally injective module maps

Next we discuss universally injective module maps, which are in a sense comple-
mentary to flat modules (see Lemma 10.79.5). We follow Lazard’s thesis [Laz67];
also see [Lam99].

Definition 10.79.1. Let f : M → N be a map of R-modules. Then f is called
universally injective if for every R-module Q, the map f ⊗R idQ : M ⊗R Q →
N ⊗R Q is injective. A sequence 0→M1 →M2 →M3 → 0 of R-modules is called
universally exact if it is exact and M1 →M2 is universally injective.

Example 10.79.2. Examples of universally exact sequences.

(1) A split short exact sequence is universally exact since tensoring commutes
with taking direct sums.

(2) The colimit of a directed system of universally exact sequences is uni-
versally exact. This follows from the fact that taking directed colimits is
exact and that tensoring commutes with taking colimits. In particular the
colimit of a directed system of split exact sequences is universally exact.
We will see below that, conversely, any universally exact sequence arises
in this way.

Next we give a list of criteria for a short exact sequence to be universally exact. They
are analogues of criteria for flatness given above. Parts (3)-(6) below correspond,
respectively, to the criteria for flatness given in Lemmas 10.38.10, 10.78.1, 10.78.3,
and Theorem 10.78.4.
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Theorem 10.79.3. Let

0→M1
f1−→M2

f2−→M3 → 0

be an exact sequence of R-modules. The following are equivalent:

(1) The sequence 0→M1 →M2 →M3 → 0 is universally exact.
(2) For every finitely presented R-module Q, the sequence

0→M1 ⊗R Q→M2 ⊗R Q→M3 ⊗R Q→ 0

is exact.
(3) Given elements xi ∈ M1 (i = 1, . . . , n), yj ∈ M2 (j = 1, . . . ,m), and

aij ∈ R (i = 1, . . . , n, j = 1, . . . ,m) such that for all i

f1(xi) =
∑

j
aijyj ,

there exists zj ∈M1 (j = 1, . . . ,m) such that for all i,

xi =
∑

j
aijzj .

(4) Given a commutative diagram of R-module maps

Rn //

��

Rm

��
M1

f1 // M2

where m and n are integers, there exists a map Rm →M1 making the top
triangle commute.

(5) For every finitely presented R-module P , the R-module map HomR(P,M2)→
HomR(P,M3) is surjective.

(6) The sequence 0→M1 →M2 →M3 → 0 is the colimit of a directed system
of split exact sequences of the form

0→M1 →M2,i →M3,i → 0

where the M3,i are finitely presented.

Proof. Obviously (1) implies (2).

Next we show (2) implies (3). Let f1(xi) =
∑
j aijyj be relations as in (3). Let

(fj) be a basis for Rm, (ei) a basis for Rn, and Rm → Rn the map given by fj 7→∑
i aijei. Let Q be the cokernel of Rm → Rn. Then tensoring Rm → Rn → Q→ 0

by the map f1 : M1 →M2, we get a commutative diagram

M⊕m1
//

��

M⊕n1
//

��

M1 ⊗R Q //

��

0

M⊕m2
// M⊕n2

// M2 ⊗R Q // 0

where M⊕m1 →M⊕n1 is given by

(z1, . . . , zm) 7→ (
∑

j
a1jzj , . . . ,

∑
j
anjzj),

and M⊕m2 → M⊕n2 is given similarly. We want to show x = (x1, . . . , xn) ∈ M⊕n1

is in the image of M⊕m1 → M⊕n1 . By (2) the map M1 ⊗Q→ M2 ⊗Q is injective,
hence by exactness of the top row it is enough to show x maps to 0 in M2⊗Q, and
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so by exactness of the bottom row it is enough to show the image of x in M⊕n2 is
in the image of M⊕m2 →M⊕n2 . This is true by assumption.

Condition (4) is just a translation of (3) into diagram form.

Next we show (4) implies (5). Let ϕ : P →M3 be a map from a finitely presented
R-module P . We must show that ϕ lifts to a map P →M2. Choose a presentation
of P ,

Rn
g1−→ Rm

g2−→ P → 0.

Using freeness of Rn and Rm, we can construct h2 : Rm →M2 and then h1 : Rn →
M1 such that the following diagram commutes

Rn
g1 //

h1

��

Rm
g2 //

h2

��

P //

ϕ

��

0

0 // M1
f1 // M2

f2 // M3
// 0.

By (4) there is a map k1 : Rm →M1 such that k1 ◦g1 = h1. Now define h′2 : Rm →
M2 by h′2 = h2 − f1 ◦ k1. Then

h′2 ◦ g1 = h2 ◦ g1 − f1 ◦ k1 ◦ g1 = h2 ◦ g1 − f1 ◦ h1 = 0.

Hence by passing to the quotient h′2 defines a map ϕ′ : P →M2 such that ϕ′ ◦ g2 =
h′2. In a diagram, we have

Rm
g2 //

h′2
��

P

ϕ

��

ϕ′

||
M2

f2 // M3.

where the top triangle commutes. We claim that ϕ′ is the desired lift, i.e. that
f2 ◦ ϕ′ = ϕ. From the definitions we have

f2 ◦ ϕ′ ◦ g2 = f2 ◦ h′2 = f2 ◦ h2 − f2 ◦ f1 ◦ k1 = f2 ◦ h2 = ϕ ◦ g2.

Since g2 is surjective, this finishes the proof.

Now we show (5) implies (6). Write M3 as the colimit of a directed system of
finitely presented modules M3,i. Let M2,i be the fiber product of M3,i and M2

over M3—by definition this is the submodule of M2 ×M3,i consisting of elements
whose two projections onto M3 are equal. Let M1,i be the kernel of the projection
M2,i →M3,i. Then we have a directed system of exact sequences

0→M1,i →M2,i →M3,i → 0,

and for each i a map of exact sequences

0 // M1,i

��

// M2,i
//

��

M3,i

��

// 0

0 // M1
// M2

// M3
// 0

compatible with the directed system. From the definition of the fiber product M2,i,
it follows that the map M1,i → M1 is an isomorphism. By (5) there is a map
M3,i → M2 lifting M3,i → M3, and by the universal property of the fiber product
this gives rise to a section of M2,i →M3,i. Hence the sequences

0→M1,i →M2,i →M3,i → 0
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split. Passing to the colimit, we have a commutative diagram

0 // colimM1,i

∼=
��

// colimM2,i
//

��

colimM3,i

∼=
��

// 0

0 // M1
// M2

// M3
// 0

with exact rows and outer vertical maps isomorphisms. Hence colimM2,i →M2 is
also an isomorphism and (6) holds.

Condition (6) implies (1) by Example 10.79.2 (2). �

The previous theorem shows that a universally exact sequence is always a colimit of
split short exact sequences. If the cokernel of a universally injective map is finitely
presented, then in fact the map itself splits:

Lemma 10.79.4. Let

0→M1 →M2 →M3 → 0

be an exact sequence of R-modules. Suppose M3 is of finite presentation. Then

0→M1 →M2 →M3 → 0

is universally exact if and only if it is split.

Proof. A split sequence is always universally exact. Conversely, if the sequence
is universally exact, then by Theorem 10.79.3 (5) applied to P = M3, the map
M2 →M3 admits a section. �

The following lemma shows how universally injective maps are complementary to
flat modules.

Lemma 10.79.5. Let M be an R-module. Then M is flat if and only if any exact
sequence of R-modules

0→M1 →M2 →M → 0

is universally exact.

Proof. This follows from Lemma 10.78.3 and Theorem 10.79.3 (5). �

Example 10.79.6. Non-split and non-flat universally exact sequences.

(1) In spite of Lemma 10.79.4, it is possible to have a short exact sequence of
R-modules

0→M1 →M2 →M3 → 0

that is universally exact but non-split. For instance, take R = Z, let
M1 =

⊕∞
n=1 Z, let M2 =

∏∞
n=1 Z, and let M3 be the cokernel of the

inclusion M1 →M2. Then M1,M2,M3 are all flat since they are torsion-
free, so by Lemma 10.79.5,

0→M1 →M2 →M3 → 0

is universally exact. However there can be no section s : M3 → M2. In
fact, if x is the image of (2, 22, 23, . . .) ∈M2 in M3, then any module map
s : M3 →M2 must kill x. This is because x ∈ 2nM3 for any n ≥ 1, hence
s(x) is divisible by 2n for all n ≥ 1 and so must be 0.
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(2) In spite of Lemma 10.79.5, it is possible to have a short exact sequence of
R-modules

0→M1 →M2 →M3 → 0

that is universally exact but with M1,M2,M3 all non-flat. In fact if M is
any non-flat module, just take the split exact sequence

0→M →M ⊕M →M → 0.

For instance over R = Z, take M to be any torsion module.
(3) Taking the direct sum of an exact sequence as in (1) with one as in (2),

we get a short exact sequence of R-modules

0→M1 →M2 →M3 → 0

that is universally exact, non-split, and such that M1,M2,M3 are all non-
flat.

We end this section with a simple observation.

Lemma 10.79.7. Let 0 → M1 → M2 → M3 → 0 be a universally exact sequence
of R-modules, and suppose M2 is flat. Then M1 and M3 are flat.

Proof. Let 0 → N → N ′ → N ′′ → 0 be a short exact sequence of R-modules.
Consider the commutative diagram

M1 ⊗R N //

��

M2 ⊗R N //

��

M3 ⊗R N

��
M1 ⊗R N ′ //

��

M2 ⊗R N ′ //

��

M3 ⊗R N ′

��
M1 ⊗R N ′′ // M2 ⊗R N ′′ // M3 ⊗R N ′′

(we have dropped the 0’s on the boundary). By assumption the rows give short
exact sequences and the arrow M2⊗N →M2⊗N ′ is injective. Clearly this implies
that M1⊗N →M1⊗N ′ is injective and we see that M1 is flat. In particular the left
and middle columns give rise to short exact sequences. It follows from a diagram
chase that the arrow M3 ⊗N →M3 ⊗N ′ is injective. Hence M3 is flat. �

Lemma 10.79.8. Let R be a ring. Let M → M ′ be a universally injective R-
module map. Then for any R-module N the map M⊗RN →M ′⊗RN is universally
injective.

Proof. Omitted. �

Lemma 10.79.9. Let R be a ring. A composition of universally injective R-module
maps is universally injective.

Proof. Omitted. �

Lemma 10.79.10. Let R be a ring. Let M → M ′ and M → M ′′ be R-module
maps. If M →M ′′ is universally injective, then M →M ′ is universally injective.

Proof. Omitted. �
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Lemma 10.79.11. Let R → S be a faithfully flat ring map. Then R → S is
universally injective as a map of R-modules. In particular R∩ IS = I for any ideal
I ⊂ R.

Proof. Let N be an R-module. We have to show that N → N ⊗R S is injective.
As S is faithfully flat as an R-module, it suffices to prove this after tensoring with
S. Hence it suffices to show that N ⊗R S → N ⊗R S ⊗R S, n ⊗ s 7→ N ⊗ 1 ⊗ s is
injective. This is true because there is a section, namely, n⊗ s⊗ s′ 7→ n⊗ ss′. �

Lemma 10.79.12. Let R→ S be a ring map. Let M →M ′ be a map of S-modules.
The following are equivalent

(1) M →M ′ is universally injective as a map of R-modules,
(2) for each prime q of S the map Mq →M ′q is universally injective as a map

of R-modules,
(3) for each maximal ideal m of S the map Mm →M ′m is universally injective

as a map of R-modules,
(4) for each prime q of S the map Mq →M ′q is universally injective as a map

of Rp-modules, where p is the inverse image of q in R, and
(5) for each maximal ideal m of S the map Mm →M ′m is universally injective

as a map of Rp-modules, where p is the inverse image of m in R.

Proof. Let N be an R-module. Let q be a prime of S lying over the prime p of R.
Then we have

(M ⊗R N)q = Mq ⊗R N = Mq ⊗Rp
Np.

Moreover, the same thing holds for M ′ and localization is exact. Also, if N is
an Rp-module, then Np = N . Using this the equivalences can be proved in a
straightforward manner.

For example, suppose that (5) holds. Let K = Ker(M ⊗R N →M ′ ⊗R N). By the
remarks above we see that Km = 0 for each maximal ideal m of S. Hence K = 0
by Lemma 10.23.1. Thus (1) holds. Conversely, suppose that (1) holds. Take
any q ⊂ S lying over p ⊂ R. Take any module N over Rp. Then by assumption
Ker(M ⊗R N → M ′ ⊗R N) = 0. Hence by the formulae above and the fact that
N = Np we see that Ker(Mq ⊗Rp

N →M ′q ⊗Rp
N) = 0. In other words (4) holds.

Of course (4) ⇒ (5) is immediate. Hence (1), (4) and (5) are all equivalent. We
omit the proof of the other equivalences. �

Lemma 10.79.13. Let ϕ : A → B be a ring map. Let S ⊂ A and S′ ⊂ B be
multiplicative subsets such that ϕ(S) ⊂ S′. Let M →M ′ be a map of B-modules.

(1) If M →M ′ is universally injective as a map of A-modules, then (S′)−1M →
(S′)−1M ′ is universally injective as a map of A-modules and as a map of
S−1A-modules.

(2) If M and M ′ are (S′)−1B-modules, then M →M ′ is universally injective
as a map of A-modules if and only if it is universally injective as a map
of S−1A-modules.

Proof. You can prove this using Lemma 10.79.12 but you can also prove it directly
as follows. Assume M → M ′ is A-universally injective. Let Q be an A-module.
Then Q ⊗A M → Q ⊗A M ′ is injective. Since localization is exact we see that
(S′)−1(Q ⊗A M) → (S′)−1(Q ⊗A M ′) is injective. As (S′)−1(Q ⊗A M) = Q ⊗A
(S′)−1M and similarly for M ′ we see that Q ⊗A (S′)−1M → Q ⊗A (S′)−1M ′
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is injective, hence (S′)−1M → (S′)−1M ′ is universally injective as a map of A-
modules. This proves the first part of (1). To see (2) we can use the following two
facts: (a) if Q is an S−1A-module, then Q ⊗A S−1A = Q, i.e., tensoring with Q
over A is the same thing as tensoring with Q over S−1A, (b) if M is any A-module
on which the elements of S are invertible, then M ⊗A Q = M ⊗S−1A S

−1Q. Part
(2) follows from this immediately. �

Lemma 10.79.14. Let R be a ring and let M → M ′ be a map of R-modules. If
M ′ is flat, then M →M ′ is universally injective if and only if M/IM →M ′/IM ′

is injective for every finitely generated ideal I of R.

Proof. It suffices to show that M ⊗R Q → M ′ ⊗R Q is injective for every finite
R-module Q, see Theorem 10.79.3. Then Q has a finite filtration 0 = Q0 ⊂ Q1 ⊂
. . . ⊂ Qn = Q by submodules whose subquotients are isomorphic to cyclic modules
R/Ii, see Lemma 10.5.4. Since M ′ is flat, we obtain a filtration

M ⊗Q1
//

��

M ⊗Q2
//

��

. . . // M ⊗Q

��
M ′ ⊗Q1

� � // M ′ ⊗Q2
� � // . . . �

� // M ′ ⊗Q

of M ′⊗RQ by submodules M ′⊗RQi whose successive quotients are M ′⊗RR/Ii =
M ′/IiM

′. A simple induction argument shows that it suffices to check M/IiM →
M ′/IiM

′ is injective. Note that the collection of finitely generated ideals I ′i ⊂ Ii
is a directed set. Thus M/IiM = colimM/I ′iM is a filtered colimit, similarly for
M ′, the maps M/I ′iM → M ′/I ′iM

′ are injective by assumption, and since filtered
colimits are exact (Lemma 10.8.9) we conclude. �

10.80. Descent for finite projective modules

In this section we give an elementary proof of the fact that the property of being a
finite projective module descends along faithfully flat ring maps. The proof does not
apply when we drop the finiteness condition. However, the method is indicative of
the one we shall use to prove descent for the property of being a countably generated
projective module—see the comments at the end of this section.

Lemma 10.80.1. Let M be an R-module. Then M is finite projective if and only
if M is finitely presented and flat.

Proof. This is part of Lemma 10.75.2. However, at this point we can give a more
elegant proof of the implication (1)⇒ (2) of that lemma as follows. If M is finitely
presented and flat, then take a surjection Rn →M . By Lemma 10.78.3 applied to
P = M , the map Rn → M admits a section. So M is a direct summand of a free
module and hence projective. �

Here are some properties of modules that descend.

Lemma 10.80.2. Let R→ S be a faithfully flat ring map. Let M be an R-module.
Then

(1) if the S-module M ⊗R S is of finite type, then M is of finite type,
(2) if the S-module M ⊗R S is of finite presentation, then M is of finite

presentation,
(3) if the S-module M ⊗R S is flat, then M is flat, and
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(4) add more here as needed.

Proof. Assume M ⊗R S is of finite type. Let y1, . . . , ym be generators of M ⊗R S
over S. Write yj =

∑
xi ⊗ fi for some x1, . . . , xn ∈M . Then we see that the map

ϕ : R⊕n → M has the property that ϕ⊗ idS : S⊕n → M ⊗R S is surjective. Since
R→ S is faithfully flat we see that ϕ is surjective, and M is finitely generated.

Assume M ⊗R S is of finite presentation. By (1) we see that M is of finite type.
Choose a surjection R⊕n → M and denote K the kernel. As R → S is flat we see
that K ⊗R S is the kernel of the base change S⊕n → M ⊗R S. As M ⊗R S is of
finite presentation we conclude that K ⊗R S is of finite type. Hence by (1) we see
that K is of finite type and hence M is of finite presentation.

Part (3) is Lemma 10.38.7. �

Proposition 10.80.3. Let R → S be a faithfully flat ring map. Let M be an
R-module. If the S-module M ⊗R S is finite projective, then M is finite projective.

Proof. Follows from Lemmas 10.80.1 and 10.80.2. �

The next few sections are about removing the finiteness assumption by using
dévissage to reduce to the countably generated case. In the countably generated
case, the strategy is to find a characterization of countably generated projective
modules analogous to Lemma 10.80.1, and then to prove directly that this char-
acterization descends. We do this by introducing the notion of a Mittag-Leffer
module and proving that if a module M is countably generated, then it is pro-
jective if and only if it is flat and Mittag-Leffler (Theorem 10.90.3). When M is
finitely generated, this statement reduces to Lemma 10.80.1 (since, according to
Example 10.88.1 (1), a finitely generated module is Mittag-Leffler if and only if it
is finitely presented).

10.81. Transfinite dévissage of modules

In this section we introduce a dévissage technique for decomposing a module into a
direct sum. The main result is that a projective module is a direct sum of countably
generated modules (Theorem 10.81.5 below). We follow [Kol96].

Definition 10.81.1. Let M be an R-module. A direct sum dévissage of M is
a family of submodules (Mα)α∈S , indexed by an ordinal S and increasing (with
respect to inclusion), such that:

(0) M0 = 0;
(1) M =

⋃
αMα;

(2) if α ∈ S is a limit ordinal, then Mα =
⋃
β<αMβ ;

(3) if α+ 1 ∈ S, then Mα is a direct summand of Mα+1.

If moreover

(4) Mα+1/Mα is countably generated for α+ 1 ∈ S,

then (Mα)α∈S is called a Kaplansky dévissage of M .

The terminology is justified by the following lemma.

Lemma 10.81.2. Let M be an R-module. If (Mα)α∈S is a direct sum dévissage
of M , then M ∼=

⊕
α+1∈SMα+1/Mα.
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Proof. By property (3) of a direct sum dévissage, there is an inclusionMα+1/Mα →
M for each α ∈ S. Consider the map

f :
⊕

α+1∈S
Mα+1/Mα →M

given by the sum of these inclusions. Transfinite induction on S shows that the
image contains Mα for every α ∈ S: for α = 0 this is true by (0); if α + 1 is a
successor ordinal then it is clearly true; and if α is a limit ordinal and it is true for
β < α, then it is true for α by (2). Hence f is surjective by (1).

Transfinite induction on S also shows that for every β ∈ S the restriction

fβ :
⊕

α+1≤β
Mα+1/Mα −→M

of f is injective: For β = 0 it is true. If it is true for all β′ < β, then let x be in the
kernel and write x = (xα+1)α+1≤β in terms of its components xα+1 ∈ Mα+1/Mα.
By property (3) both (xα+1)α+1<β and xβ+1 map to 0. Hence xβ+1 = 0 and, by
the assumption that the restriction fβ′ is injective for all β′ < β, also xα+1 = 0 for
every α + 1 < β. So x = 0 and fβ is injective, which finishes the induction. We
conclude that f is injective since fβ is for each β ∈ S. �

Lemma 10.81.3. Let M be an R-module. Then M is a direct sum of countably
generated R-modules if and only if it admits a Kaplansky dévissage.

Proof. The lemma takes care of the “if” direction. Conversely, suppose M =⊕
i∈I Ni where each Ni is a countably generated R-module. Well-order I so that

we can think of it as an ordinal. Then setting Mi =
⊕

j<iNj gives a Kaplansky

dévissage (Mi)i∈I of M . �

Theorem 10.81.4. Suppose M is a direct sum of countably generated R-modules.
If P is a direct summand of M , then P is also a direct sum of countably generated
R-modules.

Proof. Write M = P ⊕ Q. We are going to construct a Kaplansky dévissage
(Mα)α∈S of M which, in addition to the defining properties (0)-(4), satisfies:

(5) Each Mα is a direct summand of M ;
(6) Mα = Pα ⊕Qα, where Pα = P ∩Mα and Q = Q ∩Mα.

(Note: if properties (0)-(2) hold, then in fact property (3) is equivalent to property
(5).)

To see how this implies the theorem, it is enough to show that (Pα)α∈S forms a
Kaplansky dévissage of P . Properties (0), (1), and (2) are clear. By (5) and (6)
for (Mα), each Pα is a direct summand of M . Since Pα ⊂ Pα+1, this implies Pα is
a direct summand of Pα+1; hence (3) holds for (Pα). For (4), note that

Mα+1/Mα
∼= Pα+1/Pα ⊕Qα+1/Qα,

so Pα+1/Pα is countably generated because this is true of Mα+1/Mα.

It remains to construct the Mα. Write M =
⊕

i∈I Ni where each Ni is a countably
generated R-module. Choose a well-ordering of I. By transfinite induction we are
going to define an increasing family of submodules Mα of M , one for each ordinal
α, such that Mα is a direct sum of some subset of the Ni.
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For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mα =

⋃
β<αMβ . Since each Mβ for β < α is a direct sum of a subset

of the Ni, the same will be true of Mα. If α + 1 is a successor ordinal and Mα

has been defined, then define Mα+1 as follows. If Mα = M , then let Mα+1 = M .
If not, choose the smallest j ∈ I such that Nj is not contained in Mα. We will
construct an infinite matrix (xmn),m, n = 1, 2, 3, . . . such that:

(1) Nj is contained in the submodule of M generated by the entries xmn;
(2) if we write any entry xk` in terms of its P - and Q-components, xk` =

yk` + zk`, then the matrix (xmn) contains a set of generators for each Ni
for which yk` or zk` has nonzero component.

Then we define Mα+1 to be the submodule of M generated by Mα and all xmn;
by property (2) of the matrix (xmn), Mα+1 will be a direct sum of some subset of
the Ni. To construct the matrix (xmn), let x11, x12, x13, . . . be a countable set of
generators for Nj . Then if x11 = y11 + z11 is the decomposition into P - and Q-
components, let x21, x22, x23, . . . be a countable set of generators for the sum of the
Ni for which y11 or z11 have nonzero component. Repeat this process on x12 to get
elements x31, x32, . . ., the third row of our matrix. Repeat on x21 to get the fourth
row, on x13 to get the fifth, and so on, going down along successive anti-diagonals
as indicated below: 

x11 x12
zz

x13
zz

x14
zz

. . .

x21 x22
zz

x23
zz

. . .

x31 x32
zz

. . .

x41 . . .

. . .


.

Transfinite induction on I (using the fact that we constructed Mα+1 to contain Nj
for the smallest j such that Nj is not contained in Mα) shows that for each i ∈ I,
Ni is contained in some Mα. Thus, there is some large enough ordinal S satisfying:
for each i ∈ I there is α ∈ S such that Ni is contained in Mα. This means (Mα)α∈S
satisfies property (1) of a Kaplansky dévissage of M . The family (Mα)α∈S moreover
satisfies the other defining properties, and also (5) and (6) above: properties (0),
(2), (4), and (6) are clear by construction; property (5) is true because each Mα

is by construction a direct sum of some Ni; and (3) is implied by (5) and the fact
that Mα ⊂Mα+1. �

As a corollary we get the result for projective modules stated at the beginning of
the section.

Theorem 10.81.5. If P is a projective R-module, then P is a direct sum of count-
ably generated projective R-modules.

Proof. A module is projective if and only if it is a direct summand of a free module,
so this follows from Theorem 10.81.4. �

10.82. Projective modules over a local ring

In this section we prove a very cute result: a projective module M over a local ring
is free (Theorem 10.82.4 below). Note that with the additional assumption that M
is finite, this result is Lemma 10.75.4. In general we have:
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Lemma 10.82.1. Let R be a ring. Then every projective R-module is free if and
only if every countably generated projective R-module is free.

Proof. Follows immediately from Theorem 10.81.5. �

Here is a criterion for a countably generated module to be free.

Lemma 10.82.2. Let M be a countably generated R-module. Suppose any direct
summand N of M satisfies: any element of N is contained in a free direct summand
of N . Then M is free.

Proof. Let x1, x2, . . . be a countable set of generators for M . By the assumption
on M , we can construct by induction free R-modules F1, F2, . . . such that for every
positive integer n,

⊕n
i=1 Fi is a direct summand of M and contains x1, . . . , xn.

Then M =
⊕∞

i=1 Fi. �

Lemma 10.82.3. Let P be a projective module over a local ring R. Then any
element of P is contained in a free direct summand of P .

Proof. Since P is projective it is a direct summand of some free R-module F , say
F = P ⊕Q. Let x ∈ P be the element that we wish to show is contained in a free
direct summand of P . Let B be a basis of F such that the number of basis elements
needed in the expression of x is minimal, say x =

∑n
i=1 aiei for some ei ∈ B and

ai ∈ R. Then no aj can be expressed as a linear combination of the other ai; for if
aj =

∑
i 6=j aibi for some bi ∈ R, then replacing ei by ei + biej for i 6= j and leaving

unchanged the other elements of B, we get a new basis for F in terms of which x
has a shorter expression.

Let ei = yi + zi, yi ∈ P, zi ∈ Q be the decomposition of ei into its P - and Q-
components. Write yi =

∑n
j=1 bijej+ti, where ti is a linear combination of elements

in B other than e1, . . . , en. To finish the proof it suffices to show that the matrix
(bij) is invertible. For then the map F → F sending ei 7→ yi for i = 1, . . . , n
and fixing B \ {e1, . . . , en} is an isomorphism, so that y1, . . . , yn together with
B \ {e1, . . . , en} form a basis for F . Then the submodule N spanned by y1, . . . , yn
is a free submodule of P ; N is a direct summand of P since N ⊂ P and both N
and P are direct summands of F ; and x ∈ N since x ∈ P implies x =

∑n
i=1 aiei =∑n

i=1 aiyi.

Now we prove that (bij) is invertible. Plugging yi =
∑n
j=1 bijej+ti into

∑n
i=1 aiei =∑n

i=1 aiyi and equating the coefficients of ej gives aj =
∑n
i=1 aibij . But as noted

above, our choice of B guarantees that no aj can be written as a linear combination
of the other ai. Thus bij is a non-unit for i 6= j, and 1 − bii is a non-unit—so in
particular bii is a unit—for all i. But a matrix over a local ring having units along
the diagonal and non-units elsewhere is invertible, as its determinant is a unit. �

Theorem 10.82.4. If P is a projective module over a local ring R, then P is free.

Proof. Follows from Lemmas 10.82.1, 10.82.2, and 10.82.3. �

10.83. Mittag-Leffler systems

The purpose of this section is to define Mittag-Leffler systems and why it is a useful
property.
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In the following, I will be a directed partially ordered set, see Categories, Definition
4.21.2. Let (Ai, ϕji : Aj → Ai) be an inverse system of sets or of modules indexed by
I, see Categories, Definition 4.21.2. This is a directed inverse system as we assumed
I directed. For each i ∈ I, the images ϕji(Aj) ⊂ Ai for j ≥ i form a decreasing
family. Let A′i =

⋂
j≥i ϕji(Aj). Then ϕji(A

′
j) ⊂ A′i for j ≥ i, hence by restricting

we get a directed inverse system (A′i, ϕji|A′j ). From the construction of the limit of

an inverse system in the category of sets or modules, we have limAi = limA′i. The
Mittag-Leffler condition on (Ai, ϕji) is that A′i equals ϕji(Aj) for some j ≥ i (and
hence equals ϕki(Ak) for all k ≥ j):

Definition 10.83.1. Let (Ai, ϕji) be a directed inverse system of sets over I. Then
we say (Ai, ϕji) is Mittag-Leffler inverse system if for each i ∈ I, the decreasing
family ϕji(Aj) ⊂ Ai for j ≥ i stabilizes. Explicitly, this means that for each i ∈ I,
there exists j ≥ i such that for k ≥ j we have ϕki(Ak) = ϕji(Aj). If (Ai, ϕji) is a
directed inverse system of modules over a ring R, we say that it is Mittag-Leffler if
the underlying inverse system of sets is Mittag-Leffler.

Example 10.83.2. If (Ai, ϕji) is a directed inverse system of sets or of modules and
the maps ϕji are surjective, then clearly the system is Mittag-Leffler. Conversely,
suppose (Ai, ϕji) is Mittag-Leffler. Let A′i ⊂ Ai be the stable image of ϕji(Aj) for
j ≥ i. Then ϕji|A′j : A′j → A′i is surjective for j ≥ i and limAi = limA′i. Hence

the limit of the Mittag-Leffler system (Ai, ϕji) can also be written as the limit of a
directed inverse system over I with surjective maps.

Lemma 10.83.3. Let (Ai, ϕji) be a directed inverse system over I. Suppose I is
countable. If (Ai, ϕji) is Mittag-Leffler and the Ai are nonempty, then limAi is
nonempty.

Proof. Let i1, i2, i3, . . . be an enumeration of the elements of I. Define inductively
a sequence of elements jn ∈ I for n = 1, 2, 3, . . . by the conditions: j1 = i1, and
jn ≥ in and jn ≥ jm for m < n. Then the sequence jn is increasing and forms a
cofinal subset of I. Hence we may assume I = {1, 2, 3, . . .}. So by Example 10.83.2
we are reduced to showing that the limit of an inverse system of nonempty sets with
surjective maps indexed by the positive integers is nonempty. This is obvious. �

The Mittag-Leffler condition will be important for us because of the following ex-
actness property.

Lemma 10.83.4. Let

0→ Ai
fi−→ Bi

gi−→ Ci → 0

be an exact sequence of directed inverse systems of abelian groups over I. Suppose
I is countable. If (Ai) is Mittag-Leffler, then

0→ limAi → limBi → limCi → 0

is exact.

Proof. Taking limits of directed inverse systems is left exact, hence we only need
to prove surjectivity of limBi → limCi. So let (ci) ∈ limCi. For each i ∈ I, let
Ei = g−1

i (ci), which is nonempty since gi : Bi → Ci is surjective. The system of
maps ϕji : Bj → Bi for (Bi) restrict to maps Ej → Ei which make (Ei) into an
inverse system of nonempty sets. It is enough to show that (Ei) is Mittag-Leffler.

http://stacks.math.columbia.edu/tag/0595
http://stacks.math.columbia.edu/tag/0596
http://stacks.math.columbia.edu/tag/0597
http://stacks.math.columbia.edu/tag/0598


10.84. INVERSE SYSTEMS 593

For then Lemma 10.83.3 would show limEi is nonempty, and taking any element
of limEi would give an element of limBi mapping to (ci).

By the injection fi : Ai → Bi we will regard Ai as a subset of Bi. Since (Ai) is
Mittag-Leffler, if i ∈ I then there exists j ≥ i such that ϕki(Ak) = ϕji(Aj) for
k ≥ j. We claim that also ϕki(Ek) = ϕji(Ej) for k ≥ j. Always ϕki(Ek) ⊂ ϕji(Ej)
for k ≥ j. For the reverse inclusion let ej ∈ Ej , and we need to find xk ∈ Ek such
that ϕki(xk) = ϕji(ej). Let e′k ∈ Ek be any element, and set e′j = ϕkj(e

′
k). Then

gj(ej − e′j) = cj − cj = 0, hence ej − e′j = aj ∈ Aj . Since ϕki(Ak) = ϕji(Aj), there
exists ak ∈ Ak such that ϕki(ak) = ϕji(aj). Hence

ϕki(e
′
k + ak) = ϕji(e

′
j) + ϕji(aj) = ϕji(ej),

so we can take xk = e′k + ak. �

10.84. Inverse systems

In many papers (and in this section) the term inverse system is used to indicate
an inverse system over the partially ordered set (N,≥). We briefly discuss such
systems in this section. This material will be discussed more broadly in Homology,
Section 12.27. Suppose we are given a ring R and a sequence of R-modules

M1
ϕ2←−M2

ϕ3←−M3 ← . . .

with maps as indicated. By composing successive maps we obtain maps ϕii′ : Mi →
Mi′ whenever i ≥ i′ such that moreover ϕii′′ = ϕi′i′′ ◦ ϕii′ whenever i ≥ i′ ≥ i′′.
Conversely, given the system of maps ϕii′ we can set ϕi = ϕi(i−1) and recover the
maps displayed above. In this case

limMi = {(xi) ∈
∏

Mi | ϕi(xi) = xi−1, i = 2, 3, . . .}

compare with Categories, Section 4.15. As explained in Homology, Section 12.27
this is actually a limit in the category of R-modules, as defined in Categories,
Section 4.14.

Lemma 10.84.1. Let R be a ring. Let 0 → Ki → Li → Mi → 0 be short exact
sequences of R-modules, i ≥ 1 which fit into maps of short exact sequences

0 // Ki
// Li // Mi

// 0

0 // Ki+1
//

OO

Li+1
//

OO

Mi+1
//

OO

0

If for every i there exists a c = c(i) ≥ i such that Im(Kc → Ki) = Im(Kj → Ki)
for all j ≥ c, then the sequence

0→ limKi → limLi → limMi → 0

is exact.

Proof. This is a special case of the more general Lemma 10.83.4. �
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10.85. Mittag-Leffler modules

A Mittag-Leffler module is (very roughly) a module which can be written as a
directed limit whose dual is a Mittag-Leffler system. To be able to give a precise
definition we need to do a bit of work.

Definition 10.85.1. Let (Mi, fij) be a directed system of R-modules. We say that
(Mi, fij) is a Mittag-Leffler directed system of modules if each Mi is an R-module
of finite presentation and if for every R-module N , the inverse system

(HomR(Mi, N),HomR(fij , N))

is Mittag-Leffler.

We are going to characterize those R-modules that are colimits of Mittag-Leffler
directed systems of modules.

Definition 10.85.2. Let f : M → N and g : M → M ′ be maps of R-modules.
Then we say g dominates f if for any R-module Q, we have Ker(f ⊗R idQ) ⊂
Ker(g ⊗R idQ).

It is enough to check this condition for finitely presented modules.

Lemma 10.85.3. Let f : M → N and g : M → M ′ be maps of R-modules.
Then g dominates f if and only if for any finitely presented R-module Q, we have
Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ).

Proof. Suppose Ker(f ⊗R idQ) ⊂ Ker(g⊗R idQ) for all finitely presented modules
Q. If Q is an arbitrary module, write Q = colimi∈I Qi as a colimit of a directed
system of finitely presented modules Qi. Then Ker(f ⊗R idQi) ⊂ Ker(g ⊗R idQi)
for all i. Since taking directed colimits is exact and commutes with tensor product,
it follows that Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ). �

The above definition of domination is related to the usual notion of domination of
maps as follows.

Lemma 10.85.4. Let f : M → N and g : M → M ′ be maps of R-modules.
Suppose Coker(f) is of finite presentation. Then g dominates f if and only if g
factors through f , i.e. there exists a module map h : N →M ′ such that g = h ◦ f .

Proof. Consider the pushout of f and g,

M
f //

g

��

N

g′

��
M ′

f ′ // N ′

where N ′ is M ′⊕N modulo the submodule consisting of elements (g(x),−f(x)) for
x ∈M . We are going to show that the two conditions we wish to prove equivalent
are each equivalent to f ′ being universally injective.

From the definition of N ′ we have a short exact sequence

0→ Ker(f) ∩Ker(g)→ Ker(f)→ Ker(f ′)→ 0.

Since tensoring commutes with taking pushouts, we have such a short exact se-
quence

0→ Ker(f ⊗ idQ) ∩Ker(g ⊗ idQ)→ Ker(f ⊗ idQ)→ Ker(f ′ ⊗ idQ)→ 0
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for every R-module Q. So f ′ is universally injective if and only if Ker(f ⊗ idQ) ⊂
Ker(g ⊗ idQ) for every Q, if and only if g dominates f .

On the other hand, from the definition of the pushout it follows that Coker(f ′) =
Coker(f), so Coker(f ′) is of finite presentation. Then by Lemma 10.79.4, f ′ is
universally injective if and only if

0→M ′
f ′−→ N ′ → Coker(f ′)→ 0

splits. This is the case if and only if there is a map h′ : N ′ → M ′ such that
h′ ◦ f ′ = idM ′ . From the universal property of the pushout, the existence of such
an h′ is equivalent to g factoring through f . �

Proposition 10.85.5. Let M be an R-module. Let (Mi, fij) be a directed system
of finitely presented R-modules, indexed by I, such that M = colimMi. Let fi :
Mi →M be the canonical map. The following are equivalent:

(1) For every finitely presented R-module P and module map f : P → M ,
there exists a finitely presented R-module Q and a module map g : P → Q
such that g and f dominate each other, i.e., Ker(f ⊗R idN ) = Ker(g ⊗R
idN ) for every R-module N .

(2) For each i ∈ I, there exists j ≥ i such that fij : Mi → Mj dominates
fi : Mi →M .

(3) For each i ∈ I, there exists j ≥ i such that fij : Mi →Mj factors through
fik : Mi →Mk for all k ≥ i.

(4) For every R-module N , the inverse system (HomR(Mi, N),HomR(fij , N))
is Mittag-Leffler.

(5) For N =
∏
s∈IMs, the inverse system (HomR(Mi, N),HomR(fij , N)) is

Mittag-Leffler.

Proof. First we prove the equivalence of (1) and (2). Suppose (1) holds and let
i ∈ I. Corresponding to the map fi : Mi →M , we can choose g : Mi → Q as in (1).
Since Mi and Q are of finite presentation, so is Coker(g). Then by Lemma 10.85.4,
fi : Mi → M factors through g : Mi → Q, say fi = h ◦ g for some h : Q → M .
Then since Q is finitely presented, h factors through Mj → M for some j ≥ i, say
h = fj ◦ h′ for some h′ : Q→Mj . In total we have a commutative diagram

M

Mi

g
  

fi

>>

fij // Mj

fj

aa

Q

h′

>>

Thus fij dominates g. But g dominates fi, so fij dominates fi.

Conversely, suppose (2) holds. Let P be of finite presentation and f : P → M a
module map. Then f factors through fi : Mi → M for some i ∈ I, say f = fi ◦ g′
for some g′ : P →Mi. Choose by (2) a j ≥ i such that fij dominates fi. We have
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a commutative diagram

P

g′

��

f // M

Mi

fi

==

fij

// Mj

fj

OO

From the diagram and the fact that fij dominates fi, we find that f and fij ◦ g′
dominate each other. Hence taking g = fij ◦ g′ : P →Mj works.

Next we prove (2) is equivalent to (3). Let i ∈ I. It is always true that fi dominates
fik for k ≥ i, since fi factors through fik. If (2) holds, choose j ≥ i such that fij
dominates fi. Then since domination is a transitive relation, fij dominates fik for
k ≥ i. All Mi are of finite presentation, so Coker(fik) is of finite presentation for
k ≥ i. By Lemma 10.85.4, fij factors through fik for all k ≥ i. Thus (2) implies
(3). On the other hand, if (3) holds then for any R-module N , fij ⊗R idN factors
through fik⊗R idN for k ≥ i. So Ker(fik⊗R idN ) ⊂ Ker(fij ⊗R idN ) for k ≥ i. But
Ker(fi ⊗R idN : Mi ⊗R N → M ⊗R N) is the union of Ker(fik ⊗R idN ) for k ≥ i.
Thus Ker(fi ⊗R idN ) ⊂ Ker(fij ⊗R idN ) for any R-module N , which by definition
means fij dominates fi.

It is trivial that (3) implies (4) implies (5). We show (5) implies (3). Let N =∏
s∈IMs. If (5) holds, then given i ∈ I choose j ≥ i such that

Im(Hom(Mj , N)→ Hom(Mi, N)) = Im(Hom(Mk, N)→ Hom(Mi, N))

for all k ≥ j. Passing the product over s ∈ I outside of the Hom’s and looking at
the maps on each component of the product, this says

Im(Hom(Mj ,Ms)→ Hom(Mi,Ms)) = Im(Hom(Mk,Ms)→ Hom(Mi,Ms))

for all k ≥ j and s ∈ I. Taking s = j we have

Im(Hom(Mj ,Mj)→ Hom(Mi,Mj)) = Im(Hom(Mk,Mj)→ Hom(Mi,Mj))

for all k ≥ j. Since fij is the image of id ∈ Hom(Mj ,Mj) under Hom(Mj ,Mj) →
Hom(Mi,Mj), this shows that for any k ≥ j there is h ∈ Hom(Mk,Mj) such that
fij = h ◦ fik. If j ≥ k then we can take h = fkj . Hence (3) holds. �

Definition 10.85.6. Let M be an R-module. We say that M is Mittag-Leffler if
the equivalent conditions of Proposition 10.85.5 hold.

In particular a finitely presented module is Mittag-Leffler.

Remark 10.85.7. Let M be a flat R-module. By Lazard’s theorem (Theorem
10.78.4) we can write M = colimMi as the colimit of a directed system (Mi, fij)
where the Mi are free finite R-modules. For M to be Mittag-Leffler, it is enough for
the inverse system of duals (HomR(Mi, R),HomR(fij , R)) to be Mittag-Leffler. This
follows from criterion (4) of Proposition 10.85.5 and the fact that for a free finite
R-module F , there is a functorial isomorphism HomR(F,R)⊗R N ∼= HomR(F,N)
for any R-module N .

Lemma 10.85.8. If R is a ring and M , N are Mittag-Leffler modules over R,
then M ⊗R N is a Mittag-Leffler module.
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Proof. Write M = colimi∈IMi and N = colimj∈J Nj as directed colimits of
finitely presented R-modules. Denote fii′ : Mi → Mi′ and gjj′ : Nj → Nj′ the
transition maps. Then Mi ⊗R Nj is a finitely presented R-module (see Lemma
10.11.14), and M⊗RN = colim(i,j)∈I×JMi⊗RMj . Pick (i, j) ∈ I×J . By the defi-
nition of a Mittag-Leffler module we have Proposition 10.85.5 (3) for both systems.
In other words there exist i′ ≥ i and j′ ≥ j such that for every choice of i′′ ≥ i and
j′′ ≥ j there exist maps a : Mi′′ →Mi′ and b : Mj′′ →Mj′ such that fii′ = a ◦ fii′′
and gjj′ = b◦gjj′′ . Then it is clear that a⊗b : Mi′′⊗RNj′′ →Mi′⊗RNj′ serves the
same purpose for the system (Mi ⊗R Nj , fii′ ⊗ gjj′). Thus by the characterization
Proposition 10.85.5 (3) we conclude that M ⊗R N is Mittag-Leffler. �

Lemma 10.85.9. Let R be a ring and M an R-module. Then M is Mittag-Leffler
if and only if for every finite free R-module F and module map f : F → M , there
exists a finitely presented R-module Q and a module map g : F → Q such that g and
f dominate each other, i.e., Ker(f ⊗R idN ) = Ker(g ⊗R idN ) for every R-module
N .

Proof. Since the condition is clear weaker than condition (1) of Proposition 10.85.5
we see that a Mittag-Leffler module satisfies the condition. Conversely, suppose that
M satisfies the condition and that f : P →M is an R-module map from a finitely
presented R-module P into M . Choose a surjection F → P where F is a finite free
R-module. By assumption we can find a map F → Q where Q is a finitely presented
R-module such that F → Q and F → M dominate each other. In particular, the
kernel of F → Q contains the kernel of F → P , hence we obtain an R-module map
g : P → Q such that F → Q is equal to the composition F → P → Q. Let N be
any R-module and consider the commutative diagram

F ⊗R N

��

// Q⊗R N

P ⊗R N

88

// M ⊗R N
By assumption the kernels of F⊗RN → Q⊗RN and F⊗RN →M⊗RN are equal.
Hence, as F ⊗R N → P ⊗R N is surjective, also the kernels of P ⊗R N → Q⊗R N
and P ⊗R N →M ⊗R N are equal. �

Lemma 10.85.10. Let R→ S be a finite and finitely presented ring map. Let M
be an S-module. If M is a Mittag-Leffler module over S then M is a Mittag-Leffler
module over R.

Proof. Assume M is a Mittag-Leffler module over S. Write M = colimMi as a
directed colimit of finitely presented S-modules Mi. As M is Mittag-Leffler over S
there exists for each i an index j ≥ i such that for all k ≥ j there is a factorization
fij = h ◦ fik (where h depends on i, the choice of j and k). Note that by Lemma
10.7.4 the modules Mi are also finitely presented as R-modules. Moreover, all the
maps fij , fik, h are maps of R-modules. Thus we see that the system (Mi, fij)
satisfies the same condition when viewed as a system of R-modules. Thus M is
Mittag-Leffler as an R-module. �

Lemma 10.85.11. Let R be a ring. Let S = R/I for some finitely generated ideal
I. Let M be an S-module. Then M is a Mittag-Leffler module over R if and only
if M is a Mittag-Leffler module over S.
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Proof. One implication follows from Lemma 10.85.10. To prove the other, assume
M is Mittag-Leffler as an R-module. Write M = colimMi as a directed colimit
of finitely presented S-modules. As I is finitely generated, the ring S is finite and
finitely presented as an R-algebra, hence the modules Mi are finitely presented
as R-modules, see Lemma 10.7.4. Next, let N be any S-module. Note that for
each i we have HomR(Mi, N) = HomS(Mi, N) as R → S is surjective. Hence the
condition that the inverse system (HomR(Mi, N))i satisfies Mittag-Leffler, implies
that the system (HomS(Mi, N))i satisfies Mittag-Leffler. Thus M is Mittag-Leffler
over S by definition. �

Remark 10.85.12. Let R→ S be a finite and finitely presented ring map. Let M
be an S-module which is Mittag-Leffler as an R-module. Then it is in general not
the case that if M is Mittag-Leffler as an S-module. For example suppose that S is
the ring of dual numbers over R, i.e., S = R⊕Rε with ε2 = 0. Then an S-module
consists of an R-module M endowed with a square zero R-linear endomorphism
ε : M → M . Now suppose that M0 is an R-module which is not Mittag-Leffler.

Choose a presentation F1
u−→ F0 → M0 → 0 with F1 and F0 free R-modules. Set

M = F1 ⊕ F0 with

ε =

(
0 0
u 0

)
: M −→M.

Then M/εM ∼= F1 ⊕M0 is not Mittag-Leffler over R = S/εS, hence not Mittag-
Leffler over S (see Lemma 10.85.11). On the other hand, M/εM = M ⊗S S/εS
which would be Mittag-Leffler over S if M was, see Lemma 10.85.8.

10.86. Interchanging direct products with tensor

Let M be an R-module and let (Qα)α∈A be a family of R-modules. Then there
is a canonical map M ⊗R

(∏
α∈AQα

)
→
∏
α∈A(M ⊗R Qα) given on pure tensors

by x⊗ (qα) 7→ (x⊗ qα). This map is not necessarily injective or surjective, as the
following example shows.

Example 10.86.1. Take R = Z, M = Q, and consider the family Qn = Z/n for
n ≥ 1. Then

∏
n(M ⊗Qn) = 0. However there is an injection Q→ M ⊗ (

∏
nQn)

obtained by tensoring the injection Z→
∏
nQn by M , so M ⊗ (

∏
nQn) is nonzero.

Thus M ⊗ (
∏
nQn)→

∏
n(M ⊗Qn) is not injective.

On the other hand, take again R = Z, M = Q, and let Qn = Z for n ≥ 1. The
image of M ⊗ (

∏
nQn)→

∏
n(M ⊗Qn) =

∏
nM consists precisely of sequences of

the form (an/m)n≥1 with an ∈ Z and m some nonzero integer. Hence the map is
not surjective.

We determine below the precise conditions needed on M for the map M ⊗R
(
∏
αQα)→

∏
α(M ⊗R Qα) to be surjective, bijective, or injective for all choices of

(Qα)α∈A. This is relevant because the modules for which it is injective turn out to
be exactly Mittag-Leffler modules (Proposition 10.86.5). In what follows, if M is
an R-module and A a set, we write MA for the product

∏
α∈AM .

Proposition 10.86.2. Let M be an R-module. The following are equivalent:

(1) M is finitely generated.
(2) For every family (Qα)α∈A of R-modules, the canonical map M⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is surjective.
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(3) For every R-module Q and every set A, the canonical map M ⊗R QA →
(M ⊗R Q)A is surjective.

(4) For every set A, the canonical map M ⊗R RA →MA is surjective.

Proof. First we prove (1) implies (2). Choose a surjection Rn →M and consider
the commutative diagram

Rn ⊗R (
∏
αQα)

∼= //

��

∏
α(Rn ⊗R Qα)

��
M ⊗R (

∏
αQα) // ∏

α(M ⊗R Qα).

The top arrow is an isomorphism and the vertical arrows are surjections. We
conclude that the bottom arrow is a surjection.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). In fact
for (1) to hold it suffices that the element d = (x)x∈M of MM is in the image of
the map f : M ⊗R RM →MM . In this case d =

∑n
i=1 f(xi ⊗ ai) for some xi ∈M

and ai ∈ RM . If for x ∈ M we write px : MM → M for the projection onto the
x-th factor, then

x = px(d) =
∑n

i=1
px(f(xi ⊗ ai)) =

∑n

i=1
px(ai)xi.

Thus x1, . . . , xn generate M . �

Proposition 10.86.3. Let M be an R-module. The following are equivalent:

(1) M is finitely presented.
(2) For every family (Qα)α∈A of R-modules, the canonical map M⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is bijective.
(3) For every R-module Q and every set A, the canonical map M ⊗R QA →

(M ⊗R Q)A is bijective.
(4) For every set A, the canonical map M ⊗R RA →MA is bijective.

Proof. First we prove (1) implies (2). Choose a presentation Rm → Rn →M and
consider the commutative diagram

Rm ⊗R (
∏
αQα) //

∼=
��

Rm ⊗R (
∏
αQα) //

∼=
��

M ⊗R (
∏
αQα) //

��

0

∏
α(Rm ⊗R Qα) // ∏

α(Rn ⊗R Qα) // ∏
α(M ⊗R Qα) // 0.

The first two vertical arrows are isomorphisms and the rows are exact. This implies
that the map M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα) is surjective and, by a diagram

chase, also injective. Hence (2) holds.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). From
Proposition 10.86.2, if (4) holds we already know that M is finitely generated. So
we can choose a surjection F →M where F is free and finite. Let K be the kernel.
We must show K is finitely generated. For any set A, we have a commutative

http://stacks.math.columbia.edu/tag/059K
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diagram

K ⊗R RA //

f3

��

F ⊗R RA //

f2 ∼=
��

M ⊗R RA //

f1 ∼=
��

0

0 // KA // FA // MA // 0.

The map f1 is an isomorphism by assumption, the map f2 is a isomorphism since
F is free and finite, and the rows are exact. A diagram chase shows that f3 is
surjective, hence by Proposition 10.86.2 we get that K is finitely generated. �

We need the following lemma for the next proposition.

Lemma 10.86.4. Let M be an R-module, P a finitely presented R-module, and
f : P →M a map. Let Q be an R-module and suppose x ∈ Ker(P ⊗Q→M ⊗Q).
Then there exists a finitely presented R-module P ′ and a map f ′ : P → P ′ such
that f factors through f ′ and x ∈ Ker(P ⊗Q→ P ′ ⊗Q).

Proof. Write M as a colimit M = colimi∈IMi of a directed system of finitely
presented modules Mi. Since P is finitely presented, the map f : P → M factors
through Mj → M for some j ∈ I. Upon tensoring by Q we have a commutative
diagram

Mj ⊗Q

%%
P ⊗Q

99

// M ⊗Q.
The image y of x in Mj ⊗Q is in the kernel of Mj ⊗Q→M ⊗Q. Since M ⊗Q =
colimi∈I(Mi ⊗ Q), this means y maps to 0 in Mj′ ⊗ Q for some j′ ≥ j. Thus we
may take P ′ = Mj′ and f ′ to be the composite P →Mj →Mj′ . �

Proposition 10.86.5. Let M be an R-module. The following are equivalent:

(1) M is Mittag-Leffler.
(2) For every family (Qα)α∈A of R-modules, the canonical map M⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is injective.

Proof. First we prove (1) implies (2). Suppose M is Mittag-Leffler and let x
be in the kernel of M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα). Write M as a colimit

M = colimi∈IMi of a directed system of finitely presented modules Mi. Then
M ⊗R (

∏
αQα) is the colimit of Mi ⊗R (

∏
αQα). So x is the image of an element

xi ∈Mi⊗R (
∏
αQα). We must show that xi maps to 0 in Mj⊗R (

∏
αQα) for some

j ≥ i. Since M is Mittag-Leffler, we may choose j ≥ i such that Mi → Mj and
Mi →M dominate each other. Then consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

Mi ⊗R (
∏
αQα)

∼= //

��

OO

∏
α(Mi ⊗R Qα)

��

OO

Mj ⊗R (
∏
αQα)

∼= // ∏
α(Mj ⊗R Qα)
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whose bottom two horizontal maps are isomorphisms, according to Proposition
10.86.3. Since xi maps to 0 in

∏
α(M ⊗R Qα), its image in

∏
α(Mi ⊗R Qα) is in

the kernel of the map
∏
α(Mi ⊗R Qα) →

∏
α(M ⊗R Qα). But this kernel equals

the kernel of
∏
α(Mi⊗RQα)→

∏
α(Mj ⊗RQα) according to the choice of j. Thus

xi maps to 0 in
∏
α(Mj ⊗R Qα) and hence to 0 in Mj ⊗R (

∏
αQα).

Now suppose (2) holds. We prove M satisfies formulation (1) of being Mittag-
Leffler from Proposition 10.85.5. Let f : P →M be a map from a finitely presented
module P to M . Choose a set B of representatives of the isomorphism classes of
finitely presented R-modules. Let A be the set of pairs (Q, x) where Q ∈ B and
x ∈ Ker(P ⊗Q → M ⊗Q). For α = (Q, x) ∈ A, we write Qα for Q and xα for x.
Consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

The top arrow is an injection by assumption, and the bottom arrow is an isomor-
phism by Proposition 10.86.3. Let x ∈ P ⊗R (

∏
αQα) be the element corresponding

to (xα) ∈
∏
α(P ⊗R Qα) under this isomorphism. Then x ∈ Ker(P ⊗R (

∏
αQα)→

M⊗R (
∏
αQα)) since the top arrow in the diagram is injective. By Lemma 10.86.4,

we get a finitely presented module P ′ and a map f ′ : P → P ′ such that f : P →M
factors through f ′ and x ∈ Ker(P ⊗R (

∏
αQα) → P ′ ⊗R (

∏
αQα)). We have a

commutative diagram

P ′ ⊗R (
∏
αQα)

∼= // ∏
α(P ′ ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

where both the top and bottom arrows are isomorphisms by Proposition 10.86.3.
Thus since x is in the kernel of the left vertical map, (xα) is in the kernel of the right
vertical map. This means xα ∈ Ker(P ⊗R Qα → P ′ ⊗R Qα) for every α ∈ A. By
the definition of A this means Ker(P ⊗RQ→ P ′⊗RQ) ⊃ Ker(P ⊗RQ→M ⊗RQ)
for all finitely presented Q and, since f : P → M factors through f ′ : P → P ′,
actually equality holds. By Lemma 10.85.3, f and f ′ dominate each other. �

Lemma 10.86.6. Let M be a flat Mittag-Leffler module over R. Let F be an R-
module and let x ∈ F ⊗RM . Then there exists a smallest submodule F ′ ⊂ F such
that x ∈ F ′ ⊗RM .

Proof. Since M is flat we have F ′ ⊗R M ⊂ F ⊗R M if F ′ ⊂ F is a submodule,
hence the statement makes sense. Let I = {F ′ ⊂ F | x ∈ F ′ ⊗RM} and for i ∈ I
denote Fi ⊂ F the corresponding submodule. Then x maps to zero under the map

F ⊗RM −→
∏

(F/Fi ⊗RM)

whence by Proposition 10.86.5 x maps to zero under the map

F ⊗RM −→
(∏

F/Fi

)
⊗RM

Since M is flat the kernel of this arrow is (
⋂
Fi)⊗RM which proves the lemma. �
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Lemma 10.86.7. Let 0 → M1 → M2 → M3 → 0 be a universally exact sequence
of R-modules. Then:

(1) If M2 is Mittag-Leffler, then M1 is Mittag-Leffler.
(2) If M1 and M3 are Mittag-Leffler, then M2 is Mittag-Leffler.

Proof. For any family (Qα)α∈A of R-modules we have a commutative diagram

0 // M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

0 // ∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. Thus (1) and (2) follow from Proposition 10.86.5. �

Lemma 10.86.8. If M = colimMi is the colimit of a directed system of Mittag-
Leffler R-modules Mi with universally injective transition maps, then M is Mittag-
Leffler.

Proof. Let (Qα)α∈A be a family of R-modules. We have to show that M ⊗R
(
∏
Qα)→

∏
M⊗RQα is injective and we know that Mi⊗R (

∏
Qα)→

∏
Mi⊗RQα

is injective for each i, see Proposition 10.86.5. Since ⊗ commutes with filtered
colimits, it suffices to show that

∏
Mi ⊗R Qα →

∏
M ⊗R Qα is injective. This is

clear as each of the maps Mi ⊗R Qα → M ⊗R Qα is injective by our assumption
that the transition maps are universally injective. �

Lemma 10.86.9. If M =
⊕

i∈IMi is a direct sum of R-modules, then M is
Mittag-Leffler if and only if each Mi is Mittag-Leffler.

Proof. The “only if” direction follows from Lemma 10.86.7 (1) and the fact that
a split short exact sequence is universally exact. The converse follows from Lemma
10.86.8 but we can also argue it directly as follows. First note that if I is finite then
this follows from Lemma 10.86.7 (2). For general I, if all Mi are Mittag-Leffler
then we prove the same of M by verifying condition (1) of Proposition 10.85.5.
Let f : P → M be a map from a finitely presented module P . Then f factors

as P
f ′−→
⊕

i′∈I′Mi′ ↪→
⊕

i∈IMi for some finite subset I ′ of I. By the finite case⊕
i′∈I′Mi′ is Mittag-Leffler and hence there exists a finitely presented module Q

and a map g : P → Q such that g and f ′ dominate each other. Then also g and f
dominate each other. �

Lemma 10.86.10. Let R → S be a ring map. Let M be an S-module. If S is
Mittag-Leffler as an R-module, and M is flat and Mittag-Leffler as an S-module,
then M is Mittag-Leffler as an R-module.
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Proof. We deduce this from the characterization of Proposition 10.86.5. Namely,
suppose that Qα is a family of R-modules. Consider the composition

M ⊗R
∏
αQα = M ⊗S S ⊗R

∏
αQα

��
M ⊗S

∏
α(S ⊗R Qα)

��∏
α(M ⊗S ⊗RQα) =

∏
α(M ⊗R Qα)

The first arrows is injective as M is flat over S and S is Mittag-Leffler over R and the
second arrow is injective as M is Mittag-Leffler over S. Hence M is Mittag-Leffler
over R. �

10.87. Coherent rings

We use the discussion on interchanging
∏

and ⊗ to determine for which rings
products of flat modules are flat. It turns out that these are the so-called coherent
rings. You may be more familiar with the notion of a coherent OX -module on a
ringed space, see Modules, Section 17.12.

Definition 10.87.1. Let R be a ring. Let M be an R-module.

(1) We say M is a coherent module if it is finitely generated and every finitely
generated submodule of M is finitely presented over R.

(2) We say R is a coherent ring if it is coherent as a module over itself.

Thus a ring is coherent if and only if every finitely generated ideal is finitely pre-
sented as a module. The category of coherent modules is abelian.

Lemma 10.87.2. Let R be a ring.

(1) A finite submodule of a coherent module is coherent.
(2) Let ϕ : N → M be a homomorphism from a finite module to a coherent

module. Then Ker(ϕ) is finite.
(3) Let ϕ : N → M be a homomorphism of coherent modules. Then Ker(ϕ)

and Coker(ϕ) are coherent modules.
(4) The category of coherent modules is an abelian subcategory of ModR.
(5) Given a short exact sequence of R-modules 0 → M1 → M2 → M3 → 0 if

two out of three are coherent so is the third.

Proof. The first statement is immediate from the definition. During the rest of
the proof we will use the results of Lemma 10.5.3 without further mention.

Let ϕ : N → M satisfy the assumptions of (2). Suppose that N is generated by
x1, . . . , xn. By Definition 10.87.1 the kernel K of the induced map

⊕n
i=1R → M ,

ei 7→ ϕ(xi) is of finite type. Hence Ker(ϕ) which is the image of the composition
K →

⊕n
i=1R→ N is of finite type. This proves (2).

Let ϕ : N → M satisfy the assumptions of (3). By (2) the kernel of ϕ is of finite
type and hence by (1) it is coherent.

With the same hypotheses let us show that Coker(ϕ) is coherent. Since M is
finite so is Coker(ϕ). Let xi ∈ Coker(ϕ). We have to show that the kernel of the
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associated morphism Ψ :
⊕n

i=1R → Coker(ϕ) is finite. Choose xi ∈ M lifting xi.

Thus Ψ lifts to Ψ :
⊕n

i=1R→M . Consider the following diagram

0 // Ker(Ψ) //

��

⊕n
i=1R

// M //

��

0

0 // Ker(Ψ) //⊕n
i=1R

// Coker(ϕ) // 0

By the snake lemma we get a short exact sequence 0 → Ker(Ψ) → Ker(Ψ) →
Im(ϕ)→ 0. Hence we see that Ker(Ψ) is finite.

Statement (4) follows from (3).

Let 0→M1 →M2 →M3 → 0 be a short exact sequence of R-modules. It suffices
to prove that if M1 and M3 are coherent so is M2. By Lemma 10.5.3 we see that M2

is finite. Let x1, . . . , xn be finitely many elements of M2. We have to show that the
module of relations K between them is finite. Consider the following commutative
diagram

0 // 0 //

��

⊕n
i=1R

//

��

⊕n
i=1R

//

��

0

0 // M1
// M2

// M3
// 0

with obvious notation. By the snake lemma we get an exact sequence 0 → K →
K3 → M1 where K3 is the module of relations among the images of the xi in M3.
Since M3 is coherent we see that K3 is a finite module. Since M1 is coherent we
see that the image I of K3 → M1 is coherent. Hence K is the kernel of the map
K3 → I between a finite module and a coherent module and hence finite by (2). �

Lemma 10.87.3. Let R be a ring. If R is coherent, then a module is coherent if
and only if it is finitely presented.

Proof. It is clear that a coherent module is finitely presented (over any ring).
Conversely, if R is coherent, then R⊕n is coherent and so is the cokernel of any
map R⊕m → R⊕n, see Lemma 10.87.2. �

Lemma 10.87.4. A Noetherian ring is a coherent ring.

Proof. By Lemma 10.30.4 any finite R-module is finitely presented. In particular
any ideal of R is finitely presented. �

Proposition 10.87.5. Let R be a ring. The following are equivalent

(1) R is coherent,
(2) any product of flat R-modules is flat, and
(3) for every set A the module RA is flat.

Proof. Assume R coherent, and let Qα, α ∈ A be a set of flat R-modules. We have
to show that I⊗R

∏
αQα →

∏
Qα is injective for every finitely generated ideal I of

R, see Lemma 10.38.4. Since R is coherent I is an R-module of finite presentation.
Hence I ⊗R

∏
αQα =

∏
I ⊗R Qα by Proposition 10.86.3. The desired injectivity

follows as I ⊗R Qα → Qα is injective by flatness of Qα.

The implication (2) ⇒ (3) is trivial.
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Assume that the R-module RA is flat for every set A. Let I be a finitely generated
ideal in R. Then I⊗RRA → RA is injective by assumption. By Proposition 10.86.2
and the finiteness of I the image is equal to IA. Hence I ⊗R RA = IA for every set
A and we conclude that I is finitely presented by Proposition 10.86.3. �

10.88. Examples and non-examples of Mittag-Leffler modules

We end this section with some examples and non-examples of Mittag-Leffler mod-
ules.

Example 10.88.1. Mittag-Leffler modules.

(1) Any finitely presented module is Mittag-Leffler. This follows, for instance,
from Proposition 10.85.5 (1). In general, it is true that a finitely generated
module is Mittag-Leffler if and only it is finitely presented. This follows
from Propositions 10.86.2, 10.86.3, and 10.86.5.

(2) A free module is Mittag-Leffler since it satisfies condition (1) of Proposi-
tion 10.85.5.

(3) By the previous example together with Lemma 10.86.9, projective modules
are Mittag-Leffler.

We also want to add to our list of examples power series rings over a Noetherian
ring R. This will be a consequence the following lemma.

Lemma 10.88.2. Let M be a flat R-module. The following are equivalent

(1) M is Mittag-Leffler, and
(2) if F is a finite free R-module and x ∈ F⊗RM , then there exists a smallest

submodule F ′ of F such that x ∈ F ′ ⊗RM .

Proof. The implication (1) ⇒ (2) is a special case of Lemma 10.86.6. Assume (2).
By Theorem 10.78.4 we can write M as the colimit M = colimi∈IMi of a directed
system (Mi, fij) of finite free R-modules. By Remark 10.85.7, it suffices to show
that the inverse system (HomR(Mi, R),HomR(fij , R)) is Mittag-Leffler. In other
words, fix i ∈ I and for j ≥ i let Qj be the image of HomR(Mj , R)→ HomR(Mi, R);
we must show that the Qj stabilize.

Since Mi is free and finite, we can make the identification HomR(Mi,Mj) =
HomR(Mi, R)⊗RMj for all j. Using the fact that the Mj are free, it follows that
for j ≥ i, Qj is the smallest submodule of HomR(Mi, R) such that fij ∈ Qj ⊗RMj .
Under the identification HomR(Mi,M) = HomR(Mi, R)⊗RM , the canonical map
fi : Mi → M is in HomR(Mi, R) ⊗R M . By the assumption on M , there exists a
smallest submodule Q of HomR(Mi, R) such that fi ∈ Q ⊗R M . We are going to
show that the Qj stabilize to Q.

For j ≥ i we have a commutative diagram

Qj ⊗RMj
//

��

HomR(Mi, R)⊗RMj

��
Qj ⊗RM // HomR(Mi, R)⊗RM.

Since fij ∈ Qj ⊗R Mj maps to fi ∈ HomR(Mi, R) ⊗R M , it follows that fi ∈
Qj ⊗RM . Hence, by the choice of Q, we have Q ⊂ Qj for all j ≥ i.
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Since the Qj are decreasing and Q ⊂ Qj for all j ≥ i, to show that the Qj stabilize
to Q it suffices to find a j ≥ i such that Qj ⊂ Q. As an element of

HomR(Mi, R)⊗RM = colimj∈J(HomR(Mi, R)⊗RMj),

fi is the colimit of fij for j ≥ i, and fi also lies in the submodule

colimj∈J(Q⊗RMj) ⊂ colimj∈J(HomR(Mi, R)⊗RMj).

It follows that for some j ≥ i, fij lies in Q ⊗R Mj . Since Qj is the smallest
submodule of HomR(Mi, R) with fij ∈ Qj ⊗RMj , we conclude Qj ⊂ Q. �

Lemma 10.88.3. Let R be a Noetherian ring and A a set. Then M = RA is a
flat and Mittag-Leffler R-module.

Proof. Combining Lemma 10.87.4 and Proposition 10.87.5 we see that M is flat
over R. We show that M satisfies the condition of Lemma 10.88.2. Let F be a free
finite R-module. If F ′ is any submodule of F then it is finitely presented since R
is Noetherian. So by Proposition 10.86.3 we have a commutative diagram

F ′ ⊗RM //

∼=
��

F ⊗RM

∼=
��

(F ′)A // FA

by which we can identify the map F ′⊗RM → F ⊗RM with (F ′)A → FA. Hence if
x ∈ F ⊗RM corresponds to (xα) ∈ FA, then the submodule of F ′ of F generated
by the xα is the smallest submodule of F such that x ∈ F ′ ⊗RM . �

Lemma 10.88.4. Let R be a Noetherian ring and n a positive integer. Then the
R-module M = R[[t1, . . . , tn]] is flat and Mittag-Leffler.

Proof. As an R-module, we have M = RA for a (countable) set A. Hence this
lemma is a special case of Lemma 10.88.3. �

Example 10.88.5. Non Mittag-Leffler modules.

(1) By Example 10.86.1 and Proposition 10.86.5, Q is not a Mittag-Leffler
Z-module.

(2) We prove below (Theorem 10.90.3) that for a flat and countably generated
module, projectivity is equivalent to being Mittag-Leffler. Thus any flat,
countably generated, non-projective module M is an example of a non-
Mittag-Leffler module. For such an example, see Remark 10.75.3.

(3) Let k be a field. Let R = k[[x]]. The R-module M =
∏
n∈NR/(xn) is not

Mittag-Leffler. Namely, consider the element ξ = (ξ1, ξ2, ξ3, . . .) defined

by ξ2m = x2m−1

and ξn = 0 else, so

ξ = (0, x, 0, x2, 0, 0, 0, x4, 0, 0, 0, 0, 0, 0, 0, x8, . . .)

Then the annihilator of ξ in M/x2mM is generated x2m−1

for m� 0. But
if M was Mittag-Leffler, then there would exist a finite R-module Q and
an element ξ′ ∈ Q such that the annihilator of ξ′ in Q/xlQ agrees with
the annihilator of ξ in M/xlM for all l ≥ 1, see Proposition 10.85.5 (1).
Now you can prove there exists an integer a ≥ 0 such that the annihilator
of ξ′ in Q/xlQ is generated by either xa or xl−a for all l � 0 (depending
on whether ξ′ ∈ Q is torsion or not). The combination of the above would
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give for all l = 2m >> 0 the equality a = l/2 or l − a = l/2 which is
nonsensical.

(4) The same argument shows that (x)-adic completion of
⊕

n∈NR/(xn) is
not Mittag-Leffler over R = k[[x]] (hint: ξ is actually an element of this
completion).

(5) Let R = k[a, b]/(a2, ab, b2). Let S be the finitely presented R-algebra with
presentation S = R[t]/(at − b). Then as an R-module S is countably
generated and indecomposable (details omitted). On the other hand, R
is Artinian local, hence complete local, hence a henselian local ring, see
Lemma 10.145.10. If S was Mittag-Leffler as an R-module, then it would
be a direct sum of finite R-modules by Lemma 10.145.32. Thus we con-
clude that S is not Mittag-Leffler as an R-module.

10.89. Countably generated Mittag-Leffler modules

It turns out that countably generated Mittag-Leffler modules have a particularly
simple structure.

Lemma 10.89.1. Let M be an R-module. Write M = colimi∈IMi where (Mi, fij)
is a directed system of finitely presented R-modules. If M is Mittag-Leffler and
countably generated, then there is a directed countable subset I ′ ⊂ I such that
M ∼= colimi∈I′Mi.

Proof. Let x1, x2, . . . be a countable set of generators for M . For each xn choose
i ∈ I such that xn is in the image of the canonical map fi : Mi → M ; let I ′0 ⊂ I
be the set of all these i. Now since M is Mittag-Leffler, for each i ∈ I ′0 we can
choose j ∈ I such that j ≥ i and fij : Mi → Mj factors through fik : Mi → Mk

for all k ≥ i (condition (3) of Proposition 10.85.5); let I ′1 be the union of I ′0 with
all of these j. Since I ′1 is a countable, we can enlarge it to a countable directed set
I ′2 ⊂ I. Now we can apply the same procedure to I ′2 as we did to I ′0 to get a new
countable set I ′3 ⊂ I. Then we enlarge I ′3 to a countable directed set I ′4. Continuing
in this way—adding in a j as in Proposition 10.85.5 (3) for each i ∈ I ′` if ` is odd
and enlarging I ′` to a directed set if ` is even—we get a sequence of subsets I ′` ⊂ I
for ` ≥ 0. The union I ′ =

⋃
I ′` satisfies:

(1) I ′ is countable and directed;
(2) each xn is in the image of fi : Mi →M for some i ∈ I ′;
(3) if i ∈ I ′, then there is j ∈ I ′ such that j ≥ i and fij : Mi → Mj

factors through fik : Mi → Mk for all k ∈ I with k ≥ i. In particular
Ker(fik) ⊂ Ker(fij) for k ≥ i.

We claim that the canonical map colimi∈I′Mi → colimi∈IMi = M is an isomor-
phism. By (2) it is surjective. For injectivity, suppose x ∈ colimi∈I′Mi maps to 0
in colimi∈IMi. Representing x by an element x̃ ∈ Mi for some i ∈ I ′, this means
that fik(x̃) = 0 for some k ∈ I, k ≥ i. But then by (3) there is j ∈ I ′, j ≥ i, such
that fij(x̃) = 0. Hence x = 0 in colimi∈I′Mi. �

Lemma 10.89.1 implies that a countably generated Mittag-Leffler module M over
R is the colimit of a system

M1 →M2 →M3 →M4 → . . .

with each Mn a finitely presented R-module. To see this argue as in the proof of
Lemma 10.83.3 to see that a countable directed partially ordered set has a cofinal
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subset isomorphic to (N,≥). Suppose R = k[x1, x2, x3, . . .] and M = R/(xi). Then
M is finitely generated but not finitely presented, hence not Mittag-Leffler (see
Example 10.88.1 part (1)). But of course you can write M = colimnMn by taking
Mn = R/(x1, . . . , xn), hence the condition that you can write M as such a limit
does not imply that M is Mittag-Leffler.

Lemma 10.89.2. Let R be a ring. Let M be an R-module. Assume M is Mittag-
Leffler and countably generated. For any R-module map f : P →M with P finitely
generated there exists an endomorphism α : M →M such that

(1) α : M →M factors through a finitely presented R-module, and
(2) α ◦ f = f .

Proof. Write M = colimi∈IMi as a directed colimit of finitely presented R-
modules with I countable, see Lemma 10.89.1. The transition maps are denoted fij
and we use fi : Mi →M to denote the canonical maps into M . Set N =

∏
s∈IMs.

Denote

M∗i = HomR(Mi, N) =
∏

s∈I
HomR(Mi,Ms)

so that (M∗i ) is an inverse system of R-modules over I. Note that HomR(M,N) =
limM∗i . As M is Mittag-Leffler, we find for every i ∈ I an index k(i) ≥ i such that

Ei :=
⋂

i′≥i
Im(M∗i′ →M∗i ) = Im(M∗k(i) →M∗i )

Choose and fix j ∈ I such that Im(P → M) ⊂ Im(Mj → M). This is possible as
P is finitely generated. Set k = k(j). Let x = (0, . . . , 0, idMk

, 0, . . . , 0) ∈ M∗k and
note that this maps to y = (0, . . . , 0, fjk, 0, . . . , 0) ∈M∗j . By our choice of k we see
that y ∈ Ej . By Example 10.83.2 the transition maps Ei → Ej are surjective for
each i ≥ j and limEi = limM∗i = HomR(M,N). Hence Lemma 10.83.3 guarantees
there exists an element z ∈ HomR(M,N) which maps to y in Ej ⊂M∗j . Let zk be
the kth component of z. Then zk : M →Mk is a homomorphism such that

M
zk
// Mk

Mj

fjk

==

fj

OO

commutes. Let α : M → M be the composition fk ◦ zk : M → Mk → M . Then α
factors through a finitely presented module by construction and α ◦ fj = fj . Since
the image of f is contained in the image of fj this also implies that α ◦ f = f . �

We will see later (see Lemma 10.145.32) that Lemma 10.89.2 means that a countably
generated Mittag-Leffler module over a henselian local ring is a direct sum of finitely
presented modules.

10.90. Characterizing projective modules

The goal of this section is to prove that a module is projective if and only if it
is flat, Mittag-Leffler, and a direct sum of countably generated modules (Theorem
10.90.3 below).

Lemma 10.90.1. Let M be an R-module. If M is flat, Mittag-Leffler, and count-
ably generated, then M is projective.

http://stacks.math.columbia.edu/tag/05D2
http://stacks.math.columbia.edu/tag/059X


10.90. CHARACTERIZING PROJECTIVE MODULES 609

Proof. By Lazard’s theorem (Theorem 10.78.4), we can write M = colimi∈IMi for
a directed system of finite free R-modules (Mi, fij) indexed by a set I. By Lemma
10.89.1, we may assume I is countable. Now let

0→ N1 → N2 → N3 → 0

be an exact sequence of R-modules. We must show that applying HomR(M,−)
preserves exactness. Since Mi is finite free,

0→ HomR(Mi, N1)→ HomR(Mi, N2)→ HomR(Mi, N3)→ 0

is exact for each i. Since M is Mittag-Leffler, (HomR(Mi, N1)) is a Mittag-Leffler
inverse system. So by Lemma 10.83.4,

0→ limi∈I HomR(Mi, N1)→ limi∈I HomR(Mi, N2)→ limi∈I HomR(Mi, N3)→ 0

is exact. But for any R-module N there is a functorial isomorphism HomR(M,N) ∼=
limi∈I HomR(Mi, N), so

0→ HomR(M,N1)→ HomR(M,N2)→ HomR(M,N3)→ 0

is exact. �

Remark 10.90.2. Lemma 10.90.1 does not hold without the countable generation
assumption. For example, the Z-module M = Z[[x]] is flat and Mittag-Leffler but
not projective. It is Mittag-Leffler by Lemma 10.88.4. Subgroups of free abelian
groups are free, hence a projective Z-module is in fact free and so are its submodules.
Thus to show M is not projective it suffices to produce a non-free submodule. Fix
a prime p and consider the submodule N consisting of power series f(x) =

∑
aix

i

such that for every integer m ≥ 1, pm divides ai for all but finitely many i. Then∑
aip

ixi is in N for all ai ∈ Z, so N is uncountable. Thus if N were free it would
have uncountable rank and the dimension of N/pN over Z/p would be uncountable.
This is not true as the elements xi ∈ N/pN for i ≥ 0 span N/pN .

Theorem 10.90.3. Let M be an R-module. Then M is projective if and only it
satisfies:

(1) M is flat,
(2) M is Mittag-Leffler,
(3) M is a direct sum of countably generated R-modules.

Proof. First suppose M is projective. Then M is a direct summand of a free mod-
ule, so M is flat and Mittag-Leffler since these properties pass to direct summands.
By Kaplansky’s theorem (Theorem 10.81.5), M satisfies (3).

Conversely, suppose M satisfies (1)-(3). Since being flat and Mittag-Leffler passes
to direct summands, M is a direct sum of flat, Mittag-Leffler, countably generated
R-modules. Lemma 10.90.1 implies M is a direct sum of projective modules. Hence
M is projective. �

Lemma 10.90.4. Let f : M → N be universally injective map of R-modules.
Suppose M is a direct sum of countably generated R-modules, and suppose N is flat
and Mittag-Leffler. Then M is projective.

Proof. By Lemmas 10.79.7 and 10.86.7, M is flat and Mittag-Leffler, so the con-
clusion follows from Theorem 10.90.3. �
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Lemma 10.90.5. Let R be a Noetherian ring and let M be a R-module. Suppose M
is a direct sum of countably generated R-modules, and suppose there is a universally
injective map M → R[[t1, . . . , tn]] for some n. Then M is projective.

Proof. Follows from Lemmas 10.90.4 and 10.88.4. �

10.91. Ascending properties of modules

All of the properties of a module in Theorem 10.90.3 ascend along arbitrary ring
maps:

Lemma 10.91.1. Let R→ S be a ring map. Let M be an R-module. Then:

(1) If M is flat, then the S-module M ⊗R S is flat.
(2) If M is Mittag-Leffler, then the S-module M ⊗R S is Mittag-Leffler.
(3) If M is a direct sum of countably generated R-modules, then the S-module

M ⊗R S is a direct sum of countably generated S-modules.
(4) If M is projective, then the S-module M ⊗R S is projective.

Proof. All are obvious except (2). For this, use formulation (3) of being Mittag-
Leffler from Proposition 10.85.5 and the fact that tensoring commutes with taking
colimits. �

10.92. Descending properties of modules

We address the faithfully flat descent of the properties from Theorem 10.90.3 that
characterize projectivity. In the presence of flatness, the property of being a Mittag-
Leffler module descends:

Lemma 10.92.1. Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M⊗RS is flat and Mittag-Leffler, then M is flat and Mittag-Leffler.

Proof. By Lemma 10.80.2, flatness descends, so M is flat. Thus by Lazard’s
theorem (Theorem 10.78.4) we can write M = colimi∈IMi where (Mi, fij) is a
directed system of free finite R-modules. According to Remark 10.85.7, to prove
M is Mittag-Leffler it is enough to show that (HomR(Mi, R)) is a Mittag-Leffler
inverse system.

Since tensoring commutes with colimits, M ⊗R S = colim(Mi⊗R S). Since M ⊗R S
is Mittag-Leffler this means (HomS(Mi⊗RS, S)) is a Mittag-Leffler inverse system.
So for every i ∈ I, the family Im(HomS(Mj ⊗R S, S) → HomS(Mi ⊗R S, S)) for
j ≥ i stabilizes. Because Mi is free and finite there is a functorial isomorphism
HomS(Mi ⊗R S, S) ∼= HomR(Mi, R) ⊗R S, and because R → S is faithfully flat,
tensoring by S commutes with taking the image of a module map. Thus we find
that for every i ∈ I, the family Im(HomR(Mj , R) → HomR(Mi, R)) ⊗R S for
j ≥ i stabilizes. But if N is an R-module and N ′ ⊂ N a submodule such that
N ′ ⊗R S = N ⊗R S, then N ′ = N by faithful flatness of S. We conclude that for
every i ∈ I, the family Im(HomR(Mj , R)→ HomR(Mi, R)) for j ≥ i stabilizes. So
M is Mittag-Leffler. �

At this point the faithfully flat descent of countably generated projective modules
follows easily.

Lemma 10.92.2. Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is countably generated and projective, then M is countably
generated and projective.
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Proof. Follows from Lemma 10.92.1, the fact that countable generation descends,
and Theorem 10.90.3. �

All that remains is to use dévissage to reduce descent of projectivity in the general
case to the countably generated case. First, two simple lemmas.

Lemma 10.92.3. Let R → S be a ring map, let M be an R-module, and let Q
be a countably generated S-submodule of M ⊗R S. Then there exists a countably
generated R-submodule P of M such that Im(P ⊗R S →M ⊗R S) contains Q.

Proof. Let y1, y2, . . . be generators for Q and write yj =
∑
k xjk ⊗ sjk for some

xjk ∈ M and sjk ∈ S. Then take P be the submodule of M generated by the
xjk. �

Lemma 10.92.4. Let R→ S be a ring map, and let M be an R-module. Suppose
M ⊗R S =

⊕
i∈I Qi is a direct sum of countably generated S-modules Qi. If N is a

countably generated submodule of M , then there is a countably generated submodule
N ′ of M such that N ′ ⊃ N and Im(N ′ ⊗R S → M ⊗R S) =

⊕
i∈I′ Qi for some

subset I ′ ⊂ I.

Proof. Let N ′0 = N . We construct by induction an increasing sequence of count-
ably generated submodules N ′` ⊂ M for ` = 0, 1, 2, . . . such that: if I ′` is the set
of i ∈ I such that the projection of Im(N ′` ⊗R S → M ⊗R S) onto Qi is nonzero,
then Im(N ′`+1 ⊗R S → M ⊗R S) contains Qi for all i ∈ I ′`. To construct N ′`+1

from N ′`, let Q be the sum of (the countably many) Qi for i ∈ I ′`, choose P as in
Lemma 10.92.3, and then let N ′`+1 = N ′` +P . Having constructed the N ′`, just take
N ′ =

⋃
`N
′
` and I ′ =

⋃
` I
′
`. �

Theorem 10.92.5. Let R → S be a faithfully flat ring map. Let M be an R-
module. If the S-module M ⊗R S is projective, then M is projective.

Proof. We are going to construct a Kaplansky dévissage of M to show that it is
a direct sum of projective modules and hence projective. By Theorem 10.81.5 we
can write M ⊗R S =

⊕
i∈I Qi as a direct sum of countably generated S-modules

Qi. Choose a well-ordering on M . By transfinite induction we are going to define
an increasing family of submodules Mα of M , one for each ordinal α, such that
Mα ⊗R S is a direct sum of some subset of the Qi.

For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mβ =

⋃
β<αMβ . Since each Mβ ⊗R S for β < α is a direct sum of a

subset of the Qi, the same will be true of Mα⊗RS. If α+1 is a successor ordinal and
Mα has been defined, then defineMα+1 as follows. IfMα = M , then letMα+1 = M .
Otherwise choose the smallest x ∈M (with respect to the fixed well-ordering) such
that x /∈Mα. Since S is flat over R, (M/Mα)⊗R S = M ⊗R S/Mα ⊗R S, so since
Mα⊗R S is a direct sum of some Qi, the same is true of (M/Mα)⊗R S. By Lemma
10.92.4, we can find a countably generated R-submodule P of M/Mα containing the
image of x in M/Mα and such that P ⊗R S (which equals Im(P ⊗R S →M ⊗R S)
since S is flat over R) is a direct sum of some Qi. Since M ⊗R S =

⊕
i∈I Qi is

projective and projectivity passes to direct summands, P ⊗R S is also projective.
Thus by Lemma 10.92.2, P is projective. Finally we define Mα+1 to be the preimage
of P in M , so that Mα+1/Mα = P is countably generated and projective. In
particular Mα is a direct summand of Mα+1 since projectivity of Mα+1/Mα implies
the sequence 0→Mα →Mα+1 →Mα+1/Mα → 0 splits.
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Transfinite induction on M (using the fact that we constructed Mα+1 to contain
the smallest x ∈ M not contained in Mα) shows that each x ∈ M is contained in
some Mα. Thus, there is some large enough ordinal S satisfying: for each x ∈ M
there is α ∈ S such that x ∈ Mα. This means (Mα)α∈S satisfies property (1)
of a Kaplansky dévissage of M . The other properties are clear by construction.
We conclude M =

⊕
α+1∈SMα+1/Mα. Since each Mα+1/Mα is projective by

construction, M is projective. �

10.93. Completion

Suppose that R is a ring and I is an ideal. We define the completion of R with
respect to I to be the limit

R∧ = limnR/I
n.

An element of R∧ is simply given by a sequence of elements fn ∈ R/In such that
fn ≡ fn+1 mod In for all n. Similarly, if M is an R-module then we define the
completion of M with respect to I to be the limit

M∧ = limnM/InM.

An element of M∧ is simply given by a sequence of elements mn ∈ M/InM such
that mn ≡ mn+1 mod InM for all n. From this description it is clear that there
are always canonical maps

M −→M∧, and M ⊗R R∧ −→M∧.

Moreover, given a map ϕ : M → N of modules we get an induced map ϕ∧ : M∧ →
N∧ on completions making the diagram

M //

��

N

��
M∧ // N∧

commute. In general completion is not an exact functor, see Examples, Section
82.8. Here are some initial positive results.

Lemma 10.93.1. Let R be a ring. Let I ⊂ R be an ideal. Let ϕ : M → N be a
map of R-modules.

(1) If M/IM → N/IN is surjective, then M∧ → N∧ is surjective.
(2) If M → N is surjective, then M∧ → N∧ is surjective.
(3) If 0→ K → M → N → 0 is a short exact sequence of R-modules and N

is flat, then 0→ K∧ →M∧ → N∧ → 0 is a short exact sequence.
(4) The map M ⊗R R∧ →M∧ is surjective for any finite R-module M .

Proof. Assume M/IM → N/IN is surjective. Then the map M/InM → N/InN
is surjective for each n ≥ 1 by Nakayama’s lemma. More precisely, apply Lemma
10.19.1 part (11) to the map M/InM → N/InN over the ring R/In and the
nilpotent ideal I/In to see this. Set Kn = {x ∈ M | ϕ(x) ∈ InN}. Thus we get
short exact sequences

0→ Kn/I
nM →M/InM → N/InN → 0
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We claim that the canonical map Kn+1/I
n+1M → Kn/I

nM is surjective. Namely,
if x ∈ Kn write ϕ(x) =

∑
zjnj with zj ∈ In, nj ∈ N . By assumption we can write

nj = ϕ(mj) +
∑
zjknjk with mj ∈M , zjk ∈ I and njk ∈ N . Hence

ϕ(x−
∑

zjmj) =
∑

zjzjknjk.

This means that x′ = x−
∑
zjmj ∈ Kn+1 maps to x which proves the claim. Now

we may apply Lemma 10.84.1 to the inverse system of short exact sequences above
to see (1). Part (2) is a special case of (1). If the assumptions of (3) hold, then for
each n the sequence

0→ K/InK →M/InM → N/InN → 0

is short exact by Lemma 10.38.11. Hence we can directly apply Lemma 10.84.1
to conclude (3) is true. To see (4) choose generators xi ∈ M , i = 1, . . . , n. Then
the map R⊕n → M , (a1, . . . , an) 7→

∑
aixi is surjective. Hence by (2) we see

(R∧)⊕n → M∧, (a1, . . . , an) 7→
∑
aixi is surjective. Assertion (4) follows from

this. �

Lemma 10.93.2. Suppose R is Noetherian.

(1) If N → M is an injective map of finite R-modules, then the map on
completions N∧ →M∧ is injective.

(2) If M is a finite R-module, then M∧ = M ⊗R R∧.

Proof. For the first statement, by the Artin-Rees Lemma 10.49.2, we have a con-
stant c such that InM ∩ N equals In−c(IcM ∩ N) ⊂ In−cN . Thus if (ni) ∈ N∧
maps to zero in M∧, then each ni maps to zero in N/Ii−cN . And hence ni−c = 0.
Thus N∧ →M∧ is injective.

For the second statement let 0 → K → Rt → M → 0 be the presentation of M
corresponding to the generators x1, . . . , xt of M . By Lemma 10.93.1 (Rt)∧ →M∧ is
surjective, and for any finitely generated R-module the canonical map M ⊗RR∧ →
M∧ is surjective. Hence to prove the second statement it suffices to prove the kernel
of (Rt)∧ →M∧ is exactly K∧.

Let (xn) ∈ (Rt)∧ be in the kernel. Note that each xn is in the image of the map
K/InK → (R/In)t. Choose c such that (In)t ∩K ⊂ In−cK, which is possible by
Artin-Rees (Lemma 10.49.2). For each n ≥ 0 choose yn ∈ K/In+cK mapping to
xn+c, and set zn = yn mod InK. The elements zn satisfy zn+1 − zn mod InK =
yn+1 − yn mod InK, and yn+1 − yn ∈ In+cRt by construction. Hence zn+1 =
zn mod InK by the choice of c above. In other words (zn) ∈ K∧ maps to (xn) as
desired. �

Lemma 10.93.3. Let R be a Noetherian ring. Let I ⊂ R be an ideal.

(1) The ring map R→ R∧ is flat.
(2) The functor M 7→ M∧ is exact on the category of finitely generated R-

modules.

Proof. Consider I ⊗R R∧ → R⊗R R∧ = R∧. According to Lemma 10.93.2 this is
identified with I∧ → R∧ and I∧ → R∧ is injective. Part (1) follows from Lemma
10.38.4. Part (2) follows from part (1) and Lemma 10.93.2 part (2). �

http://stacks.math.columbia.edu/tag/00MA
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Lemma 10.93.4. Let R be a Noetherian local ring. Let m ⊂ R be the maximal
ideal. Let I ⊂ m be an ideal. The ring map R→ R∧ is faithfully flat. In particular
the completion with respect to m, namely limnR/m

n is faithfully flat.

Proof. By Lemma 10.93.3 it is flat. The composition R→ R∧ → R/m where the
last map is the projection map R∧ → R/I combined with R/I → R/m shows that
m is in the image of Spec(R∧) → Spec(R). Hence the map is faithfully flat by
Lemma 10.38.14. �

Definition 10.93.5. Let R be a ring. Let I ⊂ R be an ideal. Let M be an
R-module. We say M is I-adically complete if the map

M −→M∧ = limnM/InM

is an isomorphism4. We say R is I-adically complete if R is complete as an R-
module.

It is not true that the completion of an R-module M with respect to I is I-adically
complete. For an example see Examples, Section 82.6. Here is a lemma from an
unpublished note of Lenstra and de Smit.

Lemma 10.93.6. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Denote Kn = Ker(M∧ → M/InM). Then M∧ is I-adically complete if and only
if Kn is equal to InM∧ for all n ≥ 1.

Proof. The module InM∧ is contained in Kn. Thus for each n ≥ 1 there is a
canonical exact sequence

0→ Kn/I
nM∧ →M∧/InM∧ →M/InM → 0.

As InM∧ maps onto InM/In+1M we see that Kn+1 + InM∧ = Kn. Thus the
inverse system {Kn/I

nM∧}n≥1 has surjective transition maps. By Lemma 10.84.1
we see that there is a short exact sequence

0→ limnKn/I
nM∧ → (M∧)∧ →M∧ → 0

Hence M∧ is complete if and only if Kn/I
nM∧ = 0 for all n ≥ 1. �

Lemma 10.93.7. Let R be a ring. Let I be a finitely generated ideal of R. For
any R-module M the completion M∧ is complete. In particular R∧ is complete.

Proof. Let Kn = Ker(M∧ →M/InM). By Lemma 10.93.6 we have to show that
Kn = InM∧. Write I = (f1, . . . , ft). Let z ∈ Kn. Write z = (zm) with zm ∈
M/ImM . Choose zm ∈M mapping to zm in M/ImM . Then zm+1 = zm mod Im.
Write zn+1 = zn+ δn, zn+2 = zn+1 + δn+1, etc. Then δm ∈ ImM . Thus the infinite
sum

z = zn + δn + δn+1 + δn+2 + . . .

converges in M∧. For m ≥ n we have δm ∈ ImM hence we can write

δm =
∑

j1+...+jt=n
f j11 . . . f jtt αJ,m

with αJ,m ∈ Im−nM . Our assumption z ∈ Kn means zn ∈ InM hence we can also
write

zn =
∑

j1+...+jt=n
f j11 . . . f jtt αJ

4This includes the condition that
⋂
InM = (0).
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with αJ ∈M . Then we can set

zJ = αJ + αJ,n + αJ,n+1 + αJ,n+2 + . . .

as an element of M∧. By construction z =
∑
J f

j1
1 . . . f jtt zJ . Hence z is an element

of InM∧ as desired. �

Lemma 10.93.8. Let R be a Noetherian ring. Let I be an ideal of R. Let M be an
R-module. Then the completion M∧ of M with respect to I is I-adically complete.

Proof. This is a special case of Lemma 10.93.7 because I is a finitely generated
ideal. �

Lemma 10.93.9. Let R be a ring. Let I ⊂ R be an ideal. Assume

(1) R/I is a Noetherian ring,
(2) I is finitely generated.

Then R∧ is a Noetherian ring complete with respect to IR∧.

Proof. By Lemma 10.93.7 we see that R∧ is I-adically complete. Hence it is
also IR∧-adically complete. Since R∧/IR∧ = R/I is Noetherian we see that after
replacing R by R∧ we may in addition to assumptions (1) and (2) assume that also
R is I-adically complete.

Let f1, . . . , ft be generators of I. Then there is a surjection of ringsR/I[T1, . . . , Tt]→⊕
In/In+1 mapping Ti to the element f i ∈ I/I2. Hence

⊕
In/In+1 is a Noetherian

ring. Let J ⊂ R be an ideal. Consider the ideal⊕
J ∩ In/J ∩ In+1 ⊂

⊕
In/In+1.

Let g1, . . . , gm be generators of this ideal. We may choose gj to be a homogeneous

element of degree dj and we may pick gj ∈ J∩Idj mapping to gj ∈ J∩Idj/J∩Idj+1.
We claim that g1, . . . , gm generate J .

Let x ∈ J ∩ In. There exist aj ∈ Imax(0,n−dj) such that x −
∑
ajgj ∈ J ∩ In+1.

The reason is that J ∩ In/J ∩ In+1 is equal to
∑
gjI

n−dj/In−dj+1 by our choice
of g1, . . . , gm. Hence starting with x ∈ J we can find a sequence of vectors
(a1,n, . . . , am,n)n≥0 with aj,n ∈ Imax(0,n−dj) such that

x =
∑

n=0,...,N

∑
j=1,...,m

aj,ngj mod IN+1

Setting Aj =
∑
n≥0 aj,n we see that x =

∑
Ajgj as R is complete. Hence J is

finitely generated and we win. �

Lemma 10.93.10. Let R be a Noetherian ring. Let I be an ideal of R. The
completion R∧ of R with respect to I is Noetherian.

Proof. This is a consequence of Lemma 10.93.9. It can also be seen directly as
follows. Choose generators f1, . . . , fn of I. Consider the map

R[[x1, . . . , xn]] −→ R∧, xi 7−→ fi.

This is a well defined and surjective ring map (details omitted). SinceR[[x1, . . . , xn]]
is Noetherian (see Lemma 10.30.2) we win. �

Lemma 10.93.11. Let R be a ring, let I ⊂ R be an ideal, and let R∧ = limR/In.

(1) any element of R∧ which maps to a unit of R/I is a unit,
(2) any element of 1 + I maps to an invertible element of R∧,

http://stacks.math.columbia.edu/tag/031C
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(3) any element of 1 + IR∧ is invertible in R∧, and
(4) the ideals IR∧ and Ker(R∧ → R/I) are contained in the radical of R∧.

Proof. Let x ∈ R∧ map to a unit x1 in R/I. Then x maps to a unit xn in R/In

for every n by Lemma 10.31.3. Hence y = (x−1
n ) ∈ limR/In = R∧ is an inverse to

x. Parts (2) and (3) follow immediately from (1). Part (4) follows from (1) and
Lemma 10.18.1. �

Lemma 10.93.12. Let A be a ring. Let I = (f1, . . . , fr) be a finitely generated
ideal. If M → limM/fni M is surjective for each i, then M → limM/InM is
surjective.

Proof. Note that limM/InM = limM/(fn1 , . . . , f
n
r )M as In ⊃ (fn1 , . . . , f

n
r ) ⊃

Irn. An element ξ of limM/(fn1 , . . . , f
n
r )M can be symbolically written as

ξ =
∑

n≥0

∑
i
fni xn,i

with xn,i ∈M . If M → limM/fni M is surjective, then there is an xi ∈M mapping
to
∑
xn,if

n
i in limM/fni M . Then x =

∑
xi maps to ξ in limM/InM . �

Lemma 10.93.13. Let A be a ring. Let I ⊂ J ⊂ A be ideals. If M is J-adically
complete and I is finitely generated, then M is I-adically complete.

Proof. Assume M is J-adically complete and I is finitely generated. We have⋂
InM = 0 because

⋂
JnM = 0. By Lemma 10.93.12 it suffices to prove the

surjectivity of M → limM/InM in case I is generated by a single element. Say
I = (f). Let xn ∈ M with xn+1 − xn ∈ fnM . We have to show there exists
an x ∈ M such that xn − x ∈ fnM for all n. As xn+1 − xn ∈ JnM and as M
is J-adically complete, there exists an element x ∈ M such that xn − x ∈ JnM .
Replacing xn by xn − x we may assume that xn ∈ JnM . To finish the proof we
will show that this implies xn ∈ InM . Namely, write xn − xn+1 = fnzn. Then

xn = fn(zn + fzn+1 + f2zn+2 + . . .)

The sum zn + fzn+1 + f2zn+2 + . . . converges in M as f c ∈ Jc. The sum fn(zn +
fzn+1+f2zn+2+. . .) converges in M to xn because the partial sums equal xn−xn+c

and xn+c ∈ Jn+cM . �

Lemma 10.93.14. Let R be a ring. Let I, J be ideals of R. Assume there exist
integers c, d > 0 such that Ic ⊂ J and Jd ⊂ I. Then completion with respect
to I agrees with completion with respect to J for any R-module. In particular an
R-module M is I-adically complete if and only if it is J-adically complete.

Proof. Consider the system of maps M/InM → M/Jbn/dcM and the system of
maps M/JmM →M/Ibm/ccM to get mutually inverse maps between the comple-
tions. �

Lemma 10.93.15. Let R be a ring. Let I be an ideal of R. Let M be an I-
adically complete R-module, and let K ⊂M be an R-submodule. The following are
equivalent

(1) K =
⋂

(K + InM) and
(2) M/K is I-adically complete.

http://stacks.math.columbia.edu/tag/090S
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Proof. Set N = M/K. By Lemma 10.93.1 the map M = M∧ → N∧ is surjective.
Hence N → N∧ is surjective. It is easy to see that the kernel of N → N∧ is the
module

⋂
(K + InM)/K. �

Lemma 10.93.16. Let R be a ring. Let I be an ideal of R. Let M be an R-module.
If (a) R is I-adically complete, (b) M is a finite R-module, and (c)

⋂
InM = (0),

then M is I-adically complete.

Proof. By Lemma 10.93.1 the map M = M⊗RR = M⊗RR∧ →M∧ is surjective.
The kernel of this map is

⋂
InM hence zero by assumption. Hence M ∼= M∧ and

M is complete. �

Lemma 10.93.17. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is I-adically complete,
(2)

⋂
n≥1 I

nM = (0), and

(3) M/IM is a finite R/I-module.

Then M is a finite R-module.

Proof. Let x1, . . . , xn ∈ M be elements whose images in M/IM generate M/IM
as a R/I-module. Denote M ′ ⊂ M the R-submodule generated by x1, . . . , xn.
By Lemma 10.93.1 the map (M ′)∧ → M∧ is surjective. Since

⋂
InM = 0 we

see in particular that
⋂
InM ′ = (0). Hence by Lemma 10.93.16 we see that M ′

is complete, and we conclude that M ′ → M∧ is surjective. Finally, the kernel
of M → M∧ is zero since it is equal to

⋂
InM = (0). Hence we conclude that

M ∼= M ′ ∼= M∧ is finitely generated. �

Suppose R→ S is a local homomorphism of local rings (R,m) and (S, n). Let S∧ be
the completion of S with respect to n. In general S∧ is not the m-adic completion
of S. If nt ⊂ mS for some t ≥ 1 then we do have S∧ = limS/mnS by Lemma
10.93.14. In some cases this even implies that S∧ is finite over R∧.

Lemma 10.93.18. Let R→ S be a local homomorphism of local rings (R,m) and
(S, n). Let R∧, resp. S∧ be the completion of R, resp. S with respect to m, resp. n.
If m and n are finitely generated and dimκ(m) S/mS <∞, then

(1) S∧ is equal to the m-adic completion of S, and
(2) S∧ is a finite R∧-module.

Proof. We have mS ⊂ n because R → S is a local ring map. The assumption
dimκ(m) S/mS < ∞ implies that S/mS is an Artinian ring, see Lemma 10.51.2.

Hence has dimension 0, see Lemma 10.59.4, hence n =
√
mS. This and the fact

that n is finitely generated implies that nt ⊂ mS for some t ≥ 1. By Lemma
10.93.14 we see that S∧ can be identified with the m-adic completion of S. As m
is finitely generated we see from Lemma 10.93.7 that S∧ and R∧ are m-adically
complete. At this point we may apply Lemma 10.93.17 to S∧ as an R∧-module to
conclude. �

Lemma 10.93.19. Let R be a Noetherian ring. Let R → S be a finite ring map.
Let p ⊂ R be a prime and let q1, . . . , qm be the primes of S lying over p (Lemma
10.35.19). Then

R∧p ⊗R S = S∧q1
× . . .× S∧qm

where the local rings Rp and Sqi are completed with respect to their maximal ideals.
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Proof. We may replace R by the localization Rp and S by Sp = S ⊗R Rp. Hence
we may assume that R is a local Noetherian ring and that p = m is its maximal
ideal. The qiSqi-adic completion S∧qi is equal to the m-adic completion by Lemma
10.93.18. For every n ≥ 1 prime ideals of S/mnS are in 1-to-1 correspondence with
the maximal ideals q1, . . . , qm of S (by going up for S over R, see Lemma 10.35.20).
Hence S/mnS =

∏
Sqi/m

nSqi by Lemma 10.51.6 (using for example Proposition
10.59.6 to see that S/mnS is Artinian). Hence the m-adic completion S∧ of S is
equal to

∏
S∧qi . Finally, we have R∧ ⊗R S = S∧ by Lemma 10.93.2. �

Lemma 10.93.20. Let R be a ring. Let I ⊂ R be an ideal. Let 0 → K → P →
M → 0 be a short exact sequence of R-modules. If M is flat over R and M/IM is
a projective R/I-module, then the sequence of I-adic completions

0→ K∧ → P∧ →M∧ → 0

is a split exact sequence.

Proof. As M is flat, each of the sequences

0→ K/InK → P/InP →M/InM → 0

is short exact, see Lemma 10.38.11 and the sequence 0 → K∧ → P∧ → M∧ → 0
is a short exact sequence, see Lemma 10.93.1. It suffices to show that we can find
splittings sn : M/InM → P/InP such that sn+1 mod In = sn. We will construct
these sn by induction on n. Pick any splitting s1, which exists as M/IM is a
projective R/I-module. Assume given sn for some n > 0. Set Pn+1 = {x ∈ P |
x mod InP ∈ Im(sn)}. The map π : Pn+1/I

n+1Pn+1 → M/In+1M is surjective
(details omitted). As M/In+1M is projective as a R/In+1-module by Lemma
10.74.5 we may choose a section t : M/In+1M → Pn+1/I

n+1Pn+1 of π. Setting
sn+1 equal to the composition of t with the canonical map Pn+1/I

n+1Pn+1 →
P/In+1P works. �

10.94. Taking limits of modules

In this section we discuss what happens when we take a limit of modules.

Lemma 10.94.1. Let A be a ring. Let I ⊂ A be an ideal. Let (Mn) be an inverse
system of A-modules. Set M = limMn. If Mn = Mn+1/I

nMn+1 and I is finitely
generated then M/InM = Mn and M is I-adically complete.

Proof. As Mn+1 →Mn is surjective, the map M →M1 is surjective. Pick xt ∈M ,
t ∈ T mapping to generators of M1. This gives a map

⊕
t∈T A → M . Note that

the images of xt in Mn generate Mn for all n too. Consider the exact sequences

0→ Kn →
⊕

t∈T
A/In →Mn → 0

We claim the map Kn+1 → Kn is surjective. Namely, if y ∈ Kn choose a lift
y′ ∈

⊕
t∈T A/I

n+1. Then y′ maps to an element of InMn+1 by our assumption
Mn = Mn+1/I

nMn+1. Hence we can modify our choice of y′ by an element of⊕
t∈T I

n/In+1 so that y′ maps to zero in Mn+1. Then y′ ∈ Kn+1 maps to y.
Hence (Kn) is a sequence of modules with surjective transition maps and we obtain
an exact sequence

0→ limKn →
(⊕

t∈T
A
)∧
→M → 0

http://stacks.math.columbia.edu/tag/05D3
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by Lemma 10.84.1. Fix an integer m. As I is finitely generated, the completion with
respect to I is complete (Lemma 10.93.7) which implies that (

⊕
t∈T A)∧/Im(

⊕
t∈T A)∧ =⊕

t∈T A/I
m (Lemma 10.93.6). We obtain a short exact sequence

(limKn)/Im(limKn)→
⊕

t∈T
A/Im →M/ImM → 0

Since limKn → Km is surjective we conclude that M/ImM = Mm. It follows in
particular that M is I-adically complete. �

10.95. Criteria for flatness

In this section we prove some important technical lemmas in the Noetherian case.
We will (partially) generalize these to the non-Noetherian case in Section 10.124.

Lemma 10.95.1. Suppose that R → S is a local homomorphism of Noetherian
local rings. Denote m the maximal ideal of R. Let M be a flat R-module and N a
finite S-module. Let u : N → M be a map of R-modules. If u : N/mN → M/mM
is injective then u is injective. In this case M/u(N) is flat over R.

Proof. First we claim that un : N/mnN →M/mnM is injective for all n ≥ 1. We
proceed by induction, the base case is that u = u1 is injective. By our assumption
that M is flat over R we have a short exact sequence 0 → M ⊗R mn/mn+1 →
M/mn+1M → M/mnM → 0. Also, M ⊗R mn/mn+1 = M/mM ⊗R/m mn/mn+1.

We have a similar exact sequence N ⊗R mn/mn+1 → N/mn+1N → N/mnN → 0
for N except we do not have the zero on the left. We also have N ⊗R mn/mn+1 =
N/mN ⊗R/m mn/mn+1. Thus the map un+1 is injective as both un and the map
u⊗ idmn/mn+1 are.

By Krull’s intersection theorem (Lemma 10.49.4) applied to N over the ring S and
the ideal mS we have

⋂
mnN = 0. Thus the injectivity of un for all n implies u is

injective.

To show that M/u(N) is flat over R, it suffices to show that I ⊗R M/u(N) →
M/u(N) is injective for every ideal I ⊂ R, see Lemma 10.38.4. Consider the
diagram

0 0 0
↑ ↑ ↑

N/IN → M/IM → M/(IN + u(N)) → 0
↑ ↑ ↑

0 → N → M → M/u(N) → 0
↑ ↑ ↑

N ⊗R I → M ⊗R I → M/u(N)⊗R I → 0

The arrow M ⊗R I →M is injective. By the snake lemma (Lemma 10.4.1) we see
that it suffices to prove that N/IN injects into M/IM . Note that R/I → S/IS
is a local homomorphism of Noetherian local rings, N/IN → M/IM is a map of
R/I-modules, N/IN is finite over S/IS, and M/IM is flat over R/I and u mod I :
N/IN → M/IM is injective modulo m. Thus we may apply the first part of the
proof to u mod I and we conclude. �

Lemma 10.95.2. Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f ∈ S is a
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nonzerodivisor in S/mS. Then S/fS is flat over R, and f is a nonzerodivisor in
S.

Proof. Follows directly from Lemma 10.95.1. �

Lemma 10.95.3. Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f1, . . . , fc is a
sequence of elements of S such that the images f1, . . . , f c form a regular sequence
in S/mS. Then f1, . . . , fc is a regular sequence in S and each of the quotients
S/(f1, . . . , fi) is flat over R.

Proof. Induction and Lemma 10.95.2. �

Lemma 10.95.4. Let R → S be a local homomorphism of Noetherian local rings.
Let m be the maximal ideal of R. Let M be a finite S-modules. Suppose that (a)
M/mM is a free S/mS-module, and (b) M is flat over R. Then M is free and S
is flat over R.

Proof. Let x1, . . . , xn be a basis for the free module M/mM . Choose x1, . . . , xn ∈
M with xi mapping to xi. Let u : S⊕n → M be the map which maps the ith
standard basis vector to xi. By Lemma 10.95.1 we see that u is injective. On
the other hand, by Nakayama’s Lemma 10.19.1 the map is surjective. The lemma
follows. �

Lemma 10.95.5. Let R → S be a local homomorphism of local Noetherian rings.
Let m be the maximal ideal of R. Let 0 → Fe → Fe−1 → . . . → F0 be a finite
complex of finite S-modules. Assume that each Fi is R-flat, and that the complex
0 → Fe/mFe → Fe−1/mFe−1 → . . . → F0/mF0 is exact. Then 0 → Fe → Fe−1 →
. . .→ F0 is exact, and moreover the module Coker(F1 → F0) is R-flat.

Proof. By induction on e. If e = 1, then this is exactly Lemma 10.95.1. If e > 1, we
see by Lemma 10.95.1 that Fe → Fe−1 is injective and that C = Coker(Fe → Fe−1)
is a finite S-module flat over R. Hence we can apply the induction hypothesis to
the complex 0 → C → Fe−2 → . . . → F0. We deduce that C → Fe−2 is injective
and the exactness of the complex follows, as well as the flatness of the cokernel of
F1 → F0. �

In the rest of this section we prove two versions of what is called the “local criterion
of flatness”. Note also the interesting Lemma 10.124.1 below.

Lemma 10.95.6. Let R be a local ring with maximal ideal m and residue field
κ = R/m. Let M be an R-module. If TorR1 (κ,M) = 0, then for every finite length

R-module N we have TorR1 (N,M) = 0.

Proof. By descending induction on the length of N . If the length of N is 1, then
N ∼= κ and we are done. If the length of N is more than 1, then we can fit N
into a short exact sequence 0 → N ′ → N → N ′′ → 0 where N ′, N ′′ are finite
length R-modules of smaller length. The vanishing of TorR1 (N,M) follows from the

vanishing of TorR1 (N ′,M) and TorR1 (N ′′,M) (induction hypothesis) and the long
exact sequence of Tor groups, see Lemma 10.72.2. �

Lemma 10.95.7 (Local criterion for flatness). Let R→ S be a local homomorphism
of local Noetherian rings. Let m be the maximal ideal of R, and let κ = R/m. Let

M be a finite S-module. If TorR1 (κ,M) = 0, then M is flat over R.
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Proof. Let I ⊂ R be an ideal. By Lemma 10.38.4 it suffices to show that I⊗RM →
M is injective. By Remark 10.72.8 we see that this kernel is equal to TorR1 (M,R/I).
By Lemma 10.95.6 we see that J ⊗R M → M is injective for all ideals of finite
colength.

Choose n >> 0 and consider the following short exact sequence

0→ I ∩mn → I ⊕mn → I + mn → 0

This is a sub sequence of the short exact sequence 0→ R→ R⊕2 → R→ 0. Thus
we get the diagram

(I ∩mn)⊗RM //

��

I ⊗RM ⊕mn ⊗RM //

��

(I + mn)⊗RM

��
M // M ⊕M // M

Note that I + mn and mn are ideals of finite colength. Thus a diagram chase
shows that Ker((I ∩ mn) ⊗R M → M) → Ker(I ⊗R M → M) is surjective. We
conclude in particular that K = Ker(I ⊗R M → M) is contained in the image
of (I ∩ mn) ⊗R M in I ⊗R M . By Artin-Rees, Lemma 10.49.2 we see that K is
contained in mn−c(I⊗RM) for some c > 0 and all n >> 0. Since I⊗RM is a finite
S-module (!) and since S is Noetherian, we see that this implies K = 0. Namely,
the above implies K maps to zero in the mS-adic completion of I ⊗RM . But the
map from S to its mS-adic completion is faithfully flat by Lemma 10.93.4. Hence
K = 0, as desired. �

In the following we often encounter the conditions “M/IM is flat over R/I and

TorR1 (R/I,M) = 0”. The following lemma gives some consequences of these condi-
tions (it is a generalization of Lemma 10.95.6).

Lemma 10.95.8. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
If M/IM is flat over R/I and TorR1 (R/I,M) = 0 then

(1) M/InM is flat over R/In for all n ≥ 1, and
(2) for any module N which is annihilated by Im for some m ≥ 0 we have

TorR1 (N,M) = 0.

In particular, if I is nilpotent, then M is flat over R.

Proof. Assume M/IM is flat over R/I and TorR1 (R/I,M) = 0. Let N be an
R/I-module. Choose a short exact sequence

0→ K →
⊕

i∈I
R/I → N → 0

By the long exact sequence of Tor and the vanishing of TorR1 (R/I,M) we get

0→ TorR1 (N,M)→ K ⊗RM → (
⊕

i∈I
R/I)⊗RM → N ⊗RM → 0

But since K,
⊕

i∈I R/I, and N are all annihilated by I we see that

K ⊗RM = K ⊗R/I M/IM,

(
⊕

i∈I
R/I)⊗RM = (

⊕
i∈I

R/I)⊗R/I M/IM,

N ⊗RM = N ⊗R/I M/IM.
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As M/IM is flat over R/I we conclude that

0→ K ⊗R/I M/IM → (
⊕

i∈I
R/I)⊗R/I M/IM → N ⊗R/M/IM → 0

is exact. Combining this with the above we conclude that TorR1 (N,M) = 0 for any
R-module N annihilated by I.

In particular, if we apply this to the module I/I2, then we conclude that the
sequence

0→ I2 ⊗RM → I ⊗RM → I/I2 ⊗RM → 0

is short exact. This implies that I2 ⊗R M → M is injective and it implies that
I/I2 ⊗R/I M/IM = IM/I2M .

Let us prove that M/I2M is flat over R/I2. Let I2 ⊂ J be an ideal. We have
to show that J/I2 ⊗R/I2 M/I2M → M/I2M is injective, see Lemma 10.38.4. As
M/IM is flat over R/I we know that the map (I + J)/I ⊗R/IM/IM →M/IM is
injective. The sequence

(I ∩ J)/I2 ⊗R/I2 M/I2M → J/I2 ⊗R/I2 M/I2M → (I + J)/I ⊗R/I M/IM → 0

is exact, as you get it by tensoring the exact sequence 0 → (I ∩ J) → J →
(I + J)/I → 0 by M/I2M . Hence suffices to prove the injectivity of the map (I ∩
J)/I2 ⊗R/I M/IM → IM/I2M . However, the map (I ∩ J)/I2 → I/I2 is injective

and as M/IM is flat over R/I the map (I∩J)/I2⊗R/IM/IM → I/I2⊗R/IM/IM

is injective. Since we have previously seen that I/I2 ⊗R/I M/IM = IM/I2M we
obtain the desired injectivity.

Hence we have proven that the assumptions imply: (a) TorR1 (N,M) = 0 for all N
annihilated by I, (b) I2⊗RM →M is injective, and (c) M/I2M is flat over R/I2.
Thus we can continue by induction to get the same results for In for all n ≥ 1. �

Lemma 10.95.9. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.

(1) If M/IM is flat over R/I and M ⊗R I/I2 → IM/I2M is injective, then
M/I2M is flat over R/I2.

(2) If M/IM is flat over R/I and M⊗R In/In+1 → InM/In+1M is injective
for n = 1, . . . , k, then M/Ik+1M is flat over R/Ik+1.

Proof. The first statement is a consequence of Lemma 10.95.8 applied with R
replaced by R/I2 and M replaced by M/I2M using that

Tor
R/I2

1 (M/I2M,R/I) = Ker(M ⊗R I/I2 → IM/I2M),

see Remark 10.72.8. The second statement follows in the same manner using in-
duction on n to show that M/In+1M is flat over R/In+1 for n = 1, . . . , k. Here we
use that

Tor
R/In+1

1 (M/In+1M,R/I) = Ker(M ⊗R In/In+1 → InM/In+1M)

for every n. �

Lemma 10.95.10 (Variant of the local criterion). Let R→ S be a local homomor-
phism of Noetherian local rings. Let I 6= R be an ideal in R. Let M be a finite
S-module. If TorR1 (M,R/I) = 0 and M/IM is flat over R/I, then M is flat over
R.
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Proof. First proof: By Lemma 10.95.8 we see that TorR1 (κ,M) is zero where κ is
the residue field of R. Hence we see that M is flat over R by Lemma 10.95.7.

Second proof: Let m be the maximal ideal of R. We will show that m⊗RM →M
is injective, and then apply Lemma 10.95.7. Suppose that

∑
fi ⊗ xi ∈ m ⊗R M

and that
∑
fixi = 0 in M . By the equational criterion for flatness Lemma 10.38.10

applied to M/IM over R/I we see there exist aij ∈ R/I and yj ∈M/IM such that
xi mod IM =

∑
j aijyj and 0 =

∑
i(fi mod I)aij . Let aij ∈ R be a lift of aij and

similarly let yj ∈M be a lift of yj . Then we see that∑
fi ⊗ xi =

∑
fi ⊗ xi +

∑
fiaij ⊗ yj −

∑
fi ⊗ aijyj

=
∑

fi ⊗ (xi −
∑

aijyj) +
∑

(
∑

fiaij)⊗ yj

Since xi −
∑
aijyj ∈ IM and

∑
fiaij ∈ I we see that there exists an element in

I ⊗RM which maps to our given element
∑
fi⊗xi in m⊗RM . But I ⊗RM →M

is injective by assumption (see Remark 10.72.8) and we win. �

In particular, in the situation of Lemma 10.95.10, suppose that I = (x) is generated

by a single element x which is a nonzerodivisor in R. Then TorR1 (M,R/(x)) = (0)
if and only if x is a nonzerodivisor on M .

Lemma 10.95.11. Let R → S be a ring map. Let I ⊂ R be an ideal. Let M be
an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
(4) for each n ≥ 1 the module M/InM is flat over R/In.

Then for every q ∈ V (IS) the localization Mq is flat over R. In particular, if S is
local and IS is contained in its maximal ideal, then M is flat over R.

Proof. We are going to use Lemma 10.95.10. By assumption M/IM is flat over

R/I. Hence it suffices to check that TorR1 (M,R/I) is zero on localization at q. By
Remark 10.72.8 this Tor group is equal to K = Ker(I ⊗RM → M). We know for
each n ≥ 1 that the kernel Ker(I/In ⊗R/In M/InM → M/InM) is zero. Since

there is a module map I/In⊗R/InM/InM → (I⊗RM)/In−1(I⊗RM) we conclude

that K ⊂ In−1(I ⊗RM) for each n. By the Artin-Rees lemma, and more precisely
Lemma 10.49.5 we conclude that Kq = 0, as desired. �

Lemma 10.95.12. Let R → R′ → R′′ be ring maps. Let M be an R-module.
Suppose that M⊗RR′ is flat over R′. Then the natural map TorR1 (M,R′)⊗R′R′′ →
TorR1 (M,R′′) is onto.

Proof. Let F• be a free resolution of M over R. The complex F2 ⊗R R′ → F1 ⊗R
R′ → F0 ⊗R R′ computes TorR1 (M,R′). The complex F2 ⊗R R′′ → F1 ⊗R R′′ →
F0 ⊗R R′′ computes TorR1 (M,R′′). Note that Fi ⊗R R′ ⊗R′ R′′ = Fi ⊗R R′′. Let
K ′ = Ker(F1⊗R R′ → F0⊗R R′) and similarly K ′′ = Ker(F1⊗R R′′ → F0⊗R R′′).
Thus we have an exact sequence

0→ K ′ → F1 ⊗R R′ → F0 ⊗R R′ →M ⊗R R′ → 0.

By the assumption that M ⊗R R′ is flat over R′, the sequence 0 → K ′ ⊗R′ R′′ →
F1 ⊗R R′′ → F0 ⊗R R′′ → M ⊗R R′′ → 0 is still exact. This means that K ′′ =
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K ′ ⊗R′ R′′. Since TorR1 (M,R′) is a quotient of K ′ and TorR1 (M,R′′) is a quotient
of K ′′ we win. �

Lemma 10.95.13. Let R→ R′ be a ring map. Let I ⊂ R be an ideal and I ′ = IR′.
Let M be an R-module and set M ′ = M⊗RR′. The natural map TorR1 (R′/I ′,M)→
TorR

′

1 (R′/I ′,M ′) is surjective.

Proof. Let F2 → F1 → F0 → M → 0 be a free resolution of M over R. Set
F ′i = Fi ⊗R R′. The sequence F ′2 → F ′1 → F ′0 → M ′ → 0 may no longer be exact
at F ′1. A free resolution of M ′ over R′ therefore looks like

F ′2 ⊕ F ′′2 → F ′1 → F ′0 →M ′ → 0

for a suitable free module F ′′2 over R′. Next, note that Fi ⊗R R′/I ′ = F ′i/IF
′
i =

F ′i/I
′F ′i . So the complex F ′2/I

′F ′2 → F ′1/I
′F ′1 → F ′0/I

′F ′0 computes TorR1 (M,R′/I ′).
On the other hand F ′i ⊗R′ R′/I ′ = F ′i/I

′F ′i and similarly for F ′′2 . Thus the complex

F ′2/I
′F ′2 ⊕ F ′′2 /I ′F ′′2 → F ′1/I

′F ′1 → F ′0/I
′F ′0 computes TorR

′

1 (M ′, R′/I ′). Since the
vertical map on complexes

F ′2/I
′F ′2 //

��

F ′1/I
′F ′1 //

��

F ′0/I
′F ′0

��
F ′2/I

′F ′2 ⊕ F ′′2 /I ′F ′′2 // F ′1/I
′F ′1 // F ′0/I

′F ′0

clearly induces a surjection on cohomology we win. �

Lemma 10.95.14. Let

S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local Noetherian rings. Let
I ⊂ R be an ideal. Let M be an S-module. Denote I ′ = IR′ and M ′ = M ⊗S S′.
Assume that

(1) S′ is a localization of the tensor product S ⊗R R′,
(2) M/IM is flat over R/I,

(3) TorR1 (M,R/I)→ TorR
′

1 (M ′, R′/I ′) is zero.

Then M ′ is flat over R′.

Proof. Since S′ is a localization of S ⊗R R′ we see that M ′ is a localization of
M ⊗R R′. Note that by Lemma 10.38.6 the module M/IM ⊗R/I R′/I ′ = M ⊗R
R′/I ′(M ⊗R R′) is flat over R′/I ′. Hence also M ′/I ′M ′ is flat over R′/I ′ as the
localization of a flat module is flat. By Lemma 10.95.10 it suffices to show that

TorR
′

1 (M ′, R′/I ′) is zero. Since M ′ is a localization of M⊗RR′, the last assumption

implies that it suffices to show that TorR1 (M,R/I)⊗RR′ → TorR
′

1 (M ⊗RR′, R′/I ′)
is surjective.

By Lemma 10.95.13 we see that TorR1 (M,R′/I ′) → TorR
′

1 (M ⊗R R′, R′/I ′) is sur-

jective. So now it suffices to show that TorR1 (M,R/I) ⊗R R′ → TorR1 (M,R′/I ′)
is surjective. This follows from Lemma 10.95.12 by looking at the ring maps
R→ R/I → R′/I ′ and the module M . �
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Please compare the lemma below to Lemma 10.97.8 (the case of a nilpotent ideal)
and Lemma 10.124.8 (the case of finitely presented algebras).

Lemma 10.95.15 (Critère de platitude par fibres; Noetherian case). Let R, S, S′

be Noetherian local rings and let R → S → S′ be local ring homomorphisms. Let
m ⊂ R be the maximal ideal. Let M be an S′-module. Assume

(1) The module M is finite over S′.
(2) The module M is not zero.
(3) The module M/mM is a flat S/mS-module.
(4) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. Set I = mS ⊂ S. Then we see that M/IM is a flat S/I-module because of
(3). Since m⊗R S′ → I ⊗S S′ is surjective we see that also m⊗RM → I ⊗S M is
surjective. Consider

m⊗RM → I ⊗S M →M.

As M is flat over R the composition is injective and so both arrows are injective. In
particular TorS1 (S/I,M) = 0 see Remark 10.72.8. By Lemma 10.95.10 we conclude
that M is flat over S. Note that since M/mS′M is not zero by Nakayama’s Lemma
10.19.1 we see that actually M is faithfully flat over S by Lemma 10.38.14 (since
it forces M/mSM 6= 0).

Consider the exact sequence 0 → m → R → κ → 0. This gives an exact sequence
0 → TorR1 (κ, S) → m ⊗R S → I → 0. Since M is flat over S this gives an exact

sequence 0 → TorR1 (κ, S) ⊗S M → m ⊗R M → I ⊗S M → 0. By the above this

implies that TorR1 (κ, S) ⊗S M = 0. Since M is faithfully flat over S this implies

that TorR1 (κ, S) = 0 and we conclude that S is flat over R by Lemma 10.95.7. �

10.96. Base change and flatness

Some lemmas which deal with what happens with flatness when doing a base
change.

Lemma 10.96.1. Let

S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local rings. Assume that S′

is a localization of the tensor product S ⊗R R′. Let M be an S-module and set
M ′ = S′ ⊗S M .

(1) If M is flat over R then M ′ is flat over R′.
(2) If M ′ is flat over R′ and R→ R′ is flat then M is flat over R.

In particular we have

(3) If S is flat over R then S′ is flat over R′.
(4) If R′ → S′ and R→ R′ are flat then S is flat over R.

Proof. Proof of (1). If M is flat over R, then M ⊗R R′ is flat over R′ by Lemma
10.38.6. If W ⊂ S⊗RR′ is the multiplicative subset such that W−1(S⊗RR′) = S′

then M ′ = W−1(M ⊗R R′). Hence M ′ is flat over R′ as the localization of a flat
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module, see Lemma 10.38.19 part (5). This proves (1) and in particular, we see
that (3) holds.

Proof of (2). Suppose that M ′ is flat over R′ and R→ R′ is flat. By (3) applied to
the diagram reflected in the northwest diagonal we see that S → S′ is flat. Thus
S → S′ is faithfully flat by Lemma 10.38.16. We are going to use the criterion of
Lemma 10.38.4 (3) to show that M is flat. Let I ⊂ R be an ideal. If I ⊗RM →M
has a kernel, so does (I ⊗RM)⊗S S′ →M ⊗S S′ = M ′. Note that I ⊗R R′ = IR′

as R→ R′ is flat, and that

(I ⊗RM)⊗S S′ = (I ⊗R R′)⊗R′ (M ⊗S S′) = IR′ ⊗R′ M ′.
From flatness of M ′ over R′ we conclude that this maps injectively into M ′. This
concludes the proof of (2), and hence (4) is true as well. �

10.97. Flatness criteria over Artinian rings

We discuss some flatness criteria for modules over Artinian rings. Note that an
Artinian local ring has a nilpotent maximal ideal so that the following two lemmas
apply to Artinian local rings.

Lemma 10.97.1. Let (R,m) be a local ring with nilpotent maximal ideal m. Let
M be a flat R-module. If A is a set and xα ∈M , α ∈ A is a collection of elements
of M , then the following are equivalent:

(1) {xα}α∈A forms a basis for the vector space M/mM over R/m, and
(2) {xα}α∈A forms a basis for M over R.

Proof. The implication (2) ⇒ (1) is immediate. We will prove the other implica-
tion by using induction on n to show that {xα}α∈A forms a basis for M/mnM over
R/mn. The case n = 1 holds by assumption (1). Assume the statement holds for
some n ≥ 1. By Nakayama’s Lemma 10.19.1 the elements xα generate M , in par-
ticular M/mn+1M . The exact sequence 0 → mn/mn+1 → R/mn+1 → R/mn → 0
gives on tensoring with M the exact sequence

0→ mnM/mn+1M →M/mn+1M →M/mnM → 0

Here we are using that M is flat. Moreover, we have mnM/mn+1M = M/mM⊗R/m
mn/mn+1 by flatness of M again. Now suppose that

∑
fαxα = 0 in M/mn+1M .

Then by induction hypothesis fα ∈ mn for each α. By the short exact sequence
above we then conclude that

∑
fα ⊗ xα is zero in mn/mn+1 ⊗R/m M/mM . Since

xα forms a basis we conclude that each of the congruence classes fα ∈ mn/mn+1 is
zero and we win. �

Lemma 10.97.2. Let R be a local ring with nilpotent maximal ideal. Let M be an
R-module. The following are equivalent

(1) M is flat over R,
(2) M is a free R-module, and
(3) M is a projective R-module.

Proof. Since any projective module is flat (as a direct summand of a free module)
and every free module is projective, it suffices to prove that a flat module is free.
Let M be a flat module. Let A be a set and let xα ∈ M , α ∈ A be elements such
that xα ∈M/mM forms a basis over the residue field of R. By Lemma 10.97.1 the
xα are a basis for M over R and we win. �
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Lemma 10.97.3. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Let A be a set and let xα ∈M , α ∈ A be a collection of elements of M . Assume

(1) I is nilpotent,
(2) {xα}α∈A forms a basis for M/IM over R/I, and

(3) TorR1 (R/I,M) = 0.

Then M is free on {xα}α∈A over R.

Proof. Let R, I, M , {xα}α∈A be as in the lemma and satisfy assumptions (1), (2),
and (3). By Nakayama’s Lemma 10.19.1 the elements xα generate M over R. The

assumption TorR1 (R/I,M) = 0 implies that we have a short exact sequence

0→ I ⊗RM →M →M/IM → 0.

Let
∑
fαxα = 0 be a relation in M . By choice of xα we see that fα ∈ I. Hence we

conclude that
∑
fα ⊗ xα = 0 in I ⊗RM . The map I ⊗RM → I/I2 ⊗R/I M/IM

and the fact that {xα}α∈A forms a basis for M/IM implies that fα ∈ I2! Hence
we conclude that there are no relations among the images of the xα in M/I2M . In
other words, we see that M/I2M is free with basis the images of the xα. Using the
map I ⊗R M → I/I3 ⊗R/I2 M/I2M we then conclude that fα ∈ I3! And so on.
Since In = 0 for some n by assumption (1) we win. �

Lemma 10.97.4. Let ϕ : R→ R′ be a ring map. Let I ⊂ R be an ideal. Let M be
an R-module. Assume

(1) M/IM is flat over R/I, and
(2) R′ ⊗RM is flat over R′.

Set I2 = ϕ−1(ϕ(I2)R′). Then M/I2M is flat over R/I2.

Proof. We may replace R, M , and R′ by R/I2, M/I2M , and R′/ϕ(I)2R′. Then
I2 = 0 and ϕ is injective. By Lemma 10.95.8 and the fact that I2 = 0 it suffices to
prove that TorR1 (R/I,M) = K = Ker(I ⊗RM → M) is zero. Set M ′ = M ⊗R R′
and I ′ = IR′. By assumption the map I ′⊗R′M ′ →M ′ is injective. Hence K maps
to zero in

I ′ ⊗R′ M ′ = I ′ ⊗RM = I ′ ⊗R/I M/IM.

Then I → I ′ is an injective map of R/I-modules. Since M/IM is flat over R/I the
map

I ⊗R/I M/IM −→ I ′ ⊗R/I M/IM

is injective. This implies that K is zero in I ⊗RM = I ⊗R/IM/IM as desired. �

Lemma 10.97.5. Let ϕ : R→ R′ be a ring map. Let I ⊂ R be an ideal. Let M be
an R-module. Assume

(1) I is nilpotent,
(2) R→ R′ is injective,
(3) M/IM is flat over R/I, and
(4) R′ ⊗RM is flat over R′.

Then M is flat over R.

Proof. Define inductively I1 = I and In+1 = ϕ−1(ϕ(In)2R′) for n ≥ 1. Note that
by Lemma 10.97.4 we find that M/InM is flat over R/In for each n ≥ 1. It is clear
that ϕ(In) ⊂ ϕ(I)2nR′. Since I is nilpotent we see that ϕ(In) = 0 for some n. As
ϕ is injective we conclude that In = 0 for some n and we win. �
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Here is the local Artinian version of the local criterion for flatness.

Lemma 10.97.6. Let R be an Artinian local ring. Let M be an R-module. Let
I ⊂ R be a proper ideal. The following are equivalent

(1) M is flat over R, and

(2) M/IM is flat over R/I and TorR1 (R/I,M) = 0.

Proof. The implication (1) ⇒ (2) follows immediately from the definitions. As-

sume M/IM is flat over R/I and TorR1 (R/I,M) = 0. By Lemma 10.97.2 this
implies that M/IM is free over R/I. Pick a set A and elements xα ∈M such that
the images in M/IM form a basis. By Lemma 10.97.3 we conclude that M is free
and in particular flat. �

It turns out that flatness descends along injective homomorphism whose source is
an Artinian ring.

Lemma 10.97.7. Let R→ S be a ring map. Let M be an R-module. Assume

(1) R is Artinian
(2) R→ S is injective, and
(3) M ⊗R S is a flat S-module.

Then M is a flat R-module.

Proof. First proof: Let I ⊂ R be the radical of R. Then I is nilpotent and M/IM
is flat over R/I as R/I is a product of fields, see Section 10.51. Hence M is flat by
an application of Lemma 10.97.5.

Second proof: By Lemma 10.51.6 we may write R =
∏
Ri as a finite product of

local Artinian rings. This induces similar product decompositions for both R and
S. Hence we reduce to the case where R is local Artinian (details omitted).

Assume that R → S, M are as in the lemma satisfying (1), (2), and (3) and in
addition that R is local with maximal ideal m. Let A be a set and xα ∈ A be
elements such that xα forms a basis for M/mM over R/m. By Nakayama’s Lemma
10.19.1 we see that the elements xα generate M as an R-module. Set N = S⊗RM
and I = mS. Then {1 ⊗ xα}α∈A is a family of elements of N which form a basis

for N/IN . Moreover, since N is flat over S we have TorS1 (S/I,N) = 0. Thus we
conclude from Lemma 10.97.3 that N is free on {1 ⊗ xα}α∈A. The injectivity of
R → S then guarantees that there cannot be a nontrivial relation among the xα
with coefficients in R. �

Please compare the lemma below to Lemma 10.95.15 (the case of Noetherian local
rings) and Lemma 10.124.8 (the case of finitely presented algebras).

Lemma 10.97.8 (Critère de platitude par fibres: Nilpotent case). Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a nilpotent ideal
and M an S′-module. Assume

(1) The module M/IM is a flat S/IS-module.
(2) The module M is a flat R-module.
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Then M is a flat S-module and Sq is flat over R for every q ⊂ S such that M⊗Sκ(q)
is nonzero.

Proof. As M is flat over R tensoring with the short exact sequence 0→ I → R→
R/I → 0 gives a short exact sequence

0→ I ⊗RM →M →M/IM → 0.

Note that I ⊗RM → IS ⊗S M is surjective. Combined with the above this means
both maps in

I ⊗RM → IS ⊗S M →M

are injective. Hence TorS1 (IS,M) = 0 (see Remark 10.72.8) and we conclude that
M is a flat S-module by Lemma 10.95.8. To finish we need to show that Sq is flat
over R for any prime q ⊂ S such that M ⊗S κ(q) is nonzero. This follows from
Lemma 10.38.14 and 10.38.9. �

10.98. What makes a complex exact?

Some of this material can be found in the paper [BE73] by Buchsbaum and Eisen-
bud.

Situation 10.98.1. Here R is a ring, and we have a complex

0→ Rne
ϕe−→ Rne−1

ϕe−1−−−→ . . .
ϕi+1−−−→ Rni

ϕi−→ Rni−1
ϕi−1−−−→ . . .

ϕ1−→ Rn0

In other words we require ϕi ◦ ϕi+1 = 0 for i = 1, . . . , e− 1.

Lemma 10.98.2. In Situation 10.98.1. Suppose R is a local ring with maximal
ideal m. Suppose that for some i, e ≤ i ≤ 1 some matrix coefficient of the map ϕi
is invertible. Then the complex 0 → Rne → Rne−1 → . . . → Rn0 is isomorphic to
the direct sum of a complex 0→ Rne → . . .→ Rni−1 → Rni−1−1 → . . .→ Rn0 and
the complex 0 → 0 → . . . → R → R → 0 → . . . → 0 where the map R → R is the
identity map.

Proof. The assumption means, after a change of basis of Rni and Rni−1 that the
first basis vector of Rni is mapped via ϕi to the first basis vector of Rni−1 . Let
ej denote the jth basis vector of Rni and fk the kth basis vector of Rni−1 . Write
ϕi(ej) =

∑
ajkfk. So a1k = 0 unless k = 1 and a11 = 1. Change basis on Rni

again by setting e′j = ej −aj1e1 for j > 1. After this change of coordinates we have
aj1 = 0 for j > 1. Note the image of Rni+1 → Rni is contained in the subspace
spanned by ej , j > 1. Note also that Rni−1 → Rni−2 has to annihilate f1 since it is
in the image. These conditions and the shape of the matrix (ajk) for ϕi imply the
lemma. �

Let us say that an acyclic complex of the form . . . → 0 → R → R → 0 → . . . is
trivial. The lemma above clearly says that any finite complex of finite free modules
over a local ring is up to direct sums with trivial complexes the same as a complex
all of whose maps have all matrix coefficients in the maximal ideal.

Lemma 10.98.3. In Situation 10.98.1. Let R be a Artinian local ring. Suppose
that 0 → Rne → Rne−1 → . . . → Rn0 is an exact complex. Then the complex is
isomorphic to a direct sum of trivial complexes.
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Proof. By induction on the integer
∑
ni. Clearly Ass(R) = {m}. Pick x ∈ R,

x 6= 0, mx = 0. Pick a basis vector ei ∈ Rne . Since xei is not mapped to zero
by exactness of the complex we deduce that some matrix coefficient of the map
Rne → Rne−1 is not in m. Lemma 10.98.2 then allows us to decrease

∑
ni. �

Below we define the rank of a map of finite free modules. This is just one possible
definition of rank. It is just the definition that works in this section; there are
others that may be more convenient in other settings.

Definition 10.98.4. Let R be a ring. Suppose that ϕ : Rm → Rn is a map of
finite free modules.

(1) The rank of ϕ is the maximal r such that ∧rϕ : ∧rRm → ∧rRn is nonzero.
(2) We let I(ϕ) ⊂ R be the ideal generated by the r× r minors of the matrix

of ϕ, where r is the rank as defined above.

Lemma 10.98.5. In Situation 10.98.1, suppose the complex is isomorphic to a
direct sum of trivial complexes. Then we have

(1) the maps ϕi have rank ri = ni−ni+1 + . . .+ (−1)e−i−1ne−1 + (−1)e−ine,
(2) for all i, 1 ≤ i ≤ e we have rank(ϕi+1) + rank(ϕi) = ni,
(3) each I(ϕi) = R.

Proof. We may assume the complex is the direct sum of trivial complexes. Then
for each i we can split the standard basis elements of Rni into those that map to a
basis element of Rni−1 and those that are mapped to zero (and these are mapped
onto by basis elements of Rni+1). Using descending induction starting with i = e
it is easy to prove that there are ri+1-basis elements of Rni which are mapped to
zero and ri which are mapped to basis elements of Rni−1 . From this the result
follows. �

Lemma 10.98.6. Let R be a local Noetherian ring. Suppose that ϕ : Rm → Rn is
a map of finite free modules. The following are equivalent

(1) ϕ is injective.
(2) the rank of ϕ is m and either I(ϕ) = R or it contains a nonzerodivisor.

Proof. If any matrix coefficient of ϕ is not in m, then we apply Lemma 10.98.2
to write ϕ as the sum of 1 : R → R and a map ϕ′ : Rm−1 → Rn−1. It is easy to
see that the lemma for ϕ′ implies the lemma for ϕ. Thus we may assume from the
outset that all the matrix coefficients of ϕ are in m.

Suppose ϕ is injective. We may assume m > 0. Let q ∈ Ass(R). Let x ∈ R be an
element whose annihilator is q. Note that ϕ induces a injective map xRm → xRn

which is isomorphic to the map ϕq : (R/q)m → (R/q)n induced by ϕ. Since R/q
is a domain we deduce immediately by localizing to its fraction field that the rank
of ϕq is m and that I(ϕq) is not the zero ideal. Hence we conclude by Lemma
10.62.17.

Conversely, assume that the rank of ϕ is m and that I(ϕ) contains a nonzerodivisor
x. The rank being m implies n ≥ m. By Lemma 10.14.4 we can find a map
ψ : Rn → Rm such that ψ ◦ ϕ = xidRm . Thus ϕ is injective. �

Lemma 10.98.7. In Situation 10.98.1. Suppose R is a local Noetherian ring with
maximal ideal m. Assume m ∈ Ass(R), in other words R has depth 0. Suppose
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that the complex is exact. In this case the complex is isomorphic to a direct sum of
trivial complexes.

Proof. The proof is the same as in Lemma 10.98.3, except using Lemma 10.98.6 to
guarantee that I(ϕe) = R, and hence some matrix coefficient of ϕe is not in m. �

Lemma 10.98.8. In Situation 10.98.1, suppose R is a local Noetherian ring, and
suppose that the complex is exact. Let x be an element of the maximal ideal which
is a nonzerodivisor. The complex 0→ (R/xR)ne → . . .→ (R/xR)n1 is still exact.

Proof. Follows easily from the snake lemma. �

Lemma 10.98.9 (Acyclicity lemma). Let R be a local Noetherian ring. Let 0 →
Me →Me−1 → . . .→M0 be a complex of finite R-modules. Assume depth(Mi) ≥ i.
Let i be the largest index such that the complex is not exact at Mi. If i > 0 then
Ker(Mi →Mi−1)/Im(Mi+1 →Mi) has depth ≥ 1.

Proof. Let H = Ker(Mi → Mi−1)/Im(Mi+1 → Mi) be the cohomology group
in question. We may break the complex into short exact sequences 0 → Me →
Me−1 → Ke−2 → 0, 0 → Kj → Mj → Kj−1 → 0, for i + 2 ≤ j ≤ e − 2,
0 → Ki+1 → Mi+1 → Bi → 0, 0 → Ki → Mi → Mi−1, and 0 → Bi → Ki →
H → 0. We proceed up through these complexes to prove the statements about
depths, repeatedly using Lemma 10.69.11. First of all, since depth(Me) ≥ e, and
depth(Me−1) ≥ e − 1 we deduce that depth(Ke−2) ≥ e − 1. At this point the
sequences 0 → Kj → Mj → Kj−1 → 0 for i + 2 ≤ j ≤ e − 2 imply similarly that
depth(Kj−1) ≥ j for i+ 2 ≤ j ≤ e− 2. The sequence 0→ Ki+1 →Mi+1 → Bi → 0
then shows that depth(Bi) ≥ i + 1. The sequence 0 → Ki → Mi → Mi−1 shows
that depth(Ki) ≥ 1 since Mi has depth ≥ i ≥ 1 by assumption. The sequence
0→ Bi → Ki → H → 0 then implies the result. �

Proposition 10.98.10. In Situation 10.98.1, suppose R is a local Noetherian ring.
The complex is exact if and only if for all i, 1 ≤ i ≤ e the following two conditions
are satisfied:

(1) we have rank(ϕi+1) + rank(ϕi) = ni, and
(2) I(ϕi) = R, or I(ϕi) contains a regular sequence of length i.

Proof. This proof is very similar to the proof of Lemma 10.98.6. As in the proof
of Lemma 10.98.6 we may assume that all matrix entries of each ϕi are elements of
the maximal ideal. We may also assume that e ≥ 1.

Assume the complex is exact. Let q ∈ Ass(R). (There is at least one such prime.)
Note that the ring Rq has depth 0. We apply Lemmas 10.98.7 and 10.98.5 to the
localized complex over Rq. All of the ideals I(ϕi)q, e ≥ i ≥ 1 are equal to Rq. Thus
none of the ideals I(ϕi) is contained in q. This implies that I(ϕe)I(ϕe−1) . . . I(ϕ1)
is not contained in any of the associated primes of R. By Lemma 10.14.2 we may
choose x ∈ I(ϕe)I(ϕe−1) . . . I(ϕ1), x 6∈ q for all q ∈ Ass(R). According to Lemma
10.98.8 the complex 0 → (R/xR)ne → . . . → (R/xR)n1 is exact. By induction on
e all the ideals I(ϕi)/xR have a regular sequence of length i− 1. This proves that
I(ϕi) contains a regular sequence of length i.

Assume the two conditions on the ranks of ϕi and the ideals I(ϕi) is satisfied. Note
that I(ϕi) ⊂ m for all i because of what was said in the first paragraph of the proof.
Hence the assumption in particular implies that depth(R) ≥ e. By induction on
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the dimension of R we may assume the complex is exact when localized at any
nonmaximal prime of R. Thus Ker(ϕi)/Im(ϕi+1) has support {m} and hence (if
nonzero) depth 0. By Lemma 10.98.9 we see that the complex is exact. �

10.99. Cohen-Macaulay modules

Here we show that Cohen-Macaulay modules have good properties. We postpone
using Ext groups to establish the connection with duality and so on.

Definition 10.99.1. Let R be a Noetherian local ring. Let M be a finite R-module.
We say M is Cohen-Macaulay if dim(Support(M)) = depth(M).

We start with an innocuous observation.

Lemma 10.99.2. Let R → S be a surjective homomorphism of Noetherian local
rings. Let N be a finite S-module. Then N is Cohen-Macaulay as an S-module if
and only if N is Cohen-Macaulay as an R-module.

Proof. Omitted. �

Let R be a local Noetherian ring. Let M be a Cohen-Macaulay module, and let
f1, . . . , fd be an M -regular sequence with d = dim(Support(M)). We say that
g ∈ m is good with respect to (M,f1, . . . , fd) if for all i = 0, 1, . . . , d − 1 we have
dim(Support(M)∩ V (g, f1, . . . , fi)) = d− i− 1. This is equivalent to the condition
that dim(Support(M/(f1, . . . , fi)M) ∩ V (g)) = d− i− 1 for i = 0, 1, . . . , d− 1.

Lemma 10.99.3. Notation and assumptions as above. If g is good with respect
to (M,f1, . . . , fd), then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-
Macaulay with maximal regular sequence f1, . . . , fd−1.

Proof. We prove the lemma by induction on d. If d = 0, then M is finite and
there is no case to which the lemma applies. If d = 1, then we have to show that
g : M → M is injective. The kernel K has support {m} because by assumption
dim Supp(M) ∩ V (g) = 0. Hence K has finite length. Hence f1 : K → K injective
implies the length of the image is the length of K, and hence f1K = K, which by
Nakayama’s Lemma 10.19.1 implies K = 0. Also, dim Supp(M/gM) = 0 and so
M/gM is Cohen-Macaulay of depth 0.

For d > 1 we essentially argue in the same way. Let K ⊂ M be the kernel of
multiplication by g. As above f1 : K → K cannot be surjective if K 6= 0 Consider
the commutative diagram

0 → M
f1−→ M → M/f1M → 0

↓ g ↓ g ↓ g
0 → M

f1−→ M → M/f1M → 0

This shows that the kernel K1 of g : M/f1M →M/f1M cannot be zero if K is not
zero. But g is good for (M/f1M,f2, . . . , fd), as is easy seen from the definition.
We conclude that K1 = 0, and so K = 0. From the snake lemma we see that
0 → M/gM → M/gM → M/(f1, g)M → 0 is exact. By induction, we have that
M/(g, f1)M is Cohen-Macaulay with regular sequence f2, . . . , fd−1. Thus M/gM
is Cohen-Macaulay with regular sequence f1, . . . , fd−1. �
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Lemma 10.99.4. Let R be a Noetherian local ring. Let M be a Cohen-Macaulay
module over R. Suppose g ∈ m is such that dim(Supp(M)∩V (g)) = dim(Supp(M))−
1. Then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-Macaulay of depth
one less.

Proof. Choose a M -regular sequence f1, . . . , fd with d = dim(Supp(M)). If g is is
good with respect to (M,f1, . . . , fd) we win by Lemma 10.99.3. In particular the
lemma holds if d = 1. (The case d = 0 does not occur.) Assume d > 1. Choose
an element h ∈ R such that (a) h is good with respect to (M,f1, . . . , fd), and (b)
dim(Supp(M)∩V (h, g) = d−2. To see h exists, let {qi} be the (finite) set of minimal
primes of the closed sets Supp(M), Supp(M) ∩ V (f1, . . . , fi), i = 1, . . . , d− 1, and
Supp(M) ∩ V (g). None of these qi is equal to m and hence we may find h ∈ m,
h 6∈ qi by Lemma 10.14.2. It is clear that h satisfies (a) and (b). At this point we
may apply Lemma 10.99.3 to conclude that M/hM is Cohen-Macaulay. By (b) we
see that the pair (M/hM, g) satisfies the induction hypothesis. Hence M/(h, g)M is
Cohen-Macaulay, and g : M/hM →M/hM is injective. From this it follows easily
that g : M →M is injective, by a snake lemma argument. This in its turn implies
that h : M/gM →M/gM is injective. Combined with the fact that M/(g, h)M is
Cohen-Macaulay this finishes the proof. �

Proposition 10.99.5. Let R be a Noetherian local ring, with maximal ideal m. Let
M be a Cohen-Macaulay module over R whose support has dimension d. Suppose
that g1, . . . , gc are elements of m such that dim(Supp(M/(g1, . . . , gc)M)) = d − c.
Then g1, . . . , gc is an M -regular sequence, and can be extended to a maximal M -
regular sequence.

Proof. Let Z = Supp(M) ⊂ Spec(R). By Lemma 10.59.11 in the chain Z ⊃
Z ∩ V (g1) ⊃ . . . ⊃ Z ∩ V (g1, . . . , gc) each step decreases the dimension at most by
1. Hence by assumption each step decreases the dimension by exactly 1 each time.
Thus we may successively apply Lemma 10.99.4 to the modules M/(g1, . . . , gi) and
the element gi+1.

To extend g1, . . . , gc by one element if c < d we simply choose an element gc+1 ∈ m
which is not in any of the finitely many minimal primes of Z ∩ V (g1, . . . , gc), using
Lemma 10.14.2. �

Definition 10.99.6. Let R be a Noetherian local ring. A finite module M over R
is called a maximal Cohen-Macaulay module if depth(M) = dim(R).

In other words, a maximal Cohen-Macaulay module over a Noetherian local ring
is a finite module with the largest possible depth over that ring. Equivalently,
a maximal Cohen-Macaulay module over a Noetherian local ring R is a Cohen-
Macaulay module of dimension equal to the dimension of the ring. In particular, if
M is a Cohen-Macaulay R-module with Spec(R) = Supp(M), then M is maximal
Cohen-Macaulay. Thus the following two lemmas are on maximal Cohen-Macaulay
modules.

Lemma 10.99.7. Let R be a Noetherian local ring. Assume there exists a Cohen-
Macaulay module M with Spec(R) = Supp(M). Then any maximal chain of ideals
p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = dim(R).

Proof. We will prove this by induction on dim(R). If dim(R) = 0, then the
statement is clear. Assume dim(R) > 0. Then n > 0. Choose an element x ∈ p1,
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with x not in any of the minimal primes of R, and in particular x 6∈ p0. (See
Lemma 10.14.2.) Then dim(R/xR) = dim(R)−1 by Lemma 10.59.11. The module
M/xM is Cohen-Macaulay over R/xR by Proposition 10.99.5 and Lemma 10.99.2.
The support of M/xM is Spec(R/xR) by Lemma 10.39.8. By induction the chain
p1/xR ⊂ . . . ⊂ pn/xR in R/xR has length dim(R/xR) = dim(R)− 1. �

Lemma 10.99.8. Suppose R is a Noetherian local ring. Assume there exists a
Cohen-Macaulay module M with Spec(R) = Supp(M). Then for a prime p ⊂ R we
have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 10.99.7. �

Lemma 10.99.9. Suppose R is a Noetherian local ring. Let M be a Cohen-
Macaulay module over R. For any prime p ⊂ R the module Mp is Cohen-Macaulay
over Rp.

Proof. Choose a maximal chain of primes p = pc ⊂ pc−1 ⊂ . . . ⊂ p1 ⊂ m. If we
prove the result for Mp1

over Rp1
, then the lemma will follow by induction on c.

Thus we may assume that there is no prime strictly between p and m.

If Mp = 0, then the lemma holds. If Mp 6= 0, then dim(Supp(Mp)) ≤ dim(M)− 1
as a chain of primes in the support of Mp is a chain a primes in the support of M
not including m. Thus it suffices to show that the depth of Mp is at least the depth
of M minus 1. We will prove this by induction on the depth of M . If the depth of
M is 1, then this is trivial. Assume the depth of M is at least 2.

Let I ⊂ R be the annihilator of M such that Spec(R/I) = V (I) = Supp(M)
(Lemma 10.39.5). By Lemmas 10.99.2 and 10.99.7 every maximal chain of primes
in V (I) has length ≥ 2. Hence none of the minimal primes of V (I) are equal to
p. Thus we can use Lemma 10.14.2 to find a f1 ∈ p which is not contained in any
of the minimal primes of V (I). Then f1 is a nonzerodivisor on M and M/f1M
has depth exactly one less by Lemma 10.99.4. By induction we can extend to an
M -regular sequence f1, . . . , fr ∈ p with r = depth(M) − 1. Since localization is
exact, we find that f1, . . . , fr is a regular sequence on Mp which is what we had to
show. �

Definition 10.99.10. Let R be a Noetherian ring. Let M be a finite R-module.
We say M is Cohen-Macaulay if Mp is a Cohen-Macaulay module over Rp for all
primes p of R.

By Lemma 10.99.9 it suffices to check this in the maximal ideals of R.

Lemma 10.99.11. Let R be a Noetherian ring. Let M be a Cohen-Macaulay mod-
ule over R. Then M⊗RR[x1, . . . , xn] is a Cohen-Macaulay module over R[x1, . . . , xn].

Proof. By induction on the number of variables it suffices to prove this for M [x] =
M ⊗R R[x] over R[x]. Let m ⊂ R[x] be a maximal ideal, and let p = R ∩ m. Let
f1, . . . , fd be a Mp-regular sequence in the maximal ideal of Rp of length d =
dim(Mp). Note that since R[x] is flat over R the localization R[x]m is flat over Rp.
Hence, by Lemma 10.67.7, the sequence f1, . . . , fd is a M [x]m-regular sequence of
length d in R[x]m. The quotient

Q = M [x]m/(f1, . . . , fd)M [x]m = Mp/(f1, . . . , fd)Mp ⊗Rp
R[x]m
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has support equal to the primes lying over p because Rp → R[x]m is flat and the
support of Mp/(f1, . . . , fd)Mp is equal to {p} (details omitted; hint: follows from
Lemmas 10.39.4 and 10.39.5). Hence the dimension is 1. To finish the proof it
suffices to find a single Q-regular element f ∈ m. Since m is a maximal ideal, the
field extension κ(p) ⊂ κ(m) is finite (Theorem 10.33.1). Hence we can find f ∈ m
which viewed as a polynomial in x has leading coefficient not in p. Such an f acts
as a nonzerodivisor on

Mp/(f1, . . . , fd)Mp ⊗R R[x] =
⊕

n≥0
Mp/(f1, . . . , fd)Mp · xn

and hence acts as a nonzerodivisor on Q. �

10.100. Cohen-Macaulay rings

Most of the results of this section are special cases of the results in Section 10.99.

Definition 10.100.1. A Noetherian local ring R is called Cohen-Macaulay if it is
Cohen-Macaulay as a module over itself.

Note that this is equivalent to requiring the existence of a R-regular sequence
x1, . . . , xd of the maximal ideal such that R/(x1, . . . , xd) has dimension 0. We will
usually just say “regular sequence” and not “R-regular sequence”.

Lemma 10.100.2. Let R be a Noetherian local Cohen-Macaulay ring with maximal
ideal m. Let x1, . . . , xc ∈ m be elements. Then

x1, . . . , xc is a regular sequence ⇔ dim(R/(x1, . . . , xc)) = dim(R)− c
If so x1, . . . , xc can be extended to a regular sequence of length dim(R) and each
quotient R/(x1, . . . , xi) is a Cohen-Macaulay ring of dimension dim(R)− i.

Proof. Special case of Proposition 10.99.5. �

Lemma 10.100.3. Let R be Noetherian local. Suppose R is Cohen-Macaulay of
dimension d. Any maximal chain of ideals p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = d.

Proof. Special case of Lemma 10.99.7. �

Lemma 10.100.4. Suppose R is a Noetherian local Cohen-Macaulay ring of di-
mension d. For any prime p ⊂ R we have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 10.100.3. (Also, this is a special case of
Lemma 10.99.8.) �

Lemma 10.100.5. Suppose R is a Cohen-Macaulay local ring. For any prime
p ⊂ R the ring Rp is Cohen-Macaulay as well.

Proof. Special case of Lemma 10.99.9. �

Definition 10.100.6. A Noetherian ring R is called Cohen-Macaulay if all its local
rings are Cohen-Macaulay.

Lemma 10.100.7. Suppose R is a Cohen-Macaulay ring. Any polynomial algebra
over R is Cohen-Macaulay.

Proof. Special case of Lemma 10.99.11. �
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Lemma 10.100.8. Let R be a Noetherian local Cohen-Macaulay ring of dimension
d. Let 0 → K → R⊕n → M → 0 be an exact sequence of R-modules with K 6= 0.
Then either depth(K) > depth(M) or depth(K) = depth(M) = d.

Proof. If depth(M) = 0 the lemma is clear. Let x ∈ m be a nonzerodivisor on M
and on R. Then x is a nonzerodivisor on M and on K and it follows by an easy
diagram chase that 0 → K/xK → (R/xR)n → M/xM → 0 is exact. Thus the
result follows from the result forK/xK overR/xR which has smaller dimension. �

Lemma 10.100.9. Let R be a local Noetherian Cohen-Macaulay ring of dimension
d. Let M be a finite R module of depth e. There exists an exact complex

0→ K → Fd−e−1 → . . .→ F0 →M → 0

with each Fi finite free and K maximal Cohen-Macaulay.

Proof. Immediate from the definition and Lemma 10.100.8. �

Lemma 10.100.10. Let ϕ : A → B be a map of local rings. Assume that B
is Noetherian and Cohen-Macaulay and that mB =

√
ϕ(mA)B. Then there exists

a sequence of elements f1, . . . , fdim(B) in A such that ϕ(f1), . . . , ϕ(fdim(B)) is a
regular sequence in B.

Proof. By induction on dim(B) it suffices to prove: If dim(B) ≥ 1, then we can
find an element f of A which maps to a nonzerodivisor in B. By Lemma 10.100.2
it suffices to find f ∈ A whose image in B is not contained in any of the finitely
many minimal primes q1, . . . , qr of B. By the assumption that mB =

√
ϕ(mA)B

we see that mA 6⊂ ϕ−1(qi). Hence we can find f by Lemma 10.14.2. �

10.101. Catenary rings

Definition 10.101.1. A ring R is said to be catenary if for any pair of prime ideals
p ⊂ q, all maximal chains of primes p = p0 ⊂ p1 ⊂ . . . ⊂ pe = q have the same
(finite) length.

Lemma 10.101.2. A ring R is catenary if and only if the topological space Spec(R)
is catenary (see Topology, Definition 5.10.4).

Proof. Immediate from the definition and the characterization of irreducible closed
subsets. �

Lemma 10.101.3. Any localization of a catenary ring is catenary.

Proof. Omitted. �

Lemma 10.101.4. Any quotient of a catenary ring is catenary.

Proof. Omitted. �

In general it is not the case that a finitely generated R-algebra is catenary if R is.
Thus we make the following definition.

Definition 10.101.5. A ring R is said to be universally catenary if R is Noetherian
and every R algebra of finite type is catenary.

By Lemma 10.101.4 this just means that R is Noetherian and that each polynomial
algebra R[x1, . . . , xn] is catenary.
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Lemma 10.101.6. A Cohen-Macaulay ring is universally catenary. More gen-
erally, if R is a Noetherian ring and M is a Cohen-Macaulay R-module with
Supp(M) = Spec(R), then R is universally Cohen-Macaulay.

Proof. Since a polynomial algebra over R is Cohen-Macaulay, by Lemma 10.100.7,
it suffices to show that a Cohen-Macaulay ring is catenary. Let R be Cohen-
Macaulay and p ⊂ q primes of R. By definition Rq and Rp are Cohen-Macaulay.
Take a maximal chain of primes p = p0 ⊂ p1 ⊂ . . . ⊂ pn = q. Next choose
a maximal chain of primes q0 ⊂ q1 ⊂ . . . ⊂ qm = p. By Lemma 10.100.3 we
have n + m = dim(Rq). And we have m = dim(Rp) by the same lemma. Hence
n = dim(Rq)− dim(Rp) is independent of choices.

To prove the more general statement, argue exactly as above but using Lemmas
10.99.11 and 10.99.7. �

10.102. Regular local rings

It is not that easy to show that all prime localizations of a regular local ring are
regular. In fact, quite a bit of the material developed so far is geared towards a
proof of this fact. See Proposition 10.106.5, and trace back the references.

Lemma 10.102.1. Let R be a regular local ring with maximal ideal m. The graded
ring

⊕
mn/mn+1 is isomorphic to the graded polynomial algebra κ(m)[X1, . . . , Xd].

Proof. Let x1, . . . , xd be a minimal set of generators for the maximal ideal m. By
Definition 10.59.9 this implies that dim(R) = d. Write κ = κ(m). There is a
surjection κ[X1, . . . , Xd] →

⊕
mn/mn+1, which maps the class of xi in m/m2 to

Xi. Since d(R) = d by Proposition 10.59.8 we know that the numerical polynomial
n 7→ dimκm

n/mn+1 has degree d − 1. By Lemma 10.57.10 we conclude that the
surjection κ[X1, . . . , Xd]→

⊕
mn/mn+1 is an isomorphism. �

Lemma 10.102.2. Any regular local ring is a domain.

Proof. We will use that
⋂
mn = 0 by Lemma 10.49.4. Let f, g ∈ R such that

fg = 0. Suppose that f ∈ ma and g ∈ mb, with a, b maximal. Since fg = 0 ∈
ma+b+1 we see from the result of Lemma 10.102.1 that either f ∈ ma+1 or g ∈ mb+1.
Contradiction. �

Lemma 10.102.3. Let R be a regular local ring and let x1, . . . , xd be a minimal
set of generators for the maximal ideal m. Then x1, . . . , xd is a regular sequence,
and each R/(x1, . . . , xc) is a regular local ring of dimension d− c. In particular R
is Cohen-Macaulay.

Proof. Note that R/x1R is a Noetherian local ring of dimension ≥ d−1 by Lemma
10.59.11 with x2, . . . , xd generating the maximal ideal. Hence it is a regular local
ring by definition. Since R is a domain by Lemma 10.102.2 x1 is a nonzerodivisor.

�

Lemma 10.102.4. Let R be a regular local ring. Let I ⊂ R be an ideal such that
R/I is a regular local ring as well. Then there exists a minimal set of generators
x1, . . . , xd for the maximal ideal m of R such that I = (x1, . . . , xc) for some 0 ≤
c ≤ d.
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Proof. Say dim(R) = d and dim(R/I) = d − c. Denote m = m/I the maximal
ideal of R/I. Let κ = R/m. We have

dimκ((I + m2)/m2) = dimκ(m/m2)− dim(m/m2) = d− (d− c) = c

by the definition of a regular local ring. Hence we can choose x1, . . . , xc ∈ I whose
images in m/m2 are linearly independent and supplement with xc+1, . . . , xd to get
a minimal system of generators of m. The induced map R/(x1, . . . , xc)→ R/I is a
surjection between regular local rings of the same dimension (Lemma 10.102.3). It
follows that the kernel is zero, i.e., I = (x1, . . . , xc). Namely, if not then we would
have dim(R/I) < dim(R/(x1, . . . , xc)) by Lemmas 10.102.2 and 10.59.11. �

Lemma 10.102.5. Let R be a Noetherian local ring. Let x ∈ m. Let M be a finite
R-module such that x is a nonzerodivisor on M and M/xM is free over R/xR.
Then M is free over R.

Proof. Let m1, . . . ,mr be elements of M which map to a R/xR-basis of M/xM .
By Nakayama’s Lemma 10.19.1 m1, . . . ,mr generate M . If

∑
aimi = 0 is a relation,

then ai ∈ xR for all i. Hence ai = bix for some bi ∈ R. Hence the kernel K of
Rr →M satisfies xK = K and hence is zero by Nakayama’s lemma. �

Lemma 10.102.6. Let R be a regular local ring. Any maximal Cohen-Macaulay
module over R is free.

Proof. Let M be a maximal Cohen-Macaulay module over R. Let x ∈ m be
part of a regular sequence generating m. Then x is a nonzerodivisor on M by
Proposition 10.99.5, and M/xM is a maximal Cohen-Macaulay module over R/xR.
By induction on dim(R) we see that M/xM is free. We win by Lemma 10.102.5. �

Lemma 10.102.7. Suppose R is a Noetherian local ring. Let x ∈ m be a nonze-
rodivisor such that R/xR is a regular local ring. Then R is a regular local ring.
More generally, if x1, . . . , xr is a regular sequence in R such that R/(x1, . . . , xr) is
a regular local ring, then R is a regular local ring.

Proof. This is true because x together with the lifts of a system of minimal gener-
ators of the maximal ideal of R/xR will give dim(R) generators of m. Use Lemma
10.59.11. The last statement follows from the first and induction. �

Lemma 10.102.8. Let (Ri, ϕii′) be a directed system of local rings whose transition
maps are local ring maps. If each Ri is a regular local ring and R = colimRi is
Noetherian, then R is a regular local ring.

Proof. Let m ⊂ R be the maximal ideal; it is the colimit of the maximal ideal mi ⊂
Ri. We prove the lemma by induction on d = dimm/m2. If d = 0, then R = R/m
is a field and R is a regular local ring. If d > 0 pick an x ∈ m, x 6∈ m2. For some
i we can find an xi ∈ mi mapping to x. Note that R/xR = colimi′≥iRi′/xiRi′ is a
Noetherian local ring. By Lemma 10.102.3 we see that Ri′/xiRi′ is a regular local
ring. Hence by induction we see that R/xR is a regular local ring. Since each Ri is
a domain (Lemma 10.102.1) we see that R is a domain. Hence x is a nonzerodivisor
and we conclude that R is a regular local ring by Lemma 10.102.7. �
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10.103. Epimorphisms of rings

In any category there is a notion of an epimorphism. Some of this material is taken
from [Laz69] and [Maz68].

Lemma 10.103.1. Let R→ S be a ring map. The following are equivalent

(1) R→ S is an epimorphism,
(2) the two ring maps S → S ⊗R S are equal,
(3) either of the ring maps S → S ⊗R S is an isomorphism, and
(4) the ring map S ⊗R S → S is an isomorphism.

Proof. Omitted. �

Lemma 10.103.2. The composition of two epimorphisms of rings is an epimor-
phism.

Proof. Omitted. Hint: This is true in any category. �

Lemma 10.103.3. If R→ S is an epimorphism of rings and R→ R′ is any ring
map, then R′ → R′ ⊗R S is an epimorphism.

Proof. Omitted. Hint: True in any category with pushouts. �

Lemma 10.103.4. If A→ B → C are ring maps and A→ C is an epimorphism,
so is B → C.

Proof. Omitted. Hint: This is true in any category. �

This means in particular, that if R→ S is an epimorphism with image R ⊂ S, then
R → S is an epimorphism. Hence while proving results for epimorphisms we may
often assume the map is injective. The following lemma means in particular that
every localization is an epimorphism.

Lemma 10.103.5. Let R→ S be a ring map. The following are equivalent:

(1) R→ S is an epimorphism, and
(2) Rp → Sp is an epimorphism for each prime p of R.

Proof. Since Sp = Rp ⊗R S (see Lemma 10.11.15) we see that (1) implies (2) by
Lemma 10.103.3. Conversely, assume that (2) holds. Let a, b : S → A be two ring
maps from S to a ring A equalizing the map R → S. By assumption we see that
for every prime p of R the induced maps ap, bp : Sp → Ap are the same. Hence
a = b as A ⊂

∏
pAp, see Lemma 10.23.1. �

Lemma 10.103.6. Let R→ S be a ring map. The following are equivalent

(1) R→ S is an epimorphism and finite, and
(2) R→ S is surjective.

Proof. (This lemma seems to have been reproved many times in the literature, and
has many different proofs.) It is clear that a surjective ring map is an epimorphism.
Suppose that R→ S is a finite ring map such that S⊗R S → S is an isomorphism.
Our goal is to show that R→ S is surjective. Assume S/R is not zero. The exact
sequence R→ S → S/R→ 0 leads to an exact sequence

R⊗R S → S ⊗R S → S/R⊗R S → 0.

Our assumption implies that the first arrow is an isomorphism, hence we conclude
that S/R ⊗R S = 0. Hence also S/R ⊗R S/R = 0. By Lemma 10.5.4 there exists
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a surjection of R-modules S/R → R/I for some proper ideal I ⊂ R. Hence there
exists a surjection S/R⊗R S/R→ R/I ⊗R R/I = R/I 6= 0, contradiction. �

Lemma 10.103.7. A faithfully flat epimorphism is an isomorphism.

Proof. This is clear from Lemma 10.103.1 part (3) as the map S → S ⊗R S is the
map R→ S tensored with S. �

Lemma 10.103.8. If k → S is an epimorphism and k is a field, then S = k or
S = 0.

Proof. This is clear from the result of Lemma 10.103.7 (as any nonzero algebra
over k is faithfully flat), or by arguing directly that R→ R⊗kR cannot be surjective
unless dimk(R) ≤ 1. �

Lemma 10.103.9. Let R→ S be an epimorphism of rings. Then

(1) Spec(S)→ Spec(R) is injective, and
(2) for q ⊂ S lying over p ⊂ R we have κ(p) = κ(q).

Proof. Let p be a prime of R. The fibre of the map is the spectrum of the fibre
ring S⊗R κ(p). By Lemma 10.103.3 the map κ(p)→ S⊗R κ(p) is an epimorphism,
and hence by Lemma 10.103.8 we have either S ⊗R κ(p) = 0 or S ⊗R κ(p) = κ(p)
which proves (1) and (2). �

Lemma 10.103.10. Let R be a ring. Let M , N be R-modules. Let {xi}i∈I be a
set of generators of M . Let {yj}j∈J be a set of generators of N . Let {mj}j∈J be a
family of elements of M with mj = 0 for all but finitely many j. Then∑

j∈J
mj ⊗ yj = 0 in M ⊗R N

is equivalent to the following: There exist ai,j ∈ R with ai,j = 0 for all but finitely
many pairs (i, j) such that

mj =
∑

i∈I
ai,jxi for all j ∈ J,

0 =
∑

j∈J
ai,jyj for all i ∈ I.

Proof. The sufficiency is immediate. Suppose that
∑
j∈J mj ⊗ yj = 0. Consider

the short exact sequence

0→ K →
⊕

j∈J
R→ N → 0

where the jth basis vector of
⊕

j∈J R maps to yj . Tensor this with M to get the
exact sequence

K ⊗RM →
⊕

j∈J
M → N ⊗RM → 0.

The assumption implies that there exist elements ki ∈ K such that
∑
ki⊗xi maps

to the element (mj)j∈J of the middle. Writing ki = (ai,j)j∈J and we obtain what
we want. �

Lemma 10.103.11. Let ϕ : R → S be a ring map. Let g ∈ S. The following are
equivalent:

(1) g ⊗ 1 = 1⊗ g in S ⊗R S, and
(2) there exist n ≥ 0 and elements yi, zj ∈ S and xi,j ∈ R for 1 ≤ i, j ≤ n

such that
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(a) g =
∑
i,j≤n xi,jyizj,

(b) for each j we have
∑
xi,jyi ∈ ϕ(R), and

(c) for each i we have
∑
xi,jzj ∈ ϕ(R).

Proof. It is clear that (2) implies (1). Conversely, suppose that g ⊗ 1 = 1 ⊗ g.
Choose generators {si}i∈I of S as an R-module with 0, 1 ∈ I and s0 = 1 and s1 = g.
Apply Lemma 10.103.10 to the relation g ⊗ s0 + (−1)⊗ s1 = 0. We see that there
exist ai,j ∈ R such that g =

∑
i ai,0si, −1 =

∑
i ai,1si, and for j 6= 0, 1 we have

0 =
∑
i ai,jsi, and moreover for all i we have

∑
j ai,jsj = 0. Then we have∑

i,j 6=0
ai,jsisj = −g + a0,0

and for each j 6= 0 we have
∑
i6=0 ai,jsi ∈ R. This proves that −g + a0,0 can be

written as in (2). It follows that g can be written as in (2). Details omitted. Hint:
Show that the set of elements of S which have an expression as in (2) form an
R-subalgebra of S. �

Remark 10.103.12. Let R → S be a ring map. Sometimes the set of elements
g ∈ S such that g ⊗ 1 = 1 ⊗ g is called the epicenter of S. It is an R-algebra. By
the construction of Lemma 10.103.11 we get for each g in the epicenter a matrix
factorization

(g) = Y XZ

with X ∈ Mat(n × n,R), Y ∈ Mat(1 × n, S), and Z ∈ Mat(n × 1, S). Namely, let
xi,j , yi, zj be as in part (2) of the lemma. Set X = (xi,j), let y be the row vector
whose entries are the yi and let z be the column vector whose entries are the zj .
With this notation conditions (b) and (c) of Lemma 10.103.11 mean exactly that
Y X ∈ Mat(1 × n,R), XZ ∈ Mat(n × 1, R). It turns out to be very convenient to
consider the triple of matrices (X,Y X,XZ). Given n ∈ N and a triple (P,U, V ) we
say that (P,U, V ) is a n-triple associated to g if there exists a matrix factorization
as above such that P = X, U = Y X and V = XZ.

Lemma 10.103.13. Let R→ S be an epimorphism of rings. Then the cardinality
of S is at most the cardinality of R. In a formula: |S| ≤ |R|.

Proof. The condition that R → S is an epimorphism means that each g ∈ S
satisfies g ⊗ 1 = 1 ⊗ g, see Lemma 10.103.1. We are going to use the notation
introduced in Remark 10.103.12. Suppose that g, g′ ∈ S and suppose that (P,U, V )
is an n-triple which is associated to both g and g′. Then we claim that g = g′.
Namely, write (P,U, V ) = (X,Y X,XZ) for a matrix factorization (g) = Y XZ of g
and write (P,U, V ) = (X ′, Y ′X ′, X ′Z ′) for a matrix factorization (g′) = Y ′X ′Z ′ of
g′. Then we see that

(g) = Y XZ = UZ = Y ′X ′Z = Y ′PZ = Y ′XZ = Y ′V = Y ′X ′Z ′ = (g′)

and hence g = g′. This implies that the cardinality of S is bounded by the number
of possible triples, which has cardinality at most supn∈N |R|n. If R is infinite then
this is at most |R|, see [Kun83, Ch. I, 10.13].

If R is a finite ring then the argument above only proves that S is at worst countable.
In fact in this case R is Artinian and the map R → S is surjective. We omit the
proof of this case. �
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Lemma 10.103.14. Let R → S be an epimorphism of rings. Let N1, N2 be S-
modules. Then HomS(N1, N2) = HomR(N1, N2). In other words, the restriction
functor ModS → ModR is fully faithful.

Proof. Let ϕ : N1 → N2 be an R-linear map. For any x ∈ N1 consider the map
S⊗RS → N2 defined by the rule g⊗g′ 7→ gϕ(g′x). Since both maps S → S⊗RS are
isomorphisms (Lemma 10.103.1), we conclude that gϕ(g′x) = gg′ϕ(x) = ϕ(gg′x).
Thus ϕ is S-linear. �

10.104. Pure ideals

The material in this section is discussed in many papers, see for example [Laz67],
[Bko70], and [DM83].

Definition 10.104.1. Let R be a ring. We say that I ⊂ R is pure if the quotient
ring R/I is flat over R.

Lemma 10.104.2. Let R be a ring. Let I ⊂ R be an ideal. The following are
equivalent:

(1) I is pure,
(2) for every ideal J ⊂ R we have J ∩ I = IJ ,
(3) for every finitely generated ideal J ⊂ R we have J ∩ I = JI,
(4) for every x ∈ R we have (x) ∩ I = xI,
(5) for every x ∈ I we have x = yx for some y ∈ I,
(6) for every x1, . . . , xn ∈ I there exists a y ∈ I such that xi = yxi for all

i = 1, . . . , n,
(7) for every prime p of R we have IRp = 0 or IRp = Rp,
(8) Supp(I) = Spec(R) \ V (I),
(9) I is the kernel of the map R→ (1 + I)−1R,

(10) R/I ∼= S−1R as R-algebras for some multiplicative subset S of R, and
(11) R/I ∼= (1 + I)−1R as R-algebras.

Proof. For any ideal J of R we have the short exact sequence 0 → J → R →
R/J → 0. Tensoring with R/I we get an exact sequence J ⊗R R/I → R/I →
R/I + J → 0 and J ⊗R R/I = R/JI. Thus the equivalence of (1), (2), and (3)
follows from Lemma 10.38.4. Moreover, these imply (4).

The implication (4)⇒ (5) is trivial. Assume (5) and let x1, . . . , xn ∈ I. Choose yi ∈
I such that xi = yixi. Let y ∈ I be the element such that 1−y =

∏
i=1,...,n(1−yi).

Then xi = yxi for all i = 1, . . . , n. Hence (6) holds, and it follows that (5) ⇔ (6).

Assume (5). Let x ∈ I. Then x = yx for some y ∈ I. Hence x(1 − y) = 0,
which shows that x maps to zero in (1 + I)−1R. Of course the kernel of the map
R→ (1+I)−1R is always contained in I. Hence we see that (5) implies (9). Assume
(9). Then for any x ∈ I we see that x(1 − y) = 0 for some y ∈ I. In other words,
x = yx. We conclude that (5) is equivalent to (9).

Assume (5). Let p be a prime of R. If p 6∈ V (I), then IRp = Rp. If p ∈ V (I), in
other words, if I ⊂ p, then x ∈ I implies x(1 − y) = 0 for some y ∈ I, implies x
maps to zero in Rp, i.e., IRp = 0. Thus we see that (7) holds.

Assume (7). Then (R/I)p is either 0 or Rp for any prime p of R. Hence by Lemma
10.38.19 we see that (1) holds. At this point we see that all of (1) – (7) and (9) are
equivalent.
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As IRp = Ip we see that (7) implies (8). Finally, if (8) holds, then this means
exactly that Ip is the zero module if and only if p ∈ V (I), which is clearly saying
that (7) holds. Now (1) – (9) are equivalent.

Assume (1) – (9) hold. Then R/I ⊂ (1 + I)−1R by (9) and the map R/I →
(1 + I)−1R is also surjective by the description of localizations at primes afforded
by (7). Hence (11) holds.

The implication (11) ⇒ (10) is trivial. And (10) implies that (1) holds because a
localization of R is flat over R, see Lemma 10.38.19. �

Lemma 10.104.3. Let R be a ring. If I, J ⊂ R are pure ideals, then V (I) = V (J)
implies I = J .

Proof. For example, by property (7) of Lemma 10.104.2 we see that I = Ker(R→∏
p∈V (I)Rp) can be recovered from the closed subset associated to it. �

Lemma 10.104.4. Let R be a ring. The rule I 7→ V (I) determines a bijection

{I ⊂ R pure} ↔ {Z ⊂ Spec(R) closed and closed under generalizations}

Proof. Let I be a pure ideal. Then since R→ R/I is flat, by going up generaliza-
tions lift along the map Spec(R/I)→ Spec(R). Hence V (I) is closed under gener-
alizations. This shows that the map is well defined. By Lemma 10.104.3 the map
is injective. Suppose that Z ⊂ Spec(R) is closed and closed under generalizations.
Let J ⊂ R be the radical ideal such that Z = V (J). Let I = {x ∈ R : x ∈ xJ}.
Note that I is an ideal. We claim that I is pure and that V (I) = V (J). If the
claim is true then the map of the lemma is surjective and the lemma holds.

Note that I ⊂ J , so that V (J) ⊂ V (I). Let I ⊂ p be a prime. Consider the
multiplicative subset S = (R \ p)(1 + J). By definition of I and I ⊂ p we see that
0 6∈ S. Hence we can find a prime q of R which is disjoint from S, see Lemmas 10.9.4
and 10.16.5. Hence q ⊂ p and q ∩ (1 + J) = ∅. This implies that q + J is a proper
ideal of R. Let m be a maximal ideal containing q+ J . Then we get m ∈ V (J) and
hence q ∈ V (J) = Z as Z was assumed to be closed under generalization. This in
turn implies p ∈ V (J) as q ⊂ p. Thus we see that V (I) = V (J).

Finally, since V (I) = V (J) (and J radical) we see that J =
√
I. Pick x ∈ I, so

that x = xy for some y ∈ J by definition. Then x = xy = xy2 = . . . = xyn. Since
yn ∈ I for some n > 0 we conclude that property (5) of Lemma 10.104.2 holds and
we see that I is indeed pure. �

Lemma 10.104.5. Let R be a ring. Let I ⊂ R be an ideal. The following are
equivalent

(1) I is pure and finitely generated,
(2) I is generated by an idempotent,
(3) I is pure and V (I) is open, and
(4) R/I is a projective R-module.

Proof. If (1) holds, then I = I ∩ I = I2 by Lemma 10.104.2. Hence I is generated
by an idempotent by Lemma 10.20.5. Thus (1)⇒ (2). If (2) holds, then I = (e) and
R = (1−e)⊕(e) as an R-module hence R/I is flat and I is pure and V (I) = D(1−e)
is open. Thus (2) ⇒ (1) + (3). Finally, assume (3). Then V (I) is open and closed,
hence V (I) = D(1− e) for some idempotent e of R, see Lemma 10.20.3. The ideal
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J = (e) is a pure ideal such that V (J) = V (I) hence I = J by Lemma 10.104.3. In
this way we see that (3) ⇒ (2). By Lemma 10.75.2 we see that (4) is equivalent to
the assertion that I is pure and R/I finitely presented. Moreover, R/I is finitely
presented if and only if I is finitely generated, see Lemma 10.5.3. Hence (4) is
equivalent to (1). �

We can use the above to characterize those rings for which every finite flat module
is finitely presented.

Lemma 10.104.6. Let R be a ring. The following are equivalent:

(1) every Z ⊂ Spec(R) which is closed and closed under generalizations is
also open, and

(2) any finite flat R-module is finite locally free.

Proof. If any finite flat R-module is finite locally free then the support of R/I
where I is a pure ideal is open. Hence the implication (2) ⇒ (1) follows from
Lemma 10.104.3.

For the converse assume that R satisfies (1). Let M be a finite flat R-module. The
support Z = Supp(M) of M is closed, see Lemma 10.39.5. On the other hand, if
p ⊂ p′, then by Lemma 10.75.4 the module Mp′ is free, and Mp = Mp′ ⊗Rp′ Rp

Hence p′ ∈ Supp(M)⇒ p ∈ Supp(M), in other words, the support is closed under
generalization. As R satisfies (1) we see that the support of M is open and closed.
Suppose that M is generated by r elements m1, . . . ,mr. The modules ∧i(M),
i = 1, . . . , r are finite flat R-modules also, because ∧i(M)p = ∧i(Mp) is free over
Rp. Note that Supp(∧i+1(M)) ⊂ Supp(∧i(M)). Thus we see that there exists a
decomposition

Spec(R) = U0

∐
U1

∐
. . .
∐

Ur

by open and closed subsets such that the support of ∧i(M) is Ur ∪ . . . ∪ Ui for all
i = 0, . . . , r. Let p be a prime of R, and say p ∈ Ui. Note that ∧i(M) ⊗R κ(p) =
∧i(M⊗Rκ(p)). Hence, after possibly renumbering m1, . . . ,mr we may assume that
m1, . . . ,mi generate M⊗Rκ(p). By Nakayama’s Lemma 10.19.1 we get a surjection

R⊕if −→Mf , (a1, . . . , ai) 7−→
∑

aimi

for some f ∈ R, f 6∈ p. We may also assume that D(f) ⊂ Ui. This means
that ∧i(Mf ) = ∧i(M)f is a flat Rf module whose support is all of Spec(Rf ).
By the above it is generated by a single element, namely m1 ∧ . . . ∧ mi. Hence
∧i(M)f ∼= Rf/J for some pure ideal J ⊂ Rf with V (J) = Spec(Rf ). Clearly this
means that J = (0), see Lemma 10.104.3. Thus m1 ∧ . . .∧mi is a basis for ∧i(Mf )
and it follows that the displayed map is injective as well as surjective. This proves
that M is finite locally free as desired. �

10.105. Rings of finite global dimension

The following lemma is often used to compare different projective resolutions of a
given module.

Lemma 10.105.1 (Schanuel’s lemma). Let R be a ring. Let M be an R-module.
Suppose that 0 → K → P1 → M → 0 and 0 → L → P2 → M → 0 are two short
exact sequences, with Pi projective. Then K ⊕ P2

∼= L⊕ P1.
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Proof. Consider the module N defined by the short exact sequence 0 → N →
P1⊕P2 →M → 0, where the last map is the sum of the two maps Pi →M . It is easy
to see that the projection N → P1 is surjective with kernel L, and that N → P2 is
surjective with kernel K. Since Pi are projective we have N ∼= K⊕P2

∼= L⊕P1. �

Definition 10.105.2. Let R be a ring. Let M be an R-module. We say M
has finite projective dimension if it has a finite length resolution by projective R-
modules. The minimal length of such a resolution is called the projective dimension
of M .

It is clear that the projective dimension of M is 0 if and only if M is a projective
module. The following lemma explains to what extent the projective dimension is
independent of the choice of a projective resolution.

Lemma 10.105.3. Let R be a ring. Suppose that M is an R-module of projective
dimension d. Suppose that Fe → Fe−1 → . . . → F0 → M → 0 is exact with Fi
projective and e ≥ d− 1. Then the kernel of Fe → Fe−1 is projective (or the kernel
of F0 →M is projective in case e = 0).

Proof. We prove this by induction on d. If d = 0, then M is projective. In this
case there is a splitting F0 = Ker(F0 → M) ⊕ M , and hence Ker(F0 → M) is
projective. This finishes the proof if e = 0, and if e > 0, then replacing M by
Ker(F0 →M) we decrease e.

Next assume d > 0. Let 0 → Pd → Pd−1 → . . . → P0 → M → 0 be a minimal
length finite resolution with Pi projective. According to Schanuel’s Lemma 10.105.1
we have P0 ⊕ Ker(F0 → M) ∼= F0 ⊕ Ker(P0 → M). This proves the case d = 1,
e = 0, because then the right hand side is F0 ⊕ P1 which is projective. Hence now
we may assume e > 0. The module F0 ⊕ Ker(P0 → M) has the finite projective
resolution 0→ Pd ⊕ F0 → Pd−1 ⊕ F0 → . . .→ P1 ⊕ F0 → Ker(P0 →M)⊕ F0 → 0
of length d− 1. By induction on d we see that the kernel of Fe ⊕ P0 → Fe−1 ⊕ P0

is projective. This implies the lemma. �

Lemma 10.105.4. Let R be a ring. Let M be an R-module. Let n ≥ 0. The
following are equivalent

(1) M has projective dimension ≤ n,
(2) ExtiR(M,N) = 0 for all R-modules N and all i ≥ n+ 1, and
(3) Extn+1

R (M,N) = 0 for all R-modules N .

Proof. Assume (1). Choose a free resolution F• → M of M . Denote de : Fe →
Fe−1. By Lemma 10.105.3 we see that Pe = Ker(de) is projective for e ≥ n −
1. This implies that Fe ∼= Pe ⊕ Pe−1 for e ≥ n where de maps the summand
Pe−1 isomorphically to Pe−1 in Fe−1. Hence, for any R-module N the complex
HomR(F•, N) is split exact in degrees ≥ n+ 1. Whence (2) holds. The implication
(2) ⇒ (3) is trivial.

Assume (3) holds. If n = 0 then M is projective by Lemma 10.74.2 and we see that
(1) holds. If n > 0 choose a free R-module F and a surjection F →M with kernel
K. By Lemma 10.69.7 and the vanishing of ExtiR(F,N) for all i > 0 by part (1)
we see that ExtnR(K,N) = 0 for all R-modules N . Hence by induction we see that
K has projective dimension ≤ n− 1. Then M has projective dimension ≤ n as any
finite projective resolution of K gives a projective resolution of length one more for
M by adding F to the front. �
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Lemma 10.105.5. Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short
exact sequence of R-modules.

(1) If M has projective dimension ≤ n and M ′′ has projective dimension
≤ n+ 1, then M ′ has projective dimension ≤ n.

(2) If M ′ and M ′′ have projective dimension ≤ n then M has projective di-
mension ≤ n.

(3) If M ′ has projective dimension ≤ n and M has projective dimension ≤
n+ 1 then M ′′ has projective dimension ≤ n+ 1.

Proof. Combine the characterization of projective dimension in Lemma 10.105.4
with the long exact sequence of ext groups in Lemma 10.69.7. �

Definition 10.105.6. Let R be a ring. The ring R is said to have finite global
dimension if there exists an integer n such that every R-module has a resolution
by projective R-modules of length at most n. The minimal such n is then called
the global dimension of R.

The argument in the proof of the following lemma can be found in the paper
[Aus55] by Auslander.

Lemma 10.105.7. Let R be a ring. The following are equivalent

(1) R has finite global dimension ≤ n,
(2) every finite R-module has projective dimension ≤ n, and
(3) every cyclic R-module R/I has projective dimension ≤ n.

Proof. It is clear that (1) ⇒ (3). Assume (3). Since every finite R-module has
a finite filtration by cyclic modules, see Lemma 10.5.4 we see that (2) follows by
Lemma 10.105.5.

Assume (2). Let M be an arbitrary R-module. Choose a set E ⊂M of generators
of M . Choose a well ordering on E. For e ∈ E denote Me the submodule of M
generated by the elements e′ ∈ E with e′ ≤ e. Then M =

⋃
e∈EMe. Note that for

each e ∈ E the quotient

Me/
⋃

e′<e
Me′

is either zero or generated by one element, hence has projective dimension ≤ n. To
finish the proof we claim that any time we have a well-ordered set E and a module
M =

⋃
e∈EMe such that the quotients Me/

⋃
e′<eMe′ have projective dimension

≤ n, then M has projective dimension ≤ n.

We may prove this statement by induction on n. If n = 0, then we will show, by
transfinite induction that M is projective. Namely, for each e ∈ E we may choose
a splitting Me =

⋃
e′<eMe′ ⊕ Pe because Pe = Me/

⋃
e′<eMe′ is projective. Hence

it follows that M =
⊕

e∈E Pe and we conclude that M is projective, see Lemma
10.74.3.

If n > 0, then for e ∈ E we denote Fe the free R-module on the set of elements of
Me. Then we have a system of short exact sequences

0→ Ke → Fe →Me → 0

over the well-ordered set E. Note that the transition maps Fe′ → Fe and Ke′ → Ke

are injective too. Set F =
⋃
Fe and K =

⋃
Ke. Then

0→ Ke/
⋃

e′<e
Ke′ → Fe/

⋃
e′<e

Fe′ →Me/
⋃

e′<e
Me′ → 0

http://stacks.math.columbia.edu/tag/065S
http://stacks.math.columbia.edu/tag/00O6
http://stacks.math.columbia.edu/tag/065T


10.106. REGULAR RINGS AND GLOBAL DIMENSION 647

is a short exact sequence of R-modules too and Fe/
⋃
e′<e Fe′ is the free R-module

on the set of elements in Me which are not contained in
⋃
e′<eMe′ . Hence by

Lemma 10.105.5 we see that the projective dimension of Ke/
⋃
e′<eKe′ is at most

n − 1. By induction we conclude that K has projective dimension at most n − 1.
Whence M has projective dimension at most n and we win. �

Lemma 10.105.8. Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset.

(1) If M has projective dimension ≤ n, then S−1M has projective dimension
≤ n over S−1R.

(2) If R has finite global dimension ≤ n, then S−1R has finite global dimension
≤ n.

Proof. Let 0 → Pn → Pn−1 → . . . → P0 → M → 0 be a projective resolution.
As localization is exact, see Proposition 10.9.12, and as each S−1Pi is a projective
S−1R-module, see Lemma 10.91.1, we see that 0 → S−1Pn → . . . → S−1P0 →
S−1M → 0 is a projective resolution of S−1M . This proves (1). Let M ′ be
an S−1R-module. Note that M ′ = S−1M ′. Hence we see that (2) follows from
(1). �

10.106. Regular rings and global dimension

We can use the material on rings of finite global dimension to give another charac-
terization of regular local rings.

Proposition 10.106.1. Let R be a regular local ring of dimension d. Every finite
R-module M of depth e has a finite free resolution

0→ Fd−e → . . .→ F0 →M → 0.

In particular a regular local ring has global dimension ≤ d.

Proof. This is clear in view of Lemma 10.102.6 and Lemma 10.100.9. �

Lemma 10.106.2. Let R be a Noetherian ring. Then R has finite global dimension
if and only if there exists an integer n such that for all maximal ideals m of R the
ring Rm has global dimension ≤ n.

Proof. We saw, Lemma 10.105.8 that if R has finite global dimension n, then all
the localizations Rm have finite global dimension at most n. Conversely, suppose
that all the Rm have global dimension n. Let M be a finite R-module. Let 0 →
Kn → Fn−1 → . . . → F0 → M → 0 be a resolution with Fi finite free. Then Kn

is a finite R-module. According to Lemma 10.105.3 and the assumption all the
modules Kn ⊗R Rm are projective. Hence by Lemma 10.75.2 the module Kn is
finite projective. �

Lemma 10.106.3. Suppose that R is a Noetherian local ring with maximal ideal
m and residue field κ. In this case the projective dimension of κ is ≥ dimκm/m

2.

Proof. Let x1, . . . xn be elements of m whose images in m/m2 form a basis. Con-
sider the Koszul complex on x1, . . . , xn. This is the complex

0→ ∧nRn → ∧n−1Rn → ∧n−2Rn → . . .→ ∧iRn → . . .→ Rn → R
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with maps given by

ej1 ∧ . . . ∧ eji 7−→
i∑

a=1

(−1)i+1xjaej1 ∧ . . . ∧ êja ∧ . . . ∧ eji

It is easy to see that this is a complex K•(R, x•). Note that the cokernel of the last
map of K•(R, x•) is clearly κ.

Now, let F• → κ by any finite resolution by finite free R-modules. By Lemma
10.98.2 we may assume all the maps in the complex F• have to property that
Im(Fi → Fi−1) ⊂ mFi−1, because removing a trivial summand from the resolution
can at worst shorten the resolution. By Lemma 10.69.4 we can find a map of
complexes α : K•(R, x•) → F• inducing the identity on κ. We will prove by
induction that the maps αi : ∧iRn = Ki(R, x•) → Fi have the property that
αi ⊗ κ : ∧iκn → Fi ⊗ κ are injective. This will prove the lemma since it clearly
shows that Fn 6= 0.

The result is clear for i = 0 because the composition R
α0−→ F0 → κ is nonzero.

Note that F0 must have rank 1 since otherwise the map F1 → F0 whose cokernel
is a single copy of κ cannot have image contained in mF0. For α1 we use that
x1, . . . , xn is a minimal set of generators for m. Namely, we saw above that F0 = R
and F1 → F0 = R has image m. We have a commutative diagram

Rn = K1(R, x•) → K0(R, x•) = R
↓ ↓ ↓
F1 → F0 = R

where the rightmost vertical arrow is given by multiplication by a unit. Hence we
see that the image of the composition Rn → F1 → F0 = R is also equal to m. Thus
the map Rn ⊗ κ→ F1 ⊗ κ has to be injective since dimκ(m/m2) = n.

Suppose the injectivity of αj ⊗ κ has been proved for all j ≤ i − 1. Consider the
commutative diagram

∧iRn = Ki(R, x•) → Ki−1(R, x•) = ∧i−1Rn

↓ ↓
Fi → Fi−1

We know that ∧i−1κn → Fi−1⊗κ is injective. This proves that ∧i−1κn⊗κm/m2 →
Fi−1 ⊗m/m2 is injective. Also, by our choice of the complex, Fi maps into mFi−1,
and similarly for the Koszul complex. Hence we get a commutative diagram

∧iκn → ∧i−1κn ⊗m/mn

↓ ↓
Fi ⊗ κ → Fi−1 ⊗m/m2

At this point it suffices to verify the map ∧iκn → ∧i−1κn⊗m/mn is injective, which
can be done by hand. �

Lemma 10.106.4. Let R be a Noetherian local ring. Suppose that the residue field
κ has finite projective dimension n over R. In this case dim(R) ≥ n.

Proof. Let F• be a finite resolution of κ by finite free R-modules. By Lemma
10.98.2 we may assume all the maps in the complex F• have to property that
Im(Fi → Fi−1) ⊂ mFi−1, because removing a trivial summand from the resolution
can at worst shorten the resolution. Say Fn 6= 0 and Fi = 0 for i > n, so that the
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projective dimension of κ is n. By Proposition 10.98.10 we see that depth(I(ϕn)) ≥
n since I(ϕn) cannot equal R by our choice of the complex. Thus by Lemma 10.67.6
also dim(R) ≥ n. �

Proposition 10.106.5. A Noetherian local ring whose residue field has finite pro-
jective dimension is a regular local ring. In particular a Noetherian local ring of
finite global dimension is a regular local ring.

Proof. By Lemmas 10.106.3 and 10.106.4 we see that dim(R) ≥ dimκ(m/m2).
Thus the result follows immediately from Definition 10.59.9. �

Lemma 10.106.6. A Noetherian local ring R is a regular local ring if and only if
it has finite global dimension. In this case Rp is a regular local ring for all primes
p.

Proof. By Propositions 10.106.5 and 10.106.1 we see that a Noetherian local ring
is a regular local ring if and only if it has finite global dimension. Furthermore,
any localization Rp has finite global dimension, see Lemma 10.105.8, and hence is
a regular local ring. �

By Lemma 10.106.6 it makes sense to make the following definition, because it does
not conflict with the earlier definition of a regular local ring.

Definition 10.106.7. A Noetherian ring R is said to be regular if all the localiza-
tions Rp at primes are regular local rings.

It is enough to require the local rings at maximal ideals to be regular. Note that
this is not the same as asking R to have finite global dimension, even assuming R
is Noetherian. This is because there is an example of a regular Noetherian ring
which does not have finite global dimension, namely because it does not have finite
dimension.

Lemma 10.106.8. Let R be a Noetherian ring. The following are equivalent:

(1) R has finite global dimension n,
(2) there exists an integer n such that all the localizations Rm at maximal

ideals are regular of dimension ≤ n with equality for at least one m, and
(3) there exists an integer n such that all the localizations Rp at prime ideals

are regular of dimension ≤ n with equality for at least one p.

Proof. This is a reformulation of Lemma 10.106.2 in view of the discussion sur-
rounding Definition 10.106.7. See especially Propositions 10.106.1 and 10.106.5. �

Lemma 10.106.9. Let R→ S be a local homomorphism of local Noetherian rings.
Assume that R→ S is flat and that S is regular. Then R is regular.

Proof. Let m ⊂ R be the maximal ideal and let κ = R/m be the residue field. Let
d = dimS. Choose any resolution F• → κ with each Fi a finite free R-module. Set
Kd = Ker(Fd−1 → Fd−2). By flatness of R → S the complex 0 → Kd ⊗R S →
Fd−1 ⊗R S → . . . → F0 ⊗R S → κ ⊗R S → 0 is still exact. Because the global
dimension of S is d, see Proposition 10.106.1, we see that Kd⊗RS is a finite free S-
module (see also Lemma 10.105.3). By Lemma 10.75.5 we see that Kd is a finite free
R-module. Hence κ has finite projective dimension and R is regular by Proposition
10.106.5. �

http://stacks.math.columbia.edu/tag/00OC
http://stacks.math.columbia.edu/tag/0AFS
http://stacks.math.columbia.edu/tag/00OD
http://stacks.math.columbia.edu/tag/00OE
http://stacks.math.columbia.edu/tag/00OF


650 10. COMMUTATIVE ALGEBRA

10.107. Auslander-Buchsbaum

The following result can be found in [AB57].

Proposition 10.107.1. Let R be a Noetherian local ring. Let M be a nonzero
finite R-module which has finite projective dimension pdR(M). Then we have

depth(R) = pdR(M) + depth(M)

Proof. We prove this by induction on depth(M). The most interesting case is the
case depth(M) = 0. In this case, let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0

be a minimal finite free resolution, so e = pdR(M). By Lemma 10.98.2 we may
assume all matrix coefficients of the maps in the complex are contained in the
maximal ideal of R. Then on the one hand, by Proposition 10.98.10 we see that
depth(R) ≥ e. On the other hand, breaking the long exact sequence into short
exact sequences

0→ Rne → Rne−1 → Ke−2 → 0,

0→ Ke−2 → Rne−2 → Ke−3 → 0,

. . . ,

0→ K0 → Rn0 →M → 0

we see, using Lemma 10.69.11, that

depth(Ke−2) ≥ depth(R)− 1,

depth(Ke−3) ≥ depth(R)− 2,

. . . ,

depth(K0) ≥ depth(R)− (e− 1),

depth(M) ≥ depth(R)− e

and since depth(M) = 0 we conclude depth(R) ≤ e. This finishes the proof of the
case depth(M) = 0.

Induction step. If depth(M) > 0, then we pick x ∈ m which is a nonzerodivisor on
both M and R. This is possible, because either pdR(M) > 0 and depth(R) > 0 by
the aforementioned Proposition 10.98.10 or pdR(M) = 0 in which case M is finite
free hence also depth(R) = depth(M) > 0. Thus depth(R ⊕M) > 0 by Lemma
10.69.11 (for example) and we can find an x ∈ m which is a nonzerodivisor on both
R and M . Let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0

be a minimal resolution as above. An application of the snake lemma shows that

0→ (R/xR)ne → (R/xR)ne−1 → . . .→ (R/xR)n0 →M/xM → 0

is a minimal resolution too. Thus pdR(M) = pdR/xR(M/xM). By Lemma 10.69.12

we have depth(R/xR) = depth(R)−1 and depth(M/xM) = depth(M)−1. Till now
depths have all been depths as R modules, but we observe that depthR(M/xM) =
depthR/xR(M/xM) and similarly for R/xR. By induction hypothesis we see that

the Auslander-Buchsbaum formula holds for M/xM over R/xR. Since the depths
of both R/xR and M/xM have decreased by one and the projective dimension has
not changed we conclude. �
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10.108. Homomorphisms and dimension

This section contains a collection of easy results relating dimensions of rings when
there are maps between them.

Lemma 10.108.1. Suppose R → S is a ring map satisfying either going up, see
Definition 10.40.1, or going down see Definition 10.40.1. Assume in addition that
Spec(S)→ Spec(R) is surjective. Then dim(R) ≤ dim(S).

Proof. Assume going up. Take any chain p0 ⊂ p1 ⊂ . . . ⊂ pe of prime ideals in
R. By surjectivity we may choose a prime q0 mapping to p0. By going up we may
extend this to a chain of length e of primes qi lying over pi. Thus dim(S) ≥ dim(R).
The case of going down is exactly the same. See also Topology, Lemma 5.18.8 for
a purely topological version. �

Lemma 10.108.2. Suppose that R→ S is a ring map with the going up property,
see Definition 10.40.1. If q ⊂ S is a maximal ideal. Then the inverse image of q
in R is a maximal ideal too.

Proof. Trivial. �

Lemma 10.108.3. Suppose that R→ S is a ring map such that S is integral over
R. Then dim(R) ≥ dim(S), and every closed point of Spec(S) maps to a closed
point of Spec(R).

Proof. Immediate from Lemmas 10.35.18 and 10.108.2 and the definitions. �

Lemma 10.108.4. Suppose R ⊂ S and S integral over R. Then dim(R) = dim(S).

Proof. This is a combination of Lemmas 10.35.20, 10.35.15, 10.108.1, and 10.108.3.
�

Definition 10.108.5. Suppose that R → S is a ring map. Let q ⊂ S be a prime
lying over the prime p of R. The local ring of the fibre at q is the local ring

Sq/pSq = (S/pS)q = (S ⊗R κ(p))q

Lemma 10.108.6. Let R→ S be a homomorphism of Noetherian rings. Let q ⊂ S
be a prime lying over the prime p. Then

dim(Sq) ≤ dim(Rp) + dim(Sq/pSq).

Proof. We use the characterization of dimension of Proposition 10.59.8. Let
x1, . . . , xd be elements of p generating an ideal of definition of Rp with d = dim(Rp).
Let y1, . . . , ye be elements of q generating an ideal of definition of Sq/pSq with
e = dim(Sq/pSq). It is clear that Sq/(x1, . . . , xd, y1, . . . , ye) has a nilpotent maxi-
mal ideal. Hence x1, . . . , xd, y1, . . . , ye generate an ideal of definition if Sq. �

Lemma 10.108.7. Let R→ S be a homomorphism of Noetherian rings. Let q ⊂ S
be a prime lying over the prime p. Assume the going down property holds for R→ S
(for example if R→ S is flat, see Lemma 10.38.17). Then

dim(Sq) = dim(Rp) + dim(Sq/pSq).

Proof. By Lemma 10.108.6 we have an inequality dim(Sq) ≤ dim(Rp)+dim(Sq/pSq).
To get equality, choose a chain of primes pS ⊂ q0 ⊂ q1 ⊂ . . . ⊂ qd = q with d =
dim(Sq/pSq). On the other hand, choose a chain of primes p0 ⊂ p1 ⊂ . . . ⊂ pe = p
with e = dim(Rp). By the going down theorem we may choose q−1 ⊂ q0 lying over
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pe−1. And then we may choose q−2 ⊂ qe−1 lying over pe−2. Inductively we keep
going until we get a chain q−e ⊂ . . . ⊂ qd of length e+ d. �

Lemma 10.108.8. Let R→ S be a local homomorphism of local Noetherian rings.
Assume

(1) R is regular,
(2) S/mRS is regular, and
(3) R→ S is flat.

Then S is regular.

Proof. By Lemma 10.108.7 we have dim(S) = dim(R) + dim(S/mRS). Pick gen-
erators x1, . . . , xd ∈ mR with d = dim(R), and pick y1, . . . , ye ∈ mS which gen-
erate the maximal ideal of S/mRS with e = dim(S/mRS). Then we see that
x1, . . . , xd, y1, . . . , ye are elements which generate the maximal ideal of S and e+d =
dim(S). �

The lemma below will later be used to show that rings of finite type over a field
are Cohen-Macaulay if and only if they are quasi-finite flat over a polynomial ring.
It is a partial converse to Lemma 10.124.1.

Lemma 10.108.9. Let R→ S be a local homomorphism of Noetherian local rings.
Assume R Cohen-Macaulay. If S is finite flat over R, or if S is flat over R and
dim(S) ≤ dim(R), then S is Cohen-Macaulay and dim(R) = dim(S).

Proof. Let x1, . . . , xd ∈ mR be a regular sequence of length d = dim(R). By
Lemma 10.67.7 this maps to a regular sequence in S. Hence S is Cohen-Macaulay
if dim(S) ≤ d. This is true if S is finite flat over R by Lemma 10.108.4. And in the
second case we assumed it. �

10.109. The dimension formula

Recall the definitions of catenary (Definition 10.101.1) and universally catenary
(Definition 10.101.5).

Lemma 10.109.1. Let R→ S be a ring map. Let q be a prime of S lying over the
prime p of R. Assume that

(1) R is Noetherian,
(2) R→ S is of finite type,
(3) R, S are domains, and
(4) R ⊂ S.

Then we have

height(q) ≤ height(p) + trdegR(S)− trdegκ(p)κ(q)

with equality if R is universally catenary.

Proof. Suppose that R ⊂ S′ ⊂ S is a finitely generated R-subalgebra of S. In this
case set q′ = S′ ∩ q. The lemma for the ring maps R→ S′ and S′ → S implies the
lemma for R → S by additivity of transcendence degree in towers of fields. Hence
we can use induction on the number of generators of S over R and reduce to the
case where S is generated by one element over R.
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Case I: S = R[x] is a polynomial algebra over R. In this case we have trdegR(S) = 1.
Also R→ S is flat and hence

dim(Sq) = dim(Rp) + dim(Sq/pSq)

see Lemma 10.108.7. Let r = pS. Then trdegκ(p)κ(q) = 1 is equivalent to q = r,

and implies that dim(Sq/pSq) = 0. In the same vein trdegκ(p)κ(q) = 0 is equivalent

to having a strict inclusion r ⊂ q, which implies that dim(Sq/pSq) = 1. Thus we
are done with case I with equality in every instance.

Case II: S = R[x]/n with n 6= 0. In this case we have trdegR(S) = 0. Denote
q′ ⊂ R[x] the prime corresponding to q. Thus we have

Sq = (R[x])q′/n(R[x])q′

By the previous case we have dim((R[x])q′) = dim(Rp) + 1 − trdegκ(p)κ(q). Since
n 6= 0 we see that the dimension of Sq decreases by at least one, see Lemma
10.59.11, which proves the inequality of the lemma. To see the equality in case R
is universally catenary note that n ⊂ R[x] is a height one prime as it corresponds
to a nonzero prime in f.f.(R)[x]. Hence any maximal chain of primes in R[x]q′/n
corresponds to a maximal chain of primes with length 1 greater between q′ and (0)
in R[x]. If R is universally catenary these all have the same length equal to the
height of q′. This proves that dim(R[x]q′/n) = dim(R[x]q′)− 1 as desired. �

The following lemma says that generically finite maps tend to be quasi-finite in
codimension 1.

Lemma 10.109.2. Let A→ B be a ring map. Assume

(1) A ⊂ B is an extension of domains.
(2) A is Noetherian,
(3) A→ B is of finite type, and
(4) the extension f.f.(A) ⊂ f.f.(B) is finite.

Let p ⊂ A be a prime of height 1. Then there are at most finitely many primes of
B lying over p and they all have height 1.

Proof. By the dimension formula (Lemma 10.109.1) for any prime q lying over p
we have

dim(Bq) ≤ dim(Ap)− trdegκ(p)κ(q).

As the domain Bq has at least 2 prime ideals we see that dim(Bq) ≥ 1. We conclude
that dim(Bq) = 1 and that the extension κ(p) ⊂ κ(q) is algebraic. Hence q defines
a closed point of its fibre Spec(B ⊗A κ(p)), see Lemma 10.34.9. Since B ⊗A κ(p)
is a Noetherian ring the fibre Spec(B ⊗A κ(p)) is a Noetherian topological space,
see Lemma 10.30.5. A Noetherian topological space consisting of closed points is
finite, see for example Topology, Lemma 5.8.2. �

10.110. Dimension of finite type algebras over fields

In this section we compute the dimension of a polynomial ring over a field. We
also prove that the dimension of a finite type domain over a field is the dimension
of its local rings at maximal ideals. We will establish the connection with the
transcendence degree over the ground field in Section 10.112.
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Lemma 10.110.1. Let m be a maximal ideal in k[x1, . . . , xn]. The ideal m is gen-
erated by n elements. The dimension of k[x1, . . . , xn]m is n. Hence k[x1, . . . , xn]m
is a regular local ring of dimension n.

Proof. By the Hilbert Nullstellensatz (Theorem 10.33.1) we know the residue field
κ = κ(m) is a finite extension of k. Denote αi ∈ κ the image of xi. Denote
κi = k(α1, . . . , αi) ⊂ κ, i = 1, . . . , n and κ0 = k. Note that κi = k[α1, . . . , αi]
by field theory. Define inductively elements fi ∈ m ∩ k[x1, . . . , xi] as follows: Let
Pi(T ) ∈ κi−1[T ] be the monic minimal polynomial of αi over κi−1. Let Qi(T ) ∈
k[x1, . . . , xi−1][T ] be a monic lift of Pi(T ) (of the same degree). Set fi = Qi(xi).
Note that if di = degT (Pi) = degT (Qi) = degxi(fi) then d1d2 . . . di = [κi : k] by
elementary field theory.

We claim that for all i = 0, 1, . . . , n there is an isomorphism

ψi : k[x1, . . . , xi]/(f1, . . . , fi) ∼= κi.

By construction the composition k[x1, . . . , xi] → k[x1, . . . , xn] → κ is surjective
onto κi and f1, . . . , fi are in the kernel. This gives a surjective homomorphism.
We prove ψi is injective by induction. It is clear for i = 0. Given the state-
ment for i we prove it for i + 1. The ring extension k[x1, . . . , xi]/(f1, . . . , fi) →
k[x1, . . . , xi+1]/(f1, . . . , fi+1) is generated by 1 element over a field and one irre-
ducible equation. By elementary field theory k[x1, . . . , xi+1]/(f1, . . . , fi+1) is a field,
and hence ψi is injective.

This implies that m = (f1, . . . , fn). Moreover, we also conclude that

k[x1, . . . , xn]/(f1, . . . , fi) ∼= κi[xi+1, . . . , xn].

Hence (f1, . . . , fi) is a prime ideal. Thus

(0) ⊂ (f1) ⊂ (f1, f2) ⊂ . . . ⊂ (f1, . . . , fn) = m

is a chain of primes of length n. The lemma follows. �

Proposition 10.110.2. A polynomial algebra in n variables over a field is a regular
ring. It has global dimension n. All localizations at maximal ideals are regular local
rings of dimension n.

Proof. By Lemma 10.110.1 all localizations k[x1, . . . , xn]m at maximal ideals are
regular local rings of dimension n. Hence we conclude by Lemma 10.106.8. �

Lemma 10.110.3. Let k be a field. Let p ⊂ q ⊂ k[x1, . . . , xn] be a pair of primes.
Any maximal chain of primes between p and q has length height(q)− height(p).

Proof. By Proposition 10.110.2 any local ring of k[x1, . . . , xn] is regular. Hence all
local rings are Cohen-Macaulay, see Lemma 10.102.3. The local rings at maximal
ideals have dimension n hence every maximal chain of primes in k[x1, . . . , xn] has
length n, see Lemma 10.100.3. Hence every maximal chain of primes between (0)
and p has length height(p), see Lemma 10.100.4 for example. Putting these together
leads to the assertion of the lemma. �

Lemma 10.110.4. Let k be a field. Let S be a finite type k-algebra which is an
integral domain. Then dim(S) = dim(Sm) for any maximal ideal m of S. In words:
every maximal chain of primes has length equal to the dimension of S.
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Proof. Write S = k[x1, . . . , xn]/p. By Proposition 10.110.2 and Lemma 10.110.3
all the maximal chains of primes in S (which necessarily end with a maximal ideal)
have length n − height(p). Thus this number is the dimension of S and of Sm for
any maximal ideal m of S. �

Recall that we defined the dimension dimx(X) of a topological space X at a point
x in Topology, Definition 5.9.1.

Lemma 10.110.5. Let k be a field. Let S be a finite type k-algebra. Let X =
Spec(S). Let p ⊂ S be a prime ideal and let x ∈ X be the corresponding point. The
following numbers are equal

(1) dimx(X),
(2) max dim(Z) where the maximum is over those irreducible components Z

of X passing through x, and
(3) min dim(Sm) where the minimum is over maximal ideals m with p ⊂ m.

Proof. Let X =
⋃
i∈I Zi be the decomposition of X into its irreducible compo-

nents. There are finitely many of them (see Lemmas 10.30.3 and 10.30.5). Let
I ′ = {i | x ∈ Zi}, and let T =

⋃
i6∈I′ Zi. Then U = X \ T is an open subset of X

containing the point x. The number (2) is maxi∈I′ dim(Zi). For any open W ⊂ U ,
with x ∈W the irreducible components of W are the irreducible sets Wi = Zi ∩W
for i ∈ I ′. Note that each Wi, i ∈ I ′ contains a closed point because X is Jacobson,
see Section 10.34. Since Wi ⊂ Zi we have dim(Wi) ≤ dim(Zi). The existence of a
closed point implies, via Lemma 10.110.4, that there is a chain of irreducible closed
subsets of length equal to dim(Zi) in the open Wi. Thus dim(Wi) = dim(Zi) for
any i ∈ I ′. Hence dim(W ) is equal to the number (2). This proves that (1) = (2).

Let m ⊃ p be any maximal ideal containing p. Let x0 ∈ X be the corresponding
point. First of all, x0 is contained in all the irreducible components Zi, i ∈ I ′. Let
qi denote the minimal primes of S corresponding to the irreducible components Zi.
For each i such that x0 ∈ Zi (which is equivalent to m ⊃ qi) we have a surjection

Sm −→ Sm/qiSm = (S/qi)m

Moreover, the primes qiSm so obtained exhaust the minimal primes of the Noether-
ian local ring Sm, see Lemma 10.25.3. We conclude, using Lemma 10.110.4, that
the dimension of Sm is the maximum of the dimensions of the Zi passing through
x0. To finish the proof of the lemma it suffices to show that we can choose x0 such
that x0 ∈ Zi ⇒ i ∈ I ′. Because S is Jacobson (as we saw above) it is enough
to show that V (p) \ T (with T as above) is nonempty. And this is clear since it
contains the point x (i.e. p). �

Lemma 10.110.6. Let k be a field. Let S be a finite type k-algebra. Let X =
Spec(S). Let m ⊂ S be a maximal ideal and let x ∈ X be the associated closed
point. Then dimx(X) = dim(Sm).

Proof. This is a special case of Lemma 10.110.5. �

Lemma 10.110.7. Let k be a field. Let S be a finite type k algebra. Assume that
S is Cohen-Macaulay. Then Spec(S) =

∐
Td is a finite disjoint union of open

and closed subsets Td with Td equidimensional (see Topology, Definition 5.9.4) of
dimension d. Equivalently, S is a product of rings Sd, d = 0, . . . ,dim(S) such that
every maximal ideal m of Sd has height d.
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Proof. The equivalence of the two statements follows from Lemma 10.22.3. Let
m ⊂ S be a maximal ideal. Every maximal chain of primes in Sm has the same
length equal to dim(Sm), see Lemma 10.100.3. Hence, the dimension of the irre-
ducible components passing through the point corresponding to m all have dimen-
sion equal to dim(Sm), see Lemma 10.110.4. Since Spec(S) is a Jacobson topologi-
cal space the intersection of any two irreducible components of it contains a closed
point if nonempty, see Lemmas 10.34.2 and 10.34.4. Thus we have shown that any
two irreducible components that meet have the same dimension. The lemma fol-
lows easily from this, and the fact that Spec(S) has a finite number of irreducible
components (see Lemmas 10.30.3 and 10.30.5). �

10.111. Noether normalization

In this section we prove variants of the Noether normalization lemma. The key
ingredient we will use is contained in the following two lemmas.

Lemma 10.111.1. Let n ∈ N. Let N be a finite nonempty set of multi-indices
ν = (ν1, . . . , νn). Given e = (e1, . . . , en) we set e · ν =

∑
eiνi. Then for e1 � e2 �

. . .� en−1 � en we have: If ν, ν′ ∈ N then

(e · ν = e · ν′)⇔ (ν = ν′)

Proof. Say N = {νj} with νj = (νj1, . . . , νjn). Let Ai = maxj νji − minj νji. If
for each i we have ei−1 > Aiei +Ai+1ei+1 + . . .+Anen then the lemma holds. For
suppose that e · (ν − ν′) = 0. Then for n ≥ 2,

e1(ν1 − ν′1) =
∑n

i=2
ei(ν

′
i − νi).

We may assume that (ν1 − ν′1) ≥ 0. If (ν1 − ν′1) > 0, then

e1(ν1 − ν′1) ≥ e1 > A2e2 + . . .+Anen ≥
∑n

i=2
ei|ν′i − νi| ≥

∑n

i=2
ei(ν

′
i − νi).

This contradiction implies that ν′1 = ν1. By induction, ν′i = νi for 2 ≤ i ≤ n. �

Lemma 10.111.2. Let R be a ring. Let g ∈ R[x1, . . . , xn] be an element which is
nonconstant, i.e., g 6∈ R. For e1 � e2 � . . .� en−1 � en = 1 the polynomial

g(x1 + xe1n , x2 + xe2n , . . . , xn−1 + xen−1
n , xn) = axdn + lower order terms in xn

where d > 0 and a ∈ R is one of the nonzero coefficients of g.

Proof. Write g =
∑
ν∈N aνx

ν with aν ∈ R not zero. Here N is a finite set of
multi-indices as in Lemma 10.111.1 and xν = xν1

1 . . . xνnn . Note that the leading
term in

(x1 + xe1n )ν1 . . . (xn−1 + xen−1
n )νn−1xνnn is xe1ν1+...+en−1νn−1+νn

n .

Hence the lemma follows from Lemma 10.111.1 which guarantees that there is
exactly one nonzero term aνx

ν of g which gives rise to the leading term of g(x1 +
xe1n , x2 +xe2n , . . . , xn−1 +x

en−1
n , xn), i.e., a = aν for the unique ν ∈ N such that e ·ν

is maximal. �

Lemma 10.111.3. Let k be a field. Let S = k[x1, . . . , xn]/I for some ideal
I. If I 6= 0, then there exist y1, . . . , yn−1 ∈ k[x1, . . . , xn] such that S is finite
over k[y1, . . . , yn−1]. Moreover we may choose yi to be in the Z-subalgebra of
k[x1, . . . , xn] generated by x1, . . . , xn.
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Proof. Pick f ∈ I, f 6= 0. It suffices to show the lemma for k[x1, . . . , xn]/(f) since
S is a quotient of that ring. We will take yi = xi−xein , i = 1, . . . , n− 1 for suitable
integers ei. When does this work? It suffices to show that xn ∈ k[x1, . . . , xn]/(f)
is integral over the ring k[y1, . . . , yn−1]. The equation for xn over this ring is

f(y1 + xe1n , . . . , yn−1 + xen−1
n , xn) = 0.

Hence we are done if we can show there exists integers ei such that the leading
coefficient with respect to xn of the equation above is a nonzero element of k.
This can be achieved for example by choosing e1 � e2 � . . . � en−1, see Lemma
10.111.2. �

Lemma 10.111.4. Let k be a field. Let S = k[x1, . . . , xn]/I for some ideal I. There
exist r ≥ 0, and y1, . . . , yr ∈ k[x1, . . . , xn] such that (a) the map k[y1, . . . , yr] → S
is injective, and (b) the map k[y1, . . . , yr] → S is finite. In this case the integer
r is the dimension of S. Moreover we may choose yi to be in the Z-subalgebra of
k[x1, . . . , xn] generated by x1, . . . , xn.

Proof. By induction on n, with n = 0 being trivial. If I = 0, then take r = n
and yi = xi. If I 6= 0, then choose y1, . . . , yn−1 as in Lemma 10.111.3. Let S′ ⊂ S
be the subring generated by the images of the yi. By induction we can choose r
and z1, . . . , zr ∈ k[y1, . . . , yn−1] such that (a), (b) hold for k[z1, . . . , zr]→ S′. Since
S′ → S is injective and finite we see (a), (b) hold for k[z1, . . . , zr] → S. The last
assertion follows from Lemma 10.108.4. �

Lemma 10.111.5. Let k be a field. Let S be a finite type k algebra and denote
X = Spec(S). Let q be a prime of S, and let x ∈ X be the corresponding point.
There exists a g ∈ S, g 6∈ q such that dim(Sg) = dimx(X) =: d and such that there
exists a finite injective map k[y1, . . . , yd]→ Sg.

Proof. Note that by definition dimx(X) is the minimum of the dimensions of Sg
for g ∈ S, g 6∈ q, i.e., the minimum is attained. Thus the lemma follows from
Lemma 10.111.4. �

Lemma 10.111.6. Let k be a field. Let q ⊂ k[x1, . . . , xn] be a prime ideal. Set
r = trdegk κ(q). Then there exists a finite ring map ϕ : k[y1, . . . , yn]→ k[x1, . . . , xn]
such that ϕ−1(q) = (yr+1, . . . , yn).

Proof. By induction on n. The case n = 0 is clear. Assume n > 0. If r = n, then
q = (0) and the result is clear. Choose a nonzero f ∈ q. Of course f is nonconstant.
After applying an automorphism of the form

k[x1, . . . , xn] −→ k[x1, . . . , xn], xn 7→ xn, xi 7→ xi + xein (i < n)

we may assume that f is monic in xn over k[x1, . . . , xn], see Lemma 10.111.2. Hence
the ring map

k[y1, . . . , yn] −→ k[x1, . . . , xn], yn 7→ f, yi 7→ xi (i < n)

is finite. Moreover yn ∈ q ∩ k[y1, . . . , yn] by construction. Thus q ∩ k[y1, . . . , yn] =
pk[y1, . . . , yn] + (yn) where p ⊂ k[y1, . . . , yn−1] is a prime ideal. Note that κ(p) ⊂
κ(q) is finite, and hence r = trdegk κ(p). Apply the induction hypothesis to
the pair (k[y1, . . . , yn−1], p) and we obtain a finite ring map k[z1, . . . , zn−1] →
k[y1, . . . , yn−1] such that p∩k[z1, . . . , zn−1] = (zr+1, . . . , zn−1). We extend the ring
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map k[z1, . . . , zn−1] → k[y1, . . . , yn−1] to a ring map k[z1, . . . , zn] → k[y1, . . . , yn]
by mapping zn to yn. The composition of the ring maps

k[z1, . . . , zn]→ k[y1, . . . , yn]→ k[x1, . . . , xn]

solves the problem. �

Lemma 10.111.7. Let R → S be an injective finite type map of domains. Then
there exists an integer d and factorization

R→ R[y1, . . . , yd]→ S′ → S

by injective maps such that S′ is finite over R[y1, . . . , yd] and such that S′f
∼= Sf

for some nonzero f ∈ R.

Proof. Pick x1, . . . , xn ∈ S which generate S over R. Let K = f.f.(R) and SK =
S ⊗RK. By Lemma 10.111.4 we can find y1, . . . , yd ∈ S such that K[y1, . . . , yd]→
SK is a finite injective map. Note that yi ∈ S because we may pick the yj in the
Z-algebra generated by x1, . . . , xn. As a finite ring map is integral (see Lemma
10.35.3) we can find monic Pi ∈ K[y1, . . . , yd][T ] such that Pi(xi) = 0 in SK . Let
f ∈ R be a nonzero element such that fPi ∈ R[y1, . . . , yd][T ] for all i. Set x′i = fxi
and let S′ ⊂ S be the subalgebra generated by y1, . . . , yd and x′1, . . . , x

′
n. Note that

x′i is integral over R[y1, . . . , yd] as we have Qi(x
′
i) = 0 where Qi = fdegT (Pi)Pi(T/f)

which is a monic polynomial in T with coefficients in R[y1, . . . , yd] by our choice of
f . Hence R[y1, . . . , yn] ⊂ S′ is finite by Lemma 10.35.5. By construction S′f

∼= Sf
and we win. �

10.112. Dimension of finite type algebras over fields, reprise

This section is a continuation of Section 10.110. In this section we establish the
connection between dimension and transcendence degree over the ground field for
finite type domains over a field.

Lemma 10.112.1. Let k be a field. Let S be a finite type k algebra which is an
integral domain. Let K = f.f.(S) be the field of fractions of S. Let r = trdeg(K/k)
be the transcendence degree of K over k. Then dim(S) = r. Moreover, the local
ring of S at every maximal ideal has dimension r.

Proof. We may write S = k[x1, . . . , xn]/p. By Lemma 10.110.3 all local rings of
S at maximal ideals have the same dimension. Apply Lemma 10.111.4. We get a
finite injective ring map

k[y1, . . . , yd]→ S

with d = dim(S). Clearly, k(y1, . . . , yd) ⊂ K is a finite extension and we win. �

Lemma 10.112.2. Let k be a field. Let S be a finite type k-algebra. Let q ⊂ q′ ⊂ S
be distinct prime ideals. Then trdegk κ(q′) < trdegk κ(q).

Proof. By Lemma 10.112.1 we have dimV (q) = trdegk κ(q) and similarly for
q′. Hence the result follows as the strict inclusion V (q′) ⊂ V (q) implies a strict
inequality of dimensions. �

The following lemma generalizes Lemma 10.110.6.
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Lemma 10.112.3. Let k be a field. Let S be a finite type k algebra. Let X =
Spec(S). Let p ⊂ S be a prime ideal, and let x ∈ X be the corresponding point.
Then we have

dimx(X) = dim(Sp) + trdegk κ(p).

Proof. By Lemma 10.112.1 we know that r = trdegk κ(p) is equal to the dimension
of V (p). Pick any maximal chain of primes p ⊂ p1 ⊂ . . . ⊂ pr starting with p in
S. This has length r by Lemma 10.110.4. Let qj , j ∈ J be the minimal primes of
S which are contained in p. These correspond 1 − 1 to minimal primes in Sp via
the rule qj 7→ qjSp. By Lemma 10.110.5 we know that dimx(X) is equal to the
maximum of the dimensions of the rings S/qj . For each j pick a maximal chain of
primes qj ⊂ p′1 ⊂ . . . ⊂ p′s(j) = p. Then dim(Sp) = maxj∈J s(j). Now, each chain

qi ⊂ p′1 ⊂ . . . ⊂ p′s(j) = p ⊂ p1 ⊂ . . . ⊂ pr

is a maximal chain in S/qj , and by what was said before we have dimx(X) =
maxj∈J r + s(j). The lemma follows. �

The following lemma says that the codimension of one finite type Spec in another
is the difference of heights.

Lemma 10.112.4. Let k be a field. Let S′ → S be a surjection of finite type k
algebras. Let p ⊂ S be a prime ideal, and let p′ be the corresponding prime ideal of
S′. Let X = Spec(S), resp. X ′ = Spec(S′), and let x ∈ X, resp. x′ ∈ X ′ be the
point corresponding to p, resp. p′. Then

dimx′ X
′ − dimxX = height(p′)− height(p).

Proof. Immediate from Lemma 10.112.3. �

Lemma 10.112.5. Let k be a field. Let S be a finite type k-algebra. Let k ⊂ K be
a field extension. Then dim(S) = dim(K ⊗k S).

Proof. By Lemma 10.111.4 there exists a finite injective map k[y1, . . . , yd] → S
with d = dim(S). Since K is flat over k we also get a finite injective map
K[y1, . . . , yd]→ K ⊗k S. The result follows from Lemma 10.108.4. �

Lemma 10.112.6. Let k be a field. Let S be a finite type k-algebra. Set X =
Spec(S). Let k ⊂ K be a field extension. Set SK = K ⊗k S, and XK = Spec(SK).
Let q ⊂ S be a prime corresponding to x ∈ X and let qK ⊂ SK be a prime
corresponding to xK ∈ XK lying over q. Then dimxX = dimxK XK .

Proof. Choose a presentation S = k[x1, . . . , xn]/I. This gives a presentation K⊗k
S = K[x1, . . . , xn]/(K⊗kI). Let q′K ⊂ K[x1, . . . , xn], resp. q′ ⊂ k[x1, . . . , xn] be the
corresponding primes. Consider the following commutative diagram of Noetherian
local rings

K[x1, . . . , xn]q′K
// (K ⊗k S)qK

k[x1, . . . , xn]q′ //

OO

Sq

OO

Both vertical arrows are flat because they are localizations of the flat ring maps
S → SK and k[x1, . . . , xn]→ K[x1, . . . , xn]. Moreover, the vertical arrows have the
same fibre rings. Hence, we see from Lemma 10.108.7 that height(q′)−height(q) =
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height(q′K) − height(qK). Denote x′ ∈ X ′ = Spec(k[x1, . . . , xn]) and x′K ∈ X ′K =
Spec(K[x1, . . . , xn]) the points corresponding to q′ and q′K . By Lemma 10.112.4
and what we showed above we have

n− dimxX = dimx′ X
′ − dimxX

= height(q′)− height(q)

= height(q′K)− height(qK)

= dimx′K
X ′K − dimxK XK

= n− dimxK XK

and the lemma follows. �

10.113. Dimension of graded algebras over a field

Here is a basic result.

Lemma 10.113.1. Let k be a field. Let S be a finitely generated graded algebra over
k. Assume S0 = k. Let P (T ) ∈ Q[T ] be the polynomial such that dim(Sd) = P (d)
for all d� 0. See Proposition 10.57.7. Then

(1) The irrelevant ideal S+ is a maximal ideal m.
(2) Any minimal prime of S is a homogeneous ideal and is contained in S+ =

m.
(3) We have dim(S) = deg(P ) + 1 = dimx Spec(S) (with the convention that

deg(0) = −1) where x is the point corresponding to the maximal ideal
S+ = m.

(4) The Hilbert function of the local ring R = Sm is equal to the Hilbert
function of S.

Proof. The first statement is obvious. The second follows from Lemma 10.55.8.
The equality dim(S) = dimx Spec(S) follows from the fact that every irreducible
component passes through x according to (2). Hence we may compute this dimen-
sion as the dimension of the local ring R = Sm with m = S+ by Lemma 10.110.6.
Since md/md+1 ∼= mdR/md+1R we see that the Hilbert function of the local ring R
is equal to the Hilbert function of S, which is (4). We conclude the last equality of
(3) by Proposition 10.59.8. �

10.114. Generic flatness

Basically this says that a finite type algebra over a domain becomes flat after
inverting a single element of the domain. There are several versions of this result
(in increasing order of strength).

Lemma 10.114.1. Let R→ S be a ring map. Let M be an S-module. Assume

(1) R is Noetherian,
(2) R is a domain,
(3) R→ S is of finite type, and
(4) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.

Proof. Let K be the fraction field of R. Set SK = K ⊗R S. This is an algebra
of finite type over K. We will argue by induction on d = dim(SK) (which is finite
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for example by Noether normalization, see Section 10.111). Fix d ≥ 0. Assume we
know that the lemma holds in all cases where dim(SK) < d.

Suppose given R → S and M as in the lemma with dim(SK) = d. By Lemma
10.61.1 there exists a filtration 0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mn = M so that Mi/Mi−1

is isomorphic to S/q for some prime q of S. Note that dim((S/q)K) ≤ dim(SK).
Also, note that an extension of free modules is free (see basic notion 50). Thus we
may assume M = S and that S is a domain of finite type over R.

If R→ S has a nontrivial kernel, then take a nonzero f ∈ R in this kernel. In this
case Sf = 0 and the lemma holds. (This is really the case d = −1 and the start
of the induction.) Hence we may assume that R → S is a finite type extension of
Noetherian domains.

Apply Lemma 10.111.7 and replace R by Rf (with f as in the lemma) to get a
factorization

R ⊂ R[y1, . . . , yd] ⊂ S
where the second extension is finite. Note that f.f.(R[y1, . . . , yd]) ⊂ f.f.(S) is a
finite extension of fields. Choose z1, . . . , zr ∈ S which form a basis for f.f.(S) over
f.f.(R[y1, . . . , yd]). This gives a short exact sequence

0→ R[y1, . . . , yd]
⊕r (z1,...,zr)−−−−−−→ S → N → 0

By construction N is a finite R[y1, . . . , yd]-module whose support does not con-
tain the generic point (0) of Spec(R[y1, . . . , yd]). By Lemma 10.39.5 there ex-
ists a nonzero g ∈ R[y1, . . . , yd] such that g annihilates N , so we may view N
as a finite module over S′ = R[y1, . . . , yd]/(g). Since dim(S′K) < d by induc-
tion there exists a nonzero f ∈ R such that Nf is a free Rf -module. Since
(R[y1, . . . , yd])f ∼= Rf [y1, . . . , yd] is free also we conclude by the already mentioned
fact that an extension of free modules is free. �

Lemma 10.114.2. Let R→ S be a ring map. Let M be an S-module. Assume

(1) R is a domain,
(2) R→ S is of finite presentation, and
(3) M is an S-module of finite presentation.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). For g ∈ R[x1, . . . , xn] denote g its
image in S. We may write M = S⊕t/

∑
Sni for some ni ∈ S⊕t. Write ni =

(gi1, . . . , git) for some gij ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated
by all the coefficients of all the elements gi, gij ∈ R[x1, . . . , xn]. Define S0 =
R0[x1, . . . , xn]/(g1, . . . , gm). Define M0 = S⊕t0 /

∑
S0ni. Then R0 is a domain of

finite type over Z and hence Noetherian (see Lemma 10.30.1). Moreover via the
injection R0 → R we have S ∼= R ⊗R0

S0 and M ∼= R ⊗R0
M0. Applying Lemma

10.114.1 we obtain a nonzero f ∈ R0 such that (M0)f is a free (R0)f -module. Hence
Mf = Rf ⊗(R0)f (M0)f is a free Rf -module. �

Lemma 10.114.3. Let R→ S be a ring map. Let M be an S-module. Assume

(1) R is a domain,
(2) R→ S is of finite type, and
(3) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that
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(a) Mf and Sf are free as Rf -modules, and
(b) Sf is a finitely presented Rf -algebra and Mf is a finitely presented Sf -

module.

Proof. We first prove the lemma for S = R[x1, . . . , xn], and then we deduce the
result in general.

Assume S = R[x1, . . . , xn]. Choose elements m1, . . . ,mt which generate M . This
gives a short exact sequence

0→ N → S⊕t
(m1,...,mt)−−−−−−−→M → 0.

Denote K the fraction field of R. Denote SK = K ⊗R S = K[x1, . . . , xn], and
similarly NK = K ⊗R N , MK = K ⊗R M . As R → K is flat the sequence
remains flat after tensoring with K. As SK = K[x1, . . . , xn] is a Noetherian ring
(see Lemma 10.30.1) we can find finitely many elements n′1, . . . , n

′
s ∈ NK which

generate it. Choose n1, . . . , nr ∈ N such that n′i =
∑
aijnj for some aij ∈ K. Set

M ′ = S⊕t/
∑

i=1,...,r
Sni

By construction M ′ is a finitely presented S-module, and there is a surjection
M ′ → M which induces an isomorphism M ′K

∼= MK . We may apply Lemma
10.114.2 to R→ S and M ′ and we find an f ∈ R such that M ′f is a free Rf -module.

Thus M ′f →Mf is a surjection of modules over the domain Rf where the source is
a free module and which becomes an isomorphism upon tensoring with K. Thus it
is injective as M ′f ⊂ M ′K as it is free over the domain Rf . Hence M ′f → Mf is an
isomorphism and the result is proved.

For the general case, choose a surjection R[x1, . . . , xn] → S. Think of both S
and M as finite modules over R[x1, . . . , xn]. By the special case proved above
there exists a nonzero f ∈ R such that both Sf and Mf are free as Rf -modules
and finitely presented as Rf [x1, . . . , xn]-modules. Clearly this implies that Sf is a
finitely presented Rf -algebra and that Mf is a finitely presented Sf -module. �

Let R→ S be a ring map. Let M be an S-module. Consider the following condition
on an element f ∈ R:

(10.114.3.1)

 Sf is of finite presentation over Rf
Mf is of finite presentation as Sf -module

Sf ,Mf are free as Rf -modules

We define

(10.114.3.2) U(R→ S,M) =
⋃

f∈R with (10.114.3.1)
D(f)

which is an open subset of Spec(R).

Lemma 10.114.4. Let R→ S be a ring map. Let 0→M1 →M2 →M3 → 0 be a
short exact sequence of S-modules. Then

U(R→ S,M1) ∩ U(R→ S,M3) ⊂ U(R→ S,M2).

Proof. Let u ∈ U(R → S,M1) ∩ U(R → S,M3). Choose f1, f3 ∈ R such that
u ∈ D(f1), u ∈ D(f3) and such that (10.114.3.1) holds for f1 and M1 and for
f3 and M3. Then set f = f1f3. Then u ∈ D(f) and (10.114.3.1) holds for f
and both M1 and M3. An extension of free modules is free, and an extension of
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finitely presented modules is finitely presented (Lemma 10.5.3). Hence we see that
(10.114.3.1) holds for f and M2. Thus u ∈ U(R→ S,M2) and we win. �

Lemma 10.114.5. Let R → S be a ring map. Let M be an S-module. Let
f ∈ R. Using the identification Spec(Rf ) = D(f) we have U(Rf → Sf ,Mf ) =
D(f) ∩ U(R→ S,M).

Proof. Suppose that u ∈ U(Rf → Sf ,Mf ). Then there exists an element g ∈
Rf such that u ∈ D(g) and such that (10.114.3.1) holds for the pair ((Rf )g →
(Sf )g, (Mf )g). Write g = a/fn for some a ∈ R. Set h = af . Then Rh = (Rf )g,
Sh = (Sf )g, and Mh = (Mf )g. Moreover u ∈ D(h). Hence u ∈ U(R → S,M).
Conversely, suppose that u ∈ D(f) ∩ U(R → S,M). Then there exists an ele-
ment g ∈ R such that u ∈ D(g) and such that (10.114.3.1) holds for the pair
(Rg → Sg,Mg). Then it is clear that (10.114.3.1) also holds for the pair (Rfg →
Sfg,Mfg) = ((Rf )g → (Sf )g, (Mf )g). Hence u ∈ U(Rf → Sf ,Mf ) and we win. �

Lemma 10.114.6. Let R → S be a ring map. Let M be an S-module. Let
U ⊂ Spec(R) be a dense open. Assume there is a covering U =

⋃
i∈I D(fi) of opens

such that U(Rfi → Sfi ,Mfi) is dense in D(fi) for each i ∈ I. Then U(R→ S,M)
is dense in Spec(R).

Proof. In view of Lemma 10.114.5 this is a purely topological statement. Namely,
by that lemma we see that U(R → S,M) ∩D(fi) is dense in D(fi) for each i ∈ I.
By Topology, Lemma 5.20.4 we see that U(R→ S,M) ∩ U is dense in U . Since U
is dense in Spec(R) we conclude that U(R→ S,M) is dense in Spec(R). �

Lemma 10.114.7. Let R→ S be a ring map. Let M be an S-module. Assume

(1) R→ S is of finite type,
(2) M is a finite S-module, and
(3) R is reduced.

Then there exists a subset U ⊂ Spec(R) such that

(1) U is open and dense in Spec(R),
(2) for every u ∈ U there exists an f ∈ R such that u ∈ D(f) ⊂ U and such

that we have
(a) Mf and Sf are free over Rf ,
(b) Sf is a finitely presented Rf -algebra, and
(c) Mf is a finitely presented Sf -module.

Proof. Note that the lemma is equivalent to the statement that the open U(R→
S,M), see Equation (10.114.3.2), is dense in Spec(R). We first prove the lemma
for S = R[x1, . . . , xn], and then we deduce the result in general.

Proof of the case S = R[x1, . . . , xn] and M any finite module over S. Note that in
this case Sf = Rf [x1, . . . , xn] is free and of finite presentation over Rf , so we do
not have to worry about the conditions regarding S, only those that concern M .
We will use induction on n.

There exists a finite filtration

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt = M

such that Mi/Mi−1
∼= S/Ji for some ideal Ji ⊂ S, see Lemma 10.5.4. Since a

finite intersection of dense opens is dense open, we see from Lemma 10.114.4 that
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it suffices to prove the lemma for each of the modules R/Ji. Hence we may assume
that M = S/J for some ideal J of S = R[x1, . . . , xn].

Let I ⊂ R be the ideal generated by the coefficients of elements of J . Let U1 =
Spec(R) \ V (I) and let

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪ U2 is dense in Spec(R). Let f ∈ R be an element
such that either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma
holds for the pair (Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 10.114.6 we see that
U(R→ S,M) is dense in Spec(R). Hence we may assume either (a) I = R, or (b)
V (I) = Spec(R).

In case (b) we actually have I = 0 as R is reduced! Hence J = 0 and M = S and
the lemma holds in this case.

In case (a) we have to do a little bit more work. Note that every element of I
is actually the coefficient of a monomial of an element of J , because the set of
coefficients of elements of J forms an ideal (details omitted). Hence we find an
element

g =
∑

K∈E
aKx

K ∈ J

where E is a finite set of multi-indices K = (k1, . . . , kn) with at least one coefficient
aK0

a unit in R. Actually we can find one which has a coefficient equal to 1 as 1 ∈ I
in case (a). Let m = #{K ∈ E | aK is not a unit}. Note that 0 ≤ m ≤ #E − 1.
We will argue by induction on m.

The case m = 0. In this case all the coefficients aK , K ∈ E of g are units and
E 6= ∅. If E = {K0} is a singleton and K0 = (0, . . . , 0), then g is a unit and J = S
so the result holds for sure. (This happens in particular when n = 0 and it provides
the base case of the induction on n.) If not E = {(0, . . . , 0)}, then at least one K
is not equal to (0, . . . , 0), i.e., g 6∈ R. At this point we employ the usual trick of
Noether normalization. Namely, we consider

G(y1, . . . , yn) = g(y1 + ye1n , y2 + ye2n , . . . , yn−1 + yen−1
n , yn)

with 0� en−1 � en−2 � . . .� e1. By Lemma 10.111.2 it follows thatG(y1, . . . , yn)
as a polynomial in yn looks like

aKy
kn+

∑
i=1,...,n−1 eiki

n + lower order terms in yn

As aK is a unit we conclude that M = R[x1, . . . , xn]/J is finite over R[y1, . . . , yn−1].
Hence U(R → R[x1, . . . , xn],M) = U(R → R[y1, . . . , yn−1],M) and we win by
induction on n.

The case m > 0. Pick a multi-index K ∈ E such that aK is not a unit. As before
set U1 = Spec(RaK ) = Spec(R) \ V (aK) and set

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪ U2 is dense in Spec(R). Let f ∈ R be an element
such that either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma
holds for the pair (Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 10.114.6 we see that
U(R → S,M) is dense in Spec(R). Hence we may assume either (a) aKR = R, or
(b) V (aK) = Spec(R). In case (a) the number m drops, as aK has turned into a
unit. In case (b), since R is reduced, we conclude that aK = 0. Hence the set E
decreases so the number m drops as well. In both cases we win by induction on m.
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At this point we have proven the lemma in case S = R[x1, . . . , xn]. Assume that
(R → S,M) is an arbitrary pair satisfying the conditions of the lemma. Choose
a surjection R[x1, . . . , xn] → S. Observe that, with the notation introduced in
(10.114.3.2), we have

U(R→ S,M) = U(R→ R[x1, . . . , xn], S) ∩ U(R→ R[x1, . . . , xn], S)

Hence as we’ve just finished proving the right two opens are dense also the open
on the left is dense. �

10.115. Around Krull-Akizuki

One application of Krull-Akizuki is to show that there are plenty of discrete val-
uation rings. More generally in this section we show how to construct discrete
valuation rings dominating Noetherian local rings.

First we show how to dominate a Noetherian local domain by a 1-dimensional
Noetherian local domain by blowing up the maximal ideal.

Lemma 10.115.1. Let R be a local Noetherian domain with fraction field K. As-
sume R is not a field. Then there exist R ⊂ R′ ⊂ K with

(1) R′ local Noetherian of dimension 1,
(2) R→ R′ a local ring map, i.e., R′ dominates R, and
(3) R→ R′ essentially of finite type.

Proof. Choose any valuation ring A ⊂ K dominating R (which exist by Lemma
10.48.2). Denote v the corresponding valuation. Let x1, . . . , xr be a minimal set
of generators of the maximal ideal m of R. We may and do assume that v(xr) =
min{v(x1), . . . , v(xr)}. Consider the ring

S = R[x1/xr, x2/xr, . . . , xr−1/xr] ⊂ K.
Note that mS = xrS is a principal ideal. Note that S ⊂ A and that v(xr) > 0, hence
we see that xrS 6= S. Choose a minimal prime q over xrS. Then height(q) = 1 by
Lemma 10.59.10 and q lies over m. Hence we see that R′ = Sq is a solution. �

The spectrum of the ring R′ in the following lemma is really the blow up of Spec(R)
in the maximal ideal of R (at least if case R is reduced).

Lemma 10.115.2. Let R be a local ring with maximal ideal m. Assume R is
Noetherian, dimension 1 and that dim(m/m2) > 1. Then there exists a ring map
R→ R′ such that

(1) R→ R′ is finite,
(2) R→ R′ is not an isomorphism, and
(3) for every f ∈ m the map Rf → R′f is an isomorphism.

Proof. If m is an associated prime of R then we can take R′ = R/I with I = {x ∈
R | mx = 0}. Hence we may assume that depth(R) = 1. In other words, we may
assume R is Cohen-Macaulay.

Denote κ = R/m the residue field of R. Consider the graded κ-algebra S =⊕
d≥0 m

d/md+1. This is a Noetherian ring, and hence has finitely many mini-
mal primes qj . Since the dimension of R is 1 we know the Hilbert function of R is
eventually constant, see Proposition 10.59.8. Hence there exists an integer d0 ≥ 0
and an integer r > 0 such that dimκ(mn/mn+1) = r for all d ≥ d0. By Lemma
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10.113.1 we have dim(S) = 1 and each qi is a homogeneous prime ideal. Note that
dim(S) = 1 implies none of the qi is equal to S+. Hence by Lemma 10.55.6 we
may choose f ∈ S+ homogeneous not contained in any qj . Then dim(S/fS) = 0.
This implies that dimκ(S/fS) < ∞, see for example Lemma 10.111.4. Hence we
see that fSn = Sn+deg(f) for all n� 0.

Set d = deg(f). Choose x ∈ md which maps to f . Note that since fSn = Sn+d

for n � 0 we have xmn = mn+d by Nakayama’s Lemma 10.19.1 for n � 0. Hence
m =

√
(x). Since R is Cohen-Macaulay this implies that x is a nonzerodivisor.

Choose generators x1, . . . , xt of md as an ideal of R. Set

R′ = R[x1/x, x2/x, . . . , xt/x] ⊂ R[1/x].

Note that since x is a nonzerodivisor we have R ⊂ R′. Since m =
√

(x) we see that
x is invertible in Rg for any g ∈ m, whence (3).

We claim that R′ is finite over R. Namely, choose n such that xmnd = m(n+1)d.
Then we can write xn+1

i = xfi(x1, . . . , xt) with fi ∈ R[X1, . . . , Xt] homogeneous of
degree n. Hence we see that

(xi/x)n+1 = fi(x1/x, . . . , xt/x)

in R′ with the right hand side of degree ≤ n. Hence any element in R′ can be
expressed as a sum of (x1/x)i1 . . . (xt/x)it with ij ≤ n. This proves that R′ is finite
over R.

Finally we show that R 6= R′. We argue by contradiction. Suppose R′ = R. This
means that x1/x, . . . , xt/x ∈ R for all i. In other words this means that md = (x).
Choose y1, . . . , ys ∈ m a minimal generating set. The assumption of the lemma
implies s ≥ 2. For some i1, . . . , is ≥ 0,

∑
ij = d we have x = uyi11 . . . yiss for some

unit u in R. We may assume i1 > 0. Then

yi1−1
1 yi2+1

2 yi33 . . . yiss ∈ md

is a multiple of x hence a multiple of yi11 . . . yiss . Hence we see that y2/y1 ∈ R. This
is a contradiction with the minimality of y1, . . . , ys. �

Example 10.115.3. Consider the Noetherian local ring

R = k[[x, y]]/(y2)

It has dimension 1 and it is Cohen-Macaulay. The result of applying the procedure
of Lemma 10.115.2 to R is the extension

k[[x, y]]/(y2) ⊂ k[[x, z]]/(z2), y 7→ xz

in other words it is gotten by adjoining y/x to R. The effect of repeating the
construction n > 1 times is to adjoin the element y/xn.

Example 10.115.4. Let k be a field of characteristic p > 0 such that k has
infinite degree over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .).
Consider the ring

A =
{∑

aix
i ∈ k[[x]] such that [kp(a0, a1, a2, . . .) : kp] <∞

}
Then A is a discrete valuation ring and its completion is A∧ = k[[x]]. Note that
the field extension f.f.(A) ⊂ f.f.(k[[x]]) is infinite purely inseparable. Choose any
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f ∈ k[[x]], f 6∈ A. Let R = A[f ] ⊂ k[[x]]. Then R is a Noetherian local domain of
dimension 1 whose completion R∧ is nonreduced (think!).

Remark 10.115.5. Suppose that R is a 1-dimensional semi-local Noetherian do-
main. If there is a maximal ideal m ⊂ R such that Rm is not regular, then we may
apply the procedure of (the proof of) Lemma 10.115.2 to (R,m) to get a finite ring
extension R ⊂ R1. (Note that Spec(R1) → Spec(R) is the blow up of Spec(R) in
the ideal m.) Of course R1 is a 1-dimensional semi-local Noetherian domain with
the same fraction field as R. If R1 is not a regular semi-local ring, then we may
repeat the construction to get R1 ⊂ R2. Thus we get a sequence

R ⊂ R1 ⊂ R2 ⊂ R3 ⊂ . . .

of finite ring extensions which may stop if Rn is regular for some n. Resolution
of singularities would be the claim that eventually Rn is indeed regular. In reality
this is not the case. Namely, there exists a characteristic 0 Noetherian local domain
A of dimension 1 whose completion is nonreduced, see [FR70, Proposition 3.1] or
our Examples, Section 82.15. For an example in characteristic p > 0 see Example
10.115.4. Since the construction of blowing up commutes with completion it is
easy to see the sequence never stabilizes. See [Ben73] for a discussion (mostly in
positive characteristic). On the other hand, if the completion of R in all of its
maximal ideals is reduced, then the procedure stops (insert future reference here).

Lemma 10.115.6. Let A be a ring. The following are equivalent.

(1) The ring A is a discrete valuation ring.
(2) The ring A is a valuation ring and Noetherian.
(3) The ring A is a regular local ring of dimension 1.
(4) The ring A is a Noetherian local domain with maximal ideal m generated

by a single nonzero element.
(5) The ring A is a Noetherian local normal domain of dimension 1.

In this case if π is a generator of the maximal ideal of A, then every element of A
can be uniquely written as uπn, where u ∈ A is a unit.

Proof. The equivalence of (1) and (2) is Lemma 10.48.18. Moreover, in the proof
of Lemma 10.48.18 we saw that if A is a discrete valuation ring, then A is a PID,
hence (3). Note that a regular local ring is a domain (see Lemma 10.102.2). Using
this the equivalence of (3) and (4) follows from dimension theory, see Section 10.59.

Assume (3) and let π be a generator of the maximal ideal m. For all n ≥ 0 we
have dimA/m mn/mn+1 = 1 because it is generated by πn (and it cannot be zero).

In particular mn = (πn) and the graded ring
⊕

mn/mn+1 is isomorphic to the
polynomial ring A/m[T ]. For x ∈ A \ {0} define v(x) = max{n | x ∈ mn}. In other
words x = uπv(x) with u ∈ A∗. By the remarks above we have v(xy) = v(x) + v(y)
for all x, y ∈ A \ {0}. We extend this to the field of fractions K of A by setting
v(a/b) = v(a)−v(b) (well defined by multiplicativity shown above). Then it is clear
that A is the set of elements of K which have valuation ≥ 0. Hence we see that A
is a valuation ring by Lemma 10.48.16.

A valuation ring is a normal domain by Lemma 10.48.10. Hence we see that the
equivalent conditions (1) – (3) imply (5). Assume (5). Suppose that m cannot be
generated by 1 element to get a contradiction. Then Lemma 10.115.2 implies there
is a finite ring map A → A′ which is an isomorphism after inverting any nonzero
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element of m but not an isomorphism. In particular A′ ⊂ f.f.(A). Since A → A′

is finite it is integral (see Lemma 10.35.3). Since A is normal we get A = A′ a
contradiction. �

Definition 10.115.7. Let A be a discrete valuation ring. A uniformizer is an
element π ∈ A which generates the maximal ideal of A.

By Lemma 10.115.6 any two uniformizers of a discrete valuation ring are associates.

Lemma 10.115.8. Let R be a domain with fraction field K. Let M be an R-
submodule of K⊕r. Assume R is local Noetherian of dimension 1. For any nonzero
x ∈ R we have lengthR(R/xR) <∞ and

lengthR(M/xM) ≤ r · lengthR(R/xR).

Proof. If x is a unit then the result is true. Hence we may assume x ∈ m the
maximal ideal of R. Since x is not zero and R is a domain we have dim(R/xR) = 0,
and hence R/xR has finite length. Consider M ⊂ K⊕r as in the lemma. We may
assume that the elements of M generate K⊕r as a K-vector space after replacing
K⊕r by a smaller subspace if necessary.

Suppose first that M is a finite R-module. In that case we can clear denominators
and assume M ⊂ R⊕r. Since M generates K⊕r as a vectors space we see that
R⊕r/M has finite length. In particular there exists an integer c ≥ 0 such that
xcR⊕r ⊂ M . Note that M ⊃ xM ⊃ x2M ⊃ . . . is a sequence of modules with
successive quotients each isomorphic to M/xM . Hence we see that

nlengthR(M/xM) = lengthR(M/xnM).

The same argument for M = R⊕r shows that

nlengthR(R⊕r/xR⊕r) = lengthR(R⊕r/xnR⊕r).

By our choice of c above we see that xnM is sandwiched between xnR⊕r and
xn+cR⊕r. This easily gives that

r(n+ c)lengthR(R/xR) ≥ nlengthR(M/xM) ≥ r(n− c)lengthR(R/xR)

Hence in the finite case we actually get the result of the lemma with equality.

Suppose now that M is not finite. Suppose that the length of M/xM is ≥ k for
some natural number k. Then we can find

0 ⊂ N0 ⊂ N1 ⊂ N2 ⊂ . . . Nk ⊂M/xM

with Ni 6= Ni+1 for i = 0, . . . k − 1. Choose an element mi ∈M whose congruence
class mod xM falls into Ni but not into Ni−1 for i = 1, . . . , k. Consider the finite
R-module M ′ = Rm1 + . . . + Rmk ⊂ M . Let N ′i ⊂ M ′/xM ′ be the inverse
image of Ni. It is clear that N ′i 6= N ′i+1 by our choice of mi. Hence we see that
lengthR(M ′/xM ′) ≥ k. By the finite case we conclude k ≤ rlengthR(R/xR) as
desired. �

Here is a first application.

Lemma 10.115.9. Let R → S be a homomorphism of domains inducing an in-
jection of fraction fields K ⊂ L. If R is Noetherian local of dimension 1 and
[L : K] <∞ then

(1) each prime ideal ni of S lying over the maximal ideal m of R is maximal,
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(2) there are finitely many of these, and
(3) [κ(ni) : κ(m)] <∞ for each i.

Proof. Pick x ∈ m nonzero. Apply Lemma 10.115.8 to the submodule S ⊂ L ∼=
K⊕n where n = [L : K]. Thus the ring S/xS has finite length over R. It follows
that S/mS has finite length over κ(m). In other words, dimκ(m) S/mS is finite
(Lemma 10.50.6). Thus S/mS is Artinian (Lemma 10.51.2). The structural results
on Artinian rings implies parts (1) and (2), see for example Lemma 10.51.6. Part
(3) is implied by the finiteness established above. �

Lemma 10.115.10. Let R be a domain with fraction field K. Let M be an R-
submodule of K⊕r. Assume R is Noetherian of dimension 1. For any nonzero
x ∈ R we have lengthR(M/xM) <∞.

Proof. Since R has dimension 1 we see that x is contained in finitely many primes
mi, i = 1, . . . , n, each maximal. Since R is Noetherian we see that R/xR is Artinian,
see Proposition 10.59.6. Hence R/xR is a quotient of

∏
R/meii for certain ei because

that me11 . . .menn ⊂ (x) for suitably large ei as R/xR is Artinian (see Section 10.51).
Hence M/xM similarly decomposes as a product

∏
(M/xM)mi =

∏
M/(meii , x)M

of its localizations at the mi. By Lemma 10.115.8 applied to Mmi over Rmi we see
each Mmi/xMmi = (M/xM)mi has finite length over Rmi . It easily follows that
M/xM has finite length over R. �

Lemma 10.115.11 (Krull-Akizuki). Let R be a domain with fraction field K. Let
K ⊂ L be a finite extension of fields. Assume R is Noetherian and dim(R) = 1. In
this case any ring A with R ⊂ A ⊂ L is Noetherian.

Proof. To begin we may assume that L is the fraction field of A by replacing L by
the fraction field of A if necessary. Let I ⊂ A be an ideal. Clearly I generates L
as a K-vector space. Hence we see that I ∩ R 6= (0). Pick any nonzero x ∈ I ∩ R.
Then we get I/xA ⊂ A/xA. By Lemma 10.115.10 the R-module A/xA has finite
length as an R-module. Hence I/xA has finite length as an R-module. Hence I is
finitely generated as an ideal in A. �

Lemma 10.115.12. Let R be a Noetherian local domain with fraction field K.
Assume that R is not a field. Let K ⊂ L be a finitely generated field extension.
Then there exists discrete valuation ring A with fraction field L which dominates
R.

Proof. If L is not finite over K choose a transcendence basis x1, . . . , xr of L over
K and replace R by R[x1, . . . , xr] localized at the maximal ideal generated by mR
and x1, . . . , xr. Thus we may assume K ⊂ L finite.

By Lemma 10.115.1 we may assume dim(R) = 1.

Let A ⊂ L be the integral closure of R in L. By Lemma 10.115.11 this is Noetherian.
By Lemma 10.35.15 there is a prime ideal q ⊂ A lying over the maximal ideal of
R. By Lemma 10.115.6 the ring Aq is a discrete valuation ring dominating R as
desired. �

10.116. Factorization

Here are some notions and relations between them that are typically taught in a
first year course on algebra at the undergraduate level.
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Definition 10.116.1. Let R be a domain.

(1) Elements x, y ∈ R are called associates if there exists a unit u ∈ R∗ such
that x = uy.

(2) An element x ∈ R is called irreducible if it is nonzero, not a unit and
whenever x = yz, y, z ∈ R, then y is either a unit or an associate of x.

(3) An element x ∈ R is called prime if the ideal generated by x is a prime
ideal.

Lemma 10.116.2. Let R be a domain. Let x, y ∈ R. Then x, y are associates if
and only if (x) = (y).

Proof. If x = uy for some unit u ∈ R, then (x) ⊂ (y) and y = u−1x so also
(y) ⊂ (x). Conversely, suppose that (x) = (y). Then x = fy and y = gx for
some f, g ∈ A. Then x = fgx and since R is a domain fg = 1. Thus x and y are
associates. �

Lemma 10.116.3. Let R be a domain. Consider the following conditions:

(1) The ring R satisfies the ascending chain condition for principal ideals.
(2) Every nonzero, nonunit element a ∈ R has a factorization a = b1 . . . bk

with each bi an irreducible element of R.

Then (1) implies (2).

Proof. Let x be a nonzero element, not a unit, which does not have a factorization
into irreducibles. Set x1 = x. We can write x = yz where neither y nor z is
irreducible or a unit. Then either y does not have a factorization into irreducibles,
in which case we set x2 = y, or z does not have a factorization into irreducibles, in
which case we set x2 = z. Continuing in this fashion we find a sequence

x1|x2|x3| . . .
of elements of R with xn/xn+1 not a unit. This gives a strictly increasing sequence
of principal ideals (x1) ⊂ (x2) ⊂ (x3) ⊂ . . . thereby finishing the proof. �

Definition 10.116.4. A unique factorization domain, abbreviated UFD, is a do-
main R such that if x ∈ R is a nonzero, nonunit, then x has a factorization into
irreducibles, and if

x = a1 . . . am = b1 . . . bn

are factorizations into irreducibles then n = m and there exists a permutation
σ : {1, . . . , n} → {1, . . . , n} such that ai and bσ(i) are associates.

Lemma 10.116.5. Let R be a domain. Assume every nonzero, nonunit factors
into irreducibles. Then R is a UFD if and only if every irreducible element is prime.

Proof. Assume R is a UFD and let x ∈ R be an irreducible element. Say ab ∈ (x),
i.e., ab = cx. Choose factorizations a = a1 . . . an, b = b1 . . . bm, and c = c1 . . . cr.
By uniqueness of the factorization

a1 . . . anb1 . . . bm = c1 . . . crx

we find that x is an associate of one of the elements a1, . . . , bm. In other words,
either a ∈ (x) or b ∈ (x) and we conclude that x is prime.

Assume every irreducible element is prime. We have to prove that factorization
into irreducibles is unique up to permutation and taking associates. Say a1 . . . am =
b1 . . . bn with ai and bj irreducible. Since a1 is prime, we see that bj ∈ (a1) for some
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j. After renumbering we may assume b1 ∈ (a1). Then b1 = a1u and since b1 is
irreducible we see that u is a unit. Hence a1 and b1 are associates and a2 . . . an =
ub2 . . . bm. By induction on n + m we see that n = m and ai associate to bσ(i) for
i = 2, . . . , n as desired. �

Lemma 10.116.6. Let R be a Noetherian domain. Then R is a UFD if and only
if every height 1 prime ideal is principal.

Proof. Assume R is a UFD and let p be a height 1 prime ideal. Take x ∈ p nonzero
and let x = a1 . . . an be a factorization into irreducibles. Since p is prime we see
that ai ∈ p for some i. By Lemma 10.116.5 the ideal (ai) is prime. Since p has
height 1 we conclude that (ai) = p.

Assume every height 1 prime is principal. Since R is Noetherian every nonzero
nonunit element x has a factorization into irreducibles, see Lemma 10.116.3. It
suffices to prove that an irreducible element x is prime, see Lemma 10.116.5. Let
(x) ⊂ p be a prime minimal over (x). Then p has height 1 by Lemma 10.59.10.
By assumption p = (y). Hence x = yz and z is a unit as x is irreducible. Thus
(x) = (y) and we see that x is prime. �

Lemma 10.116.7 (Nagata’s criterion for factoriality). Let A be a domain. Let
S ⊂ A be a multiplicative subset generated by prime elements. Let x ∈ A be
irreducible. Then

(1) the image of x in S−1A is irreducible or a unit, and
(2) x is prime if and only if the image of x in S−1A is a unit or a prime

element in S−1A.

Moreover, then A is a UFD if and only if every element of A has a factorization
into irreducibles and S−1A is a UFD.

Proof. Say x = αβ for α, β ∈ S−1A. Then α = a/s and β = b/s′ for a, b ∈ A,
s, s′ ∈ S. Thus we get ss′x = ab. By assumption we can write ss′ = p1 . . . pr for
some prime elements pi. For each i the element pi divides either a or b. Dividing
we find a factorization x = a′b′ and a = s′′a′, b = s′′′b′ for some s′′, s′′′ ∈ S. As x
is irreducible, either a′ or b′ is a unit. Tracing back we find that either α or β is a
unit. This proves (1).

Suppose x is prime. Then A/(x) is a domain. Hence S−1A/xS−1A = S−1(A/(x))
is a domain or zero. Thus x maps to a prime element or a unit.

Suppose that the image of x in S−1A is a unit. Then yx = s for some s ∈ S and
y ∈ A. By assumption s = p1 . . . pr with pi a prime element. For each i either
pi divides y or pi divides x. In the second case pi and x are associates (as x is
irreducible) and we are done. But if the first case happens for all i = 1, . . . , r, then
x is a unit which is a contradiction.

Suppose that the image of x in S−1A is a prime element. Assume a, b ∈ A and
ab ∈ (x). Then sa = xy or sb = xy for some s ∈ S and y ∈ A. Say the first case
happens. By assumption s = p1 . . . pr with pi a prime element. For each i either
pi divides y or pi divides x. In the second case pi and x are associates (as x is
irreducible) and we are done. If the first case happens for all i = 1, . . . , r, then
a ∈ (x) as desired. This completes the proof of (2).

The final statement of the lemma follows from (1) and (2) and Lemma 10.116.5. �
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Lemma 10.116.8. A unique factorization domain is normal.

Proof. Let R be a UFD. Let x be an element of the fraction field of R which
is integral over R. Say xd − a1x

d−1 − . . . − ad = 0 with ai ∈ R. We can write
x = upe11 . . . perr with u a unit, ei ∈ Z, and p1, . . . , pr irreducible elements which are
not associates. To prove the lemma we have to show ei ≥ 0. If not, say e1 < 0,
then for N � 0 we get

udpde2+N
2 . . . pder+N

r = p−de11 pN2 . . . pNr (
∑

i=1,...,d
aix

d−i) ∈ (p1)

which contradicts uniqueness of factorization in R. �

Definition 10.116.9. A principal ideal domain, abbreviated PID, is a domain R
such that every ideal is a principal ideal.

Lemma 10.116.10. A principal ideal domain is a unique factorization domain.

Proof. As a PID is Noetherian this follows from Lemma 10.116.6. �

Definition 10.116.11. A Dedekind domain is a domain R such that every nonzero
ideal I ⊂ R can be written as a product

I = p1 . . . pr

of nonzero prime ideals uniquely up to permutation of the pi.

Lemma 10.116.12. Let A be a ring. Let I and J be nonzero ideals of A such
that IJ = (f) for some nonzerodivisor f ∈ A. Then I and J are finitely generated
ideals and finitely locally free of rank 1 as A-modules.

Proof. It suffices to show that I and J are finite locally free A-modules of rank 1,
see Lemma 10.75.2. To do this, write f =

∑
i=1,...,n xiyi with xi ∈ I and yi ∈ J .

We can also write xiyi = aif for some ai ∈ A. Since f is a nonzerodivisor we see
that

∑
ai = 1. Thus it suffices to show that each Iai and Jai is free of rank 1 over

Aai . After replacing A by Aai we conclude that f = xy for some x ∈ I and y ∈ J .
Note that both x and y are nonzerodivisors. We claim that I = (x) and J = (y)
which finishes the proof. Namely, if x′ ∈ I, then x′y = af = axy for some a ∈ A.
Hence x′ = ax and we win. �

Lemma 10.116.13. Let R be a ring. The following are equivalent

(1) R is a Dedekind domain,
(2) R is a Noetherian domain, and for every maximal ideal m the local ring

Rm is a discrete valuation ring, and
(3) R is a Noetherian, normal domain, and dim(R) ≤ 1.

Proof. Assume (1). The argument is nontrivial because we did not assume that
R was Noetherian in our definition of a Dedekind domain. Let p ⊂ R be a prime
ideal. Observe that p 6= p2 by uniqueness of the factorizations in the definition.
Pick x ∈ p with x 6∈ p2. Let y ∈ p be a second element (for example y = 0). Write
(x, y) = p1 . . . pr. Since (x, y) ⊂ p at least one of the primes pi is contained in p.
But as x 6∈ p2 there is at most one. Thus exactly one of p1, . . . , pr is contained in
p, say p1 ⊂ p. We conclude that (x, y)Rp = p1Rp is prime for every choice of y.
We claim that (x)Rp = pRp. Namely, pick y ∈ p. By the above applied with y2 we
see that (x, y2)Rp is prime. Hence y ∈ (x, y2)Rp, i.e., y = ax + by2 in Rp. Thus
(1− by)y = ax ∈ (x)Rp, i.e., y ∈ (x)Rp as desired.
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Writing (x) = p1 . . . pr anew with p1 ⊂ p we conclude that p1Rp = pRp, i.e.,
p1 = p. Moreover, p1 = p is a finitely generated ideal of R by Lemma 10.116.12.
We conclude that R is Noetherian by Lemma 10.27.9. Moreover, it follows that Rm

is a discrete valuation ring for every prime ideal p, see Lemma 10.115.6.

The equivalence of (2) and (3) follows from Lemmas 10.36.9 and 10.115.6. Assume
(2) and (3) are satisfied. Let I ⊂ R be an ideal. We will construct a factorization
of I. If I is prime, then there is nothing to prove. If not, pick I ⊂ p with p ⊂ R
maximal. Let J = {x ∈ R | xp ⊂ I}. We claim Jp = I. It suffices to check
this after localization at the maximal ideals m of A (the formation of J commutes
with localization and we use Lemma 10.23.1). Then either pRm = Rm and the
result is clear, or pRm = mRm. In the last case pRm = (π) and the case where p
is principal is immediate. By Noetherian induction the ideal J has a factorization
and we obtain the desired factorization of I. We omit the proof of uniqueness of
the factorization. �

The following is a variant of the Krull-Akizuki lemma.

Lemma 10.116.14. Let A be a Noetherian domain of dimension 1 with fraction
field K. Let K ⊂ L be a finite extension. Let B be the integral closure of A in
L. Then B is a Dedekind domain and Spec(B)→ Spec(A) is surjective, has finite
fibres, and induces finite residue field extensions.

Proof. By Krull-Akizuki (Lemma 10.115.11) the ring B is Noetherian. By Lemma
10.108.4 dim(B) = 1. Thus B is a Dedekind domain by Lemma 10.116.13. Surjec-
tivity of the map on spectra follows from Lemma 10.35.15. The last two statements
follow from Lemma 10.115.9. �

10.117. Orders of vanishing

Lemma 10.117.1. Let R be a semi-local Noetherian ring of dimension 1. If a, b ∈
R are nonzerodivisors then

lengthR(R/(ab)) = lengthR(R/(a)) + lengthR(R/(b))

and these lengths are finite.

Proof. We saw the finiteness in Lemma 10.115.10. Additivity holds since there is
a short exact sequence 0 → R/(a) → R/(ab) → R/(b) → 0 where the first map is
given by multiplication by b. (Use length is additive, see Lemma 10.50.3.) �

Definition 10.117.2. Suppose that K is a field, and R ⊂ K is a local5 Noetherian
subring of dimension 1 with fraction field K. In this case we define the order of
vanishing along R

ordR : K∗ −→ Z

by the rule

ordR(x) = lengthR(R/(x))

if x ∈ R and we set ordR(x/y) = ordR(x)− ordR(y) for x, y ∈ R both nonzero.

We can use the order of vanishing to compare lattices in a vector space. Here is
the definition.

5We could also define this when R is only semi-local but this is probably never really what
you want!
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Definition 10.117.3. Let R be a Noetherian local domain of dimension 1 with
fraction field K. Let V be a finite dimensional K-vector space. A lattice in V is a
finite R-submodule M ⊂ V such that V = K ⊗RM .

The condition V = K ⊗RM signifies that M contains a basis for the vector space
K. We remark that in many places in the literature the notion of a lattice may
be defined only in case the ring R is a discrete valuation ring. If R is a discrete
valuation ring then any lattice is a free R-module, and this may not be the case in
general.

Lemma 10.117.4. Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space.

(1) If M is a lattice in V and M ⊂M ′ ⊂ V is an R-submodule of V containing
M then the following are equivalent
(a) M ′ is a lattice,
(b) lengthR(M ′/M) is finite, and
(c) M ′ is finitely generated.

(2) If M is a lattice in V and M ′ ⊂ M is an R-submodule of M then M ′ is
a lattice if and only if lengthR(M/M ′) is finite.

(3) If M , M ′ are lattices in V , then so are M ∩M ′ and M +M ′.
(4) If M ⊂M ′ ⊂M ′′ ⊂ V are lattices in V then

lengthR(M ′′/M) = lengthR(M ′/M) + lengthR(M ′′/M ′).

(5) If M , M ′, N , N ′ are lattices in V and N ⊂M ∩M ′, M +M ′ ⊂ N ′, then
we have

lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)
= lengthR(M/N)− lengthR(M ′/N)

= lengthR(M +M ′/M ′)− lengthR(M +M ′/M)

= lengthR(N ′/M ′)− lengthR(N ′/M)

Proof. Proof of (1). Assume (1)(a). Say y1, . . . , ym generate M ′. Then each
yi = xi/fi for some xi ∈M and nonzero fi ∈ R. Hence we see that f1 . . . fmM

′ ⊂
M . Since R is Noetherian local of dimension 1 we see that mn ⊂ (f1 . . . fm) for
some n (for example combine Lemmas 10.59.11 and Proposition 10.59.6 or combine
Lemmas 10.115.8 and 10.50.4). In other words mnM ′ ⊂ M for some n Hence
length(M ′/M) < ∞ by Lemma 10.50.8, in other words (1)(b) holds. Assume
(1)(b). Then M ′/M is a finite R-module (see Lemma 10.50.2). Hence M ′ is a
finite R-module as an extension of finite R-modules. Hence (1)(c). The implication
(1)(c) ⇒ (1)(a) follows from the remark following Definition 10.117.3.

Proof of (2). Suppose M is a lattice in V and M ′ ⊂M is an R-submodule. We have
seen in (1) that if M ′ is a lattice, then lengthR(M/M ′) < ∞. Conversely, assume
that lengthR(M/M ′) < ∞. Then M ′ is finitely generated as R is Noetherian and
for some n we have mnM ⊂M ′ (Lemma 10.50.4). Hence it follows that M ′ contains
a basis for V , and M ′ is a lattice.

Proof of (3). Assume M , M ′ are lattices in V . Since R is Noetherian the submodule
M ∩M ′ of M is finite. As M is a lattice we can find x1, . . . , xn ∈ M which form
a K-basis for V . Because M ′ is a lattice we can write xi = yi/fi with yi ∈ M ′

and fi ∈ R. Hence fixi ∈ M ∩M ′. Hence M ∩M ′ is a lattice also. The fact that
M +M ′ is a lattice follows from part (1).
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Part (4) follows from additivity of lengths (Lemma 10.50.3) and the exact sequence

0→M ′/M →M ′′/M →M ′′/M ′ → 0

Part (5) follows from repeatedly applying part (4). �

Definition 10.117.5. Let R be a Noetherian local domain of dimension 1 with
fraction field K. Let V be a finite dimensional K-vector space. Let M , M ′ be two
lattices in V . The distance between M and M ′ is the integer

d(M,M ′) = lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)

of Lemma 10.117.4 part (5).

In particular, if M ′ ⊂M , then d(M,M ′) = lengthR(M/M ′).

Lemma 10.117.6. Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. This distance function has
the property that

d(M,M ′′) = d(M,M ′) + d(M ′,M ′′)

whenever given three lattices M , M ′, M ′′ of V . In particular we have d(M,M ′) =
−d(M ′,M).

Proof. Omitted. �

Lemma 10.117.7. Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. Let ϕ : V → V be a K-linear
isomorphism. For any lattice M ⊂ V we have

d(M,ϕ(M)) = ordR(det(ϕ))

Proof. We can see that the integer d(M,ϕ(M)) does not depend on the lattice M
as follows. Suppose that M ′ is a second such lattice. Then we see that

d(M,ϕ(M)) = d(M,M ′) + d(M ′, ϕ(M))

= d(M,M ′) + d(ϕ(M ′), ϕ(M)) + d(M ′, ϕ(M ′))

Since ϕ is an isomorphism we see that d(ϕ(M ′), ϕ(M)) = d(M ′,M) = −d(M,M ′),
and hence d(M,ϕ(M)) = d(M ′, ϕ(M ′)). Moreover, both sides of the equation (of
the lemma) are additive in ϕ, i.e.,

ordR(det(ϕ ◦ ψ)) = ordR(det(ϕ)) + ordR(det(ψ))

and also

d(M,ϕ(ψ((M))) = d(M,ψ(M)) + d(ψ(M), ϕ(ψ(M)))

= d(M,ψ(M)) + d(M,ϕ(M))

by the independence shown above. Hence it suffices to prove the lemma for gen-
erators of GL(V ). Choose an isomorphism K⊕n ∼= V . Then GL(V ) = GLn(K) is
generated by elementary matrices E. The result is clear for E equal to the identity
matrix. If E = Eij(λ) with i 6= j, λ ∈ K, λ 6= 0, for example

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .
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then with respect to a different basis we get E12(1). The result is clear for E =
E12(1) by taking as lattice R⊕n ⊂ K⊕n. Finally, if E = Ei(a), with a ∈ K∗ for
example

E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


then E1(a)(R⊕b) = aR⊕R⊕n−1 and it is clear that d(R⊕n, aR⊕R⊕n−1) = ordR(a)
as desired. �

Lemma 10.117.8. Let A→ B be a ring map. Assume

(1) A is a Noetherian local domain of dimension 1,
(2) A ⊂ B is a finite extension of domains.

Let K = f.f.(A) and L = f.f.(B) so that L is a finite field extension of K. Let
y ∈ L∗ and x = NmL/K(y). In this situation B is semi-local. Let mi, i = 1, . . . , n
be the maximal ideals of B. Then

ordA(x) =
∑

i
[κ(mi) : κ(mA)]ordBmi

(y)

where ord is defined as in Definition 10.117.2.

Proof. The ring B is semi-local by Lemma 10.109.2. Write y = b/b′ for some
b, b′ ∈ B. By the additivity of ord and multiplicativity of Nm it suffices to prove
the lemma for y = b or y = b′. In other words we may assume y ∈ B. In this case
the left hand side of the formula is∑

[κ(mi) : κ(mA)]lengthBmi
((B/yB)mi)

By Lemma 10.50.12 this is equal to lengthA(B/yB). By Lemma 10.117.7 we have

lengthA(B/yB) = d(B, yB) = ordA(detK(L
y−→ L)).

Since x = NmL/K(y) = detK(L
y−→ L) by definition the lemma is proved. �

We can extend some of the results above to reduced 1-dimensional Noetherian local
rings which are not domains by the following lemma.

Lemma 10.117.9. Let (R,m) be a reduced Noetherian local ring of dimension 1
and let x ∈ m be a nonzerodivisor. Let q1, . . . , qr be the minimal primes of R. Then

lengthR(R/(x)) =
∑

i
ordR/qi(x)

Proof. Note that Ri = R/qi is a Noetherian 1-dimensional local domain. Denote
Ki = f.f.(Ri). If x is a unit in R, then both sides are zero. Hence we may assume
x ∈ m. Consider the map Ψ : R →

∏
Ri. As R is reduced this map is injective,

see Lemma 10.16.2. By Lemma 10.24.4 we have Q(R) =
∏
Ki. Hence the finite

R-module Coker(Ψ) is annihilated by a nonzerodivisor y ∈ R, hence has support
{m}, is annihilated by some power of x and has finite length over R, see Lemma
10.61.3. Consider the short exact sequence

0→ R→
∏

Ri → Coker(Ψ)→ 0

Applying multiplication by xn to this for n� 0 we obtain from the snake lemma

0→ Coker(Ψ)→ R/xnR→
∏

Ri/x
nRi → Coker(Ψ)→ 0
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Thus we see that

lengthR(R/xnR) = lengthR(
∏

Ri/x
nRi) =

∑
lengthR(Ri/x

nRi)

by Lemma 10.50.3. By Lemma 10.50.5 we have lengthR(Ri/x
nRi) = lengthRi(Ri/x

nRi).
Now the result follows from the additivity of Lemma 10.117.1 and the definition of
the order of vanishing along Ri. �

10.118. Quasi-finite maps

Consider a ring map R → S of finite type. A map Spec(S) → Spec(R) is quasi-
finite at a point if that point is isolated in its fibre. This means that the fibre is
zero dimensional at that point. In this section we study the basic properties of this
important but technical notion. More advanced material can be found in the next
section.

Lemma 10.118.1. Let k be a field. Let S be a finite type k algebra. Let q be a
prime of S. The following are equivalent:

(1) q is an isolated point of Spec(S),
(2) Sq is finite over k,
(3) there exists a g ∈ S, g 6∈ q such that D(g) = {q},
(4) dimq Spec(S) = 0,
(5) q is a closed point of Spec(S) and dim(Sq) = 0, and
(6) the field extension k ⊂ κ(q) is finite and dim(Sq) = 0.

In this case S = Sq × S′ for some finite type k-algebra S′. Also, the element g as
in (3) has the property Sq = Sg.

Proof. Suppose q is an isolated point of Spec(S), i.e., {q} is open in Spec(S).
Because Spec(S) is a Jacobson space (see Lemmas 10.34.2 and 10.34.4) we see that
q is a closed point. Hence {q} is open and closed in Spec(S). By Lemmas 10.20.3
and 10.22.3 we may write S = S1 × S2 with q corresponding to the only point
Spec(S1). Hence S1 = Sq is a zero dimensional ring of finite type over k. Hence it
is finite over k for example by Lemma 10.111.4. We have proved (1) implies (2).

Suppose Sq is finite over k. Then Sq is Artinian local, see Lemma 10.51.2. So
Spec(Sq) = {qSq} by Lemma 10.51.6. Consider the exact sequence 0→ K → S →
Sq → Q → 0. It is clear that Kq = Qq = 0. Also, K is a finite S-module as S is
Noetherian and Q is a finite S-modules since Sq is finite over k. Hence there exists
g ∈ S, g 6∈ q such that Kg = Qg = 0. Thus Sq = Sg and D(g) = {q}. We have
proved that (2) implies (3).

Suppose D(g) = {q}. Since D(g) is open by construction of the topology on Spec(S)
we see that q is an isolated point of Spec(S). We have proved that (3) implies (1).
In other words (1), (2) and (3) are equivalent.

Assume dimq Spec(S) = 0. This means that there is some open neighbourhood of
q in Spec(S) which has dimension zero. Then there is an open neighbourhood of
the form D(g) which has dimension zero. Since Sg is Noetherian we conclude that
Sg is Artinian and D(g) = Spec(Sg) is a finite discrete set, see Proposition 10.59.6.
Thus q is an isolated point of D(g) and, by the equivalence of (1) and (2) above
applied to qSg ⊂ Sg, we see that Sq = (Sg)qSg is finite over k. Hence (4) implies
(2). It is clear that (1) implies (4). Thus (1) – (4) are all equivalent.
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Lemma 10.110.6 gives the implication (5)⇒ (4). The implication (4)⇒ (6) follows
from Lemma 10.112.3. The implication (6) ⇒ (5) follows from Lemma 10.34.9. At
this point we know (1) – (6) are equivalent.

The two statements at the end of the lemma we saw during the course of the proof
of the equivalence of (1), (2) and (3) above. �

Lemma 10.118.2. Let R→ S be a ring map of finite type. Let q ⊂ S be a prime
lying over p ⊂ R. Let F = Spec(S ⊗R κ(p)) be the fibre of Spec(S) → Spec(R),
see Remark 10.16.8. Denote q ∈ F the point corresponding to q. The following are
equivalent

(1) q is an isolated point of F ,
(2) Sq/pSq is finite over κ(p),
(3) there exists a g ∈ S, g 6∈ q such that the only prime of D(g) mapping to p

is q,
(4) dimq(F ) = 0,
(5) q is a closed point of F and dim(Sq/pSq) = 0, and
(6) the field extension κ(p) ⊂ κ(q) is finite and dim(Sq/pSq) = 0.

Proof. Note that Sq/pSq = (S ⊗R κ(p))q. Moreover S ⊗R κ(p) is of finite type
over κ(p). The conditions correspond exactly to the conditions of Lemma 10.118.1
for the κ(p)-algebra S ⊗R κ(p) and the prime q, hence they are equivalent. �

Definition 10.118.3. Let R→ S be a finite type ring map. Let q ⊂ S be a prime.

(1) If the equivalent conditions of Lemma 10.118.2 are satisfied then we say
R→ S is quasi-finite at q.

(2) We say a ring map A → B is quasi-finite if it is of finite type and quasi-
finite at all primes of B.

Lemma 10.118.4. Let R → S be a finite type ring map. Then R → S is quasi-
finite if and only if for all primes p ⊂ R the fibre S ⊗R κ(p) is finite over κ(p).

Proof. If the fibres are finite then the map is clearly quasi-finite. For the converse,
note that S ⊗R κ(p) is a κ(p)-algebra of finite type over k of dimension 0. Hence it
is finite over k for example by Lemma 10.111.4. �

Lemma 10.118.5. Let R → S be a finite type ring map. Let q ⊂ S be a prime
lying over p ⊂ R. Let f ∈ R, f 6∈ p and g ∈ S, g 6∈ q. Then R → S is quasi-finite
at q if and only if Rf → Sfg is quasi-finite at qSfg.

Proof. The fibre of Spec(Sfg) → Spec(Rf ) is homeomorphic to an open subset
of the fibre of Spec(S) → Spec(R). Hence the lemma follows from part (1) of the
equivalent conditions of Lemma 10.118.2. �

Lemma 10.118.6. Let

S // S′ q q′

R

OO

// R′

OO

p p′

be a commutative diagram of rings with primes as indicated. Assume R → S of
finite type, and S⊗RR′ → S′ surjective. If R→ S is quasi-finite at q, then R′ → S′

is quasi-finite at q′.
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Proof. Write S ⊗R κ(p) = S1 × S2 with S1 finite over κ(p) and such that q corre-
sponds to a point of S1 as in Lemma 10.118.1. Because S⊗RR′ → S′ surjective the
canonical map (S ⊗R κ(p)) ⊗κ(p) κ(p′) → S′ ⊗R′ κ(p′) is surjective. Let S′i be the
image of Si⊗κ(p) κ(p′) in S′⊗R′ κ(p′). Then S′⊗R′ κ(p′) = S′1×S′2 and S′1 is finite
over κ(p′). The map S′⊗R′ κ(p′)→ κ(q′) factors through S′1 (i.e. it annihilates the
factor S′2) because the map S⊗R κ(p)→ κ(q) factors through S1 (i.e. it annihilates
the factor S2). Thus q′ corresponds to a point of Spec(S′1) in the disjoint union
decomposition of the fibre: Spec(S′⊗R′ κ(p′)) = Spec(S′1)qSpec(S′1). (See Lemma
10.20.2.) Since S′1 is finite over a field, it is Artinian ring, and hence Spec(S′1) is a
finite discrete set. (See Proposition 10.59.6.) We conclude q′ is isolated in its fibre
as desired. �

Lemma 10.118.7. A composition of quasi-finite ring maps is quasi-finite.

Proof. Suppose A→ B and B → C are quasi-finite ring maps. By Lemma 10.6.2
we see that A → C is of finite type. Let r ⊂ C be a prime of C lying over q ⊂ B
and p ⊂ A. Since A→ B and B → C are quasi-finite at q and r respectively, then
there exist b ∈ B and c ∈ C such that q is the only prime of D(b) which maps to p
and similarly r is the only prime of D(c) which maps to q. If c′ ∈ C is the image
of b ∈ B, then r is the only prime of D(cc′) which maps to p. Therefore A→ C is
quasi-finite at r. �

Lemma 10.118.8. Let R → S be a ring map of finite type. Let R → R′ be any
ring map. Set S′ = R′ ⊗R S.

(1) The set {q′ | R′ → S′ quasi-finite at q′} is the inverse image of the corre-
sponding set of Spec(S) under the canonical map Spec(S′)→ Spec(S).

(2) If Spec(R′) → Spec(R) is surjective, then R → S is quasi-finite if and
only if R′ → S′ is quasi-finite.

(3) Any base change of a quasi-finite ring map is quasi-finite.

Proof. Let p′ ⊂ R′ be a prime lying over p ⊂ R. Then the fibre ring S′⊗R′ κ(p′) is
the base change of the fibre ring S⊗Rκ(p) by the field extension κ(p)→ κ(p′). Hence
the first assertion follows from the invariance of dimension under field extension
(Lemma 10.112.6) and Lemma 10.118.1. The stability of quasi-finite maps under
base change follows from this and the stability of finite type property under base
change. The second assertion follows since the assumption implies that given a
prime q ⊂ S we can find a prime q′ ⊂ S′ lying over it. �

The following lemma is not quite about quasi-finite ring maps, but it does not seem
to fit anywhere else so well.

Lemma 10.118.9. Let R→ S be a ring map of finite type. Let p ⊂ R be a minimal
prime. Assume that there are at most finitely many primes of S lying over p. Then
there exists a g ∈ R, g 6∈ p such that the ring map Rg → Sg is finite.

Proof. Let x1, . . . , xn be generators of S overR. Since p is a minimal prime we have
that pRp is a locally nilpotent ideal, see Lemma 10.24.1. Hence pSp is a locally
nilpotent ideal, see Lemma 10.31.2. By assumption the finite type κ(p)-algebra
Sp/pSp has finitely many primes. Hence (for example by Lemmas 10.60.3 and
10.111.4) κ(p)→ Sp/pSp is a finite ring map. Thus we may find monic polynomials
Pi ∈ Rp[X] such that Pi(xi) maps to zero in Sp/pSp. By what we said above there
exist ei ≥ 1 such that P (xi)

ei = 0 in Sp. Let g1 ∈ R, g1 6∈ p be an element such that
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Pi ∈ R[1/g1] for all i. Next, let g2 ∈ R, g2 6∈ p be an element such that P (xi)
ei = 0

in Sg1g2 . Setting g = g1g2 we win. �

10.119. Zariski’s Main Theorem

In this section our aim is to prove the algebraic version of Zariski’s Main theorem.
This theorem will be the basis of many further developments in the theory of
schemes and morphisms of schemes later in the project.

Let R→ S be a ring map of finite type. Our goal in this section is to show that the
set of points of Spec(S) where the map is quasi-finite is open (Theorem 10.119.13).
In fact, it will turn out that there exists a finite ring map R → S′ such that in
some sense the quasi-finite locus of S/R is open in Spec(S′) (but we will not prove
this in the algebra chapter since we do not develop the language of schemes here –
for the case where R → S is quasi-finite see Lemma 10.119.15). These statements
are somewhat tricky to prove and we do it by a long list of lemmas concerning
integral and finite extensions of rings. This material may be found in [Ray70], and
[Pes66]. We also found notes by Thierry Coquand helpful.

Lemma 10.119.1. Let ϕ : R → S be a ring map. Suppose t ∈ S satisfies the
relation ϕ(a0) + ϕ(a1)t+ . . .+ ϕ(an)tn = 0. Then ϕ(an)t is integral over R.

Proof. Namely, multiply the equation ϕ(a0) + ϕ(a1)t + . . . + ϕ(an)tn = 0 with
ϕ(an)n−1 and write it as ϕ(a0a

n−1
n ) +ϕ(a1a

n−2
n )(ϕ(an)t) + . . .+ (ϕ(an)t)n = 0. �

The following lemma is in some sense the key lemma in this section.

Lemma 10.119.2. Let R be a ring. Let ϕ : R[x] → S be a ring map. Let t ∈ S.
Assume that (a) t is integral over R[x], and (b) there exists a monic p ∈ R[x] such
that tϕ(p) ∈ Im(ϕ). Then there exists a q ∈ R[x] such that t−ϕ(q) is integral over
R.

Proof. Write tϕ(p) = ϕ(r) for some r ∈ R[x]. Using euclidean division, write
r = qp + r′ with q, r′ ∈ R[x] and deg(r′) < deg(p). We may replace t by t − ϕ(q)
which is still integral over R[x], so that we obtain tϕ(p) = ϕ(r′). In the ring St we
may write this as ϕ(p)− (1/t)ϕ(r′) = 0. This implies that ϕ(x) gives an element of
the localization St which is integral over ϕ(R)[1/t] ⊂ St. On the other hand, t is
integral over the subring ϕ(R)[ϕ(x)] ⊂ S. Combined we conclude that t is integral
over the subring ϕ(R)[1/t] ⊂ St, see Lemma 10.35.6. In other words there exists
an equation of the form td +

∑
i<d(ϕ(ri)/t

ni)ti = 0 in St with ri ∈ R. This means

that td+N +
∑
i<d ϕ(ri)t

i+N−ni = 0 in S for some N large enough. In other words
t is integral over R. �

Lemma 10.119.3. Let R be a ring and let ϕ : R[x]→ S be a ring map. Let t ∈ S.
If t is integral over R[x], then there exists an ` ≥ 0 such that for every a ∈ R the
element ϕ(a)`t is integral over ϕa : R[y]→ S, defined by y 7→ ϕ(ax) and r 7→ ϕ(r)
for r ∈ R.

Proof. Say td +
∑
i<d ϕ(fi)t

i = 0 with fi ∈ R[x]. Let ` be the maximum degree in

x of all the fi. Multiply the equation by ϕ(a)` to get ϕ(a)`td +
∑
i<d ϕ(a`fi)t

i = 0.

Note that each ϕ(a`fi) is in the image of ϕa. The result follows from Lemma
10.119.1. �
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Lemma 10.119.4. Let R be a ring. Let ϕ : R[x] → S be a ring map. Let t ∈ S.
Assume t is integral over R[x]. Let p ∈ R[x], p = a0 + a1x + . . . + akx

k such that
tϕ(p) ∈ Im(ϕ). Then there exists a q ∈ R[x] and n ≥ 0 such that ϕ(ak)nt−ϕ(q) is
integral over R.

Proof. By Lemma 10.119.3 there exists an ` ≥ 0 such that the element ϕ(ak)`t
is integral over the map ϕ′ : R[y] → S, ϕ′(y) = ϕ(akx) and ϕ′(r) = ϕ(r), for

r ∈ R. The polynomial p′ = ak−1
k a0 + ak−2

k a1y + . . . + yk is monic and tϕ′(p′) =

ϕ(ak−1
k )tϕ(p) ∈ Im(ϕ). By definition of ϕ′ this implies there exists a n ≥ k−1 such

that ϕ(ank )tϕ′(p′) ∈ Im(ϕ′). If also n ≥ `, then ϕ(ak)nt is still integral over R[y].
By Lemma 10.119.2 we see that ϕ(ak)nt−ϕ′(q) is integral over R for some q ∈ R[y].
Again by the simple relationship between ϕ′ and ϕ this implies the lemma. �

Situation 10.119.5. Let R be a ring. Let ϕ : R[x]→ S be finite. Let

J = {g ∈ S | gS ⊂ Im(ϕ)}
be the “conductor ideal” of ϕ. Assume ϕ(R) ⊂ S integrally closed in S.

Lemma 10.119.6. In Situation 10.119.5. Suppose u ∈ S, a0, . . . , ak ∈ R, uϕ(a0 +
a1x+ . . .+ akx

k) ∈ J . Then there exists an m ≥ 0 such that uϕ(ak)m ∈ J .

Proof. Assume that S is generated by t1, . . . , tn as an R[x]-module. In this case
J = {g ∈ S | gti ∈ Im(ϕ) for all i}. Note that each element uti is integral over
R[x], see Lemma 10.35.3. We have ϕ(a0 +a1x+ . . .+akx

k)uti ∈ Im(ϕ). By Lemma
10.119.4, for each i there exists an integer ni and an element qi ∈ R[x] such that
ϕ(anik )uti − ϕ(qi) is integral over R. By assumption this element is in ϕ(R) and
hence ϕ(anik )uti ∈ Im(ϕ). It follows that m = max{n1, . . . , nn} works. �

Lemma 10.119.7. In Situation 10.119.5. Suppose u ∈ S, a0, . . . , ak ∈ R, uϕ(a0 +

a1x+ . . .+ akx
k) ∈

√
J . Then uϕ(ai) ∈

√
J for all i.

Proof. Under the assumptions of the lemma we have unϕ(a0 +a1x+. . .+akx
k)n ∈

J for some n ≥ 1. By Lemma 10.119.6 we deduce unϕ(anmk ) ∈ J for some m ≥ 1.

Thus uϕ(ak) ∈
√
J , and so uϕ(a0 + a1x + . . . + akx

k) − uϕ(ak) = uϕ(a0 + a1x +

. . .+ ak−1x
k−1) ∈

√
J . We win by induction on k. �

This lemma suggests the following definition.

Definition 10.119.8. Given an inclusion of rings R ⊂ S and an element x ∈ S we
say that x is strongly transcendental over R if whenever u(a0 +a1x+ . . .+akx

k) = 0
with u ∈ S and ai ∈ R, then we have uai = 0 for all i.

Note that if S is a domain then this is the same as saying that x as an element of
the fraction field of S is transcendental over the fraction field of R.

Lemma 10.119.9. Suppose R ⊂ S is an inclusion of reduced rings and suppose
that x ∈ S is strongly transcendental over R. Let q ⊂ S be a minimal prime and let
p = R ∩ q. Then the image of x in S/q is strongly transcendental over the subring
R/p.

Proof. Suppose u(a0 + a1x+ . . .+ akx
k) ∈ q. By Lemma 10.24.1 the local ring Sq

is a field, and hence u(a0 + a1x + . . . + akx
k) is zero in Sq. Thus uu′(a0 + a1x +

. . .+ akx
k) = 0 for some u′ ∈ S, u′ 6∈ q. Since x is strongly transcendental over R

we get uu′ai = 0 for all i. This in turn implies that uai ∈ q. �
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Lemma 10.119.10. Suppose R ⊂ S is an inclusion of domains and let x ∈ S.
Assume x is (strongly) transcendental over R and that S is finite over R[x]. Then
R→ S is not quasi-finite at any prime of S.

Proof. As a first case, assume that R is normal, see Definition 10.36.10. By Lemma
10.36.13 we see that R[x] is normal. Take a prime q ⊂ S, and set p = R∩q. Assume
that the extension κ(p) ⊂ κ(q) is finite. This would be the case if R→ S is quasi-
finite at q. Let r = R[x] ∩ q. Then since κ(p) ⊂ κ(r) ⊂ κ(q) we see that the
extension κ(p) ⊂ κ(r) is finite too. Thus the inclusion r ⊃ pR[x] is strict. By going
down for R[x] ⊂ S, see Proposition 10.37.7, we find a prime q′ ⊂ q, lying over
the prime pR[x]. Hence the fibre Spec(S ⊗R κ(p)) contains a point not equal to q,
namely q′, whose closure contains q and hence q is not isolated in its fibre.

If R is not normal, let R ⊂ R′ ⊂ K be the integral closure R′ of R in its field
of fractions K. Let S ⊂ S′ ⊂ L be the subring S′ of the field of fractions L of
S generated by R′ and S. Note that by construction the map S ⊗R R′ → S′ is
surjective. This implies that R′[x] ⊂ S′ is finite. Also, the map S ⊂ S′ induces a
surjection on Spec, see Lemma 10.35.15. We conclude by Lemma 10.118.6 and the
normal case we just discussed. �

Lemma 10.119.11. Suppose R ⊂ S is an inclusion of reduced rings. Assume
x ∈ S be strongly transcendental over R, and S finite over R[x]. Then R → S is
not quasi-finite at any prime of S.

Proof. Let q ⊂ S be any prime. Choose a minimal prime q′ ⊂ q. According to
Lemmas 10.119.9 and 10.119.10 the extension R/(R ∩ q′) ⊂ S/q′ is not quasi-finite
at the prime corresponding to q. By Lemma 10.118.6 the extension R → S is not
quasi-finite at q. �

Lemma 10.119.12. Let R be a ring. Let S = R[x]/I. Let q ⊂ S be a prime.
Assume R → S is quasi-finite at q. Let S′ ⊂ S be the integral closure of R in S.
Then there exists an element g ∈ S′, g 6∈ q such that S′g

∼= Sg.

Proof. Let p be the image of q in Spec(R). The assumption that R→ S is quasi-
finite at q implies there exists an f ∈ I, f = anx

n + . . .+ a0 such that some ai 6∈ p.
In particular there exists a relation bmx

m + . . .+ b0 = 0 with bj ∈ S′, j = 0, . . . ,m
and bj 6∈ q ∩ S′ for some j. We prove the lemma by induction on m.

The case bm ∈ q. In this case we have bmx ∈ S′ by Lemma 10.119.1. Set b′m−1 =
bmx+ bm−1. Then

b′m−1x
m−1 + bm−2x

m−2 + . . .+ b0 = 0

Since b′m−1 is congruent to bm−1 modulo S′ ∩ q we see that it is still the case that
one of b′m−1, bm−2, . . . , b0 is not in S′ ∩ q. Thus we win by induction on m.

The case bm 6∈ q. In this case x is integral over S′bm , in fact bmx ∈ S′ by Lemma
10.119.1. Hence the injective map S′bm → Sbm is also surjective, i.e., an isomorphism
as desired. �

Theorem 10.119.13 (Zariski’s Main Theorem). Let R be a ring. Let R → S be
a finite type R-algebra. Let S′ ⊂ S be the integral closure of R in S. Let q ⊂ S be
a prime of S. If R → S is quasi-finite at q then there exists a g ∈ S′, g 6∈ q such
that S′g

∼= Sg.
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Proof. There exist finitely many elements x1, . . . , xn ∈ S such that S is finite over
the R-sub algebra generated by x1, . . . , xn. (For example generators of S over R.)
We prove the proposition by induction on the minimal such number n.

The case n = 0 is trivial, because in this case S′ = S, see Lemma 10.35.3.

The case n = 1. We may and do replace R by its integral closure in S, in particular
this means that R ⊂ S. Consider the map ϕ : R[x] → S, x 7→ x1. (We will see
that ϕ is not injective below.) By assumption ϕ is finite. Hence we are in Situa-
tion 10.119.5. Let J ⊂ S be the “conductor ideal” defined in Situation 10.119.5.
Consider the diagram

R[x] // S // S/
√
J R/(R ∩

√
J)[x]oo

R

``

//

OO

R/(R ∩
√
J)

OO 66

According to Lemma 10.119.7 the image of x in the quotient S/
√
J is strongly

transcendental over R/(R∩
√
J). Hence by Lemma 10.119.11 the ring map R/(R∩√

J) → S/
√
J is not quasi-finite at any prime of S/

√
J . By Lemma 10.118.6 we

deduce that q does not lie in V (J) ⊂ Spec(S). Thus there exists an element s ∈ J ,
s 6∈ q. By definition of J we may write s = ϕ(f) for some polynomial f ∈ R[x]. Now
let I = Ker(R[x]→ S). Since ϕ(f) ∈ J we get (R[x]/I)f ∼= Sϕ(f). Also s 6∈ q means

that f 6∈ ϕ−1(q). Thus ϕ−1(q) is a prime of R[x]/I at which R→ R[x]/I is quasi-
finite, see Lemma 10.118.5. Let C ⊂ R[x]/I be the integral closure of R. By Lemma
10.119.12 there exists an element h ∈ C, h 6∈ ϕ−1(q) such that Ch ∼= (R[x]/I)h. We
conclude that (R[x]/I)fh = Sϕ(fh) is isomorphic to a principal localization Ch′ of

C for some h′ ∈ C, h′ 6∈ ϕ−1(q). Since ϕ(C) ⊂ S′ we get g = ϕ(h′) ∈ S′, g 6∈ q and
moreover the injective map S′g → Sg is also surjective because by our choice of h′

the map Ch′ → Sg is surjective.

The case n > 1. Consider the subring R′ ⊂ S which is the integral closure of
R[x1, . . . , xn−1] in S. By Lemma 10.118.6 the extension S/R′ is quasi-finite at q.
Also, note that S is finite over R′[xn]. By the case n = 1 above, there exists a
g′ ∈ R′, g′ 6∈ q such that (R′)g′ ∼= Sg′ . At this point we cannot apply induction to
R→ R′ since R′ may not be finite type over R. Since S is finitely generated over R
we deduce in particular that (R′)g′ is finitely generated over R. Say the elements
g′, and y1/(g

′)n1 , . . . , yN/(g
′)nN with yi ∈ R′ generate (R′)g′ over R. Let R′′ be

the R-sub algebra of R′ generated by x1, . . . , xn−1, y1, . . . , yN , g
′. This has the

property (R′′)g′ ∼= Sg′ . Surjectivity because of how we chose yi, injectivity because
R′′ ⊂ R′, and localization is exact. Note that R′′ is finite over R[x1, . . . , xn−1]
because of our choice of R′, see Lemma 10.35.4. Let q′′ = R′′∩q. Since (R′′)q′′ = Sq

we see that R → R′′ is quasi-finite at q′′, see Lemma 10.118.2. We apply our
induction hypothesis to R → R′′, q′′ and x1, . . . , xn−1 ∈ R′′ and we find a subring
R′′′ ⊂ R′′ which is integral over R and an element g′′ ∈ R′′′, g′′ 6∈ q′′ such that
(R′′′)g′′ ∼= (R′′)g′′ . Write the image of g′ in (R′′)g′′ as g′′′/(g′′)n for some g′′′ ∈ R′′′.
Set g = g′′g′′′ ∈ R′′′. Then it is clear that g 6∈ q and (R′′′)g ∼= Sg. Since by
construction we have R′′′ ⊂ S′ we also have S′g

∼= Sg as desired. �

Lemma 10.119.14. Let R → S be a finite type ring map. The set of points q of
Spec(S) at which S/R is quasi-finite is open in Spec(S).
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Proof. Let q ⊂ S be a point at which the ring map is quasi-finite. By Theorem
10.119.13 there exists an integral ring extension R → S′, S′ ⊂ S and an element
g ∈ S′, g 6∈ q such that S′g

∼= Sg. Since S and hence Sg are of finite type over
R we may find finitely many elements y1, . . . , yN of S′ such that S′′g

∼= S where
S′′ ⊂ S′ is the sub R-algebra generated by g, y1, . . . , yN . Since S′′ is finite over R
(see Lemma 10.35.4) we see that S′′ is quasi-finite over R (see Lemma 10.118.4). It
is easy to see that this implies that S′′g is quasi-finite over R, for example because
the property of being quasi-finite at a prime depends only on the local ring at the
prime. Thus we see that Sg is quasi-finite over R. By the same token this implies
that R→ S is quasi-finite at every prime of S which lies in D(g). �

Lemma 10.119.15. Let R → S be a finite type ring map. Suppose that S is
quasi-finite over R. Let S′ ⊂ S be the integral closure of R in S. Then

(1) Spec(S)→ Spec(S′) is a homeomorphism onto an open subset,
(2) if g ∈ S′ and D(g) is contained in the image of the map, then S′g

∼= Sg,
and

(3) there exists a finite R-algebra S′′ ⊂ S′ such that (1) and (2) hold for the
ring map S′′ → S.

Proof. Because S/R is quasi-finite we may apply Theorem 10.119.13 to each point
q of Spec(S). Since Spec(S) is quasi-compact, see Lemma 10.16.10, we may choose
a finite number of gi ∈ S′, i = 1, . . . , n such that S′gi = Sgi , and such that g1, . . . , gn
generate the unit ideal in S (in other words the standard opens of Spec(S) associated
to g1, . . . , gn cover all of Spec(S)).

Suppose that D(g) ⊂ Spec(S′) is contained in the image. Then D(g) ⊂
⋃
D(gi).

In other words, g1, . . . , gn generate the unit ideal of S′g. Note that S′ggi
∼= Sggi by

our choice of gi. Hence S′g
∼= Sg by Lemma 10.23.2.

We construct a finite algebra S′′ ⊂ S′ as in (3). To do this note that each S′gi
∼= Sgi

is a finite type R-algebra. For each i pick some elements yij ∈ S′ such that each
S′gi is generated as R-algebra by 1/gi and the elements yij . Then set S′′ equal to
the sub R-algebra of S′ generated by all gi and all the yij . Details omitted. �

10.120. Applications of Zariski’s Main Theorem

Here is an immediate application characterizing the finite maps of 1-dimensional
semi-local rings among the quasi-finite ones as those where equality always holds
in the formula of Lemma 10.117.8.

Lemma 10.120.1. Let A ⊂ B be an extension of domains. Assume

(1) A is a local Noetherian ring of dimension 1,
(2) A→ B is of finite type, and
(3) the extension K = f.f.(A) ⊂ L = f.f.(B) is a finite field extension.

Then B is semi-local. Let x ∈ mA, x 6= 0. Let mi, i = 1, . . . , n be the maximal
ideals of B. Then

[L : K]ordA(x) ≥
∑

i
[κ(mi) : κ(mA)]ordBmi

(x)

where ord is defined as in Definition 10.117.2. We have equality if and only if
A→ B is finite.
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Proof. The ring B is semi-local by Lemma 10.109.2. Let B′ be the integral closure
of A in B. By Lemma 10.119.15 we can find a finite A-subalgebra C ⊂ B′ such that
on setting ni = C ∩ mi we have Cni

∼= Bmi and the primes n1, . . . , nn are pairwise
distinct. The ring C is semi-local by Lemma 10.109.2. Let pj , j = 1, . . . ,m be the
other maximal ideals of C (the “missing points”). By Lemma 10.117.8 we have

ordA(x[L:K]) =
∑

i
[κ(ni) : κ(mA)]ordCni

(x) +
∑

j
[κ(pj) : κ(mA)]ordCpj

(x)

hence the inequality follows. In case of equality we conclude that m = 0 (no
“missing points”). Hence C ⊂ B is an inclusion of semi-local rings inducing a
bijection on maximal ideals and an isomorphism on all localizations at maximal
ideals. So if b ∈ B, then I = {x ∈ C | xb ∈ C} is an ideal of C which is not
contained in any of the maximal ideals of C, and hence I = C, hence b ∈ C. Thus
B = C and B is finite over A. �

Here is a more standard application of Zariski’s main theorem to the structure of
local homomorphisms of local rings.

Lemma 10.120.2. Let (R,mR)→ (S,mS) be a local homomorphism of local rings.
Assume

(1) R→ S is essentially of finite type,
(2) κ(mR) ⊂ κ(mS) is finite, and
(3) dim(S/mRS) = 0.

Then S is the localization of a finite R-algebra.

Proof. Let S′ be a finite type R-algebra such that S = S′q′ for some prime q′ of

S′. By Definition 10.118.3 we see that R→ S′ is quasi-finite at q′. After replacing
S′ by S′g′ for some g′ ∈ S′, g′ 6∈ q′ we may assume that R → S′ is quasi-finite,

see Lemma 10.119.14. Then by Lemma 10.119.15 there exists a finite R-algebra S′′

and elements g′ ∈ S′, g′ 6∈ q′ and g′′ ∈ S′′ such that S′g′
∼= S′′g′′ as R-algebras. This

proves the lemma. �

Lemma 10.120.3. Let R→ S be a ring map, q a prime of S lying over p in R. If

(1) R is Noetherian,
(2) R→ S is of finite type, and
(3) R→ S is quasi-finite at q,

then R∧p ⊗R S = S∧q ×B for some R∧p -algebra B.

Proof. There exists a finite R-algebra S′ ⊂ S and an element g ∈ S′, g 6∈ q′ = S′∩q
such that S′g = Sg and in particular S′q′ = Sq, see Lemma 10.119.15. We have

R∧p ⊗R S′ = (S′q′)
∧ ×B′

by Lemma 10.93.19. Note that we have a commutative diagram

R∧p ⊗R S // S∧q

R∧p ⊗R S′ //

OO

(S′q′)
∧

OO

where the right vertical is an isomorphism and the lower horizontal arrow is the
projection map of the product decomposition above. The lemma follows. �
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10.121. Dimension of fibres

We study the behaviour of dimensions of fibres, using Zariski’s main theorem.
Recall that we defined the dimension dimx(X) of a topological space X at a point
x in Topology, Definition 5.9.1.

Definition 10.121.1. Suppose that R → S is of finite type, and let q ⊂ S be a
prime lying over a prime p of R. We define the relative dimension of S/R at q,
denoted dimq(S/R), to be the dimension of Spec(S ⊗R κ(p)) at the point corre-
sponding to q. We let dim(S/R) be the supremum of dimq(S/R) over all q. This
is called the relative dimension of S/R.

In particular, R→ S is quasi-finite at q if and only if dimq(S/R) = 0. The following
lemma is more or less a reformulation of Zariski’s Main Theorem.

Lemma 10.121.2. Let R → S be a finite type ring map. Let q ⊂ S be a prime.
Suppose that dimq(S/R) = n. There exists a g ∈ S, g 6∈ q such that Sg is quasi-
finite over a polynomial algebra R[t1, . . . , tn].

Proof. The ring S = S⊗R κ(p) is of finite type over κ(p). Let q be the prime of S
corresponding to q. By definition of the dimension of a topological space at a point
there exists an open U ⊂ Spec(S) with q ∈ U and dim(U) = n. Since the topology
on Spec(S) is induced from the topology on Spec(S) (see Remark 10.16.8), we can
find a g ∈ S, g 6∈ q with image g ∈ S such that D(g) ⊂ U . Thus after replacing S
by Sg we see that dim(S) = n.

Next, choose generators x1, . . . , xN for S as an R-algebra. By Lemma 10.111.4 there
exist elements y1, . . . , yn in the Z-subalgebra of S generated by x1, . . . , xN such
that the map R[t1, . . . , tn] → S, ti 7→ yi has the property that κ(p)[t1 . . . , tn] → S
is finite. In particular, S is quasi-finite over R[t1, . . . , tn] at q. Hence, by Lemma
10.119.14 we may replace S by Sg for some g ∈ S, g 6∈ q such that R[t1, . . . , tn]→ S
is quasi-finite. �

Lemma 10.121.3. Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. Assume

(1) R→ S is of finite type,
(2) dimq(S/R) = n, and
(3) trdegκ(p)κ(q) = r.

Then there exist f ∈ R, f 6∈ p, g ∈ S, g 6∈ q and a quasi-finite ring map

ϕ : Rf [x1, . . . , xn] −→ Sg

such that ϕ−1(qSg) = (p, xr+1, . . . , xn)Rf [xr+1, . . . , xn]

Proof. After replacing S by a principal localization we may assume there exists a
quasi-finite ring map ϕ : R[t1, . . . , tn] → S, see Lemma 10.121.2. Set q′ = ϕ−1(q).
Let q′ ⊂ κ(p)[t1, . . . , tn] be the prime corresponding to q′. By Lemma 10.111.6 there
exists a finite ring map κ(p)[x1, . . . , xn] → κ(p)[t1, . . . , tn] such that the inverse
image of q′ is (xr+1, . . . , xn). Let hi ∈ κ(p)[t1, . . . , tn] be the image of xi. We
can find an element f ∈ R, f 6∈ p and hi ∈ Rf [t1, . . . , tn] which map to hi in
κ(p)[t1, . . . , tn]. Then the ring map

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn]
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becomes finite after tensoring with κ(p). In particular, Rf [t1, . . . , tn] is quasi-
finite over Rf [x1, . . . , xn] at the prime q′Rf [t1, . . . , tn]. Hence, by Lemma 10.119.14
there exists a g ∈ Rf [t1, . . . , tn], g 6∈ q′Rf [t1, . . . , tn] such that Rf [x1, . . . , xn] →
Rf [t1, . . . , tn, 1/g] is quasi-finite. Thus we see that the composition

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn, 1/g] −→ Sϕ(g)

is quasi-finite and we win. �

Lemma 10.121.4. Let R → S be a finite type ring map. Let q ⊂ S be a prime
lying over p ⊂ R. If R→ S is quasi-finite at q, then dim(Sq) ≤ dim(Rp).

Proof. If Rp is Noetherian (and hence Sq Noetherian since it is essentially of
finite type over Rp) then this follows immediately from Lemma 10.108.6 and the
definitions. In the general case we can use Zariski’s Main Theorem 10.119.13 to
write Sq = S′q′ for some ring S′ integral over Rp. Thus the result follows from
Lemma 10.108.3. �

Lemma 10.121.5. Let k be a field. Let S be a finite type k-algebra. Suppose there
is a quasi-finite k-algebra map k[t1, . . . , tn] ⊂ S. Then dim(S) ≤ n.

Proof. By Lemma 10.110.1 the dimension of any local ring of k[t1, . . . , tn] is at
most n. Thus the result follows from Lemma 10.121.4. �

Lemma 10.121.6. Let R → S be a finite type ring map. Let q ⊂ S be a prime.
Suppose that dimq(S/R) = n. There exists an open neighbourhood V of q in Spec(S)
such that dimq′(S/R) ≤ n for all q′ ∈ V .

Proof. By Lemma 10.121.2 we see that we may assume that S is quasi-finite over
a polynomial algebra R[t1, . . . , tn]. Considering the fibres, we reduce to Lemma
10.121.5. �

In other words, the lemma says that the set of points where the fibre has dimension
≤ n is open in Spec(S). The next lemma says that formation of this open commutes
with base change. If the ring map is of finite presentation then this set is quasi-
compact open (see below).

Lemma 10.121.7. Let R→ S be a finite type ring map. Let R→ R′ be any ring
map. Set S′ = R′ ⊗R S and denote f : Spec(S′)→ Spec(S) the associated map on
spectra. Let n ≥ 0. The inverse image f−1({q ∈ Spec(S) | dimq(S/R) ≤ n}) is
equal to {q′ ∈ Spec(S′) | dimq′(S

′/R′) ≤ n}.

Proof. The condition is formulated in terms of dimensions of fibre rings which
are of finite type over a field. Combined with Lemma 10.112.6 this yields the
lemma. �

Lemma 10.121.8. Let R→ S be a ring homomorphism of finite presentation. Let
n ≥ 0. The set

Vn = {q ∈ Spec(S) | dimq(S/R) ≤ n}
is a quasi-compact open subset of Spec(S).

Proof. It is open by Lemma 10.121.6. Let S = R[x1, . . . , xn]/(f1, . . . , fm) be a
presentation of S. Let R0 be the Z-subalgebra of R generated by the coefficients of
the polynomials fi. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fm). Then S = R⊗R0

S0. By
Lemma 10.121.7 Vn is the inverse image of an open V0,n under the quasi-compact
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continuous map Spec(S) → Spec(S0). Since S0 is Noetherian we see that V0,n is
quasi-compact. �

Lemma 10.121.9. Let R be a valuation ring with residue field k and field of
fractions K. Let S be a domain containing R such that S is of finite type over R.
If S ⊗R k is not the zero ring then

dim(S ⊗R k) = dim(S ⊗R K)

In fact, Spec(S ⊗R k) is equidimensional.

Proof. It suffices to show that dimq(S/k) is equal to dim(S⊗RK) for every prime
q of S containing mRS. Pick such a prime. By Lemma 10.121.6 the inequality
dimq(S/k) ≥ dim(S ⊗R K) holds. Set n = dimq(S/k). By Lemma 10.121.2 after
replacing S by Sg for some g ∈ S, g 6∈ q there exists a quasi-finite ring map
R[t1, . . . , tn]→ S. If dim(S⊗RK) < n, then K[t1, . . . , tn]→ S⊗RK has a nonzero

kernel. Say f =
∑
aIt

i1
1 . . . tinn . After dividing f by a nonzero coefficient of f with

minimal valuation, we may assume f ∈ R[t1, . . . , tn] and some aI does not map to
zero in k. Hence the ring map k[t1, . . . , tn] → S ⊗R k has a nonzero kernel which
implies that dim(S ⊗R k) < n. Contradiction. �

10.122. Algebras and modules of finite presentation

In this section we discuss some standard results where the key feature is that the
assumption involves a finite type or finite presentation assumption.

Lemma 10.122.1. Let R→ S be a ring map. Let R→ R′ be a faithfully flat ring
map. Set S′ = R′ ⊗R S. Then R → S is of finite type if and only if R′ → S′ is of
finite type.

Proof. It is clear that if R → S is of finite type then R′ → S′ is of finite type.
Assume that R′ → S′ is of finite type. Say y1, . . . , ym generate S′ over R′. Write
yj =

∑
i aij ⊗ xji for some aij ∈ R′ and xji ∈ S. Let A ⊂ S be the R-subalgebra

generated by the xij . By flatness we have A′ := R′⊗RA ⊂ S′, and by construction
yj ∈ A′. Hence A′ = S′. By faithful flatness A = S. �

Lemma 10.122.2. Let R → S be a ring map. Let R → R′ be a faithfully flat
ring map. Set S′ = R′ ⊗R S. Then R → S is of finite presentation if and only if
R′ → S′ is of finite presentation.

Proof. It is clear that if R → S is of finite presentation then R′ → S′ is of finite
presentation. Assume that R′ → S′ is of finite presentation. By Lemma 10.122.1
we see that R → S is of finite type. Write S = R[x1, . . . , xn]/I. By flatness
S′ = R′[x1, . . . , xn]/R′ ⊗ I. Say g1, . . . , gm generate R′ ⊗ I over R′[x1, . . . , xn].
Write gj =

∑
i aij ⊗ fji for some aij ∈ R′ and fji ∈ I. Let J ⊂ I be the ideal

generated by the fij . By flatness we have R′ ⊗R J ⊂ R′ ⊗R I, and both are ideals
over R′[x1, . . . , xn]. By construction gj ∈ R′ ⊗R J . Hence R′ ⊗R J = R′ ⊗R I. By
faithful flatness J = I. �

Lemma 10.122.3. Let R be a ring. Let I ⊂ R be an ideal. Let S ⊂ R be a
multiplicative subset. Set R′ = S−1(R/I) = S−1R/S−1I.

(1) For any finite R′-module M ′ there exists a finite R-module M such that
S−1(M/IM) ∼= M ′.
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(2) For any finitely presented R′-module M ′ there exists a finitely presented
R-module M such that S−1(M/IM) ∼= M ′.

Proof. Proof of (1). Choose a short exact sequence 0→ K ′ → (R′)⊕n →M ′ → 0.
Let K ⊂ R⊕n be the inverse image of K ′ under the map R⊕n → (R′)⊕n. Then
M = R⊕n/K works.

Proof of (2). Choose a presentation (R′)⊕m → (R′)⊕n → M ′ → 0. Suppose that
the first map is given by the matrix A′ = (a′ij) and the second map is determined

by generators x′i ∈ M ′, i = 1, . . . , n. As R′ = S−1(R/I) we can choose s ∈ S and
a matrix A = (aij) with coefficients in R such that a′ij = aij/s mod S−1I. Let

M be the finitely presented R-module with presentation R⊕m → R⊕n → M → 0
where the first map is given by the matrix A and the second map is determined
by generators xi ∈ M , i = 1, . . . , n. Then the map M → M ′, xi 7→ x′i induces an
isomorphism S−1(M/IM) ∼= M ′. �

Lemma 10.122.4. Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M
be an R-module.

(1) If S−1M is a finite S−1R-module then there exists a finite R-module M ′

and a map M ′ →M which induces an isomorphism S−1M ′ → S−1M .
(2) If S−1M is a finitely presented S−1R-module then there exists an R-

module M ′ of finite presentation and a map M ′ → M which induces
an isomorphism S−1M ′ → S−1M .

Proof. Proof of (1). Let x1, . . . , xn ∈M be elements which generate S−1M as an
S−1R-module. Let M ′ be the R-submodule of M generated by x1, . . . , xn.

Proof of (2). Let x1, . . . , xn ∈ M be elements which generate S−1M as an S−1R-
module. LetK = Ker(R⊕n →M) where the map is given by the rule (a1, . . . , an) 7→∑
aixi. By Lemma 10.5.3 we see that S−1K is a finite S−1R-module. By (1) we

can find a finite submodule K ′ ⊂ K with S−1K ′ = S−1K. Take M ′ = Coker(K ′ →
R⊕n). �

Lemma 10.122.5. Let R be a ring. Let p ⊂ R be a prime ideal. Let M be an
R-module.

(1) If Mp is a finite Rp-module then there exists a finite R-module M ′ and a
map M ′ →M which induces an isomorphism M ′p →Mp.

(2) If Mp is a finitely presented Rp-module then there exists an R-module M ′

of finite presentation and a map M ′ →M which induces an isomorphism
M ′p →Mp.

Proof. This is a special case of Lemma 10.122.4 �

Lemma 10.122.6. Let ϕ : R→ S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Assume

(1) S is of finite presentation over R,
(2) ϕ induces an isomorphism Rp

∼= Sq.

Then there exist f ∈ R, f 6∈ p and an Rf -algebra C such that Sf ∼= Rf × C as
Rf -algebras.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). Let ai ∈ Rp be an element mapping
to the image of xi in Sq. Write ai = bi/f for some f ∈ R, f 6∈ p. After replacing R
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by Rf and xi by xi − ai we may assume that S = R[x1, . . . , xn]/(g1, . . . , gm) such
that xi maps to zero in Sq. Then if cj denotes the constant term of gi we conclude
that ci maps to zero in Rp. After another replacement of R we may assume that
the constant coefficients cj of the gj are zero. Thus we obtain an R-algebra map
S → R, xi 7→ 0 whose kernel is the ideal (x1, . . . , xn).

Note that q = pS + (x1, . . . , xn). Write gj =
∑
ajixi + h.o.t.. Since Sq = Rp

we have p ⊗ κ(p) = q ⊗ κ(q). It follows that m × n matrix A = (aij) defines a
surjective map κ(p)⊕m → κ(p)⊕n. Thus after inverting some element of R not in p
we may assume there are bij ∈ R such that

∑
bijgj = xi+h.o.t.. We conclude that

(x1, . . . , xn) = (x1, . . . , xn)2 in S. It follows from Lemma 10.20.5 that (x1, . . . , xn)
is generated by an idempotent e. Setting C = eS finishes the proof. �

Lemma 10.122.7. Let R be a ring. Let S, S′ be of finite presentation over R. Let
q ⊂ S and q′ ⊂ S′ be primes. If Sq

∼= Sq′ as R-algebras, then there exist g ∈ S,
g 6∈ q and g′ ∈ S′, g′ 6∈ q′ such that Sg ∼= S′g′ as R-algebras.

Proof. Let ψ : Sq → Sq′ be the isomorphism of the hypothesis of the lemma.
Write S = R[x1, . . . , xn]/(f1, . . . , fr) and S′ = R[y1, . . . , ym]/J . For each i =
1, . . . , n choose a fraction hi/gi with hi, gi ∈ R[y1, . . . , ym] and gi mod J not in
q′ which represents the image of xi under ψ. After replacing S′ by S′g1...gn and
R[y1, . . . , ym, ym+1] (mapping ym+1 to 1/(g1 . . . gn)) we may assume that ψ(xi) is
the image of some hi ∈ R[y1, . . . , ym]. Consider the elements fj(h1, . . . , hn) ∈
R[y1, . . . , ym]. Since ψ kills each fj we see that there exists a g ∈ R[y1, . . . , ym],
g mod J 6∈ q′ such that gfj(h1, . . . , hn) ∈ J for each j = 1, . . . , r. After replacing
S′ by S′g and R[y1, . . . , ym, ym+1] as before we may assume that fj(h1, . . . , hn) ∈ J .
Thus we obtain a ring map S → S′, xi 7→ hi which induces ψ on local rings. By
Lemma 10.6.2 the map S′ → S is of finite presentation. By Lemma 10.122.6 we
may assume that S = S′ × C. Thus localizing S at the idempotent corresponding
to the factor C we obtain the result. �

Lemma 10.122.8. Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let
S → S′ be an R-algebra map such that S → S′/IS′ is surjective and such that S′

is of finite type over R. Then S → S′ is surjective.

Proof. Write S′ = R[x1, . . . , xm]/K for some ideal K. By assumption there exist
gj = xj+

∑
δj,Jx

J ∈ R[x1, . . . , xn] with δj,J ∈ I and with gj mod K ∈ Im(S → S′).
Hence it suffices to show that g1, . . . , gm generate R[x1, . . . , xn]. Let R0 ⊂ R be a
finitely generated Z-subalgebra of R containing at least the δj,J . Then R0 ∩ I is
a nilpotent ideal (by Lemma 10.31.4). It follows that R0[x1, . . . , xn] is generated
by g1, . . . , gm (because xj 7→ gj defines an automorphism of R0[x1, . . . , xm]; details
omitted). Since R is the union of the subrings R0 we win. �

Lemma 10.122.9. Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an
R-algebra map. Let IS ⊂ q ⊂ S be a prime ideal. Assume that

(1) S → S′ is surjective,
(2) Sq/ISq → S′q/IS

′
q is an isomorphism,

(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′q is flat over R.

Then Sg → S′g is an isomorphism for some g ∈ S, g 6∈ q.
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Proof. Let J = Ker(S → S′). By Lemma 10.6.2 J is a finitely generated ideal.
Since S′q is flat over R we see that Jq/IJq ⊂ Sq/ISq (apply Lemma 10.38.11 to
0 → J → S → S′ → 0). By assumption (2) we see that Jq/IJq is zero. By
Nakayama’s lemma (Lemma 10.19.1) we see that there exists a g ∈ S, g 6∈ q such
that Jg = 0. Hence Sg ∼= S′g as desired. �

Lemma 10.122.10. Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an
R-algebra map. Assume that

(1) I is locally nilpotent,
(2) S/IS → S′/IS′ is an isomorphism,
(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′ is flat over R.

Then S → S′ is an isomorphism.

Proof. By Lemma 10.122.8 the map S → S′ is surjective. As I is locally nilpotent,
so are the ideals IS and IS′ (Lemma 10.31.2). Hence every prime ideal q of S
contains IS and (trivially) Sq/ISq

∼= S′q/IS
′
q. Thus Lemma 10.122.9 applies and

we see that Sq → S′q is an isomorphism for every prime q ⊂ S. It follows that
S → S′ is injective for example by Lemma 10.23.1. �

10.123. Colimits and maps of finite presentation

In this section we prove some preliminary lemmas which will eventually help us
prove result using absolute Noetherian reduction. We begin discussing how we will
think about colimits in this section.

Let (Λ,≥) a partially ordered set. A system of rings over Λ is given by a ring Rλ
for every λ ∈ Λ, and a morphism Rλ → Rµ whenever λ ≤ µ. These morphisms
have to satisfy the rule that Rλ → Rµ → Rν is equal to the map Rλ → Rν for
all λ ≤ µ ≤ ν. See Categories, Section 4.21. We will often assume that (I,≤) is
directed, which means that Λ is nonempty and given λ, µ ∈ Λ there exists a ν ∈ Λ
with λ ≤ ν and µ ≤ ν. Recall that the colimit colimλRλ is sometimes called a
“direct limit” in this case (but we will not use this terminology).

Lemma 10.123.1. Let R → A be a ring map. There exists a directed system Aλ
of R-algebras of finite presentation such that A = colimλAλ. If A is of finite type
over R we may arrange it so that all the transition maps are surjective.

Proof. Compare with the proof of Lemma 10.8.13. Consider any finite subset
S ⊂ A, and any finite collection of polynomial relations E among the elements of
S. So each s ∈ S corresponds to xs ∈ A and each e ∈ E consists of a polynomial
fe ∈ R[Xs; s ∈ S] such that fe(xs) = 0. Let AS,E = R[Xs; s ∈ S]/(fe; e ∈ E) which
is a finitely presented R-algebra. There are canonical maps AS,E → A. If S ⊂ S′

and if the elements of E correspond, via the map R[Xs; s ∈ S]→ R[Xs; s ∈ S′], to
a subset of E′, then there is an obvious map AS,E → AS′,E′ commuting with the
maps to A. Thus, setting Λ equal the set of pairs (S,E) with ordering by inclusion
as above, we get a directed partially ordered set. It is clear that the colimit of this
directed system is A.

For the last statement, suppose A = R[x1, . . . , xn]/I. In this case, consider the
subset Λ′ ⊂ Λ consisting of those systems (S,E) above with S = {x1, . . . , xn}. It is
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easy to see that still A = colimλ′∈Λ′ Aλ′ . Moreover, the transition maps are clearly
surjective. �

It turns out that we can characterize ring maps of finite presentation as follows.
This in some sense says that the algebras of finite presentation are the “compact”
objects in the category of R-algebras.

Lemma 10.123.2. Let ϕ : R→ S be a ring map. Then ϕ is of finite presentation
if and only if for every directed system Aλ of R-algebras we have

colimλ HomR(S,Aλ) = HomR(S, colimλAλ)

Proof. Suppose S = R[x1, . . . , xn]/(f1, . . . , fm). If χ : S → colimAλ is a map,
then each xi maps to some element in the image of some Aλi . We may pick µ ≥ λi,
i = 1, . . . , n and assume χ(xi) is the image of yi ∈ Aµ for i = 1, . . . , n. Consider
zj = fj(y1, . . . , yn) ∈ Aµ. Since χ is a homomorphism the image of zj in colimλAλ
is zero. Hence there exists a µj ≥ µ such that zj maps to zero in Aµj . Pick ν ≥ µj ,
j = 1, . . . ,m. Then the images of z1, . . . , zm are zero in Aν . This exactly means
that the yi map to elements y′i ∈ Aν which satisfy the relations fj(y

′
1, . . . , y

′
n) = 0.

Thus we obtain a ring map S → Aν as desired.

Conversely, suppose the displayed formula holds always. By Lemma 10.123.1 we
may write S = colimλ Sλ with Sλ of finite presentation over R. Then the identity
map factors as

S → Sλ → S

for some λ. This impies that S is finitely presented over Sλ by Lemma 10.6.2 part
(4) applied to S → Sλ → S. Applying part (2) of the same lemma to R→ Sλ → S
we conclude that S is of finite presentation over R. �

But more is true. Namely, given R = colimλRλ we see that the category of finitely
presented R-modules is equivalent to the limit of the category of finitely presented
Rλ-modules. Similarly for the categories of finitely presented R-algebras.

Lemma 10.123.3. Let A be a ring and let M,N be A-modules. Suppose that
R = colimi∈I Ri is a directed colimit of A-algebras.

(1) If M is a finite A-module, and u, u′ : M → N are A-module maps such
that u ⊗ 1 = u′ ⊗ 1 : M ⊗A R → N ⊗A R then for some i we have
u⊗ 1 = u′ ⊗ 1 : M ⊗A Ri → N ⊗A Ri.

(2) If N is a finite A-module and u : M → N is an A-module map such
that u ⊗ 1 : M ⊗A R → N ⊗A R is surjective, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is surjective.

(3) If N is a finitely presented A-module, and v : N⊗AR→M⊗AR is an R-
module map, then there exists an i and an Ri-module map vi : N⊗ARi →
M ⊗A Ri such that v = vi ⊗ 1.

(4) If M is a finite A-module, N is a finitely presented A-module, and u :
M → N is an R-module map such that u⊗ 1 : M ⊗A R→ N ⊗A R is an
isomorphism, then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an
isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ M be generators.
Since N⊗AR = colimiN⊗ARi we may pick an i ∈ I such that u(xj)⊗1 = u′(xj)⊗1
in M⊗ARi, j = 1, . . . ,m. For such an i we have u⊗1 = u′⊗1 : M⊗ARi → N⊗ARi.
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To prove (2) assume u ⊗ 1 surjective and let y1, . . . , ym ∈ N be generators. Since
N ⊗A R = colimiN ⊗A Ri we may pick an i ∈ I and zj ∈ M ⊗A Ri, j = 1, . . . ,m
whose images in N ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : M ⊗A Ri →
N ⊗A Ri is surjective.

To prove (3) let y1, . . . , ym ∈ N be generators. Let K = Ker(A⊕m → N) where
the map is given by the rule (a1, . . . , am) 7→

∑
ajxj . Let k1, . . . , kt be generators

for K. Say ks = (ks1, . . . , ksm). Since M ⊗A R = colimiM ⊗A Ri we may pick an
i ∈ I and zj ∈M ⊗ARi, j = 1, . . . ,m whose images in M ⊗AR equal v(yj⊗1). We
want to use the zj to define the map vi : N ⊗A Ri →M ⊗A Ri. Since K ⊗A Ri →
R⊕mi → N ⊗A Ri → 0 is a presentation, it suffices to check that ξs =

∑
j ksjzj is

zero in M ⊗A Ri for each s = 1, . . . , t. This may not be the case, but since the
image of ξs in M ⊗AR is zero we see that it will be the case after increasing i a bit.

To prove (4) assume u⊗1 is an isomorphism, that M is finite, and that N is finitely
presented. Let v : N ⊗A R → M ⊗A R be an inverse to u ⊗ 1. Apply part (3) to
get a map vi : N ⊗A Ri → M ⊗A Ri for some i. Apply part (1) to see that, after
increasing i we have vi ◦ (u⊗ 1) = idM⊗RRi and (u⊗ 1) ◦ vi = idN⊗RRi . �

Lemma 10.123.4. Suppose that R = colimi∈I Ri is a directed colimit of rings.
Then the category of finitely presented R-modules is the colimit of the categories of
finitely presented Rλ-modules. More precisely

(1) Given a finitely presented R-module M there exists a λ ∈ Λ and a finitely
presented Rλ-module Mλ such that M ∼= Mλ ⊗Rλ R.

(2) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and an R-module
map ϕ : Mλ ⊗Rλ R → Nλ ⊗Rλ R, then there exists a µ ≥ λ and an
Rµ-module map ϕµ : Mλ ⊗Rλ Rµ → Nλ ⊗Rλ Rµ such that ϕ = ϕµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and R-module maps
ϕλ, ψλ : Mλ → Nλ such that ϕ ⊗ 1R = ψ ⊗ 1R, then ϕ ⊗ 1Rµ = ψ ⊗ 1Rµ
for some µ ≥ λ.

Proof. To prove (1) choose a presentation R⊕m → R⊕n →M → 0. Suppose that
the first map is given by the matrix A = (aij). We can choose a λ ∈ Λ and a matrix
Aλ = (aλ,ij) with coefficients in Rλ which maps to A in R. Then we simply let
Mλ be the Rλ-module with presentation R⊕mλ → R⊕nλ → Mλ → 0 where the first
arrow is given by Aλ.

Parts (3) and (4) follow from Lemma 10.123.3. �

Lemma 10.123.5. Let A be a ring and let B,C be A-algebras. Suppose that
R = colimi∈I Ri is a directed colimit of A-algebras.

(1) If B is a finite type A-algebra, and u, u′ : B → C are A-algebra maps
such that u ⊗ 1 = u′ ⊗ 1 : B ⊗A R → C ⊗A R then for some i we have
u⊗ 1 = u′ ⊗ 1 : B ⊗A Ri → C ⊗A Ri.

(2) If C is a finite type A-algebra and u : B → C is an A-algebra map such
that u ⊗ 1 : B ⊗A R → C ⊗A R is surjective, then for some i the map
u⊗ 1 : B ⊗A Ri → C ⊗A Ri is surjective.

(3) If C is of finite presentation over A and v : C ⊗A R → B ⊗A R is an R-
algebra map, then there exists an i and an Ri-algebra map vi : C⊗ARi →
B ⊗A Ri such that v = vi ⊗ 1.
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(4) If B is a finite type A-algebra, C is a finitely presented A-algebra, and
u ⊗ 1 : B ⊗A R → C ⊗A R is an isomorphism, then for some i the map
u⊗ 1 : B ⊗A Ri → C ⊗A Ri is an isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ B be generators.
Since B⊗AR = colimiB⊗ARi we may pick an i ∈ I such that u(xj)⊗1 = u′(xj)⊗1
in B⊗ARi, j = 1, . . . ,m. For such an i we have u⊗1 = u′⊗1 : B⊗ARi → C⊗ARi.

To prove (2) assume u ⊗ 1 surjective and let y1, . . . , ym ∈ C be generators. Since
B⊗AR = colimiB⊗ARi we may pick an i ∈ I and zj ∈ B⊗ARi, j = 1, . . . ,m whose
images in C ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : B ⊗A Ri → C ⊗A Ri
is surjective.

To prove (3) let c1, . . . , cm ∈ C be generators. Let K = Ker(A[x1, . . . , xm] → N)
where the map is given by the rule xj 7→

∑
cj . Let f1, . . . , ft be generators for K as

an ideal in A[x1, . . . , xm]. We think of fj = fj(x1, . . . , xm) as a polynomial. Since
B ⊗A R = colimiB ⊗A Ri we may pick an i ∈ I and zj ∈ B ⊗A Ri, j = 1, . . . ,m
whose images in B ⊗A R equal v(cj ⊗ 1). We want to use the zj to define a map
vi : C ⊗A Ri → B ⊗A Ri. Since K ⊗A Ri → Ri[x1, . . . , xm] → C ⊗A Ri → 0 is
a presentation, it suffices to check that ξs = fj(z1, . . . , zm) is zero in B ⊗A Ri for
each s = 1, . . . , t. This may not be the case, but since the image of ξs in B ⊗A R
is zero we see that it will be the case after increasing i a bit.

To prove (4) assume u⊗1 is an isomorphism, that B is a finite type A-algebra, and
that C is a finitely presented A-algebra. Let v : B ⊗A R → C ⊗A R be an inverse
to u⊗ 1. Let vi : C⊗ARi → B⊗ARi be as in part (3). Apply part (1) to see that,
after increasing i we have vi ◦ (u⊗ 1) = idB⊗RRi and (u⊗ 1) ◦ vi = idC⊗RRi . �

Lemma 10.123.6. Suppose that R = colimi∈I Ri is a directed colimit of rings.
Then the category of finitely presented R-algebras is the colimit of the categories of
finitely presented Rλ-algebras. More precisely

(1) Given a finitely presented R-algebra A there exists a λ ∈ Λ and a finitely
presented Rλ-algebra Aλ such that A ∼= Aλ ⊗Rλ R.

(2) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and an R-algebra
map ϕ : Aλ ⊗Rλ R → Bλ ⊗Rλ R, then there exists a µ ≥ λ and an
Rµ-algebra map ϕµ : Aλ ⊗Rλ Rµ → Bλ ⊗Rλ Rµ such that ϕ = ϕµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and R-algebra maps
ϕλ, ψλ : Aλ → Bλ such that ϕ ⊗ 1R = ψ ⊗ 1R, then ϕ ⊗ 1Rµ = ψ ⊗ 1Rµ
for some µ ≥ λ.

Proof. To prove (1) choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm). We can
choose a λ ∈ Λ and elements fλ,j ∈ Rλ[x1, . . . , xn] mapping to fj ∈ R[x1, . . . , xn].
Then we simply let Aλ = Rλ[x1, . . . , xn]/(fλ,1, . . . , fλ,m).

Parts (3) and (4) follow from Lemma 10.123.5. �

Lemma 10.123.7. Suppose R→ S is a local homomorphism of local rings. There
exists a directed set (Λ,≤), and a system of local homomorphisms Rλ → Sλ of local
rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
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Proof. Denote ϕ : R → S the ring map. Let m ⊂ R be the maximal ideal of R
and let n ⊂ S be the maximal ideal of S. Let

Λ = {(A,B) | A ⊂ R,B ⊂ S,#A <∞,#B <∞, ϕ(A) ⊂ B}.
As partial ordering we take the inclusion relation. For each λ = (A,B) ∈ Λ we let
R′λ be the sub Z-algebra generated by a ∈ A, and we let S′λ be the sub Z-algebra
generated by b, b ∈ B. Let Rλ be the localization of R′λ at the prime ideal R′λ ∩m
and let Sλ be the localization of S′λ at the prime ideal S′λ ∩ n. In a picture

B // S′λ // Sλ // S

A //

OO

R′λ
//

OO

Rλ //

OO

R

OO .

The transition maps are clear. We leave the proofs of the other assertions to the
reader. �

Lemma 10.123.8. Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite type over R. Then there exists a directed set (Λ,≤),
and a system of local homomorphisms Rλ → Sλ of local rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization

of a quotient of Sλ ⊗Rλ Rµ.

Proof. Denote ϕ : R→ S the ring map. Let m ⊂ R be the maximal ideal of R and
let n ⊂ S be the maximal ideal of S. Let x1, . . . , xn ∈ S be elements such that S is
a localization of the sub R-algebra of S generated by x1, . . . , xn. In other words, S
is a quotient of a localization of the polynomial ring R[x1, . . . , xn].

Let Λ = {A ⊂ R | #A < ∞} be the set of finite subsets of R. As partial ordering
we take the inclusion relation. For each λ = A ∈ Λ we let R′λ be the sub Z-algebra
generated by a ∈ A, and we let S′λ be the sub Z-algebra generated by ϕ(a), a ∈ A
and the elements x1, . . . , xn. Let Rλ be the localization of R′λ at the prime ideal
R′λ ∩m and let Sλ be the localization of S′λ at the prime ideal S′λ ∩ n. In a picture

ϕ(A)
∐
{xi} // S′λ // Sλ // S

A //

OO

R′λ
//

OO

Rλ //

OO

R

OO

It is clear that if A ⊂ B corresponds to λ ≤ µ in Λ, then there are canonical maps
Rλ → Rµ, and Sλ → Sµ and we obtain a system over the directed set Λ.

The assertion that R = colimRλ is clear because all the maps Rλ → R are injective
and any element of R eventually is in the image. The same argument works for
S = colimSλ. Assertions (2), (3) are true by construction. The final assertion
holds because clearly the maps S′λ ⊗R′λ R

′
µ → S′µ are surjective. �

Lemma 10.123.9. Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite presentation over R. Then there exists a directed set
(Λ,≤), and a system of local homomorphism Rλ → Sλ of local rings such that
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(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization

of Sλ ⊗Rλ Rµ at a prime ideal.

Proof. By assumption we may choose an isomorphism Φ : (R[x1, . . . , xn]/I)q → S
where I ⊂ R[x1, . . . , xn] is a finitely generated ideal, and q ⊂ R[x1, . . . , xn]/I
is a prime. (Note that R ∩ q is equal to the maximal ideal m of R.) We also
choose generators f1, . . . , fm ∈ I for the ideal I. Write R in any way as a colimit
R = colimRλ over a directed set (Λ,≤), with each Rλ local and essentially of
finite type over Z. There exists some λ0 ∈ Λ such that fj is the image of some
fj,λ0

∈ Rλ0
[x1, . . . , xn]. For all λ ≥ λ0 denote fj,λ ∈ Rλ[x1, . . . , xn] the image of

fj,λ0
. Thus we obtain a system of ring maps

Rλ[x1, . . . , xn]/(f1,λ, . . . , fn,λ)→ R[x1, . . . , xn]/(f1, . . . , fn)→ S

Set qλ the inverse image of q. Set Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fn,λ))qλ . We
leave it to the reader to see that this works. �

Remark 10.123.10. Suppose that R→ S is a local homomorphism of local rings,
which is essentially of finite presentation. Take any system (Λ,≤), Rλ → Sλ with
the properties listed in Lemma 10.123.8. What may happen is that this is the
“wrong” system, namely, it may happen that property (4) of Lemma 10.123.9 is
not satisfied. Here is an example. Let k be a field. Consider the ring

R = k[[z, y1, y2, . . .]]/(y
2
i − zyi+1).

Set S = R/zR. As system take Λ = N and Rn = k[[z, y1, . . . , yn]]/({y2
i −

zyi+1}i≤n−1) and Sn = Rn/(z, y
2
n). All the maps Sn ⊗Rn Rn+1 → Sn+1 are not

localizations (i.e., isomorphisms in this case) since 1 ⊗ y2
n+1 maps to zero. If we

take instead S′n = Rn/zRn then the maps S′n⊗Rn Rn+1 → S′n+1 are isomorphisms.
The moral of this remark is that we do have to be a little careful in choosing the
systems.

Lemma 10.123.11. Suppose R → S is a local homomorphism of local rings. As-
sume that S is essentially of finite presentation over R. Let M be a finitely pre-
sented S-module. Then there exists a directed set (Λ,≤), and a system of local
homomorphisms Rλ → Sλ of local rings together with Sλ-modules Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S. The colimit of the
system Mλ is M .

(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization

of Sλ ⊗Rλ Rµ at a prime ideal.
(6) For each λ ≤ µ the map Mλ ⊗Sλ Sµ →Mµ is an isomorphism.

Proof. As in the proof of Lemma 10.123.9 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Next, we
may assume that for some λ1 ∈ Λ there exist fj,λ1

∈ Rλ1
[x1, . . . , xn] such that

S = colimλ≥λ1
Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ
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Choose a presentation

S⊕s → S⊕t →M → 0

of M over S. Let A ∈ Mat(t × s, S) be the matrix of the presentation. For some
λ2 ∈ Λ, λ2 ≥ λ1 we can find a matrix Aλ2

∈ Mat(t× s, Sλ2
) which maps to A. For

all λ ≥ λ2 we let Mλ = Coker(S⊕sλ
Aλ−−→ S⊕tλ ). We leave it to the reader to see that

this works. �

Lemma 10.123.12. Suppose R → S is a ring map. Then there exists a directed
set (Λ,≤), and a system of ring maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.

Proof. This is the non-local version of Lemma 10.123.7. Proof is similar and left
to the reader. �

Lemma 10.123.13. Suppose R → S is a ring map. Assume that S is of finite
type over R. Then there exists a directed set (Λ,≤), and a system of ring maps
Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as a quotient of

Sλ ⊗Rλ Rµ.

Proof. This is the non-local version of Lemma 10.123.8. Proof is similar and left
to the reader. �

Lemma 10.123.14. Suppose R → S is a ring map. Assume that S is of finite
presentation over R. Then there exists a directed set (Λ,≤), and a system of ring
maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ is an isomorphism.

Proof. This is the non-local version of Lemma 10.123.9. Proof is similar and left
to the reader. �

Lemma 10.123.15. Suppose R → S is a ring map. Assume that S is of finite
presentation over R. Let M be a finitely presented S-module. Then there exists a
directed set (Λ,≤), and a system of ring maps Rλ → Sλ together with Sλ-modules
Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S. The colimit of the
system Mλ is M .

(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ is an isomorphism.
(6) For each λ ≤ µ the map Mλ ⊗Sλ Sµ → Sµ is an isomorphism.
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In particular, for every λ ∈ Λ we have

M = Mλ ⊗Sλ S = Mλ ⊗Rλ R.

Proof. This is the non-local version of Lemma 10.123.11. Proof is similar and left
to the reader. �

10.124. More flatness criteria

The following lemma is often used in algebraic geometry to show that a finite
morphism from a normal surface to a smooth surface is flat. It is a partial converse
to Lemma 10.108.9 because a finite local ring map certainly satisfies condition (3).

Lemma 10.124.1. Let R→ S be a local homomorphism of Noetherian local rings.
Assume

(1) R is regular,
(2) S Cohen-Macaulay,
(3) mS =

√
mRS, and

(4) dim(R) = dim(S).

Then R→ S is flat.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial, because then
R is a field. Assume dim(R) > 0. By (4) this implies that dim(S) > 0. Let
q1, . . . , qr be the minimal primes of S. Note that qi 6= mS , hence pi = R∩ qi is not
equal to mR by (3). Pick x ∈ m, x 6∈ m2, and x 6∈ pi, see Lemma 10.14.2. Hence
we see that x is not contained in any of the minimal primes of S. Hence x is a
nonzerodivisor on S by (2), see Lemma 10.100.2 and S/xS is Cohen-Macaulay with
dim(S/xS) = dim(S) − 1. By (1) and Lemma 10.102.3 the ring R/xR is regular
with dim(R/xR) = dim(R) − 1. By induction we see that R/xR → S/xS is flat.
Hence we conclude by Lemma 10.95.10 (see also the remarks following it). �

Lemma 10.124.2. Let R → S be a homomorphism of Noetherian local rings.
Assume that R is a regular local ring and that a regular system of parameters maps
to a regular sequence in S. Then R→ S is flat.

Proof. Suppose that x1, . . . , xd are a system of parameters of R which map to
a regular sequence in S. Note that S/(x1, . . . , xd)S is flat over R/(x1, . . . , xd)
as the latter is a field. Then xd is a nonzerodivisor in S/(x1, . . . , xd−1)S hence
S/(x1, . . . , xd−1)S is flat over R/(x1, . . . , xd−1) by the local criterion of flatness
(see Lemma 10.95.10 and remarks following). Then xd−1 is a nonzerodivisor in
S/(x1, . . . , xd−2)S hence S/(x1, . . . , xd−2)S is flat over R/(x1, . . . , xd−2) by the local
criterion of flatness (see Lemma 10.95.10 and remarks following). Continue till one
reaches the conclusion that S is flat over R. �

The following lemma is the key to proving that results for finitely presented modules
over finitely presented rings over a base ring follow from the corresponding results
for finite modules in the Noetherian case.

Lemma 10.124.3. Let R → S, M , Λ, Rλ → Sλ, Mλ be as in Lemma 10.123.11.
Assume that M is flat over R. Then for some λ ∈ Λ the module Mλ is flat over
Rλ.
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Proof. Pick some λ ∈ Λ and consider

TorRλ1 (Mλ, Rλ/mλ) = Ker(mλ ⊗Rλ Mλ →Mλ).

See Remark 10.72.8. The right hand side shows that this is a finitely generated
Sλ-module (because Sλ is Noetherian and the modules in question are finite). Let
ξ1, . . . , ξn be generators. Because M is flat over R we have that 0 = Ker(mλR ⊗R
M → M). Since ⊗ commutes with colimits we see there exists a λ′ ≥ λ such that
each ξi maps to zero in mλRλ′ ⊗Rλ′ Mλ′ . Hence we see that

TorRλ1 (Mλ, Rλ/mλ) −→ Tor
Rλ′
1 (Mλ′ , Rλ′/mλRλ′)

is zero. Note that Mλ ⊗Rλ Rλ/mλ is flat over Rλ/mλ because this last ring is a
field. Hence we may apply Lemma 10.95.14 to get that Mλ′ is flat over Rλ′ . �

Using the lemma above we can start to reprove the results of Section 10.95 in the
non-Noetherian case.

Lemma 10.124.4. Suppose that R → S is a local homomorphism of local rings.
Denote m the maximal ideal of R. Let u : M → N be a map of S-modules. Assume

(1) S is essentially of finite presentation over R,
(2) M , N are finitely presented over S,
(3) N is flat over R, and
(4) u : M/mM → N/mN is injective.

Then u is injective, and N/u(M) is flat over R.

Proof. By Lemma 10.123.11 and its proof we can find a system Rλ → Sλ of
local ring maps together with maps of Sλ-modules uλ : Mλ → Nλ satisfying the
conclusions (1) – (6) for both N and M of that lemma and such that the colimit of
the maps uλ is u. By Lemma 10.124.3 we may assume that Nλ is flat over Rλ for
all sufficiently large λ. Denote mλ ⊂ Rλ the maximal ideal and κλ = Rλ/mλ, resp.
κ = R/m the residue fields.

Consider the map

Ψλ : Mλ/mλMλ ⊗κλ κ −→M/mM.

Since Sλ/mλSλ is essentially of finite type over the field κλ we see that the tensor
product Sλ/mλSλ⊗κλ κ is essentially of finite type over κ. Hence it is a Noetherian
ring and we conclude the kernel of Ψλ is finitely generated. Since M/mM is the
colimit of the system Mλ/mλMλ and κ is the colimit of the fields κλ there exists a
λ′ > λ such that the kernel of Ψλ is generated by the kernel of

Ψλ,λ′ : Mλ/mλMλ ⊗κλ κλ′ −→Mλ′/mλ′Mλ′ .

By construction there exists a multiplicative subset W ⊂ Sλ ⊗Rλ Rλ′ such that
Sλ′ = W−1(Sλ ⊗Rλ Rλ′) and

W−1(Mλ/mλMλ ⊗κλ κλ′) = Mλ′/mλ′Mλ′ .

Now suppose that x is an element of the kernel of

Ψλ′ : Mλ′/mλ′Mλ′ ⊗κλ′ κ −→M/mM.

Then for some w ∈W we have wx ∈Mλ/mλMλ ⊗ κ. Hence wx ∈ Ker(Ψλ). Hence
wx is a linear combination of elements in the kernel of Ψλ,λ′ . Hence wx = 0 in
Mλ′/mλ′Mλ′ ⊗κλ′ κ, hence x = 0 because w is invertible in Sλ′ . We conclude that
the kernel of Ψλ′ is zero for all sufficiently large λ′!
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By the result of the preceding paragraph we may assume that the kernel of Ψλ is
zero for all λ sufficiently large, which implies that the map Mλ/mλMλ → M/mM
is injective. Combined with u being injective this formally implies that also uλ :
Mλ/mλMλ → Nλ/mλNλ is injective. By Lemma 10.95.1 we conclude that (for all
sufficiently large λ) the map uλ is injective and that Nλ/uλ(Mλ) is flat over Rλ.
The lemma follows. �

Lemma 10.124.5. Suppose that R → S is a local ring homomorphism of local
rings. Denote m the maximal ideal of R. Suppose

(1) S is essentially of finite presentation over R,
(2) S is flat over R, and
(3) f ∈ S is a nonzerodivisor in S/mS.

Then S/fS is flat over R, and f is a nonzerodivisor in S.

Proof. Follows directly from Lemma 10.124.4. �

Lemma 10.124.6. Suppose that R → S is a local ring homomorphism of local
rings. Denote m the maximal ideal of R. Suppose

(1) R→ S is essentially of finite presentation,
(2) R→ S is flat, and
(3) f1, . . . , fc is a sequence of elements of S such that the images f1, . . . , f c

form a regular sequence in S/mS.

Then f1, . . . , fc is a regular sequence in S and each of the quotients S/(f1, . . . , fi)
is flat over R.

Proof. Induction and Lemma 10.124.5. �

Here is the version of the local criterion of flatness for the case of local ring maps
which are locally of finite presentation.

Lemma 10.124.7. Let R→ S be a local homomorphism of local rings. Let I 6= R
be an ideal in R. Let M be an S-module. Assume

(1) S is essentially of finite presentation over R,
(2) M is of finite presentation over S,

(3) TorR1 (M,R/I) = 0, and
(4) M/IM is flat over R/I.

Then M is flat over R.

Proof. Let Λ, Rλ → Sλ, Mλ be as in Lemma 10.123.11. Denote Iλ ⊂ Rλ the
inverse image of I. In this case the system R/I → S/IS, M/IM , Rλ → Sλ/IλSλ,
and Mλ/IλMλ satisfies the conclusions of Lemma 10.123.11 as well. Hence by
Lemma 10.124.3 we may assume (after shrinking the index set Λ) that Mλ/IλMλ

is flat for all λ. Pick some λ and consider

TorRλ1 (Mλ, Rλ/Iλ) = Ker(Iλ ⊗Rλ Mλ →Mλ).

See Remark 10.72.8. The right hand side shows that this is a finitely generated
Sλ-module (because Sλ is Noetherian and the modules in question are finite).
Let ξ1, . . . , ξn be generators. Because Tor1

R(M,R/I) = 0 and since ⊗ commutes
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with colimits we see there exists a λ′ ≥ λ such that each ξi maps to zero in

Tor
Rλ′
1 (Mλ′ , Rλ′/Iλ′). The composition of the maps

Rλ′ ⊗Rλ TorRλ1 (Mλ, Rλ/Iλ)

surjective by Lemma 10.95.12

��
TorRλ1 (Mλ, Rλ′/IλRλ′)

surjective up to localization by Lemma 10.95.13

��
Tor

Rλ′
1 (Mλ′ , Rλ′/IλRλ′)

surjective by Lemma 10.95.12

��
Tor

Rλ′
1 (Mλ′ , Rλ′/Iλ′).

is surjective up to a localization by the reasons indicated. The localization is
necessary since Mλ′ is not equal to Mλ⊗Rλ Rλ′ . Namely, it is equal to Mλ⊗Sλ Sλ′
and Sλ′ is the localization of Sλ⊗Rλ Rλ′ whence the statement up to a localization
(or tensoring with Sλ′). Note that Lemma 10.95.12 applies to the first and third
arrows because Mλ/IλMλ is flat over Rλ/Iλ and because Mλ′/IλMλ′ is flat over
Rλ′/IλRλ′ as it is a base change of the flat module Mλ/IλMλ. The composition
maps the generators ξi to zero as we explained above. We finally conclude that

Tor
Rλ′
1 (Mλ′ , Rλ′/Iλ′) is zero. This implies that Mλ′ is flat over Rλ′ by Lemma

10.95.10. �

Please compare the lemma below to Lemma 10.95.15 (the case of Noetherian local
rings) and Lemma 10.97.8 (the case of a nilpotent ideal in the base).

Lemma 10.124.8 (Critère de platitude par fibres). Let R, S, S′ be local rings and
let R→ S → S′ be local ring homomorphisms. Let M be an S′-module. Let m ⊂ R
be the maximal ideal. Assume

(1) The ring maps R→ S and R→ S′ are essentially of finite presentation.
(2) The module M is of finite presentation over S′.
(3) The module M is not zero.
(4) The module M/mM is a flat S/mS-module.
(5) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. As in the proof of Lemma 10.123.9 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Denote pλ
the maximal ideal of R. Next, we may assume that for some λ1 ∈ Λ there exist
fj,λ1 ∈ Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fu,λ))qλ

For some λ2 ∈ Λ, λ2 ≥ λ1 there exist gj,λ2 ∈ Rλ2 [x1, . . . , xn, y1, . . . , ym] with images
gj,λ2

∈ Sλ2
[y1, . . . , ym] such that

S′ = colimλ≥λ2 S
′
λ, with S′λ = (Sλ[y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′λ

Note that this also implies that

S′λ = (Rλ[x1, . . . , xn, y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′λ

http://stacks.math.columbia.edu/tag/00R7
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Choose a presentation

(S′)⊕s → (S′)⊕t →M → 0

of M over S′. Let A ∈ Mat(t× s, S′) be the matrix of the presentation. For some
λ3 ∈ Λ, λ3 ≥ λ2 we can find a matrix Aλ3

∈ Mat(t× s, Sλ3
) which maps to A. For

all λ ≥ λ3 we let Mλ = Coker((S′λ)⊕s
Aλ−−→ (S′λ)⊕t).

With these choices, we have for each λ3 ≤ λ ≤ µ that Sλ ⊗Rλ Rµ → Sµ is a
localization, S′λ⊗Sλ Sµ → S′µ is a localization, and the map Mλ⊗S′λ Sµ →Mµ is an

isomorphism. This also implies that S′λ⊗Rλ Rµ → S′µ is a localization. Thus, since
M is flat over R we see by Lemma 10.124.3 that for all λ big enough the module
Mλ is flat over Rλ. Moreover, note that m = colim pλ, S/mS = colimSλ/pλSλ,
S′/mS′ = colimS′λ/pλS

′
λ, and M/mM = colimMλ/pλMλ. Also, for each λ3 ≤ λ ≤

µ we see (from the properties listed above) that

S′λ/pλS
′
λ ⊗Sλ/pλSλ Sµ/pµSµ −→ S′µ/pµS

′
µ

is a localization, and the map

Mλ/pλMλ ⊗S′λ/pλS′λ Sµ/pµS
′
µ −→Mµ/pµMµ

is an isomorphism. Hence the system (Sλ/pλSλ → S′λ/pλS
′
λ,Mλ/pλMλ) is a system

as in Lemma 10.123.11 as well. We may apply Lemma 10.124.3 again because
M/mM is assumed flat over S/mS and we see that Mλ/pλMλ is flat over Sλ/pλSλ
for all λ big enough. Thus for λ big enough the data Rλ → Sλ → S′λ,Mλ satisfies
the hypotheses of Lemma 10.95.15. Pick such a λ. Then S = Sλ ⊗Rλ R is flat over
R, and M = Mλ ⊗Sλ S′λ is flat over S (since the base change of a flat module is
flat). �

The following is an easy consequence of the “critère de platitude par fibres” Lemma
10.124.8. For more results of this kind see More on Flatness, Section 37.1.

Lemma 10.124.9. Let R, S, S′ be local rings and let R → S → S′ be local ring
homomorphisms. Let M be an S′-module. Let m ⊂ R be the maximal ideal. Assume

(1) R→ S′ is essentially of finite presentation,
(2) R→ S is essentially of finite type,
(3) M is of finite presentation over S′,
(4) M is not zero,
(5) M/mM is a flat S/mS-module, and
(6) M is a flat R-module.

Then S is essentially of finite presentation and flat over R and M is a flat S-module.

Proof. As S is essentially of finite presentation over R we can write S = Cq for
some finite type R-algebra C. Write C = R[x1, . . . , xn]/I. Denote q ⊂ R[x1, . . . , xn]
be the prime ideal corresponding to q. Then we see that S = B/J where B =
R[x1, . . . , xn]q is essentially of finite presentation over R and J = IB. We can find

f1, . . . , fk ∈ J such that the images f i ∈ B/mB generate the image J of J in the
Noetherian ring B/mB. Hence there exist finitely generated ideals J ′ ⊂ J such
that B/J ′ → B/J induces an isomorphism

(B/J ′)⊗R R/m −→ B/J ⊗R R/m = S/mS.

For any J ′ as above we see that Lemma 10.124.8 applies to the ring maps

R −→ B/J ′ −→ S′
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and the module M . Hence we conclude that B/J ′ is flat over R for any choice J ′

as above. Now, if J ′ ⊂ J ′ ⊂ J are two finitely generated ideals as above, then we
conclude that B/J ′ → B/J ′′ is a surjective map between flat R-algebras which are
essentially of finite presentation which is an isomorphism modulo m. Hence Lemma
10.124.4 implies that B/J ′ = B/J ′′, i.e., J ′ = J ′′. Clearly this means that J is
finitely generated, i.e., S is essentially of finite presentation over R. Thus we may
apply Lemma 10.124.8 to R→ S → S′ and we win. �

10.125. Openness of the flat locus

Lemma 10.125.1. Let k be a field. Let S be a finite type k-algebra. Let f1, . . . , fi be
elements of S. Assume that S is Cohen-Macaulay and equidimensional of dimension
d, and that dimV (f1, . . . , fi) ≤ d − i. Then equality holds and f1, . . . , fi forms a
regular sequence in Sq for every prime q of V (f1, . . . , fi).

Proof. If S is Cohen-Macaulay and equidimensional of dimension d, then we have
dim(Sm) = d for all maximal ideals m of S, see Lemma 10.110.7. By Proposition
10.99.5 we see that for all maximal ideals m ∈ V (f1, . . . , fi) the sequence is a
regular sequence in Sm and the local ring Sm/(f1, . . . , fi) is Cohen-Macaulay of
dimension d − i. This actually means that S/(f1, . . . , fi) is Cohen-Macaulay and
equidimensional of dimension d− i. �

Lemma 10.125.2. Suppose that R → S is a ring map which is finite type, flat.
Let d be an integer such that all fibres S ⊗R κ(p) are Cohen-Macaulay and equidi-
mensional of dimension d. Let f1, . . . , fi be elements of S. The set

{q ∈ V (f1, . . . , fi) | f1, . . . , fi are a regular sequence in Sq/pSq where p = R ∩ q}

is open in V (f1, . . . , fi).

Proof. Write S = S/(f1, . . . , fi). Suppose q is an element of the set defined in the
lemma, and p is the corresponding prime of R. We will use relative dimension as
defined in Definition 10.121.1. First, note that d = dimq(S/R) = dim(Sq/pSq) +
trdegκ(p) κ(q) by Lemma 10.112.3. Since f1, . . . , fi form a regular sequence in the

Noetherian local ring Sq/pSq general dimension theory tells us that dim(Sq/pSq) =

dim(Sq/pSq)−i. By the same Lemma 10.112.3 we then conclude that dimq(S/R) =

dim(Sq/pSq) + trdegκ(p) κ(q) = d− i. By Lemma 10.121.6 we have dimq′(S/R) ≤
d − i for all q′ ∈ V (f1, . . . , fi) = Spec(S) in a neighbourhood of q. Thus after
replacing S by Sg for some g ∈ S, g 6∈ q we may assume that the inequality holds
for all q′. The result follows from Lemma 10.125.1. �

Lemma 10.125.3. Let R→ S is a ring map. Consider a finite homological com-
plex of finite free S-modules:

F• : 0→ Sne
ϕe−→ Sne−1

ϕe−1−−−→ . . .
ϕi+1−−−→ Sni

ϕi−→ Sni−1
ϕi−1−−−→ . . .

ϕ1−→ Sn0

For every prime q of S consider the complex F •,q = F•,q⊗R κ(p) where p is inverse
image of q in R. Assume there exists an integer d such that R → S is finite type,
flat with fibres S ⊗R κ(p) Cohen-Macaulay of dimension d. The set

{q ∈ Spec(S) | F •,q is exact}

is open in Spec(S).
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Proof. Let q be an element of the set defined in the lemma. We are going to use
Proposition 10.98.10 to show there exists a g ∈ S, g 6∈ q such that D(g) is contained
in the set defined in the lemma. In other words, we are going to show that after
replacing S by Sg, the set of the lemma is all of Spec(S). Thus during the proof
we will, finitely often, replace S by such a localization. Recall that Proposition
10.98.10 characterizes exactness of complexes in terms of ranks of the maps ϕi and
the ideals I(ϕi), in case the ring is local. We first address the rank condition. Set
ri = ni − ni+1 + . . .+ (−1)e−ine. Note that ri + ri+1 = ni and note that ri is the
expected rank of ϕi (in the exact case).

By Lemma 10.95.5 we see that if F •,q is exact, then the localization F•,q is exact.
In particular the complex F• becomes exact after localizing by an element g ∈ S,
g 6∈ q. In this case Proposition 10.98.10 applied to all localizations of S at prime
ideals implies that all (ri + 1) × (ri + 1)-minors of ϕi are zero. Thus we see that
the rank of of ϕi is at most ri.

Let Ii ⊂ S denote the ideal generated by the ri× ri-minors of the matrix of ϕi. By
Proposition 10.98.10 the complex F •,q is exact if and only if for every 1 ≤ i ≤ e
we have either (Ii)q = Sq or (Ii)q contains a Sq/pSq-regular sequence of length i.
Namely, by our choice of ri above and by the bound on the ranks of the ϕi this is
the only way the conditions of Proposition 10.98.10 can be satisfied.

If (Ii)q = Sq, then after localizing S at some element g 6∈ q we may assume that
Ii = S. Clearly, this is an open condition.

If (Ii)q 6= Sq, then we have a sequence f1, . . . , fi ∈ (Ii)q which form a regular
sequence in Sq/pSq. Note that for any prime q′ ⊂ S such that (f1, . . . , fi) 6⊂ q′ we
have (Ii)q′ = Sq′ . Thus the result follows from Lemma 10.125.2. �

Theorem 10.125.4. Let R be a ring. Let R → S be a ring map of finite presen-
tation. Let M be a finitely presented S-module. The set

{q ∈ Spec(S) |Mq is flat over R}

is open in Spec(S).

Proof. Let q ∈ Spec(S) be a prime. Let p ⊂ R be the inverse image of q in R.
Note that Mq is flat over R if and only if it is flat over Rp. Let us assume that Mq

is flat over R. We claim that there exists a g ∈ S, g 6∈ q such that Mg is flat over
R.

We first reduce to the case where R and S are of finite type over Z. Choose
a directed partially ordered set Λ and a system (Rλ → SΛ,Mλ) as in Lemma
10.123.15. Set pλ equal to the inverse image of p in Rλ. Set qλ equal to the inverse
image of q in Sλ. Then the system

((Rλ)pλ , (Sλ)qλ , (Mλ)qλ)

is a system as in Lemma 10.123.11. Hence by Lemma 10.124.3 we see that for
some λ the module Mλ is flat over Rλ at the prime qλ. Suppose we can prove our
claim for the system (Rλ → Sλ,Mλ, qλ). In other words, suppose that we can find
a g ∈ Sλ, g 6∈ qλ such that (Mλ)g is flat over Rλ. By Lemma 10.123.15 we have
M = Mλ ⊗Rλ R and hence also Mg = (Mλ)g ⊗Rλ R. Thus by Lemma 10.38.6 we
deduce the claim for the system (R→ S,M, q).
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At this point we may assume that R and S are of finite type over Z. We may write
S as a quotient of a polynomial ring R[x1, . . . , xn]. Of course, we may replace S by
R[x1, . . . , xn] and assume that S is a polynomial ring over R. In particular we see
that R→ S is flat and all fibres rings S ⊗R κ(p) have global dimension n.

Choose a resolution F• of M over S with each Fi finite free, see Lemma 10.69.1.
Let Kn = Ker(Fn−1 → Fn−2). Note that (Kn)q is flat over R, since each Fi is flat
over R and by assumption on M , see Lemma 10.38.12. In addition, the sequence

0→ Kn/pKn → Fn−1/pFn−1 → . . .→ F0/pF0 →M/pM → 0

is exact upon localizing at q, because of vanishing of Tor
Rp

i (κ(p),Mq). Since the
global dimension of Sq/pSq is n we conclude that Kn/pKn localized at q is a finite
free module over Sq/pSq. By Lemma 10.95.4 (Kn)q is free over Sq. In particular,
there exists a g ∈ S, g 6∈ q such that (Kn)g is finite free over Sg.

By Lemma 10.125.3 there exists a further localization Sg such that the complex

0→ Kn → Fn−1 → . . .→ F0

is exact on all fibres of R→ S. By Lemma 10.95.5 this implies that the cokernel of
F1 → F0 is flat. This proves the theorem in the Noetherian case. �

10.126. Openness of Cohen-Macaulay loci

In this section we characterize the Cohen-Macaulay property of finite type algebras
in terms of flatness. We then use this to prove the set of points where such an
algebra is Cohen-Macaulay is open.

Lemma 10.126.1. Let S be a finite type algebra over a field k. Let ϕ : k[y1, . . . , yd]→
S be a finite ring map. As subsets of Spec(S) we have

{q | Sq flat over k[y1, . . . , yd]} = {q | Sq CM and dimq(S/k) = d}

For notation see Definition 10.121.1.

Proof. Let q ⊂ S be a prime. Denote p = k[y1, . . . , yd] ∩ q. Note that always
dim(Sq) ≤ dim(k[y1, . . . , yd]p) by Lemma 10.121.4 for example. Moreover, the field
extension κ(p) ⊂ κ(q) is finite and hence trdegk(κ(p)) = trdegk(κ(q)).

Let q be an element of the left hand side. Then Lemma 10.108.9 applies and we
conclude that Sq is Cohen-Macaulay and dim(Sq) = dim(k[y1, . . . , yd]p). Combined
with the equality of transcendence degrees above and Lemma 10.112.3 this implies
that dimq(S/k) = d. Hence q is an element of the right hand side.

Let q be an element of the right hand side. By the equality of transcendence degrees
above, the assumption that dimq(S/k) = d and Lemma 10.112.3 we conclude that
dim(Sq) = dim(k[y1, . . . , yd]p). Hence Lemma 10.124.1 applies and we see that q is
an element of the left hand side. �

Lemma 10.126.2. Let S be a finite type algebra over a field k. The set of primes
q such that Sq is Cohen-Macaulay is open in S.

This lemma is a special case of Lemma 10.126.4 below, so you can skip straight to
the proof of that lemma if you like.
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Proof. Let q ⊂ S be a prime such that Sq is Cohen-Macaulay. We have to show
there exists a g ∈ S, g 6∈ q such that the ring Sg is Cohen-Macaulay. For any
g ∈ S, g 6∈ q we may replace S by Sg and q by qSg. Combining this with Lemmas
10.111.5 and 10.112.3 we may assume that there exists a finite injective ring map
k[y1, . . . , yd] → S with d = dim(Sq) + trdegk(κ(q)). Set p = k[y1, . . . , yd] ∩ q. By
construction we see that q is an element of the right hand side of the displayed
equality of Lemma 10.126.1. Hence it is also an element of the left hand side.

By Theorem 10.125.4 we see that for some g ∈ S, g 6∈ q the ring Sg is flat over
k[y1, . . . , yd]. Hence by the equality of Lemma 10.126.1 again we conclude that all
local rings of Sg are Cohen-Macaulay as desired. �

Lemma 10.126.3. Let k be a field. Let S be a finite type k algebra. The set of
Cohen-Macaulay primes forms a dense open U ⊂ Spec(S).

Proof. The set is open by Lemma 10.126.2. It contains all minimal primes q ⊂ S
since the local ring at a minimal prime Sq has dimension zero and hence is Cohen-
Macaulay. �

Lemma 10.126.4. Let R be a ring. Let R→ S be of finite presentation and flat.
For any d ≥ 0 the set{

q ∈ Spec(S) such that setting p = R ∩ q the fibre ring
Sq/pSq is Cohen-Macaulay and dimq(S/R) = d

}
is open in Spec(S).

Proof. Let q be an element of the set indicated, with p the corresponding prime
of R. We have to find a g ∈ S, g 6∈ q such that all fibre rings of R→ Sg are Cohen-
Macaulay. During the course of the proof we may (finitely many times) replace S
by Sg for a g ∈ S, g 6∈ q. Thus by Lemma 10.121.2 we may assume there is a quasi-
finite ring map R[t1, . . . , td] → S with d = dimq(S/R). Let q′ = R[t1, . . . , td] ∩ q.
By Lemma 10.126.1 we see that the ring map

R[t1, . . . , td]q′/pR[t1, . . . , td]q′ −→ Sq/pSq

is flat. Hence by the critère de platitude par fibres Lemma 10.124.8 we see that
R[t1, . . . , td]q′ → Sq is flat. Hence by Theorem 10.125.4 we see that for some g ∈ S,
g 6∈ q the ring map R[t1, . . . , td] → Sg is flat. Replacing S by Sg we see that for
every prime r ⊂ S, setting r′ = R[t1, . . . , td] ∩ r and p′ = R ∩ r the local ring map
R[t1, . . . , td]r′ → Sr is flat. Hence also the base change

R[t1, . . . , td]r′/p
′R[t1, . . . , td]r′ −→ Sr/p

′Sr

is flat. Hence by Lemma 10.126.1 applied with k = κ(p′) we see r is in the set of
the lemma as desired. �

Lemma 10.126.5. Let R be a ring. Let R→ S be flat of finite presentation. The
set of primes q such that the fibre ring Sq⊗Rκ(p), with p = R∩q is Cohen-Macaulay
is open and dense in every fibre of Spec(S)→ Spec(R).

Proof. The set, call it W , is open by Lemma 10.126.4. It is dense in the fibres
because the intersection of W with a fibre is the corresponding set of the fibre to
which Lemma 10.126.3 applies. �
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Lemma 10.126.6. Let k be a field. Let S be a finite type k-algebra. Let k ⊂ K be
a field extension, and set SK = K ⊗k S. Let q ⊂ S be a prime of S. Let qK ⊂ SK
be a prime of SK lying over q. Then Sq is Cohen-Macaulay if and only if (SK)qK
is Cohen-Macaulay.

Proof. During the course of the proof we may (finitely many times) replace S
by Sg for any g ∈ S, g 6∈ q. Hence using Lemma 10.111.5 we may assume that
dim(S) = dimq(S/k) =: d and find a finite injective map k[x1, . . . , xd] → S. Note
that this also induces a finite injective map K[x1, . . . , xd]→ SK by base change. By
Lemma 10.112.6 we have dimqK (SK/K) = d. Set p = k[x1, . . . , xd] ∩ q and pK =
K[x1, . . . , xd] ∩ qK . Consider the following commutative diagram of Noetherian
local rings

Sq
// (SK)qK

k[x1, . . . , xd]p //

OO

K[x1, . . . , xd]pK

OO

By Lemma 10.126.1 we have to show that the left vertical arrow is flat if and only
if the right vertical arrow is flat. Because the bottom arrow is flat this equivalence
holds by Lemma 10.96.1. �

Lemma 10.126.7. Let R be a ring. Let R → S be of finite type. Let R → R′

be any ring map. Set S′ = R′ ⊗R S. Denote f : Spec(S′) → Spec(S) the map
associated to the ring map S → S′. Set W equal to the set of primes q such that
the fibre ring Sq ⊗R κ(p), p = R ∩ q is Cohen-Macaulay, and let W ′ denote the
analogue for S′/R′. Then W ′ = f−1(W ).

Proof. Trivial from Lemma 10.126.6 and the definitions. �

Lemma 10.126.8. Let R be a ring. Let R → S be a ring map which is (a) flat,
(b) of finite presentation, (c) has Cohen-Macaulay fibres. Then S = S0 × . . .× Sn
is a product of rings Sd such that each Sd satisfies (a), (b), (c) and has all fibres
equidimensional of dimension d.

Proof. For each integer d denote Wd ⊂ Spec(S) the set defined in Lemma 10.126.4.
Clearly we have Spec(S) =

∐
Wd, and each Wd is open by the lemma we just

quoted. Hence the result follows from Lemma 10.22.3. �

10.127. Differentials

In this section we define the module of differentials of a ring map.

Definition 10.127.1. Let ϕ : R → S be a ring map and let M be an S-module.
A derivation, or more precisely an R-derivation into M is a map D : S →M which
is additive, annihilates elements of ϕ(R), and satisfies the Leibniz rule: D(ab) =
aD(b) +D(a)b.

Note that D(ra) = rD(a) if r ∈ R and a ∈ S. The set of all R-derivations
forms an S-module: Given two R-derivations D,D′ the sum D + D′ : S → M ,
a 7→ D(a) +D′(a) is an R-derivation, and given an R-derivation D and an element
c ∈ S the scalar multiple cD : S → M , a 7→ cD(a) is an R-derivation. We denote
this S-module

DerR(S,M).
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Also, if α : M → N is an S-module map, then the composition α ◦ D is an R-
derivation into N . In this way the assignment M 7→ DerR(S,M) is a covariant
functor.

Consider the following map of free S-modules⊕
(a,b)∈S2

S[(a, b)]⊕
⊕

(f,g)∈S2
S[(f, g)]⊕

⊕
r∈R

S[r] −→
⊕

a∈S
S[a]

defined by the rules

[(a, b)] 7−→ [a+ b]− [a]− [b], [(f, g)] 7−→ [fg]− f [g]− g[f ], [r] 7−→ [ϕ(r)]

with obvious notation. Let ΩS/R be the cokernel of this map. There is a map
d : S → ΩS/R which maps a to the class da of [a] in the cokernel. This is an
R-derivation by the relations imposed on ΩS/R, in other words

d(a+ b) = da+ db, d(fg) = fdg + gdf, dr = 0

where a, b, f, g ∈ S and r ∈ R.

Definition 10.127.2. The pair (ΩS/R,d) is called the module of Kähler differen-
tials or the module of differentials of S over R.

Lemma 10.127.3. The module of differentials of S over R has the following uni-
versal property. The map

HomS(ΩS/R,M) −→ DerR(S,M), α 7−→ α ◦ d

is an isomorphism of functors.

Proof. By definition an R-derivation is a rule which associates to each a ∈ S an
element D(a) ∈ M . Thus D gives rise to a map [D] :

⊕
S[a] → M . However, the

conditions of being an R-derivation exactly mean that [D] annihilates the image of
the map in the displayed presentation of ΩS/R above. �

Lemma 10.127.4. Let I be a directed partially ordered set. Let (Ri → Si, ϕii′) be
a system of ring maps over I, see Categories, Section 4.21. Then we have

ΩS/R = colimi ΩSi/Ri .

Proof. This is clear from the presentation of ΩS/R given above. �

Lemma 10.127.5. Suppose that R→ S is surjective. Then ΩS/R = 0.

Proof. You can see this either because all R-derivations clearly have to be zero,
or because the map in the presentation of ΩS/R is surjective. �

Suppose that

(10.127.5.1)

S
ϕ
// S′

R
ψ //

α

OO

R′

β

OO

is a commutative diagram of rings. In this case there is a natural map of modules
of differentials fitting into the commutative diagram

ΩS/R // ΩS′/R′

S

d

OO

// S′

d

OO

http://stacks.math.columbia.edu/tag/07BK
http://stacks.math.columbia.edu/tag/00RO
http://stacks.math.columbia.edu/tag/031G
http://stacks.math.columbia.edu/tag/00RP
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To construct the map just use the obvious map between the presentations for ΩS/R
and ΩS′/R′ . Namely,⊕

S′[(a′, b′)]⊕
⊕
S′[(f ′, g′)]⊕

⊕
S′[r′] //⊕S′[a′]

⊕
S[(a, b)]⊕

⊕
S[(f, g)]⊕

⊕
S[r] //

[(a, b)] 7→ [(ϕ(a), ϕ(b)]
[(f, g)] 7→ [(ϕ(f), ϕ(g)]

[r] 7→ [ψ(r)]

OO

⊕
S[a]

[a]7→[ϕ(a)]

OO

The result is simply that fdg ∈ ΩS/R is mapped to ϕ(f)dϕ(g).

Lemma 10.127.6. In diagram (10.127.5.1), suppose that S → S′ is surjective
with kernel I ⊂ S. Then ΩS/R → ΩS′/R′ is surjective with kernel generated as an
S-module by the elements the elements da, where a ∈ S is such that ϕ(a) ∈ β(R′).
(This includes in particular the elements d(i), i ∈ I.)

Proof. Consider the map of presentations above. Clearly the right vertical map
of free modules is surjective. Thus the map is surjective. A diagram chase shows
that the following elements generate the kernel as an S-module for sure: ida, i ∈
I, a ∈ S, and da, with a ∈ S such that ϕ(a) = β(r′) for some r′ ∈ R′. Note that
ϕ(i) = ϕ(ia) = 0 = β(0), and that d(ia) = ida + adi. Hence ida = d(ia) − adi is
an S-linear combination of elements of the second kind. �

Lemma 10.127.7. Let A→ B → C be ring maps. Then there is a canonical exact
sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of C-modules.

Proof. We get a diagram (10.127.5.1) by putting R = A, S = C, R′ = B, and
S′ = C. By Lemma 10.127.6 the map ΩC/A → ΩC/B is surjective, and the kernel
is generated by the elements d(c), where c ∈ C is in the image of B → C. The
lemma follows. �

Lemma 10.127.8. Let ϕ : A→ B be a ring map.

(1) If S ⊂ A is a multiplicative subset mapping to invertible elements of B,
then ΩB/A = ΩB/S−1A.

(2) If S ⊂ B is a multiplicative subset then S−1ΩB/A = ΩS−1B/A.

Proof. To show the equality of (1) it is enough to show that any A-derivation
D : B → M annihilates the elements ϕ(s)−1. This is clear from the Leibniz
rule applied to 1 = ϕ(s)ϕ(s)−1. To show (2) note that there is an obvious map
S−1ΩB/A → ΩS−1B/A. To show it is an isomorphism it is enough to show that

there is a A-derivation d′ of S−1B into S−1ΩB/A. To define it we simply set

d′(b/s) = (1/s)db− (1/s2)bds. Details omitted. �

Lemma 10.127.9. In diagram (10.127.5.1), suppose that S → S′ is surjective with
kernel I ⊂ S, and assume that R′ = R. Then there is a canonical exact sequence
of S′-modules

I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0

The leftmost map is characterized by the rule that f ∈ I maps to df ⊗ 1.

http://stacks.math.columbia.edu/tag/00RR
http://stacks.math.columbia.edu/tag/00RS
http://stacks.math.columbia.edu/tag/00RT
http://stacks.math.columbia.edu/tag/00RU
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Proof. The middle term is ΩS/R ⊗S S/I. For f ∈ I denote f the image of f in

I/I2. To show that the map f 7→ df ⊗ 1 is well defined we just have to check that
df1f2 ⊗ 1 = 0 if f1, f2 ∈ I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 + f2df1) ⊗ 1 = df2 ⊗ f1 + df1 ⊗ f2 = 0. A similar computation show this
map is S′ = S/I-linear.

The map ΩS/R ⊗S S′ → ΩS′/R is the canonical S′-linear map associated to the
S-linear map ΩS/R → ΩS′/R. It is surjective because ΩS/R → ΩS′/R is surjective
by Lemma 10.127.6.

The composite of the two maps is zero because df maps to zero in ΩS′/R for f ∈ I.
Note that exactness just says that the kernel of ΩS/R → ΩS′/R is generated as an S-
submodule by the submodule IΩS/R together with the elements df , with f ∈ I. We
know by Lemma 10.127.6 that this kernel is generated by the elements d(a) where
ϕ(a) = β(r) for some r ∈ R. But then a = α(r) + a− α(r), so d(a) = d(a− α(r)).
And a − α(r) ∈ I since ϕ(a − α(r)) = ϕ(a) − ϕ(α(r)) = β(r) − β(r) = 0. We
conclude the elements df with f ∈ I already generate the kernel as an S-module,
as desired. �

Lemma 10.127.10. In diagram (10.127.5.1), suppose that S → S′ is surjective
with kernel I ⊂ S, and assume that R′ = R. Moreover, assume that there exists an
R-algebra map S′ → S which is a right inverse to S → S′. Then the exact sequence
of S′-modules of Lemma 10.127.9 turns into a short exact sequence

0 −→ I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0

which is even a split short exact sequence.

Proof. Let β : S′ → S be the right inverse to the surjection α : S → S′, so
S = I ⊕ β(S′). Clearly we can use β : ΩS′/R → ΩS/R, to get a right inverse to the
map ΩS/R ⊗S S′ → ΩS′/R. On the other hand, consider the map

D : S −→ I/I2, x 7−→ x− β(α(x))

It is easy to show that D is an R-derivation (omitted). Moreover xD(s) = 0 if x ∈
I, s ∈ S. Hence, by the universal property D induces a map τ : ΩS/R⊗RS′ → I/I2.

We omit the verification that it is a left inverse to d : I/I2 → ΩS/R ⊗S S′. Hence
we win. �

Lemma 10.127.11. Let R → S be a ring map. Let I ⊂ S be an ideal. Let n ≥ 1
be an integer. Set S′ = S/In+1. The map ΩS/R → ΩS′/R induces an isomorphism

ΩS/R ⊗S S/In −→ ΩS′/R ⊗S′ S/In.

Proof. This follows from Lemma 10.127.9 and the fact that d(In+1) ⊂ InΩS/R by
the Leibniz rule for d. �

Lemma 10.127.12. Suppose that we have ring maps R → R′ and R → S. Set
S′ = S ⊗R R′, so that we obtain a diagram (10.127.5.1). Then the canonical map
defined above induces an isomorphism ΩS/R ⊗R R′ = ΩS′/R′ .

Proof. Let d′ : S′ = S ⊗R R′ → ΩS/R ⊗R R′ denote the map d′(
∑
ai ⊗ xi) =

d(ai)⊗xi. It exists because the map S×R′ → ΩS/R⊗RR′, (a, x) 7→ da⊗R x is R-
bilinear. This is an R′-derivation, as can be verified by a simple computation. We
will show that (ΩS/R ⊗R R′,d′) satisfies the universal property. Let D : S′ → M ′

be an R′ derivation into an S′-module. The composition S → S′ → M ′ is an

http://stacks.math.columbia.edu/tag/02HP
http://stacks.math.columbia.edu/tag/02HQ
http://stacks.math.columbia.edu/tag/00RV
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R-derivation, hence we get an S-linear map ϕD : ΩS/R →M ′. We may tensor this
with R′ and get the map ϕ′D : ΩS/R ⊗R R′ →M ′, ϕ′D(η ⊗ x) = xϕD(η). It is clear

that D = ϕ′D ◦ d′. �

The multiplication map S ⊗R S → S is the R-algebra map which maps a⊗ b to ab
in S. It is also an S-algebra map, if we think of S ⊗R S as an S-algebra via either
of the maps S → S ⊗R S.

Lemma 10.127.13. Let R→ S be a ring map. Let J = Ker(S ⊗R S → S) be the
kernel of the multiplication map. There is a canonical isomorphism of S-modules
ΩS/R → J/J2, adb 7→ a⊗ b− ab⊗ 1.

Proof. First we show that the rule adb 7→ a⊗ b− ab⊗ 1 is well defined. In order
to do this we have to show that dr and adb + bda − d(ab) map to zero. The first
because r ⊗ 1− 1⊗ r = 0 by definition of the tensor product. The second because
a⊗ b− ab⊗ 1 + b⊗ a− ba⊗ 1 = (a⊗ 1− 1⊗ a)(1⊗ b− b⊗ 1) is in J2.

We construct a map in the other direction. We may think of S → S⊗RS, a 7→ a⊗1
as the base change of R → S. Hence we have ΩS⊗RS/S = ΩS/R ⊗S (S ⊗R S), by
Lemma 10.127.12. At this point the sequence of Lemma 10.127.9 gives a map

J/J2 → ΩS⊗RS/S ⊗S⊗RS S = (ΩS/R ⊗S (S ⊗R S))⊗S⊗RS S = ΩS/R.

We leave it to the reader to see it is the inverse of the map above. �

Lemma 10.127.14. If S = R[x1, . . . , xn], then ΩS/R is a finite free S-module with
basis dx1, . . . , dxn.

Proof. We first show that dx1, . . . ,dxn generate ΩS/R as an S-module. To prove
this we show that dg can be expressed as a sum

∑
gidxi for any g ∈ R[x1, . . . , xn].

We do this by induction on the (total) degree of g. It is clear if the degree of g is 0,
because then dg = 0. If the degree of g is > 0, then we may write g as c+

∑
gixi with

c ∈ R and deg(gi) < deg(g). By the Leibniz rule we have dg =
∑
gidxi +

∑
xidgi,

and hence we win by induction.

Consider the R-derivation ∂/∂xi : R[x1, . . . , xn] → R[x1, . . . , xn]. (We leave it to
the reader to define this; the defining property being that ∂/∂xi(xj) = δij .) By the
universal property this corresponds to an S-module map li : ΩS/R → R[x1, . . . , xn]
which maps dxi to 1 and dxj to 0 for j 6= i. Thus it is clear that there are no
S-linear relations among the elements dx1, . . . ,dxn. �

Lemma 10.127.15. Suppose R → S is of finite presentation. Then ΩS/R is a
finitely presented S-module.

Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). Write I = (f1, . . . , fm). According
to Lemma 10.127.9 there is an exact sequence of S-modules

I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0

The result follows from the fact that I/I2 is a finite S-module (generated by the
images of the fi), and that the middle term is finite free by Lemma 10.127.14. �

Lemma 10.127.16. Suppose R → S is of finite type. Then ΩS/R is finitely gen-
erated S-module.

Proof. This is very similar to, but easier than the proof of Lemma 10.127.15. �

http://stacks.math.columbia.edu/tag/00RW
http://stacks.math.columbia.edu/tag/00RX
http://stacks.math.columbia.edu/tag/00RY
http://stacks.math.columbia.edu/tag/00RZ
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10.128. Finite order differential operators

In this section we introduce differential operators of finite order.

Definition 10.128.1. Let R → S be a ring map. Let M , N be S-modules. Let
k ≥ 0 be an integer. We inductively define a differential operator D : M → N of
order k to be an R-linear map such that for all g ∈ S the map m 7→ D(gm)−gD(m)
is a differential operator of order k − 1. For the base case k = 0 we define a
differential operator of order 0 to be an S-linear map.

If D : M → N is a differential operator of order k, then for all g ∈ S the map gD
is a differential operator of order k. The sum of two differential operators of order
k is another. Hence the set of all these

Diffk(M,N) = DiffkS/R(M,N)

is an S-module. We have

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .

Lemma 10.128.2. Let R → S be a ring map. Let L,M,N be S-modules. If
D : L → M and D′ : M → N are differential operators of order k and k′, then
D′ ◦D is a differential operator of order k + k′.

Proof. Let g ∈ S. Then the map which sends x ∈ L to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. �

Lemma 10.128.3. Let R→ S be a ring map. Let M be an S-module. Let k ≥ 0.
There exists an S-module P kS/R(M) and a canonical isomorphism

DiffkS/R(M,N) = HomS(P kS/R(M), N)

functorial in the S-module N .

Proof. The existence of P kS/R(M) follows from general category theoretic argu-

ments (insert future reference here), but we will also give a construction. Set
F =

⊕
m∈M S[m] where [m] is a symbol indicating the basis element in the sum-

mand corresponding to m. Given any differential operator D : M → N we obtain
an S-linear map LD : F → N sending [m] to D(m). If D has order 0 then LD
annihilates the elements

[m+m′]− [m]− [m′], g0[m]− [g0m]

where g0 ∈ S and m,m′ ∈M . If D has order 1, then LD annihilates the elements

[m+m′ − [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]

where f ∈ R, g0, g1 ∈ S, and m ∈ M . If D has order k, then LD annihilates the
elements [m+m′]− [m]− [m′], f [m]− [fm], and the elements

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : F → N is an S-linear map annihilating all the elements listed in
the previous sentence, then m 7→ L([m]) is a differential operator of order k. Thus
we see that P kS/R(M) is the quotient of F by the submodule generated by these

elements. �

http://stacks.math.columbia.edu/tag/09CI
http://stacks.math.columbia.edu/tag/09CJ
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Definition 10.128.4. Let R → S be a ring map. Let M be an S-module. The
module P kS/R(M) constructed in Lemma 10.128.3 is called the module of principal

parts of order k of M .

Note that the inclusions

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 4.3.5) to surjections

. . .→ P 2
S/R(M)→ P 1

S/R(M)→ P 0
S/R(M) = M

Example 10.128.5. Let R→ S be a ring map and let N be an S-module. Observe
that Diff1(S,N) = DerR(S,N)⊕N . Namely, if D : S → S is a differential operator
of order 1 then σD : g 7→ D(g)− gD(1) is a derivation and D = σD + λD(1) where

λx : S → N is the linear map sending g to gx. It follows that P 1
S/R = ΩS/R ⊕ S by

the universal property of ΩS/R.

Lemma 10.128.6. Let R→ S be a ring map. Let M be an S-module. There is a
canonical short exact sequence

0→ ΩS/R ⊗S M → P 1
S/R(M)→M → 0

functorial in M called the sequence of principal parts.

Proof. The map P 1
S/R(M) → M is given above. Let N be an S-module and let

D : M → N be a differential operator of order 1. For m ∈M the map

g 7−→ D(gm)− gD(m)

is an R-derivation S → N by the axioms for differential operators of order 1.
Thus it corresponds to a linear map Dm : ΩS/R → N determined by the rule
adb 7→ aD(bm)− abD(m) (see Lemma 10.127.3). The map

ΩS/R ×M −→ N, (η,m) 7−→ Dm(η)

is S-bilinear (details omitted) and hence determines an S-linear map

σD : ΩS/R ⊗S M → N

In this way we obtain a map Diff1(M,N) → HomS(ΩS/R ⊗S M,N), D 7→ σD
functorial in N . By the Yoneda lemma this corresponds a map ΩS/R ⊗S M →
P 1
S/R(M). It is immediate from the construction that this map is functorial in M .

The sequence

ΩS/R ⊗S M → P 1
S/R(M)→M → 0

is exact because for every module N the sequence

0→ HomS(M,N)→ Diff1(M,N)→ HomS(ΩS/R ⊗S M,N)

is exact by inspection.

To see that ΩS/R ⊗S M → P 1
S/R(M) is injective we argue as follows. Choose an

exact sequence

0→M ′ → F →M → 0

with F a free S-module. This induces an exact sequence

0→ Diff1(M,N)→ Diff1(F,N)→ Diff1(M ′, N)

http://stacks.math.columbia.edu/tag/09CL
http://stacks.math.columbia.edu/tag/09CM
http://stacks.math.columbia.edu/tag/09CN
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for all N . This proves that in the commutative diagram

0 // ΩS/R ⊗S M ′ //

��

P 1
S/R(M ′) //

��

M ′ //

��

0

0 // ΩS/R ⊗S F //

��

P 1
S/R(F ) //

��

F //

��

0

0 // ΩS/R ⊗S M //

��

P 1
S/R(M) //

��

M //

��

0

0 0 0

the middle column is exact. The left column is exact by right exactness of ΩS/R⊗S
−. By the snake lemma (see Section 10.4) it suffices to prove exactness on the
left for the free module F . Using that P 1

S/R(−) commutes with direct sums we

reduce to the case M = S. This case is a consequence of the discussion in Example
10.128.5. �

Remark 10.128.7. Suppose given a commutative diagram of rings

B // B′

A

OO

// A′

OO

a B-module M , a B′-module M ′, and a B-linear map M → M ′. Then we get a
compatible system of module maps

. . . // P 2
B′/A′(M

′) // P 1
B′/A′(M

′) // P 0
B′/A′(M

′)

. . . // P 2
B/A(M) //

OO

P 1
B/A(M) //

OO

P 0
B/A(M)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules P kB/A(M) in terms

of generators and relations in the proof of Lemma 10.128.3 but it can also be seen
directly from the universal property of these modules. Moreover, these maps are
compatible with the short exact sequences of Lemma 10.128.6.

10.129. The naive cotangent complex

Let R → S be a ring map. Denote R[S] the polynomial ring whose variables are
the elements s ∈ S. Let’s denote [s] ∈ R[S] the variable corresponding to s ∈ S.
Thus R[S] is a free R-module on the basis elements [s1] . . . [sn] where s1, . . . , sn is
an unordered sequence of elements of S. There is a canonical surjection

(10.129.0.1) R[S] −→ S, [s] 7−→ s

whose kernel we denote I ⊂ R[S]. It is a simple observation that I is generated
by the elements [s+ s′]− [s]− [s′], [s][s′]− [ss′] and [r]− r. According to Lemma

http://stacks.math.columbia.edu/tag/09CP
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10.127.9 there is a canonical map

(10.129.0.2) I/I2 −→ ΩR[S]/R ⊗R[S] S

whose cokernel is canonically isomorphic to ΩS/R. Observe that the S-module
ΩR[S]/R ⊗R[S] S is free on the generators d[s].

Definition 10.129.1. Let R → S be a ring map. The naive cotangent complex
NLS/R is the chain complex (10.129.0.2)

NLS/R =
(
I/I2 −→ ΩR[S]/R ⊗R[S] S

)
with I/I2 placed in (homological) degree 1 and ΩR[S]/R⊗R[S] S placed in degree 0.

We will denote H1(LS/R) = H1(NLS/R)6 the homology in degree 1.

Before we continue let us say a few words about the actual cotangent complex
(Cotangent, Section 70.3). Given a ring map R → S there exists a canonical
simplicial R-algebra P• whose terms are polynomial algebras and which comes
equipped with a canonical homotopy equivalence

P• −→ S

The cotangent complex LS/R of S over R is defined as the chain complex associated
to the cosimplicial module

ΩP•/R ⊗P• S

The naive cotangent complex as defined above is canonically isomorphic to the
truncation τ≤1LS/R (see Homology, Section 12.13 and Cotangent, Section 70.10).
In particular, it is indeed the case that H1(NLS/R) = H1(LS/R) so our definition
is compatible with the one using the cotangent complex. Moreover, H0(LS/R) =
H0(NLS/R) = ΩS/R as we’ve seen above.

Let R→ S be a ring map. A presentation of S over R is a surjection α : P → S of
R-algebras where P is a polynomial algebra (on a set of variables). Often, when S
is of finite type over R we will indicate this by saying: “Let R[x1, . . . , xn] → S be
a presentation of S/R”, or “Let 0→ I → R[x1, . . . , xn]→ S → 0 be a presentation
of S/R” if we want to indicate that I is the kernel of the presentation. Note that
the map R[S] → S used to define the naive cotangent complex is an example of a
presentation.

Note that for every presentation α we obtain a two term chain complex of S-modules

NL(α) : I/I2 −→ ΩP/R ⊗P S.

Here the term I/I2 is placed in degree 1 and the term ΩP/R⊗S is placed in degree

0. The class of f ∈ I in I/I2 is mapped to df ⊗1 in ΩP/R⊗S. The cokernel of this
complex is canonically ΩS/R, see Lemma 10.127.9. We call the complex NL(α) the
naive cotangent complex associated to the presentation α : P → S of S/R. Note
that if P = R[S] with its canonical surjection onto S, then we recover NLS/R. If

P = R[x1, . . . , xn] then will sometimes use the notation I/I2 →
⊕

i=1,...,n Sdxi to
denote this complex.

6This module is sometimes denoted ΓS/R in the literature.

http://stacks.math.columbia.edu/tag/07BN
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Suppose we are given a commutative diagram

(10.129.1.1)

S
φ
// S′

R //

OO

R′

OO

of rings. Let α : P → S be a presentation of S over R and let α : P ′ → S′ be
a presentation of S′ over R′. A morphism of presentations from α : P → S to
α′ : P ′ → S′ is defined to be an R-algebra map

ϕ : P → P ′

such that φ ◦ α = α′ ◦ ϕ. Note that in this case ϕ(I) ⊂ I ′, where I = Ker(α)
and I ′ = Ker(α′). Thus ϕ induces a map of S-modules I/I2 → I ′/(I ′)2 and by
functoriality of differentials also an S-module map ΩP/R⊗S → ΩP ′/R′ ⊗S′. These
maps are compatible with the differentials of NL(α) and NL(α′) and we obtain a
map of naive cotangent complexes

NL(α) −→ NL(α′).

It is often convenient to consider the induced map NL(α)⊗S S′ → NL(α′).

In the special case that P = R[S] and P ′ = R′[S′] the map φ : S → S′ induces a
canonical ring map ϕ : P → P ′ by the rule [s] 7→ [φ(s)]. Hence the construction
above determines canonical(!) maps of chain complexes

NLS/R −→ NLS′/R′ , and NLS/R⊗SS′ −→ NLS′/R′

associated to the diagram (10.129.1.1). Note that this construction is compatible
with composition: given a commutative diagram

S
φ
// S′

φ′
// S′′

R //

OO

R′

OO

// R′′

OO

we see that the composition of

NLS/R −→ NLS′/R′ −→ NLS′′/R′′

is the map NLS/R → NLS′′/R′′ given by the outer square.

It turns out that NL(α) is homotopy equivalent to NLS/R and that the maps con-
structed above are well defined up to homotopy (homotopies of maps of complexes
are discussed in Homology, Section 12.12 but we also spell out the exact meaning
of the statements in the lemma below in its proof).

Lemma 10.129.2. Suppose given a diagram (10.129.1.1). Let α : P → S and
α′ : P ′ → S′ be presentations.

(1) There exists a morphism of presentations from α to α′.
(2) Any two morphisms of presentations induce homotopic morphisms of com-

plexes NL(α)→ NL(α′).
(3) The construction is compatible with compositions of morphisms of presen-

tations (see proof for exact statement).

http://stacks.math.columbia.edu/tag/00S1
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(4) If R → R′ and S → S′ are isomorphisms, then for any map ϕ of pre-
sentations from α to α′ the induced map NL(α)→ NL(α′) is a homotopy
equivalence and a quasi-isomorphism.

In particular, comparing α to the canonical presentation (10.129.0.1) we conclude
there is a quasi-isomorphism NL(α) → NLS/R well defined up to homotopy and
compatible with all functorialities (up to homotopy).

Proof. To construct a morphism ϕ from α to α′, write P = R[xa, a ∈ A]. Choose
for every a an element fa ∈ P ′ such that α′(fa) = φ(α(xi)). Let ϕ : P = R[xa, a ∈
A] → P ′ be the unique R-algebra map such that ϕ(xa) = fa. This gives the
morphism.

Let ϕ and ϕ′ morphisms of presentations from α to α′. Let I = Ker(α) and
I ′ = Ker(α′). We have to construct the diagonal map h in the diagram

I/I2 d //

ϕ′1
��

ϕ1

��

ΩP/R ⊗P S

ϕ′0

��
ϕ0

��

h

xx
J/J2 d // ΩP ′/R′ ⊗P ′ S′

where the vertical maps are induced by ϕ, ϕ′ such that

ϕ1 − ϕ′1 = h ◦ d and ϕ0 − ϕ′0 = d ◦ h
Consider the map D = ϕ− ϕ′ : P → P ′. Since both ϕ and ϕ are compatible with
α and α′ we conclude that ϕ− ϕ′ : P → I ′. Also ϕ− ϕ′ is R-linear and

(ϕ− ϕ′)(fg) = ϕ(f)(ϕ− ϕ′)(g) + (ϕ− ϕ′)(f)ϕ′(g)

Hence the induced map D : P → I ′/(I ′)2 is a R-derivation. Thus we obtain a
canonical map h : ΩP/R ⊗P S → I ′/(I ′)2 such that D = h ◦ d. A calculation
(omitted) shows that h is the desired homotopy.

Suppose that we have a commutative diagram

S
φ
// S′

φ′
// S′′

R //

OO

R′

OO

// R′′

OO

with finite type vertical arrows. Suppose that

(1) α : P → S,
(2) α′ : P ′ → S′, and
(3) α′′ : P ′′ → S′′

are presentations. Suppose that

(1) ϕ : P → P is a morphism of presentations from α to α′ and
(2) ϕ′ : P ′ → P ′′ is a morphism of presentations from α′ to α′′.

Then it is immediate that ϕ′ ◦ ϕ : P → P ′′ is a morphism of presentations from α
to α′′ and that the induced map NL(α)→ NL(α′′) of naive cotangent complexes is
the composition of the maps NL(α)→ NL(α′) and NL(α)→ NL(α′) induced by ϕ
and ϕ′.

In the simple case of complexes with 2 terms a quasi-isomorphism is just a map
that induces an isomorphism on both the cokernel and the kernel of the maps
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between the terms. Note that homotopic maps of 2 term complexes (as explained
above) define the same maps on kernel and cokernel. Hence if ϕ is a map from
a presentation α of S over R to itself, then the induced map NL(α) → NL(α)
is a quasi-isomorphism being homotopic to the identity by part (2). To prove
(4) in full generality, consider a morphism ϕ′ from α′ to α which exists by (1).
The compositions NL(α)→ NL(α′)→ NL(α) and NL(α′)→ NL(α)→ NL(α′) are
homotopic to the identity maps by (3), hence these maps are homotopy equivalences
by definition. It follows formally that both maps NL(α)→ NL(α′) and NL(α′)→
NL(α) are quasi-isomorphisms. Some details omitted. �

Lemma 10.129.3. Let A→ B be a polynomial algebra. Then NLB/A is homotopy
equivalent to the chain complex (0→ ΩB/A) with ΩB/A in degree 0.

Proof. Follows from Lemma 10.129.2 and the fact that A → B is a presentation
of B over A with zero kernel. �

The following lemma is part of the motivation for introducing the naive cotangent
complex. The cotangent complex extends this to a genuine long exact cohomology
sequence. If B → C is a local complete intersection, then one can extend the
sequence with a zero on the left, see More on Algebra, Lemma 15.23.6.

Lemma 10.129.4 (Jacobi-Zariski sequence). Let A → B → C be ring maps.
Choose a presentation α : A[xs, s ∈ S]→ B with kernel I. Choose a presentation β :
B[yt, t ∈ T ] → C with kernel J . Let γ : A[xs, yt] → C be the induced presentation
of C with kernel K. Then we get a canonical commutative diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0

with exact rows. We get the following exact sequence of homology groups

H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of C-modules extending the sequence of Lemma 10.127.7. If TorB1 (ΩB/A, C) = 0,
then H1(NLB/A⊗BC) = H1(LB/A)⊗B C.

Proof. The precise definition of the maps is omitted. The exactness of the top row
follows as the dxs, dyt form a basis for the middle module. The map γ factors

A[xs, yt]→ B[yt]→ C

with surjective first arrow and second arrow equal to β. Thus we see that K → J
is surjective. Moreover, the kernel of the first displayed arrow is IA[xs, yt]. Hence
I/I2 ⊗ C surjects onto the kernel of K/K2 → J/J2. Finally, we can use Lemma
10.129.2 to identify the terms as homology groups of the naive cotangent complexes.
The final assertion follows as the degree 0 term of the complex NLB/A is a free B-
module. �

Remark 10.129.5. Let A → B and φ : B → C be ring maps. Then the compo-
sition NLB/A → NLC/A → NLC/B is homotopy equivalent to zero. Namely, this

http://stacks.math.columbia.edu/tag/08Q1
http://stacks.math.columbia.edu/tag/00S2
http://stacks.math.columbia.edu/tag/07VC
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composition is the functoriality of the naive cotangent complex for the square

B
φ
// C

A //

OO

B

OO

Write J = Ker(B[C]→ C). An explicit homotopy is given by the map ΩA[B]/A⊗A
B → J/J2 which maps the basis element d[b] to the class of [φ(b)]− b in J/J2.

Lemma 10.129.6. Let A → B be a surjective ring map with kernel I. Then
NLB/A is homotopy equivalent to the chain complex (I/I2 → 0) with I/I2 in degree

1. In particular H1(LB/A) = I/I2.

Proof. Follows from Lemma 10.129.2 and the fact that A → B is a presentation
of B over A. �

Lemma 10.129.7. Let A → B → C be ring maps. Assume A → C is surjective
(so also B → C is). Denote I = Ker(A → C) and J = Ker(B → C). Then the
sequence

I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

is exact.

Proof. Follows from Lemma 10.129.4 and the description of the naive cotangent
complexes NLC/B and NLC/A in Lemma 10.129.6. �

Lemma 10.129.8 (Flat base change). Let R→ S be a ring map. Let α : P → S be
a presentation. Let R→ R′ be a flat ring map. Let α′ : P ′ ⊗R R′ → S′ = S ⊗R R′
be the induced presentation. Then NL(α) ⊗R R′ = NL(α) ⊗S S′ = NL(α′). In
particular, the canonical map

NLS/R⊗RR′ −→ NLS⊗RR′/R′

is a homotopy equivalence if R→ R′ is flat.

Proof. This is true because Ker(α′) = R′ ⊗R Ker(α) since R→ R′ is flat. �

Lemma 10.129.9. Let Ri → Si be a system of ring maps over the directed partially
ordered set I. Set R = colimRi and S = colimSi. Then NLS/R = colimNLSi/Ri .

Proof. Recall that NLS/R is the complex I/I2 →
⊕

s∈S Sd[s] where I ⊂ R[S] is
the kernel of the canonical presentation R[S] → S. Now it is clear that R[S] =
colimRi[Si] and similarly that I = colim Ii where Ii = Ker(Ri[Si] → Si). Hence
the lemma is clear. �

Lemma 10.129.10. If S ⊂ A is a multiplicative subset of A, then NLS−1A/A is
homotopy equivalent to the zero complex.

Proof. Since A → S−1A is flat we see that NLS−1A/A⊗AS−1A → NLS−1A/S−1A

is a homotopy equivalence by flat base change (Lemma 10.129.8). Since the source
of the arrow is isomorphic to NLS−1A/A and the target of the arrow is zero (by
Lemma 10.129.6) we win. �

Lemma 10.129.11. Let S ⊂ A is a multiplicative subset of A. Let S−1A→ B be
a ring map. Then NLB/A → NLB/S−1A is an homotopy equivalence.

http://stacks.math.columbia.edu/tag/07BP
http://stacks.math.columbia.edu/tag/065V
http://stacks.math.columbia.edu/tag/00S4
http://stacks.math.columbia.edu/tag/07BQ
http://stacks.math.columbia.edu/tag/07BR
http://stacks.math.columbia.edu/tag/07BS
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Proof. Choose a presentation α : P → B of B over A. Then β : S−1P → B is a
presentation of B over S−1A. A direct computation shows that we have NL(α) =
NL(β) which proves the lemma as the naive cotangent complex is well defined up
to homotopy by Lemma 10.129.2. �

Lemma 10.129.12. Let A→ B be a ring map. Let g ∈ B. Suppose α : P → B is
a presentation with kernel I. Then a presentation of Bg over A is the map

β : P [x] −→ Bg

extending α and sending x to 1/g. The kernel J of β is generated by I and the
element fx− 1 where f ∈ P is an element mapped to g ∈ B by α. In this situation
we have

(1) J/J2 = (I/I2)g ⊕Bg(fx− 1),
(2) ΩP [x]/A ⊗P [x] Bg = ΩP/A ⊗P Bg ⊕Bgdx,

(3) NL(β) = NL(α)⊗B Bg ⊕ (Bg
g−→ Bg)

Hence the canonical map NLB/A⊗BBg → NLBg/A is a homotopy equivalence.

Proof. This lemma proves itself. �

Lemma 10.129.13. Let A → B be a ring map. Let S ⊂ B be a multiplicative
subset. The canonical map NLB/A⊗BS−1B → NLS−1B/A is a quasi-isomorphism.

Proof. We have S−1B = colimg∈S Bg where we think of S as a directed partially
ordered set (ordering by divisibility), see Lemma 10.9.9. By Lemma 10.129.12 each
of the maps NLB/A⊗BBg → NLBg/A are quasi-isomorphisms. The lemma follows
from Lemma 10.129.9. �

Lemma 10.129.14. Let R be a ring. Let A1 → A0, and B1 → B0 be two two
term complexes. Suppose that there exist morphisms of complexes ϕ : A• → B• and
ψ : B• → A• such that ϕ ◦ ψ and ψ ◦ ϕ are homotopic to the identity maps. Then
A1 ⊕B0

∼= B1 ⊕A0 as R-modules.

Proof. Choose a map h : A0 → B1 such that

idA1
− ψ1 ◦ ϕ1 = h ◦ dA and idA0

− ψ0 ◦ ϕ0 = dA ◦ h.

Similarly, choose a map h′ : B0 → A1 such that

idB1 − ϕ1 ◦ ψ1 = h ◦ dB and idB0 − ϕ0 ◦ ψ0 = dB ◦ h.

A trivial computation shows that(
idA1

−h′ ◦ ψ1 + h ◦ ψ0

0 idB0

)
=

(
ψ1 h
−dB ϕ0

)(
ϕ1 −h′
dA ψ0

)
This shows that both matrices on the right hand side are invertible and proves the
lemma. �

Lemma 10.129.15. Let R→ S be a ring map of finite type. For any presentations
α : R[x1, . . . , xn]→ S, and β : R[y1, . . . , ym]→ S we have

I/I2 ⊕ S⊕m ∼= J/J2 ⊕ S⊕n

as S-modules where I = Ker(α) and J = Ker(β).

Proof. See Lemmas 10.129.2 and 10.129.14. �

http://stacks.math.columbia.edu/tag/08JZ
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Lemma 10.129.16. Let R → S be a ring map of finite type. Let g ∈ S. For any
presentations α : R[x1, . . . , xn]→ S, and β : R[y1, . . . , ym]→ Sg we have

(I/I2)g ⊕ S⊕mg ∼= J/J2 ⊕ S⊕ng
as Sg-modules where I = Ker(α) and J = Ker(β).

Proof. By Lemma 10.129.15, we see that it suffices to prove this for a single choice
of α and β. Thus we may take β the presentation of Lemma 10.129.12 and the
result is clear. �

10.130. Local complete intersections

The property of being a local complete intersection is somehow an intrinsic property
of a Noetherian local ring. However, for the moment we just define this property
for finite type algebras over a field.

Definition 10.130.1. Let k be a field. Let S be a finite type k-algebra.

(1) We say that S is a global complete intersection over k if there exists a
presentation S = k[x1, . . . , xn]/(f1, . . . , fc) such that dim(S) = n− c.

(2) We say that S is a local complete intersection over k if there exists a
covering Spec(S) =

⋃
D(gi) such that each of the rings Sgi is a global

complete intersection over k.

We will also use the convention that the zero ring is a global complete intersection
over k.

Suppose S is a global complete intersection S = k[x1, . . . , xn]/(f1, . . . , fc) as in
the definition. Recall that dim(S) = n − c means that all irreducible components
of Spec(S) have dimension ≤ n − c. Since all maximal ideals of the polynomial
ring have local rings of dimension n we conclude that all irreducible components
of Spec(S) have dimension ≥ n− c. See Section 10.59. In other words, Spec(S) is
equidimensional of dimension n− c.

Lemma 10.130.2. Let k be a field. Let S be a finite type k-algebra. Let g ∈ S.

(1) If S is a global complete intersection so is Sg.
(2) If S is a local complete intersection so is Sg.

Proof. The second statement follows immediately from the first. For the first,
say that S = k[x1, . . . , xn]/(f1, . . . , fc) with n − c = dim(S). By the remarks
above S is equidimensional of dimension n − c, so dim(Sg) = n − c as well (or
it is the zero ring in which case the lemma is true by convention). Let g′ ∈
k[x1, . . . , xn] be an element whose residue class corresponds to g. Then Sg =
k[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1g

′ − 1) as desired. �

Lemma 10.130.3. Let k be a field. Let S be a finite type k-algebra. If S is a local
complete intersection, then S is a Cohen-Macaulay ring.

Proof. Choose a maximal prime m of S. We have to show that Sm is Cohen-
Macaulay. By assumption we may assume S = k[x1, . . . , xn]/(f1, . . . , fc) with
dim(S) = n − c. Let m′ ⊂ k[x1, . . . , xn] be the maximal ideal corresponding to
m. According to Proposition 10.110.2 the local ring k[x1, . . . , xn]m′ is regular lo-
cal of dimension n. In particular it is Cohen-Macaulay by Lemma 10.102.3. By
dimension theory (see Section 10.59) the ring Sm = k[x1, . . . , xn]m′/(f1, . . . , fc)
has dimension ≥ n − c. By assumption dim(Sm) ≤ n − c. Thus we get equality.

http://stacks.math.columbia.edu/tag/00S6
http://stacks.math.columbia.edu/tag/00S9
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http://stacks.math.columbia.edu/tag/00SB
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This implies that f1, . . . , fc is a regular sequence in k[x1, . . . , xn]m′ and that Sm is
Cohen-Macaulay, see Proposition 10.99.5. �

The following is the technical key to the rest of the material in this section. An
important feature of this lemma is that we may choose any presentation for the
ring S, but that condition (1) does not depend on this choice.

Lemma 10.130.4. Let k be a field. Let S be a finite type k-algebra. Let q be
a prime of S. Choose any presentation S = k[x1, . . . , xn]/I. Let q′ be the prime
of k[x1, . . . , xn] corresponding to q. Set c = height(q′) − height(q), in other words
dimq(S) = n− c (see Lemma 10.112.4). The following are equivalent

(1) There exists a g ∈ S, g 6∈ q such that Sg is a global complete intersection
over k.

(2) The ideal Iq′ ⊂ k[x1, . . . , xn]q′ can be generated by c elements.
(3) The conormal module (I/I2)q can be generated by c elements over Sq.
(4) The conormal module (I/I2)q is a free Sq-module of rank c.
(5) The ideal Iq′ can be generated by a regular sequence in the regular local

ring k[x1, . . . , xn]q′ .

In this case any c elements of Iq′ which generate Iq′/q
′Iq′ form a regular sequence

in the local ring k[x1, . . . , xn]q′ .

Proof. Set R = k[x1, . . . , xn]q′ . This is a Cohen-Macaulay local ring of dimension

height(q′), see for example Lemma 10.130.3. Moreover, R = R/IR = R/Iq′ = Sq is
a quotient of dimension height(q). Let f1, . . . , fc ∈ Iq′ be elements which generate
(I/I2)q. By Lemma 10.19.1 we see that f1, . . . , fc generate Iq′ . Since the dimensions
work out, we conclude by Proposition 10.99.5 that f1, . . . , fc is a regular sequence
in R. By Lemma 10.68.2 we see that (I/I2)q is free. These arguments show that
(2), (3), (4) are equivalent and that they imply the last statement of the lemma,
and therefore they imply (5).

If (5) holds, say Iq′ is generated by a regular sequence of length e, then height(q) =
dim(Sq) = dim(k[x1, . . . , xn]q′)−e = height(q′)−e by dimension theory, see Section
10.59. We conclude that e = c. Thus (5) implies (2).

We continue with the notation introduced in the first paragraph. For each fi we
may find di ∈ k[x1, . . . , xn], di 6∈ q′ such that f ′i = difi ∈ k[x1, . . . , xn]. Then it is
still true that Iq′ = (f ′1, . . . , f

′
c)R. Hence there exists a g′ ∈ k[x1, . . . , xn], g′ 6∈ q′

such that Ig′ = (f ′1, . . . , f
′
c). Moreover, pick g′′ ∈ k[x1, . . . , xn], g′′ 6∈ q′ such that

dim(Sg′′) = dimq Spec(S). By Lemma 10.112.4 this dimension is equal to n − c.
Finally, set g equal to the image of g′g′′ in S. Then we see that

Sg ∼= k[x1, . . . , xn, xn+1]/(f ′1, . . . , f
′
c, xn+1g

′g′′ − 1)

and by our choice of g′′ this ring has dimension n − c. Therefore it is a global
complete intersection. Thus each of (2), (3), and (4) implies (1).

Assume (1). Let Sg ∼= k[y1, . . . , ym]/(f1, . . . , ft) be a presentation of Sg as a global
complete intersection. Write J = (f1, . . . , ft). Let q′′ ⊂ k[y1, . . . , ym] be the prime
corresponding to qSg. Note that t = m − dim(Sg) = height(q′′) − height(q), see
Lemma 10.112.4 for the last equality. As seen in the proof of Lemma 10.130.3
(and also above) the elements f1, . . . , ft form a regular sequence in the local ring

http://stacks.math.columbia.edu/tag/00SC
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k[y1, . . . , ym]q′′ . By Lemma 10.68.2 we see that (J/J2)q is free of rank t. By Lemma
10.129.16 we have

J/J2 ⊕ Sng ∼= (I/I2)g ⊕ Smg
Thus (I/I2)q is free of rank t + n −m = m − dim(Sg) + n −m = n − dim(Sg) =
height(q′)− height(q) = c. Thus we obtain (4). �

The result of Lemma 10.130.4 suggests the following definition.

Definition 10.130.5. Let k be a field. Let S be a local k-algebra essentially of
finite type over k. We say S is a complete intersection (over k) if there exists a
local k-algebra R and elements f1, . . . , fc ∈ mR such that

(1) R is essentially of finite type over k,
(2) R is a regular local ring,
(3) f1, . . . , fc form a regular sequence in R, and
(4) S ∼= R/(f1, . . . , fc) as k-algebras.

By the Cohen structure theorem (see Theorem 10.149.8) any complete Noetherian
local ring may be written as the quotient of some regular complete local ring. Hence
we may use the definition above to define the notion of a complete intersection ring
for any complete Noetherian local ring. We will discuss this in Divided Power
Algebra, Section 23.8. In the meantime the following lemma shows that such a
definition makes sense.

Lemma 10.130.6. Let A → B → C be surjective local ring homomorphisms.
Assume A and B are regular local rings. The following are equivalent

(1) Ker(A→ C) is generated by a regular sequence,
(2) Ker(A→ C) is generated by dim(A)− dim(C) elements,
(3) Ker(B → C) is generated by a regular sequence, and
(4) Ker(B → C) is generated by dim(B)− dim(C) elements.

Proof. A regular local ring is Cohen-Macaulay, see Lemma 10.102.3. Hence the
equivalences (1)⇔ (2) and (3)⇔ (4), see Proposition 10.99.5. By Lemma 10.102.4
the ideal Ker(A → B) can be generated by dim(A) − dim(B) elements. Hence we
see that (4) implies (2).

It remains to show that (1) implies (4). We do this by induction on dim(A)−dim(B).
The case dim(A) − dim(B) = 0 is trivial. Assume dim(A) > dim(B). Write
I = Ker(A → C) and J = Ker(A → B). Note that J ⊂ I. Our assumption is
that the minimal number of generators of I is dim(A)−dim(C). Let m ⊂ A be the
maximal ideal. Consider the maps

J/mJ → I/mI → m/m2

By Lemma 10.102.4 and its proof the composition is injective. Take any element
x ∈ J which is not zero in J/mJ . By the above and Nakayama’s lemma x is an
element of a minimal set of generators of I. Hence we may replace A by A/xA and
I by I/xA which decreases both dim(A) and the minimal number of generators of
I by 1. Thus we win. �

Lemma 10.130.7. Let k be a field. Let S be a local k-algebra essentially of finite
type over k. The following are equivalent:

(1) S is a complete intersection over k,
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(2) for any surjection R → S with R a regular local ring essentially of finite
presentation over k the ideal Ker(R → S) can be generated by a regular
sequence,

(3) for some surjection R→ S with R a regular local ring essentially of finite
presentation over k the ideal Ker(R → S) can be generated by dim(R) −
dim(S) elements,

(4) there exists a global complete intersection A over k and a prime a of A
such that S ∼= Aa, and

(5) there exists a local complete intersection A over k and a prime a of A such
that S ∼= Aa.

Proof. It is clear that (2) implies (1) and (1) implies (3). It is also clear that
(4) implies (5). Let us show that (3) implies (4). Thus we assume there exists
a surjection R → S with R a regular local ring essentially of finite presentation
over k such that the ideal Ker(R → S) can be generated by dim(R) − dim(S)
elements. We may write R = (k[x1, . . . , xn]/J)q for some J ⊂ k[x1, . . . , xn] and
some prime q ⊂ k[x1, . . . , xn] with J ⊂ q. Let I ⊂ k[x1, . . . , xn] be the kernel of the
map k[x1, . . . , xn] → S so that S ∼= (k[x1, . . . , xn]/I)q. By assumption (I/J)q is
generated by dim(R)− dim(S) elements. We conclude that Iq can be generated by
dim(k[x1, . . . , xn]q)− dim(S) elements by Lemma 10.130.6. From Lemma 10.130.4
we see that for some g ∈ k[x1, . . . , xn], g 6∈ q the algebra (k[x1, . . . , xn]/I)g is a
global complete intersection and S is isomorphic to a local ring of it.

To finish the proof of the lemma we have to show that (5) implies (2). Assume (5)
and let π : R→ S be a surjection with R a regular local k-algebra essentially of finite
type over k. By assumption we have S = Aa for some local complete intersection A
over k. Choose a presentation R = (k[y1, . . . , ym]/J)q with J ⊂ q ⊂ k[y1, . . . , ym].
We may and do assume that J is the kernel of the map k[y1, . . . , ym] → R. Let
I ⊂ k[y1, . . . , ym] be the kernel of the map k[y1, . . . , ym] → S = Aa. Then J ⊂ I
and (I/J)q is the kernel of the surjection π : R→ S. So S = (k[y1, . . . , ym]/I)q.

By Lemma 10.122.7 we see that there exist g ∈ A, g 6∈ a and g′ ∈ k[y1, . . . , ym],
g′ 6∈ q such that Ag ∼= (k[y1, . . . , ym]/I)g′ . After replacing A by Ag and k[y1, . . . , ym]
by k[y1, . . . , ym+1] we may assume that A ∼= k[y1, . . . , ym]/I. Consider the surjective
maps of local rings

k[y1, . . . , ym]q → R→ S.

We have to show that the kernel of R→ S is generated by a regular sequence. By
Lemma 10.130.4 we know that k[y1, . . . , ym]q → Aa = S has this property (as A is
a local complete intersection over k). We win by Lemma 10.130.6. �

Lemma 10.130.8. Let k be a field. Let S be a finite type k-algebra. Let q be a
prime of S. The following are equivalent:

(1) The local ring Sq is a complete intersection ring (Definition 10.130.5).
(2) There exists a g ∈ S, g 6∈ q such that Sg is a local complete intersection

over k.
(3) There exists a g ∈ S, g 6∈ q such that Sg is a global complete intersection

over k.
(4) For any presentation S = k[x1, . . . , xn]/I with q′ ⊂ k[x1, . . . , xn] corre-

sponding to q any of the equivalent conditions (1) – (5) of Lemma 10.130.4
hold.
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Proof. This is a combination of Lemmas 10.130.4 and 10.130.7 and the definitions.
�

Lemma 10.130.9. Let k be a field. Let S be a finite type k-algebra. The following
are equivalent:

(1) The ring S is a local complete intersection over k.
(2) All local rings of S are complete intersection rings over k.
(3) All localizations of S at maximal ideals are complete intersection rings

over k.

Proof. This follows from Lemma 10.130.8, the fact that Spec(S) is quasi-compact
and the definitions. �

The following lemma says that being a complete intersection is preserved under
change of base field (in a strong sense).

Lemma 10.130.10. Let k ⊂ K be a field extension. Let S be a finite type algebra
over k. Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime
of S. Then Sq is a complete intersection over k (Definition 10.130.5) if and only
if (SK)qK is a complete intersection over K.

Proof. Choose a presentation S = k[x1, . . . , xn]/I. This gives a presentation
SK = K[x1, . . . , xn]/IK where IK = K ⊗k I. Let q′K ⊂ K[x1, . . . , xn], resp.
q′ ⊂ k[x1, . . . , xn] be the corresponding prime. We will show that the equiva-
lent conditions of Lemma 10.130.4 hold for the pair (S = k[x1, . . . , xn]/I, q) if and
only if they hold for the pair (SK = K[x1, . . . , xn]/IK , qK). The lemma will follow
from this (see Lemma 10.130.8).

By Lemma 10.112.6 we have dimq S = dimqK SK . Hence the integer c occurring
in Lemma 10.130.4 is the same for the pair (S = k[x1, . . . , xn]/I, q) as for the pair
(SK = K[x1, . . . , xn]/IK , qK). On the other hand we have

I ⊗k[x1,...,xn] κ(q′)⊗κ(q′) κ(q′K) = I ⊗k[x1,...,xn] κ(q′K)

= I ⊗k[x1,...,xn] K[x1, . . . , xn]⊗K[x1,...,xn] κ(q′K)

= (K ⊗k I)⊗K[x1,...,xn] κ(q′K)

= IK ⊗K[x1,...,xn] κ(q′K).

Therefore, dimκ(q′) I ⊗k[x1,...,xn] κ(q′) = dimκ(q′K) IK ⊗K[x1,...,xn] κ(q′K). Thus it
follows from Nakayama’s Lemma 10.19.1 that the minimal number of generators of
Iq′ is the same as the minimal number of generators of (IK)q′K . Thus the lemma

follows from characterization (2) of Lemma 10.130.4. �

Lemma 10.130.11. Let k → K be a field extension. Let S be a finite type k-
algebra. Then S is a local complete intersection over k if and only if S ⊗k K is a
local complete intersection over K.

Proof. This follows from a combination of Lemmas 10.130.9 and 10.130.10. But
we also give a different proof here (based on the same principles).

Set S′ = S ⊗k K. Let α : k[x1, . . . , xn] → S be a presentation with kernel I. Let
α′ : K[x1, . . . , xn]→ S′ be the induced presentation with kernel I ′.

Suppose that S is a local complete intersection. Pick a prime q ⊂ S′. Denote q′ the
corresponding prime of K[x1, . . . , xn], p the corresponding prime of S, and p′ the
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corresponding prime of k[x1, . . . , xn]. Consider the following diagram of Noetherian
local rings

S′q K[x1, . . . , xn]q′oo

Sp

OO

k[x1, . . . , xn]p′

OO

oo

By Lemma 10.130.4 we know that Sp is cut out by some regular sequence f1, . . . , fe
in k[x1, . . . , xn]p′ . Since the right vertical arrow is flat we see that the images of
f1, . . . , fc form a regular sequence inK[x1, . . . , xn]q′ . Because tensoring withK over
k is an exact functor we have S′q = K[x1, . . . , xn]q′/(f1, . . . , fe). Hence by Lemma
10.130.4 again we see that S′ is a local complete intersection in a neighbourhood
of q. Since q was arbitrary we see that S′ is a local complete intersection over K.

Suppose that S′ is a local complete intersection. Pick a maximal ideal m of S.
Let m′ denote the corresponding maximal ideal of k[x1, . . . , xn]. Denote κ = κ(m)
the residue field. By Remark 10.16.8 the primes of S′ lying over m correspond
to primes in K ⊗k κ. By the Hilbert-Nullstellensatz Theorem 10.33.1 we have
[κ : k] < ∞. Hence K ⊗k κ is finite nonzero over K. Hence K ⊗k κ has a finite
number > 0 of primes which are all maximal, each of which has a residue field
finite over K (see Section 10.51). Hence there are finitely many > 0 prime ideals
n ⊂ S′ lying over m, each of which is maximal and has a residue field which is finite
over K. Pick one, say n ⊂ S′, and let n′ ⊂ K[x1, . . . , xn] denote the corresponding
prime ideal of K[x1, . . . , xn]. Note that since V (mS′) is finite, we see that n is an
isolated closed point of it, and we deduce that mS′n is an ideal of definition of S′n.
This implies that dim(Sm) ≥ dim(S′n), for example by Lemma 10.108.6 or by the
characterization of dimension in terms of minimal number of generators of ideal of
definition, see Section 10.59. (In reality the dimensions are equal but we do not
need this.) Consider the corresponding diagram of Noetherian local rings

S′n K[x1, . . . , xn]n′oo

Sm

OO

k[x1, . . . , xn]m′

OO

oo

According to Lemma 10.129.8 we have NL(α) ⊗S S′ = NL(α′), in particular
I ′/(I ′)2 = I/I2⊗S S′. Thus (I/I2)m⊗Sm

κ and (I ′/(I ′)2)n⊗S′n κ(n) have the same

dimension. Since (I ′/(I ′)2)n is free of rank n− dimS′n we deduce that (I/I2)m can
be generated by n − dimS′n ≤ n − dimSm elements. By Lemma 10.130.4 we see
that S is a local complete intersection in a neighbourhood of m. Since m was any
maximal ideal we conclude that S is a local complete intersection. �

We end with a lemma which we will later use to prove that given ring maps T →
A→ B where B is syntomic over T , and B is syntomic over A, then A is syntomic
over T .

Lemma 10.130.12. Let
B Soo

A

OO

Roo

OO
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be a commutative square of local rings. Assume

(1) R and S = S/mRS are regular local rings,
(2) A = R/I and B = S/J for some ideals I, J ,
(3) J ⊂ S and J = J/mR ∩ J ⊂ S are generated by regular sequences, and
(4) A→ B and R→ S are flat.

Then I is generated by a regular sequence.

Proof. Set B = B/mRB = B/mAB so that B = S/J . Let f1, . . . , fc ∈ J be
elements such that f1, . . . , f c ∈ J form a regular sequence generating J . Note
that c = dim(S) − dim(B), see Lemma 10.130.6. By Lemma 10.95.3 the ring
S/(f1, . . . , fc) is flat over R. Hence S/(f1, . . . , fc) + IS is flat over A. The map
S/(f1, . . . , fc)+ IS → B is therefore a surjection of finite S/IS-modules flat over A
which is an isomorphism modulo mA, and hence an isomorphism by Lemma 10.95.1.
In other words, J = (f1, . . . , fc) + IS.

By Lemma 10.130.6 again the ideal J is generated by a regular sequence of c =
dim(S) − dim(B) elements. Hence J/mSJ is a vector space of dimension c. By
the description of J above there exist g1, . . . , gc−c ∈ I such that J is generated by
f1, . . . , fc, g1, . . . , gc−c (use Nakayama’s Lemma 10.19.1). Consider the ring A′ =
R/(g1, . . . , gc−c) and the surjection A′ → A. We see from the above that B =
S/(f1, . . . , fc, g1, . . . , gc−c) is flat over A′ (as S/(f1, . . . , fc) is flat over R). Hence
A′ → B is injective (as it is faithfully flat, see Lemma 10.38.16). Since this map
factors through A we get A′ = A. Note that dim(B) = dim(A) + dim(B), and
dim(S) = dim(R) + dim(S), see Lemma 10.108.7. Hence c− c = dim(R)− dim(A)
by elementary algebra. Thus I = (g1, . . . , gc−c) is generated by a regular sequence
according to Lemma 10.130.6. �

10.131. Syntomic morphisms

Syntomic ring maps are flat finitely presented ring maps all of whose fibers are local
complete intersections. We discuss general local complete intersection ring maps in
More on Algebra, Section 15.23.

Definition 10.131.1. A ring map R→ S is called syntomic, or we say S is a flat
local complete intersection over R if it is flat, of finite presentation, and if all of its
fibre rings S ⊗R κ(p) are local complete intersections, see Definition 10.130.1.

Clearly, an algebra over a field is syntomic over the field if and only if it is a local
complete intersection. Here is a pleasing feature of this definition.

Lemma 10.131.2. Let R → S be a ring map. Let R → R′ be a faithfully flat
ring map. Set S′ = R′ ⊗R S. Then R → S is syntomic if and only if R′ → S′ is
syntomic.

Proof. By Lemma 10.122.2 and Lemma 10.38.7 this holds for the property of being
flat and for the property of being of finite presentation. The map Spec(R′) →
Spec(R) is surjective, see Lemma 10.38.15. Thus it suffices to show given primes
p′ ⊂ R′ lying over p ⊂ R that S ⊗R κ(p) is a local complete intersection if and
only if S′ ⊗R′ κ(p′) is a local complete intersection. Note that S′ ⊗R′ κ(p′) =
S ⊗R κ(p)⊗κ(p) κ(p′). Thus Lemma 10.130.11 applies. �

Lemma 10.131.3. Any base change of a syntomic map is syntomic.
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Proof. This is true for being flat, for being of finite presentation, and for having
local complete intersections as fibres by Lemmas 10.38.6, 10.6.2 and 10.130.11. �

Lemma 10.131.4. Let R → S be a ring map. Suppose we have g1, . . . gm ∈ S
which generate the unit ideal such that each R→ Sgi is syntomic. Then R→ S is
syntomic.

Proof. This is true for being flat and for being of finite presentation by Lemmas
10.38.19 and 10.23.3. The property of having fibre rings which are local complete
intersections is local on S by its very definition, see Definition 10.130.1. �

Definition 10.131.5. Let R→ S be a ring map. We say that R→ S is a relative
global complete intersection if we are given a presentation S = R[x1, . . . , xn]/(f1, . . . , fc)
such that every nonempty fibre has dimension n− c.

The following lemma is occasionally useful to find global presentations.

Lemma 10.131.6. Let S be a finitely presented R-algebra which has a presentation
S = R[x1, . . . , xn]/I such that I/I2 is free over S. Then S has a presentation
S = R[y1, . . . , ym]/(f1, . . . , fc) such that (f1, . . . , fc)/(f1, . . . , fc)

2 is free with basis
given by the classes of f1, . . . , fc.

Proof. Note that I is a finitely generated ideal by Lemma 10.6.3. Let f1, . . . , fc ∈ I
be elements which map to a basis of I/I2. By Nakayama’s lemma (Lemma 10.19.1)
there exists a g ∈ 1 + I such that

g · I ⊂ (f1, . . . , fc)

Hence we see that

S ∼= R[x1, . . . , xn]/(f1, . . . , fc)[1/g] ∼= R[x1, . . . , xn, xn+1]/(f1, . . . , fc, gxn+1 − 1)

as desired. �

Example 10.131.7. Let n,m ≥ 1 be integers. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]

a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

In other words, this is the unique ring map of polynomial rings as indicated such
that the polynomial factorization

xn + a1x
n−1 + . . .+ an+m = (xn + b1x

n−1 + . . .+ bn)(xm + c1x
m−1 + . . .+ cm)

holds. Note that S is generated by n+m elements over R (namely, bi, cj) and that
there are n + m equations (namely ak = ak(bi, cj)). In order to show that S is a
relative global complete intersection over R it suffices to prove that all fibres have
dimension 0.

To prove this, let R → k be a ring map into a field k. Say ai maps to αi ∈ k.
Consider the fibre ring Sk = k ⊗R S. Let k → K be a field extension. A k-algebra
map of Sk → K is the same thing as finding β1, . . . , βn, γ1, . . . , γm ∈ K such that

xn + α1x
n−1 + . . .+ αn+m = (xn + β1x

n−1 + . . .+ βn)(xm + γ1x
m−1 + . . .+ γm).
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Hence we see there are at most finitely many choices of such n+m-tuples in K. This
proves that all fibres have finitely many closed points (use Hilbert’s Nullstellensatz
to see they all correspond to solutions in k for example) and hence that R → S is
a relative global complete intersection.

Another way to argue this is to show Z[a1, . . . , an+m]→ Z[b1, . . . , bn, c1, . . . , cm] is
actually also a finite ring map. Namely, by Lemma 10.37.5 each of bi, cj is integral
over R, and hence R→ S is finite by Lemma 10.35.4.

Example 10.131.8. Consider the ring map

R = Z[a1, . . . , an] −→ S = Z[α1, . . . , αn]

a1 7−→ α1 + . . .+ αn

. . . . . . . . .

an 7−→ α1 . . . αn

In other words this is the unique ring map of polynomial rings as indicated such
that

xn + a1x
n−1 + . . .+ an =

∏n

i=1
(x+ αi)

holds in Z[αi, x]. Another way to say this is that ai maps to the ith elementary
symmetric function in α1, . . . , αn. Note that S is generated by n elements over
R subject to n equations. Hence to show that S is a global relative complete
intersection over R we have to show that the fibre rings S ⊗R κ(p) have dimension
0. This follows as in Example 10.131.7 because the ring map Z[a1, . . . , an] →
Z[α1, . . . , αn] is actually finite since each αi ∈ S satisfies the monic equation xn −
a1x

n−1 + . . .+ (−1)nan over R.

Lemma 10.131.9. Suppose that A is a ring, and P (x) = xn + b1x
n−1 + . . .+ bn ∈

A[x] is a monic polynomial over A. Then there exists a syntomic, finite locally free,
faithfully flat ring extension A ⊂ A′ such that P (x) =

∏
i=1,...,n(x− βi) for certain

βi ∈ A′.

Proof. Take A′ = A ⊗R S, where R and S are as in Example 10.131.8, where
R→ A maps ai to bi, and let βi = −1⊗ αi. �

Lemma 10.131.10. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete
intersection over R.

(1) For any R→ R′ the base change R′ ⊗R S = R′[x1, . . . , xn]/(f1, . . . , fc) is
a relative global complete intersection.

(2) For any g ∈ S which is the image of h ∈ R[x1, . . . , xn] the ring Sg =
R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1−1) is a relative global complete in-
tersection.

(3) If R → S factors as R → Rf → S for some f ∈ R. Then the ring
S = Rf [x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection
over Rf .

Proof. By Lemma 10.112.5 the fibres of a base change have the same dimension
as the fibres of the original map. Moreover R′ ⊗R R[x1, . . . , xn]/(f1, . . . , fc) =
R′[x1, . . . , xn]/(f1, . . . , fc). Thus (1) follows. The proof of (2) is that the localiza-
tion at one element can be described as Sg ∼= S[xn+1]/(gxn+1 − 1). Assertion (3)
follows from (1) since under the assumptions of (3) we have Rf ⊗R S ∼= S. �
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Lemma 10.131.11. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc). We will
find h ∈ R[x1, . . . , xn] which maps to g ∈ S such that

Sg = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1 − 1)

is a relative global complete intersection over R in each of the following cases:

(1) Let I ⊂ R be an ideal. If the fibres of Spec(S/IS) → Spec(R/I) have
dimension n − c, then we can find (h, g) as above such that g maps to
1 ∈ S/IS.

(2) Let p ⊂ R be a prime. If dim(S ⊗R κ(p)) = n− c, then we can find (h, g)
as above such that g maps to a unit of S ⊗R κ(p).

(3) Let q ⊂ S be a prime lying over p ⊂ R. If dimq(S/R) = n − c, then we
can find (h, g) as above such that g 6∈ q.

Proof. Ad (1). By Lemma 10.121.6 there exists an open subset W ⊂ Spec(S)
containing V (IS) such that all fibres of W → Spec(R) have dimension ≤ n−c. Say
W = Spec(S) \ V (J). Then V (J) ∩ V (IS) = ∅ hence we can find a g ∈ J which
maps to 1 ∈ S/IS. Let h ∈ R[x1, . . . , xn] be any preimage of g.

Ad (2). By Lemma 10.121.6 there exists an open subset W ⊂ Spec(S) containing
Spec(S ⊗R κ(p)) such that all fibres of W → Spec(R) have dimension ≤ n− c. Say
W = Spec(S) \ V (J). Then V (J · S ⊗R κ(p)) = ∅. Hence we can find a g ∈ J
which maps to a unit in S ⊗R κ(p) (details omitted). Let h ∈ R[x1, . . . , xn] be any
preimage of g.

Ad (3). By Lemma 10.121.6 there exists a g ∈ S, g 6∈ q such that all nonempty
fibres of R → Sg have dimension ≤ n − c. Let h ∈ R[x1, . . . , xn] be any element
that maps to g. �

The following lemma says we can do absolute Noetherian approximation for relative
complete intersections.

Lemma 10.131.12. Let R be a ring. Let S be a relative global complete inter-
section with presentation S = R[x1, . . . , xn]/(f1, . . . , fc). There exist a finite type
Z-subalgebra R0 ⊂ R such that fi ∈ R0[x1, . . . , xn] and such that

S0 = R0[x1, . . . , xn]/(f1, . . . , fc)

is a relative global intersection over R0.

Proof. Let R0 ⊂ R be the Z-algebra of R generated by all the coefficients of the
polynomials f1, . . . , fc. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fc). Clearly, S = R⊗R0

S0.
Pick a prime q ⊂ S and denote p ⊂ R, q0 ⊂ S0, and p0 ⊂ R0 the primes it lies
over. Because dim(S ⊗R κ(p)) = n− c we also have dim(S0⊗R0 κ(p0)) = n− c, see
Lemma 10.112.5. By Lemma 10.121.6 there exists a g ∈ S0, g 6∈ q0 such that all
nonempty fibres of R0 → (S0)g have dimension ≤ n − c. As q was arbitrary and
Spec(S) quasi-compact, we can find finitely many g1, . . . , gm ∈ S0 such that (a) for
j = 1, . . . ,m the nonempty fibres of R0 → (S0)gj have dimension ≤ n − c and (b)
the image of Spec(S) → Spec(S0) is contained in D(g1) ∪ . . . ∪ D(gm). In other
words, the images of g1, . . . , gm in S = R ⊗R0 S0 generate the unit ideal. After
increasing R0 we may assume that g1, . . . , gm generate the unit ideal in S0. By (a)
the nonempty fibres of R0 → S0 all have dimension ≤ n− c and we conclude. �
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Lemma 10.131.13. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a
relative global complete intersection. For every prime q of S, let q′ denote the
corresponding prime of R[x1, . . . , xn]. Then

(1) f1, . . . , fc is a regular sequence in the local ring R[x1, . . . , xn]q′ ,
(2) each of the rings R[x1, . . . , xn]q′/(f1, . . . , fi) is flat over R, and
(3) the S-module (f1, . . . , fc)/(f1, . . . , fc)

2 is free with basis given by the ele-
ments fi mod (f1, . . . , fc)

2.

Proof. First, by Lemma 10.68.2, part (3) follows from part (1). Parts (1) and
(2) immediately reduce to the Noetherian case by Lemma 10.131.12 (some minor
details omitted). Assume R is Noetherian. By Lemma 10.130.4 for example we
see that f1, . . . , fc form a regular sequence in the local ring R[x1, . . . , xn]q′ ⊗R
κ(p). Moreover, the local ring R[x1, . . . , xn]q′ is flat over Rp. Since R, and hence
R[x1, . . . , xn]q′ is Noetherian we may apply Lemma 10.95.3 to conclude. �

Lemma 10.131.14. A relative global complete intersection is syntomic, i.e., flat.

Proof. Let R→ S be a relative global complete intersection. The fibres are global
complete intersections, and S is of finite presentation over R. Thus the only thing
to prove is that R→ S is flat. This is true by (2) of Lemma 10.131.13. �

Lemma 10.131.15. Let R → S be a ring map. Let q ⊂ S be a prime lying over
the prime p of R. The following are equivalent:

(1) There exists an element g ∈ S, g 6∈ q such that R→ Sg is syntomic.
(2) There exists an element g ∈ S, g 6∈ q such that Sg is a relative global

complete intersection over R.
(3) There exists an element g ∈ S, g 6∈ q, such that R → Sg is of finite

presentation, the local ring map Rp → Sq is flat, and the local ring Sq/pSq

is a complete intersection ring over κ(p) (see Definition 10.130.5).

Proof. The implication (1) ⇒ (3) is Lemma 10.130.8. The implication (2) ⇒ (1)
is Lemma 10.131.14. It remains to show that (3) implies (2).

Assume (3). After replacing S by Sg for some g ∈ S, g 6∈ q we may assume
S is finitely presented over R. Choose a presentation S = R[x1, . . . , xn]/I. Let
c = n− dimq(S/R). Let q′ ⊂ R[x1, . . . , xn] be the prime corresponding to q. Write

κ(p) = k. Note that S ⊗R k = k[x1, . . . , xn]/I where I ⊂ k[x1, . . . , xn] is the ideal
generated by the image of I. Let q′ ⊂ k[x1, . . . , xn] be the prime ideal generated by
the image of q′. By Lemma 10.130.8 we see that Lemma 10.130.4 holds for I and
q′. Thus the dimension of Iq′/q

′Iq′ over κ(q′) is c. Pick f1, . . . , fc ∈ I mapping to

a basis of this vector space. The images f j ∈ I generate Iq′ (by Lemma 10.130.4).
Set S′ = R[x1, . . . , xn]/(f1, . . . , fc). Let J be the kernel of the surjection S′ → S.
Since S is of finite presentation J is a finitely generated ideal (Lemma 10.6.2).
Consider the short exact sequence

0→ J → S′ → S → 0

As Sq is flat over R we see that Jq′ ⊗R k → S′q′ ⊗R k is injective (Lemma 10.38.11).

However, by construction S′q′ ⊗R k maps isomorphically to Sq ⊗R k. Hence we

conclude that Jq′ ⊗R k = Jq′/pJq′ = 0. By Nakayama’s lemma (Lemma 10.19.1)
we conclude that there exists a g ∈ R[x1, . . . , xn], g 6∈ q′ such that Jg = 0. In other
words S′g

∼= Sg. After further localizing we see that S′ (and hence S) becomes a
relative global complete intersection by Lemma 10.131.11 as desired. �
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Lemma 10.131.16. Let R be a ring. Let S = R[x1, . . . , xn]/I for some finitely
generated ideal I. If g ∈ S is such that Sg is syntomic over R, then (I/I2)g is a
finite projective Sg-module.

Proof. By Lemma 10.131.15 there exist finitely many elements g1, . . . , gm ∈ S
which generate the unit ideal in Sg such that each Sggj is a relative global complete

intersection over R. Since it suffices to prove that (I/I2)ggj is finite projective, see
Lemma 10.75.2, we may assume that Sg is a relative global complete intersection.
In this case the result follows from Lemmas 10.129.16 and 10.131.13. �

Lemma 10.131.17. Let R→ S, S → S′ be ring maps.

(1) If R→ S and S → S′ are syntomic, then R→ S′ is syntomic.
(2) If R → S and S → S′ are relative global complete intersections, then

R→ S′ is a relative global complete intersection.

Proof. Assume R → S and S → S′ are syntomic. This implies that R → S′ is
flat by Lemma 10.38.3. It also implies that R → S′ is of finite presentation by
Lemma 10.6.2. Thus it suffices to show that the fibres of R→ S′ are local complete
intersections. Choose a prime p ⊂ R. We have a factorization

κ(p)→ S ⊗R κ(p)→ S′ ⊗R κ(p).

By assumption S ⊗R κ(p) is a local complete intersection, and by Lemma 10.131.3
we see that S ⊗R κ(p) is syntomic over S ⊗R κ(p). After replacing S by S ⊗R κ(p)
and S′ by S′ ⊗R κ(p) we may assume that R is a field. Say R = k.

Choose a prime q′ ⊂ S′ lying over the prime q of S. Our goal is to find a g′ ∈ S′,
g′ 6∈ q′ such that S′g′ is a global complete intersection over k. Choose a g ∈ S, g 6∈ q

such that Sg = k[x1, . . . , xn]/(f1, . . . , fc) is a global complete intersection over k.
Since Sg → S′g is still syntomic also, and g 6∈ q′ we may replace S by Sg and S′ by
S′g and assume that S = k[x1, . . . , xn]/(f1, . . . , fc) is a global complete intersection
over k. Next we choose a g′ ∈ S′, g′ 6∈ q′ such that S′ = S[y1, . . . , ym]/(h1, . . . , hd)
is a relative global complete intersection over S. Hence we have reduced to part
(2) of the lemma.

Suppose that R → S and S → S′ are relative global complete intersections. Say
S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ = S[y1, . . . , ym]/(h1, . . . , hd). Then

S′ ∼= R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, h
′
1, . . . , h

′
d)

for some lifts h′j ∈ R[x1, . . . , xn, y1, . . . , ym] of the hj . Hence it suffices to bound
the dimensions of the fibres. Thus we may yet again assume R = k is a field. In
this case we see that we have a ring, namely S, which is of finite type over k and
equidimensional of dimension n− c, and a finite type ring map S → S′ all of whose
nonempty fibre rings are equidimensional of dimension m − d. Then, by Lemma
10.108.6 for example applied to localizations at maximal ideals of S′, we see that
dim(S′) ≤ n− c+m− d as desired. �

The following lemma will be improved later, see Smoothing Ring Maps, Proposition
16.4.2.

Lemma 10.131.18. Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be
a syntomic map. Then there exists elements gi ∈ S which generate the unit ideal
of S such that each Sgi

∼= Si/ISi for some relative global complete intersection Si
over R.
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Proof. By Lemma 10.131.15 we find a collection of elements gi ∈ S which gener-
ate the unit ideal of S such that each Sgi is a relative global complete intersection

over R/I. Hence we may assume that S is a relative global complete intersec-
tion. Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c) as in Definition 10.131.5. Choose
f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set S = R[x1, . . . , xn]/(f1, . . . , fc).
Note that S/IS ∼= S. By Lemma 10.131.11 we can find g ∈ S mapping to 1 in S
such that Sg is a relative global complete intersection over R. Since S ∼= Sg/ISg
this finishes the proof. �

10.132. Smooth ring maps

Let us motivate the definition of a smooth ring map by an example. Suppose R is
a ring and S = R[x, y]/(f) for some nonzero f ∈ R[x, y]. In this case there is an
exact sequence

S → Sdx⊕ Sdy → ΩS/R → 0

where the first arrow maps 1 to ∂f
∂xdx+ ∂f

∂ydy see Section 10.129. We conclude that

ΩS/R is locally free of rank 1 if the partial derivatives of f generate the unit ideal
in S. In this case S is smooth of relative dimension 1 over R. But it can happen
that ΩS/R is locally free of rank 2 namely if both partial derivatives of f are zero.
For example if for a prime p we have p = 0 in R and f = xp+yp then this happens.
Here R→ S is a relative global complete intersection of relative dimension 1 which
is not smooth. Hence, in order to check that a ring map is smooth it is not sufficient
to check whether the module of differentials is free. The correct condition is the
following.

Definition 10.132.1. A ring map R → S is smooth if it is of finite presentation
and the naive cotangent complex NLS/R is quasi-isomorphic to a finite projective
S-module placed in degree 0.

In particular, if R → S is smooth then the module ΩS/R is a finite projective
S-module. Moreover, by Lemma 10.132.2 the naive cotangent complex of any
presentation has the same structure. Thus, for a surjection α : R[x1, . . . , xn] → S
with kernel I the map

I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S

is a split injection. In other words
⊕n

i=1 Sdxi ∼= I/I2 ⊕ ΩS/R as S-modules. This

implies that I/I2 is a finite projective S-module too!

Lemma 10.132.2. Let R → S be a ring map of finite presentation. If for some
presentation α of S over R the naive cotangent complex NL(α) is quasi-isomorphic
to a finite projective S-module placed in degree 0, then this holds for any presenta-
tion.

Proof. Immediate from Lemma 10.129.2. �

Lemma 10.132.3. Let R → S be a smooth ring map. Any localization Sg is
smooth over R. If f ∈ R maps to an invertible element of S, then Rf → S is
smooth.

Proof. By Lemma 10.129.13 the naive cotangent complex for Sg over R is the
base change of the naive cotangent complex of S over R. The assumption is that
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the naive cotangent complex of S/R is ΩS/R and that this is a finite projective
S-module. Hence so is its base change. Thus Sg is smooth over R.

The second assertion follows in the same way from Lemma 10.129.11. �

Lemma 10.132.4. Let R → S be a smooth ring map. Let R → R′ be any ring
map. Then the base change R′ → S′ = R′ ⊗R S is smooth.

Proof. Let α : R[x1, . . . , xn] → S be a presentation with kernel I. Let α′ :
R′[x1, . . . , xn] → R′ ⊗R S be the induced presentation. Let I ′ = Ker(α′). Since
0→ I → R[x1, . . . , xn]→ S → 0 is exact, the sequence R′⊗R I → R′[x1, . . . , xn]→
R′ ⊗R S → 0 is exact. Thus R′ ⊗R I → I ′ is surjective. By Definition 10.132.1
there is a short exact sequence

0→ I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0

and the S-module ΩS/R is finite projective. In particular I/I2 is a direct summand
of ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S. Consider the commutative diagram

R′ ⊗R (I/I2) //

��

R′ ⊗R (ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S)

��
I ′/(I ′)2 // ΩR′[x1,...,xn]/R′ ⊗R′[x1,...,xn] (R′ ⊗R S)

Since the right vertical map is an isomorphism we see that the left vertical map is
injective and surjective by what was said above. Thus we conclude that NL(α′) is
quasi-isomorphic to ΩS′/R′ ∼= S′ ⊗S ΩS/R. And this is finite projective since it is
the base change of a finite projective module. �

Lemma 10.132.5. Let k be a field. Let S be a smooth k-algebra. Then S is a local
complete intersection.

Proof. By Lemmas 10.132.4 and 10.130.11 it suffices to prove this when k is alge-
braically closed. Choose a presentation α : k[x1, . . . , xn] → S with kernel I. Let
m be a maximal ideal of S, and let m′ ⊃ I be the corresponding maximal ideal of
k[x1, . . . , xn]. We will show that condition (5) of Lemma 10.130.4 holds (with m
instead of q). We may write m′ = (x1 − a1, . . . , xn − an) for some ai ∈ k, because
k is algebraically closed, see Theorem 10.33.1. By our assumption that k → S is
smooth the S-module map d : I/I2 →

⊕n
i=1 Sdxi is a split injection. Hence the

corresponding map I/m′I →
⊕
κ(m′)dxi is injective. Say dimκ(m′)(I/m

′I) = c
and pick f1, . . . , fc ∈ I which map to a κ(m′)-basis of I/m′I. By Nakayama’s
Lemma 10.19.1 we see that f1, . . . , fc generate Im′ over k[x1, . . . , xn]m′ . Consider
the commutative diagram

I //

��

I/I2 //

��

I/m′I

��
Ωk[x1,...,xn]/k

//⊕Sdxi
dxi 7→xi−ai // m′/(m′)2

(proof commutativity omitted). The middle vertical map is the one defining the
naive cotangent complex of α. Note that the right lower horizontal arrow induces
an isomorphism

⊕
κ(m′)dxi → m′/(m′)2. Hence our generators f1, . . . , fc of Im′

map to a collection of elements in k[x1, . . . , xn]m′ whose classes in m′/(m′)2 are
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linearly independent over κ(m′). Therefore they form a regular sequence in the ring
k[x1, . . . , xn]m′ by Lemma 10.102.3. This verifies condition (5) of Lemma 10.130.4
hence Sg is a global complete intersection over k for some g ∈ S, g 6∈ m. As this
works for any maximal ideal of S we conclude that S is a local complete intersection
over k. �

Definition 10.132.6. Let R be a ring. Given integers n ≥ c ≥ 0 and f1, . . . , fc ∈
R[x1, . . . , xn] we say

S = R[x1, . . . , xn]/(f1, . . . , fc)

is a standard smooth algebra over R if the polynomial

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2

. . . . . . . . . . . .
∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


maps to an invertible element in S.

Lemma 10.132.7. Let S = R[x1, . . . , xn]/(f1, . . . , fc) = R[x1, . . . , xn]/I be a stan-
dard smooth algebra. Then

(1) the ring map R→ S is smooth,
(2) the S-module ΩS/R is free on dxc+1, . . . , dxn,

(3) the S-module I/I2 is free on the classes of f1, . . . , fc,
(4) for any g ∈ S the ring map R→ Sg is standard smooth,
(5) for any ring map R → R′ the base change R′ → R′ ⊗R S is standard

smooth,
(6) if f ∈ R maps to an invertible element in S, then Rf → S is standard

smooth, and
(7) the ring S is a relative global complete intersection over R.

Proof. Consider the naive cotangent complex of the given presentation

(f1, . . . , fc)/(f1, . . . , fc)
2 −→

⊕n

i=1
Sdxi

Let us compose this map with the projection onto the first c direct summands
of the direct sum. According to the definition of a standard smooth algebra
the classes fi mod (f1, . . . , fc)

2 map to a basis of
⊕c

i=1 Sdxi. We conclude that
(f1, . . . , fc)/(f1, . . . , fc)

2 is free of rank c with a basis given by the elements fi mod
(f1, . . . , fc)

2, and that the homology in degree 0, i.e., ΩS/R, of the naive cotangent
complex is a free S-module with basis the images of dxc+j , j = 1, . . . , n − c. In
particular, this proves R→ S is smooth.

The proofs of (4) and (6) are omitted. But see the example below and the proof of
Lemma 10.131.10.

Let ϕ : R → R′ be any ring map. Denote S′ = R′[x1, . . . , xn]/(fϕ1 , . . . , f
ϕ
c )

where fϕ is the polynomial obtained from f ∈ R[x1, . . . , xn] by applying ϕ to
all the coefficients. Then S′ ∼= R′ ⊗R S. Moreover, the determinant of Definition
10.132.6 for S′/R′ is equal to gϕ. Its image in S′ is therefore the image of g via
R[x1, . . . , xn]→ S → S′ and hence invertible. This proves (5).

To prove (7) it suffices to show that S ⊗R κ(p) has dimension n − c. By (5) it
suffices to prove that any standard smooth algebra k[x1, . . . , xn]/(f1, . . . , fc) over
a field k has dimension n− c. We already know that k[x1, . . . , xn]/(f1, . . . , fc) is a
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local complete intersection by Lemma 10.132.5. Hence, since I/I2 is free of rank c
we see that it dimension n− c, by Lemma 10.130.4 for example. �

Example 10.132.8. Let R be a ring. Let f1, . . . , fc ∈ R[x1, . . . , xn]. Let

h = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2

. . . . . . . . . . . .
∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc

 .

Set S = R[x1, . . . , xn+1]/(f1, . . . , fc, xn+1h− 1). This is an example of a standard
smooth algebra, except that the presentation is wrong and the variables should be
in the following order: x1, . . . , xc, xn+1, xc+1, . . . , xn.

Lemma 10.132.9. A composition of standard smooth ring maps is standard smooth.

Proof. Suppose that R→ S and S → S′ are standard smooth. We choose presen-
tations S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ = S[y1, . . . , ym]/(g1, . . . , gd). Choose
elements g′j ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to the gj . In this way we see
S′ = R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, g

′
1, . . . , g

′
d). To show that S′ is standard

smooth it suffices to verify that the determinant

det


∂f1/∂x1 . . . ∂fc/∂x1 ∂g1/∂x1 . . . ∂gd/∂x1

. . . . . . . . . . . . . . . . . .
∂f1/∂xc . . . ∂fc/∂xc ∂g1/∂xc . . . ∂gd/∂xc

0 . . . 0 ∂g1/∂y1 . . . ∂gd/∂y1

. . . . . . . . . . . . . . . . . .
0 . . . 0 ∂g1/∂yd . . . ∂gd/∂yd


is invertible in S′. This is clear since it is the product of the two determinants
which were assumed to be invertible by hypothesis. �

Lemma 10.132.10. Let R → S be a smooth ring map. There exists an open
covering of Spec(S) by standard opens D(g) such that each Sg is standard smooth
over R. In particular R→ S is syntomic.

Proof. Choose a presentation α : R[x1, . . . , xn]→ S with kernel I = (f1, . . . , fm).
For every subset E ⊂ {1, . . . ,m} consider the open subset UE where the classes
fe, e ∈ E freely generate the finite projective S-module I/I2, see Lemma 10.76.3.
We may cover Spec(S) by standard opens D(g) each completely contained in one
of the opens UE . For such a g we look at the presentation

β : R[x1, . . . , xn, xn+1] −→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we use Lemma 10.129.12 to see that
J/J2 ∼= (I/I2)g ⊕ Sg is free. We may and do replace S by Sg. Then using Lemma
10.131.6 we may assume we have a presentation α : R[x1, . . . , xn]→ S with kernel
I = (f1, . . . , fc) such that I/I2 is free on the classes of f1, . . . , fc.

Using the presentation α obtained at the end of the previous paragraph, we more
or less repeat this argument with the basis elements dx1, . . . ,dxn of ΩR[x1,...,xn]/R.
Namely, for any subset E ⊂ {1, . . . , n} of cardinality c we may consider the open
subset UE of Spec(S) where the differential of NL(α) composed with the projection

S⊕c ∼= I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S −→
⊕

i∈E
Sdxi
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is an isomorphism. Again we may find a covering of Spec(S) by (finitely many)
standard opensD(g) such that eachD(g) is completely contained in one of the opens
UE . By renumbering, we may assume E = {1, . . . , c}. For a g with D(g) ⊂ UE we
look at the presentation

β : R[x1, . . . , xn, xn+1]→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we conclude from Lemma 10.129.12 that
J = (f1, . . . , fc, fxn+1 − 1) where α(f) = g and that the composition

J/J2 −→ ΩR[x1,...,xn+1]/R ⊗R[x1,...,xn+1] Sg −→
⊕c

i=1
Sgdxi ⊕ Sgdxn+1

is an isomorphism. Reordering the coordinates as x1, . . . , xc, xn+1, xc+1, . . . , xn we
we conclude that Sg is standard smooth over R as desired.

This finishes the proof as standard smooth algebras are syntomic (Lemmas 10.132.7
and 10.131.14) and being syntomic over R is local on S (Lemma 10.131.4). �

Definition 10.132.11. Let R→ S be a ring map. Let q be a prime of S. We say
R→ S is smooth at q if there exists a g ∈ S, g 6∈ q such that R→ Sg is smooth.

For ring maps of finite presentation we can characterize this as follows.

Lemma 10.132.12. Let R → S be of finite presentation. Let q be a prime of S.
The following are equivalent

(1) R→ S is smooth at q,
(2) H1(LS/R)q = 0 and ΩS/R,q is a projective Sq-module, and
(3) H1(LS/R)q = 0 and ΩS/R,q is a flat Sq-module.

Proof. We will use without further mention that formation of the naive cotan-
gent complex commutes with localization, see Section 10.129, especially Lemma
10.129.13. It is clear that (1) implies (2) implies (3). Assume (3) holds. Note
that ΩS/R is a finitely presented S-module, see Lemma 10.127.15. Hence ΩS/R,q
is a finite free module by Lemma 10.75.4. Writing Sq as the colimit of principal
localizations we see from Lemma 10.123.4 that we can find a g ∈ S, g 6∈ q such that
(ΩS/R)g is finite free. Choose a presentation α : R[x1, . . . , xn] → S with kernel I.
We may work with NL(α) instead of NLS/R, see Lemma 10.129.2. The surjection

ΩR[x1,...,xn]/R ⊗R S → ΩS/R → 0

has a right inverse after inverting g because (ΩS/R)g is projective. Hence the image

of d : (I/I2)g → ΩR[x1,...,xn]/R⊗R Sg is a direct summand and this map has a right

inverse too. We conclude that H1(LS/R)g is a quotient of (I/I2)g. In particular
H1(LS/R)g is a finite Sg-module. Thus the vanishing of H1(LS/R)q implies the
vanishing of H1(LS/R)gg′ for some g′ ∈ S, g′ 6∈ q. Then R → Sgg′ is smooth by
definition. �

Lemma 10.132.13. Let R→ S be a ring map. Then R→ S is smooth if and only
if R→ S is smooth at every prime q of S.

Proof. The direct implication is trivial. Suppose that R → S is smooth at every
prime q of S. Since Spec(S) is quasi-compact, see Lemma 10.16.10, there exists a
finite covering Spec(S) =

⋃
D(gi) such that each Sgi is smooth. By Lemma 10.23.3

this implies that S is of finite presentation over R. According to Lemma 10.129.13
we see that NLS/R⊗SSgi is quasi-isomorphic to a finite projective Sgi -module. By
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Lemma 10.75.2 this implies that NLS/R is quasi-isomorphic to a finite projective
S-module. �

Lemma 10.132.14. A composition of smooth ring maps is smooth.

Proof. This follows from a combination of Lemmas 10.132.10, 10.132.9 and 10.132.13.
(You can also prove this in many different ways; including easier ones.) �

Lemma 10.132.15. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a
relative global complete intersection. Let q ⊂ S be a prime. Then R→ S is smooth
at q if and only if there exists a subset I ⊂ {1, . . . , n} of cardinality c such that the
polynomial

gI = det(∂fj/∂xi)j=1,...,c, i∈I .

does not map to an element of q.

Proof. By Lemma 10.131.13 we see that the naive cotangent complex associated
to the given presentation of S is the complex⊕c

j=1
S · fj −→

⊕n

i=1
S · dxi, fj 7−→

∑ ∂fj
∂xi

dxi.

The maximal minors of the matrix giving the map are exactly the polynomials gI .

Assume gI maps to g ∈ S, with g 6∈ q. Then the algebra Sg is smooth over
R. Namely, its naive cotangent complex is quasi-isomorphic to the complex above
localized at g, see Lemma 10.129.13. And by construction it is quasi-isomorphic to
a free rank n− c module in degree 0.

Conversely, suppose that all gI end up in q. In this case the complex above tensored
with κ(q) does not have maximal rank, and hence there is no localization by an
element g ∈ S, g 6∈ q where this map becomes a split injection. By Lemma 10.129.13
again there is no such localization which is smooth over R. �

Lemma 10.132.16. Let R → S be a ring map. Let q ⊂ S be a prime lying over
the prime p of R. Assume

(1) there exists a g ∈ S, g 6∈ q such that R→ Sg is of finite presentation,
(2) the local ring homomorphism Rp → Sq is flat,
(3) the fibre S ⊗R κ(p) is smooth over κ(p) at the prime corresponding to q.

Then R→ S is smooth at q.

Proof. By Lemmas 10.131.15 and 10.132.5 we see that there exists a g ∈ S
such that Sg is a relative global complete intersection. Replacing S by Sg we
may assume S = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete inter-
section. For any subset I ⊂ {1, . . . , n} of cardinality c consider the polynomial
gI = det(∂fj/∂xi)j=1,...,c,i∈I of Lemma 10.132.15. Note that the image gI of gI in
the polynomial ring κ(p)[x1, . . . , xn] is the determinant of the partial derivatives of
the images f j of the fj in the ring κ(p)[x1, . . . , xn]. Thus the lemma follows by
applying Lemma 10.132.15 both to R→ S and to κ(p)→ S ⊗R κ(p). �

Note that the sets U, V in the following lemma are open by definition.

Lemma 10.132.17. Let R→ S be a ring map of finite presentation. Let R→ R′

be a flat ring map. Denote S′ = R′ ⊗R S the base change. Let U ⊂ Spec(S) be
the set of primes at which R → S is smooth. Let V ⊂ Spec(S′) the set of primes
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at which R′ → S′ is smooth. Then V is the inverse image of U under the map
f : Spec(S′)→ Spec(S).

Proof. By Lemma 10.129.8 we see that NLS/R⊗SS′ is homotopy equivalent to

NLS′/R′ . This already implies that f−1(U) ⊂ V .

Let q′ ⊂ S′ be a prime lying over q ⊂ S. Assume q′ ∈ V . We have to show
that q ∈ U . Since S → S′ is flat, we see that Sq → S′q′ is faithfully flat (Lemma

10.38.16). Thus the vanishing of H1(LS′/R′)q′ implies the vanishing of H1(LS/R)q.
By Lemma 10.75.5 applied to the Sq-module (ΩS/R)q and the map Sq → S′q′ we see

that (ΩS/R)q is projective. Hence R→ S is smooth at q by Lemma 10.132.12. �

Lemma 10.132.18. Let k ⊂ K be a field extension. Let S be a finite type algebra
over k. Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime of
S. Then S is smooth over k at q if and only if SK is smooth at qK over K.

Proof. This is a special case of Lemma 10.132.17. �

Lemma 10.132.19. Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be a
smooth ring map. Then there exists elements gi ∈ S which generate the unit ideal
of S such that each Sgi

∼= Si/ISi for some (standard) smooth ring Si over R.

Proof. By Lemma 10.132.10 we find a collection of elements gi ∈ S which generate
the unit ideal of S such that each Sgi is standard smooth over R/I. Hence we may

assume that S is standard smooth overR/I. Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c)
as in Definition 10.132.6. Choose f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set

S = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1∆ − 1) where ∆ = det(
∂fj
∂xi

)i,j=1,...,c as in
Example 10.132.8. This proves the lemma. �

10.133. Formally smooth maps

In this section we define formally smooth ring maps. It will turn out that a ring map
of finite presentation is formally smooth if and only if it is smooth, see Proposition
10.133.13.

Definition 10.133.1. Let R → S be a ring map. We say S is formally smooth
over R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, a dotted arrow exists which makes the
diagram commute.

Lemma 10.133.2. Let R→ S be a formally smooth ring map. Let R→ R′ be any
ring map. Then the base change S′ = R′ ⊗R S is formally smooth over R′.

Proof. Let a solid diagram

S //

))

R′ ⊗R S //

$$

A/I

R

OO

// R′ //

OO

A

OO
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as in Definition 10.133.1 be given. By assumption the longer dotted arrow exists.
By the universal property of tensor product we obtain the shorter dotted arrow. �

Lemma 10.133.3. A composition of formally smooth ring maps is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) �

Lemma 10.133.4. A polynomial ring over R is formally smooth over R.

Proof. Suppose we have a diagram as in Definition 10.133.1 with S = R[xj ; j ∈ J ].
Then there exists a dotted arrow simply by choosing lifts aj ∈ A of the elements in
A/I to which the elements xj map to under the top horizontal arrow. �

Lemma 10.133.5. Let R→ S be a ring map. Let P → S be a surjective R-algebra
map from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is
formally smooth if and only if there exists an R-algebra map σ : S → P/J2 which
is a right inverse to the surjection P/J2 → S.

Proof. Assume R→ S is formally smooth. Consider the commutative diagram

S //

!!

P/J

R //

OO

P/J2

OO

By assumption the dotted arrow exists. This proves that σ exists.

Conversely, suppose we have a σ as in the lemma. Let a solid diagram

S //

!!

A/I

R //

OO

A

OO

as in Definition 10.133.1 be given. Because P is formally smooth by Lemma
10.133.4, there exists an R-algebra homomorphism ψ : P → A which lifts the map
P → S → A/I. Clearly ψ(J) ⊂ I and since I2 = 0 we conclude that ψ(J2) = 0.
Hence ψ factors as ψ : P/J2 → A. The desired dotted arrow is the composition
ψ ◦ σ : S → A. �

Remark 10.133.6. Lemma 10.133.5 holds more generally whenever P is formally
smooth over R.

Lemma 10.133.7. Let R→ S be a ring map. Let P → S be a surjective R-algebra
map from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is
formally smooth if and only if the sequence

0→ J/J2 → ΩP/R ⊗R S → ΩS/R → 0

of Lemma 10.127.9 is a split exact sequence.

Proof. Assume S is formally smooth over R. By Lemma 10.133.5 this means there
exists an R-algebra map S → P/J2 which is a left inverse to the canonical map
P/J2 → S. This means that

P/J2 ∼= S ⊕ J/J2
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as R-algebras. Note that the middle term of the exact sequence is ΩP/R ⊗P S ∼=
Ω(P/J2)/R ⊗R S by Lemma 10.127.11. A direct computation shows that

Ω(S⊕J/J2)/R ⊗(S⊕J/J2) S = ΩS/R ⊕ J/J2

as desired.

Assume the exact sequence of the lemma is split exact. Choose a splitting σ :
ΩS/R → ΩP/R ⊗R S. For each λ ∈ S choose xλ ∈ P which maps to λ. Next, for
each λ ∈ S choose fλ ∈ J such that

dfλ = dxλ − σ(dλ)

in the middle term of the exact sequence. We claim that s : λ 7→ xλ − fλ mod J2

is an R-algebra homomorphism s : S → P/J2. To prove this we will repeatedly
use that if h ∈ J and dh = 0 in ΩP/R ⊗R S, then h ∈ J2. Let λ, µ ∈ S. Then
σ(dλ+ dµ− d(λ+ µ)) = 0. This implies

d(xλ + xµ − xλ+µ − fλ − fµ + fλ+µ) = 0

which means that xλ +xµ−xλ+µ− fλ− fµ + fλ+µ ∈ J2, which in turn means that
s(λ) + s(µ) = s(λ+ µ). Similarly, we have σ(λdµ+ µdλ− dλµ) = 0 which implies
that

µ(dxλ − dfλ) + λ(dxµ − dfµ)− dxλµ − dfλµ = 0

in the middle term of the exact sequence. Moreover we have

d(xλxµ) = xλdxµ + xµdxλ = λdxµ + µdxλ

in the middle term again. Combined these equations mean that xλxµ−xλµ−µfλ−
λfµ + fλµ ∈ J2 which means that s(λ)s(µ) = s(λµ). If λ ∈ R, then dλ = 0 and we
see that dfλ = dxλ, hence λ− xλ + fλ ∈ J2 and hence s(λ) = λ as desired. At this
point we can apply Lemma 10.133.5 to conclude that S/R is formally smooth. �

Proposition 10.133.8. Let R → S be a ring map. Consider a formally smooth
R-algebra P and a surjection P → S with kernel J . The following are equivalent

(1) S is formally smooth over R,
(2) for some P → S as above there exists a section to P/J2 → S,
(3) for all P → S as above there exists a section to P/J2 → S,
(4) for some P → S as above the sequence 0→ J/J2 → ΩP/R⊗S → ΩS/R →

0 is split exact,
(5) for all P → S as above the sequence 0→ J/J2 → ΩP/R ⊗ S → ΩS/R → 0

is split exact, and
(6) the naive cotangent complex NLS/R is quasi-isomorphic to a projective

S-module placed in degree 0.

Proof. It is clear that (1) implies (3) implies (2), see first part of the proof of
Lemma 10.133.5. It is also true that (3) implies (5) implies (4) and that (2) implies
(4), see first part of the proof of Lemma 10.133.7. Finally, Lemma 10.133.7 applied
to the canonical surjection R[S]→ S (10.129.0.1) shows that (1) implies (6).

Assume (4) and let’s prove (6). Consider the sequence of Lemma 10.129.4 associated
to the ring maps R → P → S. By the implication (1) ⇒ (6) proved above we see
that NLP/R⊗RS is quasi-isomorphic to ΩP/R ⊗P S placed in degree 0. Hence
H1(NLP/R⊗PS) = 0. Since P → S is surjective we see that NLS/P is homotopy

equivalent to J/J2 placed in degree 1 (Lemma 10.129.6). Thus we obtain the exact

http://stacks.math.columbia.edu/tag/031J
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sequence 0 → H1(LS/R) → J/J2 → ΩP/R ⊗P S → ΩS/R → 0. By assumption we
see that H1(LS/R) = 0 and that ΩS/R is a projective S-module. Thus (6) follows.

Finally, let’s prove that (6) implies (1). The assumption means that the com-
plex J/J2 → ΩP/R ⊗ S where P = R[S] and P → S is the canonical surjection
(10.129.0.1). Hence Lemma 10.133.7 shows that S is formally smooth over R. �

Lemma 10.133.9. Let A → B → C be ring maps. Assume B → C is formally
smooth. Then the sequence

0→ ΩB/A ⊗B C → ΩC/A → ΩC/B → 0

of Lemma 10.127.7 is a split short exact sequence.

Proof. Follows from Proposition 10.133.8 and Lemma 10.129.4. �

Lemma 10.133.10. Let A → B → C be ring maps with A → C formally smooth
and B → C surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0

of Lemma 10.127.9 is split exact.

Proof. Follows from Proposition 10.133.8, Lemma 10.129.4, and Lemma 10.127.9.
�

Lemma 10.133.11. Let A→ B → C be ring maps. Assume A→ C is surjective
(so also B → C is) and A → B formally smooth. Denote I = Ker(A → C) and
J = Ker(B → C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

of Lemma 10.129.7 is split exact.

Proof. Since A → B is formally smooth there exists a ring map σ : B → A/I2

whose composition with A → B equals the quotient map A → A/I2. Then σ
induces a map J/J2 → I/I2 which is inverse to the map I/I2 → J/J2. �

Lemma 10.133.12. Let R→ S be a ring map. Let I ⊂ R be an ideal. Assume

(1) I2 = 0,
(2) R→ S is flat, and
(3) R/I → S/IS is formally smooth.

Then R→ S is formally smooth.

Proof. Assume (1), (2) and (3). Let P = R[{xt}t∈T ] → S be a surjection of R-
algebras with kernel J . Thus 0 → J → P → S → 0 is a short exact sequence of
flat R-modules. This implies that I ⊗R S = IS, I ⊗R P = IP and I ⊗R J = IJ as
well as J ∩ IP = IJ . We will use throughout the proof that

Ω(S/IS)/(R/I) = ΩS/R ⊗S (S/IS) = ΩS/R ⊗R R/I = ΩS/R/IΩS/R

and similarly for P (see Lemma 10.127.12). By Lemma 10.133.7 the sequence

(10.133.12.1) 0→ J/(IJ + J2)→ ΩP/R ⊗P S/IS → ΩS/R ⊗S S/IS → 0

is split exact. Of course the middle term is
⊕

t∈T S/ISdxt. Choose a splitting

σ : ΩP/R ⊗P S/IS → J/(IJ + J2). For each t ∈ T choose an element ft ∈ J which

maps to σ(dxt) in J/(IJ + J2). This determines a unique S-module map

σ̃ : ΩP/R ⊗R S =
⊕

Sdxt −→ J/J2
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with the property that σ̃(dxt) = ft. As σ is a section to d the difference

∆ = idJ/J2 − σ̃ ◦ d

is a self map J/J2 → J/J2 whose image is contained in (IJ+J2)/J2. In particular
∆((IJ + J2)/J2) = 0 because I2 = 0. This means that ∆ factors as

J/J2 → J/(IJ + J2)
∆−→ (IJ + J2)/J2 → J/J2

where ∆ is a S/IS-module map. Using again that the sequence (10.133.12.1) is
split, we can find a S/IS-module map δ : ΩP/R ⊗P S/IS → (IJ + J2)/J2 such

that δ ◦ d is equal to ∆. In the same manner as above the map δ determines
an S-module map δ : ΩP/R ⊗P S → J/J2. After replacing σ̃ by σ̃ + δ a simple

computation shows that ∆ = 0. In other words σ̃ is a section of J/J2 → ΩP/R⊗P S.
By Lemma 10.133.7 we conclude that R→ S is formally smooth. �

Proposition 10.133.13. Let R→ S be a ring map. The following are equivalent

(1) R→ S is of finite presentation and formally smooth,
(2) R→ S is smooth.

Proof. Follows from Proposition 10.133.8 and Definition 10.132.1. (Note that ΩS/R
is a finitely presented S-module if R → S is of finite presentation, see Lemma
10.127.15.) �

Lemma 10.133.14. Let R→ S be a smooth ring map. Then there exists a subring
R0 ⊂ R of finite type over Z and a smooth ring map R0 → S0 such that S ∼=
R⊗R0 S0.

Proof. We are going to use that smooth is equivalent to finite presentation and
formally smooth, see Proposition 10.133.13. Write S = R[x1, . . . , xn]/(f1, . . . , fm)
and denote I = (f1, . . . , fm). Choose a right inverse σ : S → R[x1, . . . , xn]/I2

to the projection to S as in Lemma 10.133.5. Choose hi ∈ R[x1, . . . , xn] such
that σ(xi mod I) = hi mod I2. The fact that σ is an R-algebra homomorphism
R[x1, . . . , xn]/I → R[x1, . . . , xn]/I2 is equivalent to the condition that

fj(h1, . . . , hn) =
∑

j1j2
aj1j2fj1fj2

for certain akl ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated over Z by all
the coefficients of the polynomials fj , hi, akl. Set S0 = R0[x1, . . . , xn]/(f1, . . . , fm),
with I0 = (f1, . . . , fm). Let σ0 : S0 → R0[x1, . . . , xn]/I2

0 defined by the rule
xi 7→ hi mod I2

0 ; this works since the alk are defined over R0 and satisfy the same
relations. Thus by Lemma 10.133.5 the ring S0 is formally smooth over R0. �

Lemma 10.133.15. Let R→ S be a ring map. Let R→ R′ be a faithfully flat ring
map. Set S′ = S ⊗R R′. Then R→ S is formally smooth if and only if R′ → S′ is
formally smooth.

Proof. If R→ S is formally smooth, then R′ → S′ is formally smooth by Lemma
10.133.2. To prove the converse, assume R′ → S′ is formally smooth. Note that
N⊗RR′ = N⊗SS′ for any S-module N . In particular S → S′ is faithfully flat also.
Choose a polynomial ring P = R[{xi}i∈I ] and a surjection of R-algebras P → S
with kernel J . Note that P ′ = P ⊗R R′ is a polynomial algebra over R′. Since
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R → R′ is flat the kernel J ′ of the surjection P ′ → S′ is J ⊗R R′. Hence the split
exact sequence (see Lemma 10.133.7)

0→ J ′/(J ′)2 → ΩP ′/R′ ⊗P ′ S′ → ΩS′/R′ → 0

is the base change via S → S′ of the corresponding sequence

J/J2 → ΩP/R ⊗P S → ΩS/R → 0

see Lemma 10.127.9. As S → S′ is faithfully flat we conclude two things: (1)
this sequence (without ′) is exact too, and (2) ΩS/R is a projective S-module.
Namely, ΩS′/R′ is projective as a direct sum of the free module ΩP ′/R′ ⊗P ′ S′
and ΩS/R ⊗S S′ = ΩS′/R′ by what we said above. Thus (2) follows by descent
of projectivity through faithfully flat ring maps, see Theorem 10.92.5. Hence the
sequence 0 → J/J2 → ΩP/R ⊗P S → ΩS/R → 0 is exact also and we win by
applying Lemma 10.133.7 once more. �

It turns out that smooth ring maps satisfy the following strong lifting property.

Lemma 10.133.16. Let R→ S be a smooth ring map. Given a commutative solid
diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is a locally nilpotent ideal, a dotted arrow exists which makes the
diagram commute.

Proof. By Lemma 10.133.14 we can extend the diagram to a commutative diagram

S0
// S //

  

A/I

R0
//

OO

R //

OO

A

OO

with R0 → S0 smooth, R0 of finite type over Z, and S = S0⊗R0R. Let x1, . . . , xn ∈
S0 be generators of S0 over R0. Let a1, . . . , an be elements of A which map to the
same elements in A/I as the elements x1, . . . , xn. Denote A0 ⊂ A the subring
generated by the image of R0 and the elements a1, . . . , an. Set I0 = A0 ∩ I. Then
A0/I0 ⊂ A/I and S0 → A/I maps into A0/I0. Thus it suffices to find the dotted
arrow in the diagram

S0
//

""

A0/I0

R0
//

OO

A0

OO

The ring A0 is of finite type over Z by construction. Hence A0 is Noetherian, whence
I0 is nilpotent, see Lemma 10.31.4. Say In0 = 0. By Proposition 10.133.13 we can
successively lift the R0-algebra map S0 → A0/I0 to S0 → A0/I

2
0 , S0 → A0/I

3
0 , . . .,

and finally S0 → A0/I
n
0 = A0. �
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10.134. Smoothness and differentials

Some results on differentials and smooth ring maps.

Lemma 10.134.1. Given ring maps A → B → C with B → C smooth, then the
sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of Lemma 10.127.7 is exact.

Proof. This follows from the more general Lemma 10.133.9 because a smooth ring
map is formally smooth, see Proposition 10.133.13. But it also follows directly
from Lemma 10.129.4 since H1(LC/B) = 0 is part of the definition of smoothness
of B → C. �

Lemma 10.134.2. Let A→ B → C be ring maps with A→ C smooth and B → C
surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0

of Lemma 10.127.9 is split exact.

Proof. This follows from the more general Lemma 10.133.10 because a smooth
ring map is formally smooth, see Proposition 10.133.13. �

Lemma 10.134.3. Let A → B → C be ring maps. Assume A → C is surjective
(so also B → C is) and A → B smooth. Denote I = Ker(A → C) and J =
Ker(B → C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

of Lemma 10.129.7 is exact.

Proof. This follows from the more general Lemma 10.133.11 because a smooth
ring map is formally smooth, see Proposition 10.133.13. �

Lemma 10.134.4. Let ϕ : R → S be a smooth ring map. Let σ : S → R be a left
inverse to ϕ. Set I = Ker(σ). Then

(1) I/I2 is a finite locally free R-module, and
(2) if I/I2 is free, then S∧ ∼= R[[t1, . . . , td]] as R-algebras, where S∧ is the

I-adic completion of S.

Proof. By Lemma 10.127.10 applied to R→ S → R we see that I/I2 = ΩS/R⊗S,σ
R. Since by definition of a smooth morphism the module ΩS/R is finite locally free

over S we deduce that (1) holds. If I/I2 is free, then choose f1, . . . , fd ∈ I whose
images in I/I2 form an R-basis. Consider the R-algebra map defined by

Ψ : R[[x1, . . . , xd]] −→ S∧, xi 7−→ fi.

Denote P = R[[x1, . . . , xd]] and J = (x1, . . . , xd) ⊂ P . We write Ψn : P/Jn → S/In

for the induced map of quotient rings. Note that S/I2 = ϕ(R) ⊕ I/I2. Thus Ψ2

is an isomorphism. Denote σ2 : S/I2 → P/J2 the inverse of Ψ2. We will prove by
induction on n that for all n > 2 there exists an inverse σn : S/In → P/Jn of Ψn.

http://stacks.math.columbia.edu/tag/04B2
http://stacks.math.columbia.edu/tag/06A8
http://stacks.math.columbia.edu/tag/06A9
http://stacks.math.columbia.edu/tag/05D5
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Namely, as S is formally smooth over R (by Proposition 10.133.13) we see that in
the solid diagram

S //

σn−1 ""

P/Jn

��
P/Jn−1

of R-algebras we can fill in the dotted arrow by some R-algebra map τ : S → P/Jn

making the diagram commute. This induces an R-algebra map τ : S/In → P/Jn

which is equal to σn−1 modulo Jn. By construction the map Ψn is surjective and
now τ ◦Ψn is an R-algebra endomorphism of P/Jn which maps xi to xi + δi,n with
δi,n ∈ Jn−1/Jn. It follows that Ψn is an isomorphism and hence it has an inverse
σn. This proves the lemma. �

10.135. Smooth algebras over fields

Warning: The following two lemmas do not hold over nonperfect fields in general.

Lemma 10.135.1. Let k be an algebraically closed field. Let S be a finite type
k-algebra. Let m ⊂ S be a maximal ideal. Then

dimκ(m) ΩS/k ⊗S κ(m) = dimκ(m) m/m
2.

Proof. Since k is algebraically closed we have κ(m) = k. We may choose a pre-
sentation 0 → I → k[x1, . . . , xn] → S → 0 such that all xi end up in m. Write
I = (f1, . . . , fm). Note that each fi is contained in (x1, . . . , xn), i.e., each fi has
zero constant term. Hence we may write

fj =
∑

aijxi + h.o.t.

By Lemma 10.127.9 there is an exact sequence⊕
S · fj →

⊕
S · dxi → ΩS/k → 0.

Tensoring with κ(m) = k we get an exact sequence⊕
k · fj →

⊕
k · dxi → ΩS/k ⊗ κ(m)→ 0.

The matrix of the map is given by the partial derivatives of the fj evaluated at 0.
In other words by the matrix (aij). Similarly there is a short exact sequence

(f1, . . . , fm)/(x1f1, . . . , xnfm)→ (x1, . . . , xn)/(x1, . . . , xn)2 → m/m2 → 0.

Note that the first map is given by expanding the fj in terms of the xi, i.e., by the
same matrix (aij). Hence the two numbers are the same. �

Lemma 10.135.2. Let k be an algebraically closed field. Let S be a finite type
k-algebra. Let m ⊂ S be a maximal ideal. The following are equivalent:

(1) The ring Sm is a regular local ring.
(2) We have dimκ(m) ΩS/k ⊗S κ(m) ≤ dim(Sm).
(3) We have dimκ(m) ΩS/k ⊗S κ(m) = dim(Sm).
(4) There exists a g ∈ S, g 6∈ m such that Sg is smooth over k. In other words

S/k is smooth at m.

http://stacks.math.columbia.edu/tag/00TR
http://stacks.math.columbia.edu/tag/00TS
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Proof. Note that (1), (2) and (3) are equivalent by Lemma 10.135.1 and Definition
10.106.7.

Assume that S is smooth at q. By Lemma 10.132.10 we see that Sg is standard
smooth over k for a suitable g ∈ S, g 6∈ m. Hence by Lemma 10.132.7 we see that
ΩSg/k is free of rank dim(Sg). Hence by Lemma 10.135.1 we see that dim(Sm) =

dim(m/m2) in other words Sm is regular.

Conversely, suppose that Sm is regular. Let d = dim(Sm) = dimm/m2. Choose a
presentation S = k[x1, . . . , xn]/I such that xi maps to an element of m for all i. In
other words, m′′ = (x1, . . . , xn) is the corresponding maximal ideal of k[x1, . . . , xn].
Note that we have a short exact sequence

I/m′′I → m′′/(m′′)2 → m/(m)2 → 0

Pick c = n − d elements f1, . . . , fd ∈ I such that their images in m′′/(m′′)2 span
the kernel of the map to m/(m)2. This is clearly possible. Denote J = (f1, . . . , fc).
So J ⊂ I. Denote S′ = k[x1, . . . , xn]/J so there is a surjection S′ → S. Denote
m′ = m′′S′ the corresponding maximal ideal of S′. Hence we have

k[x1, . . . , xn] // S′ // S

m′′

OO

// m′ //

OO

m

OO

By our choice of J the exact sequence

J/m′′J → m′′/(m′′)2 → m′/(m′)2 → 0

shows that dim(m′/(m′)2) = d. Since S′m′ surjects onto Sm we see that dim(Sm′) ≥
d. Hence by the discussion preceding Definition 10.59.9 we conclude that S′m′ is
regular of dimension d as well. Because S′ was cut out by c = n − d equations
we conclude that there exists a g′ ∈ S′, g′ 6∈ m′ such that S′g′ is a global complete

intersection over k, see Lemma 10.130.4. Also the map S′m′ → Sm is a surjection
of Noetherian local domains of the same dimension and hence an isomorphism. By
Lemma 10.122.7 we see that S′g′

∼= Sg for some g ∈ S, g 6∈ m and g′ ∈ S′, g′ 6∈ m′.
All in all we conclude that after replacing S by a principal localization we may
assume that S is a global complete intersection.

At this point we may write S = k[x1, . . . , xn]/(f1, . . . , fc) with dimS = n − c.
Recall that the naive cotangent complex of this algebra is given by⊕

S · fj →
⊕

S · dxi
see Lemma 10.131.13. By Lemma 10.132.15 in order to show that S is smooth at m
we have to show that one of the c× c minors gI of the matrix “A” giving the map
above does not vanish at m. By Lemma 10.135.1 the matrix A mod m has rank c.
Thus we win. �

Lemma 10.135.3. Let k be any field. Let S be a finite type k-algebra. Let
X = Spec(S). Let q ⊂ S be a prime corresponding to x ∈ X. The following
are equivalent:

(1) The k-algebra S is smooth at q over k.
(2) We have dimκ(q) ΩS/k ⊗S κ(q) ≤ dimxX.
(3) We have dimκ(q) ΩS/k ⊗S κ(q) = dimxX.

http://stacks.math.columbia.edu/tag/00TT
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Moreover, in this case the local ring Sq is regular.

Proof. If S is smooth at q over k, then there exists a g ∈ S, g 6∈ q such that Sg
is standard smooth over k, see Lemma 10.132.10. A standard smooth algebra over
k has a module of differentials which is free of rank equal to the dimension, see
Lemma 10.132.7 (use that a relative global complete intersection over a field has
dimension equal to the number of variables minus the number of equations). Thus
we see that (1) implies (3). To finish the proof of the lemma it suffices to show that
(2) implies (1) and that it implies that Sq is regular.

Assume (2). By Nakayama’s Lemma 10.19.1 we see that ΩS/k,q can be generated by
≤ dimxX elements. We may replace S by Sg for some g ∈ S, g 6∈ q such that ΩS/k
is generated by at most dimxX elements. Let K ⊃ k be an algebraically closed
field extension such that there exists a k-algebra map ψ : κ(q) → K. Consider
SK = K ⊗k S. Let m ⊂ SK be the maximal ideal corresponding to the surjection

SK = K ⊗k S // K ⊗k κ(q)
idK⊗ψ// K.

Note that m ∩ S = q, in other words m lies over q. By Lemma 10.112.6 the
dimension of XK = Spec(SK) at the point corresponding to m is dimxX. By
Lemma 10.110.6 this is equal to dim((SK)m). By Lemma 10.127.12 the module
of differentials of SK over K is the base change of ΩS/k, hence also generated by
at most dimxX = dim((SK)m) elements. By Lemma 10.135.2 we see that SK is
smooth at m over K. By Lemma 10.132.17 this implies that S is smooth at q over
k. This proves (1). Moreover, we know by Lemma 10.135.2 that the local ring
(SK)m is regular. Since Sq → (SK)m is flat we conclude from Lemma 10.106.9 that
Sq is regular. �

The following lemma can be significantly generalized (in several different ways).

Lemma 10.135.4. Let k be a field. Let R be a Noetherian local ring containing k.
Assume that the residue field κ = R/m is a finitely generated separable extension
of k. Then the map

d : m/m2 −→ ΩR/k ⊗R κ(m)

is injective.

Proof. We may replace R by R/m2. Hence we may assume that m2 = 0. By
assumption we may write κ = k(x1, . . . , xr, y) where x1, . . . , xr is a transcendence
basis of κ over k and y is separable algebraic over k(x1, . . . , xr). Say its minimal
equation is P (y) = 0 with P (T ) = T d +

∑
i<d aiT

i, with ai ∈ k(x1, . . . , xr) and
P ′(y) 6= 0. Choose any lifts xi ∈ R of the elements xi ∈ κ. This gives a commutative
diagram

R // κ

k(x1, . . . , xr)

ϕ

ee OO

of k-algebras. We want to extend the left upwards arrow ϕ to a k-algebra map from
κ to R. To do this choose any y ∈ R lifting y. To see that it defines a k-algebra
map defined on κ ∼= k(x1, . . . , xr)[T ]/(P ) all we have to show is that we may choose
y such that Pϕ(y) = 0. If not then we compute for δ ∈ m that

P (y + δ) = P (y) + P ′(y)δ

http://stacks.math.columbia.edu/tag/00TU
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because m2 = 0. Since P ′(y)δ = P ′(y)δ we see that we can adjust our choice as
desired. This shows that R ∼= κ ⊕ m as k-algebras! From a direct computation of
Ωκ⊕m/k the lemma follows. �

Lemma 10.135.5. Let k be a field. Let S be a finite type k-algebra. Let q ⊂ S be
a prime. Assume κ(q) is separable over k. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The ring Sq is regular.

Proof. Denote R = Sq and denote its maximal by m and its residue field κ. By
Lemma 10.135.4 and 10.127.9 we see that there is a short exact sequence

0→ m/m2 → ΩR/k ⊗R κ→ Ωκ/k → 0

Note that ΩR/k = ΩS/k,q, see Lemma 10.127.8. Moreover, since κ is separable over
k we have dimκ Ωκ/k = trdegk(κ). Hence we get

dimκ ΩR/k ⊗R κ = dimκm/m
2 + trdegk(κ) ≥ dimR+ trdegk(κ) = dimq S

(see Lemma 10.112.3 for the last equality) with equality if and only if R is regular.
Thus we win by applying Lemma 10.135.3. �

Lemma 10.135.6. Let R → S be a Q-algebra map. Let f ∈ S be such that
ΩS/R = Sdf ⊕ C for some S-submodule C. Then

(1) f is not nilpotent, and
(2) if S is a Noetherian local ring, then f is a nonzerodivisor in S.

Proof. For a ∈ S write d(a) = θ(a)df + c(a) for some θ(a) ∈ S and c(a) ∈ C.
Consider the R-derivation S → S, a 7→ θ(a). Note that θ(f) = 1.

If fn = 0 with n > 1 minimal, then 0 = θ(fn) = nfn−1 contradicting the minimal-
ity of n. We conclude that f is not nilpotent.

Suppose fa = 0. If f is a unit then a = 0 and we win. Assume f is not a unit.
Then 0 = θ(fa) = fθ(a) + a by the Leibniz rule and hence a ∈ (f). By induction
suppose we have shown fa = 0 ⇒ a ∈ (fn). Then writing a = fnb we get 0 =
θ(fn+1b) = (n+ 1)fnb+ fn+1θ(b). Hence a = fnb = −fn+1θ(b)/(n+ 1) ∈ (fn+1).
Since in the Noetherian local ring S we have

⋂
(fn) = 0, see Lemma 10.49.4 we

win. �

The following is probably quite useless in applications.

Lemma 10.135.7. Let k be a field of characteristic 0. Let S be a finite type
k-algebra. Let q ⊂ S be a prime. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The Sq-module ΩS/k,q is (finite) free.
(3) The ring Sq is regular.

Proof. In characteristic zero any field extension is separable and hence the equiva-
lence of (1) and (3) follows from Lemma 10.135.5. Also (1) implies (2) by definition
of smooth algebras. Assume that ΩS/k,q is free over Sq. We are going to use the
notation and observations made in the proof of Lemma 10.135.5. So R = Sq with
maximal ideal m and residue field κ. Our goal is to prove R is regular.

If m/m2 = 0, then m = 0 and R ∼= κ. Hence R is regular and we win.

http://stacks.math.columbia.edu/tag/00TV
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If m/m2 6= 0, then choose any f ∈ m whose image in m/m2 is not zero. By
Lemma 10.135.4 we see that df has nonzero image in ΩR/k/mΩR/k. By assumption
ΩR/k = ΩS/k,q is finite free and hence by Nakayama’s Lemma 10.19.1 we see that
df generates a direct summand. We apply Lemma 10.135.6 to deduce that f is a
nonzerodivisor in R. Furthermore, by Lemma 10.127.9 we get an exact sequence

(f)/(f2)→ ΩR/k ⊗R R/fR→ Ω(R/fR)/k → 0

This implies that Ω(R/fR)/k is finite free as well. Hence by induction we see that
R/fR is a regular local ring. Since f ∈ m was a nonzerodivisor we conclude that
R is regular, see Lemma 10.102.7. �

Example 10.135.8. Lemma 10.135.7 does not hold in characteristic p > 0. The
standard examples are the ring maps

Fp −→ Fp[x]/(xp)

whose module of differentials is free but is clearly not smooth, and the ring map
(p > 2)

Fp(t)→ Fp(t)[x, y]/(xp + y2 + α)

which is not smooth at the prime q = (y, xp − α) but is regular.

Using the material above we can characterize smoothness at the generic point in
terms of field extensions.

Lemma 10.135.9. Let R → S be an injective finite type ring map with R and S
domains. Then R → S is smooth at q = (0) if and only if f.f.(R) ⊂ f.f.(S) is a
separable extension of fields.

Proof. Assume R→ S is smooth at (0). We may replace S by Sg for some nonzero
g ∈ S and assume that R → S is smooth. Set K = f.f.(R). Then K → S ⊗R K
is smooth (Lemma 10.132.4). Moreover, for any field extension K ⊂ K ′ the ring
map K ′ → S ⊗RK ′ is smooth as well. Hence S ⊗RK ′ is a regular ring by Lemma
10.135.3, in particular reduced. It follows that S ⊗R K is a geometrically reduced
over K. Hence f.f.(S) is geometrically reduced over K, see Lemma 10.42.3. Hence
f.f.(S)/K is separable by Lemma 10.43.1.

Conversely, assume that f.f.(R) ⊂ f.f.(S) is separable. We may assume R→ S is
of finite presentation, see Lemma 10.29.1. It suffices to prove that K → S ⊗R K
is smooth at (0), see Lemma 10.132.17. This follows from Lemma 10.135.5, the
fact that a field is a regular ring, and the assumption that f.f.(R) → f.f.(S) is
separable. �

10.136. Smooth ring maps in the Noetherian case

Definition 10.136.1. Let ϕ : B′ → B be a ring map. We say ϕ is a small extension
if B′ and B are local Artinian rings, ϕ is surjective and I = Ker(ϕ) has length 1 as
a B′-module.

Clearly this means that I2 = 0 and that I = (x) for some x ∈ B′ such that m′x = 0
where m′ ⊂ B′ is the maximal ideal.

Lemma 10.136.2. Let R → S be a ring map. Let q be a prime ideal of S lying
over p ⊂ R. Assume R is Noetherian and R→ S of finite type. The following are
equivalent:

http://stacks.math.columbia.edu/tag/00TY
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(1) R→ S is smooth at q,
(2) for every surjection of local R-algebras (B′,m′)→ (B,m) with Ker(B′ →

B) having square zero and every solid commutative diagram

S //

  

B

R //

OO

B′

OO

such that q = S ∩m there exists a dotted arrow making the diagram com-
mute,

(3) same as in (2) but with B′ → B ranging over small extensions, and
(4) same as in (2) but with B′ → B ranging over small extensions such that

in addition S → B induces an isomorphism κ(q) ∼= κ(m).

Proof. Assume (1). This means there exists a g ∈ S, g 6∈ q such that R → Sg is
smooth. By Proposition 10.133.13 we know that R→ Sg is formally smooth. Note
that given any diagram as in (2) the map S → B factors automatically through Sq

and a fortiori through Sg. The formal smoothness of Sg over R gives us a morphism
Sg → B′ fitting into a similar diagram with Sg at the upper left corner. Composing
with S → Sg gives the desired arrow. In other words, we have shown that (1)
implies (2).

Clearly (2) implies (3) and (3) implies (4).

Assume (4). We are going to show that (1) holds, thereby finishing the proof of the
lemma. Choose a presentation S = R[x1, . . . , xn]/(f1, . . . , fm). This is possible as
S is of finite type over R and therefore of finite presentation (see Lemma 10.30.4).
Set I = (f1, . . . , fm). Consider the naive cotangent complex

d : I/I2 −→
⊕m

j=1
Sdxj

of this presentation (see Section 10.129). It suffices to show that when we localize
this complex at q then the map becomes a split injection, see Lemma 10.132.12.
Denote S′ = R[x1, . . . , xn]/I2. By Lemma 10.127.11 we have

S ⊗S′ ΩS′/R = S ⊗R[x1,...,xn] ΩR[x1,...,xn]/R =
⊕m

j=1
Sdxj .

Thus the map
d : I/I2 −→ S ⊗S′ ΩS′/R

is the same as the map in the naive cotangent complex above. In particular the truth
of the assertion we are trying to prove depends only on the three rings R→ S′ → S.
Let q′ ⊂ R[x1, . . . , xn] be the prime ideal corresponding to q. Since localization
commutes with taking modules of differentials (Lemma 10.127.8) we see that it
suffices to show that the map

(10.136.2.1) d : Iq′/I
2
q′ −→ Sq ⊗S′

q′
ΩS′

q′/R

coming from R→ S′q′ → Sq is a split injection.

Let N ∈ N be an integer. Consider the ring

B′N = S′q′/(q
′)NS′q′ = (S′/(q′)NS′)q′

and its quotient BN = B′N/IB
′
N . Note that BN ∼= Sq/q

NSq. Observe that B′N
is an Artinian local ring since it is the quotient of a local Noetherian ring by a
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power of its maximal ideal. Consider a filtration of the kernel IN of B′N → BN by
B′N -submodules

0 ⊂ JN,1 ⊂ JN,2 ⊂ . . . ⊂ JN,n(N) = IN

such that each successive quotient JN,i/JN,i−1 has length 1. (As B′N is Artinian
such a filtration exists.) This gives a sequence of small extensions

B′N → B′N/JN,1 → B′N/JN,2 → . . .→ B′N/JN,n(N) = B′N/IN = BN = Sq/q
NSq

Applying condition (4) successively to these small extensions starting with the map
S → BN we see there exists a commutative diagram

S //

  

BN

R //

OO

B′N

OO

Clearly the ring map S → B′N factors as S → Sq → B′N where Sq → B′N is a local
homomorphism of local rings. Moreover, since the maximal ideal of B′N to the
Nth power is zero we conclude that Sq → B′N factors through Sq/(q)NSq = BN .
In other words we have shown that for all N ∈ N the surjection of R-algebras
B′N → BN has a splitting.

Consider the presentation

IN → BN ⊗B′N ΩB′N/R → ΩBN/R → 0

coming from the surjection B′N → BN with kernel IN (see Lemma 10.127.9). By
the above the R-algebra map B′N → BN has a right inverse. Hence by Lemma
10.127.10 we see that the sequence above is split exact! Thus for every N the map

IN −→ BN ⊗B′N ΩB′N/R

is a split injection. The rest of the proof is gotten by unwinding what this means
exactly. Note that

IN = Iq′/(I
2
q′ + (q′)N ∩ Iq′)

By Artin-Rees (Lemma 10.49.2) we find a c ≥ 0 such that

Sq/q
N−cSq ⊗Sq

IN = Sq/q
N−cSq ⊗Sq

Iq′/I
2
q′

for all N ≥ c (these tensor product are just a fancy way of dividing by qN−c). We
may of course assume c ≥ 1. By Lemma 10.127.11 we see that

S′q′/(q
′)N−cS′q′ ⊗S′q′ ΩB′N/R = S′q′/(q

′)N−cS′q′ ⊗S′q′ ΩS′
q′/R

we can further tensor this by BN = Sq/q
N to see that

Sq/q
N−cSq ⊗S′

q′
ΩB′N/R = Sq/q

N−cSq ⊗S′
q′

ΩS′
q′/R

.

Since a split injection remains a split injection after tensoring with anything we see
that

Sq/q
N−cSq ⊗Sq

(10.136.2.1) = Sq/q
N−cSq ⊗Sq

(IN −→ BN ⊗B′N ΩB′N/R)

is a split injection for all N ≥ c. By Lemma 10.71.1 we see that (10.136.2.1) is a
split injection. This finishes the proof. �
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10.137. Overview of results on smooth ring maps

Here is a list of results on smooth ring maps that we proved in the preceding
sections. For more precise statements and definitions please consult the references
given.

(1) A ring map R → S is smooth if it is of finite presentation and the naive
cotangent complex of S/R is quasi-isomorphic to a finite projective S-
module in degree 0, see Definition 10.132.1.

(2) If S is smooth over R, then ΩS/R is a finite projective S-module, see
discussion following Definition 10.132.1.

(3) The property of being smooth is local on S, see Lemma 10.132.13.
(4) The property of being smooth is stable under base change, see Lemma

10.132.4.
(5) The property of being smooth is stable under composition, see Lemma

10.132.14.
(6) A smooth ring map is syntomic, in particular flat, see Lemma 10.132.10.
(7) A finitely presented, flat ring map with smooth fibre rings is smooth, see

Lemma 10.132.16.
(8) A finitely presented ring map R→ S is smooth if and only if it is formally

smooth, see Proposition 10.133.13.
(9) If R → S is a finite type ring map with R Noetherian then to check

that R → S is smooth it suffices to check the lifting property of formal
smoothness along small extensions of Artinian local rings, see Lemma
10.136.2.

(10) A smooth ring map R → S is the base change of a smooth ring map
R0 → S0 with R0 of finite type over Z, see Lemma 10.133.14.

(11) Formation of the set of points where a ring map is smooth commutes with
flat base change, see Lemma 10.132.17.

(12) If S is of finite type over an algebraically closed field k, and m ⊂ S a
maximal ideal, then the following are equivalent
(a) S is smooth over k in a neighbourhood of m,
(b) Sm is a regular local ring,
(c) dim(Sm) = dimκ(m) ΩS/k ⊗S κ(m).

see Lemma 10.135.2.
(13) If S is of finite type over a field k, and q ⊂ S a prime ideal, then the

following are equivalent
(a) S is smooth over k in a neighbourhood of q,
(b) dimq(S/k) = dimκ(q) ΩS/k ⊗S κ(q).
see Lemma 10.135.3.

(14) If S is smooth over a field, then all its local rings are regular, see Lemma
10.135.3.

(15) If S is of finite type over a field k, q ⊂ S a prime ideal, the field extension
k ⊂ κ(q) is separable and Sq is regular, then S is smooth over k at q, see
Lemma 10.135.5.

(16) If S is of finite type over a field k, if k has characteristic 0, if q ⊂ S a
prime ideal, and if ΩS/k,q is free, then S is smooth over k at q, see Lemma
10.135.7.
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Some of these results were proved using the notion of a standard smooth ring map,
see Definition 10.132.6. This is the analogue of what a relative global complete
intersection map is for the case of syntomic morphisms. It is also the easiest way
to make examples.

10.138. Étale ring maps

An étale ring map is a smooth ring map whose relative dimension is equal to zero.
This is the same as the following slightly more direct definition.

Definition 10.138.1. Let R→ S be a ring map. We say R→ S is étale if it is of
finite presentation and the naive cotangent complex NLS/R is quasi-isomorphic to
zero. Given a prime q of S we say that R→ S is étale at q if there exists a g ∈ S,
g 6∈ q such that R→ Sg is étale.

In particular we see that ΩS/R = 0 if S is étale over R. If R → S is smooth, then
R→ S is étale if and only if ΩS/R = 0. From our results on smooth ring maps we
automatically get a whole host of results for étale maps. We summarize these in
Lemma 10.138.3 below. But before we do so we prove that any étale ring map is
standard smooth.

Lemma 10.138.2. Any étale ring map is standard smooth. More precisely, if
R → S is étale, then there exists a presentation S = R[x1, . . . , xn]/(f1, . . . , fn)
such that the image of det(∂fj/∂xi) is invertible in S.

Proof. Let R → S be étale. Choose a presentation S = R[x1, . . . , xn]/I. As
R→ S is étale we know that

d : I/I2 −→
⊕

i=1,...,n
Sdxi

is an isomorphism, in particular I/I2 is a free S-module. Thus by Lemma 10.131.6
we may assume (after possibly changing the presentation), that I = (f1, . . . , fc)
such that the classes fi mod I2 form a basis of I/I2. It follows immediately from
the fact that the displayed map above is an isomorphism that c = n and that
det(∂fj/∂xi) is invertible in S. �

Lemma 10.138.3. Results on étale ring maps.

(1) The ring map R→ Rf is étale for any ring R and any f ∈ R.
(2) Compositions of étale ring maps are étale.
(3) A base change of an étale ring map is étale.
(4) The property of being étale is local: Given a ring map R→ S and elements

g1, . . . , gm ∈ S which generate the unit ideal such that R → Sgj is étale
for j = 1, . . . ,m then R→ S is étale.

(5) Given R → S of finite presentation, and a flat ring map R → R′, set
S′ = R′ ⊗R S. The set of primes where R → S′ is étale is the inverse
image via Spec(S′)→ Spec(S) of the set of primes where R→ S is étale.

(6) An étale ring map is syntomic, in particular flat.
(7) If S is finite type over a field k, then S is étale over k if and only if

ΩS/k = 0.
(8) Any étale ring map R→ S is the base change of an étale ring map R0 →

S0 with R0 of finite type over Z.
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(9) Let A = colimAi be a filtered colimit of rings. Let A→ B be an étale ring
map. Then there exists an étale ring map Ai → Bi for some i such that
B ∼= A⊗Ai Bi.

(10) Let A be a ring. Let S be a multiplicative subset of A. Let S−1A→ B′ be
étale. Then there exists an étale ring map A→ B such that B′ ∼= S−1B.

Proof. In each case we use the corresponding result for smooth ring maps with a
small argument added to show that ΩS/R is zero.

Proof of (1). The ring map R→ Rf is smooth and ΩRf/R = 0.

Proof of (2). The composition A → C of smooth maps A → B and B → C is
smooth, see Lemma 10.132.14. By Lemma 10.127.7 we see that ΩC/A is zero as
both ΩC/B and ΩB/A are zero.

Proof of (3). Let R→ S be étale and R→ R′ be arbitrary. Then R′ → S′ = R′⊗RS
is smooth, see Lemma 10.132.4. Since ΩS′/R′ = S′ ⊗S ΩS/R by Lemma 10.127.12
we conclude that ΩS′/R′ = 0. Hence R′ → S′ is étale.

Proof of (4). Assume the hypotheses of (4). By Lemma 10.132.13 we see that
R → S is smooth. We are also given that ΩSgi/R = (ΩS/R)gi = 0 for all i. Then
ΩS/R = 0, see Lemma 10.23.2.

Proof of (5). The result for smooth maps is Lemma 10.132.17. In the proof of that
lemma we used that NLS/R⊗SS′ is homotopy equivalent to NLS′/R′ . This reduces
us to showing that if M is a finitely presented S-module the set of primes q′ of S′

such that (M ⊗S S′)q′ = 0 is the inverse image of the set of primes q of S such that
Mq = 0. This is true (proof omitted).

Proof of (6). Follows directly from the corresponding result for smooth ring maps
(Lemma 10.132.10).

Proof of (7). Follows from Lemma 10.135.3 and the definitions.

Proof of (8). Lemma 10.133.14 gives the result for smooth ring maps. The resulting
smooth ring map R0 → S0 satisfies the hypotheses of Lemma 10.126.8, and hence
we may replace S0 by the factor of relative dimension 0 over R0.

Proof of (9). Follows from (8) since R0 → A will factor through Ai for some i.

Proof of (10). Follows from (9), (1), and (2) since S−1A is a filtered colimit of
principal localizations of A. �

Next we work out in more detail what it means to be étale over a field.

Lemma 10.138.4. Let k be a field. A ring map k → S is étale if and only if S is
isomorphic as a k-algebra to a finite product of finite separable extensions of k.

Proof. If k → k′ is a finite separable field extension then we can write k′ = k(α) ∼=
k[x]/(f). Here f is the minimal polynomial of the element α. Since k′ is separable
over k we have gcd(f, f ′) = 1. This implies that d : k′ ·f → k′ ·dx is an isomorphism.
Hence k → k′ is étale.

Conversely, suppose that k → S is étale. Let k be an algebraic closure of k. Then
S ⊗k k is étale over k. Suppose we have the result over k. Then S ⊗k k is reduced
and hence S is reduced. Also, S ⊗k k is finite over k and hence S is finite over k.
Hence S is a finite product S =

∏
ki of fields, see Lemma 10.51.2 and Proposition

10.59.6. The result over k means S ⊗k k is isomorphic to a finite product of copies
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of k, which implies that each k ⊂ ki is finite separable, see for example Lemmas
10.43.1 and 10.43.3. Thus we have reduced to the case k = k. In this case Lemma
10.135.2 (combined with ΩS/k = 0) we see that Sm

∼= k for all maximal ideals
m ⊂ S. This implies the result because S is the product of the localizations at its
maximal ideals by Lemma 10.51.2 and Proposition 10.59.6 again. �

Lemma 10.138.5. Let R → S be a ring map. Let q ⊂ S be a prime lying over p
in R. If S/R is étale at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(p) ⊂ κ(q) is finite separable.

Proof. First we may replace S by Sg for some g ∈ S, g 6∈ q and assume that R→ S
is étale. Then the lemma follows from Lemma 10.138.4 by unwinding the fact that
S ⊗R κ(p) is étale over κ(p). �

Lemma 10.138.6. An étale ring map is quasi-finite.

Proof. Let R → S be an étale ring map. By definition R → S is of finite type.
For any prime p ⊂ R the fibre ring S ⊗R κ(p) is étale over κ(p) and hence a finite
products of fields finite separable over κ(p), in particular finite over κ(p). Thus
R→ S is quasi-finite by Lemma 10.118.4. �

Lemma 10.138.7. Let R → S be a ring map. Let q be a prime of S lying over a
prime p of R. If

(1) R→ S is of finite presentation,
(2) Rp → Sq is flat
(3) pSq is the maximal ideal of the local ring Sq, and
(4) the field extension κ(p) ⊂ κ(q) is finite separable,

then R→ S is étale at q.

Proof. Apply Lemma 10.118.2 to find a g ∈ S, g 6∈ q such that q is the only
prime of Sg lying over p. We may and do replace S by Sg. Then S ⊗R κ(p) has a
unique prime, hence is a local ring, hence is equal to Sq/pSq

∼= κ(q). By Lemma
10.132.16 there exists a g ∈ S, g 6∈ q such that R → Sg is smooth. Replace S by
Sg again we may assume that R → S is smooth. By Lemma 10.132.10 we may
even assume that R → S is standard smooth, say S = R[x1, . . . , xn]/(f1, . . . , fc).
Since S ⊗R κ(p) = κ(q) has dimension 0 we conclude that n = c, i.e., if R → S is
étale. �

Lemma 10.138.8. A ring map is étale if and only if it is flat, unramified, and of
finite presentation.

Proof. This follows by combining Lemmas 10.138.3 (flatness of étale maps), 10.138.5
(étale maps are unramified), and 10.138.7 (flat and unramified maps of finite pre-
sentation are étale). �

Here is a completely new phenomenon.

Lemma 10.138.9. Let R → S and R → S′ be étale. Then any R-algebra map
S′ → S is étale.

Proof. First of all we note that S′ → S is of finite presentation by Lemma 10.6.2.
Let q ⊂ S be a prime ideal lying over the primes q′ ⊂ S′ and p ⊂ R. By Lemma
10.138.5 the ring map Sq/pSq → S′q′/pS

′
q′ is a map finite separable extensions of
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κ(p). In particular it is flat. Hence by Lemma 10.124.8 we see that S′q′ → Sq is flat.

Thus S′ → S is flat. Moreover, the above also shows that q′Sq is the maximal ideal
of Sq and that the residue field extension of S′q′ → Sq is finite separable. Hence

from Lemma 10.138.7 we conclude that S′ → S is étale at q. Since being étale is
local (see Lemma 10.138.3) we win. �

Lemma 10.138.10. Let ϕ : R → S be a ring map. If R → S is surjective, flat
and finitely presented then there exist an idempotent e ∈ R such that S = Re.

Proof. Since Spec(S) → Spec(R) is a homeomorphism onto a closed subset (see
Lemma 10.16.7) and is open (see Proposition 10.40.8) we see that the image is D(e)
for some idempotent e ∈ R (see Lemma 10.20.3). Thus Re → S induces a bijection
on spectra. Now this map induces an isomorphism on all local rings for example
by Lemmas 10.75.4 and 10.19.1. Then it follows that Re → S is also injective, for
example see Lemma 10.23.1. �

Lemma 10.138.11. Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be
an étale ring map. Then there exists an étale ring map R→ S such that S ∼= S/IS
as R/I-algebras.

Proof. By Lemma 10.138.2 we can write S = (R/I)[x1, . . . , xn]/(f1, . . . , fn) as in

Definition 10.132.6 with ∆ = det( ∂fi∂xj
)i,j=1,...,n invertible in S. Just take some lifts

fi and set S = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1∆−1) where ∆ = det( ∂fi∂xj
)i,j=1,...,c

as in Example 10.132.8. This proves the lemma. �

Lemma 10.138.12. Consider a commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

with exact rows where B′ → B and A′ → A are surjective ring maps whose kernels
are ideals of square zero. If A → B is étale, and J = I ⊗A B, then A′ → B′ is
étale.

Proof. By Lemma 10.138.11 there exists an étale ring map A′ → C such that
C/IC = B. Then A′ → C is formally smooth (by Proposition 10.133.13) hence
we get an A′-algebra map ϕ : C → B′. Since A′ → C is flat we have I ⊗A B =
I ⊗A C/IC = IC. Hence the assumption that J = I ⊗A B implies that ϕ induces
an isomorphism IC → J and an isomorphism C/IC → B′/IB′, whence ϕ is an
isomorphism. �

Example 10.138.13. Let n,m ≥ 1 be integers. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]

a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm
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of Example 10.131.7. Write symbolically

S = R[b1, . . . , cm]/({ak(bi, cj)− ak}k=1,...,n+m)

where for example a1(bi, cj) = b1 + c1. The matrix of partial derivatives is

1 c1 . . . cm 0 . . . 0
0 1 c1 . . . cm . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 c1 . . . cm
1 b1 . . . bn 0 . . . 0
0 1 b1 . . . bn . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 b1 . . . bn


The determinant ∆ of this matrix is better known as the resultant of the polynomials
g = xn + b1x

n−1 + . . .+ bn and h = xm + c1x
m−1 + . . .+ cm, and the matrix above

is known as the Sylvester matrix associated to g, h. In a formula ∆ = Resx(g, h).
The Sylvester matrix is the transpose of the matrix of the linear map

S[x]<m ⊕ S[x]<n −→ S[x]<n+m

a⊕ b 7−→ ag + bh

Let q ⊂ S be any prime. By the above the following are equivalent:

(1) R→ S is étale at q,
(2) ∆ = Resx(g, h) 6∈ q,
(3) the images g, h ∈ κ(q)[x] of the polynomials g, h are relatively prime in

κ(q)[x].

The equivalence of (2) and (3) holds because the image of the Sylvester matrix in
Mat(n + m,κ(q)) has a kernel if and only if the polynomials g, h have a factor in
common. We conclude that the ring map

R −→ S[
1

∆
] = S[

1

Resx(g, h)
]

is étale.

Lemma 10.138.2 tells us that it does not really make sense to define a standard étale
morphism to be a standard smooth morphism of relative dimension 0. As a model
for an étale morphism we take the example given by a finite separable extension
k ⊂ k′ of fields. Namely, we can always find an element α ∈ k′ such that k′ = k(α)
and such that the minimal polynomial f(x) ∈ k[x] of α has derivative f ′ which is
relatively prime to f .

Definition 10.138.14. Let R be a ring. Let g, f ∈ R[x]. Assume that f is monic
and the derivative f ′ is invertible in the localization R[x]g/(f). In this case the
ring map R→ R[x]g/(f) is said to be standard étale.

Lemma 10.138.15. Let R→ R[x]g/(f) be standard étale.

(1) The ring map R→ R[x]g/(f) is étale.
(2) For any ring map R→ R′ the base change R′ → R′[x]g/(f) of the standard

étale ring map R→ R[x]g/(f) is standard étale.
(3) Any principal localization of R[x]g/(f) is standard étale over R.
(4) A composition of standard étale maps is not standard étale in general.
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Proof. Omitted. Here is an example for (4). The ring map F2 → F22 is standard
étale. The ring map F22 → F22 × F22 × F22 × F22 is standard étale. But the ring
map F2 → F22 × F22 × F22 × F22 is not standard étale. �

Standard étale morphisms are a convenient way to produce étale maps. Here is an
example.

Lemma 10.138.16. Let R be a ring. Let p be a prime of R. Let κ(p) ⊂ L be a
finite separable field extension. There exists an étale ring map R → R′ together
with a prime p′ lying over p such that the field extension κ(p) ⊂ κ(p′) is isomorphic
to κ(p) ⊂ L.

Proof. By the theorem of the primitive element we may write L = κ(p)[α]. Let
f ∈ κ(p)[x] denote the minimal polynomial for α (in particular this is monic). After
replacing α by cα for some c ∈ R, c 6∈ p we may assume all the coefficients of f
are in the image of R → κ(p) (verification omitted). Thus we can find a monic
polynomial f ∈ R[x] which maps to f in κ(p)[x]. Since κ(p) ⊂ L is separable, we

see that gcd(f, f
′
) = 1. Hence there is an element γ ∈ L such that f

′
(α)γ = 1.

Thus we get a R-algebra map

R[x, 1/f ′]/(f) −→ L

x 7−→ α

1/f ′ 7−→ γ

The left hand side is a standard étale algebra R′ over R and the kernel of the ring
map gives the desired prime. �

Proposition 10.138.17. Let R → S be a ring map. Let q ⊂ S be a prime. If
R→ S is étale at q, then there exists a g ∈ S, g 6∈ q such that R→ Sg is standard
étale.

Proof. The following proof is a little roundabout and there may be ways to shorten
it.

Step 1. By Definition 10.138.1 there exists a g ∈ S, g 6∈ q such that R → Sg is
étale. Thus we may assume that S is étale over R.

Step 2. By Lemma 10.138.3 there exists an étale ring map R0 → S0 with R0 of
finite type over Z, and a ring map R0 → R such that R = R ⊗R0 S0. Denote q0

the prime of S0 corresponding to q. If we show the result for (R0 → S0, q0) then
the result follows for (R → S, q) by base change. Hence we may assume that R is
Noetherian.

Step 3. Note that R→ S is quasi-finite by Lemma 10.138.6. By Lemma 10.119.15
there exists a finite ring map R → S′, an R-algebra map S′ → S, an element
g′ ∈ S′ such that g′ 6∈ q such that S′ → S induces an isomorphism S′g′

∼= Sg′ . (Note

that of course S′ is not étale over R in general.) Thus we may assume that (a)
R is Noetherian, (b) R → S is finite and (c) R → S is étale at q (but no longer
necessarily étale at all primes).

Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring
S ⊗R κ(p). This is a finite algebra over κ(p). Hence it is Artinian (see Lemma
10.51.2) and so a finite product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai
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see Proposition 10.59.6. One of the factors, say A1, is the local ring Sq/pSq which
is isomorphic to κ(q), see Lemma 10.138.5. The other factors correspond to the
other primes, say q2, . . . , qn of S lying over p.

Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite
separable field extension κ(p) ⊂ κ(q) (so even if the field extension is trivial we do
not allow α = 0). Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q)
over κ(p). Consider the element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of
t ∈ S. Let I ⊂ R[x] be the kernel of the R-algebra map R[x]→ S which maps x to
t. Set S′ = R[x]/I, so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x],
whereas the prime q lies over a different prime of R[x] because α 6= 0.

Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is the
only prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 10.40.11 (we
have going up for S′ → S by Lemma 10.35.20 since S′ → S is finite as R → S
is finite). It follows that S′q′ → Sq is finite and injective as the localization of the

finite injective ring map S′ → S. Consider the maps of local rings

Rp → S′q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma
10.138.5. Hence a fortiori Sq/q

′Sq = κ(q). Since

κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence
by Nakayama’s Lemma 10.19.1 applied to the S′q′ -module map S′q′ → Sq, the map

S′q′ → Sq is surjective. In other words, S′q′
∼= Sq.

Step 7. By Lemma 10.122.7 there exist g ∈ S, g 6∈ q and g′ ∈ S′, g′ 6∈ q′ such
that S′g′

∼= Sg. As R is Noetherian the ring S′ is finite over R because it is an R-

submodule of the finite R-module S. Hence after replacing S by S′ we may assume
that (a) R is Noetherian, (b) S finite over R, (c) S is étale over R at q, and (d)
S = R[x]/I.

Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p). After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is the
image of some h ∈ R[x]. (The problem is that we do not know if we may choose h
monic.) Also, as in Step 4 we know that S⊗R κ(p) = A1× . . .×An with A1 = κ(q)
a finite separable extension of κ(p) and A2, . . . , An local. This implies that

h = h1h
e2
2 . . . h

en
n
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for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain

e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(h
ei
i ) as κ(p)[x]-

algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a
separable polynomial (its derivative is prime to itself).

Step 9. Let m ∈ I be a monic element; such an element exists because the ring
extension R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We
may factor

m = kh
d1

1 h
d2

2 . . . h
dn
n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set
f = ml + h where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial
over R. Also, the image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en
n +k

l
h
ld1

1 h
ld2

2 . . . h
ldn
n = h1(h

e2
2 . . . h

en
n +k

l
h
ld1−1

1 h
ld2

2 . . . h
ldn
n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect
to x).

Step 10. The ring map R[x] → S = R[x]/I has the properties: (1) it maps f to
zero, and (2) it maps g to an element of S \ q. The first assertion is clear since f
is an element of I. For the second assertion we just have to show that g does not
map to zero in κ(q) = κ(p)[x]/(h1). The image of g in κ(p)[x] is the derivative of
f . Thus (2) is clear because

g =
df

dx
= w

dh1

dx
+ h1

dw

dx
,

w is prime to h1 and h1 is separable.

Step 11. We conclude that ϕ : R[x]/(f)→ S is a surjective ring map, R[x]g/(f) is
étale over R (because it is standard étale, see Lemma 10.138.15) and ϕ(g) 6∈ q. Pick
an element g′ ∈ R[x]/(f) such that also ϕ(g′) 6∈ q and Sϕ(g′) is étale over R (which
exists since S is étale over R at q). Then the ring map R[x]gg′/(f) → Sϕ(g) is a
surjective map of étale algebras over R. Hence it is étale by Lemma 10.138.9. Hence
it is a localization by Lemma 10.138.10. Thus a localization of S at an element not
in q is isomorphic to a localization of a standard étale algebra over R which is what
we wanted to show. �

The following two lemmas say that the étale topology is coarser than the topology
generated by Zariski coverings and finite flat morphisms. They should be skipped
on a first reading.

Lemma 10.138.18. Let R→ S be a standard étale morphism. There exists a ring
map R→ S′ with the following properties

(1) R → S′ is finite, finitely presented, and flat (in other words S′ is finite
projective as an R-module),

(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q ⊂ S, lying over p ⊂ R and every prime q′ ⊂ S′ lying

over p there exists a g′ ∈ S′, g′ 6∈ q′ such that the ring map R → S′g′

factors through a map ϕ : S → S′g′ with ϕ−1(q′S′g′) = q.
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Proof. Let S = R[x]g/(f) be a presentation of S as in Definition 10.138.14. Write
f = xn + a1x

n−1 + . . . + an with ai ∈ R. By Lemma 10.131.9 there exists a finite
locally free and faithfully flat ring map R→ S′ such that f =

∏
(x−αi) for certain

αi ∈ S′. Hence R → S′ satisfies conditions (1), (2). Let q ⊂ R[x]/(f) be a prime
ideal with g 6∈ q (i.e., it corresponds to a prime of S). Let p = R∩ q and let q′ ⊂ S′
be a prime lying over p. Note that there are n maps of R-algebras

ϕi : R[x]/(f) −→ S′

x 7−→ αi

To finish the proof we have to show that for some i we have (a) the image of ϕi(g)
in κ(q′) is not zero, and (b) ϕ−1

i (q′) = q. Because then we can just take g′ = ϕi(g),
and ϕ = ϕi for that i.

Let f denote the image of f in κ(p)[x]. Note that as a point of Spec(κ(p)[x]/(f))
the prime q corresponds to an irreducible factor f1 of f . Moreover, g 6∈ q means
that f1 does not divide the image g of g in κ(p)[x]. Denote α1, . . . , αn the images
of α1, . . . , αn in κ(q′). Note that the polynomial f splits completely in κ(q′)[x],
namely

f =
∏

i
(x− αi)

Moreover ϕi(g) reduces to g(αi). It follows we may pick i such that f1(αi) = 0 and
g(αi) 6= 0. For this i properties (a) and (b) hold. Some details omitted. �

Lemma 10.138.19. Let R→ S be a ring map. Assume that

(1) R→ S is étale, and
(2) Spec(S)→ Spec(R) is surjective.

Then there exists a ring map R→ S′ such that

(1) R → S′ is finite, finitely presented, and flat (in other words it is finite
projective as an R-module),

(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q′ ⊂ S′ there exists a g′ ∈ S′, g′ 6∈ q′ such that the ring

map R→ S′g′ factors as R→ S → S′g′ .

Proof. By Proposition 10.138.17 and the quasi-compactness of Spec(S) (see Lemma
10.16.10) we can find g1, . . . , gn ∈ S generating the unit ideal of S such that
each R → Sgi is standard étale. If we prove the lemma for the ring map R →∏
i=1,...,n Sgi then the lemma follows for the ring map R → S. Hence we may

assume that S =
∏
i=1,...,n Si is a finite product of standard étale morphisms.

For each i choose a ring map R → S′i as in Lemma 10.138.18 adapted to the
standard étale morphism R → Si. Set S′ = S′1 ⊗R . . . ⊗R S′n; we will use the
R-algebra maps S′i → S′ without further mention below. We claim this works.
Properties (1) and (2) are immediate. For property (3) suppose that q′ ⊂ S′ is
a prime. Denote p its image in Spec(R). Choose i ∈ {1, . . . , n} such that p is in
the image of Spec(Si) → Spec(R); this is possible by assumption. Set q′i ⊂ S′i the
image of q′ in the spectrum of S′i. By construction of S′i there exists a g′i ∈ S′i such
that R→ (S′i)g′i factors as R→ Si → (S′i)g′i . Hence also R→ S′g′i

factors as

R→ Si → (S′i)g′i → S′g′i

as desired. �
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Lemma 10.138.20. Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let p
be a prime of R. Let f mod p = gh be a factorization of the image of f in κ(p)[x].
If gcd(g, h) = 1, then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p, and
(3) a factorization f = gh in R′[x]

such that

(1) κ(p) = κ(p′),
(2) g = g mod p′, h = h mod p′, and
(3) the polynomials g, h generate the unit ideal in R′[x].

Proof. Suppose g = b0x
n + b1x

n−1 + . . .+ bn, and h = c0x
m + c1x

m−1 + . . .+ cm
with b0, c0 ∈ κ(p) nonzero. After localizing R at some element of R not contained
in p we may assume b0 is the image of an invertible element b0 ∈ R. Replacing
g by g/b0 and h by b0h we reduce to the case where g, h are monic (verification
omitted). Say g = xn + b1x

n−1 + . . .+ bn, and h = xm + c1x
m−1 + . . .+ cm. Write

f = xn+m + a1x
n−1 + . . .+ an+m. Consider the fibre product

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm]

where the map Z[ak] → Z[bi, cj ] is as in Examples 10.131.7 and 10.138.13. By
construction there is an R-algebra map

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm] −→ κ(p)

which maps bi to bi and cj to cj . Denote p′ ⊂ R′ the kernel of this map. Since

by assumption the polynomials g, h are relatively prime we see that the element
∆ = Resx(g, h) ∈ Z[bi, cj ] (see Example 10.138.13) does not map to zero in κ(p)
under the displayed map. We conclude that R → R′ is étale at p′. In fact a
solution to the problem posed in the lemma is the ring map R→ R′[1/∆] and the
prime p′R′[1/∆]. Because Resx(f, g) is invertible in this ring the Sylvester matrix
is invertible over R′ and hence 1 = ag + bh for some a, b ∈ R′[x] see Example
10.138.13. �

The following lemmas say roughly that after an étale extension a quasi-finite ring
map becomes finite. To help interpret the results recall that the locus where a finite
type ring map is quasi-finite is open (see Lemma 10.119.14) and that formation of
this locus commutes with arbitrary base change (see Lemma 10.118.8).

Lemma 10.138.21. Let R → S′ → S be ring maps. Let p ⊂ R be a prime. Let
g ∈ S′ be an element. Assume

(1) R→ S′ is integral,
(2) R→ S is finite type,
(3) S′g

∼= Sg, and
(4) g invertible in S′ ⊗R κ(p).

Then there exists a f ∈ R, f 6∈ p such that Rf → Sf is finite.

Proof. By assumption the image T of V (g) ⊂ Spec(S′) under the morphism
Spec(S′) → Spec(R) does not contain p. By Section 10.40 especially, Lemma
10.40.6 we see T is closed. Pick f ∈ R, f 6∈ p such that T ∩ V (f) = ∅. Then we
see that g becomes invertible in S′f . Hence S′f

∼= Sf . Thus Sf is both of finite type
and integral over Rf , hence finite. �
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Lemma 10.138.22. Let R → S be a ring map. Let q ⊂ S be a prime lying over
the prime p ⊂ R. Assume R → S finite type and quasi-finite at q. Then there
exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A×B

with the following properties

(1) κ(p) = κ(p′),
(2) R′ → A is finite,
(3) A has exactly one prime r lying over p′, and
(4) r lies over q.

Proof. Let S′ ⊂ S be the integral closure of R in S. Let q′ = S′ ∩ q. By Zariski’s
Main Theorem 10.119.13 there exists a g ∈ S′, g 6∈ q′ such that S′g

∼= Sg. Consider

the fibre rings F = S ⊗R κ(p) and F ′ = S′ ⊗R κ(p). Denote q′ the prime of F ′

corresponding to q′. Since F ′ is integral over κ(p) we see that q′ is a closed point
of Spec(F ′), see Lemma 10.35.17. Note that q defines an isolated closed point q
of Spec(F ) (see Definition 10.118.3). Since S′g

∼= Sg we have F ′g
∼= Fg, so q and

q′ have isomorphic open neighbourhoods in Spec(F ) and Spec(F ′). We conclude
the set {q′} ⊂ Spec(F ′) is open. Combined with q′ being closed (shown above) we
conclude that q′ defines an isolated closed point of Spec(F ′) as well.

An additional small remark is that under the map Spec(F ) → Spec(F ′) the point
q is the only point mapping to q′. This follows from the discussion above.

By Lemma 10.22.3 we may write F ′ = F ′1 × F ′2 with Spec(F ′1) = {q′}. Since F ′ =
S′⊗R κ(p), there exists an s′ ∈ S′ which maps to the element (r, 0) ∈ F ′1×F ′2 = F ′

for some r ∈ R, r 6∈ p. In fact, what we will use about s′ is that it is an element of
S′, not contained in q′, and contained in any other prime lying over p.

Let f(x) ∈ R[x] be a monic polynomial such that f(s′) = 0. Denote f ∈ κ(p)[x] the
image. We can factor it as f = xeh where h(0) 6= 0. By Lemma 10.138.20 we can
find an étale ring extension R → R′, a prime p′ lying over p, and a factorization
f = hi in R′[x] such that κ(p) = κ(p′), xe = h mod p′, i = i mod p′, and we can
write ah+ bi = 1 in R′[x] (for suitable a, b).

Consider the elements h(s′), i(s′) ∈ R′⊗R S′. By construction we have h(s′)i(s′) =
f(s′) = 0. On the other hand they generate the unit ideal since a(s′)h(s′) +
b(s′)i(s′) = 1. Thus we see that R′⊗RS′ is the product of the localizations at these
elements:

R′ ⊗R S′ = (R′ ⊗R S′)h(s′) × (R′ ⊗R S′)i(s′) = S′1 × S′2
Moreover this product decomposition is compatible with the product decomposition
we found for the fibre ring F ′; this comes from our choice of s′, h which guarantee
that q′ is the only prime of F ′ which does not contain the image of h(s′) in F ′.
Here we use that the fibre ring of R′⊗RS′ over R′ at p′ is the same as F ′ due to the
fact that κ(p) = κ(p′). It follows that S′1 has exactly one prime, say r′, lying over
p′ and that this prime lies over q. Hence the element g ∈ S′ maps to an element of
S′1 not contained in r′.
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The base change R′ ⊗R S inherits a similar product decomposition

R′ ⊗R S = (R′ ⊗R S)h(s′) × (R′ ⊗R S)i(s′) = S1 × S2

It follows from the above that S1 has exactly one prime, say r, lying over p′ (consider
the fibre ring as above), and that this prime lies over q.

Now we may apply Lemma 10.138.21 to the ring maps R′ → S′1 → S1, the prime
p′ and the element g to see that after replacing R′ by a principal localization we
can assume that S1 is finite over R′ as desired. �

Lemma 10.138.23. Let R → S be a ring map. Let p ⊂ R be a prime. Assume
R→ S finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) we have κ(p) = κ(p′),
(2) each Ai is finite over R′,
(3) each Ai has exactly one prime ri lying over p′, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As F is of
finite type over κ(p) it is Noetherian and hence Spec(F ) has finitely many isolated
closed points. If there are no isolated closed points, i.e., no primes q of S over p
such that S/R is quasi-finite at q, then the lemma holds. If there exists at least
one such prime q, then we may apply Lemma 10.138.22. This gives a diagram

S // R′ ⊗R S A1 ×B′

R //

OO

R′

OO 88

as in said lemma. Since the residue fields at p and p′ are the same, the fibre rings of
S/R and (A×B)/R′ are the same. Hence, by induction on the number of isolated
closed points of the fibre we may assume that the lemma holds for R′ → B and p′.
Thus we get an étale ring map R′ → R′′, a prime p′′ ⊂ R′′ and a decomposition

R′′ ⊗R′ B′ = A2 × . . .×An ×B
We omit the verification that the ring map R→ R′′, the prime p′′ and the resulting
decomposition

R′′ ⊗R S = (R′′ ⊗R′ A1)×A2 × . . .×An ×B
is a solution to the problem posed in the lemma. �

Lemma 10.138.24. Let R → S be a ring map. Let p ⊂ R be a prime. Assume
R→ S finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
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with the following properties

(1) each Ai is finite over R′,
(2) each Ai has exactly one prime ri lying over p′,
(3) the finite field extensions κ(p′) ⊂ κ(ri) are purely inseparable, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. The strategy of the proof is to make two étale ring extensions: first we
control the residue fields, then we apply Lemma 10.138.23.

Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As in the proof
of Lemma 10.138.23 there are finitely may primes, say q1, . . . , qn of S lying over
R at which the ring map R → S is quasi-finite. Let κ(p) ⊂ Li ⊂ κ(qi) be the
subfield such that κ(p) ⊂ Li is separable, and the field extension Li ⊂ κ(qi) is
purely inseparable. Let κ(p) ⊂ L be a finite Galois extension into which Li embeds
for i = 1, . . . , n. By Lemma 10.138.16 we can find an étale ring extension R → R′

together with a prime p′ lying over p such that the field extension κ(p) ⊂ κ(p′)
is isomorphic to κ(p) ⊂ L. Thus the fibre ring of R′ ⊗R S at p′ is isomorphic to
F ⊗κ(p)L. The primes lying over qi correspond to primes of κ(qi)⊗κ(p)L which is a
product of fields purely inseparable over L by our choice of L and elementary field
theory. These are also the only primes over p′ at which R′ → R′⊗RS is quasi-finite,
by Lemma 10.118.8. Hence after replacing R by R′, p by p′, and S by R′ ⊗R S we
may assume that for all primes q lying over p for which S/R is quasi-finite the field
extensions κ(p) ⊂ κ(q) are purely inseparable.

Next apply Lemma 10.138.23. The result is what we want since the field extensions
do not change under this étale ring extension. �

10.139. Local homomorphisms

Lemma 10.139.1. Let (R,mR)→ (S,mS) be a local homomorphism of local rings.
Assume S is the localization of an étale ring extension of R. Then there exists
a finite, finitely presented, faithfully flat ring map R → S′ such that for every
maximal ideal m′ of S′ there is a factorization

R→ S → S′m′ .

of the ring map R→ S′m′ .

Proof. Write S = Tq for some étale R-algebra T . By Proposition 10.138.17 we may
assume T is standard étale. Apply Lemma 10.138.18 to the ring map R→ T to get
R→ S′. Then in particular for every maximal ideal m′ of S′ we get a factorization
ϕ : T → S′g′ for some g′ 6∈ m′ such that q = ϕ−1(m′S′g′). Thus ϕ induces the desired

local ring map S → S′m′ . �

10.140. Integral closure and smooth base change

Lemma 10.140.1. Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let
R→ B be a ring map. If h ∈ B[x]/(f) is integral over R, then the element f ′h can
be written as f ′h =

∑
i bix

i with bi ∈ B integral over R.

Proof. Say he + r1h
e−1 + . . . + re = 0 in the ring B[x]/(f) with ri ∈ R. There

exists a finite free ring extension B ⊂ B′ such that f = (x − α1) . . . (x − αd) for
some αi ∈ B′, see Lemma 10.131.9. Note that each αi is integral over R. We may
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represent h = h0 + h1x + . . . + hd−1x
d−1 with hi ∈ B. Then it is a universal fact

that
f ′h ≡

∑
i=1,...,d

h(αi)(x− α1) . . . ̂(x− αi) . . . (x− αd)

as elements of B[x]/(f). You prove this by evaluating both sides at the points αi
over the ring Buniv = Z[αi, hj ] (some details omitted). By our assumption that h
satisfies he + r1h

e−1 + . . .+ re = 0 in the ring B[x]/(f) we see that

h(αi)
e + r1h(αi)

e−1 + . . .+ re = 0

in B′. Hence h(αi) is integral over R. Using the formula above we see that f ′h ≡∑
j=0,...,d−1 b

′
jx
j in B′[x]/(f) with b′j ∈ B′ integral over R. However, since f ′h ∈

B[x]/(f) and since 1, x, . . . , xd−1 is a B′-basis for B′[x]/(f) we see that b′j ∈ B as
desired. �

Lemma 10.140.2. Let R→ S be an étale ring map. Let R→ B be any ring map.
Let A ⊂ B be the integral closure of R in B. Let A′ ⊂ S ⊗R B be the integral
closure of S in S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. The map S⊗RA→ A′ is injective because A ⊂ B and R→ S is flat. We are
going to use repeatedly that taking integral closure commutes with localization, see
Lemma 10.35.9. Hence we may localize on S, by Lemma 10.23.2 (the criterion for
checking whether an S-module map is an isomorphism). Thus we may assume that
S = R[x]g/(f) = (R[x]/(f))g is standard étale over R, see Proposition 10.138.17.
Applying localization one more time we see that A′ is (A′′)g where A′′ is the integral
closure of R[x]/(f) in B[x]/(f). Suppose that a ∈ A′′. It suffices to show that a is
in S ⊗R A. By Lemma 10.140.1 we see that f ′a =

∑
aix

i with ai ∈ A. Since f ′

is invertible in B[x]g/(f) (by definition of a standard étale ring map) we conclude
that a ∈ S ⊗R A as desired. �

Example 10.140.3. Let p be a prime number. For every n > 0 the ring extension

R = Z[1/p] ⊂ R′ = Z[1/p][x]/(xp
n

− 1)

has the following property: For d < pn there exist elements α0, . . . , αd−1 ∈ R′ such
that ∏

0≤i<j<d
(αi − αj)

is a unit in R′. Namely, take αi equal to the class of xi in R′. Then we have

T p
n

− 1 =
∏

i=0,...,pn−1
(T − αi)

(for example because this is clear over Q) and hence by taking derivatives on both
sides

pnαp
n−1
i = (αi − α1) . . . ̂(αi − αi) . . . (αi − α1)

and we see this is invertible in R′.

Lemma 10.140.4. Let R → S be a smooth ring map. Let R → B be any ring
map. Let A ⊂ B be the integral closure of R in B. Let A′ ⊂ S⊗R B be the integral
closure of S in S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. Arguing as in the proof of Lemma 10.140.2 we may localize on S. Hence
we may assume that R→ S is a standard smooth ring map, see Lemma 10.132.10.
By definition of a standard smooth ring map we see that S is étale over a polyno-
mial ring R[x1, . . . , xn]. Since we have seen the result in the case of an étale ring
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extension (Lemma 10.140.2) this reduces us to the case where S = R[x]. Thus we
have to show

f =
∑

bix
i integral over R[x]⇔ each bi integral over R.

The implication from right to left holds because the set of elements in B[x] integral
over R[x] is a ring (Lemma 10.35.7) and contains x.

Suppose that f ∈ B[x] is integral over R[x], and assume that f =
∑
i<d bix

i has
degree < d. Since integral closure and localization commute, it suffices to show
that each bi is integral over R[1/2] and over R[1/3]. Hence, we can find a finite
free ring extension R ⊂ R′ such that R′ contains α1, . . . , αd with the property that∏
i<j(αi − αj) is a unit in R′, see Example 10.140.3. In this case we have the

universal equality

f =
∑
i

f(αi)
(x− α1) . . . ̂(x− αi) . . . (x− αd)

(αi − α1) . . . ̂(αi − αi) . . . (αi − αd)
.

OK, and the elements f(αi) are integral over R′ since (R′ ⊗R B)[x] → R′ ⊗R B,
h 7→ h(αi) is a ring map. Hence we see that the coefficients of f in (R′ ⊗R B)[x]
are integral over over R′. Since R′ is finite over R (hence integral over R) we see
that they are integral over R also, as desired. �

10.141. Formally unramified maps

It turns out to be logically more efficient to define the notion of a formally unram-
ified map before introducing the notion of a formally étale one.

Definition 10.141.1. Let R→ S be a ring map. We say S is formally unramified
over R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists at most one dotted arrow
making the diagram commute.

Lemma 10.141.2. Let R→ S be a ring map. The following are equivalent:

(1) R→ S is formally unramified,
(2) the module of differentials ΩS/R is zero.

Proof. Let J = Ker(S ⊗R S → S) be the kernel of the multiplication map. Let
Auniv = S ⊗R S/J2. Recall that Iuniv = J/J2 is isomorphic to ΩS/R, see Lemma
10.127.13. Moreover, the two R-algebra maps σ1, σ2 : S → Auniv, σ1(s) = s ⊗
1 mod J2, and σ2(s) = 1 ⊗ s mod J2 differ by the universal derivation d : S →
ΩS/R = Iuniv.

Assume R → S formally unramified. Then we see that σ1 = σ2. Hence d(s) = 0
for all s ∈ S. Hence ΩS/R = 0.

Assume that ΩS/R = 0. Let A, I,R → A,S → A/I be a solid diagram as in
Definition 10.141.1. Let τ1, τ2 : S → A be two dotted arrows making the diagram
commute. Consider the R-algebra map Auniv → A defined by the rule s1 ⊗ s2 7→
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τ1(s1)τ2(s2). We omit the verification that this is well defined. Since Auniv ∼= S as
Iuniv = ΩS/R = 0 we conclude that τ1 = τ2. �

Lemma 10.141.3. Let R→ S be a ring map. The following are equivalent:

(1) R→ S is formally unramified,
(2) R→ Sq is formally unramified for all primes q of S, and
(3) Rp → Sq is formally unramified for all primes q of S with p = R ∩ q.

Proof. We have seen in Lemma 10.141.2 that (1) is equivalent to ΩS/R = 0. Simi-
larly, by Lemma 10.127.8 we see that (2) and (3) are equivalent to (ΩS/R)q = 0 for
all q. Hence the equivalence follows from Lemma 10.23.1. �

Lemma 10.141.4. Let A→ B be a formally unramified ring map.

(1) For S ⊂ A a multiplicative subset, S−1A→ S−1B is formally unramified.
(2) For S ⊂ B a multiplicative subset, A→ S−1B is formally unramified.

Proof. Follows from Lemma 10.141.3. (You can also deduce it from Lemma
10.141.2 combined with Lemma 10.127.8.) �

Lemma 10.141.5. Let R be a ring. Let I be a directed partially ordered set. Let
(Si, ϕii′) be a system of R-algebras over I. If each R→ Si is formally unramified,
then S = colimi∈I Si is formally unramified over R

Proof. Consider a diagram as in Definition 10.141.1. By assumption there exists
at most one R-algebra map Si → A lifting the compositions Si → S → A/I. Since
every element of S is in the image of one of the maps Si → S we see that there is
at most one map S → A fitting into the diagram. �

10.142. Conormal modules and universal thickenings

It turns out that one can define the first infinitesimal neighbourhood not just for
a closed immersion of schemes, but already for any formally unramified morphism.
This is based on the following algebraic fact.

Lemma 10.142.1. Let R → S be a formally unramified ring map. There exists
a surjection of R-algebras S′ → S whose kernel is an ideal of square zero with the
following universal property: Given any commutative diagram

S
a
// A/I

R
b //

OO

A

OO

where I ⊂ A is an ideal of square zero, there is a unique R-algebra map a′ : S′ → A
such that S′ → A→ A/I is equal to S′ → S → A.

Proof. Choose a set of generators zi ∈ S, i ∈ I for S as an R-algebra. Let
P = R[{xi}i∈I ] denote the polynomial ring on generators xi, i ∈ I. Consider the
R-algebra map P → S which maps xi to zi. Let J = Ker(P → S). Consider the
map

d : J/J2 −→ ΩP/R ⊗P S

http://stacks.math.columbia.edu/tag/04E8
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see Lemma 10.127.9. This is surjective since ΩS/R = 0 by assumption, see Lemma
10.141.2. Note that ΩP/R is free on dxi, and hence the module ΩP/R ⊗P S is free
over S. Thus we may choose a splitting of the surjection above and write

J/J2 = K ⊕ ΩP/R ⊗P S

Let J2 ⊂ J ′ ⊂ J be the ideal of P such that J ′/J2 is the second summand in the
decomposition above. Set S′ = P/J ′. We obtain a short exact sequence

0→ J/J ′ → S′ → S → 0

and we see that J/J ′ ∼= K is a square zero ideal in S′. Hence

S
1
// S

R //

OO

S′

OO

is a diagram as above. In fact we claim that this is an initial object in the category
of diagrams. Namely, let (I ⊂ A, a, b) be an arbitrary diagram. We may choose an
R-algebra map β : P → A such that

S
1
// S

a
// A/I

R //

b

33

OO

P

OO

β // A

OO

is commutative. Now it may not be the case that β(J ′) = 0, in other words it may
not be true that β factors through S′ = P/J ′. But what is clear is that β(J ′) ⊂ I
and since β(J) ⊂ I and I2 = 0 we have β(J2) = 0. Thus the “obstruction” to
finding a morphism from (J/J ′ ⊂ S′, 1, R→ S′) to (I ⊂ A, a, b) is the corresponding
S-linear map β : J ′/J2 → I. The choice in picking β lies in the choice of β(xi). A
different choice of β, say β′, is gotten by taking β′(xi) = β(xi) + δi with δi ∈ I. In
this case, for g ∈ J ′, we obtain

β′(g) = β(g) +
∑

i
δi
∂g

∂xi
.

Since the map d|J′/J2 : J ′/J2 → ΩP/R⊗P S given by g 7→ ∂g
∂xi

dxi is an isomorphism

by construction, we see that there is a unique choice of δi ∈ I such that β′(g) = 0
for all g ∈ J ′. (Namely, δi is −β(g) where g ∈ J ′/J2 is the unique element with
∂g
∂xj

= 1 if i = j and 0 else.) The uniqueness of the solution implies the uniqueness

required in the lemma. �

In the situation of Lemma 10.142.1 the R-algebra map S′ → S is unique up to
unique isomorphism.

Definition 10.142.2. Let R→ S be a formally unramified ring map.

(1) The universal first order thickening of S over R is the surjection of R-
algebras S′ → S of Lemma 10.142.1.

(2) The conormal module of R→ S is the kernel I of the universal first order
thickening S′ → S, seen as a S-module.

We often denote the conormal module CS/R in this situation.

http://stacks.math.columbia.edu/tag/04EC
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Lemma 10.142.3. Let I ⊂ R be an ideal of a ring. The universal first order
thickening of R/I over R is the surjection R/I2 → R/I. The conormal module of
R/I over R is C(R/I)/R = I/I2.

Proof. Omitted. �

Lemma 10.142.4. Let A→ B be a formally unramified ring map. Let ϕ : B′ → B
be the universal first order thickening of B over A.

(1) Let S ⊂ A be a multiplicative subset. Then S−1B′ → S−1B is the univer-
sal first order thickening of S−1B over S−1A. In particular S−1CB/A =
CS−1B/S−1A.

(2) Let S ⊂ B be a multiplicative subset. Then S′ = ϕ−1(S) is a multiplicative
subset in B′ and (S′)−1B′ → S−1B is the universal first order thickening
of S−1B over A. In particular S−1CB/A = CS−1B/A.

Note that the lemma makes sense by Lemma 10.141.4.

Proof. With notation and assumptions as in (1). Let (S−1B)′ → S−1B be the
universal first order thickening of S−1B over S−1A. Note that S−1B′ → S−1B is
a surjection of S−1A-algebras whose kernel has square zero. Hence by definition
we obtain a map (S−1B)′ → S−1B′ compatible with the maps towards S−1B.
Consider any commutative diagram

B // S−1B // D/I

A //

OO

S−1A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order
thickening of B over A we obtain an A-algebra map B′ → D. But it is clear that
the image of S in D is mapped to invertible elements of D, and hence we obtain a
compatible map S−1B′ → D. Applying this to D = (S−1B)′ we see that we get a
map S−1B′ → (S−1B)′. We omit the verification that this map is inverse to the
map described above.

With notation and assumptions as in (2). Let (S−1B)′ → S−1B be the universal
first order thickening of S−1B over A. Note that (S′)−1B′ → S−1B is a surjection
of A-algebras whose kernel has square zero. Hence by definition we obtain a map
(S−1B)′ → (S′)−1B′ compatible with the maps towards S−1B. Consider any
commutative diagram

B // S−1B // D/I

A //

OO

A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order
thickening of B over A we obtain an A-algebra map B′ → D. But it is clear that
the image of S′ in D is mapped to invertible elements of D, and hence we obtain a
compatible map (S′)−1B′ → D. Applying this to D = (S−1B)′ we see that we get
a map (S′)−1B′ → (S−1B)′. We omit the verification that this map is inverse to
the map described above. �

http://stacks.math.columbia.edu/tag/04ED
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Lemma 10.142.5. Let R → A → B be ring maps. Assume A → B formally
unramified. Let B′ → B be the universal first order thickening of B over A. Then
B′ is formally unramified over A, and the canonical map ΩA/R⊗AB → ΩB′/R⊗B′B
is an isomorphism.

Proof. We are going to use the construction of B′ from the proof of Lemma
10.142.1 although in principle it should be possible to deduce these results for-
mally from the definition. Namely, we choose a presentation B = P/J , where
P = A[xi] is a polynomial ring over A. Next, we choose elements fi ∈ J such that
dfi = dxi ⊗ 1 in ΩP/A ⊗P B. Having made these choices we have B′ = P/J ′ with

J ′ = (fi) + J2, see proof of Lemma 10.142.1.

Consider the canonical exact sequence

J ′/(J ′)2 → ΩP/A ⊗P B′ → ΩB′/A → 0

see Lemma 10.127.9. By construction the classes of the fi ∈ J ′ map to elements
of the module ΩP/A ⊗P B′ which generate it modulo J ′/J2 by construction. Since

J ′/J2 is a nilpotent ideal, we see that these elements generate the module altogether
(by Nakayama’s Lemma 10.19.1). This proves that ΩB′/A = 0 and hence that B′

is formally unramified over A, see Lemma 10.141.2.

Since P is a polynomial ring over A we have ΩP/R = ΩA/R ⊗A P ⊕
⊕
Pdxi. We

are going to use this decomposition. Consider the following exact sequence

J ′/(J ′)2 → ΩP/R ⊗P B′ → ΩB′/R → 0

see Lemma 10.127.9. We may tensor this with B and obtain the exact sequence

J ′/(J ′)2 ⊗B′ B → ΩP/R ⊗P B → ΩB′/R ⊗B′ B → 0

If we remember that J ′ = (fi) + J2 then we see that the first arrow annihilates
the submodule J2/(J ′)2. In terms of the direct sum decomposition ΩP/R ⊗P B =

ΩA/R ⊗A B ⊕
⊕
Bdxi given we see that the submodule (fi)/(J

′)2 ⊗B′ B maps
isomorphically onto the summand

⊕
Bdxi. Hence what is left of this exact sequence

is an isomorphism ΩA/R ⊗A B → ΩB′/R ⊗B′ B as desired. �

10.143. Formally étale maps

Definition 10.143.1. Let R→ S be a ring map. We say S is formally étale over
R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists a unique dotted arrow making
the diagram commute.

Clearly a ring map is formally étale if and only if it is both formally smooth and
formally unramified.

Lemma 10.143.2. Let R→ S be a ring map of finite presentation. The following
are equivalent:

(1) R→ S is formally étale,
(2) R→ S is étale.

http://stacks.math.columbia.edu/tag/04EF
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Proof. Assume that R→ S is formally étale. Then R→ S is smooth by Proposi-
tion 10.133.13. By Lemma 10.141.2 we have ΩS/R = 0. Hence R → S is étale by
definition.

Assume that R → S is étale. Then R → S is formally smooth by Proposition
10.133.13. By Lemma 10.141.2 it is formally unramified. Hence R→ S is formally
étale. �

Lemma 10.143.3. Let R be a ring. Let I be a directed partially ordered set. Let
(Si, ϕii′) be a system of R-algebras over I. If each R → Si is formally étale, then
S = colimi∈I Si is formally étale over R

Proof. Consider a diagram as in Definition 10.143.1. By assumption we get unique
R-algebra maps Si → A lifting the compositions Si → S → A/I. Hence these are
compatible with the transition maps ϕii′ and define a lift S → A. This proves
existence. The uniqueness is clear by restricting to each Si. �

Lemma 10.143.4. Let R be a ring. Let S ⊂ R be any multiplicative subset. Then
the ring map R→ S−1R is formally étale.

Proof. Let I ⊂ A be an ideal of square zero. What we are saying here is that
given a ring map ϕ : R → A such that ϕ(f) mod I is invertible for all f ∈ S we
have also that ϕ(f) is invertible in A for all f ∈ S. This is true because A∗ is the
inverse image of (A/I)∗ under the canonical map A→ A/I. �

10.144. Unramified ring maps

The definition of a G-unramified ring map is the one from EGA. The definition of
an unramified ring map is the one from [Ray70].

Definition 10.144.1. Let R→ S be a ring map.

(1) We say R→ S is unramified if R→ S is of finite type and ΩS/R = 0.
(2) We say R → S is G-unramified if R → S is of finite presentation and

ΩS/R = 0.
(3) Given a prime q of S we say that S is unramified at q if there exists a

g ∈ S, g 6∈ q such that R→ Sg is unramified.
(4) Given a prime q of S we say that S is G-unramified at q if there exists a

g ∈ S, g 6∈ q such that R→ Sg is G-unramified.

Of course a G-unramified map is unramified.

Lemma 10.144.2. Let R→ S be a ring map. The following are equivalent

(1) R→ S is formally unramified and of finite type, and
(2) R→ S is unramified.

Moreover, also the following are equivalent

(1) R→ S is formally unramified and of finite presentation, and
(2) R→ S is G-unramified.

Proof. Follows from Lemma 10.141.2 and the definitions. �

Lemma 10.144.3. Properties of unramified and G-unramified ring maps.

(1) The base change of an unramified ring map is unramified. The base change
of a G-unramified ring map is G-unramified.

http://stacks.math.columbia.edu/tag/031N
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(2) The composition of unramified ring maps is unramified. The composition
of G-unramified ring maps is G-unramified.

(3) Any principal localization R→ Rf is G-unramified and unramified.
(4) If I ⊂ R is an ideal, then R → R/I is unramified. If I ⊂ R is a finitely

generated ideal, then R→ R/I is G-unramified.
(5) An étale ring map is G-unramified and unramified.
(6) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime and

(ΩS/R)q = 0, then R→ S is unramified (resp. G-unramified) at q.
(7) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime and

ΩS/R ⊗S κ(q) = 0, then R→ S is unramified (resp. G-unramified) at q.
(8) If R → S is of finite type (resp. finite presentation), q ⊂ S is a prime

lying over p ⊂ R and (ΩS⊗Rκ(p)/κ(p))q = 0, then R → S is unramified
(resp. G-unramified) at q.

(9) If R→ S is of finite type (resp. presentation), q ⊂ S is a prime lying over
p ⊂ R and (ΩS⊗Rκ(p)/κ(p))⊗S⊗Rκ(p) κ(q) = 0, then R → S is unramified
(resp. G-unramified) at q.

(10) If R → S is a ring map, g1, . . . , gm ∈ S generate the unit ideal and
R→ Sgj is unramified (resp. G-unramified) for j = 1, . . . ,m, then R→ S
is unramified (resp. G-unramified).

(11) If R→ S is a ring map which is unramified (resp. G-unramified) at every
prime of S, then R→ S is unramified (resp. G-unramified).

(12) If R→ S is G-unramified, then there exists a finite type Z-algebra R0 and
a G-unramified ring map R0 → S0 and a ring map R0 → R such that
S = R⊗R0

S0.
(13) If R → S is unramified, then there exists a finite type Z-algebra R0 and

an unramified ring map R0 → S0 and a ring map R0 → R such that S is
a quotient of R⊗R0 S0.

Proof. We prove each point, in order.

Ad (1). Follows from Lemmas 10.127.12 and 10.13.2.

Ad (2). Follows from Lemmas 10.127.7 and 10.13.2.

Ad (3). Follows by direct computation of ΩRf/R which we omit.

Ad (4). We have Ω(R/I)/R = 0, see Lemma 10.127.5, and the ring map R→ R/I is
of finite type. If I is a finitely generated ideal then R→ R/I is of finite presentation.

Ad (5). See discussion following Definition 10.138.1.

Ad (6). In this case ΩS/R is a finite S-module (see Lemma 10.127.16) and hence
there exists a g ∈ S, g 6∈ q such that (ΩS/R)g = 0. By Lemma 10.127.8 this means
that ΩSg/R = 0 and hence R→ Sg is unramified as desired.

Ad (7). Use Nakayama’s lemma (Lemma 10.19.1) to see that the condition is
equivalent to the condition of (6).

Ad (8) & (9). These are equivalent in the same manner that (6) and (7) are
equivalent. Moreover ΩS⊗Rκ(p)/κ(p) = ΩS/R ⊗S (S ⊗R κ(p)) by Lemma 10.127.12.
Hence we see that (9) is equivalent to (7) since the κ(q) vector spaces in both are
canonically isomorphic.

Ad (10). Follows from from Lemmas 10.23.2 and 10.127.8.
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Ad (11). Follows from (6) and (7) and the fact that the spectrum of S is quasi-
compact.

Ad (12). Write S = R[x1, . . . , xn]/(g1, . . . , gm). As ΩS/R = 0 we can write

dxi =
∑

hijdgj +
∑

aijkgjdxk

in ΩR[x1,...,xn]/R for some hij , aijk ∈ R[x1, . . . , xn]. Choose a finitely generated Z-
subalgebra R0 ⊂ R containing all the coefficients of the polynomials gi, hij , aijk.
Set S0 = R0[x1, . . . , xn]/(g1, . . . , gm). This works.

Ad (13). Write S = R[x1, . . . , xn]/I. As ΩS/R = 0 we can write

dxi =
∑

hijdgij +
∑

g′ikdxk

in ΩR[x1,...,xn]/R for some hij ∈ R[x1, . . . , xn] and gij , g
′
ik ∈ I. Choose a finitely

generated Z-subalgebra R0 ⊂ R containing all the coefficients of the polynomials
gij , hij , g

′
ik. Set S0 = R0[x1, . . . , xn]/(gij , g

′
ik). This works. �

Lemma 10.144.4. Let R → S be a ring map. If R → S is unramified, then
there exists an idempotent e ∈ S ⊗R S such that S ⊗R S → S is isomorphic to
S ⊗R S → (S ⊗R S)e.

Proof. Let J = Ker(S⊗RS → S). By assumption J/J2 = 0, see Lemma 10.127.13.
Since S is of finite type over R we see that J is finitely generated, namely by
xi ⊗ 1− 1⊗ xi, where xi generate S over R. We win by Lemma 10.20.5. �

Lemma 10.144.5. Let R → S be a ring map. Let q ⊂ S be a prime lying over p
in R. If S/R is unramified at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(p) ⊂ κ(q) is finite separable.

Proof. We may first replace S by Sg for some g ∈ S, g 6∈ q and assume that
R → S is unramified. The base change S ⊗R κ(p) is unramified over κ(p) by
Lemma 10.144.3. By Lemma 10.135.3 it is smooth hence étale over κ(p). Hence we
see that S⊗R κ(p) = (R \ p)−1S/pS is a product of finite separable field extensions
of κ(p) by Lemma 10.138.4. This implies the lemma. �

Lemma 10.144.6. Let R → S be a finite type ring map. Let q be a prime of S.
If R → S is unramified at q then R → S is quasi-finite at q. In particular, an
unramified ring map is quasi-finite.

Proof. An unramified ring map is of finite type. Thus it is clear that the second
statement follows from the first. To see the first statement apply the characteriza-
tion of Lemma 10.118.2 part (2) using Lemma 10.144.5. �

Lemma 10.144.7. Let R → S be a ring map. Let q be a prime of S lying over a
prime p of R. If

(1) R→ S is of finite type,
(2) pSq is the maximal ideal of the local ring Sq, and
(3) the field extension κ(p) ⊂ κ(q) is finite separable,

then R→ S is unramified at q.
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Proof. By Lemma 10.144.3 (8) it suffices to show that ΩS⊗Rκ(p)/κ(p) is zero when
localized at q. Hence we may replace S by S ⊗R κ(p) and R by κ(p). In other
words, we may assume that R = k is a field and S is a finite type k-algebra. In this
case the hypotheses imply that Sq

∼= κ(q) and hence S = κ(q) × S′ (see Lemma
10.118.1). Hence (ΩS/k)q = Ωκ(q)/k which is zero as desired. �

Proposition 10.144.8. Let R → S be a ring map. Let q ⊂ S be a prime. If
R→ S is unramified at q, then there exist

(1) a g ∈ S, g 6∈ q,
(2) a standard étale ring map R→ S′, and
(3) a surjective R-algebra map S′ → Sg.

Proof. This proof is the “same” as the proof of Proposition 10.138.17. The proof
is a little roundabout and there may be ways to shorten it.

Step 1. By Definition 10.144.1 there exists a g ∈ S, g 6∈ q such that R → Sg is
unramified. Thus we may assume that S is unramified over R.

Step 2. By Lemma 10.144.3 there exists an unramified ring map R0 → S0 with
R0 of finite type over Z, and a ring map R0 → R such that S is a quotient of
R⊗R0

S0. Denote q0 the prime of S0 corresponding to q. If we show the result for
(R0 → S0, q0) then the result follows for (R→ S, q) by base change. Hence we may
assume that R is Noetherian.

Step 3. Note that R→ S is quasi-finite by Lemma 10.144.6. By Lemma 10.119.15
there exists a finite ring map R→ S′, an R-algebra map S′ → S, an element g′ ∈ S′
such that g′ 6∈ q such that S′ → S induces an isomorphism S′g′

∼= Sg′ . (Note that

S′ may not unramified over R.) Thus we may assume that (a) R is Noetherian,
(b) R → S is finite and (c) R → S is unramified at q (but no longer necessarily
unramified at all primes).

Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring
S ⊗R κ(p). This is a finite algebra over κ(p). Hence it is Artinian (see Lemma
10.51.2) and so a finite product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 10.59.6. One of the factors, say A1, is the local ring Sq/pSq which
is isomorphic to κ(q), see Lemma 10.144.5. The other factors correspond to the
other primes, say q2, . . . , qn of S lying over p.

Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite
separable field extension κ(p) ⊂ κ(q) (so even if the field extension is trivial we do
not allow α = 0). Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q)
over κ(p). Consider the element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of
t ∈ S. Let I ⊂ R[x] be the kernel of the R-algebra map R[x]→ S which maps x to

http://stacks.math.columbia.edu/tag/0395
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t. Set S′ = R[x]/I, so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x],
whereas the prime q lies over a different prime of R[x] because α 6= 0.

Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is the
only prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 10.40.11 (we
have going up for S′ → S by Lemma 10.35.20 since S′ → S is finite as R → S
is finite). It follows that S′q′ → Sq is finite and injective as the localization of the

finite injective ring map S′ → S. Consider the maps of local rings

Rp → S′q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma
10.144.5. Hence a fortiori Sq/q

′Sq = κ(q). Since

κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence
by Nakayama’s Lemma 10.19.1 applied to the S′q′ -module map S′q′ → Sq, the map

S′q′ → Sq is surjective. In other words, S′q′
∼= Sq.

Step 7. By Lemma 10.122.7 there exist g ∈ S, g 6∈ q and g′ ∈ S′, g′ 6∈ q′ such
that S′g′

∼= Sg. As R is Noetherian the ring S′ is finite over R because it is an R-

submodule of the finite R-module S. Hence after replacing S by S′ we may assume
that (a) R is Noetherian, (b) S finite over R, (c) S is unramified over R at q, and
(d) S = R[x]/I.

Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p). After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is the
image of some h ∈ R[x]. (The problem is that we do not know if we may choose h
monic.) Also, as in Step 4 we know that S⊗R κ(p) = A1× . . .×An with A1 = κ(q)
a finite separable extension of κ(p) and A2, . . . , An local. This implies that

h = h1h
e2
2 . . . h

en
n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain

e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(h
ei
i ) as κ(p)[x]-

algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a
separable polynomial (its derivative is prime to itself).

Step 9. Let m ∈ I be a monic element; such an element exists because the ring
extension R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We
may factor

m = kh
d1

1 h
d2

2 . . . h
dn
n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set
f = ml + h where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial
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over R. Also, the image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en
n +k

l
h
ld1

1 h
ld2

2 . . . h
ldn
n = h1(h

e2
2 . . . h

en
n +k

l
h
ld1−1

1 h
ld2

2 . . . h
ldn
n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect
to x).

Step 10. The ring map R[x] → S = R[x]/I has the properties: (1) it maps f to
zero, and (2) it maps g to an element of S \ q. The first assertion is clear since f
is an element of I. For the second assertion we just have to show that g does not
map to zero in κ(q) = κ(p)[x]/(h1). The image of g in κ(p)[x] is the derivative of
f . Thus (2) is clear because

g =
df

dx
= w

dh1

dx
+ h1

dw

dx
,

w is prime to h1 and h1 is separable.

Step 11. We conclude that ϕ : R[x]/(f) → S is a surjective ring map, R[x]g/(f)
is étale over R (because it is standard étale, see Lemma 10.138.15) and ϕ(g) 6∈ q.
Thus the map (R[x]/(f))g → Sϕ(g) is the desired surjection. �

Lemma 10.144.9. Let R → S be a ring map. Let q be a prime of S lying over
p ⊂ R. Assume that R→ S is of finite type and unramified at q. Then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A×B
with the following properties

(1) R′ → A is surjective, and
(2) p′A is a prime of A lying over p′ and over q.

Proof. We may replace (R→ S, p, q) with any base change (R′ → R′ ⊗R S, p′, q′)
by a étale ring map R → R′ with a prime p′ lying over p, and a choice of q′ lying
over both q and p′. Note also that given R→ R′ and p′ a suitable q′ can always be
found.

The assumption that R → S is of finite type means that we may apply Lemma
10.138.24. Thus we may assume that S = A1 × . . . × An × B, that each R → Ai
is finite with exactly one prime ri lying over p such that κ(p) ⊂ κ(ri) is purely
inseparable and that R → B is not quasi-finite at any prime lying over p. Then
clearly q = ri for some i, since an unramified morphism is quasi-finite (see Lemma
10.144.6). Say q = r1. By Lemma 10.144.5 we see that κ(p) ⊂ κ(r1) is separable
hence the trivial field extension, and that p(A1)r1 is the maximal ideal. Also, by
Lemma 10.40.11 (which applies to R → A1 because a finite ring map satisfies
going up by Lemma 10.35.20) we have (A1)r1 = (A1)p. It follows from Nakayama’s
Lemma 10.19.1 that the map of local rings Rp → (A1)p = (A1)r1 is surjective. Since
A1 is finite over R we see that there exists a f ∈ R, f 6∈ p such that Rf → (A1)f
is surjective. After replacing R by Rf we win. �

Lemma 10.144.10. Let R → S be a ring map. Let p be a prime of R. If R → S
is unramified then there exist

(1) an étale ring map R→ R′,

http://stacks.math.columbia.edu/tag/00UX
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(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) R′ → Ai is surjective,
(2) p′Ai is a prime of Ai lying over p′, and
(3) there is no prime of B lying over p′.

Proof. We may apply Lemma 10.138.24. Thus, after an étale base change, we may
assume that S = A1 × . . . × An × B, that each R → Ai is finite with exactly one
prime ri lying over p such that κ(p) ⊂ κ(ri) is purely inseparable, and that R→ B
is not quasi-finite at any prime lying over p. Since R→ S is quasi-finite (see Lemma
10.144.6) we see there is no prime of B lying over p. By Lemma 10.144.5 we see that
κ(p) ⊂ κ(ri) is separable hence the trivial field extension, and that p(Ai)ri is the
maximal ideal. Also, by Lemma 10.40.11 (which applies to R→ Ai because a finite
ring map satisfies going up by Lemma 10.35.20) we have (Ai)ri = (Ai)p. It follows
from Nakayama’s Lemma 10.19.1 that the map of local rings Rp → (Ai)p = (Ai)ri
is surjective. Since Ai is finite over R we see that there exists a f ∈ R, f 6∈ p such
that Rf → (Ai)f is surjective. After replacing R by Rf we win. �

10.145. Henselian local rings

In this section we discuss a bit the notion of a henselian local ring. Let (R,m, κ) be
a local ring. For a ∈ R we denote a the image of a in κ. For a polynomial f ∈ R[T ]
we often denote f the image of f in κ[T ]. Given a polynomial f ∈ R[T ] we denote

f ′ the derivative of f with respect to T . Note that f
′

= f ′.

Definition 10.145.1. Let (R,m, κ) be a local ring.

(1) We say R is henselian if for every monic f ∈ R[T ] and every root a0 ∈ κ
of f such that f ′(a0) 6= 0 there exists an a ∈ R such that f(a) = 0 and
a0 = a.

(2) We say R is strictly henselian if R is henselian and its residue field is
separably algebraically closed.

Note that the condition f ′(a0) 6= 0 is equivalent to the condition that a0 is a simple
root of the polynomial f . In fact, it implies that the lift a ∈ R, if it exists, is unique.

Lemma 10.145.2. Let (R,m, κ) be a local ring. Let f ∈ R[T ]. Let a, b ∈ R such
that f(a) = f(b) = 0, a = b mod m, and f ′(a) 6∈ m. Then a = b.

Proof. Write f(x+y)−f(x) = f ′(x)y+g(x, y)y2 in R[x, y] (this is possible as one
sees by expanding f(x+ y); details omitted). Then we see that 0 = f(b)− f(a) =
f(a+(b−a))−f(a) = f ′(a)(b−a)+ c(b−a)2 for some c ∈ R. By assumption f ′(a)
is a unit in R. Hence (b − a)(1 + f ′(a)−1c(b − a)) = 0. By assumption b − a ∈ m,
hence 1 + f ′(a)−1c(b− a) is a unit in R. Hence b− a = 0 in R. �

Here is the characterization of henselian local rings.

Lemma 10.145.3. Let (R,m, κ) be a local ring. The following are equivalent

(1) R is henselian,
(2) for every f ∈ R[T ] and every root a0 ∈ κ of f such that f ′(a0) 6= 0 there

exists an a ∈ R such that f(a) = 0 and a0 = a,

http://stacks.math.columbia.edu/tag/04GF
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(3) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) =
1 there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,

(4) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) =
1 there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(5) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,

(6) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(7) for any étale ring map R→ S and prime q of S lying over m with κ = κ(q)
there exists a section τ : S → R of R→ S,

(8) for any étale ring map R→ S and prime q of S lying over m with κ = κ(q)
there exists a section τ : S → R of R→ S with q = τ−1(m),

(9) any finite R-algebra is a product of local rings,
(10) any finite R-algebra is a finite product of local rings,
(11) any finite type R-algebra S can be written as A × B with R → A finite

and R→ B not quasi-finite at any prime lying over m,
(12) any finite type R-algebra S can be written as A × B with R → A finite

such that each irreducible component of Spec(B⊗R κ) has dimension ≥ 1,
and

(13) any quasi-finite R-algebra S can be written as S = A × B with R → A
finite such that B ⊗R κ = 0.

Proof. Here is a list of the easier implications:

2⇒1 because in (2) we consider all polynomials and in (1) only monic ones,
5⇒3 because in (5) we consider all polynomials and in (3) only monic ones,
6⇒4 because in (6) we consider all polynomials and in (4) only monic ones,
4⇒3 is obvious,
6⇒5 is obvious,
8⇒7 is obvious,

10⇒9 is obvious,
11⇔12 by definition of being quasi-finite at a prime,
11⇒13 by definition of being quasi-finite,

Proof of 1⇒8. Assume (1). Let R → S be étale, and let q ⊂ S be a prime
ideal such that κ(q) ∼= κ. By Proposition 10.138.17 we can find a g ∈ S, g 6∈ q
such that R → Sg is standard étale. After replacing S by Sg we may assume that
S = R[t]g/(f) is standard étale. Since the prime q has residue field κ it corresponds

to a root a0 of f which is not a root of g. By definition of a standard étale algebra
this also means that f ′(a0) 6= 0. Since also f is monic by definition of a standard
étale algebra again we may use that R is henselian to conclude that there exists an
a ∈ R with a0 = a such that f(a) = 0. This implies that g(a) is a unit of R and we
obtain the desired map τ : S = R[t]g/(f)→ R by the rule t 7→ a. By construction
τ−1(q) = m. This proves (8) holds.

Proof of 7⇒8. (This is really unimportant and should be skipped.) Assume (7)
holds and assume R → S is étale. Let q1, . . . , qr be the other primes of S lying
over m. Then we can find a g ∈ S, g 6∈ q and g ∈ qi for i = 1, . . . , r, see Lemma
10.14.2. Apply (7) to the étale ring map R → Sg and the prime qSg. This gives a
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section τg : Sg → R such that the composition τ : S → Sg → R has the property
τ−1(q) = m. Minor details omitted.

Proof of 8⇒11. Assume (8) and let R → S be a finite type ring map. Apply
Lemma 10.138.23. We find an étale ring map R → R′ and a prime m′ ⊂ R′ lying
over m with κ = κ(m′) such that R′ ⊗R S = A′ × B′ with A′ finite over R′ and
B′ not quasi-finite over R′ at any prime lying over m′. Apply (8) to get a section
τ : R′ → R with m = τ−1(m′). Then use that

S = (S ⊗R R′)⊗R′,τ R = (A′ ×B′)⊗R′,τ R = (A′ ⊗R′,τ R)× (B′ ⊗R′,τ R)

which gives a decomposition as in (11).

Proof of 8⇒10. Assume (8) and let R → S be a finite ring map. Apply Lemma
10.138.23. We find an étale ring map R → R′ and a prime m′ ⊂ R′ lying over m
with κ = κ(m′) such that R′ ⊗R S = A′1 × . . . × A′n × B′ with A′i finite over R′

having exactly one prime over m′ and B′ not quasi-finite over R′ at any prime lying
over m′. Apply (8) to get a section τ : R′ → R with m = τ−1(m′). Then we obtain

S = (S ⊗R R′)⊗R′,τ R
= (A′1 × . . .×A′n ×B′)⊗R′,τ R
= (A′1 ⊗R′,τ R)× . . .× (A′1 ⊗R′,τ R)× (B′ ⊗R′,τ R)

= A1 × . . .×An ×B

The factor B is finite over R but R→ B is not quasi-finite at any prime lying over
m. Hence B = 0. The factors Ai are finite R-algebras having exactly one prime
lying over m, hence they are local rings. This proves that S is a finite product of
local rings.

Proof of 9⇒10. This holds because if S is finite over the local ring R, then it has at
most finitely many maximal ideals. Namely, by going up for R → S the maximal
ideals of S all lie over m, and S/mS is Artinian hence has finitely many primes.

Proof of 10⇒1. Assume (10). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ
a simple root of f . Then S = R[T ]/(f) is a finite R-algebra. Applying (10)
we get S = A1 × . . . × Ar is a finite product of local R-algebras. In particular
we see that S/mS =

∏
Ai/mAi is the decomposition of κ[T ]/(f) as a product

of local rings. This means that one of the factors, say A1/mA1 is the quotient
κ[T ]/(f)→ κ[T ]/(T − a0). Since A1 is a summand of the finite free R-module S it
is a finite free R-module itself. As A1/mA1 is a κ-vector space of dimension 1 we see
that A1

∼= R as an R-module. Clearly this means that R→ A1 is an isomorphism.
Let a ∈ R be the image of T under the map R[T ]→ S → A1 → R. Then f(a) = 0
and a = a0 as desired.

Proof of 13⇒1. Assume (13). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ a
simple root of f . Then S1 = R[T ]/(f) is a finite R-algebra. Let g ∈ R[T ] be any
element such that g = f/(T − a0). Then S = (S1)g is a quasi-finite R-algebra such

that S⊗Rκ ∼= κ[T ]g/(f) ∼= κ[T ]/(T−a0) ∼= κ. Applying (13) to S we get S = A×B
with A finite over R and B⊗Rκ = 0. In particular we see that κ ∼= S/mS = A/mA.
Since A is a summand of the flat R-algebra S we see that it is finite flat, hence
free over R. As A/mA is a κ-vector space of dimension 1 we see that A ∼= R as an
R-module. Clearly this means that R → A is an isomorphism. Let a ∈ R be the
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image of T under the map R[T ] → S → A → R. Then f(a) = 0 and a = a0 as
desired.

Proof of 8⇒2. Assume (8). Let f ∈ R[T ] be any polynomial and let a0 ∈ κ be a
simple root. Then the algebra S = R[T ]f ′/(f) is étale over R. Let q ⊂ S be the

prime generated by m and T − b where b ∈ R is any element such that b = a0.
Apply (8) to S and q to get τ : S → R. Then the image τ(T ) = a ∈ R works in
(2).

At this point we see that (1), (2), (7), (8), (9), (10), (11), (12), (13) are all equiva-
lent. The weakest assertion of (3), (4), (5) and (6) is (3) and the strongest is (6).
Hence we still have to prove that (3) implies (1) and (1) implies (6).

Proof of 3⇒1. Assume (3). Let f ∈ R[T ] be monic and let a0 ∈ κ be a simple root of
f . This gives a factorization f = (T−a0)h0 with h0(a0) 6= 0, so gcd(T−a0, h0) = 1.
Apply (3) to get a factorization f = gh with g = T − a0 and h = h0. Set S =
R[T ]/(f) which is a finite free R-algebra. We will write g, h also for the images of
g and h in S. Then gS + hS = S by Nakayama’s Lemma 10.19.1 as the equality
holds modulo m. Since gh = f = 0 in S this also implies that gS ∩ hS = 0. Hence
by the Chinese Remainder theorem we obtain S = S/(g)×S/(h). This implies that
A = S/(g) is a summand of a finite free R-module, hence finite free. Moreover, the
rank of A is 1 as A/mA = κ[T ]/(T −a0). Thus the map R→ A is an isomorphism.
Setting a ∈ R equal to the image of T under the maps R[T ] → S → A → R gives
an element of R with f(a) = 0 and a = a0.

Proof of 1⇒6. Assume (1) or equivalently all of (1), (2), (7), (8), (9), (10), (11), (12),
(13). Let f ∈ R[T ] be a polynomial. Suppose that f = g0h0 is a factorization with
gcd(g0, h0) = 1. We may and do assume that g0 is monic. Consider S = R[T ]/(f).
Because we have the factorization we see that the coefficients of f generate the unit
ideal in R. This implies that S has finite fibres over R, hence is quasi-finite over R.
It also implies that S is flat over R by Lemma 10.95.2. Combining (13) and (10)
we may write S = A1 × . . .×An ×B where each Ai is local and finite over R, and
B ⊗R κ = 0. After reordering the factors A1, . . . , An we may assume that

κ[T ]/(g0) = A1/mA1 × . . .×Ar/mAr, κ[T ]/(h0) = Ar+1/mAr+1 × . . .×An/mAn
as quotients of κ[T ]. The finite flat R-algebra A = A1 × . . . × Ar is free as an R-
module, see Lemma 10.75.4. Its rank is degT (g0). Let g ∈ R[T ] be the characteristic
polynomial of the R-linear operator T : A → A. Then g is a monic polynomial of
degree degT (g) = degT (g0) and moreover g = g0. By Cayley-Hamilton (Lemma
10.15.1) we see that g(TA) = 0 where TA indicates the image of T in A. Hence
we obtain a well defined surjective map R[T ]/(g) → A which is an isomorphism
by Nakayama’s Lemma 10.19.1. The map R[T ] → A factors through R[T ]/(f) by
construction hence we may write f = gh for some h. This finishes the proof. �

Lemma 10.145.4. Let (R,m, κ) be a henselian local ring.

(1) If R ⊂ S is a finite ring extension then S is a finite product of henselian
local rings.

(2) If R ⊂ S is a finite local homomorphism of local rings, then S is a
henselian local ring.

(3) If R→ S is a finite type ring map, and q is a prime of S lying over m at
which R→ S is quasi-finite, then Sq is henselian.

http://stacks.math.columbia.edu/tag/04GH
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(4) If R→ S is quasi-finite then Sq is henselian for every prime q lying over
m.

Proof. Part (2) implies part (1) since S as in part (1) is a finite product of its
localizations at the primes lying over m. Part (2) follows from Lemma 10.145.3
part (10) since any finite S-algebra is also a finite R-algebra. If R → S and q are
as in (3), then Sq is a local ring of a finite R-algebra by Lemma 10.145.3 part (11).
Hence (3) follows from (1). Part (4) follows from part (3). �

Lemma 10.145.5. A filtered colimit of henselian local rings along local homomor-
phisms is henselian.

Proof. Categories, Lemma 4.21.3 says that this is really just a question about a
colimit of henselian local rings over a directed partially ordered set. Let (Ri, ϕii′)
be such a system with each ϕii′ local. Then R = colimiRi is local, and its residue
field κ is colimκi (argument omitted). Suppose that f ∈ R[T ] is monic and that
a0 ∈ κ is a simple root of f . Then for some large enough i there exists an fi ∈ Ri[T ]

mapping to f and an a0,i ∈ κi mapping to a0. Since fi(a0,i) ∈ κi, resp. f ′i(a0,i) ∈ κi
maps to 0 = f(a0) ∈ κ, resp. 0 6= f ′(a0) ∈ κ we conclude that a0,i is a simple root

of fi. As Ri is henselian we can find ai ∈ Ri such that fi(ai) = 0 and a0,i = ai.
Then the image a ∈ R of ai is the desired solution. Thus R is henselian. �

Lemma 10.145.6. Let (R,m, κ) be a henselian local ring. Any finite type R-algebra
S can be written as S = A1 × . . . × An × B with Ai local and finite over R and
R→ B not quasi-finite at any prime of B lying over m.

Proof. This is a combination of parts (11) and (10) of Lemma 10.145.3. �

Lemma 10.145.7. Let (R,m, κ) be a strictly henselian local ring. Any finite type
R-algebra S can be written as S = A1× . . .×An×B with Ai local and finite over R
and κ ⊂ κ(mAi) finite purely inseparable and R→ B not quasi-finite at any prime
of B lying over m.

Proof. First write S = A1×. . .×An×B as in Lemma 10.145.6. The field extension
κ ⊂ κ(mAi) is finite and κ is separably algebraically closed, hence it is finite purely
inseparable. �

Lemma 10.145.8. Let (R,m, κ) be a henselian local ring. The category of finite
étale ring extensions R → S is equivalent to the category of finite étale algebras
κ→ S via the functor S 7→ S/mS.

Proof. Denote C → D the functor of categories of the statement. Suppose that
R→ S is finite étale. Then we may write

S = A1 × . . .×An
with Ai local and finite étale over S, use either Lemma 10.145.6 or Lemma 10.145.3
part (10). In particular Ai/mAi is a finite separable field extension of κ, see Lemma
10.138.5. Thus we see that every object of C and D decomposes canonically into
irreducible pieces which correspond via the given functor. Next, suppose that S1,
S2 are finite étale over R such that κ1 = S1/mS1 and κ2 = S2/mS2 are fields (finite
separable over κ). Then S1 ⊗R S2 is finite étale over R and we may write

S1 ⊗R S2 = A1 × . . .×An

http://stacks.math.columbia.edu/tag/04GI
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as before. Then we see that HomR(S1, S2) is identified with the set of indices
i ∈ {1, . . . , n} such that S2 → Ai is an isomorphism. To see this use that given any
R-algebra map ϕ : S1 → S2 the map ϕ× 1 : S1⊗R S2 → S2 is surjective, and hence
is equal to projection onto one of the factors Ai. But in exactly the same way we
see that Homκ(κ1, κ2) is identified with the set of indices i ∈ {1, . . . , n} such that
κ2 → Ai/mAi is an isomorphism. By the discussion above these sets of indices
match, and we conclude that our functor is fully faithful. Finally, let κ ⊂ κ′ be a
finite separable field extension. By Lemma 10.138.16 there exists an étale ring map
R → S and a prime q of S lying over m such that κ ⊂ κ(q) is isomorphic to the
given extension. By part (1) we may write S = A1 × . . . × An × B. Since R → S
is quasi-finite we see that there exists no prime of B over m. Hence Sq is equal to
Ai for some i. Hence R → Ai is finite étale and produces the given residue field
extension. Thus the functor is essentially surjective and we win. �

Lemma 10.145.9. Let (R,m, κ) be a strictly henselian local ring. Let R → S be
an unramified ring map. Then

S = A1 × . . .×An ×B
with each R→ Ai surjective and no prime of B lying over m.

Proof. First write S = A1× . . .×An×B as in Lemma 10.145.6. Now we see that
R→ Ai is finite unramified and Ai local. Hence the maximal ideal of Ai is mAi and
its residue field Ai/mAi is a finite separable extension of κ, see Lemma 10.144.5.
However, the condition that R is strictly henselian means that κ is separably alge-
braically closed, so κ = Ai/mAi. By Nakayama’s Lemma 10.19.1 we conclude that
R→ Ai is surjective as desired. �

Lemma 10.145.10. Let (R,m, κ) be a complete local ring, see Definition 10.149.1.
Then R is henselian.

Proof. Let f ∈ R[T ] be monic. Denote fn ∈ R/mn+1[T ] the image. Denote f ′n
the derivative of fn with respect to T . Let a0 ∈ κ be a simple root of f0. We lift
this to a solution of f over R inductively as follows: Suppose given an ∈ R/mn+1

such that an mod m = a0 and fn(an) = 0. Pick any element b ∈ R/mn+2 such that
an = b mod mn+1. Then fn+1(b) ∈ mn+1/mn+2. Set

an+1 = b− fn+1(b)/f ′n+1(b)

(Newton’s method). This makes sense as f ′n+1(b) ∈ R/mn+1 is invertible by the
condition on a0. Then we compute fn+1(an+1) = fn+1(b)−fn+1(b) = 0 in R/mn+2.
Since the system of elements an ∈ R/mn+1 so constructed is compatible we get an
element a ∈ limR/mn = R (here we use that R is complete). Moreover, f(a) = 0
since it maps to zero in each R/mn. Finally a = a0 and we win. �

Lemma 10.145.11. Let (R,m) be a local ring of dimension 0. Then R is henselian.

Proof. Let R → S be a finite ring map. By Lemma 10.145.3 it suffices to show
that S is a product of local rings. By Lemma 10.35.19 S has finitely many primes
m1, . . . ,mr which all lie over m. There are no inclusions among these primes, see
Lemma 10.35.18, hence they are all maximal. Every element of m1 ∩ . . . ∩ mr is
nilpotent by Lemma 10.16.2. It follows S is the product of the localizations of S at
the primes mi by Lemma 10.51.5. �

Lemma 10.145.12. Let R→ S be a ring map with S henselian local. Given
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(1) an étale ring map R→ A,
(2) a prime q of A lying over p = R ∩mS,
(3) a κ(p)-algebra map κ(q)→ S/mS,

then there exists a unique homomorphism of R-algebras f : A → S such that
q = f−1(mS).

Proof. Consider A ⊗R S. This is an étale algebra over S, see Lemma 10.138.3.
Moreover, the kernel

q′ = Ker(A⊗R S → κ(q)⊗κ(p) κ(mS)→ κ(mS))

of the map using the map given in (3) is a prime ideal lying over mS with residue
field equal to the residue field of S. Hence by Lemma 10.145.3 there exists a unique
splitting τ : A ⊗R S → S with τ−1(mS) = q′. Set f equal to the composition
A→ A⊗R S → S. �

Lemma 10.145.13. Let R→ S be a ring map with S henselian local. Given

(1) an R-algebra A which is a filtered colimit of étale R-algebras,
(2) a prime q of A lying over p = R ∩mS,
(3) a κ(p)-algebra map κ(q)→ S/mS,

then there exists a unique homomorphism of R-algebras f : A → S such that
q = f−1(mS).

Proof. Write A = colimAi as a filtered colimit of étale R-algebras. Set qi = Ai∩q.
We obtain fi : Ai → S by applying Lemma 10.145.12. Set f = colim fi. �

Lemma 10.145.14. Let R be a ring. Let A→ B be an R-algebra homomorphism.
If A and B are filtered colimits of étale R-algebras, then B is a filtered colimit of
étale A-algebras.

Proof. Write A = colimAi and B = colimBj as filtered colimits with Ai and Bj
étale over R. For each i we can find a j such that Ai → B factors through Bj , see
Lemma 10.123.2. The factorization Ai → Bj is étale by Lemma 10.138.9. Since
A→ A⊗AiBj is étale (Lemma 10.138.3) it suffices to prove that B = colimA⊗AiBj
where the colimit is over pairs (i, j) and factorizations Ai → Bj → B of Ai → B
(this is a directed system; details omitted). This is clear because colimA⊗Ai Bj =
A⊗A B = B. �

Lemma 10.145.15. Let R be a ring. Given a commutative diagram of ring maps

S // K

R

OO

// S′

OO

where S, S′ are henselian local, S, S′ are filtered colimits of étale R-algebras, K is
a field and the arrows S → K and S′ → K identify K with the residue field of both
S and S′. Then there exists an unique R-algebra isomorphism S → S′ compatible
with the maps to K.

Proof. Follows immediately from Lemma 10.145.13. �

Lemma 10.145.16. Let (R,m, κ) be a local ring. There exists a local ring map
R→ Rh with the following properties
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(1) Rh is henselian,
(2) Rh is a filtered colimit of étale R-algebras,
(3) mRh is the maximal ideal of Rh, and
(4) κ = Rh/mRh.

Proof. Consider the category of pairs (S, q) where R→ S is an étale ring map, and
q is a prime of S lying over m with κ = κ(q). A morphism of pairs (S, q)→ (S′, q′)
is given by an R-algebra map ϕ : S → S′ such that ϕ−1(q′) = q. We set

Rh = colim(S,q) S.

This clearly implies that Rh is canonical, since no choices were made in this con-
struction. Moreover, property (2) is clear.

Let us show that the category of pairs is filtered, see Categories, Definition 4.19.1.
The category contains the pair (R,m) and hence is not empty, which proves part
(1) of Categories, Definition 4.19.1. Note that for any pair (S, q) the prime ideal
q is maximal, for example since κ → S/q ⊂ κ(q) are isomorphisms. Suppose that
(S, q) and (S′, q′) are two objects. Set S′′ = S ⊗R S′ and q′′ = qS′′ + q′S′′. Then
S′′/q′′ = S/q ⊗R S′/q′ = κ by what we said above. Moreover, R → S′′ is étale
by Lemma 10.138.3. This proves part (2) of Categories, Definition 4.19.1. Next,
suppose that ϕ,ψ : (S, q)→ (S′, q′) are two morphisms of pairs. Consider

S′′ = (S′ ⊗ϕ,S,ψ S′)⊗S′⊗RS′ S′

with prime ideal

q′′ = (q′ ⊗ S′ + S′ ⊗ q′)⊗ S′ + (S′ ⊗ϕ,S,ψ S′)⊗ q′

Arguing as above (base change of étale maps is étale, composition of étale maps
is étale) we see that S′′ is étale over R. Moreover, the canonical map S′ → S′′

(using the right most factor for example) equalizes ϕ and ψ. This proves part
(3) of Categories, Definition 4.19.1. Hence we conclude that Rh consists of triples
(S, q, f) with f ∈ S, and two such triples (S, q, f), (S′, q′, f ′) define the same
element of Rh if and only if there exists a pair (S′′, q′′) and morphisms of pairs
ϕ : (S, q)→ (S′′, q′′) and ϕ′ : (S′, q′)→ (S′′, q′′) such that ϕ(f) = ϕ′(f ′).

Suppose that x ∈ Rh. Represent x by a triple (S, q, f). Let q1, . . . , qr be the other
primes of S lying over m. Then we can find a g ∈ S, g 6∈ q and g ∈ qi for i = 1, . . . , r,
see Lemma 10.14.2. Consider the morphism of pairs (S, q)→ (Sg, qSg). In this way
we see that we may always assume that x is given by a triple (S, q, f) where q is

the only prime of S lying over m, i.e.,
√
mS = q. But since R→ S is étale, we have

mSq = qSq, see Lemma 10.138.5. Hence we actually get that mS = q.

Suppose that x 6∈ mRh. Represent x by a triple (S, q, f) with mS = q. Then
f 6∈ mS, i.e., f 6∈ q. Hence (S, q)→ (Sf , qSf ) is a morphism of pairs such that the
image of f becomes invertible. Hence x is invertible with inverse represented by
the triple (Sf , qSf , 1/f). We conclude that Rh is a local ring with maximal ideal
mRh. The residue field is κ since we can define Rh/mRh → κ by mapping a triple
(S, q, f) to the residue class of f module q.

We still have to show that Rh is henselian. Namely, suppose that P ∈ Rh[T ] is a
monic polynomial and a0 ∈ κ is a simple root of the reduction P ∈ κ[T ]. Then we
can find a pair (S, q) such that P is the image of a monic polynomialQ ∈ S[T ]. Since
S → Rh induces an isomorphism of residue fields we see that S′ = S[T ]/(Q) has a
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prime ideal q′ = (q, T −a0) at which S → S′ is standard étale. Moreover, κ = κ(q′).
Pick g ∈ S′, g 6∈ q′ such that S′′ = S′g is étale over S. Then (S, q) → (S′′, q′S′′) is
a morphism of pairs. Now that triple (S′′, q′S′′, class of T ) determines an element
a ∈ Rh with the properties P (a) = 0, and a = a0 as desired. �

Lemma 10.145.17. Let (R,m, κ) be a local ring. Let κ ⊂ κsep be a separable
algebraic closure. There exists a commutative diagram

κ // κ // κsep

R //

OO

Rh //

OO

Rsh

OO

with the following properties

(1) the map Rh → Rsh is local
(2) Rsh is strictly henselian,
(3) Rsh is a filtered colimit of étale R-algebras,
(4) mRsh is the maximal ideal of Rsh, and
(5) κsep = Rsh/mRsh.

Proof. This can be proved using the method followed in the proof of Lemma
10.145.16. The only difference is that, instead of pairs, one uses triples (S, q, α)
where R → S étale, q is a prime of S lying over m, and α : κ(q) → κsep is an
embedding of extensions of κ.

But we can also deduce the result directly from the result of Lemma 10.145.16.
Namely, for any finite separable field sub extension κ ⊂ κ′ ⊂ κsep there exists a
unique (up to unique isomorphism) finite étale local ring extension Rh ⊂ Rh(κ′)
whose residue field extension extension reproduces the given extension, see Lemma
10.145.8. Hence we can set

Rsh =
⋃

κ⊂κ′⊂κsep
Rh(κ′)

The arrows in this system, compatible with the arrows on the level of residue fields,
exist by Lemma 10.145.8. This will produce a henselian local ring by Lemma
10.145.5 since each of the rings Rh(κ′) is henselian by Lemma 10.145.4. By con-
struction the residue field extension induced by Rh → Rsh is the field extension
κ ⊂ κsep. We omit the proof that Rsh is a colimit of étale R-algebras. �

Definition 10.145.18. Let (R,m, κ) be a local ring.

(1) The local ring map R→ Rh constructed in Lemma 10.145.16 is called the
henselization of R.

(2) Given a separable algebraic closure κ ⊂ κsep the local ring map R→ Rsh

constructed in Lemma 10.145.17 is called the strict henselization of R with
respect to κ ⊂ κsep.

(3) A local ring map R → Rsh is called a strict henselization of R if it is
isomorphic to one of the local ring maps constructed in Lemma 10.145.17

The maps R→ Rh → Rsh are flat local ring homomorphisms. By Lemma 10.145.15
the R-algebras Rh and Rsh are well defined up to unique isomorphism by the
conditions that they are henselian local, filtered colimits of étale R-algebras with
residue field κ and κsep. We will discuss this and the close relationship between R
and its henselization in More on Algebra, Section 15.34. In the rest of this section
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we prove some lemmas we discuss functoriality properties of (strict) henselizations.
This should make it clear exactly how canonical these constructions really are.

Lemma 10.145.19. Let R → S be a local map of local rings. Let S → Sh be the
henselization. Let R → A be an étale ring map and let q be a prime of A lying
over mR such that R/mR ∼= κ(q). Then there exists a unique morphism of rings
f : A→ Sh fitting into the commutative diagram

A
f
// Sh

R

OO

// S

OO

such that f−1(mSh) = q.

Proof. This is a special case of Lemma 10.145.12. �

Lemma 10.145.20. Let R → S be a local map of local rings. Let R → Rh and
S → Sh be the henselizations. There exists a unique local ring map Rh → Sh fitting
into the commutative diagram

Rh
f
// Sh

R

OO

// S

OO

Proof. Follows immediately from Lemma 10.145.13. �

Here is a slightly different construction of the henselization.

Lemma 10.145.21. Let R be a ring. Let p ⊂ R be a prime ideal. Consider the
category of pairs (S, q) where R → S is étale and q is a prime lying over p such
that κ(p) = κ(q). This category is filtered and

(Rp)h = colim(S,q) S = colim(S,q) Sq

canonically.

Proof. A morphism of pairs (S, q) → (S′, q′) is given by an R-algebra map ϕ :
S → S′ such that ϕ−1(q′) = q. Let us show that the category of pairs is filtered,
see Categories, Definition 4.19.1. The category contains the pair (R, p) and hence
is not empty, which proves part (1) of Categories, Definition 4.19.1. Suppose that
(S, q) and (S′, q′) are two pairs. Note that q, resp. q′ correspond to primes of the
fibre rings S ⊗ κ(p), resp. S′ ⊗ κ(p) with residue fields κ(p), hence they correspond
to maximal ideals of S ⊗ κ(p), resp. S′ ⊗ κ(p). Set S′′ = S ⊗R S′. By the above
there exists a unique prime q′′ ⊂ S′′ lying over q and over q′ whose residue field
is κ(p). The ring map R → S′′ is étale by Lemma 10.138.3. This proves part (2)
of Categories, Definition 4.19.1. Next, suppose that ϕ,ψ : (S, q)→ (S′, q′) are two
morphisms of pairs. Consider

S′′ = (S′ ⊗ϕ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗ϕ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F
′
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where F ′, F are the fibre rings of S′ and S. Since ϕ and ψ are morphisms of pairs
the map F ′ → κ(p) corresponding to p′ extends to a map F ′′ → κ(p) and in turn
corresponds to a prime ideal q′′ ⊂ S′′ whose residue field is κ(p). The canonical
map S′ → S′′ (using the right most factor for example) is a morphism of pairs
(S′, q′) → (S′′, q′′) which equalizes ϕ and ψ. This proves part (3) of Categories,
Definition 4.19.1. Hence we conclude that the category is filtered.

Recall that in the proof of Lemma 10.145.16 we constructed (Rp)h as the corre-
sponding colimit but starting with Rp and its maximal ideal pRp. Now, given any
pair (S, q) for (R, p) we obtain a pair (Sp, qSp) for (Rp, pRp). Moreover, in this
situation

Sp = colimf∈R,f 6∈p Sf .

Hence in order to show the equalities of the lemma, it suffices to show that any
pair (Sloc, qloc) for (Rp, pRp) is of the form (Sp, qSp) for some pair (S, q) over (R, p)
(some details omitted). This follows from Lemma 10.138.3. �

Lemma 10.145.22. Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Let R→ Rh and S → Sh be the henselizations of Rp and Sq. The local ring
map Rh → Sh of Lemma 10.145.20 identifies Sh with the henselization of Rh⊗R S
at the unique prime lying over mh and q.

Proof. By Lemma 10.145.21 we see that Rh, resp. Sh are filtered colimits of étale
R, resp. S-algebras. Hence we see that Rh ⊗R S is a filtered colimit of étale S-
algebras Ai (Lemma 10.138.3). By Lemma 10.145.14 we see that Sh is a filtered
colimit of étale Rh ⊗R S-algebras. Since moreover Sh is a henselian local ring
with residue field equal to κ(q), the statement follows from the uniqueness result
of Lemma 10.145.15. �

Lemma 10.145.23. Let R → S be a ring map. Let q be a prime of S lying over
p in R. Assume R→ S is quasi-finite at q. The commutative diagram

Rhp // Shq

Rp

OO

// Sq

OO

of Lemma 10.145.20 identifies Shq with the localization of Rhp ⊗Rp
Sq at the prime

generated by q.

Proof. Note that Rhp ⊗R S is quasi-finite over Rhp at the prime ideal corresponding

to q, see Lemma 10.118.6. Hence the localization S′ of Rhp ⊗Rp
Sq is henselian,

see Lemma 10.145.4. As a localization S′ is a filtered colimit of étale Rhp ⊗Rp
Sq-

algebras. By Lemma 10.145.22 we see that Shq is the henselization of Rhp ⊗Rp
Sq.

Thus S′ = Shq by the uniqueness result of Lemma 10.145.15. �

Lemma 10.145.24. Let R be a local ring with henselization Rh. Let I ⊂ mR.
Then Rh/IRh is the henselization of R/I.

Proof. This is a special case of Lemma 10.145.23. �
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Lemma 10.145.25. Let ϕ : R→ S be a local map of local rings. Let S/mS ⊂ κsep
be a separable algebraic closure. Let S → Ssh be the strict henselization of S with
respect to S/mS ⊂ κsep. Let R→ A be an étale ring map and let q be a prime of A
lying over mR. Given any commutative diagram

κ(q)
φ
// κsep

R/mR
ϕ //

OO

S/mS

OO

there exists a unique morphism of rings f : A → Ssh fitting into the commutative
diagram

A
f
// Ssh

R

OO

ϕ // S

OO

such that f−1(mSh) = q and the induced map κ(q)→ κsep is the given one.

Proof. This is a special case of Lemma 10.145.12. �

Lemma 10.145.26. Let R → S be a local map of local rings. Choose separable
algebraic closures R/mR ⊂ κsep1 and S/mS ⊂ κsep2 . Let R → Rsh and S → Ssh be
the corresponding strict henselizations. Given any commutative diagram

κsep1 φ
// κsep2

R/mR
ϕ //

OO

S/mS

OO

There exists a unique local ring map Rsh → Ssh fitting into the commutative dia-
gram

Rsh
f
// Ssh

R

OO

// S

OO

and inducing φ on the residue fields of Rsh and Ssh.

Proof. Follows immediately from Lemma 10.145.13. �

Lemma 10.145.27. Let R be a ring. Let p ⊂ R be a prime ideal. Let κ(p) ⊂ κsep
be a separable algebraic closure. Consider the category of triples (S, q, φ) where
R → S is étale, q is a prime lying over p, and φ : κ(q) → κsep is a κ(p)-algebra
map. This category is filtered and

(Rp)sh = colim(S,q,φ) S = colim(S,q,φ) Sq

canonically.

Proof. A morphism of triples (S, q, φ)→ (S′, q′, φ′) is given by an R-algebra map
ϕ : S → S′ such that ϕ−1(q′) = q and such that φ′ ◦ ϕ = φ. Let us show that
the category of pairs is filtered, see Categories, Definition 4.19.1. The category
contains the triple (R, p, κ(p) ⊂ κsep) and hence is not empty, which proves part
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(1) of Categories, Definition 4.19.1. Suppose that (S, q, φ) and (S′, q′, φ′) are two
triples. Note that q, resp. q′ correspond to primes of the fibre rings S ⊗ κ(p), resp.
S′ ⊗ κ(p) with residue fields finite separable over κ(p) and φ, resp. φ′ correspond
to maps into κsep. Hence this data corresponds to κ(p)-algebra maps

φ : S ⊗R κ(p) −→ κsep, φ′ : S′ ⊗R κ(p) −→ κsep.

Set S′′ = S ⊗R S′. Combining the maps the above we get a unique κ(p)-algebra
map

φ′′ = φ⊗ φ′ : S′′ ⊗R κ(p) −→ κsep

whose kernel corresponds to a prime q′′ ⊂ S′′ lying over q and over q′, and whose
residue field maps via φ′′ to the compositum of φ(κ(q)) and φ′(κ(q′)) in κsep. The
ring map R→ S′′ is étale by Lemma 10.138.3. Hence (S′′, q′′, φ′′) is a triple domi-
nating both (S, q, φ) and (S′, q′, φ′). This proves part (2) of Categories, Definition
4.19.1. Next, suppose that ϕ,ψ : (S, q, φ)→ (S′, q′, φ′) are two morphisms of pairs.
Consider

S′′ = (S′ ⊗ϕ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗ϕ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F
′

where F ′, F are the fibre rings of S′ and S. Since ϕ and ψ are morphisms of triples
the map φ′ : F ′ → κsep extends to a map φ′′ : F ′′ → κsep which in turn corresponds
to a prime ideal q′′ ⊂ S′′. The canonical map S′ → S′′ (using the right most factor
for example) is a morphism of triples (S′, q′, φ′) → (S′′, q′′, φ′′) which equalizes ϕ
and ψ. This proves part (3) of Categories, Definition 4.19.1. Hence we conclude
that the category is filtered.

We still have to show that the colimit Rcolim of the system is equal to the strict
henselization of Rp with respect to κsep. To see this note that the system of triples
(S, q, φ) contains as a subsystem the pairs (S, q) of Lemma 10.145.21. Hence Rcolim
contains Rhp by the result of that lemma. Moreover, it is clear that Rhp ⊂ Rcolim
is a directed colimit of étale ring extensions. It follows that Rcolim is henselian
by Lemmas 10.145.4 and 10.145.5. Finally, by Lemma 10.138.16 we see that the
residue field of Rcolim is equal to κsep. Hence we conclude that Rcolim is strictly
henselian and hence equals the strict henselization of Rp as desired. Some details
omitted. �

Lemma 10.145.28. Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Choose separable algebraic closures κ(p) ⊂ κsep1 and κ(q) ⊂ κsep2 . Let
Rsh and Ssh be the corresponding strict henselizations of Rp and Sq. Given any
commutative diagram

κsep1 φ
// κsep2

κ(p)
ϕ //

OO

κ(q)

OO

The local ring map Rsh → Ssh of Lemma 10.145.26 identifies Ssh with the strict
henselization of Rsh ⊗R S at a prime lying over msh and q.
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Proof. The proof is identical to the proof of Lemma 10.145.22 except that it uses
Lemma 10.145.27 instead of Lemma 10.145.21. �

Lemma 10.145.29. Let R → S be a ring map. Let q be a prime of S lying
over p in R. Let κ(q) ⊂ κsep be a separable algebraic closure. Assume R → S is
quasi-finite at q. The commutative diagram

Rshp // Sshq

Rp

OO

// Sq

OO

of Lemma 10.145.26 identifies Sshq with a localization of Rshp ⊗Rp
Sq.

Proof. The residue field of Rshp is the separable algebraic closure of κ(p) in κsep.

Note that Rshp ⊗R S is quasi-finite over Rshp at the prime ideal corresponding to

q, see Lemma 10.118.6. Hence the localization S′ of Rshp ⊗Rp
Sq is henselian, see

Lemma 10.145.4. Note that the residue field of S′ is κsep since it contains both the
separable algebraic closure of κ(p) and κ(q). Furthermore, as a localization S′ is a
filtered colimit of étale Rshp ⊗Rp

Sq-algebras. By Lemma 10.145.28 we see that Sshq
is a strict henselization of Rshp ⊗Rp

Sq. Thus S′ = Shq by the uniqueness result of
Lemma 10.145.15. �

Lemma 10.145.30. Let R be a local ring with strict henselization Rsh. Let I ⊂
mR. Then Rsh/IRsh is a strict henselization of R/I.

Proof. This is a special case of Lemma 10.145.29. �

Lemma 10.145.31. Let ϕ : R→ S be a local homomorphism of strictly henselian
local rings. Let P1, . . . , Pn ∈ R[x1, . . . , xn] be polynomials such that R[x1, . . . , xn]/(P1, . . . , Pn)
is étale over R. Then the map

Rn −→ Sn, (h1, . . . , hn) 7−→ (ϕ(h1), . . . , ϕ(hn))

induces a bijection between

{(r1, . . . , rn) ∈ Rn | Pi(r1, . . . , rn) = 0, i = 1, . . . , n}
and

{(s1, . . . , sn) ∈ Sn | P ′i (s1, . . . , sn) = 0, i = 1, . . . , n}
where P ′i ∈ S[x1, . . . , xn] are the images of the Pi under ϕ.

Proof. The first solution set is canonically isomorphic to the set

HomR(R[x1, . . . , xn]/(P1, . . . , Pn), R).

As R is henselian the map R→ R/mR induces a bijection between this set and the
set of solutions in the residue field R/mR, see Lemma 10.145.3. The same is true
for S. Now since R[x1, . . . , xn]/(P1, . . . , Pn) is étale over R and R/mR is separably
algebraically closed we see that R/mR[x1, . . . , xn]/(P1, . . . , Pn) is a finite product
of copies of R/mR. Hence the tensor product

R/mR[x1, . . . , xn]/(P1, . . . , Pn)⊗R/mR S/mS = S/mS [x1, . . . , xn]/(P ′1, . . . , P
′
n)

is also a finite product of copies of S/mS with the same index set. This proves the
lemma. �
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Lemma 10.145.32. Let R be a henselian local ring. Any countably generated
Mittag-Leffler module over R is a direct sum of finitely presented R-modules.

Proof. Let M be a countably generated and Mittag-Leffler R-module. We claim
that for any element x ∈ M there exists a direct sum decomposition M = N ⊕K
with x ∈ N , the module N finitely presented, and K Mittag-Leffler.

Suppose the claim is true. Choose generators x1, x2, x3, . . . of M . By the claim we
can inductively find direct sum decompositions

M = N1 ⊕N2 ⊕ . . .⊕Nn ⊕Kn

with Ni finitely presented, x1, . . . , xn ∈ N1 ⊕ . . . ⊕ Nn, and Kn Mittag-Leffler.
Repeating ad infinitum we see that M =

⊕
Ni.

We still have to prove the claim. Let x ∈ M . By Lemma 10.89.2 there exists
an endomorphism α : M → M such that α factors through a finitely presented
module, and α(x) = x. Say α factors as

M
π // P

i // M

Set a = π ◦α ◦ i : P → P , so i ◦ a ◦π = α3. By Lemma 10.15.2 there exists a monic
polynomial P ∈ R[T ] such that P (a) = 0. Note that this implies formally that
α2P (α) = 0. Hence we may think of M as a module over R[T ]/(T 2P ). Assume
that x 6= 0. Then α(x) = x implies that 0 = α2P (α)x = P (1)x hence P (1) = 0 in
R/I where I = {r ∈ R | rx = 0} is the annihilator of x. As x 6= 0 we see I ⊂ mR,
hence 1 is a root of P = P mod mR ∈ R/mR[T ]. As R is henselian we can find a
factorization

T 2P = (T 2Q1)Q2

for some Q1, Q2 ∈ R[T ] with Q2 = (T − 1)e mod mRR[T ] and Q1(1) 6= 0 mod mR,
see Lemma 10.145.3. Let N = Im(α2Q1(α) : M → M) and K = Im(Q2(α) :
M → M). As T 2Q1 and Q2 generate the unit ideal of R[T ] we get a direct sum
decomposition M = N ⊕ K. Moreover, Q2 acts as zero on N and T 2Q1 acts as
zero on K. Note that N is a quotient of P hence is finitely generated. Also x ∈ N
because α2Q1(α)x = Q1(1)x and Q1(1) is a unit in R. By Lemma 10.86.9 the
modules N and K are Mittag-Leffler. Finally, the finitely generated module N is
finitely presented as a finitely generated Mittag-Leffler module is finitely presented,
see Example 10.88.1 part (1). �

10.146. Serre’s criterion for normality

We introduce the following properties of Noetherian rings.

Definition 10.146.1. Let R be a Noetherian ring. Let k ≥ 0 be an integer.

(1) We say R has property (Rk) if for every prime p of height ≤ k the local
ring Rp is regular. We also say that R is regular in codimension ≤ k.

(2) We say R has property (Sk) if for every prime p the local ring Rp has
depth at least min{k,dim(Rp)}.

(3) Let M be a finite R-module. We say M has property (Sk) if for every
prime p the module Mp has depth at least min{k,dim(Supp(Mp))}.

Any Noetherian ring has property (S0) (and so does any finite module over it). Our
convention that dim(∅) = −∞ guarantees that the zero module has property (Sk)
for all k.
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Lemma 10.146.2. Let R be a Noetherian ring. Let M be a finite R-module. The
following are equivalent:

(1) M has no embedded associated prime, and
(2) M has property (S1).

Proof. Let p be an embedded associated prime of M . Then there exists an-
other associated prime q of M such that p ⊃ q. In particular this implies that
dim(Supp(Mp)) ≥ 1 (since q is in the support as well). On the other hand pRp

is associated to Mp (Lemma 10.62.14) and hence depth(Mp) = 0 (see Lemma
10.62.17). In other words (S1) does not hold. Conversely, if (S1) does not then
there exists a prime p such that dim(Supp(Mp)) ≥ 1 and depth(Mp) = 0. Then
we see (arguing backwards using the lemmas cited above) that p is an embedded
associated prime. �

Lemma 10.146.3. Let R be a Noetherian ring. The following are equivalent:

(1) R is reduced, and
(2) R has properties (R0) and (S1).

Proof. Suppose that R is reduced. Then Rp is a field for every minimal prime p
of R, according to Lemma 10.24.1. Hence we have (R0). Let p be a prime of height
≥ 1. Then A = Rp is a reduced local ring of dimension ≥ 1. Hence its maximal
ideal m is not an associated prime since this would mean there exists a x ∈ m with
annihilator m so x2 = 0. Hence the depth of A = Rp is at least one, by Lemma
10.62.9. This shows that (S1) holds.

Conversely, assume that R satisfies (R0) and (S1). If p is a minimal prime of R,
then Rp is a field by (R0), and hence is reduced. If p is not minimal, then we see
that Rp has depth ≥ 1 by (S1) and we conclude there exists an element t ∈ pRp such
that Rp → Rp[1/t] is injective. This implies that Rp is a subring of localizations of
R at primes of smaller height. Thus by induction on the height we conclude that
R is reduced. �

Lemma 10.146.4 (Serre’s criterion for normality). Let R be a Noetherian ring.
The following are equivalent:

(1) R is a normal ring, and
(2) R has properties (R1) and (S2).

Proof. Suppose that R is normal. This means by definition that R is reduced
and all localizations Rp are normal domains. In particular we see that R has (R0)
and (S1) by Lemma 10.146.3. Hence it suffices to show that a local Noetherian
normal domain R of dimension d has depth ≥ min(2, d) and is regular if d = 1.
The assertion if d = 1 follows from Lemma 10.115.6.

Let R be a local Noetherian normal domain with maximal ideal m and dimension
d ≥ 2. Choose x ∈ m, x 6∈ m2. If depth(R/xR) ≥ 1 then depth(R) ≥ 2 and we
win. Assume depth(R/xR) = 0 to get a contradiction. This means that m/(x) is
an associated prime of R/xR. In other words, there exists an element z ∈ R such
that mz ⊂ (x), but z 6∈ (x). Consider the element z/x of the fraction field of R.
Let c ∈ m be an arbitrary nonzero element. We claim that czn/xn ∈ R. Namely,
czn/xn = (cz/x)zn−1/xn−1. By choice of z we have cz = c′x for some c′ ∈ R. Note
that c′ ∈ m since x 6∈ m2. Hence czn/xn = c′zn−1/xn−1 which is an element of R
by induction on n. In other words, this shows that z/x is almost integral over R,
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see Definition 10.36.3. By Lemma 10.36.4 we see that z/x is integral over R. As R
is normal we see that z/x ∈ R which is the desired contradiction.

Suppose that R satisfies (R1) and (S2). By Lemma 10.146.3 we conclude that R
is reduced. Hence it suffices to show that if R is a reduced local Noetherian ring
of dimension d satisfying (S2) and (R1) then R is a normal domain. If d = 0, the
result is clear. If d = 1, then the result follows from Lemma 10.115.6.

Let R be a reduced local Noetherian ring with maximal ideal m and dimension d
which satisfies (R1) and (S2). By Lemma 10.36.14 it suffices to show that R is
integrally closed in its total ring of fractions. Pick x = f/g, with f, g ∈ R and g a
nonzerodivisor which satisfies a monic equation

(f/g)n +
∑n

i=1
ai(f/g)n−i = 0

with ai ∈ R. Our goal is to show that f ∈ (g) = gR. We will prove this by
induction on d. By the remarks in the previous paragraph we know this is the case
when d = 0, and when d = 1, which starts the induction. Assume d ≥ 2. Consider
the short exact sequence

0→ R→ R→ R/(g)→ 0.

By Lemma 10.69.11 this implies depth(R/(g)) ≥ 1. Hence there exists an element
t ∈ m which is a nonzerodivisor on R/(g). Hence if f has a nonzero image in R/(g)
then it has a nonzero image in (R/(g))[1/t] ∼= Rt/gRt. But by induction on the
dimension the image of f is zero in Rt/gRt (for example by localizing at all the
primes of D(t) ⊂ Spec(R)). Hence we win. �

Lemma 10.146.5. A regular ring is normal.

Proof. Let R be a regular ring. By Lemma 10.146.4 it suffices to prove that R is
(R1) and (S2). As a regular local ring is Cohen-Macaulay, see Lemma 10.102.3, it
is clear that R is (S2). Property (R1) is immediate. �

Lemma 10.146.6. Let R be a Noetherian normal domain with fraction field K.
Then

(1) for any nonzero a ∈ R the quotient R/aR has no embedded primes, and
all its associated primes have height 1

(2)

R =
⋂

height(p)=1
Rp

(3) For any nonzero x ∈ K the quotient R/(R∩xR) has no embedded primes,
and all its associates primes have height 1.

Proof. By Lemma 10.146.4 we see that R has (S2). Hence for any nonzero element
a ∈ R we see that R/aR has (S1) (use Lemma 10.69.11 for example) Hence R/aR
has no embedded primes (Lemma 10.146.2). We conclude the associated primes of
R/aR are exactly the minimal primes p over (a), which have height 1 as a is not
zero (Lemma 10.59.10). This proves (1).

Thus, given b ∈ R we have b ∈ aR if and only if b ∈ aRp for every minimal prime
p over (a) (see Lemma 10.62.18). These primes all have height 1 as seen above so
b/a ∈ R if and only if b/a ∈ Rp for all height 1 primes. Hence (2) holds.
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For (3) write x = a/b. Let p1, . . . , pr be the minimal primes over (ab). These all
have height 1 by the above. Then we see that R∩xR =

⋂
i=1,...,r(R∩xRpi) by part

(2) of the lemma. Hence R/(R ∩ xR) is a submodule of
⊕
R/(R ∩ xRpi). As Rpi

is a discrete valuation ring (by property (R1) for the Noetherian normal domain
R, see Lemma 10.146.4) we have xRpi = peii Rpi for some ei ∈ Z. Hence the direct

sum is equal to
⊕

ei>0R/p
(ei)
i , see Definition 10.63.1. By Lemma 10.63.2 the only

associated prime of the module R/p(n) is p. Hence the set of associate primes of
R/(R ∩ xR) is a subset of {pi} and there are no inclusion relations among them.
This proves (3). �

10.147. Formal smoothness of fields

In this section we show that field extensions are formally smooth if and only if
they are separable. However, we first prove finitely generated field extensions are
separable algebraic if and only if they are formally unramified.

Lemma 10.147.1. Let k ⊂ K be a finitely generated field extension. The following
are equivalent

(1) K is a finite separable field extension of k,
(2) ΩK/k = 0,
(3) K is formally unramified over k,
(4) K is unramified over k,
(5) K is formally étale over k,
(6) K is étale over k.

Proof. The equivalence of (2) and (3) is Lemma 10.141.2. By Lemma 10.138.4 we
see that (1) is equivalent to (6). Property (6) implies (5) and (4) which both in
turn imply (3) (Lemmas 10.143.2, 10.144.3, and 10.144.2). Thus it suffices to show
that (2) implies (1). Choose a finitely generated k-subalgebra A ⊂ K such that K
is the fraction field of the domain A. Set S = A \ {0}. Since 0 = ΩK/k = S−1ΩA/k
(Lemma 10.127.8) and since ΩA/k is finitely generated (Lemma 10.127.16), we can
replace A by a localization Af to reduce to the case that ΩA/k = 0 (details omitted).
Then A is unramified over k, hence K/k is finite separable for example by Lemma
10.144.5 applied with q = (0). �

Lemma 10.147.2. Let K be a field of characteristic p > 0. Let a ∈ K. Then
da = 0 in ΩK/Fp if and only if a is a pth power.

Proof. By Lemma 10.127.4 we see that there exists a subfield Fp ⊂ L ⊂ K such
that Fp ⊂ L is a finitely generated field extension and such that da is zero in ΩL/Fp .
Hence we may assume that K is a finitely generated field extension of Fp.

Choose a transcendence basis x1, . . . , xr ∈ K such that K is finite separable over
Fp(x1, . . . , xr). We remark that the result holds for the purely transcendental
subfield Fp(x1, . . . , xr) ⊂ K. Namely,

ΩFp(x1,...,xr)/Fp =
⊕r

i=1
Fp(x1, . . . , xr)dxi

and any rational function all of whose partial derivatives are zero is a pth power.
Moreover, we also have

ΩK/Fp =
⊕r

i=1
Kdxi
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since Fp(x1, . . . , xr) ⊂ K is finite separable (computation omitted). Suppose a ∈ K
is an element such that da = 0 in the module of differentials. By our choice of xi we
see that the minimal polynomial P (T ) ∈ k(x1, . . . , xr)[T ] of a is separable. Write

P (T ) = T d +
∑d

i=1
aiT

d−i

and hence

0 = dP (a) =
∑d

i=1
ad−idai

in ΩK/Fp . By the description of ΩK/Fp above and the fact that P was the minimal

polynomial of a, we see that this implies dai = 0. Hence ai = bpi for each i.
Therefore by Fields, Lemma 9.25.2 we see that a is a pth power. �

Lemma 10.147.3. Let k be a field of characteristic p > 0. Let a1, . . . , an ∈ k be
elements such that da1, . . . , dan are linearly independent in Ωk/Fp . Then the field

extension k(a
1/p
1 , . . . , a

1/p
n ) has degree pn over k.

Proof. By induction on n. If n = 1 the result is Lemma 10.147.2. For the induction

step, suppose that k(a
1/p
1 , . . . , a

1/p
n−1) has degree pn−1 over k. We have to show that

an does not map to a pth power in k(a
1/p
1 , . . . , a

1/p
n−1). If it does then we can write

an =

(∑
I=(i1,...,in−1), 0≤ij≤p−1

λIa
i1/p
1 . . . a

in−1/p
n−1

)p
=
∑

I=(i1,...,in−1), 0≤ij≤p−1
λpIa

i1
1 . . . a

in−1

n−1

Applying d we see that dan is linearly dependent on dai, i < n. This is a contra-
diction. �

Lemma 10.147.4. Let k be a field of characteristic p > 0. The following are
equivalent:

(1) the field extension K/k is separable (see Definition 10.41.1), and
(2) the map K ⊗k Ωk/Fp → ΩK/Fp is injective.

Proof. Write K as a directed colimit K = colimiKi of finitely generated field
extensions k ⊂ Ki. By definition K is separable if and only if each Ki is separable
over k, and by Lemma 10.127.4 we see that K ⊗k Ωk/Fp → ΩK/Fp is injective if
and only if each Ki ⊗k Ωk/Fp → ΩKi/Fp is injective. Hence we may assume that
K/k is a finitely generated field extension.

Assume k ⊂ K is a finitely generated field extension which is separable. Choose
x1, . . . , xr+1 ∈ K as in Lemma 10.41.3. In this case there exists an irreducible
polynomial G(X1, . . . , Xr+1) ∈ k[X1, . . . , Xr+1] such that G(x1, . . . , xr+1) = 0 and
such that ∂G/∂Xr+1 is not identically zero. Moreover K is the field of fractions of
the domain. S = K[X1, . . . , Xr+1]/(G). Write

G =
∑

aIX
I , XI = Xi1

1 . . . X
ir+1

r+1 .

Using the presentation of S above we see that

ΩS/Fp =
S ⊗k Ωk ⊕

⊕
i=1,...,r+1 SdXi

〈
∑
XIdaI +

∑
∂G/∂XidXi〉
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Since ΩK/Fp is the localization of the S-module ΩS/Fp (see Lemma 10.127.8) we
conclude that

ΩK/Fp =
K ⊗k Ωk ⊕

⊕
i=1,...,r+1KdXi

〈
∑
XIdaI +

∑
∂G/∂XidXi〉

Now, since the polynomial ∂G/∂Xr+1 is not identically zero we conclude that the
map K ⊗k Ωk/Fp → ΩS/Fp is injective as desired.

Assume k ⊂ K is a finitely generated field extension and that K⊗kΩk/Fp → ΩK/Fp
is injective. (This part of the proof is the same as the argument proving Lemma
10.43.1.) Let x1, . . . , xr be a transcendence basis of K over k such that the degree
of inseparability of the finite extension k(x1, . . . , xr) ⊂ K is minimal. If K is
separable over k(x1, . . . , xr) then we win. Assume this is not the case to get a
contradiction. Then there exists an element α ∈ K which is not separable over
k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ] be its minimal polynomial. Because α
is not separable actually P is a polynomial in T p. Clear denominators to get an
irreducible polynomial

G(X1, . . . , Xr, T ) =
∑

aI,iX
IT i ∈ k[X1, . . . , Xr, T ]

such that G(x1, . . . , xr, α) = 0 in L. Note that this means k[X1, . . . , Xr, T ]/(G) ⊂
L. We may assume that for some pair (I0, i0) the coefficient aI0,i0 = 1. We claim
that dG/dXi is not identically zero for at least one i. Namely, if this is not the
case, then G is actually a polynomial in Xp

1 , . . . , X
p
r , T

p. Then this means that∑
(I,i)6=(I0,i0)

xIαidaI,i

is zero in ΩK/Fp . Note that there is no k-linear relation among the elements

{xIαi | aI,i 6= 0 and (I, i) 6= (I0, i0)}
of K. Hence the assumption that K ⊗k Ωk/Fp → ΩK/Fp is injective this implies
that daI,i = 0 in Ωk/Fp for all (I, i). By Lemma 10.147.2 we see that each aI,i is a
pth power, which implies that G is a pth power contradicting the irreducibility of
G. Thus, after renumbering, we may assume that dG/dX1 is not zero. Then we
see that x1 is separably algebraic over k(x2, . . . , xr, α), and that x2, . . . , xr, α is a
transcendence basis of L over k. This means that the degree of inseparability of
the finite extension k(x2, . . . , xr, α) ⊂ L is less than the degree of inseparability of
the finite extension k(x1, . . . , xr) ⊂ L, which is a contradiction. �

Lemma 10.147.5. Let k ⊂ K be an extension of fields. If K is formally smooth
over k, then K is a separable extension of k.

Proof. Assume K is formally smooth over k. By Lemma 10.133.9 we see that K⊗k
Ωk/Z → ΩK/Z is injective. Hence K is separable over k by Lemma 10.147.4. �

Lemma 10.147.6. Let k ⊂ K be an extension of fields. Then K is formally smooth
over k if and only if H1(LK/k) = 0.

Proof. This follows from Proposition 10.133.8 and the fact that a vector spaces is
free (hence projective). �

Lemma 10.147.7. Let k ⊂ K be an extension of fields.

(1) If K is purely transcendental over k, then K is formally smooth over k.
(2) If K is separable algebraic over k, then K is formally smooth over k.
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(3) If K is separable over k, then K is formally smooth over k.

Proof. For (1) write K = k(xj ; j ∈ J). Suppose that A is a k-algebra, and I ⊂ A
is an ideal of square zero. Let ϕ : K → A/I be a k-algebra map. Let aj ∈ A be an
element such that aj mod I = ϕ(xj). Then it is easy to see that there is a unique
k-algebra map K → A which maps xj to aj and which reduces to ϕ mod I. Hence
k ⊂ K is formally smooth.

In case (2) we see that k ⊂ K is a colimit of étale ring extensions. An étale ring map
is formally étale (Lemma 10.143.2). Hence this case follows from Lemma 10.143.3
and the trivial observation that a formally étale ring map is formally smooth.

In case (3), write K = colimKi as the filtered colimit of its finitely generated sub
k-extensions. By Definition 10.41.1 each Ki is separable algebraic over a purely
transcendental extension of k. Hence Ki/k is formally smooth by cases (1) and (2)
and Lemma 10.133.3. Thus H1(LKi/k) = 0 by Lemma 10.147.6. Hence H1(LK/k) =
0 by Lemma 10.129.9. Hence K/k is formally smooth by Lemma 10.147.6 again. �

Lemma 10.147.8. Let k be a field.

(1) If the characteristic of k is zero, then any extension field of k is formally
smooth over k.

(2) If the characteristic of k is p > 0, then k ⊂ K is formally smooth if and
only if it is a separable field extension.

Proof. Combine Lemmas 10.147.5 and 10.147.7. �

Here we put together all the different characterizations of separable field extensions.

Proposition 10.147.9. Let k ⊂ K be a field extension. If the characteristic of k
is zero then

(1) K is separable over k,
(2) K is geometrically reduced over k,
(3) K is formally smooth over k,
(4) H1(LK/k) = 0, and
(5) the map K ⊗k Ωk/Z → ΩK/Z is injective.

If the characteristic of k is p > 0, then the following are equivalent:

(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced,
(3) K is geometrically reduced over k,
(4) the map K ⊗k Ωk/Fp → ΩK/Fp is injective,
(5) H1(LK/k) = 0, and
(6) K is formally smooth over k.

Proof. This is a combination of Lemmas 10.43.1, 10.147.8 10.147.5, and 10.147.4.
�

Here is yet another characterization of finitely generated separable field extensions.

Lemma 10.147.10. Let k ⊂ K be a finitely generated field extension. Then K is
separable over k if and only if K is the localization of a smooth k-algebra.

Proof. Choose a finite type k-algebra R which is a domain whose fraction field
is K. Lemma 10.135.9 says that k → R is smooth at (0) if and only if K/k is
separable. This proves the lemma. �
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Lemma 10.147.11. Let k ⊂ K be a field extension. Then K is a filtered colimit
of global complete intersection algebras over k. If K/k is separable, then K is a
filtered colimit of smooth algebras over k.

Proof. Suppose that E ⊂ K is a finite subset. It suffices to show that there exists
a k subalgebra A ⊂ K which contains E and which is a global complete intersection
(resp. smooth) over k. The separable/smooth case follows from Lemma 10.147.10.
In general let L ⊂ K be the subfield generated by E. Pick a transcendence ba-
sis x1, . . . , xd ∈ L over k. The extension k(x1, . . . , xd) ⊂ L is finite. Say L =
k(x1, . . . , xd)[y1, . . . , yr]. Pick inductively polynomials Pi ∈ k(x1, . . . , xd)[Y1, . . . , Yr]
such that Pi = Pi(Y1, . . . , Yi) is monic in Yi over k(x1, . . . , xd)[Y1, . . . , Yi−1] and
maps to the minimum polynomial of yi in k(x1, . . . , xd)[y1, . . . , yi−1][Yi]. Then it is
clear that P1, . . . , Pr is a regular sequence in k(x1, . . . , xr)[Y1, . . . , Yr] and that L =
k(x1, . . . , xr)[Y1, . . . , Yr]/(P1, . . . , Pr). If h ∈ k[x1, . . . , xd] is a polynomial such that
Pi ∈ k[x1, . . . , xd, 1/h, Y1, . . . , Yr], then we see that P1, . . . , Pr is a regular sequence
in k[x1, . . . , xd, 1/h, Y1, . . . , Yr] and A = k[x1, . . . , xd, 1/h, Y1, . . . , Yr]/(P1, . . . , Pr)
is a global complete intersection. After adjusting our choice of h we may assume
E ⊂ A and we win. �

10.148. Constructing flat ring maps

The following lemma is occasionally useful.

Lemma 10.148.1. Let (R,m, k) be a local ring. Let k ⊂ K be a field extension.
There exists a local ring (R′,m′, k′), a flat local ring map R → R′ such that m′ =
mR′ and such that k ⊂ k′ is isomorphic to k ⊂ K.

Proof. Suppose that k ⊂ k′ = k(α) is a monogenic extension of fields. Then k′

is the residue field of a flat local extension R ⊂ R′ as in the lemma. Namely, if
α is transcendental over k, then we let R′ be the localization of R[x] at the prime
mR[x]. If α is algebraic with minimal polynomial T d +

∑
λiT

d−i, then we let
R′ = R[T ]/(T d +

∑
λiT

d−i).

Consider the collection of triples (k′, R → R′, φ), where k ⊂ k′ ⊂ K is a subfield,
R→ R′ is a local ring map as in the lemma, and φ : R′ → k′ induces an isomorphism
R′/mR′ ∼= k′ of k-extensions. These form a “big” category C with morphisms
(k1, R1, φ1)→ (k2, R2, φ2) given by ring maps ψ : R1 → R2 such that

R1

ψ

��

φ1

// k1
// K

R2
φ2 // k2

// K

commutes. This implies that k1 ⊂ k2.

Suppose that I is a directed partially ordered set, and ((Ri, ki, φi), ψii′) is a system
over I, see Categories, Section 4.21. In this case we can consider

R′ = colimi∈I Ri

This is a local ring with maximal ideal mR′, and residue field k′ =
⋃
i∈I ki. More-

over, the ring map R→ R′ is flat as it is a colimit of flat maps (and tensor products
commute with directed colimits). Hence we see that (R′, k′, φ′) is an “upper bound”
for the system.
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An almost trivial application of Zorn’s Lemma would finish the proof if C was a set,
but it isn’t. (Actually, you can make this work by finding a reasonable bound on the
cardinals of the local rings occurring.) To get around this problem we choose a well
ordering onK. For x ∈ K we letK(x) be the subfield ofK generated by all elements
of K which are ≤ x. By transfinite induction on x ∈ K we will produce ring maps
R ⊂ R(x) as in the lemma with residue field extension k ⊂ K(x). Moreover, by
construction we will have that R(x) will contain R(y) for all y ≤ x. Namely, if x
has a predecessor x′, then K(x) = K(x′)[x] and hence we can let R(x′) ⊂ R(x) be
the local ring extension constructed in the first paragraph of the proof. If x does
not have a predecessor, then we first set R′(x) = colimx′<xR(x′) as in the third
paragraph of the proof. The residue field of R′(x) is K ′(x) =

⋃
x′<xK(x′). Since

K(x) = K ′(x)[x] we see that we can use the construction of the first paragraph of
the proof to produce R′(x) ⊂ R(x). This finishes the proof of the lemma. �

Lemma 10.148.2. Let (R,m, k) be a local ring. If k ⊂ K is a separable algebraic
extension, then there exists a directed partially ordered set I and a system of finite
étale extensions R ⊂ Ri, i ∈ I of local rings such that R′ = colimRi has residue
field K (as extension of k).

Proof. Let R ⊂ R′ be the extension constructed in the proof of Lemma 10.148.1.
By construction R′ = colimα∈ARα where A is a well-ordered set and the transition
maps Rα → Rα+1 are finite étale and Rα = colimβ<αRβ if α is not a successor.
We will prove the result by transfinite induction.

Suppose the result holds for Rα, i.e., Rα = colimRi with Ri finite étale over
R. Since Rα → Rα+1 is finite étale there exists an i and a finite étale extension
Ri → Ri,1 such that Rα+1 = Rα ⊗Ri Ri,1. Thus Rα+1 = colimi′≥iRi′ ⊗Ri Ri,1 and
the result holds for α+ 1. Suppose α is not a successor and the result holds for Rβ
for all β < α. Since every finite subset E ⊂ Rα is contained in Rβ for some β < α
and we see that E is contained in a finite étale subextension by assumption. Thus
the result holds for Rα. �

Lemma 10.148.3. Let R be a ring. Let p ⊂ R be a prime and let κ(p) ⊂ L be a
finite extension of fields. Then there exists a finite free ring map R→ S such that
q = pS is prime and κ(p) ⊂ κ(q) is isomorphic to the given extension κ(p) ⊂ L.

Proof. By induction of the degree of κ(p) ⊂ L. If the degree is 1, then we take
R = S. In general, if there exists a sub extension κ(p) ⊂ L′ ⊂ L then we win
by induction on the degree (by first constructing R ⊂ S′ corresponding to L′/κ(p)
and then construction S′ ⊂ S corresponding to L/L′). Thus we may assume that
L ⊃ κ(p) is generated by a single element α ∈ L. Let Xd +

∑
i<d aiX

i be the
minimal polynomial of α over κ(p), so ai ∈ κ(p). We may write ai as the image of
fi/g for some fi, g ∈ R and g 6∈ p. After replacing α by gα (and correspondingly
replacing ai by gd−iai) we may assume that ai is the image of some fi ∈ R. Then
we simply take S = R[x]/(xd +

∑
fix

i). �

10.149. The Cohen structure theorem

Here is a fundamental notion in commutative algebra.

Definition 10.149.1. Let (R,m) be a local ring. We say R is a complete local ring
if the canonical map

R −→ limnR/m
n
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to the completion of R with respect to m is an isomorphism7.

Note that an Artinian local ring R is a complete local ring because mnR = 0 for
some n > 0. In this section we mostly focus on Noetherian complete local rings.

Lemma 10.149.2. Let R be a Noetherian complete local ring. Any quotient of R
is also a Noetherian complete local ring. Given a finite ring map R→ S, then S is
a product of Noetherian complete local rings.

Proof. The ring S is Noetherian by Lemma 10.30.1. As an R-module S is complete
by Lemma 10.93.2. Hence S is the product of the completions at its maximal ideals
by Lemma 10.93.19. �

Lemma 10.149.3. Let (R,m) be a complete local ring. If m is a finitely generated
ideal then R is Noetherian.

Proof. See Lemma 10.93.9. �

Definition 10.149.4. Let (R,m) be a complete local ring. A subring Λ ⊂ R is
called a coefficient ring if the following conditions hold:

(1) Λ is a complete local ring with maximal ideal Λ ∩m,
(2) the residue field of Λ maps isomorphically to the residue field of R, and
(3) Λ ∩m = pΛ, where p is the characteristic of the residue field of R.

Let us make some remarks on this definition. We split the discussion into the
following cases:

(1) The local ring R contains a field. This happens if either Q ⊂ R, or pR = 0
where p is the characteristic of R/m. In this case a coefficient ring Λ is a
field contained in R which maps isomorphically to R/m.

(2) The characteristic of R/m is p > 0 but no power of p is zero in R. In
this case Λ is a complete discrete valuation ring with uniformizer p and
residue field R/m.

(3) The characteristic of R/m is p > 0, and for some n > 1 we have pn−1 6= 0,
pn = 0 in R. In this case Λ is an Artinian local ring whose maximal ideal
is generated by p and which has residue field R/m.

The complete discrete valuation rings with uniformizer p above play a special role
and we baptize them as follows.

Definition 10.149.5. A Cohen ring is a complete discrete valuation ring with
uniformizer p a prime number.

Lemma 10.149.6. Let p be a prime number. Let k be a field of characteristic p.
There exists a Cohen ring Λ with Λ/pΛ ∼= k.

Proof. First note that the p-adic integers Zp form a Cohen ring for Fp. Let k be
an arbitrary field of characteristic p. Let Zp → R be a flat local ring map such
that mR = pR and R/pR = k, see Lemma 10.148.1. Then clearly R is a discrete
valuation ring. Hence its completion is a Cohen ring for k. �

7This includes the condition that
⋂

mn = (0); in some texts this may be indicated by saying

that R is complete and separated. Warning: It can happen that the completion limnR/mn of a
local ring is non-complete, see Examples, Lemma 82.6.1. This does not happen when m is finitely

generated, see Lemma 10.93.7 in which case the completion is Noetherian, see Lemma 10.93.9.
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Lemma 10.149.7. Let p > 0 be a prime. Let Λ be a Cohen ring with residue field
of characteristic p. For every n ≥ 1 the ring map

Z/pnZ→ Λ/pnΛ

is formally smooth.

Proof. If n = 1, this follows from Proposition 10.147.9. For general n we argue
by induction on n. Namely, if Z/pnZ → Λ/pnΛ is formally smooth, then we
can apply Lemma 10.133.12 to the ring map Z/pn+1Z → Λ/pn+1Λ and the ideal
I = (pn) ⊂ Z/pn+1Z. �

Theorem 10.149.8 (Cohen structure theorem). Let (R,m) be a complete local
ring.

(1) R has a coefficient ring (see Definition 10.149.4),
(2) if m is a finitely generated ideal, then R is isomorphic to a quotient

Λ[[x1, . . . , xn]]/I

where Λ is either a field or a Cohen ring.

Proof. Let us prove a coefficient ring exists. First we prove this in case the charac-
teristic of the residue field κ is zero. Namely, in this case we will prove by induction
on n > 0 that there exists a section

ϕn : κ −→ R/mn

to the canonical map R/mn → κ = R/m. This is trivial for n = 1. If n > 1,
let ϕn−1 be given. The field extension Q ⊂ κ is formally smooth by Proposition
10.147.9. Hence we can find the dotted arrow in the following diagram

R/mn−1 R/mnoo

κ

ϕn−1

OO 99

Qoo

OO

This proves the induction step. Putting these maps together

limn ϕn : κ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.

Next, we prove the existence of a coefficient ring in the case where the characteristic
of the residue field κ is p > 0. Namely, choose a Cohen ring Λ with κ = Λ/pΛ, see
Lemma 10.149.6. In this case we will prove by induction on n > 0 that there exists
a map

ϕn : Λ/pnΛ −→ R/mn

whose composition with the reduction map R/mn → κ produces the given isomor-
phism Λ/pΛ = κ. This is trivial for n = 1. If n > 1, let ϕn−1 be given. The ring
map Z/pnZ → Λ/pnΛ is formally smooth by Lemma 10.149.7. Hence we can find
the dotted arrow in the following diagram

R/mn−1 R/mnoo

Λ/pnΛ

ϕn−1

OO 99

Z/pnZoo

OO
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This proves the induction step. Putting these maps together

limn ϕn : Λ = limn Λ/pnΛ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.

The final statement of the theorem is now clear. Namely, if y1, . . . , yn are generators
of the ideal m, then we can use the map Λ→ R just constructed to get a map

Λ[[x1, . . . , xn]] −→ R, xi 7−→ yi.

This map is surjective on each R/mn and hence is surjective as R is complete. Some
details omitted. �

Remark 10.149.9. If k is a field then the power series ring k[[X1, . . . , Xd]] is a
Noetherian complete local regular ring of dimension d. If Λ is a Cohen ring then
Λ[[X1, . . . , Xd]] is a complete local Noetherian regular ring of dimension d+1. Hence
the Cohen structure theorem implies that any Noetherian complete local ring is a
quotient of a regular local ring. In particular we see that a Noetherian complete
local ring is universally catenary, see Lemma 10.101.6 and Lemma 10.102.3.

Lemma 10.149.10. Let (R,m) be a Noetherian complete local domain. Then there
exists a R0 ⊂ R with the following properties

(1) R0 is a regular complete local ring,
(2) R0 ⊂ R is finite and induces an isomorphism on residue fields,
(3) R0 is either isomorphic to k[[X1, . . . , Xd]] where k is a field or Λ[[X1, . . . , Xd]]

where Λ is a Cohen ring.

Proof. Let Λ be a coefficient ring of R. Since R is a domain we see that either Λ
is a field or Λ is a Cohen ring.

Case I: Λ = k is a field. Let d = dim(R). Choose x1, . . . , xd ∈ m which generate an
ideal of definition I ⊂ R. (See Section 10.59.) By Lemma 10.93.14 we see that R
is I-adically complete as well. Consider the map R0 = k[[X1, . . . , Xd]] → R which
mapsXi to xi. Note thatR0 is complete with respect to the ideal I0 = (X1, . . . , Xd),
and that R/I0R ∼= R/IR is finite over k = R0/I0 (because dim(R/I) = 0, see
Section 10.59.) Hence we conclude that R0 → R is finite by Lemma 10.93.17. Since
dim(R) = dim(R0) this implies that R0 → R is injective (see Lemma 10.108.3),
and the lemma is proved.

Case II: Λ is a Cohen ring. Let d+ 1 = dim(R). Let p > 0 be the characteristic of
the residue field k. As R is a domain we see that p is a nonzerodivisor in R. Hence
dim(R/pR) = d, see Lemma 10.59.11. Choose x1, . . . , xd ∈ R which generate an
ideal of definition in R/pR. Then I = (p, x1, . . . , xd) is an ideal of definition of R.
By Lemma 10.93.14 we see that R is I-adically complete as well. Consider the map
R0 = Λ[[X1, . . . , Xd]] → R which maps Xi to xi. Note that R0 is complete with
respect to the ideal I0 = (p,X1, . . . , Xd), and that R/I0R ∼= R/IR is finite over
k = R0/I0 (because dim(R/I) = 0, see Section 10.59.) Hence we conclude that
R0 → R is finite by Lemma 10.93.17. Since dim(R) = dim(R0) this implies that
R0 → R is injective (see Lemma 10.108.3), and the lemma is proved. �
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10.150. Nagata and Japanese rings

In this section we discuss finiteness of integral closure. It turns out that this is
closely related to the relationship between a local ring and its completion.

Definition 10.150.1. Let R be a domain with field of fractions K.

(1) We say R is N-1 if the integral closure of R in K is a finite R-module.
(2) We say R is N-2, or Japanese if for any finite extension K ⊂ L of fields

the integral closure of R in L is finite over R.

The main interest in these notions is for Noetherian rings, but here is a non-
Noetherian example.

Example 10.150.2. Let k be a field. The domain R = k[x1, x2, x3, . . .] is Japan-
ese, but not Noetherian. The reason is the following. Suppose that R ⊂ L and
the field L is a finite extension of the fraction field of R. Then there exists an in-
teger n such that L comes from a finite extension k(x1, . . . , xn) ⊂ L0 by adjoining
the (transcendental) elements xn+1, xn+2, etc. Let S0 be the integral closure of
k[x1, . . . , xn] in L0. By Proposition 10.150.31 below it is true that S0 is finite over
k[x1, . . . , xn]. Moreover, the integral closure of R in L is S = S0[xn+1, xn+2, . . .]
(use Lemma 10.36.8) and hence finite over R. The same argument works for
R = Z[x1, x2, x3, . . .].

Lemma 10.150.3. Let R be a domain. If R is N-1 then so is any localization of
R. Same for N-2.

Proof. These statements hold because taking integral closure commutes with lo-
calization, see Lemma 10.35.9. �

Lemma 10.150.4. Let R be a domain. Let f1, . . . , fn ∈ R generate the unit ideal.
If each domain Rfi is N-1 then so is R. Same for N-2.

Proof. Assume Rfi is N-2 (or N-1). Let L be a finite extension of the fraction field
of R (equal to the fraction field in the N-1 case). Let S be the integral closure of R
in L. By Lemma 10.35.9 we see that Sfi is the integral closure of Rfi in L. Hence
Sfi is finite over Rfi by assumption. Thus S is finite over R by Lemma 10.23.2. �

Lemma 10.150.5. Let R be a domain. Let R ⊂ S be a quasi-finite extension of
domains (for example finite). Assume R is N-2 and Noetherian. Then S is N-2.

Proof. Let K = f.f.(R) ⊂ L = f.f.(S). Note that this is a finite field extension
(for example by Lemma 10.118.2 (2) applied to the fibre S⊗RK, and the definition
of a quasi-finite ring map). Let S′ be the integral closure of R in S. Then S′ is
contained in the integral closure of R in L which is finite over R by assumption. As
R is Noetherian this implies S′ is finite over R. By Lemma 10.119.15 there exist
elements g1, . . . , gn ∈ S′ such that S′gi

∼= Sgi and such that g1, . . . , gn generate the
unit ideal in S. Hence it suffices to show that S′ is N-2 by Lemmas 10.150.3 and
10.150.4. Thus we have reduced to the case where S is finite over R.

Assume R ⊂ S with hypotheses as in the lemma and moreover that S is finite over
R. Let M be a finite field extension of the fraction field of S. Then M is also a
finite field extension of f.f(R) and we conclude that the integral closure T of R in
M is finite over R. By Lemma 10.35.14 we see that T is also the integral closure
of S in M and we win by Lemma 10.35.13. �
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Lemma 10.150.6. Let R be a Noetherian domain. If R[z, z−1] is N-1, then so is
R.

Proof. Let R′ be the integral closure of R in its field of fractions K. Let S′ be the
integral closure of R[z, z−1] in its field of fractions. Clearly R′ ⊂ S′. Since K[z, z−1]
is a normal domain we see that S′ ⊂ K[z, z−1]. Suppose that f1, . . . , fn ∈ S′

generate S′ as R[z, z−1]-module. Say fi =
∑
aijz

j (finite sum), with aij ∈ K. For
any x ∈ R′ we can write

x =
∑

hifi

with hi ∈ R[z, z−1]. Thus we see that R′ is contained in the finite R-submodule∑
Raij ⊂ K. Since R is Noetherian we conclude that R′ is a finite R-module. �

Lemma 10.150.7. Let R be a Noetherian domain, and let R ⊂ S be a finite
extension of domains. If S is N-1, then so is R. If S is N-2, then so is R.

Proof. Omitted. (Hint: Integral closures of R in extension fields are contained in
integral closures of S in extension fields.) �

Lemma 10.150.8. Let R be a Noetherian normal domain with fraction field K.
Let K ⊂ L be a finite separable field extension. Then the integral closure of R in L
is finite over R.

Proof. Consider the trace pairing

L× L −→ K, (x, y) 7−→ 〈x, y〉 := TrL/K(xy).

Since L/K is separable this is nondegenerate (exercise in Galois theory). Moreover,
if x ∈ L is integral over R, then TrL/K(x) is integral over R also, and since R is
normal we see TrL/K(x) ∈ R. Pick x1, . . . , xn ∈ L which are integral over R and
which form a K-basis of L. Then the integral closure S ⊂ L is contained in the
R-module

M = {y ∈ L | 〈xi, y〉 ∈ R, i = 1, . . . , n}
By linear algebra we see that M ∼= R⊕n as an R-module. Hence S ⊂ R⊕n is a
finitely generated R-module as R is Noetherian. �

Example 10.150.9. Lemma 10.150.8 does not work if the ring is not Noetherian.
For example consider the action of G = {+1,−1} on A = C[x1, x2, x3, . . .] where −1
acts by mapping xi to −xi. The invariant ring R = AG is the C-algebra generated
by all xixj . Hence R ⊂ A is not finite. But R is a normal domain with fraction
field K = LG the G-invariants in the fraction field L of A. And clearly A is the
integral closure of R in L.

Lemma 10.150.10. A Noetherian domain of characteristic zero is N-1 if and only
if it is N-2 (i.e., Japanese).

Proof. This is clear from Lemma 10.150.8 since every field extension in character-
istic zero is separable. �

Lemma 10.150.11. Let R be a Noetherian domain with fraction field K of charac-
teristic p > 0. Then R is Japanese if and only if for every finite purely inseparable
extension K ⊂ L the integral closure of R in L is finite over R.
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Proof. Assume the integral closure of R in every finite purely inseparable field
extension of K is finite. Let K ⊂ L be any finite extension. We have to show the
integral closure of R in L is finite over R. Choose a finite normal field extension
K ⊂M containing L. As R is Noetherian it suffices to show that the integral closure
of R in M is finite over R. By Fields, Lemma 9.24.3 there exists a subextension
K ⊂ Minsep ⊂ M such that Minsep/K is purely inseparable, and M/Minsep is
separable. By assumption the integral closure R′ of R in Minsep is finite over R.
By Lemma 10.150.8 the integral closure R′′ of R′ in M is finite over R′. Then R′′

is finite over R by Lemma 10.7.3. Since R′′ is also the integral closure of R in M
(see Lemma 10.35.14) we win. �

Lemma 10.150.12. Let R be a Noetherian domain. If R is N-1 then R[x] is N-1.
If R is N-2 then R[x] is N-2.

Proof. Assume R is N-1. Let R′ be the integral closure of R which is finite over R.
Hence also R′[x] is finite over R[x]. The ring R′[x] is normal (see Lemma 10.36.8),
hence N-1. This proves the first assertion.

For the second assertion, by Lemma 10.150.7 it suffices to show that R′[x] is N-2. In
other words we may and do assume that R is a normal N-2 domain. In characteristic
zero we are done by Lemma 10.150.10. In characteristic p > 0 we have to show
that the integral closure of R[x] is finite in any finite purely inseparable extension
of f.f.(R[x]) = K(x) ⊂ L with K = f.f.(R). Clearly there exists a finite purely
inseparable field extension K ⊂ L′ and q = pe such that L ⊂ L′(x1/q). As R[x] is
Noetherian it suffices to show that the integral closure of R[x] in L′(x1/q) is finite
over R[x]. And this integral closure is equal to R′[x1/q] with R ⊂ R′ ⊂ L′ the
integral closure of R in L′. Since R is N-2 we see that R′ is finite over R and hence
R′[x1/q] is finite over R[x]. �

Lemma 10.150.13 (Tate). Let R be a ring. Let x ∈ R. Assume

(1) R is a normal Noetherian domain,
(2) R/xR is a Japanese domain,
(3) R ∼= limnR/x

nR is complete with respect to x.

Then R is Japanese.

Proof. We may assume x 6= 0 since otherwise the lemma is trivial. Let K be the
fraction field of R. If the characteristic of K is zero the lemma follows from (1), see
Lemma 10.150.10. Hence we may assume that the characteristic of K is p > 0, and
we may apply Lemma 10.150.11. Thus given K ⊂ L be a finite purely inseparable
field extension we have to show that the integral closure S of R in L is finite over
R.

Let q be a power of p such that Lq ⊂ K. By enlarging L if necessary we may
assume there exists an element y ∈ L such that yq = x. Since R → S induces a
homeomorphism of spectra (see Lemma 10.45.2) there is a unique prime ideal q ⊂ S
lying over the prime ideal p = xR. It is clear that

q = {f ∈ S | fq ∈ p} = yS

since yq = x. Hence Rp and Sq are discrete valuation rings, see Lemma 10.115.6.
By Lemma 10.115.9 we see that κ(p) ⊂ κ(q) is a finite field extension. Hence the
integral closure S′ ⊂ κ(q) of R/xR is finite over R/xR by assumption (2). Since
S/yS ⊂ S′ this implies that S/yS is finite over R. Note that S/ynS has a finite
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filtration whose subquotients are the modules yiS/yi+1S ∼= S/yS. Hence we see
that each S/ynS is finite over R. In particular S/xS is finite over R. Also, it is
clear that

⋂
xnS = (0) since an element in the intersection has qth power contained

in
⋂
xnR = (0) (Lemma 10.49.4). Thus we may apply Lemma 10.93.17 to conclude

that S is finite over R, and we win. �

Lemma 10.150.14. Let R be a ring. If R is Noetherian, a domain, and N-2, then
so is R[[x]].

Proof. Apply Lemma 10.150.13 to the element x ∈ R[[x]]. �

Definition 10.150.15. Let R be a ring.

(1) We say R is universally Japanese if for any finite type ring map R → S
with S a domain we have that S is Japanese (i.e., N-2).

(2) We say that R is a Nagata ring if R is Noetherian and for every prime
ideal p the ring R/p is Japanese.

It is clear that a Noetherian universally Japanese ring is a Nagata ring. It is our
goal to show that a Nagata ring is universally Japanese. This is not obvious at all,
and requires some work. But first, here is a useful lemma.

Lemma 10.150.16. Let R be a Nagata ring. Let R → S be essentially of finite
type with S reduced. Then the integral closure of R in S is finite over R.

Proof. As S is essentially of finite type over R it is Noetherian and has finitely
many minimal primes q1, . . . , qm, see Lemma 10.30.6. Since S is reduced we have
S ⊂

∏
Sqi and each Sqi = Ki is a field, see Lemmas 10.24.4 and 10.24.1. It suffices

to show that the integral closure A′i of R in each Ki is finite over R. This is true
because R is Noetherian and A ⊂

∏
A′i. Let pi ⊂ R be the prime of R corresponding

to qi. As S is essentially of finite type over R we see that Ki = Sqi = κ(qi) is a
finitely generated field extension of κ(pi). Hence the algebraic closure Li of κ(pi)
in ⊂ Ki is finite over κ(pi), see Fields, Lemma 9.23.10. It is clear that A′i is the
integral closure of R/pi in Li, and hence we win by definition of a Nagata ring. �

Lemma 10.150.17. Let R be a ring. To check that R is universally Japanese it
suffices to show: If R→ S is of finite type, and S a domain then S is N-1.

Proof. Namely, assume the condition of the lemma. Let R → S be a finite type
ring map with S a domain. Let f.f.(S) ⊂ L be a finite extension of its fraction
field. Then there exists a finite ring extension S ⊂ S′ ⊂ L with f.f.(S′) = L. By
assumption S′ is N-1, and hence the integral closure S′′ of S′ in L is finite over S′.
Thus S′′ is finite over S (Lemma 10.7.3) and S′′ is the integral closure of S in L
(Lemma 10.35.14). We conclude that R is universally Japanese. �

Lemma 10.150.18. If R is universally Japanese then any algebra essentially of
finite type over R is universally Japanese.

Proof. The case of an algebra of finite type over R is immediate from the definition.
The general case follows on applying Lemma 10.150.3. �

Lemma 10.150.19. Let R be a Nagata ring. If R→ S is a quasi-finite ring map
(for example finite) then S is a Nagata ring also.
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Proof. First note that S is Noetherian as R is Noetherian and a quasi-finite ring
map is of finite type. Let q ⊂ S be a prime ideal, and set p = R ∩ q. Then
R/p ⊂ S/q is quasi-finite and hence we conclude that S/q is N-2 by Lemma 10.150.5
as desired. �

Lemma 10.150.20. A localization of a Nagata ring is a Nagata ring.

Proof. Clear from Lemma 10.150.3. �

Lemma 10.150.21. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal.

(1) If each Rfi is universally Japanese then so is R.
(2) If each Rfi is Nagata then so is R.

Proof. Let ϕ : R → S be a finite type ring map so that S is a domain. Then
ϕ(f1), . . . , ϕ(fn) generate the unit ideal in S. Hence if each Sfi = Sϕ(fi) is N-1
then so is S, see Lemma 10.150.4. This proves (1).

If each Rfi is Nagata, then each Rfi is Noetherian and hence R is Noetherian, see
Lemma 10.23.2. And if p ⊂ R is a prime, then we see each Rfi/pRfi = (R/p)fi is
Japanese and hence we conclude R/p is Japanese by Lemma 10.150.4. This proves
(2). �

Lemma 10.150.22. A Noetherian complete local ring is a Nagata ring.

Proof. Let R be a complete local Noetherian ring. Let p ⊂ R be a prime. Then
R/p is also a complete local Noetherian ring, see Lemma 10.149.2. Hence it suffices
to show that a Noetherian complete local domain R is N-2. By Lemmas 10.150.5
and 10.149.10 we reduce to the case R = k[[X1, . . . , Xd]] where k is a field or
R = Λ[[X1, . . . , Xd]] where Λ is a Cohen ring.

In the case k[[X1, . . . , Xd]] we reduce to the statement that a field is N-2 by Lemma
10.150.14. This is clear. In the case Λ[[X1, . . . , Xd]] we reduce to the statement
that a Cohen ring Λ is N-2. Applying Lemma 10.150.13 once more with x = p ∈ Λ
we reduce yet again to the case of a field. Thus we win. �

Definition 10.150.23. Let (R,m) be a Noetherian local ring. We say R is ana-
lytically unramified if its completion R∧ = limnR/m

n is reduced. A prime ideal
p ⊂ R is said to be analytically unramified if R/p is analytically unramified.

At this point we know the following are true for any Noetherian local ring R: The
map R → R∧ is a faithfully flat local ring homomorphism (Lemma 10.93.4). The
completion R∧ is Noetherian (Lemma 10.93.9) and complete (Lemma 10.93.8).
Hence the completion R∧ is a Nagata ring (Lemma 10.150.22). Moreover, we
have seen in Section 10.149 that R∧ is a quotient of a regular local ring (Theorem
10.149.8), and hence universally catenary (Remark 10.149.9).

Lemma 10.150.24. Let (R,m) be a Noetherian local ring.

(1) If R is analytically unramified, then R is reduced.
(2) If R is analytically unramified, then each minimal prime of R is analyti-

cally unramified.
(3) If R is reduced with minimal primes q1, . . . , qt, and each qi is analytically

unramified, then R is analytically unramified.
(4) If R is analytically unramified, then the integral closure of R in its total

ring of fractions Q(R) is finite over R.
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(5) If R is a domain and analytically unramified, then R is N-1.

Proof. In this proof we will use the remarks immediately following Definition
10.150.23. As R → R∧ is a faithfully flat local ring homomorphism it is injec-
tive and (1) follows.

Let q be a minimal prime of R, and assume R is analytically unramified. Then
q is an associated prime of R (see Proposition 10.62.6). Hence there exists an
f ∈ R such that {x ∈ R | fx = 0} = q. Note that (R/q)∧ = R∧/q∧, and that
{x ∈ R∧ | fx = 0} = q∧, because completion is exact (Lemma 10.93.3). If x ∈ R∧
is such that x2 ∈ q∧, then fx2 = 0 hence (fx)2 = 0 hence fx = 0 hence x ∈ q∧.
Thus q is analytically unramified and (2) holds.

Assume R is reduced with minimal primes q1, . . . , qt, and each qi is analytically
unramified. Then R → R/q1 × . . . × R/qt is injective. Since completion is exact
(see Lemma 10.93.3) we see that R∧ ⊂ (R/q1)∧× . . .× (R/qt)

∧. Hence (3) is clear.

Assume R is analytically unramified. Let p1, . . . , ps be the minimal primes of R∧.
Then we see that

Q(R∧) = Rp1
× . . .×Rps

with each Rpi a field as R∧ is reduced (see Lemma 10.24.4). Hence the integral
closure S of R∧ in Q(R∧) is equal to S = S1 × . . . × Ss with Si the integral
closure of R/pi in its fraction field. In particular S is finite over R∧. Denote R′

the integral closure of R in Q(R). As R → R∧ is flat we see that R′ ⊗R R∧ ⊂
Q(R)⊗R R∧ ⊂ Q(R∧). Moreover R′ ⊗R R∧ is integral over R∧ (Lemma 10.35.11).
Hence R′ ⊗R R∧ ⊂ S is a R∧-submodule. As R∧ is Noetherian it is a finite R∧-
module. Thus we may find f1, . . . , fn ∈ R′ such that R′ ⊗R R∧ is generated by the
elements fi⊗ 1 as a R∧-module. By faithful flatness we see that R′ is generated by
f1, . . . , fn as an R-module. This proves (4).

Part (5) is a special case of part (4). �

Lemma 10.150.25. Let R be a Noetherian local ring. Let p ⊂ R be a prime.
Assume

(1) Rp is a discrete valuation ring, and
(2) p is analytically unramified.

Then for any associated prime q of R∧/pR∧ the local ring (R∧)q is a discrete
valuation ring.

Proof. Assumption (2) says that R∧/pR∧ is a reduced ring. Hence an associated
prime q ⊂ R∧ of R∧/pR∧ is the same thing as a minimal prime over pR∧. In
particular we see that the maximal ideal of (R∧)q is p(R∧)q. Choose x ∈ R such
that xRp = pRp. By the above we see that x ∈ (R∧)q generates the maximal ideal.
As R→ R∧ is faithfully flat we see that x is a nonzerodivisor in (R∧)q. Hence we
win. �

Lemma 10.150.26. Let (R,m) be a Noetherian local domain. Let x ∈ m. Assume

(1) x 6= 0,
(2) R/xR has no embedded primes, and
(3) for each associated prime p ⊂ R of R/xR we have

(a) the local ring Rp is regular, and
(b) p is analytically unramified.
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Then R is analytically unramified.

Proof. Let p1, . . . , pt be the associated primes of the R-module R/xR. Since R/xR
has no embedded primes we see that each pi has height 1, and is a minimal prime
over (x). For each i, let qi1, . . . , qisi be the associated primes of the R∧-module
R∧/piR

∧. By Lemma 10.150.25 we see that (R∧)qij is regular. By Lemma 10.64.3
we see that

AssR∧(R∧/xR∧) =
⋃

p∈AssR(R/xR)
AssR∧(R∧/pR∧) = {qij}.

Let y ∈ R∧ with y2 = 0. As (R∧)qij is regular, and hence a domain (Lemma
10.102.2) we see that y maps to zero in (R∧)qij . Hence y maps to zero in R∧/xR∧

by Lemma 10.62.18. Hence y = xy′. Since x is a nonzerodivisor (as R → R∧ is
flat) we see that (y′)2 = 0. Hence we conclude that y ∈

⋂
xnR∧ = (0) (Lemma

10.49.4). �

Lemma 10.150.27. Let (R,m) be a local ring. If R is Noetherian, a domain, and
Nagata, then R is analytically unramified.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial. Hence we as-
sume dim(R) = d and that the lemma holds for all Noetherian Nagata domains of
dimension < d.

Let R ⊂ S be the integral closure of R in the field of fractions of R. By assumption
S is a finite R-module. By Lemma 10.150.19 we see that S is Nagata. By Lemma
10.108.4 we see dim(R) = dim(S). Let m1, . . . ,mt be the maximal ideals of S. Each
of these lies over the maximal ideal m of R. Moreover

(m1 ∩ . . . ∩mt)
n ⊂ mS

for sufficiently large n as S/mS is Artinian. By Lemma 10.93.3 R∧ → S∧ is an in-
jective map, and by the Chinese Remainder Lemma 10.14.3 combined with Lemma
10.93.14 we have S∧ =

∏
S∧i where S∧i is the completion of S with respect to the

maximal ideal mi. Hence it suffices to show that Smi is analytically unramified. In
other words, we have reduced to the case where R is a Noetherian normal Nagata
domain.

Assume R is a Noetherian, normal, local Nagata domain. Pick a nonzero x ∈ m
in the maximal ideal. We are going to apply Lemma 10.150.26. We have to check
properties (1), (2), (3)(a) and (3)(b). Property (1) is clear. We have that R/xR
has no embedded primes by Lemma 10.146.6. Thus property (2) holds. The same
lemma also tells us each associated prime p of R/xR has height 1. Hence Rp

is a 1-dimensional normal domain hence regular (Lemma 10.115.6). Thus (3)(a)
holds. Finally (3)(b) holds by induction hypothesis, since R/p is Nagata (by Lemma
10.150.19 or directly from the definition). Thus we conclude R is analytically
unramified. �

Lemma 10.150.28. Let R be a Noetherian domain. If there exists an f ∈ R such
that Rf is normal then

U = {p ∈ Spec(R) | Rp is normal}

is open in Spec(R).
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Proof. It is clear that the standard open D(f) is contained in U . By Serre’s
criterion Lemma 10.146.4 we see that p 6∈ U implies that for some q ⊂ p we have
either

(1) Case I: depth(Rq) < 2 and dim(Rq) ≥ 2, and
(2) Case II: Rq is not regular and dim(Rq) = 1.

This in particular also means that Rq is not normal, and hence f ∈ q. In case I we
see that depth(Rq) = depth(Rq/fRq) + 1. Hence such a prime q is the same thing
as an embedded associated prime of R/fR. In case II q is an associated prime of
R/fR of height 1. Thus there is a finite set E of such primes q (see Lemma 10.62.5)
and

Spec(R) \ U =
⋃

q∈E
V (q)

as desired. �

Lemma 10.150.29. Let R be a Noetherian domain. Assume

(1) there exists a nonzero f ∈ R such that Rf is normal, and
(2) for every maximal ideal m ⊂ R the local ring Rm is N-1.

Then R is N-1.

Proof. Set K = f.f.(R). Suppose that R ⊂ R′ ⊂ K is a finite extension of R
contained in K. Note that Rf = R′f since Rf is already normal. Hence by Lemma

10.150.28 the set of primes p′ ∈ Spec(R′) with R′p′ non-normal is closed in Spec(R′).

Since Spec(R′)→ Spec(R) is closed the image of this set is closed in Spec(R). For
such a ring R′ denote ZR′ ⊂ Spec(R) this image.

Pick a maximal ideal m ⊂ R. Let Rm ⊂ R′m be the integral closure of the local ring
in K. By assumption this is a finite ring extension. By Lemma 10.35.9 we can find
finitely many elements r1, . . . , rn ∈ K integral over R such that R′m is generated by
r1, . . . , rn over Rm. Let R′ = R[x1, . . . , xn] ⊂ K. With this choice it is clear that
m 6∈ ZR′ .
As Spec(R) is quasi-compact, the above shows that we can find a finite collection
R ⊂ R′i ⊂ K such that

⋂
ZR′i = ∅. Let R′ be the subring of K generated by all of

these. It is finite over R. Also ZR′ = ∅. Namely, every prime p′ lies over a prime
p′i such that (R′i)p′i is normal. This implies that R′p′ = (R′i)p′i is normal too. Hence

R′ is normal, in other words R′ is the integral closure of R in K. �

The following proposition says in particular that an algebra of finite type over a
Nagata ring is a Nagata ring.

Proposition 10.150.30 (Nagata). Let R be a ring. The following are equivalent:

(1) R is a Nagata ring,
(2) any finite type R-algebra is Nagata, and
(3) R is universally Japanese and Noetherian.

Proof. It is clear that a Noetherian universally Japanese ring is universally Nagata
(i.e., condition (2) holds). Let R be a Nagata ring. We will show that any finitely
generated R-algebra S is Nagata. This will prove the proposition.

Step 1. There exists a sequence of ring maps R = R0 → R1 → R2 → . . .→ Rn = S
such that each Ri → Ri+1 is generated by a single element. Hence by induction it
suffices to prove S is Nagata if S ∼= R[x]/I.
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Step 2. Let q ⊂ S be a prime of S, and let p ⊂ R be the corresponding prime
of R. We have to show that S/q is N-2. Hence we have reduced to the proving
the following: (*) Given a Nagata domain R and a monogenic extension R ⊂ S of
domains then S is N-2.

Step 3. Let R be a Nagata domain and R ⊂ S a monogenic extension of domains.
Let R ⊂ R′ be the integral closure of R in its fraction field. Let S′ be the subring
of f.f.(S) generated by R′ and S. As R′ is finite over R (by the Nagata property)
also S′ is finite over S. Since S is Noetherian it suffices to prove that S′ is N-2
(Lemma 10.150.7). Hence we have reduced to proving the following: (**) Given a
normal Nagata domain R and a monogenic extension R ⊂ S of domains then S is
N-2.

Step 4: Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension
of domains. Suppose the extension of fraction fields f.f.(R) ⊂ f.f.(S) is purely
transcendental. In this case S = R[x]. By Lemma 10.150.12 we see that S is N-
2. Hence we have reduced to proving the following: (**) Given a normal Nagata
domain R and a monogenic extension R ⊂ S of domains inducing a finite extension
of fraction fields then S is N-2.

Step 5. Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension
of domains inducing a finite extension of fraction fields K = f.f.(R) ⊂ f.f.(S) = L.
Choose an element x ∈ S which generates S as an R-algebra. Let L ⊂ M be a
finite extension of fields. Let R′ be the integral closure of R in M . Then the
integral closure S′ of S in M is equal to the integral closure of R′[x] in M . Also
f.f.(R′) = M , and R ⊂ R′ is finite (by the Nagata property of R). This implies
that R′ is a Nagata ring (Lemma 10.150.19). To show that S′ is finite over S is
the same as showing that S′ is finite over R′[x]. Replace R by R′ and S by S′ to
reduce to the following statement: (***) Given a normal Nagata domain R with
fraction field K, and x ∈ K, the ring S ⊂ K generated by R and x is N-1.

Step 6. Let R be a normal Nagata domain with fraction field K. Let x = b/a ∈ K.
We have to show that the ring S ⊂ K generated by R and x is N-1. Note that
Sa ∼= Ra is normal. Hence by Lemma 10.150.29 it suffices to show that Sm is N-1
for every maximal ideal m of S.

With assumptions as in the preceding paragraph, pick such a maximal ideal and
set n = R ∩m. The residue field extension κ(n) ⊂ κ(m) is finite (Theorem 10.33.1)
and generated by the image of x. Hence there exists a monic polynomial f(X) =
Xd +

∑
i=1,...,d aiX

d−i with f(x) ∈ m. Let K ⊂ K ′′ be a finite extension of fields

such that f(X) splits completely in K ′′[X]. Let R′ be the integral closure of R
in K ′′. Let S′ ⊂ K ′ be the subring generated by R′ and x. As R is Nagata we
see R′ is finite over R and Nagata (Lemma 10.150.19). Moreover, S′ is finite over
S. If for every maximal ideal m′ of S′ the local ring S′m′ is N-1, then S′m is N-1
by Lemma 10.150.29, which in turn implies that Sm is N-1 by Lemma 10.150.7.
After replacing R by R′ and S by S′, and m by any of the maximal ideals m′

lying over m we reach the situation where the polynomial f above split completely:
f(X) =

∏
i=1,...,d(X − ai) with ai ∈ R. Since f(x) ∈ m we see that x− ai ∈ m for

some i. Finally, after replacing x by x− ai we may assume that x ∈ m.
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To recapitulate: R is a normal Nagata domain with fraction field K, x ∈ K and S
is the subring of K generated by x and R, finally m ⊂ S is a maximal ideal with
x ∈ m. We have to show Sm is N-1.

We will show that Lemma 10.150.26 applies to the local ring Sm and the element
x. This will imply that Sm is analytically unramified, whereupon we see that it is
N-1 by Lemma 10.150.24.

We have to check properties (1), (2), (3)(a) and (3)(b). Property (1) is trivial. Let
I = Ker(R[X] → S) where X 7→ x. We claim that I is generated by all linear
forms aX + b such that ax = b in K. Clearly all these linear forms are in I. If
g = adX

d + . . . a1X + a0 ∈ I, then we see that adx is integral over R (Lemma
10.119.1) and hence b := adx ∈ R as R is normal. Then g − (adX − b)Xd−1 ∈ I
and we win by induction on the degree. As a consequence we see that

S/xS = R[X]/(X, I) = R/J

where

J = {b ∈ R | ax = b for some a ∈ R} = xR ∩R
By Lemma 10.146.6 we see that S/xS = R/J has no embedded primes as an R-
module, hence as an R/J-module, hence as an S/xS-module, hence as an S-module.
This proves property (2). Take such an associated prime q ⊂ S with the property
q ⊂ m (so that it is an associated prime of Sm/xSm – it does not matter for the
arguments). Then q is minimal over xS and hence has height 1. By the sequence
of equalities above we see that p = R∩ q is an associated prime of R/J , and so has
height 1 (see Lemma 10.146.6). Thus Rp is a discrete valuation ring and therefore
Rp ⊂ Sq is an equality. This shows that Sq is regular. This proves property (3)(a).
Finally, (S/q)m is a localization of S/q, which is a quotient of S/xS = R/J . Hence
(S/q)m is a localization of a quotient of the Nagata ring R, hence Nagata (Lemmas
10.150.19 and 10.150.20) and hence analytically unramified (Lemma 10.150.27).
This shows (3)(b) holds and we are done. �

Proposition 10.150.31. The following types of rings are Nagata and in particular
universally Japanese:

(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. The Noetherian complete local ring case is Lemma 10.150.22. In the other
cases you just check if R/p is N-2 for every prime ideal p of the ring. This is clear
whenever R/p is a field, i.e., p is maximal. Hence for the Dedekind ring case we
only need to check it when p = (0). But since we assume the fraction field has
characteristic zero Lemma 10.150.10 kicks in. �

Example 10.150.32. A discrete valuation ring is Nagata if and only if it is N-2
(this follows immediately from the definition). The discrete valuation ring A of
Example 10.115.4 is not Nagata, i.e., it is not N-2. Namely, the finite extension
A ⊂ R = A[f ] is not N-1. To see this say f =

∑
aix

i. For every n ≥ 1 set
gn =

∑
i<n aix

i ∈ A. Then hn = (f − gn)/xn is an element of the fraction field of
R and hpn ∈ kp[[x]] ⊂ A. Hence the integral closure R′ of R contains h1, h2, h3, . . ..
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Now, if R′ were finite over R and hence A, then f = xnhn + gn would be contained
in the submodule A+xnR′ for all n. By Artin-Rees this would imply f ∈ A (Lemma
10.49.4), a contradiction.

Lemma 10.150.33. Let (A,m) be a Noetherian local domain which is Nagata and
has fraction field of characteristic p. If a ∈ A has a pth root in A∧, then a is has
a pth root in A.

Proof. Consider the ring extension A ⊂ B = A[x]/(xp−a). If a does not have a pth
root in A, then B is a domain whose completion isn’t a domain. This contradicts
our earlier results, as B is a Nagata (Proposition 10.150.30) and hence analytically
unramified by Lemma 10.150.27. �

10.151. Ascending properties

In this section we start proving some algebraic facts concerning the “ascent” of
properties of rings. To do this for depth of rings one uses the following result on
ascending depth of modules, see [DG67, IV, Proposition 6.3.1].

Lemma 10.151.1. We have

depthS(M ⊗R N) = depthR(M) + depthS/mRS(N/mRN)

where R → S is a local homomorphism of local Noetherian rings, M is a finite
R-module, and N is a finite S-module flat over R.

Proof. Denote n the right hand side. First assume that n is zero. Then both
depthR(M) = 0 and depthS/mRS(N/mRN) = 0. This means there is a z ∈ M

whose annihilator is mR and a y ∈ N/mRN whose annihilator is mS/mRS. Let
y ∈ N be a lift of y. Since N is flat over R the map z : R/mR → M produces an
injective map N/mRN → M ⊗R N . Hence the annihilator of z ⊗ y is mS . Thus
depthS(M ⊗R N) = 0 as well.

Assume n > 0. If depthS/mRS(N/mRN) > 0, then choose an f ∈ mS which

maps to an N/mRN -regular element f ∈ S/mRS. Then depthS/mRS(N/mRN) =

depthS/mRS(N/(f,mR)N) + 1 by Lemma 10.69.12. According to Lemma 10.95.1

the element f ∈ S is a N -regular element and N/fN is flat over R. Hence by
induction on n we have

depthS(M ⊗R N/fN) = depthR(M) + depthS/mRS(N/(f,mR)N).

Because N/fN is flat over R the sequence

0→M ⊗R N →M ⊗R N →M ⊗R N/fN → 0

is exact where the first map is multiplication by f (Lemma 10.38.11). Hence by
Lemma 10.69.12 we find that depthS(M ⊗R N) = depthS(M ⊗R N/fN) + 1 and
we conclude that equality holds in the formula of the lemma.

If n > 0, but depthS/mRS(N/mRN) = 0, then we can choose an M -regular element
f ∈ mR. As N is flat over R it is also the case that f is M ⊗R N -regular. By
induction on n again we have

depthS(M/fM ⊗R N) = depthR(M/fM) + depthS/mS(N/mRN).

In this case depthS(M ⊗R N) = depthS(M/fM ⊗R N) + 1 and depthR(M) =
depthR(M/fM)+1 by Lemma 10.69.12 and we conclude that equality holds in the
formula of the lemma. �
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Lemma 10.151.2. Suppose that R→ S is a flat and local ring homomorphism of
Noetherian local rings. Then

depthS(S) = depthR(R) + depthS(S/mRS).

Proof. This is a special case of Lemma 10.151.1. �

Lemma 10.151.3. Let R→ S be a local homomorphism of local Noetherian rings.
Assume

(1) S/mRS is Cohen-Macaulay, and
(2) R→ S is flat.

Then S is Cohen-Macaulay if and only if R is Cohen-Macaulay.

Proof. This follows from the definitions combined with Lemmas 10.151.2 and
10.108.7. �

Lemma 10.151.4. Let ϕ : R→ S be a ring map. Assume

(1) R is Noetherian,
(2) S is Noetherian,
(3) ϕ is flat,
(4) the fibre rings S ⊗R κ(p) are Cohen-Macaulay, and
(5) R has property (Sk).

Then S has property (Sk).

Proof. Let q be a prime of S lying over a prime p of R. By Lemma 10.151.2 we
have

depth(Sq) = depth(Sq/pSq) + depth(Rp).

On the other hand, we have

dim(Sq) ≤ dim(Rp) + dim(Sq/pSq).

by Lemma 10.108.6. (Actually equality holds, by Lemma 10.108.7 but strictly
speaking we do not need this.) Finally, as the fibre rings of the map are assumed
Cohen-Macaulay we see that depth(Sq/pSq) = dim(Sq/pSq). Thus the lemma
follows by the following string of inequalities

depth(Sq) = dim(Sq/pSq) + depth(Rp)

≥ dim(Sq/pSq) + min(k, dim(Rp))

= min(dim(Sq/pSq) + k, dim(Sq/pSq) + dim(Rp))

≥ min(k, dim(Sq))

as desired. �

Lemma 10.151.5. Let ϕ : R→ S be a ring map. Assume

(1) R is Noetherian,
(2) S is Noetherian
(3) ϕ is flat,
(4) the fibre rings S ⊗R κ(p) are regular, and
(5) R has property (Rk).

Then S has property (Rk).
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Proof. Let q be a prime of S lying over a prime p of R. Assume that dim(Sq) ≤ k.
Since dim(Sq) = dim(Rp)+dim(Sq/pSq) by Lemma 10.108.7 we see that dim(Rp) ≤
k. Hence Rp is regular by assumption. It follows that Sq is regular by Lemma
10.108.8. �

Lemma 10.151.6. Let ϕ : R→ S be a ring map. Assume

(1) ϕ is smooth,
(2) R is reduced.

Then S is reduced.

Proof. First assume R is Noetherian. In this case being reduced is the same as
having properties (S1) and (R0), see Lemma 10.146.3. Note that S is Noetherian,
and R → S is flat with regular fibres (see the list of results on smooth ring maps
in Section 10.137). Hence we may apply Lemmas 10.151.4 and 10.151.5 and we see
that S is (S1) and (R0), in other words reduced by Lemma 10.146.3 again.

In the general case we may find a finitely generated Z-subalgebra R0 ⊂ R and a
smooth ring map R0 → S0 such that S ∼= R ⊗R0 S0, see remark (10) in Section
10.137. Now, if x ∈ S is an element with x2 = 0, then we can enlarge R0 and
assume that x comes from an element x0 ∈ S0. After enlarging R0 once more we
may assume that x2

0 = 0 in S0. However, since R0 ⊂ R is reduced we see that S0

is reduced and hence x0 = 0 as desired. �

Lemma 10.151.7. Let ϕ : R→ S be a ring map. Assume

(1) ϕ is smooth,
(2) R is normal.

Then S is normal.

Proof. First assume R is Noetherian. In this case being normal is the same as
having properties (S2) and (R1), see Lemma 10.146.4. Note that S is Noetherian,
and R → S is flat with regular fibres (see the list of results on smooth ring maps
in Section 10.137). Hence we may apply Lemmas 10.151.4 and 10.151.5 and we see
that S is (S2) and (R1), in other words normal by Lemma 10.146.4 again.

The general case. First note that R is reduced and hence S is reduced by Lemma
10.151.6. Let q be a prime of S and let p be the corresponding prime of R. Note
that Rp is a normal domain. We have to show that Sq is a normal domain. To
do this we may replace R by Rp and S by Sp. Hence we may assume that R is a
normal domain.

Assume R→ S smooth, and R a normal domain. We may find a finitely generated
Z-subalgebra R0 ⊂ R and a smooth ring map R0 → S0 such that S ∼= R ⊗R0 S0,
see remark (10) in Section 10.137. As R0 is a Nagata domain (see Proposition
10.150.31) we see that its integral closure R′0 is finite over R0. Moreover, as R is
a normal domain it is clear that R′0 ⊂ R. Hence we may replace R0 by R′0 and
S0 by R′0 ⊗R0

S0 and assume that R0 is a normal Noetherian domain. By the
first paragraph of the proof we conclude that S0 is a normal ring (it need not be
a domain of course). In this way we see that R =

⋃
Rλ is the union of normal

Noetherian domains and correspondingly S = colimRλ ⊗R0
S0 is the colimit of

normal rings. This implies that S is a normal ring. Some details omitted. �

Lemma 10.151.8. Let ϕ : R→ S be a ring map. Assume
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(1) ϕ is smooth,
(2) R is a regular ring.

Then S is regular.

Proof. This follows from Lemma 10.151.5 applied for all (Rk) using Lemma 10.135.3
to see that the hypotheses are satisfied. �

10.152. Descending properties

In this section we start proving some algebraic facts concerning the “descent” of
properties of rings. It turns out that it is often “easier” to descend properties than
it is to ascend them. In other words, the assumption on the ring map R → S are
often weaker than the assumptions in the corresponding lemma of the preceding
section. However, we warn the reader that the results on descent are often useless
unless the corresponding ascent can also be shown! Here is a typical result which
illustrates this phenomenon.

Lemma 10.152.1. Let R→ S be a ring map. Assume that

(1) R→ S is faithfully flat, and
(2) S is Noetherian.

Then R is Noetherian.

Proof. Let I0 ⊂ I1 ⊂ I2 ⊂ . . . be a growing sequence of ideals of R. By assumption
we have InS = In+1S = In+2S = . . . for some n. Since R→ S is flat we have IkS =
Ik⊗R S. Hence, as R→ S is faithfully flat we see that InS = In+1S = In+2S = . . .
implies that In = In+1 = In+2 = . . . as desired. �

Lemma 10.152.2. Let R→ S be a ring map. Assume that

(1) R→ S is faithfully flat, and
(2) S is reduced.

Then R is reduced.

Proof. This is clear as R→ S is injective. �

Lemma 10.152.3. Let R→ S be a ring map. Assume that

(1) R→ S is faithfully flat, and
(2) S is a normal ring.

Then R is a normal ring.

Proof. Since S is reduced it follows that R is reduced. Let p be a prime of R.
We have to show that Rp is a normal domain. Since Sp is faithfully over Rp too
we may assume that R is local with maximal ideal m. Let q be a prime of S lying
over m. Then we see that R → Sq is faithfully flat (Lemma 10.38.16). Hence we
may assume S is local as well. In particular S is a normal domain. Since R→ S is
faithfully flat and S is a normal domain we see that R is a domain. Next, suppose
that a/b is integral over R with a, b ∈ R. Then a/b ∈ S as S is normal. Hence
a ∈ bS. This means that a : R → R/bR becomes the zero map after base change
to S. By faithful flatness we see that a ∈ bR, so a/b ∈ R. Hence R is normal. �

Lemma 10.152.4. Let R→ S be a ring map. Assume that

(1) R→ S is faithfully flat, and
(2) S is a regular ring.
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Then R is a regular ring.

Proof. We see that R is Noetherian by Lemma 10.152.1. Let p ⊂ R be a prime.
Choose a prime q ⊂ S lying over p. Then Lemma 10.106.9 applies to Rp → Sq and
we conclude that Rp is regular. Since p was arbitrary we see R is regular. �

Lemma 10.152.5. Let R→ S be a ring map. Assume that

(1) R→ S is faithfully flat of finite presentation, and
(2) S is Noetherian and has property (Sk).

Then R is Noetherian and has property (Sk).

Proof. We have already seen that (1) and (2) imply that R is Noetherian, see
Lemma 10.152.1. Let p ⊂ R be a prime ideal. Choose a prime q ⊂ S lying
over p which corresponds to a minimal prime of the fibre ring S ⊗R κ(p). Then
A = Rp → Sq = B is a flat local ring homomorphism of Noetherian local rings
with mAB an ideal of definition of B. Hence dim(A) = dim(B) (Lemma 10.108.7)
and depth(A) = depth(B) (Lemma 10.151.2). Hence since B has (Sk) we see that
A has (Sk). �

Lemma 10.152.6. Let R→ S be a ring map. Assume that

(1) R→ S is faithfully flat and of finite presentation, and
(2) S is Noetherian and has property (Rk).

Then R is Noetherian and has property (Rk).

Proof. We have already seen that (1) and (2) imply that R is Noetherian, see
Lemma 10.152.1. Let p ⊂ R be a prime ideal and assume dim(Rp) ≤ k. Choose a
prime q ⊂ S lying over p which corresponds to a minimal prime of the fibre ring
S⊗Rκ(p). Then A = Rp → Sq = B is a flat local ring homomorphism of Noetherian
local rings with mAB an ideal of definition of B. Hence dim(A) = dim(B) (Lemma
10.108.7). As S has (Rk) we conclude that B is a regular local ring. By Lemma
10.106.9 we conclude that A is regular. �

Lemma 10.152.7. Let R→ S be a ring map. Assume that

(1) R→ S is smooth and surjective on spectra, and
(2) S is a Nagata ring.

Then R is a Nagata ring.

Proof. Recall that a Nagata ring is the same thing as a Noetherian universally
Japanese ring (Proposition 10.150.30). We have already seen that R is Noetherian
in Lemma 10.152.1. Let R→ A be a finite type ring map into a domain. According
to Lemma 10.150.17 it suffices to check that A is N-1. It is clear that B = A⊗R S
is a finite type S-algebra and hence Nagata (Proposition 10.150.30). Since A→ B
is smooth (Lemma 10.132.4) we see that B is reduced (Lemma 10.151.6). Since B
is Noetherian it has only a finite number of minimal primes q1, . . . , qt (see Lemma
10.30.6). As A → B is flat each of these lies over (0) ⊂ A (by going down,
see Lemma 10.38.17) The total ring of fractions Q(B) is the product of the Li =
f.f.(B/qi) (Lemmas 10.24.4 and 10.24.1). Moreover, the integral closure B′ of B in
Q(B) is the product of the integral closuresB′i of theB/qi in the factors Li (compare
with Lemma 10.36.14). Since B is universally Japanese the ring extensions B/qi ⊂
B′i are finite and we conclude that B′ =

∏
B′i is finite over B. Since A → B is
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flat we see that any nonzerodivisor on A maps to a nonzerodivisor on B. The
corresponding map

Q(A)⊗A B = (A \ {0})−1A⊗A B = (A \ {0})−1B → Q(B)

is injective (we used Lemma 10.11.15). Via this map A′ maps into B′. This induces
a map

A′ ⊗A B −→ B′

which is injective (by the above and the flatness of A → B). Since B′ is a finite
B-module and B is Noetherian we see that A′ ⊗A B is a finite B-module. Hence
there exist finitely many elements xi ∈ A′ such that the elements xi ⊗ 1 generate
A′ ⊗A B as a B-module. Finally, by faithful flatness of A → B we conclude that
the xi also generated A′ as an A-module, and we win. �

Remark 10.152.8. The property of being “universally catenary” does not descend;
not even along étale ring maps. In Examples, Section 82.16 there is a construction
of a finite ring map A→ B with A local Noetherian and not universally catenary,
B semi-local with two maximal ideals m, n with Bm and Bn regular of dimension
2 and 1 respectively, and the same residue fields as that of A. Moreover, mA
generates the maximal ideal in both Bm and Bn (so A→ B is unramified as well as
finite). By Lemma 10.144.10 there exists a local étale ring map A→ A′ such that
B ⊗A A′ = B1 × B2 decomposes with A′ → Bi surjective. This shows that A′ has
two minimal primes qi with A′/qi ∼= Bi. Since Bi is regular local (since it is étale
over either Bm or Bn) we conclude that A′ is universally catenary.

10.153. Geometrically normal algebras

In this section we put some applications of ascent and descent of properties of rings.

Lemma 10.153.1. Let k be a field. Let A be a k-algebra. The following properties
of A are equivalent:

(1) k′ ⊗k A is a normal ring for every field extension k ⊂ k′,
(2) k′⊗kA is a normal ring for every finitely generated field extension k ⊂ k′,

and
(3) k′ ⊗k A is a normal ring for every finite purely inseparable extension k ⊂

k′.

where normal ring is as defined in Definition 10.36.10.

Proof. It is clear that (1) ⇒ (2) ⇒ (3).

Assume (2) and let k ⊂ k′ be any field extension. Then we can write k′ = colimi ki
as a directed colimit of finitely generated field extensions. Hence we see that k′ ⊗k
A = colimi ki ⊗k A is a directed colimit of normal rings. Thus we see that k′ ⊗k A
is a normal ring by Lemma 10.36.15. Hence (1) holds.

Assume (3) and let k ⊂ K be a finitely generated field extension. By Lemma
10.44.3 we can find a diagram

K // K ′

k

OO

// k′

OO

where k ⊂ k′, K ⊂ K ′ are finite purely inseparable field extensions such that
k′ ⊂ K ′ is separable. By Lemma 10.147.10 there exists a smooth k′-algebra B such
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that K ′ is the fraction field of B. Now we can argue as follows: Step 1: k′ ⊗k A is
a normal ring because we assumed (3). Step 2: B ⊗k′ k′ ⊗k A is a normal ring as
k′⊗kA→ B⊗k′ k′⊗kA is smooth (Lemma 10.132.4) and ascent of normality along
smooth maps (Lemma 10.151.7). Step 3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a normal
ring as it is a localization of a normal ring (Lemma 10.36.12). Step 4. Finally
K ⊗k A is a normal ring by descent of normality along the faithfully flat ring map
K ⊗k A→ K ′ ⊗k A (Lemma 10.152.3). This proves the lemma. �

Definition 10.153.2. Let k be a field. A k-algebra R is called geometrically normal
over k if the equivalent conditions of Lemma 10.153.1 hold.

Lemma 10.153.3. Let k be a field. A localization of a geometrically normal k-
algebra is geometrically normal.

Proof. This is clear as being a normal ring is checked at the localizations at prime
ideals. �

Lemma 10.153.4. Let k be a field. Let A,B be k-algebras. Assume A is geomet-
rically normal over k and B is a normal ring. Then A⊗k B is a normal ring.

Proof. Let r be a prime ideal of A⊗kB. Denote p, resp. q the corresponding prime
of A, resp. B. Then (A ⊗k B)r is a localization of Ap ⊗k Bq. Hence it suffices to
prove the result for the ring Ap ⊗k Bq, see Lemma 10.36.12 and Lemma 10.153.3.
Thus we may assume A and B are domains.

Assume that A and B are domains with fractions fields K and L. Note that B is
the filtered colimit of its finite type normal k-sub algebras (as k is a Nagata ring, see
Proposition 10.150.31, and hence the integral closure of a finite type k-sub algebra
is still a finite type k-sub algebra by Proposition 10.150.30). By Lemma 10.36.15
we reduce to the case that B is of finite type over k.

Assume that A and B are domains with fractions fields K and L and B of finite
type over k. In this case the ring K⊗kB is of finite type over K, hence Noetherian
(Lemma 10.30.1). In particular K ⊗k B has finitely many minimal primes (Lemma
10.30.6). Since A → A ⊗k B is flat, this implies that A ⊗k B has finitely many
minimal primes (by going down for flat ring maps – Lemma 10.38.17 – these primes
all lie over (0) ⊂ A). Thus it suffices to prove that A ⊗k B is integrally closed in
its total ring of fractions (Lemma 10.36.14).

We claim that K ⊗k B and A ⊗k L are both normal rings. If this is true then
any element x of Q(A⊗k B) which is integral over A⊗k B is (by Lemma 10.36.11)
contained in K⊗kB ∩A⊗k L = A⊗kB and we’re done. Since A⊗K L is a normal
ring by assumption, it suffices to prove that K ⊗k B is normal.

AsA is geometrically normal over k we seeK is geometrically normal over k (Lemma
10.153.3) hence K is geometrically reduced over k. Hence K =

⋃
Ki is the union

of finitely generated field extensions of k which are geometrically reduced (Lemma
10.42.2). Each Ki is the localization of a smooth k-algebra (Lemma 10.147.10). So
Ki⊗kB is the localization of a smooth B-algebra hence normal (Lemma 10.151.7).
Thus K ⊗k B is a normal ring (Lemma 10.36.15) and we win. �
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10.154. Geometrically regular algebras

Let k be a field. Let A be a Noetherian k-algebra. Let k ⊂ K be a finitely generated
field extension. Then the ring K ⊗k A is Noetherian as well, see Lemma 10.30.7.
Thus the following lemma makes sense.

Lemma 10.154.1. Let k be a field. Let A be a k-algebra. Assume A is Noetherian.
The following properties of A are equivalent:

(1) k′ ⊗k A is regular for every finitely generated field extension k ⊂ k′, and
(2) k′ ⊗k A is regular for every finite purely inseparable extension k ⊂ k′.

Here regular ring is as in Definition 10.106.7.

Proof. The lemma makes sense by the remarks preceding the lemma. It is clear
that (1) ⇒ (2).

Assume (2) and let k ⊂ K be a finitely generated field extension. By Lemma
10.44.3 we can find a diagram

K // K ′

k

OO

// k′

OO

where k ⊂ k′, K ⊂ K ′ are finite purely inseparable field extensions such that
k′ ⊂ K ′ is separable. By Lemma 10.147.10 there exists a smooth k′-algebra B such
that K ′ is the fraction field of B. Now we can argue as follows: Step 1: k′ ⊗k A is
a regular ring because we assumed (2). Step 2: B ⊗k′ k′ ⊗k A is a regular ring as
k′⊗kA→ B⊗k′ k′⊗kA is smooth (Lemma 10.132.4) and ascent of regularity along
smooth maps (Lemma 10.151.8). Step 3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a regular
ring as it is a localization of a regular ring (immediate from the definition). Step
4. Finally K ⊗k A is a regular ring by descent of regularity along the faithfully flat
ring map K ⊗k A→ K ′ ⊗k A (Lemma 10.152.4). This proves the lemma. �

Definition 10.154.2. Let k be a field. Let R be a Noetherian k-algebra. The
k-algebra R is called geometrically regular over k if the equivalent conditions of
Lemma 10.154.1 hold.

It is clear from the definition that K ⊗k R is a geometrically regular algebra over
K for any finitely generated field extension K of k. We will see later (More on
Algebra, Proposition 15.25.1) that it suffices to check R ⊗k k′ is regular whenever
k ⊂ k′ ⊂ k1/p (finite).

Lemma 10.154.3. Let k be a field. Let A→ B be a faithfully flat k-algebra map.
If B is geometrically regular over k, so is A.

Proof. Assume B is geometrically regular over k. Let k ⊂ k′ be a finite, purely
inseparable extension. Then A⊗k k′ → B⊗k k′ is faithfully flat as a base change of
A→ B (by Lemmas 10.29.3 and 10.38.6) and B⊗k k′ is regular by our assumption
on B over k. Then A⊗k k′ is regular by Lemma 10.152.4. �

Lemma 10.154.4. Let k be a field. Let A→ B be a smooth ring map of k-algebras.
If A is geometrically regular over k, then B is geometrically regular over k.

Proof. Let k ⊂ k′ be a finitely generated field extension. Then A⊗k k′ → B⊗k k′
is a smooth ring map (Lemma 10.132.4) and A ⊗k k′ is regular. Hence B ⊗k k′ is
regular by Lemma 10.151.8. �
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Lemma 10.154.5. Let k be a field. Let A be an algebra over k. Let k = colim ki
be a directed colimit of subfields. If A is geometrically regular over each ki, then A
is geometrically regular over k.

Proof. Let k ⊂ k′ be a finite purely inseparable field extension. We can get k′

by adjoining finitely many variables to k and imposing finitely many polynomial
relations. Hence we see that there exists an i and a finite purely inseparable field
extension ki ⊂ k′i such that ki = k⊗ki k′i. Thus A⊗k k′ = A⊗ki k′i and the lemma
is clear. �

Lemma 10.154.6. Let k ⊂ k′ be a separable algebraic field extension. Let A be
an algebra over k′. Then A is geometrically regular over k if and only if it is
geometrically regular over k′.

Proof. Let k ⊂ L be a finite purely inseparable field extension. Then L′ = k′⊗k L
is a field (see material in Fields, Section 9.25) and A⊗k L = A⊗k′ L′. Hence if A
is geometrically regular over k′, then A is geometrically regular over k.

Assume A is geometrically regular over k. Since k′ is the filtered colimit of finite
extensions of k we may assume by Lemma 10.154.5 that k′/k is finite separable.
Consider the ring maps

k′ → A⊗k k′ → A.

Note that A⊗k k′ is geometrically regular over k′ as a base change of A to k′. Note
that A⊗k k′ → A is the base change of k′⊗k k′ → k′ by the map k′ → A. Since k′/k
is an étale extension of rings, we see that k′ ⊗k k′ → k′ is étale (Lemma 10.138.3).
Hence A is geometrically regular over k′ by Lemma 10.154.4. �

10.155. Geometrically Cohen-Macaulay algebras

This section is a bit of a misnomer, since Cohen-Macaulay algebras are automat-
ically geometrically Cohen-Macaulay. Namely, see Lemma 10.126.6 and Lemma
10.155.2 below.

Lemma 10.155.1. Let k be a field and let k ⊂ K and k ⊂ L be two field extensions
such that one of them is a field extension of finite type. Then K⊗kL is a Noetherian
Cohen-Macaulay ring.

Proof. The ring K ⊗k L is Noetherian by Lemma 10.30.7. Say K is a finite
extension of the purely transcendental extension k(t1, . . . , tr). Then k(t1, . . . , tr)⊗k
L→ K ⊗k L is a finite free ring map. By Lemma 10.108.9 it suffices to show that
k(t1, . . . , tr)⊗kL is Cohen-Macaulay. This is clear because it is a localization of the
polynomial ring L[t1, . . . , tr]. (See for example Lemma 10.100.7 for the fact that a
polynomial ring is Cohen-Macaulay.) �

Lemma 10.155.2. Let k be a field. Let S be a Noetherian k-algebra. Let k ⊂ K
be a finitely generated field extension, and set SK = K ⊗k S. Let q ⊂ S be a prime
of S. Let qK ⊂ SK be a prime of SK lying over q. Then Sq is Cohen-Macaulay if
and only if (SK)qK is Cohen-Macaulay.

Proof. By Lemma 10.30.7 the ring SK is Noetherian. Hence Sq → (SK)qK is a
flat local homomorphism of Noetherian local rings. Note that the fibre

(SK)qK/q(SK)qK
∼= (κ(q)⊗k K)q′
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is the localization of the Cohen-Macaulay (Lemma 10.155.1) ring κ(q) ⊗k K at a
suitable prime ideal q′. Hence the lemma follows from Lemma 10.151.3. �

10.156. Colimits and maps of finite presentation, II

This section is a continuation of Section 10.123.

We start with an application of the openness of flatness. It says that we can
approximate flat modules by flat modules which is useful.

Lemma 10.156.1. Let R → S be a ring map. Let M be an S-module. Assume
that

(1) R→ S is of finite presentation,
(2) M is a finitely presented S-module, and
(3) M is flat over R.

In this case we have the following:

(1) There exists a finite type Z-algebra R0 and a finite type ring map R0 → S0

and a finite S0-module M0 such that M0 is flat over R0, together with a
ring maps R0 → R and S0 → S and an S0-module map M0 → M such
that S ∼= R⊗R0

S0 and M = S ⊗S0
M0.

(2) If R = colimλ∈ΛRλ is written as a directed colimit, then there exists a
λ and a ring map Rλ → Sλ of finite presentation, and an Sλ-module
Mλ of finite presentation such that Mλ is flat over Rλ and such that
S = R⊗Rλ Sλ and M = S ⊗Sλ Mλ.

(3) If
(R→ S,M) = colimλ∈Λ(Rλ → Sλ,Mλ)

is written as a directed colimit such that
(a) Rµ⊗Rλ Sλ → Sµ and Sµ⊗SλMλ →Mµ are isomorphisms for µ ≥ λ,
(b) Rλ → Sλ is of finite presentation,
(c) Mλ is a finitely presented Sλ-module,

then for all sufficiently large λ the module Mλ is flat over Rλ.

Proof. We first write (R → S,M) as the directed colimit of a system (Rλ →
Sλ,Mλ) as in as in Lemma 10.123.15. Let q ⊂ S be a prime. Let p ⊂ R, qλ ⊂ Sλ,
and pλ ⊂ Rλ the corresponding primes. As seen in the proof of Theorem 10.125.4

((Rλ)pλ , (Sλ)qλ , (Mλ)qλ)

is a system as in Lemma 10.123.11, and hence by Lemma 10.124.3 we see that for
some λq ∈ Λ for all λ ≥ λq the module Mλ is flat over Rλ at the prime qλ.

By Theorem 10.125.4 we get an open subset Uλ ⊂ Spec(Sλ) such that Mλ flat over
Rλ at all the primes of Uλ. Denote Vλ ⊂ Spec(S) the inverse image of Uλ under the
map Spec(S) → Spec(Sλ). The argument above shows that for every q ∈ Spec(S)
there exists a λq such that q ∈ Vλ for all λ ≥ λq. Since Spec(S) is quasi-compact
we see this implies there exists a single λ0 ∈ Λ such that Vλ0

= Spec(S).

The complement Spec(Sλ0
)\Uλ0

is V (I) for some ideal I ⊂ Sλ0
. As Vλ0

= Spec(S)
we see that IS = S. Choose f1, . . . , fr ∈ I and s1, . . . , sn ∈ S such that

∑
fisi = 1.

Since colimSλ = S, after increasing λ0 we may assume there exist si,λ0
∈ Sλ0

such
that

∑
fisi,λ0

= 1. Hence for this λ0 we have Uλ0
= Spec(Sλ0

). This proves (1).

Proof of (2). Let (R0 → S0,M0) be as in (1) and suppose that R = colimRλ.
Since R0 is a finite type Z algebra, there exists a λ and a map R0 → Rλ such that

http://stacks.math.columbia.edu/tag/02JO
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R0 → Rλ → R is the given map R0 → R (see Lemma 10.123.2). Then, part (2)
follows by taking Sλ = Rλ ⊗R0 S0 and Mλ = Sλ ⊗S0 M0.

Finally, we come to the proof of (3). Let (Rλ → Sλ,Mλ) be as in (3). Choose
(R0 → S0,M0) and R0 → R as in (1). As in the proof of (2), there exists a λ0

and a ring map R0 → Rλ0
such that R0 → Rλ0

→ R is the given map R0 → R.
Since S0 is of finite presentation over R0 and since S = colimSλ we see that for
some λ1 ≥ λ0 we get an R0-algebra map S0 → Sλ1 such that the composition
S0 → Sλ1

→ S is the given map S0 → S (see Lemma 10.123.2). For all λ ≥ λ1 this
gives maps

Ψλ : Rλ ⊗R0
S0 −→ Rλ ⊗Rλ1

Sλ1
∼= Sλ

the last isomorphism by assumption. By construction colimλ Ψλ is an isomorphism.
Hence Ψλ is an isomorphism for all λ large enough by Lemma 10.123.6. In the
same vein, there exists a λ2 ≥ λ1 and an S0-module map M0 → Mλ2

such that
M0 → Mλ2

→ M is the given map M0 → M (see Lemma 10.123.3). For λ ≥ λ2

there is an induced map

Sλ ⊗S0
M0 −→ Sλ ⊗Sλ2

Mλ2
∼= Mλ

and for λ large enough this map is an isomorphism by Lemma 10.123.4. This
implies (3) because M0 is flat over R0. �

Lemma 10.156.2. Let R → A → B be ring maps. Assume A → B faithfully flat
of finite presentation. Then there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation
and B = A⊗A0 B0.

Proof. We first prove the lemma with R replaced Z. By Lemma 10.156.1 there
exists a diagram

A0
// A

B0

OO

// B

OO

where A0 is of finite type over Z, B0 is flat of finite presentation over A0 such that
B = A ⊗A0

B0. As A0 → B0 is flat of finite presentation we see that the image
of Spec(B0) → Spec(A0) is open, see Proposition 10.40.8. Hence the complement
of the image is V (I0) for some ideal I0 ⊂ A0. As A → B is faithfully flat the
map Spec(B) → Spec(A) is surjective, see Lemma 10.38.15. Now we use that the
base change of the image is the image of the base change. Hence I0A = A. Pick a
relation

∑
firi = 1, with ri ∈ A, fi ∈ I0. Then after enlarging A0 to contain the

elements ri (and correspondingly enlarging B0) we see that A0 → B0 is surjective
on spectra also, i.e., faithfully flat.

Thus the lemma holds in case R = Z. In the general case, take the solution A′0 → B′0
just obtained and set A0 = A′0 ⊗Z R, B0 = B′0 ⊗Z R. �

http://stacks.math.columbia.edu/tag/034Y
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Lemma 10.156.3. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0
B0 → A⊗A0

C0 is finite,
(2) C0 is of finite type over B0.

Then there exists an i ≥ 0 such that the map Ai ⊗A0
B0 −→ Ai ⊗A0

C0 is finite.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick monic polynomials
Pj ∈ A⊗A0 B0[T ] such that Pj(1⊗xj) = 0 in A⊗A0 C0. For some i ≥ 0 we can find
Pj,i ∈ Ai ⊗A0 B0[T ] mapping to Pj . Since ⊗ commutes with colimits we see that
Pj,i(1⊗ xj) is zero in Ai ⊗A0

C0 after possibly increasing i. Then this i works. �

Lemma 10.156.4. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0
B0 → A⊗A0

C0 is surjective,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 −→ Ai ⊗A0 C0 is surjective.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick bj ∈ A⊗A0 B0 mapping
to 1⊗ xj in A⊗A0 C0. For some i ≥ 0 we can find bj,i ∈ Ai ⊗A0 B0 mapping to bj .
Then this i works. �

Lemma 10.156.5. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0
B0 −→ A⊗A0

C0 is étale,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 −→ Ai ⊗A0 C0 is étale.

Proof. Note that B0 → C0 is of finite presentation, see Lemma 10.6.2. Write
C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and Ci = Ai ⊗A0 C0.
Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the image of fj,0 in the
polynomial ring over Bi. Write B = A ⊗A0

B0 and C = A ⊗A0
C0. Note that

C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the polynomial ring
over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk

is an isomorphism. Thus for sufficiently large i we can find elements

ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)
2

with dξk,i = dxk in
⊕
Cidxk. Moreover, on increasing i if necessary, we see that∑

(∂fj,i/∂xk)ξk,i = fj,i mod (f1,i, . . . , fm,i)
2 since this is true in the limit. Then

this i works. �

The following lemma is an application of the results above which doesn’t seem to
fit well anywhere else.

Lemma 10.156.6. Let R → S be a faithfully flat ring map of finite presentation.
Then there exists a commutative diagram

S // S′

R

__ >>

http://stacks.math.columbia.edu/tag/07RG
http://stacks.math.columbia.edu/tag/07RH
http://stacks.math.columbia.edu/tag/07RI
http://stacks.math.columbia.edu/tag/034Z
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where R→ S′ is quasi-finite, faithfully flat and of finite presentation.

Proof. As a first step we reduce this lemma to the case where R is of finite type
over Z. By Lemma 10.156.2 there exists a diagram

S0
// S

R0

OO

// R

OO

where R0 is of finite type over Z, and S0 is faithfully flat of finite presentation over
R0 such that S = R⊗R0

S0. If we prove the lemma for the ring map R0 → S0, then
the lemma follows for R → S by base change, as the base change of a quasi-finite
ring map is quasi-finite, see Lemma 10.118.8. (Of course we also use that base
changes of flat maps are flat and base changes of maps of finite presentation are of
finite presentation.)

Assume R → S is a faithfully flat ring map of finite presentation and that R
is Noetherian (which we may assume by the preceding paragraph). Let W ⊂
Spec(S) be the open set of Lemma 10.126.4. As R → S is faithfully flat the map
Spec(S) → Spec(R) is surjective, see Lemma 10.38.15. By Lemma 10.126.5 the
map W → Spec(R) is also surjective. Hence by replacing S with a product Sg1

×
. . .×Sgm we may assume W = Spec(S); here we use that Spec(R) is quasi-compact
(Lemma 10.16.10), and that the map Spec(S) → Spec(R) is open (Proposition
10.40.8). Suppose that p ⊂ R is a prime. Choose a prime q ⊂ S lying over p
which corresponds to a maximal ideal of the fibre ring S ⊗R κ(p). The Noetherian
local ring Sq = Sq/pSq is Cohen-Macaulay, say of dimension d. We may choose

f1, . . . , fd in the maximal ideal of Sq which map to a regular sequence in Sq. Choose
a common denominator g ∈ S, g 6∈ q of f1, . . . , fd, and consider the R-algebra

S′ = Sg/(f1, . . . , fd).

By construction there is a prime ideal q′ ⊂ S′ lying over p and corresponding to q
(via Sg → S′g). Also by construction the ring map R → S′ is quasi-finite at q as
the local ring

S′q′/pS
′
q′ = Sq/(f1, . . . , fd) + pSq = Sq/(f1, . . . , fd)

has dimension zero, see Lemma 10.118.2. Also by construction R → S′ is of fi-
nite presentation. Finally, by Lemma 10.95.3 the local ring map Rp → S′q′ is flat

(this is where we use that R is Noetherian). Hence, by openness of flatness (The-
orem 10.125.4), and openness of quasi-finiteness (Lemma 10.119.14) we may after
replacing g by gg′ for a suitable g′ ∈ S, g′ 6∈ q assume that R → S′ is flat and
quasi-finite. The image Spec(S′)→ Spec(R) is open and contains p. In other words
we have shown a ring S′ as in the statement of the lemma exists (except possibly
the faithfulness part) whose image contains any given prime. Using one more time
the quasi-compactness of Spec(R) we see that a finite product of such rings does
the job. �

10.157. Other chapters
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(3) Set Theory
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CHAPTER 11

Brauer groups

11.1. Introduction

A reference are the lectures by Serre in the Seminaire Cartan, see [Ser55a]. Serre in
turn refers to [Deu68] and [ANT44]. We changed some of the proofs, in particular
we used a fun argument of Rieffel to prove Wedderburn’s theorem. Very likely this
change is not an improvement and we strongly encourage the reader to read the
original exposition by Serre.

11.2. Noncommutative algebras

Let k be a field. In this chapter an algebra A over k is a possibly noncommutative
ring A together with a ring map k → A such that k maps into the center of A and
such that 1 maps to an identity element of A. An A-module is a right A-module
such that the identity of A acts as the identity.

Definition 11.2.1. Let A be a k-algebra. We say A is finite if dimk(A) < ∞. In
this case we write [A : k] = dimk(A).

Definition 11.2.2. A skew field is a possibly noncommutative ring with an identity
element 1, with 1 6= 0, in which every nonzero element has a multiplicative inverse.

A skew field is a k-algebra for some k (e.g., for the prime field contained in it). We
will use below that any module over a skew field is free because a maximal linearly
independent set of vectors forms a basis and exists by Zorn’s lemma.

Definition 11.2.3. Let A be a k-algebra. We say an A-module M is simple if it
is nonzero and the only A-submodules are 0 and M . We say A is simple if the only
two-sided ideals of A are 0 and A.

Definition 11.2.4. A k-algebra A is central if the center of A is the image of
k → A.

Definition 11.2.5. Given a k-algebra A we denote Aop the k-algebra we get by
reversing the order of multiplication in A. This is called the opposite algebra.

11.3. Wedderburn’s theorem

The following cute argument can be found in a paper of Rieffel, see [Rie65]. The
proof could not be simpler (quote from Carl Faith’s review).

Lemma 11.3.1. Let A be a possibly noncommutative ring with 1 which contains
no nontrivial two-sided ideal. Let M be a nonzero right ideal in A, and view M as
a right A-module. Then A coincides with the bicommutant of M .
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Proof. Let A′ = EndA(M), and let A′′ = EndA′(M) (the bicommutant of M). Let
R : A → A′′ be the natural homomorphism R(a)(m) = ma. Then R is injective,
since R(1) = idM and A contains no nontrivial two-sided ideal. We claim that
R(M) is a right ideal in A′′. Namely, R(m)a′′ = R(ma′′) for a′′ ∈ A′′ and m in
M , because left multiplication of M by any element n of M represents an element
of A′, and so (nm)a′′ = n(ma′′), that is, (R(m)a′′)(n) = R(ma′′)(n) for all n in
M . Finally, the product ideal AM is a two-sided ideal, and so A = AM . Thus
R(A) = R(A)R(M), so that R(A) is a right ideal in A′′. But R(A) contains the
identity element of A′′, and so R(A) = A′′. �

Lemma 11.3.2. Let A be a k-algebra. If A is finite, then

(1) A has a simple module,
(2) any nonzero module contains a simple submodule,
(3) a simple module over A has finite dimension over k, and
(4) if M is a simple A-module, then EndA(M) is a skew field.

Proof. Of course (1) follows from (2) since A is a nonzero A-module. For (2),
any submodule of minimal (finite) dimension as a k-vector space will be simple.
There exists a finite dimensional one because a cyclic submodule is one. If M is
simple, then mA ⊂ M is a sub-module, hence we see (3). Any nonzero element of
EndA(M) is an isomorphism, hence (4) holds. �

Theorem 11.3.3. Let A be a simple finite k-algebra. Then A is a matrix algebra
over a finite k-algebra K which is a skew field.

Proof. We may choose a simple submodule M ⊂ A and then the k-algebra K =
EndA(M) is a skew field, see Lemma 11.3.2. By Lemma 11.3.1 we see that A =
EndK(M). Since K is a skew field and M is finitely generated (since dimk(M) <
∞) we see that M is finite free as a left K-module. It follows immediately that
A ∼= Mat(n× n,Kop). �

11.4. Lemmas on algebras

Let A be a k-algebra. Let B ⊂ A be a subalgebra. The centralizer of B in A is the
subalgebra

C = {y ∈ A | xy = yx for all x ∈ B}.
It is a k-algebra.

Lemma 11.4.1. Let A, A′ be k-algebras. Let B ⊂ A, B′ ⊂ A′ be subalgebras with
centralizers C, C ′. Then the centralizer of B ⊗k B′ in A⊗k A′ is C ⊗k C ′.

Proof. Denote C ′′ ⊂ A⊗kA′ the centralizer of B⊗kB′. It is clear that C⊗kC ′ ⊂
C ′′. Conversely, every element of C ′′ commutes with B ⊗ 1 hence is contained in
C ⊗k A′. Similarly C ′′ ⊂ A⊗k C ′. Thus C ′′ ⊂ C ⊗k A′ ∩A⊗k C ′ = C ⊗k C ′. �

Lemma 11.4.2. Let A be a finite simple k-algebra. Then the center k′ of A is a
finite field extension of k.

Proof. Write A = Mat(n×n,K) for some skew field K finite over k, see Theorem
11.3.3. By Lemma 11.4.1 the center of A is k ⊗k k′ where k′ ⊂ K is the center of
K. Since the center of a skew field is a field, we win. �
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Lemma 11.4.3. Let V be a k vector space. Let K be a central k-algebra which
is a skew field. Let W ⊂ V ⊗k K be a two-sided K-sub vector space. Then W is
generated as a left K-vector space by W ∩ (V ⊗ 1).

Proof. Let V ′ ⊂ V be the k-sub vector space generated by v ∈ V such that
v ⊗ 1 ∈W . Then V ′ ⊗k K ⊂W and we have

W/(V ′ ⊗k K) ⊂ (V/V ′)⊗k K.
If v ∈ V/V ′ is a nonzero vector such that v ⊗ 1 is contained in W/V ′ ⊗k K, then
we see that v⊗ 1 ∈W where v ∈ V lifts v. This contradicts our construction of V ′.
Hence we may replace V by V/V ′ and W by W/V ′ ⊗k K and it suffices to prove
that W ∩ (V ⊗ 1) is nonzero if W is nonzero.

To see this let w ∈ W be a nonzero element which can be written as w =∑
i=1,...,n vi ⊗ ki with n minimal. We may right multiply with k−1

1 and assume
that k1 = 1. If n = 1, then we win because v1 ⊗ 1 ∈W . If n > 1, then we see that
for any c ∈ K

cv − vc =
∑

i=2,...,n
vi ⊗ (cki − kic) ∈W

and hence cki − kic = 0 by minimality of n. This implies that ki is in the center
of K which is k by assumption. Hence v = (v1 +

∑
kivi) ⊗ 1 contradicting the

minimality of n. �

Lemma 11.4.4. Let A be a k-algebra. Let K be a central k-algebra which is a
skew field. Then any two-sided ideal I ⊂ A ⊗k K is of the form J ⊗k K for some
two-sided ideal J ⊂ A. In particular, if A is simple, then so is A⊗k K.

Proof. Set J = {a ∈ A | a⊗1 ∈ I}. This is a two-sided ideal of A. And I = J⊗kK
by Lemma 11.4.3. �

Lemma 11.4.5. Let R be a possibly noncommutative ring. Let n ≥ 1 be an integer.
Let Rn = Mat(n× n,R).

(1) The functors M 7→M⊕n and N 7→ Ne11 define quasi-inverse equivalences
of categories ModR ↔ ModRn .

(2) A two-sided ideal of Rn is of the form IRn for some two-sided ideal I of
R.

(3) The center of Rn is equal to the center of R.

Proof. Part (1) proves itself. If J ⊂ Rn is a two-sided ideal, then J =
⊕
eiiJejj

and all of the summands eiiJejj are equal to each other and are a two-sided ideal
I of R. This proves (2). Part (3) is clear. �

Lemma 11.4.6. Let A be a finite simple k-algebra.

(1) There exists exactly one simple A-module M up to isomorphism.
(2) Any finite A-module is a direct sum of copies of a simple module.
(3) Two finite A-modules are isomorphic if and only if they have the same

dimension over k.
(4) If A = Mat(n × n,K) with K a finite skew field extension of k, then

M = K⊕n is a simple A-module and EndA(M) = Kop.
(5) If M is a simple A-module, then L = EndA(M) is a skew field finite over

k acting on the left on M , we have A = EndL(M), and the centers of A
and L agree. Also [A : k][L : k] = dimk(M)2.
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(6) For a finite A-module N the algebra B = EndA(N) is a matrix algebra
over the skew field L of (5). Moreover EndB(N) = A.

Proof. By Theorem 11.3.3 we can write A = Mat(n × n,K) for some finite skew
field extension K of k. By Lemma 11.4.5 the category of modules over A is equiva-
lent to the category of modules over K. Thus (1), (2), and (3) hold because every
module over K is free. Part (4) holds because the equivalence transforms the K-
module K to M = K⊕n. Using M = K⊕n in (5) we see that L = Kop. The
statement about the center of L = Kop follows from Lemma 11.4.5. The statement
about EndL(M) follows from the explicit form of M . The formula of dimensions
is clear. Part (6) follows as N is isomorphic to a direct sum of copies of a simple
module. �

Lemma 11.4.7. Let A, A′ be two simple k-algebras one of which is finite and
central over k. Then A⊗k A′ is simple.

Proof. Suppose that A′ is finite and central over k. Write A′ = Mat(n × n,K ′),
see Theorem 11.3.3. Then the center of K ′ is k and we conclude that A ⊗k K ′
is simple by Lemma 11.4.4. Hence A ⊗k A′ = Mat(n × n,A ⊗k K ′) is simple by
Lemma 11.4.5. �

Lemma 11.4.8. The tensor product of finite central simple algebras over k is finite,
central, and simple.

Proof. Combine Lemmas 11.4.1 and 11.4.7. �

Lemma 11.4.9. Let A be a finite central simple algebra over k. Let k ⊂ k′ be a
field extension. Then A′ = A⊗k k′ is a finite central simple algebra over k′.

Proof. Combine Lemmas 11.4.1 and 11.4.7. �

Lemma 11.4.10. Let A be a finite central simple algebra over k. Then A⊗kAop ∼=
Mat(n× n, k) where n = [A : k].

Proof. By Lemma 11.4.8 the algebra A⊗k Aop is simple. Hence the map

A⊗k Aop −→ Endk(A), a⊗ a′ 7−→ (x 7→ axa′)

is injective. Since both sides of the arrow have the same dimension we win. �

11.5. The Brauer group of a field

Let k be a field. Consider two finite central simple algebras A and B over k. We say
A and B are similar if there exist n,m > 0 such that Mat(n×n,A) ∼= Mat(m×m,B)
as k-algebras.

Lemma 11.5.1. Similarity.

(1) Similarity defines an equivalence relation on the set of isomorphism classes
of finite central simple algebras over k.

(2) Every similarity class contains a unique (up to isomorphism) finite central
skew field extension of k.

(3) If A = Mat(n × n,K) and B = Mat(m ×m,K ′) for some finite central
skew fields K, K ′ over k then A and B are similar if and only if K ∼= K ′

as k-algebras.
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Proof. Note that by Wedderburn’s theorem (Theorem 11.3.3) we can always write
a finite central simple algebra as a matrix algebra over a finite central skew field.
Hence it suffices to prove the third assertion. To see this it suffices to show that if
A = Mat(n × n,K) ∼= Mat(m ×m,K ′) = B then K ∼= K ′. To see this note that
for a simple module M of A we have EndA(M) = Kop, see Lemma 11.4.6. Hence
A ∼= B implies Kop ∼= (K ′)op and we win. �

Given two finite central simple k-algebras A, B the tensor product A ⊗k B is
another, see Lemma 11.4.8. Moreover if A is similar to A′, then A⊗k B is similar
to A′ ⊗k B because tensor products and taking matrix algebras commute. Hence
tensor product defines an operation on equivalence classes of finite central simple
algebras which is clearly associative and commutative. Finally, Lemma 11.4.10
shows that A⊗k Aop is isomorphic to a matrix algebra, i.e., that A⊗k Aop is in the
similarity class of k. Thus we obtain an abelian group.

Definition 11.5.2. Let k be a field. The Brauer group of k is the abelian group of
similarity classes of finite central simple k-algebras defined above. Notation Br(k).

For any map of fields k → k′ we obtain a group homomorphism

Br(k) −→ Br(k′), A 7−→ A⊗k k′

see Lemma 11.4.9. In other words, Br(−) is a functor from the category of fields
to the category of abelian groups. Observe that the Brauer group of a field is zero
if and only if every finite central skew field extension k ⊂ K is trivial.

Lemma 11.5.3. The Brauer group of an algebraically closed field is zero.

Proof. Let k ⊂ K be a finite central skew field extension. For any element x ∈ K
the subring k[x] ⊂ K is a commutative finite integral k-sub algebra, hence a field,
see Algebra, Lemma 10.35.17. Since k is algebraically closed we conclude that
k[x] = k. Since x was arbitrary we conclude k = K. �

Lemma 11.5.4. Let A be a finite central simple algebra over a field k. Then [A : k]
is a square.

Proof. This is true because A⊗kk is a matrix algebra over k by Lemma 11.5.3. �

11.6. Skolem-Noether

Theorem 11.6.1. Let A be a finite central simple k-algebra. Let B be a simple
k-algebra. Let f, g : B → A be two k-algebra homomorphisms. Then there exists
an invertible element x ∈ A such that f(b) = xg(b)x−1 for all b ∈ B.

Proof. Choose a simple A-module M . Set L = EndA(M). Then L is a skew
field with center k which acts on the left on M , see Lemmas 11.3.2 and 11.4.6.
Then M has two B ⊗k Lop-module structures defined by m ·1 (b⊗ l) = lmf(b) and
m ·2 (b⊗ l) = lmg(b). The k-algebra B⊗kLop is simple by Lemma 11.4.7. Since B is
simple, the existence of a k-algebra homomorphism B → A implies that B is finite.
Thus B⊗k Lop is finite simple and we conlude the two B⊗k Lop-module structures
on M are isomorphic by Lemma 11.4.6. Hence we find ϕ : M → M intertwining
these operations. In particular ϕ is in the commutant of L which implies that ϕ is
multiplication by some x ∈ A, see Lemma 11.4.6. Working out the definitions we
see that x is a solution to our problem. �
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Lemma 11.6.2. Let A be a finite simple k-algebra. Any automorphism of A is
inner. In particular, any automorphism of Mat(n× n, k) is inner.

Proof. Note that A is a finite central simple algebra over the center of A which is
a finite field extension of k, see Lemma 11.4.2. Hence the Skolem-Noether theorem
(Theorem 11.6.1) applies. �

11.7. The centralizer theorem

Theorem 11.7.1. Let A be a finite central simple algebra over k, and let B be a
simple subalgebra of A. Then

(1) the centralizer C of B in A is simple,
(2) [A : k] = [B : k][C : k], and
(3) the centralizer of C in A is B.

Proof. Throughout this proof we use the results of Lemma 11.4.6 freely. Choose a
simple A-module M . Set L = EndA(M). Then L is a skew field with center k which
acts on the left on M and A = EndL(M). Then M is a right B⊗k Lop-module and
C = EndB⊗kLop(M). Since the algebra B⊗k Lop is simple by Lemma 11.4.7 we see
that C is simple (by Lemma 11.4.6 again).

Write B ⊗k Lop = Mat(m × m,K) for some skew field K finite over k. Then
C = Mat(n× n,Kop) if M is isomorphic to a direct sum of n copies of the simple
B ⊗k Lop-module K⊕m (the lemma again). Thus we have dimk(M) = nm[K : k],
[B : k][L : k] = m2[K : k], [C : k] = n2[K : k], and [A : k][L : k] = dimk(M)2 (by
the lemma again). We conclude that (2) holds.

Part (3) follows because of (2) applied to C ⊂ A shows that [B : k] = [C ′ : k] where
C ′ is the centralizer of C in A (and the obvious fact that B ⊂ C ′). �

Lemma 11.7.2. Let A be a finite central simple algebra over k, and let B be a
simple subalgebra of A. If B is a central k-algebra, then A = B ⊗k C where C is
the (central simple) centralizer of B in A.

Proof. We have dimk(A) = dimk(B ⊗k C) by Theorem 11.7.1. By Lemma 11.4.7
the tensor product is simple. Hence the natural map B⊗kC → A is injective hence
an isomorphism. �

Lemma 11.7.3. Let A be a finite central simple algebra over k. If K ⊂ A is a
subfield, then the following are equivalent

(1) [A : k] = [K : k]2,
(2) K is its own centralizer, and
(3) K is a maximal commutative subring.

Proof. Theorem 11.7.1 shows that (1) and (2) are equivalent. It is clear that (3)
and (2) are equivalent. �

Lemma 11.7.4. Let A be a finite central skew field over k. Then every maximal
subfield K ⊂ A satisfies [A : k] = [K : k]2.

Proof. Special case of Lemma 11.7.3. �
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11.8. Splitting fields

Definition 11.8.1. Let A be a finite central simple k-algebra. We say a field
extension k ⊂ k′ splits A, or k′ is a splitting field for A if A⊗k k′ is a matrix algebra
over k′.

Another way to say this is that the class of A maps to zero under the map Br(k)→
Br(k′).

Theorem 11.8.2. Let A be a finite central simple k-algebra. Let k ⊂ k′ be a finite
field extension. The following are equivalent

(1) k′ splits A, and
(2) there exists a finite central simple algebra B similar to A such that k′ ⊂ B

and [B : k] = [k′ : k]2.

Proof. Assume (2). It suffices to show that B⊗k k′ is a matrix algebra. We know
that B ⊗k Bop ∼= Endk(B). Since k′ is the centralizer of k′ in Bop by Lemma
11.7.3 we see that B ⊗k k′ is the centralizer of k ⊗ k′ in B ⊗k Bop = Endk(B). Of
course this centralizer is just Endk′(B) where we view B as a k′ vector space via
the embedding k′ → B. Thus the result.

Assume (1). This means that we have an isomorphism A ⊗k k′ ∼= Endk′(V ) for
some k′-vector space V . Let B be the commutant of A in Endk(V ). Note that k′

sits in B. By Lemma 11.7.2 the classes of A and B add up to zero in Br(k). From
the dimension formula in Theorem 11.7.1 we see that

[B : k][A : k] = dimk(V )2 = [k′ : k]2 dimk′(V )2 = [k′ : k]2[A : k].

Hence [B : k] = [k′ : k]2. Thus we have proved the result for the opposite to the
Brauer class of A. However, k′ splits the Brauer class of A if and only if it splits
the Brauer class of the opposite algebra, so we win anyway. �

Lemma 11.8.3. A maximal subfield of a finite central skew field K over k is a
splitting field for K.

Proof. Combine Lemma 11.7.4 with Theorem 11.8.2. �

Lemma 11.8.4. Consider a finite central skew field K over k. Let d2 = [K : k].
For any finite splitting field k′ for K the degree [k′ : k] is divisible by d.

Proof. By Theorem 11.8.2 there exists a finite central simple algebra B in the
Brauer class of K such that [B : k] = [k′ : k]2. By Lemma 11.5.1 we see that
B = Mat(n× n,K) for some n. Then [k′ : k]2 = n2d2 whence the result. �

Proposition 11.8.5. Consider a finite central skew field K over k. There exists a
maximal subfield k ⊂ k′ ⊂ K which is separable over k. In particular, every Brauer
class has a finite separable spitting field.

Proof. Since every Brauer class is represented by a finite central skew field over k,
we see that the second statement follows from the first by Lemma 11.8.3.

To prove the first statement, suppose that we are given a separable subfield k′ ⊂ K.
Then the centralizer K ′ of k′ in K has center k′, and the problem reduces to finding
a maximal subfield of K ′ separable over k′. Thus it suffices to prove, if k 6= K, that
we can find an element x ∈ K, x 6∈ k which is separable over k. This statement is
clear in characteristic zero. Hence we may assume that k has characteristic p > 0.
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If the ground field k is finite then, the result is clear as well (because extensions of
finite fields are always separable). Thus we may assume that k is an infinite field
of positive characteristic.

To get a contradiction assume no element ofK is separable over k. By the discussion
in Fields, Section 9.25 this means the minimal polynomial of any x ∈ K is of the
form T q − a where q is a power of p and a ∈ k. Since it is clear that every element
of K has a minimal polynomial of degree ≤ dimk(K) we conclude that there exists
a fixed p-power q such that xq ∈ k for all x ∈ K.

Consider the map
(−)q : K −→ K

and write it out in terms of a k-basis {a1, . . . , an} of K with a1 = 1. So

(
∑

xiai)
q =

∑
fi(x1, . . . , xn)ai.

Since multiplication on A is k-bilinear we see that each fi is a polynomial in
x1, . . . , xn (details omitted). The choice of q above and the fact that k is infi-
nite shows that fi is identically zero for i ≥ 2. Hence we see that it remains zero on
extending k to its algebraic closure k. But the algebra A⊗k k is a matrix algebra,
which implies there are some elements whose qth power is not central (e.g., e11).
This is the desired contradiction. �

The results above allow us to characterize finite central simple algebras as follows.

Lemma 11.8.6. Let k be a field. For a k-algebra A the following are equivalent

(1) A is finite central simple k-algebra,
(2) A is a finite dimensional k-vector space, k is the center of A, and A has

no nontrivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗k k̄ ∼= Mat(d× d, k̄),
(4) there exists d ≥ 1 such that A⊗k ksep ∼= Mat(d× d, ksep),
(5) there exist d ≥ 1 and a finite Galois extension k ⊂ k′ such that A⊗k′ k′ ∼=

Mat(d× d, k′),
(6) there exist n ≥ 1 and a finite central skew field K over k such that A ∼=

Mat(n× n,K).

The integer d is called the degree of A.

Proof. The equivalence of (1) and (2) is a consequence of the definitions, see
Section 11.2. Assume (1). By Proposition 11.8.5 there exists a separable splitting
field k ⊂ k′ for A. Of course, then a Galois closure of k′/k is a splitting field also.
Thus we see that (1) implies (5). It is clear that (5) ⇒ (4) ⇒ (3). Assume (3).
Then A⊗k k is a finite central simple k-algebra for example by Lemma 11.4.5. This
trivially implies that A is a finite central simple k-algebra. Finally, the equivalence
of (1) and (6) is Wedderburn’s theorem, see Theorem 11.3.3. �
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CHAPTER 12

Homological Algebra

12.1. Introduction

Basic homological algebra will be explained in this document. We add as needed
in the other parts, since there is clearly an infinite amount of this stuff around. A
reference is [ML63].

12.2. Basic notions

The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) Nothing yet.

12.3. Preadditive and additive categories

Here is the definition of a preadditive category.

Definition 12.3.1. A categoryA is called preadditive if each morphism set MorA(x, y)
is endowed with the structure of an abelian group such that the compositions

Mor(x, y)×Mor(y, z) −→ Mor(x, z)

are bilinear. A functor F : A → B of preadditive categories is called additive if and
only if F : Mor(x, y)→ Mor(F (x), F (y)) is a homomorphism of abelian groups for
all x, y ∈ Ob(A).

In particular for every x, y there exists at least one morphism x → y, namely the
zero map.

Lemma 12.3.2. Let A be a preadditive category. Let x be an object of A. The
following are equivalent

(1) x is an initial object,
(2) x is a final object, and
(3) idx = 0 in MorA(x, x).

Furthermore, if such an object 0 exists, then a morphism α : x→ y factors through
0 if and only if α = 0.

Proof. Omitted. �

Definition 12.3.3. In a preadditive category A we call zero object, and we denote
it 0 any final and initial object as in Lemma 12.3.2 above.

Lemma 12.3.4. Let A be a preadditive category. Let x, y ∈ Ob(A). If the product
x × y exists, then so does the coproduct x

∐
y. If the coproduct x

∐
y exists, then

so does the product x× y. In this case also x
∐
y ∼= x× y.
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Proof. Suppose that z = x× y with projections p : z → x and q : z → y. Denote
i : x → z the morphism corresponding to (1, 0). Denote j : y → z the morphism
corresponding to (0, 1). Thus we have the commutative diagram

x
1 //

i

  

x

z

p
??

q

��
y

1 //

j
??

y

where the diagonal compositions are zero. It follows that i ◦ p + j ◦ q : z → z is
the identity since it is a morphism which upon composing with p gives p and upon
composing with q gives q. Suppose given morphisms a : x → w and b : y → w.
Then we can form the map a ◦ p + b ◦ q : z → w. In this way we get a bijection
Mor(z, w) = Mor(x,w)×Mor(y, w) which show that z = x

∐
y.

We leave it to the reader to construct the morphisms p, q given a coproduct x
∐
y

instead of a product. �

Definition 12.3.5. Given a pair of objects x, y in a preadditive category A we call
direct sum, and we denote it x⊕ y the product x× y endowed with the morphisms
i, j, p, q as in Lemma 12.3.4 above.

Remark 12.3.6. Note that the proof of Lemma 12.3.4 shows that given p and q
the morphisms i, j are uniquely determined by the rules p ◦ i = idx, q ◦ j = idy,
p◦ j = 0, q ◦ i = 0. Moreover, we automatically have i◦p+ j ◦ q = idx⊕y. Similarly,
given i, j the morphisms p and q are uniquely determined. Finally, given objects
x, y, z and morphisms i : x → z, j : y → z, p : z → x and q : z → y such that
p ◦ i = idx, q ◦ j = idy, p ◦ j = 0, q ◦ i = 0 and i ◦ p+ j ◦ q = idz, then z is the direct
sum of x and y with the four morphisms equal to i, j, p, q.

Lemma 12.3.7. Let A, B be preadditive categories. Let F : A → B be an additive
functor. Then F transforms direct sums to direct sums and zero to zero.

Proof. Suppose F is additive. A direct sum z of x and y is characterized by having
morphisms i : x → z, j : y → z, p : z → x and q : z → y such that p ◦ i = idx,
q ◦ j = idy, p ◦ j = 0, q ◦ i = 0 and i ◦ p+ j ◦ q = idz, according to Remark 12.3.6.
Clearly F (x), F (y), F (z) and the morphisms F (i), F (j), F (p), F (q) satisfy exactly
the same relations (by additivity) and we see that F (z) is a direct sum of F (x) and
F (y). �

Definition 12.3.8. A category A is called additive if it is preadditive and finite
products exist, in other words it has a zero object and direct sums.

Namely the empty product is a finite product and if it exists, then it is a final
object.

Definition 12.3.9. Let A be a preadditive category. Let f : x→ y be a morphism.

(1) A kernel of f is a morphism i : z → x such that (a) f ◦ i = 0 and (b)
for any i′ : z′ → x such that f ◦ i′ = 0 there exists a unique morphism
g : z′ → z such that i′ = i ◦ g.

(2) If the kernel of f exists, then we denote this Ker(f)→ x.
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(3) A cokernel of f is a morphism p : y → z such that (a) p ◦ f = 0 and (b)
for any p′ : y → z′ such that p′ ◦ f = 0 there exists a unique morphism
g : z → z′ such that p′ = g ◦ p.

(4) If a cokernel of f exists we denote this y → Coker(f).
(5) If a kernel of f exists, then a coimage of f is a cokernel for the morphism

Ker(f)→ x.
(6) If a kernel and coimage exist then we denote this x→ Coim(f).
(7) If a cokernel of f exists, then the image of f is a kernel of the morphism

y → Coker(f).
(8) If a cokernel and image of f exist then we denote this Im(f)→ y.

We first relate the direct sum to kernels as follows.

Lemma 12.3.10. Let C be a preadditive category. Let x ⊕ y with morphisms
i, j, p, q as in Lemma 12.3.4 be a direct sum in C. Then i : x→ x⊕ y is a kernel of
q : x⊕ y → y. Dually, p is a cokernel for j.

Proof. Let f : z → x ⊕ y be a morphism such that q ◦ f = 0. We have to show
that there exists a unique morphism g : z → x such that f = i◦ g. Since i◦p+ j ◦ q
is the identity on x⊕ y we see that

f = (i ◦ p+ j ◦ q) ◦ f = i ◦ p ◦ f

and hence g = p ◦ f works. Uniquess holds because p ◦ i is the identity on x. The
proof of the second statement is dual. �

Lemma 12.3.11. Let f : x→ y be a morphism in a preadditive category such that
the kernel, cokernel, image and coimage all exist. Then f can be factored uniquely
as x→ Coim(f)→ Im(f)→ y.

Proof. There is a canonical morphism Coim(f) → y because Ker(f) → x → y
is zero. The composition Coim(f) → y → Coker(f) is zero, because it is the
unique morphism which gives rise to the morphism x → y → Coker(f) which is
zero. Hence Coim(f)→ y factors uniquely through Im(f)→ y, which gives us the
desired map. �

Example 12.3.12. Let k be a field. Consider the category of filtered vector spaces
over k. (See Definition 12.16.1.) Consider the filtered vector spaces (V, F ) and
(W,F ) with V = W = k and

F iV =

{
V if i < 0
0 if i ≥ 0

and F iW =

{
W if i ≤ 0
0 if i > 0

The map f : V → W corresponding to idk on the underlying vector spaces has
trivial kernel and cokernel but is not an isomorphism. Note also that Coim(f) = V
and Im(f) = W . This means that the category of filtered vector spaces over k is
not abelian.

12.4. Karoubian categories

Skip this section on a first reading.

Definition 12.4.1. Let C be a preadditive category. We say C is Karoubian if
every idempotent endomorphism of an object of C has a kernel.
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The dual notion would be that every idempotent endomorphism of an object has a
cokernel. However, in view of the (dual of the) following lemma that would be an
equivalent notion.

Lemma 12.4.2. Let C be a preadditive category. The following are equivalent

(1) C is Karoubian,
(2) every idempotent endomorphism of an object of C has a cokernel, and
(3) given an idempotent endomorphism p : z → z of C there exists a direct

sum decomposition z = x ⊕ y such that p corresponds to the projection
onto y.

Proof. Assume (1) and let p : z → z be as in (3). Let x = Ker(p) and y =
Ker(1 − p). There are maps x → z and y → z. Since (1 − p)p = 0 we see that
p : z → z factors through y, hence we obtain a morphism z → y. Similarly we
obtain a morphism z → x. We omit the verification that these four morphisms
induce an isomorphism x = y ⊕ z as in Remark 12.3.6. Thus (1) ⇒ (3). The
implication (2) ⇒ (3) is dual. Finally, condition (3) implies (1) and (2) by Lemma
12.3.10. �

Lemma 12.4.3. Let D be a preadditive category.

(1) If D has countable products and kernels of maps which have a right inverse,
then D is Karoubian.

(2) If D has countable coproducts and cokernels of maps which have a left
inverse, then D is Karoubian.

Proof. Let X be an object of D and let e : X → X be an idempotent. The functor

W 7−→ Ker(MorD(W,X)
e−→ MorD(W,X))

if representable if and only if e has a kernel. Note that for any abelian group A
and idempotent endomorphism e : A→ A we have

Ker(e : A→ A) = Ker(Φ :
∏

n∈N
A→

∏
n∈N

A)

where

Φ(a1, a2, a3, . . .) = (ea1 + (1− e)a2, ea2 + (1− e)a3, . . .)

Moreover, Φ has the right inverse

Ψ(a1, a2, a3, . . .) = (a1, (1− e)a1 + ea2, (1− e)a2 + ea3, . . .).

Hence (1) holds. The proof of (2) is dual (using the dual definition of a Karoubian
category, namely condition (2) of Lemma 12.4.2). �

12.5. Abelian categories

An abelian category is a category satisfying just enough axioms so the snake lemma
holds. An axiom (that is sometimes forgotten) is that the canonical map Coim(f)→
Im(f) of Lemma 12.3.11 is always an isomorphism. Example 12.3.12 shows that it
is necessary.

Definition 12.5.1. A category A is abelian if it is additive, if all kernels and
cokernels exist, and if the natural map Coim(f)→ Im(f) is an isomorphism for all
morphisms f of A.
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Lemma 12.5.2. Let A be a preadditive category. The additions on sets of mor-
phisms make Aopp into a preadditive category. Furthermore, A is additive if and
only if Aopp is additive, and A is abelian if and only if Aopp is abelian.

Proof. Omitted. �

Definition 12.5.3. Let f : x→ y be a morphism in an abelian category.

(1) We say f is injective if Ker(f) = 0.
(2) We say f is surjective if Coker(f) = 0.

If x→ y is injective, then we say that x is a subobject of y and we use the notation
x ⊂ y. If x→ y is surjective, then we say that y is a quotient of x.

Lemma 12.5.4. Let f : x→ y be a morphism in an abelian category. Then

(1) f is injective if and only if f is a monomorphism, and
(2) f is surjective if and only if f is an epimorphism.

Proof. Omitted. �

In an abelian category, if x ⊂ y is a subobject, then we denote

x/y = Coker(x→ y).

Lemma 12.5.5. Let A be an abelian category. All finite limits and finite colimits
exist in A.

Proof. To show that finite limits exist it suffices to show that finite products and
equalizers exist, see Categories, Lemma 4.18.4. Finite products exist by definition
and the equalizer of a, b : x → y is the kernel of a − b. The argument for finite
colimits is similar but dual to this. �

Example 12.5.6. Let A be an abelian category. Pushouts and fibre products in
A have the following simple descriptions:

(1) If a : x→ y, b : z → y are morphisms in A, then we have the fibre product:
x×y z = Ker((a,−b) : x⊕ z → y).

(2) If a : y → x, b : y → z are morphisms in A, then we have the pushout:
xqy z = Coker((a,−b) : y → x⊕ z).

Definition 12.5.7. LetA be an additive category. We say a sequence of morphisms

. . .→ x→ y → z → . . .

in A is a complex if the composition of any two (drawn) arrows is zero. If A is
abelian then we say a sequence as above is exact at y if Im(x→ y) = Ker(y → z).
We say it is exact if it is exact at every object. A short exact sequence is an exact
complex of the form

0→ A→ B → C → 0.

In the following lemma we assume the reader knows what it means for a sequence
of abelian groups to be exact.

Lemma 12.5.8. Let A be an abelian category. Let 0 → M1 → M2 → M3 → 0 be
a complex of A.

(1) M1 →M2 →M3 → 0 is exact if and only if

0→ HomA(M3, N)→ HomA(M2, N)→ HomA(M1, N)

is an exact sequence of abelian groups for all objects N of A, and

http://stacks.math.columbia.edu/tag/010A
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(2) 0→M1 →M2 →M3 is exact if and only if

0→ HomA(N,M1)→ HomA(N,M2)→ HomA(N,M1)

is an exact sequence of abelian groups for all objects N of A.

Proof. Omitted. Hint: See Algebra, Lemma 10.10.1. �

Definition 12.5.9. Let A be an abelian category. Let i : A → B and q : B → C
be morphisms of A such that 0 → A → B → C → 0 is a short exact sequence.
We say the short exact sequence is split if there exist morphisms j : C → B and
p : B → A such that (B, i, j, p, q) is the direct sum of A and C.

Lemma 12.5.10. Let A be an abelian category. Let 0 → A → B → C → 0 be a
short exact sequence.

(1) Given a morphism s : C → B left inverse to B → C, there exists a unique
π : B → A such that (s, π) splits the short exact sequence as in Definition
12.5.9.

(2) Given a morphism π : B → A right inverse to A → B, there exists a
unique s : C → B such that (s, π) splits the short exact sequence as in
Definition 12.5.9.

Proof. Omitted. �

Lemma 12.5.11. Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.

(1) The diagram is cartesian if and only if

0→ w
(g,f)−−−→ x⊕ y (k,−h)−−−−→ z

is exact.
(2) The diagram is cocartesian if and only if

w
(g,−f)−−−−→ x⊕ y (k,h)−−−→ z → 0

is exact.

Proof. Let u = (g, f) : w → x⊕ y and v = (k,−h) : x⊕ y → z. Let p : x⊕ y → x
and q : x ⊕ y → y be the canonical projections. Let i : Ker(v) → x ⊕ y be the
canonical injection. By Example 12.5.6, the diagram is cartesian if and only if there
exists an isomorphism r : Ker(v) → w with f ◦ r = q ◦ i and g ◦ r = p ◦ i. The

sequence 0 → w
u→ x ⊕ y v→ z is exact if and only if there exists an isomorphism

r : Ker(v)→ w with u ◦ r = i. But given r : Ker(v)→ w, we have f ◦ r = q ◦ i and
g ◦ r = p ◦ i if and only if q ◦ u ◦ r = f ◦ r = q ◦ i and p ◦ u ◦ r = g ◦ r = p ◦ i, hence
if and only if u ◦ r = i. This proves (1), and then (2) follows by duality. �
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Lemma 12.5.12. Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.

(1) If the diagram is cartesian, then the morphism Ker(f)→ Ker(k) induced
by g is an isomorphism.

(2) If the diagram is cocartesian, then the morphism Coker(f) → Coker(k)
induced by h is an isomorphism.

Proof. Suppose the diagram is cartesian. Let e : Ker(f)→ Ker(k) be induced by
g. Let i : Ker(f)→ w and j : Ker(k)→ x be the canonical injections. There exists
t : Ker(k)→ w with f ◦t = 0 and g◦t = j. Hence, there exists u : Ker(k)→ Ker(f)
with i◦u = t. It follows g◦i◦u◦e = g◦t◦e = j◦e = g◦i and f◦i◦u◦e = 0 = f◦i, hence
i ◦ u ◦ e = i. Since i is a monomorphism this implies u ◦ e = idKer(f). Furthermore,
we have j ◦ e ◦ u = g ◦ i ◦ u = g ◦ t = j. Since j is a monomorphism this implies
e ◦ u = idKer(k). This proves (1). Now, (2) follows by duality. �

Lemma 12.5.13. Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.

(1) If the diagram is cartesian and k is an epimorphism, then the diagram is
cocartesian and f is an epimorphism.

(2) If the diagram is cocartesian and g is a monomorphism, then the diagram
is cartesian and h is a monomorphism.

Proof. Suppose the diagram is cartesian and k is an epimorphism. Let u = (g, f) :
w → x ⊕ y and let v = (k,−h) : x ⊕ y → z. As k is an epimorphism, v is

an epimorphism, too. Therefore and by Lemma 12.5.11, the sequence 0 → w
u→

x ⊕ y
v→ z → 0 is exact. Thus, the diagram is cocartesian by Lemma 12.5.11.

Finally, f is an epimorphism by Lemma 12.5.12 and Lemma 12.5.4. This proves
(1), and (2) follows by duality. �

Lemma 12.5.14. Let A be an abelian category.

(1) If x → y is surjective, then for every z → y the projection x ×y z → z is
surjective.

(2) If x → y is injective, then for every x → z the morphism z → z qx y is
injective.

Proof. Immediately from Lemma 12.5.4 and Lemma 12.5.13. �

Lemma 12.5.15. Let A be an abelian category. Let f : x → y and g : y → z be
morphisms with g ◦ f = 0. Then, the following statements are equivalent:

(1) The sequence x
f→ y

g→ z is exact.

http://stacks.math.columbia.edu/tag/08N3
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(2) For every h : w → y with g◦h = 0 there exist an object v, an epimorphism
k : v → w and a morphism l : v → x with h ◦ k = f ◦ l.

Proof. Let i : Ker(g)→ y be the canonical injection. Let p : x→ Coim(f) be the
canonical projection. Let j : Im(f)→ Ker(g) be the canonical injection.

Suppose (1) holds. Let h : w → y with g ◦ h = 0. There exists c : w → Ker(g) with
i ◦ c = h. Let v = x×Ker(g) w with canonical projections k : v → w and l : v → x,
so that c ◦ k = p ◦ l. Then, h ◦ k = i ◦ c ◦ k = i ◦ j ◦ p ◦ l = f ◦ l. As j ◦ p is an
epimorphism by hypothesis, k is an epimorphism by Lemma 12.5.13. This implies
(2).

Suppose (2) holds. Then, g ◦ i = 0. So, there are an object w, an epimorphism
k : w → Ker(g) and a morphism l : w → x with f ◦ l = i ◦ k. It follows i ◦ j ◦ p ◦ l =
f ◦ l = i ◦ k. Since i is a monomorphism we see that j ◦ p ◦ l = k is an epimorphism.
So, j is an epimorphisms and thus an isomorphism. This implies (1). �

Lemma 12.5.16. Let A be an abelian category. Let

x
f //

α

��

y
g //

β

��

z

γ

��
u

k // v
l // w

be a commutative diagram.

(1) If the first row is exact and k is a monomorphism, then the induced se-
quence Ker(α)→ Ker(β)→ Ker(γ) is exact.

(2) If the second row is exact and g is an epimorphism, then the induced
sequence Coker(α)→ Coker(β)→ Coker(γ) is exact.

Proof. Suppose the first row is exact and k is a monomorphism. Let a : Ker(α)→
Ker(β) and b : Ker(β) → Ker(γ) be the induced morphisms. Let h : Ker(α) →
x, i : Ker(β) → y and j : Ker(γ) → z be the canonical injections. As j is a
monomorphism we have b ◦ a = 0. Let c : s → Ker(β) with b ◦ c = 0. Then,
g ◦ i ◦ c = j ◦ b ◦ c = 0. By Lemma 12.5.15 there are an object t, an epimorphism
d : t → s and a morphism e : t → x with i ◦ c ◦ d = f ◦ e. Then, k ◦ α ◦ e =
β ◦ f ◦ e = β ◦ i ◦ c ◦ d = 0. As k is a monomorphism we get α ◦ e = 0. So, there
exists m : t→ Ker(α) with h◦m = e. It follows i◦a◦m = f ◦h◦m = f ◦e = i◦c◦d.
As i is a monomorphism we get a ◦m = c ◦ d. Thus, Lemma 12.5.15 implies (1),
and then (2) follows by duality. �

Lemma 12.5.17. Let A be an abelian category. Let

x
f //

α

��

y
g //

β

��

z //

γ

��

0

0 // u
k // v

l // w

be a commutative diagram with exact rows.
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(1) There exists a unique morphism δ : Ker(γ) → Coker(α) such that the
diagram

y

β

��

y ×z Ker(γ)
π′oo π // Ker(γ)

δ

��
v

ι′// Coker(α)qu v Coker(α)
ιoo

commutes, where π and π′ are the canonical projections and ι and ι′ are
the canonical coprojections.

(2) The induced sequence

Ker(α)
f ′→ Ker(β)

g′→ Ker(γ)
δ→ Coker(α)

k′→ Coker(β)
l′→ Coker(γ)

is exact. If f is injective then so is f ′, and if l is surjective then so is l′.

Proof. As π is an epimorphism and ι is a monomorphism by Lemma 12.5.13,
uniqueness of δ is clear. Let p = y ×z Ker(γ) and q = Coker(α) qu v. Let h :
Ker(β) → y, i : Ker(γ) → z and j : Ker(π) → p be the canonical injections. Let
p : u→ Coker(α) be the canonical projection. Keeping in mind Lemma 12.5.13 we
get a commutative diagram with exact rows

0 // Ker(π)
j // p

π //

π′

��

Ker(γ)

i

��

// 0

x
f //

α

��

y
g //

β

��

z

γ

��

// 0

0 // u
k //

p

��

v
l //

ι′

��

w

0 // Coker(α)
ι // q

As l ◦ β ◦ π′ = γ ◦ i ◦ π = 0 and as the third row of the diagram above is exact,
there is an a : p → u with k ◦ a = β ◦ π′. As the upper right quadrangle of the
diagram above is cartesian, Lemma 12.5.12 yields an epimorphism b : x → Ker(π)
with π′ ◦ j ◦ b = f . It follows k ◦ a ◦ j ◦ b = β ◦ π′ ◦ j ◦ b = β ◦ f = k ◦ α. As k
is a monomorphism this implies a ◦ j ◦ b = α. It follows p ◦ a ◦ j ◦ b = p ◦ α = 0.
As b is an epimorphism this implies p ◦ a ◦ j = 0. Therefore, as the top row of the
diagram above is exact, there exists δ : Ker(γ) → Coker(α) with δ ◦ π = p ◦ a. It
follows ι ◦ δ ◦ π = ι ◦ p ◦ a = ι′ ◦ k ◦ a = ι′ ◦ β ◦ π′ as desired.

As the upper right quadrangle in the diagram above is cartesian there is a c :
Ker(β) → p with π′ ◦ c = h and π ◦ c = g′. It follows ι ◦ δ ◦ g′ = ι ◦ δ ◦ π ◦ c =
ι′ ◦ β ◦ π′ ◦ c = ι′ ◦ β ◦ h = 0. As ι is a monomorphism this implies δ ◦ g′ = 0.

Next, let d : r → Ker(γ) with δ ◦ d = 0. Applying Lemma 12.5.15 to the exact

sequence p
π→ Ker(γ)→ 0 and d yields an object s, an epimorphism m : s→ r and

a morphism n : s → p with π ◦ n = d ◦m. As p ◦ a ◦ n = δ ◦ d ◦m = 0, applying

Lemma 12.5.15 to the exact sequence x
α→ u

p→ Coker(α) and a ◦n yields an object
t, an epimorphism ε : t → s and a morphism ζ : t → x with a ◦ n ◦ ε = α ◦ ζ. It
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holds β ◦ π′ ◦ n ◦ ε = k ◦ α ◦ ζ = β ◦ f ◦ ζ. Let η = π′ ◦ n ◦ ε − f ◦ ζ : t → y.
Then, β ◦ η = 0. It follows that there is a ϑ : t → Ker(β) with η = h ◦ ϑ. It holds
i ◦ g′ ◦ ϑ = g ◦ h ◦ ϑ = g ◦ π′ ◦ n ◦ ε − g ◦ f ◦ ζ = i ◦ π ◦ n ◦ ε = i ◦ d ◦m ◦ ε. As i
is a monomorphism we get g′ ◦ ϑ = d ◦m ◦ ε. Thus, as m ◦ ε is an epimorphism,

Lemma 12.5.15 implies that Ker(β)
g′→ Ker(γ)

δ→ Coker(α) is exact. Then, the
claim follows by Lemma 12.5.16 and duality. �

Lemma 12.5.18. Let A be an abelian category. Let

x

��

//

α

��

y

��

//

β

��

z

��

//

γ

��

0

x′ //

α′

��

y′ //

β′

��

z′ //

γ′

��

0

0 // u

��

// v

��

// w

~~
0 // u′ // v′ // w′

be a commutative diagram with exact rows. Then, the induced diagram

Ker(α) //

��

Ker(β) //

��

Ker(γ)
δ //

��

Coker(α) //

��

Coker(β) //

��

Coker(γ)

��
Ker(α′) // Ker(β′) // Ker(γ′)

δ′ // Coker(α′) // Coker(β′) // Coker(γ′)

commutes.

Proof. Omitted. �

Lemma 12.5.19. Let A be an abelian category. Let

w //

α

��

x //

β

��

y //

γ

��

z

δ
��

w′ // x′ // y′ // z′

be a commutative diagram with exact rows.

(1) If α, γ are surjective and δ is injective, then β is surjective.
(2) If β, δ are injective and α is surjective, then γ is injective.

Proof. Assume α, γ are surjective and δ is injective. We may replace w′ by
Im(w′ → x′), i.e., we may assume that w′ → x′ is injective. We may replace z
by Im(y → z), i.e., we may assume that y → z is surjective. Then we may apply
Lemma 12.5.17 to

Ker(y → z) //

��

y //

��

z //

��

0

0 // Ker(y′ → z′) // y′ // z′

http://stacks.math.columbia.edu/tag/08N7
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to conclude that Ker(y → z) → Ker(y′ → z′) is surjective. Finally, we apply
Lemma 12.5.17 to

w //

��

x //

��

Ker(y → z) //

��

0

0 // w′ // x′ // Ker(y′ → z′)

to conclude that x → x′ is surjective. This proves (1). The proof of (2) is dual to
this. �

Lemma 12.5.20. Let A be an abelian category. Let

v //

α

��

w //

β

��

x //

γ

��

y //

δ
��

z

ε

��
v′ // w′ // x′ // y′ // z′

be a commutative diagram with exact rows. If β, δ are isomorphisms, ε is injective,
and α is surjective then γ is an isomorphism.

Proof. Immediate consequence of Lemma 12.5.19. �

12.6. Extensions

Definition 12.6.1. LetA be an abelian category. Let A,C ∈ Ob(A). An extension
E of B by A is a short exact sequence

0→ A→ E → B → 0.

By abuse of language we often omit mention of the morphisms A→ E and E → B,
although they are definitively part of the structure of an extension.

Definition 12.6.2. Let A be an abelian category. Let A,B ∈ Ob(A). The set of
isomorphism classes of extensions of B by A is denoted

ExtA(B,A).

This is called the Ext-group.

This definition works, because by our conventions A is a set, and hence ExtA(B,A)
is a set. In any of the cases of “big” abelian categories listed in Categories, Remark
4.2.2. one can check by hand that ExtA(B,A) is a set as well. Also, we will see
later that this is always the case when A has either enough projectives or enough
injectives. Insert future reference here.

Actually we can turn ExtA(−,−) into a functor

Aopp ×A −→ Sets, (A,B) 7−→ ExtA(A,B)

as follows:

(1) Given a morphism B′ → B and an extension E of B by A we define
E′ = E ×B B′ so that we have the following commutative diagram of
short exact sequences

0 // A //

��

E′ //

��

B′ //

��

0

0 // A // E // B // 0
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The extension E′ is called the pullback of E via B′ → B.
(2) Given a morphism A → A′ and an extension E of B by A we define

E′ = A′
∐
AE so that we have the following commutative diagram of

short exact sequences

0 // A //

��

E //

��

B //

��

0

0 // A′ // E′ // B // 0

The extension E′ is called the pushout of E via A→ A′.

To see that this defines a functor as indicated above there are several things to verify.
First of all functoriality in the variable B requires that (E×BB′)×B′B′′ = E×BB′′
which is a general property of fibre products. Dually one deals with functoriality
in the variable A. Finally, given A→ A′ and B′ → B we have to show that

A′
∐

A
(E ×B B′) ∼= (A′

∐
A
E)×B B′

as extensions of B′ by A′. Recall that A′
∐
AE is a quotient of A′ ⊕ E. Thus the

right hand side is a quotient of A′ ⊕E ×B B′, and it is straightforward to see that
the kernel is exactly what you need in order to get the left hand side.

Note that if E1 and E2 are extensions of B by A, then E1 ⊕ E2 is an extension of
B ⊕B by A⊕A. We pull back by the diagonal map B → B ⊕B and we push out
by the sum map A⊕A→ A to get an extension E1 + E2 of B by A.

0 // A⊕A //

∑
��

E1 ⊕ E2
//

��

B ⊕B //

��

0

0 // A // E′ // B ⊕B // 0

0 // A //

OO

E1 + E2
//

OO

B //

∆

OO

0

The extension E1 + E2 is called the Baer sum of the given extensions.

Lemma 12.6.3. The construction (E1, E2) 7→ E1+E2 above defines a commutative
group law on ExtA(B,A) which is functorial in both variables.

Proof. Omitted. �

Lemma 12.6.4. Let A be an abelian category. Let 0 → M1 → M2 → M3 → 0 be
a short exact sequence in A.

(1) There is a canonical six term exact sequence of abelian groups

0 // HomA(M3, N) // HomA(M2, N) // HomA(M1, N)

rr
ExtA(M3, N) // ExtA(M2, N) // ExtA(M1, N)

for all objects N of A, and
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(2) there is a canonical six term exact sequence of abelian groups

0 // HomA(N,M1) // HomA(N,M2) // HomA(N,M3)

rr
ExtA(N,M1) // ExtA(N,M2) // ExtA(N,M3)

for all objects N of A.

Proof. Omitted. Hint: The boundary maps are defined using either the pushout
or pullback of the given short exact sequence. �

12.7. Additive functors

Recall that we defined, in Categories, Definition 4.23.1 the notion of a “right exact”,
“left exact” and “exact” functor in the setting of a functor between categories that
have finite (co)limits. Thus this applies in particular to functors between abelian
categories.

Lemma 12.7.1. Let A and B be abelian categories. Let F : A → B be a functor.

(1) If F is either left or right exact, then it is additive.
(2) If F is additive then it is left exact if and only if for every short exact

sequence 0→ A→ B → C → 0 the sequence 0→ F (A)→ F (B)→ F (C)
is exact.

(3) If F is additive then it is right exact if and only if for every short exact
sequence 0→ A→ B → C → 0 the sequence F (A)→ F (B)→ F (C)→ 0
is exact.

(4) If F is additive then it is exact if and only if for every short exact sequence
0 → A → B → C → 0 the sequence 0 → F (A) → F (B) → F (C) → 0 is
exact.

Proof. Let us first note that if F commutes with the empty limit or the empty
colimit, then F (0) = 0. In particular F applied to the zero morphism is zero. We
will use this below without mention.

Suppose that F is left exact, i.e., commutes with finite limits. Then F (A × A) =
F (A)×F (A) with projections F (p) and F (q). Hence F (A⊕A) = F (A)⊕F (A) with
all four morphisms F (i), F (j), F (p), F (q) equal to their counterparts in B as they
satisfy the same relations, see Remark 12.3.6. Then f = F (p + q) is a morphism
f : F (A)⊕ F (A)→ F (A) such that f ◦ F (i) = F (p ◦ i+ q ◦ i) = F (idA) = idF (A).
And similarly f ◦ F (j) = idA. We conclude that F (p+ q) = F (p) + F (q). For any
pair of morphisms a, b : B → A the map g = F (i ◦a+ j ◦ b) : F (B)→ F (A)⊕F (A)
is a morphism such that F (p) ◦ g = F (p ◦ (i ◦ a + j ◦ b)) = F (a) and similarly
F (q) ◦ g = F (b). Hence g = F (i) ◦ F (a) + F (j) ◦ F (b). The sum of a and b is the
composition

B
i◦a+j◦b // A⊕A

p+q // A.

Applying F we get

F (B)
F (i)◦F (a)+F (j)◦F (b) // F (A)⊕ F (A)

F (p)+F (q) // A.

where we used the expressions for f and g obtained above. Hence F is additive.1

1I’m sure there is an infinitely slicker proof of this.
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Denote f : B → C a map from B to C. Exactness of 0→ A→ B → C just means
that A = Ker(f). Clearly the kernel of f is the equalizer of the two maps f and
0 from B to C. Hence if F commutes with limits, then F (Ker(f)) = Ker(F (f))
which exactly means that 0→ F (A)→ F (B)→ F (C) is exact.

Conversely, suppose that F is additive and transforms any short exact sequence
0 → A → B → C into an exact sequence 0 → F (A) → F (B) → F (C). Because it
is additive it commutes with direct sums and hence finite products in A. To show
it commutes with finite limits it therefore suffices to show that it commutes with
equalizers. But equalizers in an abelian category are the same as the kernel of the
difference map, hence it suffices to show that F commutes with taking kernels. Let
f : A → B be a morphism. Factor f as A → I → B with f ′ : A → I surjective
and i : I → B injective. (This is possible by the definition of an abelian category.)
Then it is clear that Ker(f) = Ker(f ′). Also 0 → Ker(f ′) → A → I → 0 and
0 → I → B → B/I → 0 are short exact. By the condition imposed on F we see
that 0→ F (Ker(f ′))→ F (A)→ F (I) and 0→ F (I)→ F (B)→ F (B/I) are exact.
Hence it is also the case that F (Ker(f ′)) is the kernel of the map F (A) → F (B),
and we win.

The proof of (3) is similar to the proof of (2). Statement (4) is a combination of
(2) and (3). �

Lemma 12.7.2. Let A and B be abelian categories. Let F : A → B be an exact
functor. For every pair of objects A,B of A the functor F induces an abelian group
homomorphism

ExtA(B,A) −→ ExtB(F (B), F (A))

which maps the extension E to F (E).

Proof. Omitted. �

The following lemma is used in the proof that the category of abelian sheaves on a
site is abelian, where the functor b is sheafification.

Lemma 12.7.3. Let a : A → B and b : B → A be functors. Assume that

(1) A, B are additive categories, a, b are additive functors, and a is right
adjoint to b,

(2) B is abelian and b is left exact, and
(3) ba ∼= idA.

Then A is abelian.

Proof. As B is abelian we see that all finite limits and colimits exist in B by Lemma
12.5.5. Since b is a left adjoint we see that b is also right exact and hence exact, see
Categories, Lemma 4.24.5. Let ϕ : B1 → B2 be a morphism of B. In particular, if
K = Ker(B1 → B2), thenK is the equalizer of 0 and ϕ and hence bK is the equalizer
of 0 and bϕ, hence bK is the kernel of bϕ. Similarly, if Q = Coker(B1 → B2), then
Q is the coequalizer of 0 and ϕ and hence bQ is the coequalizer of 0 and bϕ, hence
bQ is the cokernel of bϕ. Thus we see that every morphism of the form bϕ in A has
a kernel and a cokernel. However, since ba ∼= id we see that every morphism of A
is of this form, and we conclude that kernels and cokernels exist in A. In fact, the
argument shows that if ψ : A1 → A2 is a morphism then

Ker(ψ) = bKer(aψ), and Coker(ψ) = bCoker(aψ).
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Now we still have to show that Coim(ψ) = Im(ψ). We do this as follows. First
note that since A has kernels and cokernels it has all finite limits and colimits (see
proof of Lemma 12.5.5). Hence we see by Categories, Lemma 4.24.5 that a is left
exact and hence transforms kernels (=equalizers) into kernels.

Coim(ψ) = Coker(Ker(ψ)→ A1) by definition

= bCoker(a(Ker(ψ)→ A1)) by formula above

= bCoker(Ker(aψ)→ aA1)) a preserves kernels

= bCoim(aψ) by definition

= bIm(aψ) B is abelian

= bKer(aA2 → Coker(aψ)) by definition

= Ker(baA2 → bCoker(aψ)) b preserves kernels

= Ker(A2 → bCoker(aψ)) ba = idA

= Ker(A2 → Coker(ψ)) by formula above

= Im(ψ) by definition

Thus the lemma holds. �

12.8. Localization

In this section we note how Gabriel-Zisman localization interacts with the additive
structure on a category.

Lemma 12.8.1. Let C be a preadditive category. Let S be a left or right multi-
plicative system. There exists a canonical preadditive structure on S−1C such that
the localization functor Q : C → S−1C is additive.

Proof. We will prove this in the case S is a left multiplicative system. The case
where S is a right multiplicative system is dual. Suppose that X,Y are objects of
C and that α, β : X → Y are morphisms in S−1C. According to Categories, Lemma
4.25.3 we may represent these by pairs s−1f, s−1g with common denominator s. In
this case we define α + β to be the equivalence class of s−1(f + g). In the rest of
the proof we show that this is well defined and that composition is bilinear. Once
this is done it is clear that Q is an additive functor.

Let us show construction above is well defined. An abstract way of saying this is
that filtered colimits of abelian groups agree with filtered colimits of sets and to
use Categories, Equation (4.25.5.1). We can work this out in a bit more detail
as follows. Say s : Y → Y1 and f, g : X → Y1. Suppose we have a second
representation of α, β as (s′)−1f ′, (s′)−1g′ with s′ : Y → Y2 and f ′, g′ : X → Y2.
By Categories, Remark 4.25.5 we can find a morphism s3 : Y → Y3 and morphisms
a1 : Y1 → Y3, a2 : Y2 → Y3 such that a1 ◦ s = s3 = a2 ◦ s′ and also a1 ◦ f = a2 ◦ f ′
and a1 ◦ g = a2 ◦ g′. Hence we see that s−1(f + g) is equivalent to

s−1
3 (a1 ◦ (f + g)) = s−1

3 (a1 ◦ f + a1 ◦ g)

= s−1
3 (a2 ◦ f ′ + a2 ◦ g′)

= s−1
3 (a2 ◦ (f ′ + g′))

which is equivalent to (s′)−1(f ′ + g′).
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Fix s : Y → Y ′ and f, g : X → Y ′ with α = s−1f and β = s−1g as morphisms
X → Y in S−1C. To show that composition is bilinear first consider the case of a
morphism γ : Y → Z in S−1C. Say γ = t−1h for some h : Y → Z ′ and t : Z → Z ′

in S. Using LMS2 we choose morphisms a : Y ′ → Z ′′ and t′ : Z ′ → Z ′′ in S such
that a ◦ s = t′ ◦ h. Picture

Z

t
��

Y
h //

s

��

Z ′

t′

��
X

f,g // Y ′
a // Z ′′

Then γ ◦ α = (t′ ◦ t)−1(a ◦ f) and γ ◦ β = (t′ ◦ t)−1(a ◦ g). Hence we see that
γ ◦ (α+ β) is represented by (t′ ◦ t)−1(a ◦ (f + g)) = (t′ ◦ t)−1(a ◦ f + a ◦ g) which
represents γ ◦ α+ γ ◦ β.

Finally, assume that δ : W → X is another morphism of S−1C. Say δ = r−1i for
some i : W → X ′ and r : X → X ′ in S. We claim that we can find a morphism
s : Y ′ → Y ′′ in S and morphisms a′′, b′′ : X ′ → Y ′′ such that the following diagram
commutes

Y

s

��
X

f,g,f+g //

s

��

Y ′

s′

��
W

i // X ′
a′′,b′′,a′′+b′′ // Y ′′

Namely, using LMS2 we can first choose s1 : Y ′ → Y1, s2 : Y ′ → Y2 in S and
a : X ′ → Y1, b : X ′ → Y2 such that a ◦ s = s1 ◦ f and b ◦ s = s2 ◦ f . Then using
that the category Y ′/S is filtered (see Categories, Remark 4.25.5), we can find a
s′ : Y ′ → Y ′′ and morphisms a′ : Y1 → Y ′′, b′ : Y2 → Y ′′ such that s′ = a′ ◦ s1 and
s′ = b′ ◦ s2. Setting a′′ = a′ ◦ a and b′′ = b′ ◦ b works. At this point we see that the
compositions α ◦ δ and β ◦ δ are represented by (s′ ◦ s)−1a′′ and (s′ ◦ s)−1b′′. Hence
α ◦ δ + β ◦ δ is represented by (s′ ◦ s)−1(a′′ + b′′) which by the diagram again is a
representative of (α+ β) ◦ δ. �

Lemma 12.8.2. Let C be an additive category. Let S be a left or right multiplicative
system. Then S−1C is an additive category and the localization functor Q : C →
S−1C is additive.

Proof. By Lemma 12.8.1 we see that S−1C is preadditive and that Q is additive.
Recall that the functor Q commutes with finite colimits (resp. finite limits), see
Categories, Lemmas 4.25.7 and 4.25.14. We conclude that S−1C has a zero object
and direct sums, see Lemmas 12.3.2 and 12.3.4. �

The following lemma describes the kernel (see Definition 12.9.5) of the localization
functor in case we invert a multiplicative system.

Lemma 12.8.3. Let C be an additive category. Let S be a multiplicative system.
Let X be an object of C. The following are equivalent
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(1) Q(X) = 0 in S−1C,
(2) there exists Y ∈ Ob(C) such that 0 : X → Y is an element of S, and
(3) there exists Z ∈ Ob(C) such that 0 : Z → X is an element of S.

Proof. If (2) holds we see that 0 = Q(0) : Q(X) → Q(Y ) is an isomorphism. In
the additive category S−1C this implies that Q(X) = 0. Hence (2)⇒ (1). Similarly,
(3) ⇒ (1). Suppose that Q(X) = 0. This implies that the morphism f : 0 → X
is transformed into an isomorphism in S−1C. Hence by Categories, Lemma 4.25.18
there exists a morphism g : Z → 0 such that fg ∈ S. This proves (1) ⇒ (3).
Similarly, (1) ⇒ (2). �

Lemma 12.8.4. Let A be an abelian category.

(1) If S is a left multiplicative system, then the category S−1A has cokernels
and the functor Q : A → S−1A commutes with them.

(2) If S is a right multiplicative system, then the category S−1A has kernels
and the functor Q : A → S−1A commutes with them.

(3) If S is a multiplicative system, then the category S−1A is abelian and the
functor Q : A → S−1A is exact.

Proof. Assume S is a left multiplicative system. Let a : X → Y be a morphism
of S−1A. Then a = s−1f for some s : Y → Y ′ in S and f : X → Y ′. Since Q(s)
is an isomorphism we see that the existence of Coker(a : X → Y ) is equivalent to
the existence of Coker(Q(f) : X → Y ′). Since Coker(Q(f)) is the coequalizer of 0
and Q(f) we see that Coker(Q(f)) is represented by Q(Coker(f)) by Categories,
Lemma 4.25.7. This proves (1).

Part (2) is dual to part (1).

If S is a multiplicative system, then S is both a left and a right multiplicative
system. Thus we see that S−1A has kernels and cokernels and Q commutes with
kernels and cokernels. To finish the proof of (3) we have to show that Coim = Im
in S−1A. Again using that any arrow in S−1A is isomorphic to an arrow Q(f) we
see that the result follows from the result for A. �

12.9. Serre subcategories

In [Ser53, Chapter I, Section 1] a notion of a “class” of abelian groups is defined.
This notion has been extended to abelian categories by many authors (in slightly
different ways). We will use the following variant which is virtually identical to
Serre’s original definition.

Definition 12.9.1. Let A be an abelian category.

(1) A Serre subcategory of A is a nonempty full subcategory C of A such that
given an exact sequence

A→ B → C

with A,C ∈ Ob(C), then also B ∈ Ob(C).
(2) A weak Serre subcategory of A is a nonempty full subcategory C of A such

that given an exact sequence

A0 → A1 → A2 → A3 → A4

with A0, A1, A3, A4 in C, then also A2 in C.

http://stacks.math.columbia.edu/tag/05QG
http://stacks.math.columbia.edu/tag/02MO


856 12. HOMOLOGICAL ALGEBRA

In some references the second notion is called a “thick” subcategory and in other
references the first notion is called a “thick” subcategory. However, it seems that
the notion of a Serre subcategory is universally accepted to be the one defined
above. Note that in both cases the category C is abelian and that the inclusion
functor C → A is a fully faithful exact functor. Let’s characterize these types of
subcategories in more detail.

Lemma 12.9.2. Let A be an abelian category. Let C be a subcategory of A. Then
C is a Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory of A,
(3) any subobject or quotient of an object of C is an object of C,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a Serre subcategory is an abelian category and the inclusion functor is
exact.

Proof. Omitted. �

Lemma 12.9.3. Let A be an abelian category. Let C be a subcategory of A. Then
C is a weak Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory of A,
(3) kernels and cokernels in A of morphisms between objects of C are in C,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a weak Serre subcategory is an abelian category and the inclusion functor
is exact.

Proof. Omitted. �

Lemma 12.9.4. Let A, B be abelian categories. Let F : A → B be an exact
functor. Then the full subcategory of objects C of A such that F (C) = 0 forms a
Serre subcategory of A.

Proof. Omitted. �

Definition 12.9.5. Let A, B be abelian categories. Let F : A → B be an exact
functor. Then the full subcategory of objects C of A such that F (C) = 0 is called
the kernel of the functor F , and is sometimes denoted Ker(F ).

Lemma 12.9.6. Let A be an abelian category. Let C ⊂ A be a Serre subcategory.
There exists an abelian category A/C and an exact functor

F : A −→ A/C
which is essentially surjective and whose kernel is C. The category A/C and the
functor F are characterized by the following universal property: For any exact
functor G : A → B such that C ⊂ Ker(G) there exists a factorization G = H ◦ F
for a unique exact functor H : A/C → B.

Proof. Consider the set of arrows of A defined by the following formula

S = {f ∈ Arrows(A) | Ker(f),Coker(f) ∈ Ob(C)}.
We claim that S is a multiplicative system. To prove this we have to check MS1,
MS2, MS3, see Categories, Definition 4.25.1.
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It is clear that identities are elements of S. Suppose that f : A→ B and g : B → C
are elements of S. There are exact sequences

0→ Ker(f)→ Ker(gf)→ Ker(g)
Coker(f)→ Coker(gf)→ Coker(g)→ 0

Hence it follows that gf ∈ S. This proves MS1. (In fact, a similar argument
will show that S is a saturated multiplicative system, see Categories, Definition
4.25.17.)

Consider a solid diagram

A

t

��

g
// B

s

��
C

f // C qA B

with t ∈ S. Set W = CqAB = Coker((t,−g) : A→ C⊕B). Then Ker(t)→ Ker(s)
is surjective and Coker(t)→ Coker(s) is an isomorphism. Hence s is an element of
S. This proves LMS2 and the proof of RMS2 is dual.

Finally, consider morphisms f, g : B → C and a morphism s : A → B in S
such that f ◦ s = g ◦ s. This means that (f − g) ◦ s = 0. In turn this means
that I = Im(f − g) ⊂ C is a quotient of Coker(s) hence an object of C. Thus
t : C → C ′ = C/I is an element of S such that t ◦ (f − g) = 0, i.e., such that
t ◦ f = t ◦ g. This proves LMS3 and the proof of RMS3 is dual.

Having proved that S is a multiplicative system we set A/C = S−1A, and we set F
equal to the localization functor Q. By Lemma 12.8.4 the category A/C is abelian
and F is exact. If X is in the kernel of F = Q, then by Lemma 12.8.3 we see that
0 : X → Z is an element of S and hence X is an object of C, i.e., the kernel of F
is C. Finally, if G is as in the statement of the lemma, then G turns every element
of S into an isomorphism. Hence we obtain the functor H : A/C → B from the
universal property of localization, see Categories, Lemma 4.25.6. �

Lemma 12.9.7. Let A, B be abelian categories. Let F : A → B be an exact
functor. Let C = Ker(F ). Then the induced functor F : A/C → B is faithful.

Proof. This is true because the kernel of F is zero by construction. Namely, if
f : X → Y is a morphism in A/C such that F (f) = 0, then Ker(f) → X and
Y → Coker(f) are transformed into isomorphisms by F , hence are isomorphisms
by the remark on the kernel of F . Thus f = 0. �

12.10. K-groups

Definition 12.10.1. Let A be an abelian category. We denote K0(A) the zeroth
K-group of A. It is the abelian group constructed as follows. Take the free abelian
group on the objects on A and for every short exact sequence 0→ A→ B → C → 0
impose the relation [B]− [A]− [C] = 0.

Another way to say this is that there is a presentation⊕
A→B→C ses

Z[A→ B → C] −→
⊕

A∈Ob(A)

Z[A] −→ K0(A) −→ 0
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with [A → B → C] 7→ [B] − [A] − [C] of K0(A). The short exact sequence
0 → 0 → 0 → 0 → 0 leads to the relation [0] = 0 in K0(A). There are no set-
theoretical issues as all of our categories are “small” if not mentioned otherwise.
Some examples of K-groups for categories of modules over rings where computed
in Algebra, Section 10.53.

Lemma 12.10.2. Let F : A → B be an exact functor between abelian categories.
Then F induces a homomorphism of K-groups K0(F ) : K0(A)→ K0(B) by simply
setting K0(F )([A]) = [F (A)].

Proof. Proves itself. �

Suppose we are given an object M of an abelian category A and a complex of the
form

(12.10.2.1) . . . // M
ϕ // M

ψ // M
ϕ // M // . . .

In this situation we define

H0(M,ϕ, ψ) = Ker(ψ)/Im(ϕ), and H1(M,ϕ, ψ) = Ker(ϕ)/Im(ψ).

Lemma 12.10.3. Let A be an abelian category. Let C ⊂ A be a Serre subcategory
and set B = A/C.

(1) The exact functors C → A and A → B induce an exact sequence

K0(C)→ K0(A)→ K0(B)→ 0

of K-groups, and
(2) the kernel of K0(C)→ K0(A) is equal to the collection of elements of the

form
[H0(M,ϕ, ψ)]− [H1(M,ϕ, ψ)]

where (M,ϕ, ψ) is a complex as in (12.10.2.1) with the property that it
becomes exact in B; in other words that H0(M,ϕ, ψ) and H1(M,ϕ, ψ) are
objects of C.

Proof. We omit the proof of (1). The proof of (2) is in a sense completely combi-
natorial. First we remark that any class of the type [H0(M,ϕ, ψ)]− [H1(M,ϕ, ψ)]
is zero in K0(A) by the following calculation

0 = [M ]− [M ]

= [Ker(ϕ)] + [Im(ϕ)]− [Ker(ψ)]− [Im(ψ)]

= [Ker(ϕ)/Im(ψ)]− [Ker(ψ)/Im(ϕ)]

= [H1(M,ϕ, ψ)]− [H0(M,ϕ, ψ)]

as desired. Hence it suffices to show that any element in the kernel of K0(C) →
K0(A) is of this form.

Any element x in K0(C) can be represented as the difference x = [P ] − [Q] of two
objects of C (fun exercise). Suppose that this element maps to zero in K0(A). This
means that there exist

(1) a finite set I = I+
∐
I−,

(2) for each i ∈ I a short exact sequence

0→ Ai → Bi → Ci → 0

in the abelian category A
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such that

[P ]− [Q] =
∑

i∈I+
([Bi]− [Ai]− [Ci])−

∑
i∈I−

([Bi]− [Ai]− [Ci])

in the free abelian group on the objects of A. We can rewrite this as

[P ] +
∑

i∈I+
([Ai] + [Ci]) +

∑
i∈I−

[Bi] = [Q] +
∑

i∈I−
([Ai] + [Ci]) +

∑
i∈I+

[Bi].

Since the right and left hand side should contain the same objects of A counted
with multiplicity, this means there should be a bijection τ between the terms which
occur above. Set

T+ = {p}
∐
{a, c} × I+

∐
{b} × I−

and

T− = {q}
∐
{a, c} × I−

∐
{b} × I+.

Set T = T+
∐
T− = {p, q}

∐
{a, b, c} × I. For t ∈ T define

O(t) =


P if t = p
Q if t = q
Ai if t = (a, i)
Bi if t = (b, i)
Ci if t = (c, i)

Hence we can view τ : T+ → T− as a bijection such that O(t) = O(τ(t)) for all
t ∈ T+. Let t−0 = τ(p) and let t+0 ∈ T+ be the unique element such that τ(t+0 ) = q.
Consider the object

M+ =
⊕

t∈T+
O(t)

By using τ we see that it is equal to the object

M− =
⊕

t∈T−
O(t)

Consider the map

ϕ : M+ −→M−

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I+ uses the
map Ai → Bi into the summand O((b, i)) = Bi of M− and on the summand
O(t) = Bi corresponding to (b, i), i ∈ I− uses the map Bi → Ci into the summand
O((c, i)) = Ci of M−. The map is zero on the summands corresponding to p and
(c, i), i ∈ I+. Similarly, consider the map

ψ : M− −→M+

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I− uses the
map Ai → Bi into the summand O((b, i)) = Bi of M+ and on the summand
O(t) = Bi corresponding to (b, i), i ∈ I+ uses the map Bi → Ci into the summand
O((c, i)) = Ci of M+. The map is zero on the summands corresponding to q and
(c, i), i ∈ I−.

Note that the kernel of ϕ is equal to the direct sum of the summand P and the
summands O((c, i)) = Ci, i ∈ I+ and the subobjects Ai inside the summands
O((b, i)) = Bi, i ∈ I−. The image of ψ is equal to the direct sum of the summands
O((c, i)) = Ci, i ∈ I+ and the subobjects Ai inside the summands O((b, i)) = Bi,
i ∈ I−. In other words we see that

P ∼= Ker(ϕ)/Im(ψ).
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In exactly the same way we see that

Q ∼= Ker(ψ)/Im(ϕ).

Since as we remarked above the existence of the bijection τ shows that M+ = M−

we see that the lemma follows. �

12.11. Cohomological delta-functors

Definition 12.11.1. Let A,B be abelian categories. A cohomological δ-functor or
simply a δ-functor from A to B is given by the following data:

(1) a collection Fn : A → B, n ≥ 0 of additive functors, and
(2) for every short exact sequence 0 → A → B → C → 0 of A a collection

δA→B→C : Fn(C)→ Fn+1(A), n ≥ 0 of morphisms of B.

These data are assumed to satisfy the following axioms

(1) for every short exact sequence as above the sequence

0 // F 0(A) // F 0(B) // F 0(C)

δA→B→C
uu

F 1(A) // F 1(B) // F 1(C)

δA→B→C
uu

F 2(A) // F 2(B) // . . .

is exact, and
(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact

sequences of A the diagrams

Fn(C)

��

δA→B→C

// Fn+1(A)

��
Fn(C ′)

δA′→B′→C′ // Fn+1(A′)

are commutative.

Note that this in particular implies that F 0 is left exact.

Definition 12.11.2. Let A,B be abelian categories. Let (Fn, δF ) and (Gn, δG) be
δ-functors from A to B. A morphism of δ-functors from F to G is a collection of
transformation of functors tn : Fn → Gn, n ≥ 0 such that for every short exact
sequence 0→ A→ B → C → 0 of A the diagrams

Fn(C)

tn

��

δF,A→B→C

// Fn+1(A)

tn+1

��
Gn(C)

δG,A→B→C // Gn+1(A)

are commutative.

Definition 12.11.3. Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-
functor from A to B. We say F is a universal δ-functor if an only if for every

http://stacks.math.columbia.edu/tag/010Q
http://stacks.math.columbia.edu/tag/010R
http://stacks.math.columbia.edu/tag/010S
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δ-functor G = (Gn, δG) and any morphism of functors t : F 0 → G0 there exists a
unique morphism of δ-functors {tn}n≥0 : F → G such that t = t0.

Lemma 12.11.4. Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor
from A to B. Suppose that for every n > 0 and any A ∈ Ob(A) there exists an
injective morphism u : A→ B (depending on A and n) such that Fn(u) : Fn(A)→
Fn(B) is zero. Then F is a universal δ-functor.

Proof. Let G = (Gn, δG) be a δ-functor from A to B and let t : F 0 → G0 be
a morphism of functors. We have to show there exists a unique morphism of δ-
functors {tn}n≥0 : F → G such that t = t0. We construct tn by induction on n.
For n = 0 we set t0 = t. Suppose we have already constructed a unique sequence of
transformation of functors ti for i ≤ n compatible with the maps δ in degrees ≤ n.

Let A ∈ Ob(A). By assumption we may choose a embedding u : A → B such
that Fn+1(u) = 0. Let C = B/u(A). The long exact cohomology sequence for
the short exact sequence 0 → A → B → C → 0 and the δ-functor F gives that
Fn+1(A) = Coker(Fn(B) → Fn(C)) by our choice of u. Since we have already
defined tn we can set

tn+1
A : Fn+1(A)→ Gn+1(A)

equal to the unique map such that

Coker(Fn(B)→ Fn(C))
tn
//

δF,A→B→C

��

Coker(Gn(B)→ Gn(C))

δG,A→B→C

��
Fn+1(A)

tn+1
A // Gn+1(A)

commutes. This is clearly uniquely determined by the requirements imposed. We
omit the verification that this defines a transformation of functors. �

Lemma 12.11.5. Let A,B be abelian categories. Let F : A → B be a functor. If
there exists a universal δ-functor (Fn, δF ) from A to B with F 0 = F , then it is
determined up to unique isomorphism of δ-functors.

Proof. Immediate from the definitions. �

12.12. Complexes

Of course the notions of a chain complex and a cochain complex are dual and you
only have to read one of the two parts of this section. So pick the one you like.
(Actually, this doesn’t quite work right since the conventions on numbering things
are not adapted to an easy transition between chain and cochain complexes.)

A chain complex A• in an additive category A is a complex

. . .→ An+1
dn+1−−−→ An

dn−→ An−1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai−1 such that di−1 ◦ di = 0 for all i. A morphism of chain
complexes f : A• → B• is given by a family of morphisms fi : Ai → Bi such that

http://stacks.math.columbia.edu/tag/010T
http://stacks.math.columbia.edu/tag/010U
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all the diagrams

Ai
di

//

fi

��

Ai−1

fi−1

��
Bi

di // Bi−1

commute. The category of chain complexes of A is denoted Ch(A). The full sub-
category consisting of objects of the form

. . .→ A2 → A1 → A0 → 0→ 0→ . . .

is denoted Ch≥0(A). In other words, a chain complex A• belongs to Ch≥0(A) if
and only if Ai = 0 for all i < 0. A homotopy h between a pair of morphisms of
chain complexes f, g : A• → B• is is a collection of morphisms hi : Ai → Bi+1 such
that we have

fi − gi = di+1 ◦ hi + hi−1 ◦ di
for all i. Clearly, the notions of chain complex, morphism of chain complexes,
and homotopies between morphisms of chain complexes makes sense even in a
preadditive category.

Lemma 12.12.1. Let A be an additive category. Let f, g : B• → C• be morphisms
of chain complexes. Suppose given morphisms of chain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci+1} defines a homotopy between f and g, then
{ci+1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. �

In particular this means that it makes sense to define the category of chain com-
plexes with maps up to homotopy. We’ll return to this later.

Definition 12.12.2. Let A be an additive category. We say a morphism a : A• →
B• is a homotopy equivalence if there exists a morphism b : B• → A• such that
there exists a homotopy between a◦b and idA and there exists a homotopy between
b ◦ a and idB . If there exists such a morphism between A• and B•, then we say
that A• and B• are homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic
in the category of complexes up to homotopy.

Lemma 12.12.3. Let A be an abelian category.

(1) The category of chain complexes in A is abelian.
(2) A morphism of complexes f : A• → B• is injective if and only if each

fn : An → Bn is injective.
(3) A morphism of complexes f : A• → B• is surjective if and only if each

fn : An → Bn is surjective.
(4) A sequence of chain complexes

A•
f−→ B•

g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

http://stacks.math.columbia.edu/tag/010W
http://stacks.math.columbia.edu/tag/010X
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Proof. Omitted. �

For any i ∈ Z the ith homology group of a chain complex A• in an abelian category
is defined by the following formula

Hi(A•) = Ker(di)/Im(di+1).

If f : A• → B• is a morphism of chain complexes of A then we get an induced
morphism Hi(f) : Hi(A•) → Hi(B•) because clearly fi(Ker(di : Ai → Ai−1)) ⊂
Ker(di : Bi → Bi−1), and similarly for Im(di+1). Thus we obtain a functor

Hi : Ch(A) −→ A.

Definition 12.12.4. Let A be an abelian category.

(1) A morphism of chain complexes f : A• → B• is called a quasi-isomorphism
if the induced maps Hi(f) : Hi(A•) → Hi(B•) is an isomorphism for all
i ∈ Z.

(2) A chain complex A• is called acyclic if all of its homology objects Hi(A•)
are zero.

Lemma 12.12.5. Let A be an abelian category.

(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f)
and Hi(g) are equal.

(2) If the map f : A• → B• is a homotopy equivalence, then f is a quasi-
isomorphism.

Proof. Omitted. �

Lemma 12.12.6. Let A be an abelian category. Suppose that

0→ A• → B• → C• → 0

is a short exact sequence of chain complexes of A. Then there is a canonical long
exact homology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi−1(A•) // Hi−1(B•) // Hi−1(C•)

ss. . . . . . . . .

Proof. Omitted. The maps come from the Snake Lemma 12.5.17 applied to the
diagrams

Ai/Im(dA,i+1) //

dA,i

��

Bi/Im(dB,i+1) //

dB,i

��

Ci/Im(dC,i+1) //

dC,i

��

0

0 // Ker(dA,i−1) // Ker(dB,i−1) // Ker(dC,i−1)

�

http://stacks.math.columbia.edu/tag/010Z
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A cochain complex A• in an additive category A is a complex

. . .→ An−1 dn−1

−−−→ An
dn−→ An+1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai+1 such that di+1 ◦di = 0 for all i. A morphism of cochain
complexes f : A• → B• is given by a family of morphisms f i : Ai → Bi such that
all the diagrams

Ai
di
//

fi

��

Ai+1

fi+1

��
Bi

di // Bi+1

commute. The category of cochain complexes of A is denoted CoCh(A). The full
subcategory consisting of objects of the form

. . .→ 0→ 0→ A0 → A1 → A2 → . . .

is denoted CoCh≥0(A). In other words, a cochain complex A• belongs to the
subcategory CoCh≥0(A) if and only if Ai = 0 for all i < 0. A homotopy h between
a pair of morphisms of cochain complexes f, g : A• → B• is is a collection of
morphisms hi : Ai → Bi−1 such that we have

f i − gi = di−1 ◦ hi + hi+1 ◦ di

for all i. Clearly, the notions of cochain complex, morphism of cochain complexes,
and homotopies between morphisms of cochain complexes makes sense even in a
preadditive category.

Lemma 12.12.7. Let A be an additive category. Let f, g : B• → C• be morphisms
of cochain complexes. Suppose given morphisms of cochain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci−1} defines a homotopy between f and g, then
{ci−1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. �

In particular this means that it makes sense to define the category of cochain
complexes with maps up to homotopy. We’ll return to this later.

Definition 12.12.8. Let A be an additive category. We say a morphism a : A• →
B• is a homotopy equivalence if there exists a morphism b : B• → A• such that
there exists a homotopy between a◦b and idA and there exists a homotopy between
b ◦ a and idB . If there exists such a morphism between A• and B•, then we say
that A• and B• are homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic
in the category of complexes up to homotopy.

Lemma 12.12.9. Let A be an abelian category.

(1) The category of cochain complexes in A is abelian.
(2) A morphism of cochain complexes f : A• → B• is injective if and only if

each fn : An → Bn is injective.
(3) A morphism of cochain complexes f : A• → B• is surjective if and only if

each fn : An → Bn is surjective.

http://stacks.math.columbia.edu/tag/0112
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(4) A sequence of cochain complexes

A•
f−→ B•

g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Omitted. �

For any i ∈ Z the ith cohomology group of a cochain complex A• is defined by the
following formula

Hi(A•) = Ker(di)/Im(di−1).

If f : A• → B• is a morphism of cochain complexes of A then we get an induced
morphism Hi(f) : Hi(A•) → Hi(B•) because clearly f i(Ker(di : Ai → Ai+1)) ⊂
Ker(di : Bi → Bi+1), and similarly for Im(di−1). Thus we obtain a functor

Hi : CoCh(A) −→ A.

Definition 12.12.10. Let A be an abelian category.

(1) A morphism of cochain complexes f : A• → B• of A is called a quasi-
isomorphism if the induced maps Hi(f) : Hi(A•)→ Hi(B•) is an isomor-
phism for all i ∈ Z.

(2) A cochain complex A• is called acyclic if all of its cohomology objects
Hi(A•) are zero.

Lemma 12.12.11. Let A be an abelian category.

(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f)
and Hi(g) are equal.

(2) If f : A• → B• is a homotopy equivalence, then f is a quasi-isomorphism.

Proof. Omitted. �

Lemma 12.12.12. Let A be an abelian category. Suppose that

0→ A• → B• → C• → 0

is a short exact sequence of chain complexes of A. Then there is a canonical long
exact homology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi+1(A•) // Hi+1(B•) // Hi+1(C•)

ss. . . . . . . . .

http://stacks.math.columbia.edu/tag/0115
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Proof. Omitted. The maps come from the Snake Lemma 12.5.17 applied to the
diagrams

Ai/Im(di−1
A ) //

diA
��

Bi/Im(di−1
B ) //

diB
��

Ci/Im(di−1
C ) //

diC
��

0

0 // Ker(di+1
A ) // Ker(di+1

B ) // Ker(di+1
C )

�

12.13. Truncation of complexes

Let A be an abelian category. Let A• be a chain complex. There are several ways
to truncate the complex A•.

(1) The “stupid” truncation σ≤n is the subcomplex σ≤nA• defined by the rule
(σ≤nA•)i = 0 if i > n and (σ≤nA•)i = Ai if i ≤ n. In a picture

σ≤nA•

��

. . . // 0 //

��

An //

��

An−1
//

��

. . .

A• . . . // An+1
// An // An−1

// . . .

Note the property σ≤nA•/σ≤n−1A• = An[−n].
(2) The “stupid” truncation σ≥n is the quotient complex σ≥nA• defined by

the rule (σ≥nA•)i = Ai if i ≥ n and (σ≥nA•)i = 0 if i < n. In a picture

A•

��

. . . // An+1
//

��

An //

��

An−1
//

��

. . .

σ≥nA• . . . // An+1
// An // 0 // . . .

The map of complexes σ≥nA• → σ≥n+1A• is surjective with kernelAn[−n].
(3) The canonical truncation τ≥nA• is defined by the picture

τ≥nA•

��

. . . // An+1
//

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An+1
// An // An−1

// . . .

Note that these complexes have the property that

Hi(τ≥nA•) =

{
Hi(A•) if i ≥ n

0 if i < n

(4) The canonical truncation τ≤nA• is defined by the picture

A•

��

. . . // An+1
//

��

An //

��

An−1
//

��

. . .

τ≤nA• . . . // 0 // Coker(dn+1) // An−1
// . . .
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Note that these complexes have the property that

Hi(τ≤nA•) =

{
Hi(A•) if i ≤ n

0 if i > n

Let A be an abelian category. Let A• be a cochain complex. There are four ways
to truncate the complex A•.

(1) The “stupid” truncation σ≥n is the subcomplex σ≥nA
• defined by the rule

(σ≥nA
•)i = 0 if i < n and (σ≥nA

•)i = Ai if i ≥ n. In a picture

σ≥nA
•

��

. . . // 0 //

��

An //

��

An+1 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note the property σ≥nA
•/σ≥n+1A

• = An[−n].
(2) The “stupid” truncation σ≤n is the quotient complex σ≤nA

• defined by
the rule (σ≤nA

•)i = 0 if i > n and (σ≤nA
•)i = Ai if i ≤ n. In a picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

σ≤nA
• . . . // An−1 // An // 0 // . . .

The map of complexes σ≤nA
• → σ≤n−1A

• is surjective with kernelAn[−n].
(3) The canonical truncation τ≤nA

• is defined by the picture

τ≤nA
•

��

. . . // An−1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note that these complexes have the property that

Hi(τ≤nA
•) =

{
Hi(A•) if i ≤ n

0 if i > n

(4) The canonical truncation τ≥nA
• is defined by the picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

τ≥nA
• . . . // 0 // Coker(dn−1) // An+1 // . . .

Note that these complexes have the property that

Hi(τ≥nA
•) =

{
0 if i < n

Hi(A•) if i ≥ n

12.14. Homotopy and the shift functor

It is an annoying feature that signs and indices have to be part of any discussion
of homological algebra2.

2I am sure you think that my conventions are wrong. If so and if you feel strongly about it
then drop me an email with an explanation.
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Definition 12.14.1. Let A be an additive category. Let A• be a chain complex
with boundary maps dA,n : An → An−1. For any k ∈ Z we define the k-shifted
chain complex A[k]• as follows:

(1) we set A[k]n = An+k, and
(2) we set dA[k],n : A[k]n → A[k]n−1 equal to dA[k],n = (−1)kdA,n+k.

If f : A• → B• is a morphism of chain complexes, then we let f [k] : A[k]• → B[k]•
be the morphism of chain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : Ch(A) → Ch(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors), such
that A[k][l]• = A[k + l]• and with [0] = idCh(A).

Definition 12.14.2. Let A be an abelian category. Let A• be a chain complex
with boundary maps dA,n : An → An−1. For any k ∈ Z we identify Hi+k(A•) →
Hi(A[k]•) via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in
this definition we actually get a compatible system of identifications of all the ho-
mology objects Hi−k(A[k]•), which are further compatible with the identifications
A[k][l]• = A[k + l]• and with [0] = idCh(A).

Let A be an additive category. Suppose that A• and B• are chain complexes,
a, b : A• → B• are morphisms of chain complexes, and {hi : Ai → Bi+1} is a
homotopy between a and b. Recall that this means that ai−bi = di+1◦hi+hi−1◦di.
What if a = b? Then we obtain the formula 0 = di+1 ◦hi+hi−1 ◦di, in other words,
−di+1 ◦ hi = hi−1 ◦ di. By definition above this means the collection {hi} above
defines a morphism of chain complexes

A• −→ B[1]•.

Such a thing is the same as a morphism A[−1]• → B• by our remarks above. This
proves the following lemma.

Lemma 12.14.3. Let A be an additive category. Suppose that A• and B• are
chain complexes. Given any morphism of chain complexes a : A• → B• there is a
bijection between the set of homotopies from a to a and MorCh(A)(A•, B[1]•). More
generally, the set of homotopies between a and b is either empty or a principal
homogeneous space under the group MorCh(A)(A•, B[1]•).

Proof. See above. �

Lemma 12.14.4. Let A be an abelian category. Let

0→ A• → B• → C• → 0

be a sort exact sequence of complexes. Suppose that {sn : Cn → Bn} is a family
of morphisms which split the short exact sequences 0→ An → Bn → Cn → 0. Let
πn : Bn → An be the associated projections, see Lemma 12.5.10. Then the family
of morphisms

πn−1 ◦ dB,n ◦ sn : Cn → An−1

define a morphism of complexes δ(s) : C• → A[−1]•.

http://stacks.math.columbia.edu/tag/011A
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Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n ◦ sn − sn−1 ◦ dC,n.
Hence in−2 ◦ dA,n−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n−1 ◦ (dB,n ◦ sn − sn−1 ◦ dC,n) =
−dB,n−1 ◦ sn−1 ◦ dC,n as desired. �

Lemma 12.14.5. Notation and assumptions as in Lemma 12.14.4 above. The
morphism of complexes δ(s) : C• → A[−1]• induces the maps

Hi(δ(s)) : Hi(C•) −→ Hi(A[−1]•) = Hi−1(A•)

which occur in the long exact homology sequence associated to the short exact se-
quence of chain complexes by Lemma 12.12.6.

Proof. Omitted. �

Lemma 12.14.6. Notation and assumptions as in Lemma 12.14.4 above. Suppose
{s′n : Cn → Bn} is a second choice of splittings. Write s′n = sn + in ◦ hn for some
unique morphisms hn : Cn → An. The family of maps {hn : Cn → A[−1]n+1} is a
homotopy between the associated morphisms δ(s), δ(s′) : C• → A[−1]•.

Proof. Omitted. �

Definition 12.14.7. Let A be an additive category. Let A• be a cochain complex
with boundary maps dnA : An → An+1. For any k ∈ Z we define the k-shifted
cochain complex A[k]• as follows:

(1) we set A[k]n = An+k, and

(2) we set dnA[k] : A[k]n → A[k]n+1 equal to dnA[k] = (−1)kdn+k
A .

If f : A• → B• is a morphism of cochain complexes, then we let f [k] : A[k]• → B[k]•

be the morphism of cochain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : CoCh(A)→ CoCh(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors) and such
that A[k][l]• = A[k + l]• and with [0] = idCoCh(A).

Definition 12.14.8. Let A be an abelian category. Let A• be a cochain complex
with boundary maps dnA : An → An+1. For any k ∈ Z we identify Hi+k(A•) −→
Hi(A[k]•) via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in
this definition we actually get a compatible system of identifications of all the ho-
mology objects Hi−k(A[k]•), which are further compatible with the identifications
A[k][l]• = A[k + l]• and with [0] = idCoCh(A).

Let A be an additive category. Suppose that A• and B• are cochain complexes,
a, b : A• → B• are morphisms of cochain complexes, and {hi : Ai → Bi−1} is a
homotopy between a and b. Recall that this means that ai−bi = di−1◦hi+hi+1◦di.
What if a = b? Then we obtain the formula 0 = di−1 ◦hi+hi+1 ◦di, in other words,
−di−1 ◦ hi = hi+1 ◦ di. By definition above this means the collection {hi} above
defines a morphism of cochain complexes

A• −→ B[−1]•.

Such a thing is the same as a morphism A[1]• → B• by our remarks above. This
proves the following lemma.
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Lemma 12.14.9. Let A be an additive category. Suppose that A• and B• are
cochain complexes. Given any morphism of cochain complexes a : A• → B• there is
a bijection between the set of homotopies from a to a and MorCoCh(A)(A

•, B[−1]•).
More generally, the set of homotopies between a and b is either empty or a principal
homogeneous space under the group MorCoCh(A)(A

•, B[−1]•).

Proof. See above. �

Lemma 12.14.10. Let A be an additive category. Let

0→ A• → B• → C• → 0

be a complex (!) of complexes. Suppose that we are given splittings Bn = An ⊕Cn
compatible with the maps in the displayed sequence. Let sn : Cn → Bn and πn :
Bn → An be the corresponding maps. Then the family of morphisms

πn+1 ◦ dnB ◦ sn : Cn → An+1

define a morphism of complexes δ : C• → A[1]•.

Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in+1 ◦ πn+1 ◦ dnB ◦ sn = dnB ◦ sn − sn+1 ◦ dnC . Hence

in+2 ◦ dn+1
A ◦ πn+1 ◦ dnB ◦ sn = dn+1

B ◦ (dnB ◦ sn − sn+1 ◦ dnC) = −dn+1
B ◦ sn+1 ◦ dnC as

desired. �

Lemma 12.14.11. Notation and assumptions as in Lemma 12.14.10 above. As-
sume in addition that A is abelian. The morphism of complexes δ : C• → A[1]•

induces the maps

Hi(δ) : Hi(C•) −→ Hi(A[1]•) = Hi+1(A•)

which occur in the long exact homology sequence associated to the short exact se-
quence of cochain complexes by Lemma 12.12.12.

Proof. Omitted. �

Lemma 12.14.12. Notation and assumptions as in Lemma 12.14.10. Let α : A• →
B•, β : B• → C• be the given morphisms of complexes. Suppose (s′)n : Cn → Bn

and (π′)n : Bn → An is a second choice of splittings. Write (s′)n = sn+αn◦hn and
(π′)n = πn+gn ◦βn for some unique morphisms hn : Cn → An and gn : Cn → An.
Then

(1) gn = −hn, and
(2) the family of maps {gn : Cn → A[1]n−1} is a homotopy between δ, δ′ :

C• → A[1]•, more precisely (δ′)n = δn + gn+1 ◦ dnC + dn−1
A[1] ◦ g

n.

Proof. As (s′)n and (π′)n are splittings we have (π′)n ◦ (s′)n = 0. Hence

0 = (πn + gn ◦ βn) ◦ (sn + αn ◦ hn) = gn ◦ βn ◦ sn + πn ◦ αn ◦ hn = gn + hn

which proves (1). We compute (δ′)n as follows

(πn+1 + gn+1 ◦ βn+1) ◦ dnB ◦ (sn + αn ◦ hn) = δn + gn+1 ◦ dnC + dnA ◦ hn

Since hn = −gn and since dn−1
A[1] = −dnA we conclude that (2) holds. �
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12.15. Graded objects

We make the following definition.

Definition 12.15.1. Let A be an additive category. The category of graded objects
of A, denoted Gr(A), is the category with

(1) objects A = (Ai) are families of objects Ai, i ∈ Z of objects of A, and
(2) morphisms f : A = (Ai)→ B = (Bi) are families of morphisms f i : Ai →

Bi of A.

If A has countable direct sums, then we can asssociated to an object A = (Ai) of
Gr(A) the object

A =
⊕

i∈Z
Ai

and set kiA = Ai. In this case Gr(A) is equivalent to the category of pairs (A, k)
consisting of an object A of A and a direct sum decomposition

A =
⊕

i∈Z
kiA

by direct summands indexed by Z and a morphism (A, k)→ (B, k) of such objects
is given by a morphism ϕ : A → B of A such that ϕ(kiA) ⊂ kiB for all i ∈
Z. Whenever our additive category A has countable direct sums we will use this
equivalence without further mention.

However, with our definitions an additive or abelian category does not necessarily
have all (countable) direct sums. In this case our definition still makes sense. For
example, if A = Vectk is the category of finite dimensional vector spaces over a
field k, then Gr(Vectk) is the category of vector spaces with a given gradation
all of whose graded pieces are finite dimensional, and not the category of finite
dimensional vector spaces with a given graduation.

Lemma 12.15.2. Let A be an abelian category. The category of graded objects
Gr(A) is abelian.

Proof. Let f : A = (Ai) → B = (Bi) be a morphism of graded objects of A
given by morphisms f i : Ai → Bi of A. Then we have Ker(f) = (Ker(f i)) and
Coker(f) = (Coker(f i)) in the category Gr(A). Since we have Im = Coim in A we
see the same thing holds in Gr(A). �

Remark 12.15.3 (Warning). There are abelian categories A having countable
direct sums but where countable direct sums are not exact. An example is the
opposite of the category of abelian sheaves on R. Namely, the category of abelian
sheaves on R has countable products, but countable products are not exact. For
such a category the functor Gr(A)→ A, (Ai) 7→

⊕
Ai described above is not exact.

It is still true that Gr(A) is equivalent to the category of graded objects (A, k) of
A, but the kernel in the category of graded objects of a map ϕ : (A, k)→ (B, k) is
not equal to Ker(ϕ) endowed with a direct sum decomposition, but rather it is the
direct sum of the kernels of the maps kiA→ kiB.

Definition 12.15.4. Let A be an additive category. If A = (Ai) is a graded object,
then the kth shift A[k] is the graded object with A[k]i = Ak+i.

If A and B are graded objects of A, then we have

(12.15.4.1) HomGr(A)(A,B[k]) = HomGr(A)(A[−k], B)
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and an element of this group is sometimes called a map of graded objects homoge-
neous of degree k.

Given any set G we can define G-graded objects of A as the category whose objects
are A = (Ag)g∈G families of objects parametrized by elements of G. Morphisms
f : A → B are defined as families of maps fg : Ag → Bg where g runs over the
elements of G. If G is an abelian group, then we can (unambiguously) define shift
functors [g] on the category of G-graded objects by the rule (A[g])g0 = Ag+g0 . A
particular case of this type of construction is when G = Z × Z. In this case the
objects of the category are called bigraded objects of A. The (p, q) component of
a bigraded object A is usually denoted Ap,q. For (a, b) ∈ Z× Z we write A[a, b] in
stead of A[(a, b)]. A morphism A → A[a, b] is sometimes called a map of bidegree
(a, b).

12.16. Filtrations

A nice reference for this material is [Del71, Section 1]. (Note that our conventions
regarding abelian categories are different.)

Definition 12.16.1. Let A be an abelian category.

(1) A decreasing filtration F on an object A is a family (FnA)n∈Z of subob-
jects of A such that

A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0

(2) A filtered object of A is pair (A,F ) consisting of an object A of A and a
decreasing filtration F on A.

(3) A morphism (A,F ) → (B,F ) of filtered objects is given by a morphism
ϕ : A→ B of A such that ϕ(F iA) ⊂ F iB for all i ∈ Z.

(4) The category of filtered objects is denoted Fil(A).
(5) Given a filtered object (A,F ) and a subobject X ⊂ A the induced filtration

on X is the filtration with FnX = X ∩ FnA.
(6) Given a filtered object (A,F ) and a surjection π : A → Y the quotient

filtration is the filtration with FnY = π(FnA).
(7) A filtration F on an object A is said to be finite if there exist n,m such

that FnA = A and FmA = 0.
(8) Given a filtered object (A,F ) we say

⋂
F iA exists if there exists a biggest

subobject of A contained in all F iA. We say
⋃
F iA exists if there exists

a smallest subobject of A containing all F iA.
(9) The filtration on a filtered object (A,F ) is said to be separated if

⋂
i F

iA =
0 and exhaustive if

⋃
F iA = A.

By abuse of notation we say that a morphism f : (A,F )→ (B,F ) of filtered objects
is injective if f : A → B is injective in the abelian category A. Similarly we say
f is surjective if f : A → B is surjective in the category A. Being injective (resp.
surjective) is equivalent to being a monomorphism (resp. epimorphism) in Fil(A).
By Lemma 12.16.2 this is also equivalent to having zero kernel (resp. cokernel).

Lemma 12.16.2. Let A be an abelian category. The category of filtered objects
Fil(A) has the following properties:

(1) It is an additive category.
(2) It has a zero object.
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(3) It has kernels and cokernels, images and coimages.
(4) In general it is not an abelian category.

Proof. It is clear that Fil(A) is additive with direct sum given by (A,F )⊕(B,F ) =
(A⊕B,F ) where F p(A⊕B) = F pA⊕F pB. The kernel of a morphism f : (A,F )→
(B,F ) of filtered objects is the injection Ker(f) ⊂ A where Ker(f) is endowed with
the induced filtration. The cokernel of a morphism f : A → B of filtered objects
is the surjection B → Coker(f) where Coker(f) is endowed with the quotient
filtration. Since all kernels and cokernels exist, so do all coimages and images. See
Example 12.3.12 for the last statement. �

Definition 12.16.3. Let A be an abelian category. A morphism f : A → B of
filtered objects of A is said to be strict if f(F iA) = f(A) ∩ F iB for all i ∈ Z.

This also equivalent to requiring that f−1(F iB) = F iA+ Ker(f) for all i ∈ Z. We
characterize strict morphisms as follows.

Lemma 12.16.4. Let A be an abelian category. Let f : A→ B be a morphism of
filtered objects of A. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) of Lemma 12.3.11 is an isomorphism.

Proof. Note that Coim(f) → Im(f) is an isomorphism of objects of A, and that
part (2) signifies that it is an isomorphism of filtered objects. By the description
of kernels and cokernels in the proof of Lemma 12.16.2 we see that the filtration
on Coim(f) is the quotient filtration coming from A → Coim(f). Similarly, the
filtration on Im(f) is the induced filtration coming from the injection Im(f) →
B. The definition of strict is exactly that the quotient filtration is the induced
filtration. �

Lemma 12.16.5. Let A be an abelian category. Let f : A → B be a strict
monomorphism of filtered objects. Let g : A → C be a morphism of filtered ob-
jects. Then f ⊕ g : A→ B ⊕ C is a strict monomorphism.

Proof. Clear from the definitions. �

Lemma 12.16.6. Let A be an abelian category. Let f : B → A be a strict epimor-
phism of filtered objects. Let g : C → A be a morphism of filtered objects. Then
f ⊕ g : B ⊕ C → A is a strict epimorphism.

Proof. Clear from the definitions. �

Lemma 12.16.7. Let A be an abelian category. Let (A,F ), (B,F ) be filtered
objects. Let u : A → B be a morphism of filtered objects. If u is injective then u
is strict if and only if the filtration on A is the induced filtration. If u is surjective
then u is strict if and only if the filtration on B is the quotient filtration.

Proof. This is immediate from the definition. �

Lemma 12.16.8. Let A be an abelian category. Let f : A → B, g : B → C be
strict morphisms of filtered objects.

(1) In general the composition g ◦ f is not strict.
(2) If g is injective, then g ◦ f is strict.
(3) If f is surjective, then g ◦ f is strict.
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Proof. Let B a vector space over a field k with basis e1, e2, with the filtration
FnB = B for n < 0, with F 0B = ke1, and FnB = 0 for n > 0. Now take
A = k(e1 +e2) and C = B/ke2 with filtrations induced by B, i.e., such that A→ B
and B → C are strict (Lemma 12.16.7). Then Fn(A) = A for n < 0 and Fn(A) = 0
for n ≥ 0. Also Fn(C) = C for n ≤ 0 and Fn(C) = 0 for n > 0. So the (nonzero)
composition A→ C is not strict.

Assume g is injective. Then

g(f(F pA)) = g(f(A) ∩ F pB)

= g(f(A)) ∩ g(F p(B))

= (g ◦ f)(A) ∩ (g(B) ∩ F pC)

= (g ◦ f)(A) ∩ F pC.

The first equality as f is strict, the second because g is injective, the third because
g is strict, and the fourth because (g ◦ f)(A) ⊂ g(B).

Assume f is surjective. Then

(g ◦ f)−1(F iC) = f−1(F iB + Ker(g))

= f−1(F iB) + f−1(Ker(g))

= F iA+ Ker(f) + Ker(g ◦ f)

= F iA+ Ker(g ◦ f)

The first equality because g is strict, the second because f is surjective, the third
because f is strict, and the last because Ker(f) ⊂ Ker(g ◦ f). �

The following lemma says that subobjects of a filtered object have a well defined
filtration independent of a choice of writing the object as a cokernel.

Lemma 12.16.9. Let A be an abelian category. Let (A,F ) be a filtered object of
A. Let X ⊂ Y ⊂ A be subobjects of A. On the object

Y/X = Ker(A/X → A/Y )

the quotient filtration coming from the induced filtration on Y and the induced
filtration coming from the quotient filtration on A/X agree. Any of the morphisms
X → Y , X → A, Y → A, Y → A/X, Y → Y/X, Y/X → A/X are strict (with
induced/quotient filtrations).

Proof. The quotient filtration Y/X is given by F p(Y/X) = F pY/(X ∩ F pY ) =
F pY/F pX because F pY = Y ∩ F pA and F pX = X ∩ F pA. The induced filtration
from the injection Y/X → A/X is given by

F p(Y/X) = Y/X ∩ F p(A/X)

= Y/X ∩ (F pA+X)/X

= (Y ∩ F pA)/(X ∩ F pA)

= F pY/F pX.

Hence the first statement of the lemma. The proof of the other cases is similar. �
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Lemma 12.16.10. Let A be an abelian category. Let A,B,C ∈ Fil(A). Let
f : A→ B and g : A→ C be morphisms Then there exists a pushout

A
f

//

g

��

B

g′

��
C

f ′ // C qA B

in Fil(A). If f is strict, so is f ′.

Proof. Set C qA B equal to Coker((1,−1) : A→ C ⊕B) in Fil(A). This cokernel
exists, by Lemma 12.16.2. It is a pushout, see Example 12.5.6. Note that F p(C×A
B) is the image of F pC ⊕ F pB. Hence

(f ′)−1(F p(C ×A B)) = g(f−1(F pB))) + F pC

Whence the last statement. �

Lemma 12.16.11. Let A be an abelian category. Let A,B,C ∈ Fil(A). Let
f : B → A and g : C → A be morphisms Then there exists a pushout

B ×A C
f ′

//

g′

��

B

g

��
C

f // A

in Fil(A). If f is strict, so is f ′.

Proof. This lemma is dual to Lemma 12.16.10. �

Let A be an abelian category. Let (A,F ) be a filtered object of A. We denote
grpF (A) = grp(A) the object F pA/F p+1A of A. This defines an additive functor

grp : Fil(A) −→ A, (A,F ) 7−→ grp(A).

Recall that we have defined the category Gr(A) of graded objects of A in Section
12.15. For (A,F ) in Fil(A) we may set

gr(A) = the graded object of A whose pth graded piece is grp(A)

and if A has countable direct sums, then we simply have

gr(A) =
⊕

grp(A)

This defines an additive functor

gr : Fil(A) −→ Gr(A), (A,F ) 7−→ gr(A).

Lemma 12.16.12. Let A be an abelian category.

(1) Let A be a filtered object and X ⊂ A. Then for each p the sequence

0→ grp(X)→ grp(A)→ grp(A/X)→ 0

is exact (with induced filtration on X and quotient filtration on A/X).
(2) Let f : A → B be a morphism of filtered objects of A. Then for each p

the sequences

0→ grp(Ker(f))→ grp(A)→ grp(Coim(f))→ 0

and

0→ grp(Im(f))→ grp(B)→ grp(Coker(f))→ 0
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are exact.

Proof. We have F p+1X = X ∩ F p+1A, hence map grp(X) → grp(A) is injective.
Dually the map grp(A) → grp(A/X) is surjective. The kernel of F pA/F p+1A →
A/X+F p+1A is clearly F p+1A+X∩F pA/F p+1A = F pX/F p+1X hence exactness
in the middle. The two short exact sequence of (2) are special cases of the short
exact sequence of (1). �

Lemma 12.16.13. Let A be an abelian category. Let f : A → B be a morphism
of finite filtered objects of A. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) is an isomorphism,
(3) gr(Coim(f))→ gr(Im(f)) is an isomorphism,
(4) the sequence gr(Ker(f))→ gr(A)→ gr(B) is exact,
(5) the sequence gr(A)→ gr(B)→ gr(Coker(f)) is exact, and
(6) the sequence

0→ gr(Ker(f))→ gr(A)→ gr(B)→ gr(Coker(f))→ 0

is exact.

Proof. The equivalence of (1) and (2) is Lemma 12.16.4. By Lemma 12.16.12
we see that (4), (5), (6) imply (3) and that (3) implies (4), (5), (6). Hence it
suffices to show that (3) implies (2). Thus we have to show that if f : A→ B is an
injective and surjective map of finite filtered objects which induces and isomorphism
gr(A)→ gr(B), then f induces an isomorphism of filtered objects. In other words,
we have to show that f(F pA) = F pB for all p. As the filtrations are finite we may
prove this by descending induction on p. Suppose that f(F p+1A) = F p+1B. Then
commutative diagram

0 // F p+1A //

f

��

F pA //

f

��

grp(A) //

grp(f)

��

0

0 // F p+1B // F pB // grp(B) // 0

and the five lemma imply that f(F pA) = F pB. �

Lemma 12.16.14. Let A be an abelian category. Let A → B → C be a complex
of filtered objects of A. Assume α : A→ B and β : B → C are strict morphisms of
filtered objects. Then gr(Ker(β)/Im(α)) = Ker(gr(β))/Im(gr(α))).

Proof. This follows formally from Lemma 12.16.12 and the fact that Coim(α) ∼=
Im(α) and Coim(β) ∼= Im(β) by Lemma 12.16.4. �

Lemma 12.16.15. Let A be an abelian category. Let A → B → C be a complex
of filtered objects of A. Assume A,B,C have finite filtrations and that gr(A) →
gr(B)→ gr(C) is exact. Then

(1) for each p ∈ Z the sequence grp(A)→ grp(B)→ grp(C) is exact,
(2) for each p ∈ Z the sequence F p(A)→ F p(B)→ F p(C) is exact,
(3) for each p ∈ Z the sequence A/F p(A)→ B/F p(B)→ C/F p(C) is exact,
(4) the maps A→ B and B → C are strict, and
(5) A→ B → C is exact (as a sequence in A).
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Proof. Part (1) is immediate from the definitions. We will prove (3) by induction
on the length of the filtrations. If each of A, B, C has only one nonzero graded part,
then (3) holds as gr(A) = A, etc. Let n be the largest integer such that at least
one of FnA,FnB,FnC is nonzero. Set A′ = A/FnA, B′ = B/FnB, C ′ = C/FnC
with induced filtrations. Note that gr(A) = FnA ⊕ gr(A′) and similarly for B
and C. The induction hypothesis applies to A′ → B′ → C ′, which implies that
A/F p(A) → B/F p(B) → C/F p(C) is exact for p ≥ n. To conclude the same for
p = n+ 1, i.e., to prove that A→ B → C is exact we use the commutative diagram

0 // FnA //

��

A //

��

A′ //

��

0

0 // FnB //

��

B //

��

B′ //

��

0

0 // FnC // C // C ′ // 0

whose rows are short exact sequences of objects of A. The proof of (2) is dual. Of
course (5) follows from (2).

To prove (4) denote f : A → B and g : B → C the given morphisms. We know
that f(F p(A)) = Ker(F p(B) → F p(C)) by (2) and f(A) = Ker(g) by (5). Hence
f(F p(A)) = Ker(F p(B)→ F p(C)) = Ker(g)∩F p(B) = f(A)∩F p(B) which proves
that f is strict. The proof that g is strict is dual to this. �

12.17. Spectral sequences

A nice discussion of spectral sequences may be found in [Eis95]. See also [McC01],
[Lan02], etc.

Definition 12.17.1. Let A be an abelian category.

(1) A spectral sequence in A is given by a system (Er, dr)r≥1 where each Er
is an object of A, each dr : Er → Er is a morphism such that dr ◦ dr = 0
and Er+1 = Ker(dr)/Im(dr) for r ≥ 1.

(2) A morphism of spectral sequences f : (Er, dr)r≥1 → (E′r, d
′
r)r≥1 is given

by a family of morphisms fr : Er → E′r such that fr ◦ dr = d′r ◦ fr
and such that fr+1 is the morphism induced by fr via the identifications
Er+1 = Ker(dr)/Im(dr) and E′r+1 = Ker(d′r)/Im(d′r).

We will sometimes loosen this definition somewhat and allow Er+1 to be an object
with a given isomorphism Er+1 → Ker(dr)/Im(dr). In addition we sometimes
have a system (Er, dr)r≥r0 for some r0 satisfying the properties of the definition
above for indices ≥ r. We will also call this a spectral sequence since by a simple
renumbering it falls under the definition anyway. In fact, sometimes it makes sense
to allow r0 = 0 or even r0 = −1 due to conventions in the literature.

Given a spectral sequence (Er, dr)r≥1 we define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

by the following simple procedure. Set B2 = Im(d1) and Z2 = Ker(d1). Then it is
clear that d2 : Z2/B2 → Z2/B2. Hence we can define B3 as the unique subobject
of E1 containing B2 such that B3/B2 is the image of d2. Similarly we can define
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Z3 as the unique subobject of E1 containing B2 such that Z3/B2 is the kernel of
d2. And so on and so forth. In particular we have

Er = Zr/Br

for all r ≥ 1. I case the spectral sequence starts at r = r0 then we can similarly
construct Bi, Zi as subobjects in Er0 .

Definition 12.17.2. Let A be an abelian category. Let (Er, dr)r≥1 be a spectral
sequence.

(1) If the subobjects Z∞ =
⋂
Zr and B∞ =

⋃
Br of E1 exist then we define

the limit of the spectral sequence to be the object

E∞ = Z∞/B∞.

(2) We say that the spectral sequence collapses at Er, or degenerates at Er if
the differentials dr, dr+1, . . . are all zero.

Note that if the spectral sequence collapses at Er, then we have Er = Er+1 =
. . . = E∞ (and the limit exists of course). Also, almost any abelian category we
will encounter has countable sums and intersections.

Remark 12.17.3 (Variant). It is often the case that the terms of a spectral se-
quence have additional structure, for example a grading or a bigrading. To acco-
modate this (and to get around certain technical issues) we introduce the following
notion. Let A be an abelian category. Let (Tr)r≥1 be a sequence of translation or
shift functors, i.e., Tr : A → A is an isomorphism of categories. In this setting a
spectral sequence is given by a system (Er, dr)r≥1 where each Er is an object of A,
each dr : Er → TrEr is a morphism such that Trdr ◦ dr = 0 so that

. . . // T−1
r Er

T−1
r dr // Er

dr // TrEr
Trdr // T 2

rEr // . . .

is a complex and Er+1 = Ker(dr)/Im(T−1
r dr) for r ≥ 1. It is clear what a morphism

of spectral sequences means in this setting. In this setting we can still define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

and Z∞ and B∞ (if they exist) as above.

12.18. Spectral sequences: exact couples

Definition 12.18.1. Let A be an abelian category.

(1) An exact couple is a datum (A,E, α, f, g) where A, E are objects of A
and α, f , g are morphisms as in the following diagram

A
α

// A

g
��

E

f

__

with the property that the kernel of each arrow is the image of its prede-
cessor. So Ker(α) = Im(f), Ker(f) = Im(g), and Ker(g) = Im(α).

(2) A morphism of exact couples t : (A,E, α, f, g)→ (A′, E′, α′, f ′, g′) is given
by morphisms tA : A → A′ and tE : E → E′ such that α′ ◦ tA = tA ◦ α,
f ′ ◦ tE = tA ◦ f , and g′ ◦ tA = tE ◦ g.
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Lemma 12.18.2. Let (A,E, α, f, g) be an exact couple in an abelian category A.
Set

(1) d = g ◦ f : E → E so that d ◦ d = 0,
(2) E′ = Ker(d)/Im(d),
(3) A′ = Im(α),
(4) α′ : A′ → A′ induced by α,
(5) f ′ : E′ → A′ induced by f ,
(6) g′ : A′ → E′ induced by “g ◦ α−1”.

Then we have

(1) Ker(d) = f−1(Ker(g)) = f−1(Im(α)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple.

Proof. Omitted. �

Hence it is clear that given an exact couple (A,E, α, f, g) we get a spectral sequence
by setting E1 = E, d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ = g′′ ◦ f ′′,
and so on.

Definition 12.18.3. Let A be an abelian category. Let (A,E, α, f, g) be an exact
couple. The spectral sequence associated to the exact couple is the spectral sequence
(Er, dr)r≥1 with E1 = E, d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ =
g′′ ◦ f ′′, and so on.

Lemma 12.18.4. Let A be an abelian category. Let (A,E, α, f, g) be an exact
couple. Let (Er, dr)r≥1 be the spectral sequence associated to the exact couple. In
this case we have

0 = B1 ⊂ . . . ⊂ Br+1 = g(Ker(αr)) ⊂ . . . ⊂ Zr+1 = f−1(Im(αr)) ⊂ . . . ⊂ Z1 = E

and the map dr+1 : Er+1 → Er+1 is described by the following rule: For any (test)
object T of A and any elements x : T → Zr+1 and y : T → A such that f ◦x = αr◦y
we have

dr+1 ◦ x = g ◦ y
where x : T → Er+1 is the induced morphism.

Proof. Omitted. �

Note that in the situation of the lemma we obviously have

B∞ = g
(⋃

r
Ker(αr)

)
⊂ Z∞ = f−1

(⋂
r

Im(αr)
)

provided these exist and in this case E∞ = Z∞/B∞.

Remark 12.18.5 (Variant). Let A be an abelian category. Let S, T : A → A be
shift functors, i.e., isomorphisms of categories. We will indicate the n-fold com-
positions by SnA and TnA for A ∈ Ob(A) and n ∈ Z. In this situation an exact
couple is a datum (A,E, α, f, g) where A, E are objects of A and α : A → T−1A,
f : E → A, g : A→ SE are morphisms such that

TE
Tf // TA

Tα // A
g // SE

Sf // SA

http://stacks.math.columbia.edu/tag/011R
http://stacks.math.columbia.edu/tag/011S
http://stacks.math.columbia.edu/tag/011T
http://stacks.math.columbia.edu/tag/0AMJ


880 12. HOMOLOGICAL ALGEBRA

is an exact complex. Let’s visualize this as follows

TA
Tα

// A

g
~~

α
// T−1A

T−1gyy
TE

Tf

aa

SE E

f

__

T−1SE

We set d = g ◦ f : E → SE. Then d ◦ S−1d = g ◦ f ◦ S−1g ◦ S−1f = 0 because
f ◦ S−1g = 0. Set E′ = Ker(d)/Im(S−1d). Set A′ = Im(Tα). Let α′ : A′ → T−1A′

induced by α. Let f ′ : E′ → A′ be induced by f which works because f(Ker(d)) ⊂
Ker(g) = Im(Tα). Finally, let g′ : A′ → TSE′ induced by “Tg ◦ (Tα)−1”3.

In exactly the same way as above we find

(1) Ker(d) = f−1(Ker(g)) = f−1(Im(Tα)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple for the shift functors TS and T .

We obtain a spectral sequence (as in Remark 12.17.3) with E1 = E, E2 = E′, etc,
with dr : Er → T r−1SEr for all r ≥ 1. Lemma 12.18.4 tells us that

SBr+1 = g(Ker(T−r+1α ◦ . . . ◦ T−1α ◦ α))

and

Zr+1 = f−1(Im(Tα ◦ T 2α ◦ . . . ◦ T rα))

in this situation. The description of the map dr+1 is similar to that given in the
lemma. (It may be easier to use these explicit descriptions to prove one gets a
spectral sequence from such an exact couple.)

12.19. Spectral sequences: differential objects

Definition 12.19.1. Let A be an abelian category. A differential object of A is
a pair (A, d) consisting of an object A of A endowed with a selfmap d such that
d◦d = 0. A morphism of differential objects (A, d)→ (B, d) is given by a morphism
α : A→ B such that d ◦ α = α ◦ d.

Lemma 12.19.2. Let A be an abelian category. The category of differential objects
of A is abelian.

Proof. Omitted. �

Definition 12.19.3. For a differential object (A, d) we denote

H(A, d) = Ker(d)/Im(d)

its homology.

Lemma 12.19.4. Let A be an abelian category. Let 0 → (A, d) → (B, d) →
(C, d) → 0 be a short exact sequence of differential objects. Then we get an exact
homology sequence

. . .→ H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ . . .

3This works because TSE′ = Ker(TSd)/Im(Td) and Tg(Ker(Tα)) = Tg(Im(Tf)) =
Im(T (d)) and TS(d)(Im(Tg)) = Im(TSg ◦ TSf ◦ Tg) = 0.
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Proof. Apply Lemma 12.12.12 to the short exact sequence of complexes

0 → A → B → C → 0
↓ ↓ ↓

0 → A → B → C → 0
↓ ↓ ↓

0 → A → B → C → 0

where the vertical arrows are d. �

We come to an important example of a spectral sequence. Let A be an abelian
category. Let (A, d) be a differential object of A. Let α : (A, d) → (A, d) be an
endomorphism of this differential object. If we assume α injective, then we get a
short exact sequence

0→ (A, d)→ (A, d)→ (A/αA, d)→ 0

of differential objects. By the Lemma 12.19.4 we get an exact couple

H(A, d)
α

// H(A, d)

g
xx

H(A/αA, d)

f

ff

where g is the canonical map and f is the map defined in the snake lemma. Thus we
get an associated spectral sequence! Since in this case we have E1 = H(A/αA, d)
we see that it makes sense to define E0 = A/αA and d0 = d. In other words, we
start the spectral sequence with r = 0. According to our conventions in Section
12.17 we define a sequence of subobjects

0 = B0 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z0 = E0

with the property that Er = Zr/Br. Namely we have for r ≥ 1 that

(1) Br is the image of (αr−1)−1(dA) under the natural map A→ A/αA,
(2) Zr is the image of d−1(αrA) under the natural map A→ A/αA, and
(3) dr : Er → Er is given as follows: given an element z ∈ Zr choose an

element y ∈ A such that d(z) = αr(y). Then dr(z+Br+αA) = y+Br+αA.

Warning: It is not necessarily the case that αA ⊂ (αr−1)−1(dA), nor αA ⊂
d−1(αrA). It is true that (αr−1)−1(dA) ⊂ d−1(αrA). We have

Er =
d−1(αrA) + αA

(αr−1)−1(dA) + αA
.

It is not hard to verify directly that (1) – (3) give a spectral sequence.

Definition 12.19.5. Let A be an abelian category. Let (A, d) be a differential
object of A. Let α : A → A be an injective selfmap of A which commutes with
d. The spectral sequence associated to (A, d, α) is the spectral sequence (Er, dr)r≥0

described above.

Remark 12.19.6 (Variant). Let A be an abelian category and let S, T : A →
A be shift functors, i.e., isomorphisms of categories. Assume that TS = ST as
functors. Consider pairs (A, d) consisting of an object A of A and a morphism
d : A → SA such that d ◦ S−1d = 0. The category of these objects is abelian. We
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define H(A, d) = Ker(d)/Im(S−1d) and we observe that H(SA, Sd) = SH(A, d)
(canonical isomorphism). Given a short exact sequence

0→ (A, d)→ (B, d)→ (C, d)→ 0

we obtain a long exact homology sequence

. . .→ S−1H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ SH(A, d)→ . . .

(note the shifts in the boundary maps). Since ST = TS the functor T defines a shift
functor on pairs by setting T (A, d) = (TA, Td). Next, let α : (A, d) → T−1(A, d)
be injective with cokernel (Q, d). Then we get an exact couple as in Remark 12.18.5
with shift functors TS and T given by

(H(A, d), S−1H(Q, d), α, f, g)

where α : H(A, d) → T−1H(A, d) is induced by α, the map f : S−1H(Q, d) →
H(A, d) is the boundary map and g : H(A, d) → TH(Q, d) = TS(S−1H(Q, d))
is induced by the quotient map A → TQ. Thus we get a spectral sequence as
above with E1 = S−1H(Q, d) and differentials dr : Er → T rSEr. As above we set
E0 = S−1Q and d0 : E0 → SE0 given by S−1d : S−1Q → Q. If according to our
conventions we define Br ⊂ Zr ⊂ E0, then we have for r ≥ 1 that

(1) SBr is the image of

(T−r+1α ◦ . . . ◦ T−1α)−1Im(T−rS−1d)

under the natural map T−1A→ Q,
(2) Zr is the image of

(S−1T−1d)−1Im(α ◦ . . . ◦ T r−1α)

under the natural map S−1T−1A→ S−1Q.

The differentials can be described as follows: if x ∈ Zr, then pick x′ ∈ S−1T−1A
mapping to x. Then S−1T−1d(x′) is (α ◦ . . . ◦ T r−1α)(y) for some y ∈ T r−1A.
Then dr(x) ∈ T rSEr is represented by the class of the image of y in T rSE0 = T rQ
modulo T rSBr.

12.20. Spectral sequences: filtered differential objects

We can build a spectral sequence starting with a filtered differential object.

Definition 12.20.1. Let A be an abelian category. A filtered differential ob-
ject (K,F, d) is a filtered object (K,F ) of A endowed with an endomorphism
d : (K,F )→ (K,F ) whose square is zero: d ◦ d = 0.

To describe the spectral sequence associated to such an object we assume, for
the moment, that A is an abelian category which has countable direct sums and
countable direct sums are exact (this is not automatic, see Remark 12.15.3). Let
(K,F, d) be a filtered differential object of A. Note that each FnK is a differential
object by itself. Consider the object A =

⊕
FnK and endow it with a differential

d by using d on each summand. Then (A, d) is a differential object of A which
comes equipped with a grading. Consider the map

α : A→ A

which is given by the inclusions FnA → Fn−1A. This is clearly an injective mor-
phism of differential objects α : (A, d) → (A, d). Hence, by Definition 12.19.5 we
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get a spectral sequence. We will call this the spectral sequence associated to the
filtered differential object (K,F, d).

Let us figure out the terms of this spectral sequence. First, note that A/αA = gr(K)
endowed with its differential d = gr(d). Hence we see that

E0 = gr(K), d0 = gr(d).

Hence the homology of the graded differential object gr(K) is the next term:

E1 = H(gr(K), gr(d)).

In addition we see that E0 is a graded object of A and that d0 is compatible with
the grading. Hence clearly E1 is a graded object as well. But it turns out that the
differential d1 does not preserve this grading; instead it shifts the degree by 1.

To work this out precisely, we define

Zpr =
F pK ∩ d−1(F p+rK) + F p+1K

F p+1K

and

Bpr =
F pK ∩ d(F p−r+1K) + F p+1K

F p+1K
.

This notation, although quite natural, seems to be different from the notation in
most places in the literature. Perhaps it does not matter, since the literature does
not seem to have a consistent choice of notation either. With these choices we see
that Br ⊂ E0, resp. Zr ⊂ E0 (as defined in Section 12.19) is equal to

⊕
pB

p
r , resp.⊕

p Z
p
r . Hence if we define

Epr = Zpr /B
p
r

for r ≥ 0 and p ∈ Z, then we have Er =
⊕

pE
p
r . We can define a differential

dpr : Epr → Ep+rr by the rule

z + F p+1K 7−→ dz + F p+r+1K

where z ∈ F pK ∩ d−1(F p+rK).

Lemma 12.20.2. Let A be an abelian category. Let (K,F, d) be a filtered differ-
ential object of A. There is a spectral sequence (Er, dr)r≥0 in Gr(A) associated to
(K,F, d) such that dr : Er → Er[1] for all r and such that the graded pieces Epr and
maps dpr : Epr → Ep+rr are as given above. Furthermore, Ep0 = grpK, dp0 = grp(d),
and Ep1 = H(grpK, d).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the object A = (F p+1K) of Gr(A), i.e.,
we put F p+1K in degree p (the funny shift in numbering to get numbering correct
later on). We endow it with a differential d by using d on each component. Then
(A, d) is a differential object of Gr(A). Consider the map

α : A→ A[−1]

which is given in degree p by the inclusions F p+1A→ F pA. This is clearly an injec-
tive morphism of differential objects α : (A, d) → (A, d)[−1]. Hence, we can apply
Remark 12.19.6 with S = id and T = [1]. The corresponding spectral sequence
(Er, dr)r≥0 in Gr(A) is the spectral sequence we are looking for. Let us unwind the
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definitions a bit. First of all we have Er = (Epr ) is an object of Gr(A). Then, since
T rS = [r] we have dr : Er → Er[r] which means that dpr : Epr → Ep+rr .

To see that the description of the graded pieces hold, we argue as above. Namely,
first we have E0 = Coker(α : A → A[−1]) and by our choice of numbering above
this gives Ep0 = grpK. The first differential is given by dp0 = grpd : Ep0 → Ep0 .
Next, the description of the boundaries Br and the cocycles Zr in Remark 12.19.6
translates into a straightforward manner into the formulae for Zpr and Bpr given
above. �

Lemma 12.20.3. Let A be an abelian category. Let (K,F, d) be a filtered differ-
ential object of A. The spectral sequence (Er, dr)r≥0 associated to (K,F, d) has

dp1 : Ep1 = H(grpK) −→ H(grp+1K) = Ep+1
1

equal to the boundary map in homology associated to the short exact sequence of
differential objects

0→ grp+1K → F pK/F p+2K → grp+1K → 0.

Proof. Omitted. �

Definition 12.20.4. Let A be an abelian category. Let (K,F, d) be a filtered
differential object of A. The induced filtration on H(K, d) is the filtration defined
by F pH(K, d) = Im(H(F pK, d)→ H(K, d)).

Lemma 12.20.5. Let A be an abelian category. Let (K,F, d) be a filtered differen-
tial object of A. If Zp∞ and Bp∞ exist (see proof), then associated graded gr(H(K))
of the cohomology of K is a graded subquotient of the graded object E∞ having
Ep∞ = Zp∞/B

p
∞ in degree p.

Proof. Here we have

Zp∞ =
⋂

r
Zpr =

⋂
r(F

pK ∩ d−1(F p+rK) + F p+1K)

F p+1K

and

Bp∞ =
⋃

r
Bpr =

⋃
r(F

pK ∩ d(F p−r+1K) + F p+1K)

F p+1K
.

Thus

Ep∞ =

⋂
r(F

pK ∩ d−1(F p+rK) + F p+1K)⋃
r(F

pK ∩ d(F p−r+1K) + F p+1K)
.

and the top and bottom exist. On the other hand, we have

grpH(K) =
Ker(d) ∩ F pK + F p+1K

Im(d) ∩ F pK + F p+1K

The result follows since

(12.20.5.1) Ker(d) ∩ F pK + F p+1K ⊂
⋃

r

(
F pK ∩ d−1(F p+rK) + F p+1K

)
and

(12.20.5.2)
⋂

r

(
F pK ∩ d(F p−r+1K) + F p+1K

)
⊂ Im(d) ∩ F pK + F p+1K.

�
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Definition 12.20.6. Let A be an abelian category. Let (K,F, d) be a filtered dif-
ferential object of A. We say the spectral sequence associated to (K,F, d) converges
if gr(H(K)) = E∞ via Lemma 12.20.5. In this case we also say that (Er, dr)r≥0

abuts to or converges to H(K).

In the literature one finds more refined notions distinguishing between “weakly
converging”, “abutting” and “converging”. Namely, one can require the filtration
on H(K) to be either “arbitrary”, or “exhaustive and separated”, or “exhaustive
and complete” in addition to the condition that gr(H(K)) = E∞. We try to
avoid introducing this notation by simply adding the relevant information in the
statements of the results.

Lemma 12.20.7. Let A be an abelian category. Let (K,F, d) be a filtered differen-
tial object of A. The associated spectral sequence converges if and only if for every
p ∈ Z we have equality in equations (12.20.5.2) and (12.20.5.1).

Proof. Immediate from the discussions above. �

12.21. Spectral sequences: filtered complexes

Definition 12.21.1. Let A be an abelian category. A filtered complex K• of A is
a complex of Fil(A) (see Definition 12.16.1).

We will denote the filtration on the objects by F . Thus F pKn denotes the pth step
in the filtration of the nth term of the complex. Note that each F pK• is a complex
of A. Hence we could also have defined a filtered complex as a filtered object in
the (abelian) category of complexes of A. In particular grK• is a graded object of
the category of complexes of A.

To describe the spectral sequence associated to such an object we assume, for
the moment, that A is an abelian category which has countable direct sums and
countable direct sums are exact (this is not automatic, see Remark 12.15.3). Let
us denote d the differential of K. Forgetting the grading we can think of

⊕
Kn

as a filtered differential object of A. Hence according to Section 12.20 we obtain
a spectral sequence (Er, dr)r≥0. In this section we work out the terms of this
spectral sequence, and we endow the terms of this spectral sequence with additional
structure coming from the grading of K.

First we point out that Ep0 = grpK• is a complex and hence is graded. Thus E0 is
bigraded in a natural way. It is customary to use the bigrading

E0 =
⊕

p,q
Ep,q0 , Ep,q0 = grpKp+q

The idea is that p+ q should be thought of as the total degree of the (co)homology
classes. Also, p is called the filtration degree, and q is called the complementary
degree. The differential d0 is compatible with this bigrading in the following way

d0 =
⊕

dp,q0 , dp,q0 : Ep,q0 → Ep,q+1
0 .

Namely, dp0 is just the differential on the complex grpK• (which occurs as grpE0

just shifted a bit).

To go further we identify the objects Bpr and Zpr introduced in Section 12.20 as
graded objects and we work out the corresponding decompositions of the differen-
tials. We do this in a completely straightforward manner, but again we warn the
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reader that our notation is not the same as notation found elsewhere. We define

Zp,qr =
F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and

Bp,qr =
F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q
.

and of course Ep,qr = Zp,qr /Bp,qr . With these definitions it is completely clear that
Zpr =

⊕
q Z

p,q
r , Bpr =

⊕
q B

p,q
r , and Epr =

⊕
q E

p,q
r . Moreover,

0 ⊂ . . . ⊂ Bp,qr ⊂ . . . ⊂ Zp,qr ⊂ . . . ⊂ Ep,q0

and hence it makes sense to define Zp,q∞ =
⋂
r Z

p,q
r and Bp,q∞ =

⋃
r B

p,q
r and Ep,q∞ =

Zp,q∞ /Bp,q∞ provided these exist. Also, the map dpr decomposes as the direct sum of
the maps

dp,qr : Ep,qr −→ Ep+r,q−r+1
r , z + F p+1Kp+q 7→ dz + F p+r+1Kp+q+1

where z ∈ F pKp+q ∩ d−1(F p+rKp+q+1).

Lemma 12.21.2. Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. There is a spectral sequence (Er, dr)r≥0 in the category of bigraded objects of
A associated to (K•, F ) such that dr has bidegree (r,−r+ 1) and such that Er has
bigraded pieces Ep,qr and maps dp,qr : Ep,qr → Ep+r,q−r+1

r as given above. Further-
more, we have Ep,q0 = grp(Kp+q), dp,q0 = grp(dp+q), and Ep,q1 = Hp+q(grp(K•)).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the bigraded object A = (F p+1Kp+1+q)
of A, i.e., we put F p+1Kp+1+q in degree (p, q) (the funny shift in numbering to get
numbering correct later on). We endow it with a differential d : A → A[0, 1] by
using d on each component. Then (A, d) is a differential bigraded object. Consider
the map

α : A→ A[−1, 1]

which is given in degree (p, q) by the inclusion F p+1Kp+q → F pKp+q. This is
an injective morphism of differential objects α : (A, d) → (A, d)[−1, 1]. Hence, we
can apply Remark 12.19.6 with S = [0, 1] and T = [1,−1]. The corresponding
spectral sequence (Er, dr)r≥0 of bigraded objects is the spectral sequence we are
looking for. Let us unwind the definitions a bit. First of all we have Er = (Ep,qr ).
Then, since T rS = [r,−r + 1 we have dr : Er → Er[r,−r + 1] which means that
dpr : Ep,qr → Ep+r,q−r+1

r .

To see that the description of the graded pieces hold, we argue as above. Namely,
first we have

E0 = Coker(α : A→ A[−1, 1])[0,−1] = Coker(α[0,−1] : A[0,−1]→ A[−1, 0])

and by our choice of numbering above this gives

Ep,q0 = Coker(F p+1Kp+q → F pKp+q) = grpKp+q

The first differential is given by dp,q0 = grpdp+q : Ep,q0 → Ep,q+1
0 . Next, the descrip-

tion of the boundaries Br and the cocycles Zr in Remark 12.19.6 translates into a
straightforward manner into the formulae for Zp,qr and Bp,qr given above. �
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Lemma 12.21.3. Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume A has countable direct sums. Let (Er, dr)r≥0 be the spectral sequence
associated to (K•, F ).

(1) The map

dp,q1 : Ep,q1 = Hp+q(grp(K•)) −→ Ep+1,q
1 = Hp+q+1(grp+1(K•))

is equal to the boundary map in cohomology associated to the short exact
sequence of complexes

0→ grp+1(K•)→ F pK•/F p+2K• → grp+1(K•)→ 0.

(2) Assume that d(F pK) ⊂ F p+1K for all p ∈ Z. Then d induces the zero
differential on grp(K•) and hence Ep,q1 = grp(K•)p+q. Furthermore, in
this case

dp,q1 : Ep,q1 = grp(K•)p+q −→ Ep,q1 = grp+1(K•)p+q+1

is the morphism induced by d.

Proof. Omitted. But compare Lemma 12.20.3. �

Lemma 12.21.4. Let A be an abelian category. Let α : (K•, F ) → (L•, F ) be a
morphism of filtered complexes of A. Let (Er(K), dr)r≥0, resp. (Er(L), dr)r≥0 be
the spectral sequence associated to (K•, F ), resp. (L•, F ). The morphism α induces
a canonical morphism of spectral sequences {αr : Er(K) → Er(L)}r≥0 compatible
with the bigradings.

Proof. Obvious from the explicit representation of the terms of the spectral se-
quences. �

Definition 12.21.5. Let A be an abelian category. Let (K•, F ) be a filtered com-
plex ofA. The induced filtration onHn(K•) is the filtration defined by F pHn(K•) =
Im(Hn(F pK•)→ Hn(K•)).

Lemma 12.21.6. Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. If Zp,q∞ and Bp,q∞ exist (see above), then the associated graded gr(Hn(K•)) of
the cohomology of K• is a graded subquotient of the graded object

⊕
p+q=nE

p,q
∞ .

Proof. Let q = n− p. As in the proof of Lemma 12.20.5 we see that

Ep,q∞ =

⋂
r(F

pKn ∩ d−1(F p+rKn+1) + F p+1Kn)⋃
r(F

pKn ∩ d(F p−r+1Kn−1) + F p+1Kn)
.

On the other hand, we have

(12.21.6.1) grpHn(K) =
Ker(d) ∩ F pKn + F p+1Kn

Im(d) ∩ F pKn + F p+1Kn

The result follows since
(12.21.6.2)

Ker(d) ∩ F pKn + F p+1Kn ⊂
⋃

r

(
F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

)
and
(12.21.6.3)⋂

r

(
F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn

)
⊂ Im(d) ∩ F pKn + F p+1Kn.

�
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Definition 12.21.7. Let A be an abelian category. Let (K•, F ) be a filtered
complex of A. We say the spectral sequence associated to (K•, F ) converges if
grHn(K•) =

⊕
p+q=nE

p,q
∞ for every n ∈ Z.

This is often symbolized by the notation Ep,qr ⇒ Hp+q(K•). Please read the
remarks following Definition 12.20.6.

Lemma 12.21.8. Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. The associated spectral sequence converges if and only if for every p, q ∈ Z
we have equality in equations (12.21.6.3) and (12.21.6.2).

Proof. Immediate from the discussions above. �

Lemma 12.21.9. Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume that the filtration on each Kn is finite (see Definition 12.16.1). Then

(1) the filtration on each Hn(K•) is finite, and
(2) the spectral sequence associated to (K•, F ) converges.

Proof. Part (1) is clear from Equation (12.21.6.1). We will use Lemma 12.21.8 to
prove part (2). Fix p, n ∈ Z. Look at the left hand side of Equation (12.21.6.3). The
expression is equal to the right hand side since FmKn−1 = 0 for m� 0. Similarly,
use FmKn+1 = Kn+1 for m� 0 to prove equality in Equation (12.21.6.2). �

12.22. Spectral sequences: double complexes

Definition 12.22.1. Let A be an additive category. A double complex in A is
given by a system ({Ap,q, dp,q1 , dp,q2 }p,q∈Z), where each Ap,q is an object of A and
dp,q1 : Ap,q → Ap+1,q and dp,q2 : Ap,q → Ap,q+1 are morphisms of A such that the
following rules hold:

(1) dp+1,q
1 ◦ dp,q1 = 0

(2) dp,q+1
2 ◦ dp,q2 = 0

(3) dp,q+1
1 ◦ dp,q2 = dp+1,q

2 ◦ dp,q1

for all p, q ∈ Z.

This is just the cochain version of the definition. It says that each Ap,• is a cochain
complex and that each dp,•1 is a morphism of complexes Ap,• → Ap+1,• such that

dp+1,•
1 ◦ dp,•1 = 0 as morphisms of complexes. In other words a double complex can

be seen as a complex of complexes. So in the diagram

. . . . . . . . . . . .

. . . // Ap,q+1
dp,q+1

1 //

OO

Ap+1,q+1 //

OO

. . .

. . . // Ap,q
dp,q1 //

dp,q2

OO

Ap+1,q //

dp+1,q
2

OO

. . .

. . . . . .

OO

. . .

OO

. . .

any square commutes. Warning: In the literature one encounters a different defini-
tion where a “bicomplex” or a “double complex” has the property that the squares
in the diagram anti-commute.
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Example 12.22.2. Let A, B, C be abelian categories. Suppose that

⊗ : A× B −→ C, (X,Y ) 7−→ X ⊗ Y
is a functor which is bilinear on morphisms, see Categories, Definition 4.2.20 for the
definition of A × B. Given a complexes X• of A and Y • of B we obtain a double
complex

K•,• = X• ⊗ Y •

in C. Here the first differential Kp,q → Kp+1,q is the morphism Xp ⊗ Y q →
Xp+1⊗Y q induced by the morphism Xp → Xp+1 and the identity on Y q. Similarly
for the second differential.

Let A•,• be a double complex. It is customary to denote Hp
I (A•,•) the complex

with terms Ker(dp,q1 )/Im(dp−1,q
1 ) (varying q) and differential induced by d2. Then

Hq
II(H

p
I (A•,•)) denotes its cohomology in degree q. It is also customary to denote

Hq
II(A

•,•) the complex with terms Ker(dp,q2 )/Im(dp,q−1
2 ) (varying p) and differential

induced by d1. Then Hp
I (Hq

II(A
•,•)) denotes its cohomology in degree q. It will turn

out that these cohomology groups show up as the terms in the spectral sequence
for a filtration on the associated to total complex.

Definition 12.22.3. Let A be an additive category. Let A•,• be a double com-
plex. The associated simple complex sA•, also sometimes called the associated total
complex is given by

sAn =
⊕

n=p+q
Ap,q

(if it exists) with differential

dnsA =
∑

n=p+q
(dp,q1 + (−1)pdp,q2 )

Alternatively, we sometimes write Tot(A•,•) to denote this complex.

If countable direct sums exist in A or if for each n at most finitely many Ap,n−p are
nonzero, then sA• exists. Note that the definition is not symmetric in the indices
(p, q).

There are two natural filtrations on the simple complex sA• associated to the double
complex A•,•. Namely, we define

F pI (sAn) =
⊕

i+j=n, i≥p
Ai,j and F pII(sA

n) =
⊕

i+j=n, j≥p
Ai,j .

It is immediately verified that (sA•, FI) and (sA•, FII) are filtered complexes.
By Section 12.21 we obtain two spectral sequences. It is customary to denote
(′Er,

′dr)r≥0 the spectral sequence associated to the filtration FI and to denote
(′′Er,

′′dr)r≥0 the spectral sequence associated to the filtration FII . Here is a de-
scription of these spectral sequences.

Lemma 12.22.4. Let A be an abelian category. Let K•,• be a double complex.
The spectral sequences associated to K•,• have the following terms:

(1) ′Ep,q0 = Kp,q with ′dp,q0 = (−1)pdp,q2 : Kp,q → Kp,q+1,
(2) ′′Ep,q0 = Kq,p with ′′dp,q0 = dq,p1 : Kq,p → Kq+1,p,
(3) ′Ep,q1 = Hq(Kp,•) with ′dp,q1 = Hq(dp,•1 ),
(4) ′′Ep,q1 = Hq(K•,p) with ′′dp,q1 = (−1)qHq(d•,p2 ),
(5) ′Ep,q2 = Hp

I (Hq
II(K

•,•)),
(6) ′′Ep,q2 = Hp

II(H
q
I (K•,•)).

http://stacks.math.columbia.edu/tag/0A5J
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Proof. Omitted. �

These spectral sequences define two filtrations on Hn(sK•). We will denote these
FI and FII .

Definition 12.22.5. Let A be an abelian category. Let K•,• be a double complex.
We say the spectral sequence (′Er,

′dr)r≥0 converges if Definition 12.21.7 applies.
In other words, for all n

grFI (H
n(sK•)) = ⊕p+q=n′Ep,q∞

via the canonical comparison of Lemma 12.21.6. Similarly we say the spectral
sequence (′′Er,

′′dr)r≥0 converges if Definition 12.21.7 applies. In other words for
all n

grFII (H
n(sK•)) = ⊕p+q=n′′Ep,q∞

via the canonical comparison of Lemma 12.21.6.

Same caveats as those following Definition 12.20.6.

Lemma 12.22.6 (First quadrant spectral sequence). Let A be an abelian category.
Let K•,• be a double complex. Assume that for every n ∈ Z there are only finitely
many nonzero Kp,q with p+ q = n. Then

(1) the filtrations FI , FII on each Hn(K•) are finite,
(2) the spectral sequence (′Er,

′dr)r≥0 converges, and
(3) the spectral sequence (′′Er,

′′dr)r≥0 converges.

Proof. Follows immediately from Lemma 12.21.9. �

Here is our first application of spectral sequences.

Lemma 12.22.7. Let A be an abelian category. Let K• be a complex. Let A•,• be
a double complex. Let αp : Kp → Ap,0 be morphisms. Assume that

(1) For every n ∈ Z there are only finitely many nonzero Ap,q with p+ q = n.
(2) We have Ap,q = 0 if q < 0.
(3) The morphisms αp give rise to a morphism of complexes α : K• → A•,0.
(4) The complex Ap,• is exact in all degrees q 6= 0 and the morphism Kp →

Ap,0 induces an isomorphism Kp → Ker(dp,02 ).

Then α induces a quasi-isomorphism

K• −→ sA•

of complexes. Moreover, there is a variant of this lemma involving the second
variable q instead of p.

Proof. The map is simply the map given by the morphisms Kn → An,0 → sAn,
which are easily seen to define a morphism of complexes. Consider the spectral
sequence (′Er,

′dr)r≥0 associated to the double complex A•,•. By Lemma 12.22.6
this spectral sequence converges and the induced filtration on Hn(sA•) is finite
for each n. By Lemma 12.22.4 and assumption (4) we have ′Ep,q1 = 0 unless

q = 0 and ′Ep,01 = Kp with differential ′dp,01 identified with dpK . Hence ′Ep,02 =
Hp(K•) and zero otherwise. This clearly implies dp,q2 = dp,q3 = . . . = 0 for degree
reasons. Hence we conclude that Hn(sA•) = Hn(K•). We omit the verification
that this identification is given by the morphism of complexes K• → sA• introduced
above. �
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Remark 12.22.8. Let A be an abelian category. Let C ⊂ A be a weak Serre
subcategory (see Definition 12.9.1). Suppose that K•,• is a double complex to
which Lemma 12.22.6 applies such that for some r ≥ 0 all the objects ′Ep,qr belong
to C. We claim all the cohomology groups Hn(sK•) belong to C. Namely, the
assumptions imply that the kernels and images of ′dp,qr are in C. Whereupon we see
that each ′Ep,qr+1 is in C. By induction we see that each ′Ep,q∞ is in C. Hence each
Hn(sK•) has a finite filtration whose subquotients are in C. Using that C is closed
under extensions we conclude that Hn(sK•) is in C as claimed.

The same result holds for the second spectral sequence associated toK•,•. Similarly,
if (K•, F ) is a filtered complex to which Lemma 12.21.9 applies and for some r ≥ 0
all the objects Ep,qr belong to C, then each Hn(K•) is an object of C.

Remark 12.22.9. Let A be an additive category. Let A•,•,• be a triple complex.
The associated total complex is the complex with terms

Totn(A•,•,•) =
⊕

p+q+r=n
Ap,q,r

and differential

dnTot(A•,•,•) =
∑

p+q+r=n
dp,q,r1 + (−1)pdp,q,r2 + (−1)p+qdp,q,r3

With this definition a simple calculation shows that the associated total complex
is equal to

Tot(A•,•,•) = Tot(Tot12(A•,•,•)) = Tot(Tot23(A•,•,•))

In other words, we can either first combine the first two of the variables and then
combine sum of those with the last, or we can first combine the last two variables
and then combine the first with the sum of the last two.

Lemma 12.22.10. Let M• be a complex of abelian groups. Let

. . .→ A•2 → A•1 → A•0 →M• → 0

be an exact complex of complexes of abelian groups such that for all p ∈ Z the
complexes

. . .→ Ker(dpA•2
)→ Ker(dpA•1

)→ Ker(dpA•0
)→ Ker(dpM•)→ 0

are exact as well. Set Ap,q = Aq−p to obtain a double complex. Then Tot(A•,•) →
M• induced by A•0 →M• is a quasi-isomorphism.

Proof. Write T • = Tot(A•,•). Let x ∈ Ker(d0
T•) represent a cohomology class

ξ. Write x =
∑
i=n,...,0 xi with xi ∈ Aii. Assume n > 0. Then xn is in the

kernel of dnA•n and maps to zero in the cohomology of A•n−1 (because it maps to an

element which is the boundary of xn−1 up to sign). The condition on exactness
of kernels of differentials implies that the cohomology class of xn is in the image
of Hn(A•n+1) → Hn(A•n) (details omitted). Thus we can modify x by a boundary
and reach the situation where xn is a boundary. Modifying x once more we see
that we may assume xn = 0. By induction we see that every cohomology class ξ
is represented by a cocycle x = x0. Finally, the condition on exactness of kernels
tells us two such cocycles x0 and x′0 are cohomologous if and only if their image in
H0(M•) are the same. �
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Lemma 12.22.11. Let M• be a complex of abelian groups. Let

0→M• → A•0 → A•1 → A•2 → . . .

be an exact complex of complexes of abelian groups such that for all p ∈ Z the
complexes

0→ Coker(dpM•)→ Coker(dpA•0
)→ Coker(dpA•1

)→ Coker(dpA•2
)→ . . .

are exact as well. Set Ap,q = Aqp to obtain a double complex. Let Totπ(A•,•) be the
product total complex associated to the double complex (see proof). Then the map
M• → Totπ(A•,•) induced by M• → A•0 is a quasi-isomorphism.

Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aqp

As differential we use

d((xp,q)) = (fp(xp−1,q) + (−1)pdA•p(xp,q−1))

Let x ∈ Ker(d0
T•) represent a cohomology class ξ ∈ H0(T •). Write x = (xi) with

xi ∈ A−ii . Note that x0 maps to zero in Coker(A−1
1 → A0

1). Hence we see that
x0 = m0 + d(y) for some m0 ∈ M0. Then d(m0) = 0 because d(x0) = 0 as x is
a cocycle. Thus, replacing ξ by something in the image of H0(M•) → H0(T •) we
may assume that x0 is in the image of d : A−1

0 → A0
0.

Assume x0 ∈ Im(A−1
0 → A0

0). We claim that in this case ξ = 0. To prove this we

find, by induction on n elements y1, . . . , yn with yi ∈ A−i−1
i such that x0 = d(y0)

and xj = fj−1(yj−1) + (−1)jd(yj). This is clear for n = 0. Proof of induction step
is omitted. Taking y = (yi) we find that d(y) = ξ.

This shows that H0(M•)→ H0(T •) is surjective. We omit the proof of injectivity.
�

12.23. Injectives

Definition 12.23.1. Let A be an abelian category. An object J ∈ Ob(A) is called
injective if for every injection A ↪→ B and every morphism A → J there exists a
morphism B → J making the following diagram commute

A //

��

B

��
J

Here is the obligatory characterization of injective objects.

Lemma 12.23.2. Let A be an abelian category. Let I be an object of A. The
following are equivalent:

(1) The object I is injective.
(2) The functor B 7→ HomA(B, I) is exact.
(3) Any short exact sequence

0→ I → A→ B → 0

in A is split.
(4) We have ExtA(B, I) = 0 for all B ∈ Ob(A).
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Proof. Omitted. �

Lemma 12.23.3. Let A be an abelian category. Suppose Iω, ω ∈ Ω is a set of
injective objects of A. If

∏
ω∈Ω Iω exists then it is injective.

Proof. Omitted. �

Definition 12.23.4. Let A be an abelian category. We say A has enough injectives
if every object A has an injective morphism A→ J into an injective object J .

Definition 12.23.5. Let A be an abelian category. We say that A has functorial
injective embeddings if there exists a functor

J : A −→ Arrows(A)

such that

(1) s ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism J(A) is injective, and
(3) for any object A ∈ Ob(A) the object t(J(A)) is an injective object of A.

We will denote such a functor by A 7→ (A→ J(A)).

12.24. Projectives

Definition 12.24.1. Let A be an abelian category. An object P ∈ Ob(A) is called
projective if for every surjection A→ B and every morphism P → B there exists a
morphism P → A making the following diagram commute

A // B

P

OO ??

Here is the obligatory characterization of projective objects.

Lemma 12.24.2. Let A be an abelian category. Let P be an object of A. The
following are equivalent:

(1) The object P is projective.
(2) The functor B 7→ HomA(P,B) is exact.
(3) Any short exact sequence

0→ A→ B → P → 0

in A is split.
(4) We have ExtA(P,A) = 0 for all A ∈ Ob(A).

Proof. Omitted. �

Lemma 12.24.3. Let A be an abelian category. Suppose Pω, ω ∈ Ω is a set of
projective objects of A. If

∐
ω∈Ω Pω exists then it is projective.

Proof. Omitted. �

Definition 12.24.4. Let A be an abelian category. We say A has enough projec-
tives if every object A has an surjective morphism P → A from an projective object
P onto it.
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Definition 12.24.5. Let A be an abelian category. We say that A has functorial
projective surjections if there exists a functor

P : A −→ Arrows(A)

such that

(1) t ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism P (A) is surjective, and
(3) for any object A ∈ Ob(A) the object s(P (A)) is an projective object of
A.

We will denote such a functor by A 7→ (P (A)→ A).

12.25. Injectives and adjoint functors

Here are some lemmas on adjoint functors and their relationship with injectives.
See also Lemma 12.7.3.

Lemma 12.25.1. Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v, and
(2) v transforms injective maps into injective maps.

Then u transforms injectives into injectives.

Proof. Let I be an injective object of A. Let ϕ : N →M be an injective map in B
and let α : N → uI be a morphism. By adjointness we get a morphism α : vN → I
and by assumption vϕ : vN → vM is injective. Hence as I is an injective object we
get a morphism β : vM → I extending α. By adjointness again this corresponds to
a morphism β : M → uI as desired. �

Remark 12.25.2. Let A, B, u : A → B and v : B → A be as in Lemma 12.25.1.
In the presence of assumption (1) assumption (2) is equivalent to requiring that v
is exact. Moreover, condition (2) is necessary. Here is an example. Let A→ B be
a ring map. Let u : ModB → ModA be u(N) = NA and let v : ModA → ModB be
v(M) = M ⊗A B. Then u is right adjoint to v, and u is exact and v is right exact,
but v does not transform injective maps into injective maps in general (i.e., v is
not left exact). Moreover, it is not the case that u transforms injective B-modules
into injective A-modules. For example, if A = Z and B = Z/pZ, then the injective
B-module Z/pZ is not an injective Z-module. In fact, the lemma applies to this
example if and only if the ring map A→ B is flat.

Lemma 12.25.3. Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives, and
(4) vB = 0 implies B = 0 for any B ∈ Ob(B).

Then B has enough injectives.

Proof. Pick B ∈ Ob(B). Pick an injection vB → I for I an injective object of A.
According to Lemma 12.25.1 and the assumptions the corresponding map B → uI
is the injection of B into an injective object. �
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Remark 12.25.4. Let A, B, u : A → B and v : B → A be as In Lemma 12.25.3. In
the presence of conditions (1) and (2) condition (4) is equivalent to v being faithful.
Moreover, condition (4) is needed. An example is to consider the case where the
functors u and v are both the zero functor.

Lemma 12.25.5. Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives,
(4) vB = 0 implies B = 0 for any B ∈ Ob(B), and
(5) A has functorial injective hulls.

Then B has functorial injective hulls.

Proof. Let A 7→ (A→ J(A)) be a functorial injective hull on A. Then B 7→ (B →
uJ(vB)) is a functorial injective hull on B. Compare with the proof of Lemma
12.25.3. �

Lemma 12.25.6. Let A and B be abelian categories. Let u : A → B be a functor.
If there exists a subset P ⊂ Ob(B) such that

(1) every object of B is a quotient of an element of P, and
(2) for every P ∈ P there exists an object Q of A such that HomA(Q,A) =

HomB(P, u(A)) functorially in A,

then there exists a left adjoint v of u.

Proof. By the Yoneda lemma (Categories, Lemma 4.3.5) the object Q of A corre-
sponding to P is defined up to unique isomorphism by the formula HomA(Q,A) =
HomB(P, u(A)). Let us write Q = v(P ). Denote iP : P → u(v(P )) the map cor-
responding to idv(P ) in HomA(v(P ), v(P )). Functoriality in (2) implies that the
bijection is given by

HomA(v(P ), A)→ HomB(P, u(A)), ϕ 7→ u(ϕ) ◦ iP
For any pair of elements P1, P2 ∈ P there is a canonical map

HomB(P2, P1)→ HomA(v(P2), v(P1)), ϕ 7→ v(ϕ)

which is characterized by the rule u(v(ϕ)) ◦ iP2
= iP1

◦ ϕ in HomB(P2, u(v(P1))).
Note that ϕ 7→ v(ϕ) is compatible with composition; this can be seen directly from
the characterization. Hence P 7→ v(P ) is a functor from the full subcategory of B
whose objects are the elements of P.

Given an arbitrary object B of B choose an exact sequence

P2 → P1 → B → 0

which is possible by assumption (1). Define v(B) to be the object of A fitting into
the exact sequence

v(P2)→ v(P1)→ v(B)→ 0

Then

HomA(v(B), A) = Ker(HomA(v(P1), A)→ HomA(v(P2), A))

= Ker(HomB(P1, u(A))→ HomB(P2, u(A)))

= HomB(B, u(A))
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Hence we see that we may take P = Ob(B), i.e., we see that v is everywhere
defined. �

12.26. Essentially constant systems

In this section we discuss essentially constant systems with values in additive cat-
egories.

Lemma 12.26.1. Let I be a category, let A be a pre-additive Karoubian category,
and let M : I → A be a diagram.

(1) Assume I is filtered. The following are equivalent
(a) M is essentially constant,
(b) X = colimM exists and there exists a cofinal filtered subcategory
I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct sum decomposition Mi′ = Xi′⊕Zi′
such that Xi′ maps isomorphically to X and Zi′ to zero in Mi′′ for
some i′ → i′′ in I ′.

(2) Assume I is cofiltered. The following are equivalent
(a) M is essentially constant,
(b) X = limM exists and there exists an initial cofiltered subcategory
I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct sum decomposition Mi′ = Xi′⊕Zi′
such that X maps isomorphically to Xi′ and Mi′′ → Zi′ is zero for
some i′′ → i′ in I ′.

Proof. Assume (1)(a), i.e., I is filtered and M is essentially constant. Let X =
colimMi. Choose i and X → Mi as in Categories, Definition 4.22.1. Let I ′ be
the full subcategory consisting of objects which are the target of a morphism with
source i. Suppose i′ ∈ Ob(I ′) and choose a morphism i→ i′. Then X →Mi →Mi′

composed with Mi′ → X is the identity on X. As A is Karoubian, we find a direct
summand decomposition Mi′ = Xi′ ⊕ Zi′ , where Zi′ = Ker(Mi′ → X) and Xi′

maps isomorphically to X. Pick i→ k and i′ → k such that Mi′ → X →Mi →Mk

equals Mi′ →Mk as in Categories, Definition 4.22.1. Then we see that Mi′ →Mk

annihilates Zi′ . Thus (1)(b) holds.

Assume (1)(b), i.e., I is filtered and we have I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct sum
decomposition Mi′ = Xi′ ⊕Zi′ as stated in the lemma. To see that M is essentially
constant we can replace I by I ′, see Categories, Lemmas 4.22.8 and 4.17.2. Pick
any i ∈ Ob(I) and denote X →Mi the inverse of the isomorphism Xi → X followed
by the inclusion map Xi → Mi. If j is a second object, then choose j → k such
that Zj →Mk is zero. Since I is filtered we may also assume there is a morphism
i → k (after possibly increasing k). Then Mj → X → Mi → Mk and Mj → Mk

both annihilate Zj . Thus after postcomposing by a morphism Mk → Ml which
annihilates the summand Zk, we find that Mj → X → Mi → Ml and Mj → Ml

are equal, i.e., M is essentially constant.

The proof of (2) is dual. �

Lemma 12.26.2. Let I be a category. Let A be an additive, Karoubian category.
Let F : I → A and G : I → A be functors. The following are equivalent

(1) colimI F ⊕G exists, and
(2) colimI F and colimI G exist.

In this case colimI F ⊕G = colimI F ⊕ colimI G.
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Proof. Assume (1) holds. Set W = colimI F ⊕ G. Note that the projection onto
F defines natural tranformation F ⊕ G → F ⊕ G which is idempotent. Hence we
obtain an idempotent endomorphism W →W by Categories, Lemma 4.14.7. Since
A is Karoubian we get a corresponding direct sum decomposition W = X ⊕ Y , see
Lemma 12.4.2. A straightforward argument (omitted) shows that X = colimI F
and Y = colimI G. Thus (2) holds. We omit the proof that (2) implies (1). �

Lemma 12.26.3. Let I be a filtered category. Let A be an additive, Karoubian
category. Let F : I → A and G : I → A be functors. The following are equivalent

(1) F ⊕G : I → A is essentially constant, and
(2) F and G are essentially constant.

Proof. Assume (1) holds. In particular W = colimI F ⊕ G exists and hence by
Lemma 12.26.2 we have W = X ⊕ Y with X = colimI F and Y = colimI G.
A straightforward argument (omitted) using for example the characterization of
Categories, Lemma 4.22.6 shows that F is essentially constant with value X and
G is essentially constant with value Y . Thus (2) holds. The proof that (2) implies
(1) is omitted. �

12.27. Inverse systems

Let C be a category. In Categories, Section 4.21 we defined the notion of an inverse
system over a partially ordered set (with values in the category C). If the partially
ordered set is N = {1, 2, 3, . . .} with the usual ordering such an inverse system
over N is often simply called an inverse system. It consists quite simply of a pair
(Mi, fii′) where each Mi, i ∈ N is an object of C, and for each i > i′, i, i′ ∈ N
a morphism fii′ : Mi → Mi′ such that moreover fi′i′′ ◦ fii′ = fii′′ whenever this
makes sense. It is clear that in fact it suffices to give the morphisms M2 → M1,
M3 →M2, and so on. Hence an inverse system is frequently pictured as follows

M1
ϕ2←−M2

ϕ3←−M3 ← . . .

Moreover, we often omit the transition maps ϕi from the notation and we simply
say “let (Mi) be an inverse system”.

The collection of all inverse systems with values in C forms a category with the
obvious notion of morphism.

Lemma 12.27.1. Let C be a category.

(1) If C is an additive category, then the category of inverse systems with
values in C is an additive cateogry.

(2) If C is an abelian category, then the category of inverse systems with values
in C is an abelian cateogry. A sequence (Ki) → (Li) → (Mi) of inverse
systems is exact if and only if each Ki → Li → Ni is exact.

Proof. Omitted. �

The limit (see Categories, Section 4.21) of such an inverse system is denoted limMi,
or limiMi. If C is the category of abelian groups (or sets), then the limit always
exists and in fact can be described as follows

limiMi = {(xi) ∈
∏

Mi | ϕi(xi) = xi−1, i = 2, 3, . . .}
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see Categories, Section 4.15. However, given a short exact sequence

0→ (Ai)→ (Bi)→ (Ci)→ 0

of inverse systems of abelian groups it is not always the case that the associated
system of limits is exact. In order to discuss this further we introduce the following
notion.

Definition 12.27.2. Let C be an abelian category. We say the inverse system (Ai)
satisfies the Mittag-Leffler condition, or for short is ML, if for every i there exists
a c = c(i) ≥ i such that

Im(Ak → Ai) = Im(Ac → Ai)

for all k ≥ c.

It turns out that the Mittag-Leffler condition is good enough to ensure that the lim-
functor is exact, provided one works within the abelian category of abelian groups,
or abelian sheaves, etc. It is shown in a paper by A. Neeman (see [Nee02]) that
this condition is not strong enough in a general abelian category (where limits of
inverse systems exist).

Lemma 12.27.3. Let

0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups.

(1) In any case the sequence

0→ limiAi → limiBi → limi Ci

is exact.
(2) If (Bi) is ML, then also (Ci) is ML.
(3) If (Ai) is ML, then

0→ limiAi → limiBi → limi Ci → 0

is exact.

Proof. Nice exercise. See Algebra, Lemma 10.84.1 for part (3). �

Lemma 12.27.4. Let
(Ai)→ (Bi)→ (Ci)→ (Di)

be an exact sequence of inverse systems of abelian groups. If the system (Ai) is ML,
then the sequence

limiBi → limi Ci → limiDi

is exact.

Proof. Let Zi = Ker(Ci → Di) and Ii = Im(Ai → Bi). Then limZi = Ker(limCi →
limDi) and we get a short exact sequence of systems

0→ (Ii)→ (Bi)→ (Zi)→ 0

Moreover, by Lemma 12.27.3 we see that (Ii) has (ML), thus another application
of Lemma 12.27.3 shows that limBi → limZi is surjective which proves the lemma.

�

The following characterization of essentially constant inverse systems shows in par-
ticular that they have ML.
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Lemma 12.27.5. Let A be an abelian category. Let (Ai) be an inverse system in A
with limit A = limAi. Then (Ai) is essentially constant (see Categories, Definition
4.22.1) if and only if there exists an i and for all j ≥ i a direct sum decomposition
Aj = A ⊕ Zj such that (a) the maps Aj′ → Aj are compatible with the direct sum
decompositions, (b) for all j there exists some j′ ≥ j such that Zj′ → Zj is zero.

Proof. Assume (Ai) is essentially constant. Then there exists an i and a morphism
Ai → A such that for all j ≥ i there exists a j′ ≥ j such that Aj′ → Aj factors
as Aj′ → Ai → A → Aj (the last map comes from A = limAi). Hence setting
Zj = Ker(Aj → A) for all j ≥ i works. Proof of the converse is omitted. �

Lemma 12.27.6. Let

0→ (Ai)→ (Bi)→ (Ci)→ 0

be an exact sequence of inverse systems of abelian groups. If (Ai) has ML and (Ci)
is essentially constant, then (Bi) has ML.

Proof. After renumbering we may assume that Ci = C ⊕ Zi compatible with
transition maps and that for all i there exists an i′ ≥ i such that Zi′ → Zi is zero,
see Lemma 12.27.5. Pick i. Let c ≥ i by an integer such that Im(Ac → A) =
Im(Ai′ → Ai) for all i′ ≥ c. Let c′ ≥ c be an integer such that Zc′ → Zc is zero.
For i′ ≥ c′ consider the maps

0 // Ai′

��

// Bi′

��

// C ⊕ Zi′

��

// 0

0 // Ac′

��

// Bc′

��

// C ⊕ Zc′

��

// 0

0 // Ac

��

// Bc

��

// C ⊕ Zc

��

// 0

0 // Ai // Bi // C ⊕ Zi // 0

Because Zc′ → Zc is zero the image Im(Bc′ → Bc) is an extension C by a subgroup
A′ ⊂ Ac which contains the image of Ac′ → Ac. Hence Im(Bc′ → Bi) is an
extension of C by the image of A′ which is the image of Ac → Ai by our choice of
c. In exactly the same way one shows that Im(Bi′ → Bi) is an extension of C by
the image of Ac → Ai. Hence Im(Bc′ → Bi) = Im(Bi′ → Bi) and we win. �

The “correct” version of the following lemma is More on Algebra, Lemma 15.61.2.

Lemma 12.27.7. Let

(A−2
i → A−1

i → A0
i → A1

i )

be an inverse system of complexes of abelian groups and denote A−2 → A−1 →
A0 → A1 its limit. Denote (H−1

i ), (H0
i ) the inverse systems of cohomologies, and

denote H−1, H0 the cohomologies of A−2 → A−1 → A0 → A1. If (A−2
i ) and (A−1

i )

are ML and (H−1
i ) is essentially constant, then H0 = limH0

i .

Proof. Let Zji = Ker(Aji → Aj+1
i ) and Iji = Im(Aj−1

i → Aji ). Note that limZ0
i =

Ker(limA0
i → limA1

i ) as taking kernels commutes with limits. The systems (I−1
i )
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and (I0
i ) have ML as quotients of the systems (A−2

i ) and (A−1
i ), see Lemma 12.27.3.

Thus an exact sequence

0→ (I−1
i )→ (Z−1

i )→ (H−1
i )→ 0

of inverse systems where (I−1
i ) has ML and where (H−1

i ) is essentially constant by

assumption. Hence (Z−1
i ) has ML by Lemma 12.27.6. The exact sequence

0→ (Z−1
i )→ (A−1

i )→ (I0
i )→ 0

and an application of Lemma 12.27.3 shows that limA−1
i → lim I0

i is surjective.
Finally, the exact sequence

0→ (I0
i )→ (Z0

i )→ (H0
i )→ 0

and Lemma 12.27.3 show that lim I0
i → limZ0

i → limH0
i → 0 is exact. Putting

everything together we win. �

Sometimes we need a version of the lemma above where we take limits over big
ordinals.

Lemma 12.27.8. Let α be an ordinal. Let K•β, β < α be an inverse system of
complexes of abelian groups over α. If for all β < α the complex K•β is acyclic and
the map

Kn
β −→ limγ<βK

n
γ

is surjective, then the complex limβ<αK
•
β is acyclic.

Proof. By transfinite induction we prove this holds for every ordinal α and every
system as in the lemma. In particular, whilst proving the result for α we may
assume the complexes limγ<βK

n
γ are acyclic.

Let x ∈ limβ<αK
0
α with d(x) = 0. We will find a y ∈ K−1

α with d(y) = x. Write
x = (xβ) where xβ ∈ K0

β is the image of x for β < α. We will construct y = (yβ)
by transfinite induction.

For β = 0 let y0 ∈ K−1
0 be any element with d(y0) = x0.

For β = γ + 1 a successor, we have to find an element yβ which maps both to
yγ by the transition map f : K•β → K•γ and to xβ under the differential. As a

first approximation we choose y′β with d(y′β) = xβ . Then the difference yγ − f(y′β)

is in the kernel of the differential, hence equal to d(zγ) for some zγ ∈ K−2
γ . By

assumption, the map f−2 : K−2
β → K−2

γ is surjective. Hence we write zγ = f(zβ)

and change y′β into yβ = y′β + d(zβ) which works.

If β is a limit ordinal, then we have the element (yγ)γ<β in limγ<βK
−1
γ whose

differential is the image of xβ . Thus we can argue in exactly the same manner as
above using the termwise surjective map of complexes f : K•β → limγ<βK

•
γ and

the fact (see first paragraph of proof) that we may assume limγ<βK
•
γ is acyclic by

induction. �
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12.28. Exactness of products

Lemma 12.28.1. Let I be a set. For i ∈ I let Li → Mi → Ni be a complex of
abelian groups. Let Hi = Ker(Mi → Ni)/Im(Li →Mi) be the cohomology. Then∏

Li →
∏

Mi →
∏

Ni

is a complex of abelian groups with homology
∏
Hi.

Proof. Omitted. �
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CHAPTER 13

Derived Categories

13.1. Introduction

We first discuss triangulated categories and localization in triangulated categories.
Next, we prove that the homotopy category of complexes in an additive category
is a triangulated category. Once this is done we define the derived category of an
abelian category as the localization of the of homotopy category with respect to
quasi-isomorphisms. A good reference is Verdier’s thesis [Ver96].

13.2. Triangulated categories

Triangulated categories are a convenient tool to describe the type of structure in-
herent in the derived category of an abelian category. Some references are [Ver96],
[KS06], and [Nee01].

13.3. The definition of a triangulated category

In this section we collect most of the definitions concerning triangulated and pre-
triangulated categories.

Definition 13.3.1. Let D be an additive category. Let [n] : D → D, E 7→ E[n]
be a collection of additive functors indexed by n ∈ Z such that [n] ◦ [m] = [n+m]
and [0] = id (equality as functors). In this situation we call triangle a sixtu-
ple (X,Y, Z, f, g, h) where X,Y, Z ∈ Ob(D) and f : X → Y , g : Y → Z and
h : Z → X[1] are morphisms of D. A morphism of triangles (X,Y, Z, f, g, h) →
(X ′, Y ′, Z ′, f ′, g′, h′) is given by morphisms a : X → X ′, b : Y → Y ′ and c : Z → Z ′

of D such that b ◦ f = f ′ ◦ a, c ◦ g = g′ ◦ b and a[1] ◦ h = h′ ◦ c.

A morphism of triangles is visualized by the following commutative diagram

X //

a

��

Y //

b

��

Z //

c

��

X[1]

a[1]

��
X ′ // Y ′ // Z ′ // X ′[1]

Here is the definition of a triangulated category as given in Verdier’s thesis.

Definition 13.3.2. A triangulated category consists of a triple (D, {[n]}n∈Z, T )
where

(1) D is an additive category,
(2) [n] : D → D, E 7→ E[n] be a collection of additive functors indexed by

n ∈ Z such that [n] ◦ [m] = [n + m] and [0] = id (equality as functors),
and

(3) T is a set of triangles called the distinguished triangles

903
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subject to the following conditions

TR1 Any triangle isomorphic to a distinguished triangle is a distinguished tri-
angle. Any triangle of the form (X,X, 0, id, 0, 0) is distinguished. For any
morphism f : X → Y of D there exists a distinguished triangle of the
form (X,Y, Z, f, g, h).

TR2 The triangle (X,Y, Z, f, g, h) is distinguished if and only if the triangle
(Y,Z,X[1], g, h,−f [1]) is.

TR3 Given a solid commutative square

X //

a

��

Y //

b

��

Z //

��

X[1]

a[1]

��
X ′ // Y ′ // Z ′ // X ′[1]

whose rows are distinguished triangles there exists a morphism c : Z → Z ′

such that (a, b, c) is a morphism of triangles.
TR4 Given objects X, Y , Z of D, and morphisms f : X → Y , g : Y → Z,

and distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g◦f, p2, d2), and
(Y,Z,Q3, g, p3, d3), there exist morphisms a : Q1 → Q2 and b : Q2 → Q3

such that
(a) (Q1, Q2, Q3, a, b, p1[1] ◦ d3) is a distinguished triangle,
(b) the triple (idX , g, a) is a morphism of triangles (X,Y,Q1, f, p1, d1)→

(X,Z,Q2, g ◦ f, p2, d2), and
(c) the triple (f, idZ , b) is a morphism of triangles (X,Z,Q2, g◦f, p2, d2)→

(Y, Z,Q3, g, p3, d3).

We will call (D, [ ], T ) a pre-triangulated category if TR1, TR2 and TR3 hold.

The explanation of TR4 is that if you think of Q1 as Y/X, Q2 as Z/X and Q3 as
Z/Y , then TR4(a) expresses the isomorphism (Z/X)/(Y/X) ∼= Z/Y and TR(b)
and TR(c) express that we can compare the triangles X → Y → Q1 → X[1] etc
with morphisms of triangles. For a more precise reformulation of this idea see the
proof of Lemma 13.10.2.

The sign in TR2 means that if (X,Y, Z, f, g, h) is a distinguished triangle then in
the long sequence
(13.3.2.1)

. . .→ Z[−1]
−h[−1]−−−−→ X

f−→ Y
g−→ Z

h−→ X[1]
−f [1]−−−→ Y [1]

−g[1]−−−→ Z[1]→ . . .

each four term sequence gives a distinguished triangle.

As usual we abuse notation and we simply speak of a (pre-)triangulated category
D without explicitly introducing notation for the additional data. The notion of a
pre-triangulated category is useful in finding statements equivalent to TR4.

We have the following definition of a triangulated functor.

Definition 13.3.3. LetD, D′ be pre-triangulated categories. An exact functor, or a
triangulated functor from D to D′ is a functor F : D → D′ together with given func-
torial isomorphisms ξX : F (X[1])→ F (X)[1] such that for every distinguished tri-
angle (X,Y, Z, f, g, h) of D the triangle (F (X), F (Y ), F (Z), F (f), F (g), ξX ◦ F (h))
is a distinguished triangle of D′.

http://stacks.math.columbia.edu/tag/014V
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An exact functor is additive, see Lemma 13.4.15. When we say two triangulated
categories are equivalent we mean that they are equivalent in the 2-category of
triangulated categories. A 2-morphism a : (F, ξ) → (F ′, ξ′) in this 2-category is
simply a transformation of functors a : F → F ′ which is compatible with ξ and ξ′,
i.e.,

F ◦ [1]
ξ
//

a?1

��

[1] ◦ F

1?a

��
F ′ ◦ [1]

ξ′ // [1] ◦ F ′

commutes.

Definition 13.3.4. Let (D, [ ], T ) be a pre-triangulated category. A pre-triangulated
subcategory1 is a pair (D′, T ′) such that

(1) D′ is an additive subcategory of D which is preserved under [1] and [−1],
(2) T ′ ⊂ T is a subset such that for every (X,Y, Z, f, g, h) ∈ T ′ we have

X,Y, Z ∈ Ob(D′) and f, g, h ∈ Arrows(D′), and
(3) (D′, [ ], T ′) is a pre-triangulated category.

If D is a triangulated category, then we say (D′, T ′) is a triangulated subcategory if
it is a pre-triangulated subcategory and (D′, [ ], T ′) is a triangulated category.

In this situation the inclusion functor D′ → D is an exact functor with ξX : X[1]→
X[1] given by the identity on X[1].

We will see in Lemma 13.4.1 that for a distinguished triangle (X,Y, Z, f, g, h) in a
pre-triangulated category the composition g◦f : X → Z is zero. Thus the sequence
(13.3.2.1) is a complex. A homological functor is one that turns this complex into
a long exact sequence.

Definition 13.3.5. Let D be a pre-triangulated category. Let A be an abelian
category. An additive functor H : D → A is called homological if for every distin-
guished triangle (X,Y, Z, f, g, h) the sequence

H(X)→ H(Y )→ H(Z)

is exact in the abelian category A. An additive functor H : Dopp → A is called
cohomological if the corresponding functor D → Aopp is homological.

If H : D → A is a homological functor we often write Hn(X) = H(X[n]) so that
H(X) = H0(X). Our discussion of TR2 above implies that a distinguished triangle
(X,Y, Z, f, g, h) determines a long exact sequence

(13.3.5.1) H−1(Z)
h[−1] // H0(X)

f // H0(Y )
g // H0(Z)

h // H1(X)

This will be called the long exact sequence associated to the distinguished triangle
and the homological functor. As indicated we will not use any signs for the mor-
phisms in the long exact sequence. This has the side effect that maps in the long
exact sequence associated to the rotation (TR2) of a distinguished triangle differ
from the maps in the sequence above by some signs.

1This definition may be nonstandard. If D′ is a full subcategory then T ′ is the intersection of
the set of triangles in D′ with T , see Lemma 13.4.14. In this case we drop T ′ from the notation.
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Definition 13.3.6. LetA be an abelian category. LetD be a triangulated category.
A δ-functor from A to D is given by a functor G : A → D and a rule which assigns
to every short exact sequence

0→ A
a−→ B

b−→ C → 0

a morphism δ = δA→B→C : G(C)→ G(A)[1] such that

(1) the triangle (G(A), G(B), G(C), G(a), G(b), δA→B→C) is a distinguished
triangle of D for any short exact sequence as above, and

(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact
sequences the diagram

G(C)

��

δA→B→C

// G(A)[1]

��
G(C ′)

δA′→B′→C′ // G(A′)[1]

is commutative.

In this situation we call (G(A), G(B), G(C), G(a), G(b), δA→B→C) the image of the
short exact sequence under the given δ-functor.

Note how a δ-functor comes equipped with additional structure. Strictly speaking
it does not make sense to say that a given functor A → D is a δ-functor, but we
will often do so anyway.

13.4. Elementary results on triangulated categories

Most of the results in this section are proved for pre-triangulated categories and a
fortiori hold in any triangulated category.

Lemma 13.4.1. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a
distinguished triangle. Then g ◦ f = 0, h ◦ g = 0 and f [1] ◦ h = 0.

Proof. By TR1 we know (X,X, 0, 1, 0, 0) is a distinguished triangle. Apply TR3
to

X //

1

��

X //

f

��

0 //

��

X[1]

1[1]

��
X

f // Y
g // Z

h // X[1]

Of course the dotted arrow is the zero map. Hence the commutativity of the
diagram implies that g ◦ f = 0. For the other cases rotate the triangle, i.e., apply
TR2. �

Lemma 13.4.2. Let D be a pre-triangulated category. For any object W of D the
functor HomD(W,−) is homological, and the functor HomD(−,W ) is cohomologi-
cal.

Proof. Consider a distinguished triangle (X,Y, Z, f, g, h). We have already seen
that g ◦ f = 0, see Lemma 13.4.1. Suppose a : W → Y is a morphism such that
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g ◦ a = 0. Then we get a commutative diagram

W
1
//

b

��

W //

a

��

0 //

0

��

W [1]

b[1]

��
X // Y // Z // X[1]

Both rows are distinguished triangles (use TR1 for the top row). Hence we can fill
the dotted arrow b (first rotate using TR2, then apply TR3, and then rotate back).
This proves the lemma. �

Lemma 13.4.3. Let D be a pre-triangulated category. Let

(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

be a morphism of distinguished triangles. If two among a, b, c are isomorphisms so
is the third.

Proof. Assume that a and c are isomorphisms. For any object W of D write
HW (−) = HomD(W,−). Then we get a commutative diagram of abelian groups

HW (Z[−1]) //

��

HW (X) //

��

HW (Y ) //

��

HW (Z) //

��

HW (X[1])

��
HW (Z ′[−1]) // HW (X ′) // HW (Y ′) // HW (Z ′) // HW (X ′[1])

By assumption the right two and left two vertical arrows are bijective. As HW

is homological by Lemma 13.4.2 and the five lemma (Homology, Lemma 12.5.20)
it follows that the middle vertical arrow is an isomorphism. Hence by Yoneda’s
lemma, see Categories, Lemma 4.3.5 we see that b is an isomorphism. This implies
the other cases by rotating (using TR2). �

Remark 13.4.4. Let D be an additive category with translation functors [n] as in
Definition 13.3.1. Let us call a triangle (X,Y, Z, f, g, h) special2 if for every object
W of D the long sequence of abelian groups

. . .→ HomD(W,X)→ HomD(W,Y )→ HomD(W,Z)→ HomD(W,X[1])→ . . .

is exact. The proof of Lemma 13.4.3 shows that if

(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

is a morphism of special triangles and if two among a, b, c are isomorphisms so is the
third. There is a dual statement for co-special triangles, i.e., triangles which turn
into long exact sequences on applying the functor HomD(−,W ). Thus distinguished
triangles are special and co-special, but in general there are many more (co-)special
triangles, then there are distinguished triangles.

Lemma 13.4.5. Let D be a pre-triangulated category. Let

(0, b, 0), (0, b′, 0) : (X,Y, Z, f, g, h)→ (X,Y, Z, f, g, h)

be endomorphisms of a distinguished triangle. Then bb′ = 0.

2This is nonstandard notation.
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Proof. Picture

X //

0

��

Y //

b,b′

��
α

��

Z //

0

��β��

X[1]

0

��
X // Y // Z // X[1]

Applying Lemma 13.4.2 we find dotted arrows α and β such that b′ = f ◦ α and
b = β ◦ g. Then bb′ = β ◦ g ◦ f ◦ α = 0 as g ◦ f = 0 by Lemma 13.4.1. �

Lemma 13.4.6. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a
distinguished triangle. If

Z
h
//

c

��

X[1]

a[1]

��
Z

h // X[1]

is commutative and a2 = a, c2 = c, then there exists a morphism b : Y → Y with
b2 = b such that (a, b, c) is an endomorphism of the triangle (X,Y, Z, f, g, h).

Proof. By TR3 there exists a morphism b′ such that (a, b′, c) is an endomorphism
of (X,Y, Z, f, g, h). Then (0, (b′)2 − b′, 0) is also an endomorphism. By Lemma
13.4.5 we see that (b′)2 − b′ has square zero. Set b = b′ − (2b′ − 1)((b′)2 − b′) =
3(b′)2 − 2(b′)3. A computation shows that (a, b, c) is an endomorphism and that
b2 − b = (4(b′)2 − 4b′ − 3)((b′)2 − b′)2 = 0. �

Lemma 13.4.7. Let D be a pre-triangulated category. Let f : X → Y be a mor-
phism of D. There exists a distinguished triangle (X,Y, Z, f, g, h) which is unique
up to (nonunique) isomorphism of triangles. More precisely, given a second such
distinguished triangle (X,Y, Z ′, f, g′, h′) there exists an isomorphism

(1, 1, c) : (X,Y, Z, f, g, h) −→ (X,Y, Z ′, f, g′, h′)

Proof. Existence by TR1. Uniqueness up to isomorphism by TR3 and Lemma
13.4.3. �

Lemma 13.4.8. Let D be a pre-triangulated category. Let f : X → Y be a mor-
phism of D. The following are equivalent

(1) f is an isomorphism,
(2) (X,Y, 0, f, 0, 0) is a distinguished triangle, and
(3) for any distinguished triangle (X,Y, Z, f, g, h) we have Z = 0.

Proof. By TR1 the triangle (X,X, 0, 1, 0, 0) is distinguished. Let (X,Y, Z, f, g, h)
be a distinguished triangle. By TR3 there is a map of distinguished triangles
(1, f, 0) : (X,X, 0)→ (X,Y, Z). If f is an isomorphism, then (1, f, 0) is an isomor-
phism of triangles by Lemma 13.4.3 and Z = 0. Conversely, if Z = 0, then (1, f, 0)
is an isomorphism of triangles as well, hence f is an isomorphism. �

Lemma 13.4.9. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) and
(X ′, Y ′, Z ′, f ′, g′, h′) be triangles. The following are equivalent

(1) (X ⊕X ′, Y ⊕ Y ′, Z ⊕ Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′) is a distinguished triangle,
(2) both (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) are distinguished triangles.
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Proof. Assume (2). By TR1 we may choose a distinguished triangle (X ⊕X ′, Y ⊕
Y ′, Q, f ⊕ f ′, g′′, h′′). By TR3 we can find morphisms of distinguished triangles
(X,Y, Z, f, g, h) → (X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′) and (X ′, Y ′, Z ′, f ′, g′, h′) →
(X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′). Taking the direct sum of these morphisms we
obtain a morphism of triangles

(X ⊕X ′, Y ⊕ Y ′, Z ⊕ Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′)

(1,1,c)

��
(X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′).

In the terminology of Remark 13.4.4 this is a map of special triangles (because a
direct sum of special triangles is special) and we conclude that c is an isomorphism.
Thus (1) holds.

Assume (1). We will show that (X,Y, Z, f, g, h) is a distinguished triangle. First
observe that (X,Y, Z, f, g, h) is a special triangle (terminology from Remark 13.4.4)
as a direct summand of the distinguished hence special triangle (X⊕X ′, Y ⊕Y ′, Z⊕
Z ′, f⊕f ′, g⊕g′, h⊕h′). Using TR1 let (X,Y,Q, f, g′′, h′′) be a distinguished triangle.
By TR3 there exists a morphism of distinguished triangles (X ⊕ X ′, Y ⊕ Y ′, Z ⊕
Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′)→ (X,Y,Q, f, g′′, h′′). Composing this with the inclusion
map we get a morphism of triangles

(1, 1, c) : (X,Y, Z, f, g, h) −→ (X,Y,Q, f, g′′, h′′)

By Remark 13.4.4 we find that c is an isomorphism and we conclude that (2)
holds. �

Lemma 13.4.10. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a
distinguished triangle.

(1) If h = 0, then there exists a right inverse s : Z → Y to g.
(2) For any right inverse s : Z → Y of g the map f ⊕ s : X ⊕ Z → Y is an

isomorphism.
(3) For any objects X ′, Z ′ of D the triangle (X ′, X ′⊕Z ′, Z ′, (1, 0), (0, 1), 0) is

distinguished.

Proof. To see (1) use that HomD(Z, Y )→ HomD(Z,Z)→ HomD(Z,X[1]) is exact
by Lemma 13.4.2. By the same token, if s is as in (2), then h = 0 and the sequence

0→ HomD(W,X)→ HomD(W,Y )→ HomD(W,Z)→ 0

is split exact (split by s : Z → Y ). Hence by Yoneda’s lemma we see thatX⊕Z → Y
is an isomorphism. The last assertion follows from TR1 and Lemma 13.4.9. �

Lemma 13.4.11. Let D be a pre-triangulated category. Let f : X → Y be a
morphism of D. The following are equivalent

(1) f has a kernel,
(2) f has a cokernel,
(3) f is isomorphic to a map K ⊕ Z → Z ⊕Q induced by idZ .

Proof. Any morphism isomorphic to a map of the form X ′⊕Z → Z⊕Y ′ has both
a kernel and a cokernel. Hence (3) ⇒ (1), (2). Next we prove (1) ⇒ (3). Suppose
first that f : X → Y is a monomorphism, i.e., its kernel is zero. By TR1 there
exists a distinguished triangle (X,Y, Z, f, g, h). By Lemma 13.4.1 the composition
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h[−1] ◦ f = 0. As f is a monomorphism we see that h[−1] = 0 and hence h = 0.
Then Lemma 13.4.10 implies that Y = X ⊕ Z, i.e., we see that (3) holds. Next,
assume f has a kernel K. As K → X is a monomorphism we conclude X = K⊕X ′
and f |X′ : X ′ → Y is a monomorphism. Hence Y = X ′ ⊕ Y ′ and we win. The
implication (2) ⇒ (3) is dual to this. �

Lemma 13.4.12. Let D be a pre-triangulated category. If D has countable prod-
ucts, then D is Karoubian. If D has countable coproducts, then D is Karoubian.

Proof. Assume D has countable products. By Homology, Lemma 12.4.3 it suffices
to check that morphisms which have a right inverse have kernels. Any morphism
which has a right inverse is an epimorphism, hence has a kernel by Lemma 13.4.11.
The second statement is dual to the first. �

The following lemma makes it slightly easier to prove that a pre-triangulated cate-
gory is triangulated.

Lemma 13.4.13. Let D be a pre-triangulated category. In order to prove TR4
it suffices to show that given any pair of composable morphisms f : X → Y and
g : Y → Z there exist

(1) isomorphisms i : X ′ → X, j : Y ′ → Y and k : Z ′ → Z, and then setting
f ′ = j−1fi : X ′ → Y ′ and g′ = k−1gj : Y ′ → Z ′ there exist

(2) distinguished triangles (X ′, Y ′, Q1, f
′, p1, d1), (X ′, Z ′, Q2, g

′◦f ′, p2, d2) and
(Y ′, Z ′, Q3, g

′, p3, d3), such that the assertion of TR4 holds.

Proof. The replacement of X,Y, Z by X ′, Y ′, Z ′ is harmless by our definition of
distinguished triangles and their isomorphisms. The lemma follows from the fact
that the distinguished triangles (X ′, Y ′, Q1, f

′, p1, d1), (X ′, Z ′, Q2, g
′◦f ′, p2, d2) and

(Y ′, Z ′, Q3, g
′, p3, d3) are unique up to isomorphism by Lemma 13.4.7. �

Lemma 13.4.14. Let D be a pre-triangulated category. Assume that D′ is an
additive full subcategory of D. The following are equivalent

(1) there exists a set of triangles T ′ such that (D′, T ′) is a pre-triangulated
subcategory of D,

(2) D′ is preserved under [1], [−1] and given any morphism f : X → Y in D′
there exists a distinguished triangle (X,Y, Z, f, g, h) in D such that Z is
isomorphic to an object of D′.

In this case T ′ is the set of distinguished triangles (X,Y, Z, f, g, h) of D such that
X,Y, Z ∈ Ob(D′) and f, g, h ∈ Arrows(D′). Finally, if D is a triangulated category,
then (1) and (2) are also equivalent to

(3) D′ is a triangulated subcategory.

Proof. Omitted. �

Lemma 13.4.15. An exact functor of pre-triangulated categories is additive.

Proof. Let F : D → D′ be an exact functor of pre-triangulated categories. Since
(0, 0, 0, 10, 10, 0) is a distinguished triangle of D the triangle

(F (0), F (0), F (0), 1F (0), 1F (0), F (0))

is distinguished in D′. This implies that 1F (0) ◦ 1F (0) is zero, see Lemma 13.4.1.
Hence F (0) is the zero object of D′. This also implies that F applied to any zero
morphism is zero (since a morphism in an additive category is zero if and only if it
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factors through the zero object). Next, using that (X,X ⊕ Y, Y, (1, 0), (0, 1), 0) is
a distinguished triangle, we see that (F (X), F (X ⊕ Y ), F (Y ), F (1, 0), F (0, 1), 0) is
one too. This implies that the map F (1, 0)⊕ F (0, 1) : F (X)⊕ F (Y )→ F (X ⊕ Y )
is an isomorphism, see Lemma 13.4.10. We omit the rest of the argument. �

Lemma 13.4.16. Let F : D → D′ be a fully faithful exact functor of pre-triangulated
categories. Then a triangle (X,Y, Z, f, g, h) of D is distinguished if and only if
(F (X), F (Y ), F (Z), F (f), F (g), F (h)) is distinguished in D′.

Proof. The “only if” part is clear. Assume (F (X), F (Y ), F (Z)) is distinguished in
D′. Pick a distinguished triangle (X,Y, Z ′, f, g′, h′) in D. By Lemma 13.4.7 there
exists an isomorphism of triangles

(1, 1, c′) : (F (X), F (Y ), F (Z)) −→ (F (X), F (Y ), F (Z ′)).

Since F is fully faithful, there exists a morphism c : Z → Z ′ such that F (c) = c′.
Then (1, 1, c) is an isomorphism between (X,Y, Z) and (X,Y, Z ′). Hence (X,Y, Z)
is distinguished by TR1. �

Lemma 13.4.17. Let D,D′,D′′ be pre-triangulated categories. Let F : D → D′
and F ′ : D′ → D′′ be exact functors. Then F ′ ◦ F is an exact functor.

Proof. Omitted. �

Lemma 13.4.18. Let D be a pre-triangulated category. Let A be an abelian cate-
gory. Let H : D → A be a homological functor.

(1) Let D′ be a pre-triangulated category. Let F : D′ → D be an exact functor.
Then the composition G ◦ F is a homological functor as well.

(2) Let A′ be an abelian category. Hence G : A → A′ be an exact functor.
Hence G ◦H is a homological functor as well.

Proof. Omitted. �

Lemma 13.4.19. Let D be a triangulated category. Let A be an abelian category.
Let G : A → D be a δ-functor.

(1) Let D′ be a triangulated category. Let F : D → D′ be an exact functor.
Then the composition F ◦G is a δ-functor as well.

(2) Let A′ be an abelian category. Hence H : A′ → A be an exact functor.
Hence G ◦H is a δ-functor as well.

Proof. Omitted. �

Lemma 13.4.20. Let D be a triangulated category. Let A be an abelian category.
Let G : A → D be a δ-functor. Let H : D → B be a homological functor. Assume
that H−1(G(A)) = 0 for all A in A. Then the collection

{Hn ◦G,Hn(δA→B→C)}n≥0

is a δ-functor from A → B, see Homology, Definition 12.11.1.

Proof. The notation signifies the following. If 0 → A
a−→ B

b−→ C → 0 is a short
exact sequence in A, then

δ = δA→B→C : G(C)→ G(A)[1]

is a morphism in D such that (G(A), G(B), G(C), a, b, δ) is a distinguished triangle,
see Definition 13.3.6. Then Hn(δ) : Hn(G(C)) → Hn(G(A)[1]) = Hn+1(G(A)) is
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clearly functorial in the short exact sequence. Finally, the long exact cohomology
sequence (13.3.5.1) combined with the vanishing of H−1(G(C)) gives a long exact
sequence

0→ H0(G(A))→ H0(G(B))→ H0(G(C))
H0(δ)−−−−→ H1(G(A))→ . . .

in B as desired. �

The proof of the following result uses TR4.

Proposition 13.4.21. Let D be a triangulated category. Any commutative diagram

X //

��

Y

��
X ′ // Y ′

can be extended to a diagram

X //

��

Y //

��

Z //

��

X[1]

��
X ′ //

��

Y ′ //

��

Z ′ //

��

X ′[1]

��
X ′′ //

��

Y ′′ //

��

Z ′′ //

��

X ′′[1]

��
X[1] // Y [1] // Z[1] // X[2]

where all the squares are commutative, except for the lower right square which is
anticommutative. Moreover, each of the rows and columns are distinguished trian-
gles. Finally, the morphisms on the bottom row (resp. right column) are obtained
from the morphisms of the top row (resp. left column) by applying [1].

Proof. During this proof we avoid writing the arrows in order to make the proof leg-
ible. Choose distinguished triangles (X,Y, Z), (X ′, Y ′, Z ′), (X,X ′, X ′′), (Y, Y ′, Y ′′),
and (X,Y ′, A). Note that the morphism X → Y ′ is both equal to the composition
X → Y → Y ′ and equal to the composition X → X ′ → Y ′. Hence, we can find
morphisms

(1) a : Z → A and b : A→ Y ′′, and
(2) a′ : X ′′ → A and b′ : A→ Z ′

as in TR4. Denote c : Y ′′ → Z[1] the composition Y ′′ → Y [1] → Z[1] and denote
c′ : Z ′ → X ′′[1] the composition Z ′ → X ′[1] → X ′′[1]. The conclusion of our
application TR4 are that

(1) (Z,A, Y ′′, a, b, c), (X ′′, A, Z ′, a′, b′, c′) are distinguished triangles,
(2) (X,Y, Z)→ (X,Y ′, A), (X,Y ′, A)→ (Y, Y ′, Y ′′), (X,X ′, X ′′)→ (X,Y ′, A),

(X,Y ′, A)→ (X ′, Y ′, Z ′) are morphisms of triangles.

http://stacks.math.columbia.edu/tag/05R0
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First using that (X,X ′, X ′′) → (X,Y ′, A) and (X,Y ′, A) → (Y, Y ′, Y ′′). are mor-
phisms of triangles we see the first of the commutative diagrams

X ′ //

��

Y ′

��
X ′′

b◦a′ //

��

Y ′′

��
X[1] // Y [1]

Y //

��

Z

b′◦a
��

// X[1]

��
Y ′ // Z ′ // X ′[1]

is commutative. The second is commutative too using that (X,Y, Z)→ (X,Y ′, A)
and (X,Y ′, A)→ (X ′, Y ′, Z ′) are morphisms of triangles. At this point we choose
a distinguished triangle (X ′′, Y ′′, Z ′′) starting with the map b ◦ a′ : X ′′ → Y ′′.

Next we apply TR4 one more time to the morphisms X ′′ → A → Y ′′ and the tri-
angles (X ′′, A, Z ′, a′, b′, c′), (X ′′, Y ′′, Z ′′), and (A, Y ′′, Z[1], b, c,−a[1]) to get mor-
phisms a′′ : Z ′ → Z ′′ and b′′ : Z ′′ → Z[1]. Then (Z ′, Z ′′, Z[1], a′′, b′′,−b′[1] ◦ a[1])
is a distinguished triangle, hence also (Z,Z ′, Z ′′,−b′ ◦ a, a′′,−b′′) and hence also
(Z,Z ′, Z ′′, b′◦a, a′′, b′′). Moreover, (X ′′, A, Z ′)→ (X ′′, Y ′′, Z ′′) and (X ′′, Y ′′, Z ′′)→
(A, Y ′′, Z[1], b, c,−a[1]) are morphisms of triangles. At this point we have defined
all the distinguished triangles and all the morphisms, and all that’s left is to verify
some commutativity relations.

To see that the middle square in the diagram commutes, note that the arrow
Y ′ → Z ′ factors as Y ′ → A → Z ′ because (X,Y ′, A) → (X ′, Y ′, Z ′) is a mor-
phism of triangles. Similarly, the morphism Y ′ → Y ′′ factors as Y ′ → A → Y ′′

because (X,Y ′, A) → (Y, Y ′, Y ′′) is a morphism of triangles. Hence the mid-
dle square commutes because the square with sides (A,Z ′, Z ′′, Y ′′) commutes as
(X ′′, A, Z ′)→ (X ′′, Y ′′, Z ′′) is a morphism of triangles (by TR4). The square with
sides (Y ′′, Z ′′, Y [1], Z[1]) commutes because (X ′′, Y ′′, Z ′′)→ (A, Y ′′, Z[1], b, c,−a[1])
is a morphism of triangles and c : Y ′′ → Z[1] is the composition Y ′′ → Y [1]→ Z[1].
The square with sides (Z ′, X ′[1], X ′′[1], Z ′′) is commutative because (X ′′, A, Z ′)→
(X ′′, Y ′′, Z ′′) is a morphism of triangles and c′ : Z ′ → X ′′[1] is the compo-
sition Z ′ → X ′[1] → X ′′[1]. Finally, we have to show that the square with
sides (Z ′′, X ′′[1], Z[1], X[2]) anticommutes. This holds because (X ′′, Y ′′, Z ′′) →
(A, Y ′′, Z[1], b, c,−a[1]) is a morphism of triangles and we’re done. �

13.5. Localization of triangulated categories

In order to construct the derived category starting from the homotopy category of
complexes, we will use a localization process.

Definition 13.5.1. Let D be a pre-triangulated category. We say a multiplicative
system S is compatible with the triangulated structure if the following two conditions
hold:

MS5 For s ∈ S we have s[n] ∈ S for all n ∈ Z.

http://stacks.math.columbia.edu/tag/05R2
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MS6 Given a solid commutative square

X //

s

��

Y //

s′

��

Z //

��

X[1]

s[1]

��
X ′ // Y ′ // Z ′ // X ′[1]

whose rows are distinguished triangles with s, s′ ∈ S there exists a mor-
phism s′′ : Z → Z ′ in S such that (s, s′, s′′) is a morphism of triangles.

It turns out that these axioms are not independent of the axioms defining multi-
plicative systems.

Lemma 13.5.2. Let D be a pre-triangulated category. Let S be a set of morphisms
of D and assume that axioms MS1, MS5, MS6 hold (see Categories, Definition
4.25.1 and Definition 13.5.1). Then MS2 holds.

Proof. Suppose that f : X → Y is a morphism of D and t : X → X ′ an element of
S. Choose a distinguished triangle (X,Y, Z, f, g, h). Next, choose a distinguished
triangle (X ′, Y ′, Z, f ′, g′, t[1] ◦ h) (here we use TR1 and TR2). By MS5, MS6 (and
TR2 to rotate) we can find the dotted arrow in the commutative diagram

X //

t

��

Y //

s′

��

Z //

1

��

X[1]

t[1]

��
X ′ // Y ′ // Z // X ′[1]

with moreover s′ ∈ S. This proves LMS2. The proof of RMS2 is dual. �

Lemma 13.5.3. Let F : D → D′ be an exact functor of pre-triangulated categories.
Let

S = {f ∈ Arrows(D) | F (f) is an isomorphism}
Then S is a saturated (see Categories, Definition 4.25.17) multiplicative system
compatible with the triangulated structure on D.

Proof. We have to prove axioms MS1 – MS6, see Categories, Definitions 4.25.1 and
4.25.17 and Definition 13.5.1. MS1, MS4, and MS5 are direct from the definitions.
MS6 follows from TR3 and Lemma 13.4.3. By Lemma 13.5.2 we conclude that
MS2 holds. To finish the proof we have to show that MS3 holds. To do this let
f, g : X → Y be morphisms of D, and let t : Z → X be an element of S such that
f ◦ t = g ◦ t. As D is additive this simply means that a ◦ t = 0 with a = f − g.
Choose a distinguished triangle (Z,X,Q, t, d, h) using TR1. Since a ◦ t = 0 we see
by Lemma 13.4.2 there exists a morphism i : Q → Y such that i ◦ d = a. Finally,
using TR1 again we can choose a triangle (Q,Y,W, i, j, k). Here is a picture

Z
t
// X

d
//

1

��

Q //

i

��

Z[1]

X
a
// Y

j

��
W

http://stacks.math.columbia.edu/tag/05R3
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OK, and now we apply the functor F to this diagram. Since t ∈ S we see that
F (Q) = 0, see Lemma 13.4.8. Hence F (j) is an isomorphism by the same lemma,
i.e., j ∈ S. Finally, j ◦ a = j ◦ i ◦ d = 0 as j ◦ i = 0. Thus j ◦ f = j ◦ g and we see
that LMS3 holds. The proof of RMS3 is dual. �

Lemma 13.5.4. Let H : D → A be a homological functor between a pre-triangulated
category and an abelian category. Let

S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}

Then S is a saturated (see Categories, Definition 4.25.17) multiplicative system
compatible with the triangulated structure on D.

Proof. We have to prove axioms MS1 – MS6, see Categories, Definitions 4.25.1 and
4.25.17 and Definition 13.5.1. MS1, MS4, and MS5 are direct from the definitions.
MS6 follows from TR3 and the long exact cohomology sequence (13.3.5.1). By
Lemma 13.5.2 we conclude that MS2 holds. To finish the proof we have to show
that MS3 holds. To do this let f, g : X → Y be morphisms of D, and let t : Z → X
be an element of S such that f ◦ t = g ◦ t. As D is additive this simply means that
a ◦ t = 0 with a = f − g. Choose a distinguished triangle (Z,X,Q, t, g, h) using
TR1 and TR2. Since a ◦ t = 0 we see by Lemma 13.4.2 there exists a morphism
i : Q → Y such that i ◦ g = a. Finally, using TR1 again we can choose a triangle
(Q,Y,W, i, j, k). Here is a picture

Z
t
// X

g
//

1

��

Q //

i

��

Z[1]

X
a
// Y

j

��
W

OK, and now we apply the functors Hi to this diagram. Since t ∈ S we see that
Hi(Q) = 0 by the long exact cohomology sequence (13.3.5.1). Hence Hi(j) is an
isomorphism for all i by the same argument, i.e., j ∈ S. Finally, j ◦a = j ◦ i ◦ g = 0
as j ◦ i = 0. Thus j ◦ f = j ◦ g and we see that LMS3 holds. The proof of RMS3 is
dual. �

Proposition 13.5.5. Let D be a pre-triangulated category. Let S be a multiplica-
tive system compatible with the triangulated structure. Then there exists a unique
structure of a pre-triangulated category on S−1D such that the localization functor
Q : D → S−1D is exact. Moreover, if D is a triangulated category, so is S−1D.

Proof. We have seen that S−1D is an additive category and that the localization
functor Q is additive in Homology, Lemma 12.8.2, It is clear that we may define
Q(X)[n] = Q(X[n]) since S is preserved under the shift functors [n] by MS5.
Finally, we say a triangle of S−1D is distinguished if it is isomorphic to the image
of a distinguished triangle under the localization functor Q.

Proof of TR1. The only thing to prove here is that if a : Q(X) → Q(Y ) is a
morphism of S−1D, then a fits into a distinguish triangle. Write a = Q(s)−1 ◦Q(f)
for some s : Y → Y ′ in S and f : X → Y ′. Choose a distinguished triangle

http://stacks.math.columbia.edu/tag/05R5
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(X,Y ′, Z, f, g, h) in D. Then we see that (Q(X), Q(Y ), Q(Z), a,Q(g) ◦Q(s), Q(h))
is a distinguished triangle of S−1D.

Proof of TR2. This is immediate from the definitions.

Proof of TR3. Note that the existence of the dotted arrow which is required to exist
may be proven after replacing the two triangles by isomorphic triangles. Hence we
may assume given distinguished triangles (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′)
of D and a commutative diagram

Q(X)
Q(f)

//

a

��

Q(Y )

b

��
Q(X ′)

Q(f ′) // Q(Y ′)

in S−1D. Now we apply Categories, Lemma 4.25.8 to find a morphism f ′′ : X ′′ →
Y ′′ in D and a commutative diagram

X

f

��

k
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y
l // Y ′′ Y ′

too

in D with s, t ∈ S and a = s−1k, b = t−1l. At this point we can use TR3 for D and
MS6 to find a commutative diagram

X //

k

��

Y //

l

��

Z //

m

��

X[1]

g[1]

��
X ′′ // Y ′′ // Z ′′ // X ′′[1]

X ′ //

s

OO

Y ′ //

t

OO

Z ′ //

r

OO

X ′[1]

s[1]

OO

with r ∈ S. It follows that setting c = Q(r)−1Q(m) we obtain the desired morphism
of triangles

(Q(X), Q(Y ), Q(Z), Q(f), Q(g), Q(h))

(a,b,c)

��
(Q(X ′), Q(Y ′), Q(Z ′), Q(f ′), Q(g′), Q(h′))

This proves the first statement of the lemma. If D is also a triangulated category,
then we still have to prove TR4 in order to show that S−1D is triangulated as
well. To do this we reduce by Lemma 13.4.13 to the following statement: Given
composable morphisms a : Q(X) → Q(Y ) and b : Q(Y ) → Q(Z) we have to
produce an octahedron after possibly replacing Q(X), Q(Y ), Q(Z) by isomorphic
objects. To do this we may first replace Y by an object such that a = Q(f)
for some morphism f : X → Y in D. (More precisely, write a = s−1f with
s : Y → Y ′ in S and f : X → Y ′. Then replace Y by Y ′.) After this we similarly
replace Z by an object such that b = Q(g) for some morphism g : Y → Z. Now
we can find distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g ◦ f, p2, d2), and
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(Y, Z,Q3, g, p3, d3) in D (by TR1), and morphisms a : Q1 → Q2 and b : Q2 → Q3

as in TR4. Then it is immediately verified that applying the functor Q to all these
data gives a corresponding structure in S−1D �

The universal property of the localization of a triangulated category is as follows
(we formulate this for pre-triangulated categories, hence it holds a fortiori for tri-
angulated categories).

Lemma 13.5.6. Let D be a pre-triangulated category. Let S be a multiplicative
system compatible with the triangulated category. Let Q : D → S−1D be the local-
ization functor, see Proposition 13.5.5.

(1) If H : D → A is a homological functor into an abelian category A such
that H(s) is an isomorphism for all s ∈ S, then the unique factorization
H ′ : S−1D → A such that H = H ′ ◦Q (see Categories, Lemma 4.25.6) is
a homological functor too.

(2) If F : D → D′ is an exact functor into a pre-triangulated category D′ such
that F (s) is an isomorphism for all s ∈ S, then the unique factorization
F ′ : S−1D → D′ such that F = F ′ ◦Q (see Categories, Lemma 4.25.6) is
an exact functor too.

Proof. This lemma proves itself. Details omitted. �

The following lemma describes the kernel (see Definition 13.6.5) of the localization
functor.

Lemma 13.5.7. Let D be a pre-triangulated category. Let S be a multiplicative
system compatible with the triangulated structure. Let Z be an object of D. The
following are equivalent

(1) Q(Z) = 0 in S−1D,
(2) there exists Z ′ ∈ Ob(D) such that 0 : Z → Z ′ is an element of S,
(3) there exists Z ′ ∈ Ob(D) such that 0 : Z ′ → Z is an element of S, and
(4) there exists an object Z ′ and a distinguished triangle (X,Y, Z⊕Z ′, f, g, h)

such that f ∈ S.

If S is saturated, then these are also equivalent to

(4) the morphism 0→ Z is an element of S,
(5) the morphism Z → 0 is an element of S,
(6) there exists a distinguished triangle (X,Y, Z, f, g, h) such that f ∈ S.

Proof. The equivalence of (1), (2), and (3) is Homology, Lemma 12.8.3. If (2)
holds, then (Z ′[−1], Z ′[−1] ⊕ Z,Z, (1, 0), (0, 1), 0) is a distinguised triangle (see
Lemma 13.4.10) with “0 ∈ S”. By rotating we conclude that (4) holds. If
(X,Y, Z⊕Z ′, f, g, h) is a distinguished triangle with f ∈ S then Q(f) is an isomor-
phism hence Q(Z ⊕ Z ′) = 0 hence Q(Z) = 0. Thus (1) – (4) are all equivalent.

Next, assume that S is saturated. Note that each of (4), (5), (6) implies one of
the equivalent conditions (1) – (4). Suppose that Q(Z) = 0. Then 0 → Z is a
morphism of D which becomes an isomorphism in S−1D. According to Categories,
Lemma 4.25.18 the fact that S is saturated implies that 0→ Z is in S. Hence (1)⇒
(4). Dually (1) ⇒ (5). Finally, if 0→ Z is in S, then the triangle (0, Z, Z, 0, idZ , 0)
is distinguished by TR1 and TR2 and is a triangle as in (4). �

http://stacks.math.columbia.edu/tag/05R7
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Lemma 13.5.8. Let D be a triangulated category. Let S be a saturated mul-
tiplicative system in D that is compatible with the triangulated structure. Let
(X,Y, Z, f, g, h) be a distinguished triangle in D. Consider the category of mor-
phisms of triangles

I = {(s, s′, s′′) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′) | s, s′, s′′ ∈ S}

Then I is a filtered category and the functors I → X/S, I → Y/S, and I → Z/S
are cofinal.

Proof. We strongly suggest the reader skip the proof of this lemma and instead
works it out on a napkin.

The first remark is that using rotation of distinguished triangles (TR2) gives an
equivalence of categories between I and the corresponding category for the distin-
guished triangle (Y,Z,X[1], g, h,−f [1]). Using this we see for example that if we
prove the functor I → X/S is cofinal, then the same thing is true for the functors
I → Y/S and I → Z/S.

Note that if s : X → X ′ is a morphism of S, then using MS2 we can find s′ : Y → Y ′

and f ′ : X ′ → Y ′ such that f ′ ◦ s = s′ ◦ f , whereupon we can use MS6 to complete
this into an object of I. Hence the functor I → X/S is surjective on objects. Using
rotation as above this implies the same thing is true for the functors I → Y/S and
I → Z/S.

Suppose given objects s1 : X → X1 and s2 : X → X2 in X/S and a morphism a :
X1 → X2 in X/S. Since S is saturated, we see that a ∈ S, see Categories, Lemma
4.25.18. By the argument of the previous paragraph we can complete s1 : X → X1

to an object (s1, s
′
1, s
′′
1) : (X,Y, Z, f, g, h) → (X1, Y1, Z1, f1, g1, h1) in I. Then we

can repeat and find (a, b, c) : (X1, Y1, Z1, f1, g1, h1) → (X2, Y2, Z2, f2, g2, h2) with
a, b, c ∈ S completing the given a : X1 → X2. But then (a, b, c) is a morphism in I.
In this way we conclude that the fuctor I → X/S is also surjective on arrows. Using
rotation as above, this implies the same thing is true for the functors I → Y/S and
I → Z/S.

The category I is nonempty as the identity provides an object. This proves the
condition (1) of the definition of a filtered category, see Categories, Definition 4.19.1.

We check condition (2) of Categories, Definition 4.19.1 for the category I. Suppose
given objects (s1, s

′
1, s
′′
1) : (X,Y, Z, f, g, h)→ (X1, Y1, Z1, f1, g1, h1) and (s2, s

′
2, s
′′
2) :

(X,Y, Z, f, g, h)→ (X2, Y2, Z2, f2, g2, h2) in I. We want to find an object of I which
is the target of an arrow from both (X1, Y1, Z1, f1, g1, h1) and (X2, Y2, Z2, f2, g2, h2).
By Categories, Remark 4.25.5 the categories X/S, Y/S, Z/S are filtered. Thus
we can find X → X3 in X/S and morphisms s : X2 → X3 and a : X1 →
X3. By the above we can find a morphism (s, s′, s′′) : (X2, Y2, Z2, f2, g2, h2) →
(X3, Y3, Z3, f3, g3, h3) with s′, s′′ ∈ S. After replacing (X2, Y2, Z2) by (X3, Y3, Z3)
we may assume that there exists a morphism a : X1 → X2 in X/S. Repeating the
argument for Y and Z (by rotating as above) we may assume there is a morphism
a : X1 → X2 in X/S, b : Y1 → Y2 in Y/S, and c : Z1 → Z2 in Z/S. However,
these morphisms do not necessarily give rise to a morphism of distinguished tri-
angles. On the other hand, the necessary diagrams do commute in S−1D. Hence
we see (for example) that there exists a morphism s′2 : Y2 → Y3 in S such that
s′2 ◦f2 ◦a = s′2 ◦ b◦f1. Another replacement of (X2, Y2, Z2) as above then gets us to

http://stacks.math.columbia.edu/tag/05R9
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the situation where f2 ◦ a = b ◦ f1. Rotating and applying the same argument two
more times we see that we may assume (a, b, c) is a morphism of triangles. This
proves condition (2).

Next we check condition (3) of Categories, Definition 4.19.1. Suppose (s1, s
′
1, s
′′
1) :

(X,Y, Z) → (X1, Y1, Z1) and (s2, s
′
2, s
′′
2) : (X,Y, Z) → (X2, Y2, Z2) are objects of

I, and suppose (a, b, c), (a′, b′, c′) are two morphisms between them. Since a ◦ s1 =
a′ ◦ s1 there exists a morphism s3 : X2 → X3 such that s3 ◦ a = s3 ◦ a′. Using the
surjectivity statement we can complete this to a morphism of triangles (s3, s

′
3, s
′′
3) :

(X2, Y2, Z2) → (X3, Y3, Z3) with s3, s
′
3, s
′′
3 ∈ S. Thus (s3 ◦ s2, s

′
3 ◦ s′2, s′′3 ◦ s′′2) :

(X,Y, Z) → (X3, Y3, Z3) is also an object of I and after composing the maps
(a, b, c), (a′, b′, c′) with (s3, s

′
3, s
′′
3) we obtain a = a′. By rotating we may do the

same to get b = b′ and c = c′.

Finally, we check that I → X/S is cofinal, see Categories, Definition 4.17.1.
The first condition is true as the functor is surjective. Suppose that we have
an object s : X → X ′ in X/S and two objects (s1, s

′
1, s
′′
1) : (X,Y, Z, f, g, h) →

(X1, Y1, Z1, f1, g1, h1) and (s2, s
′
2, s
′′
2) : (X,Y, Z, f, g, h) → (X2, Y2, Z2, f2, g2, h2) in

I as well as morphisms t1 : X ′ → X1 and t2 : X ′ → X2 in X/S. By property
(2) of I proved above we can find morphisms (s3, s

′
3, s
′′
3) : (X1, Y1, Z1, f1, g1, h1)→

(X3, Y3, Z3, f3, g3, h3) and (s4, s
′
4, s
′′
4) : (X2, Y2, Z2, f2, g2, h2)→ (X3, Y3, Z3, f3, g3, h3)

in I. We would be done if the compositions X ′ → X1 → X3 and X ′ → X1 → X3

where equal (see displayed equation in Categories, Definition 4.17.1). If not, then,
because X/S is filtered, we can choose a morphism X3 → X4 in S such that the
compositions X ′ → X1 → X3 → X4 and X ′ → X1 → X3 → X4 are equal. Then
we finally complete X3 → X4 to a morphism (X3, Y3, Z3) → (X4, Y4, Z4) in I and
compose with that morphism to see that the result is true. �

13.6. Quotients of triangulated categories

Given a triangulated category and a triangulated subcategory we can construct
another triangulated category by taking the “quotient”. The construction uses
a localization. This is similar to the quotient of an abelian category by a Serre
subcategory, see Homology, Section 12.9. Before we do the actual construction we
briefly discuss kernels of exact functors.

Definition 13.6.1. Let D be a pre-triangulated category. We say a full pre-
triangulated subcategory D′ of D is saturated if whenever X ⊕ Y is isomorphic to
an object of D′ then both X and Y are isomorphic to objects of D′.

A saturated triangulated subcategory is sometimes called a thick triangulated sub-
category. In some references, this is only used for strictly full triangulated sub-
categories (and sometimes the definition is written such that it implies strictness).
There is another notion, that of an épaisse triangulated subcategory. The definition
is that given a commutative diagram

S

��
X

??

// Y // T // X[1]

where the second line is a distinguished triangle and S and T isomorphic to objects
of D′, then also X and Y are isomorphic to objects of D. It turns out that this

http://stacks.math.columbia.edu/tag/05RB
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is equivalent to being saturated (this is elementary and can be found in [Ric89a])
and the notion of a saturated category is easier to work with.

Lemma 13.6.2. Let F : D → D′ be an exact functor of pre-triangulated categories.
Let D′′ be the full subcategory of D with objects

Ob(D′′) = {X ∈ Ob(D) | F (X) = 0}

Then D′′ is a strictly full saturated pre-triangulated subcategory of D. If D is a
triangulated category, then D′′ is a triangulated subcategory.

Proof. It is clear that D′′ is preserved under [1] and [−1]. If (X,Y, Z, f, g, h)
is a distinguished triangle of D and F (X) = F (Y ) = 0, then also F (Z) = 0
as (F (X), F (Y ), F (Z), F (f), F (g), F (h)) is distinguished. Hence we may apply
Lemma 13.4.14 to see that D′′ is a pre-triangulated subcategory (respectively a
triangulated subcategory if D is a triangulated category). The final assertion of
being saturated follows from F (X)⊕ F (Y ) = 0⇒ F (X) = F (Y ) = 0. �

Lemma 13.6.3. Let H : D → A be a homological functor of a pre-triangulated
category into an abelian category. Let D′ be the full subcategory of D with objects

Ob(D′) = {X ∈ Ob(D) | H(X[n]) = 0 for all n ∈ Z}

Then D′ is a strictly full saturated pre-triangulated subcategory of D. If D is a
triangulated category, then D′ is a triangulated subcategory.

Proof. It is clear that D′ is preserved under [1] and [−1]. If (X,Y, Z, f, g, h) is
a distinguished triangle of D and H(X[n]) = H(Y [n]) = 0 for all n, then also
H(Z[n]) = 0 for all n by the long exact sequence (13.3.5.1). Hence we may apply
Lemma 13.4.14 to see that D′ is a pre-triangulated subcategory (respectively a
triangulated subcategory if D is a triangulated category). The assertion of being
saturated follows from

H((X ⊕ Y )[n]) = 0⇒ H(X[n]⊕ Y [n]) = 0

⇒ H(X[n])⊕H(Y [n]) = 0

⇒ H(X[n]) = H(Y [n]) = 0

for all n ∈ Z. �

Lemma 13.6.4. Let H : D → A be a homological functor of a pre-triangulated
category into an abelian category. Let D+

H ,D
−
H ,DbH be the full subcategory of D

with objects

Ob(D+
H) = {X ∈ Ob(D) | H(X[n]) = 0 for all n� 0}

Ob(D−H) = {X ∈ Ob(D) | H(X[n]) = 0 for all n� 0}
Ob(DbH) = {X ∈ Ob(D) | H(X[n]) = 0 for all |n| � 0}

Each of these is a strictly full saturated pre-triangulated subcategory of D. If D is
a triangulated category, then each is a triangulated subcategory.

Proof. Let us prove this for D+
H . It is clear that it is preserved under [1] and [−1].

If (X,Y, Z, f, g, h) is a distinguished triangle of D and H(X[n]) = H(Y [n]) = 0 for
all n� 0, then also H(Z[n]) = 0 for all n� 0 by the long exact sequence (13.3.5.1).
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Hence we may apply Lemma 13.4.14 to see that D+
H is a pre-triangulated subcate-

gory (respectively a triangulated subcategory if D is a triangulated category). The
assertion of being saturated follows from

H((X ⊕ Y )[n]) = 0⇒ H(X[n]⊕ Y [n]) = 0

⇒ H(X[n])⊕H(Y [n]) = 0

⇒ H(X[n]) = H(Y [n]) = 0

for all n ∈ Z. �

Definition 13.6.5. Let D be a (pre-)triangulated category.

(1) Let F : D → D′ be an exact functor. The kernel of F is the strictly full
saturated (pre-)triangulated subcategory described in Lemma 13.6.2.

(2) Let H : D → A be a homological functor. The kernel of H is the strictly
full saturated (pre-)triangulated subcategory described in Lemma 13.6.3.

These are sometimes denoted Ker(F ) or Ker(H).

The proof of the following lemma uses TR4.

Lemma 13.6.6. Let D be a triangulated category. Let D′ ⊂ D be a full triangulated
subcategory. Set

(13.6.6.1) S =

{
f ∈ Arrows(D) such that there exists a distinguished triangle

(X,Y, Z, f, g, h) of D with Z isomorphic to an object of D′
}

Then S is a multiplicative system compatible with the triangulated structure on D.
In this situation the following are equivalent

(1) S is a saturated multiplicative system,
(2) D′ is a saturated triangulated subcategory.

Proof. To prove the first assertion we have to prove that MS1, MS2, MS3 and
MS5, MS6 hold.

Proof of MS1. It is clear that identities are in S because (X,X, 0, 1, 0, 0) is distin-
guished for every object X of D and because 0 is an object of D′. Let f : X → Y
and g : Y → Z be composable morphisms contained in S. Choose distinguished
triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g ◦ f, p2, d2), and (Y, Z,Q3, g, p3, d3). By
assumption we know that Q1 and Q3 are isomorphic to objects of D′. By TR4 we
know there exists a distinguished triangle (Q1, Q2, Q3, a, b, c). Since D′ is a trian-
gulated subcategory we conclude that Q2 is isomorphic to an object of D′. Hence
g ◦ f ∈ S.

Proof of MS3. Let a : X → Y be a morphism and let t : Z → X be an element
of S such that a ◦ t = 0. To prove LMS3 it suffices to find an s ∈ S such that
s◦a = 0, compare with the proof of Lemma 13.5.3. Choose a distinguished triangle
(Z,X,Q, t, g, h) using TR1 and TR2. Since a ◦ t = 0 we see by Lemma 13.4.2 there
exists a morphism i : Q→ Y such that i ◦ g = a. Finally, using TR1 again we can
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choose a triangle (Q,Y,W, i, s, k). Here is a picture

Z
t
// X

g
//

1

��

Q //

i

��

Z[1]

X
a
// Y

s

��
W

Since t ∈ S we see that Q is isomorphic to an object of D′. Hence s ∈ S. Finally,
s ◦ a = s ◦ i ◦ g = 0 as s ◦ i = 0 by Lemma 13.4.1. We conclude that LMS3 holds.
The proof of RMS3 is dual.

Proof of MS5. Follows as distinguished triangles and D′ are stable under transla-
tions

Proof of MS6. Suppose given a commutative diagram

X //

s

��

Y

s′

��
X ′ // Y ′

with s, s′ ∈ S. By Proposition 13.4.21 we can extend this to a nine square diagram.
As s, s′ are elements of S we see that X ′′, Y ′′ are isomorphic to objects of D′. Since
D′ is a full triangulated subcategory we see that Z ′′ is also isomorphic to an object
of D′. Whence the morphism Z → Z ′ is an element of S. This proves MS6.

MS2 is a formal consequence of MS1, MS5, and MS6, see Lemma 13.5.2. This
finishes the proof of the first assertion of the lemma.

Let’s assume that S is saturated. (In the following we will use rotation of distin-
guished triangles without further mention.) LetX⊕Y be an object isomorphic to an
object of D′. Consider the morphism f : 0→ X. The composition 0→ X → X⊕Y
is an element of S as (0, X ⊕ Y,X ⊕ Y, 0, 1, 0) is a distinguished triangle. The com-
position Y [−1] → 0 → X is an element of S as (X,X ⊕ Y, Y, (1, 0), (0, 1), 0) is a
distinguished triangle, see Lemma 13.4.10. Hence 0→ X is an element of S (as S
is saturated). Thus X is isomorphic to an object of D′ as desired.

Finally, assume D′ is a saturated triangulated subcategory. Let

W
h−→ X

g−→ Y
f−→ Z

be composable morphisms of D such that fg, gh ∈ S. We will build up a picture
of objects as in the diagram below.

Q12

+1

}}

Q23

+1

}}

+1oo

Q1

+1

~~

Q2

+1

}}

+1oo

aa

Q3

+1

}}

+1oo

aa

W // X

aa

// Y

aa

// Z

``
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First choose distinguished triangles (W,X,Q1), (X,Y,Q2), (Y,Z,Q3) (W,Y,Q12),
and (X,Z,Q23). Denote s : Q2 → Q1[1] the composition Q2 → X[1] → Q1[1].
Denote t : Q3 → Q2[1] the composition Q3 → Y [1] → Q2[1]. By TR4 applied to
the composition W → X → Y and the composition X → Y → Z there exist a
distinguished triangles (Q1, Q12, Q2) and (Q2, Q23, Q3) which use the morphisms s
and t. The objects Q12 and Q23 are isomorphic to objects of D′ as W → Y and
X → Z are assumed in S. Hence also s[1]t is an element of S as S is closed under
compositions and shifts. Note that s[1]t = 0 as Y [1] → Q2[1] → X[2] is zero, see
Lemma 13.4.1. Hence Q3 ⊕ Q1[2] is isomorphic to an object of D′, see Lemma
13.4.10. By assumption on D′ we conclude that Q3, Q1 are isomorphic to objects
of D′. Looking at the distinguished triangle (Q1, Q12, Q2) we conclude that Q2 is
also isomorphic to an object of D′. Looking at the distinguished triangle (X,Y,Q2)
we finally conclude that g ∈ S. (It is also follows that h, f ∈ S, but we don’t need
this.) �

Definition 13.6.7. Let D be a triangulated category. Let B be a full triangulated
subcategory. We define the quotient category D/B by the formula D/B = S−1D,
where S is the multiplicative system of D associated to B via Lemma 13.6.6. The
localization functor Q : D → D/B is called the quotient functor in this case.

Note that the quotient functor Q : D → D/B is an exact functor of triangulated
categories, see Proposition 13.5.5. The universal property of this construction is
the following.

Lemma 13.6.8. Let D be a triangulated category. Let B be a full triangulated
subcategory of D. Let Q : D → D/B be the quotient functor.

(1) If H : D → A is a homological functor into an abelian category A such
that B ⊂ Ker(H) then there exists a unique factorization H ′ : D/B → A
such that H = H ′ ◦Q and H ′ is a homological functor too.

(2) If F : D → D′ is an exact functor into a pre-triangulated category D′ such
that B ⊂ Ker(F ) then there exists a unique factorization F ′ : D/B → D′
such that F = F ′ ◦Q and F ′ is an exact functor too.

Proof. This lemma follows from Lemma 13.5.6. Namely, if f : X → Y is a
morphism of D such that for some distinguished triangle (X,Y, Z, f, g, h) the object
Z is isomorphic to an object of B, then H(f), resp. F (f) is an isomorphism under
the assumptions of (1), resp. (2). Details omitted. �

The kernel of the quotient functor can be described as follows.

Lemma 13.6.9. Let D be a triangulated category. Let B be a full triangulated
subcategory. The kernel of the quotient functor Q : D → D/B is the strictly full
subcategory of D whose objects are

Ob(Ker(Q)) =

{
Z ∈ Ob(D) such that there exists a Z ′ ∈ Ob(D)
such that Z ⊕ Z ′ is isomorphic to an object of B

}
In other words it is the smallest strictly full saturated triangulated subcategory of D
containing B.

Proof. First note that the kernel is automatically a strictly full triangulated sub-
category containing summands of any of its objects, see Lemma 13.6.2. The de-
scription of its objects follows from the definitions and Lemma 13.5.7 part (4). �
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Let D be a triangulated category. At this point we have constructions which induce
order preserving maps between

(1) the partially ordered set of multiplicative systems S in D compatible with
the triangulated structure, and

(2) the partially ordered set of full triangulated subcategories B ⊂ D.

Namely, the constructions are given by S 7→ B(S) = Ker(Q : D → S−1D) and
B 7→ S(B) where S(B) is the multiplicative set of (13.6.6.1), i.e.,

S(B) =

{
f ∈ Arrows(D) such that there exists a distinguished triangle

(X,Y, Z, f, g, h) of D with Z isomorphic to an object of B

}
Note that it is not the case that these operations are mutually inverse.

Lemma 13.6.10. Let D be a triangulated category. The operations described above
have the following properties

(1) S(B(S)) is the “saturation” of S, i.e., it is the smallest saturated multi-
plicative system in D containing S, and

(2) B(S(B)) is the “saturation” of B, i.e., it is the smallest strictly full satu-
rated triangulated subcategory of D containing B.

In particular, the constructions define mutually inverse maps between the (partially
ordered) set of saturated multiplicative systems in D compatible with the triangulated
structure on D and the (partially ordered) set of strictly full saturated triangulated
subcategories of D.

Proof. First, let’s start with a full triangulated subcategory B. Then B(S(B)) =
Ker(Q : D → D/B) and hence (2) is the content of Lemma 13.6.9.

Next, suppose that S is multiplicative system in D compatible with the triangula-
tion on D. Then B(S) = Ker(Q : D → S−1D). Hence (using Lemma 13.4.8 in the
localized category)

S(B(S)) =

{
f ∈ Arrows(D) such that there exists a distinguished

triangle (X,Y, Z, f, g, h) of D with Q(Z) = 0

}
= {f ∈ Arrows(D) | Q(f) is an isomorphism}

= Ŝ = S′

in the notation of Categories, Lemma 4.25.18. The final statement of that lemma
finishes the proof. �

Lemma 13.6.11. Let H : D → A be a homological functor from a triangulated
category D to an abelian category A, see Definition 13.3.5. The subcategory Ker(H)
of D is a strictly full saturated triangulated subcategory of D whose corresponding
saturated multiplicative system (see Lemma 13.6.10) is the set

S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}.
The functor H factors through the quotient functor Q : D → D/Ker(H).

Proof. The category Ker(H) is a strictly full saturated triangulated subcategory
of D by Lemma 13.6.3. The set S is a saturated multiplicative system compatible
with the triangulated structure by Lemma 13.5.4. Recall that the multiplicative
system corresponding to Ker(H) is the set{

f ∈ Arrows(D) such that there exists a distinguished triangle
(X,Y, Z, f, g, h) with Hi(Z) = 0 for all i

}
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By the long exact cohomology sequence, see (13.3.5.1), it is clear that f is an
element of this set if and only if f is an element of S. Finally, the factorization of
H through Q is a consequence of Lemma 13.6.8. �

It is clear that in the lemma above the factorization of H through D/Ker(H) is the
universal factorization. Namely, if F : D → D′ is an exact functor of triangulated
categories and if there exists a homological functor H ′ : D′ → A such that H ∼=
H ′ ◦ F , then F factors through the quotient functor Q : D → D/Ker(H).

13.7. Adjoints for exact functors

Results on adjoint functors between triangulated categories.

Lemma 13.7.1. Let F : D → D′ be an exact functor between triangulated cate-
gories. If F has a right adjoint, then it is an exact functor.

Proof. Let G be a right adjoint. Let X be an object of D and A an object of D′.
Since F is an exact functor we see that

MorD(X,G(A[1]) = MorD′(F (X), A[1])

= MorD′(F (X)[−1], A)

= MorD′(F (X[−1]), A)

= MorD(X[−1], G(A))

= MorD(X,G(A)[1])

By Yoneda’s lemma (Categories, Lemma 4.3.5) we obtain a canonical isomorphism
G(A)[1] = G(A[1]). Let A → B → C → A[1] be a distinguished triangle in D′.
Choose a distinguished triangle

G(A)→ G(B)→ X → G(A)[1]

in D. Then F (G(A)) → F (G(B)) → F (X) → F (G(A))[1] is a distinguished
triangle in D′. By TR3 we can choose a morphism of distinguished triangles

F (G(A)) //

��

F (G(B)) //

��

F (X) //

��

F (G(A))[1]

��
A // B // C // A[1]

Since G is the adjoint the new morphism determines a morphism X → G(C) such
that the diagram

G(A) //

��

G(B) //

��

X //

��

G(A)[1]

��
G(A) // G(B) // G(C) // G(A)[1]

commutes. Applying the cohomological functor HomD′(W,−) for an object W of
D′ we deduce from the 5 lemma that

HomD′(W,X)→ HomD′(W,G(C))

is a bijection and using the Yoneda lemma once more we conclude that X → G(C)
is an isomorphism. Hence we conclude that G(A) → G(B) → G(C) → G(A)[1] is
a distinguished triangle which is what we wanted to show. �

http://stacks.math.columbia.edu/tag/0A8D
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Lemma 13.7.2. Let D, D′ be triangulated categories. Let F : D → D′ and G :
D′ → D be functors. Assume that

(1) F and G are exact functors,
(2) F is fully faithful,
(3) G is a right adjoint to F , and
(4) the kernel of G is zero.

Then F is an equivalence of categories.

Proof. Since F is fully faithful the adjunction map id→ G ◦ F is an isomorphism
(Categories, Lemma 4.24.3). Let X be an object of D′. Choose a distinguished
triangle

F (G(X))→ X → Y → F (G(X))[1]

in D′. Applying G and using that G(F (G(X))) = G(X) we find a distinguished
triangle

G(X)→ G(X)→ G(Y )→ G(X)[1]

Hence G(Y ) = 0. Thus Y = 0. Thus F (G(X))→ X is an isomorphism. �

13.8. The homotopy category

Let A be an additive category. The homotopy category K(A) of A is the category of
complexes of A with morphisms given by morphisms of complexes up to homotopy.
Here is the formal definition.

Definition 13.8.1. Let A be an additive category.

(1) We set Comp(A) = CoCh(A) be the category of (cochain) complexes.
(2) A complex K• is said to be bounded below if Kn = 0 for all n� 0.
(3) A complex K• is said to be bounded above if Kn = 0 for all n� 0.
(4) A complex K• is said to be bounded if Kn = 0 for all |n| � 0.

(5) We let Comp+(A), Comp−(A), resp. Compb(A) be the full subcategory
of Comp(A) whose objects are the complexes which are bounded below,
bounded above, resp. bounded.

(6) We let K(A) be the category with the same objects as Comp(A) but as
morphisms homotopy classes of maps of complexes (see Homology, Lemma
12.12.7).

(7) We let K+(A), K−(A), resp. Kb(A) be the full subcategory of K(A)
whose objects are bounded below, bounded above, resp. bounded com-
plexes of A.

It will turn out that the categories K(A), K+(A), K−(A), and Kb(A) are trian-
gulated categories. To prove this we first develop some machinery related to cones
and split exact sequences.

13.9. Cones and termwise split sequences

Let A be an additive category, and let K(A) denote the category of complexes of
A with morphisms given by morphisms of complexes up to homotopy. Note that
the shift functors [n] on complexes, see Homology, Definition 12.14.7, give rise to
functors [n] : K(A)→ K(A) such that [n] ◦ [m] = [n+m] and [0] = id.
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Definition 13.9.1. LetA be an additive category. Let f : K• → L• be a morphism
of complexes of A. The cone of f is the complex C(f)• given by C(f)n = Ln⊕Kn+1

and differential

dnC(f) =

(
dnL fn+1

0 −dn+1
K

)
It comes equipped with canonical morphisms of complexes i : L• → C(f)• and
p : C(f)• → K•[1] induced by the obvious maps Ln → C(f)n → Kn+1.

In other words (K,L,C(f), f, i, p) forms a triangle:

K• → L• → C(f)• → K•[1]

The formation of this triangle is functorial in the following sense.

Lemma 13.9.2. Suppose that

K•1 f1

//

a

��

L•1

b

��
K•2

f2 // L•2

is a diagram of morphisms of complexes which is commutative up to homotopy.
Then there exists a morphism c : C(f1)• → C(f2)• which gives rise to a mor-
phism of triangles (a, b, c) : (K•1 , L

•
1, C(f1)•, f1, i1, p1)→ (K•1 , L

•
1, C(f1)•, f2, i2, p2)

of K(A).

Proof. Let hn : Kn
1 → Ln−1

2 be a family of morphisms such that b ◦ f1 − f2 ◦ a =
d ◦ h+ h ◦ d. Define cn by the matrix

cn =

(
bn hn+1

0 an+1

)
: Ln1 ⊕Kn+1

1 → Ln2 ⊕Kn+1
2

A matrix computation show that c is a morphism of complexes. It is trivial that
c ◦ i1 = i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. �

Note that the morphism c : C(f1)• → C(f2)• constructed in the proof of Lemma
13.9.2 in general depends on the chosen homotopy h between f2 ◦ a and b ◦ f1.

Lemma 13.9.3. Suppose that f : K• → L• and g : L• → M• are morphisms of
complexes such that g ◦ f is homotopic to zero. Then g factors through a morphism
C(f)• →M• of K(A).

Proof. The assumptions say that the diagram

K•
f
//

��

L•

g

��
0 // M•

commutes up to homotopy. Since the cone on 0 → M• is M• the map C(f)• →
C(0→M•) = M• of Lemma 13.9.2 is the desired map. �

Note that the morphism C(f)• →M• constructed in the proof of Lemma 13.9.3 in
general depends on the chosen homotopy.
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Definition 13.9.4. Let A be an additive category. A termwise split injection
α : A• → B• is a morphism of complexes such that each An → Bn is isomorphic
to the inclusion of a direct summand. A termwise split surjection β : B• → C• is
a morphism of complexes such that each Bn → Cn is isomorphic to the projection
onto a direct summand.

Lemma 13.9.5. Let A be an additive category. Let

A•
f
//

a

��

B•

b
��

C•
g // D•

be a diagram of morphisms of complexes commuting up to homotopy. If f is a split
injection, then b is homotopic to a morphism which makes the diagram commute. If
g is a split surjection, then a is homotopic to a morphism which makes the diagram
commute.

Proof. Let hn : An → Dn−1 be a collection of morphisms such that bf − ga =
dh + hd. Suppose that πn : Bn → An are morphisms splitting the morphisms fn.
Take b′ = b − dhπ − hπd. Suppose sn : Dn → Cn are morphisms splitting the
morphisms gn : Cn → Dn. Take a′ = a+ dsh+ shd. Computations omitted. �

The following lemma can be used to replace a morphism of complexes by a mor-
phism where in each degree the map is the injection of a direct summand.

Lemma 13.9.6. Let A be an additive category. Let α : K• → L• be a morphism
of complexes of A. There exists a factorization

K•
α̃ //

α

66L̃•
π // L•

such that

(1) α̃ is a termwise split injection (see Definition 13.9.4),

(2) there is a map of complexes s : L• → L̃• such that π ◦ s = idL• and such
that s ◦ π is homotopic to idL̃• .

Moreover, if both K• and L• are in K+(A), K−(A), or Kb(A), then so is L̃•.

Proof. We set

L̃n = Ln ⊕Kn ⊕Kn+1

and we define

dn
L̃

=

dnL 0 0
0 dnK idKn+1

0 0 −dn+1
K


In other words, L̃• = L• ⊕ C(1K•). Moreover, we set

α̃ =

 α
idKn

0


which is clearly a split injection. It is also clear that it defines a morphism of
complexes. We define

π =
(
idLn 0 0

)

http://stacks.math.columbia.edu/tag/014G
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so that clearly π ◦ α̃ = α. We set

s =

idLn

0
0


so that π ◦ s = idL• . Finally, let hn : L̃n → L̃n−1 be the map which maps the
summand Kn of L̃n via the identity morphism to the summand Kn of L̃n−1. Then
it is a trivial matter (see computations in remark below) to prove that

idL̃• − s ◦ π = d ◦ h+ h ◦ d

which finishes the proof of the lemma. �

Remark 13.9.7. To see the last displayed equality in the proof above we can argue
with elements as follows. We have sπ(l, k, k+) = (l, 0, 0). Hence the morphism of the
left hand side maps (l, k, k+) to (0, k, k+). On the other hand h(l, k, k+) = (0, 0, k)
and d(l, k, k+) = (dl, dk + k+,−dk+). Hence (dh + hd)(l, k, k+) = d(0, 0, k) +
h(dl, dk + k+,−dk+) = (0, k,−dk) + (0, 0, dk + k+) = (0, k, k+) as desired.

Lemma 13.9.8. Let A be an additive category. Let α : K• → L• be a morphism
of complexes of A. There exists a factorization

K•
i //

α

66K̃•
α̃ // L•

such that

(1) α̃ is a termwise split surjection (see Definition 13.9.4),

(2) there is a map of complexes s : K̃• → K• such that s ◦ i = idK• and such
that i ◦ s is homotopic to idK̃• .

Moreover, if both K• and L• are in K+(A), K−(A), or Kb(A), then so is K̃•.

Proof. Dual to Lemma 13.9.6. Take

K̃n = Kn ⊕ Ln−1 ⊕ Ln

and we define

dn
K̃

=

dnK 0 0
0 −dn−1

L idLn

0 0 dnL


in other words K̃• = K• ⊕ C(1L•[−1]). Moreover, we set

α̃ =
(
α 0 idLn

)
which is clearly a split surjection. It is also clear that it defines a morphism of
complexes. We define

i =

idKn

0
0


so that clearly α̃ ◦ i = α. We set

s =
(
idKn 0 0

)

http://stacks.math.columbia.edu/tag/013O
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so that s ◦ i = idK• . Finally, let hn : K̃n → K̃n−1 be the map which maps the
summand Ln−1 of K̃n via the identity morphism to the summand Ln−1 of K̃n−1.
Then it is a trivial matter to prove that

idK̃• − i ◦ s = d ◦ h+ h ◦ d

which finishes the proof of the lemma. �

Definition 13.9.9. Let A be an additive category. A termwise split sequence of
complexes of A is a complex of complexes

0→ A•
α−→ B•

β−→ C• → 0

together with given direct sum decompositions Bn = An ⊕Cn compatible with αn

and βn. We often write sn : Cn → Bn and πn : Bn → An for the maps induced by
the direct sum decompositions. According to Homology, Lemma 12.14.10 we get
an associated morphism of complexes

δ : C• −→ A•[1]

which in degree n is the map πn+1 ◦ dnB ◦ sn. In other words (A•, B•, C•, α, β, δ)
forms a triangle

A• → B• → C• → A•[1]

This will be the triangle associated to the termwise split sequence of complexes.

Lemma 13.9.10. Let A be an additive category. Let 0→ A• → B• → C• → 0 be
termwise split exact sequences as in Definition 13.9.9. Let (π′)n, (s′)n be a second
collection of splittings. Denote δ′ : C• −→ A•[1] the morphism associated to this
second set of splittings. Then

(1, 1, 1) : (A•, B•, C•, α, β, δ) −→ (A•, B•, C•, α, β, δ′)

is an isomorphism of triangles in K(A).

Proof. The statement simply means that δ and δ′ are homotopic maps of com-
plexes. This is Homology, Lemma 12.14.12. �

Remark 13.9.11. Let A be an additive category. Let 0 → A•i → B•i → C•i → 0,
i = 1, 2 be termwise split exact sequences. Suppose that a : A•1 → A•2, b : B•1 → B•2 ,
and c : C•1 → C•2 are morphisms of complexes such that

A•1

a

��

// B•1 //

b

��

C•1

c

��
A•2 // B•2 // C•2

commutes in K(A). In general, there does not exist a morphism b′ : B•1 → B•2
which is homotopic to b such that the diagram above commutes in the category of
complexes. Namely, consider Examples, Equation (82.54.0.1). If we could replace
the middle map there by a homotopic one such that the diagram commutes, then
we would have additivity of traces which we do not.

http://stacks.math.columbia.edu/tag/014I
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Lemma 13.9.12. Let A be an additive category. Let 0 → A•i → B•i → C•i → 0,
i = 1, 2, 3 be termwise split exact sequences of complexes. Let b : B•1 → B•2 and
b′ : B•2 → B•3 be morphisms of complexes such that

A•1

0

��

// B•1 //

b

��

C•1

0

��
A•2 // B•2 // C•2

and

A•2

0

��

// B•2 //

b′

��

C•2

0

��
A•3 // B•3 // C•3

commute in K(A). Then b′ ◦ b = 0 in K(A).

Proof. By Lemma 13.9.5 we can replace b and b′ by homotopic maps such that the
right square of the left diagram commutes and the left square of the right diagram
commutes. In other words, we have Im(bn) ⊂ Im(An2 → Bn2 ) and Ker((b′)n) ⊃
Im(An2 → Bn2 ). Then b ◦ b′ = 0 as a map of complexes. �

Lemma 13.9.13. Let A be an additive category. Let f1 : K•1 → L•1 and f2 : K•2 →
L•2 be morphisms of complexes. Let

(a, b, c) : (K•1 , L
•
1, C(f1)•, f1, i1, p1) −→ (K•1 , L

•
1, C(f1)•, f2, i2, p2)

be any morphism of triangles of K(A). If a and b are homotopy equivalences then
so is c.

Proof. Let a−1 : K•2 → K•1 be a morphism of complexes which is inverse to a
in K(A). Let b−1 : L•2 → L•1 be a morphism of complexes which is inverse to b
in K(A). Let c′ : C(f2)• → C(f1)• be the morphism from Lemma 13.9.2 applied
to f1 ◦ a−1 = b−1 ◦ f2. If we can show that c ◦ c′ and c′ ◦ c are isomorphisms in
K(A) then we win. Hence it suffices to prove the following: Given a morphism of
triangles (1, 1, c) : (K•, L•, C(f)•, f, i, p) inK(A) the morphism c is an isomorphism
in K(A). By assumption the two squares in the diagram

L• //

1

��

C(f)• //

c

��

K•[1]

1

��
L• // C(f)• // K•[1]

commute up to homotopy. By construction of C(f)• the rows form termwise split
sequences of complexes. Thus we see that (c− 1)2 = 0 in K(A) by Lemma 13.9.12.
Hence c is an isomorphism in K(A) with inverse 2− c. �

Hence if a and b are homotopy equivalences then the resulting morphism of triangles
is an isomorphism of triangles in K(A). It turns out that the collection of triangles
of K(A) given by cones and the collection of triangles of K(A) given by termwise
split sequences of complexes are the same up to isomorphisms, at least up to sign!

Lemma 13.9.14. Let A be an additive category.

(1) Given a termwise split sequence of complexes (α : A• → B•, β : B• →
C•, sn, πn) there exists a homotopy equivalence C(α)• → C• such that the

http://stacks.math.columbia.edu/tag/086L
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diagram

A• //

��

B•

��

// C(α)•
−p
//

��

A•[1]

��
A• // B• // C•

δ // A•[1]

defines an isomorphism of triangles in K(A).
(2) Given a morphism of complexes f : K• → L• there exists an isomorphism

of triangles

K• //

��

L̃•

��

// M•
δ
//

��

K•[1]

��
K• // L• // C(f)•

−p // K•[1]

where the upper triangle is the triangle associated to a termwise split exact
sequence K• → L̃• →M•.

Proof. Proof of (1). We have C(α)n = Bn⊕An+1 and we simply define C(α)n →
Cn via the projection onto Bn followed by βn. This defines a morphism of com-
plexes because the compositions An+1 → Bn+1 → Cn+1 are zero. To get a ho-
motopy inverse we take C• → C(α)• given by (sn,−δn) in degree n. This is
a morphism of complexes because the morphism δn can be characterized as the
unique morphism Cn → An+1 such that d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of
Homology, Lemma 12.14.10. The composition C• → C(f)• → C• is the identity.
The composition C(f)• → C• → C(f)• is equal to the morphism(

sn ◦ βn 0
−δn ◦ βn 0

)
To see that this is homotopic to the identity map use the homotopy hn : C(α)n →
C(α)n−1 given by the matrix(

0 0
πn 0

)
: C(α)n = Bn ⊕An+1 → Bn−1 ⊕An = C(α)n−1

It is trivial to verify that(
1 0
0 1

)
−
(
sn

−δn
)(

βn 0
)

=

(
d αn

0 −d

)(
0 0
πn 0

)
+

(
0 0

πn+1 0

)(
d αn+1

0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α)• → A•[1]
(see Definition 13.9.1) and C(α)• → C• → A•[1] agree up to homotopy. This is clear
from the above. Namely, we can use the homotopy inverse (s,−δ) : C• → C(α)• and
check instead that the two maps C• → A•[1] agree. And note that p ◦ (s,−δ) = −δ
as desired.

Proof of (2). We let f̃ : K• → L̃•, s : L• → L̃• and π : L• → L• be as in
Lemma 13.9.6. By Lemmas 13.9.2 and 13.9.13 the triangles (K•, L•, C(f), i, p)

and (K•, L̃•, C(f̃), ĩ, p̃) are isomorphic. Note that we can compose isomorphisms

of triangles. Thus we may replace L• by L̃• and f by f̃ . In other words we may
assume that f is a termwise split injection. In this case the result follows from part
(1). �
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Lemma 13.9.15. Let A be an additive category. Let A•1 → A•2 → . . . → A•n be
a sequence of composable morphisms of complexes. There exists a commutative
diagram

A•1 // A•2 // . . . // A•n

B•1 //

OO

B•2 //

OO

. . . // B•n

OO

such that each morphism B•i → B•i+1 is a split injection and each B•i → A•i is a

homotopy equivalence. Moreover, if all A•i are in K+(A), K−(A), or Kb(A), then
so are the B•i .

Proof. The case n = 1 is without content. Lemma 13.9.6 is the case n = 2.
Suppose we have constructed the diagram except for B•n. Apply Lemma 13.9.6 to
the composition B•n−1 → A•n−1 → A•n. The result is a factorization B•n−1 → B•n →
A•n as desired. �

Lemma 13.9.16. Let A be an additive category. Let (α : A• → B•, β : B• →
C•, sn, πn) be a termwise split sequence of complexes. Let (A•, B•, C•, α, β, δ) be
the associated triangle. Then the triangle (C•[−1], A•, B•, δ[−1], α, β) is isomorphic
to the triangle (C•[−1], A•, C(δ[−1])•, δ[−1], i, p).

Proof. We write Bn = An ⊕ Cn and we identify αn and βn with the natural
inclusion and projection maps. By construction of δ we have

dnB =

(
dnA δn

0 dnC

)
On the other hand the cone of δ[−1] : C•[−1]→ A• is given as C(δ[−1])n = An⊕Cn
with differential identical with the matrix above! Whence the lemma. �

Lemma 13.9.17. Let A be an additive category. Let f : K• → L• be a morphism
of complexes. The triangle (L•, C(f)•,K•[1], i, p, f [1]) is the triangle associated to
the termwise split sequence

0→ L• → C(f)• → K•[1]→ 0

coming from the definition of the cone of f .

Proof. Immediate from the definitions. �

13.10. Distinguished triangles in the homotopy category

Since we want our boundary maps in long exact sequences of cohomology to be given
by the maps in the snake lemma without signs we define distinguished triangles in
the homotopy category as follows.

Definition 13.10.1. Let A be an additive category. A triangle (X,Y, Z, f, g, h) of
K(A) is called a distinguished triangle of K(A) if it is isomorphic to the triangle
associated to a termwise split exact sequence of complexes, see Definition 13.9.9.
Same definition for K+(A), K−(A), and Kb(A).

Note that according to Lemma 13.9.14 a triangle of the form (K•, L•, C(f)•, f, i,−p)
is a distinguished triangle. This does indeed lead to a triangulated category, see
Proposition 13.10.3. Before we can prove the proposition we need one more lemma
in order to be able to prove TR4.
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Lemma 13.10.2. Let A be an additive category. Suppose that α : A• → B•

and β : B• → C• are split injections of complexes. Then there exist distinguished
triangles (A•, B•, Q•1, α, p1, d1), (A•, C•, Q•2, β◦α, p2, d2) and (B•, C•, Q•3, β, p3, d3)
for which TR4 holds.

Proof. Say πn1 : Bn → An, and πn3 : Cn → Bn are the splittings. Then also
A• → C• is a split injection with splittings πn2 = πn1 ◦ πn3 . Let us write Q•1, Q•2 and
Q•3 for the “quotient” complexes. In other words, Qn1 = Ker(πn1 ), Qn3 = Ker(πn3 )
and Qn2 = Ker(πn2 ). Note that the kernels exist. Then Bn = An ⊕ Qn1 and Cn =
Bn ⊕ Qn3 , where we think of An as a subobject of Bn and so on. This implies
Cn = An ⊕Qn1 ⊕Qn3 . Note that πn2 = πn1 ◦ πn3 is zero on both Qn1 and Qn3 . Hence
Qn2 = Qn1 ⊕Qn3 . Consider the commutative diagram

0 → A• → B• → Q•1 → 0
↓ ↓ ↓

0 → A• → C• → Q•2 → 0
↓ ↓ ↓

0 → B• → C• → Q•3 → 0

The rows of this diagram are termwise split exact sequences, and hence determine
distinguished triangles by definition. Moreover downward arrows in the diagram
above are compatible with the chosen splittings and hence define morphisms of
triangles

(A• → B• → Q•1 → A•[1]) −→ (A• → C• → Q•2 → A•[1])

and

(A• → C• → Q•2 → A•[1]) −→ (B• → C• → Q•3 → B•[1]).

Note that the splittings Qn3 → Cn of the bottom split sequence in the diagram
provides a splitting for the split sequence 0→ Q•1 → Q•2 → Q•3 → 0 upon composing
with Cn → Qn2 . It follows easily from this that the morphism δ : Q•3 → Q•1[1] in
the corresponding distinguished triangle

(Q•1 → Q•2 → Q•3 → Q•1[1])

is equal to the composition Q•3 → B•[1] → Q•1[1]. Hence we get a structure as in
the conclusion of axiom TR4. �

Proposition 13.10.3. Let A be an additive category. The category K(A) of com-
plexes up to homotopy with its natural translation functors and distinguished trian-
gles as defined above is a triangulated category.

Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished
one is distinguished. Also, any triangle (A•, A•, 0, 1, 0, 0) is distinguished since
0 → A• → A• → 0 → 0 is a termwise split sequence of complexes. Finally,
given any morphism of complexes f : K• → L• the triangle (K,L,C(f), f, i,−p) is
distinguished by Lemma 13.9.14.

Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y, Z,X[1], g, h,−f [1])
is distinguished. Then there exists a termwise split sequence of complexes A• →
B• → C• such that the associated triangle (A•, B•, C•, α, β, δ) is isomorphic to
(Y, Z,X[1], g, h,−f [1]). Rotating back we see that (X,Y, Z, f, g, h) is isomorphic
to (C•[−1], A•, B•,−δ[−1], α, β). It follows from Lemma 13.9.16 that the trian-
gle (C•[−1], A•, B•, δ[−1], α, β) is isomorphic to (C•[−1], A•, C(δ[−1])•, δ[−1], i, p).
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Precomposing the previous isomorphism of triangles with −1 on Y it follows that
(X,Y, Z, f, g, h) is isomorphic to (C•[−1], A•, C(δ[−1])•, δ[−1], i,−p). Hence it is
distinguished by Lemma 13.9.14. On the other hand, suppose that (X,Y, Z, f, g, h)
is distinguished. By Lemma 13.9.14 this means that it is isomorphic to a triangle of
the form (K•, L•, C(f), f, i,−p) for some morphism of complexes f . Then the ro-
tated triangle (Y, Z,X[1], g, h,−f [1]) is isomorphic to (L•, C(f),K•[1], i,−p,−f [1])
which is isomorphic to the triangle (L•, C(f),K•[1], i, p, f [1]). By Lemma 13.9.17
this triangle is distinguished. Hence (Y,Z,X[1], g, h,−f [1]) is distinguished as de-
sired.

Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished trian-
gles of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′◦a = b◦
f . By Lemma 13.9.14 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)
and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply ap-
ply Lemma 13.9.2 to the commutative diagram given by f, f ′, a, b.

Proof of TR4. At this point we know that K(A) is a pre-triangulated category.
Hence we can use Lemma 13.4.13. Let A• → B• and B• → C• be composable
morphisms of K(A). By Lemma 13.9.15 we may assume that A• → B• and B• →
C• are split injective morphisms. In this case the result follows from Lemma 13.10.2.

�

Remark 13.10.4. Let A be an additive category. Exactly the same proof as the
proof of Proposition 13.10.3 shows that the categories K+(A), K−(A), and Kb(A)
are triangulated categories. Namely, the cone of a morphisms between bounded
(above, below) is bounded (above, below). But we prove below that these are
triangulated subcategories of K(A) which gives another proof.

Lemma 13.10.5. Let A be an additive subcategory. The categories K+(A), K−(A),
and Kb(A) are full triangulated subcategories of K(A).

Proof. Each of the categories mentioned is a full additive subcategory. We use the
criterion of Lemma 13.4.14 to show that they are triangulated subcategories. It is
clear that each of the categories K+(A), K−(A), and Kb(A) is preserved under
the shift functors [1], [−1]. Finally, suppose that f : A• → B• is a morphism in
K+(A), K−(A), orKb(A). Then (A•, B•, C(f)•, f, i,−p) is a distinguished triangle
of K(A) with C(f)• ∈ K+(A), K−(A), or Kb(A) as is clear from the construction
of the cone. Thus the lemma is proved. (Alternatively, K• → L• is isomorphic to
an termwise split injection of complexes in K+(A), K−(A), or Kb(A), see Lemma
13.9.6 and then one can directly take the associated distinguished triangle.) �

Lemma 13.10.6. Let A, B be additive categories. Let F : A → B be an additive
functor. The induced functors

F : K(A) −→ K(B)
F : K+(A) −→ K+(B)
F : K−(A) −→ K−(B)
F : Kb(A) −→ Kb(B)

are exact functors of triangulated categories.

Proof. Suppose A• → B• → C• is a termwise split sequence of complexes of A
with splittings (sn, πn) and associated morphism δ : C• → A•[1], see Definition
13.9.9. Then F (A•) → F (B•) → F (C•) is a termwise split sequence of complexes
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with splittings (F (sn), F (πn)) and associated morphism F (δ) : F (C•)→ F (A•)[1].
Thus F transforms distinguished triangles into distinguished triangles. �

13.11. Derived categories

In this section we construct the derived category of an abelian category A by in-
verting the quasi-isomorphisms in K(A). Before we do this recall that the functors
Hi : Comp(A) → A factor through K(A), see Homology, Lemma 12.12.11. More-
over, in Homology, Definition 12.14.8 we have defined identifications Hi(K•[n]) =
Hi+n(K•). At this point it makes sense to redefine

Hi(K•) = H0(K•[i])

in order to avoid confusion and possible sign errors.

Lemma 13.11.1. Let A be an abelian category. The functor

H0 : K(A) −→ A

is homological.

Proof. Because H0 is a functor, and by our definition of distinguished triangles
it suffices to prove that given a termwise split short exact sequence of complexes
0 → A• → B• → C• → 0 the sequence H0(A•) → H0(B•) → H0(C•) is exact.
This follows from Homology, Lemma 12.12.12. �

In particular, this lemma implies that a distinguished triangle (X,Y, Z, f, g, h) in
K(A) gives rise to a long exact cohomology sequence
(13.11.1.1)

. . . // Hi(X)
Hi(f) // Hi(Y )

Hi(g) // Hi(Z)
Hi(h)// Hi+1(X) // . . .

see (13.3.5.1). Moreover, there is a compatibility with the long exact sequence of co-
homology associated to a short exact sequence of complexes (insert future reference
here). For example, if (A•, B•, C•, α, β, δ) is the distinguished triangle associated
to a termwise split exact sequence of complexes (see Definition 13.9.9), then the
cohomology sequence above agrees with the one defined using the snake lemma, see
Homology, Lemma 12.12.12 and for agreement of sequences, see Homology, Lemma
12.14.11.

Recall that a complex K• is acyclic if Hi(K•) = 0 for all i ∈ Z. Moreover, recall
that a morphism of complexes f : K• → L• is a quasi-isomorphism if and only if
Hi(f) is an isomorphism for all i. See Homology, Definition 12.12.10.

Lemma 13.11.2. Let A be an abelian category. The full subcategory Ac(A) of
K(A) consisting of acyclic complexes is a strictly full saturated triangulated sub-
category of K(A). The corresponding saturated multiplicative system (see Lemma
13.6.10) of K(A) is the set Qis(A) of quasi-isomorphisms. In particular, the kernel
of the localization functor Q : K(A) → Qis(A)−1K(A) is Ac(A) and the functor
H0 factors through Q.

Proof. We know that H0 is a homological functor by Lemma 13.11.1. Thus this
lemma is a special case of Lemma 13.6.11. �
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Definition 13.11.3. Let A be an abelian category. Let Ac(A) and Qis(A) be as
in Lemma 13.11.2. The derived category of A is the triangulated category

D(A) = K(A)/Ac(A) = Qis(A)−1K(A).

We denote H0 : D(A)→ A the unique functor whose composition with the quotient
functor gives back the functor H0 defined above. Using Lemma 13.6.4 we introduce
the strictly full saturated triangulated subcategories D+(A), D−(A), Db(A) whose
sets of objects are

Ob(D+(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all n� 0}
Ob(D−(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all n� 0}
Ob(Db(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all |n| � 0}

The category Db(A) is called the bounded derived category of A.

If K• and L• are complexes of A then we sometimes say “K• is quasi-isomorphic
to L•” to indicate that K• and L• are isomorphic objects of D(A).

Remark 13.11.4. In this chapter, we consistently work with “small” abelian cat-
egories (as is the convention in the Stacks project). For a “big” abelian category
A, it isn’t clear that the derived category D(A) exists, because it isn’t clear that
morphisms in the derived category are sets. In fact, in general they aren’t, see
Examples, Lemma 82.52.1. However, if A is a Grothendieck abelian category, and
given K•, L• in K(A), then by Injectives, Theorem 19.12.6 there exists a quasi-
isomorphism L• → I• to a K-injective complex I• and Lemma 13.29.2 shows that

HomD(A)(K
•, L•) = HomK(A)(K

•, I•)

which is a set. Some examples of Grothendieck abelian categories are the category
of modules over a ring, or more generally the category of sheaves of modules on a
ringed site.

Each of the variants D+(A), D−(A), Db(A) can be constructed as a localization of
the corresponding homotopy category. This relies on the following simple lemma.

Lemma 13.11.5. Let A be an abelian category. Let K• be a complex.

(1) If Hn(K•) = 0 for all n � 0, then there exists a quasi-isomorphism
K• → L• with L• bounded below.

(2) If Hn(K•) = 0 for all n � 0, then there exists a quasi-isomorphism
M• → K• with M• bounded above.

(3) If Hn(K•) = 0 for all |n| � 0, then there exists a commutative diagram
of morphisms of complexes

K• // L•

M•

OO

// N•

OO

where all the arrows are quasi-isomorphisms, L• bounded below, M• bounded
above, and N• a bounded complex.

Proof. Pick a� 0� b and set M• = τ≤aK
•, L• = K•/τ≤bK

•, and N• = L•/M•.
See Homology, Section 12.13 for the truncation functors. �
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To state the following lemma denote Ac+(A), Ac−(A), resp. Acb(A) the intersection
of K+(A), K−(A), resp. Kb(A) with Ac(A). Denote Qis+(A), Qis−(A), resp.

Qisb(A) the intersection of K+(A), K−(A), resp. Kb(A) with Qis(A).

Lemma 13.11.6. Let A be an abelian category. The subcategories Ac+(A), Ac−(A),

resp. Acb(A) are strictly full saturated triangulated subcategories of K+(A), K−(A),
resp. Kb(A). The corresponding saturated multiplicative systems (see Lemma 13.6.10)

are the sets Qis+(A), Qis−(A), resp. Qisb(A).

(1) The kernel of the functor K+(A) → D+(A) is Ac+(A) and this induces
an equivalence of triangulated categories

K+(A)/Ac+(A) = Qis+(A)−1K+(A) −→ D+(A)

(2) The kernel of the functor K−(A) → D−(A) is Ac−(A) and this induces
an equivalence of triangulated categories

K−(A)/Ac−(A) = Qis−(A)−1K−(A) −→ D−(A)

(3) The kernel of the functor Kb(A)→ Db(A) is Acb(A) and this induces an
equivalence of triangulated categories

Kb(A)/Acb(A) = Qisb(A)−1Kb(A) −→ Db(A)

Proof. The initial statements follow from Lemma 13.6.11 by considering the re-
striction of the homological functor H0. The statement on kernels in (1), (2), (3)
is a consequence of the definitions in each case. Each of the functors is essentially
surjective by Lemma 13.11.5. To finish the proof we have to show the functors are
fully faithful. We first do this for the bounded below version.

Suppose that K•, L• are bounded above complexes. A morphism between these
in D(A) is of the form s−1f for a pair f : K• → (L′)•, s : L• → (L′)• where s
is a quasi-isomorphism. This implies that (L′)• has cohomology bounded below.
Hence by Lemma 13.11.5 we can choose a quasi-isomorphism s′ : (L′)• → (L′′)•

with (L′′)• bounded below. Then the pair (s′ ◦ f, s′ ◦ s) defines a morphism in
Qis+(A)−1K+(A). Hence the functor is “full”. Finally, suppose that the pair
f : K• → (L′)•, s : L• → (L′)• defines a morphism in Qis+(A)−1K+(A) which is
zero in D(A). This means that there exists a quasi-isomorphism s′ : (L′)• → (L′′)•

such that s′◦f = 0. Using Lemma 13.11.5 once more we obtain a quasi-isomorphism
s′′ : (L′′)• → (L′′′)• with (L′′′)• bounded below. Thus we see that s′′ ◦ s′ ◦ f = 0
which implies that s−1f is zero in Qis+(A)−1K+(A). This finishes the proof that
the functor in (1) is an equivalence.

The proof of (2) is dual to the proof of (1). To prove (3) we may use the result of (2).

Hence it suffices to prove that the functor Qisb(A)−1Kb(A) → Qis−(A)−1K−(A)
is fully faithful. The argument given in the previous paragraph applies directly to
show this where we consistently work with complexes which are already bounded
above. �

13.12. The canonical delta-functor

The derived category should be the receptacle for the universal cohomology functor.
In order to state the result we use the notion of a δ-functor from an abelian category
into a triangulated category, see Definition 13.3.6.
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Consider the functor Comp(A)→ K(A). This functor is not a δ-functor in general.
The easiest way to see this is to consider a nonsplit short exact sequence 0 →
A → B → C → 0 of objects of A. Since HomK(A)(C[0], A[1]) = 0 we see that
any distinguished triangle arising from this short exact sequence would look like
(A[0], B[0], C[0], a, b, 0). But the existence of such a distinguished triangle in K(A)
implies that the extension is split. A contradiction.

It turns out that the functor Comp(A)→ D(A) is a δ-functor. In order to see this
we have to define the morphisms δ associated to a short exact sequence

0→ A•
a−→ B•

b−→ C• → 0

of complexes in the abelian category A. Consider the cone C(a)• of the morphism
a. We have C(a)n = Bn⊕An+1 and we define qn : C(a)n → Cn via the projection
to Bn followed by bn. Hence a morphism of complexes

q : C(a)• −→ C•.

It is clear that q ◦ i = b where i is as in Definition 13.9.1. Note that, as a• is
injective in each degree, the kernel of q is identified with the cone of idA• which is
acyclic. Hence we see that q is a quasi-isomorphism. According to Lemma 13.9.14
the triangle

(A,B,C(a), a, i,−p)
is a distinguished triangle in K(A). As the localization functor K(A) → D(A) is
exact we see that (A,B,C(a), a, i,−p) is a distinguished triangle in D(A). Since q
is a quasi-isomorphism we see that q is an isomorphism in D(A). Hence we deduce
that

(A,B,C, a, b,−p ◦ q−1)

is a distinguished triangle of D(A). This suggests the following lemma.

Lemma 13.12.1. Let A be an abelian category. The functor Comp(A) → D(A)
defined has the natural structure of a δ-functor, with

δA•→B•→C• = −p ◦ q−1

with p and q as explained above. The same construction turns the functors Comp+(A)→
D+(A), Comp−(A)→ D−(A), and Compb(A)→ Db(A) into δ-functors.

Proof. We have already seen that this choice leads to a distinguished triangle
whenever given a short exact sequence of complexes. We have to show that given
a commutative diagram

0 // A•
a
//

f

��

B•
b
//

g

��

C• //

h

��

0

0 // (A′)•
a′ // (B′)•

b′ // (C ′)• // 0

we get the desired commutative diagram of Definition 13.3.6 (2). By Lemma 13.9.2
the pair (f, g) induces a canonical morphism c : C(a)• → C(a′)•. It is a simple
computation to show that q′ ◦ c = h ◦ q and f [1] ◦ p = p′ ◦ c. From this the result
follows directly. �
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Lemma 13.12.2. Let A be an abelian category. Let

0 // A• //

��

B• //

��

C• //

��

0

0 // D• // E• // F • // 0

be a commutative diagram of morphisms of complexes such that the rows are short
exact sequences of complexes, and the vertical arrows are quasi-isomorphisms. The
δ-functor of Lemma 13.12.1 above maps the to short exact sequences 0 → A• →
B• → C• → 0 and 0→ D• → E• → F • → 0 to isomorphic distinguished triangles.

Proof. Trivial from the fact that K(A) → D(A) transforms quasi-isomorphisms
into isomorphisms and that the associated distinguished triangles are functorial. �

Lemma 13.12.3. Let A be an abelian category. Let

0 // A• // B• // C• // 0

be a short exact sequences of complexes. Assume this short exact sequence is
termwise split. Let (A•, B•, C•, α, β, δ) be the distinguished triangle of K(A) asso-
ciated to the sequence. The δ-functor of Lemma 13.12.1 above maps the short exact
sequences 0 → A• → B• → C• → 0 to a triangle isomorphic to the distinguished
triangle

(A•, B•, C•, α, β, δ).

Proof. Follows from Lemma 13.9.14. �

Remark 13.12.4. Let A be an abelian category. Let K• be a complex of A. Let
a ∈ Z. We claim there is a canonical distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → (τ≤aK
•)[1]

in D(A). Here we have used the canonical truncation functors τ from Homology,
Section 12.13. Namely, we first take the distinguished triangle associated by our
δ-functor (Lemma 13.12.1) to the short exact sequence of complexes

0→ τ≤aK
• → K• → K•/τ≤aK

• → 0

Next, we use that the map K• → τ≥a+1K
• factors through a quasi-isomorphism

K•/τ≤aK
• → τ≥a+1K

• by the description of cohomology groups in Homology,
Section 12.13. In a similar way we obtain canonical distinguished triangles

τ≤aK
• → τ≤a+1K

• → Ha+1(K•)[−a− 1]→ (τ≤aK
•)[1]

and

Ha(K•)[−a]→ τ≥aK
• → τ≥a+1K

• → Ha(K•)[−a+ 1]

Lemma 13.12.5. Let A be an abelian category. Let

K•0 → K•1 → . . .→ K•n

be maps of complexes such that

(1) Hi(K•0 ) = 0 for i > 0,
(2) H−j(K•j )→ H−j(K•j+1) is zero.

Then the composition K•0 → K•n factors through τ≤−nK
•
n → K•n in D(A).
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Proof. The case n = 1. Since τ≤0K
•
0 = K•0 in D(A) we can replace K•0 by τ≤0K

•
0

and K•1 by τ≤0K
•
1 . Consider the distinguished triangle

τ≤−1K
•
1 → K•1 → H0(K•1 )[0]→ (τ≤−1K

•
1 )[1]

(Remark 13.12.4). The composition K•0 → K•1 → H0(K•1 )[0] is zero as it is equal
to K•0 → H0(K•0 )[0] → H0(K•1 )[0] which is zero by assumption. The fact that
HomD(A)(K

•
0 ,−) is a homological functor (Lemma 13.4.2), allows us to find the

desired factorization. For n = 2 we get a factorization K•0 → τ≤−1K
•
1 by the case

n = 1 and we can apply the case n = 1 to the map of complexes τ≤−1K
•
1 → τ≤−1K

•
2

to get a factorization τ≤−1K
•
1 → τ≤−2K

•
2 . The general case is proved in exactly

the same manner. �

13.13. Triangulated subcategories of the derived category

Let A be an abelian category. In this section we are going to look for strictly full
saturated triangulated subcategories D′ ⊂ D(A) and in the bounded versions.

Here is a simple construction. Let B ⊂ A be a weak Serre subcategory, see Ho-
mology, Section 12.9. We let DB(A) the full subcategory of D(A) whose objects
are

Ob(DB(A)) = {X ∈ Ob(D(A)) | Hn(X) is an object of B for all n}
We also define D+

B (A) = D+(A) ∩ DB(A) and similarly for the other bounded
versions.

Lemma 13.13.1. Let A be an abelian category. Let B ⊂ A be a weak Serre
subcategory. The category DB(A) is a strictly full saturated triangulated subcategory
of D(A). Similarly for the bounded versions.

Proof. It is clear that DB(A) is an additive subcategory preserved under the trans-
lation functors. If X ⊕ Y is in DB(A), then both Hn(X) and Hn(Y ) are kernels of
maps between maps of objects of B as Hn(X⊕Y ) = Hn(X)⊕Hn(Y ). Hence both
X and Y are in DB(A). By Lemma 13.4.14 it therefore suffices to show that given
a distinguished triangle (X,Y, Z, f, g, h) such that X and Y are in DB(A) then Z
is an object of DB(A). The long exact cohomology sequence (13.11.1.1) and the
definition of a weak Serre subcategory (see Homology, Definition 12.9.1) show that
Hn(Z) is an object of B for all n. Thus Z is an object of DB(A). �

An interesting feature of the situation of the lemma is that the functor D(B) →
D(A) factors through a canonical exact functor

(13.13.1.1) D(B) −→ DB(A)

After all a complex made from objects of B certainly gives rise to an object of DB(A)
and as distinguished triangles in DB(A) are exactly the distinguished triangles of
D(A) whose vertices are in DB(A) we see that the functor is exact since D(B) →
D(A) is exact. Similarly we obtain functors D+(B) −→ D+

B (A) etc for the bounded
versions. A key question in many cases is whether the displayed functor is an
equivalence.

Now, suppose that B is a Serre subcategory of A. In this case we have the quotient
functor A → A/B, see Homology, Lemma 12.9.6. In this case DB(A) is the kernel
of the functor D(A)→ D(A/B). Thus we obtain a canonical functor

D(A)/DB(A) −→ D(A/B)

http://stacks.math.columbia.edu/tag/06UQ
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by Lemma 13.6.8. Similarly for the bounded versions.

Lemma 13.13.2. Let A be an abelian category. Let B ⊂ A be a Serre subcategory.
Then D(A)→ D(A/B) is essentially surjective.

Proof. We will use the description of the category A/B in the proof of Homology,
Lemma 12.9.6. Let (X•, d•) be a complex of A/B. For each i we have an object
Xi of A and di = (si, f i) where si : Y i → Xi is a morphism of A whose kernel
and cokernel are in B and f i : Y i → Xi+1 is an arbitrary morphism of A. Next,
consider the complex

. . .→ Xi ⊕ Y i ⊕ Y i+1 → Xi+1 ⊕ Y i+1 ⊕ Y i+2 → . . .

in A with differential given by0 f i si+1

0 0 −idY i+1

0 0 0

 .

This complex becomes quasi-isomorphic to the complex (X•, d•) in A/B by the
maps

(idXi , s
i, 0) : Xi ⊕ Y i ⊕ Y i+1 → Xi

Calculation omitted. �

Lemma 13.13.3. Let A be an abelian category. Let B ⊂ A be a Serre subcategory.
Suppose that the functor v : A → A/B has a left adjoint u : A/B → A such that
vu ∼= id. Then

D(A)/DB(A) = D(A/B)

and similarly for the bounded versions.

Proof. The functor D(v) : D(A) → D(A/B) is essentially surjective by Lemma
13.13.2. For an object X of D(A) the adjunction mapping cX : uvX → X maps
to an isomorphism in D(A/B) because vuv ∼= v by the assumption that vu ∼= id.
Thus in a distinguished triangle (uvX,X,Z, cX , g, h) the object Z is an object of
DB(A) as we see by looking at the long exact cohomology sequence. Hence cX
is an element of the multiplicative system used to define the quotient category
D(A)/DB(A). Thus uvX ∼= X in D(A)/DB(A). For X,Y ∈ Ob(A)) the map

HomD(A)/DB(A)(X,Y ) −→ HomD(A/B)(vX, vY )

is bijective because u gives an inverse (by the remarks above). �

13.14. Filtered derived categories

A reference for this section is [Ill72, I, Chapter V]. Let A be an abelian category.
In this section we will define the filtered derived category DF (A) of A. In short, we
will define it as the derived category of the exact category of objects of A endowed
with a finite filtration. (Thus our construction is a special case of a more general
construction of the derived category of an exact category, see for example [Büh10],
[Kel90].) Illusie’s filtered derived category is the full subcategory of ours consisting
of those objects whose filtration is finite. (In our category the filtration is still finite
in each degree, but may not be uniformly bounded.) The rationale for our choice
is that it is not harder and it allows us to apply the discussion to the spectral
sequences of Lemma 13.21.3, see also Remark 13.21.4.

http://stacks.math.columbia.edu/tag/06XL
http://stacks.math.columbia.edu/tag/06XM


13.14. FILTERED DERIVED CATEGORIES 943

We will use the notation regarding filtered objects introduced in Homology, Section
12.16. The category of filtered objects of A is denoted Fil(A). All filtrations will
be decreasing by fiat.

Definition 13.14.1. Let A be an abelian category. The category of finite filtered
objects of A is the category of filtered objects (A,F ) of A whose filtration F is

finite. We denote it Filf (A).

Thus Filf (A) is a full subcategory of Fil(A). For each p ∈ Z there is a functor

grp : Filf (A)→ A. There is a functor

gr =
⊕

p∈Z
grp : Filf (A)→ Gr(A)

where Gr(A) is the category of graded objects of A, see Homology, Definition
12.15.1. Finally, there is a functor

(forget F ) : Filf (A) −→ A
which associates to the filtered object (A,F ) the underlying object of A. The

category Filf (A) is an additive category, but not abelian in general, see Homology,
Example 12.3.12.

Because the functors grp, gr, (forget F ) are additive they induce exact functors of
triangulated categories

grp, (forget F ) : K(Filf (A))→ K(A) and gr : K(Filf (A))→ K(Gr(A))

by Lemma 13.10.6. By analogy with the case of the homotopy category of an
abelian category we make the following definitions.

Definition 13.14.2. Let A be an abelian category.

(1) Let α : K• → L• be a morphism of K(Filf (A)). We say that α is a filtered
quasi-isomorphism if the morphism gr(α) is a quasi-isomorphism.

(2) Let K• be an object of K(Filf (A)). We say that K• is filtered acyclic if
the complex gr(K•) is acyclic.

Note that α : K• → L• is a filtered quasi-isomorphism if and only if each grp(α) is
a quasi-isomorphism. Similarly a complex K• is filtered acyclic if and only if each
grp(K•) is acyclic.

Lemma 13.14.3. Let A be an abelian category.

(1) The functor K(Filf (A)) −→ Gr(A), K• 7−→ H0(gr(K•)) is homological.

(2) The functor K(Filf (A))→ A, K• 7−→ H0(grp(K•)) is homological.

(3) The functor K(Filf (A)) −→ A, K• 7−→ H0((forget F )K•) is homological.

Proof. This follows from the fact that H0 : K(A)→ A is homological, see Lemma
13.11.1 and the fact that the functors gr, grp, (forget F ) are exact functors of tri-
angulated categories. See Lemma 13.4.18. �

Lemma 13.14.4. Let A be an abelian category. The full subcategory FAc(A) of

K(Filf (A)) consisting of filtered acyclic complexes is a strictly full saturated tri-

angulated subcategory of K(Filf (A)). The corresponding saturated multiplicative

system (see Lemma 13.6.10) of K(Filf (A)) is the set FQis(A) of filtered quasi-
isomorphisms. In particular, the kernel of the localization functor

Q : K(Filf (A)) −→ FQis(A)−1K(Filf (A))

http://stacks.math.columbia.edu/tag/05RY
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is FAc(A) and the functor H0 ◦ gr factors through Q.

Proof. We know that H0 ◦ gr is a homological functor by Lemma 13.14.3. Thus
this lemma is a special case of Lemma 13.6.11. �

Definition 13.14.5. Let A be an abelian category. Let FAc(A) and FQis(A) be as
in Lemma 13.14.4. The filtered derived category of A is the triangulated category

DF (A) = K(Filf (A))/FAc(A) = FQis(A)−1K(Filf (A)).

Lemma 13.14.6. The functors grp, gr, (forget F ) induce canonical exact functors

grp, gr, (forget F ) : DF (A) −→ D(A)

which commute with the localization functors.

Proof. This follows from the universal property of localization, see Lemma 13.5.6,
provided we can show that a filtered quasi-isomorphism is turned into a quasi-
isomorphism by each of the functors grp, gr, (forget F ). This is true by definition
for the first two. For the last one the statement we have to do a little bit of work. Let
f : K• → L• be a filtered quasi-isomorphism in K(Filf (A)). Choose a distinguished
triangle (K•, L•,M•, f, g, h) which contains f . Then M• is filtered acyclic, see
Lemma 13.14.4. Hence by the corresponding lemma for K(A) it suffices to show
that a filtered acyclic complex is an acyclic complex if we forget the filtration. This
follows from Homology, Lemma 12.16.15. �

Definition 13.14.7. Let A be an abelian category. The bounded filtered derived
category DF b(A) is the full subcategory of DF (A) with objects those X such that
gr(X) ∈ Db(A). Similarly for the bounded below filtered derived category DF+(A)
and the bounded above filtered derived category DF−(A).

Lemma 13.14.8. Let A be an abelian category. Let K• ∈ K(Filf (A)).

(1) If Hn(gr(K•)) = 0 for all n < a, then there exists a filtered quasi-
isomorphism K• → L• with Ln = 0 for all n < a.

(2) If Hn(gr(K•)) = 0 for all n > b, then there exists a filtered quasi-
isomorphism M• → K• with Mn = 0 for all n > b.

(3) If Hn(gr(K•)) = 0 for all |n| � 0, then there exists a commutative dia-
gram of morphisms of complexes

K• // L•

M•

OO

// N•

OO

where all the arrows are filtered quasi-isomorphisms, L• bounded below,
M• bounded above, and N• a bounded complex.

Proof. Suppose thatHn(gr(K•)) = 0 for all n < a. By Homology, Lemma 12.16.15
the sequence

Ka−1 da−2

−−−→ Ka−1 da−1

−−−→ Ka

is an exact sequence of objects of A and the morphisms da−2 and da−1 are strict.
Hence Coim(da−1) = Im(da−1) in Filf (A) and the map gr(Im(da−1)) → gr(Ka)
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is injective with image equal to the image of gr(Ka−1) → gr(Ka), see Homology,
Lemma 12.16.13. This means that the map K• → τ≥aK

• into the truncation

τ≥aK
• = (. . .→ 0→ Ka/Im(da−1)→ Ka+1 → . . .)

is a filtered quasi-isomorphism. This proves (1). The proof of (2) is dual to the
proof of (1). Part (3) follows formally from (1) and (2). �

To state the following lemma denote FAc+(A), FAc−(A), resp. FAcb(A) the inter-

section ofK+(FilfA), K−(FilfA), resp.Kb(FilfA) with FAc(A). Denote FQis+(A),

FQis−(A), resp. FQisb(A) the intersection ofK+(FilfA), K−(FilfA), resp.Kb(FilfA)
with FQis(A).

Lemma 13.14.9. Let A be an abelian category. The subcategories FAc+(A),

FAc−(A), resp. FAcb(A) are strictly full saturated triangulated subcategories of

K+(FilfA), K−(FilfA), resp. Kb(FilfA). The corresponding saturated multi-
plicative systems (see Lemma 13.6.10) are the sets FQis+(A), FQis−(A), resp.

FQisb(A).

(1) The kernel of the functor K+(FilfA) → DF+(A) is FAc+(A) and this
induces an equivalence of triangulated categories

K+(FilfA)/FAc+(A) = FQis+(A)−1K+(FilfA) −→ DF+(A)

(2) The kernel of the functor K−(FilfA) → DF−(A) is FAc−(A) and this
induces an equivalence of triangulated categories

K−(FilfA)/FAc−(A) = FQis−(A)−1K−(FilfA) −→ DF−(A)

(3) The kernel of the functor Kb(FilfA) → DF b(A) is FAcb(A) and this
induces an equivalence of triangulated categories

Kb(FilfA)/FAcb(A) = FQisb(A)−1Kb(FilfA) −→ DF b(A)

Proof. This follows from the results above, in particular Lemma 13.14.8, by exactly
the same arguments as used in the proof of Lemma 13.11.6. �

13.15. Derived functors in general

A reference for this section is Deligne’s exposé XVII in [AGV71]. A very general
notion of right and left derived functors exists where we have an exact functor
between triangulated categories, a multiplicative system in the source category
and we want to find the “correct” extension of the exact functor to the localized
category.

Situation 13.15.1. Here F : D → D′ is an exact functor of triangulated categories
and S is a saturated multiplicative system in D compatible with the structure of
triangulated category on D.

Let X ∈ Ob(D). Recall from Categories, Remark 4.25.5 the filtered category X/S
of arrows s : X → X ′ in S with source X. Dually, in Categories, Remark 4.25.12
we defined the cofiltered category S/X of arrows s : X ′ → X in S with target X.

Definition 13.15.2. Assumptions and notation as in Situation 13.15.1. Let X ∈
Ob(D).

http://stacks.math.columbia.edu/tag/05S6
http://stacks.math.columbia.edu/tag/05S8
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(1) we say the right derived functor RF is defined at X if the ind-object

(X/S) −→ D′, (s : X → X ′) 7−→ F (X ′)

is essentially constant3; in this case the value Y in D′ is called the value
of RF at X.

(2) we say the left derived functor LF is defined at X if the pro-object

(S/X) −→ D′, (s : X ′ → X) 7−→ F (X ′)

is essentially constant; in this case the value Y in D′ is called the value of
LF at X.

By abuse of notation we often denote the values simply RF (X) or LF (X).

It will turn out that the full subcategory of D consisting of objects where RF is de-
fined is a triangulated subcategory, and RF will define a functor on this subcategory
which transforms morphisms of S into isomorphisms.

Lemma 13.15.3. Assumptions and notation as in Situation 13.15.1. Let f : X →
Y be a morphism of D.

(1) If RF is defined at X and Y then there exists a unique morphism RF (f) :
RF (X)→ RF (Y ) between the values such that for any commutative dia-
gram

X

f

��

s
// X ′

f ′

��
Y

s′ // Y ′

with s, s′ ∈ S the diagram

F (X)

��

// F (X ′)

��

// RF (X)

��
F (Y ) // F (Y ′) // RF (Y )

commutes.
(2) If LF is defined at X and Y then there exists a unique morphism LF (f) :

LF (X)→ LF (Y ) between the values such that for any commutative dia-
gram

X ′

f ′

��

s
// X

f

��
Y ′

s′ // Y

with s, s′ in S the diagram

LF (X)

��

// F (X ′)

��

// F (X)

��
LF (Y ) // F (Y ′) // F (Y )

commutes.

3For a discussion of when an ind-object or pro-object of a category is essentially constant we
refer to Categories, Section 4.22.

http://stacks.math.columbia.edu/tag/05SA
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Proof. Part (1) holds if we only assume that the colimits

RF (X) = colims:X→X′ F (X ′) and RF (Y ) = colims′:Y→Y ′ F (Y ′)

exist. Namely, to give a morphism RF (X) → RF (Y ) between the colimits is the
same thing as giving for each s : X → X ′ in Ob(X/S) a morphism F (X ′)→ RF (Y )
compatible with morphisms in the category X/S. To get the morphism we choose
a commutative diagram

X

f

��

s
// X ′

f ′

��
Y

s′ // Y ′

with s, s′ in S as is possible by MS2 and we set F (X ′) → RF (Y ) equal to the
composition F (X ′) → F (Y ′) → RF (Y ). To see that this is independent of the
choice of the diagram above use MS3. Details omitted. The proof of (2) is dual. �

Lemma 13.15.4. Assumptions and notation as in Situation 13.15.1. Let s : X →
Y be an element of S.

(1) RF is defined at X if and only if it is defined at Y . In this case the map
RF (s) : RF (X)→ RF (Y ) between values is an isomorphism.

(2) LF is defined at X if and only if it is defined at Y . In this case the map
LF (s) : LF (X)→ LF (Y ) between values is an isomorphism.

Proof. Omitted. �

Lemma 13.15.5. Assumptions and notation as in Situation 13.15.1. Let X be an
object of D and n ∈ Z.

(1) RF is defined at X if and only if it is defined at X[n]. In this case there
is a canonical isomorphism RF (X)[n] = RF (X[n]) between values.

(2) LF is defined at X if and only if it is defined at X[n]. In this case there
is a canonical isomorphism LF (X)[n]→ LF (X[n]) between values.

Proof. Omitted. �

Lemma 13.15.6. Assumptions and notation as in Situation 13.15.1. Let (X,Y, Z, f, g, h)
be a distinguished triangle of D. If RF is defined at two out of three of X,Y, Z,
then it is defined at the third. Moreover, in this case

(RF (X), RF (Y ), RF (Z), RF (f), RF (g), RF (h))

is a distinguished triangle in D′. Similarly for LF .

Proof. Say RF is defined at X,Y with values A,B. Let RF (f) : A → B be the
induced morphism, see Lemma 13.15.3. We may choose a distinguished triangle
(A,B,C,RF (f), b, c) in D′. We claim that C is a value of RF at Z.

To see this pick s : X → X ′ in S such that there exists a morphism α : A→ F (X ′)
as in Categories, Definition 4.22.1. We may choose a commutative diagram

X

f

��

s
// X ′

f ′

��
Y

s′ // Y ′

http://stacks.math.columbia.edu/tag/05SB
http://stacks.math.columbia.edu/tag/05SU
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with s′ ∈ S by MS2. Using that Y/S is filtered we can (after replacing s′ by some
s′′ : Y → Y ′′ in S) assume that there exists a morphism β : B → F (Y ′) as in
Categories, Definition 4.22.1. Picture

A

RF (f)

��

α
// F (X ′) //

F (f ′)

��

A

RF (f)

��
B

β // F (Y ′) // B

It may not be true that the left square commutes, but the outer and right squares
commute. The assumption that the ind-object {F (Y ′)}s′:Y ′→Y is essentially con-
stant means that there exists a s′′ : Y → Y ′′ in S and a morphism h : Y ′ → Y ′′

such that s′′ = h ◦ s′ and such that F (h) equal to F (Y ′)→ B → F (Y ′)→ F (Y ′′).
Hence after replacing Y ′ by Y ′′ and β by F (h) ◦ β the diagram will commute (by
direct computation with arrows).

Using MS6 choose a morphism of triangles

(s, s′, s′′) : (X,Y, Z, f, g, h) −→ (X ′, Y ′, Z ′, f ′, g′, h′)

with s′′ ∈ S. By TR3 choose a morphism of triangles

(α, β, γ) : (A,B,C,RF (f), b, c) −→ (F (X ′), F (Y ′), F (Z ′), F (f ′), F (g′), F (h′))

By Lemma 13.15.4 it suffices to prove that RF (Z ′) is defined and has value C.
Consider the category I of Lemma 13.5.8 of triangles

I = {(t, t′, t′′) : (X ′, Y ′, Z ′, f ′, g′, h′)→ (X ′′, Y ′′, Z ′′, f ′′, g′′, h′′) | (t, t′, t′′) ∈ S}

To show that the system F (Z ′′) is essentially constant over the category Z ′/S
is equivalent to showing that the system of F (Z ′′) is essentially constant over I
because I → Z ′/S is cofinal, see Categories, Lemma 4.22.8 (cofinality is proven in
Lemma 13.5.8). For any object W in D′ we consider the diagram

colimIMorD′(W,F (X ′′)) MorD′(W,A)oo

colimIMorD′(W,F (Y ′′))

OO

MorD′(W,B)

OO

oo

colimIMorD′(W,F (Z ′′))

OO

MorD′(W,C)

OO

oo

colimIMorD′(W,F (X ′′[1]))

OO

MorD′(W,A[1])

OO

oo

colimIMorD′(W,F (Y ′′[1]))

OO

MorD′(W,B[1])

OO

oo

where the horizontal arrows are given by composing with (α, β, γ). Since filtered
colimits are exact (Algebra, Lemma 10.8.9) the left column is an exact sequence.
Thus the 5 lemma (Homology, Lemma 12.5.20) tells us the

colimIMorD′(W,F (Z ′′)) −→ MorD′(W,C)
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is bijective. Choose an object (t, t′, t′′) : (X ′, Y ′, Z ′)→ (X ′′, Y ′′, Z ′′) of I. Applying
what we just showed to W = F (Z ′′) and the element idF (X′′) of the colimit we find
a unique morphism c(X′′,Y ′′,Z′′) : F (Z ′′) → C such that for some (X ′′, Y ′′, Z ′′) →
(X ′′′, Y ′′′, Z ′′) in I

F (Z ′′)
c(X′′,Y ′′,Z′′)−−−−−−−−→ C

γ−→ F (Z ′)→ F (Z ′′)→ F (Z ′′′) equals F (Z ′′)→ F (Z ′′′)

The family of morphisms c(X′′,Y ′′,Z′′) form an element c of limIMorD′(F (Z ′′), C)
by uniquness (computation omitted). Finally, we show that colimI F (Z ′′) = C via
the morphisms c(X′′,Y ′′,Z′′) which will finish the proof by Categories, Lemma 4.22.6.
Namely, let W be an object of D′ and let d(X′′,Y ′′,Z′′) : F (Z ′′)→W be a family of
maps corresponding to an element of limIMorD′(F (Z ′′),W ). If d(X′,Y ′,Z′) ◦ γ = 0,
then for every object (X ′′, Y ′′, Z ′′) of I the morphism d(X′′,Y ′′,Z′′) is zero by the
existence of c(X′′,Y ′′,Z′′) and the morphism (X ′′, Y ′′, Z ′′) → (X ′′′, Y ′′′, Z ′′) in I
satisfying the displayed equality above. Hence the map

limIMorD′(F (Z ′′),W ) −→ MorD′(C,W )

(coming from precomposing by γ) is injective. However, it is also surjective because
the element c gives a left inverse. We conclude that C is the colimit by Categories,
Remark 4.14.4. �

Lemma 13.15.7. Assumptions and notation as in Situation 13.15.1. Let X,Y be
objects of D.

(1) If RF is defined at X and Y , then RF is defined at X ⊕ Y .
(2) If D′ is Karoubian and RF is defined at X ⊕ Y , then RF is defined at

both X and Y .

In either case we have RF (X ⊕ Y ) = RF (X)⊕RF (Y ). Similarly for LF .

Proof. If RF is defined at X and Y , then the distinguished triangle X → X ⊕
Y → Y → X[1] (Lemma 13.4.10) and Lemma 13.15.6 shows that RF is defined at
X ⊕ Y and that we have have a distinguished triangle RF (X) → RF (X ⊕ Y ) →
RF (Y ) → RF (X)[1]. Applying Lemma 13.4.10 to this once more we find that
RF (X ⊕ Y ) = RF (X)⊕RF (Y ). This proves (1) and the final assertion.

Conversely, assume that RF is defined at X ⊕ Y and that D′ is Karoubian. Since
S is a saturated system S is the set of arrows which become invertible under the
additive localization functor Q : D → S−1D, see Categories, Lemma 4.25.18. Thus
for any s : X → X ′ and s′ : Y → Y ′ in S the morphism s⊕ s′ : X ⊕ Y → X ′ ⊕ Y ′
is an element of S. In this way we obtain a functor

X/S × Y/S −→ (X ⊕ Y )/S

Recall that the categories X/S, Y/S, (X ⊕ Y )/S are filtered (Categories, Remark
4.25.5). By Categories, Lemma 4.22.9 X/S×Y/S is filtered and F |X/S : X/S → D′
(resp. G|Y/S : Y/S → D′) is essentially constant if and only if F |X/S ◦ pr1 : X/S ×
Y/S → D′ (resp. G|Y/S ◦ pr2 : X/S × Y/S → D′) is essentially constant. Below we
will show that the displayed functor is cofinal, hence by Categories, Lemma 4.22.8.
we see that F |(X⊕Y )/S is essentially constant implies that F |X/S ◦pr1⊕F |Y/S ◦pr2 :
X/S × Y/S → D′ is essentially constant. By Homology, Lemma 12.26.3 (and this
is where we use that D′ is Karoubian) we see that F |X/S ◦ pr1 ⊕ F |Y/S ◦ pr2 being
essentially constant implies F |X/S ◦ pr1 and F |Y/S ◦ pr2 are essentially constant
proving that RF is defined at X and Y .

http://stacks.math.columbia.edu/tag/05SD
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Proof that the displayed functor is cofinal. To do this pick any t : X⊕Y → Z in S.
Using MS2 we can find morphisms Z → X ′, Z → Y ′ and s : X → X ′, s′ : Y → Y ′

in S such that

X

s

��

X ⊕ Y

��

oo // Y

s′

��
X ′ Zoo // Y ′

commutes. This proves there is a map Z → X ′ ⊕ Y ′ in (X ⊕ Y )/S, i.e., we get
part (1) of Categories, Definition 4.17.1. To prove part (2) it suffices to prove that
given t : X ⊕ Y → Z and morphisms si ⊕ s′i : Z → X ′i ⊕ Y ′i , i = 1, 2 in (X ⊕ Y )/S
we can find morphisms a : X ′1 → X ′, b : X ′2 → X ′, c : Y ′1 → Y ′, d : Y ′2 → Y ′

in S such that a ◦ s1 = b ◦ s2 and c ◦ s′1 = d ◦ s′2. To do this we first choose any
X ′ and Y ′ and maps a, b, c, d in S; this is possible as X/S and Y/S are filtered.
Then the two maps a ◦ s1, b ◦ s2 : Z → X ′ become equal in S−1D. Hence we can
find a morphism X ′ → X ′′ in S equalizing them. Similarly we find Y ′ → Y ′′ in S
equalizing c◦s′1 and d◦s′2. Replacing X ′ by X ′′ and Y ′ by Y ′′ we get a◦s1 = b◦s2

and c ◦ s′1 = d ◦ s′2.

The proof of the corresponding statements for LF are dual. �

Proposition 13.15.8. Assumptions and notation as in Situation 13.15.1. The
full subcategory E of D consisting of objects at which RF is defined is a strictly full
triangulated subcategory of D. Choosing values using the axiom of choice gives rise
to an exact functor

RF : E −→ D′

of triangulated categories. Elements of S with either source or target in E are
morphisms of E. Any element of SE = Arrows(E) ∩ S is transformed into an
isomorphism by RF . Hence an exact functor

RF : S−1
E E −→ D

′.

If D′ is Karoubian, then E is a saturated triangulated subcategory of D. A similar
result holds for LF .

Proof. This is just a summary of the results obtained in Lemmas 13.15.3, 13.15.4,
13.15.5, 13.15.6, and 13.15.7. �

Definition 13.15.9. In Situation 13.15.1. We say F is right deriveable, or that
RF everywhere defined if RF is defined at every object of D. We say F is left
deriveable, or that LF everywhere defined if LF is defined at every object of D.

In this case we obtain a right (resp. left) derived functor

(13.15.9.1) RF : S−1D −→ D′, (resp. LF : S−1D −→ D′),

see Proposition 13.15.8. In most interesting situations it is not the case that RF ◦Q
is equal to F . In fact, it might happen that the canonical map F (X) → RF (X)
is never an isomorphism. In practice this does not happen, because in practice we
only know how to prove F is right deriveable by showing that RF can be computed
by evaluating F at judiciously chosen objects of the triangulated category D. This
warrants a definition.

Definition 13.15.10. In Situation 13.15.1.

http://stacks.math.columbia.edu/tag/05SE
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(1) An object X of D computes RF if RF is defined at X and the canonical
map F (X)→ RF (X) is an isomorphism.

(2) An object X of D computes LF if LF is defined at X and the canonical
map LF (X)→ F (X) is an isomorphism.

Lemma 13.15.11. Assumptions and notation as in Situation 13.15.1. Let X be
an object of D and n ∈ Z.

(1) X computes RF if and only if X[n] computes RF .
(2) X computes LF if and only if X[n] computes LF .

Proof. Omitted. �

Lemma 13.15.12. Assumptions and notation as in Situation 13.15.1. Let (X,Y, Z, f, g, h)
be a distinguished triangle of D. If X,Y compute RF then so does Z. Similar for
LF .

Proof. By Lemma 13.15.6 we know that RF is defined at Z and that RF ap-
plied to the triangle produces a distinguished triangle. Consider the morphism of
distinguished triangles

(F (X), F (Y ), F (Z), F (f), F (g), F (h))

��
(RF (X), RF (Y ), RF (Z), RF (f), RF (g), RF (h))

Two out of three maps are isomorphisms, hence so is the third. �

Lemma 13.15.13. Assumptions and notation as in Situation 13.15.1. Let X,Y
be objects of D. If X ⊕Y computes RF , then X and Y compute RF . Similarly for
LF .

Proof. If X ⊕Y computes RF , then RF (X ⊕Y ) = F (X)⊕F (Y ). In the proof of
Lemma 13.15.7 we have seen that the functor X/S × Y/S → (X ⊕ Y )/S, (s, s′) 7→
s ⊕ s′ is cofinal. We will use this without further mention. Let s : X → X ′ be an
element of S. Then F (X)→ F (X ′) has a section, namely,

F (X ′)→ F (X ′ ⊕ Y )→ RF (X ′ ⊕ Y ) = RF (X ⊕ Y ) = F (X)⊕ F (Y )→ F (X).

where we have used Lemma 13.15.4. Hence F (X ′) = F (X)⊕E for some object E
of D′ such that E → F (X ′ ⊕ Y ) → RF (X ′ ⊕ Y ) = RF (X ⊕ Y ) is zero (Lemma
13.4.11). Because RF is defined at X ′ ⊕ Y with value F (X) ⊕ F (Y ) we can find
a morphism t : X ′ ⊕ Y → Z of S such that F (t) annihilates E. We may assume
Z = X ′′ ⊕ Y ′′ and t = t′ ⊕ t′′ with t′, t′′ ∈ S. Then F (t′) annihilates E. It follows
that F is essentially constant on X/S with value F (X) as desired. �

Lemma 13.15.14. Assumptions and notation as in Situation 13.15.1.

(1) If for every object X ∈ Ob(D) there exists an arrow s : X → X ′ in S such
that X ′ computes RF , then RF is everywhere defined.

(2) If for every object X ∈ Ob(D) there exists an arrow s : X ′ → X in S such
that X ′ computes LF , then LF is everywhere defined.

Proof. This is clear from the definitions. �

Lemma 13.15.15. Assumptions and notation as in Situation 13.15.1. If there
exists a subset I ⊂ Ob(D) such that

http://stacks.math.columbia.edu/tag/05SY
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(1) for all X ∈ Ob(D) there exists s : X → X ′ in S with X ′ ∈ I, and
(2) for every arrow s : X → X ′ in S with X,X ′ ∈ I the map F (s) : F (X)→

F (X ′) is an isomorphism,

then RF is everywhere defined and every X ∈ I computes RF . Dually, if there
exists a subset P ⊂ Ob(D) such that

(1) for all X ∈ Ob(D) there exists s : X ′ → X in S with X ′ ∈ P, and
(2) for every arrow s : X → X ′ in S with X,X ′ ∈ P the map F (s) : F (X)→

F (X ′) is an isomorphism,

then LF is everywhere defined and every X ∈ P computes LF .

Proof. Let X be an object of D. Assumption (1) implies that the arrows s : X →
X ′ in S with X ′ ∈ I are cofinal in the category X/S. Assumption (2) implies that
F is constant on this cofinal subcategory. Clearly this implies that F : (X/S)→ D′
is essentially constant with value F (X ′) for any s : X → X ′ in S with X ′ ∈ I. �

Lemma 13.15.16. Let A,B, C be triangulated categories. Let S, resp. S′ be a satu-
rated multiplicative system in A, resp. B compatible with the triangulated structure.
Let F : A → B and G : B → C be exact functors. Denote F ′ : A → (S′)−1B the
composition of F with the localization functor.

(1) If RF ′, RG, R(G ◦ F ) are everywhere defined, then there is a canonical
transformation of functors t : R(G ◦ F ) −→ RG ◦RF ′.

(2) If LF ′, LG, L(G ◦ F ) are everywhere defined, then there is a canonical
transformation of functors t : LG ◦ LF ′ → L(G ◦ F ).

Proof. In this proof we try to be careful. Hence let us think of the derived functors
as the functors

RF ′ : S−1A → (S′)−1B, R(G ◦ F ) : S−1A → C, RG : (S′)−1B → C.

Let us denote QA : A → S−1A and QB : B → (S′)−1B the localization functors.
Then F ′ = QB ◦ F . Note that for every object Y of B there is a canonical map

G(Y ) −→ RG(QB(Y ))

in other words, there is a transformation of functors t′ : G→ RG ◦QB . Let X be
an object of A. We have

R(G ◦ F )(QA(X)) = colims:X→X′∈S G(F (X ′))

t′−→ colims:X→X′∈S RG(QB(F (X ′)))

= colims:X→X′∈S RG(F ′(X ′))

= RG(colims:X→X′∈S F
′(X ′))

= RG(RF ′(X)).

The system F ′(X ′) is essentially constant in the category (S′)−1B. Hence we may
pull the colimit inside the functor RG in the third equality of the diagram above,
see Categories, Lemma 4.22.5 and its proof. We omit the proof this this defines a
transformation of functors. The case of left derived functors is similar. �

http://stacks.math.columbia.edu/tag/05T2
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13.16. Derived functors on derived categories

In practice derived functors come about most often when given an additive functor
between abelian categories.

Situation 13.16.1. Here F : A → B is an additive functor between abelian cate-
gories. This induces exact functors

F : K(A)→ K(B), K+(A)→ K+(B), K−(A)→ K−(B).

We also denote F the compositionK(A)→ D(B), K+(A)→ D+(B), andK−(A)→
D−(B) of F with the localization functor K(B)→ D(B), etc. This situation leads
to four derived functors we will consider in the following.

(1) The right derived functor of F : K(A)→ D(B) relative to the multiplica-
tive system Qis(A).

(2) The right derived functor of F : K+(A) → D+(B) relative to the multi-
plicative system Qis+(A).

(3) The left derived functor of F : K(A)→ D(B) relative to the multiplicative
system Qis(A).

(4) The left derived functor of F : K−(A) → D−(B) relative to the multi-
plicative system Qis−(A).

Each of these cases is an example of Situation 13.15.1.

Some of the ambiguity that may arise is alleviated by the following.

Lemma 13.16.2. In Situation 13.16.1.

(1) Let X be an object of K+(A). The right derived functor of K(A)→ D(B)
is defined at X if and only if the right derived functor of K+(A)→ D+(B)
is defined at X. Moreover, the values are canonically isomorphic.

(2) Let X be an object of K+(A). Then X computes the right derived functor
of K(A) → D(B) if and only if X computes the right derived functor of
K+(A)→ D+(B).

(3) Let X be an object of K−(A). The left derived functor of K(A)→ D(B)
is defined at X if and only if the left derived functor of K−(A)→ D−(B)
is defined at X. Moreover, the values are canonically isomorphic.

(4) Let X be an object of K−(A). Then X computes the left derived functor
of K(A) → D(B) if and only if X computes the left derived functor of
K−(A)→ D−(B).

Proof. Let X be an object of K+(A). Consider a quasi-isomorphism s : X → X ′

in K(A). By Lemma 13.11.5 there exists quasi-isomorphism X ′ → X ′′ with X ′′

bounded below. Hence we see that X/Qis+(A) is cofinal in X/Qis(A). Thus it is
clear that (1) holds. Part (2) follows directly from part (1). Parts (3) and (4) are
dual to parts (1) and (2). �

Given an object A of an abelian category A we get a complex

A[0] = (. . .→ 0→ A→ 0→ . . .)

where A is placed in degree zero. Hence a functor A → K(A), A 7→ A[0]. Let us
temporarily say that a partial functor is one that is defined on a subcategory.

Definition 13.16.3. In Situation 13.16.1.
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(1) The right derived functors of F are the partial functors RF associated to
cases (1) and (2) of Situation 13.16.1.

(2) The left derived functors of F are the partial functors LF associated to
cases (3) and (4) of Situation 13.16.1.

(3) An object A of A is said to be right acyclic for F , or acyclic for RF if
A[0] computes RF .

(4) An object A of A is said to be left acyclic for F , or acyclic for LF if A[0]
computes RF .

The following few lemmas give some criteria for the existence of enough acyclics.

Lemma 13.16.4. Let A be an abelian category. Let I ⊂ Ob(A) be a subset con-
taining 0 such that every object of A is a subobject of an element of I. Let a ∈ Z.

(1) Given K• with Kn = 0 for n < a there exists a quasi-isomorphism K• →
I• with Kn → In injective and In ∈ I for all n and In = 0 for n < a,

(2) Given K• with Hn(K•) = 0 for n < a there exists a quasi-isomorphism
K• → I• with In ∈ I and In = 0 for n < a.

Proof. Proof of part (1). Consider the following induction hypothesis IHn: There
are Ij ∈ I, j ≤ n almost all zero, maps dj : Ij → Ij+1 for j < n and injective maps
αj : Kj → Ij for j ≤ n such that the diagram

. . . // Kn−1

α

��

// Kn

α

��

// Kn+1 // . . .

. . . // In−1 // In

is commutative, such that dj ◦ dj−1 = 0 for j < n and such that α induces isomor-
phisms Hj(K•)→ Ker(dj)/Im(dj−1) for j < n. Note that this implies

(13.16.4.1) α(Im(dn−1
K )) ⊂ α(Ker(dnK)) ∩ Im(dn−1) ⊂ α(Kn) ∩ Im(dn−1).

If these inclusions are not equalities, then choose an injection

In ⊕Kn/Im(dn−1
K ) −→ I

with I ∈ I. Denote α′ : Kn → I the map obtained by composing α⊕1 : Kn → In⊕
Kn/Im(dn−1

K ) with the displayed injection. Denote d′ : In−1 → I the composition
In−1 → In → I of dn−1 by the inclusion of the first summand. Then α′(Kn) ∩
Im(d′) = α′(Im(dn−1

K )) simply because the intersection of α′(Kn) with the first

summand of In ⊕ Kn/Im(dn−1
K ) is equal to α′(Im(dn−1

K )). Hence, after replacing
In by I, α by α′ and dn−1 by d′ we may assume that we have equality in Equation
(13.16.4.1). Once this is the case consider the solid diagram

Kn/Ker(dnK) //

��

Kn+1

��
In/(Im(dn−1) + α(Ker(dnK))) // M

The horizontal arrow is injective by fiat and the vertical arrow is injective as we have
equality in (13.16.4.1). Hence the push-out M of this diagram contains both Kn+1

and In/(Im(dn−1) + α(Ker(dnK))) as subobjects. Choose an injection M → In+1

with In+1 ∈ I. By construction we get dn : In → In+1 and an injective map
αn+1 : Kn+1 → In+1. The equality in Equation (13.16.4.1) and the construction of
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dn guarantee that α : Hn(K•) → Ker(dn)/Im(dn−1) is an isomorphism. In other
words IHn+1 holds.

We finish the proof of by the following observations. First we note that IHn is true
for n = a since we can just take Ij = 0 for j < a and Ka → Ia an injection of
Ka into an element of I. Next, we note that in the proof of IHn ⇒ IHn+1 we
only modified the object In, the map dn−1 and the map αn. Hence we see that
proceeding by induction we produce a complex I• with In = 0 for n < a consisting
of objects from I, and a termwise injective quasi-isomorphism α : K• → I• as
desired.

Proof of part (2). The assumption implies that the morphism K• → τ≥aK
• (Ho-

mology, Section 12.13) is a quasi-isomorphism. Apply part (1) to find τ≥aK
• → I•.

The composition K• → I• is the desired quasi-isomorphism. �

Lemma 13.16.5. Let A be an abelian category. Let P ⊂ Ob(A) be a subset
containing 0 such that every object of A is a quotient of an element of P. Let
a ∈ Z.

(1) Given K• with Kn = 0 for n > a there exists a quasi-isomorphism P • →
K• with Pn ∈ P and Pn → Kn surjective for all n and Pn = 0 for n > a.

(2) Given K• with Hn(K•) = 0 for n > a there exists a quasi-isomorphism
P • → K• with Pn ∈ P for all n and Pn = 0 for n > a.

Proof. This lemma is dual to Lemma 13.16.4. �

Lemma 13.16.6. In Situation 13.16.1. Let I ⊂ Ob(A) be a subset with the fol-
lowing properties:

(1) every object of A is a subobject of an element of I,
(2) for any short exact sequence 0 → P → Q → R → 0 of A with P,Q ∈ I,

then R ∈ I, and 0→ F (P )→ F (Q)→ F (R)→ 0 is exact.

Then every object of I is acyclic for RF .

Proof. We may add 0 to I if necessary. Pick A ∈ I. Let A[0] → K• be a
quasi-isomorphism with K• bounded below. Then we can find a quasi-isomorphism
K• → I• with I• bounded below and each In ∈ I, see Lemma 13.16.4. Hence we
see that these resolutions are cofinal in the category A[0]/Qis+(A). To finish the
proof it therefore suffices to show that for any quasi-isomorphism A[0] → I• with
I• bounded above and In ∈ I we have F (A)[0] → F (I•) is a quasi-isomorphism.
To see this suppose that In = 0 for n < n0. Of course we may assume that n0 < 0.
Starting with n = n0 we prove inductively that Im(dn−1) = Ker(dn) and Im(d−1)
are elements of I using property (2) and the exact sequences

0→ Ker(dn)→ In → Im(dn)→ 0.

Moreover, property (2) also guarantees that the complex

0→ F (In0)→ F (In0+1)→ . . .→ F (I−1)→ F (Im(d−1))→ 0

is exact. The exact sequence 0 → Im(d−1) → I0 → I0/Im(d−1) → 0 implies that
I0/Im(d−1) is an element of I. The exact sequence 0 → A → I0/Im(d−1) →
Im(d0)→ 0 then implies that Im(d0) = Ker(d1) is an elements of I and from then
on one continues as before to show that Im(dn−1) = Ker(dn) is an element of I for
all n > 0. Applying F to each of the short exact sequences mentioned above and
using (2) we observe that F (A)[0]→ F (I•) is an isomorphism as desired. �
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Lemma 13.16.7. In Situation 13.16.1. Let P ⊂ Ob(A) be a subset with the
following properties:

(1) every object of A is a quotient of an element of P,
(2) for any short exact sequence 0 → P → Q → R → 0 of A with Q,R ∈ P,

then P ∈ P, and 0→ F (P )→ F (Q)→ F (R)→ 0 is exact.

Then every object of P is acyclic for LF .

Proof. Dual to the proof of Lemma 13.16.6. �

Proposition 13.16.8. In Situation 13.16.1.

(1) If every object of A injects into an object acyclic for RF , then RF is
defined on all of K+(A) and we obtain an exact functor

RF : D+(B) −→ D+(A)

see (13.15.9.1). Moreover, any bounded below complex K• whose terms
are acyclic for RF computes RF .

(2) If every object of A is quotient of an object acyclic for LF , then LF is
defined on all of K−(A) and we obtain an exact functor

LF : D−(B) −→ D−(A)

see (13.15.9.1). Moreover, any bounded above complex K• whose terms
are acyclic for LF computes LF .

Proof. Suppose every object of A injects into an object acyclic for RF . Let I
be the set of objects acyclic for RF . Let K• be a bounded below complex with
Kn ∈ I. By Lemma 13.16.4 the quasi-isomorphisms α : K• → I• with I• bounded
below and In ∈ I are cofinal in the category K•/Qis+(A). Hence in order to show
that K• computes RF it suffices to show that F (K•)→ F (I•) is an isomorphism.
Note that C(α)• is an acyclic bounded below complex all of whose terms are in I.
Hence it suffices to show: given an acyclic bounded below complex I• all of whose
terms are in I the complex F (I•) is acyclic.

Say In = 0 for n < n0. Then we break I• into short exact sequences 0 →
Im(dn) → In+1 → Im(dn+1) → 0 for n ≥ n0. These sequences induce distin-
guished triangles (Im(dn), In+1, Im(dn+1)) by Lemma 13.12.1. This implies induc-
tively that each Im(dn) is acyclic for RF by Lemma 13.15.12. Moreover, the long
exact cohomology sequences (13.11.1.1) associated to the distinguished triangles
(F (Im(dn)), F (In+1), F (Im(dn+1))) of D+(B) imply that

0→ F (Im(dn))→ F (In+1)→ F (Im(dn+1))→ 0

is short exact, and this in turn proves that F (I•) is exact.

Finally, since by Lemma 13.16.4 every object of K+(A) is quasi-isomorphic to such
a bounded below complex with terms in I we see that RF is everywhere defined,
see Lemma 13.15.14. The proof in the case of LF is dual. �

13.17. Higher derived functors

The following simple lemma shows that right derived functors “move to the right”.

Lemma 13.17.1. Let F : A → B be an additive functor between abelian categories.
Let K• ∈ K+(A) and a ∈ Z.
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(1) If Hi(K•) = 0 for all i < a and RF is defined at K•, then Hi(RF (K•)) =
0 for all i < a.

(2) If RF is defined at K• and τ≤aK
•, then Hi(RF (τ≤aK

•)) = Hi(RF (K•))
for all i ≤ a.

Proof. Assume K• satisfies the assumptions of (1). Let K• → L• be any quasi-
isomorphism. Then it is also true that K• → τ≥aL

• is a quasi-isomorphism by our
assumption on K•. Hence in the category K•/Qis+(A) the quasi-isomorphisms
s : K• → L• with Ln = 0 for n < a are cofinal. Thus RF is the value of the
essentially constant ind-object F (L•) for these s it follows that Hi(RF (K•)) = 0
for i < 0.

To prove (2) we use the distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → (τ≤aK
•)[1]

of Remark 13.12.4 to conclude via Lemma 13.15.6 that RF is defined at τ≥a+1K
•

as well and that we have a distinguished triangle

RF (τ≤aK
•)→ RF (K•)→ RF (τ≥a+1K

•)→ RF (τ≤aK
•)[1]

in D(B). By part (1) we see that RF (τ≥a+1K
•) has vanishing cohomology in

degrees < a+ 1. The long exact cohomology sequence of this distinguished triangle
then shows what we want. �

Definition 13.17.2. Let F : A → B be an additive functor between abelian
categories. Assume RF : D+(A) → D+(B) is everywhere defined. Let i ∈ Z. The
ith right derived functor RiF of F is the functor

RiF = Hi ◦RF : A −→ B

The following lemma shows that it really does not make a lot of sense to take the
right derived functor unless the functor is left exact.

Lemma 13.17.3. Let F : A → B be an additive functor between abelian categories
and assume RF : D+(A)→ D+(B) is everywhere defined.

(1) We have RiF = 0 for i < 0,
(2) R0F is left exact,
(3) the map F → R0F is an isomorphism if and only if F is left exact.

Proof. Let A be an object of A. Let A[0]→ K• be any quasi-isomorphism. Then
it is also true that A[0] → τ≥0K

• is a quasi-isomorphism. Hence in the category
A[0]/Qis+(A) the quasi-isomorphisms s : A[0] → K• with Kn = 0 for n < 0 are
cofinal. Thus it is clear that Hi(RF (A[0])) = 0 for i < 0. Moreover, for such an s
the sequence

0→ A→ K0 → K1

is exact. Hence if F is left exact, then 0 → F (A) → F (K0) → F (K1) is exact as
well, and we see that F (A) → H0(F (K•)) is an isomorphism for every s : A[0] →
K• as above which implies that H0(RF (A[0])) = F (A).

Let 0 → A → B → C → 0 be a short exact sequence of A. By Lemma 13.12.1 we
obtain a distinguished triangle (A[0], B[0], C[0], a, b, c) in K+(A). From the long
exact cohomology sequence (and the vanishing for i < 0 proved above) we deduce
that 0 → R0F (A) → R0F (B) → R0F (C) is exact. Hence R0F is left exact. Of
course this also proves that if F → R0F is an isomorphism, then F is left exact. �
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Lemma 13.17.4. Let F : A → B be an additive functor between abelian categories
and assume RF : D+(A)→ D+(B) is everywhere defined. Let A be an object of A.

(1) A is right acyclic for F if and only if F (A)→ R0F (A) is an isomorphism
and RiF (A) = 0 for all i > 0,

(2) if F is left exact, then A is right acyclic for F if and only if RiF (A) = 0
for all i > 0.

Proof. If A is right acyclic for F , then RF (A[0]) = F (A)[0] and in particular
F (A) → R0F (A) is an isomorphism and RiF (A) = 0 for i 6= 0. Conversely, if
F (A)→ R0F (A) is an isomorphism and RiF (A) = 0 for all i > 0 then F (A[0])→
RF (A[0]) is a quasi-isomorphism by Lemma 13.17.3 part (1) and hence A is acyclic.
If F is left exact then F = R0F , see Lemma 13.17.3. �

Lemma 13.17.5. Let F : A → B be a left exact functor between abelian categories
and assume RF : D+(A)→ D+(B) is everywhere defined. Let 0→ A→ B → C →
0 be a short exact sequence of A.

(1) If A and C are right acyclic for F then so is B.
(2) If A and B are right acyclic for F then so is C.
(3) If B and C are right acyclic for F and F (B) → F (C) is surjective then

A is right acyclic for F .

In each of the three cases

0→ F (A)→ F (B)→ F (C)→ 0

is a short exact sequence of B.

Proof. By Lemma 13.12.1 we obtain a distinguished triangle (A[0], B[0], C[0], a, b, c)
in K+(A). As RF is an exact functor and since RiF = 0 for i < 0 and R0F = F
(Lemma 13.17.3) we obtain an exact cohomology sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ . . .

in the abelian category B. Thus the lemma follows from the characterization of
acyclic objects in Lemma 13.17.4. �

Lemma 13.17.6. Let F : A → B be an additive functor between abelian categories
and assume RF : D+(A)→ D+(B) is everywhere defined.

(1) The functors RiF , i ≥ 0 come equipped with a canonical structure of a
δ-functor from A → B, see Homology, Definition 12.11.1.

(2) If every object of A is a subobject of a right acyclic object for F , then
{RiF, δ}i≥0 is a universal δ-functor, see Homology, Definition 12.11.3.

Proof. The functorA → Comp+(A), A 7→ A[0] is exact. The functor Comp+(A)→
D+(A) is a δ-functor, see Lemma 13.12.1. The functor RF : D+(A) → D+(B) is
exact. Finally, the functor H0 : D+(B)→ B is a homological functor, see Definition
13.11.3. Hence we get the structure of a δ-functor from Lemma 13.4.20 and Lemma
13.4.19. Part (2) follows from Homology, Lemma 12.11.4 and the description of
acyclics in Lemma 13.17.4. �

Lemma 13.17.7 (Leray’s acyclicity lemma). Let F : A → B be an additive func-
tor between abelian categories and assume RF : D+(A) → D+(B) is everywhere
defined. Let A• be a bounded below complex of F -acyclic objects. The canonical
map

F (A•) −→ RF (A•)
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is an isomorphism in D+(B), i.e., A• computes RF .

Proof. First we claim the lemma holds for a bounded complex of acyclic objects.
Namely, it holds for complexes with at most one nonzero object by definition.
Suppose that A• is a complex with An = 0 for n 6∈ [a, b]. Using the “stupid”
truncations we obtain a termwise split short exact sequence of complexes

0→ σ≥a+1A
• → A• → σ≤aA

• → 0

see Homology, Section 12.13. Thus a distinguished triangle (σ≥a+1A
•, A•, σ≤aA

•).
By induction hypothesis the two outer complexes compute RF . Then the middle
one does too by Lemma 13.15.12.

Suppose that A• is a bounded below complex of acyclic objects. To show that
F (A)→ RF (A) is an isomorphism in D+(B) it suffices to show that Hi(F (A))→
Hi(RF (A)) is an isomorphism for all i. Pick i. Consider the termwise split short
exact sequence of complexes

0→ σ≥i+2A
• → A• → σ≤i+1A

• → 0.

Note that this induces a termwise split short exact sequence

0→ σ≥i+2F (A•)→ F (A•)→ σ≤i+1F (A•)→ 0.

Hence we get distinguished triangles

(σ≥i+2A
•, A•, σ≤i+1A

•)
(σ≥a+1F (A•), F (A•), σ≤aF (A•))

(RF (σ≥a+1A
•), RF (A•), RF (σ≤aA

•))

Using the last two we obtain a map of exact sequences

Hi(σ≥i+2F (A•)) //

��

Hi(F (A•)) //

α

��

Hi(σ≤i+1F (A•)) //

β

��

Hi+1(σ≥i+2F (A•))

��
RiF (σ≥i+2A

•) // RiF (A•) // RiF (σ≤i+1A
•) // Ri+1F (σ≥i+2A

•)

By the results of the first paragraph the map β is an isomorphism. By inspection
the objects on the upper left and the upper right are zero. Hence to finish the proof
we have to show that RiF (σ≥i+2A

•) = 0 and Ri+1F (σ≥i+2A
•) = 0. This follows

immediately from Lemma 13.17.1. �

Lemma 13.17.8. Let F : A → B be an exact functor of abelian categories. Then

(1) every object of A is right acyclic for F ,
(2) RF : D+(A)→ D+(A) is everywhere defined,
(3) RF : D(A)→ D(A) is everywhere defined,
(4) every complex computes RF , in other words, the canonical map F (K•)→

RF (K•) is an isomorphism for all complexes, and
(5) RiF = 0 for i 6= 0.

Proof. This is true because F transforms acyclic complexes into acyclic complexes
and quasi-isomorphisms into quasi-isomorphisms. Details omitted. �
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13.18. Injective resolutions

In this section we prove some lemmas regarding the existence of injective resolutions
in abelian categories having enough injectives.

Definition 13.18.1. Let A be an abelian category. Let A ∈ Ob(A). An injective
resolution of A is a complex I• together with a map A→ I0 such that:

(1) We have In = 0 for n < 0.
(2) Each In is an injective object of A.
(3) The map A→ I0 is an isomorphism onto Ker(d0).
(4) We have Hi(I•) = 0 for i > 0.

Hence A[0]→ I• is a quasi-isomorphism. In other words the complex

. . .→ 0→ A→ I0 → I1 → . . .

is acyclic. Let K• be a complex in A. An injective resolution of K• is a complex
I• together with a map α : K• → I• of complexes such that

(1) We have In = 0 for n� 0, i.e., I• is bounded below.
(2) Each In is an injective object of A.
(3) The map α : K• → I• is a quasi-isomorphism.

In other words an injective resolution K• → I• gives rise to a diagram

. . . // Kn−1

��

// Kn

��

// Kn+1

��

// . . .

. . . // In−1 // In // In+1 // . . .

which induces an isomorphism on cohomology objects in each degree. An injective
resolution of an object A of A is almost the same thing as an injective resolution
of the complex A[0].

Lemma 13.18.2. Let A be an abelian category. Let K• be a complex of A.

(1) If K• has an injective resolution then Hn(K•) = 0 for n� 0.
(2) If Hn(K•) = 0 for all n� 0 then there exists a quasi-isomorphism K• →

L• with L• bounded below.

Proof. Omitted. For the second statement use L• = τ≥nK
• for some n� 0. See

Homology, Section 12.13 for the definition of the truncation τ≥n. �

Lemma 13.18.3. Let A be an abelian category. Assume A has enough injectives.

(1) Any object of A has an injective resolution.
(2) If Hn(K•) = 0 for all n� 0 then K• has an injective resolution.
(3) If K• is a complex with Kn = 0 for n < a, then there exists an injective

resolution α : K• → I• with In = 0 for n < a such that each αn : Kn →
In is injective.

Proof. Proof of (1). First choose an injection A→ I0 of A into an injective object
of A. Next, choose an injection I0/A → I1 into an injective object of A. Denote
d0 the induced map I0 → I1. Next, choose an injection I1/Im(d0) → I2 into
an injective object of A. Denote d1 the induced map I1 → I2. And so on. By
Lemma 13.18.2 part (2) follows from part (3). Part (3) is a special case of Lemma
13.16.4. �
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Lemma 13.18.4. Let A be an abelian category. Let K• be an acyclic complex. Let
I• be bounded below and consisting of injective objects. Any morphism K• → I• is
homotopic to zero.

Proof. Let α : K• → I• be a morphism of complexes. Assume that αj = 0 for
j < n. We will show that there exists a morphism h : Kn+1 → In such that
αn = h ◦ d. Thus α will be homotopic to the morphism of complexes β defined by

βj =

 0 if j ≤ n
αn+1 − d ◦ h if j = n+ 1

αj if j > n+ 1

This will clearly prove the lemma (by induction). To prove the existence of h note
that αn|dn−1(Kn−1) = 0 since αn−1 = 0. Since K• is acyclic we have dn−1(Kn−1) =

Ker(Kn → Kn+1). Hence we can think of αn as a map into In defined on the
subobject Im(Kn → Kn+1) of Kn+1. By injectivity of the object In we can extend
this to a map h : Kn+1 → In as desired. �

Remark 13.18.5. Let A be an abelian category. Using the fact that K(A) is a
triangulated category we may use Lemma 13.18.4 to obtain proofs of some of the
lemmas below which are usually proved by chasing through diagrams. Namely,
suppose that α : K• → L• is a quasi-isomorphism of complexes. Then

(K•, L•, C(α)•, α, i,−p)

is a distinguished triangle inK(A) (Lemma 13.9.14) and C(f)• is an acyclic complex
(Lemma 13.11.2). Next, let I• be a bounded below complex of injective objects.
Then

HomK(A)(C(α)•, I•) // HomK(A)(L
•, I•) // HomK(A)(K

•, I•)

rr
HomK(A)(C(α)•[−1], I•)

is an exact sequence of abelian groups, see Lemma 13.4.2. At this point Lemma
13.18.4 guarantees that the outer two groups are zero and hence HomK(A)(L

•, I•) =
HomK(A)(K

•, I•).

Lemma 13.18.6. Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

where I• is bounded below and consists of injective objects, and α is a quasi-
isomorphism.

(1) There exists a map of complexes β making the diagram commute up to
homotopy.

(2) If α is injective in every degree then we can find a β which makes the
diagram commute.

Proof. The “correct” proof of part (1) is explained in Remark 13.18.5. We also
give a direct proof here.
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We first show that (2) implies (1). Namely, let α̃ : K → L̃•, π, s be as in Lemma

13.9.6. Since α̃ is injective by (2) there exists a morphism β̃ : L̃• → I• such that

γ = β̃ ◦ α̃. Set β = β̃ ◦ s. Then we have

β ◦ α = β̃ ◦ s ◦ π ◦ α̃ ∼ β̃ ◦ α̃ = γ

as desired.

Assume that α : K• → L• is injective. Suppose we have already defined β in all
degrees ≤ n − 1 compatible with differentials and such that γj = βj ◦ αj for all
j ≤ n− 1. Consider the commutative solid diagram

Kn−1 //

γ

��

α

��

Kn

γ

��

α

��
Ln−1 //

β
��

Ln

��
In−1 // In

Thus we see that the dotted arrow is prescribed on the subobjects α(Kn) and
dn−1(Ln−1). Moreover, these two arrows agree on α(dn−1(Kn−1)). Hence if

(13.18.6.1) α(dn−1(Kn−1)) = α(Kn) ∩ dn−1(Ln−1)

then these morphisms glue to a morphism α(Kn) + dn−1(Ln−1) → In and, using
the injectivity of In, we can extend this to a morphism from all of Ln into In.
After this by induction we get the morphism β for all n simultaneously (note that
we can set βn = 0 for all n � 0 since I• is bounded below – in this way starting
the induction).

It remains to prove the equality (13.18.6.1). The reader is encouraged to argue this
for themselves with a suitable diagram chase. Nonetheless here is our argument.
Note that the inclusion α(dn−1(Kn−1)) ⊂ α(Kn) ∩ dn−1(Ln−1) is obvious. Take
an object T of A and a morphism x : T → Ln whose image is contained in the
subobject α(Kn)∩ dn−1(Ln−1). Since α is injective we see that x = α ◦x′ for some
x′ : T → Kn. Moreover, since x lies in dn−1(Ln−1) we see that dn ◦ x = 0. Hence
using injectivity of α again we see that dn ◦ x′ = 0. Thus x′ gives a morphism
[x′] : T → Hn(K•). On the other hand the corresponding map [x] : T → Hn(L•)
induced by x is zero by assumption. Since α is a quasi-isomorphism we conclude
that [x′] = 0. This of course means exactly that the image of x′ is contained in
dn−1(Kn−1) and we win. �

Lemma 13.18.7. Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

where I• is bounded below and consists of injective objects, and α is a quasi-
isomorphism. Any two morphisms β1, β2 making the diagram commute up to ho-
motopy are homotopic.

http://stacks.math.columbia.edu/tag/013S
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Proof. This follows from Remark 13.18.5. We also give a direct argument here.

Let α̃ : K → L̃•, π, s be as in Lemma 13.9.6. If we can show that β1◦π is homotopic
to β2 ◦ π, then we deduce that β1 ∼ β2 because π ◦ s is the identity. Hence we may
assume αn : Kn → Ln is the inclusion of a direct summand for all n. Thus we get
a short exact sequence of complexes

0→ K• → L• →M• → 0

which is termwise split and such that M• is acyclic. We choose splittings Ln =
Kn ⊕Mn, so we have βni : Kn ⊕Mn → In and γn : Kn → In. In this case the
condition on βi is that there are morphisms hni : Kn → In−1 such that

γn − βni |Kn = d ◦ hni + hn+1
i ◦ d

Thus we see that

βn1 |Kn − βn2 |Kn = d ◦ (hn1 − hn2 ) + (hn+1
1 − hn+1

2 ) ◦ d

Consider the map hn : Kn⊕Mn → In−1 which equals hn1−hn2 on the first summand
and zero on the second. Then we see that

βn1 − βn2 − (d ◦ hn + hn+1) ◦ d)

is a morphism of complexes L• → I• which is identically zero on the subcomplex
K•. Hence it factors as L• →M• → I•. Thus the result of the lemma follows from
Lemma 13.18.4. �

Lemma 13.18.8. Let A be an abelian category. Let I• be bounded below complex
consisting of injective objects. Let L• ∈ K(A). Then

MorK(A)(L
•, I•) = MorD(A)(L

•, I•).

Proof. Let a be an element of the right hand side. We may represent a = γα−1

where α : K• → L• is a quasi-isomorphism and γ : K• → I• is a map of complexes.
By Lemma 13.18.6 we can find a morphism β : L• → I• such that β◦α is homotopic
to γ. This proves that the map is surjective. Let b be an element of the left hand
side which maps to zero in the right hand side. Then b is the homotopy class of
a morphism β : L• → I• such that there exists a quasi-isomorphism α : K• → L•

with β ◦ α homotopic to zero. Then Lemma 13.18.7 shows that β is homotopic to
zero also, i.e., b = 0. �

Lemma 13.18.9. Let A be an abelian category. Assume A has enough injectives.
For any short exact sequence 0 → A• → B• → C• → 0 of Comp+(A) there exists
a commutative diagram in Comp+(A)

0 // A• //

��

B• //

��

C• //

��

0

0 // I•1 // I•2 // I•3 // 0

where the vertical arrows are injective resolutions and the rows are short exact
sequences of complexes. In fact, given any injective resolution A• → I• we may
assume I•1 = I•.

http://stacks.math.columbia.edu/tag/05TG
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Proof. Step 1. Choose an injective resolution A• → I• (see Lemma 13.18.3) or
use the given one. Recall that Comp+(A) is an abelian category, see Homology,
Lemma 12.12.9. Hence we may form the pushout along the injective map A• → I•

to get

0 // A• //

��

B• //

��

C• //

��

0

0 // I• // E• // C• // 0
Note that the lower short exact sequence is termwise split, see Homology, Lemma
12.23.2. Hence it suffices to prove the lemma when 0 → A• → B• → C• → 0 is
termwise split.

Step 2. Choose splittings. In other words, write Bn = An ⊕ Cn. Denote δ : C• →
A•[1] the morphism as in Homology, Lemma 12.14.10. Choose injective resolutions
f1 : A• → I•1 and f3 : C• → I•3 . (If A• is a complex of injectives, then use I•1 = A•.)
We may assume f3 is injective in every degree. By Lemma 13.18.6 we may find a
morphism δ′ : I•3 → I•1 [1] such that δ′ ◦ f3 = f1[1] ◦ δ (equality of morphisms of
complexes). Set In2 = In1 ⊕ In3 . Define

dnI2 =

(
dnI1 (δ′)n

0 dnI3

)
and define the maps Bn → In2 to be given as the sum of the maps An → In1 and
Cn → In3 . Everything is clear. �

13.19. Projective resolutions

This section is dual to Section 13.18. We give definitions and state results, but we
do not reprove the lemmas.

Definition 13.19.1. Let A be an abelian category. Let A ∈ Ob(A). An projective
resolution of A is a complex P • together with a map P 0 → A such that:

(1) We have Pn = 0 for n > 0.
(2) Each Pn is an projective object of A.
(3) The map P 0 → A induces an isomorphism Coker(d−1)→ A.
(4) We have Hi(P •) = 0 for i < 0.

Hence P • → A[0] is a quasi-isomorphism. In other words the complex

. . .→ P−1 → P 0 → A→ 0→ . . .

is acyclic. Let K• be a complex in A. An projective resolution of K• is a complex
P • together with a map α : P • → K• of complexes such that

(1) We have Pn = 0 for n� 0, i.e., P • is bounded above.
(2) Each Pn is an projective object of A.
(3) The map α : P • → K• is a quasi-isomorphism.

Lemma 13.19.2. Let A be an abelian category. Let K• be a complex of A.

(1) If K• has a projective resolution then Hn(K•) = 0 for n� 0.
(2) If Hn(K•) = 0 for n� 0 then there exists a quasi-isomorphism L• → K•

with L• bounded above.

Proof. Dual to Lemma 13.18.2. �

Lemma 13.19.3. Let A be an abelian category. Assume A has enough projectives.
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(1) Any object of A has a projective resolution.
(2) If Hn(K•) = 0 for all n� 0 then K• has a projective resolution.
(3) If K• is a complex with Kn = 0 for n > a, then there exists a projective

resolution α : P • → K• with Pn = 0 for n > a such that each αn : Pn →
Kn is surjective.

Proof. Dual to Lemma 13.18.3. �

Lemma 13.19.4. Let A be an abelian category. Let K• be an acyclic complex. Let
P • be bounded above and consisting of projective objects. Any morphism P • → K•

is homotopic to zero.

Proof. Dual to Lemma 13.18.4. �

Remark 13.19.5. Let A be an abelian category. Suppose that α : K• → L•

is a quasi-isomorphism of complexes. Let P • be a bounded above complex of
projectives. Then

HomK(A)(P
•,K•) −→ HomK(A)(P

•, L•)

is an isomorphism. This is dual to Remark 13.18.5.

Lemma 13.19.6. Let A be an abelian category. Consider a solid diagram

K• L•
α
oo

P •

OO

β

==

where P • is bounded above and consists of projective objects, and α is a quasi-
isomorphism.

(1) There exists a map of complexes β making the diagram commute up to
homotopy.

(2) If α is surjective in every degree then we can find a β which makes the
diagram commute.

Proof. Dual to Lemma 13.18.6. �

Lemma 13.19.7. Let A be an abelian category. Consider a solid diagram

K• L•
α
oo

P •

OO

βi

==

where P • is bounded above and consists of projective objects, and α is a quasi-
isomorphism. Any two morphisms β1, β2 making the diagram commute up to ho-
motopy are homotopic.

Proof. Dual to Lemma 13.18.7. �

Lemma 13.19.8. Let A be an abelian category. Let P • be bounded above complex
consisting of projective objects. Let L• ∈ K(A). Then

MorK(A)(P
•, L•) = MorD(A)(P

•, L•).

Proof. Dual to Lemma 13.18.8. �
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Lemma 13.19.9. Let A be an abelian category. Assume A has enough projectives.
For any short exact sequence 0 → A• → B• → C• → 0 of Comp+(A) there exists
a commutative diagram in Comp+(A)

0 // P •1 //

��

P •2 //

��

P •3 //

��

0

0 // A• // B• // C• // 0

where the vertical arrows are projective resolutions and the rows are short exact
sequences of complexes. In fact, given any projective resolution P • → C• we may
assume P •3 = P •.

Proof. Dual to Lemma 13.18.9. �

Lemma 13.19.10. Let A be an abelian category. Let P •, K• be complexes. Let
n ∈ Z. Assume that

(1) P • is a bounded complex consisting of projective objects,
(2) P i = 0 for i < n, and
(3) Hi(K•) = 0 for i ≥ n.

Then HomK(A)(P
•,K•) = HomD(A)(P

•,K•) = 0.

Proof. The first equality follows from Lemma 13.19.8. Note that there is a distin-
guished triangle

(τ≤n−1K
•,K•, τ≥nK

•, f, g, h)

by Remark 13.12.4. Hence, by Lemma 13.4.2 it suffices to prove HomK(A)(P
•, τ≤n−1K

•) =
0 and HomK(A)(P

•, τ≥nK
•) = 0. The first vanishing is trivial and the second is

Lemma 13.19.4. �

Lemma 13.19.11. Let A be an abelian category. Let β : P • → L• and α : E• → L•

be maps of complexes. Let n ∈ Z. Assume

(1) P • is a bounded complex of projectives and P i = 0 for i < n,
(2) Hi(α) is an isomorphism for i > n and surjective for i = n.

Then there exists a map of complexes γ : P • → E• such that α ◦ γ and β are
homotopic.

Proof. Consider the cone C• = C(α)• with map i : L• → C•. Note that i ◦ β is
zero by Lemma 13.19.10. Hence we can lift β to E• by Lemma 13.4.2. �

13.20. Right derived functors and injective resolutions

At this point we can use the material above to define the right derived functors
of an additive functor between an abelian category having enough injectives and a
general abelian category.

Lemma 13.20.1. Let A be an abelian category. Let I ∈ Ob(A) be an injective
object. Let I• be a bounded below complex of injectives in A.

(1) I• computes RF relative to Qis+(A) for any exact functor F : K+(A)→
D into any triangulated category D.

(2) I is right acyclic for any additive functor F : A → B into any abelian
category B.
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Proof. Part (2) is a direct consequences of part (1) and Definition 13.16.3. To prove
(1) let α : I• → K• be a quasi-isomorphism into a complex. By Lemma 13.18.7 we
see that α has a left inverse. Hence the category I•/Qis+(A) is essentially constant
with value id : I• → I•. Thus also the ind-object

I•/Qis+(A) −→ D, (I• → K•) 7−→ F (K•)

is essentially constant with value F (I•). This proves (1), see Definitions 13.15.2
and 13.15.10. �

Lemma 13.20.2. Let A be an abelian category with enough injectives.

(1) For any exact functor F : K+(A)→ D into a triangulated category D the
right derived functor

RF : D+(A) −→ D
is everywhere defined.

(2) For any additive functor F : A → B into an abelian category B the right
derived functor

RF : D+(A) −→ D+(B)

is everywhere defined.

Proof. Combine Lemma 13.20.1 and Proposition 13.16.8 for the second assertion.
To see the first assertion combine Lemma 13.18.3, Lemma 13.20.1, Lemma 13.15.14,
and Equation (13.15.9.1). �

Lemma 13.20.3. Let A be an abelian category with enough injectives. Let F :
A → B be an additive functor.

(1) The functor RF is an exact functor D+(A)→ D+(B).
(2) The functor RF induces an exact functor K+(A)→ D+(B).
(3) The functor RF induces a δ-functor Comp+(A)→ D+(B).
(4) The functor RF induces a δ-functor A → D+(B).

Proof. This lemma simply reviews some of the results obtained so far. Note that
by Lemma 13.20.2 RF is everywhere defined. Here are some references:

(1) The derived functor is exact: This boils down to Lemma 13.15.6.
(2) This is true because K+(A)→ D+(A) is exact and compositions of exact

functors are exact.
(3) This is true because Comp+(A) → D+(A) is a δ-functor, see Lemma

13.12.1.
(4) This is true because A → Comp+(A) is exact and precomposing a δ-

functor by an exact functor gives a δ-functor.

�

Lemma 13.20.4. Let A be an abelian category with enough injectives. Let F :
A → B be a left exact functor.

(1) For any short exact sequence 0 → A• → B• → C• → 0 of complexes in
Comp+(A) there is an associated long exact sequence

. . .→ Hi(RF (A•))→ Hi(RF (B•))→ Hi(RF (C•))→ Hi+1(RF (A•))→ . . .

(2) The functors RiF : A → B are zero for i < 0. Also R0F = F : A → B.
(3) We have RiF (I) = 0 for i > 0 and I injective.

http://stacks.math.columbia.edu/tag/05TI
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(4) The sequence (RiF, δ) forms a universal δ-functor (see Homology, Defini-
tion 12.11.3) from A to B.

Proof. This lemma simply reviews some of the results obtained so far. Note that
by Lemma 13.20.2 RF is everywhere defined. Here are some references:

(1) This follows from Lemma 13.20.3 part (3) combined with the long exact
cohomology sequence (13.11.1.1) for D+(B).

(2) This is Lemma 13.17.3.
(3) This is the fact that injective objects are acyclic.
(4) This is Lemma 13.17.6.

�

13.21. Cartan-Eilenberg resolutions

This section can be expanded. The material can be generalized and applied in
more cases. Resolutions need not use injectives and the method also works in the
unbounded case in some situations.

Definition 13.21.1. Let A be an abelian category. Let K• be a bounded below
complex. A Cartan-Eilenberg resolution of K• is given by a double complex I•,•

and a morphism of complexes ε : K• → I•,0 with the following properties:

(1) There exists a i� 0 such that Ip,q = 0 for all p < i and all q.
(2) We have Ip,q = 0 if q < 0.
(3) The complex Ip,• is an injective resolution of Kp.
(4) The complex Ker(dp,•1 ) is an injective resolution of Ker(dpK).
(5) The complex Im(dp,•1 ) is an injective resolution of Im(dpK).
(6) The complex Hp

I (I•,•) is an injective resolution of Hp(K•).

Lemma 13.21.2. Let A be an abelian category with enough injectives. Let K• be
a bounded below complex. There exists a Cartan-Eilenberg resolution of K•.

Proof. Suppose that Kp = 0 for p < n. Decompose K• into short exact sequences
as follows: Set Zp = Ker(dp), Bp = Im(dp−1), Hp = Zp/Bp, and consider

0→ Zn → Kn → Bn+1 → 0
0→ Bn+1 → Zn+1 → Hn+1 → 0
0→ Zn+1 → Kn+1 → Bn+2 → 0
0→ Bn+2 → Zn+2 → Hn+2 → 0

. . .

Set Ip,q = 0 for p < n. Inductively we choose injective resolutions as follows:

(1) Choose an injective resolution Zn → Jn,•Z .
(2) Using Lemma 13.18.9 choose injective resolutions Kn → In,•, Bn+1 →

Jn+1,•
B , and an exact sequence of complexes 0→ Jn,•Z → In,• → Jn+1,•

B →
0 compatible with the short exact sequence 0→ Zn → Kn → Bn+1 → 0.

(3) Using Lemma 13.18.9 choose injective resolutions Zn+1 → Jn+1,•
Z , Hn+1 →

Jn+1,•
H , and an exact sequence of complexes 0 → Jn+1,•

B → Jn+1,•
Z →

Jn+1,•
H → 0 compatible with the short exact sequence 0 → Bn+1 →
Zn+1 → Hn+1 → 0.

(4) Etc.

Taking as maps d•1 : Ip,• → Ip+1,• the compositions Ip,• → Jp+1,•
B → Jp+1,•

Z →
Ip+1,• everything is clear. �
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Lemma 13.21.3. Let F : A → B be a left exact functor of abelian categories. Let
K• be a bounded below complex of A. Let I•,• be a Cartan-Eilenberg resolution for
K•. The spectral sequences (′Er,

′dr)r≥0 and (′′Er,
′′dr)r≥0 associated to the double

complex F (I•,•) satisfy the relations4

′Ep,q2 = Hp(RqF (K•)) and ′′Ep,q2 = RpF (Hq(K•))

Moreover, these spectral sequences converge to Hp+q(RF (K•)) and the associated
induced filtrations on Hp+q(RF (K•)) are finite.

Proof. We will use the following remarks without further mention:

(1) As Ip,• is an injective resolution of Kp we see that RF is defined at Kp[0]
with value F (Ip,•).

(2) As Hp
I (I•,•) is an injective resolution of Hp(K•) the derived functor RF

is defined at Hp(K•)[0] with value F (Hp
I (I•,•)).

(3) By Homology, Lemma 12.22.7 the total complex sI• is an injective reso-
lution of K•. Hence RF is defined at K• with value F (sI•).

Consider the spectral sequences associated to the double complex K•,• = F (I•,•),
see Homology, Lemma 12.22.4. These both converge, see Homology, Lemma 12.22.6,
to the cohomology groups of the associated total complex s(F (I•,•) = F (sI•) which
computes Hn(RF (K•)).

Computation of the first spectral sequence. We have ′Ep,q1 = Hq(Kp,•) in other
words

′Ep,q1 = Hq(F (Ip,•)) = RqF (Kp)

and the maps ′Ep,q1 → ′Ep+1,q are the maps RqF (Kp)→ RqF (Kp+1) as desired.

Computation of the second spectral sequence. We have ′′Ep,q1 = Hq(K•,p) =
Hq(F (I•,p)). Note that the complex I•,p is bounded below, consists of injectives,
and moreover each kernel, image, and cohomology group of the differentials is an
injective object of A. Hence we can split the differentials, i.e., each differential is
a split surjection onto a direct summand. It follows that the same is true after
applying F . Hence ′′Ep,q1 = F (Hq(I•,p)) = F (Hq

I (I•,p)). The differentials on this
are (−1)q times F applied to the differential of the complex Hp

I (I•,•) which is an
injective resolution of Hp(K•). Hence the description of the E2 terms. �

Remark 13.21.4. The spectral sequences of Lemma 13.21.3 are functorial in the
complex K•. This follows from functoriality properties of Cartan-Eilenberg res-
olutions. On the other hand, they are both examples of a more general spectral
sequence which may be associated to a filtered complex of A. The functoriality will
follow from its construction. We will return to this in the section on the filtered
derived category, see Remark 13.26.15.

13.22. Composition of right derived functors

Sometimes we can compute the right derived functor of a composition. Suppose
that A,B, C be abelian categories. Let F : A → B and G : B → C be left exact
functors. Assume that the right derived functors RF : D+(A) → D+(B), RG :

4The notation Hp(RqF (K•)) really means the pth cohomology group of the complex with
terms RqF (Kn). Not the pth cohomology of the qth derived functor of F applied to K•.
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D+(B) → D+(C), and R(G ◦ F ) : D+(A) → D+(C) are everywhere defined. Then
there exists a canonical transformation

t : R(G ◦ F ) −→ RG ◦RF
of functors from D+(A) to D+(C), see Lemma 13.15.16. This transformation need
not always be an isomorphism.

Lemma 13.22.1. Let A,B, C be abelian categories. Let F : A → B and G : B → C
be left exact functors. Assume A, B have enough injectives. If F (I) is right acyclic
for G for each injective object I of A, then we have an isomorphism of functors

t : R(G ◦ F ) −→ RG ◦RF.
of functors from D+(A) to D+(C).

Proof. Let A• be a bounded below complex of A. Choose an injective resolution
A• → I•. The map t is given (see proof of Lemma 13.15.16) by the maps

R(G ◦ F )(A•) = (G ◦ F )(I•) = G(F (I•)))→ RG(F (I•)) = RG(RF (A•))

where the arrow is an isomorphism by Lemma 13.17.7. �

Lemma 13.22.2 (Grothendieck spectral sequence). With assumptions as in Lemma
13.22.1. Let A be an object of A. There exists a spectral sequence (Ep,qr , dp,qr )r≥0

associated to a filtered complex with

Ep,q2 = RpG(RqF (A))

converging to Rp+q(G ◦ F )(A). Moreover, the induced filtration on each Rn(G ◦
F )(A) is finite.

Proof. Choose an injective resolution A → I•. Choose a Cartan-Eilenberg reso-
lution F (I•) → I•,• using Lemma 13.21.2. Apply Lemma 13.21.3 (use the second
spectral sequence). Details omitted. �

13.23. Resolution functors

Let A be an abelian category with enough injectives. Denote I the full additive
subcategory of A whose objects are the injective objects of A. It turns out that
K+(I) and D+(A) are equivalent in this case (see Proposition 13.23.1). For many
purposes it therefore makes sense to think of D+(A) as the (easier to grok) category
K+(I) in this case.

Proposition 13.23.1. Let A be an abelian category. Assume A has enough in-
jectives. Denote I ⊂ A the strictly full additive subcategory whose objects are the
injective objects of A. The functor

K+(I) −→ D+(A)

is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated
categories.

Proof. It is clear that the functor is exact. It is essentially surjective by Lemma
13.18.3. Fully faithfulness is a consequence of Lemma 13.18.8. �

Proposition 13.23.1 implies that we can find resolution functors. It turns out that
we can prove resolution functors exist even in some cases where the abelian category
A is a “big” category, i.e., has a class of objects.
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Definition 13.23.2. Let A be an abelian category with enough injectives. A
resolution functor5 for A is given by the following data:

(1) for all K• ∈ Ob(K+(A)) a bounded below complex of injectives j(K•),
and

(2) for all K• ∈ Ob(K+(A)) a quasi-isomorphism iK• : K• → j(K•).

Lemma 13.23.3. Let A be an abelian category with enough injectives. Given a
resolution functor (j, i) there is a unique way to turn j into a functor and i into a
2-isomorphism producing a 2-commutative diagram

K+(A)

$$

j
// K+(I)

zz
D+(A)

where I is the full additive subcategory of A consisting of injective objects.

Proof. For every morphism α : K• → L• of K+(A) there is a unique morphism
j(α) : j(K•)→ j(L•) in K+(I) such that

K•
α

//

iK•

��

L•

iL•

��
j(K•)

j(α) // j(L•)

is commutative in K+(A). To see this either use Lemmas 13.18.6 and 13.18.7 or
the equivalent Lemma 13.18.8. The uniqueness implies that j is a functor, and the
commutativity of the diagram implies that i gives a 2-morphism which witnesses the
2-commutativity of the diagram of categories in the statement of the lemma. �

Lemma 13.23.4. Let A be an abelian category. Assume A has enough injectives.
Then a resolution functor j exists and is unique up to unique isomorphism of func-
tors.

Proof. Consider the set of all objects K• of K+(A). (Recall that by our conven-
tions any category has a set of objects unless mentioned otherwise.) By Lemma
13.18.3 every object has an injective resolution. By the axiom of choice we can
choose for each K• an injective resolution iK• : K• → j(K•). �

Lemma 13.23.5. Let A be an abelian category with enough injectives. Any reso-
lution functor j : K+(A)→ K+(I) is exact.

Proof. Denote iK• : K• → j(K•) the canonical maps of Definition 13.23.2. First
we discuss the existence of the functorial isomorphism j(K•[1]) → j(K•)[1]. Con-
sider the diagram

K•[1]

iK•[1]

��

K•[1]

iK• [1]

��
j(K•[1])

ξK• // j(K•)[1]

5This is likely nonstandard terminology.
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By Lemmas 13.18.6 and 13.18.7 there exists a unique dotted arrow ξK• in K+(I)
making the diagram commute in K+(A). We omit the verification that this gives
a functorial isomorphism. (Hint: use Lemma 13.18.7 again.)

Let (K•, L•,M•, f, g, h) be a distinguished triangle of K+(A). We have to show
that (j(K•), j(L•), j(M•), j(f), j(g), ξK•◦j(h)) is a distinguished triangle ofK+(I).
Note that we have a commutative diagram

K•
f

//

��

L•
g
//

��

M•
h

//

��

K•[1]

��
j(K•)

j(f) // j(L•)
j(g) // j(M•)

ξK•◦j(h) // j(K•)[1]

in K+(A) whose vertical arrows are the quasi-isomorphisms iK , iL, iM . Hence we
see that the image of (j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h)) in D+(A) is iso-
morphic to a distinguished triangle and hence a distinguished triangle by TR1.
Thus we see from Lemma 13.4.16 that (j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h))
is a distinguished triangle in K+(I). �

Lemma 13.23.6. Let A be an abelian category which has enough injectives. Let j
be a resolution functor. Write Q : K+(A)→ D+(A) for the natural functor. Then
j = j′ ◦Q for a unique functor j′ : D+(A)→ K+(I) which is quasi-inverse to the
canonical functor K+(I)→ D+(A).

Proof. By Lemma 13.11.6 Q is a localization functor. To prove the existence of j′

it suffices to show that any element of Qis+(A) is mapped to an isomorphism under
the functor j, see Lemma 13.5.6. This is true by the remarks following Definition
13.23.2. �

Remark 13.23.7. Suppose that A is a “big” abelian category with enough injec-
tives such as the category of abelian groups. In this case we have to be slightly
more careful in constructing our resolution functor since we cannot use the axiom
of choice with a quantifier ranging over a class. But note that the proof of the
lemma does show that any two localization functors are canonically isomorphic.
Namely, given quasi-isomorphisms i : K• → I• and i′ : K• → J• of a bounded be-
low complex K• into bounded below complexes of injectives there exists a unique(!)
morphism a : I• → J• in K+(I) such that i′ = i◦a as morphisms in K+(I). Hence
the only issue is existence, and we will see how to deal with this in the next section.

13.24. Functorial injective embeddings and resolution functors

In this section we redo the construction of a resolution functor K+(A) → K+(I)
in case the category A has functorial injective embeddings. There are two reasons
for this: (1) the proof is easier and (2) the construction also works if A is a “big”
abelian category. See Remark 13.24.3 below.

Let A be an abelian category. As before denote I the additive full subcategory
of A consisting of injective objects. Consider the category InjRes(A) of arrows
α : K• → I• where K• is a bounded below complex of A, I• is a bounded below
complex of injectives of A and α is a quasi-isomorphism. In other words, α is an
injective resolution and K• is bounded below. There is an obvious functor

s : InjRes(A) −→ Comp+(A)

http://stacks.math.columbia.edu/tag/05TK
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defined by (α : K• → I•) 7→ K•. There is also a functor

t : InjRes(A) −→ K+(I)

defined by (α : K• → I•) 7→ I•.

Lemma 13.24.1. Let A be an abelian category. Assume A has functorial injective
embeddings, see Homology, Definition 12.23.5.

(1) There exists a functor inj : Comp+(A)→ InjRes(A) such that s◦inj = id.
(2) For any functor inj : Comp+(A) → InjRes(A) such that s ◦ inj = id we

obtain a resolution functor, see Definition 13.23.2.

Proof. Let A 7→ (A → J(A)) be a functorial injective embedding, see Homology,
Definition 12.23.5. We first note that we may assume J(0) = 0. Namely, if not
then for any object A we have 0→ A→ 0 which gives a direct sum decomposition
J(A) = J(0) ⊕ Ker(J(A) → J(0)). Note that the functorial morphism A → J(A)
has to map into the second summand. Hence we can replace our functor by J ′(A) =
Ker(J(A)→ J(0)) if needed.

Let K• be a bounded below complex of A. Say Kp = 0 if p < B. We are going to
construct a double complex I•,• of injectives, together with a map α : K• → I•,0

such that α induces a quasi-isomorphism of K• with the associated total complex
of I•,•. First we set Ip,q = 0 whenever q < 0. Next, we set Ip,0 = J(Kp) and
αp : Kp → Ip,0 the functorial embedding. Since J is a functor we see that I•,0 is a
complex and that α is a morphism of complexes. Each αp is injective. And Ip,0 = 0
for p < B because J(0) = 0. Next, we set Ip,1 = J(Coker(Kp → Ip,0)). Again
by functoriality we see that I•,1 is a complex. And again we get that Ip,1 = 0 for
p < B. It is also clear that Kp maps isomorphically onto Ker(Ip,0 → Ip,1). As our
third step we take Ip,2 = J(Coker(Ip,0 → Ip,1)). And so on and so forth.

At this point we can apply Homology, Lemma 12.22.7 to get that the map

α : K• → sI•

is a quasi-isomorphism. To prove we get a functor inj it rests to show that the
construction above is functorial. This verification is omitted.

Suppose we have a functor inj such that s ◦ inj = id. For every object K• of
Comp+(A) we can write

inj(K•) = (iK• : K• → j(K•))

This provides us with a resolution functor as in Definition 13.23.2. �

Remark 13.24.2. Suppose inj is a functor such that s ◦ inj = id as in part (2)
of Lemma 13.24.1. Write inj(K•) = (iK• : K• → j(K•)) as in the proof of that
lemma. Suppose α : K• → L• is a map of bounded below complexes. Consider the
map inj(α) in the category InjRes(A). It induces a commutative diagram

K•
α //

iK
��

L•

iL
��

j(K)•
inj(α) // j(L)•

http://stacks.math.columbia.edu/tag/0141
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of morphisms of complexes. Hence, looking at the proof of Lemma 13.23.3 we see
that the functor j : K+(A)→ K+(I) is given by the rule

j(α up to homotopy) = inj(α) up to homotopy ∈ HomK+(I)(j(K
•), j(L•))

Hence we see that j matches t ◦ inj in this case, i.e., the diagram

Comp+(A)
t◦inj

//

&&

K+(I)

K+(A)

j

::

is commutative.

Remark 13.24.3. Let Mod(OX) be the category of OX -modules on a ringed space
(X,OX) (or more generally on a ringed site). We will see later that Mod(OX)
has enough injectives and in fact functorial injective embeddings, see Injectives,
Theorem 19.8.4. Note that the proof of Lemma 13.23.4 does not apply to Mod(OX).
But the proof of Lemma 13.24.1 does apply to Mod(OX). Thus we obtain

j : K+(Mod(OX)) −→ K+(I)

which is a resolution functor where I is the additive category of injective OX -
modules. This argument also works in the following cases:

(1) The category ModR of R-modules over a ring R.
(2) The category PMod(O) of presheaves of O-modules on a site endowed

with a presheaf of rings.
(3) The category Mod(O) of sheaves of O-modules on a ringed site.
(4) Add more here as needed.

13.25. Right derived functors via resolution functors

The content of the following lemma is that we can simply define RF (K•) =
F (j(K•)) if we are given a resolution functor j.

Lemma 13.25.1. Let A be an abelian category with enough injectives Let F : A →
B be an additive functor into an abelian category. Let (i, j) be a resolution functor,
see Definition 13.23.2. The right derived functor RF of F fits into the following
2-commutative diagram

D+(A)

RF $$

j′ // K+(I)

Fzz
D+(B)

where j′ is the functor from Lemma 13.23.6.

Proof. By Lemma 13.20.1 we have RF (K•) = F (j(K•)). �

Remark 13.25.2. In the situation of Lemma 13.25.1 we see that we have actually
lifted the right derived functor to an exact functor F ◦ j′ : D+(A)→ K+(B). It is
occasionally useful to use such a factorization.
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13.26. Filtered derived category and injective resolutions

Let A be an abelian category. In this section we will show that if A has enough
injectives, then so does the category Filf (A) in some sense. One can use this
observation to compute in the filtered derived category of A.

The category Filf (A) is an example of an exact category, see Injectives, Remark
19.9.6. A special role is played by the strict morphisms, see Homology, Definition
12.16.3, i.e., the morphisms f such that Coim(f) = Im(f). We will say that a

complex A → B → C in Filf (A) is exact if the sequence gr(A) → gr(B) → gr(C)
is exact in A. This implies that A → B and B → C are strict morphisms, see
Homology, Lemma 12.16.15.

Definition 13.26.1. Let A be an abelian category. We say an object I of Filf (A)
is filtered injective if each grp(I) is an injective object of A.

Lemma 13.26.2. Let A be an abelian category. An object I of Filf (A) is filtered
injective if and only if there exist a ≤ b, injective objects In, a ≤ n ≤ b of A and
an isomorphism I ∼=

⊕
a≤n≤b In such that F pI =

⊕
n≥p In.

Proof. Follows from the fact that any injection J → M of A is split if J is an
injective object. Details omitted. �

Lemma 13.26.3. Let A be an abelian category. Any strict monomorphism u : I →
A of Filf (A) where I is a filtered injective object is a split injection.

Proof. Let p be the largest integer such that F pI 6= 0. In particular grp(I) = F pI.

Let I ′ be the object of Filf (A) whose underlying object of A is F pI and with filtra-
tion given by FnI ′ = 0 for n > p and FnI ′ = I ′ = F pI for n ≤ p. Note that I ′ → I
is a strict monomorphism too. The fact that u is a strict monomorphism implies
that F pI → A/F p+1(A) is injective, see Homology, Lemma 12.16.13. Choose a
splitting s : A/F p+1A → F pI in A. The induced morphism s′ : A → I ′ is a strict
morphism of filtered objects splitting the composition I ′ → I → A. Hence we can
write A = I ′ ⊕ Ker(s′) and I = I ′ ⊕ Ker(s′|I). Note that Ker(s′|I) → ker(s′) is a
strict monomorphism and that Ker(s′|I) is a filtered injective object. By induction
on the length of the filtration on I the map Ker(s′|I)→ ker(s′) is a split injection.
Thus we win. �

Lemma 13.26.4. Let A be an abelian category. Let u : A → B be a strict
monomorphism of Filf (A) and f : A → I a morphism from A into a filtered

injective object in Filf (A). Then there exists a morphism g : B → I such that
f = g ◦ u.

Proof. The pushout f ′ : I → I qA B of f by u is a strict monomorphism, see
Homology, Lemma 12.16.10. Hence the result follows formally from Lemma 13.26.3.

�

Lemma 13.26.5. Let A be an abelian category with enough injectives. For any
object A of Filf (A) there exists a strict monomorphism A→ I where I is a filtered
injective object.

Proof. Pick a ≤ b such that grp(A) = 0 unless p ∈ {a, a + 1, . . . , b}. For each
n ∈ {a, a + 1, . . . , b} choose an injection un : A/FnA → In with In and injective
object. Set I =

⊕
a≤n≤b Ip with filtration F pI =

⊕
n≥p In and set u : A→ I equal

to the direct sum of the maps un. �
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Lemma 13.26.6. Let A be an abelian category with enough injectives. For any
object A of Filf (A) there exists a filtered quasi-isomorphism A[0]→ I• where I• is
a complex of filtered injective objects with In = 0 for n < 0.

Proof. First choose a strict monomorphism u0 : A → I0 of A into a filtered
injective object, see Lemma 13.26.5. Next, choose a strict monomorphism u1 :
Coker(u0) → I1 into a filtered injective object of A. Denote d0 the induced map
I0 → I1. Next, choose a strict monomorphism u2 : Coker(u1) → I2 into a filtered
injective object of A. Denote d1 the induced map I1 → I2. And so on. This works
because each of the sequences

0→ Coker(un)→ In+1 → Coker(un+1)→ 0

is short exact, i.e., induces a short exact sequence on applying gr. To see this use
Homology, Lemma 12.16.13. �

Lemma 13.26.7. Let A be an abelian category with enough injectives. Let f : A→
B be a morphism of Filf (A). Given filtered quasi-isomorphisms A[0] → I• and
B[0]→ J• where I•, J• are complexes of filtered injective objects with In = Jn = 0
for n < 0, then there exists a commutative diagram

A[0] //

��

B[0]

��
I• // J•

Proof. As A[0] → I• and C[0] → J• are filtered quasi-isomorphisms we conclude
that a : A → I0, b : B → J0 and all the morphisms dnI , dnJ are strict, see Homol-
ogy, Lemma 13.14.4. We will inductively construct the maps fn in the following
commutative diagram

A
a
//

f

��

I0 //

f0

��

I1 //

f1

��

I2 //

f2

��

. . .

B
b // J0 // J1 // J2 // . . .

Because A→ I0 is a strict monomorphism and because J0 is filtered injective, we
can find a morphism f0 : I0 → J0 such that f0 ◦a = b◦f , see Lemma 13.26.4. The
composition d0

J ◦ b ◦ f is zero, hence d0
J ◦ f0 ◦ a = 0, hence d0

J ◦ f0 factors through
a unique morphism

Coker(a) = Coim(d0
I) = Im(d0

I) −→ J1.

As Im(d0
I)→ I1 is a strict monomorphism we can extend the displayed arrow to a

morphism f1 : I1 → J1 by Lemma 13.26.4 again. And so on. �

Lemma 13.26.8. Let A be an abelian category with enough injectives. Let 0 →
A → B → C → 0 be a short exact sequence in Filf (A). Given filtered quasi-
isomorphisms A[0] → I• and C[0] → J• where I•, J• are complexes of filtered
injective objects with In = Jn = 0 for n < 0, then there exists a commutative
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diagram

0 // A[0] //

��

B[0] //

��

C[0] //

��

0

0 // I• // M• // J• // 0

where the lower row is a termwise split sequence of complexes.

Proof. As A[0] → I• and C[0] → J• are filtered quasi-isomorphisms we conclude
that a : A→ I0, c : C → J0 and all the morphisms dnI , dnJ are strict, see Homology,
Lemma 13.14.4. We are going to step by step construct the south-east and the
south arrows in the following commutative diagram

B
β
//

b

��

C
c
//

b

  

J0

δ0

��

// J1

δ1

��

// . . .

A

α

OO

a // I0 // I1 // I2 // . . .

As A → B is a strict monomorphism, we can find a morphism b : B → I0 such
that b ◦ α = a, see Lemma 13.26.4. As A is the kernel of the strict morphism
I0 → I1 and β = Coker(α) we obtain a unique morphism b : C → I1 fitting into
the diagram. As c is a strict monomorphism and I1 is filtered injective we can find
δ0 : J0 → I1, see Lemma 13.26.4. Because B → C is a strict epimorphism and
because B → I0 → I1 → I2 is zero, we see that C → I1 → I2 is zero. Hence d1

I ◦ δ0

is zero on C ∼= Im(c). Hence d1
I ◦ δ0 factors through a unique morphism

Coker(c) = Coim(d0
J) = Im(d0

J) −→ I2.

As I2 is filtered injective and Im(d0
J)→ J1 is a strict monomorphism we can extend

the displayed morphism to a morphism δ1 : J1 → I2, see Lemma 13.26.4. And so
on. We set M• = I• ⊕ J• with differential

dnM =

(
dnI (−1)n+1δn

0 dnJ

)
Finally, the map B[0]→M• is given by b⊕ c ◦ β : M → I0 ⊕ J0. �

Lemma 13.26.9. Let A be an abelian category with enough injectives. For ev-
ery K• ∈ K+(Filf (A)) there exists a filtered quasi-isomorphism K• → I• with
I• bounded below, each In a filtered injective object, and each Kn → In a strict
monomorphism.

Proof. After replacing K• by a shift (which is harmless for the proof) we may
assume that Kn = 0 for n < 0. Consider the short exact sequences

0→ Ker(d0
K)→ K0 → Coim(d0

K)→ 0
0→ Ker(d1

K)→ K1 → Coim(d1
K)→ 0

0→ Ker(d2
K)→ K2 → Coim(d2

K)→ 0
. . .

of the exact category Filf (A) and the maps ui : Coim(diK)→ Ker(di+1
K ). For each

i ≥ 0 we may choose filtered quasi-isomorphisms

Ker(diK)[0]→ I•ker,i
Coim(diK)[0]→ I•coim,i

http://stacks.math.columbia.edu/tag/05TW
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with Inker,i, I
n
coim,i filtered injective and zero for n < 0, see Lemma 13.26.6. By

Lemma 13.26.7 we may lift ui to a morphism of complexes u•i : I•coim,i → I•ker,i+1.
Finally, for each i ≥ 0 we may complete the diagrams

0 // Ker(diK)[0] //

��

Ki[0] //

��

Coim(diK)[0] //

��

0

0 // I•ker,i
αi // I•i

βi // I•coim,i // 0

with the lower sequence a termwise split exact sequence, see Lemma 13.26.8. For
i ≥ 0 set di : I•i → I•i+1 equal to di = αi+1 ◦u•i ◦βi. Note that di ◦di−1 = 0 because
βi ◦ αi = 0. Hence we have constructed a commutative diagram

I•0 // I•1 // I•2 // . . .

K0[0] //

OO

K1[0] //

OO

K2[0] //

OO

. . .

Here the vertical arrows are filtered quasi-isomorphisms. The upper row is a com-
plex of complexes and each complex consists of filtered injective objects with no
nonzero objects in degree< 0. Thus we obtain a double complex by setting Ia,b = Iba
and using

da,b1 : Ia,b = Iba → Iba+1 = Ia+1,b

the map dba and using for

da,b2 : Ia,b = Iba → Ib+1
a = Ia,b+1

the map dbIa . Denote Tot(I•,•) the total complex associated to this double complex,
see Homology, Definition 12.22.3. Observe that the maps Kn[0] → I•n come from
maps Kn → In,0 which give rise to a map of complexes

K• −→ Tot(I•,•)

We claim this is a filtered quasi-isomorphism. As gr(−) is an additive functor, we
see that gr(Tot(I•,•)) = Tot(gr(I•,•)). Thus we can use Homology, Lemma 12.22.7
to conclude that gr(K•)→ gr(Tot(I•,•)) is a quasi-isomorphism as desired. �

Lemma 13.26.10. Let A be an abelian category. Let K•, I• ∈ K(Filf (A)). As-
sume K• is filtered acyclic and I• bounded below and consisting of filtered injective
objects. Any morphism K• → I• is homotopic to zero: HomK(Filf (A))(K

•, I•) = 0.

Proof. Let α : K• → I• be a morphism of complexes. Assume that αj = 0 for
j < n. We will show that there exists a morphism h : Kn+1 → In such that
αn = h ◦ d. Thus α will be homotopic to the morphism of complexes β defined by

βj =

 0 if j ≤ n
αn+1 − d ◦ h if j = n+ 1

αj if j > n+ 1

This will clearly prove the lemma (by induction). To prove the existence of h note
that αn ◦ dn−1

K = 0 since αn−1 = 0. Since K• is filtered acyclic we see that dn−1
K

and dnK are strict and that

0→ Im(dn−1
K )→ Kn → Im(dnK)→ 0

http://stacks.math.columbia.edu/tag/05TX
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is an exact sequence of the exact category Filf (A), see Homology, Lemma 12.16.15.
Hence we can think of αn as a map into In defined on Im(dnK). Using that Im(dnK)→
Kn+1 is a strict monomorphism and that In is filtered injective we may lift this
map to a map h : Kn+1 → In as desired, see Lemma 13.26.4. �

Lemma 13.26.11. Let A be an abelian category. Let I• ∈ K(Filf (A)) be a bounded
below complex consisting of filtered injective objects.

(1) Let α : K• → L• in K(Filf (A)) be a filtered quasi-isomorphism. Then
the map

HomK(Filf (A))(L
•, I•)→ HomK(Filf (A))(K

•, I•)

is bijective.
(2) Let L• ∈ K(A). Then

HomK(Filf (A))(L
•, I•) = HomDF (A)(L

•, I•).

Proof. Proof of (1). Note that

(K•, L•, C(α)•, α, i,−p)

is a distinguished triangle in K(Filf (A)) (Lemma 13.9.14) and C(f)• is a filtered
acyclic complex (Lemma 13.14.4). Then

HomK(Filf (A))(C(α)•, I•) // HomK(Filf (A))(L
•, I•) // HomK(Filf (A))(K

•, I•)

qq
HomK(Filf (A))(C(α)•[−1], I•)

is an exact sequence of abelian groups, see Lemma 13.4.2. At this point Lemma
13.26.10 guarantees that the outer two groups are zero and hence HomK(A)(L

•, I•) =
HomK(A)(K

•, I•).

Proof of (2). Let a be an element of the right hand side. We may represent
a = γα−1 where α : K• → L• is a filtered quasi-isomorphism and γ : K• → I•

is a map of complexes. By part (1) we can find a morphism β : L• → I• such
that β ◦ α is homotopic to γ. This proves that the map is surjective. Let b be an
element of the left hand side which maps to zero in the right hand side. Then b
is the homotopy class of a morphism β : L• → I• such that there exists a filtered
quasi-isomorphism α : K• → L• with β ◦α homotopic to zero. Then part (1) shows
that β is homotopic to zero also, i.e., b = 0. �

Lemma 13.26.12. Let A be an abelian category with enough injectives. Let If ⊂
Filf (A) denote the strictly full additive subcategory whose objects are the filtered
injective objects. The canonical functor

K+(If ) −→ DF+(A)

is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated
categories. Furthermore the diagrams

K+(If )

grp

��

// DF+(A)

grp

��
K+(I) // D+(A)

K+(If )

forget F

��

// DF+(A)

forget F

��
K+(I) // D+(A)

http://stacks.math.columbia.edu/tag/05TY
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are commutative, where I ⊂ A is the strictly full additive subcategory whose objects
are the injective objects.

Proof. The functorK+(If )→ DF+(A) is essentially surjective by Lemma 13.26.9.
It is fully faithful by Lemma 13.26.11. It is an exact functor by our definitions
regarding distinguished triangles. The commutativity of the squares is immedi-
ate. �

Remark 13.26.13. We can invert the arrow of the lemma only if A is a category
in our sense, namely if it has a set of objects. However, suppose given a big abelian
category A with enough injectives, such as Mod(OX) for example. Then for any
given set of objects {Ai}i∈I there is an abelian subcategory A′ ⊂ A containing
all of them and having enough injectives, see Sets, Lemma 3.12.1. Thus we may
use the lemma above for A′. This essentially means that if we use a set worth of
diagrams, etc then we will never run into trouble using the lemma.

Let A,B be abelian categories. Let T : A → B be a left exact functor. (We cannot
use the letter F for the functor since this would conflict too much with our use of
the letter F to indicate filtrations.) Note that T induces an additive functor

T : Filf (A)→ Filf (B)

by the rule T (A,F ) = (T (A), F ) where F pT (A) = T (F pA) which makes sense as
T is left exact. (Warning: It may not be the case that gr(T (A)) = T (gr(A)).) This
induces functors of triangulated categories

(13.26.13.1) T : K+(Filf (A)) −→ K+(Filf (B))

The filtered right derived functor of T is the right derived functor of Definition
13.15.2 for this exact functor composed with the exact functor K+(Filf (B)) →
DF+(B) and the multiplicative set FQis+(A). Assume A has enough injectives.
At this point we can redo the discussion of Section 13.20 to define the filtered right
derived functors

(13.26.13.2) RT : DF+(A) −→ DF+(B)

of our functor T .

However, instead we will proceed as in Section 13.25, and it will turn out that we
can define RT even if T is just additive. Namely, we first choose a quasi-inverse
j′ : DF+(A)→ K+(If ) of the equivalence of Lemma 13.26.12. By Lemma 13.4.16
we see that j′ is an exact functor of triangulated categories. Next, we note that for
a filtered injective object I we have a (noncanonical) decomposition

(13.26.13.3) I ∼=
⊕

p∈Z
Ip, with F pI =

⊕
q≥p

Iq

by Lemma 13.26.2. Hence if T is any additive functor T : A → B then we get an
additive functor

(13.26.13.4) Text : If → Filf (B)

by setting Text(I) =
⊕
T (Ip) with F pText(I) =

⊕
q≥p T (Iq). Note that we have

the property gr(Text(I)) = T (gr(I)) by construction. Hence we obtain a functor

(13.26.13.5) Text : K+(If )→ K+(Filf (B))
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which commutes with gr. Then we define (13.26.13.2) by the composition

(13.26.13.6) RT = Text ◦ j′.

Since RT : D+(A) → D+(B) is computed by injective resolutions as well, see
Lemmas 13.20.1, the commutation of T with gr, and the commutative diagrams of
Lemma 13.26.12 imply that

(13.26.13.7) grp ◦RT ∼= RT ◦ grp

and

(13.26.13.8) (forget F ) ◦RT ∼= RT ◦ (forget F )

as functors DF+(A)→ D+(B).

The filtered derived functor RT (13.26.13.2) induces functors

RT : Filf (A)→ DF+(B),

RT : Comp+(Filf (A))→ DF+(B),
RT : KF+(A)→ DF+(B).

Note that since Filf (A), and Comp+(Filf (A)) are no longer abelian it does not
make sense to say that RT restricts to a δ-functor on them. (This can be repaired
by thinking of these categories as exact categories and formulating the notion of a
δ-functor from an exact category into a triangulated category.) But it does make
sense, and it is true by construction, that RT is an exact functor on the triangulated
category KF+(A).

Lemma 13.26.14. Let A,B be abelian categories. Let T : A → B be a left
exact functor. Assume A has enough injectives. Let (K•, F ) be an object of

Comp+(Filf (A)). There exists a spectral sequence (Ep,qr , dr)r≥0 which is the spectral

sequence associated to an object of Comp+(Filf (B)) with

Ep,q1 = Rp+qT (grp(K•))

which converges to Rp+qT (K•) inducing a finite filtration on each RnT (K•). More-
over the construction of this spectral sequence is functorial in the object K• of
Comp+(Filf (A)). In fact the terms (Er, dr) for r ≥ 2 do not depend on any choices.

Proof. Choose a filtered quasi-isomorphism K• → I• with I• a bounded below
complex of filtered injective objects, see Lemma 13.26.9. Consider the complex
RT (K•) = Text(I

•), see (13.26.13.6). Thus we can consider the spectral sequence
(Er, dr)r≥0 associated to this as a filtered complex in B, see Homology, Section
12.21. By Homology, Lemma 12.21.2 we have Ep,q1 = Hp+q(grp(T (I•))). By Equa-
tion (13.26.13.3) we have Ep,q1 = Hp+q(T (grp(I•))), and by definition of a filtered
injective resolution the map grp(K•) → grp(I•) is an injective resolution. Hence
Ep,q1 = Rp+qT (grp(K•)).

On the other hand, each In has a finite filtration and hence each T (In) has a
finite filtration. Thus we may apply Homology, Lemma 12.21.9 to conclude that
the spectral sequence converges to Hn(T (I•)) = RnT (K•) moreover inducing finite
filtrations on each of the terms.

Suppose that K• → L• is a morphism of Comp+(Filf (A)). Choose a filtered
quasi-isomorphism L• → J• with J• a bounded below complex of filtered injective
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objects, see Lemma 13.26.9. By our results above, for example Lemma 13.26.11,
there exists a diagram

K• //

��

L•

��
I• // J•

which commutes up to homotopy. Hence we get a morphism of filtered complexes
T (I•)→ T (J•) which gives rise to the morphism of spectral sequences, see Homol-
ogy, Lemma 12.21.4. The last statement follows from this. �

Remark 13.26.15. As promised in Remark 13.21.4 we discuss the connection
of the lemma above with the constructions using Cartan-Eilenberg resolutions.
Namely, assume the notations of Lemma 13.21.3. In particular K• is a bounded
below complex of A and T : A → B is a left exact functor. We give an alternative
construction of the spectral sequences ′E and ′′E

First spectral sequence. Consider the “stupid” filtration on K• obtained by setting
F p(K•) = σ≥p(K

•), see Homology, Section 12.13. Note that this stupid in the
sense that d(F p(K•)) ⊂ F p+1(K•), compare Homology, Lemma 12.21.3. Note that
grp(K•) = Kp[p] with this filtration. According to the above there is a spectral
sequence with E1 term Ep,q1 = Rp+qT (Kp[p]). Then the E2 term is clearly Ep,q2 =
Hp(Rp+qT (K•)) as in the spectral sequence ′Er.

Second spectral sequence. Consider the filtration on the complex K• obtained
by setting F p(K•) = τ≤−p(K

•), see Homology, Section 12.13. The minus sign
is necessary to get a decreasing filtration. Note that grp(K•) is quasi-isomorphic
to H−p(K•)[−p] with this filtration. According to the above there is a spectral
sequence with E1 term

Ep,q1 = Rp+qT (H−p(K•)[−p]) = R2p+qT (H−p(K•)) = ′′Ei,j2

with i = 2p+q and j = −p. (This looks unnatural, but note that we could just have
well developed the whole theory of filtered complexes using increasing filtrations,
with the end result that this then looks natural, but the other one doesn’t.) We
leave it to the reader to see that the differentials match up.

Actually, given a Cartan-Eilenberg resolution K• → I•,• the induced morphism
K• → sI• into the associated simple complex will be a filtered injective resolution
for either filtration using suitable filtrations on sI•. This can be used to match up
the spectral sequences exactly.

13.27. Ext groups

In this section we start describing the ext groups of objects of an abelian category.
First we have the following very general definition.

Definition 13.27.1. Let A be an abelian category. Let i ∈ Z. Let X,Y be objects
of D(A). The ith extension group of X by Y is the group

ExtiA(X,Y ) = HomD(A)(X,Y [i]) = HomD(A)(X[−i], Y ).

If A,B ∈ Ob(A) we set ExtiA(A,B) = ExtiA(A[0], B[0]).
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Since HomD(A)(X,−), resp. HomD(A)(−, Y ) is a homological, resp. cohomological
functor, see Lemma 13.4.2, we see that a distinguished triangle (Y, Y ′, Y ′′), resp.
(X,X ′, X ′′) leads to a long exact sequence

. . .→ ExtiA(X,Y )→ ExtiA(X,Y ′)→ ExtiA(X,Y ′′)→ Exti+1
A (X,Y )→ . . .

respectively

. . .→ ExtiA(X ′′, Y )→ ExtiA(X ′, Y )→ ExtiA(X,Y )→ Exti+1
A (X ′′, Y )→ . . .

Note that since D+(A), D−(A), Db(A) are full subcategories we may compute the
ext groups by Hom groups in these categories provided X, Y are contained in them.
In case the category A has enough injectives or enough projectives we can compute
the Ext groups using injective or projective resolutions. To avoid confusion, recall
that having an injective (resp. projective) resolution implies vanishing of homology
in all low (resp. high) degrees, see Lemmas 13.18.2 and 13.19.2.

Lemma 13.27.2. Let A be an abelian category. Let X•, Y • ∈ Ob(K(A)).

(1) Let Y • → I• be an injective resolution (Definition 13.18.1). Then

ExtiA(X•, Y •) = HomK(A)(X
•, I•[i]).

(2) Let P • → X• be a projective resolution (Definition 13.19.1). Then

ExtiA(X•, Y •) = HomK(A)(P
•[−i], Y •).

Proof. Follows immediately from Lemma 13.18.8 and Lemma 13.19.8. �

In the rest of this section we discuss extensions of objects of the abelian category
itself. First we observe the following.

Lemma 13.27.3. Let A be an abelian category.

(1) Let X, Y be objects of D(A). Given a, b ∈ Z such that Hi(X) = 0 for
i > a and Hj(Y ) = 0 for j < b, we have ExtnA(X,Y ) = 0 for n < b − a
and

Extb−aA (X,Y ) = HomA(Ha(X), Hb(Y ))

(2) Let A,B ∈ Ob(A). For i < 0 we have ExtiA(B,A) = 0. We have
Ext0A(B,A) = HomA(B,A).

Proof. Choose complexes X• and Y • representing X and Y . Since Y • → τ≥bY
•

is a quasi-isomorphism, we may assume that Y j = 0 for j < b. Let L• → X•

be any quasi-isomorphism. Then τ≤aL
• → X• is a quasi-isomorphism. Hence a

morphism X → Y [n] in D(A) can be represented as fs−1 where s : L• → X• is a
quasi-isomorphism, f : L• → Y •[n] a morphism, and Li = 0 for i < a. Note that
f maps Li to Y i+n. Thus f = 0 if n < b − a because always either Li or Y i+n is
zero. If n = b − a, then f corresponds exactly to a morphism Ha(X) → Hb(Y ).
Part (2) is a special case of (1). �

Let A be an abelian category. Suppose that 0 → A → A′ → A′′ → 0 is a short
exact sequence of objects of A. Then 0 → A[0] → A′[0] → A′′[0] → 0 leads to a
distinguished triangle in D(A) (see Lemma 13.12.1) hence a long exact sequence of
Ext groups

0→ Ext0
A(B,A)→ Ext0

A(B,A′)→ Ext0
A(B,A′′)→ Ext1

A(B,A)→ . . .

http://stacks.math.columbia.edu/tag/06XR
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Similarly, given a short exact sequence 0 → B → B′ → B′′ → 0 we obtain a long
exact sequence of Ext groups

0→ Ext0
A(B′′, A)→ Ext0

A(B′, A)→ Ext0
A(B,A)→ Ext1

A(B′′, A)→ . . .

We may view these Ext groups as an application of the construction of the derived
category. It shows one can define Ext groups and construct the long exact sequence
of Ext groups without needing the existence of enough injectives or projectives.
There is an alternative construction of the Ext groups due to Yoneda which avoids
the use of the derived category, see [Yon60].

Definition 13.27.4. Let A be an abelian category. Let A,B ∈ Ob(A). A degree
i Yoneda extension of B by A is an exact sequence

E : 0→ A→ Zi−1 → Zi−2 → . . .→ Z0 → B → 0

in A. We say two Yoneda extensions E and E′ of the same degree are equivalent if
there exists a commutative diagram

0 // A // Zi−1
// . . . // Z0

// B // 0

0 // A //

id

OO

id

��

Z ′′i−1
//

OO

��

. . . // Z ′′0 //

OO

��

B //

id

OO

id

��

0

0 // A // Z ′i−1
// . . . // Z ′0 // B // 0

where the middle row is a Yoneda extension as well.

It is not immediately clear that the equivalence of the definition is an equivalence
relation. Although it is instructive to prove this directly this will also follow from
Lemma 13.27.5 below.

Let A be an abelian category with objects A, B. Given a Yoneda extension E :
0 → A → Zi−1 → Zi−2 → . . . → Z0 → B → 0 we define an associated element
δ(E) ∈ Exti(B,A) as the morphism δ(E) = fs−1 : B[0] → A[i] where s is the
quasi-isomorphism

(. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .) −→ B[0]

and f is the morphism of complexes

(. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .) −→ A[i]

We call δ(E) = fs−1 the class of the Yoneda extension. It turns out that this class
characterizes the equivalence class of the Yoneda extension.

Lemma 13.27.5. Let A be an abelian category with objects A, B. Any element
in ExtiA(B,A) is δ(E) for some degree i Yoneda extension of B by A. Given two
Yoneda extensions E, E′ of the same degree then E is equivalent to E′ if and only
if δ(E) = δ(E′).

Proof. Let ξ : B[0]→ A[i] be an element of ExtiA(B,A). We may write ξ = fs−1

for some quasi-isomorphism s : L• → B[0] and map f : L• → A[i]. After replacing

http://stacks.math.columbia.edu/tag/06XT
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L• by τ≤0L
• we may assume that Li = 0 for i > 0. Picture

L−i−1 // L−i //

��

. . . // L0 // B // 0

A

Then setting Zi−1 = (L−i+1 ⊕ A)/L−i and Zj = L−j for j = i − 2, . . . , 0 we see
that we obtain a degree i extension E of B by A whose class δ(E) equals ξ.

It is immediate from the definitions that equivalent Yoneda extensions have the
same class. Suppose that E : 0 → A → Zi−1 → Zi−2 → . . . → Z0 → B → 0 and
E′ : 0 → A → Z ′i−1 → Z ′i−2 → . . . → Z ′0 → B → 0 are Yoneda extensions with
the same class. By construction of D(A) as the localization of K(A) at the set of
quasi-isomorphisms, this means there exists a complex L• and quasi-isomorphisms

t : L• → (. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .)

and

t′ : L• → (. . .→ 0→ A→ Z ′i−1 → . . .→ Z ′0 → 0→ . . .)

such that s ◦ t = s′ ◦ t′ and f ◦ t = f ′ ◦ t′, see Categories, Section 4.25. Let E′′

be the degree i extension of B by A constructed from the pair L• → B[0] and
L• → A[i] in the first paragraph of the proof. Then the reader sees readily that
there exists “morphisms” of degree i Yoneda extensions E′′ → E and E′′ → E′ as
in the definition of equivalent Yoneda extensions (details omitted). This finishes
the proof. �

Lemma 13.27.6. Let A be an abelian category. Let A, B be objects of A. Then
Ext1A(B,A) is the group ExtA(B,A) constructed in Homology, Definition 12.6.2.

Proof. This is the case i = 1 of Lemma 13.27.5. �

13.28. Unbounded complexes

A reference for the material in this section is [Spa88]. The following lemma is
useful to find “good” left resolutions of unbounded complexes.

Lemma 13.28.1. Let A be an abelian category. Let P ⊂ Ob(A) be a subset.
Assume that every object of A is a quotient of an element of P. Let K• be a
complex. There exists a commutative diagram

P •1

��

// P •2

��

// . . .

τ≤1K
• // τ≤2K

• // . . .

in the category of complexes such that

(1) the vertical arrows are quasi-isomorphisms,
(2) P •1 is a bounded above complex with terms in P,
(3) the arrows P •n → P •n+1 are termwise split injections and each cokernel

P in+1/P
i
n is an element of P.
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Proof. By Lemma 13.16.5 any bounded above complex has a resolution by a
bounded above complex whose terms are in P. Thus we obtain the first com-
plex P •1 . By induction it suffices, given P •1 , . . . , P

•
n to construct P •n+1 and the

maps P •n → P •n+1 and P •n → τ≤n+1K
•. Consider the cone C•1 of the composition

P •n → τ≤nK
• → τ≤n+1K

•. This fits into the distinguished triangle

P •n → τ≤n+1K
• → C•1 → P •n [1]

Note that C•1 is bounded above, hence we can choose a quasi-isomorphism Q• → C•1
where Q• is a bounded above complex whose terms are elements of P. Take the
cone C•2 of the map of complexes Q• → P •n [1] to get the distinguished triangle

Q• → P •n [1]→ C•2 → Q•[1]

By the axioms of triangulated categories we obtain a map of distinguished triangles

P •n //

��

C•2 [−1] //

��

Q• //

��

P •n [1]

��
P •n // τ≤n+1K

• // C•1 // P •n [1]

in the triangulated category K(A). Set P •n+1 = C•2 [−1]. Note that (3) holds by
construction. Choose an actual morphism of complexes f : P •n+1 → τ≤n+1K

•. The
left square of the diagram above commutes up to homotopy, but as P •n → P •n+1 is
a termwise split injection we can lift the homotopy and modify our choice of f to
make it commute. Finally, f is a quasi-isomorphism, because both P •n → P •n and
Q• → C•1 are. �

In some cases we can use the lemma above to show that a left derived functor is
everywhere defined.

Proposition 13.28.2. Let F : A → B be a right exact functor of abelian categories.
Let P ⊂ Ob(A) be a subset. Assume

(1) every object of A is a quotient of an element of P,
(2) for any bounded above acyclic complex P • of A with Pn ∈ P for all n the

complex F (P •) is exact,
(3) A and B have colimits of systems over N,
(4) colimits over N are exact in both A and B, and
(5) F commutes with colimits over N.

Then LF is defined on all of D(A).

Proof. By (1) and Lemma 13.16.5 for any bounded above complex K• there exists
a quasi-isomorphism P • → K• with P • bounded above and Pn ∈ P for all n.
Suppose that s : P • → (P ′)• is a quasi-isomorphism of bounded above complexes
consisting of objects of P. Then F (P •)→ F ((P ′)•) is a quasi-isomorphism because
F (C(s)•) is acyclic by assumption (2). This already shows that LF is defined on
D−(A) and that a bounded above complex consisting of objects of P computes LF ,
see Lemma 13.15.15.
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Next, let K• be an arbitrary complex of A. Choose a diagram

P •1

��

// P •2

��

// . . .

τ≤1K
• // τ≤2K

• // . . .

as in Lemma 13.28.1. Note that the map colimP •n → K• is a quasi-isomorphism
because colimits over N in A are exact and Hi(P •n) = Hi(K•) for n > i. We claim
that

F (colimP •n) = colimF (P •n)

(termwise colimits) is LF (K•), i.e., that colimP •n computes LF . To see this, by
Lemma 13.15.15, it suffices to prove the following claim. Suppose that

colimQ•n = Q•
α−−→ P • = colimP •n

is a quasi-isomorphism of complexes, such that each P •n , Q•n is a bounded above
complex whose terms are in P and the maps P •n → τ≤nP

• and Q•n → τ≤nQ
• are

quasi-isomorphisms. Claim: F (α) is a quasi-isomorphism.

The problem is that we do not assume that α is given as a colimit of maps between
the complexes P •n and Q•n. However, for each n we know that the solid arrows in
the diagram

R•

��
P •n

��

L•oo // Q•n

��
τ≤nP

• τ≤nα // τ≤nQ•

are quasi-isomorphisms. Because quasi-isomorphisms form a multiplicative system
in K(A) (see Lemma 13.11.2) we can find a quasi-isomorphism L• → P •n and map
of complexes L• → Q•n such that the diagram above commutes up to homotopy.
Then τ≤nL

• → L• is a quasi-isomorphism. Hence (by the first part of the proof)
we can find a bounded above complex R• whose terms are in P and a quasi-
isomorphism R• → L• (as indicated in the diagram). Using the result of the first
paragraph of the proof we see that F (R•)→ F (P •n) and F (R•)→ F (Q•n) are quasi-
isomorphisms. Thus we obtain a isomorphisms Hi(F (P •n)) → Hi(F (Q•n)) fitting
into the commutative diagram

Hi(F (P •n)) //

��

Hi(F (Q•n))

��
Hi(F (P •)) // Hi(F (Q•))

The exact same argument shows that these maps are also compatible as n varies.
Since by (4) and (5) we have

Hi(F (P •)) = Hi(F (colimP •n)) = Hi(colimF (P •n)) = colimHi(F (P •n))

and similarly for Q• we conclude that Hi(α) : Hi(F (P •) → Hi(F (Q•) is an iso-
morphism and the claim follows. �
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Lemma 13.28.3. Let A be an abelian category. Let I ⊂ Ob(A) be a subset.
Assume that every object of A is a subobject of an element of I. Let K• be a
complex. There exists a commutative diagram

. . . // τ≥−2K
• //

��

τ≥−1K
•

��
. . . // I•2 // I•1

in the category of complexes such that

(1) the vertical arrows are quasi-isomorphisms,
(2) I•1 is a bounded above complex with terms in I,
(3) the arrows I•n+1 → I•n are termwise split surjections and Ker(Iin+1 → Iin)

is an element of I.

Proof. This lemma is dual to Lemma 13.28.1. �

The following lemma is an example of why it is easier to work with unbounded
derived categories. Namely, without having the unbounded derived functors, the
lemma could not even be stated.

Lemma 13.28.4. Let F : A → B and G : B → A be functors such that F is a right
adjoint to G. If the derived functors RF : D(A)→ D(B) and LG : D(B)→ D(A)
exist, then RF is a right adjoint to LG.

Proof. Let K• be a complex of A and let M• be a complex of B. Since RF is
defined at K•, we see that the rule which assigns to a quasi-isomorphism s : K• →
I• the object F (I•) is essentially constant as an ind-object of D(B) with value
RF (K•). Similarly, the rule which assigns to a quasi-isomorphism t : P • →M• the
object G(P •) is essentially constant as a pro-object of D(A) with value LG(M•).
Thus we have

HomD(B)(M
•, RF (K•)) = colims:K•→I• HomD(B)(M

•, F (I•))

= colims:K•→I• colimt:P•→M• HomK(B)(P
•, F (I•))

= colimt:P•→M• colims:K•→I• HomK(B)(P
•, F (I•))

= colimt:P•→M• colims:K•→I• HomK(A)(G(P •), I•)

= colims:K•→I• HomD(A)(G(P •),K•)

= HomD(A)(LG(M•),K•)

The first equality holds by Categories, Lemma 4.22.6. The second equality holds
by the definition of morphisms in D(B). The third equality holds by Categories,
Lemma 4.14.9. The fourth equality holds because F and G are adjoint. The fifth
equality holds by definition of morphism in D(A). The sixth equality holds by
Categories, Lemma 4.22.7. �

13.29. K-injective complexes

The following types of complexes can be used to compute right derived functors on
the unbounded derived category.

Definition 13.29.1. Let A be an abelian category. A complex I• is K-injective if
for every acyclic complex M• we have HomK(A)(M

•, I•) = 0.
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In the situation of the definition we have in fact HomK(A)(M
•[i], I•) = 0 for all i

as the translate of an acyclic complex is acyclic.

Lemma 13.29.2. Let A be an abelian category. Let I• be a complex. The following
are equivalent

(1) I• is K-injective,
(2) for every quasi-isomorphism M• → N• the map

HomK(A)(N
•, I•)→ HomK(A)(M

•, I•)

is bijective, and
(3) for every complex N• the map

HomK(A)(N
•, I•)→ HomD(A)(N

•, I•)

is an isomorphism.

Proof. Assume (1). Then (2) holds because the functor HomK(A)(−, I•) is coho-
mological and the cone on a quasi-isomorphism is acyclic.

Assume (2). A morphism N• → I• in D(A) is of the form fs−1 : N• → I• where
s : M• → N• is a quasi-isomorphism and f : M• → I• is a map. By (2) this
corresponds to a unique morphism N• → I• in K(A), i.e., (3) holds.

Assume (3). If M• is acyclic then M• is isomorphic to the zero complex in D(A)
hence HomD(A)(N

•, I•) = 0, whence HomK(A)(N
•, I•) = 0 by (3), i.e., (1) holds.

�

Lemma 13.29.3. Let A be an abelian category. Let (K,L,M, f, g, h) be a distin-
guished triangle of K(A). If two out of K, L, M are K-injective complexes, then
the third is too.

Proof. Follows from the definition, Lemma 13.4.2, and the fact that K(A) is a
triangulated category (Proposition 13.10.3). �

Lemma 13.29.4. Let A be an abelian category. A bounded below complex of in-
jectives is K-injective.

Proof. Follows from Lemmas 13.29.2 and 13.18.8. �

Lemma 13.29.5. Let A be an abelian category. Let F : K(A) → D′ be an exact
functor of triangulated categories. Then RF is defined at every complex in K(A)
which is quasi-isomorphic to a K-injective complex. In fact, every K-injective com-
plex computes RF .

Proof. By Lemma 13.15.4 it suffices to show that RF is defined at a K-injective
complex, i.e., it suffices to show a K-injective complex I• computes RF . Any quasi-
isomorphism I• → N• is a homotopy equivalence as it has an inverse by Lemma
13.29.2. Thus I• → I• is a final object of I•/Qis(A) and we win. �

Lemma 13.29.6. Let A be an abelian category. Assume every complex has a quasi-
isomorphism towards a K-injective complex. Then any exact functor F : K(A) →
D′ of triangulated categories has a right derived functor

RF : D(A) −→ D′

and RF (I•) = F (I•) for K-injective complexes I•.

http://stacks.math.columbia.edu/tag/070I
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Proof. To see this we apply Lemma 13.15.15 with I the collection of K-injective
complexes. Since (1) holds by assumption, it suffices to prove that if I• → J•

is a quasi-isomorphism of K-injective complexes, then F (I•) → F (J•) is an iso-
morphism. This is clear because I• → J• is a homotopy equivalence, i.e., an
isomorphism in K(A), by Lemma 13.29.2. �

The following lemma can be generalized to limits over bigger ordinals.

Lemma 13.29.7. Let A be an abelian category. Let

. . .→ I•3 → I•2 → I•1

be an inverse system of K-injective complexes. Assume

(1) each I•n is K-injective,
(2) each map Imn+1 → Imn is a split surjection,
(3) the limits Im = lim Imn exist.

Then the complex I• is K-injective.

Proof. LetM• be an acyclic complex. Let us abbreviateHn(a, b) = HomA(Ma, Ibn).
With this notation HomK(A)(M

•, I•) is the cohomology of the complex∏
m

lim
n
Hn(m,m−2)→

∏
m

lim
n
Hn(m,m−1)→

∏
m

lim
n
Hn(m,m)→

∏
m

lim
n
Hn(m,m+1)

in the third spot from the left. We may exchange the order of
∏

and lim and each
of the complexes∏

m

Hn(m,m− 2)→
∏
m

Hn(m,m− 1)→
∏
m

Hn(m,m)→
∏
m

Hn(m,m+ 1)

is exact by assumption (1). By assumption (2) the maps in the systems

. . .→
∏
m

H3(m,m− 2)→
∏
m

H2(m,m− 2)→
∏
m

H1(m,m− 2)

are surjective. Thus the lemma follows from Homology, Lemma 12.27.4. �

Remark 13.29.8. It appears that a combination of Lemmas 13.28.3, 13.29.4, and
13.29.7 produces “enough K-injectives” for any abelian category with enough in-
jectives and countable limits. Actually, this may not work! Namely, suppose that
K• is a complex and I•n is the system of bounded above complexes of injectives
produced by Lemma 13.28.3. Each complex I•n is K-injective by Lemma 13.29.4.
Let I• = lim I•n be the termwise limit which is K-injective by Lemma 13.29.7. The
problem is that the map K• → I• may not be a quasi-isomorphism. The following
lemma shows that it does work if A has countable exact products.

Lemma 13.29.9. Let A be an abelian category having enough injectives and exact
countable products. Then for every complex there is a quasi-isomorphism to a K-
injective complex.

Proof. Let K• be a complex. Let I•n be the system of bounded above complexes of
injectives produced by Lemma 13.28.3. Choose direct sum decompositions Ipn+1 =
Cpn+1 ⊕ Ipn for all n ≥ 1. Set Cp1 = Ip1 . Each complex I•n is K-injective by Lemma
13.29.4. Then I• = lim I•n exists because Ip =

∏
n≥1 C

p
n. The I• is K-injective by

Lemma 13.29.7. Fix p ∈ Z. We claim there is a short exact sequence

0→ Ip →
∏

Ipn →
∏

Ipn → 0
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of objects of A. Here the first map is given by the projection maps Ip → Ipn and the
second map by (xn) 7→ (xn − fpn+1(xn+1)) where fpn : Ipn → Ipn−1 are the transition
maps. In fact, the sequence is split exact as Ipn =

∏
m≤n C

p
m and the fn are the

projection maps (details omitted). We obtain a short exact sequence of complexes

0→ I• →
∏

I•n →
∏

I•n → 0

Now, using that countable products are exact, we see that we get a long exact
cohomology sequence

. . .→ Hp(I•)→
∏

Hp(I•m)→
∏

Hp(I•m)→ . . .

Since I•m is quasi-isomorphic to τ≥−mK
• for each m we see that the system of

objects Hp(I•m) (fixed p varying m) is eventually constant with value Hp(K). Thus
the map

∏
Hp(I•m)→

∏
Hp(I•m) is surjective with kernelHp(K•) (details omitted).

This proves that K• → I• is a quasi-isomorphism as desired. �

Lemma 13.29.10. Let A and B be abelian categories. Let u : A → B and v : B →
A be additive functors. Assume

(1) u is right adjoint to v, and
(2) v is exact.

Then u transforms K-injective complexes into K-injective complexes.

Proof. Let I• be a K-injective complex of A. Let M• be a acyclic complex of B.
As v is exact we see that v(M•) is an acyclic complex. By adjointness we get

0 = HomK(A)(v(M•), I•) = HomK(B)(M
•, u(I•))

hence the lemma follows. �

13.30. Bounded cohomological dimension

There is another case where the unbounded derived functor exists. Namely, when
the functor has bounded cohomological dimension.

Lemma 13.30.1. Let A be an abelian category. Let d : Ob(A)→ {0, 1, 2, . . . ,∞}
be a function. Assume that

(1) every object of A is a subobject of an object A with d(A) = 0,
(2) if 0 → A → B → C → 0 is a short exact sequence then d(C) ≤

max{d(A)− 1, d(B)}.
Let K• be a complex such that n + d(Kn) tends to −∞ as n → −∞. Then there
exists a quasi-isomorphism K• → L• with d(Ln) = 0 for all n ∈ Z.

Proof. By Lemma 13.16.4 we can find a quasi-isomorphism σ≥0K
• → M• with

Mn = 0 for n < 0 and d(Mn) = 0 for n ≥ 0. Then K• is quasi-isomorphic to the
complex

. . .→ K−2 → K−1 →M0 →M1 → . . .

Hence we may assume that d(Kn) = 0 for n � 0. Note that the condition n +
d(Kn)→ −∞ as n→ −∞ is not violated by this replacement.

We are going to improve K• by an (infinite) sequence of elementary replacements.
An elementary replacement is the following. Choose an index n such that d(Kn) >

http://stacks.math.columbia.edu/tag/08BJ
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0. Choose an injection Kn → M where d(M) = 0. Set M ′ = Coker(Kn →
M ⊕Kn+1). Consider the map of complexes

K• :

��

Kn−1

��

// Kn

��

// Kn+1

��

// Kn+2

��
(K ′)• : Kn−1 // M // M ′ // Kn+2

It is clear that K• → (K ′)• is a quasi-isomorphism. Moreover, it is clear that
d((K ′)n) = 0 and d((K ′)n+1) ≤ max{d(Kn+1), d(Kn) − 1} and the other values
are unchanged.

To finish the proof we carefuly choose the order in which to do the elementary
replacements so that for every integer m the complex σ≥mK

• is changed only a
finite number of times. To do this set

ξ(K•) = max{n+ d(Kn) | d(Kn) > 0}
and

I = {n ∈ Z | ξ(K•) = n+ d(Kn) ∧ d(Kn) > 0}
Our assumption that n + d(Kn) tends to −∞ as n → −∞ and the fact that
d(Kn) = 0 for n >> 0 implies ξ(K•) < +∞ and that I is a finite set. It is clear
that ξ((K ′)•) ≤ ξ(K•) for an elementary transformation as above. An elementary
transformation changes the complex in degrees ≤ ξ(K•) + 1. Hence if we can find
finite sequence of elementary transformations which decrease ξ(K•), then we win.
However, note that if we do an elementary transformation starting with the smallest
element n ∈ I, then we either decrease the size of I, or we increase min I. Since
every element of I is ≤ ξ(K•) we see that we win after a finite number of steps. �

Lemma 13.30.2. Let F : A → B be a left exact functor of abelian categories. If

(1) every object of A is a subobject of an object which is right acyclic for F ,
(2) there exists an integer n such that RnF = 0,

then RF : D(A)→ D(B) exists. Any complex consisting of right acyclic objects for
F computes RF and any complex is the source of a quasi-isomorphism into such a
complex.

Proof. Note that the first condition implies that RF : D+(A) → D+(B) exists,
see Proposition 13.16.8. Let A be an object of A. Choose an injection A → A′

with A′ acyclic. Then we see that Rn+1F (A) = RnF (A′/A) = 0 by the long exact
cohomology sequence. Hence we conclude that Rn+1F = 0. Continuing like this
using induction we find that RmF = 0 for all m ≥ n.

We are going to use Lemma 13.30.1 with the function d : Ob(A) → {0, 1, 2, . . .}
given by d(A) = min{0} ∪ {i | RiF (A) 6= 0}. The first assumption of Lemma
13.30.1 is our assumption (1) and the second assumption of Lemma 13.30.1 follows
from the long exact cohomology sequence. Hence for every complex K• there
exists a quasi-isomorphism K• → L• with Ln right acyclic for F . We claim that
if L• → M• is a quasi-isomorphism of complexes of right acyclic objects for F ,
then F (L•) → F (M•) is a quasi-isomorphism. If we prove this claim then we are
done by Lemma 13.15.15. To prove the claim pick an integer i ∈ Z. Consider the
distinguished triangle

σ≥i−n−1L
• → σ≥i−n−1M

• → Q•,

http://stacks.math.columbia.edu/tag/07K7
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i.e., let Q• be the cone of the first map. Note that Q• is bounded below and
that Hj(Q•) is zero except possibly for j = i − n − 1 or j = i − n − 2. We may
apply RF to Q•. Using the spectral sequence of Lemma 13.21.3 and the assumed
vanishing of cohomology (2) we conclude that RjF (Q•) is zero except possibly for
j ∈ {i− n− 2, . . . , i− 1}. Hence we see that RF (σ≥i−n−1L

•)→ RF (σ≥i−n−1M
•)

induces an isomorphism of cohomology objects in degrees ≥ i. By Proposition
13.16.8 we know that RF (σ≥i−n−1L

•) = σ≥i−n−1F (L•) and RF (σ≥i−n−1M
•) =

σ≥i−n−1F (M•). We conclude that F (L•)→ F (M•) is an isomorphism in degree i
as desired. �

Lemma 13.30.3. Let F : A → B be a right exact functor of abelian categories. If

(1) every object of A is a quotient of an object which is left acyclic for F ,
(2) there exists an integer n such that LnF = 0,

then LF : D(A) → D(B) exists. Any complex consisting of left acyclic objects for
F computes LF and any complex is the target of a quasi-isomorphism into such a
complex.

Proof. This is dual to Lemma 13.30.2. �

13.31. Derived colimits

In a triangulated category there is a notion of derived colimit.

Definition 13.31.1. Let D be a triangulated category. Let (Kn, fn) be a system
of objects of D. We say an object K is a derived colimit, or a homotopy colimit of
the system (Kn) if the direct sum

⊕
Kn exists and there is a distinguished triangle⊕

Kn →
⊕

Kn → K →
⊕

Kn[1]

where the map
⊕
Kn →

⊕
Kn is given by 1 − fn in degree n. If this is the case,

then we sometimes indicate this by the notation K = hocolimKn.

By TR3 a derived colimit, if it exists, is unique up to (non-unique) isomorphism.
Moreover, by TR1 a derived colimit of Kn exists as soon as

⊕
Kn exists. The

derived category D(Ab) of the category of abelian groups is an example. More
generally we have the following lemma.

Lemma 13.31.2. Let A be an abelian category. If A has exact countable direct
sums, then D(A) has countable direct sums. In fact given a collection of complexes
K•i indexed by a countable index set I the termwise direct sum

⊕
K•i is the direct

sum of K•i in D(A).

Proof. Let L• be a complex. Suppose given maps αi : K•i → L• in D(A). This
means there exist quasi-isomorphisms si : M•i → K•i of complexes and maps of
complexes fi : M•i → L• such that αi = fis

−1
i . By assumption the map of com-

plexes

s :
⊕

M•i −→
⊕

K•i

is a quasi-isomorphism. Hence setting f =
⊕
fi we see that α = fs−1 is a map in

D(A) whose composition with the coprojection K•i →
⊕
K•i is αi. We omit the

verification that α is unique. �
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Lemma 13.31.3. Let A be an abelian category. Assume colimits over N exist and
are exact. Then countable direct sums exists and are exact. Moreover, if (An, fn)
is a system over N, then there is a short exact sequence

0→
⊕

An →
⊕

An → colimAn → 0

where the first map in degree n is given by 1− fn.

Proof. The first statement follows from
⊕
An = colim(A1 ⊕ . . . ⊕ An). For the

second, note that for each n we have the short exact sequence

0→ A1 ⊕ . . .⊕An−1 → A1 ⊕ . . .⊕An → An → 0

where the first map is given by the maps 1− fi and the second map is the sum of
the transition maps. Take the colimit to get the sequence of the lemma. �

Lemma 13.31.4. Let A be an abelian category. Let L•n be a system of complexes
of A. Assume colimits over N exist and are exact in A. Then the termwise colimit
L• = colimL•n is a homotopy colimit of the system in D(A).

Proof. We have an exact sequence of complexes

0→
⊕

L•n →
⊕

L•n → L• → 0

by Lemma 13.31.3. The direct sums are direct sums in D(A) by Lemma 13.31.2.
Thus the result follows from the definition of derived colimits in Definition 13.31.1
and the fact that a short exact sequence of complexes gives a distinguished triangle
(Lemma 13.12.1). �

The following lemma tells us that taking maps out of a compact object (to be
defined later) commutes with derived colimits.

Lemma 13.31.5. Let D be a triangulated category with countable direct sums. Let
K ∈ D be an object such that for every countable set of objects En ∈ D the canonical
map ⊕

HomD(K,En) −→ HomD(K,
⊕

En)

is a bijection. Then, given any system Ln of D over N whose derived colimit
L = hocolimLn exists we have that

colim HomD(K,Ln) −→ HomD(K,L)

is a bijection.

Proof. Consider the defining distinguished triangle⊕
Ln →

⊕
Ln → L→

⊕
Ln[1]

Apply the cohomological functor HomD(K,−) (see Lemma 13.4.2). By elementary
considerations concerning colimits of abelian groups we get the result. �
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13.32. Derived limits

In a triangulated category there is a notion of derived limit.

Definition 13.32.1. Let D be a triangulated category. Let (Kn, fn) be an inverse
system of objects of D. We say an object K is a derived limit, or a homotopy limit
of the system (Kn) if the product

∏
Kn exists and there is a distinguished triangle

K →
∏

Kn →
∏

Kn → K[1]

where the map
∏
Kn →

∏
Kn is given by (kn) 7→ (kn − fn+1(kn+1)). If this is the

case, then we sometimes indicate this by the notation K = R limKn.

By TR3 a derived limit, if it exists, is unique up to (non-unique) isomorphism.
Moreover, by TR1 a derived limit R limKn exists as soon as

∏
Kn exists. The

derived category D(Ab) of the category of abelian groups is an example. More
generally, we have the following lemma.

Lemma 13.32.2. Let A be an abelian category. If A has exact countable products,
then D(A) has countable products. In fact given a collection of complexes K•i
indexed by a countable index set I the termwise product

∏
K•i is the product of K•i

in D(A).

Proof. Let L• be a complex. Suppose given maps αi : L• → K•i in D(A). This
means there exist quasi-isomorphisms si : K•i → M•i of complexes and maps of
complexes fi : L• → M•i such that αi = s−1

i fi. By assumption the map of com-
plexes

s :
∏

K•i −→
∏

M•i

is a quasi-isomorphism. Hence setting f =
∏
fi we see that α = s−1f is a map

in D(A) whose composition with the projection
∏
K•i → K•i is αi. We omit the

verification that α is unique. �

The duals of Lemmas 13.31.3, 13.31.4, and 13.31.5 should be stated here and proved.
However, we do not know any applications of these lemmas for now.

13.33. Generators of triangulated categories

In this section we briefly introduce a few of the different notions of a generator for
a triangulated category. Our terminology is taken from [BV03] (except that we
use “saturated” for what they call “épaisse”, see Definition 13.6.1).

Let D be a triangulated category. Let E be an object of D. Denote 〈E〉1 the strictly
full subcategory of D consisting of objects in D isomorphic to direct summands of
finite direct sums ⊕

E[ni]

of shifts of E. For n > 1 let 〈E〉n denote the full subcategory of D consisting of ob-
jects of D isomorphic to direct summands of objects X which fit into a distinguished
triangle

A→ X → B → A[1]

where A and B are objects of 〈E〉n−1. Each of the categories 〈E〉n is a strictly
full additive subcategory of D preserved under shifts and under taking summands.
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But, 〈E〉n is not necessarily closed under “taking cones”, hence not necessarily a
triangulated subcategory. By the same token, the subcategory

〈E〉 =
⋃

n
〈E〉n

is a strictly full, saturated, triangulated subcategory of D and it is the smallest
such subcategory of D containing the object E.

Definition 13.33.1. Let D be a triangulated category. Let E be an object of D.

(1) We say E is a classical generator ofD if the smallest strictly full, saturated,
triangulated subcategory of D containing E is equal to D, in other words,
if 〈E〉 = D.

(2) We say E is a strong generator of D if 〈E〉n = D for some n ≥ 1.
(3) We say E is a weak generator or a generator of D if for any nonzero object

K of D there exists an integer n and a nonzero map E → K[n].

This definition can be generalized to the case of a family of objects.

Lemma 13.33.2. Let D be a triangulated category. Let E,K be objects of D. The
following are equivalent

(1) Hom(E,K[i]) = 0 for all i ∈ Z,
(2) Hom(E′,K) = 0 for all E′ ∈ 〈E〉.

Proof. The implication (2) ⇒ (1) is immediate. Conversely, assume (1). Then
Hom(X,K) = 0 for all X in 〈E〉1. Arguing by induction on n and using Lemma
13.4.2 we see that Hom(X,K) = 0 for all X in 〈E〉n. �

Lemma 13.33.3. Let D be a triangulated category. Let E be an object of D. If E
is a classical generator of D, then E is a generator.

Proof. Assume E is a classical generator. Let K be an object of D such that
Hom(E,K[i]) = 0 for all i ∈ Z. By Lemma 13.33.2 Hom(E′,K) = 0 for all E′ in
〈E〉. However, since D = 〈E〉 we conclude that idK = 0, i.e., K = 0. �

13.34. Compact objects

Here is the definition.

Definition 13.34.1. Let D be an additive category with arbitrary direct sums. A
compact object of D is an object K such that the map⊕

i∈I
HomD(K,Ei) −→ HomD(K,

⊕
i∈I

Ei)

is bijective for any set I and objects Ei ∈ Ob(D) parametrized by i ∈ I.

This notion turns out to be very useful in algebraic geometry. It is an intrinsic
condition on objects that forces the objects to be, well, compact.

Lemma 13.34.2. Let D be a (pre-)triangulated category with direct sums. Then
the compact objects of D form the objects of a Karoubian, saturated, strictly full,
(pre-)triangulated subcategory Dc of D.

Proof. Let (X,Y, Z, f, g, h) be a distinguished triangle ofD withX and Y compact.
Then it follows from Lemma 13.4.2 and the five lemma (Homology, Lemma 12.5.20)
that Z is a compact object too. It is clear that if X ⊕Y is compact, then X, Y are
compact objects too. Hence Dc is a saturated triangulated subcategory. Since D is
Karoubian by Lemma 13.4.12 we conclude that the same is true for Dc. �
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Lemma 13.34.3. Let D be a triangulated category with direct sums. Let Ei, i ∈ I
be a family of compact objects of D such that

⊕
Ei generates D. Then every object

X of D can be written as
X = hocolimXn

where X1 is a direct sum of shifts of the Ei and each transition morphism fits into
a distinguished triangle Yn → Xn → Xn+1 → Yn[1] where Yn is a direct sum of
shifts of the Ei.

Proof. Set X1 =
⊕

(i,m,ϕ)Ei[m] where the direct sum is over all triples (i,m, ϕ)

such that i ∈ I, m ∈ Z and ϕ : Ei[m] → X. Then X1 comes equipped with
a canonical morphism X1 → X. Given Xn → X we set Yn =

⊕
(i,m,ϕ)Ei[m]

where the direct sum is over all triples (i,m, ϕ) such that i ∈ I, m ∈ Z, and
ϕ : Ei[m] → Xn is a morphism such that Ei[m] → Xn → X is zero. Choose
a distinguished triangle Yn → Xn → Xn+1 → Yn[1] and let Xn+1 → X be any
morphism such that Xn → Xn+1 → X is the given one; such a morphism exists by
our choice of Yn. We obtain a morphism hocolimXn → X by the construction of
our maps Xn → X. Choose a distinguished triangle

C → hocolimXn → X → C[1]

Let Ei[m] → C be a morphism. Since Ei is compact, the composition Ei[m] →
X → hocolimXn factors through Xn for some n, say by Ei[m] → Xn. Then the
construction of Yn shows that the composition Ei[m] → Xn → Xn+1 is zero. In
other words, the composition Ei[m] → C → hocolimXn is zero. This means that
our morphism Ei[m]→ C comes from a morphism Ei[m]→ X[−1]. The construc-
tion of X1 then shows that such morphism lifts to hocolimXn and we conclude that
our morphism Ei[m]→ C is zero. The assumption that

⊕
Ei generates D implies

that C is zero and the proof is done. �

Lemma 13.34.4. With assumptions and notation as in Lemma 13.34.3. If C
is a compact object and C → Xn is a morphism, then there is a factorization
C → E → Xn where E is an object of 〈Ei1 ⊕ . . .⊕ Eit〉 for some i1, . . . , it ∈ I.

Proof. We prove this by induction on n. The base case n = 1 is clear. If n > 1
consider the composition C → Xn → Yn−1[1]. This can be factored through some
E′[1] → Yn−1[1] where E′ is a finite direct sum of shifts of the Ei. Let I ′ ⊂ I be
the finite set of indices that occur in this direct sum. Thus we obtain

E′ //

��

C ′ //

��

C //

��

E′[1]

��
Yn−1

// Xn−1
// Xn

// Yn−1[1]

By induction the morphism C ′ → Xn−1 factors through E′′ → Xn−1 with E′′ an
object of 〈

⊕
i∈I′′ Ei〉 for some finite subset I ′′ ⊂ I. Choose a distinguished triangle

E′ → E′′ → E → E′[1]

then E is an object of 〈
⊕

i∈I′∪I′′ Ei〉. By construction and the axioms of a tri-
angulated category we can choose morphisms C → E and a morphism E → Xn

fitting into morphisms of triangles (E′, C ′, C) → (E′, E′′, E) and (E′, E′′, E) →
(Yn−1, Xn−1, Xn). The composition C → E → Xn may not equal the given mor-
phism C → Xn, but the compositions into Yn−1 are equal. Let C → Xn−1 be

http://stacks.math.columbia.edu/tag/09SN
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a morphism that lifts the difference. By induction assumption we can factor this
through a morphism E′′′ → Xn−1 with E′′ an object of 〈

⊕
i∈I′′′ Ei〉 for some finite

subset I ′ ⊂ I. Thus we see that we get a solution on considering E ⊕ E′′′ → Xn

because E ⊕ E′′′ is an object of 〈
⊕

i∈I′∪I′′∪I′′′ Ei〉. �

Definition 13.34.5. Let D be a triangulated category with arbitrary direct sums.
We say D is compactly generated if there exists a set Ei, i ∈ I of compact objects
such that

⊕
Ei generates D.

The following proposition clarifies the relationship between classical generators and
weak generators.

Proposition 13.34.6. Let D be a triangulated category with direct sums. Let E
be a compact object of D. The following are equivalent

(1) E is a classical generator for Dc and D is compactly generated, and
(2) E is a generator for D.

Proof. If E is a classical generator for Dc, then Dc = 〈E〉. It follows formally
from the assumption that D is compactly generated and Lemma 13.33.2 that E is
a generator for D.

The converse is more interesting. Assume that E is a generator for D. Let X be a
compact object of D. Apply Lemma 13.34.3 with I = {1} and E1 = E to write

X = hocolimXn

as in the lemma. Since X is compact we find that X → hocolimXn factors through
Xn for some n (Lemma 13.31.5). Thus X is a direct summand of Xn. By Lemma
13.34.4 we see that X is an object of 〈E〉 and the lemma is proven. �

13.35. Brown representability

A reference for the material in this section is [Nee96].

Lemma 13.35.1. Let D be a triangulated with direct sums which is compactly gen-
erated. Let H : D → Ab be a contravariant cohomological functor which transforms
direct sums into products. Then H is representable.

Proof. Let Ei, i ∈ I be a set of compact objects such that
⊕

i∈I Ei generates
D. We may and do assume that the set of objects {Ei} is preserved under shifts.
Consider pairs (i, a) where i ∈ I and a ∈ H(Ei) and set

X1 =
⊕

(i,a)
Ei

Since H(X1) =
∏

(i,a)H(Ei) we see that (a)(i,a) defines an element a1 ∈ H(X1). Set

H1 = HomD(−, X1). By Yoneda’s lemma (Categories, Lemma 4.3.5) the element
a1 defines a natural transformation H1 → H.

We are going to inductively construct Xn and transformations an : Hn → H
where Hn = HomD(−, Xn). Namely, we apply the procedure above to the functor
Ker(Hn → H) to get an object

Kn+1 =
⊕

(i,k), k∈Ker(Hn(Ei)→H(Ei))
Ei

http://stacks.math.columbia.edu/tag/09SQ
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and a transformation HomD(−,Kn+1) → Ker(Hn → H). By Yoneda’s lemma the
composition HomD(−,Kn+1) → Hn gives a morphism Kn+1 → Xn. We choose a
distinguished triangle

Kn+1 → Xn → Xn+1 → Kn+1[1]

in D. The element an ∈ H(Xn) maps to zero in H(Kn+1) by construction. Since
H is cohomological we can lift it to an element an+1 ∈ H(Xn+1).

We claim that X = hocolimXn represents H. First of all, by our definition of
derived colimits and the fact that H transforms direct sums into products, we see
that H(X) = limH(Xn),. Thus a = (an) gives an element in H(X) and hence a
natural transformation HomD(−, X)→ H such that

HomD(−, X1)→ HomD(−, X2)→ HomD(−, X3)→ . . .→ HomD(−, X)→ H

commutes. For each i the map HomD(Ei, X) → H(Ei) is surjective, by construc-
tion of X1. On the other hand, by construction of Xn → Xn+1 the kernel of
HomD(Ei, Xn)→ H(Ei) is killed by the map HomD(Ei, Xn)→ HomD(Ei, Xn+1).
Since

HomD(Ei, X) = colim HomD(Ei, Xn)

by Lemma 13.31.5 we see that HomD(Ei, X)→ H(Ei) is injective.

To finish the proof, consider the subcategory

D′ = {Y ∈ Ob(D) | HomD(Y [n], X)→ H(Y [n]) is an isomorphism for all n}
As HomD(−, X) → H is a transformation between cohomological functors, the
subcategory D′ is a strictly full, saturated, triangulated subcategory of D (details
omitted; see proof of Lemma 13.6.3). Moreover, as both H and HomD(−, X)
transform direct sums into products, we see that direct sums of objects of D′ are in
D′. Thus derived colimits of objects of D′ are in D′. Since {Ei} is preserved under
shifts, we see that Ei is an object of D′ for all i. It follows from Lemma 13.34.3
that D′ = D and the proof is complete. �

Proposition 13.35.2. Let D be a triangulated with direct sums which is compactly
generated. Let F : D → D′ be an additive functor of triangulated categories which
transforms direct sums into direct sums. Then F has a right adjoint. If F is an
exact functor, then so is the adjoint.

Proof. For an object Y of D′ consider the contravariant functor

D → Ab, W 7→ HomD′(F (W ), Y )

This is a cohomological functors as F is exact and tranforms direct sums into
products as F transforms direct sums into direct sums. Thus by Lemma 13.35.1 we
find an object X of D such that HomD(W,X) = HomD′(F (W ), Y ). The existence
of the adjoint follows from Categories, Lemma 4.24.2. Exactness if F is exact,
follows from Lemma 13.7.1. �

13.36. Other chapters
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http://stacks.math.columbia.edu/tag/0A8G


1000 13. DERIVED CATEGORIES

(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces

(51) Cohomology of Algebraic
Spaces

(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic

Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index



CHAPTER 14

Simplicial Methods

14.1. Introduction

This is a minimal introduction to simplicial methods. We just add here whenever
something is needed later on. A general reference to this material is perhaps [GJ99].
An example of the things you can do is the paper by Quillen on Homotopical
Algebra, see [Qui67] or the paper on Étale Homotopy by Artin and Mazur, see
[AM69].

14.2. The category of finite ordered sets

The category ∆ is the category with

(1) objects [0], [1], [2], . . . with [n] = {0, 1, 2, . . . , n} and
(2) a morphism [n]→ [m] is a nondecreasing map {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}

between the corresponding sets.

Here nondecreasing for a map ϕ : [n] → [m] means by definition that ϕ(i) ≥
ϕ(j) if i ≥ j. In other words, ∆ is a category equivalent to the “big” category
of finite totally ordered sets and nondecreasing maps. There are exactly n + 1
morphisms [0]→ [n] and there is exactly 1 morphism [n]→ [0]. There are exactly
(n + 1)(n + 2)/2 morphisms [1] → [n] and there are exactly n + 2 morphisms
[n]→ [1]. And so on and so forth.

Definition 14.2.1. For any integer n ≥ 1, and any 0 ≤ j ≤ n we let δnj : [n− 1]→
[n] denote the injective order preserving map skipping j. For any integer n ≥ 0,
and any 0 ≤ j ≤ n we denote σnj : [n+ 1]→ [n] the surjective order preserving map

with (σnj )−1({j}) = {j, j + 1}.

Lemma 14.2.2. Any morphism in ∆ can be written as a composition of the mor-
phisms δnj and σnj .

Proof. Let ϕ : [n] → [m] be a morphism of ∆. If j 6∈ Im(ϕ), then we can write
ϕ as δmj ◦ ψ for some morphism ψ : [n] → [m − 1]. If ϕ(j) = ϕ(j + 1) then we

can write ϕ as ψ ◦ σn−1
j for some morphism ψ : [n − 1] → [m]. The result follows

because each replacement as above lowers n+m and hence at some point ϕ is both
injective and surjective, hence an identity morphism. �

Lemma 14.2.3. The morphisms δnj and σnj satisfy the following relations.
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(1) If 0 ≤ i < j ≤ n + 1, then δn+1
j ◦ δni = δn+1

i ◦ δnj−1. In other words the
diagram

[n]
δn+1
j

""
[n− 1]

δni

<<

δnj−1 ""

[n+ 1]

[n]

δn+1
i

<<

commutes.
(2) If 0 ≤ i < j ≤ n − 1, then σn−1

j ◦ δni = δn−1
i ◦ σn−2

j−1 . In other words the
diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j−1 $$

[n− 1]

[n− 2]

δn−1
i

::

commutes.
(3) If 0 ≤ j ≤ n − 1, then σn−1

j ◦ δnj = id[n−1] and σn−1
j ◦ δnj+1 = id[n−1]. In

other words the diagram

[n]
σn−1
j

""
[n− 1]

δnj

<<

δnj+1 ""

id[n−1] // [n− 1]

[n]

σn−1
j

<<

commutes.
(4) If 0 < j + 1 < i ≤ n, then σn−1

j ◦ δni = δn−1
i−1 ◦ σ

n−2
j . In other words the

diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j $$

[n− 1]

[n− 2]

δn−1
i−1

::

commutes.
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(5) If 0 ≤ i ≤ j ≤ n − 1, then σn−1
j ◦ σni = σn−1

i ◦ σnj+1. In other words the
diagram

[n]
σn−1
j

""
[n+ 1]

σni

<<

σnj+1 ""

[n− 1]

[n]

σn−1
i

<<

commutes.

Proof. Omitted. �

Lemma 14.2.4. The category ∆ is the universal category with objects [n], n ≥
0 and morphisms δnj and σnj such that (a) every morphism is a composition of
these morphisms, (b) the relations listed in Lemma 14.2.3 are satisfied, and (c) any
relation among the morphisms is a consequence of those relations.

Proof. Omitted. �

14.3. Simplicial objects

Definition 14.3.1. Let C be a category.

(1) A simplicial object U of C is a contravariant functor U from ∆ to C, in a
formula:

U : ∆opp −→ C
(2) If C is the category of sets, then we call U a simplicial set.
(3) If C is the category of abelian groups, then we call U a simplicial abelian

group.
(4) A morphism of simplicial objects U → U ′ is a transformation of functors.
(5) The category of simplicial objects of C is denoted Simp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for ϕ any nondecreasing
map ϕ : [m] → [n] a morphism U(ϕ) : U([n]) → U([m]), satisfying U(ϕ ◦ ψ) =
U(ψ) ◦ U(ϕ).

In particular there is a unique morphism U([0])→ U([n]) and there are exactly n+1
morphisms U([n])→ U([0]) corresponding to the n+ 1 maps [0]→ [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 14.2
above.

Lemma 14.3.2. Let C be a category.

(1) Given a simplicial object U in C we obtain a sequence of objects Un =
U([n]) endowed with the morphisms dnj = U(δnj ) : Un → Un−1 and
snj = U(σnj ) : Un → Un+1. These morphisms satisfy the opposites of
the relations displayed in Lemma 14.2.3.

(2) Conversely, given a sequence of objects Un and morphisms dnj , snj satisfy-
ing these relations there exists a unique simplicial object U in C such that
Un = U([n]), dnj = U(δnj ), and snj = U(σnj ).

http://stacks.math.columbia.edu/tag/0168
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(3) A morphism between simplicial objects U and U ′ is given by a family of
morphisms Un → U ′n commuting with the morphisms dnj and snj .

Proof. This follows from Lemma 14.2.4. �

Remark 14.3.3. By abuse of notation we sometimes write di : Un → Un−1 instead
of dni , and similarly for si : Un → Un+1. The relations among the morphisms dni
and sni may be expressed as follows:

(1) If i < j, then di ◦ dj = dj−1 ◦ di.
(2) If i < j, then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .
(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j, then si ◦ sj = sj+1 ◦ si.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism s0
0 = U(σ0

0) : U0 → U1 and two morphisms d1
0 = U(δ1

0),
and d1

1 = U(δ1
1) which are morphisms U1 → U0. There are two morphisms s1

0 =
U(σ1

0), s1
1 = U(σ1

1) which are morphisms U1 → U2. Three morphisms d2
0 = U(δ2

0),
d2

1 = U(δ2
1), d2

2 = U(δ2
2) which are morphisms U3 → U2. And so on.

Pictorially we think of U as follows:

U2

//
//
//
U1

//
//oo

oo
U0

oo

Here the d-morphisms are the arrows pointing right and the s-morphisms are the
arrows pointing left.

Example 14.3.4. The simplest example is the constant simplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 14.3.5. Suppose that Y → X is a morphism of C such that all the fibred
products Y ×X Y ×X . . . ×X Y exist. Then we set Un equal to the (n + 1)-fold
fibre product, and we let ϕ : [n] → [m] correspond to the map (on “coordinates”)
(y0, . . . , ym) 7→ (yϕ(0), . . . , yϕ(n)). In other words, the map U0 = Y → U1 = Y ×X Y
is the diagonal map. The two maps U1 = Y ×X Y → U0 = Y are the projection
maps.

Geometrically Example 14.3.5 above is an important example. It tells us that it is
a good idea to think of the maps dnj : Un → Un−1 as projection maps (forgetting
the jth component), and to think of the maps snj : Un → Un+1 as diagonal maps
(repeating the jth coordinate). We will return to this in the sections below.

Lemma 14.3.6. Let C be a category. Let U be a simplicial object of C. Each of the
morphisms sni : Un → Un+1 has a left inverse. In particular sni is a monomorphism.

Proof. This is true because dn+1
i ◦ sni = idUn . �

14.4. Simplicial objects as presheaves

Another observation is that we may think of a simplicial object of C as a presheaf
with values in C over ∆. See Sites, Definition 7.2.2. And in fact, if U , U ′ are
simplicial objects of C, then we have

(14.4.0.1) Mor(U,U ′) = MorPSh(∆)(U,U
′).
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Some of the material below could be replaced by the more general constructions in
the chapter on sites. However, it seems a clearer picture arises from the arguments
specific to simplicial objects.

14.5. Cosimplicial objects

A cosimplicial object of a category C could be defined simply as a simplicial object
of the opposite category Copp. This is not really how the human brain works, so we
introduce them separately here and point out some simple properties.

Definition 14.5.1. Let C be a category.

(1) A cosimplicial object U of C is a covariant functor U from ∆ to C, in a
formula:

U : ∆ −→ C
(2) If C is the category of sets, then we call U a cosimplicial set.
(3) If C is the category of abelian groups, then we call U a cosimplicial abelian

group.
(4) A morphism of cosimplicial objects U → U ′ is a transformation of functors.
(5) The category of cosimplicial objects of C is denoted CoSimp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for ϕ any nondecreasing
map ϕ : [m] → [n] a morphism U(ϕ) : U([m]) → U([n]), satisfying U(ϕ ◦ ψ) =
U(ϕ) ◦ U(ψ).

In particular there is a unique morphism U([n])→ U([0]) and there are exactly n+1
morphisms U([0])→ U([n]) corresponding to the n+ 1 maps [0]→ [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 14.2
above.

Lemma 14.5.2. Let C be a category.

(1) Given a cosimplicial object U in C we obtain a sequence of objects Un =
U([n]) endowed with the morphisms δnj = U(δnj ) : Un−1 → Un and σnj =
U(σnj ) : Un+1 → Un. These morphisms satisfy the relations displayed in
Lemma 14.2.3.

(2) Conversely, given a sequence of objects Un and morphisms δnj , σnj satis-
fying these relations there exists a unique cosimplicial object U in C such
that Un = U([n]), δnj = U(δnj ), and σnj = U(σnj ).

(3) A morphism between cosimplicial objects U and U ′ is given by a family of
morphisms Un → U ′n commuting with the morphisms δnj and σnj .

Proof. This follows from Lemma 14.2.4. �

Remark 14.5.3. By abuse of notation we sometimes write δi : Un−1 → Un instead
of δni , and similarly for σi : Un+1 → Un. The relations among the morphisms δni
and σni may be expressed as follows:

(1) If i < j, then δj ◦ δi = δi ◦ δj−1.
(2) If i < j, then σj ◦ δi = δi ◦ σj−1.
(3) We have id = σj ◦ δj = σj ◦ δj+1.
(4) If i > j + 1, then σj ◦ δi = δi−1 ◦ σj .
(5) If i ≤ j, then σj ◦ σi = σi ◦ σj+1.
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http://stacks.math.columbia.edu/tag/016K
http://stacks.math.columbia.edu/tag/016L


1006 14. SIMPLICIAL METHODS

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism σ0
0 = U(σ0

0) : U1 → U0 and two morphisms δ1
0 = U(δ1

0),
and δ1

1 = U(δ1
1) which are morphisms U0 → U1. There are two morphisms σ1

0 =
U(σ1

0), σ1
1 = U(σ1

1) which are morphisms U2 → U1. Three morphisms δ2
0 = U(δ2

0),
δ2
1 = U(δ2

1), δ2
2 = U(δ2

2) which are morphisms U2 → U3. And so on.

Pictorially we think of U as follows:

U0
//
// U1

oo
//
//
//
U2oo

oo

Here the δ-morphisms are the arrows pointing right and the σ-morphisms are the
arrows pointing left.

Example 14.5.4. The simplest example is the constant cosimplicial object with
value X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 14.5.5. Suppose that Y → X is a morphism of C such that all the
pushouts Y

∐
X Y

∐
X . . .

∐
X Y exist. Then we set Un equal to the (n + 1)-fold

pushout, and we let ϕ : [n]→ [m] correspond to the map

(y in ith component) 7→ (y in ϕ(i)th component)

on “coordinates”. In other words, the map U1 = Y
∐
X Y → U0 = Y is the identity

on each component. The two maps U0 = Y → U1 = Y
∐
X Y are the two natural

maps.

Lemma 14.5.6. Let C be a category. Let U be a cosimplicial object of C. Each of
the morphisms δni : Un−1 → Un has a left inverse. In particular δni is a monomor-
phism.

Proof. This is true because σn−1
i ◦ δni = idUn for j < n. �

14.6. Products of simplicial objects

Of course we should define the product of simplicial objects as the product in the
category of simplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the
product directly as follows.

Definition 14.6.1. Let C be a category. Let U and V be simplicial objects of C.
Assume the products Un × Vn exist in C. The product of U and V is the simplicial
object U × V defined as follows:

(1) (U × V )n = Un × Vn,
(2) dni = (dni , d

n
i ), and

(3) sni = (sni , s
n
i ).

In other words, U × V is the product of the presheaves U and V on ∆.

Lemma 14.6.2. If U and V are simplicial objects in the category C, and if U × V
exists, then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )

for any third simplicial object W of C.

Proof. Omitted. �
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14.7. Fibre products of simplicial objects

Of course we should define the fibre product of simplicial objects as the fibre product
in the category of simplicial objects. This may lead to the potentially confusing
situation where the fibre product exists but is not described as below. To avoid
this we define the fibre product directly as follows.

Definition 14.7.1. Let C be a category. Let U, V,W be simplicial objects of C.
Let a : V → U , b : W → U be morphisms. Assume the fibre products Vn ×Un Wn

exist in C. The fibre product of V and W over U is the simplicial object V ×U W
defined as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) dni = (dni , d

n
i ), and

(3) sni = (sni , s
n
i ).

In other words, V ×U W is the fibre product of the presheaves V and W over the
presheaf U on ∆.

Lemma 14.7.2. If U, V,W are simplicial objects in the category C, and if a : V →
U , b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )

for any fourth simplicial object T of C.

Proof. Omitted. �

14.8. Pushouts of simplicial objects

Of course we should define the pushout of simplicial objects as the pushout in the
category of simplicial objects. This may lead to the potentially confusing situation
where the pushouts exist but are not as described below. To avoid this we define
the pushout directly as follows.

Definition 14.8.1. Let C be a category. Let U, V,W be simplicial objects of C.
Let a : U → V , b : U → W be morphisms. Assume the pushouts Vn qUn Wn exist
in C. The pushout of V and W over U is the simplicial object V qU W defined as
follows:

(1) (V qU W )n = Vn qUn Wn,
(2) dni = (dni , d

n
i ), and

(3) sni = (sni , s
n
i ).

In other words, V qUW is the pushout of the presheaves V and W over the presheaf
U on ∆.

Lemma 14.8.2. If U, V,W are simplicial objects in the category C, and if a : U →
V , b : U →W are morphisms and if V qU W exists, then we have

Mor(V qU W,T ) = Mor(V, T )×Mor(U,T ) Mor(W,T )

for any fourth simplicial object T of C.

Proof. Omitted. �
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14.9. Products of cosimplicial objects

Of course we should define the product of cosimplicial objects as the product in
the category of cosimplicial objects. This may lead to the potentially confusing
situation where the product exists but is not described as below. To avoid this we
define the product directly as follows.

Definition 14.9.1. Let C be a category. Let U and V be cosimplicial objects of C.
Assume the products Un×Vn exist in C. The product of U and V is the cosimplicial
object U × V defined as follows:

(1) (U × V )n = Un × Vn,
(2) for any ϕ : [n] → [m] the map (U × V )(ϕ) : Un × Vn → Um × Vm is the

product U(ϕ)× V (ϕ).

Lemma 14.9.2. If U and V are cosimplicial objects in the category C, and if U×V
exists, then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )

for any third cosimplicial object W of C.

Proof. Omitted. �

14.10. Fibre products of cosimplicial objects

Of course we should define the fibre product of cosimplicial objects as the fibre
product in the category of cosimplicial objects. This may lead to the potentially
confusing situation where the product exists but is not described as below. To
avoid this we define the fibre product directly as follows.

Definition 14.10.1. Let C be a category. Let U, V,W be cosimplicial objects of
C. Let a : V → U and b : W → U be morphisms. Assume the fibre products
Vn ×Un Wn exist in C. The fibre product of V and W over U is the cosimplicial
object V ×U W defined as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) for any ϕ : [n]→ [m] the map (V ×U W )(ϕ) : Vn ×Un Wn → Vm ×Um Wm

is the product V (ϕ)×U(ϕ) W (ϕ).

Lemma 14.10.2. If U, V,W are cosimplicial objects in the category C, and if a :
V → U , b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )

for any fourth cosimplicial object T of C.

Proof. Omitted. �

14.11. Simplicial sets

Let U be a simplicial set. It is a good idea to think of U0 as the 0-simplices, the
set U1 as the 1-simplices, the set U2 as the 2-simplices, and so on.

We think of the maps snj : Un → Un+1 as the map that associates to an n-simplex
A the degenerate (n+ 1)-simplex B whose (j, j + 1)-edge is collapsed to the vertex
j of A. We think of the map dnj : Un → Un−1 as the map that associates to an
n-simplex A one of the faces, namely the face that omits the vertex j. In this way it
become possible to visualize the relations among the maps snj and dnj geometrically.
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Definition 14.11.1. Let U be a simplicial set. We say x is an n-simplex of U to
signify that x is an element of Un. We say that y is the jthe face of x to signify
that dnj x = y. We say that z is the jth degeneracy of x if z = snj x. A simplex is
called degenerate if it is the degeneracy of another simplex.

Here are a few fundamental examples.

Example 14.11.2. For every n ≥ 0 we denote ∆[n] the simplicial set

∆opp −→ Sets

[k] 7−→ Mor∆([k], [n])

We leave it to the reader to verify the following statements. Every m-simplex of
∆[n] with m > n is degenerate. There is a unique nondegenerate n-simplex of ∆[n],
namely id[n].

Lemma 14.11.3. Let U be a simplicial set. Let n ≥ 0 be an integer. There is a
canonical bijection

Mor(∆[n], U) −→ Un

which maps a morphism ϕ to the value of ϕ on the unique nondegenerate n-simplex
of ∆[n].

Proof. Omitted. �

Example 14.11.4. Consider the category ∆/[n] of objects over [n] in ∆, see Cat-
egories, Example 4.2.13. There is a functor p : ∆/[n] → ∆. The fibre category of
p over [k], see Categories, Section 4.33, has as objects the set ∆[n]k of k-simplices
in ∆[n], and as morphisms only identities. For every morphism ϕ : [k] → [l] of ∆,
and every object ψ : [l]→ [n] in the fibre category over [l] there is a unique object
over [k] with a morphism covering ϕ, namely ψ ◦ϕ : [k]→ [n]. Thus ∆/[n] is fibred
in sets over ∆. In other words, we may think of ∆/[n] as a presheaf of sets over
∆. See also, Categories, Example 4.36.7. And this presheaf of sets agrees with
the simplicial set ∆[n]. In particular, from Equation (14.4.0.1) and Lemma 14.11.3
above we get the formula

MorPSh(∆)(∆/[n], U) = Un

for any simplicial set U .

Lemma 14.11.5. Let U , V be simplicial sets. Let a, b ≥ 0 be integers. Assume
every n-simplex of U is degenerate if n > a. Assume every n-simplex of V is
degenerate if n > b. Then every n-simplex of U × V is degenerate if n > a+ b.

Proof. Suppose n > a+b. Let (u, v) ∈ (U×V )n = Un×Vn. By assumption, there
exists a α : [n] → [a] and a u′ ∈ Ua and a β : [n] → [b] and a v′ ∈ Vb such that
u = U(α)(u′) and v = V (β)(v′). Because n > a + b, there exists an 0 ≤ i ≤ a + b
such that α(i) = α(i+ 1) and β(i) = β(i+ 1). It follows immediately that (u, v) is
in the image of sn−1

i . �

14.12. Truncated simplicial objects and skeleton functors

Let ∆≤n denote the full subcategory of ∆ with objects [0], [1], [2], . . . , [n]. Let C be
a category.
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Definition 14.12.1. An n-truncated simplicial object of C is a contravariant func-
tor from ∆≤n to C. A morphism of n-truncated simplicial objects is a transformation
of functors. We denote the category of n-truncated simplicial objects of C by the
symbol Simpn(C).

Given a simplicial object U of C the truncation sknU is the restriction of U to the
subcategory ∆≤n. This defines a skeleton functor

skn : Simp(C) −→ Simpn(C)

from the category of simplicial objects of C to the category of n-truncated simplicial
objects of C. See Remark 14.20.6 to avoid possible confusion with other functors in
the literature.

14.13. Products with simplicial sets

Let C be a category. Let U be a simplicial set. Let V be a simplicial object of C.
We can consider the covariant functor which associates to a simplicial object W of
C the set
(14.13.0.1){

(fn,u : Vn →Wn)n≥0,u∈Un such that
∀ϕ : [m]→ [n]

fm,U(ϕ)(u) ◦ V (ϕ) = W (ϕ) ◦ fn,u

}
If this functor is of the form MorSimp(C)(Q,−) then we can think of Q as the
product of U with V . Instead of formalizing this in this way we just directly define
the product as follows.

Definition 14.13.1. Let C be a category such that the coproduct of any two
objects of C exists. Let U be a simplicial set. Let V be a simplicial object of C.
Assume that each Un is finite nonempty. In this case we define the product U × V
of U and V to be the simplicial object of C whose nth term is the object

(U × V )n =
∐

u∈Un
Vn

with maps for ϕ : [m]→ [n] given by the morphism∐
u∈Un

Vn −→
∐

u′∈Um
Vm

which maps the component Vn corresponding to u to the component Vm correspond-
ing to u′ = U(ϕ)(u) via the morphism V (ϕ). More loosely, if all of the coproducts
displayed above exist (without assuming anything about C) we will say that the
product U × V exists.

Lemma 14.13.2. Let C be a category such that the coproduct of any two objects of
C exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that
each Un is finite nonempty. The functor W 7→ MorSimp(C)(U×V,W ) is canonically
isomorphic to the functor which maps W to the set in Equation (14.13.0.1).

Proof. Omitted. �

Lemma 14.13.3. Let C be a category such that the coproduct of any two objects
of C exists. Let us temporarily denote FSSets the category of simplicial sets all of
whose components are finite nonempty.

(1) The rule (U, V ) 7→ U ×V defines a functor FSSets×Simp(C)→ Simp(C).
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(2) For every U , V as above there is a canonical map of simplicial objects

U × V −→ V

defined by taking the identity on each component of (U × V )n =
∐
u Vn.

Proof. Omitted. �

We briefly study a special case of the construction above. Let C be a category. Let
X be an object of C. Let k ≥ 0 be an integer. If all coproducts X

∐
. . .
∐
X exist

then according to the definition above the product

X ×∆[k]

exists, where we think of X as the corresponding constant simplicial object.

Lemma 14.13.4. With X and k as above. For any simplicial object V of C we
have the following canonical bijection

MorSimp(C)(X ×∆[k], V ) −→ MorC(X,Vk).

wich maps γ to the restriction of the morphism γk to the component corresponding
to id[k]. Similarly, for any n ≥ k, if W is an n-truncated simplicial object of C,
then we have

MorSimpn(C)(skn(X ×∆[k]),W ) = MorC(X,Wk).

Proof. A morphism γ : X × ∆[k] → V is given by a family of morphisms γα :
X → Vn where α : [n] → [k]. The morphisms have to satisfy the rules that for all
ϕ : [m]→ [n] the diagrams

X
γα //

idX

��

Vn

V (ϕ)

��
X

γα◦ϕ // Vm

commute. Taking α = id[k], we see that for any ϕ : [m] → [k] we have γϕ =
V (ϕ)◦γid[k]

. Thus the morphism γ is determined by the value of γ on the component
corresponding to id[k]. Conversely, given such a morphism f : X → Vk we easily
construct a morphism γ by putting γα = V (α) ◦ f .

The truncated case is similar, and left to the reader. �

A particular example of this is the case k = 0. In this case the formula of the
lemma just says that

MorC(X,V0) = MorSimp(C)(X,V )

where on the right hand side X indicates the constant simplicial object with value
X. We will use this formula without further mention in the following.

14.14. Hom from simplicial sets into cosimplicial objects

Let C be a category. Let U be a simplicial object of C, and let V be a cosimplicial
object of C. Then we get a cosimplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for ϕ : [m] → [n] we take the map HomC(U, V )m → HomC(U, V )n given

by f 7→ V (ϕ) ◦ f ◦ U(ϕ).

This is our motivation for the following definition.
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Definition 14.14.1. Let C be a category with finite products. Let V be a cosim-
plicial object of C. Let U be a simplicial set such that each Un is finite nonempty.
We define Hom(U, V ) to be the cosimplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un Vn, in other words the unique object of C

such that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))

and
(2) for ϕ : [m] → [n] we take the map Hom(U, V )m → Hom(U, V )n given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between prod-
ucts. We also point out that the construction is functorial in both U (contravari-
antly) and V (covariantly), exactly as in Lemma 14.13.3 in the case of products of
simplicial sets with simplicial objects.

14.15. Internal Hom

Let C be a category with finite nonempty products. Let U , V be simplicial objects
C. In some cases the functor

Simp(C)opp −→ Sets

W 7−→ MorSimp(C)(W × V,U)

is representable. In this case we denote Hom(V,U) the resulting simplicial object
of C, and we say that the internal hom of V into U exists. Moreover, in this case
we would have

MorC(X,Hom(V,U)n) = MorSimp(C)(X ×∆[n],Hom(V,U))

= MorSimp(C)(X ×∆[n]× V,U)

= MorSimp(C)(X,Hom(∆[n]× V,U))

= MorC(X,Hom(∆[n]× V,U)0)

provided that Hom(∆[n]× V,U) exists also. Here we have used the material from
Section 14.13.

The lesson we learn from this is that, given U and V , if we want to construct the
internal hom then we should try to construct the objects

Hom(∆[n]× V,U)0

because these should be the nth term of Hom(V,U). In the next section we study
a construction of simplicial objects “Hom(∆[n], U)”.

14.16. Hom from simplicial sets into simplicial objects

Motivated by the discussion on internal hom we define what should be the simplicial
object classifying morphisms from a simplicial set into a given simplicial object of
the category C.

Definition 14.16.1. Let C be a category such that the coproduct of any two
objects exists. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0.
Let V be a simplicial object of C. We denote Hom(U, V ) any simplicial object of C
such that

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )
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functorially in the simplicial object W of C.

Of course Hom(U, V ) need not exist. Also, by the discussion in Section 14.15 we
expect that if it does exist, then Hom(U, V )n = Hom(U ×∆[n], V )0. We do not use
the italic notation for these Hom objects since Hom(U, V ) is not an internal hom.

Lemma 14.16.2. Assume the category C has coproducts of any two objects and
countable limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0.
Let V be a simplicial object of C. Then the functor

Copp −→ Sets

X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. A morphism from X × U into V is given by a collection of morphisms
fu : X → Vn with n ≥ 0 and u ∈ Un. And such a collection actually defines a
morphism if and only if for all ϕ : [m]→ [n] all the diagrams

X
fu //

idX

��

Vn

V (ϕ)

��
X
fU(ϕ)(u)// Vm

commute. Thus it is natural to introduce a category U and a functor V : Uopp → C
as follows:

(1) The set of objects of U is
∐
n≥0 Un,

(2) a morphism from u′ ∈ Um to u ∈ Un is a ϕ : [m] → [n] such that
U(ϕ)(u) = u′

(3) for u ∈ Un we set V(u) = Vn, and
(4) for ϕ : [m]→ [n] such that U(ϕ)(u) = u′ we set V(ϕ) = V (ϕ) : Vn → Vm.

At this point it is clear that our functor is nothing but the functor defining

limUopp V
Thus if C has countable limits then this limit and hence an object representing the
functor of the lemma exist. �

Lemma 14.16.3. Assume the category C has coproducts of any two objects and
finite limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0.
Assume that all n-simplices of U are degenerate for all n� 0. Let V be a simplicial
object of C. Then the functor

Copp −→ Sets

X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. We have to show that the category U described in the proof of Lemma
14.16.2 has a finite subcategory U ′ such that the limit of V over U ′ is the same
as the limit of V over U . We will use Categories, Lemma 4.17.4. For m > 0 let
U≤m denote the full subcategory with objects

∐
0≤n≤m Um. Let m0 be an integer

such that every n-simplex of the simplicial set U is degenerate if n > m0. For any
m ≥ m0 large enough, the subcategory U≤m satisfies property (1) of Categories,
Definition 4.17.3.
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Suppose that u ∈ Un and u′ ∈ Un′ with n, n′ ≤ m0 and suppose that ϕ : [k] →
[n], ϕ′ : [k] → [n′] are morphisms such that U(ϕ)(u) = U(ϕ′)(u′). A simple
combinatorial argument shows that if k > 2m0, then there exists an index 0 ≤ i ≤
2m0 such that ϕ(i) = ϕ(i + 1) and ϕ′(i) = ϕ′(i + 1). (The pigeon hole principle
would tell you this works if k > m2

0 which is good enough for the argument below

anyways.) Hence, if k > 2m0, we may write ϕ = ψ◦σk−1
i and ϕ′ = ψ′◦σk−1

i for some

ψ : [k − 1]→ [n] and some ψ′ : [k − 1]→ [n′]. Since sk−1
i : Uk−1 → Uk is injective,

see Lemma 14.3.6, we conclude that U(ψ)(u) = U(ψ′)(u′) also. Continuing in this
fashion we conclude that given morphisms u→ z and u′ → z of U with u, u′ ∈ U≤m0

,
there exists a commutative diagram

u

  ''
a // z

u′

?? 77

with a ∈ U≤2m0 .

It is easy to deduce from this that the finite subcategory U≤2m0
works. Namely,

suppose given x′ ∈ Un and x′′ ∈ Un′ with n, n′ ≤ 2m0 as well as morphisms x′ → x
and x′′ → x of U with the same target. By our choice of m0 we can find objects
u, u′ of U≤m0 and morphisms u→ x′, u′ → x′′. By the above we can find a ∈ U≤2m0

and morphisms u→ a, u′ → a such that

u

!! ((

// x′

  
a // x

u′

== 66

// x′′

>>

is commutative. Turning this diagram 90 degrees clockwise we get the desired
diagram as in (2) of Categories, Definition 4.17.3. �

Lemma 14.16.4. Assume the category C has coproducts of any two objects and
finite limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0.
Assume that all n-simplices of U are degenerate for all n� 0. Let V be a simplicial
object of C. Then Hom(U, V ) exists, moreover we have the expected equalities

Hom(U, V )n = Hom(U ×∆[n], V )0.

Proof. We construct this simplicial object as follows. For n ≥ 0 let Hom(U, V )n
denote the object of C representing the functor

X 7−→ MorSimp(C)(X × U ×∆[n], V )

This exists by Lemma 14.16.3 because U ×∆[n] is a simplicial set with finite sets of
simplices and no nondegenerate simplices in high enough degree, see Lemma 14.11.5.
For ϕ : [m] → [n] we obtain an induced map of simplicial sets ϕ : ∆[m] → ∆[n].
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Hence we obtain a morphism X ×U ×∆[m]→ X ×U ×∆[n] functorial in X, and
hence a transformation of functors, which in turn gives

Hom(U, V )(ϕ) : Hom(U, V )n −→ Hom(U, V )m.

Clearly this defines a contravariant functor Hom(U, V ) from ∆ into the category C.
In other words, we have a simplicial object of C.

We have to show that Hom(U, V ) satisfies the desired universal property

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )

To see this, let f : W → Hom(U, V ) be given. We want to construct the element f ′ :
W × U → V of the right hand side. By construction, each fn : Wn → Hom(U, V )n
corresponds to a morphism fn : Wn×U ×∆[n]→ V . Further, for every morphism
ϕ : [m]→ [n] the diagram

Wn × U ×∆[m]
W (ϕ)×id×id

//

id×id×ϕ
��

Wm × U ×∆[m]

fm

��
Wn × U ×∆[n]

fn // V

is commutative. For ψ : [n]→ [k] in (∆[n])k we denote (fn)k,ψ : Wn×Uk → Vk the
component of (fn)k corresponding to the element ψ. We define f ′n : Wn×Un → Vn
as f ′n = (fn)n,id, in other words, as the restriction of (fn)n : Wn×Un×(∆[n])n → Vn
to Wn×Un× id[n]. To see that the collection (f ′n) defines a morphism of simplicial
objects, we have to show for any ϕ : [m]→ [n] that V (ϕ) ◦ f ′n = f ′m ◦W (ϕ)×U(ϕ).
The commutative diagram above says that (fn)m,ϕ : Wn × Um → Vm is equal to
(fm)m,id ◦W (ϕ) : Wn × Um → Vm. But then the fact that fn is a morphism of
simplicial objects implies that the diagram

Wn × Un × (∆[n])n
(fn)n

//

id×U(ϕ)×ϕ
��

Vn

V (ϕ)

��
Wn × Um × (∆[n])m

(fn)m // Vm

is commutative. And this implies that (fn)m,ϕ ◦ U(ϕ) is equal to V (ϕ) ◦ (fn)n,id.
Altogether we obtain V (ϕ) ◦ (fn)n,id = (fn)m,ϕ ◦U(ϕ) = (fm)m,id ◦W (ϕ) ◦U(ϕ) =
(fm)m,id ◦W (ϕ)× U(ϕ) as desired.

On the other hand, given a morphism f ′ : W × U → V we define a morphism
f : W → Hom(U, V ) as follows. By Lemma 14.13.4 the morphisms id : Wn → Wn

corresponds to a unique morphism cn : Wn × ∆[n] → W . Hence we can consider
the composition

Wn ×∆[n]× U cn−→W × U f ′−→ V.

By construction this corresponds to a unique morphism fn : Wn → Hom(U, V )n.
We leave it to the reader to see that these define a morphism of simplicial sets as
desired.

We also leave it to the reader to see that f 7→ f ′ and f ′ 7→ f are mutually inverse
operations. �
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We spell out the construction above in a special case. Let X be an object of a
category C. Assume that self products X × . . . × X exist. Let k be an integer.
Consider the simplicial object U with terms

Un =
∏

α∈Mor([k],[n])
X

and maps given ϕ : [m]→ [n]

U(ϕ) :
∏

α∈Mor([k],[n])
X −→

∏
α′∈Mor([k],[m])

X

(fα)α 7−→ (fϕ◦α′)α′

In terms of “coordinates”, the element (xα)α is mapped to the element (xϕ◦α′)α′ .
We claim this object is equal to

Hom(∆[k], X)

where we think of X as the constant simplicial object X.

Lemma 14.16.5. With X, k and U as above.

(1) For any simplicial object V of C we have the following canonical bijection

MorSimp(C)(V,U) −→ MorC(Vk, X).

wich maps γ to the morphism γk composed with the projection onto the
factor corresponding to id[k].

(2) Similarly, if W is an k-truncated simplicial object of C, then we have

MorSimpk(C)(W, skkU) = MorC(Wk, X).

(3) The object U constructed above is an incarnation of Hom(∆[k], X).

Proof. We first prove (1). Suppose that γ : V → U is a morphism. This is given
by a family of morphisms γα : Vn → X for γ : [k] → [n]. The morphisms have to
satisfy the rules that for all ϕ : [m]→ [n] the diagrams

X

idX

��

Vn

V (ϕ)

��

γϕ◦α′
oo

X Vm
γα′oo

commute for all α′ : [k]→ [m]. Taking α′ = id[k], we see that for any ϕ : [k]→ [n]
we have γϕ = γid[k]

◦ V (ϕ). Thus the morphism γ is determined by the component
of γk corresponding to id[k]. Conversely, given such a morphism f : Vk → X we
easily construct a morphism γ by putting γα = f ◦ V (α).

The truncated case is similar, and left to the reader.

To see (3) we argue as follows:

Mor(V,Hom(∆[k], X)) = Mor(V ×∆[k], X)

= {(fn : Vn ×∆[k]n → X) | fn compatible}
= {(fn : Vn →

∏
∆[k]n

X) | fn compatible}

= Mor(V,U)

Thus U and Hom(∆[k], X) define the same functor on the category of simplicial
objects and hence are canonically isomorphic. �

http://stacks.math.columbia.edu/tag/017M
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Lemma 14.16.6. Assume the category C has coproducts of any two objects and
finite limits. Let a : U → V , b : U → W be morphisms of simplicial sets. Assume
Un, Vn,Wn finite nonempty for all n ≥ 0. Assume that all n-simplices of U, V,W
are degenerate for all n� 0. Let T be a simplicial object of C. Then

Hom(V, T )×Hom(U,T ) Hom(W,T ) = Hom(V qU W,T )

In other words, the fibre product on the left hand side is represented by the Hom
object on the right hand side.

Proof. By Lemma 14.16.4 all the required Hom objects exist and satisfy the correct
functorial properties. Now we can identify the nth term on the left hand side as the
object representing the functor that associates to X the first set of the following
sequence of functorial equalities

Mor(X ×∆[n],Hom(V, T )×Hom(U,T ) Hom(W,T ))

= Mor(X ×∆[n],Hom(V, T ))×Mor(X×∆[n],Hom(U,T )) Mor(X ×∆[n],Hom(W,T ))

= Mor(X ×∆[n]× V, T )×Mor(X×∆[n]×U,T ) Mor(X ×∆[n]×W,T )

= Mor(X ×∆[n]× (V qU W ), T ))

Here we have used the fact that

(X ×∆[n]× V )×X×∆[n]×U (X ×∆[n]×W ) = X ×∆[n]× (V qU W )

which is easy to verify term by term. The result of the lemma follows as the last
term in the displayed sequence of equalities corresponds to Hom(V qU W,T )n. �

14.17. Splitting simplicial objects

A subobject N of an object X of the category C is an object N of C together with
a monomorphism N → X. Of course we say (by abouse of notation) that the
subobjects N , N ′ are equal if there exists an isomorphism N → N ′ compatible
with the morphisms to X. The collection of subobjects forms a partially ordered
set. (Because of our conventions on categories; not true for category of spaces up
to homotopy for example.)

Definition 14.17.1. Let C be a category which admits finite nonempty coproducts.
We say a simplicial object U of C is split if there exist subobjects N(Um) of Um,
m ≥ 0 with the property that

(14.17.1.1)
∐

ϕ:[n]→[m] surjective
N(Um) −→ Un

is an isomorphism for all n ≥ 0.

If this is the case, then N(U0) = U0. Next, we have U1 = U0

∐
N(U1). Second we

have

U2 = U0

∐
N(U1)

∐
N(U1)

∐
N(U2).

It turns out that in many categories C every simplicial object is split.

Lemma 14.17.2. Let U be a simplicial set. Then U has a splitting with N(Um)
equal to the set of nondegenerate m-simplices.

http://stacks.math.columbia.edu/tag/017N
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Proof. Let x ∈ Un. Suppose that there are surjections ϕ : [n] → [k] and ψ :
[n] → [l] and nondegenerate simplices y ∈ Uk, z ∈ Ul such that x = U(ϕ)(y) and
x = U(ψ)(z). Choose a right inverse ξ : [l] → [n] of ψ, i.e., ψ ◦ ξ = id[l]. Then
z = U(ξ)(x). Hence z = U(ξ)(x) = U(ϕ ◦ ξ)(y). Since z is nondegenerate we
conclude that ϕ ◦ ξ : [l]→ [k] is surjective, and hence l ≥ k. Similarly k ≥ l. Hence
we see that ϕ◦ξ : [l]→ [k] has to be the identity map for any choice of right inverse
ξ of ψ. This easily implies that ψ = ϕ. �

Of course it can happen that a map of simplicial sets maps a nondegenerate n-
simplex to a degenerate n-simplex. Thus the splitting of Lemma 14.17.2 is not
functorial. Here is a case where it is functorial.

Lemma 14.17.3. Let f : U → V be a morphism of simplicial sets. Suppose that
(a) the image of every nondegenerate simplex of U is a nondegenerate simplex of V
and (b) no two nondegenerate simplices of U are mapped to the same simplex of V .
Then fn is injective for all n. Same holds with “injective” replaced by “surjective”
or “bijective”.

Proof. Under hypothesis (a) we see that the map f preserves the disjoint union
decompositions of the splitting of Lemma 14.17.2, in other words that we get com-
mutative diagrams ∐

ϕ:[n]→[m] surjectiveN(Um) //

��

Un

��∐
ϕ:[n]→[m] surjectiveN(Vm) // Vn.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective,
resp. bijective). �

Lemma 14.17.4. Let U be a simplicial set. Let n ≥ 0 be an integer. The rule

U ′m =
⋃

ϕ:[m]→[i], i≤n
Im(U(ϕ))

defines a sub simplicial set U ′ ⊂ U with U ′i = Ui for i ≤ n. Moreover, all m-
simplices of U ′ are degenerate for all m > n.

Proof. If x ∈ Um and x = U(ϕ)(y) for some y ∈ Ui, i ≤ n and some ϕ : [m]→ [i]
then any image U(ψ)(x) for any ψ : [m′] → [m] is equal to U(ϕ ◦ ψ)(y) and
ϕ ◦ ψ : [m′] → [i]. Hence U ′ is a simplicial set. By construction all simplices in
dimension n+ 1 and higher are degenerate. �

Lemma 14.17.5. Let U be a simplicial abelian group. Then U has a splitting
obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on n we will show that the choice of N(Um) in the lemma
guarantees that (14.17.1.1) is an isomorphism for m ≤ n. This is clear for n = 0.
In the rest of this proof we are going to drop the superscripts from the maps di and
si in order to improve readability. We will also repeatedly use the relations from
Remark 14.3.3.

http://stacks.math.columbia.edu/tag/017S
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First we make a general remark. For 0 ≤ i ≤ m and z ∈ Um we have di(si(z)) = z.
Hence we can write any x ∈ Um+1 uniquely as x = x′ + x′′ with di(x

′) = 0 and
x′′ ∈ Im(si) by taking x′ = (x − si(di(x))) and x′′ = si(di(x)). Moreover, the
element z ∈ Um such that x′′ = si(z) is unique because si is injective.

Here is a procedure for decomposing any x ∈ Un+1. First, write x = x0 + s0(z0)
with d0(x0) = 0. Next, write x0 = x1 + s1(z1) with dn(x1) = 0. Continue like this
to get

x = x0 + s0(z0),

x0 = x1 + s1(z1),

x1 = x2 + s2(z2),

. . . . . . . . .

xn−1 = xn + sn(zn)

where di(xi) = 0 for all i = n, . . . , 0. By our general remark above all of the xi and
zi are determined uniquely by x. We claim that xi ∈ Ker(d0)∩Ker(d1)∩. . .∩Ker(di)
and zi ∈ Ker(d0) ∩ . . . ∩ Ker(di−1) for i = n, . . . , 0. Here and in the following an
empty intersection of kernels indicates the whole space; i.e., the notation z0 ∈
Ker(d0) ∩ . . . ∩Ker(di−1) when i = 0 means z0 ∈ Un with no restriction.

We prove this by ascending induction on i. It is clear for i = 0 by construction of
x0 and z0. Let us prove it for 0 < i ≤ n assuming the result for i−1. First of all we
have di(xi) = 0 by construction. So pick a j with 0 ≤ j < i. We have dj(xi−1) = 0
by induction. Hence

0 = dj(xi−1) = dj(xi) + dj(si(zi)) = dj(xi) + si−1(dj(zi)).

The last equality by the relations of Remark 14.3.3. These relations also imply
that di−1(dj(xi)) = dj(di(xi)) = 0 because di(xi) = 0 by construction. Then the
uniqueness in the general remark above shows the equality 0 = x′ + x′′ = dj(xi) +
si−1(dj(zi)) can only hold if both terms are zero. We conclude that dj(xi) = 0 and
by injectivity of si−1 we also conclude that dj(zi) = 0. This proves the claim.

The claim implies we can uniquely write

x = s0(z0) + s1(z1) + . . .+ sn(zn) + x0

with x0 ∈ N(Un+1) and zi ∈ Ker(d0)∩ . . .∩Ker(di−1). We can reformulate this as
saying that we have found a direct sum decomposition

Un+1 = N(Un+1)⊕
⊕i=n

i=0
si

(
Ker(d0) ∩ . . . ∩Ker(di−1)

)
with the property that

Ker(d0) ∩ . . . ∩Ker(dj) = N(Un+1)⊕
⊕i=n

i=j+1
si

(
Ker(dn) ∩ . . . ∩Ker(di−1)

)
for j = 0, . . . , n. The result follows from this statement as follows. Each of the zi
in the expression for x can be written uniquely as

zi = si(z
′
i,i) + . . .+ sn−1(z′i,n−1) + zi,0

with zi,0 ∈ N(Un) and z′i,j ∈ Ker(d0) ∩ . . . ∩ Ker(dj−1). The first few steps in the
decomposition of zi are zero because zi already is in the kernel of d0, . . . , di. This
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in turn uniquely gives

x = x0 + s0(z0,0) + s1(z1,0) + . . .+ sn(zn,0) +
∑

0≤i≤j≤n−1
si(sj(z

′
i,j)).

Continuing in this fashion we see that we in the end obtain a decomposition of x
as a sum of terms of the form

si1si2 . . . sik(z)

with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n − k + 1 and z ∈ N(Un+1−k). This is exactly the
required decomposition, because any surjective map [n + 1] → [n + 1 − k] can be
uniquely expressed in the form

σn−kik
. . . σn−1

i2
σni1

with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n− k + 1. �

Lemma 14.17.6. Let A be an abelian category. Let U be a simplicial object in A.
Then U has a splitting obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial objects of A.

Proof. For any object A of A we obtain a simplicial abelian group MorA(A,U).
Each of these are canonically split by Lemma 14.17.5. Moreover,

N(MorA(A,Um)) =
⋂m−1

i=0
Ker(dmi ) = MorA(A,N(Um)).

Hence we see that the morphism (14.17.1.1) becomes an isomorphism after applying
the functor MorA(A,−) for any object of A. Hence it is an isomorphism by the
Yoneda lemma. �

Lemma 14.17.7. Let A be an abelian category. Let f : U → V be a morphism
of simplicial objects of A. If the induced morphisms N(f)i : N(U)i → N(V )i are
injective for all i, then fi is injective for all i. Same holds with “injective” replaced
with “surjective”, or “isomorphism”.

Proof. This is clear from Lemma 14.17.6 and the definition of a splitting. �

Lemma 14.17.8. Let A be an abelian category. Let U be a simplicial object in A.
Let N(Um) as in Lemma 14.17.6 above. Then dmm(N(Um)) ⊂ N(Um−1).

Proof. For j = 0, . . . ,m−2 we have dm−1
j dmm = dm−1

m−1d
m
j by the relations in Remark

14.3.3. The result follows. �

Lemma 14.17.9. Let A be an abelian category. Let U be a simplicial object of A.
Let n ≥ 0 be an integer. The rule

U ′m =
∑

ϕ:[m]→[i], i≤n
Im(U(ϕ))

defines a sub simplicial object U ′ ⊂ U with U ′i = Ui for i ≤ n. Moreover, N(U ′m) =
0 for all m > n.

http://stacks.math.columbia.edu/tag/017V
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Proof. Pick m, i ≤ n and some ϕ : [m]→ [i]. The image under U(ψ) of Im(U(ϕ))
for any ψ : [m′]→ [m] is equal to the image of U(ϕ◦ψ) and ϕ◦ψ : [m′]→ [i]. Hence
U ′ is a simplicial object. Pick m > n. We have to show N(U ′m) = 0. By definition
of N(Um) and N(U ′m) we have N(U ′m) = U ′m ∩N(Um) (intersection of subobjects).
Since U is split by Lemma 14.17.6, it suffices to show that U ′m is contained in the
sum ∑

ϕ:[m]→[m′] surjective, m′<m
Im(U(ϕ)|N(Um′ )

).

By the splitting each Um′ is the sum of images of N(Um′′) via U(ψ) for surjective
maps ψ : [m′]→ [m′′]. Hence the displayed sum above is the same as∑

ϕ:[m]→[m′] surjective, m′<m
Im(U(ϕ)).

Clearly U ′m is contained in this by the simple fact that any ϕ : [m] → [i], i ≤ n
occurring in the definition of U ′m may be factored as [m]→ [m′]→ [i] with [m]→
[m′] surjective and m′ < m as in the last displayed sum above. �

14.18. Coskeleton functors

Let C be a category. The coskeleton functor (if it exists) is a functor

coskn : Simpn(C) −→ Simp(C)

which is right adjoint to the skeleton functor. In a formula

(14.18.0.1) MorSimp(C)(U, cosknV ) = MorSimpn(C)(sknU, V )

Given a n-truncated simplicial object V we say that cosknV exists if there exists a
cosknV ∈ Ob(Simp(C)) and a morphism skncosknV → V such that the displayed
formula holds, in other words if the functor U 7→ MorSimpn(C)(sknU, V ) is repre-
sentable. If it exists it is unique up to unique isomorphism by the Yoneda lemma.
See Categories, Section 4.3.

Example 14.18.1. Suppose the category C has finite nonempty self products. A
0-truncated simplicial object of C is the same as an object X of C. In this case we
claim that cosk0(X) is the simplicial object U with Un = Xn+1 the (n+1)-fold self
product of X, and structure of simplicial object as in Example 14.3.5. Namely, a
morphism V → U where V is a simplicial object is given by morphisms Vn → Xn+1,
such that all the diagrams

Vn //

V ([0]→[n],07→i)
��

Xn+1

pri

��
V0

// X

commute. Clearly this means that the map determines and is determined by a
unique morphism V0 → X. This proves that formula (14.18.0.1) holds.

Recall the category ∆/[n], see Example 14.11.4. We let (∆/[n])≤m denote the full
subcategory of ∆/[n] consisting of objects [k]→ [n] of ∆/[n] with k ≤ m. In other

http://stacks.math.columbia.edu/tag/0182
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words we have the following commutative diagram of categories and functors

(∆/[n])≤m //

��

∆/[n]

��
∆≤m // ∆

Given a m-truncated simplicial object U of C we define a functor

U(n) : (∆/[n])opp≤m −→ C

by the rules

([k]→ [n]) 7−→ Uk

ψ : ([k′]→ [n])→ ([k]→ [n]) 7−→ U(ψ) : Uk → Uk′

For a given morphism ϕ : [n]→ [n′] of ∆ we have an associated functor

ϕ : (∆/[n])≤m −→ (∆/[n′])≤m

which maps α : [k] → [n] to ϕ ◦ α : [k] → [n′]. The composition U(n′) ◦ ϕ is equal
to the functor U(n).

Lemma 14.18.2. If the category C has finite limits, then coskm functors exist
for all m. Moreover, for any m-truncated simplicial object U the simplicial object
coskmU is described by the formula

(coskmU)n = lim(∆/[n])opp≤m
U(n)

and for ϕ : [n]→ [n′] the map coskmU(ϕ) comes from the identification U(n′)◦ϕ =
U(n) above via Categories, Lemma 4.14.8.

Proof. During the proof of this lemma we denote coskmU the simplicial object
with (coskmU)n equal to lim(∆/[n])opp≤m

U(n). We will conclude at the end of the

proof that it does satisfy the required mapping property.

Suppose that V is a simplicial object. A morphism γ : V → coskmU is given by a
sequence of morphisms γn : Vn → (coskmU)n. By definition of a limit, this is given
by a collection of morphisms γ(α) : Vn → Uk where α ranges over all α : [k]→ [n]
with k ≤ m. These morphisms then also satisfy the rules that

Vn
γ(α)

// Uk

Vn′
γ(α′) //

V (ϕ)

OO

Uk′

U(ψ)

OO

are commutative, given any 0 ≤ k, k′ ≤ m, 0 ≤ n, n′ and any ψ : [k] → [k′],
ϕ : [n] → [n′], α : [k] → [n] and α′ : [k′] → [n′] in ∆ such that ϕ ◦ α = α′ ◦ ψ.
Taking n = k, ϕ = α′, and α = ψ = id[k] we deduce that γ(α′) = γ(id[k]) ◦ V (α′).
In other words, the morphisms γ(id[k]), k ≤ m determine the morphism γ. And it
is easy to see that these morphisms form a morphism skmV → U .

Conversely, given a morphism γ : skmV → U , we obtain a family of morphisms γ(α)
where α ranges over all α : [k]→ [n] with k ≤ m by setting γ(α) = γ(id[k]) ◦ V (α).
These morphisms satisfy all the displayed commutativity restraints pictured above,
and hence give rise to a morphism V → coskmU . �

http://stacks.math.columbia.edu/tag/0183
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Lemma 14.18.3. Let C be a category. Let U be an m-truncated simplicial object
of C. For n ≤ m the limit lim(∆/[n])opp≤m

U(n) exists and is canonically isomorphic

to Un.

Proof. This is true because the category (∆/[n])≤m has an final object in this
case, namely the identity map [n]→ [n]. �

Lemma 14.18.4. Let C be a category with finite limits. Let U be an n-truncated
simplicial object of C. The morphism skncosknU → U is an isomorphism.

Proof. Combine Lemmas 14.18.2 and 14.18.3. �

Let us describe a particular instance of the coskeleton functor in more detail. By
abuse of notation we will denote skn also the restriction functor Simpn′(C) →
Simpn(C) for any n′ ≥ n. We are going to describe a right adjoint of the functor skn :
Simpn+1(C)→ Simpn(C). For n ≥ 1, 0 ≤ i < j ≤ n+1 define δn+1

i,j : [n−1]→ [n+1]

to be the increasing map omitting i and j. Note that δn+1
i,j = δn+1

j ◦δni = δn+1
i ◦δnj−1,

see Lemma 14.2.3. This motivates the following lemma.

Lemma 14.18.5. Let n be an integer ≥ 1. Let U be a n-truncated simplicial object
of C. Consider the contravariant functor from C to Sets which associates to an
object T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C, then

Un+1 = lim(∆/[n+1])opp≤n
U(n)

Proof. The limit, if it exists, represents the functor that associates to an object T
the set

{(fα)α:[k]→[n+1],k≤n | fα◦ψ = U(ψ) ◦ fα ∀ ψ : [k′]→ [k], α : [k]→ [n+ 1]}.

In fact we will show this functor is isomorphic to the one displayed in the lemma.
The map in one direction is given by the rule

(fα)α 7−→ (fδn+1
0

, . . . , fδn+1
n+1

).

This satisfies the conditions of the lemma because

dnj−1 ◦ fδn+1
i

= fδn+1
i ◦δnj−1

= fδn+1
j ◦δni

= dni ◦ fδn+1
j

by the relations we recalled above the lemma. To construct a map in the other
direction we have to associate to a system (f0, . . . , fn+1) as in the displayed formula
of the lemma a system of maps fα. Let α : [k]→ [n+ 1] be given. Since k ≤ n the
map α is not surjective. Hence we can write α = δn+1

i ◦ ψ for some 0 ≤ i ≤ n + 1
and some ψ : [k]→ [n]. We have no choice but to define

fα = U(ψ) ◦ fi.

Of course we have to check that this is independent of the choice of the pair (i, ψ).
First, observe that given i there is a unique ψ which works. Second, suppose that
(j, φ) is another pair. Then i 6= j and we may assume i < j. Since both i, j are

http://stacks.math.columbia.edu/tag/0184
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not in the image of α we may actually write α = δn+1
i,j ◦ ξ and then we see that

ψ = δnj−1 ◦ ξ and φ = δni ◦ ξ. Thus

U(ψ) ◦ fi = U(δnj−1 ◦ ξ) ◦ fi
= U(ξ) ◦ dnj−1 ◦ fi
= U(ξ) ◦ dni ◦ fj
= U(δni ◦ ξ) ◦ fj
= U(φ) ◦ fj

as desired. We still have to verify that the maps fα so defined satisfy the rules of
a system of maps (fα)α. To see this suppose that ψ : [k′] → [k], α : [k] → [n + 1]
with k, k′ ≤ n. Set α′ = α ◦ ψ. Choose i not in the image of α. Then clearly i is
not in the image of α′ also. Write α = δn+1

i ◦ φ (we cannot use the letter ψ here

because we’ve already used it). Then obviously α′ = δn+1
i ◦ φ ◦ ψ. By construction

above we then have

U(ψ) ◦ fα = U(ψ) ◦ U(φ) ◦ fi = U(φ ◦ ψ) ◦ fi = fα◦ψ = fα′

as desired. We leave to the reader the pleasant task of verifying that our construc-
tions are mutually inverse bijections, and are functorial in T . �

Lemma 14.18.6. Let n be an integer ≥ 1. Let U be a n-truncated simplicial object
of C. Consider the contravariant functor from C to Sets which associates to an
object T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C, then there exists an (n+1)-

truncated simplicial object Ũ , with sknŨ = U and Ũn+1 = Un+1 such that the
following adjointness holds

MorSimpn+1(C)(V, Ũ) = MorSimpn(C)(sknV,U)

Proof. By Lemma 14.18.3 there are identifications

Ui = lim(∆/[i])opp≤n
U(i)

for 0 ≤ i ≤ n. By Lemma 14.18.5 we have

Un+1 = lim(∆/[n+1])opp≤n
U(n).

Thus we may define for any ϕ : [i] → [j] with i, j ≤ n + 1 the corresponding map

Ũ(ϕ) : Ũj → Ũi exactly as in Lemma 14.18.2. This defines an (n + 1)-truncated

simplicial object Ũ with sknŨ = U .

To see the adjointness we argue as follows. Given any element γ : sknV → U
of the right hand side of the formula consider the morphisms fi = γn ◦ dn+1

i :
Vn+1 → Vn → Un. These clearly satisfy the relations dnj−1 ◦ fi = dni ◦ fj and hence
define a unique morphism Vn+1 → Un+1 by our choice of Un+1. Conversely, given

a morphism γ′ : V → Ũ of the left hand side we can simply restrict to ∆≤n to
get an element of the right hand side. We leave it to the reader to show these are
mutually inverse constructions. �
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Remark 14.18.7. Let U , and Un+1 be as in Lemma 14.18.6. On T -valued points

we can easily describe the face and degeneracy maps of Ũ . Explicitly, the maps
dn+1
i : Un+1 → Un are given by

(f0, . . . , fn+1) 7−→ fi.

And the maps snj : Un → Un+1 are given by

f 7−→ (sn−1
j−1 ◦ d

n−1
0 ◦ f,

sn−1
j−1 ◦ d

n−1
1 ◦ f,

. . .

sn−1
j−1 ◦ d

n−1
j−1 ◦ f,

f,

f,

sn−1
j ◦ dn−1

j+1 ◦ f,
sn−1
j ◦ dn−1

j+2 ◦ f,
. . .

sn−1
j ◦ dn−1

n ◦ f)

where we leave it to the reader to verify that the RHS is an element of the displayed
set of Lemma 14.18.6. For n = 0 there is one map, namely f 7→ (f, f). For n = 1
there are two maps, namely f 7→ (f, f, s0d1f) and f 7→ (s0d0f, f, f). For n = 2
there are three maps, namely f 7→ (f, f, s0d1f, s0d2f), f 7→ (s0d0f, f, f, s1d2f),
and f 7→ (s1d0f, s1d1f, f, f). And so on and so forth.

Remark 14.18.8. The construction of Lemma 14.18.6 above in the case of sim-
plicial sets is the following. Given an n-truncated simplicial set U , we make a
canonical (n + 1)-truncated simplicial set Ũ as follows. We add a set of (n + 1)-
simplices Un+1 by the formula of the lemma. Namely, an element of Un+1 is a
numbered collection of (f0, . . . , fn+1) of n-simplices, with the property that they
glue as they would in a (n + 1)-simplex. In other words, the ith face of fj is the
(j − 1)st face of fi for i < j. Geometrically it is obvious how to define the face

and degeneracy maps for Ũ . If V is an (n + 1)-truncated simplicial set, then its
(n + 1)-simplices give rise to compatible collections of n-simplices (f0, . . . , fn+1)

with fi ∈ Vn. Hence there is a natural map Mor(sknV,U) → Mor(V, Ũ) which is
inverse to the canonical restriction mapping the other way.

Also, it is enough to do the combinatorics of the construction in the case of trun-
cated simplicial sets. Namely, for any object T of the category C, and any n-
truncated simplicial object U of C we can consider the n-truncated simplicial set
Mor(T,U). We may apply the construction to this, and take its set of (n + 1)-
simplices, and require this to be representable. This is a good way to think about
the result of Lemma 14.18.6.

Remark 14.18.9. Inductive construction of coskeleta. Suppose that C is a category
with finite limits. Suppose that U is an m-truncated simplicial object in C. Then
we can inductively construct n-truncated objects Un as follows:

(1) To start, set Um = U .

(2) Given Un for n ≥ m set Un+1 = Ũn, where Ũn is constructed from Un

as in Lemma 14.18.6.
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Since the construction of Lemma 14.18.6 has the property that it leaves the n-
skeleton of Un unchanged, we can then define coskmU to be the simplicial object
with (coskmU)n = Unn = Un+1

n = . . .. And it follows formally from Lemma 14.18.6
that Un satisfies the formula

MorSimpn(C)(V,U
n) = MorSimpm(C)(skmV,U)

for all n ≥ m. It also then follows formally from this that

MorSimp(C)(V, coskmU) = MorSimpm(C)(skmV,U)

with coskmU chosen as above.

Lemma 14.18.10. Let C be a category which has finite limits.

(1) For every n the functor skn : Simp(C) → Simpn(C) has a right adjoint
coskn.

(2) For every n′ ≥ n the functor skn : Simpn′(C) → Simpn(C) has a right
adjoint, namely skn′coskn.

(3) For every m ≥ n ≥ 0 and every n-truncated simplicial object U of C we
have coskmskmcosknU = cosknU .

(4) If U is a simplicial object of C such that the canonical map U → cosknsknU
is an isomorphism for some n ≥ 0, then the canonical map U → coskmskmU
is an isomorphism for all m ≥ n.

Proof. The existence in (1) follows from Lemma 14.18.2 above. Parts (2) and (3)
follow from the discussion in Remark 14.18.9. After this (4) is obvious. �

Remark 14.18.11. We do not need all finite limits in order to be able to define
the coskeleton functors. Here are some remarks

(1) We have seen in Examples 14.18.1 that if C has products of pairs of objects
then cosk0 exists.

(2) For k > 0 the functor coskk exists if C has finite connected limits.

This is clear from the inductive procedure of constructing coskeleta (Remarks
14.18.8 and 14.18.9) but it also follows from the fact that the categories (∆/[n])≤k
for k ≥ 1 and n ≥ k + 1 used in Lemma 14.18.2 are connected. Observe that we
do not need the categories for n ≤ k by Lemma 14.18.3 or Lemma 14.18.4. (As k
gets higher the categories (∆/[n])≤k for k ≥ 1 and n ≥ k + 1 are more and more
connected in a topological sense.)

Lemma 14.18.12. Let U , V be n-truncated simplicial objects of a category C.
Then

coskn(U × V ) = cosknU × cosknV

whenever the left and right hand sides exist.

Proof. Let W be a simplicial object. We have

Mor(W, coskn(U × V )) = Mor(sknW,U × V )

= Mor(sknW,U)×Mor(sknW,V )

= Mor(W, cosknU)×Mor(W, cosknV )

= Mor(W, cosknU × cosknV )

The lemma follows. �
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Lemma 14.18.13. Assume C has fibre products. Let U, V,W be n-truncated sim-
plicial objects of the category C. Then

coskn(V ×U W ) = cosknU ×cosknU cosknV

whenever the left and right hand side exist.

Proof. Omitted, but very similar to the proof of Lemma 14.18.12 above. �

Lemma 14.18.14. Let C be a category with finite limits. Let X ∈ Ob(C). The
functor C/X → C commutes with the coskeleton functors coskk for k ≥ 1.

Proof. The statement means that if U is a simplicial object of C/X which we can
think of as a simplicial object of C with a morphism towards the constant simplicial
object X, then coskkU computed in C/X is the same as computed in C. This follows
for example from Categories, Lemma 4.16.2 because the categories (∆/[n])≤k for
k ≥ 1 and n ≥ k + 1 used in Lemma 14.18.2 are connected. Observe that we do
not need the categories for n ≤ k by Lemma 14.18.3 or Lemma 14.18.4. �

Lemma 14.18.15. The canonical map ∆[n]→ cosk1sk1∆[n] is an isomorphism.

Proof. Consider a simplicial set U and a morphism f : U → ∆[n]. This is a rule
that associates to each u ∈ Ui a map fu : [i] → [n] in ∆. Furthermore, these
maps should have the property that fu ◦ ϕ = fU(ϕ)(u) for any ϕ : [j]→ [i]. Denote

εij : [0]→ [i] the map which maps 0 to j. Denote F : U0 → [n] the map u 7→ fu(0).
Then we see that

fu(j) = F (εij(u))

for all 0 ≤ j ≤ i and u ∈ Ui. In particular, if we know the function F then we know
the maps fu for all u ∈ Ui all i. Conversely, given a map F : U0 → [n], we can set
for any i, and any u ∈ Ui and any 0 ≤ j ≤ i

fu(j) = F (εij(u))

This does not in general define a morphism f of simplicial sets as above. Namely,
the condition is that all the maps fu are nondecreasing. This clearly is equivalent
to the condition that F (εij(u)) ≤ F (εij′(u)) whenever 0 ≤ j ≤ j′ ≤ i and u ∈ Ui.
But in this case the morphisms

εij , ε
i
j′ : [0]→ [i]

both factor through the map εij,j′ : [1]→ [i] defined by the rules 0 7→ j, 1 7→ j′. In
other words, it is enough to check the inequalities for i = 1 and u ∈ X1. In other
words, we have

Mor(U,∆[n]) = Mor(sk1U, sk1∆[n])

as desired. �

14.19. Augmentations

Definition 14.19.1. Let C be a category. Let U be a simplicial object of C. An
augmentation ε : U → X of U towards an object X of C is a morphism from U into
the constant simplicial object X.

Lemma 14.19.2. Let C be a category. Let X ∈ Ob(C). Let U be a simplicial object
of C. To give an augmentation of U towards X is the same as giving a morphism
ε0 : U0 → X such that ε0 ◦ d1

0 = ε0 ◦ d1
1.
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Proof. Given a morphism ε : U → X we certainly obtain an ε0 as in the lemma.
Conversely, given ε0 as in the lemma, define εn : Un → X by choosing any morphism
α : [0] → [n] and taking εn = ε0 ◦ U(α). Namely, if β : [0] → [n] is another choice,
then there exists a morphism γ : [1] → [n] such that α and β both factor as
[0]→ [1]→ [n]. Hence the condition on ε0 shows that εn is well defined. Then it is
easy to show that (εn) : U → X is a morphism of simplicial objects. �

Lemma 14.19.3. Let C be a category with fibred products. Let f : Y → X be a
morphism of C. Let U be the simplicial object of C whose nth term is the (n+1)fold
fibred product Y ×X Y ×X . . .×X Y . See Example 14.3.5. For any simplicial object
V of C we have

MorSimp(C)(V,U) = MorSimp1(C)(sk1V, sk1U)

= {g0 : V0 → Y | f ◦ g0 ◦ d1
0 = f ◦ g0 ◦ d1

1}

In particular we have U = cosk1sk1U .

Proof. Suppose that g : sk1V → sk1U is a morphism of 1-truncated simplicial
objects. Then the diagram

V1

d1
0 //

d1
1

//

g1

��

V0

g0

��
Y ×X Y

pr1 //

pr0
// Y // X

is commutative, which proves that the relation shown in the lemma holds. We have
to show that, conversely, given a morphism g0 satisfying the relation f ◦ g0 ◦ d1

0 =
f ◦ g0 ◦ d1

1 we get a unique morphism of simplicial objects g : V → U . This is done
as follows. For any n ≥ 1 let gn,i = g0 ◦V ([0]→ [n], 0 7→ i) : Vn → Y . The equality
above implies that f ◦ gn,i = f ◦ gn,i+1 because of the commutative diagram

[0]

07→0 ��

07→i

++[1]
0 7→i,17→i+1 // [n]

[0]

07→1

??

0 7→i+1

33

Hence we get (gn,0, . . . , gn,n) : Vn → Y ×X . . .×X Y = Un. We leave it to the reader
to see that this is a morphism of simplicial objects. The last assertion of the lemma
is equivalent to the first equality in the displayed formula of the lemma. �

Remark 14.19.4. Let C be a category with fibre products. Let V be a simplicial
object. Let ε : V → X be an augmentation. Let U be the simplicial object whose
nth term is the (n+ 1)st fibred product of V0 over X. By a simple combination of
Lemmas 14.19.2 and 14.19.3 we obtain a canonical morphism V → U .
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14.20. Left adjoints to the skeleton functors

In this section we construct a left adjoint im! of the skeleton functor skm in certain
cases. The adjointness formula is

MorSimpm(C)(U, skmV ) = MorSimp(C)(im!U, V ).

It turns out that this left adjoint exists when the category C has finite colimits.

We use a similar construction as in Section 14.12. Recall the category [n]/∆ of
objects under [n], see Categories, Example 4.2.14. Its objects are morphisms α :
[n] → [k] and its morphisms are commutative triangles. We let ([n]/∆)≤m denote
the full subcategory of [n]/∆ consisting of objects [n] → [k] with k ≤ m. Given a
m-truncated simplicial object U of C we define a functor

U(n) : ([n]/∆)opp≤m −→ C
by the rules

([n]→ [k]) 7−→ Uk

ψ : ([n]→ [k′])→ ([n]→ [k]) 7−→ U(ψ) : Uk → Uk′

For a given morphism ϕ : [n]→ [n′] of ∆ we have an associated functor

ϕ : ([n′]/∆)≤m −→ ([n]/∆)≤m

which maps α : [n′] → [k] to ϕ ◦ α : [n] → [k]. The composition U(n) ◦ ϕ is equal
to the functor U(n′).

Lemma 14.20.1. Let C be a category which has finite colimits. The functors im!

exist for all m. Let U be an m-truncated simplicial object of C. The simplicial
object im!U is described by the formula

(im!U)n = colim([n]/∆)opp≤m
U(n)

and for ϕ : [n] → [n′] the map im!U(ϕ) comes from the identification U(n) ◦ ϕ =
U(n′) above via Categories, Lemma 4.14.7.

Proof. In this proof we denote im!U the simplicial object whose nth term is given
by the displayed formula of the lemma. We will show it satisfies the adjointness
property.

Let V be a simplicial object of C. Let γ : U → skmV be given. A morphism

colim([n]/∆)opp≤m
U(n)→ T

is given by a compatible system of morphisms fα : Uk → T where α : [n]→ [k] with
k ≤ m. Certainly, we have such a system of morphisms by taking the compositions

Uk
γk−→ Vk

V (α)−−−→ Vn.

Hence we get an induced morphism (im!U)n → Vn. We leave it to the reader to see
that these form a morphism of simplicial objects γ′ : im!U → V .

Conversely, given a morphism γ′ : im!U → V we obtain a morphism γ : U → skmV
by setting γi : Ui → Vi equal to the composition

Ui
id[i]−−→ colim([i]/∆)opp≤m

U(i)
γ′i−→ Vi

for 0 ≤ i ≤ n. We leave it to the reader to see that this is the inverse of the
construction above. �
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Lemma 14.20.2. Let C be a category. Let U be an m-truncated simplicial object
of C. For any n ≤ m the colimit

colim([n]/∆)opp≤m
U(n)

exists and is equal to Un.

Proof. This is so because the category ([n]/∆)≤m has an initial object, namely
id : [n]→ [n]. �

Lemma 14.20.3. Let C be a category which has finite colimits. Let U be an m-
truncated simplicial object of C. The map U → skmim!U is an isomorphism.

Proof. Combine Lemmas 14.20.1 and 14.20.2. �

Lemma 14.20.4. If U is an m-truncated simplicial set and n > m then all n-
simplices of im!U are degenerate.

Proof. This can be seen from the construction of im!U in Lemma 14.20.1, but we
can also argue directly as follows. Write V = im!U . Let V ′ ⊂ V be the simplicial
subset with V ′i = Vi for i ≤ m and all i simplices degenerate for i > m, see Lemma
14.17.4. By the adjunction formula, since skmV

′ = U , there is an inverse to the
injection V ′ → V . Hence V ′ = V . �

Lemma 14.20.5. Let U be a simplicial set. Let n ≥ 0 be an integer. The morphism
in!sknU → U identifies in!sknU with the simplicial set U ′ ⊂ U defined in Lemma
14.17.4.

Proof. By Lemma 14.20.4 the only nondegenerate simplices of in!sknU are in de-
grees ≤ n. The map in!sknU → U is an isomorphism in degrees ≤ n. Combined we
conclude that the map in!sknU → U maps nondegenerate simplices to nondegen-
erate simplices and no two nondegenerate simplices have the same image. Hence
Lemma 14.17.3 applies. Thus in!sknU → U is injective. The result follows easily
from this. �

Remark 14.20.6. In some texts the composite functor

Simp(C) skm−−→ Simpm(C) im!−−→ Simp(C)

is denoted skm. This makes sense for simplicial sets, because then Lemma 14.20.5
says that im!skmV is just the sub simplicial set of V consisting of all i-simplices of
V , i ≤ m and their degeneracies. In those texts it is also customary to denote the
composition

Simp(C) skm−−→ Simpm(C) coskm−−−−→ Simp(C)

by coskm.

Lemma 14.20.7. Let U ⊂ V be simplicial sets. Suppose n ≥ 0 and x ∈ Vn, x 6∈ Un
are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj, z 6∈ Uj for j > n is degenerate.
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Let ∆[n] → V be the unique morphism mapping the nondegenerate n-simplex of
∆[n] to x. In this case the diagram

∆[n] // V

i(n−1)!skn−1∆[n] //

OO

U

OO

is a pushout diagram.

Proof. Let us denote ∂∆[n] = i(n−1)!skn−1∆[n] for convenience. There is a natural
map U q∂∆[n] ∆[n] → V . We have to show that it is bijective in degree j for all
j. This is clear for j ≤ n. Let j > n. The third condition means that any
z ∈ Vj , z 6∈ Uj is a degenerate simplex, say z = sj−1

i (z′). Of course z′ 6∈ Uj−1.
By induction it follows that z′ is a degeneracy of x. Thus we conclude that all
j-simplices of V are either in U or degeneracies of x. This implies that the map
Uq∂∆[n]∆[n]→ V is surjective. Note that a nondegenerate simplex of Uq∂∆[n]∆[n]
is either the image of a nondegenerate simplex of U , or the image of the (unique)
nondegenerate n-simplex of ∆[n]. Since clearly x is nondegenerate we deduce that
Uq∂∆[n]∆[n]→ V maps nondegenerate simplices to nondegenerate simplices and is
injective on nondegenerate simplices. Hence it is injective, by Lemma 14.17.3. �

Lemma 14.20.8. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all
n. Assume that U and V have finitely many nondegenerate simplices. Then there
exists a sequence of sub simplicial sets

U = W 0 ⊂W 1 ⊂W 2 ⊂ . . .W r = V

such that Lemma 14.20.7 applies to each of the inclusions W i ⊂W i+1.

Proof. Let n be the smallest integer such that V has a nondegenerate simplex that
does not belong to U . Let x ∈ Vn, x 6∈ Un be such a nondegenerate simplex. Let
W ⊂ V be the set of elements which are either in U , or are a (repeated) degeneracy
of x (in other words, are of the form V (ϕ)(x) with ϕ : [m] → [n] surjective). It is
easy to see that W is a simplicial set. The inclusion U ⊂W satisfies the conditions
of Lemma 14.20.7. Moreover the number of nondegenerate simplices of V which are
not contained in W is exactly one less than the number of nondegenerate simplices
of V which are not contained in U . Hence we win by induction on this number. �

Lemma 14.20.9. Let A be an abelian category Let U be an m-truncated simplicial
object of A. For n > m we have N(im!U)n = 0.

Proof. Write V = im!U . Let V ′ ⊂ V be the simplicial subobject of V with V ′i = Vi
for i ≤ m and N(V ′i ) = 0 for i > m, see Lemma 14.17.9. By the adjunction formula,
since skmV

′ = U , there is an inverse to the injection V ′ → V . Hence V ′ = V . �

Lemma 14.20.10. Let A be an abelian category. Let U be a simplicial object of
A. Let n ≥ 0 be an integer. The morphism in!sknU → U identifies in!sknU with
the simplicial subobject U ′ ⊂ U defined in Lemma 14.17.9.

Proof. By Lemma 14.20.9 we haveN(in!sknU)i = 0 for i > n. The map in!sknU →
U is an isomorphism in degrees ≤ n, see Lemma 14.20.3. Combined we conclude
that the map in!sknU → U induces injective maps N(in!sknU)i → N(U)i for all i.

http://stacks.math.columbia.edu/tag/018S
http://stacks.math.columbia.edu/tag/018T
http://stacks.math.columbia.edu/tag/018U


1032 14. SIMPLICIAL METHODS

Hence Lemma 14.17.7 applies. Thus in!sknU → U is injective. The result follows
easily from this. �

Here is another way to think about the coskeleton functor using the material above.

Lemma 14.20.11. Let C be a category with finite coproducts and finite limits. Let
V be a simplicial object of C. In this case

(cosknsknV )n+1 = Hom(in!skn∆[n+ 1], V )0.

Proof. By Lemma 14.13.4 the object on the left represents the functor which
assigns to X the first set of the following equalities

Mor(X ×∆[n+ 1], cosknsknV ) = Mor(X × skn∆[n+ 1], sknV )

= Mor(X × in!skn∆[n+ 1], V ).

The object on the right in the formula of the lemma is represented by the functor
which assigns to X the last set in the sequence of equalities. This proves the result.

In the sequence of equalities we have used that skn(X×∆[n+1]) = X×skn∆[n+1]
and that in!(X×skn∆[n+1]) = X×in!skn∆[n+1]. The first equality is obvious. For
any (possibly truncated) simplicial object W of C and any object X of C denote tem-
porarily MorC(X,W ) the (possibly truncated) simplicial set [n] 7→ MorC(X,Wn).
From the definitions it follows that Mor(U ×X,W ) = Mor(U,MorC(X,W )) for any
(possibly truncated) simplicial set U . Hence

Mor(X × in!skn∆[n+ 1],W ) = Mor(in!skn∆[n+ 1],MorC(X,W ))

= Mor(skn∆[n+ 1], skn MorC(X,W ))

= Mor(X × skn∆[n+ 1], sknW )

= Mor(in!(X × skn∆[n+ 1]),W ).

This proves the second equality used, and ends the proof of the lemma. �

Lemma 14.20.12. Let C be a category with finite coproducts and finite limits. Let
X be an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X) −→ cosk1sk1 Hom(∆[k], X)

is an isomorphism.

Proof. For any simplicial object V we have

Mor(V, cosk1sk1 Hom(∆[k], X)) = Mor(sk1V, sk1 Hom(∆[k], X))

= Mor(i1!sk1V,Hom(∆[k], X))

= Mor(i1!sk1V ×∆[k], X)

The first equality by the adjointness of sk and cosk, the second equality by the
adjointness of i1! and sk1, and the first equality by Definition 14.16.1 where the
last X denotes the constant simplicial object with value X. By Lemma 14.19.2 an
element in this set depends only on the terms of degree 0 and 1 of i1!sk1V ×∆[k].
These agree with the degree 0 and 1 terms of V ×∆[k], see Lemma 14.20.3. Thus
the set above is equal to Mor(V ×∆[k], X) = Mor(V,Hom(∆[k], X)). �

Lemma 14.20.13. Let C be a category with finite coproducts and finite limits. Let
X be an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X)1 −→ (cosk0sk0 Hom(∆[k], X))1
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is identified with the map ∏
α:[k]→[1]

X −→ X ×X

which is the projection onto the factors where α is a constant map.

Proof. It is shown in Example 14.18.1 that cosk0Z equals Z×Z in degree 1. More-
over, it is true in general that the morphism V1 → (cosk0sk0V )1 is the morphism
(d1

0, d
1
1) : V1 → V0 × V0 (left to the reader). Thus we simply have to compute

the 0th and 1st term of Hom(∆[k], X). According to Lemma 14.16.5 we have
Hom(∆[k], X)0 =

∏
α:[k]→[0]X = X, and Hom(∆[k], X)0 =

∏
α:[k]→[1]X. The

lemma follows from the description of the morphisms of the simplicial object just
above Lemma 14.16.5. �

14.21. Simplicial objects in abelian categories

Recall that an abelian category is defined in Homology, Section 12.5.

Lemma 14.21.1. Let A be an abelian category.

(1) The categories Simp(A) and CoSimp(A) are abelian.
(2) A morphism of (co)simplicial objects f : A→ B is injective if and only if

each fn : An → Bn is injective.
(3) A morphism of (co)simplicial objects f : A → B is surjective if and only

if each fn : An → Bn is surjective.
(4) A sequence of (co)simplicial objects

A
f−→ B

g−→ C

is exact at B if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Pre-additivity is easy. A final object is given by Un = 0 in all degrees.
Existence of direct products we saw in Lemmas 14.6.2 and 14.9.2. Kernels and
cokernels are obtained by taking termwise kernels and cokernels. �

For an object A of A and an integer k consider the k-truncated simplicial object U
with

(1) Ui = 0 for i < k,
(2) Uk = A,
(3) all morphisms U(ϕ) equal to zero, except U(id[k]) = idA.

Since A has both finite limits and finite colimits we see that both coskkU and ik!U
exist. We will describe both of these and the canonical map ik!U → coskkU .

Lemma 14.21.2. With A, k and U as above, so Ui = 0, i < k and Uk = A.

(1) Given a k-truncated simplicial object V we have

Mor(U, V ) = {f : A→ Vk | dki ◦ f = 0, i = 0, . . . , k}
and

Mor(V,U) = {f : Vk → A | f ◦ sk−1
i = 0, i = 0, . . . , k − 1}.

(2) The object ik!U has nth term equal to
⊕

αA where α runs over all sur-
jective morphisms α : [n]→ [k].

http://stacks.math.columbia.edu/tag/018Z
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(3) For any ϕ : [m] → [n] the map ik!U(ϕ) is described as the mapping⊕
αA→

⊕
α′ A which maps to component corresponding to α : [n]→ [k]

to zero if α ◦ ϕ is not surjective and by the identity to the component
corresponding to α ◦ ϕ if it is surjective.

(4) The object coskkU has nth term equal to
⊕

β A, where β runs over all

injective morphisms β : [k]→ [n].
(5) For any ϕ : [m] → [n] the map coskkU(ϕ) is described as the mapping⊕

β A→
⊕

β′ A which maps to component corresponding to β : [k]→ [n]
to zero if β does not factor through ϕ and by the identity to each of the
components corresponding to β′ such that β = ϕ ◦ β′ if it does.

(6) The canonical map c : ik!U → coskkU in degree n has (α, β) coefficient
A→ A equal to zero if α ◦ β is not the identity and equal to idA if it is.

(7) The canonical map c : ik!U → coskkU is injective.

Proof. The proof of (1) is left to the reader.

Let us take the rules of (2) and (3) as the definition of a simplicial object, call it

Ũ . We will show that it is an incarnation of ik!U . This will prove (2), (3) at the
same time. We have to show that given a morphism f : U → skkV there exists a
unique morphism f̃ : Ũ → V which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : A → Vk which maps into the

kernel of dki for all i. For any surjective α : [n] → [k] we set f̃α : A → Vn equal to

the composition f̃α = V (α) ◦ fk : A → Vn. We define f̃n : Ũn → Vn as the sum of

the f̃α over α : [n] → [k] surjective. Such a collection of f̃α defines a morphism of
simplicial objects if and only if for any ϕ : [m]→ [n] the diagram⊕

α:[n]→[k] surjectiveA
f̃n

//

(3)

��

Vn

V (ϕ)

��⊕
α′:[m]→[k] surjectiveA

f̃m // Vm

is commutative. Choosing ϕ = α shows our choice of f̃α is uniquely determined by
fk. The commutativity in general may be checked for each summand of the left
upper corner separately. It is clear for the summands corresponding to α where α◦ϕ
is surjective, because those get mapped by idA to the summand with α′ = α ◦ ϕ,
and we have f̃α′ = V (α′) ◦ fk = V (α ◦ ϕ) ◦ fk = V (ϕ) ◦ f̃α. For those where α ◦ ϕ
is not surjective, we have to show that V (ϕ) ◦ f̃α = 0. By definition this is equal
to V (ϕ) ◦ V (α) ◦ fk = V (α ◦ϕ) ◦ fk. Since α ◦ϕ is not surjective we can write it as
δki ◦ ψ, and we deduce that V (ϕ) ◦ V (α) ◦ fk = V (ψ) ◦ dki ◦ fk = 0 see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it

Ũ . We will show that it is an incarnation of coskkU . This will prove (4), (5) at the
same time. The argument is completely dual to the proof of (2), (3) above, but we
give it anyway. We have to show that given a morphism f : skkV → U there exists
a unique morphism f̃ : V → Ũ which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : Vk → A which is zero on the

image of sk−1
i for all i. For any injective β : [k]→ [n] we set f̃β : Vn → A equal to

the composition f̃β = fk ◦ V (β) : Vn → A. We define f̃n : Vn → Ũn as the sum of

the f̃β over β : [k] → [n] injective. Such a collection of f̃β defines a morphism of
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simplicial objects if and only if for any ϕ : [m]→ [n] the diagram

Vn

V (ϕ)

��

f̃n

//⊕
β:[k]→[n] injectiveA

(5)

��
Vm

f̃m //⊕
β′:[k]→[m] injectiveA

is commutative. Choosing ϕ = β shows our choice of f̃β is uniquely determined by
fk. The commutativity in general may be checked for each summand of the right
lower corner separately. It is clear for the summands corresponding to β′ where ϕ◦β′
is injective, because these summands get mapped into by exactly the summand with
β = ϕ◦β′ and we have in that case f̃β′ ◦V (ϕ) = fk ◦V (β′)◦V (ϕ) = fk ◦V (β) = f̃β .

For those where ϕ ◦ β′ is not injective, we have to show that f̃β′ ◦ V (ϕ) = 0. By
definition this is equal to fk◦V (β′)◦V (ϕ) = fk◦V (ϕ◦β′). Since ϕ◦β′ is not injective

we can write it as ψ◦σk−1
i , and we deduce that fk◦V (β′)◦V (ϕ) = fk◦sk−1

i ◦V (ψ) = 0
see above.

The composition ik!U → coskkU is the unique map of simplicial objects which is
the identity on A = Uk = (ik!U)k = (coskkU)k. Hence it suffices to check that the
proposed rule defines a morphism of simplicial objects. To see this we have to show
that for any ϕ : [m]→ [n] the diagram⊕

α:[n]→[k] surjectiveA

(3)

��

(6)
//⊕

β:[k]→[n] injectiveA

(5)

��⊕
α′:[m]→[k] surjectiveA

(6) //⊕
β′:[k]→[m] injectiveA

is commutative. Now we can think of this in terms of matrices filled with only
0’s and 1’s as follows: The matrix of (3) has a nonzero (α′, α) entry if and only
if α′ = α ◦ ϕ. Likewise the matrix of (5) has a nonzero (β′, β) entry if and only
if β = ϕ ◦ β′. The upper matrix of (6) has a nonzero (α, β) entry if and only if
α ◦ β = id[k]. Similarly for the lower matrix of (6). The commutativity of the
diagram then comes down to computing the (α, β′) entry for both compositions
and seeing they are equal. This comes down to the following equality

#
{
β | β = ϕ ◦ β′ ∧ α ◦ β = id[k]

}
= #

{
α′ | α′ = α ◦ ϕ ∧ α′ ◦ β′ = id[k]

}
whose proof may safely be left to the reader.

Finally, we prove (7). This follows directly from Lemmas 14.17.7, 14.18.4, 14.20.3
and 14.20.9. �

Definition 14.21.3. Let A be an abelian category. Let A be an object of A and let
k be an integer ≥ 0. The Eilenberg-Maclane object K(A, k) is given by the object
K(A, k) = ik!U which is described in Lemma 14.21.2 above.

Lemma 14.21.4. Let A be an abelian category. Let A be an object of A and let k
be an integer ≥ 0. Consider the simplicial object E defined by the following rules

(1) En =
⊕

αA, where the sum is over α : [n]→ [k+1] whose image is either
[k] or [k + 1].

http://stacks.math.columbia.edu/tag/0191
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(2) Given ϕ : [m]→ [n] the map En → Em maps the summand corresponding
to α via idA to the summand corresponding to α ◦ ϕ, provided Im(α ◦ ϕ)
is equal to [k] or [k + 1].

Then there exists a short exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0

which is term by term split exact.

Proof. The maps K(A, k)n → En resp. En → K(A, k + 1)n are given by the
inclusion of direct sums, resp. projection of direct sums which is obvious from the
inclusions of index sets. It is clear that these are maps of simplicial objects. �

Lemma 14.21.5. Let A be an abelian category. For any simplicial object V of A
we have

V = colimn in!sknV

where all the transition maps are injections.

Proof. This is true simply because each Vm is equal to (in!sknV )m as soon as
n ≥ m. See also Lemma 14.20.10 for the transition maps. �

14.22. Simplicial objects and chain complexes

Let A be an abelian category. See Homology, Section 12.12 for conventions and
notation regarding chain complexes. Let U be a simplicial object of A. The asso-
ciated chain complex s(U) of U , sometimes called the Moore complex, is the chain
complex

. . .→ U2 → U1 → U0 → 0→ 0→ . . .

with boundary maps dn : Un → Un−1 given by the formula

dn =
∑n

i=0
(−1)idni .

This is a complex because, by the relations listed in Remark 14.3.3, we have

dn ◦ dn+1 = (
∑n

i=0
(−1)idni ) ◦ (

∑n+1

j=0
(−1)jdn+1

j )

=
∑

0≤i<j≤n+1
(−1)i+jdnj−1 ◦ dn+1

i +
∑

n≥i≥j≥0
(−1)i+jdni ◦ dn+1

j

= 0.

The signs cancel! We denote the associated chain complex s(U). Clearly, the
construction is functorial and hence defines a functor

s : Simp(A) −→ Ch≥0(A).

Thus we have the confusing but correct formula s(U)n = Un.

Lemma 14.22.1. The functor s is exact.

Proof. Clear from Lemma 14.21.1. �

Lemma 14.22.2. Let A be an abelian category. Let A be an object of A and let k
be an integer. Let E be the object described in Lemma 14.21.4. Then the complex
s(E) is acyclic.

http://stacks.math.columbia.edu/tag/0193
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Proof. For a morphism α : [n]→ [k + 1] we define α′ : [n+ 1]→ [k + 1] to be the
map such that α′|[n] = α and α′(n+1) = k+1. Note that if the image of α is [k] or
[k+1], then the image of α′ is [k+1]. Consider the family of maps hn : En → En+1

which maps the summand corresponding to α to the summand corresponding to α′

via the identity on A. Let us compute dn+1 ◦ hn − hn−1 ◦ dn. We will first do this
in case the category A is the category of abelian groups. Let us use the notation
xα to indicate the element x ∈ A in the summand of En corresponding to the map
α occurring in the index set. Let us also adopt the convention that xα designates
the zero element of En whenever Im(α) is not [k] or [k+1]. With these conventions
we see that

dn+1(hn(xα)) =
∑n+1

i=0
(−1)ixα′◦δn+1

i

and

hn−1(dn(xα)) =
∑n

i=0
(−1)ix(α◦δni )′

It is easy to see that α′ ◦ δn+1
i = (α ◦ δni )′ for i = 0, . . . , n. It is also easy to see that

α′ ◦ δn+1
n+1 = α. Thus we see that

(dn+1 ◦ hn − hn−1 ◦ dn)(xα) = (−1)n+1xα

These identities continue to hold if A is any abelian category because they hold
in the simplicial abelian group [n] 7→ Hom(A,En); details left to the reader. We
conclude that the identity map on E is homotopic to zero, with homotopy given by
the system of maps h′n = (−1)n+1hn : En → En+1. Hence we see that E is acyclic,
for example by Homology, Lemma 12.12.5. �

Lemma 14.22.3. Let A be an abelian category. Let A be an object of A and let k
be an integer. We have Hi(s(K(A, k))) = A if i = k and 0 else.

Proof. First, let us prove this if k = 0. In this case we have K(A, 0)n = A for
all n. Furthermore, all the maps in this simplicial abelian group are idA, in other
words K(A, 0) is the constant simplicial object with value A. The boundary maps
dn =

∑n
i=0(−1)iidA = 0 if n odd and = idA if n is even. Thus s(K(A, 0)) looks

like this

. . .→ A
0−→ A

1−→ A
0−→ A→ 0

and the result is clear.

Next, we prove the result for all k by induction. Given the result for k consider the
short exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0

from Lemma 14.21.4. By Lemma 14.21.1 the associated sequence of chain complexes
is exact. By Lemma 14.22.2 we see that s(E) is acyclic. Hence the result for
k + 1 follows from the long exact sequence of homology, see Homology, Lemma
12.12.6. �

There is a second chain complex we can associate to a simplicial object of A.
Recall that by Lemma 14.17.6 any simplicial object U of A is canonically split with
N(Um) =

⋂m−1
i=0 Ker(dmi ). We define the normalized chain complex N(U) to be the

chain complex

. . .→ N(U2)→ N(U1)→ N(U0)→ 0→ 0→ . . .

http://stacks.math.columbia.edu/tag/0197
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with boundary map dn : N(Un) → N(Un−1) given by the restriction of (−1)ndnn
to the direct summand N(Un) of Un. Note that Lemma 14.17.8 implies that
dnn(N(Un)) ⊂ N(Un−1). It is a complex because dnn ◦ dn+1

n+1 = dnn ◦ dn+1
n and dn+1

n is
zero on N(Un+1) by definition. Thus we obtain a second functor

N : Simp(A) −→ Ch≥0(A).

Here is the reason for the sign in the differential.

Lemma 14.22.4. Let A be an abelian category. Let U be a simplicial object of A.
The canonical map N(Un) → Un gives rise to a morphism of complexes N(U) →
s(U).

Proof. This is clear because the differential on s(U)n = Un is
∑

(−1)idni and
the maps dni , i < n are zero on N(Un), whereas the restriction of (−1)ndnn is the
boundary map of N(U) by definition. �

Lemma 14.22.5. Let A be an abelian category. Let A be an object of A and let k
be an integer. We have N(K(A, k))i = A if i = k and 0 else.

Proof. It is clear that N(K(A, k))i = 0 when i < k because K(A, k)i = 0 in that
case. It is clear that N(K(A, k))k = A since K(A, k)k−1 = 0 and K(A, k)k = A.
For i > k we have N(K(A, k))i = 0 by Lemma 14.20.9 and the definition of K(A, k),
see Definition 14.21.3. �

Lemma 14.22.6. Let A be an abelian category. Let U be a simplicial object of A.
The canonical morphism of chain complexes N(U)→ s(U) is split. In fact,

s(U) = N(U)⊕A(U)

for some complex A(U). The construction U 7→ A(U) is functorial.

Proof. Define A(U)n to be the image of⊕
ϕ:[n]→[m] surjective, m<n

N(Um)
⊕
U(ϕ)−−−−−→ Un

which is a subobject of Un complementary to N(Un) according to Lemma 14.17.6
and Definition 14.17.1. We show that A(U) is a subcomplex. Pick a surjective map
ϕ : [n]→ [m] with m < n and consider the composition

N(Um)
U(ϕ)−−−→ Un

dn−→ Un−1.

This composition is the sum of the maps

N(Um)
U(ϕ◦δni )−−−−−→ Un−1

with sign (−1)i, i = 0, . . . , n.

First we will prove by ascending induction on m, 0 ≤ m < n− 1 that all the maps
U(ϕ ◦ δni ) map N(Um) into A(U)n−1. (The case m = n − 1 is treated below.)
Whenever the map ϕ ◦ δni : [n − 1] → [m] is surjective then the image of N(Um)
under U(ϕ ◦ δni ) is contained in A(U)n−1 by definition. If ϕ ◦ δni : [n − 1] → [m]
is not surjective, set j = ϕ(i) and observe that i is the unique index whose image
under ϕ is j. We may write ϕ ◦ δni = δmj ◦ ψ ◦ δni for some ψ : [n − 1] → [m − 1].
Hence U(ϕ ◦ δni ) = U(ψ ◦ δni ) ◦ dmj which is zero on N(Um) unless j = m. If j = m,
then dmm(N(Um)) ⊂ N(Um−1) and hence U(ϕ◦δni )(N(Um)) ⊂ U(ψ ◦δni )(N(Um−1))
and we win by induction hypothesis.

http://stacks.math.columbia.edu/tag/0198
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To finish proving that A(U) is a subcomplex we still have to deal with the compo-
sition

N(Um)
U(ϕ)−−−→ Un

dn−→ Un−1.

in case m = n− 1. In this case ϕ = σn−1
j for some 0 ≤ j ≤ n− 1 and U(ϕ) = sn−1

j .
Thus the composition is given by the sum∑

(−1)idni ◦ sn−1
j

Recall from Remark 14.3.3 that dnj ◦ s
n−1
j = dnj+1 ◦ s

n−1
j = id and these drop

out because the corresponding terms have opposite signs. The map dnn ◦ sn−1
j , if

j < n − 1, is equal to sn−2
j ◦ dn−1

n−1. Since dn−1
n−1 maps N(Un−1) into N(Un−2),

we see that the image dnn(sn−1
j (N(Un−1)) is contained in sn−2

j (N(Un−2)) which is

contained in A(Un−1) by definition. For all other combinations of (i, j) we have
either dni ◦s

n−1
j = sn−2

j−1 ◦d
n−1
i (if i < j), or dni ◦s

n−1
j = sn−2

j ◦dn−1
i−1 (if n > i > j+1)

and in these cases the map is zero because of the definition of N(Un−1). �

Lemma 14.22.7. The functor N is exact.

Proof. By Lemma 14.22.1 and the functorial decomposition of Lemma 14.22.6. �

Lemma 14.22.8. Let A be an abelian category. Let V be a simplicial object of A.
The canonical morphism of chain complexes N(V )→ s(V ) is a quasi-isomorphism.
In other words, the complex A(V ) of Lemma 14.22.6 is acyclic.

Proof. Note that the result holds for K(A, k) for any object A and any k ≥ 0, by
Lemmas 14.22.3 and 14.22.5. Consider the hypothesis IHn,m: for all V such that
Vj = 0 for j ≤ m and all i ≤ n the map N(V ) → s(V ) induces an isomorphism
Hi(N(V ))→ Hi(s(V )).

To start of the induction, note that IHn,n is trivially true, because in that case
N(V )n = 0 and s(V )n = 0.

Assume IHn,m, with m ≤ n. Pick a simplicial object V such that Vj = 0 for
j < m. By Lemma 14.21.2 and Definition 14.21.3 we have K(Vm,m) = im!skmV .
By Lemma 14.20.10 the natural morphism

K(Vm,m) = im!skmV → V

is injective. Thus we get a short exact sequence

0→ K(Vm,m)→ V →W → 0

for some W with Wi = 0 for i = 0, . . . ,m. This short exact sequence induces a
morphism of short exact sequence of associated complexes

0 // N(K(Vm,m)) //

��

N(V ) //

��

N(W ) //

��

0

0 // s(K(Vm,m)) // s(V ) // s(W ) // 0

see Lemmas 14.22.1 and 14.22.7. Hence we deduce the result for V from the result
on the ends. �
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14.23. Dold-Kan

Lemma 14.23.1. Let A be an abelian category. The functor N is faithful, and
reflects isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma 14.17.6.
The statement on reflecting injections, surjections, and isomorphisms follows from
Lemma 14.17.7. �

Lemma 14.23.2. Let A and B be abelian categories. Let N : A → B, and S : B →
A be functors. Suppose that

(1) the functors S and N are exact,
(2) there is an isomorphism g : N ◦ S → idB to the identity functor of B,
(3) N is faithful, and
(4) S is essentially surjective.

Then S and N are quasi-inverse equivalences of categories.

Proof. It suffices to construct a functorial isomorphism S(N(A)) ∼= A. To do this
choose B and an isomorphism f : A→ S(B). Consider the map

f−1 ◦ gS(B) ◦ S(N(f)) : S(N(A))→ S(N(S(B)))→ S(B)→ A.

It is easy to show this does not depend on the choice of f,B and gives the desired
isomorphism S ◦N → idA. �

Theorem 14.23.3. Let A be an abelian category. The functor N induces an
equivalence of categories

N : Simp(A) −→ Ch≥0(A)

Proof. We will describe a functor in the reverse direction inspired by the construc-
tion of Lemma 14.21.4 (except that we throw in a sign to get the boundaries right).
Let A• be a chain complex with boundary maps dA,n : An → An−1. For each n ≥ 0
denote

In =
{
α : [n]→ {0, 1, 2, . . .} | Im(α) = [k] for some k

}
.

For α ∈ In we denote k(α) the unique integer such that Im(α) = [k]. We define a
simplicial object S(A•) as follows:

(1) S(A•)n =
⊕

α∈In Ak(α), which we will write as
⊕

α∈In Ak(α) ·α to suggest
thinking of “α” as a basis vector for the summand corresponding to it,

(2) given ϕ : [m] → [n] we define S(A•)(ϕ) by its restriction to the direct
summand Ak(α) · α of S(A•)n as follows
(a) α ◦ ϕ 6∈ Im then we set it equal to zero,
(b) α ◦ϕ ∈ Im but k(α ◦ϕ) not equal to either k(α) or k(α)− 1 then we

set it equal to zero as well,
(c) if α ◦ ϕ ∈ Im and k(α ◦ ϕ) = k(α) then we use the identity map to

the summand Ak(α◦ϕ) · (α ◦ ϕ) of S(A•)m, and

(d) if α ◦ϕ ∈ Im and k(α ◦ϕ) = k(α)− 1 then we use (−1)k(α)dA,k(α) to
the summand Ak(α◦ϕ) · (α ◦ ϕ) of S(A•)m.

It is an exercise (FIXME) to show that this is a simplicial complex; one has to use
in particular that the compositions dA,k ◦ dA,k−1 are all zero.

Having verified this, the correct way to proceed with the proof would be to prove
directly that N and S are quasi-inverse functors (FIXME). Instead we prove this
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http://stacks.math.columbia.edu/tag/019G
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by an indirect method using Eilenberg-Maclane objects and truncations. It is clear
that A• 7→ S(A•) is an exact functor from chain complexes to simplicial objects. If
Ai = 0 for i = 0, . . . , n then S(A•)i = 0 for i = 0, . . . , n. The objects K(A, k), see
Definition 14.21.3, are equal to S(A[−k]) where A[−k] is the chain complex with A
in degree k and zero elsewhere.

Moreover, for each integer k we get a sub simplicial object S≤k(A•) by considering
only those α with k(α) ≤ k. In fact this is nothing but S(σ≤kA•), where σ≤kA• is
the “stupid” truncation of A• at k (which simply replaces Ai by 0 for i > k). Also,
by Lemma 14.20.10 we see that it is equal to ik!skkS(A•). Clearly, the quotient
S≤k(A•)/S≤k−1(A•) = K(Ak, k) and the quotient S(A•)/S≤k(A•) = S(A/σ≤kA•)
is a simplicial object whose ith term is zero for i = 0, . . . , k. Since S≤k−1(A•)
is filtered with subquotients K(Ai, i), i < k we see that N(S≤k−1(A•))k = 0 by
exactness of the functor N , see Lemma 14.22.7. All in all we conclude that the
maps

N(S(A•))k ← N(S≤k(A•))k → N(S(Ak[−k])) = N(K(Ak, k))k = Ak

are functorial isomorphisms.

It is actually easy to identify the map Ak → N(S(A•))k. Note that there is a
unique map Ak → S(A•)k corresponding to the summand α = id[k]. Note that

Im(id[k] ◦ δki ) has cardinality k − 1 but does not have image [k − 1] unless i = k.

Hence dki kills the summand Ak · id[k] for i = 0, . . . , k − 1. From the abstract
computation of N(S(A•))k above we conclude that the summand Ak · id[k] is equal
to N(S(A•))k.

In order to show that N ◦ S is the identity functor on Ch≥0(A), the last thing we
have to verify is that we recover the map dA,k+1 : Ak+1 → Ak as the differential on
the complex N(S(A•)) as follows

Ak+1 = N(S(A•))k+1 → N(S(A•))k = Ak

By definition the map N(S(A•))k+1 → N(S(A•))k corresponds to the restriction

of (−1)k+1dk+1
k+1 to N(S(A•)) which is the summand Ak+1 · id[k+1]. And by the

definition of S(A•) above the map dk+1
k+1 maps Ak+1 · id[k+1] into Ak · id[k] by

(−1)k+1dA,k+1. The signs cancel and hence the desired equality.

We know that N is faithful, see Lemma 14.23.1. If we can show that S is essentially
surjective, then it will follow that N is an equivalence, see Homology, Lemma
14.23.2. Note that if A• is a chain complex then S(A•) = colimn S≤n(A•) =
colimn S(σ≤nA•) = colimn in!sknS(A•) by construction of S. By Lemma 14.21.5 it
suffices to show that in!V is in the essential image for any n-truncated simplicial
object V . By induction on n it suffices to show that any extension

0→ S(A•)→ V → K(A,n)→ 0

where Ai = 0 for i ≥ n is in the essential image of S. By Homology, Lemma 12.7.2
we have abelian group homomorphisms

ExtSimp(A)(K(A,n), S(A•))
N //

ExtCh≥0(A)(A[−n], A•)
S
oo
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between ext groups (see Homology, Definition 12.6.2). We want to show that S is
surjective. We know that N ◦ S = id. Hence it suffices to show that Ker(N) = 0.
Clearly an extension

0 // 0 //

��

An−1
//

��

An−2
//

��

. . . // A0
//

��

0

E : 0 // A //

��

An−1
//

��

An−2
//

��

. . . // A0
//

��

0

0 // A // 0 // 0 // . . . // 0 // 0

of A• by A[−n] in Ch(A) is zero if and only if the map A → An−1 is zero. Thus
we have to show that any extension

0→ S(A•)→ V → K(A,n)→ 0

such that A = N(V )n → N(V )n−1 is zero is split. By Lemma 14.21.2 we have

Mor(K(A,n), V ) =
{
f : A→

⋂n

i=0
Ker(dni : Vn → Vn−1)

}
and if A = N(V )n → N(V )n−1 is zero, then the intersection occurring in the
formula above is equal to A. Let i : K(A,n)→ V be the morphism corresponding
to idA on the right hand side of the displayed formula. Clearly this is a section to
the map V → K(A,n) and the extension is split as desired. �

14.24. Dold-Kan for cosimplicial objects

Let A be an abelian category. According to Homology, Lemma 12.5.2 also Aopp is
abelian. It follows formally from the definitions that

CoSimp(A) = Simp(Aopp)opp.

Thus Dold-Kan (Theorem 14.23.3) implies that CoSimp(A) is equivalent to the
category Ch≥0(Aopp)opp. And it follows formally from the definitions that

CoCh≥0(A) = Ch≥0(Aopp)opp.

Putting these arrows together we obtain an equivalence

Q : CoSimp(A) −→ CoCh≥0(A).

In this section we describe Q.

First we define the cochain complex s(U) associated to a cosimplicial object U .
It is the cochain complex with terms zero in negative degrees, and s(U)n = Un
for n ≥ 0. As differentials we use the maps dn : s(U)n → s(U)n+1 defined by

dn =
∑n+1
i=0 (−1)iδn+1

i . In other words the complex s(U) looks like

0 // U0

δ1
0−δ

1
1 // U1

δ2
0−δ

2
1+δ2

2 // U2
// . . .

This is sometimes also called the Moore complex associated to U .

On the other hand, given a cosimplicial object U of A set Q(U)0 = U0 and

Q(U)n = Coker(
⊕n−1

i=0 Un−1

δni // Un ).
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The differential dn : Q(U)n → Q(U)n+1 is induced by (−1)n+1δn+1
n+1 , i.e., by fitting

the morphism (−1)n+1δn+1
n+1 into a commutative diagram

Un
(−1)n+1δn+1

n+1

//

��

Un+1

��
Q(U)n

dn // Q(U)n+1.

We leave it to the reader to show that this diagram makes sense, i.e., that the image
of δni maps into the kernel of the right vertical arrow for i = 0, . . . , n− 1. (This is
dual to Lemma 14.17.8.) Thus our cochain complex Q(U) looks like this

0→ Q(U)0 → Q(U)1 → Q(U)2 → . . .

This is called the normalized cochain complex associated to U . The dual to the
Dold-Kan Theorem 14.23.3 is the following.

Lemma 14.24.1. Let A be an abelian category.

(1) The functor s : CoSimp(A)→ CoCh≥0(A) is exact.
(2) The maps s(U)n → Q(U)n define a morphism of cochain complexes.
(3) There exists a functorial direct sum decomposition s(U) = A(U) ⊕ Q(U)

in CoCh≥0(A).
(4) The functor Q is exact.
(5) The morphism of complexes s(U)→ Q(U) is a quasi-isomorphism.
(6) The functor U 7→ Q(U)• defines an equivalence of categories CoSimp(A)→

CoCh≥0(A).

Proof. Omitted. But the results are the exact dual statements to Lemmas 14.22.1,
14.22.4, 14.22.6, 14.22.7, 14.22.8, and Theorem 14.23.3. �

14.25. Homotopies

Consider the simplicial sets ∆[0] and ∆[1]. Recall that there are two morphisms

e0, e1 : ∆[0] −→ ∆[1],

coming from the morphisms [0]→ [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set ∆[1]k is finite. Hence, if the category C has finite coproducts,
then we can form the product

U ×∆[1]

for any simplicial object U of C, see Definition 14.13.1. Note that ∆[0] has the
property that ∆[0]k = {∗} is a singleton for all k ≥ 0. Hence U ×∆[0] = U . Thus
e0, e1 above gives rise to morphisms

e0, e1 : U → U ×∆[1].

Definition 14.25.1. Let C be a category having finite coproducts. Suppose that
U and V are two simplicial objects of C. Let a, b : U → V be two morphisms.

(1) We say a morphism

h : U ×∆[1] −→ V

is a homotopy connecting a to b if a = h ◦ e0 and b = h ◦ e1.
(2) We say morphisms a and b are homotopic if there exists a homotopy

connecting a to b or a homotopy connecting b to a.

http://stacks.math.columbia.edu/tag/019I
http://stacks.math.columbia.edu/tag/019K
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Warning: Being homotopic is not an equivalence relation on the set of all mor-
phisms from U to V ! The relation “there exists a homotopy from a to b” is not
symmetric.

It turns out we can define homotopies between pairs of maps of simplicial objects
in any category. To do this you just work out what it means to have the morphisms
hn : (U ×∆[1])n → Vn in terms of the mapping property of coproducts.

Let C be a category with finite coproducts. Let U , V be simplicial objects of C. Let
a, b : U → V be morphisms. Further, suppose that h : U ×∆[1]→ V is a homotopy
connecting a to b. For every n ≥ 0 let us write

∆[1]n = {αn0 , . . . , αnn+1}

where αni : [n]→ [1] is the map such that

αni (j) =

{
0 if j < i
1 if j ≥ i

Thus

hn : (U ×∆[1])n =
∐

Un · αni −→ Vn

has a component hn,i : Un → Vn which is the restriction to the summand corre-
sponding to αni for all i = 0, . . . , n+ 1.

Lemma 14.25.2. In the situation above, we have the following relations:

(1) We have hn,0 = bn and hn,n+1 = an.
(2) We have dnj ◦ hn,i = hn−1,i−1 ◦ dnj for i > j.
(3) We have dnj ◦ hn,i = hn−1,i ◦ dnj for i ≤ j.
(4) We have snj ◦ hn,i = hn+1,i+1 ◦ snj for i > j.
(5) We have snj ◦ hn,i = hn+1,i ◦ snj for i ≤ j.

Conversely, given a system of maps hn,i satisfying the properties listed above, then
these define a morphisms h which is a homotopy between a and b.

Proof. Omitted. You can prove the last statement using the fact, see Lemma 14.2.4
that to give a morphism of simplicial objects is the same as giving a sequence of
morphisms hn commuting with all dnj and snj . �

Example 14.25.3. Suppose in the situation above a = b. Then there is a trivial
homotopy between a and b, namely the one with hn,i = an = bn.

Remark 14.25.4. Let C be any category (no assumptions whatsoever). We say
that a pair of morphisms a, b : U → V of simplicial objects are homotopic if there
exist morphisms1 hn,i : Un → Vn, for n ≥ 0, i = 0, . . . , n+ 1 satisfying the relations
of Lemma 14.25.2 (potentially with the roles of a and b switched). This is a “better”
definition, because it applies to any category. Also it has the following property:
if F : C → C′ is any functor then a homotopic to b implies trivially that F (a) is
homotopic to F (b). Since the lemma says that the newer notion is the same as the
old one in case finite coproduct exist, we deduce in particular that functors preserve
the old notion whenever both categories have finite coproducts.

1In the literature, often the maps hn+1,i ◦ si : Un → Vn+1 are used instead of the maps hn,i.

Of course the relations these maps satisfy are different from the ones in Lemma 14.25.2.

http://stacks.math.columbia.edu/tag/019L
http://stacks.math.columbia.edu/tag/07KA
http://stacks.math.columbia.edu/tag/019M
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Remark 14.25.5. Let C be any category. Suppose two morphisms a, a′ : U → V of
simplicial objects are homotopic. Then for any morphism b : V →W the two maps
b◦a, b◦a′ : U →W are homotopic. Similarly, for any morphism c : X → U the two
maps a◦c, a′ ◦c : X → V are homotopic. In fact the maps b◦a◦c, b◦a′ ◦c : X →W
are homotopic. Namely, if the maps hn,i : U → U define a homotopy between a
and a′ then the maps b ◦ hn,i ◦ c define a homotopy between b ◦ a ◦ c and b ◦ a′ ◦ c.

Definition 14.25.6. Let U and V be two simplicial objects of a category C. We
say a morphism a : U → V is a homotopy equivalence if there exists a morphism
b : V → U such that a◦b is homotopic to idV and b◦a is homotopic to idU . If there
exists such a morphism between U and V , then we say that U and V are homotopy
equivalent2.

Example 14.25.7. The simplicial set ∆[m] is homotopy equivalent to ∆[0]. Namely,
there is a unique morphism f : ∆[m] → ∆[0] and we take g : ∆[0] → ∆[m] to be
given by the inclusion of the last 0-simplex of ∆[m]. We have f ◦ g = id and we
will give a homotopy h : ∆[m]×∆[1]→ ∆[m] between id∆[m] and g ◦ f . Namely h
given by the maps

Mor∆([n], [m])×Mor∆([n], [1])→ Mor∆([n], [m])

which send (ϕ, α) to

k 7→
{
ϕ(k) if α(k) = 0
m if α(k) = 1

Note that this only works because we took g to be the inclusion of the last 0-simplex.
If we took g to be the inclusion of the first 0-simplex we could find a homotopy from
g ◦ f to id∆[m]. This is an illustration of the asymmetry inherent in homotopies in
the category of simplicial sets.

The following lemma says that U ×∆[1] is homotopy equivalent to U .

Lemma 14.25.8. Let C be a category with finite coproducts. Let U be a simplicial
object of C. Consider the maps e1, e0 : U → U ×∆[1], and π : U ×∆[1] → U , see
Lemma 14.13.3.

(1) We have π ◦ e1 = π ◦ e0 = idU , and
(2) The morphisms idU×∆[1], and e0 ◦ π are homotopic.
(3) The morphisms idU×∆[1], and e1 ◦ π are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial
sets ∆[1]×∆[1] −→ ∆[1] which in degree n assigns to a pair (β1, β2), βi : [n]→ [1]
the morphism β : [n]→ [1] defined by the rule

β(i) = max{β1(i), β2(i)}.
It is a morphism of simplicial sets, because the action ∆[1](ϕ) : ∆[1]n → ∆[1]m of
ϕ : [m] → [n] is by precomposing. Clearly, using notation from Section 14.25, we
have β = β1 if β2 = αn0 and β = αnn+1 if β2 = αnn+1. This implies easily that the
induced morphism

U ×∆[1]×∆[1] −→ U ×∆[1]

of Lemma 14.13.3 is a homotopy between idU×∆[1] and e0 ◦ π. Similarly for e1 ◦ π
(use minimum instead of maximum). �

2Warning: This notion is not an equivalence relation on objects in general.

http://stacks.math.columbia.edu/tag/08RJ
http://stacks.math.columbia.edu/tag/019N
http://stacks.math.columbia.edu/tag/08Q3
http://stacks.math.columbia.edu/tag/019O
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Lemma 14.25.9. Let f : Y → X be a morphism of a category C with fibre products.
Assume f has a section s. Consider the simplicial object U constructed in Example
14.3.5 starting with f . The morphism U → U which in each degree is the self map
(s◦f)n+1 of Y ×X . . .×X Y given by s◦f on each factor is homotopic to the identity
on U . In particular, U is homotopy equivalent to the constant simplicial object X.

Proof. Set g0 = idY and g1 = s ◦ f . We use the morphisms

Y ×X . . .×X Y ×Mor([n], [1]) → Y ×X . . .×X Y

(y0, . . . , yn)× α 7→ (gα(0)(y0), . . . , gα(n)(yn))

where we use the functor of points point of view to define the maps. Another way to
say this is to say that hn,0 = id, hn,n+1 = (s◦f)n+1 and hn,i = idi+1

Y × (s◦f)n+1−i.
We leave it to the reader to show that these satisfy the relations of Lemma 14.25.2.
Hence they define the desired homotopy. See also Remark 14.25.4 which shows that
we do not need to assume anything else on the category C. �

Lemma 14.25.10. Let C be a category.

(1) If at, bt : Xt → Yt, t ∈ T are homotopic morphisms between simplicial
objects of C, then

∏
at,
∏
bt :

∏
Xt →

∏
Yt are homotopic morphisms

between simplicial objects of C, provided
∏
Xt and

∏
Yt exist in Simp(C).

(2) If (Xt, Yt), t ∈ T are homotopy equivalent pairs of simplicial objects of C,
then

∏
Xt and

∏
Yt are homotopy equivalent pairs of simplicial objects of

C, provided
∏
Xt and

∏
Yt exist in Simp(C).

Proof. If ht = (ht,n,i) are homotopies connecting at and bt (see Remark 14.25.4),
then h = (

∏
t ht,n,i) is a homotopy connecting

∏
at and

∏
bt. This proves (1). Part

(2) follows from part (1) and the definitions. �

14.26. Homotopies in abelian categories

Let A be an abelian category. Let U , V be simplicial objects of A. Let a, b : U → V
be morphisms. Further, suppose that h : U×∆[1]→ V is a homotopy connecting a
and b. Consider the two morphisms of chain complexes s(a), s(b) : s(U) −→ s(V ).
Using the notation introduced above Lemma 14.25.2 we define

s(h)n : Un −→ Vn+1

by the formula

(14.26.0.1) s(h)n =
∑n

i=0
(−1)i+1hn+1,i+1 ◦ sni .

http://stacks.math.columbia.edu/tag/019P
http://stacks.math.columbia.edu/tag/08Q4
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Let us compute dn+1 ◦ s(h)n + s(h)n−1 ◦ dn. We first compute

dn+1 ◦ s(h)n =
∑n+1

j=0

∑n

i=0
(−1)j+i+1dn+1

j ◦ hn+1,i+1 ◦ sni

=
∑

1≤i+1≤j≤n+1
(−1)j+i+1hn,i+1 ◦ dn+1

j ◦ sni

+
∑

n≥i≥j≥0
(−1)i+j+1hn,i ◦ dn+1

j ◦ sni

=
∑

1≤i+1<j≤n+1
(−1)j+i+1hn,i+1 ◦ sn−1

i ◦ dnj−1

+
∑

1≤i+1=j≤n+1
(−1)j+i+1hn,i+1

+
∑

n≥i=j≥0
(−1)i+j+1hn,i

+
∑

n≥i>j≥0
(−1)i+j+1hn,i ◦ sn−1

i−1 ◦ d
n
j

We leave it to the reader to see that the first and the last of the four sums cancel
exactly against all the terms of

s(h)n−1 ◦ dn =

n−1∑
i=0

n∑
j=0

(−1)i+1+jhn,i+1 ◦ sn−1
i ◦ dnj .

Hence we obtain

dn+1 ◦ s(h)n + s(h)n−1 ◦ dn =

n+1∑
j=1

(−1)2jhn,j +

n∑
i=0

(−1)2i+1hn,i

= hn,n+1 − hn,0
= an − bn

Thus we’ve proved part of the following lemma.

Lemma 14.26.1. Let A be an abelian category. Let a, b : U → V be morphisms of
simplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V ), and
N(a), N(b) : N(U)→ N(V ) are homotopic maps of chain complexes.

Proof. The part about s(a) and s(b) is clear from the calculation above the lemma.
On the other hand, if follows from Lemma 14.22.6 that N(a), N(b) are compositions

N(U)→ s(U)→ s(V )→ N(V )

where we use s(a), s(b) in the middle. Hence the assertion follows from Homology,
Lemma 12.12.1. �

Lemma 14.26.2. Let A be an abelian category. Let a : U → V be a morphism of
simplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) → s(V ),
and N(a) : N(U)→ N(V ) are homotopy equivalences of chain complexes.

Proof. Omitted. See Lemma 14.26.1 above. �

14.27. Homotopies and cosimplicial objects

Let C be a category with finite products. Let V be a cosimplicial object and consider
Hom(∆[1], V ), see Section 14.14. The morphisms e0, e1 : ∆[0]→ ∆[1] produce two
morphisms e0, e1 : Hom(∆[1], V )→ V .

http://stacks.math.columbia.edu/tag/019S
http://stacks.math.columbia.edu/tag/019T
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Definition 14.27.1. Let C be a category having finite products. Suppose that
U and V are two cosimplicial objects of C. We say morphisms a, b : U → V are
homotopic if there exists a morphism

h : U −→ Hom(∆[1], V )

such that a = e0 ◦ h and b = e1 ◦ h. In this case h is called a homotopy connecting
a and b.

This is really exactly the same as the notion we introduced for simplicial objects
earlier. In particular, recall that ∆[1]n is a finite set, and that

hn = (hn,α) : U −→
∏

α∈∆[1]n
Vn

is given by a collection of maps hn,α : Un → Vn parametrized by elements of
∆[1]n = Mor∆([n], [1]). As in Lemma 14.25.2 these morphisms satisfy some rela-
tions. Namely, for every f : [n]→ [m] in ∆ we should have

(14.27.1.1) hm,α ◦ U(f) = V (f) ◦ hn,α◦f
The condition that a = e0 ◦ h means that an = hn,0:[n]→[1] where 0 : [n] → [1] is
the constant map with value zero. Similarly, we should have bn = hn,1:[n]→[1]. In
particular we deduce once more that the notion of homotopy can be formulated
between cosimplicial objects of any category, i.e., existence of products is not nec-
essary. Here is a precise formulation of why this is dual to the notion of a homotopy
between morphisms of simplicial objects.

Lemma 14.27.2. Let C be a category having finite products. Suppose that U and
V are two cosimplicial objects of C. Let a, b : U → V be morphisms of cosimplicial
objects. Recall that U , V correspond to simplicial objects U ′, V ′ of Copp. Moreover
a, b correspond to morphisms a′, b′ : V ′ → U ′. The following are equivalent

(1) The morphisms a, b : U → V of cosimplicial objects are homotopic.
(2) The morphisms a′, b′ : V ′ → U ′ of simplicial objects of Copp are homotopic.

Proof. If C has finite products, then Copp has finite coproducts. And the con-
travariant functor (−)′ : C → Copp transforms products into coproducts. Then it is
immediate from the definitions that (Hom(∆[1], V ))′ = V ′ ×∆[1]. And so on and
so forth. �

Lemma 14.27.3. Let C, C′,D,D′ be categories such that C, C′ have finite products,
and D,D′ have finite coproducts.

(1) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → D′
be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U)→ F (V ) of simplicial objects.

(2) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → C′
be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U)→ F (V ) of cosimplicial objects.

(3) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → C
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V )→ F (U) of cosimplicial objects.

(4) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → D
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V )→ F (U) of simplicial objects.

http://stacks.math.columbia.edu/tag/019W
http://stacks.math.columbia.edu/tag/019X
http://stacks.math.columbia.edu/tag/019Y
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Proof. By Lemma 14.27.2 above, we can turn F into a covariant functor between
a pair of categories which have finite coproducts, and we have to show that the
functor preserves homotopic pairs of maps. It is explained in Remark 14.25.4 how
this is the case. Even if the functor does not commute with coproducts! �

Lemma 14.27.4. Let f : Y → X be a morphism of a category C with pushouts.
Assume f has a section s. Consider the cosimplicial object U constructed in Exam-
ple 14.5.5 starting with f . The morphism U → U which in each degree is the self
map of Y qX . . .qX Y given by s ◦ f on each factor is homotopic to the identity on
U . In particular, U is homotopy equivalent to the constant cosimplicial object X.

Proof. The dual statement which is Lemma 14.25.9. Hence this lemma follows on
applying Lemma 14.27.2. �

Lemma 14.27.5. Let A be an abelian category. Let a, b : U → V be morphisms of
cosimplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U)→ s(V ), and
Q(a), Q(b) : Q(U)→ Q(V ) are homotopic maps of cochain complexes.

Proof. Let (−)′ : A → Aopp be the contravariant functor A 7→ A. By Lemma
14.27.4 the maps a′ and b′ are homotopic. By Lemma 14.26.1 we see that s(a′)
and s(b′) are homotopic maps of chain complexes. Since s(a′) = (s(a))′ and s(b′) =
(s(b))′ we conclude that also s(a) and s(b) are homotopic by applying the additive
contravariant functor (−)′′ : Aopp → A. The result for the Q-complexes follows
from the direct sum decomposition of Lemma 14.24.1 for example. �

14.28. More homotopies in abelian categories

Let A be an abelian category. In this section we show that a homotopy between
morphisms in Ch≥0(A) always comes from a morphism U × ∆[1] → V in the
category of simplicial objects. In some sense this will provide a converse to Lemma
14.26.1. We first develop some material on homotopies between morphisms of chain
complexes.

Lemma 14.28.1. Let A be an abelian category. Let A be a chain complex. Con-
sider the covariant functor

B 7−→ {(a, b, h) | a, b : A→ B and h a homotopy between a, b}
There exists a chain complex �A such that MorCh(A)(�A,−) is isomorphic to the
displayed functor. The construction A 7→ �A is functorial.

Proof. We set �An = An ⊕An ⊕An−1, and we define d�A,n by the matrix

d�A,n =

dA,n 0 idAn−1

0 dA,n −idAn−1

0 0 −dA,n−1

 : An ⊕An ⊕An−1 → An−1 ⊕An−1 ⊕An−2

If A is the category of abelian groups, and (x, y, z) ∈ An ⊕ An ⊕ An−1 then
d�A,n(x, y, z) = (dn(x) + z, dn(y) − z,−dn−1(z)). It is easy to verify that d2 = 0.
Clearly, there are two maps �a, �b : A→ �A (first summand and second summand),
and a map �A→ A[−1] which give a short exact sequence

0→ A⊕A→ �A→ A[−1]→ 0

which is termwise split. Moreover, there is a sequence of maps �hn : An → �An+1,
namely the identity from An to the summand An of �An+1, such that �h is a
homotopy between �a and �b.

http://stacks.math.columbia.edu/tag/019Z
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We conclude that any morphism f : �A→ B gives rise to a triple (a, b, h) by setting
a = f ◦ �a, b = f ◦ �b and hn = fn+1 ◦ �hn. Conversely, given a triple (a, b, h) we
get a morphism f : �A→ B by taking

fn = (an, bn, hn−1).

To see that this is a morphism of chain complexes you have to do a calculation.
We only do this in case A is the category of abelian groups: Say (x, y, z) ∈ �An =
An ⊕An ⊕An−1. Then

fn−1(dn(x, y, z)) = fn−1(dn(x) + z, dn(y)− z,−dn−1(z))

= an(dn(x)) + an(z) + bn(dn(y))− bn(z)− hn−2(dn−1(z))

and

dn(fn(x, y, z) = dn(an(x) + bn(y) + hn−1(z))

= dn(an(x)) + dn(bn(y)) + dn(hn−1(z))

which are the same by definition of a homotopy. �

Note that the extension

0→ A⊕A→ �A→ A[−1]→ 0

comes with sections of the morphisms �An → A[−1]n with the property that the
associated morphism δ : A[−1] → (A ⊕ A)[−1], see Homology, Lemma 12.14.4
equals the morphism (1,−1) : A[−1]→ A[−1]⊕A[−1].

Lemma 14.28.2. Let A be an abelian category. Let

0→ A⊕A→ B → C → 0

be a short exact sequence of chain complexes of A. Suppose given in addition
morphisms sn : Cn → Bn splitting the associated short exact sequence in degree
n. Let δ(s) : C → (A ⊕ A)[−1] = A[−1] ⊕ A[−1] be the associated morphism of
complexes, see Homology, Lemma 12.14.4. If δ(s) factors through the morphism
(1,−1) : A[−1]→ A[−1]⊕A[−1], then there is a unique morphism B → �A fitting
into a commutative diagram

0 // A⊕A

��

// B //

��

C

��

// 0

0 // A⊕A // �A // A[−1] // 0

where the vertical maps are compatible with the splittings sn and the splittings of
�An → A[−1]n as well.

Proof. Denote (pn, qn) : Bn → An ⊕ An the morphism πn of Homology, Lemma
12.14.4. Also write (a, b) : A ⊕ A → B, and r : B → C for the maps in the short
exact sequence. Write the factorization of δ(s) as δ(s) = (1,−1) ◦ f . This means
that pn−1 ◦ dB,n ◦ sn = fn, and qn−1 ◦ dB,n ◦ sn = −fn, and Set Bn → �An =
An ⊕An ⊕An−1 equal to (pn, qn, fn ◦ rn).

Now we have to check that this actually defines a morphism of complexes. We will
only do this in the case of abelian groups. Pick x ∈ Bn. Then x = an(x1)+bn(x2)+
sn(x3) and it suffices to show that our definition commutes with differential for each
term separately. For the term an(x1) we have (pn, qn, fn ◦ rn)(an(x1)) = (x1, 0, 0)

http://stacks.math.columbia.edu/tag/01A3
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and the result is obvious. Similarly for the term bn(x2). For the term sn(x3) we
have

(pn, qn, fn ◦ rn)(dn(sn(x3))) = (pn, qn, fn ◦ rn)(

an(fn(x3))− bn(fn(x3)) + sn(dn(x3)))

= (fn(x3),−fn(x3), fn(dn(x3)))

by definition of fn. And

dn(pn, qn, fn ◦ rn)(sn(x3)) = dn(0, 0, fn(x3))

= (fn(x3),−fn(x3), dA[−1],n(fn(x3)))

The result follows as f is a morphism of complexes. �

Lemma 14.28.3. Let A be an abelian category. Let U , V be simplicial objects
of A. Let a, b : U → V be a pair of morphisms. Assume the corresponding maps
of chain complexes N(a), N(b) : N(U) → N(V ) are homotopic by a homotopy
{Nn : N(U)n → N(V )n+1}. Then a, b are homotopic in the sense of Definition
14.25.1. Moreover, one can choose the homotopy h : U × ∆[1] → V such that
Nn = N(h)n where N(h) is the homotopy coming from h as in Section 14.26.

Proof. Let (�N(U), �a, �b, �h) be as in Lemma 14.28.1 and its proof. By that
lemma there exists a morphism �N(U)→ N(V ) representing the triple (N(a), N(b), {Nn}).
We will show there exists a morphism ψ : N(U × ∆[1]) → �N(U) such that
�a = ψ ◦ N(e0), and �b = ψ ◦ N(e1). Moreover, we will show that the homo-
topy between N(e0), N(e1) : N(U) → N(U × ∆[1]) coming from (14.26.0.1) and
Lemma 14.26.1 with h = idU×∆[1] is mapped via ψ to the canonical homotopy
�h between the two maps �a, �b : N(U) → �N(U). Certainly this will imply the
lemma.

Note that N : Simp(A) → Ch≥0(A) as a functor is a direct summand of the
functor N : Simp(A) → Ch≥0(A). Also, the functor � is compatible with direct
sums. Thus it suffices instead to construct a morphism Ψ : s(U ×∆[1]) → �s(U)
with the corresponding properties. This is what we do below.

By Definition 14.25.1 the morphisms e0 : U → U ×∆[1] and e1 : U → U ×∆[1] are
homotopic with homotopy idU×∆[1]. By Lemma 14.26.1 we get an explicit homotopy
{hn : s(U)n → s(U ×∆[1])n+1} between the morphisms of chain complexes s(e0) :
s(U)→ s(U ×∆[1]) and s(e1) : s(U)→ s(U ×∆[1]). By Lemma 14.28.2 above we
get a corresponding morphism

Φ : �s(U)→ s(U ×∆[1])

According to the construction, Φn restricted to the summand s(U)[−1]n = s(U)n−1

of �s(U)n is equal to hn−1. And

hn−1 =
∑n−1

i=0
(−1)i+1sni · αni+1 : Un−1 →

⊕
j
Un · αnj .

with obvious notation.

On the other hand, the morphisms ei : U → U ×∆[1] induce a morphism (e0, e1) :
U ⊕ U → U ×∆[1]. Denote W the cokernel. Note that, if we write (U ×∆[1])n =

http://stacks.math.columbia.edu/tag/01A4
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α:[n]→[1] Un · α, then we may identify Wn =

⊕n
i=1 Un · αni with αni as in Section

14.25. We have a commutative diagram

0 // U ⊕ U

(1,1)
%%

// U ×∆[1]

π

��

// W // 0

U

This implies we have a similar commutative diagram after applying the functor s.
Next, we choose the splittings σn : s(W )n → s(U×∆[1])n by mapping the summand
Un ·αni ⊂Wn via (−1, 1) to the summands Un ·αn0⊕Un ·αni ⊂ (U×∆[1])n. Note that
s(π)n ◦ σn = 0. It follows that (1, 1) ◦ δ(σ)n = 0. Hence δ(σ) factors as in Lemma
14.28.2. By that lemma we obtain a canonical morphism Ψ : s(U ×∆[1])→ �s(U).

To compute Ψ we first compute the morphism δ(σ) : s(W )→ s(U)[−1]⊕ s(U)[−1].
According to Homology, Lemma 12.14.4 and its proof, to do this we have compute

ds(U×δ[1]),n ◦ σn − σn−1 ◦ ds(W ),n

and write it as a morphism into Un−1 ·αn−1
0 ⊕Un−1 ·αn−1

n . We only do this in case
A is the category of abelian groups. We use the short hand notation xα for x ∈ Un
to denote the element x in the summand Un · α of (U ×∆[1])n. Recall that

ds(U×δ[1]),n =
∑n

i=0
(−1)idni

where dni maps the summand Un ·α to the summand Un−1 ·(α◦δni ) via the morphism
dni of the simplicial object U . In terms of the notation above this means

ds(U×δ[1]),n(xα) =
∑n

i=0
(−1)i(dni (x))α◦δni

Starting with xα ∈Wn, in other words α = αnj for some j ∈ {1, . . . , n}, we see that
σn(xα) = xα − xαn0 and hence

(ds(U×δ[1]),n ◦ σn)(xα) =
∑n

i=0
(−1)i(dni (x))α◦δni −

∑n

i=0
(−1)i(dni (x))αn0 ◦δni

To compute ds(W ),n(xα), we have to omit all terms where α ◦ δni = αn−1
0 , αn−1

n .
Hence we get

(σn−1 ◦ ds(W ),n)(xα) =∑
i=0,...,n and α◦δni 6=α

n−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δni − (−1)i(dni (x))αn−1

0

)
Clearly the difference of the two terms is the sum∑

i=0,...,n and α◦δni =αn−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δni − (−1)i(dni (x))αn−1

0

)
Of course, if α ◦ δni = αn−1

0 then the term drops out. Recall that α = αnj for some

j ∈ {1, . . . , n}. The only way αnj ◦δni = αn−1
n is if j = n and i = n. Thus we actually

get 0 unless j = n and in that case we get (−1)n(dnn(x))αn−1
n
− (−1)n(dnn(x))αn−1

0
.

In other words, we conclude the morphism

δ(σ)n : Wn → (s(U)[−1]⊕ s(U)[−1])n = Un−1 ⊕ Un−1

is zero on all summands except Un · αnn and on that summand it is equal to
((−1)ndnn,−(−1)ndnn). (Namely, the first summand of the two corresponds to the
factor with αn−1

n because that is the map [n − 1] → [1] which maps everybody to
0, and hence corresponds to e0.)
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We obtain a canonical diagram

0 // s(U)⊕ s(U) //

��

�s(U) //

Φ

��

s(U)[−1] //

��

0

0 // s(U)⊕ s(U) //

��

s(U ×∆[1]) //

Ψ

��

s(W ) //

��

0

0 // s(U)⊕ s(U) // �s(U) // s(U)[−1] // 0

We claim that Φ ◦ Ψ is the identity. To see this it is enough to prove that the
composition of Φ and δ(σ) as a map s(U)[−1]→ s(W )→ s(U)[−1]⊕s(U)[−1] is the
identity in the first factor and minus identity in the second. By the computations
above it is ((−1)ndn0 ,−(−1)ndn0 ) ◦ (−1)nsnn = (1,−1) as desired. �

14.29. Trivial Kan fibrations

Recall that for n ≥ 0 the simplicial set ∆[n] is given by the rule [k] 7→ Mor∆([k], [n]),
see Example 14.11.2. Recall that ∆[n] has a unique nondegenerate n-simplex and
all nondegenerate simplices are faces of this n-simplex. In fact, the nondegenerate
simplices of ∆[n] correspond exactly to injective morphisms [k] → [n], which we
may identify with subsets of [n]. Moreover, recall that Mor(∆[n], X) = Xn for any
simplicial set X (Lemma 14.11.3). We set

∂∆[n] = i(n−1)!skn−1∆[n]

and we call it the boundary of ∆[n]. From Lemma 14.20.5 we see that ∂∆[n] ⊂ ∆[n]
is the simplicial subset having the same nondegenerate simplices in degrees ≤ n−1
but not containing the nondegenerate n-simplex.

Definition 14.29.1. A map X → Y of simplicial sets is called a trivial Kan
fibration if X0 → Y0 is surjective and for all n ≥ 1 and any commutative solid
diagram

∂∆[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute.

A trivial Kan fibration satisfies a very general lifting property.

Lemma 14.29.2. Let f : X → Y be a trivial Kan fibration of simplicial sets. For
any solid commutative diagram

Z
b
//

��

X

��
W

a //

>>

Y

of simplicial sets with Z → W (termwise) injective a dotted arrow exists making
the diagram commute.

http://stacks.math.columbia.edu/tag/08NL
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Proof. Suppose that Z 6= W . Let n be the smallest integer such that Zn 6= Wn.
Let x ∈Wn, x 6∈ Zn. Denote Z ′ ⊂W the simplicial subset containing Z, x, and all
degeneracies of x. Let ϕ : ∆[n]→ Z ′ be the morphism corresponding to x (Lemma
14.11.3). Then ϕ|∂∆[n] maps into Z as all the nondegenerate simplices of ∂∆[n] end
up in Z. By assumption we can extend b ◦ ϕ|∂∆[n] to β : ∆[n] → X. By Lemma
14.20.7 the simplicial set Z ′ is the pushout of ∆[n] and Z along ∂∆[n]. Hence b and
β define a morphism b′ : Z ′ → X. In other words, we have extended the morphism
b to a bigger simplicial subset of Z.

The proof is finished by an application of Zorn’s lemma (omitted). �

Lemma 14.29.3. Let f : X → Y be a trivial Kan fibration of simplicial sets. Let
Y ′ → Y be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a trivial Kan
fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 14.7.2) and the definitions. �

Lemma 14.29.4. The composition of two trivial Kan fibrations is a trivial Kan
fibration.

Proof. Omitted. �

Lemma 14.29.5. Let . . .→ U2 → U1 → U0 be a sequence of trivial Kan fibrations.
Let U = limU t defined by taking Un = limU tn. Then U → U0 is a trivial Kan
fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. �

Lemma 14.29.6. Let Xi → Yi be a set of trivial Kan fibrations. Then
∏
Xi →∏

Yi is a trivial Kan fibration.

Proof. Omitted. �

Lemma 14.29.7. A filtered colimit of trivial Kan fibrations is a trivial Kan fibra-
tion.

Proof. Omitted. Hint: See description of filtered colimits of sets in Categories,
Section 4.19. �

Lemma 14.29.8. Let f : X → Y be a trivial Kan fibration of simplicial sets. Then
f is a homotopy equivalence.

Proof. By Lemma 14.29.2 we can choose an right inverse g : Y → X to f . Consider
the diagram

∂∆[1]×X

��

// X

��
∆[1]×X //

::

Y

Here the top horizontal arrow is given by idX and g ◦ f where we use that (∂∆[1]×
X)n = Xn qXn for all n ≥ 0. The bottom horizontal arrow is given by the map
∆[1]→ ∆[0] and f : X → Y . The diagram commutes as f ◦ g ◦ f = f . By Lemma
14.29.2 we can fill in the dotted arrow and we win. �
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14.30. Kan fibrations

Let n, k be integers with 0 ≤ k ≤ n and 1 ≤ n. Let σ0, . . . , σn be the n + 1 faces
of the unique nondegenerate n-simplex σ of ∆[n], i.e., σi = diσ. We let

Λk[n] ⊂ ∆[n]

be the kth horn of the n-simplex ∆[n]. It is the simplicial subset of ∆[n] generated
by σ0, . . . , σ̂k, . . . , σn. In other words, the image of the displayed inclusion contains
all the nondegenerate simplices of ∆[n] except for σ and σk.

Definition 14.30.1. A map X → Y of simplicial sets is called a Kan fibration if
for all k, n with 1 ≤ n, 0 ≤ k ≤ n and any commutative solid diagram

Λk[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute. A Kan complex is a simplicial
set X such that X → ∗ is a Kan fibration, where ∗ is the constant simplicial set on
a singleton.

Note that Λk[n] is always nonempty. This a morphism from the empty simplicial
set to any simplicial set is always a Kan fibration. It follows from Lemma 14.29.2
that a trivial Kan fibration is a Kan fibration.

Lemma 14.30.2. Let f : X → Y be a Kan fibration of simplicial sets. Let Y ′ → Y
be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 14.7.2) and the definitions. �

Lemma 14.30.3. The composition of two Kan fibrations is a Kan fibration.

Proof. Omitted. �

Lemma 14.30.4. Let . . .→ U2 → U1 → U0 be a sequence of Kan fibrations. Let
U = limU t defined by taking Un = limU tn. Then U → U0 is a Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. �

Lemma 14.30.5. Let Xi → Yi be a set of Kan fibrations. Then
∏
Xi →

∏
Yi is

a Kan fibration.

Proof. Omitted. �

The following lemma is due to J.C. Moore, see [Moo55].

Lemma 14.30.6. Let X be a simplicial group. Then X is a Kan complex.

Proof. The following proof is basically just a translation into English of the proof
in the reference mentioned above. Using the terminology as explained in the intro-
duction to this section, suppose f : Λk[n] → X is a morphism from a horn. Set

xi = f(σi) ∈ Xn−1 for i = 0, . . . , k̂, . . . , n. This means that for i < j we have
dixj = dj−1xi whenever i, j 6= k. We have to find an x ∈ Xn such that xi = dix

for i = 0, . . . , k̂, . . . , n.

http://stacks.math.columbia.edu/tag/08NU
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We first prove there exists a u ∈ Xn such that diu = xi for i < k. This is trivial for
k = 0. If k > 0, one defines by induction an element ur ∈ Xn such that diu

r = xi
for 0 ≤ i ≤ r. Start with u0 = s0x0. If r < k − 1, we set

yr = sr+1((dr+1u
r)−1xr+1), ur+1 = uryr.

An easy calculation shows that diy
r = 1 (unit element of the group Xn−1) for i ≤ r

and dr+1y
r = (dr+1u

r)−1xr+1. It follows that diu
r+1 = xi for i ≤ r + 1. Finally,

take u = uk−1 to get u as promised.

Next we prove, by induction on the integer r, 0 ≤ r ≤ n−k, there exists a xr ∈ Xn

such that

dix
r = xi for i < k and i > n− r.

Start with x0 = u for r = 0. Having defined xr for r ≤ n− k − 1 we set

zr = sn−r−1((dn−rx
r)−1xn−r), xr+1 = xrzr

A simple calculation, using the given relations, shows that diz
r = 1 for i < k and

i > n − r and that dn−r(z
r) = (dn−rx

r)−1xn−r. It follows that dix
r+1 = xi for

i < k and i > n− r − 1. Finally, we take x = xn−k which finishes the proof. �

Lemma 14.30.7. Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective. Then f is a Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

Λk[n]
a
//

��

X

��
∆[n]

b //

==

Y

as in Definition 14.30.1. The map a corresponds to x0, . . . , x̂k, . . . , xn ∈ Xn−1

satisfying dixj = dj−1xi for i < j, i, j 6= k. The map b corresponds to an element
y ∈ Yn such that diy = f(xi) for i 6= k. Our task is to produce an x ∈ Xn such
that dix = xi for i 6= k and f(x) = y.

Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y− f(x) and xi by xi − dix for i 6= k. Then we see that we may assume y = 0.
In particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y
by 0. In this case the statement become Lemma 14.30.6. �

Lemma 14.30.8. Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective and induces a quasi-isomorphism on associated chain
complexes. Then f is a trivial Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

∂∆[n]
a
//

��

X

��
∆[n]

b //

==

Y

as in Definition 14.29.1. The map a corresponds to x0, . . . , xn ∈ Xn−1 satisfying
dixj = dj−1xi for i < j. The map b corresponds to an element y ∈ Yn such that
diy = f(xi). Our task is to produce an x ∈ Xn such that dix = xi and f(x) = y.

http://stacks.math.columbia.edu/tag/08P0
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Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y−f(x) and xi by xi−dix. Then we see that we may assume y = 0. In particular
f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y by 0. This
works, because by Homology, Lemma 12.12.6 the homology of the chain complex
associated to Ker(f) is zero and hence Ker(f)→ 0 induces a quasi-isomorphism on
associated chain complexes.

Since X is a Kan complex (Lemma 14.30.6) we can find x ∈ Xn with dix = xi
for i = 0, . . . , n − 1. After replacing xi by xi − dix for i = 0, . . . , n we may
assume that x0 = x1 = . . . = xn−1 = 0. In this case we see that dixn = 0 for
i = 0, . . . , n − 1. Thus xn ∈ N(X)n−1 and lies in the kernel of the differential
N(X)n−1 → N(X)n−2. Here N(X) is the normalized chain complex associated to
X, see Section 14.22. Since N(X) is quasi-isomorphic to s(X) (Lemma 14.22.8)
and thus acyclic we find x ∈ N(Xn) whose differential is xn. This x answers the
question posed by the lemma and we are done. �

Lemma 14.30.9. Let f : X → Y be a map of simplicial abelian groups. If f is
termwise surjective3 and a homotopy equivalence of simplicial sets, then f induces
a quasi-isomorphism of associated chain complexes.

Proof. By assumption there exists a map g : Y → X of simplicial sets, a homotopy
h : X×∆[1]→ X between g◦f and idX , and a homotopy h′ : Y ×∆[1]→ Y between
f ◦ g and idY . During this proof we will write Hn(X) = Hn(s(X)) = Hn(N(X)),
see Section 14.22.

Note that H0(X) is the cokernel of the difference map d1− d0 : X1 → X0. Observe
that x ∈ X0 corresponds to a morphism ∆[0]→ X. Composing h with the induced
map ∆[0]×∆[1]→ X ×∆[1] we see that x and g(f(x)) are equal to d0x

′ and d1x
′

for some x′ ∈ X1. Similarly for y ∈ Y0. We conclude that f defines a bijection
H0(X)→ H0(Y ).

Let n ≥ 1. Consider the simplicial set S which is the pushout of

∂∆[n] //

��

∗

��
∆[n] // S

Concretely, we take

Sk = {ϕ : [k]→ [n] | ϕ is surjective} q {∗}.

Denote E = Z[S] the free abelian group on S. The inclusion ∆[0]→ S coming from
∗ ∈ S0 determines an injection K(Z, 0)→ E whose cokernel is the object K(Z, n),
i.e., we have a short exact sequence

0→ K(Z, 0)→ E → K(Z, n)→ 0

See Definition 14.21.3 and the description of the Eilenberg-Maclane objects in
Lemma 14.21.2. Note that the extension above is split, for example because the

3This assumption is not necessary. Also the proof as currently given is not the right one. A
better proof is to define the homotopy groups of Kan complex and show that these are equal to

the homology groups of the associated complex for a simplicial abelian group.
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1058 14. SIMPLICIAL METHODS

element ξ = [id[n]] − [∗] ∈ En satisfies diξ = 0 and maps to the “generator” of
K(Z, n). We have

MorSimp(Sets)(S,X) = MorSimp(Ab)(E,X) = X0 ×
⋂

i=0,...,n
Ker(di : Xn → Xn−1)

This uses the choice of our splitting above and the description of morphisms out
of Eilenberg-Maclane objects given in Lemma 14.21.2. Note that we can think
of
⋂
i=0,...,n Ker(di : Xn → Xn−1) as the cycles in degree n in the normalized

chain complex associated to X, see Section 14.22. If two maps a, b : S → X are
homotopic (as maps of simplicial sets), then the corresponding maps a′, b′ : E → X
are homotopic as maps of simplicial abelian groups (because taking the free abelian
group on is a functor). Thus if a, resp. b correspond to (a0, an), resp. (b0, bn) in
the formula above, then a0 and b0 define the same element of H0(X) and an and
bn define the same class in Hn(X). See Lemma 14.26.1.

We come the final arguments of the proof. An element y of Hn(Y ) can be repre-
sented by an element yn in

⋂
i=0,...,n Ker(di : Yn → Yn−1). Let a : S → Y be the

map of simplicial sets corresponding to (0, yn). Then b = g ◦a corresponds to some
(b0, bn) as above for X. Using the homotopy h′ we see (f(b0), f(bn)) and (0, yn)
come from homotopic maps S → Y and hence yn and f(bn) define the same element
of Hn(Y ). Clearly this shows that Hn(f) is surjective. Conversely, suppose xn in⋂
i=0,...,n Ker(di : Xn → Xn−1) and f(xn) = d(y′) with y′ ∈ N(Yn+1). Since f is

termwise surjective so is the induced map f : N(Xn+1) → N(Yn+1) (see Lemma
14.22.6). Thus we can pick x′ ∈ N(Xn+1) mapping to y′. After replacing xn by
xn − d(x′) we reach the point where f(xn) = 0. This means that the morphism
a : S → X corresponding to (0, xn) has the property that f ◦ a is the constant
morphism with value 0 in Y . Hence g ◦ f ◦ a is also a constant morphism, i.e.,
corresponds to a pair (b0, 0). Since as before xn and 0 represent the same element
of Hn(X) we conclude. �

14.31. A homotopy equivalence

Suppose that A, B are sets, and that f : A→ B is a map. Consider the associated
map of simplicial sets

cosk0(A)
(
. . . A×A×A

��

//
//
//
A×A

��

//
//oo

oo
A
)
��

oo

cosk0(B)
(
. . . B ×B ×B

//
//
//
B ×B //

//oo
oo

B
)

oo

See Example 14.18.1. The case n = 0 of the following lemma says that this map of
simplicial sets is a trivial Kan fibration if f is surjective.

Lemma 14.31.1. Let f : V → U be a morphism of simplicial sets. Let n ≥ 0 be
an integer. Assume

(1) The map fi : Vi → Ui is a bijection for i < n.
(2) The map fn : Vn → Un is a surjection.
(3) The canonical morphism U → cosknsknU is an isomorphism.
(4) The canonical morphism V → cosknsknV is an isomorphism.

Then f is a trivial Kan fibration.
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Proof. Consider a solid diagram

∂∆[k] //

��

V

��
∆[k] //

==

U

as in Definition 14.29.1. Let x ∈ Uk be the k-simplex corresponding to the lower
horizontal arrow. If k ≤ n then the dotted arrow is the one corresponding to a
lift y ∈ Vk of x; the diagram will commute as the other nondegenerate simplices of
∆[k] are in degrees < k where f is an isomorphism. If k > n, then by conditions
(3) and (4) we have (using adjointness of skeleton and coskeleton functors)

Mor(∆[k], U) = Mor(skn∆[k], sknU) = Mor(skn∂∆[k], sknU) = Mor(∂∆[k], U)

and similarly for V because skn∆[k] = skn∂∆[k] for k > n. Thus we obtain a
unique dotted arrow fitting into the diagram in this case also. �

Let A,B be sets. Let f0, f1 : A → B be maps of sets. Consider the induced
maps f0, f1 : cosk0(A) → cosk0(B) abusively denoted by the same symbols. The
following lemma for n = 0 says that f0 is homotopic to f1. In fact, the homotopy
is given by the map h : cosk0(A)×∆[1]→ cosk0(A) with components

hm : A× . . .×A×Mor∆([m], [1]) −→ A× . . .×A,
(a0, . . . , am, α) 7−→ (fα(0)(a0), . . . , fα(m)(am))

To check that this works, note that for a map ϕ : [k] → [m] the induced maps are
(a0, . . . , am) 7→ (aϕ(0), . . . , aϕ(k)) and α 7→ α ◦ ϕ. Thus h = (hm)m≥0 is clearly a
map of simplicial sets as desired.

Lemma 14.31.2. Let f0, f1 : V → U be maps of a simplicial sets. Let n ≥ 0 be
an integer. Assume

(1) The maps f ji : Vi → Ui, j = 0, 1 are equal for i < n.
(2) The canonical morphism U → cosknsknU is an isomorphism.
(3) The canonical morphism V → cosknsknV is an isomorphism.

Then f0 is homotopic to f1.

First proof. Let W be the n-truncated simplicial set with Wi = Ui for i < n and
Wn = Un/ ∼ where ∼ is the equivalence relation generated by f0(y) ∼ f1(y) for
y ∈ Vn. This makes sense as the morphisms U(ϕ) : Un → Ui corresponding to
ϕ : [i] → [n] for i < n factor through the quotient map Un → Wn because f0 and
f1 are morphisms of simplicial sets and equal in degrees < n. Next, we upgrade W
to a simplicial set by taking cosknW . By Lemma 14.31.1 the morphism g : U →W
is a trivial Kan fibration. Observe that g ◦ f0 = g ◦ f1 by construction and denote
this morphism f : V →W . Consider the diagram

∂∆[1]× V
f0,f1

//

��

U

��
∆[1]× V

f //

66

W

By Lemma 14.29.2 the dotted arrow exists and the proof is done. �
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Second proof. We have to construct a morphism of simplicial sets h : V ×∆[1]→
U which recovers f i on composing with ei. The case n = 0 was dealt with above
the lemma. Thus we may assume that n ≥ 1. The map ∆[1]→ cosk1sk1∆[1] is an
isomorphism, see Lemma 14.18.15. Thus we see that ∆[1] → cosknskn∆[1] is an
isomorphism as n ≥ 1, see Lemma 14.18.10. And hence V ×∆[1]→ cosknskn(V ×
∆[1]) is an isomorphism too, see Lemma 14.18.12. In other words, in order to
construct the homotopy it suffices to construct a suitable morphism of n-truncated
simplicial sets h : sknV × skn∆[1]→ sknU .

For k = 0, . . . , n−1 we define hk by the formula hk(v, α) = f0(v) = f1(v). The map
hn : Vn ×Mor∆([k], [1])→ Un is defined as follows. Pick v ∈ Vn and α : [n]→ [1]:

(1) If Im(α) = {0}, then we set hn(v, α) = f0(v).
(2) If Im(α) = {0, 1}, then we set hn(v, α) = f0(v).
(3) If Im(α) = {1}, then we set hn(v, α) = f1(v).

Let ϕ : [k]→ [l] be a morphism of ∆≤n. We will show that the diagram

Vl ×Mor([l], [1]) //

��

Ul

��
Vk ×Mor([k], [1]) // Uk

commutes. Pick v ∈ Vl and α : [l]→ [1]. The commutativity means that

hk(V (ϕ)(v), α ◦ ϕ) = U(ϕ)(hl(v, α)).

In almost every case this holds because hk(V (ϕ)(v), α ◦ ϕ) = f0(V (ϕ)(v)) and
U(ϕ)(hl(v, α)) = U(ϕ)(f0(v)), combined with the fact that f0 is a morphism of
simplicial sets. The only cases where this does not hold is when either (A) Im(α) =
{1} and l = n or (B) Im(α◦ϕ) = {1} and k = n. Observe moreover that necessarily
f0(v) = f1(v) for any degenerate n-simplex of V . Thus we can narrow the cases
above down even further to the cases (A) Im(α) = {1}, l = n and v nondegenerate,
and (B) Im(α ◦ ϕ) = {1}, k = n and V (ϕ)(v) nondegenerate.

In case (A), we see that also Im(α◦ϕ) = {1}. Hence we see that not only hl(v, α) =
f1(v) but also hk(V (ϕ)(v), α ◦ ϕ) = f1(V (ϕ)(v)). Thus we see that the relation
holds because f1 is a morphism of simplicial sets.

In case (B) we conclude that l = k = n and ϕ is bijective, since otherwise V (ϕ)(v)
is degenerate. Thus ϕ = id[n], which is a trivial case. �

Lemma 14.31.3. Let A, B be sets, and that f : A → B is a map. Consider the
simplicial set U with n-simplices

A×B A×B . . .×B A (n+ 1 factors).

see Example 14.3.5. If f is surjective, the morphism U → B where B indicates the
constant simplicial set with value B is a trivial Kan fibration.

Proof. Observe that U fits into a cartesian square

U

��

// cosk0(B)

��
B // cosk0(A)
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Since the right vertical arrow is a trivial Kan fibration by Lemma 14.31.1, so is the
left by Lemma 14.29.3. �

14.32. Standard resolutions

Some of the material in this section can be found in [God73, Appendix 1] and
[Ill72, I 1.5].

Situation 14.32.1. Let A, S be categories and let i : A → S be a functor with a
left adjoint F : S → A.

In this very general situation we will construct a simplicial object X in the category
of functors from A to A. Please keep the following example in mind while we do
this.

Example 14.32.2. As an example of the above we can take i : Rings → Sets to
be the forgetful functor and F : Sets → Rings to be the functor that associates to
a set E the polynomial algebra Z[E] on E over Z. The simplicial object X when
evaluated on an ring A will give the simplicial ring

Z[Z[Z[A]]]
//
//
//
Z[Z[A]]

//
//oo

oo
Z[A]oo

which comes with an augmentation towards A. We will also show this augmentation
is a homotopy equivalence.

For the general construction we will use the horizontal composition as defined in
Categories, Section 4.26. The definition of the adjunction morphisms k : F ◦i→ idA
and t : idS → i ◦ F in Categories, Section 4.24 shows that the compositions

(14.32.2.1) i
t?1i−−→ i ◦ F ◦ i 1i?k−−−→ i and F

1F ?t−−−→ F ◦ i ◦ F k?1F−−−→ F

are the identity morphisms. Here to define the morphism t ? 1 we silently identify
i with idS ◦ i and 1 stands for idi : i → i. We will use this notation and these
relations repeatedly in what follows. For n ≥ 0 we set

Xn = (F ◦ i)◦(n+1) = F ◦ i ◦ F ◦ . . . ◦ i ◦ F
In other words, Xn is the (n + 1)-fold composition of F ◦ i with itself. We also
set X−1 = idA. We have Xn+m+1 = Xn ◦ Xm for all n,m ≥ −1. We will endow
this sequence of functors with the structure of a simplicial object of Fun(A,A) by
constructing the morphisms of functors

dnj : Xn → Xn−1, snj : Xn → Xn+1

satisfying the relations displayed in Lemma 14.2.3. Namely, we set

dnj = 1Xj−1
? k ? 1Xn−j−1

and snj = 1Xj−1◦F ? t ? 1i◦Xn−j−1

Finally, write ε0 = k : X0 → X−1.

Example 14.32.3. In Example 14.32.2 we have Xn(A) = Z[Z[. . . [A] . . .]] with
n + 1 brackets. We describe the maps constructed above using a typical element
ξ =

∑
ni[nij [aij ]] of X1(A). The maps d0, d1 : Z[Z[A]]→ Z[A] are given by

d0(ξ) =
∑

ninij [aij ] and d1(ξ) =
∑

ni[nijaij ].

The maps s0, s1 : Z[Z[A]]→ Z[Z[Z[A]]] are given by

s0(ξ) =
∑

ni[[nij [aij ]]] and s1(ξ) =
∑

ni[nij [[aij ]]].

http://stacks.math.columbia.edu/tag/08N9
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Lemma 14.32.4. In Situation 14.32.1 the system X = (Xn, d
n
j , s

n
j ) is a simpli-

cial object of Fun(A,A) and ε0 defines an augmentation ε from X to the constant
simplicial object with value X−1 = idA.

Proof. Suppose that we have shown that X is a simplicial object. Then to prove
that ε0 = k defines an augmentation we have to check that ε0 ◦ d1

0 = ε0 ◦ d1
1 as

morphisms X1 → X−1, see Lemma 14.19.2. In other words, we have to check that
the diagram

F ◦ i ◦ F ◦ i
1F◦i?k

//

k?1F◦i
��

F ◦ i

k

��
F ◦ i k // idA

is commutative. More precisely we should write this as the equality

(k ? 1idA) ◦ (1F◦i ? k) = (1idA ? k) ◦ (k ? 1F◦i)

as morphisms (F ◦ i) ◦ (F ◦ i) → idA ◦ idA. Applying the general property of
Categories, Lemma 4.26.2 both sides expand to k ? k when equality holds.

To prove that X is a simplicial object we have to check (see Remark 14.3.3):

(1) If i < j, then di ◦ dj = dj−1 ◦ di.
(2) If i < j, then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .
(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j, then si ◦ sj = sj+1 ◦ si.

Relation (1) is proved in exactly the same manner as the proof of the equality
ε0 ◦ d1

0 = ε0 ◦ d1
1 above.

The simplest case of equality (5) is the commutativity of the diagram

F ◦ i
1F ?t?1i

//

1F ?t?1i
��

F ◦ i ◦ F ◦ i

1F ?t?1i◦F◦i
��

F ◦ i ◦ F ◦ i 1F◦i◦F ?t?1i // F ◦ i ◦ F ◦ i ◦ F ◦ i

which holds because both compositions expand to the morphism 1F ? t ? t ? 1i from
F ◦ idA ◦ idA ◦ i to F ◦ (i ◦ F ) ◦ (i ◦ F ) ◦ i. All other cases of (5) are proved in the
same manner.

The simplest case of equalities (2) and (4) is the commutativity of the diagram

F ◦ i ◦ F ◦ i
1F ?k?1i

//

1F◦i◦F◦i?t

��

F ◦ i

1F◦i?t

��
F ◦ i ◦ F ◦ i ◦ F ◦ i 1F ?k?1i◦F◦i◦F // F ◦ i ◦ F ◦ i

which again holds because both compositions expand to give 1F ? k ? 1i ? t as maps
from F ◦ (i ◦ F ) ◦ i ◦ idA to F ◦ idA ◦ i ◦ (F ◦ i). All other cases of (2) and (4) are
proved in the same manner.

The relations (3) are the only nontrivial ones and these are consequences of the fact
that the compositions in (14.32.2.1) are the identity. For example, the simplest case
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of (3) states that the compositions

F ◦ i
1F◦i?t

//

t?1F◦i
��

F ◦ i ◦ F ◦ i

1F ?k?1i
��

F ◦ i ◦ F ◦ i 1F ?k?1i // F ◦ i
go around the diagram either way evaluate out to the identity. Going around the
top the composition evaluates to 1F ? ((k ? 1i) ◦ (1i ? t)) which is the identity by
what was said above. The other cases of (3) are proved in the same manner. �

Before reading the proof of the following lemma, we strongly urge the reader to look
at the example discussed in Example 14.32.6 in order to understand the purpose of
the lemma.

Lemma 14.32.5. In Situation 14.32.1 the maps

1i ? ε : i ◦X → i, and ε ? 1F : X ◦ F → F

are homotopy equivalences.

Proof. Denote εn : Xn → X−1 the components of the augmentation morphism.
We observe that εn = k?(n+1), the (n + 1)-fold ?-composition of k. Recall that
t : idS → i ◦ F is the adjunction map. We have the morphisms

t?(n+1) ? 1i : i −→ i ◦ (F ◦ i)◦(n+1) = i ◦Xn

which are right inverse to 1i ? εn and the morphisms

1F ? t
?(n+1) : F −→ (F ◦ i)◦(n+1) ◦ F = Xn ◦ F

which are right inverse to εn ? 1F . These morphisms determine morphisms of
simplicial objects b : i → i ◦ X and c : F → X ◦ F (proof omitted). To finish it
suffices to construct a homotopy between the morphisms 1, b◦ (1i ?ε) : i◦X → i◦X
and between the two morphisms 1, c ◦ (ε ? 1F ) : X ◦ F → X ◦ F .

To show the morphisms b ◦ (1i ? ε), 1 : i ◦ X → i ◦ X are homotopic we have to
construct morphisms

hn,j : i ◦Xn → i ◦Xn

for n ≥ 0 and 0 ≤ j ≤ n + 1 satisfying the relations described in Lemma 14.25.2.
See also Remark 14.25.4. We are forced to set hn,0 = 1 and

hn,n+1 = bn ◦ (1i ? εn) = (t?(n+1) ? 1i) ◦ (1i ? k
?(n+1))

Thus a logical choice is

hn,j = (t?(j) ? 1) ◦ (1i ? k
?(j) ? 1)

Here and in the rest of the proof we drop the subscript from 1 if it is clear by
knowing the source and the target of the morphism what this subscript should be.
Writing

i ◦Xn = i ◦ F ◦ i ◦ . . . ◦ F ◦ i
we can think of the morphism hn,j as collapsing the first j pairs (F ◦ i) to idS using

k?(j), then adding a idS in front and expanding this to j pairs (i ◦ F ) using t?(j).
We have to prove

(1) We have dnm ◦ hn,j = hn−1,j−1 ◦ dnm for j > m.
(2) We have dnm ◦ hn,j = hn−1,j ◦ dnm for j ≤ m.
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(3) We have snm ◦ hn,j = hn+1,j+1 ◦ snm for j > m.
(4) We have snm ◦ hn,j = hn+1,j ◦ snm for j ≤ m.

Recall that dnm is given by applying k to the (m + 1)st pair (F ◦ i) in the functor
Xn = (F ◦ i)◦(n+1). Thus it is clear that (2) holds (because k does ?-commute with
k, but not with t). Similarly, snm is given by applying 1F ?t? ii to the (m+1)st pair
(F ◦ i) in Xn = (F ◦ i)◦(n+1). Thus it is clear that (4) holds. In the two remaining
cases one uses the fact that the compositions in (14.32.2.1) are the identity causes
the drop in the index j. Some details omitted.

To show the morphisms 1, c ◦ (ε ? 1F ) : X ◦ F → X ◦ F are homotopic we have to
construct morphisms

hn,j : Xn ◦ F −→ Xn ◦ F
for n ≥ 0 and 0 ≤ j ≤ n + 1 satisfying the relations described in Lemma 14.25.2.
See also Remark 14.25.4. We are forced to set hn,0 = 1 and

hn,n+1 = cn ◦ (εn ? 1F ) = (1F ? t
?(n+1)) ◦ (k?(n+1) ? 1F )

Thus a logical choice is

hn,j = (1F ? t
?(j) ? 1) ◦ (k?(j) ? 1)

Here and in the rest of the proof we drop the subscript from 1 if it is clear by
knowing the source and the target of the morphism what this subscript should be.
Writing

Xn ◦ F = F ◦ i ◦ F ◦ . . . ◦ i ◦ F
we can think of the morphism hn,j as collapsing the first j pairs (F ◦ i) to idS using

k?(j), then inserting a idS just after the first F and expanding this to j pairs (i◦F )
using t?(j). We have to prove

(1) We have dnm ◦ hn,j = hn−1,j−1 ◦ dnm for j > m.
(2) We have dnm ◦ hn,j = hn−1,j ◦ dnm for j ≤ m.
(3) We have snm ◦ hn,j = hn+1,j+1 ◦ snm for j > m.
(4) We have snm ◦ hn,j = hn+1,j ◦ snm for j ≤ m.

Recall that dnm is given by applying k to the (m + 1)st pair (F ◦ i) in the functor
Xn = (F ◦ i)◦(n+1). Thus it is clear that (2) holds (because k does ?-commute with
k, but not with t). Similarly, snm is given by applying 1F ?t? ii to the (m+1)st pair
(F ◦ i) in Xn = (F ◦ i)◦(n+1). Thus it is clear that (4) holds. In the two remaining
cases one uses the fact that the compositions in (14.32.2.1) are the identity causes
the drop in the index j. Some details omitted. �

Example 14.32.6. Going back to the example discussed in Example 14.32.2 our
Lemma 14.32.5 signifies that for any ring A the map of simplicial rings

Z[Z[Z[A]]]

��

//
//
//
Z[Z[A]]

��

//
//oo

oo
Z[A]

��

oo

A
//
//
//
A

//
//oo

oo
Aoo

is a homotopy equivalence on underlying simplicial sets. Moreover, the inverse map
constructed in Lemma 14.32.5 is in degree n given by

a 7−→ [. . . [a] . . .]
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with obvious notation. In the other direction the lemma tells us that for every set
E there is a homotopy equivalence

Z[Z[Z[Z[E]]]]

��

//
//
//
Z[Z[Z[E]]]

��

//
//oo

oo
Z[Z[E]]

��

oo

Z[E]
//
//
//
Z[E]

//
//oo

oo
Z[E]oo

of rings. The inverse map constructed in the lemma is in degree n given by the ring
map∑

me1,...,ep [e1][e2] . . . [ep] 7−→
∑

me1,...,ep [. . . [e1] . . .][. . . [e2] . . .] . . . [. . . [ep] . . .]

(with obvious notation).
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CHAPTER 15

More on Algebra

15.1. Introduction

In this chapter we prove some results in commutative algebra which are less elemen-
tary than those in the first chapter on commutative algebra, see Algebra, Section
10.1. A reference is [Mat70].

15.2. Advice for the reader

More than in the chapter on commutative algebra, each of the sections in this chap-
ter stands on its own. Starting with Section 15.43 we freely use the (unbounded)
derived category of modules over rings and all the machinery that comes with it.

15.3. A comment on the Artin-Rees property

Some of this material is taken from [CdJ02]. A general discussion with additional
references can be found in [EH05, Section 1].

Let A be a Noetherian ring and let I ⊂ A be an ideal. Given a homomorphism
f : M → N of finite A-modules there exists a c ≥ 0 such that

f(M) ∩ InN ⊂ f(In−cM)

for all n ≥ c, see Algebra, Lemma 10.49.3. In this situation we will say c works for
f in the Artin-Rees lemma.

Lemma 15.3.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal contained in
the Jacobson radical of A. Let

S : L
f−→M

g−→ N and S′ : L
f ′−→M

g′−→ N

be two complexes of finite A-modules as shown. Assume that

(1) c works in the Artin-Rees lemma for f and g,
(2) the complex S is exact, and
(3) f ′ = f mod Ic+1M and g′ = g mod Ic+1N .

Then c works in the Artin-Rees lemma for g′ and the complex S′ is exact.

Proof. We first show that g′(L) ∩ InM ⊂ g′(In−cL) for n ≥ c. Let a be an
element of M such that g′(a) ∈ InN . We want to adjust a by an element of f ′(L),
i.e, without changing g′(a), so that a ∈ In−cM . Assume that a ∈ IrM , where
r < n− c. Then

g(a) = g′(a) + (g − g′)(a) ∈ InN + Ir+c+1N = Ir+c+1N.

By Artin-Rees for g we have g(a) ∈ g(Ir+1M). Say g(a) = g(a1) with a1 ∈ Ir+1M .
Since the sequence S is exact, a− a1 ∈ f(L). Accordingly, we write a = f(b) + a1

for some b ∈ L. Then f(b) = a− a1 ∈ IrM . Artin-Rees for f shows that if r ≥ c,

1067
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we may replace b by an element of Ir−cL. Then in all cases, a = f ′(b) + a2, where
a2 = (f − f ′)(b) + a1 ∈ Ir+1M . (Namely, either c ≥ r and (f − f ′)(b) ∈ Ir+1M
by assumption, or c < r and b ∈ Ir−c, whence again (f − f ′)(b) ∈ Ic+1Ir−cM =
Ir+1M .) So we can adjust a by the element f ′(b) ∈ f ′(L) to increase r by 1.

In fact, the argument above shows that (g′)−1(InM) ⊂ f ′(L)+In−cM for all n ≥ c.
Hence S′ is exact because

(g′)−1(0) = (g′)−1(
⋂
InN) ⊂

⋂
f ′(L) + In−cM = f ′(L)

as I ⊂ rad(A), see Algebra, Lemma 10.49.5. �

Given an ideal I ⊂ A of a ring A and an A-module M we set

GrI(M) =
⊕

InM/In+1M.

We think of this as a graded GrI(A)-module.

Lemma 15.3.2. Assumptions as in Lemma 15.3.1. Let Q = Coker(g) and Q′ =
Coker(g′). Then GrI(Q) ∼= GrI(Q

′) as graded GrI(A)-modules.

Proof. In degree n we have GrI(Q)n = InN/(In+1N +g(M)∩ InN) and similarly
for Q′. We claim that

g(M) ∩ InN ⊂ In+1N + g′(M) ∩ InN.

By symmetry (the proof of the claim will only use that c works for g which also
holds for g′ by the lemma) this will imply that

In+1N + g(M) ∩ InN = In+1N + g′(M) ∩ InN

whence GrI(Q)n and GrI(Q
′)n agree as subquotients of N , implying the lemma.

Observe that the claim is clear for n ≤ c as f = f ′ mod Ic+1N . If n > c, then
suppose b ∈ g(M) ∩ InN . Write b = g(a) for a ∈ In−cM . Set b′ = g′(a). We have
b− b′ = (g − g′)(a) ∈ In+1N as desired. �

Lemma 15.3.3. Let A → B be a flat map of Noetherian rings. Let I ⊂ A be an
ideal. Let f : M → N be a homomorphism of finite A-modules. Assume that c
works for f in the Artin-Rees lemma. Then c works for f ⊗1 : M ⊗AB → N ⊗AB
in the Artin-Rees lemma for the ideal IB.

Proof. Note that

(f ⊗ 1)(M) ∩ InN ⊗A B = (f ⊗ 1)
(
(f ⊗ 1)−1(InN ⊗A B)

)
On the other hand,

(f ⊗ 1)−1(InN ⊗A B) = Ker(M ⊗A B → N ⊗A B/(InN ⊗A B))

= Ker(M ⊗A B → (N/InN)⊗A B)

As A → B is flat taking kernels and cokernels commutes with tensoring with B,
whence this is equal to f−1(InN)⊗A B. By assumption f−1(InN) is contained in
Ker(f) + In−cM . Thus the lemma holds. �

http://stacks.math.columbia.edu/tag/07VF
http://stacks.math.columbia.edu/tag/07VG
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15.4. Fibre products of rings

Fibre products of rings have to do with pushouts of schemes. A special case of
pushouts of schemes is discussed in More on Morphisms, Section 36.11.

Lemma 15.4.1. Let R be a ring. Let A → B and C → B be R-algebra maps.
Assume

(1) R is Noetherian,
(2) A, B, C are of finite type over R,
(3) A→ B is surjective, and
(4) B is finite over C.

Then A×B C is of finite type over R.

Proof. Set D = A×B C. There is a commutative diagram

0 // I // A // B // 0

0 // I //

OO

D //

OO

C //

OO

0

with exact rows. Choose y1, . . . , yn ∈ B which are generators for B as a C-module.
Choose xi ∈ A mapping to yi. Then 1, x1, . . . , xn are generators for A as a D-
module. The map D → A × C is injective, and the ring A × C is finite as a
D-module (because it is the direct sum of the finite D-modules A and C). Hence
the lemma follows from the Artin-Tate lemma (Algebra, Lemma 10.49.7). �

Lemma 15.4.2. Let R be a Noetherian ring. Let I be a finite set. Suppose given
a cartesian diagram

P

��

// ∏Ai∏
ϕi

��
Q

∏
ψi // ∏Bi

with ψi and ϕi surjective, and Q, Ai, Bi of finite type over R. Then P is of finite
type over R.

Proof. Follows from Lemma 15.4.1 and induction on the size of I. Namely, let
I = I ′ q {i0}. Let P ′ be the ring defined by the diagram of the lemma using I ′.
Then P ′ is of finite type by the lemma. Finally, P sits in a fibre product diagram

P

��

// Ai0

��
P ′ // Bi0

to which the lemma applies. �

Lemma 15.4.3. Suppose given a cartesian diagram of rings

B
s
// R

B′

OO

// R′,

t

OO

http://stacks.math.columbia.edu/tag/00IT
http://stacks.math.columbia.edu/tag/08NI
http://stacks.math.columbia.edu/tag/01Z8
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i.e., B′ = B×RR′. If h ∈ B′ corresponds to g ∈ B and f ∈ R′ such that s(g) = t(f),
then the diagram

Bg s
// Rs(g) = Rt(f)

(B′)h

OO

// (R′)f

t

OO

is cartesian too.

Proof. Note that B′ = {(b, r′) ∈ B × R′ | s(b) = t(r′)}. So h = (g, f) ∈ B′.
First we show that (B′)h maps injectively into Bg × (R′)f . Namely, suppose that
(x, y)/hn maps to zero. This means that gNx = 0 for some N and fMy is zero for
some M . Thus hmax(N,M)(x, y) = 0 in B′ and hence (x, y)/hn = 0 in B′h. Next,
suppose that x/gn and y/fm are elements which map to the same element of Rs(g).

This means that s(g)N (t(f)ms(x)− s(g)nt(y)) = 0 in R′ for some N � 0. We can
rewrite this as s(gm+Nx) = t(fn+Ny). Hence we see that the pair (x/gn, y/fm) is
the image of the element (gm+Nx, fn+Ny)/hn+m+N of (B′)h. �

Situation 15.4.4. In the following we will consider ring maps

B // A A′oo

where we assume A′ → A is surjective with kernel I. In this situation we set
B′ = B ×A A′ to obtain a cartesian square

A A′oo

B

OO

B′oo

OO

We’d like to understand B′-modules in terms of modules over A′, A, and B. In
order to do this we consider the functor (where the fibre product of categories as
constructed in Categories, Example 4.29.3)

(15.4.4.1) ModB′ −→ ModB ×ModA ModA′ , L′ 7−→ (L′ ⊗B′ B,L′ ⊗B′ A′, can)

where can is the canonical identification L′ ⊗B′ B ⊗B A = L′ ⊗B′ A′ ⊗A′ A. In the
following we will write (N,M ′, ϕ) for an object of the right hand side, i.e., N is a
B-module, M ′ is an A′-module and ϕ : N ⊗B A → M ′ ⊗A′ A is an isomorphism.
However, it is often more convenient think of ϕ as a B-linear map ϕ : N →M ′/IM ′

which induces an isomorphism N ⊗B A→M ′ ⊗A′ A = M ′/IM ′.

Lemma 15.4.5. In Situation 15.4.4 the functor (15.4.4.1) has a right adjoint,
namely the functor

F : (N,M ′, ϕ) 7−→ N ×ϕ,M M ′

where M = M ′/IM ′. Moreover, the composition of F with (15.4.4.1) is the identity
functor on ModB ×ModA ModA′ . In other words, setting N ′ = N ×ϕ,M M ′ we have
N ′ ⊗B′ B = N and N ′ ⊗B′ A′ = M ′.

Proof. The adjointness statement is that for a B′-module L′ and a triple (N,M ′, ϕ)
we have

HomB′(L
′, N×ϕ,MM ′) = HomB(L′⊗B′B,N)×HomA(L′⊗B′A,M)HomA′(L

′⊗B′A′,M ′)

http://stacks.math.columbia.edu/tag/08KH
http://stacks.math.columbia.edu/tag/07RU
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This follows from Algebra, Lemma 10.13.3 and the fact that an element of the left
hand side is given by a pair of B′-linear maps L′ → N and L′ → M ′ agreeing
as maps to M . To prove the final assertion, recall that B′ = B ×A A′ and N ′ =
N ×ϕ,M M ′ and extend these equalities to

A A′oo Ioo

B

OO

B′oo

OO

Joo

OO

and

M M ′oo Koo

N

ϕ

OO

N ′oo

OO

Loo

OO

where I, J,K,L are the kernels of the horizontal maps of the original diagrams. We
present the proof as a sequence of observations:

(1) K = IM ′ (see statement lemma),
(2) B′ → B is surjective with kernel J and J → I is bijective,
(3) N ′ → N is surjective with kernel L and L→ K is bijective,
(4) JN ′ ⊂ L,
(5) Im(N →M) generates M as an A-module (because N ⊗B A = M),
(6) Im(N ′ →M ′) generates M ′ as an A′-module (because it holds modulo K

and L maps isomorphically to K),
(7) JN ′ = L (because L ∼= K = IM ′ is generated by images of elements xn′

with x ∈ I and n′ ∈ N ′ by the previous statement),
(8) N ′ ⊗B′ B = N (because N = N ′/L, B = B′/J , and the previous state-

ment),
(9) there is a map γ : N ′ ⊗B′ A′ →M ′,

(10) γ is surjective (see above),
(11) the kernel of the composition N ′ ⊗B′ A′ → M ′ → M is generated by

elements l⊗1 and n′⊗x with l ∈ K, n′ ∈ N ′, x ∈ I (because M = N⊗BA
by assumption and because N ′ → N and A′ → A are surjective with
kernels L and I),

(12) any element of N ′⊗B′A′ in the submodule generated by the elements l⊗1
and n′ ⊗ x with l ∈ L, n′ ∈ N ′, x ∈ I can be written as l ⊗ 1 for some
l ∈ L (because J maps isomorphically to I we see that n′⊗x = n′x⊗ 1 in
N ′ ⊗B′ A′; similarly xn′ ⊗ a′ = n′ ⊗ xa′ = n′(xa′)⊗ 1 in N ′ ⊗B′ A′ when
n′ ∈ N ′, x ∈ J and a′ ∈ A′; since we have seen that JN ′ = L this proves
the assertion),

(13) the kernel of γ is zero (because by (10) and (11) any element of the kernel
is of the form l ⊗ 1 with l ∈ L which is mapped to l ∈ K ⊂M ′ by γ).

This finishes the proof. �

Lemma 15.4.6. In the situation of Lemma 15.4.5 for a B′-module L′ the adjunc-
tion map

L′ −→ (L′ ⊗B′ B)×(L′⊗B′A) (L′ ⊗B′ A′)
is surjective but in general not injective.

Proof. As in the proof of Lemma 15.4.5 let J ⊂ B′ be the kernel of the map
B′ → B. Then L′ ⊗B′ B = L′/JL′. Hence to prove surjectivity it suffices to
show that elements of the form (0, z) of the fibre product are in the image of the
map of the lemma. The kernel of the map L′ ⊗B′ A′ → L′ ⊗B′ A is the image of
L′⊗B′ I → L′⊗B′ A′. Since the map J → I induced by B′ → A′ is an isomorphism

http://stacks.math.columbia.edu/tag/08IG
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the composition

L′ ⊗B′ J → L′ → (L′ ⊗B′ B)×(L′⊗B′A) (L′ ⊗B′ A′)
induces a surjection of L′ ⊗B′ J onto the set of elements of the form (0, z). To
see the map is not injective in general we present a simple example. Namely, take
a field k, set B′ = k[x, y]/(xy), A = B′/(x), B = B′/(y), A = B′/(x, y) and
L′ = B′/(x− y). In that case the class of x in L′ is nonzero but is mapped to zero
under the displayed arrow. �

Lemma 15.4.7. In Situation 15.4.4 let (N1,M
′
1, ϕ1) → (N2,M

′
2, ϕ2) be a mor-

phism of ModB ×ModA ModA′ with N1 → N2 and M ′1 →M ′2 surjective. Then

N1 ×M1
M ′1 → N2 ×M2

M ′2

is surjective.

Proof. Pick (x2, y2) ∈ N2 ×M2 M
′
2. Choose x1 ∈ N1 mapping to x2. Since M ′1 →

M1 is surjective we can find y1 ∈ M ′1 mapping to ϕ1(x1). Then (x1, y1) maps to
(x2, y

′
2) in N2 ×M2

M ′2. Thus it suffices to show that elements of the form (0, y2)
are in the image of the map. Here we see that y2 ∈ IM ′2. Write y2 =

∑
tiy2,i with

ti ∈ I. Choose y1,i ∈ M ′1 mapping to y2,i. Then y1 =
∑
tiy1,i ∈ IM ′1 and the

element (0, y1) does the job. �

Situation 15.4.8. Let A,A′, B,B′, I be as in Situation 15.4.4. Let B′ → D′ be a
ring map. Set D = D′ ⊗B′ B, C ′ = D′ ⊗B′ A′, and C = D′ ⊗B′ A. This leads to a
big commutative diagram

C C ′oo

A

__

A′oo

>>

B

OO

��

B′oo

OO

  
D

OO

D′oo

OO

of rings. Observe that we do not assume that the map D′ → D ×C C ′ is an
isomorphism. In this situation we have the functor

(15.4.8.1) ModD′ −→ ModD ×ModC ModC′ , L′ 7−→ (L′ ⊗D′ D,L′ ⊗D′ C ′, can)

analogous to (15.4.4.1). Note that L′ ⊗D′ D = L ⊗D′ (D′ ⊗B′ B) = L ⊗B′ B and
similarly L′ ⊗D′ C ′ = L⊗D′ (D′ ⊗B′ A′) = L⊗B′ A′ hence the diagram

ModD′ //

��

ModD ×ModC ModC′

��
ModB′ // ModB ×ModA ModA′

is commutative. In the following we will write (N,M ′, ϕ) for an object of ModD×ModC

ModC′ , i.e., N is a D-module, M ′ is an C ′-module and ϕ : N ⊗B A → M ′ ⊗A′ A
is an isomorphism of C-modules. However, it is often more convenient think of ϕ

http://stacks.math.columbia.edu/tag/08KJ
http://stacks.math.columbia.edu/tag/08KK
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as a D-linear map ϕ : N → M ′/IM ′ which induces an isomorphism N ⊗B A →
M ′ ⊗A′ A = M ′/IM ′.

Lemma 15.4.9. In Situation 15.4.8 the functor (15.4.8.1) has a right adjoint,
namely the functor

F : (N,M ′, ϕ) 7−→ N ×ϕ,M M ′

where M = M ′/IM ′. Moreover, the composition of F with (15.4.8.1) is the identity
functor on ModD ×ModC ModC′ . In other words, setting N ′ = N ×ϕ,M M ′ we have
N ′ ⊗D′ D = N and N ′ ⊗D′ C ′ = M ′.

Proof. The adjointness statement is that for aD′-module L′ and a triple (N,M ′, ϕ)
we have

HomD′(L
′, N×ϕ,MM ′) = HomD(L′⊗D′D,N)×HomC(L′⊗D′C,M)HomC′(L

′⊗D′C ′,M ′)
This follows from Algebra, Lemma 10.13.3 and the fact that an element of the left
hand side is given by a pair of D′-linear maps L′ → N and L′ → M ′ agreeing as
maps to M . The final assertion follows from the corresponding assertion of Lemma
15.4.5. �

Lemma 15.4.10. In Situation 15.4.8 the map JD′ → IC ′ is surjective where
J = Ker(B′ → B).

Proof. Since C ′ = D′⊗B′A′ we have that IC ′ is the image of D′⊗B′I = C ′⊗A′I →
C ′. As the ring map B′ → A′ induces an isomorphism J → I the lemma follows. �

Lemma 15.4.11. Let A,A′, B,B′, C, C ′, D,D′, I,M ′,M,N, ϕ be as in Lemma 15.4.9.
If N finite over D and M ′ finite over C ′, then N ′ = N ×M M ′ is finite over D′.

Proof. We will use the results of Lemma 15.4.9 without further mention. Choose
generators x1, . . . , xr of N over B and generators y1, . . . , ys of M ′ over A′. Using
that N = N ′⊗D′ D and D′ → D is surjective we can find u1, . . . , ur ∈ N ′ mapping
to x1, . . . , xr in N . Using that M ′ = N ′ ⊗D′ C ′ we can find v1, . . . , vt ∈ N ′ such
that yi =

∑
vj ⊗ c′ij for some c′ij ∈ C ′. In particular we see that the images vj of

the vj generate M ′ over C ′. We claim that u1, . . . , ur, v1, . . . , vt generate N ′ as a
D′-module. Namely, pick ξ ∈ N ′. We first choose d′1, . . . , d

′
r ∈ D′ such that ξ and∑

d′iui map to the same element of N . This is possible because D′ → D is surjective
and x1, . . . , xr generate N . The difference ξ−

∑
d′iui is of the form (0, θ) for some θ

in IM ′. Say θ is
∑
tjvj with tj ∈ IC ′. By Lemma 15.4.10 we can choose sj ∈ JD′

mapping to tj . Because N ′ = N ×M M ′ it follows that ξ =
∑
b′iui +

∑
sjvj as

desired. �

Lemma 15.4.12. With A,A′, B,B′, C, C ′, D,D′, I as in Situation 15.4.8.

(1) Let (N,M ′, ϕ) be an object of ModD ×ModC ModC′ . If M ′ is flat over A′

and N is flat over B, then N ′ = N ×M M ′ is flat over B′.
(2) If L′ is a D′-module flat over B′, then L′ = (L⊗D′D)×(L⊗D′C)(L⊗D′C ′).
(3) The category of D′-modules flat over B′ is equivalent to the categories of

objects (N,M ′, ϕ) of ModD ×ModC ModC′ with N flat over B and M ′ flat
over A′.

Proof. Proof of (1). Let J ⊂ B′ be an ideal. We have to show that J⊗B′N ′ → N ′

is injective, see Algebra, Lemma 10.38.4. We know that

J/(J ∩ I)⊗B′ N ′ = J/(J ∩ I)⊗B N → N

http://stacks.math.columbia.edu/tag/08KM
http://stacks.math.columbia.edu/tag/08KN
http://stacks.math.columbia.edu/tag/08IH
http://stacks.math.columbia.edu/tag/07RW
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is injective as N is flat over B. As J ∩I → J → J/(J ∩I)→ 0 is exact, we conclude
that it suffices to show that (J ∩ I)⊗B′ N ′ → N ′ is injective. Thus we may assume
that J ⊂ I; in particular we can think of J as an A′-module and an ideal of A′ and

J ⊗B′ N ′ = J ⊗A′ A′ ⊗B′ N ′ = J ⊗A′ M ′

which maps injectively into M ′ by our assumption that M ′ is flat over A′. We
conclude that J⊗B′N ′ → N ′ →M ′ is injective and hence the first map is injective
as desired.

Proof of (2). This follows by tensoring the short exact sequence 0→ B′ → B⊕A′ →
A→ 0 with L′ over B′ and using that L′⊗D′D = L′⊗B′ B, L′⊗D′ C ′ = L′⊗B′ A′,
and L′ ⊗D′ C = L′ ⊗B′ A, see discussion in Situation 15.4.8.

Proof of (3). Immediate consequence of (1) and (2). �

Lemma 15.4.13. Let A,A′, B,B′, C, C ′, D,D′, I,M ′,M,N, ϕ be as in Lemma 15.4.9.
If

(1) N is finitely presented over D and flat over B,
(2) M ′ finitely presented over C ′ and flat over A′, and
(3) the ring map B′ → D′ factors as B′ → D′′ → D′′ with B′ → D′′ flat and

D′′ → D′ of finite presentation,

then N ′ = N ×M M ′ is finitely presented over D′.

Proof. Choose a surjection D′′′ = D′′[x1, . . . , xn] → D′ with finitely generated
kernel J . By Algebra, Lemma 10.7.4 it suffices to show that N ′ is finitely presented
as a D′′′-module. Moreover, D′′′ ⊗B′ B → D′ ⊗B′ B = D and D′′′ ⊗B′ A′ →
D′ ⊗B′ A′ = C ′ are surjections whose kernels are generated by the image of J ,
hence N is a finitely presented D′′′ ⊗B′ B-module and M ′ is a finitely presented
D′′′ ⊗B′ A′-module by Algebra, Lemma 10.7.4 again. Thus we may replace D′ by
D′′′ and D by D′′′ ⊗B′ B, etc. Since D′′′ is flat over B′, it follows that we may
assume that B′ → D′ is flat.

Assume B′ → D′ is flat. By Lemma 15.4.11 the module N ′ is finite over D′.
Choose a surjection (D′)⊕n → N ′ with kernel K ′. By base change we obtain maps
D⊕n → N , (C ′)⊕n → M ′, and C⊕n → M with kernels KD, KC′ , and KC . There
is a canonical map

K ′ −→ KD ×KC KC′

On the other hand, since N ′ = N ×M M ′ and D′ = D ×C C ′ (by Lemma 15.4.12)
there is also a canonical map KD ×KC KC′ → K ′ inverse to the displayed ar-
row. Hence the displayed map is an isomorphism. By Algebra, Lemma 10.5.3 the
modules KD and KC′ are finite. We conclude from Lemma 15.4.11 that K ′ is a
finite D′-module provided that KD → KC and KC′ → KC induce isomorphisms
KD⊗BA = KC = KC′⊗A′A. This is true because the flatness assumptions implies
the sequences

0→ KD → D⊕n → N → 0 and 0→ KC′ → (C ′)⊕n →M ′ → 0

stay exact upon tensoring, see Algebra, Lemma 10.38.11. �

Lemma 15.4.14. Let A,A′, B,B′, I be as in Situation 15.4.4. Let (D,C ′, ϕ) be a
system consisting of an B-algebra D, a A′-algebra C ′ and an isomorphism D ⊗B
A→ C ′/IC = C. Set D′ = D ×C C ′ (as in Lemma 15.4.5). Then

(1) B′ → D′ is finite type if and only if B → D and A′ → C ′ are finite type,
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(2) B′ → D′ is flat if and only if B → D and A′ → C ′ are flat,
(3) B′ → D′ is flat and of finite presentation if and only if B → D and

A′ → C ′ are flat and of finite presentation,
(4) B′ → D′ is smooth if and only if B → D and A′ → C ′ are smooth,
(5) B′ → D′ is étale if and only if B → D and A′ → C ′ are étale.

Moreover, if D′ is a flat B′-algebra, then D′ → (D′ ⊗B′ B)×(D′⊗B′A) (D′ ⊗B′ A′)
is an isomorphism. In this way the category of flat B′-algebras is equivalent to the
categories of systems (D,C ′, ϕ) as above with D flat over B and C ′ flat over A′.

Proof. The implication “⇒” follows from Algebra, Lemmas 10.13.2, 10.38.6, 10.132.4,
and 10.138.3 because we have D′⊗B′ B = D and D′⊗B′ A′ = C ′ by Lemma 15.4.5.
Thus it suffices to prove the implications in the other direction.

Ad (1). Assume D of finite type over B and C ′ of finite type over A′. We will use
the results of Lemma 15.4.5 without further mention. Choose generators x1, . . . , xr
of D over B and generators y1, . . . , ys of C ′ over A′. Using that N = N ′ ⊗B′ B
and B′ → B is surjective we can find u1, . . . , ur ∈ D′ mapping to x1, . . . , xr in D.
Using that C ′ = D′⊗B′ A′ we can find v1, . . . , vt ∈ D′ such that yi =

∑
vj⊗a′ij for

some a′ij ∈ A′. In particular, the images of vj in C ′ generate C ′ as an A′-algebra.
Set N = r + t and consider the cube of rings

A[x1, . . . , xN ] A′[x1, . . . , xN ]oo

A

ee

A′oo

ff

B[x1, . . . , xN ]

OO

B′[x1, . . . , xN ]

OO

oo

B

OO

ee

B′oo

OO

ff

Observe that the back square is cartesian as well. Consider the ring map

B′[x1, . . . , xN ]→ D′, xi 7→ ui and xr+j 7→ vj .

Then we see that the induced maps B[x1, . . . , xN ] → D and A′[x1, . . . , xN ] →
C ′ are surjective, in particular finite. We conclude from Lemma 15.4.11 that
B′[x1, . . . , xN ] → D′ is finite, which implies that D′ is of finite type over B′ for
example by Algebra, Lemma 10.6.2.

Ad (2). The implication “⇐” follows from Lemma 15.4.12. Moreover, the final
statement follows from the final statement of Lemma 15.4.12.

Ad (3). AssumeB → D andA′ → C ′ are flat and of finite presentation. The flatness
of B′ → D′ we’ve seen in (2). We know B′ → D′ is of finite type by (1). Choose a
surjection B′[x1, . . . , xN ] → D′. By Algebra, Lemma 10.6.3 the ring D is of finite
presentation as a B[x1, . . . , xN ]-module and the ring C ′ is of finite presentation as
a A′[x1, . . . , xN ]-module. By Lemma 15.4.13 we see that D′ is of finite presentation
as a B′[x1, . . . , xN ]-module, i.e., B′ → D′ is of finite presentation.

Ad (4). Assume B → D and A′ → C ′ smooth. By (3) we see that B′ → D′ is flat
and of finite presentation. By Algebra, Lemma 10.132.16 it suffices to check that
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D′ ⊗B′ k is smooth for any field k over B′. If the composition J → B′ → k is zero,
then B′ → k factors as B′ → B → k and we see that

D′ ⊗B′ k = D′ ⊗B′ B ⊗B k = D ⊗B k
is smooth as B → D is smooth. If the composition J → B′ → k is nonzero, then
there exists an h ∈ J which does not map to zero in k. Then B′ → k factors as
B′ → B′h → k. Observe that h maps to zero in B, hence Bh = 0. Thus by Lemma
15.4.3 we have B′h = A′h and we get

D′ ⊗B′ k = D′ ⊗B′ B′h ⊗B′h k = C ′h ⊗A′h k
is smooth as A′ → C ′ is smooth.

Ad (5). Assume B → D and A′ → C ′ are étale. By (4) we see that B′ → D′

is smooth. As we can read off whether or not a smooth map is étale from the
dimension of fibres we see that (5) holds (argue as in the proof of (4) to identify
fibres – some details omitted). �

Remark 15.4.15. In Situation 15.4.8. Assume B′ → D′ is of finite presentation
and suppose we are given a D′-module L′. We claim there is a bijective correspon-
dence between

(1) surjections of D′-modules L′ → Q′ with Q′ of finite presentation over D′

and flat over B′, and
(2) pairs of surjections of modules (L′ ⊗D′ D → Q1, L

′ ⊗D′ C ′ → Q2) with
(a) Q1 of finite presentation over D and flat over B,
(b) Q2 of finite presentation over C ′ and flat over A′,
(c) Q1 ⊗D C = Q2 ⊗C′ C as quotients of L′ ⊗D′ C.

The correspondence between these is given by Q 7→ (Q1, Q2) with Q1 = Q ⊗D′ D
and Q2 = Q⊗D′ C ′. And for the converse we use Q = Q1 ×Q12

Q2 where Q12 the
common quotient Q1 ⊗D C = Q2 ⊗C′ C of L′ ⊗D′ C. As quotient map we use

L′ −→ (L′ ⊗D′ D)×(L′⊗D′C) (L′ ⊗D′ C ′) −→ Q1 ×Q12
Q2 = Q

where the first arrow is surjective by Lemma 15.4.6 and the second by Lemma
15.4.7. The claim follows by Lemmas 15.4.12 and 15.4.13.

15.5. Fitting ideals

The fitting ideals of a finite module are the ideals determined by the construction
of Lemma 15.5.2.

Lemma 15.5.1. Let R be a ring. Let A be an n ×m matrix with coefficients in
R. Let Ir(A) be the ideal generated by the r × r-minors of A with the convention
that I0(A) = R and Ir(A) = 0 if r > min(n,m). Then

(1) I0(A) ⊃ I1(A) ⊃ I2(A) . . .,
(2) if B is an (n + n′) × m matrix, and A is the first n rows of B, then

Ir+n′(B) ⊂ Ir(A),
(3) if C is an n× n matrix then Ir(CA) ⊂ Ir(A).
(4) If A is a block matrix (

A1 0
0 A2

)
then Ir(A) =

∑
r1+r2=r Ir1(A1)Ir2(A2).

(5) Add more here.

http://stacks.math.columbia.edu/tag/08KR
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Proof. Omitted. (Hint: Use that a determinant can be computed by expanding
along a column or a row.) �

Lemma 15.5.2. Let R be a ring. Let M be a finite R-module. Choose a presenta-
tion ⊕

j∈J
R −→ R⊕n −→M −→ 0.

of M . Let A = (aij)i=1,...,n,j∈J be the matrix of the map
⊕

j∈J R → R⊕n. The

ideal Fitk(M) generated by the (n− k)× (n− k) minors of A is independent of the
choice of the presentation.

Proof. LetK ⊂ R⊕n be the kernel of the surjectionR⊕n →M . Pick z1, . . . , zn−k ∈
K and write zj = (z1j , . . . , znj). Another description of the ideal Fitk(M) is that
it is the ideal generated by the (n− k)× (n− k) minors of all the matrices (zij) we
obtain in this way.

Suppose we change the surjection into the surjection R⊕n+n′ →M with kernel K ′

where we use the original map on the first n standard basis elements of R⊕n+n′

and 0 on the last n′ basis vectors. Then the corresponding ideals are the same.
Namely, if z1, . . . , zn−k ∈ K as above, let z′j = (z1j , . . . , znj , 0, . . . , 0) ∈ K ′ for
j = 1, . . . , n− k and z′n+j′ = (0, . . . , 0, 1, 0, . . . , 0) ∈ K ′. Then we see that the ideal

of (n−k)× (n−k) minors of (zij) agrees with the ideal of (n+n′−k)× (n+n′−k)
minors of (z′ij). This gives one of the inclusions. Conversely, given z′1, . . . , z

′
n+n′−k

in K ′ we can project these to R⊕n to get z1, . . . , zn+n′−k in K. By Lemma 15.5.1
we see that the ideal generated by the (n + n′ − k) × (n + n′ − k) minors of (z′ij)
is contained in the ideal generated by the (n − k) × (n − k) minors of (zij). This
gives the other inclusion.

Let R⊕m →M be another surjection with kernel L. By the previous paragraph we
may assume m = n. By Algebra, Lemma 10.5.2 we can choose a map R⊕n → R⊕m

commuting with the surjections to M . Let C = (cli) be the matrix of this map
(it is a square matrix as n = m). Then given z1, . . . , zn−k ∈ K as above we get
Cz1, . . . , Czn−k ∈ L. By Lemma 15.5.1 we get one of the inclusions. By symmetry
we get the other. �

Definition 15.5.3. Let R be a ring. Let M be a finite R-module. Let k ≥ 0.
The kth fitting ideal of M is the ideal Fitk(M) constructed in Lemma 15.5.2. Set
Fit−1(M) = 0.

Since the fitting ideals are the ideals of minors of a big matrix (numbered in reverse
ordering from the ordering in Lemma 15.5.1) we see that

0 = Fit−1(M) ⊂ Fit0(M) ⊂ Fit1(M) ⊂ . . . ⊂ Fitt(M) = R

for some t� 0. Here are some basic properties of fitting ideals.

Lemma 15.5.4. Let R be a ring. Let M be a finite R-module.

(1) If M can be generated by n elements, then Fitn(M) = R.
(2) Given a second finite R-module M ′ we have

Fitk(M ⊕M ′) =
∑

k+k′=l
Fitk(M)Fitk′(M

′)

(3) If R→ R′ is a ring map, then Fitk(M ⊗R R′) is the ideal of R′ generated
by the image of Fitk(M).

http://stacks.math.columbia.edu/tag/07Z8
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(4) If M is an R-module of finite presentation, then Fitk(M) is a finitely
generated ideal.

(5) If M →M ′ is a surjection, then Fitk(M) ⊂ Fitk(M ′).
(6) Add more here.

Proof. Part (1) follows from the fact that I0(A) = R in Lemma 15.5.1. part (2)
follows form the corresponding statement in Lemma 15.5.1. Part (3) follows from
the fact that ⊗RR′ is right exact, so the base change of a presentation of M is

a presentation of M ⊗R R′. Proof of (4). Let R⊕m
A−→ R⊕n → M → 0 be a

presentation. Then Fitk(M) is the ideal generated by the n− k × n− k minors of
the matrix A. Part (5) is immediate from the definition. �

Example 15.5.5. Let R be a ring. The fitting ideals of the finite free module
M = R⊕n are are Fitk(M) = 0 for k < n and Fitk(M) = R for k ≥ n.

Lemma 15.5.6. Let R be a ring. Let M be a finite R-module. Let k ≥ 0. Let p be
a prime ideal with Fitk(M) 6⊂ p. Then there exists an f ∈ R, f 6∈ p such that Mf

can be generated by k elements over Rf .

Proof. By Nakayama’s lemma (Algebra, Lemma 10.19.1) we see that Mf can be
generated by k elements over Rf for some f ∈ R, f 6∈ p if M ⊗R κ(p) can be
generated by k elements. This reduces the problem to the case where R is a field
and p = (0). In this case the result follows from Example 15.5.5. �

Lemma 15.5.7. Let R be a ring. Let M be a finite R-module. Let r ≥ 0. The
following are equivalent

(1) M is finite locally free of rank k (Algebra, Definition 10.75.1),
(2) Fitr−1(M) = 0 and Fitr(M) = R, and
(3) Fitk(M) = 0 for k < r and Fitk(M) = R for k ≥ r.

Proof. It is immediate that (2) is equivalent to (3) because the fitting ideals form
an increasing sequence of ideals. Since the formation of Fitk(M) commutes with
base change (Lemma 15.5.4) we see that (1) implies (2) by Example 15.5.5 and
glueing results (Algebra, Section 10.23). Conversely, assume (2). By Lemma 15.5.6
we may assume that M is generated by r elements. Thus a presentation

⊕
j∈J R→

R⊕r → M → 0. But now the assumption that Fitr−1(M) = 0 implies that all
entries of the matrix of the map

⊕
j∈J R→ R⊕r are zero. Thus M is free. �

15.6. Lifting

In this section we collection some lemmas concerning lifting statements of the fol-
lowing kind: If A is a ring and I ⊂ A is an ideal, and ξ is some kind of structure
over A/I, then we can lift ξ to a similar kind of structure ξ over A or over some
étale extension of A. Here are some types of structure for which we have already
proved some results:

(1) idempotents, see Algebra, Lemmas 10.31.5 and 10.31.6,
(2) projective modules, see Algebra, Lemma 10.74.4,
(3) basis elements, see Algebra, Lemmas 10.97.1 and 10.97.3,
(4) ring maps, i.e., proving certain algebras are formally smooth, see Algebra,

Lemma 10.133.4, Proposition 10.133.13, and Lemma 10.133.16,
(5) syntomic ring maps, see Algebra, Lemma 10.131.18,
(6) smooth ring maps, see Algebra, Lemma 10.132.19,

http://stacks.math.columbia.edu/tag/07ZB
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(7) étale ring maps, see Algebra, Lemma 10.138.11,
(8) factoring polynomials, see Algebra, Lemma 10.138.20, and
(9) Algebra, Section 10.145 discusses henselian local rings.

The interested reader will find more results of this nature in Smoothing Ring Maps,
Section 16.4 in particular Smoothing Ring Maps, Proposition 16.4.2.

Let A be a ring and let I ⊂ A be an ideal. Let ξ be some kind of structure
over A/I. In the following lemmas we look for étale ring maps A → A′ which
induce isomorphisms A/I → A′/IA′ and objects ξ′ over A′ lifting ξ. A general
remark is that given étale ring maps A → A′ → A′′ such that A/I ∼= A′/IA′

and A′/IA′ ∼= A′′/IA′′ the composition A → A′′ is also étale (Algebra, Lemma
10.138.3) and also satisfies A/I ∼= A′′/IA′′. We will frequently use this in the
following lemmas without further mention. Here is a trivial example of the type of
result we are looking for.

Lemma 15.6.1. Let A be a ring, let I ⊂ A be an ideal, let u ∈ A/I be an invertible
element. There exists an étale ring map A → A′ which induces an isomorphism
A/I → A′/IA′ and an invertible element u′ ∈ A′ lifting u.

Proof. Choose any lift f ∈ A of u and set A′ = Af and u the image of f in A′. �

Lemma 15.6.2. Let A be a ring, let I ⊂ A be an ideal, let e ∈ A/I be an idem-
potent. There exists an étale ring map A → A′ which induces an isomorphism
A/I → A′/IA′ and an idempotent e′ ∈ A′ lifting e.

Proof. Choose any lift x ∈ A of e. Set

A′ = A[t]/(t2 − t)
[

1

t− 1 + x

]
.

The ring map A→ A′ is étale because (2t−1)dt = 0 and (2t−1)(2t−1) = 1 which
is invertible. We have A′/IA′ = A/I[t]/(t2− t)[ 1

t−1+e ] ∼= A/I the last map sending

t to e which works as e is a root of t2 − t. This also shows that setting e′ equal to
the class of t in A′ works. �

Lemma 15.6.3. Let A be a ring, let I ⊂ A be an ideal. Let Spec(A/I) =
∐
j∈J U j

be a finite disjoint open covering. Then there exists an étale ring map A → A′

which induces an isomorphism A/I → A′/IA′ and a finite disjoint open covering
Spec(A′) =

∐
j∈J U

′
j lifting the given covering.

Proof. This follows from Lemma 15.6.2 and the fact that open and closed subsets
of Spectra correspond to idempotents, see Algebra, Lemma 10.20.3. �

Lemma 15.6.4. Let A→ B be a ring map and J ⊂ B an ideal. If A→ B is étale
at every prime of V (J), then there exists a g ∈ B mapping to an invertible element
of B/J such that A′ = Bg is étale over A.

Proof. The set of points of Spec(B) where A → B is not étale is a closed subset
of Spec(B), see Algebra, Definition 10.138.1. Write this as V (J ′) for some ideal
J ′ ⊂ B. Then V (J ′) ∩ V (J) = ∅ hence J + J ′ = B by Algebra, Lemma 10.16.2.
Write 1 = f + g with f ∈ J and g ∈ J ′. Then g works. �

Next we have three lemmas saying we can lift factorizations of polynomials.
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Lemma 15.6.5. Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic
polynomial. Let f = gh be a factorization of f in A/I[x] such that g and h are
monic and generate the unit ideal in A/I[x]. Then there exists an étale ring map
A→ A′ which induces an isomorphism A/I → A′/IA′ and a factorization f = g′h′

in A′[x] with g′, h′ monic lifting the given factorization over A/I.

Proof. Say deg(g) = n and deg(h) = m so that deg(f) = n + m. Write f =
xn+m +

∑
αix

n+m−i for some α1, . . . , αn+m ∈ A. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]

of Algebra, Example 10.138.13. Let R→ A be the ring map which sends ai to αi.
Set

B = A⊗R S
By construction the image of f in B[x] factors. Write g = xn +

∑
βix

n−i and
h = xm +

∑
γix

m−i. The A-algebra map

B −→ A/I, 1⊗ bi 7→ βi, 1⊗ ci 7→ γi

maps the factorization of f over B to the given factorization over A/I. The dis-
played map is surjective; denote J ⊂ B its kernel. From the discussion in Algebra,
Example 10.138.13 it is clear that A→ B is etale at all points of V (J) ⊂ Spec(B).
Choose g ∈ B as in Lemma 15.6.4 and set A′ = Bg. �

The assumption on the leading coefficient in the following lemma will be removed
in Lemma 15.6.7.

Lemma 15.6.6. Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic
polynomial. Let f = gh be a factorization of f in A/I[x] and assume

(1) the leading coefficient of g is an invertible element of A/I, and
(2) g, h generate the unit ideal in A/I[x].

Then there exists an étale ring map A→ A′ which induces an isomorphism A/I →
A′/IA′ and a factorization f = g′h′ in A′[x] lifting the given factorization over
A/I.

Proof. Applying Lemma 15.6.1 we may assume that the leading coefficient of g is
the reduction of an invertible element u ∈ A. Then we may replace g by u−1g and
h by uh. Thus we may assume that g is monic. Since f is monic we conclude that
h is monic too. In this case the result follows from Lemma 15.6.5. �

Lemma 15.6.7. Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic
polynomial. Let f = gh be a factorization of f in A/I[x] and assume that g, h
generate the unit ideal in A/I[x]. Then there exists an étale ring map A → A′

which induces an isomorphism A/I → A′/IA′ and a factorization f = g′h′ in A′[x]
lifting the given factorization over A/I.

Proof. Say f = xd + a1x
d−1 + . . . + ad has degree d. Write g =

∑
bjx

j and

h =
∑
cjx

j . Then we see that 1 =
∑
bjcd−j . It follows that Spec(A/I) is covered

by the standard opens D(bjcd−j). However, each point p of Spec(A/I) is contained
in at most one of these as by looking at the induced factorization of f over the field
κ(p) we see that deg(g mod p) + deg(h mod p) = d. Hence our open covering is a
disjoint open covering. Applying Lemma 15.6.3 (and replacing A by A′) we see that
we may assume there is a corresponding disjoint open covering of Spec(A). This
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disjoint open covering corresponds to a product decomposition of A, see Algebra,
Lemma 10.22.3. It follows that

A = A0 × . . .×Ad, I = I0 × . . .× Id,
where the image of g, resp. h in Aj/Ij has degree j, resp. d−j with invertible leading
coefficient. Clearly, it suffices to prove the result for each factor Aj separatedly.
Hence the lemma follows from Lemma 15.6.6. �

Lemma 15.6.8. Let R → S be a ring map. Let I ⊂ R be an ideal of R and let
J ⊂ S be an ideal of S. If the closure of the image of V (J) in Spec(R) is disjoint
from V (I), then there exists an element f ∈ R which maps to 1 in R/I and to an
element of J in S.

Proof. Let I ′ ⊂ R be an ideal such that V (I ′) is the closure of the image of V (J).
Then V (I) ∩ V (I ′) = ∅ by assumption and hence I + I ′ = R by Algebra, Lemma
10.16.2. Write 1 = g + f with g ∈ I and f ∈ I ′. We have V (f ′) ⊃ V (J) where f ′

is the image of f in S. Hence (f ′)n ∈ J for some n, see Algebra, Lemma 10.16.2.
Replacing f by fn we win. �

Lemma 15.6.9. Let A be a ring, let I ⊂ A be an ideal. Let A → B be an
integral ring map. Let e ∈ B/IB be an idempotent. Then there exists an étale ring
map A → A′ which induces an isomorphism A/I → A′/IA′ and an idempotent
e′ ∈ B ⊗A A′ lifting e.

Proof. Choose an element y ∈ B lifting e. Then z = y2 − y is an element of IB.
By Algebra, Lemma 10.37.4 there exist a monic polynomial g(x) = xd +

∑
ajx

j

of degree d with aj ∈ I such that g(z) = 0 in B. Hence f(x) = g(x2 − x) ∈ A[x]
is a monic polynomial such that f(x) ≡ xd(x − 1)d mod I and such that f(y) = 0
in B. By Lemma 15.6.6 we can find an étale ring map A → A′ which induces an
isomorphism A/I → A′/IA′ and such that f = gh in A[x] with g(x) = xd mod IA′

and h(x) = (x − 1)d mod IA′. After replacing A by A′ we may assume that the
factorization is defined over A. In that case we see that b1 = g(y) ∈ B is a lift
of ed = e and b2 = h(y) ∈ B is a lift of (e − 1)d = (−1)d(1 − e)d = (−1)d(1 − e)
and moreover b1b2 = 0. Thus (b1, b2)B/IB = B/IB and V (b1, b2) ⊂ Spec(B) is
disjoint from V (IB). Since Spec(B) → Spec(A) is closed (see Algebra, Lemmas
10.35.20 and 10.40.6) we can find an a ∈ A which maps to an invertible element of
A/I whose image in B lies in (b1, b2), see Lemma 15.6.8. After replacing A by the
localization Aa we get that (b1, b2) = B. Then Spec(B) = D(b1) qD(b2); disjoint
union because b1b2 = 0. Let e ∈ B be the idempotent corresponding to the open
and closed subset D(b1), see Algebra, Lemma 10.20.3. Since b1 is a lift of e and b2
is a lift of ±(1− e) we conclude that e is a lift of e by the uniqueness statement in
Algebra, Lemma 10.20.3. �

Lemma 15.6.10. Let A be a ring, let I ⊂ A be an ideal. Let P be finite projec-
tive A/I-module. Then there exists an étale ring map A → A′ which induces an
isomorphism A/I → A′/IA′ and a finite projective A′-module P ′ lifting P .

Proof. We can choose an integer n and a direct sum decomposition (A/I)⊕n =
P ⊕K for some R/I-module K. Choose a lift ϕ : A⊕n → A⊕n of the projector p
associated to the direct summand P . Let f ∈ A[x] be the characteristic polynomial
of ϕ. Set B = A[x]/(f). By Cayley-Hamilton (Algebra, Lemma 10.15.1) there is a
map B → EndA(A⊕n) mapping x to ϕ. For every prime p ⊃ I the image of f in
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κ(p) is (x − 1)rxn−r where r is the dimension of P ⊗A/I κ(p). Hence (x − 1)nxn

maps to zero in B ⊗A κ(p) for all p ⊃ I. Hence the image of (x − 1)nxn in B is
contained in ⋃

p⊃I
pB = (

⋃
p⊃I

p)B =
√
IB

the first equality because B is a free A-module and the second by Algebra, Lemma
10.16.2. Thus (x−1)NxN is contained in IB for some N . It follows that xN + (1−
x)N is a unit in B/IB and that

e = image of
xN

xN + (1− x)N
in B/IB

is an idempotent as both assertions hold in Z[x]/(xn(x − 1)N ). The image of e in
EndA/I((A/I)⊕n) is

pN

pN + (1− p)N
= p

as p is an idempotent. After replacing A by an étale extension A′ as in the lemma,
we may assume there exists an idempotent e ∈ B which maps to e in B/IB, see
Lemma 15.6.9. Then the image of e under the map

B = A[x]/(f) −→ EndA(A⊕n).

is an idempotent element p which lifts p. Setting P = Im(p) we win. �

Lemma 15.6.11. Let A be a ring. Let 0 → K → A⊕m → M → 0 be a sequence
of A-modules. Consider the A-algebra C = Sym∗A(M) with its presentation α :
A[y1, . . . , ym]→ C coming from the surjection A⊕m →M . Then

NL(α) = (K ⊗A C →
⊕

j=1,...,m
Cdyj)

(see Algebra, Section 10.129) in particular ΩC/A = M ⊗A C.

Proof. Let J = Ker(α). The lemma asserts that J/J2 ∼= K ⊗A C. Note that α
is a homomorphism of graded algebras. We will prove that in degree d we have
(J/J2)d = K ⊗A Cd−1. Note that

Jd = Ker(Symd
A(A⊕m)→ Symd

A(M)) = Im(K ⊗A Symd−1
A (A⊕m)→ Symd

A(A⊕m)),

see Algebra, Lemma 10.12.2. It follows that (J2)d =
∑
a+b=d Ja · Jb is the image of

K ⊗A K ⊗A Symd−2
A (A⊗m)→ Symd

A(A⊕m).

The cokernel of the map K ⊗A Symd−2
A (A⊗m)→ Symd−1

A (A⊕m) is Symd−1
A (M) by

the lemma referenced above. Hence it is clear that (J/J2)d = Jd/(J
2)d is equal to

Coker(K ⊗A K ⊗A Symd−2
A (A⊗m)→ K ⊗A Symd−1

A (A⊗m)) = K ⊗A Symd−1
A (M)

= K ⊗A Cd−1

as desired. �

Lemma 15.6.12. Let A be a ring. Let M be an A-module. Then C = Sym∗A(M)
is smooth over A if and only if M is a finite projective A-module.
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Proof. Let σ : C → A be the projection onto the degree 0 part of C. Then
J = Ker(σ) is the part of degree > 0 and we see that J/J2 = M as an A-module.
Hence if A → C is smooth then M is a finite projective A-module by Algebra,
Lemma 10.134.4.

Conversely, assume that M is finite projective and choose a surjection A⊕n → M
with kernel K. Of course the sequence 0 → K → A⊕n → M → 0 is split as M is
projective. In particular we see that K is a finite A-module and hence C is of finite
presentation over A as C is a quotient of A[x1, . . . , xn] by the ideal generated by
K ⊂

⊕
Axi. The computation of Lemma 15.6.11 shows that NLC/A is homotopy

equivalent to (K → M) ⊗A C. Hence NLC/A is quasi-isomorphic to C ⊗A M
placed in degree 0 which means that C is smooth over A by Algebra, Definition
10.132.1. �

Lemma 15.6.13. Let A be a ring, let I ⊂ A be an ideal. Consider a commutative
diagram

B

!!
A

OO

// A/I

where B is a smooth A-algebra. Then there exists an étale ring map A→ A′ which
induces an isomorphism A/I → A′/IA′ and an A-algebra map B → A′ lifting the
ring map B → A/I.

Proof. Let J ⊂ B be the kernel of B → A/I so that B/J = A/I. By Algebra,
Lemma 10.134.3 the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

is split exact. Thus P = J/(J2 + IB) = ΩB/A ⊗B B/J is a finite projective A/I-

module. Choose an integer n and a direct sum decomposition A/I⊕n = P ⊕K. By
Lemma 15.6.10 we can find an étale ring map A→ A′ which induces an isomorphism
A/I → A′/IA′ and a finite projective A-module K which lifts K. We may and
do replace A by A′. Set B′ = B ⊗A Sym∗A(K). Since A → Sym∗A(K) is smooth
by Lemma 15.6.12 we see that B → B′ is smooth which in turn implies that
A → B′ is smooth (see Algebra, Lemmas 10.132.4 and 10.132.13). Moreover the
section Sym∗A(K) → A determines a section B′ → B and we let B′ → A/I be the
composition B′ → B → A/I. Let J ′ ⊂ B′ be the kernel of B′ → A/I. We have
JB′ ⊂ J ′ and B ⊗A K ⊂ J ′. These maps combine to give an isomorphism

(A/I)⊕n ∼= J/J2 ⊕K −→ J ′/((J ′)2 + IB′)

Thus, after replacing B by B′ we may assume that J/(J2 + IB) = ΩB/A ⊗B B/J
is a free A/I-module of rank n.

In this case, choose f1, . . . , fn ∈ J which map to a basis of J/(J2 + IB). Consider
the finitely presented A-algebra C = B/(f1, . . . , fn). Note that we have an exact
sequence

0→ H1(LC/A)→ (f1, . . . , fn)/(f1, . . . , fn)2 → ΩB/A ⊗B C → ΩC/A → 0

see Algebra, Lemma 10.129.4 (note that H1(LB/A) = 0 and that ΩB/A is finite
projective, in particular flat so the Tor group vanishes). For any prime q ⊃ J of B

http://stacks.math.columbia.edu/tag/07M7
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the module ΩB/A,q is free of rank n because ΩB/A is finite projective and because
ΩB/A ⊗B B/J is free of rank n. By our choice of f1, . . . , fn the map(

(f1, . . . , fn)/(f1, . . . , fn)2
)
q
→ ΩB/A,q

is surjective modulo I. Hence we see that this map of modules over the local ring
Cq has to be an isomorphism. Thus H1(LC/A)q = 0 and ΩC/A,q = 0. By Algebra,
Lemma 10.132.12 we see that A→ C is smooth at the prime q of C corresponding
to q. Since ΩC/A,q = 0 it is actually étale at q. Thus A→ C is étale at all primes of
C containing JC. By Lemma 15.6.4 we can find an f ∈ C mapping to an invertible
element of C/JC such that A → Cf is étale. By our choice of f it is still true
that Cf/JCf = A/I. The map Cf/ICf → A/I is surjective and étale by Algebra,
Lemma 10.138.9. Hence A/I is isomorphic to the localization of Cf/ICf at some
element g ∈ C, see Algebra, Lemma 10.138.10. Set A′ = Cfg to conclude the
proof. �

15.7. Henselian pairs

Some of the results of Section 15.6 may be viewed as results about henselian pairs.
In this section a pair is a pair (A, I) where A is a ring and I ⊂ A is an ideal. A
morphism of pairs (A, I) → (B, J) is a ring map ϕ : A → B with ϕ(I) ⊂ J . As
in Section 15.6 given an object ξ over A we denote ξ the “base change” of ξ to an
object over A/I (provided this makes sense).

Definition 15.7.1. A henselian pair is a pair (A, I) satisfying

(1) I is contained in the Jacobson radical of A, and
(2) for any monic polynomial f ∈ A[T ] and factorization f = g0h0 with

g0, h0 ∈ A/I[T ] monic generating the unit ideal in A/I[T ], there exists a
factorization f = gh in A[T ] with g, h monic and g0 = g and h0 = h.

Observe that if A is a local ring and I = m is the maximal ideal, then (A, I) is
a henselian pair if and only if A is a henselian local ring, see Algebra, Lemma
10.145.3. In Lemma 15.7.7 we give a number of equivalent characterizations of
henselian pairs (and we will add more as time goes on).

Lemma 15.7.2. Let (A, I) be a pair with I locally nilpotent. Then the functor
B 7→ B/IB induces an equivalence between the category of étale algebras over A
and the category of étale algebras over A/I. Moreover, the pair is henselian.

Proof. Essential surjectivity holds by Algebra, Lemma 10.138.11. If B, B′ are
étale over A and B/IB → B′/IB′ is a morphism of A/I-algebras, then we can lift
this by Algebra, Lemma 10.133.16. Finally, suppose that f, g : B → B′ are two
A-algebra maps with f mod I = g mod I. Choose an idempotent e ∈ B ⊗A B
generating the kernel of the multiplication map B⊗AB → B, see Algebra, Lemmas
10.144.4 and 10.144.3 (to see that étale is unramified). Then (f⊗g)(e) ∈ IB. Since
IB is locally nilpotent (Algebra, Lemma 10.31.2) this implies (f ⊗ g)(e) = 0 by
Algebra, Lemma 10.31.5. Thus f = g.

It is clear that I is contained in the radical of A. Let f ∈ A[T ] be a monic polynomial
and let f = g0h0 be a factorization of f = f mod I with g0, h0 ∈ A/I[T ] monic
generating the unit ideal in A/I[T ]. By Lemma 15.6.5 there exists an étale ring map
A → A′ which induces an isomorphism A/I → A′/IA′ such that the factorization

http://stacks.math.columbia.edu/tag/09XE
http://stacks.math.columbia.edu/tag/0ALI


15.7. HENSELIAN PAIRS 1085

lifts to a factorization into monic polynomials over A′. By the above we have
A = A′ and the factorization is over A. �

Lemma 15.7.3. Let (A, I) be a pair. If A is I-adically complete, then the pair is
henselian.

Proof. By Algebra, Lemma 10.93.11 the ideal I is contained in the radical of
A. Let f ∈ A[T ] be a monic polynomial and let f = g0h0 be a factorization of
f = f mod I with g0, h0 ∈ A/I[T ] monic generating the unit ideal in A/I[T ]. By
Lemma 15.7.2 we can succesively lift this factorization to f mod In = gnhn with
gn, hn monic in A/In[T ] for all n ≥ 1. As A = limA/In this finishes the proof. �

Lemma 15.7.4. Let (A, I) be a pair. If I is contained in the Jacobson radical of
A, then the map from idempotents of A to idempotents of A/I is injective.

Proof. An idempotent of a local ring is either 0 or 1. Thus an idempotent is
determined by the set of maximal ideals where it vanishes, by Algebra, Lemma
10.23.1. �

Lemma 15.7.5. Let (A, I) be a pair. Let A → B be an integral ring map such
that B/IB = C1 × C2 as A/I-algebra with A/I → C1 injective. Any element
b ∈ B mapping to (0, 1) in B/IB is the zero of a monic polynomial f ∈ A[T ] with
f mod I = gTn and g(0) a unit in A/I.

Proof. Let b ∈ B map to (0, 1) in C1 × C2. Let J ⊂ A[T ] be the kernel of the
map A[T ] → B, T 7→ b. Since B is integral over A, it is integral over A[T ].
Hence the image of Spec(B) in Spec(A[T ]) is closed by Algebra, Lemmas 10.40.6
and 10.35.20. Hence this image is equal to V (J) = Spec(A[T ]/J) by Algebra,
Lemma 10.29.5. Intersecting with the inverse image of V (I) our choice of b shows
we have V (J + IA[T ]) ⊂ V (T 2 − T ). Hence there exists an n ≥ 1 and g ∈ J
with g mod IA[T ] = (T 2 − T )n. On the other hand, as A → B is integral there
exists a monic polynomial h ∈ J . Note that h(0) mod I maps to zero under the
composition A[T ] → B → B/IB → C1. Since A/I → C1 is injective we conclude
h mod IA[T ] = h0T for some h0 ∈ A/I[T ]. Set

f = g + hm

for m > n. If m is large enough, this is a monic polynomial and

f mod IA[T ] = (T 2 − T )n + hm0 T
m = Tn((T − 1)n + hm0 T

m−n)

and hence the desired conclusion. �

Lemma 15.7.6. Let (A, I) be a pair. Let A → B be a finite type ring map such
that B/IB = C1 × C2 with A/I → C1 finite. Let B′ be the integral closure of A
in B. Then we can write B′/IB′ = C1 × C ′2 such that the map B′/IB′ → B/IB
preserves product decompositions and there exists a g ∈ B′ mapping to (1, 0) in
C1 × C ′2 with B′g → Bg an isomorphism.

Proof. Observe that A → B is quasi-finite at every prime of the closed subset
T = Spec(C1) ⊂ Spec(B) (this follows by looking at fibre rings, see Algebra,
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Definition 10.118.3). Consider the diagram of topological spaces

Spec(B)
φ

//

ψ %%

Spec(B′)

ψ′yy
Spec(A)

By Algebra, Theorem 10.119.13 for every p ∈ T there is a hp ∈ B′, hp 6∈ p such that
B′h → Bh is an isomorphism. The union U =

⋃
D(hp) gives an open U ⊂ Spec(B′)

such that φ−1(U) → U is a homeomorphism and T ⊂ φ−1(U). Since T is open in
ψ−1(V (I)) we conclude that φ(T ) is open in U ∩ (ψ′)−1(V (I)). Thus φ(T ) is open
in (ψ′)−1(V (I)). On the other hand, since C1 is finite over A/I it is finite over
B′. Hence φ(T ) is a closed subset of Spec(B′) by Algebra, Lemmas 10.40.6 and
10.35.20. We conclude that Spec(B′/IB′) ⊃ φ(T ) is open and closed. By Algebra,
Lemma 10.22.3 we get a corresponding product decomposition B′/IB′ = C ′1 ×C ′2.
The map B′/IB′ → B/IB maps C ′1 into C1 and C ′2 into C2 as one sees by looking
at what happens on spectra (hint: the inverse image of φ(T ) is exactly T ; some
details omitted). Pick a g ∈ B′ mapping to (1, 0) in C ′1 × C ′2 such that D(g) ⊂ U ;
this is possible because Spec(C ′1) and Spec(C ′2) are disjoint and closed in Spec(B′)
and Spec(C ′1) is contained in U . Then B′g → Bg defines a homeomorphism on
spectra and an isomorphism on local rings (by our choice of U above). Hence it is
an isomorphism, as follows for example from Algebra, Lemma 10.23.1. Finally, it
follows that C ′1 = C1 and the proof is complete. �

Lemma 15.7.7. Let (A, I) be a pair. The following are equivalent

(1) (A, I) is a henselian pair,
(2) given an étale ring map A → A′ and an A-algebra map σ : A′ → A/I,

there exists an A-algebra map A′ → A lifting σ,
(3) for any finite A-algebra B the map B → B/IB induces a bijection on

idempotents, and
(4) for any integral A-algebra B the map B → B/IB induces a bijection on

idempotents.

Proof. Assume (2) holds. Then I is contained in the Jacobson radical of A, since
otherwise there would be a nonunit f ∈ A not contained in I and the map A→ Af
would contradict (2). Hence IB ⊂ B is contained in the Jacobson radical of B for B
integral over A because Spec(B)→ Spec(A) is closed by Algebra, Lemmas 10.40.6
and 10.35.20. Thus the map from idempotents of B to idempotents of B/IB is
injective by Lemma 15.7.4. On the other hand, since (2) holds, every idempotent
of B lifts to an idempotent of B/IB by by Lemma 15.6.9. In this way we see that
(2) implies (4).

The implication (4) ⇒ (3) is trivial.

Assume (3). Let m be a maximal ideal and consider the finite map A → B =
A/(I ∩ m). The condition that B → B/IB induces a bijection on idempotents
implies that I ⊂ m (if not, then B = A/I × A/m and B/IB = A/I). Thus we see
that I is contained in the Jacobson radical of A. Let f ∈ A[T ] be monic and suppose
given a factorization f = g0h0 with g0, h0 ∈ A/I[T ] monic. Set B = A[T ]/(f). Let
e be the nontrivial idempotent of B/IB corresponding to the decomposition

B/IB = A/I[T ]/(g0)×A[T ]/(h0)

http://stacks.math.columbia.edu/tag/09XI
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of A-algebras. Let e ∈ B be an idempotent lifting e which exists as we assumed
(3). This gives a product decomposition

B = eB × (1− e)B

Note that B is free of rank deg(f) as an A-module. Hence eB and (1 − e)B are
finite locally free A-modules. However, since eB and (1− e)B have constant rank
deg(g0) and deg(h0) over A/I we find that the same is true over Spec(A). We
conclude that

f = detA(T : B → B) = detA(T : eB → eB) detA(T : (1− e)B → (1− e)B)

is a factorization into monic polynomials reducing to the given factorization modulo
I. Thus (3) implies (1).

Assume (1). Let A→ A′ be an étale ring map and let σ : A′ → A/I be an A-algebra
map. This implies that A′/IA′ = A/I × C for some ring C. Let A′′ ⊂ A′ be the
integral closure of A in A′. By Lemma 15.7.6 we can write A′′/IA′′ = A/I×C ′ such
that A′′/IA′′ → A′/IA′ maps A/I isomorphically to A′/IA′ and C ′ to C and such
that there exists a a ∈ A′′ mapping to (1, 0) in A/I × C ′ such that A′′a

∼= A′a. By
Lemma 15.7.5 we see that a satisfies a monic polynomial f ∈ A[T ] whose reduction
modulo I factors as f = g0T

n where T, g0 generate the unit ideal in A/I[T ]. Thus
by assumption we can factor f as f = gh where g is a monic lift of g0 and h
is a monic lift of Tn. Because I is contained in the Jacobson radical of A, we
find that g and h generate the unit ideal in A[T ] (details omitted; hint: use that
A[T ]/(g, h) is finite over A). Thus A[T ]/(f) = A[T ]/(h) × A[T ]/(g) and we find
a corresponding product decomposition A′′ = A′′1 × A′′2 . By construction we have
A′′1/IA

′′
1 = A/I and A′′2/IA

′′
2 = C ′. Since A′′1 is integral over A and I is contained

in the Jacobson radical of A we see that a maps to an invertible element of A′′1 .
Hence A′′a = A′′1 × (A′′2)a. It follows that A→ A′′1 is integral as well as étale, hence
finite locally free. However, A′′1/IA

′′
1 = A/I thus A′′1 has rank 1 as an A-module

along V (I). Since I is contained in the Jacobson radical of A we conclude that
A′′1 has rank 1 everywhere and it follows that A → A′′1 is an isomorphism. Thus
A′ → A′a

∼= A′′a → (A′′1)a = A′′1 = A is the desired lift of σ. In this way we see that
(1) implies (2). �

Lemma 15.7.8. Let A be a ring. Let I, J ⊂ A be ideals with V (I) = V (J). Then
(A, I) is henselian if and only if (A, J) is henselian.

Proof. For any integral ring map A → B we see that V (IB) = V (JB). Hence
idempotents of B/IB and B/JB are in bijective correspondence (Algebra, Lemma
10.20.3). It follows that B → B/IB induces a bijection on sets of idempotents
if and only if B → B/JB induces a bijection on sets of idempotents. Thus we
conclude by Lemma 15.7.7. �

Lemma 15.7.9. Let (A, I) be a henselian pair and let A → B be an integral ring
map. Then (B, IB) is a henselian pair.

Proof. Immediate from the fourth characterization of henselian pairs in Lemma
15.7.7 and the fact that the composition of integral ring maps is integral. �

Lemma 15.7.10. Let J be a set and let {(Aj , Ij)}j∈J be a collection of pairs. Then
(
∏
j∈J Aj ,

∏
j∈J Ij) is Henselian if and only if so is each (Aj , Ij).
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Proof. For every j ∈ J , the projection
∏
j∈J Aj → Aj is an integral ring map,

so Lemma 15.7.9 proves that each (Aj , Ij) is Henselian if (
∏
j∈J Aj ,

∏
j∈J Ij) is

Henselian.

Conversely, suppose that each (Aj , Ij) is a Henselian pair. Then every 1 + x with
x ∈

∏
j∈J Ij is a unit in

∏
j∈J Aj because it is so componentwise by Algebra, Lemma

10.18.1 and Definition 15.7.1. Thus, by Algebra, Lemma 10.18.1 again,
∏
j∈J Ij is

contained in the Jacobson radical of
∏
j∈J Aj . Continuing to work componentwise,

it likewise follows that for every monic f ∈ (
∏
j∈J Aj)[T ] and every factorization

f = g0h0 with monic g0, h0 ∈ (
∏
j∈J Aj/

∏
j∈J Ij)[T ] = (

∏
j∈J Aj/Ij)[T ] that gen-

erate the unit ideal in (
∏
j∈J Aj/

∏
j∈J Ij)[T ], there exists a factorization f = gh

in (
∏
j∈J Aj)[T ] with g, h monic and reducing to g0, h0. In conclusion, according

to Definition 15.7.1 (
∏
j∈J Aj ,

∏
j∈J Ij) is a Henselian pair. �

Lemma 15.7.11. Let (A, I) be a henselian pair. Let p ⊂ A be a prime ideal. Then
V (p + I) is connected.

Proof. By Lemma 15.7.9 we see that (A/p, I + p/p) is a henselian pair. Thus it
suffices to prove: If (A, I) is a henselian pair and A is a domain, then Spec(A/I) =
V (I) is connected. If not, then A/I has a nontrivial idempotent, whence by Lemma
15.7.7 A has a nontrivial idempotent. This is a contradiction. �

Lemma 15.7.12. Let (A, I) be a henselian pair. The functor B → B/IB deter-
mines an equivalence between finite étale A-algebras and finite étale A/I-algebras.

Proof. Let B,B′ be two A-algebras finite étale over A. Then B′ → B′′ = B⊗AB′
is finite étale as well (Algebra, Lemmas 10.138.3 and 10.35.11). Now we have 1-to-1
correspondences between

(1) A-algebra maps B → B′,
(2) sections of B′ → B′′, and
(3) idempotents e of B′′ such that B′ → B′′ → eB′′ is an isomorphism.

The bijection between (2) and (3) sends σ : B′′ → B′ to e such that (1 − e)
is the idempotent that generates the kernel of σ which exists by Algebra, Lem-
mas 10.138.9 and 10.138.10. There is a similar correspondence between A/I-
algebra maps B/IB → B′/IB′ and idempotents e of B′′/IB′′ such that B′/IB′ →
B′′/IB′′ → e(B′′/IB′′) is an isomorphism. However every idempotent e of B′′/IB′′

lifts uniquely to an idempotent e of B′′ (Lemma 15.7.7). Moreover, if B′′/IB′′ →
e(B′′/IB′′) is an isomorphism, thenB′ → eB′′ is an isomorphism too by Nakayama’s
lemma (Algebra, Lemma 10.19.1). In this way we see that the functor is fully faith-
ful.

Essential surjectivity. Let A/I → C be a finite étale map. By Algebra, Lemma
10.138.11 there exists an étale map A → B such that B/IB ∼= C. Let B′ be the
integral closure of A in B. By Lemma 15.7.6 we have B′/IB′ = C×C ′ for some ring
C ′ and B′g

∼= Bg for some g ∈ B′ mapping to (1, 0) ∈ C × C ′. Since idempotents
lift (Lemma 15.7.7) we get B′ = B′1 × B′2 with C = B′1/IB

′
1 and C ′ = B′2/IB

′
2.

The image of g in B′1 is invertible and (B′2)g = 0 because IB′ is contained in the
Jacobson radical of B′ (for example because (B′, IB′) is a henselian pair by Lemma
15.7.9). We conclude that B′1 = Bg is finite étale over A and the proof is done. �
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Lemma 15.7.13. The inclusion functor

category of henselian pairs −→ category of pairs

has a left adjoint (A, I) 7→ (Ah, Ih).

Proof. Let (A, I) be a pair. Consider the category C consisting of étale ring maps
A→ B such that A/I → B/IB is an isomorphism. We will show that the category
C is directed and that Ah = colimB∈C B with ideal Ih = IAh gives the desired
adjoint.

We first prove that C is directed (Categories, Definition 4.19.1). It is nonempty
because id : A → A is an object. If B and B′ are two objects of C, then B′′ =
B⊗AB′ is an object of C (use Algebra, Lemma 10.138.3) and there are morphisms
B → B′′ and B′ → B′′. Suppose that f, g : B → B′ are two maps between objects
of C. Then a coequalizer is B′⊗f,B,g B′ which is étale over A by Algebra, Lemmas
10.138.3 and 10.138.9. Thus the category C is directed.

Since B/IB = A/I for all objects B of C we see that Ah/Ih = Ah/IAh =
colimB/IB = colimA/I = A/I.

Next, we show that Ah = colimB∈C B with Ih = IAh is a henselian pair. To do
this we will verify condition (2) of Lemma 15.7.7. Namely, suppose given an étale
ring map Ah → A′ and and Ah-algebra map σ : A′ → Ah/Ih. Then there exists
a B ∈ C and an étale ring map B → B′ such that A′ = B′ ⊗B Ah. See Algebra,
Lemma 10.138.3. Since Ah/Ih = A/IB, the map σ induces an A-algebra map
s : B′ → A/I. Then B′/IB′ = A/I × C as A/I-algebra, where C is the kernel of
the map B′/IB′ → A/I induced by s. Let g ∈ B′ map to (1, 0) ∈ A/I × C. Then
B → B′g is étale and A/I → B′g/IB

′
g is an isomorphism, i.e., B′g is an object of C.

Thus we obtain a canonical map B′g → Ah such that

B′g // Ah

B

OO >>

and

B′ //

s

''

B′g // Ah

��
A/I

commute. This induces a map A′ = B′⊗B Ah → Ah compatible with σ as desired.

Let (A, I)→ (A′, I ′) be a morphism of pairs with (A′, I ′) henselian. We will show
there is a unique factorization A → Ah → A′ which will finish the proof. Namely,
for each A → B in C the ring map A′ → B′ = A′ ⊗A B is étale and induces an
isomorphism A′/I ′ → B′/I ′B′. Hence there is a section σB : B′ → A′ by Lemma
15.7.7. Given a morphism B1 → B2 in C we claim the diagram

B′1 //

σB1   

B′2

σB2~~
A′

commutes. This follows once we prove that for every B in C the section σB is the
unique A′-algebra map B′ → A′. We have B′ ⊗A′ B′ = B′ × R for some ring R,
see Algebra, Lemma 10.144.4. In our case R/I ′R = 0 as B′/I ′B′ = A′/I ′. Thus
given two A′-algebra maps σB , σ

′
B : B′ → A′ then e = (σB ⊗ σ′B)(0, 1) ∈ A′ is

http://stacks.math.columbia.edu/tag/0A02
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an idempotent contained in I ′. We conclude that e = 0 by Lemma 15.7.4. Hence
σB = σ′B as desired. Using the commutativity we obtain

Ah = colimB∈C B → colimB∈C A
′ ⊗A B

colimσB−−−−−→ A′

as desired. The uniqueness of the maps σB also guarantees that this map is unique.
Hence (A, I) 7→ (Ah, Ih) is the desired adjoint. �

Lemma 15.7.14. The functor of Lemma 15.7.13 associates to a local ring (A,m)
its henselization.

Proof. First proof: in the proof of Algebra, Lemma 10.145.16 it is shown that
the henselization of A is given by the the colimit used to construct Ah in Lemma
15.7.13. Second proof: Both the henselization S and the ring Ah of Lemma 15.7.13
are filtered colimits of étale A-algebras, henselian, and have residue fields equal to
κ(m). Hence they are canonically isomorphic by Algebra, Lemma 10.145.15. �

Lemma 15.7.15. Let (A, I) be a pair. Let (Ah, Ih) be as in Lemma 15.7.13. Then
A→ Ah is flat, Ih = IAh and A/In → Ah/InAh is an isomorphism for all n.

Proof. In the proof of Lemma 15.7.13 we have seen that Ah is a filtered colimit
of étale A-algebras B such that A/I → B/IB is an isomorphism and we have seen
that Ih = IAh. As an étale ring map is flat (Algebra, Lemma 10.138.3) we conclude
that A→ Ah is flat by Algebra, Lemma 10.38.2. Since each A→ B is flat we find
that the maps A/In → B/InB are isomorphisms as well (for example by Algebra,
Lemma 10.97.3). Taking the colimit we find that A/In = Ah/InAh as desired. �

Lemma 15.7.16. Let (A, I) be a pair with A Noetherian. Let (Ah, Ih) be as in
Lemma 15.7.13. Then the map of I-adic completions

A∧ → (Ah)∧

is an isomorphism. Moreover, Ah is Noetherian, the maps A→ Ah → A∧ are flat,
and Ah → A∧ is faithfully flat.

Proof. The first statement is an immediate consequence of Lemma 15.7.15 and in
fact holds without assuming A is Noetherian. In the proof of Lemma 15.7.13 we
have seen that Ah is a filtered colimit of étale A-algebras B such that A/I → B/IB
is an isomorphism. For each such A → B the induced map A∧ → B∧ is an
isomorphism (see proof of Lemma 15.7.15). By Algebra, Lemma 10.93.3 the ring
map B → A∧ = B∧ = (Ah)∧ is flat for each B. Thus Ah → A∧ = (Ah)∧ is flat by
Algebra, Lemma 10.38.5. Since Ih = IAh is contained in the radical ideal of Ah

and since Ah → A∧ induces an isomorphism Ah/Ih → A/I we see that Ah → A∧ is
faithfully flat by Algebra, Lemma 10.38.14. By Algebra, Lemma 10.93.10 the ring
A∧ is Noetherian. Hence we conclude that Ah is Noetherian by Algebra, Lemma
10.152.1. �

Lemma 15.7.17. Let (A, I) = colim(Ai, Ii) be a colimit of pairs. The functor of
Lemma 15.7.13 gives Ah = colimAhi and Ih = colim Ihi .

Proof. This is true for any left adjoint, see Categories, Lemma 4.24.4. �
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15.8. Auto-associated rings

Some of this material is in [Laz69].

Definition 15.8.1. A ring R is said to be auto-associated if R is local and its
maximal ideal m is weakly associated to R.

Lemma 15.8.2. An auto-associated ring R has the following property: (P) Every
proper finitely generated ideal I ⊂ R has a nonzero annihilator.

Proof. By assumption there exists a nonzero element x ∈ R such that for every
f ∈ m we have fnx = 0. Say I = (f1, . . . , fr). Then x is in the kernel of R→

⊕
Rfi .

Hence we see that there exists a nonzero y ∈ R such that fiy = 0 for all i, see
Algebra, Lemma 10.22.4. As y ∈ AnnR(I) we win. �

Lemma 15.8.3. Let R be a ring having property (P) of Lemma 15.8.2. Let u : N →
M be a homomorphism of projective R-modules. Then u is universally injective if
and only if u is injective.

Proof. Assume u is injective. Our goal is to show u is universally injective. First we
choose a module Q such that N⊕Q is free. On considering the map N⊕Q→M⊕Q
we see that it suffices to prove the lemma in case N is free. In this case N is a
directed colimit of finite free R-modules. Thus we reduce to the case that N is a
finite free R-module, say N = R⊕n. We prove the lemma by induction on n. The
case n = 0 is trivial.

Let u : R⊕n → M be an injective module map with M projective. Choose an
R-module Q such that M ⊕ Q is free. After replacing u by the composition
R⊕n → M → M ⊕ Q we see that we may assume that M is free. Then we
can find a direct summand R⊕m ⊂ M such that u(R⊕n) ⊂ R⊕m. Hence we
may assume that M = R⊕m. In this case u is given by a matrix A = (aij)
so that u(x1, . . . , xn) = (

∑
xiai1, . . . ,

∑
xiaim). As u is injective, in particular

u(x, 0, . . . , 0) = (xa11, xa12, . . . , xa1m) 6= 0 if x 6= 0, and as R has property (P) we
see that a11R + a12R + . . . + a1mR = R. Hence see that R(a11, . . . , a1m) ⊂ R⊕m

is a direct summand of R⊕m, in particular R⊕m/R(a11, . . . , a1m) is a projective
R-module. We get a commutative diagram

0 // R //

1

��

R⊕n //

u

��

R⊕n−1 //

��

0

0 // R
(a11,...,a1m) // R⊕m // R⊕m/R(a11, . . . , a1m) // 0

with split exact rows. Thus the right vertical arrow is injective and we may apply
the induction hypothesis to conclude that the right vertical arrow is universally
injective. It follows that the middle vertical arrow is universally injective. �

Lemma 15.8.4. Let R be a ring. The following are equivalent

(1) R has property (P) of Lemma 15.8.2,
(2) any injective map of projective R-modules is universally injective,
(3) if u : N →M is injective and N , M are finite projective R-modules then

Coker(u) is a finite projective R-module,
(4) if N ⊂M and N , M are finite projective as R-modules, then N is a direct

summand of M , and

http://stacks.math.columbia.edu/tag/05GM
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(5) any injective map R→ R⊕n is a split injection.

Proof. The implication (1) ⇒ (2) is Lemma 15.8.3. It is clear that (3) and (4)
are equivalent. We have (2) ⇒ (3), (4) by Algebra, Lemma 10.79.4. Part (5) is a
special case of (4). Assume (5). Let I = (a1, . . . , an) be a proper finitely generated
ideal of R. As I 6= R we see that R → R⊕n, x 7→ (xa1, . . . , xan) is not a split
injection. Hence it has a nonzero kernel and we conclude that AnnR(I) 6= 0. Thus
(1) holds. �

Example 15.8.5. If the equivalent conditions of Lemma 15.8.4 hold, then it is not
always the case that every injective map of free R-modules is a split injection. For
example suppose that R = k[x1, x2, x3, . . .]/(x

2
i ). This is an auto-associated ring.

Consider the map of free R-modules

u :
⊕

i≥1
Rei −→

⊕
i≥1

Rfi, ei 7−→ fi − xifi+1.

For any integer n the restriction of u to
⊕

i=1,...,nRei is injective as the images

u(e1), . . . , u(en) are R-linearly independent. Hence u is injective and hence univer-
sally injective by the lemma. Since u⊗ idk is bijective we see that if u were a split
injection then u would be surjective. But u is not surjective because the inverse
image of f1 would be the element∑

i≥0
x1 . . . xiei+1 = e1 + x1e2 + x1x2e3 + . . .

which is not an element of the direct sum. A side remark is that Coker(u) is a
flat (because u is universally injective), countably generated R-module which is
not projective (as u is not split), hence not Mittag-Leffler (see Algebra, Lemma
10.90.1).

15.9. Flattening stratification

Let R → S be a ring map and let N be an S-module. For any R-algebra R′ we
can consider the base changes S′ = S ⊗R R′ and M ′ = M ⊗R R′. We say R → R′

flattens M if the module M ′ is flat over R′. We would like to understand the
structure of the collection of ring maps R→ R′ which flatten M . In particular we
would like to know if there exists a universal flattening R → Runiv of M , i.e., a
ring map R → Runiv which flattens M and has the property that any ring map
R → R′ which flattens M factors through R → Runiv. It turns out that such a
universal solution usually does not exist.

We will discuss universal flattenings and flattening stratifications in a scheme theo-
retic setting F/X/S in More on Flatness, Section 37.20. If the universal flattening
R → Runiv exists then the morphism of schemes Spec(Runiv) → Spec(R) is the

universal flattening of the quasi-coherent module M̃ on Spec(S).

In this and the next few sections we prove some basic algebra facts related to this.
The most basic result is perhaps the following.

Lemma 15.9.1. Let R be a ring. Let M be an R-module. Let I1, I2 be ideals of
R. If M/I1M is flat over R/I1 and M/I2M is flat over R/I2, then M/(I1 ∩ I2)M
is flat over R/(I1 ∩ I2).
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Proof. By replacing R with R/(I1 ∩ I2) and M by M/(I1 ∩ I2)M we may assume
that I1 ∩ I2 = 0. Let J ⊂ R be an ideal. To prove that M is flat over R we have
to show that J ⊗R M → M is injective, see Algebra, Lemma 10.38.4. By flatness
of M/I1M over R/I1 the map

J/(J ∩ I1)⊗RM = (J + I1)/I1 ⊗R/I1 M/I1M −→M/I1M

is injective. As 0→ (J ∩ I1)→ J → J/(J ∩ I1)→ 0 is exact we obtain a diagram

(J ∩ I1)⊗RM //

��

J ⊗RM //

��

J/(J ∩ I1)⊗RM //

��

0

M M // M/I1M

hence it suffices to show that (J ∩ I1) ⊗R M → M is injective. Since I1 ∩ I2 =
0 the ideal J ∩ I1 maps isomorphically to an ideal J ′ ⊂ R/I2 and we see that
(J ∩ I1) ⊗R M = J ′ ⊗R/I2 M/I2M . By flatness of M/I2M over R/I2 the map
J ′⊗R/I2M/I2M →M/I2M is injective, which clearly implies that (J∩I1)⊗RM →
M is injective. �

15.10. Flattening over an Artinian ring

A universal flattening exists when the base ring is an Artinian local ring. It exists
for an arbitrary module. Hence, as we will see later, a flatting stratification exists
when the base scheme is the spectrum of an Artinian local ring.

Lemma 15.10.1. Let R be an Artinian ring. Let M be an R-module. Then there
exists a smallest ideal I ⊂ R such that M/IM is flat over R/I.

Proof. This follows directly from Lemma 15.9.1 and the Artinian property. �

This ideal has the following universal property.

Lemma 15.10.2. Let R be an Artinian ring. Let M be an R-module. Let I ⊂ R
be the smallest ideal I ⊂ R such that M/IM is flat over R/I. Then I has the
following universal property: For every ring map ϕ : R→ R′ we have

R′ ⊗RM is flat over R′ ⇔ we have ϕ(I) = 0.

Proof. Note that I exists by Lemma 15.10.1. The implication ⇒ follows from
Algebra, Lemma 10.38.6. Let ϕ : R→ R′ be such that M ⊗RR′ is flat over R′. Let
J = Ker(ϕ). By Algebra, Lemma 10.97.7 and as R′ ⊗R M = R′ ⊗R/J M/JM is
flat over R′ we conclude that M/JM is flat over R/J . Hence I ⊂ J as desired. �

15.11. Flattening over a closed subset of the base

Let R→ S be a ring map. Let I ⊂ R be an ideal. Let M be an S-module. In the
following we will consider the following condition

(15.11.0.1) ∀q ∈ V (IS) ⊂ Spec(S) : Mq is flat over R.

Geometrically, this means that M is flat over R along the inverse image of V (I)
in Spec(S). If R and S are Noetherian rings and M is a finite S-module, then
(15.11.0.1) is equivalent to the condition that M/InM is flat over R/In for all
n ≥ 1, see Algebra, Lemma 10.95.11.
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Lemma 15.11.1. Let R→ S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Let R → R′ be a ring map and IR′ ⊂ I ′ ⊂ R′ an ideal. If (15.11.0.1)
holds for (R→ S, I,M), then (15.11.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′).

Proof. Assume (15.11.0.1) holds for (R→ S, I ⊂ R,M). Let I ′(S⊗RR′) ⊂ q′ be a
prime of S ⊗R R′. Let q ⊂ S be the corresponding prime of S. Then IS ⊂ q. Note
that (M⊗RR′)q′ is a localization of the base change Mq⊗RR′. Hence (M⊗RR′)q′
is flat over R′ as a localization of a flat module, see Algebra, Lemmas 10.38.6 and
10.38.19. �

Lemma 15.11.2. Let R→ S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Let R→ R′ be a ring map and IR′ ⊂ I ′ ⊂ R′ an ideal such that

(1) the map V (I ′)→ V (I) induced by Spec(R′)→ Spec(R) is surjective, and
(2) R′p′ is flat over R for all primes p′ ∈ V (I ′).

If (15.11.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′), then (15.11.0.1) holds for
(R→ S, I,M).

Proof. Assume (15.11.0.1) holds for (R′ → S ⊗R R′, IR′,M ⊗R R′). Pick a prime
IS ⊂ q ⊂ S. Let I ⊂ p ⊂ R be the corresponding prime of R. By assumption there
exists a prime p′ ∈ V (I ′) of R′ lying over p and Rp → R′p′ is flat. Choose a prime

q′ ⊂ κ(q)⊗κ(p) κ(p′) which corresponds to a prime q′ ⊂ S ⊗R R′ which lies over q
and over p′. Note that (S ⊗R R′)q′ is a localization of Sq ⊗Rp

R′p′ . By assumption

the module (M ⊗R R′)q′ is flat over R′p′ . Hence Algebra, Lemma 10.96.1 implies
that Mq is flat over Rp which is what we wanted to prove. �

Lemma 15.11.3. Let R → S be a ring map of finite presentation. Let M be
an S-module of finite presentation. Let R′ = colimλ∈ΛRλ be a directed colimit of
R-algebras. Let Iλ ⊂ Rλ be ideals such that IλRµ ⊂ Iµ for all µ ≥ λ and set
I ′ = colimλ Iλ. If (15.11.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′), then there
exists a λ ∈ Λ such that (15.11.0.1) holds for (Rλ → S ⊗R Rλ, Iλ,M ⊗R Rλ).

Proof. We are going to write Sλ = S ⊗R Rλ, S′ = S ⊗R R′, Mλ = M ⊗R Rλ,
and M ′ = M ⊗R R′. The base change S′ is of finite presentation over R′ and M ′

is of finite presentation over S′ and similarly for the versions with subscript λ, see
Algebra, Lemma 10.13.2. By Algebra, Theorem 10.125.4 the set

U ′ = {q′ ∈ Spec(S′) |M ′q′ is flat over R′}

is open in Spec(S′). Note that V (I ′S′) is a quasi-compact space which is contained
in U ′ by assumption. Hence there exist finitely many g′j ∈ S′, j = 1, . . . ,m such
that D(g′j) ⊂ U ′ and such that V (I ′S′) ⊂

⋃
D(g′j). Note that in particular (M ′)g′j

is a flat module over R′.

We are going to pick increasingly large elements λ ∈ Λ. First we pick it large enough
so that we can find gj,λ ∈ Sλ mapping to g′j . The inclusion V (I ′S′) ⊂

⋃
D(g′j)

means that I ′S′+(g′1, . . . , g
′
m) = S′ which can be expressed as 1 =

∑
zshs+

∑
fjg
′
j

for some zs ∈ I ′, hs, fj ∈ S′. After increasing λ we may assume such an equation
holds in Sλ. Hence we may assume that V (IλSλ) ⊂

⋃
D(gj,λ). By Algebra, Lemma

10.156.1 we see that for some sufficiently large λ the modules (Mλ)gj,λ are flat over
Rλ. In particular the module Mλ is flat over Rλ at all the primes lying over the
ideal Iλ. �
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15.12. Flattening over a closed subsets of source and base

In this section we slightly generalize the discussion in Section 15.11. We strongly
suggest the reader first read and understand that section.

Situation 15.12.1. Let R→ S be a ring map. Let J ⊂ S be an ideal. Let M be
an S-module.

In this situation, given an R-algebra R′ and an ideal I ′ ⊂ R′ we set S′ = S ⊗R R′
and M ′ = M ⊗R R′. We will consider the condition

(15.12.1.1) ∀q′ ∈ V (I ′S′ + JS′) ⊂ Spec(S′) : M ′q′ is flat over R′.

Geometrically, this means that M ′ is flat over R′ along the intersection of the
inverse image of V (I ′) with the inverse image of V (J). Since (R → S, J,M) are
fixed, condition (15.12.1.1) only depends on the pair (R′, I ′) where R′ is viewed as
an R-algebra.

Lemma 15.12.2. In Situation 15.12.1 let R′ → R′′ be an R-algebra map. Let
I ′ ⊂ R′ and I ′R′′ ⊂ I ′′ ⊂ R′′ be ideals. If (15.12.1.1) holds for (R′, I ′), then
(15.12.1.1) holds for (R′′, I ′′).

Proof. Assume (15.12.1.1) holds for (R′, I ′). Let I ′′S′′ + JS′′ ⊂ q′′ be a prime
of S′′. Let q′ ⊂ S′ be the corresponding prime of S′. Then both I ′S′ ⊂ q′ and
JS′ ⊂ q′ because the corresponding conditions hold for q′′. Note that (M ′′)q′′ is
a localization of the base change M ′q′ ⊗R R′′. Hence (M ′′)q′′ is flat over R′′ as a
localization of a flat module, see Algebra, Lemmas 10.38.6 and 10.38.19. �

Lemma 15.12.3. In Situation 15.12.1 let R′ → R′′ be an R-algebra map. Let
I ′ ⊂ R′ and I ′R′′ ⊂ I ′′ ⊂ R′′ be ideals. Assume

(1) the map V (I ′′) → V (I ′) induced by Spec(R′′) → Spec(R′) is surjective,
and

(2) R′′p′′ is flat over R′ for all primes p′′ ∈ V (I ′′).

If (15.12.1.1) holds for (R′′, I ′′), then (15.12.1.1) holds for (R′, I ′).

Proof. Assume (15.12.1.1) holds for (R′′, I ′′). Pick a prime I ′S′ + JS′ ⊂ q′ ⊂ S′.
Let I ′ ⊂ p′ ⊂ R′ be the corresponding prime of R′. By assumption there exists
a prime p′′ ∈ V (I ′′) of R′′ lying over p′ and R′p′ → R′′p′′ is flat. Choose a prime

q′′ ⊂ κ(q′)⊗κ(p′)κ(p′′). This corresponds to a prime q′′ ⊂ S′′ = S′⊗R′R′′ which lies
over q′ and over p′′. In particular we see that I ′′S′′ ⊂ q′′ and that JS′′ ⊂ q′′. Note
that (S′ ⊗R′ R′′)q′′ is a localization of S′q′ ⊗R′p′ R

′′
p′′ . By assumption the module

(M ′ ⊗R′ R′′)q′′ is flat over R′′p′′ . Hence Algebra, Lemma 10.96.1 implies that M ′q′
is flat over R′p′ which is what we wanted to prove. �

Lemma 15.12.4. In Situation 15.12.1 assume R → S is essentially of finite pre-
sentation and M is an S-module of finite presentation. Let R′ = colimλ∈ΛRλ be a
directed colimit of R-algebras. Let Iλ ⊂ Rλ be ideals such that IλRµ ⊂ Iµ for all
µ ≥ λ and set I ′ = colimλ Iλ. If (15.12.1.1) holds for (R′, I ′), then there exists a
λ ∈ Λ such that (15.12.1.1) holds for (Rλ, Iλ).

Proof. We first prove the lemma in case R→ S is of finite presentation and then
we explain what needs to be changed in the general case. We are going to write
Sλ = S ⊗R Rλ, S′ = S ⊗R R′, Mλ = M ⊗R Rλ, and M ′ = M ⊗R R′. The base
change S′ is of finite presentation over R′ and M ′ is of finite presentation over S′

http://stacks.math.columbia.edu/tag/05LP
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and similarly for the versions with subscript λ, see Algebra, Lemma 10.13.2. By
Algebra, Theorem 10.125.4 the set

U ′ = {q′ ∈ Spec(S′) |M ′q′ is flat over R′}

is open in Spec(S′). Note that V (I ′S′ + JS′) is a quasi-compact space which is
contained in U ′ by assumption. Hence there exist finitely many g′j ∈ S′, j =
1, . . . ,m such that D(g′j) ⊂ U ′ and such that V (I ′S′ + JS′) ⊂

⋃
D(g′j). Note that

in particular (M ′)g′j is a flat module over R′.

We are going to pick increasingly large elements λ ∈ Λ. First we pick it large enough
so that we can find gj,λ ∈ Sλ mapping to g′j . The inclusion V (I ′S′+JS′) ⊂

⋃
D(g′j)

means that I ′S′ + JS′ + (g′1, . . . , g
′
m) = S′ which can be expressed as

1 =
∑

ytkt +
∑

zshs +
∑

fjg
′
j

for some zs ∈ I ′, yt ∈ J , kt, hs, fj ∈ S′. After increasing λ we may assume such
an equation holds in Sλ. Hence we may assume that V (IλSλ + JSλ) ⊂

⋃
D(gj,λ).

By Algebra, Lemma 10.156.1 we see that for some sufficiently large λ the modules
(Mλ)gj,λ are flat over Rλ. In particular the module Mλ is flat over Rλ at all the
primes corresponding to points of V (IλSλ + JSλ).

In the case that S is essentially of finite presentation, we can write S = Σ−1C where
R → C is of finite presentation and Σ ⊂ C is a multiplicative subset. We can also
write M = Σ−1N for some finitely presented C-module N , see Algebra, Lemma
10.122.3. At this point we introduce Cλ, C ′, Nλ, N ′. Then in the discussion above
we obtain an open U ′ ⊂ Spec(C ′) over which N ′ is flat over R′. The assumption
that (15.12.1.1) is true means that V (I ′S′+JS′) maps into U ′, because for a prime
q′ ⊂ S′, corresponding to a prime r′ ⊂ C ′ we have M ′q′ = N ′r′ . Thus we can find

g′j ∈ C ′ such that
⋃
D(g′j) contains the image of V (I ′S′ + JS′). The rest of the

proof is exactly the same as before. �

Lemma 15.12.5. In Situation 15.12.1. Let I ⊂ R be an ideal. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
(4) for each n ≥ 1 and any prime q ∈ V (J + IS) the module (M/InM)q is

flat over R/In.

Then (15.12.1.1) holds for (R, I), i.e., for every prime q ∈ V (J+IS) the localization
Mq is flat over R.

Proof. Let q ∈ V (J + IS). Then Algebra, Lemma 10.95.11 applied to R → Sq

and Mq implies that Mq is flat over R. �

15.13. Flattening over a Noetherian complete local ring

The following three lemmas give a completely algebraic proof of the existence of
the “local” flattening stratification when the base is a complete local Noetherian
ring R and the given module is finite over a finite type R-algebra S.

Lemma 15.13.1. Let R→ S be a ring map. Let M be an S-module. Assume

(1) (R,m) is a complete local Noetherian ring,
(2) S is a Noetherian ring, and

http://stacks.math.columbia.edu/tag/05LU
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(3) M is finite over S.

Then there exists an ideal I ⊂ m such that

(1) (M/IM)q is flat over R/I for all primes q of S/IS lying over m, and
(2) if J ⊂ R is an ideal such that (M/JM)q is flat over R/J for all primes q

lying over m, then I ⊂ J .

In other words, I is the smallest ideal of R such that (15.11.0.1) holds for (R →
S,m,M) where R = R/I, S = S/IS, m = m/I and M = M/IM .

Proof. Let J ⊂ R be an ideal. Apply Algebra, Lemma 10.95.11 to the module
M/JM over the ring R/J . Then we see that (M/JM)q is flat over R/J for all
primes q of S/JS if and only if M/(J +mn)M is flat over R/(J +mn) for all n ≥ 1.
We will use this remark below.

For every n ≥ 1 the local ring R/mn is Artinian. Hence, by Lemma 15.10.1 there
exists a smallest ideal In ⊃ mn such that M/InM is flat over R/In. It is clear that
In+1 + mn is contains In and applying Lemma 15.9.1 we see that In = In+1 + mn.
Since R = limn R/mn we see that I = limn In/m

n is an ideal in R such that
In = I +mn for all n ≥ 1. By the initial remarks of the proof we see that I verifies
(1) and (2). Some details omitted. �

Lemma 15.13.2. With notation R→ S, M , and I and assumptions as in Lemma
15.13.1. Consider a local homomorphism of local rings ϕ : (R,m) → (R′,m′) such
that R′ is Noetherian. Then the following are equivalent

(1) condition (15.11.0.1) holds for (R′ → S ⊗R R′,m′,M ⊗R R′), and
(2) ϕ(I) = 0.

Proof. The implication (2) ⇒ (1) follows from Lemma 15.11.1. Let ϕ : R → R′

be as in the lemma satisfying (1). We have to show that ϕ(I) = 0. This is
equivalent to the condition that ϕ(I)R′ = 0. By Artin-Rees in the Noetherian
local ring R′ (see Algebra, Lemma 10.49.4) this is equivalent to the condition that
ϕ(I)R′+ (m′)n = (m′)n for all n > 0. Hence this is equivalent to the condition that
the composition ϕn : R→ R′ → R′/(m′)n annihilates I for each n. Now assumption
(1) for ϕ implies assumption (1) for ϕn by Lemma 15.11.1. This reduces us to the
case where R′ is Artinian local.

Assume R′ Artinian. Let J = Ker(ϕ). We have to show that I ⊂ J . By the
construction of I in Lemma 15.13.1 it suffices to show that (M/JM)q is flat over
R/J for every prime q of S/JS lying over m. As R′ is Artinian, condition (1)
signifies that M ⊗R R′ is flat over R′. As R′ is Artinian and R/J → R′ is a
local injective ring map, it follows that R/J is Artinian too. Hence the flatness
of M ⊗R R′ = M/JM ⊗R/J R′ over R′ implies that M/JM is flat over R/J by
Algebra, Lemma 10.97.7. This concludes the proof. �

Lemma 15.13.3. With notation R→ S, M , and I and assumptions as in Lemma
15.13.1. In addition assume that R → S is of finite type. Then for any local
homomorphism of local rings ϕ : (R,m)→ (R′,m′) the following are equivalent

(1) condition (15.11.0.1) holds for (R′ → S ⊗R R′,m′,M ⊗R R′), and
(2) ϕ(I) = 0.

Proof. The implication (2)⇒ (1) follows from Lemma 15.11.1. Let ϕ : R→ R′ be
as in the lemma satisfying (1). As R is Noetherian we see that R → S is of finite
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presentation and M is an S-module of finite presentation. Write R′ = colimλRλ as
a directed colimit of localR-subalgebrasRλ ⊂ R′, with maximal ideals mλ = Rλ∩m′
such that each Rλ is essentially of finite type over R. By Lemma 15.11.3 we see
that condition (15.11.0.1) holds for (Rλ → S ⊗R Rλ,mλ,M ⊗R Rλ) for some λ.
Hence Lemma 15.13.2 applies to the ring map R→ Rλ and we see that I maps to
zero in Rλ, a fortiori it maps to zero in R′. �

15.14. Descent flatness along integral maps

First a few simple lemmas.

Lemma 15.14.1. Let R be a ring. Let P (T ) be a monic polynomial with coefficients
in R. If there exists an α ∈ R such that P (α) = 0, then P (T ) = (T − α)Q(T ) for
some monic polynomial Q(T ) ∈ R[T ].

Proof. By induction on the degree of P . If deg(P ) = 1, then P (T ) = T − α and
the result is true. If deg(P ) > 1, then we can write P (T ) = (T − α)Q(T ) + r for
some polynomial Q ∈ R[T ] of degree < deg(P ) and some r ∈ R by long division.
By assumption 0 = P (α) = (α − α)Q(α) + r = r and we conclude that r = 0 as
desired. �

Lemma 15.14.2. Let R be a ring. Let P (T ) be a monic polynomial with coefficients
in R. There exists a finite free ring map R → R′ such that P (T ) = (T − α)Q(T )
for some α ∈ R′ and some monic polynomial Q(T ) ∈ R′[T ].

Proof. Write P (T ) = T d+a1T
d−1+. . .+a0. Set R′ = R[x]/(xd+a1x

d−1+. . .+a0).
Set α equal to the congruence class of x. Then it is clear that P (α) = 0. Thus we
win by Lemma 15.14.1. �

Lemma 15.14.3. Let R → S be a finite ring map. There exists a finite free ring
extension R ⊂ R′ such that S ⊗R R′ is a quotient of a ring of the form

R′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))

with Pi(T ) =
∏
j=1,...,di

(T − αij) for some αij ∈ R′.

Proof. Let x1, . . . , xn ∈ S be generators of S over R. For each i we can choose
a monic polynomial Pi(T ) ∈ R[T ] such that P (xi) = 0 in S, see Algebra, Lemma
10.35.3. Say deg(Pi) = di. By Lemma 15.14.2 (applied

∑
di times) there exists a

finite free ring extension R ⊂ R′ such that each Pi splits completely:

Pi(T ) =
∏

j=1,...,di
(T − αij)

for certain αik ∈ R′. Let R′[T1, . . . , Tn] → S ⊗R R′ be the R′-algebra map which
maps Ti to xi ⊗ 1. As this maps Pi(Ti) to zero, this induces the desired surjection.

�

Lemma 15.14.4. Let R be a ring. Let S = R[T1, . . . , Tn]/J . Assume J contains
elements of the form Pi(Ti) with Pi(T ) =

∏
j=1,...,di

(T − αij) for some αij ∈ R.

For k = (k1, . . . , kn) with 1 ≤ ki ≤ di consider the ring map

Φk : R[T1, . . . , Tn]→ R, Ti 7−→ αiki

Set Jk = Φk(J). Then the image of Spec(S)→ Spec(R) is equal to V (
⋂
Jk).

Proof. This lemma proves itself. Hint: V (
⋂
Jk) =

⋃
V (Jk). �
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The following result is due to Ferrand, see [Fer69].

Lemma 15.14.5. Let R → S be a finite injective homomorphism of Noetherian
rings. Let M be an R-module. If M ⊗R S is a flat S-module, then M is a flat
R-module.

Proof. Let M be an R-module such that M ⊗R S is flat over S. By Algebra,
Lemma 10.38.7 in order to prove that M is flat we may replace R by any faithfully
flat ring extension. By Lemma 15.14.3 we can find a finite locally free ring extension
R ⊂ R′ such that S′ = S⊗RR′ = R′[T1, . . . , Tn]/J for some ideal J ⊂ R′[T1, . . . , Tn]
which contains the elements of the form Pi(Ti) with Pi(T ) =

∏
j=1,...,di

(T −αij) for

some αij ∈ R′. Note that R′ is Noetherian and that R′ ⊂ S′ is a finite extension of
rings. Hence we may replace R by R′ and assume that S has a presentation as in
Lemma 15.14.4. Note that Spec(S) → Spec(R) is surjective, see Algebra, Lemma
10.35.15. Thus, using Lemma 15.14.4 we conclude that I =

⋂
Jk is an ideal such

that V (I) = Spec(R). This means that I ⊂
√

(0), and since R is Noetherian that
I is nilpotent. The maps Φk induce commutative diagrams

S // R/Jk

R

^^ ==

from which we conclude that M/JkM is flat over R/Jk. By Lemma 15.9.1 we see
that M/IM is flat over R/I. Finally, applying Algebra, Lemma 10.97.5 we conclude
that M is flat over R. �

Lemma 15.14.6. Let R→ S be an injective integral ring map. Let M be a finitely
presented module over R[x1, . . . , xn]. If M ⊗R S is flat over S, then M is flat over
R.

Proof. Choose a presentation

R[x1, . . . , xn]⊕t → R[x1, . . . , xn]⊕r →M → 0.

Let’s say that the first map is given by the r × t-matrix T = (fij) with fij ∈
R[x1, . . . , xn]. Write fij =

∑
fij,Ix

I with fij,I ∈ R (multi-index notation). Con-
sider diagrams

R // S

Rλ

OO

// Sλ

OO

where Rλ is a finitely generated Z-subalgebra of R containing all fij,I and Sλ is a
finite Rλ-subalgebra of S. Let Mλ be the finite Rλ[x1, . . . , xn]-module defined by
a presentation as above, using the same matrix T but now viewed as a matrix over
Rλ[x1, . . . , xn]. Note that S is the directed colimit of the Sλ (details omitted). By
Algebra, Lemma 10.156.1 we see that for some λ the module Mλ⊗Rλ Sλ is flat over
Sλ. By Lemma 15.14.5 we conclude that Mλ is flat over Rλ. Since M = Mλ⊗Rλ R
we win by Algebra, Lemma 10.38.6. �
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15.15. Torsion and flatness

In this section we discuss the relationship between torsion and flatness.

Definition 15.15.1. Let R be a domain. Let M be an R-module.

(1) We say an element x ∈M is torsion if there exists a nonzero f ∈ R such
that fx = 0.

(2) We say M is torsion free if the only torsion element of M is 0.

Lemma 15.15.2. Let R be a domain. Let M be an R-module. The set of torsion
elements of M forms a submodule Mtors ⊂ M . The quotient module M/Mtors is
torsion free.

Proof. Omitted. �

Lemma 15.15.3. Let R be a domain. Any flat R-module is torsion free.

Proof. If x ∈ R is nonzero, then x : R → R is injective, and hence if M is flat
over R, then x : M → M is injective. Thus if M is flat over R, then M is torsion
free. �

Lemma 15.15.4. Let A be a valuation ring. An A-module M is flat over A if and
only if M is torsion free.

Proof. The implication “flat ⇒ torsion free” is Lemma 15.15.3. For the converse,
assume M is torsion free. By the equational criterion of flatness (see Algebra,
Lemma 10.38.10) we have to show that every relation in M is trivial. To do this
assume that

∑
i=1,...,n aixi = 0 with xi ∈ M and fi ∈ A. After renumbering we

may assume that v(a1) ≤ v(ai) for all i. Hence we can write ai = a′ia1 for some
a′i ∈ A. Note that a′1 = 1. As A is torsion free we see that x1 = −

∑
i≥2 a

′
ixi. Thus,

if we choose yi = xi, i = 2, . . . , n then

x1 =
∑

j≥2
−a′jyj , xi = yi, (i ≥ 2) 0 = a1 · (−a′j) + aj · 1(j ≥ 2)

shows that the relation was trivial (to be explicit the elements aij are defined by
setting a1j = −a′j and aij = δij for i, j ≥ 2). �

15.16. Content ideals

The definition may not be what you expect.

Definition 15.16.1. Let A be a ring. Let M be a flat A-module. Let x ∈ M . If
the set of ideals I in A such that x ∈ IM has a smallest element, we call it the
content ideal of x.

Note that since M is flat over A, for a pair of ideals I, I ′ of A we have IM ∩ I ′M =
(I ∩ I ′)M as can be seen by tensoring the exact sequence 0 → I ∩ I ′ → I ⊕ I ′ →
I + I ′ → 0 by M .

Lemma 15.16.2. Let A be a ring. Let M be a flat A-module. Let x ∈ M . The
content ideal of x, if it exists, is finitely generated.

Proof. Say x ∈ IM . Then we can write x =
∑
i=1,...,n fixi with fi ∈ I and

xi ∈M . Hence x ∈ I ′M with I ′ = (f1, . . . , fn). �
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Lemma 15.16.3. Let (A,m) be a local ring. Let u : M → N be a map of flat
A-modules such that u : M/mM → N/mN is injective. If x ∈M has content ideal
I, then u(x) has content ideal I as well.

Proof. It is clear that u(x) ∈ IN . If u(x) ∈ I ′N , then u(x) ∈ (I ′ ∩ I)N , see
discussion following Definition 15.16.1. Hence it suffices to show: if x ∈ I ′N and
I ′ ⊂ I, I ′ 6= I, then u(x) 6∈ I ′N . Since I/I ′ is a nonzero finite A-module (Lemma
15.16.2) there is a nonzero map χ : I/I ′ → A/m of A-modules by Nakayama’s
lemma (Algebra, Lemma 10.19.1). Since I is the content ideal of x we see that
x 6∈ I ′′M where I ′′ = Ker(χ). Hence x is not in the kernel of the map

IM = I ⊗AM
χ⊗1−−−→ A/m⊗M ∼= M/mM

Applying our hypothesis on u we conclude that u(x) does not map to zero under
the map

IN = I ⊗A N
χ⊗1−−−→ A/m⊗N ∼= N/mN

and we conclude. �

Lemma 15.16.4. Let A be a ring. Let M be a flat Mittag-Leffler module. Then
every element of M has a content ideal.

Proof. This is a special case of Algebra, Lemma 10.88.2. �

15.17. Flatness and finiteness conditions

In this section we discuss some implications of the type “flat + finite type ⇒ finite
presentation”. We will revisit this result in the chapter on flatness, see More on
Flatness, Section 37.1. A first result of this type was proved in Algebra, Lemma
10.104.6.

Lemma 15.17.1. Let R be a ring. Let S = R[x1, . . . , xn] be a polynomial ring
over R. Let M be an S-module. Assume

(1) there exist finitely many primes p1, . . . , pm of R such that the map R →∏
Rpj is injective,

(2) M is a finite S-module,
(3) M flat over R, and
(4) for every prime p of R the module Mp is of finite presentation over Sp.

Then M is of finite presentation over S.

Proof. Choose a presentation

0→ K → S⊕r →M → 0

of M as an S-module. Let q be a prime ideal of S lying over a prime p of R.
By assumption there exist finitely many elements k1, . . . , kt ∈ K such that if we
set K ′ =

∑
Skj ⊂ K then K ′p = Kp and K ′pj = Kpj for j = 1, . . . ,m. Setting

M ′ = S⊕r/K ′ we deduce that in particular M ′q = Mq. By openness of flatness, see
Algebra, Theorem 10.125.4 we conclude that there exists a g ∈ S, g 6∈ q such that
M ′g is flat over R. Thus M ′g →Mg is a surjective map of flat R-modules. Consider
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the commutative diagram

M ′g //

��

Mg

��∏
(M ′g)pj // ∏(Mg)pj

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow
is an injective map as R →

∏
Rpj is injective and M ′g is flat over R. Hence the

top horizontal arrow is injective, hence an isomorphism. This proves that Mg is of
finite presentation over Sg. We conclude by applying Algebra, Lemma 10.23.2. �

Lemma 15.17.2. Let R→ S be a ring homomorphism. Assume

(1) there exist finitely many primes p1, . . . , pm of R such that the map R →∏
Rpj is injective,

(2) R→ S is of finite type,
(3) S flat over R, and
(4) for every prime p of R the ring Sp is of finite presentation over Rp.

Then S is of finite presentation over R.

Proof. By assumption S is a quotient of a polynomial ring over R. Thus the result
follows directly from Lemma 15.17.1. �

Lemma 15.17.3. Let R be a ring. Let S = R[x1, . . . , xn] be a graded polynomial
algebra over R, i.e., deg(xi) > 0 but not necessarily equal to 1. Let M be a graded
S-module. Assume

(1) R is a local ring,
(2) M is a finite S-module, and
(3) M is flat over R.

Then M is finitely presented as an S-module.

Proof. Let M =
⊕
Md be the grading on M . Pick homogeneous generators

m1, . . . ,mr ∈M of M . Say deg(mi) = di ∈ Z. This gives us a presentation

0→ K →
⊕

i=1,...,r
S(−di)→M → 0

which in each degree d leads to the short exact sequence

0→ Kd →
⊕

i=1,...,r
Sd−di →Md → 0.

By assumption each Md is a finite flat R-module. By Algebra, Lemma 10.75.4
this implies each Md is a finite free R-module. Hence we see each Kd is a finite
R-module. Also each Kd is flat over R by Algebra, Lemma 10.38.12. Hence we
conclude that each Kd is finite free by Algebra, Lemma 10.75.4 again.

Let m be the maximal ideal of R. By the flatness of M over R the short exact
sequences above remain short exact after tensoring with κ = κ(m). As the ring
S ⊗R κ is Noetherian we see that there exist homogeneous elements k1, . . . , kt ∈ K
such that the images kj generate K ⊗R κ over S ⊗R κ. Say deg(kj) = ej . Thus for
any d the map ⊕

j=1,...,t
Sd−ej −→ Kd

http://stacks.math.columbia.edu/tag/053B
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becomes surjective after tensoring with κ. By Nakayama’s lemma (Algebra, Lemma
10.19.1) this implies the map is surjective overR. HenceK is generated by k1, . . . , kt
over S and we win. �

Lemma 15.17.4. Let R be a ring. Let S =
⊕

n≥0 Sn be a graded R-algebra.

Let M =
⊕

d∈ZMd be a graded S-module. Assume S is finitely generated as an
R-algebra, assume S0 is a finite R-algebra, and assume there exist finitely many
primes pj, i = 1, . . . ,m such that R→

∏
Rpj is injective.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module and finite as an S-module, then M is finitely

presented as an S-module.

Proof. As S is finitely generated as an R-algebra, it is finitely generated as an
S0 algebra, say by homogeneous elements t1, . . . , tn ∈ S of degrees d1, . . . , dn > 0.
Set P = R[x1, . . . , xn] with deg(xi) = di. The ring map P → S, xi → ti is finite
as S0 is a finite R-module. To prove (1) it suffices to prove that S is a finitely
presented P -module. To prove (2) it suffices to prove that M is a finitely presented
P -module. Thus it suffices to prove that if S = P is a graded polynomial ring and
M is a finite S-module flat over R, then M is finitely presented as an S-module.
By Lemma 15.17.3 we see Mp is a finitely presented Sp-module for every prime p
of R. Thus the result follows from Lemma 15.17.1. �

Remark 15.17.5. Let R be a ring. When does R satisfy the condition mentioned
in Lemmas 15.17.1, 15.17.2, and 15.17.4? This holds if

(1) R is local,
(2) R is Noetherian,
(3) R is a domain,
(4) R is a reduced ring with finitely many minimal primes, or
(5) R has finitely many weakly associated primes, see Algebra, Lemma 10.65.16.

Thus these lemmas hold in all cases listed above.

The following lemma will be improved on in More on Flatness, Proposition 37.12.9.

Lemma 15.17.6. Let A be a valuation ring. Let A → B be a ring map of finite
type. Let M be a finite B-module.

(1) If B is flat over A, then B is a finitely presented A-algebra.
(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. We are going to use that an A-module is flat if and only if it is torsion free,
see Lemma 15.15.4. By Algebra, Lemma 10.55.10 we can find a graded A-algebra
S with S0 = A and generated by finitely many elements in degree 1, an element
f ∈ S1 and a finite graded S-module N such that B ∼= S(f) and M ∼= N(f). If M is
torsion free, then we can take N torsion free by replacing it by N/Ntors, see Lemma
15.15.2. Similarly, if B is torsion free, then we can take S torsion free by replacing
it by S/Stors. Hence in case (1), we may apply Lemma 15.17.4 to see that S is
a finitely presented A-algebra, which implies that B = S(f) is a finitely presented
A-algebra. To see (2) we may first replace S by a graded polynomial ring, and then
we may apply Lemma 15.17.3 to conclude. �

http://stacks.math.columbia.edu/tag/053D
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15.18. Blowing up and flatness

In this section we begin our discussion of results of the form: “After a blow up the
strict transform becomes flat”. More results of this type may be found in More on
Flatness, Section 37.27.

Definition 15.18.1. Let R be a domain. Let M be an R-module. Let R ⊂ R′ be
an extension of domains. The strict transform of M along R → R′1 is the torsion
free R′-module

M ′ = (M ⊗R R′)/(M ⊗R R′)tors.

The following is a very weak version of flattening by blowing up, but it is already
sometimes a useful result.

Lemma 15.18.2. Let (R,m) be a local domain with fraction field K. Let S be a
finite type R-algebra. Let M be a finite S-module. For every valuation ring A ⊂ K
dominating R there exists an ideal I ⊂ m and a nonzero element a ∈ I such that

(1) I is finitely generated,
(2) A has center on R[ Ia ],

(3) the fibre ring of R→ R[ Ia ] at m is not zero, and

(4) the strict transform SI,a of S along R→ R[ Ia ] is flat and of finite presen-

tation over R, and the strict transform MI,a of M along R→ R[ Ia ] is flat
over R and finitely presented over SI,a.

Proof. Note that the assertion makes sense as R[ Ia ] is a domain, and R → R[ Ia ]
is injective, see Algebra, Lemmas 10.56.4 and 10.56.6. Before we start the proof of
the Lemma, note that there is no loss in generality assuming that S = R[x1, . . . , xn]
is a polynomial ring over R. We also fix a presentation

0→ K → S⊕r →M → 0.

Let MA be the strict transform of M along R→ A. It is a finite module over SA =
A[x1, . . . , xn]. By Lemma 15.15.4 we see that MA is flat over A. By Lemma 15.17.6
we see that MA is finitely presented. Hence there exist finitely many elements
k1, . . . , kt ∈ S⊕rA which generate the kernel of the presentation S⊕rA → MA as an
SA-module. For any choice of a ∈ I ⊂ m satisfying (1), (2), and (3) we denote
MI,a the strict transform of M along R → R[ Ia ]. It is a finite module over SI,a =

R[ Ia ][x1, . . . , xn]. By Algebra, Lemma 10.56.7 we have A = colimI,aR[ Ia ]. This
implies that SA = colimSI,a and MA = colimI,aMI,a. Thus we may choose a ∈
I ⊂ R such that k1, . . . , kt are elements of S⊕rI,a and map to zero in MI,a. For any

such pair (I, a) we set

M ′I,a = S⊕rI,a/
∑

SI,akj .

Since MA = S⊕rA /
∑
SAkj we see that also MA = colimI,aM

′
I,a. At this point we

may apply Algebra, Lemma 10.156.1 (3) to conclude that M ′I,a is flat for some pair

(I, a). (This lemma does not apply a priori to the system MI,a as the transition
maps may not satisfy the assumptions of the lemma.) Since flatness implies torsion
free ( Lemma 15.15.3), we also conclude that M ′I,a = MI,a for such a pair and we
win. �

1This is somewhat nonstandard notation.
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15.19. Completion and flatness

In this section we discuss when the completion of a “big” flat module is flat.

Lemma 15.19.1. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume
R is Noetherian and complete with respect to I. There is a canonical map(⊕

α∈A
R
)∧
−→

∏
α∈A

R

from the I-adic completion of the direct sum into the product which is universally
injective.

Proof. By definition an element x of the left hand side is x = (xn) where xn =
(xn,α) ∈

⊕
α∈AR/I

n such that xn,α = xn+1,α mod In. As R = R∧ we see that
for any α there exists a yα ∈ R such that xn,α = yα mod In. Note that for each n
there are only finitely many α such that the elements xn,α are nonzero. Conversely,
given (yα) ∈

∏
αR such that for each n there are only finitely many α such that

yα mod In is nonzero, then this defines an element of the left hand side. Hence we
can think of an element of the left hand side as infinite “convergent sums”

∑
α yα

with yα ∈ R such that for each n there are only finitely many yα which are nonzero
modulo In. The displayed map maps this element to the element to (yα) in the
product. In particular the map is injective.

Let Q be a finite R-module. We have to show that the map

Q⊗R
(⊕

α∈A
R
)∧
−→ Q⊗R

(∏
α∈A

R
)

is injective, see Algebra, Theorem 10.79.3. Choose a presentation R⊕k → R⊕m →
Q → 0 and denote q1, . . . , qm ∈ Q the corresponding generators for Q. By Artin-
Rees (Algebra, Lemma 10.49.2) there exists a constant c such that Im(R⊕k →
R⊕m) ∩ (IN )⊕m ⊂ Im((IN−c)⊕k → R⊕m). Let us contemplate the diagram⊕k

l=1

(⊕
α∈AR

)∧ //

��

⊕m
j=1

(⊕
α∈AR

)∧ //

��

Q⊗R
(⊕

α∈AR
)∧ //

��

0

⊕k
l=1

(∏
α∈AR

)
//⊕m

j=1

(∏
α∈AR

)
// Q⊗R

(∏
α∈AR

)
// 0

with exact rows. Pick an element
∑
j

∑
α yj,α of

⊕
j=1,...,m

(⊕
α∈AR

)∧
. If this

element maps to zero in the module Q⊗R
(∏

α∈AR
)
, then we see in particular that∑

j qj ⊗ yj,α = 0 in Q for each α. Thus we can find an element (z1,α, . . . , zk,α) ∈⊕
l=1,...,k R which maps to (y1,α, . . . , ym,α) ∈

⊕
j=1,...,mR. Moreover, if yj,α ∈ INα

for j = 1, . . . ,m, then we may assume that zl,α ∈ INα−c for l = 1, . . . , k. Hence

the sum
∑
l

∑
α zl,α is “convergent” and defines an element of

⊕
l=1,...,k

(⊕
α∈AR

)∧
which maps to the element

∑
j

∑
α yj,α we started out with. Thus the right vertical

arrow is injective and we win. �

The following lemma can also be deduced from Lemma 15.19.4 below.

Lemma 15.19.2. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume
R is Noetherian. The completion (

⊕
α∈AR)∧ is a flat R-module.

http://stacks.math.columbia.edu/tag/05BC
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Proof. Denote R∧ the completion of R with respect to I. As R → R∧ is flat by
Algebra, Lemma 10.93.3 it suffices to prove that (

⊕
α∈AR)∧ is a flat R∧-module

(use Algebra, Lemma 10.38.3). Since

(
⊕

α∈A
R)∧ = (

⊕
α∈A

R∧)∧

we may replace R by R∧ and assume that R is complete with respect to I (see Alge-
bra, Lemma 10.93.8). In this case Lemma 15.19.1 tells us the map (

⊕
α∈AR)∧ →∏

α∈AR is universally injective. Thus, by Algebra, Lemma 10.79.7 it suffices to
show that

∏
α∈AR is flat. By Algebra, Proposition 10.87.5 (and Algebra, Lemma

10.87.4) we see that
∏
α∈AR is flat. �

Lemma 15.19.3. Let A be a Noetherian ring. Let I be an ideal of A. Let M be a
finite A-module. For every p > 0 there exists a c > 0 such that TorAp (M,A/In+c)→
TorAp (M,A/In) is zero.

Proof. Proof for p = 1. Choose a short exact sequence 0→ K → R⊕t →M → 0.
Then TorA1 (M,A/In) = K∩(In)⊕t/InK. By Artin-Rees (Algebra, Lemma 10.49.2)
there is a constant c ≥ 0 such that K ∩ (In+c)⊕t ⊂ InK. Thus the result for p = 1.

For p > 1 we have TorAp (M,A/In) = TorAp−1(K,A/In). Thus the lemma follows by
induction. �

Lemma 15.19.4. Let A be a Noetherian ring. Let I be an ideal of A. Let (Mn)
be an inverse system of A-modules such that

(1) Mn is a flat A/In-module,
(2) Mn+1 →Mn is surjective.

Then M = limMn is a flat A-module and Q⊗AM = limQ⊗AMn for every finite
A-module Q.

Proof. We first show that Q ⊗AM = limQ ⊗AMn for every finite A-module Q.
Choose a resolution F2 → F1 → F0 → Q→ 0 by finite free A-modules Fi. Then

F2 ⊗AMn → F1 ⊗AMn → F0 ⊗AMn

is a chain complex whose homology in degree 0 is Q ⊗A Mn and whose homology
in degree 1 is

TorA1 (Q,Mn) = TorA1 (Q,A/In)⊗A/In Mn

as Mn is flat over A/In. By Lemma 15.19.3 we see that this system is essentially
constant (with value 0). It follows from Homology, Lemma 12.27.7 that limQ ⊗A
A/In = Coker(limF1 ⊗A Mn → limF0 ⊗A Mn). Since Fi is finite free this equals
Coker(F1 ⊗AM → F0 ⊗AM) = Q⊗AM .

Next, let Q → Q′ be an injective map of finite A-modules. We have to show that
Q⊗AM → Q′ ⊗AM is injective (Algebra, Lemma 10.38.4). By the above we see

Ker(Q⊗AM → Q′ ⊗AM) = Ker(limQ⊗AMn → limQ′ ⊗AMn).

For each n we have an exact sequence

TorA1 (Q′,Mn)→ TorA1 (Q′′,Mn)→ Q⊗AMn → Q′ ⊗AMn

where Q′′ = Coker(Q→ Q′). Above we have seen that the inverse systems of Tor’s
are essentially constant with value 0. It follows from Homology, Lemma 12.27.7
that the inverse limit of the right most maps is injective. �

http://stacks.math.columbia.edu/tag/0911
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Lemma 15.19.5. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) I is finitely generated,
(2) R/I is Noetherian,
(3) M/IM is flat over R/I,

(4) TorR1 (M,R/I) = 0.

Then the I-adic completion R∧ is a Noetherian ring and M∧ is flat over R∧.

Proof. By Algebra, Lemma 10.95.8 the modules M/InM are flat over R/In for all
n. By Algebra, Lemmas 10.93.6 and 10.93.7 we have (a) R∧ and M∧ are I-adically
complete and (b) R/In = R∧/InR∧ for all n. By Algebra, Lemma 10.93.9 the ring
R∧ is Noetherian. Applying Lemma 15.19.4 we conclude that M∧ = limM/InM
is flat as an R∧-module. �

15.20. The Koszul complex

We define the Koszul complex as follows.

Definition 15.20.1. Let R be a ring. Let ϕ : E → R be an R-module map.
The Koszul complex K•(ϕ) associated to ϕ is the commutative differential graded
algebra defined as follows:

(1) the underlying graded algebra is the exterior algebra K•(ϕ) = ∧(E),
(2) the differential d : K•(ϕ) → K•(ϕ) is the unique derivation such that

d(e) = ϕ(e) for all e ∈ E = K1(ϕ).

Explicitly, if e1 ∧ . . . ∧ en is one of the generators of degree n in K•(ϕ), then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1ϕ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e⊗ e and hence factors through the exterior algebra.

We often assume that E is a finite free module, say E = R⊕n. In this case the map
ϕ is given by a sequence of elements f1, . . . , fn ∈ R.

Definition 15.20.2. Let R be a ring and let f1, . . . , fr ∈ R. The Koszul complex
on f1, . . . , fr is the Koszul complex associated to the map (f1, . . . , fr) : R⊕r → R.
Notation K•(f•), K•(f1, . . . , fr), K•(R, f1, . . . , fr), or K•(R, f•).

Of course, if E is finite locally free, then K•(ϕ) is locally on Spec(R) isomorphic
to a Koszul complex K•(f1, . . . , fr). This complex has many interesting formal
properties.

Lemma 15.20.3. Let ϕ : E → R and ϕ : E′ → R be an R-module maps. Let ψ :
E → E′ be an R-module map such that ϕ′◦ψ = ϕ. Then ψ induces a homomorphism
of differential graded algebras K•(ϕ)→ K•(ϕ

′).

Proof. This is immediate from the definitions. �

Lemma 15.20.4. Let f1, . . . , fr ∈ R be a sequence. Let (xij) be an invertible
r × r-matrix with coefficients in R. Then the complexes K•(f•) and

K•(
∑

x1jfj ,
∑

x2jfj , . . . ,
∑

xcjfj)

are isomorphic.

http://stacks.math.columbia.edu/tag/0AGW
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Proof. Set gi =
∑
xijfj . The matrix (xij) gives an isomorphism x : R⊕r → R⊕r

such that (g1, . . . , gr) ◦ x = (f1, . . . , fr). Hence this follows from the functoriality
of the Koszul complex described in Lemma 15.20.3. �

Lemma 15.20.5. Let R be a ring. Let ϕ : E → R be an R-module map. Let e ∈ E
with image f = ϕ(e) in R. Then

f = de+ ed

as endomorphisms of K•(ϕ).

Proof. This is true because d(ea) = d(e)a− ed(a) = fa− ed(a). �

Lemma 15.20.6. Let R be a ring. Let f1, . . . , fr ∈ R be a sequence. Multiplication
by fi on K•(f•) is homotopic to zero, and in particular the cohomology modules
Hi(K•(f•)) are annihilated by the ideal (f1, . . . , fr).

Proof. Special case of Lemma 15.20.5. �

In Derived Categories, Section 13.9 we defined the cone of a morphism of cochain
complexes. The cone C(f)• of a morphism of chain complexes f : A• → B• is the
complex C(f)• given by C(f)n = Bn ⊕An−1 and differential

(15.20.6.1) dC(f),n =

(
dB,n fn−1

0 −dA,n−1

)
It comes equipped with canonical morphisms of complexes i : B• → C(f)• and
p : C(f)• → A•[−1] induced by the obvious maps Bn → C(f)n → An−1.

Lemma 15.20.7. Let R be a ring. Let ϕ : E → R be an R-module map. Let
f ∈ R. Set E′ = E ⊕R and define ϕ′ : E′ → R by ϕ on E and multiplication by f
on R. The complex K•(ϕ

′) is isomorphic to the cone of the map of complexes

f : K•(ϕ) −→ K•(ϕ).

Proof. Denote e0 ∈ E′ the element 1 ∈ R ⊂ R⊕ E. By our definition of the cone
above we see that

C(f)n = Kn(ϕ)⊕Kn−1(ϕ) = ∧n(E)⊕ ∧n−1(E) = ∧n(E′)

where in the last = we map (0, e1 ∧ . . .∧ en−1) to e0 ∧ e1 ∧ . . .∧ en−1 in ∧n(E′). A
computation shows that this isomorphism is compatible with differentials. Namely,
this is clear for elements of the first summand as ϕ′|E = ϕ and dC(f) restricted to
the first summand is just dK•(ϕ). On the other hand, if e1∧ . . .∧ en−1 is in the first
summand, then

dC(f)(0, e1 ∧ . . . ∧ en−1) = fe1 ∧ . . . ∧ en−1 − dK•(ϕ)(e1 ∧ . . . ∧ en−1)

and on the other hand

dK•(ϕ′)(e0 ∧ e1 ∧ . . . ∧ en−1)

=
∑

i=0,...,n−1
(−1)iϕ′(ei)e0 ∧ . . . ∧ êi ∧ . . . ∧ en−1

= fe1 ∧ . . . ∧ en−1 +
∑

i=1,...,n−1
(−1)iϕ(ei)e0 ∧ . . . ∧ êi ∧ . . . ∧ en−1

= fe1 ∧ . . . ∧ en−1 − e0

(∑
i=1,...,n−1

(−1)i+1ϕ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en−1

)
which is the image of the result of the previous computation. �

http://stacks.math.columbia.edu/tag/0626
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Lemma 15.20.8. Let R be a ring. Let f1, . . . , fr be a sequence of elements of R.
The complex K•(f1, . . . , fr) is isomorphic to the cone of the map of complexes

fn : K•(f1, . . . , fr−1) −→ K•(f1, . . . , fr−1).

Proof. Special case of Lemma 15.20.7. �

Lemma 15.20.9. Let R be a ring. Let A• be a complex of R-modules. Let f, g ∈ R.
Let C(f)• be the cone of f : A• → A•. Define similarly C(g)• and C(fg)•. Then
C(fg)• is homotopy equivalent to the cone of a map

C(f)•[1] −→ C(g)•

Proof. We first prove this if A• is the complex consisting of R placed in degree 0.
In this case the map we use is

0 //

��

0 //

��

R
f //

1

��

R //

��

0

��
0 // R

g // R // 0 // 0

The cone of this is the chain complex consisting of R ⊕ R placed in degrees 1 and
0 and differential (15.20.6.1)(

g 1
0 −f

)
: R⊕2 −→ R⊕2

We leave it to the reader to show this this chain complex is homotopic to the
complex fg : R→ R. In general we write C(f)• and C(g)• as the total complex of
the double complexes

(R
f−→ R)⊗R A• and (R

g−→ R)⊗R A•
and in this way we deduce the result from the special case discussed above. Some
details omitted. �

Lemma 15.20.10. Let R be a ring. Let ϕ : E → R be an R-module map. Let
f, g ∈ R. Set E′ = E ⊕ R and define ϕ′f , ϕ

′
g, ϕ
′
fg : E′ → R by ϕ on E and

multiplication by f, g, fg on R. The complex K•(ϕ
′
fg) is isomorphic to the cone of

a map of complexes
K•(ϕ

′
f )[1] −→ K•(ϕ

′
g).

Proof. By Lemma 15.20.7 the complex K•(ϕ
′
f ) is isomorphic to the cone of mul-

tiplication by f on K•(ϕ) and similarly for the other two cases. Hence the lemma
follows from Lemma 15.20.9. �

Lemma 15.20.11. Let R be a ring. Let f1, . . . , fr−1 be a sequence of elements of
R. Let f, g ∈ R. The complex K•(f1, . . . , fr−1, fg) is homotopy equivalent to the
cone of a map of complexes

K•(f1, . . . , fr−1, f)[1] −→ K•(f1, . . . , fr−1, g)

Proof. Special case of Lemma 15.20.10. �

Lemma 15.20.12. Let A be a ring. Let f1, . . . , fr, g1, . . . , gs be elements of A.
Then there is an isomorphism of Koszul complexes

K•(A, f1, . . . , fr, g1, . . . , gs) = Tot(K•(A, f1, . . . , fr)⊗A K•(A, g1, . . . , gs)).

http://stacks.math.columbia.edu/tag/0629
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Proof. Omitted. Hint: If K•(A, f1, . . . , fr) is generated as a differential graded
algebra by x1, . . . , xr with d(xi) = fi and K•(A, g1, . . . , gs) is generated as a
differential graded algebra by y1, . . . , ys with d(yj) = gj , then we can think of
K•(A, f1, . . . , fr, g1, . . . , gs) as the differential graded algebra generated by the se-
quence of elements x1, . . . , xr, y1, . . . , yr with d(xi) = fi and d(yj) = gj . �

Lemma 15.20.13. Let R be a ring. Let f1, . . . , fr ∈ R. The extended alternating
Čech complex

R→
∏

i0
Rfi0 →

∏
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

is a colimit of the Koszul complexes K(R, fn1 , . . . , f
n
r ).

Proof. The transition maps K(R, fn1 , . . . , f
n
r ) → K(R, fn+1

1 , . . . , fn+1
r ) are the

maps sending ei1 ∧ . . . ∧ eip to fip+1
. . . firei1 ∧ . . . ∧ eip where the indices are such

that {1, . . . , r} = {i1, . . . , ir}. In particular the transition maps are always 1 in
degree r and equal to f1 . . . fr in degree 0. The terms of the colimit are equal to the
terms of the extended alternating Čech complex by Algebra, Lemma 10.9.9. �

15.21. Koszul regular sequences

Please take a look at Algebra, Sections 10.67 and 10.68 before looking at this one.

Definition 15.21.1. Let R be a ring. Let r ≥ 0 and let f1, . . . , fr ∈ R be a
sequence of elements. Let M be an R-module. The sequence f1, . . . , fr is called

(1) M -Koszul-regular if Hi(K•(f1, . . . , fr)⊗RM) = 0 for all i 6= 0,
(2) M -H1-regular if H1(K•(f1, . . . , fr)⊗RM) = 0,
(3) Koszul-regular if Hi(K•(f1, . . . , fr)) = 0 for all i 6= 0, and
(4) H1-Koszul-regular if H1(K•(f1, . . . , fr)) = 0.

We will see in Lemmas 15.21.2 and 15.21.5 that for elements f1, . . . , fr of a ring R
we have the following implications

f1, . . . , fr is a regular sequence⇒ f1, . . . , fr is a Koszul-regular sequence

⇒ f1, . . . , fr is an H1-regular sequence

⇒ f1, . . . , fr is a quasi-regular sequence.

In general none of these implications can be reversed, but if R is a Noetherian local
ring and f1, . . . , fr ∈ mR, then the 4 conditions are all equivalent (Lemma 15.21.6).
If f = f1 ∈ R is a length 1 sequence then it is clear that the following are all
equivalent

(1) f is a regular sequence of length one,
(2) f is a Koszul-regular sequence of length one, and
(3) f is a H1-regular sequence of length one.

It is also clear that these imply that f is a quasi-regular sequence of length one. But
there do exist quasi-regular sequences of length 1 which are not regular sequences.
Namely, let

R = k[x, y0, y1, . . .]/(xy0, xy1 − y0, xy2 − y1, . . .)

and let f be the image of x in R. Then f is a zerodivisor, but
⊕

n≥0(fn)/(fn+1) ∼=
k[x] is a polynomial ring.

Lemma 15.21.2. An M -regular sequence is M -Koszul-regular. A regular sequence
is Koszul-regular.
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Proof. Let R be a ring and let M be an R-module. It is immediate that an M -
regular sequence of length 1 is M -Koszul-regular. Let f1, . . . , fr be an M -regular
sequence. Then f1 is a nonzero divisor on M . Hence

0→ K•(f2, . . . , fr)⊗M
f1−→ K•(f2, . . . , fr)⊗M → K•(f2, . . . , fr)⊗M/f1M → 0

is a short exact sequence of complexes where f i is the image of fi in R/(f1). By
Lemma 15.20.8 the complex K•(R, f1, . . . , fr) is isomorphic to the cone of multi-
plication by f1 on K•(f2, . . . , fr). Thus K•(R, f1, . . . , fr) ⊗ M is isomorphic to
the cone on the first map. Hence K•(f2, . . . , fr)⊗M/f1M is quasi-isomorphic to
K•(f1, . . . , fr) ⊗M . As f2, . . . , fr is an M/f1M -regular sequence in R/(f1) the
result follows from the case r = 1 and induction. �

Lemma 15.21.3. Let f1, . . . , fr−1 ∈ R be a sequence and f, g ∈ R. Let M be an
R-module.

(1) If f1, . . . , fr−1, f and f1, . . . , fr−1, g are M -H1-regular then f1, . . . , fr−1, fg
is M -H1-regular too.

(2) If f1, . . . , fr−1, f and f1, . . . , fr−1, f are M -Koszul-regular then f1, . . . , fr−1, fg
is M -Koszul-regular too.

Proof. By Lemma 15.20.11 we have exact sequences

Hi(K•(f1, . . . , fr−1, f)⊗M)→ Hi(K•(f1, . . . , fr−1, fg)⊗M)→ Hi(K•(f1, . . . , fr−1, g)⊗M)

for all i. �

Lemma 15.21.4. Let ϕ : R→ S be a flat ring map. Let f1, . . . , fr ∈ R. Let M be
an R-module and set N = M ⊗R S.

(1) If f1, . . . , fr in R is an M -H1-regular sequence, then ϕ(f1), . . . , ϕ(fr) is
an N -H1-regular sequence in S.

(2) If f1, . . . , fr is an M -Koszul-regular sequence in R, then ϕ(f1), . . . , ϕ(fr)
is an N -Koszul-regular sequence in S.

Proof. This is true because K•(f1, . . . , fr)⊗RS = K•(ϕ(f1), . . . , ϕ(fr)) and there-
fore (K•(f1, . . . , fr)⊗RM)⊗R S = K•(ϕ(f1), . . . , ϕ(fr))⊗S N . �

Lemma 15.21.5. An M -H1-regular sequence is M -quasi-regular.

Proof. Let R be a ring and let M be an R-module. Let f1, . . . , fr be an M -H1-
regular sequence. Denote J = (f1, . . . , fr). The assumption means that we have an
exact sequence

∧2(Rr)⊗M → R⊕r ⊗M → JM → 0

where the first arrow is given by ei ∧ ej ⊗m 7→ (fiej − fjei)⊗m. In particular this
implies that

JM/J2M = JM ⊗R R/J = (M/JM)⊕r

is a finite free module. To finish the proof we have to prove for every n ≥ 2 the
following: if

ξ =
∑
|I|=n,I=(i1,...,ir)

mIf
i1
1 . . . f irr ∈ Jn+1M

then mI ∈ JM for all I. Note that f1, . . . , fr−1, f
n
r is an M -H1-regular sequence

by Lemma 15.21.3. Hence we see that the required result holds for the multi-index
I = (0, . . . , 0, n). It turns out that we can reduce the general case to this case as
follows.

http://stacks.math.columbia.edu/tag/062G
http://stacks.math.columbia.edu/tag/062H
http://stacks.math.columbia.edu/tag/062I


1112 15. MORE ON ALGEBRA

Let S = R[x1, x2, . . . , xr, 1/xr]. The ring map R → S is faithfully flat, hence
f1, . . . , fr is an M -H1-regular sequence in S, see Lemma 15.21.4. By Lemma 15.20.4
we see that

g1 = f1 − x1/xrfr, . . . gr−1 = fr−1 − xr−1/xrfr, gr = (1/xr)fr

is an M -H1-regular sequence in S. Finally, note that our element ξ can be rewritten

ξ =
∑
|I|=n,I=(i1,...,ir)

mI(g1 + xrgr)
i1 . . . (gr−1 + xrgr)

ir−1(xrgr)
ir

and the coefficient of gnr in this expression is∑
mIx

i1
1 . . . xirr ∈ J(M ⊗R S).

Since the monomials xi11 . . . xirr form part of an R-basis of S over R we conclude
that mI ∈ J for all I as desired. �

For nonzero finite modules over Noetherian local rings all of the types of regular
sequences introduced so far are equivalent.

Lemma 15.21.6. Let (R,m) be a Noetherian local ring. Let M be a nonzero finite
R-module. Let f1, . . . , fr ∈ m. The following are equivalent

(1) f1, . . . , fr is an M -regular sequence,
(2) f1, . . . , fr is a M -Koszul-regular sequence,
(3) f1, . . . , fr is an M -H1-regular sequence,
(4) f1, . . . , fr is an M -quasi-regular sequence.

In particular the sequence f1, . . . , fr is a regular sequence in R if and only if it is a
Koszul regular sequence, if and only if it is a H1-regular sequence, if and only if it
is a quasi-regular sequence.

Proof. The implication (1) ⇒ (2) is Lemma 15.21.2. The implication (2) ⇒ (3) is
immediate. The implication (3) ⇒ (4) is Lemma 15.21.5. The implication (4) ⇒
(1) is Algebra, Lemma 10.68.6. �

Lemma 15.21.7. Let A be a ring. Let I ⊂ A be an ideal. Let g1, . . . , gm be
a sequence in A whose image in A/I is H1-regular. Then I ∩ (g1, . . . , gm) =
I(g1, . . . , gm).

Proof. Consider the exact sequence of complexes

0→ I ⊗A K•(A, g1, . . . , gm)→ K•(A, g1, . . . , gm)→ K•(A/I, g1, . . . , gm)→ 0

Since the complex on the right has H1 = 0 by assumption we see that

Coker(I⊕m → I) −→ Coker(A⊕m → A)

is injective. This is equivalent to the assertion of the lemma. �

Lemma 15.21.8. Let A be a ring. Let I ⊂ J ⊂ A be ideals. Assume that J/I ⊂
A/I is generated by an H1-regular sequence. Then I ∩ J2 = IJ .

Proof. To prove this choose g1, . . . , gm ∈ J whose images in A/I form a H1-regular
sequence which generates J/I. In particular J = I + (g1, . . . , gm). Suppose that
x ∈ I ∩ J2. Because x ∈ J2 can write

x =
∑

aijgigj +
∑

ajgj + a

with aij ∈ A, aj ∈ I and a ∈ I2. Then
∑
aijgigj ∈ I ∩ (g1, . . . , gm) hence by

Lemma 15.21.7 we see that
∑
aijgigj ∈ I(g1, . . . , gm). Thus x ∈ IJ as desired. �
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Lemma 15.21.9. Let A be a ring. Let I be an ideal generated by a quasi-regular
sequence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm
form an H1-regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a quasi-regular
sequence in A.

Proof. We claim that g1, . . . , gm forms an H1-regular sequence in A/Id for every
d. By induction assume that this holds in A/Id−1. We have a short exact sequence
of complexes

0→ K•(A, g•)⊗A Id−1/Id → K•(A/I
d, g•)→ K•(A/I

d−1, g•)→ 0

Since f1, . . . , fn is quasi-regular we see that the first complex is a direct sum of copies
of K•(A/I, g1, . . . , gm) hence acyclic in degree 1. By induction hypothesis the last
complex is acyclic in degree 1. Hence also the middle complex is. In particular,
the sequence g1, . . . , gm forms a quasi-regular sequence in A/Id for every d ≥ 1, see
Lemma 15.21.5. Now we are ready to prove that f1, . . . , fn, g1, . . . , gm is a quasi-
regular sequence in A. Namely, set J = (f1, . . . , fn, g1, . . . , gm) and suppose that
(with multinomial notation)∑

|N |+|M |=d
aN,Mf

NgM ∈ Jd+1

for some aN,M ∈ A. We have to show that aN,M ∈ J for all N,M . Let e ∈
{0, 1, . . . , d}. Then∑

|N |=d−e, |M |=e
aN,Mf

NgM ∈ (g1, . . . , gm)e+1 + Id−e+1

Because g1, . . . , gm is a quasi-regular sequence in A/Id−e+1 we deduce∑
|N |=d−e

aN,Mf
N ∈ (g1, . . . , gm) + Id−e+1

for each M with |M | = e. By Lemma 15.21.7 applied to Id−e/Id−e+1 in the ring
A/Id−e+1 this implies

∑
|N |=d−e aN,Mf

N ∈ Id−e(g1, . . . , gm). Since f1, . . . , fn is

quasi-regular in A this implies that aN,M ∈ J for each N,M with |N | = d− e and
|M | = e. This proves the lemma. �

Lemma 15.21.10. Let A be a ring. Let I be an ideal generated by an H1-regular
sequence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm
form an H1-regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is an H1-regular
sequence in A.

Proof. We have to show that H1(A, f1, . . . , fn, g1, . . . , gm) = 0. To do this consider
the commutative diagram

∧2(A⊕n+m) //

��

A⊕n+m //

��

A //

��

0

∧2(A/I⊕m) // A/I⊕m // A/I // 0

Consider an element (a1, . . . , an+m) ∈ A⊕n+m which maps to zero in A. Because
g1, . . . , gm form an H1-regular sequence in A/I we see that (an+1, . . . , an+m) is
the image of some element α of ∧2(A/I⊕m). We can lift α to an element α ∈
∧2(A⊕n+m) and substract the image of it inA⊕n+m from our element (a1, . . . , an+m).
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Thus we may assume that an+1, . . . , an+m ∈ I. Since I = (f1, . . . , fn) we can mod-
ify our element (a1, . . . , an+m) by linear combinations of the elements

(0, . . . , gj , 0, . . . , 0, fi, 0, . . . , 0)

in the image of the top left horizontal arrow to reduce to the case that an+1, . . . , an+m

are zero. In this case (a1, . . . , an, 0, . . . , 0) defines an element of H1(A, f1, . . . , fn)
which we assumed to be zero. �

Lemma 15.21.11. Let A be a ring. Let f1, . . . , fn, g1, . . . , gm ∈ A be an H1-
regular sequence. Then the images g1, . . . , gm in A/(f1, . . . , fn) form an H1-regular
sequence.

Proof. Set I = (f1, . . . , fn). We have to show that any relation
∑
j=1,...,m ajgj in

A/I is a linear combination of trivial relations. Because I = (f1, . . . , fn) we can
lift this relation to a relation∑

j=1,...,m
ajgj +

∑
i=1,...,n

bifi = 0

in A. By assumption this relation in A is a linear combination of trivial relations.
Taking the image in A/I we obtain what we want. �

Lemma 15.21.12. Let A be a ring. Let I be an ideal generated by a Koszul-
regular sequence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images
g1, . . . , gm form a Koszul-regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a
Koszul-regular sequence in A.

Proof. Our assumptions say that K•(A, f1, . . . , fn) is a finite free resolution of A/I
and K•(A/I, g1, . . . , gm) is a finite free resolution of A/(fi, gj) over A/I. Then

K•(A, f1, . . . , fn, g1, . . . , gm) = Tot(K•(A, f1, . . . , fn)⊗A K•(A, g1, . . . , gm))

∼= A/I ⊗A K•(A, g1, . . . , gm)

= K•(A/I, g1, . . . , gm)

∼= A/(fi, gj)

The first equality by Lemma 15.20.12. The first quasi-isomorphism ∼= by (the dual
of) Homology, Lemma 12.22.7 as the qth row of the double complexK•(A, f1, . . . , fn)⊗A
K•(A, g1, . . . , gm) is a resolution of A/I ⊗AKq(A, g1, . . . , gm). The second equality
is clear. The last quasi-isomorphism by assumption. Hence we win. �

To conclude in the following lemma it is necessary to assume that both f1, . . . , fn
and f1, . . . , fn, g1, . . . , gm are Koszul-regular. A counter example to dropping the
assumption that f1, . . . , fn is Koszul-regular is Examples, Lemma 82.13.1.

Lemma 15.21.13. Let A be a ring. Let f1, . . . , fn, g1, . . . , gm ∈ A. If both
f1, . . . , fn and f1, . . . , fn, g1, . . . , gm are Koszul-regular sequences in A, then g1, . . . , gm
in A/(f1, . . . , fn) form a Koszul-regular sequence.

Proof. Set I = (f1, . . . , fn). Our assumptions say that K•(A, f1, . . . , fn) is a finite
free resolution of A/I and K•(A, f1, . . . , fn, g1, . . . , gm) is a finite free resolution of
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A/(fi, gj) over A. Then

A/(fi, gj) ∼= K•(A, f1, . . . , fn, g1, . . . , gm)

= Tot(K•(A, f1, . . . , fn)⊗A K•(A, g1, . . . , gm))

∼= A/I ⊗A K•(A, g1, . . . , gm)

= K•(A/I, g1, . . . , gm)

The first quasi-isomorphism∼= by assumption. The first equality by Lemma 15.20.12.
The second quasi-isomorphism by (the dual of) Homology, Lemma 12.22.7 as the
qth row of the double complex K•(A, f1, . . . , fn)⊗AK•(A, g1, . . . , gm) is a resolution
of A/I ⊗A Kq(A, g1, . . . , gm). The second equality is clear. Hence we win. �

Lemma 15.21.14. Let R be a ring. Let I be an ideal generated by f1, . . . , fr ∈ R.

(1) If I can be generated by a quasi-regular sequence of length r, then f1, . . . , fr
is a quasi-regular sequence.

(2) If I can be generated by an H1-regular sequence of length r, then f1, . . . , fr
is an H1-regular sequence.

(3) If I can be generated by a Koszul-regular sequence of length r, then f1, . . . , fr
is a Koszul-regular sequence.

Proof. If I can be generated by a quasi-regular sequence of length r, then I/I2

is free of rank r over R/I. Since f1, . . . , fr generate by assumption we see that
the images f i form a basis of I/I2 over R/I. It follows that f1, . . . , fr is a quasi-
regular sequence as all this means, besides the freeness of I/I2, is that the maps
Symn

R/I(I/I
2)→ In/In+1 are isomorphisms.

We continue to assume that I can be generated by a quasi-regular sequence, say
g1, . . . , gr. Write gj =

∑
aijfi. As f1, . . . , fr is quasi-regular according to the pre-

vious paragraph, we see that det(aij) is invertible mod I. The matrix aij gives a
map R⊕r → R⊕r which induces a map of Koszul complexes α : K•(R, f1, . . . , fr)→
K•(R, g1, . . . , gr), see Lemma 15.20.3. This map becomes an isomorphism on in-
verting det(aij). Since the cohomology modules of both K•(R, f1, . . . , fr) and
K•(R, g1, . . . , gr) are annihilated by I, see Lemma 15.20.6, we see that α is a quasi-
isomorphism. Hence if g1, . . . , gr is H1-regular, then so is f1, . . . , fr. Similarly for
Koszul-regular. �

Lemma 15.21.15. Let A → B be a ring map. Let f1, . . . , fr be a sequence in B
such that B/(f1, . . . , fr) is A-flat. Let A→ A′ be a ring map. Then the canonical
map

H1(K•(B, f1, . . . , fr))⊗A A′ −→ H1(K•(B
′, f ′1, . . . , f

′
r))

is surjective, where B′ = B ⊗A A′ and f ′i ∈ B′ is the image of fi.

Proof. The sequence

∧2(B⊕r)→ B⊕r → B → B/J → 0

is a complex of A-modules with B/J flat over A and cohomology group H1 =
H1(K•(B, f1, . . . , fr)) in the spot B⊕r. If we tensor this with A′ we obtain a
complex

∧2((B′)⊕r)→ (B′)⊕r → B′ → B′/J ′ → 0

which is exact at B′ and B′/J ′. In order to compute its cohomology group H ′1 =
H1(K•(B

′, f ′1, . . . , f
′
r)) at (B′)⊕r we split the first sequence above into short exact
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sequences 0 → J → B → B/J → 0 and 0 → K → B⊕r → J → 0 and ∧2(B⊕r) →
K → H1 → 0. Tensoring with A′ over A we obtain the exact sequences

0→ J ⊗A A′ → B ⊗A A′ → (B/J)⊗A A′ → 0
K ⊗A A′ → B⊕r ⊗A A′ → J ⊗A A′ → 0

∧2(B⊕r)⊗A A′ → K ⊗A A′ → H1 ⊗A A′ → 0

where the first one is exact as B/J is flat over A, see Algebra, Lemma 10.38.11.
Hence we conclude what we want. �

Lemma 15.21.16. Let R be a ring. Let a1, . . . , an ∈ R be elements such that R→
R⊕n, x 7→ (xa1, . . . , xan) is injective. Then the element

∑
aiti of the polynomial

ring R[t1, . . . , tn] is a nonzerodivisor.

Proof. If one of the ai is a unit this is just the statement that any element of the
form t1 + a2t2 + . . .+ antn is a nonzero divisor in the polynomial ring over R.

Case I: R is Noetherian. Let qj , j = 1, . . . ,m be the associated primes of R. We
have to show that each of the maps∑

aiti : Symd(R⊕n) −→ Symd+1(R⊕n)

is injective. As Symd(R⊕n) is a free R-module its associated primes are qj , j =
1, . . . ,m. For each j there exists an i = i(j) such that ai 6∈ qj because there exists
an x ∈ R with qjx = 0 but aix 6= 0 for some i by assumption. Hence ai is a unit in
Rqj and the map is injective after localizing at qj . Thus the map is injective, see
Algebra, Lemma 10.62.18.

Case II: R general. We can write R as the union of Noetherian rings Rλ with
a1, . . . , an ∈ Rλ. For each Rλ the result holds, hence the result holds for R. �

Lemma 15.21.17. Let R be a ring. Let f1, . . . , fn be a Koszul-regular sequence in
R. Consider the faithfully flat, smooth ring map

R −→ S = R[{tij}i≤j , t−1
11 , t

−1
22 , . . . , t

−1
nn ]

For 1 ≤ i ≤ n set

gi =
∑

i≤j
tijfj ∈ S.

Then g1, . . . , gn is a regular sequence in S and (f1, . . . , fn)S = (g1, . . . , gn).

Proof. The equality of ideals is obvious as the matrix
t11 t12 t13 . . .
0 t22 t23 . . .
0 0 t33 . . .
. . . . . . . . . . . .


is invertible in S. Because f1, . . . , fn is a Koszul-regular sequence we see that
the kernel of R → R⊕n, x 7→ (xf1, . . . , xfn) is zero (as it computes the nthe
Koszul homology of R w.r.t. f1, . . . , fn). Hence by Lemma 15.21.16 we see that
g1 = f1t11 + . . . + fnt1n is a nonzerodivisor in S′ = R[t11, t12, . . . , t1n, t

−1
11 ]. We

see that g1, f2, . . . , fn is a Koszul-sequence in S′ by Lemma 15.21.4 and 15.21.14.
We conclude that f2, . . . , fn is a Koszul-regular sequence in S′/(g2) by Lemma
15.21.13. Hence by induction on n we see that the images g2, . . . , gn of g2, . . . , gn in
S′/(g2)[{tij}2≤i≤j , t−1

22 , . . . , t
−1
nn ] form a regular sequence. This in turn means that

g1, . . . , gn forms a regular sequence in S. �
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15.22. Regular ideals

We will discuss the notion of a regular ideal sheaf in great generality in Divisors,
Section 30.12. Here we define the corresponding notion in the affine case, i.e., in
the case of an ideal in a ring.

Definition 15.22.1. Let R be a ring and let I ⊂ R be an ideal.

(1) We say I is a regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g 6∈ p and a regular sequence f1, . . . , fr ∈ Rg such that Ig is generated by
f1, . . . , fr.

(2) We say I is a Koszul-regular ideal if for every p ∈ V (I) there exists a
g ∈ R, g 6∈ p and a Koszul-regular sequence f1, . . . , fr ∈ Rg such that Ig
is generated by f1, . . . , fr.

(3) We say I is a H1-regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g 6∈ p and an H1-regular sequence f1, . . . , fr ∈ Rg such that Ig is generated
by f1, . . . , fr.

(4) We say I is a quasi-regular ideal if for every p ∈ V (I) there exists a
g ∈ R, g 6∈ p and a quasi-regular sequence f1, . . . , fr ∈ Rg such that Ig is
generated by f1, . . . , fr.

It is clear that given I ⊂ R we have the implications

I is a regular ideal⇒ I is a Koszul-regular ideal

⇒ I is a H1-regular ideal

⇒ I is a quasi-regular ideal

see Lemmas 15.21.2 and 15.21.5. Such an ideal is always finitely generated.

Lemma 15.22.2. A quasi-regular ideal is finitely generated.

Proof. Let I ⊂ R be a quasi-regular ideal. Since V (I) is quasi-compact, there
exist g1, . . . , gm ∈ R such that V (I) ⊂ D(g1) ∪ . . . ∪ D(gm) and such that Igj is

generated by a quasi-regular sequence gj1, . . . , gjrj ∈ Rgj . Write gji = g′ji/g
eij
j

for some g′ij ∈ I. Write 1 + x =
∑
gjhj for some x ∈ I which is possible as

V (I) ⊂ D(g1) ∪ . . . ∪ D(gm). Note that Spec(R) = D(g1) ∪ . . . ∪ D(gm)
⋃
D(x)

Then I is generated by the elements g′ij and x as these generate on each of the
pieces of the cover, see Algebra, Lemma 10.23.2. �

Lemma 15.22.3. Let I ⊂ R be a quasi-regular ideal of a ring. Then I/I2 is a
finite projective R/I-module.

Proof. This follows from Algebra, Lemma 10.75.2 and the definitions. �

We prove flat descent for Koszul-regular, H1-regular, quasi-regular ideals.

Lemma 15.22.4. Let A→ B be a faithfully flat ring map. Let I ⊂ A be an ideal.
If IB is a Koszul-regular (resp. H1-regular, resp. quasi-regular) ideal in B, then I
is a Koszul-regular (resp. H1-regular, resp. quasi-regular) ideal in A.

Proof. We fix the prime p ⊃ I throughout the proof. Assume IB is quasi-regular.
By Lemma 15.22.2 IB is a finite module, hence I is a finite A-module by Algebra,
Lemma 10.80.2. As A→ B is flat we see that

I/I2 ⊗A/I B/IB = I/I2 ⊗A B = IB/(IB)2.
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As IB is quasi-regular, the B/IB-module IB/(IB)2 is finite locally free. Hence
I/I2 is finite projective, see Algebra, Proposition 10.80.3. In particular, after re-
placing A by Af for some f ∈ A, f 6∈ p we may assume that I/I2 is free of rank r.
Pick f1, . . . , fr ∈ I which give a basis of I/I2. By Nakayama’s lemma (see Algebra,
Lemma 10.19.1) we see that, after another replacement A  Af as above, I is
generated by f1, . . . , fr.

Proof of the “quasi-regular” case. Above we have seen that I/I2 is free on the
r-generators f1, . . . , fr. To finish the proof in this case we have to show that the
maps Symd(I/I2)→ Id/Id+1 are isomorphisms for each d ≥ 2. This is clear as the

faithfully flat base changes Symd(IB/(IB)2) → (IB)d/(IB)d+1 are isomorphisms
locally on B by assumption. Details omitted.

Proof of the “H1-regular” and “Koszul-regular” case. Consider the sequence of
elements f1, . . . , fr generating I we constructed above. By Lemma 15.21.14 we
see that f1, . . . , fr map to a H1-regular or Koszul-regular sequence in Bg for any
g ∈ B such that IB is generated by an H1-regular or Koszul-regular sequence.
Hence K•(A, f1, . . . , fr)⊗A Bg has vanishing H1 or Hi, i > 0. Since the homology
of K•(B, f1, . . . , fr) = K•(A, f1, . . . , fr) ⊗A B is annihilated by IB (see Lemma
15.20.6) and since V (IB) ⊂

⋃
g as aboveD(g) we conclude that K•(A, f1, . . . , fr)⊗A

B has vanishing homology in degree 1 or all positive degrees. Using that A→ B is
faithfully flat we conclude that the same is true for K•(A, f1, . . . , fr). �

Lemma 15.22.5. Let A be a ring. Let I ⊂ J ⊂ A be ideals. Assume that J/I ⊂
A/I is a H1-regular ideal. Then I ∩ J2 = IJ .

Proof. Follows immediately from Lemma 15.21.8 by localizing. �

15.23. Local complete intersection maps

We can use the material above to define a local complete intersection map between
rings using presentations by (finite) polynomial algebras.

Lemma 15.23.1. Let A→ B be a finite type ring map. If for some presentation α :
A[x1, . . . , xn]→ B the kernel I is a Koszul-regular ideal then for any presentation
β : A[y1, . . . , ym]→ B the kernel J is a Koszul-regular ideal.

Proof. Choose fj ∈ A[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ A[y1, . . . , ym] with
β(gi) = α(xi). Then we get a commutative diagram

A[x1, . . . , xn, y1, . . . , ym]

xi 7→gi
��

yj 7→fj
// A[x1, . . . , xn]

��
A[y1, . . . , ym] // B

Note that the kernel K of A[xi, yj ]→ B is equal to K = (I, yj−fj) = (J, xi−fi). In
particular, as I is finitely generated by Lemma 15.22.2 we see that J = K/(xi− fi)
is finitely generated too.

Pick a prime q ⊂ B. Since I/I2⊕B⊕m = J/J2⊕B⊕n (Algebra, Lemma 10.129.15)
we see that

dim J/J2 ⊗B κ(q) + n = dim I/I2 ⊗B κ(q) +m.

Pick p1, . . . , pt ∈ I which map to a basis of I/I2 ⊗ κ(q) = I ⊗A[xi] κ(q). Pick

q1, . . . , qs ∈ J which map to a basis of J/J2⊗κ(q) = J⊗A[yj ]κ(q). So s+n = t+m.

http://stacks.math.columbia.edu/tag/07CX
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By Nakayama’s lemma there exist h ∈ A[xi] and h′ ∈ A[yj ] both mapping to
a nonzero element of κ(q) such that Ih = (p1, . . . , pt) in A[xi, 1/h] and Jh′ =
(q1, . . . , qs) in A[yj , 1/h

′]. As I is Koszul-regular we may also assume that Ih is
generated by a Koszul regular sequence. This sequence must necessarily have length
t = dim I/I2 ⊗B κ(q), hence we see that p1, . . . , pt is a Koszul-regular sequence by
Lemma 15.21.14. As also y1 − f1, . . . , ym − fm is a regular sequence we conclude

y1 − f1, . . . , ym − fm, p1, . . . , pt

is a Koszul-regular sequence in A[xi, yj , 1/h] (see Lemma 15.21.12). This sequence
generates the ideal Kh. Hence the ideal Khh′ is generated by a Koszul-regular
sequence of length m+ t = n+ s. But it is also generated by the sequence

x1 − g1, . . . , xn − gn, q1, . . . , qs

of the same length which is thus a Koszul-regular sequence by Lemma 15.21.14.
Finally, by Lemma 15.21.13 we conclude that the images of q1, . . . , qs in

A[xi, yj , 1/hh
′]/(x1 − g1, . . . , xn − gn) ∼= A[yj , 1/h

′′]

form a Koszul-regular sequence generating Jh′′ . Since h′′ is the image of hh′ it
doesn’t map to zero in κ(q) and we win. �

This lemma allows us to make the following definition.

Definition 15.23.2. A ring map A→ B is called a local complete intersection if it
is of finite type and for some (equivalently any) presentation B = A[x1, . . . , xn]/I
the ideal I is Koszul-regular.

This notion is local.

Lemma 15.23.3. Let R→ S be a ring map. Let g1, . . . , gm ∈ S generate the unit
ideal. If each R→ Sgj is a local complete intersection so is R→ S.

Proof. Let S = R[x1, . . . , xn]/I be a presentation. Pick hj ∈ R[x1, . . . , xn] map-
ping to gj in S. Then R[x1, . . . , xn, xn+1]/(I, xn+1hj − 1) is a presentation of Sgj .
Hence Ij = (I, xn+1hj − 1) is a Koszul-regular ideal in R[x1, . . . , xn, xn+1]. Pick
a prime I ⊂ q ⊂ R[x1, . . . , xn]. Then hj 6∈ q for some j and qj = (q, xn+1hj − 1)
is a prime ideal of V (Ij) lying over q. Pick f1, . . . , fr ∈ I which map to a basis of
I/I2⊗κ(q). Then xn+1hj−1, f1, . . . , fr is a sequence of elements of Ij which map to
a basis of Ij⊗κ(qj). By Nakayama’s lemma there exists an h ∈ R[x1, . . . , xn, xn+1]
such that (Ij)h is generated by xn+1hj − 1, f1, . . . , fr. We may also assume that
(Ij)h is generated by a Koszul regular sequence of some length e. Looking at the
dimension of Ij ⊗ κ(qj) we see that e = r + 1. Hence by Lemma 15.21.14 we see
that xn+1hj − 1, f1, . . . , fr is a Koszul-regular sequence generating (Ij)h for some
h ∈ R[x1, . . . , xn, xn+1], h 6∈ qj . By Lemma 15.21.13 we see that Ih′ is generated
by a Koszul-regular sequence for some h′ ∈ R[x1, . . . , xn], h′ 6∈ q as desired. �

Lemma 15.23.4. Let R be a ring. Let R[x1, . . . , xn]. If R[x1, . . . , xn]/(f1, . . . , fc)
be a relative global complete intersection. Then f1, . . . , fc is a Koszul regular se-
quence.

Proof. Recall that the homology groups Hi(K•(f•)) are annihilated by the ideal
(f1, . . . , fc). Hence it suffices to show that Hi(K•(f•))q is zero for all primes q ⊂
R[x1, . . . , xn] containing (f1, . . . , fc). This follows from Algebra, Lemma 10.131.13
and the fact that a regular sequence is Koszul regular (Lemma 15.21.2). �
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Lemma 15.23.5. A syntomic ring map is a local complete intersection.

Proof. Combine Lemmas 15.23.4 and 15.23.3 and Algebra, Lemma 10.131.15. �

For a local complete intersection R → S we have Hn(LS/R) = 0 for n ≥ 2. Since
we haven’t (yet) defined the full cotangent complex we can’t state and prove this,
but we can deduce one of the consequences.

Lemma 15.23.6. Let A → B → C be ring maps. Assume B → C is a local
complete intersection homomorphism. Choose a presentation α : A[xs, s ∈ S]→ B
with kernel I. Choose a presentation β : B[y1, . . . , ym] → C with kernel J . Let
γ : A[xs, yt] → C be the induced presentation of C with kernel K. Then we get a
canonical commutative diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

0 // I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0

with exact rows. In particular, the six term exact sequence of Algebra, Lemma
10.129.4 can be completed with a zero on the left, i.e., the sequence

0→ H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ ΩB/A⊗BC → ΩC/A → ΩC/B → 0

is exact.

Proof. The only thing to prove is the injectivity of the map I/I2 ⊗ C → K/K2.
By assumption the ideal J is Koszul-regular. Hence we have IA[xs, yj ]∩K2 = IK
by Lemma 15.22.5. This means that the kernel of K/K2 → J/J2 is isomorphic to
IA[xs, yj ]/IK. Since I/I2 ⊗A C = IA[xs, yj ]/IK this provides us with the desired
injectivity of I/I2⊗A C → K/K2 so that the result follows from the snake lemma,
see Homology, Lemma 12.5.17. �

Lemma 15.23.7. Let A→ B → C be ring maps. If B → C is a filtered colimit of
local complete intersection homomorphisms then the conclusion of Lemma 15.23.6
remains valid.

Proof. Follows from Lemma 15.23.6 and Algebra, Lemma 10.129.9. �

15.24. Cartier’s equality and geometric regularity

A reference for this section and the next is [Mat70, Section 39]. In order to
comfortably read this section the reader should be familiar with the naive cotangent
complex and its properties, see Algebra, Section 10.129.

Lemma 15.24.1 (Cartier equality). Let K/k be a finitely generated field extension.
Then ΩK/k and H1(LK/k) are finite dimensional and trdegk(K) = dimK ΩK/k −
dimK H1(LK/k).

Proof. We can find a global complete intersection A = k[x1, . . . , xn]/(f1, . . . , fc)
over k such that K is isomorphic to the fraction field of A, see Algebra, Lemma
10.147.11 and its proof. In this case we see that NLK/k is homotopy equivalent to
the complex ⊕

j=1,...,c
K −→

⊕
i=1,...,n

Kdxi

by Algebra, Lemmas 10.129.2 and 10.129.13. The transcendence degree of K over k
is the dimension of A (by Algebra, Lemma 10.112.1) which is n− c and we win. �
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Lemma 15.24.2. Let K ⊂ L ⊂ M be field extensions. Then the Jacobi-Zariski
sequence

0→ H1(LL/K)⊗LM → H1(LM/K)→ H1(LM/L)→ ΩL/K⊗LM → ΩM/K → ΩM/L → 0

is exact.

Proof. Combine Lemma 15.23.7 with Algebra, Lemma 10.147.11. �

Lemma 15.24.3. Given a commutative diagram of fields

K // K ′

k

OO

// k′

OO

with k ⊂ k′ and K ⊂ K ′ finitely generated field extensions the kernel and cokernel
of the maps

α : ΩK/k ⊗K K ′ → ΩK′/k′ and β : H1(LK/k)⊗K K ′ → H1(LK′/k′)

are finite dimensional and

dim Ker(α)−dim Coker(α)−dim Ker(β) + dim Coker(β) = trdegk(k′)− trdegK(K ′)

Proof. The Jacobi-Zariski sequences for k ⊂ k′ ⊂ K ′ and k ⊂ K ⊂ K ′ are

0→ H1(Lk′/k)⊗K ′ → H1(LK′/k)→ H1(LK′/k′)→ Ωk′/k⊗K ′ → ΩK′/k → ΩK′/k → 0

and

0→ H1(LK/k)⊗K ′ → H1(LK′/k)→ H1(LK′/K)→ ΩK/k⊗K ′ → ΩK′/k → ΩK′/K → 0

By Lemma 15.24.1 the vector spaces Ωk′/k, ΩK′/K , H1(LK′/K), and H1(Lk′/k)
are finite dimensional and the alternating sum of their dimensions is trdegk(k′) −
trdegK(K ′). The lemma follows. �

15.25. Geometric regularity

Let k be a field. Let (A,m,K) be a Noetherian local k-algebra. The Jacobi-Zariski
sequence (Algebra, Lemma 10.129.4) is a canonical exact sequence

H1(LK/k)→ m/m2 → ΩA/k ⊗A K → ΩK/k → 0

because H1(LK/A) = m/m2 by Algebra, Lemma 10.129.6. We will show that exact-
ness on the left of this sequence characterizes whether or not a regular local ring A
is geometrically regular over k. We will link this to the notion of formal smoothness
in Section 15.29.

Proposition 15.25.1. Let k be a field of characteristic p > 0. Let (A,m,K) be a
Noetherian local k-algebra. The following are equivalent

(1) A is geometrically regular over k,
(2) for all k ⊂ k′ ⊂ k1/p finite over k the ring A⊗k k′ is regular,
(3) A is regular and the canonical map H1(LK/k)→ m/m2 is injective, and
(4) A is regular and the map Ωk/Fp ⊗k K → ΩA/Fp ⊗A K is injective.
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Proof. Proof of (3) ⇒ (1). Assume (3). Let k ⊂ k′ be a finite purely inseparable
extension. Set A′ = A ⊗k k′. This is a local ring with maximal ideal m′. Set
K ′ = A′/m′. We get a commutative diagram

0 // H1(LK/k)⊗K ′ //

β

��

m/m2 ⊗K ′ //

��

ΩA/k ⊗A K ′ //

∼=
��

ΩK/k ⊗K ′ //

α

��

0

H1(LK′/k′) // m′/(m′)2 // ΩA′/k′ ⊗A′ K ′ // ΩK′/k′ // 0

with exact rows. The third vertical arrow is an isomorphism by base change for
modules of differentials (Algebra, Lemma 10.127.12). Thus α is surjective. By
Lemma 15.24.3 we have

dim Ker(α)− dim Ker(β) + dim Coker(β) = 0

(and these dimensions are all finite). A diagram chase shows that dimm′/(m′)2 ≤
dimm/m2. However, since A→ A′ is finite flat we see that dim(A) = dim(A′), see
Algebra, Lemma 10.108.6. Hence A′ is regular by definition.

Equivalence of (3) and (4). Consider the Jacobi-Zariski sequences for rows of the
commutative diagram

Fp // A // K

Fp //

OO

k //

OO

K

OO

to get a commutative diagram

0 // m/m2 // ΩA/Fp ⊗A K // ΩK/Fp // 0

0 // H1(LK/k) //

OO

Ωk/Fp ⊗k K //

OO

ΩK/Fp
//

OO

ΩK/k //

OO

0

with exact rows. We have used that H1(LK/A) = m/m2 and that H1(LK/Fp) = 0
as K/Fp is separable, see Algebra, Proposition 10.147.9. Thus it is clear that the
kernels of H1(LK/k) → m/m2 and Ωk/Fp ⊗k K → ΩA/Fp ⊗A K have the same
dimension.

Proof of (2) ⇒ (4) following Faltings, see [Fal78]. Let a1, . . . , an ∈ k be ele-
ments such that da1, . . . ,dan are linearly independent in Ωk/Fp . Consider the

field extension k′ = k(a
1/p
1 , . . . , a

1/p
n ). By Algebra, Lemma 10.147.3 we see that

k′ = k[x1, . . . , xn]/(xp1−a1, . . . , x
p
n−an). In particular we see that the naive cotan-

gent complex of k′/k is homotopic to the complex
⊕

j=1,...,n k
′ →

⊕
i=1,...,n k

′ with

the zero differential as d(xpj − aj) = 0 in Ωk[x1,...,xn]/k. Set A′ = A ⊗k k′ and

K ′ = A′/m′ as above. By Algebra, Lemma 10.129.8 we see that NLA′/A is homo-
topy equivalent to the complex

⊕
j=1,...,nA

′ →
⊕

i=1,...,nA
′ with the zero differen-

tial, i.e., H1(LA′/A) and ΩA′/A are free of rank n. The Jacobi-Zariski sequence for
Fp → A→ A′ is

H1(LA′/A)→ ΩA/Fp ⊗A A
′ → ΩA′/Fp → ΩA′/A → 0

Using the presentation A[x1, . . . , xn]→ A′ with kernel (xpj − aj) we see, unwinding

the maps in Algebra, Lemma 10.129.4, that the jth basis vector of H1(LA′/A) maps
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to daj ⊗ 1 in ΩA/Fp ⊗A′. As ΩA′/A is free (hence flat) we get on tensoring with K ′

an exact sequence

K ′⊕n → ΩA/Fp ⊗A K
′ β−→ ΩA′/Fp ⊗A′ K

′ → K ′⊕n → 0

We conclude that the elements daj ⊗ 1 generate Ker(β) and we have to show that
are linearly independent, i.e., we have to show dim(Ker(β)) = n. Consider the
following big diagram

0 // m′/(m′)2 // ΩA′/Fp ⊗K ′ // ΩK′/Fp // 0

0 // m/m2 ⊗K ′ //

α

OO

ΩA/Fp ⊗K ′ //

β

OO

ΩK/Fp ⊗K ′ //

γ

OO

0

By Lemma 15.24.1 and the Jacobi-Zariski sequence for Fp → K → K ′ we see that
the kernel and cokernel of γ have the same finite dimension. By assumption A′ is
regular (and of the same dimension as A, see above) hence the kernel and cokernel
of α have the same dimension. It follows that the kernel and cokernel of β have the
same dimension which is what we wanted to show.

The implication (1) ⇒ (2) is trivial. This finishes the proof of the proposition. �

Lemma 15.25.2. Let k be a field of characteristic p > 0. Let (A,m,K) be a
Noetherian local k-algebra. Assume A is geometrically regular over k. Let k ⊂ F ⊂
K be a finitely generated subextension. Let ϕ : k[y1, . . . , ym] → A be a k-algebra
map such that yi maps to an element of F in K and such that dy1, . . . , dym map
to a basis of ΩF/k. Set p = ϕ−1(m). Then

k[y1, . . . , ym]p → A

is flat and A/pA is regular.

Proof. Set A0 = k[y1, . . . , ym]p with maximal ideal m0 and residue field K0. Note
that ΩA0/k is free of rank m and ΩA0/k ⊗ K0 → ΩK0/k is an isomorphism. It is

clear that A0 is geometrically regular over k. Hence H1(LK0/k) → m0/m
2
0 is an

isomorphism, see Proposition 15.25.1. Now consider

H1(LK0/k)⊗K

��

// m0/m
2
0 ⊗K

��
H1(LK/k) // m/m2

Since the left vertical arrow is injective by Lemma 15.24.2 and the lower horizontal
by Proposition 15.25.1 we conclude that the right vertical one is too. Hence a
regular system of parameters in A0 maps to part of a regular system of parameters
in A. We win by Algebra, Lemmas 10.124.2 and 10.102.3. �

15.26. Topological rings and modules

Let’s quickly discuss some properties of topological abelian groups. An abelian
group M is a topological abelian group if M is endowed with a topology such that
addition M×M →M is continuous. A homomorphism of topological abelian groups
is just a homomorphism of abelian groups which is continuous. The category of
commutative topological groups is additive and has kernels and cokernels, but is
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1124 15. MORE ON ALGEBRA

not abelian (as the axiom Im = Coim doesn’t hold). If N ⊂ M is a subgroup,
then we think of N and M/N as topological groups also, namely using the induced
topology on N and the quotient topology on M/N (i.e., such that M → M/N is
submersive). Note that if N ⊂M is an open subgroup, then the topology on M/N
is discrete.

We say the topology on M is linear if there exists a fundamental system of neigh-
bourhoods of 0 consisting of subgroups. If so then these subgroups are also open.
An example is the following. Let I be a directed partially ordered set and let Gi
be an inverse system of (discrete) abelian groups over I. Then

G = limi∈I Gi

with the inverse limit topology is linearly topologized with a fundamental system
of neighbourhoods of 0 given by Ker(G → Gi). Conversely, let M be a linearly
topologized abelian group. Choose any fundamental system of open subgroups
Ui ⊂M , i ∈ I (i.e., the Ui form a fundamental system of open neighbourhoods and
each Ui is a subgroup of M). Setting i ≥ i′ ⇔ Ui ⊂ Ui′ we see that I is a directed
partially ordered set. We obtain a homomorphism of linearly topologized abelian
groups

c : M −→ limi∈IM/Ui.

It is clear that M is separated (as a topological space) if and only if c is injective.
We say that M is complete if c is an isomorphism2. We leave it to the reader to
check that this condition is independent of the choice of fundamental system of
open subgroups {Ui}i∈I chosen above. In fact the topological abelian group M∧ =
limi∈IM/Ui is independent of this choice and is sometimes called the completion
of M . Any G = limGi as above is complete, in particular, the completion M∧ is
always complete.

Definition 15.26.1 (Topological rings). Let R be a ring and let M be an R-
module.

(1) We say R is a topological ring if R is endowed with a topology such that
both addition and multiplication are continuous as maps R×R→ R where
R × R has the product topology. In this case we say M is a topological
module if M is endowed with a topology such that addition M ×M →M
and scalar multiplication R×M →M are continuous.

(2) A homomorphism of topological modules is just a continuous R-module
map. A homomorphism of topological rings is a ring homomorphism which
is continuous for the given topologies.

(3) We say M is linearly topologized if 0 has a fundamental system of neigh-
bourhoods consisting of submodules. We say R is linearly topologized if 0
has a fundamental system of neighbourhoods consisting of ideals.

(4) If R is linearly topologized, we say that I ⊂ R is an ideal of definition if
I is open and if every neighbourhood of 0 contains In for some n.

(5) If R is linearly topologized, we say that R is pre-admissible if R has an
ideal of definition.

2We include being separated as part of being complete as we’d like to have a unique limits
in complete groups. There is a definition of completeness for any topological group, agreeing,

modulo the separation issue, with this one in our special case.
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15.27. FORMALLY SMOOTH MAPS OF TOPOLOGICAL RINGS 1125

(6) If R is linearly topologized, we say that R is admissible if it is pre-
admissible and complete3.

(7) If R is linearly topologized, we say that R is pre-adic if there exists an
ideal of definition I such that {In}n≥0 forms a fundamental system of
neighbourhoods of 0.

(8) If R is linearly topologized, we say that R is adic if R is pre-adic and
complete.

Note that a (pre)adic topological ring is the same thing as a (pre)admissible topo-
logical ring which has an ideal of definition I such that In is open for all n ≥ 1.

Let R be a ring and let M be an R-module. Let I ⊂ R be an ideal. Then we can
consider the linear topology on R which has {In}n≥0 as a fundamental system of
neighbourhoods of 0. This topology is called the I-adic topology; R is a pre-adic
topological ring in the I-adic topology4. Moreover, the linear topology on M which
has {InM}n≥0 as a fundamental system of open neighbourhoods of 0 turns M into
a topological R-module. This is called the I-adic topology on M . We see that M
is I-adically complete (as defined in Algebra, Definition 10.93.5) if and only M is
complete in the I-adic topology5. In particular, we see that R is I-adically complete
if and only if R is an adic topological ring in the I-adic topology.

As a special case, note that the discrete topology is the 0-adic topology and that
any ring in the discrete topology is adic.

Lemma 15.26.2. Let ϕ : R → S be a ring map. Let I ⊂ R and J ⊂ S be ideals
and endow R with the I-adic topology and S with the J-adic topology. Then ϕ is a
homomorphism of topological rings if and only if ϕ(In) ⊂ J for some n ≥ 1.

Proof. Omitted. �

15.27. Formally smooth maps of topological rings

There is a version of formal smoothness which applies to homomorphisms of topo-
logical rings.

Definition 15.27.1. Let R → S be a homomorphism of topological rings with
R and S linearly topologized. We say S is formally smooth over R if for every
commutative solid diagram

S //

!!

A/J

R //

OO

A

OO

of homomorphisms of topological rings where A is a discrete ring and J ⊂ A is an
ideal of square zero, a dotted arrow exists which makes the diagram commute.

We will mostly use this notion when given ideals m ⊂ R and n ⊂ S and we endow R
with the m-adic topology and S with the n-adic topology. Continuity of ϕ : R→ S
holds if and only if ϕ(mm) ⊂ n for some m ≥ 1, see Lemma 15.26.2. It turns out
that in this case only the topology on S is relevant.

3By our conventions this includes separated.
4Thus the I-adic topology is sometimes called the I-pre-adic topology.
5 It may happen that the I-adic completion M∧ is not I-adically complete, even though M∧

is always complete with respect to the limit topology. If I is finitely generated then the I-adic
topology and the limit topology on M∧ agree, see Algebra, Lemma 10.93.7 and its proof.
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Lemma 15.27.2. Let ϕ : R→ S be a ring map.

(1) If R→ S is formally smooth in the sense of Algebra, Definition 10.133.1,
then R → S is formally smooth for any linear topology on R and any
pre-adic topology on S such that R→ S is continuous.

(2) Let n ⊂ S and m ⊂ R ideals such that ϕ is continuous for the m-adic
topology on R and the n-adic topology on S. Then the following are equiv-
alent
(a) ϕ is formally smooth for the m-adic topology on R and the n-adic

topology on S, and
(b) ϕ is formally smooth for the discrete topology on R and the n-adic

topology on S.

Proof. Assume R → S is formally smooth in the sense of Algebra, Definition
10.133.1. If S has a pre-adic topology, then there exists an ideal n ⊂ S such
that S has the n-adic topology. Suppose given a solid commutative diagram as in
Definition 15.27.1. Continuity of S → A/J means that nk maps to zero in A/J
for some k ≥ 1, see Lemma 15.26.2. We obtain a ring map ψ : S → A from the
assumed formal smoothness of S over R. Then ψ(nk) ⊂ J hence ψ(n2k) = 0 as
J2 = 0. Hence ψ is continuous by Lemma 15.26.2. This proves (1).

The proof of (2)(b) ⇒ (2)(a) is the same as the proof of (1). Assume (2)(a).
Suppose given a solid commutative diagram as in Definition 15.27.1 where we use
the discrete topology on R. Since ϕ is continuous we see that ϕ(mn) ⊂ n for some
m ≥ 1. As S → A/J is continuous we see that nk maps to zero in A/J for some
k ≥ 1. Hence mnk maps into J under the map R→ A. Thus m2nk maps to zero in
A and we see that R → A is continuous in the m-adic topology. Thus (2)(a) gives
a dotted arrow as desired. �

Definition 15.27.3. Let R → S be a ring map. Let n ⊂ S be an ideal. If the
equivalent conditions (2)(a) and (2)(b) of Lemma 15.27.2 hold, then we say R→ S
is formally smooth for the n-adic topology.

This property is inherited by the completions.

Lemma 15.27.4. Let (R,m) and (S, n) be rings endowed with finitely generated
ideals. Endow R and S with the m-adic and n-adic topologies. Let R → S be a
homomorphism of topological rings. The following are equivalent

(1) R→ S is formally smooth for the n-adic topology,
(2) R→ S∧ is formally smooth for the n∧-adic topology,
(3) R∧ → S∧ is formally smooth for the n∧-adic topology.

Here R∧ and S∧ are the m-adic and n-adic completions of R and S.

Proof. The assumption that m is finitely generated implies thatR∧ is mR∧-adically
complete, that mR∧ = m∧ and that R∧/mnR∧ = R/mn, see Algebra, Lemma
10.93.7 and its proof. Similarly for (S, n). Thus it is clear that diagrams as in
Definition 15.27.1 for the cases (1), (2), and (3) are in 1-to-1 correspondence. �

The advantage of working with adic rings is that one gets a stronger lifting property.

Lemma 15.27.5. Let R→ S be a ring map. Let n be an ideal of S. Assume that
R → S is formally smooth in the n-adic topology. Consider a solid commutative
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diagram

S
ψ
//

!!

A/J

R //

OO

A

OO

of homomorphisms of topological rings where A is adic and A/J is the quotient (as
topological ring) of A by a closed ideal J ⊂ A such that J t is contained in an ideal
of definition of A for some t ≥ 1. Then there exists a dotted arrow in the category
of topological rings which makes the diagram commute.

Proof. Let I ⊂ A be an ideal of definition so that I ⊃ J t for some n. Then
A = limA/In and A/J = limA/J + In because J is assumed closed. Consider the
following diagram of discrete R algebras An,m = A/Jn + Im:

A/J3 + I3 //

��

A/J2 + I3 //

��

A/J + I3

��
A/J3 + I2 //

��

A/J2 + I2 //

��

A/J + I2

��
A/J3 + I // A/J2 + I // A/J + I

Note that each of the commutative squares defines a surjection

An+1,m+1 −→ An+1,m ×An,m An,m+1

of R-algebras whose kernel has square zero. We will inductively construct R-algebra
maps ϕn,m : S → An,m. Namely, we have the maps ϕ1,m = ψ mod J + Im.
Note that each of these maps is continuous as ψ is. We can inductively choose
the maps ϕn,1 by starting with our choice of ϕ1,1 and lifting up, using the formal
smoothness of S over R, along the right column of the diagram above. We construct
the remaining maps ϕn,m by induction on n + m. Namely, we choose ϕn+1,m+1

by lifting the pair (ϕn+1,m, ϕn,m+1) along the displayed surjection above (again
using the formal smoothness of S over R). In this way all of the maps ϕn,m
are compatible with the transition maps of the system. As J t ⊂ I we see that for
example ϕn = ϕnt,n mod In induces a map S → A/In. Taking the limit ϕ = limϕn
we obtain a map S → A = limA/In. The composition into A/J agrees with ψ
as we have seen that A/J = limA/J + In. Finally we show that ϕ is continuous.
Namely, we know that ψ(nr) ⊂ J + Ir/J for some r by our assumption that ψ is
a morphism of topological rings, see Lemma 15.26.2. Hence ϕ(nr) ⊂ J + I hence
ϕ(nrt) ⊂ I as desired. �

Lemma 15.27.6. Let R → S be a ring map. Let n ⊂ n′ ⊂ S be ideals. If R → S
is formally smooth for the n-adic topology, then R → S is formally smooth for the
n′-adic topology.

Proof. Omitted. �

Lemma 15.27.7. A composition of formally smooth continuous homomorphisms
of linearly topologized rings is formally smooth.
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Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) �

Lemma 15.27.8. Let R, S be rings. Let n ⊂ S be an ideal. Let R → S be
formally smooth for the n-adic topology. Let R → R′ be any ring map. Then
R′ → S′ = S ⊗R R′ is formally smooth in the n′ = nS′-adic topology.

Proof. Let a solid diagram

S //

((

S′ //

!!

A/J

R

OO

// R′ //

OO

A

OO

as in Definition 15.27.1 be given. Then the composition S → S′ → A/J is contin-
uous. By assumption the longer dotted arrow exists. By the universal property of
tensor product we obtain the shorter dotted arrow. �

We have seen descent for formal smoothness along faithfully flat ring maps in Alge-
bra, Lemma 10.133.15. Something similar holds in the current setting of topological
rings. However, here we just prove the following very simple and easy to prove ver-
sion which is already quite useful.

Lemma 15.27.9. Let R, S be rings. Let n ⊂ S be an ideal. Let R→ R′ be a ring
map. Set S′ = S ⊗R R′ and n′ = nS. If

(1) the map R → R′ embeds R as a direct summand of R′ as an R-module,
and

(2) R′ → S′ is formally smooth for the n′-adic topology,

then R→ S is formally smooth in the n-adic topology.

Proof. Let a solid diagram

S // A/J

R

OO

// A

OO

as in Definition 15.27.1 be given. Set A′ = A ⊗R R′ and J ′ = Im(J ⊗R R′ → A′).
The base change of the diagram above is the diagram

S′ //

ψ′

""

A′/J ′

R′

OO

// A′

OO

with continuous arrows. By condition (2) we obtain the dotted arrow ψ′ : S′ → A′.
Using condition (1) choose a direct summand decomposition R′ = R ⊕ C as R-
modules. (Warning: C isn’t an ideal in R′.) Then A′ = A⊕A⊗R C. Set

J ′′ = Im(J ⊗R C → A⊗R C) ⊂ J ′ ⊂ A′.
Then J ′ = J ⊕ J ′′ as A-modules. The image of the composition ψ : S → A′ of ψ′

with S → S′ is contained in A+J ′ = A⊕J ′′. However, in the ring A+J ′ = A⊕J ′′
the A-submodule J ′′ is an ideal! (Use that J2 = 0.) Hence the composition
S → A+ J ′ → (A+ J ′)/J ′′ = A is the arrow we were looking for. �
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The following lemma will be improved on in Section 15.29.

Lemma 15.27.10. Let k be a field and let (A,m,K) be a Noetherian local k-algebra.
If k → A is formally smooth for the m-adic topology, then A is a regular local ring.

Proof. Let k0 ⊂ k be the prime field. Then k0 is perfect, hence k/k0 is separable,
hence formally smooth by Algebra, Lemma 10.147.7. By Lemmas 15.27.2 and
15.27.7 we see that k0 → A is formally smooth for the m-adic topology on A.
Hence we may assume k = Q or k = Fp.

By Algebra, Lemmas 10.93.4 and 10.106.9 it suffices to prove the completion A∧ is
regular. By Lemma 15.27.4 we may replace A by A∧. Thus we may assume that
A is a Noetherian complete local ring. By the Cohen structure theorem (Algebra,
Theorem 10.149.8) there exist a map K → A. As k is the prime field we see that
K → A is a k-algebra map.

Let x1, . . . , xn ∈ m be elements whose images form a basis of m/m2. Set T =
K[[X1, . . . , Xn]]. Note that

A/m2 ∼= K[x1, . . . , xn]/(xixj)

and
T/m2

T
∼= K[X1, . . . , Xn]/(XiXj).

Let A/m2 → T/m2
T be the local K-algebra isomorphism given by mapping the class

of xi to the class of Xi. Denote f1 : A→ T/m2
T the composition of this isomorphism

with the quotient map A→ A/m2. The assumption that k → A is formally smooth
in the m-adic topology means we can lift f1 to a map f2 : A → T/m3

T , then to
a map f3 : A → T/m4

T , and so on, for all n ≥ 1. Warning: the maps fn are
continuous k-algebra maps and may not be K-algebra maps. We get an induced
map f : A → T = limT/mnT of local k-algebras. By our choice of f1, the map
f induces an isomorphism m/m2 → mT /m

2
T hence each fn is surjective and we

conclude f is surjective as A is complete. This implies dim(A) ≥ dim(T ) = n.
Hence A is regular by definition. (It also follows that f is an isomorphism.) �

The following result will be improved on in Section 15.29

Lemma 15.27.11. Let k be a field. Let (A,m,K) be a regular local k-algebra such
that K/k is separable. Then k → A is formally smooth in the m-adic topology.

Proof. It suffices to prove that the completion of A is formally smooth over k,
see Lemma 15.27.4. Hence we may assume that A is a complete local regular k-
algebra with residue field K separable over k. Since K is formally smooth over k
by Algebra, Proposition 10.147.9 we can successively find maps

K

ss uu zz ��
. . . // A/m4 // A/m3 // A/m2 // K

of k-algebras. Since A is complete this defines a k-algebra map K → A. Pick
a1, . . . , an ∈ m which map to a K-basis of m/m2. Consider the K-algebra map

c : K[[x1, . . . , xn]] −→ A

which maps xi to ai (existence of c follows from the universal property of the
powerseries ring). By construction the maps K[[x1, . . . , xn]]→ A/me are surjective
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for all e ≥ 1. Since K[[x1, . . . , xn]] is complete we see that c is surjective. Since
dim(A) = n as A is regular and since K[[x1, . . . , xn]] is a domain of dimension n
we see that the kernel of c is zero. Hence c is an isomorphism.

We win because the power series ring K[[x1, . . . , xn]] is formally smooth over k.
Namely, K is formally smooth over k and K[x1, . . . , xn] is formally smooth over
K as a polynomial algebra. Hence K[x1, . . . , xn] is formally smooth over k by
Algebra, Lemma 10.133.3. It follows that k → K[x1, . . . , xn] is formally smooth
for the (x1, . . . , xn)-adic topology by Lemma 15.27.2. Finally, it follows that k →
K[[x1, . . . , xn]] is formally smooth for the (x1, . . . , xn)-adic topology by Lemma
15.27.4. �

Lemma 15.27.12. Let A → B be a finite type ring map with A Noetherian. Let
q ⊂ B be a prime ideal lying over p ⊂ A. The following are equivalent

(1) A→ B is smooth at q, and
(2) Ap → Bq is formally smooth in the q-adic topology.

Proof. The implication (2) ⇒ (1) follows from Algebra, Lemma 10.136.2. Con-
versely, if A → B is smooth at q, then A → Bg is smooth for some g ∈ B,
g 6∈ q. Then A→ Bg is formally smooth by Algebra, Proposition 10.133.13. Hence
Ap → Bq is formally smooth as localization preserves formal smoothness (for exam-
ple by the criterion of Algebra, Proposition 10.133.8 and the fact that the cotangent
complex behaves well with respect to localization, see Algebra, Lemmas 10.129.11
and 10.129.13). Finally, Lemma 15.27.2 implies that Ap → Bq is formally smooth
in the q-adic topology. �

15.28. Some results on power series rings

Questions on formally smooth maps between Noetherian local rings can often be
reduced to questions on maps between power series rings. In this section we prove
some helper lemmas to facilitate this kind of argument.

Lemma 15.28.1. Let K be a field of characteristic 0 and A = K[[x1, . . . , xn]]. Let
L be a field of characteristic p > 0 and B = L[[x1, . . . , xn]]. Let Λ be a Cohen ring.
Let C = Λ[[x1, . . . , xn]].

(1) Q→ A is formally smooth in the m-adic topology.
(2) Fp → B is formally smooth in the m-adic topology.
(3) Z→ C is formally smooth in the m-adic topology.

Proof. By the universal property of power series rings it suffices to prove:

(1) Q→ K is formally smooth.
(2) Fp → L is formally smooth.
(3) Z→ Λ is formally smooth in the m-adic topology.

The first two are Algebra, Proposition 10.147.9. The third follows from Algebra,
Lemma 10.149.7 since for any test diagram as in Definition 15.27.1 some power of
p will be zero in A/J and hence some power of p will be zero in A. �

Lemma 15.28.2. Let K be a field and A = K[[x1, . . . , xn]]. Let Λ be a Cohen ring
and let B = Λ[[x1, . . . , xn]].

(1) If y1, . . . , yn ∈ A is a regular system of parameters then K[[y1, . . . , yn]]→
A is an isomorphism.
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(2) If z1, . . . , zr ∈ A form part of a regular system of parameters for A, then
r ≤ n and A/(z1, . . . , zr) ∼= K[[y1, . . . , yn−r]].

(3) If p, y1, . . . , yn ∈ B is a regular system of parameters then Λ[[y1, . . . , yn]]→
B is an isomorphism.

(4) If p, z1, . . . , zr ∈ B form part of a regular system of parameters for B,
then r ≤ n and B/(z1, . . . , zr) ∼= Λ[[y1, . . . , yn−r]].

Proof. Proof of (1). Set A′ = K[[y1, . . . , yn]]. It is clear that the map A′ → A
induces an isomorphism A′/mnA′ → A/mnA for all n ≥ 1. Since A and A′ are both
complete we deduce that A′ → A is an isomorphism. Proof of (2). Extend z1, . . . , zr
to a regular system of parameters z1, . . . , zr, y1, . . . , yn−r of A. Consider the map
A′ = K[[z1, . . . , zr, y1, . . . , yn−r]] → A. This is an isomorphism by (1). Hence (2)
follows as it is clear that A′/(z1, . . . , zr) ∼= K[[y1, . . . , yn−r]]. The proofs of (3) and
(4) are exactly the same as the proofs of (1) and (2). �

Lemma 15.28.3. Let A → B be a local homomorphism of Noetherian complete
local rings. Then there exists a commutative diagram

S // B

R

OO

// A

OO

with the following properties:

(1) the horizontal arrows are surjective,
(2) if the characteristic of A/mA is zero, then S and R are power series rings

over fields,
(3) if the characteristic of A/mA is p > 0, then S and R are power series

rings over Cohen rings, and
(4) R → S maps a regular system of parameters of R to part of a regular

system of parameters of S.

In particular R→ S is flat (see Algebra, Lemma 10.124.2) with regular fibre S/mRS
(see Algebra, Lemma 10.102.3).

Proof. Use the Cohen structure theorem (Algebra, Theorem 10.149.8) to choose
a surjection S → B as in the statement of the lemma where we choose S to be a
power series over a Cohen ring if the residue characteristic is p > 0 and a power
series over a field else. Let J ⊂ S be the kernel of S → B. Next, choose a
surjection R = Λ[[x1, . . . , xn]] → A where we choose Λ to be a Cohen ring if the
residue characteristic of A is p > 0 and Λ equal to the residue field of A otherwise.
We lift the composition Λ[[x1, . . . , xn]] → A → B to a map ϕ : R → S. This is
possible because Λ[[x1, . . . , xn]] is formally smooth over Z in the m-adic topology
(see Lemma 15.28.1) by an application of Lemma 15.27.5. Finally, we replace ϕ
by the map ϕ′ : R = Λ[[x1, . . . , xn]] → S′ = S[[y1, . . . , yn]] with ϕ′|Λ = ϕ|Λ and
ϕ′(xi) = ϕ(xi) + yi. We also replace S → B by the map S′ → B which maps yi
to zero. After this replacement it is clear that a regular system of parameters of R
maps to part of a regular sequence in S′ and we win. �

There should be an elementary proof of the following lemma.

Lemma 15.28.4. Let S → R and S′ → R be surjective maps of complete Noether-
ian local rings. Then S ×R S′ is a complete Noetherian local ring.
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Proof. Let k be the residue field of R. If the characteristic of k is p > 0, then we
denote Λ a Cohen ring (Algebra, Definition 10.149.5) with residue field k (Algebra,
Lemma 10.149.6). If the characteristic of k is 0 we set Λ = k. Choose a surjection
Λ[[x1, . . . , xn]] → R (as in the Cohen structure theorem, see Algebra, Theorem
10.149.8) and lift this to maps Λ[[x1, . . . , xn]] → S and ϕ : Λ[[x1, . . . , xn]] → S
and ϕ′ : Λ[[x1, . . . , xn]] → S′ using Lemmas 15.28.1 and 15.27.5. Next, choose
f1, . . . , fm ∈ S generating the kernel of S → R and f ′1, . . . , f

′
m′ ∈ S′ generating the

kernel of S′ → R. Then the map

Λ[[x1, . . . , xn, y1, . . . , ym, z1, . . . , zm′ ]] −→ S ×R S,
which sends xi to (ϕ(xi), ϕ

′(xi)) and yj to (fj , 0) and zj′ to (0, f ′j) is surjective.
Thus S ×R S′ is a quotient of a complete local ring, whence complete. �

15.29. Geometric regularity and formal smoothness

In this section we combine the results of the previous sections to prove the following
characterization of geometrically regular local rings over fields. We then recycle
some of our arguments to prove a characterization of formally smooth maps in the
m-adic topology between Noetherian local rings.

Theorem 15.29.1. Let k be a field. Let (A,m,K) be a Noetherian local k-algebra.
If the characteristic of k is zero then the following are equivalent

(1) A is a regular local ring, and
(2) k → A is formally smooth in the m-adic topology.

If the characteristic of k is p > 0 then the following are equivalent

(1) A is geometrically regular over k,
(2) k → A is formally smooth in the m-adic topology.
(3) for all k ⊂ k′ ⊂ k1/p finite over k the ring A⊗k k′ is regular,
(4) A is regular and the canonical map H1(LK/k)→ m/m2 is injective, and
(5) A is regular and the map Ωk/Fp ⊗k K → ΩA/Fp ⊗A K is injective.

Proof. If the characteristic of k is zero, then the equivalence of (1) and (2) follows
from Lemmas 15.27.10 and 15.27.11.

If the characteristic of k is p > 0, then it follows from Proposition 15.25.1 that
(1), (3), (4), and (5) are equivalent. Assume (2) holds. By Lemma 15.27.8 we see
that k′ → A′ = A⊗k k′ is formally smooth for the m′ = mA-adic topology. Hence
if k ⊂ k′ is finite purely inseparable, then A′ is a regular local ring by Lemma
15.27.10. Thus we see that (1) holds.

Finally, we will prove that (5) implies (2). Choose a solid diagram

A
ψ̄

//

!!

B/J

k

i

OO

ϕ // B

π

OO

as in Definition 15.27.1. As J2 = 0 we see that J has a canonical B/J module
structure and via ψ̄ an A-module structure. As ψ̄ is continuous for the m-adic
topology we see that mnJ = 0 for some n. Hence we can filter J by B/J-submodules
0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = J such that each quotient Jt+1/Jt is annihilated by m.
Considering the sequence of ring maps B → B/J1 → B/J2 → . . . → B/J we see
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that it suffices to prove the existence of the dotted arrow when J is annihilated by
m, i.e., when J is a K-vector space.

Assume given a diagram as above such that J is annihilated by m. By Lemma
15.27.11 we see that Fp → A is formally smooth in the m-adic topology. Hence
we can find a ring map ψ : A → B such that π ◦ ψ = ψ̄. Then ψ ◦ i, ϕ : k → B
are two maps whose compositions with π are equal. Hence D = ψ ◦ i− ϕ : k → J
is a derivation. By Algebra, Lemma 10.127.3 we can write D = ξ ◦ d for some
k-linear map ξ : Ωk/Fp → J . Using the K-vector space structure on J we extend
ξ to a K-linear map ξ′ : Ωk/Fp ⊗k K → J . Using (5) we can find a K-linear map
ξ′′ : ΩA/Fp ⊗A K whose restriction to Ωk/Fp ⊗k K is ξ′. Write

D′ : A
d−→ ΩA/Fp → ΩA/Fp ⊗A K

ξ′′−→ J.

Finally, set ψ′ = ψ −D′ : A → B. The reader verifies that ψ′ is a ring map such
that π ◦ ψ′ = ψ̄ and such that ψ′ ◦ i = ϕ as desired. �

Example 15.29.2. Let k be a field of characteristic p > 0. Suppose that a ∈ k
is an element which is not a pth power. A standard example of a geometrically
regular local k-algebra whose residue field is purely inseparable over k is the ring

A = k[x, y](x,yp−a)/(y
p − a− x)

Namely, A is a localization of a smooth algebra over k hence k → A is formally
smooth, hence k → A is formally smooth for the m-adic topology. A closely related
example is the following. Let k = Fp(s) and K = Fp(t)

perf . We claim the ring
map

k −→ A = K[[x]], s 7−→ t+ x

is formally smooth for the (x)-adic topology on A. Namely, Ωk/Fp is 1-dimensional
with basis ds. It maps to the element dx + dt = dx in ΩA/Fp . We leave it to
the reader to show that ΩA/Fp is free on dx as an A-module. Hence we see that
condition (5) of Theorem 15.29.1 holds and we conclude that k → A is formally
smooth in the (x)-adic topology.

Lemma 15.29.3. Let A→ B be a local homomorphism of Noetherian local rings.
Assume A→ B is formally smooth in the mB-adic topology. Then A→ B is flat.

Proof. We may assume that A and B a Noetherian complete local rings by Lemma
15.27.4 and Algebra, Lemma 10.93.10 (this also uses Algebra, Lemma 10.38.8 and
10.93.4 to see that flatness of the map on completions implies flatness of A→ B).
Choose a commutative diagram

S // B

R

OO

// A

OO

as in Lemma 15.28.3 with R→ S flat. Let I ⊂ R be the kernel of R→ A. Because
B is formally smooth over A we see that the A-algebra map

S/IS −→ B

has a section, see Lemma 15.27.5. Hence B is a direct summand of the flat A-
module S/IS (by base change of flatness, see Algebra, Lemma 10.38.6), whence
flat. �
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Proposition 15.29.4. Let A → B be a local homomorphism of Noetherian local
rings. Let k be the residue field of A and B = B⊗Ak the special fibre. The following
are equivalent

(1) A→ B is flat and B is geometrically regular over k,
(2) A → B is flat and k → B is formally smooth in the mB-adic topology,

and
(3) A→ B is formally smooth in the mB-adic topology.

Proof. The equivalence of (1) and (2) follows from Theorem 15.29.1.

Assume (3). By Lemma 15.29.3 we see that A→ B is flat. By Lemma 15.27.8 we
see that k → B is formally smooth in the mB-adic topology. Thus (2) holds.

Assume (2). Lemma 15.27.4 tells us formal smoothness is preserved under com-
pletion. The same is true for flatness by Algebra, Lemma 10.93.4. Hence we may
replace A and B by their respective completions and assume that A and B are
Noetherian complete local rings. In this case choose a diagram

S // B

R

OO

// A

OO

as in Lemma 15.28.3. We will use all of the properties of this diagram without
further mention. Fix a regular system of parameters t1, . . . , td of R with t1 = p in
case the characteristic of k is p > 0. Set S = S ⊗R k. Consider the short exact
sequence

0→ J → S → B → 0

Since B is flat over A we see that J ⊗R k is the kernel of S → B. As B and
S are regular we see that J ⊗R k is generated by elements x1, . . . , xr which form
part of a regular system of parameters of S, see Algebra, Lemma 10.102.4. Lift
these elements to x1, . . . , xr ∈ J . Then t1, . . . , td, x1, . . . , xr is part of a regular
system of parameters for S. Hence S/(x1, . . . , xr) is a power series ring over a field
(if the characteristic of k is zero) or a power series ring over a Cohen ring (if the
characteristic of k is p > 0), see Lemma 15.28.2. Moreover, it is still the case that
R → S/(x1, . . . , xr) maps t1, . . . , td to a part of a regular system of parameters of
S/(x1, . . . , xr). In other words, we may replace S by S/(x1, . . . , xr) and assume we
have a diagram

S // B

R

OO

// A

OO

as in Lemma 15.28.3 with moreover S = B. In this case the map

S ⊗R A −→ B

is an isomorphism as it is surjective and an isomorphism on special fibres, see
Algebra, Lemma 10.95.1. Thus by Lemma 15.27.8 it suffices to show that R → S
is formally smooth in the mS-adic topology. Of course, since S = B, we have that
S is formally smooth over k = R/mR.

Choose elements y1, . . . , ym ∈ S such that t1, . . . , td, y1, . . . , ym is a regular system
of parameters for S. If the characteristic of k is zero, choose a coefficient field K ⊂ S
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and if the characteristic of k is p > 0 choose a Cohen ring Λ ⊂ S with residue field
K. At this point the map K[[t1, . . . , td, y1, . . . , ym]] → S (characteristic zero case)
or Λ[[t2, . . . , td, y1, . . . , ym]]→ S (characteristic p > 0 case) is an isomorphism, see
Lemma 15.28.2. From now on we think of S as the above power series ring.

The rest of the proof is analogous to the argument in the proof of Theorem 15.29.1.
Choose a solid diagram

S
ψ̄

//

!!

N/J

R

i

OO

ϕ // N

π

OO

as in Definition 15.27.1. As J2 = 0 we see that J has a canonical N/J module
structure and via ψ̄ a S-module structure. As ψ̄ is continuous for the mS-adic
topology we see that mnSJ = 0 for some n. Hence we can filter J by N/J-submodules
0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = J such that each quotient Jt+1/Jt is annihilated by mS .
Considering the sequence of ring maps N → N/J1 → N/J2 → . . . → N/J we see
that it suffices to prove the existence of the dotted arrow when J is annihilated by
mS , i.e., when J is a K-vector space.

Assume given a diagram as above such that J is annihilated by mS . As Q → S
(characteristic zero case) or Z → S (characteristic p > 0 case) is formally smooth
in the mS-adic topology (see Lemma 15.28.1), we can find a ring map ψ : S → N
such that π ◦ ψ = ψ̄. Since S is a power series ring in t1, . . . , td (characteristic
zero) or t2, . . . , td (characteristic p > 0) over a subring, it follows from the universal
property of power series rings that we can change our choice of ψ so that ψ(ti)
equals ϕ(ti) (automatic for t1 = p in the characteristic p case). Then ψ ◦ i and
ϕ : R → N are two maps whose compositions with π are equal and which agree
on t1, . . . , td. Hence D = ψ ◦ i − ϕ : R → J is a derivation which annihilates
t1, . . . , td. By Algebra, Lemma 10.127.3 we can write D = ξ ◦ d for some R-linear
map ξ : ΩR/Z → J which annihilates dt1, . . . ,dtd (by construction) and mRΩR/Z
(as J is annihilated by mR). Hence ξ factors as a composition

ΩR/Z → Ωk/Z
ξ′−→ J

where ξ′ is k-linear. Using the K-vector space structure on J we extend ξ′ to a
K-linear map

ξ′′ : Ωk/Z ⊗k K −→ J.

Using that S/k is formally smooth we see that

Ωk/Z ⊗k K → ΩS/Z ⊗S K

is injective by Theorem 15.29.1 (this is true also in the characteristic zero case as
it is even true that Ωk/Z → ΩK/Z is injective in characteristic zero, see Algebra,
Proposition 10.147.9). Hence we can find a K-linear map ξ′′′ : ΩS/Z ⊗S K → J

whose restriction to Ωk/Z ⊗k K is ξ′′. Write

D′ : S
d−→ ΩS/Z → ΩS/Z → ΩS/Z ⊗S K

ξ′′′−−→ J.

Finally, set ψ′ = ψ −D′ : S → N . The reader verifies that ψ′ is a ring map such
that π ◦ ψ′ = ψ̄ and such that ψ′ ◦ i = ϕ as desired. �
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As an application of the result above we prove that deformations of formally smooth
algebras are unobstructed.

Lemma 15.29.5. Let A be a Noetherian complete local ring with residue field k.
Let B be a Noetherian complete local k-algebra. Assume k → B is formally smooth
in the mB-adic topology. Then there exists a Noetherian complete local ring C and
a local homomorphism A → C which is formally smooth in the mC-adic topology
such that C ⊗A k ∼= B.

Proof. Choose a diagram

S // B

R

OO

// A

OO

as in Lemma 15.28.3. Let t1, . . . , td be a regular system of parameters for R with
t1 = p in case the characteristic of k is p > 0. As B and S = S⊗Ak are regular we see
that Ker(S → B) is generated by elements x1, . . . , xr which form part of a regular
system of parameters of S, see Algebra, Lemma 10.102.4. Lift these elements to
x1, . . . , xr ∈ S. Then t1, . . . , td, x1, . . . , xr is part of a regular system of parameters
for S. Hence S/(x1, . . . , xr) is a power series ring over a field (if the characteristic
of k is zero) or a power series ring over a Cohen ring (if the characteristic of k is
p > 0), see Lemma 15.28.2. Moreover, it is still the case that R → S/(x1, . . . , xr)
maps t1, . . . , td to a part of a regular system of parameters of S/(x1, . . . , xr). In
other words, we may replace S by S/(x1, . . . , xr) and assume we have a diagram

S // B

R

OO

// A

OO

as in Lemma 15.28.3 with moreover S = B. In this case R→ S is formally smooth
in the mS-adic topology by Proposition 15.29.4. Hence the base change C = S⊗RA
is formally smooth over A in the mC-adic topology by Lemma 15.27.8. �

Remark 15.29.6. The assertion of Lemma 15.29.5 is quite strong. Namely, sup-
pose that we have a diagram

B

A // A′

OO

of local homomorphisms of Noetherian complete local rings where A→ A′ induces
an isomorphism of residue fields k = A/mA = A′/mA′ and with B ⊗A′ k formally
smooth over k. Then we can extend this to a commutative diagram

C // B

A //

OO

A′

OO

of local homomorphisms of Noetherian complete local rings where A → C is for-
mally smooth in the mC-adic topology and where C ⊗A k ∼= B⊗A′ k. Namely, pick
A→ C as in Lemma 15.29.5 lifting B ⊗A′ k over k. By formal smoothness we can
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find the arrow C → B, see Lemma 15.27.5. Denote C ⊗∧A A′ the completion of
C ⊗A A′ with respect to the ideal C ⊗A mA′ . Note that C ⊗∧A A′ is a Noetherian
complete local ring (see Algebra, Lemma 10.93.9) which is flat over A′ (see Algebra,
Lemma 10.95.11). We have moreover

(1) C ⊗∧A A′ → B is surjective,
(2) if A→ A′ is surjective, then C → B is surjective,
(3) if A→ A′ is finite, then C → B is finite, and
(4) if A′ → B is flat, then C ⊗∧A A′ ∼= B.

Namely, by Nakayama’s lemma for nilpotent ideals (see Algebra, Lemma 10.19.1)
we see that C ⊗A k ∼= B ⊗A′ k implies that C ⊗A A′/mnA′ → B/mnA′B is surjective
for all n. This proves (1). Parts (2) and (3) follow from part (1). Part (4) follows
from Algebra, Lemma 10.95.1.

15.30. Regular ring maps

Let k be a field. Recall that a Noetherian k-algebra A is said to be geometrically
regular over k if and only if A ⊗k k′ is regular for all finite purely inseparable
extensions k′ of k, see Algebra, Definition 10.154.2. Moreover, if this is the case
then A ⊗k k′ is regular for every finitely generated field extension k ⊂ k′, see
Algebra, Lemma 10.154.1. We use this notion in the following definition.

Definition 15.30.1. A ring map R→ Λ is regular if it is flat and for every prime
p ⊂ R the fibre ring

Λ⊗R κ(p) = Λp/pΛp

is Noetherian and geometrically regular over κ(p).

If R → Λ is a ring map with Λ Noetherian, then the fibre rings are always Noe-
therian.

Lemma 15.30.2 (Regular is a local property). Let R → Λ be a ring map with Λ
Noetherian. The following are equivalent

(1) R→ Λ is regular,
(2) Rp → Λq is regular for all q ⊂ Λ lying over p ⊂ R, and
(3) Rm → Λm′ is regular for all maximal ideals m′ ⊂ Λ lying over m in R.

Proof. This is true because a Noetherian ring is regular if and only if all the local
rings are regular local rings, see Algebra, Definition 10.106.7 and a ring map is
flat if and only if all the induced maps of local rings are flat, see Algebra, Lemma
10.38.19. �

Lemma 15.30.3 (Regular maps and base change). Let R → Λ be a regular ring
map. For any finite type ring map R→ R′ the base change R′ → Λ⊗RR′ is regular
too.

Proof. Flatness is preserved under any base change, see Algebra, Lemma 10.38.6.
Consider a prime p′ ⊂ R′ lying over p ⊂ R. The residue field extension κ(p) ⊂ κ(p′)
is finitely generated as R′ is of finite type over R. Hence the fibre ring

(Λ⊗R R′)⊗R′ κ(p′) = Λ⊗R κ(p)⊗κ(p) κ(p′)

is Noetherian by Algebra, Lemma 10.30.7 and the assumption on the fibre rings
of R → Λ. Geometric regularity of the fibres is preserved by Algebra, Lemma
10.154.1. �
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Lemma 15.30.4 (Composition of regular maps). Let A→ B → C be regular ring
maps. If the fibre rings of A→ C are Noetherian, then A→ C is regular.

Proof. Let p ⊂ A be a prime. Let κ(p) ⊂ k be a finite purely inseparable extension.
We have to show that C ⊗A k is regular. By Lemma 15.30.3 we may assume that
A = k and we reduce to proving that C is regular. The assumption is that B is
regular and that B → C is flat with regular fibres. Then C is regular by Algebra,
Lemma 10.108.8. Some details omitted. �

Lemma 15.30.5. Let R be a ring. Let (Ai, ϕii′) be a directed system of smooth
R-algebras. Set Λ = colimAi. If the fibre rings Λ ⊗R κ(p) are Noetherian for all
p ⊂ R, then R→ Λ is regular.

Proof. Note that Λ is flat over R by Algebra, Lemmas 10.38.2 and 10.132.10. Let
κ(p) ⊂ k be a finite purely inseparable extension. Note that

Λ⊗R κ(p)⊗κ(p) k = Λ⊗R k = colimAi ⊗R k

is a colimit of smooth k-algebras, see Algebra, Lemma 10.132.4. Since each local
ring of a smooth k-algebra is regular by Algebra, Lemma 10.135.3 we conclude that
all local rings of Λ⊗R k are regular by Algebra, Lemma 10.102.8. This proves the
lemma. �

Let’s see when a field extension defines a regular ring map.

Lemma 15.30.6. Let k ⊂ K be a field extension. Then k → K is a regular ring
map if and only if K is a separable field extension of k.

Proof. If k → K is regular, then K is geometrically reduced over k, hence K is
separable over k by Algebra, Proposition 10.147.9. Conversely, if K/k is separable,
then K is a colimit of smooth k-algebras, see Algebra, Lemma 10.147.11 hence is
regular by Lemma 15.30.5. �

Lemma 15.30.7. Let A→ B → C be ring maps. If A→ C is regular and B → C
is flat and surjective on spectra, then A→ B is regular.

Proof. By Algebra, Lemma 10.38.9 we see that A → B is flat. Let p ⊂ A be a
prime. The ring map B ⊗A κ(p) → C ⊗A κ(p) is flat and surjective on spectra.
Hence B ⊗A κ(p) is geometrically regular by Algebra, Lemma 10.154.3. �

15.31. Ascending properties along regular ring maps

This section is the analogue of Algebra, Section 10.151 but where the ring map
R→ S is regular.

Lemma 15.31.1. Let ϕ : R→ S be a ring map. Assume

(1) ϕ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and reduced.

Then S is reduced.

Proof. For Noetherian rings being reduced is the same as having properties (S1)
and (R0), see Algebra, Lemma 10.146.3. Hence we may apply Algebra, Lemmas
10.151.4 and 10.151.5. �
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15.32. Permanence of properties under completion

Given a Noetherian local ring A we denote A∧ the completion of A with respect
to its maximal ideal. We will use without further mention that A∧ is a Noetherian
complete local ring (Algebra, Lemmas 10.93.10 and 10.93.7) and that A → A∧ is
flat (Algebra, Lemma 10.93.3).

Lemma 15.32.1. Let A be a Noetherian local ring. Then dim(A) = dim(A∧).

Proof. See for example Algebra, Lemma 10.108.7. �

Lemma 15.32.2. Let A be a Noetherian local ring. Then depth(A) = depth(A∧).

Proof. See Algebra, Lemma 10.151.2. �

Lemma 15.32.3. Let A be a Noetherian local ring. Then A is Cohen-Macaulay if
and only if A∧ is so.

Proof. A local ring A is Cohen-Macaulay if and only dim(A) = depth(A). As both
of these invariants are preserved under completion (Lemmas 15.32.1 and 15.32.2)
the claim follows. �

Lemma 15.32.4. Let A be a Noetherian local ring. Then A is regular if and only
if A∧ is so.

Proof. If A∧ is regular, then A is regular by Algebra, Lemma 10.106.9. Assume
A is regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) =
dim(A∧) (Lemma 15.32.1). On the other hand, mA∧ is the maximal ideal of A∧

and hence mA∧ is generated by at most dim(A∧) elements. Thus A∧ is regular.
(You can also use Algebra, Lemma 10.108.8.) �

Lemma 15.32.5. Let A be a Noetherian local ring. Then A is a discrete valuation
ring if and only if A∧ is so.

Proof. This follows from Lemmas 15.32.1 and 15.32.4 and Algebra, Lemma 10.115.6.
�

Lemma 15.32.6. Let A be a Noetherian local ring.

(1) If A∧ is reduced, then so is A.
(2) In general A reduced does not imply A∧ is reduced.
(3) If A is Nagata, then A is reduced if and only if A∧ is reduced.

Proof. As A → A∧ is faithfully flat we have (1) by Algebra, Lemma 10.152.2.
For (2) see Algebra, Example 10.115.4 (there are also examples in characteristic
zero, see Algebra, Remark 10.115.5). For (3) see Algebra, Lemmas 10.150.27 and
10.150.24. �

Lemma 15.32.7. Let A → B be a flat local homomorphism of Noetherian lo-
cal rings such that mAB = mB and κ(mA) = κ(mB). Then A → B induces an
isomorphism A∧ → B∧ of completions.

Proof. By Algebra, Lemma 10.93.18 we see that B∧ is the mA-adic completion of
B and that A∧ → B∧ is finite. Since A → B is flat we have TorA1 (B, κ(mA)) = 0.
Hence we see that B∧ is flat over A∧ by Lemma 15.19.5. Thus B∧ is a free A∧-
module by Algebra, Lemma 10.75.4. Since A∧ → B∧ induces an isomorphism
κ(mA) = A∧/mAA

∧ → B∧/mAB
∧ = B∧/mBB

∧ = κ(mB) by our assumptions

http://stacks.math.columbia.edu/tag/07NV
http://stacks.math.columbia.edu/tag/07NW
http://stacks.math.columbia.edu/tag/07NX
http://stacks.math.columbia.edu/tag/07NY
http://stacks.math.columbia.edu/tag/0AP1
http://stacks.math.columbia.edu/tag/07NZ
http://stacks.math.columbia.edu/tag/0AGX


1140 15. MORE ON ALGEBRA

(and Algebra, Lemmas 10.93.6 and 10.93.7), we see that B∧ is free of rank 1. Thus
A∧ → B∧ is an isomorphism. �

15.33. Permanence of properties under étale maps

In this section we consider an étale ring map ϕ : A → B and we study which
properties of A are inherited by B and which properties of the local ring of B at q
are inherited by the local ring of A at p = ϕ−1(q). Basically, this section reviews
and collects earlier results and does not add any new material.

We will use without further mention that an étale ring map is flat (Algebra, Lemma
10.138.3) and that a flat local homomorphism of local rings is faithfully flat (Alge-
bra, Lemma 10.38.16).

Lemma 15.33.1. If A→ B is an étale ring map and q is a prime of B lying over
p ⊂ A, then Ap is Noetherian if and only if Bq is Noetherian.

Proof. Since Ap → Bq is faithfully flat we see that Bq Noetherian implies that Ap

is Noetherian, see Algebra, Lemma 10.152.1. Conversly, if Ap is Noetherian, then
Bq is Noetherian as it is a localization of a finite type Ap-algebra. �

Lemma 15.33.2. If A→ B is an étale ring map and q is a prime of B lying over
p ⊂ A, then dim(Ap) = dim(Bq).

Proof. Namely, because Ap → Bq is flat we have going down, and hence the
inequality dim(Ap) ≤ dim(Bq), see Algebra, Lemma 10.108.1. On the other hand,
suppose that q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of primes in Bq. Then the corresponding
sequence of primes p0 ⊂ p1 ⊂ . . . ⊂ pn (with pi = qi ∩ Ap) is chain also (i.e., no
equalities in the sequence) as an étale ring map is quasi-finite (see Algebra, Lemma
10.138.6) and a quasi-finite ring map induces a map of spectra with discrete fibres
(by definition). This means that dim(Ap) ≥ dim(Bq) as desired. �

Lemma 15.33.3. If A→ B is an étale ring map and q is a prime of B lying over
p ⊂ A, then Ap is regular if and only if Bq is regular.

Proof. By Lemma 15.33.1 we may assume both Ap and Bq are Noetherian in order
to prove the equivalence. Let x1, . . . , xt ∈ pAp be a minimal set of generators. As
Ap → Bq is faithfully flat we see that the images y1, . . . , yt in Bq form a minimal
system of generators for pBq = qBq (Algebra, Lemma 10.138.5). Regularity of Ap

by definition means t = dim(Ap) and similarly for Bq. Hence the lemma follows
from the equality dim(Ap) = dim(Bq) of Lemma 15.33.2. �

Lemma 15.33.4. If A → B is an étale ring map and A is a Dedekind domain,
then B is a finite product of Dedekind domains. In particular, the localizations Bq

for q ⊂ B maximal are discrete valuation rings.

Proof. The statement on the local rings follows from Lemmas 15.33.2 and 15.33.3
and Algebra, Lemma 10.115.6. It follows that B is a Noetherian normal ring of
dimension 1. By Algebra, Lemma 10.36.14 we conclude that B is a finite procuct of
normal domains of dimension 1. These are Dedekind domains by Algebra, Lemma
10.116.13. �
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15.34. Permanence of properties under henselization

Given a local ring R we denote Rh, resp. Rsh the henselization, resp. strict henseliza-
tion of R, see Algebra, Definition 10.145.18. Many of the properties of R are re-
flected in Rh and Rsh as we will show in this section.

Lemma 15.34.1. Let (R,m, κ) be a local ring. Then we have the following

(1) R→ Rh → Rsh are faithfully flat ring maps,
(2) mRh = mh and mRsh = mhRsh = msh,
(3) R/mn = Rh/mnRh for all n,
(4) there exist elements xi ∈ Rsh such that Rsh/mnRsh is a free R/mn-module

on xi mod mnRsh.

Proof. By construction Rh is a colimit of étale R-algebras, see Algebra, Lemma
10.145.16. Since étale ring maps are flat (Algebra, Lemma 10.138.3) we see that
Rh is flat over R by Algebra, Lemma 10.38.2. As a flat local ring homomorphism
is faithfully flat (Algebra, Lemma 10.38.16) we see that R → Rh is faithfully flat.
The ring map Rh → Rsh is a colimit of finite étale ring maps, see proof of Algebra,
Lemma 10.145.17. Hence the same arguments as above show that Rh → Rsh is
faithfully flat.

Part (2) follows from Algebra, Lemmas 10.145.16 and 10.145.17. Part (3) follows
from Algebra, Lemma 10.97.1 because R/m → Rh/mRh is an isomorphism and
R/mn → Rh/mnRh is flat as a base change of the flat ring map R→ Rh (Algebra,
Lemma 10.38.6). Let κsep be the residue field of Rsh (it is a separable algebraic
closure of κ). Choose xi ∈ Rsh mapping to a basis of κsep as a κ-vector space. Then
(4) follows from Algebra, Lemma 10.97.1 in exactly the same way as above. �

Lemma 15.34.2. Let (R,m, κ) be a local ring. Then

(1) R→ Rh, Rh → Rsh, and R→ Rsh are formally étale,
(2) R→ Rh, Rh → Rsh, resp. R→ Rsh are formally smooth in the mh, msh,

resp. msh-topology.

Proof. Part (1) follows from the fact that Rh and Rsh are directed colimits of étale
algebras (by construction), that étale algebras are formally étale (Algebra, Lemma
10.143.2), and that colimits of formally étale algebras are formally étale (Algebra,
Lemma 10.143.3). Part (2) follows from the fact that a formally étale ring map is
formally smooth and Lemma 15.27.2. �

Lemma 15.34.3. Let R be a local ring. The following are equivalent

(1) R is Noetherian,
(2) Rh is Noetherian, and
(3) Rsh is Noetherian.

In this case we have

(a) (Rh)∧ and (Rsh)∧ are Noetherian complete local rings,
(b) R∧ → (Rh)∧ is an isomorphism,
(c) Rh → (Rh)∧ and Rsh → (Rsh)∧ are flat,
(d) R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧-adic topology.

Proof. Since R→ Rh → Rsh are faithfully flat (Lemma 15.34.1), we see that Rh or
Rsh being Noetherian implies that R is Noetherian, see Algebra, Lemma 10.152.1.
In the rest of the proof we assume R is Noetherian.
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As m ⊂ R is finitely generated it follows that mh = mRh and msh = mRsh are
finitely generated, see Lemma 15.34.1. Hence (Rh)∧ and (Rsh)∧ are Noetherian by
Algebra, Lemma 10.149.3. This proves (a).

Note that (b) is immediate from Lemma 15.34.1. In particular we see that (Rh)∧

is flat over R, see Algebra, Lemma 10.93.4.

Next, we show that Rh → (Rh)∧ is flat. Write Rh = colimiRi as a directed colimit
of localizations of étale R-algebras. By Algebra, Lemma 10.38.5 if (Rh)∧ is flat over
each Ri, then Rh → (Rh)∧ is flat. Note that Rh = Rhi (by construction). Hence
R∧i = (Rh)∧ by part (b) is flat over Ri as desired. To finish the proof of (c) we show
that Rsh → (Rsh)∧ is flat. To do this, by a limit argument as above, it suffices
to show that (Rsh)∧ is flat over R. Note that it follows from Lemma 15.34.1 that
(Rsh)∧ is the completion of a free R-module. By Lemma 15.19.2 we see this is flat
over R as desired. This finishes the proof of (c).

At this point we know (c) is true and that (Rh)∧ and (Rsh)∧ are Noetherian. It
follows from Algebra, Lemma 10.152.1 that Rh and Rsh are Noetherian.

Part (d) follows from Lemma 15.34.2 and Lemma 15.27.4. �

Lemma 15.34.4. Let R be a local ring. The following are equivalent: R is reduced,
the henselization Rh of R is reduced, and the strict henselization Rsh of R is reduced.

Proof. The ring maps R → Rh → Rsh are faithfully flat. Hence one direction of
the implications follows from Algebra, Lemma 10.152.2. Conversely, assume R is
reduced. Since Rh and Rsh are filtered colimits of étale, hence smooth R-algebras,
the result follows from Algebra, Lemma 10.151.6. �

Lemma 15.34.5. Let R be a local ring. Let nil(R) denote the ideal of nilpotent
elements of R. Then nil(R)Rh = nil(Rh) and nil(R)Rsh = nil(Rsh).

Proof. Note that nil(R) is the biggest ideal consisting of nilpotent elements such
that the quotient R/nil(R) is reduced. Note that nil(R)Rh consists of nilpotent
elements by Algebra, Lemma 10.31.2. Also, note that Rh/nil(R)Rh is the henseliza-
tion of R/nil(R) by Algebra, Lemma 10.145.24. Hence Rh/nil(R)Rh is reduced by
Lemma 15.34.4. We conclude that nil(R)Rh = nil(Rh) as desired. Similarly for
the strict henselization but using Algebra, Lemma 10.145.30. �

Lemma 15.34.6. Let R be a local ring. The following are equivalent: R is a normal
domain, the henselization Rh of R is a normal domain, and the strict henselization
Rsh of R is a normal domain.

Proof. A preliminary remark is that a local ring is normal if and only if it is a
normal domain (see Algebra, Definition 10.36.10). The ring maps R→ Rh → Rsh

are faithfully flat. Hence one direction of the implications follows from Algebra,
Lemma 10.152.3. Conversely, assume R is normal. Since Rh and Rsh are filtered
colimits of étale, hence smooth R-algebras, the result follows from Algebra, Lemma
10.151.7. �

Lemma 15.34.7. Given any local ring R we have dim(R) = dim(Rh) = dim(Rsh).

Proof. Since R → Rsh is faithfully flat (Lemma 15.34.1) we see that dim(Rsh) ≥
dim(R) by going down, see Algebra, Lemma 10.108.1. For the converse, we write
Rsh = colimRi as a directed colimit of local rings Ri each of which is a localization
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of an étale R-algebra. Now if q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of prime ideals in Rsh,
then for some sufficiently large i the sequence

Ri ∩ q0 ⊂ Ri ∩ q1 ⊂ . . . ⊂ Ri ∩ qn

is a chain of primes in Ri. Thus we see that dim(Rsh) ≤ supi dim(Ri). But by the
result of Lemma 15.33.2 we have dim(Ri) = dim(R) for each i and we win. �

Lemma 15.34.8. Given a Noetherian local ring R we have depth(R) = depth(Rh) =
depth(Rsh).

Proof. By Lemma 15.34.3 we know that Rh and Rsh are Noetherian. Hence the
lemma follows from Algebra, Lemma 10.151.2. �

Lemma 15.34.9. Let R be a Noetherian local ring. The following are equivalent:
R is Cohen-Macaulay, the henselization Rh of R is Cohen-Macaulay, and the strict
henselization Rsh of R is Cohen-Macaulay.

Proof. By Lemma 15.34.3 we know that Rh and Rsh are Noetherian, hence the
lemma makes sense. Since we have depth(R) = depth(Rh) = depth(Rsh) and
dim(R) = dim(Rh) = dim(Rsh) by Lemmas 15.34.8 and 15.34.7 we conclude. �

Lemma 15.34.10. Let R be a Noetherian local ring. The following are equivalent:
R is a regular local ring, the henselization Rh of R is a regular local ring, and the
strict henselization Rsh of R is a regular local ring.

Proof. By Lemma 15.34.3 we know that Rh and Rsh are Noetherian, hence the
lemma makes sense. Let m be the maximal ideal of R. Let x1, . . . , xt ∈ m be
a minimal system of generators of m, i.e., such that the images in m/m2 form a
basis over κ = R/m. Because R → Rh and R → Rsh are faithfully flat, it follows
that the images xh1 , . . . , x

h
t in Rh, resp. xsh1 , . . . , xsht in Rsh are a minimal system

of generators for mh = mRh, resp. msh = mRsh. Regularity of R by definition
means t = dim(R) and similarly for Rh and Rsh. Hence the lemma follows from
the equality of dimensions dim(R) = dim(Rh) = dim(Rsh) of Lemma 15.34.7 �

Lemma 15.34.11. Let R be a Noetherian local ring. Then R is a discrete valuation
ring if and only if Rh is a discrete valuation ring if and only if Rsh is a discrete
valuation ring.

Proof. This follows from Lemmas 15.34.7 and 15.34.10 and Algebra, Lemma 10.115.6.
�

Lemma 15.34.12. Let A be a ring. Let B be a filtered colimit of étale A-algebras.
Let p be a prime of A. If B is Noetherian, then there are finitely many primes
q1, . . . , qr lying over p, we have B⊗Aκ(p) =

∏
κ(qi), and each of the field extensions

κ(p) ⊂ κ(qi) is separable algebraic.

Proof. Write B as a filtered colimit B = colimBi with A→ Bi étale. Then on the
one hand B ⊗A κ(p) = colimBi ⊗A κ(p) is a filtered colimit of étale κ(p)-algebras,
and on the other hand it is Noetherian. An étale κ(p)-algebra is a finite product
of finite separable field extensions (Algebra, Lemma 10.138.4). Hence there are no
nontrivial specializations between the primes (which are all maximal and minimal
primes) of the algebras Bi⊗A κ(p) and hence there are no nontrivial specializations
between the primes of B⊗A κ(p). Thus B⊗A κ(p) is reduced and has finitely many
primes which all minimal. Thus it is a finite product of fields (use Algebra, Lemma
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10.24.4 or Algebra, Proposition 10.59.6). Each of these fields is a colimit of finite
separable extensions and hence the final statement of the lemma follows. �

Lemma 15.34.13. Let R be a Noetherian local ring. Let p ⊂ R be a prime. Then

Rh ⊗R κ(p) =
∏

i=1,...,t
κ(qi) resp. Rsh ⊗R κ(p) =

∏
i=1,...,s

κ(ri)

where q1, . . . , qt, resp. r1, . . . , rs are the prime of Rh, resp. Rsh lying over p. More-
over, the field extensions κ(p) ⊂ κ(qi) resp. κ(p) ⊂ κ(qi) are separable algebraic.

Proof. This can be deduced from the more general Lemma 15.34.12 using that the
henselization and strict henselization are Noetherian (as we’ve seen above). But we
also give a direct proof as follows.

We will use without further mention the results of Lemmas 15.34.1 and 15.34.3.
Note that Rh/pRh, resp. Rsh/pRsh is the henselization, resp. strict henselization of
R/p, see Algebra, Lemma 10.145.24 resp. Algebra, Lemma 10.145.30. Hence we may
replace R by R/p and assume that R is a Noetherian local domain and that p = (0).
Since Rh, resp. Rsh is Noetherian, it has finitely many minimal primes q1, . . . , qt,
resp. r1, . . . , rs. Since R → Rh, resp. R → Rsh is flat these are exactly the primes
lying over p = (0) (by going down). Finally, as R is a domain, we see that Rh, resp.
Rsh is reduced, see Lemma 15.34.4. Thus we see that Rh⊗R f.f.(R) = Rh⊗R κ(p)
resp. Rsh ⊗R f.f.(R) = Rsh ⊗R κ(p) is a reduced Noetherian ring with finitely
many primes, all of which are minimal (and hence maximal). Thus these rings are
Artinian and are products of their localizations at maximal ideals, each necessarily
a field (see Algebra, Proposition 10.59.6 and Algebra, Lemma 10.24.1).

The final statement follows from the fact that R→ Rh, resp. R→ Rsh is a colimit
of étale ring maps and hence the induced residue field extensions are colimits of
finite separable extensions, see Algebra, Lemma 10.138.5. �

15.35. Field extensions, revisited

In this section we study some peculiarities of field extensions in characteristic p > 0.

Definition 15.35.1. Let p be a prime number. Let k → K be an extension of
fields of characteristic p. Denote kKp the compositum of k and Kp in K.

(1) A subset {xi} ⊂ K is called p-independent over k if the elements xE =∏
xeii where 0 ≤ ei < p are linearly independent over kKp.

(2) A subset {xi} of K is called a p-basis of K over k if the elements xE form
a basis of K over kKp.

This is related to the notion of a p-basis of a Fp-algebra which we will discuss later
(insert future reference here).

Lemma 15.35.2. Let k ⊂ K be a field extension. Assume k has characteristic
p > 0. Let {xi} be a subset of K. The following are equivalent

(1) the elements {xi} are p-independent over k, and
(2) the elements dxi are K-linearly independent in ΩK/k.

Any p-independent collection can be extended to a p-basis of K over k. In particular,
the field K has a p-basis over k. Moreover, the following are equivalent:

(a) {xi} is a p-basis of K over k, and
(b) dxi is a basis of the K-vector space ΩK/k.
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Proof. Assume (2) and suppose that
∑
aEx

E = 0 is a linear relation with aE ∈
kKp. Let θi : K → K be a k-derivation such that θi(xj) = δij (Kronecker delta).
Note that any k-derivation of K annihilates kKp. Applying θi to the given relation
we obtain new relations∑

E,ei>0
eiaEx

e1
1 . . . xei−1

i . . . xenn = 0

Hence if we pick
∑
aEx

E as the relation with minimal total degree |E| =
∑
ei for

some aE 6= 0, then we get a contradiction. Hence (2) holds.

If {xi} is a p-basis for K over k, then K ∼= kKp[Xi]/(X
p
i − x

p
i ). Hence we see that

dxi forms a basis for ΩK/k over K. Thus (a) implies (b).

Let {xi} be a p-independent subset of K over k. An application of Zorn’s lemma
shows that we can enlarge this to a maximal p-independent subset of K over k. We
claim that any maximal p-independent subset {xi} of K is a p-basis of K over k.
The claim will imply that (1) implies (2) and establish the existence of p-bases. To
prove the claim let L be the subfield of K generated by kKp and the xi. We have
to show that L = K. If x ∈ K but x 6∈ L, then xp ∈ L and L(x) ∼= L[z]/(zp − x).
Hence {xi} ∪ {x} is p-independent over k, a contradiction.

Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we
see that {xi} is a maximal p-independent subset of K over k. Hence by the claim
above it is a p-basis. �

Lemma 15.35.3. Let k ⊂ K be a field extension. Let {Kα}α∈A be a collection of
subfields of K with the following properties

(1) k ⊂ Kα for all α ∈ A,
(2) k =

⋂
α∈AKα,

(3) for α, α′ ∈ A there exists an α′′ ∈ A such that Kα′′ ⊂ Kα ∩Kα′ .

Then for n ≥ 1 and V ⊂ K⊕n a K-vector space we have V ∩ k⊕n 6= 0 if and only
if V ∩K⊕nα 6= 0 for all α ∈ A.

Proof. By induction on n. The case n = 1 follows from the assumptions. Assume
the result proven for subspaces of K⊕n−1. Assume that V ⊂ K⊕n has nonzero
intersection with K⊕nα for all α ∈ A. If V ∩ 0 ⊕ k⊕n−1 is nonzero then we win.
Hence we may assume this is not the case. By induction hypothesis we can find an
α such that V ∩ 0 ⊕K⊕n−1

α is zero. Let v = (x1, . . . , xn) ∈ V ∩Kα be a nonzero
element. By our choice of α we see that x1 is not zero. Replace v by x−1

1 v so that
v = (1, x2, . . . , xn). Note that if v′ = (x′1, . . . , x

′
n) ∈ V ∩Kα, then v′ − x′1v = 0 by

our choice of α. Hence we see that V ∩ K⊕nα = Kαv. If we choose some α′ such
that Kα′ ⊂ Kα, then we see that necessarily v ∈ V ∩K⊕nα′ (by the same arguments
applied to α′). Hence

x2, . . . , xn ∈
⋂

α′∈A,Kα′⊂Kα
Kα′

which equals k by (2) and (3). �

Lemma 15.35.4. Let K be a field of characteristic p. Let {Kα}α∈A be a collection
of subfields of K with the following properties

(1) Kp ⊂ Kα for all α ∈ A,
(2) Kp =

⋂
α∈AKα,

(3) for α, α′ ∈ A there exists an α′′ ∈ A such that Kα′′ ⊂ Kα ∩Kα′ .
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Then

(1) the intersection of the kernels of the maps ΩK/Fp → ΩK/Kα is zero,
(2) for any finite extension K ⊂ L we have Lp =

⋂
α∈A L

pKα.

Proof. Proof of (1). Choose a p-basis {xi} for K over Fp. Suppose that η =∑
i∈I′ yidxi maps to zero in ΩK/Kα for every α ∈ A. Here the index set I ′ is finite.

By Lemma 15.35.2 this means that for every α there exists a relation∑
E
aE,αx

E , aE,α ∈ Kα

where E runs over multi-indices E = (ei)i∈I′ with 0 ≤ ei < p. On the other hand,
Lemma 15.35.2 guarantees there is no such relation

∑
aEx

E = 0 with aE ∈ Kp.
This is a contradiction by Lemma 15.35.3.

Proof of (2). Suppose that we have a tower K ⊂ M ⊂ L of finite extensions of
fields. Set Mα = MpKα and Lα = LpKα = LpMα. Then we can first prove that
Mp =

⋂
α∈AMα, and after that prove that Lp =

⋂
α∈A Lα. Hence it suffices to

prove (2) for primitive field extensions having no nontrivial subfields. First, assume
that L = K(θ) is separable over K. Then L is generated by θp over K, hence we
may assume that θ ∈ Lp. In this case we see that

Lp = Kp ⊕Kpθ ⊕ . . .Kpθd−1 and LpKα = Kα ⊕Kαθ ⊕ . . .Kαθ
d−1

where d = [L : K]. Thus the conclusion is clear in this case. The other case is
where L = K(θ) with θp = t ∈ K, t 6∈ Kp. In this case we have

Lp = Kp ⊕Kpt⊕ . . .Kptp−1 and LpKα = Kα ⊕Kαt⊕ . . .Kαt
p−1

Again the result is clear. �

Lemma 15.35.5. Let k be a field of characteristic p > 0. Let n,m ≥ 0. As k′

ranges through all subfields kp ⊂ k′ ⊂ k with [k : k′] <∞ the subfields

f.f.(k′[[xp1, . . . , x
p
n]][yp1 , . . . , y

p
m]) ⊂ f.f.(k[[x1, . . . , xd]][y1, . . . , ym])

form a family of subfields as in Lemma 15.35.4. Moreover, each of the ring exten-
sions k′[[xp1, . . . , x

p
n]][yp1 , . . . , y

p
m] ⊂ k[[x1, . . . , xn]][y1, . . . , ym] is finite.

Proof. Write A = k[[x1, . . . , xn]][y1, . . . , ym] and A′ = k′[[xp1, . . . , x
p
n]][yp1 , . . . , y

p
m].

We also set K = f.f.(A) and K ′ = f.f.(A′). The ring extension k′[[xp1, . . . , x
p
d]] ⊂

k[[x1, . . . , xd]] is finite by Algebra, Lemma 10.93.18 which implies that A → A′ is
finite. For f ∈ A we see that fp ∈ A′. Hence Kp ⊂ K ′. Any element of K ′ can be
written as a/bp with a ∈ A′ and b ∈ A nonzero. Suppose that f/gp ∈ K, f, g ∈ A,
g 6= 0 is contained in K ′ for every choice of k′. Fix a choice of k′ for the moment.
By the above we see f/gp = a/bp for some a ∈ A′ and some nonzero b ∈ A. Hence
bpf ∈ A′. For any A′-derivation D : A → A we see that 0 = D(bpf) = bpD(f)
hence D(f) = 0 as A is a domain. Taking D = ∂xi and D = ∂yj we conclude
that that f ∈ k[[xp1, . . . , x

p
n]][yp1 , . . . , y

p
d]. Applying a k′-derivation θ : k → k we

similarly conclude that all coefficients of f are in k′, i.e., f ∈ A′. Since it is clear
that A =

⋂
k′ A

′ where k′ ranges over all subfields as in the lemma we win. �
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15.36. The singular locus

Let R be a Noetherian ring. The regular locus Reg(X) of X = Spec(R) is the set
of primes p such that Rp is a regular local ring. The singular locus Sing(X) of
X = Spec(R) is the complement X \Reg(X), i.e., the set of primes p such that Rp

is not a regular local ring. By the discussion preceding Algebra, Definition 10.106.7
we see that Reg(X) is stable under generalization In the section we study conditions
that guarantee that Reg(X) is open.

Definition 15.36.1. Let R be a Noetherian ring. Let X = Spec(R).

(1) We say R is J-0 if Reg(X) contains a nonempty open.
(2) We say R is J-1 if Reg(X) is open.
(3) We say R is J-2 if any finite type R-algebra is J-1.

The ring Q[x]/(x2) does not satisfy J-0. On the other hand J-1 implies J-0 for
domains and even reduced rings as such a ring is regular at the minimal primes.
Here is a characterization of the J-1 property.

Lemma 15.36.2. Let R be a Noetherian ring. Let X = Spec(R). The ring R is
J-1 if and only if V (p) ∩ Reg(X) contains a nonempty open subset of V (p) for all
p ∈ Reg(X).

Proof. This follows immediately from Topology, Lemma 5.15.5. �

Lemma 15.36.3. Let R be a Noetherian ring. Let X = Spec(R). Assume that for
all p ⊂ R the ring R/p is J-0. Then R is J-1.

Proof. We will show that the criterion of Lemma 15.36.2 applies. Let p ∈ Reg(X)
be a prime of height r. Pick f1, . . . , fr ∈ p which map to generators of pRp. Since
p ∈ Reg(X) we see that f1, . . . , fr maps to a regular sequence in Rp, see Algebra,
Lemma 10.102.3. Thus by Algebra, Lemma 10.67.8 we see that after replacing R
by Rg for some g ∈ R, g 6∈ p the sequence f1, . . . , fr is a regular sequence in R.
Next, let p ⊂ q be a prime ideal such that (R/p)q is a regular local ring. By the
assumption of the lemma there exists a non-empty open subset of V (p) consisting
of such primes, hence it suffices to prove Rq is regular. Note that f1, . . . , fr is a
regular sequence in Rq such that Rq/(f1, . . . , fr)Rq is regular. Hence Rq is regular
by Algebra, Lemma 10.102.7. �

Lemma 15.36.4. Let R→ S be a ring map. Assume that

(1) R is a Noetherian domain,
(2) R→ S is injective and of finite type, and
(3) S is a domain and J-0.

Then R is J-0.

Proof. After replacing S by Sg for some nonzero g ∈ S we may assume that S is a
regular ring. By generic flatness we may assume that also R→ S is faithfully flat,
see Algebra, Lemma 10.114.1. Then R is regular by Algebra, Lemma 10.152.4. �

Lemma 15.36.5. Let R→ S be a ring map. Assume that

(1) R is a Noetherian domain and J-0,
(2) R→ S is injective and of finite type, and
(3) S is a domain and f.f.(R)→ f.f.(S) is separable.

Then S is J-0.
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Proof. We may replace R by a principal localization and assume R is a regular
ring. By Algebra, Lemma 10.135.9 the ring map R → S is smooth at (0). Hence
after replacing S by a principal localization we may assume that S is smooth over
R. Then S is regular too, see Algebra, Lemma 10.151.8. �

Lemma 15.36.6. Let R be a Noetherian ring. The following are equivalent

(1) R is J-2,
(2) every finite type R-algebra which is a domain is J-0,
(3) every finite R-algebra is J-1,
(4) for every prime p and every finite purely inseparable extension κ(p) ⊂ L

there exists a finite R-algebra R′ which is a domain, which is J-0, and
whose field of fractions is L.

Proof. It is clear that we have the implications (1) ⇒ (2) and (2) ⇒ (4). Recall
that a domain which is J-1 is J-0. Hence we also have the implications (1) ⇒ (3)
and (3) ⇒ (4).

Let R → S be a finite type ring map and let’s try to show S is J-1. By Lemma
15.36.3 it suffices to prove that S/q is J-0 for every prime q of S. In this way we
see (2) ⇒ (1).

Assume (4). We will show that (2) holds which will finish the proof. Let R→ S be
a finite type ring map with S a domain. Let p = Ker(R → S). Set K = f.f.(S).
There exists a diagram of fields

K // K ′

κ(p)

OO

// L

OO

where the horizontal arrows are finite purely inseparable field extensions and where
K ′/L is separable, see Algebra, Lemma 10.41.4. Choose R′ ⊂ L as in (4) and let
S′ be the image of the map S ⊗R R′ → K ′. Then S′ is a domain whose fraction
field is K ′, hence S′ is J-0 by Lemma 15.36.5 and our choice of R′. Then we apply
Lemma 15.36.4 to see that S is J-0 as desired. �

15.37. Regularity and derivations

Let R→ S be a ring map. Let D : R→ R be a derivation. We say that D extends
to S if there exists a derivation D′ : S → S such that

S
D′
// S

R

OO

D // R

OO

is commutative.

Lemma 15.37.1. Let R be a ring. Let D : R→ R be a derivation.

(1) For any ideal I ⊂ R the derivation D extends canonically to a derivation
D∧ : R∧ → R∧ on the I-adic completion.

(2) For any multiplicative subset S ⊂ R the derivation D extends uniquely to
the localization S−1R of R.
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If R ⊂ R′ is an finite type extension of rings such that Rg ∼= R′g for some nonzero-

divisor g ∈ R, then gND extends to R′ for some N ≥ 0.

Proof. Proof of (1). For n ≥ 2 we have D(In) ⊂ In−1 by the Leibniz rule. Hence
D induces maps Dn : R/In → R/In−1. Taking the limit we obtain D∧. We omit
the verification that D∧ is a derivation.

Proof of (2). To extend D to S−1R just set D(r/s) = D(r)/s−rD(s)/s2 and check
the axioms.

Proof of the final statement. Let x1, . . . , xn ∈ R′ be generators of R′ over R. Choose
an N such that gNxi ∈ R. Consider gN+1D. By (2) this extends to Rg. Moreover,
by the Leibniz rule and our construction of the extension above we have

gN+1D(xi) = gN+1D(g−NgNxi) = −NgNxiD(g) + gD(gNxi)

and both terms are in R. This implies that

gN+1D(xe11 . . . xenn ) =
∑

eix
e1
1 . . . xei−1

i . . . xenn g
N+1D(xi)

is an element of R′. Hence every element of R′ (which can be written as a sum
of monomials in the xi with coefficients in R) is mapped to an element of R′ by
gN+1D and we win. �

Lemma 15.37.2. Let R be a regular ring. Let f ∈ R. Assume there exists a
derivation D : R→ R such that D(f) is a unit of R/(f). Then R/(f) is regular.

Proof. It suffices to prove this when R is a local ring with maximal ideal m and
residue field κ. In this case it suffices to prove that f 6∈ m2, see Algebra, Lemma
10.102.3. However, if f ∈ m2 then D(f) ∈ m by the Leibniz rule, a contradiction.

�

Lemma 15.37.3. Let R be a regular Fp-algebra. Let f ∈ R. Assume there exists a
derivation D : R→ R such that D(f) is a unit of R. Then R[z]/(zp−f) is regular.

Proof. Apply Lemma 15.37.2 to the extension of D to R[z] which maps z to
zero. �

Lemma 15.37.4. Let p be a prime number. Let B be a domain with p = 0 in B.
Let f ∈ B be an element which is not a pth power in the fraction field of B. If B is
of finite type over a Noetherian complete local ring, then there exists a derivation
D : B → B such that D(f) is not zero.

Proof. Let R be a Noetherian complete local ring such that there exists a finite
type ring map R→ B. Of course we may replace R by its image in B, hence we may
assume R is a domain of characteristic p > 0 (as well as Noetherian complete local).
By Algebra, Lemma 10.149.10 we can write R as a finite extension of k[[x1, . . . , xn]]
for some field k and integer n. Hence we may replace R by k[[x1, . . . , xn]]. Next,
we use Algebra, Lemma 10.111.7 to factor R→ B as

R ⊂ R[y1, . . . , yd] ⊂ B′ ⊂ B
with B′ finite over R[y1, . . . , yd] and B′g

∼= Bg for some nonzero g ∈ R. Note that

f ′ = gpNf ∈ B′ for some large integer N . It is clear that f ′ is not a pth power in
f.f.(B′) = f.f.(B). If we can find a derivation D′ : B′ → B′ with D′(f ′) 6= 0, then
Lemma 15.37.1 guarantees that D = gMD′ extends to S for some M > 0. Then

http://stacks.math.columbia.edu/tag/07PF
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1150 15. MORE ON ALGEBRA

D(f) = gND′(f) = gMD′(g−pNf ′) = gM−pND′(f ′) is nonzero. Thus it suffices to
prove the lemma in case B is a finite extension of A = k[[x1, . . . , xn]][y1, . . . , ym].

Note that df is not zero in Ωf.f.(B)/Fp , see Algebra, Lemma 10.147.2. We ap-
ply Lemma 15.35.5 to find a subfield k′ ⊂ k of finite index such that with A′ =
k′[[xp1, . . . , x

p
n]][yp1 , . . . , y

p
m] the element df does not map to zero in Ωf.f.(B)/f.f.(A′).

Thus we can choose a f.f.(A′)-derivation D′ : f.f.(B) → f.f.(B) with D′(f) 6= 0.
Since A′ ⊂ A and A ⊂ B are finite by construction we see that A′ ⊂ B is finite.
Choose b1, . . . , bt ∈ B which generate B as an A′-module. Then D′(bi) = fi/gi for
some fi, gi ∈ B with gi 6= 0. Setting D = g1 . . . gtD

′ we win. �

Lemma 15.37.5. Let A be a Noetherian complete local domain. Then A is J-0.

Proof. By Algebra, Lemma 10.149.10 we can find a regular subring A0 ⊂ A with
A finite over A0. If f.f.(A0) ⊂ f.f.(A) is separable, then we are done by Lemma
15.36.5. If not, then A0 and A have characteristic p > 0. For any subextension
f.f.(A0) ⊂ M ⊂ f.f.(A) there exists a finite subextension A0 ⊂ B ⊂ A such that
f.f.(B) = M . Hence, arguing by induction on [f.f.(A) : f.f.(A0)] we may assume
there exists A0 ⊂ B ⊂ A such that B is J-0 and f.f.(B) ⊂ f.f.(A) has no nontrivial
subextensions. In this case, if f.f.(B) ⊂ f.f.(A) is separable, then we see that A is
J-0 by Lemma 15.36.5. If not, then f.f.(A) = f.f.(B)[z]/(zp − b) for some b ∈ B
which is not a pth power in f.f.(B). By Lemma 15.37.4 we can find a derivation
D : B → B with D(f) 6= 0. Applying Lemma 15.37.3 we see that Ap is regular for
any prime p of A lying over a regular prime of B and not containing D(f). As B
is J-0 we conclude A is too. �

Proposition 15.37.6. The following types of rings are J-2:

(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, Z and Dedekind domains of characteristic zero you just check
condition (4) of Lemma 15.36.6. In the case of Noetherian complete local rings,
note that if R→ R′ is finite and R is a Noetherian complete local ring, then R′ is
a product of Noetherian complete local rings, see Algebra, Lemma 10.149.2. Hence
it suffices to prove that a Noetherian complete local ring which is a domain is J-0,
which is Lemma 15.37.5. �

15.38. Formal smoothness and regularity

The title of this section refers to Proposition 15.38.2.

Lemma 15.38.1. Let A→ B be a local homomorphism of Noetherian local rings.
Let D : A→ A be a derivation. Assume that B is complete and A→ B is formally
smooth in the mB-adic topology. Then there exists an extension D′ : B → B of D.

http://stacks.math.columbia.edu/tag/07PI
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Proof. Denote B[ε] = B[x]/(x2) the ring of dual numbers over B. Consider the
ring map ψ : A→ B[ε], a 7→ a+ εD(a). Consider the commutative diagram

B
1
// B

A

OO

ψ // B[ε]

OO

By Lemma 15.27.5 and the assumption of formal smoothness of B/A we find a map
ϕ : B → B[ε] fitting into the diagram. Write ϕ(b) = b+ εD′(b). Then D′ : B → B
is the desired extension. �

Proposition 15.38.2. Let A → B be a local homomorphism of Noetherian com-
plete local rings. The following are equivalent

(1) A→ B is regular,
(2) A→ B is flat and B is geometrically regular over k,
(3) A → B is flat and k → B is formally smooth in the mB-adic topology,

and
(4) A→ B is formally smooth in the mB-adic topology.

Proof. We have seen the equivalence of (2), (3), and (4) in Proposition 15.29.4.
It is clear that (1) implies (2). Thus we assume the equivalent conditions (2), (3),
and (4) hold and we prove (1).

Let p be a prime of A. We will show that B ⊗A κ(p) is geometrically regular over
κ(p). By Lemma 15.27.8 we may replace A by A/p and B by B/pB. Thus we may
assume that A is a domain and that p = (0).

Choose A0 ⊂ A as in Algebra, Lemma 10.149.10. We will use all the properties
stated in that lemma without further mention. As A0 → A induces an isomorphism
on residue fields, and as B/mAB is geometrically regular over A/mA we can find a
diagram

C // B

A0
//

OO

A

OO

with A0 → C formally smooth in the mC-adic topology such that B = C ⊗A0
A,

see Remark 15.29.6. (Completion in the tensor product is not needed as A0 → A is
finite, see Algebra, Lemma 10.93.2.) Hence it suffices to show that C ⊗A0

f.f.(A0)
is a geometrically regular algebra over f.f.(A0).

The upshot of the preceding paragraph is that we may assume thatA = k[[x1, . . . , xn]]
where k is a field or A = Λ[[x1, . . . , xn]] where Λ is a Cohen ring. In this case B is
a regular ring, see Algebra, Lemma 10.108.8. Hence B ⊗A f.f.(A) is a regular ring
too and we win if the characteristic of f.f.(A) is zero.

Thus we are left with the case where A = k[[x1, . . . , xn]] and k is a field of char-
acteristic p > 0. Set K = f.f.(A). Let L ⊃ K be a finite purely inseparable field
extension. We will show by induction on [L : K] that B ⊗A L is regular. The base
case is L = K which we’ve seen above. Let K ⊂ M ⊂ L be a subfield such that L
is a degree p extension of M obtained by adjoining a pth root of an element f ∈M .
Let A′ be a finite A-subalgebra of M with fraction field M . Clearing denominators,

http://stacks.math.columbia.edu/tag/07PM
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we may and do assume f ∈ A′. Set A′′ = A′[z]/(zp − f) and note that A′ ⊂ A′′ is
finite and that the fraction field of A′′ is L. By induction we know that B ⊗A M
ring is regular. We have

B ⊗A L = B ⊗AM [z]/(zp − f)

By Lemma 15.37.4 we know there exists a derivation D : A′ → A′ such that D(f) 6=
0. As A′ → B ⊗A A′ is formally smooth in the m-adic topology by Lemma 15.27.9
we can use Lemma 15.38.1 to extend D to a derivation D′ : B ⊗A A′ → B ⊗A A′.
Note that D′(f) = D(f) is a unit in B⊗AM as D(f) is not zero in A′ ⊂M . Hence
B ⊗A L is regular by Lemma 15.37.3 and we win. �

15.39. G-rings

Let A be a Noetherian local ring A. In Section 15.32 we have seen that some but
not all properties of A are reflected in the completion A∧ of A. To study this further
we introduce some terminology. For a prime q of A the fibre ring

(A∧)⊗A κ(q) = (A∧)q/q(A∧)q

is called a formal fibre of A. We think of the formal fibre as an algebra over κ(q).
Thus A → A∧ is a regular ring homomorphism if and only if all the formal fibres
are geometrically regular algebras.

Definition 15.39.1. A ring R is called a G-ring if R is Noetherian and for every
prime p of R the ring map Rp → (Rp)∧ is regular.

By the discussion above we see that R is a G-ring if and only if every local ring
Rp has geometrically regular formal fibres. Note that if Q ⊂ R, then it suffices to
check the formal fibres are regular. Another way to express the G-ring condition is
described in the following lemma.

Lemma 15.39.2. Let R be a Noetherian ring. Then R is a G-ring if and only if
for every pair of primes q ⊂ p ⊂ R the algebra

(R/q)∧p ⊗R/q κ(q)

is geometrically regular over κ(q).

Proof. This follows from the fact that

R∧p ⊗R κ(q) = (R/q)∧p ⊗R/q κ(q)

as algebras over κ(q). �

Lemma 15.39.3. Let R→ R′ be a finite type map of Noetherian rings and let

q′ // p′ // R′

q // p // R

OO

be primes. Assume R→ R′ is quasi-finite at p′.

(1) If the formal fibre R∧p ⊗R κ(q) is geometrically regular over κ(q), then the
formal fibre R′p′ ⊗R′ κ(q′) is geometrically regular over κ(q′).

(2) If the formal fibres of Rp are geometrically regular, then the formal fibres
of R′p′ are geometrically regular.

http://stacks.math.columbia.edu/tag/07GH
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(3) If R→ R′ is quasi-finite and R is a G-ring, then R′ is a G-ring.

Proof. It is clear that (1) ⇒ (2) ⇒ (3). Assume R∧p ⊗R κ(q) is geometrically
regular over κ(q). By Algebra, Lemma 10.120.3 we see that

R∧p ⊗R R′ = (R′p′)
∧ ×B

for some R∧p -algebra B. Hence R′p′ → (R′p′)
∧ is a factor of a base change of the

map Rp → R∧p . It follows that (R′p′)
∧ ⊗R′ κ(q′) is a factor of

R∧p ⊗R R′ ⊗R′ κ(q′) = R∧p ⊗R κ(q)⊗κ(q) κ(q′).

Thus the result follows as extension of base field preserves geometric regularity, see
Algebra, Lemma 10.154.1. �

Lemma 15.39.4. Let R be a Noetherian ring. Then R is a G-ring if and only if
for every finite free ring map R→ S the formal fibres of S are regular rings.

Proof. Assume that for any finite free ring map R → S the ring S has regular
formal fibres. Let q ⊂ p ⊂ R be primes and let κ(q) ⊂ L be a finite purely
inseparable extension. To show that R is a G-ring it suffices to show that

R∧p ⊗R κ(q)⊗κ(q) L

is a regular ring. Choose a finite free extension R → R′ such that q′ = qR′ is
a prime and such that κ(q′) is isomorphic to L over κ(q), see Algebra, Lemma
10.148.3. By Algebra, Lemma 10.93.19 we have

R∧p ⊗R R′ =
∏

(R′p′i)
∧

where p′i are the primes of R′ lying over p. Thus we have

R∧p ⊗R κ(q)⊗κ(q) L = R∧p ⊗R R′ ⊗R′ κ(q′) =
∏

(R′p′i)
∧ ⊗R′

p′
i

κ(q′)

Our assumption is that the rings on the right are regular, hence the ring on the left
is regular too. Thus R is a G-ring. The converse follows from Lemma 15.39.3. �

Lemma 15.39.5. Let k be a field of characteristic p. Let A = k[[x1, . . . , xn]][y1, . . . , yn]
and denote K = f.f.(A). Let p ⊂ A be a prime. Then A∧p ⊗A K is geometrically
regular over K.

Proof. Let L ⊃ K be a finite purely inseparable field extension. We will show by
induction on [L : K] that A∧p ⊗ L is regular. The base case is L = K: as A is
regular, A∧p is regular (Lemma 15.32.4), hence the localization A∧p ⊗K is regular.
Let K ⊂ M ⊂ L be a subfield such that L is a degree p extension of M obtained
by adjoining a pth root of an element f ∈M . Let B be a finite A-subalgebra of M
with fraction field M . Clearing denominators, we may and do assume f ∈ B. Set
C = B[z]/(zp − f) and note that B ⊂ C is finite and that the fraction field of C is
L. Since A ⊂ B ⊂ C are finite and L/M/K are purely inseparable we see that for
every element of B or C some power of it lies in A. Hence there is a unique prime
r ⊂ B, resp. q ⊂ C lying over p. Note that

A∧p ⊗AM = B∧r ⊗B M
see Algebra, Lemma 10.93.19. By induction we know that this ring is regular. In
the same manner we have

A∧p ⊗A L = C∧r ⊗C L = B∧r ⊗B M [z]/(zp − f)

http://stacks.math.columbia.edu/tag/07PQ
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the last equality because the completion of C = B[z]/(zp−f) equals B∧r [z]/(zp−f).
By Lemma 15.37.4 we know there exists a derivation D : B → B such that D(f) 6=
0. In other words, g = D(f) is a unit in M ! By Lemma 15.37.1 D extends to a
derivation of Br, B

∧
r and B∧r ⊗BM (successively extending through a localization, a

completion, and a localization). Since it is an extension we end up with a derivation
of B∧r ⊗BM which maps f to g and g is a unit of the ring B∧r ⊗BM . Hence A∧p ⊗AL
is regular by Lemma 15.37.3 and we win. �

Proposition 15.39.6. A Noetherian complete local ring is a G-ring.

Proof. Let A be a Noetherian complete local ring. By Lemma 15.39.2 it suffices
to check that B = A/q has geometrically regular formal fibres over the minimal
prime (0) of B. Thus we may assume that A is a domain and it suffices to check the
condition for the formal fibres over the minimal prime (0) of A. Set K = f.f(A).

We can choose a subring A0 ⊂ A which is a regular complete local ring such that
A is finite over A0, see Algebra, Lemma 10.149.10. Moreover, we may assume that
A0 is a power series ring over a field or a Cohen ring. By Lemma 15.39.3 we see
that it suffices to prove the result for A0.

Assume that A is a power series ring over a field or a Cohen ring. Since A is
regular the localizations Ap are regular (see Algebra, Definition 10.106.7 and the
discussion preceding it). Hence the completions A∧p are regular, see Lemma 15.32.4.
Hence the fibre A∧p ⊗A K is, as a localization of A∧p , also regular. Thus we are
done if the characteristic of K is 0. The positive characteristic case is the case
A = k[[x1, . . . , xd]] which is a special case of Lemma 15.39.5. �

Lemma 15.39.7. Let R be a Noetherian ring. Then R is a G-ring if and only if
Rm has geometrically regular formal fibres for every maximal ideal m of R.

Proof. Assume Rm → R∧m is regular for every maximal ideal m of R. Let p be a
prime of R and choose a maximal ideal p ⊂ m. Since Rm → R∧m is faithfully flat we
can choose a prime p′ if R∧m lying over pRm. Consider the commutative diagram

R∧m // (R∧m)p′ // (R∧m)∧p′

Rm

OO

// Rp

OO

// R∧p

OO

By assumption the ring map Rm → R∧m is regular. By Proposition 15.39.6 (R∧m)p′ →
(R∧m)∧p′ is regular. Hence Rm → (R∧m)∧p′ is regular and since it factors through the

localization Rp, also the ring map Rp → (R∧m)∧p′ is regular. Thus we may apply

Lemma 15.30.7 to see that Rp → R∧p is regular. �

Lemma 15.39.8. Let R be a Noetherian local ring ring which is a G-ring. Then
the henselization Rh and the strict henselization Rsh are G-rings.

Proof. We will use the criterion of Lemma 15.39.7. Let q ⊂ Rh be a prime and
set p = R ∩ q. Set q1 = q and let q2, . . . , qt be the other primes of Rh lying over p,
so that Rh⊗R κ(p) =

∏
i=1,...,t κ(qi), see Lemma 15.34.13. Using that (Rh)∧ = R∧

(Lemma 15.34.3) we see∏
i=1,...,t

(Rh)∧ ⊗Rh κ(qi) = (Rh)∧ ⊗Rh (Rh ⊗R κ(p)) = R∧ ⊗R κ(p)

http://stacks.math.columbia.edu/tag/07PS
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Hence (Rh)∧ ⊗Rh κ(qi) is geometrically regular over κ(p) by assumption. Since
κ(qi) is separable algebraic over κ(p) it follows from Algebra, Lemma 10.154.6 that
(Rh)∧ ⊗Rh κ(qi) is geometrically regular over κ(qi).

Let r ⊂ Rsh be a prime and set p = R ∩ r. Set r1 = r and let r2, . . . , rs be the
other primes of Rsh lying over p, so that Rsh⊗R κ(p) =

∏
i=1,...,t κ(qi), see Lemma

15.34.13. Then we see that∏
i=1,...,t

(Rsh)∧ ⊗Rsh κ(ri) = (Rsh)∧ ⊗Rsh (Rsh ⊗R κ(p)) = (Rsh)∧ ⊗R κ(p)

Note that R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧-adic topology, see

Lemma 15.34.3. Hence R∧ → (Rsh)∧ is regular by Proposition 15.38.2. We con-
clude that (Rsh)∧ ⊗Rh κ(qi) is regular over κ(p) by Lemma 15.30.4 as R∧ ⊗R κ(p)
is regular over κ(p) by assumption. Since κ(ri) is separable algebraic over κ(p)
it follows from Algebra, Lemma 10.154.6 that (Rsh)∧ ⊗Rsh κ(ri) is geometrically
regular over κ(ri). �

Lemma 15.39.9. Let p be a prime number. Let A be a Noetherian complete local
domain with fraction field K of characteristic p. Let q ⊂ A[x] be a maximal ideal
lying over the maximal ideal of A and let r ⊂ q be a prime lying over (0) ⊂ A.
Then A[x]∧q ⊗A[x] κ(r) is geometrically regular over κ(r).

Proof. Note that K ⊂ κ(r) is finite. Hence, given a finite purely inseparable
extension κ(r) ⊂ L there exists a finite extension of Noetherian complete local
domains A ⊂ B such that κ(r) ⊗A B surjects onto L. Namely, you take B ⊂ L a
finite A-subalgebra whose field of fractions is L. Denote r′ ⊂ B[x] the kernel of the
map B[x] = A[x]⊗A B → κ(r)⊗A B → L so that κ(r′) = L. Then

A[x]∧q ⊗A[x] L = A[x]∧q ⊗A[x] B[x]⊗B[x] κ(r′) =
∏

B[x]∧qi ⊗B[x] κ(r′)

where q1, . . . , qt are the primes of B[x] lying over q, see Algebra, Lemma 10.93.19.
Thus we see that it suffices to prove the rings B[x]∧qi ⊗B[x] κ(r′) are regular. This
reduces us to showing that A[x]∧q ⊗A[x] κ(r) is regular in the special case that
K = κ(r).

Assume K = κ(r). In this case we see that rK[x] is generated by x − f for some
f ∈ K and

A[x]∧q ⊗A[x] κ(r) = (A[x]∧q ⊗A K)/(x− f)

The derivation D = d/dx of A[x] extends to K[x] and maps x − f to a unit of
K[x]. Moreover D extends to A[x]∧q ⊗A K by Lemma 15.37.1. As A → A[x]∧q is
formally smooth (see Lemmas 15.27.2 and 15.27.4) the ring A[x]∧q ⊗A K is regular
by Proposition 15.38.2 (the arguments of the proof of that proposition simplify
significantly in this particular case). We conclude by Lemma 15.37.2. �

Proposition 15.39.10. Let R be a G-ring. If R → S is essentially of finite type
then S is a G-ring.

Proof. Since being a G-ring is a property of the local rings it is clear that a
localization of a G-ring is a G-ring. Conversely, if every localization at a prime is
a G-ring, then the ring is a G-ring. Thus it suffices to show that Sq is a G-ring for
every finite type R-algebra S and every prime q of S. Writing S as a quotient of
R[x1, . . . , xn] we see from Lemma 15.39.3 that it suffices to prove that R[x1, . . . , xn]
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is a G-ring. By induction on n it suffices to prove that R[x] is a G-ring. Let q ⊂ R[x]
be a maximal ideal. By Lemma 15.39.7 it suffices to show that

R[x]q −→ R[x]∧q

is regular. If q lies over p ⊂ R, then we may replace R by Rp. Hence we may assume
that R is a Noetherian local G-ring with maximal ideal m and that q ⊂ R[x] lies
over m. Note that there is a unique prime q′ ⊂ R∧[x] lying over q. Consider the
diagram

R[x]∧q // (R∧[x]q′)
∧

R[x]q //

OO

R∧[x]q′

OO

Since R is a G-ring the lower horizontal arrow is regular (as a localization of a
base change of the regular ring map R → R∧). Suppose we can prove the right
vertical arrow is regular. Then it follows that the composition R[x]q → (R∧[x]q′)

∧

is regular, and hence the left vertical arrow is regular by Lemma 15.30.7. Hence we
see that we may assume R is a Noetherian complete local ring and q a prime lying
over the maximal ideal of R.

Let R be a Noetherian complete local ring and let q ⊂ R[x] be a maximal ideal
lying over the maximal ideal of R. Let r ⊂ q be a prime ideal. We want to show
that R[x]∧q ⊗R[x] κ(r) is a geometrically regular algebra over κ(r). Set p = R ∩ r.
Then we can replace R by R/p and q and r by their images in R/p[x], see Lemma
15.39.2. Hence we may assume that R is a domain and that r ∩R = (0).

By Algebra, Lemma 10.149.10 we can find R0 ⊂ R which is regular and such
that R is finite over R0. Applying Lemma 15.39.3 we see that it suffices to prove
R[x]∧q ⊗R[x] κ(r) is geometrically regular over κ(r) when, in addition to the above,
R is a regular complete local ring.

Now R is a regular complete local ring, we have q ⊂ r ⊂ R[x], we have (0) = R ∩ r
and q is a maximal ideal lying over the maximal ideal of R. Since R is regular
the ring R[x] is regular (Algebra, Lemma 10.151.8). Hence the localization R[x]q is
regular. Hence the completions R[x]∧q are regular, see Lemma 15.32.4. Hence the
fibre R[x]∧q ⊗R[x] κ(r) is, as a localization of R[x]∧q , also regular. Thus we are done
if the characteristic of f.f.(R) is 0.

If the characteristic of R is positive, then R = k[[x1, . . . , xn]]. In this case we split
the argument in two subcases:

(1) The case r = (0). The result is a direct consequence of Lemma 15.39.5.
(2) The case r 6= (0). This is Lemma 15.39.9.

�

Remark 15.39.11. Let R be a G-ring and let I ⊂ R be an ideal. In general it
is not the case that the I-adic completion R∧ is a G-ring. An example was given
by Nishimura in [Nis81]. A generalization and, in some sense, clarification of this
example can be found in the last section of [Dum00].

Proposition 15.39.12. The following types of rings are G-rings:

(1) fields,
(2) Noetherian complete local rings,

http://stacks.math.columbia.edu/tag/07PW
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(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, Z and Dedekind domains of characteristic zero this follows im-
mediately from the definition and the fact that the completion of a discrete val-
uation ring is a discrete valuation ring. A Noetherian complete local ring is a
G-ring by Proposition 15.39.6. The statement on finite type overrings is Proposi-
tion 15.39.10. �

Lemma 15.39.13. Let (A,m) be a henselian local ring. Then A is a filtered colimit
of a system of henselian local Noetherian G-rings with local transition maps.

Proof. Write A = colimAi as a filtered colimit of finite type Z-algebras. Let pi
be the prime ideal of Ai lying under m. We may replace Ai by the localization of
Ai at pi. Then Ai is a Noetherian local G-ring (Proposition 15.39.12). By Lemma
15.7.17 we see that A = colimAhi . By Lemma 15.39.8 the rings Ahi are G-rings. �

Lemma 15.39.14. Let A be a Noetherian G-ring. Let I ⊂ A be an ideal and let
A∧ be the completion of A with respect to I. Then A→ A∧ is regular.

Proof. The ring map A → A∧ is flat by Algebra, Lemma 10.93.3. The ring A∧

is Noetherian by Algebra, Lemma 10.93.10. Thus it suffices to check the third
condition of Lemma 15.30.2. Let m′ ⊂ A∧ be a maximal ideal lying over m ⊂ A.
By Algebra, Lemma 10.93.11 we have IA∧ ⊂ m′. Since A∧/IA∧ = A/I we see that
I ⊂ m, m/I = m′/IA∧A/m = A∧/m′. Since A∧/m′ is a field, we conclude that m
is a maximal ideal as well. Then Am → A∧m′ is a flat local ring homomorphism of
Noetherian local rings which identifies residue fields and such that mA∧m′ = m′A∧m′ .
Thus it induces an isomorphism on complete local rings, see Lemma 15.32.7. Let
(Am)∧ be the completion of Am with respect to its maximal ideal. The ring map

(A∧)m′ → ((A∧)m′)
∧ = (Am)∧

is faithfully flat (Algebra, Lemma 10.93.4). Thus we can apply Lemma 15.30.7 to
the ring maps

Am → (A∧)m′ → (Am)∧

to conclude because Am → (Am)∧ is regular as A is a G-ring. �

Lemma 15.39.15. Let A be a Noetherian G-ring. Let I ⊂ A be an ideal. Let
(Ah, Ih) be the henselization of the pair (A, I), see Lemma 15.7.13. Then Ah is a
Noetherian G-ring.

Proof. Let mh ⊂ Ah be a maximal ideal. We have to show that the map from
Ahmh to its completion has geometrically regular fibres, see Lemma 15.39.7. Let m

be the inverse image of mh in A. Note that Ih ⊂ mh and hence I ⊂ m as (Ah, Ih)
is a henselian pair. Recall that Ah is Noetherian, Ih = IAh, and that A → Ah

induces an isomorphism on I-adic completions, see Lemma 15.7.16. Then the local
homomorphism of Noetherian local rings

Am → Ahmh

induces an isomorphism on completions at maximal ideals by Lemma 15.32.7 (de-
tails omitted). Let qh be a prime of the middle ring lying over q ⊂ Am. Set q1 = qh

and let q2, . . . , qt be the other primes of Ah lying over q, so that Ah ⊗A κ(q) =

http://stacks.math.columbia.edu/tag/0A41
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i=1,...,t κ(qi), see Lemma 15.34.12. Using that (Ah)∧mh = (Am)∧ as discussed

above we see∏
i=1,...,t

(Ahmh)∧ ⊗Ah
mh

κ(qi) = (Ahmh)∧ ⊗Ah
mh

(Ahmh ⊗Am
κ(q)) = (Am)∧ ⊗Am

κ(q)

Hence, as one of the components, the ring

(Ahmh)∧ ⊗Ah
mh

κ(qh)

is geometrically regular over κ(q) by assumption on A. Since κ(qh) is separable
algebraic over κ(q) it follows from Algebra, Lemma 10.154.6 that

(Ahmh)∧ ⊗Ah
mh

κ(qh)

is geometrically regular over κ(qh) as desired. �

15.40. Excellent rings

In this section we discuss Grothendieck’s notion of excellent rings. For the defi-
nitions of G-rings, J-2 rings, and universally catenary rings we refer to Definition
15.39.1, Definition 15.36.1, and Algebra, Definition 10.101.5.

Definition 15.40.1. Let R be a ring.

(1) We say R is quasi-excellent if R is Noetherian, a G-ring, and J-2.
(2) We say R is excellent if R is quasi-excellent and universally catenary.

Thus a Noetherian ring is quasi-excellent if it has geometrically regular formal fibres
and if any finite type algebra over it has closed singular set. For such a ring to
be excellent we require in addition that there exists (locally) a good dimension
function.

Lemma 15.40.2. Any localization of a finite type ring over a (quasi-)excellent ring
is (quasi-)excellent.

Proof. For finite type algebras this follows from the definitions for the properties
J-2 and universally catenary. For G-rings, see Proposition 15.39.10. We omit the
proof that localization preserves (quasi-)excellency. �

Lemma 15.40.3. A quasi-excellent ring is Nagata.

Proof. Let R be quasi-excellent. Using that a finite type algebra over R is quasi-
excellent (Lemma 15.40.2) we see that it suffices to show that any quasi-excellent
domain is N-1, see Algebra, Lemma 10.150.17. Applying Algebra, Lemma 10.150.29
(and using that a quasi-excellent ring is J-2) we reduce to showing that a quasi-
excellent local domain R is N-1. As R → R∧ is regular we see that R∧ is reduced
by Lemma 15.31.1. In other words, R is analytically unramified. Hence R is N-1
by Algebra, Lemma 10.150.24. �

Proposition 15.40.4. The following types of rings are excellent:

(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.
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Proof. See Propositions 15.39.12 and 15.37.6 to see that these rings are G-rings and
have J-2. Any Cohen-Macaulay ring is universally catenary, see Algebra, Lemma
10.101.6. In particular fields, Dedekind rings, and more generally regular rings are
universally catenary. Via the Cohen structure theorem we see that complete local
rings are universally catenary, see Algebra, Remark 10.149.9. �

15.41. Injective abelian groups

In this section we show the category of abelian groups has enough injectives. Recall
that an abelian group M is divisible if and only if for every x ∈M and every n ∈ N
there exists a y ∈M such that ny = x.

Lemma 15.41.1. An abelian group J is an injective object in the category of
abelian groups if and only if J is divisible.

Proof. Suppose that J is not divisible. Then there exists an x ∈ J and n ∈ N
such that there is no y ∈ J with ny = x. Then the morphism Z → J , m 7→ mx
does not extend to 1

nZ ⊃ Z. Hence J is not injective.

Let A ⊂ B be abelian groups. Assume that J is a divisible abelian group. Let
ϕ : A → J be a morphism. Consider the set of homomorphisms ϕ′ : A′ → J with
A ⊂ A′ ⊂ B and ϕ′|A = ϕ. Define (A′, ϕ′) ≥ (A′′, ϕ′′) if and only if A′ ⊃ A′′

and ϕ′|A′′ = ϕ′′. If (Ai, ϕi)i∈I is a totally ordered collection of such pairs, then we
obtain a map

⋃
i∈I Ai → J defined by a ∈ Ai maps to ϕi(a). Thus Zorn’s lemma

applies. To conclude we have to show that if the pair (A′, ϕ′) is maximal then
A′ = B. In other words, it suffices to show, given any subgroup A ⊂ B, A 6= B and
any ϕ : A → J , then we can find ϕ′ : A′ → J with A ⊂ A′ ⊂ B such that (a) the
inclusion A ⊂ A′ is strict, and (b) the morphism ϕ′ extends ϕ.

To prove this, pick x ∈ B, x 6∈ A. If there exists no n ∈ N such that nx ∈ A, then
A ⊕ Z ∼= A + Zx. Hence we can extend ϕ to A′ = A + Zx by using ϕ on A and
mapping x to zero for example. If there does exist an n ∈ N such that nx ∈ A, then
let n be the minimal such integer. Let z ∈ J be an element such that nz = ϕ(nx).
Define a morphism ϕ̃ : A⊕ Z→ J by (a,m) 7→ ϕ(a) +mz. By our choice of z the
kernel of ϕ̃ contains the kernel of the map A⊕Z→ B, (a,m) 7→ a+mx. Hence ϕ̃
factors through the image A′ = A+ Zx, and this extends the morphism ϕ. �

We can use this lemma to show that every abelian group can be embedded in a
injective abelian group. But this is a special case of the result of the following
section.

15.42. Injectives in the category of modules

In this section we prove that there are enough injective modules over a ring R.
We start with the fact that Q/Z is an injective abelian group. This follows from
Lemma 15.41.1.

Definition 15.42.1. Let R be a ring.

(1) For any R-module M over R we denote M∨ = Hom(M,Q/Z) with its
natural R-module structure. We think of M 7→ M∨ as a contravariant
functor from the category of R-modules to itself.
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(2) For any R-module M we denote

F (M) =
⊕

m∈M
R[m]

the free module with basis given by the elements [m] with m ∈M . We let
F (M)→M ,

∑
fi[mi] 7→

∑
fimi be the natural surjection of R-modules.

We think of M 7→ (F (M) → M) as a functor from the category of R-
modules to the category of arrows in R-modules.

Lemma 15.42.2. Let R be a ring. The functor M 7→M∨ is exact.

Proof. This because Q/Z is an injective abelian group by Lemma 15.41.1. �

There is a canonical map ev : M → (M∨)∨ given by evaluation: given x ∈ M we
let ev(x) ∈ (M∨)∨ = Hom(M∨,Q/Z) be the map ϕ 7→ ϕ(x).

Lemma 15.42.3. For any R-module M the evaluation map ev : M → (M∨)∨ is
injective.

Proof. You can check this using that Q/Z is an injective abelian group. Namely,
if x ∈ M is not zero, then let M ′ ⊂ M be the cyclic group it generates. There
exists a nonzero map M ′ → Q/Z which necessarily does not annihilate x. This
extends to a map ϕ : M → Q/Z And then ev(x)(ϕ) = ϕ(x) 6= 0. �

The canonical surjection F (M)→ M of R-modules turns into a a canonical injec-
tion, see above, of R-modules

(M∨)∨ −→ (F (M∨))∨.

Set J(M) = (F (M∨))∨. The composition of ev with this the displayed map gives
M → J(M) functorially in M .

Lemma 15.42.4. Let R be a ring. For every R-module M the R-module J(M) is
injective.

Proof. Note that J(M) ∼=
∏
ϕ∈M∨ R

∨ as an R-module. As the product of injective

modules is injective, it suffices to show that R∨ is injective. For this we use that

HomR(N,R∨) = HomR(N,HomZ(R,Q/Z)) = N∨

and the fact that (−)∨ is an exact functor by Lemma 15.42.2. �

Lemma 15.42.5. Let R be a ring. The construction above defines a covariant
functor M 7→ (M → J(M)) from the category of R-modules to the category of
arrows of R-modules such that for every module M the output M → J(M) is an
injective map of M into an injective R-module J(M).

Proof. Follows from the above. �

In particular, for any map of R-modules M → N there is an associated morphism
J(M)→ J(N) making the following diagram commute:

M

��

// N

��
J(M) // J(N)

This is the kind of construction we would like to have in general. In Homology,
Section 12.23 we introduced terminology to express this. Namely, we say this means
that the category of R-modules has functorial injective embeddings.
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15.43. Derived categories of modules

In this section we put some generalities concerning the derived category of modules
over a ring.

Let A be a ring. The category of A-modules has products and products are exact.
The category of A-modules has enough injectives by Lemma 15.42.5. Hence every
complex of A-modules is quasi-isomorphic to a K-injective complex (Derived Cate-
gories, Lemma 13.29.9). It follows that D(A) has countable products (Derived Cat-
egories, Lemma 13.32.2) and in fact arbitrary products (Injectives, Lemma 19.13.4).
This implies that every inverse system of objects of D(A) has a derived limit (well
defined up to isomorphism), see Derived Categories, Section 13.32.

Lemma 15.43.1. Let R→ S be a flat ring map. If I• is a K-injective complex of
S-modules, then I• is K-injective as a complex of R-modules.

Proof. This is true because HomK(R)(M
•, I•) = HomK(S)(M

• ⊗R S, I•) by Alge-
bra, Lemma 10.13.3 and the fact that tensoring with S is exact. �

Lemma 15.43.2. Let R→ S be an epimorphism of rings. Let I• be a complex of
S-modules. If I• is K-injective as a complex of R-modules, then I• is a K-injective
complex of S-modules.

Proof. This is true because HomK(R)(N
•, I•) = HomK(S)(N

•, I•) for any complex
of S-modules N•, see Algebra, Lemma 10.103.14. �

Lemma 15.43.3. Let A → B be a ring map. If I• is a K-injective complex of
A-modules, then HomA(B, I•) is a K-injective complex of B-modules.

Proof. This is true because HomK(B)(N
•,HomA(B, I•)) = HomK(A)(N

•, I•) by
Algebra, Lemma 10.13.4. �

15.44. Computing Tor

Let R be a ring. We denote D(R) the derived category of the abelian category
ModR of R-modules. Note that ModR has enough projectives as every free R-
module is projective. Thus we can define the left derived functors of any additive
functor from ModR to any abelian category.

This implies in particular to the functor − ⊗R M : ModR → ModR whose right
derived functors are the Tor functors TorRi (−,M), see Algebra, Section 10.72. There
is also a total right derived functor

(15.44.0.1) −⊗L
RM : D−(R) −→ D−(R)

which is denoted −⊗L
RM . Its satellites are the Tor modules, i.e., we have

H−p(N ⊗L
RM) = TorRp (N,M).

A special situation occurs when we consider the tensor product with an R-algebra
A. In this case we think of − ⊗R A as a functor from ModR to ModA. Hence the
total right derived functor

(15.44.0.2) −⊗L
RA : D−(R) −→ D−(A)

which is denoted −⊗L
R A. Its satellites are the tor groups, i.e., we have

H−p(N ⊗L
R A) = TorRp (N,A).
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In particular these Tor groups naturally have the structure of A-modules.

15.45. Derived tensor product

We can construct the derived tensor product in greater generality. In fact, it turns
out that the boundedness assumptions are not necessary, provided we choose K-
flat resolutions. In this section we use Homology, Example 12.22.2 and Homology,
Definition 12.22.3 to turn a pair of complexes of modules into a double complex
and its associated total complex.

Lemma 15.45.1. Let R be a ring. Let P • be a complex of R-modules. Let
α, β : L• → M• be homotopy equivalent maps of complexes. Then α and β in-
duce homotopy equivalent maps

Tot(α⊗ idP ),Tot(β ⊗ idP ) : Tot(L• ⊗R P •) −→ Tot(M• ⊗R P •).
In particular the construction L• 7→ Tot(L• ⊗R P •) defines an endo-functor of the
homotopy category of complexes.

Proof. Say α = β + dh + hd for some homotopy h defined by hn : Ln → Mn−1.
Set

Hn =
⊕

a+b=n
ha ⊗ idP b :

⊕
a+b=n

La ⊗R P b −→
⊕

a+b=n
Ma−1 ⊗R P b

Then a straightforward computation shows that

Tot(α⊗ idP ) = Tot(β ⊗ idP ) + dH +Hd

as maps Tot(L• ⊗R P •)→ Tot(M• ⊗R P •). �

Lemma 15.45.2. Let R be a ring. Let P • be a complex of R-modules. The functor

K(ModR) −→ K(ModR), L• 7−→ Tot(L• ⊗R P •)
is an exact functor of triangulated categories.

Proof. By our definition of the triangulated structure on K(ModR) we have to
check that our functor maps a termwise split short exact sequence of complexes to
a termwise split short exact sequence of complexes. As the terms of Tot(L•⊗R P •)
are direct sums of the tensor products La ⊗R P b this is clear. �

The following definition will allow us to think intelligently about derived tensor
products of unbounded complexes.

Definition 15.45.3. Let R be a ring. A complex K• is called K-flat if for every
acyclic complex M• the total complex Tot(M• ⊗R K•) is acyclic.

Lemma 15.45.4. Let R be a ring. Let K• be a K-flat complex. Then the functor

K(ModR) −→ K(ModR), L• 7−→ Tot(L• ⊗R K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 15.45.2 and the fact that quasi-isomorphisms inK(ModR)
and K(ModA) are characterized by having acyclic cones. �

Lemma 15.45.5. Let R → R′ be a ring map. If K• is a K-flat complex of R-
modules, then K• ⊗R R′ is a K-flat complex of R′-modules.

Proof. Follows from the definitions and the fact that (K•⊗RR′)⊗R′L• = K•⊗RL•
for any complex L• of R′-modules. �
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Lemma 15.45.6. Let R be a ring. If K•, L• are K-flat complexes of R-modules,
then Tot(K• ⊗R L•) is a K-flat complex of R-modules.

Proof. Follows from the isomorphism

Tot(M• ⊗R Tot(K• ⊗R L•)) = Tot(Tot(M• ⊗R K•)⊗R L•)
and the definition. �

Lemma 15.45.7. Let R be a ring. Let (K•1 ,K
•
2 ,K

•
3 ) be a distinguished triangle in

K(ModR). If two out of three of K•i are K-flat, so is the third.

Proof. Follows from Lemma 15.45.2 and the fact that in a distinguished triangle
in K(ModA) if two out of three are acyclic, so is the third. �

Lemma 15.45.8. Let R be a ring. Let P • be a bounded above complex of flat
R-modules. Then P • is K-flat.

Proof. Let L• be an acyclic complex of R-modules. Let ξ ∈ Hn(Tot(L• ⊗R P •)).
We have to show that ξ = 0. Since Totn(L• ⊗R P •) is a direct sum with terms
La⊗RP b we see that ξ comes from an element in Hn(Tot(τ≤mL

•⊗RP •)) for some
m ∈ Z. Since τ≤mL

• is also acyclic we may replace L• by τ≤mL
•. Hence we may

assume that L• is bounded above. In this case the spectral sequence of Homology,
Lemma 12.22.6 has

′Ep,q1 = Hp(L• ⊗R P q)
which is zero as P q is flat and L• acyclic. Hence H∗(Tot(L• ⊗R P •)) = 0. �

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemma 15.45.9. Let R be a ring. Let K•1 → K•2 → . . . be a system of K-flat
complexes. Then colimiK

•
i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(M• ⊗R K•i ) = Tot(M• ⊗R colimiK
•
i )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 15.45.10. Let R be a ring. For any complex M• there exists a K-flat
complex K• and a quasi-isomorphism K• → M•. Moreover each Kn is a flat
R-module.

Proof. Let P ⊂ Ob(ModR) be the class of flat R-modules. By Derived Categories,
Lemma 13.28.1 there exists a system K•1 → K•2 → . . . and a diagram

K•1

��

// K•2

��

// . . .

τ≤1M
• // τ≤2M

• // . . .

with the properties (1), (2), (3) listed in that lemma. These properties imply each
complex K•i is a bounded above complex of flat modules. Hence K•i is K-flat
by Lemma 15.45.8. The induced map colimiK

•
i → M• is a quasi-isomorphism

by construction. The complex colimiK
•
i is K-flat by Lemma 15.45.9. The final

assertion of the lemma is true because the colimit of a system of flat modules is
flat, see Algebra, Lemma 10.38.2. �
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http://stacks.math.columbia.edu/tag/06Y2
http://stacks.math.columbia.edu/tag/064K
http://stacks.math.columbia.edu/tag/06Y3
http://stacks.math.columbia.edu/tag/06Y4
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Remark 15.45.11. In fact, we can do better than Lemma 15.45.10. Namely,
we can find a quasi-isomorphism P • → M• where P • is a complex of A-modules
endowed with a filtration

0 = F−1P
• ⊂ F0P

• ⊂ F1P
• ⊂ . . . ⊂ P •

by differential graded submodules such that

(1) P • =
⋃
FpP

•,
(2) the inclusions FiP

• → Fi+1P
• are termwise split injections,

(3) the quotients Fi+1P
•/FiP

• are isomorphic to direct sums of shifts A[k]
(as complexes, so differentials are zero).

This was shown in Differential Graded Algebra, Lemma 22.13.4. Moreover, given
such a complex we obtain a distinguished triangle⊕

FiP
• →

⊕
FiP

• →M• →
⊕

FiP
•[1]

in D(A). Using this we can sometimes reduce statements about general complexes
to statements about A[k] (this of course only works if the statement is preserved
under taking direct sums). More precisely, let T be a property of objects of D(A).
Suppose that

(1) if Ki ∈ D(A), i ∈ I is a family of objects with T (Ki) for all i ∈ I, then
T (
⊕
Ki),

(2) if K → L → M → K[1] is a distinguished triangle and T holds for two,
then T holds for the third object,

(3) T (A[k]) holds for all k.

Then T holds for all objects of D(A).

Lemma 15.45.12. Let R be a ring. Let α : P • → Q• be a quasi-isomorphism
of K-flat complexes of R-modules. For every complex L• of R-modules the induced
map

Tot(idL ⊗ α) : Tot(L• ⊗R P •) −→ Tot(L• ⊗R Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → L• with K• a K-flat complex, see
Lemma 15.45.10. Consider the commutative diagram

Tot(K• ⊗R P •) //

��

Tot(K• ⊗R Q•)

��
Tot(L• ⊗R P •) // Tot(L• ⊗R Q•)

The result follows as by Lemma 15.45.4 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. �

Let R be a ring. Let M• be an object of D(R). Choose a K-flat resolution K• →
M•, see Lemma 15.45.10. By Lemmas 15.45.1 and 15.45.2 we obtain an exact
functor of triangulated categories

K(ModR) −→ K(ModR), L• 7−→ Tot(L• ⊗R K•)
By Lemma 15.45.4 this functor induces a functor D(R) → D(R) simply because
D(R) is the localization of K(ModR) at quasi-isomorphism. By Lemma 15.45.12
the resulting functor (up to isomorphism) does not depend on the choice of the
K-flat resolution.

http://stacks.math.columbia.edu/tag/09PB
http://stacks.math.columbia.edu/tag/064L
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Definition 15.45.13. Let R be a ring. Let M• be an object of D(R). The derived
tensor product

−⊗L
RM

• : D(R) −→ D(R)

is the exact functor of triangulated categories described above.

This functor extends the functor (15.44.0.1). It is clear from our explicit construc-
tions that there is a canonical isomorphism

M• ⊗L
R L
• ∼= L• ⊗L

RM
•

whenever both L• and M• are in D(R). Hence when we write M• ⊗L
R L
• we will

usually be agnostic about which variable we are using to define the derived tensor
product with.

15.46. Derived change of rings

Let R → A be a ring map. Let N be an A-module. We can also use K-flat
resolutions to define a functor

−⊗L
R N : D(R)→ D(A)

which is the left derived functor of the functor ModR → ModA, M 7→M ⊗RN . In
particular, taking N = A we obtain a derived base change functor

−⊗L
R A : D(R)→ D(A)

extending the functor (15.44.0.2). Namely, for every complex of R-modules M•

we can choose a K-flat resolution K• → M• and set M• ⊗L
R N = K• ⊗R N . You

can use Lemmas 15.45.10 and 15.45.12 to see that this is well defined. However, to
cross all the t’s and dot all the i’s it is perhaps more convenient to use some general
theory.

Lemma 15.46.1. The construction above is independent of choices and defines
an exact functor of triangulated categories − ⊗L

R N : D(R) → D(A). There is a
functorial isomorphism

E ⊗L
R N = (E ⊗L

R A)⊗L
A N

for E in D(R).

Proof. To prove the existence of the derived functor − ⊗L
R N we use the general

theory developed in Derived Categories, Section 13.15. Set D = K(ModR) and
D′ = D(A). Let us write F : D → D′ the exact functor of triangulated categories
defined by the rule F (M•) = M•⊗RN . We let S be the set of quasi-isomorphisms in
D = K(ModR). This gives a situation as in Derived Categories, Situation 13.15.1 so
that Derived Categories, Definition 13.15.2 applies. We claim that LF is everywhere
defined. This follows from Derived Categories, Lemma 13.15.15 with P ⊂ Ob(D)
the collection of K-flat complexes: (1) follows from Lemma 15.45.10 and (2) follows
from Lemma 15.45.12. Thus we obtain a derived functor

LF : D(R) = S−1D −→ D′ = D(A)

see Derived Categories, Equation (13.15.9.1). Finally, Derived Categories, Lemma
13.15.15 guarantees that LF (K•) = F (K•) = K•⊗RN when K• is K-flat, i.e., LF
is indeed computed in the way described above. Moreover, by Lemma 15.45.5 the
complex K• ⊗R A is a K-flat complex of A-modules. Hence

(K• ⊗L
R A)⊗L

A N = (K• ⊗R A)⊗A N = K• ⊗A N = K• ⊗L
A N

http://stacks.math.columbia.edu/tag/064M
http://stacks.math.columbia.edu/tag/06Y6
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which proves the final statement of the lemma. �

Remark 15.46.2 (Warning). Let R → A be a ring map, and let N and N ′ be
A-modules. Denote NR and N ′R the restriction of N and N ′ to R-modules, see
Algebra, Section 10.13. In this situation, the objects NR ⊗L

R N
′ and N ⊗L

R N
′
R of

D(A) are in general not isomorphic! In other words, one has to pay careful attention
as to which of the two sides is being used to provide the A-module structure.

For a specific example, set R = k[x, y], A = R/(xy), N = R/(x) and N ′ = A =

R/(xy). The resolution 0→ R
xy−→ R→ N ′R → 0 shows thatN⊗L

RN
′
R = N [1]⊕N in

D(A). The resolution 0→ R
x−→ R→ NR → 0 shows that NR⊗L

RN
′ is represented

by the complex A
x−→ A. To see these two complexes are not isomorphic, one can

show that the second complex is not isomorphic in D(A) to the direct sum of its
cohomology groups, or one can show that the first complex is not a perfect object
of D(A) whereas the second one is. Some details omitted.

Lemma 15.46.3. Let A → B → C be ring maps. Let M be an A-module, N a
B-module, and K a C-module. Then

(M ⊗L
A N)⊗L

B K = (M ⊗L
A K)⊗L

C (N ⊗L
B C) = (M ⊗L

A C)⊗L
C (N ⊗L

B K)

in D(C).

Proof. Let M• → M be a free resolution of M as an A-module and let N• be a
free resolution of N as a B-module. We have

M ⊗L
A N = M• ⊗A N

= M• ⊗A B ⊗B N
← Tot((M• ⊗A B)⊗B N•)
= Tot(M• ⊗A N•)

Here the arrow is a quasi-isomorphism in D(B) as M• ⊗A B is a bounded above
complex of free B-modules, hence K-flat (Lemma 15.45.8) and hence Lemma 15.45.4
applies. Now the complex Tot(M• ⊗A N•) is a complex of free B-modules hence
we see that

(M ⊗L
A N)⊗L

B K = Tot(M• ⊗A N•)⊗B K = Tot(M• ⊗A N• ⊗B K)

On the other hand,

M ⊗L
A K = M• ⊗A K and N ⊗L

B C = N• ⊗B C

and the second is a bounded above complex of free C-modules hence we see that

(M⊗L
AK)⊗L

C (N⊗L
BC) = Tot((M•⊗AK)⊗C (N•⊗BC)) = Tot(M•⊗AN•⊗BK)

which proves the first equality of the statement of the lemma. To prove the second
we use that

M ⊗L
A C = M• ⊗A C and N ⊗L

B K = N• ⊗B K

and the first is a bounded above complex of free C-modules so that

(M⊗L
AC)⊗L

C (N⊗L
BK) = Tot((M•⊗AC)⊗C (N•⊗BK)) = Tot(M•⊗AN•⊗BK)

as before. �

http://stacks.math.columbia.edu/tag/08YT
http://stacks.math.columbia.edu/tag/08YU
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15.47. Tor independence

Consider a commutative diagram

A // A′

R //

OO

R′

OO

of rings. Given an object K of D(A) we can consider its restriction to an object of
D(R). We can then consider take the derived change of rings of K to an object of
D(A′) and D(R′). We claim there is a functorial comparison map

(15.47.0.1) K ⊗L
R R

′ −→ K• ⊗L
A A

′

in D(R′). To construct this comparison map choose a K-flat complex K• of A-
modules representing K. Next, choose a quasi-isomorphism E• → K• where E• is
a K-flat complex of R-modules. The map above is the map

K ⊗L
R R

′ = E• ⊗R R′ −→ K• ⊗A A′ = K ⊗L
A A

′

In general there is no chance that this map is an isomorphism.

However, we often encounter the situation where the diagram above is a “base
change” diagram of rings, i.e., A′ = A ⊗R R′. In this situation, for any A-module
M we have M ⊗A A′ = M ⊗R R′. Thus −⊗R R′ is equal to −⊗A A′ as a functor
ModA → ModA′ . In general this equality does not extend to derived tensor
products. In other words, the comparison map is not an isomorphism. A simple
example is to take R = k[x], A = R′ = A′ = k[x]/(x) = k and K• = A[0]. Clearly,

a necessary condition is that TorRp (A,R′) = 0 for all p > 0.

Definition 15.47.1. Let R be a ring. Let A, B be R-algebras. We say A and B
are Tor independent over R if TorRp (A,B) = 0 for all p > 0.

Lemma 15.47.2. The comparison map (15.47.0.1) is an isomorphism if A′ =
A⊗R R′ and A and R′ are Tor independent over R.

Proof. To prove this we choose a free resolution F • → R′ of R′ as an R-module.
Because A and R′ are Tor independent over R we see that F • ⊗R A is a free A-
module resolution of A′ over A. By our general construction of the derived tensor
product above we see that

K•⊗AA′ ∼= Tot(K•⊗A (F •⊗RA)) = Tot(K•⊗RF •) ∼= Tot(E•⊗RF •) ∼= E•⊗RR′

as desired. �

Lemma 15.47.3. Consider a commutative diagram of rings

A′ R′ //oo B′

A

OO

Roo

OO

// B

OO

Assume that R′ is flat over R and A′ is flat over A ⊗R R′ and B′ is flat over
R′ ⊗R B. Then

TorRi (A,B)⊗(A⊗RB) (A′ ⊗R′ B′) = TorR
′

i (A′, B′)

http://stacks.math.columbia.edu/tag/0660
http://stacks.math.columbia.edu/tag/0661
http://stacks.math.columbia.edu/tag/08HW
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Proof. By Algebra, Section 10.73 there are canonical maps

TorRi (A,B) −→ TorR
′

i (A⊗R R′, B ⊗R R′) −→ TorR
′

i (A′, B′)

These induce a map from left to right in the formula of the lemma.

Take a free resolution F• → A of A as an R-module. Then we see that F•⊗RR′ is a

resolution of A⊗RR′. Hence TorR
′

i (A⊗RR′, B⊗RR′) is computed by F•⊗RB⊗RR′.
By our assumption that R′ is flat over R, this computes TorRi (A,B) ⊗R R′. Thus

TorR
′

i (A⊗R R′, B ⊗R R′) = TorRi (A,B)⊗R R′ (uses only flatness of R′ over R).

By Lazard’s theorem (Algebra, Theorem 10.78.4) we can write A′, resp. B′ as a
filtered colimit of finite free A ⊗R R′, resp. B ⊗R R′-modules. Say A′ = colimMi

and B′ = colimNj . The result above gives

TorR
′

i (Mi, Nj) = TorRi (A,B)⊗A⊗RB (Mi ⊗R′ Nj)

as one can see by writing everything out in terms of bases. Taking the colimit we
get the result of the lemma. �

Lemma 15.47.4. Let R be a ring. Let A, B be R-algebras. The following are
equivalent

(1) A and B are Tor independent over R,
(2) for every pair of primes p ⊂ A and q ⊂ B lying over the same prime

r ⊂ R the rings Ap and Bq are Tor independent over Rr, and
(3) For every prime s of A⊗R B the module

TorRi (A,B)s = TorRr
i (Ap, Bq)s

(where p = A ∩ s, q = B ∩ s and r = R ∩ s) is zero.

Proof. Let s be a prime of A⊗R B as in (3). The equality

TorRi (A,B)s = TorRr
i (Ap, Bq)s

where p = A ∩ s, q = B ∩ s and r = R ∩ s follows from Lemma 15.47.3. Hence
(2) implies (3). Since we can test the vanishing of modules by localizing at primes
(Algebra, Lemma 10.23.1) we conclude that (3) implies (1). For (1) ⇒ (2) we use
that

TorRr
i (Ap, Bq) = TorRi (A,B)⊗(A⊗RB) (Ap ⊗Rr

Bq)

again by Lemma 15.47.3. �

15.48. Spectral sequences for Tor

In this section we collect various spectral sequences that come up when considering
the Tor functors.

Example 15.48.1. Let R be a ring. Let K• be a bounded above chain complex
of R-modules. Let M be an R-module. Then there is a spectral sequence with
E2-page

TorRi (Hj(K•),M)⇒ Hi+j(K• ⊗L
RM)

and another spectral sequence with E1-page

TorRi (Kj ,M)⇒ Hi+j(K• ⊗L
RM)

This follows from the dual to Derived Categories, Lemma 13.21.3.

http://stacks.math.columbia.edu/tag/08HX
http://stacks.math.columbia.edu/tag/061Z
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Example 15.48.2. Let R→ S be a ring map. Let M be an R-module and let N
be an S-module. Then there is a spectral sequence

TorSn(TorRm(M,S), N)⇒ TorRn+m(M,N).

To construct it choose a R-free resolution P• of M . Then we have

M ⊗L
R N = P • ⊗R N = (P • ⊗R S)⊗S N

and then apply the first spectral sequence of Example 15.48.1.

Example 15.48.3. Consider a commutative diagram

B // B′ = B ⊗A A′

A //

OO

A′

OO

and B-modules M,N . Set M ′ = M⊗AA′ = M⊗BB′ and N ′ = N⊗AA′ = N⊗BB′.
Assume that A→ B is flat and that M and N are A-flat. Then there is a spectral
sequence

TorAi (TorBj (M,N), A′)⇒ TorB
′

i+j(M
′, N ′)

The reason is as follows. Choose free resolution F• →M as a B-module. As B and
M are A-flat we see that F•⊗A A′ is a free B′-resolution of M ′. Hence we see that

the groups TorB
′

n (M ′, N ′) are computed by the complex

(F• ⊗A A′)⊗B′ N ′ = (F• ⊗B N)⊗A A′ = (F• ⊗B N)⊗L
A A

′

the last equality because F• ⊗B N is a complex of flat A-modules as N is flat over
A. Hence we obtain the spectral sequence by applying the spectral sequence of
Example 15.48.1.

Example 15.48.4. Let K•, L• be objects of D−(R). Then there are spectral
sequences

Ep,q2 = Hp(K• ⊗L
R H

q(L•))⇒ Hp+q(K• ⊗L
R L
•)

with dp,q2 : Ep,q2 → Ep+2,q−1
2 and

Hq(Hp(K•)⊗L
R L
•)⇒ Hp+q(K• ⊗L

R L
•)

After replacing K• and L• by bounded above complexes of projectives, these spec-
tral sequences are simply the two spectral sequences for computing the cohomology
of Tot(K• ⊗ L•) discussed in Homology, Section 12.22.

15.49. Products and Tor

The simplest example of the product maps comes from the following situation.
Suppose that K•, L• ∈ D(R) with one of them contained in D−(R). Then there
are maps

(15.49.0.1) Hi(K•)⊗R Hj(L•) −→ Hi+j(K• ⊗L
R L
•)

Namely, to define these maps we may assume that one of K•, L• is a bounded
above complex of projective R-modules. In that case K• ⊗L

R L
• is represented by

the complex Tot(K•⊗RL•), see Section 15.44. Next, suppose that ξ ∈ Hi(K•) and
ζ ∈ Hj(L•). Choose k ∈ Ker(Ki → Ki+1) and l ∈ Ker(Lj → Lj+1) representing ξ
and ζ. Then we set

ξ ∪ ζ = class of k ⊗ l in Hi+j(Tot(K• ⊗R L•)).

http://stacks.math.columbia.edu/tag/068F
http://stacks.math.columbia.edu/tag/0620
http://stacks.math.columbia.edu/tag/0662
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This make sense because the formula (see Homology, Definition 12.22.3) for the
differential d on the total complex shows that k ⊗ l is a cocycle. Moreover, if k′ =
dK(k′′) for some k′′ ∈ Ki−1, then k′⊗ l = d(k′′⊗ l) because l is a cocycle. Similarly,
altering the choice of l representing ζ does not change the class of k⊗ l. It is equally
clear that ∪ is bilinear, and hence to a general element of Hi(K•) ⊗R Hj(L•) we
assign ∑

ξi ⊗ ζi 7−→
∑

ξi ∪ ζi
in Hi+j(Tot(K• ⊗R L•)).
Let R → A be a ring map. Let K•, L• ∈ D−(R). Then we have a canonical
identification

(15.49.0.2) (K• ⊗L
R A)⊗L

A (L• ⊗L
R A) = (K• ⊗L

R L
•)⊗L

R A

in D(A). It is constructed as follows. First, choose projective resolutions P • → K•

and Q• → L• over R. Then the left hand side is represented by the complex
Tot((P • ⊗R A)⊗A (Q• ⊗R A)) and the right hand side by the complex Tot(P • ⊗R
Q•) ⊗R A. These complexes are canonically isomorphic. Thus the construction
above induces products

TorRn (K•, A)⊗A TorRm(L•, A) −→ TorRn+m(K• ⊗R L•, A)

which are occasionally useful.

Let M , N be R-modules. Using the general construction above and functoriality
of Tor we obtain canonical maps

(15.49.0.3) TorRn (M,A)⊗A TorRm(N,A) −→ TorRn+m(M ⊗R N,A)

Here is a direct construction using projective resolutions. First, choose projective
resolutions

P• →M, Q• → N, T• →M ⊗R N
over R. We haveH0(Tot(P•⊗RQ•)) = M⊗RN by right exactness of⊗R. Hence De-
rived Categories, Lemmas 13.19.6 and 13.19.7 guarantee the existence and unique-
ness of a map of complexes µ : Tot(P• ⊗R Q•) → T• such that H0(µ) = idM⊗RN .
This induces a canonical map

(M ⊗L
R A)⊗L

A (N ⊗L
R A) = Tot((P• ⊗R A)⊗A (Q• ⊗R A))

= Tot(P• ⊗R Q•)⊗R A
→ T• ⊗R A
= (M ⊗R N)⊗L

R A

in D(A). Hence the products (15.49.0.3) above are constructed using (15.49.0.1)
over A to construct

TorRn (M,A)⊗A TorRm(N,A)→ H−n−m((M ⊗L
R A)⊗L

A (N ⊗L
R A))

and then composing by the displayed map above to end up in TorRn+m(M⊗RN,A).

An interesting special case of the above occurs when M = N = B where B is an
R-algebra. In this case we obtain maps

TorRn (B,A)⊗A TorRm(B,A) −→ TorRn (B ⊗R B,A) −→ TorRn (B,A)

the second arrow being induced by the multiplication map B ⊗R B → B via func-
toriality for Tor. In other words we obtain an A-algebra structure on TorR? (B,A).
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This algebra structure has many intriguing properties (associativity, graded com-
mutative, B-algebra structure, divided powers in some case, etc) which we will
discuss elsewhere (insert future reference here).

Lemma 15.49.1. Let R be a ring. Let A,B,C be R-algebras and let B → C be
an R-algebra map. Then the induced map

TorR? (B,A) −→ TorR? (C,A)

is an A-algebra homomorphism.

Proof. Omitted. Hint: You can prove this by working through the definitions,
writing all the complexes explicitly. �

15.50. Pseudo-coherent modules

Suppose that R is a ring. Recall that an R-module M is of finite type if there
exists a surjection R⊕a →M and of finite presentation if there exists a presentation
R⊕a1 → R⊕a0 → M → 0. Similarly, we can consider those R-modules for which
there exists a length n resolution

(15.50.0.1) R⊕an → R⊕an−1 → . . .→ R⊕a0 →M → 0

by finite free R-modules. A module is called pseudo-coherent of we can find such a
resolution for every n. Here is the formal definition.

Definition 15.50.1. Let R be a ring. Denote D(R) its derived category. Let
m ∈ Z.

(1) An object K• of D(R) is m-pseudo-coherent if there exists a bounded
complex E• of finite free R-modules and a morphism α : E• → K• such
that Hi(α) is an isomorphism for i > m and Hm(α) is surjective.

(2) An object K• of D(R) is pseudo-coherent if it is quasi-isomorphic to a
bounded above complex of finite free R-modules.

(3) An R-module M is called m-pseudo-coherent if if M [0] is an m-pseudo-
coherent object of D(R).

(4) An R-module M is called pseudo-coherent6 if M [0] is a pseudo-coherent
object of D(R).

As usual we apply this terminology also to complexes of R-modules. Since any
morphism E• → K• in D(R) is represented by an actual map of complexes, see
Derived Categories, Lemma 13.19.8, there is no ambiguity. It turns out that K• is
pseudo-coherent if and only if K• is m-pseudo-coherent for all m ∈ Z, see Lemma
15.50.5. Also, if the ring is Noetherian the condition can be understood as a finite
generation condition on the cohomology, see Lemma 15.50.16. Let us first relate
this to the informal discussion above.

Lemma 15.50.2. Let R be a ring and m ∈ Z. Let (K•, L•,M•, f, g, h) be a
distinguished triangle in D(R).

(1) If K• is (m + 1)-pseudo-coherent and L• is m-pseudo-coherent then M•

is m-pseudo-coherent.
(2) If K•,M• are m-pseudo-coherent, then L• is m-pseudo-coherent.
(3) If L• is (m+ 1)-pseudo-coherent and M• is m-pseudo-coherent, then K•

is (m+ 1)-pseudo-coherent.

6This clashes with what is meant by a pseudo-coherent module in [Bou61].

http://stacks.math.columbia.edu/tag/068K
http://stacks.math.columbia.edu/tag/064Q
http://stacks.math.columbia.edu/tag/064R
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Proof. Proof of (1). Choose α : P • → K• with P • a bounded complex of finite
free modules such that Hi(α) is an isomorphism for i > m + 1 and surjective for
i = m+1. We may replace P • by σ≥m+1P

• and hence we may assume that P i = 0
for i < m + 1. Choose β : E• → L• with E• a bounded complex of finite free
modules such that Hi(β) is an isomorphism for i > m and surjective for i = m. By
Derived Categories, Lemma 13.19.11 we can find a map α : P • → E• such that the
diagram

K• // L•

P •

OO

α // E•

OO

is commutative in D(R). The cone C(α)• is a bounded complex of finite free
R-modules, and the commutativity of the diagram implies that there exists a mor-
phism of distinguished triangles

(P •, E•, C(α)•) −→ (K•, L•,M•).

It follows from the induced map on long exact cohomology sequences and Homol-
ogy, Lemmas 12.5.19 and 12.5.20 that C(α)• → M• induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. Hence M• is m-pseudo-
coherent.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 15.50.3. Let R be a ring. Let K• be a complex of R-modules. Let m ∈ Z.

(1) If K• is m-pseudo-coherent and Hi(K•) = 0 for i > m, then Hm(K•) is
a finite type R-module.

(2) If K• is m-pseudo-coherent and Hi(K•) = 0 for i > m+1, then Hm+1(K•)
is a finitely presented R-module.

Proof. Proof of (1). Choose a bounded complex E• of finite projective R-modules
and a map α : E• → K• which induces an isomorphism on cohomology in degrees
> m and a surjection in degree m. It is clear that it suffices to prove the result
for E•. Let n be the largest integer such that En 6= 0. If n = m, then the result
is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0. As En is finite
projective we see that En−1 = E′ ⊕ En. Hence it suffices to prove the result for
the complex (E′)• which is the same as E• except has E′ in degree n− 1 and 0 in
degree n. We win by induction on n.

Proof of (2). Choose a bounded complex E• of finite projective R-modules and a
map α : E• → K• which induces an isomorphism on cohomology in degrees > m
and a surjection in degree m. As in the proof of (1) we can reduce to the case that
Ei = 0 for i > m+ 1. Then we see that Hm+1(K•) ∼= Hm+1(E•) = Coker(Em →
Em+1) which is of finite presentation. �

Lemma 15.50.4. Let R be a ring. Let M be an R-module. Then

(1) M is 0-pseudo-coherent if and only if M is a finite type R-module,
(2) M is (−1)-pseudo-coherent if and only if M is a finitely presented R-

module,
(3) M is (−d)-pseudo-coherent if and only if there exists a resolution

R⊕ad → R⊕ad−1 → . . .→ R⊕a0 →M → 0
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of length d, and
(4) M is pseudo-coherent if and only if there exists an infinite resolution

. . .→ R⊕a1 → R⊕a0 →M → 0

by finite free R-modules.

Proof. If M is of finite type (resp. of finite presentation), then M is 0-pseudo-
coherent (resp. (−1)-pseudo-coherent) as follows from the discussion preceding
Definition 15.50.1. Conversely, if M is 0-pseudo-coherent, then M = H0(M [0])
is of finite type by Lemma 15.50.3. If M is (−1)-pseudo-coherent, then it is 0-
pseudo-coherent hence of finite type. Choose a surjection R⊕a → M and denote
K = Ker(R⊕a → M). By Lemma 15.50.2 we see that K is 0-pseudo-coherent,
hence of finite type, whence M is of finite presentation.

To prove the third and fourth statement use induction and an argument similar to
the above (details omitted). �

Lemma 15.50.5. Let R be a ring. Let K• be a complex of R-modules. The
following are equivalent

(1) K• is pseudo-coherent,
(2) K• is m-pseudo-coherent for every m ∈ Z, and
(3) K• is quasi-isomorphic to a bounded above complex of finite projective

R-modules.

Proof. We see that (1)⇒ (3) as a finite free module is a finite projective R-module.
Conversely, suppose P • is a bounded above complex of finite projective R-modules.
Say P i = 0 for i > n0. We choose a direct sum decompositions Fn0 = Pn0 ⊕ Cn0

with Fn0 a finite free R-module, and inductively

Fn−1 = Pn−1 ⊕ Cn ⊕ Cn−1

for n ≤ n0 with Fn0 a finite free R-module. As a complex F • has maps Fn−1 → Fn

which agree with Pn−1 → Pn, induce the identity Cn → Cn, and are zero on Cn−1.
The map F • → P • is a quasi-isomorphism (even a homotopy equivalence) and hence
(3) implies (1).

Assume (1). Let E• be a bounded above complex of finite free R-modules and let
E• → K• be a quasi-isomorphism. Then the induced maps σ≥mE

• → K• from
the stupid truncation of E• to K• show that K• is m-pseudo-coherent. Hence (1)
implies (2).

Assume (2). We first apply (2) for n = 0 to obtain a map of complexes α : F • → K•

where F • is bounded above, consists of finite free R-modules and such that Hi(α)
is an isomorphism for i > 0 and surjective for i = 0. Note that these conditions
remain satisfied after replacing F • by σ≥0F

•. Picture

F 0 //

α

��

F 1

α

��

// . . .

K−1 // K0 // K1 // . . .

By induction on n < 0 we are going to extend F • to a complex Fn → Fn+1 →
. . . → F−1 → F 0 → . . . of finite free R-modules and extend α such that Hi(α)
is an isomorphism for i > n and surjective for i = n. By shifting it suffices to

http://stacks.math.columbia.edu/tag/064U
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prove the induction step for n = −1, i.e., it suffices to extend the diagram above
by adding F−1. Let C• be the cone on α (Derived Categories, Definition 13.9.1).
The long exact sequence of cohomology shows that Hi(C•) = 0 for i ≥ 0. By
Lemma 15.50.2 we see that C• is (−1)-pseudo-coherent. By Lemma 15.50.3 we see
that H−1(C•) is a finite R-module. Choose a finite free R-module F−1 and a map
β : F−1 → C−1 such that the composition F−1 → C−1 → C0 is zero and such that
F−1 surjects onto H−1(C•). Since C−1 = K−1⊕F 0 we can write β = (α−1,−d−1).
The vanishing of the composition F−1 → C−1 → C0 implies these maps fit into a
morphism of complexes

F−1

α−1

��

d−1

// F 0 //

α

��

F 1

α

��

// . . .

. . . // K−1 // K0 // K1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(F 0 → . . .) //

��

(F−1 → . . .) //

��

F−1 //

β

��

(F 0 → . . .)[1]

��
(F 0 → . . .) // K• // C• // (F 0 → . . .)[1]

Hence our choice of β implies that the map of complexes (F−1 → . . .)→ K• induces
an isomorphism on cohomology in degrees ≥ 0 and a surjection in degree −1. This
finishes the proof of the lemma. �

Lemma 15.50.6. Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R). If two out of three of K•, L•,M• are pseudo-coherent then the
third is also pseudo-coherent.

Proof. Combine Lemmas 15.50.2 and 15.50.5. �

Lemma 15.50.7. Let R be a ring. Let K• be a complex of R-modules. Let m ∈ Z.

(1) If Hi(K•) = 0 for all i ≥ m, then K• is m-pseudo-coherent.
(2) If Hi(K•) = 0 for i > m and Hm(K•) is a finite R-module, then K• is

m-pseudo-coherent.
(3) If Hi(K•) = 0 for i > m+ 1, the module Hm+1(K•) is of finite presenta-

tion, and Hm(K•) is of finite type, then K• is m-pseudo-coherent.

Proof. It suffices to prove (3). Set M = Hm+1(K•). Note that τ≥m+1K
• is

quasi-isomorphic to M [−m − 1]. By Lemma 15.50.4 we see that M [−m − 1] is
m-pseudo-coherent. Since we have the distinguished triangle

(τ≤mK
•,K•, τ≥m+1K

•)

(Derived Categories, Remark 13.12.4) by Lemma 15.50.2 it suffices to prove that
τ≤mK

• is pseudo-coherent. By assumption Hm(τ≤mK
•) is a finite type R-module.

Hence we can find a finite free R-module E and a map E → Ker(dmK) such that the
composition E → Ker(dmK) → Hm(τ≤mK

•) is surjective. Then E[−m] → τ≤mK
•

witnesses the fact that τ≤mK
• is m-pseudo-coherent. �

Lemma 15.50.8. Let R be a ring. Let m ∈ Z. If K• ⊕ L• is m-pseudo-coherent
(resp. pseudo-coherent) so are K• and L•.
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Proof. In this proof we drop the superscript •. Assume that K ⊕ L is m-pseudo-
coherent. It is clear that K,L ∈ D−(R). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 13.4.9. By Lemma 15.50.2 we see that L ⊕ L[1]
is m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n] ⊕ L[n + 1] is m-pseudo-coherent. By Lemma 15.50.7 we see that L[n] is m-
pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n], L[n − 1], . . . , L are m-pseudo-coherent as desired. The
pseudo-coherent case follows from this and Lemma 15.50.5. �

Lemma 15.50.9. Let R be a ring. Let m ∈ Z. Let K• be a bounded above complex
of R-modules such that Ki is (m − i)-pseudo-coherent for all i. Then K• is m-
pseudo-coherent. In particular, if K• is a bounded above complex of pseudo-coherent
R-modules, then K• is pseudo-coherent.

Proof. We may replace K• by σ≥m−1K
• (for example) and hence assume that

K• is bounded. Then the complex K• is m-pseudo-coherent as each Ki[−i] is m-
pseudo-coherent by induction on the length of the complex: use Lemma 15.50.2
and the stupid truncations. For the final statement, it suffices to prove that K• is
m-pseudo-coherent for all m ∈ Z, see Lemma 15.50.5. This follows from the first
part. �

Lemma 15.50.10. Let R be a ring. Let m ∈ Z. Let K• ∈ D−(R) such that
Hi(K•) is (m − i)-pseudo-coherent (resp. pseudo-coherent) for all i. Then K• is
m-pseudo-coherent (resp. pseudo-coherent).

Proof. Assume K• is an object of D−(R) such that each Hi(K•) is (m−i)-pseudo-
coherent. Let n be the largest integer such that Hn(K•) is nonzero. We will prove
the lemma by induction on n. If n < m, then K• is m-pseudo-coherent by Lemma
15.50.7. If n ≥ m, then we have the distinguished triangle

(τ≤n−1K
•,K•, Hn(K•)[−n])

(Derived Categories, Remark 13.12.4) Since Hn(K•)[−n] is m-pseudo-coherent by
assumption, we can use Lemma 15.50.2 to see that it suffices to prove that τ≤n−1K

•

is m-pseudo-coherent. By induction on n we win. (The pseudo-coherent case follows
from this and Lemma 15.50.5.) �

Lemma 15.50.11. Let A→ B be a ring map. Assume that B is pseudo-coherent
as an A-module. Let K• be a complex of B-modules. The following are equivalent

(1) K• is m-pseudo-coherent as a complex of B-modules, and
(2) K• is m-pseudo-coherent as a complex of A-modules.

The same equivalence holds for pseudo-coherence.

Proof. Assume (1). Choose a bounded complex of finite free B-modules E• and
a map α : E• → K• which is an isomorphism on cohomology in degrees > m and
a surjection in degree m. Consider the distinguished triangle (E•,K•, C(α)•). By
Lemma 15.50.7 C(α)• is m-pseudo-coherent as a complex of A-modules. Hence
it suffices to prove that E• is pseudo-coherent as a complex of A-modules, which
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follows from Lemma 15.50.9. The pseudo-coherent case of (1) ⇒ (2) follows from
this and Lemma 15.50.5.

Assume (2). Let n be the largest integer such that Hn(K•) 6= 0. We will prove that
K• is m-pseudo-coherent as a complex of B-modules by induction on n−m. The
case n < m follows from Lemma 15.50.7. Choose a bounded complex of finite free
A-modules E• and a map α : E• → K• which is an isomorphism on cohomology in
degrees > m and a surjection in degree m. Consider the induced map of complexes

α⊗ 1 : E• ⊗A B → K•.

Note that C(α⊗1)• is acyclic in degrees ≥ n as Hn(E)→ Hn(E•⊗AB)→ Hn(K•)
is surjective by construction and since Hi(E• ⊗A B) = 0 for i > n by the spectral
sequence of Example 15.48.4. On the other hand, C(α⊗1)• is m-pseudo-coherent as
a complex of A-modules because both K• and E•⊗AB (see Lemma 15.50.9) are so,
see Lemma 15.50.2. Hence by induction we see that C(α⊗1)• is m-pseudo-coherent
as a complex of B-modules. Finally another application of Lemma 15.50.2 shows
that K• is m-pseudo-coherent as a complex of B-modules (as clearly E• ⊗A B is
pseudo-coherent as a complex of B-modules). The pseudo-coherent case of (2) ⇒
(1) follows from this and Lemma 15.50.5. �

Lemma 15.50.12. Let A → B be a ring map. Let K• be an m-pseudo-coherent
(resp. pseudo-coherent) complex of A-modules. Then K• ⊗L

A B is an m-pseudo-
coherent (resp. pseudo-coherent) complex of B-modules.

Proof. First we note that the statement of the lemma makes sense as K• is
bounded above and hence K• ⊗L

A B is defined by Equation (15.44.0.2). Having
said this, choose a bounded complex E• of finite free A-modules and α : E• → K•

with Hi(α) an isomorphism for i > m and surjective for i = m. Then the cone
C(α)• is acyclic in degrees ≥ m. Since − ⊗L

A B is an exact functor we get a
distinguished triangle

(E• ⊗L
A B,K

• ⊗L
A B,C(α)• ⊗L

A B)

of complexes of B-modules. By the dual to Derived Categories, Lemma 13.17.1
we see that Hi(C(α)• ⊗L

A B) = 0 for i ≥ m. Since E• is a complex of projective
R-modules we see that E• ⊗L

A B = E• ⊗A B and hence

E• ⊗A B −→ K• ⊗L
A B

is a morphism of complexes of B-modules that witnesses the fact that K• ⊗L
A B is

m-pseudo-coherent. The case of pseudo-coherent complexes follows from the case
of m-pseudo-coherent complexes via Lemma 15.50.5. �

Lemma 15.50.13. Let A→ B be a flat ring map. Let M be an m-pseudo-coherent
(resp. pseudo-coherent) A-module. Then M ⊗A B is an m-pseudo-coherent (resp.
pseudo-coherent) B-module.

Proof. Immediate consequence of Lemma 15.50.12 and the fact that M ⊗L
A B =

M ⊗A B because B is flat over A. �

The following lemma also follows from the stronger Lemma 15.50.14.

Lemma 15.50.14. Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate
the unit ideal. Let m ∈ Z. Let K• be a complex of R-modules. If for each i
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the complex K• ⊗R Rfi is m-pseudo-coherent (resp. pseudo-coherent), then K• is
m-pseudo-coherent (resp. pseudo-coherent).

Proof. We will use without further mention that −⊗RRfi is an exact functor and
that therefore

Hi(K•)fi = Hi(K•)⊗R Rfi = Hi(K• ⊗R Rfi).
Assume K• ⊗R Rfi is m-pseudo-coherent for i = 1, . . . , r. Let n ∈ Z be the largest
integer such that Hn(K• ⊗R Rfi) is nonzero for some i. This implies in particular
that Hi(K•) = 0 for i > n (and that Hn(K•) 6= 0) see Algebra, Lemma 10.23.2.
We will prove the lemma by induction on n − m. If n < m, then the lemma is
true by Lemma 15.50.7. If n ≥ m, then Hn(K•)fi is a finite Rfi -module for each
i, see Lemma 15.50.3. Hence Hn(K•) is a finite R-module, see Algebra, Lemma
10.23.2. Choose a finite free R-module E and a surjection E → Hn(K•). As E
is projective we can lift this to a map of complexes α : E[−n] → K•. Then the
cone C(α)• has vanishing cohomology in degrees ≥ n. On the other hand, the
complexes C(α)• ⊗R Rfi are m-pseudo-coherent for each i, see Lemma 15.50.2.
Hence by induction we see that C(α)• is m-pseudo-coherent as a complex of R-
modules. Applying Lemma 15.50.2 once more we conclude. �

Lemma 15.50.15. Let R be a ring. Let m ∈ Z. Let K• be a complex of R-
modules. Let R → R′ be a faithfully flat ring map. If the complex K• ⊗R R′ is
m-pseudo-coherent (resp. pseudo-coherent), then K• is m-pseudo-coherent (resp.
pseudo-coherent).

Proof. We will use without further mention that −⊗R R′ is an exact functor and
that therefore

Hi(K•)⊗R R′ = Hi(K• ⊗R R′).
Assume K•⊗RR′ is m-pseudo-coherent. Let n ∈ Z be the largest integer such that
Hn(K•) is nonzero; then n is also the largest integer such that Hn(K• ⊗R R′) is
nonzero. We will prove the lemma by induction on n−m. If n < m, then the lemma
is true by Lemma 15.50.7. If n ≥ m, then Hn(K•)⊗R R′ is a finite R′-module, see
Lemma 15.50.3. Hence Hn(K•) is a finite R-module, see Algebra, Lemma 10.80.2.
Choose a finite free R-module E and a surjection E → Hn(K•). As E is projective
we can lift this to a map of complexes α : E[−n]→ K•. Then the cone C(α)• has
vanishing cohomology in degrees ≥ n. On the other hand, the complex C(α)•⊗RR′
is m-pseudo-coherent, see Lemma 15.50.2. Hence by induction we see that C(α)•

is m-pseudo-coherent as a complex of R-modules. Applying Lemma 15.50.2 once
more we conclude. �

Lemma 15.50.16. Let R be a Noetherian ring. Then

(1) A complex of R-modules K• is m-pseudo-coherent if and only if K• ∈
D−(R) and Hi(K•) is a finite R-module for i ≥ m.

(2) A complex of R-modules K• is pseudo-coherent if and only if K• ∈ D−(R)
and Hi(K•) is a finite R-module for all i.

(3) An R-module is pseudo-coherent if and only if it is finite.

Proof. In Algebra, Lemma 10.69.1 we have seen that any finite R-module is
pseudo-coherent. On the other hand, a pseudo-coherent module is finite, see Lemma
15.50.4. Hence (3) holds. Suppose that K• is an m-pseudo-coherent complex. Then
there exists a bounded complex of finite free R-modules E• such that Hi(K•) is
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isomorphic to Hi(E•) for i > m and such that Hm(K•) is a quotient of Hm(E•).
Thus it is clear that each Hi(K•), i ≥ m is a finite module. The converse impli-
cation in (1) follows from Lemma 15.50.10 and part (3). Part (2) follows from (1)
and Lemma 15.50.5. �

Remark 15.50.17. Let R be ring map. Let L, M , N be R-modules. Consider the
canonical map

HomR(M,N)⊗R L→ HomR(M,N ⊗R L)

Choose a two term free resolution F1 → F0 →M → 0. Assuming L flat over R we
obtain a commutative diagram

0 // HomR(M,N)⊗R L //

��

HomR(F0, N)⊗R L //

��

HomR(F1, N)⊗R L

��
0 // HomR(M,N ⊗R L) // HomR(F0, N ⊗R L) // HomR(F1, N ⊗R L)

with exact rows. We conclude that if F0 and F1 are finite free, i.e., if M is finitely
presented, then the first displayed map is an isomorphism. Similarly, if M is (−m)-
pseudo-coherent and still assuming L is flat over R, then the map

ExtiR(M,N)⊗R L→ ExtiR(M,N ⊗R L)

is an isomorphism for i < m.

Remark 15.50.18. Let R be ring map. Let M , N be R-modules. Let R→ R′ be
a flat ring map. By Algebra, Lemma 10.70.1 we have ExtiR′(M ⊗R R′, N ⊗R R′) =
ExtiR(M,N ⊗R R′). Combined with Remark 15.50.17 we conclude that

HomR(M,N)⊗R R′ = HomR′(M ⊗R R′, N ⊗R R′)

if M is a finitely presented R-module and that

ExtiR(M,N)⊗R R′ = ExtiR′(M ⊗R R′, N ⊗R R′)

is an isomorphism for i < m if M is (−m)-pseudo-coherent. In particular if R is
Noetherian and M is a finite module this holds for all i.

15.51. Tor dimension

Instead of resolving by projective modules we can look at resolutions by flat mod-
ules. This leads to the following concept.

Definition 15.51.1. Let R be a ring. Denote D(R) its derived category. Let
a, b ∈ Z.

(1) An object K• of D(R) has tor-amplitude in [a, b] if Hi(K•⊗L
RM) = 0 for

all R-modules M and all i 6∈ [a, b].
(2) An object K• of D(R) has finite tor dimension if it has tor-amplitude in

[a, b] for some a, b.
(3) An R-module M has tor dimension ≤ d if if M [0] as an object of D(R)

has tor-amplitude in [−d, 0].
(4) An R-module M has finite tor dimension if M [0] as an object of D(R)

has finite tor dimension.

We observe that if K• has finite tor dimension, then K• ∈ Db(R).
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Lemma 15.51.2. Let R be a ring. Let K• be a bounded above complex of flat
R-modules with tor-amplitude in [a, b]. Then Coker(da−1

K ) is a flat R-module.

Proof. As K• is a bounded above complex of flat modules we see that K•⊗RM =
K• ⊗L

RM . Hence for every R-module M the sequence

Ka−2 ⊗RM → Ka−1 ⊗RM → Ka ⊗RM

is exact in the middle. Since Ka−2 → Ka−1 → Ka → Coker(da−1
K ) → 0 is a flat

resolution this implies that TorR1 (Coker(da−1
K ),M) = 0 for all R-modules M . This

means that Coker(da−1
K ) is flat, see Algebra, Lemma 10.72.7. �

Lemma 15.51.3. Let R be a ring. Let K• be an object of D(R). Let a, b ∈ Z.
The following are equivalent

(1) K• has tor-amplitude in [a, b].
(2) K• is quasi-isomorphic to a complex E• of flat R-modules with Ei = 0

for i 6∈ [a, b].

Proof. If (2) holds, then we may compute K•⊗L
RM = E•⊗RM and it is clear that

(1) holds. Assume that (1) holds. We may replace K• by a projective resolution.
Let n be the largest integer such that Kn 6= 0. If n > b, then Kn−1 → Kn is
surjective as Hn(K•) = 0. As Kn is projective we see that Kn−1 = K ′ ⊕ Kn.
Hence it suffices to prove the result for the complex (K ′)• which is the same as
K• except has K ′ in degree n− 1 and 0 in degree n. Thus, by induction on n, we
reduce to the case that K• is a complex of projective R-modules with Ki = 0 for
i > b.

Set E• = τ≥aK
•. Everything is clear except that Ea is flat which follows immedi-

ately from Lemma 15.51.2 and the definitions. �

Lemma 15.51.4. Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R). Let a, b ∈ Z.

(1) If K• has tor-amplitude in [a+ 1, b+ 1] and L• has tor-amplitude in [a, b]
then M• has tor-amplitude in [a, b].

(2) If K•,M• have tor-amplitude in [a, b], then L• has tor-amplitude in [a, b].
(3) If L• has tor-amplitude in [a+1, b+1] and M• has tor-amplitude in [a, b],

then K• has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

R M preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. �

Lemma 15.51.5. Let R be a ring. Let M be an R-module. Let d ≥ 0. The
following are equivalent

(1) M has tor dimension ≤ d, and
(2) there exists a resolution

0→ Fd → . . .→ F1 → F0 →M → 0

with Fi a flat R-module.

In particular an R-module has tor dimension 0 if and only if it is a flat R-module.

http://stacks.math.columbia.edu/tag/0653
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Proof. Assume (2). Then the complex E• with E−i = Fi is quasi-isomorphic to
M . Hence the Tor dimension of M is at most d by Lemma 15.51.3. Conversely,
assume (1). Let P • → M be a projective resolution of M . By Lemma 15.51.2 we
see that τ≥−dP

• is a flat resolution of M of length d, i.e., (2) holds. �

Lemma 15.51.6. Let R be a ring. Let a, b ∈ Z. If K• ⊕ L• has tor amplitude in
[a, b] so do K• and L•.

Proof. Clear from the fact that the Tor functors are additive. �

Lemma 15.51.7. Let R be a ring. Let K• be a bounded complex of R-modules such
that Ki has tor amplitude in [a− i, b− i] for all i. Then K• has tor amplitude in
[a, b]. In particular if K• is a finite complex of R-modules of finite tor dimension,
then K• has finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.51.4
and the stupid truncations. �

Lemma 15.51.8. Let R be a ring. Let a, b ∈ Z. Let K• ∈ Db(R) such that Hi(K•)
has tor amplitude in [a− i, b− i] for all i. Then K• has tor amplitude in [a, b]. In
particular if K• ∈ D−(R) and all its cohomology groups have finite tor dimension
then K• has finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.51.4
and the canonical truncations. �

Lemma 15.51.9. Let A → B be a ring map. Assume that B is flat as an A-
module. Let K• be a complex of B-modules. Let a, b ∈ Z. If K• as a complex of
B-modules has tor amplitude in [a, b], then K• as a complex of A-modules has tor
amplitude in [a, b].

Proof. This is true because K• ⊗L
A M = K• ⊗L

B (M ⊗A B) since any projective
resolution of K• as a complex of B-modules is a flat resolution of K• as a complex
of A-modules and can be used to compute K• ⊗L

AM . �

Lemma 15.51.10. Let A→ B be a ring map. Assume that B has tor dimension
≤ d as an A-module. Let K• be a complex of B-modules. Let a, b ∈ Z. If K•

as a complex of B-modules has tor amplitude in [a, b], then K• as a complex of
A-modules has tor amplitude in [a− d, b].
Proof. Let M be an A-module. Choose a free resolution F • →M . Then

K• ⊗L
AM = Tot(K• ⊗A F •) = Tot(K• ⊗B (F • ⊗A B)) = K• ⊗L

B (M ⊗L
A B).

By our assumption on B as an A-module we see that M ⊗L
AB has cohomology only

in degrees −d,−d + 1, . . . , 0. Because K• has tor amplitude in [a, b] we see from
the spectral sequence in Example 15.48.4 that K• ⊗L

B (M ⊗L
A B) has cohomology

only in degrees [−d+ a, b] as desired. �

Lemma 15.51.11. Let A→ B be a ring map. Let a, b ∈ Z. Let K• be a complex of
A-modules with tor amplitude in [a, b]. Then K• ⊗L

A B as a complex of B-modules
has tor amplitude in [a, b].

Proof. By Lemma 15.51.3 we can find a quasi-isomorphism E• → K• where E•

is a complex of flat A-modules with Ei = 0 for i 6∈ [a, b]. Then E• ⊗A B computes
K•⊗L

AB by construction and each Ei⊗AB is a flat B-module by Algebra, Lemma
10.38.6. Hence we conclude by Lemma 15.51.3. �
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Lemma 15.51.12. Let A → B be a flat ring map. Let d ≥ 0. Let M be an
A-module of tor dimension ≤ d. Then M ⊗A B is a B-module of tor dimension
≤ d.

Proof. Immediate consequence of Lemma 15.51.11 and the fact that M ⊗L
A B =

M ⊗A B because B is flat over A. �

Lemma 15.51.13. Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate
the unit ideal. Let a, b ∈ Z. Let K• be a complex of R-modules. If for each i the
complex K• ⊗R Rfi has tor amplitude in [a, b], then K• has tor amplitude in [a, b].

Proof. Note that −⊗R Rfi is an exact functor and that therefore

Hi(K•)fi = Hi(K•)⊗R Rfi = Hi(K• ⊗R Rfi).
and similarly for every R-module M we have

Hi(K• ⊗L
RM)fi = Hi(K• ⊗L

RM)⊗R Rfi = Hi(K• ⊗R Rfi ⊗L
Rfi

Mfi).

Hence the result follows from the fact that an R-module N is zero if and only if
Nfi is zero for each i, see Algebra, Lemma 10.23.2. �

Lemma 15.51.14. Let R be a ring. Let a, b ∈ Z. Let K• be a complex of R-
modules. Let R → R′ be a faithfully flat ring map. If the complex K• ⊗R R′ has
tor amplitude in [a, b], then K• has tor amplitude in [a, b].

Proof. Let M be an R-module. Since R→ R′ is flat we see that

(M ⊗L
R K

•)⊗R R′ = ((M ⊗R R′)⊗L
R′ (K• ⊗R R′)

and taking cohomology commutes with tensoring with R′. Hence TorRi (M,K•) =

TorR
′

i (M ⊗R R′,K• ⊗R R′). Since R → R′ is faithfully flat, the vanishing of

TorR
′

i (M⊗RR′,K•⊗RR′) for i 6∈ [a, b] implies the same thing for TorRi (M,K•). �

Lemma 15.51.15. Let R be a ring of finite global dimension d. Then

(1) every module has finite tor dimension ≤ d,
(2) a complex of R-modules K• with Hi(K•) 6= 0 only if i ∈ [a, b] has tor

amplitude in [a− d, b], and
(3) a complex of R-modules K• has finite tor dimension if and only if K• ∈

Db(R).

Proof. The assumption on R means that every module has a finite projective
resolution of length at most d, in particular every module has finite tor dimension.
The second statement follows from Lemma 15.51.8 and the definitions. The third
statement is a rephrasing of the second. �

15.52. Projective dimension

We defined the projective dimension of a module in Algebra, Definition 10.105.2.

Definition 15.52.1. Let R be a ring. Let K be an object of D(R). We say K has
finite projective dimension if K can be represented by a finite complex of projective
modules. We say K as projective-amplitude in [a, b] if K is quasi-isomorphic to a
complex

. . .→ 0→ P a → P a+1 → . . .→ P b−1 → P b → 0→ . . .

where P i is a projective R-module for all i ∈ Z.

http://stacks.math.columbia.edu/tag/066M
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Clearly, K has bounded projective dimension if and only if K has projective-
amplitude in [a, b] for some a, b ∈ Z. Furthermore, if K has bounded projective
dimension, then K is bounded. Here is the obligatory lemma.

Lemma 15.52.2. Let R be a ring. Let K be an object of D(R). Let a, b ∈ Z. The
following are equivalent

(1) K has projective-amplitude in [a, b],
(2) ExtiR(K,N) = 0 for all R-modules N and all i 6∈ [−b,−a].

Proof. Assume (1). We may assume K is the complex

. . .→ 0→ P a → P a+1 → . . .→ P b−1 → P b → 0→ . . .

where P i is a projective R-module for all i ∈ Z. In this case we can compute the
ext groups by the complex

. . .→ 0→ HomR(P b, N)→ . . .→ HomR(P a, N)→ 0→ . . .

and we obtain (2).

Assume (2) holds. Choose an injection Hn(K) → I where I is an injective
R-module. Since HomR(−, I) is an exact functor, we see that Ext−n(K, I) =
HomR(Hn(K), I). We conclude that Hn(K) is zero for n 6∈ [a, b]. In particular, K
is bounded above and we can choose a quasi-isomorphism

P • → K

with P i projective (for example free) for all i ∈ Z and P i = 0 for i > b. See
Derived Categories, Lemma 13.16.5. Let Q = Coker(P a−1 → P a). Then K is
quasi-isomorphic to the complex

. . .→ 0→ Q→ P a+1 → . . .→ P b → 0→ . . .

Denote K ′ = (P a+1 → . . . → P b) the corresponding object of D(R). We obtain a
distinguished triangle

K ′ → K → Q[−a]→ K ′[1]

in D(R). Thus for every R-module N an exact sequence

Ext−a(K ′, N)→ Ext1(Q,N)→ Ext1−a(K,N)

By assumption the term on the right vanishes. By the implication (1) ⇒ (2) the
term on the left vanishes. Thus Q is a projective R-module by Algebra, Lemma
10.74.2. �

Example 15.52.3. Let k be a field and let R be the ring of dual numbers over
k, i.e., R = k[x]/(x2). Denote ε ∈ R the class of x. Let M = R/(ε). Then M is
quasi-isomorphic to the complex

R
ε−→ R

ε−→ R→ . . .

but M does not have finite projective dimension as defined in Algebra, Definition
10.105.2. This explains why we consider bounded (in both directions) complexes of
projective modules in our definition of bounded projective dimension of objects of
D(R).
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15.53. Injective dimension

This section is the dual of the section on projective dimension.

Definition 15.53.1. Let R be a ring. Let K be an object of D(R). We say K has
finite injective dimension if K can be represented by a finite complex of injective
R-modules. We say K has injective-amplitude in [a, b] if K is isomorphic to a
complex

. . .→ 0→ Ia → Ia+1 → . . .→ Ib−1 → Ib → 0→ . . .

with Ii an injective R-module for all i ∈ Z.

Clearly, K has bounded injective dimension if and only if K has injective-amplitude
in [a, b] for some a, b ∈ Z. Furthermore, if K has bounded injective dimension, then
K is bounded. Here is the obligatory lemma.

Lemma 15.53.2. Let R be a ring. Let K be an object of D(R). Let a, b ∈ Z. The
following are equivalent

(1) K has injective-amplitude in [a, b],
(2) ExtiR(N,K) = 0 for all R-modules N and all i 6∈ [a, b].

Proof. Assume (1). We may assume K is the complex

. . .→ 0→ Ia → Ia+1 → . . .→ Ib−1 → Ib → 0→ . . .

where P i is a injective R-module for all i ∈ Z. In this case we can compute the ext
groups by the complex

. . .→ 0→ HomR(N, Ia)→ . . .→ HomR(N, Ib)→ 0→ . . .

and we obtain (2).

Assume (2) holds. Choose an surjection P → Hn(K) where P is a projective
R-module. Since HomR(P,−) is an exact functor, we see that Extn(P,K) =
HomR(P,Hn(K)). We conclude that Hn(K) is zero for n 6∈ [a, b]. In particu-
lar, K is bounded below and we can choose a quasi-isomorphism

K → I•

with Ii injective for all i ∈ Z and Ii = 0 for i < a. See Derived Categories, Lemma
13.16.4. Let J = Ker(Ib → Ib+1). Then K is quasi-isomorphic to the complex

. . .→ 0→ Ia → . . .→ Ib−1 → J → 0→ . . .

Denote K ′ = (Ia → . . . → Ib−1) the corresponding object of D(R). We obtain a
distinguished triangle

J [−b]→ K → K ′ → J [1− b]

in D(R). Thus for every R-module N an exact sequence

Extb(N,K ′)→ Ext1(N, J)→ Ext1+b(N,K)

By assumption the term on the right vanishes. By the implication (1) ⇒ (2) the
term on the left vanishes. Thus J is a injective R-module by Homology, Lemma
12.23.2. �
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Example 15.53.3. Let k be a field and let R be the ring of dual numbers over
k, i.e., R = k[x]/(x2). Denote ε ∈ R the class of x. Let M = R/(ε). Then M is
quasi-isomorphic to the complex

. . .→ R
ε−→ R

ε−→ R

and R is an injective R-module. However one usually does not consider M to have
finite injective dimension in this situation. This explains why we consider bounded
(in both directions) complexes of injective modules in our definition of bounded
injective dimension of objects of D(R).

Lemma 15.53.4. Let R be a ring. Let K ∈ D(R).

(1) If K is in Db(R) and Hi(K) has finite injective dimension for all i, then
K has finite injective dimension.

(2) If K• represents K, is a bounded complex of R-modules, and Ki has finite
injective dimension for all i, then K has finite injective dimension.

Proof. Omitted. Hint: Apply the spectral sequences of Derived Categories, Lemma
13.21.3 to the functor F = HomR(N,−) to get a computation of ExtiA(N,K) and
use the criterion of Lemma 15.53.2. �

15.54. Hom complexes

Let R be a ring. Let L• and M• be two complexes of R-modules. We construct a
complex Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomR(L−q,Mp)

It is a good idea to think of Homn as the R-module of all R-linear maps from L•

to M• (viewed as graded modules) which are homogenous of degree n. In this
terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn(L•,M•). We omit the verification that d2 = 0. This construction is a
special case of Differential Graded Algebra, Example 22.19.6. It follows immediately
from the construction that we have

(15.54.0.1) Hn(Hom•(L•,M•)) = HomK(R)(L
•,M•[n])

for all n ∈ Z.

Lemma 15.54.1. Let R be a ring. Given complexes K•, L•,M• of R-modules
there is a canonical isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗R L•),M•)
of complexes of R-modules.

Proof. Let α be an element of degree n on the left hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(K−q,Homp(L•,M•))

Each αp,q is an element

αp,q = (αr,s,q) ∈
∏

r+s+q=n
HomR(K−q,HomR(L−s,Mr))

If we make the identifications

(15.54.1.1) HomR(K−q,HomR(L−s,Mr)) = HomR(K−q ⊗R L−s,Mr)
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then by our sign rules we get

d(αr,s,q) = dHom•(L•,M•) ◦ αr,s,q − (−1)nαr,s,q ◦ dK

= dM ◦ αr,s,q − (−1)r+sαr,s,q ◦ dL − (−1)r+s+qαr,s,q ◦ dK

On the other hand, if β is an element of degree n of the right hand side, then

β = (βr,s,q) ∈
∏

r+s+q=n
HomR(K−q ⊗R L−s,Mr)

and by our sign rule (Homology, Definition 12.22.3) we get

d(βr,s,q) = dM ◦ βr,s,q − (−1)nβr,s,q ◦ dTot(K•⊗L•)

= dM ◦ βr,s,q − (−1)r+s+q
(
βr,s,q ◦ dK + (−1)−qβr,s,q ◦ dL

)
Thus we see that the map induced by the identifications (15.54.1.1) indeed is a
morphism of complexes. �

Lemma 15.54.2. Let R be a ring. Given complexes K•, L•,M• of R-modules
there is a canonical morphism

Tot (Hom•(L•,M•)⊗R Hom•(K•, L•)) −→ Hom•(K•,M•)

of complexes of R-modules.

Proof. An element α of degree n of the left hand side is

α = (αp,q) ∈
⊕

p+q=n
Homp(L•,M•)⊗R Homq(K•, L•)

The element αp,q is a finite sum αp,q =
∑
βpi ⊗ γ

q
i with

βpi = (βr,si ) ∈
∏

r+s=p
HomR(L−s,Mr)

and

γqi = (γu,vi ) ∈
∏

u+v=q
HomR(K−v, Lu)

The map is given by sending α to δ = (δr,v) with

δr,v =
∑

i,s
βr,si ◦ γ

−s,v
i ∈ HomR(K−v,Mr)

For given r + v = n this sum is finite as there are only finitely many nonzero αp,q,
hence only finitely many nonzero βpi and γqi . By our sign rules we have

d(αp,q) = dHom•(L•,M•)(α
p,q) + (−1)pdHom•(K•,L•)(α

p,q)

=
∑(

dM ◦ βpi ◦ γ
q
i − (−1)pβpi ◦ dL ◦ γqi

)
+ (−1)p

∑(
βpi ◦ dL ◦ γqi − (−1)qβpi ◦ γ

q
i ◦ dK

)
=
∑(

dM ◦ βpi ◦ γ
q
i − (−1)nβpi ◦ γ

q
i ◦ dK

)
It follows that the rules α 7→ δ is compatible with differentials and the lemma is
proved. �

Lemma 15.54.3. Let R be a ring. Given complexes K•, L•,M• of R-modules
there is a canonical morphism

Tot(Hom•(L•,M•)⊗R K•) −→ Hom•(Hom•(K•, L•),M•)

of complexes of R-modules functorial in all three complexes.
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Proof. Consider an element β of degree n of the right hand side. Then

β = (βp,q) ∈
∏

p+q=n
HomR(Hom−q(K•, L•),Mp)

Each βp,q is an element

βp,q = (βp,r,s) ∈
∏

p+r+s=n
HomR(HomR(Ks, L−r),Mp)

We can apply the differentials dM and dHom•(K•,L•) to the element βp,q and we
can apply the differentials dK , dL, dM to the element βp,r,s. We omit the precise
definitions. The our sign rules tell us that

d(βp,r,s) = dM (βp,r,s)− (−1)ndHom•(K•,L•)(β
p,r,s)

= dM (βp,r,s)− (−1)n
(
dL(βp,r,s)− (−1)r+sdK(βp,r,s)

)
= dM (βp,r,s)− (−1)ndL(βp,r,s) + (−1)pdK(βp,r,s)

On the other hand, an element α of degree n of the left hand side looks like

α = (αt,s) ∈
⊕

t+s=n
Homt(L•,M•)⊗Ks

Each αt,s is an element

αt,s = (αp,r,s) ∈
∏

p+r+s=n
HomR(L−r,Mp)⊗R Ks

By our sign rules and with conventions as above we get

d(αp,r,s) = dHom•(L•,M•)(α
p,r,s) + (−1)p+rdK(αp,r,s)

= dM (αp,r,s)− (−1)p+rdL(αp,r,s) + (−1)p+rdK(αp,r,s)

To define our map we will use the canonical maps

cp,r,s : HomR(L−r,Mp)⊗R Ks −→ HomR(HomR(Ks, L−r),Mp)

which sends ϕ⊗k to the map ψ 7→ ϕ(ψ(k)). This is functorial in all three variables.
However, since the signs above do not match we need to use instead some map

εp,r,scp,r,s

for some sign εp,r,s. Looking at the signs above we find that we need to find a
solution for the equations

εp,r,s = εp+1,r,s, εp,r,s(−1)s = εp,r+1,s, εp,r,s(−1)r = εp,r,s+1

A good solution is to take εp,r,s = (−1)rs. The choice of this sign is explained in
the remark following the proof. �

Remark 15.54.4. In the yoga of super vector spaces the sign used in the proof of
Lemma 15.54.3 above can be explained as follows. A super vector space is just a
vector space V which comes with a direct sum decomposition V = V +⊕V −. Here
we think of the elements of V + as the even elements and the elements of V − as the
odd ones. Given two super vector spaces V and W we set

(V ⊗W )+ = (V + ⊗W+)⊕ (V − ⊗W−)

and similarly for the odd part. In the category of super vector spaces the isomor-
phism

V ⊗W −→W ⊗ V
is defined to be the usual one, except that on the summand V − ⊗W− we use the
negative of the usual identification. In this way we obtain a tensor category (where
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⊗ is symmetric and associative with 1). The category of super vector spaces has
an internal hom which we denote V ∨. One checks that the canonical isomorphisms
Hom(V,W ) = W ⊗ V ∨ and Hom(V,W )∨ = V ⊗W∨ do not involve signs. Finally,
given three super vector spaces U , V , W we can consider the analogue

c : Hom(V,W )⊗ U −→ Hom(Hom(U, V ),W )

of the maps cp,r,s which occur in the lemma above. Using the formulae given above
(which do not involve signs) this becomes a map

W ⊗ V ∨ ⊗ U −→W ⊗ U ⊗ V ∨

which involves a (−1) on elements w ⊗ v∨ ⊗ u if v∨ and u are odd.

Lemma 15.54.5. Let R be a ring. Given complexes K•, L• of R-modules there is
a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗R L•))
of complexes of R-modules functorial in both complexes.

Proof. Let α be an element of degree n of the right hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(L−q,Totp(K• ⊗R L•))

Each αp,q is an element

αp,q = (αr,s,q) ∈
⊕

r+s+q=n
HomR(L−q,Kr ⊗R Ls)

By our sign rules we get

d(αr,s,q) = dTot(K•⊗RL•) ◦ α
r,s,q − (−1)nαr,s,q ◦ dL

= dK ◦ αr,s,q + (−1)rdL ◦ αr,s,q − (−1)nαr,s,q ◦ dL

Now an element β ∈ Kn we send to α with αn,n−q,q = β ⊗ idL−q and αr,s,q = 0
if r 6= n. This is indeed an element as above, as for fixed q there is only one
nonzero αr,s,q. The description of the differential shows this is compatible with
differentials. �

15.55. Derived hom

The derived hom functor is an internal hom in the derived category of R-modules
in the sense that it is characterized by the formula

(15.55.0.1) HomD(R)(K,RHom(L,M)) = HomD(R)(K ⊗L
R L,M)

for objects K,L,M of D(R). Note that this formula characterizes the objects up to
unique isomorphism by the Yoneda lemma. A construction can be given as follows.
Choose a K-injective complex I• of R-modules representing M , choose an complex
L• representing L, and set

RHom(L,M) = Hom•(L•, I•)

with notation as in Section 15.54. A generalization of this construction is dis-
cussed in Differential Graded Algebra, Section 22.21. From (15.54.0.1) and Derived
Categories, Lemma 13.29.2 that we have

(15.55.0.2) Hn(RHom(L,M)) = HomD(R)(L,M [n])

for all n ∈ Z. In particular, the object RHom(L,M) of D(R) is well defined, i.e.,
independent of the choice of the K-injective complex I•.
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Lemma 15.55.1. Let R be a ring. Let K,L,M be objects of D(R). There is a
canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
R L,M)

in D(R) functorial in K,L,M which recovers (15.55.0.1) by taking H0.

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
R-modules L• representing L. For any complex of R-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗R L•), I•)
by Lemma 15.54.1. The lemma follows by the definition of RHom and because
Tot(K• ⊗R L•) represents the derived tensor product. �

Lemma 15.55.2. Let R be a ring. Let P • be a bounded above complex of projective
R-modules. Let L• be a complex of R-modules. Then RHom(P •, L•) is represented
by the complex Hom•(P •, L•).

Proof. By (15.54.0.1) and Derived Categories, Lemma 13.19.8 the cohomology
groups of the complex are “correct”. Hence if we choose a quasi-isomorphism
L• → I• with I• a K-injective complex of R-modules then the induced map

Hom•(P •, L•) −→ Hom•(P •, I•)

is a quasi-isomorphism. As the right hand side is our definition of RHom(P •, L•)
we win. �

Lemma 15.55.3. Let R be a ring. Let K,L,M be objects of D(R). There is a
canonical morphism

RHom(L,M)⊗L
R K −→ RHom(RHom(K,L),M)

in D(R) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J•

representing L, and a K-flat complex K• representing K. The map is defined using
the map

Tot(Hom•(J•, I•)⊗R K•) −→ Hom•(Hom•(K•, J•), I•)

of Lemma 15.54.3. We omit the proof that this is functorial in all three objects of
D(R). �

Lemma 15.55.4. Let R be a ring. Given K,L,M in D(R) there is a canonical
morphism

RHom(L,M)⊗L
R RHom(K,L) −→ RHom(K,M)

in D(R).

Proof. In general (without suitable finiteness conditions) we do not see how to get
this map from Lemma 15.54.2. Instead, we use the maps

RHom(L,M)⊗L
R RHom(K,L)⊗L

R K

��
RHom(RHom(K,L),M)⊗L

R RHom(K,L)

��
M

http://stacks.math.columbia.edu/tag/0A65
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gotten by applying Lemma 15.55.3 twice. Finally, we use Lemma 15.55.1 to trans-
late the composition

RHom(L,M)⊗L
R RHom(K,L)⊗L

R K −→M

into a map as in the statement of the lemma. �

Lemma 15.55.5. Let R be a ring. Let K,L,M be objects of D(R). the map

RHom(L,M)⊗L
R K −→ RHom(RHom(K,L),M)

of Lemma 15.55.3 is an isomorphism in the following two cases

(1) K perfect, or
(2) K is pseudo-coherent, L ∈ D+(R), and M finite injective dimension.

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J• representing L, and a bounded above complex of finite projective modules K•

representing K. Consider the map of complexes

Tot(Hom•(J•, I•)⊗R K•) −→ Hom•(Hom•(K•, J•), I•)

of Lemma 15.54.3 which is given by the maps

cp,r,s : HomR(J−r, Ip)⊗R Ks −→ HomR(HomR(Ks, J−r), Ip)

Since each Ks is finite projective, these maps are isomorphisms. Now observe that
for every element α = (αp,r,s) of degree n of the right hand side, there are only
finitely many values of s such that αp,r,s is nonzero (for some p, r with n = p+r+s).
Hence our map is an isomorphism if the same vanishing condition is forced on the
elements β = (βp,r,s) of the right hand side. If K• is a bounded complex of finite
projective modules, this is clear. On the other hand, if we can choose I• bounded
and J• bounded below, then βp,r,s is zero for p outside a fixed range, for s � 0,
and for r � 0. Hence among solutions of n = p+ r + s with βp,r,s nonzero only a
finite number of s values occur. �

Lemma 15.55.6. Let R be a ring. Let K,L,M be objects of D(R). the map

RHom(L,M)⊗L
R K −→ RHom(RHom(K,L),M)

of Lemma 15.55.3 is an isomorphism if the following three conditions are satisfied

(1) L,M have finite injective dimension,
(2) RHom(L,M) has finite tor dimension,
(3) for every n ∈ Z the truncation τ≤nK is pseudo-coherent

Proof. Pick an integer n and consider the distinguihsed triangle

τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 13.12.4. By assumption (3) and Lemma 15.55.5
the map is an isomorphism for τ≤nK. Hence it suffices to show that both

RHom(L,M)⊗L
R τ≥n+1K and RHom(RHom(τ≥n+1K,L),M)

have vanishing cohomology in degrees ≤ n− c for some c. This follows immediately
from assumptions (2) and (1). �

http://stacks.math.columbia.edu/tag/0A68
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Lemma 15.55.7. Let R → R′ be a flat ring map. Let K,L ∈ D(R). If K is
pseudo-coherent and L ∈ D+(R), then there is a canonical isomorphism

RHom(K,L)⊗R R′ −→ RHom(K ⊗R R′, L⊗R R′)

in D(R′).

Proof. We represent K by a bounded above complex K• of finite free R-modules.
We represent L by a bounded below complex L• of R-modules. Then we see that
RHom(K,L) is represented by Hom•(K•, L•) and that RHom(K ⊗R R′, L⊗R R′)
is represented by Hom•(K• ⊗R R′, L• ⊗R R′). See Lemma 15.55.2. Thus it suffices
to observe that the canonical map

Hom•(K•, L•)⊗R R′ −→ Hom•(K• ⊗R R′, L• ⊗R R′)

coming from the maps on components

HomR(K−q, Lp)⊗R R′ −→ HomR′(K
−q ⊗R R′, Lp ⊗R R′)

is an isomorphism. Each of the component maps is an isomorphism as K−q is
finite free and the map in total is an isomorphism as the products in the defini-
tion of Hom•(K•, L•) are finite (whence commute with tensor products) by the
boundedness properties of the complexes K• and L•. �

Lemma 15.55.8. Let R be a ring. Given complexes K,L in D(R) there is a
canonical morphism

K −→ RHom(L,K ⊗L
R L)

in D(R) functorial in both K and L.

Proof. Choose a K-flat complexes K• and L• representing K and L. Choose a
quasi-isomorphism Tot(K• ⊗R L•)→ I• where I• is K-injective. Then we use the
map

K• → Hom•(L•,Tot(K• ⊗R L•))→ Hom•(L•, I•)

where the first map is the map from Lemma 15.54.5. �

15.56. Perfect complexes

A perfect complex is a pseudo-coherent complex of finite tor dimension. But we
can also define the directly as follows.

Definition 15.56.1. Let R be a ring. Denote D(R) the derived category of the
abelian category of R-modules.

(1) An object K of D(R) is perfect if it is quasi-isomorphic to a bounded
complex of finite projective R-modules.

(2) An R-module M is perfect if M [0] is a perfect object in D(R).

For example, over a Noetherian ring a finite module is perfect if and only if it has
finite projective dimension, see Lemma 15.56.3 and Algebra, Definition 10.105.2.

Lemma 15.56.2. Let K• be an object of D(R). The following are equivalent

(1) K• is perfect, and
(2) K• is pseudo-coherent and has finite tor dimension.

http://stacks.math.columbia.edu/tag/0A6A
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Proof. It is clear that (1) implies (2), see Lemmas 15.50.5 and 15.51.3. Assume
(2). Choose a bounded above complex F • of finite free R-modules and a quasi-
isomorphism F • → K•. Assume that K• has tor-amplitude in [a, b]. Set E• =
τ≥aF

•. Note that Ei is finite free except Ea which is a finitely presented R-module.
By Lemma 15.51.2 Ea is flat. Hence by Algebra, Lemma 10.75.2 we see that Ea is
finite projective. �

Lemma 15.56.3. Let M be a module over a ring R. The following are equivalent

(1) M is a perfect module, and
(2) there exists a resolution

0→ Fd → . . .→ F1 → F0 →M → 0

with each Fi a finite projective R-module.

Proof. Assume (2). Then the complex E• with E−i = Fi is quasi-isomorphic
to M [0]. Hence M is perfect. Conversely, assume (1). By Lemmas 15.56.2 and
15.50.4 we can find resolution E• → M with E−i a finite free R-module. By
Lemma 15.51.2 we see that Fd = Coker(Ed−1 → Ed) is flat for some d sufficiently
large. By Algebra, Lemma 10.75.2 we see that Fd is finite projective. Hence

0→ Fd → E−d+1 → . . .→ E0 →M → 0

is the desired resolution. �

Lemma 15.56.4. Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R). If two out of three of K•, L•,M• are perfect then the third is also
perfect.

Proof. Combine Lemmas 15.56.2, 15.50.6, and 15.51.4. �

Lemma 15.56.5. Let R be a ring. If K• ⊕ L• is perfect, then so are K• and L•.

Proof. Follows from Lemmas 15.56.2, 15.50.8, and 15.51.6. �

Lemma 15.56.6. Let R be a ring. Let K• be a bounded complex of perfect R-
modules. Then K• is a perfect complex.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.56.4
and the stupid truncations. �

Lemma 15.56.7. Let R be a ring. If K• ∈ Db(R) and all its cohomology modules
are perfect, then K• is perfect.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.56.4
and the canonical truncations. �

Lemma 15.56.8. Let A → B be a ring map. Assume that B is perfect as an
A-module. Let K• be a perfect complex of B-modules. Then K• is perfect as a
complex of A-modules.

Proof. Using Lemma 15.56.2 this translates into the corresponding results for
pseudo-coherent modules and modules of finite tor dimension. See Lemma 15.51.10
and Lemma 15.50.11 for those results. �

Lemma 15.56.9. Let A → B be a ring map. Let K• be a perfect complex of
A-modules. Then K• ⊗L

A B is a perfect complex of B-modules.

http://stacks.math.columbia.edu/tag/066Q
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Proof. Using Lemma 15.56.2 this translates into the corresponding results for
pseudo-coherent modules and modules of finite tor dimension. See Lemma 15.51.11
and Lemma 15.50.12 for those results. �

Lemma 15.56.10. Let A → B be a flat ring map. Let M be a perfect A-module.
Then M ⊗A B is a perfect B-module.

Proof. By Lemma 15.56.3 the assumption implies that M has a finite resolution
F• by finite projective R-modules. As A→ B is flat the complex F•⊗AB is a finite
length resolution of M ⊗A B by finite projective modules over B. Hence M ⊗A B
is perfect. �

Lemma 15.56.11. Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate
the unit ideal. Let K• be a complex of R-modules. If for each i the complex K•⊗R
Rfi is perfect, then K• is perfect.

Proof. Using Lemma 15.56.2 this translates into the corresponding results for
pseudo-coherent modules and modules of finite tor dimension. See Lemma 15.51.13
and Lemma 15.50.14 for those results. �

Lemma 15.56.12. Let R be a ring. Let a, b ∈ Z. Let K• be a complex of R-
modules. Let R → R′ be a faithfully flat ring map. If the complex K• ⊗R R′ has
tor amplitude in [a, b], then K• has tor amplitude in [a, b].

Proof. Using Lemma 15.56.2 this translates into the corresponding results for
pseudo-coherent modules and modules of finite tor dimension. See Lemma 15.51.14
and Lemma 15.50.15 for those results. �

Lemma 15.56.13. Let R be a regular ring of finite dimension. Then

(1) an R-module is perfect if and only if it is a finite R-module, and
(2) a complex of R-modules K• is perfect if and only if K• ∈ Db(R) and each

Hi(K•) is a finite R-module.

Proof. By Algebra, Lemma 10.106.8 the assumption on R means that R has fi-
nite global dimension. Hence every module has finite tor dimension, see Lemma
15.51.15. On the other hand, as R is Noetherian, a module is pseudo-coherent if
and only if it is finite, see Lemma 15.50.16. This proves part (1).

Let K• be a complex of R-modules. If K• is perfect, then it is in Db(R) and it
is quasi-isomorphic to a finite complex of finite projective R-modules so certainly
each Hi(K•) is a finite R-module (as R is Noetherian). Conversely, suppose that
K• is in Db(R) and each Hi(K•) is a finite R-module. Then by (1) each Hi(K•)
is a perfect R-module, whence K• is perfect by Lemma 15.56.7 �

Lemma 15.56.14. Let R be a ring. Let p ⊂ R be a prime ideal. Let K• be a
pseudo-coherent complex of R-modules. Assume that for some i ∈ Z the map

Hi(K•)⊗R κ(p) −→ Hi(K• ⊗L
R κ(p))

is surjective. Then there exists an f ∈ R, f 6∈ p such that τ≥i+1K
• ⊗R Rf is a

perfect object of D(Rf ) with tor amplitude in [i + 1,∞] and such that there exists
an isomorphism

K• ⊗R Rf ∼= τ≤iK
• ⊗R Rf ⊕ τ≥i+1K

• ⊗R Rf
in D(Rf ).
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Proof. In this proof all tensor products are over R and we write κ = κ(p). We
may assume that K• is a bounded above complex of finite free R-modules. Let us
inspect what is happening in degree i:

. . .→ Ki−1 di−1

−−−→ Ki di−→ Ki+1 → . . .

Let 0 ⊂ V ⊂W ⊂ Ki ⊗ κ be defined by the formulas

V = Im
(
Ki−1 ⊗ κ→ Ki ⊗ κ

)
and W = Ker

(
Ki ⊗ κ→ Ki+1 ⊗ κ

)
Set dim(V ) = r, dim(W/V ) = s, and dim(Ki⊗κ/W ) = t. We can pick x1, . . . , xr ∈
Ki−1 which map by di−1 to a basis of V . By our assumption we can pick y1, . . . , ys ∈
Ker(di) mapping to a basis of W/V . Finally, choose z1, . . . , zt ∈ Ki mapping to
a basis of Ki ⊗ κ/W . Then we see that the elements di(z1), . . . , di(zt) ∈ Ki+1

are linearly independent in Ki+1 ⊗R κ. By Algebra, Lemma 10.76.3 we may after
replacing R by Rf for some f ∈ R, f 6∈ p assume that

(1) di(xa), yb, zc is an R-basis of Ki,
(2) di(z1), . . . , di(zt) are R-linearly independent in Ki+1, and
(3) the quotient Ki+1/

∑
Rdi(zc) is finite projective.

Since di annihilates di−1(xa) and yb, we deduced from condition (2) that Im(di−1) ⊂∑
Rdi−1(xa) +

∑
Ryb. Set

E• = (. . .→ 0→
⊕

c=1,...,t
Rzc → Ki+1 → . . .)

We obtain a morphism of complexes K• → E• where in degree i we take the
projection of Ki onto the summand generated by the basis vectors zc which is
possible by (1). It is clear that this induces an isomorphism τ≥i+1K

• → τ≥i+1E
•

and a quasi-isomorpism E• → τ≥i+1E
•. By condition (3) the complex τ≥i+1E

• is
a finite complex of finite projective modules supported in degrees ≥ i + 1, hence
perfect of tor amplitude contained in [i + 1,∞]. Finally, the inclusion E• ⊂ K•

gives a section to the map K• → τ≥i+1K
• in the derived category. Since we have

the canonical distinguished triangle

τ≤iK
• → K• → τ≥i+1K

• → (τ≤iK
•)[1]

in D(R), see Derived Categories, Remark 13.12.4 we conclude by Derived Cate-
gories, Lemma 13.4.10. �

Lemma 15.56.15. Let R be a ring. Let p ⊂ R be a prime ideal. Let K• be a
pseudo-coherent complex of R-modules. Assume that for some i ∈ Z the maps

Hi(K•)⊗Rκ(p) −→ Hi(K•⊗L
Rκ(p)) and Hi−1(K•)⊗Rκ(p) −→ Hi−1(K•⊗L

Rκ(p))

are surjective. Then there exists an f ∈ R, f 6∈ p such that

(1) τ≥i+1K
•⊗RRf is a perfect object of D(Rf ) with tor amplitude in [i+1,∞],

(2) Hi(K•)f is a finite projective Rf -module, and
(3) K• ⊗R Rf ∼= τ≤i−1K

• ⊗R Rf ⊕Hi(K•)f ⊕ τ≥i+1K
• ⊗R Rf in D(Rf ).

Proof. We get (1) from Lemma 15.56.14 as well as a splitting K• ⊗R Rf =
τ≤iK

• ⊗R Rf ⊕ τ≥i+1K
• ⊗R Rf in D(Rf ). Applying Lemma 15.56.14 once more

to τ≤iK
• ⊗R Rf we obtain (after suitably choosing f) a splitting τ≤iK

• ⊗R Rf =
τ≤i−1K

• ⊗R Rf ⊕ Hi(K•)f in D(Rf ) as well as the conclusion that Hi(K)f is a
flat perfect module, i.e., finite projective. �

http://stacks.math.columbia.edu/tag/0A1V
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Lemma 15.56.16. Let R be a ring. Let p ⊂ R be a prime ideal. Let i ∈ Z. Let K•

be a pseudo-coherent complex of R-modules such that Hi(K• ⊗L
R κ(p)) = 0. Then

there exists an f ∈ R, f 6∈ p such that

K• ⊗R Rf = τ≥i+1K
• ⊗R Rf ⊕ τ≤i−1K

• ⊗R Rf
in D(Rf ) with τ≥i+1K

•⊗RRf a perfect complex with tor amplitude in [i+ 1, j] for
some j ∈ Z.

Proof. One can deduce this from the (more general) Lemma 15.56.14 but we will
also prove it directly here. We may assume that K• is a bounded above complex
of finite free R-modules. Let us inspect what is happening in degree i:

. . .→ Ki−2 → R⊕l → R⊕m → R⊕n → Ki+2 → . . .

Let A be the m × l matrix corresponding to Ki−1 → Ki and let B be the n ×m
matrix corresponding to Ki → Ki+1. The assumption is that A mod p has rank r
and that B mod p has rank m− r. In other words, there is some r × r minor a of
A which is not in p and there is some (m− r)× (m− r)-minor b of B which is not
in p. Set f = ab. Then after inverting f we can find direct sum decompositions
Ki−1 = R⊕l−r ⊕R⊕r, Ki = R⊕r ⊕R⊕m−r, Ki+1 = R⊕m−r ⊕R⊕n−m+r such that
the module map Ki−1 → Ki kills of R⊕l−r and induces an isomorphism of R⊕r onto
the corresponding summand of Ki and such that the module map Ki → Ki+1 kills
of R⊕r and induces an isomorphism of R⊕m−r onto the corresponding summand of
Ki+1. Thus K• becomes quasi-isomorphic to

. . .→ Ki−2 → R⊕l−r → 0→ R⊕n−m+r → Ki+2 → . . .

and everything is clear. �

Lemma 15.56.17. Let R be a ring. Let a, b ∈ Z. Let K• be a pseudo-coherent
complex of R-modules. The following are equivalent

(1) K• is perfect with tor amplitude in [a, b],
(2) for every prime p we have Hi(K• ⊗L

R κ(p)) = 0 for all i 6∈ [a, b], and
(3) for every maximal ideal m we have Hi(K• ⊗L

R κ(m)) = 0 for all i 6∈ [a, b].

Proof. We omit the proof of the implications (1) ⇒ (2) ⇒ (3). Assume (3). Let
i ∈ Z with i 6∈ [a, b]. By Lemma 15.56.16 we see that the assumption implies that
Hi(K•)m = 0 for all maximal ideals of R. Hence Hi(K•) = 0, see Algebra, Lemma
10.23.1. Moreover, Lemma 15.56.16 now also implies that for every maximal ideal
m there exists an element f ∈ R, f 6∈ m such that K• ⊗R Rf is perfect with
tor amplitude in [a, b]. Hence we conclude by appealing to Lemmas 15.56.11 and
15.51.13. �

Lemma 15.56.18. Let R be a ring. Let K• be a pseudo-coherent complex of R-
modules. The following are equivalent

(1) K• is perfect,
(2) for every prime ideal p the complex K• ⊗R Rp is perfect,
(3) for every prime p we have Hi(K• ⊗L

R κ(p)) = 0 for all i� 0,
(4) for every maximal ideal m the complex K• ⊗R Rm is perfect,
(5) for every maximal ideal m we have Hi(K• ⊗L

R κ(m)) = 0 for all i� 0.

Proof. Assume (5). Pick a maximal ideal m of R. By Lemma 15.56.16 we see
that the assumption implies that K• ⊗R Rf is a perfect complex for some f ∈ R,
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f 6∈ m. Since Spec(R) is quasi-compact we conclude that K• is perfect by Lemmas
15.56.11. The proof of the other implications is omitted. �

The following lemma useful in order to find perfect complexes over a polynomial
ring B = A[x1, . . . , xd].

Lemma 15.56.19. Let A→ B be a ring map. Let a, b ∈ Z. Let d ≥ 0. Let K• be
a complex of B-modules. Assume

(1) the ring map A→ B is flat,
(2) for every prime p ⊂ A the ring B⊗A κ(p) has finite global dimension ≤ d,
(3) K• is pseudo-coherent as a complex of B-modules, and
(4) K• has tor amplitude in [a, b] as a complex of A-modules.

Then K• is perfect as a complex of B-modules with tor amplitude in [a− d, b].

Proof. We may assume that K• is a bounded above complex of finite free B-
modules. In particular, K• is flat as a complex of A-modules and K• ⊗A M =
K• ⊗L

AM for any A-module M . For every prime p of A the complex

K• ⊗A κ(p)

is a bounded above complex of finite free modules over B ⊗A κ(p) with vanishing
Hi except for i ∈ [a, b]. As B ⊗A κ(p) has global dimension d we see from Lemma
15.51.15 that K•⊗Aκ(p) has tor amplitude in [a−d, b]. Let q be a prime of B lying
over p. Since K• ⊗A κ(p) is a bounded above complex of free B ⊗A κ(q)-modules
we see that

K• ⊗L
B κ(q) = K• ⊗B κ(q)

= (K• ⊗A κ(p))⊗B⊗Aκ(q) κ(q)

= (K• ⊗A κ(p))⊗L
B⊗Aκ(q) κ(q)

Hence the arguments above imply that Hi(K• ⊗L
B κ(q)) = 0 for i 6∈ [a − d, b]. We

conclude by Lemma 15.56.17. �

The following lemma is a local version of Lemma 15.56.19. It can be used to find
perfect complexes over reglar local rings.

Lemma 15.56.20. Let A → B be a local ring homomorphism. Let a, b ∈ Z. Let
d ≥ 0. Let K• be a complex of B-modules. Assume

(1) the ring map A→ B is flat,
(2) the ring B/mAB is regular of dimension d,
(3) K• is pseudo-coherent as a complex of B-modules, and
(4) K• has tor amplitude in [a, b] as a complex of A-modules, in fact it suffices

if Hi(K• ⊗L
A κ(mA)) is nonzero only for i ∈ [a, b].

Then K• is perfect as a complex of B-modules with tor amplitude in [a− d, b].

Proof. By (3) we may assume that K• is a bounded above complex of finite free
B-modules. We compute

K• ⊗L
B κ(mB) = K• ⊗B κ(mB)

= (K• ⊗A κ(mA))⊗B/mAB κ(mB)

= (K• ⊗A κ(mA))⊗L
B/mAB

κ(mB)
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The first equality because K• is a bounded above complex of flat B-modules. The
second equality follows from basic properties of the tensor product. The third
equality holds because K• ⊗A κ(mA) = K•/mAK

• is a bounded above complex of
flat B/mAB-modules. Since K• is a bounded above complex of flat A-modules by
(1), the cohomology modules Hi of the complex K•⊗A κ(mA) are nonzero only for
i ∈ [a, b] by assumption (4). Thus the spectral sequence of Example 15.48.1 and the
fact that B/mAB has finite global dimension d (by (2) and Algebra, Proposition
10.106.1) shows that Hj(K• ⊗L

B κ(mB)) is zero for j 6∈ [a− d, b]. This finishes the
proof by Lemma 15.56.17. �

Lemma 15.56.21. Let K• be a perfect complex over a ring A. There exists a
perfect complex E• such that we have functorial isomorphisms

H0(K• ⊗L
A L
•) = Ext0A(E•, L•)

for L• ∈ D(A).

Proof. We may assume that K• is a finite complex of finite projective A-modules.
The cohomology group on the left is simply H0(Tot(K• ⊗A L•)). Set E• =
HomA(K•, A), i.e., En = HomA(K−n, A) with differentials the transpose of the
differentials of K•. Observe that E• is a finite complex of finite projective A-
modules. The group on the right is MorK(ModA)(E

•, L•) by Derived Categories,
Lemma 13.19.8 and the definition of Ext groups, see Derived Categories, Section
13.27. By definition this is the cohomology of∏

n
HomA(En, Ln−1)→

∏
n

HomA(En, Ln)→
∏

n
HomA(En, Ln+1)

Using HomA(En, L) = K−n ⊗A L as K−n is finite projective, we see that the
cohomology groups are the same. �

15.57. Characterizing perfect complexes

Let R be a ring. Recall that D(R) has direct sums which are given simply by taking
direct sums of complexes, see Derived Categories, Lemma 13.31.2. We will use this
in the lemmas of this section without further mention.

Lemma 15.57.1. Let R be a ring. Let K ∈ D(R) be an object such that for every
countable set of objects En ∈ D(R) the canonical map⊕

HomD(R)(K,En) −→ HomD(R)(K,
⊕

En)

is a bijection. Then, given any system L•n of complexes over N we have that

colim HomD(R)(K,L
•
n) −→ HomD(R)(K,L

•)

is a bijection, where L• is the termwise colimit, i.e., Lm = colimLmn for all m ∈ Z.

Proof. Consider the short exact sequence of complexes

0→
⊕

L•n →
⊕

L•n → L• → 0

where the first map is given by 1 − tn in degree n where tn : L•n → L•n+1 is the
transition map. By Derived Categories, Lemma 13.12.1 this is a distinguished

http://stacks.math.columbia.edu/tag/07VI
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triangle in D(R). Apply the homological functor HomD(R)(K,−), see Derived
Categories, Lemma 13.4.2. Thus a long exact cohomology sequence

. . . // HomD(R)(K, colimL•n[−1])

rr
HomD(R)(K,

⊕
L•n) // HomD(R)(K,

⊕
L•n) // HomD(R)(K, colimL•n)

rr
HomD(R)(K,

⊕
L•n[1]) // . . .

Since we have assumed that HomD(R)(K,
⊕
L•n) is equal to

⊕
HomD(R)(K,L

•
n)

we see that the first map on every row of the diagram is injective (by the explicit
description of this map as the sum of the maps induced by 1 − tn). Hence we
conclude that HomD(R)(K, colimL•n) is the cokernel of the first map of the middle
row in the diagram above which is what we had to show. �

The following proposition, characterizing perfect complexes as the compact objects
(Derived Categories, Definition 13.34.1) of the derived category, shows up in various
places. See for example [Ric89b, proof of Proposition 6.3] (this treats the bounded
case), [TT90, Theorem 2.4.3] (the statement doesn’t match exactly), and [BN93,
Proposition 6.4] (watch out for horrendous notational conventions).

Proposition 15.57.2. Let R be a ring. For an object K of D(R) the following are
equivalent

(1) K is perfect, and
(2) K is a compact object of D(R).

Proof. Assume K is perfect, i.e., K is quasi-isomorphic to a bounded complex
P • of finite projective modules, see Definition 15.56.1. If Ei is represented by
the complex E•i , then

⊕
Ei is represented by the complex whose degree n term is⊕

Eni . On the other hand, as Pn is projective for all n we have HomD(R)(P
•,K•) =

HomK(R)(P
•,K•) for every complex of R-modules K•, see Derived Categories,

Lemma 13.19.8. Thus HomD(R)(P
•, E•) is the cohomology of the complex∏

HomR(Pn, En−1)→
∏

HomR(Pn, En)→
∏

HomR(Pn, En+1).

Since P • is bounded we see that we may replace the
∏

signs by
⊕

signs in the com-
plex above. Since each Pn is a finite R-module we see that HomR(Pn,

⊕
iE

m
i ) =⊕

i HomR(Pn, Emi ) for all n,m. Combining these remarks we see that the map of
Derived Categories, Definition 13.34.1 is a bijection.

Conversely, assume K is compact. Represent K by a complex K• and consider the
map

K• −→
⊕

n≥0
τ≥nK

•

where we have used the canonical truncations, see Homology, Section 12.13. This
makes sense as in each degree the direct sum on the right is finite. By assumption
this map factors through a finite direct sum. We conclude that K → τ≥nK is zero
for at least one n, i.e., K is in D−(R).

http://stacks.math.columbia.edu/tag/07LT
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Since K ∈ D−(R) and since every R-module is a quotient of a free module, we
may represent K by a bounded above complex K• of free R-modules, see Derived
Categories, Lemma 13.16.5. Note that we have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 12.13. Hence by
Lemma 15.57.1 we see that 1 : K• → K• factors through σ≥nK

• → K• in D(R).
Thus we see that 1 : K• → K• factors as

K•
ϕ−→ L•

ψ−→ K•

inD(R) for some complex L• which is bounded and whose terms are freeR-modules.
Say Li = 0 for i 6∈ [a, b]. Fix a, b from now on. Let c be the largest integer ≤ b+ 1
such that we can find a factorization of 1K• as above with Li is finite free for i < c.
We will show by induction that c = b + 1. Namely, write Lc =

⊕
λ∈ΛR. Since

Lc−1 is finite free we can find a finite subset Λ′ ⊂ Λ such that Lc−1 → Lc factors
through

⊕
λ∈Λ′ R ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
R)[−i]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By
our assumption on K we see that, after possibly replacing Λ′ by a larger finite
subset, we may assume that π ◦ ϕ = 0 in D(R). Let (L′)• ⊂ L• be the kernel
of π. Since π is surjective we get a short exact sequence of complexes, which
gives a distinguished triangle in D(R) (see Derived Categories, Lemma 13.12.1).
Since HomD(R)(K,−) is homological (see Derived Categories, Lemma 13.4.2) and
π ◦ ϕ = 0, we can find a morphism ϕ′ : K• → (L′)• in D(R) whose composition
with (L′)• → L• gives ϕ. Setting ψ′ equal to the composition of ψ with (L′)• → L•

we obtain a new factorization. Since (L′)• agrees with L• except in degree c and
since (L′)c =

⊕
λ∈Λ′ R the induction step is proved.

The conclusion of the discussion of the preceding paragraph is that 1K : K → K
factors as

K
ϕ−→ L

ψ−→ K

in D(R) where L can be represented by a finite complex of free R-modules. In
particular we see that L is perfect. Note that e = ϕ ◦ ψ ∈ EndD(R)(L) is an
idempotent. By Derived Categories, Lemma 13.4.12 we see that L = Ker(e) ⊕
Ker(1− e). The map ϕ : K → L induces an isomorphism with Ker(1− e) in D(R).
Hence we finally conclude that K is perfect by Lemma 15.56.5. �

Lemma 15.57.3. Let R be a ring. Let I ⊂ R be an ideal. Let P
•

be a complex of
R/I-modules. Let K be an object of D(R). Assume that

(1) P
•

is a bounded above complex of projective R/I-modules,

(2) K ⊗L
R R/I is represented by P

•
in D(R/I), and

(3) I is a nilpotent ideal.

Then there exists a bounded above complex P • of projective R-modules representing

K in D(R) such that P • ⊗R R/I is isomorphic to P
•
.

Proof. Assumption (3) means that In = 0 for some n. The result holds if n = 1.

Below we will prove the result holds for n = 2. This implies for n > 2 that P
•

lifts

http://stacks.math.columbia.edu/tag/09AR
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to a complex of projective R/I2-modules representing K⊗L
RR/I

2. Then the result

will follow by induction on n as (I2)dn/2e = 0. Thus we may and do assume I2 = 0.

Let us represent K by a K-flat complex K• with all Kn flat, see Lemma 15.45.10.
Then we have a short exact sequence of complexes

0→ IK• → K• → K•/IK• → 0

and K•/IK• represents K ⊗L
R R/I by construction of the derived tensor product.

By flatness we see that

IK• = K• ⊗R I = K• ⊗R R/I ⊗R/I I

represents K ⊗L
R R/I ⊗L

R/I I because K• ⊗R R/I is a K-flat complex over R/I,

see Lemma 15.45.5. By assumption (2) and Derived Categories, Lemma 13.19.8

there is a quasi-isomorphism α : P
• → K•/IK•. Since P

•
is K-flat we see that the

induced map P
• ⊗R/I I → IK• is a quasi-isomorphism too.

Suppose that P
i

= 0 for i > b. We will show by induction on a that we can find

a complex P a → P a+1 → . . . → P b lifting P
a → P

a+1 → . . . → P
b

and a map of
complexes

α : (P a → P a+1 → . . .→ P b)→ K

lifting α such that Hi(α) is an isomorphism for i > a and surjective for i = a. If
a > b then we just take P i = 0 for all i. Suppose we have a solution for some a.
Consider the cone C• of α, see Derived Categories, Definition 13.9.1. Note that
C•/IC• and IC• are the cones of the induced maps α and α⊗ idI . Then Hi(C•),
Hi(C•/IC•), and Hi(IC•) are 0 for i ≥ a (use long exact cohomology sequence
associated to the cones; details omitted), in particular Ha−1(C•)→ Ha−1(C•/IC•)

is surjective. The given maps P
a−1 → Ka−1/IKa−1 and P

a−1 → P
a

induce a map

P
a−1

[a− 1]→ C•/IC•

in D(R/I). Choose a lift P a−1 of P
a−1

, see Algebra, Lemma 10.74.4. Because
Ha−1(C•)→ Ha−1(C•/IC•) is surjective, see above, we can lift the displayed map
to a map

P a−1[a− 1]→ C•

in D(R). The composition with the map C• → (P a → . . . → P b)[1] determines
a map P a−1 → P a whose composition with P a → P a+1 is zero. On the other
hand, we have Ca−1 = Ka−1 ⊕ P a and a calculation shows that the resulting map
P a−1 → Ka−1 gives the desired extension of α. �

Lemma 15.57.4. Let R be a ring. Let I ⊂ R be an ideal. Let K be an object of
D(R). Assume that

(1) K ⊗L
R R/I is perfect in D(R/I), and

(2) I is a nilpotent ideal.

Then K is perfect in D(R).

Proof. Choose a finite complex P
•

of finite projective R/I-modules representing
K ⊗L

R R/I, see Definition 15.56.1. By Lemma 15.57.3 there exists a complex P •

of projective R-modules representing K such that P
•

= P •/IP •. It follows from
Nakayama’s lemma (Algebra, Lemma 10.19.1) that P • is a finite complex of finite
projective R-modules. �
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Lemma 15.57.5. Let R be a ring. Let I, J ⊂ R be ideals. Let K be an object of
D(R). Assume that

(1) K ⊗L
R R/I is perfect in D(R/I), and

(2) K ⊗L
R R/J is perfect in D(R/J).

Then K ⊗L
R R/IJ is perfect in D(R/IJ).

Proof. It is clear that we may assume replace R by R/IJ and K by K ⊗L
R R/IJ .

Then R→ R/(I∩J) is a surjection whose kernel has square zero. Hence by Lemma
15.57.4 it suffices to prove that K ⊗L

R R/(I ∩ J) is perfect. Thus we may assume
that I ∩ J = 0.

We prove the lemma in case I ∩ J = 0. First, we may represent K by a K-flat
complex K• with all Kn flat, see Lemma 15.45.10. Then we see that we have a
short exact sequence of complexes

0→ K• → K•/IK• ⊕K•/JK• → K•/(I + J)K• → 0

Note that K•/IK• represents K ⊗L
R R/I by construction of the derived tensor

product. Similarly for K•/JK• and K•/(I + J)K•. Note that K•/(I + J)K• is a
perfect complex of R/(I + J)-modules, see Lemma 15.56.9. Hence the complexes
K•/IK•, and K•/JK• and K•/(I+J)K• have finitely many nonzero cohomology
groups (since a perfect complex has finite Tor-amplitude, see Lemma 15.56.2). We
conclude that K ∈ Db(R) by the long exact cohomology sequence associated to
short exact sequence of complexes displayed above. In particular we assume K•

is a bounded above complex of free R-modules (see Derived Categories, Lemma
13.16.5).

We will now show that K is perfect using the criterion of Proposition 15.57.2.
Thus we let Ej ∈ D(R) be a family of objects parametrized by a set J . We choose
complexes E•j with flat terms representing Ej , see for example Lemma 15.45.10. It
is clear that

0→ E•j → E•j /IE
•
j ⊕ E•j /JE•j → E•j /(I + J)E•j → 0

is a short exact sequence of complexes. Taking direct sums we obtain a similar
short exact sequence

0→
⊕

E•j →
⊕

E•j /IE
•
j ⊕ E•j /JE•j →

⊕
E•j /(I + J)E•j → 0

(Note that −⊗R R/I commutes with direct sums.) This short exact sequence de-
termines a distinguished triangle in D(R), see Derived Categories, Lemma 13.12.1.
Apply the homological functor HomD(R)(K,−) (see Derived Categories, Lemma
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13.4.2) to get a commutative diagram⊕
HomD(R)(K

•, E•j /(I + J))[−1] //

��

HomD(R)(K
•,
⊕
E•j /(I + J))[−1]

��⊕
HomD(R)(K

•, E•j /I ⊕ E•j /J)[−1] //

��

HomD(R)(K
•,
⊕
E•j /I ⊕ E•j /J)[−1]

��⊕
HomD(R)(K

•, E•j ) //

��

HomD(R)(K
•,
⊕
E•j )

��⊕
HomD(R)(K

•, E•j /I ⊕ E•j /J) //

��

HomD(R)(K
•,
⊕
E•j /I ⊕ E•j /J)

��⊕
HomD(R)(K

•, E•j /(I + J)) // HomD(R)(K
•,
⊕
E•j /(I + J))

with exact columns. It is clear that, for any complex E• of R-modules we have

HomD(R)(K
•, E•/I) = HomK(R)(K

•, E•/I)

= HomK(R/I)(K
•/IK•, E•/I)

= HomD(R/I)(K
•/IK•, E•/I)

and similarly for when dividing by J or I + J , see Derived Categories, Lemma
13.19.8. Derived Categories. Thus all the horizontal arrows, except for possibly the
middle one, are isomorphisms as the complexes K•/IK•, K•/JK•, K•/(I +J)K•

are perfect complexes of R/I, R/J , R/(I + J)-modules, see Proposition 15.57.2. It
follows from the 5-lemma (Homology, Lemma 12.5.20) that the middle map is an
isomorphism and the lemma follows by Proposition 15.57.2. �

15.58. Relatively finitely presented modules

Let R be a ring. Let A→ B be a finite map of finite type R-algebras. Let M be a
finite B-module. In this case it is not true that

M of finite presentation over B ⇔M of finite presentation over A

A counter example is R = k[x1, x2, x3, . . .], A = R, B = R/(xi), and M = B. To
“fix” this we introduce a relative notion of finite presentation.

Lemma 15.58.1. Let R→ A be a ring map of finite type. Let M be an A-module.
The following are equivalent

(1) for some presentation α : R[x1, . . . , xn] → A the module M is a finitely
presented R[x1, . . . , xn]-module,

(2) for all presentations α : R[x1, . . . , xn] → A the module M is a finitely
presented R[x1, . . . , xn]-module, and

(3) for any surjection A′ → A where A′ is a finitely presented R-algebra, the
module M is finitely presented as A′-module.

In this case M is a finitely presented A-module.

http://stacks.math.columbia.edu/tag/05GY
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Proof. If α : R[x1, . . . , xn] → A and β : R[y1, . . . , ym] → A are presentations.
Choose fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) =
α(xi). Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi
��

yj 7→fj
// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

Hence the equivalence of (1) and (2) follows by applying Algebra, Lemmas 10.6.4
and 10.7.4. The equivalence of (2) and (3) follows by choosing a presentation
A′ = R[x1, . . . , xn]/(f1, . . . , fm) and using Algebra, Lemma 10.7.4 to show that
M is finitely presented as A′-module if and only if M is finitely presented as a
R[x1, . . . , xn]-module. �

Definition 15.58.2. Let R → A be a finite type ring map. Let M be an A-
module. We say M is an A-module finitely presented relative to R if the equivalent
conditions of Lemma 15.58.1 hold.

Note that if R → A is of finite presentation, then M is an A-module finitely
presented relative to R if and only if M is a finitely presented A-module. It is
equally clear that A as an A-module is finitely presented relative to R if and only
if A is of finite presentation over R. If R is Noetherian the notion is uninteresting.
Now we can formulate the result we were looking for.

Lemma 15.58.3. Let R be a ring. Let A → B be a finite map of finite type R-
algebras. Let M be a B-module. Then M is an A-module finitely presented relative
to R if and only if M is a B-module finitely presented relative to R.

Proof. Choose a surjection R[x1, . . . , xn] → A. Choose y1, . . . , ym ∈ B which
generate B over A. As A → B is finite each yi satisfies a monic equation with
coefficients in A. Hence we can find monic polynomials Pj(T ) ∈ R[x1, . . . , xn][T ]
such that Pj(yj) = 0 in B. Then we get a commutative diagram

R[x1, . . . , xn]

��

// R[x1, . . . , xn, y1, . . . , ym]/(Pj(yj))

��
A // B

Since the top arrow is a finite and finitely presented ring map we conclude by
Algebra, Lemma 10.7.4 and the definition. �

With this result in hand we see that the relative notion makes sense and behaves
well with regards to finite maps of rings of finite type over R. It is also stable under
localization, stable under base change, and ”glues” well.

Lemma 15.58.4. Let R be a ring, f ∈ R an element, Rf → A is a finite type ring
map, g ∈ A, and M an A-module. If M of finite presentation relative to Rf , then
Mg is an Ag-module of finite presentation relative to R.

Proof. Choose a presentation Rf [x1, . . . , xn] → A. We write Rf = R[x0]/(fx0 −
1). Consider the presentation R[x0, x1, . . . , xn, xn+1] → Ag which extends the

http://stacks.math.columbia.edu/tag/05GZ
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given map, maps x0 to the image of 1/f , and maps xn+1 to 1/g. Choose g′ ∈
R[x0, x1, . . . , xn] which maps to g (this is possible). Suppose that

Rf [x1, . . . , xn]⊕s → Rf [x1, . . . , xn]⊕t →M → 0

is a presentation of M given by a matrix (hij). Pick h′ij ∈ R[x0, x1, . . . , xn] which
map to hij . Then

R[x0, x1, . . . , xn, xn+1]⊕s+2t → R[x0, x1, . . . , xn, xn+1]⊕t →Mg → 0

is a presentation of Mf . Here the t × (s + 2t) matrix defining the map has a first
t× s block consisting of the matrix h′ij , a second t× t block which is (x0f−)It, and
a third block which is (xn+1g

′ − 1)It. �

Lemma 15.58.5. Let R → A be a finite type ring map. Let M be an A-module
finitely presented relative to R. For any ring map R→ R′ the A⊗R R′-module

M ⊗A A′ = M ⊗R R′

is finitely presented relative to R′.

Proof. Choose a surjection R[x1, . . . , xn]→ A. Choose a presentation

R[x1, . . . , xn]⊕s → R[x1, . . . , xn]⊕t →M → 0

Then
R′[x1, . . . , xn]⊕s → R′[x1, . . . , xn]⊕t →M ⊗R R′ → 0

is a presentation of the base change and we win. �

Lemma 15.58.6. Let R → A be a finite type ring map. Let M be an A-module
finitely presented relative to R. Let A → A′ be a ring map of finite presentation.
The A′-module M ⊗A A′ is finitely presented relative to R.

Proof. Choose a surjection R[x1, . . . , xn] → A. Choose a presentation A′ =
A[y1, . . . , ym]/(g1, . . . , gl). Pick g′i ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to gi. Say

R[x1, . . . , xn]⊕s → R[x1, . . . , xn]⊕t →M → 0

is a presentation of M given by a matrix (hij). Then

R[x1, . . . , xn, y1, . . . , ym]⊕s+tl → R[x0, x1, . . . , xn, y1, . . . , ym]⊕t →M ⊗A A′ → 0

is a presentation of M ⊗A A′. Here the t× (s+ lt) matrix defining the map has a
first t× s block consisting of the matrix hij , followed by l blocks of size t× t which
are g′iIt. �

Lemma 15.58.7. Let R→ A→ B be finite type ring maps. Let M be a B-module.
If M is finitely presented relative to A and A is of finite presentation over R, then
M is finitely presented relative to R.

Proof. Choose a surjection A[x1, . . . , xn]→ B. Choose a presentation

A[x1, . . . , xn]⊕s → A[x1, . . . , xn]⊕t →M → 0

given by a matrix (hij). Choose a presentation

A = R[y1, . . . , ym]/(g1, . . . , gu).

Choose h′ij ∈ R[y1, . . . , ym, x1, . . . , xn] mapping to hij . Then we obtain the presen-
tation

R[y1, . . . , ym, x1, . . . , xn]⊕s+tu → R[y1, . . . , ym, x1, . . . , xn]⊕t →M → 0

http://stacks.math.columbia.edu/tag/065B
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where the t× (s+ tu)-matrix is given by a first t× s block consisting of h′ij followed
by u blocks of size t× t given by giIt, i = 1, . . . , u. �

Lemma 15.58.8. Let R → A be a finite type ring map. Let M be an A-module.
Let f1, . . . , fr ∈ A generate the unit ideal. The following are equivalent

(1) each Mfi is finitely presented relative to R, and
(2) M is finitely presented relative to R.

Proof. The implication (2) ⇒ (1) is in Lemma 15.58.4. Assume (1). Write 1 =∑
figi in A. Choose a surjection R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr] → A. such

that yi maps to fi and zi maps to gi. Then we see that there exists a surjection

P = R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]/(
∑

yizi − 1) −→ A.

By Lemma 15.58.1 we see that Mfi is a finitely presented Afi-module, hence by
Algebra, Lemma 10.23.2 we see that M is a finitely presented A-module. Hence M
is a finite P -module (with P as above). Choose a surjection P⊕t →M . We have to
show that the kernel K of this map is a finite P -module. Since Pyi surjects onto Afi
we see by Lemma 15.58.1 and Algebra, Lemma 10.5.3 that the localization Kyi is a
finitely generated Pyi-module. Choose elements ki,j ∈ K, i = 1, . . . , r, j = 1, . . . , si
such that the images of ki,j in Kyi generate. Set K ′ ⊂ K equal to the P -module
generated by the elements ki,j . Then K/K ′ is a module whose localization at yi is
zero for all i. Since (y1, . . . , yr) = P we see that K/K ′ = 0 as desired. �

Lemma 15.58.9. Let R → A be a finite type ring map. Let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence of A-modules.

(1) If M ′,M ′′ are finitely presented relative to R, then so is M .
(2) If M ′ is a finite type A-module and M is finitely presented relative to R,

then M ′′ is finitely presented relative to R.

Proof. Follows immediately from Algebra, Lemma 10.5.3. �

Lemma 15.58.10. Let R→ A be a finite type ring map. Let M,M ′ be A-modules.
If M ⊕M ′ is finitely presented relative to R, then so are M and M ′.

Proof. Omitted. �

15.59. Relatively pseudo-coherent modules

This section is the analogue of Section 15.58 for pseudo-coherence.

Lemma 15.59.1. Let R be a ring. Let K• be an object of D−(R). Consider the
R-algebra map R[x]→ R which maps x to zero. Then

K• ⊗L
R[x] R

∼= K• ⊕K•[1]

in D(R).

Proof. Choose a projective resolution P • → K• over R. Then

P • ⊗R R[x]
x−→ P • ⊗R R[x]

is a double complex of projective R[x]-modules whose associated total complex is
quasi-isomorphic to P •. Hence

K• ⊗L
R[x] R

∼= Tot(P • ⊗R R[x]
x−→ P • ⊗R R[x])⊗R[x] R = Tot(P •

0−→ P •)

= P • ⊕ P •[1] ∼= K• ⊕K•[1]
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as desired. �

Lemma 15.59.2. Let R be a ring and K• a complex of R-modules. Let m ∈ Z.
Consider the R-algebra map R[x] → R which maps x to zero. Then K• is m-
pseudo-coherent as a complex of R-modules if and only if K• is m-pseudo-coherent
as a complex of R[x]-modules.

Proof. This is a special case of Lemma 15.50.11. We also prove it in another way
as follows.

Note that 0 → R[x] → R[x] → R → 0 is exact. Hence R is pseudo-coherent as an
R[x]-module. Thus one implication of the lemma follows from Lemma 15.50.11. To
prove the other implication, assume that K• is m-pseudo-coherent as a complex of
R[x]-modules. By Lemma 15.50.12 we see that K•⊗L

R[x]R is m-pseudo-coherent as

a complex of R-modules. By Lemma 15.59.1 we see that K• ⊕K•[1] is m-pseudo-
coherent as a complex of R-modules. Finally, we conclude that K• is m-pseudo-
coherent as a complex of R-modules from Lemma 15.50.8. �

Lemma 15.59.3. Let R→ A be a ring map of finite type. Let K• be a complex of
A-modules. Let m ∈ Z. The following are equivalent

(1) for some presentation α : R[x1, . . . , xn] → A the complex K• is an m-
pseudo-coherent complex of R[x1, . . . , xn]-modules,

(2) for all presentations α : R[x1, . . . , xn] → A the complex K• is an m-
pseudo-coherent complex of R[x1, . . . , xn]-modules.

In particular the same equivalence holds for pseudo-coherence.

Proof. If α : R[x1, . . . , xn] → A and β : R[y1, . . . , ym] → A are presentations.
Choose fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) =
α(xi). Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi
��

yj 7→fj
// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

After a change of coordinates the ring homomorphism R[x1, . . . , xn, y1, . . . , ym] →
R[x1, . . . , xn] is isomorphic to the ring homomorphism which maps each yi to zero.
Similarly for the left vertical map in the diagram. Hence, by induction on the
number of variables this lemma follows from Lemma 15.59.2. The pseudo-coherent
case follows from this and Lemma 15.50.5. �

Definition 15.59.4. Let R→ A be a finite type ring map. Let K• be a complex
of A-modules. Let M be an A-module. Let m ∈ Z.

(1) We say K• is m-pseudo-coherent relative to R if the equivalent conditions
of Lemma 15.59.3 hold.

(2) We say K• is pseudo-coherent relative to R if K• is m-pseudo-coherent
relative to R for all m ∈ Z.

(3) We sayM ism-pseudo-coherent relative to R ifM [0] ism-pseudo-coherent.
(4) We say M is pseudo-coherent relative to R if M [0] is pseudo-coherent

relative to R.
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Part (2) means that K• is pseudo-coherent as a complex of R[x1, . . . , xn]-modules
for any surjection R[y1, . . . , ym] → A, see Lemma 15.50.5. This definition has the
following pleasing property.

Lemma 15.59.5. Let R be a ring. Let A → B be a finite map of finite type
R-algebras. Let m ∈ Z. Let K• be a complex of B-modules. Then K• is m-pseudo-
coherent (resp. pseudo-coherent) relative to R if and only if K• seen as a complex
of A-modules is m-pseudo-coherent (pseudo-coherent) relative to R.

Proof. Choose a surjection R[x1, . . . , xn] → A. Choose y1, . . . , ym ∈ B which
generate B over A. As A → B is finite each yi satisfies a monic equation with
coefficients in A. Hence we can find monic polynomials Pj(T ) ∈ R[x1, . . . , xn][T ]
such that Pj(yj) = 0 in B. Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

��
R[x1, . . . , xn]

��

// R[x1, . . . , xn, y1, . . . , ym]/(Pj(yj))

��
A // B

The top horizontal arrow and the top right vertical arrow satisfy the assumptions
of Lemma 15.50.11. Hence K• is m-pseudo-coherent (resp. pseudo-coherent) as
a complex of R[x1, . . . , xn]-modules if and only if K• is m-pseudo-coherent (resp.
pseudo-coherent) as a complex of R[x1, . . . , xn, y1, . . . , ym]-modules. �

Lemma 15.59.6. Let R be a ring. Let R → A be a finite type ring map. Let
m ∈ Z. Let (K•, L•,M•, f, g, h) be a distinguished triangle in D(A).

(1) If K• is (m+1)-pseudo-coherent relative to R and L• is m-pseudo-coherent
relative to R then M• is m-pseudo-coherent relative to R.

(2) If K•,M• are m-pseudo-coherent relative to R, then L• is m-pseudo-
coherent relative to R.

(3) If L• is (m + 1)-pseudo-coherent relative to R and M• is m-pseudo-
coherent relative to R, then K• is (m + 1)-pseudo-coherent relative to
R.

Moreover, if two out of three of K•, L•,M• are pseudo-coherent relative to R, the
so is the third.

Proof. Follows immediately from Lemma 15.50.2 and the definitions. �

Lemma 15.59.7. Let R → A be a finite type ring map. Let M be an A-module.
Then

(1) M is 0-pseudo-coherent relative to R if and only if M is a finite type
A-module,

(2) M is (−1)-pseudo-coherent relative to R if and only if M is a finitely
presented relative to R,

(3) M is (−d)-pseudo-coherent relative to R if and only if for every surjection
R[x1, . . . , xn]→ A there exists a resolution

R[x1, . . . , xn]⊕ad → R[x1, . . . , xn]⊕ad−1 → . . .→ R[x1, . . . , xn]⊕a0 →M → 0

of length d, and
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(4) M is pseudo-coherent relative to R if and only if for every presentation
R[x1, . . . , xn]→ A there exists an infinite resolution

. . .→ R[x1, . . . , xn]⊕a1 → R[x1, . . . , xn]⊕a0 →M → 0

by finite free R[x1, . . . , xn]-modules.

Proof. Follows immediately from Lemma 15.50.4 and the definitions. �

Lemma 15.59.8. Let R→ A be a finite type ring map. Let m ∈ Z. Let K•, L• ∈
D(A). If K• ⊕ L• is m-pseudo-coherent (resp. pseudo-coherent) relative to R so
are K• and L•.

Proof. Immediate from Lemma 15.50.8 and the definitions. �

Lemma 15.59.9. Let R → A be a finite type ring map. Let m ∈ Z. Let K•

be a bounded above complex of A-modules such that Ki is (m− i)-pseudo-coherent
relative to R for all i. Then K• is m-pseudo-coherent relative to R. In particular,
if K• is a bounded above complex of A-modules pseudo-coherent relative to R, then
K• is pseudo-coherent relative to R.

Proof. Immediate from Lemma 15.50.9 and the definitions. �

Lemma 15.59.10. Let R → A be a finite type ring map. Let m ∈ Z. Let K• ∈
D−(A) such that Hi(K•) is (m−i)-pseudo-coherent (resp. pseudo-coherent) relative
to R for all i. Then K• is m-pseudo-coherent (resp. pseudo-coherent) relative to
R.

Proof. Immediate from Lemma 15.50.10 and the definitions. �

Lemma 15.59.11. Let R be a ring, f ∈ R an element, Rf → A is a finite type
ring map, g ∈ A, and K• a complex of A-modules. If K• is m-pseudo-coherent
(resp. pseudo-coherent) relative to Rf , then K•⊗A Ag is m-pseudo-coherent (resp.
pseudo-coherent) relative to R.

Proof. First we show that K• is m-pseudo-coherent relative to R. Namely, sup-
pose Rf [x1, . . . , xn] → A is surjective. Write Rf = R[x0]/(fx0 − 1). Then
R[x0, x1, . . . , xn] → A is surjective, and Rf [x1, . . . , xn] is pseudo-coherent as an
R[x0, . . . , xn]-module. Hence by Lemma 15.50.11 we see that K• is m-pseudo-
coherent as a complex of R[x0, x1, . . . , xn]-modules.

Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. By Lemma 15.50.12
we see that

K• ⊗L
R[x0,x1,...,xn] R[x0, x1, . . . , xn,

1

g′
] = K• ⊗R[x0,x1,...,xn] R[x0, x1, . . . , xn,

1

g′
]

= K• ⊗A Af

is m-pseudo-coherent as a complex of R[x0, x1, . . . , xn,
1
g′ ]-modules. write

R[x0, x1, . . . , xn,
1

g′
] = R[x0, . . . , xn, xn+1]/(xn+1g

′ − 1).

As R[x0, x1, . . . , xn,
1
g′ ] is pseudo-coherent as a R[x0, . . . , xn, xn+1]-module we con-

clude (see Lemma 15.50.11) that K• ⊗A Ag is m-pseudo-coherent as a complex of
R[x0, . . . , xn, xn+1]-modules as desired. �
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Lemma 15.59.12. Let R→ A be a finite type ring map. Let m ∈ Z. Let K• be a
complex of A-modules which is m-pseudo-coherent (resp. pseudo-coherent) relative
to R. Let R→ R′ be a ring map such that A and R′ are Tor independent over R.
Set A′ = A⊗RR′. Then K•⊗L

AA
′ is is m-pseudo-coherent (resp. pseudo-coherent)

relative to R′.

Proof. Choose a surjection R[x1, . . . , xn]→ A. Note that

K• ⊗L
A A

′ = K• ⊗L
R R

′ = K• ⊗L
R[x1,...,xn] R

′[x1, . . . , xn]

by Lemma 15.47.2 applied twice. Hence we win by Lemma 15.50.12. �

Lemma 15.59.13. Let R→ A→ B be finite type ring maps. Let m ∈ Z. Let K•

be a complex of A-modules. Assume B as a B-module is pseudo-coherent relative to
A. If K• is m-pseudo-coherent (resp. pseudo-coherent) relative to R, then K•⊗L

AB
is m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Choose a surjectionA[y1, . . . , ym]→ B. Choose a surjectionR[x1, . . . , xn]→
A. Combined we get a surjection R[x1, . . . , xn, y1, . . . ym]→ B. Choose a resolution
E• → B of B by a complex of finite free A[y1, . . . , yn]-modules (which is possible
by our assumption on the ring map A→ B). We may assume that K• is a bounded
above complex of flat A-modules. Then

K• ⊗L
A B = Tot(K• ⊗A B[0])

= Tot(K• ⊗A A[y1, . . . , ym]⊗A[y1,...,ym] B[0])

∼= Tot
(
(K• ⊗A A[y1, . . . , ym])⊗A[y1,...,ym] E

•)
= Tot(K• ⊗A E•)

inD(A[y1, . . . , ym]). The quasi-isomorphism∼= comes from an application of Lemma
15.45.8. Thus we have to show that Tot(K•⊗AE•) is m-pseudo-coherent as a com-
plex of R[x1, . . . , xn, y1, . . . ym]-modules. Note that Tot(K• ⊗A E•) has a filtration
by subcomplexes with successive quotients the complexes K•⊗AEi[−i]. Note that
for i � 0 the complexes K• ⊗A Ei[−i] have zero cohomology in degrees ≤ m and
hence are m-pseudo-coherent (over any ring). Hence, applying Lemma 15.59.6 and
induction, it suffices to show that K• ⊗A Ei[−i] is pseudo-coherent relative to R
for all i. Note that Ei = 0 for i > 0. Since also Ei is finite free this reduces to
proving that K•⊗AA[y1, . . . , ym] is m-pseudo-coherent relative to R which follows
from Lemma 15.59.12 for instance. �

Lemma 15.59.14. Let R → A → B be finite type ring maps. Let m ∈ Z. Let M
be an A-module. Assume B is flat over A and B as a B-module is pseudo-coherent
relative to A. If M is m-pseudo-coherent (resp. pseudo-coherent) relative to R,
then M ⊗A B is m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Immediate from Lemma 15.59.13. �

Lemma 15.59.15. Let R be a ring. Let A→ B be a map of finite type R-algebras.
Let m ∈ Z. Let K• be a complex of B-modules. Assume A is pseudo-coherent
relative to R. Then the following are equivalent

(1) K• is m-pseudo-coherent (resp. pseudo-coherent) relative to A, and
(2) K• is m-pseudo-coherent (resp. pseudo-coherent) relative to R.
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Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose a surjectionA[y1, . . . , ym]→
B. Then we get a surjection

R[x1, . . . , xn, y1, . . . , ym]→ A[y1, . . . , ym]

which is a flat base change of R[x1, . . . , xn] → A. By assumption A is a pseudo-
coherent module overR[x1, . . . , xn] hence by Lemma 15.50.13 we see thatA[y1, . . . , ym]
is pseudo-coherent over R[x1, . . . , xn, y1, . . . , ym]. Thus the lemma follows from
Lemma 15.50.11 and the definitions. �

Lemma 15.59.16. Let R → A be a finite type ring map. Let K• be a complex of
A-modules. Let m ∈ Z. Let f1, . . . , fr ∈ A generate the unit ideal. The following
are equivalent

(1) each K• ⊗A Afi is m-pseudo-coherent relative to R, and
(2) K• is m-pseudo-coherent relative to R.

The same equivalence holds for pseudo-coherence.

Proof. The implication (2) ⇒ (1) is in Lemma 15.59.11. Assume (1). Write
1 =

∑
figi in A. Choose a surjection R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]→ A. such

that yi maps to fi and zi maps to gi. Then we see that there exists a surjection

P = R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]/(
∑

yizi − 1) −→ A.

Note that P is pseudo-coherent as an R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]-module
and that P [1/yi] is pseudo-coherent as an R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr, 1/yi]-
module. Hence by Lemma 15.50.11 we see that K•⊗AAfi is an m-pseudo-coherent
complex of P [1/yi]-modules for each i. Thus by Lemma 15.50.14 we see that K• is
pseudo-coherent as a complex of P -modules, and Lemma 15.50.11 shows that K•

is pseudo-coherent as a complex of R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]-modules. �

Lemma 15.59.17. Let R be a Noetherian ring. Let R → A be a finite type ring
map. Then

(1) A complex of A-modules K• is m-pseudo-coherent relative to R if and
only if K• ∈ D−(A) and Hi(K•) is a finite A-module for i ≥ m.

(2) A complex of A-modules K• is pseudo-coherent relative to R if and only
if K• ∈ D−(A) and Hi(K•) is a finite A-module for all i.

(3) An A-module is pseudo-coherent relative to R if and only if it is finite.

Proof. Immediate consequence of Lemma 15.50.16 and the definitions. �

15.60. Pseudo-coherent and perfect ring maps

We can define these types of ring maps as follows.

Definition 15.60.1. Let A→ B be a ring map.

(1) We say A→ B is a pseudo-coherent ring map if it is of finite type and B,
as a B-module, is pseudo-coherent relative to A.

(2) We say A → B is a perfect ring map if it is a pseudo-coherent ring map
such that B as an A-module has finite tor dimension.

This terminology may be nonstandard. Using Lemma 15.59.7 we see that A → B
is pseudo-coherent if and only if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-
module has a resolution by finite free A[x1, . . . , xn]-modules. The motivation for
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the definition of a perfect ring map is Lemma 15.56.2. The following lemmas gives
a more useful and intuitive characterization of a perfect ring map.

Lemma 15.60.2. A ring map A→ B is perfect if and only if B = A[x1, . . . , xn]/I
and B as an A[x1, . . . , xn]-module has a finite resolution by finite projective A[x1, . . . , xn]-
modules.

Proof. If A → B is perfect, then B = A[x1, . . . , xn]/I and B is pseudo-coherent
as an A[x1, . . . , xn]-module and has finite tor dimension as an A-module. Hence
Lemma 15.56.19 implies that B is perfect as a A[x1, . . . , xn]-module, i.e., it has a
finite resolution by finite projective A[x1, . . . , xn]-modules (Lemma 15.56.3). Con-
versely, if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-module has a finite res-
olution by finite projective A[x1, . . . , xn]-modules then B is pseudo-coherent as an
A[x1, . . . , xn]-module, hence A→ B is pseudo-coherent. Moreover, the given reso-
lution over A[x1, . . . , xn] is a finite resolution by flat A-modules and hence B has
finite tor dimension as an A-module. �

Lots of the results of the preceding sections can be reformulated in terms of this
terminology. We also refer to More on Morphisms, Sections 36.40 and 36.41 for the
corresponding discussion concerning morphisms of schemes.

Lemma 15.60.3. A finite type ring map of Noetherian rings is pseudo-coherent.

Proof. See Lemma 15.59.17. �

Lemma 15.60.4. A ring map which is flat and of finite presentation is perfect.

Proof. Let A → B be a ring map which is flat and of finite presentation. It is
clear that B has finite tor dimension. By Algebra, Lemma 10.156.1 there exists a
finite type Z-algebra A0 ⊂ A and a flat finite type ring map A0 → B0 such that
B = B0 ⊗A0

A. By Lemma 15.59.17 we see that A0 → B0 is pseudo-coherent. As
A0 → B0 is flat we see that B0 and A are tor independent over A0, hence we may
use Lemma 15.59.12 to conclude that A→ B is pseudo-coherent. �

Lemma 15.60.5. Let A → B be a finite type ring map with A a regular ring of
finite dimension. Then A→ B is perfect.

Proof. By Algebra, Lemma 10.106.8 the assumption on A means that A has fi-
nite global dimension. Hence every module has finite tor dimension, see Lemma
15.51.15, in particular B does. By Lemma 15.60.3 the map is pseudo-coherent. �

Lemma 15.60.6. A local complete intersection homomorphism is perfect.

Proof. Let A → B he a local complete intersection homomorphism. By Defi-
nition 15.23.2 this means that B = A[x1, . . . , xn]/I where I is a Koszul ideal in
A[x1, . . . , xn]. By Lemmas 15.60.2 and 15.56.3 it suffices to show that I is a perfect
module over A[x1, . . . , xn]. By Lemma 15.56.11 this is a local question. Hence
we may assume that I is generated by a Koszul-regular sequence (by Definition
15.22.1). Of course this means that I has a finite free resolution and we win. �

15.61. Rlim of abelian groups and modules

We briefly discuss R lim on abelian groups and modules. In this section we will
denote Ab(N) the abelian category of inverse systems of abelian groups. This
makes sense as an inverse system of abelian groups is the same thing as a sheaf of
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groups on the category N (with a unique morphism i → j if i ≤ j), see Remark
15.61.4. Many of the arguments in this section duplicate the arguments used to
construct the cohomological machinery for modules on ringed sites.

Lemma 15.61.1. The functor lim : Ab(N)→ Ab has a right derived functor

(15.61.1.1) R lim : D(Ab(N)) −→ D(Ab)

As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have

(1) for any (An) in Ab(N) we have Rp limAn = 0 for p > 1,
(2) the object R limAn of D(Ab) is represented by the complex∏

An →
∏

An, (xn) 7→ (xn − fn+1(xn+1))

sitting in degrees 0 and 1,
(3) if (An) is ML, then R1 limAn = 0, i.e., (An) is right acyclic for lim,
(4) every K• ∈ D(Ab(N)) is quasi-isomorphic to a complex whose terms are

right acyclic for lim, and
(5) if each Kp = (Kp

n) is right acyclic for lim, i.e., of R1 limnK
p
n = 0, then

R limK is represented by the complex whose term in degree p is limnK
p
n.

Proof. Let (An) be an arbitrary inverse system. Let (Bn) be the inverse system
with

Bn = An ⊕An−1 ⊕ . . .⊕A1

and transition maps given by projections. Let An → Bn be given by (1, fn, fn−1 ◦
fn, . . . , f2 ◦ . . . ◦ fn where fi : Ai → Ai−1 are the transition maps. In this way we
see that every inverse system is a subobject of a ML system (Homology, Section
12.27). It follows from Derived Categories, Lemma 13.16.6 using Homology, Lemma
12.27.3 that every ML system is right acyclic for lim, i.e., (3) holds. This already
implies that RF is defined on D+(Ab(N)), see Derived Categories, Proposition
13.16.8. Set Cn = An−1 ⊕ . . . ⊕ A1 for n > 1 and C1 = 0 with transition maps
given by projections as well. Then there is a short exact sequence of inverse systems
0→ (An)→ (Bn)→ (Cn)→ 0 where Bn → Cn is given by (xi) 7→ (xi−fi+1(xi+1)).
Since (Cn) is ML as well, we conclude that (2) holds (by proposition reference above)
which also implies (1). Finally, this implies by Derived Categories, Lemma 13.30.2
that R lim is in fact defined on all of D(Ab(N)). In fact, the proof of Derived
Categories, Lemma 13.30.2 proceeds by proving assertions (4) and (5). �

We give two simple applications. The first is the “correct” formulation of Homology,
Lemma 12.27.7.

Lemma 15.61.2. Let

(A−2
n → A−1

n → A0
n → A1

n)

be an inverse system of complexes of abelian groups and denote A−2 → A−1 →
A0 → A1 its limit. Denote (H−1

n ), (H0
n) the inverse systems of cohomologies, and

denote H−1, H0 the cohomologies of A−2 → A−1 → A0 → A1. If

(1) (A−2
n ) and (A−1

n ) have vanishing R1 lim,
(2) (H−1

n ) has vanishing R1 lim,

then H0 = limH0
i .

http://stacks.math.columbia.edu/tag/07KW
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Proof. Let K ∈ D(Ab(N)) be the object represented by the system of complexes
whose nth constituent is the complex A−2

n → A−1
n → A0

n → A1
n. We will compute

H0(R limK) using both spectral sequences7 of Derived Categories, Lemma 13.21.3.
The first has E1-page

0 0 R1 limA0
n R1 limA1

n

A−2 A−1 A0 A1

with horizontal differentials and all higher differentials are zero. The second has
E2 page

R1 limH−2
n 0 R1 limH0

n R1 limH1
n

limH−2
n limH−1

n limH0
n limH1

n

and degenerates at this point. The result follows. �

Lemma 15.61.3. Let D be a triangulated category. Let (Kn) be an inverse system
of objects of D. Let K be a derived limit of the system (Kn). Then for every L in
D we have short exact sequences

0→ R1 lim HomD(L,Kn[1])→ HomD(L,K)→ lim HomD(L,Kn)→ 0

Proof. This follows from Derived Categories, Definition 13.32.1 and Lemma 13.4.2,
and the description of lim and R1 lim in Lemma 15.61.1 above. �

Remark 15.61.4 (Rlim as cohomology). Consider the category N whose objects
are natural numbers and whose morphisms are unique arrows i→ j if j ≥ i. Endow
N with the chaotic topology (Sites, Example 7.6.6) so that a sheaf F is the same
thing as an inverse system

F1 ← F2 ← F3 ← . . .

of sets over N. Note that Γ(N,F) = limFn. For an inverse system of abelian
groups Fn we have

Rp limFn = Hp(N,F)

because both sides are the higher right derived functors of F 7→ limFn = H0(N,F).
Thus the existence of R lim also follows from the general material in Cohomology
on Sites, Sections 21.3 and 21.19.

Warning. An object of D(Ab(N)) is a complex of inverse systems of abelian
groups. You can also think of this as an inverse system (K•n) of complexes. However,
this is not the same thing as an inverse system of objects of D(Ab); we will come
back and explain the difference later.

The products in the following lemma can be seen as termwise products of complexes
or as products in the derived category D(Ab), see Derived Categories, Lemma
13.32.2. This lemma in particular shows the notation in this section is compatible
with the notation introduced in Derived Categories, Section 13.32. See Remark
15.61.16 for more explanation.

7To use these spectral sequences we have to show that Ab(N) has enough injectives. A inverse
system (In) of abelian groups is injective if and only if each In is an injective abelian group and

the transition maps are split surjections. Every system embeds in one of these. Details omitted.

http://stacks.math.columbia.edu/tag/0919
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Lemma 15.61.5. Let K = (K•n) be an object of D(Ab(N)). There exists a canon-
ical distinguished triangle

R limK →
∏

n
K•n →

∏
n
K•n → R limK[1]

in D(Ab) where the middle map fits into the commutative diagrams∏
nK

•
n

//

��

∏
nK

•
n

��
K•n ⊕K•n+1

1−π // K•n

whose vertical maps are projections and where π : K•n+1 → K•n is the transition
map of the system.

Proof. Suppose that for each p the inverse system (Kp
n) is right acyclic for lim.

By Lemma 15.61.1 this gives a short exact sequence

0→ limnK
p
n →

∏
n
Kp
n →

∏
n
Kp
n → 0

for each p. Since the complex consisting of limnK
p
n computes R limK by Lemma

15.61.1 we see that the lemma holds in this case.

Next, assume K = (K•n) is general. By Lemma 15.61.1 there is a quasi-isomorphism
K → L in D(Ab(N)) such that (Lpn) is acyclic for each p. Then

∏
K•n is quasi-

isomorphic to
∏
L•n as products are exact in Ab, whence the result for L (proved

above) implies the result for K. �

Lemma 15.61.6. With notation as in Lemma 15.61.5 the long exact cohomology
sequence associated to the distinguished triangle breaks up into short exact sequences

0→ R1 limnH
p−1(K•n)→ Hp(R limK)→ limnH

p(K•n)→ 0

Proof. The long exact sequence of the distinguished triangle is

. . .→ Hp(R limK)→
∏

n
Hp(K•n)→

∏
n
Hp(K•n)→ Hp+1(R limK)→ . . .

The map in the middle has kernel limnH
p(K•n) by its explicit description given in

the lemma. The cokernel of this map is R1 limnH
p(K•n) by Lemma 15.61.1. �

Lemma 15.61.7. Let E → D be a morphism of D(Ab(N)). Let (En), resp. (Dn)
be the system of objects of D(Ab) associated to E, resp. D. If (En) → (Dn) is an
isomorphism of pro-objects, then R limE → R limD is an isomorphism in D(Ab).

Proof. The assumption in particular implies that the pro-objects Hp(En) and
Hp(Dn) are isomorphic. By the short exact sequences of Lemma 15.61.6 it suffices
to show that given a map (An)→ (Bn) of inverse systems of abelian groupsc which
induces an isomorphism of pro-objects, then limAn ∼= limBn and R1 limAn ∼=
R1 limBn.

The assumption implies there are 1 ≤ m1 < m2 < m3 < . . . and maps ϕn : Bmn →
An such that (ϕn) : (Bmn)→ (An) is a map of systems which is inverse to the given
map ψ = (ψn) : (An) → (Bn) as a morphism of pro-objects. What this means
is that (after possibly replacing mn by larger integers) we may assume that the
compositions Amn → Bmn → An and Bmn → An → Bn are equal to the transition
maps of the inverse systems. Now, if (bn) ∈ limBn we can set an = ϕmn(bmn).

http://stacks.math.columbia.edu/tag/07KX
http://stacks.math.columbia.edu/tag/07KY
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This defines an inverse limBn → limAn (computation omitted). Let us use the
cokernel of the map ∏

Bn −→
∏

Bn

as an avatar of R1 limBn (Lemma 15.61.1). Any element in this cokernel can be
represented by an element (bi) with bi = 0 if i 6= mn for some n (computation
omitted). We can define a map R1 limBn → R1 limAn by mapping the class of
such a special element (bn) to the class of (ϕn(bmn)). We omit the verification this
map is inverse to the map R1 limAn → R1 limBn. �

Lemma 15.61.8. Let (An) be an inverse system of abelian groups. The following
are equivalent

(1) (An) is zero as a pro-object,
(2) limAn = 0 and R1 limAn = 0 and the same holds for

⊕
i∈N(An).

Proof. It follows from Lemma 15.61.7 that (1) implies (2). For m ≥ n let An,m =
Im(Am → An) so that An = An,n ⊃ An,n+1 ⊃ . . .. Note that (An) is zero as
a pro-object if and only if for every n there is an m ≥ n such that An,m = 0.
Note that (An) is ML if and only if for every n there is an mn ≥ n such that
An,m = An,m+1 = . . .. In the ML case it is clear that limAn = 0 implies that
An,mn = 0 because the maps An+1,mn+1

→ An,m are surjective.

Assume (An) is not zero as a pro-object and not ML. Then we can pick an n and
a sequence of integers n < m1 < m2 < . . . and elements xi ∈ Ami whose image
yi ∈ An is not in An,mi+1. Set Bn =

⊕
i∈NAn. Let ξ = (ξn) ∈

∏
Bn be the

element with ξn = 0 unless n = mi and ξmi = (0, . . . , 0, xi, 0, . . .) with xi placed in
the ith summand. We claim that ξ is not in the image of the map

∏
Bn →

∏
Bn

of Lemma 15.61.1. This shows that R1 limBn is nonzero and finishes the proof.
Namely, suppose that ξ is the image of η = (z1, z2, . . .) with zn =

∑
zn,i ∈

⊕
iAn.

Observe that xi = zmi,i mod Ami,mi+1. Then zmi−1,i is the image of zmi,i under
Ami → Ami−1, and so on, and we conclude that zn,i is the image of zmi,i under
Ami → An. We conclude that zn,i is congruent to yi modulo An,mi+1. In particular
zn,i 6= 0. This is impossible as

∑
zn,i ∈

⊕
iAn hence only a finite number of zn,i

can be nonzero. �

Let (An) be an inverse system of rings. We will denote Mod(N, (An)) the category
of inverse systems (Mn) of abelian groups such that each Mn is given the structure
of a An-module and the transition maps Mn+1 →Mn are An+1-module maps. This
is an abelian category. Set A = limAn. Given an object (Mn) of Mod(N, (An)) the
limit limMn is an A-module.

Lemma 15.61.9. In the situation above. The functor lim : Mod(N, (An))→ ModA
has a right derived functor

R lim : D(Mod(N, (An))) −→ D(A)

As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have

(1) for any (An) in Mod(N, (An)) we have Rp limAn = 0 for p > 1,
(2) the object R limAn of D(ModA) is represented by the complex∏

An →
∏

An, (xn) 7→ (xn − fn+1(xn+1))

sitting in degrees 0 and 1,
(3) if (An) is ML, then R1 limAn = 0, i.e., (An) is right acyclic for lim,

http://stacks.math.columbia.edu/tag/091C
http://stacks.math.columbia.edu/tag/091D


15.61. RLIM OF ABELIAN GROUPS AND MODULES 1215

(4) every K• ∈ D(Mod(N, (An))) is quasi-isomorphic to a complex whose
terms are right acyclic for lim, and

(5) if each Kp = (Kp
n) is right acyclic for lim, i.e., of R1 limnK

p
n = 0, then

R limK is represented by the complex whose term in degree p is limnK
p
n.

Proof. The proof of this is word for word the same as the proof of Lemma 15.61.1.
�

Remark 15.61.10. This remark is a continuation of Remark 15.61.4. A sheaf of
rings on N is just an inverse system of rings (An). A sheaf of modules over (An) is
exactly the same thing as an object of the category Mod(N, (An)) defined above.
The derived functor R lim of Lemma 15.61.9 is simply RΓ(N,−) from the derived
category of modules to the derived category of modules over the global sections
of the structure sheaf. is true in general that cohomology of groups and modules
agree, see Cohomology on Sites, Lemma 21.12.4.

Lemma 15.61.11. Let (An) be an inverse system of rings. Every K ∈ D(Mod(N, (An)))
can be represented by a system of complexes (M•n) such that all the transition maps
M•n+1 →M•n are surjective.

Proof. Let K be represented by the system (K•n). Set M•1 = K•1 . Suppose we have
constructed surjective maps of complexes M•n →M•n−1 → . . .→M•1 and homotopy
equivalences ψe : K•e →M•e such that the diagrams

K•e+1

��

// K•e

��
M•e+1

// M•e

commute for all e < n. Then we consider the diagram

K•n+1
// K•n

��
M•n

By Derived Categories, Lemma 13.9.8 we can factor the compositionK•n+1 →M•n as
K•n+1 →M•n+1 →M•n such that the first arrow is a homotopy equivalence and the
second a termwise split surjection. The lemma follows from this and induction. �

Lemma 15.61.12. Let (An) be an inverse system of rings. Every K ∈ D(Mod(N, (An)))
can be represented by a system of complexes (K•n) such that each K•n is K-flat.

Proof. First use Lemma 15.61.11 to represent K by a system of complexes (M•n)
such that all the transition maps M•n+1 →M•n are surjective. Next, let K•1 →M•1
be a quasi-isomorphism with K•1 a K-flat complex of A1-modules (Lemma 15.45.10).
Suppose we have constructed K•n → K•n−1 → . . . → K•1 and maps of complexes
ψe : K•e →M•e such that

K•e+1

��

// K•e

��
M•e+1

// M•e

http://stacks.math.columbia.edu/tag/091E
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commutes for all e < n. Then we consider the diagram

C•

��

// K•n

ψn

��
M•n+1

ϕn // M•n

in D(An+1). As M•n+1 → M•n is termwise surjective, the complex C• fitting into
the left upper corner with terms

Cp = Mp
n+1 ×Mp

n
Kp
n

is quasi-isomorphic toM•n+1 (details omitted). Choose a quasi-isomorphismK•n+1 →
C• with K•n+1 K-flat. Thus the lemma holds by induction. �

Lemma 15.61.13. Let (An) be an inverse system of rings. Given K,L ∈ D(Mod(N, (An)))
there is a canonical derived tensor product K ⊗L L in D(N, (An)) compatible with
the maps to D(An). The construction is symmetric in K and L and an exact
functor of triangulated categories in each variable.

Proof. Choose a representive (K•n) for K such that each K•n is a K-flat complex
(Lemma 15.61.12). Then you can define K ⊗L L as the object represented by the
system of complexes

(Tot(K•n ⊗An L•n))

for any choice of representative (L•n) for L. This is well defined in both variables
by Lemmas 15.45.4 and 15.45.12. Compatibility with the map to D(An) is clear.
Exactness follows exactly as in Lemma 15.45.2. �

As in the case of abelian groups an object M = (M•n) of D(Mod(N, (An))) is
an inverse system of complexes of modules, which is not the same thing as an
inverse system of objects in the derived categories. In the following lemma we show
how an inverse system of objects in derived categories always lifts to an object of
D(Mod(N, (An))).

Lemma 15.61.14. Let (An) be an inverse system of rings. Suppose that we are
given

(1) for every n an object K•n of D(An), and
(2) for every n a map ϕn : K•n+1 → K•n of D(An+1) where we think of K•n as

an object of D(An+1) by restriction via the restriction map An+1 → An.

There exists an object M = (M•n) ∈ D(Mod(N, (An))) and isomorphisms ψn :
M•n → K•n in D(An) such that the diagrams

M•n+1

ψn+1

��

// M•n

ψn

��
K•n

ϕn // K•n

commute in D(An+1).

Proof. Namely, set M•1 = K•1 . Suppose we have constructed M•n → M•n−1 →
. . . → M•1 and maps of complexes ψe : M•e → K•e such that the diagrams above

http://stacks.math.columbia.edu/tag/091H
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commute for all e < n. Then we consider the diagram

M•n

ψn

��
K•n+1

ϕn // K•n

in D(An+1). By the definition of morphisms in D(An+1) we can find a quasi-
isomorphism ψn+1 : M•n+1 → K•n+1 of complexes of An+1-modules such that there
exists a morphism of complexes M•n+1 → M•n of An+1-modules representing the
composition ψ−1

n ◦ϕn ◦ψn+1 in D(An+1). Thus the lemma holds by induction. �

Remark 15.61.15. With assumptions as in Lemma 15.61.14. A priori there are
many isomorphism classes of objects M of D(Mod(N, (An))) which give rise to
the system (K•n, ϕn) as above. For each such M we can consider the complex
R limM ∈ D(A) where A = limAn. By Lemma 15.61.5 there exists a canonical
distinguished triangle

R limM →
∏

n
K•n →

∏
n
K•n → R limM [1]

in D(A). Hence we see that the isomorphism class of R limM in D(A) is inde-
pendent of the choices made in constructing M , by axiom TR3 of triangulated
categories and Derived Categories, Lemma 13.4.3.

Remark 15.61.16. Let (Kn) be an inverse system of objects of D(Ab). Let
K = R limKn be a derived limit of this system (see Derived Categories, Section
13.32). Such a derived limit exists because D(Ab) has countable products (Derived
Categories, Lemma 13.32.2). By Lemma 15.61.14 we can also lift (Kn) to an object
M of D(N). Then K ∼= R limM where R lim is the functor (15.61.1.1) because
R limM is also a derived limit of the system (Kn) (by Lemma 15.61.5) and de-
rived limits are unique up to isomorphism. In particular for every p ∈ Z there is a
canonical short exact sequence

0→ R1 limHp−1(Kn)→ Hp(K)→ limHp(Kn)→ 0

as follows from Lemma 15.61.5 for M . This can also been seen directly, without
invoking the existence of M , by applying the argument of the proof of Lemma
15.61.5 to the (defining) distinguished triangle K →

∏
Kn →

∏
Kn → K[1].

Remark 15.61.17. Let A be a ring. Let (En) be an inverse system of objects of
D(A). We’ve seen above that a derived limit R limEn exists. Thus for every object
K of D(A) also the derived limit R lim(K ⊗L

A En) exists. It turns out that we can
construct these derived limits functorially in K and obtain an exact functor

R lim(−⊗L
A En) : D(A) −→ D(A)

of triangulated categories. Namely, we first lift (En) to an object E of D(N, A),
see Lemma 15.61.14. (The functor will depend on the choice of this lift.) Next,
observe that there is a “diagonal” or “constant” functor

∆ : D(A) −→ D(N, A)

mapping the complex K• to the constant inverse system of complexes with value
K•. Then we simply define

R lim(K ⊗L
A En) = R lim(∆(K)⊗L E)

http://stacks.math.columbia.edu/tag/07KZ
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where on the right hand side we use the functor R lim of Lemma 15.61.9 and the
functor −⊗L − of Lemma 15.61.13.

Lemma 15.61.18. Let A be a ring. Let E → D → F → E[1] be a distinguished
triangle of D(N, A). Let (En), resp. (Dn), resp. (Fn) be the system of objects of
D(A) associated to E, resp. D, resp. F . Then for every K ∈ D(A) there is a
canonical distinguished triangle

R lim(K ⊗L
A En)→ R lim(K ⊗L

A Dn)→ R lim(K ⊗L
A Fn)→ R lim(K ⊗L

A En)[1]

in D(A) with notation as in Remark 15.61.17.

Proof. This is clear from the construction in Remark 15.61.17 and the fact that ∆ :
D(A)→ D(N, A), −⊗L−, and R lim are exact functors of triangulated categories.

�

Lemma 15.61.19. Let A be a ring. Let E → D be a morphism of D(N, A).
Let (En), resp. (Dn) be the system of objects of D(A) associated to E, resp. D.
If (En) → (Dn) is an isomorphism of pro-objects, then for every K ∈ D(A) the
corresponding map

R lim(K ⊗L
A En) −→ R lim(K ⊗L

A Dn)

in D(A) is an isomorphism (notation as in Remark 15.61.17).

Proof. Follows from the definitions and Lemma 15.61.7. �

15.62. Torsion modules

In this section “torsion modules” will refer to modules supported on a given closed
subset V (I) of an affine scheme Spec(R). This is different, but analogous to, the
notion of a torsion module over a domain (Definition 15.15.1).

Definition 15.62.1. Let R be a ring. Let M be an R-module.

(1) Let I ⊂ R be an ideal. We say M is an I-power torsion module if for
every m ∈M there exists an n > 0 such that Inm = 0.

(2) Let f ∈ R. We say M is an f -power torsion module if for each m ∈ M ,
there exists an n > 0 such that fnm = 0.

Thus an f -power torsion module is the same thing as a I-power torsion module for
I = (f). We will use the notation

M [In] = {m ∈M | Inm = 0}

and

M [I∞] =
⋃
M [In]

for an R-module M . Thus M is I-power torsion if and only if M = M [I∞] if and
only if M =

⋃
M [In].

Lemma 15.62.2. Let R be a ring. Let I be an ideal of R. Let M be an I-power
torsion module. Then M admits a resolution

. . .→ K2 → K1 → K0 →M → 0

with each Ki a direct sum of copies of R/In for n variable.

http://stacks.math.columbia.edu/tag/091K
http://stacks.math.columbia.edu/tag/091L
http://stacks.math.columbia.edu/tag/05E6
http://stacks.math.columbia.edu/tag/05E8


15.62. TORSION MODULES 1219

Proof. There is a canonical surjection

⊕m∈MR/Inm →M → 0

where nm is the smallest positive integer such that Inm ·m = 0. The kernel of the
preceding surjection is also an I-power torsion module. Proceeding inductively, we
construct the desired resolution of M . �

Lemma 15.62.3. Let R be a ring. Let I be an ideal of R. For any R-module M
set M [In] = {m ∈ M | Inm = 0}. If I is finitely generated then the following are
equivalent

(1) M [I] = 0,
(2) M [In] = 0 for all n ≥ 1, and
(3) if I = (f1, . . . , ft), then the map M →

⊕
Mfi is injective.

Proof. This follows from Algebra, Lemma 10.22.4. �

Lemma 15.62.4. Let R be a ring. Let I be a finitely generated ideal of R.

(1) For any R-module M we have (M/M [I∞])[I] = 0.
(2) An extension of I-power torsion modules is I-power torsion.

Proof. Let m ∈M . If m maps to an element of (M/M [I∞])[I] then Im ⊂M [I∞].
Write I = (f1, . . . , ft). Then we see that fim ∈ M [I∞], i.e., Inifim = 0 for some
ni > 0. Thus we see that INm = 0 with N =

∑
ni + 2. Hence m maps to zero in

(M/M [I∞]) which proves the first statement of the lemma.

For the second, suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence
of modules with M ′ and M ′′ both I-power torsion modules. Then M [I∞] ⊃ M ′

and hence M/M [I∞] is a quotient of M ′′ and therefore I-power torsion. Combined
with the first statement and Lemma 15.62.3 this implies that it is zero �

Lemma 15.62.5. Let I be a finitely generated ideal of a ring R. The I-power tor-
sion modules form a Serre subcategory of the abelian category ModR, see Homology,
Definition 12.9.1.

Proof. It is clear that a submodule and a quotient module of an I-power torsion
module is I-power torsion. Moreover, the extension of two I-power torsion mod-
ules is I-power torsion by Lemma 15.62.4. Hence the statement of the lemma by
Homology, Lemma 12.9.2. �

Lemma 15.62.6. Let R be a ring and let I ⊂ R be a finitely generated ideal. The
subcategory I∞-torsion ⊂ ModR depends only on the closed subset Z = V (I) ⊂
Spec(R). In fact, an R-module M is I-power torsion if and only if its support is
contained in Z.

Proof. Let M be an R-module. Let x ∈ M . If x ∈ M [I∞], then x maps to zero
in Mf for all f ∈ I. Hence x maps to zero in Mp for all p 6⊃ I. Conversely, if x
maps to zero in Mp for all p 6⊃ I, then x maps to zero in Mf for all f ∈ I. Hence

if I = (f1, . . . , fr), then fnii x = 0 for some ni ≥ 1. It follows that x ∈ M [I
∑
ni ].

Thus M [I∞] is the kernel of M →
∏

p6∈ZMp. The second statement of the lemma
follows and it implies the first. �
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15.63. Formal glueing of module categories

Fix a noetherian scheme X, and a closed subscheme Z with complement U . Our
goal is to explain how coherent sheaves on X can be constructed (uniquely) from
coherent sheaves on the formal completion of X along Z, and those on U with
a suitable compatibility on the overlap. We first do this using only commutative
algebra (this section) and later we explain this in the setting of algebraic spaces
(Pushouts of Spaces, Section 59.3).

Here are some references treating some of the material in this section: [Art70,
Section 2], [FR70, Appendix], [BL95], [MB96], and [dJ95, Section 4.6].

Lemma 15.63.1. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal. The
following are equivalent

(1) ϕ is flat and R/I → S/IS is faithfully flat,
(2) ϕ is flat, and the map Spec(S/IS)→ Spec(R/I) is surjective.
(3) ϕ is flat, and the base change functor M 7→M⊗RS is faithful on modules

annihilated by I, and
(4) ϕ is flat, and the base change functor M 7→M⊗RS is faithful on I-power

torsion modules.

Proof. If R → S is flat, then R/In → S/InS is flat for every n, see Algebra,
Lemma 10.38.6. Hence (1) and (2) are equivalent by Algebra, Lemma 10.38.15.
The equivalence of (1) with (3) follows by identifying I-torsion R-modules with
R/I-modules, using that

M ⊗R S = M ⊗R/I S/IS

for R-modules M annihilated by I, and Algebra, Lemma 10.38.13. The implication
(4) ⇒ (3) is immediate. Assume (3). We have seen above that R/In → S/InS
is flat, and by assumption it induces a surjection on spectra, as Spec(R/In) =
Spec(R/I) and similarly for S. Hence the base change functor is faithful on modules
annihilated by In. Since any I-power torsion module M is the union M =

⋃
Mn

where Mn is annihilated by In we see that the base change functor is faithful
on the category of all I-power torsion modules (as tensor product commutes with
colimits). �

Lemma 15.63.2. Assume (ϕ : R → S, I) satisfies the equivalent conditions of
Lemma 15.63.1. The following are equivalent

(1) for any I-power torsion module M , the natural map M →M ⊗R S is an
isomorphism, and

(2) R/I → S/IS is an isomorphism.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). First assume that
M is annihilated by I. In this case, M is an R/I-module. Hence, we have an
isomorphism

M ⊗R S = M ⊗R/I S/IS = M ⊗R/I R/I = M

proving the claim. Next we prove by induction that M →M⊗RS is an isomorphism
for any module M is annihilated by In. Assume the induction hypothesis holds for
n and assume M is annihilated by In+1. Then we have a short exact sequence

0→ InM →M →M/InM → 0

http://stacks.math.columbia.edu/tag/05E7
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and as R→ S is flat this gives rise to a short exact sequence

0→ InM ⊗R S →M ⊗R S →M/InM ⊗R S → 0

Using that the canonical map is an isomorphism for M ′ = InM and M ′′ = M/InM
(by induction hypothesis) we conclude the same thing is true for M . Finally,
suppose that M is a general I-power torsion module. Then M =

⋃
Mn where Mn

is annihilated by In and we conclude using that tensor products commute with
colimits. �

Lemma 15.63.3. Assume ϕ : R → S is a flat ring map and I ⊂ R is a finitely
generated ideal such that R/I → S/IS is an isomorphism. Then

(1) for any R-module M the map M → M ⊗R S induces an isomorphism
M [I∞]→ (M ⊗R S)[(IS)∞] of I-power torsion submodules,

(2) the natural map

HomR(M,N) −→ HomS(M ⊗R S,N ⊗R S)

is an isomorphism if either M or N is I-power torsion, and
(3) the base change functor M 7→M⊗RS defines an equivalence of categories

between I-power torsion modules and IS-power torsion modules.

Proof. Note that the equivalent conditions of both Lemma 15.63.1 and Lemma
15.63.2 are satisfied. We will use these without further mention. We first prove (1).
Let M be any R-module. Set M ′ = M/M [I∞] and consider the exact sequence

0→M [I∞]→M →M ′ → 0

As M [I∞] = M [I∞]⊗RS we see that it suffices to show that (M ′⊗RS)[(IS)∞] = 0.
Write I = (f1, . . . , ft). By Lemma 15.62.4 we see that M ′[I∞] = 0. Hence for every
n > 0 the map

M ′ −→
⊕

i=1,...t
M ′, x 7−→ (fn1 x, . . . , f

n
t x)

is injective. As S is flat overR also the corresponding mapM ′⊗RS →
⊕

i=1,...tM
′⊗R

S is injective. This means that (M ′ ⊗R S)[In] = 0 as desired.

Next we prove (2). If N is I-power torsion, then N ⊗R S = N and the displayed
map of (2) is an isomorphism by Algebra, Lemma 10.13.3. If M is I-power torsion,
then the image of any map M → N factors through M [I∞] and the image of any
map M ⊗R S → N ⊗R S factors through (N ⊗R S)[(IS)∞]. Hence in this case part
(1) guarantees that we may replace N by N [I∞] and the result follows from the
case where N is I-power torsion we just discussed.

Next we prove (3). The functor is fully faithful by (2). For essential surjectivity, we
simply note that for any IS-power torsion S-module N , the natural map N⊗RS →
N is an isomorphism. �

Lemma 15.63.4. Assume ϕ : R → S is a flat ring map and I ⊂ R is a finitely
generated ideal such that R/I → S/IS is an isomorphism. For any f1, . . . , fr ∈ R
such that V (f1, . . . , fr) = V (I)

(1) the map of Koszul complexes K(R, f1, . . . , fr) → K(S, f1, . . . , fr) is a
quasi-isomorphism, and

http://stacks.math.columbia.edu/tag/05EC
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(2) The map of extended alternating Čech complexes

R→
∏
i0
Rfi0 →

∏
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

��
S →

∏
i0
Sfi0 →

∏
i0<i1

Sfi0fi1 → . . .→ Sf1...fr

is a quasi-isomorphism.

Proof. In both cases we have a complex K• of R modules and we want to show
that K• → K• ⊗R S is a quasi-isomorphism. By Lemma 15.63.2 and the flatness
of R → S this will hold as soon as all homology groups of K are I-power torsion.
This is true for the Koszul complex by Lemma 15.20.6. Since the alternating Čech
complex is a colimit of Koszul complexes (Lemma 15.20.13) the case of the Koszul
complex implies the second statement too. �

Lemma 15.63.5. Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated
ideal of R. Let M be the R-module generated by elements e1, . . . , en subject to the
relations fiej − fjei = 0. There exists a short exact sequence

0→ K →M → I → 0

such that K is annihilated by I.

Proof. This is just a truncation of the Koszul complex. The map M → I is is
determined by the rule ei 7→ fi. If m =

∑
aiei is in the kernel of M → I, i.e.,∑

aifi = 0, then fjm =
∑
fjaiei = (

∑
fiai)ej = 0. �

Lemma 15.63.6. Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated ideal
of R. For any R-module N set

H1(N, f•) =
{(x1, . . . , xn) ∈ N⊕n | fixj = fjxi}

{f1x, . . . , fnx) | x ∈ N}
For any R-module N there exists a canonical short exact sequence

0→ ExtR(R/I,N)→ H1(N, f•)→ HomR(K,N)

where K is as in Lemma 15.63.5.

Proof. The notation above indicates the Ext-groups in ModR as defined in Homol-
ogy, Section 12.6. These are denoted ExtR(M,N). Using the long exact sequence
of Homology, Lemma 12.6.4 associated to the short exact sequence 0 → I → R →
R/I → 0 and the fact that ExtR(R,N) = 0 we see that

ExtR(R/I,N) = Coker(N −→ Hom(I,N))

Using the short exact sequence of Lemma 15.63.5 we see that we get a complex

N → Hom(M,N)→ HomR(K,N)

whose homology in the middle is canonically isomorphic to ExtR(R/I,N). The
proof of the lemma is now complete as the cokernel of the first map is canonically
isomorphic to H1(N, f•). �

Lemma 15.63.7. Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated
ideal of R. For any R-module N the Koszul homology group H1(N, f•) defined in
Lemma 15.63.6 is annihilated by I.
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Proof. Let (x1, . . . , xn) ∈ N⊕n with fixj = fjxi. Then we have fi(x1, . . . , xn) =
(fixi, . . . , fixn). In other words fi annihilates H1(N, f•). �

We can improve on the full faithfulness of Lemma 15.63.3 by showing that Ext-
groups whose source is I-power torsion are insensitive to passing to S as well. See
Dualizing Complexes, Lemma 43.8.14 for a derived version of the following lemma.

Lemma 15.63.8. Assume ϕ : R → S is a flat ring map and I ⊂ R is a finitely
generated ideal such that R/I → S/IS is an isomorphism. Let M , N be R-modules.
Assume M is I-power torsion. Given an short exact sequence

0→ N ⊗R S → Ẽ →M ⊗R S → 0

there exists a commutative diagram

0 // N //

��

E //

��

M //

��

0

0 // N ⊗R S // Ẽ // M ⊗R S // 0

with exact rows.

Proof. As M is I-power torsion we see that M ⊗R S = M , see Lemma 15.63.2.
We will use this identification without further mention. As R→ S is flat, the base
change functor is exact and we obtain a functorial map of Ext-groups

ExtR(M,N) −→ ExtS(M ⊗R S,N ⊗R S),

see Homology, Lemma 12.7.2. The claim of the lemma is that this map is surjective
when M is I-power torsion. In fact we will show that it is an isomorphism. By
Lemma 15.62.2 we can find a surjection M ′ →M with M ′ a direct sum of modules
of the form R/In. Using the long exact sequence of Homology, Lemma 12.6.4 we
see that it suffices to prove the lemma for M ′. Using compatibility of Ext with
direct sums (details omitted) we reduce to the case where M = R/In for some n.

Let f1, . . . , ft be generators for In. By Lemma 15.63.6 we have a commutative
diagram

0 // ExtR(R/In, N) //

��

H1(N, f•) //

��

HomR(K,N)

��
0 // ExtS(S/InS,N ⊗ S) // H1(N ⊗ S, f•) // HomS(K ⊗ S,N ⊗ S)

with exact rows where K is as in Lemma 15.63.5. Hence it suffices to prove that
the two right vertical arrows are isomorphisms. Since K is annihilated by In we
see that HomR(K,N) = HomS(K ⊗R S,N ⊗R S) by Lemma 15.63.3. As R→ S is
flat we have H1(N, f•)⊗R S = H1(N ⊗R S, f•). As H1(N, f•) is annihilated by In,
see Lemma 15.63.7 we have H1(N, f•)⊗R S = H1(N, f•) by Lemma 15.63.2. �

Let R → S be a ring map. Let f1, . . . , ft ∈ R and I = (f1, . . . , ft). Then for any
R-module M we can define a complex

(15.63.8.1) 0→M
α−→M ⊗R S ×

∏
Mfi

β−→
∏

(M ⊗R S)fi ×
∏

Mfifj

where α(m) = (m⊗ 1,m/1, . . . ,m/1) and

β(m′,m1, . . . ,mt) = ((m′/1−m1⊗1, . . . ,m′/1−mt⊗1), (m1−m2, . . . ,mt−1−mt).

http://stacks.math.columbia.edu/tag/05EG
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We would like to know when this complex is exact.

Lemma 15.63.9. Assume ϕ : R → S is a flat ring map and I = (f1, . . . , ft) ⊂ R
is an ideal such that R/I → S/IS is an isomorphism. Let M be an R-module.
Then the complex (15.63.8.1) is exact.

Proof. First proof. Denote ČR → ČS the quasi-isomorphism of extended alternat-
ing Čech complexes of Lemma 15.63.4. Since these complexes are bounded with
flat terms, we see that M ⊗R ČR →M ⊗R ČS is a quasi-isomorphism too (Lemmas
15.45.8 and 15.45.12). Now the complex (15.63.8.1) is a truncation of the cone of
the map M ⊗R ČR →M ⊗R ČS and we win.

Second computational proof. Let m ∈ M . If α(m) = 0, then m ∈ M [I∞], see
Lemma 15.62.3. Pick n such that Inm = 0 and consider the map ϕ : R/In → M .
If m⊗ 1 = 0, then ϕ⊗ 1S = 0, hence ϕ = 0 (see Lemma 15.63.3) hence m = 0. In
this way we see that α is injective.

Let (m′,m′1, . . . ,m
′
t) ∈ Ker(β). Write m′i = mi/f

n
i for some n > 0 and mi ∈ M .

We may, after possibly enlarging n assume that fni m
′ = mi ⊗ 1 in M ⊗R S and

fnj mi − fni mj = 0 in M . In particular we see that (m1, . . . ,mt) defines an element

ξ of H1(M, (fn1 , . . . , f
n
t )). Since H1(M, (fn1 , . . . , f

n
t )) is annihilated by Itn+1 (see

Lemma 15.63.7) and since R→ S is flat we see that

H1(M, (fn1 , . . . , f
n
t )) = H1(M, (fn1 , . . . , f

n
t ))⊗R S = H1(M ⊗R S, (fn1 , . . . , fnt ))

by Lemma 15.63.2 The existence of m′ implies that ξ maps to zero in the last group,
i.e., the element ξ is zero. Thus there exists an m ∈M such that mi = fni m. Then
(m′,m′1, . . . ,m

′
t) − α(m) = (m′′, 0, . . . , 0) for some m′′ ∈ (M ⊗R S)[(IS)∞]. By

Lemma 15.63.3 we conclude that m′′ ∈M [I∞] and we win. �

Remark 15.63.10. In this remark we define a category of glueing data. Let
R → S be a ring map. Let f1, . . . , ft ∈ R and I = (f1, . . . , ft). Consider the
category Glue(R→ S, f1, . . . , ft) as the category whose

(1) objects are systems (M ′,Mi, αi, αij), where M ′ is an S-module, Mi is
an Rfi-module, αi : (M ′)fi → Mi ⊗R S is an isomorphism, and αij :
(Mi)fj → (Mj)fi are isomorphisms such that
(a) αij ◦ αi = αj as maps (M ′)fifj → (Mj)fi , and
(b) αjk ◦ αij = αik as maps (Mi)fjfk → (Mk)fifj (cocycle condition).

(2) morphisms (M ′,Mi, αi, αij) → (N ′, Ni, βi, βij) are given by maps ϕ′ :
M ′ → N ′ and ϕi : Mi → Ni compatible with the given maps αi, βi, αij , βij .

There is a canonical functor

Can : ModR −→ Glue(R→ S, f1, . . . , ft), M 7−→ (M ⊗R S,Mfi , cani, canij)

where cani : (M ⊗R S)fi → Mfi ⊗R S and canij : (Mfi)fj → (Mfj )fi are the
canonical isomorphisms. For any object M = (M ′,Mi, αi, αij) of the category
Glue(R→ S, f1, . . . , ft) we define

H0(M) = {(m′,mi) | αi(m′) = mi ⊗ 1, αij(mi) = mj}

in other words defined by the exact sequence

0→ H0(M)→M ′ ×
∏

Mi →
∏

M ′fi ×
∏

(Mi)fj
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similar to (15.63.8.1). We think of H0(M) as an R-module. Thus we also get a
functor

H0 : Glue(R→ S, f1, . . . , ft) −→ ModR

Our next goal is to show that the functors Can and H0 are sometimes quasi-inverse
to each other.

Lemma 15.63.11. Assume ϕ : R→ S is a flat ring map and I = (f1, . . . , ft) ⊂ R
is an ideal such that R/I → S/IS is an isomorphism. Then the functor H0 is a
left quasi-inverse to the functor Can of Remark 15.63.10.

Proof. This is a reformulation of Lemma 15.63.9. �

Lemma 15.63.12. Assume ϕ : R→ S is a flat ring map and let I = (f1, . . . , ft) ⊂
R be an ideal. Then Glue(R→ S, f1, . . . , ft) is an abelian category, and the functor
Can is exact and commutes with arbitrary colimits.

Proof. Given a morphism (ϕ′, ϕi) : (M ′,Mi, αi, αij) → (N ′, Ni, βi, βij) of the
category Glue(R → S, f1, . . . , ft) we see that its kernel exists and is equal to the
object (Ker(ϕ′),Ker(ϕi), αi, αij) and its cokernel exists and is equal to the object
(Coker(ϕ′),Coker(ϕi), βi, βij). This works because R → S is flat, hence taking
kernels/cokernels commutes with − ⊗R S. Details omitted. The exactness follows
from the R-flatness of Rfi and S, while commuting with colimits follows as tensor
products commute with colimits. �

Lemma 15.63.13. Let ϕ : R → S be a flat ring map and (f1, . . . , ft) = R. Then
Can and H0 are quasi-inverse equivalences of categories

ModR = Glue(R→ S, f1, . . . , ft)

Proof. Consider an object M = (M ′,Mi, αi, αij) of Glue(R → S, f1, . . . , ft). By
Algebra, Lemma 10.23.4 there exists a unique module M and isomorphisms Mfi →
Mi which recover the glueing data αij . Then both M ′ and M ⊗R S are S-modules
which recover the modules Mi ⊗R S upon localizing at fi. Whence there is a
canonical isomorphism M ⊗RS →M ′. This shows that M is in the essential image
of Can. Combined with Lemma 15.63.11 the lemma follows. �

Lemma 15.63.14. Let ϕ : R → S be a flat ring map and I = (f1, . . . , ft) and
ideal. Let R → R′ be a flat ring map, and set S′ = S ⊗R R′. Then we obtain a
commutative diagram of categories and functors

ModR
Can

//

−⊗RR′

��

Glue(R→ S, f1, . . . , ft)
H0
//

−⊗RR′

��

ModR

−⊗RR′

��
ModR′

Can // Glue(R′ → S′, f1, . . . , ft)
H0
// ModR′

Proof. Omitted. �

Proposition 15.63.15. Assume ϕ : R→ S is a flat ring map and I = (f1, . . . , ft) ⊂
R is an ideal such that R/I → S/IS is an isomorphism. Then Can and H0 are
quasi-inverse equivalences of categories

ModR = Glue(R→ S, f1, . . . , ft)
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Proof. We have already seen that H0 ◦Can is isomorphic to the identity functor,
see Lemma 15.63.11. Consider an object M = (M ′,Mi, αi, αij) of Glue(R →
S, f1, . . . , ft). We get a natural morphism

Ψ : (H0(M)⊗R S,H0(M)fi , cani, canij) −→ (M ′,Mi, αi, αij).

Namely, by definition H0(M) comes equipped with compatible R-module maps
H0(M) → M ′ and H0(M) → Mi. We have to show that this map is an isomor-
phism.

Pick an index i and set R′ = Rfi . Combining Lemmas 15.63.14 and 15.63.13 we see
that Ψ⊗R R′ is an isomorphism. Hence the kernel, resp. cokernel of Ψ is a system
of the form (K, 0, 0, 0), resp. (Q, 0, 0, 0). Note that H0((K, 0, 0, 0)) = K, that H0

is left exact, and that by construction H0(Ψ) is bijective. Hence we see K = 0, i.e.,
the kernel of Ψ is zero.

The conclusion of the above is that we obtain a short exact sequence

0→ H0(M)⊗R S →M ′ → Q→ 0

and that Mi = H0(M)fi . Note that we may think of Q as an R-module which is
I-power torsion so that Q = Q⊗R S. By Lemma 15.63.8 we see that there exists a
commutative diagram

0 // H0(M) //

��

E //

��

Q //

��

0

0 // H0(M)⊗R S // M ′ // Q // 0

with exact rows. This clearly determines an isomorphism Can(E)→ (M ′,Mi, αi, αij)
in the category Glue(R → S, f1, . . . , ft) and we win. (Of course, a posteriori we
have Q = 0.) �

Lemma 15.63.16. Let ϕ : R → S be a flat ring map and let I ⊂ R be a finitely
generated ideal such that R/I → S/IS is an isomorphism.

(1) Given an R-module N , an S-module M ′ and an S-module map ϕ : M ′ →
N ⊗R S whose kernel and cokernel are I-power torsion, there exists an R-
module map ψ : M → N and an isomorphism M ⊗R S = M ′ compatible
with ϕ and ψ.

(2) Given an R-module M , an S-module N ′ and an S-module map ϕ : M ⊗R
S → N ′ whose kernel and cokernel are I-power torsion, there exists an
R-module map ψ : M → N and an isomorphism N ⊗R S = N ′ compatible
with ϕ and ψ.

In both cases we have Ker(ϕ) ∼= Ker(ψ) and Coker(ϕ) ∼= Coker(ψ).

Proof. Proof of (1). Say I = (f1, . . . , ft). It is clear that the localization ϕfi is
an isomorphism. Thus we see that (M ′, Nfi , ϕfi , canij) is an object of Glue(R →
S, f1, . . . , ft), see Remark 15.63.10. By Proposition 15.63.15 we conclude that there
exists an R-module M such that M ′ = M ⊗R S and Nfi = Mfi compatibly with
the isomorphisms ϕfi and canij . There is a morphism

(M ⊗R S,Mfi , cani, canij) = (M ′, Nfi , ϕfi , canij)→ (N ⊗R S,Nfi , cani, canij)
of Glue(R → S, f1, . . . , ft) which uses ϕ in the first component. This corresponds
to an R-module map ψ : M → N (by the equivalence of categories of Proposition
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15.63.15). The composition of the base change of M → N with the isomorphism
M ′ ∼= M ⊗R S is ϕ, in other words M → N is compatible with ϕ.

Proof of (2). This is just the dual of the argument above. Namely, the localization
ϕfi is an isomorphism. Thus we see that (N ′,Mfi , ϕ

−1
fi
, canij) is an object of

Glue(R→ S, f1, . . . , ft), see Remark 15.63.10. By Proposition 15.63.15 we conclude
that there exists an R-module N such that N ′ = N⊗RS and Nfi = Mfi compatibly

with the isomorphisms ϕ−1
fi

and canij . There is a morphism

(M ⊗R S,Mfi , cani, canij)→ (N ′,Mfi , ϕfi , canij) = (N ⊗R S,Nfi , cani, canij)

of Glue(R → S, f1, . . . , ft) which uses ϕ in the first component. This corresponds
to an R-module map ψ : M → N (by the equivalence of categories of Proposition
15.63.15). The composition of the base change of M → N with the isomorphism
N ′ ∼= N ⊗R S is ϕ, in other words M → N is compatible with ϕ.

The final statement follows for example from Lemma 15.63.3. �

Next, we specialize this very general proposition to get something more useable.
Namely, if I = (f) is a principal ideal then the objects of Glue(R→ S, f) are simply
triples (M ′,M1, α1) and there is no cocycle condition to check!

Theorem 15.63.17. Let R be a ring, and let f ∈ R. Let ϕ : R→ S be a flat ring
map inducing an isomorphism R/fR→ S/fS. Then the functor

ModR −→ ModS ×ModSf
ModRf , M 7−→ (M ⊗R S,Mf , can)

is an equivalence.

Proof. The category appearing on the right side of the arrow is the category of
triples (M ′,M1, α1) where M ′ is an S-module, M1 is a Rf -module, and α1 : M ′f →
M1⊗R S is a Sf -isomorphism, see Categories, Example 4.29.3. Hence this theorem
is a special case of Proposition 15.63.15. �

A useful special case of Theorem 15.63.17 is when R is noetherian, and S is a
completion of R at an element f . The completion R → S is flat, and the functor
M 7→ M ⊗R S can be identified with the f -adic completion functor when M is

finitely generated. To state this more precisely, let ModfgR denote the category of
finitely generated R-modules.

Proposition 15.63.18. Let R be a noetherian ring. Let f ∈ R be an element. Let
R∧ be the f -adic completion of R. Then the functor M 7→ (M∧,Mf , can) defines
an equivalence

ModfgR −→ ModfgR∧ ×Modfg
(R∧)f

ModfgRf

Proof. The ring map R → R∧ is flat by Algebra, Lemma 10.93.3. It is clear
that R/fR = R∧/fR∧. By Algebra, Lemma 10.93.2 the completion of a finite
R-module M is equal to M ⊗R R∧. Hence the displayed functor of the proposition
is equal to the functor occurring in Theorem 15.63.17. In particular it is fully
faithful. Let (M1,M2, ψ) be an object of the right hand side. By Theorem 15.63.17
there exists an R-module M such that M1 = M ⊗R R∧ and M2 = Mf . As R →
R∧ × Rf is faithfully flat we conclude from Algebra, Lemma 10.23.2 that M is

finitely generated, i.e., M ∈ ModfgR . This proves the proposition. �
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Remark 15.63.19. The equivalences of Proposition 15.63.15, Theorem 15.63.17,
and Proposition 15.63.18 preserve properties of modules. For example if M cor-
responds to M = (M ′,Mi, αi, αij) then M is finite, or finitely presented, or flat,
or projective over R if and only if M ′ and Mi have the corresponding property
over S and Rfi . This follows from the fact that R → S ×

∏
Rfi is faithfully flat

and descend and ascent of these properties along faithfully flat maps, see Algebra,
Lemma 10.80.2 and Theorem 10.92.5. These functors also preserve the ⊗-structures
on either side. Thus, it defines equivalences of various categories built out of the
pair (ModR,⊗), such as the category of algebras.

Remark 15.63.20. Given a differential manifold X with a compact closed sub-
manifold Z having complement U , specifying a sheaf on X is the same as specifying
a sheaf on U , a sheaf on an unspecified tubular neighbourhood T of Z in X, and an
isomorphism between the two resulting sheaves along T ∩ U . Tubular neighbour-
hoods do not exist in algebraic geometry as such, but results such as Proposition
15.63.15, Theorem 15.63.17, and Proposition 15.63.18 allow us to work with formal
neighbourhoods instead.

15.64. Derived Completion

Some references for the material in this section are [DG02], [GM92], [Lur11] (es-
pecially Chapter 4). Our exposition follows [BS13]. The analogue (or “dual”) of
this section for torsion modules is Dualizing Complexes, Section 43.8. The rela-
tionship between the derived category of complexes with torsion cohomology and
derived complete complexes can be found in Dualizing Complexes, Section 43.9.

Let K ∈ D(A). Let f ∈ A. We denote T (K, f) a derived limit of the system

. . .→ K
f−→ K

f−→ K

in D(A).

Lemma 15.64.1. Let A be a ring. Let f ∈ A. Let K ∈ D(A). The following are
equivalent

(1) ExtnA(Af ,K) = 0 for all n,
(2) HomD(A)(E,K) = 0 for all E in D(Af ),
(3) T (K, f) = 0,
(4) for every p ∈ Z we have T (Hp(K), f) = 0,
(5) for every p ∈ Z we have HomA(Af , H

p(K)) = 0 and Ext1A(Af , H
p(K)) =

0,
(6) RHom(Af ,K) = 0,
(7) add more here.

Proof. It is clear that (2) implies (1) and that (1) is equivalent to (6). Assume
(1). Let I• be a K-injective complex of A-modules representing K. Condition
(1) signifies that HomA(Af , I

•) is acyclic. Let M• be a complex of Af -modules
representing E. Then

HomD(A)(E,K) = HomK(A)(M
•, I•) = HomK(Af )(M

•,HomA(Af , I
•))

by Algebra, Lemma 10.13.4. As HomA(Af , I
•) is a K-injective complex of Af -

modules by Lemma 15.43.3 the fact that it is acyclic implies that it is homotopy
equivalent to zero (Derived Categories, Lemma 13.29.2). Thus we get (2).
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A free resolution of the A-module Af is given by

0→
⊕

n∈N
A→

⊕
n∈N

A→ Af → 0

where the first map sends the (x0, x1, . . .) to (fx0−x1, fx1−x2, . . .) and the second
map sends (x0, x1, . . .) to x0 + x1/f + x2/f

2 + . . .. Applying HomA(−, I•) we get

0→ HomA(Af , I
•)→

∏
I• →

∏
I• → 0

This means that the object T (K, f) is a representative of RHomA(Af ,K) in D(A).
Thus the equivalence of (1) and (3).

There is a spectral sequence

Ep,q2 = ExtqA(Af , H
p(K))⇒ Extp+qA (Af ,K)

(details omitted). This spectral sequence degenerates at E2 because Af has a
length 1 resolution by projective A-modules (see above) hence the E2-page has
only 2 nonzero rows. Thus we obtain short exact sequences

0→ Ext1
A(Af , H

p−1(K))→ ExtpA(Af ,K)→ HomA(Af , H
p(K))→ 0

This proves (4) and (5) are equivalent to (1). �

Lemma 15.64.2. Let A be a ring. Let K ∈ D(A). The set I of f ∈ A such that
T (K, f) = 0 is an ideal of A.

Proof. We will use the results of Lemma 15.64.1 without further mention. If f ∈ I,
and g ∈ A, then Agf is an Af -module hence ExtnA(Agf ,K) = 0 for all n, hence
gf ∈ I. Suppose f, g ∈ I. Then there is a short exact sequence

0→ Af+g → Af(f+g) ⊕Ag(f+g) → Agf(f+g) → 0

because f, g generate the unit ideal in Af+g. This follows from Algebra, Lemma
10.22.1 and the easy fact that the last arrow is surjective. By the long exact
sequence of Ext and the vanishing of ExtnA(Af(f+g),K), ExtnA(Ag(f+g),K), and
ExtnA(Agf(f+g),K) we get the vanishing of ExtnA(Af+g,K). �

Lemma 15.64.3. Let A be a ring. Let I ⊂ A be an ideal. Let M be an A-module.

(1) If M is I-adically complete, then T (M,f) = 0 for all f ∈ I.
(2) Conversely, if T (M,f) = 0 for all f ∈ I and I is finitely generated, then

M → limM/InM is surjective.

Proof. Proof of (1). Assume M is I-adically complete. By Lemma 15.64.1 it
suffices to prove Ext1

A(Af ,M) = 0 and HomA(Af ,M) = 0. Since M = limM/InM
and since HomA(Af ,M/InM) = 0 it follows that HomA(Af ,M) = 0. Suppose we
have an extension

0→M → E → Af → 0

For n ≥ 0 pick en ∈ E mapping to 1/fn. Set δn = fen+1 − en ∈ M for n ≥ 0.
Replace en by

e′n = en + δn + fδn+1 + f2δn+2 + . . .

The infinite sum exists as M is complete with respect to I and f ∈ I. A simple
calculation shows that fe′n+1 = e′n. Thus we get a splitting of the extension by
mapping 1/fn to e′n.

http://stacks.math.columbia.edu/tag/091Q
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Proof of (2). Assume that I = (f1, . . . , fr) and that T (M,fi) = 0 for i = 1, . . . , r.
By Algebra, Lemma 10.93.12 we may assume I = (f) and T (M,f) = 0. Let xn ∈M
for n ≥ 0. Consider the extension

0→M → E → Af → 0

given by

E = M ⊕
⊕

Aen

/
〈xn − fen+1 + en〉

mapping en to 1/fn in Af (see above). By assumption and Lemma 15.64.1 this
extension is split, hence we obtain an element x+ e0 which generates a copy of Af
in E. Then

x+ e0 = x− x0 + fe1 = x− x0 − x1 + f2e2 = . . .

Since M/fnM = E/fnE by the snake lemma, we see that x = x0 + fx1 + . . . +
fn−1xn−1 modulo fnM . In other words, the map M → limM/fnM is surjective
as desired. �

Motivated by the results above we make the following definition.

Definition 15.64.4. Let A be a ring. Let K ∈ D(A). Let I ⊂ A be an ideal. We
say K is derived complete with respect to I if for every f ∈ I we have T (K, f) = 0.
If M is an A-module, then we say M is derived complete with respect to I if M [0] ∈
D(A) is derived complete with respect to I.

The full subcategory Dcomp(A) = Dcomp(A, I) ⊂ D(A) consisting of derived com-
plete objects is a strictly full, saturated triangulated subcategory, see Derived Cate-
gories, Definitions 13.3.4 and 13.6.1. This subcategory is preserved under products
and homotopy limits in D(A). But it is not preserved under countable direct sums
in general. We will often simply say M is a derived complete module if the choice
of the ideal I is clear from the context.

Proposition 15.64.5. Let I ⊂ A be a finitely generated ideal of a ring A. Let M
be an A-module. The following are equivalent

(1) M is I-adically complete, and
(2) M is derived complete with respect to I and

⋂
InM = 0.

Proof. This is clear from the results of Lemma 15.64.3. �

The next lemma shows that the category C of derived complete modules is abelian.
It turns out that C is not a Grothendieck abelian category, see Examples, Section
82.10.

Lemma 15.64.6. Let I be an ideal of a ring A.

(1) The derived complete A-modules form a weak Serre subcategory C of ModA.
(2) DC(A) ⊂ D(A) is the full subcategory of derived complete objects.

Proof. Part (2) is immediate from Lemma 15.64.1 and the definitions. For part (1),
suppose thatM → N is a map of derived complete modules. DenoteK = (M → N)
the corresponding object of D(A). Pick f ∈ I. Then ExtnA(Af ,K) is zero for all
n because ExtnA(Af ,M) and ExtnA(Af , N) are zero for all n. Hence K is derived
complete. By (2) we see that Ker(M → N) and Coker(M → N) are objects of
C. Finally, suppose that 0 → M1 → M2 → M3 → 0 is a short exact sequence of
A-modules and M1, M3 are derived complete. Then it follows from the long exact
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sequence of Ext’s that M2 is derived complete. Thus C is a weak Serre subcategory
by Homology, Lemma 12.9.3. �

If the ring is I-adically complete, then one obtains an ample supply of derived
complete complexes.

Lemma 15.64.7. Let A be a ring and I ⊂ A an ideal. If A is I-adically complete
then any pseudo-coherent object of D(A) is derived complete.

Proof. Let K be a pseudo-coherent object of D(A). By definition this means K
is represented by a bounded above complex K• of finite free A-modules. Since A
is I-adically complete, hence derived complete (Lemma 15.64.3). It follows that
Hn(K) is derived complete for all n, by part (1) of Lemma 15.64.6. This in turn
implies that K is derived complete by part (2) of the same lemma. �

Lemma 15.64.8. Let A be a ring. Let f, g ∈ A. Then for K ∈ D(A) we have
RHom(Af , RHom(Ag,K)) = RHom(Afg,K).

Proof. This follows from Lemma 15.55.1. �

Lemma 15.64.9. Let I be a finitely generated ideal of a ring A. The inclusion
functor Dcomp(A, I) → D(A) has a left adjoint, i.e., given any object K of D(A)
there exists a map K → K∧ of K into a derived complete object of D(A) such that
the map

HomD(A)(K
∧, E) −→ HomD(A)(K,E)

is bijective whenever E is a derived complete object of D(A). In fact, if I is gener-
ated by f1, . . . , fr ∈ A, then we have

K∧ = RHom
(

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ),K
)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A

which induces a map K → K∧. It suffices to prove that K∧ is derived complete
and that K → K∧ is an isomorphism if K is derived complete.

Let f ∈ A. By Lemma 15.64.8 the object RHom(Af ,K
∧) is equal to

RHom
(

(Af →
∏

i0
Affi0 →

∏
i0<i1

Affi0fi1 → . . .→ Aff1...fr ),K
)

If f ∈ I, then f1, . . . , fr generate the unit ideal in Af , hence the extended alternat-

ing Čech complex

Af →
∏

i0
Affi0 →

∏
i0<i1

Affi0fi1 → . . .→ Aff1...fr

is zero in D(A) by Lemma 15.20.13. (In fact, if f = fi for some i, then this complex
is homotopic to zero; this is the only case we need.) Hence RHom(Af ,K

∧) = 0
and we conclude that K∧ is derived complete by Lemma 15.64.1.

Conversely, if K is derived complete, then RHom(Af ,K) is zero for all f =
fi0 . . . fip , p ≥ 0. Thus K → K∧ is an isomorphism in D(A). �
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Alternative proof existence completion. For each i ∈ {1, . . . , r} let Di(A) de-
note the full subcategory of objects which are derived complete with respect to (fi).
Then Dcomp(A) = D1(A) ∩ . . . ∩ Dr(A). A formal argument shows it suffices to
construct a left adjoint for Di(A) → D(A). Thus we may and do assume I = (f)
for some f ∈ A. Any object of D(A) can be represented by a K-injective complex
of A-modules J•. Then HomA(Af , J

•). is a K-injective complex of Af -modules
and K-injective as a complex of A-modules, by Lemmas 15.43.3 and 15.43.1. We
claim that

C• = Cone(HomA(Af , J
•)→ J•)

endowed with the canonical from J• is the derived completion. Namely, we have a
distinguished triangle

HomA(Af , J
•)→ J• → C• → HomA(Af , J

•)[1]

and for any derived complete complex N• we have

HomD(A)(HomA(Af , J
•), N•) = 0

by Lemma 15.64.1. The long exact sequence of Hom’s easily shows that C• has the
desired universal property. �

Lemma 15.64.10. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then the derived completion of K• is
zero.

Proof. Indeed, in this case the RHom(K,L) is zero for any derived complete
complex L, see Lemma 15.64.1. Hence K∧ is zero by the universal property in
Lemma 15.64.9. �

Lemma 15.64.11. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K,L ∈ D(A). Then

RHom(K,L)∧ = RHom(K,L∧) = RHom(K∧, L∧)

Proof. By Lemma 15.64.9 we know that derived completion is given byRHom(C,−)
for some C ∈ D(A). Then

RHom(C,RHom(K,L)) = RHom(C ⊗L K,L) = RHom(K,RHom(C,L))

by Lemma 15.55.1. This proves the first equation. The map K → K∧ induces a
map

RHom(K∧, L∧)→ RHom(K,L∧)

which is an isomorphism in D(A) by definition of the derived completion as the left
adjoint to the inclusion functor. �

Let A be a ring and let I ⊂ A be an ideal. For any K ∈ D(A) we can consider the
derived limit

K ′ = R lim(K ⊗L
A A/I

n)

This is a functor in K, see Remark 15.61.17. The system of maps A→ A/In induces
a map K → K ′. It turns out that K ′ is derived complete with respect to I. This
“naive” derived completion construction does not agree with the adjoint of Lemma
15.64.9 in general. For example, if A = Zp ⊕Qp/Zp with the second summand an
ideal of square zero, K = A[0], and I = (p), then the naive derived completion gives
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Zp[0], but the construction of Lemma 15.64.9 givesK∧ ∼= Zp[1]⊕Zp[0] (computation
omitted).

Lemma 15.64.12. Let A be a ring and let I ⊂ A be an ideal. For K ∈ D(A) the
naive derived completion K ′ = R lim(K ⊗L

A A/I
n) is derived complete with respect

to I.

Proof. Let f ∈ I. The groups ExtpA(Af ,K
′) sit in short exact sequences

0→ R1 lim Extp−1
A (Af ,K⊗L

AA/I
n)→ ExtpA(Af ,K

′)→ lim ExtpA(Af ,K⊗L
AA/I

n)→ 0

by Lemma 15.61.3. We conclude since f acts both as an isomorphism and nilpo-
tently on the outer terms. �

Lemma 15.64.13. Let A be a ring. Let f ∈ A. If there exists an integer c ≥ 1
such that A[f c] = A[f c+1] = A[f c+2] = . . . (for example if A is Noetherian), then
for all n ≥ 1 there exist maps

(A
fn−−→ A) −→ A/(fn), and A/(fn+c) −→ (A

fn−−→ A)

in D(A) inducing an isomorphism of the pro-objects {A/(fn)} and {(fn : A→ A)}
in D(A).

Proof. The first displayed arrow is obvious. We can define the second arrow of
the lemma by the diagram

A/A[f c]
fn+c

//

fc

��

A

1

��
A

fn // A
Since the top horizontal arrow is injective the complex in the top row is quasi-
isomorphic to A/fn+cA. We omit the calculation of compositions needed to show
the statement on pro objects. �

Let A be a ring. Let f1, . . . , fr ∈ A. We are going to consider the sequence
of Koszul complexes K•n = K•(A, f

n
1 , . . . , f

n
r ) placed in cohomological degrees

−r,−r + 1, . . . , 0. Using the functoriality of Lemma 15.20.3 we get maps

. . .→ K•3 → K•2 → K•1

compatible with H0(K•n) = A/(fn1 , . . . , f
n
r ) and the natural maps between these

quotients. A key feature of the discussion below will use that for m > n the map

K−pm = ∧p(A⊕r)→ ∧p(A⊕r) = K−pn

is given by multiplication by fm−ni1
. . . fm−nip

on the basis element ei1 ∧ . . . ∧ eip .

Finally, note that there is a compatible system of maps A→ K•n.

Lemma 15.64.14. With notation as above, let I = (f1, . . . , fr) ⊂ A. For K ∈
D(A) the object K ′ = R lim(K ⊗L

A K
•
n) is derived complete with respect to I.

Proof. Let f ∈ I. We have short exact sequences

0→ R1 lim Extp−1
A (Af ,K⊗L

AK
•
n)→ ExtpA(Af ,K

′)→ lim ExtpA(Af ,K⊗L
AK

•
n)→ 0

by Lemma 15.61.3. We conclude the middle term is zero as f acts both as an
isomorphism and nilpotently on the outer terms (recall that fni acts by an endo-
morphism of K•n which is homotopic to zero). Thus K is derived complete with
respect to I. �
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Lemma 15.64.15. With notation as above. Let I = (f1, . . . , fr). Let K ∈ D(A).
The following are equivalent

(1) K is derived complete with respect to I, and
(2) the canonical map K → R lim(K ⊗L

A K
•
n) is an isomorphism of D(A).

Proof. If (2) holds, then K is derived complete with respect to I by Lemma
15.64.14. Conversely, assume that K is derived complete with respect to I. Con-
sider the filtrations

K•n ⊃ σ≥−r+1K
•
n ⊃ σ≥−r+2K

•
n ⊃ . . . ⊃ σ≥−1K

•
n ⊃ σ≥0K

•
n = A

by stupid truncations (Homology, Section 12.13). Because the constructionR lim(K⊗
E) is exact in the second variable (Lemma 15.61.18) we see that it suffices to show

R lim
(
K ⊗L

A (σ≥pK
•
n/σ≥p+1K

•
n)
)

= 0

for p < 0. The explicit description of the Koszul complexes above shows that

R lim
(
K ⊗L

A (σ≥pK
•
n/σ≥p+1K

•
n)
)

=
⊕

i1,...,i−p
T (K, fi1 . . . fi−p)

which is zero for p < 0 by assumption on K. �

Lemma 15.64.16. With notation as above. Let I = (f1, . . . , fr) ⊂ A. The functor
which sends K ∈ D(A) to the derived limit K ′ = R lim(K⊗L

AK
•
n) is the left adjoint

to the inclusion functor Dcomp(A)→ D(A) constructed in Lemma 15.64.9.

Proof. The assignment K  K ′ is a functor and K ′ is derived complete with
respect to I by Lemma 15.64.14. By a formal argument (omitted) we see that it
suffices to show K → K ′ is an isomorphism if K is derived complete with respect
to I. This is Lemma 15.64.15. �

Lemma 15.64.17. Let A be a ring and let I ⊂ A be an ideal which can be generated
by r elements. Then derived completion has finite cohomological dimension:

(1) If K → L is a morphism of D(A) which induces an isomorphism on
Hi(K)→ Hi(L) for i ≥ 0 then Hi(K∧)→ Hi(L∧) is an isomorphism for
i ≥ 1.

(2) If K → L is a morphism of D(A) which induces an isomorphism on
Hi(K)→ Hi(L) for i ≤ 0 then Hi(K∧)→ Hi(L∧) is an isomorphism for
i ≤ −r − 1.

Proof. Say I is generated by f1, . . . , fr. By Lemma 15.64.16 we have

Hi(K∧) = Hi(R limK ⊗L
A K

•
n)

and hence this fits into a short exact sequence

0→ R1 limHi−1(K ⊗L
A K

•
n)→ Hi(K∧)→ limHi(K ⊗L

A K
•
n)→ 0

by Lemma 15.61.6. Thus it suffices to prove that Hi(K ⊗L
A K

•
n) only depends on

Hj(K) for j ∈ {i, . . . , i + r}. As K•n is a complex of finite free modules sitting in
degrees −r, . . . , 0 this follows from an straightforward argument which we omit. �

Lemma 15.64.18. With notation as above. If A is Noetherian, then for every
n there exists an m ≥ n such that K•m → K•n factors through the map K•m →
A/(fm1 , . . . , f

m
r ). In other words, the pro-objects {K•n} and {A/(fn1 , . . . , fnr )} of

D(A) are isomorphic.
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Proof. Note that the Koszul complexes have length r. Thus the dual of Derived
Categories, Lemma 13.12.5 implies it suffices to show that for every p < 0 and
n ∈ N there exists an m ≥ n such that Hp(K•m) → Hp(K•n) is zero. Since A is
Noetherian, we see that

Hp(K•n) =
Ker(Kp

n → Kp+1
n )

Im(Kp−1
n → Kp

n)

is a finite A-module. Moreover, the map Kp
m → Kp

n is given by a diagonal matrix
whose entries are in the ideal (fm−n1 , . . . , fm−nr ) if p < 0 (in fact they are in the
|p|th power of that ideal). Note that Hp(K•n) is annihilated by I = (fn1 , . . . , f

n
r ),

see Lemma 15.20.6. Now It ⊂ (fm−n1 , . . . , fm−nr ) for m = n + tr. Thus by Artin-
Rees (Algebra, Lemma 10.49.2) for some m large enough we see that the image of
Kp
m → Kp

n intersected with Ker(Kp
n → Kp+1

n ) is contained in IKer(Kp
n → Kp+1

n ).
For this m we get the zero map. �

Proposition 15.64.19. Let A be a Noetherian ring. Let I ⊂ A be an ideal. The
functor which sends K ∈ D(A) to the derived limit K ′ = R lim(K ⊗L

A A/I
n) is

the left adjoint to the inclusion functor Dcomp(A) → D(A) constructed in Lemma
15.64.9.

Proof. Say (f1, . . . , fr) = I and let K•n be the Koszul complex with respect to
fn1 , . . . , f

n
r . By Lemma 15.64.16 it suffices to prove that

R lim(K ⊗L
A K

•
n) = R lim(K ⊗L

A A/(f
n
1 , . . . , f

n
r )) = R lim(K ⊗L

A A/I
n).

By Lemma 15.64.18 the pro-objects {K•n} and {A/(fn1 , . . . , fnr )} of D(A) are iso-
morphic. It is clear that the pro-objects {A/(fn1 , . . . , fnr )} and {A/In} are isomor-
phic. Thus the map from left to right is an isomorphism by Lemma 15.61.19. �

As an application of the proposition above we identify the derived completion in
the Noetherian case for pseudo-coherent complexes.

Lemma 15.64.20. Let A be a Noetherian ring and I ⊂ A an ideal. Let K be
an object of D(A) such that Hn(A) a finite A-module for all n ∈ Z. Then the
cohomology modules Hn(K∧) of the derived completion are the I-adic completions
of the cohomology modules Hn(K).

Proof. The complex τ≤mK is pseudo-coherent for all m by Lemma 15.50.16. Thus
τ≤mK is represented by a bounded above complex P • of finite free A-modules.
Then τ≤mK⊗L

AA/I
n = P •/InP •. Hence (τ≤mK)∧ = R limP •/InP • (Proposition

15.64.19) and since the R lim is just given by termwise lim (Lemma 15.61.9) and
since I-adic completion is an exact functor on finite A-modules (Algebra, Lemma
10.93.3) we conclude the result holds for τ≤mK. Hence the result holds for K as
derived completion has finite cohomological dimension, see Lemma 15.64.17. �

Lemma 15.64.21. Let I be a finitely generated ideal of a ring A. Let M be a
derived complete A-module. If M/IM = 0, then M = 0.

Proof. Assume that M/IM is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such that N = M/(f1, . . . , fi)M is nonzero. If i does not exist, then M = 0
which is what we want to show. Then N is derived complete as a cokernel of a map
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between derived complete modules, see Lemma 15.64.6. By our choice of i we have
that fi+1 : N → N is surjective. Hence

lim(. . .→ N
fi+1−−−→ N

fi+1−−−→ N)

is nonzero, contradicting the derived completeness of N . �

Lemma 15.64.22. Let I be an ideal of a Noetherian ring A. Let M be a derived
complete A-module. If M/IM is a finite A/I-module, then M = limM/InM and
M is a finite A∧-module.

Proof. Assume M/IM is finite. Pick x1, . . . , xt ∈ M which map to generators
of M/IM . We obtain a map A⊕t → M mapping the ith basis vector to xi. By
Proposition 15.64.19 the derived completion of A is A∧ = limA/In. As M is
derived complete, we see that our map factors through a map q : (A∧)⊕t → M .
The module Coker(q) is zero by Lemma 15.64.21. Thus M is a finite A∧-module.
Since A∧ is Noetherian and complete with respect to IA∧, it follows that M is
I-adically complete (use Algebra, Lemmas 10.93.9, 10.93.16, and 10.49.2). �

Remark 15.64.23. Let A be a ring and f ∈ A. Set I = (f). In this situation we
have the naive derived I-adic completion functor K 7→ K ′ = R lim(K ⊗L

A A/f
nA)

and the functor

K 7→ K∧ = R lim(K ⊗L
A (A

fn−−→ A))

of Lemmas 15.64.16 and 15.64.9. There is a natural transformation of functors
K∧ → K ′. Thus we ask: When is this transformation an isomorphism of functors?
We have seen in Proposition 15.64.19 that this is true if A is Noetherian. More
generally, the same argument shows this is true if the pro-objects {(fn : A → A)}
and {A/fnA} are equal, for example if f -torsion is bounded (Lemma 15.64.13).
Conversely, we see from Lemma 15.61.18 that the condition is exactly that

R lim(K ⊗L
A A[fn])

is zero for all K ∈ D(A). Here the maps of the system (A[fn]) are given by
multiplication by f . Taking K = A and K =

⊕
i∈NA we see from Lemma 15.61.8

this implies (A[fn]) is zero as a pro-object, i.e., fn−1A[fn] = 0 for some n, i.e.,
A[fn−1] = A[fn], i.e., the f -torsion is bounded.

Example 15.64.24. Let A be a ring. Let f ∈ A be a nonzerodivisor. An example
to keep in mind is A = Zp and f = p. Let M be an A-module. Claim: M is derived
complete with respect to f if and only if there exists a short exact sequence

0→ K → L→M → 0

where K,L are f -adically complete modules whose f -torsion is zero. Namely, if
there is a such a short exact sequence, then

M ⊗L
A (A

fn−−→ A) = (K/fnK → L/fnL)

because f is a nonzero divisor on K and L and we conclude that R lim(M⊗L
A(A

fn−−→
A)) is quasi-isomorphic to K → L, i.e., M . This shows that M is derived complete
by Lemma 15.64.15. Conversely, suppose that M is derived complete. Choose a
surjection F → M where F is a free A-module. Since f is a nonzero divisor on F
the derived completion of F is L = limF/fnF . Note that L is f -torsion free: if
(xn) with xn ∈ F represents an element ξ of L and fξ = 0, then xn = xn+1 + fnzn
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and fxn = fnyn for some zn, yn ∈ F . Then fnyn = fxn = fxn+1 + fn+1zn =
fn+1yn+1 + fn+1zn and since f is a nonzero divisor on F we see that yn ∈ fF
which implies that xn ∈ fnF , i.e., ξ = 0. Since L is the derived completion, the
universal property gives a map L → M factoring F → M . Let K = Ker(L → M)
be the kernel. Again K is f -torsion free, hence the derived completion of K is
limK/fnK. On the other hand, both K and L are derived complete, hence K is
too by Lemma 15.64.6. It follows that K = limK/fnK and the claim is proved.

Lemma 15.64.25. Let A→ B be a ring map. Let I ⊂ A be an ideal. The inverse
image of Dcomp(A, I) under the restriction functor D(B)→ D(A) is Dcomp(B, IB).

Proof. Using Lemma 15.64.2 we see that L ∈ D(B) is in Dcomp(B, IB) if and only
if T (L, f) is zero for every local section f ∈ I. Observe that the cohomology of
T (L, f) is computed in the category of abelian groups, so it doesn’t matter whether
we think of f as an element of A or take the image of f in B. The lemma follows
immediately from this and the definition of derived complete objects. �

Lemma 15.64.26. Let A → B be a ring map. Let I ⊂ A be a finitely generated
ideal. If A → B is flat and A/I ∼= B/IB, then the restriction functor D(B) →
D(A) induces an equivalence Dcomp(B, IB)→ Dcomp(A, I).

Proof. Choose generators f1, . . . , fr of I. Denote Č•A → Č•B the quasi-isomorphism

of extended alternating Čech complexes of Lemma 15.63.4. Let K ∈ Dcomp(A, I).
Let I• be a K-injective complex of A-modules representing K. Since ExtnA(Af ,K)
and ExtnA(Bf ,K) are zero for all f ∈ I and n ∈ Z (Lemma 15.64.1) we conclude

that Č•A → A and Č•B → B induce quasi-isomorphisms

I• = HomA(A, I•) −→ Tot(HomA(Č•A, I•))

and

HomA(B, I•) −→ Tot(HomA(Č•B , I•))

Some details omitted. Since Č•A → Č•B is a quasi-isomorphism and I• is K-injective
we conclude that HomA(B, I•) → I• is a quasi-isomorphism. As the complex
HomA(B, I•) is a complex of B-modules we conclude that K is in the image of the
restriction map, i.e., the functor is essentially surjective

In fact, the argument shows that F : Dcomp(A, I)→ Dcomp(B, IB), K 7→ HomA(B, I•)
is a left inverse to restriction. Finally, suppose that L ∈ Dcomp(B, IB). Represent
L by a K-injective complex J• of B-modules. Then J• is also K-injective as a
complex of A-modules (Lemma 15.43.1) hence F (restriction of L) = HomA(B, J•).
There is a map J• → HomA(B, J•) of complexes of B-modules, whose composition
with HomA(B, J•)→ J• is the identity. We conclude that F is also a right inverse
to restriction and the proof is finished. �

15.65. Taking limits of complexes

In this section we discuss what happens when we have a “formal deformation” of
a complex and we take its limit. More precisely, we have a ring A an ideal I and
objects Kn ∈ D(A/In) which fit together in the sense that

Kn = Kn+1 ⊗L
A/In+1 A/In.
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Under some additional hypotheses we can show that K = R limKn reproduces the
system in the sense that Kn = K⊗L

AA/I
n. We do not know if the following lemma

holds for unbounded complexes.

Lemma 15.65.1. Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈
D(A/In) and maps Kn+1 → Kn in D(A/In+1). If

(1) A is Noetherian,
(2) K1 is bounded above, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn,

then K = R limKn is a derived complete object of D−(A) and K ⊗L
A A/I

n → Kn

is an isomorphism for all n.

Proof. Suppose that Hi(K1) = 0 for i > b. Then we can find a complex of free
A/I-modules P •1 representing K1 with P i1 = 0 for i > b. By Lemma 15.57.3 we can,
by induction on n > 1, find complexes P •n of free A/In-modules representing Kn

and maps P •n → P •n−1 representing the maps Kn → Kn−1 inducing isomorphisms
(!) of complexes P •n/I

n−1P •n → P •n−1.

Thus we have arrived at the situation where R limKn is represented by P • =
limP •n , see Lemma 15.61.9 and Remark 15.61.15. The complexes P •n are uni-
formly bounded above complexes of flat A/In-modules and the transition maps
are termwise surjective. Then P • is a bounded above complex of flat A-modules
by Lemma 15.19.4. It follows that K ⊗L

A A/I
t is represented by P • ⊗A A/It. We

have P • ⊗A A/It = limP •n ⊗A A/It termwise by Lemma 15.19.4. The transition
maps P •n+1 ⊗A A/It → P •n ⊗A A/It are isomorphisms for n ≥ t. Hence we have
limP •n ⊗AA/It = R limP •n ⊗AA/It. By assumption and our choice of P •n the com-
plex P •n ⊗A A/It = P •n ⊗A/In A/It represents Kn ⊗L

A/In A/I
t = Kt for all n ≥ t.

We conclude

P • ⊗A A/It = R limP •n ⊗A A/It = R limKt = Kt

In other words, we have K⊗L
AA/I

t = Kt. This proves the lemma as it follows that
K is derived complete by Proposition 15.64.19. �

Lemma 15.65.2. Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈
D(A/In) and maps Kn+1 → Kn in D(A/In+1). Assume

(1) A is I-adically complete,
(2) K1 is pseudo-coherent, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn.

Then K = R limKn is a pseudo-coherent, derived complete object of D(A) and
K ⊗L

A A/I
n → Kn is an isomorphism for all n.

Proof. By assumption we can find a bounded above complex of finite free A/I-
modules P •1 representing K1, see Definition 15.50.1. By Lemma 15.57.3 we can, by
induction on n > 1, find complexes P •n of finite free A/In-modules representing Kn

and maps P •n → P •n−1 representing the maps Kn → Kn−1 inducing isomorphisms
(!) of complexes P •n/I

n−1P •n → P •n−1.

Thus R limKn is represented by P • = limP •n , see Lemma 15.61.9 and Remark
15.61.15. Since A is I-adically complete the modules P i are finite free A-modules.
Thus K is pseudo-coherent. Moreover, P • is a bounded above complex of flat A-
modules. It follows that K⊗L

AA/I
t is represented by P •⊗AA/It. We have P •⊗A

http://stacks.math.columbia.edu/tag/09AU
http://stacks.math.columbia.edu/tag/09AV


15.66. MISCELLANY 1239

A/It = limP •n⊗AA/It termwise. The transition maps P •n+1⊗AA/It → P •n⊗AA/It
are isomorphisms for n ≥ t. Hence we have limP •n ⊗A A/It = R limP •n ⊗A A/It.
By assumption and our choice of P •n the complex P •n ⊗A A/It = P •n ⊗A/In A/It
represents Kn ⊗L

A/In A/I
t = Kt for all n ≥ t. We conclude

P • ⊗A A/It = R limP •n ⊗A A/It = R limKt = Kt

In other words, we have K ⊗L
A A/It = Kt. Finally, Kn is a derived complete

object of D(A) as it is annihilated by In. Since the category of derived objects is
preserved under homotopy limits we see that K is derived complete. This proves
the lemma. �

Lemma 15.65.3. Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈
D(A/In) and maps Kn+1 → Kn in D(A/In+1). Assume

(1) A is I-adically complete,
(2) K1 is a perfect object, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn.

Then K = R limKn is a perfect, derived complete object of D(A) and K⊗L
AA/I

n →
Kn is an isomorphism for all n.

Proof. By Lemma 15.65.2 we see that K is bounded above, pseudo-coherent, and
that K ⊗L

A A/I
n → Kn is an isomorphism for all n. Thus it suffices to show that

Hi(K ⊗L
A κ) = 0 for i � 0 and every surjective map A → κ whose kernel is a

maximal ideal m, see Lemma 15.56.18. Since A is I-adically complete we have
I ⊂ m, see Algebra, Lemma 10.93.11. Hence

K ⊗L
A κ = K ⊗L

A A/I ⊗L
A/I κ = K1 ⊗L

A/I κ

and we get what we want as K1 has finite tor dimension by Lemma 15.56.2. �

15.66. Miscellany

Some results which do not fit anywhere else.

Lemma 15.66.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M ,
N be finite A-modules. Set Mn = M/InM and Nn = N/InN . Then the systems
(HomA(Mn, Nn)) and (IsomA(Mn, Nn)) are Mittag-Leffler.

Proof. Note that HomA(Mn, Nn) = HomA(M,Nn). Choose a presentation

A⊕t
T−→ A⊕s →M → 0

The transpose of T induces a map ϕ : N⊕s → N⊕t such that

HomA(M,Nn) = ϕ−1(InN⊕t)/InN⊕s.

By Artin-Rees there exists an integer c such that

ϕ−1(InN⊕t) = Ker(ϕ) + In−cϕ−1(IcN⊕t)

for all n ≥ c, see Algebra, Lemma 10.49.3. Thus it is clear that the images of
HomA(M,Nn)→ HomA(M,Nm) stabilize for n ≥ m+ c.

The result for isomorphisms follows from the case of homomorphisms applied to
both (Hom(Mn, Nn)) and (Hom(Nn,Mn)) and the following fact: for n > m > 0,
if we have maps α : Mn → Nn and β : Nn → Mn which induce an isomorphisms
Mm → Nm and Nm → Mm, then α and β are isomorphisms. Namely, then α ◦ β
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is surjective by Nakayama’s lemma (Algebra, Lemma 10.19.1) hence α ◦ β is an
isomorphism by Algebra, Lemma 10.15.4. �

Lemma 15.66.2. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N
be finite A-modules. Set Mn = M/InM and Nn = N/InN . If Mn

∼= Nn for all n,
then M∧ ∼= N∧ as A∧-modules.

Proof. By Lemma 15.66.1 the system (IsomA(Mn, Nn)) is Mittag-Leffler. By as-
sumption each of the sets IsomA(Mn, Nn) is nonempty. Hence lim IsomA(Mn, Nn)
is nonempty. Since lim IsomA(Mn, Nn) = Isom(M∧, N∧) (use Algebra, Lemma
10.94.1) we obtain an isomorphism. �

Lemma 15.66.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N
be finite A-modules with N annihilated by I. For each p > 0 there exists an n such
that the map ExtpA(M,N)→ ExtpA(InM,N) is zero.

Proof. The result is clear for p = 0 (with n = 1). Choose a short exact sequence
0 → K → A⊕t → M → 0. For n pick a short exact sequence 0 → L → A⊕s →
InM → 0. It is clear that we can construct a map of short exact sequences

0 // L //

��

A⊕s //

��

InM //

��

0

0 // K // A⊕s // M // 0

such that A⊕s → A⊕t has image in (In)⊕t. By Artin-Rees (Algebra, Lemma
10.49.2) we see that L→ K has image contained in In−cK if n ≥ c. At this point
the exact sequence

HomA(A⊕t, N)→ HomA(K,N)→ Ext1
A(M,N)→ 0

and the corresponding sequence for Ext1
A(InM,N) show that the lemma holds for

p = 1 with n = c+ 1. Moreover, we see that the result for p− 1 and the module K
implies the result for p and the module M by the commutativity of the diagram

Extp−1
A (L,N) ∼=

//

vv

ExtpA(InM,N)

��
Extp−1

A (In−cK,N) // Extp−1
A (K,N) // ExtpA(M,N)

for p > 1. Some details omitted. �

Lemma 15.66.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a
finite A-module. There exists an integer n > 0 such that InM →M factors through
the map I ⊗L

AM →M in D(A).

Proof. Consider the distinguished triangle

I ⊗L
AM →M → A/I ⊗L

AM → I ⊗L
AM [1]

By the axioms of a triangulated category it suffices to prove that InM → A/I ⊗L
A

M is zero in D(A) for some n. Choose generators f1, . . . , fr of I and let K =
K•(A, f1, . . . , fr) be the Koszul complex. and consider the factorization A→ K →
A/I of the quotient map. Then we see that it suffices to show that InM → K⊗AM
is zero in D(A) for some n > 0. Suppose that we have found an n > 0 such that
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InM → K ⊗A M factors through τ≥t(K ⊗A M) in D(A). Then the obstruction
to factoring through τ≥t+1(K ⊗A M) is an element in Extt(InM,Ht(K ⊗A M)).
The finite A-module Ht(K ⊗A M) is annihilated by I. Then by Lemma 15.66.3
we can after increasing n assume this obstruction element is zero. Repeating this
a finite number of times we find n such that InM → K ⊗A M factors through
0 = τ≥r+1(K ⊗AM) in D(A) and we win. �

Lemma 15.66.5. Let R be a Noetherian local ring. Let I ⊂ R be an ideal and let
E be a nonzero module over R/I. If R/I has finite projective dimension and E has
finite projective dimension over R/I, then E has finite projective dimension over
R and

pdR(E) = pdR(R/I) + pdR/I(E)

Proof. We will use that, for a finite module, having finite projective dimension
over R, resp. R/I is the same as being a perfect module, see discussion following
Definition 15.56.1. We see that E has finite projective dimension over R by Lemma
15.56.7. Thus we can apply Auslander-Buchsbaum (Algebra, Proposition 10.107.1)
to see that

pdR(E) + depthR(E) = depth(R), pdR/I(E) + depthR/I(E) = depth(R/I),

and

pdR(R/I) + depthR(R/I) = depth(R)

Combined with the trivial observation that depthR(E) = depthR/I(E) this con-
cludes the proof. �

15.67. Weakly étale ring maps

Most of the results in this section are from the paper [Oli83] by Olivier. See also
the related paper [Fer67].

Definition 15.67.1. A ring A is called absolutely flat if every A-module is flat
over A. A ring map A → B is weakly étale or absolutely flat if both A → B and
B → B ⊗A B are flat.

For example a localization is weakly étale. An étale ring map is weakly étale. Here
is a simple, yet key property.

Lemma 15.67.2. Let A→ B be a ring map such that B⊗AB → B is flat. Let N
be a B-module. If N is flat as an A-module, then N is flat as a B-module.

Proof. Assume N is a flat as an A-module. Then the functor

ModB −→ ModB⊗AB , N ′ 7→ N ⊗A N ′

is exact. As B ⊗A B → B is flat we conclude that the functor

ModB −→ ModB , N ′ 7→ (N ⊗A N ′)⊗B⊗AB B = N ⊗B N ′

is exact, hence N is flat over B. �

Definition 15.67.3. Let A be a ring. Let d ≥ 0 be an integer. We say that A has
weak dimension ≤ d if every A-module has tor dimension ≤ d.

Lemma 15.67.4. Let A→ B be a weakly étale ring map. If A has weak dimension
at most d, then so does B.
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Proof. Let N be a B-module. If d = 0, then N is flat as an A-module, hence flat
as a B-module by Lemma 15.67.2. Assume d > 0. Choose a resolution F• → N
by free B-modules. Our assumption implies that K = Im(Fd → Fd−1) is A-flat,
see Lemma 15.51.2. Hence it is B-flat by Lemma 15.67.2. Thus 0→ K → Fd−1 →
. . . → F0 → N → 0 is a flat resolution of length d and we see that N has tor
dimension at most d. �

Lemma 15.67.5. Let A be a ring. The following are equivalent

(1) A has weak dimension ≤ 0,
(2) A is absolutely flat, and
(3) A is reduced and every prime is maximal.

In this case every local ring of A is a field.

Proof. The equivalence of (1) and (2) is immediate. Assume A is absolutely flat.
This implies every ideal of A is pure, see Algebra, Definition 10.104.1. Hence every
finitely generated ideal is generated by an idempotent by Algebra, Lemma 10.104.5.
If f ∈ A, then (f) = (e) for some idempotent e ∈ A and D(f) = D(e) is open and
closed (Algebra, Lemma 10.20.1). This already implies every ideal of A is maximal
for example by Algebra, Lemma 10.25.5. Moreover, if f is nilpotent, then e = 0
hence f = 0. Thus A is reduced.

Assume A is reduced and every prime of A is maximal. Let M be an A-module.
Our goal is to show that M is flat. We may write M as a filtered colimit of finite
A-modules, hence we may assume M is finite (Algebra, Lemma 10.38.2). There is
a finite filtration of M by modules of the form A/I (Algebra, Lemma 10.5.4), hence
we may assume that M = A/I (Algebra, Lemma 10.38.12). Thus it suffices to show
every ideal of A is pure. Since A every local ring of A is a field (by Algebra, Lemma
10.24.1 and the fact that every prime of A is minimal), we see that every ideal I ⊂ A
is radical. Note that every closed subset of Spec(A) is closed under specialization.
Thus every (radical) ideal of A is pure by Algebra, Lemma 10.104.4. �

Lemma 15.67.6. A product of fields is an absolutely flat ring.

Proof. Let Ki be a family of fields. If f = (fi) ∈
∏
Ki, then the ideal generated

by f is the same as the ideal generated by the idempotent e = (ei) with ei = 0, 1
according to whether fi is 0, 1. Thus D(f) = D(e) is open and closed and we
conclude by Lemma 15.67.5 and Algebra, Lemma 10.25.5. �

Lemma 15.67.7. Let A→ B and A→ A′ be ring maps. Let B′ = B⊗A A′ be the
base change of B.

(1) If B ⊗A B → B is flat, then B′ ⊗A′ B′ → B′ is flat.
(2) If A→ B is weakly étale, then A′ → B′ is weakly étale.

Proof. Assume B ⊗A B → B is flat. The ring map B′ ⊗A′ B′ → B′ is the base
change of B ⊗A B → B by A → A′. Hence it is flat by Algebra, Lemma 10.38.6.
This proves (1). Part (2) follows from (1) and the fact (just used) that the base
change of a flat ring map is flat. �

Lemma 15.67.8. Let A→ B be a ring map such that B ⊗A B → B is flat.

(1) If A is an absolutely flat ring, then so is B.
(2) If A is reduced and A→ B is weakly étale, then B is reduced.
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Proof. Part (1) follows immediately from Lemma 15.67.2 and the definitions. If
A is reduced, then there exists an injection A → A′ =

∏
p⊂A minimalAp of A into

an absolutely flat ring (Algebra, Lemma 10.24.2 and Lemma 15.67.6). If A→ B is
flat, then the induced map B → B′ = B ⊗A A′ is injective too. By Lemma 15.67.7
the ring map A′ → B′ is weakly étale. By part (1) we see that B′ is absolutely flat.
By Lemma 15.67.5 the ring B′ is reduced. Hence B is reduced. �

Lemma 15.67.9. Let A→ B and B → C be ring maps.

(1) If B ⊗A B → B and C ⊗B C → C are flat, then C ⊗A C → C is flat.
(2) If A→ B and B → C are weakly étale, then A→ C is weakly étale.

Proof. Part (1) follows from the factorization

C ⊗A C −→ C ⊗B C −→ C

of the multiplication map, the fact that

C ⊗B C = (C ⊗A C)⊗B⊗AB B,
the fact that a base change of a flat map is flat, and the fact that the composition
of flat ring maps is flat. See Algebra, Lemmas 10.38.6 and 10.38.3. Part (2) follows
from (1) and the fact (just used) that the composition of flat ring maps is flat. �

Lemma 15.67.10. Let A→ B → C be ring maps.

(1) If B → C is faithfully flat and C ⊗A C → C is flat, then B ⊗A B → B is
flat.

(2) If B → C is faithfully flat and A → C is weakly étale, then A → B is
weakly étale.

Proof. Assume B → C is faithfully flat and C ⊗A C → C is flat. Consider the
commutative diagram

C ⊗A C // C

B ⊗A B //

OO

B

OO

The vertical arrows are flat, the top horizontal arrow is flat. Hence C is flat as a
B ⊗A B-module. The map B → C is faithfully flat and C = B ⊗B C. Hence B
is flat as a B ⊗A B-module by Algebra, Lemma 10.38.8. This proves (1). Part (2)
follows from (1) and the fact that A → B is flat if A → C is flat and B → C is
faithfully flat (Algebra, Lemma 10.38.8). �

Lemma 15.67.11. Let A be a ring. Let B → C be an A-algebra map of weakly
étale A-algebras. Then B → C is weakly étale.

Proof. Write B → C as the composition B → B ⊗A C → C. The first map is
flat as the base change of the flat ring map A→ C. The second is the base change
of the flat ring map B ⊗A B → B by the ring map B ⊗A B → B ⊗A C, hence
flat. Thus B → C is flat. The ring map C ⊗A C → C ⊗B C is surjective, hence
an epimorphism. Thus Lemma 15.67.2 implies, that since C is flat over C ⊗A C it
follows that C is flat over C ⊗B C. �

Lemma 15.67.12. Let A→ B be a ring map such that B⊗AB → B is flat. Then
ΩB/A = 0, i.e., B is formally unramified over A.
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Proof. Let I ⊂ B ⊗A B be the kernel of the flat surjective map B ⊗A B → B.
Then I is a pure ideal (Algebra, Definition 10.104.1), so I2 = I (Algebra, Lemma
10.104.2). Since ΩB/A = I/I2 (Algebra, Lemma 10.127.13) we obtain the vanishing.
This means B is formally unramified over A by Algebra, Lemma 10.141.2. �

Lemma 15.67.13. Let A → B be a ring map. Then A → B is weakly étale in
each of the following cases

(1) B = S−1A is a localization of A,
(2) A→ B is étale,
(3) B is a filtered colimit of weakly étale A-algebras.

Proof. An étale ring map is flat and the map B ⊗A B → B is also étale as a map
between étale A-algebras (Algebra, Lemma 10.138.9). This proves (2).

Let Bi be a directed system of weakly étale A-algebras. Then B = colimBi is flat
over A by Algebra, Lemma 10.38.2. Note that the transition maps Bi → Bi′ are flat
by Lemma 15.67.11. Hence B is flat over Bi for each i, and we see that B is flat over
Bi⊗ABi by Algebra, Lemma 10.38.3. Thus B is flat over B⊗AB = colimBi⊗ABi
by Algebra, Lemma 10.38.5.

Part (1) can be proved directly, but also follows by combining (2) and (3). �

Lemma 15.67.14. Let K ⊂ L be an extension of fields. If L ⊗K L → L is flat,
then L is an algebraic separable extension of K.

Proof. By Lemma 15.67.10 we see that any subfield K ⊂ L′ ⊂ L the map L′ ⊗K
L′ → L′ is flat. Thus we may assume L is a finitely generated field extension of
K. In this case the fact that L/K is formally unramified (Lemma 15.67.12) implies
that L/K is finite separable, see Algebra, Lemma 10.147.1. �

Lemma 15.67.15. Let K be a field. Let K → B be a ring map such that B⊗KB →
B is flat. Then B is a filtered colimit of étale K-algebras.

Proof. A field is absolutely flat ring, hence B is a absolutely flat ring by Lemma
15.67.8. Hence B is reduced and every local ring is a field, see Lemma 15.67.5.

Let q ⊂ B be a prime. The ring map B → Bq is weakly étale, hence Bq is weakly
étale over K (Lemma 15.67.9). Thus Bp is a separable algebraic extension of K by
Lemma 15.67.14.

Let K ⊂ A ⊂ B be a finitely generated K-sub algebra. Then every minimal prime
p ⊂ A is the image of a prime q of B, see Algebra, Lemma 10.29.5. Thus κ(p) as
a subfield of Bq = κ(q) is separable algebraic over K. Hence every generic point
of Spec(A) is closed (Algebra, Lemma 10.34.9). Thus dim(A) = 0. Then A is the
product of its local rings, e.g., by Algebra, Proposition 10.59.6. Moreover, since A
is reduced, all local rings are equal to their residue fields wich are finite separable
over K. This means that A is étale over K by Algebra, Lemma 10.138.4 and finishes
the proof. �

Lemma 15.67.16. Let A → B be a ring map. If A → B is weakly étale, then
A→ B induces separable algebraic residue field extensions.

Proof. Let p be a prime of A. Then κ(p)→ B ⊗A κ(p) is weakly étale by Lemma
15.67.7. Hence B ⊗A κ(p) is a filtered colimit of étale κ(p)-algebras by Lemma
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15.67.15. Hence for q ⊂ B lying over p the extension κ(p) ⊂ κ(q) is a filtered
colimit of finite separable extensions by Algebra, Lemma 10.138.4. �

Lemma 15.67.17. Let A be a ring. The following are equivalent

(1) A has weak dimension ≤ 1,
(2) every ideal of A is flat,
(3) every finitely generated ideal of A is flat,
(4) every submodule of a flat A-module is flat, and
(5) every local ring of A is a valuation ring.

Proof. If A has weak dimension ≤ 1, then the resolution 0→ I → A→ A/I → 0
shows that every ideal I is is flat by Lemma 15.51.2. Hence (1) ⇒ (2).

Assume (4). Let M be an A-module. Choose a surjection F → M where F is a
free A-module. Then Ker(F → M) is flat by assumption, and we see that M has
tor dimension ≤ 1 by Lemma 15.51.5. Hence (4) ⇒ (1).

Every ideal is the union of the finitely generated ideals contained in it. Hence (3)
implies (2) by Algebra, Lemma 10.38.2. Thus (3) ⇔ (2).

Assume (2). Suppose that N ⊂M with M a flat A-module. We will prove that N
is flat. We can write M = colimMi with each Mi finite free, see Algebra, Theorem
10.78.4. Setting Ni ⊂ Mi the inverse image of N we see that N = colimNi. By
Algebra, Lemma 10.38.2. it suffices to prove Ni is flat and we reduce to the case
M = R⊕n. In this case the module N has a finite filtration by the submodules
R⊕j ∩N whose subquotients are ideals. By (2) these ideals are flat and hence N is
flat by Algebra, Lemma 10.38.12. Thus (2) ⇒ (4).

Assume A satisfies (1) and let p ⊂ A be a prime ideal. By Lemmas 15.67.13 and
15.67.4 we see that Ap satisfies (1). We will show A is a valuation ring if A is
a local ring satisfying (3). Let f ∈ m be a nonzero element. Then (f) is a flat
nonzero module generated by one element. Hence it is a free A-module by Algebra,
Lemma 10.75.4. It follows that f is a nonzerodivisor and A is a domain. If I ⊂ A
is a finitely generated ideal, then we similarly see that I is a finite free A-module,
hence (by considering the rank) free of rank 1 and I is a principal ideal. Thus A is
a valuation ring by Algebra, Lemma 10.48.15. Thus (1) ⇒ (5).

Assume (5). Let I ⊂ A be a finitely generated ideal. Then Ip ⊂ Ap is a finitely
generated ideal in a valuation ring, hence principal (Algebra, Lemma 10.48.15),
hence flat. Thus I is flat by Algebra, Lemma 10.38.19. Thus (5) ⇒ (3). This
finishes the proof of the lemma. �

Lemma 15.67.18. Let J be a set. For each j ∈ J let Aj be a valuation ring with
fraction field Kj. Set A =

∏
Aj and K =

∏
Kj. Then A has weak dimension at

most 1 and A→ K is a localization.

Proof. Let I ⊂ A be a finitely generated ideal. By Lemma 15.67.17 it suffices
to show that I is a flat A-module. Let Ij ⊂ Aj be the image of I. Observe that
Ij = I ⊗A Aj , hence I →

∏
Ij is surjective by Algebra, Proposition 10.86.2. Thus

I =
∏
Ij . Since Aj is a valuation ring, the ideal Ij is generated by a single element

(Algebra, Lemma 10.48.15). Say Ij = (fj). Then I is generated by the element
f = (fj). Let e ∈ A be the idempotent which has a 0 or 1 in Aj depending on
whether fj is 0 or 1. Then f = ge for some nonzero divisor g ∈ A: take g = (gj)
with gj = 1 if fj = 0 and gj = fj else. Thus I ∼= (e) as a module. We conclude I is
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flat as (e) is a direct summand of A. The final statement is true because K = S−1A
where S =

∏
(Aj \ {0}). �

Lemma 15.67.19. Let A be a normal domain with fraction field K. There exists
a cartesian diagram

A

��

// K

��
V // L

of rings where V has weak dimension at most 1 and V → L is a flat, injective,
epimorphism of rings.

Proof. For every x ∈ K, x 6∈ A pick Vx ⊂ K as in Algebra, Lemma 10.48.11. Set
V =

∏
x∈K\A Vx and L =

∏
x∈K\AK. The ring V has weak dimension at most 1

by Lemma 15.67.18 which also shows that V → K is a localization. A localization
is flat and an epimorphism, see Algebra, Lemmas 10.38.19 and 10.103.5. �

Lemma 15.67.20. Let A be a ring of weak dimension at most 1. If A → B is a
flat, injective, epimorphism of rings, then A is integrally closed in B.

Proof. Let x ∈ B be integral over A. Let A′ = A[x] ⊂ B. Then A′ is a finite ring
extension of A by Algebra, Lemma 10.35.5. To show A = A′ it suffices to show
A→ A′ is an epimorphism by Algebra, Lemma 10.103.6. Note that A′ is flat over
A by assumption on A and the fact that B is flat over A (Lemma 15.67.17). Hence
the composition

A′ ⊗A A′ → B ⊗A A′ → B ⊗A B → B

is injective, i.e., A′ ⊗A A′ ∼= A′ and the lemma is proved. �

Lemma 15.67.21. Let A be a normal domain with fraction field K. Let A → B
be weakly étale. Then B is integrally closed in B ⊗A K.

Proof. Choose a diagram as in Lemma 15.67.19. As A→ B is flat, the base change
gives a cartesian diagram

B

��

// B ⊗A K

��
B ⊗A V // B ⊗A L

of rings. Note that V → B ⊗A V is weakly étale (Lemma 15.67.7), hence B ⊗A V
has weak dimension at most 1 by Lemma 15.67.4. Note that B⊗AV → B⊗AL is a
flat, injective, epimorphism of rings as a flat base change of such (Algebra, Lemmas
10.38.6 and 10.103.3). By Lemma 15.67.20 we see that B ⊗A V is integrally closed
in B⊗AL. It follows from the cartesian property of the diagram that B is integrally
closed in B ⊗A K. �

Lemma 15.67.22. Let A→ B be a ring homomorphism. Assume

(1) A is a henselian local ring,
(2) A→ B is integral,
(3) B is a domain.
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Then B is a henselian local ring and A → B is a local homomorphism. If A
is strictly henselian, then B is a strictly henselian local ring and the extension
κ(mA) ⊂ κ(mB) of residue fields is purely inseparable.

Proof. Write B as a filtered colimit B = colimBi of finite A-sub algebras. If we
prove the results for each Bi, then the result follows for B. See Algebra, Lemma
10.145.5. If A→ B is finite, then B is a product of local henselian rings by Algebra,
Lemma 10.145.4. Since B is a domain we see that B is a local ring. The maximal
ideal of B lies over the maximal ideal of A by going up for A → B (Algebra,
Lemma 10.35.20). If A is strictly henselian, then the field extension κ(mA) ⊂ κ(mB)
being algebraic, has to be purely inseparable. Of course, then κ(mB) is separably
algebraically closed and B is strictly henselian. �

Lemma 15.67.23. Let A→ B and A→ C be local homomorphisms of local rings.
If A → C is integral and κ(mA) ⊂ κ(mC) is purely inseparable, then D = B ⊗A C
is a local ring and B → D and C → D are local.

Proof. Any maximal ideal of D lies over the maximal ideal of B by going up
for the integral ring map B → D (Algebra, Lemma 10.35.20). Now D/mBD =
κ(mB)⊗AC = κ(mB)⊗κ(mA)C/mAC. The spectrum of C/mAC consists of a single
point, namely mC . Thus the spectrum of D/mBD is the same as the spectrum of
κ(mB)⊗κ(mA)κ(mC) which is a single point by our assumption that κ(mA) ⊂ κ(mC)
is purely inseparable. This proves that D is local and that the ring maps B → D
and C → D are local. �

Theorem 15.67.24 (Olivier). Let A→ B be a local homomorphism of local rings.
If A is strictly henselian and A→ B is weakly étale, then A = B.

Proof. We will show that for all p ⊂ A there is a unique prime q ⊂ B lying over
p and κ(p) = κ(q). This implies that B ⊗A B → B is bijective on spectra as well
as surjective and flat. Hence it is an isomorphism for example by the description
of pure ideals in Algebra, Lemma 10.104.4. Hence A → B is a faithfully flat
epimorphism of rings. We get A = B by Algebra, Lemma 10.103.7.

Note that the fibre ring B⊗Aκ(p) is a colimit of étale extensions of κ(p) by Lemmas
15.67.7 and 15.67.15. Hence, if there exists more than one prime lying over p or
if κ(p) 6= κ(q) for some q, then B ⊗A L has a nontrivial idempotent for some
(separable) algebraic field extension L ⊃ κ(p).

Let κ(p) ⊂ L be an algebraic field extension. Let A′ ⊂ L be the integral closure
of A/p in L. By Lemma 15.67.22 we see that A′ is a strictly henselian local ring
whose residue field is a purely inseparable extension of the residue field of A. Thus
B⊗AA′ is a local ring by Lemma 15.67.23. On the other hand, B⊗AA′ is integrally
closed in B ⊗A L by Lemma 15.67.21. Since B ⊗A A′ is local, it follows that the
ring B ⊗A L does not have nontrivial idempotents which is what we wanted to
prove. �

15.68. Ramification theory

In this section and the next we use the following definitions.

Definition 15.68.1. We say that A → B or A ⊂ B is an extension of discrete
valuation rings if A and B are discrete valuation rings and A→ B is injective and
local. In particular, if πA and πB are uniformizers of A and B, then πA = uπeB for
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some e ≥ 1 and unit u of B. The integer e does not depend on the choice of the
uniformizers as it is also the unique integer ≥ 1 such that

mAB = meB

The integer e is called the ramification index of B over A. We say that B is weakly
unramified over A if e = 1. If the extension of residue fields κA = A/mA ⊂ κB =
B/mB is finite, then we set f = [κB : κA] and we call it the residual degree or
residue degree of the extension A ⊂ B.

Note that we do not require the extension of fraction fields to be finite.

Lemma 15.68.2. Let A ⊂ B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If the extension K ⊂ L is finite, then the residue field
extension is finite and we have ef ≤ [L : K].

Proof. Finiteness of the residue field extension is Algebra, Lemma 10.115.9. The
inequality follows from Algebra, Lemmas 10.115.8 and 10.50.12. �

Lemma 15.68.3. Let A ⊂ B be an extension of discrete valuation rings inducing
the field extension K ⊂ L. If the characteristic of K is p > 0 and L is purely
inseparable over K, then the ramification index e is a power of p.

Proof. Write πA = uπeB for some u ∈ B∗. On the other hand, we have πqB ∈ K for
some p-power q. Write πqB = vπkA for some v ∈ A∗ and k ∈ Z. Then πqA = uqπqeB =
uqveπkeA . Taking valuations in B we conclude that ke = q. �

Lemma 15.68.4. Let A ⊂ B be an extension of discrete valuation rings. The
following are equivalent

(1) A→ B is formally smooth in the mB-adic topology, and
(2) A→ B is weakly unramified and κA ⊂ κB is a separable field extension.

Proof. This follows from Proposition 15.29.4 and Algebra, Proposition 10.147.9.
�

Remark 15.68.5. Let A be a discrete valution ring with fraction field K. Let
K ⊂ L be a finite separable field extension. Let B ⊂ L be the integral closure of A
in L. Picture:

B // L

A

OO

// K

OO

By Algebra, Lemma 10.150.8 the ring extension A ⊂ B is finite, hence B is Noether-
ian. By Algebra, Lemma 10.108.4 the dimension of B is 1, hence B is a Dedekind
domain, see Algebra, Lemma 10.116.13. Let m1, . . . ,mn be the maximal ideals of
B (i.e., the primes lying over mA). We obtain extensions of discrete valuation rings

A ⊂ Bmi

and hence ramification indices ei and residue degrees fi. We have

[L : K] =
∑

eifi

by Algebra, Lemma 10.120.1. We observe that n = 1 if A is henselian (by Algebra,
Lemma 10.145.4), e.g. if A is complete.
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Definition 15.68.6. Let A be a discrete valuation ring with fraction field K. Let
L ⊃ K be a finite separable extension. With B and mi, i = 1, . . . , n as in Remark
15.68.5 we say the extension L/K is

(1) unramified if ei = 1 and the extension κA ⊂ κ(mi) is separable for all i,
(2) totally ramified if n = 1 and the residue field extension κA ⊂ κ(m1) is

trivial,
(3) tamely ramified if either the characteristic of κA is 0 or the characteristic

of κA is p > 0 and the field extensions κA ⊂ κ(mi) are separable and the
ramification indices ei are prime to p.

Lemma 15.68.7. Let A be a discrete valuation ring with fraction field K. Let
K ⊂ L be a Galois extension with Galois group G. Then G acts on the ring B of
Remark 15.68.5 and acts transitively on the set of maximal ideals of B.

Proof. If there are two or more orbits of the action, then we can find an element
b ∈ B which vanishes at all the maximal ideals of one orbit and has residue 1 at all
the maximal ideals in another orbit. Then b′ =

∏
σ∈G σ(b) is a G-invariant element

of B ⊂ L which is in some maximal ideals of B but not in all maximal ideals of B.
Since K = LG we conclude that b′ ∈ K. Since b′ maps to an element of B we see
that b′ ∈ A. Then on the one hand it must be true that b′ ∈ mA as b′ is in some
maximal ideal of B and on the other hand it must be true that b′ 6∈ mA as b′ is not
in all maximal ideals of B. This contradiction finishes the proof of the lemma. �

Lemma 15.68.8. Let A be a discrete valuation ring with fraction field K. Let
K ⊂ L be a Galois extension. Then there are e ≥ 1 and f ≥ 1 such that ei = e and
fi = f for all i (notation as in Remark 15.68.5). In particular [L : K] = nef .

Proof. Immediate consequence of Lemma 15.68.7 and the definitions. �

Definition 15.68.9. Let A be a discrete valuation ring with fraction field K. Let
K ⊂ L be a Galois extension with Galois group G. Let B be the integral closure
of A in L.

(1) For a maximal ideal m ⊂ B the decomposition group associated to m is
the subgroup D = {σ ∈ G | σ(m) = m} of G.

(2) The kernel I of the map D → Aut(κ(m)/κA) is called the inertia group.

Note that the field κ(m) may be inseparable over κA. In particular the field exten-
sion κA ⊂ κ(m) need not be Galois. If κA is perfect, then it is.

Lemma 15.68.10. Let A be a discrete valuation ring with fraction field K and
residue field κ. Let K ⊂ L be a Galois extension with Galois group G. Let B be
the integral closure of A in L.

(1) the field extension κ ⊂ κ(m) is normal, and
(2) D → Aut(κ(m)/κ) is surjective.

If for some (equivalently all) maximal ideal(s) m ⊂ B the field extension κ ⊂ κ(m)
is separable, then

(3) κ ⊂ κ(m) is Galois, and
(4) D → Gal(κ(m)/κ) is surjective.

Here D ⊂ G is the decomposition group of m.
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Proof. Pick an element θ ∈ κ(m). Pick b ∈ B mapping to θ and with zero residue
modulo all other maximal ideals of B. Let P (t) ∈ K[t] be the minimal polynomial
of b over K. By Algebra, Lemma 10.37.6 the polynomial P has coefficients in A.
Thus θ is a root of the image P ∈ κ[t]. Thus the minimal polynomial of θ divides
P . Since P splits completely as P (t) =

∏
(t − bi) over B where the bi are the

conjugates of b in L, we conclude that the minimal polynomial of θ over κ splits
completely in κ(m). This shows κ(m) is a normal extension of κ.

Since κ(m)/κA is normal we may assume κ(m) = κ1 ⊗κ κ2 with κ ⊂ κ1 purely
inseparable and κ ⊂ κ2 Galois, see Fields, Lemma 9.24.3. Pick θ ∈ κ2 which
generates κ2 over κ. If θ′ ∈ κ2 is a conjugate of θ, then the above shows there
exists a σ ∈ G such that σ(b) maps to θ′. By our choice of b (vanishing at other
maximal ideals) this implies σ ∈ D and that the image of σ in Aut(κ(m)/κA) maps
θ to θ′. Hence the surjectivity.

The ”equivalently all” part of the lemma follows from Lemma 15.68.7. Assume
κA ⊂ κ(m) is separable. Parts (3) and (4) follow immediately from (1) and (2). �

Lemma 15.68.11. Let A be a discrete valuation ring with fraction field K. Let
K ⊂ L be a Galois extension with Galois group G. Let B be the integral closure of
A in L. Let m ⊂ B be a maximal ideal. The inertia group I of m has the following
structure

(1) if the characteristic of κA is 0, then I is finite cyclic of order e,
(2) if the characteristic of κA is p > 0, then there is a short exact sequence

of groups 1 → P → I → It → 0 where P is a p-group and It is cyclic
of order prime to p. In fact, the order of It is the prime to p part of the
integer e.

Here e is the integer of Lemma 15.68.8.

Proof. Recall that |G| = [L : K] = nef , see Lemma 15.68.8. Since G acts transi-
tively on the set {m1, . . . ,mn} of maximal ideals of B (Lemma 15.68.7) and since
D is the stabilizer of an element we see that |D| = ef . By Lemma 15.68.10 we have

ef = |D| = |I| · |Aut(κ(m)/κA)|

As κ(m) is normal over κA the order of Aut(κ(m)/κA) differs from f by a power of
p (small detail omitted). Hence the prime to p part of |I| is equal to the prime to
p part of e.

Set C = Bm. Then I acts on C over A and trivially on the residue field of C. Let
πA ∈ A and πC ∈ C be uniformizers. Write πA = uπeC for some unit u in B. For
σ ∈ I write σ(πC) = uσπC . Then we have

πA = σ(πA) = σ(u)(uσπC)e = σ(u)ueσπ
e
C =

σ(u)

u
ueσπA

Since σ(u) ≡ u mod mC we see that uσ maps to an eth root of unity in κC . We
obtain a homomorphism

χ : I −→ µe(κC)

Since κC has characteristic p, the group µe(κC) is cyclic of order at most the prime
to p part of e (some facts about roots of unity in fields omitted). Thus it suffices
to prove that the kernel of χ is a p-group. Let σ be a nontrivial element of the
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kernel. Then σ(miC) ⊂ mi+1
C for all i. Let m be the order of σ. Pick c ∈ C such

that σ(c) 6= c. Then σ(c)− c ∈ miC , σ(c)− c 6∈ mi+1
C for some i and we have

0 = σm(c)− c
= σm(c)− σm−1(c) + . . .+ σ(c)− c

=
∑

j=0,...,m−1
σj(σ(c)− c)

≡ m(σ(c)− c) mod mi+1
C

It follows that p|m (or m = 0 if p = 1). Thus every element of the kernel of χ has
order divisible by p, i.e., Ker(χ) is a p-group. �

Lemma 15.68.12. Let ϕ : R→ S be a ring map such that

(1) the kernel of ϕ is locally nilpotent, and
(2) S is generated as an R-algebra by elements s ∈ S for which there exists

a polynomial P (T ) ∈ R[T ] whose image in S[T ] is (T − s)n for some
n = n(s) > 0.

Then Spec(S)→ Spec(R) is a homeomorphism and R → S induces purely insepa-
rable extensions of residue fields. Moreover, conditions (1) and (2) remain true on
arbitrary base change.

Proof. We may replace R by R/Ker(ϕ), see Algebra, Lemma 10.45.2. Assumption
(2) implies S is generated over R by elements which are integral over R. Hence
R ⊂ S is integral (Algebra, Lemma 10.35.7). In particular Spec(S) → Spec(R)
is surjective and closed (Algebra, Lemmas 10.35.15, 10.40.6, and 10.35.20). Let
p ⊂ R be a prime and let k ⊃ κ(p) be the perfection. Set A = S ⊗R k. By the
surjectivity the ring A′ = S ⊗R κ(p) is not zero (Algebra, Lemma 10.16.9) whence
A = A′ ⊗κ(p) k is nonzero. Assumption (2) implies that A is generated over k by

elements a ∈ A for which there exist a P (T ) ∈ k[T ] with P (T ) 7→ (T − a)n(a) in
A[T ]. Since A 6= 0 and k is perfect, this implies that P = (T − λa)n(a) for some
λa ∈ k (some details omitted). Hence k = Ared because a and λa map to the same
element of Ared for all of these generaters. It follows that Spec(A) is a singleton.
Hence Spec(S) → Spec(R) is bijective and all residue field extensions are purely
inseparable. Since a bijective, continuous, closed map of topological spaces is a
homeomorphism the proof is finished. �

Lemma 15.68.13. Let R be a ring. Let G be a finite group acting on R. Let
I ⊂ R be an ideal such that σ(I) ⊂ I for all σ ∈ G. The ring maps

RG/IG −→ RG/(RG ∩ I) −→ (R/I)G

induce homeomorphisms on spectra and purely inseparable extensions of residue
fields.

Proof. Let n be the order of G. Let x ∈ RG ∩ I. Then xn =
∏
σ∈G σ(x) is in IG.

Hence the kernel of the first map is locally nilpotent. Since the first map is also
surjective, we see that the result of the lemma is true for the first map.

The second map is injective. Let x ∈ R be an element which maps to an element
of (R/I)G. Consider the polynomial P (T ) =

∏
(T − σ(x)) ∈ RG[T ]. The image of

P in (R/I)G[T ] is (T −x)n. Thus Lemma 15.68.12 applies to both the second map
and the composition. �
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Lemma 15.68.14. Let A be a discrete valuation ring with fraction field K. Let L
be a Galois extension of K. Let m ⊂ B be a maximal ideal of the integral closure of
A in L. Let I ⊂ G be the corresponding inertia subgroup. Then BI is the integral
closure of A in LI and A→ (BI)BI∩m is étale.

Proof. It follows from the definitions that BI is the integral closure of A in LI .

We first prove the final statement in case B is a discrete valuation ring, i.e., when
G is the decomposition group of m. As I acts trivially on κB it follows from Lemma
15.68.13 that the extension κBI = BI/(BI ∩m) ⊂ κB is purely inseparable. Since
G/I acts faithfully on κB , we conclude that G/I acts faithfully on κBI over κA.
By Galois theory we see that [κBI : κA] ≥ |G/I|. On the other hand, we have
[LI : K] = |G/I| by Galois theory. By Lemma 15.68.2 we see that A ⊂ BI is
weakly unramified and that [κBI : κA] = |G/I|. Thus κBI is Galois over κA (with
group G/I) and we conclude that LI is unramified over K as desired.

In general we reduce to the case discussed in the previous paragraph by splitting B
using Algebra, Lemma 10.138.23. (An alternative is to use completion to do this.)
We omit the details. �

Lemma 15.68.15 (Krasner’s lemma). Let A be a complete local domain of dimen-
sion 1. Let P (t) ∈ A[t] be a polynomial with coefficients in A. Let α ∈ A be a root
of P but not a root of the derivative P ′ = dP/dt. For every c ≥ 0 there exists an
integer n such that for any Q ∈ A[t] whose coefficients are in mnA the polynomial
P +Q has a root β ∈ A with β − α ∈ mcA.

Proof. Choose a nonzero π ∈ m. Since the dimension of A is 1 we have m =
√

(π).
By assumption we may write P ′(α)−1 = π−ma for some m ≥ 0 and a ∈ A. We
may and do assume that c ≥ m + 1. Pick n such that mnA ⊂ (πc+m). Pick any Q
as in the statement. For later use we observe that we can write

P (x+ y) = P (x) + P ′(x)y +R(x, y)y2

for some R(x, y) ∈ A[x, y]. We will show by induction that we can find a sequence
αm, αm+1, αm+2, . . . such that

(1) αk ≡ α mod πc,
(2) αk+1 − αk ∈ (πk), and
(3) (P +Q)(αk) ∈ (πm+k).

Setting β = limαk will finish the proof.

Base case. Since the coefficients of Q are in (πc+m) we have (P +Q)(α) ∈ (πc+m).
Hence αm = α works. This choice guarantees that αk ≡ α mod πc for all k ≥ m.

Induction step. Given αk we write αk+1 = αk + δ for some δ ∈ (πk). Then we have

(P +Q)(αk+1) = P (αk + δ) +Q(αk + δ)

Because the coefficients of Q are in (πc+m) we see that Q(αk + δ) ≡ Q(αk) mod
πc+m+k. On the other hand we have

P (αk + δ) = P (αk) + P ′(αk)δ +R(αk, δ)δ
2

Note that P ′(αk) ≡ P ′(α) mod (πm+1) as αk ≡ α mod πm+1. Hence we obtain

P (αk + δ) ≡ P (αk) + P ′(α)δ mod πk+m+1
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Recombining the two terms we see that

(P +Q)(αk+1) ≡ (P +Q)(αk) + P ′(α)δ mod πk+m+1

Thus a solution is to take δ = −P ′(α)−1(P +Q)(αk) = −π−ma(P +Q)(αk) which
is contained in (πk) by induction assumption. �

Lemma 15.68.16. Let A be a discrete valuation ring with field of fractions K.
Let A∧ be the completion of A with fraction field K∧. If K∧ ⊂ M is a finite
separable extension, then there exists a finite separable extension K ⊂ L such that
M = K∧ ⊗K L.

Proof. Note that A∧ is a discrete valuation ring too (by Lemmas 15.32.4 and
15.32.1). In particular A∧ is a domain. The proof will work more generally for
Noetherian local rings A such that A∧ is a local domain of dimension 1.

Let θ ∈ M be an element that generates M over K∧. (Theorem of the primitive
element.) Let P (t) ∈ K∧[t] be the minimal polynomial of θ over K∧. Let π ∈ mA
be a nonzero element. After replacing θ by πnθ we may assume that the coefficients
of P (t) are in A∧. Let B = A∧[θ] = A∧[t]/(P (t)). Note that B is a complete local
domain of dimension 1 because it is finite over A and contained in M . Since M is
separable over K the element θ is not a root of the derivative of P . For any integer
n we can find a monic polynomial P1 ∈ A[t] such that P − P1 has coefficients in
πnA∧[t]. By Krasner’s lemma (Lemma 15.68.15) we see that P1 has a root β in B
for n sufficiently large. Moreover, we may assume (if n is chosen large enough) that
θ−β ∈ πB. Consider the map Φ : A∧[t]/(P1)→ B of A∧-algebras which maps t to
β. Since B = πB+

∑
i<deg(P )A

∧θi, the map Φ is surjective by Nakayama’s lemma.

As deg(P1) = deg(P ) it follows that Φ is an isomorphism. We conclude that the
ring extension L = K[t]/(P1(t)) satisfies K∧ ⊗K L ∼= M . This implies that L is a
field and the proof is complete. �

Definition 15.68.17. Let A be a discrete valution ring. We say A has mixed
characteristic if the characteristic of the residue field of A is p > 0 and the charac-
teristic of the fraction field of A is 0. In this case we obtain an extension of discrete
valution rings Z(p) ⊂ A and the absolute ramification index of A is the ramification
index of this extension.

15.69. Eliminating ramification

In this section we discuss a result of Helmut Epp, see [Epp73]. We strongly en-
courage the reader to read the original. Our approach is slightly different as we try
to handle the mixed and equicharacteristic cases by the same method. For related
results, see also [Pon98], [Pon99], [Kuh03], and [ZK99].

Remark 15.69.1. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Let K ⊂ K1 be a finite extension of fields. Let A1 ⊂ K1

be the integral closure of A in K1. On the other hand, let L1 = (L ⊗K K1)red.
Then L1 is a nonempty finite product of finite field extensions of L. Let B1 be the
integral closure of B in L1. We obtain compatible commutative diagrams

L // L1

K

OO

// K1

OO

and

B // B1

A

OO

// A1

OO
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In this situation we have the following

(1) By Algebra, Lemma 10.116.14 the ring A1 is a Dedekind domain and B1

is a finite product of Dedekind domains.
(2) Note that L⊗K K1 = (B ⊗A A1)π where π ∈ A is a uniformizer and that

π is a nonzero divisor on B ⊗A A1. Thus the ring map B ⊗A A1 → B1 is
integral with kernel consisting of nilpotent elements. Hence Spec(B1) →
Spec(B ⊗A A1) is surjective on spectra (Algebra, Lemma 10.35.15). The
map Spec(B⊗AA1)→ Spec(A1) is surjective as A1/mAA1 → B/mAB⊗κA
A1/mAA1 is an injective ring map with A1/mAA1 Artinian. We conclude
that Spec(B1)→ Spec(A1) is surjective.

(3) Let mi, i = 1, . . . n with n ≥ 1 be the maximal ideals of A1. For each
i = 1, . . . , n let mij , j = 1, . . . ,mi with mi ≥ 1 be the maximal ideals of
B1 lying over mi. We obtain diagrams

B // (B1)mij

A

OO

// (A1)mi

OO

of extensions of discrete valuation rings.
(4) If A is henselian (for example complete), then A1 is a discrete valuation

ring, i.e., n = 1. Namely, A1 is a union of finite extensions of A which are
domains, hence local by Algebra, Lemma 10.145.4.

(5) If B is henselian (for example complete), then B1 is a product of discrete
valuation rings, i.e., mi = 1 for i = 1, . . . , n.

(6) If K ⊂ K1 is purely inseparable, then A1 and B1 are both discrete valua-
tion rings, i.e., n = 1 and m1 = 1. This is true because for every b ∈ B1

a p-power power of b is in B, hence B1 can only have one maximal ideal.
(7) If K ⊂ K1 is finite separable, then L1 = L⊗K K1 and is a finite product

of finite separable extensions too. Hence A ⊂ A1 and B ⊂ B1 are finite
by Algebra, Lemma 10.150.8.

(8) If A is Nagata, then A ⊂ A1 is finite.
(9) If B is Nagata, then B ⊂ B1 is finite.

The goal in this section is to find extensions K ⊂ K1 as in Remark 15.69.1 such
that the extensions (A1)mi ⊂ (B1)mij are all weakly unramified or even formally
smooth.

Definition 15.69.2. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L.

(1) We say a finite field extension K ⊂ K1 is a weak solution for A ⊂ B if all
the extensions (A1)mi ⊂ (B1)mij of Remark 15.69.1 are weakly unramified.

(2) We say a finite field extension K ⊂ K1 is a solution for A ⊂ B if each
extension (A1)mi ⊂ (B1)mij of Remark 15.69.1 is formally smooth in the
mij-adic topology.

We say a solution K ⊂ K1 is a separable solution if K ⊂ K1 is separable.

In general (weak) solutions do not exist. The following example shows that in
general one needs inseparable extensions to get a solution.
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Example 15.69.3. Let k be a perfect field of characteristic p > 0. Let A = k[[x]]
and K = k((x)). Let B = A[x1/p]. Any weak solution K ⊂ K1 for A → B is
inseparable (and any finite inseparable extension of K is a solution). We omit the
proof.

Solutions are stable under further extensions, but this may not be true for weak
solutions. Weak solutions are stable under totally ramified solutions.

Lemma 15.69.4. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume that A → B is formally smooth in the mB-adic
topology. Then for any finite extension K ⊂ K1 we have L1 = L ⊗K K1, B1 =
B ⊗A A1, and each extension (A1)mi ⊂ (B1)mij (see Remark 15.69.1) is formally
smooth in the mij-adic topology.

Proof. We will use the equivalence of Lemma 15.68.4 without further mention.
Let π ∈ A and πi ∈ (A1)mi be uniformizers. As κA ⊂ κB is separable, the ring

(B ⊗A (A1)mi)/πi(B ⊗A (A1)mi) = B/πB ⊗A/πA (A1)mi/πi(A1)mi

is a product of fields each separable over κmi . Hence the element πi in B⊗A (A1)mi
is a nonzerodivisor and the quotient by this element is a product of fields. It follows
that B ⊗A A1 is a Dedekind domain in particular reduced. Thus B ⊗A A1 ⊂ B1 is
an equality. �

Lemma 15.69.5. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume that A → B is weakly unramified. Then for any
totally ramified separable extension K ⊂ K1 we have that L1 = L⊗K K1 is a field,
A1 and B1 = B⊗AA1 are discrete valuation rings, and the extension A1 ⊂ B1 (see
Remark 15.69.1) is weakly unramified.

Proof. Let π ∈ A and π1 ∈ A1 be uniformizers. As K ⊂ K1 is totally ramified we
have πe1 = uπ for some unit u1 in A1. Hence A1 is generated by π1 over A and the
minimal polynomial P (t) of π1 over K has the form

P (t) = te + ae−1t
e−1 + . . .+ a0

with ai ∈ (π) and a0 = uπ for some unit u of A. Note that e = [K1 : K] as well.
Since A → B is weakly unramified we see that π is a uniformizer of B and hence
B1 = B[t]/(P (t)) is a discrete valuation ring with uniformizer the class of t. Thus
the lemma is clear. �

Lemma 15.69.6. Let A → B → C be extensions of discrete valuation rings with
fraction fields K ⊂ L ⊂M . Let K ⊂ K1 be a finite extension.

(1) If K1 is a (weak) solution for A → C, then K1 is a (weak) solution for
A→ B.

(2) If K1 is a (weak) solution for A→ B and L1 = (L⊗KK1)red is a product
of fields which are (weak) solutions for B → C, then K1 is a weak solution
for A→ C.

Proof. Let L1 = (L ⊗K K1)red and M1 = (M ⊗K K1)red and let B1 ⊂ L1 and
C1 ⊂ M1 be the integral closure of B and C. Note that M1 = (M ⊗L L1)red and
that L1 is a (nonempty) finite product of finite extensions of L. Hence the ring map
B1 → C1 is a finite product of ring maps of the form discussed in Remark 15.69.1.
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In particular, the map Spec(C1)→ Spec(B1) is surjective. Choose a maximal ideal
m ⊂ C1 and consider the extensions of discrete valuation rings

(A1)A1∩m → (B1)B1∩m → (C1)m

If the composition is weakly unramified, so is the map (A1)A1∩m → (B1)B1∩m.
If the residue field extension κA1∩m → κm is separable, so is the subextension
κA1∩m → κB1∩m. Taking into account Lemma 15.68.4 this proves (1). A similar
argument works for (2). �

Lemma 15.69.7. Let A → B be an extension of discrete valuation rings. There
exists a commutative diagram

B // B′

A //

OO

A′

OO

of extensions of discrete valuation rings such that

(1) the extensions K ⊂ K ′ and L ⊂ L′ of fraction fields are separable alge-
braic,

(2) the residue fields of A′ and B′ are separable algebraic closures of the
residue fields of A and B, and

(3) if a solution, weak solution, or separable solution exists for A′ → B′, then
a solution, weak solution, or separable solution exists for A→ B.

Proof. By Algebra, Lemma 10.148.2 there exists an extension A ⊂ A′ which is
a filtered colimit of finite étale extensions such that the residue field of A′ is a
separable algebraic closure of the residue field of A. Then A ⊂ A′ is an extension of
discrete valuation rings such that the induced extension K ⊂ K ′ of fraction fields
is separable algebraic.

Let B ⊂ B′ be a strict henselization of B. Then B ⊂ B′ is an extension of discrete
valuation rings whose fraction field extension is separable algebraic. By Algebra,
Lemma 10.145.25 there exists a commutative diagram as in the statement of the
lemma. Parts (1) and (2) of the lemma are clear.

Let K ′ ⊂ K ′1 be a (weak) solution for A′ → B′. Since A′ is a colimit, we can find
a finite étale extension A ⊂ A′1 and a finite extension f.f.(A′1) ⊂ K1 such that
K ′1 = K ′⊗f.f.(A′1)K1. As A ⊂ A′1 is finite étale and B′ strictly henselian, it follows
that B′ ⊗A A′1 is a finite product of rings isomorphic to B′. Hence

L′ ⊗K K1 = L′ ⊗K f.f.(A′1)⊗f.f.(A′1) K1

is a finite product of rings isomorphic to L′ ⊗K′ K ′1. Thus we see that K ⊂ K1 is
a (weak) solution for A → B′. Hence it is also a (weak) solution for A → B by
Lemma 15.69.6. �

Lemma 15.69.8. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Let K ⊂ K1 be a normal extension. Say G = Aut(K1/K).
Then G acts on the rings K1, L1, A1 and B1 of Remark 15.69.1 and acts transitively
on the set of maximal ideals of B1.

Proof. Everything is clear apart from the last assertion. If there are two or more
orbits of the action, then we can find an element b ∈ B1 which vanishes at all the
maximal ideals of one orbit and has residue 1 at all the maximal ideals in another
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orbit. Then b′ =
∏
σ∈G σ(b) is a G-invariant element of B1 ⊂ L1 = (L ⊗K K1)red

which is in some maximal ideals of B1 but not in all maximal ideals of B1. Lifting
it to an element of L ⊗K K1 and raising to a high power we obtain a G-invariant
element b′′ of L⊗K K1 mapping to (b′)N for some N > 0; in fact, we only need to
do this in case the characteristic is p > 0 and in this case raising to a suitably large
p-power q defines a canonical map (L ⊗K K1)red → L ⊗K K1. Since K = (K1)G

we conclude that b′′ ∈ L. Since b′′ maps to an element of B1 we see that b′′ ∈ B
(as B is normal). Then on the one hand it must be true that b′′ ∈ mB as b′ is in
some maximal ideal of B1 and on the other hand it must be true that b′′ 6∈ mB as
b′ is not in all maximal ideals of B1. This contradiction finishes the proof of the
lemma. �

Lemma 15.69.9. Let A be a discrete valuation ring with uniformizer π. Let n ≥ 2.
Then K1 = K[π1/n] is a degree n extension of K and the integral closure A1 of A
in K1 is the ring A[π1/n] which is a discrete valuation ring with ramification index
n over A.

Proof. This lemma proves itself. �

Lemma 15.69.10. Let A be a discrete valuation ring with uniformizer π. If the
residue characteristic of A is p > 0, then for every n > 1 and p-power q there exists
a degree q separable totally ramified extension K ⊂ L such that the integral closure
B of A in L has ramification index q and a uniformizer πB such that πqB = π+πnb
and πqB = π + (πB)nqb′ for some b, b′ ∈ B.

Proof. If the characteristic of K is zero, then we can take the extension given
by πqB = π, see Lemma 15.69.9. If the characteristic of K is p > 0, then we can
take the extension of K given by zq − πnz = π1−q. Namely, then we see that
yq − πn+q−1y = π where y = πz. Taking πB = y we obtain the desired result. �

Lemma 15.69.11. Let A be a discrete valuation ring. Assume the reside field κA
has characteristic p > 0 and that a ∈ A is an element whose residue class in κA
is not a pth power. Then a is not a pth power in K and the integral closure of A
in K[a1/p] is the ring A[a1/p] which is a discrete valuation ring weakly unramified
over A.

Proof. This lemma proves itself. �

Lemma 15.69.12. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Let π ∈ A be a uniformizer. Assume

(1) B is a Nagata ring,
(2) A ⊂ B is weakly unramified,
(3) M is a degree p purely inseparable extension of L.

Then either

(1) A→ C is weakly unramified, or
(2) C = B[π1/p], or
(3) there exists a degree p separable, totally ramified extension K ⊂ K1 such

that L1 = L ⊗K K1 and M1 = M ⊗K K1 are fields and the maps of
integral closures A1 → B1 → C1 are weakly unramified extensions of
discrete valuation rings.

http://stacks.math.columbia.edu/tag/09EV
http://stacks.math.columbia.edu/tag/09EW
http://stacks.math.columbia.edu/tag/09EX
http://stacks.math.columbia.edu/tag/09EY


1258 15. MORE ON ALGEBRA

Proof. Let e be the ramification index of C over B. If e = 1, then we are done.
If not, then e = p by Lemmas 15.68.2 and 15.68.3. This in turn implies that the
residue fields of B and C agree. Choose a uniformizer πC of C. Write πpC = uπ for
some unit u of C. Since πpC ∈ L, we see that u ∈ B∗. Also M = L[πC ].

Suppose there exists an integer m ≥ 0 such that

u =
∑

0≤i<m
bpi π

i + bπm

with bi ∈ B and with b ∈ B an element whose image in κB is not a pth power.
Choose an extension K ⊂ K1 as in Lemma 15.69.10 with n = m+ 2 and denote π′

the uniformizer of the integral closure A1 of A in K1 such that π = (π′)p + (π′)npa
for some a ∈ A1. Let B1 be the integral closure of B in L ⊗K K1. Observe that
A1 → B1 is weakly unramified by Lemma 15.69.5. In B1 we have

uπ =
(∑

0≤i<m
bi(π

′)i+1
)p

+ b(π′)(m+1)p + (π′)npb1

for some b1 ∈ B1 (computation omitted). We conclude that M1 is obtained from
L1 by adjoining a pth root of

b+ (π′)n−m−1b1

Since the residue field of B1 equals the residue field of B we see from Lemma
15.69.11 that M1/L1 has degree p and the integral closure C1 of B1 is weakly
unramified over B1. Thus we conclude in this case.

If there does not exist an integer m as in the preceding paragraph, then u is a pth
power in the π-adic completion of B1. Since B is Nagata, this means that u is a
pth power in B1 by Algebra, Lemma 10.150.33. Whence the second case of the
statement of the lemma holds. �

Lemma 15.69.13. Let A be a local ring annihilated by a prime p whose maximal
ideal is nilpotent. There exists a ring map σ : κA → A which is a section to the
residue map A → κA. If A → A′ is a local homomorphism of local rings, then we
can choose a similar ring map σ′ : κA′ → A′ compatible with σ provided that the
extension κA ⊂ κA′ is separable.

Proof. Separable extensions are formally smooth by Algebra, Proposition 10.147.9.
Thus the existence of σ follows from the fact that Fp → κA is separable. Similarly
for the existence of σ′ compatible with σ. �

Lemma 15.69.14. Let A be a discrete valuation ring with fraction field K of
characteristic p > 0. Let ξ ∈ K. Let L be an extension of K obtained by adjoining
a root of zp − z = ξ. Then L/K is Galois and one of the following happens

(1) L = K,
(2) L/K is unramified of degree p,
(3) L/K is totally ramified with ramification index p, and
(4) L/K is weakly unramified, the integral closure B of A in L is a discrete

valuation ring and A → B induces a purely inseparable residue field ex-
tension of degree p.

Let π be a uniformizer of A. We have the following implications:

(A) If ξ ∈ A, then we are in case (1) or (2).
(B) If ξ = π−na where n > 0 is not divisible by p and a is a unit in A, then

we are in case (3)
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(C) If ξ = π−na where n > 0 is divisible by p and the image of a in κA is not
a pth power, then we are in case (4).

Proof. The extension is Galois of order dividing p by the discussion in Fields,
Section 9.22. It immediately follows from the discussion in Section 15.68 that we
are in one of the cases (1) – (4) listed in the lemma.

Case (A). Here we see that A → A[x]/(xp − x − ξ) is a finite étale ring extension.
Hence we are in cases (1) or (2).

Case (B). Write ξ = π−na where p does not divide n. Let B ⊂ L be the integral
closure of A in L. If C = Bm for some maximal ideal m, then it is clear that
pordC(z) = −nordC(π). In particular A ⊂ C has ramification index divisible by p.
It follows that it is p and that B = C.

Case (C). Set k = n/p. Then we can rewrite the equation as

(πkz)p − πn−k(πkz) = a

Since A[y]/(yp − πn−ky − a) is a discrete valuation ring weakly unramified over A,
the lemma follows. �

Lemma 15.69.15. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Assume

(1) A ⊂ B weakly unramified,
(2) the characteristic of K is p,
(3) M is a degree p Galois extension of L, and

(4) κA =
⋂
n≥1 κ

pn

B .

Then there exists a totally ramified Galois extension K1 of K which is a weak
solution for A→ C.

Proof. Since the characteristic of L is p we know that M is an Artin-Schreier
extension of L (Fields, Lemma 9.22.1). Thus we may pick z ∈M , z 6∈ L such that
ξ = zp−z ∈ L. Choose n ≥ 0 such that πnξ ∈ B. We pick z such that n is minimal.
If n = 0, then M is unramified over L (Lemma 15.69.14) and we are done. Thus
we have n > 0.

Assumption (4) implies that κA is perfect. Thus we may choose compatible ring
maps σ : κA → A/πnA and σ : κB → B/πnB as in Lemma 15.69.13. We lift the
second of these to a map of sets σ : κB → B8. Then we can write

ξ =
∑

i=n,...,1
σ(λi)π

−i + b

for some λi ∈ κB and b ∈ B. Let

I = {i ∈ {n, . . . , 1} | λi ∈ κA}
and

J = {j ∈ {n, . . . , 1} | λi 6∈ κA}
We will argue by induction on the size of the finite set J .

The case J = ∅. Here for all i ∈ {n, . . . , 1} we have σ(λi) = ai + πnbi for some
ai ∈ A and bi ∈ B by our choice of σ. Thus ξ = π−na + b for some a ∈ A and

8If B is complete, then we can choose σ to be a ring map. If A is also complete and σ is a
ring map, then σ maps κA into A.
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b ∈ B. If p|n, then we write a = ap0 + πa1 for some a0, a1 ∈ A (as the residue field
of A is perfect). We compute

(z − π−n/pa0)p − (z − π−n/pa0) = π−(n−1)(a1 + πn−1−n/pa0) + b′

for some b′ ∈ B. This would contradict the minimality of n. Thus p does not divide
n. Consider the degree p extension K1 of K given by wp − w = π−na. By Lemma
15.69.14 this extension is a totally ramified Galois extension. Thus L1 = L⊗K K1

is a field and A1 ⊂ B1 is weakly unramified (Lemma 15.69.5). By Lemma 15.69.14
the ring M1 = M ⊗K K1 is either a product of p copies of L1 (in which case we are
done) or a field extension of L1 of degree p. Moreover, in the second case, M1 is
either weakly unramified over L1 (in which case we are done) or a degree p totally
ramified Galois extension. In this last case the extension M1/L1 is generated by
the element z − w and

(z − w)p − (z − w) = zp − z − (wp − w) = b

with b ∈ B (see above). Thus by Lemma 15.69.14 once more the extension M1/L1

is unramified and we conclude that K1 is a weak solution for A → C. From now
on we assume J 6= ∅.

Suppose that j′, j ∈ J such that j′ = prj for some r > 0. Then we change our
choice of z into

z′ = z − (σ(λj)π
−j + σ(λpj )π

−pj + . . .+ σ(λp
r−1

j )π−p
r−1j)

Then ξ changes into ξ′ = (z′)p − (z′) as follows

ξ′ = ξ − σ(λj)π
−j + σ(λp

r

j )π−j
′
+ something in B

Writing ξ′ =
∑
i=n,...,1 σ(λ′i)π

−i + b′ as before we find that λ′i = λi for i 6= j, j′ and

λ′j = 0. Thus the set J has gotten smaller. By induction on the size of J we may
assume no such pair j, j′ exists. (Please observe that in this procedure we may get
thrown back into the case that J = ∅ we treated above.)

For j ∈ J write λj = µp
rj

j for some rj ≥ 0 and µj ∈ κB which is not a pth power.

This is possible by our assumption (4). Let j ∈ J be the unique index such that
jp−rj is maximal. (The index is unique by the result of the preceding paragraph.)
Choose r > max(rj + 1) and such that jpr−rj > n for j ∈ J . Choose a separable
totally ramified extension K ⊂ K1 of degree pr such that the corresponding discrete
valuation ring A1 ⊂ K1 has uniformizer π′ with (π′)p

r

= π+πn+1a for some a ∈ A1

(Lemma 15.69.10). Observe that L1 = L ⊗K K1 is a field and B1 ⊂ L1 a discrete
valuation ring totally ramified over B (Lemma 15.69.5). Computing in B1 we get

ξ =
∑

i∈I
σ(λi)(π

′)−ip
r

+
∑

j∈J
σ(µj)

prj (π′)−jp
r

+ b1

for some b1 ∈ B1. Note that σ(λi) for i ∈ I is a qth power modulo πn, i.e., modulo
(π′)np

r

. Hence we can rewrite the above as

ξ =
∑

i∈I
xp

r

i (π′)−ip
r

+
∑

j∈J
σ(µj)

prj (π′)−jp
r

+ b1
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As in the previous paragraph we change our choice of z into

z′ = z

−
∑

i∈I

(
xi(π

′)−i + . . .+ xp
r−1

i (π′)−ip
r−1
)

−
∑

j∈J

(
σ(µj)(π

′)−jp
r−rj

+ . . .+ σ(µj)
prj−1

(π′)−jp
r−1
)

to obtain

(z′)p − z′ =
∑

i∈I
xi(π

′)−i +
∑

j∈J
σ(µj)(π

′)−jp
r−rj

+ b′1

for some b′1 ∈ B1. Since there is a unique j such that jpr−rj is maximal and since
jpr−rj is bigger than i ∈ I and divisible by p, we see that M1/L1 falls into case (C)
of Lemma 15.69.14. This finishes the proof. �

Lemma 15.69.16. Let A be a ring which contains a primitive pth root of unity ζ.
Set w = 1− ζ. Then

P (z) =
(1 + wz)p − 1

wp
= zp − z +

∑
0<i<p

aiz
i

is an element of A[z] and in fact ai ∈ (w). Moreover, we have

P (z1 + z2 + wz1z2) = P (z1) + P (z2) + wpP (z1)P (z2)

in the polynomial ring A[z1, z2].

Proof. It suffices to prove this when

A = Z[ζ] = Z[x]/(xp−1 + . . .+ x+ 1)

is the ring of integers of the cyclotomic field. The polynomial identity tp − 1 =
(t− 1)(t− ζ) . . . (t− ζp−1) (which is proved by looking at the roots on both sides)
shows that tp−1 + . . .+ t+ 1 = (t− ζ) . . . (t− ζp−1). Substituting t = 1 we obtain
p = (1 − ζ)(1 − ζ2) . . . (1 − ζp−1). The maximal ideal (p, w) = (w) is the unique
prime ideal of A lying over p (as fields of characteristic p do not have nontrivial pth
roots of 1). It follows that p = uwp−1 for some unit u. This implies that

ai =
1

p

(
p

i

)
uwi−1

for p > i > 1 and −1+a1 = pw/wp = u. Since P (−1) = 0 we see that 0 = (−1)p−u
modulo (w). Hence a1 ∈ (w) and the proof if the first part is done. The second
part follows from a direct computation we omit. �

Lemma 15.69.17. Let A be a discrete valuation ring of mixed characteristic (0, p)
which contains a primitive pth root of 1. Let P (t) ∈ A[t] be the polynomial of
Lemma 15.69.16. Let ξ ∈ K. Let L be an extension of K obtained by adjoining a
root of P (z) = ξ. Then L/K is Galois and one of the following happens

(1) L = K,
(2) L/K is unramified of degree p,
(3) L/K is totally ramified with ramification index p, and
(4) L/K is weakly unramified, the integral closure B of A in L is a discrete

valuation ring and A → B induces a purely inseparable residue field ex-
tension of degree p.

Let π be a uniformizer of A. We have the following implications:
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(A) If ξ ∈ A, then we are in case (1) or (2).
(B) If ξ = π−na where n > 0 is not divisible by p and a is a unit in A, then

we are in case (3)
(C) If ξ = π−na where n > 0 is divisible by p and the image of a in κA is not

a pth power, then we are in case (4).

Proof. Adjoining a root of P (z) = ξ is the same thing as adjoining a root of
yp = wp(1 + ξ). Since K contains a primitive pth root of 1 the extension is Galois
of order dividing p by the discussion in Fields, Section 9.21. It immediately follows
from the discussion in Section 15.68 that we are in one of the cases (1) – (4) listed
in the lemma.

Case (A). Here we see that A → A[x]/(P (x) − ξ) is a finite étale ring extension.
Hence we are in cases (1) or (2).

Case (B). Write ξ = π−na where p does not divide n. Let B ⊂ L be the integral
closure of A in L. If C = Bm for some maximal ideal m, then it is clear that
pordC(z) = −nordC(π). In particular A ⊂ C has ramification index divisible by p.
It follows that it is p and that B = C.

Case (C). Set k = n/p. Then we can rewrite the equation as

(πkz)p − πn−k(πkz) +
∑

aiπ
n−ik(πkz)i = a

Since A[y]/(yp − πn−ky −
∑
aiπ

n−ikyi − a) is a discrete valuation ring weakly
unramified over A, the lemma follows. �

Let A be a discrete valuation ring of mixed characteristic (0, p) containing a prim-
itive pth root of 1. Let w ∈ A and P (t) ∈ A[t] be as in Lemma 15.69.16. Let L be
a finite extension of K. We say L/K is a degree p extension of finite level if L is
a degree p extension of K obtained by adjoining a root of the equation P (z) = ξ
where ξ ∈ K is an element with wpξ ∈ mA.

This definition is relevant to the discussion in this section due to the following
straightforward lemma.

Lemma 15.69.18. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Assume that

(1) A has mixed characteristic (0, p),
(2) A ⊂ B is weakly unramified,
(3) B contains a primitive pth root of 1, and
(4) M/L is Galois of degree p.

Then there exists a totally ramified Galois extension K ⊂ K1 which is either a weak
solution for A→ C or is such that M1/L1 is a degree p extension of finite level.

Proof. Let π ∈ A be a uniformizer. By Kummer theory (Fields, Lemma 9.21.1)
M is obtained from L by adjoining the root of yp = b for some b ∈ L.

If ordB(b) is prime to p, then we choose a degree p separable, totally ramified
extension K ⊂ K1 (for example using Lemma 15.69.10). Let A1 be the integral
closure of A in K1. By Lemma 15.69.5 the integral closure B1 of B in L1 = L⊗KK1

is a discrete valuation ring weakly unramified over A1. If K ⊂ K1 is not a weak
solution for A → C, then the integral closure C1 of C in M1 = M ⊗K K1 is a
discrete valuation ring and B1 → C1 has ramification index p. In this case, the
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field M1 is obtained from L1 by adjoining the pth root of b with ordB1
(b) divisible

by p. Replacing A by A1, etc we may assume that b = πnu where u ∈ B is a unit
and n is divisible by p. Of course, in this case the extension M is obtained from L
by adjoining the pth root of a unit.

Suppose M is obtained from L by adjoining the root of yp = u for some unit u of B.
If the residue class of u in κB is not a pth power, then B ⊂ C is weakly unramified
(Lemma 15.69.11) and we are done. Otherwise, we can replace our choice of y by
y/v where vp and u have the same image in κB . After such a replacement we have

yp = 1 + πb

for some b ∈ B. Then we see that P (z) = πb/wp where z = (y − 1)/w. Thus we
see that the extension is a degree p extension of finite level with ξ = πb/wp. �

Let A be a discrete valuation ring of mixed characteristic (0, p) containing a prim-
itive pth root of 1. Let w ∈ A and P (t) ∈ A[t] be as in Lemma 15.69.16. Let L be
a degree p extension of K of finite level. Choose z ∈ L generating L over K with
ξ = P (z) ∈ K. Choose a uniformizer π for A and write w = uπe1 for some integer
e1 = ordA(w) and unit u ∈ A. Finally, pick n ≥ 0 such that

πnξ ∈ A
The level of L/K is the smallest value of the quantity n/e1 taking over all z gener-
ating L/K with ξ = P (z) ∈ K.

We make a couple of remarks. Since the extension is of finite level we know that
we can choose z such that n < pe1. Thus the level is a rational number contained
in [0, p). If the level is zero then L/K is unramified by Lemma 15.69.17. Our next
goal is to lower the level.

Lemma 15.69.19. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Assume

(1) A has mixed characteristic (0, p),
(2) A ⊂ B weakly unramified,
(3) B contains a primitive pth root of 1,
(4) M/L is a degree p extension of finite level l > 0,

(5) κA =
⋂
n≥1 κ

pn

B .

Then there exists a separable, totally ramified extension K1 of K such that either
K1 is a weak solution for A → C, or the extension M1/L1 is a degree p extension
of finite level ≤ max(0, l − 1, 2l − p).

Proof. Let π ∈ A be a uniformizer. Let w ∈ B and P ∈ B[t] be as in Lemma
15.69.16 (for B). Set e1 = ordB(w), so that w and πe1 are associates in B. Pick
z ∈M generating M over L with ξ = P (z) ∈ K and n such that πnξ ∈ B as in the
definition of the level of M over L, i.e., l = n/e1.

The proof of this lemma is completely similar to the proof of Lemma 15.69.15. To
explain what is going on, observe that

(15.69.19.1) P (z) ≡ zp − z mod π−n+e1B

for any z ∈ L such that π−nP (z) ∈ B (use that z has valuation at worst −n/p and
the shape of the polynomial P ). Moreover, we have

(15.69.19.2) ξ1 + ξ2 + wpξ1ξ2 ≡ ξ1 + ξ2 mod π−2n+pe1B

http://stacks.math.columbia.edu/tag/09F5
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for ξ1, ξ2 ∈ π−nB. Finally, observe that n − e1 = (l − 1)/e1 and −2n + pe1 =
−(2l − p)e1. Write m = n − e1 max(0, l − 1, 2l − p). The above shows that doing
calculations in π−nB/π−n+mB the polynomial P behaves exactly as the polynomial
zp − z. This explains why the lemma is true but we also give the details below.

Assumption (4) implies that κA is perfect. Observe that m ≤ e1 and hence A/πm

is annihilated by w and hence p. Thus we may choose compatible ring maps σ :
κA → A/πmA and σ : κB → B/πmB as in Lemma 15.69.13. We lift the second of
these to a map of sets σ : κB → B. Then we can write

ξ =
∑

i=n,...,n−m+1
σ(λi)π

−i + π−n+m)b

for some λi ∈ κB and b ∈ B. Let

I = {i ∈ {n, . . . , n−m+ 1} | λi ∈ κA}

and

J = {j ∈ {n, . . . , n−m+ 1} | λi 6∈ κA}
We will argue by induction on the size of the finite set J .

The case J = ∅. Here for all i ∈ {n, . . . , n −m + 1} we have σ(λi) = ai + πn−mbi
for some ai ∈ A and bi ∈ B by our choice of σ. Thus ξ = π−na + π−n+mb for
some a ∈ A and b ∈ B. If p|n, then we write a = ap0 + πa1 for some a0, a1 ∈ A
(as the residue field of A is perfect). Set z1 = −π−n/pa0. Note that P (z1) ∈ π−nB
and that z + z1 +wzz1 is an element generating M over L (note that wz1 6= −1 as
n < pe1). Moveover, by Lemma 15.69.16 we have

P (z + z1 + wzz1) = P (z) + P (z1) + wpP (z)P (z1) ∈ K

and by equations (15.69.19.1) and (15.69.19.2) we have

P (z) + P (z1) + wpP (z)P (z1) ≡ ξ + zp1 − z1 mod π−n+mB

for some b′ ∈ B. This contradict the minimality of n! Thus p does not divide n.
Consider the degree p extension K1 of K given by P (y) = −π−na. By Lemma
15.69.17 this extension is separable, totally ramified. Thus L1 = L ⊗K K1 is a
field and A1 ⊂ B1 is weakly unramified (Lemma 15.69.5). By Lemma 15.69.17 the
ring M1 = M ⊗K K1 is either a product of p copies of L1 (in which case we are
done) or a field extension of L1 of degree p. Moreover, in the second case, M1 is
either weakly unramified over L1 (in which case we are done) or a degree p totally
ramified Galois extension. In this last case the extension M1/L1 is generated by
the element z + y + wzy and we see that P (z + y + wzy) ∈ L1 and

P (z + y + wzy) = P (z) + P (y) + wpP (z)P (y)

≡ ξ − π−na mod π−n+mB1

≡ 0 mod π−n+mB1

in exactly the same manner as above. By our choice of m this means exactly that
M1/L1 has level at most max(0, l− 1, 2l− p). From now on we assume that J 6= ∅.

Suppose that j′, j ∈ J such that j′ = prj for some r > 0. Then we set

z1 = −σ(λj)π
−j − σ(λpj )π

−pj − . . .− σ(λp
r−1

j )π−p
r−1j
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and we change z into z′ = z + z1 + wzz1. Observe that z′ ∈ M generates M over
L and that we have ξ′ = P (z′) = P (z) + P (z1) + wP (z)P (z1) ∈ L with

ξ′ ≡ ξ − σ(λj)π
−j + σ(λp

r

j )π−j
′

mod π−n+mB

by using equations (15.69.19.1) and (15.69.19.2) as above. Writing

ξ′ =
∑

i=n,...,n−m+1
σ(λ′i)π

−i + π−n+mb′

as before we find that λ′i = λi for i 6= j, j′ and λ′j = 0. Thus the set J has gotten
smaller. By induction on the size of J we may assume there is no pair j, j′ of J
such that j′/j is a power of p. (Please observe that in this procedure we may get
thrown back into the case that J = ∅ we treated above.)

For j ∈ J write λj = µp
rj

j for some rj ≥ 0 and µj ∈ κB which is not a pth power.

This is possible by our assumption (4). Let j ∈ J be the unique index such that
jp−rj is maximal. (The index is unique by the result of the preceding paragraph.)
Choose r > max(rj + 1) and such that jpr−rj > n for j ∈ J . Let K ⊂ K1 be

the totally ramified extension of degree pr defined by (π′)p
r

= π. Observe that π′

is the uniformizer of the corresponding discrete valuation ring A1 ⊂ K1. Observe
that L1 = L⊗KK1 is a field and B1 ⊂ L1 a discrete valuation ring totally ramified
over B (Lemma 15.69.5). Computing in B1 we get

ξ =
∑

i∈I
σ(λi)(π

′)−ip
r

+
∑

j∈J
σ(µj)

prj (π′)−jp
r

+ π−n+mb1

for some b1 ∈ B1. Note that σ(λi) for i ∈ I is a qth power modulo πm, i.e., modulo
(π′)mp

r

. Hence we can rewrite the above as

ξ =
∑

i∈I
xp

r

i (π′)−ip
r

+
∑

j∈J
σ(µj)

prj (π′)−jp
r

+ π−n+mb1

Similar to our choice in the previous paragraph we set

z1 −
∑

i∈I

(
xi(π

′)−i + . . .+ xp
r−1

i (π′)−ip
r−1
)

−
∑

j∈J

(
σ(µj)(π

′)−jp
r−rj

+ . . .+ σ(µj)
prj−1

(π′)−jp
r−1
)

and we change our choice of z into z′ = z + z1 + wzz1. Then z′ generates M1 over
L1 and ξ′ = P (z′) = P (z) + P (z1) + wpP (z)P (z1) ∈ L1 and a calculation shows
that

ξ′ ≡
∑

i∈I
xi(π

′)−i +
∑

j∈J
σ(µj)(π

′)−jp
r−rj

+ (π′)(−n+m)prb′1

for some b′1 ∈ B1. There is a unique j such that jpr−rj is maximal and jpr−rj is
bigger than i ∈ I. If jpr−rj ≤ (n −m)pr then the level of the extension M1/L1 is
less than max(0, l− 1, 2l− p). If not, then, as p divides jpr−rj , we see that M1/L1

falls into case (C) of Lemma 15.69.17. This finishes the proof. �

Lemma 15.69.20. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fraction fields K ⊂ L ⊂M . Assume

(1) the residue field k of A is algebraically closed of characteristic p > 0,
(2) A and B are complete,
(3) A→ B is weakly unramified,
(4) M is a finite extension of L,

(5) k =
⋂
n≥1 κ

pn

B

Then there exists a finite extension K ⊂ K1 which is a weak solution for A→ C.

http://stacks.math.columbia.edu/tag/09F8
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Proof. Let M ′ be any finite extension of L and consider the integral closure C ′ of
B in M ′. Then C ′ is finite over B as B is Nagata by Algebra, Lemma 10.150.22.
Moreover, C ′ is a discrete valuation ring, see discussion in Remark 15.69.1. More-
over C ′ is complete as a B-module, hence complete as a discrete valuation ring, see
Algebra, Section 10.93. It follows in particular that C is the integral closure of B
in M (by definition of valuation rings as maximal for the relation of domination).

Let M ⊂ M ′ be a finite extension and let C ′ ⊂ M ′ be the integral closure of B as
above. By Lemma 15.69.6 tt suffices to prove the result for A → B → C ′. Hence
we may assume that M/L is normal, see Fields, Lemma 9.15.3.

If M/L is normal, we can find a chain of finite extensions

L = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lr = M

such that each extension Lj+1/Lj is either: (a) purely inseparable of degree p, (b)
totally ramified Galois of degree p, (c) totally ramified Galois cyclic of order prime
to p, or (d) Galois and unramified. Namely, since M/L is normal we can write it
as a compositum of a Galois extension and a purely inseparable extension (Fields,
Lemma 9.24.3). For the purely inseparable extension the existence of the filtration
is clear. In the Galois case, note that G is “the” decomposition group and let I ⊂ G
be the inertia group. Then on the one hand I is solvable by Lemma 15.68.11 and on
the other hand the extension M I/L is unramfied by Lemma 15.68.14. This proves
we have a filtration as stated.

We are going to argue by induction on the integer r. Suppose that we can find
a finite extension K ⊂ K1 which is a weak solution for A → B1 where B1 is the
integral closure of B in L1. Let K ′1 be the normal closure of K1/K (Fields, Lemma
9.15.3). Since A is complete and the residue field of A is algebraically closed we
see that K1 ⊂ K ′1 is separable and totally ramified (some details omitted). Hence
K ⊂ K ′1 is a weak solution for A→ B1 as well by Lemma 15.69.5. In other words,
we may and do assume that K1 is a normal extension of K. Having done so we
consider the sequence

L0
1 = (L0 ⊗K K1)red ⊂ L1

1 = (L1 ⊗K K1)red ⊂ . . . ⊂ Lr1 = (Lr ⊗K K1)red

and the corresponding integral closures Bi1. Note that C1 = Br1 is a product of
discrete valuation rings which are transitively permuted by G = Aut(K1/K) by
Lemma 15.69.8. In particular all the extensions of discrete valution rings A1 →
(C1)m are isomorphic and a solution for one will be a solution for all of them. We
can apply the induction hypothesis to the sequence

A1 → (B1
1)B1

1∩m → (B2
1)B2

1∩m → . . .→ (Br1)Br1∩m = (C1)m

to get a solution K1 ⊂ K2 for A1 → (C1)m. The extension K ⊂ K2 will then be
a solution for A → C by what we said before. Note that the induction hypothesis
applies: the ring map A1 → (B1

1)B1
1∩m is weakly unramified by our choice of K1

and the sequence of fraction field extensions each still have one of the properties
(a), (b), (c), or (d) listed above. Moreover, observe that for any finite extension
κB ⊂ κ we still have k =

⋂
κp

n

.

Thus everything boils down to finding a weak solution when the field extension
L ⊂M satisfies one of the properties (a), (b), (c), or (d).

Case (d). This case is trivial as here B → C is unramified already.
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Case (c). This is the tamely ramified case. Say M/L is cyclic of order n prime to
p. Choose uniformizers π ∈ A and πC ∈ C. Then πnC = uπ for some unit u of C.

Let K1 = K[π1/n]. Then the ring M1 = M ⊗K K1 is a product of fields each of
which is obtained from M by adjoining a root of zn − u = 0. Since C[x]/(xn − u)
is finite étale over C we conclude that each of these extensions is unramified over
M . Considering the commutative diagram

M // M1

L

OO

// L1

OO

and using multiplicativity of ramification indices, it follows that each factor of M1

is unramified over L1 as well.

Case (b). We divide this case into the mixed characteristic case and the equichar-
acteristic case. In the equicharacteristic case this is Lemma 15.69.15. In the mixed
characteristic case, we first replace K by a finite extension to get to the situation
where M/L is a degree p extension of finite level using Lemma 15.69.18. Then the
level is a rational number l ∈ [0, p), see discussion preceding Lemma 15.69.19. If
the level is 0, then B → C is weakly unramified and we’re done. If not, then we
can replacing the field K by a finite extension to obtain a new situation with level
l′ ≤ max(0, l− 1, 2l− p) by Lemma 15.69.19. If l = p− ε for ε < 1 then we see that
l′ ≤ p− 2ε. Hence after a finite number of replacements we obtain a case with level
≤ p − 1. Then after at most p − 1 more such replacements we reach the situation
where the level is zero.

Case (a) is Lemma 15.69.12. This is the only case where we possibly need a purely
inseparable extension of K, namely, in case (2) of the statement of the lemma we
win by adjoining a pth power of the element π. This finishes the proof of the
lemma. �

At this point we have collected all the lemmas we need to prove the main result of
this section.

Theorem 15.69.21 (Epp). Let A ⊂ B be an extension of discrete valuation rings
with fraction fields K ⊂ L. If the characteristic of κA is p > 0, assume that every
element of ⋂

n≥1
κp

n

B

is separable algebraic over κA. Then there exists a finite extension K ⊂ K1 which
is a weak solution for A→ B as defined in Definition 15.69.2.

Proof. We first prove the result in case the characteristic of κA is zero as the
result is easy in that case. Namely, suppose the ramification index is e. Choose a
uniformizer πB ∈ B and a uniformizer π ∈ A. Write πeB = uπ for some unit u ∈ B.
Let K ⊂ K1 be be the totally ramified extension obtained by adjoining an eth root
of π (see Lemma 15.69.9). Then L1 = L⊗KK1 is a product of fields, each obtained
by adjoining a root of ze = u to L. However, since B[x]/(xe − u) is finite étale
over B (since the characteristic is zero) we conclude that each of these extensions

http://stacks.math.columbia.edu/tag/09F9
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is unramified over L. Considering the commutative diagram

L // L1

K

OO

// K1

OO

and using multiplicativity of ramification indices, it follows that each factor of L1

is unramified over K1 as well. This finishes the proof in residue characteristic 0.

From now on we let p be a prime number and we assume that κA has characteristic p.
We first apply Lemma 15.69.7 to reduce to the case that A and B have separably
closed residue fields. Since κA and κB are replaced by their separable algebraic
closures by this procedure we see that we obtain

κA ⊃
⋂

n≥1
κp

n

B

from the condition of the theorem.

Let π ∈ A be a uniformizer. Let A∧ and B∧ be the completions of A and B. We
have a commutative diagram

B // B∧

A

OO

// A∧

OO

of extensions of discrete valuation rings. LetK∧ be the fraction field of A∧. Suppose
that we can find a finite extension K∧ ⊂ M which is (a) a weak solution for
A∧ → B∧ and (b) a compositum of a separable extension and an extension obtained
by adjoining a p-power root of π. Then by Lemma 15.68.16 we can find a finite
extension K ⊂ K1 such that K∧ ⊗K K1 = M . Let A1, resp. A∧1 be the integral
closure of A, resp. A∧ in K1, resp. M . Since A→ A∧ is formally smooth (Lemma
15.68.4) we see that A1 → A∧1 is formally smooth (Lemma 15.69.4 and A1 and A∧1
are discrete valuation rings by discussion in Remark 15.69.1). We conclude from
Lemma 15.69.6 part (2) that K ⊂ K1 is a weak solution for A → B∧. Applying
Lemma 15.69.6 part (1) we see that K ⊂ K1 is a weak solution for A→ B.

Thus we may assume A and B are complete discrete valution rings with separably

closed residue fields of characteristic p and with κA ⊃
⋂
n≥1 κ

pn

B . We are also given
a uniformizer π ∈ A and we have to find a weak solution for A → B which is a
compositum of a separable extension and a field obtained by taking p-power roots
of π. Note that the second condition is automatic if A has mixed characteristic.

Set k =
⋂
n≥1 κ

pn

B . Observe that k is an algebraically closed field of characteristic p.
If A has mixed characteristic let Λ be a Cohen ring for k and in the equicharacteristic
case set Λ = k[[t]]. We can choose a ring map Λ → A which maps t to π in the
equicharacteristic case. In the equicharacteristic case this follows from the Cohen
structure theorem (Algebra, Theorem 10.149.8) and in the mixed characteristic case
this follows as Zp → Λ is formally smooth in the adic topology (Lemmas 15.68.4
and 15.27.5). Applying Lemma 15.69.6 we see that it suffices to prove the existence
of a weak solution for Λ→ B which in the equicharacteristic p case is a compositum
of a separable extension and a field obtained by taking p-power roots of t. However,
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since Λ = k[[t]] in the equicharacteristic case and any extension of k((t)) is such a
compositum, we can now drop this requirement!

Thus we arrive at the situation where A and B are complete, the residue field k of A

is algebraically closed of characteristic p > 0, we have k =
⋂
κp

n

B , and in the mixed
characteristic case p is a uniformizer of A (i.e., A is a Cohen ring for k). If A has
mixed characteristic choose a Cohen ring Λ for κB and in the equicharacteristic case
set Λ = κB [[t]]. Arguing as above we may choose a ring map A→ Λ lifting k → κB
and mapping a uniformizer to a uniformizer. Since k ⊂ κB is separable the ring
map A → Λ is formally smooth in the adic topology (Lemma 15.68.4). Hence we
can find a ring map Λ→ B such that the composition A→ Λ→ B is the given ring
map A → B (see Lemma 15.27.5). Since Λ and B are complete discrete valution
rings with the same residue field, B is finite over Λ (Algebra, Lemma 10.93.17).
This reduces us to the special case discussed in Lemma 15.69.20. �

Lemma 15.69.22. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume B is essentially of finite type over A. Let K ⊂ K ′

be an algebraic extension of fields such that the integral closure A′ of A in K ′ is
Noetherian. Then the integral closure B′ of B in L′ = (L⊗KK ′)red is Noetherian as
well. Moreover, the map Spec(B′) → Spec(A′) is surjective and the corresponding
residue field extensions are finitely generated field extensions.

Proof. Let A → C be a finite type ring map such that B is a localization of
C at a prime p. Then C ′ = C ⊗A A′ is a finite type A′-algebra, in particular
Noetherian. Since A → A′ is integral, so is C → C ′. Thus B = Cp ⊂ C ′p is
integral too. It follows that the dimension of C ′p is 1 (Algebra, Lemma 10.108.4).
Of course C ′p is Noetherian. Let q1, . . . , qn be the minimal primes of C ′p. Let B′i
be the integral closure of B = Cp, or equivalently by the above of C ′p in the field
of fractions of C ′p′/qi. It follows from Krull-Akizuki (Algebra, Lemma 10.115.11

applied to the finitely many localizations of C ′p at its maximal ideals) that each
B′i is Noetherian. Moreover the residue field extensions in C ′p → B′i are finite
by Algebra, Lemma 10.115.9. Finally, we observe that B′ =

∏
B′i is the integral

closure of B in L′ = (L⊗K K ′)red. �

Proposition 15.69.23. Let A→ B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If B is essentially of finite type over A, then there exists a
finite extension K ⊂ K1 which is a solution for A → B as defined in Definition
15.69.2.

Proof. Observe that a weak solution is a solution if the residue field of A is per-
fect, see Lemma 15.68.4. Thus the proposition follows immediately from Theorem
15.69.21 if the residue characteristic of A is 0 (and in fact we do not need the as-
sumption that A → B is essentially of finite type). If the residue characteristic of
A is p > 0 we will also deduce it from Epp’s theorem.

Let xi ∈ A, i ∈ I be a set of elements mapping to a p-base of the residue field κ of
A. Set

A′ =
⋃

n≥1
A[ti,n]/(tp

n

i,n − xi)

where the transition maps send ti,n+1 to tpi,n. Observe that A′ is a filtered colimit

of weakly unramified finite extensions of discrete valuation rings over A. Thus A′

http://stacks.math.columbia.edu/tag/09IH
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is a discrete valuation ring and A → A′ is weakly unramfied. By construction the
residue field κ′ = A′/mAA

′ is the perfection of κ.

Let K ′ = f.f.(A′). We may apply Lemma 15.69.22 to the extension K ⊂ K ′.
Thus B′ is a finite product of Dedekind domains. Let m1, . . . ,mn be the maximal
ideals of B′. Using Epp’s theorem (Theorem 15.69.21) we find a weak solution
K ′ = f.f.(A′) ⊂ K ′i for each of the extensions A′ ⊂ B′mi . Since the residue field of
A′ is perfect, these are actually solutions. Let K ′ ⊂ K ′1 be a finite extension which
contains each K ′i. Then K ′ ⊂ K ′1 is still a solution for each A′ ⊂ B′mi by Lemma
15.69.4.

Let A′1 be the integral closure of A in K ′1. Note that A′1 is a Dedekind domain
by the discussion in Remark 15.69.1 applied to K ′ ⊂ K ′1. Thus Lemma 15.69.22
applies to K ⊂ K ′1. Therefore the integral closure B′1 of B in L′1 = (L ⊗K K ′1)red
is a Dedekind domain and because K ′ ⊂ K ′1 is a solution for each A′ ⊂ B′mi we see
that (A′1)A′1∩m → (B′1)m is formally smooth for each maximal ideal m ⊂ B′1.

By construction, the field K ′1 is a filtered colimit of finite extensions of K. Say
K ′1 = colimi∈I Ki. For each i let Ai, resp. Bi be the integral closure of A, resp. B
in Ki, resp. Li = (L⊗K Ki)red. Then it is clear that

A′1 = colimAi and B′1 = colimBi

Since the ring maps Ai → A′1 and Bi → B′1 are injective integral ring maps and
since A′1 and B′1 have finite spectra, we see that for all i large enough the ring
maps Ai → A′1 and Bi → B′1 are bijective on spectra. Once this is true, for all i
large enough the maps Ai → A′1 and Bi → B′1 will be weakly unramified (once the
uniformizer is in the image). It follows from multiplicativity of ramification indices
that Ai → Bi induces weakly unramified maps on all localizations at maximal ideals
of Bi for such i. Increasing i a bit more we see that

Bi ⊗Ai A′1 −→ B′1

induces surjective maps on residue fields (because the residue fields of B′1 are finitely
generated over those of A′1 by Lemma 15.69.22). Picture of residue fields at maximal
ideals lying under a chosen maximal ideal of B′1:

κBi // κBi′
// . . . κB′1

κAi //

OO

κAi′
//

OO

. . . κA′1

OO

Thus κBi is a finitely generated extension of κAi such that the compositum of κBi
and κA′1 in κB′1 is separable over κA′1 . Then that happens already at a finite stage:
for example, say κB′1 is finite separable over κA′1(x1, . . . , xn), then just increase
i such that x1, . . . , xn are in κBi and such that all generators satisfy separable
polynomial equations over κAi(x1, . . . , xn). This means that Ai → Bi is formally
smooth at all maximal ideals of Bi and the proof is complete. �

15.70. Picard groups of rings

Let R be a ring. An invertible R-module is a finite locally free module of rank 1. The
set of isomorphism classes of these modules is often called the class group or Picard
group of R. The group structure is determined by assigning to the isomorphism



15.70. PICARD GROUPS OF RINGS 1271

classes of the invertible modules L and L′ the isomorphism class of L ⊗R L′. The
inverse of an invertible module L is the module

L−1 = HomR(L,R),

namely, the evaluation map L⊗R L−1 → R is an isomorphism. Let us denote the
Picard group of R by Pic(R).

Recall that we have defined in Algebra, Section 10.53 a group K0(R) as the free
group on isomorphism classes of finite projective R-modules modulo the relations
[M ′] + [M ′′] = [M ′ ⊕M ′′].

Lemma 15.70.1. Let R be a ring. There is a map

det : K0(R) −→ Pic(R)

which maps [M ] to the class of the invertible module ∧n(M) if M is a finite locally
free module of rank n.

Proof. Let M be a finite projective R-module. There exists a product decom-
position R = R0 × . . . × Rt such that in the corresponding decomposition M =
M0 × . . . ×Mt of M we have that Mi is finite locally free of rank i over Ri. This
follows from Algebra, Lemma 10.75.2 (to see that the rank is locally constant) and
Algebra, Lemmas 10.20.3 and 10.22.3 (to decompose R into a product). In this
situation we define

det(M) = ∧0
R0

(M0)× . . .× ∧tRt(Mt)

as an R-module. This is a finite locally free module of rank 1 as each term is finite
locally free of rank 1. To finish the proof we have to show that

det(M ′ ⊕M ′′) ∼= det(M ′)⊗ det(M ′′)

whenever M ′ and M ′” are finite projective R-modules. Decompose R into a product
of rings Rij such that M ′ =

∏
M ′ij and M ′′ =

∏
M ′′ij where M ′ij has rank i and

M ′′ij has rank j. This reduces us to the case where M ′ and M ′′ have constant rank
say i and j. In this case we have to prove that

∧i+j(M ′ ⊕M ′′) ∼= ∧i(M ′)⊗ ∧j(M ′′)

the proof of which we omit. �

Lemma 15.70.2. Let R be a ring. There is a map

c : perfect complexes over R −→ K0(R)

with the following properties

(1) c(K[n]) = (−1)nc(K) for a perfect complex K,
(2) if K → L → M → K[1] is a distinguished triangle of perfect complexes,

then c(L) = c(K) + c(M),
(3) if K is represented by a finite complex M• consisting of finite projective

modules, then c(K) =
∑

(−1)i[Mi].

Proof. Let K be a perfect object of D(R). By definition we can represent K by a
finite complex M• of finite projective R-modules. We define c by setting

c(K) =
∑

(−1)n[Mn]

http://stacks.math.columbia.edu/tag/0AFX
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in K0(R). Of course we have to show that this is well defined, but once it is well
defined, then (1) and (3) are immediate. For the moment we view the map c as
defined on complexes of finite projective R-modules.

Suppose that L• → M• is a surjective map of finite complexes of finite projective
R-modules. Let K• be the kernel. Then we obtain short exact sequences of R-
modules

0→ Kn → Ln →Mn → 0

which are split because Mn is projective. Hence K• is also a finite complex of finite
projective R-modules and c(L•) = c(K•) + c(M•) in K0(R).

Suppose given finite complex M• of finite projective R-modules which is acyclic.
Say Mn = 0 for n 6∈ [a, b]. Then we can break M• into short exact sequences

0→Ma →Ma+1 → Na+1 → 0,
0→ Na+1 →Ma+2 → Na+3 → 0,

. . .
0→ N b−3 →M b−2 → N b−2 → 0,

0→ N b−2 →M b−1 →M b → 0

Arguing by descending induction we see that N b−2, . . . , Na+1 are finite projective
R-modules, the sequences are split exact, and

c(M•) =
∑

(−1)[Mn] =
∑

(−1)n([Nn−1] + [Nn]) = 0

Thus our construction gives zero on acyclic complexes.

It follows formally from the results of the preceding two paragraphs that c is well
defined and satisfies (2). Namely, suppose the finite complexes M• and L• of finite
projective R-modules represent the same object of D(R). Then we can represent
the isomorphism by a map f : M• → L• of complexes, see Derived Categories,
Lemma 13.19.8. We obtain a short exact sequence of complexes

0→ L• → C(f)• → K•[1]→ 0

see Derived Categories, Definition 13.9.1. Since f is a quasi-isomorphism, the cone
C(f)• is acyclic (this follows for example from the discussion in Derived Categories,
Section 13.12). Hence

0 = c(C(f)•) = c(L•) + c(K•[1]) = c(L•)− c(K•)

as desired. We omit the proof of (2) which is similar. �

Lemma 15.70.3. Let R be a regular local ring. Let f ∈ R. Then Pic(Rf ) = 0.

Proof. Let L be an invertible Rf -module. In particular L is a finite Rf -module.
There exists a finite R-module M such that Mf

∼= L, see Algebra, Lemma 10.122.3.
By Algebra, Proposition 10.106.1 we see that M has a finite free resolution F• over
R. It follows that L is quasi-isomorphic to a finite complex of free Rf -modules.
Hence by Lemma 15.70.2 we see that [L] = n[Rf ] in K0(R) for some n ∈ Z.
Applying the map of Lemma 15.70.1 we see that L is trivial. �

Lemma 15.70.4. A regular local ring is a UFD.

http://stacks.math.columbia.edu/tag/0AFZ
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Proof. Recall that a regular local ring is a domain, see Algebra, Lemma 10.102.2.
We will prove the unique factorization property by induction on the dimension of
the regular local ring R. If dim(R) = 0, then R is a field and in particular a UFD.
Assume dim(R) > 0. Let x ∈ m, x 6∈ m2. Then R/(x) is regular by Algebra,
Lemma 10.102.3, hence a domain by Algebra, Lemma 10.102.2, hence x is a prime
element. Let p ⊂ R be a height 1 prime. We have to show that p is principal, see
Algebra, Lemma 10.116.6. We may assume x 6∈ p, since if x ∈ p, then p = (x) and
we are done. For every nonmaximal prime q ⊂ R the local ring Rq is a regular local
ring, see Algebra, Lemma 10.106.6. By induction we see that pRq is principal. In
particular, the Rx-module px = pRx ⊂ Rx is a finitely presented Rx-module whose
localization at any prime is free of rank 1. By Algebra, Lemma 10.75.2 we see that
px is an invertible Rx-module. By Lemma 15.70.3 we see that px = (y) for some
y ∈ Rx. We can write y = xef for some f ∈ p and e ∈ Z. Factor f = a1 . . . ar
into irreducible elements of R (Algebra, Lemma 10.116.3). Since p is prime, we see
that ai ∈ p for some i. Since px = (y) is prime and ai|y in Rx, it follows that px is
generated by ai in Rx, i.e., the image of ai in Rx is prime. As x is a prime element,
we find that ai is prime in R by Algebra, Lemma 10.116.7. Since (ai) ⊂ p and p
has height 1 we conclude that (ai) = p as desired. �

15.71. Extensions of valuation rings

This section is the analogue of Section 15.68 for general valuation rings.

Definition 15.71.1. We say that A → B or A ⊂ B is an extension of valuation
rings if A and B are valuation rings and A → B is injective and local. Such an
extension induces a commutative diagram

A \ {0} //

v

��

B \ {0}

v

��
ΓA // ΓB

where ΓA and ΓB are the value groups. We say that B is weakly unramified over
A if the lower horizontal arrow is a bijection. If the extension of residue fields
κA = A/mA ⊂ κB = B/mB is finite, then we set f = [κB : κA] and we call it the
residual degree or residue degree of the extension A ⊂ B.

Note that ΓA → ΓB is injective, because the units of A are the inverse of the units
of B under the map A → B. Note also, that we do not require the extension of
fraction fields to be finite.

Lemma 15.71.2. Let A ⊂ B be an extension of valuation rings with fraction fields
K ⊂ L. If the extension K ⊂ L is finite, then the residue field extension is finite,
the index of ΓA in ΓB is finite, and

[ΓB : ΓA][κB : κA] ≤ [L : K].

Proof. Let b1, . . . , bn ∈ B be units whose images in κB are linearly independent
over κA. Let c1, . . . , cm ∈ B be nonzero elements whose images in ΓB/ΓA are
pairwise distinct. We claim that bicj are K-linearly independent in L. Namely, we
claim a sum ∑

aijbicj

http://stacks.math.columbia.edu/tag/0ASG
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with aij ∈ K not all zero cannot be zero. Choose (i0, j0) with v(ai0j0bi0cj0) minimal.
Replace aij by aij/ai0j0 , so that ai0j0 = 1. Let

P = {(i, j) | v(aijbicj) = v(ai0j0bi0cj0)}

By our choice of c1, . . . , cm we see that (i, j) ∈ P implies j = j0. Hence if (i, j) ∈ P ,
then v(aij) = v(ai0j0) = 0, i.e., aij is a unit. By our choice of b1, . . . , bn we see that∑

(i,j)∈P
aijbi

is a unit in B. Thus the valuation of
∑

(i,j)∈P aijbicj is v(cj0) = v(ai0j0bi0cj0). Since

the terms with (i, j) 6∈ P in the first displayed sum have strictly bigger valuation,
we conclude that this sum cannot be zero, thereby proving the lemma. �

Lemma 15.71.3. Let A → B be a flat local homomorphism of Noetherian local
normal domains. Let f ∈ A and h ∈ B such that f = whn for some n > 1 and
some unit w of B. Assume that for every height 1 prime p ⊂ A there is a height
1 prime q ⊂ B lying over p such that the extension Ap ⊂ Bq is weakly unramified.
Then f = ugn for some g ∈ A and unit u of A.

Proof. The local rings of A and B at height 1 primes are discrete valuation rings
(Algebra, Lemma 10.115.6). Thus the assumption makes sense (via Definition
15.68.1). Let p1, . . . , pr be the primes of A minimal over f . These have height
1 by Algebra, Lemma 10.59.10. For each i let qi,j ⊂ B, j = 1, . . . , ri be the height
1 primes of B lying over pi. Say we number them so that Api → Bqi,1 is weakly
unramified. Since f maps to an nth power times a unit in Bqi,1 we see that the
valuation vi of f in Api is divisible by n. Consider the exact sequence

0→ I → A→
∏

i=1,...,r
Api/p

vi/n
i Api

Applying the exact functor −⊗A B we obtain

0→ I ⊗A B → B →
∏

i=1,...,r

∏
j=1,...,ri

Bqi,j/q
ei,jvi/n
i,j Api

where ei,j is the ramification index of Api → Bqi,j . It follows that I ⊗A B is the
set of elements h′ of B which have valuation ≥ ei,jvi/n at qi,j . Since f = whn in
B we see that h has valuation ei,jvi/n at qi,j . Thus h′/h ∈ B by Algebra, Lemma
10.146.6. It follows that I ⊗A B is a free B-module of rank 1. Therefore I is a free
A-module of rank 1, see Algebra, Lemma 10.75.5. Let g ∈ I be a generator. Then
we see that g and h differ by a unit in B. Working backwards we conclude that the
valuation of g in Api is vi/n. Hence gn and f differ by a unit in A (by Algebra,
Lemma 10.146.6) as desired. �

Lemma 15.71.4. Let A be a valuation ring. Let A → B be an étale ring map
and let m ⊂ B be a prime lying over the maximal ideal of A. Then A ⊂ Bm is an
extension of valuation rings which is weakly unramified.

Proof. The ring A has weak dimension ≤ 1 by Lemma 15.67.17. Then B has
weak dimension ≤ 1 by Lemmas 15.67.4 and 15.67.13. hence the local ring Bm is
a valuation ring by Lemma 15.67.17. Since the extension f.f.(A) ⊂ f.f.(Bm) is
finite, we see that the ΓA has finite index in the value group of Bm. Thus for every
h ∈ Bm there exists an n > 0, an element f ∈ A, and a unit w ∈ Bm such that
f = whn in Bm. We will show that this implies f = ugn for some g ∈ A and unit
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u ∈ A; this will show that the value groups of A and Bm agree, as claimed in the
lemma.

Write A = colimAi as the colimit of its local subrings which are essentially of finite
type over over Z. Since A is a normal domain (Algebra, Lemma 10.48.10), we may
assume that each Ai is normal (here we use that taking normalizations the local
rings remain essentially of finite type over Z by Algebra, Proposition 10.150.31).
For some i we can find an étale extension Ai → Bi such that B = A ⊗Ai Bi, see
Algebra, Lemma 10.138.3. Let mi be the intersection of Bi with m. Then we may
apply Lemma 15.71.3 to the ring map Ai → (Bi)mi to conclude. The hypotheses
of the lemma are satisfied because:

(1) Ai and (Bi)mi are Noetherian as they are essentially of finite type over Z,
(2) Ai → (Bi)mi is flat as Ai → Bi is étale,
(3) Bi is normal as Ai → Bi is étale, see Algebra, Lemma 10.151.7,
(4) for every height 1 prime of Ai there exists a height 1 prime of (Bi)mi lying

over it by Algebra, Lemma 10.109.2 and the fact that Spec((Bi)mi) →
Spec(Ai) is surjective,

(5) the induced extensions (Ai)p → (Bi)q are unramified for every prime q
lying over a prime p as Ai → Bi is étale.

This concludes the proof of the lemma. �

Lemma 15.71.5. Let A be a valuation ring. Let Ah, resp. Ash be its henselization,
resp. strict henselization. Then

A ⊂ Ah ⊂ Ash

are extensions of valuation rings which induce bijections on value groups, i.e., which
are weakly unramified.

Proof. Write Ah = colim(Bi)qi where A→ Bi is étale and qi ⊂ Bi is a prime ideal
lying over mA, see Algebra, Lemma 10.145.21. Then Lemma 15.71.4 tells us that
(Bi)qi is a valuation ring and that the induced map

(A \ {0})/A∗ −→ ((Bi)qi \ {0})/(Bi)∗qi
is bijective. By Algebra, Lemma 10.48.5 we conclude that Ah is a valuation ring.
It also follows that (A \ {0})/A∗ → (Ah \ {0})/(Ah)∗ is bijective. This proves the
lemma for the inclusion A ⊂ Ah. To prove it for A ⊂ Ash we can use exactly the
same argument except we replace Algebra, Lemma 10.145.21 by Algebra, Lemma
10.145.27. Since Ash = (Ah)sh we see that this also proves the assertions of the
lemma for the inclusion Ah ⊂ Ash. �

15.72. Structure of modules over a PID

We work a little bit more generally (following the papers [War69] and [War70] by
Warfield) so that the proofs work over valuation rings.

Lemma 15.72.1. Let P be a module over a ring R. The following are equivalent

(1) P is a direct summand of a direct sum of modules of the form R/fR, for
f ∈ R varying.

(2) for every short exact sequence 0 → A → B → C → 0 of R-modules such
that fA = A ∩ fB for all f ∈ R the map HomR(P,B) → HomR(P,C) is
surjective.
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Proof. Let 0 → A → B → C → 0 be an exact sequence as in (2). To prove
that (1) implies (2) it suffices to prove that HomR(R/fR,B) → HomR(R/fR,C)
is surjective for every f ∈ R. Let ψ : R/fR→ C be a map. Say ψ(1) is the image
of b ∈ B. Then fb ∈ A. Hence there exists an a ∈ A such that fa = fb. Then
f(b − a) = 0 hence we get a morphism ϕ : R/fR → B mapping 1 to b − a which
lifts ψ.

Conversely, assume that (2) holds. Let I be the set of pairs (f, ϕ) where f ∈ R and
ϕ : R/fR→ P . For i ∈ I denote (fi, ϕi) the corresponding pair. Consider the map

B =
⊕

i∈I
R/fiR −→ P

which sends the element r in the summand R/fiR to ϕi(r) in P . Let A = Ker(F →
P ). Then we see that (1) is true if the sequence

0→ A→ B → P → 0

is an exact sequence as in (2). To see this suppose f ∈ R and a ∈ A maps to fb in
B. Write b = (ri)i∈I with almost all ri = 0. Then we see that

f
∑

ϕi(ri) = 0

in P . Hence there is an i0 ∈ I such that fi0 = f and ϕi0(1) =
∑
ϕi(ri). Let

xi0 ∈ R/fi0R be the class of 1. Then we see that

a = (ri)i∈I − (0, . . . , 0, xi0 , 0, . . .)

is an element of A and fa = b as desired. �

Lemma 15.72.2 (Generalized valuation rings). Let R be a ring. The following are
equivalent

(1) For a, b ∈ R either a divides b or b divides a.
(2) Every finitely generated ideal is principal and R is local.
(3) The set of ideals of R are linearly ordered by inclusion.

This holds in particular if R is a valuation ring.

Proof. Assume (2) and let a, b ∈ R. Then (a, b) = (c). If c = 0, then a = b = 0
and a divides b. Assume c 6= 0. Write c = ua + vb and a = wc and b = zc. Then
c(1 − uw − vz) = 0. Since R is local, this implies that 1 − uw − vz ∈ m. Hence
either w or z is a unit, so either a divides b or b divides a. Thus (2) implies (1).

Assume (1). If R has two maximal ideals mi we can choose a ∈ m1 with a 6∈ m2

and b ∈ m2 with b 6∈ m1. Then a does not divide b and b does not divide a. Hence
R has a unique maximal ideal and is local. It follows easily from condition (1) and
induction that every finitely generated ideal is principal. Thus (1) implies (2).

It is straightforward to prove that (1) and (3) are equivalent. The final statement
is Algebra, Lemma 10.48.3. �

Lemma 15.72.3. Let R be a ring satisfying the equivalent conditions of Lemma
15.72.2. Then every finitely presented R-module is isomorphic to a finite direct sum
of modules of the form R/fR.
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Proof. Let M be a finitely presented R-module. Let x1, . . . , xn ∈M be a minimal
set of generators. Let I ⊂ R be the annihilator of M For some i the annihilator
Ii of xi is I: we have I =

⋂
Ii and the set of ideals are linearly ordered. After

renumbering we may assume I1 = I. We set A = Rx1 ⊂ M . Consider the
exact sequence 0 → A → M → M/A → 0. Since A is finite, we see that M/A is a
finitely presented R-module (Algebra, Lemma 10.5.3) with fewer generators. Hence
M/A ∼=

⊕
j=1,...,mR/fjR by induction. On the other hand, we claim that A→M

satisfies the property: if f ∈ R, then fA = A ∩ fM . Namely, if x ∈ A ∩ fM , then
x =

∑
frixi and x = gx1. Hence g = fr1 and we see that x ∈ fA. By Lemma

15.72.1 the sequence is split and we find M ∼= A⊕
⊕

j=1,...,mR/fjR. Then A = R/I

is finitely presented (as a summand of M) and hence I is finitely generated, hence
principal. This finishes the proof. �

Lemma 15.72.4. Let R be a ring such that every local ring of R at a maximal ideal
satisfies the equivalent conditions of Lemma 15.72.2. Then every finitely presented
R-module is a summand of a finite direct sum of modules of the form R/fR for f
in R varying.

Proof. Let M be a finitely presented R-module. We first show that M is a sum-
mand of a direct sum of modules of the form R/fR and at the end we argue the
direct sum can be taken to be finite. Let

0→ A→ B → C → 0

be a short exact sequence of R-modules such that fA = A ∩ fB for all f ∈ R. By
Lemma 15.72.1 we have to show that HomR(M,B) → HomR(M,C) is surjective.
It suffices to prove this after localization at maximal ideals m, see Algebra, Lemma
10.23.1. Note that the localized sequences 0 → Am → Bm → Cm → 0 satisfy the
condition that fAm = Am∩fBm for all f ∈ Rm (because we can write f = uf ′ with
u ∈ Rm a unit and f ′ ∈ R and because localization is exact). Since M is finitely
presented, we see that

HomR(M,B)m = HomRm
(Mm, Bm) and HomR(M,C)m = HomRm

(Mm, Cm)

by Algebra, Lemma 10.10.2. The module Mm is a finitely presented Rm-module.
By Lemma 15.72.3 we see that Mm is a direct sum of modules of the form Rm/fRm.
Thus we conclude by Lemma 15.72.1 that the map on localizations is surjective.

At this point we know that M is a summand of
⊕

i∈I R/fiR. Consider the map
M →

⊕
i∈I R/fiR. Since M is a finite R-module, the image is contained in⊕

i∈I′ R/fiR for some finite subset I ′ ⊂ I. This finishes the proof. �

Definition 15.72.5. Let R be a domain.

(1) We say R is a Bézout domain if every finitely generated ideal of R is
principal.

(2) We say R is an elementary divisor domain if for all n,m ≥ 1 and every
n×m matrix A, there exist invertible matrices U, V of size n× n,m×m
such that

UAV =


f1 0 0 . . .
0 f2 0 . . .
0 0 f3 . . .
. . . . . . . . . . . .


with f1, . . . , fmin(n,m) ∈ R and f1|f2| . . ..

http://stacks.math.columbia.edu/tag/0ASQ
http://stacks.math.columbia.edu/tag/0ASR


1278 15. MORE ON ALGEBRA

It is apparently still an open question as to whether every Bézout domain R is an
elementary divisor domain (or not). This is equivalent to the question of whether
every finitely presented module over R is a direct sum of cyclic modules. The
converse implication is true.

Lemma 15.72.6. An elementary divisor domain is Bézout.

Proof. Let a, b ∈ R be nonzero. Consider the 1 × 2 matrix A = (a b). Then we
see that u(a b)V = (f 0) with u ∈ R invertible and V = (gij) an invertible 2 × 2
matrix. Then f = uag11 + ubg21 and (g11, g21) = R. It follows that (a, b) = (f).
An induction argument (omitted) then shows any finitely generated ideal in R is
generated by one element. �

Lemma 15.72.7. The localization of a Bézout domain is Bézout. Every local ring
of a Bézout domain is a valuation ring. A local domain is Bézout if and only if it
is a valuation ring.

Proof. We omit the proof of the statement on localizations. The final statement
is Algebra, Lemma 10.48.15. The second statement follows from the other two. �

Lemma 15.72.8. Let R be a Bézout domain.

(1) Every finite submodule of a free module is finite free.
(2) Every finitely presented R-module M is a direct sum of a finite free module

and a torsion module Mtors which is a summand of a module of the form⊕
i=1,...,nR/fiR with f1, . . . , fn ∈ R nonzero.

Proof. Proof of (1). Let M ⊂ F be a finite submodule of a free module F . Since M
is finite, we may assume F is a finite free module (details omitted). Say F = R⊕n.
We argue by induction on n. If n = 1, then M is a finitely generated ideal, hence
principal by our assumption that R is Bézout. If n > 1, then we consider the image
I of M under the projection R⊕n → R onto the last summand. If I = (0), then
M ⊂ R⊕n−1 and we are done by induction. If I 6= 0, then I = (f) ∼= R. Hence
M ∼= R⊕Ker(M → I) and we are done by induction as well.

Let M be a finitely presented R-module. Since the localizations of R are maximal
ideals are valuation rings (Lemma 15.72.7) we may apply Lemma 15.72.4. Thus M
is a summand of a module of the form R⊕r ⊕

⊕
i=1,...,nR/fiR with fi 6= 0. Since

taking the torsion submodule is a functor we see that Mtors is a summand of the
module

⊕
i=1,...,nR/fiR and M/Mtors is a summand of R⊕r. By the first part

of the proof we see that M/Mtors is finite free. Hence M ∼= Mtors ⊕M/Mtors as
desired. �

Lemma 15.72.9. Let R be a PID. Every finite R-module M is of isomorphic to a
module of the form

R⊕r ⊕
⊕

i=1,...,n
R/fiR

for some r, n ≥ 0 and f1, . . . , fn ∈ R nonzero.

Proof. A PID is a Noetherian Bézout ring. By Lemma 15.72.8 it suffices to prove
the result if M is torsion. Since M is finite, this means that the annihilator of
M is nonzero. Say fM = 0 for some f ∈ R nonzero. Then we can think of M
as a module over R/fR. Since R/fR is Noetherian of dimension 0 (small detail
omitted) we see that R/fR =

∏
Rj is a finite product of Artinian local rings
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Ri (Algebra, Proposition 10.59.6). Each Ri, being a local ring and a quotient
of a PID, is a generalized valuation ring in the sense of Lemma 15.72.2 (small
detail omitted). Write M =

∏
Mj with Mj = ejM where ej ∈ R/fR is the

idempotent corresponding to the factor Rj . By Lemma 15.72.3 we see that Mj =⊕
i=1,...,nj

Rj/f jiRj for some f ji ∈ Rj . Choose lifts fji ∈ R and choose gji ∈ R
with (gji) = (fj , fji). Then we conclude that

M ∼=
⊕

R/gjiR

as an R-module which finishes the proof. �

One can also prove that a PID is a elementary divisor domain (insert future refer-
ence here), by proving lemmas similar to the following.

Lemma 15.72.10. Let R be a Bézout domain. Let n ≥ 1 and f1, . . . , fn ∈ R
generate the unit ideal. There exists an invertible n × n matrix in R whose first
row is f1 . . . fn.

Proof. This follows from Lemma 15.72.8 but we can also prove it directly as follows.
By induction on n. The result holds for n = 1. Assume n > 1. We may assume
f1 6= 0 after renumbering. Choose f ∈ R such that (f) = (f1, . . . , fn−1). Let A be
an (n − 1) × (n − 1) matrix whose first row is f1/f, . . . , fn−1/f . Choose a, b ∈ R
such that af − bfn = 1 which is possible because 1 ∈ (f1, . . . , fn) = (f, fn). Then
a solution is the matrix

f 0 . . . 0 fn
0 1 . . . 0 0

. . .
0 0 . . . 1 0
b 0 . . . 0 a




0
A

0
0 . . . 0 1


Observe that the left matrix is invertible because it has determinant 1. �
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CHAPTER 16

Smoothing Ring Maps

16.1. Introduction

The main result of this chapter is the following:

A regular map of Noetherian rings is a filtered colimit of smooth ones.

This theorem is due to Popescu, see [Pop90]. A readable exposition of Popescu’s
proof was given by Richard Swan, see [Swa98] who used notes by André and a
paper of Ogoma, see [Ogo94].

Our exposition follows Swan’s, but we first prove an intermediate result which lets
us work in a slightly simpler situation. Here is an overview. We first solve the
following “lifting problem”: A flat infinitesimal deformation of a filtered colimit of
smooth algebras is a filtered colimit of smooth algebras. This result essentially says
that it suffices to prove the main theorem for maps between reduced Noetherian
rings. Next we prove two very clever lemmas called the “lifting lemma” and the
“desingularization lemma”. We show that these lemmas combined reduce the main
theorem to proving a Noetherian, geometrically regular k-algebra Λ is a filtered
limit of smooth k-algebras. Next, we discuss the necessary local tricks that go into
the Popescu-Ogoma-Swan-André proof. Finally, in the last three sections we give
the proof.

We end this introduction with some pointers to references. Let A be a henselian
Noetherian local ring. We sayA has the approximation property if for any f1, . . . , fm ∈
A[x1, . . . , xn] the system of equations f1 = 0, . . . , fm = 0 has a solution in the com-
pletion of A if and only if it has a solution in A. This definition is due to Artin.
Artin first proved the approximation property for analytic systems of equations,
see [Art68]. In [Art69a] Artin proved the approximation property for local rings
essentially of finite type over an excellent discrete valuation ring. Artin conjec-
tured (page 26 of [Art69a]) that every excellent henselian local ring should have
the approximation property.

At some point in time it became a conjecture that that every regular homomorphism
of Noetherian rings is a filtered colimit of smooth algebras (see for example [Ray72],
[Pop81], [Art82], [AD83]). We’re not sure who this conjecture1 is due to. The
relationship with the approximation property is that if A → A∧ is a colimit of
smooth algebras, then the approximation property holds (insert future reference
here). Moreover, the main theorem applies to the map A→ A∧ if A is an excellent
local ring, as one of the conditions of an excellent local ring is that the formal

1The question/conjecture as formulated in [Art82], [AD83], and [Pop81] is stronger and
was shown to be equivalent to the original version in [CP84].

1281



1282 16. SMOOTHING RING MAPS

fibres are geometrically regular. Note that excellent local rings were defined by
Grothendieck and their definition appeared in print in 1965.

In [Art82] it was shown that R → R∧ is a filtered colimit of smooth algebras for
any local ring R essentially of finite type over a field. In [AR88] it was shown that
R → R∧ is a filtered colimit of smooth algebras for any local ring R essentially of
finite type over an excellent discrete valuation ring. Finally, the main theorem was
shown in [Pop85], [Pop86], [Pop90], [Ogo94], and [Swa98] as discussed above.

Conversely, using some of the results above, in [Rot90] it was shown that any local
ring with the approximation property is excellent.

The paper [Spi99] provides an alternative approach to the main theorem, but it
seems hard to read (for example [Spi99, Lemma 5.2] appears to be an incorrectly
reformulated version of [Elk73, Lemma 3]). There is also a Bourbaki lecture about
this material, see [Tei95].

16.2. Colimits

In Categories, Section 4.19 we discuss filtered colimits. In particular, note that
Categories, Lemma 4.21.3 tells us that colimits over filtered index categories are
the same thing as colimits over directed partially ordered sets.

Lemma 16.2.1. Let R→ Λ be a ring map. Let E be a set of R-algebras such that
each A ∈ E is of finite presentation over R. Then the following two statements are
equivalent

(1) Λ is a filtered colimit of elements of E, and
(2) for any R algebra map A → Λ with A of finite presentation over R we

can find a factorization A→ B → Λ with B ∈ E.

Proof. Suppose that I → E , i 7→ Ai is a diagram such that Λ = colimiAi.
Let A → Λ with A of finite presentation over R. Pick a presentation A =
R[x1, . . . , xn]/(f1, . . . , fm). Say A → Λ maps xs to λs ∈ Λ. We can find an
i ∈ Ob(I) and elements as ∈ Ai whose image in Λ is λs. Increasing i if necessary
we may also assume that ft(a1, . . . , an) = 0 in Ai. Hence we can factor A → Λ
through Ai by mapping xs to as.

Conversely, suppose that (2) holds. Consider the category I whose objects are R-
algebra maps A→ Λ with A ∈ E and whose morphisms are commutative diagrams

A //

��

A′

~~
Λ

of R-algebras. We claim that I is a filtered index category and that Λ = colimI A.
To see that I is filtered, let A → Λ and A′ → Λ be two objects. Then we can
factor A⊗RA′ → Λ through an object of I by assumption (2) and the fact that the
elements of E are of finite presentation over R. Suppose that ϕ,ψ : A→ A′ are two
morphisms of I. Let x1, . . . , xn be generators of A as an R-algebra. By assumption
(2) we can factor the R-algebra map A′/(ϕ(xi)− ψ(xi))→ Λ through an object of
I. This proves that I is filtered. We omit the proof that Λ = colimI A. �
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16.3. Singular ideals

Let R → A be a ring map. The singular ideal of A over R is the radical ideal in
A cutting out the singular locus of the morphism Spec(A) → Spec(R). Here is a
formal definition.

Definition 16.3.1. Let R → A be a ring map. The singular ideal of A over R,
denoted HA/R is the unique radical ideal HA/R ⊂ A with

V (HA/R) = {q ∈ Spec(A) | R→ A not smooth at q}

This makes sense because the set of primes where R → A is smooth is open, see
Algebra, Definition 10.132.11. In order to find an explicit set of generators for the
singular ideal we first prove the following lemma.

Lemma 16.3.2. Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm). Let q ⊂ A.
Assume R → A is smooth at q. Then there exists an a ∈ A, a 6∈ q, an integer c,
0 ≤ c ≤ min(n,m), subsets U ⊂ {1, . . . , n}, V ⊂ {1, . . . ,m} of cardinality c such
that

a = a′ det(∂fj/∂xi)j∈V,i∈U

for some a′ ∈ A and
af` ∈ (fj , j ∈ V ) + (f1, . . . , fm)2

for all ` ∈ {1, . . . ,m}.

Proof. Set I = (f1, . . . , fm) so that the naive cotangent complex of A over R is ho-
motopy equivalent to I/I2 →

⊕
Adxi, see Algebra, Lemma 10.129.2. We will use

the formation of the naive cotangent complex commutes with localization, see Alge-
bra, Section 10.129, especially Algebra, Lemma 10.129.13. By Algebra, Definitions
10.132.1 and 10.132.11 we see that (I/I2)a →

⊕
Aadxi is a split injection for some

a ∈ A, a 6∈ p. After renumbering x1, . . . , xn and f1, . . . , fm we may assume that
f1, . . . , fc form a basis for the vector space I/I2 ⊗A κ(q) and that dxc+1, . . . ,dxn
map to a basis of ΩA/R ⊗A κ(q). Hence after replacing a by aa′ for some a′ ∈ A,

a′ 6∈ q we may assume f1, . . . , fc form a basis for (I/I2)a and that dxc+1, . . . ,dxn
map to a basis of (ΩA/R)a. In this situation aN for some large integer N satisfies
the conditions of the lemma (with U = V = {1, . . . , c}). �

We will use the notion of a strictly standard element in a A over R. Our notion is
slightly weaker than the one in Swan’s paper [Swa98]. We also define an elementary
standard element to be one of the type we found in the lemma above. We compare
the different types of elements in Lemma 16.4.7.

Definition 16.3.3. Let R → A be a ring map of finite presentation. We say an
element a ∈ A is elementary standard in A over R if there exists a presentation
A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(16.3.3.1) a = a′ det(∂fj/∂xi)i,j=1,...,c

for some a′ ∈ A and

(16.3.3.2) afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m − c. We say a ∈ A is strictly standard in A over R if there exists
a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(16.3.3.3) a =
∑

I⊂{1,...,n}, |I|=c
aI det(∂fj/∂xi)j=1,...,c, i∈I

http://stacks.math.columbia.edu/tag/07C5
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for some aI ∈ A and

(16.3.3.4) afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m− c.

The following lemma is useful to find implications of (16.3.3.3).

Lemma 16.3.4. Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm) and write
I = (f1, . . . , fn). Let a ∈ A. Then (16.3.3.3) implies there exists an A-linear map
ψ :
⊕

i=1,...,nAdxi → A⊕c such that the composition

A⊕c
(f1,...,fc)−−−−−−→ I/I2 f 7→df−−−−→

⊕
i=1,...,n

Adxi
ψ−→ A⊕c

is multiplication by a. Conversely, if such a ψ exists, then ac satisfies (16.3.3.3).

Proof. This is a special case of Algebra, Lemma 10.14.4. �

Lemma 16.3.5 (Elkik). Let R → A be a ring map of finite presentation. The
singular ideal HA/R is the radical of the ideal generated by strictly standard elements
in A over R and also the radical of the ideal generated by elementary standard
elements in A over R.

Proof. Assume a is strictly standard in A over R. We claim that Aa is smooth
over R, which proves that a ∈ HA/R. Namely, let A = R[x1, . . . , xn]/(f1, . . . , fm),
c, and a′ ∈ A be as in Definition 16.3.3. Write I = (f1, . . . , fm) so that the naive
cotangent complex of A over R is given by I/I2 →

⊕
Adxi. Assumption (16.3.3.4)

implies that (I/I2)a is generated by the classes of f1, . . . , fc. Assumption (16.3.3.3)
implies that the differential (I/I2)a →

⊕
Aadxi has a left inverse, see Lemma

16.3.4. Hence R→ Aa is smooth by definition and Algebra, Lemma 10.129.13.

Let He, Hs ⊂ A be the radical of the ideal generated by elementary, resp. strictly
standard elements of A over R. By definition and what we just proved we have
He ⊂ Hs ⊂ HA/R. The inclusion HA/R ⊂ He follows from Lemma 16.3.2. �

Example 16.3.6. The set of points where a finitely presented ring map is smooth
needn’t be a quasi-compact open. For example, let R = k[x, y1, y2, y3, . . .]/(xyi)
and A = R/(x). Then the smooth locus of R → A is

⋃
D(yi) which is not quasi-

compact.

Lemma 16.3.7. Let R → A be a ring map of finite presentation. Let R → R′ be
a ring map. If a ∈ A is elementary, resp. strictly standard in A over R, then a⊗ 1
is elementary, resp. strictly standard in A⊗R R′ over R′.

Proof. If A = R[x1, . . . , xn]/(f1, . . . , fm) is a presentation of A over R, then A⊗R
R′ = R′[x1, . . . , xn]/(f ′1, . . . , f

′
m) is a presentation of A ⊗R R′ over R′. Here f ′j is

the image of fj in R′[x1, . . . , xn]. Hence the result follows from the definitions. �

Lemma 16.3.8. Let R → A → Λ be ring maps with A of finite presentation over
R. Assume that HA/RΛ = Λ. Then there exists a factorization A → B → Λ with
B smooth over R.

Proof. Choose f1, . . . , fr ∈ HA/R and λ1, . . . , λr ∈ Λ such that
∑
fiλi = 1 in Λ.

Set B = A[x1, . . . , xr]/(f1x1 + . . .+ frxr − 1) and define B → Λ by mapping xi to
λi. Details omitted. �
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16.4. Presentations of algebras

Some of the results in this section are due to Elkik. Note that the algebra C in the
following lemma is a symmetric algebra over A. Moreover, if R is Noetherian, then
C is of finite presentation over R.

Lemma 16.4.1. Let R be a ring and let A be a finitely presented R-algebra. There
exists finite type R-algebra map A → C which has a retraction with the following
two properties

(1) for each a ∈ A such that R → Aa is a local complete intersection (More
on Algebra, Definition 15.23.2) the ring Ca is smooth over Aa and has a
presentation Ca = R[y1, . . . , ym]/J such that J/J2 is free over Ca, and

(2) for each a ∈ A such that Aa is smooth over R the module ΩCa/R is free
over Ca.

Proof. Choose a presentation A = R[x1, . . . , xn]/I and write I = (f1, . . . , fm).
Define the A-module K by the short exact sequence

0→ K → A⊕m → I/I2 → 0

where the jth basis vector ej in the middle is mapped to the class of fj on the
right. Set

C = Sym∗A(I/I2).

The retraction is just the projection onto the degree 0 part of C. We have a
surjection R[x1, . . . , xn, y1, . . . , ym] → C which maps yj to the class of fj in I/I2.
The kernel J of this map is generated by the elements f1, . . . , fm and by elements∑
hjyj with hj ∈ R[x1, . . . , xn] such that

∑
hjej defines an element of K. By

Algebra, Lemma 10.129.4 applied to R→ A→ C and the presentations above and
More on Algebra, Lemma 15.6.11 there is a short exact sequence

(16.4.1.1) I/I2 ⊗A C → J/J2 → K ⊗A C → 0

of C-modules. Let h ∈ R[x1, . . . , xn] be an element with image a ∈ A. We will use
as presentations for the localized rings

Aa = R[x0, x1, . . . , xn]/I ′ and Ca = R[x0, x1, . . . , xn, y1, . . . , ym]/J ′

where I ′ = (hx0 − 1, I) and J ′ = (hx0 − 1, J). Hence I ′/(I ′)2 = Ca ⊕ I/I2 ⊗A Ca
and J ′/(J ′)2 = Ca ⊕ (J/J2)a as Ca-modules. Thus we obtain

(16.4.1.2) Ca ⊕ I/I2 ⊗A Ca → Ca ⊕ (J/J2)a → K ⊗A Ca → 0

as the sequence of Algebra, Lemma 10.129.4 corresponding to R → Aa → Ca and
the presentations above.

Next, assume that a ∈ A is such that Aa is a local complete intersection over R.
Then (I/I2)a is finite projective over Aa, see More on Algebra, Lemma 15.22.3.
Hence we see Ka⊕ (I/I2)a ∼= A⊕ma is free. In particular Ka is finite projective too.
By More on Algebra, Lemma 15.23.6 the sequence (16.4.1.2) is exact on the left.
Hence

J ′/(J ′)2 ∼= Ca ⊕ I/I2 ⊗A Ca ⊕K ⊗A Ca ∼= C⊕m+1
a

This proves (1). Finally, suppose that in addition Aa is smooth over R. Then the
same presentation shows that ΩCa/R is the cokernel of the map

J ′/(J ′)2 −→
⊕

i
Cadxi ⊕

⊕
j
Cadyj

http://stacks.math.columbia.edu/tag/07CE
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The summand Ca of J ′/(J ′)2 in the decomposition above corresponds to hx0 − 1
and hence maps isomorphically to the summand Cadx0. The summand I/I2⊗ACa
of J ′/(J ′)2 maps injectively to

⊕
i=1,...,n Cadxi with quotient ΩAa/R ⊗Aa Ca. The

summand K ⊗A Ca maps injectively to
⊕

j≥1 Cadyj with quotient isomorphic to

I/I2 ⊗A Ca. Thus the cokernel of the last displayed map is the module I/I2 ⊗A
Ca ⊕ ΩAa/R ⊗Aa Ca. Since (I/I2)a ⊕ ΩAa/R is free (from the definition of smooth
ring maps) we see that (2) holds. �

The following proposition was proved for smooth ring maps over henselian pairs by
Elkik in [Elk73]. For smooth ring maps it can be found in [Ara01], where it is
also proven that ring maps between smooth algebras can be lifted.

Proposition 16.4.2. Let R→ R0 be a surjective ring map with kernel I.

(1) If R0 → A0 is a syntomic ring map, then there exists a syntomic ring map
R→ A such that A/IA ∼= A0.

(2) If R0 → A0 is a smooth ring map, then there exists a smooth ring map
R→ A such that A/IA ∼= A0.

Proof. Assume R0 → A0 syntomic, in particular a local complete intersection
(More on Algebra, Lemma 15.23.5). Choose a presentation A0 = R0[x1, . . . , xn]/J0.
Set C0 = Sym∗A0

(J0/J
2
0 ). Note that J0/J

2
0 is a finite projective A0-module (Algebra,

Lemma 10.131.16). By Lemma 16.4.1 the ring map A0 → C0 is smooth and we
can find a presentation C0 = R0[y1, . . . , ym]/K0 with K0/K

2
0 free over C0. By

Algebra, Lemma 10.131.6 we can assume C0 = R0[y1, . . . , ym]/(f1, . . . , f c) where
f1, . . . , f c maps to a basis of K0/K

2
0 over C0. Choose f1, . . . , fc ∈ R[y1, . . . , yc]

lifting f1, . . . , f c and set

C = R[y1, . . . , ym]/(f1, . . . , fc)

By construction C0 = C/IC. By Algebra, Lemma 10.131.11 we can after replacing
C by Cg assume that C is a relative global complete intersection over R. We con-
clude that there exists a finite projective A0-module P0 such that C0 = Sym∗A0

(P0)
is isomorphic to C/IC for some syntomic R-algebra C.

Choose an integer n and a direct sum decomposition A⊕n0 = P0 ⊕Q0. By More on
Algebra, Lemma 15.6.10 we can find an étale ring map C → C ′ which induces an
isomorphism C/IC → C ′/IC ′ and a finite projective C ′-module Q such that Q/IQ
is isomorphic to Q0 ⊗A0

C/IC. Then D = Sym∗C′(Q) is a smooth C ′-algebra (see
More on Algebra, Lemma 15.6.12). Picture

R

��

// C //

��

C ′ //

��

D

��
R/I // A0

// C/IC
∼= // C ′/IC ′ // D/ID
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Observe that our choice of Q gives

D/ID = Sym∗C/IC(Q0 ⊗A0
C/IC)

= Sym∗A0
(Q0)⊗A0 C/IC

= Sym∗A0
(Q0)⊗A0

Sym∗A0
(P0)

= Sym∗A0
(Q0 ⊕ P0)

= Sym∗A0
(A⊕n0 )

= A0[x1, . . . , xn]

Choose f1, . . . , fn ∈ D which map to x1, . . . , xn in D/ID = A0[x1, . . . , xn]. Set
A = D/(f1, . . . , fn). Note that A0 = A/IA. We claim that R → A is syntomic in
a neighbourhood of V (IA). If the claim is true, then we can find a f ∈ A mapping
to 1 ∈ A0 such that Af is syntomic over R and the proof of (1) is finished.

Proof of the claim. Observe that R → D is syntomic as a composition of the
syntomic ring map R → C, the étale ring map C → C ′ and the smooth ring map
C ′ → D (Algebra, Lemmas 10.131.17 and 10.132.10). The question is local on
Spec(D), hence we may assume that D is a relative global complete intersection
(Algebra, Lemma 10.131.15). Say D = R[y1, . . . , ym]/(g1, . . . , gs). Let f ′1, . . . , f

′
n ∈

R[y1, . . . , ym] be lifts of f1, . . . , fn. Then we can apply Algebra, Lemma 10.131.11
to get the claim.

Proof of (2). Since a smooth ring map is syntomic, we can find a syntomic ring
map R→ A such that A0 = A/IA. By assumption the fibres of R→ A are smooth
over primes in V (I) hence R → A is smooth in an open neighbourhood of V (IA)
(Algebra, Lemma 10.132.16). Thus we can replace A by a localization to obtain
the result we want. �

We know that any syntomic ring map R → A is locally a relative global complete
intersection, see Algebra, Lemma 10.131.15. The next lemma says that a vector
bundle over Spec(A) is a relative global complete intersection.

Lemma 16.4.3. Let R → A be a syntomic ring map. Then there exists a smooth
R-algebra map A → C with a retraction such that C is a global relative complete
intersection over R, i.e.,

C ∼= R[x1, . . . , xn]/(f1, . . . , fc)

flat over R and all fibres of dimension n− c.

Proof. Apply Lemma 16.4.1 to get A→ C. By Algebra, Lemma 10.131.6 we can
write C = R[x1, . . . , xn]/(f1, . . . , fc) with fi mapping to a basis of J/J2. The ring
map R → C is syntomic (hence flat) as it is a composition of a syntomic and a
smooth ring map. The dimension of the fibres is n− c by Algebra, Lemma 10.130.4
(the fibres are local complete intersections, so the lemma applies). �

Lemma 16.4.4. Let R → A be a smooth ring map. Then there exists a smooth
R-algebra map A → B with a retraction such that B is standard smooth over R,
i.e.,

B ∼= R[x1, . . . , xn]/(f1, . . . , fc)

and det(∂fj/∂xi)i,j=1,...,c is invertible in B.
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Proof. Apply Lemma 16.4.3 to get a smooth R-algebra map A→ C with a retrac-
tion such that C = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersec-
tion over R. As C is smooth over R we have a short exact sequence

0→
⊕

j=1,...,c
Cfj →

⊕
i=1,...,n

Cdxi → ΩC/R → 0

Since ΩC/R is a projective C-module this sequence is split. Choose a left inverse t

to the first map. Say t(dxi) =
∑
cijfj so that

∑
i
∂fj
∂xi

ci` = δj` (Kronecker delta).
Let

B′ = C[y1, . . . , yc] = R[x1, . . . , xn, y1, . . . , yc]/(f1, . . . , fc)

The R-algebra map C → B′ has a retraction given by mapping yj to zero. We
claim that the map

R[z1, . . . , zn] −→ B′, zi 7−→ xi −
∑

j
cijyj

is étale at every point in the image of Spec(C) → Spec(B′). In ΩB′/R[z1,...,zn] we
have

0 = dfj −
∑

i

∂fj
∂xi

dzi ≡
∑

i,`

∂fj
∂xi

ci`dy` ≡ dyj mod (y1, . . . , yc)ΩB′/R[z1,...,zn]

Since 0 = dzi = dxi modulo
∑
B′dyj + (y1, . . . , yc)ΩB′/R[z1,...,zn] we conclude that

ΩB′/R[z1,...,zn]/(y1, . . . , yc)ΩB′/R[z1,...,zn] = 0.

As ΩB′/R[z1,...,zn] is a finite B′-module by Nakayama’s lemma there exists a g ∈
1 + (y1, . . . , yc) that (ΩB′/R[z1,...,zn])g = 0. This proves that R[z1, . . . , zn] → B′g
is unramified, see Algebra, Definition 10.144.1. For any ring map R → k where
k is a field we obtain an unramified ring map k[z1, . . . , zn] → (B′g) ⊗R k between
smooth k-algebras of dimension n. It follows that k[z1, . . . , zn]→ (B′g)⊗R k is flat
by Algebra, Lemmas 10.124.1 and 10.135.2. By the critère de platitude par fibre
(Algebra, Lemma 10.124.8) we conclude that R[z1, . . . , zn] → B′g is flat. Finally,
Algebra, Lemma 10.138.7 implies that R[z1, . . . , zn] → B′g is étale. Set B = B′g.
Note that C → B is smooth and has a retraction, so also A→ B is smooth and has
a retraction. Moreover, R[z1, . . . , zn] → B is étale. By Algebra, Lemma 10.138.2
we can write

B = R[z1, . . . , zn, w1, . . . , wc]/(g1, . . . , gc)

with det(∂gj/∂wi) invertible in B. This proves the lemma. �

Lemma 16.4.5. Let R → Λ be a ring map. If Λ is a filtered colimit of smooth
R-algebras, then Λ is a filtered colimit of standard smooth R-algebras.

Proof. Let A → Λ be an R-algebra map with A of finite presentation over R.
According to Lemma 16.2.1 we have to factor this map through a standard smooth
algebra, and we know we can factor it as A → B → Λ with B smooth over R.
Choose an R-algebra map B → C with a retraction C → B such that C is standard
smooth over R, see Lemma 16.4.4. Then the desired factorization is A→ B → C →
B → Λ. �

Lemma 16.4.6. Let R→ A be a standard smooth ring map. Let E ⊂ A be a finite
subset of order |E| = n. Then there exists a presentation A = R[x1, . . . , xn+m]/(f1, . . . , fc)
with c ≥ n, with det(∂fj/∂xi)i,j=1,...,c invertible in A, and such that E is the set
of congruence classes of x1, . . . , xn.
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Proof. Choose a presentation A = R[y1, . . . , ym]/(g1, . . . , gd) such that the im-
age of det(∂gj/∂yi)i,j=1,...,d is invertible in A. Choose an enumerations E =
{a1, . . . , an} and choose hi ∈ R[y1, . . . , ym] whose image in A is ai. Consider the
presentation

A = R[x1, . . . , xn, y1, . . . , ym]/(x1 − h1, . . . , xn − hn, g1, . . . , gd)

and set c = n+ d. �

Lemma 16.4.7. Let R → A be a ring map of finite presentation. Let a ∈ A.
Consider the following conditions on a:

(1) Aa is smooth over R,
(2) Aa is smooth over R and ΩAa/R is stably free,
(3) Aa is smooth over R and ΩAa/R is free,
(4) Aa is standard smooth over R,
(5) a is strictly standard in A over R,
(6) a is elementary standard in A over R.

Then we have

(a) (4) ⇒ (3) ⇒ (2) ⇒ (1),
(b) (6) ⇒ (5),
(c) (6) ⇒ (4),
(d) (5) ⇒ (2),
(e) (2) ⇒ the elements ae, e ≥ e0 are strictly standard in A over R,
(f) (4) ⇒ the elements ae, e ≥ e0 are elementary standard in A over R.

Proof. Part (a) is clear from the definitions and Algebra, Lemma 10.132.7. Part
(b) is clear from Definition 16.3.3.

Proof of (c). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that
(16.3.3.1) and (16.3.3.2) hold. Choose h ∈ R[x1, . . . , xn] mapping to a. Then

Aa = R[x0, x1, . . . , xn]/(x0h− 1, f1, . . . , fn).

Write J = (x0h − 1, f1, . . . , fn). By (16.3.3.2) we see that the Aa-module J/J2 is
generated by x0h−1, f1, . . . , fc over Aa. Hence, as in the proof of Algebra, Lemma
10.131.6, we can choose a g ∈ 1 + J such that

Aa = R[x0, . . . , xn, xn+1]/(x0h− 1, f1, . . . , fn, gxn+1 − 1).

At this point (16.3.3.1) implies that R → Aa is standard smooth (use the coordi-
nates x0, x1, . . . , xc, xn+1 to take derivatives).

Proof of (d). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that
(16.3.3.3) and (16.3.3.4) hold. We already know that Aa is smooth over R, see
Lemma 16.3.5. As above we get a presentation Aa = R[x0, x1, . . . , xn]/J with J/J2

free. Then ΩAa/R ⊕ J/J2 ∼= A⊕n+1
a by the definition of smooth ring maps, hence

we see that ΩAa/R is stably free.

Proof of (e). Choose a presentation A = R[x1, . . . , xn]/I with I finitely generated.
By assumption we have a short exact sequence

0→ (I/I2)a →
⊕

i=1,...,n
Aadxi → ΩAa/R → 0

which is split exact. Hence we see that (I/I2)a ⊕ ΩAa/R is a free Aa-module.

Since ΩAa/R is stably free we see that (I/I2)a is stably free as well. Thus replac-
ing the presentation chosen above by A = R[x1, . . . , xn, xn+1, . . . , xn+r]/J with
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J = (I, xn+1, . . . , xn+r) for some r we get that (J/J2)a is (finite) free. Choose
f1, . . . , fc ∈ J which map to a basis of (J/J2)a. Extend this to a list of generators
f1, . . . , fm ∈ J . Consider the presentation A = R[x1, . . . , xn+r]/(f1, . . . , fm). Then
(16.3.3.4) holds for ae for all sufficiently large e by construction. Moreover, since
(J/J2)a →

⊕
i=1,...,nAadxi is a split injection we can find an Aa-linear left inverse.

Writing this left inverse in terms of the basis f1, . . . , fc and clearing denominators
we find a linear map ψ0 : A⊕n → A⊕c such that

A⊕c
(f1,...,fc)−−−−−−→ J/J2 f 7→df−−−−→

⊕
i=1,...,n

Adxi
ψ0−−→ A⊕c

is multiplication by ae0 for some e0 ≥ 1. By Lemma 16.3.4 we see (16.3.3.3) holds
for all ace0 and hence for ae for all e with e ≥ ce0.

Proof of (f). Choose a presentation Aa = R[x1, . . . , xn]/(f1, . . . , fc) such that
det(∂fj/∂xi)i,j=1,...,c is invertible in Aa. We may assume that for some m < n
the classes of the elements x1, . . . , xm correspond ai/1 where a1, . . . , am ∈ A are
generators of A over R, see Lemma 16.4.6. After replacing xi by aNxi for m < i ≤ n
we may assume the class of xi is ai/1 ∈ Aa for some ai ∈ A. Consider the ring map

Ψ : R[x1, . . . , xn] −→ A, xi 7−→ ai.

This is a surjective ring map. By replacing fj by aNfj we may assume that fj ∈
R[x1, . . . , xn] and that Ψ(fj) = 0 (since after all fj(a1/1, . . . , an/1) = 0 in Aa).
Let J = Ker(Ψ). Then A = R[x1, . . . , xn]/J is a presentation and f1, . . . , fc ∈ J
are elements such that (J/J2)a is freely generated by f1, . . . , fc and such that
det(∂fj/∂xi)i,j=1,...,c maps to an invertible element of Aa. It follows that (16.3.3.1)
and (16.3.3.2) hold for ae and all large enough e as desired. �

16.5. The lifting problem

The goal in this section is to prove (Proposition 16.5.3) that the collection of alge-
bras which are filtered colimits of smooth algebras is closed under infinitesimal flat
deformations. The proof is elementary and only uses the results on presentations
of smooth algebras from Section 16.4.

Lemma 16.5.1. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that

(1) I2 = 0, and
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras.

Let ϕ : A → Λ be an R-algebra map with A of finite presentation over R. Then
there exists a factorization

A→ B/J → Λ

where B is a smooth R-algebra and J ⊂ IB is a finitely generated ideal.

Proof. Choose a factorization

A/IA→ B̄ → Λ/IΛ

with B̄ standard smooth over R/I; this is possible by assumption and Lemma
16.4.5. Write

B̄ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)
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and say B̄ → Λ/IΛ maps ti to the class of λi modulo IΛ. Choose g1, . . . , gs ∈
A[t1, . . . , tr] lifting ḡ1, . . . , ḡs. Write ϕ(gi)(λ1, . . . , λr) =

∑
εijµij for some εij ∈ I

and µij ∈ Λ. Define

A′ = A[t1, . . . , tr, δi,j ]/(gi −
∑

εijδij)

and consider the map

A′ −→ Λ, a 7−→ ϕ(a), ti 7−→ λi, δij 7−→ µij

We have

A′/IA′ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)[δij ] ∼= B̄[δij ]

This is a standard smooth algebra over R/I as B̄ is standard smooth. Choose a
presentation A′/IA′ = R/I[x1, . . . , xn]/(f̄1, . . . , f̄c) with det(∂f̄j/∂xi)i,j=1,...,c in-
vertible in A′/IA′. Choose lifts f1, . . . , fc ∈ R[x1, . . . , xn] of f̄1, . . . , f̄c. Then

B = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1 det(∂fj/∂xi)i,j=1,...,c − 1)

is smooth over R. Since smooth ring maps are formally smooth (Algebra, Propo-
sition 10.133.13) there exists an R-algebra map B → A′ which is an isomorphism
modulo I. Then B → A′ is surjective by Nakayama’s lemma (Algebra, Lemma
10.19.1). Thus A′ = B/J with J ⊂ IB finitely generated (see Algebra, Lemma
10.6.3). �

Lemma 16.5.2. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that

(1) I2 = 0,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Let ϕ : B → Λ be an R-algebra map with B smooth over R. Let J ⊂ IB be a
finitely generated ideal. Then there exists R-algebra maps

B
α−→ B′

β−→ Λ

such that B′ is smooth over R, such that α(J) = 0 and such that β ◦α = ϕ mod IΛ.

Proof. If we can prove the lemma in case J = (h), then we can prove the lemma
by induction on the number of generators of J . Namely, suppose that J can be
generated by n elements h1, . . . , hn and the lemma holds for all cases where J is
generated by n−1 elements. Then we apply the case n = 1 to produce B → B′ → Λ
where the first map kills of hn. Then we let J ′ be the ideal of B′ generated by the
images of h1, . . . , hn−1 and we apply the case for n− 1 to produce B′ → B′′ → Λ.
It is easy to verify that B → B′′ → Λ does the job.

Assume J = (h) and write h =
∑
εibi for some εi ∈ I and bi ∈ B. Note that

0 = ϕ(h) =
∑
εiϕ(bi). As Λ is flat over R, the equational criterion for flatness

(Algebra, Lemma 10.38.10) implies that we can find λj ∈ Λ, j = 1, . . . ,m and
aij ∈ R such that ϕ(bi) =

∑
j aijλj and

∑
i εiaij = 0. Set

C = B[x1, . . . , xm]/(bi −
∑

aijxj)

with C → Λ given by ϕ and xj 7→ λj . Choose a factorization

C → B′/J ′ → Λ

http://stacks.math.columbia.edu/tag/07CL
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as in Lemma 16.5.1. Since B is smooth over R we can lift the map B → C → B′/J ′

to a map ψ : B → B′. We claim that ψ(h) = 0. Namely, the fact that ψ agrees
with B → C → B′/J ′ mod I implies that

ψ(bi) =
∑

aijξj + θi

for some ξi ∈ B′ and θi ∈ IB′. Hence we see that

ψ(h) = ψ(
∑

εibi) =
∑

εiaijξj +
∑

εiθi = 0

because of the relations above and the fact that I2 = 0. �

Proposition 16.5.3. Let R → Λ be a ring map. Let I ⊂ R be an ideal. Assume
that

(1) I is nilpotent,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Then Λ is a colimit of smooth R-algebras.

Proof. Since In = 0 for some n, it follows by induction on n that it suffices to
consider the case where I2 = 0. Let ϕ : A → Λ be an R-algebra map with A of
finite presentation over R. We have to find a factorization A → B → Λ with B
smooth over R, see Lemma 16.2.1. By Lemma 16.5.1 we may assume that A = B/J
with B smooth over R and J ⊂ IB a finitely generated ideal. By Lemma 16.5.2 we
can find a (possibly noncommutative) diagram

B
α

//

ϕ
��

B′

β~~
Λ

of R-algebras which commutes modulo I and such that α(J) = 0. The map

D : B −→ IΛ, b 7−→ ϕ(b)− β(α(b))

is a derivation over R hence we can write it as D = ξ ◦ dB/R for some B-linear
map ξ : ΩB/R → IΛ. Since ΩB/R is a finite projective B-module we can write
ξ =

∑
i=1,...,n εiΞi for some εi ∈ I and B-linear maps Ξi : ΩB/R → Λ. (Details

omitted. Hint: write ΩB/R as a direct sum of a finite free module to reduce to the
finite free case.) We define

B′′ = Sym∗B′
(⊕

i=1,...,n
ΩB/R ⊗B,α B′

)
and we define β′ : B′′ → Λ by β on B′ and by

β′|ith summand ΩB/R⊗B,αB′ = Ξi ⊗ β

and α′ : B → B′′ by

α′(b) = α(b)⊕
∑

εidB/R(b)⊗ 1⊕ 0⊕ . . .

At this point the diagram

B
α′

//

ϕ
��

B′′

β′~~
Λ
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does commute. Moreover, it is direct from the definitions that α′(J) = 0 as I2 = 0.
Hence the desired factorization. �

16.6. The lifting lemma

Here is a fiendishly clever lemma.

Lemma 16.6.1. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Suppose we
have R-algebra maps R/π2R → C̄ → Λ/π2Λ with C̄ of finite presentation. Then
there exists an R-algebra homomorphism D → Λ and a commutative diagram

R/π2R //

��

C̄ //

��

Λ/π2Λ

��
R/πR // D/πD // Λ/πΛ

with the following properties

(a) D is of finite presentation,
(b) R→ D is smooth at any prime q with π 6∈ q,
(c) R → D is smooth at any prime q with π ∈ q lying over a prime of C̄

where R/π2R→ C̄ is smooth, and
(d) C̄/πC̄ → D/πD is smooth at any prime lying over a prime of C̄ where

R/π2R→ C̄ is smooth.

Proof. We choose a presentation

C̄ = R[x1, . . . , xn]/(f1, . . . , fm)

We also denote I = (f1, . . . , fm) and Ī the image of I in R/π2R[x1, . . . , xn]. Since
R is Noetherian, so is C̄. Hence the smooth locus of R/π2R→ C̄ is quasi-compact,
see Topology, Lemma 5.8.2. Applying Lemma 16.3.2 we may choose a finite list of
elements a1, . . . , ar ∈ R[x1, . . . , xn] such that

(1) the union of the open subspaces Spec(C̄ak) ⊂ Spec(C̄) cover the smooth
locus of R/π2R→ C̄, and

(2) for each k = 1, . . . , r there exists a finite subset Ek ⊂ {1, . . . ,m} such that
(Ī/Ī2)ak is freely generated by the classes of fj , j ∈ Ek.

Set Ik = (fj , j ∈ Ek) ⊂ I and denote Īk the image of Ik in R/π2R[x1, . . . , xn]. By
(2) and Nakayama’s lemma we see that (Ī/Īk)ak is annihilated by 1 + b′k for some
b′k ∈ Īak . Suppose b′k is the image of bk/(ak)N for some bk ∈ I and some integer N .
After replacing ak by akbk we get

(3) (Īk)ak = (Ī)ak .

Thus, after possibly replacing ak by a high power, we may write

(4) akf` =
∑
j∈Ek h

j
k,`fj + π2gk,`

for any ` ∈ {1, . . . ,m} and some hji,`, gi,` ∈ R[x1, . . . , xn]. If ` ∈ Ek we choose

hjk,` = akδ`,j (Kronecker delta) and gk,` = 0. Set

D = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , pk,`).
Here j ∈ {1, . . . ,m}, k ∈ {1, . . . , r}, ` ∈ {1, . . . ,m}, and

pk,` = akz` −
∑

j∈Ek
hjk,`zj − πgk,`.
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Note that for ` ∈ Ek we have pk,` = 0 by our choices above.

The map R → D is the given one. Say C̄ → Λ/π2Λ maps xi to the class of λi
modulo π2. For an element f ∈ R[x1, . . . , xn] we denote f(λ) ∈ Λ the result of
substituting λi for xi. Then we know that fj(λ) = π2µj for some µj ∈ Λ. Define
D → Λ by the rules xi 7→ λi and zj 7→ πµj . This is well defined because

pk,` 7→ ak(λ)πµ` −
∑

j∈Ek
hjk,`(λ)πµj − πgk,`(λ)

= π
(
ak(λ)µ` −

∑
j∈Ek

hjk,`(λ)µj − gk,`(λ)
)

Substituting xi = λi in (4) above we see that the expression inside the brackets
is annihilated by π2, hence it is annihilated by π as we have assumed AnnΛ(π) =
AnnΛ(π2). The map C̄ → D/πD is determined by xi 7→ xi (clearly well defined).
Thus we are done if we can prove (b), (c), and (d).

Using (4) we obtain the following key equality

πpk,` = πakz` −
∑

j∈Ek
πhjk,`zj − π

2gk,`

= −ak(f` − πz`) + akf` +
∑

j∈Ek
hjk,`(fj − πzj)−

∑
j∈Ek

hjk,`fj − π
2gk,`

= −ak(f` − πz`) +
∑

j∈Ek
hjk,`(fj − πzj)

The end result is an element of the ideal generated by fj − πzj . In particular, we
see that D[1/π] is isomorphic to R[1/π][x1, . . . , xn, z1, . . . , zm]/(fj − πzj) which is
isomorphic to R[1/π][x1, . . . , xn] hence smooth over R. This proves (b).

For fixed k ∈ {1, . . . , r} consider the ring

Dk = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , j ∈ Ek, pk,`)
The number of equations is m = |Ek| + (m − |Ek|) as pk,` is zero if ` ∈ Ek. Also,
note that

(Dk/πDk)ak = R/πR[x1, . . . , xn, 1/ak, z1, . . . , zm]/(fj , j ∈ Ek, pk,`)

= (C̄/πC̄)ak [z1, . . . , zm]/(akz` −
∑

j∈Ek
hjk,`zj)

∼= (C̄/πC̄)ak [zj , j ∈ Ek]

In particular (Dk/πDk)ak is smooth over (C̄/πC̄)ak . By our choice of ak we have
that (C̄/πC̄)ak is smooth over R/πR of relative dimension n− |Ek|, see (2). Hence
for a prime qk ⊂ Dk containing π and lying over Spec(C̄ak) the fibre ring of R→ Dk

is smooth at qk of dimension n. Thus R → Dk is syntomic at qk by our count of
the number of equations above, see Algebra, Lemma 10.131.11. Hence R → Dk is
smooth at qk, see Algebra, Lemma 10.132.16.

To finish the proof, let q ⊂ D be a prime containing π lying over a prime where
R/π2R → C̄ is smooth. Then ak 6∈ q for some k by (1). We will show that the
surjection Dk → D induces an isomorphism on local rings at q. Since we know that
the ring maps C̄/πC̄ → Dk/πDk and R → Dk are smooth at the corresponding
prime qk by the preceding paragraph this will prove (c) and (d) and thus finish the
proof.

First, note that for any ` the equation πpk,` = −ak(f`−πz`)+
∑
j∈Ek h

j
k,`(fj−πzj)

proved above shows that f`−πz` maps to zero in (Dk)ak and in particular in (Dk)qk .
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The relations (4) imply that akf` =
∑
j∈Ek h

j
k,`fj in I/I2. Since (Īk/Ī

2
k)ak is free

on fj , j ∈ Ek we see that

ak′h
j
k,` −

∑
j′∈Ek′

hj
′

k′,`h
j
k,j′

is zero in C̄ak for every k, k′, ` and j ∈ Ek. Hence we can find a large integer N
such that

aNk

(
ak′h

j
k,` −

∑
j′∈Ek′

hj
′

k′,`h
j
k,j′

)
is in Ik + π2R[x1, . . . , xn]. Computing modulo π we have

akpk′,` − ak′pk,` +
∑

hj
′

k′,`pk,j′

= −ak
∑

hj
′

k′,`zj′ + ak′
∑

hjk,`zj +
∑

hj
′

k′,`akzj′ −
∑∑

hj
′

k′,`h
j
k,j′zj

=
∑(

ak′h
j
k,` −

∑
hj
′

k′,`h
j
k,j′

)
zj

with Einstein summation convention. Combining with the above we see aN+1
k pk′,`

is contained in the ideal generated by Ik and π in R[x1, . . . , xn, z1, . . . , zm]. Thus
pk′,` maps into π(Dk)ak . On the other hand, the equation

πpk′,` = −ak′(f` − πz`) +
∑

j′∈Ek′
hj
′

k′,`(fj′ − πzj′)

shows that πpk′,` is zero in (Dk)ak . Since we have assumed that AnnR(π) =
AnnR(π2) and since (Dk)qk is smooth hence flat over R we see that Ann(Dk)qk

(π) =

Ann(Dk)qk
(π2). We conclude that pk′,` maps to zero as well, hence Dq = (Dk)qk

and we win. �

16.7. The desingularization lemma

Here is another fiendishly clever lemma.

Lemma 16.7.1. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnΛ(π) = AnnΛ(π2). Let A→ Λ be an R-algebra map with A of
finite presentation. Assume

(1) the image of π is strictly standard in A over R, and
(2) there exists a section ρ : A/π4A → R/π4R which is compatible with the

map to Λ/π4Λ.

Then we can find R-algebra maps A → B → Λ with B of finite presentation such
that aB ⊂ HB/R where a = AnnR(AnnR(π2)/AnnR(π)).

Proof. Choose a presentation

A = R[x1, . . . , xn]/(f1, . . . , fm)

and 0 ≤ c ≤ min(n,m) such that (16.3.3.3) holds for π and such that

(16.7.1.1) πfc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m−c. Say ρ maps xi to the class of ri ∈ R. Then we can replace xi by
xi − ri. Hence we may assume ρ(xi) = 0 in R/π4R. This implies that fj(0) ∈ π4R
and that A→ Λ maps xi to π4λi for some λi ∈ Λ. Write

fj = fj(0) +
∑

i=1,...,n
rjixi + h.o.t.
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This implies that the constant term of ∂fj/∂xi is rji. Apply ρ to (16.3.3.3) for π
and we see that

π =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I mod π4R

for some rI ∈ R. Thus we have

uπ =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I

for some u ∈ 1 + π3R. By Algebra, Lemma 10.14.4 this implies there exists a n× c
matrix (sik) such that

uπδjk =
∑

i=1,...,n
rjicik for all j, k = 1, . . . , c

(Kronecker delta). We introduce auxiliary variables v1, . . . , vc, w1, . . . , wn and we
set

hi = xi − π2
∑

j=1,...c
sijvj − π3wi

In the following we will use that

R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) = R[v1, . . . , vc, w1, . . . , wn]

without further mention. In R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) we
have

fj = fj(x1 − h1, . . . , xn − hn)

=
∑

i
π2rjisikvk +

∑
i
π3rjiwi mod π4

= π3vj +
∑

π3rjiwi mod π4

for 1 ≤ j ≤ c. Hence we can choose elements gj ∈ R[v1, . . . , vc, w1, . . . , wn]
such that gj = vj +

∑
rjiwi mod π and such that fj = π3gj in the R-algebra

R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn). We set

B = R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(f1, . . . , fn, h1, . . . , hn, g1, . . . , gc).

The map A → B is clear. We define B → Λ by mapping xi → π4λi, vi 7→ 0, and
wi 7→ πλi. Then it is clear that the elements fj and hi are mapped to zero in Λ.
Moreover, it is clear that gi is mapped to an element t of πΛ such that π3t = 0
(as fi = π3gi modulo the ideal generated by the h’s). Hence our assumption that
AnnΛ(π) = AnnΛ(π2) implies that t = 0. Thus we are done if we can prove the
statement about smoothness.

Note that Bπ ∼= Aπ[v1, . . . , vc] because the equations gi = 0 are implied by fi = 0.
Hence Bπ is smooth over R as Aπ is smooth over R by the assumption that π is
strictly standard in A over R, see Lemma 16.3.5.

Set B′ = R[v1, . . . , vc, w1, . . . , wn]/(g1, . . . , gc). As gi = vi +
∑
rjiwi mod π we see

that B′/πB′ = R/πR[w1, . . . , wn]. Hence R → B′ is smooth of relative dimension
n at every point of V (π) by Algebra, Lemmas 10.131.11 and 10.132.16 (the first
lemma shows it is syntomic at those primes, in particular flat, whereupon the second
lemma shows it is smooth).

Let q ⊂ B be a prime with π ∈ q and for some r ∈ a, r 6∈ q. Denote q′ = B′∩q. We
claim the surjection B′ → B induces an isomorphism of local rings (B′)q′ → Bq.
This will conclude the proof of the lemma. Note that Bq is the quotient of (B′)q′

by the ideal generated by fc+j , j = 1, . . . ,m− c. We observe two things: first the
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image of fc+j in (B′)q′ is divisible by π2 and second the image of πfc+j in (B′)q′

can be written as
∑
bj1j2fc+j1fc+j2 by (16.7.1.1). Thus we see that the image of

each πfc+j is contained in the ideal generated by the elements π2fc+j′ . Hence
πfc+j = 0 in (B′)q′ as this is a Noetherian local ring, see Algebra, Lemma 10.49.4.
As R→ (B′)q′ is flat we see that(

AnnR(π2)/AnnR(π)
)
⊗R (B′)q′ = Ann(B′)q′

(π2)/Ann(B′)q′
(π)

Because r ∈ a is invertible in (B′)q′ we see that this module is zero. Hence we see
that the image of fc+j is zero in (B′)q′ as desired. �

Lemma 16.7.2. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A→ Λ and
D → Λ be R-algebra maps with A and D of finite presentation. Assume

(1) π is strictly standard in A over R, and
(2) there exists an R-algebra map A/π4A→ D/π4D compatible with the maps

to Λ/π4Λ.

Then we can find an R-algebra map B → Λ with B of finite presentation and
R-algebra maps A → B and D → B compatible with the maps to Λ such that
HD/RB ⊂ HB/D and HD/RB ⊂ HB/R.

Proof. We apply Lemma 16.7.1 to

D −→ A⊗R D −→ Λ

and the image of π in D. By Lemma 16.3.7 we see that π is strictly standard in
A ⊗R D over D. As our section ρ : (A ⊗R D)/π4(A ⊗R D) → D/π4D we take
the map induced by the map in (2). Thus Lemma 16.7.1 applies and we obtain
a factorization A ⊗R D → B → Λ with B of finite presentation and aB ⊂ HB/D

where

a = AnnD(AnnD(π2)/AnnD(π)).

For any prime q of D such that Dq is flat over R we have AnnDq
(π2)/AnnDq

(π) = 0
because annihilators of elements commutes with flat base change and we assumed
AnnR(π) = AnnR(π2). Because D is Noetherian we see that AnnD(π2)/AnnD(π)
is a finite D-module, hence formation of its annihilator commutes with localization.
Thus we see that a 6⊂ q. Hence we see that D → B is smooth at any prime of B
lying over q. Since any prime of D where R→ D is smooth is one where Dq is flat
over R we conclude that HD/RB ⊂ HB/D. The final inclusion HD/RB ⊂ HB/R

follows because compositions of smooth ring maps are smooth (Algebra, Lemma
10.132.14). �

Lemma 16.7.3. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A → Λ be
an R-algebra map with A of finite presentation and assume π is strictly standard
in A over R. Let

A/π8A→ C̄ → Λ/π8Λ

be a factorization with C̄ of finite presentation. Then we can find a factorization
A → B → Λ with B of finite presentation such that Rπ → Bπ is smooth and such
that

HC̄/(R/π8R) · Λ/π8Λ ⊂
√
HB/RΛ mod π8Λ.

http://stacks.math.columbia.edu/tag/07CT
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Proof. Apply Lemma 16.6.1 to get R → D → Λ with a factorization C̄/π4C̄ →
D/π4D → Λ/π4Λ such that R→ D is smooth at any prime not containing π and at
any prime lying over a prime of C̄/π4C̄ where R/π8R→ C̄ is smooth. By Lemma
16.7.2 we can find a finitely presented R-algebra B and factorizations A→ B → Λ
and D → B → Λ such that HD/RB ⊂ HB/R. We omit the verification that this is
a solution to the problem posed by the lemma. �

16.8. Warmup: reduction to a base field

In this section we apply the lemmas in the previous sections to prove that it suffices
to prove the main result when the base ring is a field, see Lemma 16.8.4.

Situation 16.8.1. Here R→ Λ is a regular ring map of Noetherian rings.

Let R→ Λ be as in Situation 16.8.1. We say PT holds for R→ Λ if Λ is a filtered
colimit of smooth R-algebras.

Lemma 16.8.2. Let Ri → Λi, i = 1, 2 be as in Situation 16.8.1. If PT holds for
Ri → Λi, i = 1, 2, then PT holds for R1 ×R2 → Λ1 × Λ2.

Proof. Omitted. Hint: A product of colimits is a colimit. �

Lemma 16.8.3. Let R → A → Λ be ring maps with A of finite presentation over
R. Let S ⊂ R be a multiplicative set. Let S−1A → B′ → S−1Λ be a factorization
with B′ smooth over S−1R. Then we can find a factorization A → B → Λ such
that some s ∈ S maps to an elementary standard element in B over R.

Proof. We first apply Lemma 16.4.4 to S−1R → B′. Thus we may assume B′ is
standard smooth over S−1R. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say xi 7→
λi in Λ. We may write B′ = S−1R[x1, . . . , xn+m]/(f1, . . . , fc) for some c ≥ n
where det(∂fj/∂xi)i,j=1,...,c is invertible in B′ and such that A → B′ is given by
xi 7→ xi, see Lemma 16.4.6. After multiplying xi, i > n by an element of S and
correspondingly modifying the equations fj we may assume B′ → S−1Λ maps xi
to λi/1 for some λi ∈ Λ for i > n. Choose a relation

1 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some aj ∈ S−1R[x1, . . . , xn+m]. Since each element of S is invertible in B′ we
may (by clearing denominators) assume that fj , aj ∈ R[x1, . . . , xn+m] and that

s0 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some s0 ∈ S. Since gj maps to zero in S−1R[x1, . . . , xn+m]/(f1, . . . , xc) we can
find elements sj ∈ S such that sjgj = 0 in R[x1, . . . , xn+m]/(f1, . . . , fc). Since fj
maps to zero in S−1Λ we can find s′j ∈ S such that s′jfj(λ1, . . . , λn+m) = 0 in Λ.
Consider the ring

B = R[x1, . . . , xn+m]/(s′1f1, . . . , s
′
cfc, g1, . . . , gt)

and the factorization A → B → Λ with B → Λ given by xi 7→ λi. We claim that
s = s0s1 . . . sts

′
1 . . . s

′
c is elementary standard in B over R which finishes the proof.

Namely, sjgj ∈ (f1, . . . , fc) and hence sgj ∈ (s′1f1, . . . , s
′
cfc). Finally, we have

a0 det(∂s′jfj/∂xi)i,j=1,...,c +
∑

j=1,...,c
(s′1 . . . ŝ

′
j . . . s

′
c)ajs

′
jfj = s0s

′
1 . . . s

′
c

which divides s as desired. �
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Lemma 16.8.4. If for every Situation 16.8.1 where R is a field PT holds, then
PT holds in general.

Proof. Assume PT holds for any Situation 16.8.1 where R is a field. Let R → Λ
be as in Situation 16.8.1 arbitrary. Note that R/I → Λ/IΛ is another regular ring
map of Noetherian rings, see More on Algebra, Lemma 15.30.3. Consider the set
of ideals

I = {I ⊂ R | R/I → Λ/IΛ does not have PT}
We have to show that I is empty. If this set is nonempty, then it contains a maximal
element because R is Noetherian. Replacing R by R/I and Λ by Λ/I we obtain a
situation where PT holds for R/I → Λ/IΛ for any nonzero ideal of R. In particular,
we see by applying Proposition 16.5.3 that R is a reduced ring.

Let A→ Λ be an R-algebra homomorphism with A of finite presentation. We have
to find a factorization A→ B → Λ with B smooth over R, see Lemma 16.2.1.

Let S ⊂ R be the set of nonzerodivisors and consider the total ring of fractions
Q = S−1R of R. We know that Q = K1×. . .×Kn is a product of fields, see Algebra,
Lemmas 10.24.4 and 10.30.6. By Lemma 16.8.2 and our assumption PT holds for
the ring map S−1R → S−1Λ. Hence we can find a factorization S−1A → B′ → Λ
with B′ smooth over S−1R.

We apply Lemma 16.8.3 and find a factorization A→ B → Λ such that some π ∈ S
is elementary standard in B over R. After replacing A by B we may assume that π is
elementary standard, hence strictly standard in A. We know that R/π8R→ Λ/π8Λ
satisfies PT. Hence we can find a factorization R/π8R → A/π8A → C̄ → Λ/π8Λ
with R/π8R→ C̄ smooth. By Lemma 16.6.1 we can find an R-algebra map D → Λ
with D smooth over R and a factorization R/π4R→ A/π4A→ D/π4D → Λ/π4Λ.
By Lemma 16.7.2 we can find A → B → Λ with B smooth over R which finishes
the proof. �

16.9. Local tricks

Situation 16.9.1. We are given a Noetherian ring R and an R-algebra map A→ Λ
and a prime q ⊂ Λ. We assume A is of finite presentation over R. In this situation
we denote hA =

√
HA/RΛ.

Let R → A → Λ ⊃ q be as in Situation 16.9.1. We say R → A → Λ ⊃ q can be
resolved if there exists a factorization A→ B → Λ with B of finite presentation and
hA ⊂ hB 6⊂ q. In this case we will call the factorization A→ B → Λ a resolution of
R→ A→ Λ ⊃ q.

Lemma 16.9.2. Let R → A → Λ ⊃ q be as in Situation 16.9.1. Let r ≥ 1 and
π1, . . . , πr ∈ R map to elements of q. Assume

(1) for i = 1, . . . , r we have

AnnR/(π8
1 ,...,π

8
i−1)R(πi) = AnnR/(π8

1 ,...,π
8
i−1)R(π2

i )

and

AnnΛ/(π8
1 ,...,π

8
i−1)Λ(πi) = AnnΛ/(π8

1 ,...,π
8
i−1)Λ(π2

i )

(2) for i = 1, . . . , r the element πi maps to a strictly standard element in A
over R.

http://stacks.math.columbia.edu/tag/07F5
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Then, if

R/(π8
1 , . . . , π

8
r)R→ A/(π8

1 , . . . , π
8
r)A→ Λ/(π8

1 , . . . , π
8
r)Λ ⊃ q/(π8

1 , . . . , π
8
r)Λ

can be resolved, so can R→ A→ Λ ⊃ q.

Proof. We are going to prove this by induction on r.

The case r = 1. Here the assumption is that there exists a factorization A/π8
1 →

C̄ → Λ/π8
1 which resolves the situation modulo π8

1 . Conditions (1) and (2) are the
assumptions needed to apply Lemma 16.7.3. Thus we can “lift” the resolution C̄
to a resolution of R→ A→ Λ ⊃ q.

The case r > 1. In this case we apply the induction hypothesis for r − 1 to the
situation R/π8

1 → A/π8
1 → Λ/π8

1 ⊃ q/π8
1Λ. Note that property (2) is preserved by

Lemma 16.3.7. �

Lemma 16.9.3. Let R → A → Λ ⊃ q be as in Situation 16.9.1. Let p = R ∩ q.
Assume that q is minimal over hA and that Rp → Ap → Λq ⊃ qΛq can be resolved.
Then there exists a factorization A → C → Λ with C of finite presentation such
that HC/RΛ 6⊂ q.

Proof. Let Ap → C → Λq be a resolution of Rp → Ap → Λq ⊃ qΛq. By our
assumption that q is minimal over hA this means that HC/Rp

Λq = Λq. By Lemma
16.3.8 we may assume that C is smooth over Λp. By Lemma 16.4.4 we may assume
that C is standard smooth over Rp. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say
A → Λ is given by xi 7→ λi. Write C = Rp[x1, . . . , xn+m]/(f1, . . . , fc) for some
c ≥ n such that A→ C maps xi to xi and such that det(∂fj/∂xi)i,j=1,...,c is invert-
ible in C, see Lemma 16.4.6. After clearing denominators we may assume f1, . . . , fc
are elements of R[x1, . . . , xn+m]. Of course det(∂fj/∂xi)i,j=1,...,c is not invertible in
R[x1, . . . , xn+m]/(f1, . . . , fc) but it becomes invertible after inverting some element
s0 ∈ R, s0 6∈ p. As gj maps to zero under R[x1, . . . , xn] → A → C we can find
sj ∈ R, sj 6∈ p such that sjgj is zero in R[x1, . . . , xn+m]/(f1, . . . , fc). Write fj =
Fj(x1, . . . , xn+m, 1) for some polynomial Fj ∈ R[x1, . . . , xn, Xn+1, . . . , Xn+m+1] ho-
mogeneous in Xn+1, . . . , Xn+m+1. Pick λn+i ∈ Λ, i = 1, . . . ,m+1 with λn+m+1 6∈ q
such that xn+i maps to λn+i/λn+m+1 in Λq. Then

Fj(λ1, . . . , λn+m+1) = (λn+m+1)deg(Fj)Fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
, 1)

= (λn+m+1)deg(Fj)fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
)

= 0

in Λq. Thus we can find λ0 ∈ Λ, λ0 6∈ q such that λ0Fj(λ1, . . . , λn+m+1) = 0 in Λ.
Now we set B equal to

R[x0, . . . , xn+m+1]/(g1, . . . , gt, x0F1(x1, . . . , xn+m+1), . . . , x0Fc(x1, . . . , xn+m+1))

which we map to Λ by mapping xi to λi. Let b be the image of x0x1s0s1 . . . st in
B. Then Bb is isomorphic to

Rs0s1 [x0, x1, . . . , xn+m+1, 1/x0xn+m+1]/(f1, . . . , fc)

which is smooth over R by construction. Since b does not map to an element of q,
we win. �
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Lemma 16.9.4. Let R → A → Λ ⊃ q be as in Situation 16.9.1. Let p = R ∩ q.
Assume

(1) q is minimal over hA,
(2) Rp → Ap → Λq ⊃ qΛq can be resolved, and
(3) dim(Λq) = 0.

Then R→ A→ Λ ⊃ q can be resolved.

Proof. By (3) the ring Λq is Artinian local hence qΛq is nilpotent. Thus (hA)NΛq =
0 for some N > 0. Thus there exists a λ ∈ Λ, λ 6∈ q such that λ(hA)N = 0 in Λ.
Say HA/R = (a1, . . . , ar) so that λaNi = 0 in Λ. By Lemma 16.9.3 we can find a
factorization A → C → Λ with C of finite presentation such that hC 6⊂ q. Write
C = A[x1, . . . , xn]/(f1, . . . , fm). Set

B = A[x1, . . . , xn, y1, . . . , yr, z, tij ]/(fj −
∑

yitij , zyi)

where tij is a set of rm variables. Note that there is a map B → C[yi, z]/(yiz)
given by setting tij equal to zero. The map B → Λ is the composition B →
C[yi, z]/(yiz)→ Λ where C[yi, z]/(yiz)→ Λ is the given map C → Λ, maps z to λ,
and maps yi to the image of aNi in Λ.

We claim that B is a solution for R → A → Λ ⊃ q. First note that Bz is iso-
morphic to C[y1, . . . , yr, z, z

−1] and hence is smooth. On the other hand, By`
∼=

A[xi, yi, y
−1
` , tij , i 6= `] which is smooth over A. Thus we see that z and a`y` (com-

positions of smooth maps are smooth) are all elements of HB/R. This proves the
lemma. �

16.10. Separable residue fields

In this section we explain how to solve a local problem in the case of a separable
residue field extension.

Lemma 16.10.1 (Ogoma). Let A be a Noetherian ring and let M be a finite A-
module. Let S ⊂ A be a multiplicative set. If π ∈ A and Ker(π : S−1M →
S−1M) = Ker(π2 : S−1M → S−1M) then there exists an s ∈ S such that for any
n > 0 we have Ker(snπ : M →M) = Ker((snπ)2 : M →M).

Proof. Let K = Ker(π : M → M) and K ′ = {m ∈ M | π2m = 0 in S−1M} and
Q = K ′/K. Note that S−1Q = 0 by assumption. Since A is Noetherian we see
that Q is a finite A-module. Hence we can find an s ∈ S such that s annihilates Q.
Then s works. �

Lemma 16.10.2. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let I ⊂ q
be a prime. Let n, e be positive integers Assume that qnΛq ⊂ IΛq and that Λq is a
regular local ring of dimension d. Then there exists an n > 0 and π1, . . . , πd ∈ Λ
such that

(1) (π1, . . . , πd)Λq = qΛq,
(2) πn1 , . . . , π

n
d ∈ I, and

(3) for i = 1, . . . , d we have

AnnΛ/(πe1 ,...,π
e
i−1)Λ(πi) = AnnΛ/(πe1 ,...,π

e
i−1)Λ(π2

i ).
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Proof. Set S = Λ \ q so that Λq = S−1Λ. First pick π1, . . . , πd with (1) which is
possible as Λq is regular. By assumption πni ∈ IΛq. Thus we can find s1, . . . , sd ∈ S
such that siπ

n
i ∈ I. Replacing πi by siπi we get (2). Note that (1) and (2) are

preserved by further multiplying by elements of S. Suppose that (3) holds for
i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that π1, . . . , πd is a regular sequence
in S−1Λ, see Algebra, Lemma 10.102.3. In particular πe1, . . . , π

e
t , πt+1 is a regular

sequence in S−1Λ = Λq by Algebra, Lemma 10.67.10. Hence we see that

AnnS−1Λ/(πe1 ,...,π
e
i−1)(πi) = AnnS−1Λ/(πe1 ,...,π

e
i−1)(π

2
i ).

Thus we get (3) for i = t+1 after replacing πt+1 by sπt+1 for some s ∈ S by Lemma
16.10.1. By induction on t this produces a sequence satisfying (1), (2), and (3). �

Lemma 16.10.3. Let k → A→ Λ ⊃ q be as in Situation 16.9.1 where

(1) k is a field,
(2) Λ is Noetherian,
(3) q is minimal over hA,
(4) Λq is a regular local ring, and
(5) the field extension k ⊂ κ(q) is separable.

Then k → A→ Λ ⊃ q can be resolved.

Proof. Set d = dim Λq. Set R = k[x1, . . . , xd]. Choose n > 0 such that qnΛq ⊂
hAΛq which is possible as q is minimal over hA. Choose generators a1, . . . , ar of
HA/R. Set

B = A[x1, . . . , xd, zij ]/(x
n
i −

∑
zijaj)

Each Baj is smooth over R it is a polynomial algebra over Aaj [x1, . . . , xd] and Aaj
is smooth over k. Hence Bxi is smooth over R. Let B → C be the R-algebra map
constructed in Lemma 16.4.1 which comes with a R-algebra retraction C → B.
In particular a map C → Λ fitting into the diagram above. By construction Cxi
is a smooth R-algebra with ΩCxi/R free. Hence we can find c > 0 such that xci
is strictly standard in C/R, see Lemma 16.4.7. Now choose π1, . . . , πd ∈ Λ as in
Lemma 16.10.2 where n = n, e = 8c, q = q and I = hA. Write πni =

∑
λijaj

for some πij ∈ Λ. There is a map B → Λ given by xi 7→ πi and zij 7→ λij . Set
R = k[x1, . . . , xd]. Diagram

R // B

��
k

OO

// A

OO

// Λ

Now we apply Lemma 16.9.2 to R → C → Λ ⊃ q and the sequence of elements
xc1, . . . , x

c
d of R. Assumption (2) is clear. Assumption (1) holds for R by inspection

and for Λ by our choice of π1, . . . , πd. (Note that if AnnΛ(π) = AnnΛ(π2), then we
have AnnΛ(π) = AnnΛ(πc) for all c > 0.) Thus it suffices to resolve

R/(xe1, . . . , x
e
d)→ C/(xe1, . . . , x

e
d)→ Λ/(πe1, . . . , π

e
d) ⊃ q/(πe1, . . . , π

e
d)

for e = 8c. By Lemma 16.9.4 it suffices to resolve this after localizing at q. But
since x1, . . . , xd map to a regular sequence in Λq we see that R → Λ is flat, see
Algebra, Lemma 10.124.2. Hence

R/(xe1, . . . , x
e
d)→ Λq/(π

e
1, . . . , π

e
d)
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is a flat ring map of Artinian local rings. Moreover, this map induces a separable
field extension on residue fields by assumption. Thus this map is a filtered colimit
of smooth algebras by Algebra, Lemma 10.147.11 and Proposition 16.5.3. Existence
of the desired solution follows from Lemma 16.2.1. �

16.11. Inseparable residue fields

In this section we explain how to solve a local problem in the case of an inseparable
residue field extension.

Lemma 16.11.1. Let k be a field of characteristic p > 0. Let (Λ,m,K) be an
Artinian local k-algebra. Assume that dimH1(LK/k) < ∞. Then Λ is a filtered
colimit of Artinian local k-algebras A with each map A → Λ flat, with mAΛ = m,
and with A essentially of finite type over k.

Proof. Note that the flatness of A → Λ implies that A → Λ is injective, so the
lemma really tells us that Λ is a directed union of these types of subrings A ⊂ Λ.
Let n be the minimal integer such that mn = 0. We will prove this lemma by
induction on n. The case n = 1 is clear as a field extension is a union of finitely
generated field extensions.

Pick λ1, . . . , λd ∈ m which generate m. As K is formally smooth over Fp (see
Algebra, Lemma 10.147.7) we can find a ring map σ : K → Λ which is a section of
the quotient map Λ→ K. In general σ is not a k-algebra map. Given σ we define

Ψσ : K[x1, . . . , xd] −→ Λ

using σ on elements of K and mapping xi to λi. Claim: there exists a σ : K → Λ
and a subfield k ⊂ F ⊂ K finitely generated over k such that the image of k in Λ
is contained in Ψσ(F [x1, . . . , xd]).

We will prove the claim by induction on the least integer n such that mn = 0. It is
clear for n = 1. If n > 1 set I = mn−1 and Λ′ = Λ/I. By induction we may assume
given σ′ : K → Λ′ and k ⊂ F ′ ⊂ K finitely generated such that the image of k →
Λ → Λ′ is contained in A′ = Ψσ′(F

′[x1, . . . , xd]). Denote τ ′ : k → A′ the induced
map. Choose a lift σ : K → Λ of σ′ (this is possible by the formal smoothness
of K/Fp we mentioned above). For later reference we note that we can change σ
to σ + D for some derivation D : K → I. Set A = F [x1, . . . , xd]/(x1, . . . , xd)

n.
Then Ψσ induces a ring map Ψσ : A → Λ. The composition with the quotient
map Λ→ Λ′ induces a surjective map A→ A′ with nilpotent kernel. Choose a lift
τ : k → A of τ ′ (possible as k/Fp is formally smooth). Thus we obtain two maps
k → Λ, namely Ψσ ◦ τ : k → Λ and the given map i : k → Λ. These maps agree
modulo I, whence the difference is a derivation θ = i− Ψσ ◦ τ : k → I. Note that
if we change σ into σ +D then we change θ into θ −D|k.

Choose a set of elements {yj}j∈J of k whose differentials dyj form a basis of Ωk/Fp .
The Jacobi-Zariski sequence for Fp ⊂ k ⊂ K is

0→ H1(LK/k)→ Ωk/Fp ⊗K → ΩK/Fp → ΩK/k → 0

As dimH1(LK/k) <∞ we can find a finite subset J0 ⊂ J such that the image of the
first map is contained in

⊕
j∈J0

Kdyj . Hence the elements dyj , j ∈ J \ J0 map to

http://stacks.math.columbia.edu/tag/07FG
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K-linearly independent elements of ΩK/Fp . Therefore we can choose a D : K → I
such that θ −D|k = ξ ◦ d where ξ is a composition

Ωk/Fp =
⊕

j∈J
kdyj −→

⊕
j∈J0

kdyj −→ I

Let fj = ξ(dyj) ∈ I for j ∈ J0. Change σ into σ + D as above. Then we see
that θ(a) =

∑
j∈J0

ajfj for a ∈ k where da =
∑
ajdyj in Ωk/Fp . Note that I is

generated by the monomials λE = λe11 . . . λedd of total degree |E| =
∑
ei = n − 1

in λ1, . . . , λd. Write fj =
∑
E cj,Eλ

E with cj,E ∈ K. Replace F ′ by F = F ′(cj,E).
Then the claim holds.

Choose σ and F as in the claim. The kernel of Ψσ is generated by finitely many
polynomials g1, . . . , gt ∈ K[x1, . . . , xd] and we may assume their coefficients are in
F after enlarging F by adjoining finitely many elements. In this case it is clear that
the map A = F [x1, . . . , xd]/(g1, . . . , gt)→ K[x1, . . . , xd]/(g1, . . . , gt) = Λ is flat. By
the claim A is a k-subalgebra of Λ. It is clear that Λ is the filtered colimit of these
algebras, as K is the filtered union of the subfields F . Finally, these algebras are
essentially of finite type over k by Algebra, Lemma 10.52.3. �

Lemma 16.11.2. Let k be a field of characteristic p > 0. Let Λ be a Noetherian
geometrically regular k-algebra. Let q ⊂ Λ be a prime ideal. Let n ≥ 1 be an
integer and let E ⊂ Λq/q

nΛq be a finite subset. Then we can find m ≥ 0 and
ϕ : k[y1, . . . , ym]→ Λ with the following properties

(1) setting p = ϕ−1(q) we have qΛq = pΛq and k[y1, . . . , ym]p → Λq is flat,
(2) there is a factorization by homomorphisms of local Artinian rings

k[y1, . . . , ym]p/p
nk[y1, . . . , ym]p → D → Λq/q

nΛq

where the first arrow is essentially smooth and the second is flat,
(3) E is contained in D modulo qnΛq.

Proof. Set Λ̄ = Λq/q
nΛq. Note that dimH1(Lκ(q)/k) < ∞ by More on Algebra,

Proposition 15.25.1. Pick A ⊂ Λ̄ containing E such that A is local Artinian,
essentially of finite type over k, the map A → Λ̄ is flat, and mA generates the
maximal ideal of Λ̄, see Lemma 16.11.1. Denote F = A/mA the residue field so
that k ⊂ F ⊂ K. Pick λ1, . . . , λt ∈ Λ which map to elements of A in Λ̄ such that
moreover the images of dλ1, . . . ,dλt form a basis of ΩF/k. Consider the map ϕ′ :

k[y1, . . . , yt]→ Λ sending yj to λj . Set p′ = (ϕ′)−1(q). By More on Algebra, Lemma
15.25.2 the ring map k[y1, . . . , yt]p′ → Λq is flat and Λq/p

′Λq is regular. Thus we
can choose further elements λt+1, . . . , λm ∈ Λ which map into A ⊂ Λ̄ and which
map to a regular system of parameters of Λq/p

′Λq. We obtain ϕ : k[y1, . . . , ym]→ Λ
having property (1) such that k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p → Λ̄ factors through
A. Thus k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p → A is flat by Algebra, Lemma 10.38.8.
By construction the residue field extension κ(p) ⊂ F is finitely generated and
ΩF/κ(p) = 0. Hence it is finite separable by More on Algebra, Lemma 15.24.1.
Thus k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p → A is finite by Algebra, Lemma 10.52.3.
Finally, we conclude that it is étale by Algebra, Lemma 10.138.7. Since an étale
ring map is certainly essentially smooth we win. �

Lemma 16.11.3. Let ϕ : k[y1, . . . , ym]→ Λ, n, q, p and

k[y1, . . . , ym]p/p
n → D → Λq/q

nΛq

http://stacks.math.columbia.edu/tag/07FH
http://stacks.math.columbia.edu/tag/07FI
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be as in Lemma 16.11.2. Then for any λ ∈ Λ \ q there exists an integer q > 0 and
a factorization

k[y1, . . . , ym]p/p
n → D → D′ → Λq/q

nΛq

such that D → D′ is an essentially smooth map of local Artinian rings, the last
arrow is flat, and λq is in D′.

Proof. Set Λ̄ = Λq/q
nΛq. Let λ̄ be the image of λ in Λ̄. Let α ∈ κ(q) be the image

of λ in the residue field. Let k ⊂ F ⊂ κ(q) be the residue field of D. If α is in
F then we can find an x ∈ D such that xλ̄ = 1 mod q. Hence (xλ̄)q = 1 mod (q)q

if q is divisible by p. Hence λ̄q is in D. If α is transcendental over F , then we
can take D′ = (D[λ̄])m equal to the subring generated by D and λ̄ localized at
m = D[λ̄] ∩ qΛ̄. This works because D[λ̄] is in fact a polynomial algebra over D
in this case. Finally, if λ mod q is algebraic over F , then we can find a p-power q
such that αq is separable algebraic over F , see Fields, Section 9.25. Note that D
and Λ̄ are henselian local rings, see Algebra, Lemma 10.145.11. Let D → D′ be
a finite étale extension whose residue field extension is F ⊂ F (αq), see Algebra,
Lemma 10.145.8. Since Λ̄ is henselian and F (αq) is contained in its residue field
we can find a factorization D′ → Λ̄. By the first part of the argument we see that
λ̄qq

′ ∈ D′ for some q′ > 0. �

Lemma 16.11.4. Let k → A→ Λ ⊃ q be as in Situation 16.9.1 where

(1) k is a field of characteristic p > 0,
(2) Λ is Noetherian and geometrically regular over k,
(3) q is minimal over hA.

Then k → A→ Λ ⊃ q can be resolved.

Proof. The lemma is proven by the following steps in the given order. We will
justify each of these steps below.

(1) Pick an integer N > 0 such that qNΛq ⊂ HA/kΛq.
(2) Pick generators a1, . . . , at ∈ A of the ideal HA/R.
(3) Set d = dim(Λq).
(4) Set B = A[x1, . . . , xd, zij ]/(x

2N
i −

∑
zijaj).

(5) Consider B as a k[x1, . . . , xd]-algebra and let B → C be as in Lemma
16.4.1. We also obtain a section C → B.

(6) Choose c > 0 such that each xci is strictly standard in C over k[x1, . . . , xd].
(7) Set n = N + dc and e = 8c.
(8) Let E ⊂ Λq/q

nΛq be the images of generators of A as a k-algebra.
(9) Choose an integer m and a k-algebra map ϕ : k[y1, . . . , ym] → Λ and a

factorization by local Artinian rings

k[y1, . . . , ym]p/p
nk[y1, . . . , ym]p → D → Λq/q

nΛq

such that the first arrow is essentially smooth, the second is flat, E is
contained in D, with p = ϕ−1(q) the map k[y1, . . . , ym]p → Λq is flat, and
pΛq = qΛq.

(10) Choose π1, . . . , πd ∈ p which map to a regular system of parameters of
k[y1, . . . , ym]p.

(11) Let R = k[y1, . . . , ym, t1, . . . , tm] and γi = πiti.
(12) If necessary modify the choice of πi such that for i = 1, . . . , d we have

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

http://stacks.math.columbia.edu/tag/07FJ
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(13) There exist δ1, . . . , δd ∈ Λ, δi 6∈ q and a factorization D → D′ → Λq/q
nΛq

with D′ local Artinian, D → D′ essentially smooth, the map D′ →
Λq/q

nΛq flat such that, with π′i = δiπi, we have for i = 1, . . . , d
(a) (π′i)

2N =
∑
ajλij in Λ where λij mod qnΛq is an element of D′,

(b) AnnΛ/(π′e1,...,π
′e
i−1)(π

′
i) = AnnΛ/(π′e1,...,π

′e
i−1)(π

′2
i ),

(c) δi mod qnΛq is an element of D′.
(14) Define B → Λ by sending xi to π′i and zij to λij found above. Define

C → Λ by composing the map B → Λ with the retraction C → B.
(15) Map R → Λ by ϕ on k[y1, . . . , ym] and by sending ti to δi. Further

introduce a map

k[x1, . . . , xd] −→ R = k[y1, . . . , ym, t1, . . . , td]

by sending xi to γi = πiti.
(16) It suffices to resolve

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

(17) Set I = (γe1 , . . . , γ
e
d) ⊂ R.

(18) It suffices to resolve

R/I → C ⊗k[x1,...,xd] R/I → Λ/IΛ ⊃ q/IΛ

(19) We denote r ⊂ R = k[y1, . . . , ym, t1, . . . , td] the inverse image of q.
(20) It suffices to resolve

(R/I)r → C ⊗k[x1,...,xd] (R/I)r → Λq/IΛq ⊃ qΛq/IΛq

(21) Set J = (πe1, . . . , π
e
d) in k[y1, . . . , ym].

(22) It suffices to resolve

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

(23) It suffices to resolve

(R/pnR)p → C ⊗k[x1,...,xd] (R/pnR)p → Λq/q
nΛq ⊃ qΛq/q

nΛq

(24) It suffices to resolve

(R/pnR)p → B ⊗k[x1,...,xd] (R/pnR)p → Λq/q
nΛq ⊃ qΛq/q

nΛq

(25) The ring D′[t1, . . . , td] is given the structure of an Rp/p
nRp-algebra by

the given map k[y1, . . . , ym]p/p
nk[y1, . . . , ym]p → D′ and by sending ti to

ti. It suffices to find a factorization

B ⊗k[x1,...,xd] (R/pnR)p → D′[t1, . . . , td]→ Λq/q
nΛq

where the second arrow sends ti to δi and induces the given homomor-
phism D′ → Λq/q

nΛq.
(26) Such a factorization exists by our choice of D′ above.

We now give the justification for each of the steps, except that we skip justifying
the steps which just introduce notation.

Ad (1). This is possible as q is minimal over hA =
√
HA/kΛ.

Ad (6). Note that Aai is smooth over k. Hence Baj , which is isomorphic to a
polynomial algebra over Aaj [x1, . . . , xd], is smooth over k[x1, . . . , xd]. Thus Bxi
is smooth over k[x1, . . . , xd]. By Lemma 16.4.1 we see that Cxi is smooth over
k[x1, . . . , xd] with finite free module of differentials. Hence some power of xi is
strictly standard in C over k[x1, . . . , xn] by Lemma 16.4.7.
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Ad (9). This follows by applying Lemma 16.11.2.

Ad (10). Since k[y1, . . . , ym]p → Λq is flat and pΛq = qΛq by construction we
see that dim(k[y1, . . . , ym]p) = d by Algebra, Lemma 10.108.7. Thus we can find
π1, . . . , πd ∈ Λ which map to a regular system of parameters in Λq.

Ad (12). By Algebra, Lemma 10.102.3 any permutation of the sequence π1, . . . , πd
is a regular sequence in k[y1, . . . , ym]p. Hence γ1 = π1t1, . . . , γd = πdtd is a regular
sequence in Rp = k[y1, . . . , ym]p[t1, . . . , td], see Algebra, Lemma 10.67.11. Let S =
k[y1, . . . , ym] \ p so that Rp = S−1R. Note that π1, . . . , πd and γ1, . . . , γd remain
regular sequences if we multiply our πi by elements of S. Suppose that

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

holds for i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that γe1 , . . . , γ
e
t , γt+1 is a regular

sequence in S−1R by Algebra, Lemma 10.67.10. Hence we see that

AnnS−1R/(γe1 ,...,γ
e
i−1)(γi) = AnnS−1R/(γe1 ,...,γ

e
i−1)(γ

2
i ).

Thus we get

AnnR/(γe1 ,...,γet )R(γt+1) = AnnR/(γe1 ,...,γet )R(γ2
t+1)

after replacing πt+1 by sπt+1 for some s ∈ S by Lemma 16.10.1. By induction on
t this produces the desired sequence.

Ad (13). Let S = Λ \ q so that Λq = S−1Λ. Set Λ̄ = Λq/q
nΛq. Suppose that

we have a t ∈ {0, . . . , d} and δ1, . . . , δt ∈ S and a factorization D → D′ → Λ̄ as
in (13) such that (a), (b), (c) hold for i = 1, . . . , t. We have πNt+1 ∈ HA/kΛq as

qNΛq ⊂ HA/kΛq by (1). Hence πNt+1 ∈ HA/kΛ̄. Hence πNt+1 ∈ HA/kD
′ as D′ → Λ̄ is

faithfully flat, see Algebra, Lemma 10.79.11. Recall that HA/k = (a1, . . . , at). Say

πNt+1 =
∑
ajdj in D′ and choose cj ∈ Λq lifting dj ∈ D′. Then πNt+1 =

∑
cjaj + ε

with ε ∈ qnΛq ⊂ qn−NHA/kΛq. Write ε =
∑
ajc
′
j for some c′j ∈ qn−NΛq. Hence

π2N
t+1 =

∑
(πNt+1cj + πNt+1c

′
j)aj . Note that πNt+1c

′
j maps to zero in Λ̄; this trivial but

key observation will ensure later that (a) holds. Now we choose s ∈ S such that
there exist µt+1j ∈ Λ such that on the one hand πNt+1cj + πNt+1c

′
j = µt+1j/s

2N in

S−1Λ and on the other (sπt+1)2N =
∑
µt+1jaj in Λ (minor detail omitted). We

may further replace s by a power and enlarge D′ such that s maps to an element of
D′. With these choices µt+1j maps to s2Ndj which is an element of D′. Note that
π1, . . . , πd are a regular sequence of parameters in S−1Λ by our choice of ϕ. Hence
π1, . . . , πd forms a regular sequence in Λq by Algebra, Lemma 10.102.3. It follows
that π′

e
1, . . . , π

′e
t , sπt+1 is a regular sequence in S−1Λ by Algebra, Lemma 10.67.10.

Thus we get

AnnS−1Λ/(π′e1,...,π
′e
t )

(sπt+1) = AnnS−1Λ/(π′e1,...,π
′e
t )

((sπt+1)2).

Hence we may apply Lemma 16.10.1 to find an s′ ∈ S such that

AnnΛ/(π′e1,...,π
′e
t )

((s′)qsπt+1) = AnnΛ/(π′e1,...,π
′e
t )

(((s′)qsπt+1)2).

for any q > 0. By Lemma 16.11.3 we can choose q and enlarge D′ such that (s′)q

maps to an element of D′. Setting δt+1 = (s′)qs and we conclude that (a), (b),
(c) hold for i = 1, . . . , t + 1. For (a) note that λt+1j = (s′)2Nqµt+1j works. By
induction on t we win.

Ad (16). By construction the radical of H(C⊗k[x1,...,xd]R)/RΛ contains hA. Namely,

the elements aj ∈ HA/k map to elements of HB/k[x1,...,xn], hence map to elements
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of HC/k[x1,...,xn], hence aj ⊗ 1 map to elements of HC⊗k[x1,...,xd]R/R. Moreover, if

we have a solution C ⊗k[x1,...,xn] R→ T → Λ of

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

then HT/R ⊂ HT/k as R is smooth over k. Hence T will also be a solution for the
original situation k → A→ Λ ⊃ q.

Ad (18). Follows on applying Lemma 16.9.2 to R → C ⊗k[x1,...,xd] R → Λ ⊃ q and
the sequence of elements γc1, . . . , γ

c
d. We note that since xci are strictly standard in

C over k[x1, . . . , xd] the elements γci are strictly standard in C ⊗k[x1,...,xd] R over R
by Lemma 16.3.7. The other assumption of Lemma 16.9.2 holds by steps (12) and
(13).

Ad (20). Apply Lemma 16.9.4 to the situation in (18). In the rest of the arguments
the target ring is local Artinian, hence we are looking for a factorization by a smooth
algebra T over the source ring.

Ad (22). Suppose that C ⊗k[x1,...,xd] (R/JR)p → T → Λq/JΛq is a solution to

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

Then C ⊗k[x1,...,xd] (R/I)r → Tr → Λq/IΛq is a solution to the situation in (20).

Ad (23). Our n = N + dc is large enough so that pnk[y1, . . . , ym]p ⊂ Jp and
qnΛq ⊂ JΛq. Hence if we have a solution C ⊗k[x1,...,xd] (R/pnR)p → T → Λq/q

nΛq

of (22 then we can take T/JT as the solution for (23).

Ad (24). This is true because we have a section C → B in the category of R-
algebras.

Ad (25). This is true because D′ is essentially smooth over the local Artinian ring
k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p and

Rp/p
nRp = k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p[t1, . . . , td].

HenceD′[t1, . . . , td] is a filtered colimit of smoothRp/p
nRp-algebras andB⊗k[x1,...,xd]

(Rp/p
nRp) factors through one of these.

Ad (26). The final twist of the proof is that we cannot just use the map B → D′

which maps xi to the image of π′i in D′ and zij to the image of λij in D′ because
we need the diagram

B // D′[t1, . . . , td]

k[x1, . . . , xd] //

OO

Rp/p
nRp

OO

to commute and we need the composition B → D′[t1, . . . , td]→ Λq/q
nΛq to be the

map of (14). This requires us to map xi to the image of πiti in D′[t1, . . . , td]. Hence
we map zij to the image of λijt

2N
i /δ2N

i in D′[t1, . . . , td] and everything is clear. �
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16.12. The main theorem

In this section we wrap up the discussion.

Theorem 16.12.1 (Popescu). Any regular homomorphism of Noetherian rings is
a filtered colimit of smooth ring maps.

Proof. By Lemma 16.8.4 it suffices to prove this for k → Λ where Λ is Noetherian
and geometrically regular over k. Let k → A→ Λ be a factorization with A a finite
type k-algebra. It suffices to construct a factorization A→ B → Λ with B of finite
type such that hB = Λ, see Lemma 16.3.8. Hence we may perform Noetherian
induction on the ideal hA. Pick a prime q ⊃ hA such that q is minimal over hA. It
now suffices to resolve k → A → Λ ⊃ q (as defined in the text following Situation
16.9.1). If the characteristic of k is zero, this follows from Lemma 16.10.3. If the
characteristic of k is p > 0, this follows from Lemma 16.11.4. �

16.13. The approximation property for G-rings

Let R be a Noetherian local ring. In this case R is a G-ring if and only if the ring
map R → R∧ is regular, see More on Algebra, Lemma 15.39.7. In this case it is
true that the henselization Rh and the strict henselization Rsh of R are G-rings,
see More on Algebra, Lemma 15.39.8. Moreover, any algebra essentially of finite
type over a field, over a complete local ring, over Z, or over a characteristic zero
Dedekind ring is a G-ring, see More on Algebra, Proposition 15.39.12. This gives
an ample supply of rings to which the result below applies.

Let R be a ring. Let f1, . . . , fm ∈ R[x1, . . . , xn]. Let S be an R-algebra. In this
situation we say a vector (a1, . . . , an) ∈ Sn is a solution in S if and only if

fj(a1, . . . , an) = 0 in S, for j = 1, . . . ,m

Of course an important question in algebraic geometry is to see when systems of
polynomial equations have solutions. The following theorem tells us that having
solutions in the completion of a local Noetherian ring is often enough to show there
exist solutions in the henselization of the ring.

Theorem 16.13.1. Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution in R∧. If R is a henselian G-ring,
then for every integer N there exists a solution (b1, . . . , bn) ∈ Rn in R such that
ai − bi ∈ mNR∧.

Proof. Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators
mN = (d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l]

and the elements

gj = fj(c1 +
∑

x1,ldl, . . . , cn +
∑

xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show
that gj as a solution (bi,l) in R. Then it follows that bi = ci +

∑
bi,ldl is a solution

of fj = 0 which is congruent to ai modulo mN . Thus it suffices to show that
solvability over R∧ implies solvability over R.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R
is a G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

http://stacks.math.columbia.edu/tag/07GC
http://stacks.math.columbia.edu/tag/07QY
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with B smooth over R, see Theorem 16.12.1. Denote κ = R/m the residue field. It
is also the residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 15.6.13 implies that
there exists an étale ring map R → R′ which induces an isomorphism R/m →
R′/mR′ and an R-algebra map B → R′ making the diagram above commute. Since
R is henselian we see that R → R′ has a section, see Algebra, Lemma 10.145.3.
Let bi ∈ R be the image of ai under the ring maps A→ B → R′ → R. Since all of
these maps are R-algebra maps, we see that (b1, . . . , bn) is a solution in R. �

Given a Noetherian local ring (R,m), an étale ring map R → R′, and a maximal
ideal m′ ⊂ R′ lying over m with κ(m) = κ(m′), then we have inclusions

R ⊂ Rm′ ⊂ Rh ⊂ R∧,

by Algebra, Lemma 10.145.19 and More on Algebra, Lemma 15.34.3.

Theorem 16.13.2. Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution. If R is a G-ring, then for every
integer N there exist

(1) an étale ring map R→ R′,
(2) a maximal ideal m′ ⊂ R′ lying over m
(3) a solution (b1, . . . , bn) ∈ (R′)n in R′

such that κ(m) = κ(m′) and ai − bi ∈ (m′)NR∧.

Proof. We could deduce this theorem from Theorem 16.13.1 using that the henseliza-
tion Rh is a G-ring by More on Algebra, Lemma 15.39.8 and writing Rh as a di-
rected colimit of étale extension R′. Instead we prove this by redoing the proof of
the previous theorem in this case.

Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators mN =
(d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l] and

the elements

gj = fj(c1 +
∑

x1,ldl, . . . , cn +
∑

xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show
that gj as a solution (bi,l) in R′ for some étale ring map R → R′ endowed with a
maximal ideal m′ such that κ(m) = κ(m′). Then it follows that bi = ci +

∑
bi,ldl

is a solution of fj = 0 which is congruent to ai modulo (m′)N . Thus it suffices
to show that solvability over R∧ implies solvability over some étale ring extension
which induces a trivial residue field extension at some prime over m.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R
is a G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

http://stacks.math.columbia.edu/tag/07QZ
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with B smooth over R, see Theorem 16.12.1. Denote κ = R/m the residue field. It
is also the residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 15.6.13 implies that
there exists an étale ring map R → R′ which induces an isomorphism R/m →
R′/mR′ and an R-algebra map B → R′ making the diagram above commute. Let
bi ∈ R′ be the image of ai under the ring maps A → B → R′. Since all of these
maps are R-algebra maps, we see that (b1, . . . , bn) is a solution in R′. �

Example 16.13.3. Let (R,m) be a Noetherian local ring with henselization Rh.
The map on completions R∧ → (Rh)∧ is an isomorphism, see More on Algebra,
Lemma 15.34.3. Since also Rh is Noetherian (ibid.) we may think of Rh as a
subring of its completion (because the completion is faithfully flat). In this way we
see that we may identify Rh with a subring of R∧.

Let us try to understand which elements of R∧ are in Rh. For simplicity we assume
R is a domain with fraction field K. Clearly, every element f of Rh is algebraic over
R, in the sense that there exists an equation of the form anf

n + . . .+ a1f + a0 = 0
for some ai ∈ R with n > 0 and an 6= 0.

Conversely, assume that f ∈ R∧, n ∈ N, and a0, . . . , an ∈ R with an 6= 0 such
that anf

n + . . . + a1f + a0 = 0. If R is a G-ring, then, for every N > 0 there
exists an element g ∈ Rh with ang

n + . . . + a1g + a0 = 0 and f − g ∈ mNR∧, see
Theorem 16.13.2. We’d like to conclude that f = g when N � 0. If this is not
true, then we find infinitely many roots g of P (T ) in Rh. This is impossible because
(1) Rh ⊂ Rh ⊗R K and (2) Rh ⊗R K is a finite product of field extensions of K.
Namely, R→ K is injective and R→ Rh is flat, hence Rh → Rh ⊗R K is injective
and (2) follows from More on Algebra, Lemma 15.34.13.

Conclusion: If R is a Noetherian local domain with fraction field K and a G-ring,
then Rh ⊂ R∧ is the set of all elements which are algebraic over K.

16.14. Approximation for henselian pairs

We can generalize the discussion of Section 16.13 to the case of henselian pairs.
Henselian pairs where defined in More on Algebra, Section 15.7.

Lemma 16.14.1. Let (A, I) be a henselian pair with A Noetherian. Let A∧ be the
I-adic completion of A. Assume at least one of the following conditions holds

(1) A→ A∧ is a regular ring map,
(2) A is a Noetherian G-ring, or
(3) (A, I) is the henselization (More on Algebra, Lemma 15.7.13) of a pair

(B, J) where B is a Noetherian G-ring.

Given f1, . . . , fm ∈ A[x1, . . . , xn] and â1, . . . , ân ∈ A∧ such that fj(â1, . . . , ân) = 0
for j = 1, . . . ,m, for every N ≥ 1 there exist a1, . . . , an ∈ A such that âi − ai ∈ IN
and such that fj(a1, . . . , an) = 0 for j = 1, . . . ,m.

http://stacks.math.columbia.edu/tag/0A1W
http://stacks.math.columbia.edu/tag/0AH5
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Proof. By More on Algebra, Lemma 15.39.15 we see that (3) implies (2). By More
on Algebra, Lemma 15.39.14 we see that (2) implies (1). Thus it suffices to prove
the lemma in case A→ A∧ is a regular ring map.

Let â1, . . . , ân be as in the statement of the lemma. By Theorem 16.12.1 we can
find a factorization A → B → A∧ with A → P smooth and b1, . . . , bn ∈ B with
fj(b1, . . . , bn) = 0 in B. Denote σ : B → A∧ → A/IN the composition. By More
on Algebra, Lemma 15.6.13 we can find an étale ring map A→ A′ which induces an
isomorphism A/IN → A′/INA′ and an A-algebra map σ̃ : B → A′ lifting σ. Since
(A, I) is henselian, there is an A-algebra map χ : A′ → A, see More on Algebra,
Lemma 15.7.7. Then setting ai = χ(σ̃(bi)) gives a solution. �
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CHAPTER 17

Sheaves of Modules

17.1. Introduction

In this chapter we work out basic notions of sheaves of modules. This in particular
includes the case of abelian sheaves, since these may be viewed as sheaves of Z-
modules. Basic references are [Ser55b], [DG67] and [AGV71].

We work out what happens for sheaves of modules on ringed topoi in another
chapter (see Modules on Sites, Section 18.1), although there we will mostly just
duplicate the discussion from this chapter.

17.2. Pathology

A ringed space is a pair consisting of a topological space X and a sheaf of rings O.
We allow O = 0 in the definition. In this case the category of modules has a single
object (namely 0). It is still an abelian category etc, but it is a little degenerate.
Similarly the sheaf O may be zero over open subsets of X, etc.

This doesn’t happen when considering locally ringed spaces (as we will do later).

17.3. The abelian category of sheaves of modules

Let (X,OX) be a ringed space, see Sheaves, Definition 6.25.1. Let F , G be sheaves
of OX -modules, see Sheaves, Definition 6.10.1. Let ϕ,ψ : F → G be morphisms of
sheaves of OX -modules. We define ϕ + ψ : F → G to be the map which on each
open U ⊂ X is the sum of the maps induced by ϕ, ψ. This is clearly again a map
of sheaves of OX -modules. It is also clear that composition of maps of OX -modules
is bilinear with respect to this addition. Thus Mod(OX) is a pre-additive category,
see Homology, Definition 12.3.1.

We will denote 0 the sheaf of OX -modules which has constant value {0} for all
open U ⊂ X. Clearly this is both a final and an initial object of Mod(OX). Given
a morphism of OX -modules ϕ : F → G the following are equivalent: (a) ϕ is zero,
(b) ϕ factors through 0, (c) ϕ is zero on sections over each open U , and (d) ϕx = 0
for all x ∈ X. See Sheaves, Lemma 6.16.1.

Moreover, given a pair F , G of sheaves of OX -modules we may define the direct
sum as

F ⊕ G = F × G
with obvious maps (i, j, p, q) as in Homology, Definition 12.3.5. Thus Mod(OX) is
an additive category, see Homology, Definition 12.3.8.

Let ϕ : F → G be a morphism of OX -modules. We may define Ker(ϕ) to be the
subsheaf of F with sections

Ker(ϕ)(U) = {s ∈ F(U) | ϕ(s) = 0 in G(U)}

1315
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for all open U ⊂ X. It is easy to see that this is indeed a kernel in the category
of OX -modules. In other words, a morphism α : H → F factors through Ker(ϕ) if
and only if ϕ ◦α = 0. Moreover, on the level of stalks we have Ker(ϕ)x = Ker(ϕx).

On the other hand, we define Coker(ϕ) as the sheaf of OX -modules associated to
the presheaf of OX -modules defined by the rule

U 7−→ Coker(G(U)→ F(U)) = F(U)/ϕ(G(U)).

Since taking stalks commutes with taking sheafification, see Sheaves, Lemma 6.17.2
we see that Coker(ϕ)x = Coker(ϕx). Thus the map G → Coker(ϕ) is surjective (as
a map of sheaves of sets), see Sheaves, Section 6.16. To show that this is a cokernel,
note that if β : G → H is a morphism of OX -modules such that β ◦ ϕ is zero,
then you get for every open U ⊂ X a map induced by β from G(U)/ϕ(F(U)) into
H(U). By the universal property of sheafification (see Sheaves, Lemma 6.20.1) we
obtain a canonical map Coker(ϕ) → H such that the original β is equal to the
composition G → Coker(ϕ)→ H. The morphism Coker(ϕ)→ H is unique because
of the surjectivity mentioned above.

Lemma 17.3.1. Let (X,OX) be a ringed space. The category Mod(OX) is an
abelian category. Moreover a complex

F → G → H

is exact at G if and only if for all x ∈ X the complex

Fx → Gx → Hx
is exact at Gx.

Proof. By Homology, Definition 12.5.1 we have to show that image and coimage
agree. By Sheaves, Lemma 6.16.1 it is enough to show that image and coimage
have the same stalk at every x ∈ X. By the constructions of kernels and cokernels
above these stalks are the coimage and image in the categories of OX,x-modules.
Thus we get the result from the fact that the category of modules over a ring is
abelian. �

Actually the category Mod(OX) has many more properties. Here are two construc-
tions we can do.

(1) Given any set I and for each i ∈ I a OX -module we can form the product∏
i∈I
Fi

which is the sheaf that associates to each open U the product of the
modules Fi(U). This is also the categorical product, as in Categories,
Definition 4.14.5.

(2) Given any set I and for each i ∈ I a OX -module we can form the direct
sum ⊕

i∈I
Fi

which is the sheafification of the presheaf that associates to each open
U the direct sum of the modules Fi(U). This is also the categorical
coproduct, as in Categories, Definition 4.14.6. To see this you use the
universal property of sheafification.

Using these we conclude that all limits and colimits exist in Mod(OX).

http://stacks.math.columbia.edu/tag/01AG
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Lemma 17.3.2. Let (X,OX) be a ringed space.

(1) All limits exist in Mod(OX). Limits are the same as the corresponding
limits of presheaves of OX-modules (i.e., commute with taking sections
over opens).

(2) All colimits exist in Mod(OX). Colimits are the sheafification of the corre-
sponding colimit in the category of presheaves. Taking colimits commutes
with taking stalks.

(3) Filtered colimits are exact.
(4) Finite direct sums are the same as the corresponding finite direct sums of

presheaves of OX-modules.

Proof. As Mod(OX) is abelian (Lemma 17.3.1) it has all finite limits and colimits
(Homology, Lemma 12.5.5). Thus the existence of limits and colimits and their
description follows from the existence of products and coproducts and their de-
scription (see discussion above) and Categories, Lemmas 4.14.10 and 4.14.11. Since
sheafification commutes with taking stalks we see that colimits commute with tak-
ing stalks. Part (3) signifies that given a system 0 → Fi → Gi → Hi → 0 of
exact sequences of OX -modules over a directed partially ordered set I the sequence
0 → colimFi → colimGi → colimHi → 0 is exact as well. Since we can check
exactness on stalks (Lemma 17.3.1) this follows from the case of modules which is
Algebra, Lemma 10.8.9. We omit the proof of (4). �

The existence of limits and colimits allows us to consider exactness properties of
functors defined on the category of O-modules in terms of limits and colimits,
as in Categories, Section 4.23. See Homology, Lemma 12.7.1 for a description of
exactness properties in terms of short exact sequences.

Lemma 17.3.3. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.

(1) The functor f∗ : Mod(OX)→ Mod(OY ) is left exact. In fact it commutes
with all limits.

(2) The functor f∗ : Mod(OY )→ Mod(OX) is right exact. In fact it commutes
with all colimits.

(3) Pullback f−1 : Ab(Y )→ Ab(X) on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (f∗, f∗) is an adjoint pair of functors, see
Sheaves, Lemma 6.26.2 and Categories, Section 4.24. Part (3) holds because exact-
ness can be checked on stalks (Lemma 17.3.1) and the description of stalks of the
pullback, see Sheaves, Lemma 6.22.1. �

Lemma 17.3.4. Let j : U → X be an open immersion of topological spaces. The
functor j! : Ab(U)→ Ab(X) is exact.

Proof. Follows from the description of stalks given in Sheaves, Lemma 6.31.6. �

Lemma 17.3.5. Let (X,OX) be a ringed space. Let I be a set. For i ∈ I, let Fi
be a sheaf of OX-modules. For U ⊂ X quasi-compact open the map⊕

i∈I
Fi(U) −→

(⊕
i∈I
Fi
)

(U)

is bijective.

Proof. If s is an element of the right hand side, then there exists an open covering
U =

⋃
j∈J Uj such that s|Uj is a finite sum

∑
i∈Ij sji with sji ∈ Fi(Uj). Because

http://stacks.math.columbia.edu/tag/01AH
http://stacks.math.columbia.edu/tag/01AJ
http://stacks.math.columbia.edu/tag/01AK
http://stacks.math.columbia.edu/tag/01AI
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U is quasi-compact we may assume that the covering is finite, i.e., that J is finite.
Then I ′ =

⋃
j∈J Ij is a finite subset of I. Clearly, s is a section of the subsheaf⊕

i∈I′ Fi. The result follows from the fact that for a finite direct sum sheafification
is not needed, see Lemma 17.3.2 above. �

17.4. Sections of sheaves of modules

Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let s ∈ Γ(X,F) =
F(X) be a global section. There is a unique map of OX-modules

OX −→ F , f 7−→ fs

associated to s. The notation above signifies that a local section f of OX , i.e., a
section f over some open U , is mapped to the multiplication of f with the restriction
of s to U . Conversely, any map ϕ : OX → F gives rise to a section s = ϕ(1) such
that ϕ is the morphism associated to s.

Definition 17.4.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. We say that F is generated by global sections if there exist a set I, and
global sections si ∈ Γ(X,F), i ∈ I such that the map⊕

i∈I
OX −→ F

which is the map associated to si on the summand corresponding to i, is surjective.
In this case we say that the sections si generate F .

We often use the abuse of notation introduced in Sheaves, Section 6.11 where, given
a local section s of F defined in an open neighbourhood of a point x ∈ X, we denote
sx, or even s the image of s in the stalk Fx.

Lemma 17.4.2. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let I be a set. Let si ∈ Γ(X,F), i ∈ I be global sections. The sections si generate
F if and only if for all x ∈ X the elements si,x ∈ Fx generate the OX,x-module Fx.

Proof. Omitted. �

Lemma 17.4.3. Let (X,OX) be a ringed space. Let F , G be sheaves of OX-
modules. If F and G are generated by global sections then so is F ⊗OX G.

Proof. Omitted. �

Lemma 17.4.4. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let I be a set. Let si, i ∈ I be a collection of local sections of F , i.e., si ∈ F(Ui)
for some opens Ui ⊂ X. There exists a unique smallest subsheaf of OX-modules G
such that each si corresponds to a local section of G.

Proof. Consider the subpresheaf of OX -modules defined by the rule

U 7−→ {sums
∑

i∈J
fi(si|U ) where J is finite, U ⊂ Ui for i ∈ J, and fi ∈ OX(U)}

Let G be the sheafification of this subpresheaf. This is a subsheaf of F by Sheaves,
Lemma 6.16.3. Since all the finite sums clearly have to be in G this is the smallest
subsheaf as desired. �

Definition 17.4.5. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. Given a set I, and local sections si, i ∈ I of F we say that the subsheaf
G of Lemma 17.4.4 above is the subsheaf generated by the si.

http://stacks.math.columbia.edu/tag/01AM
http://stacks.math.columbia.edu/tag/01AN
http://stacks.math.columbia.edu/tag/01AO
http://stacks.math.columbia.edu/tag/01AP
http://stacks.math.columbia.edu/tag/01AQ
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Lemma 17.4.6. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Given a set I, and local sections si, i ∈ I of F . Let G be the subsheaf generated
by the si and let x ∈ X. Then Gx is the OX,x-submodule of Fx generated by the
elements si,x for those i such that si is defined at x.

Proof. This is clear from the construction of G in the proof of Lemma 17.4.4. �

17.5. Supports of modules and sections

Definition 17.5.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules.

(1) The support of F is the set of points x ∈ X such that Fx 6= 0.
(2) We denote Supp(F) the support of F .
(3) Let s ∈ Γ(X,F) be a global section. The support of s is the set of points

x ∈ X such that the image sx ∈ Fx of s is not zero.

Of course the support of a local section is then defined also since a local section is
a global section of the restriction of F .

Lemma 17.5.2. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let U ⊂ X open.

(1) The support of s ∈ F(U) is closed in U .
(2) The support of fs is contained in the intersections of the supports of f ∈
OX(U) and s ∈ F(U)

(3) The support of s + s′ is contained in the union of the supports of s, s′ ∈
F(U).

(4) The support of F is the union of the supports of all local sections of F .
(5) If ϕ : F → G is a morphism of OX-modules, then the support of ϕ(s) is

contained in the support of s ∈ F(U).

Proof. This is true because if sx = 0, then s is zero in an open neighbourhood of
x by definition of stalks. Similarly for f . Details omitted. �

In general the support of a sheaf of modules is not closed. Namely, the sheaf could
be an abelian sheaf on R (with the usual archimedean topology) which is the direct
sum of infinitely many nonzero skyscraper sheaves each supported at a single point
pi of R. Then the support would be the set of points pi which may not be closed.

Another example is to consider the open immersion j : U = (0,∞) → R = X,
and the abelian sheaf j!ZU . By Sheaves, Section 6.31 the support of this sheaf is
exactly U .

Lemma 17.5.3. Let X be a topological space. The support of a sheaf of rings is
closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. �

17.6. Closed immersions and abelian sheaves

Recall that we think of an abelian sheaf on a topological space X as a sheaf of
ZX -modules. Thus we may apply any results, definitions for sheaves of modules to
abelian sheaves.

http://stacks.math.columbia.edu/tag/01AR
http://stacks.math.columbia.edu/tag/01AT
http://stacks.math.columbia.edu/tag/01AU
http://stacks.math.columbia.edu/tag/01AV
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Lemma 17.6.1. Let X be a topological space. Let Z ⊂ X be a closed subset.
Denote i : Z → X the inclusion map. The functor

i∗ : Ab(Z) −→ Ab(X)

is exact, fully faithful, with essential image exactly those abelian sheaves whose
support is contained in Z. The functor i−1 is a left inverse to i∗.

Proof. Exactness follows from the description of stalks in Sheaves, Lemma 6.32.1
and Lemma 17.3.1. The rest was shown in Sheaves, Lemma 6.32.3. �

Let F be a sheaf on X. There is a canonical subsheaf of F which consists of exactly
those sections whose support is contained in Z. Here is the exact statement.

Lemma 17.6.2. Let X be a topological space. Let Z ⊂ X be a closed subset. Let
F be a sheaf on X. For U ⊂ X open set

Γ(U,HZ(F)) = {s ∈ F(U) | the support of s is contained in Z ∩ U}

Then HZ(F) is an abelian subsheaf of F . It is the largest abelian subsheaf of F
whose support is contained in Z. The construction F 7→ HZ(F) is functorial in the
abelian sheaf F .

Proof. This follows from Lemma 17.5.2. �

This seems like a good opportunity to show that the functor i∗ has a right adjoint
on abelian sheaves.

Lemma 17.6.3. Let i : Z → X be the inclusion of a closed subset into the topo-
logical space X. Denote1 i! : Ab(X)→ Ab(Z) the functor F 7→ i−1HZ(F). Then i!

is a right adjoint to i∗, in a formula

MorAb(X)(i∗G,F) = MorAb(Z)(G, i!F).

In particular i∗ commutes with arbitrary colimits.

Proof. Note that i∗i
!F = HZ(F). Since i∗ is fully faithful we are reduced to

showing that

MorAb(X)(i∗G,F) = MorAb(X)(i∗G,HZ(F)).

This follows since the support of the image via any homomorphism of a section of
i∗G is supported on Z, see Lemma 17.5.2. �

Remark 17.6.4. In Sheaves, Remark 6.32.5 we showed that i∗ as a functor on the
categories of sheaves of sets does not have a right adjoint simply because it is not
exact. However, it is very close to being true, in fact, the functor i∗ is exact on
sheaves of pointed sets, sections with support in Z can be defined for sheaves of
pointed sets, and i! makes sense and is a right adjoint to i∗.

1This is likely nonstandard notation.

http://stacks.math.columbia.edu/tag/01AX
http://stacks.math.columbia.edu/tag/01AY
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17.7. A canonical exact sequence

We give this exact sequence its own section.

Lemma 17.7.1. Let X be a topological space. Let U ⊂ X be an open subset with
complement Z ⊂ X. Denote j : U → X the open immersion and i : Z → X the
closed immersion. For any sheaf of abelian groups F on X the adjunction mappings
j!j
∗F → F and F → i∗i

∗F give a short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0

of sheaves of abelian groups. For any morphism ϕ : F → G of abelian sheaves on
X we obtain a morphism of short exact sequences

0 // j!j∗F //

��

F //

��

i∗i
∗F //

��

0

0 // j!j∗G // G // i∗i∗G // 0

Proof. We may check exactness on stalks (Lemma 17.3.1). For a description of
the stalks in question see Sheaves, Lemmas 6.31.6 and 6.32.1. We omit the proof
of the functorial behaviour of the exact sequence. �

17.8. Modules locally generated by sections

Let (X,OX) be a ringed space. In this and the following section we will often
restrict sheaves to open subspaces U ⊂ X, see Sheaves, Section 6.31. In particular,
we will often denote the open subspace by (U,OU ) instead of the more correct
notation (U,OX |U ), see Sheaves, Definition 6.31.2.

Consider the open immersion j : U = (0,∞) → R = X, and the abelian sheaf
j!ZU . By Sheaves, Section 6.31 the stalk of j!ZU at x = 0 is 0. In fact the sections
of this sheaf over any open interval containing 0 are 0. Thus there is no open
neighbourhood of the point 0 over which the sheaf can be generated by sections.

Definition 17.8.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. We say that F is locally generated by sections if for every x ∈ X there
exists an open neighbourhood U such that F|U is globally generated as a sheaf of
OU -modules.

In other words there exists a set I and for each i a section si ∈ F(U) such that the
associated map ⊕

i∈I
OU −→ F|U

is surjective.

Lemma 17.8.2. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G is locally generated by sections if G is locally generated by sections.

Proof. Given an open subspace V of Y we may consider the commutative diagram
of ringed spaces

(f−1V,Of−1V )
j′

//

f ′

��

(X,OX)

f

��
(V,OV )

j // (Y,OY )

http://stacks.math.columbia.edu/tag/02UT
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We know that f∗G|f−1V
∼= (f ′)∗(G|V ), see Sheaves, Lemma 6.26.3. Thus we may

assume that G is globally generated.

We have seen that f∗ commutes with all colimits, and is right exact, see Lemma
17.3.3. Thus if we have a surjection⊕

i∈I
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i∈I
OX → f∗G → 0.

This implies the lemma. �

17.9. Modules of finite type

Definition 17.9.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. We say that F is of finite type if for every x ∈ X there exists an open
neighbourhood U such that F|U is generated by finitely many sections.

Lemma 17.9.2. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a finite type OY -module is a finite type OX-module.

Proof. Arguing as in the proof of Lemma 17.8.2 we may assume G is globally
generated by finitely many sections. We have seen that f∗ commutes with all
colimits, and is right exact, see Lemma 17.3.3. Thus if we have a surjection⊕

i=1,...,n
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i=1,...,n

OX → f∗G → 0.

This implies the lemma. �

Lemma 17.9.3. Let X be a ringed space. The image of a morphism of OX-modules
of finite type is of finite type. Let 0→ F1 → F2 → F3 → 0 be a short exact sequence
of OX-modules. If F1 and F3 are of finite type, so is F2.

Proof. The statement on images is trivial. The statement on short exact sequences
comes from the fact that sections of F3 locally lift to sections of F2 and the cor-
responding result in the category of modules over a ring (applied to the stalks for
example). �

Lemma 17.9.4. Let X be a ringed space. Let ϕ : G → F be a homomorphism
of OX-modules. Let x ∈ X. Assume F of finite type and the map on stalks
ϕx : Gx → Fx surjective. Then there exists an open neighbourhood x ∈ U ⊂ X such
that ϕ|U is surjective.

Proof. Choose an open neighbourhood U ⊂ X such that F is generated by
s1, . . . , sn ∈ F(U) over U . By assumption of surjectivity of ϕx, after shrinking
U we may assume that si = ϕ(ti) for some ti ∈ G(U). Then U works. �

Lemma 17.9.5. Let X be a ringed space. Let F be an OX-module. Let x ∈ X.
Assume F of finite type and Fx = 0. Then there exists an open neighbourhood
x ∈ U ⊂ X such that F|U is zero.

Proof. This is a special case of Lemma 17.9.4 applied to the morphism 0→ F . �
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Lemma 17.9.6. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
If F is of finite type then support of F is closed.

Proof. This is a reformulation of Lemma 17.9.5. �

Lemma 17.9.7. Let X be a ringed space. Let I be a partially ordered set and let
(Fi, fii′) be a system over I consisting of sheaves of OX-modules (see Categories,
Section 4.21). Let F = colimFi be the colimit. Assume (a) I is directed, (b) F is
a finite type OX-module, and (c) X is quasi-compact. Then there exists an i such
that Fi → F is surjective. If the transition maps fii′ are injective then we conclude
that F = Fi for some i ∈ I.

Proof. Let x ∈ X. There exists an open neighbourhood U ⊂ X of x and finitely
many sections sj ∈ F(U), j = 1, . . . ,m such that s1, . . . , sm generate F as OU -
module. After possibly shrinking U to a smaller open neighbourhood of x we may
assume that each sj comes from a section of Fi for some i ∈ I. Hence, since X is
quasi-compact we can find a finite open covering X =

⋃
j=1,...,m Uj , and for each

j an index ij and finitely many sections sjl ∈ Fij (Uj) whose images generate the
restriction of F to Uj . Clearly, the lemma holds for any index i ∈ I which is ≥ all
ij . �

Lemma 17.9.8. Let X be a ringed space. There exists a set of OX-modules {Fi}i∈I
of finite type such that each finite type OX-module on X is isomorphic to exactly
one of the Fi.

Proof. For each open covering U : X =
⋃
Uj consider the sheaves of OX -modules

F such that each restriction F|Uj is a quotient of O⊕rUj for some rj ≥ 0. These are

parametrized by subsheaves Ki ⊂ O
⊕rj
Uj

and glueing data

ϕjj′ : O⊕rjUj∩Uj′/(Kj |Uj∩Uj′ ) −→ O
⊕rj′
Uj∩Uj′/(Kj′ |Uj∩Uj′ )

see Sheaves, Section 6.33. Note that the collection of all glueing data forms a set.
The collection of all coverings U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is

injective forms a set as well. Hence the collection of all sheaves of OX -modules
gotten from glueing quotients as above forms a set I. By definition every finite
type OX -module is isomorphic to an element of I. Choosing an element out of
each isomorphism class inside I gives the desired set of sheaves (uses axiom of
choice). �

17.10. Quasi-coherent modules

In this section we introduce an abstract notion of quasi-coherent OX -module. This
notion is very useful in algebraic geometry, since quasi-coherent modules on a
scheme have a good description on any affine open. However, we warn the reader
that in the general setting of (locally) ringed spaces this notion is not well behaved
at all. The category of quasi-coherent sheaves is not abelian in general, infinite
direct sums of quasi-coherent sheaves aren’t quasi-coherent, etc, etc.

Definition 17.10.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. We say that F is a quasi-coherent sheaf of OX-modules if for every point

http://stacks.math.columbia.edu/tag/01BA
http://stacks.math.columbia.edu/tag/01BB
http://stacks.math.columbia.edu/tag/01BC
http://stacks.math.columbia.edu/tag/01BE
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x ∈ X there exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic
to the cokernel of a map ⊕

j∈J
OU −→

⊕
i∈I
OU

The category of quasi-coherent OX -modules is denoted QCoh(OX).

The definition means that X is covered by open sets U such that F|U has a pre-
sentation of the form ⊕

j∈J
OU −→

⊕
i∈I
OU → F|U → 0.

Here presentation signifies that the displayed sequence is exact. In other words

(1) for every point x of X there exists an open neighbourhood such that F|U
is generated by global sections, and

(2) for a suitable choice of these sections the kernel of the associated surjection
is also generated by global sections.

Lemma 17.10.2. Let (X,OX) be a ringed space. The direct sum of two quasi-
coherent OX-modules is a quasi-coherent OX-module.

Proof. Omitted. �

Remark 17.10.3. Warning: It is not true in general that an infinite direct sum
of quasi-coherent OX -modules is quasi-coherent. For more esoteric behaviour of
quasi-coherent modules see Example 17.10.9.

Lemma 17.10.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a quasi-coherent OY -module is quasi-coherent.

Proof. Arguing as in the proof of Lemma 17.8.2 we may assume G has a global
presentation by direct sums of copies of OY . We have seen that f∗ commutes with
all colimits, and is right exact, see Lemma 17.3.3. Thus if we have an exact sequence⊕

j∈J
OY −→

⊕
i∈I
OY → G → 0

then upon applying f∗ we obtain the exact sequence⊕
j∈J
OX −→

⊕
i∈I
OX → f∗G → 0.

This implies the lemma. �

This gives plenty of examples of quasi-coherent sheaves.

Lemma 17.10.5. Let (X,OX) be ringed space. Let α : R → Γ(X,OX) be a ring
homomorphism from a ring R into the ring of global sections on X. Let M be an
R-module. The following three constructions give canonically isomorphic sheaves
of OX-modules:

(1) Let π : (X,OX) −→ ({∗}, R) be the morphism of ringed spaces with π :
X → {∗} the unique map and with π-map π] the given map α : R →
Γ(X,OX). Set F1 = π∗M .

(2) Choose a presentation
⊕

j∈J R→
⊕

i∈I R→M → 0. Set

F2 = Coker
(⊕

j∈J
OX →

⊕
i∈I
OX
)
.

http://stacks.math.columbia.edu/tag/01BF
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Here the map on the component OX corresponding to j ∈ J given by the
section

∑
i α(rij) where the rij are the matrix coefficients of the map in

the presentation of M .
(3) Set F3 equal to the sheaf associated to the presheaf U 7→ OX(U) ⊗R M ,

where the map R → OX(U) is the composition of α and the restriction
map OX(X)→ OX(U).

This construction has the following properties:

(1) The resulting sheaf of OX-modules FM = F1 = F2 = F3 is quasi-coherent.
(2) The construction gives a functor from the category of R-modules to the

category of quasi-coherent sheaves on X which commutes with arbitrary
colimits.

(3) For any x ∈ X we have FM,x = OX,x ⊗RM functorial in M .
(4) Given any OX-module G we have

MorOX (FM ,G) = HomR(M,Γ(X,G))

where the R-module structure on Γ(X,G) comes from the Γ(X,OX)-module
structure via α.

Proof. The isomorphism between F1 and F3 comes from the fact that π∗ is de-
fined as the sheafification of the presheaf in (3), see Sheaves, Section 6.26. The
isomorphism between the constructions in (2) and (1) comes from the fact that the
functor π∗ is right exact, so π∗(

⊕
j∈J R) → π∗(

⊕
i∈I R) → π∗M → 0 is exact, π∗

commutes with arbitrary direct sums, see Lemma 17.3.3, and finally the fact that
π∗(R) = OX .

Assertion (1) is clear from construction (2). Assertion (2) is clear since π∗ has
these properties. Assertion (3) follows from the description of stalks of pullback
sheaves, see Sheaves, Lemma 6.26.4. Assertion (4) follows from adjointness of π∗
and π∗. �

Definition 17.10.6. In the situation of Lemma 17.10.5 we say FM is the sheaf
associated to the module M and the ring map α. If R = Γ(X,OX) and α = idR we
simply say FM is the sheaf associated to the module M .

Lemma 17.10.7. Let (X,OX) be ringed space. Set R = Γ(X,OX). Let M be an
R-module. Let FM be the quasi-coherent sheaf of OX-modules associated to M . If
g : (Y,OY ) → (X,OX) is a morphism of ringed spaces, then g∗FM is the sheaf
associated to the Γ(Y,OY )-module Γ(Y,OY )⊗RM .

Proof. The assertion follows from the first description of FM in Lemma 17.10.5 as
π∗M , and the following commutative diagram of ringed spaces

(Y,OY )
π
//

g

��

({∗},Γ(Y,OY ))

induced by g]

��
(X,OX)

π // ({∗},Γ(X,OX))

(Also use Sheaves, Lemma 6.26.3.) �

Lemma 17.10.8. Let (X,OX) be a ringed space. Let x ∈ X be a point. Assume
that x has a fundamental system of quasi-compact neighbourhoods. Consider any
quasi-coherent OX-module F . Then there exists an open neighbourhood U of x such

http://stacks.math.columbia.edu/tag/01BI
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that F|U is isomorphic to the sheaf of modules FM on (U,OU ) associated to some
Γ(U,OU )-module M .

Proof. First we may replace X by an open neighbourhood of x and assume that
F is isomorphic to the cokernel of a map

Ψ :
⊕

j∈J
OX −→

⊕
i∈I
OX .

The problem is that this map may not be given by a “matrix”, because the module
of global sections of a direct sum is in general different from the direct sum of the
modules of global sections.

Let x ∈ E ⊂ X be a quasi-compact neighbourhood of x (note: E may not be open).
Let x ∈ U ⊂ E be an open neighbourhood of x contained in E. Next, we proceed
as in the proof of Lemma 17.3.5. For each j ∈ J denote sj ∈ Γ(X,

⊕
i∈I OX)

the image of the section 1 in the summand OX corresponding to j. There exists
a finite collection of opens Ujk, k ∈ Kj such that E ⊂

⋃
k∈Kj Ujk and such that

each restriction sj |Ujk is a finite sum
∑
i∈Ijk fjki with Ijk ⊂ I, and fjki in the

summand OX corresponding to i ∈ I. Set Ij =
⋃
k∈kJ Ijk. This is a finite set.

Since U ⊂ E ⊂
⋃
k∈Kj Ujk the section sj |U is a section of the finite direct sum⊕

i∈Ij OX . By Lemma 17.3.2 we see that actually sj |U is a sum
∑
i∈Ij fij and

fij ∈ OX(U) = Γ(U,OU ).

At this point we can define a module M as the cokernel of the map⊕
j∈J

Γ(U,OU ) −→
⊕

i∈I
Γ(U,OU )

with matrix given by the (fij). By construction (2) of Lemma 17.10.5 we see that
FM has the same presentation as F|U and therefore FM ∼= F|U . �

Example 17.10.9. Let X be countably many copies L1, L2, L3, . . . of the real
line all glued together at 0; a fundamental system of neighbourhoods of 0 being
the collection {Un}n∈N, with Un ∩ Li = (−1/n, 1/n). Let OX be the sheaf of
continuous real valued functions. Let f : R→ R be a continuous function which is
identically zero on (−1, 1) and identically 1 on (−∞,−2) ∪ (2,∞). Denote fn the
continuous function on X which is equal to x 7→ f(nx) on each Lj = R. Let 1Lj
be the characteristic function of Lj . We consider the map⊕

j∈N
OX −→

⊕
j,i∈N

OX , ej 7−→
∑

i∈N
fj1Lieij

with obvious notation. This makes sense because this sum is locally finite as fj is
zero in a neighbourhood of 0. Over Un the image of ej , for j > 2n is not a finite
linear combination

∑
gijeij with gij continuous. Thus there is no neighbourhood

of 0 ∈ X such that the displayed map is given by a “matrix” as in the proof of
Lemma 17.10.8 above.

Note that
⊕

j∈NOX is the sheaf associated to the free module with basis ej and
similarly for the other direct sum. Thus we see that a morphism of sheaves asso-
ciated to modules in general even locally on X does not come from a morphism of
modules. Similarly there should be an example of a ringed space X and a quasi-
coherent OX -module F such that F is not locally of the form FM . (Please email
if you find one.) Moreover, there should be examples of locally compact spaces X

http://stacks.math.columbia.edu/tag/01BL
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and maps FM → FN which also do not locally come from maps of modules (the
proof of Lemma 17.10.8 shows this cannot happen if N is free).

17.11. Modules of finite presentation

Definition 17.11.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. We say that F is of finite presentation if for every point x ∈ X there exists
an open neighbourhood x ∈ U ⊂ X, and n,m ∈ N such that F|U is isomorphic to
the cokernel of a map ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU

This means that X is covered by open sets U such that F|U has a presentation of
the form ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU → F|U → 0.

Here presentation signifies that the displayed sequence is exact. In other words

(1) for every point x of X there exists an open neighbourhood such that F|U
is generated by finitely many global sections, and

(2) for a suitable choice of these sections the kernel of the associated surjection
is also generated by finitely many global sections.

Lemma 17.11.2. Let (X,OX) be a ringed space. Any OX-module of finite pre-
sentation is quasi-coherent.

Proof. Immediate from definitions. �

Lemma 17.11.3. Let (X,OX) be a ringed space. Let F be a OX-module of finite
presentation.

(1) If ψ : O⊕rX → F is a surjection, then Ker(ψ) is of finite type.
(2) If θ : G → F is surjective with G of finite type, then Ker(θ) is of finite

type.

Proof. Proof of (1). Let x ∈ X. Choose an open neighbourhood U ⊂ X of x such
that there exists a presentation

O⊕mU
χ−→ O⊕nU

ϕ−→ F|U → 0.

Let ek be the section generating the kth factor of O⊕rX . For every k = 1, . . . , r we
can, after shrinking U to a small neighbourhood of x, lift ψ(ek) to a section ẽk of
O⊕nU over U . This gives a morphism of sheaves α : O⊕rU → O

⊕n
U such that ϕ◦α = ψ.

Similarly, after shrinking U , we can find a morphism β : O⊕nU → O⊕rU such that
ψ ◦ β = ϕ. Then the map

O⊕mU ⊕O⊕rU
β◦χ,1−β◦α−−−−−−−→ O⊕rU

is a surjection onto the kernel of ψ.

To prove (2) we may locally choose a surjection η : O⊕rX → G. By part (1) we see
Ker(θ ◦ η) is of finite type. Since Ker(θ) = η(Ker(θ ◦ η)) we win. �

Lemma 17.11.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma 17.10.4 but with finite index
sets. �
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Lemma 17.11.5. Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be
an R-module. The OX-module FM associated to M is a directed colimit of finitely
presented OX-modules.

Proof. This follows immediately from Lemma 17.10.5 and the fact that any module
is a directed colimit of finitely presented modules, see Algebra, Lemma 10.8.13. �

Lemma 17.11.6. Let X be a ringed space. Let I be a partially ordered set and let
(Fi, ϕii′) be a system over I consisting of sheaves of OX-modules (see Categories,
Section 4.21). Assume

(1) I is directed,
(2) G is an OX-module of finite presentation, and
(3) X has a cofinal system of open coverings U : X =

⋃
j∈J Uj with J finite

and Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J .

Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

Proof. Let α be an element of the right hand side. For every point x ∈ X we
may choose an open neighbourhood U ⊂ X and finitely many sections sj ∈ G(U)
which generate G over U and finitely many relations

∑
fkjsj = 0, k = 1, . . . , n

with fkj ∈ OX(U) which generate the kernel of
⊕

j=1,...,mOU → G. After possibly
shrinking U to a smaller open neighbourhood of x we may assume there exists an
index i ∈ I such that the sections α(sj) all come from sections s′j ∈ Fi(U). After
possibly shrinking U to a smaller open neighbourhood of x and increasing i we may
assume the relations

∑
fkjs

′
j = 0 hold in Fi(U). Hence we see that α|U lifts to a

morphism G|U → Fi|U for some index i ∈ I.

By condition (3) and the preceding arguments, we may choose a finite open covering
X =

⋃
j=1,...,m Uj such that (a) G|Uj is generated by finitely many sections sjk ∈

G(Uj), (b) the restriction α|Uj comes from a morphism αj : G → Fij for some
ij ∈ I, and (c) the intersections Uj ∩ Uj′ are all quasi-compact. For every pair
(j, j′) ∈ {1, . . . ,m}2 and any k we can find we can find an index i ≥ max(ij , ij′)
such that

ϕiji(αj(sjk|Uj∩Uj′ )) = ϕij′ i(αj′(sjk|Uj∩Uj′ ))

see Sheaves, Lemma 6.29.1 (2). Since there are finitely many of these pairs (j, j′)
and finitely many sjk we see that we can find a single i which works for all of them.
For this index i all of the maps ϕiji◦αj agree on the overlaps Uj∩Uj′ as the sections
sjk generate G over this overlap. Hence we get a morphism G → Fi as desired. �

Remark 17.11.7. In the lemma above some condition beyond the condition that
X is quasi-compact is necessary. See Sheaves, Example 6.29.2.

17.12. Coherent modules

The category of coherent sheaves on a ringed space X is a more reasonable object
than the category of quasi-coherent sheaves, in the sense that it is at least an abelian
subcategory of Mod(OX) no matter what X is. On the other hand, the pullback
of a coherent module is “almost never” coherent in the general setting of ringed
spaces.
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Definition 17.12.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules. We say that F is a coherent OX-module if the following two conditions
hold:

(1) F is of finite type, and
(2) for every open U ⊂ X and every finite collection si ∈ F(U), i = 1, . . . , n

the kernel of the associated map
⊕

i=1,...,nOU → F|U is of finite type.

The category of coherent OX -modules is denoted Coh(OX).

Lemma 17.12.2. Let (X,OX) be a ringed space. Any coherent OX-module is of
finite presentation and hence quasi-coherent.

Proof. Let F be a coherent sheaf on X. Pick a point x ∈ X. By (1) of the
definition of coherent, we may find an open neighbourhood U and sections si,
i = 1, . . . , n of F over U such that Ψ :

⊕
i=1,...,nOU → F is surjective. By (2) of

the definition of coherent, we may find an open neighbourhood V , x ∈ V ⊂ U and
sections t1, . . . , tm of

⊕
i=1,...,nOV which generate the kernel of Ψ|V . Then over V

we get the presentation⊕
j=1,...,m

OV −→
⊕

i=1,...,n
OV → F|V → 0

as desired. �

Example 17.12.3. Suppose that X is a point. In this case the definition above
gives a notion for modules over rings. What does the definition of coherent mean?
It is closely related to the notion of Noetherian, but it is not the same: Namely, the
ring R = C[x1, x2, x3, . . .] is coherent as a module over itself but not Noetherian as
a module over itself. See Algebra, Section 10.87 for more discussion.

Lemma 17.12.4. Let (X,OX) be a ringed space.

(1) Any finite type subsheaf of a coherent sheaf is coherent.
(2) Let ϕ : F → G be a morphism from a finite type sheaf F to a coherent

sheaf G. Then Ker(ϕ) is finite type.
(3) Let ϕ : F → G be a morphism of coherent OX-modules. Then Ker(ϕ) and

Coker(ϕ) are coherent.
(4) Given a short exact sequence of OX-modules 0 → F1 → F2 → F3 → 0 if

two out of three are coherent so is the third.
(5) The category Coh(OX) is a weak Serre subcategory of Mod(OX). In partic-

ular, the category of coherent modules is abelian and the inclusion functor
Coh(OX)→ Mod(OX) is exact.

Proof. Condition (2) of Definition 17.12.1 holds for any subsheaf of a coherent
sheaf. Thus we get (1).

Assume the hypotheses of (2). Let us show that Ker(ϕ) is of finite type. Pick
x ∈ X. Choose an open neighbourhood U of x in X such that F|U is generated by
s1, . . . , sn. By Definition 17.12.1 the kernel K of the induced map

⊕n
i=1OU → G,

ei 7→ ϕ(si) is of finite type. Hence Ker(ϕ) which is the image of the composition
K →

⊕n
i=1OU → F is of finite type.

Assume the hypotheses of (3). By (2) the kernel of ϕ is of finite type and hence by
(1) it is coherent.

With the same hypotheses let us show that Coker(ϕ) is coherent. Since G is of
finite type so is Coker(ϕ). Let U ⊂ X be open and let si ∈ Coker(ϕ)(U), i =
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1, . . . , n be sections. We have to show that the kernel of the associated morphism
Ψ :

⊕n
i=1OU → Coker(ϕ) has finite type. There exists an open covering of U such

that on each open all the sections si lift to sections si of G. Hence we may assume
this is the case over U . Thus Ψ lifts to Ψ :

⊕n
i=1OU → G Consider the following

diagram

0 // Ker(Ψ) //

��

⊕n
i=1OU // G //

��

0

0 // Ker(Ψ) //⊕n
i=1OU // Coker(ϕ) // 0

By the snake lemma we get a short exact sequence 0 → Ker(Ψ) → Ker(Ψ) →
Im(ϕ)→ 0. Hence by Lemma 17.9.3 we see that Ker(Ψ) has finite type.

Proof of part (4). Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of OX -
modules. By part (3) it suffices to prove that if F1 and F3 are coherent so is F2.
By Lemma 17.9.3 we see that F2 has finite type. Let s1, . . . , sn be finitely many
local sections of F2 defined over a common open U of X. We have to show that
the module of relations K between them is of finite type. Consider the following
commutative diagram

0 // 0 //

��

⊕n
i=1OU //

��

⊕n
i=1OU //

��

0

0 // F1
// F2

// F3
// 0

with obvious notation. By the snake lemma we get a short exact sequence 0→ K →
K3 → F1 where K3 is the module of relations among the images of the sections si
in F3. Since F3 is coherent we see that K3 is finite type. Since F1 is coherent we
see that the image I of K3 → F1 is coherent. Hence K is the kernel of the map
K3 → I between a finite type sheaf and a coherent sheaves and hence finite type
by (2).

Proof of (5). This follows because (3) and (4) show that Homology, Lemma 12.9.3
applies. �

Lemma 17.12.5. Let (X,OX) be a ringed space. Let F be an OX-module. Assume
OX is a coherent OX-module. Then F is coherent if and only if it is of finite
presentation.

Proof. Omitted. �

Lemma 17.12.6. Let X be a ringed space. Let ϕ : G → F be a homomorphism
of OX-modules. Let x ∈ X. Assume G of finite type, F coherent and the map on
stalks ϕx : Gx → Fx injective. Then there exists an open neighbourhood x ∈ U ⊂ X
such that ϕ|U is injective.

Proof. Denote K ⊂ G the kernel of ϕ. By Lemma 17.12.4 we see that K is a finite
type OX -module. Our assumption is that Kx = 0. By Lemma 17.9.5 there exists
an open neighbourhood U of x such that K|U = 0. Then U works. �
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17.13. Closed immersions of ringed spaces

When do we declare a morphism of ringed spaces i : (Z,OZ) → (X,OX) to be a
closed immersion?

Motivated by the example of a closed immersion of normal topological spaces
(ringed with the sheaf of continuous functors), or differential manifolds (ringed
with the sheaf of differentiable functions), it seems natural to assume at least:

(1) The map i is a closed immersion of topological spaces.
(2) The associated map OX → i∗OZ is surjective. Denote the kernel by I.

Already these conditions imply a number of pleasing results: For example we prove
that the category of OZ-modules is equivalent to the category of OX -modules an-
nihilated by I generalizing the result on abelian sheaves of Section 17.6

However, in the Stacks project we choose the definition that guarantees that if i
is a closed immersion and (X,OX) is a scheme, then also (Z,OZ) is a scheme.
Moreover, in this situation we want i∗ and i∗ to provide an equivalence between
the category of quasi-coherent OZ-modules and the category of quasi-coherent OX -
modules annihilated by I. A minimal condition is that i∗OZ is a quasi-coherent
sheaf of OX -modules. A good way to guarantee that i∗OZ is a quasi-coherent OX -
module is to assume that I is locally generated by sections. We can interpret this
condition as saying “(Z,OZ) is locally on (X,OX) defined by setting some regular
functions fi, i.e., local sections of OX , equal to zero”. This leads to the following
definition.

Definition 17.13.1. A closed immersion of ringed spaces2 is a morphism i :
(Z,OZ)→ (X,OX) with the following properties:

(1) The map i is a closed immersion of topological spaces.
(2) The associated map OX → i∗OZ is surjective. Denote the kernel by I.
(3) The OX -module I is locally generated by sections.

Actually, this definition still does not guarantee that i∗ of a quasi-coherent OZ-
module is a quasi-coherent OX -module. The problem is that it is not clear how to
convert a local presentation of a quasi-coherent OZ-module into a local presentation
for the pushforward. However, the following is trivial.

Lemma 17.13.2. Let i : (Z,OZ) → (X,OX) be a closed immersion of locally
ringed spaces. Let F be a quasi-coherent OZ-module. Then i∗F is locally on X the
cokernel of a map of quasi-coherent OX-modules.

Proof. This is true because i∗OZ is quasi-coherent by definition. And locally on Z
the sheaf F is a cokernel of a map between direct sums of copies of OZ . Moreover,
any direct sum of copies of the the same quasi-coherent sheaf is quasi-coherent.
And finally, i∗ commutes with arbitrary colimits, see Lemma 17.6.3. Some details
omitted. �

Lemma 17.13.3. Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces.
Assume i is a homeomorphism onto a closed subset of X and that OX → i∗OZ is
surjective. Let F be an OZ-module. Then i∗F is of finite type if and only if F is
of finite type.

2This is nonstandard notation; see discussion above.
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Proof. Suppose that F is of finite type. Pick x ∈ X. If x 6∈ Z, then i∗F is
zero in a neighbourhood of x and hence finitely generated in a neighbourhood of
x. If x = i(z), then choose an open neighbourhood z ∈ V ⊂ Z and sections
s1, . . . , sn ∈ F(V ) which generate F over V . Write V = Z ∩ U for some open
U ⊂ X. Note that U is a neighbourhood of x. Clearly the sections si give sections
si of i∗F over U . The resulting map⊕

i=1,...,n
OU −→ i∗F|U

is surjective by inspection of what it does on stalks (here we use that OX → i∗OZ
is surjective). Hence i∗F is of finite type.

Conversely, suppose that i∗F is of finite type. Choose z ∈ Z. Set x = i(z).
By assumption there exists an open neighbourhood U ⊂ X of x, and sections
s1, . . . , sn ∈ (i∗F)(U) which generate i∗F over U . Set V = Z ∩U . By definition of
i∗ the sections si correspond to sections si of F over V . The resulting map⊕

i=1,...,n
OV −→ F|V

is surjective by inspection of what it does on stalks. Hence F is of finite type. �

Lemma 17.13.4. Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces.
Assume i is a homeomorphism onto a closed subset of X and i] : OX → i∗OZ is
surjective. Denote I ⊂ OX the kernel of i]. The functor

i∗ : Mod(OZ) −→ Mod(OX)

is exact, fully faithful, with essential image those OX-modules G such that IG = 0.

Proof. We claim that for a OZ-module F the canonical map

i∗i∗F −→ F
is an isomorphism. We check this on stalks. Say z ∈ Z and x = i(z). We have

(i∗i∗F)z = (i∗F)x ⊗OX,x OZ,z = Fz ⊗OX,x OZ,z = Fz
by Sheaves, Lemma 6.26.4, the fact that OZ,z is a quotient of OX,x, and Sheaves,
Lemma 6.32.1. It follows that i∗ is fully faithful.

Let G be a OX -module with IG = 0. If x ∈ X, x 6∈ i(Z), then Gx = 0 because
Ix = OX,x in this case. Thus we see that G us supported on Z. By Lemma 17.6.1
we can write G = i∗F for a unique abelian sheaf F on Z. Let W ⊂ Z be open,
f ∈ OZ(W ) and s ∈ F(W ). We define fs ∈ F(W ). Since i] is surjective we
can find opens Uj ⊂ X such that W =

⋃
i−1(Uj) and f |i−1(Uj) is the image of

fj ∈ OX(Uj). Note that s|i−1(Uj) is an element of F(i−1(Uj)) = G(Ui). Thus we

can form sj = fjs ∈ F(i−1(Uj)) = G(Ui). By our assumption that IG = 0 the
sections sj are independent of the choice of fj lifting f |i−1(Uj) and glue to a section
fs of F over W . In this way F becomes an OZ-module such that G ∼= i∗F . �

17.14. Locally free sheaves

Let (X,OX) be a ringed space. Our conventions allow (some of) the stalks OX,x to
be the zero ring. This means we have to be a little careful when defining the rank
of a locally free sheaf.

Definition 17.14.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -
modules.
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(1) We say F is locally free if for every point x ∈ X there exists a set I
and an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to⊕

i∈I OX |U as an OX |U -module.
(2) We say F is finite locally free if we may choose the index sets I to be

finite.
(3) We say F is finite locally free of rank r if we may choose the index sets I

to have cardinality r.

A finite direct sum of (finite) locally free sheaves is (finite) locally free. However,
it may not be the case that an infinite direct sum of locally free sheaves is locally
free.

Lemma 17.14.2. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
If F is locally free then it is quasi-coherent.

Proof. Omitted. �

Lemma 17.14.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If
G is a locally free OY -module, then f∗G is a locally free OX-module.

Proof. Omitted. �

Lemma 17.14.4. Let (X,OX) be a ringed space. Suppose that the support of
OX is X, i.e., all stalk of OX are nonzero rings. Let F be a locally free sheaf of
OX-modules. There exists a locally constant function

rankF : X −→ {0, 1, 2, . . .} ∪ {∞}

such that for any point x ∈ X the cardinality of any set I such that F is isomorphic
to
⊕

i∈I OX in a neighbourhood of x is rankF (x).

Proof. Under the assumption of the lemma the cardinality of I can be read off
from the rank of the free module Fx over the nonzero ring OX,x, and it is constant
in a neighbourhood of x. �

Lemma 17.14.5. Let (X,OX) be a ringed space. Let r ≥ 0. Let ϕ : F → G be a
map of finite locally free OX-modules of rank r. Then ϕ is an isomorphism if and
only if ϕ is surjective.

Proof. Assume ϕ is surjective. Pick x ∈ X. There exists an open neighbourhood
U of x such that both F|U and G|U are isomorphic to O⊕rU . Pick lifts of the free
generators of G|U to obtain a map ψ : G|U → F|U such that ϕ|U ◦ψ = id. Hence we
conclude that the map Γ(U,F) → Γ(U,G) induced by ϕ is surjective. Since both
Γ(U,F) and Γ(U,G) are isomorphic to Γ(U,OU )⊕r as an Γ(U,OU )-module we may
apply Algebra, Lemma 10.15.4 to see that Γ(U,F) → Γ(U,G) is injective. This
finishes the proof. �

17.15. Tensor product

Let (X,OX) be a ringed space. Let F , G be OX -modules. We have briefly discussed
the tensor product in the setting of change of rings in Sheaves, Sections 6.6 and
6.20. In exactly the same way we define first the tensor product presheaf

F ⊗p,OX G
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as the rule which assigns to U ⊂ X open the OX(U)-module F(U) ⊗OX(U) G(U).
Having defined this we define the tensor product sheaf as the sheafification of the
above:

F ⊗OX G = (F ⊗p,OX G)#

This can be characterized as the sheaf of OX -modules such that for any third sheaf
of OX -modules H we have

HomOX (F ⊗OX G,H) = BilinOX (F × G,H).

Here the right hand side indicates the set of bilinear maps of sheaves of OX -modules
(definition omitted).

The tensor product of modules M,N over a ring R satisfies symmetry, namely
M ⊗R N = N ⊗R M , hence the same holds for tensor products of sheaves of
modules, i.e., we have

F ⊗OX G = G ⊗OX F
functorial in F , G. And since tensor product of modules satisfies associativity we
also get canonical functorial isomorphisms

(F ⊗OX G)⊗OX H = F ⊗OX (G ⊗OX H)

functorial in F , G, and H.

Lemma 17.15.1. Let (X,OX) be a ringed space. Let F , G be OX-modules. Let
x ∈ X. There is a canonical isomorphism of OX,x-modules

(F ⊗OX G)x = Fx ⊗OX,x Gx
functorial in F and G.

Proof. Omitted. �

Lemma 17.15.2. Let (X,OX) be a ringed space. Let F ′, G′ be presheaves of
OX-modules with sheafifications F , G. Then F ⊗OX G = (F ′ ⊗p,OX G′)#.

Proof. Omitted. �

Lemma 17.15.3. Let (X,OX) be a ringed space. Let G be an OX-module. If
F1 → F2 → F3 → 0 is an exact sequence of OX-modules then the induced sequence

F1 ⊗OX G → F2 ⊗OX G → F3 ⊗OX G → 0

is exact.

Proof. This follows from the fact that exactness may be checked at stalks (Lemma
17.3.1), the description of stalks (Lemma 17.15.1) and the corresponding result for
tensor products of modules (Algebra, Lemma 10.11.10). �

Lemma 17.15.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
F , G be OY -modules. Then f∗(F ⊗OY G) = f∗F ⊗OX f∗G functorially in F , G.

Proof. Omitted. �

Lemma 17.15.5. Let (X,OX) be a ringed space. Let F , G be OX-modules.

(1) If F , G are locally generated by sections, so is F ⊗OX G.
(2) If F , G are of finite type, so is F ⊗OX G.
(3) If F , G are quasi-coherent, so is F ⊗OX G.
(4) If F , G are of finite presentation, so is F ⊗OX G.
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(5) If F is of finite presentation and G is coherent, then F ⊗OX G is coherent.
(6) If F , G are coherent, so is F ⊗OX G.
(7) If F , G are locally free, so is F ⊗OX G.

Proof. We first prove that the tensor product of locally free OX -modules is locally
free. This follows if we show that (

⊕
i∈I OX) ⊗OX (

⊕
j∈J OX) ∼=

⊕
(i,j)∈I×J OX .

The sheaf
⊕

i∈I OX is the sheaf associated to the presheaf U 7→
⊕

i∈I OX(U).
Hence the tensor product is the sheaf associated to the presheaf

U 7−→ (
⊕

i∈I
OX(U))⊗OX(U) (

⊕
j∈J
OX(U)).

We deduce what we want since for any ring R we have (
⊕

i∈I R) ⊗R (
⊕

j∈J R) =⊕
(i,j)∈I×J R.

If F2 → F1 → F → 0 is exact, then by Lemma 17.15.3 the complex F2 ⊗ G →
F1 ⊗ G → F ⊗ G → 0 is exact. Using this we can prove (5). Namely, in this
case there exists locally such an exact sequence with Fi, i = 1, 2 finite free. Hence
the two terms F2 ⊗ G are isomorphic to finite direct sums of G. Since finite direct
sums are coherent sheaves, these are coherent and so is the cokernel of the map,
see Lemma 17.12.4.

And if also G2 → G1 → G → 0 is exact, then we see that

F2 ⊗OX G1 ⊕F1 ⊗OX G2 → F1 ⊗OX G1 → F ⊗OX G → 0

is exact. Using this we can for example prove (3). Namely, the assumption means
that we can locally find presentations as above with Fi and Gi free OX -modules.
Hence the displayed presentation is a presentation of the tensor product by free
sheaves as well.

The proof of the other statements is omitted. �

Lemma 17.15.6. Let (X,OX) be a ringed space. For any OX-module F the func-
tor

Mod(OX) −→ Mod(OX), G 7−→ F ⊗O G
commutes with arbitrary colimits.

Proof. Let I be a partially ordered set and let {Gi} be a system over I. Set
G = colimi Gi. Recall that G is the sheaf associated to the presheaf G′ : U 7→
colimi Gi(U), see Sheaves, Section 6.29. By Lemma 17.15.2 the tensor product
F ⊗OX G is the sheafification of the presheaf

U 7−→ F(U)⊗OX(U) colimi Gi(U) = colimi F(U)⊗OX(U) Gi(U)

where the equality sign is Algebra, Lemma 10.11.9. Hence the lemma follows from
the description of colimits in Mod(OX). �

17.16. Flat modules

We can define flat modules exactly as in the case of modules over rings.

Definition 17.16.1. Let (X,OX) be a ringed space. An OX -module F is flat if
the functor

Mod(OX) −→ Mod(OX), G 7→ G ⊗O F
is exact.

We can characterize flatness by looking at the stalks.
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Lemma 17.16.2. Let (X,OX) be a ringed space. An OX-module F is flat if and
only if the stalk Fx is a flat OX,x-module for all x ∈ X.

Proof. Assume Fx is a flat OX,x-module for all x ∈ X. In this case, if G → H → K
is exact, then also G⊗OX F → H⊗OX F → K⊗OX F is exact because we can check
exactness at stalks and because tensor product commutes with taking stalks, see
Lemma 17.15.1. Conversely, suppose that F is flat, and let x ∈ X. Consider the
skyscraper sheaves ix,∗M where M is a OX,x-module. Note that

M ⊗OX,x Fx = (ix,∗M ⊗OX F)x

again by Lemma 17.15.1. Since ix,∗ is exact, we see that the fact that F is flat
implies that M 7→M ⊗OX,x Fx is exact. Hence Fx is a flat OX,x-module. �

Thus the following definition makes sense.

Definition 17.16.3. Let (X,OX) be a ringed space. Let x ∈ X. An OX -module
F is flat at x if Fx is a flat OX,x-module.

Hence we see that F is a flat OX -module if and only if it is flat at every point.

Lemma 17.16.4. Let (X,OX) be a ringed space. A filtered colimit of flat OX-
modules is flat. A direct sum of flat OX-modules is flat.

Proof. This follows from Lemma 17.15.6, Lemma 17.15.1, Algebra, Lemma 10.8.9,
and the fact that we can check exactness at stalks. �

Lemma 17.16.5. Let (X,OX) be a ringed space. Let U ⊂ X be open. The sheaf
jU !OU is a flat sheaf of OX-modules.

Proof. The stalks of jU !OU are either zero or equal toOX,x. Apply Lemma 17.16.2.
�

Lemma 17.16.6. Let (X,OX) be a ringed space.

(1) Any sheaf of OX-modules is a quotient of a direct sum
⊕
jUi!OUi .

(2) Any OX-module is a quotient of a flat OX-module.

Proof. Let F be an OX -module. For every open U ⊂ X and every s ∈ F(U)
we get a morphism jU !OU → F , namely the adjoint to the morphism OU → F|U ,
1 7→ s. Clearly the map ⊕

(U,s)
jU !OU −→ F

is surjective, and the source is flat by combining Lemmas 17.16.4 and 17.16.5. �

Lemma 17.16.7. Let (X,OX) be a ringed space. Let

0→ F ′′ → F ′ → F → 0

be a short exact sequence of OX-modules. Assume F is flat. Then for any OX-
module G the sequence

0→ F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0

is exact.

Proof. Using that Fx is a flat OX,x-module for every x ∈ X and that exactness
can be checked on stalks, this follows from Algebra, Lemma 10.38.11. �
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Lemma 17.16.8. Let (X,OX) be a ringed space. Let

0→ F2 → F1 → F0 → 0

be a short exact sequence of OX-modules.

(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

Proof. Since exactness and flatness may be checked at the level of stalks this
follows from Algebra, Lemma 10.38.12. �

Lemma 17.16.9. Let (X,OX) be a ringed space. Let

. . .→ F2 → F1 → F0 → Q→ 0

be an exact complex of OX-modules. If Q and all Fi are flat OX-modules, then for
any OX-module G the complex

. . .→ F2 ⊗OX G → F1 ⊗OX G → F0 ⊗OX G → Q⊗OX G → 0

is exact also.

Proof. Follows from Lemma 17.16.7 by splitting the complex into short exact
sequences and using Lemma 17.16.8 to prove inductively that Im(Fi+1 → Fi) is
flat. �

The following lemma gives one direction of the equational criterion of flatness (Al-
gebra, Lemma 10.38.10).

Lemma 17.16.10. Let (X,OX) be a ringed space. Let F be a flat OX-module.
Let U ⊂ X be open and let

OU
(f1,...,fn)−−−−−−→ O⊕nU

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. For every x ∈ U there exists an open neighbourhood
V ⊂ U of x and a factorization

O⊕nV
A−→ O⊕mV

(t1,...,tm)−−−−−−→ F|V
of (s1, . . . , sn)|V such that A ◦ (f1, . . . , fn)|V = 0.

Proof. Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn. Then
∑
fi ⊗ si

is a section of I ⊗OU F|U which maps to zero in F|U . As F|U is flat the map
I ⊗OU F|U → F|U is injective. Since I ⊗OU F|U is the sheaf associated to the
presheaf tensor product, we see there exists an open neighbourhood V ⊂ U of x
such that

∑
fi|V ⊗ si|V is zero in I(V ) ⊗O(V ) F(V ). Unwinding the definitions

using Algebra, Lemma 10.103.10 we find t1, . . . , tm ∈ F(V ) and aij ∈ O(V ) such
that

∑
aijfi|V = 0 and si|V =

∑
aijtj . �

Lemma 17.16.11. Let (X,OX) be a ringed space. Let F be locally of finite pre-
sentation and flat. Then F is locally a direct summand of a finite free OX-module.

Proof. After replacing X by the members of an open covering, we may assume
there exists a presentation

O⊕rX → O
⊕n
X → F → 0
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Let x ∈ X. By Lemma 17.16.10 we can, after shrinkingX to an open neighbourhood
of x, assume there exists a factorization

O⊕nX → O⊕n1

X → F
such that the composition O⊕rX → O⊕nX → O⊕n1

X annihilates the first summand of

O⊕rX . Repeating this argument r − 1 more times we obtain a factorization

O⊕nX → O⊕nrX → F
such that the composition O⊕rX → O⊕nX → O⊕nrX is zero. This means that the

surjection O⊕nrX → F has a section and we win. �

17.17. Flat morphisms of ringed spaces

The pointwise definition is motivated by Lemma 17.16.2 and Definition 17.16.3
above.

Definition 17.17.1. Let f : X → Y be a morphism of ringed spaces. Let x ∈ X.
We say f is said to be flat at x if the map of rings OY,f(x) → OX,x is flat. We say
f is flat if f is flat at every x ∈ X.

Consider the map of sheaves of rings f ] : f−1OY → OX . We see that the stalk at x
is the ring map f ]x : OY,f(x) → OX,x. Hence f is flat at x if and only if OX is flat at

x as an f−1OY -module. And f is flat if and only if OX is flat as an f−1OY -module.
A very special case of a flat morphism is an open immersion.

Lemma 17.17.2. Let f : X → Y be a flat morphism of ringed spaces. Then the
pullback functor f∗ : Mod(OY )→ Mod(OX) is exact.

Proof. The functor f∗ is the composition of the exact functor f−1 : Mod(OY ) →
Mod(f−1OY ) and the change of rings functor

Mod(f−1OY )→ Mod(OX), F 7−→ F ⊗f−1OY OX .
Thus the result follows from the discussion following Definition 17.17.1. �

Definition 17.17.3. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules.

(1) We say that F is flat over Y at a point x ∈ X if the stalk Fx is a flat
OY,f(x)-module.

(2) We say that F is flat over Y if F is flat over Y at every point x of X.

With this definition we see that F is flat over Y at x if and only if F is flat at x as
an f−1OY -module because (f−1OY )x = OY,f(x) by Sheaves, Lemma 6.21.5.

17.18. Symmetric and exterior powers

Let (X,OX) be a ringed space. Let F be an OX -algebra. We define the tensor
algebra of F to be the sheaf of noncommutative OX -algebras

T(F) = TOX (F) =
⊕

n≥0
Tn(F).

Here T0(F) = OX , T1(F) = F and for n ≥ 2 we have

Tn(F) = F ⊗OX . . .⊗OX F (n factors)

We define ∧(F) to be the quotient of T(F) by the two sided ideal generated by
local sections s ⊗ s of T2(F) where s is a local section of F . This is called the
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exterior algebra of F . Similarly, we define Sym(F) to be the quotient of T(F) by
the two sided ideal generated by local sections of the form s⊗ t− t⊗ s of T2(F).

Both ∧(F) and Sym(F) are graded OX -algebras, with grading inherited from T(F).
Moreover Sym(F) is commutative, and ∧(F) is graded commutative.

Lemma 17.18.1. In the situation described above. The sheaf ∧nF is the sheafifi-
cation of the presheaf

U 7−→ ∧nOX(U)(F(U)).

See Algebra, Section 10.12. Similarly, the sheaf SymnF is the sheafification of the
presheaf

U 7−→ Symn
OX(U)(F(U)).

Proof. Omitted. It may be more efficient to define Sym(F) and ∧(F) in this way
instead of the method given above. �

Lemma 17.18.2. In the situation described above. Let x ∈ X. There are canon-
ical isomorphisms of OX,x-modules T(F)x = T(Fx), Sym(F)x = Sym(Fx), and
∧(F)x = ∧(Fx).

Proof. Clear from Lemma 17.18.1 above, and Algebra, Lemma 10.12.4. �

Lemma 17.18.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OY -modules. Then f∗T(F) = T(f∗F), and similarly for the
exterior and symmetric algebras associated to F .

Proof. Omitted. �

Lemma 17.18.4. Let (X,OX) be a ringed space. Let F2 → F1 → F → 0 be an
exact sequence of sheaves of OX-modules. For each n ≥ 1 there is an exact sequence

F2 ⊗OX Symn−1(F1)→ Symn(F1)→ Symn(F)→ 0

and similarly an exact sequence

F2 ⊗OX ∧n−1(F1)→ ∧n(F1)→ ∧n(F)→ 0

Proof. See Algebra, Lemma 10.12.2. �

Lemma 17.18.5. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.

(1) If F is locally generated by sections, then so is each Tn(F), ∧n(F), and
Symn(F).

(2) If F is of finite type, then so is each Tn(F), ∧n(F), and Symn(F).
(3) If F is of finite presentation, then so is each Tn(F), ∧n(F), and Symn(F).
(4) If F is coherent, then for n > 0 each Tn(F), ∧n(F), and Symn(F) is

coherent.
(5) If F is quasi-coherent, then so is each Tn(F), ∧n(F), and Symn(F).
(6) If F is locally free, then so is each Tn(F), ∧n(F), and Symn(F).

Proof. These statements for Tn(F) follow from Lemma 17.15.5.

Statements (1) and (2) follow from the fact that ∧n(F) and Symn(F) are quotients
of Tn(F).

Statement (6) follows from Algebra, Lemma 10.12.1.
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For (3) and (5) we will use Lemma 17.18.4 above. By locally choosing a presentation
F2 → F1 → F → 0 with Fi free, or finite free and applying the lemma we see that
Symn(F), ∧n(F) has a similar presentation; here we use (6) and Lemma 17.15.5.

To prove (4) we will use Algebra, Lemma 10.12.3. We may localize on X and
assume that F is generated by a finite set (si)i∈I of global sections. The lemma
mentioned above combined with Lemma 17.18.1 above implies that for n ≥ 2 there
exists an exact sequence⊕

j∈J
Tn−2(F)→ Tn(F)→ Symn(F)→ 0

where the index set J is finite. Now we know that Tn−2(F) is finitely generated
and hence the image of the first arrow is a coherent subsheaf of Tn(F), see Lemma
17.12.4. By that same lemma we conclude that Symn(F) is coherent. �

Lemma 17.18.6. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.

(1) If F is quasi-coherent, then so is each T(F), ∧(F), and Sym(F).
(2) If F is locally free, then so is each T(F), ∧(F), and Sym(F).

Proof. It is not true that an infinite direct sum
⊕
Gi of locally free modules

is locally free, or that an infinite direct sum of quasi-coherent modules is quasi-
coherent. The problem is that given a point x ∈ X the open neighbourhoods Ui
of x on which Gi becomes free (resp. has a suitable presentation) may have an
intersection which is not an open neighbourhood of x. However, in the proof of
Lemma 17.18.5 we saw that once a suitable open neighbourhood for F has been
chosen, then this open neighbourhood works for each of the sheaves Tn(F), ∧n(F)
and Symn(F). The lemma follows. �

17.19. Internal Hom

Let (X,OX) be a ringed space. Let F , G be OX -modules. Consider the rule

U 7−→ HomOX |U (F|U ,G|U ).

It follows from the discussion in Sheaves, Section 6.33 that this is a sheaf of abelian
groups. In addition, given an element ϕ ∈ HomOX |U (F|U ,G|U ) and a section
f ∈ OX(U) then we can define fϕ ∈ HomOX |U (F|U ,G|U ) by either precomposing
with multiplication by f on F|U or postcomposing with multiplication by f on G|U
(it gives the same result). Hence we in fact get a sheaf of OX -modules. We will
denote this sheaf HomOX (F ,G). There is a canonical “evaluation” morphism

F ⊗OX HomOX (F ,G) −→ G.
For every x ∈ X there is also a canonical morphism

HomOX (F ,G)x → HomOX,x(Fx,Gx)

which is rarely an isomorphism.

Lemma 17.19.1. Let (X,OX) be a ringed space. Let F , G, H be OX-modules.
There is a canonical isomorphism

HomOX (F ⊗OX G,H) −→ HomOX (F ,HomOX (G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In par-
ticular, to give a morphism F ⊗OX G → H is the same as giving a morphism
F → HomOX (G,H).
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Proof. This is the analogue of Algebra, Lemma 10.11.8. The proof is the same,
and is omitted. �

Lemma 17.19.2. Let (X,OX) be a ringed space. Let F , G be OX-modules.

(1) If F2 → F1 → F → 0 is an exact sequence of OX-modules, then

0→ HomOX (F ,G)→ HomOX (F1,G)→ HomOX (F2,G)

is exact.
(2) If 0→ G → G1 → G2 is an exact sequence of OX-modules, then

0→ HomOX (F ,G)→ HomOX (F ,G1)→ HomOX (F ,G2)

is exact.

Proof. Omitted. �

Lemma 17.19.3. Let (X,OX) be a ringed space. Let F , G be OX-modules. If F
is finitely presented then the canonical map

HomOX (F ,G)x → HomOX,x(Fx,Gx)

is an isomorphism.

Proof. By localizing on X we may assume that F has a presentation⊕
j=1,...,m

OX −→
⊕

i=1,...,n
OX → F → 0.

By Lemma 17.19.2 this gives an exact sequence 0→ HomOX (F ,G)→
⊕

i=1,...,n G −→⊕
j=1,...,m G. Taking stalks we get an exact sequence 0 → HomOX (F ,G)x →⊕
i=1,...,n Gx −→

⊕
j=1,...,m Gx and the result follows since Fx sits in an exact

sequence
⊕

j=1,...,mOX,x −→
⊕

i=1,...,nOX,x → Fx → 0 which induces the exact

sequence 0 → HomOX,x(Fx,Gx) →
⊕

i=1,...,n Gx −→
⊕

j=1,...,m Gx which is the
same as the one above. �

Lemma 17.19.4. Let (X,OX) be a ringed space. Let F , G be OX-modules. If F is
finitely presented then the sheaf HomOX (F ,G) is locally a kernel of a map between
finite direct sums of copies of G. In particular, if G is coherent then HomOX (F ,G)
is coherent too.

Proof. The first assertion we saw in the proof of Lemma 17.19.3. And the result
for coherent sheaves then follows from Lemma 17.12.4. �

Lemma 17.19.5. Let X be a topological space. Let O1 → O2 be a homomorphism
of sheaves of rings. Then we have

HomO1
(FO1

,G) = HomO2
(F ,HomO1

(O2,G))

bifunctorially in F ∈ Mod(O2) and G ∈ Mod(O1).

Proof. Omitted. This is the analogue of Algebra, Lemma 10.13.4 and is proved in
exactly the same way. �
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17.20. Koszul complexes

We suggest first reading the section on Koszul complexes in More on Algebra,
Section 15.20. We define the Koszul complex in the category of OX -modules as
follows.

Definition 17.20.1. Let X be a ringed space. Let ϕ : E → OX be an OX -module
map. The Koszul complex K•(ϕ) associated to ϕ is the sheaf of commutative
differential graded algebras defined as follows:

(1) the underlying graded algebra is the exterior algebra K•(ϕ) = ∧(E),
(2) the differential d : K•(ϕ) → K•(ϕ) is the unique derivation such that

d(e) = ϕ(e) for all local sections e of E = K1(ϕ).

Explicitly, if e1 ∧ . . . ∧ en is a wedge product of local sections of E , then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1ϕ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e ∧ e and hence factors through the exterior algebra.

Definition 17.20.2. Let X be a ringed space and let f1, . . . , fn ∈ Γ(X,OX).
The Koszul complex on f1, . . . , fr is the Koszul complex associated to the map
(f1, . . . , fn) : O⊕nX → OX . Notation K•(OX , f1, . . . , fn), or K•(OX , f•).
Of course, given an OX -module map ϕ : E → OX , if E is finite locally free, then
K•(ϕ) is locally on X isomorphic to a Koszul complex K•(OX , f1, . . . , fn).

17.21. Invertible sheaves

Definition 17.21.1. Let (X,OX) be a ringed space. Assume that all stalks OX,x
are local rings3. An invertible OX-module is a sheaf of OX -modules L such that for
each point x ∈ X there exists an open neighbourhood U ⊂ X and an isomorphism
L|U ∼= OX |U . We say that L is trivial if it is isomorphic as an OX -module to OX .

Lemma 17.21.2. Let (X,OX) be a ringed space. Assume that all stalks OX,x are
local rings.

(1) If L, N are invertible OX-modules, then so is L ⊗OX N .
(2) If L is an invertible OX-module, then so is L⊗−1 = HomOX (L,OX).
(3) If L is an invertible OX-module, then the evaluation map L⊗OX L⊗−1 →
OX is an isomorphism.

Proof. Omitted. �

Definition 17.21.3. Let (X,OX) be a ringed space. Assume that all stalks OX,x
are local rings. Given an invertible sheaf L on X we define the nth tensor power of
L by the rule

L⊗n =


OX if n = 0

HomOX (L,OX) if n = −1
L ⊗OX . . .⊗OX L if n > 0

L⊗−1 ⊗OX . . .⊗OX L⊗−1 if n < −1

3We should at least assume that they are nonzero. However, in this generality the stalks OX,x
can have nontrivial Picard groups, and then there are two possible definitions. One were we require
L to be locally free of rank 1, and the other where we require L to be a flat, finite presentation

OX -module such that there exists a second such sheaf L⊗−1 with L ⊗OX L
⊗−1 ∼= OX .
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With this definition we have canonical isomorphisms L⊗n⊗OX L⊗m → L⊗n+m, and
these isomorphisms satisfy a commutativity and an associativity constraint (formu-
lation omitted). Thus we can define a Z-graded ring structure on

⊕
Γ(X,L⊗n) by

mapping s ∈ Γ(X,L⊗n) and t ∈ Γ(X,L⊗m) to the section corresponding to s ⊗ t
in Γ(X,L⊗n+m). We omit the verification that this defines a commutative and
associative ring with 1. However, by our conventions in Algebra, Section 10.54 a
graded ring has no nonzero elements in negative degrees. This leads to the following
definition.

Definition 17.21.4. Let (X,OX) be a ringed space. Assume that all stalks OX,x
are local rings. Given an invertible sheaf L on X we define the associated graded
ring to be

Γ∗(X,L) =
⊕

n≥0
Γ(X,L⊗n)

Given a sheaf of OX -modules F we set

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX L⊗n)

which we think of as a graded Γ∗(X,L)-module.

We often write simply Γ∗(L) and Γ∗(F) (although this is ambiguous if F is in-
vertible). The multiplication of Γ∗(L) on Γ∗(F) is defined using the isomorphisms
above. If γ : F → G is a OX -module map, then we get an Γ∗(L)-module homomor-
phism γ : Γ∗(F)→ Γ∗(G). If α : L → N is an OX -module map between invertible
OX -modules, then we obtain a graded ring homomorphism Γ∗(L) → Γ∗(N ). If
f : (Y,OY ) → (X,OX) is a morphism of locally ringed spaces (see Schemes, Defi-
nition 25.2.1), and if L is invertible on X, then we get an invertible sheaf f∗L on
Y and an induced homomorphism of graded rings

f∗ : Γ∗(X,L) −→ Γ∗(Y, f
∗L)

Furthermore, there are some compatibilities between the constructions above whose
statements we omit.

Lemma 17.21.5. Let (X,OX) be a ringed space. Assume that all stalks OX,x are
local rings. There exists a set of invertible modules {Li}i∈I such that each invertible
module on X is isomorphic to exactly one of the Li.
Proof. For each open covering U : X =

⋃
Uj consider the sheaves of OX -modules

gotten from glueing the sheaves OX |Uj , see Sheaves, Section 6.33. Note that the
collection of all glueing data forms a set. The collection of all coverings U : X =⋃
j∈J Ui where J → P(X), j 7→ Uj is injective forms a set as well. Hence the

collection of all sheaves of of OX -modules gotten from glueing trivial invertible
OX -modules forms a set I. By definition every invertible OX -module is isomorphic
to an element of I. Choosing an element out of each isomorphism class inside I
gives the desired set of invertible sheaves (uses axiom of choice). �

This lemma says roughly speaking that the collection of isomorphism classes of
invertible sheaves forms a set. Lemma 17.21.2 says that tensor product defines the
structure of an abelian group on this set.

Definition 17.21.6. Let (X,OX) be a ringed space. Assume all stalks OX,x are
local rings. The Picard group Pic(X) of X is the abelian group whose elements
are isomorphism classes of invertible OX -modules, with addition corresponding to
tensor product.
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Lemma 17.21.7. Let X be a ringed space. Assume that each stalk OX,x is a local
ring with maximal ideal mx. Let L be an invertible OX-module. For any section
s ∈ Γ(X,L) the set

Xs = {x ∈ X | image s 6∈ mxLx}
is open in X. The map s : OXs → L|Xs is an isomorphism, and there exists a
section s′ of L⊗−1 over Xs such that s′(s|Xs) = 1.

Proof. Suppose x ∈ Xs. We have an isomorphism

Lx ⊗OX,x (L⊗−1)x −→ OX,x
by Lemma 17.21.2. Both Lx and (L⊗−1)x are free OX,x-modules of rank 1. We
conclude from Algebra, Nakayama’s Lemma 10.19.1 that sx is a basis for Lx. Hence
there exists a basis element tx ∈ (L⊗−1)x such that sx ⊗ tx maps to 1. Choose an
open neighbourhood U of x such that tx comes from a section t of (L⊗−1)x over U
and such that s ⊗ t maps to 1 ∈ OX(U). Clearly, for every x′ ∈ U we see that s
generates the module Lx′ . Hence U ⊂ Xs. This proves that Xs is open. Moreover,
the section t constructed over U above is unique, and hence these glue to give te
section s′ of the lemma. �

It is also true that, given a morphism of locally ringed spaces f : Y → X (see
Schemes, Definition 25.2.1) that the inverse image f−1(Xs) is equal to Yf∗s, where
f∗s ∈ Γ(Y, f∗L) is the pullback of s.

17.22. Localizing sheaves of rings

Let X be a topological space and let OX be a presheaf of rings. Let S ⊂ OX be
a presheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset, see Algebra, Definition 10.9.1. In this
case we can consider the presheaf of rings

S−1OX : U 7−→ S(U)−1OX(U).

The restriction mapping sends the section f/s, f ∈ OX(U), s ∈ S(U) to (f |V )/(s|V )
if V ⊂ U are opens of X.

Lemma 17.22.1. Let X be a topological space and let OX be a presheaf of rings.
Let S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open
U ⊂ X the set S(U) ⊂ OX(U) is a multiplicative subset.

(1) There is a map of presheaves of rings OX → S−1OX such that every local
section of S maps to an invertible section of OX .

(2) For any homomorphism of presheaves of rings OX → A such that each
local section of S maps to an invertible section of A there exists a unique
factorization S−1OX → A.

(3) For any x ∈ X we have

(S−1OX)x = S−1
x OX,x.

(4) The sheafification (S−1OX)# is a sheaf of rings with a map of sheaves of
rings (OX)# → (S−1OX)# which is universal for maps of (OX)# into
sheaves of rings such that each local section of S maps to an invertible
section.

(5) For any x ∈ X we have

(S−1OX)#
x = S−1

x OX,x.
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Proof. Omitted. �

Let X be a topological space and let OX be a presheaf of rings. Let S ⊂ OX be
a presheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset. Let F be a presheaf of OX -modules In
this case we can consider the presheaf of S−1OX -modules

S−1F : U 7−→ S(U)−1F(U).

The restriction mapping sends the section t/s, t ∈ F(U), s ∈ S(U) to (t|V )/(s|V )
if V ⊂ U are opens of X.

Lemma 17.22.2. Let X be a topological space. Let OX be a presheaf of rings. Let
S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open U ⊂ X
the set S(U) ⊂ OX(U) is a multiplicative subset. For any presheaf of OX-modules
F we have

S−1F = S−1OX ⊗p,OX F
(see Sheaves, Section 6.6 for notation) and if F and OX are sheaves then

(S−1F)# = (S−1OX)# ⊗OX F
(see Sheaves, Section 6.20 for notation).

Proof. Omitted. �

17.23. Modules of differentials

In this section we briefly explain how to define the module of relative differentials for
a morphism of ringed spaces. We suggest the reader take a look at the corresponding
section in the chapter on commutative algebra (Algebra, Section 10.127).

Definition 17.23.1. Let X be a topological space. Let ϕ : O1 → O2 be a homo-
morphism of sheaves of rings. Let F be an O2-module. A O1-derivation or more
precisely a ϕ-derivation into F is a map D : O2 → F which is additive, annihilates
the image of O1 → O2, and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b

for all a, b local sections of O2 (wherever they are both defined). We denote
DerO1

(O2,F) the set of ϕ-derivations into F .

This is the sheaf theoretic analogue of Algebra, Definition 17.23.1. Given a deriva-
tion D : O2 → F as in the definition the map on global sections

D : Γ(X,O2) −→ Γ(X,F)

is a Γ(X,O1)-derivation as in the algebra definition. Note that if α : F → G is a
map of O2-modules, then there is an induced map

DerO1
(O2,F) −→ DerO1

(O2,G)

given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 17.23.2. Let X be a topological space. Let ϕ : O1 → O2 be a homomor-
phism of sheaves of rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1
(O2,F)

is representable.
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Proof. This is proved in exactly the same way as the analogous statement in
algebra. During this proof, for any sheaf of sets F on X, let us denote O2[F ] the
sheafification of the presheaf U 7→ O2(U)[F(U)] where this denotes the free O1(U)-
module on the set F(U). For s ∈ F(U) we denote [s] the corresponding section of
O2[F ] over U . If F is a sheaf of O2-modules, then there is a canonical map

c : O2[F ] −→ F
which on the presheaf level is given by the rule

∑
fs[s] 7→

∑
fss. We will employ

the short hand [s] 7→ s to describe this map and similarly for other maps below.
Consider the map of O2-modules

(17.23.2.1)

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1] −→ O2[O2]
[(a, b)]⊕ [(f, g)]⊕ [h] 7−→ [a+ b]− [a]− [b]+

[fg]− g[f ]− f [g]+
[ϕ(h)]

with short hand notation as above. Set ΩO2/O1
equal to the cokernel of this map.

Then it is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1
. By construction d is a

O1-derivation. Next, let F be a sheaf of O2-modules and let D : O2 → F be a
O1-derivation. Then we can consider the O2-linear map O2[O2] → F which sends
[g] to D(g). It follows from the definition of a derivation that this map annihilates
sections in the image of the map (17.23.2.1) and hence defines a map

αD : ΩO2/O1
−→ F

Since it is clear that D = αD ◦ d the lemma is proved. �

Definition 17.23.3. Let X be a topological space. Let ϕ : O1 → O2 be a homo-
morphism of sheaves of rings on X. The module of differentials of ϕ is the object
representing the functor F 7→ DerO1

(O2,F) which exists by Lemma 17.23.2. It is
denoted ΩO2/O1

, and the universal ϕ-derivation is denoted d : O2 → ΩO2/O1
.

Note that ΩO2/O1
is the cokernel of the map (17.23.2.1) of O2-modules. Moreover

the map d is described by the rule that df is the image of the local section [f ].

Lemma 17.23.4. Let X be a topological space. Let ϕ : O1 → O2 be a homomor-
phism of sheaves of rings on X. Then ΩO2/O1

is the sheaf associated to the presheaf
U 7→ ΩO2(U)/O1(U).

Proof. Consider the map (17.23.2.1). There is a similar map of presheaves whose
value on the open U is

O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]

The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of
the module of differentials in Algebra, Definition 10.127.2. On the other hand,
the sheaves in (17.23.2.1) are the sheafifications of the presheaves above. Thus the
result follows as sheafification is exact. �

Lemma 17.23.5. Let X be a topological space. Let ϕ : O1 → O2 be a homomor-
phism of sheaves of rings. For U ⊂ X open there is a canonical isomorphism

ΩO2/O1
|U = Ω(O2|U )/(O1|U )

http://stacks.math.columbia.edu/tag/08RP
http://stacks.math.columbia.edu/tag/08TD
http://stacks.math.columbia.edu/tag/08RQ
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compatible with universal derivations.

Proof. Holds because ΩO2/O1
is the cokernel of the map (17.23.2.1). �

Lemma 17.23.6. Let f : Y → X be a continuous map of topological spaces.
Let ϕ : O1 → O2 be a homomorphism of sheaves of rings on X. Then there is
a canonical identification f−1ΩO2/O1

= Ωf−1O2/f−1O1
compatible with universal

derivations.

Proof. This holds because the sheaf ΩO2/O1
is the cokernel of the map (17.23.2.1)

and a similar statement holds for Ωf−1O2/f−1O1
, because the functor f−1 is exact,

and because f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 ×O2]) = f−1O2[f−1O2 ×
f−1O2], and f−1(O2[O1]) = f−1O2[f−1O1]. �

Lemma 17.23.7. Let X be a topological space. Let O1 → O2 be a homomorphism
of sheaves of rings on X. Let x ∈ X. Then we have ΩO2/O1,x = ΩO2,x/O1,x

.

Proof. This is a special case of Lemma 17.23.6 for the inclusion map {x} → X. An
alternative proof is the use Lemma 17.23.4, Sheaves, Lemma 6.17.2, and Algebra,
Lemma 10.127.4 �

Lemma 17.23.8. Let X be a topological space. Let

O2 ϕ
// O′2

O1
//

OO

O′1

OO

be a commutative diagram of sheaves of rings on X. The map O2 → O′2 composed
with the map d : O′2 → ΩO′2/O′1 is a O1-derivation. Hence we obtain a canonical
map of O2-modules ΩO2/O1

→ ΩO′2/O′1 . It is uniquely characterized by the property
that d(f) mapsto d(ϕ(f)) for any local section f of O2. In this way Ω−/− becomes
a functor on the category of arrows of sheaves of rings.

Proof. This lemma proves itself. �

Lemma 17.23.9. In Lemma 17.23.8 suppose that O2 → O′2 is surjective with
kernel I ⊂ O2 and assume that O1 = O′1. Then there is a canonical exact sequence
of O′2-modules

I/I2 −→ ΩO2/O1
⊗O2

O′2 −→ ΩO′2/O1
−→ 0

The leftmost map is characterized by the rule that a local section f of I maps to
df ⊗ 1.

Proof. For a local section f of I denote f the image of f in I/I2. To show that
the map f 7→ df ⊗ 1 is well defined we just have to check that df1f2 ⊗ 1 = 0 if
f1, f2 are local sections of I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 +f2df1)⊗1 = df2⊗f1 +df2⊗f1 = 0. A similar computation show this map
is O′2 = O2/I-linear. The map on the right is the one from Lemma 17.23.8. To
see that the sequence is exact, we can check on stalks (Lemma 17.3.1). By Lemma
17.23.7 this follows from Algebra, Lemma 10.127.9. �

Definition 17.23.10. Let (f, f ]) : (X,OX) → (S,OS) be a morphism of ringed
spaces.

http://stacks.math.columbia.edu/tag/08RR
http://stacks.math.columbia.edu/tag/08TE
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(1) Let F be an OX -module. An S-derivation into F is a f−1OS-derivation,
or more precisely a f ]-derivation in the sense of Definition 17.23.1. We
denote DerS(OX ,F) the set of S-derivations into F .

(2) The sheaf of differentials ΩX/S of X over S is the module of differentials
ΩOX/f−1OS endowed with its universal S-derivation dX/S : OX → ΩX/S .

Here is a particular situation where derivations come up naturally.

Lemma 17.23.11. Let (f, f ]) : (X,OX) → (S,OS) be a morphism of ringed
spaces. Consider a short exact sequence

0→ I → A → OX → 0

Here A is a sheaf of f−1OS-algebras, π : A → OX is a surjection of sheaves of
f−1OS-algebras, and I = Ker(π) is its kernel. Assume I an ideal sheaf with square
zero in A. So I has a natural structure of an OX-module. A section s : OX → A
of π is a f−1OS-algebra map such that π ◦ s = id. Given any section s : OX → A
of π and any S-derivation D : OX → I the map

s+D : OX → A
is a section of π and every section s′ is of the form s+D for a unique S-derivation
D.

Proof. Recall that the OX -module structure on I is given by hτ = h̃τ (multiplica-

tion in A) where h is a local section of OX , and h̃ is a local lift of h to a local section

of A, and τ is a local section of I. In particular, given s, we may use h̃ = s(h). To
verify that s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)

= s(a)s(b) + aD(b) +D(a)b

= s(a)s(b) + s(a)D(b) +D(a)s(b)

= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s+D is a f−1OS-algebra map
because D is an S-derivation. Conversely, given s′ we set D = s′ − s. Details
omitted. �

Lemma 17.23.12. Let
X ′

h′

��

f
// X

h

��
S′

g // S
be a commutative diagram of ringed spaces.

(1) The canonical map OX → f∗OX′ composed with f∗dX′/S′ : f∗OX′ →
f∗ΩX′/S′ is a S-derivation and we obtain a canonical map of OX-modules
ΩX/S → f∗ΩX′/S′ .

(2) The commutative diagram

f−1OX // OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

http://stacks.math.columbia.edu/tag/01UP
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induces by Lemmas 17.23.6 and 17.23.8 a canonical map f−1ΩX/S →
ΩX′/S′ .

These two maps correspond (via adjointness of f∗ and f∗ and via f∗ΩX/S =

f−1ΩX/S ⊗f−1OX OX′ and Sheaves, Lemma 6.20.2) to the same OX′-module ho-
momorphism

cf : f∗ΩX/S −→ ΩX′/S′

which is uniquely characterized by the property that f∗dX/S(a) mapsto dX′/S′(f
∗a)

for any local section a of OX .

Proof. Omitted. �

Lemma 17.23.13. Let

X ′′

��

g
// X ′

��

f
// X

��
S′′ // S′ // S

be a commutative diagram of ringed spaces. With notation as in Lemma 17.23.12
we have

cf◦g = cg ◦ g∗cf
as maps (f ◦ g)∗ΩX/S → ΩX′′/S′′ .

Proof. Omitted. �

17.24. The naive cotangent complex

This section is the analogue of Algebra, Section 10.129 for morphisms of ringed
spaces. We urge the reader to read that section first.

Let X be a topological space. Let A → B be a homomorphism of sheaves of rings.
In this section, for any sheaf of sets E on X we denote A[E ] the sheafification of
the presheaf U 7→ A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra
over A(U) whose variables correspond to the elements of E(U). We denote [e] ∈
A(U)[E(U)] the variable corresponding to e ∈ E(U). There is a canonical surjection
of A-algebras

(17.24.0.1) A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated by
the local sections [b][b′]− [bb′] and [a]− a. According to Lemma 17.23.9 there is a
canonical map

(17.24.0.2) I/I2 −→ ΩA[B]/A ⊗A[B] B

whose cokernel is canonically isomorphic to ΩB/A.

Definition 17.24.1. LetX be a topological space. LetA → B be a homomorphism
of sheaves of rings. The naive cotangent complex NLB/A is the chain complex
(17.24.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in (homological) degree 1 and ΩA[B]/A ⊗A[B] B placed in degree
0.

http://stacks.math.columbia.edu/tag/01UW
http://stacks.math.columbia.edu/tag/08TJ
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This construction satisfies a functoriality similar to that discussed in Lemma 17.23.8
for modules of differentials. Namely, given a commutative diagram

(17.24.1.1)

B // B′

A

OO

// A′

OO

of sheaves of rings on X there is a canonical B-linear map of complexes

NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical map A[B]→
A′[B′] which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2

and a map between modules of differentials, which together give the desired map
between the naive cotangent complexes.

We can choose a different presentation of B as a quotient of a polynomial algebra
over A and still obtain the same object of D(B). To explain this, suppose that E
is a sheaves of sets on X and α : E → B a map of sheaves of sets. Then we obtain
an A-algebra homomorphism A[E ] → B. Assume this map is surjective, and let
J ⊂ A[E ] be the kernel. Set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
Here is the result.

Lemma 17.24.2. In the situation above there is a canonical isomorphism NL(α) =
NLB/A in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) =
NL(α2) in D(B). To see this set E = E1 q E2 and α = α1 q α2 : E → B. Set
Ji = Ker(A[Ei] → B) and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ]
which send Ji into J . Thus we obtain canonical maps of complexes

NL(αi) −→ NL(α)

and it suffices to show these maps are quasi-isomorphism. To see this it suffices to
check on stalks (Lemma 17.3.1). Here by Lemma 17.23.7 we see the result holds by
Algebra, Lemma 10.129.2. �

Lemma 17.24.3. Let f : X → Y be a continuous map of topological spaces.
Let A → B be a homomorphism of sheaves of rings on Y . Then f−1NLB/A =
NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 17.23.6. �

The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.

Definition 17.24.4. The naive cotangent complex NLf = NLX/Y of a morphism
of ringed spaces f : (X,OX)→ (Y,OY ) is NLOX/f−1OY .

17.25. Other chapters

Preliminaries (1) Introduction
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CHAPTER 18

Modules on Sites

18.1. Introduction

In this document we work out basic notions of sheaves of modules on ringed topoi
or ringed sites. We first work out some basic facts on abelian sheaves. After this we
introduce ringed sites and ringed topoi. We work through some of the very basic
notions on (pre)sheaves of O-modules, analogous to the material on (pre)sheaves
of O-modules in the chapter on sheaves on spaces. Having done this, we duplicate
much of the discussion in the chapter on sheaves of modules (see Modules, Section
17.1). Basic references are [Ser55b], [DG67] and [AGV71].

18.2. Abelian presheaves

Let C be a category. Abelian presheaves were introduced in Sites, Sections 7.2 and
7.7 and discussed a bit more in Sites, Section 7.43. We will follow the convention
of this last reference, in that we think of an abelian presheaf as a presheaf of sets
endowed with addition rules on all sets of sections compatible with the restriction
mappings. Recall that the category of abelian presheaves on C is denoted PAb(C).
The category PAb(C) is abelian as defined in Homology, Definition 12.5.1. Given
a map of presheaves ϕ : G1 → G2 the kernel of ϕ is the abelian presheaf U 7→
Ker(G1(U) → G2(U)) and the cokernel of ϕ is the presheaf U 7→ Coker(G1(U) →
G2(U)). Since the category of abelian groups is abelian it follows that Coim = Im
because this holds over each U . A sequence of abelian presheaves

G1 −→ G2 −→ G3

is exact if and only if G1(U) → G2(U) → G3(U) is an exact sequence of abelian
groups for all U ∈ Ob(C). We leave the verifications to the reader.

Lemma 18.2.1. Let C be a category.

(1) All limits and colimits exist in PAb(C).
(2) All limits and colimits commute with taking sections over objects of C.

Proof. Let I → PAb(C), i 7→ Fi be a diagram. We can simply define abelian
presheaves L and C by the rules

L : U 7−→ limi Fi(U)

and
C : U 7−→ colimi Fi(U).

It is clear that there are maps of abelian presheaves L→ Fi and Fi → C, by using
the corresponding maps on groups of sections over each U . It is straightforward
to check that L and C endowed with these maps are the limit and colimit of the
diagram in PAb(C). This proves (1) and (2). Details omitted. �

1353
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18.3. Abelian sheaves

Let C be a site. The category of abelian sheaves on C is denoted Ab(C). It is the
full subcategory of PAb(C) consisting of those abelian presheaves whose underlying
presheaves of sets are sheaves. Properties (α) – (ζ) of Sites, Section 7.43 hold, see
Sites, Proposition 7.43.3. In particular the inclusion functor Ab(C) → PAb(C) has
a left adjoint, namely the sheafification functor G 7→ G#.

We suggest the reader prove the lemma on a piece of scratch paper rather than
reading the proof.

Lemma 18.3.1. Let C be a site. Let ϕ : F → G be a morphism of abelian sheaves
on C.

(1) The category Ab(C) is an abelian category.
(2) The kernel Ker(ϕ) of ϕ is the same as the kernel of ϕ as a morphism of

presheaves.
(3) The morphism ϕ is injective (Homology, Definition 12.5.3) if and only if

ϕ is injective as a map of presheaves (Sites, Definition 7.3.1), if and only
if ϕ is injective as a map of sheaves (Sites, Definition 7.12.1).

(4) The cokernel Coker(ϕ) of ϕ is the sheafification of the cokernel of ϕ as a
morphism of presheaves.

(5) The morphism ϕ is surjective (Homology, Definition 12.5.3) if and only
if ϕ is surjective as a map of sheaves (Sites, Definition 7.12.1).

(6) A complex of abelian sheaves

F → G → H

is exact at G if and only if for all U ∈ Ob(C) and all s ∈ G(U) mapping
to zero in H(U) there exists a covering {Ui → U}i∈I in C such that each
s|Ui is in the image of F(Ui)→ G(Ui).

Proof. We claim that Homology, Lemma 12.7.3 applies to the categories A =
Ab(C) and B = PAb(C), and the functors a : A → B (inclusion), and b : B → A
(sheafification). Let us check the assumptions of Homology, Lemma 12.7.3. As-
sumption (1) is that A, B are additive categories, a, b are additive functors, and
a is right adjoint to b. The first two statements are clear and adjointness is Sites,
Section 7.43 (ε). Assumption (2) says that PAb(C) is abelian which we saw in Sec-
tion 18.2 and that sheafification is left exact, which is Sites, Section 7.43 (ζ). The
final assumption is that ba ∼= idA which is Sites, Section 7.43 (δ). Hence Homology,
Lemma 12.7.3 applies and we conclude that Ab(C) is abelian.

In the proof of Homology, Lemma 12.7.3 it is shown that Ker(ϕ) and Coker(ϕ) are
equal to the sheafification of the kernel and cokernel of ϕ as a morphism of abelian
presheaves. This proves (4). Since the kernel is a equalizer (i.e., a limit) and since
sheafification commutes with finite limits, we conclude that (2) holds.

Statement (2) implies (3). Statement (4) implies (5) by our description of sheafifi-
cation. The characterization of exactness in (6) follows from (2) and (5), and the
fact that the sequence is exact if and only if Im(F → G) = Ker(G → H). �

Another way to say part (6) of the lemma is that a sequence of abelian sheaves

F1 −→ F2 −→ F3

http://stacks.math.columbia.edu/tag/03CN


18.4. FREE ABELIAN PRESHEAVES 1355

is exact if and only if the sheafification of U 7→ F2(U)/F1(U) is equal to the kernel
of F2 → F3.

Lemma 18.3.2. Let C be a site.

(1) All limits and colimits exist in Ab(C).
(2) Limits are the same as the corresponding limits of abelian presheaves over
C (i.e., commute with taking sections over objects of C).

(3) Finite direct sums are the same as the corresponding finite direct sums in
the category of abelian pre-sheaves over C.

(4) A colimit is the sheafification of the corresponding colimit in the category
of abelian presheaves.

(5) Filtered colimits are exact.

Proof. By Lemma 18.2.1 limits and colimits of abelian presheaves exist, and are
described by taking limits and colimits on the level of sections over objects.

Let I → Ab(C), i 7→ Fi be a diagram. Let limi Fi be the limit of the diagram as an
abelian presheaf. By Sites, Lemma 7.10.1 this is an abelian sheaf. Then it is quite
easy to see that limi Fi is the limit of the diagram in Ab(C). This proves limits
exist and (2) holds.

By Categories, Lemma 4.24.4, and because sheafification is left adjoint to the in-
clusion functor we see that colimi F exists and is the sheafification of the colimit
in PAb(C). This proves colimits exist and (4) holds.

Finite direct sums are the same thing as finite products in any abelian category.
Hence (3) follows from (2).

Proof of (5). The statement means that given a system 0 → Fi → Gi → Hi → 0
of exact sequences of abelian sheaves over a directed partially ordered set I the
sequence 0 → colimFi → colimGi → colimHi → 0 is exact as well. A formal
argument using Homology, Lemma 12.5.8 and the definition of colimits shows that
the sequence colimFi → colimGi → colimHi → 0 is exact. Note that colimFi →
colimGi is the sheafification of the map of presheaf colimits which is injective as
each of the maps Fi → Gi is injective. Since sheafification is exact we conclude. �

18.4. Free abelian presheaves

In order to prepare notation for the following definition, let us agree to denote
the free abelian group on a set S as1 Z[S] =

⊕
s∈S Z. It is characterized by the

property
MorAb(Z[S], A) = MorSets(S,A)

In other words the construction S 7→ Z[S] is a left adjoint to the forgetful functor
Ab→ Sets.

Definition 18.4.1. Let C be a category. Let G be a presheaf of sets. The free
abelian presheaf ZG on G is the abelian presheaf defined by the rule

U 7−→ Z[G(U)].

In the special case G = hX of a representable presheaf associated to an object X of
C we use the notation ZX = ZhX . In other words

ZX(U) = Z[MorC(U,X)].

1In other chapters the notation Z[S] sometimes indicates the polynomial ring over Z on S.

http://stacks.math.columbia.edu/tag/03CO
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This construction is clearly functorial in the presheaf G. In fact it is adjoint to the
forgetful functor PAb(C)→ PSh(C). Here is the precise statement.

Lemma 18.4.2. Let C be a category. Let G, F be a presheaves of sets. Let A be
an abelian presheaf. Let U be an object of C. Then we have

MorPSh(C)(hU ,F) = F(U),

MorPAb(C)(ZG ,A) = MorPSh(C)(G,A),

MorPAb(C)(ZU ,A) = A(U).

All of these equalities are functorial.

Proof. Omitted. �

Lemma 18.4.3. Let C be a category. Let I be a set. For each i ∈ I let Gi be a
presheaf of sets. Then

Z∐
i Gi =

⊕
i∈I

ZGi

in PAb(C).

Proof. Omitted. �

18.5. Free abelian sheaves

Here is the notion of a free abelian sheaf on a sheaf of sets.

Definition 18.5.1. Let C be a site. Let G be a presheaf of sets. The free abelian

sheaf Z#
G on G is the abelian sheaf Z#

G which is the sheafification of the abelian
presheaf on G. In the special case G = hX of a representable presheaf associated to

an object X of C we use the notation Z#
X .

This construction is clearly functorial in the presheaf G. In fact it provides an
adjoint to the forgetful functor Ab(C)→ Sh(C). Here is the precise statement.

Lemma 18.5.2. Let C be a site. Let G, F be a sheaves of sets. Let A be an abelian
sheaf. Let U be an object of C. Then we have

MorSh(C)(h
#
U ,F) = F(U),

MorAb(C)(Z
#
G ,A) = MorSh(C)(G,A),

MorAb(C)(Z
#
U ,A) = A(U).

All of these equalities are functorial.

Proof. Omitted. �

Lemma 18.5.3. Let C be a site. Let G be a presheaf of sets. Then Z#
G = (ZG#)#.

Proof. Omitted. �

18.6. Ringed sites

In this chapter we mainly work with sheaves of modules on a ringed site. Hence we
need to define this notion.

Definition 18.6.1. Ringed sites.

(1) A ringed site is a pair (C,O) where C is a site and O is a sheaf of rings on
C. The sheaf O is called the structure sheaf of the ringed site.
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(2) Let (C,O), (C′,O′) be ringed sites. A morphism of ringed sites

(f, f ]) : (C,O) −→ (C′,O′)
is given by a morphism of sites f : C → C′ (see Sites, Definition 7.15.1)
together with a map of sheaves of rings f ] : f−1O′ → O, which by ad-
junction is the same thing as a map of sheaves of rings f ] : O′ → f∗O.

(3) Let (f, f ]) : (C1,O1) → (C2,O2) and (g, g]) : (C2,O2) → (C3,O3) be
morphisms of ringed sites. Then we define the composition of morphisms
of ringed sites by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).
Here we use composition of morphisms of sites defined in Sites, Definition
7.15.4 and f ] ◦ g] indicates the morphism of sheaves of rings

O3
g]−→ g∗O2

g∗f
]

−−−→ g∗f∗O1 = (g ◦ f)∗O1

18.7. Ringed topoi

A ringed topos is just a ringed site, except that the notion of a morphism of ringed
topoi is different from the notion of a morphism of ringed sites.

Definition 18.7.1. Ringed topoi.

(1) A ringed topos is a pair (Sh(C),O) where C is a site and O is a sheaf of
rings on C. The sheaf O is called the structure sheaf of the ringed site.

(2) Let (Sh(C),O), (Sh(C′),O′) be ringed topoi. A morphism of ringed topoi

(f, f ]) : (Sh(C),O) −→ (Sh(C′),O′)
is given by a morphism of topoi f : C → C′ (see Sites, Definition 7.16.1)
together with a map of sheaves of rings f ] : f−1O′ → O, which by ad-
junction is the same thing as a map of sheaves of rings f ] : O′ → f∗O.

(3) Let (f, f ]) : (Sh(C1),O1) → (Sh(C2),O2) and (g, g]) : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. Then we define the composi-
tion of morphisms of ringed topoi by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).
Here we use composition of morphisms of topoi defined in Sites, Definition
7.16.1 and f ] ◦ g] indicates the morphism of sheaves of rings

O3
g]−→ g∗O2

g∗f
]

−−−→ g∗f∗O1 = (g ◦ f)∗O1

Every morphism of ringed topoi is the composition of an equivalence of ringed topoi
with a morphism of ringed topoi associated to a morphism of ringed sites. Here is
the precise statement.

Lemma 18.7.2. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. There exists a factorization

(Sh(C),OC)
(f,f])

//

(g,g])

��

(Sh(D),OD)

(e,e])

��
(Sh(C′),OC′)

(h,h]) // (Sh(D′),OD′)

where

http://stacks.math.columbia.edu/tag/01D3
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(1) g : Sh(C) → Sh(C′) is an equivalence of topoi induced by a special cocon-
tinuous functor C → C′ (see Sites, Definition 7.28.2),

(2) e : Sh(D)→ Sh(D′) is an equivalence of topoi induced by a special cocon-
tinuous functor D → D′ (see Sites, Definition 7.28.2),

(3) OC′ = g∗OC and g] is the obvious map,
(4) OD′ = e∗OD and e] is the obvious map,
(5) the sites C′ and D′ have final objects and fibre products (i.e., all finite

limits),
(6) h is a morphism of sites induced by a continuous functor u : D′ → C′

which commutes with all finite limits (i.e., it satisfies the assumptions of
Sites, Proposition 7.15.6), and

(7) given any set of sheaves Fi (resp. Gj) on C (resp. D) we may assume each
of these is a representable sheaf on C′ (resp. D′).

Moreover, if (f, f ]) is an equivalence of ringed topoi, then we can choose the diagram
such that C′ = D′, OC′ = OD′ and (h, h]) is the identity.

Proof. This follows from Sites, Lemma 7.28.6, and Sites, Remarks 7.28.7 and
7.28.8. You just have to carry along the sheaves of rings. Some details omitted. �

18.8. 2-morphisms of ringed topoi

This is a brief section concerning the notion of a 2-morphism of ringed topoi.

Definition 18.8.1. Let f, g : (Sh(C),OC) → (Sh(D),OD) be two morphisms of
ringed topoi. A 2-morphism from f to g is given by a transformation of functors
t : f∗ → g∗ such that

OD
f]

||

g]

""
f∗OC

t // g∗OC

is commutative.

Pictorially we sometimes represent t as follows:

(Sh(C),OC)
f --

g
11�� t (Sh(D),OD)

As in Sites, Section 7.35 giving a 2-morphism t : f∗ → g∗ is equivalent to giving
t : g−1 → f−1 (usually denoted by the same symbol) such that the diagram

f−1OD

f] ##

g−1ODt
oo

g]{{
OC

is commutative. As in Sites, Section 7.35 the axioms of a strict 2-category hold
with horizontal and vertical compositions defined as explained in loc. cit.

http://stacks.math.columbia.edu/tag/04IC
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18.9. Presheaves of modules

Let C be a category. Let O be a presheaf of rings on C. At this point we have not
yet defined a presheaf of O-modules. Thus we do so right now.

Definition 18.9.1. Let C be a category, and let O be a presheaf of rings on C.
(1) A presheaf of O-modules is given by an abelian presheaf F together with

a map of presheaves of sets

O ×F −→ F

such that for every object U of C the map O(U)×F(U)→ F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).

(2) A morphism ϕ : F → G of presheaves of O-modules is a morphism of
abelian presheaves ϕ : F → G such that the diagram

O ×F //

id×ϕ
��

F

ϕ

��
O × G // G

commutes.
(3) The set of O-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves of O-modules is denoted PMod(O).

Suppose that O1 → O2 is a morphism of presheaves of rings on the category C. In
this case, if F is a presheaf of O2-modules then we can think of F as a presheaf of
O1-modules by using the composition

O1 ×F → O2 ×F → F .

We sometimes denote this by FO1 to indicate the restriction of rings. We call this
the restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf
of O2-modules O2 ⊗p,O1

G by the rule

U 7−→ (O2 ⊗p,O1
G) (U) = O2(U)⊗O1(U) G(U)

where U ∈ Ob(C), with obvious restriction mappings. The index p stands for
“presheaf” and not “point”. This presheaf is called the tensor product presheaf.
We obtain the change of rings functor

PMod(O1) −→ PMod(O2)

Lemma 18.9.2. With C, O1 → O2, F and G as above there exists a canonical
bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)

In other words, the restriction and change of rings functors defined above are adjoint
to each other.

Proof. This follows from the fact that for a ring map A→ B the restriction functor
and the change of ring functor are adjoint to each other. �
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http://stacks.math.columbia.edu/tag/03CU


1360 18. MODULES ON SITES

18.10. Sheaves of modules

Definition 18.10.1. Let C be a site. Let O be a sheaf of rings on C.
(1) A sheaf of O-modules is a presheaf of O-modules F , see Definition 18.9.1,

such that the underlying presheaf of abelian groups F is a sheaf.
(2) A morphism of sheaves of O-modules is a morphism of presheaves of O-

modules.
(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of

morphism of sheaves of O-modules.
(4) The category of sheaves of O-modules is denoted Mod(O).

This definition kind of makes sense even if O is just a presheaf of rings, although
we do not know any examples where this is useful, and we will avoid using the
terminology “sheaves of O-modules” in case O is not a sheaf of rings.

18.11. Sheafification of presheaves of modules

Lemma 18.11.1. Let C be a site. Let O be a presheaf of rings on C Let F be
a presheaf O-modules. Let O# be the sheafification of O as a presheaf of rings,
see Sites, Section 7.43. Let F# be the sheafification of F as a presheaf of abelian
groups. There exists a map of sheaves of sets

O# ×F# −→ F#

which makes the diagram

O ×F //

��

F

��
O# ×F# // F#

commute and which makes F# into a sheaf of O#-modules. In addition, if G is
a sheaf of O#-modules, then any morphism of presheaves of O-modules F → G
(into the restriction of G to a O-module) factors uniquely as F → F# → G where
F# → G is a morphism of O#-modules.

Proof. Omitted. �

This actually means that the functor i : Mod(O#)→ PMod(O) (combining restric-
tion and including sheaves into presheaves) and the sheafification functor of the
lemma # : PMod(O)→ Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)

An important case happens when O is already a sheaf of rings. In this case the
formula reads

MorPMod(O)(F , iG) = MorMod(O)(F#,G)

because O = O# in this case.

Lemma 18.11.2. Let C be a site. Let O be a presheaf of rings on C The sheafifi-
cation functor

PMod(O) −→ Mod(O#), F 7−→ F#

is exact.

Proof. This is true because it holds for sheafification PAb(C) → Ab(C). See the
discussion in Section 18.3. �
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Let C be a site. Let O1 → O2 be a morphism of sheaves of rings on C. In Section
18.9 we defined a restriction functor and a change of rings functor on presheaves of
modules associated to this situation.

If F is a sheaf of O2-modules then the restriction FO1 of F is clearly a sheaf of
O1-modules. We obtain the restriction functor

Mod(O2) −→ Mod(O1)

On the other hand, given a sheaf of O1-modules G the presheaf of O2-modules
O2 ⊗p,O1 G is in general not a sheaf. Hence we define the tensor product sheaf
O2 ⊗O1 G by the formula

O2 ⊗O1
G = (O2 ⊗p,O1

G)#

as the sheafification of our construction for presheaves. We obtain the change of
rings functor

Mod(O1) −→ Mod(O2)

Lemma 18.11.3. With X, O1, O2, F and G as above there exists a canonical
bijection

HomO1(G,FO1) = HomO2(O2 ⊗O1 G,F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from Lemma 18.9.2 and the fact that HomO2
(O2⊗O1

G,F) =
HomO2

(O2 ⊗p,O1
G,F) because F is a sheaf. �

Lemma 18.11.4. Let C be a site. Let O → O′ be an epimorphism of sheaves of
rings. Let G1,G2 be O′-modules. Then

HomO′(G1,G2) = HomO(G1,G2).

In other words, the restriction functor Mod(O′)→ Mod(O) is fully faithful.

Proof. This is the sheaf version of Algebra, Lemma 10.103.14 and is proved in
exactly the same way. �

18.12. Morphisms of topoi and sheaves of modules

All of this material is completely straightforward. We formulate everything in
the case of morphisms of topoi, but of course the results also hold in the case of
morphisms of sites.

Lemma 18.12.1. Let C, D be sites. Let f : Sh(C) → Sh(D) be a morphism of
topoi. Let O be a sheaf of rings on C. Let F be a sheaf of O-modules. There is a
natural map of sheaves of sets

f∗O × f∗F −→ f∗F

which turns f∗F into a sheaf of f∗O-modules. This construction is functorial in F .

Proof. Denote µ : O×F → F the multiplication map. Recall that f∗ (on sheaves
of sets) is left exact and hence commutes with products. Hence f∗µ is a map as
indicated. This proves the lemma. �
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Lemma 18.12.2. Let C, D be sites. Let f : Sh(C) → Sh(D) be a morphism of
topoi. Let O be a sheaf of rings on D. Let G be a sheaf of O-modules. There is a
natural map of sheaves of sets

f−1O × f−1G −→ f−1G
which turns f−1G into a sheaf of f−1O-modules. This construction is functorial in
G.

Proof. Denote µ : O×G → G the multiplication map. Recall that f−1 (on sheaves
of sets) is exact and hence commutes with products. Hence f−1µ is a map as
indicated. This proves the lemma. �

Lemma 18.12.3. Let C, D be sites. Let f : Sh(C) → Sh(D) be a morphism of
topoi. Let O be a sheaf of rings on D. Let G be a sheaf of O-modules. Let F be a
sheaf of f−1O-modules. Then

MorMod(f−1O)(f
−1G,F) = MorMod(O)(G, f∗F).

Here we use Lemmas 18.12.2 and 18.12.1, and we think of f∗F as an O-module by
restriction via O → f∗f

−1O.

Proof. First we note that we have

MorAb(C)(f
−1G,F) = MorAb(D)(G, f∗F).

by Sites, Proposition 7.43.3. Suppose that α : f−1G → F and β : G → f∗F are
morphisms of abelian sheaves which correspond via the formula above. We have
to show that α is f−1O-linear if and only if β is O-linear. For example, suppose
α is f−1O-linear, then clearly f∗α is f∗f

−1O-linear, and hence (as restriction is a
functor) is O-linear. Hence it suffices to prove that the adjunction map G → f∗f

−1G
is O-linear. Using that both f∗ and f−1 commute with products (on sheaves of
sets) this comes down to showing that

O × G //

��

f∗f
−1(O × G)

��
G // f∗f−1G

is commutative. This holds because the adjunction mapping idSh(D) → f∗f
−1 is

a transformation of functors. We omit the proof of the implication β linear ⇒ α
linear. �

Lemma 18.12.4. Let C, D be sites. Let f : Sh(C) → Sh(D) be a morphism of
topoi. Let O be a sheaf of rings on C. Let F be a sheaf of O-modules. Let G be a
sheaf of f∗O-modules. Then

MorMod(O)(O ⊗f−1f∗O f
−1G,F) = MorMod(f∗O)(G, f∗F).

Here we use Lemmas 18.12.2 and 18.12.1, and we use the canonical map f−1f∗O →
O in the definition of the tensor product.

Proof. Note that we have

MorMod(O)(O ⊗f−1f∗O f
−1G,F) = MorMod(f−1f∗O)(f

−1G,Ff−1f∗O)

by Lemma 18.11.3. Hence the result follows from Lemma 18.12.3. �
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18.13. Morphisms of ringed topoi and modules

We have now introduced enough notation so that we are able to define the pullback
and pushforward of modules along a morphism of ringed topoi.

Definition 18.13.1. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi or ringed sites.

(1) Let F be a sheaf of OC-modules. We define the pushforward of F as the
sheaf of OD-modules which as a sheaf of abelian groups equals f∗F and
with module structure given by the restriction via f ] : OD → f∗OC of the
module structure

f∗OC × f∗F −→ f∗F

from Lemma 18.12.1.
(2) Let G be a sheaf of OD-modules. We define the pullback f∗G to be the

sheaf of OC-modules defined by the formula

f∗F = OC ⊗f−1OD f
−1F

where the ring map f−1OD → OC is f ], and where the module structure
is given by Lemma 18.12.2.

Thus we have defined functors

f∗ : Mod(OC) −→ Mod(OD)

f∗ : Mod(OD) −→ Mod(OC)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 18.13.2. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Let F be a sheaf of OC-modules. Let G be a sheaf of OD-
modules. There is a canonical bijection

HomOC (f
∗G,F) = HomOD (G, f∗F).

In other words: the functor f∗ is the left adjoint to f∗.

Proof. This follows from the work we did before:

HomOC (f
∗G,F) = MorMod(OC)(OC ⊗f−1OD f

−1G,F)

= MorMod(f−1OD)(f
−1G,Ff−1OD )

= HomOD (G, f∗F).

Here we use Lemmas 18.11.3 and 18.12.3. �

Lemma 18.13.3. (f, f ]) : (Sh(C1),O1)→ (Sh(C2),O2) and (g, g]) : (Sh(C2),O2)→
(Sh(C3),O3) be morphisms of ringed topoi. There are canonical isomorphisms of
functors (g ◦ f)∗ ∼= g∗ ◦ f∗ and (g ◦ f)∗ ∼= f∗ ◦ g∗.

Proof. This is clear from the definitions. �
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18.14. The abelian category of sheaves of modules

Let (Sh(C),O) be a ringed topos. Let F , G be sheaves of O-modules, see Sheaves,
Definition 6.10.1. Let ϕ,ψ : F → G be morphisms of sheaves of O-modules. We
define ϕ + ψ : F → G to be the sum of ϕ and ψ as morphisms of abelian sheaves.
This is clearly again a map of O-modules. It is also clear that composition of
maps of O-modules is bilinear with respect to this addition. Thus Mod(O) is a
pre-additive category, see Homology, Definition 12.3.1.

We will denote 0 the sheaf of O-modules which has constant value {0} for all
objects U of C. Clearly this is both a final and an initial object of Mod(O). Given
a morphism of O-modules ϕ : F → G the following are equivalent: (a) ϕ is zero,
(b) ϕ factors through 0, (c) ϕ is zero on sections over each object U .

Moreover, given a pair F , G of sheaves of O-modules we may define the direct sum
as

F ⊕ G = F × G
with obvious maps (i, j, p, q) as in Homology, Definition 12.3.5. Thus Mod(O) is an
additive category, see Homology, Definition 12.3.8.

Let ϕ : F → G be a morphism of O-modules. We may define Ker(ϕ) to be the
kernel of ϕ as a map of abelian sheaves. By Section 18.3 this is the subsheaf of F
with sections

Ker(ϕ)(U) = {s ∈ F(U) | ϕ(s) = 0 in G(U)}
for all objects U of C. It is easy to see that this is indeed a kernel in the category
of O-modules. In other words, a morphism α : H → F factors through Ker(ϕ) if
and only if ϕ ◦ α = 0.

Similarly, we define Coker(ϕ) as the cokernel of ϕ as a map of abelian sheaves.
There is a unique multiplication map

O × Coker(ϕ) −→ Coker(ϕ)

such that the map G → Coker(ϕ) becomes a morphism of O-modules (verification
omitted). The map G → Coker(ϕ) is surjective (as a map of sheaves of sets,
see Section 18.3). To show that Coker(ϕ) is a cokernel in Mod(O), note that if
β : G → H is a morphism of O-modules such that β ◦ ϕ is zero, then you get
for every object U of C a map induced by β from G(U)/ϕ(F(U)) into H(U). By
the universal property of sheafification (see Sheaves, Lemma 6.20.1) we obtain a
canonical map Coker(ϕ)→ H such that the original β is equal to the composition
G → Coker(ϕ) → H. The morphism Coker(ϕ) → H is unique because of the
surjectivity mentioned above.

Lemma 18.14.1. Let (Sh(C),O) be a ringed topos. The category Mod(O) is an
abelian category. The forgetful functor Mod(O) → Ab(C) is exact, hence kernels,
cokernels and exactness of O-modules, correspond to the corresponding notions for
abelian sheaves.

Proof. Above we have seen that Mod(O) is an additive category, with kernels
and cokernels and that Mod(O) → Ab(C) preserves kernels and cokernels. By
Homology, Definition 12.5.1 we have to show that image and coimage agree. This
is clear because it is true in Ab(C). The lemma follows. �
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Lemma 18.14.2. Let (Sh(C),O) be a ringed topos. All limits and colimits exist in
Mod(O) and the forgetful functor Mod(O)→ Ab(C) commutes with them. Moreover,
filtered colimits are exact.

Proof. The final statement follows from the first as filtered colimits are exact in
Ab(C) by Lemma 18.3.2. Let I → Mod(C), i 7→ Fi be a diagram. Let limi Fi be
the limit of the diagram in Ab(C). By the description of this limit in Lemma 18.3.2
we see immediately that there exists a multiplication

O × limi Fi −→ limi Fi

which turns limi Fi into a sheaf of O-modules. It is easy to see that this is the limit
of the diagram in Mod(C). Let colimi Fi be the colimit of the diagram in PAb(C).
By the description of this colimit in the proof of Lemma 18.2.1 we see immediately
that there exists a multiplication

O × colimi Fi −→ colimi Fi

which turns colimi Fi into a presheaf of O-modules. Applying sheafification we
get a sheaf of O-modules (colimi Fi)#, see Lemma 18.11.1. It is easy to see that
(colimi Fi)# is the colimit of the diagram in Mod(O), and by Lemma 18.3.2 forget-
ting the O-module structure is the colimit in Ab(C). �

The existence of limits and colimits allows us to consider exactness properties of
functors defined on the category of O-modules in terms of limits and colimits,
as in Categories, Section 4.23. See Homology, Lemma 12.7.1 for a description of
exactness properties in terms of short exact sequences.

Lemma 18.14.3. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi.

(1) The functor f∗ is left exact. In fact it commutes with all limits.
(2) The functor f∗ is right exact. In fact it commutes with all colimits.

Proof. This is true because (f∗, f∗) is an adjoint pair of functors, see Lemma
18.13.2. See Categories, Section 4.24. �

Lemma 18.14.4. Let C be a site. If {pi}i∈I is a conservative family of points,
then we may check exactness of a sequence of abelian sheaves on the stalks at the
points pi, i ∈ I. If C has enough points, then exactness of a sequence of abelian
sheaves may be checked on stalks.

Proof. This is immediate from Sites, Lemma 7.37.2. �

18.15. Exactness of pushforward

Some technical lemmas concerning exactness properties of pushforward.

Lemma 18.15.1. Let f : Sh(C) → Sh(D) be a morphism of topoi. The following
are equivalent:

(1) f−1f∗F → F is surjective for all F in Ab(C), and
(2) f∗ : Ab(C)→ Ab(D) reflects surjections.

In this case the functor f∗ : Ab(C)→ Ab(D) is faithful.
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Proof. Assume (1). Suppose that a : F → F ′ is a map of abelian sheaves on C
such that f∗a is surjective. As f−1 is exact this implies that f−1f∗a : f−1f∗F →
f−1f∗F ′ is surjective. Combined with (1) this implies that a is surjective. This
means that (2) holds.

Assume (2). Let F be an abelian sheaf on C. We have to show that the map
f−1f∗F → F is surjective. By (2) it suffices to show that f∗f

−1f∗F → f∗F is
surjective. And this is true because there is a canonical map f∗F → f∗f

−1f∗F
which is a one-sided inverse.

We omit the proof of the final assertion. �

Lemma 18.15.2. Let f : Sh(C)→ Sh(D) be a morphism of topoi. Assume at least
one of the following properties holds

(1) f∗ transforms surjections of sheaves of sets into surjections,
(2) f∗ transforms surjections of abelian sheaves into surjections,
(3) f∗ commutes with coequalizers on sheaves of sets,
(4) f∗ commutes with pushouts on sheaves of sets,

Then f∗ : Ab(C)→ Ab(D) is exact.

Proof. Since f∗ : Ab(C) → Ab(D) is a right adjoint we already know that it
transforms a short exact sequence 0 → F1 → F2 → F3 → 0 of abelian sheaves on
C into an exact sequence

0→ f∗F1 → f∗F2 → f∗F3

see Categories, Sections 4.23 and 4.24 and Homology, Section 12.7. Hence it suffices
to prove that the map f∗F2 → f∗F3 is surjective. If (1), (2) holds, then this is clear
from the definitions. By Sites, Lemma 7.40.1 we see that either (3) or (4) formally
implies (1), hence in these cases we are done also. �

Lemma 18.15.3. Let f : D → C be a morphism of sites associated to the continu-
ous functor u : C → D. Assume u is almost cocontinuous. Then

(1) f∗ : Ab(D)→ Ab(C) is exact.
(2) if f ] : f−1OC → OD is given so that f becomes a morphism of ringed

sites, then f∗ : Mod(OD)→ Mod(OC) is exact.

Proof. Part (2) follows from part (1) by Lemma 18.14.2. Part (1) follows from
Sites, Lemmas 7.41.6 and 7.40.1. �

18.16. Exactness of lower shriek

Let u : C → D be a functor between sites. Assume that

(a) u is cocontinuous, and
(b) u is continuous.

Let g : Sh(C) → Sh(D) be the morphism of topoi associated with u, see Sites,
Lemma 7.20.1. Recall that g−1 = up, i.e., g−1 is given by the simple formula
(g−1G)(U) = G(u(U)), see Sites, Lemma 7.20.5. We would like to show that g−1 :
Ab(D) → Ab(C) has a left adjoint g!. By Sites, Lemma 7.20.5 the functor gSh! =
(up )# is a left adjoint on sheaves of sets. Moreover, we know that gSh! F is the
sheaf associated to the presheaf

V 7−→ colimV→u(U) F(U)

http://stacks.math.columbia.edu/tag/04DB
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where the colimit is over (IuV )opp and is taken in the category of sets. Hence the
following definition is natural.

Definition 18.16.1. With u : C → D satisfying (a), (b) above. For F ∈ PAb(C)
we define gp!F as the presheaf

V 7−→ colimV→u(U) F(U)

with colimits over (IuV )opp taken in Ab. For F ∈ PAb(C) we set g!F = (gp!F)#.

The reason for being so explicit with this is that the functors gSh! and g! are different.
Whenever we use both we have to be careful to make the distinction clear.

Lemma 18.16.2. The functor gp! is a left adjoint to the functor up. The functor
g! is a left adjoint to the functor g−1. In other words the formulas

MorPAb(C)(F , upG) = MorPAb(D)(gp!F ,G),

MorAb(C)(F , g−1G) = MorAb(D)(g!F ,G)

hold bifunctorially in F and G.

Proof. The second formula follows formally from the first, since if F and G are
abelian sheaves then

MorAb(C)(F , g−1G) = MorPAb(D)(gp!F ,G)

= MorAb(D)(g!F ,G)

by the universal property of sheafification.

To prove the first formula, let F , G be abelian presheaves. To prove the lemma we
will construct maps from the group on the left to the group on the right and omit
the verification that these are mutually inverse.

Note that there is a canonical map of abelian presheaves F → upgp!F which on sec-
tions over U is the natural map F(U)→ colimu(U)→u(U ′) F(U ′), see Sites, Lemma
7.5.3. Given a map α : gp!F → G we get upα : upgp!F → upG. which we can
precompose by the map F → upgp!F .

Note that there is a canonical map of abelian presheaves gp!u
pG → G which on

sections over V is the natural map colimV→u(U) G(u(U)) → G(V ). It maps a
section s ∈ u(U) in the summand corresponding to t : V → u(U) to t∗s ∈ G(V ).
Hence, given a map β : F → upG we get a map gp!β : gp!F → gp!u

pG which we can
postcompose with the map gp!u

pG → G above. �

Lemma 18.16.3. Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor g! : Ab(C)→ Ab(D) is exact.

Proof. Compare with Sites, Lemma 7.20.6. Assume (a), (b), and (c). We already
know that g! is right exact as it is a left adjoint, see Categories, Lemma 4.24.5 and
Homology, Section 12.7. We have g! = (gp! )#. We have to show that g! transforms
injective maps of abelian sheaves into injective maps of abelian presheaves. Recall
that sheafification of abelian presheaves is exact, see Lemma 18.3.2. Thus it suffices
to show that gp! transforms injective maps of abelian presheaves into injective maps

http://stacks.math.columbia.edu/tag/04BF
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of abelian presheaves. To do this it suffices that colimits over the categories (IuV )opp

of Sites, Section 7.5 transform injective maps between diagrams into injections. This
follows from Sites, Lemma 7.5.1 and Algebra, Lemma 10.8.11. �

Lemma 18.16.4. Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous, and
(c) u is fully faithful.

For g and g! as above the canonical map F → g−1g!F is an isomorphism for all
abelian sheaves F on C.

Proof. Pick U ∈ Ob(C). We will show that g−1g!F(U) = F(U). First, note that
g−1g!F(U) = g!F(u(U)). Hence it suffices to show that g!F(u(U)) = F(U). We
know that g!F is the (abelian) sheaf associated to the presheaf gp!F which is defined
by the rule

V 7−→ colimV→u(U ′) F(U ′)

with colimit taken in Ab. If V = u(U), then, as u is fully faithful this colimit is over
U → U ′. Hence we conclude that gp!F(u(U) = F(U). Since u is cocontinuous and
continuous any covering of u(U) in D can be refined by a covering (!) {u(Ui) →
u(U)} of D where {Ui → U} is a covering in C. This implies that (gp!F)+(u(U)) =
F(U) also, since in the colimit defining the value of (gp!F)+ on u(U) we may restrict
to the cofinal system of coverings {u(Ui) → u(U)} as above. Hence we see that
(gp!F)+(u(U)) = F(U) for all objects U of C as well. Repeating this argument one
more time gives the equality (gp!F)#(u(U)) = F(U) for all objects U of C. This
produces the desired equality g−1g!F = F . �

Remark 18.16.5. In general the functor g! cannot be extended to categories of
modules in case g is (part of) a morphism of ringed topoi. Namely, given any ring
map A→ B the functor M 7→ B ⊗AM has a right adjoint (restriction) but not in
general a left adjoint (because its existence would imply that A → B is flat). We
will see in Section 18.19 below that it is possible to define j! on sheaves of modules
in the case of a localization of sites. We will discuss this in greater generality in
Section 18.40 below.

Lemma 18.16.6. Let C and D be sites. Let g : Sh(C) → Sh(D) be the morphism
of topoi associated to a continuous and cocontinuous functor u : C → D.

(1) If u has a left adjoint w, then g! agrees with gSh
! on underlying sheaves of

sets and g! is exact.
(2) If in addition w is cocontinuous, then g! = h−1 and g−1 = h∗ where

h : Sh(D)→ Sh(C) is the morphism of topoi associated to w.

Proof. This Lemma is the analogue of Sites, Lemma 7.22.1. From Sites, Lemma
7.18.3 we see that the categories IuV have an initial object. Thus the underlying
set of a colimit of a system of abelian groups over (IuV )opp is the colimit of the
underlying sets. Whence the agreement of gSh

! and g! by our construction of g! in
Definition 18.16.1. The exactness and (2) follow immediately from the correspond-
ing statements of Sites, Lemma 7.22.1. �

http://stacks.math.columbia.edu/tag/077I
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18.17. Global types of modules

Definition 18.17.1. Let (Sh(C),O) be a ringed topos. Let F be a sheaf of O-
modules.

(1) We say F is a free O-module if F is isomorphic as an O-module to a sheaf
of the form

⊕
i∈I O.

(2) We say F is finite free if F is isomorphic as an O-module to a sheaf of the
form

⊕
i∈I O with a finite index set I.

(3) We say F is generated by global sections if there exists a surjection⊕
i∈I
O −→ F

from a free O-module onto F .
(4) Given r ≥ 0 we say F is generated by r global sections if there exists a

surjection O⊕r → F .
(5) We say F is generated by finitely many global sections if it is generated by

r global sections for some r ≥ 0.
(6) We say F has a global presentation if there exists an exact sequence⊕

j∈J
O −→

⊕
i∈I
O −→ F

of O-modules.
(7) We say F has a global finite presentation if there exists an exact sequence⊕

j∈J
O −→

⊕
i∈I
O −→ F

of O-modules with I and J finite sets.

Note that for any set I the direct sum
⊕

i∈I O exists (Lemma 18.14.2) and is the
sheafification of the presheaf U 7→

⊕
i∈I O(U). This module is called the free

O-module on the set I.

Lemma 18.17.2. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Let F be an OD-module.

(1) If F is free then f∗F is free.
(2) If F is finite free then f∗F is finite free.
(3) If F is generated by global sections then f∗F is generated by global sec-

tions.
(4) Given r ≥ 0 if F is generated by r global sections, then f∗F is generated

by r global sections.
(5) If F is generated by finitely many global sections then f∗F is generated

by finitely many global sections.
(6) If F has a global presentation then f∗F has a global presentation.
(7) If F has a finite global presentation then f∗F has a finite global presen-

tation.

Proof. This is true because f∗ commutes with arbitrary colimits (Lemma 18.14.3)
and f∗OD = OC . �

18.18. Intrinsic properties of modules

Let P be a property of sheaves of modules on ringed topoi. We say P is an intrinsic
property if we have P(F)⇔ P(f∗F) whenever (f, f ]) : (Sh(C′),O′)→ (Sh(C),O) is

http://stacks.math.columbia.edu/tag/03DE
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an equivalence of ringed topoi. For example, the property of being free is intrinsic.
Indeed, the free O-module on the set I is characterized by the property that

MorMod(O)(
⊕

i∈I
O,F) =

∏
i∈I

MorSh(C)({∗},F)

for a variable F in Mod(O). Alternatively, we can also use Lemma 18.17.2 to
see that being free is intrinsic. In fact, each of the properties defined in Definition
18.17.1 is intrinsic for the same reason. How will we go about defining other intrinsic
properties of O-modules?

The upshot of Lemma 18.7.2 is the following: Suppose you want to define an
intrinsic property P of an O-module on a topos. Then you can proceed as follows:

(1) Given any site C, any sheaf of rings O on C and any O-module F define
the corresponding property P(C,O,F).

(2) For any pair of sites C, C′, any special cocontinuous functor u : C → C′,
any sheaf of rings O on C any O-module F , show that

P(C,O,F)⇔ P(C′, g∗O, g∗F)

where g : Sh(C)→ Sh(C′) is the equivalence of topoi associated to u.

In this case, given any ringed topos (Sh(C),O) and any sheaf of O-modules F
we simply say that F has property P if P(C,O,F) is true. And Lemma 18.7.2
combined with (2) above guarantees that this is well defined.

Moreover, the same Lemma 18.7.2 also guarantees that if in addition

(3) For any morphism of ringed sites (f, f ]) : (C,OC) → (D,OD) such that
f is given by a functor u : D → C satisfying the assumptions of Sites,
Proposition 7.15.6, and any OD-module G we have

P(D,OD,F)⇒ P(C,OC , f∗F)

then it is true that P is preserved under pullback of modules w.r.t. arbitrary mor-
phisms of ringed topoi.

We will use this method in the following sections to see that: locally free, locally
generated by sections, locally generated by r sections, finite type, finite presenta-
tion, quasi-coherent, and coherent are intrinsic properties of modules.

Perhaps a more satisfying method would be to find an intrinsic definition of these
notions, rather than the laborious process sketched here. On the other hand, in
many geometric situations where we want to apply these definitions we are given
a definite ringed site, and a definite sheaf of modules, and it is nice to have a
definition already adapted to this language.

18.19. Localization of ringed sites

Let (C,O) be a ringed site. Let U ∈ Ob(C). We explain the counterparts of the
results in Sites, Section 7.24 in this setting.

Denote OU = j−1
U O the restriction of O to the site C/U . It is described by the

simple rule OU (V/U) = O(V ). With this notation the localization morphism jU
becomes a morphism of ringed topoi

(jU , j
]
U ) : (Sh(C/U),OU ) −→ (Sh(C),O)

namely, we take j]U : j−1
U O → OU the identity map. Moreover, we obtain the

following descriptions for pushforward and pullback of modules.
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Definition 18.19.1. Let (C,O) be a ringed site. Let U ∈ Ob(C).
(1) The ringed site (C/U,OU ) is called the localization of the ringed site (C,O)

at the object U .

(2) The morphism of ringed topoi (jU , j
]
U ) : (Sh(C/U),OU ) → (Sh(C),O) is

called the localization morphism.
(3) The functor jU∗ : Mod(OU )→ Mod(O) is called the direct image functor.
(4) For a sheaf of O-modules F on C the sheaf j∗UF is called the restriction

of F to C/U . We will sometimes denote it by F|C/U or even F|U . It is
described by the simple rule j∗U (F)(X/U) = F(X).

(5) The left adjoint jU ! : Mod(OU )→ Mod(O) of restriction is called extension
by zero. It exists and is exact by Lemmas 18.19.2 and 18.19.3.

As in the topological case, see Sheaves, Section 6.31, the extension by zero jU !

functor is different from extension by the empty set jU ! defined on sheaves of sets.
Here is the lemma defining extension by zero.

Lemma 18.19.2. Let (C,O) be a ringed site. Let U ∈ Ob(C). The restriction
functor j∗U : Mod(O)→ Mod(OU ) has a left adjoint jU ! : Mod(OU )→ Mod(O). So

MorMod(OU )(G, j∗UF) = MorMod(O)(jU !G,F)

for F ∈ Ob(Mod(O)) and G ∈ Ob(Mod(OU )). Moreover, the extension by zero jU !G
of G is the sheaf associated to the presheaf

V 7−→
⊕

ϕ∈MorC(V,U)
G(V

ϕ−→ U)

with obvious restriction mappings and an obvious O-module structure.

Proof. The O-module structure on the presheaf is defined as follows. If f ∈ O(V )

and s ∈ G(V
ϕ−→ U), then we define f · s = fs where f ∈ OU (ϕ : V → U) = O(V )

(because OU is the restriction of O to C/U).

Similarly, let α : G → F|U be a morphism of OU -modules. In this case we can
define a map from the presheaf of the lemma into F by mapping⊕

ϕ∈MorC(V,U)
G(V

ϕ−→ U) −→ F(V )

by the rule that s ∈ G(V
ϕ−→ U) maps to α(s) ∈ F(V ). It is clear that this is O-

linear, and hence induces a morphism of O-modules α′ : jU !G → F by the properties
of sheafification of modules (Lemma 18.11.1).

Conversely, let β : jU !G → F by a map of O-modules. Recall from Sites, Section
7.24 that there exists an extension by the empty set jShU ! : Sh(C/U) → Sh(C) on

sheaves of sets which is left adjoint to j−1
U . Moreover, jShU ! G is the sheaf associated

to the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
G(V

ϕ−→ U)

Hence there is a natural map jShU ! G → jU !G of sheaves of sets. Hence precomposing
β by this map we get a map of sheaves of sets jShU ! G → F which by adjunction
corresponds to a map of sheaves of sets β′ : G → F|U . We claim that β′ isOU -linear.
Namely, suppose that ϕ : V → U is an object of C/U and that s, s′ ∈ G(ϕ : V → U),
and f ∈ O(V ) = OU (ϕ : V → U). Then by the discussion above we see that
β′(s + s′), resp. β′(fs) in F|U (ϕ : V → U) correspond to β(s + s′), resp. β(fs) in
F(V ). Since β is a homomorphism we conclude.

http://stacks.math.columbia.edu/tag/04IX
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To conclude the proof of the lemma we have to show that the constructions α 7→ α′

and β 7→ β′ are mutually inverse. We omit the verifications. �

Lemma 18.19.3. Let (C,O) be a ringed site. Let U ∈ Ob(C). The functor jU ! :
Mod(OU )→ Mod(O) is exact.

Proof. Since jU ! is a left adjoint to j∗U we see that it is right exact (see Categories,
Lemma 4.24.5 and Homology, Section 12.7). Hence it suffices to show that if G1 →
G2 is an injective map of OU -modules, then jU !G1 → jU !G2 is injective. The map
on sections of presheaves over an object V (as in Lemma 18.19.2) is the map⊕

ϕ∈MorC(V,U)
G1(V

ϕ−→ U) −→
⊕

ϕ∈MorC(V,U)
G2(V

ϕ−→ U)

which is injective by assumption. Since sheafification is exact by Lemma 18.11.2
we conclude jU !G1 → jU !G2 is injective and we win. �

Lemma 18.19.4. Let (C,O) be a ringed site. Let f : V → U be a morphism of C.
Then there exists a commutative diagram

(Sh(C/V ),OV )

(jV ,j
]
V ) ''

(j,j])

// (Sh(C/U),OU )

(jU ,j
]
U )ww

(Sh(C),O)

of ringed topoi. Here (j, j]) is the localization morphism associated to the object
U/V of the ringed site (C/V,OV ).

Proof. The only thing to check is that j]V = j] ◦ j−1(j]U ), since everything else
follows directly from Sites, Lemma 7.24.7 and Sites, Equation (7.24.7.1). We omit
the verification of the equality. �

Remark 18.19.5. In the situation of Lemma 18.19.2 the diagram

Mod(OU )
jU!

//

forget

��

Mod(OC)

forget

��
Ab(C/U)

jAbU! // Ab(C)

commutes. This is clear from the explicit description of the functor jU ! in the
lemma.

Remark 18.19.6. Localization and presheaves of modules; see Sites, Remark
7.24.9. Let C be a category. Let O be a presheaf of rings. Let U be an object
of C. Strictly speaking the functors j∗U , jU∗ and jU ! have not been defined for
presheaves of O-modules. But of course, we can think of a presheaf as a sheaf
for the chaotic topology on C (see Sites, Examples 7.6.6). Hence we also obtain a
functor

j∗U : PMod(O) −→ PMod(OU )

and functors
jU∗, jU ! : PMod(OU ) −→ PMod(O)

which are right, left adjoint to j∗U . Inspecting the proof of Lemma 18.19.2 we see
that jU !G is the presheaf

V 7−→
⊕

ϕ∈MorC(V,U)
G(V

ϕ−→ U)
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In addition the functor jU ! is exact (by Lemma 18.19.3 in the case of the discrete
topologies). Moreover, if C is actually a site, and O is actually a sheaf of rings,
then the diagram

Mod(OU )
jU!

//

forget

��

Mod(O)

PMod(OU )
jU! // PMod(O)

( )#

OO

commutes.

Remark 18.19.7 (Map from lower shriek to pushforward). Let U be an object of
C. For any abelian sheaf G on C/U there is a canonical map

c : jU !G −→ jU∗G

Namely, this is the same thing as a map j−1
U jU !G → G. Note that restriction

commutes with sheafification. Thus we can use the presheaf of Lemma 18.19.2.
Hence it suffices to define for V/U a map⊕

ϕ∈MorC(V,U)
G(V ) −→ G(V )

compatible with restrictions. We simply take the map which is zero on all sum-
mands except for the one where ϕ is the structure morphism V → U where we
take 1. Moreover, if O is a sheaf of rings on C and G is an OU -module, then the
displayed map above is a map of O-modules.

18.20. Localization of morphisms of ringed sites

This section is the analogue of Sites, Section 7.27.

Lemma 18.20.1. Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of ringed sites
where f is given by the continuous functor u : D → C. Let V be an object of D
and set U = u(V ). Then there is a canonical map of sheaves of rings (f ′)] such
that the diagram of Sites, Lemma 7.27.1 is turned into a commutative diagram of
ringed topoi

(Sh(C/U),OU )
(jU ,j

]
U )

//

(f ′,(f ′)])

��

(Sh(C),O)

(f,f])

��
(Sh(D/V ),O′V )

(jV ,j
]
V ) // (Sh(D),O′).

Moreover, in this situation we have f ′∗j
−1
U = j−1

V f∗ and f ′∗j
∗
U = j∗V f∗.

Proof. Just take (f ′)] to be

(f ′)−1O′V = (f ′)−1j−1
V O

′ = j−1
U f−1O′

j−1
U f]

−−−−→ j−1
U O = OU

and everything else follows from Sites, Lemma 7.27.1. (Note that j−1 = j∗ on
sheaves of modules if j is a localization morphism, hence the first equality of functors
implies the second.) �

Lemma 18.20.2. Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of ringed sites
where f is given by the continuous functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C)

http://stacks.math.columbia.edu/tag/0931
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and c : U → u(V ) a morphism of C. There exists a commutative diagram of ringed
topoi

(Sh(C/U),OU )
(jU ,j

]
U )

//

(fc,f
]
c )

��

(Sh(C),O)

(f,f])

��
(Sh(D/V ),O′V )

(jV ,j
]
V ) // (Sh(D),O′).

The morphism (fc, f
]
c ) is equal to the composition of the morphism

(f ′, (f ′)]) : (Sh(C/u(V )),Ou(V )) −→ (Sh(D/V ),O′V )

of Lemma 18.20.1 and the morphism

(j, j]) : (Sh(C/U),OU )→ (Sh(C/u(V )),Ou(V ))

of Lemma 18.19.4. Given any morphisms b : V ′ → V , a : U ′ → U and c′ : U ′ →
u(V ′) such that

U ′
c′
//

a

��

u(V ′)

u(b)

��
U

c // u(V )

commutes, then the following diagram of ringed topoi

(Sh(C/U ′),OU ′)
(jU′/U ,j

]

U′/U )

//

(fc′ ,f
]

c′ )

��

(Sh(C/U),OU )

(fc,f
]
c )

��
(Sh(D/V ′),O′V ′)

(jV ′/V ,j
]

V ′/V )
// (Sh(D/V ),O′V ′)

commutes.

Proof. On the level of morphisms of topoi this is Sites, Lemma 7.27.3. To check
that the diagrams commute as morphisms of ringed topoi use Lemmas 18.19.4 and
18.20.1 exactly as in the proof of Sites, Lemma 7.27.3. �

18.21. Localization of ringed topoi

This section is the analogue of Sites, Section 7.29 in the setting of ringed topoi.

Lemma 18.21.1. Let (Sh(C),O) be a ringed topos. Let F ∈ Sh(C) be a sheaf. For a
sheaf H on C denote HF the sheaf H×F seen as an object of the category Sh(C)/F .
The pair (Sh(C)/F ,OF ) is a ringed topos and there is a canonical morphism of
ringed topoi

(jF , j
]
F ) : (Sh(C)/F ,OF ) −→ (Sh(C),O)

which is a localization as in Section 18.19 such that

(1) the functor j−1
F is the functor H 7→ HF ,

(2) the functor j∗F is the functor H 7→ HF ,
(3) the functor jF ! on sheaves of sets is the forgetful functor G/F 7→ G,
(4) the functor jF ! on sheaves of modules associates to the OF -module ϕ :
G → F the O-module which is the sheafification of the presheaf

V 7−→
⊕

s∈F(V )
{σ ∈ G(V ) | ϕ(σ) = s}

for V ∈ Ob(C).

http://stacks.math.columbia.edu/tag/04IE
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Proof. By Sites, Lemma 7.29.1 we see that Sh(C)/F is a topos and that (1) and
(3) are true. In particular this shows that j−1

F O = OF and shows that OF is a

sheaf of rings. Thus we may choose the map j]F to be the identity, in particular
we see that (2) is true. Moreover, the proof of Sites, Lemma 7.29.1 shows that we
may assume C is a site with all finite limits and a subcanonical topology and that
F = hU for some object U of C. Then (4) follows from the description of jF ! in
Lemma 18.19.2. Alternatively one could show directly that the functor described
in (4) is a left adjoint to j∗F . �

Definition 18.21.2. Let (Sh(C),O) be a ringed topos. Let F ∈ Sh(C).
(1) The ringed topos (Sh(C)/F ,OF ) is called the localization of the ringed

topos (Sh(C),O) at F .

(2) The morphism of ringed topoi (jF , j
]
F ) : (Sh(C)/F ,OF ) → (Sh(C),O) of

Lemma 18.21.1 is called the localization morphism.

We continue the tradition, established in the chapter on sites, that we check the
localization constructions on topoi are compatible with the constructions of local-
ization on sites, whenever this makes sense.

Lemma 18.21.3. With (Sh(C),O) and F ∈ Sh(C) as in Lemma 18.21.1. If F = h#
U

for some object U of C then via the identification Sh(C/U) = Sh(C)/h#
U of Sites,

Lemma 7.24.4 we have

(1) canonically OU = OF , and

(2) with these identifications we have (jF , j
]
F ) = (jU , j

]
U ).

Proof. The assertion for underlying topoi is Sites, Lemma 7.29.5. Note that OU
is the restriction of O which by Sites, Lemma 7.24.6 corresponds to O × h#

U under
the equivalence of Sites, Lemma 7.24.4. By definition of OF we get (1). What’s left

is to prove that j]F = j]U under this identification. We omit the verification. �

Localization is functorial in the following two ways: We can “relocalize” a local-
ization (see Lemma 18.21.4) or we can given a morphism of ringed topoi, localize
upstairs at the inverse image of a sheaf downstairs and get a commutative diagram
of locally ringed spaces (see Lemma 18.22.1).

Lemma 18.21.4. Let (Sh(C),O) be a ringed topos. If s : G → F is a morphism
of sheaves on C then there exists a natural commutative diagram of morphisms of
ringed topoi

(Sh(C)/G,OG)

(jG ,j
]
G) ''

(j,j])

// (Sh(C)/F ,OF )

(jF ,j
]
F )ww

(Sh(C),O)

where (j, j]) is the localization morphism of the ringed topos (Sh(C)/F ,OF ) at the
object G/F .

Proof. All assertions follow from Sites, Lemma 7.29.6 except the assertion that

j]G = j] ◦ j−1(j]F ). We omit the verification. �

Lemma 18.21.5. With (Sh(C),O), s : G → F as in Lemma 18.21.4. If there

exist a morphism f : V → U of C such that G = h#
V and F = h#

U and s is

http://stacks.math.columbia.edu/tag/04J2
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induced by f , then the diagrams of Lemma 18.19.4 and Lemma 18.21.4 agree via

the identifications (jF , j
]
F ) = (jU , j

]
U ) and (jG , j

]
G) = (jV , j

]
V ) of Lemma 18.21.3.

Proof. All assertions follow from Sites, Lemma 7.29.7 except for the assertion that
the two maps j] agree. This holds since in both cases the map j] is simply the
identity. Some details omitted. �

18.22. Localization of morphisms of ringed topoi

This section is the analogue of Sites, Section 7.30.

Lemma 18.22.1. Let

f : (Sh(C),O) −→ (Sh(D),O′)

be a morphism of ringed topoi. Let G be a sheaf on D. Set F = f−1G. Then there
exists a commutative diagram of ringed topoi

(Sh(C)/F ,OF )
(jF ,j

]
F )

//

(f ′,(f ′)])

��

(Sh(C),O)

(f,f])

��
(Sh(D)/G,O′G)

(jG ,j
]
G)

// (Sh(D),O′)

We have f ′∗j
−1
F = j−1

G f∗ and f ′∗j
∗
F = j∗Gf∗. Moreover, the morphism f ′ is charac-

terized by the rule

(f ′)−1(H ϕ−→ G) = (f−1H f−1ϕ−−−→ F).

Proof. By Sites, Lemma 7.30.1 we have the diagram of underlying topoi, the equal-
ity f ′∗j

−1
F = j−1

G f∗, and the description of (f ′)−1. To define (f ′)] we use the map

(f ′)] : O′G = j−1
G O

′ j
−1
G f]

−−−−→ j−1
G f∗O = f ′∗j

−1
F O = f ′∗OF

or equivalently the map

(f ′)] : (f ′)−1O′G = (f ′)−1j−1
G O

′ = j−1
F f−1O′

j−1
F f]

−−−−→ j−1
F O = OF .

We omit the verification that these two maps are indeed adjoint to each other. The
second construction of (f ′)] shows that the diagram commutes in the 2-category of

ringed topoi (as the maps j]F and j]G are identities). Finally, the equality f ′∗j
∗
F =

j∗Gf∗ follows from the equality f ′∗j
−1
F = j−1

G f∗ and the fact that pullbacks of sheaves
of modules and sheaves of sets agree, see Lemma 18.21.1. �

Lemma 18.22.2. Let

f : (Sh(C),O) −→ (Sh(D),O′)

be a morphism of ringed topoi. Let G be a sheaf on D. Set F = f−1G. If f is given

by a continuous functor u : D → C and G = h#
V , then the commutative diagrams of

Lemma 18.20.1 and Lemma 18.22.1 agree via the identifications of Lemma 18.21.3.

Proof. At the level of morphisms of topoi this is Sites, Lemma 7.30.2. This works
also on the level of morphisms of ringed topoi since the formulas defining (f ′)] in
the proofs of Lemma 18.20.1 and Lemma 18.22.1 agree. �

http://stacks.math.columbia.edu/tag/04IF
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Lemma 18.22.3. Let (f, f ]) : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed
topoi. Let G be a sheaf on D, let F be a sheaf on C, and let s : F → f−1G a
morphism of sheaves. There exists a commutative diagram of ringed topoi

(Sh(C)/F ,OF )
(jF ,j

]
F )

//

(fc,f
]
c )

��

(Sh(C),O)

(f,f])

��
(Sh(D)/G,O′G)

(jG ,j
]
G)

// (Sh(D),O′).

The morphism (fs, f
]
s) is equal to the composition of the morphism

(f ′, (f ′)]) : (Sh(C)/f−1G,Of−1G) −→ (Sh(D)/G,O′G)

of Lemma 18.22.1 and the morphism

(j, j]) : (Sh(C)/F ,OF )→ (Sh(C)/f−1G,Of−1G)

of Lemma 18.21.4. Given any morphisms b : G′ → G, a : F ′ → F , and s′ : F ′ →
f−1G′ such that

F ′
s′
//

a

��

f−1G′

f−1b

��
F s // f−1G

commutes, then the following diagram of ringed topoi

(Sh(C)/F ′,OF ′)
(jF′/F ,j

]

F′/F )

//

(fs′ ,f
]

s′ )

��

(Sh(C)/F ,OF )

(fs,f
]
s)

��
(Sh(D)/G′,O′G′)

(jG′/G ,j
]

G′/G)
// (Sh(D)/G,O′G′)

commutes.

Proof. On the level of morphisms of topoi this is Sites, Lemma 7.30.3. To check
that the diagrams commute as morphisms of ringed topoi use the commutative
diagrams of Lemmas 18.21.4 and 18.22.1. �

Lemma 18.22.4. Let (f, f ]) : (Sh(C),O) → (Sh(D),O′), s : F → f−1G be as in

Lemma 18.22.3. If f is given by a continuous functor u : D → C and G = h#
V ,

F = h#
U and s comes from a morphism c : U → u(V ), then the commutative

diagrams of Lemma 18.20.2 and Lemma 18.22.3 agree via the identifications of
Lemma 18.21.3.

Proof. This is formal using Lemmas 18.21.5 and 18.22.2. �

18.23. Local types of modules

According to our general strategy explained in Section 18.18 we first define the
local types for sheaves of modules on a ringed site, and then we immediately show
that these types are intrinsic, hence make sense for sheaves of modules on ringed
topoi.

Definition 18.23.1. Let (C,O) be a ringed site. Let F be a sheaf of O-modules.
We will freely use the notions defined in Definition 18.17.1.

http://stacks.math.columbia.edu/tag/04J8
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(1) We say F is locally free if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is a free OUi-module.

(2) We say F is finite locally free if for every object U of C there exists a
covering {Ui → U}i∈I of C such that each restriction F|C/Ui is a finite
free OUi-module.

(3) We say F is locally generated by sections if for every object U of C there
exists a covering {Ui → U}i∈I of C such that each restriction F|C/Ui is an
OUi-module generated by global sections.

(4) Given r ≥ 0 we sat F is locally generated by r sections if for every object
U of C there exists a covering {Ui → U}i∈I of C such that each restriction
F|C/Ui is an OUi-module generated by r global sections.

(5) We say F is of finite type if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi -module
generated by finitely many global sections.

(6) We say F is quasi-coherent if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi -module
which has a global presentation.

(7) We say F is of finite presentation if for every object U of C there exists
a covering {Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi-
module which has a finite global presentation.

(8) We say F is coherent if and only if F is of finite type, and for every object U
of C and any s1, . . . , sn ∈ F(U) the kernel of the map

⊕
i=1,...,nOU → F|U

is of finite type on (C/U,OU ).

Lemma 18.23.2. Any of the properties (1) – (8) of Definition 18.23.1 is intrinsic
(see discussion in Section 18.18).

Proof. Let C, D be sites. Let u : C → D be a special cocontinuous functor. Let O
be a sheaf of rings on C. Let F be a sheaf of O-modules on C. Let g : Sh(C)→ Sh(D)
be the equivalence of topoi associated to u. Set O′ = g∗O, and let g] : O′ → g∗O
be the identity. Finally, set F ′ = g∗F . Let Pl be one of the properties (1) – (7)
listed in Definition 18.23.1. (We will discuss the coherent case at the end of the
proof.) Let Pg denote the corresponding property listed in Definition 18.17.1. We
have already seen that Pg is intrinsic. We have to show that Pl(C,O,F) holds if
and only if Pl(D,O′,F ′) holds.

Assume that F has Pl. Let V be an object of D. One of the properties of a special
cocontinuous functor is that there exists a covering {u(Ui)→ V }i∈I in the site D.
By assumption, for each i there exists a covering {Uij → Ui}j∈Ji in C such that each
restriction F|Uij is Pg. By Sites, Lemma 7.28.3 we have commutative diagrams of
ringed topoi

(Sh(C/Uij),OUij ) //

��

(Sh(C),O)

��
(Sh(D/u(Uij)),O′u(Uij)

) // (Sh(D),O′)

where the vertical arrows are equivalences. Hence we conclude that F ′|u(Uij) has
property Pg also. And moreover, {u(Uij)→ V }i∈I,j∈Ji is a covering of the site D.
Hence F ′ has property Pl.

http://stacks.math.columbia.edu/tag/03DM
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Assume that F ′ has Pl. Let U be an object of C. By assumption, there exists a
covering {Vi → u(U)}i∈I such that F ′|Vi has property Pg. Because u is cocontinu-
ous we can refine this covering by a family {u(Uj)→ u(U)}j∈J where {Uj → U}j∈J
is a covering in C. Say the refinement is given by α : J → I and u(Uj) → Vα(j).
Restricting is transitive, i.e., (F ′|Vα(j)

)|u(Uj) = F ′|u(Uj). Hence by Lemma 18.17.2

we see that F ′|u(Uj) has property Pg. Hence the diagram

(Sh(C/Uj),OUj ) //

��

(Sh(C),O)

��
(Sh(D/u(Uj)),O′u(Uj)

) // (Sh(D),O′)

where the vertical arrows are equivalences shows that F|Uj has property Pg also.
Thus F has property Pl as desired.

Finally, we prove the lemma in case Pl = coherent2. Assume F is coherent. This
implies that F is of finite type and hence F ′ is of finite type also by the first part
of the proof. Let V be an object of D and let s1, . . . , sn ∈ F ′(V ). We have to show
that the kernel K′ of

⊕
j=1,...,nOV → F ′|V is of finite type on D/V . This means

we have to show that for any V ′/V there exists a covering {V ′i → V ′} such that
F ′|V ′i is generated by finitely many sections. Replacing V by V ′ (and restricting

the sections sj to V ′) we reduce to the case where V ′ = V . Since u is a special
cocontinuous functor, there exists a covering {u(Ui)→ V }i∈I in the site D. Using
the isomorphism of topoi Sh(C/Ui) = Sh(D/u(Ui)) we see that K′|u(Ui) corresponds
to the kernel Ki of a map

⊕
j=1,...,nOUi → F|Ui . Since F is coherent we see that

Ki is of finite type. Hence we conclude (by the first part of the proof again) that
K|u(Ui) is of finite type. Thus there exist coverings {Vil → u(Ui)} such that K|Vil
is generated by finitely many global sections. Since {Vil → V } is a covering of D
we conclude that K is of finite type as desired.

Assume F ′ is coherent. This implies that F ′ is of finite type and hence F is of
finite type also by the first part of the proof. Let U be an object of C, and let
s1, . . . , sn ∈ F(U). We have to show that the kernel K of

⊕
j=1,...,nOU → F|U is

of finite type on C/U . Using the isomorphism of topoi Sh(C/U) = Sh(D/u(U)) we
see that K|U corresponds to the kernel K′ of a map

⊕
j=1,...,nOu(U) → F ′|u(U). As

F ′ is coherent, we see that K′ is of finite type. Hence, by the first part of the proof
again, we conclude that K is of finite type. �

Hence from now on we may refer to the properties of O-modules defined in Defini-
tion 18.23.1 without specifying a site.

Lemma 18.23.3. Let (Sh(C),O) be a ringed topos. Let F be an O-module. Assume
that the site C has a final object X. Then

(1) The following are equivalent
(a) F is locally free,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a locally free OXi-module, and

2The mechanics of this are a bit awkward, and we suggest the reader skip this part of the
proof.

http://stacks.math.columbia.edu/tag/03DN
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(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a free OXi-module.

(2) The following are equivalent
(a) F is finite locally free,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a finite locally free OXi-module, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a finite free OXi-module.

(3) The following are equivalent
(a) F is locally generated by sections,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module locally generated by sections, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module globally generated by sections.

(4) Given r ≥ 0, the following are equivalent
(a) F is locally generated by r sections,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module locally generated by r sections, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module globally generated by r sections.

(5) The following are equivalent
(a) F is of finite type,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module of finite type, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module globally generated by finitely many sections.

(6) The following are equivalent
(a) F is quasi-coherent,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a quasi-coherent OXi-module, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module which has a global presentation.

(7) The following are equivalent
(a) F is of finite presentation,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module of finite presentation, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module has a finite global presentation.

(8) The following are equivalent
(a) F is coherent, and
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a coherent OXi-module.

Proof. In each case we have (a) ⇒ (b). In each of the cases (1) - (6) condition
(b) implies condition (c) by axiom (2) of a site (see Sites, Definition 7.6.2) and the
definition of the local types of modules. Suppose {Xi → X} is a covering. Then
for every object U of C we get an induced covering {Xi×X U → U}. Moreover, the
global property for F|C/Xi in part (c) implies the corresponding global property for
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F|C/Xi×XU by Lemma 18.17.2, hence the sheaf has property (a) by definition. We
omit the proof of (b) ⇒ (a) in case (7). �

Lemma 18.23.4. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Let F be an OD-module.

(1) If F is locally free then f∗F is locally free.
(2) If F is finite locally free then f∗F is finite locally free.
(3) If F is locally generated by sections then f∗F is locally generated by sec-

tions.
(4) If F is locally generated by r sections then f∗F is locally generated by r

sections.
(5) If F is of finite type then f∗F is of finite type.
(6) If F is quasi-coherent then f∗F is quasi-coherent.
(7) If F is of finite presentation then f∗F is of finite presentation.

Proof. According to the discussion in Section 18.18 we need only check preser-
vation under pullback for a morphism of ringed sites (f, f ]) : (C,OC) → (D,OD)
such that f is given by a left exact, continuous functor u : D → C between sites
which have all finite limits. Let G be a sheaf of OD-modules which has one of the
properties (1) – (6) of Definition 18.23.1. We know D has a final object Y and
X = u(Y ) is a final object for C. By assumption we have a covering {Yi → Y }
such that G|D/Yi has the corresponding global property. Set Xi = u(Yi) so that
{Xi → X} is a covering in C. We get a commutative diagram of morphisms ringed
sites

(C/Xi,OC |Xi) //

��

(C,OC)

��
(D/Yi,OD|Yi) // (D,OD)

by Sites, Lemma 7.27.2. Hence by Lemma 18.17.2 that f∗G|Xi has the correspond-
ing global property. Hence we conclude that G has the local property we started
out with by Lemma 18.23.3. �

18.24. Basic results on local types of modules

Basic lemmas related to the definitions made above.

Lemma 18.24.1. Let (C,O) be a ringed site. Let θ : G → F be a surjective O-
module map with F of finite presentation and G of finite type. Then Ker(θ) is of
finite type.

Proof. Omitted. Hint: See Modules, Lemma 17.11.3. �

18.25. Closed immersions of ringed topoi

When do we declare a morphism of ringed topoi i : (Sh(C),O)→ (Sh(D),O′) to be
a closed immersion? By analogy with the discussion in Modules, Section 17.13 it
seems natural to assume at least:

(1) The functor i is a closed immersion of topoi (Sites, Definition 7.42.7).
(2) The associated map O′ → i∗O is surjective.

http://stacks.math.columbia.edu/tag/03DO
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These conditions already imply a number of pleasing results which we discuss in
this section. However, it seems prudent to not actually define the notion of a closed
immersion of ringed topoi as there are many different definitions we could use.

Lemma 18.25.1. Let i : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
Assume i is a closed immersion of topi and i] : O′ → i∗O is surjective. Denote
I ⊂ O′ the kernel of i]. The functor

i∗ : Mod(O) −→ Mod(O′)

is exact, fully faithful, with essential image those O′-modules G such that IG = 0.

Proof. By Lemma 18.15.2 and Sites, Lemma 7.42.8 we see that i∗ is exact. From
the fact that i∗ is fully faithful on sheaves of sets, and the fact that i] is surjective
it follows that i∗ is fully faithful as a functor Mod(O)→ Mod(O′). Namely, suppose
that α : i∗F1 → i∗F2 is an O′-module map. By the fully faithfulness of i∗ we obtain
a map β : F1 → F2 of sheaves of sets. To prove β is a map of modules we have to
show that

O ×F1
//

��

F1

��
O ×F2

// F2

commutes. It suffices to prove commutativity after applying i∗. Consider

O′ × i∗F1
//

��

i∗O × i∗F1
//

��

i∗F1

��
O′ × i∗F2

// i∗O × i∗F2
// i∗F2

We know the outer rectangle commutes. Since i] is surjective we conclude.

To finish the proof we have to prove the statement on the essential image of i∗. It
is clear that i∗F is annihilated by I for any O-module F . Conversely, let G be a
O′-module with IG = 0. By definition of a closed subtopos there exists a subsheaf
U of the final object of D such that the essential image of i∗ on sheaves of sets is the
class of sheaves of sets H such that H × U → U is an isomorphism. In particular,
i∗O × U = U . This implies that I × U = O × U . Hence our module G satisfies
G × U = {0} × U = U (because the zero module is isomorphic to the final object
of sheaves of sets). Thus there exists a sheaf of sets F on C with i∗F = G. Since
i∗ is fully faithful on sheaves of sets, we see that in order to define the addition
F × F → F and the multiplication O ×F → F it suffices to use the addition

G × G −→ G

(given to us as G is a O′-module) and the multiplication

i∗O × G → G

which is given to us as we have the multiplication by O′ which annihilates I by
assumption and i∗O = O′/I. By construction G is isomorphic to the pushforward
of the O-module F so constructed. �

http://stacks.math.columbia.edu/tag/08M3
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18.26. Tensor product

In Sections 18.9 and 18.11 we defined the change of rings functor by a tensor product
construction. To be sure this construction makes sense also to define the tensor
product of presheaves of O-modules. To be precise, suppose C is a category, O is
a presheaf of rings, and F , G are presheaves of O-modules. In this case we define
F ⊗p,O G to be the presheaf

U 7−→ (F ⊗p,O G)(U) = F(U)⊗O(U) G(U)

If C is a site, O is a sheaf of rings and F , G are sheaves of O-modules then we define

F ⊗O G = (F ⊗p,O G)#

to be the sheaf of O-modules associated to the presheaf F ⊗p,O G.

Here are some formulas which we will use below without further mention:

(F ⊗p,O G)⊗p,O H = F ⊗p,O (G ⊗p,O H),

and similarly for sheaves. If O1 → O2 is a map of presheaves of rings, then

(F ⊗p,O1 G)⊗p,O1 O2 = (F ⊗p,O1 O2)⊗p,O2 (G ⊗p,O1 O2),

and similarly for sheaves. These follow from their algebraic counterparts and sheafi-
fication.

Let C be a site, let O be a sheaf of rings and let F , G, H be sheaves of O-modules.
In this case we define

BilinO(F × G,H) = {ϕ ∈ MorSh(C)(F × G,H) | ϕ is O-bilinear}.
With this definition we have

HomO(F ⊗O G,H) = BilinO(F × G,H).

In other words F ⊗O G represents the functor which associates to H the set of
bilinear maps F × G → H. In particular, since the notion of a bilinear map makes
sense for a pair of modules on a ringed topos, we see that the tensor product of
sheaves of modules is intrinsic to the topos (compare the discussion in Section
18.18). In fact we have the following.

Lemma 18.26.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let F , G be OD-modules. Then f∗(F ⊗OD G) = f∗F ⊗OC f∗G functorially
in F , G.

Proof. For a sheaf H of OC modules we have

HomOC (f
∗(F ⊗O G),H) = HomOD (F ⊗O G, f∗H)

= BilinOD (F × G, f∗H)

= Bilinf−1OD (f−1F × f−1G,H)

= Homf−1OD (f−1F ⊗f−1OD f
−1G,H)

= HomOC (f
∗F ⊗f∗OD f∗G,H)

The interesting “=” in this sequence of equalities is the third equality. It follows
from the definition and adjointness of f∗ and f−1 (as discussed in previous sections)
in a straightforward manner. �

Lemma 18.26.2. Let (C,O) be a ringed site. Let F , G be sheaves of O-modules.

http://stacks.math.columbia.edu/tag/03EL
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(1) If F , G are locally free, so is F ⊗O G.
(2) If F , G are finite locally free, so is F ⊗O G.
(3) If F , G are locally generated by sections, so is F ⊗O G.
(4) If F , G are of finite type, so is F ⊗O G.
(5) If F , G are quasi-coherent, so is F ⊗O G.
(6) If F , G are of finite presentation, so is F ⊗O G.
(7) If F is of finite presentation and G is coherent, then F ⊗O G is coherent.
(8) If F , G are coherent, so is F ⊗O G.

Proof. Omitted. Hint: Compare with Sheaves of Modules, Lemma 17.15.5. �

18.27. Internal Hom

Let C be a category and let O be a presheaf of rings. Let F , G be presheaves of
O-modules. Consider the rule

U 7−→ HomOU (F|U ,G|U ).

For ϕ : V → U in C we define a restriction mapping

HomOU (F|U ,G|U ) −→ HomOV (F|V ,G|V )

by restricting via the relocalization morphism j : C/V → C/U , see Sites, Lemma
7.24.7. Hence this defines a presheaf HomO(F ,G). In addition, given an ele-
ment ϕ ∈ HomO|U (F|U ,G|U ) and a section f ∈ O(U) then we can define fϕ ∈
HomO|U (F|U ,G|U ) by either precomposing with multiplication by f on F|U or
postcomposing with multiplication by f on G|U (it gives the same result). Hence
we in fact get a presheaf of O-modules. There is a canonical “evaluation” morphism

F ⊗p,O HomO(F ,G) −→ G.

Lemma 18.27.1. If C is a site, O is a sheaf of rings, F is a presheaf of O-modules,
and G is a sheaf of O-modules, then HomO(F ,G) is a sheaf of O-modules.

Proof. Omitted. Hints: Note first that HomO(F ,G) = HomO(F#,G), which re-
duces the question to the case where both F and G are sheaves. The result for
sheaves of sets is Sites, Lemma 7.25.1. �

In the situation of the lemma the “evaluation” morphism factors through the tensor
product of sheaves of modules

F ⊗O HomO(F ,G) −→ G.

Lemma 18.27.2. Internal hom and (co)limits. Let C be a category and let O be a
presheaf of rings.

(1) For any presheaf of O-modules F the functor

PMod(O) −→ PMod(O), G 7−→ HomO(F ,G)

commutes with arbitrary limits.
(2) For any presheaf of O-modules G the functor

PMod(O) −→ PMod(O)opp, F 7−→ HomO(F ,G)

commutes with arbitrary colimits, in a formula

HomO(colimi Fi,G) = limiHomO(Fi,G).

Suppose that C is a site, and O is a sheaf of rings.

http://stacks.math.columbia.edu/tag/03EM
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(3) For any sheaf of O-modules F the functor

Mod(O) −→ Mod(O), G 7−→ HomO(F ,G)

commutes with arbitrary limits.
(4) For any sheaf of O-modules G the functor

Mod(O) −→ Mod(O)opp, F 7−→ HomO(F ,G)

commutes with arbitrary colimits, in a formula

HomO(colimi Fi,G) = limiHomO(Fi,G).

Proof. Let I → PMod(O), i 7→ Gi be a diagram. Let U be an object of the category
C. As j∗U is both a left and a right adjoint we see that limi j

∗
UGi = j∗U limi Gi. Hence

we have

HomO(F , limi Gi)(U) = HomOU (F|U , limi Gi|U )

= limi HomOU (F|U ,Gi|U )

= limiHomO(F ,Gi)(U)

by definition of a limit. This proves (1). Part (2) is proved in exactly the same way.
Part (3) follows from (1) because the limit of a diagram of sheaves is the same as
the limit in the category of presheaves. Finally, (4) follow because, in the formula
we have

MorMod(O)(colimi Fi,G) = MorPMod(O)(colimPSh
i Fi,G)

as the colimit colimi Fi is the sheafification of the colimit colimPSh
i Fi in PMod(O).

Hence (4) follows from (2) (by the remark on limits above again). �

Lemma 18.27.3. Let C be a category. Let O be a presheaf of rings.

(1) Let F , G, H be presheaves of O-modules. There is a canonical isomor-
phism

HomO(F ⊗p,O G,H) −→ HomO(F ,HomO(G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In
particular,

MorPMod(O)(F ⊗p,O G,H) = MorPMod(O)(F ,HomO(G,H))

(2) Suppose that C is a site, O is a sheaf of rings, and F , G, H are sheaves
of O-modules. There is a canonical isomorphism

HomO(F ⊗O G,H) −→ HomO(F ,HomO(G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In
particular,

MorMod(O)(F ⊗O G,H) = MorMod(O)(F ,HomO(G,H))

Proof. This is the analogue of Algebra, Lemma 10.11.8. The proof is the same,
and is omitted. �

Lemma 18.27.4. Tensor product and (co)limits. Let C be a category and let O be
a presheaf of rings.

(1) For any presheaf of O-modules F the functor

PMod(O) −→ PMod(O), G 7−→ F ⊗p,O G
commutes with arbitrary colimits.

http://stacks.math.columbia.edu/tag/03EO
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(2) Suppose that C is a site, and O is a sheaf of rings. For any sheaf of
O-modules F the functor

Mod(O) −→ Mod(O), G 7−→ F ⊗O G
commutes with arbitrary colimits.

Proof. This is because tensor product is adjoint to internal hom according to
Lemma 18.27.3. See Categories, Lemma 4.24.4. �

Lemma 18.27.5. Let C be a category, resp. a site Let O → O′ be a map of
presheaves, resp. sheaves of rings. Then

HomO(G,F) = HomO′(G,HomO(O′,F))

for any O′-module G and O-module F .

Proof. This is the analogue of Algebra, Lemma 10.13.4. The proof is the same,
and is omitted. �

18.28. Flat modules

We can define flat modules exactly as in the case of modules over rings.

Definition 18.28.1. Let C be a category. Let O be a presheaf of rings.

(1) A presheaf F of O-modules is called flat if the functor

PMod(O) −→ PMod(O), G 7→ G ⊗p,O F
is exact.

(2) A map O → O′ of presheaves of rings is called flat if O′ is flat as a presheaf
of O-modules.

(3) If C is a site, O is a sheaf of rings and F is a sheaf of O-modules, then we
say F is flat if the functor

Mod(O) −→ Mod(O), G 7→ G ⊗O F
is exact.

(4) A map O → O′ of sheaves of rings on a site is called flat if O′ is flat as a
sheaf of O-modules.

The notion of a flat module or flat ring map is intrinsic (Section 18.18).

Lemma 18.28.2. Let C be a category. Let O be a presheaf of rings. Let F be a
presheaf of O-modules. If each F(U) is a flat O(U)-module, then F is flat.

Proof. This is immediate from the definitions. �

Lemma 18.28.3. Let C be a category. Let O be a presheaf of rings. Let F be a
presheaf of O-modules. If F is a flat O-module, then F# is a flat O#-module.

Proof. Omitted. (Hint: Sheafification is exact.) �

Lemma 18.28.4. Colimits and tensor product.

(1) A filtered colimit of flat presheaves of modules is flat. A direct sum of flat
presheaves of modules is flat.

(2) A filtered colimit of flat sheaves of modules is flat. A direct sum of flat
sheaves of modules is flat.
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Proof. Part (1) follows from Lemma 18.27.4 and Algebra, Lemma 10.8.9 by looking
at sections over objects. To see part (2), use Lemma 18.27.4 and the fact that a
filtered colimit of exact complexes is an exact complex (this uses that sheafification
is exact and commutes with colimits). Some details omitted. �

Lemma 18.28.5. Let C be a category. Let O be a presheaf of rings. Let U be an
object of C. Consider the functor jU : C/U → C.

(1) The presheaf of O-modules jU !OU (see Remark 18.19.6) is flat.
(2) If C is a site, O is a sheaf of rings, jU !OU is a flat sheaf of O-modules.

Proof. Proof of (1). By the discussion in Remark 18.19.6 we see that

jU !OU (V ) =
⊕

ϕ∈MorC(V,U)
O(V )

which is a flat O(V )-module. Hence (1) follows from Lemma 18.28.2. Then (2)
follows as jU !OU = (jU !OU )# (the first jU ! on sheaves, the second on presheaves)
and Lemma 18.28.3. �

Lemma 18.28.6. Let C be a category. Let O be a presheaf of rings.

(1) Any presheaf of O-modules is a quotient of a direct sum
⊕
jUi!OUi .

(2) Any presheaf of O-modules is a quotient of a flat presheaf of O-modules.
(3) If C is a site, O is a sheaf of rings, then any sheaf of O-modules is a

quotient of a direct sum
⊕
jUi!OUi .

(4) If C is a site, O is a sheaf of rings, then any sheaf of O-modules is a
quotient of a flat sheaf of O-modules.

Proof. Proof of (1). For every object U of C and every s ∈ F(U) we get a morphism
jU !OU → F , namely the adjoint to the morphism OU → F|U , 1 7→ s. Clearly the
map ⊕

(U,s)
jU !OU −→ F

is surjective. The source is flat by combining Lemmas 18.28.4 and 18.28.5 which
proves (2). The sheaf case follows from this either by sheafifying or repeating the
same argument. �

Lemma 18.28.7. Let C be a category. Let O be a presheaf of rings. Let

0→ F ′′ → F ′ → F → 0

be a short exact sequence of presheaves of O-modules. Assume F is flat. Then

(1) For any presheaf G of O-modules, the sequence

0→ F ′′ ⊗p,O G → F ′ ⊗p,O G → F ⊗p,O G → 0

is exact.
(2) If C is a site, and O, F , F ′, F ′′, and G are all sheaves, the sequence

0→ F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0

is exact.
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Proof. Choose a flat presheaf of O-modules G′ which surjects onto G. This is
possible by Lemma 18.28.6. Let G′′ = Ker(G′ → G). The lemma follows by applying
the snake lemma to the following diagram

0 0 0
↑ ↑ ↑

F ′′ ⊗p,O G → F ′ ⊗p,O G → F ⊗p,O G → 0
↑ ↑ ↑

0 → F ′′ ⊗p,O G′ → F ′ ⊗p,O G′ → F ⊗p,O G′ → 0
↑ ↑ ↑

F ′′ ⊗p,O G′′ → F ′ ⊗p,O G′′ → F ⊗p,O G′′ → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with
the flat module G′ is exact. The sheaf case follows from the presheaf case as
sheafification is exact. �

Lemma 18.28.8. Let C be a category. Let O be a presheaf of rings. Let

0→ F2 → F1 → F0 → 0

be a short exact sequence of presheaves of O-modules.

(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

If C is a site and O is a sheaf of rings then the same result holds Mod(O).

Proof. Let G• be an arbitrary exact complex of presheaves of O-modules. Assume
that F0 is flat. By Lemma 18.28.7 we see that

0→ G• ⊗p,O F2 → G• ⊗p,O F1 → G• ⊗p,O F0 → 0

is a short exact sequence of complexes of presheaves of O-modules. Hence (1) and
(2) follow from the snake lemma. The case of sheaves of modules is proved in the
same way. �

Lemma 18.28.9. Let C be a category. Let O be a presheaf of rings. Let

. . .→ F2 → F1 → F0 → Q→ 0

be an exact complex of presheaves of O-modules. If Q and all Fi are flat O-modules,
then for any presheaf G of O-modules the complex

. . .→ F2 ⊗p,O G → F1 ⊗p,O G → F0 ⊗p,O G → Q⊗p,O G → 0

is exact also. If C is a site and O is a sheaf of rings then the same result holds
Mod(O).

Proof. Follows from Lemma 18.28.7 by splitting the complex into short exact
sequences and using Lemma 18.28.8 to prove inductively that Im(Fi+1 → Fi) is
flat. �

Lemma 18.28.10. Let O1 → O2 be a map of sheaves of rings on a site C. If G is
a flat O1-module, then G ⊗O1

O2 is a flat O2-module.
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Proof. This is true because

(G ⊗O1 O2)⊗O2 H = G ⊗O1 F

(as sheaves of abelian groups for example). �

The following lemma gives one direction of the equational criterion of flatness (Al-
gebra, Lemma 10.38.10).

Lemma 18.28.11. Let (C,O) be a ringed site. Let F be a flat O-module. Let U
be an object of C and let

OU
(f1,...,fn)−−−−−−→ O⊕nU

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. There exists a covering {Ui → U} and for each i a
factorization

O⊕nUi
A−→ O⊕mUi

(t1,...,tm)−−−−−−→ F|Ui
of (s1, . . . , sn)|Ui such that A ◦ (f1, . . . , fn)|Ui = 0.

Proof. Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn. Then
∑
fj ⊗ sj

is a section of I⊗OU F|U which maps to zero in F|U . As F|U is flat the map I⊗OU
F|U → F|U is injective. Since I ⊗OU F|U is the sheaf associated to the presheaf
tensor product, we see there exists a covering {Ui → U} such that

∑
fj |Ui ⊗ sj |Ui

is zero in I(Ui) ⊗O(Ui) F(Ui). Unwinding the definitions using Algebra, Lemma
10.103.10 we find t1, . . . , tm ∈ F(Ui) and ajk ∈ O(Ui) such that

∑
ajkfj |Ui = 0

and sj |Ui =
∑
ajktk. �

Lemma 18.28.12. Let (C,O) be a ringed site. Let F be locally of finite presentation
and flat. Then given an object U of C there exists a covering {Ui → U} such that
F|Ui is a direct summand of a finite free OUi-module.

Proof. Choose an object U of C. After replacing U by the members of a covering,
we may assume there exists a presentation

O⊕rU → O
⊕n
U → F → 0

By Lemma 18.28.11 we may assume, after replacing U by the members of a covering,
assume there exists a factorization

O⊕nU → O⊕n1

U → F

such that the composition O⊕rU → O⊕nU → O⊕n1

U annihilates the first summand of

O⊕rU . Repeating this argument r − 1 more times we obtain a factorization

O⊕nU → O⊕nrU → F

such that the composition O⊕rU → O⊕nU → O⊕nrU is zero. This means that the

surjection O⊕nrU → F has a section and we win. �

Lemma 18.28.13. Let C be a site. Let O′ → O be a surjection of sheaves of
rings whose kernel I is an ideal of square zero. Let F ′ be an O′-module and set
F = F ′/IF ′. The following are equivalent

(1) F ′ is a flat O′-module, and
(2) F is a flat O-module and I ⊗O F → F ′ is injective.
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Proof. If (1) holds, then F = F ′ ⊗O′ O is flat over O by Lemma 18.28.10 and we
see the map I ⊗O F → F ′ is injective by applying −⊗O′ F ′ to the exact sequence
0 → I → O′ → O → 0, see Lemma 18.28.7. Assume (2). In the rest of the proof
we will use without further mention that K⊗O′ F ′ = K⊗O F for any O′-module K
annihilated by I. Let α : G′ → H′ be an injective map of O′-modules. Let G ⊂ G′,
resp. H ⊂ H′ be the subsheaf of sections annihilated by I. Consider the diagram

G ⊗O′ F ′ //

��

G′ ⊗O′ F ′ //

��

G′/G ⊗O′ F ′ //

��

0

H⊗O′ F ′ // H′ ⊗O′ F ′ // H′/H⊗O′ F ′ // 0

Note that G′/G and H′/H are annihilated by I and that G′/G → H′/H is injective.
Thus the right vertical arrow is injective as F is flat over O. The same is true
for the left vertical arrow. Hence the middle vertical arrow is injective and F ′ is
flat. �

18.29. Towards constructible modules

Recall that a quasi-compact object of a site is one such that every covering of it
can be refined by a finite covering. It turns out that if every object of a site has a
covering by quasi-compact objects, then the modules j!OU with U quasi-compact
form a particularly nice set of generators for the category of all modules.

Lemma 18.29.1. Let (C,O) be a ringed site. Let {Ui → U} be a covering of C.
Then the sequence⊕

jUi×UUj !OUi×UUj →
⊕

jUi!OUi → j!OU → 0

is exact.

Proof. This holds because for any O-module F the functor HomO(−,F) turns our
sequence into the exact sequence 0 → F(U) →

∏
F(Ui) →

∏
F(Ui ×U Uj). Then

the lemma follows from Homology, Lemma 12.5.8. �

Lemma 18.29.2. Let C be a site. Let W be a quasi-compact object of C.

(1) The functor Sh(C)→ Sets, F 7→ F(W ) commutes with coproducts.
(2) Let O be a sheaf of rings on C. The functor Mod(O) → Ab, F 7→ F(W )

commutes with direct sums.

Proof. Proof of (1). Taking sections over W commutes with filtered colimits with
injective transition maps by Sites, Lemma 7.11.2. If Fi is a family of sheaves of
sets indexed by a set I. Then

∐
Fi is the filtered colimit over the partially ordered

set of finite subsets E ⊂ I of the coproducts FE =
∐
i∈E Fi. Since the transition

maps are injective we conclude.

Proof of (2). Let Fi be a family of sheaves of O-modules indexed by a set I. Then⊕
Fi is the filtered colimit over the partially ordered set of finite subsets E ⊂ I

of the direct sums FE =
⊕

i∈E Fi. A filtered colimit of abelian sheaves can be
computed in the category of sheaves of sets. Moreover, for E ⊂ E′ the transition
map FE → FE′ is injective (as sheafification is exact and the injectivity is clear on
underlying presheaves). Hence it suffices to show the result for a finite index set by
Sites, Lemma 7.11.2. The finite case is dealt with in Lemma 18.3.2 (it holds over
any object of C). �
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Lemma 18.29.3. Let (C,O) be a ringed site. Let U be a quasi-compact object of
C. Then the functor HomO(j!OU ,−) commutes with direct sums.

Proof. This is true because HomO(j!OU ,F) = F(U) and because the functor
F 7→ F(U) commutes with direct sums by Lemma 18.29.2. �

In order to state the sharpest possible results in the following we introduce some
notation.

Situation 18.29.4. Let C be a site. Let B ⊂ Ob(C) be a set of objects. We
consider the following conditions

(1) Every object of C has a covering by elements of B.
(2) Every U ∈ B is quasi-compact.
(3) For a finite covering {Ui → U} with Ui, U ∈ B the fibre products Ui×U Uj

are quasi-compact.

Lemma 18.29.5. In Situation 18.29.4 assume (1) holds.

(1) Every sheaf of sets is the target of a surjective map whose source is a

coproduct
∐
h#
Ui

with Ui in B.
(2) If O is a sheaf of rings, then every O-module is a quotient of a direct sum⊕

jUi!OUi with Ui in B.

Proof. Follows immediately from Lemmas 18.28.6 and 18.29.1. �

Lemma 18.29.6. In Situation 18.29.4 assume (1) and (2) hold.

(1) Every sheaf of sets is a filtered colimit of sheaves of the form

(18.29.6.1) Coequalizer

( ∐
j=1,...,m h

#
Vj

//
//
∐
i=1,...,n h

#
Ui

)
with Ui and Vj in B.

(2) If O is a sheaf of rings, then every O-module is a filtered colimit of sheaves
of the form

(18.29.6.2) Coker
(⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi
)

with Ui and Vj in B.

Proof. Proof of (1). By Lemma 18.29.5 every sheaf of sets F is the target of

a surjection whose source is a coprod F0 of sheaves the form h#
U with U ∈ B.

Applying this to F0 ×F F0 we find that F is a coequalizer of a pair of maps∐
j∈J h

#
Vj

//
//
∐
i∈I h

#
Ui

for some index sets I, J and Vj and Ui in B. For every finite subset J ′ ⊂ J there
is a finite subset I ′ ⊂ I such that the coproduct over j ∈ J ′ maps into the coprod
over i ∈ I ′ via both maps, see Lemma 18.29.3. Thus our sheaf is the colimit of the
cokernels of these maps between finite coproducts.

Proof of (2). By Lemma 18.29.5 every module is a quotient of a direct sum of
modules of the form jU !OU with U ∈ B. Thus every module is a cokernel

Coker
(⊕

j∈J
jVj !OVj −→

⊕
i∈I

jUi!OUi
)

for some index sets I, J and Vj and Ui in B. For every finite subset J ′ ⊂ J there is
a finite subset I ′ ⊂ I such that the direct sum over j ∈ J ′ maps into the direct sum
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over i ∈ I ′, see Lemma 18.29.3. Thus our module is the colimit of the cokernels of
these maps between finite direct sums. �

Lemma 18.29.7. In Situation 18.29.4 assume (1) and (2) hold. Let O be a sheaf
of rings. Then a cokernel of a map between modules as in (18.29.6.2) is another
module as in (18.29.6.2).

Proof. Let F = Coker(
⊕
jVj !OVj →

⊕
jUi!OUi) as in (18.29.6.2). It suffices to

show that the cokernel of a map ϕ : jW !OW → F with W ∈ B is another module
of the same type. The map ϕ corresponds to s ∈ F(W ). Since W is quasi-compact
we can find a finite covering {Wk →W} with Wk ∈ B such that s|Wk

comes from a
section

∑
ski of

⊕
jUi!OUi). This determines maps jWk!OWk

→
⊕
jUi!OUi . Since⊕

jWk!OWk
→ jW !OW is surjective (Lemma 18.29.1) we see that Coker(ϕ) is equal

to

Coker
(⊕

jWk!OWk
⊕
⊕

jVj !OVj −→
⊕

jUi!OUi
)

as desired. �

Lemma 18.29.8. In Situation 18.29.4 assume (1), (2), and (3) hold. Let O be a
sheaf of rings. Then given a map⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi

with Ui and Vj in B, and finite coverings {Uik → Ui} by Uik ∈ B, there exist a
finite set of Wl ∈ B and a commutative diagram⊕

jWl!OWl

��

//⊕ jUi!OUik

��⊕
jVj !OVj //⊕ jUi!OUi

inducing an isomorphism on cokernels of the horizontal maps.

Proof. Since
⊕
jUik!OUik →

⊕
jUi!OUi is surjective (Lemma 18.29.1), we can find

finite coverings {Vjm → Vj} with Vjm ∈ B such that we can find a commutative
diagram ⊕

jVjm!OVjm

��

//⊕ jUi!OUik

��⊕
jVj !OVj //⊕ jUi!OUi

Adding ⊕
jUik×UiUik′ !OUik×UiUik′

to the upper left corner finishes the proof by Lemma 18.29.1. �

Lemma 18.29.9. In Situation 18.29.4 assume (1), (2), and (3) hold. Let O be a
sheaf of rings. Then an extension of modules as in (18.29.6.2) is another module
as in (18.29.6.2).

Proof. Let 0→ F1 → F2 → F3 → 0 be a short exact sequence of O-modules with
F1 and F3 as in (18.29.6.2). Choose presentations⊕

AVj →
⊕

AUi → F1 → 0 and
⊕

ATj →
⊕

AWi
→ F3 → 0

http://stacks.math.columbia.edu/tag/093E
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In this proof the direct sums are always finite, and we write AU = jU !OU for
U ∈ B. By Lemma 18.29.8 we may replace Wi by finite coverings {Wik → Wi}
with Wik ∈ B. Thus we may assume the map

⊕
AWi → F3 lifts to a map into F2.

Consider the kernel

K2 = Ker(
⊕

AUi ⊕
⊕

AWi
−→ F2)

By the snake lemma this kernel surjections onto K3 = Ker(
⊕
AWi

→ F3). Thus
after replacing each Tj by a finite covering with elements of B (permissible by
Lemma 18.29.1) we may assume there is a map

⊕
ATj → K2 lifting the given

map
⊕
ATj → K3. Then

⊕
AVj ⊕

⊕
ATj → K2 is surjective which finishes the

proof. �

Lemma 18.29.10. In Situation 18.29.4 assume (1), (2), and (3) hold. Let O be
a sheaf of rings. Let A ⊂ Mod(O) be the full subcategory of modules isomorphic to
a cokernel as in (18.29.6.2). If the kernel of every map of O-modules of the form⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi

with Ui and Vj in B, is in A, then A is weak Serre subcategory of Mod(O).

Proof. We will use the criterion of Homology, Lemma 12.9.3. By the results of
Lemmas 18.29.7 and 18.29.9 it suffices to see that the kernel of a map F → G
between objects of A is in A. To prove this choose presentations⊕

AVj →
⊕

AUi → F → 0 and
⊕

ATj →
⊕

AWi → G → 0

In this proof the direct sums are always finite, and we write AU = jU !OU for U ∈ B.
Using Lemmas 18.29.1 and 18.29.8 and arguing as in the proof of Lemma 18.29.9
we may assume that the map F → G lifts to a map of presentations⊕

AVj
//

��

⊕
AUi

//

��

F //

��

0

⊕
ATj //⊕AWi

// G // 0

Then we see that

Ker(F → G) = Coker
(⊕

AVj → Ker
(⊕

ATj ⊕
⊕

AUi →
⊕

AWi

))
and the lemma follows from the assumption and Lemma 18.29.7. �

18.30. Flat morphisms

Definition 18.30.1. Let (f, f ]) : (Sh(C),O) −→ (Sh(C′),O′) be a morphism of
ringed topoi. We say (f, f ]) is flat if the ring map f ] : f−1O′ → O is flat. We say
a morphism of ringed sites is flat if the associated morphism of ringed topoi is flat.

Lemma 18.30.2. Let f : Sh(C)→ Sh(C′) be a morphism of ringed topoi. Then

f−1 : Ab(C′) −→ Ab(C), F 7−→ f−1F
is exact. If (f, f ]) : (Sh(C),O) → (Sh(C′),O′) is a flat morphism of ringed topoi
then

f∗ : Mod(O′) −→ Mod(O), F 7−→ f∗F
is exact.

http://stacks.math.columbia.edu/tag/093H
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Proof. Given an abelian sheaf G on C′ the underlying sheaf of sets of f−1G is the
same as f−1 of the underlying sheaf of sets of G, see Sites, Section 7.43. Hence
the exactness of f−1 for sheaves of sets (required in the definition of a morphism
of topoi, see Sites, Definition 7.16.1) implies the exactness of f−1 as a functor on
abelian sheaves.

To see the statement on modules recall that f∗F is defined as the tensor product
f−1F ⊗f−1O′,f] O. Hence f∗ is a composition of functors both of which are exact.

�

Definition 18.30.3. Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed
topoi. Let F be a sheaf of O-modules. We say that F is flat over (Sh(D),O′) if F
is flat as an f−1O′-module.

This is compatible with the notion as defined for morphisms of ringed spaces, see
Modules, Definition 17.17.3 and the discussion following.

18.31. Invertible modules

Here is the definition.

Definition 18.31.1. Let (C,O) be a ringed site.

(1) A finite locally free O-module F is said to have rank r if for every object
U of C there exists a covering {Ui → U} of U such that F|Ui is isomorphic
to O⊕rUi as an OUi-module.

(2) An invertible O-module is a finite locally free O-module of rank 1.
(3) The sheaf O∗ is the subsheaf of O defined by the rule

U 7−→ O∗(U) = {f ∈ O(U) | ∃g ∈ O(U) such that fg = 1}

It is a sheaf of abelian groups with multiplication as the group law.

Lemma 18.31.2. Let (C,O) be a ringed space.

(1) If L, N are invertible O-modules, then so is L ⊗O N .
(2) If L is an invertible O-modules, then so is L⊗−1 = HomO(L,O).
(3) If L is an invertible O-module, then the evaluation map L⊗O L⊗−1 → O

is an isomorphism.

Proof. Omitted. �

Lemma 18.31.3. Let (C,O) be a ringed space. There exists a set of invertible
modules {Li}i∈I such that each invertible module on (C,O) is isomorphic to exactly
one of the Li.

Proof. Omitted, but see Sheaves of Modules, Lemma 17.21.5. �

This lemma says roughly speaking that the collection of isomorphism classes of
invertible sheaves forms a set. Lemma 18.31.2 says that tensor product defines the
structure of an abelian group on this set.

Definition 18.31.4. Let (C,O) be a ringed site. The Picard group Pic(O) the
ringed site is the abelian group whose elements are isomorphism classes of invertible
O-modules, with addition corresponding to tensor product.

http://stacks.math.columbia.edu/tag/08M5
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18.32. Modules of differentials

In this section we briefly explain how to define the module of relative differentials for
a morphism of ringed topoi. We suggest the reader take a look at the corresponding
section in the chapter on commutative algebra (Algebra, Section 10.127).

Definition 18.32.1. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of
sheaves of rings. Let F be an O2-module. A O1-derivation or more precisely a
ϕ-derivation into F is a map D : O2 → F which is additive, annihilates the image
of O1 → O2, and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b

for all a, b local sections of O2 (wherever they are both defined). We denote
DerO1

(O2,F) the set of ϕ-derivations into F .

This is the sheaf theoretic analogue of Algebra, Definition 18.32.1. Given a deriva-
tion D : O2 → F as in the definition the map on global sections

D : Γ(O2) −→ Γ(F)

clearly is a Γ(O1)-derivation as in the algebra definition. Note that if α : F → G is
a map of O2-modules, then there is an induced map

DerO1
(O2,F) −→ DerO1

(O2,G)

given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 18.32.2. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves
of rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1
(O2,F)

is representable.

Proof. This is proved in exactly the same way as the analogous statement in
algebra. During this proof, for any sheaf of sets F on C, let us denote O2[F ] the
sheafification of the presheaf U 7→ O2(U)[F(U)] where this denotes the free O1(U)-
module on the set F(U). For s ∈ F(U) we denote [s] the corresponding section of
O2[F ] over U . If F is a sheaf of O2-modules, then there is a canonical map

c : O2[F ] −→ F
which on the presheaf level is given by the rule

∑
fs[s] 7→

∑
fss. We will employ

the short hand [s] 7→ s to describe this map and similarly for other maps below.
Consider the map of O2-modules

(18.32.2.1)

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1] −→ O2[O2]
[(a, b)]⊕ [(f, g)]⊕ [h] 7−→ [a+ b]− [a]− [b]+

[fg]− g[f ]− f [g]+
[ϕ(h)]

with short hand notation as above. Set ΩO2/O1
equal to the cokernel of this map.

Then it is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1
. By construction d is a

O1-derivation. Next, let F be a sheaf of O2-modules and let D : O2 → F be a
O1-derivation. Then we can consider the O2-linear map O2[O2] → F which sends

http://stacks.math.columbia.edu/tag/04BK
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[g] to D(g). It follows from the definition of a derivation that this map annihilates
sections in the image of the map (18.32.2.1) and hence defines a map

αD : ΩO2/O1
−→ F

Since it is clear that D = αD ◦ d the lemma is proved. �

Definition 18.32.3. Let C be a site. Let ϕ : O1 → O2 be a homomorphism
of sheaves of rings. The module of differentials of the ring map ϕ is the object
representing the functor F 7→ DerO1(O2,F) which exists by Lemma 18.32.2. It is
denoted ΩO2/O1

, and the universal ϕ-derivation is denoted d : O2 → ΩO2/O1
.

Since this module and the derivation form the universal object representing a func-
tor, this notion is clearly intrinsic (i.e., does not depend on the choice of the site
underlying the ringed topos, see Section 18.18). Note that ΩO2/O1

is the cokernel
of the map (18.32.2.1) of O2-modules. Moreover the map d is described by the rule
that df is the image of the local section [f ].

Lemma 18.32.4. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of
presheaves of rings. Then ΩO#

2 /O
#
1

is the sheaf associated to the presheaf U 7→
ΩO2(U)/O1(U).

Proof. Consider the map (18.32.2.1). There is a similar map of presheaves whose
value on U ∈ Ob(C) is

O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]

The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of
the module of differentials in Algebra, Definition 10.127.2. On the other hand,
the sheaves in (18.32.2.1) are the sheafifications of the presheaves above. Thus the
result follows as sheafification is exact. �

Lemma 18.32.5. Let f : Sh(D)→ Sh(C) be a morphism of topoi. Let ϕ : O1 → O2

be a homomorphism of sheaves of rings on C. Then there is a canonical identifica-
tion f−1ΩO2/O1

= Ωf−1O2/f−1O1
compatible with universal derivations.

Proof. This holds because the sheaf ΩO2/O1
is the cokernel of the map (18.32.2.1)

and a similar statement holds for Ωf−1O2/f−1O1
, because the functor f−1 is exact,

and because f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 ×O2]) = f−1O2[f−1O2 ×
f−1O2], and f−1(O2[O1]) = f−1O2[f−1O1]. �

Lemma 18.32.6. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves
of rings. For any object U of C there is a canonical isomorphism

ΩO2/O1
|U = Ω(O2|U )/(O1|U )

compatible with universal derivations.

Proof. This is a special case of Lemma 18.32.5. �

Lemma 18.32.7. Let C be a site. Let

O2 ϕ
// O′2

O1
//

OO

O′1

OO

http://stacks.math.columbia.edu/tag/04BN
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be a commutative diagram of sheaves of rings on C. The map O2 → O′2 composed
with the map d : O′2 → ΩO′2/O′1 is a O1-derivation. Hence we obtain a canonical
map of O2-modules ΩO2/O1

→ ΩO′2/O′1 . It is uniquely characterized by the property
that d(f) mapsto d(ϕ(f)) for any local section f of O2. In this way Ω−/− becomes
a functor on the category of arrows of sheaves of rings.

Proof. This lemma proves itself. �

Lemma 18.32.8. In Lemma 18.32.7 suppose that O2 → O′2 is surjective with
kernel I ⊂ O2 and assume that O1 = O′1. Then there is a canonical exact sequence
of O′2-modules

I/I2 −→ ΩO2/O1
⊗O2

O′2 −→ ΩO′2/O1
−→ 0

The leftmost map is characterized by the rule that a local section f of I maps to
df ⊗ 1.

Proof. For a local section f of I denote f the image of f in I/I2. To show that
the map f 7→ df ⊗ 1 is well defined we just have to check that df1f2 ⊗ 1 = 0 if
f1, f2 are local sections of I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 + f2df1) ⊗ 1 = df2 ⊗ f1 + df2 ⊗ f1 = 0. A similar computation show this
map is O′2 = O2/I-linear. The map on the right is the one from Lemma 18.32.7.

To see that the sequence is exact, we argue as follows. Let O′′2 ⊂ O′2 be the presheaf
of O1-algebras whose value on U is the image of O2(U) → O′2(U). By Algebra,
Lemma 10.127.9 the sequences

I(U)/I(U)2 −→ ΩO2(U)/O1(U) ⊗O2(U) O′′2 (U) −→ ΩO′′2 (U)/O1(U) −→ 0

are exact for all objects U of C. Since sheafification is exact this gives an ex-
act sequence of sheaves of (O′2)#-modules. By Lemma 18.32.4 and the fact that
(O′′2 )# = O′2 we conclude. �

Here is a particular situation where derivations come up naturally.

Lemma 18.32.9. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves
of rings. Consider a short exact sequence

0→ F → A→ O2 → 0

Here A is a sheaf of O1-algebras, π : A → O2 is a surjection of sheaves of O1-
algebras, and F = Ker(π) is its kernel. Assume F an ideal sheaf with square zero
in A. So F has a natural structure of an O2-module. A section s : O2 → A of π
is a O1-algebra map such that π ◦ s = id. Given any section s : O2 → F of π and
any ϕ-derivation D : O1 → F the map

s+D : O1 → A

is a section of π and every section s′ is of the form s+D for a unique ϕ-derivation
D.

Proof. Recall that the O2-module structure on F is given by hτ = h̃τ (multiplica-

tion in A) where h is a local section of O2, and h̃ is a local lift of h to a local section

of A, and τ is a local section of F . In particular, given s, we may use h̃ = s(h). To

http://stacks.math.columbia.edu/tag/08TS
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verify that s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)

= s(a)s(b) + aD(b) +D(a)b

= s(a)s(b) + s(a)D(b) +D(a)s(b)

= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s + D is a O1-algebra map
because D is an O1-derivation. Conversely, given s′ we set D = s′ − s. Details
omitted. �

Definition 18.32.10. Let X = (Sh(C),O) and Y = (Sh(C′),O′) be ringed topoi.
Let (f, f ]) : X → Y be a morphism of ringed topoi. In this situation

(1) for a sheaf F of O-modules a Y -derivation D : O → F is just a f ]-
derivation, and

(2) the sheaf of differentials ΩX/Y of X over Y is the module of differentials

of f ] : f−1O′ → O, see Definition 18.32.3.

Thus ΩX/Y comes equipped with a universal Y -derivation dX/Y : O −→ ΩX/Y .
We sometimes write ΩX/Y = Ωf .

Recall that f ] : f−1O′ → O so that this definition makes sense.

Lemma 18.32.11. Let X = (Sh(CX),OX), Y = (Sh(CY ),OY ), X ′ = (Sh(CX′),OX′),
and Y ′ = (Sh(CY ′),OY ′) be ringed topoi. Let

X ′

��

f
// X

��
Y ′ // Y

be a commutative diagram of morphisms of ringed topoi. The map f ] : OX →
f∗OX′ composed with the map f∗dX′/Y ′ : f∗OX′ → f∗ΩX′/Y ′ is a Y -derivation.
Hence we obtain a canonical map of OX-modules ΩX/Y → f∗ΩX′/Y ′ , and by ad-
jointness of f∗ and f∗ a canonical OX′-module homomorphism

cf : f∗ΩX/Y −→ ΩX′/Y ′ .

It is uniquely characterized by the property that f∗dX/Y (t) mapsto dX′/Y ′(f
∗t) for

any local section t of OX .

Proof. This is clear except for the last assertion. Let us explain the meaning of
this. Let U ∈ Ob(CX) and let t ∈ OX(U). This is what it means for t to be a local

section of OX . Now, we may think of t as a map of sheaves of sets t : h#
U → OX .

Then f−1t : f−1h#
U → f−1OX . By f∗t we mean the composition

f−1h#
U

f−1t //

f∗t

**
f−1OX

f] // OX′

Note that dX/Y (t) ∈ ΩX/Y (U). Hence we may think of dX/Y (t) as a map dX/Y (t) :

h#
U → ΩX/Y . Then f−1dX/Y (t) : f−1h#

U → f−1ΩX/Y . By f∗dX/Y (t) we mean the

http://stacks.math.columbia.edu/tag/04BQ
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composition

f−1h#
U

f−1dX/Y (t)
//

f∗dX/Y (t)

++
f−1ΩX/Y

1⊗id // f∗ΩX/Y

OK, and now the statement of the lemma means that we have

cf ◦ f∗t = f∗dX/Y (t)

as maps from f−1h#
U to ΩX′/Y ′ . We omit the verification that this property holds

for cf as defined in the lemma. (Hint: The first map c′f : ΩX/Y → f∗ΩX′/Y ′ satisfies

c′f (dX/Y (t)) = f∗dX′/Y ′(f
](t)) as sections of f∗ΩX′/Y ′ over U , and you have to turn

this into the equality above by using adjunction.) The reason that this uniquely
characterizes cf is that the images of f∗dX/Y (t) generate the OX′ -module f∗ΩX/Y
simply because the local sections dX/Y (t) generate the OX -module ΩX/Y . �

18.33. Finite order differential operators

In this section we introduce differential operators of finite order. We suggest the
reader take a look at the corresponding section in the chapter on commutative
algebra (Algebra, Section 10.128).

Definition 18.33.1. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of
sheaves of rings. Let k ≥ 0 be an integer. Let F , G be sheaves of O2-modules. A
differential operator D : F → G of order k is an is an O1-linear map such that for
all local sections g of O2 the map s 7→ D(gs) − gD(s) is a differential operator of
order k − 1. For the base case k = 0 we define a differential operator of oder 0 to
be an O2-linear map.

If D : F → G is a differential operator of order k, then for all local sections g of
O2 the map gD is a differential operator of order k. The sum of two differential
operators of order k is another. Hence the set of all these

Diffk(F ,G) = DiffkO2/O1
(F ,G)

is a Γ(C,O2)-module. We have

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

The rule which maps U ∈ Ob(C) to the module of differential operators D : F|U →
G|U of order k is a sheaf of O2-modules on the site C. Thus we obtain a sheaf of
differential operators (if we ever need this we will add a definition here).

Lemma 18.33.2. Let C be a site. Let O1 → O2 be a map of sheaves of rings. Let
E ,F ,G be sheaves of O2-modules. If D : E → F and D′ : F → G are differential
operators of order k and k′, then D′ ◦D is a differential operator of order k + k′.

Proof. Let g be a local section of O2. Then the map which sends a local section
x of E to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. �

http://stacks.math.columbia.edu/tag/09CR
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Lemma 18.33.3. Let C be a site. Let O1 → O2 be a map of sheaves of rings.
Let F be a sheaf of O2-modules. Let k ≥ 0. There exists a sheaf of O2-modules
PkO2/O1

(F) and a canonical isomorphism

DiffkO2/O1
(F ,G) = HomO2

(PkO2/O1
(F),G)

functorial in the O2-module G.

Proof. The existence follows from general category theoretic arguments (insert
future reference here), but we will also give a direct construction as this construction
will be useful in the future proofs. We will freely use the notation introduced in
the proof of Lemma 18.32.2. Given any differential operator D : F → G we obtain
an O2-linear map LD : O2[F ]→ G sending [m] to D(m). If D has order 0 then LD
annihilates the local sections

[m+m′]− [m]− [m′], g0[m]− [g0m]

where g0 is a local section of O2 and m,m′ are local sections of F . If D has order
1, then LD annihilates the local sections

[m+m′ − [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]

where f is a local section of O1, g0, g1 are local sections of O2, and m,m′ are local
sections of F . If D has order k, then LD annihilates the local sections [m+m′]−
[m]− [m′], f [m]− [fm], and the local sections

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : O2[F ]→ G is an O2-linear map annihilating all the local sections
listed in the previous sentence, then m 7→ L([m]) is a differential operator of order
k. Thus we see that PkO2/O1

(F) is the quotient of O2[F ] by the O2-submodule

generated by these local sections. �

Definition 18.33.4. Let C be a site. Let O1 → O2 be a map of sheaves of rings.
Let F be a sheaf of O2-modules. The module PkO2/O1

(F) constructed in Lemma

18.33.3 is called the module of principal parts of order k of F .

Note that the inclusions

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 4.3.5) to surjections

. . .→ P2
O2/O1

(F)→ P1
O2/O1

(F)→ P0
O2/O1

(F) = F

Lemma 18.33.5. Let C be a site. Let O1 → O2 be a homomorphism of presheaves
of rings. Let F be a presheaf of O2-modules. Then Pk

O#
2 /O

#
1

(F#) is the sheaf

associated to the presheaf U 7→ P kO2(U)/O1(U)(F(U)).

Proof. This can be proved in exactly the same way as is done for the sheaf of
differentials in Lemma 18.32.4. Perhaps a more pleasing approach is to use the
universal property of Lemma 18.33.3 directly to see the equality. We omit the
details. �

http://stacks.math.columbia.edu/tag/09CT
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Lemma 18.33.6. Let C be a site. Let O1 → O2 be a homomorphism of presheaves
of rings. Let F be a presheaf of O2-modules. There is a canonical short exact
sequence

0→ ΩO2/O1
⊗O2 F → P1

O2/O1
(F)→ F → 0

functorial in F called the sequence of principal parts.

Proof. Follows from the commutative algebra version (Algebra, Lemma 10.128.6)
and Lemmas 18.32.4 and 18.33.5. �

Remark 18.33.7. Let C be a site. Suppose given a commutative diagram of
sheaves of rings

B // B′

A

OO

// A′

OO

a B-module F , a B′-module F ′, and a B-linear map F → F ′. Then we get a
compatible system of module maps

. . . // P2
B′/A′(F

′) // P1
B′/A′(F

′) // P0
B′/A′(F

′)

. . . // P2
B/A(F) //

OO

P1
B/A(F) //

OO

P0
B/A(F)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules PkB/A(M) in terms

of (local) generators and relations in the proof of Lemma 18.33.3 but it can also be
seen directly from the universal property of these modules. Moreover, these maps
are compatible with the short exact sequences of Lemma 18.33.6.

18.34. The naive cotangent complex

This section is the analogue of Algebra, Section 10.129 and Modules, Section 17.24.
We advise the reader to read those sections first.

Let C be a site. Let A → B be a homomorphism of sheaves of rings on C. In this
section, for any sheaf of sets E on C we denote A[E ] the sheafification of the presheaf
U 7→ A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra over A(U)
whose variables correspond to the elements of E(U). We denote [e] ∈ A(U)[E(U)]
the variable corresponding to e ∈ E(U). There is a canonical surjection of A-
algebras

(18.34.0.1) A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated by
the local sections [b][b′]− [bb′] and [a]− a. According to Lemma 18.32.8 there is a
canonical map

(18.34.0.2) I/I2 −→ ΩA[B]/A ⊗A[B] B

whose cokernel is canonically isomorphic to ΩB/A.

http://stacks.math.columbia.edu/tag/09CW
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Definition 18.34.1. Let C be a site. Let A → B be a homomorphism of sheaves
of rings on C. The naive cotangent complex NLB/A is the chain complex (18.34.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in (homological) degree 1 and ΩA[B]/A ⊗A[B] B placed in degree
0.

This construction satisfies a functoriality similar to that discussed in Lemma 18.32.7
for modules of differentials. Namely, given a commutative diagram

(18.34.1.1)

B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes

NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical map A[B]→
A′[B′] which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2

and a map between modules of differentials, which together give the desired map
between the naive cotangent complexes.

We can choose a different presentation of B as a quotient of a polynomial algebra
over A and still obtain the same object of D(B). To explain this, suppose that E
is a sheaves of sets on C and α : E → B a map of sheaves of sets. Then we obtain
an A-algebra homomorphism A[E ] → B. Assume this map is surjective, and let
J ⊂ A[E ] be the kernel. Set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
Here is the result.

Lemma 18.34.2. In the situation above there is a canonical isomorphism NL(α) =
NLB/A in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) =
NL(α2) in D(B). To see this set E = E1 q E2 and α = α1 q α2 : E → B. Set
Ji = Ker(A[Ei] → B) and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ]
which send Ji into J . Thus we obtain canonical maps of complexes

NL(αi) −→ NL(α)

and it suffices to show these maps are quasi-isomorphism. To see this we argue
as follows. First, observe that H0(NL(αi)) = ΩB/A and H0(NL(α)) = ΩB/A by
Lemma 18.32.8 hence the map is an isomorphism on 0th homology sheaves. Simi-
larly, we claim that H1(NL(αi)) and H1(NL(α)) are the sheaves associated to the
presheaf U 7→ H1(LB(U)/A(U)). If the claim holds, then the proof is finished.

Proof of the claim. Let α : E → B be as above. Let B′ ⊂ B be the subpresheaf
of A-algebras whose value on U is the image of A(U)[E(U)] → B(U). Let I ′ be
the presheaf whose value on U is the kernel of A(U)[E(U)]→ B(U). Then I is the

http://stacks.math.columbia.edu/tag/08TW
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sheafification of I ′ and B is the sheafification of B′. Similarly, H1(NL(α)) is the
sheafification of the presheaf

U 7−→ Ker(I ′(U)/I ′(U)2 → ΩA(U)[E(U)]/A(U) ⊗A(U)[E(U)] B′(U))

by Lemma 18.32.4. By Algebra, Lemma 10.129.2 we conclude H1(NL(α)) is the
sheaf associated to the presheaf U 7→ H1(LB′(U)/A(U)). Thus we have to show that
the maps H1(LB′(U)/A(U))→ H1(LB(U)/A(U)) induce an isomorphism H′1 → H1 of
sheafifications.

Injectivity of H′1 → H1. Let f ∈ H1(LB′(U)/A(U)) map to zero in H1(U). To show:
f maps to zero in H′1(U). The assumption means there is a covering {Ui → U}
such that f maps to zero in H1(LB(Ui)/A(Ui)) for all i. Replace U by Ui to get to
the point where f maps to zero in H1(LB(U)/A(U)). By Algebra, Lemma 10.129.9
we can find a finitely generated subalgebra B′(U) ⊂ B ⊂ B(U) such that f maps to
zero in H1(LB/A(U)). Since B = (B′)# we can find a covering {Ui → U} such that
B → B(Ui) factors through B′(Ui). Hence f maps to zero in H1(LB′(Ui)/A(Ui)) as
desired.

The surjectivity of H′1 → H1 is proved in exactly the same way. �

Lemma 18.34.3. Let f : Sh(C) → Sh(D) be morphism of topoi. Let A → B be a
homomorphism of sheaves of rings on D. Then f−1NLB/A = NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 18.32.5. �

The cotangent complex of a morphism of ringed topoi is defined in terms of the
cotangent complex we defined above.

Definition 18.34.4. Let X = (Sh(C),O) and Y = (Sh(C′),O′) be ringed topoi.
Let (f, f ]) : X → Y be a morphism of ringed topoi. The naive cotangent com-
plex NLf = NLX/Y of the given morphism of ringed topoi is NLOX/f−1OY . We
sometimes write NLX/Y = NLOX/OY .

18.35. Stalks of modules

We have to be a bit careful when taking stalks at points, since the colimit defining
a stalk (see Sites, Equation 7.31.1.1) may not be filtered3. On the other hand, by
definition of a point of a site the stalk functor is exact and commutes with arbitrary
colimits. In other words, it behaves exactly as if the colimit were filtered.

Lemma 18.35.1. Let C be a site. Let p be a point of C.

(1) We have (F#)p = Fp for any presheaf of sets on C.
(2) The stalk functor Sh(C)→ Sets, F 7→ Fp is exact (see Categories, Defini-

tion 4.23.1) and commutes with arbitrary colimits.
(3) The stalk functor PSh(C)→ Sets, F 7→ Fp is exact (see Categories, Defi-

nition 4.23.1) and commutes with arbitrary colimits.

Proof. By Sites, Lemma 7.31.5 we have (1). By Sites, Lemmas 7.31.4 we see that
PSh(C) → Sets, F 7→ Fp is a left adjoint, and by Sites, Lemma 7.31.5 we see the
same thing for PSh(C) → Sets, F 7→ Fp. Hence the stalk functor commutes with
arbitrary colimits (see Categories, Lemma 4.24.4). It follows from the definition of

3Of course in almost any naturally occurring case the colimit is filtered and some of the
discussion in this section may be simplified.
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a point of a site, see Sites, Definition 7.31.2 that Sh(C) → Sets, F 7→ Fp is exact.
Since sheafification is exact (Sites, Lemma 7.10.14) it follows that PSh(C)→ Sets,
F 7→ Fp is exact. �

In particular, since the stalk functor F 7→ Fp on presheaves commutes with all
finite limits and colimits we may apply the reasoning of the proof of Sites, Proposi-
tion 7.43.3. The result of such an argument is that if F is a (pre)sheaf of algebraic
structures listed in Sites, Proposition 7.43.3 then the stalk Fp is naturally an alge-
braic structure of the same kind. Let us explain this in detail when F is an abelian
presheaf. In this case the addition map + : F × F → F induces a map

+ : Fp ×Fp = (F × F)p −→ Fp
where the equal sign uses that stalk functor on presheaves of sets commutes with
finite limits. This defines a group structure on the stalk Fp. In this way we obtain
our stalk functor

PAb(C) −→ Ab, F 7−→ Fp
By construction the underlying set of Fp is the stalk of the underlying presheaf of
sets. This also defines our stalk functor for sheaves of abelian groups by precom-
posing with the inclusion Ab(C) ⊂ PAb(C).

Lemma 18.35.2. Let C be a site. Let p be a point of C.

(1) The functor Ab(C)→ Ab, F 7→ Fp is exact.
(2) The stalk functor PAb(C)→ Ab, F 7→ Fp is exact.
(3) For F ∈ Ob(PAb(C)) we have Fp = F#

p .

Proof. This is formal from the results of Lemma 18.35.1 and the construction of
the stalk functor above. �

Next, we turn to the case of sheaves of modules. Let (C,O) be a ringed site. (It
suffices for the discussion that O be a presheaf of rings.) Let F be a presheaf of
O-modules. Let p be a point of C. In this case we get a map

· : Op ×Op = (O ×O)p −→ Op
which is the stalk of the multiplication map and

· : Op ×Fp = (O ×F)p −→ Fp
which is the stalk of the multiplication map. We omit the verification that this
defines a ring structure on Op and an Op-module structure on Fp. In this way we
obtain a functor

PMod(O) −→ Mod(Op), F 7−→ Fp
By construction the underlying set of Fp is the stalk of the underlying presheaf of
sets. This also defines our stalk functor for sheaves of O-modules by precomposing
with the inclusion Mod(O) ⊂ PMod(O).

Lemma 18.35.3. Let (C,O) be a ringed site. Let p be a point of C.

(1) The functor Mod(O)→ Mod(Op), F 7→ Fp is exact.
(2) The stalk functor PMod(O)→ Mod(Op), F 7→ Fp is exact.
(3) For F ∈ Ob(PMod(O)) we have Fp = F#

p .

Proof. This is formal from the results of Lemma 18.35.2, the construction of the
stalk functor above, and Lemma 18.14.1. �
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Lemma 18.35.4. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Let p be a point of C or Sh(C) and set q = f ◦ p. Then

(f∗F)p = Fq ⊗OD,q OC,p
for any OD-module F .

Proof. We have

f∗F = f−1F ⊗f−1OD OC
by definition. Since taking stalks at p (i.e., applying p−1) commutes with ⊗ by
Lemma 18.26.1 we win by the relation between the stalk of pullbacks at p and
stalks at q explained in Sites, Lemma 7.33.1 or Sites, Lemma 7.33.2. �

18.36. Skyscraper sheaves

Let p be a point of a site C or a topos Sh(C). In this section we study the exactness
properties of the functor which associates to an abelian group A the skyscraper
sheaf p∗A. First, recall that p∗ : Sets→ Sh(C) has a lot of exactness properties, see
Sites, Lemmas 7.31.9 and 7.31.10.

Lemma 18.36.1. Let C be a site. Let p be a point of C or of its associated topos.

(1) The functor p∗ : Ab→ Ab(C), A 7→ p∗A is exact.
(2) There is a functorial direct sum decomposition

p−1p∗A = A⊕ I(A)

for A ∈ Ob(Ab).

Proof. By Sites, Lemma 7.31.9 there are functorial maps A→ p−1p∗A→ A whose
composition equals idA. Hence a functorial direct sum decomposition as in (2) with
I(A) the kernel of the adjunction map p−1p∗A → A. The functor p∗ is left exact
by Lemma 18.14.3. The functor p∗ transforms surjections into surjections by Sites,
Lemma 7.31.10. Hence (1) holds. �

To do the same thing for sheaves of modules, suppose given a point p of a ringed
topos (Sh(C),O). Recall that p−1 is just the stalk functor. Hence we can think of
p as a morphism of ringed topoi

(p, idOp) : (Sh(pt),Op) −→ (Sh(C),O).

Thus we get a pullback functor p∗ : Mod(O) → Mod(Op) which equals the stalk
functor, and which we discussed in Lemma 18.35.3. In this section we consider the
functor p∗ : Mod(Op)→ Mod(O).

Lemma 18.36.2. Let (Sh(C),O) be a ringed topos. Let p be a point of the topos
Sh(C).

(1) The functor p∗ : Mod(Op)→ Mod(O), M 7→ p∗M is exact.
(2) There is a functorial direct sum decomposition of Op-modules

p−1p∗M = M ⊕ I(M)

for M a Op-module.

Proof. This follows immediately from the corresponding result for abelian sheaves
in Lemma 18.36.1. �
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Example 18.36.3. Let G be a group. Consider the site TG and its point p,
see Sites, Example 7.32.6. Let R be a ring with a G-action which corresponds
to a sheaf of rings O on TG. Then Op = R where we forget the G-action. In
this case p−1p∗M = Map(G,M) and I(M) = {f : G → M | f(1G) = 0} and
M → Map(G,M) assigns to m ∈M the constant function with value m.

18.37. Localization and points

Lemma 18.37.1. Let (C,O) be a ringed site. Let p be a point of C. Let U be an
object of C. For G in Mod(OU ) we have

(jU !G)p =
⊕

q
Gq

where the coproduct is over the points q of C/U lying over p, see Sites, Lemma
7.34.2.

Proof. We use the description of jU !G as the sheaf associated to the presheaf
V 7→

⊕
ϕ∈MorC(V,U) G(V/ϕU) of Lemma 18.19.2. The stalk of jU !G at p is equal

to the stalk of this presheaf, see Lemma 18.35.3. Let u : C → Sets be the functor
corresponding to p (see Sites, Section 7.31). Hence we see that

(jU !G)p = colim(V,y)

⊕
ϕ:V→U

G(V/ϕU)

where the colimit is taken in the category of abelian groups. To a quadruple
(V, y, ϕ, s) occurring in this colimit, we can assign x = u(ϕ)(y) ∈ u(U). Hence
we obtain

(jU !G)p =
⊕

x∈u(U)
colim(ϕ:V→U,y), u(ϕ)(y)=x G(V/ϕU).

This is equal to the expression of the lemma by the description of the points q lying
over x in Sites, Lemma 7.34.2. �

Remark 18.37.2. Warning: The result of Lemma 18.37.1 has no analogue for jU,∗.

18.38. Pullbacks of flat modules

The pullback of a flat module along a morphism of ringed topoi is flat. This is
quite tricky to prove, except when there are enough points. Here we prove it only
in this case and we will add the general case if we ever need it.

Lemma 18.38.1. Let (C,O) be a ringed site. Let p be a point of C. If F is a flat
O-module, then Fp is a flat Op-module.

Proof. Let M be an Op-module. Then

(p∗M ⊗O F)p = p−1(p∗M ⊗O F)

= p−1p∗M ⊗Op Fp
= M ⊗Op Fp ⊕ I(M)⊗Op Fp

where we have used the description of the stalk functor as a pullback, Lemma
18.26.1, and Lemma 18.36.2. Since p∗ is exact by Lemma 18.36.2, it is clear that if
F is flat, then also the functor M 7→M ⊗Op Fp is exact, i.e., Fp is flat. �

Lemma 18.38.2. Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let
{pi}i∈I be a conservative family of points of C. Then F is flat if and only if Fpi is
a flat Opi-module for all i ∈ I.
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Proof. By Lemma 18.38.1 we see one of the implications. For the converse, use
that (F ⊗O G)p = Fp ⊗Op Gp by Lemma 18.26.1 (as taking stalks at p is given by

p−1) and Lemma 18.14.4. �

Lemma 18.38.3. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Assume C has enough points4. Then f∗F is a flat OC-module
whenever F is a flat OD-module.

Proof. Let p be a point of C and set q = f ◦ p. Then

(f∗F)p = Fq ⊗OD,q OC,p
by Lemma 18.35.4. Hence if F is flat, then Fq is a flat OD,q-module by Lemma
18.38.1 and hence by Algebra, Lemma 10.38.6 we see that (f∗F)p is a flat OC,p-
module. This implies that f∗F is a flat OC-module by Lemma 18.38.2. �

18.39. Locally ringed topoi

A reference for this section is [AGV71, Exposé IV, Exercice 13.9].

Lemma 18.39.1. Let (C,O) be a ringed site. The following are equivalent

(1) For every object U of C and f ∈ O(U) there exists a covering {Uj → U}
such that for each j either f |Uj is invertible or (1− f)|Uj is invertible.

(2) For every object U of C and f1, . . . , fn ∈ O(U) which generate the unit
ideal in O(U) there exists a covering {Uj → U} such that for each j there
exists an i such that fi|Uj is invertible.

(3) The map of sheaves of sets

(O ×O)q (O ×O) −→ O ×O
which maps (f, a) in the first component to (f, af) and (f, b) in the second
component to (f, b(1− f)) is surjective.

Proof. It is clear that (2) implies (1). To show that (1) implies (2) we argue by
induction on n. The first case is n = 2 (since n = 1 is trivial). In this case we have
a1f1 + a2f2 = 1 for some a1, a2 ∈ O(U). By assumption we can find a covering
{Uj → U} such that for each j either a1f1|Uj is invertible or a2f2|Uj is invertible.
Hence either f1|Uj is invertible or f2|Uj is invertible as desired. For n > 2 we have
a1f1 + . . . + anfn = 1 for some a1, . . . , an ∈ O(U). By the case n = 2 we see that
we have some covering {Uj → U}j∈J such that for each j either fn|Uj is invertible
or a1f1 + . . . + an−1fn−1|Uj is invertible. Say the first case happens for j ∈ Jn.
Set J ′ = J \ Jn. By induction hypothesis, for each j ∈ J ′ we can find a covering
{Ujk → Uj}k∈Kj such that for each k ∈ Kj there exists an i ∈ {1, . . . , n − 1}
such that fi|Ujk is invertible. By the axioms of a site the family of morphisms
{Uj → U}j∈Jn ∪ {Ujk → U}j∈J′,k∈Kj is a covering which has the desired property.

Assume (1). To see that the map in (3) is surjective, let (f, c) be a section of O×O
over U . By assumption there exists a covering {Uj → U} such that for each j
either f or 1 − f restricts to an invertible section. In the first case we can take
a = c|Uj (f |Uj )−1, and in the second case we can take b = c|Uj (1− f |Uj )−1. Hence
(f, c) is in the image of the map on each of the members. Conversely, assume (3)
holds. For any U and f ∈ O(U) there exists a covering {Uj → U} of U such that
the section (f, 1)|Uj is in the image of the map in (3) on sections over Uj . This

4This assumption is not necessary, see introduction to this section.

http://stacks.math.columbia.edu/tag/05VD
http://stacks.math.columbia.edu/tag/04ES


1408 18. MODULES ON SITES

means precisely that either f or 1− f restricts to an invertible section over Uj , and
we see that (1) holds. �

Lemma 18.39.2. Let (C,O) be a ringed site. Consider the following conditions

(1) For every object U of C and f ∈ O(U) there exists a covering {Uj → U}
such that for each j either f |Uj is invertible or (1− f)|Uj is invertible.

(2) For every point p of C the stalk Op is either the zero ring or a local ring.

We always have (1) ⇒ (2). If C has enough points then (1) and (2) are equivalent.

Proof. Assume (1). Let p be a point of C given by a functor u : C → Sets. Let
fp ∈ Op. Since Op is computed by Sites, Equation (7.31.1.1) we may represent fp
by a triple (U, x, f) where x ∈ U(U) and f ∈ O(U). By assumption there exists a
covering {Ui → U} such that for each i either f or 1−f is invertible on Ui. Because
u defines a point of the site we see that for some i there exists an xi ∈ u(Ui) which
maps to x ∈ u(U). By the discussion surrounding Sites, Equation (7.31.1.1) we see
that (U, x, f) and (Ui, xi, f |Ui) define the same element of Op. Hence we conclude
that either fp or 1− fp is invertible. Thus Op is a ring such that for every element
a either a or 1− a is invertible. This means that Op is either zero or a local ring,
see Algebra, Lemma 10.17.2.

Assume (2) and assume that C has enough points. Consider the map of sheaves of
sets

O ×O qO ×O −→ O ×O
of Lemma 18.39.1 part (3). For any local ring R the corresponding map (R×R)q
(R×R)→ R×R is surjective, see for example Algebra, Lemma 10.17.2. Since each
Op is a local ring or zero the map is surjective on stalks. Hence, by our assumption
that C has enough points it is surjective and we win. �

In Modules, Section 17.2 we pointed out how in a ringed space (X,OX) there can
be an open subspace over which the structure sheaf is zero. To prevent this we can
require the sections 1 and 0 to have different values in every stalk of the space X.
In the setting of ringed topoi and ringed sites the condition is that

(18.39.2.1) ∅# −→ Equalizer(0, 1 : ∗ −→ O)

is an isomorphism of sheaves. Here ∗ is the singleton sheaf, resp. ∅# is the “empty
sheaf”, i.e., the final, resp. initial object in the category of sheaves, see Sites, Ex-
ample 7.10.2, resp. Section 7.41. In other words, the condition is that whenever
U ∈ Ob(C) is not sheaf theoretically empty, then 1, 0 ∈ O(U) are not equal. Let us
state the obligatory lemma.

Lemma 18.39.3. Let (C,O) be a ringed site. Consider the statements

(1) (18.39.2.1) is an isomorphism, and
(2) for every point p of C the stalk Op is not the zero ring.

We always have (1) ⇒ (2) and if C has enough points then (1) ⇔ (2).

Proof. Omitted. �

Lemmas 18.39.1, 18.39.2, and 18.39.3 motivate the following definition.

Definition 18.39.4. A ringed site (C,O) is said to be locally ringed site if (18.39.2.1)
is an isomorphism, and the equivalent properties of Lemma 18.39.1 are satisfied.

http://stacks.math.columbia.edu/tag/04ET
http://stacks.math.columbia.edu/tag/05D8
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In [AGV71, Exposé IV, Exercice 13.9] the condition that (18.39.2.1) be an isomor-
phism is missing leading to a slightly different notion of a locally ringed site and
locally ringed topos. As we are motivated by the notion of a locally ringed space
we decided to add this condition (see explanation above).

Lemma 18.39.5. Being a locally ringed site is an intrinsic property. More pre-
cisely,

(1) if f : Sh(C′)→ Sh(C) is a morphism of topoi and (C,O) is a locally ringed
site, then (C′, f−1O) is a locally ringed site, and

(2) if (f, f ]) : (Sh(C′),O′) → (Sh(C),O) is an equivalence of ringed topoi,
then (C,O) is locally ringed if and only if (C′,O′) is locally ringed.

Proof. It is clear that (2) follows from (1). To prove (1) note that as f−1 is exact
we have f−1∗ = ∗, f−1∅# = ∅#, and f−1 commutes with products, equalizers and
transforms isomorphisms and surjections into isomorphisms and surjections. Thus
f−1 transforms the isomorphism (18.39.2.1) into its analogue for f−1O and trans-
forms the surjection of Lemma 18.39.1 part (3) into the corresponding surjection
for f−1O. �

In fact Lemma 18.39.5 part (2) is the analogue of Schemes, Lemma 25.2.2. It
assures us that the following definition makes sense.

Definition 18.39.6. A ringed topos (Sh(C),O) is said to be locally ringed if the
underlying ringed site (C,O) is locally ringed.

Next, we want to work out what it means to have a morphism of locally ringed
spaces. In order to do this we have the following lemma.

Lemma 18.39.7. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Consider the following conditions

(1) The diagram of sheaves

f−1(O∗D)
f]
//

��

O∗C

��
f−1(OD)

f] // OC
is cartesian.

(2) For any point p of C, setting q = f ◦ p, the diagram

O∗D,q //

��

O∗C,p

��
OD,q // OC,p

of sets is cartesian.

We always have (1) ⇒ (2). If C has enough points then (1) and (2) are equivalent.
If (Sh(C),OC) and (Sh(D),OD) are locally ringed topoi then (2) is equivalent to

(3) For any point p of C, setting q = f ◦ p, the ring map OD,q → OC,p is a
local ring map.

In fact, properties (2), or (3) for a conservative family of points implies (1).

http://stacks.math.columbia.edu/tag/04H7
http://stacks.math.columbia.edu/tag/04H8
http://stacks.math.columbia.edu/tag/04H9
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Proof. This lemma proves itself, in other words, it follows by unwinding the defi-
nitions. �

Definition 18.39.8. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi. Assume (Sh(C),OC) and (Sh(D),OD) are locally ringed topoi. We
say that (f, f ]) is a morphism of locally ringed topoi if and only if the diagram of
sheaves

f−1(O∗D)
f]
//

��

O∗C

��
f−1(OD)

f] // OC
(see Lemma 18.39.7) is cartesian. If (f, f ]) is a morphism of ringed sites, then we
say that it is a morphism of locally ringed sites if the associated morphism of ringed
topoi is a morphism of locally ringed topoi.

It is clear that an isomorphism of ringed topoi between locally ringed topoi is
automatically an isomorphism of locally ringed topoi.

Lemma 18.39.9. Let (f, f ]) : (Sh(C1),O1)→ (Sh(C2),O2) and (g, g]) : (Sh(C2),O2)→
(Sh(C3),O3) be morphisms of locally ringed topoi. Then the composition (g, g]) ◦
(f, f ]) (see Definition 18.7.1) is also a morphism of locally ringed topoi.

Proof. Omitted. �

Lemma 18.39.10. If f : Sh(C′) → Sh(C) is a morphism of topoi. If O is a sheaf
of rings on C, then

f−1(O∗) = (f−1O)∗.

In particular, if O turns C into a locally ringed site, then setting f ] = id the
morphism of ringed topoi

(f, f ]) : (Sh(C′), f−1O)→ (Sh(C,O)

is a morphism of locally ringed topoi.

Proof. Note that the diagram

O∗ //

u7→(u,u−1)

��

∗

1

��
O ×O

(a,b)7→ab // O

is cartesian. Since f−1 is exact we conclude that

f−1(O∗)

u7→(u,u−1)

��

// ∗

1

��
f−1O × f−1O

(a,b)7→ab // f−1O

is cartesian which implies the first assertion. For the second, note that (C′, f−1O)
is a locally ringed site by Lemma 18.39.5 so that the assertion makes sense. Now
the first part implies that the morphism is a morphism of locally ringed topoi. �

Lemma 18.39.11. Localization of locally ringed sites and topoi.

http://stacks.math.columbia.edu/tag/04HA
http://stacks.math.columbia.edu/tag/04IG
http://stacks.math.columbia.edu/tag/04KR
http://stacks.math.columbia.edu/tag/04IH
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(1) Let (C,O) be a locally ringed site. Let U be an object of C. Then the local-
ization (C/U,OU ) is a locally ringed site, and the localization morphism

(jU , j
]
U ) : (Sh(C/U),OU )→ (Sh(C),O)

is a morphism of locally ringed topoi.
(2) Let (C,O) be a locally ringed site. Let f : V → U be a morphism of C.

Then the morphism

(j, j]) : (Sh(C/V ),OV )→ (Sh(C/U),OU )

of Lemma 18.19.4 is a morphism of locally ringed topoi.
(3) Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of locally ringed sites where

f is given by the continuous functor u : D → C. Let V be an object of D
and let U = u(V ). Then the morphism

(f ′, (f ′)]) : (Sh(C/U),OU )→ (Sh(D/V ),O′V )

of Lemma 18.20.1 is a morphism of locally ringed sites.
(4) Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of locally ringed sites where

f is given by the continuous functor u : D → C. Let V ∈ Ob(D), U ∈
Ob(C), and c : U → u(V ). Then the morphism

(fc, (fc)
]) : (Sh(C/U),OU )→ (Sh(D/V ),O′V )

of Lemma 18.20.2 is a morphism of locally ringed topoi.
(5) Let (Sh(C),O) be a locally ringed topos. Let F be a sheaf on C. Then the

localization (Sh(C)/F ,OF ) is a locally ringed topos and the localization
morphism

(jF , j
]
F ) : (Sh(C)/F ,OF )→ (Sh(C),O)

is a morphism of locally ringed topoi.
(6) Let (Sh(C),O) be a locally ringed topos. Let s : G → F be a map of sheaves

on C. Then the morphism

(j, j]) : (Sh(C)/G,OG) −→ (Sh(C)/F ,OF )

of Lemma 18.21.4 is a morphism of locally ringed topoi.
(7) Let f : (Sh(C),O) −→ (Sh(D),O′) be a morphism of locally ringed topoi.

Let G be a sheaf on D. Set F = f−1G. Then the morphism

(f ′, (f ′)]) : (Sh(C)/F ,OF ) −→ (Sh(D)/G,O′G)

of Lemma 18.22.1 is a morphism of locally ringed topoi.
(8) Let f : (Sh(C),O) −→ (Sh(D),O′) be a morphism of locally ringed topoi.

Let G be a sheaf on D, let F be a sheaf on C, and let s : F → f−1G be a
morphism of sheaves. Then the morphism

(fs, (fs)
]) : (Sh(C)/F ,OF ) −→ (Sh(D)/G,O′G)

of Lemma 18.22.3 is a morphism of locally ringed topoi.

Proof. Part (1) is clear since OU is just the restriction ofO, so Lemmas 18.39.5 and
18.39.10 apply. Part (2) is clear as the morphism (j, j]) is actually a localization
of a locally ringed site so (1) applies. Part (3) is clear also since (f ′)] is just
the restriction of f ] to the topos Sh(C)/F , see proof of Lemma 18.22.1 (hence
the diagram of Definition 18.39.8 for the morphism f ′ is just the restriction of
the corresponding diagram for f , and restriction is an exact functor). Part (4)
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follows formally on combining (2) and (3). Parts (5), (6), (7), and (8) follow
from their counterparts (1), (2), (3), and (4) by enlarging the sites as in Lemma
18.7.2 and translating everything in terms of sites and morphisms of sites using the
comparisons of Lemmas 18.21.3, 18.21.5, 18.22.2, and 18.22.4. (Alternatively one
could use the same arguments as in the proofs of (1), (2), (3), and (4) to prove (5),
(6), (7), and (8) directly.) �

18.40. Lower shriek for modules

In this section we extend the construction of g! discussed in Section 18.16 to the
case of sheaves of modules.

Lemma 18.40.1. Let u : C → D be a continuous and cocontinuous functor between
sites. Denote g : Sh(C) → Sh(OD) the associated morphism of topoi. Let OD be
a sheaf of rings on D. Set OC = g−1OD. Hence g becomes a morphism of ringed
topoi with g∗ = g−1. In this case there exists a functor

g! : Mod(OC) −→ Mod(OD)

which is left adjoint to g∗.

Proof. Let U be an object of C. For any OD-module G we have

HomOC (jU !OU , g−1G) = g−1G(U)

= G(u(U))

= HomOD (ju(U)!Ou(U),G)

because g−1 is described by restriction, see Sites, Lemma 7.20.5. Of course a similar
formula holds a direct sum of modules of the form jU !OU . By Homology, Lemma
12.25.6 and Lemma 18.28.6 we see that g! exists. �

Remark 18.40.2. Warning! Let u : C → D, g, OD, and OC be as in Lemma
18.40.1. In general it is not the case that the diagram

Mod(OC) g!

//

forget

��

Mod(OD)

forget

��
Ab(C)

gAb! // Ab(D)

commutes (here gAb! is the one from Lemma 18.16.2). There is a transformation of
functors

gAb! ◦ forget −→ forget ◦ g!

From the proof of Lemma 18.40.1 we see that this is an isomorphism if and only if
g!jU !OU = gAb! jU !OU for all objects U of C, in other words, if and only if

gAb! jU !OU = ju(U)!Ou(U)

for all objects U of C. Note that for such a U we obtain a commutative diagram

C/U
u′
//

jU

��

D/u(U)

ju(U)

��
C u // D

http://stacks.math.columbia.edu/tag/0797
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of cocontinuous functors of sites, see Sites, Lemma 7.27.4. Hence we see that
g! = gAb! if the canonical map

(18.40.2.1) (g′)Ab! OU −→ Ou(U)

is an isomorphism for all objects U of C. Here g′ : Sh(C/U) → Sh(D/u(U)) is the
morphism of topoi induced by the cocontinuous functor u′.

18.41. Constant sheaves

Let E be a set and let C be a site. We will denote E the constant sheaf with value
E on C. If E is an abelian group, ring, module, etc, then E is a sheaf of abelian
groups, rings, modules, etc.

Lemma 18.41.1. Let C be a site. If 0 → A → B → C → 0 is a short exact
sequence of abelian groups, then 0 → A → B → C → 0 is an exact sequence of
abelian sheaves and in fact it is even exact as a sequence of abelian presheaves.

Proof. Since sheafification is exact it is clear that 0 → A → B → C → 0 is an
exact sequence of abelian sheaves. Thus 0 → A → B → C is an exact sequence of
abelian presheaves. To see that B → C is surjective, pick a set theoretical section
s : C → B. This induces a section s : C → B of sheaves of sets left inverse to the
surjection B → C. �

Lemma 18.41.2. Let C be a site. Let Λ be a ring and let M and Q be Λ-modules.
If Q is a finitely presented Λ-module, then we have M ⊗Λ Q(U) = M(U)⊗Λ Q for
all U ∈ Ob(C).

Proof. Choose a presentation Λ⊕m → Λ⊕n → Q → 0. This gives an exact se-
quence M⊕m → M⊕n → M ⊗ Q → 0. By Lemma 18.41.1 we obtain an exact
sequence

M(U)⊕m →M(U)⊕n →M ⊗Q(U)→ 0

which proves the lemma. (Note that taking sections over U always commutes with
finite direct sums, but not arbitrary direct sums.) �

Lemma 18.41.3. Let C be a site. Let Λ be a coherent ring. Let M be a flat
Λ-module. For U ∈ Ob(C) the module M(U) is a flat Λ-module.

Proof. Let I ⊂ Λ be a finitely generated ideal. By Algebra, Lemma 10.38.4 it
suffices to show that M(U)⊗Λ I →M(U) is injective. As Λ is coherent I is finitely
presented as a Λ-module. By Lemma 18.41.2 we see that M(U)⊗I = M ⊗ I. Since
M is flat the map M ⊗ I →M is injective, whence M ⊗ I →M is injective. �

Lemma 18.41.4. Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an
ideal. The sheaf Λ∧ = lim Λ/In is a flat Λ-algebra. Moreover we have canonical
identifications

Λ/IΛ = Λ/I = Λ∧/IΛ∧ = Λ∧/I · Λ∧ = Λ∧/I∧ = Λ/I

where I∧ = lim I/In.

Proof. To prove Λ∧ is flat, it suffices to show that Λ∧(U) is flat as a Λ-module for
each U ∈ Ob(C), see Lemmas 18.28.2 and 18.28.3. By Lemma 18.41.3 we see that

Λ∧(U) = lim Λ/In(U)

http://stacks.math.columbia.edu/tag/093J
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is a limit of a system of flat Λ/In-modules. By Lemma 18.41.1 we see that the
transition maps are surjective. We conclude by More on Algebra, Lemma 15.19.4.

To see the equalities, note that Λ(U)/IΛ(U) = Λ/I(U) by Lemma 18.41.2. It

follows that Λ/IΛ = Λ/I = Λ/I. The system of short exact sequences

0→ I/In(U)→ Λ/In(U)→ Λ/I(U)→ 0

has surjective transition maps, hence gives a short exact sequence

0→ lim I/In(U)→ lim Λ/In(U)→ lim Λ/I(U)→ 0

see Homology, Lemma 12.27.3. Thus we see that Λ∧/I∧ = Λ/I. Since

IΛ∧ ⊂ I · Λ∧ ⊂ I∧

it suffices to show that IΛ∧(U) = I∧(U) for all U . Choose generators I =
(f1, . . . , fr). This gives a short exact sequence 0 → K → Λ⊕r → I → 0. We
obtain short exact sequences

0→ (K ∩ In)/InK(U)→ (Λ/In)⊕r(U)→ I/In(U)→ 0

By Artin-Rees (Algebra, Lemma 10.49.2) the system of modules on the left hand
side has ML. (It is zero as a pro-object.) Thus we see that (Λ∧)⊕r(U)→ I∧(U) is
surjective by Homology, Lemma 12.27.3 which is what we wanted to show. �

Lemma 18.41.5. Let C be a site. Let Λ be a ring and let M be a Λ-module.
Assume Sh(C) is not the empty topos. Then

(1) M is a finite type sheaf of Λ-modules if and only if M is a finite Λ-module,
and

(2) M is a finitely presented sheaf of Λ-modules if and only if M is a finitely
presented Λ-module.

Proof. Proof of (1). If M is generated by x1, . . . , xr then x1, . . . , xr define global
sections of M which generate it, hence M is of finite type. Conversely, assume M
is of finite type. Let U ∈ C be an object which is not sheaf theoretically empty
(Sites, Definition 7.41.1). Such an object exists as we assumed Sh(C) is not the
empty topos. Then there exists a covering {Ui → U} and finitely many sections
sij ∈ M(Ui) generating M |Ui . After refining the covering we may assume that
sij come from elements xij of M . Then xij define global sections of M whose
restriction to U generate M .

Assume there exist elements x1, . . . , xr of M which define global sections of M
generating M as a sheaf of Λ-modules. We will show that x1, . . . , xr generate M
as a Λ-module. Let x ∈ M . We can find a covering {Ui → U}i∈I and fi,j ∈ Λ(Ui)
such that x|Ui =

∑
fi,jxj |Ui . After refining the covering we may assume fi,j ∈ Λ.

Since U is not sheaf theoretically empty we see that I 6= ∅. Thus we can pick i ∈ I
and we see that x =

∑
fi,jxj in M as desired.

Proof of (2). Assume M is a Λ-module of finite presentation. By (1) we see that M
is of finite type. Choose generators x1, . . . , xr of M as a Λ-module. This determines
a short exact sequence 0 → K → Λ⊕r → M → 0 which turns into a short exact
sequence

0→ K → Λ⊕r →M → 0

by Lemma 18.41.1. By Lemma 18.24.1 we see that K is of finite type. Hence K is
a finite Λ-module by (1). Thus M is a Λ-module of finite presentation. �

http://stacks.math.columbia.edu/tag/093N
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18.42. Locally constant sheaves

Here is the general definition.

Definition 18.42.1. Let C be a site. Let F be a sheaf of sets, groups, abelian
groups, rings, modules over a fixed ring Λ, etc.

(1) We say F is a constant sheaf of sets, groups, abelian groups, rings, modules
over a fixed ring Λ, etc if it is isomorphic as a sheaf of sets, groups, abelian
groups, rings, modules over a fixed ring Λ, etc to a constant sheaf E as in
Section 18.41.

(2) We say F is locally constant if for every object U of C there exists a
covering {Ui → U} such that F|Ui is a constant sheaf.

(3) If F is a sheaf of sets or groups, then we say F is finite locally constant if
the constant values are finite sets or finite groups.

Lemma 18.42.2. Let f : Sh(C)→ Sh(D) be a morphism of topoi. If G is a locally
constant sheaf of sets, groups, abelian groups, rings, modules over a fixed ring Λ,
etc on D, the same is true for f−1G on C.

Proof. Omitted. �

Lemma 18.42.3. Let C be a site with a final object X.

(1) Let ϕ : F → G be a map of locally constant sheaves of sets on C. If F is
finite locally constant, there exists a covering {Ui → X} such that ϕ|Ui is
the map of constant sheaves associated to a map of sets.

(2) Let ϕ : F → G be a map of locally constant sheaves of abelian groups on
C. If F is finite locally constant, there exists a covering {Ui → X} such
that ϕ|Ui is the map of constant abelian sheaves associated to a map of
abelian groups.

(3) Let Λ be a ring. Let ϕ : F → G be a map of locally constant sheaves of Λ-
modules on C. If F is of finite type, then there exists a covering {Ui → X}
such that ϕ|Ui is the map of constant sheaves of Λ-modules associated to
a map of Λ-modules.

Proof. Proof omitted. �

Lemma 18.42.4. Let C be a site. Let Λ be a ring. Let M , N be Λ-modules. Let
F ,G be a locally constant sheaves of Λ-modules.

(1) If M is of finite presentation, then

HomΛ(M,N) = HomΛ(M,N)

(2) If M and N are both of finite presentation, then

IsomΛ(M,N) = IsomΛ(M,N)

(3) If F is of finite presentation, then HomΛ(F ,G) is a locally constant sheaf
of Λ-modules.

(4) If F and G are both of finite presentation, then IsomΛ(F ,G) is a locally
constant sheaf of sets.

Proof. Proof of (1). Set E = HomΛ(M,N). We want to show the canonical map

E −→ HomΛ(M,N)

http://stacks.math.columbia.edu/tag/093Q
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is an isomorphism. The module M has a presentation Λ⊕s → Λ⊕t → M → 0.
Then E sits in an exact sequence

0→ E → HomΛ(Λ⊕t, N)→ HomΛ(Λ⊕s, N)

and we have similarly

0→ HomΛ(M,N)→ HomΛ(Λ⊕t, N)→ HomΛ(Λ⊕s, N)

This reduces the question to the case where M is a finite free module where the
result is clear.

Proof of (3). The question is local on C, hence we may assume F = M and G = N
for some Λ-modules M and N . By Lemma 18.41.5 the module M is of finite
presentation. Thus the result follows from (1).

Parts (2) and (4) follow from parts (1) and (3) and the fact that Isom can be viewed
as the subsheaf of sections ofHomΛ(F ,G) which have an inverse inHomΛ(G,F). �

Lemma 18.42.5. Let C be a site.

(1) The category of finite locally constant sheaves of sets is closed under finite
limits and colimits inside Sh(C).

(2) The category of finite locally constant abelian sheaves is a weak Serre
subcategory of Ab(C).

(3) Let Λ be a Noetherian ring. The category of finite type, locally constant
sheaves of Λ-modules on C is a weak Serre subcategory of Mod(C,Λ).

Proof. Proof of (1). We may work locally on C. Hence by Lemma 18.42.3 we
may assume we are given a finite diagram of finite sets such that our diagram of
sheaves is the associated diagram of constant sheaves. Then we just take the limit
or colimit in the category of sets and take the associated constant sheaf. Some
details omitted.

To prove (2) and (3) we use the criterion of Homology, Lemma 12.9.3. Existence of
kernels and cokernels is argued in the same way as above. Of course, the reason for
using a Noetherian ring in (3) is to assure us that the kernel of a map of finite Λ-
modules is a finite Λ-module. To see that the category is closed under extensions (in
the case of sheaves Λ-modules), assume given an extension of sheaves of Λ-modules

0→ F → E → G → 0

on C with F , G finite type and locally constant. Localizing on C we may assume F
and G are constant, i.e., we get

0→M → E → N → 0

for some Λ-modules M,N . Choose generators y1, . . . , ym of N , so that we get a
short exact sequence 0 → K → Λ⊕m → N → 0 of Λ-modules. Localizing further
we may assume yj lifts to a section sj of E . Thus we see that E is a pushout as in
the following diagram

0 // K

��

// Λ⊕m

��

// N

��

// 0

0 // M // E // N // 0

http://stacks.math.columbia.edu/tag/093U
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By Lemma 18.42.3 again (and the fact that K is a finite Λ-module as Λ is Noether-
ian) we see that the map K →M is locally constant, hence we conclude. �

Lemma 18.42.6. Let C be a site. Let Λ be a ring. The tensor product of two
locally constant sheaves of Λ-modules on C is a locally constant sheaf of Λ-modules.

Proof. Omitted. �
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CHAPTER 19

Injectives

19.1. Introduction

In future chapters we will use the existence of injectives and K-injective complexes
to do cohomology of sheaves of modules on ringed sites. In this chapter we explain
how to produce injectives and K-injective complexes first for modules on sites and
later more generally for Grothendieck abelian categories.

We observe that we already know that the category of abelian groups and the cat-
egory of modules over a ring have enough injectives, see More on Algebra, Sections
15.41 and 15.42

19.2. Baer’s argument for modules

There is another, more set-theoretic approach to showing that any R-module M can
be imbedded in an injective module. This approach constructs the injective module
by a transfinite colimit of push-outs. While this method is somewhat abstract and
more complicated than the one of More on Algebra, Section 15.42, it is also more
general. Apparently this method originates with Baer, and was revisited by Cartan
and Eilenberg in [CE56] and by Grothendieck in [Gro57]. There Grothendieck
uses it to show that many other abelian categories have enough injectives. We will
get back to the general case later (insert future reference here).

We begin with a few set theoretic remarks. Let {Bβ}β∈α be an inductive system
of objects in some category C, indexed by an ordinal α. Assume that colimβ∈αBβ
exists in C. If A is an object of C, then there is a natural map

(19.2.0.1) colimβ∈α MorC(A,Bβ) −→ MorC(A, colimβ∈αBβ).

because if one is given a map A→ Bβ for some β, one naturally gets a map from A
into the colimit by composing with Bβ → colimβ∈αBα. Note that the left colimit
is one of sets! In general, (19.2.0.1) is neither injective or surjective.

Example 19.2.1. Consider the category of sets. Let A = N and Bn = {1, . . . , n}
be the inductive system indexed by the natural numbers where Bn → Bm for
n ≤ m is the obvious map. Then colimBn = N, so there is a map A → colimBn,
which does not factor as A → Bm for any m. Consequently, colim Mor(A,Bn) →
Mor(A, colimBn) is not surjective.

Example 19.2.2. Next we give an example where the map fails to be injective.
Let Bn = N/{1, 2, . . . , n}, that is, the quotient set of N with the first n elements
collapsed to one element. There are natural maps Bn → Bm for n ≤ m, so the
{Bn} form a system of sets over N. It is easy to see that colimBn = {∗}: it is the
one-point set. So it follows that Mor(A, colimBn) is a one-element set for every
set A. However, colim Mor(A,Bn) is not a one-element set. Consider the family

1419
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of maps A → Bn which are just the natural projections N → N/{1, 2, . . . , n} and
the family of maps A→ Bn which map the whole of A to the class of 1. These two
families of maps are distinct at each step and thus are distinct in colim Mor(A,Bn),
but they induce the same map A→ colimBn.

Nonetheless, if we map out of a finite set then (19.2.0.1) is an isomorphism always.

Lemma 19.2.3. Suppose that, in (19.2.0.1), C is the category of sets and A is a
finite set, then the map is a bijection.

Proof. Let f : A → colimBβ . The range of f is finite, containing say elements
c1, . . . , cr ∈ colimBβ . These all come from some elements in Bβ for β ∈ α large

by definition of the colimit. Thus we can define f̃ : A → Bβ lifting f at a finite
stage. This proves that (19.2.0.1) is surjective. Next, suppose two maps f : A →
Bγ , f

′ : A → Bγ′ define the same map A → colimBβ . Then each of the finitely
many elements of A gets sent to the same point in the colimit. By definition of
the colimit for sets, there is β ≥ γ, γ′ such that the finitely many elements of A
get sent to the same points in Bβ under f and f ′. This proves that (19.2.0.1) is
injective. �

The most interesting case of the lemma is when α = ω, i.e., when the system {Bβ}
is a system {Bn}n∈N over the natural numbers as in Examples 19.2.1 and 19.2.2.
The essential idea is that A is “small” relative to the long chain of compositions
B1 → B2 → . . ., so that it has to factor through a finite step. A more general
version of this lemma can be found in Sets, Lemma 3.7.1. Next, we generalize this
to the category of modules.

Definition 19.2.4. Let C be a category, let I ⊂ Arrow(C), and let α be an ordinal.
An object A of C is said to be α-small with respect to I if whenever {Bβ} is a system
over α with transition maps in I, then the map (19.2.0.1) is an isomorphism.

In the rest of this section we shall restrict ourselves to the category of R-modules
for a fixed commutative ring R. We shall also take I to be the collection of injective
maps, i.e., the monomorphisms in the category of modules over R. In this case, for
any system {Bβ} as in the definition each of the maps

Bβ → colimβ∈αBβ

is an injection. It follows that the map (19.2.0.1) is an injection. We can in fact
interpret the Bβ ’s as submodules of the module B = colimβ∈αBβ , and then we
have B =

⋃
β∈αBβ . This is not an abuse of notation if we identify Bα with the

image in the colimit. We now want to show that modules are always small for
“large” ordinals α.

Proposition 19.2.5. Let R be a ring. Let M be an R-module. Let κ the cardinality
of the set of submodules of M . If α is an ordinal whose cofinality is bigger than κ,
then M is α-small with respect to injections.

Proof. The proof is straightforward, but let us first think about a special case. If
M is finite, then the claim is that for any inductive system {Bβ} with injections
between them, parametrized by a limit ordinal, any map M → colimBβ factors
through one of the Bβ . And this we proved in Lemma 19.2.3.

Now we start the proof in the general case. We need only show that the map
(19.2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
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{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =
⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .

So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, we know that ⋃

f−1(Bβ) = f−1
(⋃

Bβ

)
= M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).

However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β

′ ∈ S are contained in f−1(Bα̃). It follows that
f−1(Bα̃) = M . In particular, the map f factors through Bα̃. �

From this lemma we will be able to deduce the existence of lots of injectives. Let
us recall the criterion of Baer.

Lemma 19.2.6. Let R be a ring. An R-module Q is injective if and only if in
every commutative diagram

a

��

// Q

R

??

for a ⊂ R an ideal, the dotted arrow exists.

Proof. Assume Q satisfies the assumption of the lemma. Let M ⊂ N be R-
modules, and let ϕ : M → Q be an R-module map. Arguing as in the proof of
More on Algebra, Lemma 15.41.1 we see that it suffices to prove that if M 6= N ,
then we can find an R-module M ′, M ⊂ M ′ ⊂ N such that (a) the inclusion
M ⊂M ′ is strict, and (b) ϕ can be extended to M ′. To find M ′, let x ∈ N , x 6∈M .
Let ψ : R→ N , r 7→ rx. Set a = ψ−1(M). By assumption the morphism

a
ψ−→M

ϕ−→ Q

can be extended to a morphism ϕ′ : R→ Q. Note that ϕ′ annihilates the kernel of
ψ (as this is true for ϕ). Thus ϕ′ gives rise to a morphism ϕ′′ : Im(ψ)→ Q which
agrees with ϕ on the intersection M ∩ Im(ψ) by construction. Thus ϕ and ϕ′′ glue
to give an extension of ϕ to the strictly bigger module M ′ = F + Im(ψ). �

If M is an R-module, then in general we may have a semi-complete diagram as in
Lemma 19.2.6. In it, we can form the push-out

a

��

// Q

��
R // R⊕a Q.

Here the vertical map is injective, and the diagram commutes. The point is that
we can extend a→ Q to R if we extend Q to the larger module R⊕a Q.

http://stacks.math.columbia.edu/tag/05NU
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The key point of Baer’s argument is to repeat this procedure transfinitely many
times. To do this we first define, given anR-moduleM the following (huge) pushout

(19.2.6.1)

⊕
a

⊕
ϕ∈HomR(a,M) a

//

��

M

��⊕
a

⊕
ϕ∈HomR(a,M)R

//M(M).

Here the top horizontal arrow maps the element a ∈ a in the summand correspond-
ing to ϕ to the element ϕ(a) ∈ M . The left vertical arrow maps a ∈ a in the
summand corresponding to ϕ simply to the element a ∈ R in the summand corre-
sponding to ϕ. The fundamental properties of this construction are formulated in
the following lemma.

Lemma 19.2.7. Let R be a ring.

(1) The construction M 7→ (M →M(M)) is functorial in M .
(2) The map M →M(M) is injective.
(3) For any ideal a and any R-module map ϕ : a→ M there is an R-module

map ϕ′ : R→M(M) such that

a

��

ϕ
// M

��
R

ϕ′ //M(M)

commutes.

Proof. Parts (2) and (3) are immediate from the construction. To see (1), let
χ : M → N be an R-module map. We claim there exists a canonical commutative
diagram⊕

a

⊕
ϕ∈HomR(a,M) a

//

�� ++

M

χ

++⊕
a

⊕
ϕ∈HomR(a,M)R

++

⊕
a

⊕
ψ∈HomR(a,N) a

//

��

N

⊕
a

⊕
ψ∈HomR(a,N)R

which induces the desired map M(M)→M(N). The middle east-south-east arrow
maps the summand a corresponding to ϕ via ida to the summand a corresponding
to ψ = χ ◦ ϕ. Similarly for the lower east-south-east arrow. Details omitted. �

The idea will now be to apply the functor M a transfinite number of times. We
define for each ordinal α a functor Mα on the category of R-modules, together
with a natural injection N →Mα(N). We do this by transfinite induction. First,
M1 = M is the functor defined above. Now, suppose given an ordinal α, and
suppose Mα′ is defined for α′ < α. If α has an immediate predecessor α̃, we let

Mα = M ◦Mα̃.

http://stacks.math.columbia.edu/tag/05NW
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If not, i.e., if α is a limit ordinal, we let

Mα(N) = colimα′<α Mα′(N).

It is clear (e.g., inductively) that the Mα(N) form an inductive system over ordinals,
so this is reasonable.

Theorem 19.2.8. Let κ be the cardinality of the set of ideals in R, and let α be an
ordinal whose cofinality is greater than κ. Then Mα(N) is an injective R-module,
and N →Mα(N) is a functorial injective embedding.

Proof. By Baer’s criterion Lemma 19.2.6, it suffices to show that if a ⊂ R is an
ideal, then any map f : a →Mα(N) extends to R →Mα(N). However, we know
since α is a limit ordinal that

Mα(N) = colimβ<α Mβ(N),

so by Proposition 19.2.5, we find that

HomR(a,Mα(N)) = colimβ<α HomR(a,Mβ(N)).

This means in particular that there is some β′ < α such that f factors through the
submodule Mβ′(N), as

f : a→Mβ′(N)→Mα(N).

However, by the fundamental property of the functor M, see Lemma 19.2.7 part
(3), we know that the map a→Mβ′(N) can be extended to

R→M(Mβ′(N)) = Mβ′+1(N),

and the last object imbeds in Mα(N) (as β′ + 1 < α since α is a limit ordinal). In
particular, f can be extended to Mα(N). �

19.3. G-modules

We will see later (Differential Graded Algebra, Section 22.12) that the category of
modules over an algebra has functorial injective embeddings. The construction is
exactly the same as the construction in More on Algebra, Section 15.42.

Lemma 19.3.1. Let G be a topological group. The category ModG of discrete
G-modules, see Étale Cohomology, Definition 44.58.1 has functorial injective hulls.

Proof. By the remark above the lemma the category ModZ[G] has functorial in-
jective embeddings. Consider the forgetful functor v : ModG → ModZ[G]. This
functor is fully faithful, transforms injective maps into injective maps and has a
right adjoint, namely

u : M 7→ u(M) = {x ∈M | stabilizer of x is open}

Since it is true that v(M) = 0 ⇒ M = 0 we conclude by Homology, Lemma
12.25.5. �

http://stacks.math.columbia.edu/tag/05NX
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19.4. Abelian sheaves on a space

Lemma 19.4.1. Let X be a topological space. The category of abelian sheaves on
X has enough injectives. In fact it has functorial injective embeddings.

Proof. For an abelian group A we denote j : A → J(A) the functorial injective
embedding constructed in More on Algebra, Section 15.42. Let F be an abelian
sheaf on X. By Sheaves, Example 6.7.5 the assignment

I : U 7→ I(U) =
∏

x∈U
J(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 6.11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective abelian group the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 6.27 for nota-
tion.) We have

MorAb(Fx, Ix) = MorAb(X)(F , ix,∗Ix).

see Sheaves, Lemma 6.27.3. Hence it is clear that each ix,∗Ix is injective. Hence
the injectivity of I follows from Homology, Lemma 12.23.3. �

19.5. Sheaves of modules on a ringed space

Lemma 19.5.1. Let (X,OX) be a ringed space, see Sheaves, Section 6.25. The
category of sheaves of OX-modules on X has enough injectives. In fact it has
functorial injective embeddings.

Proof. For any ring R and any R-module M we denote j : M → JR(M) the
functorial injective embedding constructed in More on Algebra, Section 15.42. Let
F be a sheaf of OX -modules on X. By Sheaves, Examples 6.7.5 and 6.15.6 the
assignment

I : U 7→ I(U) =
∏

x∈U
JOX,x(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 6.11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective OX,x-module the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 6.27 for nota-
tion.) We have

HomOX,x(Fx, Ix) = HomOX (F , ix,∗Ix).

see Sheaves, Lemma 6.27.3. Hence it is clear that each ix,∗Ix is an injective OX -
module (see Homology, Lemma 12.25.1 or argue directly). Hence the injectivity of
I follows from Homology, Lemma 12.23.3. �

http://stacks.math.columbia.edu/tag/01DG
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19.6. Abelian presheaves on a category

Let C be a category. Recall that this means that Ob(C) is a set. On the one hand,
consider abelian presheaves on C, see Sites, Section 7.2. On the other hand, consider
families of abelian groups indexed by elements of Ob(C); in other words presheaves
on the discrete category with underlying set of objects Ob(C). Let us denote this
discrete category simply Ob(C). There is a natural functor

i : Ob(C) −→ C

and hence there is a natural restriction or forgetful functor

v = ip : PAb(C) −→ PAb(Ob(C))

compare Sites, Section 7.5. We will denote presheaves on C by B and presheaves
on Ob(C) by A.

There are also two functors, namely ip and pi which assign an abelian presheaf on
C to an abelian presheaf on Ob(C), see Sites, Sections 7.5 and 7.18. Here we will
use u = pi which is defined (in the case at hand) as follows:

uA(U) =
∏

U ′→U
A(U ′).

So an element is a family (aφ)φ with φ ranging through all morphisms in C with
target U . The restriction map on uA corresponding to g : V → U maps our element
(aφ)φ to the element (ag◦ψ)ψ.

There is a canonical surjective map vuA → A and a canonical injective map B →
uvB. We leave it to the reader to show that

MorPAb(Ob(C))(B, uA) = MorPAb(C)(vB,A).

in this simple case; the general case is in Sites, Section 7.5. Thus the pair (u, v) is
an example of a pair of adjoint functors, see Categories, Section 4.24.

At this point we can list the following facts about the situation above.

(1) The functors u and v are exact. This follows from the explicit description
of these functors given above.

(2) In particular the functor v transforms injective maps into injective maps.
(3) The category PAb(Ob(C)) has enough injectives.
(4) In fact there is a functorial injective embedding A 7→

(
A → J(A)

)
as

in Homology, Definition 12.23.5. Namely, we can take J(A) to be the
presheaf U 7→ J(A(U)), where J(−) is the functor constructed in More
on Algebra, Section 15.42 for the ring Z.

Putting all of this together gives us the following procedure for embedding objects B
of PAb(C)) into an injective object: B → uJ(vB). See Homology, Lemma 12.25.5.

Proposition 19.6.1. For abelian presheaves on a category there is a functorial
injective embedding.

Proof. See discussion above. �

http://stacks.math.columbia.edu/tag/01DK
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19.7. Abelian Sheaves on a site

Let C be a site. In this section we prove that there are enough injectives for abelian
sheaves on C.

Denote i : Ab(C) −→ PAb(C) the forgetful functor from abelian sheaves to abelian
presheaves. Let # : PAb(C) −→ Ab(C) denote the sheafification functor. Recall
that # is a left adjoint to i, that # is exact, and that iF# = F for any abelian
sheaf F . Finally, let G → J(G) denote the canonical embedding into an injective
presheaf we found in Section 19.6.

For any sheaf F in Ab(C) and any ordinal β we define a sheaf Jβ(F) by transfinite
induction. We set J0(F) = F . We define J1(F) = J(iF)#. Sheafification of the
canonical map iF → J(iF) gives a functorial map

F −→ J1(F)

which is injective as # is exact. We set Jα+1(F) = J1(Jα(F)). So that there are
canonical injective maps Jα(F)→ Jα+1(F). For a limit ordinal β, we define

Jβ(F) = colimα<β Jα(F).

Note that this is a directed colimit. Hence for any ordinals α < β we have an
injective map Jα(F)→ Jβ(F).

Lemma 19.7.1. With notation as above. Suppose that G1 → G2 is an injective map
of abelian sheaves on C. Let α be an ordinal and let G1 → Jα(F) be a morphism of
sheaves. There exists a morphism G2 → Jα+1(F) such that the following diagram
commutes

G1

��

// G2

��
Jα(F) // Jα+1(F)

Proof. This is because the map iG1 → iG2 is injective and hence iG1 → iJα(F)
extends to iG2 → J(iJα(F)) which gives the desired map after applying the sheafi-
fication functor. �

This lemma says that somehow the system {Jα(F)} is an injective embedding of
F . Of course we cannot take the limit over all α because they form a class and
not a set. However, the idea is now that you don’t have to check injectivity on all
injections G1 → G2, plus the following lemma.

Lemma 19.7.2. Suppose that Gi, i ∈ I is set of abelian sheaves on C. There exists
an ordinal β such that for any sheaf F , any i ∈ I, and any map ϕ : Gi → Jβ(F)
there exists an α < β such that ϕ factors through Jα(F).

Proof. This reduces to the case of a single sheaf G by taking the direct sum of all
the Gi.

Consider the sets

S =
∐

U∈Ob(C)
G(U).

and

Tβ =
∐

U∈Ob(C)
Jβ(F)(U)

http://stacks.math.columbia.edu/tag/01DM
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Then Tβ = colimα<β Tα with injective transition maps. A morphism G → Jβ(F)
factors through Jα(F) if and only if the associated map S → Tβ factors through
Tα. By Sets, Lemma 3.7.1 if the cofinality of β is bigger than the cardinality of S,
then the result of the lemma is true. Hence the lemma follows from the fact that
there are ordinals with arbitrarily large cofinality, see Sets, Proposition 3.7.2. �

Recall that for an object X of C we denote ZX the presheaf of abelian groups
Γ(U,ZX) = ⊕U→XZ, see Modules on Sites, Section 18.4. The sheaf associated

to this presheaf is denoted Z#
X , see Modules on Sites, Section 18.5. It can be

characterized by the property

(19.7.2.1) MorAb(C)(Z
#
X ,G) = G(X)

where the element ϕ of the left hand side is mapped to ϕ(1 · idX) in the right hand
side. We can use these sheaves to characterize injective abelian sheaves.

Lemma 19.7.3. Suppose J is a sheaf of abelian groups with the following property:

For all X ∈ Ob(C), for any abelian subsheaf S ⊂ Z#
X and any morphism ϕ : S → J ,

there exists a morphism Z#
X → J extending ϕ. Then J is an injective sheaf of

abelian groups.

Proof. Let F → G be an injective map of abelian sheaves. Suppose ϕ : F → J
is a morphism. Arguing as in the proof of More on Algebra, Lemma 15.41.1 we
see that it suffices to prove that if F 6= G, then we can find an abelian sheaf F ′,
F ⊂ F ′ ⊂ G such that (a) the inclusion F ⊂ F ′ is strict, and (b) ϕ can be extended
to F ′. To find F ′, let X be an object of C such that the inclusion F(X) ⊂ G(X) is

strict. Pick s ∈ G(X), s 6∈ F(X). Let ψ : Z#
X → G be the morphism corresponding

to the section s via (19.7.2.1). Set S = ψ−1(F). By assumption the morphism

S ψ−→ F ϕ−→ J

can be extended to a morphism ϕ′ : Z#
X → J . Note that ϕ′ annihilates the kernel

of ψ (as this is true for ϕ). Thus ϕ′ gives rise to a morphism ϕ′′ : Im(ψ) → J
which agrees with ϕ on the intersection F ∩ Im(ψ) by construction. Thus ϕ and ϕ′′

glue to give an extension of ϕ to the strictly bigger subsheaf F ′ = F + Im(ψ). �

Theorem 19.7.4. The category of sheaves of abelian groups on a site has enough
injectives. In fact there exists a functorial injective embedding, see Homology, Def-
inition 12.23.5.

Proof. Let Gi, i ∈ I be a set of abelian sheaves such that every subsheaf of every

Z#
X occurs as one of the Gi. Apply Lemma 19.7.2 to this collection to get an

ordinal β. We claim that for any sheaf of abelian groups F the map F → Jβ(F)
is an injection of F into an injective. Note that by construction the assingment
F 7→

(
F → Jβ(F)

)
is indeed functorial.

The proof of the claim comes from the fact that by Lemma 19.7.3 it suffices to extend

any morphism γ : G → Jβ(F) from a subsheaf G of some Z#
X to all of Z#

X . Then by
Lemma 19.7.2 the map γ lifts into Jα(F) for some α < β. Finally, we apply Lemma
19.7.1 to get the desired extension of γ to a morphism into Jα+1(F)→ Jβ(F). �
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19.8. Modules on a ringed site

Let C be a site. Let O be a sheaf of rings on C. By analogy with More on Algebra,
Section 15.42 let us try to prove that there are enough injective O-modules. First
of all, we pick an injective embedding⊕

U,I
jU !OU/I −→ J

where J is an injective abelian sheaf (which exists by the previous section). Here
the direct sum is over all objects U of C and over all O-submodules I ⊂ jU !OU .
Please see Modules on Sites, Section 18.19 to read about the functors restriction
and extension by 0 for the localization functor jU : C/U → C.
For any sheaf of O-modules F denote

F∨ = Hom(F ,J )

with its natural O-module structure. Insert here future reference to internal hom.
We will also need a canonical flat resolution of a sheaf of O-modules. This we can
do as follows: For any O-module F we denote

F (F) =
⊕

U∈Ob(C),s∈F(U)
jU !OU .

This is a flat sheaf of O-modules which comes equipped with a canonical surjection
F (F) → F , see Modules on Sites, Lemma 18.28.6. Moreover the construction
F 7→ F (F) is functorial in F .

Lemma 19.8.1. The functor F 7→ F∨ is exact.

Proof. This because J is an injective abelian sheaf. �

There is a canonical map ev : F → (F∨)∨ given by evaluation: given x ∈ F(U) we
let ev(x) ∈ (F∨)∨ = Hom(F∨,J ) be the map ϕ 7→ ϕ(x).

Lemma 19.8.2. For any O-module F the evaluation map ev : F → (F∨)∨ is
injective.

Proof. You can check this using the definition of J . Namely, if s ∈ F(U) is not
zero, then let jU !OU → F be the map ofO-modules it corresponds to via adjunction.
Let I be the kernel of this map. There exists a nonzero map F ⊃ jU !OU/I → J
which does not annihilate s. As J is an injective O-module, this extends to a map
ϕ : F → J . Then ev(s)(ϕ) = ϕ(s) 6= 0 which is what we had to prove. �

The canonical surjection F (F)→ F ofO-modules turns into a a canonical injection,
see above, of O-modules

(F∨)∨ −→ (F (F∨))∨.

Set J(F) = (F (F∨))∨. The composition of ev with this the displayed map gives
F → J(F) functorially in F .

Lemma 19.8.3. Let O be a sheaf of rings. For every O-module F the O-module
J(F) is injective.

Proof. We have to show that the functor HomO(G, J(F)) is exact. Note that

HomO(G, J(F)) = HomO(G, (F (F∨))∨)

= HomO(G,Hom(F (F∨),J ))

= Hom(G ⊗O F (F∨),J )
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Thus what we want follows from the fact that F (F∨) is flat and J is injective. �

Theorem 19.8.4. Let C be a site. Let O be a sheaf of rings on C. The category
of sheaves of O-modules on a site has enough injectives. In fact there exists a
functorial injective embedding, see Homology, Definition 12.23.5.

Proof. From the discussion in this section. �

Proposition 19.8.5. Let C be a category. Let O be a presheaf of rings on C. The
category PMod(O) of presheaves of O-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 19.6. But
instead we argue using the theorem above. Endow C with the structure of a site
by letting the set of coverings of an object U consist of all singletons {f : V → U}
where f is an isomorphism. We omit the verification that this defines a site. A
sheaf for this topology is the same as a presheaf (proof omitted). Hence the theorem
applies. �

19.9. Embedding abelian categories

In this section we show that an abelian category embeds in the category of abelian
sheaves on a site having enough points. The site will be the one described in the
following lemma.

Lemma 19.9.1. Let A be an abelian category. Let

Cov = {{f : V → U} | f is surjective}.
Then (A,Cov) is a site, see Sites, Definition 7.6.2.

Proof. Note that Ob(A) is a set by our conventions about categories. An iso-
morphism is a surjective morphism. The composition of surjective morphisms is
surjective. And the base change of a surjective morphism in A is surjective, see
Homology, Lemma 12.5.14. �

Let A be a pre-additive category. In this case the Yoneda embedding A → PSh(A),
X 7→ hX factors through a functor A → PAb(A).

Lemma 19.9.2. Let A be an abelian category. Let C = (A,Cov) be the site defined
in Lemma 19.9.1. Then X 7→ hX defines a fully faithful, exact functor

A −→ Ab(C).
Moreover, the site C has enough points.

Proof. Suppose that f : V → U is a surjective morphism of A. Let K = Ker(f).
Recall that V ×U V = Ker((f,−f) : V ⊕ V → U), see Homology, Example 12.5.6.
In particular there exists an injection K ⊕K → V ×U V . Let p, q : V ×U V → V
be the two projection morphisms. Note that p − q : V ×U V → V is a morphism
such that f ◦ (p− q) = 0. Hence p− q factors through K → V . Let us denote this
morphism by c : V ×U V → K. And since the composition K⊕K → V ×U V → K
is surjective, we conclude that c is surjective. It follows that

V ×U V
p−q−−→ V → U → 0

is an exact sequence of A. Hence for an object X of A the sequence

0→ HomA(U,X)→ HomA(V,X)→ HomA(V ×U V,X)
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is an exact sequence of abelian groups, see Homology, Lemma 12.5.8. This means
that hX satisfies the sheaf condition on C.

The functor is fully faithful by Categories, Lemma 4.3.5. The functor is a left exact
functor between abelian categories by Homology, Lemma 12.5.8. To show that it
is right exact, let X → Y be a surjective morphism of A. Let U be an object of A,
and let s ∈ hY (U) = MorA(U, Y ) be a section of hY over U . By Homology, Lemma
12.5.14 the projection U ×Y X → U is surjective. Hence {V = U ×Y X → U} is a
covering of U such that s|V lifts to a section of hX . This proves that hX → hY is
a surjection of abelian sheaves, see Sites, Lemma 7.12.2.

The site C has enough points by Sites, Proposition 7.38.3. �

Remark 19.9.3. The Freyd-Mitchell embedding theorem says there exists a fully
faithful exact functor from any abelian category A to the category of modules over
a ring. Lemma 19.9.2 is not quite as strong. But the result is suitable for the
stacks project as we have to understand sheaves of abelian groups on sites in detail
anyway. Moreover, “diagram chasing” works in the category of abelian sheaves on
C, for example by working with sections over objects, or by working on the level
of stalks using that C has enough points. To see how to deduce the Freyd-Mitchell
embedding theorem from Lemma 19.9.2 see Remark 19.9.5.

Remark 19.9.4. If A is a “big” abelian category, i.e., if A has a class of objects,
then Lemma 19.9.2 does not work. In this case, given any set of objects E ⊂ Ob(A)
there exists an abelian full subcategory A′ ⊂ A such that Ob(A′) is a set and
E ⊂ Ob(A′). Then one can apply Lemma 19.9.2 to A′. One can use this to prove
that results depending on a diagram chase hold in A.

Remark 19.9.5. Let C be a site. Note that Ab(C) has enough injectives, see
Theorem 19.7.4. (In the case that C has enough points this is straightforward
because p∗I is an injective sheaf if I is an injective Z-module and p is a point.)
Also, Ab(C) has a cogenerator (details omitted). Hence Lemma 19.9.2 proves that
we have a fully faithful, exact embedding A → B where B has a cogenerator and
enough injectives. We can apply this to Aopp and we get a fully faithful exact
functor i : A → D = Bopp where D has enough projectives and a generator. Hence
D has a projective generator P . Set R = MorD(P, P ). Then

A −→ ModR, X 7−→ HomD(P,X).

One can check this is a fully faithful, exact functor. In other words, one retrieves
the Freyd-Mitchell theorem mentioned in Remark 19.9.3 above.

Remark 19.9.6. The arguments proving Lemmas 19.9.1 and 19.9.2 work also for
exact categories, see [Büh10, Appendix A] and [BBD82, 1.1.4]. We quickly review
this here and we add more details if we ever need it in the stacks project.

Let A be an additive category. A kernel-cokernel pair is a pair (i, p) of morphisms
of A with i : A→ B, p : B → C such that i is the kernel of p and p is the cokernel
of i. Given a set E of kernel-cokernel pairs we say i : A → B is an admissible
monomorphism if (i, p) ∈ E for some morphism p. Similarly we say a morphism
p : B → C is an admissible epimorphism if (i, p) ∈ E for some morphism i. The
pair (A, E) is said to be an exact category if the following axioms hold

(1) E is closed under isomorphisms of kernel-cokernel pairs,
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(2) for any object A the morphism 1A is both an admissible epimorphism and
an admissible monomorphism,

(3) admissible monomorphisms are stable under composition,
(4) admissible epimorphisms are stable under composition,
(5) the push-out of an admissible monomorphism i : A→ B via any morphism

A → A′ exist and the induced morphism i′ : A′ → B′ is an admissible
monomorphism, and

(6) the base change of an admissible epimorphism p : B → C via any mor-
phism C ′ → C exist and the induced morphism p′ : B′ → C ′ is an
admissible epimorphism.

Given such a structure let C = (A,Cov) where coverings (i.e., elements of Cov)
are given by admissible epimorphisms. The axioms listed above immediately imply
that this is a site. Consider the functor

F : A −→ Ab(C), X 7−→ hX

exactly as in Lemma 19.9.2. It turns out that this functor is fully faithful, exact,
and reflects exactness. Moreover, any extension of objects in the essential image of
F is in the essential image of F .

19.10. Grothendieck’s AB conditions

This and the next few sections are mostly interesting for “big” abelian categories,
i.e., those categories listed in Categories, Remark 4.2.2. A good case to keep in
mind is the category of sheaves of modules on a ringed site.

Grothendieck proved the existence of injectives in great generality in the paper
[Gro57]. He used the following conditions to single out abelian categories with
special properties.

Definition 19.10.1. Let A be an abelian category. We name some conditions

AB3 A has direct sums,
AB4 A has AB3 and direct sums are exact,
AB5 A has AB3 and filtered colimits are exact.

Here are the dual notions

AB3* A has products,
AB4* A has AB3* and products are exact,
AB5* A has AB3* and filtered limits are exact.

We say an object U of A is a generator if for every N ⊂M , N 6= M in A there exists
a morphism U →M which does not factor through N . We say A is a Grothendieck
abelian category if it has AB5 and a generator.

Discussion: A direct sum in an abelian category is a coproduct. If an abelian
category has direct sums (i.e., AB3), then it has colimits, see Categories, Lemma
4.14.11. Similarly if A has AB3* then it has limits, see Categories, Lemma 4.14.10.
Exactness of direct sums means the following: given an index set I and short exact
sequences

0→ Ai → Bi → Ci → 0, i ∈ I
in A then the sequence

0→
⊕

i∈I
Ai →

⊕
i∈I

Bi →
⊕

i∈I
Ci → 0

http://stacks.math.columbia.edu/tag/079B
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is exact as well. Without assuming AB4 it is only true in general that the sequence
is exact on the right (i.e., taking direct sums is a right exact functor if direct sums
exist). Similarly, exactness of filtered colimits means the following: given a directed
partially ordered set I and a system of short exact sequences

0→ Ai → Bi → Ci → 0

over I in A then the sequence

0→ colimi∈I Ai → colimi∈I Bi → colimi∈I Ci → 0

is exact as well. Without assuming AB5 it is only true in general that the sequence
is exact on the right (i.e., taking colimits is a right exact functor if colimits exist).
A similar explanation holds for AB4* and AB5*.

19.11. Injectives in Grothendieck categories

The existence of a generator implies that given an object M of a Grothendieck
abelian category A there is a set of subobjects. (This may not be true for a general
“big” abelian category.)

Definition 19.11.1. Let A be a Grothendieck abelian category. Let M be an
object of A. The size |M | of M is the cardinality of the set of subobjects of M .

Lemma 19.11.2. Let A be a Grothendieck abelian category. If 0 → M ′ → M →
M ′′ → 0 is a short exact sequence of A, then |M ′|, |M ′′| ≤ |M |.

Proof. Immediate from the definitions. �

Lemma 19.11.3. Let A be a Grothendieck abelian category with generator U .

(1) If |M | ≤ κ, then M is the quotient of a direct sum of at most κ copies of
U .

(2) For every cardinal κ there exists a set of isomorphism classes of objects
M with |M | ≤ κ.

Proof. For (1) choose for every proper subobject M ′ ⊂M a morphism ϕM ′ : U →
M whose image is not contained in M ′. Then

⊕
M ′⊂M ϕM ′ :

⊕
M ′⊂N U → M is

surjective. It is clear that (1) implies (2). �

Proposition 19.11.4. Let A be a Grothendieck abelian category. Let M be an
object of A. Let κ = |M |. If α is an ordinal whose cofinality is bigger than κ, then
M is α-small with respect to injections.

Proof. Please compare with Proposition 19.2.5. We need only show that the map
(19.2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .

So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, because A has AB5 we have

colim f−1(Bβ) = f−1 (colimBβ) = M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).
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However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β

′ ∈ S are contained in f−1(Bα̃). It follows that
f−1(Bα̃) = M . In particular, the map f factors through Bα̃. �

Lemma 19.11.5. Let A be a Grothendieck abelian category with generator U . An
object I of A is injective if and only if in every commutative diagram

M

��

// I

U

??

for M ⊂ U a subobject, the dotted arrow exists.

Proof. Please see Lemma 19.2.6 for the case of modules. Choose an injection
A ⊂ B and a morphism ϕ : A → I. Consider the set S of pairs (A′, ϕ′) consisting
of subobjects A ⊂ A′ ⊂ B and a morphism ϕ′ : A′ → I extending ϕ. Define a
partial ordering on this set in the obvious manner. Choose a totally ordered subset
T ⊂ S. Then

A′ = colimt∈T At
colimt∈T ϕt−−−−−−−→ I

is an upper bound. Hence by Zorn’s lemma the set S has a maximal element
(A′, ϕ′). We claim that A′ = B. If not, then choose a morphism ψ : U → B which
does not factor through A′. Set N = A′ ∩ ψ(U). Set M = ψ−1(N). Then the map

M → N → A′
ϕ′−→ I

can be extended to a morphism χ : U → I. Since χ|Ker(ψ) = 0 we see that χ factors
as

U → Im(ψ)
ϕ′′−−→ I

Since ϕ′ and ϕ′′ agree on N = A′ ∩ Im(ψ) we see that combined the define a
morphism A′ + Im(ψ)→ I contradicting the assumed maximality of A′. �

Theorem 19.11.6. Let A be a Grothendieck abelian category. Then A has func-
torial injective embeddings.

Proof. Please compare with the proof of Theorem 19.2.8. Choose a generator U
of A. For an object M we define M(M) by the following pushout diagram⊕

N⊂U
⊕

ϕ∈Hom(N,M)N
//

��

M

��⊕
N⊂U

⊕
ϕ∈Hom(U,M) U

//M(M).

Note that M → M(N) is a functor and that there exist functorial injective maps
M →M(M). By transfinite induction we define functors Mα(M) for every ordinal
α. Namely, set M0(M) = M . Given Mα(M) set Mα+1(M) = M(Mα(M)). For a
limit ordinal β set

Mβ(M) = colimα<β Mα(M).

Finally, choose an ordinal α whose cofinality is greater than |U |, see Sets, Proposi-
tion 3.7.2. We claim that M →Mα(M) is the desired functorial injective embed-
ding. Namely, if N ⊂ U is a subobject and ϕ : N →Mα(M) is a morphism, then we
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see that ϕ factors through Mα′(M) for some α′ < α by Proposition 19.11.4. By con-
struction of M(−) we see that ϕ extends to a morphism from U into Mα′+1(M) and
hence into Mα(M). By Lemma 19.11.5 we conclude that Mα(M) is injective. �

19.12. K-injectives in Grothendieck categories

The material in this section is taken from the paper [Ser03] authored by Serpé.
This paper generalizes some of the results of [Spa88] by Spaltenstein to general
Grothendieck abelian categories. Our Lemma 19.12.3 is only implicit in the paper
by Serpé. Our approach is to mimic Grothendieck’s proof of Theorem 19.11.6.

Lemma 19.12.1. Let A be a Grothendieck abelian category with generator U . Let
c be the function on cardinals defined by c(κ) = |

⊕
α∈κ U |. If π : M → N is

a surjection then there exists a subobject M ′ ⊂ M which surjects onto N with
|N ′| ≤ c(|N |).

Proof. For every proper subobject N ′ ⊂ N choose a morphism ϕN ′ : U →M such
that U →M → N does not factor through N ′. Set

N ′ = Im
(⊕

N ′⊂N
ϕN ′ :

⊕
N ′⊂N

U −→M
)

Then N ′ works. �

Lemma 19.12.2. Let A be a Grothendieck abelian category. There exists a cardinal
κ such that given any acyclic complex M• we have

(1) if M• is nonzero, there is a nonzero subcomplex N• which is bounded
above, acyclic, and |Nn| ≤ κ,

(2) there exists a surjection of complexes⊕
i∈I

M•i −→M•

where M•i is bounded above, acyclic, and |Mn
i | ≤ κ.

Proof. Choose a generator U of A. Denote c the function of Lemma 19.12.1. Set
κ = sup{cn(|U |), n = 1, 2, 3, . . .}. Let n ∈ Z and let ψ : U → Mn be a morphism.
In order to prove (1) and (2) it suffices to prove there exists a subcomplex N• ⊂M•
which is bounded above, acyclic, and |Nm| ≤ κ, such that ψ factors through Nn.
To do this set Nn = Im(ψ), Nn+1 = Im(U → Mn → Mn+1), and Nm = 0 for
m ≥ n+ 2. Suppose we have constructed Nm ⊂Mm for all m ≥ k such that

(1) d(Nm) ⊂ Nm+1, m ≥ k,
(2) Im(Nm−1 → Nm) = Ker(Nm → Nm+1) for all m ≥ k + 1, and
(3) |Nm| ≤ cmax{n−m,0}(|U |).

for some k ≤ n. Because M• is acyclic, we see that the subobject d−1(Ker(Nk →
Nk+1)) ⊂ Mk−1 surjects onto Ker(Nk → Nk+1). Thus we can choose Nk−1 ⊂
Mk−1 surjecting onto Ker(Nk → Nk+1) with |Nk−1| ≤ cn−k+1(|U |) by Lemma
19.12.1. The proof is finished by induction on k. �

Lemma 19.12.3. Let A be a Grothendieck abelian category. Let κ be a cardinal
as in Lemma 19.12.2. Suppose that I• is a complex such that

(1) each Ij is injective, and
(2) for every bounded above acyclic complex M• such that |Mn| ≤ κ we have

HomK(A)(M
•, I•) = 0.

Then I• is an K-injective complex.
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Proof. Let M• be an acyclic complex. We are going to construct by induction
on the ordinal α an acyclic subcomplex K•α ⊂ M• as follows. For α = 0 we set
N•0 = 0. For α > 0 we proceed as follows:

(1) If α = β + 1 and K•β = M• then we choose K•α = K•β .

(2) If α = β + 1 and K•β 6= M• then M•/K•β is a nonzero acyclic complex.

We choose a subcomplex N•α ⊂M•/K•β as in Lemma 19.12.2. Finally, we
let K•α ⊂M• be the inverse image of N•α.

(3) If α is a limit ordinal we set N•β = colimN•α.

It is clear that M• = K•α for a suitably large ordinal α. We will prove that

HomK(A)(K
•
α, I
•)

is zero by transfinite induction on α. It holds for α = 0 since K•0 is zero. Suppose
it holds for β and α = β+ 1. In case (1) of the list above the result is clear. In case
(2) there is a short exact sequence of complexes

0→ K•β → K•α → N•α → 0

Since each component of I• is injective we see that we obtain an exact sequence

HomK(A)(K
•
β , I
•)→ HomK(A)(K

•
α, I
•)→ HomK(A)(N

•
α, I
•)

By induction the term on the left is zero and by assumption on I• the term on the
right is zero. Thus the middle group is zero too. Finally, suppose that α is a limit
ordinal. Then we see that

Hom•(K•α, I
•) = limβ<α Hom•(K•β , I

•)

with notation as in More on Algebra, Section 15.54. These complexes compute
morphisms in K(A) by More on Algebra, Equation (15.54.0.1). Note that the
transition maps in the system are surjective because Ij is surjective for each j.
Moreover, for a limit ordinal α we have equality of limit and value (see displayed
formula above). Thus we may apply Homology, Lemma 12.27.8 to conclude. �

Lemma 19.12.4. Let A be a Grothendieck abelian category. Let (K•i )i∈I be a
set of acyclic complexes. There exists a functor M• 7→ M•(M•) and a natural
transformation jM• : M• →M•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every i ∈ I and w : K•i →M• the morphism jM• ◦ w is homotopic to

zero.

Proof. For every i ∈ I choose a (termwise) injective map of complexes K•i → L•i
which is homotopic to zero with L•i quasi-isomorphic to zero. For example, take L•i
to be the cone on the identity of K•i . We define M•(M•) by the following pushout
diagram ⊕

i∈I
⊕

w:K•i→M•
K•i

//

��

M•

��⊕
i∈I
⊕

w:K•i→M•
L•i

//M•(M•).

Then M• →M•(M•) is a functor. The right vertical arrow defines the functorial
injective map jM• . The cokernel of jM• is isomorphic to the direct sum of the
cokernels of the maps K•i → L•i hence acyclic. Thus jM• is a quasi-isomorphism.
Part (2) holds by construction. �
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Lemma 19.12.5. Let A be a Grothendieck abelian category. There exists a functor
M• 7→ N•(M•) and a natural transformation jM• : M• → N•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every n ∈ Z the map Mn → Nn(M•) factors through a subobject

In ⊂ Nn(M•) where In is an injective object of A.

Proof. Choose a functorial injective embeddings iM : M → I(M), see Theorem
19.11.6. For every complex M• denote J•(M•) the complex with terms Jn(M•) =
I(Mn)⊕ I(Mn+1) and differential

dJ•(M•) =

(
0 1
0 0

)
There exists a canonical injective map of complexes uM• : M• → J•(M•) by
mapping Mn to I(Mn)⊕I(Mn+1) via the maps iMn : Mn → I(Mn) and iMn+1 ◦d :
Mn →Mn+1 → I(Mn+1). Hence a short exact sequence of complexes

0→M•
uM•−−−→ J•(M•)

vM•−−−→ Q•(M•)→ 0

functorial in M•. Set

N•(M•) = C(vM•)
•[−1].

Note that

Nn(M•) = Qn−1(M•)⊕ Jn(M•)

with differential (
−dn−1

Q•(M•) −vnM•
0 dnJ•(M)

)
Hence we see that there is a map of complexes jM• : M• → N•(M•) induced by u.
It is injective and factors through an injective subobject by construction. The map
jM• is a quasi-isomorphism as one can prove by looking at the long exact sequence
of cohomology associated to the short exact sequences of complexes above. �

Theorem 19.12.6. Let A be a Grothendieck abelian category. For every complex
M• there exists a quasi-isomorphism M• → I• where I• is a K-injective complex.
In fact, we may also assume that In is an injective object of A for all n. More-
over, there exists a functorial injective quasi-isomorphism into such a K-injective
complex.

Proof. Please compare with the proof of Theorem 19.2.8 and Theorem 19.11.6.
Choose a cardinal κ as in Lemmas 19.12.2 and 19.12.3. Choose a set (K•i )i∈I of
bounded above, acyclic complexes such that every bounded above acyclic complex
K• such that |Kn| ≤ κ is isomorphic to K•i for some i ∈ I. This is possible by
Lemma 19.11.3. Denote M•(−) the functor constructed in Lemma 19.12.4. Denote
N•(−) the functor constructed in Lemma 19.12.5. Both of these functors come
with injective transformations id→M and id→ N.

By transfinite induction we define a sequence of functors Tα(−) and corresponding
transformations id → Tα. Namely we set T0(M•) = M•. If Tα is given then we
set

Tα+1(M•) = N•(M•(Tα(M•)))

If β is a limit ordinal we set

Tβ(M•) = colimα<β Tα(M•)

http://stacks.math.columbia.edu/tag/079N
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The transition maps of the system are injective quasi-isomorphisms. By AB5 we
see that the colimit is still quasi-isomorphic to M•. We claim that M• → Tα(M•)
does the job if the cofinality of α is larger than max(κ, |U |) where U is a generator
of A. Namely, it suffices to check conditions (1) and (2) of Lemma 19.12.3.

For (1) we use the criterion of Lemma 19.11.5. Suppose that M ⊂ U and ϕ : M →
Tn
α(M•) is a morphism for some n ∈ Z. By Proposition 19.11.4 we see that ϕ

factor through Tn
α′(M

•) for some α′ < α. In particular, by the construction of the
functor N•(−) we see that ϕ factors through an injective object of A which shows
that ϕ lifts to a morphism on U .

For (2) let w : K• → Tα(M•) be a morphism of complexes where K• is a bounded
above acyclic complex such that |Kn| ≤ κ. Then K• ∼= K•i for some i ∈ I.
Moreover, by Proposition 19.11.4 once again we see that w factor through Tn

α′(M
•)

for some α′ < α. In particular, by the construction of the functor M•(−) we see
that w is homotopic to zero. This finishes the proof. �

19.13. Additional remarks on Grothendieck abelian categories

In this section we put some results on Grothendieck abelian categories which are
folklore.

Lemma 19.13.1. Let A be a Grothendieck abelian category. Let F : Aopp → Sets
be a functor. Then F is representable if and only if F commutes with colimits, i.e.,

F (colimiNi) = limF (Ni)

for any diagram I → A, i ∈ I.

Proof. If F is representable, then it commutes with colimits by definition of col-
imits.

Assume that F commutes with colimits. Then F (M ⊕ N) = F (M)
∏
F (N) and

we can use this to define a group structure on F (M). Hence we get F : A → Ab
which is additive and right exact, i.e., transforms a short exact sequence 0→ K →
L → M → 0 into an exact sequence F (K) ← F (L) ← F (M) ← 0 (compare with
Homology, Section 12.7).

Let U be a generator for A. Set A =
⊕

s∈F (U) U . Let suniv = (s)s∈F (U) ∈ F (A) =∏
s∈F (U) F (U). Let A′ ⊂ A be the largest subobject such that suniv restricts to zero

on A′. This exists because A is a grothendieck category and because F commutes
with colimits. Because F commutes with colimits there exists a unique element
suniv ∈ F (A/A′) which maps to suniv in F (A). We claim that A/A′ represents F ,
in other words, the Yoneda map

suniv : hA/A′ −→ F

is an isomorphism. Let M ∈ Ob(A) and s ∈ F (M). Consider the surjection

cM : AM =
⊕

ϕ∈HomA(U,M)
U −→M.

This gives F (cM )(s) = (sϕ) ∈
∏
ϕ F (U). Consider the map

ψ : AM =
⊕

ϕ∈HomA(U,M)
U −→

⊕
s∈F (U)

U = A

http://stacks.math.columbia.edu/tag/07D7
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which maps the summand corresponding to ϕ to the summand corresponding to
sϕ by the identity map on U . Then suniv maps to (sϕ)ϕ by construction. in other
words the right square in the diagram

A′ // A
suniv

// F

K //

?

OO

AM

ψ

OO

// M

s

OO

commutes. Let K = Ker(AM → M). Since s restricts to zero on K we see
that ψ(K) ⊂ A′ by definition of A′. Hence there is an induced morphism M →
A/A′. This construction gives an inverse to the map hA/A′(M) → F (M) (details
omitted). �

Lemma 19.13.2. A Grothendieck abelian category has Ab3*.

Proof. Let Mi, i ∈ I be a family of objects of A indexed by a set I. The functor
F =

∏
i∈I hMi

commutes with colimits. Hence Lemma 19.13.1 applies. �

Remark 19.13.3. In the chapter on derived categories we consistently work with
“small” abelian categories (as is the convention in the Stacks project). For a “big”
abelian category A it isn’t clear that the derived category D(A) exists because
it isn’t clear that morphisms in the derived category are sets. In general this
isn’t true, see Examples, Lemma 82.52.1. However, if A is a Grothendieck abelian
category, and given K•, L• in K(A), then by Theorem 19.12.6 there exists a quasi-
isomorphism L• → I• to a K-injective complex I• and Derived Categories, Lemma
13.29.2 shows that

HomD(A)(K
•, L•) = HomK(A)(K

•, I•)

which is a set. Some examples of Grothendieck abelian categories are the category
of modules over a ring, or more generally the category of sheaves of modules on a
ringed site.

Lemma 19.13.4. Let A be a Grothendieck abelian category. Then

(1) D(A) has both direct sums and products,
(2) direct sums are obtained by taking termwise direct sums of any complexes,
(3) products are obtained by taking termwise products of K-injective com-

plexes.

Proof. Let K•i , i ∈ I be a family of objects of D(A) indexed by a set I. We claim
that the termwise direct sum

⊕
i∈I K

•
i is a direct sum in D(A). Namely, let I• be

a K-injective complex. Then we have

HomD(A)(
⊕

i∈I
K•i , I

•) = HomK(A)(
⊕

i∈I
K•i , I

•)

=
∏

i∈I
HomK(A)(K

•
i , I
•)

=
∏

i∈I
HomD(A)(K

•
i , I
•)

as desired. This is sufficient since any complex can be represented by a K-injective
complex by Theorem 19.12.6. To construct the product, choose a K-injective res-
olution K•i → I•i for each i. Then we claim that

∏
i∈I I

•
i is a product in D(A).

http://stacks.math.columbia.edu/tag/07D8
http://stacks.math.columbia.edu/tag/079Q
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Namely, let K• be an complex. Note that a product of K-injective complexes is
K-injective (follows immediately from the definition). Thus we have

HomD(A)(K
•,
∏

i∈I
I•i ) = HomK(A)(K

•,
∏

i∈I
I•i )

=
∏

i∈I
HomK(A)(K

•, I•i )

=
∏

i∈I
HomD(A)(K

•, I•i )

which proves the result. �

Remark 19.13.5. Let R be a ring. Suppose that Mn, n ∈ Z are R-modules.
Denote En = Mn[−n] ∈ D(R). We claim that E =

⊕
Mn[−n] is both the direct

sum and the product of the objects En in D(R). To see that it is the direct sum,
take a look at the proof of Lemma 19.13.4. To see that it is the direct product,
take injective resolutions Mn → I•n. By the proof of Lemma 19.13.4 we have∏

En =
∏

I•n[−n]

in D(R). Since products in ModR are exact, we see that
∏
I•n is quasi-isomorphic to

E. This works more generally in D(A) where A is a Grothendieck abelian category
with Ab4*.

Lemma 19.13.6. Let F : A → B be an additive functor of abelian categories.
Assume

(1) A is a Grothendieck abelian category,
(2) B has exact countable products, and
(3) F commutes with countable products.

Then RF : D(A)→ D(B) commutes with derived limits.

Proof. Observe that RF exists as A has enough K-injectives (Theorem 19.12.6 and
Derived Categories, Lemma 13.29.5). The statement means that if K = R limKn,
then RF (K) = R limRF (Kn). See Derived Categories, Definition 13.32.1 for no-
tation. Since RF is an exact functor of triangulated categories it suffices to see
that RF commutes with countable products of objects of D(A). In the proof of
Lemma 19.13.4 we have seen that products in D(A) are computed by taking prod-
ucts of K-injective complexes and moreover that a product of K-injective complexes
is K-injective. Moreover, in Derived Categories, Lemma 13.32.2 we have seen that
products in D(B) are computed by taking termwise products. Since RF is com-
puted by applying F to a K-injective representative and since we’ve assumed F
commutes with countable products, the lemma follows. �
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CHAPTER 20

Cohomology of Sheaves

20.1. Introduction

In this document we work out some topics on cohomology of sheaves on topological
spaces. We mostly work in the generality of modules over a sheaf of rings and we
work with morphisms of ringed spaces. To see what happens for sheaves on sites
take a look at the chapter Cohomology on Sites, Section 21.1. Basic references are
[God73] and [Ive86].

20.2. Topics

Here are some topics that should be discussed in this chapter, and have not yet
been written.

(1) Ext-groups.
(2) Ext sheaves.
(3) Tor functors.
(4) Derived pullback for morphisms between ringed spaces.
(5) Cup-product.
(6) Etc, etc, etc.

20.3. Cohomology of sheaves

Let X be a topological space. Let F be a abelian sheaf. We know that the category
of abelian sheaves on X has enough injectives, see Injectives, Lemma 19.4.1. Hence
we can choose an injective resolution F [0]→ I•. As is customary we define

(20.3.0.1) Hi(X,F) = Hi(Γ(X, I•))
to be the ith cohomology group of the abelian sheaf F . The family of functors
Hi((X,−) forms a universal δ-functor from Ab(X)→ Ab.

Let f : X → Y be a continuous map of topological spaces. With F [0] → I• as
above we define

(20.3.0.2) Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Ab(X)→ Ab(Y ).

Let (X,OX) be a ringed space. Let F be an OX -module. We know that the
category of OX -modules on X has enough injectives, see Injectives, Lemma 19.5.1.
Hence we can choose an injective resolution F [0]→ I•. As is customary we define

(20.3.0.3) Hi(X,F) = Hi(Γ(X, I•))
to be the ith cohomology group of F . The family of functors Hi((X,−) forms a
universal δ-functor from Mod(OX)→ ModOX(X).

1441
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Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. With F [0] → I• as
above we define

(20.3.0.4) Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Mod(OX)→ Mod(OY ).

20.4. Derived functors

We briefly explain an approach to right derived functors using resolution functors.
Let (X,OX) be a ringed space. The category Mod(OX) is abelian, see Modules,
Lemma 17.3.1. In this chapter we will write

K(X) = K(OX) = K(Mod(OX)) and D(X) = D(OX) = D(Mod(OX)).

and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 13.8.1 and Definition 13.11.3. By Derived Cate-
gories, Remark 13.24.3 there exists a resolution functor

j = jX : K+(Mod(OX)) −→ K+(I)

where I is the strictly full additive subcategory of Mod(OX) consisting of injective
sheaves. For any left exact functor F : Mod(OX) → B into any abelian category
B we will denote RF the right derived functor described in Derived Categories,
Section 13.20 and constructed using the resolution functor jX just described:

(20.4.0.5) RF = F ◦ j′X : D+(X) −→ D+(B)

see Derived Categories, Lemma 13.25.1 for notation. Note that we may think of
RF as defined on Mod(OX), Comp+(Mod(OX)), K+(X), or D+(X) depending on
the situation. According to Derived Categories, Definition 13.17.2 we obtain the
ith right derived functor

(20.4.0.6) RiF = Hi ◦RF : Mod(OX) −→ B
so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 13.20.4.

Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for bounded versions. For any open
U ⊂ X we have a left exact functor Γ(U,−) : Mod(OX) −→ ModOX(U) which gives
rise to

(20.4.0.7) RΓ(U,−) : D+(X) −→ D+(OX(U))

by the discussion above. We set Hi(U,−) = RiΓ(U,−). If U = X we recover
(20.3.0.3). If f : X → Y is a morphism of ringed spaces, then we have the left exact
functor f∗ : Mod(OX) −→ Mod(OY ) which gives rise to the derived pushforward

(20.4.0.8) Rf∗ : D+(X) −→ D+(Y )

The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (20.3.0.4). The two displayed functors above are
exact functor of derived categories.

Abuse of notation: When the functor Rf∗, or any other derived functor, is
applied to a sheaf F on X or a complex of sheaves it is understood that F has been
replaced by a suitable resolution of F . To facilitate this kind of operation we will
say, given an object F• ∈ D(X), that a bounded below complex I• of injectives of
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Mod(OX) represents F• in the derived category if there exists a quasi-isomorphism
F• → I•. In the same vein the phrase “let α : F• → G• be a morphism of D(X)”
does not mean that α is represented by a morphism of complexes. If we have an
actual morphism of complexes we will say so.

20.5. First cohomology and torsors

Definition 20.5.1. Let X be a topological space. Let G be a sheaf of (possibly
non-commutative) groups on X. A torsor, or more precisely a G-torsor, is a sheaf
of sets F on X endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive, and

(2) for every x ∈ X the stalk Fx is nonempty.

A morphism of G-torsors F → F ′ is simply a morphism of sheaves of sets compatible
with the G-actions. The trivial G-torsor is the sheaf G endowed with the obvious
left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 20.5.2. Let X be a topological space. Let G be a sheaf of (possibly non-
commutative) groups on X. A G-torsor F is trivial if and only if F(X) 6= ∅.

Proof. Omitted. �

Lemma 20.5.3. Let X be a topological space. Let H be an abelian sheaf on X.
There is a canonical bijection between the set of isomorphism classes of H-torsors
and H1(X,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is the
sheafification of the rule which associates to U ⊂ X open the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by

the local section of the form [s] − [s′]. There is a canonical map a : Ker(σ) → H
which maps [s] − [s′] 7→ h where h is the local section of H such that h · s = s′.
Consider the pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(X,H) by applying the boundary operator to 1 ∈ H0(X,Z).

Conversely, given ξ ∈ H1(X,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

http://stacks.math.columbia.edu/tag/02FO
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The element ξ is the image of a global section q ∈ H0(X,Q) because H1(X, I) = 0
(see Derived Categories, Lemma 13.20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a torsor.

We omit the verification that the two constructions given above are mutually in-
verse. �

20.6. First cohomology and invertible sheaves

The Picard group of a ringed space is defined in Modules, Section 17.21.

Lemma 20.6.1. Let (X,OX) be a ringed space. There is a canonical isomorphism

H1(X,O∗X) = Pic(X).

of abelian groups.

Proof. Let L be an invertible OX -module. Consider the presheaf L∗ defined by
the rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗X(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗X(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally
by the very definition of an invertible sheaf. In other words we see that L∗ is a
O∗X -torsor. Thus we get a map

invertible sheaves on (X,OX)
up to isomorphism

−→ O∗X -torsors
up to isomorphism

We omit the verification that this is a homomorphism of abelian groups. By Lemma
20.5.3 the right hand side is canonically bijective to H1(X,O∗X). Thus we have to
show this map is injective and surjective.

Injective. If the torsor L∗ is trivial, this means by Lemma 20.5.2 that L∗ has a
global section. Hence this means exactly that L ∼= OX is the neutral element in
Pic(X).

Surjective. Let F be an O∗X -torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×OX(U))/O∗X(U)

where the action of f ∈ O∗X(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of
OX -modules by setting (s, g) + (s′, g′) = (s, g + (s′/s)g′) where s′/s is the local
section f of O∗X such that fs = s′, and h(s, g) = (s, hg) for h a local section of OX .

We omit the verification that the sheafification L = L#
1 is an invertible OX -module

whose associated O∗X -torsor L∗ is isomorphic to F . �

20.7. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an open.

Lemma 20.7.1. Let X be a ringed space. Let U ⊂ X be an open subspace.

(1) If I is an injective OX-module then I|U is an injective OU -module.
(2) For any sheaf of OX-modules F we have Hp(U,F) = Hp(U,F|U ).

http://stacks.math.columbia.edu/tag/09NU
http://stacks.math.columbia.edu/tag/01E1
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Proof. Denote j : U → X the open immersion. Recall that the functor j−1 of
restriction to U is a right adjoint to the functor j! of extension by 0, see Sheaves,
Lemma 6.31.8. Moreover, j! is exact. Hence (1) follows from Homology, Lemma
12.25.1.

By definition Hp(U,F) = Hp(Γ(U, I•)) where F → I• is an injective resolution
in Mod(OX). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(Γ(U, I•|U )). Of course Γ(U,F) =
Γ(U,F|U ) for any sheaf F on X. Hence the equality in (2). �

Let X be a ringed space. Let F be a sheaf of OX -modules. Let U ⊂ V ⊂ X be
open subsets. Then there is a canonical restriction mapping

(20.7.1.1) Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)

The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of OX -modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 20.12.3.

Lemma 20.7.2. Let X be a ringed space. Let F be a sheaf of OX-modules. Let
U ⊂ X be an open subspace. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists an
open covering U =

⋃
i∈I Ui such that ξ|Ui = 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) =
Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex I•
is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves. Since

ξ̃ is a section of the kernel sheaf over U we conclude there exists an open covering
U =

⋃
i∈I Ui such that ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui).

By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. �

Lemma 20.7.3. Let f : X → Y be a morphism of ringed spaces. Let F be a
OX-module. The sheaves Rif∗F are the sheaves associated to the presheaves

V 7−→ Hi(f−1(V ),F)

with restriction mappings as in Equation (20.7.1.1). There is a similar statement
for Rif∗ applied to a bounded below complex F•.

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the
ith cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .
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By definition of the abelian category structure on OY -modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))

Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to

Ker(Ii(f−1(V ))→ Ii+1(f−1(V )))

Im(Ii−1(f−1(V ))→ Ii(f−1(V )))

which is equal to Hi(f−1(V ),F) and we win. �

Lemma 20.7.4. Let f : X → Y be a morphism of ringed spaces. Let F be an OX-
module. Let V ⊂ Y be an open subspace. Denote g : f−1(V ) → V the restriction
of f . Then we have

Rpg∗(F|f−1(V )) = (Rpf∗F)|V

There is a similar statement for the derived image Rf∗F• where F• is a bounded
below complex of OX-modules.

Proof. First proof. Apply Lemmas 20.7.3 and 20.7.1 to see the displayed equality.
Second proof. Choose an injective resolution F → I• and use that F|f−1(V ) →
I•|f−1(V ) is an injective resolution also. �

Remark 20.7.5. Here is a different approach to the proofs of Lemmas 20.7.2 and
20.7.3 above. Let (X,OX) be a ringed space. Let iX : Mod(OX) → Mod(OX) be
the inclusion functor and let # be the sheafification functor. Recall that iX is left
exact and # is exact.

(1) First prove Lemma 20.12.3 below which says that the right derived func-
tors of iX are given by RpiXF = Hp(F). Here is another proof: The
equality is clear for p = 0. Both (RpiX)p≥0 and (Hp)p≥0 are delta func-
tors vanishing on injectives, hence both are universal, hence they are iso-
morphic. See Homology, Section 12.11.

(2) A restatement of Lemma 20.7.2 is that (Hp(F))# = 0, p > 0 for any sheaf
of OX -modules F . To see this is true, use that # is exact so

(Hp(F))# = (RpiXF)# = Rp(# ◦ iX)(F) = 0

because # ◦ iX is the identity functor.
(3) Let f : X → Y be a morphism of ringed spaces. Let F be an OX -module.

The presheaf V 7→ Hp(f−1V,F) is equal to Rp(iY ◦ f∗)F . You can prove
this by noticing that both give universal delta functors as in the argument
of (1) above. Hence Lemma 20.7.3 says that Rpf∗F = (Rp(iY ◦ f∗)F)#.
Again using that # is exact a that # ◦ iY is the identity functor we see
that

Rpf∗F = Rp(# ◦ iY ◦ f∗)F = (Rp(iY ◦ f∗)F)#

as desired.
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20.8. Projection formula

In this section we collect variants of the projection formula. The most basic version
is Lemma 20.8.2.

Lemma 20.8.1. Let X be a ringed space. Let I be an injective OX-module. Let
E be an OX-module. Assume E is finite locally free on X, see Modules, Definition
17.14.1. Then E ⊗OX I is an injective OX-module.

Proof. This is true because under the assumptions of the lemma we have

HomOX (F , E ⊗OX I) = HomOX (F ⊗OX E∧, I)

where E∧ = HomOX (E ,OX) is the dual of E which is finite locally free also. Since
tensoring with a finite locally free sheaf is an exact functor we win by Homology,
Lemma 12.23.2. �

Lemma 20.8.2. Let f : X → Y be a morphism of ringed spaces. Let F be an
OX-module. Let E be an OY -module. Assume E is finite locally free on Y , see
Modules, Definition 17.14.1. Then there exist isomorphisms

E ⊗OY Rqf∗F −→ Rqf∗(f
∗E ⊗OX F)

for all q ≥ 0. In fact there exists an isomorphism

E ⊗OY Rf∗F −→ Rf∗(f
∗E ⊗OX F)

in D+(Y ) functorial in F .

Proof. Choose an injective resolution F → I• on X. Note that f∗E is finite locally
free also, hence we get a resolution

f∗E ⊗OX F −→ f∗E ⊗OX I•

which is an injective resolution by Lemma 20.8.1. Apply f∗ to see that

Rf∗(f
∗E ⊗OX F) = f∗(f

∗E ⊗OX I•).
Hence the lemma follows if we can show that f∗(f

∗E ⊗OX F) = E ⊗OY f∗(F)
functorially in the OX -module F . This is clear when E = O⊕nY , and follows in
general by working locally on Y . Details omitted. �

20.9. Mayer-Vietoris

Below will construct the Čech-to-cohomology spectral sequence, see Lemma 20.12.4.
A special case of that spectral sequence is the Mayer-Vietoris long exact sequence.
Since it is such a basic, useful and easy to understand variant of the spectral
sequence we treat it here separately.

Lemma 20.9.1. Let X be a ringed space. Let U ′ ⊂ U ⊂ X be open subspaces. For
any injective OX-module I the restriction mapping I(U)→ I(U ′) is surjective.

Proof. Let j : U → X and j′ : U ′ → X be the open immersions. Recall that j!OU
is the extension by zero of OU = OX |U , see Sheaves, Section 6.31. Since j! is a left
adjoint to restriction we see that for any sheaf F of OX -modules

HomOX (j!OU ,F) = HomOU (OU ,F|U ) = F(U)

see Sheaves, Lemma 6.31.8. Similarly, the sheaf j′!OU ′ represents the functor F 7→
F(U ′). Moreover there is an obvious canonical map of OX -modules

j′!OU ′ −→ j!OU
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which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 4.3.5). By the description of the stalks of the sheaves j′!OU ′ ,
j!OU we see that the displayed map above is injective (see lemma cited above).
Hence if I is an injective OX -module, then the map

HomOX (j!OU , I) −→ HomOX (j′!OU ′ , I)

is surjective, see Homology, Lemma 12.23.2. Putting everything together we obtain
the lemma. �

Lemma 20.9.2 (Mayer-Vietoris). Let X be a ringed space. Suppose that X = U∪V
is a union of two open subsets. For every OX-module F there exists a long exact
cohomology sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

This long exact sequence is functorial in F .

Proof. The sheaf condition says that the kernel of (1,−1) : F(U) ⊕ F(V ) →
F(U ∩ V ) is equal to the image of F(X) by the first map for any abelian sheaf F .
Lemma 20.9.1 above implies that the map (1,−1) : I(U) ⊕ I(V ) → I(U ∩ V ) is
surjective whenever I is an injective OX -module. Hence if F → I• is an injective
resolution of F , then we get a short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

Taking cohomology gives the result (use Homology, Lemma 12.12.12). We omit the
proof of the functoriality of the sequence. �

Lemma 20.9.3 (Relative Mayer-Vietoris). Let f : X → Y be a morphism of
ringed spaces. Suppose that X = U ∪ V is a union of two open subsets. Denote
a = f |U : U → Y , b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every
OX-module F there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F . We claim that we get a short
exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

Namely, for any open W ⊂ Y , and for any n ≥ 0 the corresponding sequence of
groups of sections over W

0→ In(f−1(W ))→ In(U∩f−1(W ))⊕In(V ∩f−1(W ))→ In(U∩V ∩f−1(W ))→ 0

was shown to be short exact in the proof of Lemma 20.9.2. The lemma follows by
taking cohomology sheaves and using the fact that I•|U is an injective resolution
of F|U and similarly for I•|V , I•|U∩V see Lemma 20.7.1. �
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20.10. The Čech complex and Čech cohomology

Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering, see

Topology, Basic notion (10). As is customary we denote Ui0...ip = Ui0 ∩ . . . ∩ Uip
for the (p+ 1)-fold intersection of members of U . Let F be an abelian presheaf on
X. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0...ip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in F(Ui0...ip).

Note that if s ∈ Č1(U ,F) and i, j ∈ I then sij and sji are both elements of
F(Ui∩Uj) but there is no imposed relation between sij and sji. In other words, we
are not working with alternating cochains (these will be defined in Section 20.24).
We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(20.10.0.1) d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 20.10.1. Let X be a topological space. Let U : U =
⋃
i∈I Ui be

an open covering. Let F be an abelian presheaf on X. The complex Č•(U ,F)
is the Čech complex associated to F and the open covering U . Its cohomology
groups Hi(Č•(U ,F)) are called the Čech cohomology groups associated to F and
the covering U . They are denoted Ȟi(U ,F).

Lemma 20.10.2. Let X be a topological space. Let F be an abelian presheaf on
X. The following are equivalent

(1) F is an abelian sheaf and
(2) for every open covering U : U =

⋃
i∈I Ui the natural map

F(U)→ Ȟ0(U ,F)

is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every open covering. �

20.11. Čech cohomology as a functor on presheaves

Warning: In this section we work almost exclusively with presheaves and categories
of presheaves and the results are completely wrong in the setting of sheaves and
categories of sheaves!

Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering. Let F be a

presheaf of OX -modules. We have the Čech complex Č•(U ,F) of F just by thinking
of F as a presheaf of abelian groups. However, each term Čp(U ,F) has a natural
structure of a OX(U)-module and the differential is given by OX(U)-module maps.
Moreover, it is clear that the construction

F 7−→ Č•(U ,F)

is functorial in F . In fact, it is a functor

(20.11.0.1) Č•(U ,−) : PMod(OX) −→ Comp+(ModOX(U))
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see Derived Categories, Definition 13.8.1 for notation. Recall that the category
of bounded below complexes in an abelian category is an abelian category, see
Homology, Lemma 12.12.9.

Lemma 20.11.1. The functor given by Equation (20.11.0.1) is an exact functor
(see Homology, Lemma 12.7.1).

Proof. For any open W ⊂ U the functor F 7→ F(W ) is an additive exact functor
from PMod(OX) to ModOX(U). The terms Čp(U ,F) of the complex are products of
these exact functors and hence exact. Moreover a sequence of complexes is exact
if and only if the sequence of terms in a given degree is exact. Hence the lemma
follows. �

Lemma 20.11.2. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open

covering. The functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category
of presheaves of OX-modules to the category of OX(U)-modules (see Homology,
Definition 12.11.1).

Proof. By Lemma 20.11.1 a short exact sequence of presheaves of OX -modules
0 → F1 → F2 → F3 → 0 is turned into a short exact sequence of complexes of
OX(U)-modules. Hence we can use Homology, Lemma 12.12.12 to get the boundary
maps δF1→F2→F3

: Ȟn(U ,F3) → Ȟn+1(U ,F1) and a corresponding long exact
sequence. We omit the verification that these maps are compatible with maps
between short exact sequences of presheaves. �

In the formulation of the following lemma we use the functor jp! of extension by 0
for presheaves of modules relative to an open immersion j : U → X. See Sheaves,
Section 6.31. For any open W ⊂ X and any presheaf G of OX |U -modules we have

(jp!G)(W ) =

{
G(W ) if W ⊂ U

0 else.

Moreover, the functor jp! is a left adjoint to the restriction functor see Sheaves,
Lemma 6.31.8. In particular we have the following formula

HomOX (jp!OU ,F) = HomOU (OU ,F|U ) = F(U).

Since the functor F 7→ F(U) is an exact functor on the category of presheaves we
conclude that the presheaf jp!OU is a projective object in the category PMod(OX),
see Homology, Lemma 12.24.2.

Note that if we are given open subsets U ⊂ V ⊂ X with associated open im-
mersions jU , jV , then we have a canonical map (jU )p!OU → (jV )p!OV . It is the
identity on sections over any open W ⊂ U and 0 else. In terms of the identifica-
tion HomOX ((jU )p!OU , (jV )p!OV ) = (jV )p!OV (U) = OV (U) it corresponds to the
element 1 ∈ OV (U).

Lemma 20.11.3. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering.

Denote ji0...ip : Ui0...ip → X the open immersion. Consider the chain complex
K(U)• of presheaves of OX-modules

. . .→
⊕
i0i1i2

(ji0i1i2)p!OUi0i1i2 →
⊕
i0i1

(ji0i1)p!OUi0i1 →
⊕
i0

(ji0)p!OUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map

(ji0...ip+1
)p!OUi0...ip+1

−→ (ji0...̂ij ...ip+1
)p!OUi0...̂ij ...ip+1
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is given by (−1)j times the canonical map. Then there is an isomorphism

HomOX (K(U)•,F) = Č•(U ,F)

functorial in F ∈ Ob(PMod(OX)).

Proof. We saw in the discussion just above the lemma that

HomOX ((ji0...ip)p!OUi0...ip ,F) = F(Ui0...ip).

Hence we see that it is indeed the case that the direct sum⊕
i0...ip

(ji0...ip)p!OUi0...ip

represents the functor

F 7−→
∏

i0...ip
F(Ui0...ip).

Hence by Categories, Yoneda Lemma 4.3.5 we see that there is a complex K(U)•
with terms as given. It is a simple matter to see that the maps are as given in the
lemma. �

Lemma 20.11.4. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

OU ⊂ OX be the image presheaf of the map
⊕
jp!OUi → OX . The chain complex

K(U)• of presheaves of Lemma 20.11.3 above has homology presheaves

Hi(K(U)•) =

{
0 if i 6= 0
OU if i = 0

Proof. Consider the extended complex Kext
• one gets by putting OU in degree

−1 with the obvious map K(U)0 =
⊕

i0
(ji0)p!OUi0 → OU . It suffices to show

that taking sections of this extended complex over any open W ⊂ X leads to an
acyclic complex. In fact, we claim that for every W ⊂ X the complex Kext

• (W ) is
homotopy equivalent to the zero complex. Write I = I1 q I2 where W ⊂ Ui if and
only if i ∈ I1.

If I1 = ∅, then the complex Kext
• (W ) = 0 so there is nothing to prove.

If I1 6= ∅, then OU (W ) = OX(W ) and

Kext
p (W ) =

⊕
i0...ip∈I1

OX(W ).

This is true because of the simple description of the presheaves (ji0...ip)p!OUi0...ip .

Moreover, the differential of the complex Kext
• (W ) is given by

d(s)i0...ip =
∑

j=0,...,p+1

∑
i∈I1

(−1)jsi0...ij−1iij ...ip .

The sum is finite as the element s has finite support. Fix an element ifix ∈ I1.
Define a map

h : Kext
p (W ) −→ Kext

p+1(W )

by the rule

h(s)i0...ip+1
=

{
0 if i0 6= i

si1...ip+1
if i0 = ifix
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We will use the shorthand h(s)i0...ip+1
= (i0 = ifix)si1...ip for this. Then we compute

(dh+ hd)(s)i0...ip

=
∑
j

∑
i∈I1

(−1)jh(s)i0...ij−1iij ...ip + (i = i0)d(s)i1...ip

= si0...ip +
∑
j≥1

∑
i∈I1

(−1)j(i0 = ifix)si1...ij−1iij ...ip + (i0 = ifix)d(s)i1...ip

which is equal to si0...ip as desired. �

Lemma 20.11.5. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering

of U ⊂ X. The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as
a δ-functor to the right derived functors of the functor

Ȟ0(U ,−) : PMod(OX) −→ ModOX(U).

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the right derived functor

RȞ0(U ,−) : D+(PMod(OX)) −→ D+(OX(U))

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of presheaves of OX -modules has enough injec-
tives, see Injectives, Proposition 19.8.5. Note that Ȟ0(U ,−) is a left exact functor
from the category of presheaves of OX -modules to the category of OX(U)-modules.
Hence the derived functor and the right derived functor exist, see Derived Cate-
gories, Section 13.20.

Let I be a injective presheaf of OX -modules. In this case the functor HomOX (−, I)
is exact on PMod(OX). By Lemma 20.11.3 we have

HomOX (K(U)•, I) = Č•(U , I).

By Lemma 20.11.4 we have that K(U)• is quasi-isomorphic to OU [0]. Hence by
the exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all
i > 0. Thus the δ-functor (Ȟn, δ) (see Lemma 20.11.2) satisfies the assumptions of
Homology, Lemma 12.11.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 13.20.4 also the sequence RiȞ0(U ,−) forms a uni-
versal δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma
12.11.5 we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most appli-
cations and the reader is suggested to skip the rest of the proof.

Let F be any presheaf of OX -modules. Choose an injective resolution F → I• in
the category PMod(OX). Consider the double complex A•,• with terms

Ap,q = Čp(U , Iq).
Consider the simple complex sA• associated to this double complex. There is a
map of complexes

Č•(U ,F) −→ sA•

coming from the maps Čp(U ,F)→ Ap,0 = Č•(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ sA•
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coming from the maps Ȟ0(U , Iq) → A0,q = Č0(U , Iq). Both of these maps are
quasi-isomorphisms by an application of Homology, Lemma 12.22.7. Namely, the
columns of the double complex are exact in positive degrees because the Čech
complex as a functor is exact (Lemma 20.11.1) and the rows of the double complex
are exact in positive degrees since as we just saw the higher Čech cohomology
groups of the injective presheaves Iq are zero. Since quasi-isomorphisms become
invertible in D+(OX(U)) this gives the last displayed morphism of the lemma. We
omit the verification that this morphism is functorial. �

20.12. Čech cohomology and cohomology

Lemma 20.12.1. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

I be an injective OX-module. Then

Ȟp(U , I) =

{
I(U) if p = 0

0 if p > 0

Proof. An injective OX -module is also injective as an object in the category
PMod(OX) (for example since sheafification is an exact left adjoint to the inclusion
functor, using Homology, Lemma 12.25.1). Hence we can apply Lemma 20.11.5 (or
its proof) to see the result. �

Lemma 20.12.2. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering.

There is a transformation

Č•(U ,−) −→ RΓ(U,−)

of functors Mod(OX) → D+(OX(U)). In particular this provides canonical maps
Ȟp(U ,F)→ Hp(U,F) for F ranging over Mod(OX).

Proof. Let F be an OX -module. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). There is a map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))
coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))
coming from the map F → I0. We can apply Homology, Lemma 12.22.7 to see that
α is a quasi-isomorphism. Namely, Lemma 20.12.1 implies that the qth row of the
double complex Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible in
D+(OX(U)) and the transformation of the lemma is the composition of β followed
by the inverse of α. We omit the verification that this is functorial. �

Lemma 20.12.3. Let X be a ringed space. Consider the functor i : Mod(OX) →
PMod(OX). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 20.7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an open U are given by

Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

http://stacks.math.columbia.edu/tag/01EP
http://stacks.math.columbia.edu/tag/01EQ
http://stacks.math.columbia.edu/tag/01ER


1454 20. COHOMOLOGY OF SHEAVES

which is the definition of Hp(U,F). �

Lemma 20.12.4. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering.

For any sheaf of OX-modules F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
13.22.2) for the functors

i : Mod(OX)→ PMod(OX) and Ȟ0(U ,−) : PMod(OX)→ ModOX(U).

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 20.10.2. We have that i(I) is
Čech acyclic by Lemma 20.12.1. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as
functors on PMod(OX) by Lemma 20.11.5. Putting everything together gives the
lemma. �

Lemma 20.12.5. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

F be an OX-module. Assume that Hi(Ui0...ip ,F) = 0 for all i > 0, all p ≥ 0 and

all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F) as OX(U)-modules.

Proof. We will use the spectral sequence of Lemma 20.12.4. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q 6= 0. Hence the spectral sequence degenerates at
E2 and the result follows. �

Lemma 20.12.6. Let X be a ringed space. Let

0→ F → G → H → 0

be a short exact sequence of OX-modules. Let U ⊂ X be an open subset. If there
exists a cofinal system of open coverings U of U such that Ȟ1(U ,F) = 0, then the
map G(U)→ H(U) is surjective.

Proof. Take an element s ∈ H(U). Choose an open covering U : U =
⋃
i∈I Ui such

that (a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we
can certainly find a covering such that (b) holds it follows from the assumptions of
the lemma that we can find a covering such that (a) and (b) both hold. Consider
the sections

si0i1 = si1 |Ui0i1 − si0 |Ui0i1 .

Since si lifts s we see that si0i1 ∈ F(Ui0i1). By the vanishing of Ȟ1(U ,F) we can
find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0i1 − ti0 |Ui0i1 .

Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. �

Lemma 20.12.7. Let X be a ringed space. Let F be an OX-module such that

Ȟp(U ,F) = 0

for all p > 0 and any open covering U : U =
⋃
i∈I Ui of an open of X. Then

Hp(U,F) = 0 for all p > 0 and any open U ⊂ X.
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Proof. Let F be a sheaf satisfying the assumption of the lemma. We will indicate
this by saying “F has vanishing higher Čech cohomology for any open covering”.
Choose an embedding F → I into an injective OX -module. By Lemma 20.12.1 I
has vanishing higher Čech cohomology for any open covering. Let Q = I/F so that
we have a short exact sequence

0→ F → I → Q → 0.

By Lemma 20.12.6 and our assumptions this sequence is actually exact as a sequence
of presheaves! In particular we have a long exact sequence of Čech cohomology
groups for any open covering U , see Lemma 20.11.2 for example. This implies
that Q is also an OX -module with vanishing higher Čech cohomology for all open
coverings.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any open U ⊂ X. Since I is injective we have Hn(U, I) = 0 for n > 0
(see Derived Categories, Lemma 13.20.4). By the above we see that H0(U, I) →
H0(U,Q) is surjective and hence H1(U,F) = 0. Since F was an arbitrary OX -
module with vanishing higher Čech cohomology we conclude that also H1(U,Q) = 0
since Q is another of these sheaves (see above). By the long exact sequence this in
turn implies that H2(U,F) = 0. And so on and so forth. �

Lemma 20.12.8. (Variant of Lemma 20.12.7.) Let X be a ringed space. Let B be
a basis for the topology on X. Let F be an OX-module. Assume there exists a set
of open coverings Cov with the following properties:

(1) For every U ∈ Cov with U : U =
⋃
i∈I Ui we have U,Ui ∈ B and every

Ui0...ip ∈ B.
(2) For every U ∈ B the open coverings of U occurring in Cov is a cofinal

system of open coverings of U .
(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective OX -module. By Lemma 20.12.1 I has vanishing higher
Čech cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact
sequence

0→ F → I → Q → 0.

By Lemma 20.12.6 and our assumption (2) this sequence gives rise to an exact
sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

http://stacks.math.columbia.edu/tag/01EW
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for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Čech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Čech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Čech cohomology groups for any open covering U ∈ Cov. This implies that Q is
also an OX -module with vanishing higher Čech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 13.20.4). By the above we see that H0(U, I) → H0(U,Q) is
surjective and hence H1(U,F) = 0. Since F was an arbitrary OX -module with van-
ishing higher Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0
since Q is another of these sheaves (see above). By the long exact sequence this in
turn implies that H2(U,F) = 0. And so on and so forth. �

Lemma 20.12.9. Let f : X → Y be a morphism of ringed spaces. Let I be an
injective OX-module. Then

(1) Ȟp(V, f∗I) = 0 for all p > 0 and any open covering V : V =
⋃
j∈J Vj of

Y .
(2) Hp(V, f∗I) = 0 for all p > 0 and every open V ⊂ Y .

In other words, f∗I is right acyclic for Γ(U,−) (see Derived Categories, Definition
13.16.3) for any U ⊂ X open.

Proof. Set U : f−1(V ) =
⋃
j∈J f

−1(Vj). It is an open covering of X and

Č•(V, f∗I) = Č•(U , I).

This is true because

f∗I(Vj0...jp) = I(f−1(Vj0...jp)) = I(f−1(Vj0) ∩ . . . ∩ f−1(Vjp)) = I(Uj0...jp).

Thus the first statement of the lemma follows from Lemma 20.12.1. The second
statement follows from the first and Lemma 20.12.7. �

The following lemma implies in particular that f∗ : Ab(X) → Ab(Y ) transforms
injective abelian sheaves into injective abelian sheaves.

Lemma 20.12.10. Let f : X → Y be a morphism of ringed spaces. Assume f is
flat. Then f∗I is an injective OY -module for any injective OX-module I.

Proof. In this case the functor f∗ transforms injections into injections (Modules,
Lemma 17.17.2). Hence the result follows from Homology, Lemma 12.25.1. �
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20.13. Flasque sheaves

Here is the definition.

Definition 20.13.1. Let X be a topological space. We say a presheaf of sets F is
flasque or flabby if for every U ⊂ V open in X the restriction map F(V ) → F(U)
is surjective.

We will use this terminology also for abelian sheaves and sheaves of modules if X
is a ringed space. Clearly it suffices to assume the restriction maps F(X)→ F(U)
is surjective for every open U ⊂ X.

Lemma 20.13.2. Let (X,OX) be a ringed space. Then any injective OX-module
is flasque.

Proof. This is a reformulation of Lemma 20.9.1. �

Lemma 20.13.3. Let (X,OX) be a ringed space. Any flasque OX-module is acyclic
for RΓ(X,−) as well as RΓ(U,−) for any open U of X.

Proof. We will prove this using Derived Categories, Lemma 13.16.6. Since every
injective module is flasque we see that we can embed every OX -module into a
flasque module, see Injectives, Lemma 19.4.1. Thus it suffices to show that given a
short exact sequence

0→ F → G → H → 0

with F , G flasque, then H is flasque and the sequence remains short exact after
taking sections on any open of X. In fact, the second statement implies the first.
Thus, let U ⊂ X be an open subspace. Let s ∈ H(U). We will show that we can
lift s to a sequence of G over U . To do this consider the set T of pairs (V, t) where
V ⊂ U is open and t ∈ G(V ) is a section mapping to s|V in H. We put a partial
ordering on T by setting (V, t) ≤ (V ′, t′) if and only if V ⊂ V ′ and t′|V = t. If
(Vα, tα), α ∈ A is a totally ordered subset of T , then V =

⋃
Vα is open and there

is a unique section t ∈ G(V ) restricting to tα over Vα by the sheaf condition on G.
Thus by Zorn’s lemma there exists a maximal element (V, t) in T . We will show
that V = U thereby finishing the proof. Namely, pick any x ∈ U . We can find a
small open neighbourhood W ⊂ U of x and t′ ∈ H(W ) mapping to s|W in H. Then
t′|W∩V − t|W∩V maps to zero in H, hence comes from some section r′ ∈ F(W ∩V ).
Using that F is flasque we find a section r ∈ F(W ) restricting to r′ over W ′ ∩ V .
Modifying t′ by the image of r we may assume that t and t′ restrict to the same
section over W ∩ V . By the sheaf condition of G we can find a section t̃ of G over
W ∪ V restricting to t and t′. By maximality of (V, t) we see that V ∩W = V .
Thus x ∈ V and we are done. �

The following lemma does not hold for flasque presheaves.

Lemma 20.13.4. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let U : U =

⋃
Ui be an open covering. If F is flasque, then Ȟp(U ,F) = 0 for

p > 0.

Proof. The presheaves Hq(F) used in the statement of Lemma 20.12.4 are zero
by Lemma 20.13.3. Hence Ȟp(U,F) = Hp(U,F) = 0 by Lemma 20.13.3 again. �

Lemma 20.13.5. Let (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let F
be a sheaf of OX-modules. If F is flasque, then Rpf∗F = 0 for p > 0.
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Proof. Immediate from Lemma 20.7.3 and Lemma 20.13.3. �

The following lemma can be proved by an elementary induction argument for finite
coverings, compare with the discussion of Čech cohomology in [Vak].

Lemma 20.13.6. Let X be a topological space. Let F be an abelian sheaf on
X. Let U : U =

⋃
i∈I Ui be an open covering. Assume the restriction mappings

F(U) → F(U ′) are surjective for U ′ an arbirtrary union of opens of the form
Ui0...ip . Then Ȟp(U ,F) vanishes for p > 0.

Proof. Let Y be the set of nonempty subsets of I. We will use the lettersA,B,C, . . .
to denote elements of Y , i.e., nonempty subsets of I. For a finite nonempty subset
J ⊂ I let

VJ = {A ∈ Y | J ⊂ A}
This means that V{i} = {A ∈ Y | i ∈ A} and VJ =

⋂
j∈J V{j}. Then VJ ⊂ VK if

and only if J ⊃ K. There is a unique topology on Y such that the collection of
subsets VJ is a basis for the topology on Y . Any open is of the form

V =
⋃

t∈T
VJt

for some family of finite subsets Jt. If Jt ⊂ Jt′ then we may remove Jt′ from the
family without changing V . Thus we may assume there are no inclusions among
the Jt. In this case the minimal elements of V are the sets A = Jt. Hence we can
read off the family (Jt)t∈T from the open V .

We can completely understand open coverings in Y . First, because the elements
A ∈ Y are nonempty subsets of I we have

Y =
⋃

i∈I
V{i}

To understand other coverings, let V be as above and let Vs ⊂ Y be an open
corresponding to the family (Js,t)t∈Ts . Then

V =
⋃

s∈S
Vs

if and only if for each t ∈ T there exists an s ∈ S and ts ∈ Ts such that Jt = Js,ts .
Namely, as the family (Jt)t∈T is minimal, the minimal element A = Jt has to be in
Vs for some s, hence A ∈ VJts for some ts ∈ Ts. But since A is also minimal in Vs
we conclude that Jts = Jt.

Next we map the set of opens of Y to opens of X. Namely, we send Y to U , we
use the rule

VJ 7→ UJ =
⋂

i∈J
Ui

on the opens VJ , and we extend it to arbitrary opens V by the rule

V =
⋃

t∈T
VJt 7→

⋃
t∈T

UJt

The classification of open coverings of Y given above shows that this rule transforms
open coverings into open coverings. Thus we obtain an abelian sheaf G on Y by
setting G(Y ) = F(U) and for V =

⋃
t∈T VJt setting

G(V ) = F
(⋃

t∈T
UJt

)
and using the restriction maps of F .
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With these preliminaries out of the way we can prove our lemma as follows. We
have an open covering V : Y =

⋃
i∈I V{i} of Y . By construction we have an equality

Č•(V,G) = Č•(U ,F)

of Čech complexes. Since the sheaf G is flasque on Y (by our assumption on F in
the statement of the lemma) the vanishing follows from Lemma 20.13.4. �

20.14. The Leray spectral sequence

Lemma 20.14.1. Let f : X → Y be a morphism of ringed spaces. There is a
commutative diagram

D+(X)
RΓ(X,−)

//

Rf∗

��

D+(OX(X))

restriction

��
D+(Y )

RΓ(Y,−) // D+(OY (Y ))

More generally for any V ⊂ Y open and U = f−1(V ) there is a commutative
diagram

D+(X)
RΓ(U,−)

//

Rf∗

��

D+(OX(U))

restriction

��
D+(Y )

RΓ(V,−) // D+(OY (V ))

See also Remark 20.14.2 for more explanation.

Proof. Let Γres : Mod(OX) → ModOY (Y ) be the functor which associates to an

OX -module F the global sections of F viewed as a OY (Y )-module via the map f ] :
OY (Y ) → OX(X). Let restriction : ModOX(X) → ModOY (Y ) be the restriction

functor induced by f ] : OY (Y ) → OX(X). Note that restriction is exact so that
its right derived functor is computed by simply applying the restriction functor, see
Derived Categories, Lemma 13.17.8. It is clear that

Γres = restriction ◦ Γ(X,−) = Γ(Y,−) ◦ f∗
We claim that Derived Categories, Lemma 13.22.1 applies to both compositions.
For the first this is clear by our remarks above. For the second, it follows from
Lemma 20.12.9 which implies that injective OX -modules are mapped to Γ(Y,−)-
acyclic sheaves on Y . �

Remark 20.14.2. Here is a down-to-earth explanation of the meaning of Lemma
20.14.1. It says that given f : X → Y and F ∈ Mod(OX) and given an injective
resolution F → I• we have

RΓ(X,F) is represented by Γ(X, I•)
Rf∗F is represented by f∗I•

RΓ(Y,Rf∗F) is represented by Γ(Y, f∗I•)
the last fact coming from Leray’s acyclicity lemma (Derived Categories, Lemma
13.17.7) and Lemma 20.12.9. Finally, it combines this with the trivial observation
that

Γ(X, I•) = Γ(Y, f∗I•).
to arrive at the commutativity of the diagram of the lemma.
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Lemma 20.14.3. Let X be a ringed space. Let F be an OX-module.

(1) The cohomology groups Hi(U,F) for U ⊂ X open of F computed as an
OX-module, or computed as an abelian sheaf are identical.

(2) Let f : X → Y be a morphism of ringed spaces. The higher direct images
Rif∗F of F computed as an OX-module, or computed as an abelian sheaf
are identical.

There are similar statements in the case of bounded below complexes of OX-modules.

Proof. Consider the morphism of ringed spaces (X,OX)→ (X,ZX) given by the
identity on the underlying topological space and by the unique map of sheaves of
rings ZX → OX . Let F be an OX -module. Denote Fab the same sheaf seen as
an ZX -module, i.e., seen as a sheaf of abelian groups. Let F → I• be an injective
resolution. By Remark 20.14.2 we see that Γ(X, I•) computes both RΓ(X,F) and
RΓ(X,Fab). This proves (1).

To prove (2) we use (1) and Lemma 20.7.3. The result follows immediately. �

Lemma 20.14.4 (Leray spectral sequence). Let f : X → Y be a morphism of
ringed spaces. Let F• be a bounded below complex of OX-modules. There is a
spectral sequence

Ep,q2 = Hp(Y,Rqf∗(F•))
converging to Hp+q(X,F•).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
13.22.2 coming from the composition of functors Γres = Γ(Y,−)◦f∗ where Γres is as
in the proof of Lemma 20.14.1. To see that the assumptions of Derived Categories,
Lemma 13.22.2 are satisfied, see the proof of Lemma 20.14.1 or Remark 20.14.2. �

Remark 20.14.5. The Leray spectral sequence, the way we proved it in Lemma
20.14.4 is a spectral sequence of Γ(Y,OY )-modules. However, it is quite easy to
see that it is in fact a spectral sequence of Γ(X,OX)-modules. For example f
gives rise to a morphism of ringed spaces f ′ : (X,OX) → (Y, f∗OX). By Lemma
20.14.3 the terms Ep,qr of the Leray spectral sequence for an OX -module F and f
are identical with those for F and f ′ at least for r ≥ 2. Namely, they both agree
with the terms of the Leray spectral sequence for F as an abelian sheaf. And since
(f∗OX)(Y ) = OX(X) we see the result. It is often the case that the Leray spectral
sequence carries additional structure.

Lemma 20.14.6. Let f : X → Y be a morphism of ringed spaces. Let F be an
OX-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(X,F) = Hp(Y, f∗F) for all p.
(2) If Hp(Y,Rqf∗F) = 0 for all q and p > 0, then Hq(X,F) = H0(Y,Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence
to converge. You can also prove these facts directly (without using the spectral
sequence) which is a good exercise in cohomology of sheaves. �

Lemma 20.14.7. Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
In this case Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors from D+(X)→ D+(Z).
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Proof. We are going to apply Derived Categories, Lemma 13.22.1. It is clear that
g∗ ◦ f∗ = (g ◦ f)∗, see Sheaves, Lemma 6.21.2. It remains to show that f∗I is g∗-
acyclic. This follows from Lemma 20.12.9 and the description of the higher direct
images Rig∗ in Lemma 20.7.3. �

Lemma 20.14.8 (Relative Leray spectral sequence). Let f : X → Y and g : Y →
Z be morphisms of ringed spaces. Let F be an OX-module. There is a spectral
sequence with

Ep,q2 = Rpg∗(R
qf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OX-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors and
follows from Lemma 20.14.7 and Derived Categories, Lemma 13.22.2. �

20.15. Functoriality of cohomology

Lemma 20.15.1. Let f : X → Y be a morphism of ringed spaces. Let G•, resp. F•
be a bounded below complex of OY -modules, resp. OX-modules. Let ϕ : G• → f∗F•
be a morphism of complexes. There is a canonical morphism

G• −→ Rf∗(F•)
in D+(Y ). Moreover this construction is functorial in the triple (G•,F•, ϕ).

Proof. Choose an injective resolution F• → I•. By definition Rf∗(F•) is repre-
sented by f∗I• in K+(OY ). The composition

G• → f∗F• → f∗I•

is a morphism inK+(Y ) which turns into the morphism of the lemma upon applying
the localization functor jY : K+(Y )→ D+(Y ). �

Let f : X → Y be a morphism of ringed spaces. Let G be an OY -module and let F
be an OX -module. Recall that an f -map ϕ from G to F is a map ϕ : G → f∗F , or
what is the same thing, a map ϕ : f∗G → F . See Sheaves, Definition 6.21.7. Such
an f -map gives rise to a morphism of complexes

(20.15.1.1) ϕ : RΓ(Y,G) −→ RΓ(X,F)

in D+(OY (Y )). Namely, we use the morphism G → Rf∗F in D+(Y ) of Lemma
20.15.1, and we apply RΓ(Y,−). By Lemma 20.14.1 we see that RΓ(X,F) =
RΓ(Y,Rf∗F) and we get the displayed arrow. We spell this out completely in
Remark 20.15.2 below. In particular it gives rise to maps on cohomology

(20.15.1.2) ϕ : Hi(Y,G) −→ Hi(X,F).

Remark 20.15.2. Let f : X → Y be a morphism of ringed spaces. Let G be an
OY -module. Let F be an OX -module. Let ϕ be an f -map from G to F . Choose
a resolution F → I• by a complex of injective OX -modules. Choose resolutions
G → J• and f∗I → (J ′)• by complexes of injective OY -modules. By Derived
Categories, Lemma 13.18.6 there exists a map of complexes β such that the diagram

(20.15.2.1) G

��

// f∗F // f∗I•

��
J •

β // (J ′)•
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commutes. Applying global section functors we see that we get a diagram

Γ(Y, f∗I•)

qis

��

Γ(X, I•)

Γ(Y,J •)
β // Γ(Y, (J ′)•)

The complex on the bottom left represents RΓ(Y,G) and the complex on the
top right represents RΓ(X,F). The vertical arrow is a quasi-isomorphism by
Lemma 20.14.1 which becomes invertible after applying the localization functor
K+(OY (Y ))→ D+(OY (Y )). The arrow (20.15.1.1) is given by the composition of
the horizontal map by the inverse of the vertical map.

20.16. Refinements and Čech cohomology

Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui and V : X =

⋃
j∈J Vj be open

coverings. Assume that U is a refinement of V. Choose a map c : I → J such that
Ui ⊂ Vc(i) for all i ∈ I. This induces a map of Čech complexes

γ : Č•(V,F) −→ Č•(U ,F), (ξj0...jp) 7−→ (ξc(i0)...c(ip)|Ui0...ip )

functorial in the sheaf of OX -modules F . Suppose that c′ : I → J is a second
map such that Ui ⊂ Vc′(i) for all i ∈ I. Then the corresponding maps γ and γ′ are

homotopic. Namely, γ − γ′ = d ◦ h + h ◦ d with h : Čp+1(V,F) → Čp(U ,F) given
by the rule

h(ξ)i0...ip =
∑p

a=0
(−1)aαc(i0)...c(ia)c′(ia)...c′(ip)

We omit the computation showing this works; please see the discussion following
(20.26.0.2) for the proof in a more general case. In particular, the map on Čech
cohomology groups is independent of the choice of c. Moreover, it is clear that if
W : X =

⋃
k∈KWk is a third open covering and V is a refinement of W, then the

composition of the maps

Č•(W,F) −→ Č•(V,F) −→ Č•(U ,F)

associated to maps I → J and J → K is the map associated to the composition
I → K. In particular, we can define the Čech cohomology groups

Ȟp(X,F) = colimU Ȟ
p(U ,F)

where the colimit is over all open coverings of X partially ordered by refinement.

It turns out that the maps γ defined above are compatible with the map to coho-
mology, in other words, the composition

Ȟp(V,F)→ Ȟp(U ,F)
Lemma 20.12.2−−−−−−−−−→ Hp(X,F)

is the canonical map from the first group to cohomology of Lemma 20.12.2. In the
lemma below we will prove this in a slightly more general setting. A consequence
is that we obtain a well defined map

(20.16.0.2) Ȟp(X,F) = colimU Ȟ
p(U ,F) −→ Hp(X,F)

from Čech cohomology to cohomology.
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Lemma 20.16.1. Let f : X → Y be a morphism of ringed spaces. Let ϕ : f∗G → F
be an f -map from an OY -module G to an OX-module F . Let U : X =

⋃
i∈I Ui and

V : Y =
⋃
j∈J Vj be open coverings. Assume that U is a refinement of f−1V : X =⋃

j∈J f
−1(Vj). In this case there exists a commutative diagram

Č•(U ,F) // RΓ(X,F)

Č•(V,G) //

γ

OO

RΓ(Y,G)

OO

in D+(OX(X)) with horizontal arrows given by Lemma 20.12.2 and right vertical
arrow by (20.15.1.1). In particular we get commutative diagrams of cohomology
groups

Ȟp(U ,F) // Hp(X,F)

Ȟp(V,G) //

γ

OO

Hp(Y,G)

OO

where the right vertical arrow is (20.15.1.2)

Proof. We first define the left vertical arrow. Namely, choose a map c : I → J
such that Ui ⊂ f−1(Vc(i)) for all i ∈ I. In degree p we define the map by the rule

γ(s)i0...ip = ϕ(s)c(i0)...c(ip)

This makes sense because ϕ does indeed induce maps G(Vc(i0)...c(ip))→ F(Ui0...ip)
by assumption. It is also clear that this defines a morphism of complexes. Choose
injective resolutions F → I• on X and G → J• on Y . According to the proof of
Lemma 20.12.2 we introduce the double complexes A•,• and B•,• with terms

Bp,q = Čp(V,J q) and Ap,q = Čp(U , Iq).

As in Remark 20.15.2 above we also choose an injective resolution f∗I → (J ′)• on
Y and a morphism of complexes β : J → (J ′)• making (20.15.2.1) commutes. We
introduce some more double complexes, namely (B′)•,• and (B′′)•, • with

(B′)p,q = Čp(V, (J ′)q) and (B′′)p,q = Čp(V, f∗Iq).

Note that there is an f -map of complexes from f∗I• to I•. Hence it is clear that
the same rule as above defines a morphism of double complexes

γ : (B′′)•,• −→ A•,•.

Consider the diagram of complexes

Č•(U ,F) // sA• Γ(X, I•)
qis

oo

Č•(V,G) //

γ

OO

sB•
β // s(B′)• s(B′′)•oo

sγ

kk

Γ(Y,J •)

qis

OO

β // Γ(Y, (J ′)•)

OO

Γ(Y, f∗I•)

OO

qisoo

http://stacks.math.columbia.edu/tag/01FD
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The two horizontal arrows with targets sA• and sB• are the ones explained in
Lemma 20.12.2. The left upper shape (a pentagon) is commutative simply because
(20.15.2.1) is commutative. The two lower squares are trivially commutative. It
is also immediate from the definitions that the right upper shape (a square) is
commutative. The result of the lemma now follows from the definitions and the fact
that going around the diagram on the outer sides from Č•(V,G) to Γ(X, I•) either
on top or on bottom is the same (where you have to invert any quasi-isomorphisms
along the way). �

20.17. Cohomology on Hausdorff quasi-compact spaces

For such a space Čech cohomology agrees with cohomology.

Lemma 20.17.1. Let X be a topological space. Let F be an abelian sheaf. Then
the map Ȟ1(X,F)→ H1(X,F) defined in (20.16.0.2) is an isomorphism.

Proof. Let U be an open covering of X. By Lemma 20.12.4 there is an exact
sequence

0→ Ȟ1(U ,F)→ H1(X,F)→ Ȟ0(U , H1(F))

Thus the map is injective. To show surjectivity it suffices to show that any element
of Ȟ0(U , H1(F)) maps to zero after replacing U by a refinement. This is immediate
from the definitions and the fact that H1(F) is a presheaf of abelian groups whose
sheafification is zero by locality of cohomology, see Lemma 20.7.2. �

Lemma 20.17.2. Let X be a Hausdorff and quasi-compact topological space. Let
F be an abelian sheaf on X. Then the map Ȟp(X,F) → Hp(X,F) defined in
(20.16.0.2) is an isomorphism for all p.

Proof. We argue by induction on p that the map cpF : Ȟp(X,F) → Hp(X,F) is
an isomorphism. For p = 0 the result is clear and for p = 1 the result holds by
Lemma 20.17.1. Thus we may assume p > 1.

Choose an injective map a : F → I, where I is an injective abelian sheaf. Let
b : I → G be the quotient by F . Let ξ = (ξi0...ip) be a cocycle of the Čech complex,

giving rise to an element ξ of Ȟp(U ,F). Then a(ξ) = d(η) for some cochain η for I
by Lemma 20.12.1. The image θ = b(η) of η in the Čech complex for G is a cocyle,
hence gives rise to an element θ in Ȟp−1(U ,G). A straightforward argument (using
p ≥ 2 and hence the Čech complex of I is acyclic in degree p−1) shows that the rule
which assigns the element θ ∈ Ȟp−1(U ,G) of θ to the class is well defined. It follows

from the construction that cpF (ξ) = ∂(cp−1
G (θ)) where ∂ : Hp−1(X,G)→ Hp(X,F)

is the boundary coming from the short exact sequence 0 → F → I → G → 0
(details omitted).

Conversely, let θ = (θi0...ip−1
) a cocycle of the Čech complex of G for some open

covering U . We would like to lift θ to a cochain for I. The problem is that the
sequence of complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,G)→ 0

may not be exact on the right. Howeover, we know that for all p-tuples i0 . . . ip−1

of I there exists an open covering

Ui0 ∩ . . . ∩ Uip−1 =
⋃
Wi0...ip−1,k

http://stacks.math.columbia.edu/tag/09V1
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such that θi0...ip−1
|Wi0...ip−1,k

does lift to a section of I over Wi0...ip−1,k. Thus, by

Topology, Lemma 5.12.4 after refining U , we can lift θ to a (p− 1)-cochain η in the
Čech complex of I. Then d(η) = a(ξ) for some p-cocycle ξ for F . In other words,
every element of colim Ȟp−1(U ,G) comes about by the construction of the previous
paragraph from an element of colim Ȟp(U ,F).

By the compatibility of the construction with the boundary map ∂ : Hp−1(X,G)→
Hp(X,F), the surjectivity of the map, the induction hypothesis saying γp−1

G is an

isomorphism, and the fact that Hp−1(X, I) = Hp(X, I) = 0, it follows formally
that cpF is surjective. To show injectivity one has to show that, given ξ, η, θ linked
as above, if θ is a boundary, then ξ becomes a boundary after replacing U by a
refinement. To do this argue as above, once more appealing to Topology, Lemma
5.12.4. Some details omitted. �

Lemma 20.17.3. Let X be a Hausdorff and locally quasi-compact space. Let Z ⊂
X be a quasi-compact (hence closed) subset. For every abelian sheaf F on X we
have

colimHp(U,F) −→ Hp(Z,F|Z)

where the colimit is over open neighbourhoods U of Z in X.

Proof. We first prove this for p = 0. Injectivity follows from the definition of F|Z
and holds in general (for any subset of any topological space X). Next, suppose
that s ∈ H0(Z,F|Z). Then we can find opens Ui ⊂ X such that Z ⊂

⋃
Ui and such

that s|Z∩Ui comes from si ∈ F(Ui). It follows that there exist opens Wij ⊂ Ui ∩Uj
with Wij ∩Z = Ui ∩Uj ∩Z such that si|Wij = sj |Wij . Applying Topology, Lemma
5.12.5 we find opens Vi of X such that Vi ⊂ Ui and such that Vi ∩Vj ⊂Wij . Hence
we see that si|Vi glue to a section of F over the open neighbourhood

⋃
Vi of Z.

To finish the proof, it suffices to show that if I is an injective abelian sheaf on
X, then Hp(Z, I|Z) = 0 for p > 0. This follows using short exact sequences and
dimension shifting; details omitted. Thus, suppose ξ is an element of Hp(Z, I|Z)
for some p > 0. By Lemma 20.17.2 the element ξ comes from Ȟp(V, I|Z) for some
open covering V : Z =

⋃
Vi of Z. Say ξ is the image of the class of a cocycle

ξ = (ξi0...ip) in Čp(V, I|Z).

Let I ′ ⊂ I|Z be the subpresheaf defined by the rule

I ′(V ) = {s ∈ I|Z(V ) | ∃(U, t), U ⊂ X open, t ∈ I(U), V = Z ∩ U, s = t|Z∩U}

Then I|Z is the sheafification of I ′. Thus for every (p + 1)-tuple i0 . . . ip we can
find an open covering Vi0...ip =

⋃
Wi0...ip,k such that ξi0...ip |Wi0...ip,k

is a section of

I ′. Applying Topology, Lemma 5.12.4 we may after refining V assume that each
ξi0...ip is a section of the presheaf I ′.

Write Vi = Z ∩ Ui for some opens Ui ⊂ X. Since I is flasque (Lemma 20.13.2)
and since ξi0...ip is a section of I ′ for every (p + 1)-tuple i0 . . . ip we can choose a
section si0...ip ∈ I(Ui0...ip) which restricts to ξi0...ip on Vi0...ip = Z ∩ Ui0...ip . (This
appeal to injectives being flasque can be avoided by an additional application of
Topology, Lemma 5.12.5.) Let s = (si0...ip) be the corresponding cochain for the
open covering U =

⋃
Ui. Since d(ξ) = 0 we see that the sections d(s)i0...ip+1

restrict to zero on Z ∩ Ui0...ip+1
. Hence, by the initial remarks of the proof, there

exists open subsets Wi0...ip+1
⊂ Ui0...ip+1

with Z ∩Wi0...ip+1
= Z ∩ Ui0...ip+1

such

http://stacks.math.columbia.edu/tag/09V3
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that d(s)i0...ip+1
|Wi0...ip+1

= 0. By Topology, Lemma 5.12.5 we can find U ′i ⊂ Ui
such that Z ⊂

⋃
U ′i and such that U ′i0...ip+1

⊂ Wi0...ip+1 . Then s′ = (s′i0...ip) with

s′i0...ip = si0...ip |U ′i0...ip is a cocycle for I for the open covering U ′ =
⋃
U ′i of an open

neighbourhood of Z. Since I has trivial higher Čech cohomology groups (Lemma
20.12.1) we conclude that s′ is a coboundary. It follows that the image of ξ in the
Čech complex for the open covering Z =

⋃
Z ∩ U ′i is a coboundary and we are

done. �

20.18. The base change map

We will need to know how to construct the base change map in some cases. Since
we have not yet discussed derived pullback we only discuss this in the case of a
base change by a flat morphism of ringed spaces. Before we state the result, let
us discuss flat pullback on the derived category. Namely, suppose that g : X → Y
is a flat morphism of ringed spaces. By Modules, Lemma 17.17.2 the functor
g∗ : Mod(OY )→ Mod(OX) is exact. Hence it has a derived functor

g∗ : D+(Y )→ D+(X)

which is computed by simply pulling back an representative of a given object in
D+(Y ), see Derived Categories, Lemma 13.17.8. Hence as indicated we indicate
this functor by g∗ rather than Lg∗.

Lemma 20.18.1. Let

X ′
g′
//

f ′

��

X

f

��
S′

g // S

be a commutative diagram of ringed spaces. Let F• be a bounded below complex of
OX-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g
′)∗F•

in D+(S′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma
20.12.10 we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g

′)∗F•.
Hence by Derived Categories, Lemmas 13.18.6 and 13.18.7 the arrow β in the
diagram

(g′)∗(g
′)∗F• // (g′)∗J •

F•
adjunction

OO

// I•
β

OO

exists and is unique up to homotopy. Pushing down to S we get

f∗β : f∗I• −→ f∗(g
′)∗J • = g∗(f

′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. �

http://stacks.math.columbia.edu/tag/02N7
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Remark 20.18.2. The “correct” version of the base change map is map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•.
The construction of this map involves unbounded complexes, see Remark 20.29.2.

20.19. Proper base change in topology

In this section we prove a very general version of the proper base change theorem
in topology. It tells us that the stalks of the higher direct images Rpf∗ can be
computed on the fibre.

Lemma 20.19.1. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
y ∈ Y . Assume that

(1) X is Hausdorff and locally quasi-compact,
(2) f−1(y) is quasi-compact, and
(3) f is closed.

Then for E in D+(OX) we have (Rf∗E)y = RΓ(f−1(y), E|f−1(y)) in D+(OY,y).

Proof. The base change map of Lemma 20.18.1 gives a canonical map (Rf∗E)y →
RΓ(f−1(y), E|f−1(y)). To prove this map is an isomorphism, we represent E by
a bounded below complex of injectives I•. By Lemma 20.17.3 the restrictions
In|f−1(y) are acyclic for Γ(f−1(y),−). Thus RΓ(f−1(y), E|f−1(y)) is represented

by the complex Γ(f−1(y), I•|f−1(y)), see Derived Categories, Lemma 13.17.7. In
other words, we have to show the map

colimV I•(f−1(V )) −→ Γ(f−1(y), I•|f−1(y))

is an isomorphism. Using Lemma 20.17.3 we see that it suffices to show that the
collection of open neighbourhoods f−1(V ) of f−1(y) is cofinal in the system of all
open neighbourhoods. If f−1(y) ⊂ U is an open neighbourhood, then as f is closed
the set V = Y \ f(X \ U) is an open neighbourhood of y with f−1(V ) ⊂ U . This
proves the lemma. �

Theorem 20.19.2 (Proper base change). Consider a cartesian square of Haus-
dorff, locally quasi-compact topological spaces

X ′ = Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′

g // Y

and assume that f is proper. Let E be an object of D+(X). Then the base change
map

g−1Rf∗E −→ Rf ′∗(g
′)−1E

of Lemma 20.18.1 is an isomorphism in D+(Y ′).

Proof. Let y′ ∈ Y ′ be a point with image y ∈ Y . It suffices to show that the base
change map induces an isomorphism on stalks at y′. As f is proper it follows that
f ′ is proper, the fibres of f and f ′ are quasi-compact and f and f ′ are closed, see
Topology, Theorem 5.16.5. Thus we can apply Lemma 20.19.1 twice to see that

(Rf ′∗(g
′)−1E)y′ = RΓ((f ′)−1(y′), (g′)−1E|(f ′)−1(y′))

and
(Rf∗E)y = RΓ(f−1(y), E|f−1(y))

http://stacks.math.columbia.edu/tag/02N8
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The induced map of fibres (f ′)−1(y′)→ f−1(y) is a homeomorphism of topological
spaces and the pull back of E|f−1(y) is (g′)−1E|(f ′)−1(y′). The desired result follows.

�

20.20. Cohomology and colimits

Let X be a ringed space. Let (Fi, ϕii′) be a directed system of sheaves of OX -
modules over the partially ordered set I, see Categories, Section 4.21. Since for
each i there is a canonical map Fi → colimi Fi we get a canonical map

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

for every p ≥ 0. Of course there is a similar map for every open U ⊂ X. These
maps are in general not isomorphisms, even for p = 0. In this section we generalize
the results of Sheaves, Lemma 6.29.1. See also Modules, Lemma 17.11.6 (in the
special case G = OX).

Lemma 20.20.1. Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.

Then for any directed system (Fi, ϕii′) of sheaves of OX-modules and for any quasi-
compact open U ⊂ X the canonical map

colimiH
q(U,Fi) −→ Hq(U, colimi Fi)

is an isomorphism for every q ≥ 0.

Proof. It is important in this proof to argue for all quasi-compact opens U ⊂ X
at the same time. The result is true for i = 0 and any quasi-compact open U ⊂ X
by Sheaves, Lemma 6.29.1 (combined with Topology, Lemma 5.26.1). Assume that
we have proved the result for all q ≤ q0 and let us prove the result for q = q0 + 1.

By our conventions on directed systems the index set I is directed, and any system of
OX -modules (Fi, ϕii′) over I is directed. By Injectives, Lemma 19.5.1 the category
of OX -modules has functorial injective embeddings. Thus for any system (Fi, ϕii′)
there exists a system (Ii, ϕii′) with each Ii an injective OX -module and a morphism
of systems given by injective OX -module maps Fi → Ii. Denote Qi the cokernel
so that we have short exact sequences

0→ Fi → Ii → Qi → 0.

We claim that the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

is also a short exact sequence of OX -modules. We may check this on stalks. By
Sheaves, Sections 6.28 and 6.29 taking stalks commutes with colimits. Since a di-
rected colimit of short exact sequences of abelian groups is short exact (see Algebra,
Lemma 10.8.9) we deduce the result. We claim that Hq(U, colimi Ii) = 0 for all
quasi-compact open U ⊂ X and all q ≥ 1. Accepting this claim for the moment

http://stacks.math.columbia.edu/tag/01FF
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consider the diagram

colimiH
q0(U, Ii)

��

// colimiH
q0(U,Qi)

��

// colimiH
q0+1(U,Fi)

��

// 0

��
Hq0(U, colimi Ii) // Hq0(U, colimiQi) // Hq0+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row is
exact by an application of Algebra, Lemma 10.8.9. Hence by the snake lemma we
deduce the result for q = q0 + 1.

It remains to show that the claim is true. We will use Lemma 20.12.8. Let B
be the collection of all quasi-compact open subsets of X. This is a basis for the
topology on X by assumption. Let Cov be the collection of finite open coverings
U : U =

⋃
j=1,...,m Uj with each of U , Uj quasi-compact open in X. By the result

for q = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)
because all the multiple intersections Uj0...jp are quasi-compact. By Lemma 20.12.1

each of the complexes in the colimit of Čech complexes is acyclic in degree ≥ 1.
Hence by Algebra, Lemma 10.8.9 we see that also the Čech complex Č•(U , colimi Ii)
is acyclic in degrees ≥ 1. In other words we see that Ȟp(U , colimi Ii) = 0 for
all p ≥ 1. Thus the assumptions of Lemma 20.12.8 are satisfied and the claim
follows. �

Next we formulate the analogy of Sheaves, Lemma 6.29.4 for cohomology. Let X
be a spectral space which is written as a cofiltered limit of spectral spaces Xi for a
diagram with spectral transition morphisms as in Topology, Lemma 5.23.5. Assume
given

(1) an abelian sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map ϕa : Fi → Fj of abelian sheaves (see Sheaves,

Definition 6.21.7)

such that ϕc = ϕb ◦ ϕa whenever c = a ◦ b. Set F = colim p−1
i Fi on X.

Lemma 20.20.2. In the situation discussed above. Let i ∈ Ob(I) and let Ui ⊂ Xi

be quasi-compact open. Then

colima:j→iH
p(f−1

a (Ui),Fj) = Hp(p−1
i (Ui),F)

for all p ≥ 0. In particular we have Hp(X,F) = colimHp(Xi,Fi).

Proof. The case p = 0 is Sheaves, Lemma 6.29.4.

In this paragraph we show that we can find a map of systems (γi) : (Fi, ϕa) →
(Gi, ψa) with Gi an injective abelian sheaf and γi injective. For each i we pick an
injection Fi → Ii where Ii is an injective abelian sheaf on Xi. Then we can consider
the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik.

For a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj

http://stacks.math.columbia.edu/tag/0A37
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whose components are the canonical maps f−1
b fa◦b,∗Ik → fb,∗Ik for b : k → j.

Thus we find an injection {γi} : {Fi, ϕa)→ (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Ci, see Lemma 20.12.10 and
Homology, Lemma 12.23.3. This finishes the construction.

Arguing exactly as in the proof of Lemma 20.20.1 we see that it suffices to prove
that Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every quasi-compact

open of X, it suffices to show that the Čech cohomology of G for any covering U
of a quasi-compact open of X by finitely many quasi-compact opens is zero, see
Lemma 20.12.8. Such a covering is the inverse by pi of such a covering Ui on the
space Xi for some i by Topology, Lemma 5.23.6. We have

Č•(U ,G) = colima:j→i Č•(f−1
a (Ui),Gj)

by the case p = 0. The right hand side is a filtered colimit of complexes each
of which is acyclic in positive degrees by Lemma 20.12.1. Thus we conclude by
Algebra, Lemma 10.8.9. �

20.21. Vanishing on Noetherian topological spaces

The aim is to prove a theorem of Grothendieck namely Proposition 20.21.6. See
[Gro57].

Lemma 20.21.1. Let i : Z → X be a closed immersion of topological spaces. For
any abelian sheaf F on Z we have Hp(Z,F) = Hp(X, i∗F).

Proof. This is true because i∗ is exact (see Modules, Lemma 17.6.1), and hence
Rpi∗ = 0 as a functor (Derived Categories, Lemma 13.17.8). Thus we may apply
Lemma 20.14.6. �

Lemma 20.21.2. Let X be an irreducible topological space. Then Hp(X,A) = 0
for all p > 0 and any abelian group A.

Proof. Recall that A is the constant sheaf as defined in Sheaves, Definition 6.7.4.
It is clear that for any nonempty open U ⊂ X we have A(U) = A as X is irreducible
(and hence U is connected). We will show that the higher Čech cohomology groups
Ȟp(U , A) are zero for any open covering U : U =

⋃
i∈I Ui of an open U ⊂ X. Then

the lemma will follow from Lemma 20.12.7.

Recall that the value of an abelian sheaf on the empty open set is 0. Hence we may
clearly assume Ui 6= ∅ for all i ∈ I. In this case we see that Ui ∩ Ui′ 6= ∅ for all
i, i′ ∈ I. Hence we see that the Čech complex is simply the complex∏

i0∈I
A→

∏
(i0,i1)∈I2

A→
∏

(i0,i1,i2)∈I3

A→ . . .

We have to see this has trivial higher cohomology groups. We can see this for
example because this is the cech complex for the covering of a 1-point space and
Čech cohomology agrees with cohomology on such a space. (You can also directly
verify it by writing an explicit homotopy.) �

http://stacks.math.columbia.edu/tag/02UV
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Lemma 20.21.3. Let X be a topological space such that the intersection of any
two quasi-compact opens is quasi-compact. Let F ⊂ Z be a subsheaf generated by
finitely many sections over quasi-compact opens. Then there exists a finite filtration

(0) = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F

by abelian subsheaves such that for each 0 < i ≤ n there exists a short exact sequence

0→ j′!ZV → j!ZU → Fi/Fi−1 → 0

with j : U → X and j′ : V → X the inclusion of quasi-compact opens into X.

Proof. Say F is generated by the sections s1, . . . , st over the quasi-compact opens
U1, . . . , Ut. Since Ui is quasi-compact and si a locally constant function to Z we may
assume, after possibly replacing Ui by the parts of a finite decomposition into open
and closed subsets, that si is a constant section. Say si = ni with ni ∈ Z. Of course
we can remove (Ui, ni) from the list if ni = 0. Flipping signs if necessary we may
also assume ni > 0. Next, for any subset I ⊂ {1, . . . , t} we may add

⋃
i∈I Ui and

gcd(ni, i ∈ I) to the list. After doing this we see that our list (U1, n1), . . . , (Ut, nt)
satisfies the following property: For x ∈ X set Ix = {i ∈ {1, . . . , t} | x ∈ Ui}. Then
gcd(ni, i ∈ Ix) is attained by ni for some i ∈ Ix.

As our filtration we take F0 = (0) and Fn generated by the sections ni over Ui for
those i such that ni ≤ n. It is clear that Fn = F for n� 0. Moreover, the quotient
Fn/Fn−1 is generated by the section n over U =

⋃
ni≤n Ui and the kernel of the

map j!ZU → Fn/Fn−1 is generated by the section n over V =
⋃
ni≤n−1 Ui. Thus a

short exact sequence as in the statment of the lemma. �

Lemma 20.21.4. Let X be a topological space. Let d ≥ 0 be an integer. Assume

(1) X is quasi-compact,
(2) the quasi-compact opens form a basis for X, and
(3) the intersection of two quasi-compact opens is quasi-compact.
(4) Hp(X, j!ZU ) = 0 for all p > d and any quasi-compact open j : U → X.

Then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. Let S =
∐
U⊂X F(U) where U runs over the quasi-compact opens of X.

For any finite subset A = {s1, . . . , sn} ⊂ S, let FA be the subsheaf of F generated
by all si (see Modules, Definition 17.4.5). Note that if A ⊂ A′, then FA ⊂ FA′ .
Hence {FA} forms a system over the directed partially ordered set of finite subsets
of S. By Modules, Lemma 17.4.6 it is clear that

colimA FA = F

by looking at stalks. By Lemma 20.20.1 we have

Hp(X,F) = colimAH
p(X,FA)

Hence it suffices to prove the vanishing for the abelian sheaves FA. In other words,
it suffices to prove the result when F is generated by finitely many local sections
over quasi-compact opens of X.

Suppose that F is generated by the local sections s1, . . . , sn. Let F ′ ⊂ F be the
subsheaf generated by s1, . . . , sn−1. Then we have a short exact sequence

0→ F ′ → F → F/F ′ → 0

http://stacks.math.columbia.edu/tag/0A38
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From the long exact sequence of cohomology we see that it suffices to prove the
vanishing for the abelian sheaves F ′ and F/F ′ which are generated by fewer than
n local sections. Hence it suffices to prove the vanishing for sheaves generated by
at most one local section. These sheaves are exactly the quotients of the sheaves
j!ZU where U is a quasi-compact open of X.

Assume now that we have a short exact sequence

0→ K → j!ZU → F → 0

with U quasi-compact open in X. It suffices to show that Hq(X,K) is zero for
q ≥ d+1. As above we can write K as the filtered colimit of subsheaves K′ generated
by finitely many sections over quasi-compact opens. Then F is the filtered colimit
of the sheaves j!ZU/K′. In this way we reduce to the case that K is generated
by finitely many sections over quasi-compact opens. Note that K is a subsheaf of
ZX . Thus by Lemma 20.21.3 there exists a finite filtration of K whose successive
quotients Q fit into a short exact sequence

0→ j′′! ZW → j′!ZV → Q→ 0

with j′′ : W → X and j′ : V → X the inclusions of quasi-compact opens. Hence
the vanishing of Hp(X,Q) for p > d follows from our assumption (in the lemma)
on the vanishing of the cohomology groups of j′′! ZW and j′!ZV . Returning to K
this, via an induction argument using the long exact cohomology sequence, implies
the desired vanishing for it as well. �

Lemma 20.21.5. Let X be an irreducible topological space. Let H ⊂ Z be an
abelian subsheaf of the constant sheaf. Then there exists a nonempty open U ⊂ X
such that H|U = dZU for some d ∈ Z.

Proof. Recall that Z(V ) = Z for any nonempty open V of X (see proof of Lemma
20.21.2). If H = 0, then the lemma holds with d = 0. If H 6= 0, then there exists
a nonempty open U ⊂ X such that H(U) 6= 0. Say H(U) = nZ for some n ≥ 1.
Hence we see that nZU ⊂ H|U ⊂ ZU . If the first inclusion is strict we can find a
nonempty U ′ ⊂ U and an integer 1 ≤ n′ < n such that n′ZU ′ ⊂ H|U ′ ⊂ ZU ′ . This
process has to stop after a finite number of steps, and hence we get the lemma. �

Proposition 20.21.6 (Grothendieck). Let X be a Noetherian topological space. If
dim(X) ≤ d, then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. We prove this lemma by induction on d. So fix d and assume the lemma
holds for all Noetherian topological spaces of dimension < d.

Let F be an abelian sheaf on X. Suppose U ⊂ X is an open. Let Z ⊂ X denote
the closed complement. Denote j : U → X and i : Z → X the inclusion maps.
Then there is a short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0

see Modules, Lemma 17.7.1. Note that j!j
∗F is supported on the topological closure

Z ′ of U , i.e., it is of the form i′∗F ′ for some abelian sheaf F ′ on Z ′, where i′ : Z ′ → X
is the inclusion.

We can use this to reduce to the case where X is irreducible. Namely, according
to Topology, Lemma 5.8.2 X has finitely many irreducible components. If X has
more than one irreducible component, then let Z ⊂ X be an irreducible component

http://stacks.math.columbia.edu/tag/02UY
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of X and set U = X \Z. By the above, and the long exact sequence of cohomology,
it suffices to prove the vanishing of Hp(X, i∗i

∗F) and Hp(X, i′∗F ′) for p > d. By
Lemma 20.21.1 it suffices to prove Hp(Z, i∗F) and Hp(Z ′,F ′) vanish for p > d.
Since Z ′ and Z have fewer irreducible components we indeed reduce to the case of
an irreducible X.

If d = 0 and X = {∗}, then every sheaf is constant and higher cohomology groups
vanish (for example by Lemma 20.21.2).

Suppose X is irreducible of dimension d. By Lemma 20.21.4 we reduce to the case
where F = j!ZU for some open U ⊂ X. In this case we look at the short exact
sequence

0→ j!(ZU )→ ZX → i∗ZZ → 0

where Z = X \ U . By Lemma 20.21.2 we have the vanishing of Hp(X,ZX) for all
p ≥ 1. By induction we have Hp(X, i∗ZZ) = Hp(Z,ZZ) = 0 for p ≥ d. Hence we
win by the long exact cohomology sequence. �

20.22. Cohomology with support in a closed

Let X be a topological space and let Z ⊂ X be a closed subset. Let F be an abelian
sheaf on X. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}

be the sections with support in Z (Modules, Definition 17.5.1). This is a left exact
functor which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(X) −→ D(Ab)

and cohomology groups with support in Z defined by Hq
Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on X. Let U = X \Z. Then the restriction map
I(X) → I(U) is surjective (Lemma 20.9.1) with kernel ΓZ(X, I). It immediately
follows that for K ∈ D(X) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(X).

For an abelian sheaf F on X we can consider the subsheaf of sections with support
in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z}

Using the equivalence of Modules, Lemma 17.6.1 we may view HZ(F) as an abelian
sheaf on Z (see also Modules, Lemmas 17.6.2 and 17.6.3). Thus we obtain a functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as a sheaf on Z

which is left exact, but in general not exact.

Lemma 20.22.1. Let i : Z → X be the inclusion of a closed subset. Let I be an
injective abelian sheaf on X. Then HZ(I) is an injective abelian sheaf on Z.

http://stacks.math.columbia.edu/tag/0A3A
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Proof. Observe that for any abelian sheaf G on Z we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Modules,
Lemma 17.6.1) and I injective on X we conclude that HZ(I) is injective on Z. �

Denote
RHZ : D(X) −→ D(Z)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 20.22.2. Let i : Z → X be the inclusion of a closed subset. Let G be an
injective abelian sheaf on Z. Then HpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact and transforms injective abelian
sheaves into injective abelian sheaves by Lemma 20.12.10. �

Let X be a topological space and let Z ⊂ X be a closed subset. We denote DZ(X)
the strictly full saturated triangulated subcategory of D(X) consisting of complexes
whose cohomology sheaves are supported on Z.

Lemma 20.22.3. Let i : Z → X be the inclusion of a closed subset of a topological
space X. The map Ri∗ = i∗ : D(Z) → D(X) induces an equivalence D(Z) →
DZ(X) with quasi-inverse

i−1|DZ(X) = RHZ |DZ(X)

Proof. Recall that i−1 and i∗ is an adjoint pair of exact functors such that i−1i∗
is isomorphic to the identify functor on abelian sheaves. See Modules, Lemmas
17.3.3 and 17.6.1. Thus i∗ : D(Z) → DZ(X) is fully faithfull and i−1 determines
a left inverse. On the other hand, suppose that K is an object of DZ(X) and
consider the adjunction map K → i∗i

−1K. Using exactness of i∗ and i−1 this
induces the adjunction maps Hn(K)→ i∗i

−1Hn(K) on cohomology sheaves. Since
these cohomology sheaves are supported on Z we see these adjunction maps are
isomorphisms and we conclude that D(Z)→ DZ(X) is an equivalence.

To finish the proof we have to show that RHZ(K) = i−1K if K is an object of
DZ(X). To do this we can use that K = i∗i

−1K as we’ve just proved this is the
case. Then we can choose a K-injective representative I• for i−1K. Since i∗ is
the right adjoint to the exact functor i−1, the complex i∗I• is K-injective (Derived
Categories, Lemma 13.29.10). We see that RHZ(K) is computed byHZ(i∗I•) = I•
as desired. �

20.23. Cohomology on spectral spaces

A key result on the cohomology of spectral spaces is Lemma 20.20.2 which loosely
speaking says that cohomology commutes with cofiltered limits in the category of
spectral spaces as defined in Topology, Definition 5.22.1. This can be applied to
give analogues of Lemmas 20.17.3 and 20.19.1 as follows.

Lemma 20.23.1. Let X be a spectral space. Let F be an abelian sheaf on X. Let
E ⊂ X be a quasi-compact subset. Let W ⊂ X be the set of points of X which
specialize to a point of E.

http://stacks.math.columbia.edu/tag/0A3B
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(1) Hp(W,F|W ) = colimHp(U,F) where the colimit is over quasi-compact
open neighbourhoods of E,

(2) Hp(W\E,F|W\E) = colimHp(U\E,F|U\E) if E is a constructible subset.

Proof. From Topology, Lemma 5.23.7 we see that W = limU where the limit is
over the quasi-compact opens containing E. Each U is a spectral space by Topology,
Lemma 5.22.4. Thus we may apply Lemma 20.20.2 to conclude that (1) holds. The
same proof works for part (2) except we use Topology, Lemma 5.23.8. �

Lemma 20.23.2. Let f : X → Y be a spectral map of spectral spaces. Let y ∈ Y .
Let E ⊂ Y be the set of points specializing to y. Let F be an abelian sheaf on X.
Then (Rpf∗F)y = Hp(f−1(E),F|f−1(E)).

Proof. Observe that E =
⋂
V where V runs over the quasi-compact open neigh-

brouhoods of y in Y . Hence f−1(E) =
⋂
f−1(V ). This implies that f−1(E) =

lim f−1(V ) as topological spaces. Since f is spectral, each f−1(V ) is a spectral
space too (Topology, Lemma 5.22.4). We conclude that f−1(E) is a spectral space
and that

Hp(f−1(E),F|f−1(E)) = colimHp(f−1(V ),F)

by Lemma 20.20.2. On the other hand, the stalk of Rpf∗F at y is given by the
colimit on the right. �

Lemma 20.23.3. Let X be a profinite topological space. Then Hq(X,F) = 0 for
all q > 0 and all abelian sheaves F .

Proof. Any open covering of X can be refined by a finite disjoint union decompo-
sition with open parts, see Topology, Lemma 5.21.3. Hence if F → G is a surjection
of abelian sheaves on X, then F(X) → G(X) is surjective. In other words, the
global sections functor is an exact functor. Therefore its higher derived functors
are zero, see Derived Categories, Lemma 13.17.8. �

The following result on cohomological vanishing improves Grothendieck’s result
(Proposition 20.21.6) and can be found in [Sch92].

Proposition 20.23.4. Let X be a spectral space of Krull dimension d. Let F be
an abelian sheaf on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for every quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d and any constructible closed subset Z ⊂ X.

Proof. We prove this result by induction on d.

If d = 0, then X is a profinite space, see Topology, Lemma 5.22.7. Thus (1) holds by
Lemma 20.23.3. If U ⊂ X is quasi-compact open, then U is also closed as a quasi-
compact subset of a Hausdorff space. Hence X = U

∐
(X \U) as a topological space

and we see that (2) holds. Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are profinite (namely U is quasi-compact because Z is
constructible) and since we have (2) and (1) we obtain the desired vanishing of the
cohomology groups with support in Z.

Induction step. Assume d ≥ 1 and assume the proposition is valid for all spectral
spaces of dimension < d. We first prove part (2) for X. Let U be a quasi-compact
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open. Let ξ ∈ Hd(U,F). Set Z = X \ U . Let W ⊂ X be the set of points
specializing to Z. By Lemma 20.23.1 we have

Hd(W \ Z,F|W\Z) = colimZ⊂V H
d(V \ Z,F)

where the colimit is over the quasi-compact open neighbourhoods V of Z in X.
By Topology, Lemma 5.23.7 we see that W \ Z is a spectral space. Since every
point of W specializes to a point of Z, we see that W \ Z is a spectral space
of Krull dimension < d. By induction hypothesis we see that the image of ξ in
Hd(W \ Z,F|W\Z) is zero. By the displayed formula, there exists a Z ⊂ V ⊂ X
quasi-compact open such that ξ|V \Z = 0. Since V \ Z = V ∩ U we conclude by
the Mayer-Vietoris (Lemma 20.9.2) for the covering X = U ∩ V that there exists a

ξ̃ ∈ Hd(X,F) which restricts to ξ on U and to zero on V . In other words, part (2)
is true.

Proof of part (1) assuming (2). Choose an injective resolution F → I•. Set

G = Im(Id−1 → Id) = Ker(Id → Id+1)

For U ⊂ X quasi-compact open we have a map of exact sequences as follows

Id−1(X) //

��

G(X) //

��

Hd(X,F)

��

// 0

Id−1(U) // G(U) // Hd(U,F) // 0

The sheaf Id−1 is flasque by Lemma 20.13.2 and the fact that d ≥ 1. By part
(2) we see that the right vertical arrow is surjective. We conclude by a diagram
chase that the map G(X) → G(U) is surjective. By Lemma 20.13.6 we conclude
that Ȟq(U ,G) = 0 for q > 0 and any finite covering U : U = U1 ∪ . . . ∪ Un of
a quasi-compact open by quasi-compact opens. Applying Lemma 20.12.8 we find
that Hq(U,G) = 0 for all q > 0 and all quasi-compact opens U of X. By Leray’s
acyclicity lemma (Derived Categories, Lemma 13.17.7) we conclude that

Hq(X,F) = Hq
(
Γ(X, I0)→ . . .→ Γ(X, Id−1)→ Γ(X,G)

)
In particular the cohomology group vanishes if q > d.

Proof of (3). Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \Z are spectral spaces (Topology, Lemma 5.22.4) of dimension
≤ d and since we have (2) and (1) we obtain the desired vanishing. �

20.24. The alternating Čech complex

This section compares the Čech complex with the alternating Čech complex and
some related complexes.

Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering. For p ≥ 0

set

Čpalt(U ,F) =

{
s ∈ Čp(U ,F) such that si0...ip = 0 if in = im for some n 6= m

and si0...in...im...ip = −si0...im...in...ip in any case.

}
We omit the verification that the differential d of Equation (20.10.0.1) maps Čpalt(U ,F)

into Čp+1
alt (U ,F).
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Definition 20.24.1. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•alt(U ,F) is the

alternating Čech complex associated to F and the open covering U .

Hence there is a canonical morphism of complexes

Č•alt(U ,F) −→ Č•(U ,F)

namely the inclusion of the alternating Čech complex into the usual Čech complex.

Suppose our covering U : U =
⋃
i∈I Ui comes equipped with a total ordering < on

I. In this case, set

Čpord(U ,F) =
∏

(i0,...,ip)∈Ip+1,i0<...<ip
F(Ui0...ip).

This is an abelian group. For s ∈ Čpord(U ,F) we denote si0...ip its value in F(Ui0...ip).
We define

d : Čpord(U ,F) −→ Čp+1
ord (U ,F)

by the formula

d(s)i0...ip+1
=
∑p+1

j=0
(−1)jsi0...̂ij ...ip |Ui0...ip+1

for any i0 < . . . < ip+1. Note that this formula is identical to Equation (20.10.0.1).

It is straightforward to see that d ◦ d = 0. In other words Č•ord(U ,F) is a complex.

Definition 20.24.2. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Assume given a total ordering on I. Let F be an abelian presheaf
on X. The complex Č•ord(U ,F) is the ordered Čech complex associated to F , the
open covering U and the given total ordering on I.

This complex is sometimes called the alternating Čech complex. The reason is that
there is an obvious comparison map between the ordered Čech complex and the
alternating Čech complex. Namely, consider the map

c : Č•ord(U ,F) −→ Č•(U ,F)

given by the rule

c(s)i0...ip =

{
0 if in = im for some n 6= m

sgn(σ)siσ(0)...iσ(p)
if iσ(0) < iσ(1) < . . . < iσ(p)

Here σ denotes a permutation of {0, . . . , p} and sgn(σ) denotes its sign. The al-
ternating and ordered Čech complexes are often identified in the literature via the
map c. Namely we have the following easy lemma.

Lemma 20.24.3. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map c is a morphism
of complexes. In fact it induces an isomorphism

c : Č•ord(U ,F)→ Č•alt(U ,F)

of complexes.

Proof. Omitted. �
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There is also a map

π : Č•(U ,F) −→ Č•ord(U ,F)

which is described by the rule

π(s)i0...ip = si0...ip

whenever i0 < i1 < . . . < ip.

Lemma 20.24.4. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map π : Č•(U ,F)→
Č•ord(U ,F) is a morphism of complexes. It induces an isomorphism

π : Č•alt(U ,F)→ Č•ord(U ,F)

of complexes which is a left inverse to the morphism c.

Proof. Omitted. �

Remark 20.24.5. This means that if we have two total orderings <1 and <2 on the
index set I, then we get an isomorphism of complexes τ = π2 ◦ c1 : Čord-1(U ,F)→
Čord-2(U ,F). It is clear that

τ(s)i0...ip = sign(σ)siσ(0)...iσ(p)

where i0 <1 i1 <1 . . . <1 ip and iσ(0) <2 iσ(1) <2 . . . <2 iσ(p). This is the sense in

which the ordered Čech complex is independent of the chosen total ordering.

Lemma 20.24.6. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open cov-

ering. Assume I comes equipped with a total ordering. The map c ◦ π is homotopic
to the identity on Č•(U ,F). In particular the inclusion map Č•alt(U ,F)→ Č•(U ,F)
is a homotopy equivalence.

Proof. For any multi-index (i0, . . . , ip) ∈ Ip+1 there exists a unique permutation
σ : {0, . . . , p} → {0, . . . , p} such that

iσ(0) ≤ iσ(1) ≤ . . . ≤ iσ(p) and σ(j) < σ(j + 1) if iσ(j) = iσ(j+1).

We denote this permutation σ = σi0...ip .

For any permutation σ : {0, . . . , p} → {0, . . . , p} and any a, 0 ≤ a ≤ p we denote
σa the permutation of {0, . . . , p} such that

σa(j) =

{
σ(j) if 0 ≤ j < a,

min{j′ | j′ > σa(j − 1), j′ 6= σ(k),∀k < a} if a ≤ j

So if p = 3 and σ, τ are given by

id 0 1 2 3
σ 3 2 1 0

and
id 0 1 2 3
τ 3 0 2 1

then we have
id 0 1 2 3
σ0 0 1 2 3
σ1 3 0 1 2
σ2 3 2 0 1
σ3 3 2 1 0

and

id 0 1 2 3
τ0 0 1 2 3
τ1 3 0 1 2
τ2 3 0 1 2
τ3 3 0 2 1

It is clear that always σ0 = id and σp = σ.
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http://stacks.math.columbia.edu/tag/01FM
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Having introduced this notation we define for s ∈ Čp+1(U ,F) the element h(s) ∈
Čp(U ,F) to be the element with components

(20.24.6.1) h(s)i0...ip =
∑

0≤a≤p
(−1)asign(σa)siσ(0)...iσ(a)iσa(a)...iσa(p)

where σ = σi0...ip . The index iσ(a) occurs twice in iσ(0) . . . iσ(a)iσa(a) . . . iσa(p) once
in the first group of a+ 1 indices and once in the second group of p− a+ 1 indices
since σa(j) = σ(a) for some j ≥ a by definition of σa. Hence the sum makes sense
since each of the elements siσ(0)...iσ(a)iσa(a)...iσa(p)

is defined over the open Ui0...ip .

Note also that for a = 0 we get si0...ip and for a = p we get (−1)psign(σ)siσ(0)...iσ(p)
.

We claim that

(dh+ hd)(s)i0...ip = si0...ip − sign(σ)siσ(0)...iσ(p)

where σ = σi0...ip . We omit the verification of this claim. (There is a PARI/gp
script called first-homotopy.gp in the stacks-project subdirectory scripts which can
be used to check finitely many instances of this claim. We wrote this script to make
sure the signs are correct.) Write

κ : Č•(U ,F) −→ Č•(U ,F)

for the operator given by the rule

κ(s)i0...ip = sign(σi0...ip)siσ(0)...iσ(p)
.

The claim above implies that κ is a morphism of complexes and that κ is homotopic
to the identity map of the Čech complex. This does not immediately imply the
lemma since the image of the operator κ is not the alternating subcomplex. Namely,
the image of κ is the “semi-alternating” complex Čpsemi-alt(U ,F) where s is a p-
cochain of this complex if and only if

si0...ip = sign(σ)siσ(0)...iσ(p)

for any (i0, . . . , ip) ∈ Ip+1 with σ = σi0...ip . We introduce yet another variant Čech

complex, namely the semi-ordered Čech complex defined by

Čpsemi-ord(U ,F) =
∏

i0≤i1≤...≤ip
F(Ui0...ip)

It is easy to see that Equation (20.10.0.1) also defines a differential and hence that
we get a complex. It is also clear (analogous to Lemma 20.24.4) that the projection
map

Č•semi-alt(U ,F) −→ Č•semi-ord(U ,F)

is an isomorphism of complexes.

Hence the Lemma follows if we can show that the obvious inclusion map

Čpord(U ,F) −→ Čpsemi-ord(U ,F)

is a homotopy equivalence. To see this we use the homotopy
(20.24.6.2)

h(s)i0...ip =

{
0 if i0 < i1 < . . . < ip

(−1)asi0...ia−1iaiaia+1...ip if i0 < i1 < . . . < ia−1 < ia = ia+1

We claim that

(dh+ hd)(s)i0...ip =

{
0 if i0 < i1 < . . . < ip

si0...ip else
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We omit the verification. (There is a PARI/gp script called second-homotopy.gp
in the stacks-project subdirectory scripts which can be used to check finitely many
instances of this claim. We wrote this script to make sure the signs are correct.)
The claim clearly shows that the composition

Č•semi-ord(U ,F) −→ Č•ord(U ,F) −→ Č•semi-ord(U ,F)

of the projection with the natural inclusion is homotopic to the identity map as
desired. �

20.25. Alternative view of the Čech complex

In this section we discuss an alternative way to establish the relationship between
the Čech complex and cohomology.

Lemma 20.25.1. Let X be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering of X. Let F be an OX-module. Denote Fi0...ip the restriction of F to
Ui0...ip . There exists a complex C•(U ,F) of OX-modules with

Cp(U ,F) =
∏

i0...ip
(ji0...ip)∗Fi0...ip

and differential d : Cp(U ,F) → Cp+1(U ,F) as in Equation (20.10.0.1). Moreover,
there exists a canonical map

F → C•(U ,F)

which is a quasi-isomorphism, i.e., C•(U ,F) is a resolution of F .

Proof. We check

0→ F → C0(U ,F)→ C1(U ,F)→ . . .

is exact on stalks. Let x ∈ X and choose ifix ∈ I such that x ∈ Uifix . Then define

h : Cp(U ,F)x → Cp−1(U ,F)x

as follows: If s ∈ Cp(U ,F)x, take a representative

s̃ ∈ Cp(U ,F)(V ) =
∏

i0...ip
F(V ∩ Ui0 ∩ . . . ∩ Uip)

defined on some neighborhood V of x, and set

h(s)i0...ip−1 = s̃ifixi0...ip−1,x.

By the same formula (for p = 0) we get a map C0(U ,F)x → Fx. We compute
formally as follows:

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip + si0...ip +

∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

=si0...ip

This shows h is a homotopy from the identity map of the extended complex

0→ Fx → C0(U ,F)x → C1(U ,F)x → . . .

to zero and we conclude. �

http://stacks.math.columbia.edu/tag/02FU
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With this lemma it is easy to reprove the Čech to cohomology spectral sequence of
Lemma 20.12.4. Namely, let X, U , F as in Lemma 20.25.1 and let F → I• be an
injective resolution. Then we may consider the double complex

A•,• = Γ(X,C•(U , I•)).
By construction we have

Ap,q =
∏

i0...ip
Iq(Ui0...ip)

Consider the two spectral sequences of Homology, Section 12.22 associated to this
double complex, see especially Homology, Lemma 12.22.4. For the spectral sequence
(′Er,

′dr)r≥0 we get ′Ep,q2 = Ȟp(U , Hq(F)) because taking products is exact (Ho-
mology, Lemma 12.28.1). For the spectral sequence (′′Er,

′′dr)r≥0 we get ′′Ep,q2 = 0

if p > 0 and ′′E0,q
2 = Hq(X,F). Namely, for fixed q the complex of sheaves

C•(U , Iq) is a resolution (Lemma 20.25.1) of the injective sheaf Iq by injective
sheaves (by Lemmas 20.7.1 and 20.12.10 and Homology, Lemma 12.23.3). Hence
the cohomology of Γ(X,C•(U , Iq)) is zero in positive degrees and equal to Γ(X, Iq)
in degree 0. Taking cohomology of the next differential we get our claim about the
spectral sequence (′′Er,

′′dr)r≥0. Whence the result since both spectral sequences
converge to the cohomology of the associated total complex of A•,•.

Definition 20.25.2. Let X be a topological space. An open covering X =
⋃
i∈I Ui

is said to be locally finite if for every x ∈ X there exists an open neighbourhood W
of x such that {i ∈ I |W ∩ Ui 6= ∅} is finite.

Remark 20.25.3. Let X =
⋃
i∈I Ui be a locally finite open covering. Denote

ji : Ui → X the inclusion map. Suppose that for each i we are given an abelian
sheaf Fi on Ui. Consider the abelian sheaf G =

⊕
i∈I(ji)∗Fi. Then for V ⊂ X

open we actually have

Γ(V,G) =
∏

i∈I
Fi(V ∩ Ui).

In other words we have ⊕
i∈I

(ji)∗Fi =
∏

i∈I
(ji)∗Fi

This seems strange until you realize that the direct sum of a collection of sheaves
is the sheafification of what you think it should be. See discussion in Modules,
Section 17.3. Thus we conclude that in this case the complex of Lemma 20.25.1
has terms

Cp(U ,F) =
⊕

i0...ip
(ji0...ip)∗Fi0...ip

which is sometimes useful.

20.26. Čech cohomology of complexes

In general for sheaves of abelian groups F and G on X there is a cupproduct map

Hi(X,F)×Hj(X,G) −→ Hi+j(X,F ⊗Z G).

In this section we define it using Čech cocycles by an explicit formula for the cup
product. If you are worried about the fact that cohomology may not equal Čech co-
homology, then you can use hypercoverings and still use the cocycle notation. This
also has the advantage that it works to define the cup product for hypercohomology
on any topos (insert future reference here).

http://stacks.math.columbia.edu/tag/02FS
http://stacks.math.columbia.edu/tag/02FT
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Let F• be a bounded below complex of presheaves of abelian groups on X. We
can often compute Hn(X,F•) using Čech cocycles. Namely, let U : X =

⋃
i∈I Ui

be an open covering of X. Since the Čech complex Č•(U ,F) (Definition 20.10.1) is
functorial in the presheaf F we obtain a double complex Č•(U ,F•). The associated
total complex to Č•(U ,F•) is the complex with degree n term

Totn(Č•(U ,F•)) =
⊕

p+q=n

∏
i0...ip

Fq(Ui0...ip)

see Homology, Definition 12.22.3. A typical element in Totn will be denoted α =
{αi0...ip} where αi0...ip ∈ Fq(Ui0...ip). In other words the F-degree of αi0...ip is
q = n − p. This notation requires us to be aware of the degree α lives in at all
times. We indicate this situation by the formula degF (αi0...ip) = q. According to
our conventions in Homology, Definition 12.22.3 the differential of an element α of
degree n is given by

d(α)i0...ip+1
=
∑p+1

j=0
(−1)jαi0...̂ij ...ip+1

+ (−1)p+1dF (αi0...ip+1
)

where dF denotes the differential on the complex F•. The expression αi0...̂ij ...ip+1

means the restriction of αi0...̂ij ...ip+1
∈ F(Ui0...̂ij ...ip+1

) to Ui0...ip+1
.

The construction of Tot(Č•(U ,F•)) is functorial in F•. As well there is a functorial
transformation

(20.26.0.1) Γ(X,F•) −→ Tot(Č•(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.

Refinements. Let V = {Vj}j∈J be a refinement of U . This means there is a map
t : J → I such that Vj ⊂ Ut(j) for all j ∈ J . This gives rise to a functorial
transformation

(20.26.0.2) Tt : Tot(Č•(U ,F•)) −→ Tot(Č•(V,F•)).

defined by the rule

Tt(α)j0...jp = αt(j0)...t(jp)|Vj0...jp .

Given two maps t, t′ : J → I as above the maps Tt and Tt′ constructed above are
homotopic. The homotopy is given by

h(α)j0...jp =
∑p

a=0
(−1)aαt(j0)...t(ja)t′(ja)...t′(jp)

for an element α of degree n. This works because of the following computation,
again with α an element of degree n (so d(α) has degree n+ 1 and h(α) has degree
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n− 1):

(d(h(α)) + h(d(α)))j0...jp =
∑p

k=0
(−1)kh(α)j0...ĵk...jp+

(−1)pdF (h(α)j0...jp)+∑p

a=0
(−1)ad(α)t(j0)...t(ja)t′(ja)...t′(jp)

=
∑p

k=0

∑k−1

a=0
(−1)k+aα

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)
+∑p

k=0

∑p

a=k+1
(−1)k+a−1α

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)
+∑p

a=0
(−1)p+adF (αt(j0)...t(ja)t′(ja)...t′(jp))+∑p

a=0

∑a

k=0
(−1)a+kα

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)
+∑p

a=0

∑p

k=a
(−1)a+k+1α

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)
+∑p

a=0
(−1)a+p+1dF (αt(j0)...t(ja)t′(ja)...t′(jp))

= αt′(j0)...t′(jp) + (−1)2p+1αt(j0)...t(jp)

= Tt′(α)j0...jp − Tt(α)j0...jp

We leave it to the reader to verify the cancellations. (Note that the terms having
both k and a in the 1st, 2nd and 4th, 5th summands cancel, except the ones where
a = k which only occur in the 4th and 5th and these cancel against each other
except for the two desired terms.) It follows that the induced map

Hn(Tt) : Hn(Tot(Č•(U ,F•)))→ Hn(Tot(Č•(V,F•)))

is independent of the choice of t. We define Čech hypercohomology as the limit of
the Čech cohomology groups over all refinements via the maps H•(Tt).

In the limit (over all open coverings of X) the following lemma provides a map
of Čech hypercohomology into cohomology, which is often an isomorphism and is
always an isomorphism if we use hypercoverings.

Lemma 20.26.1. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. For a bounded below complex F• of OX-modules there is a canonical map

Tot(Č•(U ,F•)) −→ RΓ(X,F•)

functorial in F• and compatible with (20.26.0.1) and (20.26.0.2). There is a spectral
sequence (Er, dr)r≥0 with

Ep,q2 = Hp(Tot(Č•(U , Hq(F•))

converging to Hp+q(X,F•).

Proof. Let I• be a bounded below complex of injectives. The map (20.26.0.1) for
I• is a map Γ(X, I•)→ Tot(Č•(U , I•)). This is a quasi-isomorphism of complexes
of abelian groups as follows from Homology, Lemma 12.22.7 applied to the double
complex Č•(U , I•) using Lemma 20.12.1. Suppose F• → I• is a quasi-isomorphism
of F• into a bounded below complex of injectives. Since RΓ(X,F•) is represented
by the complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•(U ,F•)) −→ Tot(Č•(U , I•)).

http://stacks.math.columbia.edu/tag/08BN
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We omit the verification of functoriality and compatibilities. To construct the
spectral sequence of the lemma, choose a Cartan-Eilenberg resolution F• → I•,•,
see Derived Categories, Lemma 13.21.2. In this case F• → Tot(I•,•) is an injective
resolution and hence

Tot(Č•(U ,Tot(I•,•)))
computes RΓ(X,F•) as we’ve seen above. By Homology, Remark 12.22.9 we can
view this as the total complex associated to the triple complex Č•(U , I•,•) hence,
using the same remark we can view it as the total complex associate to the double
complex A•,• with terms

An,m =
⊕

p+q=n
Čp(U , Iq,m)

Since Iq,• is an injective resolution of Fq we can apply the first spectral sequence
associated to A•,• (Homology, Lemma 12.22.4) to get a spectral sequence with

En,m1 =
⊕

p+q=n
Čp(U , Hm(Fq))

which is the nth term of the complex Tot(Č•(U , Hm(F•)). Hence we obtain E2

terms as described in the lemma. Convergence by Homology, Lemma 12.22.6. �

Let X be a topological space, let U : X =
⋃
i∈I Ui be an open covering, and let F•

be a bounded below complex of presheaves of abelian groups. Consider the map
τ : Tot(Č•(U ,F•))→ Tot(Č•(U ,F•)) defined by

τ(α)i0...ip = (−1)p(p+1)/2αip...i0 .

Then we have for an element α of degree n that

d(τ(α))i0...ip+1

=
∑p+1

j=0
(−1)jτ(α)i0...̂ij ...ip+1

+ (−1)p+1dF (τ(α)i0...ip+1
)

=
∑p+1

j=0
(−1)j+

p(p+1)
2 αip+1...̂ij ...i0

+ (−1)p+1+
(p+1)(p+2)

2 dF (αip+1...i0)

On the other hand we have

τ(d(α))i0...ip+1

= (−1)
(p+1)(p+2)

2 d(α)ip+1...i0

= (−1)
(p+1)(p+2)

2

(∑p+1

j=0
(−1)jαip+1...̂ip+1−j ...i0

+ (−1)p+1dF (αip+1...i0)

)
Thus we conclude that d(τ(α)) = τ(d(α)) because p(p+ 1)/2 ≡ (p+ 1)(p+ 2)/2 +
p+ 1 mod 2. In other words τ is an endomorphism of the complex Tot(Č•(U ,F•)).
Note that the diagram

Γ(X,F•) −→ Tot(Č•(U ,F•))
↓ id ↓ τ

Γ(X,F•) −→ Tot(Č•(U ,F•))

commutes. In addition τ is clearly compatible with refinements. This suggests
that τ acts as the identity on Čech cohomology (i.e., in the limit – provided Čech
hypercohomology agrees with hypercohomology, which is always the case if we use
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hypercoverings). We claim that τ actually is homotopic to the identity on the total
Čech complex Tot(Č•(U ,F•)). To prove this, we use as homotopy

h(α)i0...ip =
∑p

a=0
εp(a)αi0...iaip...ia with εp(a) = (−1)

(p−a)(p−a−1)
2 +p

for α of degree n. As usual we omit writing |Ui0...ip . This works because of the
following computation, again with α an element of degree n:

(d(h(α)) + h(d(α)))i0...ip =
∑p

k=0
(−1)kh(α)i0...̂ik...ip+

(−1)pdF (h(α)i0...ip)+∑p

a=0
εp(a)d(α)i0...iaip...ia

=
∑p

k=0

∑k−1

a=0
(−1)kεp−1(a)αi0...iaip...îk...ia+∑p

k=0

∑p

a=k+1
(−1)kεp−1(a− 1)αi0...îk...iaip...ia+∑p

a=0
(−1)pεp(a)dF (αi0...iaip...ia)+∑p

a=0

∑a

k=0
εp(a)(−1)kαi0...îk...iaip...ia+∑p

a=0

∑p

k=a
εp(a)(−1)p+a+1−kαi0...iaip...îk...ia+∑p

a=0
εp(a)(−1)p+1dF (αi0...iaip...ia)

=εp(0)αip...i0 + εp(p)(−1)p+1αi0...ip

=(−1)
p(p+1)

2 αip...i0 − αi0...ip
The cancellations follow because

(−1)kεp−1(a) + εp(a)(−1)p+a+1−k = 0 and (−1)kεp−1(a− 1) + εp(a)(−1)k = 0

We leave it to the reader to verify the cancellations.

Suppose we have two bounded below complexes complexes of abelian sheaves F•
and G•. We define the complex Tot(F• ⊗Z G•) to be to complex with terms⊕

p+q=n Fp ⊗ Gq and differential according to the rule

(20.26.1.1) d(α⊗ β) = d(α)⊗ β + (−1)deg(α)α⊗ d(β)

when α and β are homogeneous, see Homology, Definition 12.22.3.

Suppose that M• and N• are two bounded below complexes of abelian groups.
Then if m, resp. n is a cocycle for M•, resp. N•, it is immediate that m ⊗ n is a
cocycle for Tot(M• ⊗N•). Hence a cupproduct

Hi(M•)×Hj(N•) −→ Hi+j(Tot(M• ⊗N•)).
This is discussed also in More on Algebra, Section 15.49.

So the construction of the cup product in hypercohomology of complexes rests on
a construction of a map of complexes

(20.26.1.2) Tot
(
Tot(Č•(U ,F•))⊗Z Tot(Č•(U ,G•))

)
−→ Tot(Č•(U ,Tot(F•⊗G•)))

This map is denoted ∪ and is given by the rule

(α ∪ β)i0...ip =
∑p

r=0
ε(n,m, p, r)αi0...ir ⊗ βir...ip .
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where α has degree n and β has degree m and with

ε(n,m, p, r) = (−1)(p+r)n+rp+r.

Note that ε(n,m, p, n) = 1. Hence if F• = F [0] is the complex consisting in a single
abelian sheaf F placed in degree 0, then there no signs in the formula for ∪ (as
in that case αi0...ir = 0 unless r = n). For an explanation of why there has to be
a sign and how to compute it see [AGV71, Exposee XVII] by Deligne. To check
(20.26.1.2) is a map of complexes we have to show that

d(α ∪ β) = d(α) ∪ β + (−1)deg(α)α ∪ d(β)

by the definition of the differential on Tot(Tot(Č•(U ,F•)) ⊗Z Tot(Č•(U ,G•))) as
given in Homology, Definition 12.22.3. We compute first

d(α ∪ β)i0...ip+1 =
∑p+1

j=0
(−1)j(α ∪ β)i0...̂ij ...ip+1

+ (−1)p+1dF⊗G((α ∪ β)i0...ip+1)

=
∑p+1

j=0

∑j−1

r=0
(−1)jε(n,m, p, r)αi0...ir ⊗ βir...̂ij ...ip+1

+∑p+1

j=0

∑p+1

r=j+1
(−1)jε(n,m, p, r − 1)αi0...̂ij ...ir ⊗ βir...ip+1+∑p+1

r=0
(−1)p+1ε(n,m, p+ 1, r)dF⊗G(αi0...ir ⊗ βir...ip+1

)

and note that the summands in the last term equal

(−1)p+1ε(n,m, p+ 1, r)
(
dF (αi0...ir )⊗ βir...ip+1

+ (−1)n−rαi0...ir ⊗ dG(βir...ip+1
)
)
.

because degF (αi0...ir ) = n− r. On the other hand

(d(α) ∪ β)i0...ip+1
=
∑p+1

r=0
ε(n+ 1,m, p+ 1, r)d(α)i0...ir ⊗ βir...ip+1

=
∑p+1

r=0

∑r

j=0
ε(n+ 1,m, p+ 1, r)(−1)jαi0...îj ...ir ⊗ βir...ip+1+∑p+1

r=0
ε(n+ 1,m, p+ 1, r)(−1)rdF (αi0...ir )⊗ βir...ip+1

and

(α ∪ d(β))i0...ip+1 =
∑p+1

r=0
ε(n,m+ 1, p+ 1, r)αi0...ir ⊗ d(β)ir...ip+1

=
∑p+1

r=0

∑p+1

j=r
ε(n,m+ 1, p+ 1, r)(−1)j−rαi0...ir ⊗ βir...îj ...ip+1

+∑p+1

r=0
ε(n,m+ 1, p+ 1, r)(−1)p+1−rαi0...ir ⊗ dG(βir...ip+1

)

The desired equality holds if we have

(−1)p+1ε(n,m, p+ 1, r) = ε(n+ 1,m, p+ 1, r)(−1)r

(−1)p+1ε(n,m, p+ 1, r)(−1)n−r = (−1)nε(n,m+ 1, p+ 1, r)(−1)p+1−r

ε(n+ 1,m, p+ 1, r)(−1)r = (−1)1+nε(n,m+ 1, p+ 1, r − 1)

(−1)jε(n,m, p, r) = (−1)nε(n,m+ 1, p+ 1, r)(−1)j−r

(−1)jε(n,m, p, r − 1) = ε(n+ 1,m, p+ 1, r)(−1)j

(The third equality is necessary to get the terms with r = j from d(α) ∪ β and
(−1)nα ∪ d(β) to cancel each other.) We leave the verifications to the reader.
(Alternatively, check the script signs.gp in the scripts subdirectory of the stacks
project.)
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Associativity of the cupproduct. Suppose that F•, G• and H• are bounded below
complexes of abelian groups on X. The obvious map (without the intervention of
signs) is an isomorphism of complexes

Tot(Tot(F• ⊗Z G•)⊗Z H•) −→ Tot(F• ⊗Z Tot(G• ⊗Z H•)).

Another way to say this is that the triple complex F• ⊗Z G• ⊗Z H• gives rise to a
well defined total complex with differential satisfying

d(α⊗β⊗γ) = d(α)⊗β⊗γ+(−1)deg(α)α⊗d(β)⊗γ+(−1)deg(α)+deg(β)α⊗β⊗d(γ)

for homogeneous elements. Using this map it is easy to verify that

(α ∪ β) ∪ γ = α ∪ (β ∪ γ)

namely, if α has degree a, β has degree b and γ has degree c, then

((α ∪ β) ∪ γ)i0...ip =
∑p

r=0
ε(a+ b, c, p, r)(α ∪ β)i0...ir ⊗ γir...ip

=
∑p

r=0

∑r

s=0
ε(a+ b, c, p, r)ε(a, b, r, s)αi0...is ⊗ βis...ir ⊗ γir...ip

and

(α ∪ (β ∪ γ)i0...ip =
∑p

s=0
ε(a, b+ c, p, s)αi0...is ⊗ (β ∪ γ)is...ip

=
∑p

s=0

∑p

r=s
ε(a, b+ c, p, s)ε(b, c, p− s, r − s)αi0...is ⊗ βis...ir ⊗ γir...ip

and a trivial mod 2 calculation shows the signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the stacks project.)

Finally, we indicate why the cup product preserves a graded commutative structure,
at least on a cohomological level. For this we use the operator τ introduced above.
Let F• be a bounded below complexes of abelian groups, and assume we are given
a graded commutative multiplication

∧• : Tot(F• ⊗F•) −→ F•.

This means the following: For s a local section of Fa, and t a local section of Fb
we have s ∧ t a local section of Fa+b. Graded commutative means we have s ∧ t =
(−1)abt∧ s. Since ∧ is a map of complexes we have d(s∧ t) = d(s)∧ t+ (−1)as∧ t.
The composition

Tot(Tot(Č•(U ,F•))⊗Tot(Č•(U ,F•)))→ Tot(Č•(U ,Tot(F•⊗ZF•)))→ Tot(Č•(U ,F•))

induces a cup product on cohomology

Hn(Tot(Č•(U ,F•)))×Hm(Tot(Č•(U ,F•))) −→ Hn+m(Tot(Č•(U ,F•)))

and so in the limit also a product on Čech cohomology and therefore (using hy-
percoverings if needed) a product in cohomology of F•. We claim this product
(on cohomology) is graded commutative as well. To prove this we first consider
an element α of degree n in Tot(Č•(U ,F•)) and an element β of degree m in
Tot(Č•(U ,F•)) and we compute

∧•(α ∪ β)i0...ip =
∑p

r=0
ε(n,m, p, r)αi0...ir ∧ βir...ip

=
∑p

r=0
ε(n,m, p, r)(−1)deg(αi0...ir ) deg(βir...ip )βir...ip ∧ αi0...ir
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because ∧ is graded commutative. On the other hand we have

τ(∧•(τ(β) ∪ τ(α)))i0...ip =χ(p)
∑p

r=0
ε(m,n, p, r)τ(β)ip...ip−r ∧ τ(α)ip−r...i0

=χ(p)
∑p

r=0
ε(m,n, p, r)χ(r)χ(p− r)βip−r...ip ∧ αi0...ip−r

=χ(p)
∑p

r=0
ε(m,n, p, p− r)χ(r)χ(p− r)βir...ip ∧ αi0...ir

where χ(t) = (−1)
t(t+1)

2 . Since we proved earlier that τ acts as the identity on
cohomology we have to verify that

ε(n,m, p, r)(−1)(n−r)(m−(p−r)) = (−1)nmχ(p)ε(m,n, p, p− r)χ(r)χ(p− r)
A trivial mod 2 calculation shows these signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the stacks project.)

Finally, we study the compatibility of cup product with boundary maps. Suppose
that

0→ F•1 → F•2 → F•3 → 0 and 0← G•1 ← G•2 ← G•3 ← 0

are short exact sequences of bounded below complexes of abelian sheaves on X. Let
H• be another bounded below complex of abelian sheaves, and suppose we have
maps of complexes

γi : Tot(F•i ⊗Z G•i ) −→ H•

which are compatible with the maps between the complexes, namely such that the
diagrams

Tot(F•1 ⊗Z G•1 )

γ1

��

Tot(F•1 ⊗Z G•2 )oo

��
H• Tot(F•2 ⊗Z G•2 )

γ2oo

and
Tot(F•2 ⊗Z G•2 )

γ2

��

Tot(F•2 ⊗Z G•3 )oo

��
H• Tot(F•3 ⊗Z G•3 )

γ3oo

are commutative.

Lemma 20.26.2. In the situation above, assume Čech cohomology agrees with
cohomology for the sheaves Fpi and Gqj . Let a3 ∈ Hn(X,F•3 ) and b1 ∈ Hm(X,G•1 ).
Then we have

γ1(∂a3 ∪ b1) = (−1)n+1γ3(a3 ∪ ∂b1)

in Hn+m(X,H•) where ∂ indicates the boundary map on cohomology associated to
the short exact sequences of complexes above.

Proof. We will use the following conventions and notation. We think of Fp1 as a
subsheaf of Fp2 and we think of Gq3 as a subsheaf of Gq2 . Hence if s is a local section
of Fp1 we use s to denote the corresponding section of Fp2 as well. Similarly for
local sections of Gq3 . Furthermore, if s is a local section of Fp2 then we denote s̄ its
image in Fp3 . Similarly for the map Gq2 → G

q
1 . In particular if s is a local section of

Fp2 and s̄ = 0 then s is a local section of Fp1 . The commutativity of the diagrams
above implies, for local sections s of Fp2 and t of Gq3 that γ2(s ⊗ t) = γ3(s̄ ⊗ t) as
sections of Hp+q.

http://stacks.math.columbia.edu/tag/07MC
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Let U : X =
⋃
i∈I Ui be an open covering of X. Suppose that α3, resp. β1 is a

degree n, resp. m cocycle of Tot(Č•(U ,F•3 )), resp. Tot(Č•(U ,G•1 )) representing a3,
resp. b1. After refining U if necessary, we can find cochains α2, resp. β2 of degree
n, resp. m in Tot(Č•(U ,F•2 )), resp. Tot(Č•(U ,G•2 )) mapping to α3, resp. β1. Then
we see that

d(α2) = d(ᾱ2) = 0 and d(β2) = d(β̄2) = 0.

This means that α1 = d(α2) is a degree n+1 cocycle in Tot(Č•(U ,F•1 )) representing
∂a3. Similarly, β3 = d(β2) is a degree m+ 1 cocycle in Tot(Č•(U ,G•3 )) representing
∂b1. Thus we may compute

d(γ2(α2 ∪ β2)) = γ2(d(α2 ∪ β2))

= γ2(d(α2) ∪ β2 + (−1)nα2 ∪ d(β2))

= γ2(α1 ∪ β2) + (−1)nγ2(α2 ∪ β3)

= γ1(α1 ∪ β1) + (−1)nγ3(α3 ∪ β3)

So this even tells us that the sign is (−1)n+1 as indicated in the lemma1. �

20.27. Flat resolutions

A reference for the material in this section is [Spa88]. Let (X,OX) be a ringed
space. By Modules, Lemma 17.16.6 any OX -module is a quotient of a flat OX -
module. By Derived Categories, Lemma 13.16.5 any bounded above complex of
OX -modules has a left resolution by a bounded above complex of flat OX -modules.
However, for unbounded complexes, it turns out that flat resolutions aren’t good
enough.

Lemma 20.27.1. Let (X,OX) be a ringed space. Let G• be a complex of OX-
modules. The functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX G•)
is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas 15.45.1 and 15.45.2. �

Definition 20.27.2. Let (X,OX) be a ringed space. A complex K• of OX -modules
is called K-flat if for every acyclic complex F• of OX -modules the complex

Tot(F• ⊗OX K•)
is acyclic.

Lemma 20.27.3. Let (X,OX) be a ringed space. Let K• be a K-flat complex.
Then the functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 20.27.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. �

1The sign depends on the convention for the signs in the long exact sequence in cohomology

associated to a triangle in D(X). The conventions in the stacks project are (a) distinguished

triangles correspond to termwise split exact sequences and (b) the boundary maps in the long
exact sequence are given by the maps in the snake lemma without the intervention of signs. See

Derived Categories, Section 13.10.

http://stacks.math.columbia.edu/tag/06Y8
http://stacks.math.columbia.edu/tag/06Y9
http://stacks.math.columbia.edu/tag/06YA
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Lemma 20.27.4. Let (X,OX) be a ringed space. Let K• be a complex of OX-
modules. Then K• is K-flat if and only if for all x ∈ X the complex K•x of OX,x is
K-flat (More on Algebra, Definition 15.45.3).

Proof. If K•x is K-flat for all x ∈ X then we see that K• is K-flat because ⊗ and
direct sums commute with taking stalks and because we can check exactness at
stalks, see Modules, Lemma 17.3.1. Conversely, assume K• is K-flat. Pick x ∈ X
M• be an acyclic complex of OX,x-modules. Then ix,∗M

• is an acyclic complex of
OX -modules. Thus Tot(ix,∗M

• ⊗OX K•) is acyclic. Taking stalks at x shows that
Tot(M• ⊗OX,x K•x) is acyclic. �

Lemma 20.27.5. Let (X,OX) be a ringed space. If K•, L• are K-flat complexes
of OX-modules, then Tot(K• ⊗OX L•) is a K-flat complex of OX-modules.

Proof. Follows from the isomorphism

Tot(M• ⊗OX Tot(K• ⊗OX L•)) = Tot(Tot(M• ⊗OX K•)⊗OX L•)
and the definition. �

Lemma 20.27.6. Let (X,OX) be a ringed space. Let (K•1,K•2,K•3) be a distin-
guished triangle in K(Mod(OX)). If two out of three of K•i are K-flat, so is the
third.

Proof. Follows from Lemma 20.27.1 and the fact that in a distinguished triangle
in K(Mod(OX)) if two out of three are acyclic, so is the third. �

Lemma 20.27.7. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback of a K-flat complex of OY -modules is a K-flat complex of OX-modules.

Proof. We can check this on stalks, see Lemma 20.27.4. Hence this follows from
Sheaves, Lemma 6.26.4 and More on Algebra, Lemma 15.45.5. �

Lemma 20.27.8. Let (X,OX) be a ringed space. A bounded above complex of flat
OX-modules is K-flat.

Proof. We can check this on stalks, see Lemma 20.27.4. Thus this lemma follows
from Modules, Lemma 17.16.2 and More on Algebra, Lemma 15.45.8. �

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemma 20.27.9. Let (X,OX) be a ringed space. Let K•1 → K•2 → . . . be a system
of K-flat complexes. Then colimiK•i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗OX K•i ) = Tot(F• ⊗OX colimiK•i )
Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 20.27.10. Let (X,OX) be a ringed space. For any complex G• of OX-
modules there exists a commutative diagram of complexes of OX-modules

K•1

��

// K•2

��

// . . .

τ≤1G• // τ≤2G• // . . .

http://stacks.math.columbia.edu/tag/06YB
http://stacks.math.columbia.edu/tag/079R
http://stacks.math.columbia.edu/tag/079S
http://stacks.math.columbia.edu/tag/06YC
http://stacks.math.columbia.edu/tag/06YD
http://stacks.math.columbia.edu/tag/06YE
http://stacks.math.columbia.edu/tag/079T
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with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2)
each K•n is a bounded above complex whose terms are direct sums of OX-modules of
the form jU !OU , and (3) the maps K•n → K•n+1 are termwise split injections whose
cokernels are direct sums of OX-modules of the form jU !OU . Moreover, the map
colimK•n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immedi-
ately from Modules, Lemma 17.16.6 and Derived Categories, Lemma 13.28.1. The
induced map colimK•n → G• is a quasi-isomorphism because filtered colimits are
exact. �

Lemma 20.27.11. Let (X,OX) be a ringed space. For any complex G• there exists
a K-flat complex K• and a quasi-isomorphism K• → G•.

Proof. Choose a diagram as in Lemma 20.27.10. Each complex K•n is a bounded
above complex of flat modules, see Modules, Lemma 17.16.5. Hence K•n is K-flat
by Lemma 20.27.8. The induced map colimK•n → G• is a quasi-isomorphism by
construction. Since colimK•n is K-flat by Lemma 20.27.9 we win. �

Lemma 20.27.12. Let (X,OX) be a ringed space. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of OX-modules. For every complex F• of OX-
modules the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗OX P•) −→ Tot(F• ⊗OX Q•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see
Lemma 20.27.11. Consider the commutative diagram

Tot(K• ⊗OX P•) //

��

Tot(K• ⊗OX Q•)

��
Tot(F• ⊗OX P•) // Tot(F• ⊗OX Q•)

The result follows as by Lemma 20.27.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. �

Let (X,OX) be a ringed space. Let F• be an object of D(OX). Choose a K-flat
resolution K• → F•, see Lemma 20.27.11. By Lemma 20.27.1 we obtain an exact
functor of triangulated categories

K(OX) −→ K(OX), G• 7−→ Tot(G• ⊗OX K•)

By Lemma 20.27.3 this functor induces a functor D(OX)→ D(OX) simply because
D(OX) is the localization of K(OX) at quasi-isomorphisms. By Lemma 20.27.12
the resulting functor (up to isomorphism) does not depend on the choice of the
K-flat resolution.

Definition 20.27.13. Let (X,OX) be a ringed space. Let F• be an object of
D(OX). The derived tensor product

−⊗L
OX F

• : D(OX) −→ D(OX)

is the exact functor of triangulated categories described above.

http://stacks.math.columbia.edu/tag/06YF
http://stacks.math.columbia.edu/tag/06YG
http://stacks.math.columbia.edu/tag/06YH
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It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
OX G

• ∼= G• ⊗L
OX F

•

for G• and F• in D(OX). Hence when we write F• ⊗L
OX G

• we will usually be
agnostic about which variable we are using to define the derived tensor product
with.

Definition 20.27.14. Let (X,OX) be a ringed space. Let F , G be OX -modules.
The Tor’s of F and G are define by the formula

TorOXp (F ,G) = H−p(F ⊗L
OX G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of OX -modules 0 →
F1 → F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗OX G // F2 ⊗OX G // F3 ⊗OX G // 0

TorOX1 (F1,G) // TorOX1 (F2,G) // TorOX1 (F3,G)

kk

for everyOX -module G. This will be called the long exact sequence of Tor associated
to the situation.

Lemma 20.27.15. Let (X,OX) be a ringed space. Let F be an OX-module. The
following are equivalent

(1) F is a flat OX-module, and

(2) TorOX1 (F ,G) = 0 for every OX-module G.

Proof. If F is flat, then F ⊗OX − is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗OX G → F ⊗OX H is a quotient

of TorOX1 (F ,Q) which is zero by assumption. Hence F is flat. �

20.28. Derived pullback

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(OY )→ D(OX)

Namely, for every complex of OY -modules G• we can choose a K-flat resolution
K• → G• and set Lf∗G• = f∗K•. You can use Lemmas 20.27.7, 20.27.11, and
20.27.12 to see that this is well defined. However, to cross all the t’s and dot all
the i’s it is perhaps more convenient to use some general theory.

Lemma 20.28.1. The construction above is independent of choices and defines an
exact functor of triangulated categories Lf∗ : D(OY )→ D(OX).

Proof. To see this we use the general theory developed in Derived Categories,
Section 13.15. Set D = K(OY ) and D′ = D(OX). Let us write F : D → D′ the
exact functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S
be the set of quasi-isomorphisms inD = K(OY ). This gives a situation as in Derived
Categories, Situation 13.15.1 so that Derived Categories, Definition 13.15.2 applies.
We claim that LF is everywhere defined. This follows from Derived Categories,

http://stacks.math.columbia.edu/tag/08BP
http://stacks.math.columbia.edu/tag/08BQ
http://stacks.math.columbia.edu/tag/06YJ
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Lemma 13.15.15 with P ⊂ Ob(D) the collection of K-flat complexes: (1) follows
from Lemma 20.27.11 and to see (2) we have to show that for a quasi-isomorphism
K•1 → K•2 between K-flat complexes of OY -modules the map f∗K•1 → f∗K•2 is a
quasi-isomorphism. To see this write this as

f−1K•1 ⊗f−1OY OX −→ f−1K•2 ⊗f−1OY OX
The functor f−1 is exact, hence the map f−1K•1 → f−1K•2 is a quasi-isomorphism.
By Lemma 20.27.7 applied to the morphism (X, f−1OY )→ (Y,OY ) the complexes
f−1K•1 and f−1K•2 are K-flat complexes of f−1OY -modules. Hence Lemma 20.27.12
guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived
functor

LF : D(OY ) = S−1D −→ D′ = D(OX)

see Derived Categories, Equation (13.15.9.1). Finally, Derived Categories, Lemma
13.15.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is K-flat, i.e.,
Lf∗ = LF is indeed computed in the way described above. �

Lemma 20.28.2. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
OY G

•) = Lf∗F• ⊗L
OX Lf

∗G•

for F•,G• ∈ Ob(D(X)).

Proof. We may assume that F• and G• are K-flat complexes. In this case F•⊗L
OY

G• is just the total complex associated to the double complex F•⊗OY G•. By Lemma
20.27.5 Tot(F•⊗OY G•) is K-flat also. Hence the isomorphism of the lemma comes
from the isomorphism

Tot(f∗F• ⊗OX f∗G•) −→ f∗Tot(F• ⊗OY G•)
whose constituents are the isomorphisms f∗Fp ⊗OX f∗Gq → f∗(Fp ⊗OY Gq) of
Modules, Lemma 17.15.4. �

Lemma 20.28.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
There is a canonical bifunctorial isomorphism

F• ⊗L
OX Lf

∗G• = F• ⊗L
f−1OY f

−1G•

for F• in D(X) and G• in D(Y ).

Proof. Let F be an OX -module and let G be an OY -module. Then F ⊗OX f∗G =
F ⊗f−1OY f

−1G because f∗G = OX ⊗f−1OY f
−1G. The lemma follows from this

and the definitions. �

20.29. Cohomology of unbounded complexes

Let (X,OX) be a ringed space. The category Mod(OX) is a Grothendieck abelian
category: it has all colimits, filtered colimits are exact, and it has a generator,
namely ⊕

U⊂X open
jU !OU ,

see Modules, Section 17.3 and Lemmas 17.16.5 and 17.16.6. By Injectives, Theo-
rem 19.12.6 for every complex F• of OX -modules there exists an injective quasi-
isomorphism F• → I• to a K-injective complex of OX -modules. Hence we can
define

RΓ(X,F•) = Γ(X, I•)

http://stacks.math.columbia.edu/tag/079U
http://stacks.math.columbia.edu/tag/08DE


1494 20. COHOMOLOGY OF SHEAVES

and similarly for any left exact functor, see Derived Categories, Lemma 13.29.6.
For any morphism of ringed spaces f : (X,OX)→ (Y,OY ) we obtain

Rf∗ : D(X) −→ D(Y )

on the unbounded derived categories.

Lemma 20.29.1. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
The functor Rf∗ defined above and the functor Lf∗ defined in Lemma 20.28.1 are
adjoint:

HomD(X)(Lf
∗G•,F•) = HomD(Y )(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(X)) and G• ∈ Ob(D(Y )).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 13.28.4. �

Remark 20.29.2. The construction of unbounded derived functor Lf∗ and Rf∗
allows one to construct the base change map in full generality. Namely, suppose
that

X ′
g′
//

f ′

��

X

f

��
S′

g // S

is a commutative diagram of ringed spaces. Let F• be a complex of OX -modules.
Then there exists a canonical base change map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•

in D(OS′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗F• → L(g′)∗F•
Since L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗F• →
L(g′)∗F• which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗F• → F•.

20.30. Unbounded Mayer-Vietoris

Let (X,OX) be a ringed space. Let U ⊂ X be an open subset. Denote j : (U,OU )→
(X,OX) the corresponding open immersion. The pullback functor j∗ is exact as it
is just the restriction functor. Thus derived pullback Lj∗ is computed on any com-
plex by simply restricting the complex. We often simply denote the corresponding
functor

D(OX)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU ) → Mod(OX) (see Sheaves, Section 6.31)
is an exact functor (Modules, Lemma 17.3.4). Thus it induces a functor

j! : D(OU )→ D(OX), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 20.30.1. Let X be a ringed space. Let U ⊂ X be an open subspace. The
restriction of a K-injective complex of OX-modules to U is a K-injective complex
of OU -modules.

Proof. Follows immediately from Derived Categories, Lemma 13.29.10 and the
fact that the restriction functor has the exact adjoint j!. See discussion above. �

http://stacks.math.columbia.edu/tag/079W
http://stacks.math.columbia.edu/tag/08HY
http://stacks.math.columbia.edu/tag/08BS
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Lemma 20.30.2. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Given an open subspace V ⊂ Y , set U = f−1(V ) and denote g : U → V the induced
morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Lemma 20.30.1. Hence the result follows from
Lemma 20.7.4 (with p = 0). �

Lemma 20.30.3. Let (X,OX) be a ringed space. Let U ⊂ X be an open subset.
Denote j : (U,OU )→ (X,OX) the corresponding open immersion. The restriction
functor D(OX) → D(OU ) is a right adjoint to extension by zero j! : D(OU ) →
D(OX).

Proof. We have to show that

HomD(OX)(j!E,F ) = HomD(OU )(E,F |U )

Choose a complex E• of OU -modules representing E and choose a K-injective com-
plex I• representing F . By Lemma 20.30.1 the complex I•|U is K-injective as well.
Hence we see that the formula above becomes

HomD(OX)(j!E•, I•) = HomD(OU )(E•, I•|U )

which holds as |U and j! are adjoint functors (Sheaves, Lemma 6.31.8) and Derived
Categories, Lemma 13.29.2. �

Lemma 20.30.4. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces. For any object E of D(OX) we have a distinguished triangle

jU∩V !E|U∩V → jU !E|U ⊕ jV !E|V → E → jU∩V !E|U∩V [1]

in D(OX).

Proof. We have seen above that the restriction functors and the extension by zero
functors are computed by just applying the functors to any complex. Let E• be a
complex of OX -modules representing E. The distinguished triangle of the lemma
is the distinguished triangle associated (by Derived Categories, Section 13.12 and
especially Lemma 13.12.1) to the short exact sequence of complexes of OX -modules

0→ jU∩V !E•|U∩V → jU !E•|U ⊕ jV !E•|V → E• → 0

To see this sequence is exact one checks on stalks using Sheaves, Lemma 6.31.8
(computation omitted). �

Lemma 20.30.5. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces. For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]

in D(OX).

Proof. Choose a K-injective complex I• representing E whose terms In are in-
jective objects of Mod(OX), see Injectives, Theorem 19.12.6. We have seen that
I•|U is a K-injective complex as well (Lemma 20.30.1). Hence RjU,∗E|U is repre-
sented by jU,∗I•|U . Similarly for V and U ∩V . Hence the distinguished triangle of
the lemma is the distinguished triangle associated (by Derived Categories, Section
13.12 and especially Lemma 13.12.1) to the short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU∩V,∗I•|U∩V → 0.
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This sequence is exact because for any W ⊂ X open and any n the sequence

0→ In(W )→ In(W ∩ U)⊕ In(W ∩ V )→ In(W ∩ U ∩ V )→ 0

is exact (see proof of Lemma 20.9.2). �

Lemma 20.30.6. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces of X. For objects E, F of D(OX) we have a Mayer-Vietoris
sequence

. . . // Ext−1(EU∩V , FU∩V )

qq
Hom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU∩V , FU∩V )

where the subscripts denote restrictions to the relevant opens and the Hom’s are
taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 20.30.4 to obtain a long ex-
act sequence of Hom’s (from Derived Categories, Lemma 13.4.2) and use that
Hom(jU !E|U , F ) = Hom(E|U , F |U ) by Lemma 20.30.3. �

Lemma 20.30.7. Let (X,OX) be a ringed space. Suppose that X = U ∪ V is
a union of two open subsets. For an object E of D(OX) we have a distinguished
triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ∩ V,E)→ RΓ(X,E)[1]

and in particular a long exact cohomology sequence

. . .→ Hn(X,E)→ Hn(U,E)⊕H0(V,E)→ Hn(U ∩ V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is func-
torial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is
an injective object of Mod(OX) for all n, see Injectives, Theorem 19.12.6. Then
RΓ(X,E) is computed by Γ(X, I•). Similarly for U , V , and U ∩ V by Lemma
20.30.1. Hence the distinguished triangle of the lemma is the distinguished triangle
associated (by Derived Categories, Section 13.12 and especially Lemma 13.12.1) to
the short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

We have seen this is a short exact sequence in the proof of Lemma 20.9.2. The final
statement follows from the functoriality of the construction in Injectives, Theorem
19.12.6. �

Lemma 20.30.8. Let f : X → Y be a morphism of ringed spaces. Suppose that
X = U ∪ V is a union of two open subsets. Denote a = f |U : U → Y , b = f |V :
V → Y , and c = f |U∩V : U ∩ V → Y . For every object E of D(OX) there exists a
distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U∩V )→ Rf∗E[1]

This triangle is functorial in E.
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Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 19.12.6. Then Rf∗E
is computed by f∗I•. Similarly for U , V , and U ∩ V by Lemma 20.30.1. Hence
the distinguished triangle of the lemma is the distinguished triangle associated (by
Derived Categories, Section 13.12 and especially Lemma 13.12.1) to the short exact
sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

This is a short exact sequence of complexes by Lemma 20.9.3 and the fact that
R1f∗I = 0 for an injective object I of Mod(OX). The final statement follows from
the functoriality of the construction in Injectives, Theorem 19.12.6. �

Lemma 20.30.9. Let (X,OX) be a ringed space. Let j : U → X be an open
subspace. Let T ⊂ X be a closed subset contained in U .

(1) If E is an object of D(OX) whose cohomology sheaves are supported on
T , then E → Rj∗(E|U ) is an isomorphism.

(2) If F is an object of D(OU ) whose cohomology sheaves are supported on
T , then j!F → Rj∗F is an isomorphism.

Proof. Let V = X \ T and W = U ∩ V . Note that X = U ∪ V is an open
covering of X. Denote jW : W → V the open immersion. Let E be an object
of D(OX) whose cohomology sheaves are supported on T . By Lemma 20.30.2 we
have (Rj∗E|U )|V = RjW,∗(E|W ) = 0 because E|W = 0 by our assumption. On
the other hand, Rj∗(E|U )|U = E|U . Thus (1) is clear. Let F be an object of
D(OU ) whose cohomology sheaves are supported on T . By Lemma 20.30.2 we have
(Rj∗F )|V = RjW,∗(F |W ) = 0 because F |W = 0 by our assumption. We also have
(j!F )|V = jW !(F |W ) = 0 (the first equality is immediate from the definition of
extension by zero). Since both (Rj∗F )|U = F and (j!F )|U = F we see that (2)
holds. �

We can glue complexes!

Lemma 20.30.10. Let (X,OX) be a ringed space. Let X = U ∪V be the union of
two open subspaces of X. Suppose given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),
(4) an isomorphism c : A|U∩V → B|U∩V

such that
a|U∩V = b|U∩V ◦ c.

Then there exists a morphism F → E in D(OX) whose restriction to U is isomor-
phic to a and whose restriction to V is isomorphic to b.

Proof. Denote jU , jV , jU∩V the corresponding open immersions. Choose a distin-
guished triangle

F → RjU,∗A⊕RjV,∗B → RjU∩V,∗(B|U∩V )→ F [1]

where the map RjV,∗B → RjU∩V,∗(B|U∩V ) is the obvious one and where RjU,∗A→
RjU∩V,∗(B|U∩V ) is the composition of RjU,∗A → RjU∩V,∗(A|U∩V ) with RjU∩V,∗c.
Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU∩V,∗(B|U∩V ))|U → F |U [1]

http://stacks.math.columbia.edu/tag/08DF
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Denote j : U ∩ V → U . Compatibility of restriction to opens and cohomology
shows that both (RjV,∗B)|U and (RjU∩V,∗(B|U∩V ))|U are canonically isomorphic
to Rj∗(B|U∩V ). Hence the second arrow of the last displayed diagram has a section,
and we conclude that the morphism F |U → A is an isomorphism. Similarly, the
morphism F |V → B is an isomorphism. The existence of the morphism F → E
follows from the Mayer-Vietoris sequence for Hom, see Lemma 20.30.6. �

20.31. Producing K-injective resolutions

First a technical lemma about the cohomology sheaves of the inverse limit of a
system of complexes of sheaves. In some sense this lemma is the wrong thing to
try to prove as one should take derived limits and not actual inverse limits. This
will be discussed in Cohomology on Sites, Section 21.22.

Lemma 20.31.1. Let (X,OX) be a ringed space. Let (F•n) be an inverse system of
complexes of OX-modules. Let m ∈ Z. Assume there exist a set B of open subsets
of X and an integer n0 such that

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groups Fm−2
n (U) and Fm−1

n (U) have vanishing
R1 lim (for example these have the Mittag-Leffler condition),

(b) the system of abelian groups Hm−1(F•n(U)) has vanishing R1 lim (for
example it has the Mittag-Leffler condition), and

(c) we have Hm(F•n(U)) = Hm(F•n0
(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•n) → Hm(F•n0
) are isomorphisms of sheaves

where F• = limF•n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 15.61.2 to conclude that

Hm(F•(U)) = limHm(F•n(U))

By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•n(U))

for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. �

Let (X,OX) be a ringed space. Let F• be a complex of OX -modules. The category
Mod(OX) has enough injectives, hence we can use Derived Categories, Lemma
13.28.3 produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•2 // I•1

in the category of complexes of OX -modules such that
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(1) the vertical arrows are quasi-isomorphisms,
(2) I•n is a bounded above complex of injectives,
(3) the arrows I•n+1 → I•n are termwise split surjections.

The category ofOX -modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•n. By Derived Categories, Lem-
mas 13.29.4 and 13.29.7 this is a K-injective complex. In general the canonical
map

(20.31.1.1) F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 20.31.2. In the situation described above. Denote Hm = Hm(F•) the
mth cohomology sheaf. Let B be a set of open subsets of X. Let d ∈ N. Assume

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d2.

Then (20.31.1.1) is a quasi-isomorphism.

Proof. Let m ∈ Z. We have to show that the map F• → I• induces an isomor-
phism Hm → Hm(I•). Since I•n is quasi-isomorphic to τ≥−nF• it suffices to show
that Hm(I•)→ Hm(I•n) is an isomorphism for n large enough. To do this we will
verify the hypotheses (1), (2)(a), (2)(b), (2)(c) of Lemma 20.31.1.

Hypothesis (1) is assumption (1) above. Hypothesis (2)(a) follows from the fact
that the maps Ikn+1 → Ikn are split surjections. We will prove hypothesis (2)(b) and
(2)(c) simultaneously by proving that for U ∈ B the system Hm(I•n(U)) becomes
constant for n ≥ −m+d. Namely, recalling that I•n is quasi-isomorphic to τ≥−nF•
we obtain for all n a distinguished triangle

H−n[n]→ I•n → I•n−1 → H−n[n+ 1]

(Derived Categories, Remark 13.12.4) in D(OX). By assumption (2) we see that if
m > d− n then

Hm(U,H−n[n]) = 0 and Hm(U,H−n[n+ 1]) = 0.

Observe that Hm(I•n(U)) = Hm(U, I•n) as I•n is a bounded below complex of injec-
tives. Unwinding the long exact sequence of cohomology associated to the distin-
guished triangle above this implies that

Hm(I•n(U))→ Hm(I•n−1(U))

is an isomorphism for m > d− n, i.e., n > d−m and we win. �

Lemma 20.31.3. With assumptions and notation as in Lemma 20.31.2. Let K
denote the object of D(OX) represented by the complex F•. Then there exists a
distinguished triangle

K →
∏

n≥0
τ≥−nK →

∏
n≥0

τ≥−nK → K[1]

in D(OX). In other words, K is the derived limit of its canonical truncations.

2In fact, analyzing the proof we see that it suffices if there exists a function d : Z→ Z∪{+∞}
such that Hp(U,Hq) = 0 for p > d(q) where q + d(q)→ −∞ as q → −∞
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Proof. The proof of Injectives, Lemma 19.13.4 shows that
∏
τ≥−nK is represented

by the complex
∏
I•n. Because the transition maps I•n+1 → I•n are termwise split

surjections, we have a short exact sequence of complexes

0→ I• →
∏
I•n →

∏
I•n → 0

Since I• represents K by Lemma 20.31.2 the distinguished triangle of the lemma
is the distinguished triangle associated to the short exact sequence above (Derived
Categories, Lemma 13.12.1). �

20.32. Čech cohomology of unbounded complexes

The construction of Section 20.26 isn’t the “correct” one for unbounded complexes.
The problem is that in the Stacks project we use direct sums in the totalization of
a double complex and we would have to replace this by a product. Instead of doing
so in this section we assume the covering is finite and we use the alternating Čech
complex.

Let (X,OX) be a ringed space. Let F• be a complex of presheaves of OX -modules.
Let U : X =

⋃
i∈I Ui be a finite open covering of X. Since the alternating Čech

complex Č•alt(U ,F) (Section 20.24) is functorial in the presheaf F we obtain a double

complex Č•alt(U ,F•). In this section we work with the associated total complex. The

construction of Tot(Č•alt(U ,F•)) is functorial in F•. As well there is a functorial
transformation

(20.32.0.1) Γ(X,F•) −→ Tot(Č•alt(U ,F•))
of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.

Lemma 20.32.1. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite

open covering. For a complex F• of OX-modules there is a canonical map

Tot(Č•alt(U ,F•)) −→ RΓ(X,F•)
functorial in F• and compatible with (20.32.0.1).

Proof. Let I• be a K-injective complex whose terms are injective OX -modules.
The map (20.32.0.1) for I• is a map Γ(X, I•)→ Tot(Č•alt(U , I•)). This is a quasi-
isomorphism of complexes of abelian groups as follows from Homology, Lemma
12.22.7 applied to the double complex Č•alt(U , I•) using Lemmas 20.12.1 and 20.24.6.
Suppose F• → I• is a quasi-isomorphism of F• into a K-injective complex whose
terms are injectives (Injectives, Theorem 19.12.6). Since RΓ(X,F•) is represented
by the complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•alt(U ,F•)) −→ Tot(Č•alt(U , I•)).
We omit the verification of functoriality and compatibilities. �

Lemma 20.32.2. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite

open covering. Let F• be a complex of OX-modules. Let B be a set of open subsets
of X. Assume

(1) every open in X has a covering whose members are elements of B,
(2) we have Ui0...ip ∈ B for all i0, . . . , ip ∈ I,
(3) for every U ∈ B and p > 0 we have

(a) Hp(U,Fq) = 0,
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(b) Hp(U,Coker(Fq−1 → Fq)) = 0, and
(c) Hp(U,Hq(F)) = 0.

Then the map

Tot(Č•alt(U ,F•)) −→ RΓ(X,F•)
of Lemma 20.32.1 is an isomorphism in D(Ab).

Proof. If F• is bounded below, this follows from assumption (3)(a) and the spectral
sequence of Lemma 20.26.1 and the fact that

Tot(Č•alt(U ,F•)) −→ Tot(Č•(U ,F•))
is a quasi-isomorphism by Lemma 20.24.6 (some details omitted). In general, by
assumption (3)(c) we may choose a resolution F• → I• = lim I•n as in Lemma
20.31.2. Then the map of the lemma becomes

limn Tot(Č•alt(U , τ≥−nF•)) −→ limn Γ(X, I•n)

Note that (3)(b) shows that τ≥−nF• is a bounded below complex satisfying the
hypothesis of the lemma. Thus the case of bounded below complexes shows each
of the maps

Tot(Č•alt(U , τ≥−nF•)) −→ Γ(X, I•n)

is a quasi-isomorphism. The cohomologies of the complexes on the left hand side
in given degree are eventually constant (as the alternating Čech complex is finite).
Hence the same is true on the right hand side. Thus the cohomology of the limit
on the right hand side is this constant value by Homology, Lemma 12.27.7 and we
win. �

20.33. Hom complexes

Let (X,OX) be a ringed space. Let L• and M• be two complexes of OX -modules.
We construct a complex of OX -modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomOX (L−q,Mp)

It is a good idea to think of Homn as the sheaf of OX -modules of all OX -linear
maps from L• to M• (viewed as graded OX -modules) which are homogenous of
degree n. In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
OX (L•,M•). We omit the verification that d2 = 0. This construc-

tion is a special case of Differential Graded Algebra, Example 22.19.6. It follows
immediately from the construction that we have

(20.33.0.1) Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])

for all n ∈ Z and every open U ⊂ X.

Lemma 20.33.1. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗OX L•),M•)
of complexes of OX-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.1. �
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Lemma 20.33.2. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗OX Hom•(K•,L•)) −→ Hom•(K•,M•)
of complexes of OX-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.2. �

Lemma 20.33.3. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗OX K•) −→ Hom•(Hom•(K•,L•),M•)
of complexes of OX-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.3. �

Lemma 20.33.4. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗OX L•))
of complexes of OX-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.5. �

Lemma 20.33.5. Let (X,OX) be a ringed space. Let I• be a K-injective complex
of OX-modules. Let L• be a complex of OX-modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ⊂ X open.

Proof. We have

H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (20.33.0.1). The second equality is true because I•|U is K-
injective by Lemma 20.30.1. �

Lemma 20.33.6. Let (X,OX) be a ringed space. Let (I ′)• → I• be a quasi-
isomorphism of K-injective complexes of OX-modules. Let (L′)• → L• be a quasi-
isomorphism of complexes of OX-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

Proof. Let M be the object of D(OX) represented by I• and (I ′)•. Let L be the
object of D(OX) represented by L• and (L′)•. By Lemma 20.33.5 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )

Thus the map is a quasi-isomorphism. �
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Lemma 20.33.7. Let (X,OX) be a ringed space. Let I• be a K-injective complex
of OX-modules. Let L• be a K-flat complex of OX-modules. Then Hom•(L•, I•) is
a K-injective complex of OX-modules.

Proof. Namely, if K• is an acyclic complex of OX -modules, then

HomK(OX)(K•,Hom•(L•, I•)) = H0(Γ(X,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(X,Hom•(Tot(K• ⊗OX L•), I•)))
= HomK(OX)(Tot(K• ⊗OX L•), I•)
= 0

The first equality by (20.33.0.1). The second equality by Lemma 20.33.1. The
third equality by (20.33.0.1). The final equality because Tot(K•⊗OX L•) is acyclic
because L• is K-flat (Definition 20.27.2) and because I• is K-injective. �

20.34. Internal hom in the derived category

Let (X,OX) be a ringed space. Let L,M be objects of D(OX). We would like to
construct an object RHom(L,M) of D(OX) such that for every third object K of
D(OX) there exists a canonical bijection

(20.34.0.1) HomD(OX)(K,RHom(L,M)) = HomD(OX)(K ⊗L
OX L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 4.3.5).

To construct such an object, choose a K-injective complex I• representing M and
any complex of OX -modules L• representing L. Then we set

RHom(L,M) = Hom•(L•, I•)

where the right hand side is the complex of OX -modules constructed in Section
20.33. This is well defined by Lemma 20.33.6. We get a functor

D(OX)opp ×D(OX) −→ D(OX), (K,L) 7−→ RHom(K,L)

As a prelude to proving (20.34.0.1) we compute the cohomology groups ofRHom(K,L).

Lemma 20.34.1. Let (X,OX) be a ringed space. Let L,M be objects of D(OX).
For every open U we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )

and in particular H0(X,RHom(L,M)) = HomD(OX)(L,M).

Proof. Choose a K-injective complex I• of OX -modules representing M and a
K-flat complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma
20.33.7. Hence we can compute cohomology over U by simply taking sections over
U and the result follows from Lemma 20.33.5. �

Lemma 20.34.2. Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
With the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
OX L,M)

in D(OX) functorial in K,L,M which recovers (20.34.0.1) by taking H0(X,−).
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Proof. Choose a K-injective complex I• representing M and a K-flat complex of
OX -modules L• representing L. Let H• be the complex described above. For any
complex of OX -modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗OX L•), I•)

by Lemma 20.33.1. Note that the left hand side representsRHom(K,RHom(L,M))
(use Lemma 20.33.7) and that the right hand side represents RHom(K⊗L

OX L,M).
This proves the displayed formula of the lemma. Taking global sections and using
Lemma 20.34.1 we obtain (20.34.0.1). �

Lemma 20.34.3. Let (X,OX) be a ringed space. Let K,L be objects of D(OX).
The construction of RHom(K,L) commutes with restrictions to opens, i.e., for
every open U we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 20.30.1. �

Lemma 20.34.4. Let (X,OX) be a ringed space. The bifunctor RHom(−,−)
transforms distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. �

Lemma 20.34.5. Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
There is a canonical morphism

RHom(L,M)⊗L
OX K −→ RHom(RHom(K,L),M)

in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and a K-flat complex K• representing K. The map is defined
using the map

Tot(Hom•(J •, I•)⊗OX K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 20.33.3. By our particular choice of complexes the left hand side repre-
sentsRHom(L,M)⊗L

OXK and the right hand side representsRHom(RHom(K,L),M).
We omit the proof that this is functorial in all three objects of D(OX). �

Lemma 20.34.6. Let (X,OX) be a ringed space. Given K,L,M in D(OX) there
is a canonical morphism

RHom(L,M)⊗L
OX RHom(K,L) −→ RHom(K,M)

in D(OX).
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Proof. In general (without suitable finiteness conditions) we do not see how to get
this map from Lemma 20.33.2. Instead, we use the maps

RHom(L,M)⊗L
OX RHom(K,L)⊗L

OX K

��
RHom(RHom(K,L),M)⊗L

OX RHom(K,L)

��
M

gotten by applying Lemma 20.34.5 twice. Finally, we use Lemma 20.34.2 to trans-
late the composition

RHom(L,M)⊗L
OX RHom(K,L)⊗L

OX K −→M

into a map as in the statement of the lemma. �

Lemma 20.34.7. Let (X,OX) be a ringed space. Given K,L in D(OX) there is
a canonical morphism

K −→ RHom(L,K ⊗L
OX L)

in D(OX) functorial in both K and L.

Proof. Choose K-flat complexes K• and L• represeting K and L. Choose a K-
injective complex I• and a quasi-isomorphism Tot(K• ⊗OX L•) → I•. Then we
use

K• → Hom•(L•,Tot(K• ⊗OX L•))→ Hom•(L•, I•)
where the first map comes from Lemma 20.33.4. �

Lemma 20.34.8. Let (X,OX) be a ringed space. Let L be an object of D(OX).
Set L∧ = RHom(L,OX). For M in D(OX) there is a canonical map

(20.34.8.1) L∧ ⊗L
OX M −→ RHom(L,M)

which induces a canonical map

H0(X,L∧ ⊗L
OX M) −→ HomD(OX)(L,M)

functorial in M in D(OX).

Proof. The map (20.34.8.1) is a special case of Lemma 20.34.6 using the identifi-
cation M = RHom(OX ,M). �

Remark 20.34.9. Let h : X → Y be a morphism of ringed spaces. Let K,L be
objects of D(OY ). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(OX). Namely, by (20.34.0.1) proved in Lemma 20.34.2 such a map is the same
thing as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 20.28.2 hence it
suffices to construct a canonical map

RHom(K,L)⊗L K −→ L.
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For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (20.34.0.1).

Remark 20.34.10. Suppose that

X ′
h
//

f ′

��

X

f

��
S′

g // S

is a commutative diagram of ringed spaces. Let K,L be objects of D(OX). We
claim there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OS′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)

→ Lh∗RHom(K,L)

→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 20.34.9.

20.35. Strictly perfect complexes

Strictly perfect complexes of modules are used to define the notions of pseudo-
coherent and perfect complexes later on. They are defined as follows.

Definition 20.35.1. Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is strictly perfect if E i is zero for all but finitely many i and E i
is a direct summand of a finite free OX -module for all i.

Warning: Since we do not assume that X is a locally ringed space, it may not be
true that a direct summand of a finite free OX -module is finite locally free.

Lemma 20.35.2. The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. �

Lemma 20.35.3. The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. �

Lemma 20.35.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
If F• is a strictly perfect complex of OY -modules, then f∗F• is a strictly perfect
complex of OX-modules.

Proof. The pullback of a finite free module is finite free. The functor f∗ is additive
functor hence preserves direct summands. The lemma follows. �
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Lemma 20.35.5. Let (X,OX) be a ringed space. Given a solid diagram of OX-
modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OX-module and p surjective, then a dotted
arrow making the diagram commute exists locally on X.

Proof. We may assume E = O⊕nX for some n. In this case finding the dotted arrow
is equivalent to lifting the images of the basis elements in Γ(X,F). This is locally
possible by the characterization of surjective maps of sheaves (Sheaves, Section
6.16). �

Lemma 20.35.6. Let (X,OX) be a ringed space.

(1) Let α : E• → F• be a morphism of complexes of OX-modules with E•
strictly perfect and F• acyclic. Then α is locally on X homotopic to zero.

(2) Let α : E• → F• be a morphism of complexes of OX-modules with E•
strictly perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then α is
locally on X homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free OX -module and integer n ≥ a, then the
result follows from Lemma 20.35.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is
surjective by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b],
then we have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0

which determines a distinguished triangle in K(OX). Hence an exact sequence

HomK(OX)(σ≤b−1E•,F•)→ HomK(OX)(E•,F•)→ HomK(OX)(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is locally
homotopic to zero, whence we may assume our map comes from an element in the
left hand side of the displayed exact sequence above. This element is locally zero
by induction hypothesis. �

Lemma 20.35.7. Let (X,OX) be a ringed space. Given a solid diagram of com-
plexes of OX-modules

E•

!!

α
// F•

G•
f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a
and surjective for j = a, then a dotted arrow making the diagram commute up to
homotopy exists locally on X.

Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 20.35.6 guarantees there is an open covering
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X =
⋃
Ui such that the composition E• → F• → C(f)• is homotopic to zero over

Ui. Since
G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle in K(OUi) we see that we can lift α|Ui up to
homotopy to a map αi : E•|Ui → G•|Ui as desired. �

Lemma 20.35.8. Let (X,OX) be a ringed space. Let E•, F• be complexes of
OX-modules with E• strictly perfect.

(1) For any element α ∈ HomD(OX)(E•,F•) there exists an open covering
X =

⋃
Ui such that α|Ui is given by a morphism of complexes αi : E•|Ui →

F•|Ui .
(2) Given a morphism of complexes α : E• → F• whose image in the group

HomD(OX)(E•,F•) is zero, there exists an open covering X =
⋃
Ui such

that α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 20.35.7. We omit the proof of
(2). �

Lemma 20.35.9. Let (X,OX) be a ringed space. Let E•, F• be complexes of
OX-modules with E• strictly perfect. Then the internal hom RHom(E•,F•) is
represented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX (E−q,Fp)

and differential as described in Section 20.34.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let
(H′)• be the complex with terms

(H′)n =
∏

n=p+q
HomOX (L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 20.34. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an open U ⊂ X we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 20.35.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafifica-
tion of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomol-
ogy sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. �

Lemma 20.35.10. Let (X,OX) be a ringed space. Let E•, F• be complexes of
OX-modules with

(1) Fn = 0 for n� 0,
(2) En = 0 for n� 0, and
(3) En isomorphic to a direct summand of a finite free OX-module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX (E−q,Fp)

and differential as described in Section 20.34.
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Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 13.29.4).
Hence the construction in Section 20.34 shows that RHom(E•,F•) is represented
by the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomOX (E−q, Ip) =

⊕
n=p+q

HomOX (E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomOX (E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 12.22.6)

′Ep,q1 = Hp(HomOX (E−q,F•))
converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomOX (E ,F•)) −→ Hp(HomOX (E , I•))
on cohomology sheaves whenever E is a direct summand of a finite free OX -module.
Since this is clear when E is finite free the result follows. �

20.36. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 20.36.1. Let (X,OX) be a ringed space. Let E• be a complex of
OX -modules. Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if there exists an open covering X =
⋃
Ui

and for each i a morphism of complexes αi : E•i → E•|Ui where Ei is strictly
perfect on Ui and Hj(αi) is an isomorphism for j > m and Hm(αi) is
surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E ofD(OX) ism-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of OX -modules.

If X is quasi-compact, then an m-pseudo-coherent object of D(OX) is in D−(OX).
But this need not be the case if X is not quasi-compact.

Lemma 20.36.2. Let (X,OX) be a ringed space. Let E be an object of D(OX).

(1) If there exists an open covering X =
⋃
Ui, strictly perfect complexes E•i

on Ui, and maps αi : E•i → E|Ui in D(OUi) with Hj(αi) an isomorphism
for j > m and Hm(αi) surjective, then E is m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex representing E is m-pseudo-
coherent.

Proof. Let F• be any complex representing E and let X =
⋃
Ui and αi : Ei → E|Ui

be as in (1). We will show that F• is m-pseudo-coherent as a complex, which will
prove (1) and (2) simultaneously. By Lemma 20.35.8 we can after refining the open
covering X =

⋃
Ui represent the maps αi by maps of complexes αi : E•i → F•|Ui .

By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi) is surjective
whence F• is m-pseudo-coherent. �
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Lemma 20.36.3. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Represent E by a complex E• of OY -modules and choose an open covering
Y =

⋃
Vi and αi : E•i → E•|Vi as in Definition 20.36.1. Set Ui = f−1(Vi). By

Lemma 20.36.2 it suffices to show that Lf∗E•|Ui is m-pseudo-coherent. Choose a
distinguished triangle

E•i → E•|Vi → C → E•i [1]

The assumption on αi means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Denote fi : Ui → Vi the restriction of f . Note that Lf∗E•|Ui =
Lf∗i (E|Vi). Applying Lf∗i we obtain the distinguished triangle

Lf∗i E•i → Lf∗i E|Vi → Lf∗i C → Lf∗i E•i [1]

By the construction of Lf∗i as a left derived functor we see that Hj(Lf∗i C) = 0
for j ≥ m (by the dual of Derived Categories, Lemma 13.17.1). Hence Hj(Lf∗i αi)
is an isomorphism for j > m and Hm(Lf∗αi) is surjective. On the other hand,
Lf∗i E•i = f∗i E•i . is strictly perfect by Lemma 20.35.4. Thus we conclude. �

Lemma 20.36.4. Let (X,OX) be a ringed space and m ∈ Z. Let (K,L,M, f, g, h)
be a distinguished triangle in D(OX).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K anf M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose an open covering X =
⋃
Ui and maps αi : K•i → K|Ui

in D(OUi) with K•i strictly perfect and Hj(αi) isomorphisms for j > m + 1 and
surjective for j = m + 1. We may replace K•i by σ≥m+1K•i and hence we may

assume that Kji = 0 for j < m+ 1. After refining the open covering we may choose
maps βi : L•i → L|Ui in D(OUi) with L•i strictly perfect such that Hj(β) is an
isomorphism for j > m and surjective for j = m. By Lemma 20.35.7 we can, after
refining the covering, find maps of complexes γi : K• → L• such that the diagrams

K|Ui // L|Ui

K•i

αi

OO

γi // L•i

βi

OO

are commutative in D(OUi) (this requires representing the maps αi, βi and K|Ui →
L|Ui by actual maps of complexes; some details omitted). The cone C(γi)

• is strictly
perfect (Lemma 20.35.2). The commutativity of the diagram implies that there
exists a morphism of distinguished triangles

(K•i ,L•i , C(γi)
•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homol-
ogy, Lemmas 12.5.19 and 12.5.20 that C(γi)

• → M |Ui induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. Hence M is m-pseudo-
coherent by Lemma 20.36.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �
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Lemma 20.36.5. Let (X,OX) be a ringed space. Let K,L be objects of D(OX).

(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-
coherent and Hj(L) = 0 for j > b, then K ⊗L

OX L is t-pseudo-coherent
with t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
OX L is pseudo-coherent.

Proof. Proof of (1). By replacing X by the members of an open covering we may
assume there exist strictly perfect complexes K• and L• and maps α : K• → K and
β : L• → L with Hi(α) and isomorphism for i > n and surjective for i = n and
with Hi(β) and isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗OX L•)→ K ⊗L
OX L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). We may first replace X by the members of an open covering to
reduce to the case that K and L are bounded above. Then the statement follows
immediately from case (1). �

Lemma 20.36.6. Let (X,OX) be a ringed space. Let m ∈ Z. If K ⊕ L is m-
pseudo-coherent (resp. pseudo-coherent) in D(OX) so are K and L.

Proof. Assume that K ⊕L is m-pseudo-coherent. After replacing X by the mem-
bers of an open covering we may assume K ⊕ L ∈ D−(OX), hence L ∈ D−(OX).
Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 13.4.9. By Lemma 20.36.4 we see that L ⊕ L[1]
is m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n]⊕L[n+ 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is
m-pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. �

Lemma 20.36.7. Let (X,OX) be a ringed space. Let m ∈ Z. Let F• be a (locally)
bounded above complex of OX-modules such that F i is (m− i)-pseudo-coherent for
all i. Then F• is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 20.36.4 and truncations as in the proof of More
on Algebra, Lemma 15.50.9. �

Lemma 20.36.8. Let (X,OX) be a ringed space. Let m ∈ Z. Let E be an object
of D(OX). If E is (locally) bounded above and Hi(E) is (m − i)-pseudo-coherent
for all i, then E is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 20.36.4 and truncations as in the proof of More
on Algebra, Lemma 15.50.10. �

Lemma 20.36.9. Let (X,OX) be a ringed space. Let K be an object of D(OX).
Let m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type OX-module.
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(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m+ 1, then Hm+1(K)
is a finitely presented OX-module.

Proof. Proof of (1). We may work locally on X. Hence we may assume there exists
a strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. It suffices to prove
the result for E•. Let n be the largest integer such that En 6= 0. If n = m, then
Hm(E•) is a quotient of En and the result is clear. If n > m, then En−1 → En is
surjective as Hn(E•) = 0. By Lemma 20.35.5 we can locally find a section of this
surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result for the
complex (E ′)• which is the same as E• except has E ′ in degree n−1 and 0 in degree
n. We win by induction on n.

Proof of (2). We may work locally on X. Hence we may assume there exists a
strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. As in the proof
of (1) we can reduce to the case that E i = 0 for i > m + 1. Then we see that
Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1) which is of finite presentation. �

Lemma 20.36.10. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.

(1) F viewed as an object of D(OX) is 0-pseudo-coherent if and only if F is
a finite type OX-module, and

(2) F viewed as an object of D(OX) is (−1)-pseudo-coherent if and only if F
is an OX-module of finite presentation.

Proof. Use Lemma 20.36.9 to prove the implications in one direction and Lemma
20.36.8 for the other. �

20.37. Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 20.37.1. Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E ⊗L
OX F) = 0 for all OX -

modules F and all i 6∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if there exists an open covering

X =
⋃
Ui such that E|Ui has finite tor dimension for all i.

Note that if E has finite tor dimension, then E is an object of Db(OX) as can be
seen by taking F = OX in the definition above.

Lemma 20.37.2. Let (X,OX) be a ringed space. Let E• be a bounded above com-
plex of flat OX-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat
OX-module.

Proof. As E• is a bounded above complex of flat modules we see that E•⊗OX F =
E• ⊗L

OX F for any OX -module F . Hence for every OX -module F the sequence

Ea−2 ⊗OX F → Ea−1 ⊗OX F → Ea ⊗OX F
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is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat

resolution this implies that TorOX1 (Coker(da−1),F) = 0 for all OX -modules F .
This means that Coker(da−1) is flat, see Lemma 20.27.15. �

Lemma 20.37.3. Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat OX-modules with E i = 0 for

i 6∈ [a, b].

Proof. If (2) holds, then we may compute E ⊗L
OX F = E• ⊗OX F and it is clear

that (1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat
OX -modules K•, see Section 20.27. Let n be the largest integer such that Kn 6= 0.
If n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that
Ker(Kn−1 → Kn) is flat (Modules, Lemma 17.16.8). Hence we may replace K• by
τ≤n−1K•. Thus, by induction on n, we reduce to the case that K• is a complex of
flat OX -modules with Ki = 0 for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 20.37.2 and the definitions. �

Lemma 20.37.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let E be an object of D(OY ). If E has tor amplitude in [a, b], then Lf∗E has tor
amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 20.37.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i 6∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules, Lemma 17.17.2 the modules f∗E i are flat. Thus
by Lemma 20.37.3 we conclude that Lf∗E has tor amplitude in [a, b]. �

Lemma 20.37.5. Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) for every x ∈ X the object Ex of D(OX,x) has tor-amplitude in [a, b].

Proof. Taking stalks at x is the same thing as pulling back by the morphism of
ringed spaces (x,OX,x)→ (X,OX). Hence the implication (1) ⇒ (2) follows from
Lemma 20.37.4. For the converse, note that taking stalks commutes with tensor
products (Modules, Lemma 17.15.1). Hence

(E ⊗L
OX F)x = Ex ⊗L

OX,x Fx
On the other hand, taking stalks is exact, so

Hi(E ⊗L
OX F)x = Hi((E ⊗L

OX F)x) = Hi(Ex ⊗L
OX,x Fx)

and we can check whether Hi(E⊗L
OX F) is zero by checking whether all of its stalks

are zero (Modules, Lemma 17.3.1). Thus (2) implies (1). �

Lemma 20.37.6. Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(OX). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].
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(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a+ 1, b+ 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that −⊗L

OX F preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. �

Lemma 20.37.7. Let (X,OX) be a ringed space. Let K,L be objects of D(OX).
If K has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K⊗L

OX L has
tor amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. �

Lemma 20.37.8. Let (X,OX) be a ringed space. Let a, b ∈ Z. For K, L objects
of D(OX) if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. �

20.38. Perfect complexes

In this section we discuss properties of perfect complexes on ringed spaces.

Definition 20.38.1. Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is perfect if there exists an open covering X =

⋃
Ui such

that for each i there exists a morphism of complexes E•i → E•|Ui which is a quasi-
isomorphism with E•i strictly perfect. An object E of of D(OX) is perfect if it can
be represented by a perfect complex of OX -modules.

Lemma 20.38.2. Let (X,OX) be a ringed space. Let E be an object of D(OX).

(1) If there exists an open covering X =
⋃
Ui, strictly perfect complexes E•i

on Ui, and isomorphisms αi : E•i → E|Ui in D(OUi), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 20.36.2. �

Lemma 20.38.3. Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a ≤ b be integers. If E has tor amplitude in [a, b] and is (a−1)-pseudo-coherent,
then E is perfect.

Proof. After replacing X by the members of an open covering we may assume
there exists a strictly perfect complex E• and a map α : E• → E such that Hi(α)
is an isomorphism for i ≥ a. We may and do replace E• by σ≥a−1E•. Choose a
distinguished triangle

E• → E → C → E•[1]

From the vanishing of cohomology sheaves of E and E• and the assumption on α
we obtain C ∼= K[a − 2] with K = Ker(Ea−1 → Ea). Let F be an OX -module.
Applying − ⊗L

OX F the assumption that E has tor amplitude in [a, b] implies

K ⊗OX F → Ea−1 ⊗OX F has image Ker(Ea−1 ⊗OX F → Ea ⊗OX F). It follows

that TorOX1 (E ′,F) = 0 where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma
20.27.15). Thus E ′ is locally a direct summand of a finite free module by Modules,
Lemma 17.16.11. Thus locally the complex

E ′ → Ea−1 → . . .→ Eb
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is quasi-isomorphic to E and E is perfect. �

Lemma 20.38.4. Let (X,OX) be a ringed space. Let E be an object of D(OX).
The following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). By definition this means there exists an open covering X =⋃
Ui such that E|Ui is represented by a strictly perfect complex. Thus E is pseudo-

coherent (i.e., m-pseudo-coherent for all m) by Lemma 20.36.2. Moreover, a direct
summand of a finite free module is flat, hence E|Ui has finite Tor dimension by
Lemma 20.37.3. Thus (2) holds.

Assume (2). After replacing X by the members of an open covering we may assume
there exist integers a ≤ b such that E has tor amplitude in [a, b]. Since E is m-
pseudo-coherent for all m we conclude using Lemma 20.38.3. �

Lemma 20.38.5. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let E be an object of D(OY ). If E is perfect in D(OY ), then Lf∗E is perfect in
D(OX).

Proof. This follows from Lemma 20.38.4, 20.37.4, and 20.36.3. (An alternative
proof is to copy the proof of Lemma 20.36.3.) �

Lemma 20.38.6. Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a dis-
tinguished triangle in D(OX). If two out of three of K,L,M are perfect then the
third is also perfect.

Proof. First proof: Combine Lemmas 20.38.4, 20.36.4, and 20.37.6. Second proof
(sketch): Say K and L are perfect. After replacing X by the members of an
open covering we may assume that K and L are represented by strictly perfect
complexes K• and L•. After replacing X by the members of an open covering we
may assume the map K → L is given by a map of complexes α : K• → L•, see
Lemma 20.35.8. Then M is isomorphic to the cone of α which is strictly perfect by
Lemma 20.35.2. �

Lemma 20.38.7. Let (X,OX) be a ringed space. If K,L are perfect objects of
D(OX), then so is K ⊗L

OX L.

Proof. Follows from Lemmas 20.38.4, 20.36.5, and 20.37.7. �

Lemma 20.38.8. Let (X,OX) be a ringed space. If K ⊕ L is a perfect object of
D(OX), then so are K and L.

Proof. Follows from Lemmas 20.38.4, 20.36.6, and 20.37.8. �

Lemma 20.38.9. Let (X,OX) be a ringed space. Let j : U → X be an open sub-
space. Let E be a perfect object of D(OU ) whose cohomology sheaves are supported
on a closed subset T ⊂ U with j(T ) closed in X. Then Rj∗E is a perfect object of
D(OX).

Proof. Being a perfect complex is local on X. Thus it suffices to check that Rj∗E
is perfect when restricted to U and V = X \ j(T ). We have Rj∗E|U = E which is
perfect. We have Rj∗E|V = 0 because E|U\T = 0. �
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Lemma 20.38.10. Let (X,OX) be a ringed space. Let K be a perfect object of
D(OX). Then K∧ = RHom(K,OX) is a perfect object too and (K∧)∧ = K. There
are functorial isomorphisms

H0(X,K∧ ⊗L
OX M) = HomD(OX)(K,M)

for M in D(OX).

Proof. We will use without further mention that formation of internal hom com-
mutes with restriction to opens (Lemma 20.34.3). In particular we may check the
first two statements locally on X. By Lemma 20.34.8 to see the final statement it
suffices to check that the map (20.34.8.1)

K∧ ⊗L
OX M −→ RHom(K,M)

is an isomorphism. This is local on X as well. Hence it suffices to prove the lemma
when K is represented by a strictly perfect complex.

Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 20.35.9 that K∧ is represented by the complex whose terms are (E−n)∧ =
HomOX (E−n,OX) in degree n. Since E−n is a direct summand of a finite free OX -
module, so is (E−n)∧. Hence K∧ is represented by a strictly perfect complex too. It
is also clear that (K∧)∧ = K as we have ((E−n)∧)∧ = E−n. To see that (20.34.8.1)
is an isomorphism, represent M by a K-flat complex F•. By Lemma 20.35.9 the
complex RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomOX (E−q,Fp)

On the other hand, then object K∧⊗LM is represented by the complex with terms⊕
n=p+q

Fp ⊗OX (E−q)∧

Thus the assertion that (20.34.8.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗OX HomOX (E ,OX) −→ HomOX (E ,F)

is an isomorphism when E is a direct summand of a finite free OX -module and F is
any OX -module. This follows immediately from the corresponding statement when
E is finite free. �

20.39. Compact objects

n this section we study compact objects in the derived category of modules on a
ringed space. We recall that compact objects are defined in Derived Categories,
Definition 13.34.1. On suitable ringed spaces the perfect objects are compact.

Lemma 20.39.1. Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) X is quasi-compact,
(2) there exists a basis of quasi-compact open subsets, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Then any perfect object of D(OX) is compact.
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Proof. Let K be a perfect object and let K∧ be its dual, see Lemma 20.38.10.
Then we have

HomD(OX)(K,M) = H0(X,K∧ ⊗L
OX M)

functorially in M in D(OX). Since K∧ ⊗L
OX − commutes with direct sums (by

construction) and H0 does by Lemma 20.20.1 and the construction of direct sums
in Injectives, Lemma 19.13.4 we obtain the result of the lemma. �
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CHAPTER 21

Cohomology on Sites

21.1. Introduction

In this document we work out some topics on cohomology of sheaves. We work
out what happens for sheaves on sites, although often we will simply duplicate the
discussion, the constructions, and the proofs from the topological case in the case.
Basic references are [AGV71], [God73] and [Ive86].

21.2. Topics

Here are some topics that should be discussed in this chapter, and have not yet
been written.

(1) Cohomology of a sheaf of modules on a site is the same as the cohomology
of the underlying abelian sheaf.

(2) Hypercohomology on a site.
(3) Ext-groups.
(4) Ext sheaves.
(5) Tor functors.
(6) Higher direct images for a morphism of sites.
(7) Derived pullback for morphisms between ringed sites.
(8) Cup-product.
(9) Group cohomology.

(10) Comparison of group cohomology and cohomology on TG.
(11) Cech cohomology on sites.
(12) Cech to cohomology spectral sequence on sites.
(13) Leray Spectral sequence for a morphism between ringed sites.
(14) Etc, etc, etc.

21.3. Cohomology of sheaves

Let C be a site, see Sites, Definition 7.6.2. Let F be a abelian sheaf on C. We know
that the category of abelian sheaves on C has enough injectives, see Injectives,
Theorem 19.7.4. Hence we can choose an injective resolution F [0] → I•. For any
object U of the site C we define

(21.3.0.1) Hi(U,F) = Hi(Γ(U, I•))

to be the ith cohomology group of the abelian sheaf F over the object U . In other
words, these are the right derived functors of the functor F 7→ F(U). The family
of functors Hi(U,−) forms a universal δ-functor Ab(C)→ Ab.

1519
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It sometimes happens that the site C does not have a final object. In this case we
define the global sections of a presheaf of sets F over C to be the set

(21.3.0.2) Γ(C,F) = MorPSh(C)(e,F)

where e is a final object in the category of presheaves on C. In this case, given an
abelian sheaf F on C, we define the ith cohomology group of F on C as follows

(21.3.0.3) Hi(C,F) = Hi(Γ(C, I•))

in other words, it is the ith right derived functor of the global sections functor. The
family of functors Hi(C,−) forms a universal δ-functor Ab(C)→ Ab.

Let f : Sh(C) → Sh(D) be a morphism of topoi, see Sites, Definition 7.16.1. With
F [0]→ I• as above we define

(21.3.0.4) Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Ab(C)→ Ab(D).

Let (C,O) be a ringed site, see Modules on Sites, Definition 18.6.1. Let F be an
O-module. We know that the category of O-modules has enough injectives, see
Injectives, Theorem 19.8.4. Hence we can choose an injective resolution F [0]→ I•.
For any object U of the site C we define

(21.3.0.5) Hi(U,F) = Hi(Γ(U, I•))

to be the the ith cohomology group of F over U . The family of functors Hi(U,−)
forms a universal δ-functor Mod(O)→ ModO(U). Similarly

(21.3.0.6) Hi(C,F) = Hi(Γ(C, I•))

it the ith cohomology group of F on C. The family of functors Hi(C,−) forms a
universal δ-functor Mod(C)→ ModΓ(C,O).

Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi, see Modules on
Sites, Definition 18.7.1. With F [0]→ I• as above we define

(21.3.0.7) Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Mod(O)→ Mod(O′).

21.4. Derived functors

We briefly explain an approach to right derived functors using resolution functors.
Namely, suppose that (C,O) is a ringed site. In this chapter we will write

K(O) = K(Mod(O)) and D(O) = D(Mod(O))

and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 13.8.1 and Definition 13.11.3. By Derived Cate-
gories, Remark 13.24.3 there exists a resolution functor

j = j(C,O) : K+(Mod(O)) −→ K+(I)

where I is the strictly full additive subcategory of Mod(O) which consists of injective
O-modules. For any left exact functor F : Mod(O)→ B into any abelian category
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B we will denote RF the right derived functor of Derived Categories, Section 13.20
constructed using the resolution functor j just described:

(21.4.0.8) RF = F ◦ j′ : D+(O) −→ D+(B)

see Derived Categories, Lemma 13.25.1 for notation. Note that we may think of
RF as defined on Mod(O), Comp+(Mod(O)), or K+(O) depending on the situation.
According to Derived Categories, Definition 13.17.2 we obtain the ithe right derived
functor

(21.4.0.9) RiF = Hi ◦RF : Mod(O) −→ B
so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 13.20.4.

Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for the bounded versions. For any
object U of C have a left exact functor Γ(U,−) : Mod(O) −→ ModO(U) which gives
rise to

RΓ(U,−) : D+(O) −→ D+(O(U))

by the discussion above. Note that Hi(U,−) = RiΓ(U,−) is compatible with
(21.3.0.5) above. We similarly have

RΓ(C,−) : D+(O) −→ D+(Γ(C,O))

compatible with (21.3.0.6). If f : (Sh(C),O)→ (Sh(D),O′) is a morphism of ringed
topoi then we get a left exact functor f∗ : Mod(O) → Mod(O′) which gives rise to
derived pushforward

Rf∗ : D+(O)→ D+(O′)
The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (21.3.0.7). The displayed functors above are exact
functor of derived categories.

21.5. First cohomology and torsors

Definition 21.5.1. Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A pseudo torsor, or more precisely a pseudo G-torsor, is a sheaf of
sets F on C endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive.

A morphism of pseudo G-torsors F → F ′ is simply a morphism of sheaves of sets
compatible with the G-actions. A torsor, or more precisely a G-torsor, is a pseudo
G-torsor such that in addition

(2) for every U ∈ Ob(C) there exists a covering {Ui → U}i∈I of U such that
F(Ui) is nonempty for all i ∈ I.

A morphism of G-torsors is simply a morphism of pseudo G-torsors. The trivial
G-torsor is the sheaf G endowed with the obvious left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 21.5.2. Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A G-torsor F is trivial if and only if Γ(C,F) 6= ∅.

Proof. Omitted. �
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Lemma 21.5.3. Let C be a site. Let H be an abelian sheaf on C. There is a canon-
ical bijection between the set of isomorphism classes of H-torsors and H1(C,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is
the sheafification of the rule which associates to U ∈ Ob(C) the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by

sections of the form [s]− [s′]. There is a canonical map a : Ker(σ)→ H which maps
[s] − [s′] 7→ h where h is the local section of H such that h · s = s′. Consider the
pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(C,H) by applying the boundary operator to 1 ∈ H0(C,Z).

Conversely, given ξ ∈ H1(C,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(C,Q) because H1(C, I) = 0
(see Derived Categories, Lemma 13.20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a H-torsor.

We omit the verification that the two constructions given above are mutually in-
verse. �

21.6. First cohomology and extensions

Lemma 21.6.1. Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
There is a canonical bijection

Ext1Mod(O)(O,F) −→ H1(C,F)

which associates to the extension

0→ F → E → O → 0

the image of 1 ∈ Γ(C,O) in H1(C,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈
H1(C,F). Choose an injection F ⊂ I with I injective in Mod(O). Set Q = I/F .
By the long exact sequence of cohomology, we see that ξ is the image of of a section
ξ̃ ∈ Γ(C,Q) = HomO(O,Q). Now, we just form the pullback

0 // F // E //

��

O //

ξ̃
��

0

0 // F // I // Q // 0

http://stacks.math.columbia.edu/tag/03AJ
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see Homology, Section 12.6. �

The following lemma will be superseded by the more general Lemma 21.12.4.

Lemma 21.6.2. Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
Let Fab denote the underlying sheaf of abelian groups. Then there is a functorial
isomorphism

H1(C,Fab) = H1(C,F)

where the left hand side is cohomology computed in Ab(C) and the right hand side
is cohomology computed in Mod(O).

Proof. Let Z denote the constant sheaf Z. As Ab(C) = Mod(Z) we may apply
Lemma 21.6.1 twice, and it follows that we have to show

Ext1
Mod(O)(O,F) = Ext1

Mod(Z)(Z,Fab).

Suppose that 0 → F → E → O → 0 is an extension in Mod(O). Then we can use
the obvious map of abelian sheaves 1 : Z→ O and pullback to obtain an extension
Eab, like so:

0 // Fab // Eab //

��

Z //

1

��

0

0 // F // E // O // 0
The converse is a little more fun. Suppose that 0 → Fab → Eab → Z → 0 is an
extension in Mod(Z). Since Z is a flat Z-module we see that the sequence

0→ Fab ⊗Z O → Eab ⊗Z O → Z⊗Z O → 0

is exact, see Modules on Sites, Lemma 18.28.7. Of course Z⊗Z O = O. Hence we
can form the pushout via the (O-linear) multiplication map µ : F ⊗Z O → F to
get an extension of O by F , like this

0 // Fab ⊗Z O //

µ

��

Eab ⊗Z O //

��

O // 0

0 // F // E // O // 0

which is the desired extension. We omit the verification that these constructions
are mutually inverse. �

21.7. First cohomology and invertible sheaves

The Picard group of a ringed site is defined in Modules on Sites, Section 18.31.

Lemma 21.7.1. Let (C,O) be a ringed site. There is a canonical isomorphism

H1(C,O∗) = Pic(O).

of abelian groups.

Proof. Let L be an invertible O-module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally
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by the very definition of an invertible sheaf. In other words we see that L∗ is a
O∗-torsor. Thus we get a map

set of invertible sheaves on (C,O)
up to isomorphism

−→ set of O∗-torsors
up to isomorphism

We omit the verification that this is a homomorphism of abelian groups. By Lemma
21.5.3 the right hand side is canonically bijective to H1(C,O∗). Thus we have to
show this map is injective and surjective.

Injective. If the torsor L∗ is trivial, this means by Lemma 21.5.2 that L∗ has a
global section. Hence this means exactly that L ∼= O is the neutral element in
Pic(O).

Surjective. Let F be an O∗-torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×O(U))/O∗(U)

where the action of f ∈ O∗(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of
O-modules by setting (s, g)+(s′, g′) = (s, g+(s′/s)g′) where s′/s is the local section
f of O∗ such that fs = s′, and h(s, g) = (s, hg) for h a local section of O. We omit

the verification that the sheafification L = L#
1 is an invertible O-module whose

associated O∗-torsor L∗ is isomorphic to F . �

21.8. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an object of the site.

Lemma 21.8.1. Let (C,O) be a ringed site. Let U be an object of C.

(1) If I is an injective O-module then I|U is an injective OU -module.
(2) For any sheaf of O-modules F we have Hp(U,F) = Hp(C/U,F|U ).

Proof. Recall that the functor j−1
U of restriction to U is a right adjoint to the

functor jU ! of extension by 0, see Modules on Sites, Section 18.19. Moreover, jU ! is
exact. Hence (1) follows from Homology, Lemma 12.25.1.

By definition Hp(U,F) = Hp(I•(U)) where F → I• is an injective resolution
in Mod(O). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(I•|U (U)). Of course F(U) = F|U (U)
for any sheaf F on C. Hence the equality in (2). �

The following lemma will be use to see what happens if we change a partial universe,
or to compare cohomology of the small and big étale sites.

Lemma 21.8.2. Let C and D be sites. Let u : C → D be a functor. Assume
u satisfies the hypotheses of Sites, Lemma 7.20.8. Let g : Sh(C) → Sh(D) be the
associated morphism of topoi. For any abelian sheaf F on D we have isomorphisms

RΓ(C, g−1F) = RΓ(D,F),

in particular Hp(C, g−1F) = Hp(D,F) and for any U ∈ Ob(C) we have isomor-
phisms

RΓ(U, g−1F) = RΓ(u(U),F),

in particular Hp(U, g−1F) = Hp(u(U),F). All of these isomorphisms are functorial
in F .
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Proof. Since it is clear that Γ(C, g−1F) = Γ(D,F) by hypothesis (e), it suffices to
show that g−1 transforms injective abelian sheaves into injective abelian sheaves.
As usual we use Homology, Lemma 12.25.1 to see this. The left adjoint to g−1 is
g! = f−1 with the notation of Sites, Lemma 7.20.8 which is an exact functor. Hence
the lemma does indeed apply. �

Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let ϕ : U → V be a
morphism of O. Then there is a canonical restriction mapping

(21.8.2.1) Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)
The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of O-modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 21.11.5.

The following lemma says that it is possible to kill higher cohomology classes by
going to a covering.

Lemma 21.8.3. Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let
U be an object of C. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists a covering
{Ui → U} of C such that ξ|Ui = 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) =
Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex
I• is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves.

Since ξ̃ is a section of the kernel sheaf over U we conclude there exists a covering
{Ui → U} of the site such that ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui).

By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. �

Lemma 21.8.4. Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. For any F ∈ Ob(Mod(OC)) the
sheaf Rif∗F is the sheaf associated to the presheaf

V 7−→ Hi(u(V ),F)

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the
ith cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OD-modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))

Im(f∗Ii−1(V )→ f∗Ii(V ))
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and this is obviously equal to

Ker(Ii(u(V ))→ Ii+1(u(V )))

Im(Ii−1(u(V ))→ Ii(u(V )))

which is equal to Hi(u(V ),F) and we win. �

21.9. The Cech complex and Cech cohomology

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target, see Sites, Definition 7.6.1. Assume that all fibre products Ui0 ×U . . .×U Uip
exist in C. Let F be an abelian presheaf on C. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0 ×U . . .×U Uip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in the factor
F(Ui0 ×U . . .×U Uip). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(21.9.0.1) d(s)i0...ip+1
=
∑p+1

j=0
(−1)jsi0...̂ij ...ip |Ui0×U ...×UUip+1

where the restriction is via the projection map

Ui0 ×U . . .×U Uip+1 −→ Ui0 ×U . . .×U Ûij ×U . . .×U Uip+1 .

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 21.9.1. Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in

C. Let F be an abelian presheaf on C. The complex Č•(U ,F) is the Cech complex
associated to F and the family U . Its cohomology groups Hi(Č•(U ,F)) are called
the Cech cohomology groups of F with respect to U . They are denoted Ȟi(U ,F).

We observe that any covering {Ui → U} of a site C is a family of morphisms with
fixed target to which the definition applies.

Lemma 21.9.2. Let C be a site. Let F be an abelian presheaf on C. The following
are equivalent

(1) F is an abelian sheaf on C and
(2) for every covering U = {Ui → U}i∈I of the site C the natural map

F(U)→ Ȟ0(U ,F)

(see Sites, Section 7.10) is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every covering of C. �

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms of C with fixed
target such that all fibre products Ui0×U . . .×UUip exist in C. Let V = {Vj → V }j∈J
be another. Let f : U → V , α : I → J and fi : Ui → Vα(i) be a morphism of families
of morphisms with fixed target, see Sites, Section 7.8. In this case we get a map of
Cech complexes

(21.9.2.1) ϕ : Č•(V,F) −→ Č•(U ,F)
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which in degree p is given by

ϕ(s)i0...ip = (fi0 × . . .× fip)∗sα(i0)...α(ip)

21.10. Cech cohomology as a functor on presheaves

Warning: In this section we work exclusively with abelian presheaves on a category.
The results are completely wrong in the setting of sheaves and categories of sheaves!

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target such that all fibre products Ui0×U . . .×U Uip exist in C. Let F be an abelian
presheaf on C. The construction

F 7−→ Č•(U ,F)

is functorial in F . In fact, it is a functor

(21.10.0.2) Č•(U ,−) : PAb(C) −→ Comp+(Ab)

see Derived Categories, Definition 13.8.1 for notation. Recall that the category
of bounded below complexes in an abelian category is an abelian category, see
Homology, Lemma 12.12.9.

Lemma 21.10.1. The functor given by Equation (21.10.0.2) is an exact functor
(see Homology, Lemma 12.7.1).

Proof. For any object W of C the functor F 7→ F(W ) is an additive exact functor
from PAb(C) to Ab. The terms Čp(U ,F) of the complex are products of these exact
functors and hence exact. Moreover a sequence of complexes is exact if and only if
the sequence of terms in a given degree is exact. Hence the lemma follows. �

Lemma 21.10.2. Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in

C. The functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category PAb(C)
to the category of Z-modules (see Homology, Definition 12.11.1).

Proof. By Lemma 21.10.1 a short exact sequence of abelian presheaves 0 →
F1 → F2 → F3 → 0 is turned into a short exact sequence of complexes of Z-
modules. Hence we can use Homology, Lemma 12.12.12 to get the boundary maps
δF1→F2→F3

: Ȟn(U ,F3)→ Ȟn+1(U ,F1) and a corresponding long exact sequence.
We omit the verification that these maps are compatible with maps between short
exact sequences of presheaves. �

Lemma 21.10.3. Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in
C. Consider the chain complex ZU,• of abelian presheaves

. . .→
⊕
i0i1i2

ZUi0×UUi1×UUi2 →
⊕
i0i1

ZUi0×UUi1 →
⊕
i0

ZUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map

ZUi0×U ...×uUip+1
−→ Z

Ui0×U ...Ûij ...×UUip+1

is given by (−1)j times the canonical map. Then there is an isomorphism

HomPAb(C)(ZU,•,F) = Č•(U ,F)

functorial in F ∈ Ob(PAb(C)).
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Proof. This is a tautology based on the fact that

HomPAb(C)(
⊕
i0...ip

ZUi0×U ...×UUip ,F) =
∏
i0...ip

HomPAb(C)(ZUi0×U ...×UUip ,F)

=
∏
i0...ip

F(Ui0 ×U . . .×U Uip)

see Modules on Sites, Lemma 18.4.2. �

Lemma 21.10.4. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0×U . . .×U Uip exist in C.
The chain complex ZU,• of presheaves of Lemma 21.10.3 above is exact in positive
degrees, i.e., the homology presheaves Hi(ZU,•) are zero for i > 0.

Proof. Let V be an object of C. We have to show that the chain complex of abelian
groups ZU,•(V ) is exact in degrees > 0. This is the complex

. . .

��⊕
i0i1i2

Z[MorC(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
i0i1

Z[MorC(V,Ui0 ×U Ui1)]

��⊕
i0

Z[MorC(V,Ui0)]

��
0

For any morphism ϕ : V → U denote Morϕ(V,Ui) = {ϕi : V → Ui | fi ◦ ϕi = ϕ}.
We will use a similar notation for Morϕ(V,Ui0×U . . .×U Uip). Note that composing
with the various projection maps between the fibred products Ui0 ×U . . . ×U Uip
preserves these morphism sets. Hence we see that the complex above is the same
as the complex

. . .

��⊕
ϕ

⊕
i0i1i2

Z[Morϕ(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
ϕ

⊕
i0i1

Z[Morϕ(V,Ui0 ×U Ui1)]

��⊕
ϕ

⊕
i0

Z[Morϕ(V,Ui0)]

��
0
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Next, we make the remark that we have

Morϕ(V,Ui0 ×U . . .×U Uip) = Morϕ(V,Ui0)× . . .×Morϕ(V,Uip)

Using this and the fact that Z[A] ⊕ Z[B] = Z[A
∐
B] we see that the complex

becomes

. . .

��⊕
ϕ Z

[∐
i0i1i2

Morϕ(V,Ui0)×Morϕ(V,Ui2)
]

��⊕
ϕ Z

[∐
i0i1

Morϕ(V,Ui0)×Morϕ(V,Ui1)
]

��⊕
ϕ Z

[∐
i0

Morϕ(V,Ui0)
]

��
0

Finally, on setting Sϕ =
∐
i∈I Morϕ(V,Ui) we see that we get⊕

ϕ
(. . .→ Z[Sϕ × Sϕ × Sϕ]→ Z[Sϕ × Sϕ]→ Z[Sϕ]→ 0→ . . .)

Thus we have simplified our task. Namely, it suffices to show that for any nonempty
set S the (extended) complex of free abelian groups

. . .→ Z[S × S × S]→ Z[S × S]→ Z[S]
Σ−→ Z→ 0→ . . .

is exact in all degrees. To see this fix an element s ∈ S, and use the homotopy

n(s0,...,sp) 7−→ n(s,s0,...,sp)

with obvious notations. �

Lemma 21.10.5. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in
C. Let O be a presheaf of rings on C. The chain complex

ZU,• ⊗p,Z O

is exact in positive degrees. Here ZU,• is the cochain complex of Lemma 21.10.3,
and the tensor product is over the constant presheaf of rings with value Z.

Proof. Let V be an object of C. In the proof of Lemma 21.10.4 we saw that ZU,•(V )
is isomorphic as a complex to a direct sum of complexes which are homotopic to Z
placed in degree zero. Hence also ZU,•(V )⊗Z O(V ) is isomorphic as a complex to
a direct sum of complexes which are homotopic to O(V ) placed in degree zero. Or
you can use Modules on Sites, Lemma 18.28.9, which applies since the presheaves
ZU,i are flat, and the proof of Lemma 21.10.4 shows that H0(ZU,•) is a flat presheaf
also. �
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Lemma 21.10.6. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0×U . . .×U Uip exist in C.

The Cech cohomology functors Ȟp(U ,−) are canonically isomorphic as a δ-functor
to the right derived functors of the functor

Ȟ0(U ,−) : PAb(C) −→ Ab.

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the derived functor

RȞ0(U ,−) : D+(PAb(C)) −→ D+(Z)

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of abelian presheaves has enough injectives, see
Injectives, Proposition 19.6.1. Note that Ȟ0(U ,−) is a left exact functor from the
category of abelian presheaves to the category of Z-modules. Hence the derived
functor and the right derived functor exist, see Derived Categories, Section 13.20.

Let I be a injective abelian presheaf. In this case the functor HomPAb(C)(−, I) is
exact on PAb(C). By Lemma 21.10.3 we have

HomPAb(C)(ZU,•, I) = Č•(U , I).

By Lemma 21.10.4 we have that ZU,• is exact in positive degrees. Hence by the

exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i >
0. Thus the δ-functor (Ȟn, δ) (see Lemma 21.10.2) satisfies the assumptions of
Homology, Lemma 12.11.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 13.20.4 also the sequence RiȞ0(U ,−) forms a uni-
versal δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma
12.11.5 we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most appli-
cations and the reader is suggested to skip the rest of the proof.

Let F be any abelian presheaf on C. Choose an injective resolution F → I• in the
category PAb(C). Consider the double complex A•,• with terms

Ap,q = Čp(U , Iq).

Consider the simple complex sA• associated to this double complex. There is a
map of complexes

Č•(U ,F) −→ sA•

coming from the maps Čp(U ,F)→ Ap,0 = Č•(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ sA•

coming from the maps Ȟ0(U , Iq) → A0,q = Č0(U , Iq). Both of these maps are
quasi-isomorphisms by an application of Homology, Lemma 12.22.7. Namely, the
columns of the double complex are exact in positive degrees because the Cech
complex as a functor is exact (Lemma 21.10.1) and the rows of the double complex
are exact in positive degrees since as we just saw the higher Cech cohomology
groups of the injective presheaves Iq are zero. Since quasi-isomorphisms become
invertible in D+(Z) this gives the last displayed morphism of the lemma. We omit
the verification that this morphism is functorial. �

http://stacks.math.columbia.edu/tag/03AU
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21.11. Cech cohomology and cohomology

The relationship between cohomology and Cech cohomology comes from the fact
that the Cech cohomology of an injective abelian sheaf is zero. To see this we note
that an injective abelian sheaf is an injective abelian presheaf and then we apply
results in Cech cohomology in the preceding section.

Lemma 21.11.1. Let C be a site. An injective abelian sheaf is also injective as an
object in the category PAb(C).

Proof. Apply Homology, Lemma 12.25.1 to the categoriesA = Ab(C), B = PAb(C),
the inclusion functor and sheafification. (See Modules on Sites, Section 18.3 to see
that all assumptions of the lemma are satisfied.) �

Lemma 21.11.2. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. Let I
be an injective abelian sheaf, i.e., an injective object of Ab(C). Then

Ȟp(U , I) =

{
I(U) if p = 0

0 if p > 0

Proof. By Lemma 21.11.1 we see that I is an injective object in PAb(C). Hence
we can apply Lemma 21.10.6 (or its proof) to see the vanishing of higher Cech
cohomology group. For the zeroth see Lemma 21.9.2. �

Lemma 21.11.3. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. There
is a transformation

Č•(U ,−) −→ RΓ(U,−)

of functors Ab(C) → D+(Z). In particular this gives a transformation of functors
Ȟp(U,F)→ Hp(U,F) for F ranging over Ab(C).

Proof. Let F be an abelian sheaf. Choose an injective resolution F → I•. Con-
sider the double complex A•,• with terms Ap,q = Čp(U , Iq). Moreover, consider the
associated simple complex sA•, see Homology, Definition 12.22.3. There is a map
of complexes

α : Γ(U, I•) −→ sA•

coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ sA•

coming from the map F → I0. We can apply Homology, Lemma 12.22.7 to see
that α is a quasi-isomorphism. Namely, Lemma 21.11.2 implies that the qth row
of the double complex A•,• is a resolution of Γ(U, Iq). Hence α becomes invertible
in D+(Z) and the transformation of the lemma is the composition of β followed by
the inverse of α. We omit the verification that this is functorial. �

Lemma 21.11.4. Let C be a site. Let G be an abelian sheaf on C. Let U = {Ui →
U}i∈I be a covering of C. The map

Ȟ1(U ,G) −→ H1(U,G)

is injective and identifies Ȟ1(U ,G) via the bijection of Lemma 21.5.3 with the set
of isomorphism classes of G|U -torsors which restrict to trivial torsors over each Ui.
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Proof. To see this we construct an inverse map. Namely, let F be a G|U -torsor on
C/U whose restriction to C/Ui is trivial. By Lemma 21.5.2 this means there exists
a section si ∈ F(Ui). On Ui0 ×U Ui1 there is a unique section si0i1 of G such that
si0i1 · si0 |Ui0×UUi1 = si1 |Ui0×UUi1 . An easy computation shows that si0i1 is a Čech

cocycle and that its class is well defined (i.e., does not depend on the choice of the
sections si). The inverse maps the isomorphism class of F to the cohomology class
of the cocycle (si0i1).

We omit the verification that this map is indeed an inverse. �

Lemma 21.11.5. Let C be a site. Consider the functor i : Ab(C)→ PAb(C). It is
a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 21.8.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

which is the definition of Hp(U,F). �

Lemma 21.11.6. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. For
any abelian sheaf F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
13.22.2) for the functors

i : Ab(C)→ PAb(C) and Ȟ0(U ,−) : PAb(C)→ Ab.

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 21.9.2. We have that i(I) is Cech
acyclic by Lemma 21.11.2. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors
on PAb(C) by Lemma 21.10.6. Putting everything together gives the lemma. �

Lemma 21.11.7. Let C be a site. Let U = {Ui → U}i∈I be a covering. Let
F ∈ Ob(Ab(C)). Assume that Hi(Ui0 ×U . . .×U Uip ,F) = 0 for all i > 0, all p ≥ 0

and all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F).

Proof. We will use the spectral sequence of Lemma 21.11.6. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q 6= 0. Hence the spectral sequence degenerates at
E2 and the result follows. �

Lemma 21.11.8. Let C be a site. Let

0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let U be an object of C. If there
exists a cofinal system of coverings U of U such that Ȟ1(U ,F) = 0, then the map
G(U)→ H(U) is surjective.
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Proof. Take an element s ∈ H(U). Choose a covering U = {Ui → U}i∈I such that
(a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we can
certainly find a covering such that (b) holds it follows from the assumptions of the
lemma that we can find a covering such that (a) and (b) both hold. Consider the
sections

si0i1 = si1 |Ui0×UUi1 − si0 |Ui0×UUi1 .
Since si lifts s we see that si0i1 ∈ F(Ui0 ×U Ui1). By the vanishing of Ȟ1(U ,F) we
can find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0×UUi1 − ti0 |Ui0×UUi1 .
Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. �

Lemma 21.11.9. (Variant of Cohomology, Lemma 20.12.7.) Let C be a site. Let
CovC be the set of coverings of C (see Sites, Definition 7.6.2). Let B ⊂ Ob(C), and
Cov ⊂ CovC be subsets. Let F be an abelian sheaf on C. Assume that

(1) For every U ∈ Cov, U = {Ui → U}i∈I we have U,Ui ∈ B and every
Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system
of coverings of U .

(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Cech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective abelian sheaf. By Lemma 21.11.2 I has vanishing higher
Cech cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact
sequence

0→ F → I → Q → 0.

By Lemma 21.11.8 and our assumption (2) this sequence gives rise to an exact
sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Cech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Cech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Cech cohomology groups for any covering U ∈ Cov. This implies that Q is also an
abelian sheaf with vanishing higher Cech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

http://stacks.math.columbia.edu/tag/03F9
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for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 13.20.4). By the above we see that H0(U, I) → H0(U,Q)
is surjective and hence H1(U,F) = 0. Since F was an arbitrary abelian sheaf
with vanishing higher Cech cohomology for all U ∈ Cov we conclude that also
H1(U,Q) = 0 since Q is another of these sheaves (see above). By the long exact
sequence this in turn implies that H2(U,F) = 0. And so on and so forth. �

21.12. Cohomology of modules

Everything that was said for cohomology of abelian sheaves goes for cohomology of
modules, since the two agree.

Lemma 21.12.1. Let (C,O) be a ringed site. An injective sheaf of modules is also
injective as an object in the category PMod(O).

Proof. Apply Homology, Lemma 12.25.1 to the categories A = Mod(O), B =
PMod(O), the inclusion functor and sheafification. (See Modules on Sites, Section
18.11 to see that all assumptions of the lemma are satisfied.) �

Lemma 21.12.2. Let (C,O) be a ringed site. Consider the functor i : Mod(C) →
PMod(C). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 21.8.

Proof. It is clear that i is left exact. Choose an injective resolution F → I• in
Mod(O). By definition Rpi is the pth cohomology presheaf of the complex I•. In
other words, the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

which is the definition of Hp(U,F). �

Lemma 21.12.3. Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be a covering
of C. Let I be an injective O-module, i.e., an injective object of Mod(O). Then

Ȟp(U , I) =

{
I(U) if p = 0

0 if p > 0

Proof. Lemma 21.10.3 gives the first equality in the following sequence of equalities

Č•(U , I) = MorPAb(C)(ZU,•, I)

= MorPMod(Z)(ZU,•, I)

= MorPMod(O)(ZU,• ⊗p,Z O, I)

The third equality by Modules on Sites, Lemma 18.9.2. By Lemma 21.12.1 we
see that I is an injective object in PMod(O). Hence HomPMod(O)(−, I) is an exact
functor. By Lemma 21.10.5 we see the vanishing of higher Cech cohomology groups.
For the zeroth see Lemma 21.9.2. �

Lemma 21.12.4. Let C be a site. Let O be a sheaf of rings on C. Let F be an
O-module, and denote Fab the underlying sheaf of abelian groups. Then we have

Hi(C,Fab) = Hi(C,F)
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and for any object U of C we also have

Hi(U,Fab) = Hi(U,F).

Here the left hand side is cohomology computed in Ab(C) and the right hand side is
cohomology computed in Mod(O).

Proof. By Derived Categories, Lemma 13.20.4 the δ-functor (F 7→ Hp(U,F))p≥0

is universal. The functor Mod(O) → Ab(C), F 7→ Fab is exact. Hence (F 7→
Hp(U,Fab))p≥0 is a δ-functor also. Suppose we show that (F 7→ Hp(U,Fab))p≥0 is
also universal. This will imply the second statement of the lemma by uniqueness
of universal δ-functors, see Homology, Lemma 12.11.5. Since Mod(O) has enough
injectives, it suffices to show that Hi(U, Iab) = 0 for any injective object I in
Mod(O), see Homology, Lemma 12.11.4.

Let I be an injective object of Mod(O). Apply Lemma 21.11.9 with F = I, B = C
and Cov = CovC . Assumption (3) of that lemma holds by Lemma 21.12.3. Hence
we see that Hi(U, Iab) = 0 for every object U of C.
If C has a final object then this also implies the first equality. If not, then according
to Sites, Lemma 7.28.5 we see that the ringed topos (Sh(C),O) is equivalent to a
ringed topos where the underlying site does have a final object. Hence the lemma
follows. �

Lemma 21.12.5. Let C be a site. Let I be a set. For i ∈ I let Fi be an abelian
sheaf on C. Let U ∈ Ob(C). The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal
to the product of the underlying presheaves, see Sites, Lemma 7.10.1. Proof for
p = 1. Set F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By locality

of cohomology, see Lemma 21.8.3, there exists a covering U = {Uj → U} such
that ξ|Uj = 0 for all j. By Lemma 21.11.4 this means ξ comes from an element

ξ̌ ∈ Ȟ1(U ,F). Since the maps Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by
Lemma 21.11.4), and since the image of ξ is zero in

∏
H1(U,Fi) we see that the

image ξ̌i = 0 in Ȟ1(U ,Fi). However, since F =
∏
Fi we see that Č•(U ,F) is

the product of the complexes Č•(U ,Fi), hence by Homology, Lemma 12.28.1 we
conclude that ξ̌ = 0 as desired. �

Lemma 21.12.6. Let (C,O) be a ringed site. Let a : U ′ → U be a monomorphism
in C. Then for any injective O-module I the restriction mapping I(U)→ I(U ′) is
surjective.

Proof. Let j : C/U → C and j′ : C/U ′ → C be the localization morphisms (Modules
on Sites, Section 18.19). Since j! is a left adjoint to restriction we see that for any
sheaf F of O-modules

HomO(j!OU ,F) = HomOU (OU ,F|U ) = F(U)

Similarly, the sheaf j′!OU ′ represents the functor F 7→ F(U ′). Moreover below we
describe a canonical map of O-modules

j′!OU ′ −→ j!OU

http://stacks.math.columbia.edu/tag/060L
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which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 4.3.5). It suffices to prove the displayed map of modules is
injective, see Homology, Lemma 12.23.2.

To construct our map it suffices to construct a map between the presheaves which
assign to an object V of C the O(V )-module⊕

ϕ′∈MorC(V,U ′)
O(V ) and

⊕
ϕ∈MorC(V,U)

O(V )

see Modules on Sites, Lemma 18.19.2. We take the map which maps the summand
corresponding to ϕ′ to the summand corresponding to ϕ = a ◦ ϕ′ by the identity
map on O(V ). As a is a monomorphism, this map is injective. As sheafification is
exact, the result follows. �

21.13. Limp sheaves

Let (C,O) be a ringed site. Let K be a sheaf of sets on C (we intentionally use
a roman capital here to distinguish from abelian sheaves). Given an abelian sheaf
F we denote F(K) = MorSh(C)(K,F). The functor F 7→ F(K) is a left exact
functor Mod(O) → Ab hence we have its right derived functors. We will denote
these Hp(K,F) so that H0(K,F) = F(K).

We mention two special cases. The first is the case where K = h#
U for some object

U of C. In this case Hp(K,F) = Hp(U,F), because MorSh(C)(h
#
U ,F) = F(U), see

Sites, Section 7.13. The second is the case O = Z (the constant sheaf). In this case
the cohomology groups are functors Hp(K,−) : Ab(C)→ Ab. Here is the analogue
of Lemma 21.12.4.

Lemma 21.13.1. Let (C,O) be a ringed site. Let K be a sheaf of sets on C. Let
F be an O-module and denote Fab the underlying sheaf of abelian groups. Then
Hp(K,F) = Hp(K,Fab).

Proof. Note that both Hp(K,F) and Hp(K,Fab) depend only on the topos, not on
the underlying site. Hence by Sites, Lemma 7.28.5 we may replace C by a “larger”
site such that K = hU for some object U of C. In this case the result follows from
Lemma 21.12.4. �

Lemma 21.13.2. Let C be a site. Let K ′ → K be a surjective map of sheaves of
sets on C. Set K ′p = K ′ ×K . . . ×K K ′ (p + 1-factors). For every abelian sheaf F
there is a spectral sequence with Ep,q1 = Hq(K ′p,F) converging to Hp+q(K,F).

Proof. After replacing C by a “larger” site as in Sites, Lemma 7.28.5 we may
assume that K,K ′ are objects of C and that U = {K ′ → K} is a covering. Then we
have the Čech to cohomology spectral sequence of Lemma 21.11.6 whose E1 page
is as indicated in the statement of the lemma. �

Lemma 21.13.3. Let C be a site. Let K be a sheaf of sets on C. Consider the
morphism of topoi j : Sh(C/K) → Sh(C), see Sites, Lemma 7.29.3. Then j−1

preserves injectives and Hp(K,F) = Hp(C/K, j−1F) for any abelian sheaf F on C.

Proof. By Sites, Lemmas 7.29.1 and 7.29.3 the morphism of topoi j is equivalent
to a localization. Hence this follows from Lemma 21.8.1. �

Keeping in mind Lemma 21.13.1 we see that the following definition is the “correct
one” also for sheaves of modules on ringed sites.
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Definition 21.13.4. Let C be a site. We say an abelian sheaf F is limp1 if for
every sheaf of sets K we have Hp(K,F) = 0 for all p ≥ 1.

It is clear that being limp is an intrinsic property, i.e., preserved under equivalences
of topoi. A limp sheaf has vanishing higher cohomology on all objects of the site, but
in general the condition of being limp is strictly stronger. Here is a characterization
of limp sheaves which is sometimes useful.

Lemma 21.13.5. Let C be a site. Let F be an abelian sheaf. If

(1) Hp(U,F) = 0 for p > 0 and U ∈ Ob(C), and
(2) for every surjection K ′ → K of sheaves of sets the extended Čech complex

0→ H0(K,F)→ H0(K ′,F)→ H0(K ′ ×K K ′,F)→ . . .

is exact,

then F is limp (and the converse holds too).

Proof. By assumption (1) we have Hp(h#
U , g

−1I) = 0 for all p > 0 and all objects
U of C. Note that if K =

∐
Ki is a coproduct of sheaves of sets on C then

Hp(K, g−1I) =
∏
Hp(Ki, g

−1I). For any sheaf of sets K there exists a surjection

K ′ =
∐

h#
Ui
−→ K

see Sites, Lemma 7.13.5. Thus we conclude that: (*) for every sheaf of sets K there
exists a surjection K ′ → K of sheaves of sets such that Hp(K ′,F) = 0 for p > 0.
We claim that (*) and condition (2) imply that F is limp. Note that conditions (*)
and (2) only depend on F as an object of the topos Sh(C) and not on the underlying
site. (We will not use property (1) in the rest of the proof.)

We are going to prove by induction on n ≥ 0 that (*) and (2) imply the following
induction hypothesis IHn: Hp(K,F) = 0 for all 0 < p ≤ n and all sheaves of sets
K. Note that IH0 holds. Assume IHn. Pick a sheaf of sets K. Pick a surjection
K ′ → K such that Hp(K ′,F) = 0 for all p > 0. We have a spectral sequence with

Ep,q1 = Hq(K ′p,F)

covering to Hp+q(K,F), see Lemma 21.13.2. By IHn we see that Ep,q1 = 0 for

0 < q ≤ n and by assumption (2) we see that Ep,02 = 0 for p > 0. Finally, we have

E0,q
1 = 0 for q > 0 because Hq(K ′,F) = 0 by choice of K ′. Hence we conclude that

Hn+1(K,F) = 0 because all the terms Ep,q2 with p+ q = n+ 1 are zero. �

21.14. The Leray spectral sequence

The key to proving the existence of the Leray spectral sequence is the following
lemma.

Lemma 21.14.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Then for any injective object I in Mod(OC) the pushforward f∗I is limp.

Proof. Let K be a sheaf of sets on D. By Modules on Sites, Lemma 18.7.2 we may
replace C, D by “larger” sites such that f comes from a morphism of ringed sites
induced by a continuous functor u : D → C such that K = hV for some object V
of D.

1This is probably nonstandard notation. Please email stacks.project@gmail.com if you know
the correct terminology.
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Thus we have to show that Hq(V, f∗I) is zero for q > 0 and all objects V of D when
f is given by a morphism of ringed sites. Let V = {Vj → V } be any covering of D.
Since u is continuous we see that U = {u(Vj)→ u(v)} is a covering of C. Then we

have an equality of Čech complexes

Č•(V, f∗I) = Č•(U , I)

by the definition of f∗. By Lemma 21.12.3 we see that the cohomology of this
complex is zero in positive degrees. We win by Lemma 21.11.9. �

For flat morphisms the functor f∗ preserves injective modules. In particular the
functor f∗ : Ab(C)→ Ab(D) always transforms injective abelian sheaves into injec-
tive abelian sheaves.

Lemma 21.14.2. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. If f is flat, then f∗I is an injective OD-module for any injective OC-module
I.

Proof. In this case the functor f∗ is exact, see Modules on Sites, Lemma 18.30.2.
Hence the result follows from Homology, Lemma 12.25.1. �

Lemma 21.14.3. Let (Sh(C),OC) be a ringed topos. A limp sheaf is right acyclic
for the following functors:

(1) the functor H0(U,−) for any object U of C,
(2) the functor F 7→ F(K) for any presheaf of sets K,
(3) the functor Γ(C,−) of global sections,
(4) the functor f∗ for any morphism f : (Sh(C),OC)→ (Sh(D),OD) of ringed

topoi.

Proof. Part (2) is the definition of a limp sheaf. Part (1) is a consequence of (2)
as pointed out in the discussion following the definition of limp sheaves. Part (3)
is a special case of (2) where K = e is the final object of Sh(C).

To prove (4) we may assume, by Modules on Sites, Lemma 18.7.2 that f is given
by a morphism of sites. In this case we see that Rif∗, i > 0 of a limp sheaf are zero
by the description of higher direct images in Lemma 21.8.4. �

Remark 21.14.4. As a consequence of the results above we find that Derived
Categories, Lemma 13.22.1 applies to a number of situations. For example, given
a morphism f : (Sh(C),OC)→ (Sh(D),OD) of ringed topoi we have

RΓ(D, Rf∗F) = RΓ(C,F)

for any sheaf of OC-modules F . Namely, for an injective OX -module I the OD-
module f∗I is limp by Lemma 21.14.1 and a limp sheaf is acyclic for Γ(D,−) by
Lemma 21.14.3.

Lemma 21.14.5 (Leray spectral sequence). Let f : (Sh(C),OC) → (Sh(D),OD)
be a morphism of ringed topoi. Let F• be a bounded below complex of OC-modules.
There is a spectral sequence

Ep,q2 = Hp(D, Rqf∗(F•))

converging to Hp+q(C,F•).
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Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
13.22.2 coming from the composition of functors Γ(C,−) = Γ(D,−)◦f∗. To see that
the assumptions of Derived Categories, Lemma 13.22.2 are satisfied, see Lemmas
21.14.1 and 21.14.3. �

Lemma 21.14.6. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let F be an OC-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(C,F) = Hp(D, f∗F) for all p.
(2) If Hp(D, Rqf∗F) = 0 for all q and p > 0, then Hq(C,F) = H0(D, Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence
to converge. You can also prove these facts directly (without using the spectral
sequence) which is a good exercise in cohomology of sheaves. �

Lemma 21.14.7 (Relative Leray spectral sequence). Let f : (Sh(C),OC)→ (Sh(D),OD)
and g : (Sh(D),OD)→ (Sh(E),OE) be morphisms of ringed topoi. Let F be an OC-
module. There is a spectral sequence with

Ep,q2 = Rpg∗(R
qf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OC-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see
Derived Categories, Lemma 13.22.2 and Lemmas 21.14.1 and 21.14.3. �

21.15. The base change map

In this section we construct the base change map in some cases; the general case
is treated in Remark 21.19.2. The discussion in this section avoids using derived
pullback by restricting to the case of a base change by a flat morphism of ringed
sites. Before we state the result, let us discuss flat pullback on the derived category.
Suppose g : (Sh(C),OC) → (Sh(D),OD) is a flat morphism of ringed topoi. By
Modules on Sites, Lemma 18.30.2 the functor g∗ : Mod(OD) → Mod(OC) is exact.
Hence it has a derived functor

g∗ : D(OC)→ D(OD)

which is computed by simply pulling back an representative of a given object in
D(OD), see Derived Categories, Lemma 13.17.8. It preserved the bounded (above,
below) subcategories. Hence as indicated we indicate this functor by g∗ rather than
Lg∗.

Lemma 21.15.1. Let

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′)

g // (Sh(D),OD)

be a commutative diagram of ringed topoi. Let F• be a bounded below complex of
OC-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g
′)∗F•
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in D+(OD′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma
21.14.2 we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g

′)∗F•.
Hence by Derived Categories, Lemmas 13.18.6 and 13.18.7 the arrow β in the
diagram

(g′)∗(g
′)∗F• // (g′)∗J •

F•
adjunction

OO

// I•
β

OO

exists and is unique up to homotopy. Pushing down to D we get

f∗β : f∗I• −→ f∗(g
′)∗J • = g∗(f

′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. �

21.16. Cohomology and colimits

Let (C,O) be a ringed site. Let I → Mod(O), i 7→ Fi be a diagram over the
index category I, see Categories, Section 4.14. For each i there is a canonical map
Fi → colimi Fi which induces a map on cohomology. Hence we get a canonical map

colimiH
p(U,Fi) −→ Hp(U, colimi Fi)

for every p ≥ 0 and every object U of C. These maps are in general not isomor-
phisms, even for p = 0.

The following lemma is the analogue of Sites, Lemma 7.11.2 for cohomology.

Lemma 21.16.1. Let C be a site. Let CovC be the set of coverings of C (see Sites,
Definition 7.6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system
of coverings of U .

Then the map
colimiH

p(U,Fi) −→ Hp(U, colimi Fi)
is an isomorphism for every p ≥ 0, every U ∈ B, and every filtered diagram I →
Ab(C).

Proof. To prove the lemma we will argue by induction on p. Note that we require
in (1) the coverings U ∈ Cov to be finite, so that all the elements of B are quasi-
compact. Hence (2) and (1) imply that any U ∈ B satisfies the hypothesis of Sites,
Lemma 7.11.2 (4). Thus we see that the result holds for p = 0. Now we assume
the lemma holds for p and prove it for p+ 1.

Choose a filtered diagram F : I → Ab(C), i 7→ Fi. Since Ab(C) has functorial
injective embeddings, see Injectives, Theorem 19.7.4, we can find a morphism of
filtered diagrams F → I such that each Fi → Ii is an injective map of abelian
sheaves into an injective abelian sheaf. Denote Qi the cokernel so that we have
short exact sequences

0→ Fi → Ii → Qi → 0.

http://stacks.math.columbia.edu/tag/0739
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Since colimits of sheaves are the sheafification of colimits on the level of presheaves,
since sheafification is exact, and since filtered colimits of abelian groups are exact
(see Algebra, Lemma 10.8.9), we see the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

is also a short exact sequence. We claim that Hq(U, colimi Ii) = 0 for all U ∈ B
and all q ≥ 1. Accepting this claim for the moment consider the diagram

colimiH
p(U, Ii)

��

// colimiH
p(U,Qi)

��

// colimiH
p+1(U,Fi)

��

// 0

��
Hp(U, colimi Ii) // Hp(U, colimiQi) // Hp+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row is
exact by an application of Algebra, Lemma 10.8.9. Hence by the snake lemma we
deduce the result for p+ 1.

It remains to show that the claim is true. We will use Lemma 21.11.9. By the
result for p = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)
because all the Uj0×U . . .×U Ujp are in B. By Lemma 21.11.2 each of the complexes
in the colimit of Cech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma
10.8.9 we see that also the Cech complex Č•(U , colimi Ii) is acyclic in degrees ≥ 1.
In other words we see that Ȟp(U , colimi Ii) = 0 for all p ≥ 1. Thus the assumptions
of Lemma 21.11.9. are satisfied and the claim follows. �

Let C be a limit of sites Ci as in Sites, Situation 7.11.3 and Lemmas 7.11.4, 7.11.5,
and 7.11.6. In particular, all coverings in C and Ci have finite index sets. Moreover,
assume given

(1) an abelian sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map ϕa : f−1

a Fi → Fj of abelian sheaves on Cj
such that ϕc = ϕb ◦ f−1

b ϕa whenever c = a ◦ b.

Lemma 21.16.2. In the situation discussed above set F = colim f−1
i Fi. Let i ∈

Ob(I), Xi ∈ Ob(Ci). Then

colima:j→iH
p(ua(Xi),Fj) = Hp(ui(Xi),F)

for all p ≥ 0.

Proof. The case p = 0 is Sites, Lemma 7.11.6.

In this paragraph we show that we can find a map of systems (γi) : (Fi, ϕa) →
(Gi, ψa) with Gi an injective abelian sheaf and γi injective. For each i we pick an
injection Fi → Ii where Ii is an injective abelian sheaf on Ci. Then we can consider
the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik.

For a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj

http://stacks.math.columbia.edu/tag/09YP
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whose components are the canonical maps f−1
b fa◦b,∗Ik → fb,∗Ik for b : k → j.

Thus we find an injection {γi} : {Fi, ϕa)→ (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Ci, see Lemma 21.14.2 and
Homology, Lemma 12.23.3. This finishes the construction.

Arguing exactly as in the proof of Lemma 21.16.1 we see that it suffices to prove
that Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every object of C

we show that the Čech cohomology of G for any covering U of C is zero (Lemma
21.11.9). The covering U comes from a covering Ui of Ci for some i. We have

Č•(U ,G) = colima:j→i Č•(ua(Ui),Gj)
by the case p = 0. The right hand side is acyclic in positive degrees as a filtered
colimit of acyclic complexes by Lemma 21.11.2. See Algebra, Lemma 10.8.9. �

21.17. Flat resolutions

In this section we redo the arguments of Cohomology, Section 20.27 in the setting
of ringed sites and ringed topoi.

Lemma 21.17.1. Let (C,O) be a ringed site. Let G• be a complex of O-modules.
The functor

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O G•)
is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas 15.45.1 and 15.45.2. �

Definition 21.17.2. Let (C,O) be a ringed site. A complex K• of O-modules is
called K-flat if for every acyclic complex F• of O-modules the complex

Tot(F• ⊗O K•)
is acyclic.

Lemma 21.17.3. Let (C,O) be a ringed site. Let K• be a K-flat complex. Then
the functor

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 21.17.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. �

Lemma 21.17.4. Let (C,O) be a ringed site. If K•, L• are K-flat complexes of
O-modules, then Tot(K• ⊗O L•) is a K-flat complex of O-modules.

Proof. Follows from the isomorphism

Tot(M• ⊗O Tot(K• ⊗O L•)) = Tot(Tot(M• ⊗O K•)⊗O L•)
and the definition. �

Lemma 21.17.5. Let (C,O) be a ringed site. Let (K•1,K•2,K•3) be a distinguished
triangle in K(Mod(O)). If two out of three of K•i are K-flat, so is the third.

Proof. Follows from Lemma 21.17.1 and the fact that in a distinguished triangle
in K(Mod(O)) if two out of three are acyclic, so is the third. �
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Lemma 21.17.6. Let (C,O) be a ringed site. A bounded above complex of flat
O-modules is K-flat.

Proof. Let K• be a bounded above complex of flatO-modules. Let L• be an acyclic
complex of O-modules. Note that L• = colimm τ≤mL• where we take termwise
colimits. Hence also

Tot(K• ⊗O L•) = colimm Tot(K• ⊗O τ≤mL•)

termwise. Hence to prove the complex on the left is acyclic it suffices to show
each of the complexes on the right is acyclic. Since τ≤mL• is acyclic this reduces
us to the case where L• is bounded above. In this case the spectral sequence of
Homology, Lemma 12.22.6 has

′Ep,q1 = Hp(L• ⊗R Kq)

which is zero as Kq is flat and L• acyclic. Hence we win. �

Lemma 21.17.7. Let (C,O) be a ringed site. Let K•1 → K•2 → . . . be a system of
K-flat complexes. Then colimiK•i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗O K•i ) = Tot(F• ⊗O colimiK•i )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 21.17.8. Let (C,O) be a ringed site. For any complex G• of O-modules
there exists a commutative diagram of complexes of O-modules

K•1

��

// K•2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2)
each K•n is a bounded above complex whose terms are direct sums of O-modules of
the form jU !OU , and (3) the maps K•n → K•n+1 are termwise split injections whose
cokernels are direct sums of O-modules of the form jU !OU . Moreover, the map
colimK•n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows imme-
diately from Modules on Sites, Lemma 18.28.6 and Derived Categories, Lemma
13.28.1. The induced map colimK•n → G• is a quasi-isomorphism because filtered
colimits are exact. �

Lemma 21.17.9. Let (C,O) be a ringed site. For any complex G• of O-modules
there exists a K-flat complex K• and a quasi-isomorphism K• → G•.

Proof. Choose a diagram as in Lemma 21.17.8. Each complex K•n is a bounded
above complex of flat modules, see Modules on Sites, Lemma 18.28.5. Hence K•n is
K-flat by Lemma 21.17.6. The induced map colimK•n → G• is a quasi-isomorphism
by construction. Since colimK•n is K-flat by Lemma 21.17.7 we win. �
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Lemma 21.17.10. Let (C,O) be a ringed site. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of O-modules. For every complex F• of O-modules
the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗O P•) −→ Tot(F• ⊗O Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see
Lemma 21.17.9. Consider the commutative diagram

Tot(K• ⊗O P•) //

��

Tot(K• ⊗O Q•)

��
Tot(F• ⊗O P•) // Tot(F• ⊗O Q•)

The result follows as by Lemma 21.17.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. �

Let (C,O) be a ringed site. Let F• be an object of D(O). Choose a K-flat resolution
K• → F•, see Lemma 21.17.9. By Lemma 21.17.1 we obtain an exact functor of
triangulated categories

K(O) −→ K(O), G• 7−→ Tot(G• ⊗O K•)
By Lemma 21.17.3 this functor induces a functor D(O) → D(O) simply because
D(O) is the localization of K(O) at quasi-isomorphisms. By Lemma 21.17.10 the
resulting functor (up to isomorphism) does not depend on the choice of the K-flat
resolution.

Definition 21.17.11. Let (C,O) be a ringed site. Let F• be an object of D(O).
The derived tensor product

−⊗L
O F• : D(O) −→ D(O)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
O G• ∼= G• ⊗L

O F•

for G• and F• in D(O). Hence when we write F•⊗L
O G• we will usually be agnostic

about which variable we are using to define the derived tensor product with.

Definition 21.17.12. Let (C,O) be a ringed site. Let F , G be O-modules. The
Tor’s of F and G are define by the formula

TorOp (F ,G) = H−p(F ⊗L
O G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of O-modules 0→ F1 →
F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗O G // F2 ⊗O G // F3 ⊗O G // 0

TorO1 (F1,G) // TorO1 (F2,G) // TorO1 (F3,G)

kk
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for every O-module G. This will be called the long exact sequence of Tor associated
to the situation.

Lemma 21.17.13. Let (C,O) be a ringed site. Let F be an O-module. The fol-
lowing are equivalent

(1) F is a flat O-module, and

(2) TorO1 (F ,G) = 0 for every O-module G.

Proof. If F is flat, then F ⊗O − is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗O G → F ⊗O H is a quotient of
TorO1 (F ,Q) which is zero by assumption. Hence F is flat. �

21.18. Derived pullback

Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(O′)→ D(O)

However, we have to be a little careful since we haven’t yet proved the pullback
of a flat module is flat in complete generality, see Modules on Sites, Section 18.38.
In this section, we will use the hypothesis that our sites have enough points, but
once we improve the result of the aforementioned section, all of the results in this
section will hold without the assumption on the existence of points.

Lemma 21.18.1. Let f : Sh(C) → Sh(C′) be a morphism of topoi. Let O′ be a
sheaf of rings on C′. Assume C has enough points. For any complex of O′-modules
G•, there exists a quasi-isomorphism K• → G• such that K• is a K-flat complex of
O′-modules and f−1K• is a K-flat complex of f−1O′-modules.

Proof. In the proof of Lemma 21.17.9 we find a quasi-isomorphismK• = colimiK•i →
G• where each K•i is a bounded above complex of flat O′-modules. By Modules on
Sites, Lemma 18.38.3 applied to the morphism of ringed topoi (Sh(C), f−1O′) →
(Sh(C′),O′) we see that f−1F•i is a bounded above complex of flat f−1O′-modules.
Hence f−1K• = colimi f

−1K•i is K-flat by Lemmas 21.17.6 and 21.17.7. �

Remark 21.18.2. It is straightforward to show that the pullback of a K-flat com-
plex is K-flat for a morphism of ringed topoi with enough points; this slightly
improves the result of Lemma 21.18.1. However, in applications it seems rather
that the explicit form of the K-flat complexes constructed in Lemma 21.17.9 is
what is useful (as in the proof above) and not the plain fact that they are K-flat.
Note for example that the terms of the complex constructed are each direct sums
of modules of the form jU !OU , see Lemma 21.17.8.

Lemma 21.18.3. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
Assume C has enough points. There exists an exact functor

Lf∗ : D(O′) −→ D(O)

of triangulated categories so that Lf∗K• = f∗K• for any complex as in Lemma
21.18.1 in particular for any bounded above complex of flat O′-modules.
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Proof. To see this we use the general theory developed in Derived Categories,
Section 13.15. Set D = K(O′) and D′ = D(O). Let us write F : D → D′ the exact
functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S be
the set of quasi-isomorphisms in D = K(O′). This gives a situation as in Derived
Categories, Situation 13.15.1 so that Derived Categories, Definition 13.15.2 applies.
We claim that LF is everywhere defined. This follows from Derived Categories,
Lemma 13.15.15 with P ⊂ Ob(D) the collection of complexes K• such that f−1K•
is a K-flat complex of f−1O′-modules: (1) follows from Lemma 21.18.1 and to see
(2) we have to show that for a quasi-isomorphism K•1 → K•2 between elements of P
the map f∗K•1 → f∗K•2 is a quasi-isomorphism. To see this write this as

f−1K•1 ⊗f−1O′ O −→ f−1K•2 ⊗f−1O′ O

The functor f−1 is exact, hence the map f−1K•1 → f−1K•2 is a quasi-isomorphism.
The complexes f−1K•1 and f−1K•2 are K-flat complexes of f−1O′-modules by our
choice of P. Hence Lemma 21.17.10 guarantees that the displayed map is a quasi-
isomorphism. Thus we obtain a derived functor

LF : D(O′) = S−1D −→ D′ = D(O)

see Derived Categories, Equation (13.15.9.1). Finally, Derived Categories, Lemma
13.15.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is in P. Since the
proof of Lemma 21.18.1 shows that bounded above complexes of flat modules are
in P we win. �

Lemma 21.18.4. Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
Assume C has enough points. There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
O′ G•) = Lf∗F• ⊗L

O Lf
∗G•

for F•,G• ∈ Ob(D(O′)).

Proof. By Lemma 21.18.1 we may assume that F• and G• are K-flat complexes of
O′-modules such that f∗F• and f∗G• are K-flat complexes of O-modules. In this
case F•⊗L

O′G• is just the total complex associated to the double complex F•⊗O′G•.
By Lemma 21.17.4 Tot(F• ⊗O′ G•) is K-flat also. Hence the isomorphism of the
lemma comes from the isomorphism

Tot(f∗F• ⊗O f∗G•) −→ f∗Tot(F• ⊗O′ G•)

whose constituents are the isomorphisms f∗Fp⊗O f∗Gq → f∗(Fp⊗O′ Gq) of Mod-
ules on Sites, Lemma 18.26.1. �

Lemma 21.18.5. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

F• ⊗L
O Lf

∗G• = F• ⊗L
f−1OY f

−1G•

for F• in D(O) and G• in D(O′).

Proof. Let F be an O-module and let G be an O′-module. Then F ⊗O f∗G =
F ⊗f−1O′ f

−1G because f∗G = O ⊗f−1O′ f
−1G. The lemma follows from this and

the definitions. �
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21.19. Cohomology of unbounded complexes

Let (C,O) be a ringed site. The category Mod(O) is a Grothendieck abelian cate-
gory: it has all colimits, filtered colimits are exact, and it has a generator, namely⊕

U∈Ob(C)
jU !OU ,

see Modules on Sites, Section 18.14 and Lemmas 18.28.5 and 18.28.6. By Injectives,
Theorem 19.12.6 for every complex F• of O-modules there exists an injective quasi-
isomorphism F• → I• to a K-injective complex of O-modules. Hence we can define

RΓ(C,F•) = Γ(C, I•)

and similarly for any left exact functor, see Derived Categories, Lemma 13.29.6.
For any morphism of ringed topoi f : (Sh(C),O)→ (Sh(D),O′) we obtain

Rf∗ : D(O) −→ D(O′)

on the unbounded derived categories.

Lemma 21.19.1. Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
Assume C has enough points. The functor Rf∗ defined above and the functor Lf∗

defined in Lemma 21.18.3 are adjoint:

HomD(O)(Lf
∗G•,F•) = HomD(O′)(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(O)) and G• ∈ Ob(D(O′)).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 13.28.4. �

Remark 21.19.2. The construction of unbounded derived functor Lf∗ and Rf∗
allows one to construct the base change map in full generality. Namely, suppose
that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′)

g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let F• be a complex of OC-modules.
Then there exists a canonical base change map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•

in D(OD′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗F• → L(g′)∗F•
Since L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗F• →
L(g′)∗F• which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗F• → F•.

21.20. Some properties of K-injective complexes

Let (C,O) be a ringed site. Let U be an object of C. Denote j : (Sh(C/U),OU )→
(Sh(C),O) the corresponding localization morphism. The pullback functor j∗ is
exact as it is just the restriction functor. Thus derived pullback Lj∗ is computed
on any complex by simply restricting the complex. We often simply denote the
corresponding functor

D(O)→ D(OU ), E 7→ j∗E = E|U
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Similarly, extension by zero j! : Mod(OU ) → Mod(O) (see Modules on Sites, Def-
inition 18.19.1) is an exact functor (Modules on Sites, Lemma 18.19.3). Thus it
induces a functor

j! : D(OU )→ D(O), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 21.20.1. Let (C,O) be a ringed site. Let U be an object of C. The
restriction of a K-injective complex of O-modules to C/U is a K-injective complex
of OU -modules.

Proof. Follows immediately from Derived Categories, Lemma 13.29.10 and the fact
that the restriction functor has the exact left adjoint j!. See discussion above. �

Lemma 21.20.2. Let (C,O) be a ringed site. Let U be an object of C. Denote
j : (Sh(C/U),OU ) → (Sh(C),O) the corresponding localization morphism. The
restriction functor D(O) → D(OU ) is a right adjoint to extension by zero j! :
D(OU )→ D(O).

Proof. We have to show that

HomD(O)(j!E,F ) = HomD(OU )(E,F |U )

Choose a complex E• of OU -modules representing E and choose a K-injective com-
plex I• representing F . By Lemma 21.20.1 the complex I•|U is K-injective as well.
Hence we see that the formula above becomes

HomD(O)(j!E•, I•) = HomD(OU )(E•, I•|U )

which holds as |U and j! are adjoint functors (Modules on Sites, Lemma 18.19.2)
and Derived Categories, Lemma 13.29.2. �

Lemma 21.20.3. Let C be a site. Let O → O′ be a flat map of sheaves of rings.
If I• is a K-injective complex of O′-modules, then I• is K-injective as a complex
of O-modules.

Proof. This is true because HomK(O)(F•, I•) = HomK(O′)(F•⊗OO′, I•) by Mod-
ules on Sites, Lemma 18.11.3 and the fact that tensoring with O′ is exact. �

Lemma 21.20.4. Let C be a site. Let O → O′ be a map of sheaves of rings. If I•
is a K-injective complex of O-modules, then HomO(O′, I•) is a K-injective complex
of O′-modules.

Proof. This is true because HomK(O′)(G•,HomO(O′, I•)) = HomK(O)(G•, I•) by
Modules on Sites, Lemma 18.27.5. �

21.21. Derived and homotopy limits

Let C be a site. Consider the category C ×N with Mor((U, n), (V,m)) = ∅ if n > m
and Mor((U, n), (V,m)) = Mor(U, V ) else. We endow this with the structure of a
site by letting coverings be families {(Ui, n) → (U, n)} such that {Ui → U} is a
covering of C. Then the reader verifies immediately that sheaves on C ×N are the
same thing as inverse systems of sheaves on C. In particular Ab(C ×N) is inverse
systems of abelian sheaves on C. Consider now the functor

lim : Ab(C ×N)→ Ab(C)
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which takes an inverse system to its limit. This is nothing but g∗ where g : Sh(C ×
N)→ Sh(C) is the morphism of topoi associated to the continuous and cocontinuous
functor C ×N → C. (Observe that g−1 assigns to a sheaf on C the corresponding
constant inverse system.)

By the general machinery explained above we obtain a derived functor

R lim = Rg∗ : D(C ×N)→ D(C).

As indicated this functor is often denoted R lim.

On the other hand, the continuous and cocontinuous functors C → C ×N, U 7→
(U, n) define morphisms of topoi in : Sh(C)→ Sh(C×N). Of course i−1

n is the func-
tor which picks the nth term of the inverse system. Thus there are transformations
of functors i−1

n+1 → i−1
n . Hence given K ∈ D(C ×N) we get Kn = i−1

n K ∈ D(C)
and maps Kn+1 → Kn. In Derived Categories, Definition 13.32.1 we have defined
the notion of a homotopy limit

R limKn ∈ D(C)

We claim the two notions agree (as far as it makes sense).

Lemma 21.21.1. Let C be a site. Let K be an object of D(C×N). Set Kn = i−1
n K

as above. Then

R limK ∼= R limKn

in D(C).

Proof. To calculate R lim on an object K of D(C × N) we choose a K-injective
representative I• whose terms are injective objects of Ab(C × N), see Injectives,
Theorem 19.12.6. We may and do think of I• as an inverse system of complexes
(I•n) and then we see that

R limK = lim I•n
where the right hand side is the termwise inverse limit.

Let J = (Jn) be an injective object of Ab(C × N). The morphisms (U, n) →
(U, n+ 1) are monomorphisms of C ×N, hence J (U, n+ 1)→ J (U, n) is surjective
(Lemma 21.12.6). It follows that Jn+1 → Jn is surjective as a map of presheaves.

Note that the functor i−1
n has an exact left adjoint in,!. Namely, in,!F is the inverse

system . . . 0→ 0→ F → . . .→ F . Thus the complexes i−1
n I• = I•n are K-injective

by Derived Categories, Lemma 13.29.10.

Because we chose our K-injective complex to have injective terms we conclude that

0→ lim I•n →
∏
I•n →

∏
I•n → 0

is a short exact sequence of complexes of abelian sheaves as it is a short exact
sequence of complexes of abelian presheaves. Moreover, the products in the middle
and the right represent the products in D(C), see Injectives, Lemma 19.13.4 and
its proof (this is where we use that I•n is K-injective). Thus R limK is a homotopy
limit of the inverse system (Kn) by definition of homotopy limits in triangulated
categories. �

Lemma 21.21.2. Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
Then Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.
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Proof. Let (Kn) be an inverse system of objects of D(O). By induction on n we
may choose actual complexes K•n of O-modules and maps of complexes K•n+1 → K•n
representing the maps Kn+1 → Kn in D(O). In other words, there exists an object
K in D(C ×N) whose associated inverse system is the given one. Next, consider
the commutative diagram

Sh(C ×N)
g

//

f×1

��

Sh(C)

f

��
Sh(C′ ×N)

g′ // Sh(C′)

of morphisms of topoi. It follows that R limR(f × 1)∗K = Rf∗R limK. Working
through the definitions and using Lemma 21.21.1 we obtain that R lim(Rf∗Kn) =
Rf∗(R limKn).

Alternate proof in case C has enough points. Consider the defining distinguished
triangle

R limKn →
∏

Kn →
∏

Kn

in D(O). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(O′). Thus we see that it suffices to prove that Rf∗ commutes with products
in the derived category (which are not just given by products of complexes, see
Injectives, Lemma 19.13.4). However, since Rf∗ is a right adjoint by Lemma 21.19.1
this follows formally (see Categories, Lemma 4.24.4). Caution: Note that we cannot
apply Categories, Lemma 4.24.4 directly as R limKn is not a limit in D(O). �

21.22. Producing K-injective resolutions

First a technical lemma about cohomology sheaves of termwise limits of inverse
systems of complexes of modules.

Lemma 21.22.1. Let (C,O) be a ringed site. Let (F•n) be an inverse system of
complexes of O-modules. Let m ∈ Z. Suppose given B ⊂ Ob(C) and an integer n0

such that

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groups Fm−2
n (U) and Fm−1

n (U) have vanishing
R1 lim (for example these have the Mittag-Leffler property),

(b) the system of abelian groups Hm−1(F•n(U)) has vanishing R1 lim (for
example it has the Mittag-Leffler property), and

(c) we have Hm(F•n(U)) = Hm(F•n0
(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•n) → Hm(F•n0
) are isomorphisms of sheaves

where F• = limF•n be the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 15.61.2 to conclude that

Hm(F•(U)) = limHm(F•n(U))

http://stacks.math.columbia.edu/tag/08CT
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By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•n(U))

for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. �

The following lemma computes the cohomology sheaves of the derived limit in a
special case.

Lemma 21.22.2. Let (C,O) be a ringed site. Let (Kn) be an inverse system of
objects of D(O). Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) Kn is an object of D−(O) for all n,
(2) for q ∈ Z there exists n(q) such that Hq(Kn+1)→ Hq(Kn) is an isomor-

phism for n ≥ n(p),
(3) every object of C has a covering whose members are elements of B,
(4) for every U ∈ B we have Hp(U,Hq(Kn)) = 0 for p > d and all q.

Then we have Hm(R limKn) = limHm(Kn) for all m ∈ Z.

Proof. Set K = R limKn. Let U ∈ B. For each n there is a spectral sequence

Hp(U,Hq(Kn))⇒ Hp+q(U,Kn)

which converges as Kn is bounded below, see Derived Categories, Lemma 13.21.3.
If we fix m ∈ Z, then we see from our assumption (4) that only Hp(U,Hq(Kn))
contribute to Hm(U,Kn) for 0 ≤ p ≤ d and m − d ≤ q ≤ m. By assumption
(2) this implies that Hm(U,Kn+1) → Hm(U,Kn) is an isomorphism as soon as
n ≥ maxn(m), . . . , n(m− d). The functor RΓ(U,−) commutes with derived limits
by Injectives, Lemma 19.13.6. Thus we have

Hm(U,K) = Hm(R limRΓ(U,Kn))

On the other hand we have just seen that the complexes RΓ(U,Kn) have eventually
constant cohomology groups. Thus by More on Algebra, Remark 15.61.16 we find
that Hm(U,K) is equal to Hm(U,Kn) for all n � 0 for some bound independent
of U ∈ B. Pick such an n. Finally, recall that Hm(K) is the sheafification of
the presheaf U 7→ Hm(U,K) and Hm(Kn) is the sheafification of the presheaf
U 7→ Hm(U,Kn). On the elements of B these presheaves have the same values.
Therefore assumption (3) guarantees that the sheafifications are the same too. The
lemma follows. �

Let (C,O) be a ringed site. Let F• be a complex of O-modules. The category
Mod(O) has enough injectives, hence we can use Derived Categories, Lemma 13.28.3
produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•2 // I•1

in the category of complexes of O-modules such that

(1) the vertical arrows are quasi-isomorphisms,
(2) I•n is a bounded below complex of injectives,

http://stacks.math.columbia.edu/tag/0A08
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(3) the arrows I•n+1 → I•n are termwise split surjections.

The category ofO-modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•n. By Derived Categories, Lem-
mas 13.29.4 and 13.29.7 this is a K-injective complex. In general the canonical
map

(21.22.2.1) F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 21.22.3. In the situation described above. Denote Hi = Hi(F•) the ith
cohomology sheaf. Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d2.

Then (21.22.2.1) is a quasi-isomorphism.

Proof. Let m ∈ Z. We have to show that the map F• → I• induces an isomor-
phism Hm → Hm(I•). Since I•n is quasi-isomorphic to τ≥−nF• it suffices to show
that Hm(I•)→ Hm(I•n) is an isomorphism for n large enough. To do this we will
verify the hypotheses (1), (2)(a), (2)(b), (2)(c) of Lemma 21.22.1.

Hypothesis (1) is assumption (1) above. Hypothesis (2)(a) follows from the fact
that the maps Ikn+1 → Ikn are split surjections. We will prove hypothesis (2)(b) and
(2)(c) simultaneously by proving that for U ∈ B the system Hm(I•n(U)) becomes
constant for n ≥ −m+d. Namely, recalling that I•n is quasi-isomorphic to τ≥−nF•
we obtain for all n a distinguished triangle

H−n[n]→ I•n → I•n−1 → H−n[n+ 1]

(Derived Categories, Remark 13.12.4) in D(O). By assumption (2) we see that if
m > d− n then

Hm(U,H−n[n]) = 0 and Hm(U,H−n[n+ 1]) = 0.

Observe that Hm(I•n(U)) = Hm(U, I•n) as I•n is a bounded below complex of injec-
tives. Unwinding the long exact sequence of cohomology associated to the distin-
guished triangle above this implies that

Hm(I•n(U))→ Hm(I•n−1(U))

is an isomorphism for m > d− n, i.e., n > d−m and we win. �

Lemma 21.22.4. With assumptions and notation as in Lemma 21.22.3. Let K
denote the object of D(O) represented by the complex F•. Then K = R lim τ≥−nK,
i.e., K is the derived limit of its canonical truncations.

Proof. First proof. Injectives, Lemma 19.13.4 shows that
∏
τ≥−nK is represented

by the complex
∏
I•n. Because the transition maps I•n+1 → I•n are termwise split

surjections, we have a short exact sequence of complexes

0→ I• →
∏
I•n →

∏
I•n → 0

2In fact, analyzing the proof we see that it suffices if there exists a function d : Z→ Z∪{+∞}
such that Hp(U,Hq) = 0 for p > d(q) where q + d(q)→ −∞ as q → −∞
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Since I• represents K by Lemma 21.22.3 the distinguished triangle of the lemma
is the distinguished triangle associated to the short exact sequence above (Derived
Categories, Lemma 13.12.1).

Second proof. Apply Lemma 21.22.2 to see that the cohomology sheaves ofR lim τ≥−nK
are isomorphic to the cohomology sheaves of K. �

Here is another case where we can describe the derived limit.

Lemma 21.22.5. Let (C,O) be a ringed site. Let (Kn) be an inverse system of
objects of D(O). Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z and Rt limHq(Kn) = 0 for t > 0.

Proof. Observe that Kn = R limm τ≥−mKn by Lemma 21.22.4. Let U ∈ B. Then
we get Hq(U,Kn) = Hq(R limmRΓ(U, τ≥−mKn)) because RΓ(U,−) commutes
with derived limits by Injectives, Lemma 19.13.6. For each m condition (2)(a)
imply Hq(U, τ≥−mKn) = H0(U,Hq(τ≥−mKn)) for all q, n by using the spectral
sequence of Derived Categories, Lemma 13.21.3. The spectral sequence converges
because τ≥−mKn is bounded below (and so this argument simplifies considerably
when Kn is bounded below). This value is constant and equal to H0(U,Hq(Kn))
for m > |q|. We conclude that Hq(U,Kn) = H0(U,Hq(Kn)).

Using again that the functor RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))

where the final equality follows from More on Algebra, Remark 15.61.16 and as-
sumption (2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves
Hq(Kn) over U . Since limHq(Kn) is a sheaf we find using assumption (1) that
Hq(K), which is the sheafification of the presheaf U 7→ Hq(U,K), is equal to
limHq(Kn). This proves the first statement. Applying this to the inverse system
(Hq(Kn)[0]) the second assertion follows also. �

The construction above can be used in the following setting. Let C be a category.
Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the structure of a site. Denote τ
the topology corresponding to Cov(C) and τ ′ the topology corresponding to Cov′(C).
Then the identity functor on C defines a morphism of sites

ε : Cτ −→ Cτ ′

where ε∗ is the identity functor on underlying presheaves and where ε−1 is the τ -
sheafification of a τ ′-sheaf (hence clearly exact). Let O be a sheaf of rings for the
τ -topology. Then O is also a sheaf for the τ ′-topology and ε becomes a morphism
of ringed sites

ε : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)
In this situation we can sometimes point out subcategories of D(Oτ ) and D(Oτ ′)
which are identified by the functors ε∗ and Rε∗.

Lemma 21.22.6. With ε : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′) as above. Let B ⊂ Ob(C) be a
subset. Let A ⊂ PMod(O) be a full subcategory. Assume
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(1) every object of A is a sheaf for the τ -topology,
(2) A is a weak Serre subcategory of Mod(Oτ ),
(3) every object of C has a τ ′-covering whose members are elements of B, and
(4) for every U ∈ B we have Hp

τ (U,F) = 0, p > 0 for all F ∈ A.

Then A is a weak Serre subcategory of Mod(Oτ ) and there is an equivalence of
triangulated categories DA(Oτ ) = DA(Oτ ′) given by ε∗ and Rε∗.

Proof. Note that for A ∈ A we can think of A as a sheaf in either topology and
(abusing notation) that ε∗A = A and ε∗A = A. Consider an exact sequence

A0 → A1 → A2 → A3 → A4

in Mod(Oτ ′) with A0, A1, A3, A4 in A. We have to show that A2 is an element of
A, see Homology, Definition 12.9.1. Apply the exact functor ε∗ = ε−1 to conclude
that ε∗A2 is an object of A. Consider the map of sequences

A0
//

��

A1
//

��

A2
//

��

A3
//

��

A4

��
A0

// A1
// ε∗ε∗A2

// A3
// A4

to conclude that A2 = ε∗ε
∗A2 is an object of A. At this point it makes sense to

talk about the derived categories DA(Oτ ) and DA(Oτ ′), see Derived Categories,
Section 13.13.

Since ε∗ is exact and preservesA, it is clear that we obtain a functor ε∗ : DA(Oτ ′)→
DA(Oτ ). We claim that Rε∗ is a quasi-inverse. Namely, let F• be an object of
DA(Oτ ). Construct a map F• → I• = lim I•n as in (21.22.2.1). By Lemma 21.22.3
and assumption (4) we see that F• → I• is a quasi-isomorphism. Then

Rε∗F• = ε∗I• = limn ε∗I•n
For every U ∈ B we have

Hm(ε∗I•n(U)) = Hm(I•n(U)) =

{
Hm(F•)(U) if m ≥ −n

0 if m < n

by the assumed vanishing of (4), the spectral sequence Derived Categories, Lemma
13.21.3, and the fact that τ≥−nF• → I•n is a quasi-isomorphism. The maps
ε∗I•n+1 → ε∗I•n are termwise split surjections as ε∗ is a functor. Hence we can
apply Homology, Lemma 12.27.7 to the sequence of complexes

limn ε∗Im−2
n (U)→ limn ε∗Im−1

n (U)→ limn ε∗Imn (U)→ limn ε∗Im+1
n (U)

to conclude that Hm(ε∗I•(U)) = Hm(F•)(U) for U ∈ B. Sheafifying and using
property (3) this proves that Hm(ε∗I•) is isomorphic to ε∗H

m(F•), i.e., is an object
of A. Thus Rε∗ indeed gives rise to a functor

Rε∗ : DA(Oτ ) −→ DA(Oτ ′)

For F• ∈ DA(Oτ ) the adjunction map ε∗Rε∗F• → F• is a quasi-isomorphism
as we’ve seen above that the cohomology sheaves of Rε∗F• are ε∗H

m(F•). For
G• ∈ DA(Oτ ′) the adjunction map G• → Rε∗ε

∗G• is a quasi-isomorphism for the
same reason, i.e., because the cohomology sheaves of Rε∗ε

∗G• are isomorphic to
ε∗H

m(ε∗G) = Hm(G•). �
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21.23. Cohomology on Hausdorff and locally quasi-compact spaces

We continue our convention to say “Hausdorff and locally quasi-compact” instead
of saying “locally compact” as is often done in the literature. Let LC denote the
category whose objects are Hausdorff and locally quasi-compact topological spaces
and whose morphisms are continuous maps.

Lemma 21.23.1. The category LC has fibre products and a final object and hence
has arbitrary finite limits. Given morphisms X → Z and Y → Z in LC with X
and Y quasi-compact, then X ×Z Y is quasi-compact.

Proof. The final object is the singleton space. Given morphisms X → Z and
Y → Z of LC the fibre product X ×Z Y is a subspace of X × Y . Hence X ×Z Y is
Hausdorff as X × Y is Hausdorff by Topology, Section 5.3.

If X and Y are quasi-compact, then X×Y is quasi-compact by Topology, Theorem
5.13.4. Since X ×Z Y is a closed subset of X ×Y (Topology, Lemma 5.3.4) we find
that X ×Z Y is quasi-compact by Topology, Lemma 5.11.3.

Finally, returning to the general case, if x ∈ X and y ∈ Y we can pick quasi-
compact neighbourhoods x ∈ E ⊂ X and y ∈ F ⊂ Y and we find that E ×Z F is
a quasi-compact neighbourhood of (x, y) by the result above. Thus X ×Z Y is an
object of LC by Topology, Lemma 5.12.2. �

We can endow LC with a stronger topology than the usual one.

Definition 21.23.2. Let {fi : Xi → X} be a family of morphisms with fixed target
in the category LC. We say this family is a qc covering3 if for every x ∈ X there
exist i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a

neighbourhood of x.

Observe that an open covering X =
⋃
Ui of an object of LC gives a qc covering

{Ui → X} because X is locally quasi-compact. We start with the obligatory lemma.

Lemma 21.23.3. Let X be a Hausdorff and locally quasi-compact space, in other
words, an object of LC.

(1) If X ′ → X is an isomorphism in LC then {X ′ → X} is a qc covering.
(2) If {fi : Xi → X}i∈I is a qc covering and for each i we have a qc covering
{gij : Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a qc covering.

(3) If {Xi → X}i∈I is a qc covering and X ′ → X is a morphism of LC then
{X ′ ×X Xi → X ′}i∈I is a qc covering.

Proof. Part (1) holds by the remark above that open coverings are qc coverings.

Proof of (2). Let x ∈ X. Choose i1, . . . , in ∈ I and Ea ⊂ Xia quasi-compact such
that

⋃
fia(Ea) is a neighbourhood of x. For every e ∈ Ea we can find a finite

subset Je ⊂ Jia and quasi-compact Fe,j ⊂ Xij , j ∈ Je such that
⋃
gij(Fe,j) is a

neighbourhood of e. Since Ea is quasi-compact we find a finite collection e1, . . . , ema
such that

Ea ⊂
⋃

k=1,...,ma

⋃
j∈Jek

gij(Fek,j)

Then we find that ⋃
a=1,...,n

⋃
k=1,...,ma

⋃
j∈Jek

fi(gij(Fek,j))

3This is nonstandard notation. We chose it to remind the reader of fpqc coverings of schemes.
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is a neighbourhood of x.

Proof of (3). Let x′ ∈ X ′ be a point. Let x ∈ X be its image. Choose i1, . . . , in ∈ I
and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a neighbourhood of

x. Choose a quasi-compact neighbourhood F ⊂ X ′ of x′ which maps into the
quasi-compact neighbourhood

⋃
fij (Ej) of x. Then F ×X Ej ⊂ X ′ ×X Xij is a

quasi-compact subset and F is the image of the map
∐
F ×X Ej → F . Hence the

base change is a qc covering and the proof is finished. �

Besides some set theoretic issues the lemma above shows that LC with the collection
of qc coverings forms a site. We will denote this site (suitably modified to overcome
the set theoretical issues) LCqc.

Remark 21.23.4 (Set theoretic issues). The category LC is a “big” category as
its objects form a proper class. Similarly, the coverings form a proper class. Let
us define the size of a topological space X to be the cardinality of the set of points
of X. Choose a function Bound on cardinals, for example as in Sets, Equation
(3.9.1.1). Finally, let S0 be an initial set of objects objects of LC, for example
S0 = {(R, euclidean topology)}. Exactly as in Sets, Lemma 3.9.2 we can choose
a limit ordinal α such that LCα = LC ∩ Vα contains S0 and is preserved under
all countable limits and colimits which exist in LC. Moreover, if X ∈ LCα and if
Y ∈ LC and size(Y ) ≤ Bound(size(X)), then Y is isomorphic to an object of LCα.
Next, we apply Sets, Lemma 3.11.1 to choose set Cov of qc covering on LCα such
that every qc covering in LCα is combinatorially equivalent to a covering this set.
In this way we obtain a site (LCα,Cov) which we will denote LCqc.

There is a second topology on the site LCqc of Remark 21.23.4. Namely, given an
object X we can consider all coverings {Xi → X} of LCqc such that Xi → X is an
open immersion. We denote this site LCZar. The identity functor LCZar → LCqc
is continuous and defines a morphism of sites

ε : LCqc → LCZar

by an application of Sites, Proposition 7.15.6.

Consider an object X of the site LCqc constructed in Remark 21.23.4. (Translation
for those not worried about set theoretic issues: Let X be a Hausdorff and locally
quasi-compact space.) Let XZar be the site whose objects are opens of X, see Sites,
Example 7.6.4. There is a morphism of sites

π : LCZar/X → XZar

given by the continuous functor

XZar −→ LCZar/X, U 7−→ U

Namely, XZar has fibre products and a final object and the functor above commutes
with these and Sites, Proposition 7.15.6 applies.

Lemma 21.23.5. Let X be an object of LCqc. Let F be a sheaf on XZar. Then
the sheaf π−1F on LCZar/X is given by the rule

π−1F(Y ) = Γ(YZar, f
−1F)

for f : Y → X in LCqc. Moreover π−1F is a sheaf for the qc topology, i.e., the
sheaf ε−1π−1F on LCqc is given by the same formula.
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Proof. Of course the pullback f−1 on the right hand side indicates usual pullback
of sheaves on topological spaces (Sites, Example 7.15.2). The equality of the lemma
follows directly from the defintions.

Let V = {gi : Yi → Y }i∈I be a covering of LCqc/X. It suffices to show that
π−1F(Y ) → H0(V, π−1F) is an isomorphism, see Sites, Section 7.10. We first
point out that the map is injective as a qc covering is surjective and we can detect
equality of sections at stalks (use Sheaves, Lemmas 6.11.1 and 6.21.4). Thus we
see that π−1F is a separated presheaf on LCqc hence it suffices to show that any
element (si) ∈ H0(V, π−1F) maps to an element in the image of π−1F(Y ) after
replacing V by a refinement (Sites, Theorem 7.10.10).

Observe that π−1F|Yi,Zar is the pullback of f−1F = π−1F|YZar under the continu-
ous map gi : Yi → Y . Thus we can choose an open covering Yi =

⋃
Vij such that

for each j there is an open Wij ⊂ Y and a section tij ∈ π−1F(Wij) such that s|Uij
is the pullback of tij . In other words, after refining the covering {Yi → Y } we may
assume there are opens Wi ⊂ Y such that Yi → Y factors through Wi and sections
ti of π−1F over Wi which restrict to the given sections si. Moreover, if y ∈ Y is in
the image of both Yi → Y and Yj → Y , then the images ti,y and tj,y in the stalk
f−1Fy agree (because si and sj agree over Yi ×Y Yj). Thus for y ∈ Y there is a
well defined element ty of f−1Fy agreeing with ti,y whenever y ∈ Yi. We will show
that the element (ty) comes from a global section of f−1F over Y which will finish
the proof of the lemma.

It suffices to show that this is true locally on Y , see Sheaves, Section 6.17. Let
y0 ∈ Y . Pick i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Yij such that

⋃
gij (Ej)

is a neighbourhood of y0. Then we can find an open neighbourhood V ⊂ Y of y0

contained in Wi1 ∩ . . .∩Win such that the sections tij |V , j = 1, . . . , n agree. Hence
we see that (ty)y∈V comes from this section and the proof is finished. �

Lemma 21.23.6. Let X be an object of LCqc. Let F be an abelian sheaf on XZar.
Then we have

Hq(XZar,F) = Hq(LCqc/X, ε
−1π−1F)

In particular, if A is an abelian group, then we have Hq(X,A) = Hq(LCqc/X,A).

Proof. The statement is more precisely that the canonical map

Hq(XZar,F) −→ Hq(LCqc/X, ε
−1π−1F)

is an isomorphism for all q. The result holds for q = 0 by Lemma 21.23.5. We
argue by induction on q. Pick q0 > 0. We will assume the result holds for q < q0

and prove it for q0.

Injective. Let ξ ∈ Hq0(X,F). We may choose an open covering U : X =
⋃
Ui such

that ξ|Ui is zero for all i (Cohomology, Lemma 20.7.2). Then U is also a covering
for the qc topology. Hence we obtain a map

Ep,q2 = Ȟp(U , Hq(F)) −→ Ep,q2 = Ȟp(U , Hq(ε−1π−1F))

between the spectral sequences of Cohomology, Lemma 20.12.4 and Lemma 21.11.6.
Since the maps Hq(F)(Ui0...ip) → Hq(ε−1π−1F))(Ui0...ip) are isomorphisms for
q < q0 we see that

Ker(Hq0(X,F)→
∏

Hq0(Ui,F))

http://stacks.math.columbia.edu/tag/09X4
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maps isomorphically to the corresponding subgroup of Hq0(LCqc/X, ε
−1π−1F). In

this way we conclude that our map is injective for q0.

Surjective. Let ξ ∈ Hq0(LCqc/X, ε
−1π−1F). If for every x ∈ X we can find a

neighbourhood x ∈ U ⊂ X such that ξ|U = 0, then we can use the Čech complex
argument of the previous paragraph to conclude that ξ is in the image of our
map. Fix x ∈ X. We can find a qc covering {fi : Xi → X}i∈I such that ξ|Xi is
zero (Lemma 21.8.3). Pick i1, . . . , in ∈ I and Ej ⊂ Xij such that

⋃
fij (Ej) is a

neighbourhood of x. We may replace X by
⋃
fij (Ej) and set Y =

∐
Eij . Then

Y → X is a surjective continuous map of Hausdorff and quasi-compact topological
spaces, ξ ∈ Hq0(LCqc/X, ε

−1π−1F), and ξ|Y = 0. Set Yp = Y ×X . . .×X Y (p+ 1-
factors) and denote Fp the pullback of F to Yp. Then the spectral sequence

Ep,q1 = Čp({Y → X}, Hq(ε−1π−1F))

of Lemma 21.11.6 has rows for q < q0 which are (by induction) the complexes

Hq(Y0,F0)→ Hq(Y1,F1)→ Hq(Y2,F2)→ . . .

If these complexes were exact in degree p = q0 − q, then the spectral sequence
would collapse and ξ would be zero. This is not true in general, but we don’t need
to show ξ is zero, we just need to show ξ becomes zero after restricting X to a
neighbourhood of x. Thus it suffices to show that the complexes

colimx∈U⊂X (Hq(Y0 ×X U,F0)→ Hq(Y1 ×X U,F1)→ Hq(Y2 ×X U,F2)→ . . .)

are exact (some details omitted). By the proper base change theorem in topology
(for example Cohomology, Lemma 20.19.1) the colimit is equal to

Hq(Yx,Fx)→ Hq(Y 2
x ,Fx)→ Hq(Y 3

x ,Fx)→ . . .

where Yx ⊂ Y is the fibre of Y → X over x and where Fx denotes the constant sheaf
with value Fx. But the simplicial topological space (Y nx ) is homotopy equivalent to
the constant simplicial space on the singleton {x}, see Simplicial, Lemma 14.25.9.
Since Hq(−,Fx) is a functor on the category of topological spaces, we conclude
that the cosimplicial abelian group with values Hq(Y nx ,Fx) is homotopy equivalent
to the constant cosimplicial abelian group with value

Hq({x},Fx) =

{
Fx if q = 0
0 else

As the complex associated to a constant cosimplicial group has the required exact-
ness properties this finishes the proof of the lemma. �

Lemma 21.23.7. Let f : X → Y be a morphism of LC. If f is proper and
surjective, then {f : X → Y } is a qc covering.

Proof. Let y ∈ Y be a point. For each x ∈ Xy choose a quasi-compact neigh-
bourhood Ex ⊂ X. Choose x ∈ Ux ⊂ Ex open. Since f is proper the fibre Xy is
quasi-compact and we find x1, . . . , xn ∈ Xy such that Xy ⊂ Ux1 ∪ . . . ∪ Uxn . We
claim that f(Ex1

) ∪ . . . ∪ f(Exn) is a neighbourhood of y. Namely, as f is closed
(Topology, Theorem 5.16.5) we see that Z = f(X \ Ux1

∪ . . . ∪ Uxn) is a closed
subset of Y not containing y. As f is surjective we see that Y \ Z is contained in
f(Ex1) ∪ . . . ∪ f(Exn) as desired. �
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21.24. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering
the Ext functors. For any pair of complexes G•,F• of complexes of modules on a
ringed site (C,O) we denote

ExtnO(G•,F•) = HomD(O)(G•,F•[n])

according to our general conventions in Derived Categories, Section 13.27.

Example 21.24.1. Let (C,O) be a ringed site. Let K• be a bounded above complex
of O-modules. Let F be an O-module. Then there is a spectral sequence with E2-
page

Ei,j2 = ExtiO(H−j(K•),F)⇒ Exti+jO (K•,F)

and another spectral sequence with E1-page

Ei,j1 = ExtjO(K−i,F)⇒ Exti+jO (K•,F).

To construct these spectral sequences choose an injective resolution F → I• and
consider the two spectral sequences coming from the double complex HomO(K•, I•),
see Homology, Section 12.22.

21.25. Hom complexes

Let (C,O) be a ringed site. Let L• and M• be two complexes of O-modules. We
construct a complex of O-modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomO(L−q,Mp)

It is a good idea to think of Homn as the sheaf of O-modules of all O-linear maps
from L• to M• (viewed as graded O-modules) which are homogenous of degree n.
In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
O(L•,M•). We omit the verification that d2 = 0. This construc-

tion is a special case of Differential Graded Algebra, Example 22.19.6. It follows
immediately from the construction that we have

(21.25.0.1) Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])

for all n ∈ Z and every U ∈ Ob(C). Similarly, we have

(21.25.0.2) Hn(Γ(C,Hom•(L•,M•))) = HomK(O)(L•,M•[n])

for the complex of global sections.

Lemma 21.25.1. Let (C,O) be a ringed site. Given complexes K•,L•,M• of
O-modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗O L•),M•)

of complexes of O-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.1. �
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Lemma 21.25.2. Let (C,O) be a ringed site. Given complexes K•,L•,M• of
O-modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗O Hom•(K•,L•)) −→ Hom•(K•,M•)
of complexes of O-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.2. �

Lemma 21.25.3. Let (C,O) be a ringed site. Given complexes K•,L•,M• of
O-modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗O K•) −→ Hom•(Hom•(K•,L•),M•)
of complexes of O-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.3. �

Lemma 21.25.4. Let (C,O) be a ringed site. Given complexes K•,L•,M• of
O-modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗O L•))
of complexes of O-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.54.5. �

Lemma 21.25.5. Let (C,O) be a ringed site. Let I• be a K-injective complex of
O-modules. Let L• be a complex of O-modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ∈ Ob(C). Similarly, H0(Γ(C,Hom•(L•, I•))) = HomD(OU )(L,M).

Proof. We have

H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (21.25.0.1). The second equality is true because I•|U is K-
injective by Lemma 21.20.1. The proof of the last equation is similar except that
it uses (21.25.0.2). �

Lemma 21.25.6. Let (C,O) be a ringed site. Let (I ′)• → I• be a quasi-isomorphism
of K-injective complexes of O-modules. Let (L′)• → L• be a quasi-isomorphism of
complexes of O-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

Proof. Let M be the object of D(O) represented by I• and (I ′)•. Let L be the
object of D(O) represented by L• and (L′)•. By Lemma 21.25.5 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )
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Thus the map is a quasi-isomorphism. �

Lemma 21.25.7. Let (C,O) be a ringed site. Let I• be a K-injective complex of
O-modules. Let L• be a K-flat complex of O-modules. Then Hom•(L•, I•) is a
K-injective complex of O-modules.

Proof. Namely, if K• is an acyclic complex of O-modules, then

HomK(O)(K•,Hom•(L•, I•)) = H0(Γ(C,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(C,Hom•(Tot(K• ⊗O L•), I•)))
= HomK(O)(Tot(K• ⊗O L•), I•)
= 0

The first equality by (21.25.0.2). The second equality by Lemma 21.25.1. The third
equality by (21.25.0.2). The final equality because Tot(K•⊗OL•) is acyclic because
L• is K-flat (Definition 21.17.2) and because I• is K-injective. �

21.26. Internal hom in the derived category

Let (C,O) be a ringed site. Let L,M be objects of D(O). We would like to construct
an object RHom(L,M) of D(O) such that for every third object K of D(O) there
exists a canonical bijection

(21.26.0.1) HomD(O)(K,RHom(L,M)) = HomD(O)(K ⊗L
O L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 4.3.5).

To construct such an object, choose a K-injective complex of O-modules I• repre-
senting M and any complex of O-modules L• representing L. Then we set Then
we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of O-modules constructed in Section 21.25.
This is well defined by Lemma 21.25.6. We get a functor

D(O)opp ×D(O) −→ D(O), (K,L) 7−→ RHom(K,L)

As a prelude to proving (21.26.0.1) we compute the cohomology groups ofRHom(K,L).

Lemma 21.26.1. Let (C,O) be a ringed site. Let K,L be objects of D(O). For
every object U of C we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )

and we have H0(C, RHom(L,M) = HomD(O)(L,M).

Proof. Choose a K-injective complex I• of O-modules representing M and a K-flat
complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma 21.25.7.
Hence we can compute cohomology over U by simply taking sections over U and
the result follows from Lemma 21.25.5. �

Lemma 21.26.2. Let (C,O) be a ringed site. Let K,L,M be objects of D(O).
With the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
O L,M)

in D(O) functorial in K,L,M which recovers (21.26.0.1) on taking H0(C,−).
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Proof. Choose a K-injective complex I• representing M and a K-flat complex of
O-modules L• representing L. Let H• be the complex described above. For any
complex of O-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗O L•), I•)

by Lemma 21.25.1. Note that the left hand side representsRHom(K,RHom(L,M))
(use Lemma 21.25.7) and that the right hand side represents RHom(K ⊗L

O L,M).
This proves the displayed formula of the lemma. Taking global sections and using
Lemma 21.26.1 we obtain (21.26.0.1). �

Lemma 21.26.3. Let (C,O) be a ringed site. Let K,L be objects of D(O). The
construction of RHom(K,L) commutes with restrictions, i.e., for every object U
of C we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 21.20.1. �

Lemma 21.26.4. Let (C,O) be a ringed site. The bifunctor RHom(−,−) trans-
forms distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. �

Lemma 21.26.5. Let (C,O) be a ringed site. Let K,L,M be objects of D(O).
There is a canonical morphism

RHom(L,M)⊗L
O K −→ RHom(RHom(K,L),M)

in D(O) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and a K-flat complex K• representing K. The map is defined
using the map

Tot(Hom•(J •, I•)⊗O K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 21.25.3. By our particular choice of complexes the left hand side repre-
sentsRHom(L,M)⊗L

OK and the right hand side representsRHom(RHom(K,L),M).
We omit the proof that this is functorial in all three objects of D(O). �

Lemma 21.26.6. Let (C,O) be a ringed site. Given K,L,M in D(O) there is a
canonical morphism

RHom(L,M)⊗L
O RHom(K,L) −→ RHom(K,M)

in D(O).
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Proof. In general (without suitable finiteness conditions) we do not see how to get
this map from Lemma 21.25.2. Instead, we use the maps

RHom(L,M)⊗L
O RHom(K,L)⊗L

O K

��
RHom(RHom(K,L),M)⊗L

O RHom(K,L)

��
M

gotten by applying Lemma 21.26.5 twice. Finally, we use Lemma 21.26.2 to trans-
late the composition

RHom(L,M)⊗L
O RHom(K,L)⊗L

O K −→M

into a map as in the statement of the lemma. �

Lemma 21.26.7. Let (C,O) be a ringed site. Given K,L in D(O) there is a
canonical morphism

K −→ RHom(L,K ⊗L
O L)

in D(O) functorial in both K and L.

Proof. Choose K-flat complexes K• and L• represeting K and L. Choose a K-
injective complex I• and a quasi-isomorphism Tot(K• ⊗O L•) → I•. Then we
use

K• → Hom•(L•,Tot(K• ⊗O L•))→ Hom•(L•, I•)
where the first map comes from Lemma 21.25.4. �

Lemma 21.26.8. Let (C,O) be a ringed site. Let L be an object of D(O). Set
L∧ = RHom(L,O). For M in D(O) there is a canonical map

(21.26.8.1) L∧ ⊗L
O M −→ RHom(L,M)

which induces a canonical map

H0(C, L∧ ⊗L
O M) −→ HomD(O)(L,M)

functorial in M in D(O).

Proof. The map (21.26.8.1) is a special case of Lemma 21.26.6 using the identifi-
cation M = RHom(O,M). �

Remark 21.26.9. Let h : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed
topoi. Let K,L be objects of D(O′). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(O). Namely, by (21.26.0.1) proved in Lemma 21.26.2 such a map is the same
thing as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 21.18.4 hence it
suffices to construct a canonical map

RHom(K,L)⊗L K −→ L.
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For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (21.26.0.1).

Remark 21.26.10. Suppose that

(Sh(C′),OC′)
h
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′)

g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K,L be objects of D(OC). We claim
there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OD′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)

→ Lh∗RHom(K,L)

→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 21.26.9.

21.27. Derived lower shriek

In this section we study some situations where besides Lf∗ and Rf∗ there also a
derived functor Lf!.

Lemma 21.27.1. Let u : C → D be a continuous and cocontinuous functor of sites
which induces a morphism of topoi g : Sh(C)→ Sh(D). Let OD be a sheaf of rings
and set OC = g−1OD. The functor g! : Mod(OC) → Mod(OD) (see Modules on
Sites, Lemma 18.40.1) has a left derived functor

Lg! : D(OC) −→ D(OD)

which is left adjoint to g∗. Moreover, for U ∈ Ob(C) we have

Lg!(jU !OU ) = g!jU !OU = ju(U)!Ou(U).

where jU ! and ju(U)! are extension by zero associated to the localization morphism
jU : C/U → C and ju(U) : D/u(U)→ D.

Proof. We are going to use Derived Categories, Proposition 13.28.2 to construct
Lg!. To do this we have to verify assumptions (1), (2), (3), (4), and (5) of that
proposition. First, since g! is a left adjoint we see that it is right exact and commutes
with all colimits, so (5) holds. Conditions (3) and (4) hold because the category of
modules on a ringed site is a Grothendieck abelian category. Let P ⊂ Ob(Mod(OC))
be the collection ofOC-modules which are direct sums of modules of the form jU !OU .
Note that g!jU !OU = ju(U)!Ou(U), see proof of Modules on Sites, Lemma 18.40.1.
Every OC-module is a quotient of an object of P, see Modules on Sites, Lemma
18.28.6. Thus (1) holds. Finally, we have to prove (2). Let K• be a bounded above

http://stacks.math.columbia.edu/tag/08JG
http://stacks.math.columbia.edu/tag/07AC
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acyclic complex of OC-modules with Kn ∈ P for all n. We have to show that g!K•
is exact. To do this it suffices to show, for every injective OD-module I that

HomD(OD)(g!K•, I[n]) = 0

for all n ∈ Z. Since I is injective we have

HomD(OD)(g!K•, I[n]) = HomK(OD)(g!K•, I[n])

= Hn(HomOD (g!K•, I))

= Hn(HomOC (K•, g−1I))

the last equality by the adjointness of g! and g−1.

The vanishing of this group would be clear if g−1I were an injective OC-module.
But g−1I isn’t necessarily an injective OC-module as g! isn’t exact in general. We
do know that

ExtpOC (jU !OU , g−1I) = Hp(U, g−1I) = 0 for p ≥ 1

Namely, the first equality follows from HomOC (jU !OU ,H) = H(U) and taking de-
rived functors. The vanishing of Hp(U, g−1I) for all U ∈ Ob(C) comes from the
vanishing of all higher Čech cohomology groups Ȟp(U , g−1I) via Lemma 21.11.9.
Namely, for a covering U = {Ui → U}i∈I in C we have Ȟp(U , g−1I) = Ȟp(u(U), I).
Since I is an injective O-module these Čech cohomology groups vanish, see Lemma
21.12.3. Since each K−q is a direct sum of modules of the form jU !OU we see that

ExtpOC (K
−q, g−1I) = 0 for p ≥ 1 and all q

Let us use the spectral sequence (see Example 21.24.1)

Ep,q1 = ExtpOC (K
−q, g−1I)⇒ Extp+qOC (K•, g−1I) = 0.

Note that the spectral sequence abuts to zero as K• is acyclic (hence vanishes in
the derived category, hence produces vanishing ext groups). By the vanishing of
higher exts proved above the only nonzero terms on the E1 page are the terms
E0,q

1 = HomOC (K−q, g−1I). We conclude that the complex HomOC (K•, g−1I) is
acyclic as desired.

Thus the left derived functor Lg! exists. We still have to show that it is left adjoint
to g−1 = g∗ = Rg∗ = Lg∗, i.e., that we have

(21.27.1.1) HomD(OC)(H•, g−1E•) = HomD(OD)(Lg!H•, E•)
This is actually a formal consequence of the discussion above. Choose a quasi-
isomorphism K• → H• such that K• computes Lg!. Moreover, choose a quasi-
isomorphism E• → I• into a K-injective complex of OD-modules I•. Then the
RHS of (21.27.1.1) is

HomK(OD)(g!K•, I•)
On the other hand, by the definition of morphisms in the derived category the LHS
of (21.27.1.1) is

HomD(OC)(K•, g−1I•) = colims:L•→K• HomK(OC)(L•, g−1I•)
= colims:L•→K• HomK(OD)(g!L•, I•)

by the adjointness of g! and g∗ on the level of sheaves of modules. The colimit is
over all quasi-isomorphisms with target K•. Since for every complex L• there exists
a quasi-isomorphism (K′)• → L• such that (K′)• computes Lg! we see that we may
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as well take the colimit over quasi-isomorphisms of the form s : (K′)• → K• where
(K′)• computes Lg!. In this case

HomK(OD)(g!K•, I•) −→ HomK(OD)(g!(K′)•, I•)

is an isomorphism as g!(K′)• → g!K• is a quasi-isomorphism and I• is K-injective.
This finishes the proof. �

Remark 21.27.2. Warning! Let u : C → D, g, OD, and OC be as in Lemma
21.27.1. In general it is not the case that the diagram

D(OC)
Lg!

//

forget

��

D(OD)

forget

��
D(C)

LgAb! // D(D)

commutes where the functor LgAb! is the one constructed in Lemma 21.27.1 but
using the constant sheaf Z as the structure sheaf on both C and D. In general it
isn’t even the case that g! = gAb! (see Modules on Sites, Remark 18.40.2), but this
phenomenon can occur even if g! = gAb! ! Namely, the construction of Lg! in the
proof of Lemma 21.27.1 shows that Lg! agrees with LgAb

! if and only if the canonical
maps

LgAb! jU !OU −→ ju(U)!Ou(U)

are isomorphisms in D(D) for all objects U in C. In general all we can say is that
there exists a natural transformation

LgAb! ◦ forget −→ forget ◦ Lg!

21.28. Derived lower shriek for fibred categories

In this section we work out some special cases of the situation discussed in Section
21.27. We make sure that we have equality between lower shriek on modules and
sheaves of abelian groups. We encourage the reader to skip this section on a first
reading.

Situation 21.28.1. Here (D,OD) be a ringed site and p : C → D is a fibred
category. We endow C with the topology inherited from D (Stacks, Section 8.10).
We denote π : Sh(C) → Sh(D) the morphism of topoi associated to p (Stacks,
Lemma 8.10.3). We set OC = π−1OD so that we obtain a morphism of ringed topoi

π : (Sh(C),OC) −→ (Sh(D),OD)

Lemma 21.28.2. Assumptions and notation as in Situation 21.28.1. For U ∈
Ob(C) consider the induced morphism of topoi

πU : Sh(C/U) −→ Sh(D/p(U))

Then there exists a morphism of topoi

σ : Sh(D/p(U))→ Sh(C/U)

such that πU ◦ σ = id and σ−1 = πU,∗.

http://stacks.math.columbia.edu/tag/07AE
http://stacks.math.columbia.edu/tag/08P8
http://stacks.math.columbia.edu/tag/08P9
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Proof. Observe that πU is the restriction of π to the localizations, see Sites, Lemma
7.27.4. For an object V → p(U) of D/p(U) denote V ×p(U) U → U the strongly
cartesian morphism of C over D which exists as p is a fibred category. The functor

v : D/p(U)→ C/U, V/p(U) 7→ V ×p(U) U/U

is continuous by the definition of the topology on C. Moreover, it is a right adjoint
to p by the definition of strongly cartesian morphisms. Hence we are in the situation
discussed in Sites, Section 7.21 and we see that the sheaf πU,∗F is equal to V 7→
F(V ×p(U) U) (see especially Sites, Lemma 7.21.2).

But here we have more. Namely, the functor v is also cocontinuous (as all mor-
phisms in coverings of C are strongly cartesian). Hence v defines a morphism σ
as indicated in the lemma. The equality σ−1 = πU,∗ is immediate from the def-

inition. Since π−1
U G is given by the rule U ′/U 7→ G(p(U ′)/p(U)) it follows that

σ−1 ◦ π−1
U = id which proves the equality πU ◦ σ = id. �

Situation 21.28.3. Let (D,OD) be a ringed site. Let u : C′ → C be a 1-morphism
of fibred categories over D (Categories, Definition 4.31.9). Endow C and C′ with
their inherited topologies (Stacks, Definition 8.10.2) and let π : Sh(C) → Sh(D),
π′ : Sh(C′) → Sh(D), and g : Sh(C′) → Sh(C) be the corresponding morphisms of
topoi (Stacks, Lemma 8.10.3). Set OC = π−1OD and OC′ = (π′)−1OD. Observe
that g−1OC = OC′ so that

(Sh(C′),OC′)

π′ ''

g
// (Sh(C),OC)

π
ww

(Sh(D),OD)

is a commutative diagram of morphisms of ringed topoi.

Lemma 21.28.4. Assumptions and notation as in Situation 21.28.3. For U ′ ∈
Ob(C′) set U = u(U ′) and V = p′(U ′) and consider the induced morphisms of
ringed topoi

(Sh(C′/U ′),OU ′)

π′
U′ ))

g′
// (Sh(C),OU )

πUvv
(Sh(D/V ),OV )

Then there exists a morphism of topoi

σ′ : Sh(D/V )→ Sh(C′/U ′),
such that setting σ = g′ ◦ σ′ we have π′U ′ ◦ σ′ = id, πU ◦ σ = id, (σ′)−1 = π′U ′,∗, and

σ−1 = πU,∗.

Proof. Let v′ : D/V → C′/U ′ be the functor constructed in the proof of Lemma
21.28.2 starting with p′ : C′ → D′ and the object U ′. Since u is a 1-morphism of
fibred categories over D it transforms strongly cartesian morphisms into strongly
cartesian morphisms, hence the functor v = u ◦ v′ is the functor of the proof of
Lemma 21.28.2 relative to p : C → D and U . Thus our lemma follows from that
lemma. �

Lemma 21.28.5. Assumption and notation as in Situation 21.28.3.

http://stacks.math.columbia.edu/tag/08PA
http://stacks.math.columbia.edu/tag/08PB
http://stacks.math.columbia.edu/tag/08PC
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(1) There are left adjoints g! : Mod(OC′) → Mod(OC) and gAb
! : Ab(C′) →

Ab(C) to g∗ = g−1 on modules and on abelian sheaves.
(2) The diagram

Mod(OC′)

��

g!

// Mod(OC)

��
Ab(C′)

gAb
! // Ab(C)

commutes.
(3) There are left adjoints Lg! : D(OC′)→ D(OC) and LgAb

! : D(C′)→ D(C)
to g∗ = g−1 on derived categories of modules and abelian sheaves.

(4) The diagram

D(OC′)

��

Lg!

// D(OC)

��
D(C′)

LgAb
! // D(C)

commutes.

Proof. The functor u is continuous and cocontinuous Stacks, Lemma 8.10.3. Hence
the existence of the functors g!, g

Ab
! , Lg!, and LgAb

! can be found in Modules on
Sites, Sections 18.16 and 18.40 and Section 21.27.

To prove (2) it suffices to show that the canonical map

gAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism for all objects U ′ of C′, see Modules on Sites, Remark 18.40.2.
Similarly, to prove (4) it suffices to show that the canonical map

LgAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism in D(C) for all objects U ′ of C′, see Remark 21.27.2. This will
also imply the previous formula hence this is what we will show.

We will use that for a localization morphism j the functors j! and jAb
! agree

(see Modules on Sites, Remark 18.19.5) and that j! is exact (Modules on Sites,
Lemma 18.19.3). Let us adopt the notation of Lemma 21.28.4. Since LgAb

! ◦ jU ′! =
jU ! ◦ L(g′)Ab

! (by commutativity of Sites, Lemma 7.27.4 and uniqueness of adjoint
functors) it suffices to prove that L(g′)Ab

! OU ′ = OU . Using the results of Lemma
21.28.4 we have for any object E of D(C/u(U ′)) the following sequence of equalities

HomD(C/U)(L(g′)Ab
! OU ′ , E) = HomD(C′/U ′)(OU ′ , (g′)−1E)

= HomD(C′/U ′)((π
′
U ′)
−1OV , (g′)−1E)

= HomD(D/V )(OV , Rπ′U ′,∗(g′)−1E)

= HomD(D/V )(OV , (σ′)−1(g′)−1E)

= HomD(D/V )(OV , σ−1E)

= HomD(D/V )(OV , πU,∗E)

= HomD(C/U)(π
−1
U OV , E)

= HomD(C/U)(OU , E)

By Yoneda’s lemma we conclude. �
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Remark 21.28.6. Assumptions and notation as in Situation 21.28.1. Note that
setting C′ = D and u equal to the structure functor of C gives a situation as in
Situation 21.28.3. Hence Lemma 21.28.5 tells us we have functors π!, π

Ab
! , Lπ!, and

LπAb
! such that forget ◦ π! = πAb

! ◦ forget and forget ◦ Lπ! = LπAb
! ◦ forget.

Remark 21.28.7. Assumptions and notation as in Situation 21.28.3. Let F be an
abelian sheaf on C, let F ′ be an abelian sheaf on C′, and let t : F ′ → g−1F be a
map. Then we obtain a canonical map

Lπ′!(F ′) −→ Lπ!(F)

by using the adjoint g!F ′ → F of t, the map Lg!(F ′) → g!F ′, and the equality
Lπ′! = Lπ! ◦ Lg!.

Lemma 21.28.8. Assumptions and notation as in Situation 21.28.1. For F in
Ab(C) the sheaf π!F is the sheaf associated to the presheaf

V 7−→ colimCoppV
F|CV

with restriction maps as indicated in the proof.

Proof. Denote H be the rule of the lemma. For a morphism h : V ′ → V of D
there is a pullback functor h∗ : CV → CV ′ of fibre categories (Categories, Defi-
nition 4.31.6). Moreover for U ∈ Ob(CV ) there is a strongly cartesian morphism
h∗U → U covering h. Restriction along these strongly cartesian morphisms defines
a transformation of functors

F|CV −→ F|CV ′ ◦ h
∗.

Hence a map H(V )→ H(V ′) between colimits, see Categories, Lemma 4.14.7.

To prove the lemma we show that

MorPSh(D)(H,G) = MorSh(C)(F , π−1G)

for every sheaf G on C. An element of the left hand side is a compatible system of
maps F(U) → G(p(U)) for all U in C. Since π−1G(U) = G(p(U)) by our choice of
topology on C we see the same thing is true for the right hand side and we win. �

21.29. Homology on a category

In the case of a category over a point we will baptize the left derived lower shriek
functors the homology functors.

Example 21.29.1 (Category over point). Let C be a category. Endow C with
the chaotic topology (Sites, Example 7.6.6). Thus presheaves and sheaves agree
on C. The functor p : C → ∗ where ∗ is the category with a single object and a
single morphism is cocontinuous and continuous. Let π : Sh(C) → Sh(∗) be the
corresponding morphism of topoi. Let B be a ring. We endow ∗ with the sheaf of
rings B and C with OC = π−1B which we will denote B. In this way

π : (Sh(C), B)→ (∗, B)

is an example of Situation 21.28.1. By Remark 21.28.6 we do not need to distinguish
between π! on modules or abelian sheaves. By Lemma 21.28.8 we see that π!F =
colimCopp F . Thus Lnπ! is the nth left derived functor of taking colimits. In the
following, we write

Hn(C,F) = Lnπ!(F)

and we will name this the nth homology group of F on C.

http://stacks.math.columbia.edu/tag/09CY
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Example 21.29.2 (Computing homology). In Example 21.29.1 we can compute
the functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the chain complex

K•(F) : . . .→
⊕

U2→U1→U0

F(U0)→
⊕

U1→U0

F(U0)→
⊕

U0

F(U0)

where the transition maps are given by

(U2 → U1 → U0, s) 7−→ (U1 → U0, s)− (U2 → U0, s) + (U2 → U1, s|U1)

and similarly in other degrees. By construction

H0(C,F) = colimCopp F = H0(K•(F)),

see Categories, Lemma 4.14.11. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 12.11.1 and Lemma 12.12.12. For F = jU !ZU the complex K•(F) is the
complex associated to the free Z-module on the simplicial set X• with terms

Xn =
∐

Un→...→U1→U0

MorC(U0, U)

This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 14.25.2) defining the homotopy between the two mapsX• → X•
are given by the rule

hn,i : (Un → . . .→ U0, f) 7−→ (Un → . . .→ Ui → U → . . .→ U, id)

for i > 0 and hn,0 = id. Verifications omitted. This implies that K•(jU !ZU ) has
trivial cohomology in negative degrees (by the functoriality of Simplicial, Remark
14.25.4 and the result of Simplicial, Lemma 14.26.1). Thus K•(F) computes the
left derived functors Hn(C,−) of H0(C,−) for example by (the duals of) Homology,
Lemma 12.11.4 and Derived Categories, Lemma 13.17.6.

Example 21.29.3. Let u : C′ → C be a functor. Endow C′ and C with the chaotic
topology as in Example 21.29.1. The functors u, C′ → ∗, and C → ∗ where ∗
is the category with a single object and a single morphism are cocontinuous and
continuous. Let g : Sh(C′) → Sh(C), π′ : Sh(C′) → Sh(∗), and π : Sh(C) → Sh(∗),
be the corresponding morphisms of topoi. Let B be a ring. We endow ∗ with the
sheaf of rings B and C′, C with the constant sheaf B. In this way

(Sh(C′), B)

π′ ''

g
// (Sh(C), B)

π
xx

(Sh(∗), B)

is an example of Situation 21.28.3. Thus Lemma 21.28.5 applies to g so we do not
need to distinguish between g! on modules or abelian sheaves. In particular Remark
21.28.7 produces canonical maps

Hn(C′,F ′) −→ Hn(C,F)

http://stacks.math.columbia.edu/tag/08PG
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whenever we have F in Ab(C), F ′ in Ab(C′), and a map t : F ′ → g−1F . In terms
of the computation of homology given in Example 21.29.2 we see that these maps
come from a map of complexes

K•(F ′) −→ K•(F)

given by the rule

(U ′n → . . .→ U ′0, s
′) 7−→ (u(U ′n)→ . . .→ u(U ′0), t(s′))

with obvious notation.

Remark 21.29.4. Notation and assumptions as in Example 21.29.1. Let F• be a
bounded complex of abelian sheaves on C. For any object U of C there is a canonical
map

F•(U) −→ Lπ!(F•)

in D(Ab). If F• is a complex of B-modules then this map is in D(B). To prove
this, note that we compute Lπ!(F•) by taking a quasi-isomorphism P• → F• where
P• is a complex of projectives. However, since the topology is chaotic this means
that P•(U) → F•(U) is a quasi-isomorphism hence can be inverted in D(Ab),
resp. D(B). Composing with the canonical map P•(U)→ π!(P•) coming from the
computation of π! as a colimit we obtain the desired arrow.

Lemma 21.29.5. Notation and assumptions as in Example 21.29.1. If C has either
an initial or a final object, then Lπ! ◦ π−1 = id on D(Ab), resp. D(B).

Proof. If C has an initial object, then π! is computed by evaluating on this object
and the statement is clear. If C has a final object, then Rπ∗ is computed by
evaluating on this object, hence Rπ∗ ◦ π−1 ∼= id on D(Ab), resp. D(B). This
implies that π−1 : D(Ab) → D(C), resp. π−1 : D(B) → D(B) is fully faithful, see
Categories, Lemma 4.24.3. Then the same lemma implies that Lπ! ◦ π−1 = id as
desired. �

Lemma 21.29.6. Notation and assumptions as in Example 21.29.1. Let B → B′

be a ring map. Consider the commutative diagram of ringed topoi

(Sh(C), B)

π

��

(Sh(C), B′)

π′

��

h
oo

(∗, B) (∗, B′)
foo

Then Lπ! ◦ Lh∗ = Lf∗ ◦ Lπ′!.

Proof. Both functors are right adjoint to the obvious functor D(B′)→ D(B). �

Lemma 21.29.7. Notation and assumptions as in Example 21.29.1. Let U• be a
cosimplicial object in C such that for every U ∈ Ob(C) the simplicial set MorC(U•, U)
is homotopy equivalent to the constant simplicial set on a singleton. Then

Lπ!(F) = F(U•)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

http://stacks.math.columbia.edu/tag/08Q6
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Proof. As Lπ! agrees for modules and abelian sheaves by Lemma 21.28.5 it suffices
to prove this when F is an abelian sheaf. For U ∈ Ob(C) the abelian sheaf jU !ZU
is a projective object of Ab(C) since Hom(jU !ZU ,F) = F(U) and taking sections is
an exact functor as the topology is chaotic. Every abelian sheaf is a quotient of a
direct sum of jU !ZU by Modules on Sites, Lemma 18.28.6. Thus we can compute
Lπ!(F) by choosing a resolution

. . .→ G−1 → G0 → F → 0

whose terms are direct sums of sheaves of the form above and taking Lπ!(F) =
π!(G•). Consider the double complex A•,• = G•(U•). The map G0 → F gives a
map of complexes A0,• → F(U•). Since π! is computed by taking the colimit over
Copp (Lemma 21.28.8) we see that the two compositions Gm(U1)→ Gm(U0)→ π!Gm
are equal. Thus we obtain a canonical map of complexes

Tot(A•,•) −→ π!(G•) = Lπ!(F)

To prove the lemma it suffices to show that the complexes

. . .→ Gm(U1)→ Gm(U0)→ π!Gm → 0

are exact, see Homology, Lemma 12.22.7. Since the sheaves Gm are direct sums of
the sheaves jU !ZU we reduce to G = jU !ZU . The complex jU !ZU (U•) is the complex
of abelian groups associated to the free Z-module on the simplicial set MorC(U•, U)
which we assumed to be homotopy equivalent to a singleton. We conclude that

jU !ZU (U•)→ Z

is a homotopy equivalence of abelian groups hence a quasi-isomorphism (Simplicial,
Remark 14.25.4 and Lemma 14.26.1). This finishes the proof since π!jU !ZU = Z as
was shown in the proof of Lemma 21.28.5. �

Lemma 21.29.8. Notation and assumptions as in Example 21.29.3. If there exists
a cosimplicial object U ′• of C′ such that Lemma 21.29.7 applies to both U ′• in C′ and
u(U ′•) in C, then we have Lπ′! ◦ g−1 = Lπ! as functors D(C) → D(Ab), resp.
D(C, B)→ D(B).

Proof. Follows immediately from Lemma 21.29.7 and the fact that g−1 is given by
precomposing with u. �

Lemma 21.29.9. Let Ci, i = 1, 2 be categories. Let ui : C1 × C2 → Ci be the
projection functors. Let B be a ring. Let gi : (Sh(C1 × C2), B)→ (Sh(Ci), B) be the
corresponding morphisms of ringed topoi, see Example 21.29.3. For Ki ∈ D(Ci, B)
we have

L(π1 × π2)!(g
−1
1 K1 ⊗L

B g
−1
2 K2) = Lπ1,!(K1)⊗L

B Lπ2,!(K2)

in D(B) with obvious notation.

Proof. As both sides commute with colimits, it suffices to prove this for K1 =
jU !BU and K2 = jV !BV for U ∈ Ob(C1) and V ∈ Ob(C2). See construction of Lπ!

in Lemma 21.27.1. In this case

g−1
1 K1 ⊗L

B g
−1
2 K2 = g−1

1 K1 ⊗B g−1
2 K2 = j(U,V )!B(U,V )

Verification omitted. Hence the result follows as both the left and the right hand
side of the formula of the lemma evaluate to B, see construction of Lπ! in Lemma
21.27.1. �
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Lemma 21.29.10. Notation and assumptions as in Example 21.29.1. If there
exists a cosimplicial object U• of C such that Lemma 21.29.7 applies, then

Lπ!(K1 ⊗L
B K2) = Lπ!(K1)⊗L

B Lπ!(K2)

for all Ki ∈ D(B).

Proof. Consider the diagram of categories and functors

C

C u // C × C
u2

""

u1

<<

C

where u is the diagonal functor and ui are the projection functors. This gives
morphisms of ringed topoi g, g1, g2. For any object (U1, U2) of C we have

MorC×C(u(U•), (U1, U2)) = MorC(U•, U1)×MorC(U•, U2)

which is homotopy equivalent to a point by Simplicial, Lemma 14.25.10. Thus
Lemma 21.29.8 gives Lπ!(g

−1K) = L(π × π)!(K) for any K in D(C × C, B). Take
K = g−1

1 K1⊗L
Bg
−1
2 K2. Then g−1K = K1⊗L

BK2 because g−1 = g∗ = Lg∗ commutes

with derived tensor product (Lemma 21.18.4 – a site with chaotic topology has
enough points). To finish we apply Lemma 21.29.9. �

Remark 21.29.11 (Simplicial modules). Let C = ∆ and let B be any ring. This
is a special case of Example 21.29.1 where the assumptions of Lemma 21.29.7 hold.
Namely, let U• be the cosimplicial object of ∆ given by the identity functor. To
verify the condition we have to show that for [m] ∈ Ob(∆) the simplicial set
∆[m] : n 7→ Mor∆([n], [m]) is homotopy equivalent to a point. This is explained in
Simplicial, Example 14.25.7.

In this situation the category Mod(B) is just the category of simplicial B-modules
and the functor Lπ! sends a simplicial B-moduleM• to its associated complex s(M•)
of B-modules. Thus the results above can be reinterpreted in terms of results on
simplicial modules. For example a special case of Lemma 21.29.10 is: if M•, M

′
•

are flat simplicial B-modules, then the complex s(M• ⊗B M ′•) is quasi-isomorphic
to the total complex associated to the double complex s(M•)⊗B s(M ′•). (Hint: use
flatness to convert from derived tensor products to usual tensor products.) This is
a special case of the Eilenberg-Zilber theorem which can be found in [EZ53].

Lemma 21.29.12. Let C be a category (endowed with chaotic topology). Let O →
O′ be a map of sheaves of rings on C. Assume

(1) there exists a cosimplicial object U• in C as in Lemma 21.29.7, and
(2) Lπ!O → Lπ!O′ is an isomorphism.

For K in D(O) we have

Lπ!(K) = Lπ!(K ⊗L
O O′)

in D(Ab).
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Proof. Note: in this proof Lπ! denotes the left derived functor of π! on abelian
sheaves. Since Lπ! commutes with colimits, it suffices to prove this for bounded
above complexes of O-modules (compare with argument of Derived Categories,
Proposition 13.28.2 or just stick to bounded above complexes). Every such complex
is quasi-isomorphic to a bounded above complex whose terms are direct sums of
jU !OU with U ∈ Ob(C), see Modules on Sites, Lemma 18.28.6. Thus it suffices to
prove the lemma for jU !OU . By assumption

S• = MorC(U•, U)

is a simplicial set homotopy equivalent to the constant simplicial set on a singleton.
Set Pn = O(Un) and P ′n = O′(Un). Observe that the complex associated to the
simplicial abelian group

X• : n 7−→
⊕

s∈Sn
Pn

computes Lπ!(jU !OU ) by Lemma 21.29.7. Since jU !OU is a flat O-module we have
jU !OU ⊗L

O O′ = jU !O′U and Lπ! of this is computed by the complex associated to
the simplicial abelian group

X ′• : n 7−→
⊕

s∈Sn
P ′n

As the rule which to a simplicial set T• associated the simplicial abelian group with
terms

⊕
t∈Tn Pn is a functor, we see that X• → P• is a homotopy equivalence of

simplicial abelian groups. Similarly, the rule which to a simplicial set T• associates
the simplicial abelian group with terms

⊕
t∈Tn P

′
n is a functor. Hence X ′• → P ′• is

a homotopy equivalence of simplicial abelian groups. By assumption P• → P ′• is
a quasi-isomorphism (since P•, resp. P ′• computes Lπ!O, resp. Lπ!O′ by Lemma
21.29.7). We conclude that X• and X ′• are quasi-isomorphic as desired. �

Remark 21.29.13. Let C and B be as in Example 21.29.1. Assume there exists
a cosimplicial object as in Lemma 21.29.7. Let O → B be a map sheaf of rings on
C which induces an isomorphism Lπ!O → Lπ!B. In this case we obtain an exact
functor of triangulated categories

Lπ! : D(O) −→ D(B)

Namely, for any object K of D(O) we have LπAb
! (K) = LπAb

! (K ⊗L
O B) by Lemma

21.29.12. Thus we can define the displayed functor as the composition of −⊗L
O B

with the functor Lπ! : D(B)→ D(B). In other words, we obtain a B-module struc-
ture on Lπ!(K) coming from the (canonical, functorial) identification of Lπ!(K)
with Lπ!(K ⊗L

O B) of the lemma.

21.30. Calculating derived lower shriek

In this section we apply the results from Section 21.29 to compute Lπ! in Situation
21.28.1 and Lg! in Situation 21.28.3.

Lemma 21.30.1. Assumptions and notation as in Situation 21.28.1. For F in
PAb(C) and n ≥ 0 consider the abelian sheaf Ln(F) on D which is the sheaf asso-
ciated to the presheaf

V 7−→ Hn(CV ,F|CV )

with restriction maps as indicated in the proof. Then Ln(F) = Ln(F#).
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Proof. For a morphism h : V ′ → V of D there is a pullback functor h∗ : CV → CV ′
of fibre categories (Categories, Definition 4.31.6). Moreover for U ∈ Ob(CV ) there
is a strongly cartesian morphism h∗U → U covering h. Restriction along these
strongly cartesian morphisms defines a transformation of functors

F|CV −→ F|CV ′ ◦ h
∗.

By Example 21.29.3 we obtain the desired restriction map

Hn(CV ,F|CV ) −→ Hn(CV ′ ,F|CV ′ )

Let us denote Ln,p(F) this presheaf, so that Ln(F) = Ln,p(F)#. The canonical map
γ : F → F+ (Sites, Theorem 7.10.10) defines a canonical map Ln,p(F)→ Ln,p(F+).
We have to prove this map becomes an isomorphism after sheafification.

Let us use the computation of homology given in Example 21.29.2. DenoteK•(F|CV )
the complex associated to the restriction of F to the fibre category CV . By the re-
marks above we obtain a presheaf K•(F) of complexes

V 7−→ K•(F|CV )

whose cohomology presheaves are the presheaves Ln,p(F). Thus it suffices to show
that

K•(F) −→ K•(F+)

becomes an isomorphism on sheafification.

Injectivity. Let V be an object of D and let ξ ∈ Kn(F)(V ) be an element which
maps to zero in Kn(F+)(V ). We have to show there exists a covering {Vj → V }
such that ξ|Vj is zero in Kn(F)(Vj). We write

ξ =
∑

(Ui,n+1 → . . .→ Ui,0, σi)

with σi ∈ F(Ui,0). We arrange it so that each sequence of morphisms Un → . . .→
U0 of CV occurs are most once. Since the sums in the definition of the complex K•
are direct sums, the only way this can map to zero in K•(F+)(V ) is if all σi map
to zero in F+(Ui,0). By construction of F+ there exist coverings {Ui,0,j → Ui,0}
such that σi|Ui,0,j is zero. By our construction of the topology on C we can write
Ui,0,j → Ui,0 as the pullback (Categories, Definition 4.31.6) of some morphisms
Vi,j → V and moreover each {Vi,j → V } is a covering. Choose a covering {Vj → V }
dominating each of the coverings {Vi,j → V }. Then it is clear that ξ|Vj = 0.

Surjectivity. Proof omitted. Hint: Argue as in the proof of injectivity. �

Lemma 21.30.2. Assumptions and notation as in Situation 21.28.1. For F in
Ab(C) and n ≥ 0 the sheaf Lnπ!(F) is equal to the sheaf Ln(F) constructed in
Lemma 21.30.1.

Proof. Consider the sequence of functors F 7→ Ln(F) from PAb(C) → Ab(C).
Since for each V ∈ Ob(D) the sequence of functors Hn(CV ,−) forms a δ-functor so
do the functors F 7→ Ln(F). Our goal is to show these form a universal δ-functor.
In order to do this we construct some abelian presheaves on which these functors
vanish.

For U ′ ∈ Ob(C) consider the abelian presheaf FU ′ = jPAb
U ′! ZU ′ (Modules on Sites,

Remark 18.19.6). Recall that

FU ′(U) =
⊕

MorC(U,U ′)
Z

http://stacks.math.columbia.edu/tag/08PJ
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If U lies over V = p(U) in D) and U ′ lies over V ′ = p(U ′) then any morphism
a : U → U ′ factors uniquely as U → h∗U ′ → U ′ where h = p(a) : V → V ′ (see
Categories, Definition 4.31.6). Hence we see that

FU ′ |CV =
⊕

h∈MorD(V,V ′)
jh∗U ′!Zh∗U ′

where jh∗U ′ : Sh(CV /h∗U ′) → Sh(CV ) is the localization morphism. The sheaves
jh∗U ′!Zh∗U ′ have vanishing higher homology groups (see Example 21.29.2). We
conclude that Ln(FU ′) = 0 for all n > 0 and all U ′. It follows that any abelian
presheaf F is a quotient of an abelian presheaf G with Ln(G) = 0 for all n > 0
(Modules on Sites, Lemma 18.28.6). Since Ln(F) = Ln(F#) we see that the same
thing is true for abelian sheaves. Thus the sequence of functors Ln(−) is a universal
delta functor on Ab(C) (Homology, Lemma 12.11.4). Since we have agreement with
H−n(Lπ!(−)) for n = 0 by Lemma 21.28.8 we conclude by uniqueness of universal δ-
functors (Homology, Lemma 12.11.5) and Derived Categories, Lemma 13.17.6. �

Lemma 21.30.3. Assumptions and notation as in Situation 21.28.3. For an
abelian sheaf F ′ on C′ the sheaf Lng!(F ′) is the sheaf associated to the presheaf

U 7−→ Hn(IU ,F ′U )

For notation and restriction maps see proof.

Proof. Say p(U) = V . The category IU is the category of pairs (U ′, ϕ) where
ϕ : U → u(U ′) is a morphism of C with p(ϕ) = idV , i.e., ϕ is a morphism of
the fibre category CV . Morphisms (U ′1, ϕ1) → (U ′2, ϕ2) are given by morphisms
a : U ′1 → U ′2 of the fibre category C′V such that ϕ2 = u(a) ◦ ϕ1. The presheaf F ′U
sends (U ′, ϕ) to F ′(U ′). We will construct the restriction mappings below.

Choose a factorization

C′
u′ // C′′ u′′ //
w
oo C

of u as in Categories, Lemma 4.31.14. Then g! = g′′! ◦ g′! and similarly for derived
functors. On the other hand, the functor g′! is exact, see Modules on Sites, Lemma
18.16.6. Thus we get Lg!(F ′) = Lg′′! (F ′′) where F ′′ = g′!F ′. Note that F ′′ = h−1F ′
where h : Sh(C′′) → Sh(C′) is the morphism of topoi associated to w, see Sites,
Lemma 7.22.1. The functor u′′ turns C′′ into a fibred category over C, hence Lemma
21.30.2 applies to the computation of Lng

′′
! . The result follows as the construction

of C′′ in the proof of Categories, Lemma 4.31.14 shows that the fibre category C′′U
is equal to IU . Moreover, h−1F ′|C′′U is given by the rule described above (as w
is continuous and cocontinuous by Stacks, Lemma 8.10.3 so we may apply Sites,
Lemma 7.20.5). �

21.31. Simplicial modules

Let A• be a simplicial ring. Recall that we may think of A• as a sheaf on ∆ (endowed
with the chaotic topology), see Simplicial, Section 14.4. Then a simplicial module
M• over A• is just a sheaf of A•-modules on ∆. In other words, for every n ≥ 0 we
have an An-module Mn and for every map ϕ : [n] → [m] we have a corresponding
map

M•(ϕ) : Mm −→Mn

which is A•(ϕ)-linear such that these maps compose in the usual manner.
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Let C be a site. A simplicial sheaf of rings A• on C is a simplicial object in the
category of sheaves of rings on C. In this case the assignment U 7→ A•(U) is a sheaf
of simplicial rings and in fact the two notions are equivalent. A similar discussion
holds for simplicial abelian sheaves, simplicial sheaves of Lie algebras, and so on.

However, as in the case of simplicial rings above, there is another way to think
about simplicial sheaves. Namely, consider the projection

p : ∆× C −→ C

This defines a fibred category with strongly cartesian morphisms exactly the mor-
phisms of the form ([n], U) → ([n], V ). We endow the category ∆ × C with the
topology inherited from C (see Stacks, Section 8.10). The simple description of the
coverings in ∆ × C (Stacks, Lemma 8.10.1) immediately implies that a simplicial
sheaf of rings on C is the same thing as a sheaf of rings on ∆× C.

By analogy with the case of simplicial modules over a simplicial ring, we define
simplicial modules over simplicial sheaves of rings as follows.

Definition 21.31.1. Let C be a site. Let A• be a simplicial sheaf of rings on C.
A simplicial A•-module F• (sometimes called a simplicial sheaf of A•-modules) is
a sheaf of modules over the sheaf of rings on ∆× C associated to A•.

We obtain a category Mod(A•) of simplicial modules and a corresponding derived
category D(A•). Given a map A• → B• of simplicial sheaves of rings we obtain a
functor

−⊗L
A• B• : D(A•) −→ D(B•)

Moreover, the material of the preceding sections determines a functor

Lπ! : D(A•) −→ D(C)

Given a simplicial module F• the object Lπ!(F•) is represented by the associated
chain complex s(F•) (Simplicial, Section 14.22). This follows from Lemmas 21.30.2
and 21.29.7.

Lemma 21.31.2. Let C be a site. Let A• → B• be a homomorphism of simplicial
sheaves of rings on C. If Lπ!A• → Lπ!B• is an isomorphism in D(C), then we have

Lπ!(K) = Lπ!(K ⊗L
A• B•)

for all K in D(A•).

Proof. Let ([n], U) be an object of ∆ × C. Since Lπ! commutes with colimits,
it suffices to prove this for bounded above complexes of O-modules (compare with
argument of Derived Categories, Proposition 13.28.2 or just stick to bounded above
complexes). Every such complex is quasi-isomorphic to a bounded above complex
whose terms are flat modules, see Modules on Sites, Lemma 18.28.6. Thus it suffices
to prove the lemma for a flat A•-module F . In this case the derived tensor product
is the usual tensor product and is a sheaf also. Hence by Lemma 21.30.2 we can
compute the cohomology sheaves of both sides of the equation by the procedure
of Lemma 21.30.1. Thus it suffices to prove the result for the restriction of F to
the fibre categories (i.e., to ∆ × U). In this case the result follows from Lemma
21.29.12. �
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Remark 21.31.3. Let C be a site. Let ε : A• → O be an augmentation (Simplicial,
Definition 14.19.1) in the category of sheaves of rings. Assume ε induces a quasi-
isomorphism s(A•) → O. In this case we obtain an exact functor of triangulated
categories

Lπ! : D(A•) −→ D(O)

Namely, for any object K of D(A•) we have Lπ!(K) = Lπ!(K ⊗L
A• O) by Lemma

21.31.2. Thus we can define the displayed functor as the composition of − ⊗L
A• O

with the functor Lπ! : D(∆×C, π−1O)→ D(O) of Remark 21.28.6. In other words,
we obtain a O-module structure on Lπ!(K) coming from the (canonical, functorial)
identification of Lπ!(K) with Lπ!(K ⊗L

A• O) of the lemma.

21.32. Cohomology on a category

In the situation of Example 21.29.1 in addition to the derived functor Lπ!, we also
have the functor Rπ∗. For an abelian sheaf F on C we have Hn(C,F) = H−n(Lπ!F)
and Hn(C,F) = Hn(Rπ∗F).

Example 21.32.1 (Computing cohomology). In Example 21.29.1 we can com-
pute the functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the cochain
complex

K•(F) :
∏

U0

F(U0)→
∏

U0→U1

F(U0)→
∏

U0→U1→U2

F(U0)→ . . .

where the transition maps are given by

(sU0→U1
) 7−→ ((U0 → U1 → U2) 7→ sU0→U1

− sU0→U2
+ sU1→U2

|U0
)

and similarly in other degrees. By construction

H0(C,F) = limCopp F = H0(K•(F)),

see Categories, Lemma 4.14.10. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 12.11.1 and Lemma 12.12.12. For an object U of C denote pU : Sh(∗)→
Sh(C) the corresponding point with p−1

U equal to evaluation at U , see Sites, Example
7.32.7. Let A be an abelian group and set F = pU,∗A. In this case the complex
K•(F) is the complex with terms Map(Xn, A) where

Xn =
∐

U0→...→Un−1→Un
MorC(U,U0)

This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 14.25.2) defining the homotopy between the two mapsX• → X•
are given by the rule

hn,i : (U0 → . . .→ Un, f) 7−→ (U → . . .→ U → Ui → . . .→ Un, id)

for i > 0 and hn,0 = id. Verifications omitted. Since Map(−, A) is a contravariant
functor, implies that K•(pU,∗A) has trivial cohomology in positive degrees (by
the functoriality of Simplicial, Remark 14.25.4 and the result of Simplicial, Lemma
14.27.5). This implies that K•(F) is acyclic in positive degrees also if F is a product

http://stacks.math.columbia.edu/tag/09D3
http://stacks.math.columbia.edu/tag/08RZ


21.32. COHOMOLOGY ON A CATEGORY 1579

of sheaves of the form pU,∗A. As every abelian sheaf on C embeds into such a product
we conclude that K•(F) computes the left derived functors Hn(C,−) of H0(C,−)
for example by Homology, Lemma 12.11.4 and Derived Categories, Lemma 13.17.6.

Example 21.32.2 (Computing Exts). In Example 21.29.1 assume we are moreover
given a sheaf of rings O on C. Let F , G be O-modules. Consider the complex
K•(G,F) with degree n term∏

U0→U1→...→Un
HomO(Un)(G(Un),F(U0))

and transition map given by

(ϕU0→U1) 7−→ ((U0 → U1 → U2) 7→ ϕU0→U1 ◦ ρ
U2

U1
− ϕU0→U2 + ρU1

U0
◦ ϕU1→U2

and similarly in other degrees. Here the ρ’s indicate restriction maps. By construc-
tion

HomO(G,F) = H0(K•(G,F))

for all pairs of O-modules F ,G. The assignment (G,F) 7→ K•(G,F) is a bifunctor
which transforms direct sums in the first variable into products and commutes with
products in the second variable. We claim that

ExtiO(G,F) = Hi(K•(G,F))

for i ≥ 0 provided either

(1) G(U) is a projective O(U)-module for all U ∈ Ob(C), or
(2) F(U) is an injective O(U)-module for all U ∈ Ob(C).

Namely, case (1) the functor K•(G,−) is an exact functor from the category of O-
modules to the category of cochain complexes of abelian groups. Thus, arguing as
in Example 21.32.1, it suffices to show that K•(G,F) is acyclic in positive degrees
when F is pU,∗A for an O(U)-module A. Choose a short exact sequence

(21.32.2.1) 0→ G′ →
⊕

jUi!OUi → G → 0

see Modules on Sites, Lemma 18.28.6. Since (1) holds for the middle and right
sheaves, it also holds for G′ and evaluating (21.32.2.1) on an object of C gives a
split exact sequence of modules. We obtain a short exact sequence of complexes

0→ K•(G,F)→
∏

K•(jUi!OUi ,F)→ K•(G′,F)→ 0

for any F , in particular F = pU,∗A. On H0 we obtain

0→ Hom(G, pU,∗A)→ Hom(
∏

jUi!OUi , pU,∗A)→ Hom(G′, pU,∗A)→ 0

which is exact as Hom(H, pU,∗A) = HomO(U)(H(U), A) and the sequence of sections
of (21.32.2.1) over U is split exact. Thus we can use dimension shifting to see
that it suffices to prove K•(jU ′!OU ′ , pU,∗A) is acyclic in positive degrees for all
U,U ′ ∈ Ob(C). In this case Kn(jU ′!OU ′ , pU,∗A) is equal to∏

U→U0→U1→...→Un→U ′
A

In other words, K•(jU ′!OU ′ , pU,∗A) is the complex with terms Map(X•, A) where

Xn =
∐

U0→...→Un−1→Un
MorC(U,U0)×MorC(Un, U

′)
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This simplicial set is homotopy equivalent to the constant simplicial set on a single-
ton {∗} as can be proved in exactly the same way as the corresponding statement
in Example 21.32.1. This finishes the proof of the claim.

The argument in case (2) is similar (but dual).

21.33. Strictly perfect complexes

This section is the analogue of Cohomology, Section 20.35.

Definition 21.33.1. Let (C,O) be a ringed site. Let E• be a complex ofO-modules.
We say E• is strictly perfect if E i is zero for all but finitely many i and E i is a direct
summand of a finite free O-module for all i.

Let U be an object of C. We will often say “Let E• be a strictly perfect complex
of OU -modules” to mean E• is a strictly perfect complex of modules on the ringed
site (C/U,OU ), see Modules on Sites, Definition 18.19.1.

Lemma 21.33.2. The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. �

Lemma 21.33.3. The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. �

Lemma 21.33.4. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed sites.
If F• is a strictly perfect complex of OD-modules, then f∗F• is a strictly perfect
complex of OC-modules.

Proof. We have seen in Modules on Sites, Lemma 18.17.2 that the pullback of a
finite free module is finite free. The functor f∗ is additive functor hence preserves
direct summands. The lemma follows. �

Lemma 21.33.5. Let (C,O) be a ringed site. Let U be an object of C. Given a
solid diagram of OU -modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OU -module and p surjective, then there
exists a covering {Ui → U} such that a dotted arrow making the diagram commute
exists over each Ui.

Proof. We may assume E = O⊕nU for some n. In this case finding the dotted
arrow is equivalent to lifting the images of the basis elements in Γ(U,F). This is
locally possible by the characterization of surjective maps of sheaves (Sites, Section
7.12). �

Lemma 21.33.6. Let (C,O) be a ringed site. Let U be an object of C.

(1) Let α : E• → F• be a morphism of complexes of OU -modules with E•
strictly perfect and F• acyclic. Then there exists a covering {Ui → U}
such that each α|Ui is homotopic to zero.
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(2) Let α : E• → F• be a morphism of complexes of OU -modules with E•
strictly perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then there
exists a covering {Ui → U} such that each α|Ui is homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free O-module and integer n ≥ a, then the
result follows from Lemma 21.33.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is
surjective by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b],
then we have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0

which determines a distinguished triangle in K(OU ). Hence an exact sequence

HomK(OU )(σ≤b−1E•,F•)→ HomK(OU )(E•,F•)→ HomK(OU )(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is homo-
topic to zero on the members of a covering of U by the above, whence we may
assume our map comes from an element in the left hand side of the displayed ex-
act sequence above. This element is zero on the members of a covering of U by
induction hypothesis. �

Lemma 21.33.7. Let (C,O) be a ringed site. Let U be an object of C. Given a
solid diagram of complexes of OU -modules

E•

!!

α
// F•

G•
f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a and
surjective for j = a, then there exists a covering {Ui → U} and for each i a dotted
arrow over Ui making the diagram commute up to homotopy.

Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 21.33.6 guarantees there is a covering {Ui →
U} such that the composition E• → F• → C(f)• is homotopic to zero over Ui.
Since

G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle in K(OUi) we see that we can lift α|Ui up to
homotopy to a map αi : E•|Ui → G•|Ui as desired. �

Lemma 21.33.8. Let (C,O) be a ringed site. Let U be an object of C. Let E•, F•
be complexes of OU -modules with E• strictly perfect.

(1) For any element α ∈ HomD(OU )(E•,F•) there exists a covering {Ui → U}
such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OU )(E•,F•) is zero, there exists a covering {Ui → U} such that
α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
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α = f−1β. Thus the result follows from Lemma 21.33.7. We omit the proof of
(2). �

Lemma 21.33.9. Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with E• strictly perfect. Then the internal hom RHom(E•,F•) is represented by
the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 21.26.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let
(H′)• be the complex with terms

(H′)n =
∏

n=p+q
HomO(L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 21.26. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an object U of C we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 21.33.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafifica-
tion of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomol-
ogy sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. �

Lemma 21.33.10. Let (C,O) be a ringed site. Let E•, F• be complexes of O-
modules with

(1) Fn = 0 for n� 0,
(2) En = 0 for n� 0, and
(3) En isomorphic to a direct summand of a finite free O-module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 21.26.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 13.29.4).
Hence the construction in Section 21.26 shows that RHom(E•,F•) is represented
by the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomO(E−q, Ip) =

⊕
n=p+q

HomO(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomO(E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 12.22.6)

′Ep,q1 = Hp(HomO(E−q,F•))
converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomO(E ,F•)) −→ Hp(HomO(E , I•))
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on cohomology sheaves whenever E is a direct summand of a finite free O-module.
Since this is clear when E is finite free the result follows. �

21.34. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 21.34.1. Let (C,O) be a ringed site. Let E• be a complex ofO-modules.
Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if for every object U of C there exists a
covering {Ui → U} and for each i a morphism of complexes αi : E•i →
E•|Ui where Ei is a strictly perfect complex of OUi-modules and Hj(αi) is
an isomorphism for j > m and Hm(αi) is surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(O) is m-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of O-modules.

If C has a final object X which is quasi-compact (i.e., every covering of X can
be refined by a finite covering), then an m-pseudo-coherent object of D(O) is in
D−(O). But this need not be the case in general.

Lemma 21.34.2. Let (C,O) be a ringed site. Let E be an object of D(O).

(1) If C has a final object X and if there exist a covering {Ui → X}, strictly
perfect complexes E•i of OUi-modules, and maps αi : E•i → E|Ui in D(OUi)
with Hj(αi) an isomorphism for j > m and Hm(αi) surjective, then E is
m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex of O-modules representing
E is m-pseudo-coherent.

(3) If for every object U of C there exists a covering {Ui → U} such that E|Ui
is m-pseudo-coherent, then E is m-pseudo-coherent.

Proof. Let F• be any complex representing E and let X, {Ui → X}, and αi :
Ei → E|Ui be as in (1). We will show that F• is m-pseudo-coherent as a complex,
which will prove (1) and (2) in case C has a final object. By Lemma 21.33.8 we can
after refining the covering {Ui → X} represent the maps αi by maps of complexes
αi : E•i → F•|Ui . By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi)
is surjective whence F• is m-pseudo-coherent.

Proof of (2). By the above we see that F•|U is m-pseudo-coherent as a complex
of OU -modules for all objects U of C. It is a formal consequence of the definitions
that F• is m-pseudo-coherent.

Proof of (3). Follows from the definitions and Sites, Definition 7.6.2 part (2). �

Lemma 21.34.3. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OC). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Say f is given by the functor u : D → C. Let U be an object of C. By
Sites, Lemma 7.15.9 we can find a covering {Ui → U} and for each i a morphism
Ui → u(Vi) for some object Vi of D. By Lemma 21.34.2 it suffices to show that
Lf∗E|Ui is m-pseudo-coherent. To do this it is enough to show that Lf∗E|u(Vi)
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is m-pseudo-coherent, since Lf∗E|Ui is the restriction of Lf∗E|u(Vi) to C/Ui (via
Modules on Sites, Lemma 18.19.4). By the commutative diagram of Modules on
Sites, Lemma 18.20.1 it suffices to prove the lemma for the morphism of ringed
sites (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Thus we may assume D has a final object Y
such that X = u(Y ) is a final object of C.

Let {Vi → Y } be a covering such that for each i there exists a strictly perfect
complex F•i of OVi-modules and a morphism αi : F•i → E|Vi of D(OVi) such
that Hj(αi) is an isomorphism for j > m and Hm(αi) is surjective. Arguing as
above it suffices to prove the result for (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Hence we
may assume that there exists a strictly perfect complex F• of OD-modules and a
morphism α : F• → E of D(OD) such that Hj(α) is an isomorphism for j > m
and Hm(α) is surjective. In this case, choose a distinguished triangle

F• → E → C → F•[1]

The assumption on α means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Applying Lf∗ we obtain the distinguished triangle

Lf∗F• → Lf∗E → Lf∗C → Lf∗F•[1]

By the construction of Lf∗ as a left derived functor we see that Hj(Lf∗C) = 0 for
j ≥ m (by the dual of Derived Categories, Lemma 13.17.1). Hence Hj(Lf∗α) is
an isomorphism for j > m and Hm(Lf∗α) is surjective. On the other hand, since
F• is a bounded above complex of flat OD-modules we see that Lf∗F• = f∗F•.
Applying Lemma 21.33.4 we conclude. �

Lemma 21.34.4. Let (C,O) be a ringed site and m ∈ Z. Let (K,L,M, f, g, h) be
a distinguished triangle in D(O).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K anf M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. Choose a covering {Ui → U} and
maps αi : K•i → K|Ui in D(OUi) with K•i strictly perfect and Hj(αi) isomorphisms
for j > m + 1 and surjective for j = m + 1. We may replace K•i by σ≥m+1K•i
and hence we may assume that Kji = 0 for j < m + 1. After refining the covering
we may choose maps βi : L•i → L|Ui in D(OUi) with L•i strictly perfect such that
Hj(β) is an isomorphism for j > m and surjective for j = m. By Lemma 21.33.7
we can, after refining the covering, find maps of complexes γi : K• → L• such that
the diagrams

K|Ui // L|Ui

K•i

αi

OO

γi // L•i

βi

OO

are commutative in D(OUi) (this requires representing the maps αi, βi and K|Ui →
L|Ui by actual maps of complexes; some details omitted). The cone C(γi)

• is strictly
perfect (Lemma 21.33.2). The commutativity of the diagram implies that there
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exists a morphism of distinguished triangles

(K•i ,L•i , C(γi)
•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homol-
ogy, Lemmas 12.5.19 and 12.5.20 that C(γi)

• → M |Ui induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. Hence M is m-pseudo-
coherent by Lemma 21.34.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 21.34.5. Let (C,O) be a ringed site. Let K,L be objects of D(O).

(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-
coherent and Hj(L) = 0 for j > b, then K⊗L

O L is t-pseudo-coherent with
t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
O L is pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. By replacing U by the members
of a covering and replacing C by the localization C/U we may assume there exist
strictly perfect complexes K• and L• and maps α : K• → K and β : L• → L with
Hi(α) and isomorphism for i > n and surjective for i = n and with Hi(β) and
isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗O L•)→ K ⊗L
O L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). Let U be an object of C. We may first replace U by the members of
a covering and C by the localization C/U to reduce to the case that K and L are
bounded above. Then the statement follows immediately from case (1). �

Lemma 21.34.6. Let (C,O) be a ringed site. Let m ∈ Z. If K ⊕ L is m-pseudo-
coherent (resp. pseudo-coherent) in D(O) so are K and L.

Proof. Assume that K ⊕ L is m-pseudo-coherent. Let U be an object of C. After
replacing U by the members of a covering we may assume K⊕L ∈ D−(OU ), hence
L ∈ D−(OU ). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 13.4.9. By Lemma 21.34.4 we see that L ⊕ L[1]
is m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n]⊕L[n+ 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is
m-pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. �

Lemma 21.34.7. Let (C,O) be a ringed site. Let K be an object of D(O). Let
m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type O-module.

(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m+ 1, then Hm+1(K)
is a finitely presented O-module.
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Proof. Proof of (1). Let U be an object of C. We have to show that Hm(K) is can
be generated by finitely many sections over the members of a covering of U (see
Modules on Sites, Definition 18.23.1). Thus during the proof we may (finitely often)
choose a covering {Ui → U} and replace C by C/Ui and U by Ui. In particular, by
our definitions we may assume there exists a strictly perfect complex E• and a map
α : E• → K which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. It suffices to prove the result for E•. Let n be the largest
integer such that En 6= 0. If n = m, then Hm(E•) is a quotient of En and the
result is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0. By Lemma
21.33.5 we can (after replacing U by the members of a covering) find a section of
this surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result for
the complex (E ′)• which is the same as E• except has E ′ in degree n − 1 and 0 in
degree n. We win by induction on n.

Proof of (2). Pick an object U of C. As in the proof of (1) we may work locally
on U . Hence we may assume there exists a strictly perfect complex E• and a map
α : E• → K which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. As in the proof of (1) we can reduce to the case that E i = 0
for i > m + 1. Then we see that Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1)
which is of finite presentation. �

21.35. Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 21.35.1. Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E⊗L
O F) = 0 for all O-modules

F and all i 6∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if for any object U of C there

exists a covering {Ui → U} such that E|Ui has finite tor dimension for all
i.

Note that if E has finite tor dimension, then E is an object of Db(O) as can be
seen by taking F = O in the definition above.

Lemma 21.35.2. Let (C,O) be a ringed site. Let E• be a bounded above complex of
flat O-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat O-module.

Proof. As E• is a bounded above complex of flat modules we see that E• ⊗O F =
E• ⊗L

O F for any O-module F . Hence for every O-module F the sequence

Ea−2 ⊗O F → Ea−1 ⊗O F → Ea ⊗O F
is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat

resolution this implies that TorO1 (Coker(da−1),F) = 0 for all O-modules F . This
means that Coker(da−1) is flat, see Lemma 21.17.13. �

Lemma 21.35.3. Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
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(2) E is represented by a complex E• of flat O-modules with E i = 0 for i 6∈
[a, b].

Proof. If (2) holds, then we may compute E ⊗L
O F = E• ⊗O F and it is clear that

(1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat
O-modules K•, see Section 21.17. Let n be the largest integer such that Kn 6= 0.
If n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see
that Ker(Kn−1 → Kn) is flat (Modules on Sites, Lemma 18.28.8). Hence we may
replace K• by τ≤n−1K•. Thus, by induction on n, we reduce to the case that K•

is a complex of flat O-modules with Ki = 0 for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 21.35.2 and the definitions. �

Lemma 21.35.4. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed sites.
Assume C has enough points. Let E be an object of D(OD). If E has tor amplitude
in [a, b], then Lf∗E has tor amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 21.35.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i 6∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules on Sites, Lemma 18.38.3 the module f∗E i are
flat (this is where we need the assumption on the existence of points). Thus by
Lemma 21.35.3 we conclude that Lf∗E has tor amplitude in [a, b]. �

Lemma 21.35.5. Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(O). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a+ 1, b+ 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

O F preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. �

Lemma 21.35.6. Let (C,O) be a ringed site. Let K,L be objects of D(O). If K
has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

O L has tor
amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. �

Lemma 21.35.7. Let (C,O) be a ringed site. Let a, b ∈ Z. For K, L objects of
D(O) if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. �

Lemma 21.35.8. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let
K be an object of D(O).

(1) If K ⊗L
O O/I is bounded above, then K ⊗L

O O/In is uniformly bounded
above for all n.
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(2) If K ⊗L
O O/I as an object of D(O/I) has tor amplitude in [a, b], then

K ⊗L
OO/In as an object of D(O/In) has tor amplitude in [a, b] for all n.

Proof. Proof of (1). Assume that K ⊗L
O O/I is bounded above, say Hi(K ⊗L

O
O/I) = 0 for i > b. Note that we have distinguished triangles

K ⊗L
O In/In+1 → K ⊗L

O O/In+1 → K ⊗L
O O/In → K ⊗L

O In/In+1[1]

and that
K ⊗L

O In/In+1 =
(
K ⊗L

O O/I
)
⊗L
O/I I

n/In+1

By induction we conclude that Hi(K ⊗L
O O/In) = 0 for i > b for all n.

Proof of (2). Assume K⊗L
OO/I as an object of D(O/I) has tor amplitude in [a, b].

Let F be a sheaf of O/In-modules. Then we have a finite filtration

0 ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F
whose successive quotients are sheaves of O/I-modules. Thus to prove that K ⊗L

O
O/In has tor amplitude in [a, b] it suffices to show Hi(K⊗L

OO/In⊗L
O/In G) is zero

for i 6∈ [a, b] for all O/I-modules G. Since(
K ⊗L

O O/In
)
⊗L
O/In G =

(
K ⊗L

O O/I
)
⊗L
O/I G

for every sheaf of O/I-modules G the result follows. �

21.36. Perfect complexes

In this section we discuss properties of perfect complexes on ringed sites.

Definition 21.36.1. Let (C,O) be a ringed site. Let E• be a complex ofO-modules.
We say E• is perfect if for every object U of C there exists a covering {Ui → U}
such that for each i there exists a morphism of complexes E•i → E•|Ui which is a
quasi-isomorphism with E•i strictly perfect. An object E of of D(O) is perfect if it
can be represented by a perfect complex of O-modules.

Lemma 21.36.2. Let (C,O) be a ringed site. Let E be an object of D(O).

(1) If C has a final object X and there exist a covering {Ui → X}, strictly
perfect complexes E•i of OUi-modules, and isomorphisms αi : E•i → E|Ui
in D(OUi), then E is perfect.

(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 21.34.2. �

Lemma 21.36.3. Let (C,O) be a ringed site. Let E be an object of D(O). Let
a ≤ b be integers. If E has tor amplitude in [a, b] and is (a − 1)-pseudo-coherent,
then E is perfect.

Proof. Let U be an object of C. After replacing U by the members of a covering
and C by the localization C/U we may assume there exists a strictly perfect complex
E• and a map α : E• → E such that Hi(α) is an isomorphism for i ≥ a. We may
and do replace E• by σ≥a−1E•. Choose a distinguished triangle

E• → E → C → E•[1]

From the vanishing of cohomology sheaves of E and E• and the assumption on α we
obtain C ∼= K[a− 2] with K = Ker(Ea−1 → Ea). Let F be an O-module. Applying
− ⊗L

O F the assumption that E has tor amplitude in [a, b] implies K ⊗O F →
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Ea−1⊗OF has image Ker(Ea−1⊗OF → Ea⊗OF). It follows that TorO1 (E ′,F) = 0
where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 21.17.13). Thus there
exists a covering {Ui → U} such that E ′|Ui is a direct summand of a finite free
module by Modules on Sites, Lemma 18.28.12. Thus the complex

E ′|Ui → Ea−1|Ui → . . .→ Eb|Ui
is quasi-isomorphic to E|Ui and E is perfect. �

Lemma 21.36.4. Let (C,O) be a ringed site. Let E be an object of D(O). The
following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). Let U be an object of C. By definition there exists a covering
{Ui → U} such that E|Ui is represented by a strictly perfect complex. Thus E is
pseudo-coherent (i.e., m-pseudo-coherent for all m) by Lemma 21.34.2. Moreover,
a direct summand of a finite free module is flat, hence E|Ui has finite Tor dimension
by Lemma 21.35.3. Thus (2) holds.

Assume (2). Let U be an object of C. After replacing U by the members of a
covering we may assume there exist integers a ≤ b such that E|U has tor amplitude
in [a, b]. Since E|U is m-pseudo-coherent for all m we conclude using Lemma
21.36.3. �

Lemma 21.36.5. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed sites.
Assume C has enough points. Let E be an object of D(OD). If E is perfect in
D(OD), then Lf∗E is perfect in D(OC).

Proof. This follows from Lemma 21.36.4, 21.35.4, and 21.34.3. (An alternative
proof is to copy the proof of Lemma 21.34.3. This gives a proof of the result
without assuming the site C has enough points.) �

Lemma 21.36.6. Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(O). If two out of three of K,L,M are perfect then the third
is also perfect.

Proof. First proof: Combine Lemmas 21.36.4, 21.34.4, and 21.35.5. Second proof
(sketch): Say K and L are perfect. Let U be an object of C. After replacing U
by the members of a covering we may assume that K|U and L|U are represented
by strictly perfect complexes K• and L•. After replacing U by the members of
a covering we may assume the map K|U → L|U is given by a map of complexes
α : K• → L•, see Lemma 21.33.8. Then M |U is isomorphic to the cone of α which
is strictly perfect by Lemma 21.33.2. �

Lemma 21.36.7. Let (C,O) be a ringed site. If K,L are perfect objects of D(O),
then so is K ⊗L

O L.

Proof. Follows from Lemmas 21.36.4, 21.34.5, and 21.35.6. �

Lemma 21.36.8. Let (C,O) be a ringed site. If K⊕L is a perfect object of D(O),
then so are K and L.

Proof. Follows from Lemmas 21.36.4, 21.34.6, and 21.35.7. �
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Lemma 21.36.9. Let (C,O) be a ringed site. Let K be a perfect object of D(O).
Then K∧ = RHom(K,O) is a perfect object too and (K∧)∧ = K. There are
functorial isomorphisms

K∧ ⊗L
O M = RHomO(K,M)

and

H0(C,K∧ ⊗L
O M) = HomD(O)(K,M)

for M in D(O).

Proof. We will us without further mention that formation of internal hom com-
mutes with restriction (Lemma 21.26.3). In particular we may check the first two
statements locally, i.e., given any object U of C it suffices to prove there is a cov-
ering {Ui → U} such that the statement is true after restricting to C/Ui for each
i. By Lemma 21.26.8 to see the final statement it suffices to check that the map
(21.26.8.1)

K∧ ⊗L
O M −→ RHom(K,M)

is an isomorphism. This is a local question as well. Hence it suffices to prove the
lemma when K is represented by a strictly perfect complex.

Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 21.33.9 that K∧ is represented by the complex whose terms are (En)∧ =
HomO(En,O) in degree −n. Since En is a direct summand of a finite free O-module,
so is (En)∧. Hence K∧ is represented by a strictly perfect complex too. It is also
clear that (K∧)∧ = K as we have ((En)∧)∧ = En. To see that (21.26.8.1) is an
isomorphism, represent M by a K-flat complex F•. By Lemma 21.33.9 the complex
RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomO(E−q,Fp)

On the other hand, the object K∧⊗LM is represented by the complex with terms⊕
n=p+q

Fp ⊗O (E−q)∧

Thus the assertion that (21.26.8.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗O HomO(E ,O) −→ HomO(E ,F)

is an isomorphism when E is a direct summand of a finite free O-module and F is
any O-module. This follows immediately from the corresponding statement when
E is finite free. �

Lemma 21.36.10. Let (C,O) be a ringed site. Let (Kn)n∈N be a system of perfect
objects of D(O). Let K = hocolimKn be the derived colimit (Derived Categories,
Definition 13.31.1). Then for any object E of D(O) we have

RHom(K,E) = R limE ⊗L
O K

∧
n

where (K∧n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 21.36.9 we have R limE ⊗L
O K

∧
n = R limRHom(Kn, E) which

fits into the distinguished triangle

R limRHom(Kn, E)→
∏

RHom(Kn, E)→
∏

RHom(Kn, E)

http://stacks.math.columbia.edu/tag/08JJ
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Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K

it suffices to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal

consequence of (21.26.0.1) and the fact that derived tensor product commutes with
direct sums. �

21.37. Projection formula

A general version of the projection formula is the following.

Lemma 21.37.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let E ∈ D(OC) and K ∈ D(OD). If K is perfect, then

Rf∗E ⊗L
OD K = Rf∗(E ⊗L

OC Lf
∗K)

in D(OD).

Proof. Without any assumptions there is a map Rf∗(E)⊗LK → Rf∗(E⊗LLf∗K).
Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L K) = Lf∗(Rf∗(E))⊗L Lf∗K −→ E ⊗L Lf∗K

coming from the map Lf∗Rf∗E → E. See Lemmas 21.18.4 and 21.19.1. To check
it is an isomorphism we may work locally on D, i.e., for any object V of D we have
to find a covering {Vj → V } such that the map restricts to an isomorphism on
Vj . By definition of perfect objects, this means we may assume K is represented
by a strictly perfect complex of OD-modules. Note that, completely generally, the
statement is true for K = K1 ⊕K2, if and only if the statement is true for K1 and
K2. Hence we may assume K is a finite complex of finite free OD-modules. In this
case a simple argument involving stupid truncations reduces the statement to the
case where K is represented by a finite free OD-module. Since the statement is
invariant under finite direct summands in the K variable, we conclude it suffices to
prove it for K = OD[n] in which case it is trivial. �

21.38. Weakly contractible objects

An object U of a site is weakly contractible if every surjection F → G of sheaves of
sets gives rise to a surjection F(U)→ G(U), see Sites, Definition 7.39.2.

Lemma 21.38.1. Let C be a site. Let U be a weakly contractible object of C. Then

(1) the functor F 7→ F(U) is an exact functor Ab(C)→ Ab,
(2) Hp(U,F) = 0 for every abelian sheaf F and all p ≥ 1, and
(3) for any sheaf of groups G any G-torsor has a section over U .

Proof. The first statement follows immediately from the definition (see also Ho-
mology, Section 12.7). The higher derived functors vanish by Derived Categories,
Lemma 13.17.8. Let F be a G-torsor. Then F → ∗ is a surjective map of sheaves.
Hence (3) follows from the definition as well. �

It is convenient to list some consequences of having enough weakly contractible
objects here.

Proposition 21.38.2. Let C be a site. Let B ⊂ Ob(C) such that every U ∈ B is
weakly contractible and every object of C has a covering by elements of B. Let O be
a sheaf of rings on C. Then

(1) A complex F1 → F2 → F3 of O-modules is exact, if and only if F1(U)→
F2(U)→ F3(U) is exact for all U ∈ B.
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(2) Every object K of D(O) is a derived limit of its canonical truncations:
K = R lim τ≥−nK.

(3) Given an inverse system . . . → F3 → F2 → F1 with surjective transition
maps, the projection limFn → F1 is surjective.

(4) Products are exact on Mod(O).
(5) Products on D(O) can be computed by taking products of any representa-

tive complexes.
(6) If (Fn) is an inverse system of O-modules, then Rp limFn = 0 for all

p > 1 and

R1 limFn = Coker(
∏
Fn →

∏
Fn)

where the map is (xn) 7→ (xn − f(xn+1)).
(7) If (Kn) is an inverse system of objects of D(O), then there are short exact

sequences

0→ R1 limHp−1(Kn)→ Hp(R limKn)→ limHp(Kn)→ 0

Proof. Proof of (1). If the sequence is exact, then evaluating at any weakly con-
tractible element of C gives an exact sequence by Lemma 21.38.1. Conversely,
assume that F1(U) → F2(U) → F3(U) is exact for all U ∈ B. Let V be an object
of C and let s ∈ F2(V ) be an element of the kernel of F2 → F3. By assumption there
exists a covering {Ui → V } with Ui ∈ B. Then s|Ui lifts to a section si ∈ F1(Ui).
Thus s is a section of the image sheaf Im(F1 → F2). In other words, the sequence
F1 → F2 → F3 is exact.

Proof of (2). Lemma 21.22.3 applies to every complex of sheaves on C. Thus (1)
holds by Lemma 21.22.4.

Proof of (3). Let (Fn) be a system as in (2) and set F = limFn. If U ∈ B,
then F(U) = limFn(U) surjects onto F1(U) as all the transition maps Fn+1(U)→
Fn(U) are surjective. Thus F → F1 is surjective by Sites, Definition 7.12.1 and the
assumption that every object has a covering by elements of B.

Proof of (4). Let Fi,1 → Fi,2 → Fi,3 be a family of exact sequences of O-modules.
We want to show that

∏
Fi,1 →

∏
Fi,2 →

∏
Fi,3 is exact. We use the criterion of

(1). Let U ∈ B. Then

(
∏
Fi,1)(U)→ (

∏
Fi,2)(U)→ (

∏
Fi,3)(U)

is the same as ∏
Fi,1(U)→

∏
Fi,2(U)→

∏
Fi,3(U)

Each of the sequences Fi,1(U) → Fi,2(U) → Fi,3(U) are exact by (1). Thus the
displayed sequences are exact by Homology, Lemma 12.28.1. We conclude by (1)
again.

Proof of (5). Follows from (4) and (slightly generalized) Derived Categories, Lemma
13.32.2.

Proof of (6) and (7). We refer to Section 21.21 for a discussion of derived and
homotopy limits and their relationship. By Derived Categories, Definition 13.32.1
we have a distinguished triangle

R limKn →
∏

Kn →
∏

Kn → R limKn[1]
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Taking the long exact sequence of cohomology sheaves we obtain

Hp−1(
∏

Kn)→ Hp−1(
∏

Kn)→ Hp(R limKn)→ Hp(
∏

Kn)→ Hp(
∏

Kn)

Since products are exact by (4) this becomes∏
Hp−1(Kn)→

∏
Hp−1(Kn)→ Hp(R limKn)→

∏
Hp(Kn)→

∏
Hp(Kn)

Now we first apply this to the case Kn = Fn[0] where (Fn) is as in (6). We conclude
that (6) holds. Next we apply it to (Kn) as in (7) and we conclude (7) holds. �

21.39. Compact objects

In this section we study compact objects in the derived category of modules on
a ringed site. We recall that compact objects are defined in Derived Categories,
Definition 13.34.1.

Lemma 21.39.1. Let (C,O) be a ringed site. Assume C has the following properties

(1) C has a quasi-compact final object X,
(2) every object of C can be covered by quasi-compact objects,
(3) for a finite covering {Ui → U}i∈I with U , Ui quasi-compact the fibre

products Ui ×U Uj are quasi-compact.

Then any perfect object of D(O) is compact.

Proof. Let K be a perfect object and let K∧ be its dual, see Lemma 21.36.9. Then
we have

HomD(OX)(K,M) = H0(X,K∧ ⊗L
OX M)

functorially in M in D(OX). Since K∧ ⊗L
OX − commutes with direct sums (by

construction) and H0 does by Lemma 21.16.1 and the construction of direct sums
in Injectives, Lemma 19.13.4 we obtain the result of the lemma. �

Lemma 21.39.2. Let A be a Grothendieck abelian category. Let S ⊂ Ob(A) be a
set of objects such that

(1) any object of A is a quotient of a direct sum of elements of S, and
(2) for any E ∈ S the functor HomA(E,−) commutes with direct sums.

Then every compact object of D(A) is a direct summand in D(A) of a finite complex
of finite direct sums of elements of S.

Proof. Assume K ∈ D(A) is a compact object. Represent K by a complex K•

and consider the map

K• −→
⊕

n≥0
τ≥nK

•

where we have used the canonical truncations, see Homology, Section 12.13. This
makes sense as in each degree the direct sum on the right is finite. By assumption
this map factors through a finite direct sum. We conclude that K → τ≥nK is zero
for at least one n, i.e., K is in D−(R).

We may represent K by a bounded above complex K• each of whose terms is a
direct sum of objects from S, see Derived Categories, Lemma 13.16.5. Note that
we have

K• =
⋃

n≤0
σ≥nK

•
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where we have used the stupid truncations, see Homology, Section 12.13. Hence by
Derived Categories, Lemmas 13.31.4 and 13.31.5 we see that 1 : K• → K• factors
through σ≥nK

• → K• in D(R). Thus we see that 1 : K• → K• factors as

K•
ϕ−→ L•

ψ−→ K•

in D(A) for some complex L• which is bounded and whose terms are direct sums
of elements of S. Say Li is zero for i 6∈ [a, b]. Let c be the largest integer ≤ b + 1
such that Li a finite direct sum of elements of S for i < c. Claim: if c < b + 1,
then we can modify L• to increase c. By induction this claim will show we have a
factorization of 1K as

K
ϕ−→ L

ψ−→ K

in D(A) where L can be represented by a finite complex of finite direct sums of
elements of S. Note that e = ϕ ◦ ψ ∈ EndD(A)(L) is an idempotent. By Derived
Categories, Lemma 13.4.12 we see that L = Ker(e)⊕Ker(1−e). The map ϕ : K → L
induces an isomorphism with Ker(1− e) in D(R) and we conclude.

Proof of the claim. Write Lc =
⊕

λ∈ΛEλ. Since Lc−1 is a finite direct sum of
elements of S we can by assumption (2) find a finite subset Λ′ ⊂ Λ such that
Lc−1 → Lc factors through

⊕
λ∈Λ′ Eλ ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
Eλ)[−i]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By
our assumption on K we see that, after possibly replacing Λ′ by a larger finite
subset, we may assume that π ◦ ϕ = 0 in D(A). Let (L′)• ⊂ L• be the kernel
of π. Since π is surjective we get a short exact sequence of complexes, which
gives a distinguished triangle in D(A) (see Derived Categories, Lemma 13.12.1).
Since HomD(A)(K,−) is homological (see Derived Categories, Lemma 13.4.2) and
π ◦ ϕ = 0, we can find a morphism ϕ′ : K• → (L′)• in D(A) whose composition
with (L′)• → L• gives ϕ. Setting ψ′ equal to the composition of ψ with (L′)• → L•

we obtain a new factorization. Since (L′)• agrees with L• except in degree c and
since (L′)c =

⊕
λ∈Λ′ Eλ the claim is proved. �

Lemma 21.39.3. Let (C,O) be a ringed site. Assume every object of C has a
covering by quasi-compact objects. Then every compact object of D(O) is a direct
summand in D(O) of a finite complex whose terms are finite direct sums of O-
modules of the form j!OU where U is a quasi-compact object of C.

Proof. Apply Lemma 21.39.2 where S ⊂ Ob(Mod(O)) is the set of modules of the
form j!OU with U ∈ Ob(C) quasi-compact. Assumption (1) holds by Modules on
Sites, Lemma 18.28.6 and the assumption that every U can be covered by quasi-
compact objects. Assumption (2) follows as

HomO(j!OU ,F) = F(U)

which commutes with direct sums by Sites, Lemma 7.11.2. �

In the situation of the lemma above it is not always true that the modules j!OU
are compact objects of D(O) (even if U is a quasi-compact object of C). Here is a
criterion.

Lemma 21.39.4. Let (C,O) be a ringed site. Let U be an object of C. The O-
module j!OU is a compact object of D(O) if there exists an integer d such that
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(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). The first means that the functor F = H0(U,−) has
finite cohomological dimension. Moreover, any direct sum of injective modules is
acyclic for F by (2). Since we may compute RF by applying F to any complex of
acyclics (Derived Categories, Lemma 13.30.2). Thus, if Ki be a family of objects
of D(O), then we can choose K-injective representatives I•i and we see that

⊕
Ki

is represented by
⊕
I•i . Thus H0(U,−) commutes with direct sums. �

Lemma 21.39.5. Let (C,O) be a ringed site. Let U be an object of C which is
quasi-compact and weakly contractible. Then j!OU is a compact object of D(O).

Proof. Combine Lemmas 21.39.4 and 21.38.1 with Modules on Sites, Lemma
18.29.2. �

21.40. Complexes with locally constant cohomology sheaves

Locally constant sheaves are introduced in Modules on Sites, Section 18.42. Let C
be a site. Let Λ be a ring. We denote D(C,Λ) the derived category of the abelian
category of Λ-modules on C.

Lemma 21.40.1. Let C be a site with final object X. Let Λ be a Noetherian ring.
Let K ∈ Db(C,Λ) with Hi(K) locally constant sheaves of Λ-modules of finite type.
Then there exists a covering {Ui → X} such that each K|Ui is represented by a
complex of locally constant sheaves of Λ-modules of finite type.

Proof. Let a ≤ b be such that Hi(K) = 0 for i 6∈ [a, b]. By induction on b− a we
will prove there exists a covering {Ui → X} such that K|Ui can be represented by a
complex M•Ui with Mp a finite type Λ-module and Mp = 0 for p 6∈ [a, b]. If b = a,
then this is clear. In general, we may replace X by the members of a covering and
assume that Hb(K) is constant, say Hb(K) = M . By Modules on Sites, Lemma
18.41.5 the module M is a finite Λ-module. Choose a surjection Λ⊕r → M given
by generators x1, . . . , xr of M .

By a slight generalization of Lemma 21.8.3 (details omitted) there exists a covering
{Ui → X} such that xi ∈ H0(X,Hb(K)) lifts to an element of Hb(Ui,K). Thus,
after replacing X by the Ui we reach the situation where there is a map Λ⊕r[−b]→
K inducing a surjection on cohomology sheaves in degree b. Choose a distinguished
triangle

Λ⊕r[−b]→ K → L→ Λ⊕r[−b+ 1]

Now the cohomology sheaves of L are nonzero only in the interval [a, b− 1], agree
with the cohomology sheaves of K in the interval [a, b−2] and there is a short exact
sequence

0→ Hb−1(K)→ Hb−1(L)→ Ker(Λ⊕r →M)→ 0

in degree b−1. By Modules on Sites, Lemma 18.42.5 we see that Hb−1(L) is locally
constant of finite type. By induction hypothesis we obtain an isomorphism M• → L
in D(C,Λ) with Mp a finite Λ-module and Mp = 0 for p 6∈ [a, b − 1]. The map
L→ Λ⊕r[−b+ 1] gives a map M b−1 → Λ⊕r which locally is constant (Modules on
Sites, Lemma 18.42.3). Thus we may assume it is given by a map M b−1 → Λ⊕r.
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The distinguished triangle shows that the composition M b−2 → M b−1 → Λ⊕r is
zero and the axioms of triangulated categories produce an isomorphism

Ma → . . .→M b−1 → Λ⊕r −→ K

in D(C,Λ). �

Let C be a site. Let Λ be a ring. Using the morphism Sh(C)→ Sh(pt) we see that
there is a functor D(Λ)→ D(C,Λ), K 7→ K.

Lemma 21.40.2. Let C be a site with final object X. Let Λ be a ring. Let

(1) K a perfect object of D(Λ),
(2) a finite complex K• of finite projective Λ-modules representing K,
(3) L• a complex of sheaves of Λ-modules, and
(4) ϕ : K → L• a map in D(C,Λ).

Then there exists a covering {Ui → X} and maps of complexes αi : K•|Ui → L•|Ui
representing ϕ|Ui .
Proof. Follows immediately from Lemma 21.33.8. �

Lemma 21.40.3. Let C be a site with final object X. Let Λ be a ring. Let K,L
be objects of D(Λ) with K perfect. Let ϕ : K → L be map in D(C,Λ). There exists
a covering {Ui → X} such that ϕ|Ui is equal to αi for some map αi : K → L in
D(Λ).

Proof. Follows from Lemma 21.40.2 and Modules on Sites, Lemma 18.42.3. �

Lemma 21.40.4. Let C be a site. Let Λ be a Noetherian ring. Let K,L ∈ D−(C,Λ).
If the cohomology sheaves of K and L are locally constant sheaves of Λ-modules of
finite type, then the cohomology sheaves of K ⊗L

Λ L are locally constant sheaves of
Λ-modules of finite type.

Proof. We’ll prove this as an application of Lemma 21.40.1. Note that Hi(K⊗L
ΛL)

is the same as Hi(τ≥i−1K⊗L
Λ τ≥i−1L). Thus we may assume K and L are bounded.

By Lemma 21.40.1 we may assume that K and L are represented by complexes of
locally constant sheaves of Λ-modules of finite type. Then we can replace these
complexes by bounded above complexes of finite free Λ-modules. In this case the
result is clear. �

Lemma 21.40.5. Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an
ideal. Let K ∈ D−(C,Λ). If the cohomology sheaves of K⊗L

ΛΛ/I are locally constant

sheaves of Λ/I-modules of finite type, then the cohomology sheaves of K ⊗L
Λ Λ/In

are locally constant sheaves of Λ/In-modules of finite type for all n ≥ 1.

Proof. Recall that the locally constant sheaves of Λ-modules of finite type form
a weak Serre subcategory of all Λ-modules, see Modules on Sites, Lemma 18.42.5.
Thus the subcategory of D(C,Λ) consisting of complexes whose cohomology sheaves
are locally constant sheaves of Λ-modules of finite type forms a strictly full, satu-
rated triangulated subcategory of D(C,Λ), see Derived Categories, Lemma 13.13.1.
Next, consider the distinguished triangles

K ⊗L
Λ I

n/In+1 → K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In → K ⊗L
Λ I

n/In+1[1]

and the isomorphisms

K ⊗L
Λ I

n/In+1 =
(
K ⊗L

Λ Λ/I
)
⊗L

Λ/I I
n/In+1

http://stacks.math.columbia.edu/tag/09BD
http://stacks.math.columbia.edu/tag/09BE
http://stacks.math.columbia.edu/tag/094H
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Combined with Lemma 21.40.4 we obtain the result. �
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CHAPTER 22

Differential Graded Algebra

22.1. Introduction

In this chapter we talk about differential graded algebras, modules, categories, etc.
A basic reference is [Kel94]. A survey paper is [Kel06].

Since we do not worry about length of exposition in the Stacks project we first
develop the material in the setting of categories of differential graded modules.
After that we redo the constructions in the setting of differential graded modules
over differential graded categories.

22.2. Conventions

In this chapter we hold on to the convention that ring means commutative ring
with 1. If R is a ring, then an R-algebra A will be an R-module A endowed with an
R-bilinear map A×A→ A (multiplication) such that multiplication is associative
and has a unit. In other words, these are unital associative R-algebras such that
the structure map R→ A maps into the center of A.

22.3. Differential graded algebras

Just the definitions.

Definition 22.3.1. Let R be a commutative ring. A differential graded algebra
over R is either

(1) a chain complex A• of R-modules endowed with R-bilinear maps An ×
Am → An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra, or

(2) a cochain complex A• of R-modules endowed with R-bilinear maps An ×
Am → An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra.

We often just write A =
⊕
An or A =

⊕
An and think of this as an associative

unital R-algebra endowed with a Z-grading and an R-linear operator d whose square
is zero and which satisfies the Leibniz rule as explained above. In this case we often
say “Let (A,d) be a differential graded algebra”.

Definition 22.3.2. A homomorphism of differential graded algebras f : (A,d) →
(B, d) is an algebra map f : A→ B compatible with the gradings and d.

1599
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Definition 22.3.3. Let R be a ring. Let (A,d) be a differential graded algebra
over R. The opposite differential graded algebra is the differential graded algebra
(Aopp,d) over R where Aopp = A as an R-module, d = d, and multiplication is
given by

a ·opp b = (−1)deg(a) deg(b)ba

for homogeneous elements a, b ∈ A.

This makes sense because

d(a ·opp b) = (−1)deg(a) deg(b)d(ba)

= (−1)deg(a) deg(b)d(b)a+ (−1)deg(a) deg(b)+deg(b)bd(a)

= (−1)deg(a)a ·opp d(b) + d(a) ·opp b

as desired.

Definition 22.3.4. A differential graded algebra (A,d) is commutative if ab =
(−1)nmba for a in degree n and b in degree m. We say A is strictly commutative if
in addition a2 = 0 for deg(a) odd.

The following definition makes sense in general but is perhaps “correct” only when
tensoring commutative differential graded algebras.

Definition 22.3.5. Let R be a ring. Let (A,d), (B, d) be differential graded
algebras over R. The tensor product differential graded algebra of A and B is the
algebra A⊗R B with multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(a′) deg(b)aa′ ⊗ bb′

endowed with differential d defined by the rule d(a⊗ b) = d(a)⊗ b+ (−1)ma⊗d(b)
where m = deg(b).

Lemma 22.3.6. Let R be a ring. Let (A, d), (B, d) be differential graded algebras
over R. Denote A•, B• the underlying cochain complexes. As cochain complexes
of R-modules we have

(A⊗R B)• = Tot(A• ⊗R B•).

Proof. Recall that the differential of the total complex is given by dp,q1 +(−1)pdp,q2

on Ap⊗RBq. And this is exactly the same as the rule for the differential on A⊗RB
in Definition 22.3.5. �

22.4. Differential graded modules

Just the definitions.

Definition 22.4.1. Let R be a ring. Let (A,d) be a differential graded algebra
over R. A (right) differential graded module M over A is a right A-module M which
has a grading M =

⊕
Mn and a differential d such that MnAm ⊂ Mn+m, such

that d(Mn) ⊂Mn+1, and such that

d(ma) = d(m)a+ (−1)nmd(a)

for a ∈ A andm ∈Mn. A homomorphism of differential graded modules f : M → N
is an A-module map compatible with gradings and differentials. The category of
(right) differential graded A-modules is denoted Mod(A,d).

http://stacks.math.columbia.edu/tag/09JG
http://stacks.math.columbia.edu/tag/061W
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Note that we can think of M as a cochain complex M• of (right) R-modules.
Namely, for r ∈ R we have d(r) = 0 and r maps to a degree 0 element of A, hence
d(mr) = d(m)r.

We can define left differential graded A-modules in exactly the same manner. If M is
a left A-module, then we can think of M as a right Aopp-module with mulitplication
·opp defined by the rule

m ·opp a = (−1)deg(a) deg(m)am

for a and m homogeneous. The category of left differential graded A-modules is
equivalent to the category of right differential graded Aopp-modules. We prefer to
work with right modules (essentially because of what happens in Example 22.19.8),
but the reader is free to switch to left modules if (s)he so desires.

Lemma 22.4.2. Let (A, d) be a differential graded algebra. The category Mod(A,d)

is abelian and has arbitrary limits and colimits.

Proof. Kernels and cokernels commute with taking underlying A-modules. Sim-
ilarly for direct sums and colimits. In other words, these operations in Mod(A,d)

commute with the forgetful functor to the category of A-modules. This is not the
case for products and limits. Namely, if Ni, i ∈ I is a family of differential graded
A-modules, then the product

∏
Ni in Mod(A,d) is given by setting (

∏
Ni)

n =
∏
Nn
i

and
∏
Ni =

⊕
n(
∏
Ni)

n. Thus we see that the product does commute with the
forgetful functor to the category of graded A-modules. A category with products
and equalizers has limits, see Categories, Lemma 4.14.10. �

Thus, if (A,d) is a differential graded algebra over R, then there is an exact functor

Mod(A,d) −→ Comp(R)

of abelian categories. For a differential graded module M the cohomology groups
Hn(M) are defined as the cohomology of the corresponding complex of R-modules.
Therefore, a short exact sequence 0 → K → L → M → 0 of differential graded
modules gives rise to a long exact sequence

(22.4.2.1) Hn(K)→ Hn(L)→ Hn(M)→ Hn+1(K)

of cohomology modules, see Homology, Lemma 12.12.12.

Moreover, from now on we borrow all the terminology used for complexes of mod-
ules. For example, we say that a differential graded A-module M is acyclic if
Hk(M) = 0 for all k ∈ Z. We say that a homomorphism M → N of differential
graded A-modules is a quasi-isomorphism if it induces isomorphisms Hk(M) →
Hk(N) for all k ∈ Z. And so on and so forth.

Definition 22.4.3. Let (A,d) be a differential graded algebra. Let M be a dif-
ferential graded module. For any k ∈ Z we define the k-shifted module M [k] as
follows

(1) as A-module M [k] = M ,
(2) M [k]n = Mn+k,
(3) dM [k] = (−1)kdM .

For a morphism f : M → N of differential graded A-modules we let f [k] : M [k]→
N [k] be the map equal to f on underlying A-modules. This defines a functor
[k] : Mod(A,d) → Mod(A,d).

http://stacks.math.columbia.edu/tag/09JJ
http://stacks.math.columbia.edu/tag/09JL
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The remarks in Homology, Section 12.14 apply. In particular, we will identify the
cohomology groups of all shifts M [k] without the intervention of signs.

At this point we have enough structure to talk about triangles, see Derived Cate-
gories, Definition 13.3.1. In fact, our next goal is to develop enough theory to be
able to state and prove that the homotopy category of differential graded modules
is a triangulated category. First we define the homotopy category.

22.5. The homotopy category

Our homotopies take into account the A-module structure and the grading, but not
the differential (of course).

Definition 22.5.1. Let (A,d) be a differential graded algebra. Let f, g : M → N
be homomorphisms of differential graded A-modules. A homotopy between f and
g is an A-module map h : M → N such that

(1) h(Mn) ⊂ Nn−1 for all n, and
(2) f(x)− g(x) = dN (h(x)) + h(dM (x)) for all x ∈M .

If a homotopy exists, then we say f and g are homotopic.

Thus h is compatible with the A-module structure and the grading but not with
the differential. If f = g and h is a homotopy as in the definition, then h defines a
morphism h : M → N [−1] in Mod(A,d).

Lemma 22.5.2. Let (A, d) be a differential graded algebra. Let f, g : L → M be
homomorphisms of differential graded A-modules. Suppose given further homomor-
phisms a : K → L, and c : M → N . If h : L → M is an A-module map which
defines a homotopy between f and g, then c ◦ h ◦ a defines a homotopy between
c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Immediate from Homology, Lemma 12.12.7. �

This lemma allows us to define the homotopy category as follows.

Definition 22.5.3. Let (A,d) be a differential graded algebra. The homotopy
category, denoted K(Mod(A,d)), is the category whose objects are the objects of
Mod(A,d) and whose morphisms are homotopy classes of homomorphisms of differ-
ential graded A-modules.

The notation K(Mod(A,d)) is not standard but at least is consistent with the use
of K(−) in other places of the Stacks project.

Lemma 22.5.4. Let (A, d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) has direct sums and products.

Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 22.4.2.
This works because we saw that these functors commute with the forgetful functor
to the category of graded A-modules and because

∏
is an exact functor on the

category of families of abelian groups. �

22.6. Cones

We introduce cones for the category of differential graded modules.

http://stacks.math.columbia.edu/tag/09JN
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Definition 22.6.1. Let (A,d) be a differential graded algebra. Let f : K → L be
a homomorphism of differential graded A-modules. The cone of f is the differential
graded A-module C(f) given by C(f) = L⊕K with grading C(f)n = Ln ⊕Kn+1

and differential

dC(f) =

(
dL f
0 −dK

)
It comes equipped with canonical morphisms of complexes i : L → C(f) and
p : C(f)→ K[1] induced by the obvious maps L→ C(f) and C(f)→ K.

The formation of the cone triangle is functorial in the following sense.

Lemma 22.6.2. Let (A, d) be a differential graded algebra. Suppose that

K1
f1

//

a

��

L1

b

��
K2

f2 // L2

is a diagram of homomorphisms of diferential graded A-modules which is commuta-
tive up to homotopy. Then there exists a morphism c : C(f1)→ C(f2) which gives
rise to a morphism of triangles

(a, b, c) : (K1, L1, C(f1), f1, i1, p1)→ (K1, L1, C(f1), f2, i2, p2)

in K(Mod(A,d)).

Proof. Let h : K1 → L2 be a homotopy between f2 ◦ a and b ◦ f1. Define c by the
matrix

c =

(
b h
0 a

)
: L1 ⊕K1 → L2 ⊕K2

A matrix computation show that c is a morphism of differential graded modules.
It is trivial that c ◦ i1 = i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. �

22.7. Admissible short exact sequences

An admissible short exact sequence is the analogue of termwise split exact sequences
in the setting of differential graded modules.

Definition 22.7.1. Let (A,d) be a differential graded algebra.

(1) A homomorphismK → L of differential gradedA-modules is an admissible
monomorphism if there exists a graded A-module map L → K which is
left inverse to K → L.

(2) A homomorphism L → M of differential graded A-modules is an admis-
sible epimorphism if there exists a graded A-module map M → L which
is right inverse to L→M .

(3) A short exact sequence 0 → K → L → M → 0 of differential graded
A-modules is an admissible short exact sequence if it is split as a sequence
of graded A-modules.

Thus the splittings are compatible with all the data except for the differentials.
Given an admissible short exact sequence we obtain a triangle; this is the reason
that we require our splittings to be compatible with the A-module structure.

http://stacks.math.columbia.edu/tag/09KA
http://stacks.math.columbia.edu/tag/09KD
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Lemma 22.7.2. Let (A, d) be a differential graded algebra. Let 0 → K → L →
M → 0 be an admissible short exact sequence of differential graded A-modules. Let
s : M → L and π : L→ K be splittings such that Ker(π) = Im(s). Then we obtain
a morphism

δ = π ◦ dL ◦ s : M → K[1]

of Mod(A,d) which induces the boundary maps in the long exact sequence of coho-
mology (22.4.2.1).

Proof. The map π ◦ dL ◦ s is compatible with the A-module structure and the
gradings by construction. It is compatible with differentials by Homology, Lemmas
12.14.10. Let R be the ring that A is a differential graded algebra over. The equal-
ity of maps is a statement about R-modules. Hence this follows from Homology,
Lemmas 12.14.10 and 12.14.11. �

Lemma 22.7.3. Let (A, d) be a differential graded algebra. Let

K
f
//

a

��

L

b
��

M
g // N

be a diagram of homomorphisms of differential graded A-modules commuting up to
homotopy.

(1) If f is an admissible monomorphism, then b is homotopic to a homomor-
phism which makes the diagram commute.

(2) If g is an admissible epimorphism, then a is homotopic to a morphism
which makes the diagram commute.

Proof. Let h : K → N be a homotopy between bf and ga, i.e., bf − ga = dh+hd.
Suppose that π : L → K is a graded A-module map left inverse to f . Take
b′ = b − dhπ − hπd. Suppose s : N → M is a graded A-module map right inverse
to g. Take a′ = a+ dsh+ shd. Computations omitted. �

Lemma 22.7.4. Let (A, d) be a differential graded algebra. Let α : K → L be a
homomorphism of differential graded A-modules. There exists a factorization

K
α̃ //

α

77L̃
π // L

in Mod(A,d) such that

(1) α̃ is an admissible monomorphism (see Definition 22.7.1),

(2) there is a morphism s : L → L̃ such that π ◦ s = idL and such that s ◦ π
is homotopic to idL̃.

Proof. The proof is identical to the proof of Derived Categories, Lemma 13.9.6.
Namely, we set L̃ = L ⊕ C(1K) and we use elementary properties of the cone
construction. �

Lemma 22.7.5. Let (A, d) be a differential graded algebra. Let L1 → L2 → . . .→
Ln be a sequence of composable homomorphisms of differential graded A-modules.

http://stacks.math.columbia.edu/tag/09JU
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There exists a commutative diagram

L1
// L2

// . . . // Ln

M1
//

OO

M2
//

OO

. . . // Mn

OO

in Mod(A,d) such that each Mi → Mi+1 is an admissible monomorphism and each
Mi → Li is a homotopy equivalence.

Proof. The case n = 1 is without content. Lemma 22.7.4 is the case n = 2.
Suppose we have constructed the diagram except for Mn. Apply Lemma 22.7.4
to the composition Mn−1 → Ln−1 → Ln. The result is a factorization Mn−1 →
Mn → Ln as desired. �

Lemma 22.7.6. Let (A, d) be a differential graded algebra. Let 0 → Ki → Li →
Mi → 0, i = 1, 2, 3 be admissible short exact sequence of differential graded A-
modules. Let b : L1 → L2 and b′ : L2 → L3 be homomorphisms of differential
graded modules such that

K1

0

��

// L1
//

b

��

M1

0

��
K2

// L2
// M2

and

K2

0

��

// L2
//

b′

��

M2

0

��
K3

// L3
// M3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 22.7.3 we can replace b and b′ by homotopic maps such that the
right square of the left diagram commutes and the left square of the right diagram
commutes. In other words, we have Im(b) ⊂ Im(K2 → L2) and Ker((b′)n) ⊃
Im(K2 → L2). Then b ◦ b′ = 0 as a map of modules. �

22.8. Distinguished triangles

The following lemma produces our distinguished triangles.

Lemma 22.8.1. Let (A, d) be a differential graded algebra. Let 0 → K → L →
M → 0 be an admissible short exact sequence of differential graded A-modules. The
triangle

(22.8.1.1) K → L→M
δ−→ K[1]

with δ as in Lemma 22.7.2 is, up to canonical isomorphism in K(Mod(A,d)), inde-
pendent of the choices made in Lemma 22.7.2.

Proof. Namely, let (s′, π′) be a second choice of splittings as in Lemma 22.7.2.
Then we claim that δ and δ′ are homotopic. Namely, write s′ = s + α ◦ h and
π′ = π + g ◦ β for some unique homomorphisms of A-modules h : M → K and
g : M → K of degree −1. Then g = −h and g is a homotopy between δ and δ′.
The computations are done in the proof of Homology, Lemma 12.14.12. �

Definition 22.8.2. Let (A,d) be a differential graded algebra.

(1) If 0 → K → L → M → 0 is an admissible short exact sequence of
differential graded A-modules, then the triangle associated to 0 → K →
L→M → 0 is the triangle (22.8.1.1) of K(Mod(A,d)).

http://stacks.math.columbia.edu/tag/09JY
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(2) A triangle of K(Mod(A,d)) is called a distinguished triangle if it is iso-
morphic to a triangle associated to an admissible short exact sequence of
differential graded A-modules.

22.9. Cones and distinguished triangles

Let (A,d) be a differential graded algebra. Let f : K → L be a homomorphism of
differential graded A-modules. Then (K,L,C(f), f, i, p) forms a triangle:

K → L→ C(f)→ K[1]

in Mod(A,d) and hence in K(Mod(A,d)). Cones are not distinguished triangles in
general, but the difference is a sign or a rotation (your choice). Here are two precise
statements.

Lemma 22.9.1. Let (A, d) be a differential graded algebra. Let f : K → L be a
homomorphism of differential graded modules. The triangle (L,C(f),K[1], i, p, f [1])
is the triangle associated to the admissible short exact sequence

0→ L→ C(f)→ K[1]→ 0

coming from the definition of the cone of f .

Proof. Immediate from the definitions. �

Lemma 22.9.2. Let (A, d) be a differential graded algebra. Let α : K → L and
β : L→M define an admissible short exact sequence

0→ K → L→M → 0

of differential graded A-modules. Let (K,L,M,α, β, δ) be the associated triangle.
Then the triangles

(M [−1],K, L, δ[−1], α, β) and (M [−1],K,C(δ[−1]), δ[−1], i, p)

are isomorphic.

Proof. Using a choice of splittings we write L = K ⊕M and we identify α and β
with the natural inclusion and projection maps. By construction of δ we have

dB =

(
dK δ
0 dM

)
On the other hand the cone of δ[−1] : M [−1]→ K is given as C(δ[−1]) = K ⊕M
with differential identical with the matrix above! Whence the lemma. �

Lemma 22.9.3. Let (A, d) be a differential graded algebra. Let f1 : K1 → L1 and
f2 : K2 → L2 be homomorphisms of differential graded A-modules. Let

(a, b, c) : (K1, L1, C(f1), f1, i1, p1) −→ (K1, L1, C(f1), f2, i2, p2)

be any morphism of triangles of K(Mod(A,d)). If a and b are homotopy equivalences
then so is c.

Proof. Let a−1 : K2 → K1 be a homomorphism of differential graded A-modules
which is inverse to a in K(Mod(A,d)). Let b−1 : L2 → L1 be a homomorphism
of differential graded A-modules which is inverse to b in K(Mod(A,d)). Let c′ :

C(f2) → C(f1) be the morphism from Lemma 22.6.2 applied to f1 ◦ a−1 = b−1 ◦
f2. If we can show that c ◦ c′ and c′ ◦ c are isomorphisms in K(Mod(A,d)) then
we win. Hence it suffices to prove the following: Given a morphism of triangles

http://stacks.math.columbia.edu/tag/09KB
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(1, 1, c) : (K,L,C(f), f, i, p) in K(Mod(A,d)) the morphism c is an isomorphism in
K(Mod(A,d)). By assumption the two squares in the diagram

L //

1

��

C(f) //

c

��

K[1]

1

��
L // C(f) // K[1]

commute up to homotopy. By construction of C(f) the rows form admissible short
exact sequences. Thus we see that (c− 1)2 = 0 in K(Mod(A,d)) by Lemma 22.7.6.
Hence c is an isomorphism in K(Mod(A,d)) with inverse 2− c. �

The following lemma shows that the collection of triangles of the homotopy category
given by cones and the distinguished triangles are the same up to isomorphisms, at
least up to sign!

Lemma 22.9.4. Let (A, d) be a differential graded algebra.

(1) Given an admissible short exact sequence 0 → K
α−→ L → M → 0 of

differential graded A-modules there exists a homotopy equivalence C(α)→
M such that the diagram

K //

��

L

��

// C(α)
−p
//

��

K[1]

��
K

α // L
β // M

δ // K[1]

defines an isomorphism of triangles in K(Mod(A,d)).
(2) Given a morphism of complexes f : K → L there exists an isomorphism

of triangles

K //

��

L̃

��

// M
δ
//

��

K[1]

��
K // L // C(f)

−p // K[1]

where the upper triangle is the triangle associated to a admissible short
exact sequence K → L̃→M .

Proof. Proof of (1). We have C(α) = L ⊕ K and we simply define C(α) → M
via the projection onto L followed by β. This defines a morphism of differential
graded modules because the compositions Kn+1 → Ln+1 →Mn+1 are zero. Choose
splittings s : M → L and π : L → K with Ker(π) = Im(s) and set δ = π ◦ dL ◦ s
as usual. To get a homotopy inverse we take M → C(α) given by (s,−δ). This
is compatible with differentials because δn can be characterized as the unique map
Mn → Kn+1 such that d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of Homology, Lemma
12.14.10. The composition M → C(f) → M is the identity. The composition
C(f)→M → C(f) is equal to the morphism(

s ◦ β 0
−δ ◦ β 0

)

http://stacks.math.columbia.edu/tag/09KF
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To see that this is homotopic to the identity map use the homotopy h : C(α) →
C(α) given by the matrix(

0 0
π 0

)
: C(α) = L⊕K → L⊕K = C(α)

It is trivial to verify that(
1 0
0 1

)
−
(
s
−δ

)(
β 0

)
=

(
d α
0 −d

)(
0 0
π 0

)
+

(
0 0
π 0

)(
d α
0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α) → K[1]
(see Definition 22.6.1) and C(α)→M → K[1] agree up to homotopy. This is clear
from the above. Namely, we can use the homotopy inverse (s,−δ) : M → C(α) and
check instead that the two maps M → K[1] agree. And note that p ◦ (s,−δ) = −δ
as desired.

Proof of (2). We let f̃ : K → L̃, s : L→ L̃ and π : L→ L be as in Lemma 22.7.4.

By Lemmas 22.6.2 and 22.9.3 the triangles (K,L,C(f), i, p) and (K, L̃, C(f̃), ĩ, p̃)
are isomorphic. Note that we can compose isomorphisms of triangles. Thus we may
replace L by L̃ and f by f̃ . In other words we may assume that f is an admissible
monomorphism. In this case the result follows from part (1). �

22.10. The homotopy category is triangulated

We first prove that it is pre-triangulated.

Lemma 22.10.1. Let (A, d) be a differential graded algebra. The homotopy cate-
gory K(Mod(A,d)) with its natural translation functors and distinguished triangles
is a pre-triangulated category.

Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished
one is distinguished. Also, any triangle (K,K, 0, 1, 0, 0) is distinguished since
0 → K → K → 0 → 0 is an admissible short exact sequence. Finally, given
any homomorphism f : K → L of differential graded A-modules the triangle
(K,L,C(f), f, i,−p) is distinguished by Lemma 22.9.4.

Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y,Z,X[1], g, h,−f [1])
is distinguished. Then there exists an admissible short exact sequence 0 → K →
L → M → 0 such that the associated triangle (K,L,M,α, β, δ) is isomorphic to
(Y,Z,X[1], g, h,−f [1]). Rotating back we see that (X,Y, Z, f, g, h) is isomorphic
to (M [−1],K, L,−δ[−1], α, β). It follows from Lemma 22.9.2 that the triangle
(M [−1],K, L, δ[−1], α, β) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i, p). Pre-
composing the previous isomorphism of triangles with −1 on Y it follows that
(X,Y, Z, f, g, h) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i,−p). Hence it is dis-
tinguished by Lemma 22.9.4. On the other hand, suppose that (X,Y, Z, f, g, h) is
distinguished. By Lemma 22.9.4 this means that it is isomorphic to a triangle of the
form (K,L,C(f), f, i,−p) for some morphism f of Mod(A,d). Then the rotated tri-
angle (Y,Z,X[1], g, h,−f [1]) is isomorphic to (L,C(f),K[1], i,−p,−f [1]) which is
isomorphic to the triangle (L,C(f),K[1], i, p, f [1]). By Lemma 22.9.1 this triangle
is distinguished. Hence (Y,Z,X[1], g, h,−f [1]) is distinguished as desired.

Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished trian-
gles of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′ ◦ a =
b◦f . By Lemma 22.9.4 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)

http://stacks.math.columbia.edu/tag/09KH
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and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply ap-
ply Lemma 22.6.2 to the commutative diagram given by f, f ′, a, b. �

Before we prove TR4 in general we prove it in a special case.

Lemma 22.10.2. Let (A, d) be a differential graded algebra. Suppose that α : K →
L and β : L→M are admissible monomorphisms of differential graded A-modules.
Then there exist distinguished triangles (K,L,Q1, α, p1, d1), (K,M,Q2, β◦α, p2, d2)
and (L,M,Q3, β, p3, d3) for which TR4 holds.

Proof. Say π1 : L → K and π3 : M → L are homomorphisms of graded A-
modules which are left inverse to α and β. Then also K → M is an admissible
monomorphism with left inverse π2 = π1 ◦ π3. Let us write Q1, Q2 and Q3 for
the cokernels of K → L, K → M , and L → M . Then we obtain identifications
(as graded A-modules) Q1 = Ker(π1), Q3 = Ker(π3) and Q2 = Ker(π2). Then
L = K⊕Q1 and M = L⊕Q3 as graded A-modules. This implies M = K⊕Q1⊕Q3.
Note that π2 = π1 ◦ π3 is zero on both Q1 and Q3. Hence Q2 = Q1⊕Q3. Consider
the commutative diagram

0 → K → L → Q1 → 0
↓ ↓ ↓

0 → K → M → Q2 → 0
↓ ↓ ↓

0 → L → M → Q3 → 0

The rows of this diagram are admissible short exact sequences, and hence determine
distinguished triangles by definition. Moreover downward arrows in the diagram
above are compatible with the chosen splittings and hence define morphisms of
triangles

(K → L→ Q1 → K[1]) −→ (K →M → Q2 → K[1])

and

(K →M → Q2 → K[1]) −→ (L→M → Q3 → L[1]).

Note that the splittings Q3 → M of the bottom sequence in the diagram provides
a splitting for the split sequence 0 → Q1 → Q2 → Q3 → 0 upon composing with
M → Q2. It follows easily from this that the morphism δ : Q3 → Q1[1] in the
corresponding distinguished triangle

(Q1 → Q2 → Q3 → Q1[1])

is equal to the composition Q3 → L[1]→ Q1[1]. Hence we get a structure as in the
conclusion of axiom TR4. �

Here is the final result.

Proposition 22.10.3. Let (A, d) be a differential graded algebra. The homotopy
category K(Mod(A,d)) of differential graded A-modules with its natural translation
functors and distinguished triangles is a triangulated category.

Proof. We know that K(Mod(A,d)) is a pre-triangulated category. Hence it suffices
to prove TR4 and to prove it we can use Derived Categories, Lemma 13.4.13. Let
K → L and L→M be composable morphisms of K(Mod(A,d)). By Lemma 22.7.5
we may assume that K → L and L → M are admissible monomorphisms. In this
case the result follows from Lemma 22.10.2. �

http://stacks.math.columbia.edu/tag/09KI
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22.11. Projective modules over algebras

In this section we discuss projective modules over algebras and over graded algebras.
Thus it is the analogue of Algebra, Section 10.74 in the setting of this chapter.

Algebras and modules. Let R be a ring and let A be an R-algebra, see Section
22.2 for our conventions. It is clear that A is a projective right A-module since
HomA(A,M) = M for any right A-module M (and thus HomA(A,−) is exact).
Conversely, let P be a projective right A-module. Then we can choose a surjection⊕

i∈I A → M by choosing a set {mi}i∈I of generators of P over A. Since P is
projective there is a left inverse to the surjection, and we find that P is isomorphic
to a direct summand of a free module, exactly as in the commutative case (Algebra,
Lemma 10.74.2).

Graded algebras and modules. Let R be a ring. Let A be a graded algebra
over R. Let ModA denote the category of graded right A-modules. For an integer
k let A[k] denote the shift of A. For an graded right A-module we have

HomModA(A[k],M) = M−k

As the functor M 7→M−k is exact on ModA we conclude that A[k] is a projective
object of ModA. Conversely, suppose that P is a projective object of ModA. By
choosing a set of homogeneous generators of P as an A-module, we can find a
surjection ⊕

i∈I
A[ki] −→ P

Thus we conclude that a projective object of ModA is a direct summand of a direct
sum of the shifts A[k].

If (A,d) is a differential graded algebra and P is an object of Mod(A,d) then we say
P is projective as a graded A-module or sometimes P is graded projective to mean
that P is a projective object of the abelian category ModA of graded A-modules.

Lemma 22.11.1. Let (A, d) be a differential graded algebra. Let M → P be a
surjective homomorphism of differential graded A-modules. If P is projective as a
graded A-module, then M → P is an admissible epimorphism.

Proof. This is immediate from the definitions. �

Lemma 22.11.2. Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)
(A[k],M) = Ker(d : M−k →M−k+1)

and

HomK(Mod(A,d))(A[k],M) = H−k(M)

for any differential graded A-module M .

Proof. This is clear from the discussion above. �

22.12. Injective modules over algebras

In this section we discuss injective modules over algebras and over graded algebras.
Thus it is the analogue of More on Algebra, Section 15.42 in the setting of this
chapter.

http://stacks.math.columbia.edu/tag/09K0
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Algebras and modules. Let R be a ring and let A be an R-algebra, see Section
22.2 for our conventions. For a right A-module M we set

M∨ = HomZ(M,Q/Z)

which we think of as a left A-module by the multiplication (af)(x) = f(xa).
Namely, ((ab)f)(x) = f(xab) = (bf)(xa) = (a(bf))(x). Conversely, if M is a
left A-module, then M∨ is a right A-module. Since Q/Z is an injective abelian
group (More on Algebra, Lemma 15.41.1), the functor M 7→M∨ is exact (More on
Algebra, Lemma 15.42.2). Moreover, the evaluation map M → (M∨)∨ is injective
for all modules M (More on Algebra, Lemma 15.42.3).

We claim that A∨ is an injective right A-module. Namely, given a right A-module
N we have

HomA(N,A∨) = HomA(N,HomZ(A,Q/Z)) = N∨

and we conclude because the functor N 7→ N∨ is exact. The second equality holds
because

HomZ(N,HomZ(A,Q/Z)) = HomZ(N ⊗Z A,Q/Z)

by Algebra, Lemma 10.11.8. Inside this module A-linearity exactly picks out the
bilinear maps ϕ : N × A → Q/Z which have the same value on x ⊗ a and xa ⊗ 1,
i.e., come from elements of N∨.

Finally, for every right A-module M we can choose a surjection
⊕

i∈I A→ M∨ to
get an injection M → (M∨)∨ →

∏
i∈I A

∨.

We conclude

(1) the category of A-modules has enough injectives,
(2) A∨ is an injective A-module, and
(3) every A-module injects into a product of copies of A∨.

Graded algebras and modules. Let R be a ring. Let A be a graded algebra
over R. If M is a graded A-module we set

M∨ =
⊕

n∈Z
HomZ(M−n,Q/Z) =

⊕
n∈Z

(M−n)∨

as a graded R-module with the A-module structure defined as above (for homoge-
neous elements). This again switches left and right modules. On the category of
graded A-modules the functor M 7→ M∨ is exact (check on graded pieces). More-
over, the evaluation map M → (M∨)∨ is injective as before (because we can check
this on the graded pieces).

We claim that A∨ is an injective object of the category ModA of graded right
A-modules. Namely, given a graded right A-module N we have

HomModA(N,A∨) = HomModA(N,
⊕

HomZ(A−n,Q/Z)) = (N0)∨

and we conclude because the functor N 7→ (N0)∨ = (N∨)0 is exact. To see that
the second equality holds we use the equalities

HomZ(Nn,HomZ(A−n,Q/Z)) = HomZ(Nn ⊗Z A
−n,Q/Z)

of Algebra, Lemma 10.11.8. Thus an element of HomModA(N,A∨) corresponds to
a family of Z-bilinear maps ψn : Nn ×A−n → Q/Z such that ψn(x, a) = ψ0(xa, 1)
for all x ∈ Nn and a ∈ A−n. Moreover, ψ0(x, a) = ψ0(xa, 1) for all x ∈ N0, a ∈ A0.
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It follows that the maps ψn are determined by ψ0 and that ψ0(x, a) = ϕ(xa) for a
unique element ϕ ∈ (N0)∨.

Finally, for every graded right A-module M we can choose a surjection (of graded
left A-modules) ⊕

i∈I
A[ki]→M∨

where A[ki] denotes the shift of A by ki ∈ Z. (We do this by choosing homogeneous
generators for M∨.) In this way we get an injection

M → (M∨)∨ →
∏

A[ki]
∨ =

∏
A∨[−ki]

Observe that the products in the formula above are products in the category of
graded modules (in other words, take products in each degree and then take the
direct sum of the pieces).

We conclude that

(1) the category of graded A-modules has enough injectives,
(2) for every k ∈ Z the module A∨[k] is injective, and
(3) every A-module injects into a product in the category of graded modules

of copies of shifts A∨[k].

If (A,d) is a differential graded algebra and I is an object of Mod(A,d) then we
say I is injective as a graded A-module to mean that I is a injective object of the
abelian category ModA of graded A-modules.

Lemma 22.12.1. Let (A, d) be a differential graded algebra. Let I → M be an
injective homomorphism of differential graded A-modules. If I is an injective object
of the category of graded A-modules, then I →M is an admissible monomorphism.

Proof. This is immediate from the definitions. �

Let (A,d) be a differential graded algebra. If M is a left differential graded A-
module, then we will endow M∨ (with its graded module structure as above) with
a right differential graded module structure by setting

dM∨(f) = −(−1)nf ◦ d−n−1
M in (M∨)n+1

for f ∈ (M∨)n = HomZ(M−n,Q/Z) and d−n−1
M : M−n−1 → M−n the differential

of M1. We will show by a computation that this works. Namely, if a ∈ Am,
x ∈M−n−m−1 and f ∈ (M∨)n, then we have

dM∨(fa)(x) = −(−1)n+m(fa)(dM (x))

= −(−1)n+mf(adM (x))

= −(−1)nf(dM (ax)− d(a)x)

= −(−1)n[−(−1)ndM∨(f)(ax)− (fd(a))(x)]

= (dM∨(f)a)(x) + (−1)n(fd(a))(x)

the third equality because dM (ax) = d(a)x + (−1)madM (x). In other words we
have dM∨(fa) = dM∨(f)a+ (−1)nfd(a) as desired.

If M is a right differential graded module, then the sign rule above does not work.
The problem seems to be that in defining the left A-module structure on M∨ our

1The sign rule is analogous to the one in Example 22.19.8, although there we are working
with right modules and the same sign rule taken there does not work for left modules. Sigh!

http://stacks.math.columbia.edu/tag/09K2
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conventions for graded modules above defines af to be the element of (M∨)n+m

such that (af)(x) = f(xa) for f ∈ (M∨)n, a ∈ Am and x ∈M−n−m which in some
sense is the “wrong” thing to do if m is odd. Anyway, instead of changing the sign
rule for the module structure, we fix the problem by using

dM∨(f) = (−1)nf ◦ d−n−1
M

when M is a right differential graded A-module. The computation for a ∈ Am,
x ∈M−n−m−1 and f ∈ (M∨)n then becomes

dM∨(af)(x) = (−1)n+m(fa)(dM (x))

= (−1)n+mf(dM (x)a)

= (−1)n+mf(dM (ax)− (−1)m+n+1xd(a))

= (−1)mdM∨(f)(ax) + f(xd(a))

= (−1)m(adM∨(f))(x) + (d(a)f)(x)

the third equality because dM (xa) = dM (x)a + (−1)n+m+1xd(a). In other words,
we have dM∨(af) = d(a)f + (−1)madM∨(f) as desired.

We leave it to the reader to show that with the conventions above there is a natural
evaluation map M → (M∨)∨ in the category of differential graded modules if M is
either a differential graded left module or a differential graded right module. This
works because the sign choices above cancel out and the differentials of ((M∨)∨ are
the natural maps ((Mn)∨)∨ → ((Mn+1)∨)∨.

Lemma 22.12.2. Let (A, d) be a differential graded algebra. If M is a left differ-
ential graded A-module and N is a right differential graded A-module, then

HomMod(A,d)
(N,M∨)

is isomorphic to the set of sequences (ψn) of Z-bilinear pairings

ψn : Nn ×M−n −→ Q/Z

such that ψn+m(y, ax) = ψn+m(ya, x) for all y ∈ Nn, x ∈ M−m, and a ∈ Am−n
and such that ψn+1(d(y), x)+(−1)nψn(y, d(x)) = 0 for all y ∈ Nn and x ∈M−n−1.

Proof. If f ∈ HomMod(A,d)
(N,M∨), then we map this to the sequence of pairings

defined by ψn(y, x) = f(y)(x). It is a computation (omitted) to see that these
pairings satisfy the conditions as in the lemma. For the converse, use Algebra,
Lemma 10.11.8 to turn a sequence of pairings into a map f : N →M∨. �

Lemma 22.12.3. Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)
(M,A∨[k]) = Ker(d : (M∨)k → (M∨)k+1)

and

HomK(Mod(A,d))(M,A∨[k]) = Hk(M∨)

for any differential graded A-module M .

Proof. This is clear from the discussion above. �
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22.13. P-resolutions

This section is the analogue of Derived Categories, Section 13.28.

Let (A,d) be a differential graded algebra. Let P be a differential graded A-module.
We say P has property (P) if it there exists a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P

by differential graded submodules such that

(1) P =
⋃
FpP ,

(2) the inclusions FiP → Fi+1P are admissible monomorphisms,
(3) the quotients Fi+1P/FiP are isomorphic as differential graded A-modules

to a direct sum of A[k].

In fact, condition (2) is a consequence of condition (3), see Lemma 22.11.1. More-
over, the reader can verify that as a graded A-module P will be isomorphic to a
direct sum of shifts of A.

Lemma 22.13.1. Let (A, d) be a differential graded algebra. Let P be a differen-
tial graded A-module. If F• is a filtration as in property (P), then we obtain an
admissible short exact sequence

0→
⊕

FiP →
⊕

FiP → P → 0

of differential graded A-modules.

Proof. The second map is the direct sum of the inclusion maps. The first map
on the summand FiP of the source is the sum of the identity FiP → FiP and the
negative of the inclusion map FiP → Pi+1P . Choose homomorphisms si : Fi+1P →
FiP of graded A-modules which are left inverse to the inclusion maps. Composing
gives maps sj,i : FjP → FiP for all j > i. Then a left inverse of the first arrow
maps x ∈ FjP to (sj,0(x), sj,1(x), . . . , sj,j−1(x), 0, . . .) in

⊕
FiP . �

The following lemma shows that differential graded modules with property (P) are
the dual notion to K-injective modules (i.e., they are K-projective in some sense).
See Derived Categories, Definition 13.29.1.

Lemma 22.13.2. Let (A, d) be a differential graded algebra. Let P be a differential
graded A-module with property (P). Then

HomK(Mod(A,d))(P,N) = 0

for all acyclic differential graded A-modules N .

Proof. We will use thatK(Mod(A,d)) is a triangulated category (Proposition 22.10.3).
Let F• be a filtration on P as in property (P). The short exact sequence of Lemma
22.13.1 produces a distinguished triangle. Hence by Derived Categories, Lemma
13.4.2 it suffices to show that

HomK(Mod(A,d))(FiP,N) = 0

for all acyclic differential graded A-modules N and all i. Each of the differential
graded modules FiP has a finite filtration by admissible monomorphisms, whose
graded pieces are direct sums of shifts A[k]. Thus it suffices to prove that

HomK(Mod(A,d))(A[k], N) = 0

http://stacks.math.columbia.edu/tag/09KL
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for all acyclic differential graded A-modules N and all k. This follows from Lemma
22.11.2. �

Lemma 22.13.3. Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P → M of differential graded A-
modules with the following properties

(1) P →M is surjective,
(2) Ker(dP )→ Ker(dM ) is surjective, and
(3) P sits in an admissible short exact sequence 0 → P ′ → P → P ′′ → 0

where P ′, P ′′ are direct sums of shifts of A.

Proof. Let Pk be the free A-module with generators x, y in degrees k and k + 1.
Define the structure of a differential graded A-module on Pk by setting d(x) = y
and d(y) = 0. For every element m ∈ Mk there is a homomorphism Pk → M
sending x to m and y to d(m). Thus we see that there is a surjection from a direct
sum of copies of Pk to M . This clearly produces P →M having properties (1) and
(3). To obtain property (2) note that if m ∈ Ker(dM ) has degree k, then there is a
map A[k]→M mapping 1 to m. Hence we can achieve (2) by adding a direct sum
of copies of shifts of A. �

Lemma 22.13.4. Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P → M of differential graded A-
modules such that

(1) P →M is a quasi-isomorphism, and
(2) P has property (P).

Proof. Set M = M0. We inductively choose short exact sequences

0→Mi+1 → Pi →Mi → 0

where the maps Pi →Mi are chosen as in Lemma 22.13.3. This gives a “resolution”

. . .→ P2
f2−→ P1

f1−→ P0 →M → 0

Then we set

P =
⊕

i≥0
Pi

as an A-module with grading given by Pn =
⊕

a+b=n P
b
−a and differential (as in

the construction of the total complex associated to a double complex) by

dP (x) = f−a(x) + (−1)adP−a(x)

for x ∈ P b−a. With these conventions P is indeed a differential graded A-module.
Recalling that each Pi has a two step filtration 0→ P ′i → Pi → P ′′i → 0 we set

F2iP =
⊕

i≥j≥0
Pj ⊂

⊕
i≥0

Pi = P

and we add P ′i+1 to F2iP to get F2i+1. These are differential graded submodules
and the successive quotients are direct sums of shifts of A. By Lemma 22.11.1 we
see that the inclusions FiP → Fi+1P are admissible monomorphisms. Finally, we
have to show that the map P → M (given by the augmentation P0 → M) is a
quasi-isomorphism. This follows from Homology, Lemma 12.22.10. �
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22.14. I-resolutions

This section is the dual of the section on P-resolutions.

Let (A,d) be a differential graded algebra. Let I be a differential graded A-module.
We say I has property (I) if it there exists a filtration

I = F0I ⊃ F1I ⊃ F2I ⊃ . . . ⊃ 0

by differential graded submodules such that

(1) I = lim I/FpI,
(2) the maps I/Fi+1I → I/FiI are admissible epimorphisms,
(3) the quotients FiI/Fi+1I are isomorphic as differential graded A-modules

to products of A∨[k].

In fact, condition (2) is a consequence of condition (3), see Lemma 22.12.1. The
reader can verify that as a graded module I will be isomorphic to a product of
A∨[k].

Lemma 22.14.1. Let (A, d) be a differential graded algebra. Let I be a differen-
tial graded A-module. If F• is a filtration as in property (I), then we obtain an
admissible short exact sequence

0→ I →
∏

I/FiI →
∏

I/FiI → 0

of differential graded A-modules.

Proof. Omitted. Hint: This is dual to Lemma 22.13.1. �

The following lemma shows that differential graded modules with property (I) are
the analogue of K-injective modules. See Derived Categories, Definition 13.29.1.

Lemma 22.14.2. Let (A, d) be a differential graded algebra. Let I be a differential
graded A-module with property (I). Then

HomK(Mod(A,d))(N, I) = 0

for all acyclic differential graded A-modules N .

Proof. We will use thatK(Mod(A,d)) is a triangulated category (Proposition 22.10.3).
Let F• be a filtration on I as in property (I). The short exact sequence of Lemma
22.14.1 produces a distinguished triangle. Hence by Derived Categories, Lemma
13.4.2 it suffices to show that

HomK(Mod(A,d))(N, I/FiI) = 0

for all acyclic differential graded A-modules N and all i. Each of the differential
graded modules I/FiI has a finite filtration by admissible monomorphisms, whose
graded pieces are products of A∨[k]. Thus it suffices to prove that

HomK(Mod(A,d))(N,A
∨[k]) = 0

for all acyclic differential graded A-modules N and all k. This follows from Lemma
22.12.3 and the fact that (−)∨ is an exact functor. �

Lemma 22.14.3. Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism M → I of differential graded A-
modules with the following properties

(1) M → I is injective,

http://stacks.math.columbia.edu/tag/09KR
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(2) Coker(dM )→ Coker(dI) is injective, and
(3) I sits in an admissible short exact sequence 0→ I ′ → I → I ′′ → 0 where

I ′, I ′′ are products of shifts of A∨.

Proof. For every k ∈ Z let Qk be the free left A-module with generators x, y in
degrees k and k + 1. Define the structure of a left differential graded A-module
on Qk by setting d(x) = y and d(y) = 0. Let Ik = Q∨−k be the “dual” right
differential graded A-module, see Section 22.12. The next paragraph shows that we
can embed M into a product of copies of Ik (for varying k). The dual statement
(that any differential graded module is a quotient of a direct sum of of Pk’s) is easy
to prove (see proof of Lemma 22.13.3) and using double duals there should be a
noncomputational way to deduce what we want. Thus we suggest skipping the next
paragraph.

Given a Z-linear map λ : Mk → Q/Z we construct pairings

ψn : Mn ×Q−nk −→ Q/Z

by setting

ψn(m, ax+ by) = λ(ma+ (−1)k+1d(mb))

for m ∈Mn, a ∈ A−n−k, and b ∈ A−n−k−1. We compute

ψn+1(d(m), ax+ by) = λ
(
d(m)a+ (−1)k+1d(d(m)b)

)
= λ

(
d(m)a+ (−1)k+nd(m)d(b)

)
and because d(ax+ by) = d(a)x+ (−1)−n−kay + d(b)y we have

ψn(m,d(ax+ by)) = λ
(
md(a) + (−1)k+1d(m((−1)−n−ka+ d(b)))

)
= λ

(
md(a) + (−1)−n+1d(ma) + (−1)k+1d(m)d(b)))

)
and we see that

ψn+1(d(m), ax+ by) + (−1)nψn(m, d(ax+ by)) = 0

Thus these pairings define a homomorphism fλ : M → Ik by Lemma 22.12.2 such
that the composition

Mk fkλ−→ Ikk = (Qkk)∨
evaluation at x−−−−−−−−−→ Q/Z

is the given map λ. It is clear that we can find an embedding into a product of
copies of Ik’s by using a map of the form

∏
fλ for a suitable choice of the maps λ.

The result of the previous paragraph produces M → I having properties (1) and
(3). To obtain property (2), suppose m ∈ Coker(dM ) is a nonzero element of degree
k. Pick a map λ : Mk → Q/Z which vanishes on Im(Mk−1 →Mk) but not on m.
By Lemma 22.12.3 this corresponds to a homomorphism M → A∨[k] of differential
graded A-modules which does not vanish on m. Hence we can achieve (2) by adding
a product of copies of shifts of A∨. �

Lemma 22.14.4. Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism M → I of differential graded A-
modules such that

(1) M → I is a quasi-isomorphism, and
(2) I has property (I).

http://stacks.math.columbia.edu/tag/09KU
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Proof. Set M = M0. We inductively choose short exact sequences

0→Mi → Ii →Mi+1 → 0

where the maps Mi → Ii are chosen as in Lemma 22.14.3. This gives a “resolution”

0→M → I0
f0−→ I1

f1−→ I1 → . . .

Then we set

I =
∏

i≥0
Ii

where we take the product in the category of graded A-modules and differential
defined by

dI(x) = fa(x) + (−1)adIa(x)

for x ∈ Iba. With these conventions I is indeed a differential graded A-module.
Recalling that each Ii has a two step filtration 0→ I ′i → Ii → I ′′i → 0 we set

F2iP =
∏

j≥i
Ij ⊂

∏
i≥0

Ii = I

and we add a factor I ′i+1 to F2iI to get F2i+1I. These are differential graded
submodules and the successive quotients are products of shifts of A∨. By Lemma
22.12.1 we see that the inclusions Fi+1I → FiI are admissible monomorphisms.
Finally, we have to show that the map M → I (given by the augmentation M → I0)
is a quasi-isomorphism. This follows from Homology, Lemma 12.22.11. �

22.15. The derived category

Recall that the notions of acyclic differential graded modules and quasi-isomorphism
of differential graded modules make sense (see Section 22.4).

Lemma 22.15.1. Let (A, d) be a differential graded algebra. The full subcategory
Ac of K(Mod(A,d)) consisting of acyclic modules is a strictly full saturated tri-
angulated subcategory of K(Mod(A,d)). The corresponding saturated multiplicative
system (see Derived Categories, Lemma 13.6.10) of K(Mod(A,d)) is the class Qis
of quasi-isomorphisms. In particular, the kernel of the localization functor

Q : K(Mod(A,d))→ Qis−1K(Mod(A,d))

is Ac. Moreover, the functor H0 factors through Q.

Proof. We know that H0 is a homological functor by the long exact sequence of
homology (22.4.2.1). The kernel of H0 is the subcategory of acyclic objects and the
arrows with induce isomorphisms on all Hi are the quasi-isomorphisms. Thus this
lemma is a special case of Derived Categories, Lemma 13.6.11.

Set theoretical remark. The construction of the localization in Derived Categories,
Proposition 13.5.5 assumes the given triangulated category is “small”, i.e., that the
underlying collection of objects forms a set. Let Vα be a partial universe (as in
Sets, Section 3.5) containing (A,d) and where the cofinality of α is bigger than
ℵ0 (see Sets, Proposition 3.7.2). Then we can consider the category Mod(A,d),α

of differential graded A-modules contained in Vα. A straightforward check shows
that all the constructions used in the proof of Proposition 22.10.3 work inside
of Mod(A,d),α (because at worst we take finite direct sums of differential graded

http://stacks.math.columbia.edu/tag/09KW
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modules). Thus we obtain a triangulated category Qis−1
α K(Mod(A,d),α). We will

see below that if β > α, then the transition functors

Qis−1
α K(Mod(A,d),α) −→ Qis−1

β K(Mod(A,d),β)

are fully faithful as the morphism sets in the quotient categories are computed
by maps in the homotopy categories from P-resolutions (the construction of a P-
resolution in the proof of Lemma 22.13.4 takes countable direct sums as well as
direct sums indexed over subsets of the given module). The reader should therefore
think of the category of the lemma as the union of these subcategories. �

Taking into account the set theoretical remark at the end of the proof of the pre-
ceding lemma we define the derived category as follows.

Definition 22.15.2. Let (A,d) be a differential graded algebra. Let Ac and Qis
be as in Lemma 22.15.1. The derived category of (A, d) is the triangulated category

D(A,d) = K(Mod(A,d))/Ac = Qis−1K(Mod(A,d)).

We denote H0 : D(A,d) → ModR the unique functor whose composition with the
quotient functor gives back the functor H0 defined above.

Here is the promised lemma computing morphism sets in the derived category.

Lemma 22.15.3. Let (A, d) be a differential graded algebra. Let M and N be
differential graded A-modules.

(1) Let P →M be a P-resolution as in Lemma 22.13.4. Then

HomD(A,d)(M,N) = HomK(Mod(A,d))(P,N)

(2) Let N → I be an I-resolution as in Lemma 22.14.4. Then

HomD(A,d)(M,N) = HomK(Mod(A,d))(M, I)

Proof. Let P →M be as in (1). Since P →M is a quasi-isomorphism we see that

HomD(A,d)(P,N) = HomD(A,d)(M,N)

by definition of the derived category. A morphism f : P → N in D(A,d) is equal
to s−1f ′ where f ′ : P → N ′ is a morphism and s : N → N ′ is a quasi-isomorphism.
Choose a distringuished triangle

N → N ′ → Q→ N [1]

As s is a quasi-isomorphism, we see thatQ is acyclic. Thus HomK(Mod(A,d))(P,Q[k]) =

0 for all k by Lemma 22.13.2. Since HomK(Mod(A,d))(P,−) is cohomological, we con-

clude that we can lift f ′ : P → N ′ uniquely to a morphism f : P → N . This finishes
the proof.

The proof of (2) is dual to that of (1) using Lemma 22.14.2 in stead of Lemma
22.13.2. �

Lemma 22.15.4. Let (A, d) be a differential graded algebra. Then

(1) D(A, d) has both direct sums and products,
(2) direct sums are obtained by taking direct sums of differential graded mod-

ules,
(3) products are obtained by taking products of differential graded modules.
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Proof. We will use that Mod(A,d) is an abelian category with arbitrary direct sums
and products, and that these give rise to direct sums and products in K(Mod(A,d)).
See Lemmas 22.4.2 and 22.5.4.

Let Mj be a family of differential graded A-modules. Consider the graded direct
sum M =

⊕
Mj which is a differential graded A-module with the obvious. For a

differential graded A-module N choose a quasi-isomorphism N → I where I is a
differential graded A-module with property (I). See Lemma 22.14.4. Using Lemma
22.15.3 we have

HomD(A,d)(M,N) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , N)

whence the existence of direct sums in D(A,d) as given in part (2) of the lemma.

Let Mj be a family of differential graded A-modules. Consider the product M =∏
Mj of differential graded A-modules. For a differential graded A-module N

choose a quasi-isomorphism P → N where P is a differential graded A-module
with property (P). See Lemma 22.13.4. Using Lemma 22.15.3 we have

HomD(A,d)(N,M) = HomK(A,d)(P,M)

=
∏

HomK(A,d)(P,Mj)

=
∏

HomD(A,d)(N,Mj)

whence the existence of direct sums in D(A,d) as given in part (3) of the lemma. �

22.16. The canonical delta-functor

Let (A,d) be a differential graded algebra. Consider the functor Mod(A) →
K(Mod(A,d)). This functor is not a δ-functor in general. However, it turns out
that the functor Mod(A,d) → D(A,d) is a δ-functor. In order to see this we have to
define the morphisms δ associated to a short exact sequence

0→ K
a−→ L

b−→M → 0

in the abelian category Mod(A,d). Consider the cone C(a) of the morphism a. We
have C(a) = L ⊕K and we define q : C(a) → M via the projection to L followed
by b. Hence a homomorphism of differential graded A-modules

q : C(a) −→M.

It is clear that q◦i = b where i is as in Definition 22.6.1. Note that, as a is injective,
the kernel of q is identified with the cone of idK which is acyclic. Hence we see that
q is a quasi-isomorphism. According to Lemma 22.9.4 the triangle

(K,L,C(a), a, i,−p)
is a distinguished triangle inK(Mod(A,d)). As the localization functorK(Mod(A,d))→
D(A,d) is exact we see that (K,L,C(a), a, i,−p) is a distinguished triangle in
D(A,d). Since q is a quasi-isomorphism we see that q is an isomorphism in D(A,d).
Hence we deduce that

(K,L,M, a, b,−p ◦ q−1)

is a distinguished triangle of D(A,d). This suggests the following lemma.
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Lemma 22.16.1. Let (A, d) be a differential graded algebra. The functor Mod(A,d) →
D(A, d) defined has the natural structure of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle
whenever given a short exact sequence of complexes. We have to show functori-
ality of this construction, see Derived Categories, Definition 13.3.6. This follows
from Lemma 22.6.2 with a bit of work. Compare with Derived Categories, Lemma
13.12.1. �

22.17. Linear categories

Just the definitions.

Definition 22.17.1. Let R be a ring. An R-linear category A is a category where
every morphism set is given the structure of an R-module and where for x, y, z ∈
Ob(A) composition law

HomA(y, z)×HomA(x, y) −→ HomA(x, z)

is R-bilinear.

Thus composition determines an R-linear map

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of R-modules. Note that we do not assume R-linear categories to be additive.

Definition 22.17.2. Let R be a ring. A functor of R-linear categories, or an
R-linear is a functor F : A → B where for all objects x, y of A the map F :
HomA(x, y)→ HomA(F (x), F (y)) is a homomorphism of R-modules.

22.18. Graded categories

Just some definitions.

Definition 22.18.1. Let R be a ring. A graded category A over R is a category
where every morphism set is given the structure of a graded R-module and where
for x, y, z ∈ Ob(A) composition is R-bilinear and induces a homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of graded R-modules (i.e., preserving degrees).

In this situation we denote Homi
A(x, y) the degree i part of the graded object

HomA(x, y), so that

HomA(x, y) =
⊕

i∈Z
Homi

A(x, y)

is the direct sum decomposition into graded parts.

Definition 22.18.2. Let R be a ring. A functor of graded categories over R, or
a graded functor is a functor F : A → B where for all objects x, y of A the map
F : HomA(x, y)→ HomA(F (x), F (y)) is a homomorphism of graded R-modules.

Given a graded category we are often interested in the corresponding “usual” cat-
egory of maps of degree 0. Here is a formal definition.
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Definition 22.18.3. Let R be a ring. Let A be a differential graded category over
R. We let A0 be the category with the same objects as A and with

HomA0(x, y) = Hom0
A(x, y)

the degree 0 graded piece of the graded module of morphisms of A.

Definition 22.18.4. Let R be a ring. Let A be a graded category over R. A
direct sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 12.3.6) is a
graded direct sum if i, j, p, q are homogeneous of degree 0.

Example 22.18.5 (Graded category of graded objects). Let B be an additive
category. Recall that we have defined the category Gr(B) of graded objects of
B in Homology, Definition 12.15.1. In this example, we will construct a graded
category Grgr(B) over R = Z whose associated category Grgr(B)0 recovers Gr(B).
As objects of Compgr(B) we take graded objects of B. Then, given graded objects
A = (Ai) and B = (Bi) of B we set

HomGrgr(B)(A,B) =
⊕

n∈Z
Homn(A,B)

where the graded piece of degree n is the abelian group of homogeneous maps of
degree n from A to B defined by the rule

Homn(A,B) = HomGr(A)(A,B[n]) = HomGr(A)(A[−n], B)

see Homology, Equation (12.15.4.1). Explicitly we have

Homn(A,B) =
∏

p+q=n
HomB(A−q, Bp)

(observe reversal of indices and observe that we have a product here and not a
direct sum). In other words, a degree n morphism f from A to B can be seen as
a system f = (fp,q) where p, q ∈ Z, p + q = n with fp,q : A−q → Bp a morphism
of B. Given graded objects A, B, C of B composition of morphisms in Grgr(B) is
defined via the maps

Homm(B,C)×Homn(A,B) −→ Homn+m(A,C)

by simple composition (g, f) 7→ g ◦ f of homogeneous maps of graded objects. In
terms of components we have

(g ◦ f)p,r = gp,q ◦ f−q,r
where q is such that p+ q = m and −q + r = n.

Example 22.18.6 (Graded category of graded modules). Let A be a Z-graded
algebra over a ring R. We will construct a graded category ModgrA over R whose
associated category (ModgrA )0 is the category of graded A-modules. As objects
of ModgrA we take right graded A-modules (see Section 22.11). Given graded A-
modules L and M we set

HomModgrA
(L,M) =

⊕
n∈Z

Homn(L,M)

where Homn(L,M) is the set of right A-module maps L → M which are homoge-
neous of degree n, i.e., f(Li) ⊂ M i+n for all i ∈ Z. In terms of components, we
have that

Homn(L,M) ⊂
∏

p+q=n
HomR(L−q,Mp)
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(observe reversal of indices) is the subset consisting of those f = (fp,q) such that

fp,q(ma) = fp−i,q+i(m)a

for a ∈ Ai and m ∈ L−q−i. For graded A-modules K, L, M we define composition
in ModgrA via the maps

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

by simple composition of right A-module maps: (g, f) 7→ g ◦ f .

Remark 22.18.7. Let R be a ring. Let D be an R-linear category endowed with
a collection of R-linear functors [n] : D → D, x 7→ x[n] indexed by n ∈ Z such that
[n] ◦ [m] = [n+m] and [0] = idD (equality as functors). This allows us to construct
a graded category Dgr over R with the same objects of D setting

HomDgr (x, y) =
⊕

n∈Z
HomD(x, y[n])

for x, y in D. Observe that (Dgr)0 = D (see Definition 22.18.3). Moreover, the
graded category Dgr inherits R-linear graded functors [n] satisfying [n] ◦ [m] =
[n+m] and [0] = idDgr with the property that

HomDgr (x, y[n]) = HomDgr (x, y)[n]

as graded R-modules compatible with composition of morphisms.

Conversely, suppose given a graded category A over R endowed with a collection
of R-linear graded functors [n] satisfying [n] ◦ [m] = [n + m] and [0] = idA which
are moreover equipped with isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]

as graded R-modules compatible with composition of morphisms. Then the reader
easily shows that A = (A0)gr.

Here are two examples of the relationship D ↔ A we established above:

(1) Let B be an additive category. If D = Gr(B), then A = Grgr(B) as in
Example 22.18.5.

(2) If A is a graded ring and D = ModA is the category of graded right
A-modules, then A = ModgrA , see Example 22.18.6.

22.19. Differential graded categories

Note that if R is a ring, then R is a differential graded algebra over itself (with
R = R0 of course). In this case a differential graded R-module is the same thing as
a complex of R-modules. In particular, given two differential graded R-modules M
and N we denote M ⊗R N the differential graded R-module corresponding to the
total complex associated to the double complex obtained by the tensor product of
the complexes of R-modules associated to M and N .

Definition 22.19.1. Let R be a ring. A differential graded category A over R is
a category where every morphism set is given the structure of a differential graded
R-module and where for x, y, z ∈ Ob(A) composition is R-bilinear and induces a
homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of differential graded R-modules.
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The final condition of the definition signifies the following: if f ∈ Homn
A(x, y) and

g ∈ Homm
A (y, z) are homogeneous of degrees n and m, then

d(g ◦ f) = d(g) ◦ f + (−1)mg ◦ d(f)

in Homn+m+1
A (x, z). This follows from the sign rule for the differential on the total

complex of a double complex, see Homology, Definition 12.22.3.

Definition 22.19.2. Let R be a ring. A functor of differential graded categories
over R is a functor F : A → B where for all objects x, y of A the map F :
HomA(x, y) → HomA(F (x), F (y)) is a homomorphism of differential graded R-
modules.

Given a diffferential graded category we are often interested in the corresponding
categories of complexes and homotopy category. Here is a formal definition.

Definition 22.19.3. Let R be a ring. Let A be a differential graded category over
R. Then we let

(1) the category of complexes of A2 be the category Comp(A) whose objects
are the same as the objects of A and with

HomComp(A)(x, y) = Ker(d : Hom0
A(x, y)→ Hom0

A(x, y))

(2) the homotopy category of A be the category K(A) whose objects are the
same as the objects of A and with

HomComp(A)(x, y) = H0(HomA(x, y))

Our use of the symbol K(A) is nonstandard, but at least is compatible with the
use of K(−) in other chapters of the Stacks project.

Definition 22.19.4. Let R be a ring. Let A be a differential graded category over
R. A direct sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 12.3.6) is
a differential graded direct sum if i, j, p, q are homogeneous of degree 0 and closed,
i.e., d(i) = 0, etc.

Lemma 22.19.5. Let R be a ring. A functor F : A → B of differential graded
categories over R induces functors Comp(A)→ Comp(B) and K(A)→ K(B).

Proof. Omitted. �

Example 22.19.6 (Differential graded category of complexes). Let B be an ad-

ditive category. We will construct a differential graded category Compdg(B) over
R = Z whose associated category of complexes is Comp(B) and whose associated

homotopy category is K(B). As objects of Compdg(B) we take complexes of B.
Given complexes A• and B• of B, we sometimes also denote A• and B• the corre-
sponding graded objects of B (i.e., forget about the differential). Using this abuse
of notation, we set

HomCompdg(B)(A
•, B•) = HomGrgr(B)(A

•, B•)

as a graded Z-module where the right hand side is defined in Example 22.18.5. In
other words, the nth graded piece is the abelian group of homogeneous morphism
of degree n of graded objects

Homn(A•, B•) = HomGr(B)(A
•, B•[n]) =

∏
p+q=n

HomB(A−q, Bp)

2This may be nonstandard terminology.
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(observe reversal of indices and observe we have a direct product and not a direct
sum). For an element f ∈ Homn(A•, B•) of degree n we set

d(f) = dB ◦ f − (−1)nf ◦ dA

To make sense of this we think of dB and dA as maps of graded objects of B
homogeneous of degree 1 and we use composition in the category Grgr(B) on the
right hand side. In terms of components, if f = (fp,q) with fp,q : A−q → Bp we
have

(22.19.6.1) d(fp,q) = dB ◦ fp,q + (−1)p+q+1fp,q ◦ dA

Note that the first term of this expression is in HomB(A−q, Bp+1) and the second
term is in HomB(A−q−1, Bp). In other words, given p+ q = n+ 1 we have

d(f)p,q = dB ◦ fp−1,q − (−1)nfp,q−1 ◦ dA

with obvious notation. The reader checks3 that

(1) d has square zero,
(2) an element f in Homn(A•, B•) has d(f) = 0 if and only if the morphism

f : A• → B•[n] of graded objects of B is actually a map of complexes,

(3) in particular, the category of complexes of Compdg(B) is equal to Comp(B),
(4) the morphism of complexes defined by f as in (2) is homotopy equivalent

to zero if and only if f = d(g) for some g ∈ Homn−1(A•, B•).
(5) in particular, we obtain a canonical isomorphism

HomK(B)(A
•, B•) −→ H0(HomCompdg(B)(A

•, B•))

and the homotopy category of Compdg(B) is equal to K(B).

Given complexes A•, B•, C• we define composition

Homm(B•, C•)×Homn(A•, B•) −→ Homn+m(A•, C•)

by composition (g, f) 7→ g ◦f in the graded category Grgr(B), see Example 22.18.5.
This defines a map of differential graded modules as in Definition 22.19.1 because

d(g ◦ f) = dC ◦ g ◦ f − (−1)n+mg ◦ f ◦ dA

= (dC ◦ g − (−1)mg ◦ dB) ◦ f + (−1)mg ◦ (dB ◦ f − (−1)nf ◦ dA)

= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 22.19.7. Let F : B → B′ be an additive functor between additive cate-
gories. Then F induces a functor of differential graded categories

F : Compdg(B)→ Compdg(B′)
of Example 22.19.6 inducing the usual functors on the category of complexes and
the homotopy categories.

Proof. Omitted. �

3What may be useful here is to think of the double complex H•,• with terms Hp,q =

HomB(A−q , Bp) and differentials d1 of degree (1, 0) given by dB and d2 of degree (0, 1) given
by the contragredient of dA. Up to sign and up to replacing the direct sum by a direct prod-

uct, the differential graded Z-module HomCompdg(B)(A
•, B•) is the total complex associated to

H•,•, see Homology, Definition 12.22.3. To get the sign correct, change dp,q2 : Hp,q → Hp,q+1 by

(−1)q+1 (after this change we still have a double complex).

http://stacks.math.columbia.edu/tag/09LB
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Example 22.19.8 (Differential graded category of differential graded modules).
Let (A,d) be a differential graded algebra over a ring R. We will construct a differ-

ential graded category Moddg(A,d) over R whose category of complexes is Mod(A,d)

and whose homotopy category is K(Mod(A,d)). As objects of Moddg(A,d) we take the

differential graded A-modules. Given differential graded A-modules L and M we
set

HomModdg
(A,d)

(L,M) = HomModgrA
(L,M) =

⊕
Homn(L,M)

as a graded R-module where the right hand side is defined as in Example 22.18.6. In
other words, the nth graded piece Homn(L,M) is the R-module of right A-module
maps homogeneous of degree n. For an element f ∈ Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL

To make sense of this we think of dM and dL as graded R-module maps and we
use composition of graded R-module maps. It is clear that d(f) is homogeneous of
degree n+ 1 as a graded R-module map, and it is linear because

d(f)(xa) = dM (f(x)a)− (−1)nf(dL(xa))

= dM (f(x))a+ (−1)deg(x)+nf(x)d(a)− (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)

= d(f)(x)a

as desired (observe that this calculation would not work without the sign in the
definition of our differential on Hom). Similar formulae to those of Example 22.19.6
hold for the differential of f in terms of components. The reader checks (in the
same way as in Example 22.19.6) that

(1) d has square zero,
(2) an element f in Homn(L,M) has d(f) = 0 if and only if f : L→M [n] is

a homomorphism of differential graded A-modules,

(3) in particular, the category of complexes of Moddg(A,d) is Mod(A,d),

(4) the homomorphism defined by f as in (2) is homotopy equivalent to zero
if and only if f = d(g) for some g ∈ Homn−1(L,M).

(5) in particular, we obtain a canonical isomorphism

HomK(Mod(A,d))(L,M) −→ H0(HomModdg
(A,d)

(L,M))

and the homotopy category of Moddg(A,d) is K(Mod(A,d)).

Given differential graded A-modules K, L, M we define composition

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

by composition of homogeneous right A-module maps (g, f) 7→ g ◦ f . This defines
a map of differential graded modules as in Definition 22.19.1 because

d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)

= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

http://stacks.math.columbia.edu/tag/09LC
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Lemma 22.19.9. Let ϕ : (A, d)→ (E, d) be a homomorphism of differential graded
algebras. Then ϕ induces a functor of differential graded categories

F : Moddg(E,d) −→ Moddg(A,d)

of Example 22.19.8 inducing obvious restriction functors on the categories of dif-
ferential graded modules and homotopy categories.

Proof. Omitted. �

Lemma 22.19.10. Let R be a ring. Let A be a differential graded category over
R. Let x be an object of A. Let

(E, d) = HomA(x, x)

be the differential graded R-algebra of endomorphisms of x. We obtain a functor

A −→ Moddg(E,d), y 7−→ HomA(x, y)

of differential graded categories by letting E act on HomA(x, y) via composition in
A. This functor induces functors

Comp(A)→ Mod(A,d) and K(A)→ K(Mod(A,d))

by an application of Lemma 22.19.5.

Proof. This lemma proves itself. �

22.20. Obtaining triangulated categories

In this section we discuss the most general setup to which the arguments proving
Derived Categories, Proposition 22.10.3 and Proposition 22.10.3 apply.

Let R be a ring. Let A be a differential graded category over R. To make our
argument work, we impose some axioms on A:

(A) A has a zero object and differential graded direct sums of two objects (as
in Definition 22.19.4).

(B) there are functors [n] : A −→ A of differential graded categories such that
[0] = idA and [n+m] = [n] ◦ [m] and given isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]

of differential graded R-modules compatible with composition.

Given our differential graded category A we say

(1) a sequence x → y → z of morphisms of Comp(A) is an admissible short
exact sequence if there exists an isomorphism y ∼= x⊕ z in the underlying
graded category such that x→ z and y → z are (co)projections.

(2) a morphism x → y of Comp(A) is an admissible monomorphism if it
extends to an admissible short exact sequence x→ y → z.

(3) a morphism y → z of Comp(A) is an admissible epimorphism if it extends
to an admissible short exact sequence x→ y → z.

The next lemma tells us an admissible short exact sequence gives a triangle, pro-
vided we have axioms (A) and (B).

http://stacks.math.columbia.edu/tag/09LD
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Lemma 22.20.1. Let A be a differential graded category satisfying axioms (A) and
(B). Given an admissible short exact sequence x → y → z we obtain (see proof) a
triangle

x→ y → z → x[1]

in Comp(A) with the property that any two compositions in z[−1]→ x→ y → z →
x[1] are zero in K(A).

Proof. Choose a diagram
x

1
//

a
��

x

y

π

??

b

��
z

1 //

s

??

z

giving the isomorphism of graded objects y ∼= x ⊕ z as in the defintion of an
admissible short exact sequence. Here are some equations that hold in this situation

(1) 1 = πa and hence d(π)a = 0,
(2) 1 = bs and hence bd(s) = 0,
(3) 1 = aπ + sb and hence ad(π) + d(s)b = 0,
(4) πs = 0 and hence d(π)s+ πd(s) = 0,
(5) d(s) = aπd(s) because d(s) = (aπ + sb)d(s) and bd(s) = 0,
(6) d(π) = d(π)sb because d(π) = d(π)(aπ + sb) and d(π)a = 0,
(7) d(πd(s)) = 0 because if we postcompose it with the monomorphism a we

get d(aπd(s)) = d(d(s)) = 0, and
(8) d(d(π)s) = 0 as by (4) it is the negative of d(πd(s)) which is 0 by (7).

We’ve used repeatedly that d(a) = 0, d(b) = 0, and that d(1) = 0. By (7) we see
that

δ = πd(s) = −d(π)s : z → x[1]

is a morphism in Comp(A). By (5) we see that the composition aδ = aπd(s) = d(s)
is homotopic to zero. By (6) we see that the composition δb = −d(π)sb = d(−π) is
homotopic to zero. �

Besides axioms (A) and (B) we need an axiom concerning the existence of cones.
We formalize everything as follows.

Situation 22.20.2. Here R is a ring and A is a differential graded category over
R having axioms (A), (B), and

(C) given an arrow f : x → y of degree 0 with d(f) = 0 there exists an
admissible short exact sequence y → c(f) → x[1] in Comp(A) such that
the map x[1]→ y[1] of Lemma 22.20.1 is equal to f [1].

We will call c(f) a cone of the morphism f . If (A), (B), and (C) hold, then cones
are functorial in a weak sense.

Lemma 22.20.3. In Situation 22.20.2 suppose that

x1
f1

//

a

��

y1

b

��
x2

f2 // y2
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is a diagram of Comp(A) commutative up to homotopy. Then there exists a mor-
phism c : c(f1)→ c(f2) which gives rise to a morphism of triangles

(a, b, c) : (x1, y1, c(f1))→ (x1, y1, c(f1))

in K(A).

Proof. The assumption means there exists a morphism h : x1 → y2 of degree −1
such that d(h) = bf1−f2a. Choose isomorphisms c(fi) = yi⊕xi[1] of graded objects
compatible with the morphisms yi → c(fi) → xi[1]. Let’s denote ai : yi → c(fi),
bi : c(fi) → xi[1], si : xi[1] → c(fi), and πi : c(fi) → yi the given morphisms.
Recall that xi[1]→ yi[1] is given by πid(si). By axiom (C) this means that

fi = πid(si) = −d(πi)si

(we identify Hom(xi, yi) with Hom(xi[1], yi[1]) using the shift functor [1]). Set
c = a2bπ1 + s2ab1 + a2hb. Then, using the equalities found in the proof of Lemma
22.20.1 we obtain

d(c) = a2bd(π1) + d(s2)ab1 + a2d(h)b1

= −a2bf1b1 + a2f2ab1 + a2(bf1 − f2a)b1

= 0

(where we have used in particular that d(π1) = d(π1)s1b1 = f1b1 and d(s2) =
a2π2d(s2) = a2f2). Thus c is a degree 0 morphism c : c(f1)→ c(f2) of A compatible
with the given morphisms yi → c(fi)→ xi[1]. �

In Situation 22.20.2 we say that a triangle (x, y, z, f, g, h) in K(A) is a distinguished
triangle if there exists an admissible short exact sequence x′ → y′ → z′ such that
(x, y, z, f, g, h) is isomorphic as a triangle in K(A) to the triangle (x′, y′, z′, x′ →
y′, y′ → z′, δ) constructed in Lemma 22.20.1. We will show below that

K(A) is a triangulated category

This result, although not as general as one might think, applies to a number of
natural generalizations of the cases covered so far in the Stacks project. Here are
some examples:

(1) Let (X,OX) be a ringed space. Let (A, d) be a sheaf of differential graded
OX -algebras. Let A be the differential graded category of differential
graded A-modules. Then K(A) is a triangulated category.

(2) Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded O-
algebras. Let A be the differential graded category of differential graded
A-modules. Then K(A) is a triangulated category.

(3) Two examples with a different flavor may be found in Examples, Section
82.59.

The following simple lemma is a key to the construction.

Lemma 22.20.4. In Situation 22.20.2 given any object x of A, and the cone C(1x)
of the identity morphism 1x : x→ x, the identity morphism on C(1x) is homotopic
to zero.

Proof. Consider the admissible short exact sequence given by axiom (C).

x
a // C(1x)
π

oo
b // x[1]
s
oo

http://stacks.math.columbia.edu/tag/09QK
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Then by Lemma 22.20.1, identifying hom-sets under shifting, we have 1x = πd(s) =
−d(π)s where s is regarded as a morphism in Hom−1

A (x,C(1x)). Therefore a =
aπd(s) = d(s) using formula (5) of Lemma 22.20.1, and b = −d(π)sb = −d(π) by
formula (6) of Lemma 22.20.1. Hence

1C(1x) = aπ + sb = d(s)π − sd(π) = d(sπ)

since s is of degree −1. �

A more general version of the above lemma will appear in Lemma 22.20.13. The
following lemma is the analogue of Lemma 22.7.3.

Lemma 22.20.5. In Situation 22.20.2 given a diagram

x
f //

a

��

y

b

��
z

g // w

in Comp(A) commuting up to homotopy. Then

(1) If f is an admissible monomorphism, then b is homotopic to a morphism
b′ which makes the diagram commute.

(2) If g is an admissible epimorphism, then a is homotopic to a morphism a′

which makes the diagram commute.

Proof. To prove (1), observe that the hypothesis implies that there is some h ∈
HomA(x,w) of degree −1 such that bf − ga = d(h). Since f is an admissible
monomorphism, there is a morphism π : y → x in the category A of degree 0. Let
b′ = b− d(hπ). Then

b′f = bf − d(hπ)f =bf − d(hπf) (since d(f) = 0)

=bf − d(h)

=ga

as desired. The proof for (2) is omitted. �

The following lemma is the analogue of Lemma 22.7.4.

Lemma 22.20.6. In Situation 22.20.2 let α : x→ y be a morphism in Comp(A).
Then there exists a factorization in Comp(A):

x
α̃ // ỹ

π // y
s

oo

such that

(1) α̃ is an admissible monomorphism, and πα̃ = α.
(2) There exists a morphism s : y → ỹ in Comp(A) such that πs = 1y and sπ

is homotopic to 1ỹ.

Proof. By axiom (B), we may let ỹ be the differential graded direct sum of y and
C(1x), i.e., there exists a diagram

y
s // y ⊕ C(1x)
π

oo
p // C(1x)
t

oo
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where all morphisms are of degree zero, and in Comp(A). Let ỹ = y⊕C(1x). Then
1ỹ = sπ + tp. Consider now the diagram

x
α̃ // ỹ

π // y
s

oo

where α̃ is induced by the morphism x
α−→ y and the natural morphism x→ C(1x)

fitting in the admissible short exact sequence

x // C(1x)oo // x[1]oo

So the morphism C(1x) → x of degree 0 in this diagram, together with the zero
morphism y → x, induces a degree-0 morphism β : ỹ → x. Then α̃ is an admissible
monomorphism since it fits into the admissible short exact sequence

x
α̃ // ỹ // x[1]

Furthermore, πα̃ = α by the construction of α̃, and πs = 1y by the first diagram.
It remains to show that sπ is homotopic to 1ỹ. Write 1x as d(h) for some degree
−1 map. Then, our last statement follows from

1ỹ − sπ =tp

=t(dh)p (by Lemma 22.20.4)

=d(thp)

since dt = dp = 0, and t is of degree zero. �

The following lemma is the analogue of Lemma 22.7.5.

Lemma 22.20.7. In Situation 22.20.2 let x1 → x2 → . . . → xn be a sequence of
composable morphisms in Comp(A). Then there exists a commutative diagram in
Comp(A):

x1
// x2

// . . . // xn

y1
//

OO

y2
//

OO

. . . // yn

OO

such that each yi → yi+1 is an admissible monomorphism and each yi → xi is a
homotopy equivalence.

Proof. The case for n = 1 is trivial: one simply takes y1 = x1 and the identity
morphism on x1 is in particular a homotopy equivalence. The case n = 2 is given by
Lemma 22.20.6. Suppose we have constructed the diagram up to xn−1. We apply
Lemma 22.20.6 to the composition yn−1 → xn−1 → xn to obtain yn. Then yn−1 →
yn will be an admissible monomorphism, and yn → xn a homotopy equivalence. �

The following lemma is the analogue of Lemma 22.7.6.

Lemma 22.20.8. In Situation 22.20.2 let xi → yi → zi be morphisms in A (i =
1, 2, 3) such that x2 → y2 → z2 is an admissible short exact sequence. Let b : y1 →
y2 and b′ : y2 → y3 be morphisms in Comp(A) such that

x1

0

��

// y1
//

b

��

z1

0

��
x2

// y2
// z2

and

x2

0

��

// y2
//

b′

��

z2

0

��
x3

// y3
// z3
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commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 22.20.5, we can replace b and b′ by homotopic maps b̃ and b̃′,
such that the right square of the left diagram commutes and the left square of
the right diagram commutes. Say b = b̃ + d(h) and b′ = b̃′ + d(h′) for degree −1
morphisms h and h′ in A. Hence

b′b = b̃′b̃+ d(b̃′h+ h′b̃+ h′d(h))

since d(b̃) = d(b̃′) = 0, i.e. b′b is homotopic to b̃′b̃. We now want to show that

b̃′b̃ = 0. Because x2
f−→ y2

g−→ z2 is an admissible short exact sequence, there exist
degree 0 morphisms π : y2 → x2 and s : z2 → y2 such that idy2

= fπ+sg. Therefore

b̃′b̃ = b̃′(fπ + sg)b̃ = 0

since gb̃ = 0 and b̃′f = 0 as consequences of the two commuting squares. �

The following lemma is the analogue of Lemma 22.8.1.

Lemma 22.20.9. In Situation 22.20.2 let 0 → x → y → z → 0 be an admissible
short exact sequence in Comp(A). The triangle

x // y // z
δ // x[1]

with δ : z → x[1] as defined in Lemma 22.20.1 is up to canonical isomorphism in
K(A), independent of the choices made in Lemma 22.20.1.

Proof. Suppose δ is defined by the splitting

x
a // y

b //
π
oo z

s
oo

and δ′ is defined by the splitting with π′, s′ in place of π, s. Then

s′ − s = (aπ + sb)(s′ − s) = aπs′

since bs′ = bs = 1z and πs = 0. Similarly,

π′ − π = (π′ − π)(aπ + sb) = π′sb

Since δ = πd(s) and δ′ = π′d(s′) as constructed in Lemma 22.20.1, we may compute

δ′ = π′d(s′) = (π + π′sb)d(s+ aπs′) = δ + d(πs′)

using πa = 1x, ba = 0, and π′sbd(s′) = π′sbaπd(s′) = 0 by formula (5) in Lemma
22.20.1. �

The following lemma is the analogue of Lemma 22.9.1.

Lemma 22.20.10. In Situation 22.20.2 let f : x→ y be a morphism in Comp(A).
The triangle (y, c(f), x[1], i, p, f [1]) is the triangle associated to the admissible short
exact sequence

y // c(f) // x[1]

where the cone c(f) is defined as in Lemma 22.20.1.

Proof. This follows from axiom (C). �

The following lemma is the analogue of Lemma 22.9.2.
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Lemma 22.20.11. In Situation 22.20.2 let α : x → y and β : y → z define an
admissible short exact sequence

x // y // z

in Comp(A). Let (x, y, z, α, β, δ) be the associated triangle in K(A). Then, the
triangles

(z[−1], x, y, δ[−1], α, β) and (z[−1], x, c(δ[−1]), δ[−1], i, p)

are isomorphic.

Proof. We have a diagram of the form

z[−1]
δ[−1] //

1

��

x
α //

1

��

y
β //

��

α̃
oo z

1

��

β̃

oo

z[−1]
δ[−1] // x

i // c(δ[−1])
p //

ĩ

oo z
p̃
oo

with splittings to α, β, i, and p given by α̃, β̃, ĩ, and p̃ respectively. Define a mor-
phism y → c(δ[−1]) by iα̃ + p̃β and a morphism c(δ[−1]) → y by αĩ + β̃p. Let us
first check that these define morphisms in Comp(A). We remark that by identi-

ties from Lemma 22.20.1, we have the relation δ[−1] = α̃d(β̃) = −d(α̃)β̃ and the
relation δ[−1] = ĩd(p̃). Then

d(α̃) = d(α̃)β̃β

= −δ[−1]β

where we have used equation (6) of Lemma 22.20.1 for the first equality and the
preceeding remark for the second. Similarly, we obtain d(p̃) = iδ[−1]. Hence

d(iα̃+ p̃β) = d(i)α̃+ id(α̃) + d(p̃)β + p̃d(β)

= id(α̃) + d(p̃)β

= −iδ[−1]β + iδ[−1]β

= 0

so iα̃ + p̃β is indeed a morphism of Comp(A). By a similar calculation, αĩ + β̃p
is also a morphism of Comp(A). It is immediate that these morphisms fit in the
commutative diagram. We compute:

(iα̃+ p̃β)(αĩ+ β̃p) = iα̃αĩ+ iα̃β̃p+ p̃βαĩ+ p̃ββ̃p

= ĩi+ p̃p

= 1c(δ[−1])

where we have freely used the identities of Lemma 22.20.1. Similarly, we compute
(αĩ+ β̃p)(iα̃+ p̃β) = 1y, so we conclude y ∼= c(δ[−1]). Hence, the two triangles in
question are isomorphic. �

The following lemma is the analogue of Lemma 22.9.3.

Lemma 22.20.12. In Situation 22.20.2 let f1 : x1 → y1 and f2 : x2 → y2 be
morphisms in Comp(A). Let

(a, b, c) : (x1, y1, c(f1), f1, i1, p1)→ (x2, y2, c(f2), f2, i1, p1)

http://stacks.math.columbia.edu/tag/09QS
http://stacks.math.columbia.edu/tag/09QT
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be any morphism of triangles in K(A). If a and b are homotopy equivalences, then
so is c.

Proof. Since a and b are homotopy equivalences, they are invertible in K(A) so
let a−1 and b−1 denote their inverses in K(A), giving us a commutative diagram

x2

a−1

��

f2 // y2

b−1

��

i2 // c(f2)

c′

��
x1

f1 // y1
i1 // c(f1)

where the map c′ is defined via Lemma 22.20.3 applied to the left commutative
box of the above diagram. Since the diagram commutes in K(A), it suffices by
Lemma 22.20.8 to prove the following: given a morphism of triangle (1, 1, c) :
(x, y, c(f), f, i, p) → (x, y, c(f), f, i, p) in K(A), the map c is an isomorphism in
K(A). We have the commutative diagrams in K(A):

y

1

��

// c(f)

c

��

// x[1]

1

��
y // c(f) // x[1]

⇒

y

0

��

// c(f)

c−1

��

// x[1]

0

��
y // c(f) // x[1]

Since the rows are admissible short exact sequences, we obtain the identity (c−1)2 =
0 by Lemma 22.20.8, from which we conclude that 2− c is inverse to c in K(A) so
that c is an isomorphism. �

The following lemma is the analogue of Lemma 22.9.4.

Lemma 22.20.13. In Situation 22.20.2.

(1) Given an admissible short exact sequence x
α−→ y

β−→ z. Then there exists
a homotopy equivalence e : C(α)→ z such that the diagram

(22.20.13.1)

x
α //

��

y
b //

��

C(α)
−c //

e

��

x[1]

��
x

α // y
β // z

δ // x[1]

defines an isomorphism of triangles in K(A). Here y
b−→ C(α)

c−→ x[1] is
the admissible short exact sequence given as in axiom (C).

(2) Given a morphism α : x → y in Comp(A), let x
α̃−→ ỹ → y be the factor-

ization given as in Lemma 22.20.6, where the admissible monomorphism

x
α̃−→ y extends to the admissible short exact sequence

x
α̃ // ỹ // z

Then there exists an isomorphism of triangles

x
α̃ //

��

ỹ //

��

z
δ //

e

��

x[1]

��
x

α // y // C(α)
−c // x[1]

http://stacks.math.columbia.edu/tag/09QU
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where the upper triangle is the triangle associated to the sequence x
α̃−→

ỹ → z.

Proof. For (1), we consider the more complete diagram, without the sign change
on c:

x
α //

��

y
π
oo

b //

��

C(α)
p

oo
c //

e

��

x[1]
σ
oo

��

α // y[1]
π
oo

x
α // y

β //
π
oo z

δ //
s

oo

f

OO

x[1]

where the admissible short exact sequence x
α−→ y

β−→ z is given the splitting π, s,

and the admissible short exact sequence y
b−→ C(α)

c−→ x[1] is given the splitting p,
σ. Note that (identifying hom-sets under shifting)

α = pd(σ) = −d(p)σ, δ = πd(s) = −d(π)s

by the construction in Lemma 22.20.1.

We define e = βp and f = bs − σδ. We first check that they are morphisms in
Comp(A). To show that d(e) = βd(p) vanishes, it suffices to show that βd(p)b and
βd(p)σ both vanish, whereas

βd(p)b = βd(pb) = βd(1y) = 0, βd(p)σ = −βα = 0

Similarly, to check that d(f) = bd(s) − d(σ)δ vanishes, it suffices to check the
post-compositions by p and c both vanish, whereas

pbd(s)− pd(σ)δ =d(s)− αδ = d(s)− απd(s) = 0

cbd(s)− cd(σ)δ =− cd(σ)δ = −d(cσ)δ = 0

The commutativity of left two squares of the diagram 22.20.13.1 follows directly
from definition. Before we prove the commutativity of the right square (up to
homotopy), we first check that e is a homotopy equivalence. Clearly,

ef = βp(bs− σδ) = βs = 1z

To check that fe is homotopic to 1C(α), we first observe

bα = bpd(α) = d(σ), αc = −d(p)σc = −d(p), d(π)p = d(π)sβp = −δβp
Using these identities, we compute

1C(α) =bp+ σc (from y
b−→ C(α)

c−→ x[1])

=b(απ + sβ)p+ σ(πα)c (from x
α−→ y

β−→ z)

=d(σ)πp+ bsβp− σπd(p) (by the first two identities above)

=d(σ)πp+ bsβp− σδβp+ σδβp− σπd(p)

=(bs− σδ)βp+ d(σ)πp− σd(π)p− σπd(p) (by the third identity above)

=fe+ d(σπp)

since σ ∈ Hom−1(x,C(α)) (cf. proof of Lemma 22.20.4). Hence e and f are
homotopy inverses. Finally, to check that the right square of diagram 22.20.13.1
commutes up to homotopy, it suffices to check that −cf = δ. This follows from

−cf = −c(bs− σδ) = cσδ = δ
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since cb = 0.

For (2), consider the factorization x
α̃−→ ỹ → y given as in Lemma 22.20.6, so the

second morphism is a homotopy equivalence. By Lemmas 22.20.3 and 22.20.12,
there exists an isomorphism of triangles between

x
α−→ y → C(α)→ x[1] and x

α̃−→ ỹ → C(α̃)→ x[1]

Since we can compose isomorphisms of triangles, by replacing α by α̃, y by ỹ, and
C(α) by C(α̃), we may assume α is an admissible monomorphism. In this case, the
result follows from (1). �

The following lemma is the analogue of Lemma 22.10.1.

Lemma 22.20.14. In Situation 22.20.2 the homotopy category K(A) with its nat-
ural translation functors and distinguished triangles is a pre-triangulated category.

Proof. We will verify each of TR1, TR2, and TR3.

Proof of TR1. By definition every triangle isomorphic to a distinguished one is
distinguished. Since

x
1x // x // 0

is an admissible short exact sequence, (x, x, 0, 1x, 0, 0) is a distinguished trian-
gle. Moreover, given a morphism α : x → y in Comp(A), the triangle given by
(x, y, c(α), α, i,−p) is distinguished by Lemma 22.20.13.

Proof of TR2. Let (x, y, z, α, β, γ) be a triangle and suppose (y, z, x[1], β, γ,−α[1])
is distinguished. Then there exists an admissible short exact sequence 0 → x′ →
y′ → z′ → 0 such that the associated triangle (x′, y′, z′, α′, β′, γ′) is isomorphic to
(y, z, x[1], β, γ,−α[1]). After rotating, we conclude that (x, y, z, α, β, γ) is isomor-
phic to (z′[−1], x′, y′, γ′[−1], α′, β′). By Lemma 22.20.11, we deduce that (z′[−1], x′, y′, γ′[−1], α′, β′)
is isomorphic to (z′[−1], x′, c(γ′[−1]), γ′[−1], i, p). Composing the two isomorphisms
with sign changes as indicated in the following diagram:

x
α //

��

y
β //

��

z
γ //

��

x[1]

��
z′[−1]

−γ′[−1] //

−1z′[−1]

��

x
α′ // y′

β′ //

��

z′

−1z′

��
z′[−1]

γ′[−1] // x
α′ // c(γ′[−1])

−p // z′

We conclude that (x, y, z, α, β, γ) is distinguished by Lemma 22.20.13 (2). Con-
versely, suppose that (x, y, z, α, β, γ) is distinguished, so that by Lemma 22.20.13
(1), it is isomorphic to a triangle of the form (x′, y′, c(α′), α′, i,−p) for some mor-
phism α′ : x′ → y′ in Comp(A). The rotated triangle (y, z, x[1], β, γ,−α[1])
is isomorphic to the triangle (y′, c(α′), x′[1], i,−p,−α[1]) which is isomorphic to
(y′, c(α′), x′[1], i, p, α[1]). By Lemma 22.20.10, this triangle is distinguished, from
which it follows that (y, z, x[1], β, γ,−α[1]) is distinguished.

Proof of TR3: Suppose (x, y, z, α, β, γ) and (x′, y′, z′, α′, β′, γ′) are distinguished
triangles of Comp(A) and let f : x → x′ and g : y → y′ be morphisms such
that α′ ◦ f = g ◦ α. By Lemma 22.20.13, we may assume that (x, y, z, α, β, γ) =

http://stacks.math.columbia.edu/tag/09QW
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(x, y, c(α), α, i,−p) and (x′, y′, z′, α′, β′, γ′) = (x′, y′, c(α′), α′, i′,−p′). Now apply
Lemma 22.20.3 and we are done. �

The following lemma is the analogue of Lemma 22.10.2.

Lemma 22.20.15. In Situation 22.20.2 given admissible monomorphisms x
α−→ y,

y
β−→ z in A, there exist distinguished triangles (x, y, q1, α, p1, δ1), (x, z, q2, βα, p2, δ2)

and (y, z, q3, β, p3, δ3) for which TR4 holds.

Proof. Given admissible monomorphisms x
α−→ y and y

β−→ z, we can find distin-
guished triangles, via their extensions to admissible short exact sequences,

x
α // y
π1

oo
p1 // q1

δ1 //
s1
oo x[1]

x
βα // z
π1π3

oo
p2 // q2

δ2 //
s2
oo x[1]

y
β // z
π3

oo
p3 // q3

δ3 //
s3
oo x[1]

In these diagrams, the maps δi are defined as δi = πid(si) analagous to the maps
defined in Lemma 22.20.1. They fit in the following solid commutative diagram

x
α //

βα

%%

y

β

��

π1

oo
p1 // q1

δ1 //
s1

oo

p2βs1

��

x[1]

z

π3

OO

p3

��

p2

%%

π1π3

ee

q3

s3

OO

δ3

��

q2p3s2
oo

s2

ee

δ2

%%
y[1] x[1]

where we have defined the dashed arrows as indicated. Clearly, their composition
p3s2p2βs1 = 0 since s2p2 = 0. We claim that they both are morphisms of Comp(A).
We can check this using equations in Lemma 22.20.1:

d(p2βs1) = p2βd(s1) = p2βαπ1d(s1) = 0

since p2βα = 0, and

d(p3s2) = p3d(s2) = p3βαπ1π3d(s2) = 0

since p3β = 0. To check that q1 → q2 → q3 is an admissible short exact sequence,
it remains to show that in the underlying graded category, q2 = q1 ⊕ q3 with the
above two morphisms as coprojection and projection. To do this, observe that in
the underlying graded category C, there hold

y = x⊕ q1, z = y ⊕ q3 = x⊕ q1 ⊕ q3

http://stacks.math.columbia.edu/tag/09QX
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where π1π3 gives the projection morphism onto the first factor: x⊕q1⊕q3 → z. By
axiom (A) on A, C is an additive category, hence we may apply Homology, Lemma
12.3.10 and conclude that

Ker(π1π3) = q1 ⊕ q3

in C. Another application of Homology, Lemma 12.3.10 to z = x ⊕ q2 gives
Ker(π1π3) = q2. Hence q2

∼= q1 ⊕ q3 in C. It is clear that the dashed morphisms
defined above give coprojection and projection.

Finally, we have to check that the morphism δ : q3 → q1[1] induced by the admissible
short exact sequence q1 → q2 → q3 agrees with p1δ3. By the construction in Lemma
22.20.1, the morphism δ is given by

p1π3s2d(p2s3) =p1π3s2p2d(s3)

=p1π3(1− βαπ1π3)d(s3)

=p1π3d(s3) (since π3β = 0)

=p1δ3

as desired. The proof is complete. �

Putting everything together we finally obtain the analogue of Proposition 22.10.3.

Proposition 22.20.16. In Situation 22.20.2 the homotopy category K(A) with its
natural translation functors and distinguished triangles is a triangulated category.

Proof. By Lemma 22.20.14 we know that K(A) is pre-triangulated. Combining
Lemmas 22.20.7 and 22.20.15 with Derived Categories, Lemma 13.4.13, we conclude
that K(A) is a triangulated category. �

22.21. Derived Hom

Let R be a ring. Let (B, d) be a differential graded algebra over R. Denote

B = Moddg(B,d) the differential graded category of differential graded B-modules,

see Example 22.19.8. Let N be a differential graded B-module. Then the endo-
morphisms of N in B

HomB(N,N)

is differential graded algebra over R. Now let N ′ be a second differential graded
B-module. Then

HomB(N,N ′)

becomes a right differential graded HomB(N,N)-module by the composition

HomB(N,N ′)×HomB(N,N) −→ HomB(N,N ′)

We need one more piece of data, in order to be able to formulate the results in
the correct generality. Namely, let (A,d) be a differential graded R-algebra and let
A → HomB(N,N) be a homomorphism of differential graded R-algebras4. Using
this homomorphism we obtain a functor

(22.21.0.1) Mod(B,d) −→ Mod(A,d), N ′ 7−→ HomB(N,N ′)

where A acts on HomB(N,N ′) via the given homomorphism and the action of
HomB(N,N) given above.

4A very interesting case is when A = HomB(N,N).

http://stacks.math.columbia.edu/tag/09QY
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Lemma 22.21.1. The functor (22.21.0.1) defines an exact functor of triangulated
categories K(Mod(B,d))→ K(Mod(A,d)).

Proof. Combining Lemmas 22.19.9, 22.19.10, and 22.19.5 we obtain the functor of
the statement. We have to show that (22.21.0.1) transforms distinguished triangles
into distinguished triangles. To see this suppose that 0→ N1 → N2 → N3 → 0 is an
admissible short exact sequence of differential graded B-modules. Let s : N3 → N2

be a graded B-module homomorphism which is left inverse to N2 → N3. Then s
defines a graded A-module homomorphism HomB(N,N3) → HomB(N,N2) which
is left inverse to HomB(N,N2)→ HomB(N,N3). This finishes the proof. �

At this point we can consider the diagram

K(Mod(B,d))

��

HomB(N,−)
//

F
))

K(Mod(A,d))

��
D(B, d) // D(A,d)

We would like to construct a dotted arrow as the right derived functor of the com-
position F . (Warning: the diagram will not commute.) Namely, in the general
setting of Derived Categories, Section 13.15 we want to compute the right derived
functor of F with respect to the multplicative system of quasi-isomorphisms in
K(Mod(A,d)).

Lemma 22.21.2. In the situation above, the right derived functor of F exists. We
denote it RHom(N,−) : D(B, d)→ D(A, d).

Proof. We will use Derived Categories, Lemma 13.15.15 to prove this. As our
collection I of objects we will use the objects with property (I). Property (1) was
shown in Lemma 22.14.4. Property (2) holds because if s : I → I ′ is a quasi-
isomorphism of modules with property (I), then s is a homotopy equivalence by
Lemma 22.15.3. �

22.22. Variant of derived Hom

Let A be an abelian category. Consider the differential graded category Compdg(A)
of complexes of A, see Example 22.19.6. Let K• be a complex of A. Set

(E,d) = HomCompdg(A)(K
•,K•)

and consider the functor of differential graded categories

Compdg(A) −→ Moddg(E,d), X• 7−→ HomCompdg(A)(K
•, X•)

of Lemma 22.19.10.

Lemma 22.22.1. In the situation above. If the right derived functor RHom(K•,−)
of Hom(K•,−) : K(A)→ D(Ab) is everywhere defined on D(A), then we obtain a
canonical exact functor

RHom(K•,−) : D(A) −→ D(E, d)

of triangulated categories which reduces to the usual one on taking associated com-
plexes of abelian groups.

http://stacks.math.columbia.edu/tag/09LH
http://stacks.math.columbia.edu/tag/09LI
http://stacks.math.columbia.edu/tag/09LK
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Proof. Note that we have an associated functor K(A)→ K(Mod(E,d)) by Lemma
22.19.10. We claim this functor is an exact functor of triangulated categories.
Namely, let f : A• → B• be a map of complexes of A. Then a computation shows
that

HomCompdg(A)(K
•, C(f)•) = C

(
HomCompdg(A)(K

•, A•)→ HomCompdg(A)(K
•, B•)

)
where the right hand side is the cone in Mod(E,d) defined earlier in this chapter.
This shows that our functor is compatible with cones, hence with distinguished tri-
angles. Let X• be an object of K(A). Consider the category of quasi-isomorphisms
s : X• → Y •. We are given that the functor (s : X• → Y •) 7→ HomA(K•, Y •)
is essentially constant when viewed in D(Ab). But since the forgetful functor
D(E,d)→ D(Ab) is compatible with taking cohomology, the same thing is true in
D(E,d). This proves the lemma. �

Warning: Although the lemma holds as stated and may be useful as stated, the
differential algebra E isn’t the “correct” one unless Hn(E) = ExtnD(A)(K

•,K•) for
all n ∈ Z.

22.23. Tensor product

This section should be moved somewhere else. Let R be a ring. Let A be an R-
algebra (see Section 22.2). Given a right A-module M and a left A-module N there
is a tensor product

M ⊗A N
This tensor product is a module over R. In fact, it is the receptacle of the universal
A-bilinear map M ×N →M ⊗A N , (m,n) 7→ m⊗ n.

We list some properties of the tensor product

(1) In each variable the tensor product is right exact, in fact commutes with
direct sums and arbitrary colimits.

(2) If A, M , N are graded and the module structures are compatible with
gradings thenM⊗AN is graded as well. Then nth graded piece (M⊗AN)n

of M ⊗A N is the quotient of
⊕

p+q=nM
p ⊗A0 Nq by the submodule

generated by m⊗ an−ma⊗ n where m ∈Mp, n ∈ Nq, and a ∈ An−p−q.
(3) If (A,d) is a differential graded algebra, and M and N are (left and right)

differential graded A-modules, then M ⊗A N is a differential graded R-
module with differential

d(m⊗ n) = d(m)⊗ n+ (−1)im⊗ d(n)

for m ∈M i and n ∈ N .
(4) If N is a (A,B)-bimodule then M ⊗A N is a right B-module.
(5) If A and B are graded algebras, M is a graded A-module, and N is an

(A,B)-bimodule which comes with a grading such that it is both a left
graded A-module and a right graded B-module, then M ⊗AN is a graded
B-module.

(6) If (A,d) and (B, d) are differential graded algebras, M is a differential
graded A-module, and N is an (A,B)-bimodule which comes with a grad-
ing and a differential such that it is both a left differential graded A-
module and a right differential graded B-module, then M ⊗A N is a dif-
ferential graded B-module.
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In the last item, the condition may be more succintly stated by saying that N is a
differential graded module over Aopp ⊗R B. We state the following as a lemma.

Lemma 22.23.1. Let (A, d) and (B, d) be differential graded algebras, and let N
be an (A,B)-bimodule which comes with a grading and a differential such that it is
both a left differential graded A-module and a right differential graded B-module.
Then M 7→M ⊗A N defines a functor

−⊗A N : Moddg(A,d) −→ Moddg(B,d)

of differential graded categories. This functor induces functors

Mod(A,d) → Mod(B,d) and K(Mod(A,d))→ K(Mod(B,d))

by an application of Lemma 22.19.5.

Proof. This follows from the discussion above. �

If A is an algebra and M , M ′ are right A-modules, then we define

HomA(M,M ′) = {f : M →M ′ | f is A-linear}

as usual. If A is graded and M and M ′ are graded A-modules, then we recall
(Example 22.18.6) that

HomModgrA
(M,M ′) =

⊕
n∈Z

Homn(M,M ′)

where Homn(M,M ′) is the collection of all A-module maps M → M ′ which are
homogeneous of degree n.

Lemma 22.23.2. Let A and B be algebras. Let M be a right A-module, N an
(A,B)-bimodule, and N ′ a right B-module. Then we have

HomB(M ⊗A N,N ′) = HomA(M,HomB(N,N ′))

If A, B, M , N , N ′ are compatibly graded, then we have

HomModgrB
(M ⊗A N,N ′) = HomModgrA

(M,HomModgrB
(N,N ′))

for the graded versions.

Proof. This follows by interpreting both sides as A-bilinear maps ψ : M×N → N ′

which are B-linear on the right. �

22.24. Derived tensor product

This section is analogous to More on Algebra, Section 15.46.

Let R be a ring. Let (A,d) and (B, d) be differential graded algebras over R. Let
N be a (A,B)-bimodule equipped with a grading and differential such that N is
a left differential graded A-module and a right differential graded B-module. In
other words, N is a differential graded Aopp ⊗R B-module. Consider the functor

(22.24.0.1) Mod(A,d) −→ Mod(B,d), M 7−→M ⊗A N

defined in Section 22.23.

Lemma 22.24.1. The functor (22.24.0.1) defines an exact functor of triangulated
categories K(Mod(A,d))→ K(Mod(B,d)).

http://stacks.math.columbia.edu/tag/09LM
http://stacks.math.columbia.edu/tag/09LN
http://stacks.math.columbia.edu/tag/09LR
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Proof. The functor was constructed in Lemma 22.23.1. We have to show that
− ⊗A N transforms distinguished triangles into distinguished triangles. Suppose
that 0 → K → L → M → 0 is an admissible short exact sequence of differential
graded A-modules. Let s : M → L be a graded A-module homomorphism which
is left inverse to L → M . Then s defines a graded B-module homomorphism
M ⊗A N → L⊗A N which is left inverse to L⊗A N →M ⊗A N . �

At this point we can consider the diagram

K(Mod(A,d))

��

−⊗AN
//

F
))

K(Mod(B,d))

��
D(A,d) // D(B, d)

The dotted arrow that we will construct below will be the left derived functor of
the composition F . (Warning: the diagram will not commute.) Namely, in the
general setting of Derived Categories, Section 13.15 we want to compute the left
derived functor of F with respect to the multplicative system of quasi-isomorphisms
in K(Mod(A,d)).

Lemma 22.24.2. In the situation above, the left derived functor of F exists. We
denote it −⊗L

A N : D(A, d)→ D(B, d).

Proof. We will use Derived Categories, Lemma 13.15.15 to prove this. As our
collection P of objects we will use the objects with property (P). Property (1) was
shown in Lemma 22.13.4. Property (2) holds because if s : P → P ′ is a quasi-
isomorphism of modules with property (P), then s is a homotopy equivalence by
Lemma 22.15.3. �

Remark 22.24.3. Let (A,d) and (B, d) be differential graded algebras. Let f :
N → N ′ be a homomorphism of differential graded Aopp ⊗R B-modules. Then f
induces a morphism of functors

1⊗ f : −⊗L
A N −→ −⊗L

A N
′

If f is a quasi-isomorphism, then 1⊗ f is an isomorphism of functors.

Lemma 22.24.4. Let (A, d) and (B, d) be differential graded algebras. Let N be
an (A,B)-bimodule which comes with a grading and a differential such that it is a
differential graded module for both A and B. Then the functors

−⊗L
A N : D(A, d) −→ D(B, d)

of Lemma 22.24.2 and

RHom(N,−) : D(B, d) −→ D(A, d)

of Lemma 22.21.2 are adjoint.

Proof. The statement means that we have

HomD(A,d)(M,RHom(N,N ′)) = HomD(B,d)(M ⊗L
A N,N

′)

bifunctorially in M and N ′. To see this we may assume that M is a differential
graded A-module with property (P) and that N ′ is a differential graded B-module
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with property (I). The computation of the derived functors given in the lemmas
referenced in the statement combined with Lemma 22.15.3 translates the above into

HomK(Mod(A,d))(M,HomB(N,N ′)) = HomK(Mod(B,d))(M ⊗A N,N
′)

where B = Moddg(B,d). Thus it is certainly sufficient to show that

HomA(M,HomB(N,N ′)) = HomB(M ⊗A N,N ′)

as differential graded Z-modules where A = Moddg(A,d). This follows from the fact

that the isomorphism (Lemma 22.23.2)

HomA(M,HomB(N,N ′)) = HomB(M ⊗A N,N ′)

of internal homs of graded modules respects the differentials. �

Lemma 22.24.5. Let R be a ring. Let (A, d), (B, d), and (C, d) be differential
graded algebras over R. Let N be a differential graded Aopp ⊗R B-module. Let N ′

be a differential graded Bopp⊗RC-module. If C is K-flat as a complex of R-modules,
then the composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to −⊗L
A N

′′ for some differential graded Aopp ⊗R C-module N ′′.

Proof. We will use the construction of the functor −⊗L − of the proof of Lemma
22.24.2 without further mention. By Remark 22.24.3 we may replace N ′ by a
quasi-isomorphic bimodule. Thus we assume that N ′ has property (P) as a differ-
ential graded Bopp⊗R C-module, see Lemma 22.13.4. Let F• be the corresponding
filtration on N ′. We claim that N ′′ = N ⊗B N ′ works.

Let M be an object of D(A,d). Using the lemma we may and do assume that M
has property (P) as a differential graded A-module. Then M ⊗L

A N = M ⊗A N .
Next, we choose a quasi-isomorphism P →M⊗AN where P is a differential graded
B-module with property (P). Then

(M ⊗L
A N)⊗L

B N
′ = P ⊗B N ′

The map P →M ⊗A N induces a map

P ⊗B N ′ → (M ⊗A N)⊗B N ′ = M ⊗A N ′′

This construction is functorial in M (details omitted) and hence it suffices to prove
this map is a quasi-isomorphism.

Since N ′ = colimFiN
′ it suffices to prove

P ⊗B FiN ′ →M ⊗A N ⊗B FiN ′

is a quasi-isomorphism for all i. Using the short exact sequences 0 → Fi−1N
′ →

FiN
′ → FiN

′/Fi−1N
′ → 0 which are graded split, we see that it suffices to prove

that the maps

P ⊗B FiN ′/Fi−1N
′ →M ⊗A N ⊗B FiN ′/Fi−1N

′

are quasi-isomorphisms for all i. Since FiN
′/Fi−1N

′ is a direct sum of shifts of
Bopp ⊗R C we finally reduce to showing that the map

P ⊗B (Bopp ⊗R C)→M ⊗A N ⊗B (Bopp ⊗R C)
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is a quasi-isomorphism. In other words, we have to show that

P ⊗R C →M ⊗A N ⊗R C

is a quasi-isomorphism. Since P → M ⊗A N is a quasi-isomorphism we conclude
using More on Algebra, Lemma 15.45.4. �

Lemma 22.24.6. With notation and assumptions as in Lemma 22.24.4. Assume

(1) N defines a compact object of D(B, d), and
(2) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then the functor −⊗L
A N is fully faithful.

Proof. Because our functor has a left adjoint given by RHom(N,−) by Lemma
22.24.4 it suffices to show that for a differential graded A-module M the map

H0(M) −→ HomD(B,d)(N,M ⊗L
A N)

is an isomorphism. We may assume that M = P is a differential graded A-module
which has property (P). Since N defines a compact object, we reduce using Lemma
22.13.1 to the case where P has a finite filtration whose graded pieces are direct sums
of A[k]. Again using compactness we reduce to the case P = A[k]. Assumption (2)
on N is that the result holds for these. �

22.25. Variant of derived tensor product

Let (C,O) be a ringed site. Then we have the functors

Comp(O)→ K(O)→ D(O)

and as we’ve seen above we have differential graded enhancement Compdg(O).
Namely, this is the differential graded category of Example 22.19.6 associated to
the abelian category Mod(O). Let K• be a complex of O-modules in other words,

an object of Compdg(O). Set

(E,d) = HomCompdg(O)(K
•,K•)

This is a differential graded Z-algebra. We claim there is an analogue of the derived
base change in this situation.

Lemma 22.25.1. In the situation above there is a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

of differential graded categories. This functor sends E to K• and commutes with
direct sums.

Proof. Let M be a differential graded E-module. For every object U of C the
complex K•(U) is a left differential graded E-module as well as a right O(U)-
module. The actions commute, so we have a bimodule. Thus, by the constructions
in Section 22.23 we can form the tensor product

M ⊗E K•(U)

which is a differential graded O(U)-module, i.e., a complex of O(U)-modules. This
construction is functorial with respect to U , hence we can sheafify to get a complex
of O-modules which we denote

M ⊗E K•
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Moreover, for each U the construction determines a functor Moddg(E,d) → Compdg(O(U))

of differential graded categories by Lemma 22.23.1. It is therefore clear that we ob-
tain a functor as stated in the lemma. �

Lemma 22.25.2. The functor of Lemma 22.25.1 defines an exact functor of tri-
angulated categories K(Mod(Ed))→ K(O).

Proof. The functor induces a functor between homotopy categories by Lemma
22.19.5. We have to show that − ⊗E K• transforms distinguished triangles into
distinguished triangles. Suppose that 0 → K → L → M → 0 is an admissible
short exact sequence of differential graded E-modules. Let s : M → L be a graded
E-module homomorphism which is left inverse to L → M . Then s defines a map
M ⊗E K• → L ⊗E K• of graded O-modules (i.e., respecting O-module structure
and grading, but not differentials) which is left inverse to L ⊗E K• → M ⊗E K•.
Thus we see that

0→ K ⊗E K• → L⊗E K• →M ⊗E K• → 0

is a termwise split short exact sequences of complexes, i.e., a defines a distinguished
triangle in K(O). �

Lemma 22.25.3. The functor K(Mod(E,d))→ K(O) of Lemma 22.25.2 has a left

derived version defined on all of D(E, d). We denote it −⊗L
EK

• : D(E, d)→ D(O).

Proof. We will use Derived Categories, Lemma 13.15.15 to prove this. As our
collection P of objects we will use the objects with property (P). Property (1) was
shown in Lemma 22.13.4. Property (2) holds because if s : P → P ′ is a quasi-
isomorphism of modules with property (P), then s is a homotopy equivalence by
Lemma 22.15.3. �

Lemma 22.25.4. Let (C,O) be a ringed site. Let K• be a complex of O-modules.
Then the functors

−⊗L
E K

• : D(E, d) −→ D(O)

of Lemma 22.25.3 and

RHom(K•,−) : D(O) −→ D(E, d)

of Lemma 22.22.1 are adjoint.

Proof. The statement means that we have

HomD(E,d)(M,RHom(K•, L•)) = HomD(O)(M ⊗L
E K

•, L•)

bifunctorially in M and L•. To see this we may replace M by a differential graded
E-module P with property (P). We also may replace L• by a K-injective complex
of O-modules I•. The computation of the derived functors given in the lemmas
referenced in the statement combined with Lemma 22.15.3 translates the above
into

HomK(Mod(E,d))(P,HomB(K•, I•)) = HomK(O)(P ⊗E K•, I•)
where B = Compdg(O). There is an evalution map from right to left functorial
in P and I• (details omitted). Choose a filtration F• on P as in the definition
of property (P). By Lemma 22.13.1 and the fact that both sides of the equation
are homological functors in P on K(Mod(E,d)) we reduce to the case where P is
replaced by the differential graded E-module

⊕
FiP . Since both sides turn direct

sums in the variable P into direct products we reduce to the case where P is one

http://stacks.math.columbia.edu/tag/09LW
http://stacks.math.columbia.edu/tag/09LX
http://stacks.math.columbia.edu/tag/09LY


1646 22. DIFFERENTIAL GRADED ALGEBRA

of the differential graded E-modules FiP . Since each FiP has a finite filtration
(given by admissible monomorpisms) whose graded pieces are graded projective
E-modules we reduce to the case where P is a graded projective E-module. In this
case we clearly have

HomModdg
(E,d)

(P,HomB(K•, I•)) = HomCompdg(O)(P ⊗E K•, I•)

as graded Z-modules (because this statement reduces to the case P = E[k] where
it is obvious). As the isomorphism is compatible with differentials we conclude. �

Lemma 22.25.5. Let (C,O) be a ringed site. Let K• be a complex of O-modules.
Assume

(1) K• represents a compact object of D(O), and
(2) E = HomCompdg(O)(K

•,K•) computes the ext groups of K• in D(O).

Then the functor

−⊗L
E K

• : D(E, d) −→ D(O)

of Lemma 22.25.3 is fully faithful.

Proof. Because our functor has a left adjoint given by RHom(K•,−) by Lemma
22.25.4 it suffices to show for a differential graded E-module M that the map

H0(M) −→ HomD(O)(K
•,M ⊗L

E K
•)

is an isomorphism. We may assume that M = P is a differential graded E-module
which has property (P). Since K• defines a compact object, we reduce using Lemma
22.13.1 to the case where P has a finite filtration whose graded pieces are direct
sums of E[k]. Again using compactness we reduce to the case P = E[k]. The
assumption on K• is that the result holds for these. �

22.26. Characterizing compact objects

Compact objects of additive categories are defined in Derived Categories, Definition
13.34.1. In this section we characterize compact objects of the derived category of
a differential graded algebra.

Lemma 22.26.1. Let (A, d) be a differential graded algebra. Let P , M be differ-
ential graded A-modules. Assume P is projective as a graded A-module.

(1) If M is acyclic, then HomK(A,d)(P,M) = 0.
(2) In general HomK(A,d)(P,M) = HomD(A,d)(P,M).

Proof. Consider the functor

N 7−→ HomModdg
(A,d)

(P,N)

that to a differential graded A-module N associates the differential graded R-
module whose degree n summand is the degree n homogeneous A-module maps
from P to N , see Example 22.19.8. Since P is graded projective, this functor trans-
forms any short exact sequence of differential graded A-modules into a short exact
sequence of complexes of R-modules. In particular, if Z ⊂ M is the kernel of dM ,
then we get the short exact sequence 0 → Z → M → Z[1] → 0 because M is
acyclic. This in turn produces the short exact sequence

0→ HomModdg
(A,d)

(P,Z)→ HomModdg
(A,d)

(P,M)→ HomModdg
(A,d)

(P,Z[1])→ 0

http://stacks.math.columbia.edu/tag/09LZ
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The associated long exact sequence of cohomology modules is

HomK(A,d)(P,Z)→ HomK(A,d)(P,Z)→
HomK(A,d)(P,M)→ HomK(A,d)(P,Z[1])→ HomK(A,d)(P,Z[1])

A computation, which we omit, shows that the first and the last arrows are identity
maps, thereby proving part (1).

Choose a quasi-isomorphism M → I where I has property (I) which is possible by
Lemma 22.14.4. Choose a distinguished triangle

M → I → Q→M [1]

in K(A,d). Since M → I is a quasi-isomorphism, we see that Q is acyclic. By
part (1) we have HomK(A,d)(P,Q[n]) = 0 for all n. As HomK(A,d)(P,−) is ho-
mological (Derived Categories, Lemma 13.4.2) we see that HomK(A,d)(P,M) =
HomK(A,d)(P, I). We finish by applying Lemma 22.15.3. �

Let us say a differential graded A-module M is finite if M is generated, as a right
A-module, by finitely many elements.

Lemma 22.26.2. Let (A, d) be a differential graded algebra. If P is a differential
graded A-module which is finite graded projective, then P is a compact object of
D(A, d).

Proof. Suppose that P is finite and projective as a graded module. Choose a quasi-
isomorphism P ′ → P where P ′ has property (P). Let K = Ker(P ′ → P ). Then K
is an acyclic differential graded A-module, whence the boundary δ : P → K[1] (see
Lemmas 22.11.1 and 22.7.2) is zero by Lemma 22.26.1. Thus we see that P ′ → P
is a homotopy equivalence (by general properties of triangulated categories). It
follows that HomK(A,d)(P

′,−) = HomK(A,d)(P,−) as functors, whence we see that

HomD(A,d)(P,M) = HomK(A,d)(P,M)

for any differential graded A-module M as this is true for P ′ by Lemma 22.15.3.
Now, if M =

⊕
Mi, then because P is a finite A-module, we see that

HomK(A,d)(P,M) =
⊕

HomK(A,d)(P,Mi)

(look at the image of the generators of P for any map or homotopy). Moreover,
the direct sum is the direct sum in the derived category, see Lemma 22.15.4. Thus
P represents a compact object of D(A,d). �

Lemma 22.26.3. Let (A, d) be a differential graded algebra. Let E be a com-
pact object of D(A, d). Let P be a differential graded A-module which has a finite
filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ FnP = P

by differential graded submodules such that

Fi+1P/FiP ∼=
⊕

j∈Ji
A[ki,j ]

as differential graded A-modules for some sets Ji and integers ki,j. Let E → P be
a morphism of D(A, d). Then there exists a differential graded submodule P ′ ⊂ P
such that Fi+1P ∩ P ′/(FiP ∩ P ′) is equal to

⊕
j∈J′i

A[ki,j ] for some finite subsets

J ′i ⊂ Ji and such that E → P factors through P ′.
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Proof. We will prove by induction on −1 ≤ m ≤ n that there exists a differential
graded submodule P ′ ⊂ P such that

(1) FmP ⊂ P ′,
(2) for i ≥ m the quotient Fi+1P∩P ′/(FiP∩P ′) is isomorphic to

⊕
j∈J′i

A[ki,j ]

for some finite subsets J ′i ⊂ Ji, and
(3) E → P factors through P ′.

The base case is m = n where we can take P ′ = P .

Induction step. Assume P ′ works for m. For i ≥ m and j ∈ J ′i let xi,j ∈ Fi+1P ∩P ′
be a homogeneous element of degree ki,j whose image in Fi+1P ∩ P ′/(FiP ∩ P ′) is
the generator in the summand corresponding to j ∈ Ji. The xi,j generate P ′/FmP
as an A-module. Write

d(xi,j) =
∑

xi′,j′a
i′,j′

i,j + yi,j

with yi,j ∈ FmP and ai
′,j′

i,j ∈ A. There exists a finite subset J ′m−1 ⊂ Jm−1 such that

each yi,j maps to an element of the submodule
⊕

j∈J′m−1
A[km−1,j ] of FmP/Fm−1P .

Let P ′′ ⊂ FmP be the inverse image of
⊕

j∈J′m−1
A[km−1,j ] under the map FmP →

FmP/Fm−1P . Then we see that the A-submodule

P ′′ +
∑

xi,jA

is a differential graded submodule of the type we are looking for. Moreover

P ′/(P ′′ +
∑

xi,jA) =
⊕

j∈Jm−1\J′m−1

A[km−1,j ]

Since E is compact, the composition of the given map E → P ′ with the quotient
map, factors through a finite direct subsum of the module displayed above. Hence
after enlarging J ′m−1 we may assume E → P ′ factors through P ′′ +

∑
xi,jA as

desired. �

It is not true that every compact object of D(A,d) comes from a finite graded
projective differential graded A-module, see Examples, Section 82.58.

Proposition 22.26.4. Let (A, d) be a differential graded algebra. Let E be an
object of D(A, d). Then the followoing are equivalent

(1) E is a compact object,
(2) E is a direct summand of an object of D(A, d) which is represented by a

finite graded projective differential graded A-module, and
(3) E is a direct summand of an object of D(A, d) which is represented by a

differential graded module P which has a finite filtration F• by differential
graded submodules such that FiP/Fi−1P are finite direct sums of shifts of
A.

Proof. Assume E is compact. By Lemma 22.13.4 we may assume that E is repre-
sented by a differential graded A-module P with propery (P). Consider the distin-
guished triangle ⊕

FiP →
⊕

FiP → P
δ−→
⊕

FiP [1]

coming from the admissible short exact sequence of Lemma 22.13.1. Since E is
compact we have δ =

∑
i=1,...,n δi for some δi : P → FiP [1]. Since the compostion

of δ with the map
⊕
FiP [1] →

⊕
FiP [1] is zero (Derived Categories, Lemma
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13.4.1) it follows that δ = 0 (follows as
⊕
FiP →

⊕
FiP maps the summand FiP

via the difference of id and the inclusion map into Fi−1P ). Thus we see that the
identity on E factors through

⊕
FiP in D(A,d) (by Derived Categories, Lemma

13.4.10). Next, we use that P is compact again to see that the map E →
⊕
FiP

factors through
⊕

i=1,...,n FiP for some n. In other words, the identity on E factors

through
⊕

i=1,...,n FiP . By Lemma 22.26.3 we see that the identity of E factors as

E → P → E where P is as in part (3) of the statement of the lemma. In other
words, we have proven that (1) implies (3).

It is clear that (3) implies (2). Finally, (2) implies (1) by Lemma 22.26.2 and
Derived Categories, Lemma 13.34.2. �

Lemma 22.26.5. Let (A, d) be a differential graded algebra. For every compact
object E of D(A, d) there exist integers a ≤ b such that HomD(A,d)(E,M) = 0 if

Hi(M) = 0 for i ∈ [a, b].

Proof. Observe that the collection of objects of D(A,d) for which such a pair
of integers exists is a saturated, strictly full triangulated subcategory of D(A,d).
Thus by Proposition 22.26.4 it suffices to prove this when E is represented by a
differential graded module P which has a finite filtration F• by differential graded
submodules such that FiP/Fi−1P are finite direct sums of shifts of A. Using the
compatibility with triangles, we see that it suffices to prove it for P = A. In this
case HomD(A,d)(A,M) = H0(M) and the result holds with a = b = 0. �

If (A,d) is just a graded algebra or more generally lives in only a finite number of
degrees, then we do obtain the more precise description of compact objects.

Lemma 22.26.6. Let (A, d) be a differential graded algebra. Assume that An = 0
for |n| � 0. Then an object of D(A, d) is compact if and only if it can be represented
by a finite graded projective differential graded A-module.

Proof. One implication is Lemma 22.26.2. For the converse, let E be a compact
object of D(A,d). Fix a ≤ b as in Lemma 22.26.5. After decreasing a and increasing
b if necessary, we may also assume that Hi(E) = 0 for i 6∈ [a, b] (this follows from
Proposition 22.26.4 and our assumption on A). Moreover, fix an integer c > 0 such
that An = 0 if |n| ≥ c.

By Proposition 22.26.4 we see that E is a direct summand, in D(A,d), of a dif-
ferential graded A-module P which has a finite filtration F• by differential graded
submodules such that FiP/Fi−1P are finite direct sums of shifts of A. Note that
P is a finite graded free A-module. We will use without further mention that for
such a differential graded A-module we have HomD(A,d)(P, P ) = HomK(A,d)(P, P )
by Lemma 22.26.1.

Choose n > 0 such that b + 4c − n < a. Represent the projector onto E by
an endomorphism ϕ : P → P of differential graded A-modules. Consider the
distinguished triangle

P
1−ϕ−−−→ P → C → P [1]

in K(A,d) where C is the cone of the first arrow. Then C ∼= E ⊕ E[1] in D(A,d)
and C is a finite graded free A-module. Next, consider a distinguished triangle

C[1]→ C → C ′ → C[2]
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in K(A,d) where C ′ is the cone on a morphism C[1]→ C representing the compo-
sition

C[1] ∼= E[1]⊕ E[2]→ E[1]→ E ⊕ E[1] ∼= C

in D(A,d). Then we see that C ′ represents E ⊕ E[2]. Continuing in this manner
we see that we can find a differential graded A-module P which is a finite graded
free A-module representing E ⊕ E[n].

Choose a basis xi, i ∈ I of homogeneous element for P as an A-module. Let
di = deg(xi). Let P1 be the A-submodule of P generated by xi and d(xi) for
di ≤ a − c − 1. Let P2 be the A-submodule of P generated by xi and d(xi) for
di ≥ b− n+ c. We observe

(1) P1 and P2 are differential graded submodules of P ,
(2) P t1 = 0 for t ≥ a,
(3) P t1 = P t for t ≤ a− 2c,
(4) P t2 = 0 for t ≤ b− n,
(5) P t2 = P t for t ≥ b− n+ 2c.

As b − n + 2c ≥ a − 2c by our choice of n we obtain a short exact sequence of
differential graded A-modules

0→ P1 ∩ P2 → P1 ⊕ P2
π−→ P → 0

Since P is projective as a gradedA-module this is an admissible short exact sequence
(Lemma 22.11.1). Hence we obtain a boundary map δ : P → (P1∩P2)[1] in K(A,d),
see Lemma 22.7.2. Since P = E ⊕E[n] and since P1 ∩P2 lives in degrees (b− n, a)
we find that HomD(A,d)(E ⊕ E[n], (P1 ∩ P2)[1]) is zero. Therefore δ = 0 as a
morphism in K(A,d). By Derived Categories, Lemma 13.4.10 we can find a map
s : P → P1 ⊕P2 such that π ◦ s = idP + dh+ hd for some h : P → P of degree −1.
Since P1 ⊕ P2 → P is surjective and since P is projective as a graded A-module
we can choose a homogeneous lift h̃ : P → P1 ⊕ P2 of h. Then we change s into
s+ dh̃+ h̃d to get π ◦ s = idP . This means we obtain a direct sum decomposition
P = s−1(P1)⊕ s−1(P2). Since s−1(P2) is equal to P in degrees ≥ b− n+ 2c we see
that s−1(P2) → P → E is a quasi-isomorphism, i.e., an isomorphism in D(A,d).
This finishes the proof. �

22.27. Equivalences of derived categories

Let R be a ring. Let (A,d) and (B, d) be differential graded R-algebras. A natural
question that arises in nature is what it means that D(A,d) is equivalent to D(B, d)
as an R-linear triangulated category. This is a rather subtle question and it will
turn out it isn’t always the correct question to ask. Nonetheless, in this section we
collection some conditions that guarantee this is the case.

We strongly urge the reader to take a look at the groundbreaking paper [Ric89b]
on this topic.

Lemma 22.27.1. Let R be a ring. Let (A, d) → (B, d) be a homomorphism of
differential graded algebras over R, which induces an isomorphism on cohomology
algebras. Then

−⊗L
A B : D(A, d)→ D(B, d)

gives an R-linear equivalence of triangulated categories with quasi-inverse the re-
striction functor N 7→ NA.
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Proof. By Lemma 22.24.6 the functor M 7−→M⊗L
AB is fully faithful. By Lemma

22.24.4 the functor N 7−→ RHom(B,N) = NA is a right adjoint. It is clear that the
kernel of RHom(B,−) is zero. Hence the result follows from Derived Categories,
Lemma 13.7.2. �

When we analyze the proof above we see that we obtain the following generalization
for free.

Lemma 22.27.2. Let R be a ring. Let (A, d) and (B, d) be differential graded
algebras over R. Let N be an (A,B)-bimodule which comes with a grading and a
differential such that it is a differential graded module for both A and B. Assume
that

(1) N defines a compact object of D(B, d),
(2) if N ′ ∈ D(B, d) and HomD(B,d)(N,N

′[n]) = 0 for n ∈ Z, then N ′ = 0,
and

(3) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then

−⊗L
A N : D(A, d)→ D(B, d)

gives an R-linear equivalence of triangulated categories.

Proof. By Lemma 22.24.6 the functor M 7−→M⊗L
AN is fully faithful. By Lemma

22.24.4 the functor N ′ 7−→ RHom(N,N ′) is a right adjoint. By assumption (3) the
kernel of RHom(N,−) is zero. Hence the result follows from Derived Categories,
Lemma 13.7.2. �

Remark 22.27.3. In Lemma 22.27.2 we can replace condition (2) by the con-
dition that N is a classical generator for Dcompact(B, d), see Derived Categories,
Proposition 13.34.6. Moreover, if we knew that RHom(N,B) is a compact object
of D(A,d), then it suffices to check that N is a weak generator for Dcompact(B, d).
We omit the proof; we will add it here if we ever need it in the Stacks project.

Sometimes the B-module P in the lemma below is called an “(A,B)-tilting com-
plex”.

Lemma 22.27.4. Let R be a ring. Let (A, d) and (B, d) be differential graded
R-algebras. Assume that A = H0(A). The following are equivalent

(1) D(A, d) and D(B, d) are equivalent as R-linear triangulated categories,
and

(2) there exists an object P of D(B, d) such that
(a) P is a compact object of D(B, d),
(b) if N ∈ D(B, d) with HomD(B,d)(P,N [i]) = 0 for i ∈ Z, then N = 0,
(c) HomD(B,d)(P, P [i]) = 0 for i 6= 0 and equal to A for i = 0.

Proof. Let F : D(A,d)→ D(B, d) be an equivalence. Then F maps compact ob-
jects to compact objects. Hence P = F (A) is compact, i.e., (2)(a) holds. Conditions
(2)(b) and (2)(c) are immediate from the fact that F is an equivalence.

Let P be an object as in (2). Represent P by a differential graded module with
property (P). Set

(E,d) = HomModdgB
(P, P )

http://stacks.math.columbia.edu/tag/09S7
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Then H0(E) = A and Hk(E) = 0 for k 6= 0 by Lemma 22.15.3 and assumption
(2)(c). Viewing P as a (E,B)-bimodule and using Lemma 22.27.2 and assumption
(2)(b) we obtain an equivalence

D(E,d)→ D(B, d)

Let E′ ⊂ E be the differential graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0

Then there are quasi-isomorphisms of differential graded algebras (A,d)← (E′,d)→
(E,d) Thus we obtain equivalences

D(A,d)← D(E′,d)→ D(E,d)→ D(B, d)

by Lemma 22.27.1. �

Remark 22.27.5. Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Suppose given an R-linear equivalence

F : D(A,d) −→ D(B, d)

of triangulated categories. Set N = F (A). Then N is a differential graded
B-module. Since F is an equivalence and A is a compact object of D(A,d),
we conclude that N is a compact object of D(B, d). Moreover, since Hk(A) =
HomD(A,d)(A,A[k]) and F an equivalence we see that F induces an isomorphism

Hk(A) = HomD(B,d)(N,N [k]) for all k. In order to conclude that there is an equiv-
alence D(A,d) −→ D(B, d) which arises from the construction in Lemma 22.27.2 all
we need is a right A-module structure on N or on any differential graded B-module
quasi-isomorphic to B. This module structure can be constructed in certain cases.
For example, if we assume that F can be lifted to a differential graded functor

F dg : Moddg(A,d) −→ Moddg(B,d)

(for notation see Example 22.19.8) between the associated differential graded cat-
egories, then this holds. Another case is discussed in the proposition below.

Proposition 22.27.6. Let R be a ring. Let (A, d) and (B, d) be differential graded
R-algebras. Let F : D(A, d) → D(B, d) be an R-linear equivalence of triangulated
cateories. Assume that

(1) A = H0(A), and
(2) B is K-flat as a complex of R-modules.

Then there exists an (A,B)-bimodule N as in Lemma 22.27.2.

Proof. As in Remark 22.27.5 above, we set N = F (A) in D(B, d). We may assume
that N is a differential graded B-module with property (P). Set

(E,d) = HomModdg
(B,d)

(N,N)

Then H0(E) = A and Hk(E) = 0 for k 6= 0 by Lemma 22.15.3. Moreover, by
the discussion preceding the proposition and Lemma 22.27.2 we see that N as a

http://stacks.math.columbia.edu/tag/09S9
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(E,B)-bimodule induces an equivalence −⊗L
E N : D(E,d)→ D(B, d). Let E′ ⊂ E

be the differential graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0

Then there are quasi-isomorphisms of differential graded algebras (A,d)← (E′,d)→
(E,d) Thus we obtain equivalences

D(A,d)← D(E′,d)→ D(E,d)→ D(B, d)

by Lemma 22.27.1. Note that the quasi-inverse D(A,d) → D(E′,d) of the left
vertical arrow is given by M 7→M⊗L

AA where A is viewed as a Aopp⊗RE′-module.
On the other hand the functor D(E′,d) → D(B, d) is given by M 7→ M ⊗L

E′ N
where N is as above. We conclude by Lemma 22.24.5. �

Remark 22.27.7. Let A,B, F,N be as in Proposition 22.27.6. It is not clear that
F and the functor G(−) = − ⊗L

A N are isomorphic. By construction there is an
isomorphism N = G(A)→ F (A) in D(B, d). It is straigthforward to extend this to
a functorial isomorphism G(M) → F (M) for M is a differential graded A-module
which is graded projective (e.g., a sum of shifts of A). Then one can conclude that
G(M) ∼= F (M) when M is a cone of a map between such modules. We don’t know
whether more is true in general.

Lemma 22.27.8. Let R be a ring. Let A and B be R-algebras. The following are
equivalent

(1) there is an R-linear equivalence D(A)→ D(B) of triangulated categories,
(2) there exists an object P of D(B) such that

(a) P can be represented by a finite complex of finite projective B-modules,
(b) if K ∈ D(B) with ExtiB(P,K) = 0 for i ∈ Z, then K = 0, and
(c) ExtiB(P, P ) = 0 for i 6= 0 and equal to A for i = 0.

Moreover, if B is flat as an R-module, then this is also equivalent to

(3) there exists an (A,B)-bimodule N such that − ⊗L
A N : D(A) → D(B) is

an equivalence.

Proof. The equivalence of (1) and (2) is a special case of Lemma 22.27.4 combined
with the result of Lemma 22.26.6 characterizing compact objects of D(B). The
equivalence with (3) if B is R-flat follows from Proposition 22.27.6. �

Remark 22.27.9. Let R be a ring. Let A and B be R-algebras. If D(A) and D(B)
are equivalent as R-linear triangulated categories, then the centers of A and B are
isomorphic as R-algebras. In particular, if A and B are commutative, then A ∼=
B. The rather tricky proof can be found in [Ric89b, Proposition 9.2] or [KZ98,
Proposition 6.3.2]. Another approach might be to use Hochschild cohomology (see
remark below).

Remark 22.27.10. Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras which are derived equivalent, i.e., such that there exists an R-linear
equivalence D(A,d) → D(B, d) of triangulated categories. We would like to show
that certain invariants of (A,d) and (B, d) coincide. In many situations one has

http://stacks.math.columbia.edu/tag/09SB
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more control of the situation. For example, it may happen that there is an equiva-
lence of the form

−⊗A Ω : D(A,d) −→ D(B, d)

for some differential graded Aopp ⊗R B-module Ω (this happens in the situation
of Proposition 22.27.6 and is often true if the equivalence comes from a geometric
construction). If also the quasi-inverse of our functor is given as

−⊗L
A Ω′ : D(B, d) −→ D(A,d)

for a differential graded Bopp ⊗R A-module Ω′ (and as before such a module Ω′

often exists in practice) then we can consider the functor

D(Aopp ⊗R A,d) −→ D(Bopp ⊗R B, d), M 7−→ Ω′ ⊗L
AM ⊗L

A Ω

Observe that this functor sends the (A,A)-bimodule A to the (B,B)-bimodule B.
Under suitable conditions (e.g., flatness of A, B, Ω, etc) this functor will be an
equivalence as well. If this is the case, then it follows that we have isomorphisms
of Hochschild cohomology groups

HHi(A,d) = HomD(Aopp⊗RA,d)(A,A[i]) −→ HomD(Bopp⊗RB,d)(B,B[i]) = HHi(B, d).

For example, if A = H0(A), then HH0(A,d) is equal to the center of A, and this
gives a conceptual proof of the result mentioned in Remark 22.27.9. If we ever need
this remark we will provide a precise statement with a detailed proof here.
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CHAPTER 23

Divided Power Algebra

23.1. Introduction

In this chapter we talk about divided power algebras and what you can do with
them. A reference is the book [Ber74].

23.2. Divided powers

In this section we collect some results on divided power rings. We will use the
convention 0! = 1 (as empty products should give 1).

Definition 23.2.1. Let A be a ring. Let I be an ideal of A. A collection of maps
γn : I → I, n > 0 is called a divided power structure on I if for all n ≥ 0, m > 0,
x, y ∈ I, and a ∈ A we have

(1) γ1(x) = x, we also set γ0(x) = 1,

(2) γn(x)γm(x) = (n+m)!
n!m! γn+m(x),

(3) γn(ax) = anγn(x),
(4) γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(5) γn(γm(x)) = (nm)!
n!(m!)n γnm(x).

Note that the rational numbers (n+m)!
n!m! and (nm)!

n!(m!)n occurring in the definition are

in fact integers; the first is the number of ways to choose n out of n + m and the
second counts the number of ways to divide a group of nm objects into n groups
of m. We make some remarks about the definition which show that γn(x) is a
replacement for xn/n! in I.

Lemma 23.2.2. Let A be a ring. Let I be an ideal of A.

(1) If γ is a divided power structure on I, then n!γn(x) = xn for n ≥ 1, x ∈ I.

Assume A is torsion free as a Z-module.

(2) A divided power structure on I, if it exists, is unique.
(3) If γn : I → I are maps then

γ is a divided power structure⇔ n!γn(x) = xn ∀x ∈ I, n ≥ 1.

(4) The ideal I has a divided power structure if and only if there exists a set of
generators xi of I as an ideal such that for all n ≥ 1 we have xni ∈ (n!)I.

Proof. Proof of (1). If γ is a divided power structure, then condition (2) im-
plies that nγn(x) = γ1(x)γn−1(x). Hence by induction and condition (1) we get
n!γn(x) = xn.

Assume A is torsion free as a Z-module. Proof of (2). This is clear from (1).

Proof of (3). Assume that n!γn(x) = xn for all x ∈ I and n ≥ 1. Since A ⊂ A⊗Z Q
it suffices to prove (1) – (5) in case A is a Q-algebra. In this case γn(x) = xn/n!

1657
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and it is straightforward to verify (1) – (5), for example (4) corresponds to the
binomial formula

(x+ y)n =
∑ n!

i!(n− i)!
xiyn−i

We encourage the reader to do the verifications to make sure that we have the
coefficients correct.

Proof of (4). Assume we have generators xi of I as an ideal such that xni ∈ (n!)I
for all n ≥ 1. We claim that for all x ∈ I we have xn ∈ (n!)I. If the claim holds
then we can set γn(x) = xn/n! which is a divided power structure by (3). To prove
the claim we note that it holds for x = axi. Hence we see that the claim holds
for a set of generators of I as an abelian group. By induction on the length of an
expression in terms of these, it suffices to prove the claim for x+ y if it holds for x
and y. This follows immediately from the binomial theorem. �

Example 23.2.3. Let p be a prime number. Let A be a ring such that every
integer n not divisible by p is invertible, i.e., A is a Z(p)-algebra. Then I = pA has
a canonical divided power structure. Namely, given x = pa ∈ A we set

γn(x) =
pn

n!
an

The reader verifies immediately that pn/n! ∈ Z(p) so that the definition makes sense.
It is a straightforward exercise to verify that conditions (1) – (5) of Definition 23.2.1
are satisfied. Alternatively, it is clear that the definition works for A0 = Z(p) and
then the result follows from Lemma 23.4.2.

Lemma 23.2.4. Let A be a ring. Let I be an ideal of A. Let γn : I → I, n ≥ 1 be
a sequence of maps. Assume

(a) (1), (3), and (4) of Definition 23.2.1 hold for all x, y ∈ I, and
(b) properties (2) and (5) hold for x in set of generators of I as an ideal.

Then γ is a divided power structure on I.

Proof. The numbers (1), (2), (3), (4), (5) in this proof refer to the conditions listed
in Definition 23.2.1. Applying (3) we see that if (2) and (5) hold for x then (2)
and (5) hold for ax for all a ∈ A. Hence we see (b) implies (2) and (5) hold for a
set of generators of I as an abelian group. Hence, by induction of the length of an
expression in terms of these it suffices to prove that, given x, y ∈ I such that (2)
and (5) hold for x and y, then (2) and (5) hold for x+ y.

Proof of (2) for x+ y. By (4) we have

γn(x+ y)γm(x+ y) =
∑

i+j=n, k+l=m
γi(x)γk(x)γj(y)γl(y)

Using (2) for x and y this equals∑ (i+ k)!

i!k!

(j + l)!

j!l!
γi+k(x)γj+l(y)

Comparing this with the expansion

γn+m(x+ y) =
∑

γa(x)γb(y)

we see that we have to prove that given a+ b = n+m we have∑
i+k=a, j+l=b, i+j=n, k+l=m

(i+ k)!

i!k!

(j + l)!

j!l!
=

(n+m)!

n!m!
.
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Instead of arguing this directly, we note that the result is true for the ideal I = (x, y)
in the polynomial ring Q[x, y] because γn(f) = fn/n!, f ∈ I defines a divided power
structure on I. Hence the equality of rational numbers above is true.

Proof of (5) for x+ y given that (1) – (4) hold and that (5) holds for x and y. We
will again reduce the proof to an equality of rational numbers. Namely, using (4) we
can write γn(γm(x+y)) = γn(

∑
γi(x)γj(y)). Using (4) we can write γn(γm(x+y))

as a sum of terms which are products of factors of the form γk(γi(x)γj(y)). If i > 0
then

γk(γi(x)γj(y)) = γj(y)kγk(γi(x))

=
(ki)!

k!(i!)k
γj(y)kγki(x)

=
(ki)!

k!(i!)k
(kj)!

k!(j!)k
γik(x)γkj(y)

using (3) in the first equality, (5) for x in the second, and (2) exactly k times in
the third. Using (5) for y we see the same equality holds when i = 0. Continuing
like this using all axioms but (5) we see that we can write

γn(γm(x+ y)) =
∑

i+j=nm
cijγi(x)γj(y)

for certain universal constants cij ∈ Z. Again the fact that the equality is valid
in the polynomial ring Q[x, y] implies that the coefficients cij are all equal to
(nm)!/n!(m!)n as desired. �

Lemma 23.2.5. Let A be a ring with two ideals I, J ⊂ A. Let γ be a divided power
structure on I and let δ be a divided power structure on J . Then

(1) γ and δ agree on IJ ,
(2) if γ and δ agree on I ∩ J then they are the restriction of a unique divided

power structure ε on I + J .

Proof. Let x ∈ I and y ∈ J . Then

γn(xy) = ynγn(x) = n!δn(y)γn(x) = δn(y)xn = δn(xy).

Hence γ and δ agree on a set of (additive) generators of IJ . By property (4) of
Definition 23.2.1 it follows that they agree on all of IJ .

Let z ∈ I + J . Write z = x+ y with x ∈ I and y ∈ J . Then we set

εn(z) =
∑

γi(x)δn−i(y)

To see that this is well defined, suppose that z = x′ + y′ is another representation
with x′ ∈ I and y′ ∈ J . Then w = x− x′ = y′ − y ∈ I ∩ J . Hence∑

i+j=n
γi(x)δj(y) =

∑
i+j=n

γi(x
′ + w)δj(y)

=
∑

i′+l+j=n
γi′(x

′)γl(w)δj(y)

=
∑

i′+l+j=n
γi′(x

′)δl(w)δj(y)

=
∑

i′+j′=n
γi′(x

′)δj′(y + w)

=
∑

i′+j′=n
γi′(x

′)δj′(y
′)

http://stacks.math.columbia.edu/tag/07GQ
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as desired. Next, we prove conditions (1) – (5) of Definition 23.2.1. Properties (1)
and (3) are clear. To see (4), suppose that z = x+ y and z′ = x′+ y′ with x, x′ ∈ I
and y, y′ ∈ J and compute

εn(z + z′) =
∑

a+b=n
γi(x+ x′)δj(y + y′)

=
∑

i+i′+j+j′=n
γi(x)γi′(x

′)δj(y)δj′(y
′)

=
∑

k=0,...,n

∑
i+j=k

γi(x)δj(y)
∑

i′+j′=n−k
γi′(x

′)δj′(y
′)

=
∑

k=0,...,n
εk(z)εn−k(z′)

as desired. Now we see that it suffices to prove (2) and (5) for elements of I or J ,
see Lemma 23.2.4. This is clear because γ and δ are divided power structures. �

Lemma 23.2.6. Let p be a prime number. Let A be a ring, let I ⊂ A be an ideal,
and let γ be a divided power structure on I. Assume p is nilpotent in A/I. Then I
is locally nilpotent if and only if p is nilpotent in A.

Proof. If pN = 0 in A, then for x ∈ I we have xpN = (pN)!γN (x) = 0 because
(pN)! is divisible by pN . Conversely, assume I is locally nilpotent. We’ve also
assumed that p is nilpotent in A/I, hence pr ∈ I for some r, hence pr nilpotent,
hence p nilpotent. �

23.3. Divided power rings

There is a category of divided power rings. Here is the definition.

Definition 23.3.1. A divided power ring is a triple (A, I, γ) where A is a ring, I ⊂
A is an ideal, and γ = (γn)n≥1 is a divided power structure on I. A homomorphism
of divided power rings ϕ : (A, I, γ)→ (B, J, δ) is a ring homomorphism ϕ : A→ B
such that ϕ(I) ⊂ J and such that δn(ϕ(x)) = ϕ(γn(x)) for all x ∈ I.

We sometimes say “let (B, J, δ) be a divided power algebra over (A, I, γ)” to indicate
that (B, J, δ) is a divided power ring which comes equipped with a homomorphism
of divided power rings (A, I, γ)→ (B, J, δ).

Lemma 23.3.2. The category of divided power rings has all limits and they agree
with limits in the category of rings.

Proof. The empty limit is the zero ring (that’s weird but we need it). The product
of a collection of divided power rings (At, It, γt), t ∈ T is given by (

∏
At,
∏
It, γ)

where γn((xt)) = (γt,n(xt)). The equalizer of α, β : (A, I, γ) → (B, J, δ) is just
C = {a ∈ A | α(a) = β(a)} with ideal C ∩ I and induced divided powers. It follows
that all limits exist, see Categories, Lemma 4.14.10. �

The following lemma illustrates a very general category theoretic phenomenon in
the case of divided power algebras.

Lemma 23.3.3. Let C be the category of divided power rings. Let F : C → Sets be
a functor. Assume that

(1) there exists a cardinal κ such that for every f ∈ F (A, I, γ) there exists
a morphism (A′, I ′, γ′) → (A, I, γ) of C such that f is the image of f ′ ∈
F (A′, I ′, γ′) and |A′| ≤ κ, and

(2) F commutes with limits.
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Then F is representable, i.e., there exists an object (B, J, δ) of C such that

F (A, I, γ) = HomC((B, J, δ), (A, I, γ))

functorially in (A, I, γ).

Proof. This is a special case of Categories, Lemma 4.40.1. �

Lemma 23.3.4. The category of divided power rings has all colimits.

Proof. The empty colimit is Z with divided power ideal (0). Let’s discuss general
colimits. Let C be a category and let c 7→ (Ac, Ic, γc) be a diagram. Consider the
functor

F (B, J, δ) = limc∈C Hom((Ac, Ic, γc), (B, J, δ))

Note that any f = (fc)c∈C ∈ F (B, J, δ) has the property that all the images fc(Ac)
generate a subring B′ of B of bounded cardinality κ and that all the images fc(Ic)
generate a divided power sub ideal J ′ of B′. And we get a factorization of f as a f ′

in F (B′) followed by the inclusion B′ → B. Also, F commutes with limits. Hence
we may apply Lemma 23.3.3 to see that F is representable and we win. �

Remark 23.3.5. The forgetful functor (A, I, γ) 7→ A does not commute with
colimits. For example, let

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

be a pushout in the category of divided power rings. Then in general the map
B⊗AB′ → B′′ isn’t an isomorphism. (It is always surjective.) An explicit example
is given by (A, I, γ) = (Z, (0), ∅), (B, J, δ) = (Z/4Z, 2Z/4Z, δ), and (B′, J ′, δ′) =
(Z/4Z, 2Z/4Z, δ′) where δ2(2) = 2 and δ′2(2) = 0 and all higher divided powers
equal to zero. Then (B′′, J ′′, δ′′) = (F2, (0), ∅) which doesn’t agree with the tensor
product. However, note that it is always true that

B′′/J ′′ = B/J ⊗A/I B′/J ′

as can be seen from the universal property of the pushout by considering maps into
divided power algebras of the form (C, (0), ∅).

23.4. Extending divided powers

Here is the definition.

Definition 23.4.1. Given a divided power ring (A, I, γ) and a ring map A → B
we say γ extends to B if there exists a divided power structure γ̄ on IB such that
(A, I, γ)→ (B, IB, γ̄) is a homomorphism of divided power rings.

Lemma 23.4.2. Let (A, I, γ) be a divided power ring. Let A→ B be a ring map.
If γ extends to B then it extends uniquely. Assume (at least) one of the following
conditions holds

(1) IB = 0,
(2) I is principal, or
(3) A→ B is flat.

Then γ extends to B.
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Proof. Any element of IB can be written as a finite sum
∑
bixi with bi ∈ B and

xi ∈ I. If γ extends to γ̄ on IB then γ̄n(xi) = γn(xi). Thus conditions (3) and (4)
imply that

γ̄n(
∑

bixi) =
∑

n1+...+nt=n

∏t

i=1
bnii γni(xi)

Thus we see that γ̄ is unique if it exists.

If IB = 0 then setting γ̄n(0) = 0 works. If I = (x) then we define γ̄n(bx) = bnγn(x).
This is well defined: if b′x = bx, i.e., (b− b′)x = 0 then

bnγn(x)− (b′)nγn(x) = (bn − (b′)n)γn(x)

= (bn−1 + . . .+ (b′)n−1)(b− b′)γn(x) = 0

because γn(x) is divisible by x and hence annihilated by b − b′. Next, we prove
conditions (1) – (5) of Definition 23.2.1. Parts (1), (2), (3), (5) are obvious from
the construction. For (4) suppose that y, z ∈ IB, say y = bx and z = cx. Then
y + z = (b+ c)x hence

γ̄n(y + z) = (b+ c)nγn(x)

=
∑ n!

i!(n− i)!
bicn−iγn(x)

=
∑

bicn−iγi(x)γn−i(x)

=
∑

γ̄i(y)γ̄n−i(z)

as desired.

Assume A→ B is flat. Suppose that b1, . . . , br ∈ B and x1, . . . , xr ∈ I. Then

γ̄n(
∑

bixi) =
∑

be11 . . . berr γe1(x1) . . . γer (xr)

where the sum is over e1 + . . . + er = n if γ̄n exists. Next suppose that we have
c1, . . . , cs ∈ B and aij ∈ A such that bi =

∑
aijcj . Setting yj =

∑
aijxi we claim

that ∑
be11 . . . berr γe1(x1) . . . γer (xr) =

∑
cd1
1 . . . cdss γd1(y1) . . . γds(ys)

in B where on the right hand side we are summing over d1 + . . .+ ds = n. Namely,
using the axioms of a divided power structure we can expand both sides into a sum
with coefficients in Z[aij ] of terms of the form cd1

1 . . . cdss γe1(x1) . . . γer (xr). To see
that the coefficients agree we note that the result is true in Q[x1, . . . , xr, c1, . . . , cs, aij ]
with γ the unique divided power structure on (x1, . . . , xr). By Lazard’s theorem
(Algebra, Theorem 10.78.4) we can write B as a directed colimit of finite free A-
modules. In particular, if z ∈ IB is written as z =

∑
xibi and z =

∑
x′i′b

′
i′ , then we

can find c1, . . . , cs ∈ B and aij , a
′
i′j ∈ A such that bi =

∑
aijcj and b′i′ =

∑
a′i′jcj

such that yj =
∑
xiaij =

∑
x′i′a

′
i′j . Hence the procedure above gives a well defined

map γ̄n on IB. By construction γ̄ satisfies conditions (1), (3), and (4). Moreover,
for x ∈ I we have γ̄n(x) = γn(x). Hence it follows from Lemma 23.2.4 that γ̄ is a
divided power structure on IB. �

Lemma 23.4.3. Let (A, I, γ) be a divided power ring.

(1) If ϕ : (A, I, γ)→ (B, J, δ) is a homomorphism of divided power rings, then
Ker(ϕ) ∩ I is preserved by γn for all n ≥ 1.

(2) Let a ⊂ A be an ideal and set I ′ = I ∩ a. The following are equivalent
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(a) I ′ is preserved by γn for all n > 0,
(b) γ extends to A/a, and
(c) there exist a set of generators xi of I ′ as an ideal such that γn(xi) ∈ I ′

for all n > 0.

Proof. Proof of (1). This is clear. Assume (2)(a). Define γ̄n(x mod I ′) = γn(x) mod
I ′ for x ∈ I. This is well defined since γn(x+ y) = γn(x) mod I ′ for y ∈ I ′ by Def-
inition 23.2.1 (4) and the fact that γj(y) ∈ I ′ by assumption. It is clear that γ̄
is a divided power structure as γ is one. Hence (2)(b) holds. Also, (2)(b) implies
(2)(a) by part (1). It is clear that (2)(a) implies (2)(c). Assume (2)(c). Note that
γn(x) = anγn(xi) ∈ I ′ for x = axi. Hence we see that γn(x) ∈ I ′ for a set of
generators of I ′ as an abelian group. By induction on the length of an expression
in terms of these, it suffices to prove ∀n : γn(x + y) ∈ I ′ if ∀n : γn(x), γn(y) ∈ I ′.
This follows immediately from the fourth axiom of a divided power structure. �

Lemma 23.4.4. Let (A, I, γ) be a divided power ring. Let E ⊂ I be a subset.
Then the smallest ideal J ⊂ I preserved by γ and containing all f ∈ E is the ideal
J generated by γn(f), n ≥ 1, f ∈ E.

Proof. Follows immediately from Lemma 23.4.3. �

Lemma 23.4.5. Let (A, I, γ) be a divided power ring. Let p be a prime. If p is
nilpotent in A/I, then

(1) the p-adic completion A∧ = limeA/p
eA surjects onto A/I,

(2) the kernel of this map is the p-adic completion I∧ of I, and
(3) each γn is continuous for the p-adic topology and extends to γ∧n : I∧ → I∧

defining a divided power structure on I∧.

If moreover A is a Z(p)-algebra, then

(4) for e large enough the ideal peA ⊂ I is preserved by the divided power
structure γ and

(A∧, I∧, γ∧) = lime(A/p
eA, I/peA, γ̄)

in the category of divided power rings.

Proof. Let t ≥ 1 be an integer such that ptA/I = 0, i.e., ptA ⊂ I. The map
A∧ → A/I is the composition A∧ → A/ptA→ A/I which is surjective (for example
by Algebra, Lemma 10.93.1). As peI ⊂ peA ∩ I ⊂ pe−tI for e ≥ t we see that the
kernel of the composition A∧ → A/I is the p-adic completion of I. The map γn is
continuous because

γn(x+ pey) =
∑

i+j=n
pjeγi(x)γj(y) = γn(x) mod peI

by the axioms of a divided power structure. It is clear that the axioms for divided
power structures are inherited by the maps γ∧n from the maps γn. Finally, to see
the last statement say e > t. Then peA ⊂ I and γ1(peA) ⊂ peA and for n > 1 we
have

γn(pea) = pnγn(pe−1a) =
pn

n!
pn(e−1)an ∈ peA

as pn/n! ∈ Z(p) and as n ≥ 2 and e ≥ 2 so n(e − 1) ≥ e. This proves that γ
extends to A/peA, see Lemma 23.4.3. The statement on limits is clear from the
construction of limits in the proof of Lemma 23.3.2. �
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23.5. Divided power polynomial algebras

A very useful example is the divided power polynomial algebra. Let A be a ring.
Let t ≥ 1. We will denote A〈x1, . . . , xt〉 the following A-algebra: As an A-module
we set

A〈x1, . . . , xt〉 =
⊕

n1,...,nt≥0
Ax

[n1]
1 . . . x

[nt]
t

with multiplication given by

x
[n]
i x

[m]
i =

(n+m)!

n!m!
x

[n+m]
i .

We also set xi = x
[1]
i . Note that 1 = x

[0]
1 . . . x

[0]
t . There is a similar construc-

tion which gives the divided power polynomial algebra in infinitely many variables.

There is an canonical A-algebra map A〈x1, . . . , xt〉 → A sending x
[n]
i to zero for

n > 0. The kernel of this map is denoted A〈x1, . . . , xt〉+.

Lemma 23.5.1. Let (A, I, γ) be a divided power ring. There exists a unique divided
power structure δ on

J = IA〈x1, . . . , xt〉+A〈x1, . . . , xt〉+
such that

(1) δn(xi) = x
[n]
i , and

(2) (A, I, γ)→ (A〈x1, . . . , xt〉, J, δ) is a homomorphism of divided power rings.

Moreover, (A〈x1, . . . , xt〉, J, δ) has the following universal property: A homomor-
phism of divided power rings ϕ : (A〈x〉, J, δ) → (C,K, ε) is the same thing as a
homomorphism of divided power rings A→ C and elements k1, . . . , kt ∈ K.

Proof. We will prove the lemma in case of a divided power polynomial algebra in
one variable. The result for the general case can be argued in exactly the same way,
or by noting that A〈x1, . . . , xt〉 is isomorphic to the ring obtained by adjoining the
divided power variables x1, . . . , xt one by one.

Let A〈x〉+ be the ideal generated by x, x[2], x[3], . . .. Note that J = IA〈x〉+A〈x〉+
and that

IA〈x〉 ∩A〈x〉+ = IA〈x〉 ·A〈x〉+
Hence by Lemma 23.2.5 it suffices to show that there exist divided power structures
on the ideals IA〈x〉 and A〈x〉+. The existence of the first follows from Lemma 23.4.2
as A → A〈x〉 is flat. For the second, note that if A is torsion free, then we can
apply Lemma 23.2.2 (4) to see that δ exists. Namely, choosing as generators the

elements x[m] we see that (x[m])n = (nm)!
(m!)n x

[nm] and n! divides the integer (nm)!
(m!)n . In

general write A = R/a for some torsion free ring R (e.g., a polynomial ring over Z).
The kernel of R〈x〉 → A〈x〉 is

⊕
ax[m]. Applying criterion (2)(c) of Lemma 23.4.3

we see that the divided power structure on R〈x〉+ extends to A〈x〉 as desired.

Proof of the universal property. Given a homomorphism ϕ : A → C of divided
power rings and k1, . . . , kt ∈ K we consider

A〈x1, . . . , xt〉 → C, x
[n1]
1 . . . x

[nt]
t 7−→ εn1

(k1) . . . εnt(kt)

using ϕ on coefficients. The only thing to check is that this is an A-algebra homo-
morphism (details omitted). The inverse construction is clear. �
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Remark 23.5.2. Let (A, I, γ) be a divided power ring. There is a variant of
Lemma 23.5.1 for infinitely many variables. First note that if s < t then there is a
canonical map

A〈x1, . . . , xs〉 → A〈x1, . . . , xt〉
Hence if W is any set, then we set

A〈xw, w ∈W 〉 = colimE⊂W A〈xe, e ∈ E〉

(colimit over E finite subset of W ) with transition maps as above. By the defini-
tion of a colimit we see that the universal mapping property of A〈xw, w ∈ W 〉 is
completely analogous to the mapping property stated in Lemma 23.5.1.

The following lemma can be found in [BO83].

Lemma 23.5.3. Let p be a prime number. Let A be a ring such that every integer
n not divisible by p is invertible, i.e., A is a Z(p)-algebra. Let I ⊂ A be an ideal.
Two divided power structures γ, γ′ on I are equal if and only if γp = γ′p. Moreover,
given a map δ : I → I such that

(1) p!δ(x) = xp for all x ∈ I,
(2) δ(ax) = apδ(x) for all a ∈ A, x ∈ I, and
(3) δ(x+ y) = δ(x) +

∑
i+j=p,i,j≥1

1
i!j!x

iyj + δ(y) for all x, y ∈ I,

then there exists a unique divided power structure γ on I such that γp = δ.

Proof. If n is not divisible by p, then γn(x) = cxγn−1(x) where c is a unit in Z(p).
Moreover,

γpm(x) = cγm(γp(x))

where c is a unit in Z(p). Thus the first assertion is clear. For the second assertion,
we can, working backwards, use these equalities to define all γn. More precisely, if
n = a0 + a1p+ . . .+ aep

e with ai ∈ {0, . . . , p− 1} then we set

γn(x) = cnx
a0δ(x)a1 . . . δe(x)ae

for cn ∈ Z(p) defined by

cn = (p!)a1+a2(1+p)+...+ae(1+...+pe−1)/n!.

Now we have to show the axioms (1) – (5) of a divided power structure, see Defi-
nition 23.2.1. We observe that (1) and (3) are immediate. Verification of (2) and
(5) is by a direct calculation which we omit. Let x, y ∈ I. We claim there is a ring
map

ϕ : Z(p)〈u, v〉 −→ A

which maps u[n] to γn(x) and v[n] to γn(y). By construction of Z(p)〈u, v〉 this means
we have to check that

γn(x)γm(x) =
(n+m)!

n!m!
γn+m(x)

in A and similarly for y. This is true because (2) holds for γ. Let ε denote the
divided power structure on the ideal Z(p)〈u, v〉+ of Z(p)〈u, v〉. Next, we claim
that ϕ(εn(f)) = γn(ϕ(f)) for f ∈ Z(p)〈u, v〉+ and all n. This is clear for n =
0, 1, . . . , p − 1. For n = p it suffices to prove it for a set of generators of the ideal
Z(p)〈u, v〉+ because both εp and γp = δ satisfy properties (1) and (3) of the lemma.

Hence it suffices to prove that γp(γn(x)) = (pn)!
p!(n!)p γpn(x) and similarly for y, which
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follows as (5) holds for γ. Now, if n = a0 + a1p+ . . .+ aep
e is an arbitrary integer

written in p-adic expansion as above, then

εn(f) = cnf
a0γp(f)a1 . . . γep(f)ae

because ε is a divided power structure. Hence we see that ϕ(εn(f)) = γn(ϕ(f))
holds for all n. Applying this for f = u+v we see that axiom (4) for γ follows from
the fact that ε is a divided power structure. �

23.6. Tate resolutions

In this section we briefly discuss the resolutions constructed in [Tat57] which com-
bine divided power structures with differential graded algebras. In this section
we will use homological notation for differential graded algebras. Our differential
graded algebras will sit in nonnegative homological degrees. Thus our differential
graded algebras (A,d) will be given as chain complexes

. . .→ A2 → A1 → A0 → 0→ . . .

endowed with a multiplication.

Let R be a ring. In this section we will often consider graded R-algebras A =⊕
d≥0Ad whose components are zero in negative degrees. We will set A+ =⊕
d>0Ad. We will write Aeven =

⊕
d≥0A2d and Aodd =

⊕
d≥0A2d+1. Recall

that A is graded commutative if xy = (−1)deg(x) deg(y)yx for homogeneous elements
x, y. Recall that A is strictly graded commutative if in addition x2 = 0 for homo-
geneous elements x of odd degree. Finally, to understand the following definition,
keep in mind that γn(x) = xn/n! if A is a Q-algebra.

Definition 23.6.1. Let R be a ring. Let A =
⊕

d≥0Ad be a graded R-algebra
which is strictly graded commutative. A collection of maps γn : Aeven,+ → Aeven,+
defined for all n > 0 is called a divided power structure on A if we have

(1) γn(x) ∈ A2nd if x ∈ A2d,
(2) γ1(x) = x for any x, we also set γ0(x) = 1,

(3) γn(x)γm(x) = (n+m)!
n!m! γn+m(x),

(4) γn(xy) = xnγn(y) for all x ∈ Aeven and y ∈ Aeven,+,
(5) γn(xy) = 0 if x, y ∈ Aodd homogeneous and n > 1
(6) if x, y ∈ Aeven,+ then γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(7) γn(γm(x)) = (nm)!
n!(m!)n γnm(x) for x ∈ Aeven,+.

Observe that conditions (2), (3), (4), (6), and (7) imply that γ is a “usual” divided
power structure on the ideal Aeven,+ of the (commutative) ring Aeven, see Sections
23.2, 23.3, 23.4, and 23.5. In particular, we have γn(x) = n!xn for all x ∈ Aeven,+.
Condition (1) states that γ is compatible with grading and condition (5) tells us γn
for n > 1 vanishes on products of homogeneous elements of odd degree. But note
that it may happen that

γ2(z1z2 + z3z4) = z1z2z3z4

is nonzero if z1, z2, z3, z4 are homogeneous elements of odd degree.

Example 23.6.2 (Adjoining odd variable). Let R be a ring. Let (A, γ) be a strictly
graded commutative graded R-algebra endowed with a divided power structure as
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in the definition above. Let d > 0 be an odd integer. In this setting we can adjoin
a variable T of degree d to A. Namely, set

A〈T 〉 = A⊕AT
with grading given by A〈T 〉m = Am ⊕Am−dT . We claim there is a unique divided
power structure on A〈T 〉 compatible with the given divided power structure on A.
Namely, we set

γn(x+ yT ) = γn(x) + γn−1(x)yT

for x ∈ Aeven,+ and y ∈ Aodd.

Example 23.6.3 (Adjoining even variable). LetR be a ring. Let (A, γ) be a strictly
graded commutative graded R-algebra endowed with a divided power structure as
in the definition above. Let d > 0 be an even integer. In this setting we can adjoin
a variable T of degree d to A. Namely, set

A〈T 〉 = A⊕AT ⊕AT (2) ⊕AT (3) ⊕ . . .
with multiplication given by

T (n)T (m) =
(n+m)!

n!m!
T (n+m)

and with grading given by

A〈T 〉m = Am ⊕Am−dT ⊕Am−2dT
(2) ⊕ . . .

We claim there is a unique divided power structure on A〈T 〉 compatible with the
given divided power structure on A such that γn(T (i)) = T (ni). To define the
divided power structure we first set

γn

(∑
i>0

xiT
(i)
)

=
∑∏

n=
∑
ei
xeii T

(iei)

if xi is in Aeven. If x0 ∈ Aeven,+ then we take

γn

(∑
i≥0

xiT
(i)
)

=
∑

a+b=n
γa(x0)γb

(∑
i>0

xiT
(i)
)

where γb is as defined above.

At this point we tie in the definition of divided power structures with differentials.
To understand the definition note that d(xn/n!) = d(x)xn−1/(n − 1)! if A is a
Q-algebra and x ∈ Aeven,+.

Definition 23.6.4. Let R be a ring. Let A =
⊕

d≥0Ad be a differential graded
R-algebra which is strictly graded commutative. A divided power structure γ on
A is compatible with the differential graded structure if d(γn(x)) = d(x)γn−1(x) for
all x ∈ Aeven,+.

Warning: Let (A,d, γ) be as in Definition 23.6.4. It may not be true that γn(x)
is a boundary, if x is a boundary. Thus γ in general does not induce a divided
power structure on the homology algebra H(A). In some papers the authors put
an additional compatibility condition in order to insure this is the case, but we elect
not to do so.

Lemma 23.6.5. Let (A, d, γ) and (B, d, γ) be as in Definition 23.6.4. Let f : A→
B be a map of differential graded algebras compatible with divided power structures.
Assume

(1) Hk(A) = 0 for k > 0, and
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(2) f is surjective.

Then γ induces a divided power structure on the graded R-algebra H(B).

Proof. Suppose that x and x′ are homogeneous of the same degree 2d and define
the same cohomology class in H(B). Say x′ − x = d(w). Choose a lift y ∈ A2d of
x and a lift z ∈ A2d+1 of w. Then y′ = y + d(z) is a lift of x′. Hence

γn(y′) =
∑

γi(y)γn−i(d(z)) = γn(y) +
∑

i<n
γi(y)γn−i(d(z))

Since A is acyclic in positive degrees and since d(γj(d(z))) = 0 for all j we can
write this as

γn(y′) = γn(y) +
∑

i<n
γi(y)d(zi)

for some zi in A. Moreover, for 0 < i < n we have

d(γi(y)zi) = d(γi(y))zi + γi(y)d(zi) = d(y)γi−1(y)zi + γi(y)d(zi)

and the first term maps to zero in B as d(y) maps to zero in B. Hence γn(x′)
and γn(x) map to the same element of H(B). Thus we obtain a well defined map
γn : H2d(B)→ H2nd(B) for all d > 0 and n > 0. We omit the verification that this
defines a divided power structure on H(B). �

Lemma 23.6.6. Let (A, d, γ) is as in Definition 23.6.4. Let R → R′ be a ring
map. Then d and γ induce similar structures on A′ = A⊗R R′ such that (A, d, γ)
is as in Definition 23.6.4.

Proof. Observe that A′even = Aeven ⊗R R′ and A′even,+ = Aeven,+ ⊗R R′. Hence
we are trying to show that the divided powers γ extend to A′even (terminology as
in Definition 23.4.1). Once we have shown γ extends it follows easily that this
extension has all the desired properties.

Choose a polynomial R-algebra P and a surjection of R-algebras P → R′. The ring
map Aeven → Aeven⊗R P is flat, hence the divided powers γ extend to Aeven⊗R P
uniquely by Lemma 23.4.2. Let J = Ker(P → R′). To show that γ extends to
A ⊗R R′ it suffices to show that I ′ = Ker(Aeven,+ ⊗R P → Aeven,+ ⊗R R′) is
generated by elements z such that γn(z) ∈ I ′ for all n > 0. This is clear as I ′ is
generated by elements of the form x⊗f with x ∈ Aeven,+ and f ∈ Ker(P → R′). �

Lemma 23.6.7. Let (A, d, γ) be as in Definition 23.6.4. Let d ≥ 1 be an integer.
Let A〈T 〉 be the graded divided power polynomial algebra on T with deg(T ) = d
constructed in Example 23.6.2 or 23.6.3. Let f ∈ Ad−1 be an element with d(f) = 0.
There exists a unique differential d on A〈T 〉 such that d(T ) = f and such that d is
compatible with the divided power structure on A〈T 〉.

Proof. This is proved by a direct computation which is omitted. �

Here is the construction of Tate.

Lemma 23.6.8. Assume that R is a Noetherian ring and R → S a ring map of
finite type. There exists a factorization

R→ A→ S

with the following properties

(1) (A, d, γ) is as in Definition 23.6.4,
(2) A→ S is a quasi-isomorphism (if we endow S with the zero differential),
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(3) A is a graded divided power polynomial algebra over R with finitely many
variables in each degree.

The last condition means that A is constructed out of R by successively adjoining
variables T as in Examples 23.6.2 and 23.6.3.

Proof. Start of the construction. Let A(0) = R[x1, . . . , xn] be a (usual) polynomial
ring and let A(0) → S be a surjection. As grading we take A(0)0 = A(0) and
A(0)d = 0 for d 6= 0. Thus d = 0 and γn, n > 0 is zero as well.

Choose generators f1, . . . , fm ∈ R[x1, . . . , xm] for the kernel of the given map
A(0) = R[x1, . . . , xm]→ S. We apply Examples 23.6.2 m times to get

A(1) = A(0)〈T1, . . . , Tm〉
with deg(Ti) = 1 as a graded divided power polynomial algebra. We set d(Ti) = fi.
Since A(1) is a divided power polynomial algebra over A(0) and since d(fi) = 0
this extends uniquely to a differential on A(1) by Lemma 23.6.7.

Induction hypothesis: Assume we are given factorizations

R→ A(0)→ A(1)→ . . .→ A(m)→ S

where A(0) and A(1) are as above and each R → A(m′) → S for 2 ≤ m′ ≤ m
satisfies properties (1) and (3) of the statement of the lemma and (2) replaced by
the condition that Hi(A(m′)) → Hi(S) is an isomorphism for m′ > i ≥ 0. The
base case is m = 1.

Induction step. Assume we have R → A(m) → S as in the induction hypothesis.
Consider the group Hm(A(m)). This is a module over H0(A(m)) = S. In fact, it is
a subquotient of A(m)m which is a finite type module over A(m)0 = R[x1, . . . , xn].
Thus we can pick finitely many elements

e1, . . . , et ∈ Ker(d : A(m)m → A(m)m−1)

which map to generators of this module. Applying Example 23.6.3 or 23.6.2 t times
we get

A(m+ 1) = A(m)〈T1, . . . , Tt〉
with deg(Ti) = m+ 1 as a graded divided power algebra. We set d(Ti) = ei. Since
A(1) is a divided power polynomial algebra over A(0) and since d(ei) = 0 this
extends uniquely to a differential on A(m+ 1) compatible with the divided power
structure. Since we’ve added only material in degree m+ 1 and higher we see that
Hi(A(m+ 1)) = Hi(A(m)) for i < m. Moreover, it is clear that Hm(A(m+ 1)) = 0
by construction.

To finish the proof we observe that we have shown there exists a sequence of maps

R→ A(0)→ A(1)→ . . .→ A(m)→ A(m+ 1)→ . . .→ S

and to finish the proof we set A = colimA(m). �

Lemma 23.6.9. Let R be a ring. Suppose that (A, d, γ) and (B, d, γ) are as in
Definition 23.6.4. Let ϕ : H0(A)→ H0(B) be an R-algebra map. Assume

(1) A is a graded divided power polynomial algebra over R with finitely many
variables in each degree,

(2) Hk(B) = 0 for k > 0.

Then there exists a map ϕ : A → B of differential graded R-algebras compatible
with divided powers lifting ϕ.
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Proof. Since A is obtained from R by adjoining divided power variables, we obtain
filtrations R ⊂ A(0) ⊂ A(1) ⊂ . . . such that A(m + 1) is obtained from A(m) by
adjoining finitely many divided power variables of degree m + 1. Then A(0) → S
is a surjection from a (usual) polynomial algebra over R onto S. Thus we can lift
ϕ to an R-algebra map ϕ(0) : A(0)→ B(0).

Write A(1) = A(0)〈T1, . . . , Tm〉 for some divided power variables Tj of degree 1.
Let fj ∈ B0 be fj = ϕ(0)(d(Tj)). Observe that fj maps to zero in H0(B) as dTj
maps to zero in H0(A). Thus we can find bj ∈ B1 with d(bj) = fj . By the universal
property of divided power polynomial algebras we find a lift ϕ(1) : A(1) → B of
ϕ(0) mapping Tj to fj .

Having constructed ϕ(m) for some m ≥ 1 we can construct ϕ(m+1) : A(m+1)→ B
in exactly the same manner. We omit the details. �

Lemma 23.6.10. Let R be a Noetherian ring. Let R→ S and R→ T be finite type
ring maps. There exists a canonical structure of a divided power graded R-algebra
on

TorR∗ (S, T )

Proof. Choose a factorization R → A → S as above. Since A → S is a quasi-
isomorphism and since Ad is a free R-module, we see that the differential graded
algebra B = A ⊗R T computes the tor groups displayed in the lemma. Choose
a surjection R[y1, . . . , yk] → T . Then we see that B is a quotient of the differ-
ential graded algebra A[y1, . . . , yk] whose homology sits in degree 0 (it is equal to
S[y1, . . . , yk]). By Lemma 23.6.6 the differential graded algebras B and A[y1, . . . , yk]
have divided power structures compatible with the differentials. Hence we obtain
our divided power structure on H(B) by Lemma 23.6.5.

The divided power algebra structure constructed in this way is independent of the
choice of A. Namely, if A′ is a second choice, then Lemma 23.6.9 implies there is
a map A → A′ preserving all structure and the augmentations towards S. Then
the induced map B = A ⊗R T → A′ ⊗R T ′ = B′ is likewise and is a quasi-
isomorphism. The induced isomorphism of Tor algebras is therefore compatible
with all multiplication and divided powers. �

23.7. Application to complete intersections

Let R be a ring. Let (A,d, γ) be as in Definition 23.6.4. A derivation of degree 2
is an R-linear map θ : A→ A with the following properties

(1) θ(Ad) ⊂ Ad−2,
(2) θ(xy) = θ(x)y + xθ(y),
(3) θ commutes with d,
(4) θ(γn(x)) = θ(x)γn−1(x) for all x ∈ A2d all d.

In the following lemma we construct a derivation.

Lemma 23.7.1. Let R be a ring. Let (A, d, γ) be as in Definition 23.6.4. Let
R′ → R be a surjection of rings whose kernel has square zero and is generated by
one element f . If A is a graded divided power polynomial algebra over R with finitely
many variables in each degree, then we obtain a derivation θ : A/IA→ A/IA where
I is the annihilator of f in R.
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Proof. Since A is a divided power polynomial algebra, we can find a divided power
polynomial algebra A′ over R′ such that A = A′ ⊗R R′. Moreover, we can lift d to
an R-linear operator d on A′ such that

(1) d(xy) = d(x)y + (−1)deg(x)xd(y) for x, y ∈ A′ homogeneous, and
(2) d(γn(x)) = d(x)γn−1(x) for x ∈ A′even,+.

We omit the details (hint: proceed one variable at the time). However, it may not
be the case that d2 is zero on A′. It is clear that d2 maps A′ into fA′ ∼= A/IA.
Hence d2 annihilates fA′ and factors as a map A → A/IA. Since d2 is R-linear
we obtain our map θ : A/IA → A/IA. The verification of the properties of a
derivation is immediate. �

Lemma 23.7.2. Assumption and notation as in Lemma 23.7.1. Suppose S =
H0(A) is isomorphic to R[x1, . . . , xn]/(f1, . . . , fm) for some n, m, and fj ∈ R[x1, . . . , xn].
Moreover, suppose given a relation∑

rjfj = 0

with rj ∈ R[x1, . . . , xn]. Choose r′j , f
′
j ∈ R′[x1, . . . , xn] lifting rj , fj. Write

∑
r′jf
′
j =

gf for some g ∈ R/I[x1, . . . , xn]. If H1(A) = 0 and all the coefficients of each rj
are in I, then there exists an element ξ ∈ H2(A/IA) such that θ(ξ) = g in S/IS.

Proof. Let A(0) ⊂ A(1) ⊂ A(2) ⊂ . . . be the filtration of A such that A(m) is
gotten from A(m−1) by adjoining divided power variables of degree m. Then A(0)
is a polynomial algebra over R equipped with an R-algebra surjection A(0) → S.
Thus we can choose a map

ϕ : R[x1, . . . , xn]→ A(0)

lifting the augmentations to S. Next, A(1) = A(0)〈T1, . . . , Tt〉 for some divided
power variables Ti of degree 1. Since H0(A) = S we can pick ξj ∈

∑
A(0)Ti with

d(ξj) = ϕ(fj). Then

d
(∑

ϕ(rj)ξj

)
=
∑

ϕ(rj)ϕ(fj) =
∑

ϕ(rjfj) = 0

Since H1(A) = 0 we can pick ξ ∈ A2 with d(ξ) =
∑
ϕ(rj)ξj . If the coefficients of

rj are in I, then the same is true for ϕ(rj). In this case d(ξ) dies in A1/IA1 and
hence ξ defines a class in H2(A/IA).

The construction of θ in the proof of Lemma 23.7.1 proceeds by successively lifting
A(i) to A′(i) and lifting the differential d. We lift ϕ to ϕ′ : R′[x1, . . . , xn]→ A′(0).
Next, we have A′(1) = A′(0)〈T1, . . . , Tt〉. Moreover, we can lift ξj to ξ′j ∈

∑
A′(0)Ti.

Then d(ξ′j) = ϕ′(f ′j) + faj for some aj ∈ A′(0). Consider a lift ξ′ ∈ A′2 of ξ. Then
we know that

d(ξ′) =
∑

ϕ′(r′j)ξ
′
j +

∑
fbiTi

for some bi ∈ A(0). Applying d again we find

θ(ξ) =
∑

ϕ′(r′j)ϕ
′(f ′j) +

∑
fϕ′(r′j)aj +

∑
fbid(Ti)

The first term gives us what we want. The second term is zero because the coeffi-
cients of rj are in I and hence are annihilated by f . The third term maps to zero
in H0 because d(Ti) maps to zero. �

The method of proof of the following lemma is apparantly due to Gulliksen.
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Lemma 23.7.3. Let R′ → R be a surjection of Noetherian rings whose kernel has
square zero and is generated by one element f . Let S = R[x1, . . . , xn]/(f1, . . . , fm).
Let

∑
rjfj = 0 be a relation in R[x1, . . . , xm]. Assume that

(1) each rj has coeffients in the annihilator I of f in R,
(2) for some lifts r′j , f

′
j ∈ R′[x1, . . . , xn] we have

∑
r′jf
′
j = gf where g is not

nilpotent in S.

Then S does not have finite tor dimension over R (i.e., S is not a perfect R-algebra).

Proof. Choose a Tate resolution R → A → S as in Lemma 23.6.8. Let ξ ∈
H2(A/IA) and θ : A/IA→ A/IA be the element and derivation found in Lemmas
23.7.1 and 23.7.2. Observe that

θn(γn(ξ)) = gn

Hence if g is not nilpotent, then ξn is nonzero in H2n(A/IA) for all n > 0. Since

H2n(A/IA) = TorR2n(S,R/I) we conclude. �

The following result can be found in [Rod88].

Lemma 23.7.4. Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper
ideals. If A/J has finite tor dimension over A/I, then I/mI → J/mJ is injective.

Proof. Let f ∈ I be an element mapping to a nonzero element of I/mI which is
mapped to zero in J/mJ . We can choose an ideal I ′ with mI ⊂ I ′ ⊂ I such that I/I ′

is generated by the image of f . Set R = A/I and R′ = A/I ′. Let J = (a1, . . . , am)
for some aj ∈ A. Then f =

∑
bjaj for some bj ∈ m. Let rj , fj ∈ R resp. r′j , f

′
j ∈ R′

be the image of bj , aj . Then we see we are in the situation of Lemma 23.7.3 (with
the ideal I of that lemma equal to mR) and the lemma is proved. �

Lemma 23.7.5. Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper
ideals. Assume

(1) A/J has finite tor dimension over A/I, and
(2) J is generated by a regular sequence.

Then I is generated by a regular sequence and J/I is generated by a regular sequence.

Proof. By Lemma 23.7.4 we see that I/mI → J/mJ is injective. Thus we can
find s ≤ r and a minimal system of generators f1, . . . , fr of J such that f1, . . . , fs
are in I and form a minimal system of generators of I. The lemma follows as
any minimal system of generators of J is a regular sequence by More on Algebra,
Lemmas 15.21.14 and 15.21.6. �

Lemma 23.7.6. Let R → S be a local ring map of Noetherian local rings. Let
I ⊂ R and J ⊂ S be ideals with IS ⊂ J . If R → S is flat and S/mRS is regular,
then the following are equivalent

(1) J is generated by a regular sequence and S/J has finite tor dimension as
a module over R/I,

(2) J is generated by a regular sequence and TorR/Ip (S/J,R/mR) is nonzero
for only finitely many p,

(3) I is generated by a regular sequence and J/IS is generated by a regular
sequence in S/IS.
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Proof. If (3) holds, then J is generated by a regular sequence, see for example
More on Algebra, Lemmas 15.21.12 and 15.21.6. Moreover, if (3) holds, then S/J =
(S/I)/(J/I) has finite projective dimension over S/IS because the Koszul complex
will be a finite free resolution of S/J over S/IS. Since R/I → S/IS is flat, it then
follows that S/J has finite tor dimension over R/I by More on Algebra, Lemma
15.51.9. Thus (3) implies (1).

The implication (1) ⇒ (2) is trivial. Assume (2). By More on Algebra, Lemma
15.56.20 we find that S/J has finite tor dimension over S/IS. Thus we can apply
Lemma 23.7.5 to conclude that IS and J/IS are generated by regular sequences.
Let f1, . . . , fr ∈ I be a minimal system of generators of I. Since R → S is flat,
we see that f1, . . . , fr form a minimal system of generators for IS in S. Thus
f1, . . . , fr ∈ R is a sequence of elements whose images in S form a regular sequence
by More on Algebra, Lemmas 15.21.14 and 15.21.6. Thus f1, . . . , fr is a regular
sequence in R by Algebra, Lemma 10.67.7. �

23.8. Local complete intersection rings

Let (A,m) be a Noetherian complete local ring. By the Cohen structure theo-
rem (see Algebra, Theorem 10.149.8) we can write A as the quotient of a regular
Noetherian complete local ring R. Let us say that A is a complete intersection
if there exists some surjection R → A with R a regular local ring such that the
kernel is generated by a regular sequence. The following lemma shows this notion
is independent of the choice of the surjection.

Lemma 23.8.1. Let (A,m) be a Noetherian complete local ring. The following are
equivalent

(1) for every surjection of local rings R → A with R a regular local ring, the
kernel of R→ A is generated by a regular sequence, and

(2) for some surjection of local rings R → A with R a regular local ring, the
kernel of R→ A is generated by a regular sequence.

Proof. Let k be the residue field of A. If the characteristic of k is p > 0, then
we denote Λ a Cohen ring (Algebra, Definition 10.149.5) with residue field k (Al-
gebra, Lemma 10.149.6). If the characteristic of k is 0 we set Λ = k. Recall that
Λ[[x1, . . . , xn]] for any n is formally smooth over Z, resp. Q in the m-adic topology,
see More on Algebra, Lemma 15.28.1. Fix a surjection Λ[[x1, . . . , xn]] → A as in
the Cohen structure theorem (Algebra, Theorem 10.149.8).

Let R→ A be a surjection from a regular local ring R. Let f1, . . . , fr be a minimal
sequence of generators of Ker(R → A). We will use without further mention that
an ideal in a Noetherian local ring is generated by a regular sequence if and only
if any minimal set of generators is a regular sequence. Observe that f1, . . . , fr is a
regular sequence in R if and only if f1, . . . , fr is a regular sequence in the completion
R∧ by Algebra, Lemmas 10.67.7 and 10.93.3. Moreover, we have

R∧/(f1, . . . , fr)R
∧ = (R/(f1, . . . , fn))∧ = A∧ = A

because A is mA-adically complete (first equality by Algebra, Lemma 10.93.2).
Finally, the ring R∧ is regular since R is regular (More on Algebra, Lemma 15.32.4).
Hence we may assume R is complete.
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If R is complete we can choose a map Λ[[x1, . . . , xn]] → R lifting the given map
Λ[[x1, . . . , xn]] → A, see More on Algebra, Lemma 15.27.5. By adding some more
variables y1, . . . , ym mapping to generators of the kernel of R→ A we may assume
that Λ[[x1, . . . , xn, y1, . . . , ym]] → R is surjective (some details omitted). Then we
can consider the commutative diagram

Λ[[x1, . . . , xn, y1, . . . , ym]] //

��

R

��
Λ[[x1, . . . , xn]] // A

By Algebra, Lemma 10.130.6 we see that the condition for R→ A is equivalent to
the condition for the fixed chosen map Λ[[x1, . . . , xn]]→ A. This finishes the proof
of the lemma. �

The following two lemmas are sanity checks on the definition given above.

Lemma 23.8.2. Let R be a regular ring. Let p ⊂ R be a prime. Let f1, . . . , fr ∈ p
be a regular sequence. Then the completion of

A = (R/(f1, . . . , fr))p = Rp/(f1, . . . , fr)Rp

is a complete intersection in the sense defined above.

Proof. The completion of A is equal to A∧ = R∧p /(f1, . . . , fr)R
∧
p because com-

pletion for finite modules over the Noetherian ring Rp is exact (Algebra, Lemma
10.93.2). The image of the sequence f1, . . . , fr in Rp is a regular sequence by Al-
gebra, Lemmas 10.93.3 and 10.67.7. Moreover, R∧p is a regular local ring by More
on Algebra, Lemma 15.32.4. Hence the result holds by our definition of complete
intersection for complete local rings. �

The following lemma is the analogue of Algebra, Lemma 10.130.4.

Lemma 23.8.3. Let R be a regular ring. Let p ⊂ R be a prime. Let I ⊂ p be an
ideal. Set A = (R/I)p = Rp/Ip. The following are equivalent

(1) the completion of A is a complete intersection in the sense above,
(2) Ip ⊂ Rp is generated by a regular sequence,
(3) the module (I/I2)p can be generated by dim(Rp)− dim(A) elements,
(4) add more here.

Proof. We may and do replace R by its localization at p. Then p = m is the
maximal ideal of R and A = R/I. Let f1, . . . , fr ∈ I be a minimal sequence
of generators. The completion of A is equal to A∧ = R∧/(f1, . . . , fr)R

∧ because
completion for finite modules over the Noetherian ring Rp is exact (Algebra, Lemma
10.93.2).

If (1) holds, then the image of the sequence f1, . . . , fr in R∧ is a regular sequence
by assumption. Hence it is a regular sequence in R by Algebra, Lemmas 10.93.3
and 10.67.7. Thus (1) implies (2).

Assume (3) holds. Set c = dim(R) − dim(A) and let f1, . . . , fc ∈ I map to gen-
erators of I/I2. by Nakayama’s lemme (Algebra, Lemma 10.19.1) we see that
I = (f1, . . . , fc). Since R is regular and hence Cohen-Macaulay (Algebra, Propo-
sition 10.99.5) we see that f1, . . . , fc is a regular sequence by Algebra, Proposition
10.99.5. Thus (3) implies (2). Finally, (2) implies (1) by Lemma 23.8.2. �
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The following result is due to Avramov, see [Avr75].

Proposition 23.8.4. Let A→ B be a flat local homomorphism of Noetherian local
rings. Then the following are equivalent

(1) B∧ is a complete intersection,
(2) A∧ and (B/mAB)∧ are complete intersections.

Proof. Consider the diagram

B // B∧

A

OO

// A∧

OO

Since the horizontal maps are faithfully flat (Algebra, Lemma 10.93.4) we conclude
that the right vertical arrow is flat (for example by Algebra, Lemma 10.95.15).
Moreover, we have (B/mAB)∧ = B∧/mA∧B

∧ by Algebra, Lemma 10.93.2. Thus
we may assume A and B are complete local Noetherian rings.

Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 15.28.3. Let I = Ker(R→ A) and J = Ker(S → B).
Note that since R/I = A→ B = S/J is flat the map J/I⊗RR/mR → J/J∩mRS is
an isomorphism. Hence a minimal system of generators of J/I maps to a minimal
system of generators of Ker(S/mRS → B/mAB). Finally, S/mRS is a regular local
ring.

Assume (1) holds, i.e., J is generated by a regular sequence. Since A = R/I →
B = S/J is flat we see Lemma 23.7.6 applies and we deduce that I and J/I are
generated by regular sequences. We have dim(B) = dim(A) + dim(B/mAB) and
dim(S/IS) = dim(A) + dim(S/mRS) (Algebra, Lemma 10.108.7). Thus J/I is
generated by

dim(S/J)− dim(S/IS) = dim(S/mRS)− dim(B/mAB)

elements (Algebra, Lemma 10.59.11). It follows that Ker(S/mRS → B/mAB) is
generated by the same number of elements (see above). Hence Ker(S/mRS →
B/mAB) is generated by a regular sequence, see for example Lemma 23.8.3. In this
way we see that (2) holds.

If (2) holds, then I and J/J∩mRS are generated by regular sequences. Lifting these
generators (see above), using flatness of R/I → S/IS, and using Grothendieck’s
lemma (Algebra, Lemma 10.95.3) we find that J/I is generated by a regular se-
quence in S/IS. Thus Lemma 23.7.6 tells us that J is generated by a regular
sequence, whence (1) holds. �

Definition 23.8.5. Let A be a Noetherian ring.

(1) If A is local, then we say A is a complete intersection if its completion is
a complete intersection in the sense above.

(2) In general we say A is a local complete intersection if all of its local rings
are complete intersections.
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We will check below that this does not conflict with the terminology introduced in
Algebra, Definitions 10.130.1 and 10.130.5. But first, we show this “makes sense”
by showing that if A is a Noetherian local complete intersection, then A is a local
complete intersection, i.e., all of its local rings are complete intersections.

Lemma 23.8.6. Let (A,m) be a Noetherian local ring. Let p ⊂ A be a prime ideal.
If A is a complete intersection, then Ap is a complete intersection too.

Proof. Choose a prime q of A∧ lying over p (this is possible as A→ A∧ is faithfully
flat by Algebra, Lemma 10.93.4). Then Ap → (A∧)q is a flat local ring homomor-
phism. Thus by Proposition 23.8.4 we see that Ap is a complete intersection if and
only if (A∧)q is a complete intersection. Thus it suffices to prove the lemma in case
A is complete (this is the key step of the proof).

Assume A is complete. By definition we may write A = R/(f1, . . . , fr) for some
regular sequence f1, . . . , fr in a regular local ring R. Let q ⊂ R be the prime
corresponding to p. Observe that f1, . . . , fr ∈ q and that Ap = Rq/(f1, . . . , fr)Rq.
Hence Ap is a complete intersection by Lemma 23.8.2. �

Lemma 23.8.7. Let A be a Noetherian ring. Then A is a local complete inter-
section if and only if Am is a complete intersection for every maximal ideal m of
A.

Proof. This follows immediately from Lemma 23.8.6 and the definitions. �

Lemma 23.8.8. Let S be a finite type algebra over a field k.

(1) for a prime q ⊂ S the local ring Sq is a complete intersection in the sense
of Algebra, Definition 10.130.5 if and only if Sq is acomplete intersection
in the sense of Definition 23.8.5, and

(2) S is a local complete intersection in the sense of Algebra, Definition 10.130.1
if and only if S is a local complete intersection in the sense of Definition
23.8.5.

Proof. Proof of (1). Let k[x1, . . . , xn] → S be a surjection. Let p ⊂ k[x1, . . . , xn]
be the prime ideal corresponding to q. Let I ⊂ k[x1, . . . , xn] be the kernel of our
surjection. Note that k[x1, . . . , xn]p → Sq is surjective with kernel Ip. Observe
that k[x1, . . . , xn] is a regular ring by Algebra, Proposition 10.110.2. Hence the
equivalence of the two notions in (1) follows by combining Lemma 23.8.3 with
Algebra, Lemma 10.130.7.

Having proved (1) the equivalence in (2) follows from the definition and Algebra,
Lemma 10.130.9. �

Lemma 23.8.9. Let A → B be a flat local homomorphism of Noetherian local
rings. Then the following are equivalent

(1) B is a complete intersection,
(2) A and B/mAB are complete intersections.

Proof. Now that the definition makes sense this is a trivial reformulation of the
(nontrivial) Proposition 23.8.4. �

http://stacks.math.columbia.edu/tag/09Q4
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23.9. Local complete intersection maps

Let A → B be a local homomorphism of Noetherian complete local rings. A
consequence of the Cohen structure theorem is that we can find a commutative
diagram

S // B

A

__ OO

of Noetherian complete local rings with S → B surjective, A→ S flat, and S/mAS
a regular local ring. This follows from More on Algebra, Lemma 15.28.3. Let us
(temporarily) say A→ S → B is a good factorization of A→ B if S is a Noetherian
local ring, A → S → B are local ring maps, S → B surjective, A → S flat, and
S/mAS regular. Let us say that A → B is a complete intersection homomorphism
if there exists some good factorization A→ S → B such that the kernel of S → B
is generated by a regular sequence. The following lemma shows this notion is
independent of the choice of the diagram.

Lemma 23.9.1. Let A→ B be a local homomorphism of Noetherian complete local
rings. The following are equivalent

(1) for some good factorization A→ S → B the kernel of S → B is generated
by a regular sequence, and

(2) for every good factorization A→ S → B the kernel of S → B is generated
by a regular sequence.

Proof. Let A → S → B be a good factorization. As B is complete we obtain a
factorization A → S∧ → B where S∧ is the completion of S. Note that this is
also a good factorization: The ring map S → S∧ is flat (Algebra, Lemma 10.93.3),
hence A → S∧ is flat. The ring S∧/mAS

∧ = (S/mAS)∧ is regular since S/mAS is
regular (More on Algebra, Lemma 15.32.4). Let f1, . . . , fr be a minimal sequence
of generators of Ker(S → B). We will use without further mention that an ideal
in a Noetherian local ring is generated by a regular sequence if and only if any
minimal set of generators is a regular sequence. Observe that f1, . . . , fr is a regular
sequence in S if and only if f1, . . . , fr is a regular sequence in the completion S∧

by Algebra, Lemma 10.67.7. Moreover, we have

S∧/(f1, . . . , fr)R
∧ = (S/(f1, . . . , fn))∧ = B∧ = B

because B is mB-adically complete (first equality by Algebra, Lemma 10.93.2).
Thus the kernel of S → B is generated by a regular sequence if and only if the
kernel of S∧ → B is generated by a regular sequence. Hence it suffices to consider
good factorizations where S is complete.

Assume we have two factorizations A → S → B and A → S′ → B with S and S′

complete. By More on Algebra, Lemma 15.28.4 the ring S ×B S′ is a Noetherian
complete local ring. Hence, using More on Algebra, Lemma 15.28.3 we can choose
a good factorization A → S′′ → S ×B S′ with S′′ complete. Thus it suffices to
show: If A → S′ → S → B are comparable good factorizations, then Ker(S → B)
is generated by a regular sequence if and only if Ker(S′ → B) is generated by a
regular sequence.

http://stacks.math.columbia.edu/tag/09QA
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Let A→ S′ → S → B be comparable good factorizations. First, since S′/mRS
′ →

S/mRS is a surjection of regular local rings, the kernel is generated by a regular
sequence x1, . . . , xc ∈ mS′/mRS

′ which can be extended to a regular system of
parameters for the regular local ring S′/mRS

′, see (Algebra, Lemma 10.102.4). Set
I = Ker(S′ → S). By flatness of S over R we have

I/mRI = Ker(S′/mRS
′ → S/mRS) = (x1, . . . , xc).

Choose lifts x1, . . . , xc ∈ I. These lifts form a regular sequence generating I as S′

is flat over R, see Algebra, Lemma 10.95.3.

We conclude that if also Ker(S → B) is generated by a regular sequence, then so
is Ker(S′ → B), see More on Algebra, Lemmas 15.21.12 and 15.21.6.

Conversely, assume that J = Ker(S′ → B) is generated by a regular sequence.
Because the generators x1, . . . , xc of I map to linearly independent elements of
mS′/m

2
S′ we see that I/mS′I → J/mS′J is injective. Hence there exists a minimal

system of generators x1, . . . , xc, y1, . . . , yd for J . Then x1, . . . , xc, y1, . . . , yd is a
regular sequence and it follows that the images of y1, . . . , yd in S form a regular
sequence generating Ker(S → B). This finishes the proof of the lemma. �

In the following proposition observe that the condition on vanishing of Tor’s applies
in particular if B has finite tor dimension over A and thus in particular if B is flat
over A.

Proposition 23.9.2. Let A → B be a local homomorphism of Noetherian local
rings. Then the following are equivalent

(1) B is a complete intersection and TorAp (B,A/mA) is nonzero for only
finitely many p,

(2) A is a complete intersection and A∧ → B∧ is a complete intersection
homomorphism in the sense defined above.

Proof. Let F• → A/mA be a resolution by finite free A-modules. Observe that

TorAp (B,A/mA) is the pth homology of the complex F•⊗A B. Let F∧• = F•⊗A A∧
be the completion. Then F∧• is a resolution of A∧/mA∧ by finite free A∧-modules
(as A→ A∧ is flat and completion on finite modules is exact, see Algebra, Lemmas
10.93.2 and 10.93.3). It follows that

F∧• ⊗A∧ B∧ = F• ⊗A B ⊗B B∧

By flatness of B → B∧ we conclude that

TorA
∧

p (B∧, A∧/mA∧) = TorAp (B,A/mA)⊗B B∧

In this way we see that the condition in (1) on the local ring map A → B is
equivalent to the same condition for the local ring map A∧ → B∧. Thus we may
assume A and B are complete local Noetherian rings (since the other conditions
are formulated in terms of the completions in any case).

Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

http://stacks.math.columbia.edu/tag/09QB
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as in More on Algebra, Lemma 15.28.3. Let I = Ker(R→ A) and J = Ker(S → B).
The proposition now follows from Lemma 23.7.6. �

Remark 23.9.3. It appears difficult to define an good notion of “local complete
intersection homomorphisms” for maps between general Noetherian rings. The
reason is that, for a local Noetherian ring A, the fibres of A → A∧ are not local
complete intersection rings. Thus, if A → B is a local homomorphism of local
Noetherian rings, and the map of completions A∧ → B∧ is a complete intersec-
tion homomorphism in the sense defined above, then (Ap)∧ → (Bq)∧ is in general
not a complete intersection homomorphism in the sense defined above. A solution
can be had by working exclusively with excellent Noetherian rings. More gener-
ally, one could work with those Noetherian rings whose formal fibres are complete
intersections, see [Rod87]. We will develop this theory here if we ever need it.

To finish of this section we compare the notion defined above with the notion
introduced in More on Algebra, Section 23.8.

Lemma 23.9.4. Consider a commutative diagram

S // B

A

__ OO

of Noetherian local rings with S → B surjective, A→ S flat, and S/mAS a regular
local ring. The following are equivalent

(1) Ker(S → B) is generated by a regular sequence, and
(2) A∧ → B∧ is a complete intersection homomorphism as defined above.

Proof. Omitted. Hint: the proof is indentical to the argument given in the first
paragraph of the proof of Lemma 23.9.1. �

Lemma 23.9.5. Let A be a Noetherian ring. Let A→ B be a finite type ring map.
The following are equivalent

(1) A → B is a local complete intersection in the sense of More on Algebra,
Definition 15.23.2,

(2) for every prime q ⊂ B and with p = A ∩ q the ring map (Ap)∧ → (Bq)∧

is a complete intersection homomorphism in the sense defined above.

Proof. Choose a surjection R = A[x1, . . . , xn] → B. Observe that A → R is flat
with regular fibres. Let I be the kernel of R → B. Assume (2). Then we see that
I is locally generated by a regular sequence by Lemma 23.9.4 and Algebra, Lemma
10.67.8. In other words, (1) holds. Conversely, assume (1). Then after localizing
on R and B we can assume that I is generated by a Koszul regular sequence. By
More on Algebra, Lemma 15.21.6 we find that I is locally generated by a regular
sequence. Hence (2) hold by Lemma 23.9.4. Some details omitted. �

Lemma 23.9.6. Let A be a Noetherian ring. Let A→ B be a finite type ring map
such that the image of Spec(B) → Spec(A) contains all closed points of Spec(A).
Then the following are equivalent

(1) B is a complete intersection and A→ B has finite tor dimension,
(2) A is a complete intersection and A→ B is a complete intersection in the

sense of More on Algebra, Definition 15.23.2.

http://stacks.math.columbia.edu/tag/09QC
http://stacks.math.columbia.edu/tag/09QD
http://stacks.math.columbia.edu/tag/09QE
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Proof. This is a reformulation of Proposition 23.9.2 via Lemma 23.9.5. We omit
the details. �
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CHAPTER 24

Hypercoverings

24.1. Introduction

Let C be a site, see Sites, Definition 7.6.2. Let X be an object of C. Given an
abelian sheaf F on C we would like to compute its cohomology groups

Hi(X,F).

According to our general definitions (Cohomology on Sites, Section 21.3) this co-
homology group is computed by choosing an injective resolution 0 → F → I0 →
I1 → . . . and setting

Hi(X,F) = Hi(Γ(X, I0)→ Γ(X, I1)→ Γ(X, I2)→ . . .)

The goal of this chapter is to show that we may also compute these cohomology
groups without choosing an injective resolution (in the case that C has fibre prod-
ucts). To do this we will use hypercoverings.

A hypercovering in a site is a generalization of a covering, see [AGV71, Exposé V,
Sec. 7]. Given a hypercovering K of an object X, there is a Čech to cohomology
spectral sequence expressing the cohomology of an abelian sheaf F over X in terms
of the cohomology of the sheaf over the components Kn of K. It turns out that there
are always enough hypercoverings, so that taking the colimit over all hypercoverings,
the spectral sequence degenerates and the cohomology of F over X is computed by
the colimit of the Čech cohomology groups.

A more general gadget one can consider is a simplicial augmentation where one has
cohomological descent, see [AGV71, Exposé Vbis]. A nice manuscript on coho-
mological descent is the text by Brian Conrad, see http://math.stanford.edu/

~conrad/papers/hypercover.pdf. We will come back to these issue in the chapter
on simplicial spaces where we will show, for example, that proper hypercoverings
of “locally compact” topological spaces are of cohomological descent (Simplicial
Spaces, Section 64.6). Our method of attack will be to reduce this statement to the
Čech to cohomology spectral sequence constructed in this chapter.

24.2. Hypercoverings

In order to start we make the following definition. The letters “SR” stand for
Semi-Representable.

Definition 24.2.1. Let C be a site. We denote SR(C) the category of semi-
representable objects defined as follows

(1) objects are families of objects {Ui}i∈I , and
(2) morphisms {Ui}i∈I → {Vj}j∈J are given by a map α : I → J and for each

i ∈ I a morphism fi : Ui → Vα(i) of C.

1683

http://math.stanford.edu/~conrad/papers/hypercover.pdf
http://math.stanford.edu/~conrad/papers/hypercover.pdf
http://stacks.math.columbia.edu/tag/01G0


1684 24. HYPERCOVERINGS

Let X ∈ Ob(C) be an object of C. The category of semi-representable objects over
X is the category SR(C, X) = SR(C/X).

This definition differs from the one in [AGV71, Exposé V, Sec. 7], but it seems
flexible enough to do all the required arguments. Note that this is a “big” category.
We will later “bound” the size of the index sets I that we need for hypercoverings
of X. We can then redefine SR(C, X) to become a category. Let’s spell out the
objects and morphisms SR(C, X):

(1) objects are families of morphisms {Ui → X}i∈I , and
(2) morphisms {Ui → X}i∈I → {Vj → X}j∈J are given by a map α : I → J

and for each i ∈ I a morphism fi : Ui → Vα(i) over X.

There is a forgetful functor SR(C, X)→ SR(C).

Definition 24.2.2. Let C be a site with fibre products. We denote F the functor
which associates a presheaf to a semi-representable object. In a formula

F : SR(C) −→ PSh(C)
{Ui}i∈I 7−→ qi∈IhUi

where hU denotes the representable presheaf associated to the object U .

Given a morphism U → X we obtain a morphism hU → hX of representable
presheaves. Thus we often think of F on SR(C, X) as a functor into the category
of presheaves of sets over hX , namely PSh(C)/hX . Here is a picture:

SR(C, X)
F
//

��

PSh(C)/hX

��
SR(C) F // PSh(C)

Next we discuss the existence of limits in the category of semi-representable objects.

Lemma 24.2.3. Let C be a site.

(1) the category SR(C) has coproducts and F commutes with them,
(2) the functor F : SR(C)→ PSh(C) commutes with limits,
(3) if C has fibre products, then SR(C) has fibre products,
(4) if C has products of pairs, then SR(C) has products of pairs,
(5) if C has equalizers, so does SR(C), and
(6) if C has a final object, so does SR(C).

Let X ∈ Ob(C).
(1) the category SR(C, X) has coproducts and F commutes with them,
(2) if C has fibre products, then SR(C, X) has finite limits and F : SR(C, X)→

PSh(C)/hX commutes with them.

Proof. Proof of the results on SR(C). Proof of (1). The coproduct of {Ui}i∈I and
{Vj}j∈J is {Ui}i∈I q{Vj}j∈J , in other words, the family of objects whose index set
is IqJ and for an element k ∈ IqJ gives Ui if k = i ∈ I and gives Vj if k = j ∈ J .
Similarly for coproducts of families of objects. It is clear that F commutes with
these.

Proof of (2). For U in Ob(C) consider the object {U} of SR(C). It is clear that
MorSR(C)({U},K)) = F (K)(U) for K ∈ Ob(SR(C)). Since limits of presheaves are

http://stacks.math.columbia.edu/tag/01G1
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computed at the level of sections (Sites, Section 7.4) we conclude that F commutes
with limits.

Proof of (3). Suppose given a morphism (α, fi) : {Ui}i∈I → {Vj}j∈J and a mor-
phism (β, gk) : {Wk}k∈K → {Vj}j∈J . The fibred product of these morphisms is
given by

{Ui ×fi,Vj ,gk Wk}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist if C has fibre products.

Proof of (4). The product of {Ui}i∈I and {Vj}j∈J is {Ui×Vj}i∈I,j∈J . The products
exist if C has products.

Proof of (5). The equalizer of two maps (α, fi), (α
′, f ′i) : {Ui}i∈I → {Vj}j∈J is

{Eq(fi, f
′
i : Ui → Vα(i))}i∈I, α(i)=α′(i)

The equalizers exist if C has equalizers.

Proof of (6). If X is a final object of C, then {X} is a final object of SR(C).
Proof of the statements about SR(C, X). These follow from the results above ap-
plied to the category C/X using that SR(C/X) = SR(C, X) and that PSh(C/X) =
PSh(C)/hX (Sites, Lemma 7.24.4 applied to C endowed with the chaotic topol-
ogy). However we also argue directly as follows. It is clear that the coproduct
of {Ui → X}i∈I and {Vj → X}j∈J is {Ui → X}i∈I q {Vj → X}j∈J and simi-
larly for coproducts of families of families of morphisms with target X. The object
{X → X} is a final object of SR(C, X). Suppose given a morphism (α, fi) : {Ui →
X}i∈I → {Vj → X}j∈J and a morphism (β, gk) : {Wk → X}k∈K → {Vj → X}j∈J .
The fibred product of these morphisms is given by

{Ui ×fi,Vj ,gk Wk → X}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist by the assumption that C has fibre products. Thus
SR(C, X) has finite limits, see Categories, Lemma 4.18.4. We omit verifying the
statements on the functor F in this case. �

Definition 24.2.4. Let C be a site. Let f = (α, fi) : {Ui}i∈I → {Vj}j∈J be a
morphism in the category SR(C). We say that f is a covering if for every j ∈ J the
family of morphisms {Ui → Vj}i∈I,α(i)=j is a covering for the site C. Let X be an
object of C. A morphism K → L in SR(C, X) is a covering if its image in SR(C) is
a covering.

Lemma 24.2.5. Let C be a site.

(1) A composition of coverings in SR(C) is a covering.
(2) If K → L is a covering in SR(C) and L′ → L is a morphism, then L′×LK

exists and L′ ×L K → L′ is a covering.
(3) If C has products of pairs, and A→ B and K → L are coverings in SR(C),

then A×K → B × L is a covering.

Let X ∈ Ob(C). Then (1) and (2) holds for SR(C, X) and (3) holds if C has fibre
products.

Proof. Part (1) is immediate from the axioms of a site. Part (2) follows by the
construction of fibre products in SR(C) in the proof of Lemma 24.2.3 and the
requirement that the morphisms in a covering of C are representable. Part (3)
follows by thinking of A×K → B×L as the composition A×K → B×K → B×L

http://stacks.math.columbia.edu/tag/01G3
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and hence a composition of basechanges of coverings. The final statement follows
because SR(C, X) = SR(C/X). �

By Lemma 24.2.3 and Simplicial, Lemma 14.18.2 the coskeleton of a truncated
simplicial object of SR(C, X) exists if C has fibre products. Hence the following
definition makes sense.

Definition 24.2.6. Let C be a site. Assume C has fibre products. Let X ∈ Ob(C)
be an object of C. A hypercovering of X is a simplicial object K of SR(C, X) such
that

(1) The object K0 is a covering of X for the site C.
(2) For every n ≥ 0 the canonical morphism

Kn+1 −→ (cosknsknK)n+1

is a covering in the sense defined above.

Condition (1) makes sense since each object of SR(C, X) is after all a family of
morphisms with target X. It could also be formulated as saying that the morphism
of K0 to the final object of SR(C, X) is a covering.

Example 24.2.7. Let {Ui → X}i∈I be a covering of the site C. Set K0 = {Ui →
X}i∈I . Then K0 is a 0-truncated simplicial object of SR(C, X). Hence we may
form

K = cosk0K0.

Clearly K passes condition (1) of Definition 24.2.6. Since all the morphisms
Kn+1 → (cosknsknK)n+1 are isomorphisms by Simplicial, Lemma 14.18.10 it also
passes condition (2). Note that the terms Kn are the usual

Kn = {Ui0 ×X Ui1 ×X . . .×X Uin → X}(i0,i1,...,in)∈In+1

Lemma 24.2.8. Let C be a site with fibre products. Let X ∈ Ob(C) be an object of
C. The collection of all hypercoverings of X forms a set.

Proof. Since C is a site, the set of all coverings of X forms a set. Thus we see
that the collection of possible K0 forms a set. Suppose we have shown that the
collection of all possible K0, . . . ,Kn form a set. Then it is enough to show that given
K0, . . . ,Kn the collection of all possible Kn+1 forms a set. And this is clearly true
since we have to choose Kn+1 among all possible coverings of (cosknsknK)n+1. �

Remark 24.2.9. The lemma does not just say that there is a cofinal system of
choices of hypercoverings that is a set, but that really the hypercoverings form a
set.

The category of presheaves on C has finite (co)limits. Hence the functors coskn
exists for presheaves of sets.

Lemma 24.2.10. Let C be a site with fibre products. Let X ∈ Ob(C) be an object of
C. Let K be a hypercovering of X. Consider the simplicial object F (K) of PSh(C),
endowed with its augmentation to the constant simplicial presheaf hX .

(1) The morphism of presheaves F (K)0 → hX becomes a surjection after
sheafification.

http://stacks.math.columbia.edu/tag/01G5
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(2) The morphism

(d1
0, d

1
1) : F (K)1 −→ F (K)0 ×hX F (K)0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

F (K)n+1 −→ (cosknsknF (K))n+1

turns into a surjection after sheafification.

Proof. We will use the fact that if {Ui → U}i∈I is a covering of the site C, then
the morphism

qi∈IhUi → hU

becomes surjective after sheafification, see Sites, Lemma 7.13.4. Thus the first
assertion follows immediately.

For the second assertion, note that according to Simplicial, Example 14.18.1 the
simplicial object cosk0sk0K has terms K0× . . .×K0. Thus according to the defini-
tion of a hypercovering we see that (d1

0, d
1
1) : K1 → K0×K0 is a covering. Hence (2)

follows from the claim above and the fact that F transforms products into fibred
products over hX .

For the third, we claim that cosknsknF (K) = F (cosknsknK) for n ≥ 1. To prove
this, denote temporarily F ′ the functor SR(C, X)→ PSh(C)/hX . By Lemma 24.2.3
the functor F ′ commutes with finite limits. By our description of the coskn functor
in Simplicial, Section 14.12 we see that cosknsknF

′(K) = F ′(cosknsknK). Recall
that the category used in the description of (cosknU)m in Simplicial, Lemma 14.18.2
is the category (∆/[m])opp≤n . It is an amusing exercise to show that (∆/[m])≤n is

a connected category (see Categories, Definition 4.16.1) as soon as n ≥ 1. Hence,
Categories, Lemma 4.16.2 shows that cosknsknF

′(K) = cosknsknF (K). Whence
the claim. Property (2) follows from this, because now we see that the morphism
in (2) is the result of applying the functor F to a covering as in Definition 24.2.4,
and the result follows from the first fact mentioned in this proof. �

24.3. Acyclicity

Let C be a site. For a presheaf of sets F we denote ZF the presheaf of abelian
groups defined by the rule

ZF (U) = free abelian group on F(U).

We will sometimes call this the free abelian presheaf on F . Of course the con-
struction F 7→ ZF is a functor and it is left adjoint to the forgetful functor

PAb(C) → PSh(C). Of course the sheafification Z#
F is a sheaf of abelian groups,

and the functor F 7→ Z#
F is a left adjoint as well. We sometimes call Z#

F the free
abelian sheaf on F .

For an object X of the site C we denote ZX the free abelian presheaf on hX , and

we denote Z#
X its sheafification.

Definition 24.3.1. Let C be a site. Let K be a simplicial object of PSh(C). By the

above we get a simplicial object Z#
K of Ab(C). We can take its associated complex

of abelian presheaves s(Z#
K), see Simplicial, Section 14.22. The homology of K is

the homology of the complex of abelian sheaves s(Z#
K).
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In other words, the ith homology Hi(K) of K is the sheaf of abelian groups

Hi(K) = Hi(s(Z
#
K)). In this section we worry about the homology in case K

is a hypercovering of an object X of C.

Lemma 24.3.2. Let C be a site. Let F → G be a morphism of presheaves of sets.
Denote K the simplicial object of PSh(C) whose nth term is the (n + 1)st fibre
product of F over G, see Simplicial, Example 14.3.5. Then, if F → G is surjective
after sheafification, we have

Hi(K) =

{
0 if i > 0

Z#
G if i = 0

The isomorphism in degree 0 is given by the morphism H0(K)→ Z#
G coming from

the map (Z#
K)0 = Z#

F → Z#
G .

Proof. Let G′ ⊂ G be the image of the morphism F → G. Let U ∈ Ob(C). Set
A = F(U) and B = G′(U). Then the simplicial set K(U) is equal to the simplicial
set with n-simplices given by

A×B A×B . . .×B A (n+ 1 factors).

By Simplicial, Lemma 14.31.3 the morphism K(U)→ B is a trivial Kan fibration.
Thus it is a homotopy equivalence (Simplicial, Lemma 14.31.3). Hence applying
the functor “free abelian group on” to this we deduce that

ZK(U) −→ ZB

is a homotopy equivalence. Note that s(ZB) is the complex

. . .→
⊕

b∈B
Z

0−→
⊕

b∈B
Z

1−→
⊕

b∈B
Z

0−→
⊕

b∈B
Z→ 0

see Simplicial, Lemma 14.22.3. Thus we see that Hi(s(ZK(U))) = 0 for i > 0,
and H0(s(ZK(U))) =

⊕
b∈B Z =

⊕
s∈G′(U) Z. These identifications are compatible

with restriction maps.

We conclude that Hi(s(ZK)) = 0 for i > 0 and H0(s(ZK)) = ZG′ , where here we
compute homology groups in PAb(C). Since sheafification is an exact functor we
deduce the result of the lemma. Namely, the exactness implies that H0(s(ZK))# =

H0(s(Z#
K)), and similarly for other indices. �

Lemma 24.3.3. Let C be a site. Let f : L→ K be a morphism of simplicial objects
of PSh(C). Let n ≥ 0 be an integer. Assume that

(1) For i < n the morphism Li → Ki is an isomorphism.
(2) The morphism Ln → Kn is surjective after sheafification.
(3) The canonical map L→ cosknsknL is an isomorphism.
(4) The canonical map K → cosknsknK is an isomorphism.

Then Hi(f) : Hi(L)→ Hi(K) is an isomorphism.

Proof. This proof is exactly the same as the proof of Lemma 24.3.2 above. Namely,
we first let K ′n ⊂ Kn be the sub presheaf which is the image of the map Ln → Kn.
Assumption (2) means that the sheafification of K ′n is equal to the sheafification
of Kn. Moreover, since Li = Ki for all i < n we see that get an n-truncated
simplicial presheaf U by taking U0 = L0 = K0, . . . , Un−1 = Ln−1 = Kn−1, Un =
K ′n. Denote K ′ = cosknU , a simplicial presheaf. Because we can construct K ′m as
a finite limit, and since sheafification is exact, we see that (K ′m)# = Km. In other
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words, (K ′)# = K#. We conclude, by exactness of sheafification once more, that
Hi(K) = Hi(K

′). Thus it suffices to prove the lemma for the morphism L→ K ′, in
other words, we may assume that Ln → Kn is a surjective morphism of presheaves!

In this case, for any object U of C we see that the morphism of simplicial sets

L(U) −→ K(U)

satisfies all the assumptions of Simplicial, Lemma 14.31.1. Hence it is a trivial Kan
fibration. In particular it is a homotopy equivalence (Simplicial, Lemma 14.29.8).
Thus

ZL(U) −→ ZK(U)

is a homotopy equivalence too. This for all U . The result follows. �

Lemma 24.3.4. Let C be a site. Let K be a simplicial presheaf. Let G be a presheaf.
Let K → G be an augmentation of K towards G. Assume that

(1) The morphism of presheaves K0 → G becomes a surjection after sheafifi-
cation.

(2) The morphism

(d1
0, d

1
1) : K1 −→ K0 ×G K0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

Kn+1 −→ (cosknsknK)n+1

turns into a surjection after sheafification.

Then Hi(K) = 0 for i > 0 and H0(K) = Z#
G .

Proof. Denote Kn = cosknsknK for n ≥ 1. Define K0 as the simplicial object
with terms (K0)n equal to the (n + 1)-fold fibred product K0 ×G . . . ×G K0, see
Simplicial, Example 14.3.5. We have morphisms

K −→ . . .→ Kn → Kn−1 → . . .→ K1 → K0.

The morphisms K → Ki, Kj → Ki for j ≥ i ≥ 1 come from the universal prop-
erties of the coskn functors. The morphism K1 → K0 is the canonical morphism
from Simplicial, Remark 14.19.4. We also recall that K0 → cosk1sk1K

0 is an
isomorphism, see Simplicial, Lemma 14.19.3.

By Lemma 24.3.2 we see that Hi(K
0) = 0 for i > 0 and H0(K0) = Z#

G .

Pick n ≥ 1. Consider the morphism Kn → Kn−1. It is an isomorphism on terms
of degree < n. Note that Kn → cosknsknK

n and Kn−1 → cosknsknK
n−1 are

isomorphisms. Note that (Kn)n = Kn and that (Kn−1)n = (coskn−1skn−1K)n.
Hence by assumption, we have that (Kn)n → (Kn−1)n is a morphism of presheaves
which becomes surjective after sheafification. By Lemma 24.3.3 we conclude that
Hi(K

n) = Hi(K
n−1). Combined with the above this proves the lemma. �

Lemma 24.3.5. Let C be a site with fibre products. Let X be an object of of C.
Let K be a hypercovering of X. The homology of the simplicial presheaf F (K) is 0

in degrees > 0 and equal to Z#
X in degree 0.

Proof. Combine Lemmas 24.3.4 and 24.2.10. �
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24.4. Cech cohomology and hypercoverings

Let C be a site. Consider a presheaf of abelian groups F on the site C. It defines a
functor

F : SR(C)opp −→ Ab

{Ui}i∈I 7−→
∏

i∈I
F(Ui)

Thus a simplicial object K of SR(C) is turned into a cosimplicial object F(K) of
Ab. The cochain complex s(F)(K)) associated to F(K) (Simplicial, Section 14.24)
is called the Čech complex of F with respect to the simplicial object K. We set

Ȟi(K,F) = Hi(s(F(K))).

and we call it the ith Čech cohomology group of F with respect to K. In this
section we prove analogues of some of the results for Cech cohomology of open
coverings proved in Cohomology, Sections 20.10, 20.11 and 20.12.

Lemma 24.4.1. Let C be a site with fibre products. Let X be an object of C.
Let K be a hypercovering of X. Let F be a sheaf of abelian groups on C. Then
Ȟ0(K,F) = F(X).

Proof. We have
Ȟ0(K,F) = Ker(F(K0) −→ F(K1))

Write K0 = {Ui → X}. It is a covering in the site C. As well, we have that K1 →
K0×K0 is a covering in SR(C, X). Hence we may write K1 = qi0,i1∈I{Vi0i1j → X}
so that the morphism K1 → K0 ×K0 is given by coverings {Vi0i1j → Ui0 ×X Ui1}
of the site C. Thus we can further identify

Ȟ0(K,F) = Ker(
∏

i
F(Ui) −→

∏
i0i1j
F(Vi0i1j))

with obvious map. The sheaf property of F implies that Ȟ0(K,F) = H0(X,F). �

In fact this property characterizes the abelian sheaves among all abelian presheaves
on C of course. The analogue of Cohomology, Lemma 24.4.2 in this case is the
following.

Lemma 24.4.2. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let I be an injective sheaf of abelian groups on C. Then

Ȟp(K, I) =

{
I(X) if p = 0

0 if p > 0

Proof. Observe that for any object Z = {Ui → X} of SR(C, X) and any abelian
sheaf F on C we have

F(Z) =
∏
F(Ui)

=
∏

MorPSh(C)(hUi ,F)

= MorPSh(C)(F (Z),F)

= MorPAb(C)(ZF (Z),F)

= MorAb(C)(Z
#
F (Z),F)

Thus we see, for any simplicial object K of SR(C, X) that we have

(24.4.2.1) s(F(K)) = HomAb(C)(s(Z
#
F (K)),F)
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see Definition 24.3.1 for notation. The complex of sheaves s(Z#
F (K)) is quasi-

isomorphic to Z#
X if K is a hypercovering, see Lemma 24.3.5. We conclude that if

I is an injective abelian sheaf, and K a hypercovering, then the complex s(I(K))
is acyclic except possibly in degree 0. In other words, we have

Ȟi(K, I) = 0

for i > 0. Combined with Lemma 24.4.1 the lemma is proved. �

Next we come to the analogue of Cohomology on Sites, Lemma 21.11.6. Let C
be a site. Let F be a sheaf of abelian groups on C. Recall that Hi(F) indicates
the presheaf of abelian groups on C which is defined by the rule Hi(F) : U 7−→
Hi(U,F). We extend this to SR(C) as in the introduction to this section.

Lemma 24.4.3. Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let F be a sheaf of abelian groups on C. There is a
map

s(F(K)) −→ RΓ(X,F)

in D+(Ab) functorial in F , which induces natural transformations

Ȟi(K,−) −→ Hi(X,−)

as functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). This spectral sequence is functorial in F and in the
hypercovering K.

Proof. We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a double complex
argument.

Choose an injective resolution F → I• in the category of abelian sheaves on C.
Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Ip → Ip+1 and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
differential on the complex s(Ip(K)) associated to the cosimplicial abelian group
Ip(K) as explained above. As usual we denote sA• the simple complex associated
to the double complex A•,•. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 12.22.

By Lemma 24.4.2 the complexes s(Ip(K)) are acyclic in positive degrees and have
H0 equal to Ip(X). Hence by Homology, Lemma 12.22.7 and its proof the spectral
sequence (′Er,

′dr) degenerates, and the natural map

I•(X) −→ sA•

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude
that Hn(sA•) = Hn(X,F).

The map s(F(K)) −→ RΓ(X,F) of the lemma is the composition of the natural
map s(F(K)) → sA• followed by the inverse of the displayed quasi-isomorphism
above. This works because I•(X) is a representative of RΓ(X,F).
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Consider the spectral sequence (′′Er,
′′dr)r≥0. By Homology, Lemma 12.22.4 we

see that
′′Ep,q2 = Hp

II(H
q
I (A•,•))

In other words, we first take cohomology with respect to d1 which gives the groups
′′Ep,q1 = Hp(F)(Kq). Hence it is indeed the case (by the description of the differ-

ential ′′d1) that ′′Ep,q2 = Ȟp(K,Hq(F)). And by the other spectral sequence above
we see that this one converges to Hn(X,F) as desired.

We omit the proof of the statements regarding the functoriality of the above con-
structions in the abelian sheaf F and the hypercovering K. �

24.5. Hypercoverings a la Verdier

The astute reader will have noticed that all we need in order to get the Čech to
cohomology spectral sequence for a hypercovering of an object X, is the conclusion
of Lemma 24.2.10. Therefore the following definition makes sense.

Definition 24.5.1. Let C be a site. Assume C has equalizers and fibre products.
Let G be a presheaf of sets. A hypercovering of G is a simplicial object K of SR(C)
endowed with an augmentation F (K)→ G such that

(1) F (K0)→ G becomes surjective after sheafification,
(2) F (K1)→ F (K0)×G F (K0) becomes surjective after sheafification, and
(3) F (Kn+1) −→ F ((cosknsknK)n+1) for n ≥ 1 becomes surjective after

sheafification.

We say that a simplicial object K of SR(C) is a hypercovering if K is a hypercovering
of the final object ∗ of PSh(C).

The assumption that C has fibre products and equalizers guarantees that SR(C) has
fibre products and equalizers and F commutes with these (Lemma 24.2.3) which
suffices to define the coskeleton functors used (see Simplicial, Remark 14.18.11 and
Categories, Lemma 4.18.2). If C is general, we can replace the condition (3) by the
condition that F (Kn+1) −→ ((cosknsknF (K))n+1) for n ≥ 1 becomes surjective
after sheafification and the results of this section remain valid.

Let F be an abelian sheaf on C. In the previous section, we defined the Čech complex
of F with respect to a simplicial object K of SR(C). Next, given a presheaf G we
set

H0(G,F) = MorPSh(C)(G,F) = MorSh(C)(G#,F) = H0(G#,F)

with notation as in Cohomology on Sites, Section 21.13). This is a left exact func-
tor and its higher derived functors (briefly studied in Cohomology on Sites, Section
21.13) will be denoted Hi(G,F). We will show that given a hypercovering K of
G, there is a Čech to cohomology spectral sequence converging to the cohomol-
ogy Hi(G,F). Note that if G = ∗, then Hi(∗,F) = Hi(F) recovers the global
cohomology of F .

Lemma 24.5.2. Let C be a site with equalizers and fibre products. Let G be a
presheaf on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups
on C. Then Ȟ0(K,F) = H0(G,F).

Proof. This follows from the definition of H0(G,F) and the fact that

F (K1)
//
// F (K0) // G
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becomes an coequalizer diagram after sheafification. �

Lemma 24.5.3. Let C be a site with equalizers and fibre products. Let G be a
presheaf on C. Let K be a hypercovering of G. Let I be an injective sheaf of abelian
groups on C. Then

Ȟp(K, I) =

{
H0(G, I) if p = 0

0 if p > 0

Proof. By (24.4.2.1) we have

s(F(K)) = HomAb(C)(s(Z
#
F (K)),F)

The complex s(Z#
F (K)) is quasi-isomorphic to Z#

G , see Lemma 24.3.4. We conclude

that if I is an injective abelian sheaf, then the complex s(I(K)) is acyclic except
possibly in degree 0. In other words, we have Ȟi(K, I) = 0 for i > 0. Combined
with Lemma 24.5.2 the lemma is proved. �

Lemma 24.5.4. Let C be a site with equalizers and fibre products. Let G be a
presheaf on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups
on C. There is a map

s(F(K)) −→ RΓ(G,F)

in D+(Ab) functorial in F , which induces a natural transformation

Ȟi(K,−) −→ Hi(G,−)

of functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(G,F). This spectral sequence is functorial in F and in the
hypercovering K.

Proof. Choose an injective resolution F → I• in the category of abelian sheaves
on C. Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Ip → Ip+1 and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
differential on the complex s(Ip(K)) associated to the cosimplicial abelian group
Ip(K) as explained above. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 12.22.

By Lemma 24.5.3 the complexes s(Ip(K)) are acyclic in positive degrees and have
H0 equal to H0(G, Ip). Hence by Homology, Lemma 12.22.7 and its proof the
spectral sequence (′Er,

′dr) degenerates, and the natural map

H0(G, I•) −→ Tot(A•,•)

is a quasi-isomorphism of complexes of abelian groups. The map s(F(K)) −→
RΓ(G,F) of the lemma is the composition of the natural map s(F(K))→ Tot(A•,•)
followed by the inverse of the displayed quasi-isomorphism above. This works be-
cause H0(G, I•) is a representative of RΓ(G,F).

Consider the spectral sequence (′′Er,
′′dr)r≥0. By Homology, Lemma 12.22.4 we

see that
′′Ep,q2 = Hp

II(H
q
I (A•,•))
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In other words, we first take cohomology with respect to d1 which gives the groups
′′Ep,q1 = Hp(F)(Kq). Hence it is indeed the case (by the description of the differ-

ential ′′d1) that ′′Ep,q2 = Ȟp(K,Hq(F)). Since this spectral sequence converges to
the cohomology of Tot(A•,•) the proof is finished. �

Lemma 24.5.5. Let C be a site with equalizers and fibre products. Let K be a
hypercovering. Let F be an abelian sheaf. There is a spectral sequence (Er, dr)r≥0

with

Ep,q2 = Ȟp(K,Hq(F))

converging to the global cohomology groups Hp+q(F).

Proof. This is a special case of Lemma 24.5.4. �

24.6. Covering hypercoverings

Here are some ways to construct hypercoverings. We note that since the category
SR(C, X) has fibre products the category of simplicial objects of SR(C, X) has fibre
products as well, see Simplicial, Lemma 14.7.2.

Lemma 24.6.1. Let C be a site with fibre products. Let X be an object of C.
Let K,L,M be simplicial objects of SR(C, X). Let a : K → L, b : M → L be
morphisms. Assume

(1) K is a hypercovering of X,
(2) the morphism M0 → L0 is a covering, and
(3) for all n ≥ 0 in the diagram

Mn+1

��

//

γ

**

(cosknsknM)n+1

��

Ln+1 ×(cosknsknL)n+1
(cosknsknM)n+1

tt

33

Ln+1
// (cosknsknL)n+1

the arrow γ is a covering.

Then the fibre product K ×LM is a hypercovering of X.

Proof. The morphism (K ×L M)0 = K0 ×L0 M0 → K0 is a base change of a
covering by (2), hence a covering, see Lemma 24.2.5. And K0 → {X → X} is a
covering by (1). Thus (K ×L M)0 → {X → X} is a covering by Lemma 24.2.5.
Hence K ×LM satisfies the first condition of Definition 24.2.6.

We still have to check that

Kn+1 ×Ln+1
Mn+1 = (K ×LM)n+1 −→ (cosknskn(K ×LM))n+1

is a covering for all n ≥ 0. We abbreviate as follows: A = (cosknsknK)n+1,
B = (cosknsknL)n+1, and C = (cosknsknM)n+1. The functor cosknskn commutes
with fibre products, see Simplicial, Lemma 14.18.13. Thus the right hand side
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above is equal to A×B C. Consider the following commutative diagram

Kn+1 ×Ln+1 Mn+1
//

��

Mn+1

��
γ

&& **Kn+1
//

((

Ln+1

**

Ln+1 ×B Coo // C

��
A // B

This diagram shows that

Kn+1 ×Ln+1
Mn+1 = (Kn+1 ×B C)×(Ln+1×BC),γ Mn+1

Now, Kn+1 ×B C → A ×B C is a base change of the covering Kn+1 → A via the
morphism A×B C → A, hence is a covering. By assumption (3) the morphism γ is
a covering. Hence the morphism

(Kn+1 ×B C)×(Ln+1×BC),γ Mn+1 −→ Kn+1 ×B C
is a covering as a base change of a covering. The lemma follows as a composition
of coverings is a covering. �

Lemma 24.6.2. Let C be a site with fibre products. Let X be an object of C. If
K,L are hypercoverings of X, then K × L is a hypercovering of X.

Proof. You can either verify this directly, or use Lemma 24.6.1 above and check
that L→ {X → X} has property (3). �

Let C be a site with fibre products. Let X be an object of C. Since the category
SR(C, X) has coproducts and finite limits, it is permissible to speak about the
objects U ×K and Hom(U,K) for certain simplicial sets U (for example those with
finitely many nondegenerate simplices) and any simplicial object K of SR(C, X).
See Simplicial, Sections 14.13 and 14.16.

Lemma 24.6.3. Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let k ≥ 0 be an integer. Let u : Z → Kk be a covering
in in SR(C, X). Then there exists a morphism of hypercoverings f : L → K such
that Lk → Kk factors through u.

Proof. Denote Y = Kk. There is a canonical morphism K → Hom(∆[k], Y )
corresponding to idY via Simplicial, Lemma 14.16.5. We will use the description
of Hom(∆[k], Y ) and Hom(∆[k], Z) given in that lemma. In particular there is a
morphism Hom(∆[k], Y )→ Hom(∆[k], Z) which on degree n terms is the morphism∏

α:[k]→[n]
Y −→

∏
α:[k]→[n]

Z.

Set
L = K ×Hom(∆[n],Y ) Hom(∆[n], Z).

The morphism Lk → Kk sits in to a commutative diagram

Lk //

��

∏
α:[k]→[n] Y

prid[k] //

��

Y

��
Kk

// ∏
α:[k]→[n] Z

prid[k] // Z

http://stacks.math.columbia.edu/tag/01GI
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Since the composition of the two bottom arrows is the identity we conclude that
we have the desired factorization.

We still have to show that L is a hypercovering of X. To see this we will use Lemma
24.6.1. Condition (1) is satisfied by assumption. For (2), the morphism

Hom(∆[k], Y )0 → Hom(∆[k], Z)0

is a covering because it is a product of coverings, see Lemma 24.2.5. For (3)
suppose first that n ≥ 1. In this case by Simplicial, Lemma 14.20.12 we have
Hom(∆[k], Y ) = cosknskn Hom(∆[k], Y ) and similarly for Z. Thus condition (3)
for n > 0 is clear. For n = 0, the diagram of condition (3) of Lemma 24.6.1 is,
according to Simplicial, Lemma 14.20.13, the diagram∏

α:[k]→[1] Z
//

��

Z × Z

��∏
α:[k]→[1] Y

// Y × Y

with obvious horizontal arrows. Thus the morphism γ is the morphism∏
α:[k]→[1]

Z −→
∏

α:[k]→[1] not onto
Z ×

∏
α:[k]→[1] onto

Y

which is a product of coverings and hence a covering according to Lemma 24.6.1
once again. �

Lemma 24.6.4. Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let n ≥ 0 be an integer. Let u : F → F (Kn) be
a morphism of presheaves which becomes surjective on sheafification. Then there
exists a morphism of hypercoverings f : L→ K such that F (fn) : F (Ln)→ F (Kn)
factors through u.

Proof. Write Kn = {Ui → X}i∈I . Thus the map u is a morphism of presheaves of
sets u : F → qhui . The assumption on u means that for every i ∈ I there exists a
covering {Uij → Ui}j∈Ii of the site C and a morphism of presheaves tij : hUij → F
such that u ◦ tij is the map hUij → hUi coming from the morphism Uij → Ui. Set
J = qi∈IIi, and let α : J → I be the obvious map. For j ∈ J denote Vj = Uα(j)j .
Set Z = {Vj → X}j∈J . Finally, consider the morphism u′ : Z → Kn given by
α : J → I and the morphisms Vj = Uα(j)j → Uα(j) above. Clearly, this is a
covering in the category SR(C, X), and by construction F (u′) : F (Z) → F (Kn)
factors through u. Thus the result follows from Lemma 24.6.3 above. �

24.7. Adding simplices

In this section we prove some technical lemmas which we will need later. Let C be
a site with fibre products. Let X be an object of C. As we pointed out in Section
24.6 above, the objects U × K and Hom(U,K) for certain simplicial sets U and
any simplicial object K of SR(C, X) are defined. See Simplicial, Sections 14.13 and
14.16.

Lemma 24.7.1. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty
for all n. Assume that U has finitely many nondegenerate simplices. Suppose n ≥ 0
and x ∈ Vn, x 6∈ Un are such that

http://stacks.math.columbia.edu/tag/01GK
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(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj, z 6∈ Uj for j > n is degenerate.

Then the morphism

Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. If n = 0, then it follows easily that V = U q ∆[0] (see below). In this
case Hom(V,K)0 = Hom(U,K)0 ×K0. The result, in this case, then follows from
Lemma 24.2.5.

Let a : ∆[n]→ V be the morphism associated to x as in Simplicial, Lemma 14.11.3.
Let us write ∂∆[n] = i(n−1)!skn−1∆[n] for the (n − 1)-skeleton of ∆[n]. Let b :
∂∆[n] → U be the restriction of a to the (n − 1) skeleton of ∆[n]. By Simplicial,
Lemma 14.20.7 we have V = U q∂∆[n] ∆[n]. By Simplicial, Lemma 14.16.6 we get
that

Hom(V,K)0
//

��

Hom(U,K)0

��
Hom(∆[n],K)0

// Hom(∂∆[n],K)0

is a fibre product square. Thus it suffices to show that the bottom horizontal arrow
is a covering. By Simplicial, Lemma 14.20.11 this arrow is identified with

Kn → (coskn−1skn−1K)n

and hence is a covering by definition of a hypercovering. �

Lemma 24.7.2. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty
for all n. Assume that U and V have finitely many nondegenerate simplices. Then
the morphism

Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. By Lemma 24.7.1 above, it suffices to prove a simple lemma about inclu-
sions of simplicial sets U ⊂ V as in the lemma. And this is exactly the result of
Simplicial, Lemma 14.20.8. �

24.8. Homotopies

Let C be a site with fibre products. Let X be an object of C. Let L be a simplicial
object of SR(C, X). According to Simplicial, Lemma 14.16.4 there exists an object
Hom(∆[1], L) in the category Simp(SR(C, X)) which represents the functor

T 7−→ MorSimp(SR(C,X))(∆[1]× T, L)

There is a canonical morphism

Hom(∆[1], L)→ L× L

coming from ei : ∆[0]→ ∆[1] and the identification Hom(∆[0], L) = L.

http://stacks.math.columbia.edu/tag/01GN
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Lemma 24.8.1. Let C be a site with fibre products. Let X be an object of C. Let L
be a simplicial object of SR(C, X). Let n ≥ 0. Consider the commutative diagram

(24.8.1.1) Hom(∆[1], L)n+1
//

��

(cosknskn Hom(∆[1], L))n+1

��
(L× L)n+1

// (cosknskn(L× L))n+1

coming from the morphism defined above. We can identify the terms in this diagram
as follows, where ∂∆[n+1] = in!skn∆[n+1] is the n-skeleton of the (n+1)-simplex:

Hom(∆[1], L)n+1 = Hom(∆[1]×∆[n+ 1], L)0

(cosknskn Hom(∆[1], L))n+1 = Hom(∆[1]× ∂∆[n+ 1], L)0

(L× L)n+1 = Hom((∆[n+ 1]q∆[n+ 1], L)0

(cosknskn(L× L))n+1 = Hom(∂∆[n+ 1]q ∂∆[n+ 1], L)0

and the morphism between these objects of SR(C, X) come from the commutative
diagram of simplicial sets

(24.8.1.2) ∆[1]×∆[n+ 1] ∆[1]× ∂∆[n+ 1]oo

∆[n+ 1]q∆[n+ 1]

OO

∂∆[n+ 1]q ∂∆[n+ 1]oo

OO

Moreover the fibre product of the bottom arrow and the right arrow in (24.8.1.1) is
equal to

Hom(U,L)0

where U ⊂ ∆[1] × ∆[n + 1] is the smallest simplicial subset such that both ∆[n +
1]q∆[n+ 1] and ∆[1]× ∂∆[n+ 1] map into it.

Proof. The first and third equalities are Simplicial, Lemma 14.16.4. The second
and fourth follow from the cited lemma combined with Simplicial, Lemma 14.20.11.
The last assertion follows from the fact that U is the push-out of the bottom and
right arrow of the diagram (24.8.1.2), via Simplicial, Lemma 14.16.6. To see that U
is equal to this push-out it suffices to see that the intersection of ∆[n+1]q∆[n+1]
and ∆[1]× ∂∆[n+ 1] in ∆[1]×∆[n+ 1] is equal to ∂∆[n+ 1]q ∂∆[n+ 1]. This we
leave to the reader. �

Lemma 24.8.2. Let C be a site with fibre products. Let X be an object of C. Let
K,L be hypercoverings of X. Let a, b : K → L be morphisms of hypercoverings.
There exists a morphism of hypercoverings c : K ′ → K such that a ◦ c is homotopic
to b ◦ c.

Proof. Consider the following commutative diagram

K ′
def

c

((

K ×(L×L) Hom(∆[1], L) //

��

Hom(∆[1], L)

��
K

(a,b) // L× L

By the functorial property of Hom(∆[1], L) the composition of the horizontal mor-
phisms corresponds to a morphism K ′∆[1]→ L which defines a homotopy between

http://stacks.math.columbia.edu/tag/01GP
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c ◦ a and c ◦ b. Thus if we can show that K ′ is a hypercovering of X, then we
obtain the lemma. To see this we will apply Lemma 24.6.1 to the pair of mor-
phisms K → L× L and Hom(∆[1], L)→ L× L. Condition (1) of Lemma 24.6.1 is
satisfied. Condition (2) of Lemma 24.6.1 is true because Hom(∆[1], L)0 = L1, and
the morphism (d1

0, d
1
1) : L1 → L0 ×L0 is a covering of SR(C, X) by our assumption

that L is a hypercovering. To prove condition (3) of Lemma 24.6.1 we use Lemma
24.8.1 above. According to this lemma the morphism γ of condition (3) of Lemma
24.6.1 is the morphism

Hom(∆[1]×∆[n+ 1], L)0 −→ Hom(U,L)0

where U ⊂ ∆[1]×∆[n+1]. According to Lemma 24.7.2 this is a covering and hence
the claim has been proven. �

Remark 24.8.3. Note that the crux of the proof is to use Lemma 24.7.2. This
lemma is completely general and does not care about the exact shape of the sim-
plicial sets (as long as they have only finitely many nondegenerate simplices). It
seems altogether reasonable to expect a result of the following kind: Given any
morphism a : K × ∂∆[k] → L, with K and L hypercoverings, there exists a mor-
phism of hypercoverings c : K ′ → K and a morphism g : K ′ ×∆[k]→ L such that
g|K′×∂∆[k] = a ◦ (c× id∂∆[k]). In other words, the category of hypercoverings is in
a suitable sense contractible.

24.9. Cohomology and hypercoverings

Let C be a site with fibre products. Let X be an object of C. Let F be a sheaf
of abelian groups on C. Let K,L be hypercoverings of X. If a, b : K → L are
homotopic maps, then F(a),F(b) : F(K) → F(L) are homotopic maps, see Sim-
plicial, Lemma 14.27.3. Hence have the same effect on cohomology groups of the
associated cochain complexes, see Simplicial, Lemma 14.27.5. We are going to use
this to define the colimit over all hypercoverings.

Let us temporarily denote HC(C, X) the category of hypercoverings of X. We have
seen that this is a category and not a “big” category, see Lemma 24.2.8. This will
be the index category for our diagram, see Categories, Section 4.14 for notation.
Consider the diagram

Ȟi(−,F) : HC(C, X) −→ Ab.

By Lemma 24.6.2 and Lemma 24.8.2, and the remark on homotopies above, this
diagram is directed, see Categories, Definition 4.19.1. Thus the colimit

Ȟi
HC(X,F) = colimK∈HC(C,X) Ȟ

i(K,F)

has a particularly simple description (see location cited).

Theorem 24.9.1. Let C be a site with fibre products. Let X be an object of C. Let
i ≥ 0. The functors

Ab(C) −→ Ab

F 7−→ Hi(X,F)

F 7−→ Ȟi
HC(X,F)

are canonically isomorphic.
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Proof using spectral sequences. Suppose that ξ ∈ Hp(X,F) for some p ≥ 0.
Let us show that ξ is in the image of the map Ȟp(X,F) → Hp(X,F) of Lemma
24.4.3 for some hypercovering K of X.

This is true if p = 0 by Lemma 24.4.1. If p = 1, choose a Cech hypercovering
K of X as in Example 24.2.7 starting with a covering K0 = {Ui → X} in the
site C such that ξ|Ui = 0, see Cohomology on Sites, Lemma 21.8.3. It follows
immediately from the spectral sequence in Lemma 24.4.3 that ξ comes from an
element of Ȟ1(K,F) in this case. In general, choose any hypercovering K of X
such that ξ maps to zero in Hp(F)(K0) (using Example 24.2.7 and Cohomology
on Sites, Lemma 21.8.3 again). By the spectral sequence of Lemma 24.4.3 the
obstruction for ξ to come from an element of Ȟp(K,F) is a sequence of elements
ξ1, . . . , ξp−1 with ξq ∈ Ȟp−q(K,Hq(F)) (more precisely the images of the ξq in
certain subquotients of these groups).

We can inductively replace the hypercovering K by refinements such that the ob-
structions ξ1, . . . , ξp−1 restrict to zero (and not just the images in the subquotients
– so no subtlety here). Indeed, suppose we have already managed to reach the sit-
uation where ξq+1, . . . , ξp−1 are zero. Note that ξq ∈ Ȟp−q(K,Hq(F)) is the class
of some element

ξ̃q ∈ Hq(F)(Kp−q) =
∏

Hq(Ui,F)

if Kp−q = {Ui → X}i∈I . Let ξq,i be the component of ξ̃q in Hq(Ui,F). As
q ≥ 1 we can use Cohomology on Sites, Lemma 21.8.3 yet again to choose coverings
{Ui,j → Ui} of the site such that each restriction ξq,i|Ui,j = 0. Consider the object
Z = {Ui,j → X} of the category SR(C, X) and its obvious morphism u : Z → Kp−q.
It is clear that u is a covering, see Definition 24.2.4. By Lemma 24.6.3 there exists a
morphism L→ K of hypercoverings of X such that Lp−q → Kp−q factors through
u. Then clearly the image of ξq in Hq(F)(Lp−q). is zero. Since the spectral
sequence of Lemma 24.4.3 is functorial this means that after replacing K by L we
reach the situation where ξq, . . . , ξp−1 are all zero. Continuing like this we end up
with a hypercovering where they are all zero and hence ξ is in the image of the map
Ȟp(X,F)→ Hp(X,F).

Suppose that K is a hypercovering of X, that ξ ∈ Ȟp(K,F) and that the image of ξ
under the map Ȟp(X,F)→ Hp(X,F) of Lemma 24.4.3 is zero. To finish the proof
of the theorem we have to show that there exists a morphism of hypercoverings
L → K such that ξ restricts to zero in Ȟp(L,F). By the spectral sequence of
Lemma 24.4.3 the vanishing of the image of ξ in Hp(X,F) means that there exist
elements ξ1, . . . , ξp−2 with ξq ∈ Ȟp−1−q(K,Hq(F)) (more precisely the images of

these in certain subquotients) such that the images dp−1−q,q
q+1 ξq (in the spectral

sequence) add up to ξ. Hence by exactly the same mechanism as above we can find
a morphism of hypercoverings L → K such that the restrictions of the elements
ξq, q = 1, . . . , p − 2 in Ȟp−1−q(L,Hq(F)) are zero. Then it follows that ξ is zero
since the morphism L→ K induces a morphism of spectral sequences according to
Lemma 24.4.3. �

Proof without using spectral sequences. We have seen the result for i = 0,
see Lemma 24.4.1. We know that the functors Hi(X,−) form a universal δ-functor,
see Derived Categories, Lemma 13.20.4. In order to prove the theorem it suffices
to show that the sequence of functors Ȟi

HC(X,−) forms a δ-functor. Namely we
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know that Cech cohomology is zero on injective sheaves (Lemma 24.4.2) and then
we can apply Homology, Lemma 12.11.4.

Let

0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let ξ ∈ Ȟp
HC(X,H). Choose

a hypercovering K of X and an element σ ∈ H(Kp) representing ξ in cohomology.
There is a corresponding exact sequence of complexes

0→ s(F(K))→ s(G(K))→ s(H(K))

but we are not assured that there is a zero on the right also and this is the only
thing that prevents us from defining δ(ξ) by a simple application of the snake
lemma. Recall that

H(Kp) =
∏
H(Ui)

if Kp = {Ui → X}. Let σ =
∏
σi with σi ∈ H(Ui). Since G → H is a surjection

of sheaves we see that there exist coverings {Ui,j → Ui} such that σi|Ui,j is the
image of some element τi,j ∈ G(Ui,j). Consider the object Z = {Ui,j → X} of the
category SR(C, X) and its obvious morphism u : Z → Kp. It is clear that u is a
covering, see Definition 24.2.4. By Lemma 24.6.3 there exists a morphism L → K
of hypercoverings of X such that Lp → Kp factors through u. After replacing K
by L we may therefore assume that σ is the image of an element τ ∈ G(Kp). Note
that d(σ) = 0, but not necessarily d(τ) = 0. Thus d(τ) ∈ F(Kp+1) is a cocycle. In

this situation we define δ(ξ) as the class of the cocycle d(τ) in Ȟp+1
HC (X,F).

At this point there are several things to verify: (a) δ(ξ) does not depend on the
choice of τ , (b) δ(ξ) does not depend on the choice of the hypercovering L→ K such
that σ lifts, and (c) δ(ξ) does not depend on the initial hypercovering and σ chosen
to represent ξ. We omit the verification of (a), (b), and (c); the independence of
the choices of the hypercoverings really comes down to Lemmas 24.6.2 and 24.8.2.
We also omit the verification that δ is functorial with respect to morphisms of short
exact sequences of abelian sheaves on C.

Finally, we have to verify that with this definition of δ our short exact sequence of
abelian sheaves above leads to a long exact sequence of Cech cohomology groups.
First we show that if δ(ξ) = 0 (with ξ as above) then ξ is the image of some
element ξ′ ∈ Ȟp

HC(X,G). Namely, if δ(ξ) = 0, then, with notation as above, we

see that the class of d(τ) is zero in Ȟp+1
HC (X,F). Hence there exists a morphism of

hypercoverings L → K such that the restriction of d(τ) to an element of F(Lp+1)
is equal to d(υ) for some υ ∈ F(Lp). This implies that τ |Lp +υ form a cocycle, and

determine a class ξ′ ∈ Ȟp(L,G) which maps to ξ as desired.

We omit the proof that if ξ′ ∈ Ȟp+1
HC (X,F) maps to zero in Ȟp+1

HC (X,G), then it is

equal to δ(ξ) for some ξ ∈ Ȟp
HC(X,H). �

Next, we deduce Verdier’s case of Theorem 24.9.1 by a sleight of hand.

Proposition 24.9.2. Let C be a site with fibre products and products of pairs. Let
F be an abelian sheaf on C. Let i ≥ 0. Then

(1) for every ξ ∈ Hi(F) there exists a hypercovering K such that ξ is in the
image of the canonical map Ȟi(K,F)→ Hi(F), and
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(2) if K,L are hypercoverings and ξK ∈ Ȟi(K,F), ξL ∈ Ȟi(L,F) are ele-
ments mapping to the same element of Hi(F), then there exists a hyper-
covering M and morphisms M → K and M → L such that ξK and ξL
map to the same element of Ȟi(M,F).

In other words, modulo set theoretical issues, the cohomology groups of F on C are
the colimit of the Čech cohomology groups of F over all hypercoverings.

Proof. This result is a trivial consequence of Theorem 24.9.1. Namely, we can
articially replace C with a slightly bigger site C′ such that (I) C′ has a final object
X and (II) hypercoverings in C are more or less the same thing as hypercoverings
of X in C′. But due to the nature of things, there is quite a bit of bookkeeping to
do.

Let us call a family of morphisms {Ui → U} in C with fixed target a weak covering
if the sheafification of the map

∏
i∈I hUi → hU becomes surjective. We construct a

new site C′ as follows

(1) as a category set Ob(C′) = Ob(C) q {X} and add a unique morphism to
X from every object of C′,

(2) C′ has fibre products as fibre products and products of pairs exist in C,
(3) coverings of C′ are weak coverings of C together with those {Ui → X}i∈I

such that either Ui = X for some i, or Ui 6= X for all i and the map∏
hUi → ∗ of presheaves on C becomes surjective after sheafification on

C,
(4) we apply Sets, Lemma 3.11.1 to restrict the coverings to obtain our site
C′.

Then Sh(C′) = Sh(C) because the inclusion functor C → C′ is a special cocontinuous
functor (see Sites, Definition 7.28.2). We omit the straightforward verifications.

Choose a covering {Ui → X} of C′ such that Ui is an object of C for all i (possible
because C → C′ is special cocontinuous). Then K0 = {Ui → X} is a covering in
the site C′ constructed above. We view K0 as an object of SR(C′, X) and we set
Kinit = cosk0(K0). Then Kinit is a hypercovering of X, see Example 24.2.7. Note
that every Kinit,n has the shape {Wj → X} with Wj ∈ Ob(C).
Proof of (1). Choose ξ ∈ Hi(F) = Hi(X,F ′) where F ′ is the abelian sheaf on C′
corresponding to F on C. By Theorem 24.9.1 there exists a morphism of hyper-
coverings K ′ → Kinit of X in C′ such that ξ comes from an element of Ȟi(K ′,F).
Write K ′n = {Un,j → X}. Now since K ′n maps to Kinit,n we see that Un,j is
an object of C. Hence we can define a simplicial object K of SR(C) by setting
Kn = {Un,j}. Since coverings in C′ consisting of families of morphisms of C are
weak coverings, we see that K is a hypercovering in the sense of Definition 24.5.1.
Finally, since F ′ is the unique sheaf on C′ whose restriction to C is equal to F we
see that the Čech complexes s(F(K)) and s(F ′(K ′)) are identical and (1) follows.
(Compatibility with map into cohomology groups omitted.)

Proof of (2). Let K and L be hypercoverings in C. Let K ′ and L′ be the simplicial
objects of SR(C′, X) gotten from K and L by the functor SR(C) → SR(C′, X),
{Ui} 7→ {Ui → X}. As before we have equality of Čech complexes and hence we
obtain ξK′ and ξL′ mapping to the same cohomology class of F ′ over C′. After
possibly enlarging our choice of coverings in C′ (due to a set theoretical issue) we
may assume that K ′ and L′ are hypercoverings of X in C′; this is true by our
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definition of hypercoverings in Definition 24.5.1 and the fact that weak coverings
in C give coverings in C′. By Theorem 24.9.1 there exists a hypercovering M ′ of X
in C′ and morphisms M ′ → K ′, M ′ → L′, and M ′ → Kinit such that ξK′ and ξL′

restrict to the same element of Ȟi(M ′,F). Unwinding this statement as above we
find that (2) is true. �

24.10. Hypercoverings of spaces

The theory above is mildly interesting even in the case of topological spaces. In
this case we can work out what a hypercovering is and see what the result actually
says.

Let X be a topological space. Consider the site XZar of Sites, Example 7.6.4.
Recall that an object of XZar is simply an open of X and that morphisms of XZar

correspond simply to inclusions. So what is a hypercovering of X for the site XZar?

Let us first unwind Definition 24.2.1. An object of SR(XZar, X) is simply given by
a set I and for each i ∈ I an open Ui ⊂ X. Let us denote this by {Ui}i∈I since there
can be no confusion about the morphism Ui → X. A morphism {Ui}i∈I → {Vj}j∈J
between two such objects is given by a map of sets α : I → J such that Ui ⊂ Vα(i)

for all i ∈ I. When is such a morphism a covering? This is the case if and only if
for every j ∈ J we have Vj =

⋃
i∈I, α(i)=j Ui (and is a covering in the site XZar).

Using the above we get the following description of a hypercovering in the site
XZar. A hypercovering of X in XZar is given by the following data

(1) a simplicial set I (see Simplicial, Section 14.11), and
(2) for each n ≥ 0 and every i ∈ In an open set Ui ⊂ X.

We will denote such a collection of data by the notation (I, {Ui}). In order for this
to be a hypercovering of X we require the following properties

• for i ∈ In and 0 ≤ a ≤ n we have Ui ⊂ Udna (i),
• for i ∈ In and 0 ≤ a ≤ n we have Ui = Usna (i),
• we have

(24.10.0.1) X =
⋃

i∈I0
Ui,

• for every i0, i1 ∈ I0, we have

(24.10.0.2) Ui0 ∩ Ui1 =
⋃

i∈I1, d1
0(i)=i0, d1

1(i)=i1
Ui,

• for every n ≥ 1 and every (i0, . . . , in+1) ∈ (In)n+2 such that dnb−1(ia) =
dna(ib) for all 0 ≤ a < b ≤ n+ 1 we have

(24.10.0.3) Ui0 ∩ . . . ∩ Uin+1
=
⋃

i∈In+1, d
n+1
a (i)=ia, a=0,...,n+1

Ui,

• each of the open coverings (24.10.0.1), (24.10.0.2), and (24.10.0.3) is an
element of Cov(XZar) (this is a set theoretic condition, bounding the size
of the index sets of the coverings).

Conditions (24.10.0.1) and (24.10.0.2) should be familiar from the chapter on sheaves
on spaces for example, and condition (24.10.0.3) is the natural generalization.

Remark 24.10.1. One feature of this description is that if one of the multiple
intersections Ui0 ∩ . . . ∩ Uin+1

is empty then the covering on the right hand side
may be the empty covering. Thus it is not automatically the case that the maps
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In+1 → (cosknsknI)n+1 are surjective. This means that the geometric realization
of I may be an interesting (non-contractible) space.

In fact, let I ′n ⊂ In be the subset consisting of those simplices i ∈ In such that
Ui 6= ∅. It is easy to see that I ′ ⊂ I is a subsimplicial set, and that (I ′, {Ui}) is
a hypercovering. Hence we can always refine a hypercovering to a hypercovering
where none of the opens Ui is empty.

Remark 24.10.2. Let us repackage this information in yet another way. Namely,
suppose that (I, {Ui}) is a hypercovering of the topological space X. Given this
data we can construct a simplicial topological space U• by setting

Un =
∐

i∈In
Ui,

and where for given ϕ : [n]→ [m] we let morphisms U(ϕ) : Un → Um be the mor-
phism coming from the inclusions Ui ⊂ Uϕ(i) for i ∈ In. This simplicial topological
space comes with an augmentation ε : U• → X. With this morphism the simplicial
space U• becomes a hypercovering of X along which one has cohomological descent
in the sense of [AGV71, Exposé Vbis]. In other words, Hn(U•, ε

∗F) = Hn(X,F).
(Insert future reference here to cohomology over simplicial spaces and cohomologi-
cal descent formulated in those terms.) Suppose that F is an abelian sheaf on X.
In this case the spectral sequence of Lemma 24.4.3 becomes the spectral sequence
with E1-term

Ep,q1 = Hq(Up, ε
∗
qF)⇒ Hp+q(U•, ε

∗F) = Hp+q(X,F)

comparing the total cohomology of ε∗F to the cohomology groups of F over the
pieces of U•. (Insert future reference to this spectral sequence here.)

In topology we often want to find hypercoverings of X which have the property that
all the Ui come from a given basis for the topology of X and that all the coverings
(24.10.0.2) and (24.10.0.3) are from a given cofinal collection of coverings. Here are
two example lemmas.

Lemma 24.10.3. Let X be a topological space. Let B be a basis for the topology
of X. There exists a hypercovering (I, {Ui}) of X such that each Ui is an element
of B.

Proof. Let n ≥ 0. Let us say that an n-truncated hypercovering of X is given by
an n-truncated simplicial set I and for each i ∈ Ia, 0 ≤ a ≤ n an open Ui of X such
that the conditions defining a hypercovering hold whenever they make sense. In
other words we require the inclusion relations and covering conditions only when
all simplices that occur in them are a-simplices with a ≤ n. The lemma follows if
we can prove that given a n-truncated hypercovering (I, {Ui}) with all Ui ∈ B we
can extend it to an (n+1)-truncated hypercovering without adding any a-simplices
for a ≤ n. This we do as follows. First we consider the (n+ 1)-truncated simplicial
set I ′ defined by I ′ = skn+1(cosknI). Recall that

I ′n+1 =

{
(i0, . . . , in+1) ∈ (In)n+2 such that

dnb−1(ia) = dna(ib) for all 0 ≤ a < b ≤ n+ 1

}
If i′ ∈ I ′n+1 is degenerate, say i′ = sna(i) then we set Ui′ = Ui (this is forced on us
anyway by the second condition). We also set Ji′ = {i′} in this case. If i′ ∈ I ′n+1
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is nondegenerate, say i′ = (i0, . . . , in+1), then we choose a set Ji′ and an open
covering

(24.10.3.1) Ui0 ∩ . . . ∩ Uin+1
=
⋃

i∈Ji′
Ui,

with Ui ∈ B for i ∈ Ji′ . Set

In+1 =
∐

i′∈I′n+1

Ji′

There is a canonical map π : In+1 → I ′n+1 which is a bijection over the set of
degenerate simplices in I ′n+1 by construction. For i ∈ In+1 we define dn+1

a (i) =
dn+1
a (π(i)). For i ∈ In we define sna(i) ∈ In+1 as the unique simplex lying over

the degenerate simplex sna(i) ∈ I ′n+1. We omit the verification that this defines an
(n+ 1)-truncated hypercovering of X. �

Lemma 24.10.4. Let X be a topological space. Let B be a basis for the topology
of X. Assume that

(1) X is quasi-compact,
(2) each U ∈ B is quasi-compact open, and
(3) the intersection of any two quasi-compact opens in X is quasi-compact.

Then there exists a hypercovering (I, {Ui}) of X with the following properties

(1) each Ui is an element of the basis B,
(2) each of the In is a finite set, and in particular
(3) each of the coverings (24.10.0.1), (24.10.0.2), and (24.10.0.3) is finite.

Proof. This follows directly from the construction in the proof of Lemma 24.10.3
if we choose finite coverings by elements of B in (24.10.3.1). Details omitted. �

24.11. Hypercoverings and weakly contractible objects

In this section we construct hypercoverings in the presence of enough weakly con-
tractible objects (Sites, Definition 7.39.2). With our conventions this is particularly
straightforward if every object has a covering by a single weakly contractible object.

Lemma 24.11.1. Let C be a site. Let B ⊂ Ob(C) be a subset. Assume

(1) C has fibre products,
(2) for all X ∈ Ob(C) there exists a covering {U → X} with U ∈ B,
(3) every element of B is weakly contractible,
(4) the topology is subcanonical.

Then for every X there exists a hypercovering K of X such that each Kn = {Un →
X} with Un ∈ B.

Proof. We will construct K by induction. As a first approximation choose a cov-
ering {U0 → X} with U0 ∈ B and set K0 = {U0 → X} and K = cosk0K0, see
Example 24.2.7. (This object will be denoted K0 in the final paragraph of the
proof.)

Suppose for some n ≥ 0 we have constructed a hypercovering K such that Kk

consists of a single object of B mapping to X for 0 ≤ k ≤ n and such that
K = cosknsknK. In particular Kn+1 = (cosknsknK)n+1 is a finite limit of Kk

for k ≤ n, see Simplicial, Section 14.12 (especially Lemmas 14.18.2 and 14.18.5).
By the description of finite limits in SR(C, X) (see proof of Lemma 24.2.3) we
see that Kn+1 = {Xn+1 → X} for some object Xn+1 of C. Choose a covering
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{Un+1 → Xn+1} with Un+1 ∈ B. Since Un is weakly contractible, the topology is
subcanonical, and {Un+1 → Xn+1} is a covering, the morphisms si : Un → Xn+1

lift to morphisms s′i : Un → Un+1. Set d′j : Un+1 → Un equal to the composition
of Un+1 → Xn+1 and dj : Xn+1 → Un. We obtain a truncated simplicial object
K ′ of SR(C, X) by setting K ′k = Kk for k ≤ n and K ′n+1 = Un+1 and morphisms
d′i = di and s′i = si in degrees k ≤ n − 1 and using the morphisms d′j and s′i in
degree n. Extend this to a full simplicial object K ′ of SR(C, X) using coskn+1. By
functoriality of the coskeleton functors there is a morphism K ′ → K of simplicial
objects extending the given morphism of (n+ 1)-truncated simplicial objects.

It is immediately clear from the construction that the simplicial object K ′ so con-
structed is a hypercovering of X. Moreover, note that K ′ → K is the identity
morphism in degrees ≤ n.

To finish the proof we take the inverse limit K = limKn of the sequence of simplicial
objects

. . .→ K2 → K1 → K0

constructed above. Since we have stabilization in each degree it is clear that K
agrees with Kn in degrees ≤ n and therefore is a hypercovering of X. �
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CHAPTER 25

Schemes

25.1. Introduction

In this document we define schemes. A basic reference is [DG67].

25.2. Locally ringed spaces

Recall that we defined ringed spaces in Sheaves, Section 6.25. Briefly, a ringed
space is a pair (X,OX) consisting of a topological space X and a sheaf of rings OX .
A morphism of ringed spaces f : (X,OX)→ (Y,OY ) is given by a continuous map
f : X → Y and an f -map of sheaves of rings f ] : OY → OX . You can think of f ]

as a map OY → f∗OX , see Sheaves, Definition 6.21.7 and Lemma 6.21.8.

A good geometric example of this to keep in mind is C∞-manifolds and morphisms
of C∞-manifolds. Namely, if M is a C∞-manifold, then the sheaf C∞M of smooth
functions is a sheaf of rings on M . And any map f : M → N of manifolds is
smooth if and only if for every local section h of C∞N the composition h◦f is a local
section of C∞M . Thus a smooth map f gives rise in a natural way to a morphism of
ringed spaces

f : (M, C∞M ) −→ (N, C∞N )

see Sheaves, Example 6.25.2. It is instructive to consider what happens to stalks.
Namely, let m ∈ M with image f(m) = n ∈ N . Recall that the stalk C∞M,m is the
ring of germs of smooth functions at m, see Sheaves, Example 6.11.4. The algebra
of germs of functions on (M,m) is a local ring with maximal ideal the functions
which vanish at m. Similarly for C∞N,n. The map on stalks f ] : C∞N,n → C∞M,m maps

the maximal ideal into the maximal ideal, simply because f(m) = n.

In algebraic geometry we study schemes. On a scheme the sheaf of rings is not
determined by an intrinsic property of the space. The spectrum of a ring R (see
Algebra, Section 10.16) endowed with a sheaf of rings constructed out of R (see
below), will be our basic building block. It will turn out that the stalks of O on
Spec(R) are the local rings of R at its primes. There are two reasons to introduce
locally ringed spaces in this setting: (1) There is in general no mechanism that
assigns to a continuous map of spectra a map of the corresponding rings. This is
why we add as an extra datum the map f ]. (2) If we consider morphisms of these
spectra in the category of ringed spaces, then the maps on stalks may not be local
homomorphisms. Since our geometric intuition says it should we introduce locally
ringed spaces as follows.

Definition 25.2.1. Locally ringed spaces.

(1) A locally ringed space (X,OX) is a pair consisting of a topological space
X and a sheaf of rings OX all of whose stalks are local rings.

1709
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(2) Given a locally ringed space (X,OX) we say that OX,x is the local ring
of X at x. We denote mX,x or simply mx the maximal ideal of OX,x.
Moreover, the residue field of X at x is the residue field κ(x) = OX,x/mx.

(3) A morphism of locally ringed spaces (f, f ]) : (X,OX) → (Y,OY ) is a
morphism of ringed spaces such that for all x ∈ X the induced ring map
OY,f(x) → OX,x is a local ring map.

We will usually suppress the sheaf of rings OX in the notation when discussing
locally ringed spaces. We will simply refer to “the locally ringed space X”. We will
by abuse of notation think of X also as the underlying topological space. Finally
we will denote the corresponding sheaf of rings OX as the structure sheaf of X.
In addition, it is customary to denote the maximal ideal of the local ring OX,x by
mX,x or simply mx. We will say “let f : X → Y be a morphism of locally ringed
spaces” thereby suppressing the structure sheaves even further. In this case, we will
by abuse of notation think of f : X → Y also as the underlying continuous map of
topological spaces. The f -map corresponding to f will customarily be denoted f ].
The condition that f is a morphism of locally ringed spaces can then be expressed
by saying that for every x ∈ X the map on stalks

f ]x : OY,f(x) −→ OX,x
maps the maximal ideal mY,f(x) into mX,x.

Let us use these notational conventions to show that the collection of locally ringed
spaces and morphisms of locally ringed spaces forms a category. In order to see
this we have to show that the composition of morphisms of locally ringed spaces
is a morphism of locally ringed spaces. OK, so let f : X → Y and g : Y → Z be
morphism of locally ringed spaces. The composition of f and g is defined in Sheaves,
Definition 6.25.3. Let x ∈ X. By Sheaves, Lemma 6.21.10 the composition

OZ,g(f(x))
g]−→ OY,f(x)

f]−→ OX,x
is the associated map on stalks for the morphism g ◦ f . The result follows since a
composition of local ring homomorphisms is a local ring homomorphism.

A pleasing feature of the definition is the fact that the functor

Locally ringed spaces −→ Ringed spaces

reflects isomorphisms (plus more). Here is a less abstract statement.

Lemma 25.2.2. Let X, Y be locally ringed spaces. If f : X → Y is an isomorphism
of ringed spaces, then f is an isomorphism of locally ringed spaces.

Proof. This follows trivially from the corresponding fact in algebra: Suppose A, B
are local rings. Any isomorphism of rings A→ B is a local ring homomorphism. �

25.3. Open immersions of locally ringed spaces

Definition 25.3.1. Let f : X → Y be a morphism of locally ringed spaces. We
say that f is an open immersion if f is a homeomorphism of X onto an open subset
of Y , and the map f−1OY → OX is an isomorphism.

The following construction is parallel to Sheaves, Definition 6.31.2 (3).
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Example 25.3.2. Let X be a locally ringed space. Let U ⊂ X be an open subset.
Let OU = OX |U be the restriction of OX to U . For u ∈ U the stalk OU,u is equal
to the stalk OX,u, and hence is a local ring. Thus (U,OU ) is a locally ringed space
and the morphism j : (U,OU )→ (X,OX) is an open immersion.

Definition 25.3.3. Let X be a locally ringed space. Let U ⊂ X be an open subset.
The locally ringed space (U,OU ) of Example 25.3.2 above is the open subspace of
X associated to U .

Lemma 25.3.4. Let f : X → Y be an open immersion of locally ringed spaces. Let
j : V = f(X) → Y be the open subspace of Y associated to the image of f . There
is a unique isomorphism f ′ : X ∼= V of locally ringed spaces such that f = j ◦ f ′.
Proof. Let f ′ be the homeomorphism between X and V induced by f . Then
f = j ◦ f ′ as maps of topological spaces. Since there is an isomorphism of sheaves
f ] : f−1(OY ) → OX , there is an isomorphism of rings f ] : Γ(U, f−1(OY )) →
Γ(U,OX) for each open subset U ⊂ X. Since OV = j−1OY and f−1 = f ′−1j−1

(Sheaves, Lemma 6.21.6) we see that f−1OY = f ′−1OV , hence Γ(U, f ′−1(OV )) →
Γ(U, f−1(OY )) for every U ⊂ X open. By composing these we get an isomorphism
of rings

Γ(U, f ′−1(OV ))→ Γ(U,OX)

for each open subset U ⊂ X, and therefore an isomorphism of sheaves f−1(OV )→
OX . In other words, we have an isomorphism f ′] : f ′−1(OV )→ OX and therefore
an isomorphism of locally ringed spaces (f ′, f ′]) : (X,OX)→ (V,OV ) (use Lemma
25.2.2). Note that f = j ◦f ′ as morphisms of locally ringed spaces by construction.

Suppose we have another morphism f ′′ : (X,OX)→ (V,OY ) such that f = j ◦ f ′′.
At any point x ∈ X, we have j(f ′(x)) = j(f ′′(x)) from which it follows that
f ′(x) = f ′′(x) since j is the inclusion map; therefore f ′ and f ′′ are the same as
morphisms of topological spaces. On structure sheaves, for each open subset U ⊂ X
we have a commutative diagram

Γ(U, f−1(OY ))

∼=

��

∼= // Γ(U,OX)

Γ(U, f ′−1(OV ))

f ′]

88

f ′′]

AA

from which we see that f ′] and f ′′] define the same morphism of sheaves. �

From now on we do not distinguish between open subsets and their associated
subspaces.

Lemma 25.3.5. Let f : X → Y be a morphism of locally ringed spaces. Let
U ⊂ X, and V ⊂ Y be open subsets. Suppose that f(U) ⊂ V . There exists a
unique morphism of locally ringed spaces f |U : U → V such that the following
diagram is a commutative square of locally ringed spaces

U

f |U
��

// X

f

��
V // Y
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Proof. Omitted. �

In the following we will use without further mention the following fact which follows
from the lemma above. Given any morphism f : Y → X of locally ringed spaces,
and any open subset U ⊂ X such that f(Y ) ⊂ U , then there exists a unique
morphism of locally ringed spaces Y → U such that the composition Y → U → X
is equal to f . In fact, we will even by abuse of notation write f : Y → U since this
rarely gives rise to confusion.

25.4. Closed immersions of locally ringed spaces

We follow our conventions introduced in Modules, Definition 17.13.1.

Definition 25.4.1. Let i : Z → X be a morphism of locally ringed spaces. We say
that i is an closed immersion if:

(1) The map i is a homeomorphism of Z onto a closed subset of X.
(2) The map OX → i∗OZ is surjective; let I denote the kernel.
(3) The OX -module I is locally generated by sections.

Lemma 25.4.2. Let f : Z → X be a morphism of locally ringed spaces. In order
for f to be a closed immersion it suffices if there exists an open covering X =

⋃
Ui

such that each f : f−1Ui → Ui is a closed immersion.

Proof. Omitted. �

Example 25.4.3. Let X be a locally ringed space. Let I ⊂ OX be a sheaf of
ideals which is locally generated by sections as a sheaf of OX -modules. Let Z be
the support of the sheaf of rings OX/I. This is a closed subset of X, by Modules,
Lemma 17.5.3. Denote i : Z → X the inclusion map. By Modules, Lemma 17.6.1
there is a unique sheaf of rings OZ on Z with i∗OZ = OX/I. For any z ∈ Z the
local ring OZ,z is equal to the quotient ring OX,i(z)/Ii(z) and nonzero, hence a local
ring. Thus i : (Z,OZ)→ (X,OX) is a closed immersion of locally ringed spaces.

Definition 25.4.4. Let X be a locally ringed space. Let I be a sheaf of ideals
on X which is locally generated by sections. The locally ringed space (Z,OZ) of
Example 25.4.3 above is the closed subspace of X associated to the sheaf of ideals
I.

Lemma 25.4.5. Let f : X → Y be a closed immersion of locally ringed spaces.
Let I be the kernel of the map OY → f∗OX . Let i : Z → Y be the closed subspace
of Y associated to I. There is a unique isomorphism f ′ : X ∼= Z of locally ringed
spaces such that f = i ◦ f ′.

Proof. Omitted. �

Lemma 25.4.6. Let X, Y be a locally ringed spaces. Let I ⊂ OX be a sheaf
of ideals locally generated by sections. Let i : Z → X be the associated closed
subspace. A morphism f : Y → X factors through Z if and only if the map
f∗I → f∗OX = OY is zero. If this is the case the morphism g : Y → Z such that
f = i ◦ g is unique.

Proof. Clearly if f factors as Y → Z → X then the map f∗I → OY is zero.
Conversely suppose that f∗I → OY is zero. Pick any y ∈ Y , and consider the ring
map f ]y : OX,f(y) → OY,y. Since the composition If(y) → OX,f(y) → OY,y is zero
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by assumption and since f ]y(1) = 1 we see that 1 6∈ If(y), i.e., If(y) 6= OX,f(y). We
conclude that f(Y ) ⊂ Z = Supp(OX/I). Hence f = i ◦ g where g : Y → Z is
continuous. Consider the map f ] : OX → f∗OY . The assumption f∗I → OY is
zero implies that the composition I → OX → f∗OY is zero by adjointness of f∗ and

f∗. In other words, we obtain a morphism of sheaves of rings f ] : OX/I → f∗OY .
Note that f∗OY = i∗g∗OY and that OX/I = i∗OZ . By Sheaves, Lemma 6.32.4 we
obtain a unique morphism of sheaves of rings g] : OZ → g∗OY whose pushforward

under i is f ]. We omit the verification that (g, g]) defines a morphism of locally
ringed spaces and that f = i ◦ g as a morphism of locally ringed spaces. The
uniqueness of (g, g]) was pointed out above. �

Lemma 25.4.7. Let f : X → Y be a morphism of locally ringed spaces. Let
I ⊂ OY be a sheaf of ideals which is locally generated by sections. Let i : Z → Y
be the closed subspace associated to the sheaf of ideals I. Let J be the image of
the map f∗I → f∗OY = OX . Then this ideal is locally generated by sections.
Moreover, let i′ : Z ′ → X be the associated closed subspace of X. There exists
a unique morphism of locally ringed spaces f ′ : Z ′ → Z such that the following
diagram is a commutative square of locally ringed spaces

Z ′

f ′

��

i′
// X

f

��
Z

i // Y

Moreover, this diagram is a fibre square in the category of locally ringed spaces.

Proof. The ideal J is locally generated by sections by Modules, Lemma 17.8.2.
The rest of the lemma follows from the characterization, in Lemma 25.4.6 above,
of what it means for a morphism to factor through a closed subspace. �

25.5. Affine schemes

Let R be a ring. Consider the topological space Spec(R) associated to R, see
Algebra, Section 10.16. We will endow this space with a sheaf of rings OSpec(R)

and the resulting pair (Spec(R),OSpec(R)) will be an affine scheme.

Recall that Spec(R) has a basis of open sets D(f), f ∈ R which we call standard
opens, see Algebra, Definition 10.16.3. In addition, the intersection of two standard
opens is another: D(f) ∩D(g) = D(fg), f, g ∈ R.

Lemma 25.5.1. Let R be a ring. Let f ∈ R.

(1) If g ∈ R and D(g) ⊂ D(f), then
(a) f is invertible in Rg,
(b) ge = af for some e ≥ 1 and a ∈ R,
(c) there is a canonical ring map Rf → Rg, and
(d) there is a canonical Rf -module map Mf →Mg for any R-module M .

(2) Any open covering of D(f) can be refined to a finite open covering of the
form D(f) =

⋃n
i=1D(gi).

(3) If g1, . . . , gn ∈ R, then D(f) ⊂
⋃
D(gi) if and only if g1, . . . , gn generate

the unit ideal in Rf .
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Proof. Recall that D(g) = Spec(Rg) (see Algebra, Lemma 10.16.6). Thus (a)
holds because f maps to an element of Rg which is not contained in any prime
ideal, and hence invertible, see Algebra, Lemma 10.16.2. Write the inverse of f in
Rg as a/gd. This means gd − af is annihilated by a power of g, whence (b). For
(c), the map Rf → Rg exists by (a) from the universal property of localization, or
we can define it by mapping b/fn to anb/gne. The equality Mf = M ⊗RRf can be
used to obtain the map on modules, or we can define Mf →Mg by mapping x/fn

to anx/gne.

Recall that D(f) is quasi-compact, see Algebra, Lemma 10.28.1. Hence the second
statement follows directly from the fact that the standard opens form a basis for
the topology.

The third statement follows directly from Algebra, Lemma 10.16.2. �

In Sheaves, Section 6.30 we defined the notion of a sheaf on a basis, and we showed
that it is essentially equivalent to the notion of a sheaf on the space, see Sheaves,
Lemmas 6.30.6 and 6.30.9. Moreover, we showed in Sheaves, Lemma 6.30.4 that it
is sufficient to check the sheaf condition on a cofinal system of open coverings for
each standard open. By the lemma above it suffices to check on the finite coverings
by standard opens.

Definition 25.5.2. Let R be a ring.

(1) A standard open covering of Spec(R) is a covering Spec(R) =
⋃n
i=1D(fi),

where f1, . . . , fn ∈ R.
(2) Suppose that D(f) ⊂ Spec(R) is a standard open. A standard open cov-

ering of D(f) is a covering D(f) =
⋃n
i=1D(gi), where g1, . . . , gn ∈ R.

Let R be a ring. Let M be an R-module. We will define a presheaf M̃ on the basis
of standard opens. Suppose that U ⊂ Spec(R) is a standard open. If f, g ∈ R
are such that D(f) = D(g), then by Lemma 25.5.1 above there are canonical maps
Mf →Mg and Mg →Mf which are mutually inverse. Hence we may choose any f
such that U = D(f) and define

M̃(U) = Mf .

Note that if D(g) ⊂ D(f), then by Lemma 25.5.1 above we have a canonical map

M̃(D(f)) = Mf −→Mg = M̃(D(g)).

Clearly, this defines a presheaf of abelian groups on the basis of standard opens. If

M = R, then R̃ is a presheaf of rings on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Spec(R). Suppose that x corresponds
to the prime p ⊂ R. By definition of the stalk we see that

M̃x = colimf∈R,f 6∈pMf

Here the set {f ∈ R, f 6∈ p} is partially ordered by the rule f ≥ f ′ ⇔ D(f) ⊂ D(f ′).
If f1, f2 ∈ R\p, then we have f1f2 ≥ f1 in this ordering. Hence by Algebra, Lemma
10.9.9 we conclude that

M̃x = Mp.
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25.5. AFFINE SCHEMES 1715

Next, we check the sheaf condition for the standard open coverings. If D(f) =⋃n
i=1D(gi), then the sheaf condition for this covering is equivalent with the exact-

ness of the sequence

0→Mf →
⊕

Mgi →
⊕

Mgigj .

Note that D(gi) = D(fgi), and hence we can rewrite this sequence as the sequence

0→Mf →
⊕

Mfgi →
⊕

Mfgigj .

In addition, by Lemma 25.5.1 above we see that g1, . . . , gn generate the unit ideal
in Rf . Thus we may apply Algebra, Lemma 10.22.2 to the module Mf over Rf and
the elements g1, . . . , gn. We conclude that the sequence is exact. By the remarks

made above, we see that M̃ is a sheaf on the basis of standard opens.

Thus we conclude from the material in Sheaves, Section 6.30 that there exists a

unique sheaf of rings OSpec(R) which agrees with R̃ on the standard opens. Note
that by our computation of stalks above, the stalks of this sheaf of rings are all
local rings.

Similarly, for any R-module M there exists a unique sheaf of OSpec(R)-modules F
which agrees with M̃ on the standard opens, see Sheaves, Lemma 6.30.12.

Definition 25.5.3. Let R be a ring.

(1) The structure sheaf OSpec(R) of the spectrum of R is the unique sheaf of

rings OSpec(R) which agrees with R̃ on the basis of standard opens.
(2) The locally ringed space (Spec(R),OSpec(R)) is called the spectrum of R

and denoted Spec(R).

(3) The sheaf of OSpec(R)-modules extending M̃ to all opens of Spec(R) is
called the sheaf of OSpec(R)-modules associated to M . This sheaf is de-

noted M̃ as well.

We summarize the results obtained so far.

Lemma 25.5.4. Let R be a ring. Let M be an R-module. Let M̃ be the sheaf of
OSpec(R)-modules associated to M .

(1) We have Γ(Spec(R),OSpec(R)) = R.

(2) We have Γ(Spec(R), M̃) = M as an R-module.
(3) For every f ∈ R we have Γ(D(f),OSpec(R)) = Rf .

(4) For every f ∈ R we have Γ(D(f), M̃) = Mf as an Rf -module.

(5) Whenever D(g) ⊂ D(f) the restriction mappings on OSpec(R) and M̃ are
the maps Rf → Rg and Mf →Mg from Lemma 25.5.1.

(6) Let p be a prime of R, and let x ∈ Spec(R) be the corresponding point.
We have OSpec(R),x = Rp.

(7) Let p be a prime of R, and let x ∈ Spec(R) be the corresponding point.
We have Fx = Mp as an Rp-module.

Moreover, all these identifications are functorial in the R module M . In particular,

the functor M 7→ M̃ is an exact functor from the category of R-modules to the
category of OSpec(R)-modules.
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Proof. Assertions (1) - (7) are clear from the discussion above. The exactness

of the functor M 7→ M̃ follows from the fact that the functor M 7→ Mp is exact
and the fact that exactness of short exact sequences may be checked on stalks, see
Modules, Lemma 17.3.1. �

Definition 25.5.5. An affine scheme is a locally ringed space isomorphic as a
locally ringed space to Spec(R) for some ring R. A morphism of affine schemes is
a morphism in the category of locally ringed spaces.

It turns out that affine schemes play a special role among all locally ringed spaces,
which is what the next section is about.

25.6. The category of affine schemes

Note that if Y is an affine scheme, then its points are in canonical 1 − 1 bijection
with prime ideals in Γ(Y,OY ).

Lemma 25.6.1. Let X be a locally ringed space. Let Y be an affine scheme. Let
f ∈ Mor(X,Y ) be a morphism of locally ringed spaces. Given a point x ∈ X
consider the ring maps

Γ(Y,OY )
f]−→ Γ(X,OX)→ OX,x

Let p ⊂ Γ(Y,OY ) denote the inverse image of mx. Let y ∈ Y be the corresponding
point. Then f(x) = y.

Proof. Consider the commutative diagram

Γ(X,OX) // OX,x

Γ(Y,OY ) //

OO

OY,f(x)

OO

(see the discussion of f -maps below Sheaves, Definition 6.21.7). Since the right
vertical arrow is local we see that mf(x) is the inverse image of mx. The result
follows. �

Lemma 25.6.2. Let X be a locally ringed space. Let f ∈ Γ(X,OX). The set

D(f) = {x ∈ X | image f 6∈ mx}

is open. Moreover f |D(f) has an inverse.

Proof. This is a special case of Modules, Lemma 17.21.7, but we also give a direct
proof. Suppose that U ⊂ X and V ⊂ X are two open subsets such that f |U has an
inverse g and f |V has an inverse h. Then clearly g|U∩V = h|U∩V . Thus it suffices to
show that f is invertible in an open neighbourhood of any x ∈ D(f). This is clear
because f 6∈ mx implies that f ∈ OX,x has an inverse g ∈ OX,x which means there
is some open neighbourhood x ∈ U ⊂ X so that g ∈ OX(U) and g · f |U = 1. �

Lemma 25.6.3. In Lemma 25.6.2 above, if X is an affine scheme, then the open
D(f) agrees with the standard open D(f) defined previously (in Algebra, Definition
10.16.1).

Proof. Omitted. �
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Lemma 25.6.4. Let X be a locally ringed space. Let Y be an affine scheme. The
map

Mor(X,Y ) −→ Hom(Γ(Y,OY ),Γ(X,OX))

which maps f to f ] (on global sections) is bijective.

Proof. Since Y is affine we have (Y,OY ) ∼= (Spec(R),OSpec(R)) for some ring R.
During the proof we will use facts about Y and its structure sheaf which are direct
consequences of things we know about the spectrum of a ring, see e.g. Lemma
25.5.4.

Motivated by the lemmas above we construct the inverse map. Let ψY : Γ(Y,OY )→
Γ(X,OX) be a ring map. First, we define the corresponding map of spaces

Ψ : X −→ Y

by the rule of Lemma 25.6.1. In other words, given x ∈ X we define Ψ(x) to be
the point of Y corresponding to the prime in Γ(Y,OY ) which is the inverse image

of mx under the composition Γ(Y,OY )
ψY−−→ Γ(X,OX)→ OX,x.

We claim that the map Ψ : X → Y is continuous. The standard opens D(g), for
g ∈ Γ(Y,OY ) are a basis for the topology of Y . Thus it suffices to prove that
Ψ−1(D(g)) is open. By construction of Ψ the inverse image Ψ−1(D(g)) is exactly
the set D(ψY (g)) ⊂ X which is open by Lemma 25.6.2. Hence Ψ is continuous.

Next we construct a Ψ-map of sheaves from OY to OX . By Sheaves, Lemma 6.30.14
it suffices to define ring maps ψD(g) : Γ(D(g),OY )→ Γ(Ψ−1(D(g)),OX) compatible
with restriction maps. We have a canonical isomorphism Γ(D(g),OY ) = Γ(Y,OY )g,
because Y is an affine scheme. Because ψY (g) is invertible on D(ψY (g)) we see that
there is a canonical map

Γ(Y,OY )g −→ Γ(Ψ−1(D(g)),OX) = Γ(D(ψY (g)),OX)

extending the map ψY by the universal property of localization. Note that there is
no choice but to take the canonical map here! And we take this, combined with the
canonical identification Γ(D(g),OY ) = Γ(Y,OY )g, to be ψD(g). This is compatible
with localization since the restriction mapping on the affine schemes are defined in
terms of the universal properties of localization also, see Lemmas 25.5.4 and 25.5.1.

Thus we have defined a morphism of ringed spaces (Ψ, ψ) : (X,OX) → (Y,OY )
recovering ψY on global sections. To see that it is a morphism of locally ringed
spaces we have to show that the induced maps on local rings

ψx : OY,Ψ(x) −→ OX,x

are local. This follows immediately from the commutative diagram of the proof of
Lemma 25.6.1 and the definition of Ψ.

Finally, we have to show that the constructions (Ψ, ψ) 7→ ψY and the construction
ψY 7→ (Ψ, ψ) are inverse to each other. Clearly, ψY 7→ (Ψ, ψ) 7→ ψY . Hence the
only thing to prove is that given ψY there is at most one pair (Ψ, ψ) giving rise
to it. The uniqueness of Ψ was shown in Lemma 25.6.1 and given the uniqueness
of Ψ the uniqueness of the map ψ was pointed out during the course of the proof
above. �
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Lemma 25.6.5. The category of affine schemes is equivalent to the opposite of
the category of rings. The equivalence is given by the functor that associates to an
affine scheme the global sections of its structure sheaf.

Proof. This is now clear from Definition 25.5.5 and Lemma 25.6.4. �

Lemma 25.6.6. Let Y be an affine scheme. Let f ∈ Γ(Y,OY ). The open subspace
D(f) is an affine scheme.

Proof. We may assume that Y = Spec(R) and f ∈ R. Consider the morphism
of affine schemes φ : U = Spec(Rf ) → Spec(R) = Y induced by the ring map
R → Rf . By Algebra, Lemma 10.16.6 we know that it is a homeomorphism onto
D(f). On the other hand, the map φ−1OY → OU is an isomorphism on stalks,
hence an isomorphism. Thus we see that φ is an open immersion. We conclude
that D(f) is isomorphic to U by Lemma 25.3.4. �

Lemma 25.6.7. The category of affine schemes has finite products, and fibre prod-
ucts. In other words, it has finite limits. Moreover, the products and fibre products
in the category of affine schemes are the same as in the category of locally ringed
spaces. In a formula, we have (in the category of locally ringed spaces)

Spec(R)× Spec(S) = Spec(R⊗Z S)

and given ring maps R→ A, R→ B we have

Spec(A)×Spec(R) Spec(B) = Spec(A⊗R B).

Proof. This is just an application of Lemma 25.6.4. First of all, by that lemma,
the affine scheme Spec(Z) is the final object in the category of locally ringed spaces.
Thus the first displayed formula follows from the second. To prove the second note
that for any locally ringed space X we have

Mor(X,Spec(A⊗R B)) = Hom(A⊗R B,OX(X))

= Hom(A,OX(X))×Hom(R,OX(X)) Hom(B,OX(X))

= Mor(X,Spec(A))×Mor(X,Spec(R)) Mor(X,Spec(B))

which proves the formula. See Categories, Section 4.6 for the relevant definitions.
�

Lemma 25.6.8. Let X be a locally ringed space. Assume X = U q V with U and
V open and such that U , V are affine schemes. Then X is an affine scheme.

Proof. Set R = Γ(X,OX). Note that R = OX(U) × OX(V ) by the sheaf prop-
erty. By Lemma 25.6.4 there is a canonical morphism of locally ringed spaces
X → Spec(R). By Algebra, Lemma 10.20.2 we see that as a topological space
Spec(OX(U)) q Spec(OX(V )) = Spec(R) with the maps coming from the ring ho-
momorphisms R → OX(U) and R → OX(V ). This of course means that Spec(R)
is the coproduct in the category of locally ringed spaces as well. By assumption
the morphism X → Spec(R) induces an isomorphism of Spec(OX(U)) with U and
similarly for V . Hence X → Spec(R) is an isomorphism. �
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25.7. Quasi-coherent sheaves on affines

Recall that we have defined the abstract notion of a quasi-coherent sheaf in Modules,
Definition 17.10.1. In this section we show that any quasi-coherent sheaf on an affine

scheme Spec(R) corresponds to the sheaf M̃ associated to an R-module M .

Lemma 25.7.1. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let M be

an R-module. There exists a canonical isomorphism between the sheaf M̃ associated
to the R-module M (Definition 25.5.3) and the sheaf FM associated to the R-
module M (Modules, Definition 17.10.6). This isomorphism is functorial in M . In

particular, the sheaves M̃ are quasi-coherent. Moreover, they are characterized by
the following mapping property

HomOX (M̃,F) = HomR(M,Γ(X,F))

for any sheaf of OX-modules F . Here a map α : M̃ → F corresponds to its effect
on global sections.

Proof. By Modules, Lemma 17.10.5 we have a morphism FM → M̃ corresponding

to the map M → Γ(X, M̃) = M . Let x ∈ X correspond to the prime p ⊂ R. The
induced map on stalks are the maps OX,x ⊗R M → Mp which are isomorphisms

because Rp ⊗R M = Mp. Hence the map FM → M̃ is an isomorphism. The
mapping property follows from the mapping property of the sheaves FM . �

Lemma 25.7.2. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. There
are canonical isomorphisms

(1) M̃ ⊗R N ∼= M̃ ⊗OX Ñ , see Modules, Section 17.15.

(2) T̃n(M) ∼= Tn(M̃), ˜Symn(M) ∼= Symn(M̃), and ∧̃n(M) ∼= ∧n(M̃), see
Modules, Section 17.18.

(3) if M is a finitely presented R-module, then HomOX (M̃, Ñ) ∼= ˜HomR(M,N),
see Modules, Section 17.19.

Proof. To give a map M̃ ⊗R N into M̃ ⊗OX Ñ we have to give a map on global

sections M⊗RN → Γ(X, M̃⊗OX Ñ) which exists by definition of the tensor product
of sheaves of modules. To see that this map is an isomorphism it suffices to check
that it is an isomorphism on stalks. And this follows from the description of the

stalks of M̃ (as a functor) and Modules, Lemma 17.15.1.

The proof of (2) is similar, using Modules, Lemma 17.18.2.

For (3) note that if M is finitely presented as an R-module then M̃ has a global
finite presentation as an OX -module. Hence Modules, Lemma 17.19.3 applies. �

Lemma 25.7.3. Let (X,OX) = (Spec(S),OSpec(S)), (Y,OY ) = (Spec(R),OSpec(R))
be affine schemes. Let ψ : (X,OX) → (Y,OY ) be a morphism of affine schemes,
corresponding to the ring map ψ] : R→ S (see Lemma 25.6.5).

(1) We have ψ∗M̃ = ˜S ⊗RM functorially in the R-module M .

(2) We have ψ∗Ñ = ÑR functorially in the S-module N .
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Proof. The first assertion follows from the identification in Lemma 25.7.1 and the
result of Modules, Lemma 17.10.7. The second assertion follows from the fact that
ψ−1(D(f)) = D(ψ](f)) and hence

ψ∗Ñ(D(f)) = Ñ(D(ψ](f))) = Nψ](f) = (NR)f = ÑR(D(f))

as desired. �

Lemma 25.7.3 above says in particular that if you restrict the sheaf M̃ to a standard

affine open subspace D(f), then you get M̃f . We will use this from now on without
further mention.

Lemma 25.7.4. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let F
be a quasi-coherent OX-module. Then F is isomorphic to the sheaf associated to
the R-module Γ(X,F).

Proof. Let F be a quasi-coherent OX -module. Since every standard open D(f)
is quasi-compact we see that X is a locally quasi-compact, i.e., every point has
a fundamental system of quasi-compact neighbourhoods, see Topology, Definition
5.12.1. Hence by Modules, Lemma 17.10.8 for every prime p ⊂ R corresponding to
x ∈ X there exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic
to the quasi-coherent sheaf associated to some OX(U)-module M . In other words,
we get an open covering by U ’s with this property. By Lemma 25.5.1 for example
we can refine this covering to a standard open covering. Thus we get a covering
Spec(R) =

⋃
D(fi) and Rfi-modules Mi and isomorphisms ϕi : F|D(fi) → FMi

for
some Rfi-module Mi. On the overlaps we get isomorphisms

FMi |D(fifj)

ϕ−1
i |D(fifj)

// F|D(fifj)

ϕj |D(fifj)
// FMj |D(fifj).

Let us denote these ψij . It is clear that we have the cocycle condition

ψjk|D(fifjfk) ◦ ψij |D(fifjfk) = ψik|D(fifjfk)

on triple overlaps.

Recall that each of the open subspaces D(fi), D(fifj), D(fifjfk) is an affine

scheme. Hence the sheaves FMi are isomorphic to the sheaves M̃i by Lemma 25.7.1
above. In particular we see that FMi(D(fifj)) = (Mi)fj , etc. Also by Lemma
25.7.1 above we see that ψij corresponds to a unique Rfifj -module isomorphism

ψij : (Mi)fj −→ (Mj)fi

namely, the effect of ψij on sections over D(fifj). Moreover these then satisfy the
cocycle condition that

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk

ψjk

99

commutes (for any triple i, j, k).

Now Algebra, Lemma 10.23.4 shows that there exist an R-module M such that

Mi = Mfi compatible with the morphisms ψij . Consider FM = M̃ . At this point

it is a formality to show that M̃ is isomorphic to the quasi-coherent sheaf F we
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started out with. Namely, the sheaves F and M̃ give rise to isomorphic sets of
glueing data of sheaves of OX -modules with respect to the covering X =

⋃
D(fi),

see Sheaves, Section 6.33 and in particular Lemma 6.33.4. Explicitly, in the current
situation, this boils down to the following argument: Let us construct an R-module
map

M −→ Γ(X,F).

Namely, given m ∈ M we get mi = m/1 ∈ Mfi = Mi by construction of M . By

construction of Mi this corresponds to a section si ∈ F(Ui). (Namely, ϕ−1
i (mi).)

We claim that si|D(fifj) = sj |D(fifj). This is true because, by construction of M ,
we have ψij(mi) = mj , and by the construction of the ψij . By the sheaf condition
of F this collection of sections gives rise to a unique section s of F over X. We
leave it to the reader to show that m 7→ s is a R-module map. By Lemma 25.7.1
we obtain an associated OX -module map

M̃ −→ F .

By construction this map reduces to the isomorphisms ϕ−1
i on each D(fi) and hence

is an isomorphism. �

Lemma 25.7.5. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. The

functors M 7→ M̃ and F 7→ Γ(X,F) define quasi-inverse equivalences of categories

QCoh(OX)
//
Mod-Roo

between the category of quasi-coherent OX-modules and the category of R-modules.

Proof. See Lemmas 25.7.1 and 25.7.4 above. �

From now on we will not distinguish between quasi-coherent sheaves on affine

schemes and sheaves of the form M̃ .

Lemma 25.7.6. Let X = Spec(R) be an affine scheme. Kernels and cokernels of
maps of quasi-coherent OX-modules are quasi-coherent.

Proof. This follows from the exactness of the functor ˜ since by Lemma 25.7.1 we

know that any map ψ : M̃ → Ñ comes from an R-module map ϕ : M → N . (So

we have Ker(ψ) = K̃er(ϕ) and Coker(ψ) = ˜Coker(ϕ).) �

Lemma 25.7.7. Let X = Spec(R) be an affine scheme. The direct sum of an
arbitrary collection of quasi-coherent sheaves on X is quasi-coherent. The same
holds for colimits.

Proof. Suppose Fi, i ∈ I is a collection of quasi-coherent sheaves on X. By Lemma

25.7.5 above we can write Fi = M̃i for some R-module Mi. Set M =
⊕
Mi.

Consider the sheaf M̃ . For each standard open D(f) we have

M̃(D(f)) = Mf =
(⊕

Mi

)
f

=
⊕

Mi,f .

Hence we see that the quasi-coherent OX -module M̃ is the direct sum of the sheaves
Fi. A similar argument works for general colimits. �
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Lemma 25.7.8. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Suppose
that

0→ F1 → F2 → F3 → 0

is a short exact sequence of sheaves OX-modules. If two out of three are quasi-
coherent then so is the third.

Proof. This is clear in case both F1 and F2 are quasi-coherent because the functor

M 7→ M̃ is exact, see Lemma 25.5.4. Similarly in case both F2 and F3 are quasi-

coherent. Now, suppose that F1 = M̃1 and F3 = M̃3 are quasi-coherent. Set
M2 = Γ(X,F2). We claim it suffices to show that the sequence

0→M1 →M2 →M3 → 0

is exact. Namely, if this is the case, then (by using the mapping property of Lemma
25.7.1) we get a commutative diagram

0 // M̃1
//

��

M̃2
//

��

M̃3
//

��

0

0 // F1
// F2

// F3
// 0

and we win by the snake lemma.

The “correct” argument here would be to show first that H1(X,F) = 0 for any
quasi-coherent sheaf F . This is actually not all that hard, but it is perhaps better
to postpone this till later. Instead we use a small trick.

Pick m ∈M3 = Γ(X,F3). Consider the following set

I = {f ∈ R | the element fm comes from M2}.
Clearly this is an ideal. It suffices to show 1 ∈ I. Hence it suffices to show that for
any prime p there exists an f ∈ I, f 6∈ p. Let x ∈ X be the point corresponding to p.
Because surjectivity can be checked on stalks there exists an open neighbourhood
U of x such that m|U comes from a local section s ∈ F2(U). In fact we may assume
that U = D(f) is a standard open, i.e., f ∈ R, f 6∈ p. We will show that for some
N � 0 we have fN ∈ I, which will finish the proof.

Take any point z ∈ V (f), say corresponding to the prime q ⊂ R. We can also find a
g ∈ R, g 6∈ q such that m|D(g) lifts to some s′ ∈ F2(D(g)). Consider the difference
s|D(fg)− s′|D(fg). This is an element m′ of F1(D(fg)) = (M1)fg. For some integer
n = n(z) the element fnm′ comes from some m′1 ∈ (M1)g. We see that fns
extends to a section σ of F2 on D(f) ∪D(g) because it agrees with the restriction
of fns′+m′1 on D(f)∩D(g) = D(fg). Moreover, σ maps to the restriction of fnm
to D(f) ∪D(g).

Since V (f) is quasi-compact, there exists a finite list of elements g1, . . . , gm ∈ R
such that V (f) ⊂

⋃
D(gj), an integer n > 0 and sections σj ∈ F2(D(f) ∪D(gj))

such that σj |D(f) = fns and σj maps to the section fnm|D(f)∪D(gj) of F3. Consider
the differences

σj |D(f)∪D(gjgk) − σk|D(f)∪D(gjgk).

These correspond to sections of F1 over D(f) ∪ D(gjgk) which are zero on D(f).
In particular their images in F1(D(gjgk)) = (M1)gjgk are zero in (M1)gjgkf . Thus
some high power of f kills each and every one of these. In other words, the elements
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fNσj , for some N � 0 satisfy the glueing condition of the sheaf property and give
rise to a section σ of F2 over

⋃
(D(f) ∪D(gj)) = X as desired. �

25.8. Closed subspaces of affine schemes

Example 25.8.1. Let R be a ring. Let I ⊂ R be an ideal. Consider the morphism
of affine schemes i : Z = Spec(R/I)→ Spec(R) = X. By Algebra, Lemma 10.16.7
this is a homeomorphism of Z onto a closed subset of X. Moreover, if I ⊂ p ⊂ R
is a prime corresponding to a point x = i(z), x ∈ X, z ∈ Z, then on stalks we get
the map

OX,x = Rp −→ Rp/IRp = OZ,z
Thus we see that i is a closed immersion of locally ringed spaces, see Definition
25.4.1. Clearly, this is (isomorphic) to the closed subspace associated to the quasi-

coherent sheaf of ideals Ĩ, as in Example 25.4.3.

Lemma 25.8.2. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let
i : Z → X be any closed immersion of locally ringed spaces. Then there exists a
unique ideal I ⊂ R such that the morphism i : Z → X can be identified with the
closed immersion Spec(R/I)→ Spec(R) constructed in Example 25.8.1 above.

Proof. This is kind of silly! Namely, by Lemma 25.4.5 we can identify Z → X with
the closed subspace associated to a sheaf of ideals I ⊂ OX as in Definition 25.4.4
and Example 25.4.3. By our conventions this sheaf of ideals is locally generated
by sections as a sheaf of OX -modules. Hence the quotient sheaf OX/I is locally
on X the cokernel of a map

⊕
j∈J OU → OU . Thus by definition, OX/I is quasi-

coherent. By our results in Section 25.7 it is of the form S̃ for some R-module S.

Moreover, since OX = R̃ → S̃ is surjective we see by Lemma 25.7.8 that also I
is quasi-coherent, say I = Ĩ. Of course I ⊂ R and S = R/I and everything is
clear. �

25.9. Schemes

Definition 25.9.1. A scheme is a locally ringed space with the property that
every point has an open neighbourhood which is an affine scheme. A morphism of
schemes is a morphism of locally ringed spaces. The category of schemes will be
denoted Sch.

Let X be a scheme. We will use the following (very slight) abuse of language. We
will say U ⊂ X is an affine open, or an open affine if the open subspace U is an
affine scheme. We will often write U = Spec(R) to indicate that U is isomorphic
to Spec(R) and moreover that we will identify (temporarily) U and Spec(R).

Lemma 25.9.2. Let X be a scheme. Let j : U → X be an open immersion of
locally ringed spaces. Then U is a scheme. In particular, any open subspace of X
is a scheme.

Proof. Let U ⊂ X. Let u ∈ U . Pick an affine open neighbourhood u ∈ V ⊂ X.
Because standard opens of V form a basis of the topology on V we see that there
exists a f ∈ OV (V ) such that u ∈ D(f) ⊂ U . And D(f) is an affine scheme by
Lemma 25.6.6. This proves that every point of U has an open neighbourhood which
is affine. �
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Clearly the lemma (or its proof) shows that any scheme X has a basis (see Topology,
Section 5.4) for the topology consisting of affine opens.

Example 25.9.3. Let k be a field. An example of a scheme which is not affine
is given by the open subspace U = Spec(k[x, y]) \ {(x, y)} of the affine scheme
X = Spec(k[x, y]). It is covered by two affines, namely D(x) = Spec(k[x, y, 1/x])
and D(y) = Spec(k[x, y, 1/y]) whose intersection is D(xy) = Spec(k[x, y, 1/xy]).
By the sheaf property for OU there is an exact sequence

0→ Γ(U,OU )→ k[x, y, 1/x]× k[x, y, 1/y]→ k[x, y, 1/xy]

We conclude that the map k[x, y]→ Γ(U,OU ) (coming from the morphism U → X)
is an isomorphism. Therefore U cannot be affine since if it was then by Lemma
25.6.5 we would have U ∼= X.

25.10. Immersions of schemes

In Lemma 25.9.2 we saw that any open subspace of a scheme is a scheme. Below
we will prove that the same holds for a closed subspace of a scheme.

Note that the notion of a quasi-coherent sheaf of OX -modules is defined for any
ringed space X in particular when X is a scheme. By our efforts in Section 25.7

we know that such a sheaf is on any affine open U ⊂ X of the form M̃ for some
OX(U)-module M .

Lemma 25.10.1. Let X be a scheme. Let i : Z → X be a closed immersion of
locally ringed spaces.

(1) The locally ringed space Z is a scheme,
(2) the kernel I of the map OX → i∗OZ is a quasi-coherent sheaf of ideals,
(3) for any affine open U = Spec(R) of X the morphism i−1(U)→ U can be

identified with Spec(R/I)→ Spec(R) for some ideal I ⊂ R, and

(4) we have I|U = Ĩ.

In particular, any sheaf of ideals locally generated by sections is a quasi-coherent
sheaf of ideals (and vice versa), and any closed subspace of X is a scheme.

Proof. Let i : Z → X be a closed immersion. Let z ∈ Z be a point. Choose any
affine open neighbourhood i(z) ∈ U ⊂ X. Say U = Spec(R). By Lemma 25.8.2
we know that i−1(U) → U can be identified with the morphism of affine schemes
Spec(R/I) → Spec(R). First of all this implies that z ∈ i−1(U) ⊂ Z is an affine

neighbourhood of z. Thus Z is a scheme. Second this implies that I|U is Ĩ. In
other words for every point x ∈ i(Z) there exists an open neighbourhood such that
I is quasi-coherent in that neighbourhood. Note that I|X\i(Z)

∼= OX\i(Z). Thus
the restriction of the sheaf of ideals is quasi-coherent on X \ i(Z) also. We conclude
that I is quasi-coherent. �

Definition 25.10.2. Let X be a scheme.

(1) A morphism of schemes is called an open immersion if it is an open im-
mersion of locally ringed spaces (see Definition 25.3.1).

(2) An open subscheme of X is an open subspace of X which is a scheme by
Lemma 25.9.2 above.

(3) A morphism of schemes is called a closed immersion if it is a closed im-
mersion of locally ringed spaces (see Definition 25.4.1).
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(4) A closed subscheme of X is a closed subspace of X which is a scheme by
Lemma 25.10.1 above.

(5) A morphism of schemes f : X → Y is called an immersion, or a locally
closed immersion if it can be factored as j ◦i where i is a closed immersion
and j is an open immersion.

It follows from the lemmas in Sections 25.3 and 25.4 that any open (resp. closed)
immersion of schemes is isomorphic to the inclusion of an open (resp. closed) sub-
scheme of the target. We will define locally closed subschemes below.

Remark 25.10.3. If f : X → Y is an immersion of schemes, then it is in general
not possible to factor f as an open immersion followed by a closed immersion. See
Morphisms, Example 28.3.4.

Lemma 25.10.4. Let f : Y → X be an immersion of schemes. Then f is a closed
immersion if and only if f(Y ) ⊂ X is a closed subset.

Proof. If f is a closed immersion then f(Y ) is closed by definition. Conversely,
suppose that f(Y ) is closed. By definition there exists an open subscheme U ⊂ X
such that f is the composition of a closed immersion i : Y → U and the open
immersion j : U → X. Let I ⊂ OU be the quasi-coherent sheaf of ideals associated
to the closed immersion i. Note that I|U\i(Y ) = OU\i(Y ) = OX\i(Y )|U\i(Y ). Thus
we may glue (see Sheaves, Section 6.33) I and OX\i(Y ) to a sheaf of ideals J ⊂ OX .
Since every point of X has a neighbourhood where J is quasi-coherent, we see that
J is quasi-coherent (in particular locally generated by sections). By construction
OX/J is supported on U and equal to OU/I. Thus we see that the closed subspaces
associated to I and J are canonically isomorphic, see Example 25.4.3. In particular
the closed subspace of U associated to I is isomorphic to a closed subspace of X.
Since Y → U is identified with the closed subspace associated to I, see Lemma
25.4.5, we conclude that Y → U → X is a closed immersion. �

Let f : Y → X be an immersion. Let Z = f(Y ) \ f(Y ) which is a closed subset
of X. Let U = X \ Z. The lemma implies that U is the biggest open subspace of
X such that f : Y → X factors through a closed immersion into U . If we define a
locally closed subscheme of X as a pair (Z,U) consisting of a closed subscheme Z
of an open subscheme U of X such that in addition Z ∪ U = X. We usually just
say “let Z be a locally closed subscheme of X” since we may recover U from the
morphism Z → X. The above then shows that any immersion f : Y → X factors
uniquely as Y → Z → X where Z is a locally closed subspace of X and Y → Z is
an isomorphism.

The interest of this is that the collection of locally closed subschemes of X forms a
set. We may define a partial ordering on this set, which we call inclusion for obvious
reasons. To be explicit, if Z → X and Z ′ → X are two locally closed subschemes
of X, then we say that Z is contained in Z ′ simply if the morphism Z → X factors
through Z ′. If it does, then of course Z is identified with a unique locally closed
subscheme of Z ′, and so on.

25.11. Zariski topology of schemes

See Topology, Section 5.1 for some basic material in topology adapted to the Zariski
topology of schemes.
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Lemma 25.11.1. Let X be a scheme. Any irreducible closed subset of X has a
unique generic point. In other words, X is a sober topological space, see Topology,
Definition 5.7.4.

Proof. Let Z ⊂ X be an irreducible closed subset. For every affine open U ⊂ X,
U = Spec(R) we know that Z ∩ U = V (I) for a unique radical ideal I ⊂ R. Note
that Z ∩ U is either empty or irreducible. In the second case (which occurs for at
least one U) we see that I = p is a prime ideal, which is a generic point ξ of Z ∩U .

It follows that Z = {ξ}, in other words ξ is a generic point of Z. If ξ′ was a second
generic point, then ξ′ ∈ Z ∩ U and it follows immediately that ξ′ = ξ. �

Lemma 25.11.2. Let X be a scheme. The collection of affine opens of X forms a
basis for the topology on X.

Proof. This follows from the discussion on open subschemes in Section 25.9. �

Remark 25.11.3. In general the intersection of two affine opens in X is not affine
open. See Example 25.14.3.

Lemma 25.11.4. The underlying topological space of any scheme is locally quasi-
compact, see Topology, Definition 5.12.1.

Proof. This follows from Lemma 25.11.2 above and the fact that the spectrum of
ring is quasi-compact, see Algebra, Lemma 10.16.10. �

Lemma 25.11.5. Let X be a scheme. Let U, V be affine opens of X, and let
x ∈ U ∩ V . There exists an affine open neighbourhood W of x such that W is a
standard open of both U and V .

Proof. Write U = Spec(A) and V = Spec(B). Say x corresponds to the prime
p ⊂ A and the prime q ⊂ B. We may choose a f ∈ A, f 6∈ p such that D(f) ⊂ U∩V .
Note that any standard open of D(f) is a standard open of Spec(A) = U . Hence
we may assume that U ⊂ V . In other words, now we may think of U as an affine
open of V . Next we choose a g ∈ B, g 6∈ q such that D(g) ⊂ U . In this case we see
that D(g) = D(gA) where gA ∈ A denotes the image of g ∈ A. Thus the lemma is
proved. �

Lemma 25.11.6. Let X be a scheme. Let X =
⋃
i Ui be an affine open cov-

ering. Let V ⊂ X be an affine open. There exists a standard open covering
V =

⋃
j=1,...,m Vj (see Definition 25.5.2) such that each Vj is a standard open

in one of the Ui.

Proof. Pick v ∈ V . Then v ∈ Ui for some i. By Lemma 25.11.5 above there exists
an open v ∈Wv ⊂ V ∩Ui such that Wv is a standard open in both V and Ui. Since
V is quasi-compact the lemma follows. �

Lemma 25.11.7. Let X be a scheme whose underlying topological space is a finite
discrete set. Then X is affine.

Proof. Say X = {x1, . . . , xn}. Then Ui = {xi} is an open neighbourhood of xi.
By Lemma 25.11.2 it is affine. Hence X is a finite disjoint union of affine schemes,
and hence is affine by Lemma 25.6.8. �
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Example 25.11.8. There exists a scheme without closed points. Namely, let R
be a local domain whose spectrum looks like (0) = p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ m. Then
the open subscheme Spec(R) \ {m} does not have a closed point. To see that such
a ring R exists, we use that given any totally ordered group (Γ,≥) there exists a
valuation ring A with valuation group (Γ,≥), see [Kru32]. See Algebra, Section
10.48 for notation. We take Γ = Zx1 ⊕Zx2 ⊕Zx3 ⊕ . . . and we define

∑
i aixi ≥ 0

if and only if the first nonzero ai is > 0, or all ai = 0. So x1 ≥ x2 ≥ x3 ≥ . . . ≥ 0.
The subsets xi+Γ≥0 are prime ideals of (Γ,≥), see Algebra, notation above Lemma
10.48.17. These together with ∅ and Γ≥0 are the only prime ideals. Hence A is
an example of a ring with the given structure of its spectrum, by Algebra, Lemma
10.48.17.

25.12. Reduced schemes

Definition 25.12.1. Let X be a scheme. We say X is reduced if every local ring
OX,x is reduced.

Lemma 25.12.2. A scheme X is reduced if and only if OX(U) is a reduced ring
for all U ⊂ X open.

Proof. Assume that X is reduced. Let f ∈ OX(U) be a section such that fn = 0.
Then the image of f in OU,u is zero for all u ∈ U . Hence f is zero, see Sheaves,
Lemma 6.11.1. Conversely, assume that OX(U) is reduced for all opens U . Pick
any nonzero element f ∈ OX,x. Any representative (U, f ∈ O(U)) of f is nonzero
and hence not nilpotent. Hence f is not nilpotent in OX,x. �

Lemma 25.12.3. An affine scheme Spec(R) is reduced if and only if R is reduced.

Proof. The direct implication follows immediately from Lemma 25.12.2 above. In
the other direction it follows since any localization of a reduced ring is reduced, and
in particular the local rings of a reduced ring are reduced. �

Lemma 25.12.4. Let X be a scheme. Let T ⊂ X be a closed subset. There exists
a unique closed subscheme Z ⊂ X with the following properties: (a) the underlying
topological space of Z is equal to T , and (b) Z is reduced.

Proof. Let I ⊂ OX be the sub presheaf defined by the rule

I(U) = {f ∈ OX(U) | f(t) = 0 for all t ∈ T ∩ U}

Here we use f(t) to indicate the image of f in the residue field κ(t) of X at t.
Because of the local nature of the condition it is clear that I is a sheaf of ideals.
Moreover, let U = Spec(R) be an affine open. We may write T ∩ U = V (I) for a
unique radical ideal I ⊂ R. Given a prime p ∈ V (I) corresponding to t ∈ T ∩ U
and an element f ∈ R we have f(t) = 0 ⇔ f ∈ p. Hence I(U) = ∩p∈V (I)p = I by
Algebra, Lemma 10.16.2. Moreover, for any standard open D(g) ⊂ Spec(R) = U

we have I(D(g)) = Ig by the same reasoning. Thus Ĩ and I|U agree (as ideals)
on a basis of opens and hence are equal. Therefore I is a quasi-coherent sheaf of
ideals.

At this point we may define Z as the closed subspace associated to the sheaf of
ideals I. For every affine open U = Spec(R) of X we see that Z ∩ U = Spec(R/I)
where I is a radical ideal and hence Z is reduced (by Lemma 25.12.3 above). By
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construction the underlying closed subset of Z is T . Hence we have found a closed
subscheme with properties (a) and (b).

Let Z ′ ⊂ X be a second closed subscheme with properties (a) and (b). For every
affine open U = Spec(R) of X we see that Z ′ ∩ U = Spec(R/I ′) for some ideal
I ′ ⊂ R. By Lemma 25.12.3 the ring R/I ′ is reduced and hence I ′ is radical. Since
V (I ′) = T ∩ U = V (I) we deduced that I = I ′ by Algebra, Lemma 10.16.2. Hence
Z ′ and Z are defined by the same sheaf of ideals and hence are equal. �

Definition 25.12.5. Let X be a scheme. Let i : Z → X be the inclusion of a
closed subset. A scheme structure on Z is given by a closed subscheme Z ′ of X
whose underlying closed is equal to Z. We often say “let (Z,OZ) be a scheme
structure on Z” to indicate this. The reduced induced scheme structure on Z is
the one constructed in Lemma 25.12.4. The reduction Xred of X is the reduced
induced scheme structure on X itself.

Often when we say “let Z ⊂ X be an irreducible component of X” we think of Z
as a reduced closed subscheme of X using the reduced induced scheme structure.

Lemma 25.12.6. Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let
Y be a reduced scheme. A morphism f : Y → X factors through Z if and only
if f(Y ) ⊂ Z (set theoretically). In particular, any morphism Y → X factors as
Y → Xred → X.

Proof. Assume f(Y ) ⊂ Z (set theoretically). Let I ⊂ OX be the ideal sheaf of
Z. For any affine opens U ⊂ X, Spec(B) = V ⊂ Y with f(V ) ⊂ U and any
g ∈ I(U) the pullback b = f ](g) ∈ Γ(V,OY ) = B maps to zero in the residue field
of any y ∈ V . In other words b ∈

⋂
p⊂B p. This implies b = 0 as B is reduced

(Lemma 25.12.2, and Algebra, Lemma 10.16.2). Hence f factors through Z by
Lemma 25.4.6. �

25.13. Points of schemes

Given a scheme X we can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).

See Categories, Example 4.3.4. This is called the functor of points of X. A fun
part of scheme theory is to find descriptions of the internal geometry of X in terms
of this functor hX . In this section we find a simple way to describe points of X.

Let X be a scheme. Let R be a local ring with maximal ideal m ⊂ R. Suppose that
f : Spec(R)→ X is a morphism of schemes. Let x ∈ X be the image of the closed
point m ∈ Spec(R). Then we obtain a local homomorphism of local rings

f ] : OX,x −→ OSpec(R),m = R.

Lemma 25.13.1. Let X be a scheme. Let R be a local ring. The construction above
gives a bijective correspondence between morphisms Spec(R)→ X and pairs (x, ϕ)
consisting of a point x ∈ X and a local homomorphism of local rings ϕ : OX,x → R.

Proof. Let A be a ring. For any ring homomorphism ψ : A → R there exists a
unique prime ideal p ⊂ A and a factorization A → Ap → R where the last map is
a local homomorphism of local rings. Namely, p = ψ−1(m). Via Lemma 25.6.4 this
proves that the lemma holds if X is an affine scheme.
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Let X be a general scheme. Any x ∈ X is contained in an open affine U ⊂ X. By
the affine case we conclude that every pair (x, ϕ) occurs as the end product of the
construction above the lemma.

To finish the proof it suffices to show that any morphism f : Spec(R) → X has
image contained in any affine open containing the image x of the closed point of
Spec(R). In fact, let x ∈ V ⊂ X be any open neighbourhood containing x. Then
f−1(V ) ⊂ Spec(R) is an open containing the unique closed point and hence equal
to Spec(R). �

As a special case of the lemma above we obtain for every point x of a scheme X a
canonical morphism

(25.13.1.1) Spec(OX,x) −→ X

corresponding to the identity map on the local ring of X at x. We may reformulate
the lemma above as saying that for any morphism f : Spec(R)→ X there exists a
unique point x ∈ X such that f factors as Spec(R)→ Spec(OX,x)→ X where the
first map comes from a local homomorphism OX,x → R.

In case we have a morphism of schemes f : X → S, and a point x mapping to a
point s ∈ S we obtain a commutative diagram

Spec(OX,x) //

��

X

��
Spec(OS,s) // S

where the left vertical map corresponds to the local ring map f ]x : OX,x → OS,s.

Lemma 25.13.2. Let X be a scheme. Let x, x′ ∈ X be points of X. Then x′ ∈ X
is a generalization of x if and only if x′ is in the image of the canonical morphism
Spec(OX,x)→ X.

Proof. A continuous map preserves the relation of specialization/generalization.
Since every point of Spec(OX,x) is a generalization of the closed point we see every
point in the image of Spec(OX,x)→ X is a generalization of x. Conversely, suppose
that x′ is a generalization of x. Choose an affine open neighbourhood U = Spec(R)
of x. Then x′ ∈ U . Say p ⊂ R and p′ ⊂ R are the primes corresponding to x
and x′. Since x′ is a generalization of x we see that p′ ⊂ p. This means that p′

is in the image of the morphism Spec(OX,x) = Spec(Rp) → Spec(R) = U ⊂ X as
desired. �

Now, let us discuss morphisms from spectra of fields. Let (R,m, κ) be a local ring
with maximal ideal m and residue field κ. Let K be a field. A local homomorphism
R→ K by definition factors as R→ κ→ K, i.e., is the same thing as a morphism
κ→ K. Thus we see that morphisms

Spec(K) −→ X

correspond to pairs (x, κ(x)→ K). We may define a partial ordering on morphisms
of spectra of fields to X by saying that Spec(K) → X dominates Spec(L) → X if
Spec(K) → X factors through Spec(L) → X. This suggests the following notion:
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Let us temporarily say that two morphisms p : Spec(K)→ X and q : Spec(L)→ X
are equivalent if there exists a third field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K)

p // X

Of course this immediately implies that the unique points of all three of the schemes
Spec(K), Spec(L), and Spec(Ω) map to the same x ∈ X. Thus a diagram (by the
remarks above) corresponds to a point x ∈ X and a commutative diagram

Ω Loo

K

OO

κ(x)oo

OO

of fields. This defines an equivalence relation, because given any set of extensions
κ ⊂ Ki there exists some field extension κ ⊂ Ω such that all the field extensions
Ki are contained in the extension Ω.

Lemma 25.13.3. Let X be a scheme. Points of X correspond bijectively to
equivalence classes of morphisms from spectra of fields into X. Moreover, each
equivalence class contains a (unique up to unique isomorphism) smallest element
Spec(κ(x))→ X.

Proof. Follows from the discussion above. �

Of course the morphisms Spec(κ(x))→ X factor through the canonical morphisms
Spec(OX,x) → X. And the content of Lemma 25.13.2 is in this setting that the
morphism Spec(κ(x′)) → X factors as Spec(κ(x′)) → Spec(OX,x) → X whenever
x′ is a generalization of x. In case we have a morphism of schemes f : X → S, and
a point x mapping to a point s ∈ S we obtain a commutative diagram

Spec(κ(x)) //

��

Spec(OX,x) //

��

X

��
Spec(κ(s)) // Spec(OS,s) // S.

25.14. Glueing schemes

Let I be a set. For each i ∈ I let (Xi,Oi) be a locally ringed space. (Actually
the construction that follows works equally well for ringed spaces.) For each pair
i, j ∈ I let Uij ⊂ Xi be an open subspace. For each pair i, j ∈ I, let

ϕij : Uij → Uji

be an isomorphism of locally ringed spaces. For convenience we assume that Uii =
Xi and ϕii = idXi . For each triple i, j, k ∈ I assume that

(1) we have ϕ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik, and
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(2) the diagram

Uij ∩ Uik ϕik
//

ϕij
&&

Uki ∩ Ukj

Uji ∩ Ujk

ϕjk

88

is commutative.

Let us call a collection (I, (Xi)i∈I , (Uij)i,j∈I , (ϕij)i,j∈I) satisfying the conditions
above a glueing data.

Lemma 25.14.1. Given any glueing data of locally ringed spaces there exists a
locally ringed space X and open subspaces Ui ⊂ X together with isomorphisms
ϕi : Xi → Ui of locally ringed spaces such that

(1) ϕi(Uij) = Ui ∩ Uj, and

(2) ϕij = ϕ−1
j |Ui∩Uj ◦ ϕi|Uij .

The locally ringed space X is characterized by the following mapping properties:
Given a locally ringed space Y we have

Mor(X,Y ) = {(fi)i∈I | fi : Xi → Y, fj ◦ ϕij = fi|Uij}
f 7→ (f |Ui ◦ ϕi)i∈I

Mor(Y,X) =

{
open covering Y =

⋃
i∈I Vi and (gi : Vi → Xi)i∈I such that

g−1
i (Uij) = Vi ∩ Vj and gj |Vi∩Vj = ϕij ◦ gi|Vi∩Vj

}
g 7→ Vi = g−1(Ui), gi = g|Vi

Proof. We construct X in stages. As a set we take

X = (
∐

Xi)/ ∼ .

Here given x ∈ Xi and x′ ∈ Xj we say x ∼ x′ if and only if x ∈ Uij , x′ ∈ Uji and
ϕij(x) = x′. This is an equivalence relation since if x ∈ Xi, x

′ ∈ Xj , x
′′ ∈ Xk, and

x ∼ x′ and x′ ∼ x′′, then x′ ∈ Uji ∩ Ujk, hence by condition (1) of a glueing data
also x ∈ Uij ∩Uik and x′′ ∈ Uki∩Ukj and by condition (2) we see that ϕik(x) = x′′.
(Reflexivity and symmetry follows from our assumptions that Uii = Xi and ϕii =
idXi .) Denote ϕi : Xi → X the natural maps. Denote Ui = ϕi(Xi) ⊂ X. Note that
ϕi : Xi → Ui is a bijection.

The topology on X is defined by the rule that U ⊂ X is open if and only if ϕ−1
i (U)

is open for all i. We leave it to the reader to verify that this does indeed define a
topology. Note that in particular Ui is open since ϕ−1

j (Ui) = Uji which is open in

Xj for all j. Moreover, for any open set W ⊂ Xi the image ϕi(W ) ⊂ Ui is open

because ϕ−1
j (ϕi(W )) = ϕ−1

ji (W∩Uij). Therefore ϕi : Xi → Ui is a homeomorphism.

To obtain a locally ringed space we have to construct the sheaf of rings OX . We do
this by glueing the sheaves of rings OUi := ϕi,∗OXi . Namely, in the commutative
diagram

Uij ϕij
//

ϕi|Uij ##

Uji

ϕj |Uji{{
Ui ∩ Uj

http://stacks.math.columbia.edu/tag/01JB
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the arrow on top is an isomorphism of ringed spaces, and hence we get unique
isomorphisms of sheaves of rings

OUi |Ui∩Uj −→ OUj |Ui∩Uj .
These satisfy a cocycle condition as in Sheaves, Section 6.33. By the results of
that section we obtain a sheaf of rings OX on X such that OX |Ui is isomorphic
to OUi compatibly with the glueing maps displayed above. In particular (X,OX)
is a locally ringed space since the stalks of OX are equal to the stalks of OXi at
corresponding points.

The proof of the mapping properties is omitted. �

Lemma 25.14.2. In Lemma 25.14.1 above, assume that all Xi are schemes. Then
the resulting locally ringed space X is a scheme.

Proof. This is clear since each of the Ui is a scheme and hence every x ∈ X has
an affine neighbourhood. �

It is customary to think of Xi as an open subspace of X via the isomorphisms ϕi.
We will do this in the next two examples.

Example 25.14.3 (Affine space with zero doubled). Let k be a field. Let n ≥ 1.
Let X1 = Spec(k[x1, . . . , xn]), let X2 = Spec(k[y1, . . . , yn]). Let 01 ∈ X1 be the
point corresponding to the maximal ideal (x1, . . . , xn) ⊂ k[x1, . . . , xn]. Let 02 ∈ X2

be the point corresponding to the maximal ideal (y1, . . . , yn) ⊂ k[y1, . . . , yn]. Let
U12 = X1 \ {01} and let U21 = X2 \ {02}. Let ϕ12 : U12 → U21 be the isomorphism
coming from the isomorphism of k-algebras k[y1, . . . , yn] → k[x1, . . . , xn] mapping
yi to xi (which induces X1

∼= X2 mapping 01 to 02). Let X be the scheme obtained
from the glueing data (X1, X2, U12, U21, ϕ12, ϕ21 = ϕ−1

12 ). Via the slight abuse of
notation introduced above the example we think of Xi ⊂ X as open subschemes.
There is a morphism f : X → Spec(k[t1, . . . , tn]) which on Xi corresponds to
k algebra map k[t1, . . . , tn] → k[x1, . . . , xn] (resp. k[t1, . . . , tn] → k[y1, . . . , yn])
mapping ti to xi (resp. ti to yi). It is easy to see that this morphism identifies
k[t1, . . . , tn] with Γ(X,OX). Since f(01) = f(02) we see that X is not affine.

Note that X1 and X2 are affine opens of X. But, if n = 2, then X1 ∩ X2 is
the scheme described in Example 25.9.3 and hence not affine. Thus in general the
intersection of affine opens of a scheme is not affine. (This fact holds more generally
for any n > 1.)

Another curious feature of this example is the following. If n > 1 there are many
irreducible closed subsets T ⊂ X (take the closure of any non closed point in X1

for example). But unless T = {01}, or T = {02} we have 01 ∈ T ⇔ 02 ∈ T . Proof
omitted.

Example 25.14.4 (Projective line). Let k be a field. Let X1 = Spec(k[x]), let
X2 = Spec(k[y]). Let 0 ∈ X1 be the point corresponding to the maximal ideal
(x) ⊂ k[x]. Let ∞ ∈ X2 be the point corresponding to the maximal ideal (y) ⊂
k[y]. Let U12 = X1 \ {0} = D(x) = Spec(k[x, 1/x]) and let U21 = X2 \ {∞} =
D(y) = Spec(k[y, 1/y]). Let ϕ12 : U12 → U21 be the isomorphism coming from the
isomorphism of k-algebras k[y, 1/y] → k[x, 1/x] mapping y to 1/x. Let P1

k be the

scheme obtained from the glueing data (X1, X2, U12, U21, ϕ12, ϕ21 = ϕ−1
12 ). Via the

slight abuse of notation introduced above the example we think of Xi ⊂ P1
k as open
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subschemes. In this case we see that Γ(P1
k,O) = k because the only polynomials

g(x) in x such that g(1/y) is also a polynomial in y are constant polynomials. Since
P1
k is infinite we see that P1

k is not affine.

We claim that there exists an affine open U ⊂ P1
k which contains both 0 and ∞.

Namely, let U = P1
k \{1}, where 1 is the point of X1 corresponding to the maximal

ideal (x− 1) and also the point of X2 corresponding to the maximal ideal (y − 1).
Then it is easy to see that s = 1/(x− 1) = y/(1− y) ∈ Γ(U,OU ). In fact you can
show that Γ(U,OU ) is equal to the polynomial ring k[s] and that the corresponding
morphism U → Spec(k[s]) is an isomorphism of schemes. Details omitted.

25.15. A representability criterion

In this section we reformulate the glueing lemma of Section 25.14 in terms of func-
tors. We recall some of the material from Categories, Section 4.3. Recall that given
a scheme X we can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).

This is called the functor of points of X.

Let F be a contravariant functor from the category of schemes to the category of
sets. In a formula

F : Schopp −→ Sets.

We will use the same terminology as in Sites, Section 7.2. Namely, given a scheme
T , an element ξ ∈ F (T ), and a morphism f : T ′ → T we will denote f∗ξ the
element F (f)(ξ), and sometimes we will even use the notation ξ|T ′

Definition 25.15.1. (See Categories, Definition 4.3.6.) Let F be a contravariant
functor from the category of schemes to the category of sets (as above). We say
that F is representable by a scheme or representable if there exists a scheme X such
that hX ∼= F .

Suppose that F is representable by the scheme X and that s : hX → F is an
isomorphism. By Categories, Yoneda Lemma 4.3.5 the pair (X, s : hX → F ) is
unique up to unique isomorphism if it exists. Moreover, the Yoneda lemma says
that given any contravariant functor F as above and any scheme Y , we have a
bijection

MorFun(Schopp,Sets)(hY , F ) −→ F (Y ), s 7−→ s(idY ).

Here is the reverse construction. Given any ξ ∈ F (Y ) the transformation of functors
sξ : hY → F associates to any morphism f : T → Y the element f∗ξ ∈ F (T ).

In particular, in the case that F is representable, there exists a scheme X and an
element ξ ∈ F (X) such that the corresponding morphism hX → F is an isomor-
phism. In this case we also say the pair (X, ξ) represents F . The element ξ ∈ F (X)
is often called the “universal family” for reasons that will become more clear when
we talk about algebraic stacks (insert future reference here). For the moment we
simply observe that the fact that if the pair (X, ξ) represents F , then every element
ξ′ ∈ F (T ) for any T is of the form ξ′ = f∗ξ for a unique morphism f : T → X.

Example 25.15.2. Consider the rule which associates to every scheme T the set
F (T ) = Γ(T,OT ). We can turn this into a contravariant functor by using for a
morphism f : T ′ → T the pullback map f ] : Γ(T,OT )→ Γ(T ′,OT ′). Given a ring

http://stacks.math.columbia.edu/tag/01JG
http://stacks.math.columbia.edu/tag/01JH


1734 25. SCHEMES

R and an element t ∈ R there exists a unique ring homomorphism Z[x]→ R which
maps x to t. Thus, using Lemma 25.6.4, we see that

Mor(T, Spec(Z[x])) = Hom(Z[x],Γ(T,OT )) = Γ(T,OT ).

This does indeed give an isomorphism hSpec(Z[x]) → F . What is the “universal fam-
ily” ξ? To get it we have to apply the identifications above to idSpec(Z[x]). Clearly
under the identifications above this gives that ξ = x ∈ Γ(Spec(Z[x]),OSpec(Z[x])) =
Z[x] as expected.

Definition 25.15.3. Let F be a contravariant functor on the category of schemes
with values in sets.

(1) We say that F satisfies the sheaf property for the Zariski topology if for
every scheme T and every open covering T =

⋃
i∈I Ui, and for any collec-

tion of elements ξi ∈ F (Ui) such that ξi|Ui∩Uj = ξj |Ui∩Uj there exists a
unique element ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) A subfunctor H ⊂ F is a rule that associates to every scheme T a subset
H(T ) ⊂ F (T ) such that the maps F (f) : F (T )→ F (T ′) maps H(T ) into
H(T ′) for all morphisms of schemes f : T ′ → T .

(3) Let H ⊂ F be a subfunctor. We say that H ⊂ F is representable by open
immersions if for all pairs (T, ξ), where T is a scheme and ξ ∈ F (T ) there
exists an open subscheme Uξ ⊂ T with the following property:
(∗) A morphism f : T ′ → T factors through Uξ if and only if f∗ξ ∈

H(T ′).
(4) Let I be a set. For each i ∈ I let Hi ⊂ F be a subfunctor. We say that

the collection (Hi)i∈I covers F if and only if for every ξ ∈ F (T ) there
exists an open covering T =

⋃
Ui such that ξ|Ui ∈ Hi(Ui).

Lemma 25.15.4. Let F be a contravariant functor on the category of schemes with
values in the category of sets. Suppose that

(1) F satisfies the sheaf property for the Zariski topology,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable,
(b) each Fi ⊂ F is representable by open immersions, and
(c) the collection (Fi)i∈I covers F .

Then F is representable.

Proof. Let Xi be a scheme representing Fi and let ξi ∈ Fi(Xi) ⊂ F (Xi) be the
“universal family”. Because Fj ⊂ F is representable by open immersions, there
exists an open Uij ⊂ Xi such that T → Xi factors through Uij if and only if
ξi|T ∈ Fj(T ). In particular ξi|Uij ∈ Fj(Uij) and therefore we obtain a canonical
morphism ϕij : Uij → Xj such that ϕ∗ijξj = ξi|Uij . By definition of Uji this implies
that ϕij factors through Uji. Since (ϕij ◦ ϕji)∗ξj = ϕ∗ji(ϕ

∗
ijξj) = ϕ∗jiξi = ξj we

conclude that ϕij ◦ϕji = idUji because the pair (Xj , ξj) represents Fj . In particular
the maps ϕij : Uij → Uji are isomorphisms of schemes. Next we have to show that

ϕ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik. This is true because (a) Uji ∩ Ujk is the largest open

of Uji such that ξj restricts to an element of Fk, (b) Uij ∩ Uik is the largest open
of Uij such that ξi restricts to an element of Fk, and (c) ϕ∗ijξj = ξi. Moreover, the
cocycle condition in Section 25.14 follows because both ϕjk|Uji∩Ujk ◦ϕij |Uij∩Uik and
ϕik|Uij∩Uik pullback ξk to the element ξi. Thus we may apply Lemma 25.14.2 to
obtain a scheme X with an open covering X =

⋃
Ui and isomorphisms ϕi : Xi → Ui
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with properties as in Lemma 25.14.1. Let ξ′i = (ϕ−1
i )∗ξi. The conditions of Lemma

25.14.1 imply that ξ′i|Ui∩Uj = ξ′j |Ui∩Uj . Therefore, by the condition that F satisfies
the sheaf condition in the Zariski topology we see that there exists an element
ξ′ ∈ F (X) such that ξi = ϕ∗i ξ

′|Ui for all i. Since ϕi is an isomorphism we also get
that (Ui, ξ

′|Ui) represents the functor Fi.

We claim that the pair (X, ξ′) represents the functor F . To show this, let T be a
scheme and let ξ ∈ F (T ). We will construct a unique morphism g : T → X such
that g∗ξ′ = ξ. Namely, by the condition that the subfunctors Fi cover T there
exists an open covering T =

⋃
Vi such that for each i the restriction ξ|Vi ∈ Fi(Vi).

Moreover, since each of the inclusions Fi ⊂ F are representable by open immersions
we may assume that each Vi ⊂ T is maximal open with this property. Because,
(Ui, ξ

′
Ui

) represents the functor Fi we get a unique morphism gi : Vi → Ui such that
g∗i ξ
′|Ui = ξ|Vi . On the overlaps Vi ∩ Vj the morphisms gi and gj agree, for example

because they both pull back ξ′|Ui∩Uj ∈ Fi(Ui ∩ Uj) to the same element. Thus the
morphisms gi glue to a unique morphism from T → X as desired. �

Remark 25.15.5. Suppose the functor F is defined on all locally ringed spaces,
and if conditions of Lemma 25.15.4 are replaced by the following:

(1) F satisfies the sheaf property on the category of locally ringed spaces,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable by a scheme,
(b) each Fi ⊂ F is representable by open immersions on the category of

locally ringed spaces, and
(c) the collection (Fi)i∈I covers F as a functor on the category of locally

ringed spaces.

We leave it to the reader to spell this out further. Then the end result is that
the functor F is representable in the category of locally ringed spaces and that the
representing object is a scheme.

25.16. Existence of fibre products of schemes

A very basic question is whether or not products and fibre products exist on the
category of schemes. We first prove abstractly that products and fibre products
exist, and in the next section we show how we may think in a reasonable way about
fibre products of schemes.

Lemma 25.16.1. The category of schemes has a final object, products and fibre
products. In other words, the category of schemes has finite limits, see Categories,
Lemma 4.18.4.

Proof. Please skip this proof. It is more important to learn how to work with the
fibre product which is explained in the next section.

By Lemma 25.6.4 the scheme Spec(Z) is a final object in the category of locally
ringed spaces. Thus it suffices to prove that fibred products exist.

Let f : X → S and g : Y → S be morphisms of schemes. We have to show that the
functor

F : Schopp −→ Sets

T 7−→ Mor(T,X)×Mor(T,S) Mor(T, Y )
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is representable. We claim that Lemma 25.15.4 applies to the functor F . If we
prove this then the lemma is proved.

First we show that F satisfies the sheaf property in the Zariski topology. Namely,
suppose that T is a scheme, T =

⋃
i∈I Ui is an open covering, and ξi ∈ F (Ui)

such that ξi|Ui∩Uj = ξj |Ui∩Uj for all pairs i, j. By definition ξi corresponds to a
pair (ai, bi) where ai : Ui → X and bi : Ui → Y are morphisms of schemes such
that f ◦ ai = g ◦ bi. The glueing condition says that ai|Ui∩Uj = aj |Ui∩Uj and
bi|Ui∩Uj = bj |Ui∩Uj . Thus by glueing the morphisms ai we obtain a morphism
of locally ringed spaces (i.e., a morphism of schemes) a : T → X and similarly
b : T → Y (see for example the mapping property of Lemma 25.14.1). Moreover,
on the members of an open covering the compositions f ◦a and g◦b agree. Therefore
f ◦ a = g ◦ b and the pair (a, b) defines an element of F (T ) which restricts to the
pairs (ai, bi) on each Ui. The sheaf condition is verified.

Next, we construct the family of subfunctors. Choose an open covering by open
affines S =

⋃
i∈I Ui. For every i ∈ I choose open coverings by open affines

f−1(Ui) =
⋃
j∈Ji Vj and g−1(Ui) =

⋃
k∈KiWk. Note that X =

⋃
i∈I
⋃
j∈Ji Vj

is an open covering and similarly for Y . For any i ∈ I and each pair (j, k) ∈ Ji×Ki

we have a commutative diagram

Wk

��   
Vj

!!

// Ui

  

Y

��
X // S

where all the skew arrows are open immersions. For such a triple we get a functor

Fi,j,k : Schopp −→ Sets

T 7−→ Mor(T, Vj)×Mor(T,Ui) Mor(T,Wj).

There is an obvious transformation of functors Fi,j,k → F (coming from the huge
commutative diagram above) which is injective, so we may think of Fi,j,k as a
subfunctor of F .

We check condition (2)(a) of Lemma 25.15.4. This follows directly from Lemma
25.6.7. (Note that we use here that the fibre products in the category of affine
schemes are also fibre products in the whole category of locally ringed spaces.)

We check condition (2)(b) of Lemma 25.15.4. Let T be a scheme and let ξ ∈ F (T ).
In other words, ξ = (a, b) where a : T → X and b : T → Y are morphisms of schemes
such that f ◦ a = g ◦ b. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk). For any further morphism
h : T ′ → T we have h∗ξ = (a◦h, b◦h). Hence we see that h∗ξ ∈ Fi,j,k(T ′) if and only
if a(h(T ′)) ⊂ Vj and b(h(T ′)) ⊂ Wk. In other words, if and only if h(T ′) ⊂ Vi,j,k.
This proves condition (2)(b).

We check condition (2)(c) of Lemma 25.15.4. Let T be a scheme and let ξ =
(a, b) ∈ F (T ) as above. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk) as above. Condition (2)(c)
just means that T =

⋃
Vi,j,k which is evident. Thus the lemma is proved and fibre

products exist. �
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Remark 25.16.2. Using Remark 25.15.5 you can show that the fibre product of
morphisms of schemes exists in the category of locally ringed spaces and is a scheme.

25.17. Fibre products of schemes

Here is a review of the general definition, even though we have already shown that
fibre products of schemes exist.

Definition 25.17.1. Given morphisms of schemes f : X → S and g : Y → S the
fibre product is a scheme X×S Y together with projection morphisms p : X×S Y →
X and q : X ×S Y → Y sitting into the following commutative diagram

X ×S Y q
//

p

��

Y

g

��
X

f // S

which is universal among all diagrams of this sort, see Categories, Definition 4.6.1.

In other words, given any solid commutative diagram of morphisms of schemes

T

**((

  

X ×S Y

��

// Y

��
X // S

there exists a unique dotted arrow making the diagram commute. We will prove
some lemmas which will tell us how to think about fibre products.

Lemma 25.17.2. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. If X,Y, S are all affine then X ×S Y is affine.

Proof. Suppose that X = Spec(A), Y = Spec(B) and S = Spec(R). By Lemma
25.6.7 the affine scheme Spec(A⊗R B) is the fibre product X ×S Y in the category
of locally ringed spaces. Hence it is a fortiori the fibre product in the category of
schemes. �

Lemma 25.17.3. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let X ×S Y , p, q be the fibre product. Suppose that U ⊂ S,
V ⊂ X, W ⊂ Y are open subschemes such that f(V ) ⊂ U and g(W ) ⊂ U . Then
the canonical morphism V ×U W → X ×S Y is an open immersion which identifies
V ×U W with p−1(V ) ∩ q−1(W ).

Proof. Let T be a scheme Suppose a : T → V and b : T →W are morphisms such
that f ◦ a = g ◦ b as morphisms into U . Then they agree as morphisms into S. By
the universal property of the fibre product we get a unique morphism T → X×S Y .
Of course this morphism has image contained in the open p−1(V )∩ q−1(W ). Thus
p−1(V ) ∩ q−1(W ) is a fibre product of V and W over U . The result follows from
the uniqueness of fibre products, see Categories, Section 4.6. �

http://stacks.math.columbia.edu/tag/01JN
http://stacks.math.columbia.edu/tag/01JP
http://stacks.math.columbia.edu/tag/01JQ
http://stacks.math.columbia.edu/tag/01JR


1738 25. SCHEMES

In particular this shows that V ×U W = V ×S W in the situation of the lemma.
Moreover, if U, V,W are all affine, then we know that V ×U W is affine. And of
course we may cover X ×S Y by such affine opens V ×U W . We formulate this as
a lemma.

Lemma 25.17.4. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let S =

⋃
Ui be any affine open covering of S. For each i ∈ I,

let f−1(Ui) =
⋃
j∈Ji Vj be an affine open covering of f−1(Ui) and let g−1(Ui) =⋃

k∈KiWk be an affine open covering of f−1(Ui). Then

X ×S Y =
⋃

i∈I

⋃
j∈Ji, k∈Ki

Vj ×Ui Wk

is an affine open covering of X ×S Y .

Proof. See discussion above the lemma. �

In other words, we might have used the previous lemma as a way of construction
the fibre product directly by glueing the affine schemes. (Which is of course exactly
what we did in the proof of Lemma 25.16.1 anyway.) Here is a way to describe the
set of points of a fibre product of schemes.

Lemma 25.17.5. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Points z of X ×S Y are in bijective correspondence to quadruples

(x, y, s, p)

where x ∈ X, y ∈ Y , s ∈ S are points with f(x) = s, g(y) = s and p is a prime
ideal of the ring κ(x) ⊗κ(s) κ(y). The residue field of z corresponds to the residue
field of the prime p.

Proof. Let z be a point of X×SY and let us construct a triple as above. Recall that
we may think of z as a morphism Spec(κ(z))→ X ×S Y , see Lemma 25.13.3. This
morphism corresponds to morphisms a : Spec(κ(z)) → X and b : Spec(κ(z)) → Y
such that f ◦ a = g ◦ b. By the same lemma again we get points x ∈ X, y ∈ Y lying
over the same point s ∈ S as well as field maps κ(x) → κ(z), κ(y) → κ(z) such
that the compositions κ(s)→ κ(x)→ κ(z) and κ(s)→ κ(y)→ κ(z) are the same.
In other words we get a ring map κ(x) ⊗κ(s) κ(y) → κ(z). We let p be the kernel
of this map.

Conversely, given a quadruple (x, y, s, p) we get a commutative solid diagram

X ×S Y

  

++Spec(κ(x)⊗κ(s) κ(y)/p) //

��

ii

Spec(κ(y))

��

// Y

��

Spec(κ(x)) //

��

Spec(κ(s))

$$
X // S

see the discussion in Section 25.13. Thus we get the dotted arrow. The correspond-
ing point z of X ×S Y is the image of the generic point of Spec(κ(x)⊗κ(s) κ(y)/p).
We omit the verification that the two constructions are inverse to each other. �
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Lemma 25.17.6. Let f : X → S and g : Y → S be morphisms of schemes with
the same target.

(1) If f : X → S is a closed immersion, then X ×S Y → Y is a closed
immersion. Moreover, if X → S corresponds to the quasi-coherent sheaf
of ideals I ⊂ OS, then X ×S Y → Y corresponds to the sheaf of ideals
Im(g∗I → OY ).

(2) If f : X → S is an open immersion, then X ×S Y → Y is an open
immersion.

(3) If f : X → S is an immersion, then X ×S Y → Y is an immersion.

Proof. Assume that X → S is a closed immersion corresponding to the quasi-
coherent sheaf of ideals I ⊂ OS . By Lemma 25.4.7 the closed subspace Z ⊂ Y
defined by the sheaf of ideals Im(g∗I → OY ) is the fibre product in the category of
locally ringed spaces. By Lemma 25.10.1 Z is a scheme. Hence Z = X ×S Y and
the first statement follows. The second follows from Lemma 25.17.3 for example.
The third is a combination of the first two. �

Definition 25.17.7. Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be
a closed subscheme of Y . The inverse image f−1(Z) of the closed subscheme Z is
the closed subscheme Z ×Y X of X. See Lemma 25.17.6 above.

We may occasionally also use this terminology with locally closed and open sub-
schemes.

25.18. Base change in algebraic geometry

One motivation for the introduction of the language of schemes is that it gives
a very precise notion of what it means to define a variety over a particular field.
For example a variety X over Q is synonymous (insert future reference here) with
X → Spec(Q) which is of finite type, separated, irreducible and reduced1. In any
case, the idea is more generally to work with schemes over a given base scheme,
often denoted S. We use the language: “let X be a scheme over S” to mean simply
that X comes equipped with a morphism X → S. In diagrams we will try to
picture the structure morphism X → S as a downward arrow from X to S. We are
often more interested in the properties of X relative to S rather than the internal
geometry of X. For example, we would like to know things about the fibres of
X → S, what happens to X after base change, and so on.

We introduce some of the language that is customarily used. Of course this language
is just a special case of thinking about the category of objects over a given object
in a category, see Categories, Example 4.2.13.

Definition 25.18.1. Let S be a scheme.

(1) We say X is a scheme over S to mean that X comes equipped with a
morphism of schemes X → S. The morphism X → S is sometimes called
the structure morphism.

(2) If R is a ring we say X is a scheme over R instead of X is a scheme over
Spec(R).

1Of course algebraic geometers still quibble over whether one should require X to be geo-
metrically irreducible over Q.
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(3) A morphism f : X → Y of schemes over S is a morphism of schemes such
that the composition X → Y → S of f with the structure morphism of Y
is equal to the structure morphism of X.

(4) We denote MorS(X,Y ) the set of all morphisms from X to Y over S.
(5) Let X be a scheme over S. Let S′ → S be a morphism of schemes. The

base change of X is the scheme XS′ = S′ ×S X over S′.
(6) Let f : X → Y be a morphism of schemes over S. Let S′ → S be a

morphism of schemes. The base change of f is the induced morphism
f ′ : XS′ → YS′ (namely the morphism idS′ ×idS f).

(7) Let R be a ring. Let X be a scheme over R. Let R→ R′ be a ring map.
The base change XR′ is the scheme Spec(R′)×Spec(R) X over R′.

Here is a typical result.

Lemma 25.18.2. Let S be a scheme. Let f : X → Y be an immersion (resp. closed
immersion, resp. open immersion) of schemes over S. Then any base change of f
is an immersion (resp. closed immersion, resp. open immersion).

Proof. We can think of the base change of f via the morphism S′ → S as the top
left vertical arrow in the following commutative diagram:

XS′
//

��

X

��

��

YS′ //

��

Y

��
S′ // S

The diagram implies XS′
∼= YS′×Y X, and the lemma follows from Lemma 25.17.6.

�

In fact this type of result is so typical that there is a piece of language to express
it. Here it is.

Definition 25.18.3. Properties and base change.

(1) Let P be a property of schemes over a base. We say that P is preserved
under arbitrary base change, or simply that preserved under base change
if whenever X/S has P, any base change XS′/S

′ has P.
(2) Let P be a property of morphisms of schemes over a base. We say that P

is preserved under arbitrary base change, or simply that preserved under
base change if whenever f : X → Y over S has P, any base change
f ′ : XS′ → YS′ over S′ has P.

At this point we can say that “being a closed immersion” is preserved under arbi-
trary base change.

Definition 25.18.4. Let f : X → S be a morphism of schemes. Let s ∈ S be a
point. The scheme theoretic fibre Xs of f over s, or simply the fibre of f over s is
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the scheme fitting in the following fibre product diagram

Xs = Spec(κ(s))×S X //

��

X

��
Spec(κ(s)) // S

We think of the fibre Xs always as a scheme over κ(s).

Lemma 25.18.5. Let f : X → S be a morphism of schemes. Consider the dia-
grams

Xs
//

��

X

��

Spec(OS,s)×S X //

��

X

��
Spec(κ(s)) // S Spec(OS,s) // S

In both cases the top horizontal arrow is a homeomorphism onto its image.

Proof. Choose an open affine U ⊂ S that contains s. The bottom horizontal
morphisms factor through U , see Lemma 25.13.1 for example. Thus we may assume
that S is affine. If X is also affine, then the result follows from Algebra, Remark
10.16.8. In the general case the result follows by covering X by open affines. �

25.19. Quasi-compact morphisms

A scheme is quasi-compact if its underlying topological space is quasi-compact.
There is a relative notion which is defined as follows.

Definition 25.19.1. A morphism of schemes is called quasi-compact if the under-
lying map of topological spaces is quasi-compact, see Topology, Definition 5.11.1.

Lemma 25.19.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f : X → S is quasi-compact,
(2) the inverse image of every affine open is quasi-compact, and
(3) there exists some affine open covering S =

⋃
i∈I Ui such that f−1(Ui) is

quasi-compact for all i.

Proof. Suppose we are given a covering X =
⋃
i∈I Ui as in (3). First, let U ⊂ S be

any affine open. For any u ∈ U we can find an index i(u) ∈ I such that u ∈ Ui(u).
As standard opens form a basis for the topology on Ui(u) we can find Wu ⊂ U∩Ui(u)

which is standard open in Ui(u). By compactness we can find finitely many points

u1, . . . , un ∈ U such that U =
⋃n
j=1Wuj . For each j write f−1Ui(uj) =

⋃
k∈Kj Vjk

as a finite union of affine opens. Since Wuj ⊂ Ui(u) is a standard open we see that

f−1(Wuj ) ∩ Vjk is a standard open of Vjk, see Algebra, Lemma 10.16.4. Hence

f−1(Wuj ) ∩ Vjk is affine, and so f−1(Wuj ) is a finite union of affines. This proves
that the inverse image of any affine open is a finite union of affine opens.

Next, assume that the inverse image of every affine open is a finite union of affine
opens. Let K ⊂ X be any quasi-compact open. Since X has a basis of the topology
consisting of affine opens we see that K is a finite union of affine opens. Hence the
inverse image of K is a finite union of affine opens. Hence f is quasi-compact.
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Finally, assume that f is quasi-compact. In this case the argument of the previous
paragraph shows that the inverse image of any affine is a finite union of affine
opens. �

Lemma 25.19.3. Being quasi-compact is a property of morphisms of schemes over
a base which is preserved under arbitrary base change.

Proof. Omitted. �

Lemma 25.19.4. The composition of quasi-compact morphisms is quasi-compact.

Proof. This follows from the definitions and Topology, Lemma 5.11.2. �

Lemma 25.19.5. A closed immersion is quasi-compact.

Proof. Follows from the definitions and Topology, Lemma 5.11.3. �

Example 25.19.6. An open immersion is in general not quasi-compact. The stan-
dard example of this is the open subspace U ⊂ X, whereX = Spec(k[x1, x2, x3, . . .]),
where U is X \ {0}, and where 0 is the point of X corresponding to the maximal
ideal (x1, x2, x3, . . .).

Lemma 25.19.7. Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f(X) ⊂ S is closed, and
(2) f(X) ⊂ S is stable under specialization.

Proof. We have (1) ⇒ (2) by Topology, Lemma 5.18.2. Assume (2). Let U ⊂ S
be an affine open. It suffices to prove that f(X) ∩ U is closed. Since U ∩ f(X) is
stable under specializations, we have reduced to the case where S is affine. Because
f is quasi-compact we deduce that X = f−1(S) is quasi-compact as S is affine.
Thus we may write X =

⋃n
i=1 Ui with Ui ⊂ X open affine. Say S = Spec(R) and

Ui = Spec(Ai) for some R-algebra Ai. Then f(X) = Im(Spec(A1 × . . . × An) →
Spec(R)). Thus the lemma follows from Algebra, Lemma 10.40.5. �

Lemma 25.19.8. Let f : X → S be a quasi-compact morphism of schemes. Then
f is closed if and only if specializations lift along f , see Topology, Definition 5.18.3.

Proof. According to Topology, Lemma 5.18.6 if f is closed then specializations lift
along f . Conversely, suppose that specializations lift along f . Let Z ⊂ X be a
closed subset. We may think of Z as a scheme with the reduced induced scheme
structure, see Definition 25.12.5. Since Z ⊂ X is closed the restriction of f to Z is
still quasi-compact. Moreover specializations lift along Z → S as well, see Topology,
Lemma 5.18.4. Hence it suffices to prove f(X) is closed if specializations lift along
f . In particular f(X) is stable under specializations, see Topology, Lemma 5.18.5.
Thus f(X) is closed by Lemma 25.19.7. �

25.20. Valuative criterion for universal closedness

In Topology, Section 5.16 there is a discussion of proper maps as closed maps
of topological spaces all of whose fibres are quasi-compact, or as maps such that
all base changes are closed maps. Here is the corresponding notion in algebraic
geometry.

Definition 25.20.1. A morphism of schemes f : X → S is said to be universally
closed if every base change f ′ : XS′ → S′ is closed.
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In fact the adjective “universally” is often used in this way. In other words, given
a property P of morphisms the we say that “X → S is universally P” if and only
if every base change XS′ → S′ has P.

Please take a look at Morphisms, Section 28.42 for a more detailed discussion of the
properties of universally closed morphisms. In this section we restrict the discussion
to the relationship between universal closed morphisms and morphisms satisfying
the existence part of the valuative criterion.

Lemma 25.20.2. Let f : X → S be a morphism of schemes.

(1) If f is universally closed then specializations lift along any base change of
f , see Topology, Definition 5.18.3.

(2) If f is quasi-compact and specializations lift along any base change of f ,
then f is universally closed.

Proof. Part (1) is a direct consequence of Topology, Lemma 5.18.6. Part (2) follows
from Lemmas 25.19.8 and 25.19.3. �

Definition 25.20.3. Let f : X → S be a morphism of schemes. We say f satisfies
the existence part of the valuative criterion if given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

S

where A is a valuation ring with field of fractions K, the dotted arrow exists. We
say f satisfies the uniqueness part of the valuative criterion if there is at most one
dotted arrow given any diagram as above (without requiring existence of course).

A valuation ring is a local domain maximal among the relation of domination in its
fraction field, see Algebra, Definition 10.48.1. Hence the spectrum of a valuation
ring has a unique generic point η and a unique closed point 0, and of course we
have the specialization η  0. The significance of valuation rings is that any
specialization of points in any scheme is the image of η  0 under some morphism
from the spectrum of some valuation ring. Here is the precise result.

Lemma 25.20.4. Let S be a scheme. Let s′  s be a specialization of points of
S. Then

(1) there exists a valuation ring A and a morphism Spec(A) → S such that
the generic point η of Spec(A) maps to s′ and the special point maps to
s, and

(2) given a field extension κ(s′) ⊂ K we may arrange it so that the extension
κ(s′) ⊂ κ(η) induced by f is isomorphic to the given extension.

Proof. Let s′  s be a specialization in S, and let κ(s′) ⊂ K be an extension of
fields. By Lemma 25.13.2 and the discussion following Lemma 25.13.3 this leads
to ring maps OS,s → κ(s′) → K. Let A ⊂ K be any valuation ring whose field of
fractions is K and which dominates the image of OS,s → K, see Algebra, Lemma
10.48.2. The ring map OS,s → A induces the morphism f : Spec(A) → S, see
Lemma 25.13.1. This morphism has all the desired properties by construction. �
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Lemma 25.20.5. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) Specializations lift along any base change of f
(2) The morphism f satisfies the existence part of the valuative criterion.

Proof. Assume (1) holds. Let a solid diagram as in Definition 25.20.3 be given.
In order to find the dotted arrow we may replace X → S by XSpec(A) → Spec(A)
since after all the assumption is stable under base change. Thus we may assume
S = Spec(A). Let x′ ∈ X be the image of Spec(K) → X, so that we have
κ(x′) ⊂ K, see Lemma 25.13.3. By assumption there exists a specialization x′  x
in X such that x maps to the closed point of S = Spec(A). We get a local ring map
A → OX,x and a ring map OX,x → κ(x′), see Lemma 25.13.2 and the discussion
following Lemma 25.13.3. The composition A → OX,x → κ(x′) → K is the given
injection A → K. Since A → OX,x is local, the image of OX,x → K dominates A
and hence is equal to A, by Algebra, Definition 10.48.1. Thus we obtain a ring map
OX,x → A and hence a morphism Spec(A)→ X (see Lemma 25.13.1 and discussion
following it). This proves (2).

Conversely, assume (2) holds. It is immediate that the existence part of the valua-
tive criterion holds for any base change XS′ → S′ of f by considering the following
commutative diagram

Spec(K) //

��

XS′
//

��

X

��
Spec(A) //

:: 55

S′ // S

Namely, the more horizontal dotted arrow will lead to the other one by definition
of the fibre product. OK, so it clearly suffices to show that specializations lift along
f . Let s′  s be a specialization in S, and let x′ ∈ X be a point lying over s′.
Apply Lemma 25.20.4 to s′  s and the extension of fields κ(s′) ⊂ κ(x′) = K. We
get a commutative diagram

Spec(K) //

��

X

��
Spec(A) //

44

Spec(OS,s) // S

and by condition (2) we get the dotted arrow. The image x of the closed point of
Spec(A) in X will be a solution to our problem, i.e., x is a specialization of x′ and
maps to s. �

Proposition 25.20.6 (Valuative criterion of universal closedness). Let f be a
quasi-compact morphism of schemes. Then f is universally closed if and only if
f satisfies the existence part of the valuative criterion.

Proof. This is a formal consequence of Lemmas 25.20.2 and 25.20.5 above. �

Example 25.20.7. Let k be a field. Consider the structure morphism p : P1
k →

Spec(k) of the projective line over k, see Example 25.14.4. Let us use the valuative
criterion above to prove that p is universally closed. By construction P1

k is covered
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by two affine opens and hence p is quasi-compact. Let a commutative diagram

Spec(K)
ξ

//

��

P1
k

��
Spec(A)

ϕ // Spec(k)

be given, where A is a valuation ring and K is its field of fractions. Recall that P1
k

is gotten by glueing Spec(k[x]) to Spec(k[y]) by glueing D(x) to D(y) via x = y−1

(or more symmetrically xy = 1). To show there is a morphism Spec(A) → P1
k

fitting diagonally into the diagram above we may assume that ξ maps into the
open Spec(k[x]) (by symmetry). This gives the following commutative diagram of
rings

K k[x]
ξ]

oo

A

OO

k

OO

ϕ]oo

By Algebra, Lemma 10.48.3 we see that either ξ](x) ∈ A or ξ](x)−1 ∈ A. In the
first case we get a ring map

k[x]→ A, λ 7→ ϕ](λ), x 7→ ξ](x)

fitting into the diagram of rings above, and we win. In the second case we see that
we get a ring map

k[y]→ A, λ 7→ ϕ](λ), y 7→ ξ](x)−1.

This gives a morphism Spec(A) → Spec(k[y]) → P1
k which fits diagonally into the

initial commutative diagram of this example (check omitted).

25.21. Separation axioms

A topological space X is Hausdorff if and only if the diagonal ∆ ⊂ X × X is a
closed subset. The analogue in algebraic geometry is, given a scheme X over a base
scheme S, to consider the diagonal morphism

∆X/S : X −→ X ×S X.
This is the unique morphism of schemes such that pr1 ◦ ∆X/S = idX and pr2 ◦
∆X/S = idX (it exists in any category with fibre products).

Lemma 25.21.1. The diagonal morphism of a morphism between affines is closed.

Proof. The diagonal morphism associated to the morphism Spec(S)→ Spec(R) is
the morphism on spectra corresponding to the ring map S ⊗R S → S, a⊗ b 7→ ab.
This map is clearly surjective, so S ∼= S ⊗R S/J for some ideal J ⊂ S ⊗R S. Hence
∆ is a closed immersion according to Example 25.8.1 �

Lemma 25.21.2. Let X be a scheme over S. The diagonal morphism ∆X/S is an
immersion.

Proof. Recall that if V ⊂ X is affine open and maps into U ⊂ S affine open, then
V ×U V is affine open in X ×S X, see Lemmas 25.17.2 and 25.17.3. Consider the
open subscheme W of X×SX which is the union of these affine opens V ×U V . By
Lemma 25.4.2 it is enough to show that each morphism ∆−1

X/S(V ×U V )→ V ×U V
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is a closed immersion. Since V = ∆−1
X/S(V ×U V ) we are just checking that ∆V/U

is a closed immersion, which is Lemma 25.21.1. �

Definition 25.21.3. Let f : X → S be a morphism of schemes.

(1) We say f is separated if the diagonal morphism ∆X/S is a closed immer-
sion.

(2) We say f is quasi-separated if the diagonal morphism ∆X/S is a quasi-
compact morphism.

(3) We say a scheme Y is separated if the morphism Y → Spec(Z) is separated.
(4) We say a scheme Y is quasi-separated if the morphism Y → Spec(Z) is

quasi-separated.

By Lemmas 25.21.2 and 25.10.4 we see that ∆X/S is a closed immersion if an only if
∆X/S(X) ⊂ X ×S X is a closed subset. Moreover, by Lemma 25.19.5 we see that a
separated morphism is quasi-separated. The reason for introducing quasi-separated
morphisms is that nonseparated morphisms come up naturally in studying algebraic
varieties (especially when doing moduli, algebraic stacks, etc). But most often they
are still quasi-separated.

Example 25.21.4. Here is an example of a non-quasi-separated morphism. Sup-
pose X = X1 ∪ X2 → S = Spec(k) with X1 = X2 = Spec(k[t1, t2, t3, . . .]) glued
along the complement of {0} = {(t1, t2, t3, . . .)} (glued as in Example 25.14.3). In
this case the inverse image of the affine scheme X1×SX2 under ∆X/S is the scheme
Spec(k[t1, t2, t3, . . .]) \ {0} which is not quasi-compact.

Lemma 25.21.5. Let X, Y be schemes over S. Let a, b : X → Y be morphisms of
schemes over S. There exists a largest locally closed subscheme Z ⊂ X such that
a|Z = b|Z . In fact Z is the equalizer of (a, b). Moreover, if Y is separated over S,
then Z is a closed subscheme.

Proof. The equalizer of (a, b) is for categorical reasons the fibre product Z in the
following diagram

Z = Y ×(Y×SY ) X //

��

X

(a,b)

��
Y

∆Y/S // Y ×S Y
Thus the lemma follows from Lemmas 25.18.2, 25.21.2 and Definition 25.21.3. �

Lemma 25.21.6. An affine scheme is separated. A morphism of affine schemes
is separated.

Proof. See Lemma 25.21.1. �

Lemma 25.21.7. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is quasi-separated.
(2) For every pair of affine opens U, V ⊂ X which map into a common affine

open of S the intersection U ∩ V is a finite union of affine opens of X.
(3) There exists an affine open covering S =

⋃
i∈I Ui and for each i an affine

open covering f−1Ui =
⋃
j∈Ii Vj such that for each i and each pair j, j′ ∈ Ii

the intersection Vj ∩ Vj′ is a finite union of affine opens of X.
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Proof. Let us prove that (3) implies (1). By Lemma 25.17.4 the covering X×SX =⋃
i

⋃
j,j′ Vj ×Ui Vj′ is an affine open covering of X ×S X. Moreover, ∆−1

X/S(Vj ×Ui
Vj′) = Vj ∩ Vj′ . Hence the implication follows from Lemma 25.19.2.

The implication (1) ⇒ (2) follows from the fact that under the hypotheses of (2)
the fibre product U ×S V is an affine open of X ×S X. The implication (2) ⇒ (3)
is trivial. �

Lemma 25.21.8. Let f : X → S be a morphism of schemes.

(1) If f is separated then for every pair of affine opens (U, V ) of X which map
into a common affine open of S we have
(a) the intersection U ∩ V is affine.
(b) the ring map OX(U)⊗Z OX(V )→ OX(U ∩ V ) is surjective.

(2) If any pair of points x1, x2 ∈ X lying over a common point s ∈ S are
contained in affine opens x1 ∈ U , x2 ∈ V which map into a common
affine open of S such that (a), (b) hold, then f is separated.

Proof. Assume f separated. Suppose (U, V ) is a pair as in (1). Let W = Spec(R)
be an affine open of S containing both f(U) and g(V ). Write U = Spec(A) and
V = Spec(B) for R-algebras A and B. By Lemma 25.17.3 we see that U ×S V =
U ×W V = Spec(A⊗R B) is an affine open of X ×S X. Hence, by Lemma 25.10.1
we see that ∆−1(U ×S V ) → U ×S V can be identified with Spec(A ⊗R B/J) for
some ideal J ⊂ A ⊗R B. Thus U ∩ V = ∆−1(U ×S V ) is affine. Assertion (1)(b)
holds because A⊗Z B → (A⊗R B)/J is surjective.

Assume the hypothesis formulated in (2) holds. Clearly the collection of affine
opens U ×S V for pairs (U, V ) as in (2) form an affine open covering of X ×S X
(see e.g. Lemma 25.17.4). Hence it suffices to show that each morphism U ∩ V =
∆−1
X/S(U×S V )→ U×S V is a closed immersion, see Lemma 25.4.2. By assumption

(a) we have U ∩ V = Spec(C) for some ring C. After choosing an affine open
W = Spec(R) of S into which both U and V map and writing U = Spec(A),
V = Spec(B) we see that the assumption (b) means that the composition

A⊗Z B → A⊗R B → C

is surjective. Hence A ⊗R B → C is surjective and we conclude that Spec(C) →
Spec(A⊗R B) is a closed immersion. �

Example 25.21.9. Let k be a field. Consider the structure morphism p : P1
k →

Spec(k) of the projective line over k, see Example 25.14.4. Let us use the lemma
above to prove that p is separated. By construction P1

k is covered by two affine opens
U = Spec(k[x]) and V = Spec(k[y]) with intersection U∩V = Spec(k[x, y]/(xy−1))
(using obvious notation). Thus it suffices to check that conditions (2)(a) and (2)(b)
of Lemma 25.21.8 hold for the pairs of affine opens (U,U), (U, V ), (V,U) and (V, V ).
For the pairs (U,U) and (V, V ) this is trivial. For the pair (U, V ) this amounts to
proving that U ∩ V is affine, which is true, and that the ring map

k[x]⊗Z k[y] −→ k[x, y]/(xy − 1)

is surjective. This is clear because any element in the right hand side can be written
as a sum of a polynomial in x and a polynomial in y.
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Lemma 25.21.10. Let f : X → T and g : Y → T be morphisms of schemes with
the same target. Let h : T → S be a morphism of schemes. Then the induced
morphism i : X ×T Y → X ×S Y is an immersion. If T → S is separated, then
i is a closed immersion. If T → S is quasi-separated, then i is a quasi-compact
morphism.

Proof. By general category theory the following diagram

X ×T Y //

��

X ×S Y

��
T

∆T/S //// T ×S T
is a fibre product diagram. The lemma follows from Lemmas 25.21.2, 25.17.6 and
25.19.3. �

Lemma 25.21.11. Let g : X → Y be a morphism of schemes over S. The mor-
phism i : X → X ×S Y is an immersion. If Y is separated over S it is a closed
immersion. If Y is quasi-separated over S it is quasi-compact.

Proof. This is a special case of Lemma 25.21.10 applied to the morphism X =
X ×Y Y → X ×S Y . �

Lemma 25.21.12. Let f : X → S be a morphism of schemes. Let s : S → X be a
section of f (in a formula f ◦ s = idS). Then s is an immersion. If f is separated
then s is a closed immersion. If f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 25.21.11 applied to g = s so the morphism
i = s : S → S ×S X. �

Lemma 25.21.13. Permanence properties.

(1) A composition of separated morphisms is separated.
(2) A composition of quasi-separated morphisms is quasi-separated.
(3) The base change of a separated morphism is separated.
(4) The base change of a quasi-separated morphism is quasi-separated.
(5) A (fibre) product of separated morphisms is separated.
(6) A (fibre) product of quasi-separated morphisms is quasi-separated.

Proof. Let X → Y → Z be morphisms. Assume that X → Y and Y → Z are
separated. The composition

X → X ×Y X → X ×Z X
is closed because the first one is by assumption and the second one by Lemma
25.21.10. The same argument works for “quasi-separated” (with the same refer-
ences).

Let f : X → Y be a morphism of schemes over a base S. Let S′ → S be a
morphism of schemes. Let f ′ : XS′ → YS′ be the base change of f . Then the
diagonal morphism of f ′ is a morphism

∆f ′ : XS′ = S′ ×S X −→ XS′ ×YS′ XS′ = S′ ×S (X ×Y X)

which is easily seen to be the base change of ∆f . Thus (3) and (4) follow from
the fact that closed immersions and quasi-compact morphisms are preserved under
arbitrary base change (Lemmas 25.17.6 and 25.19.3).
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If f : X → Y and g : U → V are morphisms of schemes over a base S, then f × g is
the composition of X×S U → X×S V (a base change of g) and X×S V → Y ×S V
(a base change of f). Hence (5) and (6) follow from (1) – (4). �

Lemma 25.21.14. Let f : X → Y and g : Y → Z be morphisms of schemes. If
g ◦ f is separated then so is f . If g ◦ f is quasi-separated then so is f .

Proof. Assume that g◦f is separated. Consider the factorization X → X×Y X →
X ×Z X of the diagonal morphism of g ◦ f . By Lemma 25.21.10 the last morphism
is an immersion. By assumption the image of X in X ×Z X is closed. Hence it is
also closed in X ×Y X. Thus we see that X → X ×Y X is a closed immersion by
Lemma 25.10.4.

Assume that g ◦ f is quasi-separated. Let V ⊂ Y be an affine open which maps
into an affine open of Z. Let U1, U2 ⊂ X be affine opens which map into V . Then
U1 ∩ U2 is a finite union of affine opens because U1, U2 map into a common affine
open of Z. Since we may cover Y by affine opens like V we deduce the lemma from
Lemma 25.21.7. �

Lemma 25.21.15. Let f : X → Y and g : Y → Z be morphisms of schemes. If
g ◦ f is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y →
Y . The first map is quasi-compact by Lemma 25.21.12 because it is a section
of the quasi-separated morphism X ×Z Y → X (a base change of g, see Lemma
25.21.13). The second map is quasi-compact as it is the base change of f , see
Lemma 25.19.3. And compositions of quasi-compact morphisms are quasi-compact,
see Lemma 25.19.4. �

You may have been wondering whether the condition of only considering pairs of
affine opens whose image is contained in an affine open is really necessary to be
able to conclude that their intersection is affine. Often it isn’t!

Lemma 25.21.16. Let f : X → S be a morphism. Assume f is separated and S is
a separated scheme. Suppose U ⊂ X and V ⊂ X are affine. Then U ∩ V is affine
(and a closed subscheme of U × V ).

Proof. In this case X is separated by Lemma 25.21.13. Hence U ∩ V is affine by
applying Lemma 25.21.8 to the morphism X → Spec(Z). �

On the other hand, the following example shows that we cannot expect the image
of an affine to be contained in an affine.

Example 25.21.17. Consider the nonaffine scheme U = Spec(k[x, y]) \ {(x, y)} of
Example 25.9.3. On the other hand, consider the scheme

GL2,k = Spec(k[a, b, c, d, 1/ad− bc]).

There is a morphism GL2,k → U corresponding to the ring map x 7→ a, y 7→ b. It is
easy to see that this is a surjective morphism, and hence the image is not contained
in any affine open of U . In fact, the affine scheme GL2,k also surjects onto P1

k, and
P1
k does not even have an immersion into any affine scheme.
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Remark 25.21.18. The category of quasi-compact and quasi-separated schemes
C has the following properties. If X,Y ∈ Ob(C), then any morphism of schemes
f : X → Y is quasi-compact and quasi-separated by Lemmas 25.21.15 and 25.21.14
with Z = Spec(Z). Moreover, if X → Y and Z → Y are morphisms C, then X×Y Z
is an object of C too. Namely, the projection X ×Y Z → Z is quasi-compact and
quasi-separated as a base change of the morphism Z → Y , see Lemmas 25.21.13
and 25.19.3. Hence the composition X×Y Z → Z → Spec(Z) is quasi-compact and
quasi-separated, see Lemmas 25.21.13 and 25.19.4.

25.22. Valuative criterion of separatedness

Lemma 25.22.1. Let f : X → S be a morphism of schemes. If f is separated,
then f satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 25.20.3 be given. Suppose there are two
morphisms a, b : Spec(A) → X fitting into the diagram. Let Z ⊂ Spec(A) be the
equalizer of a and b. By Lemma 25.21.5 this is a closed subscheme of Spec(A).
By assumption it contains the generic point of Spec(A). Since A is a domain this
implies Z = Spec(A). Hence a = b as desired. �

Lemma 25.22.2 (Valuative criterion separatedness). Let f : X → S be a mor-
phism. Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.

Proof. By assumption (1) and Proposition 25.20.6 we see that it suffices to prove
the morphism ∆X/S : X → X ×S X satisfies the existence part of the valuative
criterion. Let a solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×S X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→
X over S. By (2) we see that a = b. Hence using a as the dotted arrow works. �

25.23. Monomorphisms

Definition 25.23.1. A morphism of schemes is called a monomorphism if it is a
monomorphism in the category of schemes, see Categories, Definition 4.13.1.

Lemma 25.23.2. Let j : X → Y be a morphism of schemes. Then j is a monomor-
phism if and only if the diagonal morphism ∆X/Y : X → X ×Y X is an isomor-
phism.

Proof. This is true in any category with fibre products. �

Lemma 25.23.3. A monomorphism of schemes is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma
25.23.2 above. �

Lemma 25.23.4. A composition of monomorphisms is a monomorphism.
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Proof. True in any category. �

Lemma 25.23.5. The base change of a monomorphism is a monomorphism.

Proof. True in any category with fibre products. �

Lemma 25.23.6. Let j : X → Y be a morphism of schemes. If

(1) j is injective on points, and
(2) for any x ∈ X the ring map j]x : OY,j(x) → OX,x is surjective,

then j is a monomorphism.

Proof. Let a, b : Z → X be two morphisms of schemes such that j ◦ a = j ◦ b.
Then (1) implies a = b as underlying maps of topological spaces. For any z ∈ Z we

have a]z ◦ j
]
a(z) = b]z ◦ j

]
b(z) as maps OY,j(a(z)) → OZ,z. The surjectivity of the maps

j]x forces a]z = b]z, ∀z ∈ Z. This implies that a] = b]. Hence we conclude a = b as
morphisms of schemes as desired. �

Lemma 25.23.7. An immersion of schemes is a monomorphism. In particular,
any immersion is separated.

Proof. We can see this by checking that the criterion of Lemma 25.23.6 applies.
More elegantly perhaps, we can use that Lemmas 25.3.5 and 25.4.6 imply that open
and closed immersions are monomorphisms and hence any immersion (which is a
composition of such) is a monomorphism. �

Lemma 25.23.8. Let f : X → S be a separated morphism. Any locally closed
subscheme Z ⊂ X is separated over S.

Proof. Follows from Lemma 25.23.7 and the fact that a composition of separated
morphisms is separated (Lemma 25.21.13). �

Example 25.23.9. The morphism Spec(Q)→ Spec(Z) is a monomorphism. This
is true because Q⊗ZQ = Q. More generally, for any scheme S and any point s ∈ S
the canonical morphism

Spec(OS,s) −→ S

is a monomorphism.

Lemma 25.23.10. Let k1, . . . , kn be fields. For any monomorphism of schemes
X → Spec(k1 × . . . × kn) there exists a subset I ⊂ {1, . . . , n} such that X ∼=
Spec(

∏
i∈I ki) as schemes over Spec(k1×. . .×kn). More generally, if X =

∐
i∈I Spec(ki)

is a disjoint union of spectra of fields and Y → X is a monomorphism, then there
exists a subset J ⊂ I such that Y =

∐
i∈J Spec(ki).

Proof. First reduce to the case n = 1 (or #I = 1) by taking the inverse images of
the open and closed subschemes Spec(ki). In this case X has only one point hence
is affine. The corresponding algebra problem is this: If k → R is an algebra map
with R⊗kR ∼= R, then R ∼= k. This holds for dimension reasons. See also Algebra,
Lemma 10.103.8 �
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25.24. Functoriality for quasi-coherent modules

Let X be a scheme. We denote QCoh(OX) the category of quasi-coherent OX -
modules as defined in Modules, Definition 17.10.1. We have seen in Section 25.7
that the category QCoh(OX) has a lot of good properties when X is affine. Since
the property of being quasi-coherent is local on X, these properties are inherited
by the category of quasi-coherent sheaves on any scheme X. We enumerate them
here.

(1) A sheaf of OX -modules F is quasi-coherent if and only if the restriction of

F to each affine open U = Spec(R) is of the form M̃ for some R-module
M .

(2) A sheaf of OX -modules F is quasi-coherent if and only if the restriction
of F to each of the members of an affine open covering is quasi-coherent.

(3) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(4) Any colimit of quasi-coherent sheaves is quasi-coherent.
(5) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(6) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(7) Given a morphism of schemes f : Y → X the pullback of a quasi-coherent
OX -module is a quasi-coherent OY -module. See Modules, Lemma 17.10.4.

(8) Given two quasi-coherentOX -modules the tensor product is quasi-coherent,
see Modules, Lemma 17.15.5.

(9) Given a quasi-coherent OX -module F the tensor, symmetric and exterior
algebras on F are quasi-coherent, see Modules, Lemma 17.18.6.

(10) Given two quasi-coherent OX -modules F , G such that F is of finite presen-
tation, then the internal hom HomOX (F ,G) is quasi-coherent, see Mod-
ules, Lemma 17.19.4 and (5) above.

On the other hand, it is in general not the case that the pushforward of a quasi-
coherent module is quasi-coherent. Here is a case where it this does hold.

Lemma 25.24.1. Let f : X → S be a morphism of schemes. If f is quasi-
compact and quasi-separated then f∗ transforms quasi-coherent OX-modules into
quasi-coherent OS-modules.

Proof. The question is local on S and hence we may assume that S is affine.
Because X is quasi-compact we may write X =

⋃n
i=1 Ui with each Ui open affine.

Because f is quasi-separated we may write Ui∩Uj =
⋃nij
k=1 Uijk for some affine open

Uijk, see Lemma 25.21.7. Denote fi : Ui → S and fijk : Uijk → S the restrictions
of f . For any open V of S and any sheaf F on X we have

f∗F(V ) = F(f−1V )

= Ker
(⊕

i
F(f−1V ∩ Ui)→

⊕
i,j,k
F(f−1V ∩ Uijk)

)
= Ker

(⊕
i
fi,∗(F|Ui)(V )→

⊕
i,j,k

fijk,∗(F|Uijk)
)

(V )

= Ker
(⊕

i
fi,∗(F|Ui)→

⊕
i,j,k

fijk,∗(F|Uijk)
)

(V )

In other words there is a short exact sequence of sheaves

0→ f∗F →
⊕

fi,∗Fi →
⊕

fijk,∗Fijk
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where Fi,Fijk denotes the restriction of F to the corresponding open. If F is a
quasi-coherent OX -modules then Fi, Fijk is a quasi-coherent OUi , OUijk -module.
Hence by Lemma 25.7.3 we see that the second and third term of the exact sequence
are quasi-coherent OS-modules. Thus we conclude that f∗F is a quasi-coherent OS-
module. �

Using this we can characterize (closed) immersions of schemes as follows.

Lemma 25.24.2. Let f : X → Y be a morphism of schemes. Suppose that

(1) f induces a homeomorphism of X with a closed subset of Y , and
(2) f ] : OY → f∗OX is surjective.

Then f is a closed immersion of schemes.

Proof. Assume (1) and (2). By (1) the morphism f is quasi-compact (see Topology,
Lemma 5.11.3). Conditions (1) and (2) imply conditions (1) and (2) of Lemma
25.23.6. Hence f : X → Y is a monomorphism. In particular, f is separated, see
Lemma 25.23.3. Hence Lemma 25.24.1 above applies and we conclude that f∗OX is
a quasi-coherent OY -module. Therefore the kernel of OY → f∗OX is quasi-coherent
by Lemma 25.7.8. Since a quasi-coherent sheaf is locally generated by sections (see
Modules, Definition 17.10.1) this implies that f is a closed immersion, see Definition
25.4.1. �

We can use this lemma to prove the following lemma.

Lemma 25.24.3. A composition of immersions of schemes is an immersion, a
composition of closed immersions of schemes is a closed immersion, and a compo-
sition of open immersions of schemes is an open immersion.

Proof. This is clear for the case of open immersions since an open subspace of an
open subspace is also an open subspace.

Suppose a : Z → Y and b : Y → X are closed immersions of schemes. We will verify
that c = b ◦ a is also a closed immersion. The assumption implies that a and b are
homeomorphisms onto closed subsets, and hence also c = b◦a is a homeomorphism
onto a closed subset. Moreover, the map OX → c∗OZ is surjective since it factors
as the composition of the surjective maps OX → b∗OY and b∗OY → b∗a∗OZ
(surjective as b∗ is exact, see Modules, Lemma 17.6.1). Hence by Lemma 25.24.2
above c is a closed immersion.

Finally, we come to the case of immersions. Suppose a : Z → Y and b : Y → X
are immersions of schemes. This means there exist open subschemes V ⊂ Y and
U ⊂ X such that a(Z) ⊂ V , b(Y ) ⊂ U and a : Z → V and b : Y → U are closed
immersions. Since the topology on Y is induced from the topology on U we can find
an open U ′ ⊂ U such that V = b−1(U ′). Then we see that Z → V = b−1(U ′)→ U ′

is a composition of closed immersions and hence a closed immersion. This proves
that Z → X is an immersion and we win. �

25.25. Other chapters
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CHAPTER 26

Constructions of Schemes

26.1. Introduction

In this chapter we introduce ways of constructing schemes out of others. A basic
reference is [DG67].

26.2. Relative glueing

The following lemma is relevant in case we are trying to construct a scheme X over
S, and we already know how to construct the restriction of X to the affine opens
of S. The actual result is completely general and works in the setting of (locally)
ringed spaces, although our proof is written in the language of schemes.

Lemma 26.2.1. Let S be a scheme. Let B be a basis for the topology of S. Suppose
given the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For every pair U, V ∈ B such that V ⊂ U a morphism ρUV : XV → XU .

Assume that

(a) each ρUV induces an isomorphism XV → f−1
U (V ) of schemes over V ,

(b) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW .

Then there exists a unique scheme f : X → S over S and isomorphisms iU :
f−1(U)→ XU over U such that for V ⊂ U ⊂ S affine open the composition

XV

i−1
V // f−1(V )

inclusion // f−1(U)
iU // XU

is the morphism ρUV .

Proof. To prove this we will use Schemes, Lemma 25.15.4. First we define a con-
travariant functor F from the category of schemes to the category of sets. Namely,
for a scheme T we set

F (T ) =

{
(g, {hU}U∈B), g : T → S, hU : g−1(U)→ XU ,

fU ◦ hU = g|g−1(U), hU |g−1(V ) = ρUV ◦ hV ∀ V,U ∈ B, V ⊂ U

}
.

The restriction mapping F (T ) → F (T ′) given a morphism T ′ → T is just gotten
by composition. For any W ∈ B we consider the subfunctor FW ⊂ F consisting of
those systems (g, {hU}) such that g(T ) ⊂W .

First we show F satisfies the sheaf property for the Zariski topology. Suppose that
T is a scheme, T =

⋃
Vi is an open covering, and ξi ∈ F (Vi) is an element such

that ξi|Vi∩Vj = ξj |Vi∩Vj . Say ξi = (gi, {hi,U}). Then we immediately see that the
morphisms gi glue to a unique global morphism g : T → S. Moreover, it is clear
that g−1(U) =

⋃
g−1
i (U). Hence the morphisms hi,U : g−1

i (U) → XU glue to a

1755
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unique morphism hU : U → XU . It is easy to verify that the system (g, {fU}) is an
element of F (T ). Hence F satisfies the sheaf property for the Zariski topology.

Next we verify that each FW , W ∈ B is representable. Namely, we claim that the
transformation of functors

FW −→ Mor(−, XW ), (g, {hU}) 7−→ hW

is an isomorphism. To see this suppose that T is a scheme and α : T → XW is
a morphism. Set g = fW ◦ α. For any U ∈ B such that U ⊂ W we can define
hU : g−1(U) → XU be the composition (ρWU )−1 ◦ α|g−1(U). This works because

the image α(g−1(U)) is contained in f−1
W (U) and condition (a) of the lemma. It

is clear that fU ◦ hU = g|g−1(U) for such a U . Moreover, if also V ∈ B and

V ⊂ U ⊂ W , then ρUV ◦ hV = hU |g−1(V ) by property (b) of the lemma. We
still have to define hU for an arbitrary element U ∈ B. Since B is a basis for
the topology on S we can find an open covering U ∩ W =

⋃
Ui with Ui ∈ B.

Since g maps into W we have g−1(U) = g−1(U ∩W ) =
⋃
g−1(Ui). Consider the

morphisms hi = ρUUi ◦ hUi : g−1(Ui) → XU . It is a simple matter to use condition
(b) of the lemma to prove that hi|g−1(Ui)∩g−1(Uj) = hj |g−1(Ui)∩g−1(Uj). Hence these

morphisms glue to give the desired morphism hU : g−1(U) → XU . We omit the
(easy) verification that the system (g, {hU}) is an element of FW (T ) which maps
to α under the displayed arrow above.

Next, we verify each FW ⊂ F is representable by open immersions. This is clear
from the definitions.

Finally we have to verify the collection (FW )W∈B covers F . This is clear by con-
struction and the fact that B is a basis for the topology of S.

Let X be a scheme representing the functor F . Let (f, {iU}) ∈ F (X) be a “universal
family”. Since each FW is representable by XW (via the morphism of functors
displayed above) we see that iW : f−1(W ) → XW is an isomorphism as desired.
The lemma is proved. �

Lemma 26.2.2. Let S be a scheme. Let B be a basis for the topology of S. Suppose
given the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For every U ∈ B a quasi-coherent sheaf FU over XU .
(3) For every pair U, V ∈ B such that V ⊂ U a morphism ρUV : XV → XU .
(4) For every pair U, V ∈ B such that V ⊂ U a morphism θUV : (ρUV )∗FU →
FV .

Assume that

(a) each ρUV induces an isomorphism XV → f−1
U (V ) of schemes over V ,

(b) each θUV is an isomorphism,
(c) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW ,
(d) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have θUW = θVW ◦ (ρVW )∗θUV .

Then there exists a unique scheme f : X → S over S together with a unique quasi-
coherent sheaf F on X and isomorphisms iU : f−1(U) → XU and θU : i∗UFU →
F|f−1(U) over U such that for V ⊂ U ⊂ S affine open the composition

XV

i−1
V // f−1(V )

inclusion // f−1(U)
iU // XU
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is the morphism ρUV , and the composition

(26.2.2.1) (ρUV )∗FU = (i−1
V )∗((i∗UFU )|f−1(V ))

θU |f−1(V )−−−−−−→ (i−1
V )∗(F|f−1(V ))

θ−1
V−−→ FV

is equal to θUV .

Proof. By Lemma 26.2.1 we get the scheme X over S and the isomorphisms iU .
Set F ′U = i∗UFU for U ∈ B. This is a quasi-coherent Of−1(U)-module. The maps

F ′U |f−1(V ) = i∗UFU |f−1(V ) = i∗V (ρUV )∗FU
i∗V θ

U
V−−−→ i∗V FV = F ′V

define isomorphisms (θ′)UV : F ′U |f−1(V ) → F ′V whenever V ⊂ U are elements of
B. Condition (d) says exactly that this is compatible in case we have a triple of
elements W ⊂ V ⊂ U of B. This allows us to get well defined isomorphisms

ϕ12 : F ′U1
|f−1(U1∩U2) −→ F ′U2

|f−1(U1∩U2)

whenever U1, U2 ∈ B by covering the intersection U1 ∩U2 =
⋃
Vj by elements Vj of

B and taking

ϕ12|Vj =
(

(θ′)U2

Vj

)−1

◦ (θ′)U1

Vj
.

We omit the verification that these maps do indeed glue to a ϕ12 and we omit the
verification of the cocycle condition of a glueing datum for sheaves (as in Sheaves,
Section 6.33). By Sheaves, Lemma 6.33.2 we get our F on X. We omit the verifi-
cation of (26.2.2.1). �

Remark 26.2.3. There is a functoriality property for the constructions explained
in Lemmas 26.2.1 and 26.2.2. Namely, suppose given two collections of data (fU :
XU → U, ρUV ) and (gU : YU → U, σUV ) as in Lemma 26.2.1. Suppose for every
U ∈ B given a morphism hU : XU → YU over U compatible with the restrictions
ρUV and σUV . Functoriality means that this gives rise to a morphism of schemes
h : X → Y over S restricting back to the morphisms hU , where f : X → S is
obtained from the datum (fU : XU → U, ρUV ) and g : Y → S is obtained from the
datum (gU : YU → U, σUV ).

Similarly, suppose given two collections of data (fU : XU → U,FU , ρUV , θUV ) and
(gU : YU → U,GU , σUV , ηUV ) as in Lemma 26.2.2. Suppose for every U ∈ B given a
morphism hU : XU → YU over U compatible with the restrictions ρUV and σUV , and
a morphism τU : h∗UGU → FU compatible with the maps θUV and ηUV . Functoriality
means that these give rise to a morphism of schemes h : X → Y over S restricting
back to the morphisms hU , and a morphism h∗G → F restricting back to the maps
hU where (f : X → S,F) is obtained from the datum (fU : XU → U,FU , ρUV , θUV )
and where (g : Y → S,G) is obtained from the datum (gU : YU → U,GU , σUV , ηUV ).

We omit the verifications and we omit a suitable formulation of “equivalence of
categories” between relative glueing data and relative objects.

26.3. Relative spectrum via glueing

Situation 26.3.1. Here S is a scheme, and A is a quasi-coherent OS-algebra.

In this section we outline how to construct a morphism of schemes

Spec
S

(A) −→ S
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by glueing the spectra Spec(Γ(U,A)) where U ranges over the affine opens of S. We
first show that the spectra of the values of A over affines form a suitable collection
of schemes, as in Lemma 26.2.1.

Lemma 26.3.2. In Situation 26.3.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let
A = A(U) and A′ = A(U ′). The map of rings A′ → A induces a morphism
Spec(A)→ Spec(A′), and the diagram

Spec(A) //

��

Spec(A′)

��
U // U ′

is cartesian.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R ⊗R′ A′ → A is
an isomorphism as A is quasi-coherent (see Schemes, Lemma 25.7.3 for example).
The result follows from the description of the fibre product of affine schemes in
Schemes, Lemma 25.6.7. �

In particular the morphism Spec(A) → Spec(A′) of the lemma is an open immer-
sion.

Lemma 26.3.3. In Situation 26.3.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine
opens. Let A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the
morphisms Spec(A)→ Spec(A′), and Spec(A′)→ Spec(A′′) of Lemma 26.3.2 gives
the morphism Spec(A)→ Spec(A′′) of Lemma 26.3.2.

Proof. This follows as the map A′′ → A is the composition of A′′ → A′ and
A′ → A (because A is a sheaf). �

Lemma 26.3.4. In Situation 26.3.1. There exists a morphism of schemes

π : Spec
S

(A) −→ S

with the following properties:

(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →
Spec(A(U)), and

(2) for U ⊂ U ′ ⊂ S affine open the composition

Spec(A(U))
i−1
U // π−1(U)

inclusion // π−1(U ′)
iU′ // Spec(A(U ′))

is the open immersion of Lemma 26.3.2 above.

Proof. Follows immediately from Lemmas 26.2.1, 26.3.2, and 26.3.3. �

26.4. Relative spectrum as a functor

We place ourselves in Situation 26.3.1. So S is a scheme and A is a quasi-coherent
sheaf of OS-algebras. (This means that A is a sheaf of OS-algebras which is quasi-
coherent as an OS-module.)

For any f : T → S the pullback f∗A is a quasi-coherent sheaf of OT -algebras. We
are going to consider pairs (f : T → S, ϕ) where f is a morphism of schemes and
ϕ : f∗A → OT is a morphism of OT -algebras. Note that this is the same as giving a
f−1OS-algebra homomorphism ϕ : f−1A → OT , see Sheaves, Lemma 6.20.2. This
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is also the same as giving a OS-algebra map ϕ : A → f∗OT , see Sheaves, Lemma
6.24.7. We will use all three ways of thinking about ϕ, without further mention.

Given such a pair (f : T → S, ϕ) and a morphism a : T ′ → T we get a second pair
(f ′ = f ◦ a, ϕ′ = a∗ϕ) which we call the pullback of (f, ϕ). One way to describe
ϕ′ = a∗ϕ is as the composition A → f∗OT → f ′∗OT ′ where the second map is f∗a

]

with a] : OT → a∗OT ′ . In this way we have defined a functor

F : Schopp −→ Sets(26.4.0.1)

T 7−→ F (T ) = {pairs (f, ϕ) as above}

Lemma 26.4.1. In Situation 26.3.1. Let F be the functor associated to (S,A)
above. Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′ be the
functor associated to (S′,A′) above. Then there is a canonical isomorphism

F ′ ∼= hS′ ×hS F
of functors.

Proof. A pair (f ′ : T → S′, ϕ′ : (f ′)∗A′ → OT ) is the same as a pair (f, ϕ : f∗A →
OT ) together with a factorization of f as f = g ◦ f ′. Namely with this notation we
have (f ′)∗A′ = (f ′)∗g∗A = f∗A. Hence the lemma. �

Lemma 26.4.2. In Situation 26.3.1. Let F be the functor associated to (S,A)
above. If S is affine, then F is representable by the affine scheme Spec(Γ(S,A)).

Proof. Write S = Spec(R) and A = Γ(S,A). Then A is an R-algebra and A = Ã.
The ring map R→ A gives rise to a canonical map

funiv : Spec(A) −→ S = Spec(R).

We have f∗univA = Ã⊗R A by Schemes, Lemma 25.7.3. Hence there is a canonical
map

ϕuniv : f∗univA = Ã⊗R A −→ Ã = OSpec(A)

coming from the A-module map A ⊗R A → A, a ⊗ a′ 7→ aa′. We claim that the
pair (funiv, ϕuniv) represents F in this case. In other words we claim that for any
scheme T the map

Mor(T, Spec(A)) −→ {pairs (f, ϕ)}, a 7−→ (a∗funiv, a
∗ϕ)

is bijective.

Let us construct the inverse map. For any pair (f : T → S, ϕ) we get the induced
ring map

A = Γ(S,A)
f∗ // Γ(T, f∗A)

ϕ // Γ(T,OT )

This induces a morphism of schemes T → Spec(A) by Schemes, Lemma 25.6.4.

The verification that this map is inverse to the map displayed above is omitted. �

Lemma 26.4.3. In Situation 26.3.1. The functor F is representable by a scheme.

Proof. We are going to use Schemes, Lemma 25.15.4.

First we check that F satisfies the sheaf property for the Zariski topology. Namely,
suppose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that (fi, ϕi) ∈

F (Ui) such that (fi, ϕi)|Ui∩Uj = (fj , ϕj)|Ui∩Uj . This implies that the morphisms
fi : Ui → S glue to a morphism of schemes f : T → S such that f |Ii = fi, see
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Schemes, Section 25.14. Thus f∗i A = f∗A|Ui and by assumption the morphisms
ϕi agree on Ui ∩ Uj . Hence by Sheaves, Section 6.33 these glue to a morphism
of OT -algebras f∗A → OT . This proves that F satisfies the sheaf condition with
respect to the Zariski topology.

Let S =
⋃
i∈I Ui be an affine open covering. Let Fi ⊂ F be the subfunctor consisting

of those pairs (f : T → S, ϕ) such that f(T ) ⊂ Ui.
We have to show each Fi is representable. This is the case because Fi is identified
with the functor associated to Ui equipped with the quasi-coherent OUi-algebra
A|Ui , by Lemma 26.4.1. Thus the result follows from Lemma 26.4.2.

Next we show that Fi ⊂ F is representable by open immersions. Let (f : T →
S, ϕ) ∈ F (T ). Consider Vi = f−1(Ui). It follows from the definition of Fi that
given a : T ′ → T we gave a∗(f, ϕ) ∈ Fi(T ′) if and only if a(T ′) ⊂ Vi. This is what
we were required to show.

Finally, we have to show that the collection (Fi)i∈I covers F . Let (f : T → S, ϕ) ∈
F (T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of S we

see that T =
⋃
i∈I Vi is an open covering of T . Moreover (f, ϕ)|Vi ∈ Fi(Vi). This

finishes the proof of the lemma. �

Lemma 26.4.4. In Situation 26.3.1. The scheme π : Spec
S

(A) → S constructed
in Lemma 26.3.4 and the scheme representing the functor F are canonically iso-
morphic as schemes over S.

Proof. Let X → S be the scheme representing the functor F . Consider the sheaf of
OS-algebras R = π∗OSpec

S
(A). By construction of Spec

S
(A) we have isomorphisms

A(U) → R(U) for every affine open U ⊂ S; this follows from Lemma 26.3.4 part
(1). For U ⊂ U ′ ⊂ S open these isomorphisms are compatible with the restriction
mappings; this follows from Lemma 26.3.4 part (2). Hence by Sheaves, Lemma
6.30.13 these isomorphisms result from an isomorphism of OS-algebras ϕ : A → R.
Hence this gives an element (Spec

S
(A), ϕ) ∈ F (Spec

S
(A)). Since X represents the

functor F we get a corresponding morphism of schemes can : Spec
S

(A)→ X over
S.

Let U ⊂ S be any affine open. Let FU ⊂ F be the subfunctor of F corresponding
to pairs (f, ϕ) over schemes T with f(T ) ⊂ U . Clearly the base change XU rep-
resents FU . Moreover, FU is represented by Spec(A(U)) = π−1(U) according to
Lemma 26.4.2. In other words XU

∼= π−1(U). We omit the verification that this
identification is brought about by the base change of the morphism can to U . �

Definition 26.4.5. Let S be a scheme. Let A be a quasi-coherent sheaf of OS-
algebras. The relative spectrum of A over S, or simply the spectrum of A over S is
the scheme constructed in Lemma 26.3.4 which represents the functor F (26.4.0.1),
see Lemma 26.4.4. We denote it π : Spec

S
(A) → S. The “universal family” is a

morphism of OS-algebras
A −→ π∗OSpec

S
(A)

The following lemma says among other things that forming the relative spectrum
commutes with base change.

Lemma 26.4.6. Let S be a scheme. Let A be a quasi-coherent sheaf of OS-algebras.
Let π : Spec

S
(A)→ S be the relative spectrum of A over S.
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(1) For every affine open U ⊂ S the inverse image π−1(U) is affine.
(2) For every morphism g : S′ → S we have S′ ×S Spec

S
(A) = Spec

S′
(g∗A).

(3) The universal map

A −→ π∗OSpec
S

(A)

is an isomorphism of OS-algebras.

Proof. Part (1) comes from the description of the relative spectrum by glueing,
see Lemma 26.3.4. Part (2) follows immediately from Lemma 26.4.1. Part (3)
follows because it is local on S and it is clear in case S is affine by Lemma 26.4.2
for example. �

Lemma 26.4.7. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma 25.24.1 the sheaf f∗OX is a quasi-coherent sheaf
of OS-algebras. There is a canonical morphism

can : X −→ Spec
S

(f∗OX)

of schemes over S. For any affine open U ⊂ S the restriction can|f−1(U) is identified
with the canonical morphism

f−1(U) −→ Spec(Γ(f−1(U),OX))

coming from Schemes, Lemma 25.6.4.

Proof. The morphism comes, via the definition of Spec as the scheme representing
the functor F , from the canonical map ϕ : f∗f∗OX → OX (which by adjointness
of push and pull corresponds to id : f∗OX → f∗OX). The statement on the
restriction to f−1(U) follows from the description of the relative spectrum over
affines, see Lemma 26.4.2. �

26.5. Affine n-space

As an application of the relative spectrum we define affine n-space over a base
scheme S as follows. For any integer n ≥ 0 we can consider the quasi-coherent
sheaf of OS-algebras OS [T1, . . . , Tn]. It is quasi-coherent because as a sheaf of
OS-modules it is just the direct sum of copies of OS indexed by multi-indices.

Definition 26.5.1. Let S be a scheme and n ≥ 0. The scheme

An
S = Spec

S
(OS [T1, . . . , Tn])

over S is called affine n-space over S. If S = Spec(R) is affine then we also call
this affine n-space over R and we denote it An

R.

Note that An
R = Spec(R[T1, . . . , Tn]). For any morphism g : S′ → S of schemes

we have g∗OS [T1, . . . , Tn] = OS′ [T1, . . . , Tn] and hence An
S′ = S′×S An

S is the base
change. Therefore an alternative definition of affine n-space is the formula

An
S = S ×Spec(Z) An

Z.

Also, a morphism from an S-scheme f : X → S to An
S is given by a homomorphism

of OS-algebras OS [T1, . . . , Tn] → f∗OX . This is clearly the same thing as giving
the images of the Ti. In other words, a morphism from X to An

S over S is the same
as giving n elements h1, . . . , hn ∈ Γ(X,OX).
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26.6. Vector bundles

Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules,
Lemma 17.18.6 the symmetric algebra Sym(E) of E over OS is a quasi-coherent
sheaf of OS-algebras. Hence it makes sense to apply the construction of the previous
section to it.

Definition 26.6.1. Let S be a scheme. Let E be a quasi-coherent OS-module1.
The vector bundle associated to E is

V(E) = Spec
S

(Sym(E)).

The vector bundle associated to E comes with a bit of extra structure. Namely, we
have a grading

π∗OV(E) =
⊕

n≥0
Symn(E).

which turns π∗OV(E) into a graded OS-algebra. Conversely, we can recover E from
the degree 1 part of this. Thus we define an abstract vector bundle as follows.

Definition 26.6.2. Let S be a scheme. A vector bundle π : V → S over S is
an affine morphism of schemes such that π∗OV is endowed with the structure of a
graded OS-algebra π∗OV =

⊕
n≥0 En such that E0 = OS and such that the maps

Symn(E1) −→ En
are isomorphisms for all n ≥ 0. A morphism of vector bundles over S is a morphism
f : V → V ′ such that the induced map

f∗ : π′∗OV ′ −→ π∗OV
is compatible with the given gradings.

An example of a vector bundle over S is affine n-space An
S over S, see Definition

26.5.1. This is true because OS [T1, . . . , Tn] = Sym(O⊕nS ).

Lemma 26.6.3. The category of vector bundles over a scheme S is anti-equivalent
to the category of quasi-coherent OS-modules.

Proof. Omitted. Hint: In one direction one uses the functor Spec
S

(−) and in the

other the functor (π : V → S) (π∗OV )1 (degree 1 part). �

26.7. Cones

In algebraic geometry cones correspond to graded algebras. By our conventions a
graded ring or algebra A comes with a grading A =

⊕
d≥0Ad by the nonnegative

integers, see Algebra, Section 10.54.

Definition 26.7.1. Let S be a scheme. Let A be a quasi-coherent graded OS-
algebra. Assume that OS → A0 is an isomorphism2. The cone associated to A or
the affine cone associated to A is

C(A) = Spec
S

(A).

1The reader may expect here the condition that E is finite locally free. We do not do so in

order to be consistent with [DG67, II, Definition 1.7.8].
2Often one imposes the assumption that A is generated by A1 over OS . We do not assume

this in order to be consistent with [DG67, II, (8.3.1)].
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The cone associated to a graded sheaf of OS-algebras comes with a bit of extra
structure. Namely, we obtain a grading

π∗OC(A) =
⊕

n≥0
An

Thus we can define an abstract cone as follows.

Definition 26.7.2. Let S be a scheme. A cone π : C → S over S is an affine
morphism of schemes such that π∗OC is endowed with the structure of a graded
OS-algebra π∗OC =

⊕
n≥0An such that A0 = OS . A morphism of cones from

π : C → S to π′ : C ′ → S is a morphism f : C → C ′ such that the induced map

f∗ : π′∗OC′ −→ π∗OC
is compatible with the given gradings.

Any vector bundle is an example of a cone. In fact the category of vector bundles
over S is a full subcategory of the category of cones over S.

26.8. Proj of a graded ring

Let S be a graded ring. Consider the topological space Proj(S) associated to S,
see Algebra, Section 10.55. We will endow this space with a sheaf of rings OProj(S)

such that the resulting pair (Proj(S),OProj(S)) will be a scheme.

Recall that Proj(S) has a basis of open sets D+(f), f ∈ Sd, d ≥ 1 which we call
standard opens, see Algebra, Section 10.55. This terminology will always imply that
f is homogeneous of positive degree even if we forget to mention it. In addition,
the intersection of two standard opens is another: D+(f) ∩D+(g) = D+(fg), for
f, g ∈ S homogeneous of positive degree.

Lemma 26.8.1. Let S be a graded ring. Let f ∈ S homogeneous of positive degree.

(1) If g ∈ S homogeneous of positive degree and D+(g) ⊂ D+(f), then
(a) f is invertible in Sg, and fdeg(g)/gdeg(f) is invertible in S(g),
(b) ge = af for some e ≥ 1 and a ∈ S homogeneous,
(c) there is a canonical S-algebra map Sf → Sg,
(d) there is a canonical S0-algebra map S(f) → S(g) compatible with the

map Sf → Sg,
(e) the map S(f) → S(g) induces an isomorphism

(S(f))gdeg(f)/fdeg(g)
∼= S(g),

(f) these maps induce a commutative diagram of topological spaces

D+(g)

��

{Z-graded primes of Sg}oo //

��

Spec(S(g))

��
D+(f) {Z-graded primes of Sf}oo // Spec(S(f))

where the horizontal maps are homeomorphisms and the vertical maps
are open immersions,

(g) there are compatible canonical Sf and S(f)-module maps Mf → Mg

and M(f) →M(g) for any graded S-module M , and
(h) the map M(f) →M(g) induces an isomorphism

(M(f))gdeg(f)/fdeg(g)
∼= M(g).
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(2) Any open covering of D+(f) can be refined to a finite open covering of the
form D+(f) =

⋃n
i=1D+(gi).

(3) Let g1, . . . , gn ∈ S be homogeneous of positive degree. Then D+(f) ⊂⋃
D+(gi) if and only if g

deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the

unit ideal in S(f).

Proof. Recall that D+(g) = Spec(S(g)) with identification given by the ring maps

S → Sg ← S(g), see Algebra, Lemma 10.55.3. Thus fdeg(g)/gdeg(f) is an element of
S(g) which is not contained in any prime ideal, and hence invertible, see Algebra,

Lemma 10.16.2. We conclude that (a) holds. Write the inverse of f in Sg as a/gd.
We may replace a by its homogeneous part of degree ddeg(g)−deg(f). This means
gd−af is annihilated by a power of g, whence ge = af for some a ∈ S homogeneous
of degree edeg(g) − deg(f). This proves (b). For (c), the map Sf → Sg exists by
(a) from the universal property of localization, or we can define it by mapping
b/fn to anb/gne. This clearly induces a map of the subrings S(f) → S(g) of degree
zero elements as well. We can similarly define Mf → Mg and M(f) → M(g) by
mapping x/fn to anx/gne. The statements writing S(g) resp. M(g) as principal
localizations of S(f) resp. M(f) are clear from the formulas above. The maps in
the commutative diagram of topological spaces correspond to the ring maps given
above. The horizontal arrows are homeomorphisms by Algebra, Lemma 10.55.3.
The vertical arrows are open immersions since the left one is the inclusion of an
open subset.

The open D+(f) is quasi-compact because it is homeomorphic to Spec(S(f)), see
Algebra, Lemma 10.16.10. Hence the second statement follows directly from the
fact that the standard opens form a basis for the topology.

The third statement follows directly from Algebra, Lemma 10.16.2. �

In Sheaves, Section 6.30 we defined the notion of a sheaf on a basis, and we showed
that it is essentially equivalent to the notion of a sheaf on the space, see Sheaves,
Lemmas 6.30.6 and 6.30.9. Moreover, we showed in Sheaves, Lemma 6.30.4 that it
is sufficient to check the sheaf condition on a cofinal system of open coverings for
each standard open. By the lemma above it suffices to check on the finite coverings
by standard opens.

Definition 26.8.2. Let S be a graded ring. Suppose that D+(f) ⊂ Proj(S)
is a standard open. A standard open covering of D+(f) is a covering D+(f) =⋃n
i=1D+(gi), where g1, . . . , gn ∈ S are homogeneous of positive degree.

Let S be a graded ring. Let M be a graded S-module. We will define a presheaf

M̃ on the basis of standard opens. Suppose that U ⊂ Proj(S) is a standard open.
If f, g ∈ S are homogeneous of positive degree such that D+(f) = D+(g), then
by Lemma 26.8.1 above there are canonical maps M(f) → M(g) and M(g) → M(f)

which are mutually inverse. Hence we may choose any f such that U = D+(f) and
define

M̃(U) = M(f).

Note that if D+(g) ⊂ D+(f), then by Lemma 26.8.1 above we have a canonical
map

M̃(D+(f)) = M(f) −→M(g) = M̃(D+(g)).
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Clearly, this defines a presheaf of abelian groups on the basis of standard opens.

If M = S, then S̃ is a presheaf of rings on the basis of standard opens. And for

general M we see that M̃ is a presheaf of S̃-modules on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Proj(S). Suppose that x corresponds
to the homogeneous prime ideal p ⊂ S. By definition of the stalk we see that

M̃x = colimf∈Sd,d>0,f 6∈pM(f)

Here the set {f ∈ Sd, d > 0, f 6∈ p} is partially ordered by the rule f ≥ f ′ ⇔
D+(f) ⊂ D+(f ′). If f1, f2 ∈ S \ p are homogeneous of positive degree, then we
have f1f2 ≥ f1 in this ordering. In Algebra, Section 10.55 we defined M(p) as the
ring whose elements are fractions x/f with x, f homogeneous, deg(x) = deg(f),
f 6∈ p. Since p ∈ Proj(S) there exists at least one f0 ∈ S homogeneous of positive
degree with f0 6∈ p. Hence x/f = f0x/ff0 and we see that we may always assume
the denominator of an element in M(p) has positive degree. From these remarks it
follows easily that

M̃x = M(p).

Next, we check the sheaf condition for the standard open coverings. If D+(f) =⋃n
i=1D+(gi), then the sheaf condition for this covering is equivalent with the ex-

actness of the sequence

0→M(f) →
⊕

M(gi) →
⊕

M(gigj).

Note that D+(gi) = D+(fgi), and hence we can rewrite this sequence as the se-
quence

0→M(f) →
⊕

M(fgi) →
⊕

M(fgigj).

By Lemma 26.8.1 we see that g
deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the unit

ideal in S(f), and that the modules M(fgi), M(fgigj) are the principal localiza-
tions of the S(f)-module M(f) at these elements and their products. Thus we may
apply Algebra, Lemma 10.22.2 to the module M(f) over S(f) and the elements

g
deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn). We conclude that the sequence is exact. By

the remarks made above, we see that M̃ is a sheaf on the basis of standard opens.

Thus we conclude from the material in Sheaves, Section 6.30 that there exists a

unique sheaf of rings OProj(S) which agrees with S̃ on the standard opens. Note
that by our computation of stalks above and Algebra, Lemma 10.55.5 the stalks of
this sheaf of rings are all local rings.

Similarly, for any graded S-module M there exists a unique sheaf of OProj(S)-

modules F which agrees with M̃ on the standard opens, see Sheaves, Lemma
6.30.12.

Definition 26.8.3. Let S be a graded ring.

(1) The structure sheaf OProj(S) of the homogeneous spectrum of S is the

unique sheaf of rings OProj(S) which agrees with S̃ on the basis of standard
opens.

(2) The locally ringed space (Proj(S),OProj(S)) is called the homogeneous
spectrum of S and denoted Proj(S).

http://stacks.math.columbia.edu/tag/01M6


1766 26. CONSTRUCTIONS OF SCHEMES

(3) The sheaf of OProj(S)-modules extending M̃ to all opens of Proj(S) is
called the sheaf of OProj(S)-modules associated to M . This sheaf is de-

noted M̃ as well.

We summarize the results obtained so far.

Lemma 26.8.4. Let S be a graded ring. Let M be a graded S-module. Let M̃ be
the sheaf of OProj(S)-modules associated to M .

(1) For every f ∈ S homogeneous of positive degree we have

Γ(D+(f),OProj(S)) = S(f).

(2) For every f ∈ S homogeneous of positive degree we have Γ(D+(f), M̃) =
M(f) as an S(f)-module.

(3) Whenever D+(g) ⊂ D+(f) the restriction mappings on OProj(S) and M̃
are the maps S(f) → S(g) and M(f) →M(g) from Lemma 26.8.1.

(4) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S)
be the corresponding point. We have OProj(S),x = S(p).

(5) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S)
be the corresponding point. We have Fx = M(p) as an S(p)-module.

(6) There is a canonical ring map S0 −→ Γ(Proj(S), S̃) and a canonical S0-

module map M0 −→ Γ(Proj(S), M̃) compatible with the descriptions of
sections over standard opens and stalks above.

Moreover, all these identifications are functorial in the graded S-module M . In

particular, the functor M 7→ M̃ is an exact functor from the category of graded
S-modules to the category of OProj(S)-modules.

Proof. Assertions (1) - (5) are clear from the discussion above. We see (6) since
there are canonical maps M0 → M(f), x 7→ x/1 compatible with the restriction

maps described in (3). The exactness of the functor M 7→ M̃ follows from the fact
that the functor M 7→M(p) is exact (see Algebra, Lemma 10.55.5) and the fact that
exactness of short exact sequences may be checked on stalks, see Modules, Lemma
17.3.1. �

Remark 26.8.5. The map from M0 to the global sections of M̃ is generally far from
being an isomorphism. A trivial example is to take S = k[x, y, z] with 1 = deg(x) =
deg(y) = deg(z) (or any number of variables) and to take M = S/(x100, y100, z100).

It is easy to see that M̃ = 0, but M0 = k.

Lemma 26.8.6. Let S be a graded ring. Let f ∈ S be homogeneous of positive
degree. Suppose that D(g) ⊂ Spec(S(f)) is a standard open. Then there exists
a h ∈ S homogeneous of positive degree such that D(g) corresponds to D+(h) ⊂
D+(f) via the homeomorphism of Algebra, Lemma 10.55.3. In fact we can take h
such that g = h/fn for some n.

Proof. Write g = h/fn for some h homogeneous of positive degree and some n ≥ 1.
If D+(h) is not contained in D+(f) then we replace h by hf and n by n+1. Then h
has the required shape and D+(h) ⊂ D+(f) corresponds to D(g) ⊂ Spec(S(f)). �

Lemma 26.8.7. Let S be a graded ring. The locally ringed space Proj(S) is a
scheme. The standard opens D+(f) are affine opens. For any graded S-module M

the sheaf M̃ is a quasi-coherent sheaf of OProj(S)-modules.
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Proof. Consider a standard open D+(f) ⊂ Proj(S). By Lemmas 26.8.1 and 26.8.4
we have Γ(D+(f),OProj(S)) = S(f), and we have a homeomorphism ϕ : D+(f) →
Spec(S(f)). For any standard open D(g) ⊂ Spec(S(f)) we may pick a h ∈ S+ as in

Lemma 26.8.6. Then ϕ−1(D(g)) = D+(h), and by Lemmas 26.8.4 and 26.8.1 we
see

Γ(D+(h),OProj(S)) = S(h) = (S(f))hdeg(f)/fdeg(h) = (S(f))g = Γ(D(g),OSpec(S(f))).

Thus the restriction of OProj(S) to D+(f) corresponds via the homeomorphism ϕ
exactly to the sheaf OSpec(S(f)) as defined in Schemes, Section 25.5. We conclude

that D+(f) is an affine scheme isomorphic to Spec(S(f)) via ϕ and hence that
Proj(S) is a scheme.

In exactly the same way we show that M̃ is a quasi-coherent sheaf of OProj(S)-
modules. Namely, the argument above will show that

M̃ |D+(f)
∼= ϕ∗

(
M̃(f)

)
which shows that M̃ is quasi-coherent. �

Lemma 26.8.8. Let S be a graded ring. The scheme Proj(S) is separated.

Proof. We have to show that the canonical morphism Proj(S) → Spec(Z) is sep-
arated. We will use Schemes, Lemma 25.21.8. Thus it suffices to show given any
pair of standard opens D+(f) and D+(g) that D+(f) ∩D+(g) = D+(fg) is affine
(clear) and that the ring map

S(f) ⊗Z S(g) −→ S(fg)

is surjective. Any element s in S(fg) is of the form s = h/(fngm) with h ∈ S
homogeneous of degree ndeg(f) + m deg(g). We may multiply h by a suitable
monomial f igj and assume that n = n′ deg(g), and m = m′ deg(f). Then we can

rewrite s as s = h/f (n′+m′) deg(g) · fm′ deg(g)/gm
′ deg(f). So s is indeed in the image

of the displayed arrow. �

Lemma 26.8.9. Let S be a graded ring. The scheme Proj(S) is quasi-compact if
and only if there exist finitely many homogeneous elements f1, . . . , fn ∈ S+ such

that S+ ⊂
√

(f1, . . . , fn). In this case Proj(S) = D+(f1) ∪ . . . ∪D+(fn).

Proof. Given such a collection of elements the standard affine opens D+(fi) cover
Proj(S) by Algebra, Lemma 10.55.3. Conversely, if Proj(S) is quasi-compact, then
we may cover it by finitely many standard opens D+(fi), i = 1, . . . , n and we see

that S+ ⊂
√

(f1, . . . , fn) by the lemma referenced above. �

Lemma 26.8.10. Let S be a graded ring. The scheme Proj(S) has a canonical
morphism towards the affine scheme Spec(S0), agreeing with the map on topological
spaces coming from Algebra, Definition 10.55.1.

Proof. We saw above that our construction of S̃, resp. M̃ gives a sheaf of S0-
algebras, resp. S0-modules. Hence we get a morphism by Schemes, Lemma 25.6.4.
This morphism, when restricted to D+(f) comes from the canonical ring map S0 →
S(f). The maps S → Sf , S(f) → Sf are S0-algebra maps, see Lemma 26.8.1. Hence
if the homogeneous prime p ⊂ S corresponds to the Z-graded prime p′ ⊂ Sf and the
(usual) prime p′′ ⊂ S(f), then each of these has the same inverse image in S0. �
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Lemma 26.8.11. Let S be a graded ring. If S is finitely generated as an alge-
bra over S0, then the morphism Proj(S) → Spec(S0) satisfies the existence and
uniqueness parts of the valuative criterion, see Schemes, Definition 25.20.3.

Proof. The uniqueness part follows from the fact that Proj(S) is separated (Lemma
26.8.8 and Schemes, Lemma 25.22.1). Choose xi ∈ S+ homogeneous, i = 1, . . . , n
which generate S over S0. Let di = deg(xi) and set d = lcm{di}. Suppose we are
given a diagram

Spec(K) //

��

Proj(S)

��
Spec(A) // Spec(S0)

as in Schemes, Definition 25.20.3. Denote v : K∗ → Γ the valuation of A, see
Algebra, Definition 10.48.13. We may choose an f ∈ S+ homogeneous such that
Spec(K) maps into D+(f). Then we get a commutative diagram of ring maps

K S(f)ϕ
oo

A

OO

S0
oo

OO

Let i0 ∈ {1, . . . , n} be an index minimizing the valuation (d/di)v(ϕ(x
deg(f)
i /fdi))

where we temporarily use the convention that the valuation of zero is bigger than
any element of the value group. For convenience set x0 = xi0 and d0 = di0 . Since
the open sets D+(xi) cover Proj(S) we see that ϕ(x0) 6= 0. This means that the
ring map ϕ factors though a map ϕ′ : S(fx0) → K. We see that

deg(f)v(ϕ′(xd0
i /x

di
0 )) = d0v(ϕ(x

deg(f)
i /fdi))− div(ϕ(x

deg(f)
0 /fd0)) ≥ 0

by our choice of i0. This implies that the S0-algebra S(x0), which is generated by

the elements xd0
i /x

di
0 over S0, maps into A via ϕ′. The corresponding morphism

of schemes Spec(A) → Spec(S(x0)) = D+(x0) ⊂ Proj(S) provides the morphism
fitting into the first commutative diagram of this proof. �

We saw in the proof of Lemma 26.8.11 that, under the hypotheses of that lemma,
the morphism Proj(S) → Spec(S0) is quasi-compact as well. Hence (by Schemes,
Proposition 25.20.6) we see that Proj(S) → Spec(S0) is universally closed in the
situation of the lemma. We give two examples showing these results do not hold
without some assumption on the graded ring S.

Example 26.8.12. Let C[X1, X2, X3, . . .] be the graded C-algebra with each Xi

in degree 0. Consider the ring map

C[X1, X2, X3, . . .] −→ C[tα;α ∈ Q≥0]

which maps Xi to t1/i. The right hand side becomes a valuation ring A upon
localization at the ideal m = (tα;α > 0). This gives a morphism from Spec(f.f.(A))
to Proj(C[X1, X2, X3, . . .]) which does not extend to a morphism defined on all of
Spec(A). The reason is that the image of Spec(A) would be contained in one of the
D+(Xi) but then Xi+1/Xi would map to an element of A which it doesn’t since it
maps to t1/(i+1)−1/i.
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Example 26.8.13. Let R = C[t] and

S = R[X1, X2, X3, . . .]/(X
2
i − tXi+1).

The grading is such that R = S0 and deg(Xi) = 2i−1. Note that if p ∈ Proj(S)
then t 6∈ p (otherwise p has to contain all of the Xi which is not allowed for an
element of the homogeneous spectrum). Thus we see that D+(Xi) = D+(Xi+1)
for all i. Hence Proj(S) is quasi-compact; in fact it is affine since it is equal to
D+(X1). It is easy to see that the image of Proj(S)→ Spec(R) is D(t). Hence the
morphism Proj(S) → Spec(R) is not closed. Thus the valuative criterion cannot
apply because it would imply that the morphism is closed (see Schemes, Proposition
25.20.6 ).

Example 26.8.14. Let A be a ring. Let S = A[T ] as a graded A algebra with T in
degree 1. Then the canonical morphism Proj(S) → Spec(A) (see Lemma 26.8.10)
is an isomorphism.

26.9. Quasi-coherent sheaves on Proj

Let S be a graded ring. Let M be a graded S-module. We saw in Lemma 26.8.4

how to construct a quasi-coherent sheaf of modules M̃ on Proj(S) and a map

(26.9.0.1) M0 −→ Γ(Proj(S), M̃)

of the degree 0 part of M to the global sections of M̃ . The degree 0 part of the nth
twist M(n) of the graded module M (see Algebra, Section 10.54) is equal to Mn.
Hence we can get maps

(26.9.0.2) Mn −→ Γ(Proj(S), M̃(n)).

We would like to be able to perform this operation for any quasi-coherent sheaf F
on Proj(S). We will do this by tensoring with the nth twist of the structure sheaf,
see Definition 26.10.1. In order to relate the two notions we will use the following
lemma.

Lemma 26.9.1. Let S be a graded ring. Let (X,OX) = (Proj(S),OProj(S)) be
the scheme of Lemma 26.8.7. Let f ∈ S+ be homogeneous. Let x ∈ X be a point
corresponding to the homogeneous prime p ⊂ S. Let M , N be graded S-modules.
There is a canonical map of OProj(S)-modules

M̃ ⊗OX Ñ −→ M̃ ⊗S N

which induces the canonical map M(f) ⊗S(f)
N(f) → (M ⊗S N)(f) on sections over

D+(f) and the canonical map M(p) ⊗S(p)
N(p) → (M ⊗S N)(p) on stalks at x.

Moreover, the following diagram

M0 ⊗S0
N0

//

��

(M ⊗S N)0

��

Γ(X, M̃ ⊗OX Ñ) // Γ(X, M̃ ⊗R N)

is commutative where the vertical maps are given by (26.9.0.1).
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Proof. To construct a morphism as displayed is the same as constructing a OX -
bilinear map

M̃ × Ñ −→ M̃ ⊗R N
see Modules, Section 17.15. It suffices to define this on sections over the opens
D+(f) compatible with restriction mappings. On D+(f) we use the S(f)-bilinear

map M(f)×N(f) → (M ⊗SN)(f), (x/fn, y/fm) 7→ (x⊗y)/fn+m. Details omitted.
�

Remark 26.9.2. In general the map constructed in Lemma 26.9.1 above is not an
isomorphism. Here is an example. Let k be a field. Let S = k[x, y, z] with k in
degree 0 and deg(x) = 1, deg(y) = 2, deg(z) = 3. Let M = S(1) and N = S(2),
see Algebra, Section 10.54 for notation. Then M ⊗S N = S(3). Note that

Sz = k[x, y, z, 1/z]

S(z) = k[x3/z, xy/z, y3/z2] ∼= k[u, v, w]/(uw − v3)

M(z) = S(z) · x+ S(z) · y2/z ⊂ Sz
N(z) = S(z) · y + S(z) · x2 ⊂ Sz

S(3)(z) = S(z) · z ⊂ Sz
Consider the maximal ideal m = (u, v, w) ⊂ S(z). It is not hard to see that both
M(z)/mM(z) and N(z)/mN(z) have dimension 2 over κ(m). But S(3)(z)/mS(3)(z)

has dimension 1. Thus the map M(z) ⊗N(z) → S(3)(z) is not an isomorphism.

26.10. Invertible sheaves on Proj

Recall from Algebra, Section 10.54 the construction of the twisted module M(n)
associated to a graded module over a graded ring.

Definition 26.10.1. Let S be a graded ring. Let X = Proj(S).

(1) We define OX(n) = S̃(n). This is called the nth twist of the structure
sheaf of Proj(S).

(2) For any sheaf of OX -modules F we set F(n) = F ⊗OX OX(n).

We are going to use Lemma 26.9.1 to construct some canonical maps. Since S(n)⊗S
S(m) = S(n+m) we see that there are canonical maps

(26.10.1.1) OX(n)⊗OX OX(m) −→ OX(n+m).

These maps are not isomorphisms in general, see the example in Remark 26.9.2.
The same example shows that OX(n) is not an invertible sheaf on X in general.
Tensoring with an arbitrary OX -module F we get maps

(26.10.1.2) OX(n)⊗OX F(m) −→ F(n+m).

The maps (26.10.1.1) on global sections give a map of graded rings

(26.10.1.3) S −→
⊕

n≥0
Γ(X,OX(n)).

And for an arbitrary OX -module F the maps (26.10.1.2) give a graded module
structure

(26.10.1.4)
⊕

n≥0
Γ(X,OX(n))×

⊕
m∈Z

Γ(X,F(m)) −→
⊕

m∈Z
Γ(X,F(m))
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and via (26.10.1.3) also a S-module structure. More generally, given any graded
S-module M we have M(n) = M ⊗S S(n). Hence we get maps

(26.10.1.5) M̃(n) = M̃ ⊗OX OX(n) −→ M̃(n).

On global sections we get a map of graded S-modules

(26.10.1.6) M −→
⊕

n∈Z
Γ(X, M̃(n)).

Here is an important fact which follows basically immediately from the definitions.

Lemma 26.10.2. Let S be a graded ring. Set X = Proj(S). Let f ∈ S be homoge-
neous of degree d > 0. The sheaves OX(nd)|D+(f) are invertible, and in fact trivial
for all n ∈ Z (see Modules, Definition 17.21.1). The maps (26.10.1.1) restricted to
D+(f)

OX(nd)|D+(f) ⊗OD+(f)
OX(m)|D+(f) −→ OX(nd+m)|D+(f),

the maps (26.10.1.2) restricted to D+(f)

OX(nd)|D+(f) ⊗OD+(f)
F(m)|D+(f) −→ F(nd+m)|D+(f),

and the maps (26.10.1.5) restricted to D+(f)

M̃(nd)|D+(f) = M̃ |D+(f) ⊗OD+(f)
OX(nd)|D+(f) −→ M̃(nd)|D+(f)

are isomorphisms for all n,m ∈ Z.

Proof. The (not graded) S-module maps S → S(n), and M → M(n), given by
x 7→ fn/dx become isomorphisms after inverting f . The first shows that S(f)

∼=
S(n)(f) which gives an isomorphism OD+(f)

∼= OX(n)|D+(f). The second shows
that the map S(n)(f) ⊗S(f)

M(f) → M(n)(f) is an isomorphism. The case of the

map (26.10.1.2) is a consequence of the case of the map (26.10.1.1). �

Lemma 26.10.3. Let S be a graded ring. Let M be a graded S-module. Set X =
Proj(S). If S is generated by S1 over S0, then the sheaves OX(n) are invertible and
the maps (26.10.1.1), (26.10.1.2), and (26.10.1.5) are isomorphisms. In particular,
these maps induce isomorphisms

OX(1)⊗n ∼= OX(n) and M̃ ⊗OX OX(n) = M̃(n) ∼= M̃(n)

Thus (26.9.0.2) becomes a map

(26.10.3.1) Mn −→ Γ(X, M̃(n))

and (26.10.1.6) becomes a map

(26.10.3.2) M −→
⊕

n∈Z
Γ(X, M̃(n)).

In fact these results hold more generally if X is covered by the standard opens D+(f)
with f ∈ S1.

Proof. Under the assumptions of the lemma X is covered by the open subsets
D+(f) with f ∈ S1 and the lemma is a consequence of Lemma 26.10.2 above. �

Lemma 26.10.4. Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer.
The following open subsets of X are equal:
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(1) The largest open subset W = Wd ⊂ X such that each OX(dn)|W is in-
vertible and all the multiplication maps OX(nd)|W ⊗OW OX(md)|W →
OX(nd+md)|W (see 26.10.1.1) are isomorphisms.

(2) The union of the open subsets D+(fg) with f, g ∈ S homogeneous and
deg(f) = deg(g) + d.

Moreover, all the maps M̃(nd)|W = M̃ |W⊗OWOX(nd)|W → M̃(nd)|W (see 26.10.1.5)
are isomorphisms.

Proof. If x ∈ D+(fg) with deg(f) = deg(g) + d then on D+(fg) the sheaves
OX(dn) are generated by the element (f/g)n = f2n/(fg)n. This implies x is in the
open subset W defined in (1) by arguing as in the proof of Lemma 26.10.2.

Conversely, suppose that OX(d) is free of rank 1 in an open neighbourhood V of
x ∈ X and all the multiplication mapsOX(nd)|V ⊗OV OX(md)|V → OX(nd+md)|V
are isomorphisms. We may choose h ∈ S+ homogeneous such that D+(h) ⊂ V .
By the definition of the twists of the structure sheaf we conclude there exists an
element s of (Sh)d such that sn is a basis of (Sh)nd as a module over S(h) for all
n ∈ Z. We may write s = f/hm for some m ≥ 1 and f ∈ Sd+m deg(h). Set g = hm

so s = f/g. Note that x ∈ D(g) by construction. Note that gd ∈ (Sh)−d deg(g).

By assumption we can write this as a multiple of sdeg(g) = fdeg(g)/gdeg(g), say
gd = a/ge · fdeg(g)/gdeg(g). Then we conclude that gd+e+deg(g) = afdeg(g) and
hence also x ∈ D+(f). So x is an element of the set defined in (2).

The existence of the generating section s = f/g over the affine open D+(fg) whose
powers freely generate the sheaves of modules OX(nd) easily implies that the mul-

tiplication maps M̃(nd)|W = M̃ |W ⊗OW OX(nd)|W → M̃(nd)|W (see 26.10.1.5) are
isomorphisms. Compare with the proof of Lemma 26.10.2. �

Recall from Modules, Lemma 17.21.7 that given an invertible sheaf L on a locally
ringed space X, and given a global section s of L the set Xs = {x ∈ X | s 6∈ mxLx}
is open.

Lemma 26.10.5. Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer.
Let W = Wd ⊂ X be the open subscheme defined in Lemma 26.10.4. Let n ≥ 1
and f ∈ Snd. Denote s ∈ Γ(W,OW (nd)) the section which is the image of f via
(26.10.1.3) restricted to W . Then

Ws = D+(f) ∩W.

Proof. Let D+(ab) ⊂W be a standard affine open with a, b ∈ S homogeneous and
deg(a) = deg(b) + d. Note that D+(ab) ∩ D+(f) = D+(abf). On the other hand
the restriction of s to D+(ab) corresponds to the element f/1 = bnf/an(a/b)n ∈
(Sab)nd. We have seen in the proof of Lemma 26.10.4 that (a/b)n is a generator
for OW (nd) over D+(ab). We conclude that Ws ∩ D+(ab) is the principal open
associated to bnf/an ∈ OX(D+(ab)). Thus the result of the lemma is clear. �

The following lemma states the properties that we will later use to characterize
schemes with an ample invertible sheaf.

Lemma 26.10.6. Let S be a graded ring. Let X = Proj(S). Let Y ⊂ X be
a quasi-compact open subscheme. Denote OY (n) the restriction of OX(n) to Y .
There exists an integer d ≥ 1 such that

http://stacks.math.columbia.edu/tag/01MV
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(1) the subscheme Y is contained in the open Wd defined in Lemma 26.10.4,
(2) the sheaf OY (dn) is invertible for all n ∈ Z,
(3) all the maps OY (nd)⊗OY OY (m) −→ OY (nd+m) of Equation (26.10.1.1)

are isomorphisms,

(4) all the maps M̃(nd)|Y = M̃ |Y ⊗OY OX(nd)|Y → M̃(nd)|Y (see 26.10.1.5)
are isomorphisms,

(5) given f ∈ Snd denote s ∈ Γ(Y,OY (nd)) the image of f via (26.10.1.3)
restricted to Y , then D+(f) ∩ Y = Ys,

(6) a basis for the topology on Y is given by the collection of opens Ys, where
s ∈ Γ(Y,OY (nd)), n ≥ 1, and

(7) a basis for the topology of Y is given by those opens Ys ⊂ Y , for s ∈
Γ(Y,OY (nd)), n ≥ 1 which are affine.

Proof. Since Y is quasi-compact there exist finitely many homogeneous fi ∈ S+,
i = 1, . . . , n such that the standard opens D+(fi) give an open covering of Y . Let

di = deg(fi) and set d = d1 . . . dn. Note that D+(fi) = D+(f
d/di
i ) and hence we

see immediately that Y ⊂Wd, by characterization (2) in Lemma 26.10.4 or by (1)
using Lemma 26.10.2. Note that (1) implies (2), (3) and (4) by Lemma 26.10.4.
(Note that (3) is a special case of (4).) Assertion (5) follows from Lemma 26.10.5.
Assertions (6) and (7) follow because the open subsets D+(f) form a basis for the
topology of X and are affine. �

26.11. Functoriality of Proj

A graded ring map ψ : A→ B does not always give rise to a morphism of associated
projective homogeneous spectra. The reason is that the inverse image ψ−1(q) of a
homogeneous prime q ⊂ B may contain the irrelevant prime A+ even if q does not
contain B+. The correct result is stated as follows.

Lemma 26.11.1. Let A, B be two graded rings. Set X = Proj(A) and Y =
Proj(B). Let ψ : A→ B be a graded ring map. Set

U(ψ) =
⋃

f∈A+ homogeneous
D+(ψ(f)) ⊂ Y.

Then there is a canonical morphism of schemes

rψ : U(ψ) −→ X

and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the following properties:

(1) For every d ≥ 0 the diagram

Ad

��

ψ
// Bd

��
Γ(X,OX(d))

θ // Γ(U(ψ),OY (d)) Γ(Y,OY (d))oo

is commutative.
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(2) For any f ∈ A+ homogeneous we have r−1
ψ (D+(f)) = D+(ψ(f)) and the

restriction of rψ to D+(ψ(f)) corresponds to the ring map A(f) → B(ψ(f))

induced by ψ.

Proof. Clearly condition (2) uniquely determines the morphism of schemes and the
open subset U(ψ). Pick f ∈ Ad with d ≥ 1. Note that OX(n)|D+(f) corresponds to
the A(f)-module (Af )n and that OY (n)|D+(ψ(f)) corresponds to the B(ψ(f))-module
(Bψ(f))n. In other words θ when restricted to D+(ψ(f)) corresponds to a map of
Z-graded B(ψ(f))-algebras

Af ⊗A(f)
B(ψ(f)) −→ Bψ(f)

Condition (1) determines the images of all elements of A. Since f is an invertible
element which is mapped to ψ(f) we see that 1/fm is mapped to 1/ψ(f)m. It easily
follows from this that θ is uniquely determined, namely it is given by the rule

a/fm ⊗ b/ψ(f)e 7−→ ψ(a)b/ψ(f)m+e.

To show existence we remark that the proof of uniqueness above gave a well defined
prescription for the morphism r and the map θ when restricted to every standard
open of the form D+(ψ(f)) ⊂ U(ψ) into D+(f). Call these rf and θf . Hence we
only need to verify that if D+(f) ⊂ D+(g) for some f, g ∈ A+ homogeneous, then
the restriction of rg to D+(ψ(f)) matches rf . This is clear from the formulas given
for r and θ above. �

Lemma 26.11.2. Let A, B, and C be graded rings. Set X = Proj(A), Y = Proj(B)
and Z = Proj(C). Let ϕ : A→ B, ψ : B → C be graded ring maps. Then we have

U(ψ ◦ ϕ) = r−1
ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 26.11.3. With hypotheses and notation as in Lemma 26.11.1 above. As-
sume Ad → Bd is surjective for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n) → OY (n) are surjective but not isomorphisms in

general (even if A→ B is surjective).

Proof. Part (1) follows from the definition of U(ψ) and the fact that D+(f) =
D+(fn) for any n > 0. For f ∈ A+ homogeneous we see that A(f) → B(ψ(f)) is
surjective because any element of B(ψ(f)) can be represented by a fraction b/ψ(f)n

with n arbitrarily large (which forces the degree of b ∈ B to be large). This proves
(2). The same argument shows the map

Af → Bψ(f)

is surjective which proves the surjectivity of θ. For an example where this map
is not an isomorphism consider the graded ring A = k[x, y] where k is a field and
deg(x) = 1, deg(y) = 2. Set I = (x), so that B = k[y]. Note that OY (1) = 0
in this case. But it is easy to see that r∗ψOY (1) is not zero. (There are less silly

examples.) �

http://stacks.math.columbia.edu/tag/01MZ
http://stacks.math.columbia.edu/tag/01N0


26.12. MORPHISMS INTO PROJ 1775

Lemma 26.11.4. With hypotheses and notation as in Lemma 26.11.1 above. As-
sume Ad → Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. We have (1) by Lemma 26.11.3. Let f ∈ A+ be homogeneous. The as-
sumption on ψ implies that Af → Bf is an isomorphism (details omitted). Thus it
is clear that rψ and θ restrict to isomorphisms over D+(f). The lemma follows. �

Lemma 26.11.5. With hypotheses and notation as in Lemma 26.11.1 above. As-
sume Ad → Bd is surjective for d � 0 and that A is generated by A1 over A0.
Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. By Lemmas 26.11.4 and 26.11.2 we may replace B by the image of A→ B
without changing X or the sheaves OX(n). Thus we may assume that A → B
is surjective. By Lemma 26.11.3 we get (1) and (2) and surjectivity in (3). By
Lemma 26.10.3 we see that both OX(n) and OY (n) are invertible. Hence θ is an
isomorphism. �

Lemma 26.11.6. With hypotheses and notation as in Lemma 26.11.1 above. As-
sume there exists a ring map R → A0 and a ring map R → R′ such that B =
R′ ⊗R A. Then

(1) U(ψ) = Y ,
(2) the diagram

Y = Proj(B)
rψ
//

��

Proj(A) = X

��
Spec(R′) // Spec(R)

is a fibre product square, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. This follows immediately by looking at what happens over the standard
opens D+(f) for f ∈ A+. �

Lemma 26.11.7. With hypotheses and notation as in Lemma 26.11.1 above. As-
sume there exists a g ∈ A0 such that ψ induces an isomorphism Ag → B. Then
U(ψ) = Y , rψ : Y → X is an open immersion which induces an isomorphism of Y
with the inverse image of D(g) ⊂ Spec(A0). Moreover the map θ is an isomorphism.

Proof. This is a special case of Lemma 26.11.6 above. �

26.12. Morphisms into Proj

Let S be a graded ring. Let X = Proj(S) be the homogeneous spectrum of S. Let
d ≥ 1 be an integer. Consider the open subscheme

(26.12.0.1) Ud =
⋃

f∈Sd
D+(f) ⊂ X = Proj(S)
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Note that d|d′ ⇒ Ud ⊂ Ud′ and X =
⋃
d Ud. Neither X nor Ud need be quasi-

compact, see Algebra, Lemma 10.55.3. Let us write OUd(n) = OX(n)|Ud . By
Lemma 26.10.2 we know that OUd(nd), n ∈ Z is an invertible OUd -module and that
all the multiplication maps OUd(nd)⊗OUdOX(m)→ OUd(nd+m) of (26.10.1.1) are

isomorphisms. In particular we have OUd(nd) ∼= OUd(d)⊗n. The graded ring map
(26.10.1.3) on global sections combined with restriction to Ud give a homomorphism
of graded rings

(26.12.0.2) ψd : S(d) −→ Γ∗(Ud,OUd(d)).

For the notation S(d), see Algebra, Section 10.54. For the notation Γ∗ see Modules,
Definition 17.21.4. Moreover, since Ud is covered by the opens D+(f), f ∈ Sd we

see that OUd(d) is globally generated by the sections in the image of ψd1 : S
(d)
1 =

Sd → Γ(Ud,OUd(d)), see Modules, Definition 17.4.1.

Let Y be a scheme, and let ϕ : Y → X be a morphism of schemes. Assume
the image ϕ(Y ) is contained in the open subscheme Ud of X. By the discussion
following Modules, Definition 17.21.4 we obtain a homomorphism of graded rings

Γ∗(Ud,OUd(d)) −→ Γ∗(Y, ϕ
∗OX(d)).

The composition of this and ψd gives a graded ring homomorphism

(26.12.0.3) ψdϕ : S(d) −→ Γ∗(Y, ϕ
∗OX(d))

which has the property that the invertible sheaf ϕ∗OX(d) is globally generated by
the sections in the image of (S(d))1 = Sd → Γ(Y, ϕ∗OX(d)).

Lemma 26.12.1. Let S be a graded ring, and X = Proj(S). Let d ≥ 1 and
Ud ⊂ X as above. Let Y be a scheme. Let L be an invertible sheaf on Y . Let
ψ : S(d) → Γ∗(Y,L) be a graded ring homomorphism such that L is generated by
the sections in the image of ψ|Sd : Sd → Γ(Y,L). Then there exists a morphism
ϕ : Y → X such that ϕ(Y ) ⊂ Ud and an isomorphism α : ϕ∗OUd(d)→ L such that
ψdϕ agrees with ψ via α:

Γ∗(Y,L) Γ∗(Y, ϕ
∗OUd(d))

α
oo Γ∗(Ud,OUd(d))

ϕ∗
oo

S(d)

ψ

OO

S(d)

ψd

OO

ψdϕ

ii

idoo

commutes. Moreover, the pair (ϕ, α) is unique.

Proof. Pick f ∈ Sd. Denote s = ψ(f) ∈ Γ(Y,L). On the open set Ys where s does
not vanish multiplication by s induces an isomorphism OYs → L|Ys , see Modules,
Lemma 17.21.7. We will denote the inverse of this map x 7→ x/s, and similarly for
powers of L. Using this we define a ring map ψ(f) : S(f) → Γ(Ys,O) by mapping
the fraction a/fn to ψ(a)/sn. By Schemes, Lemma 25.6.4 this corresponds to a
morphism ϕf : Ys → Spec(S(f)) = D+(f). We also introduce the isomorphism
αf : ϕ∗fOD+(f)(d)→ L|Ys which maps the pullback of the trivializing section f over

D+(f) to the trivializing section s over Ys. With this choice the commutativity of
the diagram in the lemma holds with Y replace by Ys, ϕ replaced by ϕf , and α
replaced by αf ; verification omitted.

Suppose that f ′ ∈ Sd is a second element, and denote s′ = ψ(f ′) ∈ Γ(Y,L). Then
Ys∩Ys′ = Yss′ and similarly D+(f)∩D+(f ′) = D+(ff ′). In Lemma 26.10.6 we saw
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that D+(f ′) ∩D+(f) is the same as the set of points of D+(f) where the section
of OX(d) defined by f ′ does not vanish. Hence ϕ−1

f (D+(f ′)∩D+(f)) = Ys ∩ Ys′ =

ϕ−1
f ′ (D+(f ′)∩D+(f)). On D+(f)∩D+(f ′) the fraction f/f ′ is an invertible section

of the structure sheaf with inverse f ′/f . Note that ψ(f ′)(f/f
′) = ψ(f)/s′ = s/s′

and ψ(f)(f
′/f) = ψ(f ′)/s = s′/s. We claim there is a unique ring map S(ff ′) →

Γ(Yss′ ,O) making the following diagram commute

Γ(Ys,O) // Γ(Yss′ ,O) Γ(Ys,′O)oo

S(f)
//

ψ(f)

OO

S(ff ′)

OO

S(f ′)
oo

ψ(f′)

OO

It exists because we may use the rule x/(ff ′)n 7→ ψ(x)/(ss′)n, which “works” by
the formulas above. Uniqueness follows as Proj(S) is separated, see Lemma 26.8.8
and its proof. This shows that the morphisms ϕf and ϕf ′ agree over Ys ∩ Ys′ . The
restrictions of αf and αf ′ agree over Ys ∩ Ys′ because the regular functions s/s′

and ψ(f ′)(f) agree. This proves that the morphisms ψf glue to a global morphism
from Y into Ud ⊂ X, and that the maps αf glue to an isomorphism satisfying the
conditions of the lemma.

We still have to show the pair (ϕ, α) is unique. Suppose (ϕ′, α′) is a second such
pair. Let f ∈ Sd. By the commutativity of the diagrams in the lemma we have
that the inverse images of D+(f) under both ϕ and ϕ′ are equal to Yψ(f). Since the
opens D+(f) are a basis for the topology on X, and since X is a sober topological
space (see Schemes, Lemma 25.11.1) this means the maps ϕ and ϕ′ are the same on
underlying topological spaces. Let us use s = ψ(f) to trivialize the invertible sheaf
L over Yψ(f). By the commutativity of the diagrams we have that α⊗n(ψdϕ(x)) =

ψ(x) = (α′)⊗n(ψdϕ′(x)) for all x ∈ Snd. By construction of ψdϕ and ψdϕ′ we have

ψdϕ(x) = ϕ](x/fn)ψdϕ(fn) over Yψ(f), and similarly for ψdϕ′ . by the commutativity

of the diagrams of the lemma we deduce that ϕ](x/fn) = (ϕ′)](x/fn). This proves
that ϕ and ϕ′ induce the same morphism from Yψ(f) into the affine scheme D+(f) =
Spec(S(f)). Hence ϕ and ϕ′ are the same as morphisms. Finally, it remains to show
that the commutativity of the diagram of the lemma singles out, given ϕ, a unique
α. We omit the verification. �

We continue the discussion from above the lemma. Let S be a graded ring. Let Y
be a scheme. We will consider triples (d,L, ψ) where

(1) d ≥ 1 is an integer,
(2) L is an invertible OY -module, and
(3) ψ : S(d) → Γ∗(Y,L) is a graded ring homomorphism such that L is gener-

ated by the global sections ψ(f), with f ∈ Sd.
Given a morphism h : Y ′ → Y and a triple (d,L, ψ) over Y we can pull it back
to the triple (d, h∗L, h∗ ◦ ψ). Given two triples (d,L, ψ) and (d,L′, ψ′) with the
same integer d we say they are strictly equivalent if there exists an isomorphism
β : L → L′ such that β ◦ ψ = ψ′ as graded ring maps S(d) → Γ∗(Y,L′).
For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,

Y 7−→ {strict equivalence classes of triples (d,L, ψ) as above}
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with pullbacks as defined above.

Lemma 26.12.2. Let S be a graded ring. Let X = Proj(S). The open subscheme
Ud ⊂ X (26.12.0.1) represents the functor Fd and the triple (d,OUd(d), ψd) defined
above is the universal family (see Schemes, Section 25.15).

Proof. This is a reformulation of Lemma 26.12.1 �

Lemma 26.12.3. Let S be a graded ring generated as an S0-algebra by the elements
of S1. In this case the scheme X = Proj(S) represents the functor which associates
to a scheme Y the set of pairs (L, ψ), where

(1) L is an invertible OY -module, and
(2) ψ : S → Γ∗(Y,L) is a graded ring homomorphism such that L is generated

by the global sections ψ(f), with f ∈ S1

up to strict equivalence as above.

Proof. Under the assumptions of the lemma we have X = U1 and the lemma is a
reformulation of Lemma 26.12.2 above. �

We end this section with a discussion of a functor corresponding to Proj(S) for a
general graded ring S. We advise the reader to skip the rest of this section.

Fix an arbitrary graded ring S. Let T be a scheme. We will say two triples (d,L, ψ)
and (d′,L′, ψ′) over T with possibly different integers d, d′ are equivalent if there

exists an isomorphism β : L⊗d′ → (L′)⊗d of invertible sheaves over T such that

β ◦ ψ|S(dd′) and ψ′|S(dd′) agree as graded ring maps S(dd′) → Γ∗(Y, (L′)⊗dd
′
).

Lemma 26.12.4. Let S be a graded ring. Set X = Proj(S). Let T be a scheme.
Let (d,L, ψ) and (d′,L′, ψ′) be two triples over T . The following are equivalent:

(1) Let n = lcm(d, d′). Write n = ad = a′d′. There exists an isomorphism

β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|S(n) and ψ′|S(n) agree as
graded ring maps S(n) → Γ∗(Y, (L′)⊗n).

(2) The triples (d,L, ψ) and (d′,L′, ψ′) are equivalent.
(3) For some positive integer n = ad = a′d′ there exists an isomorphism

β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|S(n) and ψ′|S(n) agree as
graded ring maps S(n) → Γ∗(Y, (L′)⊗n).

(4) The morphisms ϕ : T → X and ϕ′ : T → X associated to (d,L, ψ) and
(d′,L′, ψ′) are equal.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible
degrees and powers of invertible sheaves. Also (3) implies (4) by the uniqueness
statement in Lemma 26.12.1. Thus we have to prove that (4) implies (1). Assume
(4), in other words ϕ = ϕ′. Note that this implies that we may write L = ϕ∗OX(d)
and L′ = ϕ∗OX(d′). Moreover, via these identifications we have that the graded
ring maps ψ and ψ′ correspond to the restriction of the canonical graded ring map

S −→
⊕

n≥0
Γ(X,OX(n))

to S(d) and S(d′) composed with pullback by ϕ (by Lemma 26.12.1 again). Hence
taking β to be the isomorphism

(ϕ∗OX(d))⊗a = ϕ∗OX(n) = (ϕ∗OX(d′))⊗a
′

works. �
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Let S be a graded ring. Let X = Proj(S). Over the open subscheme scheme
Ud ⊂ X = Proj(S) (26.12.0.1) we have the triple (d,OUd(d), ψd). Clearly, if d|d′
the triples (d,OUd(d), ψd) and (d′,OUd′ (d

′), ψd
′
) are equivalent when restricted to

the open Ud (which is a subset of Ud′). This, combined with Lemma 26.12.1 shows
that morphisms Y → X correspond roughly to equivalence classes of triples over
Y . This is not quite true since if Y is not quasi-compact, then there may not be
a single triple which works. Thus we have to be slightly careful in defining the
corresponding functor.

Here is one possible way to do this. Suppose d′ = ad. Consider the transforma-
tion of functors Fd → Fd′ which assigns to the triple (d,L, ψ) over T the triple
(d′,L⊗a, ψ|S(d′)). One of the implications of Lemma 26.12.4 is that the transforma-
tion Fd → Fd′ is injective! For a quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant func-
tor on the category of quasi-compact schemes with values in sets. For a general
scheme T we define

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We
omit the definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of
schemes. Thus we have defined our functor

F : Schopp −→ Sets

Lemma 26.12.5. Let S be a graded ring. Let X = Proj(S). The functor F defined
above is representable by the scheme X.

Proof. We have seen above that the functor Fd corresponds to the open subscheme
Ud ⊂ X. Moreover the transformation of functors Fd → Fd′ (if d|d′) defined above
corresponds to the inclusion morphism Ud → Ud′ (see discussion above). Hence to
show that F is represented by X it suffices to show that T → X for a quasi-compact
scheme T ends up in some Ud, and that for a general scheme T we have

Mor(T,X) = limV⊂T quasi-compact open Mor(V,X).

These verifications are omitted. �

26.13. Projective space

Projective space is one of the fundamental objects studied in algebraic geometry.
In this section we just give its construction as Proj of a polynomial ring. Later we
will discover many of its beautiful properties.

Lemma 26.13.1. Let S = Z[T0, . . . , Tn] with deg(Ti) = 1. The scheme

Pn
Z = Proj(S)

represents the functor which associates to a scheme Y the pairs (L, (s0, . . . , sn))
where

(1) L is an invertible OY -module, and
(2) s0, . . . , sn are global sections of L which generate L
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up to the following equivalence: (L, (s0, . . . , sn)) ∼ (N , (t0, . . . , tn)) ⇔ there exists
an isomorphism β : L → N with β(si) = ti for i = 0, . . . , n.

Proof. This is a special case of Lemma 26.12.3 above. Namely, for any graded ring
A we have

Morgradedrings(Z[T0, . . . , Tn], A) = A1 × . . .×A1

ψ 7→ (ψ(T0), . . . , ψ(Tn))

and the degree 1 part of Γ∗(Y,L) is just Γ(Y,L). �

Definition 26.13.2. The scheme Pn
Z = Proj(Z[T0, . . . , Tn]) is called projective n-

space over Z. Its base change Pn
S to a scheme S is called projective n-space over

S. If R is a ring the base change to Spec(R) is denoted Pn
R and called projective

n-space over R.

Given a scheme Y over S and a pair (L, (s0, . . . , sn)) as in Lemma 26.13.1 the
induced morphism to Pn

S is denoted

ϕ(L,(s0,...,sn)) : Y −→ Pn
S

This makes sense since the pair defines a morphism into Pn
Z and we already have

the structure morphism into S so combined we get a morphism into Pn
S = Pn

Z×S.
Note that this is the S-morphism characterized by

L = ϕ∗(L,(s0,...,sn))OPnR
(1) and si = ϕ∗(L,(s0,...,sn))Ti

where we think of Ti as a global section of OPnS
(1) via (26.10.1.3).

Lemma 26.13.3. Projective n-space over Z is covered by n+ 1 standard opens

Pn
Z =

⋃
i=0,...,n

D+(Ti)

where each D+(Ti) is isomorphic to An
Z affine n-space over Z.

Proof. This is true because Z[T0, . . . , Tn]+ = (T0, . . . , Tn) and since

Spec

(
Z

[
T0

Ti
, . . . ,

Tn
Ti

])
∼= An

Z

in an obvious way. �

Lemma 26.13.4. Let S be a scheme. The structure morphism Pn
S → S is

(1) separated,
(2) quasi-compact,
(3) satisfies the existence and uniqueness parts of the valuative criterion, and
(4) universally closed.

Proof. All these properties are stable under base change (this is clear for the last
two and for the other two see Schemes, Lemmas 25.21.13 and 25.19.3). Hence it
suffices to prove them for the morphism Pn

Z → Spec(Z). Separatedness is Lemma
26.8.8. Quasi-compactness follows from Lemma 26.13.3. Existence and uniqueness
of the valuative criterion follow from Lemma 26.8.11. Universally closed follows
from the above and Schemes, Proposition 25.20.6. �
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Remark 26.13.5. What’s missing in the list of properties above? Well to be sure
the property of being of finite type. The reason we do not list this here is that
we have not yet defined the notion of finite type at this point. (Another property
which is missing is “smoothness”. And I’m sure there are many more you can think
of.)

We finish this section with two simple lemmas. These lemmas are special cases of
more general results later, but perhaps it makes sense to prove these directly here
now.

Lemma 26.13.6. Let R be a ring. Let Z ⊂ Pn
R be a closed subscheme. Let

Id = Ker
(
R[T0, . . . , Tn]d −→ Γ(Z,OPnR

(d)|Z)
)

Then I =
⊕
Id ⊂ R[T0, . . . , Tn] is a graded ideal and Z = Proj(R[T0, . . . , Tn]/I).

Proof. It is clear that I is a graded ideal. Set Z ′ = Proj(R[T0, . . . , Tn]/I). By
Lemma 26.11.5 we see that Z ′ is a closed subscheme of Pn

R. To see the equality
Z = Z ′ it suffices to check on an standard affine open D+(Ti). By renumbering the
homogeneous coordinates we may assume i = 0. Say Z∩D+(T0), resp. Z ′∩D+(T0)
is cut out by the ideal J , resp. J ′ of R[T1/T0, . . . , Tn/T0]. Then J ′ is the ideal

generated by the elements F/T
deg(F )
0 where F ∈ I is homogeneous. Suppose the

degree of F ∈ I is d. Since F vanishes as a section of OPnR
(d) restricted to Z we

see that F/T d0 is an element of J . Thus J ′ ⊂ J .

Conversely, suppose that f ∈ J . If f has total degree d in T1/T0, . . . , Tn/T0, then
we can write f = F/T d0 for some F ∈ R[T0, . . . , Tn]d. Pick i ∈ {1, . . . , n}. Then
Z ∩D+(Ti) is cut out by some ideal Ji ⊂ R[T0/Ti, . . . , Tn/Ti]. Moreover,

J ·R
[
T1

T0
, . . . ,

Tn
T0
,
T0

Ti
, . . . ,

Tn
Ti

]
= Ji ·R

[
T1

T0
, . . . ,

Tn
T0
,
T0

Ti
, . . . ,

Tn
Ti

]
The left hand side is the localization of J with respect to the element Ti/T0 and
the right hand side is the localization of Ji with respect to the element T0/Ti. It

follows that T di0 F/T d+di
i is an element of Ji for some di sufficiently large. This

proves that T
max(di)
0 F is an element of I, because its restriction to each standard

affine open D+(Ti) vanishes on the closed subscheme Z ∩ D+(Ti). Hence f ∈ J ′
and we conclude J ⊂ J ′ as desired. �

The following lemma is a special case of the more general Properties, Lemma
27.26.3.

Lemma 26.13.7. Let R be a ring. Let F be a quasi-coherent sheaf on Pn
R. For

d ≥ 0 set

Md = Γ(Pn
R,F ⊗OPn

R
OPnR

(d)) = Γ(Pn
R,F(d))

Then M =
⊕

d≥0Md is a graded R[T0, . . . , Rn]-module and there is a canonical

isomorphism F = M̃ .

Proof. The multiplication maps

R[T0, . . . , Rn]e ×Md −→Md+e

come from the natural isomorphisms

OPnR
(e)⊗OPn

R
F(d) −→ F(e+ d)
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see Equation (26.10.1.4). Let us construct the map c : M̃ → F . On each of

the standard affines Ui = D+(Ti) we see that Γ(Ui, M̃) = (M [1/Ti])0 where the
subscript 0 means degree 0 part. An element of this can be written as m/T di with
m ∈Md. Since Ti is a generator of O(1) over Ui we can always write m|Ui = mi⊗T di
where mi ∈ Γ(Ui,F) is a unique section. Thus a natural guess is c(m/T di ) = mi.
A small argument, which is omitted here, shows that this gives a well defined map

c : M̃ → F if we can show that

(Ti/Tj)
dmi|Ui∩Uj = mj |Ui∩Uj

in M [1/TiTj ]. But this is clear since on the overlap the generators Ti and Tj of
O(1) differ by the invertible function Ti/Tj .

Injectivity of c. We may check for injectivity over the affine opens Ui. Let i ∈
{0, . . . , n} and let s be an element s = m/T di ∈ Γ(Ui, M̃) such that c(m/T di ) = 0.
By the description of c above this means that mi = 0, hence m|Ui = 0. Hence

T ei m = 0 in M for some e. Hence s = m/T di = T ei /T
e+d
i = 0 as desired.

Surjectivity of c. We may check for surjectivity over the affine opens Ui. By
renumbering it suffices to check it over U0. Let s ∈ F(U0). Let us write F|Ui =

Ñi for some R[T0/Ti, . . . , T0/Ti]-module Ni, which is possible because F is quasi-
coherent. So s corresponds to an element x ∈ N0. Then we have that

(Ni)Tj/Ti
∼= (Nj)Ti/Tj

(where the subscripts mean “principal localization at”) as modules over the ring

R

[
T0

Ti
, . . . ,

Tn
Ti
,
T0

Tj
, . . . ,

Tn
Tj

]
.

This means that for some large integer d there exist elements si ∈ Ni, i = 1, . . . , n
such that

s = (Ti/T0)dsi

on U0 ∩ Ui. Next, we look at the difference

tij = si − (Tj/Ti)
dsj

on Ui ∩ Uj , 0 < i < j. By our choice of si we know that tij |U0∩Ui∩Uj = 0. Hence
there exists a large integer e such that (T0/Ti)

etij = 0. Set s′i = (T0/Ti)
esi, and

s′0 = s. Then we will have

s′a = (Tb/Ta)e+ds′b

on Ua ∩ Ub for all a, b. This is exactly the condition that the elements s′a glue to a

global section m ∈ Γ(Pn
R,F(e+d)). And moreover c(m/T e+d0 ) = s by construction.

Hence c is surjective and we win. �

26.14. Invertible sheaves and morphisms into Proj

Let T be a scheme and let L be an invertible sheaf on T . For a section s ∈ Γ(T,L)
we denote Ts the open subset of points where s does not vanish. See Modules,
Lemma 17.21.7. We can view the following lemma as a slight generalization of
Lemma 26.12.3. It also is a generalization of Lemma 26.11.1.
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Lemma 26.14.1. Let A be a graded ring. Set X = Proj(A). Let T be a scheme.
Let L be an invertible OT -module. Let ψ : A → Γ∗(T,L) be a homomorphism of
graded rings. Set

U(ψ) =
⋃

f∈A+ homogeneous
Tψ(f)

The morphism ψ induces a canonical morphism of schemes

rL,ψ : U(ψ) −→ X

together with a map of Z-graded OT -algebras

θ : r∗L,ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
L⊗d|U(ψ).

The triple (U(ψ), rL,ψ, θ) is characterized by the following properties:

(1) For f ∈ A+ homogeneous we have r−1
L,ψ(D+(f)) = Tψ(f).

(2) For every d ≥ 0 the diagram

Ad

(26.10.1.3)

��

ψ
// Γ(T,L⊗d)

restrict

��
Γ(X,OX(d))

θ // Γ(U(ψ),L⊗d)

is commutative.

Moreover, for any d ≥ 1 and any open subscheme V ⊂ T such that the sections
in ψ(Ad) generate L⊗d|V the morphism rL,ψ|V agrees with the morphism ϕ : V →
Proj(A) and the map θ|V agrees with the map α : ϕ∗OX(d)→ L⊗d|V where (ϕ, α)
is the pair of Lemma 26.12.1 associated to ψ|A(d) : A(d) → Γ∗(V,L⊗d).

Proof. Suppose that we have two triples (U, r : U → X, θ) and (U ′, r′ : U ′ → X, θ′)
satisfying (1) and (2). Property (1) implies that U = U ′ = U(ψ) and that r = r′

as maps of underlying topological spaces, since the opens D+(f) form a basis for
the topology on X, and since X is a sober topological space (see Algebra, Section
10.55 and Schemes, Lemma 25.11.1). Let f ∈ A+ be homogeneous. Note that
Γ(D+(f),

⊕
n∈ZOX(n)) = Af as a Z-graded algebra. Consider the two Z-graded

ring maps

θ, θ′ : Af −→ Γ(Tψ(f),
⊕
L⊗n).

We know that multiplication by f (resp. ψ(f)) is an isomorphism on the left (resp.
right) hand side. We also know that θ(x/1) = θ′(x/1) = ψ(x)|Tψ(f)

by (2) for all

x ∈ A. Hence we deduce easily that θ = θ′ as desired. Considering the degree 0
parts we deduce that r] = (r′)], i.e., that r = r′ as morphisms of schemes. This
proves the uniqueness.

Now we come to existence. By the uniqueness just proved, it is enough to construct
the pair (r, θ) locally on T . Hence we may assume that T = Spec(R) is affine,
that L = OT and that for some f ∈ A+ homogeneous we have ψ(f) generates

OT = O⊗ deg(f)
T . In other words, ψ(f) = u ∈ R∗ is a unit. In this case the map ψ

is a graded ring map

A −→ R[x] = Γ∗(T,OT )

which maps f to uxdeg(f). Clearly this extends (uniquely) to a Z-graded ring map
θ : Af → R[x, x−1] by mapping 1/f to u−1x− deg(f). This map in degree zero gives

http://stacks.math.columbia.edu/tag/01NK
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the ring map A(f) → R which gives the morphism r : T = Spec(R)→ Spec(A(f)) =
D+(f) ⊂ X. Hence we have constructed (r, θ) in this special case.

Let us show the last statement of the lemma. According to Lemma 26.12.1 the
morphism constructed there is the unique one such that the displayed diagram in
its statement commutes. The commutativity of the diagram in the lemma implies
the commutativity when restricted to V and A(d). Whence the result. �

Remark 26.14.2. Assumptions as in Lemma 26.14.1 above. The image of the
morphism rL,ψ need not be contained in the locus where the sheaf OX(1) is invert-
ible. Here is an example. Let k be a field. Let S = k[A,B,C] graded by deg(A) = 1,
deg(B) = 2, deg(C) = 3. Set X = Proj(S). Let T = P2

k = Proj(k[X0, X1, X2]).
Recall that L = OT (1) is invertible and that OT (n) = L⊗n. Consider the compo-
sition ψ of the maps

S → k[X0, X1, X2]→ Γ∗(T,L).

Here the first map is A 7→ X6
0 , B 7→ X3

1 , C 7→ X3
2 and the second map is (26.10.1.3).

By the lemma this corresponds to a morphism rL,ψ : T → X = Proj(S) which is
easily seen to be surjective. On the other hand, in Remark 26.9.2 we showed that
the sheaf OX(1) is not invertible at all points of X.

26.15. Relative Proj via glueing

Situation 26.15.1. Here S is a scheme, and A is a quasi-coherent graded OS-
algebra.

In this section we outline how to construct a morphism of schemes

Proj
S

(A) −→ S

by glueing the homogeneous spectra Proj(Γ(U,A)) where U ranges over the affine
opens of S. We first show that the homogeneous spectra of the values of A over
affines form a suitable collection of schemes, as in Lemma 26.2.1.

Lemma 26.15.2. In Situation 26.15.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let
A = A(U) and A′ = A(U ′). The map of graded rings A′ → A induces a morphism
r : Proj(A)→ Proj(A′), and the diagram

Proj(A) //

��

Proj(A′)

��
U // U ′

is cartesian. Moreover there are canonical isomorphisms θ : r∗OProj(A′)(n) →
OProj(A)(n) compatible with multiplication maps.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R ⊗R′ A′ → A is
an isomorphism as A is quasi-coherent (see Schemes, Lemma 25.7.3 for example).
Hence the lemma follows from Lemma 26.11.6. �

In particular the morphism Proj(A)→ Proj(A′) of the lemma is an open immersion.

Lemma 26.15.3. In Situation 26.15.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine
opens. Let A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the
morphisms r : Proj(A) → Proj(A′), and r′ : Proj(A′) → Proj(A′′) of Lemma
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26.15.2 gives the morphism r′′ : Proj(A)→ Proj(A′′) of Lemma 26.15.2. A similar
statement holds for the isomorphisms θ.

Proof. This follows from Lemma 26.11.2 since the map A′′ → A is the composition
of A′′ → A′ and A′ → A. �

Lemma 26.15.4. In Situation 26.15.1. There exists a morphism of schemes

π : Proj
S

(A) −→ S

with the following properties:

(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →
Proj(A) with A = A(U), and

(2) for U ⊂ U ′ ⊂ S affine open the composition

Proj(A)
i−1
U // π−1(U)

inclusion // π−1(U ′)
iU′ // Proj(A′)

with A = A(U), A′ = A(U ′) is the open immersion of Lemma 26.15.2
above.

Proof. Follows immediately from Lemmas 26.2.1, 26.15.2, and 26.15.3. �

Lemma 26.15.5. In Situation 26.15.1. The morphism π : Proj
S

(A) → S of
Lemma 26.15.4 comes with the following additional structure. There exists a quasi-
coherent Z-graded sheaf of OProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n), and a morphism

of graded OS-algebras

ψ : A −→
⊕

n≥0
π∗

(
OProj

S
(A)(n)

)
uniquely determined by the following property: For every affine open U ⊂ S with
A = A(U) there is an isomorphism

θU : i∗U

(⊕
n∈Z
OProj(A)(n)

)
−→

(⊕
n∈Z
OProj

S
(A)(n)

)
|π−1(U)

of Z-graded Oπ−1(U)-algebras such that

An
ψ

//

(26.10.1.3)
''

Γ(π−1(U),OProj
S

(A)(n))

Γ(Proj(A),OProj(A)(n))

θU

44

is commutative.

Proof. We are going to use Lemma 26.2.2 to glue the sheaves of Z-graded algebras⊕
n∈ZOProj(A)(n) for A = A(U), U ⊂ S affine open over the scheme Proj

S
(A). We

have constructed the data necessary for this in Lemma 26.15.2 and we have checked
condition (d) of Lemma 26.2.2 in Lemma 26.15.3. Hence we get the sheaf of Z-
graded OProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n) together with the isomorphisms θU

for all U ⊂ S affine open and all n ∈ Z. For every affine open U ⊂ S with
A = A(U) we have a map A → Γ(Proj(A),

⊕
n≥0OProj(A)(n)). Hence the map

ψ exists by functoriality of relative glueing, see Remark 26.2.3. The diagram of
the lemma commutes by construction. This characterizes the sheaf of Z-graded
OProj

S
(A)-algebras

⊕
OProj

S
(A)(n) because the proof of Lemma 26.11.1 shows that
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having these diagrams commute uniquely determines the maps θU . Some details
omitted. �

26.16. Relative Proj as a functor

We place ourselves in Situation 26.15.1. So S is a scheme and A =
⊕

d≥0Ad is
a quasi-coherent graded OS-algebra. In this section we relativize the construction
of Proj by constructing a functor which the relative homogeneous spectrum will
represent. As a result we will construct a morphism of schemes

Proj
S

(A) −→ S

which above affine opens of S will look like the homogeneous spectrum of a graded
ring. The discussion will be modeled after our discussion of the relative spectrum
in Section 26.4. The easier method using glueing schemes of the form Proj(A),
A = Γ(U,A), U ⊂ S affine open, is explained in Section 26.15, and the result in
this section will be shown to be isomorphic to that one.

Fix for the moment an integer d ≥ 1. We denote A(d) =
⊕

n≥0And similarly to the
notation in Algebra, Section 10.54. Let T be a scheme. Let us consider quadruples
(d, f : T → S,L, ψ) over T where

(1) d is the integer we fixed above,
(2) f : T → S is a morphism of schemes,
(3) L is an invertible OT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of graded OT -algebras such

that f∗Ad → L is surjective.

Given a morphism h : T ′ → T and a quadruple (d, f,L, ψ) over T we can pull it
back to the quadruple (d, f ◦h, h∗L, h∗ψ) over T ′. Given two quadruples (d, f,L, ψ)
and (d, f ′,L′, ψ′) over T with the same integer d we say they are strictly equivalent
if f = f ′ and there exists an isomorphism β : L → L′ such that β ◦ ψ = ψ′ as
graded OT -algebra maps f∗A(d) →

⊕
n≥0(L′)⊗n.

For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,

T 7−→ {strict equivalence classes of (d, f : T → S,L, ψ) as above}
with pullbacks as defined above.

Lemma 26.16.1. In Situation 26.15.1. Let d ≥ 1. Let Fd be the functor associated
to (S,A) above. Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′d
be the functor associated to (S′,A′) above. Then there is a canonical isomorphism

F ′d
∼= hS′ ×hS Fd

of functors.

Proof. A quadruple (d, f ′ : T → S′,L′, ψ′ : (f ′)∗(A′)(d) →
⊕

n≥0(L′)⊗n) is the

same as a quadruple (d, f,L, ψ : f∗A(d) →
⊕

n≥0 L⊗n) together with a factorization

of f as f = g ◦ f ′. Namely, the correspondence is f = g ◦ f ′, L = L′ and ψ = ψ′ via
the identifications (f ′)∗(A′)(d) = (f ′)∗g∗(A(d)) = f∗A(d). Hence the lemma. �

Lemma 26.16.2. In Situation 26.15.1. Let Fd be the functor associated to (d, S,A)
above. If S is affine, then Fd is representable by the open subscheme Ud (26.12.0.1)
of the scheme Proj(Γ(S,A)).
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Proof. Write S = Spec(R) and A = Γ(S,A). Then A is a graded R-algebra and

A = Ã. To prove the lemma we have to identify the functor Fd with the functor

F triplesd of triples defined in Section 26.12.

Let (d, f : T → S,L, ψ) be a quadruple. We may think of ψ as a OS-module
map A(d) →

⊕
n≥0 f∗L⊗n. Since A(d) is quasi-coherent this is the same thing as

an R-linear homomorphism of graded rings A(d) → Γ(S,
⊕

n≥0 f∗L⊗n). Clearly,

Γ(S,
⊕

n≥0 f∗L⊗n) = Γ∗(T,L). Thus we may associate to the quadruple the triple

(d,L, ψ).

Conversely, let (d,L, ψ) be a triple. The composition R → A0 → Γ(T,OT ) de-
termines a morphism f : T → S = Spec(R), see Schemes, Lemma 25.6.4. With
this choice of f the map A(d) → Γ(S,

⊕
n≥0 f∗L⊗n) is R-linear, and hence corre-

sponds to a ψ which we can use for a quadruple (d, f : T → S,L, ψ). We omit the

verification that this establishes an isomorphism of functors Fd = F triplesd . �

Lemma 26.16.3. In Situation 26.15.1. The functor Fd is representable by a
scheme.

Proof. We are going to use Schemes, Lemma 25.15.4.

First we check that Fd satisfies the sheaf property for the Zariski topology. Namely,
suppose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that

(d, fi,Li, ψi) ∈ Fd(Ui) such that (d, fi,Li, ψi)|Ui∩Uj and (d, fj ,Lj , ψj)|Ui∩Uj are
strictly equivalent. This implies that the morphisms fi : Ui → S glue to a mor-
phism of schemes f : T → S such that f |Ii = fi, see Schemes, Section 25.14. Thus
f∗i A(d) = f∗A(d)|Ui . It also implies there exist isomorphisms βij : Li|Ui∩Uj →
Lj |Ui∩Uj such that βij ◦ ψi = ψj on Ui ∩ Uj . Note that the isomorphisms βij are
uniquely determined by this requirement because the maps f∗i Ad → Li are surjec-
tive. In particular we see that βjk ◦ βij = βik on Ui ∩ Uj ∩ Uk. Hence by Sheaves,
Section 6.33 the invertible sheaves Li glue to an invertible OT -module L and the
morphisms ψi glue to morphism of OT -algebras ψ : f∗A(d) →

⊕
n≥0 L⊗n. This

proves that Fd satisfies the sheaf condition with respect to the Zariski topology.

Let S =
⋃
i∈I Ui be an affine open covering. Let Fd,i ⊂ Fd be the subfunctor

consisting of those pairs (f : T → S, ϕ) such that f(T ) ⊂ Ui.
We have to show each Fd,i is representable. This is the case because Fd,i is identified
with the functor associated to Ui equipped with the quasi-coherent graded OUi-
algebra A|Ui) by Lemma 26.16.1. Thus the result follows from Lemma 26.16.2.

Next we show that Fd,i ⊂ Fd is representable by open immersions. Let (f : T →
S, ϕ) ∈ Fd(T ). Consider Vi = f−1(Ui). It follows from the definition of Fd,i that
given a : T ′ → T we gave a∗(f, ϕ) ∈ Fd,i(T ′) if and only if a(T ′) ⊂ Vi. This is what
we were required to show.

Finally, we have to show that the collection (Fd,i)i∈I covers Fd. Let (f : T →
S, ϕ) ∈ Fd(T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of

S we see that T =
⋃
i∈I Vi is an open covering of T . Moreover (f, ϕ)|Vi ∈ Fd,i(Vi).

This finishes the proof of the lemma. �

At this point we can redo the material at the end of Section 26.12 in the current
relative setting and define a functor which is representable by Proj

S
(A). To do this

we introduce the notion of equivalence between two quadruples (d, f : T → S,L, ψ)

http://stacks.math.columbia.edu/tag/01NV
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and (d′, f ′ : T → S,L′, ψ′) with possibly different values of the integers d, d′.
Namely, we say these are equivalent if f = f ′, and there exists an isomorphism
β : L⊗d′ → (L′)⊗d such that β ◦ ψ|f∗A(dd′) = ψ′|f∗A(dd′) . The following lemma

implies that this defines an equivalence relation. (This is not a complete triviality.)

Lemma 26.16.4. In Situation 26.15.1. Let T be a scheme. Let (d, f,L, ψ),
(d′, f ′,L′, ψ′) be two quadruples over T . The following are equivalent:

(1) Let m = lcm(d, d′). Write m = ad = a′d′. We have f = f ′ and there ex-

ists an isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ψ|f∗A(m)

and ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.

(2) The quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent.
(3) We have f = f ′ and for some positive integer m = ad = a′d′ there exists

an isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m)

and ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible
degrees and powers of invertible sheaves. Assume (3) for some integer m = ad =
a′d′. Let m0 = lcm(d, d′) and write it as m0 = a0d = a′0d

′. We are given an

isomorphism β : L⊗a → (L′)⊗a′ with the property described in (3). We want to

find an isomorphism β0 : L⊗a0 → (L′)⊗a′0 having that property as well. Since by
assumption the maps ψ : f∗Ad → L and ψ′ : (f ′)∗Ad′ → L′ are surjective the same
is true for the maps ψ : f∗Am0

→ L⊗a0 and ψ′ : (f ′)∗Am0
→ (L′)⊗a0 . Hence if

β0 exists it is uniquely determined by the condition that β0 ◦ ψ = ψ′. This means
that we may work locally on T . Hence we may assume that f = f ′ : T → S maps
into an affine open, in other words we may assume that S is affine. In this case
the result follows from the corresponding result for triples (see Lemma 26.12.4) and
the fact that triples and quadruples correspond in the affine base case (see proof of
Lemma 26.16.2). �

Suppose d′ = ad. Consider the transformation of functors Fd → Fd′ which assigns
to the quadruple (d, f,L, ψ) over T the quadruple (d′, f,L⊗a, ψ|f∗A(d′)). One of the
implications of Lemma 26.16.4 is that the transformation Fd → Fd′ is injective! For
a quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant func-
tor on the category of quasi-compact schemes with values in sets. For a general
scheme T we define

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We
omit the definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of
schemes. Thus we have defined our functor

(26.16.4.1) F : Schopp −→ Sets

Lemma 26.16.5. In Situation 26.15.1. The functor F above is representable by a
scheme.
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Proof. Let Ud → S be the scheme representing the functor Fd defined above. Let
Ld, ψd : π∗dA(d) →

⊕
n≥0 L

⊗n
d be the universal object. If d|d′, then we may con-

sider the quadruple (d′, πd,L⊗d
′/d

d , ψd|A(d′)) which determines a canonical morphism
Ud → Ud′ over S. By construction this morphism corresponds to the transformation
of functors Fd → Fd′ defined above.

For every affine open Spec(R) = V ⊂ S setting A = Γ(V,A) we have a canonical
identification of the base change Ud,V with the corresponding open subscheme of
Proj(A), see Lemma 26.16.2. Moreover, the morphisms Ud,V → Ud′,V constructed
above correspond to the inclusions of opens in Proj(A). Thus we conclude that
Ud → Ud′ is an open immersion.

This allows us to construct X by glueing the schemes Ud along the open immersions
Ud → Ud′ . Technically, it is convenient to choose a sequence d1|d2|d3| . . . such that
every positive integer divides one of the di and to simply take X =

⋃
Udi using the

open immersions above. It is then a simple matter to prove that X represents the
functor F . �

Lemma 26.16.6. In Situation 26.15.1. The scheme π : Proj
S

(A)→ S constructed
in Lemma 26.15.4 and the scheme representing the functor F are canonically iso-
morphic as schemes over S.

Proof. Let X be the scheme representing the functor F . Note that X is a scheme
over S since the functor F comes equipped with a natural transformation F → hS .
Write Y = Proj

S
(A). We have to show that X ∼= Y as S-schemes. We give two

arguments.

The first argument uses the construction of X as the union of the schemes Ud
representing Fd in the proof of Lemma 26.16.5. Over each affine open of S we can
identify X with the homogeneous spectrum of the sections ofA over that open, since
this was true for the opens Ud. Moreover, these identifications are compatible with
further restrictions to smaller affine opens. On the other hand, Y was constructed
by glueing these homogeneous spectra. Hence we can glue these isomorphisms to
an isomorphism between X and Proj

S
(A) as desired. Details omitted.

Here is the second argument. Lemma 26.15.5 shows that there exists a morphism
of graded algebras

ψ : π∗A −→
⊕

n≥0
OY (n)

over Y which on sections over affine opens of S agrees with (26.10.1.3). Hence
for every y ∈ Y there exists an open neighbourhood V ⊂ Y of y and an integer
d ≥ 1 such that for d|n the sheaf OY (n)|V is invertible and the multiplication maps
OY (n)|V ⊗OV OY (m)|V → OY (n + m)|V are isomorphisms. Thus ψ restricted to
the sheaf π∗A(d)|V gives an element of Fd(V ). Since the opens V cover Y we see
“ψ” gives rise to an element of F (Y ). Hence a canonical morphism Y → X over S.
Because this construction is completely canonical to see that it is an isomorphism
we may work locally on S. Hence we reduce to the case S affine where the result
is clear. �

Definition 26.16.7. Let S be a scheme. Let A be a quasi-coherent sheaf of graded
OS-algebras. The relative homogeneous spectrum of A over S, or the homogeneous
spectrum of A over S, or the relative Proj of A over S is the scheme constructed

http://stacks.math.columbia.edu/tag/01NZ
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in Lemma 26.15.4 which represents the functor F (26.16.4.1), see Lemma 26.16.6.
We denote it π : Proj

S
(A)→ S.

The relative Proj comes equipped with a quasi-coherent sheaf of Z-graded algebras⊕
n∈ZOProj

S
(A)(n) (the twists of the structure sheaf) and a “universal” homomor-

phism of graded algebras

ψuniv : A −→ π∗

(⊕
n≥0
OProj

S
(A)(n)

)
see Lemma 26.15.5. We may also think of this as a homomorphism

ψuniv : π∗A −→
⊕

n≥0
OProj

S
(A)(n)

if we like. The following lemma is a formulation of the universality of this object.

Lemma 26.16.8. In Situation 26.15.1. Let (f : T → S, d,L, ψ) be a quadruple. Let
rd,L,ψ : T → Proj

S
(A) be the associated S-morphism. There exists an isomorphism

of Z-graded OT -algebras

θ : r∗d,L,ψ

(⊕
n∈Z
OProj

S
(A)(nd)

)
−→

⊕
n∈Z
L⊗n

such that the following diagram commutes

A(d)

ψ
//

ψuniv ''

f∗
(⊕

n∈Z L⊗n
)

π∗

(⊕
n≥0OProj

S
(A)(nd)

) θ

55

The commutativity of this diagram uniquely determines θ.

Proof. Note that the quadruple (f : T → S, d,L, ψ) defines an element of Fd(T ).
Let Ud ⊂ Proj

S
(A) be the locus where the sheaf OProj

S
(A)(d) is invertible and

generated by the image of ψuniv : π∗Ad → OProj
S

(A)(d). Recall that Ud represents

the functor Fd, see the proof of Lemma 26.16.5. Hence the result will follow if we
can show the quadruple (Ud → S, d,OUd(d), ψuniv|A(d)) is the universal family, i.e.,
the representing object in Fd(Ud). We may do this after restricting to an affine
open of S because (a) the formation of the functors Fd commutes with base change
(see Lemma 26.16.1), and (b) the pair (

⊕
n∈ZOProj

S
(A)(n), ψuniv) is constructed

by glueing over affine opens in S (see Lemma 26.15.5). Hence we may assume that
S is affine. In this case the functor of quadruples Fd and the functor of triples
Fd agree (see proof of Lemma 26.16.2) and moreover Lemma 26.12.2 shows that
(d,OUd(d), ψd) is the universal triple over Ud. Going backwards through the identi-
fications in the proof of Lemma 26.16.2 shows that (Ud → S, d,OUd(d), ψuniv|A(d))
is the universal quadruple as desired. �

Lemma 26.16.9. Let S be a scheme and A be a quasi-coherent sheaf of graded
OS-algebras. The morphism π : Proj

S
(A)→ S is separated.

Proof. To prove a morphism is separated we may work locally on the base, see
Schemes, Section 25.21. By construction Proj

S
(A) is over any affine U ⊂ S iso-

morphic to Proj(A) with A = A(U). By Lemma 26.8.8 we see that Proj(A) is
separated. Hence Proj(A) → U is separated (see Schemes, Lemma 25.21.14) as
desired. �
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Lemma 26.16.10. Let S be a scheme and A be a quasi-coherent sheaf of graded
OS-algebras. Let g : S′ → S be any morphism of schemes. Then there is a canonical
isomorphism

r : Proj
S′

(g∗A) −→ S′ ×S Proj
S

(A)

as well as a corresponding isomorphism

θ : r∗pr∗2

(⊕
d∈Z
OProj

S
(A)(d)

)
−→

⊕
d∈Z
OProj

S′
(g∗A)(d)

of Z-graded OProj
S′

(g∗A)-algebras.

Proof. This follows from Lemma 26.16.1 and the construction of Proj
S

(A) in
Lemma 26.16.5 as the union of the schemes Ud representing the functors Fd. In
terms of the construction of relative Proj via glueing this isomorphism is given
by the isomorphisms constructed in Lemma 26.11.6 which provides us with the
isomorphism θ. Some details omitted. �

Lemma 26.16.11. Let S be a scheme. Let A be a quasi-coherent sheaf of graded
OS-modules generated as an A0-algebra by A1. In this case the scheme X =
Proj

S
(A) represents the functor F1 which associates to a scheme f : T → S over S

the set of pairs (L, ψ), where

(1) L is an invertible OT -module, and
(2) ψ : f∗A →

⊕
n≥0 L⊗n is a graded OT -algebra homomorphism such that

f∗A1 → L is surjective

up to strict equivalence as above. Moreover, in this case all the quasi-coherent
sheaves OProj(A)(n) are invertible OProj(A)-modules and the multiplication maps

induce isomorphisms OProj(A)(n)⊗OProj(A)
OProj(A)(m) = OProj(A)(n+m).

Proof. Under the assumptions of the lemma the sheaves OProj(A)(n) are invertible

and the multiplication maps isomorphisms by Lemma 26.16.5 and Lemma 26.12.3
over affine opens of S. Thus X actually represents the functor F1, see proof of
Lemma 26.16.5. �

26.17. Quasi-coherent sheaves on relative Proj

We briefly discuss how to deal with graded modules in the relative setting.

We place ourselves in Situation 26.15.1. So S is a scheme, and A is a quasi-coherent
graded OS-algebra. Let M =

⊕
n∈ZMn be a graded A-module, quasi-coherent

as an OS-module. We are going to describe the associated quasi-coherent sheaf of
modules on Proj

S
(A). We first describe the value of this sheaf schemes T mapping

into the relative Proj.

Let T be a scheme. Let (d, f : T → S,L, ψ) be a quadruple over T , as in Section

26.16. We define a quasi-coherent sheaf M̃T of OT -modules as follows

(26.17.0.1) M̃T =
(
f∗M(d) ⊗f∗A(d)

(⊕
n∈Z
L⊗n

))
0

So M̃T is the degree 0 part of the tensor product of the graded f∗A(d)-modulesM(d)

and
⊕

n∈Z L⊗n. Note that the sheaf M̃T depends on the quadruple even though
we suppressed this in the notation. This construction has the pleasing property

that given any morphism g : T ′ → T we have M̃T ′ = g∗M̃T where M̃T ′ denotes
the quasi-coherent sheaf associated to the pullback quadruple (d, f ◦ g, g∗L, g∗ψ).
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Since all sheaves in (26.17.0.1) are quasi-coherent we can spell out the construction
over an affine open Spec(C) = V ⊂ T which maps into an affine open Spec(R) =
U ⊂ S. Namely, suppose that A|U corresponds to the graded R-algebra A, that
M|U corresponds to the graded A-module M , and that L|V corresponds to the
invertible C-module L. The map ψ gives rise to a graded R-algebra map γ : A(d) →⊕

n≥0 L
⊗n. (Tensor powers of L over C.) Then (M̃T )|V is the quasi-coherent sheaf

associated to the C-module

NR,C,A,M,γ =
(
M (d) ⊗A(d),γ

(⊕
n∈Z

L⊗n
))

0

By assumption we may even cover T by affine opens V such that there exists some
a ∈ Ad such that γ(a) ∈ L is a C-basis for the module L. In that case any element
of NR,C,A,M,γ is a sum of pure tensors

∑
mi ⊗ γ(a)−ni with m ∈Mnid. In fact we

may multiply each mi with a suitable positive power of a and collect terms to see
that each element of NR,C,A,M,γ can be written as m⊗ γ(a)−n with m ∈Mnd and
n� 0. In other words we see that in this case

NR,C,A,M,γ = M(a) ⊗A(a)
C

where the map A(a) → C is the map x/an 7→ γ(x)/γ(a)n. In other words, this

is the value of M̃ on D+(a) ⊂ Proj(A) pulled back to Spec(C) via the morphism
Spec(C)→ D+(a) coming from γ.

Lemma 26.17.1. In Situation 26.15.1. For any quasi-coherent sheaf of graded
A-modules M on S, there exists a canonical associated sheaf of OProj

S
(A)-modules

M̃ with the following properties:

(1) Given a scheme T and a quadruple (T → S, d,L, ψ) over T corresponding

to a morphism h : T → Proj
S

(A) there is a canonical isomorphism M̃T =

h∗M̃ where M̃T is defined by (26.17.0.1).
(2) The isomorphisms of (1) are compatible with pullbacks.
(3) There is a canonical map

π∗M0 −→ M̃.

(4) The construction M 7→ M̃ is functorial in M.

(5) The construction M 7→ M̃ is exact.
(6) There are canonical maps

M̃ ⊗OProj
S

(A)
Ñ −→ M̃ ⊗A N

as in Lemma 26.9.1.
(7) There exist canonical maps

π∗M−→
⊕

n∈Z
M̃(n)

generalizing (26.10.1.6).

(8) The formation of M̃ commutes with base change.

Proof. Omitted. We should split this lemma into parts and prove the parts sepa-
rately. �
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26.18. Functoriality of relative Proj

This section is the analogue of Section 26.11 for the relative Proj. Let S be a
scheme. A graded OS-algebra map ψ : A → B does not always give rise to a
morphism of associated relative Proj. The correct result is stated as follows.

Lemma 26.18.1. Let S be a scheme. Let A, B be two graded quasi-coherent OS-
algebras. Set p : X = Proj

S
(A)→ S and q : Y = Proj

S
(B)→ S. Let ψ : A → B be

a homomorphism of graded OS-algebras. There is a canonical open U(ψ) ⊂ Y and
a canonical morphism of schemes

rψ : U(ψ) −→ X

over S and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any affine open
W ⊂ S the triple

(U(ψ) ∩ p−1W, rψ|U(ψ)∩p−1W : U(ψ) ∩ p−1W → q−1W, θ|U(ψ)∩p−1W )

is equal to the triple associated to ψ : A(W ) → B(W ) in Lemma 26.11.1 via the
identifications p−1W = Proj(A(W )) and q−1W = Proj(B(W )) of Section 26.15.

Proof. This lemma proves itself by glueing the local triples. �

Lemma 26.18.2. Let S be a scheme. Let A, B, and C be quasi-coherent graded
OS-algebras. Set X = Proj

S
(A), Y = Proj

S
(B) and Z = Proj

S
(C). Let ϕ : A → B,

ψ : B → C be graded OS-algebra maps. Then we have

U(ψ ◦ ϕ) = r−1
ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have

θψ ◦ r∗ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 26.18.3. With hypotheses and notation as in Lemma 26.18.1 above. As-
sume Ad → Bd is surjective for d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n) → OY (n) are surjective but not isomorphisms in

general (even if A → B is surjective).

Proof. Follows on combining Lemma 26.18.1 with Lemma 26.11.3. �

Lemma 26.18.4. With hypotheses and notation as in Lemma 26.18.1 above. As-
sume Ad → Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 26.18.1 with Lemma 26.11.4. �
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Lemma 26.18.5. With hypotheses and notation as in Lemma 26.18.1 above. As-
sume Ad → Bd is surjective for d � 0 and that A is generated by A1 over A0.
Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 26.18.1 with Lemma 26.11.5. �

26.19. Invertible sheaves and morphisms into relative Proj

It seems that we may need the following lemma somewhere. The situation is the
following:

(1) Let S be a scheme.
(2) Let A be a quasi-coherent graded OS-algebra.
(3) Denote π : Proj

S
(A)→ S the relative homogeneous spectrum over S.

(4) Let f : X → S be a morphism of schemes.
(5) Let L be an invertible OX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of graded OX -algebras.

Given this data set

U(ψ) =
⋃

(U,V,a)
Uψ(a)

where (U, V, a) satisfies:

(1) V ⊂ S affine open,
(2) U = f−1(V ), and
(3) a ∈ A(V )+ is homogeneous.

Namely, then ψ(a) ∈ Γ(U,L⊗ deg(a)) and Uψ(a) is the corresponding open (see Mod-
ules, Lemma 17.21.7).

Lemma 26.19.1. With assumptions and notation as above. The morphism ψ
induces a canonical morphism of schemes over S

rL,ψ : U(ψ) −→ Proj
S

(A)

together with a map of graded OU(ψ)-algebras

θ : r∗L,ψ

(⊕
d≥0
OProj

S
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:

(1) For every open V ⊂ S and every d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(f−1(V ),L⊗d)

restrict

��
Γ(π−1(V ),OProj

S
(A)(d))

θ // Γ(f−1(V ) ∩ U(ψ),L⊗d)

is commutative.
(2) For any d ≥ 1 and any open subscheme W ⊂ X such that ψ|W : f∗Ad|W →
L⊗d|W is surjective the restriction of the morphism rL,ψ agrees with the
morphism W → Proj

S
(A) which exists by the construction of the relative

homogeneous spectrum, see Definition 26.16.7.
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(3) For any affine open V ⊂ S, the restriction

(U(ψ) ∩ f−1(V ), rL,ψ|U(ψ)∩f−1(V ), θ|U(ψ)∩f−1(V ))

agrees via iV (see Lemma 26.15.4) with the triple (U(ψ′), rL,ψ′ , θ
′) of

Lemma 26.14.1 associated to the map ψ′ : A = A(V )→ Γ∗(f
−1(V ),L|f−1(V ))

induced by ψ.

Proof. Use characterization (3) to construct the morphism rL,ψ and θ locally over
S. Use the uniqueness of Lemma 26.14.1 to show that the construction glues.
Details omitted. �

26.20. Twisting by invertible sheaves and relative Proj

Let S be a scheme. Let A =
⊕

d≥0Ad be a quasi-coherent graded OS-algebra. Let
L be an invertible sheaf on S. In this situation we obtain another quasi-coherent
graded OS-algebra, namely

B =
⊕

d≥0
Ad ⊗OS L⊗d

It turns out that A and B have isomorphic relative homogeneous spectra.

Lemma 26.20.1. With notation S, A, L and B as above. There is a canonical
isomorphism

P = Proj
S

(A)
g

//

π

%%

Proj
S

(B) = P ′

π′

yy
S

with the following properties

(1) There are isomorphisms θn : g∗OP ′(n) → OP (n) ⊗ π∗L⊗n which fit to-
gether to give an isomorphism of Z-graded algebras

θ : g∗
(⊕

n∈Z
OP ′(n)

)
−→

⊕
n∈Z
OP (n)⊗ π∗L⊗n

(2) For every open V ⊂ S the diagrams

An(V )⊗ L⊗n(V )
multiply

//

ψ⊗π∗

��

Bn(V )

ψ

��

Γ(π−1V,OP (n))⊗ Γ(π−1V, π∗L⊗n)

multiply

��
Γ(π−1V,OP (n)⊗ π∗L⊗n) Γ(π′−1V,OP ′(n))

θnoo

are commutative.
(3) Add more here as necessary.

Proof. This is the identity map when L ∼= OS . In general choose an open covering
of S such that L is trivialized over the pieces and glue the corresponding maps.
Details omitted. �
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26.21. Projective bundles

Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules,
Lemma 17.18.6 the symmetric algebra Sym(E) of E over OS is a quasi-coherent
sheaf of OS-algebras. Note that it is generated in degree 1 over OS . Hence it
makes sense to apply the construction of the previous section to it, specifically
Lemmas 26.16.5 and 26.16.11.

Definition 26.21.1. Let S be a scheme. Let E be a quasi-coherent OS-module3.
We denote

π : P(E) = Proj
S

(Sym(E)) −→ S

and we call it the projective bundle associated to E . The symbol OP(E)(n) indicates
the invertible OP(E)-modules introduced in Lemma 26.16.5 and is called the nth
twist of the structure sheaf.

Note that according to Lemma 26.16.5 there are canonical OS-module homomor-
phisms

Symn(E) −→ π∗(OP(E)(n))

for all n ≥ 0. This, combined with the fact that OP(E)(1) is the canonical relatively
ample invertible sheaf on P(E), is a good way to remember how we have normalized
our construction of P(E). Namely, in some references the space P(E) is only defined
for E finite locally free on S, and sometimes P(E) is actually defined as our P(E∧)
where E∧ is the dual of the sheaf E .

Example 26.21.2. The map Symn(E) → π∗(OP(E)(n)) is an isomorphism if E is
locally free, but in general need not be an isomorphism. In fact we will give an
example where this map is not injective for n = 1. Set S = Spec(A) with

A = k[u, v, s1, s2, t1, t2]/I

where k is a field and

I = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1).

Denote u the class of u in A and similarly for the other variables. Let M =
(Ax⊕Ay)/A(ux+ vy) so that

Sym(M) = A[x, y]/(ux+ vy) = k[x, y, u, v, s1, s2, t1, t2]/J

where

J = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1, ux+ vy).

In this case the projective bundle associated to the quasi-coherent sheaf E = M̃ on
S = Spec(A) is the scheme

P = Proj(Sym(M)).

Note that this scheme as an affine open covering P = D+(x) ∪ D+(y). Consider
the element m ∈M which is the image of the element us1x+ vt2y. Note that

x(us1x+ vt2y) = (s1x+ s2y)(ux+ vy) mod I

and

y(us1x+ vt2y) = (t1x+ t2y)(ux+ vy) mod I.

3The reader may expect here the condition that E is finite locally free. We do not do so in
order to be consistent with [DG67, II, Definition 4.1.1].
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The first equation implies that m maps to zero as a section of OP (1) on D+(x)
and the second that it maps to zero as a section of OP (1) on D+(y). This shows
that m maps to zero in Γ(P,OP (1)). On the other hand we claim that m 6= 0,
so that m gives an example of a nonzero global section of E mapping to zero in
Γ(P,OP (1)). Assume m = 0 to get a contradiction. In this case there exists an
element f ∈ k[u, v, s1, s2, t1, t2] such that

us1x+ vt2y = f(ux+ vy) mod I

Since I is generated by homogeneous polynomials of degree 2 we may decompose
f into its homogeneous components and take the degree 1 component. In other
words we may assume that

f = au+ bv + α1s1 + α2s2 + β1t1 + β2t2

for some a, b, α1, α2, β1, β2 ∈ k. The resulting conditions are that

us1 − u(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I

There are no terms u2, uv, v2 in the generators of I and hence we see a = b = 0.
Thus we get the relations

us1 − u(α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(α1s1 + α2s2 + β1t1 + β2t2) ∈ I

We may use the first generator of I to replace any occurrence of us1 by vt1 + ut2,
the second generator of I to replace any occurrence of vs1 by −us2 + vt2, the third
generator to remove occurrences of vs2 and the third to remove occurences of ut1.
Then we get the relations

(1− α1)vt1 + (1− α1)ut2 − α2us2 − β2ut2 = 0
(1− α1)vt2 + α1us2 − β1vt1 − β2vt2 = 0

This implies that α1 should be both 0 and 1 which is a contradiction as desired.

Lemma 26.21.3. Let S be a scheme. The structure morphism P(E) → S of a
projective bundle over S is separated.

Proof. Immediate from Lemma 26.16.9. �

Lemma 26.21.4. Let S be a scheme. Let n ≥ 0. Then Pn
S is a projective bundle

over S.

Proof. Note that

Pn
Z = Proj(Z[T0, . . . , Tn]) = Proj

Spec(Z)

(
˜Z[T0, . . . , Tn]

)
where the grading on the ring Z[T0, . . . , Tn] is given by deg(Ti) = 1 and the elements
of Z are in degree 0. Recall that Pn

S is defined as Pn
Z ×Spec(Z) S. Moreover, form-

ing the relative homogeneous spectrum commutes with base change, see Lemma
26.16.10. For any scheme g : S → Spec(Z) we have g∗OSpec(Z)[T0, . . . , Tn] =
OS [T0, . . . , Tn]. Combining the above we see that

Pn
S = Proj

S
(OS [T0, . . . , Tn]).

Finally, note that OS [T0, . . . , Tn] = Sym(O⊕n+1
S ). Hence we see that Pn

S is a
projective bundle over S. �
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26.22. Grassmannians

In this section we introduce the standard Grassmannian functors and we show that
they are represented by schemes. Pick integers k, n with 0 < k < n. We will
construct a functor

(26.22.0.1) G(k, n) : Sch −→ Sets

which will loosely speaking parametrize k-dimensional subspaces of n-space. How-
ever, for technical reasons it is more convenient to parametrize (n−k)-dimensional
quotients and this is what we will do.

More precisely, G(k, n) associates to a scheme S the set G(k, n)(S) of isomorphism
classes of surjections

q : O⊕nS −→ Q
where Q is a finite locally free OS-module of rank n − k. Note that this is in-
deed a set, for example by Modules, Lemma 17.9.8 or by the observation that the
isomorphism class of the surjection q is determined by the kernel of q (and given
a sheaf there is a set of subsheaves). Given a morphism of schemes f : T → S
we let G(k, n)(f) : G(k, n)(S) → G(k, n)(T ) which sends the isomorphism class
of q : O⊕nS −→ Q to the isomorphism class of f∗q : O⊕nT −→ f∗Q. This makes
sense since (1) f∗OS = OT , (2) f∗ is additive, (3) f∗ preserves locally free modules
(Modules, Lemma 17.14.3), and (4) f∗ is right exact (Modules, Lemma 17.3.3).

Lemma 26.22.1. Let 0 < k < n. The functor G(k, n) of (26.22.0.1) is repre-
sentable by a scheme.

Proof. Set F = G(k, n). To prove the lemma we will use the criterion of Schemes,
Lemma 25.15.4. The reason F satisfies the sheaf property for the Zariski topology
is that we can glue sheaves, see Sheaves, Section 6.33 (some details omitted).

The family of subfunctors Fi. Let I be the set of subsets of {1, . . . , n} of cardinality
n− k. Given a scheme S and j ∈ {1, . . . , n} we denote ej the global section

ej = (0, . . . , 0, 1, 0, . . . , 0) (1 in jth spot)

of O⊕nS . Of course these sections freely generate O⊕nS . Similarly, for j ∈ {1, . . . , k}
we denote fj the global section of O⊕kS which is zero in all summands except the
jth where we put a 1. For i ∈ I we let

si : O⊕n−kS −→ O⊕nS
which is the direct sum of the coprojections OS → O⊕nS corresponding to elements
of i. More precisely, if i = {i1, . . . , in−k} with i1 < i2 < . . . < in−k then si maps fj
to eij for j ∈ {1, . . . , n− k}. With this notation we can set

Fi(S) = {q : O⊕nS → Q ∈ F (S) | q ◦ si is surjective} ⊂ F (S)

Given a morphism f : T → S of schemes the pullback f∗si is the corresponding
map over T . Since f∗ is right exact (Modules, Lemma 17.3.3) we conclude that Fi
is a subfunctor of F .

Representability of Fi. To prove this we may assume (after renumbering) that
i = {1, . . . , n − k}. This means si is the inclusion of the first n − k summands.
Observe that if q ◦ si is surjective, then q ◦ si is an isomorphism as a surjective map
between finite locally free modules of the same rank (Modules, Lemma 17.14.5).
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Thus if q : O⊕nS → Q is an element of Fi(S), then we can use q ◦ si to identify Q
with O⊕n−kS . After doing so we obtain

q : O⊕nS −→ O⊕n−kS

mapping ej to fj (notation as above) for j = 1, . . . , n−k. To determine q completely

we have to fix the images q(en−k+1), . . . , q(en) in Γ(S,O⊕n−kS ). It follows that Fi
is isomorphic to the functor

S 7−→
∏

j=n−k+1,...,n
Γ(S,O⊕n−kS )

This functor is isomorphic to the k(n − k)-fold self product of the functor S 7→
Γ(S,OS). By Schemes, Example 25.15.2 the latter is representable by A1

Z. It

follows Fi is representable by A
k(n−k)
Z since fibred product over Spec(Z) is the

product in the category of schemes.

The inclusion Fi ⊂ F is representable by open immersions. Let S be a scheme
and let q : O⊕nS → Q be an element of F (S). By Modules, Lemma 17.9.4. the set
Ui = {s ∈ S | (q ◦ si)s surjective} is open in S. Since OS,s is a local ring and Qs a
finite OS,s-module by Nakayama’s lemma (Algebra, Lemma 10.19.1) we have

s ∈ Ui ⇔
(
the map κ(s)⊕n−k → Qs/msQs induced by (q ◦ si)s is surjective

)
Let f : T → S be a morphism of schemes and let t ∈ T be a point mapping to
s ∈ S. We have (f∗Q)t = Qs⊗OS,s OT,t (Sheaves, Lemma 6.26.4) and so on. Thus
the map

κ(t)⊕n−k → (f∗Q)t/mt(f
∗Q)t

induced by (f∗q◦f∗si)t is the base change of the map κ(s)⊕n−k → Qs/msQs above
by the field extension κ(s) ⊂ κ(t). It follows that s ∈ Ui if and only if t is in the
corresponding open for f∗q. In particular T → S factors through Ui if and only if
f∗q ∈ Fi(T ) as desired.

The collection Fi, i ∈ I covers F . Let q : O⊕nS → Q be an element of F (S). We have
to show that for every point s of S there exists an i ∈ I such that si is surjective
in a neighbourhood of s. Thus we have to show that one of the compositions

κ(s)⊕n−k
si−→ κ(s)⊕n → Qs/msQs

is surjective (see previous paragraph). As Qs/msQs is a vector space of dimension
n− k this follows from the theory of vector spaces. �

Definition 26.22.2. Let 0 < k < n. The scheme G(k, n) representing the functor
G(k, n) is called Grassmannian over Z. Its base change G(k, n)S to a scheme S is
called Grassmannian over S. If R is a ring the base change to Spec(R) is denoted
G(k, n)R and called Grassmannian over R.

The definition makes sense as we’ve shown in Lemma 26.22.1 that these functors
are indeed representable.

Lemma 26.22.3. Let n ≥ 1. There is a canonical isomorphism G(n, n+1) = Pn
Z.

Proof. According to Lemma 26.13.1 the scheme Pn
Z represents the functor which

assigns to a scheme S the set of isomorphisms classes of pairs (L, (s0, . . . , sn)) con-
sisting of an invertible module L and an (n+ 1)-tuple of global sections generating
L. Given such a pair we obtain a quotient

O⊕n+1
S −→ L, (h0, . . . , hn) 7−→

∑
hisi.
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Conversely, given an element q : O⊕n+1
S → Q of G(n, n + 1)(S) we obtain such a

pair, namely (Q, (q(e1), . . . , q(en+1))). Here ei, i = 1, . . . , n + 1 are the standard
generating sections of the free module O⊕n+1

S . We omit the verification that these
constructions define mutually inverse transformations of functors. �
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CHAPTER 27

Properties of Schemes

27.1. Introduction

In this chapter we introduce some absolute properties of schemes. A foundational
reference is [DG67].

27.2. Constructible sets

Constructible and locally constructible sets are introduced in Topology, Section
5.14. We may characterize locally constructible subsets of schemes as follows.

Lemma 27.2.1. Let X be a scheme. A subset E of X is locally constructible in
X if and only if E ∩ U is constructible in U for every affine open U of X.

Proof. Assume E is locally constructible. Then there exists an open covering
X =

⋃
Ui such that E ∩ Ui is constructible in Ui for each i. Let V ⊂ X be any

affine open. We can find a finite open affine covering V = V1∪ . . .∪Vm such that for
each j we have Vj ⊂ Ui for some i = i(j). By Topology, Lemma 5.14.4 we see that
each E ∩ Vj is constructible in Vj . Since the inclusions Vj → V are quasi-compact
(see Schemes, Lemma 25.19.2) we conclude that E ∩ V is constructible in V by
Topology, Lemma 5.14.6. The converse implication is immediate. �

Lemma 27.2.2. Let X be a scheme and let E ⊂ X be a constructible subset. Let
ξ ∈ X be a generic point of an irreducible component of X.

(1) If ξ ∈ E, then an open neighbourhood of ξ is contained in E.
(2) If ξ 6∈ E, then an open neighbourhood of ξ is disjoint from E.

Proof. As the complement of a locally constructible subset is locally constructible
it suffices to show (2). We may assume X is affine and hence E constructible
(Lemma 27.2.1). In this case X is a spectral space (Algebra, Lemma 10.25.2).
Then ξ 6∈ E implies ξ 6∈ E by Topology, Lemma 5.22.5 and the fact that there are
no points of X different from ξ which specialize to ξ. �

Lemma 27.2.3. Let X be a quasi-separated scheme. The intersection of any two
quasi-compact opens of X is a quasi-compact open of X. Every quasi-compact open
of X is retrocompact in X.

Proof. If U and V are quasi-compact open then U ∩ V = ∆−1(U × V ), where
∆ : X → X ×X is the diagonal. As X is quasi-separated we see that ∆ is quasi-
compact. Hence we see that U ∩ V is quasi-compact as U × V is quasi-compact
(details omitted; use Schemes, Lemma 25.17.4 to see U × V is a finite union of
affines). The other assertions follow from the first and Topology, Lemma 5.26.1. �

Lemma 27.2.4. Let X be a quasi-compact and quasi-separated scheme. Then the
underlying topological space of X is a spectral space.

1803
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Proof. By Topology, Definition 5.22.1 we have to check that X is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. This follows from Schemes, Lemma 25.11.1 and
25.11.2 and Lemma 27.2.3 above. �

Lemma 27.2.5. Let X be a quasi-compact and quasi-separated scheme. Any locally
constructible subset of X is constructible.

Proof. As X is quasi-compact we can choose a finite affine open covering X =
V1 ∪ . . . ∪ Vm. As X is quasi-separated each Vi is retrocompact in X by Lemma
27.2.3. Hence by Topology, Lemma 5.14.6 we see that E ⊂ X is constructible in X
if and only if E ∩ Vj is constructible in Vj . Thus we win by Lemma 27.2.1. �

Lemma 27.2.6. Let X be a scheme. A subset Z of X is retrocompact in X if and
only if E ∩ U is quasi-compact for every affine open U of X.

Proof. Immediate from the fact that every quasi-compact open of X is a finite
union of affine opens. �

27.3. Integral, irreducible, and reduced schemes

Definition 27.3.1. Let X be a scheme. We say X is integral if it is nonempty and
for every nonempty affine open Spec(R) = U ⊂ X the ring R is an integral domain.

Lemma 27.3.2. Let X be a scheme. The following are equivalent.

(1) The scheme X is reduced, see Schemes, Definition 25.12.1.
(2) There exists an affine open covering X =

⋃
Ui such that each Γ(Ui,OX)

is reduced.
(3) For every affine open U ⊂ X the ring OX(U) is reduced.
(4) For every open U ⊂ X the ring OX(U) is reduced.

Proof. See Schemes, Lemmas 25.12.2 and 25.12.3. �

Lemma 27.3.3. Let X be a scheme. The following are equivalent.

(1) The scheme X is irreducible.
(2) There exists an affine open covering X =

⋃
i∈I Ui such that I is not empty,

Ui is irreducible for all i ∈ I, and Ui ∩ Uj 6= ∅ for all i, j ∈ I.
(3) The scheme X is nonempty and every nonempty affine open U ⊂ X is

irreducible.

Proof. Assume (1). By Schemes, Lemma 25.11.1 we see that X has a unique

generic point η. Then X = {η}. Hence η is an element of every nonempty affine

open U ⊂ X. This implies that U = {η} and that any two nonempty affines meet.
Thus (1) implies both (2) and (3).

Assume (2). Suppose X = Z1 ∪Z2 is a union of two closed subsets. For every i we
see that either Ui ⊂ Z1 or Ui ⊂ Z2. Pick some i ∈ I and assume Ui ⊂ Z1 (possibly
after renumbering Z1, Z2). For any j ∈ I the open subset Ui ∩ Uj is dense in Uj
and contained in the closed subset Z1 ∩ Uj . We conclude that also Uj ⊂ Z1. Thus
X = Z1 as desired.

Assume (3). Choose an affine open covering X =
⋃
i∈I Ui. We may assume that

each Ui is nonempty. Since X is nonempty we see that I is not empty. By assump-
tion each Ui is irreducible. Suppose Ui ∩ Uj = ∅ for some pair i, j ∈ I. Then the
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open Ui
∐
Uj = Ui∪Uj is affine, see Schemes, Lemma 25.6.8. Hence it is irreducible

by assumption which is absurd. We conclude that (3) implies (2). The lemma is
proved. �

Lemma 27.3.4. A scheme X is integral if and only if it is reduced and irreducible.

Proof. If X is irreducible, then every affine open Spec(R) = U ⊂ X is irreducible.
If X is reduced, then R is reduced, by Lemma 27.3.2 above. Hence R is reduced
and (0) is a prime ideal, i.e., R is an integral domain.

If X is integral, then for every nonempty affine open Spec(R) = U ⊂ X the ring R
is reduced and hence X is reduced by Lemma 27.3.2. Moreover, every nonempty
affine open is irreducible. Hence X is irreducible, see Lemma 27.3.3. �

In Examples, Section 82.5 we construct a connected affine scheme all of whose local
rings are domains, but which is not integral.

27.4. Types of schemes defined by properties of rings

In this section we study what properties of rings allow one to define local properties
of schemes.

Definition 27.4.1. Let P be a property of rings. We say that P is local if the
following hold:

(1) For any ring R, and any f ∈ R we have P (R)⇒ P (Rf ).
(2) For any ring R, and fi ∈ R such that (f1, . . . , fn) = R then ∀i, P (Rfi)⇒

P (R).

Definition 27.4.2. Let P be a property of rings. Let X be a scheme. We say X
is locally P if for any x ∈ X there exists an affine open neighbourhood U of x in X
such that OX(U) has property P .

This is only a good notion if the property is local. Even if P is a local property we
will not automatically use this definition to say that a scheme is “locally P” unless
we also explicitly state the definition elsewhere.

Lemma 27.4.3. Let X be a scheme. Let P be a local property of rings. The
following are equivalent:

(1) The scheme X is locally P .
(2) For every affine open U ⊂ X the property P (OX(U)) holds.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui)

satisfies P .
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is locally P .

Moreover, if X is locally P then every open subscheme is locally P .

Proof. Of course (1) ⇔ (3) and (2) ⇒ (1). If (3) ⇒ (2), then the final statement
of the lemma holds and it follows easily that (4) is also equivalent to (1). Thus we
show (3) ⇒ (2).

Let X =
⋃
Ui be an affine open covering, say Ui = Spec(Ri). Assume P (Ri). Let

Spec(R) = U ⊂ X be an arbitrary affine open. By Schemes, Lemma 25.11.6 there
exists a standard covering of U = Spec(R) by standard opens D(fj) such that each
ring Rfj is a principal localization of one of the rings Ri. By Definition 27.4.1 (1)
we get P (Rfj ). Whereupon P (R) by Definition 27.4.1 (2). �
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Here is a sample application.

Lemma 27.4.4. Let X be a scheme. Then X is reduced if and only if X is “locally
reduced” in the sense of Definition 27.4.2.

Proof. This is clear from Lemma 27.3.2. �

Lemma 27.4.5. The following properties of a ring R are local.

(1) (Cohen-Macaulay.) The ring R is Noetherian and CM, see Algebra, Def-
inition 10.100.6.

(2) (Regular.) The ring R is Noetherian and regular, see Algebra, Definition
10.106.7.

(3) (Absolutely Noetherian.) The ring R is of finite type over Z.
(4) Add more here as needed.1

Proof. Omitted. �

27.5. Noetherian schemes

Recall that a ring R is Noetherian if it satisfies the ascending chain condition of
ideals. Equivalently every ideal of R is finitely generated.

Definition 27.5.1. Let X be a scheme.

(1) We say X is locally Noetherian if every x ∈ X has an affine open neigh-
bourhood Spec(R) = U ⊂ X such that the ring R is Noetherian.

(2) We say X is Noetherian if X is locally Noetherian and quasi-compact.

Here is the standard result characterizing locally Noetherian schemes.

Lemma 27.5.2. Let X be a scheme. The following are equivalent:

(1) The scheme X is locally Noetherian.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is locally Noetherian.

Moreover, if X is locally Noetherian then every open subscheme is locally Noether-
ian.

Proof. To show this it suffices to show that being Noetherian is a local property of
rings, see Lemma 27.4.3. Any localization of a Noetherian ring is Noetherian, see
Algebra, Lemma 10.30.1. By Algebra, Lemma 10.23.2 we see the second property
to Definition 27.4.1. �

Lemma 27.5.3. Any immersion Z → X with X locally Noetherian is quasi-
compact.

Proof. A closed immersion is clearly quasi-compact. A composition of quasi-
compact morphisms is quasi-compact, see Topology, Lemma 5.11.2. Hence it suf-
fices to show that an open immersion into a locally Noetherian scheme is quasi-
compact. Using Schemes, Lemma 25.19.2 we reduce to the case where X is affine.

1But we only list those properties here which we have not already dealt with separately
somewhere else.
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Any open subset of the spectrum of a Noetherian ring is quasi-compact (for example
combine Algebra, Lemma 10.30.5 and Topology, Lemmas 5.8.2 and 5.11.13). �

Lemma 27.5.4. A locally Noetherian scheme is quasi-separated.

Proof. By Schemes, Lemma 25.21.7 we have to show that the intersection U ∩ V
of two affine opens of X is quasi-compact. This follows from Lemma 27.5.3 above
on considering the open immersion U ∩ V → U for example. (But really it is just
because any open of the spectrum of a Noetherian ring is quasi-compact.) �

Lemma 27.5.5. A (locally) Noetherian scheme has a (locally) Noetherian under-
lying topological space, see Topology, Definition 5.8.1.

Proof. This is because a Noetherian scheme is a finite union of spectra of Noe-
therian rings and Algebra, Lemma 10.30.5 and Topology, Lemma 5.8.4. �

Lemma 27.5.6. Any morphism of schemes f : X → Y with X Noetherian is
quasi-compact.

Proof. Use Lemma 27.5.5 and use that any subset of a Noetherian topological
space is quasi-compact (see Topology, Lemmas Lemmas 5.8.2 and 5.11.13). �

Lemma 27.5.7. Any locally closed subscheme of a (locally) Noetherian scheme is
(locally) Noetherian.

Proof. Omitted. Hint: Any quotient, and any localization of a Noetherian ring
is Noetherian. For the Noetherian case use again that any subset of a Noetherian
space is a Noetherian space (with induced topology). �

Here is a fun lemma. It says that every locally Noetherian scheme has plenty of
closed points (at least one in every closed subset).

Lemma 27.5.8. Any nonempty locally Noetherian scheme has a closed point. Any
nonempty closed subset of a locally Noetherian scheme has a closed point. Equiva-
lently, any point of a locally Noetherian scheme specializes to a closed point.

Proof. The second assertion follows from the first (using Schemes, Lemma 25.12.4
and Lemma 27.5.7). Consider any nonempty affine open U ⊂ X. Let x ∈ U be a
closed point. If x is a closed point of X then we are done. If not, let X0 ⊂ X be
the reduced induced closed subscheme structure on {x}. Then U0 = U ∩X0 is an
affine open of X0 by Schemes, Lemma 25.10.1 and U0 = {x}. Let y ∈ X0, y 6= x be
a specialization of x. Consider the local ring R = OX0,y. This is a Noetherian local
ring as X0 is Noetherian by Lemma 27.5.7. Denote V ⊂ Spec(R) the inverse image
of U0 in Spec(R) by the canonical morphism Spec(R)→ X0 (see Schemes, Section
25.13.) By construction V is a singleton with unique point corresponding to x (use
Schemes, Lemma 25.13.2). By Algebra, Lemma 10.60.1 we see that dim(R) = 1.
In other words, we see that y is an immediate specialization of x (see Topology,
Definition 5.19.1). In other words, any point y 6= x such that x y is an immediate
specialization of x. Clearly each of these points is a closed point as desired. �

Lemma 27.5.9. Let X be a locally Noetherian scheme. Let x′  x be a special-
ization of points of X. Then

(1) there exists a discrete valuation ring R and a morphism f : Spec(R)→ X
such that the generic point η of Spec(R) maps to x′ and the special point
maps to x, and
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(2) given a finitely generated field extension κ(x′) ⊂ K we may arrange it so
that the extension κ(x′) ⊂ κ(η) induced by f is isomorphic to the given
one.

Proof. Let x′  x be a specialization in X, and let κ(x′) ⊂ K be a finitely gener-
ated extension of fields. By Schemes, Lemma 25.13.2 and the discussion following
Schemes, Lemma 25.13.3 this leads to ring maps OX,x → κ(x′) → K. Let R ⊂ K
be any discrete valuation ring whose field of fractions is K and which dominates
the image of OX,x → K, see Algebra, Lemma 10.115.12. The ring map OX,x → R
induces the morphism f : Spec(R) → X, see Schemes, Lemma 25.13.1. This mor-
phism has all the desired properties by construction. �

27.6. Jacobson schemes

Recall that a space is said to be Jacobson if the closed points are dense in every
closed subset, see Topology, Section 5.17.

Definition 27.6.1. A scheme S is said to be Jacobson if its underlying topological
space is Jacobson.

Recall that a ring R is Jacobson if every radical ideal of R is the intersection of
maximal ideals, see Algebra, Definition 10.34.1.

Lemma 27.6.2. An affine scheme Spec(R) is Jacobson if and only if the ring R
is Jacobson.

Proof. This is Algebra, Lemma 10.34.4. �

Here is the standard result characterizing Jacobson schemes. Intuitively it claims
that Jacobson ⇔ locally Jacobson.

Lemma 27.6.3. Let X be a scheme. The following are equivalent:

(1) The scheme X is Jacobson.
(2) The scheme X is “locally Jacobson” in the sense of Definition 27.4.2.
(3) For every affine open U ⊂ X the ring OX(U) is Jacobson.
(4) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Jacobson.
(5) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Jacobson.

Moreover, if X is Jacobson then every open subscheme is Jacobson.

Proof. The final assertion of the lemma holds by Topology, Lemma 5.17.5. The
equivalence of (5) and (1) is Topology, Lemma 5.17.4. Hence, using Lemma 27.6.2,
we see that (1)⇔ (2). To finish proving the lemma it suffices to show that “Jacob-
son” is a local property of rings, see Lemma 27.4.3. Any localization of a Jacobson
ring at an element is Jacobson, see Algebra, Lemma 10.34.14. Suppose R is a ring,
f1, . . . , fn ∈ R generate the unit ideal and each Rfi is Jacobson. Then we see that
Spec(R) =

⋃
D(fi) is a union of open subsets which are all Jacobson, and hence

Spec(R) is Jacobson by Topology, Lemma 5.17.4 again. This proves the second
property of Definition 27.4.1. �

Many schemes used commonly in algebraic geometry are Jacobson, see Morphisms,
Lemma 28.17.10. We mention here the following interesting case.
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Lemma 27.6.4. Let R be a Noetherian local ring with maximal ideal m. In this
case the scheme S = Spec(R) \ {m} is Jacobson.

Proof. Since Spec(R) is a Noetherian scheme, hence S is a Noetherian scheme
(Lemma 27.5.7). Hence S is a sober, Noetherian topological space (use Schemes,
Lemma 25.11.1). Assume S is not Jacobson to get a contradiction. By Topology,
Lemma 5.17.3 there exists some non-closed point ξ ∈ S such that {ξ} is locally
closed. This corresponds to a prime p ⊂ R such that (1) there exists a prime q,
p ⊂ q ⊂ m with both inclusions strict, and (2) {p} is open in Spec(R/p). This is
impossible by Algebra, Lemma 10.60.1. �

27.7. Normal schemes

Recall that a ring R is said to be normal if all its local rings are normal domains,
see Algebra, Definition 10.36.10. A normal domain is a domain which is integrally
closed in its field of fractions, see Algebra, Definition 10.36.1. Thus it makes sense
to define a normal scheme as follows.

Definition 27.7.1. A scheme X is normal if and only if for all x ∈ X the local
ring OX,x is a normal domain.

This seems to be the definition used in EGA, see [DG67, 0, 4.1.4]. Suppose X =
Spec(A), and A is reduced. Then saying that X is normal is not equivalent to
saying that A is integrally closed in its total ring of fractions. However, if A is
Noetherian then this is the case (see Algebra, Lemma 10.36.14).

Lemma 27.7.2. Let X be a scheme. The following are equivalent:

(1) The scheme X is normal.
(2) For every affine open U ⊂ X the ring OX(U) is normal.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

normal.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is normal.

Moreover, if X is normal then every open subscheme is normal.

Proof. This is clear from the definitions. �

Lemma 27.7.3. A normal scheme is reduced.

Proof. Immediate from the definitions. �

Lemma 27.7.4. Let X be an integral scheme. Then X is normal if and only if
for every affine open U ⊂ X the ring OX(U) is a normal domain.

Proof. This follows from Algebra, Lemma 10.36.9. �

Lemma 27.7.5. Let X be a scheme with a finite number of irreducible components.
The following are equivalent:

(1) X is normal, and
(2) X is a finite disjoint union of normal integral schemes.

Proof. It is immediate from the definitions that (2) implies (1). Let X be a
normal scheme with a finite number of irreducible components. If X is affine then
X satisfies (2) by Algebra, Lemma 10.36.14. For a general X, let X =

⋃
Xi be an
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affine open covering. Note that also each Xi has but a finite number of irreducible
components, and the lemma holds for each Xi. Let T ⊂ X be an irreducible
component. By the affine case each intersection T ∩ Xi is open in Xi and an
integral normal scheme. Hence T ⊂ X is open, and an integral normal scheme.
This proves that X is the disjoint union of its irreducible components, which are
integral normal schemes. There are only finitely many by assumption. �

Lemma 27.7.6. Let X be a Noetherian scheme. The following are equivalent:

(1) X is normal, and
(2) X is a finite disjoint union of normal integral schemes.

Proof. This is a special case of Lemma 27.7.5 because a Noetherian scheme has
a Noetherian underlying topological space (Lemma 27.5.5 and Topology, Lemma
5.8.2. �

Lemma 27.7.7. Let X be a locally Noetherian scheme. The following are equiva-
lent:

(1) X is normal, and
(2) X is a disjoint union of integral normal schemes.

Proof. Omitted. Hint: This is purely topological from Lemma 27.7.6. �

Remark 27.7.8. Let X be a normal scheme. If X is locally Noetherian then we
see that X is integral if and only if X is connected, see Lemma 27.7.7. But there
exists a connected affine scheme X such that OX,x is a domain for all x ∈ X, but
X is not irreducible, see Examples, Section 82.5. This example is even a normal
scheme (proof omitted), so beware!

Lemma 27.7.9. Let X be an integral normal scheme. Then Γ(X,OX) is a normal
domain.

Proof. Set R = Γ(X,OX). It is clear that R is a domain. Suppose f = a/b
is an element of its fraction field which is integral over R. Say we have fd +∑
i=1,...,d aif

i = 0 with ai ∈ R. Let U ⊂ X be affine open. Since b ∈ R is not

zero and since X is integral we see that also b|U ∈ OX(U) is not zero. Hence a/b
is an element of the fraction field of OX(U) which is integral over OX(U) (because
we can use the same polynomial fd +

∑
i=1,...,d ai|Uf i = 0 on U). Since OX(U) is

a normal domain (Lemma 27.7.2), we see that fU = (a|U )/(b|U ) ∈ OX(U). It is
easy to see that fU |V = fV whenever V ⊂ U ⊂ X are affine open. Hence the local
sections fU glue to a global section f as desired. �

27.8. Cohen-Macaulay schemes

Recall, see Algebra, Definition 10.100.1, that a local Noetherian ring (R,m) is said
to be Cohen-Macaulay if depthm(R) = dim(R). Recall that a Noetherian ring R
is said to be Cohen-Macaulay if every local ring Rp of R is Cohen-Macaulay, see
Algebra, Definition 10.100.6.

Definition 27.8.1. Let X be a scheme. We say X is Cohen-Macaulay if for every
x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the ring
OX(U) is Noetherian and Cohen-Macaulay.

Lemma 27.8.2. Let X be a scheme. The following are equivalent:
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(1) X is Cohen-Macaulay,
(2) X is locally Noetherian and all of its local rings are Cohen-Macaulay, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring OX,x

is Cohen-Macaulay.

Proof. Algebra, Lemma 10.100.5 says that the localization of a Cohen-Macaulay
local ring is Cohen-Macaulay. The lemma follows by combining this with Lemma
27.5.2, with the existence of closed points on locally Noetherian schemes (Lemma
27.5.8), and the definitions. �

Lemma 27.8.3. Let X be a scheme. The following are equivalent:

(1) The scheme X is Cohen-Macaulay.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian and Cohen-

Macaulay.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian and Cohen-Macaulay.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Cohen-Macaulay.

Moreover, if X is Cohen-Macaulay then every open subscheme is Cohen-Macaulay.

Proof. Combine Lemmas 27.5.2 and 27.8.2. �

More information on Cohen-Macaulay schemes and depth can be found in Coho-
mology of Schemes, Section 29.11.

27.9. Regular schemes

Recall, see Algebra, Definition 10.59.9, that a local Noetherian ring (R,m) is said to
be regular if m can be generated by dim(R) elements. Recall that a Noetherian ring
R is said to be regular if every local ring Rp of R is regular, see Algebra, Definition
10.106.7.

Definition 27.9.1. Let X be a scheme. We say X is regular, or nonsingular if for
every x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the
ring OX(U) is Noetherian and regular.

Lemma 27.9.2. Let X be a scheme. The following are equivalent:

(1) X is regular,
(2) X is locally Noetherian and all of its local rings are regular, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring OX,x

is regular.

Proof. By the discussion in Algebra preceding Algebra, Definition 10.106.7 we
know that the localization of a regular local ring is regular. The lemma follows by
combining this with Lemma 27.5.2, with the existence of closed points on locally
Noetherian schemes (Lemma 27.5.8), and the definitions. �

Lemma 27.9.3. Let X be a scheme. The following are equivalent:

(1) The scheme X is regular.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian and regular.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian and regular.
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(4) There exists an open covering X =
⋃
Xj such that each open subscheme

Xj is regular.

Moreover, if X is regular then every open subscheme is regular.

Proof. Combine Lemmas 27.5.2 and 27.9.2. �

Lemma 27.9.4. A regular scheme is normal.

Proof. See Algebra, Lemma 10.146.5. �

27.10. Dimension

The dimension of a scheme is just the dimension of its underlying topological space.

Definition 27.10.1. Let X be a scheme.

(1) The dimension of X is just the dimension of X as a topological spaces,
see Topology, Definition 5.9.1.

(2) For x ∈ X we denote dimx(X) the dimension of the underlying topological
space of X at x as in Topology, Definition 5.9.1. We say dimx(X) is the
dimension of X at x.

As a scheme has a sober underlying topological space (Schemes, Lemma 25.11.1)
we may compute the dimension of X as the supremum of the lengths n of chains

T0 ⊂ T1 ⊂ . . . ⊂ Tn
of irreducible closed subsets of X, or as the supremum of the lengths n of chains of
specializations

ξn  ξn−1  . . . ξ0

of points of X.

Lemma 27.10.2. Let X be a scheme. The following are equal

(1) The dimension of X.
(2) The supremum of the dimensions of the local rings of X.
(3) The supremum of dimx(X) for x ∈ X.

Proof. Note that given a chain of specializations

ξn  ξn−1  . . . ξ0

of points of X all of the points ξi correspond to prime ideals of the local ring of X
at ξ0 by Schemes, Lemma 25.13.2. Hence we see that the dimension of X is the
supremum of the dimensions of its local rings. In particular dimx(X) ≥ dim(OX,x)
as dimx(X) is the minimum of the dimensions of open neighbourhoods of x. Thus
supx∈X dimx(X) ≥ dim(X). On the other hand, it is clear that supx∈X dimx(X) ≤
dim(X) as dim(U) ≤ dim(X) for any open subset of X. �

Lemma 27.10.3. A locally Noetherian scheme of dimension 0 is a disjoint union
of spectra of Artinian local rings.

Proof. A Noetherian ring of dimension 0 is a finite product of Artinian local rings,
see Algebra, Proposition 10.59.6. Hence an affine open of a locally Noetherian
scheme X of dimension 0 has discrete underlying topological space. This implies
that the topology on X is discrete. The lemma follows easily from these remarks.

�
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27.11. Catenary schemes

Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 5.10.4.

Definition 27.11.1. Let S be a scheme. We say S is catenary if the underlying
topological space of S is catenary.

Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there
exists a maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 10.101.1.

Lemma 27.11.2. Let S be a scheme. The following are equivalent

(1) S is catenary,
(2) there exists an open covering of S all of whose members are catenary

schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is catenary, and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the

spectrum of a catenary ring.

Moreover, in this case any locally closed subscheme of S is catenary as well.

Proof. Combine Topology, Lemma 5.10.5, and Algebra, Lemma 10.101.2. �

Lemma 27.11.3. Let S be a locally Noetherian scheme. The following are equiv-
alent:

(1) S is catenary, and
(2) locally in the Zariski topology there exists a dimension function on S (see

Topology, Definition 5.19.1).

Proof. This follows from Topology, Lemmas 5.10.5, 5.19.2, and 5.19.4, Schemes,
Lemma 25.11.1 and finally Lemma 27.5.5. �

Lemma 27.11.4. Let X be a scheme. Let Y ⊂ X be an irreducible closed subset.
Let ξ ∈ Y be the generic point. Then

codim(Y,X) = dim(OX,ξ)

where the codimension is as defined in Topology, Definition 5.10.1.

Proof. By Topology, Lemma 5.10.2 we may replace X by an affine open neighbour-
hood of ξ. In this case the result follows easily from Algebra, Lemma 10.25.3. �

In particular the dimension of a scheme is the supremum of the dimensions of all of
its local rings. It turns out that we can use this lemma to characterize a catenary
scheme as a scheme all of whose local rings are catenary.

Lemma 27.11.5. Let X be a scheme. The following are equivalent

(1) X is catenary, and
(2) for any x ∈ X the local ring OX,x is catenary.
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Proof. Assume X is catenary. Let x ∈ X. By Lemma 27.11.2 we may replace X
by an affine open neighbourhood of x, and then Γ(X,OX) is a catenary ring. By
Algebra, Lemma 10.101.3 any localization of a catenary ring is catenary. Whence
OX,x is catenary.

Conversely assume all local rings of X are catenary. Let Y ⊂ Y ′ be an inclusion of
irreducible closed subsets of X. Let ξ ∈ Y be the generic point. Let p ⊂ OX,ξ be
the prime corresponding to the generic point of Y ′, see Schemes, Lemma 25.13.2.
By that same lemma the irreducible closed subsets of X in between Y and Y ′

correspond to primes q ⊂ OX,ξ with p ⊂ q ⊂ mξ. Hence we see all maximal chains
of these are finite and have the same length as OX,ξ is a catenary ring. �

27.12. Serre’s conditions

Here are two technical notions that are often useful. See also Cohomology of
Schemes, Section 29.11.

Definition 27.12.1. Let X be a locally Noetherian scheme. Let k ≥ 0.

(1) We say X is regular in codimension k, or we say X has property (Rk) if
for every x ∈ X we have

dim(OX,x) ≤ k ⇒ OX,x is regular

(2) We say X has property (Sk) if for every x ∈ X we have depth(OX,x) ≥
min(k, dim(OX,x)).

The phrase “regular in codimension k” makes sense since we have seen in Section
27.11 that if Y ⊂ X is irreducible closed with generic point x, then dim(OX,x) =
codim(Y,X). For example condition (R0) means that for every generic point η ∈ X
of an irreducible component of X the local ring OX,η is a field. But for general
Noetherian schemes it can happen that the regular locus of X is badly behaved, so
care has to be taken.

Lemma 27.12.2. Let X be a locally Noetherian scheme. Then X is Cohen-
Macaulay if and only if X has (Sk) for all k ≥ 0.

Proof. By Lemma 27.8.2 we reduce to looking at local rings. Hence the lemma is
true because a Noetherian local ring is Cohen-Macaulay if and only if it has depth
equal to its dimension. �

Lemma 27.12.3. Let X be a locally Noetherian scheme. Then X is reduced if and
only if X has properties (S1) and (R0).

Proof. This is Algebra, Lemma 10.146.3. �

Lemma 27.12.4. Let X be a locally Noetherian scheme. Then X is normal if and
only if X has properties (S2) and (R1).

Proof. This is Algebra, Lemma 10.146.4. �
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27.13. Japanese and Nagata schemes

The notions considered in this section are not prominently defined in EGA. A
“universally Japanese scheme” is mentioned and defined in [DG67, IV Corollary
5.11.4]. A “Japanese scheme” is mentioned in [DG67, IV Remark 10.4.14 (ii)] but
no definition is given. A Nagata scheme (as given below) occurs in a few places in
the literature (see for example [Liu02, Definition 8.2.30] and [Gre76, Page 142]).

We briefly recall that a domain R is called Japanese if the integral closure of R in
any finite extension of its fraction field is finite over R. A ring R is called universally
Japanese if for any finite type ring map R→ S with S a domain S is Japanese. A
ring R is called Nagata if it is Noetherian and R/p is Japanese for every prime p of
R.

Definition 27.13.1. Let X be a scheme.

(1) Assume X integral. We say X is Japanese if for every x ∈ X there exists
an affine open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is
Japanese (see Algebra, Definition 10.150.1).

(2) We say X is universally Japanese if for every x ∈ X there exists an affine
open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is universally
Japanese (see Algebra, Definition 10.150.15).

(3) We say X is Nagata if for every x ∈ X there exists an affine open neigh-
bourhood x ∈ U ⊂ X such that the ring OX(U) is Nagata (see Algebra,
Definition 10.150.15).

Being Nagata is the same thing as being locally Noetherian and universally Japan-
ese, see Lemma 27.13.8.

Remark 27.13.2. In [Hoo72] a (locally Noetherian) scheme X is called Japanese
if for every x ∈ X and every associated prime p of OX,x the ring OX,x/p is Japanese.
We do not use this definition since it is not clear that this gives the same notion
as above for Noetherian integral schemes. In other words, we do not know whether
a Noetherian domain all of whose local rings are Japanese is Japanese. If you do
please email stacks.project@gmail.com. On the other hand, we could circumvent
this problem by calling a scheme X Japanese if for every affine open Spec(A) ⊂ X
the ring A/p is Japanese for every associated prime p of A.

Lemma 27.13.3. A Nagata scheme is locally Noetherian.

Proof. This is true because a Nagata ring is Noetherian by definition. �

Lemma 27.13.4. Let X be an integral scheme. The following are equivalent:

(1) The scheme X is Japanese.
(2) For every affine open U ⊂ X the domain OX(U) is Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Japanese.

Moreover, if X is Japanese then every open subscheme is Japanese.

Proof. This follows from Lemma 27.4.3 and Algebra, Lemmas 10.150.3 and 10.150.4.
�
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Lemma 27.13.5. Let X be a scheme. The following are equivalent:

(1) The scheme X is universally Japanese.
(2) For every affine open U ⊂ X the ring OX(U) is universally Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

universally Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is universally Japanese.

Moreover, if X is universally Japanese then every open subscheme is universally
Japanese.

Proof. This follows from Lemma 27.4.3 and Algebra, Lemmas 10.150.18 and 10.150.21.
�

Lemma 27.13.6. Let X be a scheme. The following are equivalent:

(1) The scheme X is Nagata.
(2) For every affine open U ⊂ X the ring OX(U) is Nagata.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Nagata.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Nagata.

Moreover, if X is Nagata then every open subscheme is Nagata.

Proof. This follows from Lemma 27.4.3 and Algebra, Lemmas 10.150.20 and 10.150.21.
�

Lemma 27.13.7. Let X be a locally Noetherian scheme. Then X is Nagata if and
only if every integral closed subscheme Z ⊂ X is Japanese.

Proof. Assume X is Nagata. Let Z ⊂ X be an integral closed subscheme. Let
z ∈ Z. Let Spec(A) = U ⊂ X be an affine open containing z such that A is Nagata.
Then Z ∩ U ∼= Spec(A/p) for some prime p, see Schemes, Lemma 25.10.1 (and
Definition 27.3.1). By Algebra, Definition 10.150.15 we see that A/p is Japanese.
Hence Z is Japanese by definition.

Assume every integral closed subscheme of X is Japanese. Let Spec(A) = U ⊂ X be
any affine open. As X is locally Noetherian we see that A is Noetherian (Lemma
27.5.2). Let p ⊂ A be a prime ideal. We have to show that A/p is Japanese.
Let T ⊂ U be the closed subset V (p) ⊂ Spec(A). Let T ⊂ X be the closure.
Then T is irreducible as the closure of an irreducible subset. Hence the reduced
closed subscheme defined by T is an integral closed subscheme (called T again),
see Schemes, Lemma 25.12.4. In other words, Spec(A/p) is an affine open of an
integral closed subscheme of X. This subscheme is Japanese by assumption and by
Lemma 27.13.4 we see that A/p is Japanese. �

Lemma 27.13.8. Let X be a scheme. The following are equivalent:

(1) X is Nagata, and
(2) X is locally Noetherian and universally Japanese.

Proof. This is Algebra, Proposition 10.150.30. �

This discussion will be continued in Morphisms, Section 28.19.
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27.14. The singular locus

Here is the definition.

Definition 27.14.1. Let X be a locally Noetherian scheme. The regular locus
Reg(X) of X is the set of x ∈ X such that OX,x is a regular local ring. The
singular locus Sing(X) is the complement X \Reg(X), i.e., the set of points x ∈ X
such that OX,x is not a regular local ring.

The regular locus of a locally Noetherian scheme is stable under generalizations, see
the discussion preceding Algebra, Definition 10.106.7. However, for general locally
Noetherian schemes the regular locus need not be open. In More on Algebra,
Section 15.36 the reader can find some criteria for when this is the case. We will
discuss this further in Morphisms, Section 28.20.

27.15. Quasi-affine schemes

Definition 27.15.1. A scheme X is called quasi-affine if it is quasi-compact and
isomorphic to an open subscheme of an affine scheme.

Lemma 27.15.2. Let X be a scheme. Let f ∈ Γ(X,OX). Denote Xf the maximal
open subscheme of X where f is invertible, see Schemes, Lemma 25.6.2 or Modules,
Lemma 17.21.7. If X is quasi-compact and quasi-separated, the canonical map

Γ(X,OX)f −→ Γ(Xf ,OX)

is an isomorphism. Moreover, if F is a quasi-coherent sheaf of OX-modules the
map

Γ(X,F)f −→ Γ(Xf ,F)

is an isomorphism.

Proof. Write R = Γ(X,OX). Consider the canonical morphism

ϕ : X −→ Spec(R)

of schemes, see Schemes, Lemma 25.6.4. Then the inverse image of the standard
open D(f) on the right hand side is Xf on the left hand side. Moreover, since X is
assumed quasi-compact and quasi-separated the morphism ϕ is quasi-compact and
quasi-separated, see Schemes, Lemma 25.19.2 and 25.21.14. Hence by Schemes,

Lemma 25.24.1 we see that ϕ∗F is quasi-coherent. Hence we see that ϕ∗F = M̃
with M = Γ(X,F) as an R-module. Thus we see that

Γ(Xf ,F) = Γ(D(f), ϕ∗F) = Γ(D(f), M̃) = Mf

which is exactly the content of the lemma. The case of F = OX will given the first
displayed isomorphism of the lemma. �

Lemma 27.15.3. Let X be a scheme. Let f ∈ Γ(X,OX). Assume X is quasi-
compact and quasi-separated and assume that Xf is affine. Then the canonical
morphism

j : X −→ Spec(Γ(X,OX))

from Schemes, Lemma 25.6.4 induces an isomorphism of Xf = j−1(D(f)) onto the
standard affine open D(f) ⊂ Spec(Γ(X,OX)).

Proof. This is clear as j induces an isomorphism of rings Γ(X,OX)f → OX(Xf )
by Lemma 27.15.2 above. �
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Lemma 27.15.4. Let X be a scheme. Then X is quasi-affine if and only if the
canonical morphism

X −→ Spec(Γ(X,OX))

from Schemes, Lemma 25.6.4 is a quasi-compact open immersion.

Proof. If the displayed morphism is a quasi-compact open immersion then X is
isomorphic to a quasi-compact open subscheme of Spec(Γ(X,OX)) and clearly X
is quasi-affine.

Assume X is quasi-affine, say X ⊂ Spec(R) is quasi-compact open. This in partic-
ular implies that X is separated, see Schemes, Lemma 25.23.8. Let A = Γ(X,OX).
Consider the ring map R → A coming from R = Γ(Spec(R),OSpec(R)) and the
restriction mapping of the sheaf OSpec(R). By Schemes, Lemma 25.6.4 we obtain a
factorization:

X −→ Spec(A) −→ Spec(R)

of the inclusion morphism. Let x ∈ X. Choose r ∈ R such that x ∈ D(r) and
D(r) ⊂ X. Denote f ∈ A the image of r in A. The open Xf of Lemma 27.15.2
above is equal to D(r) ⊂ X and hence Af ∼= Rr by the conclusion of that lemma.
Hence D(r) → Spec(A) is an isomorphism onto the standard affine open D(f) of
Spec(A). Since X can be covered by such affine opens D(f) we win. �

Lemma 27.15.5. Let U → V be an open immersion of quasi-affine schemes. Then

U

��

j
// Spec(Γ(U,OU ))

��
U // V

j′ // Spec(Γ(V,OV ))

is cartesian.

Proof. The diagram is commutative by Schemes, Lemma 25.6.4. Write A =
Γ(U,OU ) and B = Γ(V,OV ). Let g ∈ B be such that Vg is affine and contained in
U . This means that if f is the image of g in A, then Uf = Vg. By Lemma 27.15.3 we
see that j′ induces an isomorphism of Vg with the standard open D(g) of Spec(B).
Thus Vg ×Spec(B) Spec(A) → Spec(A) is an isomorphism onto D(f) ⊂ Spec(A).
By Lemma 27.15.3 again j maps Uf isomorphically to D(f). Thus we see that
Uf = Uf ×Spec(B) Spec(A). Since by Lemma 27.15.4 we can cover U by Vg = Uf as
above, we see that U → U ×Spec(B) Spec(A) is an isomorphism. �

27.16. Characterizing modules of finite type and finite presentation

Let X be a scheme. Let F be a quasi-coherent OX -module. The following lemma
implies that F is of finite type (see Modules, Definition 17.9.1) if and only if F is

on each open affine Spec(A) = U ⊂ X of the form M̃ for some finite type A-module
M . Similarly, F is of finite presentation (see Modules, Definition 17.11.1) if and

only if F is on each open affine Spec(A) = U ⊂ X of the form M̃ for some finitely
presented A-module M .

Lemma 27.16.1. Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf

of OX-modules M̃ is a finite type OX-module if and only if M is a finite R-module.
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Proof. Assume M̃ is a finite type OX -module. This means there exists an open

covering of X such that M̃ restricted to the members of this covering is globally
generated by finitely many sections. Thus there also exists a standard open covering

X =
⋃
i=1,...,nD(fi) such that M̃ |D(fi) is generated by finitely many sections.

Thus Mfi is finitely generated for each i. Hence we conclude by Algebra, Lemma
10.23.2. �

Lemma 27.16.2. Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf

of OX-modules M̃ is an OX-module of finite presentation if and only if M is an
R-module of finite presentation.

Proof. Assume M̃ is an OX -module of finite presentation. By Lemma 27.16.1 we
see that M is a finite R-module. Choose a surjection Rn →M with kernel K. By
Schemes, Lemma 25.5.4 there is a short exact sequence

0→ K̃ →
⊕
O⊕nX → M̃ → 0

By Modules, Lemma 17.11.3 we see that K̃ is a finite type OX -module. Hence by
Lemma 27.16.1 again we see that K is a finite R-module. Hence M is an R-module
of finite presentation. �

27.17. Flat modules

On any ringed space (X,OX) we know what it means for an OX -module to be
flat (at a point), see Modules, Definition 17.16.1 (Definition 17.16.3). On an affine
scheme this matches the notion defined in the algebra chapter.

Lemma 27.17.1. Let X = Spec(R) be an affine scheme. Let F = M̃ for some
R-module M . The quasi-coherent sheaf F is a flat OX-module of if and only if M
is a flat R-module.

Proof. Flatness of F may be checked on the stalks, see Modules, Lemma 17.16.2.
The same is true in the case of modules over a ring, see Algebra, Lemma 10.38.19.
And since Fx = Mp if x corresponds to p the lemma is true. �

27.18. Locally free modules

On any ringed space we know what it means for an OX -module to be (finite) locally
free. On an affine scheme this matches the notion defined in the algebra chapter.

Lemma 27.18.1. Let X = Spec(R) be an affine scheme. Let F = M̃ for some
R-module M . The quasi-coherent sheaf F is a (finite) locally free OX-module of if
and only if M is a (finite) locally free R-module.

Proof. Follows from the definitions, see Modules, Definition 17.14.1 and Algebra,
Definition 10.75.1. �

We can characterize finite locally free modules in many different ways.

Lemma 27.18.2. Let X be a scheme. Let F be a quasi-coherent OX-module. The
following are equivalent:

(1) F is a flat OX-module of finite presentation,
(2) F is OX-module of finite presentation and for all x ∈ X the stalk Fx is a

free OX,x-module,
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(3) F is a locally free, finite type OX-module,
(4) F is a finite locally free OX-module, and
(5) F is an OX-module of finite type, for every x ∈ X the stalk Fx is a free
OX,x-module, and the function

ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x κ(x)

is locally constant in the Zariski topology on X.

Proof. This lemma immediately reduces to the affine case. In this case the lemma
is a reformulation of Algebra, Lemma 10.75.2. The translation uses Lemmas 27.16.1,
27.16.2, 27.17.1, and 27.18.1. �

27.19. Locally projective modules

A consequence of the work done in the algebra chapter is that it makes sense to
define a locally projective module as follows.

Definition 27.19.1. Let X be a scheme. Let F be a quasi-coherent OX -module.
We say F is locally projective if for every affine open U ⊂ X the OX(U)-module
F(U) is projective.

Lemma 27.19.2. Let X be a scheme. Let F be a quasi-coherent OX-module. The
following are equivalent

(1) F is locally projective, and
(2) there exists an affine open covering X =

⋃
Ui such that the OX(Ui)-

module F(Ui) is projective for every i.

In particular, if X = Spec(A) and F = M̃ then F is locally projective if and only
if M is a projective A-module.

Proof. First, note that if M is a projective A-module and A → B is a ring map,
then M ⊗A B is a projective B-module, see Algebra, Lemma 10.91.1. Hence if U
is an affine open such that F(U) is a projective OX(U)-module, then the standard
open D(f) is an affine open such that F(D(f)) is a projective OX(D(f))-module
for all f ∈ OX(U). Assume (2) holds. Let U ⊂ X be an arbitrary affine open. We
can find an open covering U =

⋃
j=1,...,mD(fj) by finitely many standard opens

D(fj) such that for each j the open D(fj) is a standard open of some Ui, see
Schemes, Lemma 25.11.5. Hence, if we set A = OX(U) and if M is an A-module
such that F|U corresponds to M , then we see that Mfj is a projective Afj -module.
It follows that A→ B =

∏
Afj is a faithfully flat ring map such that M ×A B is a

projective B-module. Hence M is projective by Algebra, Theorem 10.92.5. �

Lemma 27.19.3. Let f : X → Y be a morphism of schemes. Let G be a quasi-
coherent OY -module. If G is locally projective on Y , then f∗G is locally projective
on X.

Proof. See Algebra, Lemma 10.91.1. �

27.20. Extending quasi-coherent sheaves

It is sometimes useful to be able to show that a given quasi-coherent sheaf on an
open subscheme extends to the whole scheme.

Lemma 27.20.1. Let j : U → X be a quasi-compact open immersion of schemes.
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(1) Any quasi-coherent sheaf on U extends to a quasi-coherent sheaf on X.
(2) Let F be a quasi-coherent sheaf on X. Let G ⊂ F|U be a quasi-coherent

subsheaf. There exists a quasi-coherent subsheaf H of F such that H|U = G
as subsheaves of F|U .

(3) Let F be a quasi-coherent sheaf on X. Let G be a quasi-coherent sheaf
on U . Let ϕ : G → F|U be a morphism of OU -modules. There exists a
quasi-coherent sheaf H of OX-modules and a map ψ : H → F such that
H|U = G and that ψ|U = ϕ.

Proof. An immersion is separated (see Schemes, Lemma 25.23.7) and j is quasi-
compact by assumption. Hence for any quasi-coherent sheaf G on U the sheaf j∗G
is an extension to X. See Schemes, Lemma 25.24.1 and Sheaves, Section 6.31.

Assume F , G are as in (2). Then j∗G is a quasi-coherent sheaf on X (see above).
It is a subsheaf of j∗j

∗F . Hence the kernel

H = Ker(F ⊕ j∗G −→ j∗j
∗F)

is quasi-coherent as well, see Schemes, Section 25.24. It is formal to check that
H ⊂ F and that H|U = G (using the material in Sheaves, Section 6.31 again).

The same proof as above works. Just take H = Ker(F ⊕ j∗G → j∗j
∗F) with its

obvious map to F and its obvious identification with G over U . �

Lemma 27.20.2. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂
X be a quasi-compact open. Let F be a quasi-coherent OX-module. Let G ⊂ F|U be
a quasi-coherent OU -submodule which is of finite type. Then there exists a quasi-
coherent submodule G′ ⊂ F which is of finite type such that G′|U = G.

Proof. Let n be the minimal number of affine opens Ui ⊂ X, i = 1, . . . , n such
that X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove

the lemma for the case n = 1. Then we can successively extend G to a G1 over
U ∪ U1 to a G2 over U ∪ U1 ∪ U2 to a G3 over U ∪ U1 ∪ U2 ∪ U3, and so on. Thus
we reduce to the case n = 1.

Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated
and U , V are quasi-compact open, we see that U ∩ V is a quasi-compact open. It
suffices to prove the lemma for the system (V,U ∩V,F|V ,G|U∩V ) since we can glue
the resulting sheaf G′ over V to the given sheaf G over U along the common value
over U ∩ V . Thus we reduce to the case where X is affine.

Assume X = Spec(R). Write F = M̃ for some R-module M . By Lemma 27.20.1
above we may find a quasi-coherent subsheaf H ⊂ F which restricts to G over U .

Write H = Ñ for some R-module N . For every u ∈ U there exists an f ∈ R such
that u ∈ D(f) ⊂ U and such that Nf is finitely generated, see Lemma 27.16.1.
Since U is quasi-compact we can cover it by finitely many D(fi) such that Nfi is
generated by finitely many elements, say xi,1/f

N
i , . . . , xi,ri/f

N
i . Let N ′ ⊂ N be the

submodule generated by the elements xi,j . Then the subsheaf G := Ñ ′ ⊂ H ⊂ F
works. �

Lemma 27.20.3. Let X be a quasi-compact and quasi-separated scheme. Any
quasi-coherent sheaf of OX-modules is the directed colimit of its quasi-coherent OX-
submodules which are of finite type.
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Proof. The colimit is direct because if G1, G2 are quasi-coherent subsheaves of
finite type, then G1 + G2 ⊂ F is a quasi-coherent subsheaf of finite type. Let
U ⊂ X be any affine open, and let s ∈ Γ(U,F) be any section. Let G ⊂ F|U
be the subsheaf generated by s. Then clearly G is quasi-coherent and has finite
type as an OU -module. By Lemma 27.20.2 we see that G is the restriction of a
quasi-coherent subsheaf G′ ⊂ F which has finite type. Since X has a basis for
the topology consisting of affine opens we conclude that every local section of F is
locally contained in a quasi-coherent submodule of finite type. Thus we win. �

Lemma 27.20.4. (Variant of Lemma 27.20.2 dealing with modules of finite pre-
sentation.) Let X be a quasi-compact and quasi-separated scheme. Let F be a
quasi-coherent OX-module. Let U ⊂ X be a quasi-compact open. Let G be an
OU -module which of finite presentation. Let ϕ : G → F|U be a morphism of OU -
modules. Then there exists an OX-module G′ of finite presentation, and a morphism
of OX-modules ϕ′ : G′ → F such that G′|U = G and such that ϕ′|U = ϕ.

Proof. The beginning of the proof is a repeat of the beginning of the proof of
Lemma 27.20.2. We write it out carefuly anyway.

Let n be the minimal number of affine opens Ui ⊂ X, i = 1, . . . , n such that
X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove the

lemma for the case n = 1. Then we can successively extend the pair (G, ϕ) to a
pair (G1, ϕ1) over U ∪U1 to a pair (G2, ϕ2) over U ∪U1 ∪U2 to a pair (G3, ϕ3) over
U ∪ U1 ∪ U2 ∪ U3, and so on. Thus we reduce to the case n = 1.

Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated
and U quasi-compact, we see that U ∩ V ⊂ V is quasi-compact. Suppose we prove
the lemma for the system (V,U ∩V,F|V ,G|U∩V , ϕ|U∩V ) thereby producing (G′, ϕ′)
over V . Then we can glue G′ over V to the given sheaf G over U along the common
value over U ∩ V , and similarly we can glue the map ϕ′ to the map ϕ along the
common value over U ∩ V . Thus we reduce to the case where X is affine.

Assume X = Spec(R). By Lemma 27.20.1 above we may find a quasi-coherent
sheaf H with a map ψ : H → F over X which restricts to G and ϕ over U . By
Lemma 27.20.2 we can find a finite type quasi-coherent OX -submodule H′ ⊂ H
such that H′|U = G. Thus after replacing H by H′ and ψ by the restriction of ψ to
H′ we may assume that H is of finite type. By Lemma 27.16.2 we conclude that

H = Ñ with N a finitely generated R-module. Hence there exists a surjection as
in the following short exact sequence of quasi-coherent OX -modules

0→ K → O⊕nX → H→ 0

where K is defined as the kernel. Since G is of finite presentation and H|U = G
by Modules, Lemma 17.11.3 the restriction K|U is an OU -module of finite type.
Hence by Lemma 27.20.2 again we see that there exists a finite type quasi-coherent
OX -submodule K′ ⊂ K such that K′|U = K|U . The solution to the problem posed
in the lemma is to set

G′ = O⊕nX /K′

which is clearly of finite presentation and restricts to give G on U with ϕ′ equal to
the composition

G′ = O⊕nX /K′ → O⊕nX /K = H ψ−→ F .
This finishes the proof of the lemma. �
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The following lemma says that every quasi-coherent sheaf on a quasi-compact and
quasi-separated scheme is a filtered colimit of O-modules of finite presentation.
Actually, we reformulate this in (perhaps more familiar) terms of directed colimits
over posets in the next lemma.

Lemma 27.20.5. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX-module. There exist

(1) a filtered index category I (see Categories, Definition 4.19.1),
(2) a diagram I → Mod(OX) (see Categories, Section 4.14), i 7→ Fi,
(3) morphisms of OX-modules ϕi : Fi → F

such that each Fi is of finite presentation and such that the morphisms ϕi induce
an isomorphism

colimi Fi = F .

Proof. Choose a set I and for each i ∈ I an OX -module of finite presentation and
a homomorphism of OX -modules ϕi : Fi → F with the following property: For
any ψ : G → F with G of finite presentation there is an i ∈ I such that there exists
an isomorphism α : Fi → G with ϕi = ψ ◦ α. It is clear from Modules, Lemma
17.9.8 that such a set exists (see also its proof). We denote I the category with
Ob(I) = I and given i, i′ ∈ I we set

MorI(i, i′) = {α : Fi → Fi′ | α ◦ ϕi′ = ϕi}.
We claim that I is a filtered category and that F = colimi Fi.
Let i, i′ ∈ I. Then we can consider the morphism

Fi ⊕Fi′ −→ F
which is the direct sum of ϕi and ϕi′ . Since a direct sum of finitely presented
OX -modules is finitely presented we see that there exists some i′′ ∈ I such that
ϕi′′ : Fi′′ → F is isomorphic to the displayed arrow towards F above. Since there
are commutative diagrams

Fi //

��

F

Fi ⊕Fi′ // F

and Fi′ //

��

F

Fi ⊕Fi′ // F

we see that there are morphisms i → i′′ and i′ → i′′ in I. Next, suppose that
we have i, i′ ∈ I and morphisms α, β : i → i′ (corresponding to OX -module maps
α, β : Fi → Fi′). In this case consider the coequalizer

G = Coker(Fi
α−β−−−→ Fi′)

Note that G is an OX -module of finite presentation. Since by definition of mor-
phisms in the category I we have ϕi′ ◦ α = ϕi′ ◦ β we see that we get an induced
map ψ : G → F . Hence again the pair (G, ψ) is isomorphic to the pair (Fi′′ , ϕi′′) for
some i′′. Hence we see that there exists a morphism i′ → i′′ in I which equalizes α
and β. Thus we have shown that the category I is filtered.

We still have to show that the colimit of the diagram is F . By definition of the
colimit, and by our definition of the category I there is a canonical map

ϕ : colimi Fi −→ F .

http://stacks.math.columbia.edu/tag/01PJ
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Pick x ∈ X. Let us show that ϕx is an isomorphism. Recall that

(colimi Fi)x = colimi Fi,x,

see Sheaves, Section 6.29. First we show that the map ϕx is injective. Suppose
that s ∈ Fi,x is an element such that s maps to zero in Fx. Then there exists a
quasi-compact open U such that s comes from s ∈ Fi(U) and such that ϕi(s) = 0
in F(U). By Lemma 27.20.2 we can find a finite type quasi-coherent subsheaf
K ⊂ Ker(ϕi) which restricts to the quasi-coherent OU -submodule of Fi generated
by s: K|U = OU · s ⊂ Fi|U . Clearly, Fi/K is of finite presentation and the map
ϕi factors through the quotient map Fi → Fi/K. Hence we can find an i′ ∈ I
and a morphism α : Fi → Fi′ in I which can be identified with the quotient
map Fi → Fi/K. Then it follows that the section s maps to zero in Fi′(U) and
in particular in (colimi Fi)x = colimi Fi,x. The injectivity follows. Finally, we
show that the map ϕx is surjective. Pick s ∈ Fx. Choose a quasi-compact open
neighbourhood U ⊂ X of x such that s corresponds to a section s ∈ F(U). Consider
the map s : OU → F (multiplication by s). By Lemma 27.20.4 there exists an
OX -module G of finite presentation and an OX -module map G → F such that
G|U → F|U is identified with s : OU → F . Again by definition of I there exists an
i ∈ I such that G → F is isomorphic to ϕi : Fi → F . Clearly there exists a section
s′ ∈ Fi(U) mapping to s ∈ F(U). This proves surjectivity and the proof of the
lemma is complete. �

Lemma 27.20.6. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX-module. There exist

(1) a directed partially ordered set I (see Categories, Definition 4.21.2),
(2) a system (Fi, ϕii′) over I in Mod(OX) (see Categories, Definition 4.21.1)
(3) morphisms of OX-modules ϕi : Fi → F

such that each Fi is of finite presentation and such that the morphisms ϕi induce
an isomorphism

colimi Fi = F .

Proof. This is a direct consequence of Lemma 27.20.5 and Categories, Lemma
4.21.3 (combined with the fact that colimits exist in the category of sheaves of
OX -modules, see Sheaves, Section 6.29). �

Lemma 27.20.7. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX-module. Then F is the directed colimit of
its finite type quasi-coherent submodules.

Proof. If G,H ⊂ F are finite type quasi-coherent OX -submodules then the image
of G ⊕H → F is another finite type quasi-coherent OX -submodule which contains
both of them. In this way we see that the system is directed. To show that F is the
colimit of this system, write F = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 27.20.6. Then the images Gi = Im(Fi → F)
are finite type quasi-coherent subsheaves of F . Since F is the colimit of these the
result follows. �

Lemma 27.20.8. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a finite type quasi-coherent OX-module. Then we can write F =
limFi with Fi of finite presentation and all transition maps Fi → Fi′ surjective.
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http://stacks.math.columbia.edu/tag/05JR
http://stacks.math.columbia.edu/tag/086M


27.20. EXTENDING QUASI-COHERENT SHEAVES 1825

Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 27.20.6). We claim that Gi → F is surjective for some i. Namely, choose
a finite affine open covering X = U1 ∪ . . . ∪ Um. Choose sections sjl ∈ F(Uj)
generating F|Uj , see Lemma 27.16.1. By Sheaves, Lemma 6.29.1 we see that sjl is
in the image of Gi → F for i large enough. Hence Gi → F is surjective for i large
enough. Choose such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write
K = colimKa as the filtered colimit of its finite type quasi-coherent submodules
(Lemma 27.20.7). Then F = colimGi/Ka is a solution to the problem posed by the
lemma. �

Lemma 27.20.9. Let X be a quasi-compact and quasi-separated scheme. Let F
be a finite type quasi-coherent OX-module. Let U ⊂ X be a quasi-compact open
such that F|U is of finite presentation. Then there exists a map of OX-modules
ϕ : G → F with (a) G of finite presentation, (b) ϕ is surjective, and (c) ϕ|U is an
isomorphism.

Proof. Write F = colimFi as a directed colimit with each Fi of finite presentation,
see Lemma 27.20.6. Choose a finite affine open covering X =

⋃
Vj and choose

finitely many sections sjl ∈ F(Vj) generating F|Vj , see Lemma 27.16.1. By Sheaves,
Lemma 6.29.1 we see that sjl is in the image of Fi → F for i large enough. Hence
Fi → F is surjective for i large enough. Choose such an i and let K ⊂ Fi be the
kernel of the map Fi → F . Since FU is of finite presentation, we see that K|U
is of finite type, see Modules, Lemma 17.11.3. Hence we can find a finite type
quasi-coherent submodule K′ ⊂ K with K′|U = K|U , see Lemma 27.20.2. Then
G = Fi/K′ with the given map G → F is a solution. �

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent
OX-algebra A of finite presentation. This means that for every affine open Spec(R) ⊂
X we have A = Ã where A is a (commutative) R-algebra which is of finite presen-
tation as an R-algebra.

Lemma 27.20.10. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a quasi-coherent OX-algebra. There exist

(1) a directed partially ordered set I (see Categories, Definition 4.21.2),
(2) a system (Ai, ϕii′) over I in the category of OX-algebras,
(3) morphisms of OX-algebras ϕi : Ai → A

such that each Ai is a quasi-coherent OX-algebra of finite presentation and such
that the morphisms ϕi induce an isomorphism

colimiAi = A.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 27.20.6. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j
where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 27.20.7. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . �

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent
OX-algebra A of finite type. This means that for every affine open Spec(R) ⊂ X

http://stacks.math.columbia.edu/tag/080V
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we have A = Ã where A is a (commutative) R-algebra which is of finite type as an
R-algebra.

Lemma 27.20.11. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a quasi-coherent OX-algebra. Then A is the directed colimit of
its finite type quasi-coherent OX-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 27.20.7. �

Let X be a scheme. In the following lemma we use the notion of a finite (resp.
integral) quasi-coherent OX-algebra A. This means that for every affine open

Spec(R) ⊂ X we have A = Ã where A is a (commutative) R-algebra which is
finite (resp. integral) as an R-algebra.

Lemma 27.20.12. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a finite quasi-coherent OX-algebra. Then A = colimAi is a
directed colimit of finite and finitely presented quasi-coherent OX-algebras such that
all transition maps Ai′ → Ai are surjective.

Proof. By Lemma 27.20.8 there exists a finitely presented OX -module F and a
surjection F → A. Using the algebra structure we obtain a surjection

Sym∗OX (F) −→ A
Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 27.20.7). Set

Ai = Sym∗OX (F)/(Ei)
where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗OX (F).
Then eachAi is a finitely presentedOX -algebra, the transition maps are surjections,
and A = colimAi. To finish the proof we still have to show that Ai is a finite
OX -algebra for i sufficiently large. To do this we choose an affine open covering
X = U1 ∪ . . . ∪ Um. Take generators fj,1, . . . , fj,Nj ∈ Γ(Ui,F). As A(Uj) is
a finite OX(Uj)-algebra we see that for each k there exists a monic polynomial
Pj,k ∈ O(Uj)[T ] such that Pj,k(fj,k) is zero in A(Uj). Since A = colimAi by
construction, we have Pj,k(fj,k) = 0 in Ai(Uj) for all sufficiently large i. For such
i the algebras Ai are finite. �

Lemma 27.20.13. Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be an integral quasi-coherent OX-algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX-subalgebras, and
(2) A is a direct colimit of finite and finitely presented quasi-cohernet OX-

algebras.

Proof. By Lemma 27.20.11 we have A = colimAi where Ai ⊂ A runs through
the quasi-coherent OX -algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (apply Algebra, Lemma 10.35.5 to Ai(U) ⊂ A(U) for affine
opens U in X). This proves (1).

To prove (2), write A = colimFi as a colimit of finitely presented OX -modules
using Lemma 27.20.6. For each i, let Ji be the kernel of the map

Sym∗OX (Fi) −→ A
For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗OX (Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗OX (Fi)/Ji are finite (see above).
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Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Modules, Lemma 17.11.6. This induces a map

Aik = Sym∗OX (Fi)/(Eik) −→ Sym∗OX (Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
27.20.12). Finally, we have

colimAik = colimAi = A
Namely, the first equality was shown in the proof of Lemma 27.20.12 and the second
equality because A is the colimit of the modules Fi. �

27.21. Gabber’s result

In this section we prove a result of Gabber which guarantees that on every scheme
there exists a cardinal κ such that every quasi-coherent module F is the union of
its quasi-coherent κ-generated subsheaves. It follows that the category of quasi-
coherent sheaves on a scheme is a Grothendieck abelian category having limits and
enough injectives2.

Definition 27.21.1. Let (X,OX) be a ringed space. Let κ be an infinite cardinal.
We say a sheaf of OX -modules F is κ-generated if there exists an open covering
X =

⋃
Ui such that F|Ui is generated by a subset Ri ⊂ F(Ui) whose cardinality is

at most κ.

Note that a direct sum of at most κ κ-generated modules is again κ-generated
because κ ⊗ κ = κ, see Sets, Section 3.6. In particular this holds for the direct
sum of two κ-generated modules. Moreover, a quotient of a κ-generated sheaf is
κ-generated. (But the same needn’t be true for submodules.)

Lemma 27.21.2. Let (X,OX) be a ringed space. Let κ be a cardinal. There
exists a set T and a family (Ft)t∈T of κ-generated OX-modules such that every
κ-generated OX-module is isomorphic to one of the Ft.

Proof. There is a set of coverings of X (provided we disallow repeats). Suppose
X =

⋃
Ui is a covering and suppose Fi is an OUi-module. Then there is a set of

isomorphism classes of OX -modules F with the property that F|Ui ∼= Fi since there
is a set of glueing maps. This reduces us to proving there is a set of (isomorphism
classes of) quotients ⊕k∈κOX → F for any ringed space X. This is clear. �

Here is the result the title of this section refers to.

Lemma 27.21.3. Let X be a scheme. There exists a cardinal κ such that every
quasi-coherent module F is the directed colimit of its quasi-coherent κ-generated
quasi-coherent subsheaves.

2Nicely explained in a blog post by Akhil Mathew.
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Proof. Choose an affine open covering X =
⋃
i∈I Ui. For each pair i, j choose

an affine open covering Ui ∩ Uj =
⋃
k∈Iij Uijk. Write Ui = Spec(Ai) and Uijk =

Spec(Aijk). Let κ be any infinite cardinal ≥ than the cardinality of any of the sets
I, Iij .

Let F be a quasi-coherent sheaf. Set Mi = F(Ui) and Mijk = F(Uijk). Note that

Mi ⊗Ai Aijk = Mijk = Mj ⊗Aj Aijk.
see Schemes, Lemma 25.7.3. Using the axiom of choice we choose a map

(i, j, k,m) 7→ S(i, j, k,m)

which associates to every i, j ∈ I, k ∈ Iij and m ∈Mi a finite subset S(i, j, k,m) ⊂
Mj such that we have

m⊗ 1 =
∑

m′∈S(i,j,k,m)
m′ ⊗ am′

in Mijk for some am′ ∈ Aijk. Moreover, let’s agree that S(i, i, k,m) = {m} for all
i, j = i, k,m as above. Fix such a map.

Given a family S = (Si)i∈I of subsets Si ⊂ Mi of cardinality at most κ we set
S ′ = (S′i) where

S′j =
⋃

(i,j,k,m) such that m∈Si
S(i, j, k,m)

Note that Si ⊂ S′i. Note that S′i has cardinality at most κ because it is a union
over a set of cardinality at most κ of finite sets. Set S(0) = S, S(1) = S ′ and by

induction S(n+1) = (S(n))′. Then set S(∞) =
⋃
n≥0 S(n). Writing S(∞) = (S

(∞)
i )

we see that for any element m ∈ S(∞)
i the image of m in Mijk can be written as a

finite sum
∑
m′ ⊗ am′ with m′ ∈ S(∞)

j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S
(∞)
i

we have
Ni ⊗Ai Aijk = Nj ⊗Aj Aijk.

as submodules of Mijk. Thus there exists a quasi-coherent subsheaf G ⊂ F with
G(Ui) = Ni. Moreover, by construction the sheaf G is κ-generated.

Let {Gt}t∈T be the set of κ-generated quasi-coherent subsheaves. If t, t′ ∈ T then
Gt + Gt′ is also a κ-generated quasi-coherent subsheaf as it is the image of the map
Gt⊕Gt′ → F . Hence the system (ordered by inclusion) is directed. The arguments
above show that every section of F over Ui is in one of the Gt (because we can start
with S such that the given section is an element of Si). Hence colimt Gt → F is
both injective and surjective as desired. �

Proposition 27.21.4. Let X be a scheme.

(1) The category QCoh(OX) is a Grothendieck abelian category. Consequently,
QCoh(OX) has enough injectives and all limits.

(2) The inclusion functor QCoh(OX)→ Mod(OX) has a right adjoint3

Q : Mod(OX) −→ QCoh(OX)

such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→
F is an isomorphism.

3This functor is sometimes called the coherator.
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Proof. Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are
exact, and (c) has a generator, see Injectives, Section 19.10. By Schemes, Section
25.24 colimits in QCoh(OX) exist and agree with colimits in Mod(OX). By Modules,
Lemma 17.3.2 filtered colimits are exact. Hence (a) and (b) hold. To construct a
generator U , pick a cardinal κ as in Lemma 27.21.3. Pick a collection (Ft)t∈T
of κ-generated quasi-coherent sheaves as in Lemma 27.21.2. Set U =

⊕
t∈T Ft.

Since every object of QCoh(OX) is a filtered colimit of κ-generated quasi-coherent
modules, i.e., of objects isomorphic to Ft, it is clear that U is a generator. The
assertions on limits and injectives hold in any Grothendieck abelian category, see
Injectives, Theorem 19.11.6 and Lemma 19.13.2.

Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)

This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 19.13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial
isomorphism HomX(G,F) = HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda
lemma (Categories, Lemma 4.3.5) the construction F  Q(F) is functorial in
F . By construction Q is a right adjoint to the inclusion functor. The fact that
Q(F)→ F is an isomorphism when F is quasi-coherent is a formal consequence of
the fact that the inclusion functor QCoh(OX)→ Mod(OX) is fully faithful. �

27.22. Sections with support in a closed subset

Given any topological space X, a closed subset Z ⊂ X, and an abelian sheaf F
you can take the subsheaf of sections whose support is contained in Z. If X is a
scheme, Z a closed subscheme, and F a quasi-coherent module there is a variant
where you take sections which are scheme theoretically supported on Z. However,
in the scheme setting you have to be careful because the resulting OX -module may
not be quasi-coherent.

Lemma 27.22.1. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂
X be an open subscheme. The following are equivalent:

(1) U is retrocompact in X,
(2) U is quasi-compact,
(3) U is a finite union of affine opens, and
(4) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that

X \ U = V (I) (set theoretically).

Proof. The equivalence of (1), (2), and (3) follows from Lemma 27.2.3. Assume
(1), (2), (3). Let T = X \ U . By Schemes, Lemma 25.12.4 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subscheme
structure on T . Note that J |U = OU which is an OU -modules of finite type. By
Lemma 27.20.2 there exists a quasi-coherent subsheaf I ⊂ J which is of finite
type and has the property that I|U = J |U . Then X \ U = V (I) and we obtain
(4). Conversely, if I is as in (4) and W = Spec(R) ⊂ X is an affine open, then

I|W = Ĩ for some finitely generated ideal I ⊂ R, see Lemma 27.16.1. It follows
that U ∩W = Spec(R)\V (I) is quasi-compact, see Algebra, Lemma 10.28.1. Hence
U ⊂ X is retrocompact by Lemma 27.2.6. �

http://stacks.math.columbia.edu/tag/01PH
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Lemma 27.22.2. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let F be a quasi-coherent OX-module. Consider the sheaf of OX-modules
F ′ which associates to every open U ⊂ X

F ′(U) = {s ∈ F(U) | Is = 0}
Assume I is of finite type. Then

(1) F ′ is a quasi-coherent sheaf of OX-modules,
(2) on any affine open U ⊂ X we have F ′(U) = {s ∈ F(U) | I(U)s = 0},

and
(3) F ′x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F (the sheaf condition
is easy to verify). Hence we may work locally on X to verify the other statements.

In other words we may assume that X = Spec(A), F = M̃ and I = Ĩ. It is clear

that in this case F ′(U) = {x ∈ M | Ix = 0} =: M ′ because Ĩ is generated by its
global sections I which proves (2). To show F ′ is quasi-coherent it suffices to show
that for every f ∈ A we have {x ∈Mf | Ifx = 0} = (M ′)f . Write I = (g1, . . . , gt),
which is possible because I is of finite type, see Lemma 27.16.1. If x = y/fn

and Ifx = 0, then that means that for every i there exists an m ≥ 0 such that
fmgix = 0. We may choose one m which works for all i (and this is where we use
that I is finitely generated). Then we see that fmx ∈ M ′ and x/fn = fmx/fn+m

in (M ′)f as desired. The proof of (3) is similar and omitted. �

Definition 27.22.3. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals of finite type. Let F be a quasi-coherent OX -module. The subsheaf F ′ ⊂ F
defined in Lemma 27.22.2 above is called the subsheaf of sections annihilated by I.

Lemma 27.22.4. Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. Let I ⊂ OY be a quasi-coherent sheaf of ideals of finite type. Let F be
a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf of sections annihilated by
f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf of sections annihilated by I.

Proof. Omitted. (Hint: The assumption that f is quasi-compact and quasi-
separated implies that f∗F is quasi-coherent so that Lemma 27.22.2 applies to
I and f∗F .) �

For an abelian sheaf on a topological space we have discussed the subsheaf of
sections with support in a closed subset in Modules, Lemma 17.6.2. For quasi-
coherent modules this submodule isn’t always a quasi-coherent module, but if the
closed subset has a retrocompact complement, then it is.

Lemma 27.22.5. Let X be a scheme. Let Z ⊂ X be a closed subset. Let F be a
quasi-coherent OX-module. Consider the sheaf of OX-modules F ′ which associates
to every open U ⊂ X

F ′(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}
If X \ Z is a retrocompact open in X, then

(1) for an affine open U ⊂ X there exist a finitely generated ideal I ⊂ OX(U)
such that Z ∩ U = V (I),

(2) for U and I as in (1) we have F ′(U) = {x ∈ F(U) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX-modules.
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Proof. Part (1) is Algebra, Lemma 10.28.1. Let U = Spec(A) and I be as in (1).
Then F|U is the quasi-coherent sheaf associated to some A-module M . We have

F ′(U) = {x ∈M | x = 0 in Mp for all p 6∈ Z}.
by Modules, Definition 17.5.1. Thus x ∈ F ′(U) if and only if V (Ann(x)) ⊂ V (I),
see Algebra, Lemma 10.39.6. Since I is finitely generated this is equivalent to
Inx = 0 for some n. This proves (2).

The rule for F ′ indeed defines a submodule of F . Hence we may work locally on X
to verify (3). Let U , I and M be as above. Let I ⊂ OX be the quasi-coherent sheaf
of ideals corresponding to I. Part (2) implies sections of F ′ over any affine open of
U are the sections of F which are annihilated by some power of I. Hence we see
that F ′|U = colimFn, where Fn ⊂ F|U is the subsheaf of sections annihilated by
In, see Definition 27.22.3. Thus (3) follows from Lemma 27.22.2 and that colimits
of quasi-coherent modules are quasi-coherent, see Schemes, Section 25.24. �

Definition 27.22.6. Let X be a scheme. Let T ⊂ X be a closed subset whose
complement is retrocompact in X. Let F be a quasi-coherent OX -module. The
quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 27.22.5 is called the subsheaf of
sections supported on T .

Lemma 27.22.7. Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. Let Z ⊂ Y be a closed subset such that Y \Z is retrocompact in Y . Let
F be a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf of sections supported
in f−1Z. Then f∗F ′ ⊂ f∗F is the subsheaf of sections supported in Z.

Proof. Omitted. (Hint: First show that X \ f−1Z is retrocompact in X as Y \ Z
is retrocompact in Y . Hence Lemma 27.22.5 applies to f−1Z and F . As f is quasi-
compact and quasi-separated we see that f∗F is quasi-coherent. Hence Lemma
27.22.5 applies to Z and f∗F . Finally, match the sheaves directly.) �

27.23. Sections of quasi-coherent sheaves

Here is a computation of sections of a quasi-coherent sheaf on a quasi-compact open
of an affine spectrum.

Lemma 27.23.1. Let A be a ring. Let I ⊂ A be a finitely generated ideal. Let M
be an A-module. Then there is a canonical map

colimn HomA(In,M) −→ Γ(Spec(A) \ V (I), M̃).

This map is always injective. If for all x ∈ M we have Ix = 0 ⇒ x = 0 then this
map is an isomorphism. In general, set Mn = {x ∈M | Inx = 0}, then there is an
isomorphism

colimn HomA(In,M/Mn) −→ Γ(Spec(A) \ V (I), M̃).

Proof. Since In ⊂ In+1 and Mn ⊂ Mn+1 we can use composition via these maps
to get canonical maps of A-modules

HomA(In,M) −→ HomA(In+1,M)

and
HomA(In,M/Mn) −→ HomA(In+1,M/Mn+1)

which we will use as the transition maps in the systems. Given an A-module map

ϕ : In → M , then we get a map of sheaves ϕ̃ : Ĩn → M̃ which we can restrict to
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the open Spec(A) \ V (I). Since Ĩn restricted to this open gives the structure sheaf

we get an element of Γ(Spec(A) \ V (I), M̃). We omit the verification that this is
compatible with the transition maps in the system HomA(In,M). This gives the

first arrow. To get the second arrow we note that M̃ and M̃/Mn agree over the

open Spec(A) \ V (I) since the sheaf M̃n is clearly supported on V (I). Hence we
can use the same mechanism as before.

Next, we work out how to define this arrow in terms of algebra. Say I = (f1, . . . , ft).
Then Spec(A) \ V (I) =

⋃
i=1,...,tD(fi). Hence

0→ Γ(Spec(A) \ V (I), M̃)→
⊕

i
Mfi →

⊕
i,j
Mfifj

is exact. Suppose that ϕ : In → M is an A-module map. Consider the vector
of elements ϕ(fni )/fni ∈ Mfi . It is easy to see that this vector maps to zero
in the second direct sum of the exact sequence above. Whence an element of

Γ(Spec(A) \ V (I), M̃). We omit the verification that this description agrees with
the one given above.

Let us show that the first arrow is injective using this description. Namely, if ϕ
maps to zero, then for each i the element ϕ(fni )/fni is zero in Mfi . In other words
we see that for each i we have fmi ϕ(fni ) = 0 for some m ≥ 0. We may choose a
single m which works for all i. Then we see that ϕ(fn+m

i ) = 0 for all i. It is easy
to see that this means that ϕ|It(n+m−1)+1 = 0 in other words that ϕ maps to zero
in the t(n+m− 1) + 1st term of the colimit. Hence injectivity follows.

Note that each Mn = 0 in case we have Ix = 0⇒ x = 0 for x ∈M . Thus to finish
the proof of the lemma it suffices to show that the second arrow is an isomorphism.

Let us attempt to construct an inverse of the second map of the lemma. Let

s ∈ Γ(Spec(A) \ V (I), M̃). This corresponds to a vector xi/f
n
i with xi ∈M of the

first direct sum of the exact sequence above. Hence for each i, j there exists m ≥ 0
such that fmi f

m
j (fnj xi − fni xj) = 0 in M . We may choose a single m which works

for all pairs i, j. After replacing xi by fmi xi and n by n + m we see that we get
fnj xi = fni xj in M for all i, j. Let us introduce

Kn = {x ∈M | fn1 x = . . . = fnt x = 0}

We claim there is an A-module map

ϕ : It(n−1)+1 −→M/Kn

which maps the monomial fe11 . . . fett with
∑
ei = t(n− 1) + 1 to the class modulo

Kn of the expression fe11 . . . fei−ni . . . fett xi where i is chosen such that ei ≥ n (note
that there is at least one such i). To see that this is indeed the case suppose that∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . fett = 0

is a relation between the monomials with coefficients aE in A. Then we would map
this to

z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ei(E)−n
i(E) . . . fett xi(E)

where for each multiindex E we have chosen a particular i(E) such that ei(E) ≥ n.
Note that if we multiply this by fnj for any j, then we get zero, since by the relations
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fnj xi = fni xj above we get

fnj z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ej+n
j . . . f

ei(E)−n
i(E) . . . fett xi(E)

=
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . fett xj = 0.

Hence z ∈ Kn and we see that every relation gets mapped to zero in M/Kn. This
proves the claim.

Note that Kn ⊂Mt(n−1)+1. Hence the map ϕ in particular gives rise to a A-module

map It(n−1)+1 → M/Mt(n−1)+1. This proves the second arrow of the lemma is
surjective. We omit the proof of injectivity. �

Example 27.23.2. We will give two examples showing that the first displayed
map of Lemma 27.23.1 is not an isomorphism.

Let k be a field. Consider the ring

A = k[x, y, z1, z2, . . .]/(x
nzn).

Set I = (x) and let M = A. Then the element y/x defines a section of the structure
sheaf of Spec(A) over D(x) = Spec(A)\V (I). We claim that y/x is not in the image
of the canonical map colim HomA(In, A)→ Ax = O(D(x)). Namely, if so it would
come from a homomorphism ϕ : In → A for some n. Set a = ϕ(xn). Then we would
have xm(xa − xny) = 0 for some m > 0. This would mean that xm+1a = xm+ny.
This would mean that ϕ(xn+m+1) = xm+ny. This leads to a contradiction because
it would imply that

0 = ϕ(0) = ϕ(zn+m+1x
n+m+1) = xm+nyzn+m+1

which is not true in the ring A.

Let k be a field. Consider the ring

A = k[f, g, x, y, {an, bn}n≥1]/(fy − gx, {anfn + bng
n}n≥1).

Set I = (f, g) and let M = A. Then x/f ∈ Af and y/g ∈ Ag map to the same
element of Afg. Hence these define a section s of the structure sheaf of Spec(A)
over D(f) ∪D(g) = Spec(A) \ V (I). However, there is no n ≥ 0 such that s comes
from an A-module map ϕ : In → A as in the source of the first displayed arrow of
Lemma 27.23.1. Namely, given such a module map set xn = ϕ(fn) and yn = ϕ(gn).
Then fmxn = fn+m−1x and gmyn = gn+m−1y for some m ≥ 0 (see proof of the
lemma). But then we would have 0 = ϕ(0) = ϕ(an+mf

n+m + bn+mg
n+m) =

an+mf
n+m−1x+ bn+mg

n+m−1y which is not the case in the ring A.

We will improve on the following lemma in the Noetherian case, see Cohomology
of Schemes, Lemma 29.10.4.

Lemma 27.23.3. Let X be a quasi-compact scheme. Let I ⊂ OX be a quasi-
coherent sheaf of ideals of finite type. Let Z ⊂ X be the closed subscheme defined
by I and set U = X \ Z. Let F be a quasi-coherent OX-module. The canonical
map

colimn HomOX (In,F) −→ Γ(U,F)

is injective. Assume further that X is quasi-separated. Let Fn ⊂ F be subsheaf of
sections annihilated by In. The canonical map

colimn HomOX (In,F/Fn) −→ Γ(U,F)

http://stacks.math.columbia.edu/tag/01PN
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is an isomorphism.

Proof. Let Spec(A) = W ⊂ X be an affine open. Write F|W = M̃ for some

A-module M and I|W = Ĩ for some finite type ideal I ⊂ A. Restricting the first
displayed map of the lemma to W we obtain the first displayed map of Lemma
27.23.1. Since we can cover X by a finite number of affine opens this proves the
first displayed map of the lemma is injective.

We have Fn|W = M̃n where Mn ⊂ M is defined as in Lemma 27.23.1 (details
omitted). The lemma guarantees that we have a bijection

colimn HomOW (In|W , (F/Fn)|W ) −→ Γ(U ∩W,F)

for any such affine open W .

To see the second displayed arrow of the lemma is bijective, we choose a finite
affine open covering X =

⋃
j=1,...,mWj . The injectivity follows immediately from

the above and the finiteness of the covering. If X is quasi-separated, then for each
pair j, j′ we choose a finite affine open covering

Wj ∩Wj′ =
⋃

k=1,...,mjj′
Wjj′k.

Let s ∈ Γ(U,F). As seen above for each j there exists an nj and a map ϕj :
Inj |Wj

→ (F/Fnj )|Wj
which corresponds to s|Wj

. By the same token for each
triple (j, j′, k) there exists an integer njj′k such that the restriction of ϕj and ϕj′

as maps Injj′k → F/Fnjj′k agree over Wjj′l. Let n = max{nj , njj′k} and we see

that the ϕj glue as maps In → F/Fn over X. This proves surjectivity of the
map. �

27.24. Ample invertible sheaves

Recall from Modules, Lemma 17.21.7 that given an invertible sheaf L on a locally
ringed space X, and given a global section s of L the set Xs = {x ∈ X | s 6∈ mxLx}
is open. A general remark is that Xs ∩ Xs′ = Xss′ , where ss′ denote the section
s⊗ s′ ∈ Γ(X,L ⊗ L′).

Definition 27.24.1. Let X be a scheme. Let L be an invertible OX -module. We
say L is ample if

(1) X is quasi-compact, and
(2) for every x ∈ X there exists an n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs

and Xs is affine.

Lemma 27.24.2. Let X be a scheme. Let L be an invertible OX-module. Let
n ≥ 1. Then L is ample if and only if L⊗n is ample.

Proof. This follows from the fact that Xsn = Xs. �

Lemma 27.24.3. Let X be a scheme. Let L be an ample invertible OX-module.
For any closed subscheme Z ⊂ X the restriction of L to Z is ample.

Proof. This is clear since a closed subset of a quasi-compact space is quasi-compact
and a closed subscheme of an affine scheme is affine (see Schemes, Lemma 25.8.2).

�

Lemma 27.24.4. Let X be a scheme. Let L be an invertible OX-module. Let
s ∈ Γ(X,L). For any affine U ⊂ X the intersection U ∩Xs is affine.
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Proof. This translates into the following algebra problem. Let R be a ring. Let N
be an invertible R-module (i.e., locally free of rank 1). Let s ∈ N be an element.
Then U = {p | s 6∈ pN} is an affine open subset of Spec(R). This you can see as
follows. Think of s as an R-module map R→ N . This gives rise to R-module maps
N⊗k → N⊗k+1. Consider

R′ = colimnN
⊗n

with transition maps as above. Define an R-algebra structure on R′ by the rule
x · y = x ⊗ y ∈ N⊗n+m if x ∈ N⊗n and y ∈ N⊗m. We claim that Spec(R′) →
Spec(R) is an open immersion with image U .

To prove this is a local question on Spec(R). Let p ∈ Spec(R). Pick f ∈ R,
f 6∈ p such that Nf ∼= Rf as a module. Replacing R by Rf , N by Nf and R′ by
R′f = colimN⊗nf we may assume that N ∼= R. Say N = R. In this case s is an

element of R and it is easy to see that R′ ∼= Rs. Thus the lemma follows. �

Lemma 27.24.5. Let X be a scheme. Let L and M be invertible OX-modules. If

(1) L is ample, and
(2) the open sets Xt where t ∈ Γ(X,M⊗m) for m > 0 cover X,

then L ⊗M is ample.

Proof. We check the conditions of Definition 27.24.1. As L is ample we see that
X is quasi-compact. Let x ∈ X. Choose n ≥ 1, m ≥ 1, s ∈ Γ(X,L⊗n), and
t ∈ Γ(X,M⊗m) such that x ∈ Xs, x ∈ Xt and Xs is affine. Then smtn ∈ Γ(X, (L⊗
M)⊗nm), x ∈ Xsmtn , and Xsmtn is affine by Lemma 27.24.4. �

Recall that given a scheme X and an invertible sheaf L on X we get a graded ring
Γ∗(X,L) =

⊕
n≥0 Γ(X,L⊗n), see Modules, Definition 17.21.4. Also, given a sheaf

of OX -modules we have the graded Γ∗(X,L)-module Γ∗(X,F) = Γ∗(X,L,F).

Lemma 27.24.6. Let X be a scheme. Let L be an invertible sheaf on X. Let
s ∈ Γ(X,L). If X is quasi-compact and quasi-separated, the canonical map

Γ∗(X,L)(s) −→ Γ(Xs,O)

which maps a/sn to a⊗ s−n is an isomorphism. Moreover, if F is a quasi-coherent
OX-module then the map

Γ∗(X,L,F)(s) −→ Γ(Xs,F)

is an isomorphism.

Proof. Consider the scheme

π : L∗ = Spec
X

(⊕
n∈Z
L⊗n

)
−→ X

see Constructions, Section 26.4. Since the inverse image π−1(U) of every affine open
U ⊂ X is affine (see Constructions, Lemma 26.4.6), it follows that L∗ quasi-compact
and separated, since X is assumed quasi-compact and separated (use Schemes,
Lemma 25.21.7). Note that s gives rise to an element f ∈ Γ(L∗,O), via π∗OL∗ =⊕

n∈Z L⊗n. Note that (L∗)f = π−1(Xs). Hence we have(⊕
n∈Z

Γ(X,L⊗n)
)
s

= Γ(L∗,OL∗)f
= Γ((L∗)f ,OL∗)

=
⊕

n∈Z
Γ(Xs,L⊗n)
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where the middle “=” is Lemma 27.15.2. The first statement of the lemma follows
from this equality by looking at degree zero terms. The second statement also
follows from Lemma 27.15.2 applied to the quasi-coherent sheaf of OL∗ -modules
π∗F using that

π∗π
∗F = F ⊗OX

(⊕
n∈Z
L⊗n

)
=
⊕

n∈Z
F ⊗OX L⊗n

which is proved by computing both sides on affine opens of X. �

Lemma 27.24.7. Let X be a scheme. Let L be an invertible OX-module. Assume
the open sets Xs, where s ∈ Γ(X,L⊗n) and n ≥ 1, form a basis for the topology
on X. Then among those opens, the open sets Xs which are affine form a basis for
the topology on X.

Proof. Let x ∈ X. Choose an affine open neighbourhood Spec(R) = U ⊂ X of
x. By assumption, there exists a n ≥ 1 and a s ∈ Γ(X,L⊗n) such that Xs ⊂ U .
By Lemma 27.24.4 above the intersection Xs = U ∩ Xs is affine. Since U can be
chosen arbitrarily small we win. �

Lemma 27.24.8. Let X be a scheme. Let L be an invertible OX-module. Assume
for every point x of X there exists n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs and
Xs is affine. Then X is separated.

Proof. By assumption we can find a covering of X by affine opens of the form
Xs. To show that X is quasi-separated, by Schemes, Lemma 25.21.7 it suffices to
show that Xs ∩Xs′ is quasi-compact whenever Xs is affine. This is true by Lemma
27.24.4. Finally, to show that X is separated, we can use the valuative criterion,
see Schemes, Lemma 25.22.2.

Thus, let A be a valuation ring with fraction field K and consider two morphisms
f, g : Spec(A) → X such that the two compositions Spec(K) → Spec(A) → X
agree. Then f∗L corresponds to an A-module M and g∗L corresponds to an
A-module N by our classification of quasi-coherent modules over affine schemes
(Schemes, Lemma 25.7.4). The A-modules M and N are locally free of rank 1
(Lemma 27.18.1) and as A is local they are free of rank 1. We are given an isomor-
phism N ⊗A K ∼= M ⊗A K because f |Spec(K) = g|Spec(K). We fix an isomorphism
M ⊗A K ∼= K ∼= N ⊗A K compatible with the given isomorphism above, so that
we may think of M and N as A-submodules of K (free of rank 1 over A). Next,
choose s ∈ Γ(X,L⊗n) such that Im(f) ⊂ Xs and such that Xs is affine. This is
possible by assumption and the fact that A is local, so it suffices to look at the
image of the closed point of Spec(A). Then s corresponds to an element x ∈M⊗n
and y ∈ N⊗n mapping to the same element of K⊗n and moreover x 6∈ mAM

⊗n

because f(Spec(A)) ⊂ Xs. We conclude that N⊗n = Ax = Ay ⊂ M⊗n inside of
K⊗n. Thus N ⊂ M . By symmetry we get M = N . This in turn implies that
g(Spec(A)) ⊂ Xs. Then f = g because Xs is affine and hence separated, thereby
finishing the proof. �

Lemma 27.24.9. Let X be a scheme. If there exists an ample invertible sheaf on
X then X is separated.

Proof. Follows immediately from Lemma 27.24.8 and Definition 27.24.1. �
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Lemma 27.24.10. Let X be a scheme. Let L be an invertible OX-module. Set
S = Γ∗(X,L) as a graded ring. If every point of X is contained in one of the open
subschemes Xs, for some s ∈ S+ homogeneous, then there is a canonical morphism
of schemes

f : X −→ Y = Proj(S),

to the homogeneous spectrum of S (see Constructions, Section 26.8). This mor-
phism has the following properties

(1) f−1(D+(s)) = Xs for any s ∈ S+ homogeneous,
(2) there are OY -module maps f∗OY (n) → L⊗n compatible with multiplica-

tion maps, see Constructions, Equation (26.10.1.1),
(3) the compositions Sn → Γ(Y,OY (n))→ Γ(X,L⊗n) are equal to the identity

maps, and
(4) for every x ∈ X there is an integer d ≥ 1 and an open neighbourhood

U ⊂ X of x such that f∗OY (dn)|U → L⊗dn|U is an isomorphism for all
n ∈ Z.

Proof. Denote ψ : S → Γ∗(X,L) the identity map. We are going to use the
triple (U(ψ), rL,ψ, θ) of Constructions, Lemma 26.14.1. By assumption the open
subscheme U(ψ) of equals X. Hence rL,ψ : U(ψ) → Y is defined on all of X. We
set f = rL,ψ. The maps in part (2) are the components of θ. Part (3) follows from
condition (2) in the lemma cited above. Part (1) follows from (3) combined with
condition (1) in the lemma cited above. Part (4) follows from the last statement in
Constructions, Lemma 26.14.1 since the map α mentioned there is an isomorphism.

�

Lemma 27.24.11. Let X be a scheme. Let L be an invertible OX-module. Set
S = Γ∗(X,L). Assume (a) every point of X is contained in one of the open
subschemes Xs, for some s ∈ S+ homogeneous, and (b) X is quasi-compact. Then
the canonical morphism of schemes f : X −→ Proj(S) of Lemma 27.24.10 above is
quasi-compact.

Proof. It suffices to show that f−1(D+(s)) is quasi-compact for any s ∈ S+ ho-
mogeneous. Write X =

⋃
i=1,...,nXi as a finite union of affine opens. By Lemma

27.24.4 each intersection Xs ∩Xi is affine. Hence Xs =
⋃
i=1,...,nXs ∩Xi is quasi-

compact. �

Lemma 27.24.12. Let X be a scheme. Let L be an invertible OX-module. Set
S = Γ∗(X,L). Assume L is ample. Then the canonical morphism of schemes
f : X −→ Proj(S) of Lemma 27.24.10 is an open immersion.

Proof. By Lemma 27.24.8 we see that X is quasi-separated. Choose finitely many
s1, . . . , sn ∈ S+ homogeneous such that Xsi are affine, and X =

⋃
Xsi . Say si has

degree di. The inverse image of D+(si) under f is Xsi , see Lemma 27.24.10. By
Lemma 27.24.6 the ring map

(S(di))(si) = Γ(D+(si),OProj(S)) −→ Γ(Xsi ,OX)

is an isomorphism. Hence f induces an isomorphism Xsi → D+(si). Thus f is an
isomorphism of X onto the open subscheme

⋃
i=1,...,nD+(si) of Proj(S). �
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Lemma 27.24.13. Let X be a scheme. Let S be a graded ring. Assume X is
quasi-compact, and assume there exists an open immersion

j : X −→ Y = Proj(S).

Then j∗OY (d) is an invertible ample sheaf for some d > 0.

Proof. This is Constructions, Lemma 26.10.6. �

Proposition 27.24.14. Let X be a quasi-compact scheme. Let L be an invertible
sheaf on X. Set S = Γ∗(X,L). The following are equivalent:

(1) L is ample,
(2) the open sets Xs, with s ∈ S+ homogeneous, cover X and the associated

morphism X → Proj(S) is an open immersion,
(3) the open sets Xs, with s ∈ S+ homogeneous, form a basis for the topology

of X,
(4) the open sets Xs, with s ∈ S+ homogeneous, which are affine form a basis

for the topology of X,
(5) for every quasi-coherent sheaf F on X the sum of the images of the canon-

ical maps

Γ(X,F ⊗OX L⊗n)⊗Z L⊗−n −→ F
with n ≥ 1 equals F ,

(6) same property as (5) with F ranging over all quasi-coherent sheaves of
ideals,

(7) X is quasi-separated and for every quasi-coherent sheaf F of finite type
on X there exists an integer n0 such that F⊗OX L⊗n is globally generated
for all n ≥ n0,

(8) X is quasi-separated and for every quasi-coherent sheaf F of finite type on
X there exist integers n > 0, k ≥ 0 such that F is a quotient of a direct
sum of k copies of L⊗−n, and

(9) same as in (8) with F ranging over all sheaves of ideals of finite type on
X.

Proof. Lemma 27.24.12 is (1) ⇒ (2). Lemmas 27.24.2 and 27.24.13 provide the
implication (1) ⇐ (2). The implications (2) ⇒ (4) ⇒ (3) are clear from Construc-
tions, Section 26.8. Lemma 27.24.7 is (3) ⇒ (1). Thus we see that the first 4
conditions are all equivalent.

Assume the equivalent conditions (1) – (4). Note that in particular X is separated
(as an open subscheme of the separated scheme Proj(S)). Let F be a quasi-coherent
sheaf on X. Choose s ∈ S+ homogeneous such that Xs is affine. We claim that
any section m ∈ Γ(Xs,F) is in the image of one of the maps displayed in (5) above.
This will imply (5) since these affines Xs cover X. Namely, by Lemma 27.24.6 we
may write m as the image of m′ ⊗ s−n for some n ≥ 1, some m′ ∈ Γ(X,F ⊗L⊗n).
This proves the claim.

Clearly (5)⇒ (6). Let us assume (6) and prove L is ample. Pick x ∈ X. Let U ⊂ X
be an affine open which contains x. Set Z = X \U . We may think of Z as a reduced
closed subscheme, see Schemes, Section 25.12. Let I ⊂ OX be the quasi-coherent
sheaf of ideals corresponding to the closed subscheme Z. By assumption (6), there
exists an n ≥ 1 and a section s ∈ Γ(X, I ⊗ L⊗n) such that s does not vanish at
x (more precisely such that s 6∈ mxIx ⊗ L⊗nx ). We may think of s as a section of
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L⊗n. Since it clearly vanishes along Z we see that Xs ⊂ U . Hence Xs is affine, see
Lemma 27.24.4. This proves that L is ample. At this point we have proved that
(1) – (6) are equivalent.

Assume the equivalent conditions (1) – (6). In the following we will use the fact
that the tensor product of two sheaves of modules which are globally generated
is globally generated without further mention (see Modules, Lemma 17.4.3). By
(1) we can find elements si ∈ Sdi with di ≥ 1 such that X =

⋃
i=1,...,nXsi . Set

d = d1 . . . dn. It follows that L⊗d is globally generated by

s
d/d1

1 , . . . , sd/dnn .

This means that if L⊗j is globally generated then so is L⊗j+dn for all n ≥ 0. Fix a
j ∈ {0, . . . , d− 1}. For any point x ∈ X there exists an n ≥ 1 and a global section
s of Lj+dn which does not vanish at x, as follows from (5) applied to F = L⊗j and
ample invertible sheaf L⊗d. Since X is quasi-compact there we may find a finite list
of integers ni and global sections si of L⊗j+dni which do not vanish at any point of
X. Since L⊗d is globally generated this means that L⊗j+dn is globally generated
where n = max{ni}. Since we proved this for every congruence class mod d we
conclude that there exists an n0 = n0(L) such that L⊗n is globally generated for
all n ≥ n0. At this point we see that if F is globally generated then so is F ⊗L⊗n
for all n ≥ n0.

We continue to assume the equivalent conditions (1) – (6). Let F be a quasi-
coherent sheaf of OX -modules of finite type. Denote Fn ⊂ F the image of the
canonical map of (5). By construction Fn ⊗ L⊗n is globally generated. By (5) we
see F is the sum of the subsheaves Fn, n ≥ 1. By Modules, Lemma 17.9.7 we
see that F =

∑
n=1,...,N Fn for some N ≥ 1. It follows that F ⊗ L⊗n is globally

generated whenever n ≥ N + n0(L) with n0(L) as above. We conclude that (1) –
(6) implies (7).

Assume (7). Let F be a quasi-coherent sheaf of OX -modules of finite type. By (7)
there exists an integer n ≥ 1 such that the canonical map

Γ(X,F ⊗OX L⊗n)⊗Z L⊗−n −→ F

is surjective. Let I be the set of finite subsets of Γ(X,F⊗OX L⊗n) partially ordered
by inclusion. Then I is a directed partially ordered set. For i = {s1, . . . , sr(i)} let
Fi ⊂ F be the image of the map⊕

j=1,...,r(i)
L⊗−n −→ F

which is multiplication by sj on the jth factor. The surjectivity above implies
that F = colimi∈I Fi. Hence Modules, Lemma 17.9.7 applies and we conclude that
F = Fi for some i. Hence we have proved (8). In other words, (7) ⇒ (8).

The implication (8) ⇒ (9) is trivial.

Finally, assume (9). Let I ⊂ OX be a quasi-coherent sheaf of ideals. By Lemma
27.20.3 (this is where we use the condition that X be quasi-separated) we see that
I = colimα Iα with each Iα quasi-coherent of finite type. Since by assumption each
of the Iα is a quotient of negative tensor powers of L we conclude the same for
I (but of course without the finiteness or boundedness of the powers). Hence we
conclude that (9) implies (6). This ends the proof of the proposition. �
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27.25. Affine and quasi-affine schemes

Lemma 27.25.1. Let X be a scheme. Then X is quasi-affine if and only if OX is
ample.

Proof. Suppose that X is quasi-affine. Consider the open immersion

j : X −→ Spec(Γ(X,OX))

from Lemma 27.15.4. Note that Spec(A) = Proj(A[T ]), see Constructions, Example
26.8.14. Hence we can apply Lemma 27.24.13 to deduce that OX is ample.

Suppose that OX is ample. Note that Γ∗(X,OX) ∼= Γ(X,OX)[T ] as graded rings.
Hence the result follows from Lemmas 27.24.12 and 27.15.4 taking into account
that Spec(A) = Proj(A[T ]) for any ring A as seen above. �

Lemma 27.25.2. Let X be a scheme. Suppose that there exist finitely many ele-
ments f1, . . . , fn ∈ Γ(X,OX) such that

(1) each Xfi is an affine open of X, and
(2) the ideal generated by f1, . . . , fn in Γ(X,OX) is equal to the unit ideal.

Then X is affine.

Proof. Assume we have f1, . . . , fn as in the lemma. We may write 1 =
∑
gifi for

some gj ∈ Γ(X,OX) and hence it is clear that X =
⋃
Xfi . (The fi’s cannot all

vanish at a point.) Since each Xfi is quasi-compact (being affine) it follows that
X is quasi-compact. Hence we see that X is quasi-affine by Lemma 27.25.1 above.
Consider the open immersion

j : X → Spec(Γ(X,OX)),

see Lemma 27.15.4. The inverse image of the standard open D(fi) on the right
hand side is equal to Xfi on the left hand side and the morphism j induces an
isomorphism Xfi

∼= D(fi), see Lemma 27.15.3. Since the fi generate the unit ideal
we see that Spec(Γ(X,OX)) =

⋃
i=1,...,nD(fi). Thus j is an isomorphism. �

27.26. Quasi-coherent sheaves and ample invertible sheaves

Theme of this section: in the presence of an ample invertible sheaf every quasi-
coherent sheaf comes from a graded module.

Situation 27.26.1. Let X be a scheme. Let L be an ample invertible sheaf on
X. Set S = Γ∗(X,L) as a graded ring. Set Y = Proj(S). Let f : X → Y be
the canonical morphism of Lemma 27.24.10. It comes equipped with a Z-graded
OX -algebra map

⊕
f∗OY (n)→

⊕
L⊗n.

The following lemma is really a special case of the next lemma but it seems like a
good idea to point out its validity first.

Lemma 27.26.2. In Situation 27.26.1. The canonical morphism f : X → Y
maps X into the open subscheme W = W1 ⊂ Y where OY (1) is invertible and
where all multiplication maps OY (n)⊗OY OY (m)→ OY (n+m) are isomorphisms
(see Constructions, Lemma 26.10.4). Moreover, the maps f∗OY (n)→ L⊗n are all
isomorphisms.
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Proof. By Proposition 27.24.14 there exists an integer n0 such that L⊗n is globally
generated for all n ≥ n0. Let x ∈ X be a point. By the above we can find a ∈ Sn0

and b ∈ Sn0+1 such that a and b do not vanish at x. Hence f(x) ∈ D+(a)∩D+(b) =
D+(ab). By Constructions, Lemma 26.10.4 we see that f(x) ∈ W1 as desired. By
Constructions, Lemma 26.14.1 which was used in the construction of the map f
the maps f∗OY (n0) → L⊗n0 and f∗OY (n0 + 1) → L⊗n0+1 are isomorphisms in a
neighbourhood of x. By compatibility with the algebra structure and the fact that
f maps into W we conclude all the maps f∗OY (n) → L⊗n are isomorphisms in a
neighbourhood of x. Hence we win. �

Recall from Modules, Definition 17.21.4 that given a locally ringed space X, an
invertible sheaf L, and a OX -module F we have the graded Γ∗(X,L)-module

Γ(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX L⊗n).

The following lemma says that, in Situation 27.26.1, we can recover a quasi-coherent
OX -module F from this graded module. Take a look also at Constructions, Lemma
26.13.7 where we prove this lemma in the special case X = Pn

R.

Lemma 27.26.3. In Situation 27.26.1. Let F be a quasi-coherent sheaf on X. Set
M = Γ∗(X,L,F) as a graded S-module. There are isomorphisms

f∗M̃ −→ F

functorial in F such that M0 → Γ(Proj(S), M̃)→ Γ(X,F) is the identity map.

Proof. Let s ∈ S+ be homogeneous such that Xs is affine open in X. Recall

that M̃ |D+(s) corresponds to the S(s)-module M(s), see Constructions, Lemma

26.8.4. Recall that f−1(D+(s)) = Xs. As X carries an ample invertible sheaf
it is quasi-compact and quasi-separated, see Section 27.24. By Lemma 27.24.6
there is a canonical isomorphism M(s) = Γ∗(X,L,F)(s) → Γ(Xs,F). Since F is
quasi-coherent this leads to a canonical isomorphism

f∗M̃ |Xs → F|Xs
Since L is ample on X we know that X is covered by the affine opens of the form
Xs. Hence it suffices to prove that the displayed maps glue on overlaps. Proof of
this is omitted. �

Remark 27.26.4. With assumptions and notation of Lemma 27.26.3. Denote the
displayed map of the lemma by θF . Note that the isomorphism f∗OY (n) → L⊗n
of Lemma 27.26.2 is just θL⊗n . Consider the multiplication maps

M̃ ⊗OY OY (n) −→ M̃(n)

see Constructions, Equation (26.10.1.5). Pull this back to X and consider

f∗M̃ ⊗OX f∗OY (n) //

θF⊗θL⊗n
��

f∗M̃(n)

θF⊗L⊗n

��
F ⊗ L⊗n id // F ⊗ L⊗n

Here we have used the obvious identification M(n) = Γ∗(X,L,F ⊗ L⊗n). This
diagram commutes. Proof omitted.
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It should be possible to deduce the following lemma from Lemma 27.26.3 (or con-
versely) but it seems simpler to just repeat the proof.

Lemma 27.26.5. Let S be a graded ring such that X = Proj(S) is quasi-compact
and can be covered by opens of the form D+(f) where f is homogeneous of degree
1. Let F be a quasi-coherent sheaf on X. Set M = Γ∗(X,OX(1),F). Think of
M as a graded S-module, see Constructions, Section 26.10. There is a canonical
isomorphism

M̃ −→ F
functorial in F such that the induced maps Mn → Γ(X,F(n)) are the identity
maps.

Proof. We will use without further mention the results of Constructions, Lemma
26.10.3 (which applies). Let S′ = Γ∗(X,OX(1)). There is a graded ring map
S → S′ and M has a graded S′-module structure such that the S-module structure
is the restriction of the S′-module structure. Pick f ∈ S homogeneous of degree 1
with image s ∈ S′. Observe that Mf

∼= Ms and M(f)
∼= M(s). Also D+(f) = Xs,

see Constructions, Lemma 26.10.5. Recall that M̃ |D+(f) corresponds to the S(f)-
module M(f), see Constructions, Lemma 26.8.4. The scheme X is quasi-compact
by assumption and separated by Constructions, Lemma 26.8.8. By Lemma 27.24.6
there is a canonical isomorphism

M(f) = M(s) = Γ∗(X,OX(1),F)(s) → Γ(Xs,F).

Since F is quasi-coherent this leads to a canonical isomorphism

M̃ |Xs → F|Xs
By assumption the opens D+(f) = Xs cover the scheme X. Hence it suffices to
prove that the displayed maps glue on overlaps. Proof of this is omitted. We also
omit the proof of the final statement. �

27.27. Finding suitable affine opens

In this section we collect some results on the existence of affine opens in more and
less general situations.

Lemma 27.27.1. Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise
distinct irreducible components of X, see Topology, Section 5.7. Let ηi ∈ Zi be their
generic points, see Schemes, Lemma 25.11.1. There exist affine open neighbour-
hoods ηi ∈ Ui such that Ui ∩ Uj = ∅ for all i 6= j. In particular, U = U1 ∪ . . . ∪ Un
is an affine open containing all of the points η1, . . . , ηn.

Proof. Let Vi be any affine open containing ηi and disjoint from the closed set Z1∪
. . . Ẑi . . . ∪Zn. Since X is quasi-separated for each i the union Wi =

⋃
j,j 6=i Vi ∩ Vj

is a quasi-compact open of Vi not containing ηi. We can find open neighbourhoods
Ui ⊂ Vi containing ηi and disjoint from Wi by Algebra, Lemma 10.25.4. Finally, U
is affine since it is the spectrum of the ring R1 × . . .×Rn where Ri = OX(Ui), see
Schemes, Lemma 25.6.8. �

Remark 27.27.2. Lemma 27.27.1 above is false if X is not quasi-separated. Here
is an example. Take R = Q[x, y1, y2, . . .]/((x − i)yi). Consider the minimal prime
ideal p = (y1, y2, . . .) of R. Glue two copies of Spec(R) along the (not quasi-
compact) open Spec(R) \V (p) to get a scheme X (glueing as in Schemes, Example
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25.14.3). Then the two maximal points of X corresponding to p are not contained
in a common affine open. The reason is that any open of Spec(R) containing p
contains infinitely many of the “lines” x = i, yj = 0, j 6= i with parameter yi.
Details omitted.

Notwithstanding the example above, for “most” finite sets of irreducible closed
subsets one can apply Lemma 27.27.1 above, at least if X is quasi-compact. This
is true because X contains a dense open which is separated.

Lemma 27.27.3. Let X be a quasi-compact scheme. There exists a dense open
V ⊂ X which is separated.

Proof. Say X =
⋃
i=1,...,n Ui is a union of n affine open subschemes. We will prove

the lemma by induction on n. It is trivial for n = 1. Let V ′ ⊂
⋃
i=1,...,n−1 Ui be a

separated dense open subscheme, which exists by induction hypothesis. Consider

V = V ′
∐

(Un \ V ′).

It is clear that V is separated and a dense open subscheme of X. �

It turns out that, even if X is quasi-separated as well as quasi-compact, there does
not exist a separated, quasi-compact dense open, see Examples, Lemma 82.20.2.
Here is a slight refinement of Lemma 27.27.1 above.

Lemma 27.27.4. Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise
distinct irreducible components of X. Let ηi ∈ Zi be their generic points. Let x ∈ X
be arbitrary. There exists an affine open U ⊂ X containing x and all the ηi.

Proof. Suppose that x ∈ Z1∩ . . .∩Zr and x 6∈ Zr+1, . . . , Zn. Then we may choose
an affine open W ⊂ X such that x ∈W and W ∩ Zi = ∅ for i = r + 1, . . . , n. Note
that clearly ηi ∈W for i = 1, . . . , r. By Lemma 27.27.1 we may choose affine opens
Ui ⊂ X which are pairwise disjoint such that ηi ∈ Ui for i = r + 1, . . . , n. Since X
is quasi-separated the opens W ∩ Ui are quasi-compact and do not contain ηi for
i = r + 1, . . . , n. Hence by Algebra, Lemma 10.25.4 we may shrink Ui such that
W ∩Ui = ∅ for i = r+ 1, . . . , n. Then the union U = W ∪

⋃
i=r+1,...,n Ui is disjoint

and hence (by Schemes, Lemma 25.6.8) a suitable affine open. �

Lemma 27.27.5. Let X be a scheme. Assume either

(1) The scheme X is quasi-affine.
(2) The scheme X is isomorphic to a locally closed subscheme of an affine

scheme.
(3) There exists an ample invertible sheaf on X.
(4) The scheme X is isomorphic to a locally closed subscheme of Proj(S) for

some graded ring S.

Then for any finite subset E ⊂ X there exists an affine open U ⊂ X with E ⊂ U .

Proof. By Properties, Definition 27.15.1 a quasi-affine scheme is a quasi-compact
open subscheme of an affine scheme. Any affine scheme Spec(R) is isomorphic to
Proj(R[X]) where R[X] is graded by setting deg(X) = 1. By Proposition 27.24.14
if X has an ample invertible sheaf then X is isomorphic to an open subscheme of
Proj(S) for some graded ring S. Hence, it suffices to prove the lemma in case (4).
(We urge the reader to prove case (2) directly for themselves.)
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Thus assume X ⊂ Proj(S) is a locally closed subscheme where S is some graded
ring. Let T = X \ X. Recall that the standard opens D+(f) form a basis of the
topology on Proj(S). Since E is finite we may choose finitely many homogeneous
elements fi ∈ S+ such that

E ⊂ D+(f1) ∪ . . . ∪D+(fn) ⊂ Proj(S) \ T
Suppose that E = {p1, . . . , pm} as a subset of Proj(S). Consider the ideal I =
(f1, . . . , fn) ⊂ S. Since I 6⊂ pj for all j = 1, . . . ,m we see from Algebra, Lemma
10.55.6 that there exists a homogeneous element f ∈ I, f 6∈ pj for all j = 1, . . . ,m.
Then E ⊂ D+(f) ⊂ D+(f1) ∪ . . . ∪D+(fn). Since D+(f) does not meet T we see
that X∩D+(f) is a closed subscheme of the affine scheme D+(f), hence is an affine
open of X as desired. �

Lemma 27.27.6. Let X be a scheme. Let L be an ample invertible sheaf on X. Let
E ⊂ X be a finite subset. Then there exists an n > 0 and a section s ∈ Γ(X,L⊗n)
such that Xs is affine and E ⊂ Xs.

Proof. The reader can modify the proof of Lemma 27.27.5 to prove this lemma;
we will instead deduce the lemma from it. By Lemma 27.27.5 we can choose an
affine open U ⊂ X such that E ⊂ U . Consider the graded ring S = Γ∗(X,L) =⊕

n≥0 Γ(X,L⊗n). For each x ∈ E let px ⊂ S be the graded ideal of sections
vanishing at x. It is clear that px is a prime ideal and since some power of L is
globally generated, it is clear that S+ 6⊂ px. Let I ⊂ S be the graded ideal of
sections vanishing on all points of X \ U . Since the sets Xs form a basis for the
topology we see that I 6⊂ px for all x ∈ E. By (graded) prime avoidance (Algebra,
Lemma 10.55.6) we can find s ∈ I homogeneous with s 6∈ px for all x ∈ E. Then
E ⊂ Xs ⊂ U and Xs is affine by Lemma 27.24.4. �
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CHAPTER 28

Morphisms of Schemes

28.1. Introduction

In this chapter we introduce some types of morphisms of schemes. A basic reference
is [DG67].

28.2. Closed immersions

In this section we elucidate some of the results obtained previously on closed im-
mersions of schemes. Recall that a morphism of schemes i : Z → X is defined to
be a closed immersion if (a) i induces a homeomorphism onto a closed subset of
X, (b) i] : OX → i∗OZ is surjective, and (c) the kernel of i] is locally generated
by sections, see Schemes, Definitions 25.10.2 and 25.4.1. It turns out that, given
that Z and X are schemes, there are many different ways of characterizing a closed
immersion.

Lemma 28.2.1. Let i : Z → X be a morphism of schemes. The following are
equivalent:

(1) The morphism i is a closed immersion.
(2) For every affine open Spec(R) = U ⊂ X, there exists an ideal I ⊂ R such

that i−1(U) = Spec(R/I) as schemes over U = Spec(R).
(3) There exists an affine open covering X =

⋃
j∈J Uj, Uj = Spec(Rj) and for

every j ∈ J there exists an ideal Ij ⊂ Rj such that i−1(Uj) = Spec(Rj/Ij)
as schemes over Uj = Spec(Rj).

(4) The morphism i induces a homeomorphism of Z with a closed subset of
X and i] : OX → i∗OZ is surjective.

(5) The morphism i induces a homeomorphism of Z with a closed subset of
X, the map i] : OX → i∗OZ is surjective, and the kernel Ker(i]) ⊂ OX
is a quasi-coherent sheaf of ideals.

(6) The morphism i induces a homeomorphism of Z with a closed subset of
X, the map i] : OX → i∗OZ is surjective, and the kernel Ker(i]) ⊂ OX
is a sheaf of ideals which is locally generated by sections.

Proof. Condition (6) is our definition of a closed immersion, see Schemes, Defini-
tions 25.4.1 and 25.10.2. So (6) ⇔ (1). We have (1) ⇒ (2) by Schemes, Lemma
25.10.1. Trivially (2) ⇒ (3).

Assume (3). Each of the morphisms Spec(Rj/Ij)→ Spec(Rj) is a closed immersion,
see Schemes, Example 25.8.1. Hence i−1(Uj) → Uj is a homeomorphism onto its
image and i]|Uj is surjective. Hence i is a homeomorphism onto its image and i] is
surjective since this may be checked locally. We conclude that (3) ⇒ (4).

The implication (4) ⇒ (1) is Schemes, Lemma 25.24.2. The implication (5) ⇒ (6)
is trivial. And the implication (6)⇒ (5) follows from Schemes, Lemma 25.10.1. �

1847
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Lemma 28.2.2. Let X be a scheme. Suppose i : Z → X and i′ : Z ′ → X are
closed immersions corresponding to the quasi-coherent ideal sheaves I = Ker(i])
and I ′ = Ker((i′)]) of OX .

(1) The morphism i : Z → X factors as Z → Z ′ → X for some a : Z → Z ′ if
and only if I ′ ⊂ I. If this happens, then a is a closed immersion.

(2) We have Z ∼= Z ′ as schemes over X if and only if I = I ′.

Proof. This follows from our discussion of closed subspaces in Schemes, Section
25.4 especially Schemes, Lemma 25.4.6. It also follows in a straightforward way
from characterization (3) in Lemma 28.2.1 above. �

Lemma 28.2.3. Let X be a scheme. Let I ⊂ OX be a sheaf of ideals. The following
are equivalent:

(1) The sheaf of ideals I is locally generated by sections as a sheaf of OX
modules.

(2) The sheaf of ideals I is quasi-coherent as a sheaf of OX-modules.
(3) There exists a closed immersion i : Z → X whose corresponding sheaf of

ideals Ker(i]) is equal to I.

Proof. In Schemes, Section 25.4 we constructed the closed subspace associated to
a sheaf of ideals locally generated by sections. This closed subspace is a scheme
by Schemes, Lemma 25.10.1. Hence we see that (1) ⇒ (3) by our definition of a
closed immersion of schemes. By Lemma 28.2.1 above we see that (3) ⇒ (2). And
of course (2) ⇒ (1). �

Lemma 28.2.4. The base change of a closed immersion is a closed immersion.

Proof. See Schemes, Lemma 25.18.2. �

Lemma 28.2.5. A composition of closed immersions is a closed immersion.

Proof. We have seen this in Schemes, Lemma 25.24.3, but here is another proof.
Namely, it follows from the characterization (3) of closed immersions in Lemma
28.2.1. Since if I ⊂ R is an ideal, and J ⊂ R/I is an ideal, then J = J/I for some
ideal J ⊂ R which contains I and (R/I)/J = R/J . �

Lemma 28.2.6. A closed immersion is quasi-compact.

Proof. This lemma is a duplicate of Schemes, Lemma 25.19.5. �

Lemma 28.2.7. A closed immersion is separated.

Proof. This lemma is a special case of Schemes, Lemma 25.23.7. �

28.3. Immersions

In this section we collect some facts on immersions.

Lemma 28.3.1. Let Z → Y → X be morphisms of schemes.

(1) If Z → X is an immersion, then Z → Y is an immersion.
(2) If Z → X is a quasi-compact immersion and Z → Y is quasi-separated,

then Z → Y is a quasi-compact immersion.
(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is

a closed immersion.
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Proof. In each case the proof is to contemplate the commutative diagram

Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove
(1). The first horizontal arrow is a section of Y ×X Z → Z, whence an immersion
by Schemes, Lemma 25.21.12. The arrow Y ×X Z → Y is a base change of Z → X
hence an immersion (Schemes, Lemma 25.18.2). Finally, a composition of immer-
sions is an immersion (Schemes, Lemma 25.24.3). This proves (1). The other two
results are proved in exactly the same manner. �

Lemma 28.3.2. Let h : Z → X be an immersion. If h is quasi-compact, then we
can factor h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed
immersion.

Proof. Note that h is quasi-compact and quasi-separated (see Schemes, Lemma
25.23.7). Hence h∗OZ is a quasi-coherent sheaf of OX -modules by Schemes, Lemma
25.24.1. This implies that I = Ker(OX → h∗OZ) is a quasi-coherent sheaf of ideals,
see Schemes, Section 25.24. Let Z ⊂ X be the closed subscheme corresponding to I,
see Lemma 28.2.3. By Schemes, Lemma 25.4.6 the morphism h factors as h = i ◦ j
where i : Z → X is the inclusion morphism. To see that j is an open immersion,
choose an open subscheme U ⊂ X such that h induces a closed immersion of Z
into U . Then it is clear that I|U is the sheaf of ideals corresponding to the closed
immersion Z → U . Hence we see that Z = Z ∩ U . �

Lemma 28.3.3. Let h : Z → X be an immersion. If Z is reduced, then we can
factor h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed
immersion.

Proof. Let Z ⊂ X be the closure of h(Z) with the reduced induced closed sub-
scheme structure, see Schemes, Definition 25.12.5. By Schemes, Lemma 25.12.6
the morphism h factors as h = i ◦ j with i : Z → X the inclusion morphism and
j : Z → Z. From the definition of an immersion we see there exists an open sub-
scheme U ⊂ X such that h factors through a closed immersion into U . Hence Z∩U
and h(Z) are reduced closed subschemes of U with the same underlying closed set.
Hence by the uniqueness in Schemes, Lemma 25.12.4 we see that h(Z) ∼= Z ∩ U .
So j induces an isomorphism of Z with Z ∩U . In other words j is an open immer-
sion. �

Example 28.3.4. Here is an example of an immersion which is not a composition
of an open immersion followed by a closed immersion. Let k be a field. Let X =
Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1D(xn). Then U → X is an open immersion.

Consider the ideals

In = (xn1 , x
n
2 , . . . , x

n
n−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].

Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m 6= n. Hence the quasi-

coherent ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if
n 6= m. Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let
Z ⊂ U be the closed subscheme corresponding to I. Thus Z → X is an immersion.
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We claim that we cannot factor Z → X as Z → Z → X, where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.

28.4. Closed immersions and quasi-coherent sheaves

The following lemma finally does for quasi-coherent sheaves on schemes what Mod-
ules, Lemma 17.6.1 does for abelian sheaves. See also the discussion in Modules,
Section 17.13.

Lemma 28.4.1. Let i : Z → X be a closed immersion of schemes. Let I ⊂ OX be
the quasi-coherent sheaf of ideals cutting out Z. The functor

i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherent OX-modules G such
that IG = 0.

Proof. A closed immersion is quasi-compact and separated, see Lemmas 28.2.6
and 28.2.7. Hence Schemes, Lemma 25.24.1 applies and the pushforward of a quasi-
coherent sheaf on Z is indeed a quasi-coherent sheaf on X.

By Modules, Lemma 17.13.4 the functor i∗ is fully faithful.

Now we turn to the description of the essential image of the functor i∗. It is
clear that I(i∗F) = 0 for any quasi-coherent OZ-module, for example by our local
description above. Next, suppose that G is any quasi-coherent OX -module such
that IG = 0. It suffices to show that the canonical map

G −→ i∗i
∗G

is an isomorphism. By exactly the same arguments as above we see that it suffices
to prove the following algebraic statement: Given a ring R, an ideal I and an
R-module N such that IN = 0 the canonical map

N −→ N ⊗R R/I, n 7−→ n⊗ 1

is an isomorphism of R-modules. Proof of this easy algebra fact is omitted. �

Let i : Z → X be a closed immersion. Because of the lemma above we often, by
abuse of notation, denote F the sheaf i∗F on X.

Lemma 28.4.2. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
G ⊂ F be a OX-submodule. There exists a unique quasi-coherent OX-submodule
G′ ⊂ G with the following property: For every quasi-coherent OX-module H the
map

HomOX (H,G′) −→ HomOX (H,G)

is bijective. In particular G′ is the largest quasi-coherent OX-submodule of F con-
tained in G.

Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
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Schemes, Section 25.24. The module G′ is contained in G. Hence this is the largest
quasi-coherent OX -module contained in G.

To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be
an OX -module map. The image of the composition H → G → F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence
α factors through G′ as desired. �

Lemma 28.4.3. Let i : Z → X be a closed immersion of schemes. There is a
functor1 i! : QCoh(OX) → QCoh(OZ) which is a right adjoint to i∗. (Compare
Modules, Lemma 17.6.3.)

Proof. Given quasi-coherent OX -module G we consider the subsheaf HZ(G) of G
of local sections annihilated by I. By Lemma 28.4.2 there is a canonical largest
quasi-coherent OX -submodule HZ(G)′. By construction we have

HomOX (i∗F ,HZ(G)′) = HomOX (i∗F ,G)

for any quasi-coherent OZ-module F . Hence we can set i!G = i∗(HZ(G)′). Details
omitted. �

28.5. Supports of modules

In this section we collect some elementary results on supports of quasi-coherent
modules on schemes. Recall that the support of a sheaf of modules has been defined
in Modules, Section 17.5. On the other hand, the support of a module was defined
in Algebra, Section 10.61. These match.

Lemma 28.5.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is in the support of M , and
(2) x is in the support of F .

Proof. This follows from the equality Fx = Mp, see Schemes, Lemma 25.5.4 and
the definitions. �

Lemma 28.5.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X. The
support of F is closed under specialization.

Proof. If x′  x is a specialization and Fx = 0 then Fx′ is zero, as Fx′ is a
localization of the module Fx. Hence the complement of Supp(F) is closed under
generalization. �

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 28.5.3. Let F be a finite type quasi-coherent module on a scheme X.
Then

(1) The support of F is closed.
(2) For x ∈ X we have

x ∈ Supp(F)⇔ Fx 6= 0⇔ Fx ⊗OX,x κ(x) 6= 0.

1This is likely nonstandard notation.
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(3) For any morphism of schemes f : Y → X the pullback f∗F is of finite
type as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Part (1) is a reformulation of Modules, Lemma 17.9.6. You can also com-
bine Lemma 28.5.1, Properties, Lemma 27.16.1, and Algebra, Lemma 10.39.5 to
see this. The first equivalence in (2) is the definition of support, and the second
equivalence follows from Nakayama’s lemma, see Algebra, Lemma 10.19.1. Let
f : Y → X be a morphism of schemes. Note that f∗F is of finite type by Modules,
Lemma 17.9.2. For the final assertion, let y ∈ Y with image x ∈ X. Recall that

(f∗F)y = Fx ⊗OX,x OY,y,

see Sheaves, Lemma 6.26.4. Hence (f∗F)y⊗κ(y) is nonzero if and only if Fx⊗κ(x)
is nonzero. By (2) this implies x ∈ Supp(F) if and only if y ∈ Supp(f∗F), which is
the content of assertion (3). �

Lemma 28.5.4. Let F be a finite type quasi-coherent module on a scheme X.
There exists a smallest closed subscheme i : Z → X such that there exists a quasi-
coherent OZ-module G with i∗G ∼= F . Moreover:

(1) If Spec(A) ⊂ X is any affine open, and F|Spec(A) = M̃ then Z∩Spec(A) =
Spec(A/I) where I = AnnA(M).

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is Z.

Proof. Suppose that i′ : Z ′ → X is a closed subscheme which satisfies the descrip-
tion on open affines from the lemma. Then by Lemma 28.4.1 we see that F ∼= i′∗G′
for some unique quasi-coherent sheaf G′ on Z ′. Furthermore, it is clear that Z ′ is
the smallest closed subscheme with this property (by the same lemma). Finally,
using Properties, Lemma 27.16.1 and Algebra, Lemma 10.5.5 it follows that G′ is
of finite type. We have Supp(G′) = Z by Algebra, Lemma 10.39.5. Hence, in order
to prove the lemma it suffices to show that the characterization in (1) actually
does define a closed subscheme. And, in order to do this it suffices to prove that
the given rule produces a quasi-coherent sheaf of ideals, see Lemma 28.2.3. This
comes down to the following algebra fact: If A is a ring, f ∈ A, and M is a finite
A-module, then AnnA(M)f = AnnAf (Mf ). We omit the proof. �

Definition 28.5.5. Let X be a scheme. Let F be a quasi-coherent OX -module
of finite type. The scheme theoretic support of F is the closed subscheme Z ⊂ X
constructed in Lemma 28.5.4.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma 28.4.1).

28.6. Scheme theoretic image

Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 28.6.1. Let f : X → Y be a morphism of schemes. There exists a closed
subscheme Z ⊂ Y such that f factors through Z and such that for any other closed
subscheme Z ′ ⊂ Y such that f factors through Z ′ we have Z ⊂ Z ′.
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Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z
to be the closed subscheme determined by I, see Lemma 28.2.3. This works by
Schemes, Lemma 25.4.6. In general the same lemma requires us to show that there
exists a largest quasi-coherent sheaf of ideals I ′ contained in I. This follows from
Lemma 28.4.2. �

Definition 28.6.2. Let f : X → Y be a morphism of schemes. The scheme
theoretic image of f is the smallest closed subscheme Z ⊂ Y through which f
factors, see Lemma 28.6.1 above.

We often just denote f : X → Z the factorization of f . If the morphism f is not
quasi-compact, then (in general) the construction of the scheme theoretic image
does not commute with restriction to open subschemes to Y . Namely, if f is the
immersion Z → X of Example 28.3.4 above then the scheme theoretic image of
Z → X is X. But clearly the scheme theoretic image of Z = Z ∩U → U is just Z.

Lemma 28.6.3. Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be the
scheme theoretic image of f . If f is quasi-compact then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subscheme determined by I,
(3) for any open U ⊂ Y the scheme theoretic image of f |f−1(U) : f−1(U)→ U

is equal to Z ∩ U , and
(4) the image f(X) ⊂ Z is a dense subset of Z, in other words the morphism

X → Z is dominant (see Definition 28.8.1).

Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since
the formation of I commutes with restriction to open subschemes of Y . And if (1)
holds then in the proof of Lemma 28.6.1 we showed (2). Thus it suffices to prove
that I is quasi-coherent. Since the property of being quasi-coherent is local we may
assume Y is affine. As f is quasi-compact, we can find a finite affine open covering
X =

⋃
i=1,...,n Ui. Denote f ′ the composition

X ′ =
∐

Ui −→ X −→ Y.

Then f∗OX is a subsheaf of f ′∗OX′ , and hence I = Ker(OY → OX′). By Schemes,
Lemma 25.24.1 the sheaf f ′∗OX′ is quasi-coherent on Y . Hence we win. �

Example 28.6.4. If A→ B is a ring map with kernel I, then the scheme theoretic
image of Spec(B)→ Spec(A) is the closed subscheme Spec(A/I) of Spec(A). This
follows from Lemma 28.6.3.

If the morphism is quasi-compact, then the scheme theoretic image only adds points
which are specializations of points in the image.

Lemma 28.6.5. Let f : X → Y be a quasi-compact morphism. Let Z be the
scheme theoretic image of f . Let z ∈ Z. There exists a valuation ring A with
fraction field K and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y
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such that the closed point of Spec(A) maps to z. In particular any point of Z is the
specialization of a point of f(X).

Proof. Let z ∈ Spec(R) = V ⊂ Y be an affine open neighbourhood of z. By
Lemma 28.6.3 we have Z ∩ V is the scheme theoretic closure of f−1(V )→ V , and
hence we may replace Y by V and assume Y = Spec(R) is affine. In this case X
is quasi-compact as f is quasi-compact. Say X = U1 ∪ . . . ∪ Un is a finite affine
open covering. Write Ui = Spec(Ai). Let I = Ker(R→ A1× . . .×An). By Lemma
28.6.3 again we see that Z corresponds to the closed subscheme Spec(R/I) of Y .
If p ⊂ R is the prime corresponding to z, then we see that Ip ⊂ Rp is not an
equality. Hence (as localization is exact, see Algebra, Proposition 10.9.12) we see
that Rp → (A1)p× . . .× (A1)p is not zero. Hence one of the rings (Ai)p is not zero.
Hence there exists an i and a prime qi ⊂ Ai lying over a prime pi ⊂ p. By Algebra,
Lemma 10.48.2 we can choose a valuation ring A ⊂ K = f.f.(Ai/qi) dominating
the local ring Rp/p1Rp ⊂ f.f.(Ai/qi). This gives the desired diagram. Some details
omitted. �

Lemma 28.6.6. Let f1 : X → Y1 and Y1 → Y2 be morphisms of schemes. Let
f2 : X → Y2 be the composition. Let Zi ⊂ Yi, i = 1, 2 be the scheme theoretic
image of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2 and a
commutative diagram

X //

  

Z1

��

// Y1

��
Z2

// Y2

Proof. See Schemes, Lemma 25.4.6. �

Lemma 28.6.7. Let f : X → Y be a morphism of schemes. If X is reduced, then
the scheme theoretic image of f is the reduced induced scheme structure on f(X).

Proof. This is true because the reduced induced scheme structure on f(X) is
clearly the smallest closed subscheme of Y through which f factors, see Schemes,
Lemma 25.12.6. �

28.7. Scheme theoretic closure and density

We take the following definition from [DG67, IV, Definition 11.10.2].

Definition 28.7.1. Let X be a scheme. Let U ⊂ X be an open subscheme.

(1) The scheme theoretic image of the morphism U → X is called the scheme
theoretic closure of U in X.

(2) We say U is scheme theoretically dense in X if for every open V ⊂ X the
scheme theoretic closure of U ∩ V in V is equal to V .

With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X, see Example 28.7.2. This is
somewhat inelegant; but see Lemmas 28.7.3 and 28.7.8 below. On the other hand,
with this definition U is scheme theoretically dense in X if and only if for every
V ⊂ X open the ring map OX(V ) → OX(U ∩ V ) is injective, see Lemma 28.7.5
below. In particular we see that scheme theoretically dense implies dense which is
pleasing.
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Example 28.7.2. Here is an example where scheme theoretic closure being X
does not imply dense for the underlying topological spaces. Let k be a field. Set
A = k[x, z1, z2, . . .]/(x

nzn) Set I = (z1, z2, . . .) ⊂ A. Consider the affine scheme
X = Spec(A) and the open subscheme U = X \ V (I). Since A →

∏
nAzn is

injective we see that the scheme theoretic closure of U is X. Consider the morphism
X → Spec(k[x]). This morphism is surjective (set all zn = 0 to see this). But the
restriction of this morphism to U is not surjective because it maps to the point
x = 0. Hence U cannot be topologically dense in X.

Lemma 28.7.3. Let X be a scheme. Let U ⊂ X be an open subscheme. If the
inclusion morphism U → X is quasi-compact, then U is scheme theoretically dense
in X if and only if the scheme theoretic closure of U in X is X.

Proof. Follows from Lemma 28.6.3 part (3). �

Example 28.7.4. Let A be a ring and X = Spec(A). Let f1, . . . , fn ∈ A and let
U = D(f1) ∪ . . . ∪ D(fn). Let I = Ker(A →

∏
Afi). Then the scheme theoretic

closure of U in X is the closed subscheme Spec(A/I) of X. Note that U → X is
quasi-compact. Hence by Lemma 28.7.3 we see U is scheme theoretically dense in
X if and only if I = 0.

Lemma 28.7.5. Let j : U → X be an open immersion of schemes. Then U is
scheme theoretically dense in X if and only if OX → j∗OU is injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
open V of X. Hence the scheme theoretic closure of U ∩ V in V is equal to V , see
proof of Lemma 28.6.1. Conversely, suppose that the scheme theoretic closure of
U ∩ V is equal to V for all opens V . Suppose that OX → j∗OU is not injective.
Then we can find an affine open, say Spec(A) = V ⊂ X and a nonzero element
f ∈ A such that f maps to zero in Γ(V ∩U,OX). In this case the scheme theoretic
closure of V ∩ U in V is clearly contained in Spec(A/(f)) a contradiction. �

Lemma 28.7.6. Let X be a scheme. If U , V are scheme theoretically dense open
subschemes of X, then so is U ∩ V .

Proof. Let W ⊂ X be any open. Consider the map OX(W ) → OX(W ∩ V ) →
OX(W ∩ V ∩ U). By Lemma 28.7.5 both maps are injective. Hence the composite
is injective. Hence by Lemma 28.7.5 U ∩ V is scheme theoretically dense in X. �

Lemma 28.7.7. Let h : Z → X be an immersion. Assume either h is quasi-
compact or Z is reduced. Let Z ⊂ X be the scheme theoretic image of h. Then
the morphism Z → Z is an open immersion which identifies Z with a scheme
theoretically dense open subscheme of Z. Moreover, Z is topologically dense in Z.

Proof. By Lemma 28.3.2 or Lemma 28.3.3 we can factor Z → X as Z → Z1 → X
with Z → Z1 open and Z1 → X closed. On the other hand, let Z → Z ⊂ X
be the scheme theoretic closure of Z → X. We conclude that Z ⊂ Z1. Since Z
is an open subscheme of Z1 it follows that Z is an open subscheme of Z as well.
In the case that Z is reduced we know that Z ⊂ Z1 is topologically dense by the
construction of Z1 in the proof of Lemma 28.3.3. Hence Z1 and Z have the same
underlying topological spaces. Thus Z ⊂ Z1 is a closed immersion into a reduced
scheme which induces a bijection on underlying topological spaces, and hence it is
an isomorphism. In the case that Z → X is quasi-compact we argue as follows:
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The assertion that Z is scheme theoretically dense in Z follows from Lemma 28.6.3
part (3). The last assertion follows from Lemma 28.6.3 part (4). �

Lemma 28.7.8. Let X be a reduced scheme and let U ⊂ X be an open subscheme.
Then the following are equivalent

(1) U is topologically dense in X,
(2) the scheme theoretic closure of U in X is X, and
(3) U is scheme theoretically dense in X.

Proof. This follows from Lemma 28.7.7 and the fact that a closed subscheme Z of
X whose underlying topological space equals X must be equal to X as a scheme. �

Lemma 28.7.9. Let X be a scheme and let U ⊂ X be a reduced open subscheme.
Then the following are equivalent

(1) the scheme theoretic closure of U in X is X, and
(2) U is scheme theoretically dense in X.

If this holds then X is a reduced scheme.

Proof. This follows from Lemma 28.7.7 and the fact that the scheme theoretic
closure of U in X is reduced by Lemma 28.6.7. �

Lemma 28.7.10. Let S be a scheme. Let X, Y be schemes over S. Let f, g : X →
Y be morphisms of schemes over S. Let U ⊂ X be an open subscheme such that
f |U = g|U . If the scheme theoretic closure of U in X is X and Y → S is separated,
then f = g.

Proof. Follows from the definitions and Schemes, Lemma 25.21.5. �

28.8. Dominant morphisms

The definition of a morphism of schemes being dominant is a little different from
what you might expect if you are used to the notion of a dominant morphism of
varieties.

Definition 28.8.1. A morphism f : X → S of schemes is called dominant if the
image of f is a dense subset of S.

So for example, if k is an infinite field and λ1, λ2, . . . is a countable collection of
elements of k, then the morphism∐

i=1,2,...
Spec(k) −→ Spec(k[x])

with ith factor mapping to the point x = λi is dominant.

Lemma 28.8.2. Let f : X → S be a morphism of schemes. If every generic point
of every irreducible component of S is in the image of f , then f is dominant.

Proof. This is a topological fact which follows directly from the fact that the
topological space underlying a scheme is sober, see Schemes, Lemma 25.11.1, and
that every point of S is contained in an irreducible component of S, see Topology,
Lemma 5.7.3. �

The expectation that morphisms are dominant only if generic points of the target
are in the image does hold if the morphism is quasi-compact.
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Lemma 28.8.3. Let f : X → S be a quasi-compact morphism of schemes. Then
f is dominant (if and) only if for every irreducible component Z ⊂ S the generic
point of Z is in the image of f .

Proof. Let V ⊂ S be an affine open. Because f is quasi-compact we may choose
finitely many affine opens Ui ⊂ f−1(V ), i = 1, . . . , n covering f−1(V ). Consider
the morphism of affines

f ′ :
∐

i=1,...,n
Ui −→ V.

A disjoint union of affines is affine, see Schemes, Lemma 25.6.8. Generic points
of irreducible components of V are exactly the generic points of the irreducible
components of S that meet V . Also, f is dominant if and only f ′ is dominant no
matter what choices of V, n, Ui we make above. Thus we have reduced the lemma
to the case of a morphism of affine schemes. The affine case is Algebra, Lemma
10.29.6. �

Here is a slightly more useful variant of the lemma above.

Lemma 28.8.4. Let f : X → S be a quasi-compact morphism of schemes. Let
η ∈ S be a generic point of an irreducible component of S. If η 6∈ f(X) then there
exists an open neighbourhood V ⊂ S of η such that f−1(V ) = ∅.

Proof. Let Z ⊂ S be the scheme theoretic image of f . We have to show that
η 6∈ Z. This follows from Lemma 28.6.5 but can also be seen as follows. By Lemma
28.6.3 the morphism X → Z is dominant, which by Lemma 28.8.3 means all the
generic points of all irreducible components of Z are in the image of X → Z. By
assumption we see that η 6∈ Z since η would be the generic point of some irreducible
component of Z if it were in Z. �

There is another case where dominant is the same as having all generic points of
irreducible components in the image.

Lemma 28.8.5. Let f : X → S be a morphism of schemes. Suppose that X has
finitely many irreducible components. Then f is dominant (if and) only if for every
irreducible component Z ⊂ S the generic point of Z is in the image of f . If so,
then S has finitely many irreducible components as well.

Proof. Assume f is dominant. Say X = Z1 ∪ Z2 ∪ . . . ∪ Zn is the decomposition
of X into irreducible components. Let ξi ∈ Zi be its generic point, so Zi = {ξi}.
Note that f(Zi) is an irreducible subset of S. Hence

S = f(X) =
⋃
f(Zi) =

⋃
{f(ξi)}

is a finite union of irreducible subsets whose generic points are in the image of f .
The lemma follows. �

28.9. Birational morphisms

You may be used to the notion of a birational map of varieties having the property
that it is an isomorphism over an open subset of the target. However, in general
a birational morphism may not be an isomorphism over any nonempty open, see
Example 28.9.3. Here is the formal definition.

Definition 28.9.1. Let X, Y be schemes. Assume X and Y have finitely many
irreducible components. We say a morphism f : X → Y is birational if
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(1) f induces a bijection between the set of generic points of irreducible com-
ponents of X and the set of generic points of the irreducible components
of Y , and

(2) for every generic point η ∈ X of an irreducible component of X the local
ring map OY,f(η) → OX,η is an isomorphism.

Lemma 28.9.2. Let f : X → Y be a morphism of schemes having finitely many
irreducible components. If f is birational then f is dominant.

Proof. Follows immediately from the definitions. �

Example 28.9.3. Here is an example of a birational morphism which is not an iso-
morphism over any open of the target. Let k be an infinite field. Let A = k[x]. Let
B = k[x, {yα}α∈k]/((x−α)yα, yαyβ). There is an inclusion A ⊂ B and a retraction
B → A setting all yα equal to zero. Both the morphism Spec(A) → Spec(B) and
the morphism Spec(B)→ Spec(A) are birational but not an isomorphism over any
open.

28.10. Rational maps

Let X be a scheme. Note that if U , V are dense open in X, then so is U ∩ V .

Definition 28.10.1. Let X, Y be schemes.

(1) Let f : U → Y , g : V → Y be morphisms of schemes defined on dense
open subsets U , V of X. We say that f is equivalent to g if f |W = g|W
for some W ⊂ U ∩ V dense open in X.

(2) A rational map from X to Y is an equivalence class for the equivalence
relation defined in (1).

(3) If X, Y are schemes over a base scheme S we say that a rational map from
X to Y is an S-rational map from X to Y if there exists a representative
f : U → Y of the equivalence class which is an S-morphism.

We say that two morphisms f , g as in (1) of the definition define the same rational
map instead of saying that they are equivalent.

Definition 28.10.2. Let X be a scheme. A rational function on X is a rational
map from X to A1

Z.

See Constructions, Definition 26.5.1 for the definition of the affine line A1. Let
X be a scheme over S. For any open U ⊂ X a morphism U → A1

Z is the same
as a morphism U → A1

S over S. Hence a rational function is also the same as a
S-rational map from X into A1

S .

Recall that we have the canonical identification Mor(T,A1
Z) = Γ(T,OT ) for any

scheme T , see Schemes, Example 25.15.2. Hence A1
Z is a ring-object in the category

of schemes. More precisely, the morphisms

+ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ f + g

∗ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ fg

satisfy all the axioms of the addition and multiplication in a ring (commutative
with 1 as always). Hence also the set of rational maps into A1

Z has a natural ring
structure.
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Definition 28.10.3. Let X be a scheme. The ring of rational functions on X is the
ring R(X) whose elements are rational functions with addition and multiplication
as just described.

Lemma 28.10.4. Let X be an irreducible scheme. Let η ∈ X be the generic point
of X. There is a canonical identification R(X) ∼= OX,η. If X is integral then
R(X) = κ(η) = OX,η is a field.

Proof. Omitted. �

Definition 28.10.5. Let X be an integral scheme. The function field, or the field
of rational functions of X is the field R(X).

We may occasionally indicate this field k(X) instead of R(X). We can use the
notion of the function field to elucidate the separation condition on an integral
scheme. Note that by Lemma 28.10.4 on an integral scheme every local ring OX,x
may be viewed as a local subring of R(X).

Lemma 28.10.6. Let X be an integral separated scheme. Let Z1, Z2 be distinct
irreducible closed subsets of X. Let ηi be the generic point of Zi. If Z1 6⊂ Z2, then
OX,η1 6⊂ OX,η2 as subrings of R(X). In particular, if Z1 = {x} consists of one
closed point x, there exists a function regular in a neighborhood of x which is not
in OX,η2

.

Proof. First observe that under the assumption of X being separated, there is a
unique map of schemes Spec(OX,η2)→ X over X such that the composition

Spec(R(X)) −→ Spec(OX,η2
) −→ X

is the canonical map Spec(R(X)) → X. Namely, there is the canonical map can :
Spec(OX,η2

)→ X, see Schemes, Equation (25.13.1.1). Given a second morphism a
to X, we have that a agrees with can on the generic point of Spec(OX,η2) by as-
sumption. Now being X being separated guarantees that the subset in Spec(OX,η2)
where these two maps agree is closed, see Schemes, Lemma 25.21.5. Hence a = can
on all of Spec(OX,η2

).

Assume Z1 6⊂ Z2 and assume on the contrary that OX,η1
⊂ OX,η2

as subrings of
R(X). Then we would obtain a second morphism

Spec(OX,η2) −→ Spec(OX,η1) −→ X.

By the above this composition would have to be equal to can. This implies that η2

specializes to η1 (see Schemes, Lemma 25.13.2). But this contradicts our assump-
tion Z1 6⊂ Z2. �

Definition 28.10.7. Let ϕ be a rational map between two schemes X and Y . We
say ϕ is defined in a point x ∈ X if there exists a representative (U, f) of ϕ with
x ∈ U . The domain of definition of ϕ is the set of all points where ϕ is defined.

With this definition it isn’t true in general that ϕ has a representative which is
defined on all of the domain of definition.

Lemma 28.10.8. Let X and Y be schemes. Assume X reduced and Y separated.
Let ϕ be a rational map from X to Y with domain of definition U ⊂ X. Then there
exists a unique morphism f : U → Y representing ϕ. If X and Y are schemes over
a separated scheme S and if ϕ is an S-rational map, then f is a morphism over S.
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Proof. Let (V, g) and (V ′, g′) be representatives of ϕ. Then g, g′ agree on a dense
open subscheme W ⊂ V ∩ V ′. On the other hand, the equalizer E of g|V ∩V ′ and
g′|V ∩V ′ is a closed subscheme of V ∩ V ′ (Schemes, Lemma 25.21.5). Now W ⊂ E
implies that E = V ∩ V ′ set theoretically. As V ∩ V ′ is reduced we conclude
E = V ∩ V ′ scheme theoretically, i.e., g|V ∩V ′ = g′|V ∩V ′ . It follows that we can
glue the representatives g : V → Y of ϕ to a morphism f : U → Y , see Schemes,
Lemma 25.14.1. We omit the proof of the final statement. �

In general it does not make sense to compose rational maps. The reason is that the
image of a representative of the first rational map may have empty intersection with
the domain of definition of the second. However, if we assume that our schemes are
irreducible and we look at dominant rational maps, then we can compose rational
maps.

Definition 28.10.9. Let X and Y be irreducible schemes. A rational map from X
to Y is called dominant if any representative f : U → Y is a dominant morphism
of schemes.

By Lemma 28.8.5 it is equivalent to require that the generic point η ∈ X maps
to the generic point ξ of Y , i.e., f(η) = ξ for any representative f : U → Y . We
can compose a dominant rational map ϕ between irreducible schemes X and Y
with an arbitrary rational map ψ from Y to Z. Namely, choose representatives
f : U → Y with U ⊂ X open dense and g : V → Z with V ⊂ Y open dense.
Then W = f−1(V ) ⊂ X is open nonempty (because it contains the generic point
of X) and we let ψ ◦ ϕ be the equivalence class of g ◦ f |W : W → Z. We omit the
verification that this is well defined.

In this way we obtain a category whose objects are irreducible schemes and whose
morphisms are dominant rational maps. Given a base scheme S we can similarly de-
fine a category whose objects are irreducible schemes over S and whose morphisms
are dominant S-rational maps.

Definition 28.10.10. Let X and Y be irreducible schemes.

(1) We say X and Y are birational if X and Y are isomorphic in the category
of irreducible schemes and dominant rational maps.

(2) Assume X and Y are schemes over a base scheme S. We say X and Y
are S-birational if X and Y are isomorphic in the category of irreducible
schemes over S and dominant S-rational maps.

If X and Y are birational irreducible schemes, then the set of rational maps from
X to Z is bijective with the set of rational map from Y to Z for all schemes
Z (functorially in Z). For “general” irreducible schemes this is just one possible
definition. Another would be to require X and Y have isomorphic nonemtpy opens,
or we could ask that X and Y have isomorphic rings of rational functions. For
varieties all three conditions are equivalent (see insert future reference here).

Remark 28.10.11. There is a variant of Definition 28.10.1 where we consider only
those morphism U → Y defined on scheme theoretically dense open subschemes
U ⊂ X. We use Lemma 28.7.6 to see that we obtain an equivalence relation. An
equivalence class of these is called a pseudo-morphism from X to Y . If X is reduced
the two notions coincide.
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28.11. Surjective morphisms

Definition 28.11.1. A morphism of schemes is said to be surjective if it is surjec-
tive on underlying topological spaces.

Lemma 28.11.2. The composition of surjective morphisms is surjective.

Proof. Omitted. �

Lemma 28.11.3. Let X and Y be schemes over a base scheme S. Given points
x ∈ X and y ∈ Y , there is a point of X ×S Y mapping to x and y under the
projections if and only if x and y lie above the same point of S.

Proof. The condition is obviously necessary, and the converse follows from the
proof of Schemes, Lemma 25.17.5. �

Lemma 28.11.4. The base change of a surjective morphism is surjective.

Proof. Let f : X → Y be a morphism of schemes over a base scheme S. If S′ → S
is a morphism of schemes, let p : XS′ → X and q : YS′ → Y be the canonical
projections. The commutative square

XS′

fS′

��

p
// X

f

��
YS′

q // Y.

identifies XS′ as a fibre product of X → Y and YS′ → Y . Let Z be a subset of
the underlying topological space of X. Then q−1(f(Z)) = fS′(p

−1(Z)), because
y′ ∈ q−1(f(Z)) if and only if q(y′) = f(x) for some x ∈ Z, if and only if, by Lemma
28.11.3, there exists x′ ∈ XS′ such that fS′(x

′) = y′ and p(x′) = x. In particular
taking Z = X we see that if f is surjective so is the base change fS′ : XS′ → YS′ . �

Example 28.11.5. Bijectivity is not stable under base change, and so neither is
injectivity. For example consider the bijection Spec(C) → Spec(R). The base
change Spec(C ⊗R C) → Spec(C) is not injective, since there is an isomorphism
C ⊗R C ∼= C × C (the decomposition comes from the idempotent 1⊗1+i⊗i

2 ) and
hence Spec(C⊗R C) has two points.

Lemma 28.11.6. Let

X
f

//

p
  

Y

q
��

Z

be a commutative diagram of morphisms of schemes. If f is surjective and p is
quasi-compact, then q is quasi-compact.

Proof. Let W ⊂ Z be a quasi-compact open. By assumption p−1(W ) is quasi-
compact. Hence by Topology, Lemma 5.11.7 the inverse image q−1(W ) = f(p−1(W ))
is quasi-compact too. This proves the lemma. �
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28.12. Radicial and universally injective morphisms

In this section we define what it means for a morphism of schemes to be radicial
and what it means for a morphism of schemes to be universally injective. We then
show that these notions agree. The reason for introducing both is that in the case
of algebraic spaces there are corresponding notions which may not always agree.

Definition 28.12.1. Let f : X → S be a morphism.

(1) We say that f is universally injective if and only if for any morphism of
schemes S′ → S the base change f ′ : XS′ → S′ is injective (on underlying
topological spaces).

(2) We say f is radicial if f is injective as a map of topological spaces, and
for every x ∈ X the field extension κ(x) ⊃ κ(f(x)) is purely inseparable.

Lemma 28.12.2. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) For every field K the induced map Mor(Spec(K), X)→ Mor(Spec(K), S)
is injective.

(2) The morphism f is universally injective.
(3) The morphism f is radicial.
(4) The diagonal morphism ∆X/S : X −→ X ×S X is surjective.

Proof. Let K be a field, and let s : Spec(K) → S be a morphism. Giving a
morphism x : Spec(K) → X such that f ◦ x = s is the same as giving a section
of the projection XK = Spec(K) ×S X → Spec(K), which in turn is the same as
giving a point x ∈ XK whose residue field is K. Hence we see that (2) implies (1).

Conversely, suppose that (1) holds. Assume that x, x′ ∈ XS′ map to the same point
s′ ∈ S′. Choose a commutative diagram

K κ(x)oo

κ(x′)

OO

κ(s′)oo

OO

of fields. By Schemes, Lemma 25.13.3 we get two morphisms a, a′ : Spec(K) →
XS′ . One corresponding to the point x and the embedding κ(x) ⊂ K and the
other corresponding to the point x′ and the embedding κ(x′) ⊂ K. Also we have
f ′ ◦ a = f ′ ◦ a′. Condition (1) now implies that the compositions of a and a′ with
XS′ → X are equal. Since XS′ is the fibre product of S′ and X over S we see that
a = a′. Hence x = x′. Thus (1) implies (2).

If there are two different points x, x′ ∈ X mapping to the same point of s then
(2) is violated. If for some s = f(x), x ∈ X the field extension κ(s) ⊂ κ(x) is not
purely inseparable, then we may find a field extension κ(s) ⊂ K such that κ(x) has
two κ(s)-homomorphisms into K. By Schemes, Lemma 25.13.3 this implies that
the map Mor(Spec(K), X) → Mor(Spec(K), S) is not injective, and hence (1) is
violated. Thus we see that the equivalent conditions (1) and (2) imply f is radicial,
i.e., they imply (3).

Assume (3). By Schemes, Lemma 25.13.3 a morphism Spec(K) → X is given
by a pair (x, κ(x) → K). Property (3) says exactly that associating to the pair
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(x, κ(x)→ K) the pair (s, κ(s)→ κ(x)→ K) is injective. In other words (1) holds.
At this point we know that (1), (2) and (3) are all equivalent.

Finally, we prove the equivalence of (4) with (1), (2) and (3). A point of X ×S X
is given by a quadruple (x1, x2, s, p), where x1, x2 ∈ X, f(x1) = f(x2) = s and p ⊂
κ(x1)⊗κ(s) κ(x2) is a prime ideal, see Schemes, Lemma 25.17.5. If f is universally
injective, then by taking S′ = X in the definition of universally injective, ∆X/S

must be surjective since it is a section of the injective morphism X ×S X −→ X.
Conversely, if ∆X/S is surjective, then always x1 = x2 = x and there is exactly one
such prime ideal p, which means that κ(s) ⊂ κ(x) is purely inseparable. Hence f is
radicial. Alternatively, if ∆X/S is surjective, then for any S′ → S the base change
∆XS′/S

′ is surjective which implies that f is universally injective. This finishes the
proof of the lemma. �

Lemma 28.12.3. A universally injective morphism is separated.

Proof. Combine Lemma 28.12.2 with the remark that X → S is separated if and
only if the image of ∆X/S is closed in X ×S X, see Schemes, Definition 25.21.3 and
the discussion following it. �

Lemma 28.12.4. A base change of a universally injective morphism is universally
injective.

Proof. This is formal. �

Lemma 28.12.5. A composition of radicial morphisms is radicial, and so the same
holds for the equivalent condition of being universally injective.

Proof. Omitted. �

28.13. Affine morphisms

Definition 28.13.1. A morphism of schemes f : X → S is called affine if the
inverse image of every affine open of S is an affine open of X.

Lemma 28.13.2. An affine morphism is separated and quasi-compact.

Proof. Let f : X → S be affine. Quasi-compactness is immediate from Schemes,
Lemma 25.19.2. We will show f is separated using Schemes, Lemma 25.21.8. Let
x1, x2 ∈ X be points of X which map to the same point s ∈ S. Choose any affine
open W ⊂ S containing s. By assumption f−1(W ) is affine. Apply the lemma
cited with U = V = f−1(W ). �

Lemma 28.13.3. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is

affine.
(3) There exists a quasi-coherent sheaf of OS-algebras A and an isomorphism

X ∼= Spec
S

(A) of schemes over S. See Constructions, Section 26.4 for
notation.

Moreover, in this case X = Spec
S

(f∗OX).
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Proof. It is obvious that (1) implies (2).

Assume S =
⋃
j∈JWj is an affine open covering such that each f−1(Wj) is affine.

By Schemes, Lemma 25.19.2 we see that f is quasi-compact. By Schemes, Lemma
25.21.7 we see the morphism f is quasi-separated. Hence by Schemes, Lemma
25.24.1 the sheaf A = f∗OX is a quasi-coherent sheaf of OX -algebras. Thus we have
the scheme g : Y = Spec

S
(A) → S over S. The identity map id : A = f∗OX →

f∗OX provides, via the definition of the relative spectrum, a morphism can : X → Y
over S, see Constructions, Lemma 26.4.7. By assumption and the lemma just cited
the restriction can|f−1(Wj) : f−1(Wj) → g−1(Wj) is an isomorphism. Thus can is
an isomorphism. We have shown that (2) implies (3).

Assume (3). By Constructions, Lemma 26.4.6 we see that the inverse image of
every affine open is affine, and hence the morphism is affine by definition. �

Remark 28.13.4. We can also argue directly that (2) implies (1) in Lemma 28.13.3
above as follows. Assume S =

⋃
Wj is an affine open covering such that each

f−1(Wj) is affine. First argue that A = f∗OX is quasi-coherent as in the proof
above. Let Spec(R) = V ⊂ S be affine open. We have to show that f−1(V ) is
affine. Set A = A(V ) = f∗OX(V ) = OX(f−1(V )). By Schemes, Lemma 25.6.4
there is a canonical morphism ψ : f−1(V ) → Spec(A) over Spec(R) = V . By
Schemes, Lemma 25.11.6 there exists an integer n ≥ 0, a standard open covering
V =

⋃
i=1,...,nD(hi), hi ∈ R, and a map a : {1, . . . , n} → J such that each

D(hi) is also a standard open of the affine scheme Wa(i). The inverse image of a
standard open under a morphism of affine schemes is standard open, see Algebra,
Lemma 10.16.4. Hence we see that f−1(D(hi)) is a standard open of f−1(Wa(i)),

in particular that f−1(D(hi)) is affine. Because A is quasi-coherent we have Ahi =
A(D(hi)) = OX(f−1(D(hi))), so f−1(D(hi)) is the spectrum of Ahi . It follows that
the morphism ψ induces an isomorphism of the open f−1(D(hi)) with the open
Spec(Ahi) of Spec(A). Since f−1(V ) =

⋃
f−1(D(hi)) and Spec(A) =

⋃
Spec(Ahi)

we win.

Lemma 28.13.5. Let S be a scheme. There is an anti-equivalence of categories

Schemes affine
over S

←→ quasi-coherent sheaves
of OS-algebras

which associates to f : X → S the sheaf f∗OX . Moreover, this equivalence if
compatible with arbitrary base change.

Proof. The functor from right to left is given by Spec
S

. The two functors are

mutually inverse by Lemma 28.13.3 and Constructions, Lemma 26.4.6 part (3).
The final statement is Constructions, Lemma 26.4.6 part (2). �

Lemma 28.13.6. Let f : X → S be an affine morphism of schemes. Let A =
f∗OX . The functor F 7→ f∗F induces an equivalence of categories{

category of quasi-coherent
OX-modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OS-module if and only if it is quasi-
coherent as an A-module.

Proof. Omitted. �
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Lemma 28.13.7. The composition of affine morphisms is affine.

Proof. Let f : X → Y and g : Y → Z be affine morphisms. Let U ⊂ Z be affine
open. Then g−1(U) is affine by assumption on g. Whereupon f−1(g−1(U)) is affine
by assumption on f . Hence (g ◦ f)−1(U) is affine. �

Lemma 28.13.8. The base change of an affine morphism is affine.

Proof. Let f : X → S be an affine morphism. Let S′ → S be any morphism.
Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every s′ ∈ S′ there
exists an open affine neighbourhood s′ ∈ V ⊂ S′ which maps into some open affine
U ⊂ S. By assumption f−1(U) is affine. By the material in Schemes, Section 25.17
we see that f−1(U)V = V ×U f−1(U) is affine and equal to (f ′)−1(V ). This proves
that S′ has an open covering by affines whose inverse image under f ′ is affine. We
conclude by Lemma 28.13.3 above. �

Lemma 28.13.9. A closed immersion is affine.

Proof. The first indication of this is Schemes, Lemma 25.8.2. See Schemes, Lemma
25.10.1 for a complete statement. �

Lemma 28.13.10. Let X be a scheme. Let L be an invertible OX-module. Let
s ∈ Γ(X,L). The inclusion morphism j : Xs → X is affine.

Proof. This follows from Properties, Lemma 27.24.4 and the definition. �

Lemma 28.13.11. Suppose g : X → Y is a morphism of schemes over S.

(1) If X is affine over S and ∆ : Y → Y ×S Y is affine, then g is affine.
(2) If X is affine over S and Y is separated over S, then g is affine.
(3) A morphism from an affine scheme to a scheme with affine diagonal is

affine.
(4) A morphism from an affine scheme to a separated scheme is affine.

Proof. Proof of (1). The base change X×SY → Y is affine by Lemma 28.13.8. The
morphism (1, g) : X → X×S Y is the base change of Y → Y ×S Y by the morphism
X×S Y → Y ×S Y . Hence it is affine by Lemma 28.13.8. The composition of affine
morphisms is affine (see Lemma 28.13.7) and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma 28.13.9) and Y/S separated means ∆ is
a closed immersion. Parts (3) and (4) are special cases of (1) and (2). �

Lemma 28.13.12. A morphism between affine schemes is affine.

Proof. Immediate from Lemma 28.13.11 with S = Spec(Z). It also follows directly
from the equivalence of (1) and (2) in Lemma 28.13.3. �

Lemma 28.13.13. Let S be a scheme. Let A be an Artinian ring. Any morphism
Spec(A)→ S is affine.

Proof. Omitted. �
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28.14. Quasi-affine morphisms

Recall that a scheme X is called quasi-affine if it is quasi-compact and isomorphic
to an open subscheme of an affine scheme, see Properties, Definition 27.15.1.

Definition 28.14.1. A morphism of schemes f : X → S is called quasi-affine if
the inverse image of every affine open of S is a quasi-affine scheme.

Lemma 28.14.2. A quasi-affine morphism is separated and quasi-compact.

Proof. Let f : X → S be quasi-affine. Quasi-compactness is immediate from
Schemes, Lemma 25.19.2. We will show f is separated using Schemes, Lemma
25.21.8. Let x1, x2 ∈ X be points of X which map to the same point s ∈ S. Choose
any affine open W ⊂ S containing s. By assumption f−1(W ) is isomorphic to an
open subscheme of an affine scheme, say f−1(W )→ Y is such an open immersion.
Choose affine open neighbourhoods x1 ∈ U ⊂ f−1(W ) and x2 ∈ V ⊂ f−1(W ).
We may think of U and V as open subschemes of Y and hence we see that U ∩ V
is affine and that O(U) ⊗Z O(V ) → O(U ∩ V ) is surjective (by the lemma cited
above applied to U, V in Y ). Hence by the lemma cited we conclude that f is
separated. �

Lemma 28.14.3. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is quasi-affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is

quasi-affine.
(3) There exists a quasi-coherent sheaf of OS-algebras A and a quasi-compact

open immersion

X //

��

Spec
S

(A)

{{
S

over S.
(4) Same as in (3) but with A = f∗OX and the horizontal arrow the canonical

morphism of Constructions, Lemma 26.4.7.

Proof. It is obvious that (1) implies (2) and that (4) implies (3).

Assume S =
⋃
j∈JWj is an affine open covering such that each f−1(Wj) is quasi-

affine. By Schemes, Lemma 25.19.2 we see that f is quasi-compact. By Schemes,
Lemma 25.21.7 we see the morphism f is quasi-separated. Hence by Schemes,
Lemma 25.24.1 the sheaf A = f∗OX is a quasi-coherent sheaf of OX -algebras.
Thus we have the scheme g : Y = Spec

S
(A) → S over S. The identity map

id : A = f∗OX → f∗OX provides, via the definition of the relative spectrum, a
morphism can : X → Y over S, see Constructions, Lemma 26.4.7. By assumption,
the lemma just cited, and Properties, Lemma 27.15.4 the restriction can|f−1(Wj) :

f−1(Wj) → g−1(Wj) is a quasi-compact open immersion. Thus can is a quasi-
compact open immersion. We have shown that (2) implies (4).

Assume (3). Choose any affine open U ⊂ S. By Constructions, Lemma 26.4.6 we
see that the inverse image of U in the relative spectrum is affine. Hence we conclude
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that f−1(U) is quasi-affine (note that quasi-compactness is encoded in (3) as well).
Thus (3) implies (1). �

Lemma 28.14.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Let f : X → Y and g : Y → Z be quasi-affine morphisms. Let U ⊂ Z be
affine open. Then g−1(U) is quasi-affine by assumption on g. Let j : g−1(U)→ V
be a quasi-compact open immersion into an affine scheme V . By Lemma 28.14.3
above we see that f−1(g−1(U)) is a quasi-compact open subscheme of the relative
spectrum Spec

g−1(U)
(A) for some quasi-coherent sheaf of Og−1(U)-algebras A. By

Schemes, Lemma 25.24.1 the sheaf A′ = j∗A is a quasi-coherent sheaf of OV -
algebras with the property that j∗A′ = A. Hence we get a commutative diagram

f−1(g−1(U)) // Spec
g−1(U)

(A) //

��

Spec
V

(A′)

��
g−1(U)

j // V

with the square being a fibre square, see Constructions, Lemma 26.4.6. Note that
the upper right corner is an affine scheme. Hence (g ◦ f)−1(U) is quasi-affine. �

Lemma 28.14.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Let f : X → S be a quasi-affine morphism. By Lemma 28.14.3 above
we can find a quasi-coherent sheaf of OS-algebras A and a quasi-compact open
immersion X → Spec

S
(A) over S. Let g : S′ → S be any morphism. Denote

f ′ : XS′ = S′ ×S X → S′ the base change of f . Since the base change of a
quasi-compact open immersion is a quasi-compact open immersion we see that
XS′ → Spec

S′
(g∗A) is a quasi-compact open immersion (we have used Schemes,

Lemmas 25.19.3 and 25.18.2 and Constructions, Lemma 26.4.6). By Lemma 28.14.3
again we conclude that XS′ → S′ is quasi-affine. �

Lemma 28.14.6. A quasi-compact immersion is quasi-affine.

Proof. Let X → S be a quasi-compact immersion. We have to show the inverse
image of every affine open is quasi-affine. Hence, assuming S is an affine scheme,
we have to show X is quasi-affine. By Lemma 28.7.7 the morphism X → S factors
as X → Z → S where Z is a closed subscheme of S and X ⊂ Z is a quasi-compact
open. Since S is affine Lemma 28.2.1 implies Z is affine. Hence we win. �

Lemma 28.14.7. Let S be a scheme. Let X be an affine scheme. A morphism
f : X → S is quasi-affine if and only if it is quasi-compact. In particular any
morphism from an affine scheme to a quasi-separated scheme is quasi-affine.

Proof. Let V ⊂ S be an affine open. Then f−1(V ) is an open subscheme of
the affine scheme X, hence quasi-affine if and only if it is quasi-compact. This
proves the first assertion. The quasi-compactness of any f : X → S where X
is affine and S quasi-separated follows from Schemes, Lemma 25.21.15 applied to
X → S → Spec(Z). �

Lemma 28.14.8. Suppose g : X → Y is a morphism of schemes over S. If X
is quasi-affine over S and Y is quasi-separated over S, then g is quasi-affine. In
particular, any morphism from a quasi-affine scheme to a quasi-separated scheme
is quasi-affine.
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Proof. The base change X×S Y → Y is quasi-affine by Lemma 28.14.5. The mor-
phism X → X×S Y is a quasi-compact immersion as Y → S is quasi-separated, see
Schemes, Lemma 25.21.12. A quasi-compact immersion is quasi-affine by Lemma
28.14.6 and the composition of quasi-affine morphisms is quasi-affine (see Lemma
28.14.4). Thus we win. �

28.15. Types of morphisms defined by properties of ring maps

In this section we study what properties of ring maps allow one to define local
properties of morphisms of schemes.

Definition 28.15.1. Let P be a property of ring maps.

(1) We say that P is local if the following hold:
(a) For any ring map R → A, and any f ∈ R we have P (R → A) ⇒

P (Rf → Af ).
(b) For any rings R, A, any f ∈ R, a ∈ A, and any ring map Rf → A

we have P (Rf → A)⇒ P (R→ Aa).
(c) For any ring map R → A, and ai ∈ A such that (a1, . . . , an) = A

then ∀i, P (R→ Aai)⇒ P (R→ A).
(2) We say that P is stable under base change if for any ring maps R → A,

R→ R′ we have P (R→ A)⇒ P (R′ → R′ ⊗R A).
(3) We say that P is stable under composition if for any ring maps A → B,

B → C we have P (A→ B) ∧ P (B → C)⇒ P (A→ C).

Definition 28.15.2. Let P be a property of ring maps. Let f : X → S be a
morphisms of schemes. We say f is locally of type P if for any x ∈ X there exists
an affine open neighbourhood U of x in X which maps into an affine open V ⊂ S
such that the induced ring map OS(V )→ OX(U) has property P .

This is not a “good” definition unless the property P is a local property. Even
if P is a local property we will not automatically use this definition to say that
a morphism is “locally of type P” unless we also explicitly state the definition
elsewhere.

Lemma 28.15.3. Let f : X → S be a morphism of schemes. Let P be a property
of ring maps. Let U be an affine open of X, and V an affine open of S such that
f(U) ⊂ V . If f is locally of type P and P is local, then P (OS(V )→ OX(U)) holds.

Proof. As f is locally of type P for every u ∈ U there exists an affine open
Uu ⊂ X mapping into an affine open Vu ⊂ S such that P (OS(Vu) → OX(Uu))
holds. Choose an open neighbourhood U ′u ⊂ U ∩ Uu of u which is standard affine
open in both U and Uu, see Schemes, Lemma 25.11.5. By Definition 28.15.1 (1)(b)
we see that P (OS(Vu) → OX(U ′u)) holds. Hence we may assume that Uu ⊂ U
is a standard affine open. Choose an open neighbourhood V ′u ⊂ V ∩ Vu of f(u)
which is standard affine open in both V and Vu, see Schemes, Lemma 25.11.5.
Then U ′u = f−1(V ′u) ∩ Uu is a standard affine open of Uu (hence of U) and we
have P (OS(V ′u) → OX(U ′u)) by Definition 28.15.1 (1)(a). Hence we may assume
both Uu ⊂ U and Vu ⊂ V are standard affine open. Applying Definition 28.15.1
(1)(b) one more time we conclude that P (OS(V )→ OX(Uu)) holds. Because U is
quasi-compact we may choose a finite number of points u1, . . . , un ∈ U such that

U = Uu1 ∪ . . . ∪ Uun .
By Definition 28.15.1 (1)(c) we conclude that P (OS(V )→ OX(U)) holds. �
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Lemma 28.15.4. Let P be a local property of ring maps. Let f : X → S be a
morphism of schemes. The following are equivalent

(1) The morphism f is locally of type P .
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V we have P (OS(V )→
OX(U)).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally

of type P .
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that P (OS(Vj) → OX(Ui)) holds, for all

j ∈ J, i ∈ Ij.
Moreover, if f is locally of type P then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally of type P .

Proof. This follows from Lemma 28.15.3 above. �

Lemma 28.15.5. Let P be a property of ring maps. Assume P is local and stable
under composition. The composition of morphisms locally of type P is locally of
type P .

Proof. Let f : X → Y and g : Y → Z be morphisms locally of type P . Let
x ∈ X. Choose an affine open neighbourhood W ⊂ Z of g(f(x)). Choose an affine
open neighbourhood V ⊂ g−1(W ) of f(x). Choose an affine open neighbourhood
U ⊂ f−1(V ) of x. By Lemma 28.15.4 the ring maps OZ(W ) → OY (V ) and
OY (V )→ OX(U) satisfy P . Hence OZ(W )→ OX(U) satisfies P as P is assumed
stable under composition. �

Lemma 28.15.6. Let P be a property of ring maps. Assume P is local and stable
under base change. The base change of a morphism locally of type P is locally of
type P .

Proof. Let f : X → S be a morphism locally of type P . Let S′ → S be any
morphism. Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every
s′ ∈ S′ there exists an open affine neighbourhood s′ ∈ V ′ ⊂ S′ which maps into
some open affine V ⊂ S. By Lemma 28.15.4 the open f−1(V ) is a union of affines
Ui such that the ring maps OS(V ) → OX(Ui) all satisfy P . By the material in
Schemes, Section 25.17 we see that f−1(U)V ′ = V ′ ×V f−1(V ) is the union of the
affine opens V ′ ×V Ui. Since OXS′ (V

′ ×V Ui) = OS′(V ′) ⊗OS(V ) OX(Ui) we see
that the ring maps OS′(V ′) → OXS′ (V

′ ×V Ui) satisfy P as P is assumed stable
under base change. �

Lemma 28.15.7. The following properties of a ring map R→ A are local.

(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R
the ring map R→ A induces an isomorphism Rp → Aq.

(2) (Open immersion.) For every prime q of A there exists an f ∈ R, ϕ(f) 6∈ q
such that the ring map ϕ : R→ A induces an isomorphism Rf → Af .

(3) (Reduced fibres.) For every prime p of R the fibre ring A ⊗R κ(p) is
reduced.

(4) (Fibres of dimension at most n.) For every prime p of R the fibre ring
A⊗R κ(p) has Krull dimension at most n.
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(5) (Locally Noetherian on the target.) The ring map R→ A has the property
that A is Noetherian.

(6) Add more here as needed2.

Proof. Omitted. �

Lemma 28.15.8. The following properties of ring maps are stable under base
change.

(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R
the ring map R→ A induces an isomorphism Rp → Aq.

(2) (Open immersion.) For every prime q of A there exists an f ∈ R, ϕ(f) 6∈ q
such that the ring map ϕ : R→ A induces an isomorphism Rf → Af .

(3) (Reduced fibres.) For every prime p of R the fibre ring A ⊗R κ(p) is
reduced.

(4) (Fibres of dimension at most n.) For every prime p of R the fibre ring
A⊗R κ(p) has Krull dimension at most n.

(5) Add more here as needed3.

Proof. Omitted. �

Lemma 28.15.9. The following properties of ring maps are stable under compo-
sition.

(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R
the ring map R→ A induces an isomorphism Rp → Aq.

(2) (Open immersion.) For every prime q of A there exists an f ∈ R, ϕ(f) 6∈ q
such that the ring map ϕ : R→ A induces an isomorphism Rf → Af .

(3) (Locally Noetherian on the target.) The ring map R→ A has the property
that A is Noetherian.

(4) Add more here as needed4.

Proof. Omitted. �

28.16. Morphisms of finite type

Recall that a ring map R → A is said to be of finite type if A is isomorphic to a
quotient of R[x1, . . . , xn] as an R-algebra, see Algebra, Definition 10.6.1.

Definition 28.16.1. Let f : X → S be a morphism of schemes.

(1) We say that f is of finite type at x ∈ X if there exists an affine open
neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂
S with f(U) ⊂ V such that the induced ring map R→ A is of finite type.

(2) We say that f is locally of finite type if it is of finite type at every point
of X.

(3) We say that f is of finite type if it is locally of finite type and quasi-
compact.

Lemma 28.16.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite type.

2But only those properties that are not already dealt with separately elsewhere.
3But only those properties that are not already dealt with separately elsewhere.
4But only those properties that are not already dealt with separately elsewhere.
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(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is of finite type.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally

of finite type.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cover-

ings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of

finite type, for all j ∈ J, i ∈ Ij.
Moreover, if f is locally of finite type then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally of finite type.

Proof. This follows from Lemma 28.15.3 if we show that the property “R→ A is
of finite type” is local. We check conditions (a), (b) and (c) of Definition 28.15.1.
By Algebra, Lemma 10.13.2 being of finite type is stable under base change and
hence we conclude (a) holds. By the same lemma being of finite type is stable under
composition and trivially for any ring R the ring map R → Rf is of finite type.
We conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
10.23.3. �

Lemma 28.16.3. The composition of two morphisms which are locally of finite
type is locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 28.16.2 we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
28.15.5 combined with the fact that being of finite type is a property of ring maps
that is stable under composition, see Algebra, Lemma 10.6.2. By the above and
the fact that compositions of quasi-compact morphisms are quasi-compact, see
Schemes, Lemma 25.19.4 we see that the composition of morphisms of finite type
is of finite type. �

Lemma 28.16.4. The base change of a morphism which is locally of finite type is
locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 28.16.2 we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
28.15.5 combined with the fact that being of finite type is a property of ring maps
that is stable under base change, see Algebra, Lemma 10.13.2. By the above and
the fact that a base change of a quasi-compact morphism is quasi-compact, see
Schemes, Lemma 25.19.3 we see that the base change of a morphism of finite type
is a morphism of finite type. �

Lemma 28.16.5. A closed immersion is of finite type. An immersion is locally of
finite type.

Proof. This is true because an open immersion is a local isomorphism, and a closed
immersion is obviously of finite type. �

Lemma 28.16.6. Let f : X → S be a morphism. If S is (locally) Noetherian and
f (locally) of finite type then X is (locally) Noetherian.

Proof. This follows immediately from the fact that a ring of finite type over a
Noetherian ring is Noetherian, see Algebra, Lemma 10.30.1. (Also: use the fact
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that the source of a quasi-compact morphism with quasi-compact target is quasi-
compact.) �

Lemma 28.16.7. Let f : X → S be locally of finite type with S locally Noetherian.
Then f is quasi-separated.

Proof. In fact, it is true that X is quasi-separated, see Properties, Lemma 27.5.4
and Lemma 28.16.6 above. Then apply Schemes, Lemma 25.21.14 to conclude that
f is quasi-separated. �

Lemma 28.16.8. Let X → Y be a morphism of schemes over a base scheme S.
If X is locally of finite type over S, then X → Y is locally of finite type.

Proof. Via Lemma 28.16.2 this translates into the following algebra fact: Given
ring maps A→ B → C such that A→ C is of finite type, then B → C is of finite
type. (See Algebra, Lemma 10.6.2). �

28.17. Points of finite type and Jacobson schemes

Let S be a scheme. A finite type point s of S is a point such that the morphism
Spec(κ(s)) → S is of finite type. The reason for studying this is that finite type
points can replace closed points in a certain sense and in certain situations. There
are always enough of them for example. Moreover, a scheme is Jacobson if and only
if all finite type points are closed points.

Lemma 28.17.1. Let S be a scheme. Let k be a field. Let f : Spec(k) → S be a
morphism. The following are equivalent:

(1) The morphism f is of finite type.
(2) The morphism f is locally of finite type.
(3) There exists an affine open U = Spec(R) of S such that f corresponds to

a finite ring map R→ k.
(4) There exists an affine open U = Spec(R) of S such that the image of f

consists of a closed point u in U and the field extension κ(u) ⊂ k is finite.

Proof. The equivalence of (1) and (2) is obvious as Spec(k) is a singleton and
hence any morphism from it is quasi-compact.

Suppose f is locally of finite type. Choose any affine open Spec(R) = U ⊂ S such
that the image of f is contained in U , and the ring map R→ k is of finite type. Let
p ⊂ R be the kernel. Then R/p ⊂ k is of finite type. By Algebra, Lemma 10.33.2
there exist a f ∈ R/p such that (R/p)f is a field and (R/p)f → k is a finite field

extension. If f ∈ R is a lift of f , then we see that k is a finite Rf -module. Thus
(2) ⇒ (3).

Suppose that Spec(R) = U ⊂ S is an affine open such that f corresponds to a finite
ring map R → k. Then f is locally of finite type by Lemma 28.16.2. Thus (3) ⇒
(2).

Suppose R → k is finite. The image of R → k is a field over which k is finite by
Algebra, Lemma 10.35.16. Hence the kernel of R→ k is a maximal ideal. Thus (3)
⇒ (4).

The implication (4) ⇒ (3) is immediate. �
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Lemma 28.17.2. Let S be a scheme. Let A be an Artinian local ring with residue
field κ. Let f : Spec(A)→ S be a morphism of schemes. Then f is of finite type if
and only if the composition Spec(κ)→ Spec(A)→ S is of finite type.

Proof. Since the morphism Spec(κ) → Spec(A) is of finite type it is clear that if
f is of finite type so is the composition Spec(κ) → S (see Lemma 28.16.3). For
the converse, note that Spec(A) → S maps into some affine open U = Spec(B)
of S as Spec(A) has only one point. To finish apply Algebra, Lemma 10.52.3 to
B → A. �

Recall that given a point s of a scheme S there is a canonical morphism Spec(κ(s))→
S, see Schemes, Section 25.13.

Definition 28.17.3. Let S be a scheme. Let us say that a point s of S is a finite
type point if the canonical morphism Spec(κ(s)) → S is of finite type. We denote
Sft-pts the set of finite type points of S.

We can describe the set of finite type points as follows.

Lemma 28.17.4. Let S be a scheme. We have

Sft-pts =
⋃

U⊂S open
U0

where U0 is the set of closed points of U . Here we may let U range over all opens
or over all affine opens of S.

Proof. Immediate from Lemma 28.17.1. �

Lemma 28.17.5. Let f : T → S be a morphism of schemes. If f is locally of finite
type, then f(Tft-pts) ⊂ Sft-pts.

Proof. If T is the spectrum of a field this is Lemma 28.17.1. In general it follows
since the composition of morphisms locally of finite type is locally of finite type
(Lemma 28.16.3). �

Lemma 28.17.6. Let f : T → S be a morphism of schemes. If f is locally of finite
type and surjective, then f(Tft-pts) = Sft-pts.

Proof. We have f(Tft-pts) ⊂ Sft-pts by Lemma 28.17.5. Let s ∈ S be a finite type
point. As f is surjective the scheme Ts = Spec(κ(s)) ×S T is nonempty, therefore
has a finite type point t ∈ Ts by Lemma 28.17.4. Now Ts → T is a morphism of
finite type as a base change of s→ S (Lemma 28.16.4). Hence the image of t in T
is a finite type point by Lemma 28.17.5 which maps to s by construction. �

Lemma 28.17.7. Let S be a scheme. For any locally closed subset T ⊂ S we have

T 6= ∅ ⇒ T ∩ Sft-pts 6= ∅.

In particular, for any closed subset T ⊂ S we see that T ∩ Sft-pts is dense in T .

Proof. Note that T carries a scheme structure (see Schemes, Lemma 25.12.4) such
that T → S is a locally closed immersion. Any locally closed immersion is locally
of finite type, see Lemma 28.16.5. Hence by Lemma 28.17.5 we see Tft-pts ⊂ Sft-pts.
Finally, any nonempty affine open of T has at least one closed point which is a
finite type point of T by Lemma 28.17.4. �
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It follows that most of the material from Topology, Section 5.17 goes through with
the set of closed points replaced by the set of points of finite type. In fact, if S is
Jacobson then we recover the closed points as the finite type points.

Lemma 28.17.8. Let S be a scheme. The following are equivalent:

(1) For every finite type morphism f : Spec(k) → S with k a field the image
consists of a closed point of S. In the terminology introduced above: finite
type points of S are closed points of S.

(2) For every locally finite type morphism T → S closed points map to closed
points.

(3) For every locally finite type morphism f : T → S any closed point t ∈ T
maps to a closed point s ∈ S and κ(s) ⊂ κ(t) is finite.

(4) The scheme S is Jacobson.

Proof. We have trivially (3) ⇒ (2) ⇒ (1). The discussion above shows that (1)
implies (4). Hence it suffices to show that (4) implies (3). Suppose that T → S
is locally of finite type. Choose t ∈ T with s = f(t) as in (3). Choose affine
open neighbourhoods Spec(R) = U ⊂ S of s and Spec(A) = V ⊂ T of t with
f(V ) ⊂ U . The induced ring map R→ A is of finite type (see Lemma 28.16.2) and
R is Jacobson by Properties, Lemma 27.6.3. Thus the result follows from Algebra,
Proposition 10.34.18. �

Lemma 28.17.9. Let S be a Jacobson scheme. Any scheme locally of finite type
over S is Jacobson.

Proof. This is clear from Algebra, Proposition 10.34.18 (and Properties, Lemma
27.6.3 and Lemma 28.16.2). �

Lemma 28.17.10. The following types of schemes are Jacobson.

(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over Z.
(3) Any scheme locally of finite type over a 1-dimensional Noetherian domain

with infinitely many primes.
(4) A scheme of the form Spec(R) \ {m} where (R,m) is a Noetherian local

ring. Also any scheme locally of finite type over it.

Proof. We will use Lemma 28.17.9 without mention. The spectrum of a field is
clearly Jacobson. The spectrum of Z is Jacobson, see Algebra, Lemma 10.34.6. For
(3) see Algebra, Lemma 10.60.4. For (4) see Properties, Lemma 27.6.4. �

28.18. Universally catenary schemes

Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 5.10.4. Re-
call that a scheme is catenary if its underlying topological space is catenary. See
Properties, Definition 27.11.1.

Definition 28.18.1. Let S be a scheme. Assume S is locally Noetherian. We say
S is universally catenary if for every morphism X → S locally of finite type the
scheme X is catenary.

http://stacks.math.columbia.edu/tag/01TB
http://stacks.math.columbia.edu/tag/02J5
http://stacks.math.columbia.edu/tag/02J6
http://stacks.math.columbia.edu/tag/02J8


28.18. UNIVERSALLY CATENARY SCHEMES 1875

This is a “better” notion than catenary as there exist Noetherian schemes which
are catenary but not universally catenary. See Examples, Section 82.16. Many
schemes are universally catenary, see Lemma 28.18.4 below.

Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there
exists a maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 10.101.1. We have
seen the relationship between catenary schemes and catenary rings in Properties,
Section 27.11. Recall that a ring A is called universally catenary if A is Noetherian
and for every finite type ring map A → B the ring B is catenary. See Algebra,
Definition 10.101.5. Many interesting rings which come up in algebraic geometry
satisfy this property.

Lemma 28.18.2. Let S be a locally Noetherian scheme. The following are equiv-
alent

(1) S is universally catenary,
(2) there exists an open covering of S all of whose members are universally

catenary schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is universally catenary,

and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the

spectrum of a universally catenary ring.

Moreover, in this case any scheme locally of finite type over S is universally catenary
as well.

Proof. By Lemma 28.16.5 an open immersion is locally of finite type. A compo-
sition of morphisms locally of finite type is locally of finite type (Lemma 28.16.3).
Thus it is clear that if S is universally catenary then any open and any scheme
locally of finite type over S is universally catenary as well. This proves the final
statement of the lemma and that (1) implies (2).

If Spec(R) is a universally catenary scheme, then every scheme Spec(A) with A a
finite type R-algebra is catenary. Hence all these rings A are catenary by Algebra,
Lemma 10.101.2. Thus R is universally catenary. Combined with the remarks
above we conclude that (1) implies (3), and (2) implies (4). Of course (3) implies
(4) trivially.

To finish the proof we show that (4) implies (1). Assume (4) and let X → S be
a morphism locally of finite type. We can find an affine open covering X =

⋃
Vj

such that each Vj → S maps into one of the Ui. By Lemma 28.16.2 the induced
ring map O(Ui) → O(Vj) is of finite type. Hence O(Vj) is catenary. Hence X is
catenary by Properties, Lemma 27.11.2. �

Lemma 28.18.3. Let S be a locally Noetherian scheme. The following are equiv-
alent:

(1) S is universally catenary, and
(2) all local rings OS,s of S are universally catenary.

Proof. Assume that all local rings of S are universally catenary. Let f : X → S be
locally of finite type. We know that X is catenary if and only if OX,x is catenary
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for all x ∈ X. If f(x) = s, then OX,x is essentially of finite type over OS,s. Hence
OX,x is catenary by the assumption that OS,s is universally catenary.

Conversely, assume that S is universally catenary. Let s ∈ S. We may replace S
by an affine open neighbourhood of s by Lemma 28.18.2. Say S = Spec(R) and s
corresponds to the prime ideal p. Any finite type Rp-algebra A′ is of the form Ap

for some finite type R-algebra A. By assumption (and Lemma 28.18.2 if you like)
the ring A is catenary, and hence A′ (a localization of A) is catenary. Thus Rp is
universally catenary. �

Lemma 28.18.4. The following types of schemes are universally catenary.

(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Cohen-Macaulay scheme.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a 1-dimensional Noetherian domain.
(5) And so on.

Proof. All of these follow from the fact that a Cohen-Macaulay ring is universally
catenary, see Algebra, Lemma 10.101.6. Also, use the last assertion of Lemma
28.18.2. Some details omitted. �

28.19. Nagata schemes, reprise

See Properties, Section 27.13 for the definitions and basic properties of Nagata and
universally Japanese schemes.

Lemma 28.19.1. Let f : X → S be a morphism. If S is Nagata and f locally of
finite type then X is Nagata. If S is universally Japanese and f locally of finite
type then X is universally Japanese.

Proof. For “universally Japanese” this follows from Algebra, Lemma 10.150.18.
For “Nagata” this follows from Algebra, Proposition 10.150.30. �

Lemma 28.19.2. The following types of schemes are Nagata.

(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Dedekind ring of characteristic

zero.
(5) And so on.

Proof. By Lemma 28.19.1 we only need to show that the rings mentioned above
are Nagata rings. For this see Algebra, Proposition 10.150.31. �

28.20. The singular locus, reprise

We look for a criterion that implies openness of the regular locus for any scheme
locally of finite type over the base. Here is the definition.

Definition 28.20.1. Let X be a locally Noetherian scheme. We say X is J-2 if
for every morphism Y → X which is locally of finite type the regular locus Reg(Y )
is open in Y .

This is the analogue of the corresponding notion for Noetherian rings, see More on
Algebra, Definition 15.36.1.
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Lemma 28.20.2. Let X be a locally Noetherian scheme. The following are equiv-
alent

(1) X is J-2,
(2) there exists an open covering of X all of whose members are J-2 schemes,
(3) for every affine open Spec(R) = U ⊂ X the ring R is J-2, and
(4) there exists an affine open covering S =

⋃
Ui such that each O(Ui) is J-2

for all i.

Moreover, in this case any scheme locally of finite type over X is J-2 as well.

Proof. By Lemma 28.16.5 an open immersion is locally of finite type. A compo-
sition of morphisms locally of finite type is locally of finite type (Lemma 28.16.3).
Thus it is clear that if X is J-2 then any open and any scheme locally of finite type
over X is J-2 as well. This proves the final statement of the lemma.

If Spec(R) is J-2, then for every finite type R-algebra A the regular locus of the
scheme Spec(A) is open. Hence R is J-2, by definition (see More on Algebra,
Definition 15.36.1). Combined with the remarks above we conclude that (1) implies
(3), and (2) implies (4). Of course (1) ⇒ (2) and (3) ⇒ (4) trivially.

To finish the proof we show that (4) implies (1). Assume (4) and let Y → X be a
morphism locally of finite type. We can find an affine open covering Y =

⋃
Vj such

that each Vj → X maps into one of the Ui. By Lemma 28.16.2 the induced ring map
O(Ui) → O(Vj) is of finite type. Hence the regular locus of Vj = Spec(O(Vj)) is
open. Since Reg(Y )∩Vj = Reg(Vj) we conclude that Reg(Y ) is open as desired. �

Lemma 28.20.3. The following types of schemes are J-2.

(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Dedekind ring of characteristic

zero.
(5) And so on.

Proof. By Lemma 28.20.2 we only need to show that the rings mentioned above
are J-2. For this see More on Algebra, Proposition 15.37.6. �

28.21. Quasi-finite morphisms

A solid treatment of quasi-finite morphisms is the basis of many developments
further down the road. It will lead to various versions of Zariski’s Main Theorem,
behaviour of dimensions of fibres, descent for étale morphisms, etc, etc. Before
reading this section it may be a good idea to take a look at the algebra results in
Algebra, Section 10.118.

Recall that a finite type ring map R→ A is quasi-finite at a prime q if q defines an
isolated point of its fibre, see Algebra, Definition 10.118.3.

Definition 28.21.1. Let f : X → S be a morphism of schemes.

(1) We say that f is quasi-finite at a point x ∈ X if there exist an affine
neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂
S such that f(U) ⊂ V , the ring map R→ A is of finite type, and R→ A
is quasi-finite at the prime of A corresponding to x (see above).

(2) We say f is locally quasi-finite if f is quasi-finite at every point x of X.
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(3) We say that f is quasi-finite if f is of finite type and every point x is an
isolated point of its fibre.

Trivially, a locally quasi-finite morphism is locally of finite type. We will see below
that a morphism f which is locally of finite type is quasi-finite at x if and only if x is
isolated in its fibre. Moreover, the set of points at which a morphism is quasi-finite
is open; we will see this in Section 28.49 on Zariski’s Main Theorem.

Lemma 28.21.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). If κ(s) ⊃ κ(x) is an algebraic field extension, then

(1) x is a closed point of its fibre, and
(2) if in addition s is a closed point of S, then x is a closed point of X.

Proof. The second statement follows from the first by elementary topology. Ac-
cording to Schemes, Lemma 25.18.5 to prove the first statement we may replace X
by Xs and S by Spec(κ(s)). Thus we may assume that S = Spec(k) is the spectrum
of a field. In this case, let Spec(A) = U ⊂ X be any affine open containing x. The
point x corresponds to a prime ideal q ⊂ A such that k ⊂ κ(q) is an algebraic
field extension. By Algebra, Lemma 10.34.9 we see that q is a maximal ideal, i.e.,
x ∈ U is a closed point. Since the affine opens form a basis of the topology of X
we conclude that {x} is closed. �

The following lemma is a version of the Hilbert Nullstellensatz.

Lemma 28.21.3. Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). Assume f is locally of finite type. Then x is a closed point of its fibre
if and only if κ(s) ⊂ κ(x) is a finite field extension.

Proof. If the extension is finite, then x is a closed point of the fibre by Lemma
28.21.2 above. For the converse, assume that x is a closed point of its fibre. Choose
affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that f(U) ⊂ V . By
Lemma 28.16.2 the ring map R → A is of finite type. Let q ⊂ A, resp. p ⊂ R be
the prime ideal corresponding to x, resp. s. Consider the fibre ring A = A⊗R κ(p).
Let q be the prime of A corresponding to q. The assumption that x is a closed
point of its fibre implies that q is a maximal ideal of A. Since A is an algebra of
finite type over the field κ(p) we see by the Hilbert Nullstellensatz, see Algebra,
Theorem 10.33.1, that κ(q) is a finite extension of κ(p). Since κ(s) = κ(p) and
κ(x) = κ(q) = κ(q) we win. �

Lemma 28.21.4. Let f : X → S be a morphism of schemes which is locally of
finite type. Let g : S′ → S be any morphism. Denote f ′ : X ′ → S′ the base change.
If x′ ∈ X ′ maps to a point x ∈ X which is closed in Xf(x) then x′ is closed in
X ′f ′(x′).

Proof. The residue field κ(x′) is a quotient of κ(f ′(x′))⊗κ(f(x)) κ(x), see Schemes,
Lemma 25.17.5. Hence it is a finite extension of κ(f ′(x′)) as κ(x) is a finite extension
of κ(f(x)) by Lemma 28.21.3. Thus we see that x′ is closed in its fibre by applying
that lemma one more time. �

Lemma 28.21.5. Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). If f is quasi-finite at x, then the residue field extension κ(s) ⊂ κ(x)
is finite.
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Proof. This is clear from Algebra, Definition 10.118.3. �

Lemma 28.21.6. Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). Let Xs be the fibre of f at s. Assume f is locally of finite type. The
following are equivalent:

(1) The morphism f is quasi-finite at x.
(2) The point x is isolated in Xs.
(3) The point x is closed in Xs and there is no point x′ ∈ Xs, x

′ 6= x which
specializes to x.

(4) For any pair of affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with
f(U) ⊂ V and x ∈ U corresponding to q ⊂ A the ring map R → A is
quasi-finite at q.

Proof. Assume f is quasi-finite at x. By assumption there exist opens U ⊂ X,
V ⊂ S such that f(U) ⊂ V , x ∈ U and x an isolated point of Us. Hence {x} ⊂ Us
is an open subset. Since Us = U ∩Xs ⊂ Xs is also open we conclude that {x} ⊂ Xs

is an open subset also. Thus we conclude that x is an isolated point of Xs.

Note that Xs is a Jacobson scheme by Lemma 28.17.10 (and Lemma 28.16.4). If
x is isolated in Xs, i.e., {x} ⊂ Xs is open, then {x} contains a closed point (by
the Jacobson property), hence x is closed in Xs. It is clear that there is no point
x′ ∈ Xs, distinct from x, specializing to x.

Assume that x is closed in Xs and that there is no point x′ ∈ Xs, distinct from x,
specializing to x. Consider a pair of affine opens Spec(A) = U ⊂ X, Spec(R) =
V ⊂ S with f(U) ⊂ V and x ∈ U . Let q ⊂ A correspond to x and p ⊂ R correspond
to s. By Lemma 28.16.2 the ring map R → A is of finite type. Consider the fibre
ring A = A ⊗R κ(p). Let q be the prime of A corresponding to q. Since Spec(A)
is an open subscheme of the fibre Xs we see that q is a maximal ideal of A and
that there is no point of Spec(A) specializing to q. This implies that dim(Aq) = 0.
Hence by Algebra, Definition 10.118.3 we see that R → A is quasi-finite at q, i.e.,
X → S is quasi-finite at x by definition.

At this point we have shown conditions (1) – (3) are all equivalent. It is clear that
(4) implies (1). And it is also clear that (2) implies (4) since if x is an isolated point
of Xs then it is also an isolated point of Us for any open U which contains it. �

Lemma 28.21.7. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) f is locally of finite type, and
(2) f−1({s}) is a finite set.

Then Xs is a finite discrete topological space, and f is quasi-finite at each point of
X lying over s.

Proof. Suppose T is a scheme which (a) is locally of finite type over a field k,
and (b) has finitely many points. Then Lemma 28.17.10 shows T is a Jacobson
scheme. A finite Jacobson space is discrete, see Topology, Lemma 5.17.6. Apply
this remark to the fibre Xs which is locally of finite type over Spec(κ(s)) to see the
first statement. Finally, apply Lemma 28.21.6 to see the second. �

Lemma 28.21.8. Let f : X → S be a morphism of schemes. Assume f is locally
of finite type. Then the following are equivalent
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(1) f is locally quasi-finite,
(2) for every s ∈ S the fibre Xs is a discrete topological space, and
(3) for every morphism Spec(k) → S where k is a field the base change Xk

has an underlying discrete topological space.

Proof. It is immediate that (3) implies (2). Lemma 28.21.6 shows that (2) is
equivalent to (1). Assume (2) and let Spec(k)→ S be as in (3). Denote s ∈ S the
image of Spec(k)→ S. Then Xk is the base change of Xs via Spec(k)→ Spec(κ(s)).
Hence every point of Xk is closed by Lemma 28.21.4. As Xk → Spec(k) is locally
of finite type (by Lemma 28.16.4), we may apply Lemma 28.21.6 to conclude that
every point ofXk is isolated, i.e., Xk has a discrete underlying topological space. �

Lemma 28.21.9. Let f : X → S be a morphism of schemes. Then f is quasi-finite
if and only if f is locally quasi-finite and quasi-compact.

Proof. Assume f is quasi-finite. It is quasi-compact by Definition 28.16.1. Let
x ∈ X. We see that f is quasi-finite at x by Lemma 28.21.6. Hence f is quasi-
compact and locally quasi-finite.

Assume f is quasi-compact and locally quasi-finite. Then f is of finite type. Let
x ∈ X be a point. By Lemma 28.21.6 we see that x is an isolated point of its fibre.
The lemma is proved. �

Lemma 28.21.10. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is quasi-finite, and
(2) f is locally of finite type, quasi-compact, and has finite fibres.

Proof. Assume f is quasi-finite. In particular f is locally of finite type and quasi-
compact (since it is of finite type). Let s ∈ S. Since every x ∈ Xs is isolated in Xs

we see that Xs =
⋃
x∈Xs{x} is an open covering. As f is quasi-compact, the fibre

Xs is quasi-compact. Hence we see that Xs is finite.

Conversely, assume f is locally of finite type, quasi-compact and has finite fibres.
Then it is locally quasi-finite by Lemma 28.21.7. Hence it is quasi-finite by Lemma
28.21.9. �

Recall that a ring map R → A is quasi-finite if it is of finite type and quasi-finite
at all primes of A, see Algebra, Definition 10.118.3.

Lemma 28.21.11. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally quasi-finite.
(2) For every pair of affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring

map OS(V )→ OX(U) is quasi-finite.
(3) There exists an open covering S =

⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally

quasi-finite.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is

quasi-finite, for all j ∈ J, i ∈ Ij.
Moreover, if f is locally quasi-finite then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally quasi-finite.
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Proof. For a ring map R→ A let us define P (R→ A) to mean “R→ A is quasi-
finite” (see remark above lemma). We claim that P is a local property of ring maps.
We check conditions (a), (b) and (c) of Definition 28.15.1. In the proof of Lemma
28.16.2 we have seen that (a), (b) and (c) hold for the property of being “of finite
type”. Note that, for a finite type ring map R→ A, the property R→ A is quasi-
finite at q depends only on the local ring Aq as an algebra over Rp where p = R∩ q
(usual abuse of notation). Using these remarks (a), (b) and (c) of Definition 28.15.1
follow immediately. For example, suppose R→ A is a ring map such that all of the
ring maps R → Aai are quasi-finite for a1, . . . , an ∈ A generating the unit ideal.
We conclude that R → A is of finite type. Also, for any prime q ⊂ A the local
ring Aq is isomorphic as an R-algebra to the local ring (Aai)qi for some i and some
qi ⊂ Aai . Hence we conclude that R→ A is quasi-finite at q.

We conclude that Lemma 28.15.3 applies with P as in the previous paragraph.
Hence it suffices to prove that f is locally quasi-finite is equivalent to f is locally
of type P . Since P (R → A) is “R → A is quasi-finite” which means R → A is
quasi-finite at every prime of A, this follows from Lemma 28.21.6. �

Lemma 28.21.12. The composition of two morphisms which are locally quasi-finite
is locally quasi-finite. The same is true for quasi-finite morphisms.

Proof. In the proof of Lemma 28.21.11 we saw that P =“quasi-finite” is a local
property of ring maps, and that a morphism of schemes is locally quasi-finite if and
only if it is locally of type P as in Definition 28.15.2. Hence the first statement of
the lemma follows from Lemma 28.15.5 combined with the fact that being quasi-
finite is a property of ring maps that is stable under composition, see Algebra,
Lemma 10.118.7. By the above, Lemma 28.21.9 and the fact that compositions of
quasi-compact morphisms are quasi-compact, see Schemes, Lemma 25.19.4 we see
that the composition of quasi-finite morphisms is quasi-finite. �

We will see later (Lemma 28.49.2) that the set U of the following lemma is open.

Lemma 28.21.13. Let f : X → S be a morphism of schemes. Let g : S′ → S be a
morphism of schemes. Denote f ′ : XS′ → S′ the base change of f by g and denote
g′ : XS′ → X the projection. Assume X is locally of finite type over S.

(1) Let U ⊂ X (resp. U ′ ⊂ X ′) be the set of points where f (resp. f ′) is
quasi-finite. Then U ′ = US′ = (g′)−1(U).

(2) The base change of a locally quasi-finite morphism is locally quasi-finite.
(3) The base change of a quasi-finite morphism is quasi-finite.

Proof. The first and second assertion follow from the corresponding algebra result,
see Algebra, Lemma 10.118.8 (combined with the fact that f ′ is also locally of finite
type by Lemma 28.16.4). By the above, Lemma 28.21.9 and the fact that a base
change of a quasi-compact morphism is quasi-compact, see Schemes, Lemma 25.19.3
we see that the base change of a quasi-finite morphism is quasi-finite. �

Lemma 28.21.14. Let f : X → S be a morphism of schemes of finite type. Let
s ∈ S. There are at most finitely many points of X lying over s at which f is
quasi-finite.

Proof. The fibre Xs is a scheme of finite type over a field, hence Noetherian
(Lemma 28.16.6). Hence the topology on Xs is Noetherian (Properties, Lemma
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27.5.5) and can have at most a finite number of isolated points (by elementary
topology). Thus our lemma follows from Lemma 28.21.6. �

Lemma 28.21.15. Any immersion is locally quasi-finite.

Proof. This is true because an open immersion is a local isomorphism and a closed
immersion is clearly quasi-finite. �

Lemma 28.21.16. Let X → Y be a morphism of schemes over a base scheme S.
Let x ∈ X. If X → S is quasi-finite at x, then X → Y is quasi-finite at x. If X is
locally quasi-finite over S, then X → Y is locally quasi-finite.

Proof. Via Lemma 28.21.11 this translates into the following algebra fact: Given
ring maps A → B → C such that A → C is quasi-finite, then B → C is quasi-
finite. This follows from Algebra, Lemma 10.118.6 with R = A, S = S′ = C and
R′ = B. �

28.22. Morphisms of finite presentation

Recall that a ring map R → A is of finite presentation if A is isomorphic to
R[x1, . . . , xn]/(f1, . . . , fm) as an R-algebra for some n,m and some polynomials
fj , see Algebra, Definition 10.6.1.

Definition 28.22.1. Let f : X → S be a morphism of schemes.

(1) We say that f is of finite presentation at x ∈ X if there exists a affine
open neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) =
V ⊂ S with f(U) ⊂ V such that the induced ring map R→ A is of finite
presentation.

(2) We say that f is locally of finite presentation if it is of finite presentation
at every point of X.

(3) We say that f is of finite presentation if it is locally of finite presentation,
quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation. Later we will characterize morphisms which
are locally of finite presentation as those morphisms such that

colim MorS(Ti, X) = MorS(limTi, X)

for any directed system of affine schemes Ti over S. See Limits, Proposition 31.5.1.
In Limits, Section 31.9 we show that, if S = limi Si is a limit of affine schemes, any
scheme X of finite presentation over S descends to a scheme Xi over Si for some i.

Lemma 28.22.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite presentation.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is of finite presentation.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is locally

of finite presentation.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cover-

ings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of

finite presentation, for all j ∈ J, i ∈ Ij.
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Moreover, if f is locally of finite presentation then for any open subschemes U ⊂ X,
V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is locally of finite presentation.

Proof. This follows from Lemma 28.15.3 if we show that the property “R→ A is
of finite presentation” is local. We check conditions (a), (b) and (c) of Definition
28.15.1. By Algebra, Lemma 10.13.2 being of finite presentation is stable under
base change and hence we conclude (a) holds. By the same lemma being of finite
presentation is stable under composition and trivially for any ring R the ring map
R → Rf is of finite presentation. We conclude (b) holds. Finally, property (c) is
true according to Algebra, Lemma 10.23.3. �

Lemma 28.22.3. The composition of two morphisms which locally of finite pre-
sentation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma 28.22.2 we saw that being of finite presentation
is a local property of ring maps. Hence the first statement of the lemma follows
from Lemma 28.15.5 combined with the fact that being of finite presentation is a
property of ring maps that is stable under composition, see Algebra, Lemma 10.6.2.
By the above and the fact that compositions of quasi-compact, quasi-separated
morphisms are quasi-compact and quasi-separated, see Schemes, Lemmas 25.19.4
and 25.21.13 we see that the composition of morphisms of finite presentation is of
finite presentation. �

Lemma 28.22.4. The base change of a morphism which is locally of finite pre-
sentation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma 28.22.2 we saw that being of finite presentation
is a local property of ring maps. Hence the first statement of the lemma follows
from Lemma 28.15.5 combined with the fact that being of finite presentation is a
property of ring maps that is stable under base change, see Algebra, Lemma 10.13.2.
By the above and the fact that a base change of a quasi-compact, quasi-separated
morphism is quasi-compact and quasi-separated, see Schemes, Lemmas 25.19.3 and
25.21.13 we see that the base change of a morphism of finite presentation is a
morphism of finite presentation. �

Lemma 28.22.5. Any open immersion is locally of finite presentation.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 28.22.6. Any open immersion is of finite presentation if and only if it is
quasi-compact.

Proof. We have seen (Lemma 28.22.5) that an open immersion is locally of fi-
nite presentation. We have see (Schemes, Lemma 25.23.7) that an immersion is
separated and hence quasi-separated. From this and Definition 28.22.1 the lemma
follows. �

Lemma 28.22.7. A closed immersion i : Z → X is of finite presentation if and
only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of
finite type (as an OX-module).
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Proof. On any affine open Spec(R) ⊂ X we have i−1(Spec(R)) = Spec(R/I) and

I = Ĩ. Moreover, I is of finite type if and only if I is a finite R-module for every
such affine open (see Properties, Lemma 27.16.1). And R/I is of finite presentation
over R if and only if I is a finite R-module. Hence we win. �

Lemma 28.22.8. A morphism which is locally of finite presentation is locally of
finite type. A morphism of finite presentation is of finite type.

Proof. Omitted. �

Lemma 28.22.9. Let f : X → S be a morphism.

(1) If S is locally Noetherian and f locally of finite type then f is locally of
finite presentation.

(2) If S is locally Noetherian and f of finite type then f is of finite presenta-
tion.

Proof. The first statement follows from the fact that a ring of finite type over a
Noetherian ring is of finite presentation, see Algebra, Lemma 10.30.4. Suppose that
f is of finite type and S is locally Noetherian. Then f is quasi-compact and locally
of finite presentation by (1). Hence it suffices to prove that f is quasi-separated.
This follows from Lemma 28.16.7 (and Lemma 28.22.8). �

Lemma 28.22.10. Let S be a scheme which is quasi-compact and quasi-separated.
If X is of finite presentation over S, then X is quasi-compact and quasi-separated.

Proof. Omitted. �

Lemma 28.22.11. Let f : X → Y be a morphism of schemes over S.

(1) If X is locally of finite presentation over S and Y is locally of finite type
over S, then f is locally of finite presentation.

(2) If X is of finite presentation over S and Y is quasi-separated and locally
of finite type over S, then f is of finite presentation.

Proof. Proof of (1). Via Lemma 28.22.2 this translates into the following algebra
fact: Given ring maps A → B → C such that A → C is of finite presentation and
A→ B is of finite type, then B → C is of finite type. See Algebra, Lemma 10.6.2.

Part (2) follows from (1) and Schemes, Lemmas 25.21.14 and 25.21.15. �

Lemma 28.22.12. Let f : X → Y be a morphism of schemes with diagonal
∆ : X → X×Y X. If f is locally of finite type then ∆ is locally of finite presentation.
If f is quasi-separated and locally of finite type, then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism of schemes over X (via the second projection
X ×Y X → X). Assume f is locally of finite type. Note that X is of finite
presentation over X and X ×Y X is locally of finite type over X (by Lemma
28.16.4). Thus the first statement holds by Lemma 28.22.11. The second statement
follows from the first, the definitions, and the fact that a diagonal morphism is a
monomorphism, hence separated (Schemes, Lemma 25.23.3). �
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28.23. Constructible sets

Constructible and locally constructible sets of schemes have been discussed in Prop-
erties, Section 27.2. In this section we prove some results concerning images and
inverse images of (locally) constructible sets. The main result is Chevalley’s theo-
rem which states that the image of a locally constructible set under a morphism of
finite presentation is locally constructible.

Lemma 28.23.1. Let f : X → Y be a morphism of schemes. Let E ⊂ Y be a
subset. If E is (locally) constructible in Y , then f−1(E) is (locally) constructible
in X.

Proof. To show that the inverse image of every constructible subset is constructible
it suffices to show that the inverse image of every retrocompact open V of Y is
retrocompact in X, see Topology, Lemma 5.14.3. The significance of V being
retrocompact in Y is just that the open immersion V → Y is quasi-compact.
Hence the base change f−1(V ) = X ×Y V → X is quasi-compact too, see Schemes,
Lemma 25.19.3. Hence we see f−1(V ) is retrocompact in X. Suppose E is locally
constructible in Y . Choose x ∈ X. Choose an affine neighbourhood V of f(x)
and an affine neighbourhood U ⊂ X of x such that f(U) ⊂ V . Thus we think of
f |U : U → V as a morphism into V . By Properties, Lemma 27.2.1 we see that
E ∩ V is constructible in V . By the constructible case we see that (f |U )−1(E ∩ V )
is constructible in U . Since (f |U )−1(E ∩ V ) = f−1(E) ∩ U we win. �

Lemma 28.23.2. Let f : X → Y be a morphism of schemes. Assume

(1) f is quasi-compact and locally of finite presentation, and
(2) Y is quasi-compact and quasi-separated.

Then the image of every constructible subset of X is constructible in Y .

Proof. By Properties, Lemma 27.2.5 it suffices to prove this lemma in case Y is
affine. In this case X is quasi-compact. Hence we can write X = U1 ∪ . . . ∪ Un
with each Ui affine open in X. If E ⊂ X is constructible, then each E ∩ Ui is
constructible too, see Topology, Lemma 5.14.4. Hence, since f(E) =

⋃
f(E ∩ Ui)

and since finite unions of constructible sets are constructible, this reduces us to the
case where X is affine. In this case the result is Algebra, Theorem 10.28.9. �

Theorem 28.23.3 (Chevalley’s Theorem). Let f : X → Y be a morphism of
schemes. Assume f is quasi-compact and locally of finite presentation. Then the
image of every locally constructible subset is locally constructible.

Proof. Let E ⊂ X be locally constructible. We have to show that f(E) is locally
constructible too. We will show that f(E) ∩ V is constructible for any affine open
V ⊂ Y . Thus we reduce to the case where Y is affine. In this case X is quasi-
compact. Hence we can writeX = U1∪. . .∪Un with each Ui affine open inX. If E ⊂
X is locally constructible, then each E∩Ui is constructible, see Properties, Lemma
27.2.1. Hence, since f(E) =

⋃
f(E ∩ Ui) and since finite unions of constructible

sets are constructible, this reduces us to the case where X is affine. In this case the
result is Algebra, Theorem 10.28.9. �

Lemma 28.23.4. Let X be a scheme. Let x ∈ X. Let E ⊂ X be a locally
constructible subset. If {x′ | x′  x} ⊂ E, then E contains an open neighbourhood
of x.
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Proof. Assume {x′ | x′  x} ⊂ E. We may assume X is affine. In this case E
is constructible, see Properties, Lemma 27.2.1. In particular, also the complement
Ec is constructible. By Algebra, Lemma 10.28.3 we can find a morphism of affine
schemes f : Y → X such that Ec = f(Y ). Let Z ⊂ X be the scheme theoretic
image of f . By Lemma 28.6.5 and the assumption {x′ | x′  x} ⊂ E we see that
x 6∈ Z. Hence X \ Z ⊂ E is an open neighbourhood of x contained in E. �

28.24. Open morphisms

Definition 28.24.1. Let f : X → S be a morphism.

(1) We say f is open if the map on underlying topological spaces is open.
(2) We say f is universally open if for any morphism of schemes S′ → S the

base change f ′ : XS′ → S′ is open.

According to Topology, Lemma 5.18.6 generalizations lift along certain types of
open maps of topological spaces. In fact generalizations lift along any open mor-
phism of schemes (see Lemma 28.24.5). Also, we will see that generalizations lift
along flat morphisms of schemes (Lemma 28.26.8). This sometimes in turn implies
that the morphism is open.

Lemma 28.24.2. Let f : X → S be a morphism.

(1) If f is locally of finite presentation and generalizations lift along f , then
f is open.

(2) If f is locally of finite presentation and generalizations lift along every
base change of f , then f is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both
X and S are affine. In this case the result follows from Algebra, Lemma 10.40.3
and Proposition 10.40.8. �

See also Lemma 28.26.9 for the case of a morphism flat of finite presentation.

Lemma 28.24.3. A composition of (universally) open morphisms is (universally)
open.

Proof. Omitted. �

Lemma 28.24.4. Let k be a field. Let X be a scheme over k. The structure
morphism X → Spec(k) is universally open.

Proof. Let S → Spec(k) be a morphism. We have to show that the base change
XS → S is open. The question is local on S and X, hence we may assume that S
and X are affine. In this case the result is Algebra, Lemma 10.40.10. �

Lemma 28.24.5. Let ϕ : X → Y be a morphism of schemes. If ϕ is open, then ϕ
is generizing (i.e., generalizations lift along ϕ). If ϕ is universally open, then ϕ is
universally generizing.

Proof. Assume ϕ is open. Let y′  y be a specialization of points of Y . Let x ∈ X
with ϕ(x) = y. Choose affine opens U ⊂ X and V ⊂ Y such that ϕ(U) ⊂ V and
x ∈ U . Then also y′ ∈ V . Hence we may replace X by U and Y by V and assume
X, Y affine. The affine case is Algebra, Lemma 10.40.2 (combined with Algebra,
Lemma 10.40.3). �
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Lemma 28.24.6. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
open and surjective such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then
f is quasi-compact.

Proof. Let V ⊂ Y be a quasi-compact open. As g is open and surjective we can find
a quasi-compact open W ′ ⊂ W such that g(W ′) = V . By assumption (f ′)−1(W ′)
is quasi-compact. The image of (f ′)−1(W ′) in X is equal to f−1(V ), see Lemma
28.11.3. Hence f−1(V ) is quasi-compact as the image of a quasi-compact space, see
Topology, Lemma 5.11.7. Thus f is quasi-compact. �

28.25. Submersive morphisms

Definition 28.25.1. Let f : X → Y be a morphism of schemes.

(1) We say f is submersive5 if the continuous map of underlying topological
spaces is submersive, see Topology, Definition 5.5.3.

(2) We say f is universally submersive if for every morphism of schemes Y ′ →
Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

28.26. Flat morphisms

Flatness is one of the most important technical tools in algebraic geometry. In
this section we introduce this notion. We intentionally limit the discussion to
straightforward observations, apart from Lemma 28.26.9. A very important class
of results, namely criteria for flatness will be discussed (insert future reference here).

Recall that a module M over a ring R is flat if the functor −⊗RM : ModR → ModR
is exact. A ring map R → A is said to be flat if A is flat as an R-module. See
Algebra, Definition 10.38.1.

Definition 28.26.1. Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf of OX -modules.

(1) We say f is flat at a point x ∈ X if the local ring OX,x is flat over the
local ring OS,f(x).

(2) We say that F is flat over S at a point x ∈ X if the stalk Fx is a flat
OS,f(x)-module.

(3) We say f is flat if f is flat at every point of X.
(4) We say that F is flat over S if F is flat over S at every point x of X.

Thus we see that f is flat if and only if the structure sheaf OX is flat over S.

Lemma 28.26.2. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX-modules. The following are equivalent

(1) The sheaf F is flat over S.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the OS(V )-module
F(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the modules F|Ui is flat over Vj, for all j ∈
J, i ∈ Ij.

5This is very different from the notion of a submersion of differential manifolds.
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(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open cover-

ings f−1(Vj) =
⋃
i∈Ij Ui such that F(Ui) is a flat OS(Vj)-module, for all

j ∈ J, i ∈ Ij.
Moreover, if F is flat over S then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction F|U is flat over V .

Proof. Let R → A be a ring map. Let M be an A-module. If M is R-flat, then
for all primes q the module Mq is flat over Rp with p the prime of R lying under
q. Conversely, if Mq is flat over Rp for all primes q of A, then M is flat over R.
See Algebra, Lemma 10.38.19. This equivalence easily implies the statements of
the lemma. �

Lemma 28.26.3. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is flat.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is flat.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that OS(Vj) → OX(Ui) is flat, for all

j ∈ J, i ∈ Ij.
Moreover, if f is flat then for any open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is flat.

Proof. This is a special case of Lemma 28.26.2 above. �

Lemma 28.26.4. Let X → Y → Z be morphisms of schemes. Let F be a quasi-
coherent OX-module. If F is flat over Y , and Y is flat over Z, then F is flat over
Z.

Proof. See Algebra, Lemma 10.38.3. �

Lemma 28.26.5. The composition of flat morphisms is flat.

Proof. This is a special case of Lemma 28.26.4. �

Lemma 28.26.6. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX-modules. Let g : S′ → S be a morphism of schemes. Denote
g′ : X ′ = XS′ → X the projection. Let x′ ∈ X ′ be a point with image x = g(x′) ∈ X.
If F is flat over S at x, then (g′)∗F is flat over S′ at x′. In particular, if F is flat
over S, then (g′)∗F is flat over S′.

Proof. See Algebra, Lemma 10.38.6. �

Lemma 28.26.7. The base change of a flat morphism is flat.

Proof. This is a special case of Lemma 28.26.6. �

Lemma 28.26.8. Let f : X → S be a flat morphism of schemes. Then general-
izations lift along f , see Topology, Definition 5.18.3.

Proof. See Algebra, Section 10.40. �

Lemma 28.26.9. A flat morphism locally of finite presentation is universally open.
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Proof. This follows from Lemmas 28.26.8 and Lemma 28.24.2 above. We can also
argue directly as follows.

Let f : X → S be flat locally of finite presentation. To show f is open it suffices
to show that we may cover X by open affines X =

⋃
Ui such that Ui → S is open.

By definition we may cover X by affine opens Ui ⊂ X such that each Ui maps into
an affine open Vi ⊂ S and such that the induced ring map OS(Vi) → OX(Ui) is
of finite presentation. Thus Ui → Vi is open by Algebra, Proposition 10.40.8. The
lemma follows. �

Lemma 28.26.10. Let f : X → Y be a quasi-compact, surjective, flat morphism.
A subset T ⊂ Y is open (resp. closed) if and only f−1(T ) is open (resp. closed). In
other words, f is a submersive morphism.

Proof. The question is local on Y , hence we may assume that Y is affine. In this
case X is quasi-compact as f is quasi-compact. Write X = X1 ∪ . . . ∪ Xn as a
finite union of affine opens. Then f ′ : X ′ = X1

∐
. . .
∐
Xn → Y is a surjective flat

morphism of affine schemes. Note that for T ⊂ Y we have (f ′)−1(T ) = f−1(T ) ∩
X1

∐
. . .
∐
f−1(T ) ∩Xn. Hence, f−1(T ) is open if and only if (f ′)−1(T ) is open.

Thus we may assume both X and Y are affine.

Let f : Spec(B)→ Spec(A) be a surjective morphism of affine schemes correspond-
ing to a flat ring map A→ B. Suppose that f−1(T ) is closed, say f−1(T ) = V (I)
for I ⊂ A an ideal. Then T = f(f−1(T )) = f(V (I)) is the image of Spec(A/I) →
Spec(B) (here we use that f is surjective). On the other hand, generalizations
lift along f (Lemma 28.26.8). Hence by Topology, Lemma 5.18.5 we see that
Y \ T = f(X \ f−1(T )) is stable under generalization. Hence T is stable under
specialization (Topology, Lemma 5.18.2). Thus T is closed by Algebra, Lemma
10.40.5. �

Lemma 28.26.11. Let h : X → Y be a morphism of schemes over S. Let G be a
quasi-coherent sheaf on Y . Let x ∈ X with y = h(x) ∈ Y . If h is flat at x, then

G flat over S at y ⇔ h∗G flat over S at x.

In particular: If h is surjective and flat, then G is flat over S, if and only if h∗G is
flat over S. If h is surjective and flat, and X is flat over S, then Y is flat over S.

Proof. You can prove this by applying Algebra, Lemma 10.38.8. Here is a direct
proof. Let s ∈ S be the image of y. Consider the local ring maps OS,s → OY,y →
OX,x. By assumption the ring map OY,y → OX,x is faithfully flat, see Algebra,
Lemma 10.38.16. Let N = Gy. Note that h∗Gx = N ⊗OY,y OX,x, see Sheaves,
Lemma 6.26.4. Let M ′ → M be an injection of OS,s-modules. By the faithful
flatness mentioned above we have

Ker(M ′ ⊗OS,s N →M ⊗OS,s N)⊗OY,y OX,x
= Ker(M ′ ⊗OS,s N ⊗OY,y OX,x →M ⊗OS,s N ⊗OY,y OX,x)

Hence the equivalence of the lemma follows from the second characterization of
flatness in Algebra, Lemma 10.38.4. �

Lemma 28.26.12. Let f : Y → X be a morphism of schemes. Let F be a finite
type quasi-coherent OX-module with scheme theoretic support Z ⊂ X. If f is flat,
then f−1(Z) is the scheme theoretic support of f∗F .
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Proof. Using the characterization of scheme theoretic support on affines as given
in Lemma 28.5.4 we reduce to Algebra, Lemma 10.39.4. �

Lemma 28.26.13. Let f : X → Y be a flat morphism of schemes. Let V ⊂ Y
be a retrocompact open which is scheme theoretically dense. Then f−1V is scheme
theoretically dense in X.

Proof. We will use the characterization of Lemma 28.7.5. We have to show that
for any open U ⊂ X the map OX(U) → OX(U ∩ f−1V ) is injective. It suffices to
prove this when U is an affine open which maps into an affine open W ⊂ Y . Say
W = Spec(A) and U = Spec(B). Then V ∩W = D(f1)∪. . .∪D(fn) for some fi ∈ A,
see Algebra, Lemma 10.28.1. Thus we have to show that B → Bf1

× . . . × Bfn is
injective. We are given that A → Af1

× . . . × Afn is injective and that A → B is
flat. Since Bfi = Afi ⊗A B we win. �

Lemma 28.26.14. Let f : X → Y be a flat morphism of schemes. Let g : V → Y
be a quasi-compact morphism of schemes. Let Z ⊂ Y be the scheme theoretic image
of g and let Z ′ ⊂ X be the scheme theoretic image of the base change V ×Y X → X.
Then Z ′ = f−1Z.

Proof. Recall that Z is cut out by I = Ker(OY → g∗OV ) and Z ′ is cut out by
I ′ = Ker(OX → (V ×Y X → X)∗OV×YX), see Lemma 28.6.3. Hence the question
is local on X and Y and we may assume X and Y affine. Note that we may replace
V by

∐
Vi where V = V1 ∪ . . . ∪ Vn is a finite affine open covering. Hence we may

assume g is affine. In this case (V ×Y X → X)∗OV×YX is the pullback of g∗OV by
f . Since f is flat we conclude that f∗I = I ′ and the lemma holds. �

28.27. Flat closed immersions

Connected components of schemes are not always open. But they do always have
a canonical scheme structure. We explain this in this section.

Lemma 28.27.1. Let X be a scheme. The rule which associates to a closed sub-
scheme of X its underlying closed subset defines a bijection{

closed subschemes Z ⊂ X
such that Z → X is flat

}
↔
{

closed subsets Z ⊂ X
closed under generalizations

}
Proof. The affine case is Algebra, Lemma 10.104.4. In general the lemma follows
by covering X by affines and glueing. Details omitted. �

Lemma 28.27.2. A flat closed immersion of finite presentation is the open im-
mersion of an open and closed subscheme.

Proof. The affine case is Algebra, Lemma 10.104.5. In general the lemma follows
by covering X by affines. Details omitted. �

Note that a connected component T of a scheme X is a closed subset stable under
generalization. Hence the following definition makes sense.

Definition 28.27.3. Let X be a scheme. Let T ⊂ X be a connected component.
The canonical scheme structure on T is the unique scheme structure on T such that
the closed immersion T → X is flat, see Lemma 28.27.1.

It turns out that we can determine when every finite flat OX -module is finite locally
free using the previous lemma.

http://stacks.math.columbia.edu/tag/081H
http://stacks.math.columbia.edu/tag/081I
http://stacks.math.columbia.edu/tag/04PW
http://stacks.math.columbia.edu/tag/0819
http://stacks.math.columbia.edu/tag/04PX


28.28. GENERIC FLATNESS 1891

Lemma 28.27.4. Let X be a scheme. The following are equivalent

(1) every finite flat quasi-coherent OX-module is finite locally free, and
(2) every closed subset Z ⊂ X which is closed under generalizations is open.

Proof. In the affine case this is Algebra, Lemma 10.104.6. The scheme case does
not follow directly from the affine case, so we simply repeat the arguments.

Assume (1). Consider a closed immersion i : Z → X such that i is flat. Then i∗OZ
is quasi-coherent and flat, hence finite locally free by (1). Thus Z = Supp(i∗OZ) is
also open and we see that (2) holds. Hence the implication (1) ⇒ (2) follows from
the characterization of flat closed immersions in Lemma 28.27.1.

For the converse assume that X satisfies (2). Let F be a finite flat quasi-coherent
OX -module. The support Z = Supp(F) of F is closed, see Modules, Lemma 17.9.6.
On the other hand, if x  x′ is a specialization, then by Algebra, Lemma 10.75.4
the module Fx′ is free over OX,x′ , and

Fx = Fx′ ⊗OX,x′ OX,x.

Hence x′ ∈ Supp(F) ⇒ x ∈ Supp(F), in other words, the support is closed under
generalization. As X satisfies (2) we see that the support of F is open and closed.
The modules ∧i(F), i = 1, 2, 3, . . . are finite flat quasi-coherent OX -modules also,
see Modules, Section 17.18. Note that Supp(∧i+1(F)) ⊂ Supp(∧i(F)). Thus we
see that there exists a decomposition

X = U0

∐
U1

∐
U2

∐
. . .

by open and closed subsets such that the support of ∧i(F) is Ui ∪ Ui+1 ∪ . . . for
all i. Let x be a point of X, and say x ∈ Ur. Note that ∧i(F)x ⊗ κ(x) = ∧i(Fx ⊗
κ(x)). Hence, x ∈ Ur implies that Fx ⊗ κ(x) is a vector space of dimension r.
By Nakayama’s lemma, see Algebra, Lemma 10.19.1 we can choose an affine open
neighbourhood U ⊂ Ur ⊂ X of x and sections s1, . . . , sr ∈ F(U) such that the
induced map

O⊕rU −→ F|U , (f1, . . . , fr) 7−→
∑

fisi

is surjective. This means that ∧r(F|U ) is a finite flat quasi-coherent OU -module
whose support is all of U . By the above it is generated by a single element, namely
s1 ∧ . . . ∧ sr. Hence ∧r(F|U ) ∼= OU/I for some quasi-coherent sheaf of ideals I
such that OU/I is flat over OU and such that V (I) = U . It follows that I = 0 by
applying Lemma 28.27.1. Thus s1 ∧ . . . ∧ sr is a basis for ∧r(F|U ) and it follows
that the displayed map is injective as well as surjective. This proves that F is finite
locally free as desired. �

28.28. Generic flatness

A scheme of finite type over an integral base is flat over a dense open of the base. In
Algebra, Section 10.114 we proved a Noetherian version, a version for morphisms
of finite presentation, and a general version. We only state and prove the general
version here. However, it turns out that this will be superseded by Proposition
28.28.2 which shows the result holds if we only assume the base is reduced.

Proposition 28.28.1 (Generic flatness). Let f : X → S be a morphism of schemes.
Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) S is integral,
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(2) f is of finite type, and
(3) F is a finite type OX-module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and
of finite presentation and such that F|XU is flat over U and of finite presentation
over OXU .

Proof. As S is integral it is irreducible (see Properties, Lemma 27.3.4) and any
nonempty open is dense. Hence we may replace S by an affine open of S and
assume that S = Spec(A) is affine. As S is integral we see that A is a domain. As
f is of finite type, it is quasi-compact, so X is quasi-compact. Hence we can find a
finite affine open cover X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a finite

type A-algebra, see Lemma 28.16.2. Moreover there are finite type Bi-modules
Mi such that F|Xi is the quasi-coherent sheaf associated to the Bi-module Mi,
see Properties, Lemma 27.16.1. Next, for each pair of indices i, j choose an ideal
Iij ⊂ Bi such that Xi \Xi ∩Xj = V (Iij) inside Xi = Spec(Bi). Set Mij = Bi/Iij
and think of it as a Bi-module. Then V (Iij) = Supp(Mij) and Mij is a finite
Bi-module.

At this point we apply Algebra, Lemma 10.114.3 the pairs (A → Bi,Mij) and
to the pairs (A → Bi,Mi). Thus we obtain nonzero fij , fi ∈ A such that (a)
Afij → Bi,fij is flat and of finite presentation and Mij,fij is flat over Afij and of
finite presentation over Bi,fij , and (b) Bi,fi is flat and of finite presentation over
Af and Mi,fi is flat and of finite presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij).

We claim that taking U = D(f) works.

To prove our claim we may replace A by Af , i.e., perform the base change by
U = Spec(Af )→ S. After this base change we see that each of A→ Bi is flat and
of finite presentation and that Mi, Mij are flat over A and of finite presentation over
Bi. This already proves that X → S is quasi-compact, locally of finite presentation,
flat, and that F is flat over S and of finite presentation over OX , see Lemma 28.22.2
and Properties, Lemma 27.16.2. Since Mij is of finite presentation over Bi we see
that Xi∩Xj = Xi \Supp(Mij) is a quasi-compact open of Xi, see Algebra, Lemma
10.39.7. Hence we see that X → S is quasi-separated by Schemes, Lemma 25.21.7.
This proves the proposition. �

It actually turns out that there is also a version of generic flatness over an arbitrary
reduced base. Here it is.

Proposition 28.28.2 (Generic flatness, reduced case). Let f : X → S be a mor-
phism of schemes. Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) S is reduced,
(2) f is of finite type, and
(3) F is a finite type OX-module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and
of finite presentation and such that F|XU is flat over U and of finite presentation
over OXU .

Proof. For the impatient reader: This proof is a repeat of the proof of Proposition
28.28.1 using Algebra, Lemma 10.114.7 instead of Algebra, Lemma 10.114.3.

Since being flat and being of finite presentation is local on the base, see Lemmas
28.26.2 and 28.22.2, we may work affine locally on S. Thus we may assume that
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S = Spec(A), where A is a reduced ring (see Properties, Lemma 27.3.2). As f
is of finite type, it is quasi-compact, so X is quasi-compact. Hence we can find a
finite affine open cover X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a finite

type A-algebra, see Lemma 28.16.2. Moreover there are finite type Bi-modules
Mi such that F|Xi is the quasi-coherent sheaf associated to the Bi-module Mi,
see Properties, Lemma 27.16.1. Next, for each pair of indices i, j choose an ideal
Iij ⊂ Bi such that Xi \Xi ∩Xj = V (Iij) inside Xi = Spec(Bi). Set Mij = Bi/Iij
and think of it as a Bi-module. Then V (Iij) = Supp(Mij) and Mij is a finite
Bi-module.

At this point we apply Algebra, Lemma 10.114.7 the pairs (A→ Bi,Mij) and to the
pairs (A → Bi,Mi). Thus we obtain dense opens U(A → Bi,Mij) ⊂ S and dense
opens U(A → Bi,Mi) ⊂ S with notation as in Algebra, Equation (10.114.3.2).
Since a finite intersection of dense opens is dense open, we see that

U =
⋂

i,j
U(A→ Bi,Mij) ∩

⋂
i
U(A→ Bi,Mi)

is open and dense in S. We claim that U is the desired open.

Pick u ∈ U . By definition of the loci U(A → Bi,Mij) and U(A → B,Mi) there
exist fij , fi ∈ A such that (a) u ∈ D(fi) and u ∈ D(fij), (b) Afij → Bi,fij is flat
and of finite presentation and Mij,fij is flat over Afij and of finite presentation over
Bi,fij , and (c) Bi,fi is flat and of finite presentation over Af and Mi,fi is flat and of
finite presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij). Now it suffices to prove that

X → S is flat and of finite presentation over D(f) and that F restricted to XD(f)

is flat over D(f) and of finite presentation over the structure sheaf of XD(f).

Hence we may replace A by Af , i.e., perform the base change by Spec(Af ) → S.
After this base change we see that each of A→ Bi is flat and of finite presentation
and that Mi, Mij are flat over A and of finite presentation over Bi. This already
proves that X → S is quasi-compact, locally of finite presentation, flat, and that F
is flat over S and of finite presentation over OX , see Lemma 28.22.2 and Properties,
Lemma 27.16.2. Since Mij is of finite presentation over Bi we see that Xi ∩Xj =
Xi \Supp(Mij) is a quasi-compact open of Xi, see Algebra, Lemma 10.39.7. Hence
we see that X → S is quasi-separated by Schemes, Lemma 25.21.7. This proves
the proposition. �

Remark 28.28.3. The results above are a first step towards more refined flattening
techniques for morphisms of schemes. The article [GR71] by Raynaud and Gruson
contains many wonderful results in this direction.

28.29. Morphisms and dimensions of fibres

Let X be a topological space, and x ∈ X. Recall that we have defined dimx(X)
as the minimum of the dimensions of the open neighbourhoods of x in X. See
Topology, Definition 5.9.1.

Lemma 28.29.1. Let f : X → S be a morphism of schemes. Let x ∈ X and set
s = f(x). Assume f is locally of finite type. Then

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)).

Proof. This immediately reduces to the case S = s, and X affine. In this case the
result follows from Algebra, Lemma 10.112.3. �
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Lemma 28.29.2. Let f : X → Y and g : Y → S be morphisms of schemes. Let
x ∈ X and set y = f(x), s = g(y). Assume f and g locally of finite type. Then

dimx(Xs) ≤ dimx(Xy) + dimy(Ys).

Moreover, equality holds if OXs,x is flat over OYs,y, which holds for example if OX,x
is flat over OY,y.

Proof. Note that trdegκ(s)(κ(x)) = trdegκ(y)(κ(x)) + trdegκ(s)(κ(y)). Thus by
Lemma 28.29.1 the statement is equivalent to

dim(OXs,x) ≤ dim(OXy,x) + dim(OYs,y).

For this see Algebra, Lemma 10.108.6. For the flat case see Algebra, Lemma
10.108.7. �

Lemma 28.29.3. Let
X ′

g′
//

f ′

��

X

f

��
S′

g // S
be a fibre product diagram of schemes. Assume f locally of finite type. Suppose
that x′ ∈ X ′, x = g′(x′), s′ = f ′(x′) and s = g(s′) = f(x). Then dimx(Xs) =
dimx′(X

′
s′).

Proof. Follows immediately from Algebra, Lemma 10.112.6. �

The following lemma follows from a nontrivial algebraic result. Namely, the alge-
braic version of Zariski’s main theorem.

Lemma 28.29.4. Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume
f is locally of finite type. The set

Un = {x ∈ X | dimxXf(x) ≤ n}
is open in X.

Proof. This is immediate from Algebra, Lemma 10.121.6 �

Lemma 28.29.5. Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume
f is locally of finite presentation. The open

Un = {x ∈ X | dimxXf(x) ≤ n}
of Lemma 28.29.4 is retrocompact in X. (See Topology, Definition 5.11.1.)

Proof. The topological space X has a basis for its topology consisting of affine
opens U ⊂ X such that the induced morphism f |U : U → S factors through an
affine open V ⊂ S. Hence it is enough to show that U ∩ Un is quasi-compact for
such a U . Note that Un∩U is the same as the open {x ∈ U | dimx Uf(x) ≤ n}. This
reduces us to the case where X and S are affine. In this case the lemma follows
from Algebra, Lemma 10.121.8 (and Lemma 28.22.2). �

Lemma 28.29.6. Let f : X → S be a morphism of schemes. Let x  x′ be a
nontrivial specialization of points in X lying over the same point s ∈ S. Assume f
is locally of finite type. Then

(1) dimx(Xs) ≤ dimx′(Xs),
(2) trdegκ(s)(κ(x)) > trdegκ(s)(κ(x′)), and
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(3) dim(OXs,x) < dim(OXs,x′).

Proof. The first inequality follows from Lemma 28.29.4. The third inequality
follows since OXs,x is a localization of OXs,x′ at a prime ideal, hence any chain of
prime ideals in OXs,x is part of a strictly longer chain of primes in OXs,x′ . The
second inequality follows from Algebra, Lemma 10.112.2. �

28.30. Morphisms of given relative dimension

In order to be able to speak comfortably about morphisms of a given relative
dimension we introduce the following notion.

Definition 28.30.1. Let f : X → S be a morphism of schemes. Assume f is
locally of finite type.

(1) We say f is of relative dimension ≤ d at x if dimx(Xf(x)) ≤ d.
(2) We say f is of relative dimension ≤ d if dimx(Xf(x)) ≤ d for all x ∈ X.
(3) We say f is of relative dimension d if all nonempty fibres Xs are equidi-

mensional of dimension d.

This is not a particularly well behaved notion, but it works well in a number of
situations.

Lemma 28.30.2. Let f : X → S be a morphism of schemes which is locally of
finite type. If f has relative dimension d, then so does any base change of f . Same
for relative dimension ≤ d.

Proof. This is immediate from Lemma 28.29.3. �

Lemma 28.30.3. Let f : X → Y , g : Y → Z be locally of finite type. If f has
relative dimension ≤ d and g has relative dimension ≤ e then g ◦ f has relative
dimension ≤ d+ e. If

(1) f has relative dimension d,
(2) g has relative dimension e, and
(3) f is flat,

then g ◦ f has relative dimension d+ e.

Proof. This is immediate from Lemma 28.29.2. �

In general it is not possible to decompose a morphism into its pieces where the
relative dimension is a given one. However, it is possible if the morphism has
Cohen-Macaulay fibres and is flat of finite presentation.

Lemma 28.30.4. Let f : X → S be a morphism of schemes. Assume that

(1) f is flat,
(2) f is locally of finite presentation, and
(3) for all s ∈ S the fibre Xs is Cohen-Macaulay (Properties, Definition

27.8.1)

Then there exist open and closed subschemes Xd ⊂ X such that X =
∐
d≥0Xd and

f |Xd : Xd → S has relative dimension d.

Proof. This is immediate from Algebra, Lemma 10.126.8. �
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Lemma 28.30.5. Let f : X → S be a morphism of schemes. Assume f is locally
of finite type. Let x ∈ X with s = f(x). Then f is quasi-finite at x if and only if
dimx(Xs) = 0. In particular, f is locally quasi-finite if and only if f has relative
dimension 0.

Proof. If f is quasi-finite at x then κ(x) is a finite extension of κ(s) (by Lemma
28.21.5) and x is isolated in Xs (by Lemma 28.21.6), hence dimx(Xs) = 0 by Lemma
28.29.1. Conversely, if dimx(Xs) = 0 then by Lemma 28.29.1 we see κ(s) ⊂ κ(x) is
algebraic and there are no other points of Xs specializing to x. Hence x is closed
in its fibre by Lemma 28.21.2 and by Lemma 28.21.6 (3) we conclude that f is
quasi-finite at x. �

Lemma 28.30.6. Let f : X → Y be a morphism of locally Noetherian schemes
which is flat, locally of finite type and of relative dimension d. For every point x in
X with image y in Y we have dimx(X) = dimy(Y ) + d.

Proof. After shrinking X and Y to open neighborhoods of x and y, we can assume
that dim(X) = dimx(X) and dim(Y ) = dimy(Y ), by definition of the dimension of
a scheme at a point (Properties, Definition 27.10.1). The morphism f is open by
Lemmas 28.22.9 and 28.26.9. Hence we can shrink Y to arrange that f is surjective.
It remains to show that dim(X) = dim(Y ) + d.

Let a be a point in X with image b in Y . By Algebra, Lemma 10.108.7,

dim(OX,a) = dim(OY,b) + dim(OXb , a).

Taking the supremum over all points a in X, it follows that dim(X) = dim(Y ) + d,
as we want, see Properties, Lemma 27.10.2. �

28.31. The dimension formula

For morphisms between Noetherian schemes we can say a little more about dimen-
sions of local rings. Here is an important (and not so hard to prove) result. Recall
that R(X) denotes the function field of an integral scheme X.

Lemma 28.31.1. Let S be a scheme. Let f : X → S be a morphism of schemes.
Let x ∈ X, and set s = f(x). Assume

(1) S is locally Noetherian,
(2) f is locally of finite type,
(3) X and S integral, and
(4) f dominant.

We have

(28.31.1.1) dim(OX,x) ≤ dim(OS,s) + trdegR(S)R(X)− trdegκ(s)κ(x).

Moreover, equality holds if S is universally catenary.

Proof. The corresponding algebra statement is Algebra, Lemma 10.109.1. �

An application is the construction of a dimension function on any scheme of finite
type over a universally catenary scheme endowed with a dimension function. For
the definition of dimension functions, see Topology, Definition 5.19.1.
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Lemma 28.31.2. Let S be a universally catenary scheme. Let δ : S → Z be a
dimension function. Let f : X → S be a morphism of schemes. Assume f locally
of finite type. Then the map

δ = δX/S : X −→ Z

x 7−→ δ(f(x)) + trdegκ(f(x))κ(x)

is a dimension function on X.

Proof. Let f : X → S be locally of finite type. Let x y, x 6= y be a specialization
in X. We have to show that δX/S(x) > δX/S(y) and that δX/S(x) = δX/S(y) + 1 if
y is an immediate specialization of x.

Choose an affine open V ⊂ S containing the image of y and choose an affine open
U ⊂ X mapping into V and containing y. We may clearly replace X by U and S
by V . Thus we may assume that X = Spec(A) and S = Spec(R) and that f is
given by a ring map R → A. The ring R is universally catenary (Lemma 28.18.2)
and the map R→ A is of finite type (Lemma 28.16.2).

Let q ⊂ A be the prime ideal corresponding to the point x and let p ⊂ R be the
prime ideal corresponding to f(x). The restriction δ′ of δ to S′ = Spec(R/p) ⊂ S
is a dimension function. The ring R/p is universally catenary. The restriction of
δX/S to X ′ = Spec(A/q) is clearly equal to the function δX′/S′ constructed using
the dimension function δ′. Hence we may assume in addition to the above that
R ⊂ A are domains, in other words that X and S are integral schemes.

Note that OX,x is a localization of OX,y at a non-maximal prime (Schemes, Lemma
25.13.2). Hence dim(OX,x) < dim(OX,y) and dim(OX,x) = dim(OX,y) − 1 if y is
an immediate specialization of x.

Write s = f(x) 6= f(y) = s′. We see, using equality in (28.31.1.1), that

δX/S(x)− δX/S(y) = δ(s)− δ(s′)
+ dim(OS,s)− dim(OS,s′)
− dim(OX,x) + dim(OX,y).

Since δ is a dimension function on the scheme S the difference δ(s)− δ(s′) is equal

to codim({s′}, {s}) by Topology, Lemma 5.19.2. As S is integral, catenary this is

equal to codim({s′}, S) − codim({s}, S) (Topology, Lemma 5.10.6). And this in
turn is equal to dim(OS,s′) − dim(OS,s) by Properties, Lemma 27.11.4. Hence we
conclude that

δX/S(x)− δX/S(y) = − dim(OX,x) + dim(OX,y)

and hence the lemma follows from our remarks about the dimensions of these local
rings above. �

Another application of the dimension formula is that the dimension does not change
under “alterations” (to be defined later).

Lemma 28.31.3. Let f : X → Y be a morphism of schemes. Assume that

(1) Y is locally Noetherian,
(2) X and Y are integral schemes,
(3) f is dominant, and
(4) f is locally of finite type.
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Then we have

dim(X) ≤ dim(Y ) + trdegR(Y )R(X).

If f is closed6 then equality holds.

Proof. Let f : X → Y be as in the lemma. Let ξ0  ξ1  . . . ξe be a sequence
of specializations in X. We may assume that x = ξe is a closed point of X, see
Properties, Lemma 27.5.8. In particular, setting y = f(x), we see x is a closed
point of its fibre Xy. By the Hilbert Nullstellensatz we see that κ(x) is a finite
extension of κ(y), see Lemma 28.21.3. By the dimension formula, Lemma 28.31.1,
we see that

dim(OX,x) ≤ dim(OY,y) + trdegR(Y )R(X)

Hence we conclude that e ≤ dim(Y ) + trdegR(Y )R(X) as desired.

Next, assume f is also closed. Say ξ0  ξ1  . . . ξd is a sequence of specializa-
tions in Y . We want to show that dim(X) ≥ d+ r. We may assume that ξ0 = η is
the generic point of Y . The generic fibre Xη is a scheme locally of finite type over
κ(η) = R(Y ). It is nonempty as f is dominant. Hence by Lemma 28.17.10 it is a
Jacobson scheme. Thus by Lemma 28.17.8 we can find a closed point ξ0 ∈ Xη and
the extension κ(η) ⊂ κ(ξ0) is a finite extension. Note that OX,ξ0 = OXη,ξ0 because
η is the generic point of Y . Hence we see that dim(OX,ξ0) = r by Lemma 28.31.1 ap-
plied to the scheme Xη over the universally catenary scheme Spec(κ(η)) (see Lemma
28.18.4) and the point ξ0. This means that we can find ξ−r  . . . ξ−1  ξ0 in X.
On the other hand, as f is closed specializations lift along f , see Topology, Lemma
5.18.6. Thus, as ξ0 lies over η = ξ0 we can find specializations ξ0  ξ1  . . . ξd
lying over ξ0  ξ1  . . . ξd. In other words we have

ξ−r  . . . ξ−1  ξ0  ξ1  . . . ξd

which means that dim(X) ≥ d+ r as desired. �

28.32. Syntomic morphisms

An algebra A over a field k is called a global complete intersection over k if A ∼=
k[x1, . . . , xn]/(f1, . . . , fc) and dim(A) = n− c. An algebra A over a field k is called
a local complete intersection if Spec(A) can be covered by standard opens each of
which are global complete intersections over k. See Algebra, Section 10.130. Recall
that a ring map R → A is syntomic if it is of finite presentation, flat with local
complete intersection rings as fibres, see Algebra, Definition 10.131.1.

Definition 28.32.1. Let f : X → S be a morphism of schemes.

(1) We say that f is syntomic at x ∈ X if there exists a affine open neigh-
bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is syntomic.

(2) We say that f is syntomic if it is syntomic at every point of X.
(3) If S = Spec(k) and f is syntomic, then we say that X is a local complete

intersection over k.

6For example if f is proper, see Definition 28.42.1.
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(4) A morphism of affine schemes f : X → S is called standard syntomic if
there exists a global relative complete intersectionR→ R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 10.131.5) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

In the literature a syntomic morphism is sometimes referred to as a flat local com-
plete intersection morphism. It turns out this is a convenient class of morphisms.
For example one can define a syntomic topology using these, which is finer than
the smooth and étale topologies, but has many of the same formal properties.

A global relative complete intersection (which we used to define standard syntomic
ring maps) is in particular flat. In More on Morphisms, Section 36.42 we will
consider morphisms X → S which locally are of the form

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

for some Koszul-regular sequence f1, . . . , fr in R[x1, . . . , xn]. Such a morphism will
be called a local complete intersection morphism. One we have this definition in
place it will be the case that a morphism is syntomic if and only if it is a flat, local
complete intersection morphism.

Note that there is no separation or quasi-compactness hypotheses in the definition
of a syntomic morphism. Hence the question of being syntomic is local in nature
on the source. Here is the precise result.

Lemma 28.32.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is syntomic.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is syntomic.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is

syntomic.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is

syntomic, for all j ∈ J, i ∈ Ij.
Moreover, if f is syntomic then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is syntomic.

Proof. This follows from Lemma 28.15.3 if we show that the property “R→ A is
syntomic” is local. We check conditions (a), (b) and (c) of Definition 28.15.1. By
Algebra, Lemma 10.131.3 being syntomic is stable under base change and hence
we conclude (a) holds. By Algebra, Lemma 10.131.17 being syntomic is stable
under composition and trivially for any ring R the ring map R → Rf is syntomic.
We conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
10.131.4. �

Lemma 28.32.3. The composition of two morphisms which are syntomic is syn-
tomic.

Proof. In the proof of Lemma 28.32.2 we saw that being syntomic is a local prop-
erty of ring maps. Hence the first statement of the lemma follows from Lemma
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28.15.5 combined with the fact that being syntomic is a property of ring maps that
is stable under composition, see Algebra, Lemma 10.131.17. �

Lemma 28.32.4. The base change of a morphism which is syntomic is syntomic.

Proof. In the proof of Lemma 28.32.2 we saw that being syntomic is a local prop-
erty of ring maps. Hence the lemma follows from Lemma 28.15.5 combined with
the fact that being syntomic is a property of ring maps that is stable under base
change, see Algebra, Lemma 10.131.3. �

Lemma 28.32.5. Any open immersion is syntomic.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 28.32.6. A syntomic morphism is locally of finite presentation.

Proof. True because a syntomic ring map is of finite presentation by definition. �

Lemma 28.32.7. A syntomic morphism is flat.

Proof. True because a syntomic ring map is flat by definition. �

Lemma 28.32.8. A syntomic morphism is universally open.

Proof. Combine Lemmas 28.32.6, 28.32.7, and 28.26.9. �

Let k be a field. Let A be a local k-algebra essentially of finite type over k. Recall
that A is called a complete intersection over k if we can write A ∼= R/(f1, . . . , fc)
where R is a regular local ring essentially of finite type over k, and f1, . . . , fc is a
regular sequence in R, see Algebra, Definition 10.130.5.

Lemma 28.32.9. Let k be a field. Let X be a scheme locally of finite type over k.
The following are equivalent:

(1) X is a local complete intersection over k,
(2) for every x ∈ X there exists an affine open U = Spec(R) ⊂ X neigh-

bourhood of x such that R ∼= k[x1, . . . , xn]/(f1, . . . , fc) is a global complete
intersection over k, and

(3) for every x ∈ X the local ring OX,x is a complete intersection over k.

Proof. The corresponding algebra results can be found in Algebra, Lemmas 10.130.8
and 10.130.9. �

The following lemma says locally any syntomic morphism is standard syntomic.
Hence we can use standard syntomic morphisms as a local model for a syntomic
morphism. Moreover, it says that a flat morphism of finite presentation is syntomic
if and only if the fibres are local complete intersection schemes.

Lemma 28.32.10. Let f : X → S be a morphism of schemes. Assume f locally
of finite presentation. Let x ∈ X be a point. Set s = f(x). The following are
equivalent

(1) The morphism f is syntomic at x.
(2) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard syntomic.
(3) The local ring map OS,s → OX,x is flat and OX,x/msOX,x is a complete

intersection over κ(s) (see Algebra, Definition 10.130.5).
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Proof. Follows from the definitions and Algebra, Lemma 10.131.15. �

Lemma 28.32.11. Let f : X → S be a morphism of schemes. If f is flat, locally
of finite presentation, and all fibres Xs are local complete intersections, then f is
syntomic.

Proof. Clear from Lemmas 28.32.9 and 28.32.10 and the isomorphisms of local
rings OX,x/msOX,x ∼= OXs,x. �

Lemma 28.32.12. Let f : X → S be a morphism of schemes. Assume f locally
of finite type. Formation of the set

T = {x ∈ X | OXf(x),x is a complete intersection over κ(f(x))}

commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). In particular,
if f is assumed flat, and locally of finite presentation then the same holds for the
open set of points where f is syntomic.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres.
Hence the first part is equivalent to Algebra, Lemma 10.130.10. The second part
follows from the first because in that case T is the set of points where f is syntomic
according to Lemma 28.32.10. �

Lemma 28.32.13. Let R be a ring. Let R → A = R[x1, . . . , xn]/(f1, . . . , fc) be a
relative global complete intersection. Set S = Spec(R) and X = Spec(A). Consider
the morphism f : X → S associated to the ring map R → A. The function
x 7→ dimx(Xf(x)) is constant with value n− c.

Proof. By Algebra, Definition 10.131.5 R → A being a relative global complete
intersection means all nonzero fibre rings have dimension n− c. Thus for a prime p
of R the fibre ring κ(p)[x1, . . . , xn]/(f1, . . . , f c) is either zero or a global complete
intersection ring of dimension n−c. By the discussion following Algebra, Definition
10.130.1 this implies it is equidimensional of dimension n− c. Whence the lemma.

�

Lemma 28.32.14. Let f : X → S be a syntomic morphism. The function x 7→
dimx(Xf(x)) is locally constant on X.

Proof. By Lemma 28.32.10 the morphism f locally looks like a standard syntomic
morphism of affines. Hence the result follows from Lemma 28.32.13. �

Lemma 28.32.14 says that the following definition makes sense.

Definition 28.32.15. Let d ≥ 0 be an integer. We say a morphism of schemes
f : X → S is syntomic of relative dimension d if f is syntomic and the function
dimx(Xf(x)) = d for all x ∈ X.

In other words, f is syntomic and the nonempty fibres are equidimensional of
dimension d.
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Lemma 28.32.16. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective and syntomic,
(2) p is syntomic, and
(3) q is locally of finite presentation7.

Then q is syntomic.

Proof. By Lemma 28.26.11 we see that q is flat. Hence it suffices to show that
the fibres of Y → S are local complete intersections, see Lemma 28.32.11. Let
s ∈ S. Consider the morphism Xs → Ys. This is a base change of the morphism
X → Y and hence surjective, and syntomic (Lemma 28.32.4). For the same reason
Xs is syntomic over κ(s). Moreover, Ys is locally of finite type over κ(s) (Lemma
28.16.4). In this way we reduce to the case where S is the spectrum of a field.

Assume S = Spec(k). Let y ∈ Y . Choose an affine open Spec(A) ⊂ Y neighbour-
hood of y. Let Spec(B) ⊂ X be an affine open such that f(Spec(B)) ⊂ Spec(A),
containing a point x ∈ X such that f(x) = y. Choose a surjection k[x1, . . . , xn]→ A
with kernel I. Choose a surjection A[y1, . . . , ym]→ B, which gives rise in turn to a
surjection k[xi, yj ]→ B with kernel J . Let q ⊂ k[xi, yj ] be the prime corresponding
to y ∈ Spec(B) and let p ⊂ k[xi] the prime corresponding to x ∈ Spec(A). Since x
maps to y we have p = q ∩ k[xi]. Consider the following commutative diagram of
local rings:

OX,x Bq k[x1, . . . , xn, y1, . . . , ym]qoo

OY,y

OO

Ap

OO

k[x1, . . . , xn]poo

OO

We claim that the hypotheses of Algebra, Lemma 10.130.12 are satisfied. Condi-
tions (1) and (2) are trivial. Condition (4) follows as X → Y is flat. Condition
(3) follows as the rings OY,y and OXy,x = OX,x/myOX,x are complete intersection
rings by our assumptions that f and p are syntomic, see Lemma 28.32.10. The
output of Algebra, Lemma 10.130.12 is exactly that OY,y is a complete intersection
ring! Hence by Lemma 28.32.10 again we see that Y is syntomic over k at y as
desired. �

28.33. Conormal sheaf of an immersion

Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the short exact sequence

0→ I2 → I → I/I2 → 0

of quasi-coherent sheaves on X. Since the sheaf I/I2 is annihilated by I it corre-
sponds to a sheaf on Z by Lemma 28.4.1. This quasi-coherent OZ-module is called

7In fact, if f is surjective, flat, and of finite presentation and p is syntomic, then both q and
f are syntomic, see Descent, Lemma 34.10.7.
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the conormal sheaf of Z in X and is often simply denoted I/I2 by the abuse of
notation mentioned in Section 28.4.

In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i
as the conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z.
It is often denoted I/I2 where I is the ideal sheaf of the closed immersion i : Z →
X \ ∂Z.

Definition 28.33.1. Let i : Z → X be an immersion. The conormal sheaf CZ/X of

Z in X or the conormal sheaf of i is the quasi-coherent OZ-module I/I2 described
above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted NZ/X . We will not follow this
convention since we would like to reserve the notation NZ/X for the normal sheaf
of the immersion. It is defined as

NZ/X = HomOZ (CZ/X ,OZ) = HomOZ (I/I2,OZ)

provided the conormal sheaf is of finite presentation (otherwise the normal sheaf
may not even be quasi-coherent). We will come back to the normal sheaf later
(insert future reference here).

Lemma 28.33.2. Let i : Z → X be an immersion. The conormal sheaf of i has
the following properties:

(1) Let U ⊂ X be any open such that i(Z) is a closed subset of U . Let I ⊂ OU
be the sheaf of ideals corresponding to the closed subscheme i(Z) ⊂ U .
Then

CZ/X = i∗I = i−1(I/I2)

(2) For any affine open Spec(R) = U ⊂ X such that Z∩U = Spec(R/I) there
is a canonical isomorphism Γ(Z ∩ U, CZ/X) = I/I2.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have I/I2 = I ⊗R R/I. Details omitted. �

Lemma 28.33.3. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of OZ-modules

f∗CZ′/X′ −→ CZ/X

characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′) = I ′/I ′2 −→ I/I2 = Γ(Z ∩ U, CZ/X)

is the one induced by the ring map f ] : R′ → R which has the property f ](I ′) ⊂ I.
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Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.

The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the
canonical map g∗I ′ → OX , see Schemes, Lemmas 25.4.6 and 25.4.7. Hence we get
an induced map of quasi-coherent sheaves g∗(I ′/(I ′)2)→ I/I2. Pulling back by i
gives i∗g∗(I ′/(I ′)2) → i∗(I/I2). Note that i∗(I/I2) = CZ/X . On the other hand,

i∗g∗(I ′/(I ′)2) = f∗(i′)∗(I ′/(I ′)2) = f∗CZ′/X′ . This gives the desired map.

Checking that the map is locally described as the given map I ′/(I ′)2 → I/I2 is a
matter of unwinding the definitions and is omitted. Another observation is that
given any x ∈ i(Z) there do exist affine open neighbourhoods U , U ′ with f(U) ⊂ U ′
and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof omitted. Hence the
requirement of the lemma indeed characterizes the map (and could have been used
to define it). �

Lemma 28.33.4. Let
Z

i
//

f

��

X

g

��
Z ′

i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′ → CZ/X of Lemma 28.33.3 is surjective. If g is flat,
then it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
I ′/(I ′)2 ⊗R′ R → I/I2 is surjective. If R′ → R is flat, then I = I ′ ⊗R′ R and
I2 = (I ′)2 ⊗R′ R and we see the map is an isomorphism. �

Lemma 28.33.5. Let Z → Y → X be immersions of schemes. Then there is a
canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 28.33.3 and i : Z → Y is the first morphism.

Proof. Via Lemma 28.33.3 this translates into the following algebra fact. Suppose
that C → B → A are surjective ring maps. Let I = Ker(B → A), J = Ker(C → A)
and K = Ker(C → B). Then there is an exact sequence

K/K2 ⊗B A→ J/J2 → I/I2 → 0.

This follows immediately from the observation that I = J/K. �

28.34. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 10.127) and the corresponding section in
the chapter on sheaves of modules (Modules, Section 17.23).

Definition 28.34.1. Let f : X → S be a morphism of schemes. The sheaf of
differentials ΩX/S of X over S is the sheaf of differentials of f viewed as a mor-
phism of ringed spaces (Modules, Definition 17.23.10) equipped with its universal
S-derivation

dX/S : OX −→ ΩX/S .
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It turns out that ΩX/S is a quasi-coherent OX -module for example as it is isomor-
phic to the conormal sheaf of the diagonal morphism ∆ : X → X ×S X (Lemma
28.34.5). We have defined the module of differentials of X over S using a universal
property, namely as the receptacle of the universal derivation. If you have any
other construction of the sheaf of relative differentials which satisfies this universal
property then, by the Yoneda lemma, it will be canonically isomorphic to the one
defined above. For convenience we restate the universal property here.

Lemma 28.34.2. Let f : X → S be a morphism of schemes. The map

HomOX (ΩX/S ,F) −→ DerS(OX ,F), α 7−→ α ◦ dX/S

is an isomorphism of functors Mod(OX)→ Sets.

Proof. This is just a restatement of the definition. �

Lemma 28.34.3. Let f : X → S be a morphism of schemes. Let U ⊂ X, V ⊂ S
be open subschemes such that f(U) ⊂ V . Then there is a unique isomorphism
ΩX/S |U = ΩU/V of OU -modules such that dX/S |U = dU/V .

Proof. This is a special case of Modules, Lemma 17.23.5 if we use the canonical
identification f−1OS |U = (f |U )−1OV . �

From now on we will use these canonical identifications and simply write ΩU/S or
ΩU/V for the restriction of ΩX/S to U .

Lemma 28.34.4. Let R→ A be a ring map. Let F be a sheaf of OX-modules on
X = Spec(A). Set S = Spec(R). The rule which associates to an S-derivation on
F its action on global sections defines a bijection between the set of S-derivations
of F and the set of R-derivations on M = Γ(X,F).

Proof. Let D : A→M be an R-derivation. We have to show there exists a unique
S-derivation on F which gives rise to D on global sections. Let U = D(f) ⊂ X
be a standard affine open. Any element of Γ(U,OX) is of the form a/fn for some
a ∈ A and n ≥ 0. By the Leibniz rule we have

D(a)|U = a/fnD(fn)|U + fnD(a/fn)

in Γ(U,F). Since f acts invertibly on Γ(U,F) this completely determines the value
ofD(a/fn) ∈ Γ(U,F). This proves uniqueness. Existence follows by simply defining

D(a/fn) := (1/fn)D(a)|U − a/f2nD(fn)|U
and proving this has all the desired properties (on the basis of standard opens of
X). Details omitted. �

Lemma 28.34.5. Let f : X → S be a morphism of schemes. For any pair of
affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with f(U) ⊂ V there is a unique
isomorphism

Γ(U,ΩX/S) = ΩA/R.

compatible with dX/S and d : A→ ΩA/R.

Proof. We claim that the A-module M = Γ(U,ΩX/S) = Γ(U,ΩU/V ) together with
dX/S = dU/V : A→M is a universal R-derivation of A. This follows by combining
Lemmas 28.34.4 and 28.34.2 above. The universal property of d : A → ΩA/R
(see Algebra, Lemma 10.127.3) and the Yoneda lemma (Categories, Lemma 4.3.5)
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imply there is a unique isomorphism of A-modules M ∼= ΩA/R compatible with
derivations. �

Remark 28.34.6. The lemma above gives a second way of constructing the module
of differentials. Namely, let f : X → S be a morphism of schemes. Consider the
collection of all affine opens U ⊂ X which map into an affine open of S. These
form a basis for the topology on X. Thus it suffices to define Γ(U,ΩX/S) for such
U . We simply set Γ(U,ΩX/S) = ΩA/R if A, R are as in Lemma 28.34.5 above.
This works, but it takes somewhat more algebraic preliminaries to construct the
restriction mappings and to verify the sheaf condition with this ansatz.

The following lemma gives yet another way to define the sheaf of differentials and
it in particular shows that ΩX/S is quasi-coherent if X and S are schemes.

Lemma 28.34.7. Let f : X → S be a morphism of schemes. There is a canon-
ical isomorphism between ΩX/S and the conormal sheaf of the diagonal morphism
∆X/S : X −→ X ×S X.

Proof. We first establish the existence of a couple of “global” sheaves and global
maps of sheaves, and further down we describe the constructions over some affine
opens.

Recall that ∆ = ∆X/S : X → X ×S X is an immersion, see Schemes, Lemma
25.21.2. Let J be the ideal sheaf of the immersion which lives over some open
open subscheme W of X ×S X such that ∆(X) ⊂W is closed. Let us take the one
that was found in the proof of Schemes, Lemma 25.21.2. Note that the sheaf of
rings OW /J 2 is supported on ∆(X). Moreover it sits in a short exact sequence of
sheaves

0→ J /J 2 → OW /J 2 → ∆∗OX → 0.

Using ∆−1 we can think of this as a surjection of sheaves of f−1OS-algebras with
kernel the conormal sheaf of ∆ (see Definition 28.33.1 and Lemma 28.33.2).

0→ CX/X×SX → ∆−1(OW /J 2)→ OX → 0

This places us in the situation of Modules, Lemma 17.23.11. The projection mor-
phisms pi : X ×S X → X, i = 1, 2 induce maps of sheaves of rings (pi)

] :
(pi)

−1OX → OX×SX . We may restrict toW and quotient by J 2 to get (pi)
−1OX →

OW /J 2. Since ∆−1p−1
i OX = OX we get maps

si : OX → ∆−1(OW /J 2).

Both s1 and s2 are sections to the map ∆−1(OW /J 2) → OX , as in Modules,
Lemma 17.23.11. Thus we get an S-derivation d = s2 − s1 : OX → CX/X×SX . By
the universal property of the module of differentials we find a unique OX -linear
map

ΩX/S −→ CX/X×SX , fdg 7−→ fs2(g)− fs1(g)

To see the map is an isomorphism, let us work this out over suitable affine opens.
We can cover X by affine opens Spec(A) = U ⊂ X whose image is contained in
an affine open Spec(R) = V ⊂ S. According to the proof of Schemes, Lemma
25.21.2 U ×V U ⊂ X ×S X is an affine open contained in the open W mentioned
above. Also U ×V U = Spec(A ⊗R A). The sheaf J corresponds to the ideal
J = Ker(A ⊗R A → A). The short exact sequence to the short exact sequence of
A⊗R A-modules

0→ J/J2 → (A⊗R A)/J2 → A→ 0

http://stacks.math.columbia.edu/tag/01UU
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The sections si correspond to the ring maps

A −→ (A⊗R A)/J2, s1 : a 7→ a⊗ 1, s2 : a 7→ 1⊗ a.
By Lemma 28.33.2 we have Γ(U, CX/X×SX) = J/J2 and by Lemma 28.34.5 we have
Γ(U,ΩX/S) = ΩA/R. The map above is the map adb 7→ a ⊗ b − ab ⊗ 1 which is
shown to be an isomorphism in Algebra, Lemma 10.127.13. �

Lemma 28.34.8. Let
X ′

��

f
// X

��
S′ // S

be a commutative diagram of schemes. The canonical map OX → f∗OX′ composed
with the map f∗dX′/S′ : f∗OX′ → f∗ΩX′/S′ is a S-derivation. Hence we obtain a
canonical map of OX-modules ΩX/S → f∗ΩX′/S′ , and by adjointness of f∗ and f∗

a canonical OX′-module homomorphism

cf : f∗ΩX/S −→ ΩX′/S′ .

It is uniquely characterized by the property that f∗dX/S(h) maps to dX′/S′(f
∗h) for

any local section h of OX .

Proof. This is a special case of Modules, Lemma 17.23.12. In the case of schemes
we can also use the functoriality of the conormal sheaves (see Lemma 28.33.3)
and Lemma 28.34.7 to define cf . Or we can use the characterization in the last
line of the lemma to glue maps defined on affine patches (see Algebra, Equation
(10.127.5.1)). �

Lemma 28.34.9. Let f : X → Y , g : Y → S be morphisms of schemes. Then
there is a canonical exact sequence

f∗ΩY/S → ΩX/S → ΩX/Y → 0

where the maps come from applications of Lemma 28.34.8.

Proof. This is the sheafified version of Algebra, Lemma 10.127.7. �

Lemma 28.34.10. Let X → S be a morphism of schemes. Let g : S′ → S be a
morphism of schemes. Let X ′ = XS′ be the base change of X. Denote g′ : X ′ → X
the projection. Then the map

(g′)∗ΩX/S → ΩX′/S′

of Lemma 28.34.8 is an isomorphism.

Proof. This is the sheafified version of Algebra, Lemma 10.127.12. �

Lemma 28.34.11. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let p : X ×S Y → X and q : X ×S Y → Y be the projection
morphisms. The maps from Lemma 28.34.8

p∗ΩX/S ⊕ q∗ΩY/S −→ ΩX×SY/S

give an isomorphism.

Proof. By Lemma 28.34.10 the composition p∗ΩX/S → ΩX×SY/S → ΩX×SY/Y is
an isomorphism, and similarly for q. Moreover, the cokernel of p∗ΩX/S → ΩX×SY/S
is ΩX×SY/X by Lemma 28.34.9. The result follows. �
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Lemma 28.34.12. Let f : X → S be a morphism of schemes. If f is locally of
finite type, then ΩX/S is a finite type OX-module.

Proof. Immediate from Algebra, Lemma 10.127.16, Lemma 28.34.5, Lemma 28.16.2,
and Properties, Lemma 27.16.1. �

Lemma 28.34.13. Let f : X → S be a morphism of schemes. If f is locally of
finite type, then ΩX/S is an OX-module of finite presentation.

Proof. Immediate from Algebra, Lemma 10.127.15, Lemma 28.34.5, Lemma 28.22.2,
and Properties, Lemma 27.16.2. �

Lemma 28.34.14. If X → S is an immersion, or more generally a monomor-
phism, then ΩX/S is zero.

Proof. This is true because ∆X/S is an isomorphism in this case and hence has
trivial conormal sheaf. Hence ΩX/S = 0 by Lemma 28.34.7. The algebraic version
is Algebra, Lemma 10.127.5. �

Lemma 28.34.15. Let i : Z → X be an immersion of schemes over S. There is a
canonical exact sequence

CZ/X → i∗ΩX/S → ΩZ/S → 0

where the first arrow is induced by dX/S and the second arrow comes from Lemma
28.34.8.

Proof. This is the sheafified version of Algebra, Lemma 10.127.9. However we
should make sure we can define the first arrow globally. Hence we explain the
meaning of “induced by dX/S” here. Namely, we may assume that i is a closed
immersion by shrinking X. Let I ⊂ OX be the sheaf of ideals corresponding to
Z ⊂ X. Then dX/S : I → ΩX/S maps the subsheaf I2 ⊂ I to IΩX/S . Hence it

induces a map I/I2 → ΩX/S/IΩX/S which is OX/I-linear. By Lemma 28.4.1 this
corresponds to a map CZ/X → i∗ΩX/S as desired. �

Lemma 28.34.16. Let i : Z → X be an immersion of schemes over S, and assume
i (locally) has a left inverse. Then the canonical sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0

of Lemma 28.34.15 is (locally) split exact. In particular, if s : S → X is a section
of the structure morphism X → S then the map CS/X → s∗ΩX/S induced by dX/S
is an isomorphism.

Proof. Follows from Algebra, Lemma 10.127.10. Clarification: if g : X → Z is a
left inverse of i, then i∗cg is a right inverse of the map i∗ΩX/S → ΩZ/S . Also, if s
is a section, then it is an immersion s : Z = S → X over S (see Schemes, Lemma
25.21.12) and in that case ΩZ/S = 0. �

Remark 28.34.17. Let X → S be a morphism of schemes. According to Lemma
28.34.11 we have

ΩX×SX/S = pr∗1ΩX/S ⊕ pr∗2ΩX/S
On the other hand, the diagonal morphism ∆ : X → X ×S X is an immersion,
which locally has a left inverse. Hence by Lemma 28.34.16 we obtain a canonical
short exact sequence

0→ CX/X×SX → ΩX/S ⊕ ΩX/S → ΩX/S → 0
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Note that the right arrow is (1, 1) which is indeed a split surjection. On the other
hand, by Lemma 28.34.7 we have an identification ΩX/S = CX/X×SX . Because we
chose dX/S(f) = s2(f)− s1(f) in this identification it turns out that the left arrow

is the map (−1, 1)8.

Lemma 28.34.18. Let

Z
i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions. Then there
is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 28.33.3 and the second from Lemma
28.34.15.

Proof. The algebraic version of this is Algebra, Lemma 10.129.7. �

28.35. Smooth morphisms

Let f : X → Y be a map of topological spaces. Consider the following condition:

(∗) For every x ∈ X there exist open neighbourhoods x ∈ U ⊂ X and f(x) ∈
V ⊂ Y , and an integer d such that f(U) = V and such that there is an
isomorphism

V ×Bd(0, 1)
∼= //

��

U //

��

X

��
V V // Y

where Bd(0, 1) ⊂ Rd is a ball of radius 1 around 0.

Smooth morphisms are the analogue of such morphisms in the category of schemes.
See Lemma 28.35.11 and Lemma 28.37.20.

Contrary to expectations (perhaps) the notion of a smooth ring map is not defined
solely in terms of the module of differentials. Namely, recall that R→ A is a smooth
ring map if A is of finite presentation over R and if the naive cotangent complex of
A over R is quasi-isomorphic to a projective module placed in degree 0, see Algebra,
Definition 10.132.1.

Definition 28.35.1. Let f : X → S be a morphism of schemes.

(1) We say that f is smooth at x ∈ X if there exists a affine open neighbour-
hood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is smooth.

(2) We say that f is smooth if it is smooth at every point of X.

8Namely, the local section dX/S(f) = 1⊗f−f⊗1 of the ideal sheaf of ∆ maps via dX×SX/X
to the local section 1⊗1⊗1⊗f−1⊗f⊗1⊗1−1⊗1⊗f⊗1+f⊗1⊗1⊗1 = pr∗2dX/S(f)−pr∗1dX/S(f).
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(3) A morphism of affine schemes f : X → S is called standard smooth if
there exists a standard smooth ring map R → R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 10.132.6) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

A pleasing feature of this definition is that the set of points where a morphism is
smooth is automatically open.

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being smooth is local in nature on the source. Here is the
precise result.

Lemma 28.35.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is smooth.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is smooth.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is smooth.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is

smooth, for all j ∈ J, i ∈ Ij.
Moreover, if f is smooth then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is smooth.

Proof. This follows from Lemma 28.15.3 if we show that the property “R→ A is
smooth” is local. We check conditions (a), (b) and (c) of Definition 28.15.1. By
Algebra, Lemma 10.132.4 being smooth is stable under base change and hence we
conclude (a) holds. By Algebra, Lemma 10.132.14 being smooth is stable under
composition and for any ring R the ring map R → Rf is (standard) smooth. We
conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
10.132.13. �

The following lemma characterizes a smooth morphism as a flat, finitely presented
morphism with smooth fibres. Note that schemes smooth over a field are discussed
in more detail in Varieties, Section 32.15.

Lemma 28.35.3. Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and all fibres Xs are smooth, then f is smooth.

Proof. Follows from Algebra, Lemma 10.132.16. �

Lemma 28.35.4. The composition of two morphisms which are smooth is smooth.

Proof. In the proof of Lemma 28.35.2 we saw that being smooth is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 28.15.5
combined with the fact that being smooth is a property of ring maps that is stable
under composition, see Algebra, Lemma 10.132.14. �

Lemma 28.35.5. The base change of a morphism which is smooth is smooth.
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Proof. In the proof of Lemma 28.35.2 we saw that being smooth is a local property
of ring maps. Hence the lemma follows from Lemma 28.15.5 combined with the
fact that being smooth is a property of ring maps that is stable under base change,
see Algebra, Lemma 10.132.4. �

Lemma 28.35.6. Any open immersion is smooth.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 28.35.7. A smooth morphism is syntomic.

Proof. See Algebra, Lemma 10.132.10. �

Lemma 28.35.8. A smooth morphism is locally of finite presentation.

Proof. True because a smooth ring map is of finite presentation by definition. �

Lemma 28.35.9. A smooth morphism is flat.

Proof. Combine Lemmas 28.32.7 and 28.35.7. �

Lemma 28.35.10. A smooth morphism is universally open.

Proof. Combine Lemmas 28.35.9, 28.35.8, and 28.26.9. Or alternatively, combine
Lemmas 28.35.7, 28.32.8. �

The following lemma says locally any smooth morphism is standard smooth. Hence
we can use standard smooth morphisms as a local model for a smooth morphism.

Lemma 28.35.11. Let f : X → S be a morphism of schemes. Let x ∈ X be a
point. Set s = f(x). The following are equivalent

(1) The morphism f is smooth at x.
(2) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard smooth.

Proof. Follows from the definitions and Algebra, Lemmas 10.132.7 and 10.132.10.
�

Lemma 28.35.12. Let f : X → S be a morphism of schemes. Assume f is smooth.
Then the module of differentials ΩX/S of X over S is finite locally free and

rankx(ΩX/S) = dimx(Xf(x))

for every x ∈ X.

Proof. The statement is local on X and S. By Lemma 28.35.11 above we may
assume that f is a standard smooth morphism of affines. In this case the result fol-
lows from Algebra, Lemma 10.132.7 (and the definition of a relative global complete
intersection, see Algebra, Definition 10.131.5). �

Lemma 28.35.12 says that the following definition makes sense.

Definition 28.35.13. Let d ≥ 0 be an integer. We say a morphism of schemes
f : X → S is smooth of relative dimension d if f is smooth and ΩX/S is finite
locally free of constant rank d.
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In other words, f is smooth and the nonempty fibres are equidimensional of di-
mension d. By Lemma 28.35.14 below this is also the same as requiring: (a) f is
locally of finite presentation, (b) f is flat, (c) all nonempty fibres equidimensional
of dimension d, and (d) ΩX/S finite locally free of rank d. It is not enough to simply
assume that f is flat, of finite presentation, and ΩX/S is finite locally free of rank
d. A counter example is given by Spec(Fp[t])→ Spec(Fp[t

p]).

Here is a differential criterion of smoothness at a point. There are many variants
of this result all of which may be useful at some point. We will just add them here
as needed.

Lemma 28.35.14. Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is smooth at x.
(2) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x can

be generated by at most dimx(Xf(x)) elements.
(3) The local ring map OS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x κ(x) = ΩX/S,x ⊗OX,x κ(x)

can be generated by at most dimx(Xf(x)) elements.
(4) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard smooth.
(5) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with

x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x1, . . . , xn]/(f1, . . . , fc)

with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2

. . . . . . . . . . . .
∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an element of A not in q.

Proof. Note that if f is smooth at x, then we see from Lemma 28.35.11 that (4)
holds, and (5) is a slightly weakened version of (4). Moreover, this implies that the
ring map OS,s → OX,x is flat (see Lemma 28.35.9) and that ΩX/S is finite locally
free of rank equal to dimx(Xs) (see Lemma 28.35.12). This implies (2) and (3).

By Lemma 28.34.10 the module of differentials ΩXs/s of the fibre Xs over κ(s) is
the pullback of the module of differentials ΩX/S of X over S. Hence the displayed
equality in part (3) of the lemma. By Lemma 28.34.12 these modules are of finite
type. Hence the minimal number of generators of the modules ΩX/S,x and ΩXs/s,x
is the same and equal to the dimension of this κ(x)-vector space by Nakayama’s
Lemma (Algebra, Lemma 10.19.1). This in particular shows that (2) and (3) are
equivalent.

Combining Algebra, Lemmas 10.132.16 and 10.135.3 shows that (2) and (3) imply
(1). Finally, (5) implies (4) see for example Algebra, Example 10.132.8. �
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Lemma 28.35.15. Let f : X → S be a morphism of schemes. Assume f locally
of finite type. Formation of the set

T = {x ∈ X | Xf(x) is smooth over κ(f(x)) at x}
commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). In particular,
if f is assumed flat, and locally of finite presentation then the same holds for the
open set of points where f is smooth.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres.
Hence the first part is equivalent to Algebra, Lemma 10.132.18. The second part
follows from the first because in that case T is the (open) set of points where f is
smooth according to Lemma 28.35.3. �

Here is a lemma that actually uses the vanishing of H−1 of the naive cotangent
complex for a smooth ring map.

Lemma 28.35.16. Let f : X → Y , g : Y → S be morphisms of schemes. Assume
f is smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0

(see Lemma 28.34.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A→ B → C with B → C smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of Algebra, Lemma 10.127.7 is exact. This is Algebra, Lemma 10.134.1. �

Lemma 28.35.17. Let i : Z → X be an immersion of schemes over S. Assume
that Z is smooth over S. Then the canonical exact sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0

of Lemma 28.34.15 is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A → B → C with A → C smooth and B → C surjective with kernel J , then the
sequence

0→ J/J2 → C ⊗B ΩB/A → ΩC/A → 0

of Algebra, Lemma 10.127.9 is exact. This is Algebra, Lemma 10.134.2. �

Lemma 28.35.18. Let
Z

i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions and X → Y
is smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0
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of Lemma 28.34.18 is exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A→ B → C with A→ C surjective and A→ B smooth, then the sequence

0→ I/I2 → J/J2 → C ⊗B ΩB/A → 0

of Algebra, Lemma 10.129.7 is exact. This is Algebra, Lemma 10.134.3. �

Lemma 28.35.19. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, and smooth,
(2) p is smooth, and
(3) q is locally of finite presentation9.

Then q is smooth.

Proof. By Lemma 28.26.11 we see that q is flat. Pick a point y ∈ Y . Pick a point
x ∈ X mapping to y. Suppose f has relative dimension a at x and p has relative
dimension b at x. By Lemma 28.35.12 this means that ΩX/S,x is free of rank b
and ΩX/Y,x is free of rank a. By the short exact sequence of Lemma 28.35.16 this
means that (f∗ΩY/S)x is free of rank b − a. By Nakayama’s Lemma this implies
that ΩY/S,y can be generated by b − a elements. Also, by Lemma 28.29.2 we see
that dimy(Ys) = b− a. Hence we conclude that Y → S is smooth at y by Lemma
28.35.14 part (2). �

In the situation of the following lemma the image of σ is locally on X cut out by a
regular sequence, see Divisors, Lemma 30.14.7.

Lemma 28.35.20. Let f : X → S be a morphism of schemes. Let σ : S → X be
a section of f . Let s ∈ S be a point such that f is smooth at x = σ(s). Then there
exist affine open neighbourhoods Spec(A) = U ⊂ S of s and Spec(B) = V ⊂ X of
x such that

(1) f(V ) ⊂ U and σ(U) ⊂ V ,
(2) with I = Ker(σ# : B → A) the module I/I2 is a free A-module, and
(3) B∧ ∼= A[[x1, . . . , xd]] as A-algebras where B∧ denotes the completion of B

with respect to I.

Proof. Pick an affine open U ⊂ S containing s Pick an affine open V ⊂ f−1(U)
containing x. Pick an affine open U ′ ⊂ σ−1(V ) containing s. Note that V ′ =
f−1(U ′) ∩ V is affine as it is equal to the fibre product V ′ = U ′ ×U V . Then
U ′ and V ′ satisfy (1). Write U ′ = Spec(A′) and V ′ = Spec(B′). By Algebra,
Lemma 10.134.4 the module I ′/(I ′)2 is finite locally free as a A′-module. Hence
after replacing U ′ by a smaller affine open U ′′ ⊂ U ′ and V ′ by V ′′ = V ′ ∩ f−1(U ′′)
we obtain the situation where I ′′/(I ′′)2 is free, i.e., (2) holds. In this case (3) holds
also by Algebra, Lemma 10.134.4. �

9In fact this is implied by (1) and (2), see Descent, Lemma 34.10.3. Moreover, it suffices to
assume f is surjective, flat and locally of finite presentation, see Descent, Lemma 34.10.5.
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The dimension of a scheme X at a point x (Properties, Definition 27.10.1) is just
the dimension of X at x as a topological space, see Topology, Definition 5.9.1. This
is not the dimension of the local ring OX,x, in general.

Lemma 28.35.21. Let f : X → Y be a smooth morphism of locally Noetherian
schemes. For every point x in X with image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),

where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Lemma
28.35.12. Then f is flat (Lemma 28.35.9), locally of finite type (Lemma 28.35.8),
and of relative dimension d. Hence the result follows from Lemma 28.30.6. �

28.36. Unramified morphisms

We briefly discuss unramified morphisms before the (perhaps) more interesting class
of étale morphisms. Recall that a ring map R → A is unramified if it is of finite
type and ΩA/R = 0 (this is the definition of [Ray70]). A ring map R→ A is called
G-unramified if it is of finite presentation and ΩA/R = 0 (this is the definition of
[DG67]). See Algebra, Definition 10.144.1.

Definition 28.36.1. Let f : X → S be a morphism of schemes.

(1) We say that f is unramified at x ∈ X if there exists a affine open neigh-
bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is unramified.

(2) We say that f is G-unramified at x ∈ X if there exists a affine open
neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S
with f(U) ⊂ V such that the induced ring map R→ A is G-unramified.

(3) We say that f is unramified if it is unramified at every point of X.
(4) We say that f is G-unramified if it is G-unramified at every point of X.

Note that a G-unramified morphism is unramified. Hence any result for unramified
morphisms implies the corresponding result for G-unramified morphisms. More-
over, if S is locally Noetherian then there is no difference between G-unramified
and unramified morphisms, see Lemma 28.36.6. A pleasing feature of this definition
is that the set of points where a morphism is unramified (resp. G-unramified) is
automatically open.

Lemma 28.36.2. Let f : X → S be a morphism of schemes. Then

(1) f is unramified if and only if f is locally of finite type and ΩX/S = 0, and
(2) f is G-unramified if and only if f is locally of finite presentation and

ΩX/S = 0.

Proof. By definition a ring map R→ A is unramified (resp. G-unramified) if and
only if it is of finite type (resp. finite presentation) and ΩA/R = 0. Hence the lemma
follows directly from the definitions and Lemma 28.34.5. �

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being unramified is local in nature on the source. Here is the
precise result.
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Lemma 28.36.3. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is unramified (resp. G-unramified).
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is unramified (resp. G-unramified).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is

unramified (resp. G-unramified).
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is

unramified (resp. G-unramified), for all j ∈ J, i ∈ Ij.
Moreover, if f is unramified (resp. G-unramified) then for any open subschemes
U ⊂ X, V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is unramified (resp.
G-unramified).

Proof. This follows from Lemma 28.15.3 if we show that the property “R → A
is unramified” is local. We check conditions (a), (b) and (c) of Definition 28.15.1.
These properties are proved in Algebra, Lemma 10.144.3. �

Lemma 28.36.4. The composition of two morphisms which are unramified is un-
ramified. The same holds for G-unramified morphisms.

Proof. The proof of Lemma 28.36.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the first statement of the lemma follows from
Lemma 28.15.5 combined with the fact that being unramified (resp. G-unramified)
is a property of ring maps that is stable under composition, see Algebra, Lemma
10.144.3. �

Lemma 28.36.5. The base change of a morphism which is unramified is unrami-
fied. The same holds for G-unramified morphisms.

Proof. The proof of Lemma 28.36.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the lemma follows from Lemma 28.15.5 com-
bined with the fact that being unramified (resp. G-unramified) is a property of ring
maps that is stable under base change, see Algebra, Lemma 10.144.3. �

Lemma 28.36.6. Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian. Then f is unramified if and only if f is G-unramified.

Proof. Follows from the definitions and Lemma 28.22.9. �

Lemma 28.36.7. Any open immersion is G-unramified.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 28.36.8. A closed immersion i : Z → X is unramified. It is G-unramified
if and only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is
of finite type (as an OX-module).

Proof. Follows from Lemma 28.22.7 and Algebra, Lemma 10.144.3. �

Lemma 28.36.9. An unramified morphism is locally of finite type. A G-unramified
morphism is locally of finite presentation.
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Proof. An unramified ring map is of finite type by definition. A G-unramified ring
map is of finite presentation by definition. �

Lemma 28.36.10. Let f : X → S be a morphism of schemes. If f is unramified
at x then f is quasi-finite at x. In particular, an unramified morphism is locally
quasi-finite.

Proof. See Algebra, Lemma 10.144.6. �

Lemma 28.36.11. Fibres of unramified morphisms.

(1) Let X be a scheme over a field k. The structure morphism X → Spec(k) is
unramified if and only if X is a disjoint union of spectra of finite separable
field extensions of k.

(2) If f : X → S is an unramified morphism then for every s ∈ S the fibre Xs

is a disjoint union of spectra of finite separable field extensions of κ(s).

Proof. Part (2) follows from part (1) and Lemma 28.36.5. Let us prove part
(1). We first use Algebra, Lemma 10.144.7. This lemma implies that if X is a
disjoint union of spectra of finite separable field extensions of k then X → Spec(k)
is unramified. Conversely, suppose that X → Spec(k) is unramified. By Algebra,
Lemma 10.144.5 for every x ∈ X the residue field extension k ⊂ κ(x) is finite
separable. Hence all points of X are closed points (see Lemma 28.21.2 for example).
Thus X is a discrete space, in particular the disjoint union of the spectra of its
local rings. By Algebra, Lemma 10.144.5 again these local rings are fields, and we
win. �

The following lemma characterizes an unramified morphisms as morphisms locally
of finite type with unramified fibres.

Lemma 28.36.12. Let f : X → S be a morphism of schemes.

(1) If f is unramified then for any x ∈ X the field extension κ(f(x)) ⊂ κ(x)
is finite separable.

(2) If f is locally of finite type, and for every s ∈ S the fibre Xs is a dis-
joint union of spectra of finite separable field extensions of κ(s) then f is
unramified.

(3) If f is locally of finite presentation, and for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s) then f
is G-unramified.

Proof. Follows from Algebra, Lemmas 10.144.5 and 10.144.7. �

Here is a characterization of unramified morphisms in terms of the diagonal mor-
phism.

Lemma 28.36.13. Let f : X → S be a morphism.

(1) If f is unramified, then the diagonal morphism ∆ : X → X ×S X is an
open immersion.

(2) If f is locally of finite type and ∆ is an open immersion, then f is un-
ramified.

(3) If f is locally of finite presentation and ∆ is an open immersion, then f
is G-unramified.
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Proof. The first statement follows from Algebra, Lemma 10.144.4. The second
statement from the fact that ΩX/S is the conormal sheaf of the diagonal morphism
(Lemma 28.34.7) and hence clearly zero if ∆ is an open immersion. �

Lemma 28.36.14. Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite type (resp. locally of finite presentation).
The following are equivalent:

(1) The morphism f is unramified (resp. G-unramified) at x.
(2) The fibre Xs is unramified over κ(s) at x.
(3) The OX,x-module ΩX/S,x is zero.
(4) The OXs,x-module ΩXs/s,x is zero.
(5) The κ(x)-vector space

ΩXs/s,x ⊗OXs,x κ(x) = ΩX/S,x ⊗OX,x κ(x)

is zero.
(6) We have msOX,x = mx and the field extension κ(s) ⊂ κ(x) is finite sepa-

rable.

Proof. Note that if f is unramified at x, then we see that ΩX/S = 0 in a neighbour-
hood of x by the definitions and the results on modules of differentials in Section
28.34. Hence (1) implies (3) and the vanishing of the right hand vector space in (5).
It also implies (2) because by Lemma 28.34.10 the module of differentials ΩXs/s of
the fibre Xs over κ(s) is the pullback of the module of differentials ΩX/S of X over
S. This fact on modules of differentials also implies the displayed equality of vector
spaces in part (4). By Lemma 28.34.12 the modules ΩX/S,x and ΩXs/s,x are of
finite type. Hence he modules ΩX/S,x and ΩXs/s,x are zero if and only if the corre-
sponding κ(x)-vector space in (4) is zero by Nakayama’s Lemma (Algebra, Lemma
10.19.1). This in particular shows that (3), (4) and (5) are equivalent. The support
of ΩX/S is closed in X, see Modules, Lemma 17.9.6. Assumption (3) implies that
x is not in the support. Hence ΩX/S is zero in a neighbourhood of x, which implies
(1). The equivalence of (1) and (3) applied to Xs → s implies the equivalence of
(2) and (4). At this point we have seen that (1) – (5) are equivalent.

Alternatively you can use Algebra, Lemma 10.144.3 to see the equivalence of (1) –
(5) more directly.

The equivalence of (1) and (6) follows from Lemma 28.36.12. It also follows more
directly from Algebra, Lemmas 10.144.5 and 10.144.7. �

Lemma 28.36.15. Let f : X → S be a morphism of schemes. Assume f locally
of finite type. Formation of the open set

T = {x ∈ X | Xf(x) is unramified over κ(f(x)) at x}
= {x ∈ X | X is unramified over S at x}

commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). If f is
assumed locally of finite presentation then the same holds for the open set of points
where f is G-unramified.
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Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres. In
particular

ΩXs/s,x ⊗OXs,x κ(x′) = ΩX′
s′/s

′,x′ ⊗OX′
s′
,x′
κ(x′)

see Lemma 28.34.10. Whence x′ ∈ T ′ if and only if x ∈ T by Lemma 28.36.14. The
second part follows from the first because in that case T is the (open) set of points
where f is G-unramified according to Lemma 28.36.14. �

Lemma 28.36.16. Let f : X → Y be a morphism of schemes over S.

(1) If X is unramified over S, then f is unramified.
(2) If X is G-unramified over S and Y of finite type over S, then f is G-

unramified.

Proof. Assume that X is unramified over S. By Lemma 28.16.8 we see that f
is locally of finite type. By assumption we have ΩX/S = 0. Hence ΩX/Y = 0 by
Lemma 28.34.9. Thus f is unramified. If X is G-unramified over S and Y of finite
type over S, then by Lemma 28.22.11 we see that f is locally of finite presentation
and we conclude that f is G-unramified. �

Lemma 28.36.17. Let S be a scheme. Let X, Y be schemes over S. Let f, g :
X → Y be morphisms over S. Let x ∈ X. Assume that

(1) the structure morphism Y → S is unramified,
(2) f(x) = g(x) in Y , say y = f(x) = g(x), and
(3) the induced maps f ], g] : κ(y)→ κ(x) are equal.

Then there exists an open neighbourhood of x in X on which f and g are equal.

Proof. Consider the morphism (f, g) : X → Y ×S Y . By assumption (1) and
Lemma 28.36.13 the inverse image of ∆Y/S(Y ) is open in X. And assumptions (2)
and (3) imply that x is in this open subset. �

28.37. Étale morphisms

The Zariski topology of a scheme is a very coarse topology. This is particularly clear
when looking at varieties over C. It turns out that declaring an étale morphism
to be the analogue of a local isomorphism in topology introduces a much finer
topology. On varieties over C this topology gives rise to the “correct” Betti numbers
when computing cohomology with finite coefficients. Another observable is that if
f : X → Y is an étale morphism of varieties over C, and if x is a closed point of
X, then f induces an isomorphism O∧Y,f(x) → O

∧
X,x of complete local rings.

In this section we start our study of these matters. In fact we deliberately restrict
our discussion to a minimum since we will discuss more interesting results elsewhere.
Recall that a ring map R→ A is said to be étale if it is smooth and ΩA/R = 0, see
Algebra, Definition 10.138.1.

Definition 28.37.1. Let f : X → S be a morphism of schemes.

(1) We say that f is étale at x ∈ X if there exists a affine open neighbourhood
Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is étale.
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(2) We say that f is étale if it is étale at every point of X.
(3) A morphism of affine schemes f : X → S is called standard étale if X → S

is isomorphic to

Spec(R[x]g/(f))→ Spec(R)

where R→ R[x]g/(f) is a standard étale ring map, see Algebra, Definition
10.138.14, i.e., f is monic and f ′ invertible in R[x]g/(f).

A morphism is étale if and only if it is smooth of relative dimension 0 (see Definition
28.35.13). A pleasing feature of the definition is that the set of points where a
morphism is étale is automatically open.

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being étale is local in nature on the source. Here is the precise
result.

Lemma 28.37.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is étale.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is étale.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is

étale, for all j ∈ J, i ∈ Ij.
Moreover, if f is étale then for any open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is étale.

Proof. This follows from Lemma 28.15.3 if we show that the property “R→ A is
étale” is local. We check conditions (a), (b) and (c) of Definition 28.15.1. These all
follow from Algebra, Lemma 10.138.3. �

Lemma 28.37.3. The composition of two morphisms which are étale is étale.

Proof. In the proof of Lemma 28.37.2 we saw that being étale is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 28.15.5
combined with the fact that being étale is a property of ring maps that is stable
under composition, see Algebra, Lemma 10.138.3. �

Lemma 28.37.4. The base change of a morphism which is étale is étale.

Proof. In the proof of Lemma 28.37.2 we saw that being étale is a local property
of ring maps. Hence the lemma follows from Lemma 28.15.5 combined with the
fact that being étale is a property of ring maps that is stable under base change,
see Algebra, Lemma 10.138.3. �

Lemma 28.37.5. Let f : X → S be a morphism of schemes. Let x ∈ X. Then f
is étale at x if and only if f is smooth and unramified at x.

Proof. This follows immediately from the definitions. �

Lemma 28.37.6. An étale morphism is locally quasi-finite.
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Proof. By Lemma 28.37.5 an étale morphism is unramified. By Lemma 28.36.10
an unramified morphism is locally quasi-finite. �

Lemma 28.37.7. Fibres of étale morphisms.

(1) Let X be a scheme over a field k. The structure morphism X → Spec(k)
is étale if and only if X is a disjoint union of spectra of finite separable
field extensions of k.

(2) If f : X → S is an étale morphism, then for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s).

Proof. You can deduce this from Lemma 28.36.11 via Lemma 28.37.5 above. Here
is a direct proof.

We will use Algebra, Lemma 10.138.4. Hence it is clear that if X is a disjoint
union of spectra of finite separable field extensions of k then X → Spec(k) is étale.
Conversely, suppose that X → Spec(k) is étale. Then for any affine open U ⊂ X
we see that U is a finite disjoint union of spectra of finite separable field extensions
of k. Hence all points of X are closed points (see Lemma 28.21.2 for example).
Thus X is a discrete space and we win. �

The following lemma characterizes an étale morphism as a flat, finitely presented
morphism with “étale fibres”.

Lemma 28.37.8. Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and for every s ∈ S the fibre Xs is a disjoint union of spectra
of finite separable field extensions of κ(s), then f is étale.

Proof. You can deduce this from Algebra, Lemma 10.138.7. Here is another proof.

By Lemma 28.37.7 a fibre Xs is étale and hence smooth over s. By Lemma 28.35.3
we see that X → S is smooth. By Lemma 28.36.12 we see that f is unramified.
We conclude by Lemma 28.37.5. �

Lemma 28.37.9. Any open immersion is étale.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 28.37.10. An étale morphism is syntomic.

Proof. See Algebra, Lemma 10.132.10 and use that an étale morphism is the same
as a smooth morphism of relative dimension 0. �

Lemma 28.37.11. An étale morphism is locally of finite presentation.

Proof. True because an étale ring map is of finite presentation by definition. �

Lemma 28.37.12. An étale morphism is flat.

Proof. Combine Lemmas 28.32.7 and 28.37.10. �

Lemma 28.37.13. An étale morphism is open.

Proof. Combine Lemmas 28.37.12, 28.37.11, and 28.26.9. �

The following lemma says locally any étale morphism is standard étale. This is
actually kind of a tricky result to prove in complete generality. The tricky parts are
hidden in the chapter on commutative algebra. Hence a standard étale morphism
is a local model for a general étale morphism.
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Lemma 28.37.14. Let f : X → S be a morphism of schemes. Let x ∈ X be a
point. Set s = f(x). The following are equivalent

(1) The morphism f is étale at x.
(2) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard étale (see Definition
28.37.1).

Proof. Follows from the definitions and Algebra, Proposition 10.138.17. �

Here is a differential criterion of étaleness at a point. There are many variants of
this result all of which may be useful at some point. We will just add them here as
needed.

Lemma 28.37.15. Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is étale at x.
(2) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x is

zero.
(3) The local ring map OS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x κ(x) = ΩX/S,x ⊗OX,x κ(x)

is zero.
(4) The local ring map OS,s → OX,x is flat, we have msOX,x = mx and the

field extension κ(s) ⊂ κ(x) is finite separable.
(5) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard smooth of relative
dimension 0.

(6) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with
x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x1, . . . , xn]/(f1, . . . , fn)

with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2

. . . . . . . . . . . .
∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


mapping to an element of A not in q.

(7) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V
and the induced morphism f |U : U → V is standard étale.

(8) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with
x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x]Q/(P ) = R[x, 1/Q]/(P )

with P,Q ∈ R[x], P monic and P ′ = dP/dx mapping to an element of A
not in q.

Proof. Use Lemma 28.37.14 and the definitions to see that (1) implies all of the
other conditions. For each of the conditions (2) – (7) combine Lemmas 28.35.14
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and 28.36.14 to see that (1) holds by showing f is both smooth and unramified at
x and applying Lemma 28.37.5. Some details omitted. �

Lemma 28.37.16. A morphism is étale at a point if and only if it is flat and
G-unramified at that point. A morphism is étale if and only if it is flat and G-
unramified.

Proof. This is clear from Lemmas 28.37.15 and 28.36.14. �

Lemma 28.37.17. Let f : X → S be a morphism of schemes. Assume f locally
of finite type. Formation of the set

T = {x ∈ X | Xf(x) is étale over κ(f(x)) at x}

commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). In particular,
if f is assumed locally of finite presentation and flat then the same holds for the
open set of points where f is étale.

Proof. Combine Lemmas 28.37.16 and 28.36.15. �

Our proof of the following lemma is somewhat complicated. It uses the “Critère
de platitude par fibres” to see that a morphism X → Y over S between schemes
étale over S is automatically flat. The details are in the chapter on commutative
algebra.

Lemma 28.37.18. Let f : X → Y be a morphism of schemes over S. If X and Y
are étale over S, then f is étale.

Proof. See Algebra, Lemma 10.138.9. �

Lemma 28.37.19. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, and étale,
(2) p is étale, and
(3) q is locally of finite presentation10.

Then q is étale.

Proof. By Lemma 28.35.19 we see that q is smooth. Thus we only need to see that
q has relative dimension 0. This follows from Lemma 28.29.2 and the fact that f
and p have relative dimension 0. �

A final characterization of smooth morphisms is that a smooth morphism f : X → S
is locally the composition of an étale morphism by a projection Ad

S → S.

10In fact this is implied by (1) and (2), see Descent, Lemma 34.10.3. Moreover, it suffices to
assume that f is surjective, flat and locally of finite presentation, see Descent, Lemma 34.10.5.
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Lemma 28.37.20. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X. If ϕ
is smooth at x, then there exist exist an integer d ≥ 0 and affine opens V ⊂ Y and
U ⊂ X with x ∈ U and ϕ(U) ⊂ V such that there exists a commutative diagram

X

��

Uoo

��

π
// Ad

V

~~
Y Voo

where π is étale.

Proof. By Lemma 28.35.11 we can find affine opens U and V as in the lemma such
that ϕ|U : U → V is standard smooth. Write U = Spec(A) and V = Spec(R) so
that we can write

A = R[x1, . . . , xn]/(f1, . . . , fc)

with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2

. . . . . . . . . . . .
∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an invertible element of A. Then it is clear that R[xc+1, . . . , xn] → A
is standard smooth of relative dimension 0. Hence it is smooth of relative dimen-
sion 0. In other words the ring map R[xc+1, . . . , xn] → A is étale. As An−c

V =
Spec(R[xc+1, . . . , xn]) the lemma with d = n− c. �

28.38. Relatively ample sheaves

Let X be a scheme and L an invertible sheaf on X. Then L is ample on X if X is
quasi-compact and every point of X is contained in an affine open of the form Xs,
where s ∈ Γ(X,L⊗n) and n ≥ 1, see Properties, Definition 27.24.1. We turn this
into a relative notion as follows.

Definition 28.38.1. Let f : X → S be a morphism of schemes. Let L be an
invertible OX -module. We say L is relatively ample, or f -relatively ample, or ample
on X/S, or f -ample if f : X → S is quasi-compact, and if for every affine open
V ⊂ S the restriction of L to the open subscheme f−1(V ) of X is ample.

We note that the existence of a relatively ample sheaf on X does not force the
morphism X → S to be of finite type.

Lemma 28.38.2. Let X → S be a morphism of schemes. Let L be an invertible
OX-module. Let n ≥ 1. Then L is f -ample if and only if L⊗n is f -ample.

Proof. This follows from Properties, Lemma 27.24.2. �

Lemma 28.38.3. Let f : X → S be a morphism of schemes. If there exists an
f -ample invertible sheaf, then f is separated.

Proof. Being separated is local on the base (see Schemes, Lemma 25.21.8 for ex-
ample; it also follows easily from the definition). Hence we may assume S is affine
and X has an ample invertible sheaf. In this case the result follows from Properties,
Lemma 27.24.9. �
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There are many ways to characterize relatively ample invertible sheaves, analogous
to the equivalent conditions in Properties, Proposition 27.24.14. We will add these
here as needed.

Lemma 28.38.4. Let f : X → S be a quasi-compact morphism of schemes. Let L
be an invertible sheaf on X. The following are equivalent:

(1) The invertible sheaf L is f -ample.
(2) There exists an open covering S =

⋃
Vi such that each L|f−1(Vi) is ample

relative to f−1(Vi)→ Vi.
(3) There exists an affine open covering S =

⋃
Vi such that each L|f−1(Vi) is

ample.
(4) There exists a quasi-coherent graded OS-algebra A and a map of graded
OX-algebras ψ : f∗A →

⊕
d≥0 L⊗d such that U(ψ) = X and

rL,ψ : X −→ Proj
S

(A)

is an open immersion (see Constructions, Lemma 26.19.1 for notation).
(5) The morphism f is quasi-separated and part (4) above holds with A =

f∗(
⊕

d≥0 L⊗d) and ψ the adjunction mapping.

(6) Same as (4) but just requiring rL,ψ to be an immersion.

Proof. It is immediate from the definition that (1) implies (2) and (2) implies (3).
It is clear that (5) implies (4).

Assume (3) holds for the affine open covering S =
⋃
Vi. We are going to show (5)

holds. Since each f−1(Vi) has an ample invertible sheaf we see that f−1(Vi) is sep-
arated (see Properties, Lemma 27.24.12 and Constructions, Lemma 26.8.8). Hence
f is separated. By Schemes, Lemma 25.24.1 we see that A = f∗(

⊕
d≥0 L⊗d) is a

quasi-coherent graded OS-algebra. Denote ψ : f∗A →
⊕

d≥0 L⊗d the adjunction

mapping. The description of the open U(ψ) in Constructions, Section 26.19 and the
definition of ampleness of L|f−1(Vi) show that U(ψ) = X. Moreover, Constructions,

Lemma 26.19.1 part (3) shows that the restriction of rL,ψ to f−1(Vi) is the same
as the morphism from Properties, Lemma 27.24.10 which is an open immersion
according to Properties, Lemma 27.24.12. Hence (5) holds.

Let us show that (4) implies (1). Assume (4). Denote π : Proj
S

(A) → S the
structure morphism. Choose V ⊂ S affine open. By Constructions, Definition
26.16.7 we see that π−1(V ) ⊂ Proj

S
(A) is equal to Proj(A) where A = A(V ) as a

graded ring. Hence rL,ψ maps f−1(V ) isomorphically onto a quasi-compact open
of Proj(A). Moreover, L⊗d is isomorphic to the pullback of OProj(A)(d) for some
d ≥ 1. (See part (3) of Constructions, Lemma 26.19.1 and the final statement of
Constructions, Lemma 26.14.1.) This implies that L|f−1(V ) is ample by Properties,
Lemmas 27.24.13 and 27.24.2.

Assume (6). By the equivalence of (1) - (5) above we see that the property of being
relatively ample on X/S is local on S. Hence we may assume that S is affine,
and we have to show that L is ample on X. In this case the morphism rL,ψ is
identified with the morphism, also denoted rL,ψ : X → Proj(A) associated to the
map ψ : A = A(V )→ Γ∗(X,L). (See references above.) As above we also see that
L⊗d is the pullback of the sheaf OProj(A)(d) for some d ≥ 1. Moreover, since X is
quasi-compact we see that X gets identified with a closed subscheme of a quasi-
compact open subscheme Y ⊂ Proj(A). By Constructions, Lemma 26.10.6 (see
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also Properties, Lemma 27.24.13) we see that OY (d′) is an ample invertible sheaf
on Y for some d′ ≥ 1. Since the restriction of an ample sheaf to a closed subscheme
is ample, see Properties, Lemma 27.24.3 we conclude that the pullback of Od′Y is
ample. Combining these results with Properties, Lemma 27.24.2 we conclude that
L is ample as desired. �

Lemma 28.38.5. Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Assume S affine. Then L is f -relatively ample if and only if L is ample
on X.

Proof. Immediate from Lemma 28.38.4 and the definitions. �

Lemma 28.38.6. Let f : X → S be a morphism of schemes. Then f is quasi-affine
if and only if OX is f -relatively ample.

Proof. Follows from Properties, Lemma 27.25.1 and the definitions. �

Lemma 28.38.7. Let f : X → Y be a morphism of schemes, M an invertible
OY -module, and L an invertible OX-module.

(1) If L is f -ample and M is ample, then L ⊗ f∗M⊗a is ample for a� 0.
(2) If M is ample and f quasi-affine, then f∗M is ample.

Proof. Assume L is f -ample and M ample. By assumption Y and f are quasi-
compact (see Definition 28.38.1 and Properties, Definition 27.24.1). Hence X is
quasi-compact. Pick x ∈ X. We can choose m ≥ 1 and t ∈ Γ(Y,M⊗m) such
that Yt is affine and f(x) ∈ Yt. Since L restricts to an ample invertible sheaf on
f−1(Yt) = Xf∗t we can choose n ≥ 1 and s ∈ Γ(Xf∗t,L⊗n) with x ∈ (Xf∗t)s with
(Xf∗t)s affine. By Properties, Lemma 27.24.6 there exists an integer e ≥ 1 and a
section s′ ∈ Γ(X,L⊗n⊗f∗M⊗em) which restricts to s(f∗t)e on Xf∗t. For any b > 0

consider the section s′′ = s′(f∗t)b of L⊗n ⊗ f∗M⊗(e+b)m. Then Xs′′ = (Xf∗t)s is
an affine open of X containing x. Picking b such that n divides e + b we see
L⊗n⊗ f∗M⊗(e+b)m is the nth power of L⊗ f∗M⊗a for some a and we can get any
a divisible by m and big enough. Since X is quasi-compact a finite number of these
affine opens cover X. We conclude that for some a sufficiently divisible and large
enough the invertible sheaf L ⊗ f∗M⊗a is ample on X. On the other hand, we
know thatM⊗c (and hence its pullback to X) is globally generated for all c� 0 by
Properties, Proposition 27.24.14. Thus L⊗f∗M⊗a+c is ample (Properties, Lemma
27.24.5) for c� 0 and (1) is proved.

Part (2) follows from Lemma 28.38.6, Properties, Lemma 27.24.2, and part (1). �

Lemma 28.38.8. Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base
change of f and denote L′ the pullback of L to X ′. If L is f -ample, then L′ is
f ′-ample.

Proof. By Lemma 28.38.4 it suffices to find an affine open covering S′ =
⋃
U ′i

such that L′ restricts to an ample invertible sheaf on (f ′)−1(U ′i) for all i. We
may choose U ′i mapping into an affine open Ui ⊂ S. In this case the morphism
(f ′)−1(U ′i) → f−1(Ui) is affine as a base change of the affine morphism U ′i → Ui
(Lemma 28.13.8). Thus L′|(f ′)−1(U ′i)

is ample by Lemma 28.38.7. �
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28.39. Very ample sheaves

Recall that given a quasi-coherent sheaf E on a scheme S the projective bundle
associated to E is the morphism P(E) → S, where P(E) = Proj

S
(Sym(E)), see

Constructions, Definition 26.21.1.

Definition 28.39.1. Let f : X → S be a morphism of schemes. Let L be an
invertible OX -module. We say L is relatively very ample or more precisely f -
relatively very ample, or very ample on X/S, or f -very ample if there exist a quasi-
coherent OS-module E and an immersion i : X → P(E) over S such that L ∼=
i∗OP(E)(1).

Since there is no assumption of quasi-compactness in this definition it is not true in
general that a relatively very ample invertible sheaf is a relatively ample invertible
sheaf.

Lemma 28.39.2. Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. If f is quasi-compact and L is a relatively very ample invertible sheaf,
then L is a relatively ample invertible sheaf.

Proof. By definition there exists quasi-coherent OS-module E and an immersion
i : X → P(E) over S such that L ∼= i∗OP(E)(1). Set A = Sym(E), so P(E) =
Proj

S
(A) by definition. The graded OS-algebra A comes equipped with a map

ψ : A →
⊕

n≥0
π∗OP(E)(n)→

⊕
n≥0

f∗L⊗n

where the second arrow uses the identification L ∼= i∗OP(E)(1). By adjointness of

f∗ and f∗ we get a morphism ψ : f∗A →
⊕

n≥0 L⊗n. We omit the verification that
the morphism rL,ψ associated to this map is exactly the immersion i. Hence the
result follows from part (6) of Lemma 28.38.4. �

To arrive at the correct converse of this lemma we ask whether given a relatively
ample invertible sheaf L there exists an integer n ≥ 1 such that L⊗n is relatively
very ample? In general this is false. There are several things that prevent this from
being true:

(1) Even if S is affine, it can happen that no finite integer n works because
X → S is not of finite type, see Example 28.39.4.

(2) The base not being quasi-compact means the result can be prevented from
being true even with f finite type. Namely, given a field k there exists
a scheme Xd of finite type over k with an ample invertible sheaf OXd(1)
so that the smallest tensor power of OXd(1) which is very ample is the
dth power. See Example 28.39.5. Taking f to be the disjoint union of the
schemes Xd mapping to the disjoint union of copies of Spec(k) gives an
example.

To see our version of the converse take a look at Lemma 28.40.5 below. We will do
some preliminary work before proving it.

Example 28.39.3. Let S be a scheme. Let A be a quasi-coherent graded OS-
algebra generated by A1 over A0. Set X = Proj

S
(A). In this case OX(1) is a

very ample invertible sheaf on X. Namely, the morphism associated to the graded
OS-algebra map

Sym∗OX (A1) −→ A
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is a closed immersion X → P(A1) which pulls back OP(A1)(1) to OX(1), see Con-
structions, Lemma 26.18.5.

Example 28.39.4. Let k be a field. Consider the graded k-algebra

A = k[U, V, Z1, Z2, Z3, . . .]/I with I = (U2 − Z2
1 , U

4 − Z2
2 , U

6 − Z2
3 , . . .)

with grading given by deg(U) = deg(V ) = deg(Z1) = 1 and deg(Zd) = d. Note
that X = Proj(A) is covered by D+(U) and D+(V ). Hence the sheaves OX(n)
are all invertible and isomorphic to OX(1)⊗n. In particular OX(1) is ample and
f -ample for the morphism f : X → Spec(k). We claim that no power of OX(1) is
f -relatively very ample. Namely, it is easy to see that Γ(X,OX(n)) is the degree n
summand of the algebra A. Hence if OX(n) were very ample, then X would be a
closed subscheme of a projective space over k and hence of finite type over k. On
the other hand D+(V ) is the spectrum of k[t, t1, t2, . . .]/(t

2 − t21, t4 − t22, t6 − t23, . . .)
which is not of finite type over k.

Example 28.39.5. Let k be an infinite field. Let λ1, λ2, λ3, . . . be pairwise distinct
elements of k∗. (This is not strictly necessary, and in fact the example works
perfectly well even if all λi are equal to 1.) Consider the graded k-algebra

Ad = k[U, V, Z]/Id with Id = (Z2 −
∏2d

i=1
(U − λiV )).

with grading given by deg(U) = deg(V ) = 1 and deg(Z) = d. Then Xd = Proj(Ad)
has ample invertible sheaf OXd(1). We claim that if OXd(n) is very ample, then
n ≥ d. The reason for this is that Z has degree d, and hence Γ(Xd,OXd(n)) =
k[U, V ]n for n < d. Details omitted.

Lemma 28.39.6. Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. If L is relatively very ample on X/S then f is separated.

Proof. Being separated is local on the base (see Schemes, Section 25.21). An
immersion is separated (see Schemes, Lemma 25.23.7). Hence the lemma follows
since locally X has an immersion into the homogeneous spectrum of a graded ring
which is separated, see Constructions, Lemma 26.8.8. �

Lemma 28.39.7. Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is quasi-compact. The following are equivalent

(1) L is relatively very ample on X/S,
(2) there exists an open covering S =

⋃
Vj such that L|f−1(Vj) is relatively

very ample on f−1(Vj)/Vj for all j,
(3) there exists a quasi-coherent sheaf of graded OS-algebras A generated in

degree 1 over OS and a map of graded OX-algebras ψ : f∗A →
⊕

n≥0 L⊗n
such that f∗A1 → L is surjective and the associated morphism rL,ψ : X →
Proj

S
(A) is an immersion, and

(4) f is quasi-separated, the canonical map ψ : f∗f∗L → L is surjective, and
the associated map rL,ψ : X → P(f∗L) is an immersion.

Proof. It is clear that (1) implies (2). It is also clear that (4) implies (1); the
hypothesis of quasi-separation in (4) is used to guarantee that f∗L is quasi-coherent
via Schemes, Lemma 25.24.1.

Assume (2). We will prove (4). Let S =
⋃
Vj be an open covering as in (2).

Set Xj = f−1(Vj) and fj : Xj → Vj the restriction of f . We see that f is
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separated by Lemma 28.39.6 (as being separated is local on the base). Consider
the map ψ : f∗f∗L → L. On each Vj there exists a quasi-coherent sheaf Ej and an
embedding i : Xj → P(Ej) with LXj ∼= i∗OP(Ej)(1). In other words there is a map
Ej → (f∗L)|Xj such that the composition

f∗j Ej → (f∗f∗L)|Xj → L|Xj
is surjective. Hence we conclude that ψ is surjective. Let rL,ψ : X → P(f∗L) be
the associated morphism. Using the maps Ej → (f∗L)|Xj we see that there is a
factorization

Xj

rL,ψ // P(f∗L)|Vj // P(Ej)
which shows that rL,ψ is an immersion.

At this point we see that (1), (2) and (4) are equivalent. Clearly (4) implies (3).
Assume (3). We will prove (1). Let A be a quasi-coherent sheaf of graded OS-
algebras generated in degree 1 over OS . Consider the map of graded OS-algebras
Sym(A1)→ A. This is surjective by hypothesis and hence induces a closed immer-
sion

Proj
S

(A) −→ P(A1)

which pulls back O(1) to O(1), see Constructions, Lemma 26.18.5. Hence it is clear
that (3) implies (1). �

28.40. Ample and very ample sheaves relative to finite type morphisms

In fact most of the material in this section is about the notion of a (quasi-)projective
morphism which we have not defined yet.

Lemma 28.40.1. Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is very ample on X/S,
(2) the morphism X → S is of finite type, and
(3) S is affine.

Then there exists an n ≥ 0 and an immersion i : X → Pn
S over S such that

L ∼= i∗OPnS
(1).

Proof. Assume (1), (2) and (3). Condition (3) means S = Spec(R) for some ring
R. Condition (1) means by definition there exists a quasi-coherent OS-module E
and an immersion α : X → P(E) such that L = α∗OP(E)(1). Write E = M̃ for
some R-module M . Thus we have

P(E) = Proj(SymR(M)).

Since α is an immersion, and since the topology of Proj(SymR(M)) is generated by

the standard opens D+(f), f ∈ Symd
R(M), d ≥ 1, we can find for each x ∈ X an

f ∈ Symd
R(M), d ≥ 1, with α(x) ∈ D+(f) such that

α|α−1(D+(f)) : α−1(D+(f))→ D+(f)

is a closed immersion. Condition (2) implies X is quasi-compact. Hence we can

find a finite collection of elements fj ∈ Sym
dj
R (M), dj ≥ 1 such that for each f = fj

the displayed map above is a closed immersion and such that α(X) ⊂
⋃
D+(fj).

Write Uj = α−1(D+(fj)). Note that Uj is affine as a closed subscheme of the
affine scheme D+(fj). Write Uj = Spec(Aj). Condition (2) also implies that Aj
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is of finite type over R, see Lemma 28.16.2. Choose finitely many xj,k ∈ Aj which
generate Aj as a R-algebra. Since α|Uj is a closed immersion we see that xj,k is the
image of an element

fj,k/f
ej,k
j ∈ SymR(M)(fj) = Γ(D+(fj),OProj(SymR(M))).

Finally, choose n ≥ 1 and elements y0, . . . , yn ∈ M such that each of the polyno-
mials fj , fj,k ∈ SymR(M) is a polynomial in the elements yt with coefficients in R.
Consider the graded ring map

ψ : R[Y0, . . . , Yn] −→ SymR(M), Yi 7−→ yi.

Denote Fj , Fj,k the elements of R[Y0, . . . , Yn] such that ψ(Fj) = fj and ψ(Fj,k) =
fj,k. By Constructions, Lemma 26.11.1 we obtain an open subscheme

U(ψ) ⊂ Proj(SymR(M))

and a morphism rψ : U(ψ)→ Pn
R. This morphism satisfies r−1

ψ (D+(Fj)) = D+(fj),

and hence we see that α(X) ⊂ U(ψ). Moreover, it is clear that

i = rψ ◦ α : X −→ Pn
R

is still an immersion since i](Fj,k/F
ej,k
j ) = xj,k ∈ Aj = Γ(Uj ,OX) by construc-

tion. Moreover, the morphism rψ comes equipped with a map θ : r∗ψOPnR
(1) →

OProj(SymR(M))(1)|U(ψ) which is an isomorphism in this case (for construction θ see
lemma cited above; some details omitted). Since the original map α was assumed
to have the property that L = α∗OProj(SymR(M))(1) we win. �

Lemma 28.40.2. Let π : X → S be a morphism of schemes. Assume that X
is quasi-affine and that π is locally of finite type. Then there exist n ≥ 0 and an
immersion i : X → An

S over S.

Proof. Let A = Γ(X,OX). By assumption X is quasi-compact and is identified
with an open subscheme of Spec(A), see Properties, Lemma 27.15.4. Moreover,
the set of opens Xf , for those f ∈ A such that Xf is affine, forms a basis for
the topology of X, see the proof of Properties, Lemma 27.15.4. Hence we can
find a finite number of fj ∈ A, j = 1, . . . ,m such that X =

⋃
Xfj , and such

that π(Xfj ) ⊂ Vj for some affine open Vj ⊂ S. By Lemma 28.16.2 the ring maps
O(Vj) → O(Xfj ) = Afj are of finite type. Thus we may choose a1, . . . , aN ∈ A
such that the elements a1, . . . , aN , f1, . . . , fm, 1/fj generate Afj over O(Vj) for each
j. Take n = N +m and let

i : X −→ An
S

be the morphism given by the global sections a1, . . . , an, f1, . . . , fn of the structure
sheaf of X. Let D(xj) ⊂ An

S be the open subscheme where the jth coordinate func-
tion is nonzero. Then it is clear that i−1(D(xj)) is Xfj and that the induced mor-
phism Xfj → D(xj) factors through the affine open Spec(O(Vj)[x1, . . . , xn, 1/xj ])
of D(xj). Since the ring map O(Vj)[x1, . . . , xn, 1/xj ] → Afj is surjective by con-
struction we conclude that the restriction of i to Xfj is an immersion as desired. �

Lemma 28.40.3. Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is ample on X, and
(2) the morphism X → S is locally of finite type.
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Then there exists a d0 ≥ 1 such that for every d ≥ d0 there exists an n ≥ 0 and an
immersion i : X → Pn

S over S such that L⊗d ∼= i∗OPnS
(1).

Proof. Let A = Γ∗(X,L) =
⊕

d≥0 Γ(X,L⊗d). By Properties, Proposition 27.24.14
the set of affine opens Xa with a ∈ A+ homogeneous forms a basis for the topology
of X. Hence we can find finitely many such elements a0, . . . , an ∈ A+ such that

(1) we have X =
⋃
i=0,...,nXai ,

(2) each Xai is affine, and
(3) each Xai maps into an affine open Vi ⊂ S.

By Lemma 28.16.2 we see that the ring maps OS(Vi) → OX(Xai) are of finite
type. Hence we can find finitely many elements fij ∈ OX(Xai), j = 1, . . . , ni
which generate OX(Xai) as an OS(Vi)-algebra. By Properties, Lemma 27.24.6
we may write each fij as aij/a

eij
i for some aij ∈ A+ homogeneous. Let N be a

positive integer which is a common multiple of all the degrees of the elements ai,
aij . Consider the elements

a
N/ deg(ai)
i , aija

(N/ deg(ai))−eij
i ∈ AN .

By construction these generate the invertible sheaf L⊗N over X. Hence they give
rise to a morphism

j : X −→ Pm
S with m = n+

∑
ni

over S, see Constructions, Lemma 26.13.1 and Definition 26.13.2. Moreover, j∗OPS (1) =
L⊗N . We name the homogeneous coordinates T0, . . . , Tn, Tij instead of T0, . . . , Tm.
For i = 0, . . . , n we have i−1(D+(Ti)) = Xai . Moreover, pulling back the element
Tij/Ti via j] we get the element fij ∈ OX(Xai). Hence the morphism j restricted
to Xai gives a closed immersion of Xai into the affine open D+(Ti) ∩ Pm

Vi
of PN

S .
Hence we conclude that the morphism j is an immersion. This implies the lemma
holds for some d and n which is enough in virtually all applications.

This proves that for one d2 ≥ 1 (namely d2 = N above), some m ≥ 0 there exists
some immersion j : X → Pm

S given by global sections s′0, . . . , s
′
m ∈ Γ(X,L⊗d2).

By Properties, Proposition 27.24.14 we know there exists an integer d1 such that
L⊗d is globally generated for all d ≥ d1. Set d0 = d1 + d2. We claim that the
lemma holds with this value of d0. Namely, given an integer d ≥ d0 we may choose
s′′1 , . . . , s

′′
t ∈ Γ(X,L⊗d−d2) which generate L⊗d−d2 over X. Set n = (m + 1)t and

denote s0, . . . , sn the collection of sections s′αs
′′
β , α = 0, . . . ,m, β = 1, . . . , t. These

generate L⊗d over X and therefore define a morphism

i : X −→ Pn
S

such that i∗OPnS
(1) ∼= L⊗d. We omit the verification that since j was an immersion

also the morphism i so obtained is an immersion also. (Hint: Segre embedding.) �

Lemma 28.40.4. Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Assume S affine and f of finite type. The following are equivalent

(1) L is ample on X,
(2) L is f -ample,
(3) L⊗d is f -very ample for some d ≥ 1,
(4) L⊗d is f -very ample for all d� 1,
(5) for some d ≥ 1 there exist n ≥ 1 and an immersion i : X → Pn

S such that
L⊗d ∼= i∗OPnS

(1), and
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(6) for all d � 1 there exist n ≥ 1 and an immersion i : X → Pn
S such that

L⊗d ∼= i∗OPnS
(1).

Proof. The equivalence of (1) and (2) is Lemma 28.38.5. The implication (2) ⇒
(6) is Lemma 28.40.3. Trivially (6) implies (5). As Pn

S is a projective bundle over
S (see Constructions, Lemma 26.21.4) we see that (5) implies (3) and (6) implies
(4) from the definition of a relatively very ample sheaf. Trivially (4) implies (3).
To finish we have to show that (3) implies (2) which follows from Lemma 28.39.2
and Lemma 28.38.2. �

Lemma 28.40.5. Let f : X → S be a morphism of schemes. Let L be an invertible
OX-module. Assume S quasi-compact and f of finite type. The following are
equivalent

(1) L is f -ample,
(2) L⊗d is f -very ample for some d ≥ 1,
(3) L⊗d is f -very ample for all d� 1.

Proof. Trivially (3) implies (2). Lemma 28.39.2 guarantees that (2) implies (1)
since a morphism of finite type is quasi-compact by definition. Assume that L is f -
ample. Choose a finite affine open covering S = V1∪ . . .∪Vm. Write Xi = f−1(Vi).
By Lemma 28.40.4 above we see there exists a d0 such that L⊗d is relatively very
ample on Xi/Vi for all d ≥ d0. Hence we conclude (1) implies (3) by Lemma
28.39.7. �

The following two lemmas provide the most used and most useful characterizations
of relatively very ample and relatively ample invertible sheaves when the morphism
is of finite type.

Lemma 28.40.6. Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f -relatively very ample, and
(2) there exist an open covering S =

⋃
Vj, for each j an integer nj, and

immersions

ij : Xj = f−1(Vj) = Vj ×S X −→ P
nj
Vj

over Vj such that L|Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma 28.40.1 to each of the restrictions of f and L. We see that (2)
implies (1) by Lemma 28.39.7. �

Lemma 28.40.7. Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f -relatively ample, and
(2) there exist an open covering S =

⋃
Vj, for each j an integers dj ≥ 1,

nj ≥ 0, and immersions

ij : Xj = f−1(Vj) = Vj ×S X −→ P
nj
Vj

over Vj such that L⊗dj |Xj ∼= i∗jOP
nj
Vj

(1).
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Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma 28.40.4 to each of the restrictions of f and L. We see that (2)
implies (1) by Lemma 28.38.4. �

28.41. Quasi-projective morphisms

The discussion in the previous section suggests the following definitions. We take
our definition of quasi-projective from [DG67]. The version with the letter “H” is
the definition in [Har77].

Definition 28.41.1. Let f : X → S be a morphism of schemes.

(1) We say f is quasi-projective if f is of finite type and there exists an f -
relatively ample invertible OX -module.

(2) We say f is H-quasi-projective if f if there exists a quasi-compact immer-
sion X → Pn

S over S for some n.11

(3) We say f is locally quasi-projective if there exists an open covering S =⋃
Vj such that each f−1(Vj)→ Vj is quasi-projective.

As this definition suggests the property of being quasi-projective is not local on S.

Lemma 28.41.2. Let f : X → S be a morphism of schemes. If f is quasi-
projective, or H-quasi-projective or locally quasi-projective, then f is separated of
finite type.

Proof. Omitted. �

Lemma 28.41.3. A H-quasi-projective morphism is quasi-projective.

Proof. Omitted. �

Lemma 28.41.4. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally quasi-projective.
(2) There exists an open covering S =

⋃
Vj such that each f−1(Vj) → Vj is

H-quasi-projective.

Proof. By Lemma 28.41.3 we see that (2) implies (1). Assume (1). The question
is local on S and hence we may assume S is affine, X of finite type over S and L
is a relatively ample invertible sheaf on X/S. By Lemma 28.40.4 we may assume
L is ample on X. By Lemma 28.40.3 we see that there exists an immersion of X
into a projective space over S, i.e., X is H-quasi-projective over S as desired. �

28.42. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. An
important example of a proper morphism will be the structure morphism Pn

S → S
of projective n-space, and this is in fact the motivating example leading to the
definition.

Definition 28.42.1. Let f : X → S be a morphism of schemes. We say f is proper
if f is separated, finite type, and universally closed.

11This is not exactly the same as the definition in Hartshorne. Namely, the definition in

Hartshorne (8th corrected printing, 1997) is that f should be the composition of an open immersion
followed by a H-projective morphism (see Definition 28.43.1), which does not imply f is quasi-

compact. See Lemma 28.43.11 for the implication in the other direction.
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The morphism from the affine line with zero doubled to the affine line is of finite
type and universally closed, so the separation condition is necessary in the definition
above. In the rest of this section we prove some of the basic properties of proper
morphisms and of universally closed morphisms.

Lemma 28.42.2. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is universally closed.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj) → Vj is uni-

versally closed for all indices j.

Proof. This is clear from the definition. �

Lemma 28.42.3. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is proper.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj)→ Vj is proper

for all indices j.

Proof. Omitted. �

Lemma 28.42.4. The composition of proper morphisms is proper. The same is
true for universally closed morphisms.

Proof. A composition of closed morphisms is closed. If X → Y → Z are univer-
sally closed morphisms and Z ′ → Z is any morphism, then we see that Z ′ ×Z X =
(Z ′×Z Y )×Y X → Z ′×Z Y is closed and Z ′×Z Y → Z ′ is closed. Hence the result
for universally closed morphisms. We have seen that “separated” and “finite type”
are preserved under compositions (Schemes, Lemma 25.21.13 and Lemma 28.16.3).
Hence the result for proper morphisms. �

Lemma 28.42.5. The base change of a proper morphism is proper. The same is
true for universally closed morphisms.

Proof. This is true by definition for universally closed morphisms. It is true for
separated morphisms (Schemes, Lemma 25.21.13). It is true for morphisms of finite
type (Lemma 28.16.4). Hence it is true for proper morphisms. �

Lemma 28.42.6. A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes,
Lemma 25.18.2). Hence it is universally closed. A closed immersion is separated
(Schemes, Lemma 25.23.7). A closed immersion is of finite type (Lemma 28.16.5).
Hence a closed immersion is proper. �

Lemma 28.42.7. Suppose given a commutative diagram of schemes

X //

��

Y

��
S

with Y separated over S.

(1) If X → S is universally closed, then the morphism X → Y is universally
closed.
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(2) If X proper over S, then the morphism X → Y is proper.

In particular, in both cases the image of X in Y is closed.

Proof. Assume that X → S is universally closed (resp. proper). We factor the
morphism as X → X ×S Y → Y . The first morphism is a closed immersion, see
Schemes, Lemma 25.21.11. Hence the first morphism is proper (Lemma 28.42.6).
The projection X×SY → Y is the base change of a universally closed (resp. proper)
morphism and hence universally closed (resp. proper), see Lemma 28.42.5. Thus
X → Y is universally closed (resp. proper) as the composition of universally closed
(resp. proper) morphisms (Lemma 28.42.4). �

The following lemma says that the image of a proper scheme (in a separated scheme
of finite type over the base) is proper.

Lemma 28.42.8. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. If X is universally closed over S and f is surjective then Y is universally
closed over S. In particular, if also Y is separated and of finite type over S, then
Y is proper over S.

Proof. Assume X is universally closed and f surjective. Denote p : X → S,
q : Y → S the structure morphisms. Let S′ → S be a morphism of schemes. The
base change f ′ : XS′ → YS′ is surjective (Lemma 28.11.4), and the base change
p′ : XS′ → S′ is closed. If T ⊂ YS′ is closed, then (f ′)−1(T ) ⊂ XS′ is closed, hence
p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. �

Lemma 28.42.9. Suppose given a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Assume

(1) X → S is a proper morphism, and
(2) Y → S is separated and locally of finite type.

Then the scheme theoretic image Z ⊂ Y of h is proper over S and X → Z is
surjective.

Proof. The scheme theoretic image of h is constructed in Section 28.6. Observe
that h is quasi-compact (Schemes, Lemma 25.21.15) hence h(X) ⊂ Z is dense
(Lemma 28.6.3). On the other hand h(X) is closed in Y (Lemma 28.42.7) hence
X → Z is surjective. Thus Z → S is a proper (Lemma 28.42.8). �

The proof of the following lemma is due to Bjorn Poonen, see this location.

Lemma 28.42.10. A universally closed morphism of schemes is quasi-compact.

Proof. Let f : X → S be a morphism. Assume that f is not quasi-compact. Our
goal is to show that f is not universally closed. By Schemes, Lemma 25.19.2 there
exists an affine open V ⊂ S such that f−1(V ) is not quasi-compact. To achieve our
goal it suffices to show that f−1(V ) → V is not universally closed, hence we may
assume that S = Spec(A) for some ring A.

Write X =
⋃
i∈I Xi where the Xi are affine open subschemes of X. Let T =

Spec(A[yi; i ∈ I]). Let Ti = D(yi) ⊂ T . Let Z be the closed set (X ×S T ) −
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i∈I(Xi×STi). It suffices to prove that the image fT (Z) of Z under fT : X×ST →

T is not closed.

There exists a point s ∈ S such that there is no neighborhood U of s in S such that
XU is quasi-compact. Otherwise we could cover S with finitely many such U and
Schemes, Lemma 25.19.2 would imply f quasi-compact. Fix such an s ∈ S.

First we check that fT (Zs) 6= Ts. Let t ∈ T be the point lying over s with κ(t) =
κ(s) such that yi = 1 in κ(t) for all i. Then t ∈ Ti for all i, and the fiber of Zs → Ts
above t is isomorphic to (X −

⋃
i∈I Xi)s, which is empty. Thus t ∈ Ts − fT (Zs).

Assume fT (Z) is closed in T . Then there exists an element g ∈ A[yi; i ∈ I] with
fT (Z) ⊂ V (g) but t 6∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(s). Hence this coefficient is invertible
on some neighborhood U of s. Let J be the finite set of j ∈ I such that yj appears
in g. Since XU is not quasi-compact, we may choose a point x ∈ X−

⋃
j∈J Xj lying

above some u ∈ U . Since g has a coefficient that is invertible on U , we can find a
point t′ ∈ T lying above u such that t′ 6∈ V (g) and t′ ∈ V (yi) for all i /∈ J . This
is true because V (yi; i ∈ I, i 6∈ J) = Spec(A[tj ; j ∈ J ]) and the set of points of this
scheme lying over u is bijective with Spec(κ(u)[tj ; j ∈ J ]). In other words t′ /∈ Ti for
each i /∈ J . By Schemes, Lemma 25.17.5 we can find a point z of X ×S T mapping
to x ∈ X and to t′ ∈ T . Since x 6∈ Xj for j ∈ J and t′ 6∈ Ti for i ∈ I \ J we see
that z ∈ Z. On the other hand fT (z) = t′ 6∈ V (g) which contradicts fT (Z) ⊂ V (g).
Thus the assumption “fT (Z) closed” is wrong and we conclude indeed that fT is
not closed, as desired. �

The target of a separated scheme under a surjective universally closed morphism is
separated.

Lemma 28.42.11. Let S be a scheme. Let f : X → Y be a surjective universally
closed morphism of schemes over S.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over S, then Y is quasi-separated over S.
(4) If X is separated over S, then Y is separated over S.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = Spec(Z) (see
Schemes, Definition 25.21.3). Consider the commutative diagram

X

��

∆X/S

// X ×S X

��
Y

∆Y/S // Y ×S Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
X ×S X → X ×S Y → Y ×S Y . Hence it is also quasi-compact, see Lemma
28.42.10.

Assume X is quasi-separated over S, i.e., ∆X/S is quasi-compact. If V ⊂ Y ×S Y is

a quasi-compact open, then V ×Y×SY X → ∆−1
Y/S(V ) is surjective and V ×Y×SY X

is quasi-compact by our remarks above. We conclude that ∆Y/S is quasi-compact,
i.e., Y is quasi-separated over S.
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Assume X is separated over S, i.e., ∆X/S is a closed immersion. Then X → Y ×S Y
is closed as a composition of closed morphisms. Since X → Y is surjective, it follows
that ∆Y/S(Y ) is closed in Y ×S Y . Hence Y is separated over S by the discussion
following Schemes, Definition 25.21.3. �

Lemma 28.42.12. Let f : X → S and h : U → X be morphisms of schemes.
Assume that f and h are quasi-compact and that h(U) is dense in X. If given any
commutative solid diagram

Spec(K) //

��

U // X

��
Spec(A) //

66

S

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute, then f is universally closed.

Proof. We will verify the existence part of the valuative criterion for f which will
imply f is universally closed by Schemes, Proposition 25.20.6. To do this, consider
a commutative diagram

Spec(K) //

��

X

��
Spec(A) // S

where A is a valuation ring andK is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X, and S by their respective
reductions by Schemes, Lemma 25.12.6. In this case the assumption that h(U) is
dense means that the scheme theoretic image of h : U → X is X, see Lemma 28.6.7.
We may also replace S by an affine open through which the morphism Spec(A)→ S
factors. Thus we may assume that S = Spec(R).

Let Spec(B) ⊂ X be an affine open through which the morphism Spec(K) → X
factors. Choose a polynomial algebra P over B and a B-algebra surjection P → K.
Then Spec(P ) → X is flat. Hence the scheme theoretic image of the morphism
U ×X Spec(P ) → Spec(P ) is Spec(P ) by Lemma 28.26.14. By Lemma 28.6.5 we
can find a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed
point of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra
map ϕ : K → A′/mA′ . Choose a valuation ring A′′ ⊂ A′/mA′ dominating ϕ(A)
with field of fractions K ′′ = A′/mA′ (Algebra, Lemma 10.48.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.
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which is a valuation ring by Algebra, Lemma 10.48.9. As C is an R-algebra with
fraction field K ′, we obtain a commutative diagram

Spec(K ′) //

��

U // X

��
Spec(C) //

66

S

as in the statement of the lemma. Thus a dotted arrow fitting into the diagram as
indicated. By the uniqueness assumption of the lemma the composition Spec(A′)→
Spec(C)→ X agrees with the given morphism Spec(A′)→ Spec(P )→ Spec(B) ⊂
X. Hence the restriction of the morphism to the spectrum of C/mA′ = A′′ induces
the given morphism Spec(K ′′) = Spec(A′/mA′) → Spec(K) → X. Let x ∈ X be
the image of the closed point of Spec(A′′)→ X. The image of the induced ring map
OX,x → A′′ is a local subring which is contained in K ⊂ K ′′. Since A is maximal
for the relation of domination in K and since A ⊂ A′′, we have A = K ∩ A′′. We
conclude that OX,x → A′′ factors through A ⊂ A′′. In this way we obtain our
desired arrow Spec(A)→ X. �

Remark 28.42.13. The assumption on uniqueness of the dotted arrows in Lemma
28.42.12 is necessary (details omitted). The uniqueness is guaranteed if f is sep-
arated (Schemes, Lemma 25.22.1). Conversely, if h and f satisfy the assumptions
of the lemma and f is quasi-separated, then f is separated as well as universally
closed (details omitted; apply the lemma to the diagonal morphism as in the proof
of Schemes, Lemma 25.22.2).

28.43. Projective morphisms

We will use the definition of a projective morphism from [DG67]. The version of
the definition with the “H” is the one from [Har77]. The resulting definitions are
different. Both are useful.

Definition 28.43.1. Let f : X → S be a morphism of schemes.

(1) We say f is projective if X is isomorphic as an S-scheme to a closed
subscheme of a projective bundle P(E) for some quasi-coherent, finite
type OS-module E .

(2) We say f is H-projective if there exists and integer n and a closed immer-
sion X → Pn

S over S.
(3) We say f is locally projective if there exists an open covering S =

⋃
Ui

such that each f−1(Ui)→ Ui is projective.

As expected, a projective morphism is quasi-projective, see Lemma 28.43.10. Con-
versely, quasi-projective morphisms are often compositions of open immersions and
projective morphisms, see Lemma 28.43.12.

Example 28.43.2. Let S be a scheme. Let A be a quasi-coherent graded OS-
algebra generated by A1 over A0. Assume furthermore that A1 is of finite type
over OS . Set X = Proj

S
(A). In this case X → S is projective. Namely, the

morphism associated to the graded OS-algebra map

Sym∗OX (A1) −→ A
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is a closed immersion X → P(A1) which pulls back OP(A1)(1) to OX(1), see Con-
structions, Lemma 26.18.5.

Lemma 28.43.3. An H-projective morphism is H-quasi-projective. An H-projective
morphism is projective.

Proof. The first statement is immediate from the definitions. The second holds as
Pn
S is a projective bundle over S, see Constructions, Lemma 26.21.4. �

Lemma 28.43.4. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally projective.
(2) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

H-projective.

Proof. By Lemma 28.43.3 we see that (2) implies (1). Assume (1). For every
point s ∈ S we can find Spec(R) = U ⊂ S an affine open neighbourhood of s such
that XU is isomorphic to a closed subscheme of P(E) for some finite type, quasi-

coherent sheaf of OU -modules E . Write E = M̃ for some finite type R-module M
(see Properties, Lemma 27.16.1). Choose generators x0, . . . , xn ∈ M of M as an
R-module. Consider the surjective graded R-algebra map

R[X0, . . . , Xn] −→ SymR(M).

According to Constructions, Lemma 26.11.3 the corresponding morphism

P(E)→ Pn
R

is a closed immersion. Hence we conclude that f−1(U) is isomorphic to a closed
subscheme of Pn

U (as a scheme over U). In other words: (2) holds. �

Lemma 28.43.5. A locally projective morphism is proper.

Proof. Let f : X → S be locally projective. In order to show that f is proper we
may work locally on the base, see Lemma 28.42.3. Hence, by Lemma 28.43.4 above
we may assume there exists a closed immersion X → Pn

S . By Lemmas 28.42.4
and 28.42.6 it suffices to prove that Pn

S → S is proper. Since Pn
S → S is the

base change of Pn
Z → Spec(Z) it suffices to show that Pn

Z → Spec(Z) is proper,
see Lemma 28.42.5. By Constructions, Lemma 26.8.8 the scheme Pn

Z is separated.
By Constructions, Lemma 26.8.9 the scheme Pn

Z is quasi-compact. It is clear that
Pn

Z → Spec(Z) is locally of finite type since Pn
Z is covered by the affine opens

D+(Xi) each of which is the spectrum of the finite type Z-algebra

Z[X0/Xi, . . . , Xn/Xi].

Finally, we have to show that Pn
Z → Spec(Z) is universally closed. This follows from

Constructions, Lemma 26.8.11 and the valuative criterion (see Schemes, Proposition
25.20.6). �

Lemma 28.43.6. Let S be a scheme. There exists a closed immersion

Pn
S ×S Pm

S −→ Pnm+n+m
S

called the Segre embedding.
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Proof. It suffices to prove this when S = Spec(Z). Hence we will drop the index
S and work in the absolute setting. Write Pn = Proj(Z[X0, . . . , Xn]), Pm =
Proj(Z[Y0, . . . , Ym]), and Pnm+n+m = Proj(Z[Z0, . . . , Znm+n+m]). In order to map
into Pnm+n+m we have to write down an invertible sheaf L on the left hand side
and (n+1)(m+1) sections si which generate it. See Constructions, Lemma 26.13.1.
The invertible sheaf we take is

L = pr∗1OPn(1)⊗ pr∗2OPm(1)

The sections we take are

s0 = X0Y0, s1 = X1Y0, . . . , sn = XnY0, sn+1 = X0Y1, . . . , snm+n+m = XnYm.

These generate L since the sections Xi generateOPn(1) and the sections Yj generate
OPm(1). The induced morphism ϕ has the property that

ϕ−1(D+(Zi+(n+1)j)) = D+(Xi)×D+(Yj).

Hence it is an affine morphism. The corresponding ring map in case (i, j) = (0, 0)
is the map

Z[Z1/Z0, . . . , Znm+n+m/Z0] −→ Z[X1/X0, . . . , Xn/X0, Y1/Y0, . . . , Yn/Y0]

which maps Zi/Z0 to the element Xi/X0 for i ≤ n and the element Z(n+1)j/Z0 to
the element Yj/Y0. Hence it is surjective. A similar argument works for the other
affine open subsets. Hence the morphism ϕ is a closed immersion. �

Lemma 28.43.7. A composition of H-projective morphisms is H-projective.

Proof. Suppose X → Y and Y → Z are H-projective. Then there exist closed
immersions X → Pn

Y over Y , and Y → Pm
Z over Z. Consider the following diagram

X //

��

Pn
Y

//

��

Pn
PmZ

}}

Pn
Z ×Z Pm

Z
// Pnm+n+m

Z

uu

Y //

��

Pm
Z

}}
Z

Here the rightmost top horizontal arrow is the Segre embedding, see Lemma 28.43.6.
The diagram identifies X as a closed subscheme of Pnm+n+m

Z as desired. �

Lemma 28.43.8. A base change of a H-projective morphism is H-projective.

Proof. This is true because the base change of projective space over a scheme is
projective space, and the fact that the base change of a closed immersion is a closed
immersion, see Schemes, Lemma 25.18.2. �

Lemma 28.43.9. A base change of a (locally) projective morphism is (locally)
projective.

Proof. This is true because the base change of a projective bundle over a scheme
is a projective bundle, the pullback of a finite type O-module is of finite type
(Modules, Lemma 17.9.2) and the fact that the base change of a closed immersion
is a closed immersion, see Schemes, Lemma 25.18.2. Some details omitted. �

Lemma 28.43.10. A projective morphism is quasi-projective.
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Proof. Let f : X → S be a projective morphism. Choose a closed immersion
i : X → P(E) where E is a quasi-coherent, finite type OS-module. Then L =
i∗OP(E)(1) is f -very ample. Since f is proper (Lemma 28.43.5) it is quasi-compact.
Hence Lemma 28.39.2 implies that L is f -ample. Since f is proper it is of finite
type. Thus we’ve checked all the defining properties of quasi-projective holds and
we win. �

Lemma 28.43.11. Let f : X → S be a H-quasi-projective morphism. Then f
factors as X → X ′ → S where X → X ′ is an open immersion and X ′ → S is
H-projective.

Proof. By definition we can factor f as a quasi-compact immersion i : X →
Pn
S followed by the projection Pn

S → S. By Lemma 28.7.7 there exists a closed
subscheme X ′ ⊂ Pn

S such that i factors through an open immersion X → X ′. The
lemma follows. �

Lemma 28.43.12. Let f : X → S be a quasi-projective morphism with S quasi-
compact and quasi-separated. Then f factors as X → X ′ → S where X → X ′ is
an open immersion and X ′ → S is projective.

Proof. Let L be f -ample. Since f is of finite type and S is quasi-compact L⊗n
is f -very ample for some n > 0, see Lemma 28.40.5. Replace L by L⊗n. Write
F = f∗L. This is a quasi-coherent OS-module by Schemes, Lemma 25.24.1 (quasi-
projective morphisms are quasi-compact and separated, see Lemma 28.41.2). By
Properties, Lemma 27.20.6 we can find a directed partially ordered set I and a
system of finite type quasi-coherent OS-modules Ei over I such that F = colim Ei.
Consider the compositions ψi : f∗Ei → f∗F → L. Choose a finite affine open
covering S =

⋃
j=1,...,m Vj . For each j we can choose sections

sj,0, . . . , sj,nj ∈ Γ(f−1(Vj),L) = f∗L(Vj) = F(Vj)

which generate L over f−1Vj and define an immersion

f−1Vj −→ P
nj
Vj
,

see Lemma 28.40.1. Choose i such that there exist sections ej,t ∈ Ei(Vj) mapping
to sj,t in F for all j = 1, . . . ,m and t = 1, . . . , nj . Then the map ψi is surjective as
the sections f∗ej,t have the same image as the sections sj,t which generate L|f−1Vj .
Whence we obtain a morphism

rL,ψi : X −→ P(Ei)

over S such that over Vj we have a factorization

f−1Vj → P(Ei)|Vj → P
nj
Vj

of the immersion given above. It follows that rL,ψi |Vj is an immersion, see Lemma
28.3.1. Since S =

⋃
Vj we conclude that rL,ψi is an immersion. Note that rL,ψi

is quasi-compact as X → S is quasi-compact and P(Ei) → S is separated (see
Schemes, Lemma 25.21.15). By Lemma 28.7.7 there exists a closed subscheme
X ′ ⊂ P(Ei) such that i factors through an open immersion X → X ′. Then X ′ → S
is projective by definition and we win. �

Lemma 28.43.13. Let S be a scheme which admits an ample invertible sheaf.
Then
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(1) any projective morphism X → S is H-projective, and
(2) any quasi-projective morphism X → S is H-quasi-projective.

Proof. The assumptions on S imply that S is quasi-compact and separated, see
Properties, Definition 27.24.1 and Lemma 27.24.12 and Constructions, Lemma
26.8.8. Hence Lemma 28.43.12 applies and we see that (1) implies (2). Let E
be a finite type quasi-coherent OS-module. By our definition of projective mor-
phisms it suffices to show that P(E) → S is H-projective. If E is generated by
finitely many global sections, then the corresponding surjection O⊕nS → E induces
a closed immersion

P(E) −→ P(O⊕nS ) = Pn
S

as desired. In general, let L be an invertible sheaf on S. By Properties, Proposition
27.24.14 there exists an integer n such that E ⊗OS L⊗n is globally generated by
finitely many sections. Since P(E) = P(E ⊗OS L⊗n) by Constructions, Lemma
26.20.1 this finishes the proof. �

28.44. Integral and finite morphisms

Recall that a ring map R → A is said to be integral if every element of A satisfies
a monic equation with coefficients in R. Recall that a ring map R → A is said to
be finite if A is finite as an R-module. See Algebra, Definition 10.35.1.

Definition 28.44.1. Let f : X → S be a morphism of schemes.

(1) We say that f is integral if f is affine and if for every affine open Spec(R) =
V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring
map R→ A is integral.

(2) We say that f is finite if f is affine and if for every affine open Spec(R) =
V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring
map R→ A is finite.

It is clear that integral/finite morphisms are separated and quasi-compact. It is
also clear that a finite morphism is a morphism of finite type. Most of the lemmas
in this section are completely standard. But note the fun Lemma 28.44.7 at the
end of the section.

Lemma 28.44.2. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is integral.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is

affine and OS(Ui)→ OX(f−1(Ui)) is integral.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

integral.

Moreover, if f is integral then for every open subscheme U ⊂ S the morphism
f : f−1(U)→ U is integral.

Proof. See Algebra, Lemma 10.35.12. Some details omitted. �

Lemma 28.44.3. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is finite.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is

affine and OS(Ui)→ OX(f−1(Ui)) is finite.
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(3) There exists an open covering S =
⋃
Ui such that each f−1(Ui) → Ui is

finite.

Moreover, if f is finite then for every open subscheme U ⊂ S the morphism f :
f−1(U)→ U is finite.

Proof. See Algebra, Lemma 10.35.12. Some details omitted. �

Lemma 28.44.4. A finite morphism is integral. An integral morphism which is
locally of finite type is finite.

Proof. See Algebra, Lemma 10.35.3 and Lemma 10.35.5. �

Lemma 28.44.5. A composition of finite morphisms is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemmas 10.7.3 and 10.35.6. �

Lemma 28.44.6. A base change of a finite morphism is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemma 10.35.11. �

Lemma 28.44.7. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. Assume (1). An integral morphism is affine by definition. A base change
of an integral morphism is integral so in order to prove (2) it suffices to show that
an integral morphism is closed. This follows from Algebra, Lemmas 10.35.20 and
10.40.6.

Assume (2). We may assume f is the morphism f : Spec(A) → Spec(R) coming
from a ring map R → A. Let a be an element of A. We have to show that a is
integral over R, i.e. that in the kernel I of the map R[x]→ A sending x to a there
is a monic polynomial. Consider the ring B = A[x]/(ax−1) and let J be the kernel
of the composition R[x] → A[x] → B. If f ∈ J there exists q ∈ A[x] such that
f = (ax − 1)q in A[x] so if f =

∑
i fix

i and q =
∑
i qix

i, for all i ≥ 0 we have
fi = aqi−1 − qi. For n ≥ deg q + 1 the polynomial∑

i≥0

fix
n−i =

∑
i≥0

(aqi−1 − qi)xn−i = (a− x)
∑
i≥0

qix
n−i−1

is clearly in I; if f0 = 1 this polynomial is also monic, so we are reduced to
prove that J contains a polynomial with constant term 1. We do it by proving
Spec(R[x]/(J + (x)) is empty.

Since f is universally closed the base change Spec(A[x]) → Spec(R[x]) is closed.
Hence the image of the closed subset Spec(B) ⊂ Spec(A[x]) is the closed subset
Spec(R[x]/J) ⊂ Spec(R[x]), see Example 28.6.4 and Lemma 28.6.3. In particular
Spec(B)→ Spec(R[x]/J) is surjective. Consider the following diagram where every
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square is a pullback:

Spec(B)
g // // Spec(R[x]/J) // Spec(R[x])

∅

OO

// Spec(R[x]/(J + (x)))

OO

// Spec(R)

0

OO

The bottom left corner is empty because it is the spectrum of R⊗R[x] B where the
map R[x]→ B sends x to an invertible element and R[x]→ R sends x to 0. Since g
is surjective this implies Spec(R[x]/(J + (x))) is empty, as we wanted to show. �

Lemma 28.44.8. Let f : X → S be an integral morphism. Then every point of X
is closed in its fibre.

Proof. See Algebra, Lemma 10.35.18. �

Lemma 28.44.9. A finite morphism is quasi-finite.

Proof. This is implied by Algebra, Lemma 10.118.4 and Lemma 28.21.9. Alterna-
tively, all points in fibres are closed points by Lemma 28.44.8 (and the fact that a
finite morphism is integral) and use Lemma 28.21.6 (3) to see that f is quasi-finite
at x for all x ∈ X. �

Lemma 28.44.10. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is finite, and
(2) f is affine and proper.

Proof. This follows formally from Lemma 28.44.7, the fact that a finite morphism
is integral and separated, the fact that a proper morphism is the same thing as a
finite type, separated, universally closed morphism, and the fact that an integral
morphism of finite type is finite (Lemma 28.44.4). �

Lemma 28.44.11. A closed immersion is finite (and a fortiori integral).

Proof. True because a closed immersion is affine (Lemma 28.13.9) and a surjective
ring map is finite and integral. �

Lemma 28.44.12. Let f : X → Y and g : Y → Z be morphisms.

(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦ f is finite (resp. integral) and g separated. The base change
X ×Z Y → Y is finite (resp. integral) by Lemma 28.44.6. The morphism X →
X×ZY is a closed immersion as Y → Z is separated, see Schemes, Lemma 25.21.12.
A closed immersion is finite (resp. integral), see Lemma 28.44.11. The composition
of finite (resp. integral) morphisms is finite (resp. integral), see Lemma 28.44.5.
Thus we win. �

Lemma 28.44.13. Let f : X → Y be a morphism of schemes. If f is finite and a
monomorphism, then f is a closed immersion.

Proof. This reduces to Algebra, Lemma 10.103.6. �
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28.45. Universal homeomorphisms

The following definition is really superfluous since a universal homeomorphism is
really just an integral, universally injective and surjective morphism, see Lemma
28.45.3.

Definition 28.45.1. A morphisms f : X → Y of schemes is called a universal
homeomorphism if the base change f ′ : Y ′ ×Y X → Y ′ is a homeomorphism for
every morphism Y ′ → Y .

Lemma 28.45.2. Let f : X → Y be a morphism of schemes. If f is a homeomor-
phism onto a closed subset of Y then f is affine.

Proof. Let y ∈ Y be a point. If y 6∈ f(X), then there exists an affine neighbour-
hood of y which is disjoint from f(X). If y ∈ f(X), let x ∈ X be the unique point
of X mapping to y. Let y ∈ V be an affine open neighbourhood. Let U ⊂ X be an
affine open neighbourhood of x which maps into V . Since f(U) ⊂ V ∩f(X) is open
in the induced topology by our assumption on f we may choose a h ∈ Γ(V,OY )
such that y ∈ D(h) and D(h)∩f(X) ⊂ f(U). Denote h′ ∈ Γ(U,OX) the restriction
of f ](h) to U . Then we see that D(h′) ⊂ U is equal to f−1(D(h)). In other words,
every point of Y has an open neighbourhood whose inverse image is affine. Thus f
is affine, see Lemma 28.13.3. �

Lemma 28.45.3. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is a universal homeomorphism, and
(2) f is integral, universally injective and surjective.

Proof. Assume f is a universal homeomorphism. By Lemma 28.45.2 we see that
f is affine. Since f is clearly universally closed we see that f is integral by Lemma
28.44.7. It is also clear that f is universally injective and surjective.

Assume f is integral, universally injective and surjective. By Lemma 28.44.7 f is
universally closed. Since it is also universally bijective (see Lemma 28.11.4) we see
that it is a universal homeomorphism. �

Lemma 28.45.4. Let X be a scheme. The canonical closed immersion Xred → X
(see Schemes, Definition 25.12.5) is a universal homeomorphism.

Proof. Omitted. �

Lemma 28.45.5. Let f : X → S and S′ → S be morphisms of schemes. Assume

(1) S′ → S is a closed immersion,
(2) S′ → S is bijective on points,
(3) X ×S S′ → S′ is a closed immersion, and
(4) X → S is of finite type or S′ → S is of finite presentation.

Then f : X → S is a closed immersion.

Proof. Assumptions (1) and (2) imply that S′ → S is a universal homeomorphism
(for example because Sred = S′red and using Lemma 28.45.4). Hence (3) implies
that X → S is homeomorphism onto a closed subset of S. Then X → S is affine
by Lemma 28.45.2. Let U ⊂ S be an affine open, say U = Spec(A). Then S′ =
Spec(A/I) by (1) for a locally nilpotent ideal I by (2). As f is affine we see that
f−1(U) = Spec(B). Assumption (4) tells us B is a finite type A-algebra (Lemma
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28.16.2) or that I is finitely generated (Lemma 28.22.7). Assumption (3) is that
A/I → B/IB is surjective. From Algebra, Lemma 10.122.8 if A → B is of finite
type or Algebra, Lemma 10.19.1 if I is finitely generated and hence nilpotent we
deduce that A → B is surjective. This means that f is a closed immersion, see
Lemma 28.2.1. �

28.46. Finite locally free morphisms

In many papers the authors use finite flat morphisms when they really mean finite
locally free morphisms. The reason is that if the base is locally Noetherian then
this is the same thing. But in general it is not, see Exercises, Exercise 83.4.3.

Definition 28.46.1. Let f : X → S be a morphism of schemes. We say f is finite
locally free if f is affine and f∗OX is a finite locally free OS-module. In this case
we say f is has rank or degree d if the sheaf f∗OX is finite locally free of degree d.

Note that if f : X → S is finite locally free then S is the disjoint union of open and
closed subschemes Sd such that f−1(Sd)→ Sd is finite locally free of degree d.

Lemma 28.46.2. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If S is locally Noetherian these are also equivalent to

(3) f is finite and flat.

Proof. See Algebra, Lemma 10.75.2. The Noetherian case follows as a finite mod-
ule over a Noetherian ring is a finitely presented module, see Algebra, Lemma
10.30.4. �

Lemma 28.46.3. A composition of finite locally free morphisms is finite locally
free.

Proof. Omitted. �

Lemma 28.46.4. A base change of a finite locally free morphism is finite locally
free.

Proof. Omitted. �

Lemma 28.46.5. Let f : X → S be a finite locally free morphism of schemes.
There exists a disjoint union decomposition S =

∐
d≥0 Sd by open and closed sub-

schemes such that setting Xd = f−1(Sd) the restrictions f |Xd are finite locally free
morphisms Xd → Sd of degree d.

Proof. This is true because a finite locally free sheaf locally has a well defined
rank. Details omitted. �

Lemma 28.46.6. Let f : Y → X be a finite morphism with X affine. There exists
a diagram

Z ′

  

Y ′
i

oo

��

// Y

��
X ′ // X

where
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(1) Y ′ → Y and X ′ → X are surjective finite locally free,
(2) Y ′ = X ′ ×X Y ,
(3) i : Y ′ → Z ′ is a closed immersion,
(4) Z ′ → X ′ is finite locally free, and
(5) Z ′ =

⋃
j=1,...,m Z

′
j is a (set theoretic) finite union of closed subschemes,

each of which maps isomorphically to X ′.

Proof. Write X = Spec(A) and Y = Spec(B). See also More on Algebra, Section
15.14. Let x1, . . . , xn ∈ B be generators of B over A. For each i we can choose a
monic polynomial Pi(T ) ∈ A[T ] such that P (xi) = 0 in B. By Algebra, Lemma
10.131.9 (applied n times) there exists a finite locally free ring extension A ⊂ A′

such that each Pi splits completely:

Pi(T ) =
∏

k=1,...,di
(T − αik)

for certain αik ∈ A′. Set

C = A′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))

and B′ = A′ ⊗A B. The map C → B′, Ti 7→ 1 ⊗ xi is an A′-algebra surjection.
Setting X ′ = Spec(A′), Y ′ = Spec(B′) and Z ′ = Spec(C) we see that (1) – (4)
hold. Part (5) holds because set theoretically Spec(C) is the union of the closed
subschemes cut out by the ideals

(T1 − α1k1
, T2 − α2k2

, . . . , Tn − αnkn)

for any 1 ≤ ki ≤ di. �

The following lemma is stated in the correct generality in Lemma 28.49.4 below.

Lemma 28.46.7. Let f : Y → X be a finite morphism of schemes. Let T ⊂ Y
be a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a closed nowhere dense
subset of X.

Proof. By Lemma 28.44.10 we know that f(T ) ⊂ X is closed. Let X =
⋃
Xi be

an affine covering. Since T is nowhere dense in Y , we see that also T ∩ f−1(Xi) is
nowhere dense in f−1(Xi). Hence if we can prove the theorem in the affine case,
then we see that f(T ) ∩Xi is nowhere dense. This then implies that T is nowhere
dense in X by Topology, Lemma 5.20.4.

Assume X is affine. Choose a diagram

Z ′

  

Y ′
i

oo

f ′

��

a
// Y

f

��
X ′

b // X

as in Lemma 28.46.6. The morphisms a, b are open since they are finite locally free
(Lemmas 28.46.2 and 28.26.9). Hence T ′ = a−1(T ) is nowhere dense, see Topology,
Lemma 5.20.6. The morphism b is surjective and open. Hence, if we can prove
f ′(T ′) = b−1(f(T )) is nowhere dense, then f(T ) is nowhere dense, see Topology,
Lemma 5.20.6. As i is a closed immersion, by Topology, Lemma 5.20.5 we see that
i(T ′) ⊂ Z ′ is closed and nowhere dense. Thus we have reduced the problem to the
case discussed in the following paragraph.
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Assume that Y =
⋃
i=1,...,n Yi is a finite union of closed subsets, each mapping

isomorphically to X. Consider Ti = Yi ∩ T . If each of the Ti is nowhere dense in
Yi, then each f(Ti) is nowhere dense in X as Yi → X is an isomorphism. Hence
f(T ) = f(Ti) is a finite union of nowhere dense closed subsets of X and we win, see
Topology, Lemma 5.20.2. Suppose not, say T1 contains a nonempty open V ⊂ Y1.
We are going to show this leads to a contradiction. Consider Y2 ∩ V ⊂ V . This
is either a proper closed subset, or equal to V . In the first case we replace V by
V \ V ∩ Y2, so V ⊂ T1 is open in Y1 and does not meet Y2. In the second case we
have V ⊂ Y1 ∩Y2 is open in both Y1 and Y2. Repeat sequentially with i = 3, . . . , n.
The result is a disjoint union decomposition

{1, . . . , n} = I1
∐

I2, 1 ∈ I1

and an open V of Y1 contained in T1 such that V ⊂ Yi for i ∈ I1 and V ∩Yi = ∅ for
i ∈ I2. Set U = f(V ). This is an open of X since f |Y1

: Y1 → X is an isomorphism.
Then

f−1(U) = V
∐ ⋃

i∈I2
(Yi ∩ f−1(U))

As
⋃
i∈I2 Yi is closed, this implies that V ⊂ f−1(U) is open, hence V ⊂ Y is open.

This contradicts the assumption that T is nowhere dense in Y , as desired. �

28.47. Generically finite morphisms

In this section we characterize maps between schemes which are locally of finite
type and which are “generically finite” in some sense.

Lemma 28.47.1. Let X, Y be schemes. Let f : X → Y be locally of finite type.
Let η ∈ Y be a generic point of an irreducible component of Y . The following are
equivalent:

(1) the set f−1({η}) is finite,
(2) there exist affine opens Ui ⊂ X, i = 1, . . . , n and V ⊂ Y with f(Ui) ⊂ V ,

η ∈ V and f−1({η}) ⊂
⋃
Ui such that each f |Ui : Ui → V is finite.

If f is quasi-separated, then these are also equivalent to

(3) there exist affine opens V ⊂ Y , and U ⊂ X with f(U) ⊂ V , η ∈ V and
f−1({η}) ⊂ U such that f |U : U → V is finite.

If f is quasi-compact and quasi-separated, then these are also equivalent to

(4) there exists an affine open V ⊂ Y , η ∈ V such that f−1(V )→ V is finite.

Proof. The question is local on the base. Hence we may replace Y by an affine
neighbourhood of η, and we may and do assume throughout the proof below that
Y is affine, say Y = Spec(R).

It is clear that (2) implies (1). Assume that f−1({η}) = {ξ1, . . . , ξn} is finite.
Choose affine opens Ui ⊂ X with ξi ∈ Ui. By Algebra, Lemma 10.118.9 we see that
after replacing Y by a standard open in Y each of the morphisms Ui → Y is finite.
In other words (2) holds.

It is clear that (3) implies (1). Assume f−1({η}) = {ξ1, . . . , ξn} and assume that f
is quasi-separated. Since Y is affine this implies that X is quasi-separated. Since
each ξi maps to a generic point of an irreducible component of Y , we see that each
ξi is a generic point of an irreducible component of X. By Properties, Lemma
27.27.1 we can find an affine open U ⊂ X containing each ξi. By Algebra, Lemma
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10.118.9 we see that after replacing Y by a standard open in Y the morphisms
U → Y is finite. In other words (3) holds.

It is clear that (4) implies all of (1) – (3) with no further assumptions on f . Suppose
that f is quasi-compact and quasi-separated. We have to show that the equivalent
conditions (1) – (3) imply (4). Let U , V be as in (3). Replace Y by V . Since
f is quasi-compact and Y is quasi-compact (being affine) we see that X is quasi-
compact. Hence Z = X \ U is quasi-compact, hence the morphism f |Z : Z → Y
is quasi-compact. By construction of Z we see that η 6∈ f(Z). Hence by Lemma
28.8.4 we see that there exists an affine open neighbourhood V ′ of η in Y such that
f−1(V ′) ∩ Z = ∅. Then we have f−1(V ′) ⊂ U and this means that f−1(V ′) → V ′

is finite. �

Example 28.47.2. Let A =
∏
n∈N F2. Every element of A is an idempotent.

Hence every prime ideal is maximal with residue field F2. Thus the topology on
X = Spec(A) is totally disconnected and quasi-compact. The projection maps
A→ F2 define open points of Spec(A). It cannot be the case that all the points of
X are open since X is quasi-compact. Let x ∈ X be a closed point which is not
open. Then we can form a scheme Y which is two copies of X glued along X \ {x}.
In other words, this is X with x doubled, compare Schemes, Example 25.14.3. The
morphism f : Y → X is quasi-compact, finite type and has finite fibres but is not
quasi-separated. The point x ∈ X is a generic point of an irreducible component of
X (since X is totally disconnected). But properties (3) and (4) of Lemma 28.47.1
do not hold. The reason is that for any open neighbourhood x ∈ U ⊂ X the inverse
image f−1(U) is not affine because functions on f−1(U) cannot separated the two
points lying over x (proof omitted; this is a nice exercise). Hence the condition that
f is quasi-separated is necessary in parts (3) and (4) of the lemma.

Remark 28.47.3. An alternative to Lemma 28.47.1 is the statement that a quasi-
finite morphism is finite over a dense open of the target. This will be shown in
More on Morphisms, Section 36.31.

Lemma 28.47.4. Let X, Y be integral schemes. Let f : X → Y be locally of finite
type. Assume f is dominant. The following are equivalent:

(1) the extension R(Y ) ⊂ R(X) has transcendence degree 0,
(2) the extension R(Y ) ⊂ R(X) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V

and f |U : U → V is finite, and
(4) the generic point of X is the only point of X mapping to the generic point

of Y .

If f is separated, or if f is quasi-compact, then these are also equivalent to

(5) there exists a nonempty affine open V ⊂ Y such that f−1(V ) → V is
finite.

Proof. Choose any affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ Y such
that f(U) ⊂ V . Then R and A are domains by definition. The ring map R → A
is of finite type (Lemma 28.16.2). By Lemma 28.8.5 the generic point of X maps
to the generic point of Y hence R → A is injective. Let K = f.f.(R) = R(Y ) and
L = f.f.(A) = R(X). Then K ⊂ L is a finitely generated field extension. Hence
we see that (1) is equivalent to (2).
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Suppose (2) holds. Let x1, . . . , xn ∈ A be generators of A over R. By assumption
there exist nonzero polynomials Pi(X) ∈ R[X] such that Pi(xi) = 0. Let fi ∈ R
be the leading coefficient of Pi. Then we conclude that Rf1...fn → Af1...fn is finite,
i.e., (3) holds. Note that (3) implies (2). So now we see that (1), (2) and (3) are
all equivalent.

Let η be the generic point of X, and let η′ ∈ Y be the generic point of Y . Assume
(4). Then dimη(Xη′) = 0 and we see that R(X) = κ(η) has transcendence degree
0 over R(Y ) = κ(η′) by Lemma 28.29.1. In other words (1) holds. Assume the
equivalent conditions (1), (2) and (3). Suppose that x ∈ X is a point mapping to
η′. As x is a specialization of η, this gives inclusions R(Y ) ⊂ OX,x ⊂ R(X), which
implies OX,x is a field, see Algebra, Lemma 10.35.17. Hence x = η. Thus we see
that (1) – (4) are all equivalent.

It is clear that (5) implies (3) with no additional assumptions on f . What remains
is to prove that if f is either separated or quasi-compact, then the equivalent
conditions (1) – (4) imply (5).

Assume U, V as in (3) and assume f is separated. Then U → f−1(V ) is a morphism
from a scheme proper over V (Lemma 28.44.10) into a scheme separated over V .
Hence U ⊂ f−1(V ) is closed Lemma 28.42.7. Since X is irreducible we conclude
U = f−1(V ). This proves (5).

Assume f is quasi-compact. Let U, V be as in (3). Then f−1(V ) is quasi-compact.
Consider the closed subset Z = f−1(V ) \ U . Since Z does not contain the generic
point of X we see that the quasi-compact morphism f : Z → V is not dominant by
Lemma 28.8.3. Hence after shrinking V we may assume that f−1(V ) = U which
implies that (5) holds. �

Definition 28.47.5. Let X and Y be integral schemes. Let f : X → Y be locally
of finite type and dominant. Assume [R(X) : R(Y )] < ∞, or any other of the
equivalent conditions (1) – (4) of Lemma 28.47.4. Then the positive integer

deg(X/Y ) = [R(X) : R(Y )]

is called the degree of X over Y .

It is possible to extend this notion to a morphism f : X → Y if (a) Y is integral
with generic point η, (b) f is locally of finite type, and (c) f−1({η}) is finite. In
this case we can define

deg(X/Y ) =
∑

ξ∈X, f(ξ)=η
dimR(Y )(OX,ξ).

Namely, given that R(Y ) = κ(η) = OY,η (Lemma 28.10.4) the dimensions above
are finite by Lemma 28.47.1 above. However, for most applications the definition
given above is the right one.

Lemma 28.47.6. Let X, Y , Z be integral schemes. Let f : X → Y and g : Y → Z
be dominant morphisms locally of finite type. Assume that [R(X) : R(Y )] <∞ and
[R(Y ) : R(Z)] <∞. Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 9.7.6. �
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Remark 28.47.7. Let f : X → Y be a morphism of schemes which is locally
of finite type. There are (at least) two properties that we could use to define
generically finite morphisms. These correspond to whether you want the property
to be local on the source or local on the target:

(1) (Local on the target; suggested by Ravi Vakil.) Assume every quasi-
compact open of Y has finitely many irreducible components (for example
if Y is locally Noetherian). The requirement is that the inverse image of
each generic point is finite, see Lemma 28.47.1.

(2) (Local on the source.) The requirement is that there exists a dense open
U ⊂ X such that U → Y is locally quasi-finite.

In case (1) the requirement can be formulated without the auxiliary condition on
Y , but probably doesn’t give the right notion for general schemes. Property (2) as
formulated doesn’t imply that the fibres over generic points are finite; however, if
f is quasi-compact and Y is as in (1) then it does.

Definition 28.47.8. Let X be an integral scheme. A modification of X is a
birational proper morphism f : X ′ → X with X ′ integral.

Let f : X ′ → X be a modification as in the definition. By Lemma 28.47.4 there
exists a nonempty U ⊂ X such that f−1(U) → U is finite. By generic flatness
(Proposition 28.28.1) we may assume f−1(U)→ U is flat and of finite presentation.
So f−1(U) → U is finite locally free (Lemma 28.46.2). Since f is birational, the
degree of X ′ over X is 1. Hence f−1(U) → U is finite locally free of degree 1,
in other words it is an isomorphism. Thus we can redefine a modification to be a
proper morphism f : X ′ → X of integral schemes such that f−1(U) → U is an
isomorphism for some nonempty open U ⊂ X.

Definition 28.47.9. Let X be an integral scheme. An alteration of X is a proper
dominant morphism f : Y → X with Y integral such that f−1(U)→ U is finite for
some nonempty open U ⊂ X.

This is the definition as given in [dJ96], except that here we do not require X
and Y to be Noetherian. Arguing as above we see that an alteration is a proper
dominant morphism f : Y → X of integral schemes which induces a finite extension
of function fields, i.e., such that the equivalent conditions of Lemma 28.47.4 hold.

28.48. Normalization

In this section we construct the normalization, and the normalization of one scheme
in another.

Lemma 28.48.1. Let X be a scheme. Let A be a quasi-coherent sheaf of OX-
algebras. The subsheaf A′ ⊂ A defined by the rule

U 7−→ {f ∈ A(U) | fx ∈ Ax integral over OX,x for all x ∈ U}
is a quasi-coherent OX-algebra, and for any affine open U ⊂ X the ring A′(U) ⊂
A(U) is the integral closure of OX(U) in A(U).

Proof. This is a subsheaf by the local nature of the conditions. It is an OX -algebra
by Algebra, Lemma 10.35.7. Let U ⊂ X be an affine open. Say U = Spec(R) and
say A is the quasi-coherent sheaf associated to the R-algebra A. Then according
to Algebra, Lemma 10.35.10 the value of A′ over U is given by the integral closure
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A′ of R in A. This proves the last assertion of the lemma. To prove that A′ is
quasi-coherent, it suffices to show that A′(D(f)) = A′f . This follows from the fact
that integral closure and localization commute, see Algebra, Lemma 10.35.9. �

Definition 28.48.2. Let X be a scheme. Let A be a quasi-coherent sheaf of OX -
algebras. The integral closure of OX in A is the quasi-coherent OX -subalgebra
A′ ⊂ A constructed in Lemma 28.48.1 above.

In the setting of the definition above we can consider the morphism of relative
spectra

Y = Spec
X

(A) //

&&

X ′ = Spec
X

(A′)

xx
X

see Lemma 28.13.5. The scheme X ′ → X will be the normalization of X in the
scheme Y . Here is a slightly more general setting. Suppose we have a quasi-compact
and quasi-separated morphism f : Y → X of schemes. In this case the sheaf of OX -
algebras f∗OY is quasi-coherent, see Schemes, Lemma 25.24.1. Taking the integral
closure O′ ⊂ f∗OY we obtain a quasi-coherent sheaf of OX -algebras whose relative
spectrum is the normalization of X in Y . Here is the formal definition.

Definition 28.48.3. Let f : Y → X be a quasi-compact and quasi-separated mor-
phism of schemes. Let O′ be the integral closure of OX in f∗OY . The normalization
of X in Y is the scheme12

ν : X ′ = Spec
X

(O′)→ X

over X. It comes equipped with a natural factorization

Y
f ′−→ X ′

ν−→ X

of the initial morphism f .

The factorization is the composition of the canonical morphism Y → Spec(f∗OY )
(see Constructions, Lemma 26.4.7) and the morphism of relative spectra coming
from the inclusion map O′ → f∗OY . We can characterize the normalization as
follows.

Lemma 28.48.4. Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. The factorization f = ν ◦ f ′, where ν : X ′ → X is the normalization
of X in Y is characterized by the following two properties:

(1) the morphism ν is integral, and
(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a

commutative diagram

Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for some unique morphism h : X ′ → Z.

Moreover, in (2) the morphism h : X ′ → Z is the normalization of Z in Y .

12The scheme X′ need not be normal, for example if Y = X and f = idX , then X′ = X.
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Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 28.48.3.
The morphism ν is integral by construction, which proves (1). Assume given a
factorization f = π ◦ g with π : Z → X integral as in (2). By Definition 28.44.1
π is affine, and hence Z is the relative spectrum of a quasi-coherent sheaf of OX -
algebras B. The morphism g : X → Z corresponds to a map of OX -algebras
χ : B → f∗OY . Since B(U) is integral over OX(U) for every affine open U ⊂ X (by
Definition 28.44.1) we see from Lemma 28.48.1 that χ(B) ⊂ O′. By the functoriality
of the relative spectrum Lemma 28.13.5 this provides us with a unique morphism
h : X ′ → Z. We omit the verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it char-
acterizes it as an initial object in a category. The morphism h in (2) is integral by
Lemma 28.44.12. Given a factorization g = π′ ◦g′ with π′ : Z ′ → Z integral, we get
a factorization f = (π ◦ π′) ◦ g′ and we get a morphism h′ : X ′ → Z ′. Uniqueness
implies that π′◦h′ = h. Hence the characterization (1), (2) applies to the morphism
h : X ′ → Z which gives the last statement of the lemma. �

Lemma 28.48.5. Let

Y2

f2

��

// Y1

f1

��
X2

// X1

be a commutative diagram of morphisms of schemes. Assume f1, f2 quasi-compact
and quasi-separated. Let fi = νi ◦ f ′i , i = 1, 2 be the canonical factorizations, where
νi : X ′i → Xi is the normalization of Xi in Yi. Then there exists a canonical
commutative diagram

Y2

f ′2
��

// Y1

f ′1
��

X ′2

ν2

��

// X ′1

ν1

��
X2

// X1

Proof. By Lemmas 28.48.4 (1) and 28.44.6 the base change X2 ×X1
X ′1 → X2 is

integral. Note that f2 factors through this morphism. Hence we get a canonical
morphism X ′2 → X2 ×X1

X ′1 from Lemma 28.48.4 (2). This gives the middle
horizontal arrow in the last diagram. �

Lemma 28.48.6. Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let U ⊂ X be an open subscheme and set V = f−1(U). Then the
normalization of U in V is the inverse image of U in the normalization of X in Y .

Proof. Clear from the construction. �

Lemma 28.48.7. Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Suppose that Y = Y1qY2 is a disjoint union of two schemes. Write fi =
f |Yi . Let X ′i be the normalization of X in Yi. Then X ′1 qX ′2 is the normalization
of X in Y .
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Proof. In terms of integral closures this corresponds to the following fact: Let
A→ B be a ring map. Suppose that B = B1 ×B2. Let A′i be the integral closure
of A in Bi. Then A′1×A′2 is the integral closure of A in B. The reason this works is
that the elements (1, 0) and (0, 1) of B are idempotents and hence integral over A.
Thus the integral closure A′ of A in B is a product and it is not hard to see that the
factors are the integral closures A′i as described above (some details omitted). �

Lemma 28.48.8. Let f : Y → X be an integral morphism. Then the integral
closure of X in Y is equal to Y .

Proof. Omitted. �

The following lemma is a generalization of the preceding one.

Lemma 28.48.9. Let f : X → S be a quasi-compact, quasi-separated and uni-
versally closed morphisms of schemes. Then f∗OX is integral over OS. In other
words, the normalization of S in X is equal to the factorization

X −→ Spec
S

(f∗OX) −→ S

of Constructions, Lemma 26.4.7.

Proof. The question is local on S, hence we may assume S = Spec(R) is affine.
Let h ∈ Γ(X,OX). We have to show that h satisfies a monic equation over R.
Think of h as a morphism as in the following commutative diagram

X
h

//

f ��

A1
S

~~
S

Let Z ⊂ A1
S be the scheme theoretic image of h, see Definition 28.6.2. The mor-

phism h is quasi-compact as f is quasi-compact and A1
S → S is separated, see

Schemes, Lemma 25.21.15. By Lemma 28.6.3 the morphism X → Z is dominant.
By Lemma 28.42.7 the morphism X → Z is closed. Hence h(X) = Z (set theo-
retically). Thus we can use Lemma 28.42.8 to conclude that Z → S is universally
closed (and even proper). Since Z ⊂ A1

S , we see that Z → S is affine and proper,
hence integral by Lemma 28.44.7. Writing A1

S = Spec(R[T ]) we conclude that the
ideal I ⊂ R[T ] of Z contains a monic polynomial P (T ) ∈ R[T ]. Hence P (h) = 0
and we win. �

Lemma 28.48.10. Let f : Y → X be a quasi-compact and quasi-separated mor-
phism of schemes. Assume

(1) Y is a normal scheme,
(2) any quasi-compact open V ⊂ Y has a finite number of irreducible compo-

nents.

Then the normalization X ′ of X in Y is a normal scheme. Moreover, the morphism
Y → X ′ is dominant and induces a bijection of irreducible components.

Proof. We first prove that X ′ is normal. Let U ⊂ X be an affine open. It suffices
to prove that the inverse image of U in X ′ is normal (see Properties, Lemma
27.7.2). By Lemma 28.48.6 we may replace X by U , and hence we may assume
X = Spec(A) affine. In this case Y is quasi-compact, and hence has a finite number
of irreducible components by assumption. Hence Y =

∐
i=1,...n Yi is a finite disjoint
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union of normal integral schemes by Properties, Lemma 27.7.5. By Lemma 28.48.7
we see that X ′ =

∐
i=1,...,nX

′
i, where X ′i is the normalization of X in Yi. By

Properties, Lemma 27.7.9 we see that Bi = Γ(Yi,OYi) is a normal domain. Note
that X ′i = Spec(A′i), where A′i ⊂ Bi is the integral closure of A in Bi, see Lemma
28.48.1. By Algebra, Lemma 10.36.2 we see that A′i ⊂ Bi is a normal domain.
Hence X ′ =

∐
X ′i is a finite union of normal schemes and hence is normal.

It is clear from the description of X ′ above that Y → X ′ is dominant and induces
a bijection on irreducible components if X is affine. The result in general follows
from this by a topological argument (omitted). �

Lemma 28.48.11. Let f : X → S be a morphism. Assume that

(1) S is a Nagata scheme,
(2) f is of finite type13, and
(3) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. There is an immediate reduction to the case S = Spec(R) where R is a
Nagata ring. In this case we have to show that the integral closure A of R in
Γ(X,OX) is finite over R. Since f is of finite type we can write X =

⋃
i=1,...,n Ui

with each Ui affine. Say Ui = Spec(Bi). Each Bi is a reduced ring of finite type
over R (Lemma 28.16.2). Moreover, Γ(X,OX) ⊂ B = B1 × . . . × Bn. So A is
contained in the integral closure A′ of R in B. Note that B is a reduced finite type
R-algebra. Since R is Noetherian it suffices to prove that A′ is finite over R. This
is Algebra, Lemma 10.150.16. �

Next, we come to the normalization of a scheme X. We only define/construct
it when X has locally finitely many irreducible components. Let X be a scheme
such that every quasi-compact open has finitely many irreducible components. Let
X(0) ⊂ X be the set of generic points of irreducible components of X. Let

(28.48.11.1) f : Y =
∐

η∈X(0)
Spec(κ(η)) −→ X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section 25.13. Note that this morphism is quasi-compact by assumption and quasi-
separated as Y is separated (see Schemes, Section 25.21).

Definition 28.48.12. Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the normalization of X as the
morphism

ν : Xν −→ X

which is the normalization of X in the morphism f : Y → X (28.48.11.1) con-
structed above.

Any locally Noetherian scheme has a locally finite set of irreducible components and
the definition applies to it. Usually the normalization is defined only for reduced
schemes. With the definition above the normalization of X is the same as the
normalization of the reduction Xred of X.

13The proof shows that the lemma holds if f is quasi-compact and “essentially of finite type”.
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Lemma 28.48.13. Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. The normalization morphism ν factors through
the reduction Xred and Xν → Xred is the normalization of Xred.

Proof. Let f : Y → X be the morphism (28.48.11.1). We get a factorization
Y → Xred → X of f from Schemes, Lemma 25.12.6. By Lemma 28.48.4 we obtain
a canonical morphism Xν → Xred and that Xν is the normalization of Xred in
Y . The lemma follows as Y → Xred is identical to the morphism (28.48.11.1)
constructed for Xred. �

If X is reduced, then the normalization of X is the same as the relative spectrum of
the integral closure of OX in the sheaf of meromorphic functions KX (see Divisors,
Section 30.15). Namely, KX = f∗OY in this case, see Divisors, Lemma 30.15.8 and
its proof. We describe this here explicitly.

Lemma 28.48.14. Let X be a reduced scheme such that every quasi-compact open
has finitely many irreducible components. Let Spec(A) = U ⊂ X be an affine open.
Then

(1) A has finitely many minimal primes q1, . . . , qt,
(2) the total ring of fractions Q(A) of A is Q(A/q1)× . . .×Q(A/qt),
(3) the integral closure A′ of A in Q(A) is the product of the integral closures

of the domains A/qi in the fields Q(A/qi), and
(4) ν−1(U) is identified with the spectrum of A′.

Proof. Minimal primes correspond to irreducible components (Algebra, Lemma
10.25.1), hence we have (1) by assumption. Then (0) = q1 ∩ . . . ∩ qt because A
is reduced (Algebra, Lemma 10.16.2). Then we have Q(A) =

∏
Aqi =

∏
κ(qi)

by Algebra, Lemmas 10.24.4 and 10.24.1. This proves (2). Part (3) follows from
Algebra, Lemma 10.36.14, or Lemma 28.48.7. Part (4) holds because it is clear that
f−1(U)→ U is the morphism

Spec
(∏

κ(qi)
)
−→ Spec(A)

where f : Y → X is the morphism (28.48.11.1). �

Lemma 28.48.15. Let X be a scheme such that every quasi-compact open has
finitely many irreducible components.

(1) The normalization Xν is a normal scheme.
(2) The morphism ν : Xν → X is integral, surjective, and induces a bijection

on irreducible components.
(3) For any integral, birational14 morphism X ′ → X there exists a factoriza-

tion Xν → X ′ → X and Xν → X ′ is the normalization of X ′.
(4) For any morphism Z → X with Z a normal scheme such that each irre-

ducible component of Z dominates an irreducible component of X there
exists a unique factorization Z → Xν → X.

Proof. Let f : Y → X be as in (28.48.11.1). Part (1) follows from Lemma 28.48.10
and the fact that Y is normal. It also follows from the description of the affine opens
in Lemma 28.48.14.

14It suffices if X′red → Xred is birational.

http://stacks.math.columbia.edu/tag/035O
http://stacks.math.columbia.edu/tag/035P
http://stacks.math.columbia.edu/tag/035Q


28.48. NORMALIZATION 1957

The morphism ν is integral by Lemma 28.48.4. By Lemma 28.48.10 the morphism
Y → Xν induces a bijection on irreducible components, and by construction of
Y this implies that Xν → X induces a bijection on irreducible components. By
construction f : Y → X is dominant, hence also ν is dominant. Since an integral
morphism is closed (Lemma 28.44.7) this implies that ν is surjective. This proves
(2).

Suppose that α : X ′ → X is integral and birational. Any quasi-compact open U ′ of
X ′ maps to a quasi-compact open of X, hence we see that U ′ has only finitely many
irreducible components. Let f ′ : Y ′ → X ′ be the morphism (28.48.11.1) constructed
starting with X ′. As α is birational it is clear that Y ′ = Y and f = α ◦ f ′. Hence
the factorization Xν → X ′ → X exists and Xν → X ′ is the normalization of X ′

by Lemma 28.48.4. This proves (3).

Let g : Z → X be a morphism whose domain is a normal scheme and such that
every irreducible component dominates an irreducible component of X. By Lemma
28.48.13 we have Xν = Xν

red and by Schemes, Lemma 25.12.6 Z → X factors
through Xred. Hence we may replace X by Xred and assume X is reduced. More-
over, as the factorization is unique it suffices to construct it locally on Z. Let
W ⊂ Z and U ⊂ X be affine opens such that g(W ) ⊂ U . Write U = Spec(A)
and W = Spec(B), with g|W given by ϕ : A → B. We will use the results of
Lemma 28.48.14 freely. Let p1, . . . , pt be the minimal primes of A. As Z is normal,
we see that B is a normal ring, in particular reduced. Moreover, by assumption
any minimal prime q ⊂ B we have that ϕ−1(q) is a minimal prime of A. Hence if
x ∈ A is a nonzerodivisor, i.e., x 6∈

⋃
pi, then ϕ(x) is a nonzerodivisor in B. Thus

we obtain a canonical ring map Q(A) → Q(B). As B is normal it is equal to its
integral closure in Q(B) (see Algebra, Lemma 10.36.11). Hence we see that the
integral closure A′ ⊂ Q(A) of A maps into B via the canonical map Q(A)→ Q(B).
Since ν−1(U) = Spec(A′) this gives the canonical factorization W → ν−1(U)→ U
of ν|W . We omit the verification that it is unique. �

Lemma 28.48.16. A finite (or even integral) birational morphism of normal in-
tegral schemes is an isomorphism.

Proof. Let f : X → Y be such a morphism. Let V ⊂ Y be an affine open with
inverse image U ⊂ X which is an affine open too. Since f is a birational morphism
of integral schemes, the homomorphism OY (V ) → OX(U) is an injective map of
domains which induces an isomorphism of fraction fields. As Y is normal, the ring
OY (V ) is integrally closed in the fraction field. Since f is finite (or integral) every
element of OX(U) is integral over OY (V ). We conclude that OY (V ) = OX(U).
This proves that f is an isomorphism as desired. �

Lemma 28.48.17. Let X be an integral, Japanese scheme. The normalization
ν : Xν → X is a finite morphism.

Proof. Follows from the definitions and Lemma 28.48.14. Namely, in this case the
lemma says that ν−1(Spec(A)) is the spectrum of the integral closure of A in its
field of fractions. �

Lemma 28.48.18. Let X be a Nagata scheme. The normalization ν : Xν → X is
a finite morphism.
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Proof. Note that a Nagata scheme is locally Noetherian, thus Definition 28.48.12
does apply. Write Xν → X as the composition Xν → Xred → X. As Xred → X is
a closed immersion it is finite. Hence it suffices to prove the lemma for a reduced
Nagata scheme (by Lemma 28.44.5). Let Spec(A) = U ⊂ X be an affine open. By
Lemma 28.48.14 we have ν−1(U) = Spec(

∏
A′i) where A′i is the integral closure of

A/qi in its fraction field. As A is a Nagata ring (see Properties, Lemma 27.13.6)
each of the ring extensions A/qi ⊂ A′i are finite. Hence A →

∏
A′i is a finite ring

map and we win. �

28.49. Zariski’s Main Theorem (algebraic version)

This is the version you can prove using purely algebraic methods. Before we can
prove more powerful versions (for non-affine morphisms) we need to develop more
tools. See Cohomology of Schemes, Section 29.19 and More on Morphisms, Section
36.31.

Theorem 28.49.1 (Algebraic version of Zariski’s Main Theorem). Let f : Y → X
be an affine morphism of schemes. Assume f is of finite type. Let X ′ be the
normalization of X in Y . Picture:

Y

f   

f ′
// X ′

ν
~~

X

Then there exists an open subscheme U ′ ⊂ X ′ such that

(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ Y is the set of points at which f is quasi-finite.

Proof. There is an immediate reduction to the case where X and hence Y are
affine. Say X = Spec(R) and Y = Spec(A). Then X ′ = Spec(A′), where A′ is
the integral closure of R in A, see Definitions 28.48.2 and 28.48.3. By Algebra,
Theorem 10.119.13 for every y ∈ Y at which f is quasi-finite, there exists an open
U ′y ⊂ X ′ such that (f ′)−1(U ′y) → U ′y is an isomorphism. Set U ′ =

⋃
U ′y where

y ∈ Y ranges over all points where f is quasi-finite. It remains to show that f is
quasi-finite at all points of (f ′)−1(U ′). If y ∈ (f ′)−1(U ′) with image x ∈ X, then
we see that Yx → X ′x is an isomorphism in a neighbourhood of y. Hence there is
no point of Yx which specializes to y, since this is true for f ′(y) in X ′x, see Lemma
28.44.8. By Lemma 28.21.6 part (3) this implies f is quasi-finite at y. �

We can use the algebraic version of Zariski’s Main Theorem to show that the set
of points where a morphism is quasi-finite is open.

Lemma 28.49.2. Let f : X → S be a morphism of schemes. The set of points
of X where f is quasi-finite is an open U ⊂ X. The induced morphism U → S is
locally quasi-finite.

Proof. Suppose f is quasi-finite at x. Let x ∈ U = Spec(R) ⊂ X, V = Spec(A) ⊂
S be affine opens as in Definition 28.21.1. By either Theorem 28.49.1 above or
Algebra, Lemma 10.119.14, the set of primes q at which R → A is quasi-finite is
open in Spec(A). Since these all correspond to points of X where f is quasi-finite
we get the first statement. The second statement is obvious. �
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We will improve the following lemma to general quasi-finite separated morphisms
later, see More on Morphisms, Lemma 36.31.3.

Lemma 28.49.3. Let f : Y → X be a morphism of schemes. Assume

(1) X and Y are affine, and
(2) f is quasi-finite.

Then there exists a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion.

Proof. This is Algebra, Lemma 10.119.15 reformulated in the language of schemes.
�

Lemma 28.49.4. Let f : Y → X be a quasi-finite morphism of schemes. Let
T ⊂ Y be a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a nowhere dense
subset of X.

Proof. As in the proof of Lemma 28.46.7 this reduces immediately to the case
where the base X is affine. In this case Y =

⋃
i=1,...,n Yi is a finite union of affine

opens (as f is quasi-compact). Since each T ∩ Yi is nowhere dense, and since a
finite union of nowhere dense sets is nowhere dense (see Topology, Lemma 5.20.2),
it suffices to prove that the image f(T ∩Yi) is nowhere dense in X. This reduces us
to the case where both X and Y are affine. At this point we apply Lemma 28.49.3
above to get a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion. Set T = j(T ) ⊂ Z. By Topology,
Lemma 5.20.3 we see T is nowhere dense in Z. Since f(T ) ⊂ π(T ) the lemma
follows from the corresponding result in the finite case, see Lemma 28.46.7. �

28.50. Universally bounded fibres

Let X be a scheme over a field k. If X is finite over k, then X = Spec(A) where
A is a finite k-algebra. Another way to say this is that X is finite locally free
over Spec(k), see Definition 28.46.1. Hence X → Spec(k) has a degree which is an
integer d ≥ 0, namely d = dimk(A). We sometime call this the degree of the (finite)
scheme X over k.

Definition 28.50.1. Let f : X → Y be a morphism of schemes.

(1) We say the integer n bounds the degrees of the fibres of f if for all y ∈ Y
the fibre Xy is a finite scheme over κ(y) whose degree over κ(y) is ≤ n.

(2) We say the fibres of f are universally bounded15 if there exists an integer
n which bounds the degrees of the fibres of f .

15This is probably nonstandard notation.
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Note that in particular the number of points in a fibre is bounded by n as well.
(The converse does not hold, even if all fibres are finite reduced schemes.)

Lemma 28.50.2. Let f : X → Y be a morphism of schemes. Let n ≥ 0. The
following are equivalent:

(1) the integer n bounds the degrees of the fibres of f , and
(2) for every morphism Spec(k) → Y , where k is a field, the fibre product

Xk = Spec(k)×Y X is finite over k of degree ≤ n.

In this case f is universally bounded and the schemes Xk have at most n points.

Proof. The implication (2) ⇒ (1) is trivial. The other implication holds because
if the image of Spec(k)→ Y is y, then Xk = Spec(k)×Spec(κ(y)) Xy. �

Lemma 28.50.3. A composition of morphisms with universally bounded fibres is
a morphism with universally bounded fibres. More precisely, assume that n bounds
the degrees of the fibres of f : X → Y and m bounds the degrees of g : Y → Z.
Then nm bounds the degrees of the fibres of g ◦ f : X → Z.

Proof. Let f : X → Y and g : Y → Z have universally bounded fibres. Say
that deg(Xy/κ(y)) ≤ n for all y ∈ Y , and that deg(Yz/κ(z)) ≤ m for all z ∈ Z.
Let z ∈ Z be a point. By assumption the scheme Yz is finite over Spec(κ(z)). In
particular, the underlying topological space of Yz is a finite discrete set. The fibres
of the morphism fz : Xz → Yz are the fibres of f at the corresponding points of Y ,
which are finite discrete sets by the reasoning above. Hence we conclude that the
underlying topological space ofXz is a finite discrete set as well. ThusXz is an affine
scheme (this is a nice exercise; it also follows for example from Properties, Lemma
27.27.1 applied to the set of all points of Xz). Write Xz = Spec(A), Yz = Spec(B),
and k = κ(z). Then k → B → A and we know that (a) dimk(B) ≤ m, and (b) for
every maximal ideal m ⊂ B we have dimκ(m)(A/mA) ≤ n. We claim this implies
that dimk(A) ≤ nm. Note that B is the product of its localizations Bm, for example
because Yz is a disjoint union of 1-point schemes, or by Algebra, Lemmas 10.51.2
and 10.51.6. So we see that dimk(B) =

∑
m(Bm) and dimk(A) =

∑
m(Am) where

in both cases m runs over the maximal ideals of B (not of A). By the above, and
Nakayama’s Lemma (Algebra, Lemma 10.19.1) we see that each Am is a quotient
of B⊕nm as a Bm-module. Hence dimk(Am) ≤ n dimk(Bm). Putting everything
together we see that

dimk(A) =
∑

m
(Am) ≤

∑
m
ndimk(Bm) = ndimk(B) ≤ nm

as desired. �

Lemma 28.50.4. A base change of a morphism with universally bounded fibres is
a morphism with universally bounded fibres. More precisely, if n bounds the degrees
of the fibres of f : X → Y and Y ′ → Y is any morphism, then the degrees of the
fibres of the base change f ′ : Y ′ ×Y X → Y ′ → Y ′ is also bounded by n.

Proof. This is clear from the result of Lemma 28.50.2. �

Lemma 28.50.5. Let f : X → Y be a morphism of schemes. Let Y ′ → Y be a
morphism of schemes, and let f ′ : X ′ = XY ′ → Y ′ be the base change of f . If
Y ′ → Y is surjective and f ′ has universally bounded fibres, then f has universally
bounded fibres. More precisely, if n bounds the degree of the fibres of f ′, then also
n bounds the degrees of the fibres of f .
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Proof. Let n ≥ 0 be an integer bounding the degrees of the fibres of f ′. We claim
that n works for f also. Namely, if y ∈ Y is a point, then choose a point y′ ∈ Y ′
lying over y and observe that

X ′y′ = Spec(κ(y′))×Spec(κ(y)) Xy.

Since X ′y′ is assumed finite of degree ≤ n over κ(y′) it follows that also Xy is finite

of degree ≤ n over κ(y). (Some details omitted.) �

Lemma 28.50.6. An immersion has universally bounded fibres.

Proof. The integer n = 1 works in the definition. �

Lemma 28.50.7. Let f : X → Y be an étale morphism of schemes. Let n ≥ 0.
The following are equivalent

(1) the integer n bounds the degrees of the fibres,
(2) for every field k and morphism Spec(k) → Y the base change Xk =

Spec(k)×Y X has at most n points, and
(3) for every y ∈ Y and every separable algebraic closure κ(y) ⊂ κ(y)sep the

scheme Xκ(y)sep has at most n points.

Proof. This follows from Lemma 28.50.2 and the fact that the fibres Xy are disjoint
unions of spectra of finite separable field extensions of κ(y), see Lemma 28.37.7. �

Having universally bounded fibres is an absolute notion and not a relative notion.
This is why the condition in the following lemma is that X is quasi-compact, and
not that f is quasi-compact.

Lemma 28.50.8. Let f : X → Y be a morphism of schemes. Assume that

(1) f is locally quasi-finite, and
(2) X is quasi-compact.

Then f has universally bounded fibres.

Proof. Since X is quasi-compact, there exists a finite affine open covering X =⋃
i=1,...,n Ui and affine opens Vi ⊂ Y , i = 1, . . . , n such that f(Ui) ⊂ Vi. Because of

the local nature of “local quasi-finiteness” (see Lemma 28.21.6 part (4)) we see that
the morphisms f |Ui : Ui → Vi are locally quasi-finite morphisms of affines, hence
quasi-finite, see Lemma 28.21.9. For y ∈ Y it is clear that Xy =

⋃
y∈Vi(Ui)y is an

open covering. Hence it suffices to prove the lemma for a quasi-finite morphism of
affines (namely, if ni works for the morphism f |Ui : Ui → Vi, then

∑
ni works for

f).

Assume f : X → Y is a quasi-finite morphism of affines. By Lemma 28.49.3 we can
find a diagram

X

f   

j
// Z

π
��

Y

with Z affine, π finite and j an open immersion. Since j has universally bounded
fibres (Lemma 28.50.6) this reduces us to showing that π has universally bounded
fibres (Lemma 28.50.3).

This reduces us to a morphism of the form Spec(B) → Spec(A) where A → B is
finite. Say B is generated by x1, . . . , xn over A and say Pi(T ) ∈ A[T ] is a monic
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polynomial of degree di such that Pi(xi) = 0 in B (a finite ring extension is integral,
see Algebra, Lemma 10.35.3). With these notations it is clear that⊕

0≤ei<di,i=1,...n

A −→ B, (a(e1,...,en)) 7−→
∑

a(e1,...,en)x
e1
1 . . . xenn

is a surjective A-module map. Thus for any prime p ⊂ A this induces a surjective
map κ(p)-vector spaces

κ(p)⊕d1...dn −→ B ⊗A κ(p)

In other words, the integer d1 . . . dn works in the definition of a morphism with
universally bounded fibres. �

Lemma 28.50.9. Consider a commutative diagram of morphisms of schemes

X

g
  

f
// Y

h��
Z

If g has universally bounded fibres, and f is surjective and flat, then also h has
universally bounded fibres. More precisely, if n bounds the degree of the fibres of g,
then also n bounds the degree of the fibres of h.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
the degree of the fibres of g is bounded by n ∈ N. We claim n also works for h.
Let z ∈ Z. Consider the morphism of schemes Xz → Yz. It is flat and surjective.
By assumption Xz is a finite scheme over κ(z), in particular it is the spectrum of
an Artinian ring (by Algebra, Lemma 10.51.2). By Lemma 28.13.13 the morphism
Xz → Yz is affine in particular quasi-compact. It follows from Lemma 28.26.10 that
Yz is a finite discrete as this holds for Xz. Hence Yz is an affine scheme (this is a
nice exercise; it also follows for example from Properties, Lemma 27.27.1 applied
to the set of all points of Yz). Write Yz = Spec(B) and Xz = Spec(A). Then A is
faithfully flat over B, so B ⊂ A. Hence dimk(B) ≤ dimk(A) ≤ n as desired. �
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CHAPTER 29

Cohomology of Schemes

29.1. Introduction

In this chapter we first prove a number of results on the cohomology of quasi-
coherent sheaves. A fundamental reference is [DG67]. Having done this we
will elaborate on cohomology of coherent sheaves in the Noetherian setting. See
[Ser55b].

29.2. Cech cohomology of quasi-coherent sheaves

Let X be a scheme. Let U ⊂ X be an affine open. Recall that a standard open
covering of U is a covering of the form U : U =

⋃n
i=1D(fi) where f1, . . . , fn ∈

Γ(U,OX) generate the unit ideal, see Schemes, Definition 25.5.2.

Lemma 29.2.1. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
U : U =

⋃n
i=1D(fi) be a standard open covering of an affine open of X. Then

Ȟp(U ,F) = 0 for all p > 0.

Proof. Write U = Spec(A) for some ring A. In other words, f1, . . . , fn are elements

of A which generate the unit ideal of A. Write F|U = M̃ for some A-module M .
Clearly the Cech complex Č•(U ,F) is identified with the complex∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

We are asked to show that the extended complex

(29.2.1.1) 0→M →
∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

(whose truncation we have studied in Algebra, Lemma 10.22.2) is exact. It suffices
to show that (29.2.1.1) is exact after localizing at a prime p, see Algebra, Lemma
10.23.1. In fact we will show that the extended complex localized at p is homotopic
to zero.

There exists an index i such that fi 6∈ p. Choose and fix such an element ifix. Note
that Mfifix ,p

= Mp. Similarly for a localization at a product fi0 . . . fip and p we
can drop any fij for which ij = ifix. Let us define a homotopy

h :
∏

i0...ip+1

Mfi0 ...fip+1
,p −→

∏
i0...ip

Mfi0 ...fip ,p

by the rule

h(s)i0...ip = sifixi0...ip

(This is “dual” to the homotopy in the proof of Cohomology, Lemma 20.11.4.)
In other words, h :

∏
i0
Mfi0 ,p

→ M is projection onto the factor Mfifix ,p
= Mp

1965
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and in general the map h equal projection onto the factors Mfifixfi1 ...fip+1
,p =

Mfi1 ...fip+1
,p. We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip + si0...ip +

∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

=si0...ip

This proves the identity map is homotopic to zero as desired. �

The following lemma says in particular that for any affine scheme X and any quasi-
coherent sheaf F on X we have

Hp(X,F) = 0

for all p > 0.

Lemma 29.2.2. Let X be a scheme. Let F be a quasi-coherent OX-module. For
any affine open U ⊂ X we have Hp(U,F) = 0 for all p > 0.

Proof. We are going to apply Cohomology, Lemma 20.12.8. As our basis B for
the topology of X we are going to use the affine opens of X. As our set Cov of
open coverings we are going to use the standard open coverings of affine opens of X.
Next we check that conditions (1), (2) and (3) of Cohomology, Lemma 20.12.8 hold.
Note that the intersection of standard opens in an affine is another standard open.
Hence property (1) holds. The coverings form a cofinal system of open coverings of
any element of B, see Schemes, Lemma 25.5.1. Hence (2) holds. Finally, condition
(3) of the lemma follows from Lemma 29.2.1. �

Here is a relative version of the vanishing of cohomology of quasi-coherent sheaves
on affines.

Lemma 29.2.3. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. If f is affine then Rif∗F = 0 for all i > 0.

Proof. According to Cohomology, Lemma 20.7.3 the sheaf Rif∗F is the sheaf
associated to the presheaf V 7→ Hi(f−1(V ),F|f−1(V )). By assumption, whenever

V is affine we have that f−1(V ) is affine, see Morphisms, Definition 28.13.1. By
Lemma 29.2.2 we conclude that Hi(f−1(V ),F|f−1(V )) = 0 whenever V is affine.
Since S has a basis consisting of affine opens we win. �

Lemma 29.2.4. Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. Then Hi(X,F) = Hi(S, f∗F) for all i ≥ 0.

Proof. Follows from Lemma 29.2.3 and the Leray spectral sequence. See Coho-
mology, Lemma 20.14.6. �

Lemma 29.2.5. Let X be a scheme. Let U : X =
⋃
i∈I Ui be an open covering

such that Ui0...ip is affine open for all p ≥ 0 and all i0, . . . , ip ∈ I. In this case for
any quasi-coherent sheaf F we have

Ȟp(U ,F) = Hp(X,F)

as Γ(X,OX)-modules for all p.

Proof. In view of Lemma 29.2.2 this is a special case of Cohomology, Lemma
20.12.5. �
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29.3. Vanishing of cohomology

We have seen that on an affine scheme the higher cohomology groups of any quasi-
coherent sheaf vanish (Lemma 29.2.2). It turns out that this also characterizes
affine schemes. We give two versions.

Lemma 29.3.1. Let X be a scheme. Assume that

(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX we have H1(X, I) = 0.

Then X is affine.

Proof. Let x ∈ X be a closed point. Let U ⊂ X be an affine open neighbourhood
of x. Write U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x.
Set Z = X \ U and Z ′ = Z ∪ {x}. By Schemes, Lemma 25.12.4 there are quasi-
coherent sheaves of ideals I, resp. I ′ cutting out the reduced closed subschemes Z,
resp. Z ′. Consider the short exact sequence

0→ I ′ → I → I/I ′ → 0.

Since x is a closed point of X and x 6∈ Z we see that I/I ′ is supported at x. In
fact, the restriction of I/I ′ to U corresponds to the A-module A/m. Hence we see
that Γ(X, I/I ′) = A/m. Since by assumption H1(X, I ′) = 0 we see there exists
a global section f ∈ Γ(X, I) which maps to the element 1 ∈ A/m as a section of
I/I ′. Clearly we have x ∈ Xf ⊂ U . This implies that Xf = D(fA) where fA is the
image of f in A = Γ(U,OX). In particular Xf is affine.

Consider the union W =
⋃
Xf over all f ∈ Γ(X,OX) such that Xf is affine.

Obviously W is open in X. By the arguments above every closed point of X is
contained in W . The closed subset X \W of X is also quasi-compact (see Topology,
Lemma 5.11.3). Hence it has a closed point if it is nonempty (see Topology, Lemma
5.11.8). This would contradict the fact that all closed points are in W . Hence we
conclude X = W .

Choose finitely many f1, . . . , fn ∈ Γ(X,OX) such that X = Xf1
∪ . . . ∪ Xfn and

such that each Xfi is affine. This is possible as we’ve seen above. By Properties,
Lemma 27.25.2 to finish the proof it suffices to show that f1, . . . , fn generate the
unit ideal in Γ(X,OX). Consider the short exact sequence

0 // F // O⊕nX
f1,...,fn // OX // 0

The arrow defined by f1, . . . , fn is surjective since the opens Xfi cover X. We let
F be the kernel of this surjective map. Observe that F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F
so that each subquotient Fi/Fi−1 is isomorphic to a quasi-coherent sheaf of ideals.
Namely we can take Fi to be the intersection of F with the first i direct summands
of O⊕nX . The assumption of the lemma implies that H1(X,Fi/Fi−1) = 0 for all i.
This implies that H1(X,F2) = 0 because it is sandwiched between H1(X,F1) and
H1(X,F2/F1). Continuing like this we deduce that H1(X,F) = 0. Therefore we
conclude that the map⊕

i=1,...,n Γ(X,OX)
f1,...,fn // Γ(X,OX)

is surjective as desired. �
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Note that if X is a Noetherian scheme then every quasi-coherent sheaf of ideals is
automatically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of
ideals. Hence the preceding lemma and the next lemma both apply in this case.

Lemma 29.3.2. Let X be a scheme. Assume that

(1) X is quasi-compact,
(2) X is quasi-separated, and
(3) H1(X, I) = 0 for every quasi-coherent sheaf of ideals I of finite type.

Then X is affine.

Proof. By Properties, Lemma 27.20.3 every quasi-coherent sheaf of ideals is a
directed colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology,
Lemma 20.20.1 taking cohomology on X commutes with directed colimits. Hence
we see that H1(X, I) = 0 for every quasi-coherent sheaf of ideals on X. In other
words we see that Lemma 29.3.1 applies. �

29.4. Quasi-coherence of higher direct images

We have seen that the higher cohomology groups of a quasi-coherent module on an
affine is zero. For (quasi-)separated quasi-compact schemes X this implies vanishing
of cohomology groups of quasi-coherent sheaves beyond a certain degree. However,
it may not be the case that X has finite cohomological dimension, because that is
defined in terms of vanishing of cohomology of all OX -modules.

Lemma 29.4.1. Let X be a quasi-compact and quasi-separated scheme. Let P be
a property of the quasi-compact opens of X. Assume that

(1) P holds for every affine open of X,
(2) if U is quasi-compact open, V affine open, P holds for U , V , and U ∩ V ,

then P holds for U ∪ V .

Then P holds for every quasi-compact open of X and in particular for X.

Proof. First we argue by induction that P holds for separated quasi-compact opens
W ⊂ X. Namely, such an open can be written as W = U1 ∪ . . . ∪ Un and we can
do induction on n using property (2) with U = U1 ∪ . . . ∪ Un−1 and V = Un. This
is allowed because U ∩ V = (U1 ∩ Un) ∪ . . . ∪ (Un−1 ∩ Un) is also a union of n− 1
affine open subschemes by Schemes, Lemma 25.21.8 applied to the affine opens Ui
and Un of W . Having said this, for any quasi-compact open W ⊂ X we can do
induction on the number of affine opens needed to cover W using the same trick
as before and using that the quasi-compact open Ui ∩ Un is separated as an open
subscheme of the affine scheme Un. �

Lemma 29.4.2. Let X be a quasi-compact separated scheme. Let t = t(X) be the
minimal number of affine opens needed to cover X. Then Hn(X,F) = 0 for all
n ≥ t and all quasi-coherent sheaves F .

Proof. First proof. By induction on t. If t = 1 the result follows from Lemma
29.2.2. If t > 1 write X = U ∪ V with V affine open and U = U1 ∪ . . . ∪ Ut−1 a
union of t−1 open affines. Note that in this case U ∩V = (U1∩V )∪ . . . (Ut−1∩V )
is also a union of t − 1 affine open subschemes, see Schemes, Lemma 25.21.8. We
apply the Mayer-Vietoris long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .
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see Cohomology, Lemma 20.9.2. By induction we see that the groups Hi(U,F),
Hi(V,F), Hi(U ∩V,F) are zero for i ≥ t−1. It follows immediately that Hi(X,F)
is zero for i ≥ t.
Second proof. Let U : X =

⋃t
i=1 Ui be a finite affine open covering. Since X

is separated the multiple intersections Ui0...ip are all affine, see Schemes, Lemma

25.21.8. By Lemma 29.2.5 the Cech cohomology groups Ȟp(U ,F) agree with the
cohomology groups. By Cohomology, Lemma 20.24.6 the Cech cohomology groups
may be computed using the alternating Cech complex Č•alt(U ,F). As the covering

consists of t elements we see immediately that Čpalt(U ,F) = 0 for all p ≥ t. Hence
the result follows. �

Lemma 29.4.3. Let X be a quasi-compact quasi-separated scheme. Let X = U1 ∪
. . . ∪ Ut be an affine open covering. Set

d = maxI⊂{1,...,t} |I|+ t(
⋂

i∈I
Ui)

where t(U) is the minimal number of affines needed to cover the scheme U . Then
Hn(X,F) = 0 for all n ≥ d and all quasi-coherent sheaves F .

Proof. Note that since X is quasi-separated the numbers t(
⋂
i∈I Ui) are finite. Let

U : X =
⋃t
i=1 Ui. By Cohomology, Lemma 20.12.4 there is a spectral sequence

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). By Cohomology, Lemma 20.24.6 we have

Ep,q2 = Hp(Č•alt(U , H
q(F))

The alternating Čech complex with values in the presheaf Hq(F) vanishes in high
degrees by Lemma 29.4.2, more precisely Ep,q2 = 0 for p+ q ≥ d. Hence the result
follows. �

Lemma 29.4.4. Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact.

(1) For any quasi-coherent OX-module F the higher direct images Rpf∗F are
quasi-coherent on S.

(2) If S is quasi-compact, there exists an integer n = n(X,S, f) such that
Rpf∗F = 0 for all p ≥ n and any quasi-coherent sheaf F on X.

(3) In fact, if S is quasi-compact we can find n = n(X,S, f) such that for
every morphism of schemes S′ → S we have Rp(f ′)∗F ′ = 0 for p ≥ n and
any quasi-coherent sheaf F ′ on X ′. Here f ′ : X ′ = S′ ×S X → S′ is the
base change of f .

Proof. We first prove (1). Note that under the hypotheses of the lemma the sheaf
R0f∗F = f∗F is quasi-coherent by Schemes, Lemma 25.24.1. Using Cohomology,
Lemma 20.7.4 we see that forming higher direct images commutes with restriction
to open subschemes. Since being quasi-coherent is local on S we may assume S is
affine.

Assume S is affine and f quasi-compact and separated. Let t ≥ 1 be the minimal
number of affine opens needed to coverX. We will prove this case of (1) by induction
on t. If t = 1 then the morphism f is affine by Morphisms, Lemma 28.13.12 and
(1) follows from Lemma 29.2.3. If t > 1 write X = U ∪ V with V affine open
and U = U1 ∪ . . . ∪ Ut−1 a union of t − 1 open affines. Note that in this case
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U ∩ V = (U1 ∩ V ) ∪ . . . (Ut−1 ∩ V ) is also a union of t− 1 affine open subschemes,
see Schemes, Lemma 25.21.8. We will apply the relative Mayer-Vietoris sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

see Cohomology, Lemma 20.9.3. By induction we see that Rpa∗F , Rpb∗F and
Rpc∗F are all quasi-coherent. This implies that each of the sheaves Rpf∗F is
quasi-coherent since it sits in the middle of a short exact sequence with a cokernel
of a map between quasi-coherent sheaves on the left and a kernel of a map between
quasi-coherent sheaves on the right. Using the results on quasi-coherent sheaves in
Schemes, Section 25.24 we see conclude Rpf∗F is quasi-coherent.

Assume S is affine and f quasi-compact and quasi-separated. Let t ≥ 1 be the
minimal number of affine opens needed to cover X. We will prove (1) by induction
on t. In case t = 1 the morphism f is separated and we are back in the previous
case (see previous paragraph). If t > 1 write X = U ∪ V with V affine open and U
a union of t − 1 open affines. Note that in this case U ∩ V is an open subscheme
of an affine scheme and hence separated (see Schemes, Lemma 25.21.6). We will
apply the relative Mayer-Vietoris sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

see Cohomology, Lemma 20.9.3. By induction and the result of the previous para-
graph we see that Rpa∗F , Rpb∗F and Rpc∗F are quasi-coherent. As in the previous
paragraph this implies each of sheaves Rpf∗F is quasi-coherent.

Next, we prove (3) and a fortiori (2). Choose a finite affine open covering S =⋃
j=1,...m Sj . For each i choose a finite affine open covering f−1(Sj) =

⋃
i=1,...tj

Uji.

Let

dj = maxI⊂{1,...,tj} |I|+ t(
⋂

i∈I
Uji)

be the integer found in Lemma 29.4.3. We claim that n(X,S, f) = max dj works.

Namely, let S′ → S be a morphism of schemes and let F ′ be a quasi-coherent sheaf
on X ′ = S′×S X. We want to show that Rpf ′∗F ′ = 0 for p ≥ n(X,S, f). Since this
question is local on S′ we may assume that S′ is affine and maps into Sj for some
j. Then X ′ = S′ ×Sj f−1(Sj) is covered by the open affines S′ ×Sj Uji, i = 1, . . . tj
and the intersections ⋂

i∈I
S′ ×Sj Uji = S′ ×Sj

⋂
i∈I

Uji

are covered by the same number of affines as before the base change. Applying
Lemma 29.4.3 we get Hp(X ′,F ′) = 0. By the first part of the proof we already
know that each Rqf ′∗F ′ is quasi-coherent hence has vanishing higher cohomology
groups on our affine scheme S′, thus we see that H0(S′, Rpf ′∗F ′) = Hp(X ′,F ′) = 0
by Cohomology, Lemma 20.14.6. Since Rpf ′∗F ′ is quasi-coherent we conclude that
Rpf ′∗F ′ = 0. �

Lemma 29.4.5. Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact. Assume S is affine. For any quasi-coherent
OX-module F we have

Hq(X,F) = H0(S,Rqf∗F)

for all q ∈ Z.
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Proof. Consider the Leray spectral sequence Ep,q2 = Hp(S,Rqf∗F) converging
to Hp+q(X,F), see Cohomology, Lemma 20.14.4. By Lemma 29.4.4 we see that
the sheaves Rqf∗F are quasi-coherent. By Lemma 29.2.2 we see that Ep,q2 = 0
when p > 0. Hence the spectral sequence degenerates at E2 and we win. See also
Cohomology, Lemma 20.14.6 (2) for the general principle. �

29.5. Cohomology and base change, I

Let f : X → S be a morphism of schemes. Let F be a quasi-coherent sheaf
on X. Suppose further that g : S′ → S is any morphism of schemes. Denote
X ′ = XS′ = S′ ×S X the base change of X and denote f ′ : X ′ → S′ the base
change of f . Also write g′ : X ′ → X the projection, and set F ′ = (g′)∗F . Here is
a diagram representing the situation:

(29.5.0.1)

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′∗F ′ S′
g // S Rf∗F

Here is the simplest case of the base change property we have in mind.

Lemma 29.5.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume f is affine. In this case f∗F ∼= Rf∗F is a quasi-
coherent sheaf, and for every base change diagram (29.5.0.1) we have

g∗f∗F = f ′∗(g
′)∗F .

Proof. The vanishing of higher direct images is Lemma 29.2.3. The statement
is local on S and S′. Hence we may assume X = Spec(A), S = Spec(R), S′ =

Spec(R′) and F = M̃ for some A-module M . We use Schemes, Lemma 25.7.3 to
describe pullbacks and pushforwards of F . Namely, X ′ = Spec(R′ ⊗R A) and F ′
is the quasi-coherent sheaf associated to (R′ ⊗R A) ⊗A M . Thus we see that the
lemma boils down to the equality

(R′ ⊗R A)⊗AM = R′ ⊗RM
as R′-modules. �

In many situations it is sufficient to know about the following special case of coho-
mology and base change. It follows immediately from the stronger results in Section
29.7, but since it is so important it deserves its own proof.

Lemma 29.5.2. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let g : S′ → S be a morphism of schemes. Assume that g is
flat and that f is quasi-compact and quasi-separated. Then for any i ≥ 0 we have

Rif ′∗F ′ = g∗Rif∗F
with notation as in (29.5.0.1). Moreover, the induced isomorphism is the map given
by the base change map of Cohomology, Lemma 20.18.1.

Proof. The statement is local on S′ and hence we may assume S and S′ are affine.
Say S = Spec(A) and S′ = Spec(B). In this case we are really trying to show that
the map

Hi(X,F)⊗A B −→ Hi(XB ,FB)
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(given by the reference in the statement of the lemma) is an isomorphism where
XB = Spec(B)×Spec(A) X and FB is the pullback of F to XB .

In case X is separated, choose an affine open covering U : X = U1 ∪ . . . ∪ Ut and
recall that

Ȟp(U ,F) = Hp(X,F),

see Lemma 29.2.5. If UB : XB = (U1)B ∪ . . . ∪ (Ut)B we obtain by base change,
then it is still the case that each (Ui)B is affine and that XB is separated. Thus we
obtain

Ȟp(UB ,FB) = Hp(XB ,FB).

We have the following relation between the Čech complexes

Č•(UB ,FB) = Č•(U ,F)⊗A B
as follows from Lemma 29.5.1. Since A → B is flat, the same thing remains true
on taking cohomology.

In case X is quasi-separated, choose an affine open covering U : X = U1 ∪ . . . ∪
Ut. We will use the Čech-to-cohomology spectral sequence Cohomology, Lemma
20.12.4. The reader who wishes to avoid this spectral sequence can use Majer-
Vietoris and induction on t as in the proof of Lemma 29.4.4. The spectral sequence
has E2-page Ep,q2 = Ȟp(U , Hq(F)) and converges to Hp+q(X,F). Similarly, we
have a spectral sequence with E2-page Ep,q2 = Ȟp(UB , Hq(FB)) which converges
to Hp+q(XB ,FB). Since the intersections Ui0...ip are quasi-compact and sepa-

rated, the result of the second paragraph of the proof gives Ȟp(UB , Hq(FB)) =
Ȟp(U , Hq(F))⊗AB. Using that A→ B is flat we conclude that Hi(X,F)⊗AB →
Hi(XB ,FB) is an isomorphism for all i and we win. �

29.6. Colimits and higher direct images

General results of this nature can be found in Cohomology, Section 20.20, Sheaves,
Lemma 6.29.1, and Modules, Lemma 17.11.6.

Lemma 29.6.1. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let F = colimFi be a filtered colimit of quasi-coherent sheaves on X.
Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf associated to U 7→ Hp(f−1U,F), see Co-
homology, Lemma 20.7.3. Recall that the colimit is the sheaf associated to the
presheaf colimit (taking colimits over opens). Hence we can apply Cohomology,
Lemma 20.20.1 to Hp(f−1U,−) where U is affine to conclude. (Because the basis
of affine opens in f−1U satisfies the assumptions of that lemma.) �

29.7. Cohomology and base change, II

Let f : X → S be a morphism of schemes and let F be a quasi-coherent OX -
module. If f is quasi-compact and quasi-separated we would like to represent
Rf∗F by a complex of quasi-coherent sheaves on S. This follows from the fact that
the sheaves Rif∗F are quasi-coherent if S is quasi-compact and has affine diagonal,
using that DQCoh(S) is equivalent to D(QCoh(OS)), see Derived Categories of
Schemes, Proposition 35.6.5.

http://stacks.math.columbia.edu/tag/07TB


29.7. COHOMOLOGY AND BASE CHANGE, II 1973

In this section we will use a different approach which produces an explicit complex
having a good base change property. The construction is particularly easy if f and
S are separated, or more generally have affine diagonal. Since this is the case which
by far the most often used we treat it separately.

Lemma 29.7.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume X is quasi-compact and X and S have affine diagonal
(e.g., if X and S are separated). In this case we can compute Rf∗F as follows:

(1) Choose a finite affine open covering U : X =
⋃
i=1,...,n Ui.

(2) For i0, . . . , ip ∈ {1, . . . , n} denote fi0...ip : Ui0...ip → S the restriction of f
to the intersection Ui0...ip = Ui0 ∩ . . . ∩ Uip .

(3) Set Fi0...ip equal to the restriction of F to Ui0...ip .
(4) Set

Čp(U , f,F) =
⊕

i0...ip
fi0...ip∗Fi0...ip

and define differentials d : Čp(U , f,F)→ Čp+1(U , f,F) as in Cohomology,
Equation (20.10.0.1).

Then the complex Č•(U , f,F) is a complex of quasi-coherent sheaves on S which
comes equipped with an isomorphism

Č•(U , f,F) −→ Rf∗F
in D+(S). This isomorphism is functorial in the quasi-coherent sheaf F .

Proof. Consider the resolution F → C•(U ,F) of Cohomology, Lemma 20.25.1.
We have an equality of complexes Č•(U , f,F) = f∗C

•(U ,F) of quasi-coherent
OS-modules. The morphisms ji0...ip : Ui0...ip → X and the morphisms fi0...ip :
Ui0...ip → S are affine by Morphisms, Lemma 28.13.11. Hence Rqji0...ip∗Fi0...ip as
well as Rqfi0...ip∗Fi0...ip are zero for q > 0 (Lemma 29.2.3). Using f ◦ ji0...ip =
fi0...ip and the spectral sequence of Cohomology, Lemma 20.14.8 we conclude that
Rqf∗(ji0...ip∗Fi0...ip) = 0 for q > 0. Since the terms of the complex C•(U ,F) are
finite direct sums of the sheaves ji0...ip∗Fi0...ip we conclude using Leray’s acyclicity
lemma (Derived Categories, Lemma 13.17.7) that

Rf∗F = f∗C
•(U ,F) = Č•(U , f,F)

as desired. �

Next, we are going to consider what happens if we do a base change.

Lemma 29.7.2. With notation as in diagram (29.5.0.1). Assume f : X → S and
F satisfy the hypotheses of Lemma 29.7.1. Choose a finite affine open covering
U : X =

⋃
Ui of X. There is a canonical isomorphism

g∗Č•(U , f,F) −→ Rf ′∗F ′

in D+(S′). Moreover, if S′ → S is affine, then in fact

g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)
with U ′ : X ′ =

⋃
U ′i where U ′i = (g′)−1(Ui) = Ui,S′ is also affine.

Proof. In fact we may define U ′i = (g′)−1(Ui) = Ui,S′ no matter whether S′ is
affine over S or not. Let U ′ : X ′ =

⋃
U ′i be the induced covering of X ′. In this case

we claim that
g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)
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with Č•(U ′, f ′,F ′) defined in exactly the same manner as in Lemma 29.7.1. This
is clear from the case of affine morphisms (Lemma 29.5.1) by working locally on
S′. Moreover, exactly as in the proof of Lemma 29.7.1 one sees that there is an
isomorphism

Č•(U ′, f ′,F ′) −→ Rf ′∗F ′

in D+(S′) since the morphisms U ′i → X ′ and U ′i → S′ are still affine (being base
changes of affine morphisms). Details omitted. �

The lemma above says that the complex

K• = Č•(U , f,F)

is a bounded below complex of quasi-coherent sheaves on S which universally com-
putes the higher direct images of f : X → S. This is something about this particular
complex and it is not preserved by replacing Č•(U , f,F) by a quasi-isomorphic com-
plex in general! In other words, this is not a statement that makes sense in the
derived category. The reason is that the pullback g∗K• is not equal to the derived
pullback Lg∗K• of K• in general!

Here is a more general case where we can prove this statement. We remark that
the condition of S being separated is harmless in most applications, since this is
usually used to prove some local property of the total derived image. The proof
is significantly more involved and uses hypercoverings; it is a nice example of how
you can use them sometimes.

Lemma 29.7.3. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Assume that f is quasi-compact and quasi-separated and
that S is quasi-compact and separated. There exists a bounded below complex K•
of quasi-coherent OS-modules with the following property: For every morphism
g : S′ → S the complex g∗K• is a representative for Rf ′∗F ′ with notation as in
diagram (29.5.0.1).

Proof. (If f is separated as well, please see Lemma 29.7.2.) The assumptions
imply in particular that X is quasi-compact and quasi-separated as a scheme. Let
B be the set of affine opens of X. By Hypercoverings, Lemma 24.10.4 we can find
a hypercovering K = (I, {Ui}) such that each In is finite and each Ui is an affine
open of X. By Hypercoverings, Lemma 24.4.3 there is a spectral sequence with
E2-page

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). Note that Ȟp(K,Hq(F)) is the pth cohomology group
of the complex∏

i∈I0
Hq(Ui,F)→

∏
i∈I1

Hq(Ui,F)→
∏

i∈I2
Hq(Ui,F)→ . . .

Since each Ui is affine we see that this is zero unless q = 0 in which case we obtain∏
i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Thus we conclude that RΓ(X,F) is computed by this complex.

For any n and i ∈ In denote fi : Ui → S the restriction of f to Ui. As S is separated
and Ui is affine this morphism is affine. Consider the complex of quasi-coherent
sheaves

K• = (
∏

i∈I0
fi,∗F|Ui →

∏
i∈I1

fi,∗F|Ui →
∏

i∈I2
fi,∗F|Ui → . . .)

http://stacks.math.columbia.edu/tag/01XN
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on S. As in Hypercoverings, Lemma 24.4.3 we obtain a map K• → Rf∗F in
D(OS) by choosing an injective resolution of F (details omitted). Consider any
affine scheme V and a morphism g : V → S. Then the base change XV has
a hypercovering KV = (I, {Ui,V }) obtained by base change. Moreover, g∗fi,∗F =
fi,V,∗(g

′)∗F|Ui,V . Thus the arguments above prove that Γ(V, g∗K•) computesRΓ(XV , (g
′)∗F).

This finishes the proof of the lemma as it suffices to prove the equality of complexes
Zariski locally on S′. �

29.8. Cohomology of projective space

In this section we compute the cohomology of the twists of the structure sheaf
on Pn

S over a scheme S. Recall that Pn
S was defined as the fibre product Pn

S =
S ×Spec(Z) Pn

Z in Constructions, Definition 26.13.2. It was shown to be equal to

Pn
S = Proj

S
(OS [T0, . . . , Tn])

in Constructions, Lemma 26.21.4. In particular, projective space is a particular
case of a projective bundle. If S = Spec(R) is affine then we have

Pn
S = Pn

R = Proj(R[T0, . . . , Tn]).

All these identifications are compatible and compatible with the constructions of
the twisted structure sheaves OPnS

(d).

Before we state the result we need some notation. Let R be a ring. Recall that
R[T0, . . . , Tn] is a graded R-algebra where each Ti is homogeneous of degree 1.
Denote (R[T0, . . . , Tn])d the degree d summand. It is a finite free R-module of rank(
n+d
d

)
when d ≥ 0 and zero else. It has a basis consisting of monomials T e00 . . . T enn

with
∑
ei = d. We will also use the following notation: R[ 1

T0
, . . . , 1

Tn
] denotes

the Z-graded ring with 1
Ti

in degree −1. In particular the Z-graded R[ 1
T0
, . . . , 1

Tn
]

module
1

T0 . . . Tn
R[

1

T0
, . . . ,

1

Tn
]

which shows up in the statement below is zero in degrees ≥ −n, is free on the
generator 1

T0...Tn
in degree −n− 1 and is free of rank (−1)n

(
n+d
d

)
for d ≤ −n− 1.

Lemma 29.8.1. Let R be a ring. Let n ≥ 0 be an integer. We have

Hq(Pn,OPnR
(d)) =


(R[T0, . . . , Tn])d if q = 0

0 if q 6= 0, n(
1

T0...Tn
R[ 1

T0
, . . . , 1

Tn
]
)
d

if q = n

as R-modules.

Proof. We will use the standard affine open covering

U : Pn
R =

⋃n

i=0
D+(Ti)

to compute the cohomology using the Cech complex. This is permissible by Lemma
29.2.5 since any intersection of finitely many affine D+(Ti) is also a standard affine
open (see Constructions, Section 26.8). In fact, we can use the alternating or
ordered Cech complex according to Cohomology, Lemmas 20.24.3 and 20.24.6.

http://stacks.math.columbia.edu/tag/01XT
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The ordering we will use on {0, . . . , n} is the usual one. Hence the complex we are
looking at has terms

Čpord(U ,OPR(d)) =
⊕

i0<...<ip
(R[T0, . . . , Tn,

1

Ti0 . . . Tip
])d

Moreover, the maps are given by the usual formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

see Cohomology, Section 20.24. Note that each term of this complex has a natural
Zn+1-grading. Namely, we get this by declaring a monomial T e00 . . . T enn to be
homogeneous with weight (e0, . . . , en) ∈ Zn+1. It is clear that the differential given
above respects the grading. In a formula we have

Č•ord(U ,OPR(d)) =
⊕

~e∈Zn+1
Č•(~e)

where not all summand on the right hand side occur (see below). Hence in order
to compute the cohomology modules of the complex it suffices to compute the
cohomology of the graded pieces and take the direct sum at the end.

Fix ~e = (e0, . . . , en) ∈ Zn+1. In order for this weight to occur in the complex above
we need to assume e0 + . . . + en = d (if not then it occurs for a different twist of
the structure sheaf of course). Assuming this set

NEG(~e) = {i ∈ {0, . . . , n} | ei < 0}.
With this notation the weight ~e summand Č•(~e) of the Cech complex above has the
following terms

Čp(~e) =
⊕

i0<...<ip, NEG(~e)⊂{i0,...,ip}
R · T e00 . . . T enn

In other words, the terms corresponding to i0 < . . . < ip such that NEG(~e) is not

contained in {i0 . . . ip} are zero. The differential of the complex Č•(~e) is still given
by the exact same formula as above.

Suppose that NEG(~e) = {0, . . . , n}, i.e., that all exponents ei are negative. In this
case the complex Č•(~e) has only one term, namely Čn(~e) = R · 1

T−e0 ...T−en
. Hence

in this case

Hq(Č•(~e)) =

{
R · 1

T−e0 ...T−en
if q = n

0 if else

The direct sum of all of these terms clearly gives the value(
1

T0 . . . Tn
R[

1

T0
, . . . ,

1

Tn
]

)
d

in degree n as stated in the lemma. Moreover these terms do not contribute to
cohomology in other degrees (also in accordance with the statement of the lemma).

Assume NEG(~e) = ∅. In this case the complex Č•(~e) has a summand R correspond-
ing to all i0 < . . . < ip. Let us compare the complex Č•(~e) to another complex.
Namely, consider the affine open open covering

V : Spec(R) =
⋃

i∈{0,...,n}
Vi

where Vi = Spec(R) for all i. Consider the alternating Cech complex

Č•ord(V,OSpec(R))



29.8. COHOMOLOGY OF PROJECTIVE SPACE 1977

By the same reasoning as above this computes the cohomology of the structure
sheaf on Spec(R). Hence we see that Hp(Č•ord(V,OSpec(R))) = R if p = 0 and is 0
whenever p > 0. For these facts, see Lemma 29.2.1 and its proof. Note that also
Č•ord(V,OSpec(R)) has a summand R for every i0 < . . . < ip and has exactly the same

differential as Č•(~e). In other words these complexes are isomorphic complexes and
hence have the same cohomology. We conclude that

Hq(Č•(~e)) =

{
R · T e0 . . . T en if q = 0

0 if else

in the case that NEG(~e) = ∅. The direct sum of all of these terms clearly gives the
value

(R[T0, . . . , Tn])d

in degree 0 as stated in the lemma. Moreover these terms do not contribute to
cohomology in other degrees (also in accordance with the statement of the lemma).

To finish the proof of the lemma we have to show that the complexes Č•(~e) are
acyclic when NEG(~e) is neither empty nor equal to {0, . . . , n}. Pick an index
ifix 6∈ NEG(~e) (such an index exists). Consider the map

h : Čp+1(~e)→ Čp(~e)
given by the rule

h(s)i0...ip = sifixi0...ip
(compare with the proof of Lemma 29.2.1). It is clear that this is well defined since

NEG(~e) ⊂ {i0, . . . , ip} ⇔ NEG(~e) ⊂ {ifix, i0, . . . , ip}

Also Č0(~e) = 0 so that this formula does work for all p including p = −1. The exact
same (combinatorial) computation as in the proof of Lemma 29.2.1 shows that

(hd+ dh)(s)i0...ip = si0...ip

Hence we see that the identity map of the complex Č•(~e) is homotopic to zero which
implies that it is acyclic. �

In the following lemma we are going to use the pairing of free R-modules

R[T0, . . . , Tn]× 1

T0 . . . Tn
R[

1

T0
, . . . ,

1

Tn
] −→ R

which is defined by the rule

(f, g) 7−→ coefficient of
1

T0 . . . Tn
in fg.

In other words, the basis element T e00 . . . T enn pairs with the basis element T d0
0 . . . T dnn

to give 1 if and only if ei + di = −1 for all i, and pairs to zero in all other cases.
Using this pairing we get an identification(

1

T0 . . . Tn
R[

1

T0
, . . . ,

1

Tn
]

)
d

= HomR((R[T0, . . . , Tn])−n−1−d, R)

Thus we can reformulate the result of Lemma 29.8.1 as saying that

(29.8.1.1) Hq(Pn,OPnR
(d)) =

 (R[T0, . . . , Tn])d if q = 0
0 if q 6= 0, n

HomR((R[T0, . . . , Tn])−n−1−d, R) if q = n
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Lemma 29.8.2. The identifications of Equation (29.8.1.1) are compatible with base
change w.r.t. ring maps R→ R′. Moreover, for any f ∈ R[T0, . . . , Tn] homogeneous
of degree m the map multiplication by f

OPnR
(d) −→ OPnR

(d+m)

induces the map on the cohomology group via the identifications of Equation (29.8.1.1)
which is multiplication by f for H0 and the contragredient of multiplication by f

(R[T0, . . . , Tn])−n−1−(d+m) −→ (R[T0, . . . , Tn])−n−1−d

on Hn.

Proof. Suppose that R → R′ is a ring map. Let U be the standard affine open
covering of Pn

R, and let U ′ be the standard affine open covering of Pn
R′ . Note that

U ′ is the pullback of the covering U under the canonical morphism Pn
R′ → Pn

R.
Hence there is a map of Cech complexes

γ : Č•ord(U ,OPR(d)) −→ Č•ord(U ′,OPR′ (d))

which is compatible with the map on cohomology by Cohomology, Lemma 20.16.1.
It is clear from the computations in the proof of Lemma 29.8.1 that this map of
Cech complexes is compatible with the identifications of the cohomology groups in
question. (Namely the basis elements for the Cech complex over R simply map to
the corresponding basis elements for the Cech complex over R′.) Whence the first
statement of the lemma.

Now fix the ring R and consider two homogeneous polynomials f, g ∈ R[T0, . . . , Tn]
both of the same degree m. Since cohomology is an additive functor, it is clear
that the map induced by multiplication by f + g is the same as the sum of the
maps induced by multiplication by f and the map induced by multiplication by g.
Moreover, since cohomology is a functor a similar result holds for multiplication
by a product fg where f, g are both homogeneous (but not necessarily of the same
degree). Hence to verify the second statement of the lemma it suffices to prove
this when f = x ∈ R or when f = Ti. In the case of multiplication by an element
x ∈ R the result follows since every cohomology groups or complex in sight has the
structure of an R-module or complex of R-modules. Finally, we consider the case
of multiplication by Ti as a OPnR

-linear map

OPnR
(d) −→ OPnR

(d+ 1)

The statement on H0 is clear. For the statement on Hn consider multiplication by
Ti as a map on Cech complexes

Č•ord(U ,OPR(d)) −→ Č•ord(U ,OPR(d+ 1))

We are going to use the notation introduced in the proof of Lemma 29.8.1. We
consider the effect of multiplication by Ti in terms of the decompositions

Č•ord(U ,OPR(d)) =
⊕

~e∈Zn+1,
∑
ei=d
Č•(~e)

and
Č•ord(U ,OPR(d+ 1)) =

⊕
~e∈Zn+1,

∑
ei=d+1

Č•(~e)

It is clear that it maps the subcomplex Č•(~e) to the subcomplex Č•(~e+~bi) where~bi =
(0, . . . , 0, 1, 0, . . . , 0)) the ith basis vector. In other words, it maps the summand
of Hn corresponding to ~e with ei < 0 and

∑
ei = d to the summand of Hn

http://stacks.math.columbia.edu/tag/01XV
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corresponding to ~e + ~bi (which is zero if ei + bi ≥ 0). It is easy to see that this
corresponds exactly to the action of the contragredient of multiplication by Ti as a
map

(R[T0, . . . , Tn])−n−1−(d+1) −→ (R[T0, . . . , Tn])−n−1−d

This proves the lemma. �

Before we state the relative version we need some notation. Namely, recall that
OS [T0, . . . , Tn] is a graded OS-module where each Ti is homogeneous of degree 1.
Denote (OS [T0, . . . , Tn])d the degree d summand. It is a finite locally free sheaf of

rank
(
n+d
d

)
on S.

Lemma 29.8.3. Let S be a scheme. Let n ≥ 0 be an integer. Consider the structure
morphism

f : Pn
S −→ S.

We have

Rqf∗(OPnS
(d)) =

 (OS [T0, . . . , Tn])d if q = 0
0 if q 6= 0, n

HomOS ((OS [T0, . . . , Tn])−n−1−d,OS) if q = n

Proof. Omitted. Hint: This follows since the identifications in (29.8.1.1) are com-
patible with affine base change by Lemma 29.8.2. �

Next we state the version for projective bundles associated to finite locally free
sheaves. Let S be a scheme. Let E be a finite locally free OS-module of constant
rank n+1, see Modules, Section 17.14. In this case we think of Sym(E) as a graded

OS-module where E is the graded part of degree 1. And Symd(E) is the degree

d summand. It is a finite locally free sheaf of rank
(
n+d
d

)
on S. Recall that our

normalization is that

π : P(E) = Proj
S

(Sym(E)) −→ S

and that there are natural maps Symd(E)→ π∗OP(E)(d).

Lemma 29.8.4. Let S be a scheme. Let n ≥ 1. Let E be a finite locally free
OS-module of constant rank n+ 1. Consider the structure morphism

π : P(E) −→ S.

We have

Rqπ∗(OP(E)(d)) =

 Symd(E) if q = 0
0 if q 6= 0, n

HomOS (Sym−n−1−d(E)⊗OS ∧n+1E ,OS) if q = n

These identifications are compatible with base change and isomorphism between
locally free sheaves.

Proof. Consider the canonical map

π∗E −→ OP(E)(1)

and twist down by 1 to get

π∗(E)(−1) −→ OP(E)

http://stacks.math.columbia.edu/tag/01XW
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This is a surjective map from a locally free rank n+1 sheaf onto the structure sheaf.
Hence the corresponding Koszul complex is exact (insert future reference here). In
other words there is an exact complex

0→ π∗(∧n+1E)(−n− 1)→ . . .→ π∗(∧iE)(−i)→ . . .→ π∗E(−1)→ OP(E) → 0

We will think of the term π∗(∧iE)(−i) as being in degree −i. We are going to
compute the higher direct images of this acyclic complex using the first spectral
sequence of Derived Categories, Lemma 13.21.3. Namely, we see that there is a
spectral sequence with terms

Ep,q2 = Hp(L•,q) with L−i,q = Rqπ∗
(
π∗(∧iE)(−i)

)
converging to zero! By the projection formula ( Cohomology, Lemma 20.8.2) we
have

L−i,q = ∧iE ⊗OS Rqπ∗
(
OP(E)(−i)

)
.

Note that locally on S the sheaf E is trivial, i.e., isomorphic to O⊕n+1
S , hence locally

on S the morphism P(E)→ S can be identified with Pn
S → S. Hence locally on S

we can use the result of Lemmas 29.8.1, 29.8.2, or 29.8.3. It follows that L−i,q = 0
unless i = q = 0 or i = n+ 1 and q = n. This in turn implies that Ep,q2 = 0 unless
(p, q) = (0, 0) or (p, q) = (−n− 1, n), and

E0,0
2 = π∗OP(E) = OS

E−n−1,n
2 = ∧n+1E ⊗OS Rnπ∗

(
OP(E)(−n− 1)

)
.

Hence there can only be one nonzero differential in the spectral sequence namely
the map dn+1 inducing a map

d0,0
n+1 : OS −→ ∧n+1E ⊗OS Rnπ∗

(
OP(E)(−n− 1)

)
which has to be an isomorphism (because the spectral sequence converges to the
0 sheaf). Since ∧n+1E is an invertible sheaf, this implies that Rnπ∗OP(E)(−n− 1)

is invertible as well and canonically isomorphic to the inverse of ∧n+1E . In other
words we have proved the case d = −n− 1 of the lemma.

Working locally on S we see immediately from the computation of cohomology in
Lemmas 29.8.1, 29.8.2, or 29.8.3 the statements on vanishing of the lemma. More-
over the result on R0π∗ is clear as well, since there are canonical maps Symd(E)→
π∗OP(E)(d) for all d. It remains to show that the description of Rnπ∗OP(E)(d) is
correct for d < −n− 1. In order to do this we consider the map

π∗(Sym−d−n−1(E))⊗OP(E)
OP(E)(d) −→ OP(E)(−n− 1)

Applying Rnπ∗ and the projection formula (see above) we get a map

Sym−d−n−1(E)⊗OS Rnπ∗(OP(E)(d)) −→ Rnπ∗OP(E)(−n− 1) = (∧n+1E)⊗−1

(the last equality we have shown above). Again by the local calculations of Lemmas
29.8.1, 29.8.2, or 29.8.3 it follows that this map induces a perfect pairing between
Rnπ∗(OP(E)(d)) and Sym−d−n−1(E)⊗ ∧n+1(E) as desired. �
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29.9. Coherent sheaves on locally Noetherian schemes

We have defined the notion of a coherent module on any ringed space in Mod-
ules, Section 17.12. Although it is possible to consider coherent sheaves on non-
Noetherian schemes we will always assume the base scheme is locally Noetherian
when we consider coherent sheaves. Here is a characterization of coherent sheaves
on locally Noetherian schemes.

Lemma 29.9.1. Let X be a locally Noetherian scheme. Let F be an OX-module.
The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite type OX-module,
(3) F is a finitely presented OX-module,

(4) for any affine open Spec(A) = U ⊂ X we have F|U = M̃ with M a finite
A-module, and

(5) there exists an affine open covering X =
⋃
Ui, Ui = Spec(Ai) such that

each F|Ui = M̃i with Mi a finite Ai-module.

In particular OX is coherent, any invertible OX-module is coherent, and more gen-
erally any finite locally free OX-module is coherent.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) hold in general, see Modules,
Lemma 17.12.2. If F is finitely presented then F is quasi-coherent, see Modules,
Lemma 17.11.2. Hence also (3) ⇒ (2).

Assume F is a quasi-coherent, finite type OX -module. By Properties, Lemma

27.16.1 we see that on any affine open Spec(A) = U ⊂ X we have F|U = M̃ with
M a finite A-module. Since A is Noetherian we see that M has a finite resolution

A⊕m → A⊕n →M → 0.

Hence F is of finite presentation by Properties, Lemma 27.16.2. In other words (2)
⇒ (3).

By Modules, Lemma 17.12.5 it suffices to show that OX is coherent in order to
show that (3) implies (1). Thus we have to show: given any open U ⊂ X and
any finite collection of sections fi ∈ OX(U), i = 1, . . . , n the kernel of the map⊕

i=1,...,nOU → OU is of finite type. Since being of finite type is a local property
it suffices to check this in a neighbourhood of any x ∈ U . Thus we may assume
U = Spec(A) is affine. In this case f1, . . . , fn ∈ A are elements of A. Since A is
Noetherian, see Properties, Lemma 27.5.2 the kernel K of the map

⊕
i=1,...,nA→ A

is a finite A-module. See for example Algebra, Lemma 10.49.1. As the functor˜is
exact, see Schemes, Lemma 25.5.4 we get an exact sequence

K̃ →
⊕

i=1,...,n
OU → OU

and by Properties, Lemma 27.16.1 again we see that K̃ is of finite type. We conclude
that (1), (2) and (3) are all equivalent.

It follows from Properties, Lemma 27.16.1 that (2) implies (4). It is trivial that (4)
implies (5). The discussion in Schemes, Section 25.24 show that (5) implies that F
is quasi-coherent and it is clear that (5) implies that F is of finite type. Hence (5)
implies (2) and we win. �

http://stacks.math.columbia.edu/tag/01XZ
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Lemma 29.9.2. Let X be a locally Noetherian scheme. The category of coherent
OX-modules is abelian. More precisely, the kernel and cokernel of a map of coherent
OX-modules are coherent. Any extension of coherent sheaves is coherent.

Proof. This is a restatement of Modules, Lemma 17.12.4 in a particular case. �

The following lemma does not always hold for the category of coherent OX -modules
on a general ringed space X.

Lemma 29.9.3. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Any quasi-coherent submodule of F is coherent. Any quasi-coherent quo-
tient module of F is coherent.

Proof. We may assume that X is affine, say X = Spec(A). Properties, Lemma
27.5.2 implies that A is Noetherian. Lemma 29.9.1 turns this into algebra. The
algebraic counter part of the lemma is that a quotient, or a submodule of a finite
A-module is a finite A-module, see for example Algebra, Lemma 10.49.1. �

Lemma 29.9.4. Let X be a locally Noetherian scheme. Let F , G be coherent
OX-modules. The OX-modules F ⊗OX G and HomOX (F ,G) are coherent.

Proof. It is shown in Modules, Lemma 17.19.4 that HomOX (F ,G) is coherent.
The result for tensor products is Modules, Lemma 17.15.5 �

Lemma 29.9.5. Let X be a locally Noetherian scheme. Let F , G be coherent
OX-modules. Let ϕ : G → F be a homomorphism of OX-modules. Let x ∈ X.

(1) If Fx = 0 then there exists an open neighbourhood U ⊂ X of x such that
F|U = 0.

(2) If ϕx : Gx → Fx is injective, then there exists an open neighbourhood
U ⊂ X of x such that ϕ|U is injective.

(3) If ϕx : Gx → Fx is surjective, then there exists an open neighbourhood
U ⊂ X of x such that ϕ|U is surjective.

(4) If ϕx : Gx → Fx is bijective, then there exists an open neighbourhood
U ⊂ X of x such that ϕ|U is an isomorphism.

Proof. See Modules, Lemmas 17.9.4, 17.9.5, and 17.12.6. �

Lemma 29.9.6. Let X be a locally Noetherian scheme. Let F , G be coherent OX-
modules. Let x ∈ X. Suppose ψ : Gx → Fx is a map of OX,x-modules. Then there
exists an open neighbourhood U ⊂ X of x and a map ϕ : G|U → F|U such that
ϕx = ψ.

Proof. In view of Lemma 29.9.1 this is a reformulation of Modules, Lemma 17.19.3.
�

Lemma 29.9.7. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then Supp(F) is closed, and F comes from a coherent sheaf on the scheme
theoretic support of F , see Morphisms, Definition 28.5.5.

Proof. Let i : Z → X be the scheme theoretic support of F and let G be the finite
type quasi-coherent sheaf on Z such that i∗G ∼= F . Since Z = Supp(F) we see that
the support is closed. The scheme Z is locally Noetherian by Morphisms, Lemmas
28.16.5 and 28.16.6. Finally, G is a coherent OZ-module by Lemma 29.9.1 �

http://stacks.math.columbia.edu/tag/01Y0
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Lemma 29.9.8. Let i : Z → X be a closed immersion of locally Noetherian
schemes. Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting out Z. The
functor i∗ induces an equivalence between the category of coherent OX-modules an-
nihilated by I and the category of coherent OZ-modules.

Proof. The functor is fully faithful by Morphisms, Lemma 28.4.1. Let F be a
coherent OX -module annihilated by I. By Morphisms, Lemma 28.4.1 we can write
F = i∗G for some quasi-coherent sheaf G on Z. By Modules, Lemma 17.13.3 we see
that G is of finite type. Hence G is coherent by Lemma 29.9.1. Thus the functor is
also essentially surjective as desired. �

Lemma 29.9.9. Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume f is finite and Y locally Noetherian. Then Rpf∗F =
0 for p > 0 and f∗F is coherent if F is coherent.

Proof. The higher direct images vanish by Lemma 29.2.3 and because a finite
morphism is affine (by definition). Note that the assumptions imply that also X is
locally Noetherian (see Morphisms, Lemma 28.16.6) and hence the statement makes
sense. Let Spec(A) = V ⊂ Y be an affine open subset. By Morphisms, Definition
28.44.1 we see that f−1(V ) = Spec(B) with A→ B finite. Lemma 29.9.1 turns the
statement of the lemma into the following algebra fact: If M is a finite B-module,
then M is also finite viewed as a A-module, see Algebra, Lemma 10.7.2. �

In the situation of the lemma also the higher direct images are coherent since they
vanish. We will show that this is always the case for a proper morphism between
locally Noetherian schemes (insert future reference here).

29.10. Coherent sheaves on Noetherian schemes

In this section we mention some properties of coherent sheaves on Noetherian
schemes.

Lemma 29.10.1. Let X be a Noetherian scheme. Let F be a coherent OX-module.
The ascending chain condition holds for quasi-coherent submodules of F . In other
words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F
of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.

Proof. Choose a finite affine open covering. On each member of the covering we
get stabilization by Algebra, Lemma 10.49.1. Hence the lemma follows. �

Lemma 29.10.2. Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Let I ⊂ OX be a quasi-coherent sheaf of ideals corresponding to a closed subscheme
Z ⊂ X. Then there is some n ≥ 0 such that InF = 0 if and only if Supp(F) ⊂ Z
(set theoretically).

Proof. This follows immediately from Algebra, Lemma 10.61.4 because X has a
finite covering by spectra of Noetherian rings. �

Lemma 29.10.3 (Artin-Rees). Let X be a Noetherian scheme. Let F be a coherent
sheaf on X. Let G ⊂ F be a quasi-coherent subsheaf. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Then there exists a c ≥ 0 such that for all n ≥ c we
have

In−c(IcF ∩ G) = InF ∩ G
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Proof. This follows immediately from Algebra, Lemma 10.49.2 because X has a
finite covering by spectra of Noetherian rings. �

Lemma 29.10.4. Let X be a Noetherian scheme. Let F be a quasi-coherent OX-
module. Let G be coherent OX-module. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Denote Z ⊂ X the corresponding closed subscheme and set U = X \ Z.
There is a canonical isomorphism

colimn HomOX (InG,F) −→ HomOU (G|U ,F|U ).

In particular we have an isomorphism

colimn HomOX (In,F) −→ Γ(U,F).

Proof. We first prove the second map is an isomorphism. It is injective by Proper-
ties, Lemma 27.23.3. Since F is the union of its coherent submodules, see Proper-
ties, Lemma 27.20.3 (and Lemma 29.9.1) we may and do assume that F is coherent
to prove surjectivity. Let Fn denote the quasi-coherent subsheaf of F consisting of
sections annihilated by In, see Properties, Lemma 27.23.3. Since F1 ⊂ F2 ⊂ . . . we
see that Fn = Fn+1 = . . . for some n ≥ 0 by Lemma 29.10.1. Set H = Fn for this n.
By Artin-Rees (Lemma 29.10.3) there exists an c ≥ 0 such that ImF∩H ⊂ Im−cH.
Picking m = n+ c we get ImF ∩H ⊂ InH = 0. Thus if we set F ′ = ImF then we
see that F ′ ∩ Fn = 0 and F ′|U = F|U . Note in particular that the subsheaf (F ′)N
of sections annihilated by IN is zero for all N ≥ 0. Hence by Properties, Lemma
27.23.3 we deduce that the top horizontal arrow in the following commutative dia-
gram is a bijection:

colimn HomOX (In,F ′) //

��

Γ(U,F ′)

��
colimn HomOX (In,F) // Γ(U,F)

Since also the right vertical arrow is a bijection we conclude that the bottom hori-
zontal arrow is surjective as desired.

Next, we prove the first arrow of the lemma is a bijection. By Lemma 29.9.1 the
sheaf G is of finite presentation and hence the sheaf H = HomOX (G,F) is quasi-
coherent, see Schemes, Section 25.24. By definition we have

H(U) = HomOU (G|U ,F|U )

Pick a ψ in the right hand side of the first arrow of the lemma, i.e., ψ ∈ H(U). The
result just proved applies to H and hence there exists an n ≥ 0 and an ϕ : In → H
which recovers ψ on restriction to U . By Modules, Lemma 17.19.1 ϕ corresponds
to a map

ϕ : I⊗n ⊗OX G −→ F .
This is almost what we want except that the source of the arrow is the tensor
product of In and G and not the product. We will show that, at the cost of
increasing n, the difference is irrelevant. Consider the short exact sequence

0→ K → In ⊗OX G → InG → 0

where K is defined as the kernel. Note that InK = 0 (proof omitted). By Artin-
Rees again we see that

K ∩ Im(In ⊗OX G) = 0
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for some m large enough. In other words we see that

Im(In ⊗OX G) −→ In+mG
is an isomorphism. Let ϕ′ be the restriction of ϕ to this submodule thought of as
a map Im+nG → F . Then ϕ′ gives an element of the left hand side of the first
arrow of the lemma which maps to ψ via the arrow. In other words we have proved
surjectivity of the arrow. We omit the proof of injectivity. �

29.11. Depth

In this section we talk a little bit about depth and property (Sk) for coherent
modules on locally Noetherian schemes. Note that we have already discussed this
notion for locally Noetherian schemes in Properties, Section 27.12.

Definition 29.11.1. Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. Let k ≥ 0 be an integer.

(1) We say F has depth k at a point x of X if depthOX,x(Fx) = k.

(2) We say X has depth k at a point x of X if depth(OX,x) = k.
(3) We say F has property (Sk) if

depthOX,x(Fx) ≥ min(k, dim(Supp(Fx)))

for all x ∈ X.
(4) We say X has property (Sk) if OX has property (Sk).

Any coherent sheaf satisfies condition (S0). Condition (S1) is equivalent to having
no embedded associated points, see Divisors, Lemma 30.4.3.

We have seen in Properties, Lemma 27.12.2 that a locally Noetherian scheme is
Cohen-Macaulay if and only if (Sk) holds for all k. Thus it makes sense to introduce
the following definition, which is equivalent to the condition that all stalks are
Cohen-Macaulay modules.

Definition 29.11.2. Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. We say F is Cohen-Macaulay if and only if (Sk) holds for all k ≥ 0.

29.12. Devissage of coherent sheaves

Let X be a Noetherian scheme. Consider an integral closed subscheme i : Z → X.
It is often convenient to consider coherent sheaves of the form i∗G where G is a
coherent sheaf on Z. In particular we are interested in these sheaves when G is a
torsion free rank 1 sheaf. For example G could be a nonzero sheaf of ideals on Z,
or even more specifically G = OZ .

Throughout this section we will use that a coherent sheaf is the same thing as a
finite type quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent
sheaf is coherent, see Section 29.9. The support of a coherent sheaf is closed, see
Modules, Lemma 17.9.6.

Lemma 29.12.1. Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Suppose that Supp(F) = Z ∪ Z ′ with Z, Z ′ closed. Then there exists a short exact
sequence of coherent sheaves

0→ G′ → F → G → 0

with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.
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Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed
subscheme structure on Z, see Schemes, Lemma 25.12.4. Consider the subsheaves
G′n = InF and the quotients Gn = F/InF . For each n we have a short exact
sequence

0→ G′n → F → Gn → 0

For every point x of Z ′ \ Z we have Ix = OX,x and hence Gn,x = 0. Thus we see
that Supp(Gn) ⊂ Z. Note that X \ Z ′ is a Noetherian scheme. Hence by Lemma
29.10.2 there exists an n such that G′n|X\Z′ = InF|X\Z′ = 0. For such an n we see
that Supp(G′n) ⊂ Z ′. Thus setting G′ = G′n and G = Gn works. �

Lemma 29.12.2. Let X be a Noetherian scheme. Let i : Z → X be an integral
closed subscheme. Let ξ ∈ Z be the generic point. Let F be a coherent sheaf on
X. Assume that Fξ is annihilated by mξ. Then there exists an integer r ≥ 0 and a
sheaf of ideals I ⊂ OZ and an injective map of coherent sheaves

i∗
(
I⊕r

)
→ F

which is an isomorphism in a neighbourhood of ξ.

Proof. Let J ⊂ OX be the ideal sheaf of Z. Let F ′ ⊂ F be the subsheaf of local
sections of F which are annihilated by J . It is a quasi-coherent sheaf by Properties,
Lemma 27.22.2. Moreover, F ′ξ = Fξ because Jξ = mξ and part (3) of Properties,

Lemma 27.22.2. By Lemma 29.9.5 we see that F ′ → F induces an isomorphism
in a neighbourhood of ξ. Hence we may replace F by F ′ and assume that F is
annihilated by J .

Assume JF = 0. By Lemma 29.9.8 we can write F = i∗G for some coherent sheaf
G on Z. Suppose we can find a morphism I⊕r → G which is an isomorphism in a
neighbourhood of the generic point ξ of Z. Then applying i∗ (which is left exact)
we get the result of the lemma. Hence we have reduced to the case X = Z.

Suppose Z = X is an integral Noetherian scheme with generic point ξ. Note that
OX,ξ = κ(ξ) is the function field of X in this case. Since Fξ is a finite Oξ-module
we see that r = dimκ(ξ) Fξ is finite. Hence the sheaves O⊕rX and F have isomorphic
stalks at ξ. By Lemma 29.9.6 there exists a nonempty open U ⊂ X and a morphism
ψ : O⊕rX |U → F|U which is an isomorphism at ξ, and hence an isomorphism in a
neighbourhood of ξ by Lemma 29.9.5. By Schemes, Lemma 25.12.4 there exists a
quasi-coherent sheaf of ideals I ⊂ OX whose associated closed subscheme Z ⊂ X
is the complement of U . By Lemma 29.10.4 there exists an n ≥ 0 and a morphism
In(O⊕rX ) → F which recovers our ψ over U . Since In(O⊕rX ) = (In)⊕r we get a
map as in the lemma. It is injective because X is integral and it is injective at the
generic point of X (easy proof omitted). �

Lemma 29.12.3. Let X be a Noetherian scheme. Let F be a coherent sheaf on
X. There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that for each j = 1, . . . ,m there exists an integral closed
subscheme Zj ⊂ X and a sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1
∼= (Zj → X)∗Ij
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Proof. Consider the collection

T =

{
Z ⊂ X closed such that there exists a coherent sheaf F

with Supp(F) = Z for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because X is Noetherian we
can choose a minimal element Z ∈ T . This means that there exists a coherent
sheaf F on X whose support is Z and for which the lemma does not hold. Clearly
Z 6= ∅ since the only sheaf whose support is empty is the zero sheaf for which the
lemma does hold (with m = 0).

If Z is not irreducible, then we can write Z = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than Z. Then we can apply Lemma 29.12.1 to get a short exact sequence
of coherent sheaves

0→ G1 → F → G2 → 0

with Supp(Gi) ⊂ Zi. By minimality of Z each of Gi has a filtration as in the
statement of the lemma. By considering the induced filtration on F we arrive at a
contradiction. Hence we conclude that Z is irreducible.

Suppose Z is irreducible. Let J be the sheaf of ideals cutting out the reduced
induced closed subscheme structure of Z, see Schemes, Lemma 25.12.4. By Lemma
29.10.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a
filtration

0 = J nF ⊂ J n−1F ⊂ . . . ⊂ JF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .

In the case where Z is irreducible and JF = 0 we can apply Lemma 29.12.2. This
gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0

where Q is defined as the quotient. Since Q is zero in a neighbourhood of ξ by the
lemma just cited we see that the support of Q is strictly smaller than Z. Hence we
see that Q has a filtration of the desired type by minimality of Z. But then clearly
F does too, which is our final contradiction. �

Lemma 29.12.4. Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every integral closed subscheme Z ⊂ X and every quasi-coherent sheaf

of ideals I ⊂ OZ we have P for i∗I.

Then property P holds for every coherent sheaf on X.

Proof. First note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from the property (1) for P. On the other hand, by Lemma 29.12.3 we
can filter any F with successive subquotients as in (2). Hence the lemma follows. �
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Lemma 29.12.5. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z 6= Z0 and every
quasi-coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.

(3) There exists some coherent sheaf G on X such that
(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. First note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
Or, if F has property P and all but one of the Fi/Fi−1 has property P then so
does the last one. This follows from assumption (1).

As a first application we conclude that any coherent sheaf whose support is strictly
contained in Z0 has property P. Namely, such a sheaf has a filtration (see Lemma
29.12.3) whose subquotients have property P according to (2).

Let G be as in (3). By Lemma 29.12.2 there exist a sheaf of ideals I on Z0, an
integer r ≥ 1, and a short exact sequence

0→ ((Z0 → X)∗I)
⊕r → G → Q→ 0

where the support of Q is strictly contained in Z0. By (3)(c) we see that r = 1.
Since Q has property P too we conclude that (Z0 → X)∗I has property P.

Next, suppose that I ′ 6= 0 is another quasi-coherent sheaf of ideals on Z0. Then we
can consider the intersection I ′′ = I ′ ∩ I and we get two short exact sequences

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I → Q → 0

and

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I ′ → Q′ → 0.

Note that the support of the coherent sheaves Q and Q′ are strictly contained in
Z0. Hence Q and Q′ have property P (see above). Hence we conclude using (1)
that (Z0 → X)∗I ′′ and (Z0 → X)∗I ′ both have P as well.

The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 29.12.3 again) whose subquotients
all have property P by what we just said. �

Lemma 29.12.6. Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.
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(2) For every integral closed subscheme Z ⊂ X with generic point ξ there
exists some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. According to Lemma 29.12.4 it suffices to show that given any integral
closed subscheme Z ⊂ X and every quasi-coherent sheaf of ideals I ⊂ OZ we have
P for (Z → X)∗I. If this fails, then sinceX is Noetherian there is a minimal integral
closed subscheme Z0 ⊂ X such that P fails for (Z0 → X)∗I for some quasi-coherent
sheaf of ideals I ⊂ OZ0 . In other words, the result does hold for any integral closed
subscheme of Z. According to Lemma 29.12.5 this cannot happen. �

Lemma 29.12.7. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
such that

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z 6= Z0 and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
(4) There exists some coherent sheaf G such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′ξ = Gξ and

such that P holds for G′.
Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. Note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from assumption (1).

As a first application we conclude that any coherent sheaf whose support is strictly
contained in Z0 has property P. Namely, such a sheaf has a filtration (see Lemma
29.12.3) whose subquotients have property P according to (3).

Let us denote i : Z0 → X the closed immersion. Consider a coherent sheaf G as
in (4). By Lemma 29.12.2 there exists a sheaf of ideals I on Z0 and a short exact
sequence

0→ i∗I⊕r → G → Q→ 0

where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z0. Let I ′ ⊂ I be any nonzero
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quasi-coherent sheaf of ideals on Z0 contained in I. Then we also get a short exact
sequence

0→ i∗(I ′)⊕r → G → Q′ → 0

where Q′ has support properly contained in Z0. Let J ⊂ OX be a quasi-coherent
sheaf of ideals cutting out the support of Q′ (for example the ideal corresponding
to the reduced induced closed subscheme structure on the support of Q′). Then
Jξ = OX,ξ. By Lemma 29.10.2 we see that J nQ′ = 0 for some n. Hence J nG ⊂
i∗(I ′)⊕r. By assumption (4)(c) of the lemma we see there exists a quasi-coherent
subsheaf G′ ⊂ J nG with G′ξ = Gξ for which property P holds. Hence we get a short
exact sequence

0→ G′ → i∗(I ′)⊕r → Q′′ → 0

where Q′′ has support properly contained in Z0. Thus by our initial remarks and
property (1) of the lemma we conclude that i∗(I ′)⊕r satisfies P. Hence we see
that i∗I ′ satisfies P by (2). Finally, for an arbitrary quasi-coherent sheaf of ideals
I ′′ ⊂ OZ0 we can set I ′ = I ′′ ∩ I and we get a short exact sequence

0→ i∗(I ′)→ i∗(I ′′)→ Q′′′ → 0

where Q′′′ has support properly contained in Z0. Hence we conclude that property
P holds for i∗I ′′ as well.

The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 29.12.3 again) whose subquotients
all have property P by what we just said. �

Lemma 29.12.8. Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there

exists some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ, and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′ξ = Gξ and

such that P holds for G′.
Then property P holds for every coherent sheaf on X.

Proof. Follows from Lemma 29.12.7 in exactly the same way that Lemma 29.12.6
follows from Lemma 29.12.5. �

29.13. Finite morphisms and affines

In this section we use the results of the preceding sections to show that the image
of a Noetherian affine scheme under a finite morphism is affine. We will see later
that this result holds more generally (see Limits, Lemma 31.10.1).
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Lemma 29.13.1. Let f : Y → X be a morphism of schemes. Assume f is finite,
surjective and X locally Noetherian. Let Z ⊂ X be an integral closed subscheme
with generic point ξ. Then there exists a coherent sheaf F on Y such that the
support of f∗F is equal to Z and (f∗F)ξ is annihilated by mξ.

Proof. Note that Y is locally Noetherian by Morphisms, Lemma 28.16.6. Because
f is surjective the fibre Yξ is not empty. Pick ξ′ ∈ Y mapping to ξ. Let Z ′ = {ξ′}.
We may think of Z ′ ⊂ Y as a reduced closed subscheme, see Schemes, Lemma
25.12.4. Hence the sheaf F = (Z ′ → Y )∗OZ′ is a coherent sheaf on Y (see Lemma
29.9.9). Look at the commutative diagram

Z ′
i′
//

f ′

��

Y

f

��
Z

i // X

We see that f∗F = i∗f
′
∗OZ′ . Hence the stalk of f∗F at ξ is the stalk of f ′∗OZ′ at ξ.

Note that since Z ′ is integral with generic point ξ′ we have that ξ′ is the only point
of Z ′ lying over ξ, see Algebra, Lemmas 10.35.3 and 10.35.18. Hence the stalk of
f ′∗OZ′ at ξ equal OZ′,ξ′ = κ(ξ′). In particular the stalk of f∗F at ξ is not zero.
This combined with the fact that f∗F is of the form i∗f

′
∗(something) implies the

lemma. �

Lemma 29.13.2. Let f : Y → X be a morphism of schemes. Let F be a quasi-
coherent sheaf on Y . Let I be a quasi-coherent sheaf of ideals on X. If the morphism
f is affine then If∗F = f∗(f

−1IF).

Proof. The notation means the following. Since f−1 is an exact functor we see
that f−1I is a sheaf of ideals of f−1OX . Via the map f ] : f−1OX → OY this
acts on F . Then f−1IF is the subsheaf generated by sums of local sections of the
form as where a is a local section of f−1I and s is a local section of F . It is a
quasi-coherent OY -submodule of F because it is also the image of a natural map
f∗I ⊗OY F → F .

Having said this the proof is straightforward. Namely, the question is local and
hence we may assume X is affine. Since f is affine we see that Y is affine too. Thus

we may write Y = Spec(B), X = Spec(A), F = M̃ , and I = Ĩ. The assertion of
the lemma in this case boils down to the statement that

I(MA) = ((IB)M)A

where MA indicates the A-module associated to the B-module M . �

Lemma 29.13.3. Let f : Y → X be a morphism of schemes. Assume

(1) f finite,
(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coher-
ent OX -module F we have H1(X,F) = 0. This will in particular imply that
H1(X, I) = 0 for every quasi-coherent sheaf of ideals of OX . Then it follows that
X is affine from either Lemma 29.3.1 or Lemma 29.3.2.
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Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.

We are going to apply Lemma 29.12.8. Thus we have to verify (1), (2) and (3) of
that lemma for P. Property (1) follows from the long exact cohomology sequence
associated to a short exact sequence of sheaves. Property (2) follows since H1(X,−)
is an additive functor. To see (3) let Z ⊂ X be an integral closed subscheme with
generic point ξ. Let F be a coherent sheaf on Y such that the support of f∗F is
equal to Z and (f∗F)ξ is annihilated by mξ, see Lemma 29.13.1. We claim that
taking G = f∗F works. We only have to verify part (3)(c) of Lemma 29.12.8. Hence
assume that J ⊂ OX is a quasi-coherent sheaf of ideals such that Jξ = OX,ξ. A
finite morphism is affine hence by Lemma 29.13.2 we see that JG = f∗(f

−1JF).
Also, as pointed out in the proof of Lemma 29.13.2 the sheaf f−1JF is a quasi-
coherent OY -module. Since Y is affine we see that H1(Y, f−1JF) = 0, see Lemma
29.2.2. Since f is finite, hence affine, we see that

H1(X,JG) = H1(X, f∗(f
−1JF)) = H1(Y, f−1JF) = 0

by Lemma 29.2.4. Hence the quasi-coherent subsheaf G′ = JG satisfies P. This
verifies property (3)(c) of Lemma 29.12.8 as desired. �

29.14. Ample invertible sheaves and cohomology

Given a ringed space X, an invertible OX -module L, a section s ∈ Γ(X,L) and an
OX -module F we get a map F → F ⊗OX L, t 7→ t⊗ s which we call multiplication
by s. We usually denote it t 7→ st.

Lemma 29.14.1. Let X be a scheme. Let L be an invertible OX-module. Let
s ∈ Γ(X,L) be a section. Let F ′ ⊂ F be quasi-coherent OX-modules. Assume that

(1) X is quasi-compact,
(2) F is of finite type, and
(3) F ′|Xs = F|Xs .

Then there exists an n ≥ 0 such that multiplication by sn on F factors through F ′.

Proof. In other words we claim that snF ⊂ F ′ ⊗OX L⊗n for some n ≥ 0. If this
is true for n0 then it is true for all n ≥ n0. Hence it suffices to show there is
a finite open covering such that the result holds for each of the members of this
open covering. Since X is quasi-compact we may therefore assume that X is affine
and that L ∼= OX . Thus the lemma translates into the following algebra problem
(use Properties, Lemma 27.16.1): Let A be a ring. Let f ∈ A. Let M ′ ⊂ M be
A-modules. Assume M is a finite A-module, and assume that (M ′)f = Mf . Then
there exists an n ≥ 0 such that fnM ⊂M ′. The proof of this is omitted. �

Let X be a scheme. Let L be an invertible OX -module. Let s ∈ Γ(X,L) be
a section. Assume X quasi-compact and quasi-separated. The following lemma
says roughly that the category of finitely presented OXs -modules is the category of
finitely presentedOX -modules where the map multiplication by s has been inverted.

Lemma 29.14.2. Let X be a scheme. Let L be an invertible OX-module. Let
s ∈ Γ(X,L) be a section. Let F , F ′ be quasi-coherent OX-modules. Let ψ : F|Xs →
F ′|Xs be a map of OXs-modules. Assume that

(1) X is quasi-compact and quasi-separated, and
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(2) F is of finitely presented.

Then there exists an n ≥ 0 and a morphism α : F → F ′⊗OX L⊗n whose restriction
to Xs equals ψ via the identification L⊗n|Xs = OXs coming from s. Moreover,
given a pair of solutions (n, α) and (n′, α′) there exists an m ≥ max(n, n′) such

that sm−nα = sm−n
′
α′.

Proof. If the lemma holds for n0 with map α0 then it holds for all n ≥ n0 simply
by taking α = sn−n0α0. Choose a finite affine open covering X =

⋃
Ui such that

L|Ui is trivial. Choose finite affine open coverings Ui ∩ Ui′ =
⋃
Uii′j . Suppose we

can prove the lemma when X is affine and L is trivial. Then we can find ni ≥ 0
αi : F|Ui → F ′|Ui ⊗OUi L

⊗ni |Ui satisfying the relation over Ui. By the uniqueness
assertion of the lemma, and the finiteness of the number of affines Uii′j we can find
a single large integer m such that the maps sm−niαi and sm−ni′αi′ agree over Uii′j
and hence over Ui ∩Ui′ . Thus the morphisms sm−niαi glue to give our global map
α. Proof of the uniqueness statement is omitted.

Assume X affine and that L ∼= OX . Then the lemma translates into the following
algebra problem (use Properties, Lemma 27.16.2): Let A be a ring. Let f ∈ A.
Let ψ : Mf → (M ′)f be a map of Af -modules. Assume M is a finitely presented
A-module. Then there exists an n ≥ 0 and an A-module map α : M → M ′ such
that α ⊗ 1Af = fnψ. Moreover, given any second solution (n′, α′) there exists an

m ≥ max(n, n′) such that fm−nα = fm−n
′
α′. The proof of this algebraic fact is

omitted. �

Cohomology is functorial. In particular, given a ringed space X, an invertible
OX -module L, a section s ∈ Γ(X,L) we get maps

Hp(X,F) −→ Hp(X,F ⊗OX L), ξ 7−→ sξ

induced by the map F → F⊗OX L which is multiplication by s. We set Γ∗(X,L) =⊕
n≥0 Γ(X,L⊗n) as a graded ring, see Modules, Definition 17.21.4. Given a sheaf

of OX -modules F and an integer p ≥ 0 we set

Hp
∗ (X,L,F) =

⊕
n∈Z

Hp(X,F ⊗OX L⊗n)

This is a graded Γ∗(X,L)-module by the multiplication defined above. Warning:
the notation Hp

∗ (X,L,F) is nonstandard.

Lemma 29.14.3. Let X be a scheme. Let L be an invertible sheaf on X. Let
s ∈ Γ(X,L). Let F be a quasi-coherent OX-module. If X is quasi-compact and
quasi-separated, the canonical map

Hp
∗ (X,L,F)(s) −→ Hp(Xs,F)

which maps ξ/sn to s−nξ is an isomorphism.

Proof. Note that for p = 0 this is Properties, Lemma 27.24.6. We will prove the
statement using the induction principle (Lemma 29.4.1) where for U ⊂ X quasi-
compact open we let P (U) be the property: for all p ≥ 0 the map

Hp
∗ (U,L,F)(s) −→ Hp(Us,F)

is an isomorphism.

If U is affine, then both sides of the arrow displayed above are zero for p > 0 by
Lemma 29.2.2 and Properties, Lemma 27.24.4 and the statement is true. If P is true
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for U , V , and U ∩ V , then we can use the Mayer-Vietoris sequences (Cohomology,
Lemma 20.9.2) to obtain a map of long exact sequences

Hp−1
∗ (U ∩ V,L,F)(s)

//

��

Hp
∗ (U ∪ V,L,F)(s)

//

��

Hp
∗ (U,L,F)(s) ⊕Hp

∗ (V,L,F)(s)

��
Hp−1(Us ∩ Vs,F) // Hp(Us ∪ Vs,F) // Hp(Us,F)⊕Hp(Vs,F)

(only a snippet shown). Observe that Us∩Vs = (U∩V )s and that Us∪Vs = (U∪V )s.
Thus the left and right vertical maps are isomorphisms (as well as one more to the
right and one more to the left which are not shown in the diagram). We conclude
that P (U ∪ V ) holds by the 5-lemma (Homology, Lemma 12.5.20). This finishes
the proof. �

Lemma 29.14.4. Let X be a scheme. Let L be an invertible OX-module. Let
s ∈ Γ(X,L) be a section. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Xs is affine.

Then for every quasi-coherent OX-module F and every p > 0 and all ξ ∈ Hp(X,F)
there exists an n ≥ 0 such that snξ = 0 in Hp(X,F ⊗OX L⊗n).

Proof. Recall that Hp(Xs,G) is zero for every quasi-coherent module G by Lemma
29.2.2. Hence the lemma follows from Lemma 29.14.3. �

For a more general version of the following lemma see Limits, Lemma 31.10.4.

Lemma 29.14.5. Let i : Z → X be a closed immersion of Noetherian schemes
inducing a homeomorphism of underlying topological spaces. Let L be an invertible
sheaf on X. If i∗L is ample on Z, then L is ample on X.

Proof. Let I ⊂ OX be the coherent sheaf of ideals cutting out the closed subscheme
Z. Since i(Z) = X set theoretically we see that In = 0 for some n by Lemma
29.10.2. Consider the sequence

X = Zn ⊃ Zn−1 ⊃ Zn−2 ⊃ . . . ⊃ Z1 = Z

of closed subschemes cut out by 0 = In ⊂ In−1 ⊂ . . . ⊂ I. Then each of the closed
immersions Zi → Zi−1 is defined by a coherent sheaf of ideals of square zero. In
this way we reduce to the case that I2 = 0.

Consider the short exact sequence

0→ I → OX → i∗OZ → 0

of quasi-coherentOX -modules. Tensoring with L⊗n we obtain short exact sequences

0→ I ⊗OX L⊗n → L⊗n → i∗i
∗L⊗n → 0

As I2 = 0, we can use Morphisms, Lemma 28.4.1 to think of I as a quasi-coherent
OZ-module and then I ⊗OX L⊗n = I ⊗OZ i∗L⊗n with obvious abuse of nota-
tion. Moreover, the cohomology of this sheaf over Z is canonically the same as the
cohomology of this sheaf over X (as i is a homeomorphism).
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Let x ∈ X be a point and denote z ∈ Z the corresponding point. Because i∗L is
ample there exists an n and a section s ∈ Γ(Z, i∗L⊗n) with z ∈ Zs and with Zs
affine. The obstruction to lifting s to a section of L⊗n over X is an element ξ of

H1(X, I ⊗OX L⊗n) = H1(Z, I ⊗OZ i∗L⊗n)

If we replace s by se+1 then ξ is replaced by seξ in H1(Z, I ⊗OZ i∗L⊗(e+1)n).
Computation omitted. By Lemma 29.14.4 we see that seξ is zero for e large enough.
Hence, after replacing s by a power, we can assume s is the image of a section
s′ ∈ Γ(X,L⊗n). Then Xs is an open subscheme and Zs → Xs is a surjective closed
immersion of Noetherian schemes with Zs affine. Hence Xs is affine by Lemma
29.13.3 and we conclude that L is ample. �

29.15. Coherent sheaves and projective morphisms

It seems illuminating to formulate an all-in-one result for projective space over a
Noetherian ring.

Lemma 29.15.1. Let R be a Noetherian ring. Let n ≥ 0 be an integer. For every
coherent sheaf F on Pn

R we have the following:

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OPnR
(dj) −→ F .

(2) We have Hi(Pn
R,F) = 0 unless 0 ≤ i ≤ n.

(3) For any i the cohomology group Hi(Pn
R,F) is a finite R-module.

(4) If i > 0, then Hi(Pn
R,F(d)) = 0 for all d large enough.

(5) For any k ∈ Z the graded R[T0, . . . , Tn]-module⊕
d≥k

H0(Pn
R,F(d))

is a finite R[T0, . . . , Tn]-module.

Proof. We will use that OPnR
(1) is an ample invertible sheaf on the scheme Pn

R.
This follows directly from the definition since Pn

R covered by the standard affine
opens D+(Ti). Hence by Properties, Proposition 27.24.14 every finite type quasi-
coherentOPnR

-module is a quotient of a finite direct sum of tensor powers ofOPnR
(1).

On the other hand a coherent sheaves and finite type quasi-coherent sheaves are
the same thing on projective space over R by Lemma 29.9.1. Thus we see (1).

Projective n-space Pn
R is covered by n + 1 affines, namely the standard opens

D+(Ti), i = 0, . . . , n, see Constructions, Lemma 26.13.3. Hence we see that for any
quasi-coherent sheaf F on Pn

R we have Hi(Pn
R,F) = 0 for i ≥ n + 1, see Lemma

29.4.2. Hence (2) holds.

Let us prove (3) and (4) simultaneously for all coherent sheaves on Pn
R by descending

induction on i. Clearly the result holds for i ≥ n + 1 by (2). Suppose we know
the result for i + 1 and we want to show the result for i. (If i = 0, then part (4)
is vacuous.) Let F be a coherent sheaf on Pn

R. Choose a surjection as in (1) and
denote G the kernel so that we have a short exact sequence

0→ G →
⊕

j=1,...,r
OPnR

(dj)→ F → 0
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By Lemma 29.9.2 we see that G is coherent. The long exact cohomology sequence
gives an exact sequence

Hi(Pn
R,
⊕

j=1,...,r
OPnR

(dj))→ Hi(Pn
R,F)→ Hi+1(Pn

R,G).

By induction assumption the right R-module is finite and by Lemma 29.8.1 the left
R-module is finite. Since R is Noetherian it follows immediately that Hi(Pn

R,F) is
a finite R-module. This proves the induction step for assertion (3). Since OPnR

(d)
is invertible we see that twisting on Pn

R is an exact functor (since you get it by
tensoring with an invertible sheaf, see Constructions, Definition 26.10.1). This
means that for all d ∈ Z the sequence

0→ G(d)→
⊕

j=1,...,r
OPnR

(dj + d)→ F(d)→ 0

is short exact. The resulting cohomology sequence is

Hi(Pn
R,
⊕

j=1,...,r
OPnR

(dj + d))→ Hi(Pn
R,F(d))→ Hi+1(Pn

R,G(d)).

By induction assumption we see the module on the right is zero for d � 0 and
by the computation in Lemma 29.8.1 the module on the left is zero as soon as
d ≥ −min{dj} and i ≥ 1. Hence the induction step for assertion (4). This concludes
the proof of (3) and (4).

In order to prove (5) note that for all sufficiently large d the map

H0(Pn
R,
⊕

j=1,...,r
OPnR

(dj + d))→ H0(Pn
R,F(d))

is surjective by the vanishing of H1(Pn
R,G(d)) we just proved. In other words, the

module

Mk =
⊕

d≥k
H0(Pn

R,F(d))

is for k large enough a quotient of the corresponding module

Nk =
⊕

d≥k
H0(Pn

R,
⊕

j=1,...,r
OPnR

(dj + d))

When k is sufficiently small (e.g. k < −dj for all j) then

Nk =
⊕

j=1,...,r
R[T0, . . . , Tn](dj)

by our computations in Section 29.8. In particular it is finitely generated. Suppose
k ∈ Z is arbitrary. Choose k− � k � k+. Consider the diagram

Nk− Nk+

��

oo

Mk Mk+
oo

where the vertical arrow is the surjective map above and the horizontal arrows are
the obvious inclusion maps. By what was said above we see that Nk− is a finitely
generated R[T0, . . . , Tn]-module. Hence Nk+ is a finitely generated R[T0, . . . , Tn]-
module because it is a submodule of a finitely generated module and the ring
R[T0, . . . , Tn] is Noetherian. Since the vertical arrow is surjective we conclude that
Mk+

is a finitely generated R[T0, . . . , Tn]-module. The quotient Mk/Mk+
is finite

as an R-module since it is a finite direct sum of the finite R-modules H0(Pn
R,F(d))

for k ≤ d < k+. Note that we use part (3) for i = 0 here. Hence Mk/Mk+
is
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a fortiori a finite R[T0, . . . , Tn]-module. In other words, we have sandwiched Mk

between two finite R[T0, . . . , Tn]-modules and we win. �

Lemma 29.15.2. Let A be a graded ring such that A0 is Noetherian and A is
generated by finitely many elements of A1 over A0. Set X = Proj(A). Then X is
a Noetherian scheme. Let F be a coherent OX-module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

(2) For any i the cohomology group Hi(X,F) is a finite A0-module.
(3) If i > 0, then Hi(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

Proof. By assumption there exists a surjection of graded A0-algebras

A0[T0, . . . , Tn] −→ A

where deg(Tj) = 1 for j = 0, . . . , n. By Constructions, Lemma 26.11.5 this defines
a closed immersion r : X → Pn

A0
such that r∗OPnA0

(1) = OX(1). In particular,

X is Noetherian as a closed subscheme of the Noetherian scheme Pn
A0

. We claim
that the results of the lemma for F follow from the corresponding results of Lemma
29.15.1 for the coherent sheaf r∗F (Lemma 29.9.8) on Pn

A0
. For example, by this

lemma there exists a surjection⊕
j=1,...,r

OPnA0
(dj) −→ r∗F .

Pulling back and using that r∗r∗F = F (see lemma cited above) we obtain a
corresponding surjection over X. The statements on cohomology follow from the
fact that Hi(X,F(d)) = Hi(Pn

A0
, r∗F(d)) for example by Lemma 29.2.4. Some

details omitted. �

Lemma 29.15.3. Let A be a graded ring. Let M be a graded A-module. Assume

(1) A0 is Noetherian,
(2) A is generated by finitely many elements of A1 over A0, and
(3) M is a finitely generated A-module.

Set X = Proj(A) and let M̃ be the quasi-coherent OX-module on X associated to
M . The maps

Mn −→ Γ(X, M̃(n))

from Constructions, Lemma 26.10.3 are isomorphisms for all sufficiently large n.

Proof. Because M is a finite A-module we see that M̃ is a finite type OX -module,

i.e., a coherent OX -module. Set N =
⊕

n≥0 Γ(X, M̃(n)). We have to show that the
mapM → N of graded A-modules is an isomorphism in all sufficiently large degrees.

By Properties, Lemma 27.26.5 we have a canonical isomorphism Ñ → M̃ such that

Mn → Nn = Γ(X, M̃(n)) is the canonical map. Let K = Ker(M → N) and

Q = Coker(M → N). Recall that the functor M 7→ M̃ is exact, see Constructions,

Lemma 26.8.4. Hence we see that K̃ = 0 and Q̃ = 0. On the other hand, A is a
Noetherian ring and M and N are finitely generated A-modules (for N this follows
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from the last part of Lemma 29.15.2). Hence K and Q are finite A-modules. Thus it

suffices to show that a finite A-module K with K̃ = 0 has only finitely many nonzero
homogeneous parts Kd. To do this, let x1, . . . , xr ∈ K be homogeneous generators
say sitting in degrees d1, . . . , dr. Let f1, . . . , fn ∈ A1 be elements generating A over
A0. For each i and j there exists an nij ≥ 0 such that f

nij
i xj = 0 in Kdj+nij : if

not then K(fi) would not be zero, i.e., K̃ would not be zero. Then we see that Kd

is zero for d > maxj(dj +
∑
i nij) as every element of Kd is a sum of terms where

each term is a monomials in the fi times one of the xj of total degree d. �

Lemma 29.15.4. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let L be an invertible sheaf on X. Assume that

(1) S is Noetherian,
(2) f is proper,
(3) F is coherent, and
(4) L is relatively ample on X/S.

Then there exists an n0 such that for all n ≥ n0 we have

Rpf∗
(
F ⊗OX L⊗n

)
= 0

for all p > 0.

Proof. A proper morphism is of finite type by definition. By Morphisms, Lemma
28.40.7 there exists an open covering S =

⋃
Vj and immersions ij : Xj → P

nj
Vj

,

where Xj = f−1(Vj) such that i∗jO(1) is a power of L. Since S is quasi-compact
we may assume the covering is finite. Clearly, if we solve the question for each of
the finitely many systems (Xj → Vj ,L|Xj ,F|Vj ) then the result follows. Hence we

may assume there exists an immersion i : X → Pn
S such that L⊗d = i∗O(1) for

some d ≥ 1.

Repeating the argument above with a finite affine open covering of S we see that
we may also assume that S is affine. In this case the vanishing of Rpf∗(F ⊗ L⊗n)
is equivalent to the vanishing of Hp(X,F ⊗ L⊗n), see Lemma 29.4.5.

Since f is proper we see that i is a closed immersion (Morphisms, Lemma 28.42.7).
Hence we see that Rpi∗(F ⊗OX L⊗n) = 0 for all p ≥ 1 (see Lemma 29.9.9 for
example). This implies that

Hp(X,F ⊗ L⊗n) = Hp(Pn
S , i∗(F ⊗ L⊗n))

by the Leray spectral sequence (Cohomology, Lemma 20.14.4). Moreover, by the
projection formula (Cohomology, Lemma 20.8.2) we have

i∗(F ⊗OX L⊗n) = i∗(F ⊗OX L⊗〈n〉d)⊗OPn
S
O(bn/dc)

for all n ∈ Z where 〈n〉d ∈ {0, 1, . . . , d − 1} is the unique element congruent to n
module d. The sheaves Fj = i∗(F ⊗ L⊗j), j ∈ {0, 1, . . . , d − 1} are coherent by
Lemma 29.9.9. Thus we see that for all n large enough the cohomology groups
Hp(Pn

S ,Fj(n)) vanish by Lemma 29.15.1. Putting everything together this implies
the lemma. �
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29.16. Chow’s Lemma

In this section we prove Chow’s lemma in the Noetherian case (Lemma 29.16.1).
In Limits, Section 31.11 we prove some variants for the non-Noetherian case.

Lemma 29.16.1. Let S be a Noetherian scheme. Let f : X → S be a separated
morphism of finite type. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, we may arrange it such that there exists a dense open subscheme U ⊂ X
such that π−1(U)→ U is an isomorphism.

Proof. All of the schemes we will encounter during the rest of the proof are go-
ing to be of finite type over the Noetherian scheme S and hence Noetherian (see
Morphisms, Lemma 28.16.6). All morphisms between them will automatically be
quasi-compact, locally of finite type and quasi-separated, see Morphisms, Lemma
28.16.8 and Properties, Lemmas 27.5.4 and 27.5.6.

The underlying topological space of X is Noetherian (see Properties, Lemma 27.5.5)
and we conclude that X has only finitely many irreducible components (see Topol-
ogy, Lemma 5.8.2). Say X = X1∪. . .∪Xr is the decomposition of X into irreducible
components. Let ηi ∈ Xi be the generic point. For every point x ∈ X there exists
an affine open Ux ⊂ X which contains x and each of the generic points ηi. See
Properties, Lemma 27.27.4. Since X is quasi-compact, we can find a finite affine
open covering X = U1∪ . . .∪Um such that each Ui contains η1, . . . , ηr. In particular
we conclude that the open U = U1 ∩ . . . ∩ Um ⊂ X is a dense open. This and the
fact that the Ui are affine opens covering X is all that we will use below.

Let X∗ ⊂ X be the scheme theoretic closure of U → X, see Morphisms, Definition
28.6.2. Let U∗i = X∗ ∩ Ui. Note that U∗i is a closed subscheme of Ui. Hence
U∗i is affine. Since U is dense in X the morphism X∗ → X is a surjective closed
immersion. It is an isomorphism over U . Hence we may replace X by X∗ and
Ui by U∗i and assume that U is scheme theoretically dense in X, see Morphisms,
Definition 28.7.1.

By Morphisms, Lemma 28.40.3 we can find an immersion ji : Ui → Pni
S for each i.

By Morphisms, Lemma 28.7.7 we can find closed subschemes Zi ⊂ Pni
S such that

ji : Ui → Zi is a scheme theoretically dense open immersion. Note that Zi → S is
proper, see Morphisms, Lemma 28.43.5. Consider the morphism

j = (j1|U , . . . , jn|U ) : U −→ Pn1

S ×S . . .×S Pnn
S .

By the lemma cited above we can find a closed subscheme Z of Pn1

S ×S . . .×S Pnn
S

such that j : U → Z is an open immersion and such that U is scheme theoretically
dense in Z. The morphism Z → S is proper. Consider the ith projection

pri|Z : Z −→ Pni
S .

This morphism factors through Zi (see Morphisms, Lemma 28.6.6). Denote pi :
Z → Zi the induced morphism. This is a proper morphism, see Morphisms, Lemma
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28.42.7 for example. At this point we have that U ⊂ Ui ⊂ Zi are scheme theoreti-
cally dense open immersions. Moreover, we can think of Z as the scheme theoretic
image of the “diagonal” morphism U → Z1 ×S . . .×S Zn.

Set Vi = p−1
i (Ui). Note that pi|Vi : Vi → Ui is proper. Set X ′ = V1 ∪ . . . ∪ Vn.

By construction X ′ has an immersion into the scheme Pn1

S ×S . . . ×S Pnn
S . Thus

by the Segre embedding (see Morphisms, Lemma 28.43.6) we see that X ′ has an
immersion into a projective space over S.

We claim that the morphisms pi|Vi : Vi → Ui glue to a morphism X ′ → X.
Namely, it is clear that pi|U is the identity map from U to U . Since U ⊂ X ′ is
scheme theoretically dense by construction, it is also scheme theoretically dense in
the open subscheme Vi ∩ Vj . Thus we see that pi|Vi∩Vj = pj |Vi∩Vj as morphisms
into the separated S-scheme X, see Morphisms, Lemma 28.7.10. We denote the
resulting morphism π : X ′ → X.

We claim that π−1(Ui) = Vi. Since π|Vi = pi|Vi it follows that Vi ⊂ π−1(Ui).
Consider the diagram

Vi //

pi|Vi ##

π−1(Ui)

��
Ui

Since Vi → Ui is proper we see that the image of the horizontal arrow is closed, see
Morphisms, Lemma 28.42.7. Since Vi ⊂ π−1(Ui) is scheme theoretically dense (as
it contains U) we conclude that Vi = π−1(Ui) as claimed.

This shows that π−1(Ui)→ Ui is identified with the proper morphism pi|Vi : Vi →
Ui. Hence we see that X has a finite affine covering X =

⋃
Ui such that the

restriction of π is proper on each member of the covering. Thus by Morphisms,
Lemma 28.42.3 we see that π is proper.

Finally we have to show that π−1(U) = U . To see this we argue in the same way
as above using the diagram

U //

##

π−1(U)

��
U

and using that idU : U → U is proper and that U is scheme theoretically dense in
π−1(U). �

Remark 29.16.2. In the situation of Chow’s Lemma 29.16.1:

(1) The morphism π is actually H-projective (hence projective, see Mor-
phisms, Lemma 28.43.3) since the morphism X ′ → Pn

S ×S X = Pn
X is

a closed immersion (use the fact that π is proper, see Morphisms, Lemma
28.42.7).

(2) We may assume that π−1(U) is scheme theoretically dense in X ′. Namely,
we can simply replace X ′ by the scheme theoretic closure of π−1(U). In
this case we can think of U as a scheme theoretically dense open subscheme
of X ′. See Morphisms, Section 28.6.

(3) If X is reduced then we may choose X ′ reduced. This is clear from (2).
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29.17. Higher direct images of coherent sheaves

In this section we prove the fundamental fact that the higher direct images of a
coherent sheaf under a proper morphism are coherent.

Lemma 29.17.1. Let S be a locally Noetherian scheme. Let f : X → S be a locally
projective morphism. Let F be a coherent OX-module. Then Rif∗F is a coherent
OS-module for all i ≥ 0.

Proof. We first remark that a locally projective morphism is proper (Morphisms,
Lemma 28.43.5) and hence of finite type. In particular X is locally Noetherian
(Morphisms, Lemma 28.16.6) and hence the statement makes sense. Moreover, by
Lemma 29.4.4 the sheaves Rpf∗F are quasi-coherent.

Having said this the statement is local on S (for example by Cohomology, Lemma
20.7.4). Hence we may assume S = Spec(R) is the spectrum of a Noetherian ring,
and X is a closed subscheme of Pn

R for some n, see Morphisms, Lemma 28.43.4.
In this case, the sheaves Rpf∗F are the quasi-coherent sheaves associated to the
R-modules Hp(X,F), see Lemma 29.4.5. Hence it suffices to show that R-modules
Hp(X,F) are finite R-modules (Lemma 29.9.1). Denote i : X → Pn

R the closed
immersion. Note that Rpi∗F = 0 by Lemma 29.9.9. Hence the Leray spectral
sequence (Cohomology, Lemma 20.14.4) for i : X → Pn

R degenerates, and we see
that Hp(X,F) = Hp(Pn

R, i∗F). Since the sheaf i∗F is coherent by Lemma 29.9.9
we see that the lemma follows from Lemma 29.15.1. �

Here is the general statement.

Proposition 29.17.2. Let S be a locally Noetherian scheme. Let f : X → S be
a proper morphism. Let F be a coherent OX-module. Then Rif∗F is a coherent
OS-module for all i ≥ 0.

Proof. Since the problem is local on S we may assume that S is a Noetherian
scheme. Since a proper morphism is of finite type we see that in this case X is a
Noetherian scheme also. Consider the property P of coherent sheaves on X defined
by the rule

P(F)⇔ Rpf∗F is coherent for all p ≥ 0

We are going to use the result of Lemma 29.12.6 to prove that P holds for every
coherent sheaf on X.

Let

0→ F1 → F2 → F3 → 0

be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then the
higher direct images of the third are sandwiched in this exact complex between two
coherent sheaves. Hence these higher direct images are also coherent by Lemma
29.9.2 and 29.9.3. Hence property P holds for the third as well.

Let Z ⊂ X be an integral closed subscheme. We have to find a coherent sheaf
F on X whose support is contained in Z, whose stalk at the generic point ξ of
Z is a 1-dimensional vector space over κ(ξ) such that P holds for F . Denote
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g = f |Z : Z → S the restriction of f . Suppose we can find a coherent sheaf G
on Z such that (a) Gξ is a 1-dimensional vector space over κ(ξ), (b) Rpg∗G = 0
for p > 0, and (c) g∗G is coherent. Then we can consider F = (Z → X)∗G.
As Z → X is a closed immersion we see that (Z → X)∗G is coherent on X and
Rp(Z → X)∗G = 0 for p > 0 (Lemma 29.9.9). Hence by the relative Leray spectral
sequence (Cohomology, Lemma 20.14.8) we will have Rpf∗F = Rpg∗G = 0 for p > 0
and f∗F = g∗G is coherent. Finally Fξ = ((Z → X)∗G)ξ = Gξ which verifies the
condition on the stalk at ξ. Hence everything depends on finding a coherent sheaf
G on Z which has properties (a), (b), and (c).

We can apply Chow’s Lemma 29.16.1 to the morphism Z → S. Thus we get a
diagram

Z

g
��

Z ′

g′

��

π
oo

i
// Pn

S

~~
S

as in the statement of Chow’s lemma. Also, let U ⊂ Z be the dense open subscheme
such that π−1(U)→ U is an isomorphism. By the discussion in Remark 29.16.2 we
see that i′ = (i, π) : Z ′ → Pn

Z is a closed immersion. Hence

L = i∗OPnS
(1) ∼= (i′)∗OPnZ

(1)

is g′-relatively ample and π-relatively ample (for example by Morphisms, Lemma
28.40.7). Hence by Lemma 29.15.4 there exists an n ≥ 0 such that both Rpπ∗L⊗n =
0 for all p > 0 and Rp(g′)∗L⊗n = 0 for all p > 0. Set G = π∗L⊗n. Property (a) holds
because π∗L⊗|U is an invertible sheaf (as π−1(U)→ U is an isomorphism). Proper-
ties (b) and (c) hold because by the relative Leray spectral sequence (Cohomology,
Lemma 20.14.8) we have

Ep,q2 = Rpg∗R
qπ∗L⊗n ⇒ Rp+q(g′)∗L⊗n

and by choice of n the only nonzero terms in Ep,q2 are those with q = 0 and the
only nonzero terms of Rp+q(g′)∗L⊗n are those with p = q = 0. This implies that
Rpg∗G = 0 for p > 0 and that g∗G = (g′)∗L⊗n. Finally, applying the previous
Lemma 29.17.1 we see that g∗G = (g′)∗L⊗n is coherent as desired. �

Remark 29.17.3. Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of schemes which is locally of finite type. Then X is locally Noetherian
(Morphisms, Lemma 28.16.6). Let F be a coherentOX -module. Assume the scheme
theoretic support Z of F is proper over S. we claim Rpf∗F is a coherent OS-module
for all p ≥ 0. Namely, Let i : Z → X be the closed immersion and write F = i∗G
for some coherent module G on Z (Lemma 29.9.7). Denoting g : Z → S the
composition f ◦ i we see that Rpg∗G is coherent on S by Proposition 29.17.2. On
the other hand, Rqi∗G = 0 for q > 0 (Lemma 29.9.9). By Cohomology, Lemma
20.14.8 we get Rpf∗F = Rpg∗G and the claim.

Lemma 29.17.4. Let S = Spec(A) with A a Noetherian ring. Let f : X → S
be a proper morphism. Let F be a coherent OX-module. Then Hi(X,F) is finite
A-module for all i ≥ 0.

Proof. This is just the affine case of Proposition 29.17.2. Namely, by Lemmas
29.4.4 and 29.4.5 we know that Rif∗F is the quasi-coherent sheaf associated to the
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A-module Hi(X,F) and by Lemma 29.9.1 this is a coherent sheaf if and only if
Hi(X,F) is an A-module of finite type. �

Lemma 29.17.5. Let A be a Noetherian ring. Let B be a finitely generated graded

A-algebra. Let f : X → Spec(A) be a proper morphism. Set B = f∗B̃. Let F be a
quasi-coherent graded B-module of finite type.

(1) For every p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.
(2) If L is an ample invertible OX-module, then there exists an integer d0

such that Hp(X,F ⊗ L⊗d) = 0 for all p > 0 and d ≥ d0.

Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms, Lemma 28.42.5. Also, B is a
finitely generated A-algebra, and hence Noetherian (Algebra, Lemma 10.30.1). This
implies that X ′ is a Noetherian scheme (Morphisms, Lemma 28.16.6). Note that
X ′ is the relative spectrum of the quasi-coherent OX -algebra B by Constructions,
Lemma 26.4.6. Since F is a quasi-coherent B-module we see that there is a unique
quasi-coherent OX′ -module F ′ such that π∗F ′ = F , see Morphisms, Lemma 28.13.6
Since F is finite type as a B-module we conclude that F ′ is a finite type OX′-module
(details omitted). In other words, F ′ is a coherent OX′-module (Lemma 29.9.1).
Since the morphism π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)

by Lemma 29.2.4. Thus (1) follows from Lemma 29.17.4. Given L as in (2) we set
L′ = π∗L. Note that L′ is ample on X ′ by Morphisms, Lemma 28.38.7. By the
projection formula (Cohomology, Lemma 20.8.2) we have π∗(F ′ ⊗ L′) = F ⊗ L.
Thus part (2) follows by the same reasoning as above from Lemma 29.15.4. �

29.18. The theorem on formal functions

In this section we study the behaviour of cohomology of sequences of sheaves either
of the form {InF}n≥0 or of the form {F/InF}n≥0 as n varies.

Here and below we use the following notation. Given a morphism of schemes
f : X → Y , a quasi-coherent sheaf F on X, and a quasi-coherent sheaf of ideals
I ⊂ OY we denote InF the quasi-coherent subsheaf generated by products of local
sections of f−1(In) and F . In a formula

InF = Im (f∗(In)⊗OX F −→ F) .

Note that there are natural maps

f−1(In)⊗f−1OY I
mF −→ f∗(In)⊗OX ImF −→ In+mF

Hence a section of In will give rise to a map Rpf∗(ImF) → Rpf∗(In+mF) by
functoriality of higher direct images. Localizing and then sheafifying we see that
there are OY -module maps

In ⊗OY Rpf∗(ImF) −→ Rpf∗(In+mF).
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In other words we see that
⊕

n≥0R
pf∗(InF) is a graded

⊕
n≥0 In-module.

If Y = Spec(A) and I = Ĩ we denote InF simply InF . The maps introduced
above give M =

⊕
Hp(X, InF) the structure of a graded S =

⊕
In-module. If f

is proper, A is Noetherian and F is coherent, then this turns out to be a module
of finite type.

Lemma 29.18.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set B =⊕
n≥0 I

n. Let f : X → Spec(A) be a proper morphism. Let F be a coherent sheaf

on X. Then for every p ≥ 0 the graded B-module
⊕

n≥0H
p(X, InF) is a finite

B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 29.17.5 part (1). �

Lemma 29.18.2. Given a morphism of schemes f : X → Y , a quasi-coherent
sheaf F on X, and a quasi-coherent sheaf of ideals I ⊂ OY . Assume Y locally
Noetherian, f proper, and F coherent. Then

M =
⊕

n≥0
Rpf∗(InF)

is a graded A =
⊕

n≥0 In-module which is quasi-coherent and of finite type.

Proof. The statement is local on Y , hence this reduces to the case where Y is affine.
In the affine case the result follows from Lemma 29.18.1. Details omitted. �

Lemma 29.18.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X. Then for every
p ≥ 0 there exists an integer c ≥ 0 such that

(1) the multiplication map In−c ⊗ Hp(X, IcF) → Hp(X, InF) is surjective
for all n ≥ c, and

(2) the image of Hp(X, In+mF)→ Hp(X, InF) is contained in the submodule
Im−cHp(X, InF) for all n ≥ 0, m ≥ c.

Proof. By Lemma 29.18.1 we can find d1, . . . , dt ≥ 0, and xi ∈ Hp(X, IdiF)
such that

⊕
n≥0H

p(X, InF) is generated by x1, . . . , xt over S =
⊕

n≥0 I
n. Take

c = max{di}. It is clear that (1) holds. For (2) let b = max(0, n− c). Consider the
commutative diagram of A-modules

In+m−c−b ⊗ Ib ⊗Hp(X, IcF) //

��

In+m−c ⊗Hp(X, IcF) // Hp(X, In+mF)

��
In+m−c−b ⊗Hp(X, InF) // Hp(X, InF)

By part (1) of the lemma the composition of the horizontal arrows is surjective if
n+m ≥ c. On the other hand, it is clear that n+m− c− b ≥ m− c. Hence part
(2). �

In the situation of Lemmas 29.18.1 and 29.18.3 consider the inverse system

F/IF ← F/I2F ← F/I3F ← . . .

We would like to know what happens to the cohomology groups. Here is a first
result.
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Lemma 29.18.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X. Fix p ≥ 0.

(1) There exists a c1 ≥ 0 such that for all n ≥ c1 we have

Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−c1Hp(X,F).

(2) The inverse system

(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 12.27.2).
(3) In fact for any p and n there exists a c2(n) ≥ n such that

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

for all k ≥ c2(n).

Proof. Let c1 = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
29.18.3 for Hp and Hp+1. We will use this constant in the proofs of (1), (2) and
(3).

Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0

From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))

Hence by our choice of c1 we see that this is contained in In−c1Hp(X,F) for n ≥ c1.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.

Let us prove part (3). Fix an n throughout the rest of the proof. Consider the
commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X, InF) // Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF)

Hp(X, In+mF) //

OO

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

OO

Hp+1(X, In+mF)

a

OO

If m ≥ c1 we see that the image of a is contained in Im−c1Hp+1(X, InF). By the
Artin-Rees lemma (see Algebra, Lemma 10.49.3) there exists an integer c3(n) such
that

INHp+1(X, InF) ∩ Im(δ) ⊂ δ
(
IN−c3(n)Hp(X,F/InF)

)
for all N ≥ c3(n). As Hp(X,F/InF) is annihilated by In, we see that if m ≥
c3(n) + c1 + n, then

Im(Hp(X,F/In+mF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

In other words, part (3) holds with c2(n) = c3(n) + c1 + n. �
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Theorem 29.18.5 (Theorem on formal functions). Let A be a Noetherian ring.
Let I ⊂ A be an ideal. Let f : X → Spec(A) be a proper morphism. Let F be a
coherent sheaf on X. Fix p ≥ 0. The system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of the A-module Hp(X,F) with respect to
the ideal I, see Algebra, Section 10.93. Moreover, this is in fact a homeomorphism
for the limit topologies.

Proof. In fact, this follows immediately from Lemma 29.18.4. We spell out the
details. Set M = Hp(X,F) and Mn = Hp(X,F/InF). Denote Nn = Im(M →
Mn). By the description of the limit in Homology, Section 12.27 we have

limnMn = {(xn) ∈
∏

Mn | ϕi(xn) = xn−1, n = 2, 3, . . .}

Pick an element x = (xn) ∈ limnMn. By Lemma 29.18.4 part (3) we have xn ∈ Nn
for all n since by definition xn is the image of some xn+m ∈ Mn+m for all m. By
Lemma 29.18.4 part (1) we see that there exists a factorization

M → Nn →M/In−c1M

of the reduction map. Denote yn ∈ M/In−c1M the image of xn for n ≥ c1. Since
for n′ ≥ n the composition M → Mn′ → Mn is the given map M → Mn we see
that yn′ maps to yn under the canonical map M/In

′−c1M → M/In−c1M . Hence
y = (yn+c1) defines an element of limnM/InM . We omit the verification that y
maps to x under the map

M∧ = limnM/InM −→ limnMn

of the lemma. We also omit the verification on topologies. �

Lemma 29.18.6. Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian
and complete with respect to I. Let f : X → Spec(A) be a proper morphism. Let
F be a coherent sheaf on X. Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 29.18.5)
in the case of a complete Noetherian base ring. Namely, in this case the A-module
Hp(X,F) is finite (Lemma 29.17.4) hence I-adically complete (Algebra, Lemma
10.93.2) and we see that completion on the left hand side is not necessary. �

Lemma 29.18.7. Given a morphism of schemes f : X → Y and a quasi-coherent
sheaf F on X. Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.
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Let y ∈ Y be a point. Consider the infinitesimal neighbourhoods

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny )

cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)
∧
y
∼= limnH

p(Xn,Fn)

as O∧Y,y-modules.

Proof. This is just a reformulation of a special case of the theorem on formal func-
tions, Theorem 29.18.5. Let us spell it out. Note that OY,y is a Noetherian local
ring. Consider the canonical morphism c : Spec(OY,y)→ Y , see Schemes, Equation
(25.13.1.1). This is a flat morphism as it identifies local rings. Denote momen-
tarily f ′ : X ′ → Spec(OY,y) the base change of f to this local ring. We see that
c∗Rpf∗F = Rpf ′∗F ′ by Lemma 29.5.2. Moreover, the infinitesimal neighbourhoods
of the fibre Xy and X ′y are identified (verification omitted; hint: the morphisms cn
factor through c).

Hence we may assume that Y = Spec(A) is the spectrum of a Noetherian local ring
A with maximal ideal m and that y ∈ Y corresponds to the closed point (i.e., to
m). In particular it follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F).

In this case also, the morphisms cn are each closed immersions. Hence their base
changes in are closed immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF .

By the Leray spectral sequence for in, and Lemma 29.9.9 we see that

Hp(Xn,Fn) = Hp(X, in,∗F) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit
in the statement of the lemma and we win. �

Here is a lemma which we will generalize later to fibres of dimension > 0, namely
the next lemma.

Lemma 29.18.8. Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) f−1({y}) is finite.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. The fibre Xy is finite, and by Morphisms, Lemma 28.21.7 it is a finite
discrete space. Moreover, the underlying topological space of each infinitesimal
neighbourhood Xn is the same. Hence each of the schemes Xn is affine according
to Schemes, Lemma 25.11.7. Hence it follows that Hp(Xn,Fn) = 0 for all p > 0.
Hence we see that (Rpf∗F)∧y = 0 by Lemma 29.18.7. Note that Rpf∗F is coherent
by Proposition 29.17.2 and hence Rpf∗Fy is a finite OY,y-module. By Algebra,
Lemma 10.93.2 this implies that (Rpf∗F)y = 0. �

Lemma 29.18.9. Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
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(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.

Proof. The fibre Xy is of finite type over Spec(κ(y)). Hence Xy is a Noetherian
scheme by Morphisms, Lemma 28.16.6. Hence the underlying topological space of
Xy is Noetherian, see Properties, Lemma 27.5.5. Moreover, the underlying topolog-
ical space of each infinitesimal neighbourhood Xn is the same as that of Xy. Hence
Hp(Xn,Fn) = 0 for all p > d by Cohomology, Proposition 20.21.6. Hence we see
that (Rpf∗F)∧y = 0 by Lemma 29.18.7 for p > d. Note that Rpf∗F is coherent by
Proposition 29.17.2 and hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma
10.93.2 this implies that (Rpf∗F)y = 0. �

29.19. Applications of the theorem on formal functions

We will add more here as needed. For the moment we need the following charac-
terization of finite morphisms (in the Noetherian case – for a more general version
see the chapter More on Morphisms, Section 36.31).

Lemma 29.19.1. (For a more general version see More on Morphisms, Lemma
36.31.5). Let f : X → S be a morphism of schemes. Assume S is locally Noether-
ian. The following are equivalent

(1) f is finite, and
(2) f is proper with finite fibres.

Proof. A finite morphism is proper according to Morphisms, Lemma 28.44.10. A
finite morphism is quasi-finite according to Morphisms, Lemma 28.44.9. A quasi-
finite morphism has finite fibres, see Morphisms, Lemma 28.21.10. Hence a finite
morphism is proper and has finite fibres.

Assume f is proper with finite fibres. We want to show f is finite. In fact it suffices
to prove f is affine. Namely, if f is affine, then it follows that f is integral by
Morphisms, Lemma 28.44.7 whereupon it follows from Morphisms, Lemma 28.44.4
that f is finite.

To show that f is affine we may assume that S is affine, and our goal is to show that
X is affine too. Since f is proper we see that X is separated and quasi-compact.
Hence we may use the criterion of Lemma 29.3.2 to prove that X is affine. To
see this let I ⊂ OX be a finite type ideal sheaf. In particular I is a coherent
sheaf on X. By Lemma 29.18.8 we conclude that R1f∗Is = 0 for all s ∈ S. In
other words, R1f∗I = 0. Hence we see from the Leray Spectral Sequence for f
that H1(X, I) = H1(S, f∗I). Since S is affine, and f∗I is quasi-coherent (Schemes,
Lemma 25.24.1) we conclude H1(S, f∗I) = 0 from Lemma 29.2.2 as desired. Hence
H1(X, I) = 0 as desired. �

As a consequence we have the following useful result.

Lemma 29.19.2. (For a more general version see More on Morphisms, Lemma
36.31.6). Let f : X → S be a morphism of schemes. Let s ∈ S. Assume

(1) S is locally Noetherian,
(2) f is proper, and
(3) f−1({s}) is a finite set.
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Then there exists an open neighbourhood V ⊂ S of s such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 28.21.7. By Morphisms, Lemma 28.49.2 the set of points at which f is
quasi-finite is an open U ⊂ X. Let Z = X \ U . Then s 6∈ f(Z). Since f is
proper the set f(Z) ⊂ S is closed. Choose any open neighbourhood V ⊂ S of
s with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence
it is quasi-finite (Morphisms, Lemma 28.21.9), hence has finite fibres (Morphisms,
Lemma 28.21.10), hence is finite by Lemma 29.19.1. �

29.20. Cohomology and base change, III

In this section we prove the simplest case of a very general phenomenon that will
be discussed in Derived Categories of Schemes, Section 35.16. Please see Remark
29.20.2 for a translation of the following lemma into algebra.

Lemma 29.20.1. Let A be a Noetherian ring and set S = Spec(A). Let f : X → S
be a proper morphism of schemes. Let F be a coherent OX-module flat over S. Then

(1) RΓ(X,F) is a perfect object of D(A), and
(2) for any ring map A→ A′ the base change map

RΓ(X,F)⊗L
A A

′ −→ RΓ(XA′ ,FA′)

is an isomorphism.

Proof. Choose a finite affine open covering X =
⋃
i=1,...,n Ui. By Lemmas 29.7.1

and 29.7.2 the Čech complex K• = Č•(U ,F) satisfies

K• ⊗A A′ = RΓ(XA′ ,FA′)

for all ring maps A→ A′. Let K•alt = Č•alt(U ,F) be the alternating Čech complex.
By Cohomology, Lemma 20.24.6 there is a homotopy equivalence K•alt → K• of
A-modules. In particular, we have

K•alt ⊗A A′ = RΓ(XA′ ,FA′)

as well. Since F is flat over A we see that each Kn
alt is flat over A (see Morphisms,

Lemma 28.26.2). Since moreover K•alt is bounded above (this is why we switched to

the alternating Čech complex) K•alt⊗AA′ = K•alt⊗L
AA
′ by the definition of derived

tensor products (see More on Algebra, Section 15.45). By Lemma 29.17.4 the
cohomology groups Hi(K•alt) are finite A-modules. As K•alt is bounded, we conclude
that K•alt is pseudo-coherent, see More on Algebra, Lemma 15.50.16. Given any
A-module M set A′ = A⊕M where M is a square zero ideal, i.e., (a,m) · (a′,m′) =
(aa′, am′ + a′m). By the above we see that K•alt ⊗L

A A
′ has cohomology in degrees

0, . . . , n. Hence K•alt ⊗L
A M has cohomology in degrees 0, . . . , n. Hence K•alt has

finite Tor dimension, see More on Algebra, Definition 15.51.1. We win by More on
Algebra, Lemma 15.56.2. �

Remark 29.20.2. A consequence of Lemma 29.20.1 is that there exists a finite
complex of finite projective A-modules M• such that we have

Hi(XA′ ,FA′) = Hi(M• ⊗A A′)

functorially in A′. The condition that F is flat over A is essential, see [Har98].
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29.21. Grothendieck’s existence theorem, I

In this section we discuss Grothendieck’s existence theorem for the projective case.
As we do not yet have the theory of formal schemes to our disposal, we temporarily
develop a bit of language that replaces the notion of a “coherent module on a
Noetherian adic formal scheme”. The reader who is familiar with formal schemes
is encouraged to read the statement and proof of the theorem in [DG67].

Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals.
Below we will consider inverse systems (Fn) of coherent OX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism of such inverse systems is defined as usual. Let us denote the category
of these inverse systems with Coh(X, I). We are going to proceed by proving a
bunch of lemmas about objects in this category. In fact, most of the lemmas that
follow are straightforward consequences of the following description of the category
in the affine case.

Lemma 29.21.1. If X = Spec(A) is the spectrum of a Noetherian ring and I is
the quasi-coherent sheaf of ideals associated to the ideal I ⊂ A, then Coh(X, I) is
equivalent to the category of finite A∧-modules where A∧ is the completion of A
with respect to I.

Proof. Let ModfgA,I be the category of inverse systems (Mn) of finite A-modules

satisfying: (1) Mn is annihilated by In and (2) Mn+1/I
nMn+1 = Mn. By the cor-

respondence between coherent sheaves on X and finite A-modules (Lemma 29.9.1)

it suffices to show ModfgA,I is equivalent to the category of finite A∧-modules. To

see this it suffices to prove that given an object (Mn) of ModfgA,I the module

M = limMn

is a finite A∧-module and that M/InM = Mn. As the transition maps are sur-
jective, we see that M → M1 is surjective. Pick x1, . . . , xt ∈ M which map to
generators of M1. This induces a map of systems (A/In)⊕t →Mn. By Nakayama’s
lemma (Algebra, Lemma 10.19.1) these maps are surjective. Let Kn ⊂ (A/In)⊕t

be the kernel. Property (2) implies that Kn+1 → Kn is surjective, in particular the
system (Kn) satisfies the Mittag-Leffler condition. By Homology, Lemma 12.27.3
we obtain an exact sequence 0→ K → (A∧)⊕t →M → 0 with K = limKn. Hence
M is a finite A∧-module. As K → Kn is surjective it follows that

M/InM = Coker(K → (A/In)⊕t) = (A/In)⊕t/Kn = Mn

as desired. �

Lemma 29.21.2. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-
coherent sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) For U ⊂ X open the restriction functor Coh(X, I) → Coh(U, I|U ) is

exact.
(3) Exactness in Coh(X, I) may be checked by restricting to the members of

an open covering of X.
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Proof. Let α = (αn) : (Fn)→ (Gn) be a morphism of Coh(X, I). The cokernel of
α is the inverse system (Coker(αn)) (details omitted). To describe the kernel let

K′l,m = Im(Ker(αl)→ Fm)

for l ≥ m. We claim:

(a) the inverse system (K′l,m)l≥m is eventually constant, say with value K′m,

(b) the system (K′m/InK′m)m≥n is eventually constant, say with value Kn,
(c) the system (Kn) forms an object of Coh(X, I), and
(d) this object is the kernel of α.

To see (a), (b), and (c) we may work affine locally, say X = Spec(A) and I corre-
sponds to the ideal I ⊂ A. By Lemma 29.21.1 α corresponds to a map f : M → N
of finite A∧-modules. Denote K = Ker(f). Note that A∧ is a Noetherian ring
(Algebra, Lemma 10.93.10). Choose an integer c ≥ 0 such that K ∩ InM ⊂ In−cK
for n ≥ c (Algebra, Lemma 10.49.2) and which satisfies Algebra, Lemma 10.49.3
for the map f and the ideal I∧ = IA∧. Then K′l,m corresponds to the A-module

K ′l,m =
a−1(I lN) + ImM

ImM
=
K + I l−cf−1(IcN) + ImM

ImM
=
K + ImM

ImM

where the last equality holds if l ≥ m + c. So K′m corresponds to the A-module
K/K ∩ ImM and K′m/InK′m corresponds to

K

K ∩ ImM + InK
=

K

InK

for m ≥ n+ c by our choice of c above. Hence Kn corresponds to K/InK.

We prove (d). It is clear from the description on affines above that the composition
(Kn)→ (Fn)→ (Gn) is zero. Let β : (Hn)→ (Fn) be a morphism such that α◦β =
0. Then Hl → Fl maps into Ker(αl). Since Hm = Hl/ImHl for l ≥ m we obtain a
system of maps Hm → K′l,m. Thus a map Hm → K′m. Since Hn = Hm/InHm we

obtain a system of maps Hn → K′m/InK′m and hence a map Hn → Kn as desired.

To finish the proof of (1) we still have to show that Coim = Im in Coh(X, I). We
have seen above that taking kernels and cokernels commutes, over affines, with the
description of Coh(X, I) as a category of modules. Since Im = Coim holds in the
category of modules this gives Coim = Im in Coh(X, I). Parts (2) and (3) of the
lemma are immediate from our construction of kernels and cokernels. �

Lemma 29.21.3. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-
coherent sheaf of ideals. A map (Fn)→ (Gn) is surjective in Coh(X, I) if and only
if F1 → G1 is surjective.

Proof. Omitted. Hint: Look on affine opens, use Lemma 29.21.1, and use Algebra,
Lemma 10.19.1. �

Lemma 29.21.4. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-
coherent sheaf of ideals. If (Fn) is an object of Coh(X, I) then

⊕
Ker(Fn+1 → Fn)

is a finite type, graded, quasi-coherent
⊕
In/In+1-module.

Proof. The question is local on X hence we may assume X is affine, i.e., we have
a situation as in Lemma 29.21.1. In this case, if (Fn) corresponds to the finite
A∧ module M , then

⊕
Ker(Fn+1 → Fn) corresponds to

⊕
InM/In+1M which is

clearly a finite module over
⊕
In/In+1. �
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Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals.
There is a functor

(29.21.4.1) Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherent OX -module F the object F∧ = (F/InF) of
Coh(X, I).

Lemma 29.21.5. The functor (29.21.4.1) is exact.

Proof. It suffices to check this locally on X. Hence we may assume X is affine,

i.e., we have a situation as in Lemma 29.21.1. The functor is the functor ModfgA →
ModfgA∧ which associates to a finite A-module M the completion M∧. Thus the
result follows from Algebra, Lemma 10.93.3. �

Lemma 29.21.6. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-
coherent sheaf of ideals. Let F , G be coherent OX-modules. Set H = HomOX (G,F).
Then

limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).

Proof. To prove this we may work affine locally on X. Hence we may assume
X = Spec(A) and F , G given by finite A-module M and N . Then H corresponds
to the finite A-module H = HomA(M,N). The statement of the lemma becomes
the statement

H∧ = HomA∧(M∧, N∧)

via the equivalence of Lemma 29.21.1. By Algebra, Lemma 10.93.3 (used 3 times)
we have

H∧ = HomA(M,N)⊗A A∧ = HomA∧(M ⊗A A∧, N ⊗A A∧) = HomA∧(M∧, N∧)

where the second equality uses that A∧ is flat over A (see More on Algebra, Remark
15.50.18). The lemma follows. �

Lemma 29.21.7. Let A be Noetherian ring complete with respect to an ideal I.
Let f : X → Spec(A) be a proper morphism. Let I = IOX . Then the functor
(29.21.4.1) is fully faithful.

Proof. Let F , G be coherent OX -modules. Then H = HomOX (G,F) is a coherent
OX -module, see Modules, Lemma 17.19.4. By Lemma 29.21.6 the map

limnH
0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)

is bijective. Hence fully faithfulness of (29.21.4.1) follows from the theorem on
formal functions (Lemma 29.18.6) for the coherent sheaf H. �

Lemma 29.21.8. Let A be Noetherian ring and I ⊂ A and ideal. Let f : X →
Spec(A) be a proper morphism and let L be an f -ample invertible sheaf. Let I =
IOX . Let (Fn) be an object of Coh(X, I). Then there exists an integer d0 such that

H1(X,Ker(Fn+1 → Fn)⊗ L⊗d) = 0

for all n ≥ 0 and all d ≥ d0.

Proof. Set B =
⊕
In/In+1 and B =

⊕
In/In+1 = f∗B̃. By Lemma 29.21.4 the

graded quasi-coherent B-module G =
⊕

Ker(Fn+1 → Fn) is of finite type. Hence
the lemma follows from Lemma 29.17.5 part (2). �
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Lemma 29.21.9. Let A be Noetherian ring complete with respect to an ideal I.
Let f : X → Spec(A) be a projective morphism. Let I = IOX . Then the functor
(29.21.4.1) is an equivalence.

Proof. We have already seen that (29.21.4.1) is fully faithful in Lemma 29.21.7.
Thus it suffices to show that the functor is essentially surjective.

We first show that every object (Fn) of Coh(X, I) is the quotient of an object in
the image of (29.21.4.1). Let L be an f -ample invertible sheaf on X. Choose d0 as
in Lemma 29.21.8. Choose a d ≥ d0 such that F1 ⊗ L⊗d is globally generated by
some sections s1,1, . . . , st,1. Since the transition maps of the system

H0(X,Fn+1 ⊗ L⊗d) −→ H0(X,Fn ⊗ L⊗d)
are surjective by the vanishing of H1 we can lift s1,1, . . . , st,1 to a compatible system
of global sections s1,n, . . . , st,n of Fn ⊗L⊗d. These determine a compatible system
of maps

(s1,n, . . . , st,n) : (L⊗−d)⊕t −→ Fn
Using Lemma 29.21.3 we deduce that we have a surjective map(

(L⊗−d)⊕t
)∧ −→ (Fn)

as desired.

The result of the previous paragraph and the fact that Coh(X, I) is abelian (Lemma
29.21.2) implies that every object of Coh(X, I) is a cokernel of a map between
objects coming from Coh(OX). As (29.21.4.1) is fully faithful and exact by Lemmas
29.21.7 and 29.21.5 we conclude. �

29.22. Grothendieck’s existence theorem, II

In this section we discuss Grothendieck’s existence theorem. Before we give the
statement and proof, we need to develop a bit more theory regarding the categories
Coh(X, I) introduced in Section 29.21.

Lemma 29.22.1. Let f : X → Y be a morphism of Noetherian schemes. Let
J ⊂ OY be a quasi-coherent sheaf of ideals and set I = f−1JOX . Then there is a
right exact functor

f∗ : Coh(Y,J ) −→ Coh(X, I)

which sends (Gn) to (f∗Gn). If f is flat, then f∗ is an exact functor.

Proof. Since f∗ : Coh(OY )→ Coh(OX) is right exact we have

f∗Gn = f∗(Gn+1/InGn+1) = f∗Gn+1/f
−1Inf∗Gn+1 = f∗Gn+1/J nf∗Gn+1

hence the pullback of a system is a system. The construction of cokernels in the
proof of Lemma 29.21.2 shows that f∗ : Coh(Y,J ) → Coh(X, I) is always right
exact. If f is flat, then f∗ : Coh(OY ) → Coh(OX) is an exact functor. It follows
from the construction of kernels in the proof of Lemma 29.21.2 that in this case
f∗ : Coh(Y,J )→ Coh(X, I) also transforms kernels into kernels. �

Remark 29.22.2. Let X be a Noetherian scheme and let I,K ⊂ OX be quasi-
coherent sheaves of ideals. Let α : (Fn)→ (Gn) be a morphism of Coh(X, I). Given
an affine open Spec(A) = U ⊂ X with I|U ,K|U corresponding to ideals I,K ⊂ A
denote αU : M → N of finite A∧-modules which corresponds to α|U via Lemma
29.21.1. We claim the following are equivalent
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(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are anni-
hilated by Kt for all n ≥ 1,

(2) for any affine open Spec(A) = U ⊂ X as above the modules Ker(αU ) and
Coker(αU ) are annihilated by Kt for some integer t ≥ 1, and

(3) there exists a finite affine open covering X =
⋃
Ui such that the conclusion

of (2) holds for αUi .

If these equivalent conditions hold we will say that α is a map whose kernel and
cokernel are annihilated by a power of K. To see the equivalence we use the following
commutative algebra fact: suppose given an exact sequence

0→ T →M → N → Q→ 0

of A-modules with T and Q annihilated by Kt for some ideal K ⊂ A. Then for every
f, g ∈ Kt there exists a canonical map ”fg” : N → M such that M → N → M is
equal to multiplication by fg. Namely, for y ∈ N we can pick x ∈M mapping to fy
inN and then we can set ”fg”(y) = gx. Thus it is clear that Ker(M/JM → N/JN)
and Coker(M/JM → N/JN) are annihilated by K2t for any ideal J ⊂ A.

Applying the commutative algebra fact to αUi and J = In we see that (3) implies
(1). Conversely, suppose (1) holds and M → N is equal to αU . Then there is
a t ≥ 1 such that Ker(M/InM → N/InN) and Coker(M/InM → N/InN) are
annihilated by Kt for all n. We obtain maps ”fg” : N/InN → M/InM which
in the limit induce a map N → M as N and M are I-adically complete. Since
the composition with N → M → N is multiplication by fg we conclude that fg
annihilates T and Q. In other words T and Q are annihilated by K2t as desired.

Lemma 29.22.3. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-
coherent sheaf of ideals. Let G be a coherent OX-module, (Fn) an object of Coh(X, I),
and α : (Fn)→ G∧ a map whose kernel and cokernel are annihilated by a power of
I. Then there exists a unique (up to unique isomorphism) triple (F , a, β) where

(1) F is a coherent OX-module,
(2) a : F → G is an OX-module map whose kernel and cokernel are annihi-

lated by a power of I,
(3) β : (Fn)→ F∧ is an isomorphism, and
(4) α = a∧ ◦ β.

Proof. The uniqueness implies it suffices to construct (F , a, β) Zariski locally on
X. Thus we may assumeX = Spec(A) and I corresponds to the ideal I ⊂ A. In this
situation Lemma 29.21.1 applies. Let M ′ be the finite A∧-module corresponding
to (Fn). Let N be the finite A-module corresponding to G. Then α corresponds to
a map

ϕ : M ′ −→ N∧

whose kernel and cokernel are annihilated by It for some t. Recall that N∧ =
N ⊗A A∧ (Algebra, Lemma 10.93.2). By More on Algebra, Lemma 15.63.16 there
is an A-module map ψ : M → N whose kernel and cokernel are I-power torsion
and an isomorphism M ⊗A A∧ = M ′ compatible with ϕ. As N and M ′ are finite
modules, we conclude that M is a finite A-module, see More on Algebra, Remark
15.63.19. Hence M⊗AA∧ = M∧. We omit the verification that the triple (M,N →
M,M∧ →M ′) so obtained is unique up to unique isomorphism. �

http://stacks.math.columbia.edu/tag/0889


29.22. GROTHENDIECK’S EXISTENCE THEOREM, II 2015

Lemma 29.22.4. Let X be a Noetherian scheme. Let I,K ⊂ OX be quasi-coherent
sheaves of ideals. Let Xe ⊂ X be the closed subscheme cut out by Ke. Let Ie =
IOXe . Let (Fn) be an object of Coh(X, I). Assume

(1) the functor Coh(OXe)→ Coh(Xe, Ie) is an equivalence for all e ≥ 1, and
(2) there exists a coherent sheaf H on X and a map α : (Fn) → H∧ whose

kernel and cokernel are annihilated by a power of K.

Then (Fn) is in the essential image of (29.21.4.1).

Proof. During this proof we will use without further mention that for a closed
immersion i : Z → X the functor i∗ gives an equivalence between the category of
coherent modules on Z and coherent modules on X annihilated by the ideal sheaf of
Z, see Lemma 29.9.8. In particular we may identify Coh(OXe) with the category of
coherent OX -modules annihilated by Ke and Coh(Xe, Ie) as the full subcategory of
Coh(X, I) of objects annihilated by Ke. Moreover (1) tells us these two categories
are equivalent under the completion functor (29.21.4.1).

Applying this equivalence we get a coherent OX -module Ge annihilated by Ke cor-
responding to the system (Fn/KeFn) of Coh(X, I). The maps Fn/Ke+1Fn →
Fn/KeFn correspond to canonical maps Ge+1 → Ge which induce isomorphisms
Ge+1/KeGe+1 → Ge. Hence (Ge) is an object of Coh(X,K). The map α induces a
system of maps

Fn/KeFn −→ H/(In +Ke)H
whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1
be an integer, which exists by assumption (2), such that Kt annihilates the kernel
and cokernel of all the maps Fn → H/InH. Then K2t annihilates the kernel and
cokernel of the maps Fn/KeFn → H/(In+Ke)H, see Remark 29.22.2. Whereupon
we conclude that K4t annihilates the kernel and the cokernel of the maps

Ge −→ H/KeH,

see Remark 29.22.2. We apply Lemma 29.22.3 to obtain a coherent OX -module F , a
map a : F → H and an isomorphism β : (Ge)→ (F/KeF) in Coh(X,K). Working
backwards, for a given n the triple (F/InF , a mod In, β mod In) is a triple as
in the lemma for the morphism αn mod Ke : (Fn/KeFn) → (H/(In + Ke)H) of
Coh(X,K). Thus the uniqueness in Lemma 29.22.3 gives a canonical isomorphism
F/InF → Fn compatible with all the morphisms in sight. This finishes the proof
of the lemma. �

Lemma 29.22.5. Let Y be a Noetherian scheme. Let J ,K ⊂ OY be quasi-coherent
sheaves of ideals. Let f : X → Y be a proper morphism which is an isomorphism
over V = Y \V (K). Set I = f−1JOX . Let (Gn) be an object of Coh(Y,J ), let F be
a coherent OX-module, and let β : (f∗Gn)→ F∧ be an isomorphism in Coh(X, I).
Then there exists a map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.

Proof. Since f is a proper morphism we see that f∗F is a coherent OY -module
(Proposition 29.17.2). Thus the statement of the lemma makes sense. Consider the
compositions

γn : Gn → f∗f
∗Gn → f∗(F/InF).
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Here the first map is the adjunction map and the second is f∗βn. We claim that
there exists a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

equal γn for all n. Because of the uniqueness we may assume that Y = Spec(B) is
affine. Let J ⊂ B corresponds to the ideal J . Set

Mn = H0(X,F/InF) and M = H0(X,F)

By Lemma 29.18.4 and Theorem 29.18.5 the inverse limit of the modules Mn equals
the completion M∧ = limM/JnM . Set Nn = H0(Y,Gn) and N = limNn. Via
the equivalence of categories of Lemma 29.21.1 the finite B∧ modules N and M∧

correspond to (Gn) and f∗F∧. It follows from this that α has to be the morphism
of Coh(Y,J ) corresponding to the homomorphism

lim γn : N = limnNn −→ limMn = M∧

of finite B∧-modules.

We still have to show that the kernel and cokernel of α are annihilated by a power
of K. Set Y ′ = Spec(B∧) and X ′ = Y ′ ×Y X. Let K′, J ′, G′n and I ′, F ′ be
the pullback of K, J , Gn and I, F , to Y ′ and X ′. The projection morphism
f ′ : X ′ → Y ′ is the base change of f by Y ′ → Y . Note that Y ′ → Y is a flat
morphism of schemes as B → B∧ is flat by Algebra, Lemma 10.93.3. Hence f ′∗F ′,
resp. f ′∗(f

′)∗G′n is the pullback of f∗F , resp. f∗f
∗Gn to Y ′ by Lemma 29.5.2. The

uniqueness of our construction shows the pullback of α to Y ′ is the corresponding
map α′ constructed for the situation on Y ′. Moreover, to check that the kernel
and cokernel of α are annihilated by Kt it suffices to check that the kernel and
cokernel of α′ are annihilated by (K′)t. Namely, to see this we need to check this
for kernels and cokernels of the maps αn and α′n (see Remark 29.22.2) and the ring
map B → B∧ induces an equivalence of categories between modules annihilated by
Jn and (J ′)n, see More on Algebra, Lemma 15.63.3. Thus we may assume B is
complete with respect to J .

Assume Y = Spec(B) is affine, J corresponds to the ideal J ⊂ B, and B is
complete with respect to J . In this case (Gn) is in the essential image of the functor
Coh(OY ) → Coh(Y,J ). Say G is a coherent OY -module such that (Gn) = G∧.
Note that f∗(G∧) = (f∗G)∧. Hence Lemma 29.21.7 tells us that β comes from an
isomorphism b : f∗G → F and α is the completion functor applied to

G → f∗f
∗G ∼= f∗F

Hence we are trying to verify that the kernel and cokernel of the adjunction map
c : G → f∗f

∗G are annihilated by a power of K. However, since the restriction
f |f−1(V ) : f−1(V ) → V is an isomorphism we see that c|V is an isomorphism.
Thus the coherent sheaves Ker(c) and Coker(c) are supported on V (K) hence are
annihilated by a power of K (Lemma 29.10.2) as desired. �

The following proposition is the form of Grothendieck’s existence theorem which is
most often used in practice.

Proposition 29.22.6. Let A be a Noetherian ring complete with respect to an ideal
I. Let f : X → Spec(A) be a proper morphism of schemes. Set I = IOX . Then
the functor (29.21.4.1) is an equivalence.
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Proof. We have already seen that (29.21.4.1) is fully faithful in Lemma 29.21.7.
Thus it suffices to show that the functor is essentially surjective.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that
every object (Fn) annihilated by K is in the essential image. We want to show (0)
is in Ξ. If not, then since X is Noetherian there exists a maximal quasi-coherent
sheaf of ideals K not in Ξ, see Lemma 29.10.1. After replacing X by the closed
subscheme of X corresponding to K we may assume that every nonzero K is in Ξ.
(This uses the correspondence by coherent modules annihilated by K and coherent
modules on the closed subscheme corresponding to K, see Lemma 29.9.8.) Let (Fn)
be an object of Coh(X, I). We will show that this object is in the essential image
of the functor (29.21.4.1), thereby completion the proof of the proposition.

Apply Chow’s lemma (Lemma 29.16.1) to find a proper surjective morphism f :
X ′ → X which is an isomorphism over a dense open U ⊂ X such that X ′ is projec-
tive over A. Let K be the quasi-coherent sheaf of ideals cutting out the reduced com-
plement X \U . By the projective case of Grothendieck’s existence theorem (Lemma
29.21.9) there exists a coherent module F ′ on X ′ such that (F ′)∧ ∼= (f∗Fn). By
Proposition 29.17.2 the OX -module H = f∗F ′ is coherent and by Lemma 29.22.5
there exists a morphism (Fn) → H∧ of Coh(X, I) whose kernel and cokernel are
annihilated by a power of K. The powers Ke are all in Ξ so that (29.21.4.1) is
an equivalence for the closed subschemes Xe = V (Ke). We conclude by Lemma
29.22.4. �

To state the general version of Grothendieck’s existence theorem we introduce a bit
more notation. Let A be a Noetherian ring complete with respect to an ideal I. Let
f : X → Spec(A) be a separated finite type morphism of schemes. Set I = IOX .
In this situation we let

Cohsupport proper over A(OX)

be the full subcategory of Coh(OX) consisting of those coherent OX -modules whose
scheme theoretic support is proper over Spec(A). Similarly, we let

Cohsupport proper over A(X, I)

be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that
the scheme theoretic support of F1 is proper over Spec(A). Since the support
of a quotient module is contained in the support of the module, it follows that
(29.21.4.1) induces a functor

(29.22.6.1) Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)

We are now ready to state the main theorem of this section.

Theorem 29.22.7 (Grothendieck’s existence theorem). In the situation described
above the functor (29.22.6.1) is an equivalence.

Proof. We will use the equivalence of categories of Lemma 29.9.8 without further
mention in the proof of the theorem. Let Z ⊂ X be a closed subscheme proper over
A. By Proposition 29.22.6 we know that the result is true for the functor between
coherent modules and systems of coherent modules supported on Z. Hence it
suffices to show that every object of Cohsupport proper over A(OX) and every object
of Cohsupport proper over A(X, I) is supported on such a closed subscheme Z ⊂ X
proper over A. This holds by definition for objects of Cohsupport proper over A(OX).
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We will prove this statement for objects of Cohsupport proper over A(X, I) using the
method of proof of Proposition 29.22.6. We urge the reader to read that proof first.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that the
statement holds for every object (Fn) of Cohsupport proper over A(X, I) annihilated
by K. We want to show (0) is in Ξ. If not, then since X is Noetherian there exists
a maximal quasi-coherent sheaf of ideals K not in Ξ, see Lemma 29.10.1. After
replacing X by the closed subscheme of X corresponding to K we may assume that
every nonzero K is in Ξ. Let (Fn) be an object of Cohsupport proper over A(X, I). We
will show that this object is supported on a closed subscheme Z ⊂ X proper over
A, thereby completing the proof of the theorem.

Apply Chow’s lemma (Lemma 29.16.1) to find a proper surjective morphism f :
Y → X which is an isomorphism over a dense open U ⊂ X such that Y is H-
quasi-projective over A. Choose an open immersion j : Y → Y ′ with Y ′ projective
over A, see Morphisms, Lemma 28.43.11. Let Tn be the scheme theoretic support
of Fn. Note that Tn = T1 set-theoretically, hence Tn is proper over A for all n
(Morphisms, Lemma 28.42.8). Then f∗Fn is supported on the closed subscheme
f−1Tn which is proper over A (by Morphisms, Lemma 28.42.4 and properness of
f). In particular, the composition f−1Tn → Y → Y ′ is closed (Morphisms, Lemma
28.42.7). Let T ′n ⊂ Y ′ be the corresponding closed subscheme; it is contained in
the open subscheme Y and equal to f−1Tn as a closed subscheme of Y . Let F ′n
be the coherent OY ′ -module corresponding to f∗Fn viewed as a coherent module
on Y ′ via the closed immersion f−1Tn = T ′n ⊂ Y ′. Then (F ′n) is an object of
Coh(Y ′, IOY ′). By the projective case of Grothendieck’s existence theorem (Lemma
29.21.9) there exists a coherent OY ′ -module F ′ and an isomorphism (F ′)∧ ∼= (F ′n)
in Coh(Y ′, IOY ′). Let Z ′ ⊂ Y ′ be the scheme theoretic support of F ′. Since
F ′/IF ′ = F ′1 we see that Z ′ ∩ V (IOY ′) = T ′1 set-theoretically. The structure
morphism p′ : Y ′ → Spec(A) is proper, hence p′(Z ′∩ (Y ′ \Y )) is closed in Spec(A).
If nonempty, then it would contain a point of V (I) as I is contained in the radical of
A (Algebra, Lemma 10.93.11). But we’ve seen above that Z ′∩(p′)−1V (I) = T ′1 ⊂ Y
hence we conclude that Z ′ ⊂ Y . Thus F ′|Y is supported on a closed subscheme of
Y proper over A.

Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement
X \ U . By Proposition 29.17.2 the OX -module H = f∗F ′ is coherent and by
Lemma 29.22.5 there exists a morphism α : (Fn) → H∧ of Coh(X, I) whose ker-
nel and cokernel are annihilated by a power of K. Let Z0 ⊂ X be the scheme
theoretic support of H. It is clear that Z0 ⊂ f(Z ′) set-theoretically. Hence
Z0 → Spec(A) is proper (Morphisms, Lemma 28.42.7). The kernel of α is an
object of Cohsupport proper over A(X, I) annihilated by a power of Kt which is in Ξ.
Hence the kernel of α are supported on closed subschemes Z1 ⊂ X proper over A.
Let Ki ⊂ OX be the quasi-coherent sheaf of ideals cutting out Zi for i = 0, 1. Set
K = K0K1 and let Z = V (K) ⊂ X. Then (Fn) is supported on Z (details omit-
ted). Finally, Z0qZ1 → Z is surjective, whence Z is proper over A by Morphisms,
Lemma 28.42.7. This finishes the proof of the theorem. �

Remark 29.22.8 (Unwinding Grothendieck’s existence theorem). Let A be a
Noetherian ring complete with respect to an ideal I. Write S = Spec(A) and
Sn = Spec(A/In). Let X → S be a separated morphism of finite type. For n ≥ 1
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we set Xn = X ×S Sn. Picture:

X1
i1
//

��

X2
i2
//

��

X3
//

��

. . . X

��
S1

// S2
// S3

// . . . S

In this situation we consider systems (Fn, ϕn) where

(1) Fn is a coherent OXn-module,
(2) ϕn : i∗nFn+1 → Fn is an isomorphism, and
(3) Supp(F1) is proper over S1.

Theorem 29.22.7 says that the completion functor

coherent OX -modules F
with support proper over A

−→ systems (Fn)
as above

is an equivalence of categories. In the special case that X is proper over A we can
omit the conditions on the supports.

29.23. Grothendieck’s algebraization theorem

Our first result is a translation of Grothendieck’s existence theorem in terms of
closed subschemes and finite morphisms.

Lemma 29.23.1. Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a separated morphism of
finite type. For n ≥ 1 we set Xn = X×S Sn. Suppose given a commutative diagram

Z1
//

��

Z2
//

��

Z3
//

��

. . .

X1
i1 // X2

i2 // X3
// . . .

of schemes with cartesian squares. Assume that

(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of schemes Z → X such that Zn = Z ×S Sn.
Moreover, Z is proper over S.

Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in
the statement are cartesian we see that the base change of jn to X1 is j1. Thus
Morphisms, Lemma 28.45.5 shows that jn is a closed immersion. Set Fn = jn,∗OZn ,
so that j]n is a surjection OXn → Fn. Again using that the squares are cartesian we
see that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence theorem,
as reformulated in Remark 29.22.8, tells us there exists a map OX → F of coherent
OX -modules whose restriction to Xn recovers OXn → Fn. Moreover, the support
of F is proper over S. As the completion functor is exact (Lemma 29.21.5) we see
that OX → F is surjective. Thus F = OX/J for some quasi-coherent sheaf of
ideals J . Setting Z = V (J ) finishes the proof. �

In the following lemma it is actually enough to assume that Y1 → X1 is finite as it
will imply that Yn → Xn is finite too (see More on Morphisms, Lemma 36.2.6).
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Lemma 29.23.2. Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a separated morphism of
finite type. For n ≥ 1 we set Xn = X×S Sn. Suppose given a commutative diagram

Y1
//

��

Y2
//

��

Y3
//

��

. . .

X1
i1 // X2

i2 // X3
// . . .

of schemes with cartesian squares. Assume that

(1) Yn → Xn is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of schemes Y → X such that Yn = Y ×S Sn.
Moreover, Y is proper over S.

Proof. Let’s write fn : Yn → Xn for the vertical morphisms. Set Fn = fn,∗OYn .
This is a coherent OXn -module as fn is finite (Lemma 29.9.9). Using that the
squares are cartesian we see that the pullback of Fn+1 to Xn is Fn. Hence
Grothendieck’s existence theorem, as reformulated in Remark 29.22.8, tells us there
exists a coherent OX -module F whose restriction to Xn recovers Fn. Moreover, the
support of F is proper over S. As the completion functor is fuly faithful (Theorem
29.22.7) we see that the multiplication maps Fn⊗OXn Fn → Fn fit together to give
an algebra structure on F . Setting Y = Spec

X
(F) finishes the proof. �

Lemma 29.23.3. Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X, Y be schemes over S. For n ≥ 1
we set Xn = X ×S Sn and Yn = Y ×S Sn. Suppose given a compatible system of
commutative diagrams

Xn+1

##

gn+1

// Yn+1

{{
Xn

66

  

gn
// Yn

55

||

Sn+1

Sn

55

Assume that

(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of schemes g : X → Y over S such that gn is
the base change of g to Sn.

Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Schemes, Lemma 25.21.12). Thus by Lemma 29.23.1 there
exists a closed subscheme Z ⊂ X ×S Y proper over S whose base change to Sn
recovers Xn ⊂ Xn×S Yn. The first projection p : Z → X is a proper morphism (as
Z is proper over S, see Morphisms, Lemma 28.42.7) whose base change to Sn is an
isomorphism for all n. In particular, p : Z → X is finite over an open neighbourhood
of X0 by Lemma 29.19.2. As X is proper over S this open neighbourhood is all of
X and we conclude p : Z → X is finite. Applying the equivalence of Proposition
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29.22.6 we see that p∗OZ = OX as this is true modulo In for all n. Hence p is an
isomorphism and we obtain the morphism g as the composition X ∼= Z → Y . We
omit the proof of uniqueness. �

In order to prove an “abstract” algebraization theorem we need to assume we have
an ample invertible sheaf, as the result is false without such an assumption.

Theorem 29.23.4 (Grothendieck’s algebraization theorem). Let A be a Noetherian
ring complete with respect to an ideal I. Set S = Spec(A) and Sn = Spec(A/In).
Consider a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3
//

��

. . .

S1
// S2

// S3
// . . .

of schemes with cartesian squares. Suppose given (Ln, ϕn) where each Ln is an
invertible sheaf on Xn and ϕn : i∗nLn+1 → Ln is an isomorphism. If

(1) X1 → S1 is proper, and
(2) L1 is ample on X1

then there exists a proper morphism of schemes X → S and an ample invertible
OX-module L and isomorphisms Xn

∼= X ×S Sn and Ln ∼= L|Xn compatible with
the morphisms in and ϕn.

Proof. Since the squares in the diagram are cartesian and since the morphisms
Sn → Sn+1 are closed immersions, we see that the morphisms in are closed immer-
sions too. In particular we may think of Xm as a closed subscheme of Xn for m < n.
In fact Xm is the closed subscheme cut out by the quasi-coherent sheaf of ideals
ImOXn . Moreover, the underlying topological spaces of the schemes X1, X2, X3, . . .
are all identified, hence we may (and do) think of sheaves OXn as living on the same
underlying topological space; similarly for coherent OXn -modules. Set

Fn = Ker(OXn+1 → OXn)

so that we obtain short exact sequences

0→ Fn → OXn+1 → OXn → 0

By the above we have Fn = InOXn+1
. It follows Fn is a coherent sheaf on Xn+1

annihilated by I, hence we may (and do) think of it as a coherent module OX1
-

module. Observe that for m > n the sheaf

InOXm/In+1OXm
maps isomorphically to Fn under the map OXm → OXn+1

. Hence given n1, n2 ≥ 0
we can pick an m > n1 + n2 and consider the multiplication map

In1OXm × In2OXm −→ In1+n2OXm → Fn1+n2

This induces an OX1 -bilinear map

Fn1 ×Fn2 −→ Fn1+n2

which in turn defines the structure of a graded OX1 -algebra on F =
⊕

n≥0 Fn.
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Set B =
⊕
In/In+1; this is a finitely generated graded A/I-algebra. Set B =

(X1 → S1)∗B̃. The discussion above provides us with a canonical surjection

B −→ F
of graded OX1

-algebras. In particular we see that F is a finite type quasi-coherent
graded B-module. By Lemma 29.17.5 we can find an integer d0 such thatH1(X1,F⊗
L⊗d) = 0 for all d ≥ d0. Pick a d ≥ d0 such that there exist sections s0,1, . . . , sN,1 ∈
Γ(X1,L⊗d1 ) which induce an immersion

ψ1 : X1 → PN
S1

over S1, see Morphisms, Lemma 28.40.4. As X1 is proper over S1 we see that ψ1 is
a closed immersion, see Morphisms, Lemma 28.42.7 and Schemes, Lemma 25.10.4.
We are going to “lift” ψ1 to a compatible system of closed immersions of Xn into
PN .

Upon tensoring the short exact sequences of the first paragraph of the proof by
L⊗dn+1 we obtain short exact sequences

0→ Fn ⊗ L⊗dn+1 → L
⊗d
n+1 → L

⊗d
n+1 → 0

Using the isomorphisms ϕn we obtain isomorphisms Ln+1 ⊗ OXl = Ll for l ≤ n.
Whence the sequence above becomes

0→ Fn ⊗ L⊗d1 → L⊗dn+1 → L⊗dn → 0

The vanishing of H1(X,Fn ⊗ L⊗d1 ) implies we can inductively lift s0,1, . . . , sN,1 ∈
Γ(X1,L⊗d1 ) to sections s0,n, . . . , sN,n ∈ Γ(Xn,L⊗dn ). Thus we obtain a commutative
diagram

X1
i1
//

ψ1

��

X2
i2
//

ψ2

��

X3
//

ψ3

��

. . .

PN
S1

// PN
S2

// PN
S3

// . . .

where ψn = ϕ(Ln,(s0,n,...,sN,n)) in the notation of Constructions, Section 26.13. As
the squares in the statement of the theorem are cartesian we see that the squares
in the above diagram are cartesian. We win by applying Lemma 29.23.1. �
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CHAPTER 30

Divisors

30.1. Introduction

In this chapter we study some very basic questions related to defining divisors, etc.
A basic reference is [DG67].

30.2. Associated points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is associated
to M if there exists an element of M whose annihilator is p. See Algebra, Definition
10.62.1. Here is the definition of associated points for quasi-coherent sheaves on
schemes as given in [DG67, IV Definition 3.1.1].

Definition 30.2.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) We say x ∈ X is associated to F if the maximal ideal mx is associated to
the OX,x-module Fx.

(2) We denote Ass(F) or AssX(F) the set of associated points of F .
(3) The associated points of X are the associated points of OX .

These definitions are most useful when X is locally Noetherian and F of finite type.
For example it may happen that a generic point of an irreducible component of X
is not associated to X, see Example 30.2.7. In the non-Noetherian case it may be
more convenient to use weakly associated points, see Section 30.5. Let us link the
scheme theoretic notion with the algebraic notion on affine opens; note that this
correspondence works perfectly only for locally Noetherian schemes.

Lemma 30.2.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime.

(1) If p is associated to M , then x is associated to F .
(2) If p is finitely generated, then the converse holds as well.

In particular, if X is locally Noetherian, then the equivalence

p ∈ Ass(M)⇔ x ∈ Ass(F)

holds for all pairs (p, x) as above.

Proof. This follows from Algebra, Lemma 10.62.14. But we can also argue directly
as follows. Suppose p is associated to M . Then there exists an m ∈ M whose
annihilator is p. Since localization is exact we see that pAp is the annihilator
of m/1 ∈ Mp. Since Mp = Fx (Schemes, Lemma 25.5.4) we conclude that x is
associated to F .

Conversely, assume that x is associated to F , and p is finitely generated. As x is
associated to F there exists an element m′ ∈ Mp whose annihilator is pAp. Write

2025
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m′ = m/f for some f ∈ A, f 6∈ p. The annihilator I of m is an ideal of A such that
IAp = pAp. Hence I ⊂ p, and (p/I)p = 0. Since p is finitely generated, there exists
a g ∈ A, g 6∈ p such that g(p/I) = 0. Hence the annihilator of gm is p and we win.

If X is locally Noetherian, then A is Noetherian (Properties, Lemma 27.5.2) and p
is always finitely generated. �

Lemma 30.2.3. Let X be a scheme. Let F be a quasi-coherent OX-module. Then
Ass(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

Lemma 30.2.4. Let X be a scheme. Let 0→ F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then Ass(F2) ⊂ Ass(F1) ∪ Ass(F3) and
Ass(F1) ⊂ Ass(F2).

Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 10.62.3. �

Lemma 30.2.5. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then Ass(F) ∩ U is finite for every quasi-compact open U ⊂ X.

Proof. This is true because the set of associated primes of a finite module over a
Noetherian ring is finite, see Algebra, Lemma 10.62.5. To translate from schemes
to algebra use that U is a finite union of affine opens, each of these opens is the
spectrum of a Noetherian ring (Properties, Lemma 27.5.2), F corresponds to a
finite module over this ring (Cohomology of Schemes, Lemma 29.9.1), and finally
use Lemma 30.2.2. �

Lemma 30.2.6. Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX-module. Then

F = 0⇔ Ass(F) = ∅.

Proof. If F = 0, then Ass(F) = ∅ by definition. Conversely, if Ass(F) = ∅, then
F = 0 by Algebra, Lemma 10.62.7. To translate from schemes to algebra, restrict
to any affine and use Lemma 30.2.2. �

Example 30.2.7. Let k be a field. The ring R = R[x1, x2, x3, . . .]/(x
2
i ) is local

with locally nilpotent maximal ideal m. There exists no element of R which has
annihilator m. Hence Ass(R) = ∅, and X = Spec(R) is an example of a scheme
which has no associated points.

Lemma 30.2.8. Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX-module. Let x ∈ Supp(F) be a point in the support of F which is not a special-
ization of another point of Supp(F). Then x ∈ Ass(F). In particular, any generic
point of an irreducible component of X is an associated point of X.

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence Ass(Fx) ⊂ Spec(OX,x)
is nonempty by Algebra, Lemma 10.62.7. On the other hand, by assumption
Supp(Fx) = {mx}. Since Ass(Fx) ⊂ Supp(Fx) (Algebra, Lemma 10.62.2) we see
that mx is associated to Fx and we win. �
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30.3. Morphisms and associated points

Lemma 30.3.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X which is flat over S. Let G be a quasi-coherent sheaf on S.
Then we have

AssX(F ⊗OX f∗G) ⊃
⋃

s∈AssS(G)
AssXs(Fs)

and equality holds if S is locally Noetherian.

Proof. Let x ∈ X and let s = f(x) ∈ S. Set B = OX,x, A = OS,s, N = Fx,
and M = Gs. Note that the stalk of F ⊗OX f∗G at x is equal to the B-module
M ⊗A N . Hence x ∈ AssX(F ⊗OX f∗G) if and only if mB is in AssB(M ⊗A
N). Similarly s ∈ AssS(G) and x ∈ AssXs(Fs) if and only if mA ∈ AssA(M)
and mB/mAB ∈ AssB⊗κ(mA)(N ⊗ κ(mA)). Thus the lemma follows from Algebra,
Lemma 10.64.5. �

30.4. Embedded points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is an
embedded associated to M if it is an associated prime of M which is not minimal
among the associated primes of M . See Algebra, Definition 10.66.1. Here is the
definition of embedded associated points for quasi-coherent sheaves on schemes as
given in [DG67, IV Definition 3.1.1].

Definition 30.4.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) An embedded associated point of F is an associated point which is not
maximal among the associated points of F , i.e., it is the specialization of
another associated point of F .

(2) A point x of X is called an embedded point if x is an embedded associated
point of OX .

(3) An embedded component of X is an irreducible closed subset Z = {x}
where x is an embedded point of X.

In the Noetherian case when F is coherent we have the following.

Lemma 30.4.2. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then

(1) the generic points of irreducible components of Supp(F) are associated
points of F , and

(2) an associated point of F is embedded if and only if it is not a generic point
of an irreducible component of Supp(F).

In particular an embedded point of X is an associated point of X which is not a
generic point of an irreducible component of X.

Proof. Recall that in this case Z = Supp(F) is closed, see Morphisms, Lemma
28.5.3 and that the generic points of irreducible components of Z are associated
points of F , see Lemma 30.2.8. Finally, we have Ass(F) ⊂ Z, by Lemma 30.2.3.
These results, combined with the fact that Z is a sober topological space and hence
every point of Z is a specialization of a generic point of Z, imply (1) and (2). �

Lemma 30.4.3. Let X be a locally Noetherian scheme. Let F be a coherent sheaf
on X. Then the following are equivalent:

(1) F has no embedded associated points, and
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(2) F has property (S1).

Proof. This is Algebra, Lemma 10.146.2, combined with Lemma 30.2.2 above. �

Lemma 30.4.4. Let X be a locally Noetherian scheme. Let U ⊂ X be an open
subscheme. The following are equivalent

(1) U is scheme theoretically dense in X (Morphisms, Definition 28.7.1),
(2) U is dense in X and U contains all embedded points of X.

Proof. The question is local on X, hence we may assume that X = Spec(A) where
A is a Noetherian ring. Then U is quasi-compact (Properties, Lemma 27.5.3)
hence U = D(f1) ∪ . . . ∪ D(fn) (Algebra, Lemma 10.28.1). In this situation U is
scheme theoretically dense in X if and only if A→ Af1

× . . .×Afn is injective, see
Morphisms, Example 28.7.4. Condition (2) translated into algebra means that for
every associated prime p of A there exists an i with fi 6∈ p.

Assume (1), i.e., A→ Af1 × . . .×Afn is injective. If x ∈ A has annihilator a prime
p, then x maps to a nonzero element of Afi for some i and hence fi 6∈ p. Thus (2)
holds. Assume (2), i.e., every associated prime p of A corresponds to a prime of
Afi for some i. Then A→ Af1

× . . .× Afn is injective because A→
∏

p∈Ass(A)Ap

is injective by Algebra, Lemma 10.62.18. �

Lemma 30.4.5. Let X be a locally Noetherian scheme. Let F be a coherent sheaf
on X. The set of coherent subsheaves

{K ⊂ F | Supp(K) is nowhere dense in Supp(F)}

has a maximal element K. Setting F ′ = F/K we have the following

(1) Supp(F ′) = Supp(F),
(2) F ′ has no embedded associated points, and
(3) there exists a dense open U ⊂ X such that U ∩ Supp(F) is dense in

Supp(F) and F ′|U ∼= F|U .

Proof. This follows from Algebra, Lemmas 10.66.2 and 10.66.3. Note that U can
be taken as the complement of the closure of the set of embedded associated points
of F . �

Lemma 30.4.6. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module without embedded associated points. Set

I = Ker(OX −→ HomOX (F ,F)).

This is a coherent sheaf of ideals which defines a closed subscheme Z ⊂ X without
embedded points. Moreover there exists a coherent sheaf G on Z such that (a)
F = (Z → X)∗G, (b) G has no associated embedded points, and (c) Supp(G) = Z
(as sets).

Proof. Some of the statements we have seen in the proof of Cohomology of Schemes,
Lemma 29.9.7. The others follow from Algebra, Lemma 10.66.4. �
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30.5. Weakly associated points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is weakly
associated to M if there exists an element m of M such that p is minimal among
the primes containing the annihilator of m. See Algebra, Definition 10.65.1. If R
is a local ring with maximal ideal m, then m is associated to M if and only if there
exists an element m ∈ M whose annihilator has radical m, see Algebra, Lemma
10.65.2.

Definition 30.5.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) We say x ∈ X is weakly associated to F if the maximal ideal mx is weakly
associated to the OX,x-module Fx.

(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points of OX .

In this case, on any affine open, this corresponds exactly to the weakly associated
primes as defined above. Here is the precise statement.

Lemma 30.5.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is weakly associated to M , and
(2) x is weakly associated to F .

Proof. This follows from Algebra, Lemma 10.65.2. �

Lemma 30.5.3. Let X be a scheme. Let F be a quasi-coherent OX-module. Then

Ass(F) ⊂WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

Lemma 30.5.4. Let X be a scheme. Let 0→ F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then WeakAss(F2) ⊂ WeakAss(F1) ∪
WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).

Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 10.65.3. �

Lemma 30.5.5. Let X be a scheme. Let F be a quasi-coherent OX-module. Then

F = (0)⇔WeakAss(F) = ∅

Proof. Follows from Lemma 30.5.2 and Algebra, Lemma 10.65.4 �

Lemma 30.5.6. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
x ∈ Supp(F) be a point in the support of F which is not a specialization of another
point of Supp(F). Then x ∈ WeakAss(F). In particular, any generic point of an
irreducible component of X is weakly associated to OX .

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence WeakAss(Fx) ⊂
Spec(OX,x) is nonempty by Algebra, Lemma 10.65.4. On the other hand, by as-
sumption Supp(Fx) = {mx}. Since WeakAss(Fx) ⊂ Supp(Fx) (Algebra, Lemma
10.65.5) we see that mx is weakly associated to Fx and we win. �
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Lemma 30.5.7. Let X be a scheme. Let F be a quasi-coherent OX-module. If mx
is a finitely generated ideal of OX,x, then

x ∈ Ass(F)⇔ x ∈WeakAss(F).

In particular, if X is locally Noetherian, then Ass(F) = WeakAss(F).

Proof. See Algebra, Lemma 10.65.8. �

30.6. Morphisms and weakly associated points

Lemma 30.6.1. Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.

Then F = M̃ for some B-module M . By Lemma 30.5.2 the weakly associated
points of F correspond exactly to the weakly associated primes of M . Similarly,
the weakly associated points of f∗F correspond exactly to the weakly associated
primes of M as an A-module. Hence the lemma follows from Algebra, Lemma
10.65.10. �

Lemma 30.6.2. Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. If X is locally Noetherian, then we have

f(AssX(F)) = AssS(f∗F) = WeakAssS(f∗F) = f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.
As X is locally Noetherian the ring B is Noetherian, see Properties, Lemma 27.5.2.

Write F = M̃ for some B-module M . By Lemma 30.2.2 the associated points of F
correspond exactly to the associated primes of M , and any associated prime of M
as an A-module is an associated points of f∗F . Hence the inclusion

f(AssX(F)) ⊂ AssS(f∗F)

follows from Algebra, Lemma 10.62.12. We have the inclusion

AssS(f∗F) ⊂WeakAssS(f∗F)

by Lemma 30.5.3. We have the inclusion

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

by Lemma 30.6.1. The outer sets are equal by Lemma 30.5.7 hence we have equality
everywhere. �

Lemma 30.6.3. Let f : X → S be a finite morphism of schemes. Let F be a
quasi-coherent OX-module. Then WeakAss(f∗F) = f(WeakAss(F)).

Proof. We may assume X and S affine, so X → S comes from a finite ring map

A → B. Write F = M̃ for some B-module M . By Lemma 30.5.2 the weakly
associated points of F correspond exactly to the weakly associated primes of M .
Similarly, the weakly associated points of f∗F correspond exactly to the weakly
associated primes of M as an A-module. Hence the lemma follows from Algebra,
Lemma 10.65.12. �
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Lemma 30.6.4. Let f : X → S be a morphism of schemes. Let G be a quasi-
coherent OS-module. Let x ∈ X with s = f(x). If f is flat at x, the point x is a
generic point of the fibre Xs, and s ∈WeakAssS(G), then x ∈WeakAss(f∗G).

Proof. Let A = OS,s, B = OX,x, and M = Gs. Let m ∈ M be an element whose
annihilator I = {a ∈ A | am = 0} has radical mA. Then m⊗ 1 has annihilator IB

as A → B is faithfully flat. Thus it suffices to see that
√
IB = mB . This follows

from the fact that the maximal ideal of B/mAB is locally nilpotent (see Algebra,

Lemma 10.24.1) and the assumption that
√
I = mA. Some details omitted. �

30.7. Relative assassin

Definition 30.7.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative assassin of F in X over S is the set

AssX/S(F) =
⋃

s∈S
AssXs(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Again there is a caveat that this is best used when the fibres of f are locally
Noetherian and F is of finite type. In the general case we should probably use the
relative weak assassin (defined in the next section).

Lemma 30.7.2. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let g : S′ → S be a morphism of schemes. Consider the base
change diagram

X ′

��

g′
// X

��
S′

g // S

and set F ′ = (g′)∗F . Let x′ ∈ X ′ be a point with images x ∈ X, s′ ∈ S′ and
s ∈ S. Assume f locally of finite type. Then x′ ∈ AssX′/S′(F ′) if and only if
x ∈ AssX/S(F) and x′ corresponds to a generic point of an irreducible component
of Spec(κ(s′)⊗κ(s) κ(x)).

Proof. Consider the morphism X ′s′ → Xs of fibres. As Xs′ = Xs ×Spec(κ(s))

Spec(κ(s′)) this is a flat morphism. Moreover F ′s′ is the pullback of Fs via this
morphism. As Xs is locally of finite type over the Noetherian scheme Spec(κ(s))
we have that Xs is locally Noetherian, see Morphisms, Lemma 28.16.6. Thus we
may apply Lemma 30.3.1 and we see that

AssX′
s′

(F ′s′) =
⋃

x∈Ass(Fs)
Ass((X ′s′)x).

Thus to prove the lemma it suffices to show that the associated points of the
fibre (X ′s′)x of the morphism X ′s′ → Xs over x are its generic points. Note that
(X ′s′)x = Spec(κ(s′) ⊗κ(s) κ(x)) as schemes. By Algebra, Lemma 10.155.1 the
ring κ(s′) ⊗κ(s) κ(x) is a Noetherian Cohen-Macaulay ring. Hence its associated
primes are its minimal primes, see Algebra, Proposition 10.62.6 (minimal primes
are associated) and Algebra, Lemma 10.146.2 (no embedded primes). �
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Remark 30.7.3. With notation and assumptions as in Lemma 30.7.2 we see that
it is always the case that (g′)−1(AssX/S(F)) ⊃ AssX′/S′(F ′). If the morphism
S′ → S is locally quasi-finite, then we actually have

(g′)−1(AssX/S(F)) = AssX′/S′(F ′)

because in this case the field extensions κ(s) ⊂ κ(s′) are always finite. In fact, this
holds more generally for any morphism g : S′ → S such that all the field extensions
κ(s) ⊂ κ(s′) are algebraic, because in this case all prime ideals of κ(s′) ⊗κ(s) κ(x)
are maximal (and minimal) primes, see Algebra, Lemma 10.35.17.

30.8. Relative weak assassin

Definition 30.8.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative weak assassin of F in X over S is the set

WeakAssX/S(F) =
⋃

s∈S
WeakAss(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Lemma 30.8.2. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module. Then WeakAssX/S(F) = AssX/S(F).

Proof. This is true bacause the fibres of f are locally Noetherian schemes, and
associated and weakly associated points agree on locally Noetherian schemes, see
Lemma 30.5.7. �

30.9. Effective Cartier divisors

For some reason it seem convenient to define the notion of an effective Cartier
divisor before anything else.

Definition 30.9.1. Let S be a scheme.

(1) A locally principal closed subscheme of S is a closed subscheme whose
sheaf of ideals is locally generated by a single element.

(2) An effective Cartier divisor on S is a closed subscheme D ⊂ S such that
the ideal sheaf ID ⊂ OX is an invertible OX -module.

Thus an effective Cartier divisor is a locally principal closed subscheme, but the
converse is not always true. Effective Cartier divisors are closed subschemes of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is not a zerodivisor. In particular they are nowhere dense.

Lemma 30.9.2. Let S be a scheme. Let D ⊂ S be a closed subscheme. The
following are equivalent:

(1) The subscheme D is an effective Cartier divisor on S.
(2) For every x ∈ D there exists an affine open neighbourhood Spec(A) = U ⊂

S of x such that U ∩D = Spec(A/(f)) with f ∈ A not a zerodivisor.

Proof. Assume (1). For every x ∈ D there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that ID|U ∼= OU . In other words, there exists a section
f ∈ Γ(U, ID) which freely generates the restriction ID|U . Hence f ∈ A, and the
multiplication map f : A→ A is injective. Also, since ID is quasi-coherent we see
that D ∩ U = Spec(A/(f)).
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Assume (2). Let x ∈ D. By assumption there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that U∩D = Spec(A/(f)) with f ∈ A not a zerodivisor.

Then ID|U ∼= OU since it is equal to (̃f) ∼= Ã ∼= OU . Of course ID restricted to
the open subscheme S \D is isomorphic to OS\D. Hence ID is an invertible OS-
module. �

Lemma 30.9.3. Let S be a scheme. Let Z ⊂ S be a locally principal closed
subscheme. Let U = S \ Z. Then U → S is an affine morphism.

Proof. The question is local on S, see Morphisms, Lemmas 28.13.3. Thus we may
assume S = Spec(A) and Z = V (f) for some f ∈ A. In this case U = D(f) =
Spec(Af ) is affine hence U → S is affine. �

Lemma 30.9.4. Let S be a scheme. Let D ⊂ S be an effective Cartier divisor.
Let U = S \D. Then U → S is an affine morphism and U is scheme theoretically
dense in S.

Proof. Affineness is Lemma 30.9.3. The density question is local on S, see Mor-
phisms, Lemma 28.7.5. Thus we may assume S = Spec(A) and D corresponding
to the nonzerodivisor f ∈ A, see Lemma 30.9.2. Thus A ⊂ Af which implies that
U ⊂ S is scheme theoretically dense, see Morphisms, Example 28.7.4. �

Lemma 30.9.5. Let S be a scheme. Let D ⊂ S be an effective Cartier divisor.
Let s ∈ D. If dims(S) <∞, then dims(D) < dims(S).

Proof. Assume dims(S) < ∞. Let U = Spec(A) ⊂ S be an affine open neigh-
bourhood of s such that dim(U) = dims(S) and such that D = V (f) for some
nonzerodivisor f ∈ A (see Lemma 30.9.2). Recall that dim(U) is the Krull dimen-
sion of the ring A and that dim(U ∩D) is the Krull dimension of the ring A/(f).
Then f is not contained in any minimal prime of A. Hence any maximal chain of
primes in A/(f), viewed as a chain of primes in A, can be extended by adding a
minimal prime. �

Definition 30.9.6. Let S be a scheme. Given effective Cartier divisors D1, D2 on
S we set D = D1 + D2 equal to the closed subscheme of S corresponding to the
quasi-coherent sheaf of ideals ID1ID2 ⊂ OS . We call this the sum of the effective
Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

Lemma 30.9.7. The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Locally f1, f2 ∈ A are nonzerodivisors, then also f1f2 ∈ A is a
nonzerodivisor. �

Lemma 30.9.8. Let X be a scheme. Let D,D′ be two effective Cartier divisors on
X. If D ⊂ D′ (as closed subschemes of X), then there exists an effective Cartier
divisor D′′ such that D′ = D +D′′.

Proof. Omitted. �

Lemma 30.9.9. Let X be a scheme. Let Z, Y be two closed subschemes of X with
ideal sheaves I and J . If IJ defines an effective Cartier divisor D ⊂ X, then Z
and Y are effective Cartier divisors and D = Z + Y .
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Proof. Applying Lemma 30.9.2 we obtain the following algebra situation: A is a
ring, I, J ⊂ A ideals and f ∈ A a nonzerodivisor such that IJ = (f). Thus the
result follows from Algebra, Lemma 10.116.12. �

Recall that we have defined the inverse image of a closed subscheme under any
morphism of schemes in Schemes, Definition 25.17.7.

Lemma 30.9.10. Let f : S′ → S be a morphism of schemes. Let Z ⊂ S be a locally
principal closed subscheme. Then the inverse image f−1(Z) is a locally principal
closed subscheme of S′.

Proof. Omitted. �

Definition 30.9.11. Let f : S′ → S be a morphism of schemes. Let D ⊂ S be
an effective Cartier divisor. We say the pullback of D by f is defined if the closed
subscheme f−1(D) ⊂ S′ is an effective Cartier divisor. In this case we denote it
either f∗D or f−1(D) and we call it the pullback of the effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice. Here is an example lemma.

Lemma 30.9.12. Let f : X → Y be a morphism of schemes. Let D ⊂ Y be an
effective Cartier divisor. The pullback of D by f is defined in each of the following
cases:

(1) X, Y integral and f dominant,
(2) X reduced, and for any generic point ξ of any irreducible component of X

we have f(ξ) 6∈ D,
(3) X is locally Noetherian and for any associated point x of X we have

f(x) 6∈ D,
(4) X is locally Noetherian, has no embedded points, and for any generic point

ξ of any irreducible component of X we have f(ξ) 6∈ D,
(5) f is flat, and
(6) add more here as needed.

Proof. The question is local on X, and hence we reduce to the case where X =
Spec(A), Y = Spec(R), f is given by ϕ : R → A and D = Spec(R/(t)) where
t ∈ R is not a zerodivisor. The goal in each case is to show that ϕ(t) ∈ A is not a
zerodivisor.

In case (2) this follows as the intersection of all minimal primes of a ring is the
nilradical of the ring, see Algebra, Lemma 10.16.2.

Let us prove (3). By Lemma 30.2.2 the associated points of X correspond to the
primes p ∈ Ass(A). By Algebra, Lemma 10.62.9 we have

⋃
p∈Ass(A) p is the set of

zerodivisors of A. The hypothesis of (3) is that ϕ(t) 6∈ p for all p ∈ Ass(A). Hence
ϕ(t) is a nonzerodivisor as desired.

Part (4) follows from (3) and the definitions. �

Lemma 30.9.13. Let f : S′ → S be a morphism of schemes. Let D1, D2 be
effective Cartier divisors on S. If the pullbacks of D1 and D2 are defined then the
pullback of D = D1 +D2 is defined and f∗D = f∗D1 + f∗D2.

Proof. Omitted. �
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Definition 30.9.14. Let S be a scheme and let D be an effective Cartier divisor.
The invertible sheaf OS(D) associated to D is given by

OS(D) := HomOS (ID,OS) = I⊗−1
D .

The canonical section, usually denoted 1 or 1D, is the global section of OS(D)
corresponding to the inclusion mapping ID → OS .

Lemma 30.9.15. Let S be a scheme. Let D1, D2 be effective Cartier divisors on
S. Let D = D1 +D2. Then there is a unique isomorphism

OS(D1)⊗OS OS(D2) −→ OS(D)

which maps 1D1 ⊗ 1D2 to 1D.

Proof. Omitted. �

Definition 30.9.16. Let (X,OX) be a locally ringed space. Let L be an invertible
sheaf on X. A global section s ∈ Γ(X,L) is called a regular section if the map
OX → L, f 7→ fs is injective.

Lemma 30.9.17. Let X be a locally ringed space. Let f ∈ Γ(X,OX). The following
are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.

If X is a scheme these are also equivalent to

(3) for any affine open Spec(A) = U ⊂ X the image f ∈ A is not a zerodivi-
sor, and

(4) there exists an affine open covering X =
⋃

Spec(Ai) such that the image
of f in Ai is not a zerodivisor for all i.

Proof. Omitted. �

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules, Definition 17.21.3 for the definition of the dual invertible sheaf.)

Definition 30.9.18. Let X be a scheme. Let L be an invertible sheaf. Let s ∈
Γ(X,L). The zero scheme of s is the closed subscheme Z(s) ⊂ X defined by the
quasi-coherent sheaf of ideals I ⊂ OX which is the image of the map s : L⊗−1 →
OX .

Lemma 30.9.19. Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of
this ordered set.

(2) For any morphism of schemes f : Y → X we have f∗s = 0 in Γ(Y, f∗L)
if and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subscheme.
(4) The zero scheme Z(s) is an effective Cartier divisor if and only if s is a

regular section of L.

Proof. Omitted. �

Lemma 30.9.20. Let X be a scheme.
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(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique
isomorphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX-module and a regular global section

}
Proof. Omitted. �

Lemma 30.9.21. Let X be a Noetherian scheme. Let D ⊂ X be a closed subscheme
corresponding to the quasi-coherent ideal sheaf I ⊂ OX .

(1) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by one element,
then D is locally principal.

(2) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by a single
nonzerodivisor, then D is an effective Cartier divisor.

Proof. Let Spec(A) be an affine neighbourhood of a point x ∈ D. Let p ⊂ A be
the prime corresponding to x. Let I ⊂ A be the ideal defining the trace of D on
Spec(A). Since A is Noetherian (as X is Noetherian) the ideal I is generated by
finitely many elements, say I = (f1, . . . , fr). Under the assumption of (1) we have
Ip = (f) for some f ∈ Ap. Then fi = gif for some gi ∈ Ap. Write gi = ai/hi
and f = f ′/h for some hi, h ∈ A, hi, h 6∈ p. Then Ih1...hrh ⊂ Ah1...hrh is principal,
because it is generated by f ′. This proves (1). For (2) we may assume I = (f).
The assumption implies that the image of f in Ap is a nonzerodivisor. Then f is a
nonzero divisor on a neighbourhood of x by Algebra, Lemma 10.67.8. This proves
(2). �

Lemma 30.9.22. Let X be a Noetherian scheme. Let D ⊂ X be an integral closed
subscheme which is also an effective Cartier divisor. Then the local ring of X at
the generic point of D is a discrete valuation ring.

Proof. By Lemma 30.9.2 we may assume X = Spec(A) and D = Spec(A/(f))
where A is a Noetherian ring and f ∈ A is a nonzerodivisor. The assumption that
D is integral signifies that (f) is prime. Hence the local ring of X at the generic
point is A(f) which is a Noetherian local ring whose maximal ideal is generated by
a nonzerodivisor. Thus it is a discrete valuation ring by Algebra, Lemma 10.115.6.

�

Lemma 30.9.23. Let X be a Noetherian scheme. Let D ⊂ X be a integral closed
subscheme. Assume that

(1) D has codimension 1 in X, and
(2) OX,x is a UFD for all x ∈ D.

Then D is an effective Cartier divisor.

Proof. Let x ∈ D and set A = OX,x. Let p ⊂ A correspond to the generic point of
D. Then Ap has dimension 1 by assumption (1). Thus p is a prime ideal of height
1. Since A is a UFD this implies that p = (f) for some f ∈ A. Of course f is a
nonzerodivisor and we conclude by Lemma 30.9.21. �
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Lemma 30.9.24. Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. Assume at least one of the following conditions holds

(1) There exist reduced and irreducible effective Cartier divisors Di ⊂ X,
i = 1, . . . , n and a closed subset Z ⊂ X of codimension ≥ 2, such that
OX/I is supported on Z ∪

⋃
Di.

(2) The local ring OX,x is a UFD for every point x of the support of OX/I.
(3) The scheme X is regular.

Then there exists an invertible ideal sheaf I ⊂ J ⊂ OX such that the support of
J /I has codimension ≥ 2. Moreover, in case (1) we have J⊗−1 = OX(

∑
aiDi)

for some ai ≥ 0.

Proof. Case (1). Let ξi ∈ Di be the generic point and let Oi = OX,ξi be the
local ring which is a discrete valuation ring by Lemma 30.9.22. Let ai ≥ 0 be the
minimal valuation of an element of Ixi ⊂ Oi. We claim that the ideal sheaf J of
the effective Cartier divisor D =

∑
aiDi works.

Namely, suppose that x ∈ D. Let A = OX,x. Let fi ∈ A be a local equation
for Di; we only consider those i such that x ∈ Di. Then fi is a nonzerodivisor
and A/(fi) is a domain and Oi = A(fi). Let I = Ix ⊂ A. We chose ai such
that IA(fi) = faii A(fi). It follows that I ⊂ (

∏
faii ) because (

∏
faii ) is the kernel

of A →
∏
A(fi)/f

ai
i A(fi). This proves that I ⊂ J . Moreover, we also see that

Ixi = Jxi which proves that xi is not in the support of J /I. Hence the support of
I/J has codimension at least 2. This finishes the proof in case (1).

Observe that (3) is a special case of (2) because a regular local ring is a UFD (More
on Algebra, Lemma 15.70.4). In case (2) let Di be the irreducible components of
the support of OX/I which have codimension 1. By Lemma 30.9.23 each Di is an
effective Cartier divisor. In this way we reduce to case (1). �

30.10. Relative effective Cartier divisors

The following lemma shows that an effective Cartier divisor which is flat over the
base is really a “family of effective Cartier divisors” over the base. For example the
restriction to any fibre is an effective Cartier divisor.

Lemma 30.10.1. Let f : X → S be a morphism of schemes. Let D ⊂ X be a
closed subscheme. Assume

(1) D is an effective Cartier divisor, and
(2) D → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the pullback (g′)−1D is an effective
Cartier divisor on X ′ = S′ ×S X.

Proof. Using Lemma 30.9.2 we translate this as follows into algebra. Let A→ B
be a ring map and h ∈ B. Assume h is a nonzerodivisor and that B/hB is flat over
A. Then

0→ B
h−→ B → B/hB → 0

is a short exact sequence of A-modules with B/hB flat over A. By Algebra, Lemma
10.38.11 this sequence remains exact on tensoring over A with any module, in
particular with any A-algebra A′. �

This lemma is the motivation for the following definition.
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Definition 30.10.2. Let f : X → S be a morphism of schemes. A relative effective
Cartier divisor on X/S is an effective Cartier divisor D ⊂ X such that D → S is a
flat morphism of schemes.

We warn the reader that this may be nonstandard notation. In particular, in
[DG67, IV, Section 21.15] the notion of a relative divisor is discussed only when
X → S is flat and locally of finite presentation. Our definition is a bit more general.
However, it turns out that if x ∈ D then X → S is flat at x in many cases (but not
always).

Lemma 30.10.3. Let f : X → S be a morphism of schemes. Let D ⊂ X be a
relative effective Cartier divisor on X/S. If x ∈ D and OX,x is Noetherian, then f
is flat at x.

Proof. Set A = OS,f(x) and B = OX,x. Let h ∈ B be an element which generates
the ideal of D. Then h is a nonzerodivisor in B such that B/hB is a flat local
A-algebra. Let I ⊂ A be a finitely generated ideal. Consider the commutative
diagram

0 // B
h

// B // B/hB // 0

0 // B ⊗A I
h //

OO

B ⊗A I //

OO

B/hB ⊗A I //

OO

0

The lower sequence is short exact as B/hB is flat over A, see Algebra, Lemma
10.38.11. The right vertical arrow is injective as B/hB is flat over A, see Algebra,
Lemma 10.38.4. Hence multiplication by h is surjective on the kernel K of the
middle vertical arrow. By Nakayama’s lemma, see Algebra, Lemma 10.19.1 we
conclude that K = 0. Hence B is flat over A, see Algebra, Lemma 10.38.4. �

The following lemma relies on the algebraic version of openness of the flat locus.
The scheme theoretic version can be found in More on Morphisms, Section 36.12.

Lemma 30.10.4. Let f : X → S be a morphism of schemes. Let D ⊂ X be a
relative effective Cartier divisor. If f is locally of finite presentation, then there
exists an open subscheme U ⊂ X such that D ⊂ U and such that f |U : U → S is
flat.

Proof. Pick x ∈ D. It suffices to find an open neighbourhood U ⊂ X of x such
that f |U is flat. Hence the lemma reduces to the case that X = Spec(B) and
S = Spec(A) are affine and that D is given by a nonzerodivisor h ∈ B. By
assumption B is a finitely presented A-algebra and B/hB is a flat A-algebra. We
are going to use absolute Noetherian approximation.

Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume h is the image of h′ ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials h′, g1, . . . , gm are in A0. Then we can set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)
and h0 the image of h′ in B0. Then B = B0 ⊗A0

A and B/hB = B0/h0B0 ⊗A0
A.

By Algebra, Lemma 10.156.1 we may, after enlarging A0, assume that B0/h0B0 is
flat over A0. Let K0 = Ker(h0 : B0 → B0). As B0 is of finite type over Z we see
that K0 is a finitely generated ideal. Let A1 ⊂ A be a finite type Z-subalgebra
containing A0 and denote B1, h1, K1 the corresponding objects over A1. By More
on Algebra, Lemma 15.21.15 the map K0⊗A0

A1 → K1 is surjective. On the other
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hand, the kernel of h : B → B is zero by assumption. Hence every element of
K0 maps to zero in K1 for sufficiently large subrings A1 ⊂ A. Since K0 is finitely
generated, we conclude that K1 = 0 for a suitable choice of A1.

Set f1 : X1 → S1 equal to Spec of the ring mapA1 → B1. SetD1 = Spec(B1/h1B1).
Since B = B1 ⊗A1

A, i.e., X = X1 ×S1
S, it now suffices to prove the lemma for

X1 → S1 and the relative effective Cartier divisor D1, see Morphisms, Lemma
28.26.6. Hence we have reduced to the case where A is a Noetherian ring. In this
case we know that the ring map A→ B is flat at every prime q of V (h) by Lemma
30.10.3. Combined with the fact that the flat locus is open in this case, see Algebra,
Theorem 10.125.4 we win. �

There is also the following lemma (whose idea is apparently due to Michael Artin,
see [Nob77]) which needs no finiteness assumptions at all.

Lemma 30.10.5. Let f : X → S be a morphism of schemes. Let D ⊂ X be a
relative effective Cartier divisor on X/S. If f is flat at all points of X \D, then f
is flat.

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h ∈ B. Assume h is a nonzerodivisor, that B/hB is flat over A, and that the
localization Bh is flat over A. Then B is flat over A. The reason is that we have a
short exact sequence

0→ B → Bh → colimn(1/hn)B/B → 0

and that the second and third terms are flat over A, which implies that B is
flat over A (see Algebra, Lemma 10.38.12). Note that a filtered colimit of flat
modules is flat (see Algebra, Lemma 10.38.2) and that by induction on n each
(1/hn)B/B ∼= B/hnB is flat over A since it fits into the short exact sequence

0→ B/hn−1B
h−→ B/hnB → B/hB → 0

Some details omitted. �

Example 30.10.6. Here is an example of a relative effective Cartier divisor D
where the ambient scheme is not flat in a neighbourhood of D. Namely, let A = k[t]
and

B = k[t, x, y, x−1y, x−2y, . . .]/(ty, tx−1y, tx−2y, . . .)

Then B is not flat over A but B/xB ∼= A is flat over A. Moreover x is a nonzerodi-
visor and hence defines a relative effective Cartier divisor in Spec(B) over Spec(A).

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative effective Cartier divisor in terms of its fibres. See also
More on Morphisms, Lemma 36.18.1 for a slightly different take on this lemma.

Lemma 30.10.7. Let ϕ : X → S be a flat morphism which is locally of finite
presentation. Let Z ⊂ X be a closed subscheme. Let x ∈ Z with image s ∈ S.

(1) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, then there exists
an open U ⊂ X and a relative effective Cartier divisor D ⊂ U such that
Z ∩ U ⊂ D.

(2) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, the morphism
Z → X is of finite presentation, and Z → S is flat at x, then we can
choose U and D such that Z ∩ U = D.
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(3) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x and Z is a locally
principal closed subscheme of X in a neighbourhood of x, then we can
choose U and D such that Z ∩ U = D.

In particular, if Z → S is locally of finite presentation and flat and all fibres
Zs ⊂ Xs are effective Cartier divisors, then Z is a relative effective Cartier divisor.
Similarly, if Z is a locally principal closed subscheme of X such that all fibres
Zs ⊂ Xs are effective Cartier divisors, then Z is a relative effective Cartier divisor.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let
q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding
to Z. By the initial assumption of the lemma we know that A → B is flat and of
finite presentation. The assumption in (1) means that, after shrinking Spec(B), we
may assume I(B⊗Aκ(p)) is generated by a single element which is a nonzerodivisor
in B ⊗A κ(p). Say f ∈ I maps to this generator. We claim that after inverting
an element g ∈ B, g 6∈ q the closed subscheme D = V (f) ⊂ Spec(Bg) is a relative
effective Cartier divisor.

By Algebra, Lemma 10.156.1 we can find a flat finite type ring map A0 → B0 of
Noetherian rings, an element f0 ∈ B0, a ring map A0 → A and an isomorphism
A⊗A0 B0

∼= B. If p0 = A0 ∩ p then we see that

B ⊗A κ(p) = (B0 ⊗A0
κ(p0))⊗κ(p0)) κ(p)

hence f0 is a nonzerodivisor in B0 ⊗A0
κ(p0). By Algebra, Lemma 10.95.2 we see

that f0 is a nonzerodivisor in (B0)q0 where q0 = B0 ∩ q and that (B0/f0B0)q0 is
flat over A0. Hence by Algebra, Lemma 10.67.8 and Algebra, Theorem 10.125.4
there exists a g0 ∈ B0, g0 6∈ q0 such that f0 is a nonzerodivisor in (B0)g0

and such
that (B0/f0B0)g0

is flat over A0. Hence we see that D0 = V (f0) ⊂ Spec((B0)g0
) is

a relative effective Cartier divisor. Since we know that this property is preserved
under base change, see Lemma 30.10.1, we obtain the claim mentioned above with
g equal to the image of g0 in B.

At this point we have proved (1). To see (2) consider the closed immersion Z → D.
The surjective ring map u : OD,x → OZ,x is a map of flat local OS,s-algebras
which are essentially of finite presentation, and which becomes an isomorphisms
after dividing by ms. Hence it is an isomorphism, see Algebra, Lemma 10.124.4.
It follows that Z → D is an isomorphism in a neighbourhood of x, see Algebra,
Lemma 10.122.6. To see (3), after possibly shrinking U we may assume that the
ideal of D is generated by a single nonzerodivisor f and the ideal of Z is generated
by an element g. Then f = gh. But g|Us and f |Us cut out the same effective Cartier
divisor in a neighbourhood of x. Hence h|Xs is a unit in OXs,x, hence h is a unit
in OX,x hence h is a unit in an open neighbourhood of x. I.e., Z ∩ U = D after
shrinking U .

The final statements of the lemma follow immediately from parts (2) and (3),
combined with the fact that Z → S is locally of finite presentation if and only if
Z → X is of finite presentation, see Morphisms, Lemmas 28.22.3 and 28.22.11. �

30.11. The normal cone of an immersion

Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the quasi-coherent sheaf of graded OX -algebras
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n≥0 In/In+1. Since the sheaves In/In+1 are each annihilated by I this graded

algebra corresponds to a quasi-coherent sheaf of graded OZ-algebras by Morphisms,
Lemma 28.4.1. This quasi-coherent graded OZ-algebra is called the conormal alge-
bra of Z in X and is often simply denoted

⊕
n≥0 In/In+1 by the abuse of notation

mentioned in Morphisms, Section 28.4.

Let f : Z → X be an immersion. We define the conormal algebra of f as the
conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z. It is
often denoted

⊕
n≥0 In/In+1 where I is the ideal sheaf of the closed immersion

i : Z → X \ ∂Z.

Definition 30.11.1. Let f : Z → X be an immersion. The conormal algebra
CZ/X,∗ of Z in X or the conormal algebra of f is the quasi-coherent sheaf of graded

OZ-algebras
⊕

n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ
and CZ/X,n is a quasi-coherent OZ-module characterized by the property

(30.11.1.1) i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that
there is a canonical surjective map

(30.11.1.2) Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent graded OZ-algebras which is an isomorphism in degrees 0 and 1.

Lemma 30.11.2. Let i : Z → X be an immersion. The conormal algebra of i has
the following properties:

(1) Let U ⊂ X be any open such that i(Z) is a closed subset of U . Let I ⊂ OU
be the sheaf of ideals corresponding to the closed subscheme i(Z) ⊂ U .
Then

CZ/X,∗ = i∗
(⊕

n≥0
In
)

= i−1
(⊕

n≥0
In/In+1

)
(2) For any affine open Spec(R) = U ⊂ X such that Z∩U = Spec(R/I) there

is a canonical isomorphism Γ(Z ∩ U, CZ/X,∗) =
⊕

n≥0 I
n/In+1.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have In/In+1 = In ⊗R R/I. Details omitted. �

Lemma 30.11.3. Let
Z

i
//

f

��

X

g

��
Z ′

i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of graded OZ-algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′,∗) =
⊕

(I ′)n/(I ′)n+1 −→
⊕

n≥0
In/In+1 = Γ(Z ∩ U, CZ/X,∗)
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is the one induced by the ring map f ] : R′ → R which has the property f ](I ′) ⊂ I.

Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.

The fact that g◦i factors through i′ implies that g∗I ′ maps into I under the canon-
ical map g∗I ′ → OX , see Schemes, Lemmas 25.4.6 and 25.4.7. Hence we get an
induced map of quasi-coherent sheaves g∗((I ′)n/(I ′)n+1)→ In/In+1. Pulling back
by i gives i∗g∗((I ′)n/(I ′)n+1) → i∗(In/In+1). Note that i∗(In/In+1) = CZ/X,n.

On the other hand, i∗g∗((I ′)n/(I ′)n+1) = f∗(i′)∗((I ′)n/(I ′)n+1) = f∗CZ′/X′,n.
This gives the desired map.

Checking that the map is locally described as the given map (I ′)n/(I ′)n+1 →
In/In+1 is a matter of unwinding the definitions and is omitted. Another ob-
servation is that given any x ∈ i(Z) there do exist affine open neighbourhoods U ,
U ′ with f(U) ⊂ U ′ and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof
omitted. Hence the requirement of the lemma indeed characterizes the map (and
could have been used to define it). �

Lemma 30.11.4. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 30.11.3 is surjective. If g is flat,
then it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
(I ′)n/(I ′)n+1⊗R′R→ In/In+1 is surjective. If R′ → R is flat, then In = (I ′)n⊗R′R
and we see the map is an isomorphism. �

Definition 30.11.5. Let i : Z → X be an immersion of schemes. The normal cone
CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)

see Constructions, Definitions 26.7.1 and 26.7.2. The normal bundle of Z in X is
the vector bundle

NZX = Spec
Z

(Sym(CZ/X))

see Constructions, Definitions 26.6.1 and 26.6.2.

Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z
(recall that in our terminology this does not imply that the conormal sheaf is a
finite locally free sheaf). Moreover, the canonical surjection (30.11.1.2) of graded
algebras defines a canonical closed immersion

(30.11.5.1) CZX −→ NZX

of cones over Z.
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30.12. Regular ideal sheaves

In this section we generalize the notion of an effective Cartier divisor to higher codi-
mension. Recall that a sequence of elements f1, . . . , fr of a ring R is a regular se-
quence if for each i = 1, . . . , r the element fi is a nonzerodivisor on R/(f1, . . . , fi−1)
and R/(f1, . . . , fr) 6= 0, see Algebra, Definition 10.67.1. There are three closely re-
lated weaker conditions that we can impose. The first is to assume that f1, . . . , fr
is a Koszul-regular sequence, i.e., that Hi(K•(f1, . . . , fr)) = 0 for i > 0, see
More on Algebra, Definition 15.21.1. The sequence is called an H1-regular se-
quence if H1(K•(f1, . . . , fr)) = 0. Another condition we can impose is that with
J = (f1, . . . , fr), the map

R/J [T1, . . . , Tr] −→
⊕

n≥0
Jn/Jn+1

which maps Ti to fi mod J2 is an isomorphism. In this case we say that f1, . . . , fr
is a quasi-regular sequence, see Algebra, Definition 10.68.1. Given an R-module M
there is also a notion of M -regular and M -quasi-regular sequence.

We can generalize this to the case of ringed spaces as follows. Let X be a ringed
space and let f1, . . . , fr ∈ Γ(X,OX). We say that f1, . . . , fr is a regular sequence if
for each i = 1, . . . , r the map

(30.12.0.2) fi : OX/(f1, . . . , fi−1) −→ OX/(f1, . . . , fi−1)

is an injective map of sheaves. We say that f1, . . . , fr is a Koszul-regular sequence
if the Koszul complex

(30.12.0.3) K•(OX , f•),

see Modules, Definition 17.20.2, is acyclic in degrees > 0. We say that f1, . . . , fr
is a H1-regular sequence if the Koszul complex K•(OX , f•) is exact in degree 1.
Finally, we say that f1, . . . , fr is a quasi-regular sequence if the map

(30.12.0.4) OX/J [T1, . . . , Tr] −→
⊕

d≥0
J d/J d+1

is an isomorphism of sheaves where J ⊂ OX is the sheaf of ideals generated by
f1, . . . , fr. (There is also a notion of F-regular and F-quasi-regular sequence for a
given OX -module F which we will introduce here if we ever need it.)

Lemma 30.12.1. Let X be a ringed space. Let f1, . . . , fr ∈ Γ(X,OX). We have
the following implications f1, . . . , fr is a regular sequence ⇒ f1, . . . , fr is a Koszul-
regular sequence ⇒ f1, . . . , fr is an H1-regular sequence ⇒ f1, . . . , fr is a quasi-
regular sequence.

Proof. Since we may check exactness at stalks, a sequence f1, . . . , fr is a regular
sequence if and only if the maps

fi : OX,x/(f1, . . . , fi−1) −→ OX,x/(f1, . . . , fi−1)

are injective for all x ∈ X. In other words, the image of the sequence f1, . . . , fr in
the ring OX,x is a regular sequence for all x ∈ X. The other types of regularity can
be checked stalkwise as well (details omitted). Hence the implications follow from
More on Algebra, Lemmas 15.21.2 and 15.21.5. �

Definition 30.12.2. Let X be a ringed space. Let J ⊂ OX be a sheaf of ideals.
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(1) We say J is regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(2) We say J is Koszul-regular if for every x ∈ Supp(OX/J ) there exists
an open neighbourhood x ∈ U ⊂ X and a Koszul-regular sequence
f1, . . . , fr ∈ OX(U) such that J |U is generated by f1, . . . , fr.

(3) We say J is H1-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a H1-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(4) We say J is quasi-regular if for every x ∈ Supp(OX/J ) there exists an
open neighbourhood x ∈ U ⊂ X and a quasi-regular sequence f1, . . . , fr ∈
OX(U) such that J |U is generated by f1, . . . , fr.

Many properties of this notion immediately follow from the corresponding notions
for regular and quasi-regular sequences in rings.

Lemma 30.12.3. Let X be a ringed space. Let J be a sheaf of ideals. We have
the following implications: J is regular ⇒ J is Koszul-regular ⇒ J is H1-regular
⇒ J is quasi-regular.

Proof. The lemma immediately reduces to Lemma 30.12.1. �

Lemma 30.12.4. Let X be a locally ringed space. Let J ⊂ OX be a sheaf of ideals.
Then J is quasi-regular if and only if the following conditions are satisfied:

(1) J is an OX-module of finite type,
(2) J /J 2 is a finite locally free OX/J -module, and
(3) the canonical maps

Symn
OX/J (J /J 2) −→ J n/J n+1

are isomorphisms for all n ≥ 0.

Proof. It is clear that if U ⊂ X is an open such that J |U is generated by a
quasi-regular sequence f1, . . . , fr ∈ OX(U) then J |U is of finite type, J |U/J 2|U is
free with basis f1, . . . , fr, and the maps in (3) are isomorphisms because they are
coordinate free formulation of the degree n part of (30.12.0.4). Hence it is clear
that being quasi-regular implies conditions (1), (2), and (3).

Conversely, suppose that (1), (2), and (3) hold. Pick a point x ∈ Supp(OX/J ).
Then there exists a neighbourhood U ⊂ X of x such that J |U/J 2|U is free of rank
r over OU/J |U . After possibly shrinking U we may assume there exist f1, . . . , fr ∈
J (U) which map to a basis of J |U/J 2|U as an OU/J |U -module. In particular
we see that the images of f1, . . . , fr in Jx/J 2

x generate. Hence by Nakayama’s
lemma (Algebra, Lemma 10.19.1) we see that f1, . . . , fr generate the stalk Jx.
Hence, since J is of finite type, by Modules, Lemma 17.9.4 after shrinking U we
may assume that f1, . . . , fr generate J . Finally, from (3) and the isomorphism
J |U/J 2|U =

⊕
OU/J |Ufi it is clear that f1, . . . , fr ∈ OX(U) is a quasi-regular

sequence. �

Lemma 30.12.5. Let (X,OX) be a locally ringed space. Let J ⊂ OX be a sheaf of
ideals. Let x ∈ X and f1, . . . , fr ∈ Jx whose images give a basis for the κ(x)-vector
space Jx/mxJx.

http://stacks.math.columbia.edu/tag/063E
http://stacks.math.columbia.edu/tag/063H
http://stacks.math.columbia.edu/tag/067N


30.12. REGULAR IDEAL SHEAVES 2045

(1) If J is quasi-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form a quasi-regular sequence generating J |U .

(2) If J is H1-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form an H1-regular sequence generating J |U .

(3) If J is Koszul-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form an Koszul-regular sequence generating J |U .

Proof. First assume that J is quasi-regular. We may choose an open neighbour-
hood U ⊂ X of x and a quasi-regular sequence g1, . . . , gs ∈ OX(U) which gener-
ates J |U . Note that this implies that J /J 2 is free of rank s over OU/J |U (see
Lemma 30.12.4 and its proof) and hence r = s. We may shrink U and assume
f1, . . . , fr ∈ J (U). Thus we may write

fi =
∑

aijgj

for some aij ∈ OX(U). By assumption the matrix A = (aij) maps to an invertible
matrix over κ(x). Hence, after shrinking U once more, we may assume that (aij)
is invertible. Thus we see that f1, . . . , fr give a basis for (J /J 2)|U which proves
that f1, . . . , fr is a quasi-regular sequence over U .

Note that in order to prove (2) and (3) we may, because the assumptions of (2) and
(3) are stronger than the assumption in (1), already assume that f1, . . . , fr ∈ J (U)
and fi =

∑
aijgj with (aij) invertible as above, where now g1, . . . , gr is a H1-regular

or Koszul-regular sequence. Since the Koszul complex on f1, . . . , fr is isomorphic to
the Koszul complex on g1, . . . , gr via the matrix (aij) (see More on Algebra, Lemma
15.20.4) we conclude that f1, . . . , fr is H1-regular or Koszul-regular as desired. �

Lemma 30.12.6. Any regular, Koszul-regular, H1-regular, or quasi-regular sheaf
of ideals on a scheme is a finite type quasi-coherent sheaf of ideals.

Proof. This follows as such a sheaf of ideals is locally generated by finitely many
sections. And any sheaf of ideals locally generated by sections on a scheme is
quasi-coherent, see Schemes, Lemma 25.10.1. �

Lemma 30.12.7. Let X be a scheme. Let J be a sheaf of ideals. Then J is
regular (resp. Koszul-regular, H1-regular, quasi-regular) if and only if for every x ∈
Supp(OX/J ) there exists an affine open neighbourhood x ∈ U ⊂ X, U = Spec(A)

such that J |U = Ĩ and such that I is generated by a regular (resp. Koszul-regular,
H1-regular, quasi-regular) sequence f1, . . . , fr ∈ A.

Proof. By assumption we can find an open neighbourhood U of x over which J
is generated by a regular (resp. Koszul-regular, H1-regular, quasi-regular) sequence
f1, . . . , fr ∈ OX(U). After shrinking U we may assume that U is affine, say U =

Spec(A). Since J is quasi-coherent by Lemma 30.12.6 we see that J |U = Ĩ for
some ideal I ⊂ A. Now we can use the fact that˜ : ModA −→ QCoh(OU )

is an equivalence of categories which preserves exactness. For example the fact that
the functions fi generate J means that the fi, seen as elements of A generate I.
The fact that (30.12.0.2) is injective (resp. (30.12.0.3) is exact, (30.12.0.3) is exact
in degree 1, (30.12.0.4) is an isomorphism) implies the corresponding property of
the map A/(f1, . . . , fi−1)→ A/(f1, . . . , fi−1) (resp. the complex K•(A, f1, . . . , fr),
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the map A/I[T1, . . . , Tr] →
⊕
In/In+1). Thus f1, . . . , fr ∈ A is a regular (resp.

Koszul-regular, H1-regular, quasi-regular) sequence of the ring A. �

Lemma 30.12.8. Let X be a locally Noetherian scheme. Let J ⊂ OX be a quasi-
coherent sheaf of ideals. Let x be a point of the support of OX/J . The following
are equivalent

(1) Jx is generated by a regular sequence in OX,x,
(2) Jx is generated by a Koszul-regular sequence in OX,x,
(3) Jx is generated by an H1-regular sequence in OX,x,
(4) Jx is generated by a quasi-regular sequence in OX,x,

(5) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a regular sequence in A, and

(6) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a Koszul-regular sequence in A, and

(7) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by an H1-regular sequence in A, and

(8) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a quasi-regular sequence in A,

(9) there exists a neighbourhood U of x such that J |U is regular, and
(10) there exists a neighbourhood U of x such that J |U is Koszul-regular, and
(11) there exists a neighbourhood U of x such that J |U is H1-regular, and
(12) there exists a neighbourhood U of x such that J |U is quasi-regular.

In particular, on a locally Noetherian scheme the notions of regular, Koszul-regular,
H1-regular, or quasi-regular ideal sheaf all agree.

Proof. It follows from Lemma 30.12.7 that (5) ⇔ (9), (6) ⇔ (10), (7) ⇔ (11),
and (8) ⇔ (12). It is clear that (5) ⇒ (1), (6) ⇒ (2), (7) ⇒ (3), and (8) ⇒ (4).
We have (1) ⇒ (5) by Algebra, Lemma 10.67.8. We have (9) ⇒ (10) ⇒ (11) ⇒
(12) by Lemma 30.12.3. Finally, (4)⇒ (1) by Algebra, Lemma 10.68.6. Now all 12
statements are equivalent. �

30.13. Regular immersions

Let i : Z → X be an immersion of schemes. By definition this means there exists
an open subscheme U ⊂ X such that Z is identified with a closed subscheme of U .
Let I ⊂ OU be the corresponding quasi-coherent sheaf of ideals. Suppose U ′ ⊂ X
is a second such open subscheme, and denote I ′ ⊂ OU ′ the corresponding quasi-
coherent sheaf of ideals. Then I|U∩U ′ = I ′|U∩U ′ . Moreover, the support of OU/I
is Z which is contained in U ∩U ′ and is also the support of OU ′/I ′. Hence it follows
from Definition 30.12.2 that I is a regular ideal if and only if I ′ is a regular ideal.
Similarly for being Koszul-regular, H1-regular, or quasi-regular.

Definition 30.13.1. Let i : Z → X be an immersion of schemes. Choose an open
subscheme U ⊂ X such that i identifies Z with a closed subscheme of U and denote
I ⊂ OU the corresponding quasi-coherent sheaf of ideals.

(1) We say i is a regular immersion if I is regular.
(2) We say i is a Koszul-regular immersion if I is Koszul-regular.
(3) We say i is a H1-regular immersion if I is H1-regular.
(4) We say i is a quasi-regular immersion if I is quasi-regular.
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The discussion above shows that this is independent of the choice of U . The condi-
tions are listed in decreasing order of strength, see Lemma 30.13.2. A Koszul-regular
closed immersion is smooth locally a regular immersion, see Lemma 30.13.11. In
the locally Noetherian case all four notions agree, see Lemma 30.12.8.

Lemma 30.13.2. Let i : Z → X be an immersion of schemes. We have the
following implications: i is regular ⇒ i is Koszul-regular ⇒ i is H1-regular ⇒ i is
quasi-regular.

Proof. The lemma immediately reduces to Lemma 30.12.3. �

Lemma 30.13.3. Let i : Z → X be an immersion of schemes. Assume X is
locally Noetherian. Then i is regular ⇔ i is Koszul-regular ⇔ i is H1-regular ⇔ i
is quasi-regular.

Proof. Follows immediately from Lemma 30.13.2 and Lemma 30.12.8. �

Lemma 30.13.4. Let i : Z → X be a regular (resp. Koszul-regular, H1-regular,
quasi-regular) immersion. Let X ′ → X be a flat morphism. Then the base change
i′ : Z ×X X ′ → X ′ is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion.

Proof. Via Lemma 30.12.7 this translates into the algebraic statements in Algebra,
Lemmas 10.67.7 and 10.68.3 and More on Algebra, Lemma 15.21.4. �

Lemma 30.13.5. Let i : Z → X be an immersion of schemes. Then i is a quasi-
regular immersion if and only if the following conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (30.11.1.2) is an isomorphism.

Proof. An open immersion is locally of finite presentation. Hence we may replace
X by an open subscheme U ⊂ X such that i identifies Z with a closed subscheme
of U , i.e., we may assume that i is a closed immersion. Let I ⊂ OX be the
corresponding quasi-coherent sheaf of ideals. Recall, see Morphisms, Lemma 28.22.7
that I is of finite type if and only if i is locally of finite presentation. Hence the
equivalence follows from Lemma 30.12.4 and unwinding the definitions. �

Lemma 30.13.6. Let Z → Y → X be immersions of schemes. Assume that
Z → Y is H1-regular. Then the canonical sequence of Morphisms, Lemma 28.33.5

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and locally split.

Proof. Since CZ/Y is finite locally free (see Lemma 30.13.5 and Lemma 30.12.3)
it suffices to prove that the sequence is exact. By what was proven in Morphisms,
Lemma 28.33.5 it suffices to show that the first map is injective. Working affine
locally this reduces to the following question: Suppose that we have a ring A
and ideals I ⊂ J ⊂ A. Assume that J/I ⊂ A/I is generated by an H1-regular
sequence. Does this imply that I/I2 ⊗A A/J → J/J2 is injective? Note that
I/I2 ⊗A A/J = I/IJ . Hence we are trying to prove that I ∩ J2 = IJ . This is the
result of More on Algebra, Lemma 15.21.8. �
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A composition of quasi-regular immersions may not be quasi-regular, see Algebra,
Remark 10.68.8. The other types of regular immersions are preserved under com-
position.

Lemma 30.13.7. Let i : Z → Y and j : Y → X be immersions of schemes.

(1) If i and j are regular immersions, so is j ◦ i.
(2) If i and j are Koszul-regular immersions, so is j ◦ i.
(3) If i and j are H1-regular immersions, so is j ◦ i.
(4) If i is an H1-regular immersion and j is a quasi-regular immersion, then

j ◦ i is a quasi-regular immersion.

Proof. The algebraic version of (1) is Algebra, Lemma 10.67.9. The algebraic
version of (2) is More on Algebra, Lemma 15.21.12. The algebraic version of (3) is
More on Algebra, Lemma 15.21.10. The algebraic version of (4) is More on Algebra,
Lemma 15.21.9. �

Lemma 30.13.8. Let i : Z → Y and j : Y → X be immersions of schemes.
Assume that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Morphisms, Lemma 28.33.5 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. After shrinking Y and X we may assume that i and j are closed immersions.
Denote I ⊂ OX the ideal sheaf of Y and J ⊂ OX the ideal sheaf of Z. The conormal
sequence is 0 → I/IJ → J /J 2 → J /(I + J 2) → 0. Let z ∈ Z and set y = i(z),
x = j(y) = j(i(z)). Choose f1, . . . , fn ∈ Ix which map to a basis of Ix/mzIx.
Extend this to f1, . . . , fn, g1, . . . , gm ∈ Jx which map to a basis of Jx/mzJx. This
is possible as we have assumed that the sequence of conormal sheaves is split in a
neighbourhood of z, hence Ix/mxIx → Jx/mxJx is injective.

Proof of (1). By Lemma 30.12.5 we can find an affine open neighbourhood U of x
such that f1, . . . , fn, g1, . . . , gm forms a quasi-regular sequence generating J . Hence
by Algebra, Lemma 10.68.5 we see that g1, . . . , gm induces a quasi-regular sequence
on Y ∩ U cutting out Z.

Proof of (2). Exactly the same as the proof of (1) except using More on Algebra,
Lemma 15.21.11.

Proof of (3). By Lemma 30.12.5 (applied twice) we can find an affine open neigh-
bourhood U of x such that f1, . . . , fn forms a Koszul-regular sequence generating I
and f1, . . . , fn, g1, . . . , gm forms a Koszul-regular sequence generating J . Hence by
More on Algebra, Lemma 15.21.13 we see that g1, . . . , gm induces a Koszul-regular
sequence on Y ∩ U cutting out Z. �

Lemma 30.13.9. Let i : Z → Y and j : Y → X be immersions of schemes. Pick
z ∈ Z and denote y ∈ Y , x ∈ X the corresponding points. Assume X is locally
Noetherian. The following are equivalent

(1) i is a regular immersion in a neighbourhood of z and j is a regular im-
mersion in a neighbourhood of y,

(2) i and j ◦ i are regular immersions in a neighbourhood of z,
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(3) j ◦ i is a regular immersion in a neighbourhood of z and the conormal
sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

is split exact in a neighbourhood of z.

Proof. Since X (and hence Y ) is locally Noetherian all 4 types of regular immer-
sions agree, and moreover we may check whether a morphism is a regular immersion
on the level of local rings, see Lemma 30.12.8. The implication (1)⇒ (2) is Lemma
30.13.7. The implication (2)⇒ (3) is Lemma 30.13.6. Thus it suffices to prove that
(3) implies (1).

Assume (3). Set A = OX,x. Denote I ⊂ A the kernel of the surjective map
OX,x → OY,y and denote J ⊂ A the kernel of the surjective map OX,x → OZ,z.
Note that any minimal sequence of elements generating J in A is a quasi-regular
hence regular sequence, see Lemma 30.12.5. By assumption the conormal sequence

0→ I/IJ → J/J2 → J/(I + J2)→ 0

is split exact as a sequence of A/J-modules. Hence we can pick a minimal system
of generators f1, . . . , fn, g1, . . . , gm of J with f1, . . . , fn ∈ I a minimal system of
generators of I. As pointed out above f1, . . . , fn, g1, . . . , gm is a regular sequence
in A. It follows directly from the definition of a regular sequence that f1, . . . , fn is
a regular sequence in A and g1, . . . , gm is a regular sequence in A/I. Thus j is a
regular immersion at y and i is a regular immersion at z. �

Remark 30.13.10. In the situation of Lemma 30.13.9 parts (1), (2), (3) are not
equivalent to “j ◦ i and j are regular immersions at z and y”. An example is
X = A1

k = Spec(k[x]), Y = Spec(k[x]/(x2)) and Z = Spec(k[x]/(x)).

Lemma 30.13.11. Let i : Z → X be a Koszul regular closed immersion. Then
there exists a surjective smooth morphism X ′ → X such that the base change i′ :
Z ×X X ′ → X ′ of i is a regular immersion.

Proof. We may assume that X is affine and the ideal of Z generated by a Koszul-
regular sequence by replacing X by the members of a suitable affine open covering
(affine opens as in Lemma 30.12.7). The affine case is More on Algebra, Lemma
15.21.17. �

30.14. Relative regular immersions

In this section we consider the base change property for regular immersions. The
following lemma does not hold for regular immersions or for Koszul immersions,
see Examples, Lemma 82.13.2.

Lemma 30.14.1. Let f : X → S be a morphism of schemes. Let i : Z ⊂ X be an
immersion. Assume

(1) i is an H1-regular (resp. quasi-regular) immersion, and
(2) Z → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the base change Z ′ = S′ ×S Z →
X ′ = S′ ×S X is an H1-regular (resp. quasi-regular) immersion.
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Proof. Unwinding the definitions and using Lemma 30.12.7 we translate this into
algebra as follows. Let A → B be a ring map and f1, . . . , fr ∈ B. Assume
B/(f1, . . . , fr)B is flat over A. Consider a ring map A → A′. Set B′ = B ⊗A A′
and J ′ = JB′.

Case I: f1, . . . , fr is quasi-regular. Set J = (f1, . . . , fr). By assumption Jn/Jn+1

is isomorphic to a direct sum of copies of B/J hence flat over A. By induction
and Algebra, Lemma 10.38.12 we conclude that B/Jn is flat over A. The ideal
(J ′)n is equal to Jn ⊗A A′, see Algebra, Lemma 10.38.11. Hence (J ′)n/(J ′)n+1 =
Jn/Jn+1 ⊗A A′ which clearly implies that f1, . . . , fr is a quasi-regular sequence in
B′.

Case II: f1, . . . , fr is H1-regular. By More on Algebra, Lemma 15.21.15 the van-
ishing of the Koszul homology group H1(K•(B, f1, . . . , fr)) implies the vanishing
of H1(K•(B

′, f ′1, . . . , f
′
r)) and we win. �

This lemma is the motivation for the following definition.

Definition 30.14.2. Let f : X → S be a morphism of schemes. Let i : Z → X be
an immersion.

(1) We say i is a relative quasi-regular immersion if Z → S is flat and i is a
quasi-regular immersion.

(2) We say i is a relative H1-regular immersion if Z → S is flat and i is an
H1-regular immersion.

We warn the reader that this may be nonstandard notation. Lemma 30.14.1 guar-
antees that relative quasi-regular (resp. H1-regular) immersions are preserved under
any base change. A relative H1-regular immersion is a relative quasi-regular immer-
sion, see Lemma 30.13.2. Please take a look at Lemma 30.14.5 (or Lemma 30.14.4)
which shows that if Z → X is a relative H1-regular (or quasi-regular) immersion
and the ambient scheme is (flat and) locally of finite presentation over S, then
Z → X is actually a regular immersion and the same remains true after any base
change.

Lemma 30.14.3. Let f : X → S be a morphism of schemes. Let Z → X be a
relative quasi-regular immersion. If x ∈ Z and OX,x is Noetherian, then f is flat
at x.

Proof. Let f1, . . . , fr ∈ OX,x be a quasi-regular sequence cutting out the ideal of
Z at x. By Algebra, Lemma 10.68.6 we know that f1, . . . , fr is a regular sequence.
Hence fr is a nonzerodivisor on OX,x/(f1, . . . , fr−1) such that the quotient is a
flat OS,f(x)-module. By Lemma 30.10.3 we conclude that OX,x/(f1, . . . , fr−1) is
a flat OS,f(x)-module. Continuing by induction we find that OX,x is a flat OS,s-
module. �

Lemma 30.14.4. Let X → S be a morphism of schemes. Let Z → X be an
immersion. Assume

(1) X → S is flat and locally of finite presentation,
(2) Z → X is a relative quasi-regular immersion.

Then Z → X is a regular immersion and the same remains true after any base
change.
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Proof. Pick x ∈ Z with image s ∈ S. To prove this it suffices to find an affine
neighbourhood of x contained in U such that the result holds on that affine open.
Hence we may assume that X is affine and there exist a quasi-regular sequence
f1, . . . , fr ∈ Γ(X,OX) such that Z = V (f1, . . . , fr). By Lemma 30.14.1 and its
proof the sequence f1|Xs , . . . , fr|Xs is a quasi-regular sequence in Γ(Xs,OXs). Since
Xs is Noetherian, this implies, possibly after shrinking X a bit, that f1|Xs , . . . , fr|Xs
is a regular sequence, see Algebra, Lemmas 10.68.6 and 10.67.8. By Lemma 30.10.7
it follows that Z1 = V (f1) ⊂ X is a relative effective Cartier divisor, again after
possibly shrinking X a bit. Applying the same lemma again, but now to Z2 =
V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier divisor. And so
on until on reaches Z = Zn = V (f1, . . . , fn). Since being a relative effective Cartier
divisor is preserved under arbitrary base change, see Lemma 30.10.1, we also see
that the final statement of the lemma holds. �

Lemma 30.14.5. Let X → S be a morphism of schemes. Let Z → X be a relative
H1-regular immersion. Assume X → S is locally of finite presentation. Then

(1) there exists an open subscheme U ⊂ X such that Z ⊂ U and such that
U → S is flat, and

(2) Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z. To prove (1) suffices to find an open neighbourhood U ⊂ X of x
such that U → S is flat. Hence the lemma reduces to the case thatX = Spec(B) and
S = Spec(A) are affine and that Z is given by an H1-regular sequence f1, . . . , fr ∈
B. By assumption B is a finitely presented A-algebra and B/(f1, . . . , fr)B is a flat
A-algebra. We are going to use absolute Noetherian approximation.

Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume fi is the image of f ′i ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials f ′1, . . . , f

′
r, g1, . . . , gm are in A0. We set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)

and we denote fi,0 the image of f ′i in B0. Then B = B0 ⊗A0
A and

B/(f1, . . . , fr) = B0/(f0,1, . . . , f0,r)⊗A0
A.

By Algebra, Lemma 10.156.1 we may, after enlargingA0, assume thatB0/(f0,1, . . . , f0,r)
is flat over A0. It may not be the case at this point that the Koszul cohomology
group H1(K•(B0, f0,1, . . . , f0,r)) is zero. On the other hand, as B0 is Noetherian,
it is a finitely generated B0-module. Let ξ1, . . . , ξn ∈ H1(K•(B0, f0,1, . . . , f0,r)) be
generators. Let A0 ⊂ A1 ⊂ A be a larger finite type Z-subalgebra of A. Denote
f1,i the image of f0,i in B1 = B0 ⊗A0

A1. By More on Algebra, Lemma 15.21.15
the map

H1(K•(B0, f0,1, . . . , f0,r))⊗A0
A1 −→ H1(K•(B1, f1,1, . . . , f1,r))

is surjective. Furthermore, it is clear that the colimit (over all choices of A1

as above) of the complexes K•(B1, f1,1, . . . , f1,r) is the complex K•(B, f1, . . . , fr)
which is acyclic in degree 1. Hence

colimA0⊂A1⊂AH1(K•(B1, f1,1, . . . , f1,r)) = 0

by Algebra, Lemma 10.8.9. Thus we can find a choice of A1 such that ξ1, . . . , ξn all
map to zero in H1(K•(B1, f1,1, . . . , f1,r)). In other words, the Koszul cohomology
group H1(K•(B1, f1,1, . . . , f1,r)) is zero.
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Consider the morphism of affine schemes X1 → S1 equal to Spec of the ring map
A1 → B1 and Z1 = Spec(B1/(f1,1, . . . , f1,r)). Since B = B1 ⊗A1 A, i.e., X =
X1 ×S1 S, and similarly Z = Z1 ×S S1, it now suffices to prove (1) for X1 → S1

and the relative H1-regular immersion Z1 → X1, see Morphisms, Lemma 28.26.6.
Hence we have reduced to the case where X → S is a finite type morphism of
Noetherian schemes. In this case we know that X → S is flat at every point of Z
by Lemma 30.14.3. Combined with the fact that the flat locus is open in this case,
see Algebra, Theorem 10.125.4 we see that (1) holds. Part (2) then follows from an
application of Lemma 30.14.4. �

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative quasi-regular immersion in terms of its fibres.

Lemma 30.14.6. Let ϕ : X → S be a flat morphism which is locally of finite
presentation. Let T ⊂ X be a closed subscheme. Let x ∈ T with image s ∈ S.

(1) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, then
there exists an open U ⊂ X and a relative quasi-regular immersion Z ⊂ U
such that Zs = Ts ∩ Us and T ∩ U ⊂ Z.

(2) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, the
morphism T → X is of finite presentation, and T → S is flat at x, then
we can choose U and Z as in (1) such that T ∩ U = Z.

(3) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, and T
is cut out by c equations in a neighbourhood of x, where c = dimx(Xs)−
dimx(Ts), then we can choose U and Z as in (1) such that T ∩ U = Z.

In each case Z → U is a regular immersion by Lemma 30.14.4. In particular, if
T → S is locally of finite presentation and flat and all fibres Ts ⊂ Xs are quasi-
regular immersions, then T → X is a relative quasi-regular immersion.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to
s. Let q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal
corresponding to T . By the initial assumption of the lemma we know that A→ B
is flat and of finite presentation. The assumption in (1) means that, after shrinking
Spec(B), we may assume I(B ⊗A κ(p)) is generated by a quasi-regular sequence of
elements. After possibly localizing B at some g ∈ B, g 6∈ q we may assume there
exist f1, . . . , fr ∈ I which map to a quasi-regular sequence in B ⊗A κ(p) which
generates I(B ⊗A κ(p)). By Algebra, Lemmas 10.68.6 and 10.67.8 we may assume
after another localization that f1, . . . , fr ∈ I form a regular sequence in B⊗A κ(p).
By Lemma 30.10.7 it follows that Z1 = V (f1) ⊂ Spec(B) is a relative effective
Cartier divisor, again after possibly localizing B. Applying the same lemma again,
but now to Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier
divisor. And so on until one reaches Z = Zn = V (f1, . . . , fn). Then Z → Spec(B)
is a regular immersion and Z is flat over S, in particular Z → Spec(B) is a relative
quasi-regular immersion over Spec(A). This proves (1).

To see (2) consider the closed immersion Z → D. The surjective ring map u :
OD,x → OZ,x is a map of flat local OS,s-algebras which are essentially of finite
presentation, and which becomes an isomorphisms after dividing by ms. Hence it
is an isomorphism, see Algebra, Lemma 10.124.4. It follows that Z → D is an
isomorphism in a neighbourhood of x, see Algebra, Lemma 10.122.6.
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To see (3), after possibly shrinking U we may assume that the ideal of Z is generated
by a regular sequence f1, . . . , fr (see our construction of Z above) and the ideal of
T is generated by g1, . . . , gc. We claim that c = r. Namely,

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),

dimx(Ts) = dim(OTs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OTs,x) + r

the first two equalities by Algebra, Lemma 10.112.3 and the second by r times
applying Algebra, Lemma 10.59.11. As T ⊂ Z we see that fi =

∑
bijgj . But

the ideals of Z and T cut out the same quasi-regular closed subscheme of Xs in
a neighbourhood of x. Hence the matrix (bij) mod mx is invertible (some details
omitted). Hence (bij) is invertible in an open neighbourhood of x. In other words,
T ∩ U = Z after shrinking U .

The final statements of the lemma follow immediately from part (2), combined with
the fact that Z → S is locally of finite presentation if and only if Z → X is of finite
presentation, see Morphisms, Lemmas 28.22.3 and 28.22.11. �

The following lemma is an enhancement of Morphisms, Lemma 28.35.20.

Lemma 30.14.7. Let f : X → S be a smooth morphism of schemes. Let σ : S → X
be a section of f . Then σ is a regular immersion.

Proof. By Schemes, Lemma 25.21.11 the morphism σ is an immersion. After
replacing X by an open neighbourhood of σ(S) we may assume that σ is a closed
immersion. Let T = σ(S) be the corresponding closed subscheme of X. Since
T → S is an isomorphism it is flat and of finite presentation. Also a smooth
morphism is flat and locally of finite presentation, see Morphisms, Lemmas 28.35.9
and 28.35.8. Thus, according to Lemma 30.14.6, it suffices to show that Ts ⊂ Xs

is a quasi-regular closed subscheme. This follows immediately from Morphisms,
Lemma 28.35.20 but we can also see it directly as follows. Let k be a field and let
A be a smooth k-algebra. Let m ⊂ A be a maximal ideal whose residue field is k.
Then m is generated by a quasi-regular sequence, possibly after replacing A by Ag
for some g ∈ A, g 6∈ m. In Algebra, Lemma 10.135.3 we proved that Am is a regular
local ring, hence mAm is generated by a regular sequence. This does indeed imply
that m is generated by a regular sequence (after replacing A by Ag for some g ∈ A,
g 6∈ m), see Algebra, Lemma 10.67.8. �

The following lemma has a kind of converse, see Lemma 30.14.11.

Lemma 30.14.8. Let

Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and
i, j immersions. If j is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion, then so is i.

Proof. We can write i as the composition

Y → Y ×S X → X
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By Lemma 30.14.7 the first arrow is a regular immersion. The second arrow is a
flat base change of Y → S, hence is a regular (resp. Koszul-regular, H1-regular,
quasi-regular) immersion, see Lemma 30.13.4. We conclude by an application of
Lemma 30.13.7. �

Lemma 30.14.9. Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is syn-
tomic, X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. After replacing X by an open neighbourhood of i(Y ) we may assume that
i is a closed immersion. Let T = i(Y ) be the corresponding closed subscheme of X.
Since T ∼= Y the morphism T → S is flat and of finite presentation (Morphisms,
Lemmas 28.32.6 and 28.32.7). Also a smooth morphism is flat and locally of finite
presentation (Morphisms, Lemmas 28.35.9 and 28.35.8). Thus, according to Lemma
30.14.6, it suffices to show that Ts ⊂ Xs is a quasi-regular closed subscheme. As Xs

is locally of finite type over a field, it is Noetherian (Morphisms, Lemma 28.16.6).
Thus we can check that Ts ⊂ Xs is a quasi-regular immersion at points, see Lemma
30.12.8. Take t ∈ Ts. By Morphisms, Lemma 28.32.9 the local ring OTs,t is a local
complete intersection over κ(s). The local ringOXs,t is regular, see Algebra, Lemma
10.135.3. By Algebra, Lemma 10.130.7 we see that the kernel of the surjection
OXs,t → OTs,t is generated by a regular sequence, which is what we had to show. �

Lemma 30.14.10. Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is smooth,
X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. This is a special case of Lemma 30.14.9 because a smooth morphism is
syntomic, see Morphisms, Lemma 28.35.7. �

Lemma 30.14.11. Let
Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and i,
j immersions. If i is a Koszul-regular (resp. H1-regular, quasi-regular) immersion,
then so is j.

Proof. Let y ∈ Y be any point. Set x = i(y) and set s = j(y). It suffices to prove
the result after replacing X,S by open neighbourhoods U, V of x, s and Y by an
open neighbourhood of y in i−1(U) ∩ j−1(V ). Hence we may assume that Y , X
and S are affine. In this case we can choose a closed immersion h : X → An

S over S
for some n. Note that h is a regular immersion by Lemma 30.14.10. Hence h ◦ i is
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a Koszul-regular (resp. H1-regular, quasi-regular) immersion, see Lemmas 30.13.7
and 30.13.2. In this way we reduce to the case X = An

S and S affine.

After replacing S by an affine open V and replacing Y by j−1(V ) we may assume
that i is a closed immersion and S affine. Write S = Spec(A). Then j : Y → S
defines an isomorphism of Y to the closed subscheme Spec(A/I) for some ideal
I ⊂ A. The map i : Y = Spec(A/I) → An

S = Spec(A[x1, . . . , xn]) corresponds to
an A-algebra homomorphism i] : A[x1, . . . , xn] → A/I. Choose ai ∈ A which map
to i](xi) in A/I. Observe that the ideal of the closed immersion i is

J = (x1 − a1, . . . , xn − an) + IA[x1, . . . , xn].

Set K = (x1 − a1, . . . , xn − an). We claim the sequence

0→ K/KJ → J/J2 → J/(K + J2)→ 0

is split exact. To see this note that K/K2 is free with basis xi − ai over the ring
A[x1, . . . , xn]/K ∼= A. Hence K/KJ is free with the same basis over the ring
A[x1, . . . , xn]/J ∼= A/I. On the other hand, taking derivatives gives a map

dA[x1,...,xn]/A : J/J2 −→ ΩA[x1,...,xn]/A ⊗A[x1,...,xn] A[x1, . . . , xn]/J

which maps the generators xi − ai to the basis elements dxi of the free module on
the right. The claim follows. Moreover, note that x1 − a1, . . . , xn − an is a regular
sequence in A[x1, . . . , xn] with quotient ring A[x1, . . . , xn]/(x1− a1, . . . , xn− an) ∼=
A. Thus we have a factorization

Y → V (x1 − a1, . . . , xn − an)→ An
S

of our closed immersion i where the composition is Koszul-regular (resp. H1-regular,
quasi-regular), the second arrow is a regular immersion, and the associated conor-
mal sequence is split. Now the result follows from Lemma 30.13.8. �

30.15. Meromorphic functions and sections

See [Kle79] for some possible pitfalls1.

Let (X,OX) be a locally ringed space. For any open U ⊂ X we have defined the
set S(U) ⊂ OX(U) of regular sections of OX over U , see Definition 30.9.16. The
restriction of a regular section to a smaller open is regular. Hence S : U 7→ S(U)
is a subsheaf (of sets) of OX . We sometimes denote S = SX if we want to indicate
the dependence on X. Moreover, S(U) is a multiplicative subset of the ring OX(U)
for each U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),

see Modules, Lemma 17.22.1.

Definition 30.15.1. Let (X,OX) be a locally ringed space. The sheaf of mero-
morphic functions on X is the sheaf KX associated to the presheaf displayed above.
A meromorphic function on X is a global section of KX .

Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the
natural map of sheaves of rings OX → KX is injective.

1Danger, Will Robinson!
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Example 30.15.2. Let A = C[x, {yα}α∈C]/((x − α)yα, yαyβ). Any element of A
can be written uniquely as f(x) +

∑
λαyα with f(x) ∈ C[x] and λα ∈ C. Let

X = Spec(A). In this case OX = KX , since on any affine open D(f) the ring Af
any nonzerodivisor is a unit (proof omitted).

Definition 30.15.3. Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed
spaces. We say that pullbacks of meromorphic functions are defined for f if for every
pair of open U ⊂ X, V ⊂ Y such that f(U) ⊂ V , and any section s ∈ Γ(V,SY ) the
pullback f ](s) ∈ Γ(U,OX) is an element of Γ(U,SX).

In this case there is an induced map f ] : f−1KY → KX , in other words we obtain
a commutative diagram of morphisms of ringed spaces

(X,KX) //

f

��

(X,OX)

f

��
(Y,KY ) // (Y,OX)

We sometimes denote f∗(s) = f ](s) for a section s ∈ Γ(Y,KY ).

Lemma 30.15.4. Let f : X → Y be a morphism of schemes. In each of the
following cases pullbacks of meromorphic sections are defined.

(1) X, Y are integral and f is dominant,
(2) X is integral and the generic point of X maps to a generic point of an

irreducible component of Y ,
(3) X is reduced and every generic point of every irreducible component of X

maps to the generic point of an irreducible component of Y ,
(4) X is locally Noetherian, and any associated point of X maps to a generic

point of an irreducible component of Y , and
(5) X is locally Noetherian, has no embedded points and any generic point of

an irreducible component of X maps to the generic point of an irreducible
component of Y .

Proof. Omitted. Hint: Similar to the proof of Lemma 30.9.12, using the following
fact (on Y ): if an element x ∈ R maps to a nonzerodivisor in Rp for a minimal
prime p of R, then x 6∈ p. See Algebra, Lemma 10.24.1. �

Let (X,OX) be a locally ringed space. Let F be a sheaf of OX -modules. Consider
the presheaf U 7→ S(U)−1F(U). Its sheafification is the sheaf F ⊗OX KX , see
Modules, Lemma 17.22.2.

Definition 30.15.5. Let X be a locally ringed space. Let F be a sheaf of OX -
modules.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of
the presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX KX (see
above).

(2) A meromorphic section of F is a global section of KX(F).

In particular we have

KX(F)x = Fx ⊗OX,x KX,x = S−1
x Fx
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for any point x ∈ X. However, one has to be careful since it may not be the case
that Sx is the set of nonzerodivisors in the local ring OX,x. Namely, there is always
an injective map

KX,x −→ Q(OX,x)

to the total quotient ring. It is also surjective if and only if Sx is the set of nonzero-
divisors in OX,x. The sheaves of meromorphic sections aren’t quasi-coherent mod-
ules in general, but they do have some properties in common with quasi-coherent
modules.

Lemma 30.15.6. Let X be a quasi-compact scheme. Let h ∈ Γ(X,OX) and f ∈
Γ(X,KX) such that f restricts to zero on Xh. Then hnf = 0 for some n� 0.

Proof. We can find a covering of X by affine opens U such that f |U = s−1a
with a ∈ OX(U) and s ∈ S(U). Since X is quasi-compact we can cover it by
finitely many affine opens of this form. Thus it suffices to prove the lemma when
X = Spec(A) and f = s−1a. Note that s ∈ A is a nonzerodivisor hence it suffices
to prove the result when f = a. The condition f |Xh = 0 implies that a maps to
zero in Ah = OX(Xh) as OX ⊂ KX . Thus hna = 0 for some n > 0 as desired. �

Lemma 30.15.7. Let X be a locally Noetherian scheme.

(1) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors, and
hence KX,x is the total quotient ring of OX,x.

(2) For any affine open U ⊂ X the ring KX(U) equals the total quotient ring
of OX(U).

Proof. To prove this lemma we may assume X is the spectrum of a Noetherian
ring A. Say x ∈ X corresponds to p ⊂ A.

Proof of (1). It is clear that Sx is contained in the set of nonzero divisors of
OX,x = Ap. For the converse, let f, g ∈ A, g 6∈ p and assume f/g is a nonzerodivisor
in Ap. Let I = {a ∈ A | af = 0}. Then we see that Ip = 0 by exactness of
localization. Since A is Noetherian we see that I is finitely generated and hence
that g′I = 0 for some g′ ∈ A, g′ 6∈ p. Hence f is a nonzerodivisor in Ag′ , i.e., in a
Zariski open neighbourhood of p. Thus f/g is an element of Sx.

Proof of (2). Let f ∈ Γ(X,KX) be a meromorphic function. Set I = {a ∈ A | af ∈
A}. Fix a prime p ⊂ A corresponding to the point x ∈ X. By (1) we can write
the image of f in the stalk at p as a/b, a, b ∈ Ap with b ∈ Ap not a zerodivisor.
Write b = c/d with c, d ∈ A, d 6∈ p. Then ad− cf is a section of KX which vanishes
in an open neighbourhood of x. Say it vanishes on D(e) with e ∈ A, e 6∈ p. Then
en(ad− cf) = 0 for some n� 0 by Lemma 30.15.6. Thus enc ∈ I and enc maps to
a nonzerodivisor in Ap. Let Ass(A) = {q1, . . . , qt} be the associated primes of A.
By looking at IAqi and using Algebra, Lemma 10.62.14 the above says that I 6⊂ qi
for each i. By Algebra, Lemma 10.14.2 there exists an element x ∈ I, x 6∈

⋃
qi. By

Algebra, Lemma 10.62.9 we see that x is not a zerodivisor on A. Hence f = (xf)/x
is an element of the total ring of fractions of A. This proves (2). �

Lemma 30.15.8. Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components.

(1) The sheaf KX is a quasi-coherent sheaf of OX-algebras.
(2) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors. In

particular KX,x is the total quotient ring of OX,x.
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(3) For any affine open Spec(A) = U ⊂ X we have that KX(U) equals the
total quotient ring of A.

Proof. Let X be as in the lemma. Let X(0) ⊂ X be the set of generic points of
irreducible components of X. Let

f : Y =
∐

η∈X(0)
Spec(κ(η)) −→ X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section 25.13. (This morphism was used in Morphisms, Definition 28.48.12 to define
the normalization of X.) We claim that KX = f∗OY . First note that KY = OY as
Y is a disjoint union of spectra of field. Next, note that pullbacks of meromorphic
functions are defined for f , by Lemma 30.15.4. This gives a map

KX −→ f∗OY .

Let Spec(A) = U ⊂ X be an affine open. Then A is a reduced ring with finitely
many minimal primes q1, . . . , qt. Then we have Q(A) =

∏
Aqi =

∏
κ(qi) by

Algebra, Lemmas 10.24.4 and 10.24.1. In other words, already the value of the
presheaf U 7→ S(U)−1OX(U) agrees with f∗OY (U) on our affine open U . Hence
the displayed map is an isomorphism.

Now we are ready to prove (1), (2) and (3). The morphism f is quasi-compact by
our assumption that the set of irreducible components of X is locally finite. Hence
f is quasi-compact and quasi-separated (as Y is separated). By Schemes, Lemma
25.24.1 f∗OY is quasi-coherent. This proves (1). Let x ∈ X. Then

(f∗OY )x =
∏

η∈X(0), x∈{η}
κ(η)

On the other hand, OX,x is reduced and has finitely minimal primes qi corre-

sponding exactly to those η ∈ X(0) such that x ∈ {η}κ(η). Hence by Algebra,
Lemmas 10.24.4 and 10.24.1 again we see that Q(OX,x) =

∏
κ(qi) is the same as

(f∗OY )x. This proves (2). Part (3) we saw during the course of the proof that
KX = f∗OY . �

Lemma 30.15.9. Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components. Then the normalization
morphism ν : Xν → X is the morphism

Spec
X

(O′) −→ X

where O′ ⊂ KX is the integral closure of OX in the sheaf of meromorphic functions.

Proof. Compare the definition of the normalization morphism ν : Xν → X (see
Morphisms, Definition 28.48.12) with the result KX = f∗OY obtained in the proof
of Lemma 30.15.8 above. �

Lemma 30.15.10. Let X be an integral scheme with generic point η. We have

(1) the sheaf of meromorphic functions is isomorphic to the constant sheaf
with value the function field (see Morphisms, Definition 28.10.5) of X.

(2) for any quasi-coherent sheaf F on X the sheaf KX(F) is isomorphic to
the constant sheaf with value Fη.

Proof. Omitted. �
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Definition 30.15.11. Let X be a locally ringed space. Let L be an invertible
OX -module. A meromorphic section s of L is said to be regular if the induced map
KX → KX(L) is injective. (In other words, this means that s is a regular section
of the invertible KX -module KX(L). See Definition 30.9.16.)

First we spell out when (regular) meromorphic sections can be pulled back. After
that we discuss the existence of regular meromorphic sections and consequences.

Lemma 30.15.12. Let f : X → Y be a morphism of locally ringed spaces. Assume
that pullbacks of meromorphic functions are defined for f (see Definition 30.15.3).

(1) Let F be a sheaf of OY -modules. There is a canonical pullback map f∗ :
Γ(Y,KY (F))→ Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX-module. A regular meromorphic section s of L
pulls back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. �

In some cases we can show regular meromorphic sections exist.

Lemma 30.15.13. Let X be a scheme. Let L be an invertible OX-module. In each
of the following cases L has a regular meromorphic section:

(1) X is integral,
(2) X is reduced and any quasi-compact open has a finite number of irreducible

components, and
(3) X is locally Noetherian and has no embedded points.

Proof. In case (1) we have seen in Lemma 30.15.10 that KX(L) is a constant sheaf
with value Lη, and hence the result is clear.

Suppose X is a scheme. Let G ⊂ X be the set of generic points of irreducible
components of X. For each η ∈ G denote jη : η → X the canonical morphism of
η = Spec(κ(η)) into X (see Schemes, Lemma 25.13.3). Consider the sheaf

GX(L) =
∏

η∈G
jη,∗(Lη).

There is a canonical map

ϕ : KX(L) −→ GX(L)

coming from the maps KX(L)η → Lη and adjunction (see Sheaves, Lemma 6.27.3).

We claim that in cases (2) and (3) the map ϕ is an isomorphism for any invertible
sheaf L. Before proving this let us show that cases (2) and (3) follow from this.
Namely, we can choose sη ∈ Lη which generate Lη, i.e., such that Lη = OX,ηsη.
Since the claim applied to OX gives KX = GX(OX) it is clear that the global section
s =

∏
η∈G sη is regular as desired.

To prove that ϕ is an isomorphism we may work locally on X. For example it
suffices to show that sections of KX(L) and GX(L) agree over small affine opens
U . Say U = Spec(A) and L|U ∼= OU . By Lemmas 30.15.7 and 30.15.8 we see
that Γ(U,KX) = Q(A) is the total ring of fractions of A. On the other hand,
Γ(U,GX(OX)) =

∏
q⊂A minimalAq. In both cases we see that the set of minimal

primes of A is finite, say q1, . . . , qt, and that the set of zerodivisors of A is equal to
q1 ∪ . . . ∪ qt (see Algebra, Lemma 10.62.9). Hence the result follows from Algebra,
Lemma 10.24.4. �
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Lemma 30.15.14. Let X be a scheme. Let L be an invertible OX-module. Let s
be a regular meromorphic section of L. Let us denote I ⊂ OX the sheaf of ideals
defined by the rule

I(V ) = {f ∈ OZ(V ) | fs ∈ L(V )}.
The formula makes sense since L(V ) ⊂ KX(L)(V ). Then I is a quasi-coherent
sheaf of ideals and we have injective maps

1 : I −→ OX , s : I −→ L
whose cokernels are supported on closed nowhere dense subsets of X.

Proof. The question is local on X. Hence we may assume that X = Spec(A), and
L = OX . After shrinking further we may assume that s = x/y with a, b ∈ A both
nonzerodivisors in A. Set I = {x ∈ A | x(a/b) ∈ A}.
To show that I is quasi-coherent we have to show that If = {x ∈ Af | x(a/b) ∈ Af}
for every f ∈ A. If c/fn ∈ Af , (c/fn)(a/b) ∈ Af , then we see that fmc(a/b) ∈ A
for some m, hence c/fn ∈ If . Conversely it is easy to see that If is contained in
{x ∈ Af | x(a/b) ∈ Af}. This proves quasi-coherence.

Let us prove the final statement. It is clear that (b) ⊂ I. Hence V (I) ⊂ V (b) is a
nowhere dense subset as b is a nonzerodivisor. Thus the cokernel of 1 is supported
in a nowhere dense closed set. The same argument works for the cokernel of s since
s(b) = (a) ⊂ sI ⊂ A. �

Definition 30.15.15. Let X be a scheme. Let L be an invertible OX -module.
Let s be a regular meromorphic section of L. The sheaf of ideals I constructed in
Lemma 30.15.14 is called the ideal sheaf of denominators of s.

Here is a lemma which will be used later.

Lemma 30.15.16. Suppose given

(1) X a locally Noetherian scheme,
(2) L an invertible OX-module,
(3) s a regular meromorphic section of L, and
(4) F coherent on X without embedded associated points and Supp(F) = X.

Let I ⊂ OX be the ideal of denominators of s. Let T ⊂ X be the union of the
supports of OX/I and L/s(I) which is a nowhere dense closed subset T ⊂ X
according to Lemma 30.15.14. Then there are canonical injective maps

1 : IF → F , s : IF → F ⊗OX L
whose cokernels are supported on T .

Proof. Reduce to the affine case with L ∼= OX , and s = a/b with a, b ∈ A both

nonzerodivisors. Proof of reduction step omitted. Write F = M̃ . Let I = {x ∈
A | x(a/b) ∈ A} so that I = Ĩ (see proof of Lemma 30.15.14). Note that T =
V (I) ∪ V ((a/b)I). For any A-module M consider the map 1 : IM → M ; this is
the map that gives rise to the map 1 of the lemma. Consider on the other hand
the map σ : IM → Mb, x 7→ ax/b. Since b is not a zerodivisor in A, and since M
has support Spec(A) and no embedded primes we see that b is a nonzerodivisor on
M also. Hence M ⊂ Mb. By definition of I we have σ(IM) ⊂ M as submodules
of Mb. Hence we get an A-module map s : IM → M (namely the unique map
such that s(z)/1 = σ(z) in Mb for all z ∈ IM). It is injective because a is a

http://stacks.math.columbia.edu/tag/02P0
http://stacks.math.columbia.edu/tag/02P1
http://stacks.math.columbia.edu/tag/02P2


30.16. RELATIVE PROJ 2061

nonzerodivisor also (on both A and M). It is clear that M/IM is annihilated by I
and that M/s(IM) is annihilated by (a/b)I. Thus the lemma follows. �

30.16. Relative Proj

Some results on relative Proj. First some very basic results. Recall that a relative
Proj is always separated over the base, see Constructions, Lemma 26.16.9.

Lemma 30.16.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If one of the following holds

(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then p is quasi-compact.

Proof. The question is local on the base, see Schemes, Lemma 25.19.2. Thus we
may assume S is affine. Say S = Spec(R) and A corresponds to the graded R-
algebra A. Then X = Proj(A), see Constructions, Section 26.15. In case (1) we
may after possibly localizing more assume that A is generated by homogeneous
elements f1, . . . , fn ∈ A+ over A0. Then A+ = (f1, . . . , fn) by Algebra, Lemma

10.57.1. In case (3) we see that F = M̃ for some finite type A0-module M ⊂ A+.
Say M =

∑
A0fi. Say fi =

∑
fi,j is the decomposition into homogeneous pieces.

The condition in (2) signifies that A+ ⊂
√

(fi,j). Thus in both cases we conclude
that Proj(A) is quasi-compact by Constructions, Lemma 26.8.9. Finally, (2) follows
from (1). �

Lemma 30.16.2. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If A is of finite type as a

sheaf of OS-algebras, then p is of finite type.

Proof. The assumption implies that p is quasi-compact, see Lemma 30.16.1. Hence
it suffices to show that p is locally of finite type. Thus the question is local on
the base and target, see Morphisms, Lemma 28.16.2. Say S = Spec(R) and A
corresponds to the graded R-algebra A. After further localizing on S we may
assume that A is a finite type R-algebra. The scheme X is constructed out of
glueing the spectra of the rings A(f) for f ∈ A+ homogeneous. Each of these is of
finite type over R by Algebra, Lemma 10.55.9. Thus Proj(A) is of finite type over
R. �

Lemma 30.16.3. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If OS → A0 is an integral

algebra map2 and A is of finite type as an A0-algebra, then p is universally closed.

Proof. The question is local on the base. Thus we may assume that X = Spec(R)
is affine. Let A be the quasi-coherent OX -algebra associated to the graded R-
algebra A. The assumption is that R → A0 is integral and A is of finite type over
A0. Write X → Spec(R) as the composition X → Spec(A0) → Spec(R). Since
R → A0 is an integral ring map, we see that Spec(A0) → Spec(R) is universally

2In other words, the integral closure of OS in A0, see Morphisms, Definition 28.48.2, equals
A0.
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closed, see Morphisms, Lemma 28.44.7. The quasi-compact (see Constructions,
Lemma 26.8.9) morphism

Proj(A)→ Proj(A0)

satisfies the existence part of the valuative criterion by Constructions, Lemma
26.8.11 and hence it is universally closed by Schemes, Proposition 25.20.6. Thus
X → Spec(R) is universally closed as a composition of universally closed mor-
phisms. �

Lemma 30.16.4. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. The following conditions are

equivalent

(1) A0 is a finite type OS-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OS-module and A is of finite type as an OS-algebra

If these conditions hold, then p is locally projective and in particular proper.

Proof. Assume that A0 is a finite type OS-module. Choose an affine open U =
Spec(R) ⊂ X such that A corresponds to a graded R-algebra A with A0 a finite
R-module. Condition (1) means that (after possibly localizing further on S) that
A is a finite type A0-algebra and condition (2) means that (after possibly localizing
further on S) that A is a finite type R-algebra. Thus these conditions imply each
other by Algebra, Lemma 10.6.2.

A locally projective morphism is proper, see Morphisms, Lemma 28.43.5. Thus
we may now assume that S = Spec(R) and X = Proj(A) and that A0 is finite
over R and A of finite type over R. We will show that X = Proj(A)→ Spec(R) is
projective. We urge the reader to prove this for themselves, by directly constructing
a closed immersion of X into a projective space over R, instead of reading the
argument we give below.

By Lemma 30.16.2 we see that X is of finite type over Spec(R). Constructions,
Lemma 26.10.6 tells us that OX(d) is ample on X for some d ≥ 1 (see Properties,
Section 27.24). Hence X → Spec(R) is quasi-projective (by Morphisms, Definition
28.41.1). By Morphisms, Lemma 28.43.12 we conclude that X is isomorphic to
an open subscheme of a scheme projective over Spec(R). Therefore, to finish the
proof, it suffices to show that X → Spec(R) is universally closed (use Morphisms,
Lemma 28.42.7). This follows from Lemma 30.16.3. �

30.17. Closed subschemes of relative proj

Some auxiliary lemmas about closed subschemes of relative proj.

Lemma 30.17.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. Let i : Z → X be a closed

subscheme. Denote I ⊂ A the kernel of the canonical map

A −→
⊕

d≥0
p∗ ((i∗OZ)(d))

If p is quasi-compact, then there is an isomorphism Z = Proj
S

(A/I).

Proof. The morphism p is separated by Constructions, Lemma 26.16.9. As p is
quasi-compact, p∗ transforms quasi-coherent modules into quasi-coherent modules,
see Schemes, Lemma 25.24.1. Hence I is a quasi-coherent OS-module. In particu-
lar, B = A/I is a quasi-coherent graded OS-algebra. The functoriality morphism
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Z ′ = Proj
S

(B)→ Proj
S

(A) is everywhere defined and a closed immersion, see Con-

structions, Lemma 26.18.3. Hence it suffices to prove Z = Z ′ as closed subschemes
of X.

Having said this, the question is local on the base and we may assume that S =

Spec(R) and that X = Proj(A) for some graded R-algebra A. Assume I = Ĩ for
I ⊂ A a graded ideal. By Constructions, Lemma 26.8.9 there exist f0, . . . , fn ∈ A+

such that A+ ⊂
√

(f0, . . . , fn) in other words X =
⋃
D+(fi). Therefore, it suffices

to check that Z∩D+(fi) = Z ′∩D+(fi) for each i. By renumbering we may assume
i = 0. Say Z∩D+(f0), resp. Z ′∩D+(f0) is cut out by the ideal J , resp. J ′ of A(f0).

The inclusion J ′ ⊂ J . Let d be the least common multiple of deg(f0), . . . ,deg(fn).

Note that each of the twists OX(nd) is invertible, trivialized by f
nd/ deg(fi)
i over

D+(fi), and that for any quasi-coherent module F on X the multiplication maps
OX(nd) ⊗OX F(m) → F(nd + m) are isomorphisms, see Constructions, Lemma
26.10.2. Observe that J ′ is the ideal generated by the elements g/fe0 where g ∈ I is
homogeneous of degree edeg(f0) (see proof of Constructions, Lemma 26.11.3). Of
course, by replacing g by f l0g for suitable l we may always assume that d|e. Then,
since g vanishes as a section of OX(edeg(f0)) restricted to Z we see that g/fd0 is
an element of J . Thus J ′ ⊂ J .

Conversely, suppose that g/fe0 ∈ J . Again we may assume d|e. Pick i ∈ {1, . . . , n}.
Then Z ∩D+(fi) is cut out by some ideal Ji ⊂ A(fi). Moreover,

J ·A(f0fi) = Ji ·A(f0fi)

The right hand side is the localization of Ji with respect to f
deg(fi)
0 /f

deg(f0)
i . It

follows that

fei0 g/f
(ei+e) deg(f0)/ deg(fi)
i ∈ Ji

for some ei � 0 sufficiently divisible. This proves that f
max(ei)
0 g is an element of I,

because its restriction to each affine open D+(fi) vanishes on the closed subscheme
Z ∩D+(fi). Hence g ∈ J ′ and we conclude J ⊂ J ′ as desired. �

In case the closed subscheme is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 30.17.2. Let S be a quasi-compact and quasi-separated scheme. Let A
be a quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative

Proj of A. Let i : Z → X be a closed subscheme. If p is quasi-compact and i
of finite presentation, then there exists a d > 0 and a quasi-coherent finite type
OS-submodule F ⊂ Ad such that Z = Proj

S
(A/FA).

Proof. By Lemma 30.17.1 we know there exists a quasi-coherent graded sheaf of
ideals I ⊂ A such that Z = Proj(A/I). Since S is quasi-compact we can choose
a finite affine open covering S = U1 ∪ . . . ∪ Un. Say Ui = Spec(Ri). Let A|Ui
correspond to the graded Ri-algebra Ai and I|Ui to the graded ideal Ii ⊂ Ai. Note
that p−1(Ui) = Proj(Ai) as schemes over Ri. Since p is quasi-compact we can choose
finitely many homogeneous elements fi,j ∈ Ai,+ such that p−1(Ui) = D+(fi,j). The
condition on Z → X means that the ideal sheaf of Z in OX is of finite type, see
Morphisms, Lemma 28.22.7. Hence we can find finitely many homogeneous elements
hi,j,k ∈ Ii ∩ Ai,+ such that the ideal of Z ∩D+(fi,j) is generated by the elements
hi,j,k/f

ei,j,k
i,j . Choose d > 0 to be a common multiple of all the integers deg(fi,j)
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and deg(hi,j,k). By Properties, Lemma 27.20.7 there exists a finite type F ⊂ Id
such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j

are sections of F . By construction F is a solution. �

The following version of Lemma 30.17.2 will be used in the proof of Lemma 30.20.2.

Lemma 30.17.3. Let S be a quasi-compact and quasi-separated scheme. Let A be
a quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A)→ S be the relative Proj

of A. Let i : Z → X be a closed subscheme. Let U ⊂ X be an open. Assume that

(1) p is quasi-compact,
(2) i of finite presentation,
(3) U ∩ p(i(Z)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OS-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OS-submodule F ⊂ Ad
with (a) Z = Proj

S
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. Let I ⊂ A be the sheaf of quasi-coherent graded ideals constructed in
Lemma 30.17.1. Let Ui, Ri, Ai, Ii, fi,j , hi,j,k, and d be as constructed in the
proof of Lemma 30.17.2. Since U ∩ p(i(Z)) = ∅ we see that Id|U = Ad|U (by our
construction of I as a kernel). Since U is quasi-compact we can choose a finite affine
open covering U = W1 ∪ . . . ∪Wm. Since Ad is of finite type we can find finitely
many sections gt,s ∈ Ad(Wt) which generate Ad|Wt

= Id|Wt
as an OWt

-module. To
finish the proof, note that by Properties, Lemma 27.20.7 there exists a finite type
F ⊂ Id such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j and gt,s

are sections of F . By construction F is a solution. �

30.18. Blowing up

Blowing up is an important tool in algebraic geometry.

Definition 30.18.1. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf
of ideals, and let Z ⊂ X be the closed subscheme corresponding to I, see Schemes,
Definition 25.10.2. The blowing up of X along Z, or the blowing up of X in the
ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blow up is the inverse image b−1(Z). Sometimes Z
is called the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” scheme over X such that
the inverse image of Z is an effective Cartier divisor.

If b : X ′ → X is the blow up of X in Z, then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded OX -algebra
which is generated in degree 1, see Constructions, Lemma 26.16.11. Note that
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OX′(1) is b-relatively very ample, even though b need not be of finite type or even
quasi-compact, because X ′ comes equipped with a closed immersion into P(I), see
Morphisms, Example 28.39.3.

Lemma 30.18.2. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let U = Spec(A) be an affine open subscheme of X and let I ⊂ A be the
ideal corresponding to I|U . If b : X ′ → X is the blow up of X in I, then there is a
canonical isomorphism

b−1(U) = Proj(
⊕

d≥0
Id)

of b−1(U) with the homogeneous spectrum of the Rees algebra of I in A. Moreover,
b−1(U) has an affine open covering by spectra of the affine blowup algebras A[ Ia ].

Proof. The first statement is clear from the construction of the relative Proj via
glueing, see Constructions, Section 26.15. For a ∈ I denote a(1) the element a
seen as an element of degree 1 in the Rees algebra

⊕
n≥0 I

n. Since these elements

generate the Rees algebra over A we see that Proj(
⊕

d≥0 I
d) is covered by the affine

opens D+(a(1)). The affine scheme D+(a(1)) is the spectrum of the affine blowup
algebra A′ = A[ Ia ], see Algebra, Definition 10.56.1. This finishes the proof. �

Lemma 30.18.3. Let X1 → X2 be a flat morphism of schemes. Let Z2 ⊂ X2 be a
closed subscheme. Let Z1 be the inverse image of Z2 in X1. Let X ′i be the blow up
of Zi in Xi. Then there exists a cartesian diagram

X ′1 //

��

X ′2

��
X1

// X2

of schemes.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1

(by definition
of the inverse image, see Schemes, Definition 25.17.7). By Constructions, Lemma
26.16.10 we see that X1×X2 X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat

the map g∗In2 → OX1 is injective with image In1 . Thus we see that X1 ×X2 X
′
2 =

X ′1. �

Lemma 30.18.4. Let X be a scheme. Let Z ⊂ X be a closed subscheme. The
blowing up b : X ′ → X of Z in X has the following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,

(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. As blowing up commutes with restrictions to open subschemes (Lemma
30.18.3) the first statement just means that X ′ = X if Z = ∅. In this case we are
blowing up in the ideal sheaf I = OX and the result follows from Constructions,
Example 26.8.14.

The second statement is local on X, hence we may assume X affine. Say X =
Spec(A) and Z = Spec(A/I). By Lemma 30.18.2 we see that X ′ is covered by the
spectra of the affine blowup algebras A′ = A[ Ia ]. Then IA′ = aA′ and a maps to a
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nonzerodivisor in A′ according to Algebra, Lemma 10.56.2. This proves the lemma
as the inverse image of Z in Spec(A′) corresponds to Spec(A′/IA′) ⊂ Spec(A′).

Consider the canonical map ψuniv,1 : b∗I → OX′(1), see discussion following Con-
structions, Definition 26.16.7. We claim that this factors through an isomorphism
IE → OX′(1) (which proves the final assertion). Namely, on the affine open corre-
sponding to the blowup algebra A′ = A[ Ia ] mentioned above ψuniv,1 corresponds to
the A′-module map

I ⊗A A′ −→
((⊕

d≥0
Id
)
a(1)

)
1

where a(1) is as in Algebra, Definition 10.56.1. We omit the verification that this
is the map I ⊗A A′ → IA′ = aA′. �

Lemma 30.18.5 (Universal property blowing up). Let X be a scheme. Let Z ⊂ X
be a closed subscheme. Let C be the full subcategory of (Sch/X) consisting of Y → X
such that the inverse image of Z is an effective Cartier divisor on Y . Then the
blowing up b : X ′ → X of Z in X is a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 30.18.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and
let ID be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible
OY -module. This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras.

(We observe that IdD = I⊗dD as D is an effective Cartier divisor.) By the material
in Constructions, Section 26.16 the triple (1, f : Y → X,ψ) defines a morphism
Y → X ′ over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
30.9.4. Thus the morphism Y → X ′ is unique by Morphisms, Lemma 28.7.10 (also
b is separated by Constructions, Lemma 26.16.9). �

Lemma 30.18.6. Let X be a scheme. Let Z ⊂ X be an effective Cartier divisor.
The blowup of X in Z is the identity morphism of X.

Proof. Immediate from the universal property of blowups (Lemma 30.18.5). �

Lemma 30.18.7. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. If X is integral, then the blow up X ′ of X in I is integral.

Proof. Combine Lemma 30.18.2 with Algebra, Lemma 10.56.4. �

Lemma 30.18.8. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. If X is reduced, then the blow up X ′ of X in I is reduced.

Proof. Combine Lemma 30.18.2 with Algebra, Lemma 10.56.5. �

Lemma 30.18.9. Let X be a scheme. Let b : X ′ → X be a blow up of X in a
closed subscheme. For any effective Cartier divisor D on X the pullback b−1D is
defined (see Definition 30.9.11).

Proof. By Lemmas 30.18.2 and 30.9.2 this reduces to the following algebra fact:
Let A be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the
image of x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ].
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Then amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence
y/an is zero in A[ Ia ] as desired. �

Lemma 30.18.10. Let X be a scheme. Let I ⊂ OX and J be quasi-coherent
sheaves of ideals. Let b : X ′ → X be the blowing up of X in I. Let b′ : X ′′ → X ′

be the blowing up of X ′ in b−1JOX′ . Then X ′′ → X is canonically isomorphic to
the blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 30.18.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 30.18.9. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective
Cartier divisor). Consider the effective Cartier divisor E′′ = E′ + (b′)−1E. By
construction the ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to
Lemma 30.18.5 there is a canonical morphism from X ′′ to the blowup c : Y → X of
X in IJ . Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY
defines an effective Cartier divisor, see Lemma 30.9.9. Thus a morphism c′ : Y → X ′

over X by Lemma 30.18.5. Then (c′)−1b−1JOY = c−1JOY which also defines an
effective Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the
verification that this morphism is inverse to the morphism X ′′ → Y constructed
earlier. �

Lemma 30.18.11. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let b : X ′ → X be the blowing up of X in the ideal sheaf I If I is of finite
type, then

(1) b : X ′ → X is a projective morphism, and
(2) OX′(1) is a b-relatively ample invertible sheaf.

Proof. The surjection of graded OX -algebras

Sym∗OX (I) −→
⊕

d≥0
Id

defines via Constructions, Lemma 26.18.5 a closed immersion

X ′ = Proj
X

(
⊕

d≥0
Id) −→ P(I).

Hence b is projective, see Morphisms, Definition 28.43.1. The second statement
follows for example from the characterization of relatively ample invertible sheaves
in Morphisms, Lemma 28.38.4. Some details omitted. �

Lemma 30.18.12. Let X be a quasi-compact and quasi-separated scheme. Let
Z ⊂ X be a closed subscheme of finite presentation. Let b : X ′ → X be the blowing
up with center Z. Let Z ′ ⊂ X ′ be a closed subscheme of finite presentation. Let
X ′′ → X ′ be the blowing up with center Z ′. There exists a closed subscheme Y ⊂ X
of finite presentation, such that

(1) Y = Z ∪ b(Z ′) set theoretically, and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut
out by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms, Lemma
28.22.7. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is a quasi-

compact open of X by Properties, Lemma 27.22.1. Since b−1(X \ Z) → X \ Z is
an isomorphism (Lemma 30.18.4) the same result shows that b−1(X \ Z) \ Z ′ is
quasi-compact open in X ′. Hence U = X \ (Z ∪ b(Z ′)) is quasi-compact open in

http://stacks.math.columbia.edu/tag/080A
http://stacks.math.columbia.edu/tag/02NS
http://stacks.math.columbia.edu/tag/080B


2068 30. DIVISORS

X. By Lemma 30.17.3 there exist a d > 0 and a finite type OX -submodule F ⊂ Id
such that Z ′ = Proj(A/FA) and such that the support of Id/F is contained in
X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite type
quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent confusion.
Since Id/J and O/Id are supported on X \ U we see that V (J ) is contained in
X \ U . Conversely, as J ⊂ Id we see that Z ⊂ V (J ). Over X \ Z ∼= X ′ \ b−1(Z)
the sheaf of ideals J cuts out Z ′ (see displayed formula below). Hence V (J ) equals
Z ∪ b(Z ′). It follows that also V (IJ ) = Z ∪ b(Z ′) set theoretically. Moreover,
IJ is an ideal of finite type as a product of two such. We claim that X ′′ → X is
isomorphic to the blowing up of X in IJ which finishes the proof of the lemma by
setting Y = V (IJ ).

First, recall that the blow up of X in IJ is the same as the blow up of X ′ in
b−1JOX′ , see Lemma 30.18.10. Hence it suffices to show that the blow up of X ′

in b−1JOX′ agrees with the blow up of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 30.18.6 and 30.18.10.

To see the displayed equality of the ideals we may work locally. With notation A, I,
a ∈ I as in Lemma 30.18.2 we see that F corresponds to an R-submodule M ⊂ Id
mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)

means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. �

30.19. Strict transform

In this section we briefly discuss strict transform under blowing up. Let S be a
scheme and let Z ⊂ S be a closed subscheme. Let b : S′ → S be the blowing up of
S in Z and denote E ⊂ S′ the exceptional divisor E = b−1Z. In the following we
will often consider a scheme X over S and form the cartesian diagram

pr−1
S′ E

//

��

X ×S S′ prX
//

prS′

��

X

f

��
E // S′ // S

Since E is an effective Cartier divisor (Lemma 30.18.4) we see that pr−1
S′ E ⊂ X×SS′

is locally principal (Lemma 30.9.10). Thus the complement of pr−1
S′ E in X ×S S′ is

retrocompact (Lemma 30.9.3). Consequently, for a quasi-coherent OX×SS′-module
G the subsheaf of sections supported on pr−1

S′ E is a quasi-coherent submodule,
see Properties, Lemma 27.22.5. If G is a quasi-coherent sheaf of algebras, e.g.,
G = OX×SS′ , then this subsheaf is an ideal of G.

Definition 30.19.1. With Z ⊂ S and f : X → S as above.
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(1) Given a quasi-coherent OX -module F the strict transform of F with re-
spect to the blowup of S in Z is the quotient F ′ of pr∗XF by the submodule

of sections supported on pr−1
S′ E.

(2) The strict transform of X is the closed subscheme X ′ ⊂ X ×S S′ cut out
by the quasi-coherent ideal of sections of OX×SS′ supported on pr−1

S′ E.

Note that taking the strict transform along a blowup depends on the closed sub-
scheme used for the blowup (and not just on the morphism S′ → S). This notion
is often used for closed subschemes of S. It turns out that the strict transform of
X is a blowup of X.

Lemma 30.19.2. In the situation of Definition 30.19.1.

(1) The strict transform X ′ of X is the blowup of X in the closed subscheme
f−1Z of X.

(2) For a quasi-coherent OX-module F the strict transform F ′ is canonically
isomorphic to the pushforward along X ′ → X×SS′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 30.18.5) there exists a commutative diagram

X ′′ //

��

X

��
S′ // S

whence a morphism X ′′ → X ×S S′. Thus the first assertion is that this morphism
is a closed immersion with image X ′. The question is local on X. Thus we may
assume X and S are affine. Say that S = Spec(A), X = Spec(B), and Z is cut out
by the ideal I ⊂ A. Set J = IB. The map B ⊗A

⊕
n≥0 I

n →
⊕

n≥0 J
n defines a

closed immersion X ′′ → X ×S S′, see Constructions, Lemmas 26.11.6 and 26.11.5.
We omit the verification that this morphism is the same as the one constructed
above from the universal property. Pick a ∈ I corresponding to the affine open
Spec(A[ Ia ]) ⊂ S′, see Lemma 30.18.2. The inverse image of Spec(A[ Ia ]) in the strict
transform X ′ of X is the spectrum of

B′ = (B ⊗A A[ Ia ])/a-power-torsion

On the other hand, letting b ∈ J be the image of a we see that Spec(B[Jb ]) is the

inverse image of Spec(A[ Ia ]) in X ′′. The ring map

B ⊗A A[ Ia ] −→ B[Jb ]

see Properties, Lemma 27.22.5. is surjective and annihilates a-power torsion as b
is a nonzerodivisor in B[Jb ]. Hence we obtain a surjective map B′ → B[Jb ]. To see
that the kernel is trivial, we construct an inverse map. Namely, let z = y/bn be an
element of B[Jb ], i.e., y ∈ Jn. Write y =

∑
xibi with xi ∈ In and bi ∈ B. We map

z to the class of
∑
bi ⊗ xi/an in B′. This is well defined because an element of the

kernel of the map B ⊗A In → Jn is annihilated by an, hence maps to zero in B′.
This shows that the open Spec(B[Jb ]) maps isomorphically to the open subscheme

pr−1
S′ (Spec(A[ Ia ])) of X ′. Thus X ′′ → X ′ is an isomorphism.
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In the notation above, let F correspond to the B-module N . The strict transform
of F corresponds to the B ⊗A A[ Ia ]-module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 27.22.5. The strict transform of F relative to the blowup of
X in f−1Z corresponds to the B[Jb ]-module N⊗BB[Jb ]/b-power-torsion. In exactly
the same way as above one proves that these two modules are isomorphic. Details
omitted. �

Lemma 30.19.3. In the situation of Definition 30.19.1.

(1) If X is flat over S at all points lying over Z, then the strict transform of
X is equal to the base change X ×S S′.

(2) Let F be a quasi-coherent OX-module. If F is flat over S at all points
lying over Z, then the strict transform F ′ of F is equal to the pullback
pr∗XF .

Proof. We will prove part (2) as it implies part (1) by the definition of the strict
transform of a scheme over S. The question is local on X. Thus we may assume
that S = Spec(A), X = Spec(B), and that F corresponds to the B-module N .
Then F ′ over the open Spec(B ⊗A A[ Ia ]) of X ×S S′ corresponds to the module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 27.22.5. Thus we have to show that the a-power-torsion of
N ⊗AA[ Ia ] is zero. Let y ∈ N ⊗AA[ Ia ] with any = 0. If q ⊂ B is a prime and a 6∈ q,

then y maps to zero in (N ⊗A A[ Ia ])q. on the other hand, if a ∈ q, then Nq is a flat

A-module and we see that Nq ⊗A A[ Ia ] = (N ⊗A A[ Ia ])q has no a-power torsion (as

A[ Ia ] doesn’t). Hence y maps to zero in this localization as well. We conclude that
y is zero by Algebra, Lemma 10.23.1. �

Lemma 30.19.4. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let
b : S′ → S be the blowing up of Z in S. Let g : X → Y be an affine morphism of
schemes over S. Let F be a quasi-coherent sheaf on X. Let g′ : X×S S′ → Y ×S S′
be the base change of g. Let F ′ be the strict transform of F relative to b. Then
g′∗F ′ is the strict transform of g∗F .

Proof. Observe that g′∗pr∗XF = pr∗Y g∗F by Cohomology of Schemes, Lemma
29.5.1. Let K ⊂ pr∗XF be the subsheaf of sections supported in the inverse im-
age of Z in X ×S S′. By Properties, Lemma 27.22.7 the pushforward g′∗K is the
subsheaf of sections of pr∗Y g∗F supported in the inverse image of Z in Y ×S S′.
As g′ is affine (Morphisms, Lemma 28.13.8) we see that g′∗ is exact, hence we
conclude. �

Lemma 30.19.5. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let D ⊂ S
be an effective Cartier divisor. Let Z ′ ⊂ S be the closed subscheme cut out by the
product of the ideal sheaves of Z and D. Let S′ → S be the blowup of S in Z.

(1) The blowup of S in Z ′ is isomorphic to S′ → S.
(2) Let f : X → S be a morphism of schemes and let F be a quasi-coherent
OX-module. If F has no nonzero local sections supported in f−1D, then
the strict transform of F relative to the blowing up in Z agrees with the
strict transform of F relative to the blowing up of S in Z ′.
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Proof. The first statement follows on combining Lemmas 30.18.10 and 30.18.6.
Using Lemma 30.18.2 the second statement translates into the following algebra
problem. Let A be a ring, I ⊂ A an ideal, x ∈ A a nonzerodivisor, and a ∈ I.
Let M be an A-module whose x-torsion is zero. To show: the a-power torsion in
M ⊗A A[ Ia ] is equal to the xa-power torsion. The reason for this is that the kernel

and cokernel of the map A → A[ Ia ] is a-power torsion, so this map becomes an

isomorphism after inverting a. Hence the kernel and cokernel of M → M ⊗A A[ Ia ]
are a-power torsion too. This implies the result. �

Lemma 30.19.6. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let
b : S′ → S be the blowing up with center Z. Let Z ′ ⊂ S′ be a closed subscheme.
Let S′′ → S′ be the blowing up with center Z ′. Let Y ⊂ S be a closed subscheme
such that Y = Z∪b(Z ′) set theoretically and the composition S′′ → S is isomorphic
to the blowing up of S in Y . In this situation, given any scheme X over S and
F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of S in Y is equal
to the strict transform with respect to the blowup S′′ → S′ in Z ′ of the
strict transform of F with respect to the blowup S′ → S of S in Z, and

(2) the strict transform of X with respect to the blowing up of S in Y is equal
to the strict transform with respect to the blowup S′′ → S′ in Z ′ of the
strict transform of X with respect to the blowup S′ → S of S in Z.

Proof. Let F ′ be the strict transform of F with respect to the blowup S′ → S of
S in Z. Let F ′′ be the strict transform of F ′ with respect to the blowup S′′ → S′

of S′ in Z ′. Let G be the strict transform of F with respect to the blowup S′′ → S
of S in Y . We also label the morphisms

X ×S S′′ q
//

f ′′

��

X ×S S′ p
//

f ′

��

X

f

��
S′′ // S′ // S

By definition there is a surjection p∗F → F ′ and a surjection q∗F ′ → F ′′ which
combine by right exactness of q∗ to a surjection (p ◦ q)∗F → F ′′. Also we have the
surjection (p ◦ q)∗F → G. Thus it suffices to prove that these two surjections have
the same kernel.

The kernel of the surjection p∗F → F ′ is supported on (f ◦ p)−1Z, so this map
is an isomorphism at points in the complement. Hence the kernel of q∗p∗F →
q∗F ′ is supported on (f ◦ p ◦ q)−1Z. The kernel of q∗F ′ → F ′′ is supported on
(f ′ ◦ q)−1Z ′. Combined we see that the kernel of (p ◦ q)∗F → F ′′ is supported
on (f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′ = (f ◦ p ◦ q)−1Y . By construction of G we see
that we obtain a factorization (p ◦ q)∗F → F ′′ → G. To finish the proof it suffices
to show that F ′′ has no nonzero (local) sections supported on (f ◦ p ◦ q)−1(Y ) =
(f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′. This follows from Lemma 30.19.5 applied to F ′ on
X×SS′ over S′, the closed subscheme Z ′ and the effective Cartier divisor b−1Z. �

Lemma 30.19.7. In the situation of Definition 30.19.1. Suppose that

0→ F1 → F2 → F3 → 0
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is an exact sequence of quasi-coherent sheaves on X which remains exact after any
base change T → S. Then the strict transforms of F ′i relative to any blowup S′ → S
form a short exact sequence 0→ F ′1 → F ′2 → F ′3 → 0 too.

Proof. We may localize on S and X and assume both are affine. Then we may
push Fi to S, see Lemma 30.19.4. We may assume that our blowup is the morphism
1 : S → S associated to an effective Cartier divisor D ⊂ S. Then the translation
into algebra is the following: Suppose that A is a ring and 0→M1 →M2 →M3 →
0 is a universally exact sequence of A-modules. Let a ∈ A. Then the sequence

0→M1/a-power torsion→M2/a-power torsion→M3/a-power torsion→ 0

is exact too. Namely, surjectivity of the last map and injectivity of the first map are
immediate. The problem is exactness in the middle. Suppose that x ∈ M2 maps
to zero in M3/a-power torsion. Then y = anx ∈ M1 for some n. Then y maps to
zero in M2/a

nM2. Since M1 → M2 is universally injective we see that y maps to
zero in M1/a

nM1. Thus y = anz for some z ∈ M1. Thus an(x − y) = 0. Hence y
maps to the class of x in M2/a-power torsion as desired. �

30.20. Admissible blowups

To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 30.20.1. Let X be a scheme. Let U ⊂ X be an open subscheme. A
morphism X ′ → X is called a U -admissible blowup if there exists a closed immersion
Z → X of finite presentation with Z disjoint from U such that X ′ is isomorphic to
the blow up of X in Z.

We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms, Lemma 28.22.7. In particular, a U -admissible
blowup is a projective morphism, see Lemma 30.18.11. Note that there can be
multiple centers which give rise to the same morphism. Hence the requirement is
just the existence of some center disjoint from U which produces X ′. Finally, as
the morphism b : X ′ → X is an isomorphism over U (see Lemma 30.18.4) we will
often abuse notation and think of U as an open subscheme of X ′ as well.

Lemma 30.20.2. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂
X be a quasi-compact open subscheme. Let b : X ′ → X be a U -admissible blowup.
Let X ′′ → X ′ be a U -admissible blowup. Then the composition X ′′ → X is a
U -admissible blowup.

Proof. Immediate from the more precise Lemma 30.18.12. �

Lemma 30.20.3. Let X be a quasi-compact and quasi-separated scheme. Let
U, V ⊂ X be quasi-compact open subschemes. Let b : V ′ → V be a U ∩V -admissible
blowup. Then there exists a U -admissible blowup X ′ → X whose restriction to V
is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that
V (I) is disjoint from U ∩ V and such that V ′ is isomorphic to the blow up of V
in I. Let I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U
is OU and whose restriction to V is I (see Sheaves, Section 6.33). By Properties,
Lemma 27.20.2 there exists a finite type quasi-coherent sheaf of ideals J ⊂ OX
whose restriction to U ∪ V is I ′. The lemma follows. �
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Lemma 30.20.4. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂
X be a quasi-compact open subscheme. Let bi : Xi → X, i = 1, . . . , n be U -
admissible blowups. There exists a U -admissible blowup b : X ′ → X such that (a) b
factors as X ′ → Xi → X for i = 1, . . . , n and (b) each of the morphisms X ′ → Xi

is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that
V (Ii) is disjoint from U and such that Xi is isomorphic to the blow up of X in Ii.
Set I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors
through bi by Lemma 30.18.10. �

Lemma 30.20.5. Let X be a quasi-compact and quasi-separated scheme. Let
U, V be quasi-compact disjoint open subschemes of X. Then there exist a U ∪ V -
admissible blowup b : X ′ → X such that X ′ is a disjoint union of open subschemes
X ′ = X ′1 qX ′2 with b−1(U) ⊂ X ′1 and b−1(V ) ⊂ X ′2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \U = V (I), resp. X \V = V (J ), see Properties, Lemma 27.22.1. Then V (IJ ) =
X set theoretically, hence IJ is a locally nilpotent sheaf of ideals. Since I and J
are of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I + J . This is U ∪ V -admissible as V (I + J ) = X \ U ∪ V .
We will show that X ′ is a disjoint union of open subschemes X ′ = X ′1 qX ′2 such
that b−1I|X′2 = 0 and b−1J |X′1 = 0 which will prove the lemma.

We will use the description of the blowing up in Lemma 30.18.2. Suppose that
U = Spec(A) ⊂ X is an affine open such that I|U , resp. J |U corresponds to the
finitely generated ideal I ⊂ A, resp. J ⊂ A. Then

b−1(U) = Proj(A⊕ (I + J)⊕ (I + J)2 ⊕ . . .)
This is covered by the affine open subsets A[ I+Jx ] and A[ I+Jy ] with x ∈ I and y ∈ J .

Since x ∈ I is a nonzerodivisor in A[ I+Jx ] and IJ = 0 we see that JA[ I+Jx ] = 0.

Since y ∈ J is a nonzerodivisor in A[ I+Jy ] and IJ = 0 we see that IA[ I+Jy ] = 0.

Moreover,
Spec(A[ I+Jx ]) ∩ Spec(A[ I+Jy ]) = Spec(A[ I+Jxy ]) = ∅

because xy is both a nonzerodivisor and zero. Thus b−1(U) is the disjoint union of
the open subscheme U1 defined as the union of the standard opens Spec(A[ I+Jx ])
for x ∈ I and the open subscheme U2 which is the union of the affine opens
Spec(A[ I+Jy ]) for y ∈ J . We have seen that b−1IOX′ restricts to zero on U2

and b−1IOX′ restricts to zero on U1. We omit the verification that these open
subschemes glue to global open subschemes X ′1 and X ′2. �
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CHAPTER 31

Limits of Schemes

31.1. Introduction

In this chapter we put material related to limits of schemes. We mostly study limits
of inverse systems over directed partially ordered sets with affine transition maps.
We discuss absolute Noetherian approximation. We characterize schemes locally of
finite presentation over a base as those whose associated functor of points is limit
preserving. As an application of absolute Noetherian approximation we prove that
the image of an affine under an integral morphism is affine. Moreover, we prove
some very general variants of Chow’s lemma. A basic reference is [DG67].

31.2. Directed limits of schemes with affine transition maps

In this section we construct the limit.

Lemma 31.2.1. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. If all the schemes Si are affine, then the limit S = limi Si
exists in the category of schemes. In fact S is affine and S = Spec(colimiRi) with
Ri = Γ(Si,O).

Proof. Just define S = Spec(colimiRi). It follows from Schemes, Lemma 25.6.4
that S is the limit even in the category of locally ringed spaces. �

Lemma 31.2.2. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. If all the morphisms fii′ : Si → Si′ are affine, then the
limit S = limi Si exists in the category of schemes. Moreover,

(1) each of the morphisms fi : S → Si is affine,
(2) for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−1
0 (U0) = limi≥0 f

−1
i0 (U0)

in the category of schemes.

Proof. Choose an element 0 ∈ I. Note that I is nonempty as the limit is directed.
For every i ≥ 0 consider the quasi-coherent sheaf of OS0-algebras Ai = fi0,∗OSi .
Recall that Si = Spec

S0
(Ai), see Morphisms, Lemma 28.13.3. Set A = colimi≥0Ai.

This is a quasi-coherent sheaf of OS0 -algebras, see Schemes, Section 25.24. Set
S = Spec

S0
(A). By Morphisms, Lemma 28.13.5 we get for i ≥ 0 morphisms

fi : S → Si compatible with the transition morphisms. Note that the morphisms
fi are affine by Morphisms, Lemma 28.13.11 for example. By Lemma 31.2.1 above
we see that for any affine open U0 ⊂ S0 the inverse image U = f−1

0 (U0) ⊂ S is the
limit of the system of opens Ui = f−1

i0 (U0), i ≥ 0 in the category of schemes.

Let T be a scheme. Let gi : T → Si be a compatible system of morphisms. To
show that S = limi Si we have to prove there is a unique morphism g : T → S

2075
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with gi = fi ◦ g for all i ∈ I. For every t ∈ T there exists an affine open U0 ⊂ S0

containing g0(t). Let V ⊂ g−1
0 (U0) be an affine open neighbourhood containing t.

By the remarks above we obtain a unique morphism gV : V → U = f−1
0 (U0) such

that fi ◦ gV = gi|Ui for all i. The open sets V ⊂ T so constructed form a basis for
the topology of T . The morphisms gV glue to a morphism g : T → S because of
the uniqueness property. This gives the desired morphism g : T → S.

The final statement is clear from the construction of the limit above. �

Lemma 31.2.3. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. Assume all the morphisms fii′ : Si → Si′ are affine, Let
S = limi Si. Let 0 ∈ I. Suppose that T is a scheme over S0. Then

T ×S0
S = limi≥0 T ×S0

Si

Proof. The right hand side is a scheme by Lemma 31.2.2. The equality is formal,
see Categories, Lemma 4.14.9. �

31.3. Descending properties

In this section we work in the following situation.

Situation 31.3.1. Let S = limi∈I Si be the limit of a directed system of schemes
with affine transition morphisms fi′i : Si′ → Si (Lemma 31.2.2). We assume that
Si is quasi-compact and quasi-separated for all i ∈ I. We denote fi : S → Si the
projection. We also choose an element 0 ∈ I.

The type of result we are looking for is the following: If we have an object over S,
then for some i there is a similar object over Si.

Lemma 31.3.2. In Situation 31.3.1.

(1) We have Sset = limi Si,set where Sset indicates the underlying set of the
scheme S.

(2) We have Stop = limi Si,top where Stop indicates the underlying topological
space of the scheme S.

(3) If s, s′ ∈ S and s′ is not a specialization of s then for some i ∈ I the
image s′i ∈ Si of s′ is not a specialization of the image si ∈ Si of s.

(4) Add more easy facts on topology of S here. (Requirement: whatever is
added should be easy in the affine case.)

Proof. Proof of (1). Pick i ∈ I. Take Ui ⊂ Si an affine open. Denote Ui′ = f−1
i′i (Ui)

and U = f−1
i (Ui). Suppose we can show that Uset = limi′≥i Ui′,set. Then assertion

(1) follows by a simple argument using an affine covering of Si. Hence we may
assume all Si and S affine. This reduces us to the following algebra question:
Suppose given a system of rings (Ai, ϕii′) over I. Set A = colimiAi with canonical
maps ϕi : Ai → A. Then

Spec(A) = limi Spec(Ai)

Namely, suppose that we are given primes pi ⊂ Ai such that pi = ϕ−1
ii′ (pi′) for all

i′ ≥ i. Then we simply set

p = {x ∈ A | ∃i, xi ∈ pi with ϕi(xi) = x}
It is clear that this is an ideal and has the property that ϕ−1

i (p) = pi. Then it
follows easily that it is a prime ideal as well. This proves (1).
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Proof of (2). Choose an i and a finite affine open covering Si = U1,i ∪ . . . ∪ Un,i.
If we can show the topology on f−1

i (Uk,i) = limi′≥i f
−1
i′i (Uk,i) is the limit topology,

then the same is true for S. Hence we may assume that S and Si are affine. Say
Si = Spec(Ai) and S = Spec(A) with A = colimAi. A basis for the topology of
Spec(A) is given by the standard opens D(g), g ∈ A. Since each g ∈ A is the image
of some gi ∈ Ai for some i we see that D(g) is the inverse image of D(gi) by fi.
The deisred result now follows from the criterion of Topology, Lemma 5.13.3.

Proof of (3). Pick i ∈ I. Pick an affine open Ui ⊂ Si containing fi(s
′). If fi(s) 6∈ Si

then we are done. Hence reduce to the affine case by considering the inverse images
of Ui as above. This reduces us to the following algebra question: Suppose given a
system of rings (Ai, ϕii′) over I. Set A = colimiAi with canonical maps ϕi : Ai →
A. Suppose given primes p, p′ of A. Suppose that p 6⊂ p′. Then for some i we have
ϕ−1
i (p) 6⊂ ϕ−1

i (p′). This is clear. �

Lemma 31.3.3. In Situation 31.3.1. Suppose that F0 is a quasi-coherent sheaf on
S0. Set Fi = f∗i0F0 for i ≥ 0 and set F = f∗0F0. Then

Γ(S,F) = colimi≥0 Γ(Si,Fi)

Proof. Write Aj = fi0,∗OSi . This is a quasi-coherent sheaf of OS0 -algebras (see
Morphisms, Lemma 28.13.5) and Si is the relative spectrum of Ai over S0. In the
proof of Lemma 31.2.2 we constructed S as the relative spectrum ofA = colimi≥0Ai
over S0. Set

Mi = F0 ⊗OS0
Ai

and

M = F0 ⊗OS0
A.

Then we have fi0,∗Fi =Mi and f0,∗F =M. Since A is the colimit of the sheaves
Ai and since tensor product commutes with directed colimits, we conclude that
M = colimi≥0Mi. Since S0 is quasi-compact and quasi-separated we see that

Γ(S,F) = Γ(S0,M)

= Γ(S0, colimi≥0Mi)

= colimi≥0 Γ(S0,Mi)

= colimi≥0 Γ(Si,Fi)

see Sheaves, Lemma 6.29.1 and Topology, Lemma 5.26.1 for the middle equality. �

Lemma 31.3.4. In Situation 31.3.1. If all the schemes Si are nonempty, then the
limit S = limi Si is nonempty.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience write S0 = Si0 and i0 = 0. Choose an affine open covering S0 =⋃
j=1,...,m Uj . Since I is directed there exists a j ∈ {1, . . . ,m} such that f−1

i0 (Uj) 6= ∅
for all i ≥ 0. Hence limi≥0 f

−1
i0 (Uj) is not empty since a directed colimit of nonzero

rings is nonzero (because 1 6= 0). As limi≥0 f
−1
i0 (Uj) is an open subscheme of the

limit we win. �

Lemma 31.3.5. In Situation 31.3.1. Suppose for each i we are given a nonempty
closed subset Zi ⊂ Si with fii′(Zi) ⊂ Zi′ . Then there exists a point s ∈ S with
fi(s) ∈ Zi for all i.
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Proof. Let Zi ⊂ Si also denote the reduced closed subscheme associated to Zi,
see Schemes, Definition 25.12.5. A closed immersion is affine, and a composition of
affine morphisms is affine (see Morphisms, Lemmas 28.13.9 and 28.13.7), and hence
Zi → Si′ is affine when i ≥ i′. We conclude that the morphism fii′ : Zi → Zi′ is
affine by Morphisms, Lemma 28.13.11. Each of the schemes Zi is quasi-compact as
a closed subscheme of a quasi-compact scheme. Hence we may apply Lemma 31.3.4
to see that Z = limi Zi is nonempty. Since there is a canonical morphism Z → S
we win. �

Lemma 31.3.6. In Situation 31.3.1. Suppose we are given an i and a morphism
T → Si such that

(1) T ×Si S = ∅, and
(2) T is quasi-compact.

Then T ×Si Si′ = ∅ for all sufficiently large i′.

Proof. By Lemma 31.2.3 we see that T ×Si S = limi′≥i T ×Si Si′ . Hence the result
follows from Lemma 31.3.4. �

Lemma 31.3.7. In Situation 31.3.1. Suppose we are given an i and a locally
constructible subset E ⊂ Si such that fi(S) ⊂ E. Then fii′(Si′) ⊂ E for all
sufficiently large i′.

Proof. Writing Si as a finite union of open affine subschemes reduces the question
to the case that Si is affine and E is constructible, see Lemma 31.2.2 and Properties,
Lemma 27.2.1. In this case the complement Si \E is constructible too. Hence there
exists an affine scheme T and a morphism T → Si whose image is Si \ E, see
Algebra, Lemma 10.28.3. By Lemma 31.3.6 we see that T ×Si Si′ is empty for all
sufficiently large i′, and hence fii′(Si′) ⊂ E for all sufficiently large i′. �

Lemma 31.3.8. In Situation 31.3.1 we have the following:

(1) Given any quasi-compact open V ⊂ S = limi Si there exists an i ∈ I and
a quasi-compact open Vi ⊂ Si such that f−1

i (Vi) = V .

(2) Given Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact opens such that f−1
i (Vi) =

f−1
i′ (Vi′) there exists an index i′′ ≥ i, i′ such that f−1

i′′i (Vi) = f−1
i′′i′(Vi′).

(3) If V1,i, . . . , Vn,i ⊂ Si are quasi-compact opens and S = f−1
i (V1,i) ∪ . . . ∪

f−1
i (Vn,i) then Si′ = f−1

i′i (V1,i) ∪ . . . ∪ f−1
i′i (Vn,i) for some i′ ≥ i.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Choose an affine open covering S0 =
U1,0 ∪ . . . ∪ Um,0. Denote Uj,i ⊂ Si the inverse image of Uj,0 under the transition
morphism for i ≥ 0. Denote Uj the inverse image of Uj,0 in S. Note that Uj =
limi Uj,i is a limit of affine schemes.

We first prove the uniqueness statement: Let Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact
opens such that f−1

i (Vi) = f−1
i′ (Vi′). It suffices to show that f−1

i′′i (Vi ∩ Uj,i′′) and

f−1
i′′i′(Vi′ ∩ Uj,i′′) become equal for i′′ large enough. Hence we reduce to the case

of a limit of affine schemes. In this case write S = Spec(R) and Si = Spec(Ri)
for all i ∈ I. We may write Vi = Si \ V (h1, . . . , hm) and Vi′ = Si′ \ V (g1, . . . , gn).
The assumption means that the ideals

∑
gjR and

∑
hjR have the same radical in

R. This means that gNj =
∑
ajj′hj′ and hNj =

∑
bjj′gj′ for some N � 0 and ajj′

and bjj′ in R. Since R = colimiRi we can chose an index i′′ ≥ i such that the
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equations gNj =
∑
ajj′hj′ and hNj =

∑
bjj′gj′ hold in Ri′′ for some ajj′ and bjj′ in

Ri′′ . This implies that the ideals
∑
gjRi′′ and

∑
hjRi′′ have the same radical in

Ri′′ as desired.

We prove existence. We may apply the uniqueness statement to the limit of schemes
Uj1 ∩Uj2 = limi Uj1,i ∩Uj2,i since these are still quasi-compact due to the fact that
the Si were assumed quasi-separated. Hence it is enough to prove existence in the
affine case. In this case write S = Spec(R) and Si = Spec(Ri) for all i ∈ I. Then
V = S \ V (g1, . . . , gn) for some g1, . . . , gn ∈ R. Choose any i large enough so that
each of the gj comes from an element gj,i ∈ Ri and take Vi = Si \ V (g1,i, . . . , gn,i).

The statement on coverings follows from the uniqueness statement for the opens
V1,i ∪ . . . ∪ Vn,i and Si of Si. �

Lemma 31.3.9. In Situation 31.3.1 if S is quasi-affine, then for some i0 ∈ I the
schemes Si for i ≥ i0 are quasi-affine.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Let s ∈ S. We may choose an affine
open U0 ⊂ S0 containing f0(s). Since S is quasi-affine we may choose an element
a ∈ Γ(S,OS) such that s ∈ D(a) ⊂ f−1

0 (U0), and such that D(a) is affine. By
Lemma 31.3.3 there exists an i ≥ 0 such that a comes from an element ai ∈
Γ(Si,OSi). For any index j ≥ i we denote aj the image of ai in the global sections

of the structure sheaf of Sj . Consider the opens D(aj) ⊂ Sj and Uj = f−1
j0 (U0).

Note that Uj is affine and D(aj) is a quasi-compact open of Sj , see Properties,
Lemma 27.24.4 for example. Hence we may apply Lemma 31.3.8 to the opens Uj
and Uj ∪D(aj) to conclude that D(aj) ⊂ Uj for some j ≥ i. For such an index j
we see that D(aj) ⊂ Sj is an affine open (because D(aj) is a standard affine open
of the affine open Uj) containing the image fj(s).

We conclude that for every s ∈ S there exist an index i ∈ I, and a global section
a ∈ Γ(Si,OSi) such that D(a) ⊂ Si is an affine open containing fi(s). Because S is
quasi-compact we may choose a single index i ∈ I and global sections a1, . . . , am ∈
Γ(Si,OSi) such that each D(aj) ⊂ Si is affine open and such that fi : S → Si has

image contained in the union Wi =
⋃
j=1,...,mD(aj). For i′ ≥ i set Wi′ = f−1

i′i (Wi).

Since f−1
i (Wi) is all of S we see (by Lemma 31.3.8 again) that for a suitable i′ ≥ i we

have Si′ = Wi′ . Thus we may replace i by i′ and assume that Si =
⋃
j=1,...,mD(aj).

This implies that OSi is an ample invertible sheaf on Si (see Properties, Definition
27.24.1) and hence that Si is quasi-affine, see Properties, Lemma 27.25.1. Hence
we win. �

Lemma 31.3.10. In Situation 31.3.1 if S is affine, then for some i0 ∈ I the
schemes Si for i ≥ i0 are affine.

Proof. By Lemma 31.3.9 we may assume that S0 is quasi-affine for some 0 ∈ I.
Set R0 = Γ(S0,OS0

). Then S0 is a quasi-compact open of T0 = Spec(R0). Denote
j0 : S0 → T0 the corresponding quasi-compact open immersion. For i ≥ 0 set Ai =
f0i,∗OSi . Since f0i is affine we see that Si = Spec

S0
(Ai). Set Ti = Spec

T0
(j0,∗Ai).

Then Ti → T0 is affine, hence Ti is affine. Thus Ti is the spectrum of

Ri = Γ(T0, j0,∗Ai) = Γ(S0,Ai) = Γ(Si,OSi).
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Write S = Spec(R). We have R = colimiRi by Lemma 31.3.3. Hence also S =
limi Ti. As formation of the relative spectrum commutes with base change, the
inverse image of the open S0 ⊂ T0 in Ti is Si. Let Z0 = T0 \ S0 and let Zi ⊂ Ti be
the inverse image of Z0. As Si = Ti \ Zi, it suffices to show that Zi is empty for
some i. Assume Zi is nonempty for all i to get a contradiction. By Lemma 31.3.5
there exists a point s of S = limTi which maps to a point of Zi for every i. But
S = limi Si, and hence we arrive at a contradiction by Lemma 31.3.2. �

Lemma 31.3.11. In Situation 31.3.1 if S is separated, then for some i0 ∈ I the
schemes Si for i ≥ i0 are separated.

Proof. Choose a finite affine open covering S0 = U0,1∪. . .∪U0,m. Set Ui,j ⊂ Si and
Uj ⊂ S equal to the inverse image of U0,j . Note that Ui,j and Uj are affine. As S is
separated the intersections Uj1 ∩Uj2 are affine. Since Uj1 ∩Uj2 = limi≥0 Ui,j1 ∩Ui,j2
we see that Ui,j1 ∩ Ui,j2 is affine for large i by Lemma 31.3.10. To show that Si is
separated for large i it now suffices to show that

OSi(Vi,j1)⊗OS(S) OSi(Vi,j2) −→ OSi(Vi,j1 ∩ Vi,j2)

is surjective for large i (Schemes, Lemma 25.21.8).

To get rid of the annoying indices, assume we have affine opens U, V ⊂ S0 such
that U ∩ V is affine too. Let Ui, Vi ⊂ Si, resp. U, V ⊂ S be the inverse images. We
have to show that O(Ui)⊗O(Vi)→ O(Ui ∩ Vi) is surjective for i large enough and
we know that O(U)⊗O(V )→ O(U ∩V ) is surjective. Note that O(U0)⊗O(V0)→
O(U0∩V0) is of finite type, as the diagonal morphism Si → Si×Si is an immersion
(Schemes, Lemma 25.21.2) hence locally of finite type (Morphisms, Lemmas 28.16.2
and 28.16.5). Thus we can choose elements f0,1, . . . , f0,n ∈ O(U0 ∩ V0) which
generate O(U0 ∩ V0) over O(U0) ⊗ O(V0). Observe that for i ≥ 0 the diagram of
schemes

Ui ∩ Vi //

��

Ui

��
U0 ∩ V0

// U0

is cartesian. Thus we see that the images fi,1, . . . , fi,n ∈ O(Ui ∩ Vi) generate
O(Ui∩Vi) over O(Ui)⊗O(V0) and a fortiori over O(Ui)⊗O(Vi). By assumption the
images f1, . . . , fn ∈ O(U⊗V ) are in the image of the mapO(U)⊗O(V )→ O(U∩V ).
Since O(U)⊗O(V ) = colimO(Ui)⊗O(Vi) we see that they are in the image of the
map at some finite level and the lemma is proved. �

Lemma 31.3.12. In Situation 31.3.1 let L0 be an invertible sheaf of modules on
S0. If the pullback L to S is ample, then for some i ∈ I the pullback Li to Si is
ample.

Proof. The assumption means there are finitely many sections s1, . . . , sm ∈ Γ(S,L)
such that Ssj is affine and such that S =

⋃
Ssj , see Properties, Definition 27.24.1.

By Lemma 31.3.3 we can find an i ∈ I and sections si,j ∈ Γ(Si,Li) mapping to
sj . By Lemma 31.3.10 we may, after increasing i, assume that (Si)si,j is affine for
j = 1, . . . ,m. By Lemma 31.3.8 we may, after increasing i a last time, assume that
Si =

⋃
(Si)si,j . Then Li is ample by definition. �

http://stacks.math.columbia.edu/tag/086Q
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Lemma 31.3.13. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Let Y → X be a morphism of schemes
over S.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y locally of finite
type over S, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → S locally of finite
type, and Y quasi-compact, then Y → Xi is an immersion for i large
enough.

Proof. Proof of (1). Choose 0 ∈ I and a finite affine open covering X0 = U0,1 ∪
. . . ∪ U0,m with the property that U0,j maps into an affine open Wj ⊂ S. Let
Vj ⊂ Y , resp. Ui,j ⊂ Xi, i ≥ 0, resp. Uj ⊂ X be the inverse image of U0,j . It
suffices to prove that Vj → Ui,j is a closed immersion for i sufficiently large and we
know that Vj → Uj is a closed immersion. Thus we reduce to the following algebra
fact: If A = colimAi is a directed colimit of R-algebras, A → B is a surjection of
R-algebras, and B is a finitely generated R-algebra, then Ai → B is surjective for
i sufficiently large.

Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open X ′0 ⊂ X0 such that
Y → X0 factors through X ′0. After replacing Xi by the inverse image of X ′0 for
i ≥ 0 we may assume all X ′i are quasi-compact and quasi-separated. Let U ⊂ X
be a quasi-compact open such that Y → X factors through a closed immersion
Y → U (U exists as Y is quasi-compact). By Lemma 31.3.8 we may assume that
U = limUi with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is
a closed immersion for some i. Thus (2) holds. �

Lemma 31.3.14. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S separated.

Then Xi → S is separated for all i large enough.

Proof. Let 0 ∈ I. Note that I is nonempty as the limit is directed. As X0 is
quasi-compact we can find finitely many affine opens U1, . . . , Un ⊂ S such that
X0 → S maps into U1 ∪ . . . ∪ Un. Denote hi : Xi → S the structure morphism. It
suffices to check that for some i ≥ 0 the morphisms h−1

i (Uj)→ Uj are separated for
j = 1, . . . , n. Since S is quasi-separated the morphisms Uj → S are quasi-compact.

Hence h−1
i (Uj) is quasi-compact and quasi-separated. In this way we reduce to the

case S affine. In this case we have to show that Xi is separated and we know that
X is separated. Thus the lemma follows from Lemma 31.3.11. �

Lemma 31.3.15. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S affine.

Then Xi → S is affine for i large enough.

Proof. Choose a finite affine open covering S =
⋃
j=1,...,n Vj . Denote f : X → S

and fi : Xi → S the structure morphisms. For each j the scheme f−1(Vj) =

http://stacks.math.columbia.edu/tag/081B
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limi f
−1
i (Vj) is affine (as a finite morphism is affine by definition). Hence by Lemma

31.3.10 there exists an i ∈ I such that each f−1
i (Vj) is affine. In other words,

fi : Xi → S is affine for i large enough, see Morphisms, Lemma 28.13.3. �

Lemma 31.3.16. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → S locally of finite type
(5) X → S integral.

Then Xi → S is finite for i large enough.

Proof. By Lemma 31.3.15 we may assume Xi → S is affine for all i. Choose a
finite affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj)

is finite over Vj for j = 1, . . . ,m (Morphisms, Lemma 28.44.3). Namely, for i′ ≥ i
the composition Xi′ → Xi → S will be finite as a composition of finite morphisms
(Morphisms, Lemma 28.44.5). This reduces us to the affine case: Let R be a ring
and A = colimAi with R→ A integral and Ai → Ai′ finite for all i ≤ i′. Moreover
R → Ai is of finite type for all i. Goal: Show that Ai is finite over R for some
i. To prove this choose an i ∈ I and pick generators x1, . . . , xm ∈ Ai of Ai as an
R-algebra. Since A is integral over R we can find monic polynomials Pj ∈ R[T ]
such that Pj(xj) = 0 in A. Thus there exists an i′ ≥ i such that Pj(xj) = 0 in
Ai′ for j = 1, . . . ,m. Then the image A′i of Ai in Ai′ is finite over R by Algebra,
Lemma 10.35.5. Since A′i ⊂ Ai′ is finite too we conclude that Ai′ is finite over R
by Algebra, Lemma 10.7.3. �

Lemma 31.3.17. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type
(5) X → S a closed immersion.

Then Xi → S is a closed immersion for i large enough.

Proof. By Lemma 31.3.15 we may assume Xi → S is affine for all i. Choose a
finite affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj)

is a closed subscheme of Vj for j = 1, . . . ,m (Morphisms, Lemma 28.2.1). This
reduces us to the affine case: Let R be a ring and A = colimAi with R → A
surjective and Ai → Ai′ surjective for all i ≤ i′. Moreover R→ Ai is of finite type
for all i. Goal: Show that R→ Ai is surjective for some i. To prove this choose an
i ∈ I and pick generators x1, . . . , xm ∈ Ai of Ai as an R-algebra. Since R → A is
surjective we can find rj ∈ R such that rj maps to xj in A. Thus there exists an
i′ ≥ i such that rj maps to the image of xj in Ai′ for j = 1, . . . ,m. Since Ai → Ai′

is surjective this implies that R→ Ai′ is surjective. �

http://stacks.math.columbia.edu/tag/09ZN
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31.4. Absolute Noetherian Approximation

A nice reference for this section is Appendix C of the article by Thomason and
Trobaugh [TT90]. See Categories, Section 4.21 for our conventions regarding di-
rected systems. We will use the existence result and properties of the limit from
Section 31.2 without further mention.

Lemma 31.4.1. Let W be a quasi-affine scheme of finite type over Z. Suppose
W → Spec(R) is an open immersion into an affine scheme. There exists a finite
type Z-algebra A ⊂ R which induces an open immersion W → Spec(A). Moreover,
R is the directed colimit of such subalgebras.

Proof. Choose an affine open covering W =
⋃
i=1,...,nWi such that each Wi is a

standard affine open in Spec(R). In other words, if we write Wi = Spec(Ri) then
Ri = Rfi for some fi ∈ R. Choose finitely many xij ∈ Ri which generate Ri over Z.
Pick an N � 0 such that each fNi xij comes from an element of R, say yij ∈ R. Set
A equal to the Z-algebra generated by the fi and the yij and (optionally) finitely
many additional elements of R. Then A works. Details omitted. �

Lemma 31.4.2. Suppose given a cartesian diagram of rings

B
s
// R

B′

OO

// R′

t

OO

Let W ′ ⊂ Spec(R′) be an open of the form W ′ = D(f1) ∪ . . . ∪ D(fn) such that
t(fi) = s(gi) for some gi ∈ B and Bgi

∼= Rs(gi). Then B′ → R′ induces an open
immersion of W ′ into Spec(B′).

Proof. Set hi = (gi, fi) ∈ B′. More on Algebra, Lemma 15.4.3 shows that (B′)hi
∼=

(R′)fi as desired. �

The following lemma is a precise statement of Noetherian approximation.

Lemma 31.4.3. Let S be a quasi-compact and quasi-separated scheme. Let V ⊂ S
be a quasi-compact open. Let I be a directed partially ordered set and let (Vi, fii′)
be an inverse system of schemes over I with affine transition maps, with each Vi of
finite type over Z, and with V = limVi. Then there exist

(1) a directed partially ordered set J ,
(2) an inverse system of schemes (Sj , gjj′) over J ,
(3) an order preserving map α : J → I,
(4) open subschemes V ′j ⊂ Sj, and
(5) isomorphisms V ′j → Vα(j)

such that

(1) the transition morphisms gjj′ : Sj → Sj′ are affine,
(2) each Sj is of finite type over Z,

(3) g−1
jj′ (Vj′) = Vj,

(4) S = limSj and V = limVj, and

http://stacks.math.columbia.edu/tag/01Z7
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(5) the diagrams

V

�� !!
V ′j

// Vα(j)

and

Vj //

��

Vα(j)

��
Vj′ // Vα(j′)

are commutative.

Proof. Set Z = S \ V . Choose affine opens U1, . . . , Um ⊂ S such that Z ⊂⋃
l=1,...,m Ul. Consider the opens

V ⊂ V ∪ U1 ⊂ V ∪ U1 ∪ U2 ⊂ . . . ⊂ V ∪
⋃

l=1,...,m
Ul = S

If we can prove the lemma successively for each of the cases

V ∪ U1 ∪ . . . ∪ Ul ⊂ V ∪ U1 ∪ . . . ∪ Ul+1

then the lemma will follow for V ⊂ S. In each case we are adding one affine open.
Thus we may assume

(1) S = U ∪ V ,
(2) U affine open in S,
(3) V quasi-compact open in S, and
(4) V = limi Vi with (Vi, fii′) an inverse system over a directed set I, each

fii′ affine and each Vi of finite type over Z.

Set W = U ∩ V . As S is quasi-separated, this is a quasi-compact open of V .
By Lemma 31.3.8 (and after shrinking I) we may assume that there exist opens
Wi ⊂ Vi such that f−1

ij (Wj) = Wi and such that f−1
i (Wi) = W . Since W is a

quasi-compact open of U it is quasi-affine. Hence we may assume (after shrinking
I again) that Wi is quasi-affine for all i, see Lemma 31.3.9.

Write U = Spec(B). Set R = Γ(W,OW ), and Ri = Γ(Wi,OWi). By Lemma 31.3.3
we have R = colimiRi. Now we have the maps of rings

B
s
// R

Ri

ti

OO

We set Bi = {(b, r) ∈ B ×Ri | s(b) = ti(t)} so that we have a cartesian diagram

B
s
// R

Bi

OO

// Ri

ti

OO

for each i. The transition maps Ri → Ri′ induce maps Bi → Bi′ . It is clear that
B = colimiBi. In the next paragraph we show that for all sufficiently large i the
composition Wi → Spec(Ri)→ Spec(Bi) is an open immersion.

As W is a quasi-compact open of U = Spec(B) we can find a finitely many elements
gl ∈ B, l = 1, . . . ,m such that D(gl) ⊂ W and such that W =

⋃
l=1,...,mD(gl).
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Note that this implies D(gl) = Ws(gl) as open subsets of U , where Ws(gl) denotes
the largest open subset of W on which s(gl) is invertible. Hence

Bgl = Γ(D(gl),OU ) = Γ(Ws(gl),OW ) = Rs(gl),

where the last equality is Properties, Lemma 27.15.2. Since Ws(gl) is affine this also
implies that D(s(gl)) = Ws(gl) as open subsets of Spec(R). Since R = colimiRi we
can (after shrinking I) assume there exist gl,i ∈ Ri for all i ∈ I such that s(gl) =
ti(gl,i). Of course we choose the gl,i such that gl,i maps to gl,i′ under the transition
maps Ri → Ri′ . Then, by Lemma 31.3.8 we can (after shrinking I again) assume
the corresponding opens D(gl,i) ⊂ Spec(Ri) are contained in Wi, j = 1, . . . ,m and
cover Wi. We conclude that the morphism Wi → Spec(Ri)→ Spec(Bi) is an open
immersion, see Lemma 31.4.2

By Lemma 31.4.1 we can write Bi as a directed colimit of subalgebras Ai,p ⊂ Bi, p ∈
Pi each of finite type over Z and such that Wi is identified with an open subscheme
of Spec(Ai,p). Let Si,p be the scheme obtained by glueing Vi and Spec(Ai,p) along
the openWi, see Schemes, Section 25.14. Here is the resulting commutative diagram
of schemes:

V

tt ��

Woo

uu ��
Vi

��

Wi
oo

��

S

tt

U

vv

oo

Si,p Spec(Ai,p)oo

The morphism S → Si,p arises because the upper right square is a pushout in
the category of schemes. Note that Si,p is of finite type over Z since it has a
finite affine open covering whose members are spectra of finite type Z-algebras. We
define a partial ordering on J =

∐
i∈I Pi by the rule (i′, p′) ≥ (i, p) if and only if

i′ ≥ i and the map Bi → Bi′ maps Ai,p into Ai′,p′ . This is exactly the condition
needed to define a morphism Si′,p′ → Si,p: namely make a commutative diagram as
above using the transition morphisms Vi′ → Vi and Wi′ → Wi and the morphism
Spec(Ai′,p′) → Spec(Ai,p) induced by the ring map Ai,p → Ai′,p′ . The relevant
commutativities have been built into the constructions. We claim that S is the
directed limit of the schemes Si,p. Since by construction the schemes Vi have limit
V this boils down to the fact that B is the limit of the rings Ai,p which is true
by construction. The map α : J → I is given by the rule j = (i, p) 7→ i. The
open subscheme V ′j is just the image of Vi → Si,p above. The commutativity of
the diagrams in (5) is clear from the construction. This finishes the proof of the
lemma. �

Proposition 31.4.4. Let S be a quasi-compact and quasi-separated scheme. There
exist a directed partially ordered set I and an inverse system of schemes (Si, fii′)
over I such that

(1) the transition morphisms fii′ are affine
(2) each Si is of finite type over Z, and
(3) S = limi Si.

Proof. This is a special case of Lemma 31.4.3 with V = ∅. �

http://stacks.math.columbia.edu/tag/01ZA
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31.5. Limits and morphisms of finite presentation

The following is a generalization of Algebra, Lemma 10.123.2.

Proposition 31.5.1. Let f : X → S be a morphism of schemes. The following
are equivalent:

(1) The morphism f is locally of finite presentation.
(2) For any directed partially ordered set I, and any inverse system (Ti, fii′)

of S-schemes over I with each Ti affine, we have

MorS(limi Ti, X) = colimi MorS(Ti, X)

(3) For any directed partially ordered set I, and any inverse system (Ti, fii′)
of S-schemes over I with each fii′ affine and every Ti quasi-compact and
quasi-separated as a scheme, we have

MorS(limi Ti, X) = colimi MorS(Ti, X)

Proof. It is clear that (3) implies (2).

Let us prove that (2) implies (1). Assume (2). Choose any affine opens U ⊂ X
and V ⊂ S such that f(U) ⊂ V . We have to show that OS(V ) → OX(U) is
of finite presentation. Let (Ai, ϕii′) be a directed system of OS(V )-algebras. Set
A = colimiAi. According to Algebra, Lemma 10.123.2 we have to show that

HomOS(V )(OX(U), A) = colimi HomOS(V )(OX(U), Ai)

Consider the schemes Ti = Spec(Ai). They form an inverse system of V -schemes
over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-algebra
maps ϕi′i. Set T := Spec(A) = limi Ti. The formula above becomes in terms of
morphism sets of schemes

MorV (limi Ti, U) = colimi MorV (Ti, U).

We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

MorS(limi Ti, U) = colimi MorS(Ti, U)

and we are given that

MorS(limi Ti, X) = colimi MorS(Ti, X).

Hence it suffices to prove that given a morphism gi : Ti → X over S such that
the composition T → Ti → X ends up in U there exists some i′ ≥ i such that the
composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U). Assume
each Zi′ is nonempty to get a contradiction. By Lemma 31.3.5 there exists a point
t of T which is mapped into Zi′ for all i′ ≥ i. Such a point is not mapped into U .
A contradiction.

Finally, let us prove that (1) implies (3). Assume (1). Let an inverse directed
system (Ti, fii′) of S-schemes be given. Assume the morphisms fii′ are affine and
each Ti is quasi-compact and quasi-separated as a scheme. Let T = limi Ti. Denote
fi : T → Ti the projection morphisms. We have to show:

(a) Given morphisms gi, g
′
i : Ti → X over S such that gi ◦ fi = g′i ◦ fi, then

there exists an i′ ≥ i such that gi ◦ fi′i = g′i ◦ fi′i.
(b) Given any morphism g : T → X over S there exists an i ∈ I and a

morphism gi : Ti → X such that g = fi ◦ gi.

http://stacks.math.columbia.edu/tag/01ZC
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First let us prove the uniqueness part (a). Let gi, g
′
i : Ti → X be morphisms such

that gi ◦ fi = g′i ◦ fi. For any i′ ≥ i we set gi′ = gi ◦ fi′i and g′i′ = g′i ◦ fi′i. We also
set g = gi ◦ fi = g′i ◦ fi. Consider the morphism (gi, g

′
i) : Ti → X ×S X. Set

W =
⋃

U⊂X affine open,V⊂S affine open,f(U)⊂V
U ×V U.

This is an open in X ×S X, with the property that the morphism ∆X/S factors
through a closed immersion into W , see the proof of Schemes, Lemma 25.21.2. Note
that the composition (gi, g

′
i) ◦ fi : T → X ×S X is a morphism into W because it

factors through the diagonal by assumption. Set Zi′ = (gi′ , g
′
i′)
−1(X ×S X \W ).

If each Zi′ is nonempty, then by Lemma 31.3.5 there exists a point t ∈ T which
maps to Zi′ for all i′ ≥ i. This is a contradiction with the fact that T maps into W .
Hence we may increase i and assume that (gi, g

′
i) : Ti → X×SX is a morphism into

W . By construction of W , and since Ti is quasi-compact we can find a finite affine
open covering Ti = T1,i ∪ . . .∪Tn,i such that (gi, g

′
i)|Tj,i is a morphism into U ×V U

for some pair (U, V ) as in the definition of W above. Since it suffices to prove that
gi′ and g′i′ agree on each of the f−1

i′i (Tj,i) this reduces us to the affine case. The
affine case follows from Algebra, Lemma 10.123.2 and the fact that the ring map
OS(V )→ OX(U) is of finite presentation (see Morphisms, Lemma 28.22.2).

Finally, we prove the existence part (b). Let g : T → X be a morphism of schemes
over S. We can find a finite affine open covering T = W1 ∪ . . . ∪Wn such that for
each j ∈ {1, . . . , n} there exist affine opens Uj ⊂ X and Vj ⊂ S with f(Uj) ⊂ Vj
and g(Wj) ⊂ Uj . By Lemmas 31.3.8 and 31.3.10 (after possibly shrinking I) we
may assume that there exist affine open coverings Ti = W1,i∪ . . .∪Wn,i compatible
with transition maps such that Wj = limiWj,i. We apply Algebra, Lemma 10.123.2
to the rings corresponding to the affine schemes Uj , Vj , Wj,i and Wj using that
OS(Vj)→ OX(Uj) is of finite presentation (see Morphisms, Lemma 28.22.2). Thus
we can find for each j an index ij ∈ I and a morphism gj,ij : Wj,ij → X such that
gj,ij ◦ fi|Wj

: Wj → Wj,i → X equals g|Wj
. By part (a) proved above, using the

quasi-compactness of Wj1,i ∩Wj2,i which follows as Ti is quasi-separated, we can
find an index i′ ∈ I larger than all ij such that

gj1,ij1 ◦ fi′ij1 |Wj1,i
′∩Wj2,i

′ = gj2,ij2 ◦ fi′ij2 |Wj1,i
′∩Wj2,i

′

for all j1, j2 ∈ {1, . . . , n}. Hence the morphisms gj,ij ◦ fi′ij |Wj,i′ glue to given the
desired morphism Ti′ → X. �

Remark 31.5.2. Let S be a scheme. Let us say that a functor F : (Sch/S)opp →
Sets is limit preserving if for every directed inverse system {Ti}i∈I of affine schemes
with limit T we have F (T ) = colimi F (Ti). Let X be a scheme over S, and let
hX : (Sch/S)opp → Sets be its functor of points, see Schemes, Section 25.15. In this
terminology Proposition 31.5.1 says that a scheme X is locally of finite presentation
over S if and only if hX is limit preserving.

31.6. Relative approximation

The title of this section refers to results of the following type.

Lemma 31.6.1. Let f : X → S be a morphism of schemes. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) S is quasi-separated.

http://stacks.math.columbia.edu/tag/05LX
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Then X = limXi is a limit of a directed system of schemes Xi of finite presentation
over S with affine transition morphisms over S.

Proof. Since f(X) is quasi-compact we may replace S by a quasi-compact open
containing f(X). Hence we may assume S is quasi-compact as well. Write X =
limXa and S = limSb as in Proposition 31.4.4, i.e., with Xa and Sb of finite type
over Z and with affine transition morphisms. By Proposition 31.5.1 we find that
for each b there exists an a and a morphism fa,b : Xa → Sb making the diagram

X

��

// S

��
Xa

// Sb

commute. Moreover the same proposition implies that, given a second triple
(a′, b′, fa′,b′), there exists an a′′ ≥ a′ such that the compositions Xa′′ → Xa → Xb

and Xa′′ → Xa′ → Xb′ → Xb are equal. Consider the set of triples (a, b, fa,b)
endowed with the partial ordering

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b′ ≥ b, and fa′,b′ ◦ ha,a′ = gb′,b ◦ fa,b

where ha,a′ : Xa → Xa′ and gb′,b : Sb′ → Sb are the transition morphisms. The
remarks above show that this system is directed. It follows formally from the
equalities X = limXa and S = limSb that

X = lim(a,b,fa,b)Xa ×fa,b,Sb S.

where the limit is over our directed system above. The transition morphisms Xa×Sb
S → Xa′ ×Sb′ S are affine as the composition

Xa ×Sb S → Xa ×Sb′ S → Xa′ ×Sb′ S

where the first morphism is a closed immersion (by Schemes, Lemma 25.21.10) and
the second is a base change of an affine morphism (Morphisms, Lemma 28.13.8)
and the composition of affine morphisms is affine (Morphisms, Lemma 28.13.7).
The morphisms fa,b are of finite presentation (Morphisms, Lemmas 28.22.9 and
28.22.11) and hence the base changes Xa ×fa,b,Sb S → S are of finite presentation
(Morphisms, Lemma 28.22.4). �

Lemma 31.6.2. Let X → S be an integral morphism with S quasi-compact and
quasi-separated. Then X = limXi with Xi → S finite and of finite presentation.

Proof. Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OS-
algebras, see Schemes, Lemma 25.24.1. Combining Properties, Lemma 27.20.13
we can write A = colimiAi as a filtered colimit of finite and finitely presented
OS-algebras. Then

Xi = Spec
S

(Ai) −→ S

is a finite and finitely presented morphism of schemes. By construction X = limiXi

which proves the lemma. �
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31.7. Descending properties of morphisms

This section is the analogue of Section 31.3 for properties of morphisms over S. We
will work in the following situation.

Situation 31.7.1. Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms (Lemma 31.2.2). Let 0 ∈ I and let f0 : X0 → Y0 be
a morphism of schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-
separated. Let fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be
the base change of f0 to S.

Lemma 31.7.2. Notation and assumptions as in Situation 31.7.1. If f is affine,
then there exists an index i ≥ 0 such that fi is affine.

Proof. Let Y0 =
⋃
j=1,...,m Vj,0 be a finite affine open covering. Set Uj,0 =

f−1
0 (Vj,0). For i ≥ 0 we denote Vj,i the inverse image of Vj,0 in Yi and Uj,i =

f−1
i (Vj,i). Similarly we have Uj = f−1(Vj). Then Uj = limi≥0 Uj,i (see Lemma

31.2.2). Since Uj is affine by assumption we see that each Uj,i is affine for i
large enough, see Lemma 31.3.10. As there are finitely many j we can pick an
i which works for all j. Thus fi is affine for i large enough, see Morphisms, Lemma
28.13.3. �

Lemma 31.7.3. Notation and assumptions as in Situation 31.7.1. If

(1) f is a finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is finite.

Proof. A finite morphism is affine, see Morphisms, Definition 28.44.1. Hence by
Lemma 31.7.2 above after increasing 0 we may assume that f0 is affine. By writing
Y0 as a finite union of affines we reduce to proving the result when X0 and Y0 are
affine and map into a common affine W ⊂ S0. The corresponding algebra statement
follows from Algebra, Lemma 10.156.3. �

Lemma 31.7.4. Notation and assumptions as in Situation 31.7.1. If

(1) f is a closed immersion, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is a closed immersion.

Proof. A closed immersion is affine, see Morphisms, Lemma 28.13.9. Hence by
Lemma 31.7.2 above after increasing 0 we may assume that f0 is affine. By writing
Y0 as a finite union of affines we reduce to proving the result when X0 and Y0 are
affine and map into a common affine W ⊂ S0. The corresponding algebra statement
is a consequence of Algebra, Lemma 10.156.4. �

Lemma 31.7.5. Notation and assumptions as in Situation 31.7.1. If f is sepa-
rated, then fi is separated for some i ≥ 0.

Proof. Apply Lemma 31.7.4 to the diagonal morphism ∆X0/S0
: X0 → X0×S0

X0.
(This is permissible as diagonal morphisms are locally of finite type and the fibre
product X0 ×S0

X0 is quasi-compact and quasi-separated, see Schemes, Lemma
25.21.2, Morphisms, Lemma 28.16.5, and Schemes, Remark 25.21.18. �

Lemma 31.7.6. Notation and assumptions as in Situation 31.7.1. If
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(1) f is flat,
(2) f0 is locally of finite presentation,

then fi is flat for some i ≥ 0.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj

Xk,0 be a

finite affine open covering. Since the property of being flat is local we see that it
suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i which
are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that
X0, Y0, S0 are affine

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
presentation. If R ⊗R0

A0 → R ⊗R0
B0 is flat, then for some i ≥ 0 the map

Ri ⊗R0
A0 → Ri ⊗R0

B0 is flat. This follows from Algebra, Lemma 10.156.1 part
(3). �

Lemma 31.7.7. Notation and assumptions as in Situation 31.7.1. If

(1) f is finite locally free (of degree d),
(2) f0 is locally of finite presentation,

then fi is finite locally free (of degree d) for some i ≥ 0.

Proof. By Lemmas 31.7.6 and 31.7.3 we find an i such that fi is flat and finite.
On the other hand, fi is locally of finite presentation. Hence fi is finite locally free
by Morphisms, Lemma 28.46.2. If moreover f is finite locally free of degree d, then
the image of Y → Yi is contained in the open and closed locus Wd ⊂ Yi over which
fi has degree d. By Lemma 31.3.7 we see that for some i′ ≥ i the image of Yi′ → Yi
is contained in Wd. Then fi′ will be finite locally free of degree d. �

Lemma 31.7.8. Notation and assumptions as in Situation 31.7.1. If

(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Being étale is local on the source and the target (Morphisms, Lemma
28.37.2) hence we may assume S0, X0, Y0 affine (details omitted). The correspond-
ing algebra fact is Algebra, Lemma 10.156.5. �

Lemma 31.7.9. Notation and assumptions as in Situation 31.7.1. If

(1) f is an isomorphism, and
(2) f0 is locally of finite presentation,

then fi is an isomorphism for some i ≥ 0.

Proof. By Lemmas 31.7.8 and 31.7.4 we can find an i such that fi is flat and a
closed immersion. Then fi identifies Xi with an open and closed subscheme of Yi,
see Morphisms, Lemma 28.27.2. By assumption the image of Y → Yi maps into
fi(Xi). Thus by Lemma 31.3.7 we find that Yi′ maps into fi(Xi) for some i′ ≥ i.
It follows that Xi′ → Yi′ is surjective and we win. �

Lemma 31.7.10. Notation and assumptions as in Situation 31.7.1. If

(1) f is a monomorphism, and
(2) f0 is locally of finite type,
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then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism of schemes V → W is a monomorphism if and
only if the diagonal V → V ×W V is an isomorphism (Schemes, Lemma 25.23.2).
The morphism X0 → X0 ×Y0

X0 is locally of finite presentation by Morphisms,
Lemma 28.22.12. Since X0×Y0 X0 is quasi-compact and quasi-separated (Schemes,
Remark 25.21.18) we conclude from Lemma 31.7.9 that ∆i : Xi → Xi ×Yi Xi is an
isomorphism for some i ≥ 0. For this i the morphism fi is a monomorphism. �

Lemma 31.7.11. Notation and assumptions as in Situation 31.7.1. If

(1) f is surjective, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is surjective.

Proof. The morphism f0 is of finite presentation. Hence E = f0(X0) is a con-
structible subset of Y0, see Morphisms, Lemma 28.23.2. Since fi is the base change
of f0 by Yi → Y0 we see that the image of fi is the inverse image of E in Yi. More-
over, we know that Y → Y0 maps into E. Hence we win by Lemma 31.3.7. �

31.8. Finite type closed in finite presentation

A result of this type is [Kie72, Satz 2.10]. Another reference is [Con07].

Lemma 31.8.1. Let f : X → S be a morphism of schemes. Assume:

(1) The morphism f is locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and an immersion
X → X ′ of schemes over S.

Proof. By Proposition 31.4.4 we can write X = limiXi with each Xi of finite
type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider the
commutative diagram

X //

!!

Xi,S
//

��

Xi

��
S // Spec(Z)

Note that Xi is of finite presentation over Spec(Z), see Morphisms, Lemma 28.22.9.
Hence the base change Xi,S → S is of finite presentation by Morphisms, Lemma
28.22.4. Thus it suffices to show that the arrow X → Xi,S is an immersion for i
sufficiently large.

To do this we choose a finite affine open covering X = V1∪. . .∪Vn such that f maps
each Vj into an affine open Uj ⊂ S. Let hj,a ∈ OX(Vj) be a finite set of elements
which generate OX(Vj) as an OS(Uj)-algebra, see Morphisms, Lemma 28.16.2. By
Lemmas 31.3.8 and 31.3.10 (after possibly shrinking I) we may assume that there
exist affine open coverings Xi = V1,i ∪ . . . ∪ Vn,i compatible with transition maps
such that Vj = limi Vj,i. By Lemma 31.3.3 we can choose i so large that each hj,a
comes from an element hj,a,i ∈ OXi(Vj,i). Thus the arrow in

Vj −→ Uj ×Spec(Z) Vj,i = (Vj,i)Uj ⊂ (Vj,i)S ⊂ Xi,S
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is a closed immersion. Since
⋃

(Vj,i)Uj forms an open of Xi,S and since the inverse
image of (Vj,i)Uj in X is Vj it follows that X → Xi,S is an immersion. �

Remark 31.8.2. We cannot do better than this if we do not assume more on S
and the morphism f : X → S. For example, in general it will not be possible to
find a closed immersion X → X ′ as in the lemma. The reason is that this would
imply that f is quasi-compact which may not be the case. An example is to take S
to be infinite dimensional affine space with 0 doubled and X to be one of the two
infinite dimensional affine spaces.

Lemma 31.8.3. Let f : X → S be a morphism of schemes. Assume:

(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and a closed
immersion X → X ′ of schemes over S.

Proof. By Lemma 31.8.1 above there exists a morphism Y → S of finite presen-
tation and an immersion i : X → Y of schemes over S. For every point x ∈ X,
there exists an affine open Vx ⊂ Y such that i−1(Vx) → Vx is a closed immersion.
Since X is quasi-compact we can find finitely may affine opens V1, . . . , Vn ⊂ Y
such that i(X) ⊂ V1 ∪ . . . ∪ Vn and i−1(Vj) → Vj is a closed immersion. In other
words such that i : X → X ′ = V1 ∪ . . . ∪ Vn is a closed immersion of schemes
over S. Since S is quasi-separated and Y is quasi-separated over S we deduce that
Y is quasi-separated, see Schemes, Lemma 25.21.13. Hence the open immersion
X ′ = V1∪ . . .∪Vn → Y is quasi-compact. This implies that X ′ → Y is of finite pre-
sentation, see Morphisms, Lemma 28.22.6. We conclude since then X ′ → Y → S is
a composition of morphisms of finite presentation, and hence of finite presentation
(see Morphisms, Lemma 28.22.3). �

Lemma 31.8.4. Let X → Y be a closed immersion of schemes. Assume Y quasi-
compact and quasi-separated. Then X can be written as a directed limit X = limXi

of schemes over Y where Xi → Y is a closed immersion of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subscheme of Y . By Properties, Lemma 27.20.3 we can write I as a directed colimit
I = colimi∈I Ii of its quasi-coherent sheaves of ideals of finite type. Let Xi ⊂ Y
be the closed subscheme defined by Ii. These form an inverse system of schemes
indexed by I. The transition morphisms Xi → Xi′ are affine because they are
closed immersions. Each Xi is quasi-compact and quasi-separated since it is a closed
subscheme of Y and Y is quasi-compact and quasi-separated by our assumptions.
We have X = limiXi as follows directly from the fact that I = colimi∈I Ia. Each of
the morphismsXi → Y is of finite presentation, see Morphisms, Lemma 28.22.7. �

Lemma 31.8.5. Let f : X → S be a morphism of schemes. Assume

(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then X = limXi where the Xi → S are of finite presentation, the Xi are quasi-
compact and quasi-separated, and the transition morphisms Xi′ → Xi are closed
immersions (which implies that X → Xi are closed immersions for all i).
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Proof. By Lemma 31.8.3 there is a closed immersion X → Y with Y → S of
finite presentation. Then Y is quasi-separated by Schemes, Lemma 25.21.13. Since
X is quasi-compact, we may assume Y is quasi-compact by replacing Y with a
quasi-compact open containing X. We see that X = limXi with Xi → Y a closed
immersion of finite presentation by Lemma 31.8.4. The morphisms Xi → S are of
finite presentation by Morphisms, Lemma 28.22.3. �

Proposition 31.8.6. Let f : X → S be a morphism of schemes. Assume

(1) f is of finite type and separated, and
(2) S is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → S and a
closed immersion X → X ′ of schemes over S.

Proof. Apply Lemma 31.8.5 and note that Xi → S is separated for large i by
Lemma 31.3.14 as we have assumed that X → S is separated. �

Lemma 31.8.7. Let f : X → S be a morphism of schemes. Assume

(1) f is finite, and
(2) S is quasi-compact and quasi-separated.

Then there exists a morphism which is finite and of finite presentation f ′ : X ′ → S
and a closed immersion X → X ′ of schemes over S.

Proof. We may write X = limXi as in Lemma 31.8.5. Applying Lemma 31.3.16
we see that Xi → S is finite for large enough i. �

Lemma 31.8.8. Let f : X → S be a morphism of schemes. Assume

(1) f is finite, and
(2) S quasi-compact and quasi-separated.

Then X is a directed limit X = limXi where the transition maps are closed im-
mersions and the objects Xi are finite and of finite presentation over S.

Proof. We may write X = limXi as in Lemma 31.8.5. Applying Lemma 31.3.16
we see that Xi → S is finite for large enough i. �

31.9. Descending relative objects

The following lemma is typical of the type of results in this section. We write out
the “standard” proof completely. It may be faster to convince yourself that the
result is true than to read this proof.

Lemma 31.9.1. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. Assume

(1) the morphisms fii′ : Si → Si′ are affine,
(2) the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:

(1) For any morphism of finite presentation X → S there exists an index
i ∈ I and a morphism of finite presentation Xi → Si such that X ∼= Xi,S

as schemes over S.
(2) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si, and

a morphism ϕ : Xi,S → Yi,S over S, there exists an index i′ ≥ i and a
morphism ϕi′ : Xi,Si′ → Yi,Si′ whose base change to S is ϕ.
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(3) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si and
a pair of morphisms ϕi, ψi : Xi → Yi whose base changes ϕi,S = ψi,S are
equal, there exists an index i′ ≥ i such that ϕi,Si′ = ψi,Si′ .

In other words, the category of schemes of finite presentation over S is the colimit
over I of the categories of schemes of finite presentation over Si.

Proof. In case each of the schemes Si is affine, and we consider only affine schemes
of finite presentation over Si, resp. S this lemma is equivalent to Algebra, Lemma
10.123.6. We claim that the affine case implies the lemma in general.

Let us prove (3). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a pair of morphisms ϕi, ψi : Xi → Yi. Assume that the base changes
are equal: ϕi,S = ψi,S . We will use the notation Xi′ = Xi,Si′ and Yi′ = Yi,Si′
for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according to Lemma
31.2.3 we have X = limi′≥iXi′ and similarly for Y . Additionally we denote ϕi′

and ψi′ (resp. ϕ and ψ) the base change of ϕi and ψi to Si′ (resp. S). So our
assumption means that ϕ = ψ. Since Yi and Xi are of finite presentation over
Si, and since Si is quasi-compact and quasi-separated, also Xi and Yi are quasi-
compact and quasi-separated (see Morphisms, Lemma 28.22.10). Hence we may
choose a finite affine open covering Yi =

⋃
Vj,i such that each Vj,i maps into an

affine open of S. As above, denote Vj,i′ the inverse image of Vj,i in Yi′ and Vj
the inverse image in Y . The immersions Vj,i′ → Yi′ are quasi-compact, and the

inverse images Uj,i′ = ϕ−1
i (Vj,i′) and U ′j,i′ = ψ−1

i (Vj,i′) are quasi-compact opens
of Xi′ . By assumption the inverse images of Vj under ϕ and ψ in X are equal.
Hence by Lemma 31.3.8 there exists an index i′ ≥ i such that of Uj,i′ = U ′j,i′ in

Xi′ . Choose an finite affine open covering Uj,i′ = U ′j,i′ =
⋃
Wj,k,i′ which induce

coverings Uj,i′′ = U ′j,i′′ =
⋃
Wj,k,i′′ for all i′′ ≥ i′. By the affine case there exists

an index i′′ such that ϕi′′ |Wj,k,i′′ = ψi′′ |Wj,k,i′′ for all j, k. Then i′′ is an index such

that ϕi′′ = ψi′′ and (3) is proved.

Let us prove (2). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a morphism ϕ : Xi,S → Yi,S . We will use the notation Xi′ = Xi,Si′

and Yi′ = Yi,Si′ for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that
according to Lemma 31.2.3 we have X = limi′≥iXi′ and similarly for Y . Since Yi
and Xi are of finite presentation over Si, and since Si is quasi-compact and quasi-
separated, also Xi and Yi are quasi-compact and quasi-separated (see Morphisms,
Lemma 28.22.10). Hence we may choose a finite affine open covering Yi =

⋃
Vj,i

such that each Vj,i maps into an affine open of S. As above, denote Vj,i′ the inverse
image of Vj,i in Yi′ and Vj the inverse image in Y . The immersions Vj → Y are
quasi-compact, and the inverse images Uj = ϕ−1(Vj) are quasi-compact opens of
X. Hence by Lemma 31.3.8 there exists an index i′ ≥ i and quasi-compact opens
Uj,i′ of Xi′ whose inverse image in X is Uj . Choose an finite affine open covering
Uj,i′ =

⋃
Wj,k,i′ which induce affine open coverings Uj,i′′ =

⋃
Wj,k,i′′ for all i′′ ≥ i′

and an affine open covering Uj =
⋃
Wj,k. By the affine case there exists an index

i′′ and morphisms ϕj,k,i′′ : Wj,k,i′′ → Vj,i′′ such that ϕ|Wj,k
= ϕj,k,i′′,S for all j, k.

By part (3) proved above, there is a further index i′′′ ≥ i′′ such that

ϕj1,k1,i′′,Si′′′ |Wj1,k1,i
′′′∩Wj2,k2,i

′′′ = ϕj2,k2,i′′,Si′′′ |Wj1,k1,i
′′′∩Wj2,k2,i

′′′

for all j1, j2, k1, k2. Then i′′′ is an index such that there exists a morphism ϕi′′′ :
Xi′′′ → Yi′′′ whose base change to S gives ϕ. Hence (2) holds.
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Let us prove (1). Suppose given a scheme X of finite presentation over S. Since X
is of finite presentation over S, and since S is quasi-compact and quasi-separated,
also X is quasi-compact and quasi-separated (see Morphisms, Lemma 28.22.10).
Choose a finite affine open covering X =

⋃
Uj such that each Uj maps into an

affine open Vj ⊂ S. Denote Uj1j2 = Uj1 ∩ Uj2 and Uj1j2j3 = Uj1 ∩ Uj2 ∩ Uj3 . By
Lemmas 31.3.8 and 31.3.10 we can find an index i1 and affine opens Vj,i1 ⊂ Si1
such that each Vj is the inverse of this in S. Let Vj,i be the inverse image of
Vj,i1 in Si for i ≥ i1. By the affine case we may find an index i2 ≥ i1 and affine
schemes Uj,i2 → Vj,i2 such that Uj = S ×Si2 Uj,i2 is the base change. Denote
Uj,i = Si ×Si2 Uj,i2 for i ≥ i2. By Lemma 31.3.8 there exists an index i3 ≥ i2
and open subschemes Wj1,j2,i3 ⊂ Uj1,i3 whose base change to S is equal to Uj1j2 .
Denote Wj1,j2,i = Si ×Si3 Wj1,j2,i3 for i ≥ i3. By part (2) shown above there
exists an index i4 ≥ i3 and morphisms ϕj1,j2,i4 : Wj1,j2,i4 → Wj2,j1,i4 whose base
change to S gives the identity morphism Uj1j2 = Uj2j1 for all j1, j2. For all i ≥ i4
denote ϕj1,j2,i = idS × ϕj1,j2,i4 the base change. We claim that for some i5 ≥
i4 the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (ϕj1,j2,i5)j1,j2) forms a glueing datum as in
Schemes, Section 25.14. In order to see this we have to verify that for i large enough
we have

ϕ−1
j1,j2,i

(Wj1,j2,i ∩Wj1,j3,i) = Wj1,j2,i ∩Wj1,j3,i

and that for large enough i the cocycle condition holds. The first condition follows
from Lemma 31.3.8 and the fact that Uj2j1j3 = Uj1j2j3 . The second from part (1)
of the lemma proved above and the fact that the cocycle condition holds for the
maps id : Uj1j2 → Uj2j1 . Ok, so now we can use Schemes, Lemma 25.14.2 to glue
the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (ϕj1,j2,i5)j1,j2) to get a scheme Xi5 → Si5 . By
construction the base change of Xi5 to S is formed by glueing the open affines Uj
along the opens Uj1 ← Uj1j2 → Uj2 . Hence S ×Si5 Xi5

∼= X as desired. �

Lemma 31.9.2. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. Assume

(1) all the morphisms fii′ : Si → Si′ are affine,
(2) all the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:

(1) For any sheaf of OS-modules F of finite presentation there exists an index
i ∈ I and a sheaf of OSi-modules of finite presentation Fi such that F ∼=
f∗i Ii.

(2) Suppose given an index i ∈ I, sheaves of OSi-modules Fi, Gi of finite
presentation and a morphism ϕ : f∗i Fi → f∗i Gi over S. Then there exists
an index i′ ≥ i and a morphism ϕi′ : f∗i′iFi → f∗i′iGi whose base change to
S is ϕ.

(3) Suppose given an index i ∈ I, sheaves of OSi-modules Fi, Gi of finite
presentation and a pair of morphisms ϕi, ψi : Fi → Gi. Assume that the
base changes are equal: f∗i ϕi = f∗i ψi. Then there exists an index i′ ≥ i
such that f∗i′iϕi = f∗i′iψi.

In other words, the category of modules of finite presentation over S is the colimit
over I of the categories modules of finite presentation over Si.

Proof. Omitted. Since we have written out completely the proof of Lemma 31.9.1
above it seems wise to use this here and not completely write this proof out also.
For example we can use:

http://stacks.math.columbia.edu/tag/01ZR
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(1) there is an equivalence of categories between quasi-coherent OS-modules
and vector bundles over S, see Constructions, Section 26.6.

(2) a vector bundle V(F) → S is of finite presentation over S if and only if
F is an OS-module of finite presentation.

Then you can descend morphisms in terms of morphisms of the associated vector-
bundles. Similarly for objects. �

Lemma 31.9.3. With notation and assumptions as in Lemma 31.9.1. Let i ∈ I.
Suppose that ϕi : Xi → Yi is a morphism of schemes of finite presentation over Si
and that Fi is a quasi-coherent OXi-module of finite presentation. If the pullback
of Fi to Xi ×Si S is flat over Yi ×Si S, then there exists an index i′ ≥ i such that
the pullback of Fi to Xi ×Si Si′ is flat over Yi ×Si Si′ .

Proof. (This lemma is the analogue of Lemma 31.7.6 for modules.) For i′ ≥ i
denote Xi′ = Si′ ×Si Xi, Fi′ = (Xi′ → Xi)

∗Fi and similarly for Yi′ . Denote ϕi′ the
base change of ϕi to Si′ . Also set X = S×Si Xi, Y = S×Si Xi, F = (X → Xi)

∗Fi
and ϕ the base change of ϕi to S. Let Yi =

⋃
j=1,...,m Vj,i be a finite affine open

covering such that each Vj,i maps into some affine open of Si. For each j = 1, . . .m

let ϕ−1
i (Vj,i) =

⋃
k=1,...,m(j) Uk,j,i be a finite affine open covering. For i′ ≥ i we

denote Vj,i′ the inverse image of Vj,i in Yi′ and Uk,j,i′ the inverse image of Uk,j,i
in Xi′ . Similarly we have Uk,j ⊂ X and Vj ⊂ Y . Then Uk,j = limi′≥i Uk,j,i′ and
Vj = limi′≥i Vj (see Lemma 31.2.2). Since Xi′ =

⋃
k,j Uk,j,i′ is a finite open covering

it suffices to prove the lemma for each of the morphisms Uk,j,i → Vj,i and the sheaf
Fi|Uk,j,i . Hence we see that the lemma reduces to the case that Xi and Yi are affine
and map into an affine open of Si, i.e., we may also assume that S is affine.

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some i ∈ I suppose given a map Ai → Bi of finitely presented
Ri-algebras. Let Ni be a finitely presented Bi-module. Then, if R ⊗Ri Ni is flat
over R ⊗Ri Ai, then for some i′ ≥ i the module Ri′ ⊗Ri Ni is flat over Ri′ ⊗Ri A.
This is exactly the result proved in Algebra, Lemma 10.156.1 part (3). �

31.10. Characterizing affine schemes

If f : X → S is a surjective integral morphism of schemes such that X is an affine
scheme then S is affine too. See [Con07, A.2]. Our proof relies on the Noetherian
case which we stated and proved in Cohomology of Schemes, Lemma 29.13.3. See
also [DG67, II 6.7.1].

Lemma 31.10.1. Let f : X → S be a morphism of schemes. Assume that f is
surjective and finite, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma
28.44.7), we see that S is separated (Morphisms, Lemma 28.42.11).

By Lemma 31.8.8 we can write X = limaXa with Xa → S finite and of finite
presentation. By Lemma 31.3.10 we see that Xa is affine for some a ∈ A. Replacing
X by Xa we may assume that X → S is surjective, finite, of finite presentation and
that X is affine.

By Proposition 31.4.4 we may write S = limi∈I Si as a directed limits as schemes
of finite type over Z. By Lemma 31.9.1 we can after shrinking I assume there exist

http://stacks.math.columbia.edu/tag/05LY
http://stacks.math.columbia.edu/tag/01ZT


31.10. CHARACTERIZING AFFINE SCHEMES 2097

schemes Xi → Si of finite presentation such that Xi′ = Xi ×S Si′ for i′ ≥ i and
such that X = limiXi. By Lemma 31.7.3 we may assume that Xi → Si is finite
for all i ∈ I as well. By Lemma 31.3.10 once again we may assume that Xi is affine
for all i ∈ I. Hence the result follows from the Noetherian case, see Cohomology of
Schemes, Lemma 29.13.3. �

Proposition 31.10.2. Let f : X → S be a morphism of schemes. Assume that f
is surjective and integral, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma
28.44.7), we see that S is separated (Morphisms, Lemma 28.42.11).

By Lemma 31.6.2 we can write X = limiXi with Xi → S finite. By Lemma 31.3.10
we see that for i sufficiently large the scheme Xi is affine. Moreover, since X → S
factors through each Xi we see that Xi → S is surjective. Hence we conclude that
S is affine by Lemma 31.10.1. �

Lemma 31.10.3. Let X be a scheme which is set theoretically the union of finitely
many affine closed subschemes. Then X is affine.

Proof. Let Zi ⊂ X, i = 1, . . . , n be affine closed subschemes such that X =
⋃
Zi

set theoretically. Then
∐
Zi → X is surjective and integral with affine source.

Hence X is affine by Proposition 31.10.2. �

Lemma 31.10.4. Let i : Z → X be a closed immersion of schemes inducing a
homeomorphism of underlying topological spaces. Let L be an invertible sheaf on
X. If i∗L is ample on Z, then L is ample on X.

Proof. Since i∗L is ample we see that Z is quasi-compact (Properties, Definition
27.24.1) and separated (Properties, Lemma 27.24.9). Since i is surjective, we see
that X is quasi-compact. Since i is universally closed and surjective, we see that
X is separated (Morphisms, Lemma 28.42.11).

By Proposition 31.4.4 we can write X = limXi as a directed limit of finite type
schemes over Z with affine transition morphisms. We can find an i and an invertible
sheaf Li on Xi whose pullback to X is isomorphic to L, see Lemma 31.9.2.

For each i let Zi ⊂ Xi be the scheme theoretic image of the morphism Z → X. If
Spec(Ai) ⊂ Xi is an affine open subscheme with inverse image of Spec(A) in X and
if Z ∩ Spec(A) is defined by the ideal I ⊂ A, then Zi ∩ Spec(Ai) is defined by the
ideal Ii ⊂ Ai which is the inverse image of I in Ai under the ring map Ai → A, see
Morphisms, Example 28.6.4. Since colimAi/Ii = A/I it follows that limZi = Z.
By Lemma 31.3.12 we see that Li|Zi is ample for some i. Since Z and hence X
maps into Zi set theoretically, we see that Xi′ → Xi maps into Zi set theoretically
for some i′ ≥ i, see Lemma 31.3.7. (Observe that since Xi is Noetherian, every
closed subset of Xi is constructible.) Let T ⊂ Xi′ be the scheme theoretic inverse
image of Zi in Xi′ . Observe that Li′ |T is the pullback of Li|Zi and hence ample
by Morphisms, Lemma 28.38.7 and the fact that T → Zi is an affine morphism.
Thus we see that Li′ is ample on Xi′ by Cohomology of Schemes, Lemma 29.14.5.
Pulling back to X (using the same lemma as above) we find that L is ample. �
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31.11. Variants of Chow’s Lemma

In this section we prove a number of variants of Chow’s lemma. The most inter-
esting version is probably just the Noetherian case, which we stated and proved in
Cohomology of Schemes, Section 29.16.

Lemma 31.11.1. Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a separated morphism of finite type. Then there exists an n ≥ 0 and a
diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Proof. By Proposition 31.8.6 we can find a closed immersion X → Y where Y is
separated and of finite presentation over S. Clearly, if we prove the assertion for Y ,
then the result follows for X. Hence we may assume that X is of finite presentation
over S.

Write S = limi Si as a directed limit of Noetherian schemes, see Proposition 31.4.4.
By Lemma 31.9.1 we can find an index i ∈ I and a scheme Xi → Si of finite
presentation so that X = S×SiXi. By Lemma 31.7.5 we may assume that Xi → Si
is separated. Clearly, if we prove the assertion for Xi over Si, then the assertion
holds for X. The case Xi → Si is treated by Cohomology of Schemes, Lemma
29.16.1. �

Here is a variant of Chow’s lemma where we assume the scheme on top has finitely
many irreducible components.

Lemma 31.11.2. Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a separated morphism of finite type. Assume that X has finitely many
irreducible components. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, there exists an open dense subscheme U ⊂ X such that π−1(U) → U is
an isomorphism of schemes.

Proof. Let X = Z1 ∪ . . . ∪ Zn be the decomposition of X into irreducible compo-
nents. Let ηj ∈ Zj be the generic point.

There are (at least) two ways to proceed with the proof. The first is to redo
the proof of Cohomology of Schemes, Lemma 29.16.1 using the general Properties,
Lemma 27.27.4 to find suitable affine opens in X. (This is the “standard” proof.)
The second is to use absolute Noetherian approximation as in the proof of Lemma
31.11.1 above. This is what we will do here.

By Proposition 31.8.6 we can find a closed immersion X → Y where Y is separated
and of finite presentation over S. Write S = limi Si as a directed limit of Noetherian
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schemes, see Proposition 31.4.4. By Lemma 31.9.1 we can find an index i ∈ I and
a scheme Yi → Si of finite presentation so that Y = S×Si Yi. By Lemma 31.7.5 we
may assume that Yi → Si is separated. We have the following diagram

ηj ∈ Zj // X //

��

Y //

��

Yi

��
S // Si

Denote h : X → Yi the composition.

For i′ ≥ i write Yi′ = Si′ ×Si Yi. Then Y = limi′≥i Yi′ , see Lemma 31.2.3. Choose
j, j′ ∈ {1, . . . , n}, j 6= j′. Note that ηj is not a specialization of ηj′ . By Lemma
31.3.2 we can replace i by a bigger index and assume that h(ηj) is not a special-
ization of h(ηj′) for all pairs (j, j′) as above. For such an index, let Y ′ ⊂ Yi be
the scheme theoretic image of h : X → Yi, see Morphisms, Definition 28.6.2. The
morphism h is quasi-compact as the composition of the quasi-compact morphisms
X → Y and Y → Yi (which is affine). Hence by Morphisms, Lemma 28.6.3 the
morphism X → Y ′ is dominant. Thus the generic points of Y ′ are all contained in
the set {h(η1), . . . , h(ηn)}, see Morphisms, Lemma 28.8.3. Since none of the h(ηj)
is the specialization of another we see that the points h(η1), . . . , h(ηn) are pairwise
distinct and are each a generic point of Y ′.

We apply Cohomology of Schemes, Lemma 29.16.1 above to the morphism Y ′ → Si.
This gives a diagram

Y ′

  

Y ∗

��

π
oo // Pn

Si

}}
Si

such that π is proper and surjective and an isomorphism over a dense open sub-
scheme V ⊂ Y ′. By our choice of i above we know that h(η1), . . . , h(ηn) ∈ V .
Consider the commutative diagram

X ′ X ×Y ′ Y ∗ //

��

Y ∗ //

��

Pn
Si

��

X //

��

Y ′

��
S // Si

Note that X ′ → X is an isomorphism over the open subscheme U = h−1(V ) which
contains each of the ηj and hence is dense in X. We conclude X ← X ′ → Pn

S is a
solution to the problem posed in the lemma. �

31.12. Applications of Chow’s lemma

We can use Chow’s lemma to investigate the notions of proper and separated mor-
phisms. As a first application we have the following.

Lemma 31.12.1. Let S be a scheme. Let f : X → S be a separated morphism of
finite type. The following are equivalent:
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(1) The morphism f is proper.
(2) For any morphism S′ → S which is locally of finite type the base change

XS′ → S′ is closed.
(3) For every n ≥ 0 the morphism An ×X → An × S is closed.

Proof. Clearly (1) implies (2), and (2) implies (3), so we just need to show (3)
implies (1). First we reduce to the case when S is affine. Assume that (3) implies
(1) when the base is affine. Now let f : X → S be a separated morphism of finite
type. Being proper is local on the base (see Morphisms, Lemma 28.42.3), so if
S =

⋃
α Sα is an open affine cover, and if we denote Xα := f−1(Sα), then it is

enough to show that f |Xα : Xα → Sα is proper for all α. Since Sα is affine, if the
map f |Xα satisfies (3), then it will satisfy (1) by assumption, and will be proper.
To finish the reduction to the case S is affine, we must show that if f : X → S is
separated of finite type satisfying (3), then f |Xα : Xα → Sα is separated of finite
type satisfying (3). Separatedness and finite type are clear. To see (3), notice that
An ×Xα is the open preimage of An × Sα under the map 1× f . Fix a closed set
Z ⊂ An × Xα. Let Z̄ denote the closure of Z in An × X. Then for topological
reasons,

1× f(Z̄) ∩An × Sα = 1× f(Z).

Hence 1× f(Z) is closed, and we have reduced the proof of (3) ⇒ (1) to the affine
case.

Assume S affine, and f : X → S separated of finite type. We can apply Chow’s
Lemma 31.11.1 to get π : X ′ → X proper surjective and X ′ → Pn

S an immersion.
If X is proper over S, then X ′ → S is proper (Morphisms, Lemma 28.42.4). Since
Pn
S → S is separated, we conclude that X ′ → Pn

S is proper (Morphisms, Lemma
28.42.7) and hence a closed immersion (Schemes, Lemma 25.10.4). Conversely,
assume X ′ → Pn

S is a closed immersion. Consider the diagram:

(31.12.1.1) X ′ //

π
����

Pn
S

��
X

f // S

All maps are a priori proper except for X → S. Hence we conclude that X → S is
proper by Morphisms, Lemma 28.42.8. Therefore, we have shown that X → S is
proper if and only if X ′ → Pn

S is a closed immersion.

Assume S is affine and (3) holds, and let n,X ′, π be as above. Since being a closed
morphism is local on the base, the map X × Pn → S × Pn is closed since by (3)
X×An → S×An is closed and since projective space is covered by copies of affine
n-space, see Constructions, Lemma 26.13.3. By Morphisms, Lemma 28.42.5 the
morphism

X ′ ×S Pn
S → X ×S Pn

S = X ×Pn

is proper. Since Pn is separated, the projection

X ′ ×S Pn
S = Pn

X′ → X ′

will be separated as it is just a base change of a separated morphism. Therefore,
the map X ′ → X ′ ×S Pn

S is proper, since it is a section to a separated map (see
Schemes, Lemma 25.21.12). Composing all these proper morphisms

X ′ → X ′ ×S Pn
S → X ×S Pn

S = X ×Pn → S ×Pn = Pn
S
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we see that the map X ′ → Pn
S is proper, and hence a closed immersion. �

If the base is Noetherian we can show that the valuative criterion holds using only
discrete valuation rings. First we state the result concerning separation. We will
often use solid commutative diagrams of morphisms of schemes having the following
shape

(31.12.1.2) Spec(K) //

��

X

��
Spec(A) //

;;

S

with A a valuation ring and K its field of fractions.

Lemma 31.12.2. Let S be a locally Noetherian scheme. Let f : X → S be a mor-
phism of schemes. Assume f is locally of finite type. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (31.12.1.2) there is at most one dotted arrow.
(3) For all diagrams (31.12.1.2) with A a discrete valuation ring there is at

most one dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for

any discrete valuation ring A ⊂ K = κ(η) with fraction field K and
any diagram (31.12.1.2) such that the morphism Spec(K) → X is the
canonical one (see Schemes, Section 25.13) there is at most one dotted
arrow.

Proof. Clearly (1) implies (2), (2) implies (3), and (3) implies (4). It remains to
show (4) implies (1). Assume (4). We begin by reducing to S affine. Being separated
is a local on the base (see Schemes, Lemma 25.21.8). Hence, as in the proof of
Lemma 31.12.1, if we can show that whenever X → S has (4) that the restriction
Xα → Sα has (4) where Sα ⊂ S is an (affine) open subset and Xα := f−1(Sα), then
we will be done. The generic points of the irreducible components of Xα will be the
generic points of irreducible components of X, since Xα is open in X. Therefore,
any two distinct dotted arrows in the diagram

(31.12.2.1) Spec(K) //

��

Xα

��
Spec(A) //

;;

Sα

would then give two distinct arrows in diagram (31.12.1.2) via the maps Xα → X
and Sα → S, which is a contradiction. Thus we have reduced to the case S is affine.
We remark that in the course of this reduction, we prove that if X → S has (4)
then the restriction U → V has (4) for opens U ⊂ X and V ⊂ S with f(U) ⊂ V .

We next wish to reduce to the case X → S is finite type. Assume that we know (4)
implies (1) when X is finite type. Since S is Noetherian and X is locally of finite
type over S we see X is locally Noetherian as well (see Morphisms, Lemma 28.16.6).
Thus, X → S is quasi-separated (see Properties, Lemma 27.5.4), and therefore we
may apply the valuative criterion to check whether X is separated (see Schemes,
Lemma 25.22.2). Let X =

⋃
αXα be an affine open cover of X. Given any two

dotted arrows, in a diagram (31.12.1.2), the image of the closed points of Spec A
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2102 31. LIMITS OF SCHEMES

will fall in two sets Xα and Xβ . Since Xα ∪Xβ is open, for topological reasons it
must contain the image of Spec(A) under both maps. Therefore, the two dotted
arrows factor through Xα∪Xβ → X, which is a scheme of finite type over S. Since
Xα ∪ Xβ is an open subset of X, by our previous remark, Xα ∪ Xβ satisfies (4),
so by assumption, is separated. This implies the two given dotted arrows are the
same. Therefore, we have reduced to X → S is finite type.

Assume X → S of finite type and assume (4). Since X → S is finite type, and
S is an affine Noetherian scheme, X is also Noetherian (see Morphisms, Lemma
28.16.6). Therefore, X → X×SX will be a quasi-compact immersion of Noetherian
schemes. We proceed by contradiction. Assume that X → X ×S X is not closed.
Then, there is some y ∈ X ×S X in the closure of the image that is not in the
image. As X is Noetherian it has finitely many irreducible components. Therefore,
y is in the closure of the image of one of the irreducible components X0 ⊂ X. Give
X0 the reduced induced structure. The composition X0 → X → X ×S X factors
through the closed subscheme X0 ×S X0 ⊂ X ×S X. Denote the closure of ∆(X0)
in X0 ×S X0 by X̄0 (again as a reduced closed subscheme). Thus y ∈ X̄0. Since
X0 → X0 ×S X0 is an immersion, the image of X0 will be open in X̄0. Hence X0

and X̄0 are birational. Since X̄0 is a closed subscheme of a Noetherian scheme,
it is Noetherian. Thus, the local ring OX̄0,y is a local Noetherian domain with
fraction field K equal to the function field of X0. By the Krull-Akizuki theorem
(see Algebra, Lemma 10.115.12), there exists a discrete valuation ring A dominating
OX̄0,y with fraction field K. This allows to to construct a diagram:

(31.12.2.2) Spec K //

��

X0

∆

��
A //

88

X0 ×S X0

which sends Spec K to the generic point of ∆(X0) and the closed point of A to
y ∈ X0×SX0 (use the material in Schemes, Section 25.13 to construct the arrows).
There cannot even exist a set theoretic dotted arrow, since y is not in the image
of ∆ by our choice of y. By categorical means, the existence of the dotted arrow
in the above diagram is equivalent to the uniqueness of the dotted arrow in the
following diagram:

(31.12.2.3) Spec K //

��

X0

��
A //

::

S

Therefore, we have non-uniqueness in this latter diagram by the nonexistence in
the first. Therefore, X0 does not satisfy uniqueness for discrete valuation rings, and
since X0 is an irreducible component of X, we have that X → S does not satisfy
(4). Therefore, we have shown (4) implies (1). �

Lemma 31.12.3. Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any diagram (31.12.1.2) there exists exactly one dotted arrow.
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(3) For all diagrams (31.12.1.2) with A a discrete valuation ring there exists
exactly one dotted arrow.

(4) For any irreducible component X0 of X with generic point η ∈ X0, for
any discrete valuation ring A ⊂ K = κ(η) with fraction field K and
any diagram (31.12.1.2) such that the morphism Spec(K) → X is the
canonical one (see Schemes, Section 25.13) there exists exactly one dotted
arrow.

Proof. (1) implies (2) implies (3) implies (4). We will now show (4) implies (1).
As in the proof of Lemma 31.12.2, we can reduce to the case S is affine, since
properness is local on the base, and if X → S satisfies (4), then Xα → Sα does as
well for open Sα ⊂ S and Xα = f−1(Sα).

Now S is a Noetherian scheme, and so X is as well, since X → S is of finite type.
Now we may use Chow’s lemma (Cohomology of Schemes, Lemma 29.16.1) to get
a surjective, proper, birational X ′ → X and an immersion X ′ → Pn

S . We wish to
show X → S is universally closed. As in the proof of Lemma 31.12.1, it is enough
to check that X ′ → Pn

S is a closed immersion. For the sake of contradiction, assume
that X ′ → Pn

S is not a closed immersion. Then there is some y ∈ Pn
S that is in the

closure of the image of X ′, but is not in the image. So y is in the closure of the
image of an irreducible component X ′0 of X ′, but not in the image. Let X̄ ′0 ⊂ Pn

S

be the closure of the image of X ′0. As X ′ → Pn
S is an immersion of Noetherian

schemes, the morphism X ′0 → X̄ ′0 is open and dense. By Algebra, Lemma 10.115.12
or Properties, Lemma 27.5.9 we can find a discrete valuation ring A dominating
OX̄′0,y and with identical field of fractions K. It is clear that K is the residue field

at the generic point of X ′0. Thus the solid commutative diagram

(31.12.3.1) Spec K //

��

X ′ //

��

Pn
S

��
Spec A //

;; 66

X // S

Note that the closed point of A maps to y ∈ Pn
S . By construction, there does not

exist a set theoretic lift to X ′. As X ′ → X is birational, the image of X ′0 in X is
an irreducible component X0 of X and K is also identified with the function field
of X0. Hence, as X → S is assumed to satisfy (4), the dotted arrow Spec(A) →
X exists. Since X ′ → X is proper, the dotted arrow lifts to the dotted arrow
Spec(A) → X ′ (use Schemes, Proposition 25.20.6). We can compose this with the
immersion X ′ → Pn

S to obtain another morphism (not depicted in the diagram)
from Spec(A) → Pn

S . Since Pn
S is proper over S, it satisfies (2), and so these two

morphisms agree. This is a contradiction, for we have constructed the forbidden
lift of our original map Spec(A)→ Pn

S to X ′. �

Here is an application of Chow’s lemma which goes in a slightly different direction.

Lemma 31.12.4. Assumptions and notation as in Situation 31.7.1. If

(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.
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Proof. By Lemma 31.7.5 we see that fi is separated for some i ≥ 0. Replacing 0
by i we may assume that f0 is separated. Observe that f0 is quasi-compact, see
Schemes, Lemma 25.21.15. By Lemma 31.11.1 we can choose a diagram

X0

  

X ′0

��

π
oo // Pn

Y0

}}
Y0

where X ′0 → Pn
Y0

is an immersion, and π : X ′0 → X0 is proper and surjective.
Introduce X ′ = X ′0 ×Y0

Y and X ′i = X ′0 ×Y0
Yi. By Morphisms, Lemmas 28.42.4

and 28.42.5 we see that X ′ → Y is proper. Hence X ′ → Pn
Y is a closed immersion

(Morphisms, Lemma 28.42.7). By Morphisms, Lemma 28.42.8 it suffices to prove
that X ′i → Yi is proper for some i. By Lemma 31.7.4 we find that X ′i → Pn

Yi
is a

closed immersion for i large enough. Then X ′i → Yi is proper and we win. �

Lemma 31.12.5. Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then X = limXi with Xi → S proper and of finite presentation.

Proof. By Proposition 31.8.6 we can find a closed immersion X → Y with Y
separated and of finite presentation over S. By Lemma 31.11.1 we can find a
diagram

Y

��

Y ′

��

π
oo // Pn

S

~~
S

where Y ′ → Pn
S is an immersion, and π : Y ′ → Y is proper and surjective. By

Lemma 31.8.4 we can write X = limXi with Xi → Y a closed immersion of finite
presentation. Denote X ′i ⊂ Y ′, resp. X ′ ⊂ Y ′ the scheme theoretic inverse image
of Xi ⊂ Y , resp. X ⊂ Y . Then limX ′i = X ′. Since X ′ → S is proper (Morphisms,
Lemmas 28.42.4), we see that X ′ → Pn

S is a closed immersion (Morphisms, Lemma
28.42.7). Hence for i large enough we find that X ′i → Pn

S is a closed immersion by
Lemma 31.3.17. Thus X ′i is proper over S. For such i the morphism Xi → S is
proper by Morphisms, Lemma 28.42.8. �

Lemma 31.12.6. Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then (X → S) = lim(Xi → Si) with Si of finite type over Z and
Xi → Si proper and of finite presentation.

Proof. By Lemma 31.12.5 we can write X = limk∈K Xk with Xk → S proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition
31.4.4) we can write S = limj∈J Sj with Sj of finite type over Z. For each k there
exists a j and a morphism Xk,j → Sj of finite presentation with Xk

∼= S ×Sj Xk,j

as schemes over S, see Lemma 31.9.1. After increasing j we may assume Xk,j → Sj
is proper, see Lemma 31.12.4. The set I will be consist of these pairs (k, j) and
the corresponding morphism is Xk,j → Sj . For every k′ ≥ k we can find a j′ ≥ j
and a morphism Xj′,k′ → Xj,k over Sj′ → Sj whose base change to S gives the
morphism Xk′ → Xk (follows again from Lemma 31.9.1). These morphisms form
the transition morphisms of the system. Some details omitted. �
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Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms, Definition 28.5.5.

Lemma 31.12.7. Assumptions and notation as in Situation 31.7.1. Let F0 be a
quasi-coherent OX0-module. Denote F and Fi the pullbacks of F0 to X and Xi.
Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms,
Lemma 28.5.3 this guarantees that Xi is the support of Fi and X is the support of
F . Then, if Z ⊂ X denotes the scheme theoretic support of F , we see that Z → X
is a universal homeomorphism. We conclude that X → Y is proper as this is true
for Z → Y by assumption, see Morphisms, Lemma 28.42.8. By Lemma 31.12.4 we
see that Xi → Y is proper for some i. Then it follows that the scheme theoretic
support Zi of Fi is proper over Y by Morphisms, Lemmas 28.42.6 and 28.42.4. �

31.13. Universally closed morphisms

In this section we discuss when a quasi-compact but not necessarily separated
morphism is universally closed. We first prove a lemma which will allow us to check
universal closedness after a base change which is locally of finite presentation.

Lemma 31.13.1. Let f : X → S be a quasi-compact morphism of schemes. Let
g : T → S be a morphism of schemes. Let t ∈ T be a point and Z ⊂ XT be a closed
subscheme such that Z ∩Xt = ∅. Then there exists an open neighbourhood V ⊂ T
of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Proof. Let s = g(t). During the proof we may always replace T by an open
neighbourhood of t. Hence we may also replace S by an open neighbourhood of
s. Thus we may and do assume that T and S are affine. Say S = Spec(A),
T = Spec(B), g is given by the ring map A → B, and t correspond to the prime
ideal q ⊂ B.

As X → S is quasi-compact and S is affine we may write X =
⋃
i=1,...,n Ui

as a finite union of affine opens. Write Ui = Spec(Ci). In particular we have
XT =

⋃
i=1,...,n Ui,T =

⋃
i=1,...n Spec(Ci ⊗A B). Let Ii ⊂ Ci ⊗A B be the ideal

corresponding to the closed subscheme Z ∩ Ui,T . The condition that Z ∩ Xt = ∅
signifies that Ii generates the unit ideal in the ring

Ci ⊗A κ(q) = (B \ q)−1 (Ci ⊗A B/qCi ⊗A B)

http://stacks.math.columbia.edu/tag/081G
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Since Ii(B \q)−1(Ci⊗AB) = (B \q)−1Ii this means that 1 = xi/gi for some xi ∈ Ii
and gi ∈ B, gi 6∈ q. Thus, clearing denominators we can find a relation of the form

xi +
∑

j
fi,jci,j = gi

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B, and gi ∈ B, gi 6∈ q. After replacing B
by Bg1...gn , i.e., after replacing T by a smaller affine neighbourhood of t, we may
assume the equations read

xi +
∑

j
fi,jci,j = 1

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B.

To finish the argument write B as a colimit of finitely presented A-algebras Bλ
over a directed partially ordered set Λ. For each λ set qλ = (Bλ → B)−1(q). For
sufficiently large λ ∈ Λ we can find

(1) an element xi,λ ∈ Ci ⊗A Bλ which maps to xi,
(2) elements fi,j,λ ∈ qi,λ mapping to fi,j , and
(3) elements ci,j,λ ∈ Ci ⊗A Bλ mapping to ci,j .

After increasing λ a bit more the equation

xi,λ +
∑

j
fi,j,λci,j,λ = 1

will hold. Fix such a λ and set T ′ = Spec(Bλ). Then t′ ∈ T ′ is the point corre-
sponding to the prime qλ. Finally, let Z ′ ⊂ XT ′ be the scheme theoretic closure of
Z → XT → XT ′ . As XT → XT ′ is affine, we can compute Z ′ on the affine open
pieces Ui,T ′ as the closed subscheme associated to Ker(Ci ⊗A Bλ → Ci ⊗A B/Ii),
see Morphisms, Example 28.6.4. Hence xi,λ is in the ideal defining Z ′. Thus the
last displayed equation shows that Z ′ ∩Xt′ is empty. �

Lemma 31.13.2. Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f is universally closed,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is closed, and
(3) for every n the morphism An ×X → An × S is closed.

Proof. It is clear that (1) implies (2). Let us prove that (2) implies (1). Suppose
that the base change XT → T is not closed for some scheme T over S. By Schemes,
Lemma 25.19.8 this means that there exists some specialization t1  t in T and a
point ξ ∈ XT mapping to t1 such that ξ does not specialize to a point in the fibre
over t. Set Z = {ξ} ⊂ XT . Then Z ∩Xt = ∅. Apply Lemma 31.13.1. We find an
open neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .
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Clearly this means that XT ′ → T ′ maps the closed subset Z ′ to a subset of T ′

which contains a(t1) but not t′ = a(t). Since a(t1)  a(t) = t′ we conclude that
XT ′ → T ′ is not closed. Hence we have shown that X → S not universally closed
implies that XT ′ → T ′ is not closed for some T ′ → S which is locally of finite
presentation. In order words (2) implies (1).

Assume that An×X → An×S is closed for every integer n. We want to prove that
XT → T is closed for every scheme T which is locally of finite presentation over S.
We may of course assume that T is affine and maps into an affine open V of S (since
XT → T being a closed is local on T ). In this case there exists a closed immersion
T → An×V because OT (T ) is a finitely presented OS(V )-algebra, see Morphisms,
Lemma 28.22.2. Then T → An × S is a locally closed immersion. Hence we get a
cartesian diagram

XT

fT

��

// An ×X

fn

��
T // An × S

of schemes where the horizontal arrows are locally closed immersions. Hence any
closed subset Z ⊂ XT can be written as XT∩Z ′ for some closed subset Z ′ ⊂ An×X.
Then fT (Z) = T ∩fn(Z ′) and we see that if fn is closed, then also fT is closed. �

Lemma 31.13.3. Let f : X → S be a finite type morphism of schemes. Assume
S is locally Noetherian. Then the following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × S is closed,
(3) for any diagram (31.12.1.2) there exists some dotted arrow,
(4) for all diagrams (31.12.1.2) with A a discrete valuation ring there exists

some dotted arrow.

Proof. The equivalence of (1) and (2) is a special case of Lemma 31.13.2. The
equivalence of (1) and (3) is a special case of Schemes, Proposition 25.20.6. Trivially
(3) implies (4). Thus all we have to do is prove that (4) implies (2). We will prove
that An×X → An×S is closed by the criterion of Schemes, Lemma 25.19.8. Pick
n and a specialization z  z′ of points in An×S and a point y ∈ An×X lying over
z. Note that κ(y) is a finitely generated field extension of κ(z) as An×X → An×S
is of finite type. Hence by Properties, Lemma 27.5.9 or Algebra, Lemma 10.115.12
implies that there exists a discrete valuation ring A ⊂ κ(y) with fraction field κ(z)
dominating the image of OAn×S,z′ in κ(z). This gives a commutative diagram

Spec(κ(y)) //

��

An ×X

��

// X

��
Spec(A) // An × S // S

Now property (4) implies that there exists a morphism Spec(A) → X which fits
into this diagram. Since we already have the morphism Spec(A) → An from the
left lower horizontal arrow we also get a morphism Spec(A)→ An ×X fitting into
the left square. Thus the image y′ ∈ An ×X of the closed point is a specialization
of y lying over z′. This proves that specializations lift along An × X → An × S
and we win. �
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31.14. Limits and dimensions of fibres

The following lemma is most often used in the situation of Lemma 31.9.1 to assure
that if the fibres of the limit have dimension ≤ d, then the fibres at some finite
stage have dimension ≤ d.

Lemma 31.14.1. Let I be a directed partially ordered set. Let (fi : Xi → Si) be
an inverse system of morphisms of schemes over I. Assume

(1) all the morphisms Si′ → Si are affine,
(2) all the schemes Si are quasi-compact and quasi-separated,
(3) the morphisms fi are of finite type, and
(4) the morphisms Xi′ → Xi ×Si Si′ are closed immersions.

Let f : X = limiXi → S = limi Si be the limit. Let d ≥ 0. If every fibre of f has
dimension ≤ d, then for some i every fibre of fi has dimension ≤ d.

Proof. For each i let Ui = {x ∈ Xi | dimx((Xi)fi(x)) ≤ d}. This is an open
subset of Xi, see Morphisms, Lemma 28.29.4. Set Zi = Xi \ Ui (with reduced
induced scheme structure). We have to show that Zi = ∅ for some i. If not, then
Z = limZi 6= ∅, see Lemma 31.3.4. Say z ∈ Z is a point. Note that Z ⊂ X is
a closed subscheme. Set s = f(z). For each i let si ∈ Si be the image of s. We
remark that Zs is the limit of the schemes (Zi)si and Zs is also the limit of the
schemes (Zi)si base changed to κ(s). Moreover, all the morphisms

Zs −→ (Zi′)si′ ×Spec(κ(si′ ))
Spec(κ(s)) −→ (Zi)si ×Spec(κ(si)) Spec(κ(s)) −→ Xs

are closed immersions by assumption (4). Hence Zs is the scheme theoretic inter-
section of the closed subschemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) in Xs. Since all the
irreducible components of the schemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) have dimen-
sion > d and contain z we conclude that Zs contains an irreducible component of
dimension > d passing through z which contradicts the fact that Zs ⊂ Xs and
dim(Xs) ≤ d. �

Lemma 31.14.2. Notation and assumptions as in Situation 31.7.1. If

(1) f is a quasi-finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is quasi-finite.

Proof. Follows immediately from Lemma 31.14.1. �

Lemma 31.14.3. Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of finite presentation. Let d ≥ 0 be an integer. If Z ⊂ X be
a closed subscheme such that dim(Zs) ≤ d for all s ∈ S, then there exists a closed
subscheme Z ′ ⊂ X such that

(1) Z ⊂ Z ′,
(2) Z ′ → X is of finite presentation, and
(3) dim(Z ′s) ≤ d for all s ∈ S.

Proof. By Proposition 31.4.4 we can write S = limSi as the limit of a directed
inverse system of Noetherian schemes with affine transition maps. By Lemma
31.9.1 we may assume that there exist a system of morphisms fi : Xi → Si of finite
presentation such that Xi′ = Xi ×Si Si′ for all i′ ≥ i and such that X = Xi ×Si S.
Let Zi ⊂ Xi be the scheme theoretic image of Z → X → Xi. Then for i′ ≥ i the
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morphism Xi′ → Xi maps Zi′ into Zi and the induced morphism Zi′ → Zi ×Si Si′
is a closed immersion. By Lemma 31.14.1 we see that the dimension of the fibres
of Zi → Si all have dimension ≤ d for a suitable i ∈ I. Fix such an i and set
Z ′ = Zi ×Si S ⊂ X. Since Si is Noetherian, we see that Xi is Noetherian, and
hence the morphism Zi → Xi is of finite presentation. Therefore also the base
change Z ′ → X is of finite presentation. Moreover, the fibres of Z ′ → S are base
changes of the fibres of Zi → Si and hence have dimension ≤ d. �
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CHAPTER 32

Varieties

32.1. Introduction

In this chapter we start studying varieties and more generally schemes over a field.
A fundamental reference is [DG67].

32.2. Notation

Throughout this chapter we use the letter k to denote the ground field.

32.3. Varieties

In the stacks project we will use the following as our definition of a variety.

Definition 32.3.1. Let k be a field. A variety is a scheme X over k such that X is
integral and the structure morphism X → Spec(k) is separated and of finite type.

This definition has the following drawback. Suppose that k ⊂ k′ is an exten-
sion of fields. Suppose that X is a variety over k. Then the base change Xk′ =
X×Spec(k)Spec(k′) is not necessarily a variety over k′. This phenomenon (in greater
generality) will be discussed in detail in the following sections. The product of two
varieties need not be a variety (this is really the same phenomenon). Here is an
example.

Example 32.3.2. Let k = Q. Let X = Spec(Q(i)) and Y = Spec(Q(i)). Then the
product X×Spec(k) Y of the varieties X and Y is not a variety, since it is reducible.
(It is isomorphic to the disjoint union of two copies of X.)

If the ground field is algebraically closed however, then the product of varieties is
a variety. This follows from the results in the algebra chapter, but there we treat
much more general situations. There is also a simple direct proof of it which we
present here.

Lemma 32.3.3. Let k be an algebraically closed field. Let X, Y be varieties over
k. Then X ×Spec(k) Y is a variety over k.

Proof. The morphism X ×Spec(k) Y → Spec(k) is of finite type and separated
because it is the composition of the morphisms X×Spec(k)Y → Y → Spec(k) which
are separated and of finite type, see Morphisms, Lemmas 28.16.4 and 28.16.3 and
Schemes, Lemma 25.21.13. To finish the proof it suffices to show that X×Spec(k) Y
is integral. Let X =

⋃
i=1,...,n Ui, Y =

⋃
j=1,...,m Vj be finite affine open coverings.

If we can show that each Ui×Spec(k) Vj is integral, then we are done by Properties,
Lemmas 27.3.2, 27.3.3, and 27.3.4. This reduces us to the affine case.

2111
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The affine case translates into the following algebra statement: Suppose that A, B
are integral domains and finitely generated k-algebras. Then A⊗k B is an integral
domain. To get a contradiction suppose that

(
∑

i=1,...,n
ai ⊗ bi)(

∑
j=1,...,m

cj ⊗ dj) = 0

in A ⊗k B with both factors nonzero in A ⊗k B. We may assume that b1, . . . , bn
are k-linearly independent in B, and that d1, . . . , dm are k-linearly independent
in B. Of course we may also assume that a1 and c1 are nonzero in A. Hence
D(a1c1) ⊂ Spec(A) is nonempty. By the Hilbert Nullstellensatz (Algebra, Theorem
10.33.1) we can find a maximal ideal m ⊂ A contained in D(a1c1) and A/m = k
as k is algebraically closed. Denote ai, cj the residue classes of ai, cj in A/m = k.
Then equation above becomes

(
∑

i=1,...,n
aibi)(

∑
j=1,...,m

cjdj) = 0

which is a contradiction with m ∈ D(a1c1), the linear independence of b1, . . . , bn
and d1, . . . , dm, and the fact that B is a domain. �

32.4. Geometrically reduced schemes

IfX is a reduced scheme over a field, then it can happen thatX becomes nonreduced
after extending the ground field. This does not happen for geometrically reduced
schemes.

Definition 32.4.1. Let k be a field. Let X be a scheme over k. Let x ∈ X be a
point.

(1) Let x ∈ X be a point. We say X is geometrically reduced at x if for any
field extension k ⊂ k′ and any point x′ ∈ Xk′ lying over x the local ring
OXk′ ,x′ is reduced.

(2) We say X is geometrically reduced over k if X is geometrically reduced at
every point of X.

This may seem a little mysterious at first, but it is really the same thing as the
notion discussed in the algebra chapter. Here are some basic results explaining the
connection.

Lemma 32.4.2. Let k be a field. Let X be a scheme over k. Let x ∈ X. The
following are equivalent

(1) X is geometrically reduced at x, and
(2) the ring OX,x is geometrically reduced over k (see Algebra, Definition

10.42.1).

Proof. Assume (1). This in particular implies that OX,x is reduced. Let k ⊂ k′

be a finite purely inseparable field extension. Consider the ring OX,x ⊗k k′. By
Algebra, Lemma 10.45.2 its spectrum is the same as the spectrum of OX,x. Hence
it is a local ring also (Algebra, Lemma 10.17.2). Therefore there is a unique point
x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k

′. By assumption this is a reduced
ring. Hence we deduce (2) by Algebra, Lemma 10.43.3.

Assume (2). Let k ⊂ k′ be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 28.11.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence
it is reduced by assumption and (1) is proved. �
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The notion isn’t interesting in characteristic zero.

Lemma 32.4.3. Let X be a scheme over a perfect field k (e.g. k has characteristic
zero). Let x ∈ X. If OX,x is reduced, then X is geometrically reduced at x. If X is
reduced, then X is geometrically reduced over k.

Proof. The first statement follows from Lemma 32.4.2 and Algebra, Lemma 10.42.6
and the definition of a perfect field (Algebra, Definition 10.44.1). The second state-
ment follows from the first. �

Lemma 32.4.4. Let k be a field of characteristic p > 0. Let X be a scheme over
k. The following are equivalent

(1) X is geometrically reduced,
(2) Xk′ is reduced for every field extension k ⊂ k′,
(3) Xk′ is reduced for every finite purely inseparable field extension k ⊂ k′,
(4) Xk1/p is reduced,
(5) Xkperf is reduced,
(6) Xk̄ is reduced,
(7) for every affine open U ⊂ X the ring OX(U) is geometrically reduced (see

Algebra, Definition 10.42.1).

Proof. Assume (1). Then for every field extension k ⊂ k′ and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is reduced. In other words Xk′ is reduced. Hence (2).

Assume (2). Let U ⊂ X be an affine open. Then for every field extension k ⊂ k′ the
scheme Xk′ is reduced, hence Uk′ = Spec(O(U)⊗k k′) is reduced, hence O(U)⊗k k′
is reduced (see Properties, Section 27.3). In other words O(U) is geometrically
reduced, so (7) holds.

Assume (7). For any field extension k ⊂ k′ the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes,
Section 25.17). Hence Xk′ is reduced. So (1) holds.

This proves that (1), (2), and (7) are equivalent. These are equivalent to (3), (4),
(5), and (6) because we can apply Algebra, Lemma 10.43.3 to OX(U) for U ⊂ X
affine open. �

Lemma 32.4.5. Let k be a field of characteristic p > 0. Let X be a scheme over
k. Let x ∈ X. The following are equivalent

(1) X is geometrically reduced at x,
(2) OXk′ ,x′ is reduced for every finite purely inseparable field extension k′ of

k and x′ ∈ Xk′ the unique point lying over x,
(3) OX

k1/p ,x′ is reduced for x′ ∈ Xk′ the unique point lying over x, and

(4) OX
kperf

,x′ is reduced for x′ ∈ Xkperf the unique point lying over x.

Proof. Note that if k ⊂ k′ is purely inseparable, then Xk′ → X induces a homeo-
morphism on underlying topological spaces, see Algebra, Lemma 10.45.2. Whence
the uniqueness of x′ lying over x mentioned in the statement. Moreover, in this
case OXk′ ,x′ = OX,x⊗k k′. Hence the lemma follows from Lemma 32.4.2 above and
Algebra, Lemma 10.43.3. �

Lemma 32.4.6. Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent
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(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular, X is geometrically reduced over k if and only if Xk′ is geometrically
reduced over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′′ be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k ⊂ k′′′ (i.e. with both k′ ⊂ k′′′

and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map
of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .
This is a flat local ring homomorphism and hence faithfully flat. By (2) we see
that the local ring on the right is reduced. Thus by Algebra, Lemma 10.152.2 we
conclude that OXk′′ ,x′′ is reduced. Thus by Lemma 32.4.5 we conclude that X is
geometrically reduced at x. �

Lemma 32.4.7. Let k be a field. Let X, Y be schemes over k.

(1) If X is geometrically reduced at x, and Y reduced, then X×k Y is reduced
at every point lying over x.

(2) If X geometrically reduced over k and Y reduced. Then X×kY is reduced.

Proof. Combine, Lemmas 32.4.2 and 32.4.4 and Algebra, Lemma 10.42.5. �

Lemma 32.4.8. Let k be a field. Let X be a scheme over k.

(1) If x′  x is a specialization and X is geometrically reduced at x, then X
is geometrically reduced at x′.

(2) If x ∈ X such that (a) OX,x is reduced, and (b) for each specialization
x′  x where x′ is a generic point of an irreducible component of X the
scheme X is geometrically reduced at x′, then X is geometrically reduced
at x.

(3) If X is reduced and geometrically reduced at all generic points of irreducible
components of X, then X is geometrically reduced.

Proof. Part (1) follows from Lemma 32.4.2 and the fact that if A is a geometri-
cally reduced k-algebra, then S−1A is a geometrically reduced k-algebra for any
multiplicative subset S of A, see Algebra, Lemma 10.42.3.

Let A = OX,x. The assumptions (a) and (b) of (2) imply that A is reduced, and
that Aq is geometrically reduced over k for every minimal prime q of A. Hence A is
geometrically reduced over k, see Algebra, Lemma 10.42.7. Thus X is geometrically
reduced at x, see Lemma 32.4.2.

Part (3) follows trivially from part (2). �

Lemma 32.4.9. Let k be a field. Let X be a scheme over k. Let x ∈ X. Assume
X locally Noetherian and geometrically reduced at x. Then there exists an open
neighbourhood U ⊂ X of x which is geometrically reduced over k.

Proof. Let R be a Noetherian k-algebra. Let p ⊂ R be a prime. Let I = Ker(R→
Rp. Since IRp = 0 and I is finitely generated there exists an f ∈ R, f 6∈ p such
that fI = 0. Hence Rf ⊂ Rp.
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Assume X locally Noetherian and geometrically reduced at x. If we apply the above
to R = OX(U) for some affine open neighbourhood of x, and p ⊂ R the prime
corresponding to x, then we see that after shrinking U we may assume R ⊂ Rp. By
Lemma 32.4.2 the assumption means that Rp is geometrically reduced over k. By
Algebra, Lemma 10.42.2 this implies that R is geometrically reduced over k, which
in turn implies that U is geometrically reduced. �

Example 32.4.10. Let k = Fp(s, t), i.e., a purely transcendental extension of the
prime field. Consider the variety X = Spec(k[x, y]/(1 + sxp + typ)). Let k ⊂ k′ be
any extension such that both s and t have a pth root in k′. Then the base change
Xk′ is not reduced. Namely, the ring k′[x, y]/(1 + sxp + typ) contains the element
1 + s1/px + t1/py whose pth power is zero but which is not zero (since the ideal
(1 + sxp + typ) certainly does not contain any nonzero element of degree < p).

Lemma 32.4.11. Let k be a field. Let X → Spec(k) be locally of finite type.
Assume X has finitely many irreducible components. Then there exists a finite
purely inseparable extension k ⊂ k′ such that (Xk′)red is geometrically reduced over
k′.

Proof. To prove this lemma we may replace X by its reduction Xred. Hence we
may assume that X is reduced and locally of finite type over k. Let x1, . . . , xn ∈ X
be the generic points of the irreducible components of X. Note that for every
purely inseparable algebraic extension k ⊂ k′ the morphism (Xk′)red → X is a
homeomorphism, see Algebra, Lemma 10.45.2. Hence the points x′1, . . . , x

′
n lying

over x1, . . . , xn are the generic points of the irreducible components of (Xk′)red. As
X is reduced the local rings Ki = OX,xi are fields, see Algebra, Lemma 10.24.1. As
X is locally of finite type over k the field extensions k ⊂ Ki are finitely generated
field extensions. Finally, the local rings O(Xk′ )red,x

′
i

are the fields (Ki⊗k k′)red. By

Algebra, Lemma 10.44.3 we can find a finite purely inseparable extension k ⊂ k′

such that (Ki ⊗k k′)red are separable field extensions of k′. In particular each
(Ki ⊗k k′)red is geometrically reduced over k′ by Algebra, Lemma 10.43.1. At this
point Lemma 32.4.8 part (3) implies that (Xk′)red is geometrically reduced. �

32.5. Geometrically connected schemes

If X is a connected scheme over a field, then it can happen that X becomes dis-
connected after extending the ground field. This does not happen for geometrically
connected schemes.

Definition 32.5.1. Let X be a scheme over the field k. We say X is geometrically
connected over k if the scheme Xk′ is connected for every field extension k′ of k.

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected schemes are nonempty. Here is an example of a variety which is
not geometrically connected.

Example 32.5.2. Let k = Q. The scheme X = Spec(Q(i)) is a variety over
Spec(Q). But the base change XC is the spectrum of C ⊗Q Q(i) ∼= C ×C which
is the disjoint union of two copies of Spec(C). So in fact, this is an example of a
non-geometrically connected variety.

Lemma 32.5.3. Let X be a scheme over the field k. Let k ⊂ k′ be a field exten-
sion. Then X is geometrically connected over k if and only if Xk′ is geometrically
connected over k′.
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Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k ⊂ k′′ there exists a common field extension k′ ⊂ k′′′ and k′′ ⊂ k′′′. As the mor-
phism Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. �

Lemma 32.5.4. Let k be a field. Let X, Y be schemes over k. Assume X is
geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. The scheme theoretic fibres of p are connected, since they are base changes
of the geometrically connected scheme X by field extensions. Moreover the scheme
theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma
25.18.5. By Morphisms, Lemma 28.24.4 the map p is open. Thus we may apply
Topology, Lemma 5.6.5 to conclude. �

Lemma 32.5.5. Let k be a field. Let A be a k-algebra. Then X = Spec(A) is
geometrically connected over k if and only if A is geometrically connected over k
(see Algebra, Definition 10.46.3).

Proof. Immediate from the definitions. �

Lemma 32.5.6. Let k ⊂ k′ be an extension of fields. Let X be a scheme over k.
Assume k separably algebraically closed. Then the morphism Xk′ → X induces a
bijection of connected components. In particular, X is geometrically connected over
k if and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically
connected over k, see Algebra, Lemma 10.46.4. Hence Z = Spec(k′) is geometrically
connected over k by Lemma 32.5.5 above. Since Xk′ = Z×kX the result is a special
case of Lemma 32.5.4. �

Lemma 32.5.7. Let k be a field. Let X be a scheme over k. Let k be a separable
algebraic closure of k. Then X is geometrically connected if and only if the base
change Xk is connected.

Proof. Assume Xk is connected. Let k ⊂ k′ be a field extension. There exists a

field extension k ⊂ k′ such that k′ embeds into k
′

as an extension of k. By Lemma
32.5.6 we see that Xk

′ is connected. Since Xk
′ → Xk′ is surjective we conclude

that Xk′ is connected as desired. �

Lemma 32.5.8. Let k be a field. Let X be a scheme over k. Let A be a k-algebra.
Let V ⊂ XA be a quasi-compact open. Then there exists a finitely generated k-
subalgebra A′ ⊂ A and a quasi-compact open V ′ ⊂ XA′ such that V = V ′A.

Proof. We remark that if X is also quasi-separated this follows from Limits,
Lemma 31.3.8. Let U1, . . . , Un be finitely many affine opens of X such that V ⊂⋃
Ui,A. Say Ui = Spec(Ri). Since V is quasi-compact we can find finitely many

fij ∈ Ri⊗kA, j = 1, . . . , ni such that V =
⋃
i

⋃
j=1,...,ni

D(fij) where D(fij) ⊂ Ui,A
is the corresponding standard open. (We do not claim that V ∩ Ui,A is the union
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of the D(fij), j = 1, . . . , ni.) It is clear that we can find a finitely generated
k-subalgebra A′ ⊂ A such that fij is the image of some f ′ij ∈ Ri ⊗k A′. Set
V ′ =

⋃
D(f ′ij) which is a quasi-compact open of XA′ . Denote π : XA → XA′ the

canonical morphism. We have π(V ) ⊂ V ′ as π(D(fij)) ⊂ D(f ′ij). If x ∈ XA with
π(x) ∈ V ′, then π(x) ∈ D(f ′ij) for some i, j and we see that x ∈ D(fij) as f ′ij maps

to fij . Thus we see that V = π−1(V ′) as desired. �

Let k be a field. Let k ⊂ k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)

of the opposite group on the scheme Spec(k). Let X be a scheme over k. Since
Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces a
canonical action

(32.5.8.1) Gal(k/k)opp ×Xk −→ Xk.

Lemma 32.5.9. Let k be a field. Let X be a scheme over k. Let k be a (possibly
infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open. Then

(1) there exists a finite subextension k ⊂ k′ ⊂ k and a quasi-compact open
V ′ ⊂ Xk′ such that V = (V ′)k,

(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all
σ ∈ H.

Proof. By Lemma 32.5.8 there exists a finite subextension k ⊂ k′ ⊂ k and an
open V ′ ⊂ Xk′ which pulls back to V . This proves (1). Since Gal(k/k′) is open in
Gal(k/k) part (2) is clear as well. �

Lemma 32.5.10. Let k be a field. Let k ⊂ k be a (possibly infinite) Galois exten-
sion. Let X be a scheme over k. Let T ⊂ Xk have the following properties

(1) T is a closed subset of Xk,

(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ X whose inverse image in Xk′ is T .

Proof. This lemma immediately reduces to the case where X = Spec(A) is affine.
In this case, let I ⊂ A ⊗k k be the radical ideal corresponding to T . Assumption
(2) implies that σ(I) = I for all σ ∈ Gal(k/k). Pick x ∈ I. There exists a finite
Galois extension k ⊂ k′ contained in k such that x ∈ A⊗k k′. Set G = Gal(k′/k).
Set

P (T ) =
∏

σ∈G
(T − σ(x)) ∈ (A⊗k k′)[T ]

It is clear that P (T ) is monic and is actually an element of (A ⊗k k′)G[T ] = A[T ]
(by basic Galois theory). Moreover, if we write P (T ) = T d + a1T

d−1 + . . .+ a0 the
we see that ai ∈ I := A∩ I. By Algebra, Lemma 10.37.5 we see that x is contained
in the radical of I(A⊗k k). Hence I is the radical of I(A⊗k k) and setting T = V (I)
is a solution. �

Lemma 32.5.11. Let k be a field. Let X be a scheme over k. The following are
equivalent
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(1) X is geometrically connected,
(2) for every finite separable field extension k ⊂ k′ the scheme Xk′ is con-

nected.

Proof. It follows immediately from the definition that (1) implies (2). Assume
that X is not geometrically connected. Let k ⊂ k be a separable algebraic closure
of k. By Lemma 32.5.7 it follows that Xk is disconnected. Say Xk = U q V with

U and V open, closed, and nonempty.

Suppose that W ⊂ X is any quasi-compact open. Then Wk ∩ U and Wk ∩ V are

open and closed in Wk. In particular Wk∩U and Wk∩V are quasi-compact, and by

Lemma 32.5.9 both Wk ∩U and Wk ∩ V are defined over a finite subextension and

invariant under an open subgroup of Gal(k/k). We will use this without further
mention in the following.

Pick W0 ⊂ X quasi-compact open such that both W0,k ∩ U and W0,k ∩ V are

nonempty. Choose a finite subextension k ⊂ k′ ⊂ k and a decomposition W0,k′ =

U ′0 q V ′0 into open and closed subsets such that W0,k ∩ U = (U ′0)k and W0,k ∩ V =

(V ′0)k. Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k ∩ U) = W0,k ∩ U and

similarly for V .

Having chosen W0, k′ as above, for every quasi-compact open W ⊂ X we set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed. Also, by construction Wk̄ = UW q VW .

We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then Wk ∩ UW ′ = UW
and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U q V is a disjoint union

of open and closed subsets. It is clear that V is nonempty as it is constructed by
taking unions (locally). On the other hand, U is nonempty since it contains W0∩U
by construction. Finally, U, V ⊂ Xk̄ are closed and H-invariant by construction.
Hence by Lemma 32.5.10 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed
U ′, V ′ ⊂ Xk′ . Clearly Xk′ = U ′ q V ′ and we see that Xk′ is disconnected as
desired. �

Lemma 32.5.12. Let k be a field. Let k ⊂ k be a (possibly infinite) Galois exten-
sion. Let f : T → X be a morphism of schemes over k. Assume Tk connected and
Xk disconnected. Then X is disconnected.

Proof. Write Xk = U
∐
V with U and V open and closed. Denote f : Tk → Xk

the base change of f . Since Tk is connected we see that Tk is contained in either

f
−1

(U) or f
−1

(V ). Say Tk ⊂ f
−1

(U).

Fix a quasi-compact open W ⊂ X. There exists a finite Galois subextension k ⊂
k′ ⊂ k such that U ∩Wk and V ∩Wk come from quasi-compact opens U ′, V ′ ⊂Wk′ .
Then also Wk′ = U ′

∐
V ′. Consider

U ′′ =
⋂

σ∈Gal(k′/k)
σ(U ′), V ′′ =

⋃
σ∈Gal(k′/k)

σ(V ′).
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These are Galois invariant, open and closed, and Wk′ = U ′′
∐
V ′′. By Lemma

32.5.10 we get open and closed subsets UW , VW ⊂ W such that U ′′ = (UW )k′ ,
V ′′ = (VW )k′ and W = UW

∐
VW .

We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then W ∩ UW ′ = UW
and W ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain X = U

∐
V . It is clear that V is

nonempty as it is constructed by taking unions (locally). On the other hand, U is
nonempty since it contains f(T ) by construction. �

Lemma 32.5.13. Let k be a field. Let T → X be a morphism of schemes over k.
Assume T is geometrically connected and X connected. Then X is geometrically
connected.

Proof. This is a reformulation of Lemma 32.5.12. �

Lemma 32.5.14. Let k be a field. Let X be a scheme over k. Assume X is
connected and has a point x such that k is algebraically closed in κ(x). Then X
is geometrically connected. In particular, if X has a k-rational point and X is
connected, then X is geometrically connected.

Proof. Set T = Spec(κ(x)). Let k ⊂ k be a separable algebraic closure of k.
The assumption on k ⊂ κ(x) implies that Tk is irreducible, see Algebra, Lemma
10.45.10. Hence by Lemma 32.5.13 we see that Xk is connected. By Lemma 32.5.7
we conclude that X is geometrically connected. �

Lemma 32.5.15. Let k ⊂ K be an extension of fields. Let X be a scheme over k.
For every connected component T of X the inverse image TK ⊂ XK is a union of
connected components of XK .

Proof. This is a purely topological statement. Denote p : XK → X the projection
morphism. Let T ⊂ X be a connected component of X. Let t ∈ TK = p−1(T ). Let
C ⊂ XK be a connected component containing t. Then p(C) is a connected subset
of X which meets T , hence p(C) ⊂ T . Hence C ⊂ TK . �

Lemma 32.5.16. Let k ⊂ K be a finite extension of fields and let X be a scheme
over k. Denote by p : XK → X the projection morphism. For every connected
component T of XK the image p(T ) is a connected component of X.

Proof. The image p(T ) is contained in some connected component X ′ of X. Con-
sider X ′ as a closed subscheme of X in any way. Then T is also a connected
component of X ′K = p−1(X ′) and we may therefore assume that X is connected.
The morphism p is open (Morphisms, Lemma 28.24.4), closed (Morphisms, Lemma
28.44.7) and the fibers of p are finite sets (Morphisms, Lemma 28.44.9). Thus we
may apply Topology, Lemma 5.6.6 to conclude. �

Remark 32.5.17. Let k ⊂ K be an extension of fields. Let X be a scheme over
k. Denote p : XK → X the projection morphism. Let T ⊂ XK be a connected
component. Is it true that p(T ) is a connected component of X? When k ⊂ K is
finite Lemma 32.5.16 tells us the answer is “yes”. In general we do not know the
answer. If you do, or if you have a reference, please email stacks.project@gmail.com.

Let X be a scheme. We denote π0(X) the set of connected components of X.
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Lemma 32.5.18. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × π0(Xk) −→ π0(Xk)

with the following properties:

(1) An element T ∈ π0(Xk) is fixed by the action if and only if there exists
a connected component T ⊂ X, which is geometrically connected over k,
such that Tk = T .

(2) For any field extension k ⊂ k′ with separable algebraic closure k
′

the
diagram

Gal(k
′
/k′)× π0(Xk

′) //

��

π0(Xk
′)

��
Gal(k/k)× π0(Xk) // π0(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 32.5.6).

Proof. The action (32.5.8.1) of Gal(k/k) on Xk induces an action on its connected
components. Connected components are always closed (Topology, Lemma 5.6.3).
Hence if T is as in (1), then by Lemma 32.5.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically connected over k, see Lemma
32.5.7. To see that T is a connected component of X, suppose that T ⊂ T ′, T 6= T ′

where T ′ is a connected component of X. In this case T ′k′ strictly contains T
and hence is disconnected. By Lemma 32.5.12 this means that T ′ is disconnected!
Contradiction.

We omit the proof of the functoriality in (2). �

Lemma 32.5.19. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. Assume

(1) X is quasi-compact, and
(2) the connected components of Xk are open.

Then

(a) π0(Xk) is finite, and

(b) the action of Gal(k/k) on π0(Xk) is continuous.

Moreover, assumptions (1) and (2) are satisfied when X is of finite type over k.

Proof. Since the connected components are open, cover Xk (Topology, Lemma
5.6.3) and Xk is quasi-compact, we conclude that there are only finitely many of
them. Thus (a) holds. By Lemma 32.5.8 these connected components are each
defined over a finite subextension of k ⊂ k and we get (b). If X is of finite type
over k, then Xk is of finite type over k (Morphisms, Lemma 28.16.4). Hence
Xk is a Noetherian scheme (Morphisms, Lemma 28.16.6) and has an underlying
Noetherian topological space (Properties, Lemma 27.5.5). Thus Xk has finitely
many irreducible components (Topology, Lemma 5.8.2) and a fortiori finitely many
connected components (which are therefore open). �
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32.6. Geometrically irreducible schemes

If X is an irreducible scheme over a field, then it can happen that X becomes
reducible after extending the ground field. This does not happen for geometrically
irreducible schemes.

Definition 32.6.1. Let X be a scheme over the field k. We say X is geometrically
irreducible over k if the scheme Xk′ is irreducible1 for any field extension k′ of k.

Lemma 32.6.2. Let X be a scheme over the field k. Let k ⊂ k′ be a field exten-
sion. Then X is geometrically irreducible over k if and only if Xk′ is geometrically
irreducible over k′.

Proof. If X is geometrically irreducible over k, then it is clear that Xk′ is geomet-
rically irreducible over k′. For the converse, note that for any field extension k ⊂ k′′
there exists a common field extension k′ ⊂ k′′′ and k′′ ⊂ k′′′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between spec-
tra of fields) we see that the irreducibility of Xk′′′ implies the irreducibility of Xk′′ .
Thus if Xk′ is geometrically irreducible over k′ then X is geometrically irreducible
over k. �

Lemma 32.6.3. Let X be a scheme over a separably closed field k. If X is irre-
ducible, then XK is irreducible for any field extension k ⊂ K. I.e., X is geometri-
cally irreducible over k.

Proof. Use Properties, Lemma 27.3.3 and Algebra, Lemma 10.45.4. �

Lemma 32.6.4. Let k be a field. Let X, Y be schemes over k. Assume X is
geometrically irreducible over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between irreducible components.

Proof. First, note that the scheme theoretic fibres of p are irreducible, since they
are base changes of the geometrically irreducible scheme X by field extensions.
Moreover the scheme theoretic fibres are homeomorphic to the set theoretic fibres,
see Schemes, Lemma 25.18.5. By Morphisms, Lemma 28.24.4 the map p is open.
Thus we may apply Topology, Lemma 5.7.8 to conclude. �

Lemma 32.6.5. Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically irreducible over k,
(2) for every nonempty affine open U the k-algebra OX(U) is geometrically

irreducible over k (see Algebra, Definition 10.45.6),
(3) X is irreducible and there exists an affine open covering X =

⋃
Ui such

that each k-algebra OX(Ui) is geometrically irreducible, and
(4) there exists an open covering X =

⋃
i∈I Xi with I 6= ∅ such that Xi is

geometrically irreducible for each i and such that Xi ∩ Xj 6= ∅ for all
i, j ∈ I.

Moreover, if X is geometrically irreducible so is every nonempty open subscheme
of X.

1An irreducible space is nonempty.
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Proof. An affine scheme Spec(A) over k is geometrically irreducible if and only if
A is geometrically irreducible over k; this is immediate from the definitions. Recall
that if a scheme is irreducible so is every nonempty open subscheme of X, any two
nonempty open subsets have a nonempty intersection. Also, if every affine open
is irreducible then the scheme is irreducible, see Properties, Lemma 27.3.3. Hence
the final statement of the lemma is clear, as well as the implications (1) ⇒ (2), (2)
⇒ (3), and (3) ⇒ (4). If (4) holds, then for any field extension k′/k the scheme
Xk′ has a covering by irreducible opens which pairwise intersect. Hence Xk′ is
irreducible. Hence (4) implies (1). �

Lemma 32.6.6. Let X be a geometrically irreducible scheme over the field k. Let
ξ ∈ X be its generic point. Then κ(ξ) is a geometrically irreducible over k.

Proof. Combining Lemma 32.6.5 and Algebra, Lemma 10.45.8 we see that OX,ξ
is geometrically irreducible over k. Since OX,ξ → κ(ξ) is a surjection with locally
nilpotent kernel (see Algebra, Lemma 10.24.1) it follows that κ(ξ) is geometrically
irreducible, see Algebra, Lemma 10.45.2. �

Lemma 32.6.7. Let k ⊂ k′ be an extension of fields. Let X be a scheme over
k. Set X ′ = Xk′ . Assume k separably algebraically closed. Then the morphism
X ′ → X induces a bijection of irreducible components.

Proof. Since k is separably algebraically closed we see that k′ is geometrically ir-
reducible over k, see Algebra, Lemma 10.45.7. Hence Z = Spec(k′) is geometrically
irreducible over k. by Lemma 32.6.5 above. Since X ′ = Z ×k X the result is a
special case of Lemma 32.6.4. �

Lemma 32.6.8. Let k be a field. Let X be a scheme over k. The following are
equivalent:

(1) X is geometrically irreducible over k,
(2) for every finite separable field extension k ⊂ k′ the scheme Xk′ is irre-

ducible, and
(3) Xk is irreducible, where k ⊂ k is a separable algebraic closure of k.

Proof. Assume Xk is irreducible, i.e., assume (3). Let k ⊂ k′ be a field extension.

There exists a field extension k ⊂ k′ such that k′ embeds into k
′

as an extension of
k. By Lemma 32.6.7 we see that Xk

′ is irreducible. Since Xk
′ → Xk′ is surjective

we conclude that Xk′ is irreducible. Hence (1) holds.

Let k ⊂ k be a separable algebraic closure of k. Assume not (3), i.e., assume Xk is
reducible. Our goal is to show that also Xk′ is reducible for some finite subextension
k ⊂ k′ ⊂ k. Let X =

⋃
i∈I Ui be an affine open covering with Ui not empty. If

for some i the scheme Ui is reducible, or if for some pair i 6= j the intersection
Ui ∩Uj is empty, then X is reducible (Properties, Lemma 27.3.3) and we are done.
In particular we may assume that Ui,k ∩ Uj,k for all i, j ∈ I is nonempty and we
conclude that Ui,k has to be reducible for some i. According to Algebra, Lemma
10.45.5 this means that Ui,k′ is reducible for some finite separable field extension
k ⊂ k′. Hence also Xk′ is reducible. Thus we see that (2) implies (3).

The implication (1) ⇒ (2) is immediate. This proves the lemma. �
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Lemma 32.6.9. Let k ⊂ K be an extension of fields. Let X be a scheme over k.
For every irreducible component T of X the inverse image TK ⊂ XK is a union of
irreducible components of XK .

Proof. Let T ⊂ X be an irreducible component of X. The morphism TK → T is
flat, so generalizations lift along TK → T . Hence every ξ ∈ TK which is a generic
point of an irreducible component of TK maps to the generic point η of T . If ξ′  ξ
is a specialization in XK then ξ′ maps to η since there are no points specializing
to η in X. Hence ξ′ ∈ TK and we conclude that ξ = ξ′. In other words ξ is the
generic point of an irreducible component of XK . This means that the irreducible
components of TK are all irreducible components of XK . �

For a scheme X we denote IrredComp(X) the set of irreducible components of X.

Lemma 32.6.10. Let k ⊂ K be an extension of fields. Let X be a scheme over
k. For every irreducible component T ⊂ XK the image of T in X is an irreducible
component in X. This defines a canonical map

IrredComp(XK) −→ IrredComp(X)

which is surjective.

Proof. Consider the diagram

XK

��

XK

��

oo

X Xk
oo

where K is the separable algebraic closure of K, and where k is the separable
algebraic closure of k. By Lemma 32.6.7 the morphism XK → Xk induces a
bijection between irreducible components. Hence it suffices to show the lemma
for the morphisms Xk → X and XK → XK . In other words we may assume that

K = k.

The morphism p : Xk → X is integral, flat and surjective. Flatness implies that
generalizations lift along p, see Morphisms, Lemma 28.26.8. Hence generic points
of irreducible components of Xk map to generic points of irreducible components of
X. Integrality implies that p is universally closed, see Morphisms, Lemma 28.44.7.
Hence we conclude that the image p(T ) of an irreducible component is a closed
irreducible subset which contains a generic point of an irreducible component of
X, hence p(T ) is an irreducible component of X. This proves the first assertion.
If T ⊂ X is an irreducible component, then p−1(T ) = TK is a nonempty union of
irreducible components, see Lemma 32.6.9. Each of these necessarily maps onto T
by the first part. Hence the map is surjective. �

Lemma 32.6.11. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

with the following properties:

(1) An element T ∈ IrredComp(Xk) is fixed by the action if and only if there
exists an irreducible component T ⊂ X, which is geometrically irreducible
over k, such that Tk = T .
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(2) For any field extension k ⊂ k′ with separable algebraic closure k
′

the
diagram

Gal(k
′
/k′)× IrredComp(Xk

′) //

��

IrredComp(Xk
′)

��
Gal(k/k)× IrredComp(Xk) // IrredComp(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 32.6.7).

Proof. The action (32.5.8.1) of Gal(k/k) on Xk induces an action on its irreducible
components. Irreducible components are always closed (Topology, Lemma 5.6.3).
Hence if T is as in (1), then by Lemma 32.5.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically irreducible over k, see Lemma
32.6.8. To see that T is an irreducible component of X, suppose that T ⊂ T ′,
T 6= T ′ where T ′ is an irreducible component of X. Let η be the generic point of
T . It maps to the generic point η of T . Then the generic point ξ ∈ T ′ specializes to
η. As Xk → X is flat there exists a point ξ ∈ Xk which maps to ξ and specializes

to η. It follows that the closure of the singleton {ξ} is an irreducible closed subset
of Xξ which strictly contains T . This is the desired contradiction.

We omit the proof of the functoriality in (2). �

Lemma 32.6.12. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. The fibres of the map

IrredComp(Xk) −→ IrredComp(X)

of Lemma 32.6.10 are exactly the orbits of Gal(k/k) under the action of Lemma
32.6.11.

Proof. Let T ⊂ X be an irreducible component of X. Let η ∈ T be its generic
point. By Lemmas 32.6.9 and 32.6.10 the generic points of irreducible components
of T which map into T map to η. By Algebra, Lemma 10.45.12 the Galois group acts
transitively on all of the points of Xk mapping to η. Hence the lemma follows. �

Lemma 32.6.13. Let k be a field. Assume X → Spec(k) locally of finite type. In
this case

(1) the action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

is continuous if we give IrredComp(Xk) the discrete topology,
(2) every irreducible component of Xk can be defined over a finite extension

of k, and
(3) given any irreducible component T ⊂ X the scheme Tk is a finite union

of irreducible components of Xk which are all in the same Gal(k/k)-orbit.

Proof. Let T be an irreducible component of Xk. We may choose an affine open

U ⊂ X such that T ∩ Uk is not empty. Write U = Spec(A), so A is a finite type

k-algebra, see Morphisms, Lemma 28.16.2. Hence Ak is a finite type k-algebra, and
in particular Noetherian. Let p = (f1, . . . , fn) be the prime ideal corresponding to
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T ∩Uk. Since Ak = A⊗k k we see that there exists a finite subextension k ⊂ k′ ⊂ k
such that each fi ∈ Ak′ . It is clear that Gal(k/k′) fixes T , which proves (1).

Part (2) follows by applying Lemma 32.6.11 (1) to the situation over k′ which implies
the irreducible component T is of the form T ′

k
for some irreducible T ′ ⊂ Xk′ .

To prove (3), let T ⊂ X be an irreducible component. Choose an irreducible
component T ⊂ Xk which maps to T , see Lemma 32.6.10. By the above the orbit

of T is finite, say it is T 1, . . . , Tn. Then T 1∪ . . .∪Tn is a Gal(k/k)-invariant closed
subset of Xk hence of the form Wk for some W ⊂ X closed by Lemma 32.5.10.
Clearly W = T and we win. �

Lemma 32.6.14. Let k be a field. Let X → Spec(k) be locally of finite type.
Assume X has finitely many irreducible components. Then there exists a finite
separable extension k ⊂ k′ such that every irreducible component of Xk′ is geomet-
rically irreducible over k′.

Proof. Let k be a separable algebraic closure of k. The assumption that X has
finitely many irreducible components combined with Lemma 32.6.13 (3) shows that
Xk has finitely many irreducible components T 1, . . . , Tn. By Lemma 32.6.13 (2)

there exists a finite extension k ⊂ k′ ⊂ k and irreducible components Ti ⊂ Xk′ such
that T i = Ti,k and we win. �

Lemma 32.6.15. Let X be a scheme over the field k. Assume X has finitely many
irreducible components which are all geometrically irreducible. Then X has finitely
many connected components each of which is geometrically connected.

Proof. This is clear because a connected component is a union of irreducible com-
ponents. Details omitted. �

32.7. Geometrically integral schemes

If X is an irreducible scheme over a field, then it can happen that X becomes
reducible after extending the ground field. This does not happen for geometrically
irreducible schemes.

Definition 32.7.1. Let X be a scheme over the field k.

(1) Let x ∈ X. We say X is geometrically pointwise integral at x if for every
field extension k ⊂ k′ and every x′ ∈ Xk′ lying over x the local ring
OXk′ ,x′ is integral.

(2) We sayX is geometrically pointwise integral ifX is geometrically pointwise
integral at every point.

(3) We say X is geometrically integral over k if the scheme Xk′ is integral for
every field extension k′ of k.

The distinction between notions (2) and (3) is necessary. For example if k = R and
X = Spec(C[x]), then X is geometrically pointwise integral over R but of course
not geometrically integral.

Lemma 32.7.2. Let k be a field. Let X be a scheme over k. Then X is geometri-
cally integral over k if and only if X is both geometrically reduced and geometrically
irreducible over k.

Proof. See Properties, Lemma 27.3.4. �
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32.8. Geometrically normal schemes

In Properties, Definition 27.7.1 we have defined the notion of a normal scheme.
This notion is defined even for non-Noetherian schemes. Hence, contrary to our
discussion of “geometrically regular” schemes we consider all field extensions of the
ground field.

Definition 32.8.1. Let X be a scheme over the field k.

(1) Let x ∈ X. We say X is geometrically normal at x if for every field
extension k ⊂ k′ and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x′ is
normal.

(2) We say X is geometrically normal over k if X is geometrically normal at
every x ∈ X.

Lemma 32.8.2. Let k be a field. Let X be a scheme over k. Let x ∈ X. The
following are equivalent

(1) X is geometrically normal at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′

lying over over x the local ring OXk′ ,x′ is normal, and
(3) the ring OX,x is geometrically normal over k (see Algebra, Definition

10.153.2).

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′ be a finite purely
inseparable field extension (for example k = k′). Consider the ring OX,x ⊗k k′. By
Algebra, Lemma 10.45.2 its spectrum is the same as the spectrum of OX,x. Hence
it is a local ring also (Algebra, Lemma 10.17.2). Therefore there is a unique point
x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k

′. By assumption this is a normal
ring. Hence we deduce (3) by Algebra, Lemma 10.153.1.

Assume (3). Let k ⊂ k′ be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 28.11.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence
it is normal by assumption and (1) is proved. �

Lemma 32.8.3. Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically normal,
(2) Xk′ is a normal scheme for every field extension k ⊂ k′,
(3) Xk′ is a normal scheme for every finitely generated field extension k ⊂ k′,
(4) Xk′ is a normal scheme for every finite purely inseparable field extension

k ⊂ k′, and
(5) for every affine open U ⊂ X the ring OX(U) is geometrically normal (see

Algebra, Definition 10.153.2).

Proof. Assume (1). Then for every field extension k ⊂ k′ and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is normal. By definition this means that Xk′ is normal.
Hence (2).

It is clear that (2) implies (3) implies (4).

Assume (4) and let U ⊂ X be an affine open subscheme. Then Uk′ is a normal
scheme for any finite purely inseparable extension k ⊂ k′ (including k = k′). This
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means that k′ ⊗k O(U) is a normal ring for all finite purely inseparable extensions
k ⊂ k′. Hence O(U) is a geometrically normal k-algebra by definition.

Assume (5). For any field extension k ⊂ k′ the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes,
Section 25.17). Hence Xk′ is normal. So (1) holds. �

Lemma 32.8.4. Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically normal at x,
(2) Xk′ is geometrically normal at x′.

In particular, X is geometrically normal over k if and only if Xk′ is geometrically
normal over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′′ be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k ⊂ k′′′ (i.e. with both k′ ⊂ k′′′

and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map
of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see
that the local ring on the right is normal. Thus by Algebra, Lemma 10.152.3 we
conclude that OXk′′ ,x′′ is normal. By Lemma 32.8.2 we see that X is geometrically
normal at x. �

Lemma 32.8.5. Let k be a field. Let X be a geometrically normal scheme over k
and let Y be a normal scheme over k. Then X ×k Y is a normal scheme.

Proof. This reduces to Algebra, Lemma 10.153.4 by Lemma 32.8.3. �

32.9. Change of fields and locally Noetherian schemes

Let X a locally Noetherian scheme over a field k. It is not always that case that
Xk′ is locally Noetherian too. For example if X = Spec(Q) and k = Q, then
XQ is the spectrum of Q ⊗Q Q which is not Noetherian. (Hint: It has too many

idempotents). But if we only base change using finitely generated field extensions
then the Noetherian property is preserved. (Or if X is locally of finite type over k,
since this property is preserved under base change.)

Lemma 32.9.1. Let k be a field. Let X be a scheme over k. Let k ⊂ k′ be a
finitely generated field extension. Then X is locally Noetherian if and only if Xk′

is locally Noetherian.

Proof. Using Properties, Lemma 27.5.2 we reduce to the case where X is affine,
say X = Spec(A). In this case we have to prove that A is Noetherian if and only
if Ak′ is Noetherian. Since A → Ak′ = k′ ⊗k A is faithfully flat, we see that if
Ak′ is Noetherian, then so is A, by Algebra, Lemma 10.152.1. Conversely, if A is
Noetherian then Ak′ is Noetherian by Algebra, Lemma 10.30.7. �
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32.10. Geometrically regular schemes

A geometrically regular scheme over a field k is a locally Noetherian scheme over k
which remains regular upon suitable changes of base field. A finite type scheme over
k is geometrically regular if and only if it is smooth over k (see Lemma 32.10.6). The
notion of geometric regularity is most interesting in situations where smoothness
cannot be used such as formal fibres (insert future reference here).

In the following definition we restrict ourselves to locally Noetherian schemes, since
the property of being a regular local ring is only defined for Noetherian local rings.
By Lemma 32.8.3 above, if we restrict ourselves to finitely generated field extensions
then this property is preserved under change of base field. This comment will be
used without further reference in this section. In particular the following definition
makes sense.

Definition 32.10.1. Let k be a field. Let X be a locally Noetherian scheme over
k.

(1) Let x ∈ X. We say X is geometrically regular at x over k if for every
finitely generated field extension k ⊂ k′ and any x′ ∈ Xk′ lying over x the
local ring OXk′ ,x′ is regular.

(2) We say X is geometrically regular over k if X is geometrically regular at
all of its points.

A similar definition works to define geometrically Cohen-Macaulay, (Rk), and (Sk)
schemes over a field. We will add a section for these separately as needed.

Lemma 32.10.2. Let k be a field. Let X be a locally Noetherian scheme over k.
Let x ∈ X. The following are equivalent

(1) X is geometrically regular at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′

lying over over x the local ring OXk′ ,x′ is regular, and
(3) the ring OX,x is geometrically regular over k (see Algebra, Definition

10.154.2).

Proof. It is clear that (1) implies (2). Assume (2). This in particular implies that
OX,x is a regular local ring. Let k ⊂ k′ be a finite purely inseparable field extension.
Consider the ring OX,x⊗k k′. By Algebra, Lemma 10.45.2 its spectrum is the same
as the spectrum of OX,x. Hence it is a local ring also (Algebra, Lemma 10.17.2).
Therefore there is a unique point x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k

′.
By assumption this is a regular ring. Hence we deduce (3) from the definition of a
geometrically regular ring.

Assume (3). Let k ⊂ k′ be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 28.11.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence
it is regular by assumption and (1) is proved. �

Lemma 32.10.3. Let k be a field. Let X be a locally Noetherian scheme over k.
The following are equivalent

(1) X is geometrically regular,
(2) Xk′ is a regular scheme for every finitely generated field extension k ⊂ k′,
(3) Xk′ is a regular scheme for every finite purely inseparable field extension

k ⊂ k′,
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(4) for every affine open U ⊂ X the ring OX(U) is geometrically regular (see
Algebra, Definition 10.154.2), and

(5) there exists an affine open covering X =
⋃
Ui such that each OX(Ui) is

geometrically regular over k.

Proof. Assume (1). Then for every finitely generated field extension k ⊂ k′ and
every point x′ ∈ Xk′ the local ring of Xk′ at x′ is regular. By Properties, Lemma
27.9.2 this means that Xk′ is regular. Hence (2).

It is clear that (2) implies (3).

Assume (3) and let U ⊂ X be an affine open subscheme. Then Uk′ is a regular
scheme for any finite purely inseparable extension k ⊂ k′ (including k = k′). This
means that k′ ⊗k O(U) is a regular ring for all finite purely inseparable extensions
k ⊂ k′. Hence O(U) is a geometrically regular k-algebra and we see that (4) holds.

It is clear that (4) implies (5). Let X =
⋃
Ui be an affine open covering as in (5).

For any field extension k ⊂ k′ the base change Xk′ is gotten by gluing the spectra
of the rings OX(Ui) ⊗k k′ (see Schemes, Section 25.17). Hence Xk′ is regular. So
(1) holds. �

Lemma 32.10.4. Let k be a field. Let X be a scheme over k. Let k′/k be a finitely
generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying
over x. The following are equivalent

(1) X is geometrically regular at x,
(2) Xk′ is geometrically regular at x′.

In particular, X is geometrically regular over k if and only if Xk′ is geometrically
regular over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′′ be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it
is unique). We can find a common, finitely generated, field extension k ⊂ k′′′ (i.e.
with both k′ ⊂ k′′′ and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and
x′′. Consider the map of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism of Noetherian local rings and hence faithfully
flat. By (2) we see that the local ring on the right is regular. Thus by Algebra,
Lemma 10.106.9 we conclude that OXk′′ ,x′′ is regular. By Lemma 32.10.2 we see
that X is geometrically regular at x. �

The following lemma is a geometric variant of Algebra, Lemma 10.154.3.

Lemma 32.10.5. Let k be a field. Let f : X → Y be a morphism of locally
Noetherian schemes over k. Let x ∈ X be a point and set y = f(x). If X is
geometrically regular at x and f is flat at x then Y is geometrically regular at y.
In particular, if X is geometrically regular over k and f is flat and surjective, then
Y is geometrically regular over k.

Proof. Let k′ be finite purely inseparable extension of k. Let f ′ : Xk′ → Yk′ be
the base change of f . Let x′ ∈ Xk′ be the unique point lying over x. If we show
that Yk′ is regular at y′ = f ′(x′), then Y is geometrically regular over k at y′, see
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Lemma 32.10.3. By Morphisms, Lemma 28.26.6 the morphism Xk′ → Yk′ is flat at
x′. Hence the ring map

OYk′ ,y′ −→ OXk′ ,x′

is a flat local homomorphism of local Noetherian rings with right hand side regular
by assumption. Hence the left hand side is a regular local ring by Algebra, Lemma
10.106.9. �

Lemma 32.10.6. Let k be a field. Let X be a scheme of finite type over k. Let
x ∈ X. Then X is geometrically regular at x if and only if X → Spec(k) is smooth
at x (Morphisms, Definition 28.35.1).

Proof. The question is local around x, hence we may assume that X = Spec(A)
for some finite type k-algebra. Let x correspond to the prime p.

If A is smooth over k at p, then we may localize A and assume that A is smooth
over k. In this case k′⊗k A is smooth over k′ for all extension fields k′/k, and each
of these Noetherian rings is regular by Algebra, Lemma 10.135.3.

AssumeX is geometrically regular at x. Consider the residue fieldK := κ(x) = κ(p)
of x. It is a finitely generated extension of k. By Algebra, Lemma 10.44.3 there
exists a finite purely inseparable extension k ⊂ k′ such that the compositum k′K is
a separable field extension of k′. Let p′ ⊂ A′ = k′⊗kA be a prime ideal lying over p.
It is the unique prime lying over p, see Algebra, Lemma 10.45.2. Hence the residue
field K ′ := κ(p′) is the compositum k′K. By assumption the local ring (A′)p′ is
regular. Hence by Algebra, Lemma 10.135.5 we see that k′ → A′ is smooth at p′.
This in turn implies that k → A is smooth at p by Algebra, Lemma 10.132.18. The
lemma is proved. �

Example 32.10.7. Let k = Fp(t). It is quite easy to give an example of a regular
variety V over k which is not geometrically reduced. For example we can take
Spec(k[x]/(xp− t)). In fact, there exists an example of a regular variety V which is
geometrically reduced, but not even geometrically normal. Namely, take for p > 2
the scheme V = Spec(k[x, y]/(y2 − xp + t)). This is a variety as the polynomial
y2 − xp + t ∈ k[x, y] is irreducible. The morphism V → Spec(k) is smooth at all
points except at the point v0 ∈ V corresponding to the maximal ideal (y, xp − t)
(because 2y is invertible). In particular we see that V is (geometrically) regular at
all points, except possibly v0. The local ring

OV,v0
=
(
k[x, y]/(y2 − xp + t)

)
(y,xp−t)

is a domain of dimension 1. Its maximal ideal is generated by 1 element, namely
y. Hence it is a discrete valuation ring and regular. Let k′ = k[t1/p]. Denote
t′ = t1/p ∈ k′, V ′ = Vk′ , v

′
0 ∈ V ′ the unique point lying over v0. Over k′ we can

write xp− t = (x− t′)p, but the polynomial y2− (x− t′)p is still irreducible and V ′

is still a variety. But the element

y

x− t′
∈ f.f.(OV ′,v′0)

is integral over OV ′,v′0 (just compute its square) and not contained in it, so V ′ is
not normal at v′0. This concludes the example.
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32.11. Change of fields and the Cohen-Macaulay property

The following lemma says that it does not make sense to define geometrically Cohen-
Macaulay schemes, since these would be the same as Cohen-Macaulay schemes.

Lemma 32.11.1. Let X be a locally Noetherian scheme over the field k. Let k ⊂ k′
be a finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a
point lying over x. Then we have

OX,x is Cohen-Macaulay⇔ OXk′ ,x′ is Cohen-Macaulay

If X is locally of finite type over k, the same holds for any field extension k ⊂ k′.

Proof. The first case of the lemma follows from Algebra, Lemma 10.155.2. The
second case of the lemma is equivalent to Algebra, Lemma 10.126.6. �

32.12. Change of fields and the Jacobson property

A scheme locally of finite type over a field has plenty of closed points, namely it is
Jacobson. Moreover, the residue fields are finite extensions of the ground field.

Lemma 32.12.1. Let X be a scheme which is locally of finite type over k. Then

(1) for any closed point x ∈ X the extension k ⊂ κ(x) is algebraic, and
(2) X is a Jacobson scheme (Properties, Definition 27.6.1).

Proof. A scheme is Jacobson if and only if it has an affine open covering by Ja-
cobson schemes, see Properties, Lemma 27.6.3. The property on residue fields at
closed points is also local on X. Hence we may assume that X is affine. In this
case the result is a consequence of the Hilbert Nullstellensatz, see Algebra, Theorem
10.33.1. It also follows from a combination of Morphisms, Lemmas 28.17.8, 28.17.9,
and 28.17.10. �

It turns out that if X is not locally of finite type, then we can achieve the same
result after making a suitably large base field extension.

Lemma 32.12.2. Let X be a scheme over a field k. For any field extension k ⊂ K
whose cardinality is large enough we have

(1) for any closed point x ∈ XK the extension K ⊂ κ(x) is algebraic, and
(2) XK is a Jacobson scheme (Properties, Definition 27.6.1).

Proof. Choose an affine open covering X =
⋃
Ui. By Algebra, Lemma 10.34.12

and Properties, Lemma 27.6.2 there exist cardinals κi such that Ui,K has the desired
properties over K if #(K) ≥ κi. Set κ = max{κi}. Then if the cardinality of K is
larger than κ we see that each Ui,K satisfies the conclusions of the lemma. Hence
XK is Jacobson by Properties, Lemma 27.6.3. The statement on residue fields at
closed points of XK follows from the corresponding statements for residue fields of
closed points of the Ui,K . �

32.13. Algebraic schemes

The following definition is taken from [DG67, I Definition 6.4.1].

Definition 32.13.1. Let k be a field. An algebraic k-scheme is a scheme X over k
such that the structure morphism X → Spec(k) is of finite type. A locally algebraic
k-scheme is a scheme X over k such that the structure morphism X → Spec(k) is
locally of finite type.
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Note that every (locally) algebraic k-scheme is (locally) Noetherian, see Morphisms,
Lemma 28.16.6. The category of algebraic k-schemes has all products and fibre
products (unlike the category of varieties over k). Similarly for the category of
locally algebraic k-schemes.

Lemma 32.13.2. Let k be a field. Let X be a locally algebraic k-scheme of dimen-
sion 0. Then X is a disjoint union of spectra of local Artinian k-algebras A with
dimk(A) < ∞. If X is an algebraic k-scheme of dimension 0, then in addition X
is affine and the morphism X → Spec(k) is finite.

Proof. Let X be a locally algebraic k-scheme of dimension 0. Let U = Spec(A) ⊂
X be an affine open subscheme. Since dim(X) = 0 we see that dim(A) = 0. By
Noether normalization, see Algebra, Lemma 10.111.4 we see that there exists a
finite injection k → A, i.e., dimk(A) < ∞. Hence A is Artinian, see Algebra,
Lemma 10.51.2. This implies that A = A1 × . . .×Ar is a product of finitely many
Artinian local rings, see Algebra, Lemma 10.51.6. Of course dimk(Ai) < ∞ for
each i as the sum of these dimensions equals dimk(A).

The arguments above show that X has an open covering whose members are finite
discrete topological spaces. Hence X is a discrete topological space. It follows that
X is isomorphic to the disjoint union of its connected components each of which is
a singleton. Since a singleton scheme is affine we conclude (by the results of the
paragraph above) that each of these singletons is the spectrum of a local Artinian
k-algebra A with dimk(A) <∞.

Finally, if X is an algebraic k-scheme of dimension 0, then X is quasi-compact
hence is a finite disjoint union X = Spec(A1) q . . . q Spec(Ar) hence affine (see
Schemes, Lemma 25.6.8) and we have seen the finiteness of X → Spec(k) in the
first paragraph of the proof. �

Lemma 32.13.3. Let k be a field. Let X be a locally algebraic k-scheme.

(1) The dimension of k is the supremum of the numbers trdegk(κ(η) where η
runs over the generic points of the irreducible components of X.

(2) If X is irreducible, then all maximal chains of irreducible closed subsets
have length equal to the dimension of X.

Proof. It is clear that the dimension of X is the supremum of the dimensions of
all affine opens. Simiarly, any maximal chain in X gives rise to a maximal chain
in an affine open. Hence it suffices to prove the lemma for an affine open. Part
(2) follows from Algebra, Lemma 10.110.4. Part (1) follows from Algebra, Lemma
10.112.3. �

32.14. Closures of products

Some results on the relation between closure and products.

Lemma 32.14.1. Let k be a field. Let X, Y be schemes over k, and let A ⊂ X,
B ⊂ Y be subsets. Set

AB = {z ∈ X ×k Y | prX(γ) ∈ A, prY (γ) ∈ B} ⊂ X ×k Y

Then set theoretically we have

A×k B = AB
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Proof. The inclusion AB ⊂ A ×k B is immediate. We may replace X and Y by
the reduced closed subschemes A and B. Let W ⊂ X ×k Y be a nonempty open
subset. By Morphisms, Lemma 28.24.4 the subset U = prX(W ) is nonempty open
in X. Hence A ∩ U is nonempty. Pick a ∈ A ∩ U . Denote Yκ(a) = {a} ×k Y
the fibre of prX : X ×k Y → X over a. By Morphisms, Lemma 28.24.4 again the
morphism Ya → Y is open as Spec(κ(a))→ Spec(k) is universally open. Hence the
nonempty open subset Wa = W ×X×kY Ya maps to a nonempty open subset of Y .
We conclude there exists a b ∈ B in the image. Hence AB ∩W 6= ∅ as desired. �

Lemma 32.14.2. Let k be a field. Let f : A → X, g : B → Y be morphisms of
schemes over k. Then set theoretically we have

f(A)×k g(B) = (f × g)(A×k B)

Proof. This follows from Lemma 32.14.1 as the image of f × g is f(A)g(B) in the
notation of that lemma. �

Lemma 32.14.3. Let k be a field. Let f : A → X, g : B → Y be quasi-compact
morphisms of schemes over k. Let Z ⊂ X be the scheme theoretic image of f , see
Morphisms, Definition 28.6.2. Similarly, let Z ′ ⊂ Y be the scheme theoretic image
of g. Then Z ×k Z ′ is the scheme theoretic image of f × g.

Proof. Recall that Z is the smallest closed subscheme of X through which f fac-
tors. Similarly for Z ′. Let W ⊂ X ×k Y be the scheme theoretic image of f × g.
As f × g factors through Z ×k Z ′ we see that W ⊂ Z ×k Z ′.

To prove the other inclusion let U ⊂ X and V ⊂ Y be affine opens. By Mor-
phisms, Lemma 28.6.3 the scheme Z ∩U is the scheme theoretic image of f |f−1(U) :

f−1(U)→ U , and similarly for Z ′ ∩ V and W ∩U ×k V . Hence we may assume X
and Y affine. As f and g are quasi-compact this implies that A =

⋃
Ui is a finite

union of affines and B =
⋃
Vj is a finite union of affines. Then we may replace A

by
∐
Ui and B by

∐
Vj , i.e., we may assume that A and B are affine as well. In

this case Z is cut out by Ker(Γ(X,OX)→ Γ(A,OA)) and similarly for Z ′ and W .
Hence the result follows from the equality

Γ(A×k B,OA×kB) = Γ(A,OA)⊗k Γ(B,OB)

which holds as A and B are affine. Details omitted. �

32.15. Schemes smooth over fields

Here are two lemmas characterizing smooth schemes over fields.

Lemma 32.15.1. Let k be a field. Let X be a scheme over k. Assume

(1) X is locally of finite type over k,
(2) ΩX/k is locally free, and
(3) k has characteristic zero.

Then the structure morphism X → Spec(k) is smooth.

Proof. This follows from Algebra, Lemma 10.135.7. �

In positive characteristic there exist nonreduced schemes of finite type whose sheaf
of differentials is free, for example Spec(Fp[t]/(t

p)) over Spec(Fp). If the ground
field k is nonperfect of characteristic p, there exist reduced schemes X/k with free
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ΩX/k which are nonsmooth, for example Spec(k[t]/(tp−a) where a ∈ k is not a pth
power.

Lemma 32.15.2. Let k be a field. Let X be a scheme over k. Assume

(1) X is locally of finite type over k,
(2) ΩX/k is locally free,
(3) X is reduced, and
(4) k is perfect.

Then the structure morphism X → Spec(k) is smooth.

Proof. Let x ∈ X be a point. As X is locally Noetherian (see Morphisms, Lemma
28.16.6) there are finitely many irreducible components X1, . . . , Xn passing through
x (see Properties, Lemma 27.5.5 and Topology, Lemma 5.8.2). Let ηi ∈ Xi be
the generic point. As X is reduced we have OX,ηi = κ(ηi), see Algebra, Lemma
10.24.1. Moreover, κ(ηi) is a finitely generated field extension of the perfect field
k hence separably generated over k (see Algebra, Section 10.41). It follows that
ΩX/k,ηi = Ωκ(ηi)/k is free of rank the transcendence degree of κ(ηi) over k. By
Morphisms, Lemma 28.29.1 we conclude that dimηi(Xi) = rankηi(ΩX/k). Since
x ∈ X1 ∩ . . . ∩Xn we see that

rankx(ΩX/k) = rankηi(ΩX/k) = dim(Xi).

Therefore dimx(X) = rankx(ΩX/k), see Algebra, Lemma 10.110.5. It follows that
X → Spec(k) is smooth at x for example by Algebra, Lemma 10.135.3. �

Lemma 32.15.3. Let X → Spec(k) be a smooth morphism where k is a field.
Then X is a regular scheme.

Proof. (See also Lemma 32.10.6.) By Algebra, Lemma 10.135.3 every local ring
OX,x is regular. And because X is locally of finite type over k it is locally Noether-
ian. Hence X is regular by Properties, Lemma 27.9.2. �

Lemma 32.15.4. Let X → Spec(k) be a smooth morphism where k is a field.
Then X is geometrically regular, geometrically normal, and geometrically reduced
over k.

Proof. (See also Lemma 32.10.6.) Let k′ be a finite purely inseparable extension
of k. It suffices to prove that Xk′ is regular, normal, reduced, see Lemmas 32.10.3,
32.8.3, and 32.4.5. By Morphisms, Lemma 28.35.5 the morphism Xk′ → Spec(k′)
is smooth too. Hence it suffices to show that a scheme X smooth over a field is
regular, normal, and reduced. We see that X is regular by Lemma 32.15.3. Hence
Properties, Lemma 27.9.4 guarantees that X is normal. �

Lemma 32.15.5. Let k be a field. Let d ≥ 0. Let W ⊂ Ad
k be nonempty open.

Then there exists a closed point w ∈W such that k ⊂ κ(w) is finite separable.

Proof. After possible shrinking W we may assume that W = Ad
k \ V (f) for some

f ∈ k[x1, . . . , xn]. If the lemma is wrong then f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈
(ksep)n. This is absurd as ksep is an infinite field. �

Lemma 32.15.6. Let k be a field. If X is smooth over Spec(k) then the set

{x ∈ X closed such that k ⊂ κ(x) is finite separable}
is dense in X.
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Proof. It suffices to show that given a nonempty smooth X over k there exists
at least one closed point whose residue field is finite separable over k. To see this,
choose a diagram

X Uoo π // Ad
k

with π étale, see Morphisms, Lemma 28.37.20. The morphism π : U → Ad
k is

open, see Morphisms, Lemma 28.37.13. By Lemma 32.15.5 we may choose a closed
point w ∈ π(V ) whose residue field is finite separable over k. Pick any x ∈ V with
π(x) = w. By Morphisms, Lemma 28.37.7 the field extension κ(w) ⊂ κ(x) is finite
separable. Hence k ⊂ κ(x) is finite separable. The point x is a closed point of X
by Morphisms, Lemma 28.21.2. �

Lemma 32.15.7. Let X be a scheme over a field k. If X is locally of finite type
and geometrically reduced over k then X contains a dense open which is smooth
over k.

Proof. The problem is local on X, hence we may assume X is quasi-compact. Let
X = X1 ∪ . . .∪Xn be the irreducible components of X. Then Z =

⋃
i 6=j Xi ∩Xj is

nowhere dense in X. Hence we may replace X by X \Z. As X \Z is a disjoint union
of irreducible schemes, this reduces us to the case where X is irreducible. As X is
irreducible and reduced, it is integral, see Properties, Lemma 27.3.4. Let η ∈ X be
its generic point. Then the function field K = k(X) = κ(η) is geometrically reduced
over k, hence separable over k, see Algebra, Lemma 10.43.1. Let U = Spec(A) ⊂ X
be any nonempty affine open so that K = f.f.(A) = A(0). Apply Algebra, Lemma
10.135.5 to conclude that A is smooth at (0) over k. By definition this means that
some principal localization of A is smooth over k and we win. �

Lemma 32.15.8. Let k be a field. Let f : X → Y be a morphism of schemes locally
of finite type over k. Let x ∈ X be a point and set y = f(x). If X → Spec(k) is
smooth at x and f is flat at x then Y → Spec(k) is smooth at y. In particular, if
X is smooth over k and f is flat and surjective, then Y is smooth over k.

Proof. It suffices to show that Y is geometrically regular at y, see Lemma 32.10.6.
This follows from Lemma 32.10.5 (and Lemma 32.10.6 applied to (X,x)). �

32.16. Types of varieties

Short section discussion some elementary global properties of varieties.

Definition 32.16.1. Let k be a field. Let X be a variety over k.

(1) We say X is an affine variety if X is an affine scheme. This is equivalent
to requiring X it be isomorphic to a closed subscheme of An

k for some n.
(2) We say X is a projective variety if the structure morphism X → Spec(k)

is projective. By Morphisms, Lemma 28.43.4 this is true if and only if X
is isomorphic to a closed subscheme of Pn

k for some n.
(3) We say X is a quasi-projective variety if the structure morphism X →

Spec(k) is quasi-projective. By Morphisms, Lemma 28.41.4 this is true if
and only if X is isomorphic to a locally closed subscheme of Pn

k for some
n.

(4) A proper variety is a variety such that the morphism X → Spec(k) is
proper.
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Note that a projective variety is a proper variety, see Morphisms, Lemma 28.43.5.
Also, an affine variety is quasi-projective as An

k is isomorphic to an open subscheme
of Pn

k , see Constructions, Lemma 26.13.3.

Lemma 32.16.2. Let X be a proper variety over k. Then Γ(X,OX) is a field
which is a finite extension of the field k.

Proof. By Cohomology of Schemes, Proposition 29.17.2 we see that Γ(X,OX) is
a finite dimensional k-vector space. It is also a k-algebra without zero-divisors.
Hence it is a field, see Algebra, Lemma 10.35.17. �

32.17. Groups of invertible functions

It is often (but not always) the case that O∗(X)/k∗ is a finitely generated abelian
group if X is a variety over k. We show this by a series of lemmas. Everything
rests on the following special case.

Lemma 32.17.1. Let k be an algebraically closed field. Let X be a proper variety
over k. Let X ⊂ X be an open subscheme. Assume X is normal. Then O∗(X)/k∗

is a finitely generated abelian group.

Proof. We will use without further mention that for any affine open U ofX the ring
O(U) is a finitely generated k-algebra, which is Noetherian, a domain and normal,
see Algebra, Lemma 10.30.1, Properties, Definition 27.3.1, Properties, Lemmas
27.5.2 and 27.7.2, Morphisms, Lemma 28.16.2.

Let ξ1, . . . , ξr be the generic points of the complement of X in X. There are
finitely many since X has a Noetherian underlying topological space (see Mor-
phisms, Lemma 28.16.6, Properties, Lemma 27.5.5, and Topology, Lemma 5.8.2).
For each i the local ring Oi = OX,ξi is a normal Noetherian local domain (as a lo-
calization of a Noetherian normal domain). Let J ⊂ {1, . . . , r} be the set of indices
i such that dim(Oi) = 1. For j ∈ J the local ring Oj is a discrete valuation ring,
see Algebra, Lemma 10.115.6. Hence we obtain a valuation

vj : k(X)∗ −→ Z

with the property that vj(f) ≥ 0⇔ f ∈ Oj .
Think of O(X) as a sub k-algebra of k(X) = k(X). We claim that the kernel of
the map

O(X)∗ −→
∏

j∈J
Z, f 7−→

∏
vj(f)

is k∗. It is clear that this claim proves the lemma. Namely, suppose that f ∈
O(X) is an element of the kernel. Let U = Spec(B) ⊂ X be any affine open.
Then B is a Noetherian normal domain. For every height one prime q ⊂ B with
corresponding point ξ ∈ X we see that either ξ = ξj for some j ∈ J or that ξ ∈ X.

The reason is that codim({ξ}, X) = 1 by Properties, Lemma 27.11.4 and hence if
ξ ∈ X \ X it must be a generic point of X \ X, hence equal to some ξj , j ∈ J .
We conclude that f ∈ OX,ξ = Bq in either case as f is in the kernel of the map.
Thus f ∈

⋂
ht(q)=1Bq = B, see Algebra, Lemma 10.146.6. In other words, we see

that f ∈ Γ(X,OX). But since k is algebraically closed we conclude that f ∈ k by
Lemma 32.16.2. �

Next, we generalize the case above by some elementary arguments, still keeping the
field algebraically closed.
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Lemma 32.17.2. Let k be an algebraically closed field. Let X be an integral scheme
locally of finite type over k. Then O∗(X)/k∗ is a finitely generated abelian group.

Proof. As X is integral the restriction mapping O(X)→ O(U) is injective for any
nonempty open subscheme U ⊂ X. Hence we may assume that X is affine. Choose
a closed immersion X → An

k and denote X the closure of X in Pn
k via the usual

immersion An
k → Pn

k . Thus we may assume that X is an affine open of a projective

variety X.

Let ν : X
ν → X be the normalization morphism, see Morphisms, Definition

28.48.12. We know that ν is finite, dominant, and that X
ν

is a normal irreducible
scheme, see Morphisms, Lemmas 28.48.15, 28.48.17, and 28.19.2. It follows that
X
ν

is a proper variety, because X → Spec(k) is proper as a composition of a finite
and a proper morphism (see results in Morphisms, Sections 28.42 and 28.44). It
also follows that ν is a surjective morphism, because the image of ν is closed and
contains the generic point of X. Hence setting Xν = ν−1(X) we see that it suffices
to prove the result for Xν . In other words, we may assume that X is a nonempty
open of a normal proper variety X. This case is handled by Lemma 32.17.1. �

The preceding lemma implies the following slight generalization.

Lemma 32.17.3. Let k be an algebraically closed field. Let X be a connected
reduced scheme which is locally of finite type over k with finitely many irreducible
components. Then O∗(X)/k∗ is a finitely generated abelian group.

Proof. Let X =
⋃
Xi be the irreducible components. By Lemma 32.17.2 we see

that O(Xi)
∗/k∗ is a finitely generated abelian group. Let f ∈ O(X)∗ be in the

kernel of the map

O(X)∗ −→
∏
O(Xi)

∗/k∗.

Then for each i there exists an element λi ∈ k such that f |Xi = λi. By restricting
to Xi ∩ Xj we conclude that λi = λj if Xi ∩ Xj 6= ∅. Since X is connected we
conclude that all λi agree and hence that f ∈ k∗. This proves that

O(X)∗/k∗ ⊂
∏
O(Xi)

∗/k∗

and the lemma follows as on the right we have a product of finitely many finitely
generated abelian groups. �

Lemma 32.17.4. Let k be a field. Let X be a scheme over k which is connected
and reduced. Then the integral closure of k in Γ(X,OX) is a field.

Proof. Let k′ ⊂ Γ(X,OX) be the integral closure of k. Then X → Spec(k) factors
through Spec(k′), see Schemes, Lemma 25.6.4. As X is reduced we see that k′

has no nonzero nilpotent elements. As k → k′ is integral we see that every prime
ideal of k′ is both a maximal ideal and a minimal prime, and Spec(k′) is totally
disconnected, see Algebra, Lemmas 10.35.18 and 10.25.5. As X is connected the
morphism X → Spec(k′) is constant, say with image the point corresponding to
p ⊂ k′. Then any f ∈ k′, f 6∈ p maps to an invertible element of OX . By definition
of k′ this then forces f to be a unit of k′. Hence we see that k′ is local with maximal
ideal p, see Algebra, Lemma 10.17.2. Since we’ve already seen that k′ is reduced
this implies that k′ is a field, see Algebra, Lemma 10.24.1. �
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Proposition 32.17.5. Let k be a field. Let X be a scheme over k. Assume that X
is locally of finite type over k, connected, reduced, and has finitely many irreducible
components. Then O(X)∗/k∗ is a finitely generated abelian group if in addition to
the conditions above at least one of the following conditions is satisfied:

(1) the integral closure of k in Γ(X,OX) is k,
(2) X has a k-rational point, or
(3) X is geometrically integral.

Proof. Let k be an algebraic closure of k. Let Y be a connected component of
(Xk)red. Note that the canonical morphism p : Y → X is open (by Morphisms,
Lemma 28.24.4) and closed (by Morphisms, Lemma 28.44.7). Hence p(Y ) = X as
X was assumed connected. In particular, as X is reduced this implies O(X) ⊂
O(Y ). By Lemma 32.6.13 we see that Y has finitely many irreducible components.
Thus Lemma 32.17.3 applies to Y . This implies that if O(X)∗/k∗ is not a finitely
generated abelian group, then there exist elements f ∈ O(X), f 6∈ k which map
to an element of k via the map O(X) → O(Y ). In this case f is algebraic over k,
hence integral over k. Thus, if condition (1) holds, then this cannot happen. To
finish the proof we show that conditions (2) and (3) imply (1).

Let k ⊂ k′ ⊂ Γ(X,OX) be the integral closure of k in Γ(X,OX). By Lemma
32.17.4 we see that k′ is a field. If e : Spec(k) → X is a k-rational point, then
e] : Γ(X,OX) → k is a section to the inclusion map k → Γ(X,OX). In particular
the restriction of e] to k′ is a field map k′ → k over k, which clearly shows that (2)
implies (1).

If the integral closure k′ of k in Γ(X,OX) is not trivial, then we see that X is either
not geometrically connected (if k ⊂ k′ is not purely inseparable) or that X is not
geometrically reduced (if k ⊂ k′ is nontrivial purely inseparable). Details omitted.
Hence (3) implies (1). �

Lemma 32.17.6. Let k be a field. Let X be a variety over k. The group O(X)∗/k∗

is a finitely generated abelian group provided at least one of the following conditions
holds:

(1) k is integrally closed in Γ(X,OX),
(2) k is algebraically closed in k(X),
(3) X is geometrically integral over k, or
(4) k is the “intersection” of the field extensions k ⊂ κ(x) where x runs over

the closed points of x.

Proof. We see that (1) is enough by Proposition 32.17.5. We omit the verification
that each of (2), (3), (4) implies (1). �

32.18. Uniqueness of base field

The phrase “let X be a scheme over k” means that X is a scheme which comes
equipped with a morphism X → Spec(k). Now we can ask whether the field k is
uniquely determined by the scheme X. Of course this is not the case, since for
example A1

C which we ordinarily consider as a scheme over the field C of complex
numbers, could also be considered as a scheme over Q. But what if we ask that
the morphism X → Spec(k) does not factor as X → Spec(k′) → Spec(k) for any
nontrivial field extension k ⊂ k′? In other words we ask that k is somehow maximal
such that X lives over k.
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An example to show that this still does not guarantee uniqueness of k is the scheme

X = Spec

(
Q(x)[y]

[
1

P (y)
, P ∈ Q[y], P 6= 0

])
At first sight this seems to be a scheme over Q(x), but on a second look it is clear
that it is also a scheme over Q(y). Moreover, the fields Q(x) and Q(y) are subfields
of R = Γ(X,OX) which are maximal among the subfields of R (details omitted).
In particular, both Q(x) and Q(y) are maximal in the sense above. Note that
both morphisms X → Spec(Q(x)) and X → Spec(Q(y)) are “essentially of finite
type” (i.e., the corresponding ring map is essentially of finite type). Hence X is a
Noetherian scheme of finite dimension, i.e., it is not completely pathological.

Another issue that can prevent uniqueness is that the scheme X may be nonreduced.
In that case there can be many different morphisms from X to the spectrum of a
given field. As an explicit example consider the dual numbers D = C[y]/(y2) =
C⊕ εC. Given any derivation θ : C→ C over Q we get a ring map

C −→ D, c 7−→ c+ εθ(c).

The subfield of C on which all of these maps are the same is the algebraic closure
of Q. This means that taking the intersection of all the fields that X can live over
may end up being a very small field if X is nonreduced.

One observation in this regard is the following: given a field k and two subfields
k1, k2 of k such that k is finite over k1 and over k2, then in general it is not the
case that k is finite over k1 ∩ k2. An example is the field k = Q(t) and its subfields
k1 = Q(t2) and Q((t + 1)2). Namely we have k1 ∩ k2 = Q in this case. So in the
following we have to be careful when taking intersections of fields.

Having said all of this we now show that if X is locally of finite type over a field,
then some uniqueness holds. Here is the precise result.

Proposition 32.18.1. Let X be a scheme. Let a : X → Spec(k1) and b : X →
Spec(k2) be morphisms from X to spectra of fields. Assume a, b are locally of finite
type, and X is reduced, and connected. Then we have k′1 = k′2, where k′i ⊂ Γ(X,OX)
is the integral closure of ki in Γ(X,OX).

Proof. First, assume the lemma holds in case X is quasi-compact (we will do the
quasi-compact case below). As X is locally of finite type over a field, it is locally
Noetherian, see Morphisms, Lemma 28.16.6. In particular this means that it is
locally connected, connected components of open subsets are open, and intersections
of quasi-compact opens are quasi-compact, see Properties, Lemma 27.5.5, Topology,
Lemma 5.6.10, Topology, Section 5.8, and Topology, Lemma 5.15.1. Pick an open
covering X =

⋃
i∈I Ui such that each Ui is quasi-compact and connected. For each

i let Ki ⊂ OX(Ui) be the integral closure of k1 and of k2. For each pair i, j ∈ I we
decompose

Ui ∩ Uj =
∐

Ui,j,l

into its finitely many connected components. WriteKi,j,l ⊂ O(Ui,j,l) for the integral
closure of k1 and of k2. By Lemma 32.17.4 the rings Ki and Ki,j,l are fields. Now
we claim that k′1 and k′2 both equal the kernel of the map∏

Ki −→
∏

Ki,j,l, (xi)i 7−→ xi|Ui,j,l − xj |Ui,j,l

http://stacks.math.columbia.edu/tag/04MK
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which proves what we want. Namely, it is clear that k′1 is contained in this kernel.
On the other hand, suppose that (xi)i is in the kernel. By the sheaf condition (xi)i
corresponds to f ∈ O(X). Pick some i0 ∈ I and let P (T ) ∈ k1[T ] be a monic
polynomial with P (xi0) = 0. Then we claim that P (f) = 0 which proves that
f ∈ k1. To prove this we have to show that P (xi) = 0 for all i. Pick i ∈ I. As X
is connected there exists a sequence i0, i1, . . . , in = i ∈ I such that Uit ∩ Uit+1

6= ∅.
Now this means that for each t there exists an lt such that xit and xit+1 map to
the same element of the field Ki,j,l. Hence if P (xit) = 0, then P (xit+1) = 0. By
induction, starting with P (xi0) = 0 we deduce that P (xi) = 0 as desired.

To finish the proof of the lemma we prove the lemma under the additional hypothesis
that X is quasi-compact. By Lemma 32.17.4 after replacing ki by k′i we may assume
that ki is integrally closed in Γ(X,OX). This implies that O(X)∗/k∗i is a finitely
generated abelian group, see Proposition 32.17.5. Let k12 = k1 ∩ k2 as a subring of
O(X). Note that k12 is a field. Since

k∗1/k
∗
12 −→ O(X)∗/k∗2

we see that k∗1/k
∗
12 is a finitely generated abelian group as well. Hence there exist

α1, . . . , αn ∈ k∗1 such that every element λ ∈ k1 has the form

λ = cαe11 . . . αenn

for some ei ∈ Z and c ∈ k12. In particular, the ring map

k12[x1, . . . , xn,
1

x1 . . . xn
] −→ k1, xi 7−→ αi

is surjective. By the Hilbert Nullstellensatz, Algebra, Theorem 10.33.1 we conclude
that k1 is a finite extension of k12. In the same way we conclude that k2 is a finite
extension of k12. In particular both k1 and k2 are contained in the integral closure
k′12 of k12 in Γ(X,OX). But since k′12 is a field by Lemma 32.17.4 and since we
chose ki to be integrally closed in Γ(X,OX) we conclude that k1 = k12 = k2 as
desired. �

32.19. Coherent sheaves on projective space

In this section we prove some results on the cohomology of coherent sheaves on
Pn over a field which can be found in [Mum66]. These will be useful later when
discussing Quot and Hilbert schemes.

32.19.1. Preliminaries. Let k be a field, n ≥ 1, d ≥ 1, and let s ∈ Γ(Pn
k ,O(d))

be a nonzero section. In this section we will write O(d) for the dth twist of the
structure sheaf on projective space (Constructions, Definitions 26.10.1 and 26.13.2).
Since Pn

k is a variety this section is regular, hence s is a regular section of O(d)
and defines an effective Cartier divisor H = Z(s) ⊂ Pn

k , see Divisors, Section 30.9.
Such a divisor H is called a hypersurface and if d = 1 it is called a hyperplane.

Lemma 32.19.2. Let k be a field. Let n ≥ 1. Let i : H → Pn
k be a hyperplane.

Then there exists an isomorphism

ϕ : Pn−1
k −→ H

such that i∗O(1) pulls back to O(1).
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Proof. We have Pn
k = Proj(k[T0, . . . , Tn]). The section s corresponds to a homoge-

neous form in T0, . . . , Tn of degree 1, see Cohomology of Schemes, Section 29.8. Say
s =

∑
aiTi. Constructions, Lemma 26.13.6 gives that H = Proj(k[T0, . . . , Tn]/I)

for the graded ideal I defined by setting Id equal to the kernel of the map Γ(Pn
k ,O(d))→

Γ(H, i∗O(d)). By our construction of Z(s) in Divisors, Definition 30.9.18 we see
that on D+(Tj) the ideal of H is generated by

∑
aiTi/Tj in the polynomial ring

k[T0/Tj , . . . , Tn/Tj ]. Thus it is clear that I is the ideal generated by
∑
aiTi. Note

that

k[T0, . . . , Tn]/I = k[T0, . . . , Tn]/(
∑

aiTi) ∼= k[S0, . . . , Sn−1]

as graded rings. For example, if an 6= 0, then mapping Si equal to the class of Ti
works. We obtain the desired isomorphism by functoriality of Proj. Equality of
twists of structure sheaves follows for example from Constructions, Lemma 26.11.5.

�

Lemma 32.19.3. Let k be an infinite field. Let n ≥ 1. Let F be a coherent module
on Pn

k . Then there exist a nonzero section s ∈ Γ(Pn
k ,O(1)) and a short exact

sequence

0→ F(−1)→ F → i∗G → 0

where i : H → Pn
k is the hyperplane H associated to s and G = i∗F .

Proof. The map F(−1)→ F comes from Constructions, Equation (26.10.1.2) with
n = 1, m = −1 and the section s of O(1). Let’s work out what this map looks
like if we restrict it to D+(T0). Write D+(T0) = Spec(k[x1, . . . , xn]) with xi =
Ti/T0. Identify O(1)|D+(T0) with O using the section T0. Hence if s =

∑
aiTi then

s|D+(T0) = a0 +
∑
aixi with the identification chosen above. Furthermore, suppose

F|D+(T0) corresponds to the finite k[x1, . . . , xn]-module M . Via the identification
F(−1) = F ⊗ O(−1) and our chosen trivialization of O(1) we see that F(−1)
corresponds to M as well. Thus restricting F(−1)→ F to D+(T0) gives the map

M
a0+

∑
aixi−−−−−−−→M

To see that the arrow is injective, it suffices to pick a0 +
∑
aixi outside any of the

associated primes of M , see Algebra, Lemma 10.62.9. By Algebra, Lemma 10.62.5
the set Ass(M) of associated primes of M is finite. Note that for p ∈ Ass(M) the
intersection p ∩ {a0 +

∑
aixi} is a proper k-subvector space. We conclude that

there is a finite family of proper sub vector spaces V1, . . . , Vm ⊂ Γ(Pn
k ,O(1)) such

that if we take s outside of
⋃
Vi, then multiplication by s is injective over D+(T0).

Similarly for the restriction to D+(Tj) for j = 1, . . . , n. Since k is infinite, a finite
union of proper sub vector spaces is never equal to the whole space, hence we may
choose s such that the map is injective. The cokernel of F(−1)→ F is annihilated
by Im(s : O(−1)→ O) which is the ideal sheaf of H by Divisors, Definition 30.9.18.
Hence we obtain G on H using Cohomology of Schemes, Lemma 29.9.8. �

Remark 32.19.4. Let k be an infinite field. Let n ≥ 1. Given a finite number of
coherent modules Fi on Pn

k we can choose a single s ∈ Γ(Pn
k ,O(1)) such that the

statement of Lemma 32.19.3 works for each of them. To prove this, just apply the
lemma to

⊕
Fi.
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32.19.5. Regularity.

Definition 32.19.6. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on
Pn
k . We say F is m-regular if

Hi(Pn
k ,F(m− i)) = 0

for i = 1, . . . , n.

Note that F = O(d) is m-regular if and only if d ≥ m. This follows from the
computation of cohomology groups in Cohomology of Schemes, Equation (29.8.1.1).
Namely, we see that Hn(Pn

k ,O(d)) = 0 if and only if d ≥ −n.

Lemma 32.19.7. Let k ⊂ k′ be an extension of fields. Let n ≥ 0. Let F be a
coherent sheaf on Pn

k . Let F ′ be the pullback of F to Pn
k′ . Then F is m-regular if

and only if F ′ is m-regular.

Proof. This is true because

Hi(Pn
k′ ,F ′) = Hi(Pn

k ,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 29.5.2. �

Lemma 32.19.8. In the situation of Lemma 32.19.3, if F is m-regular, then G is
m-regular on H ∼= Pn−1

k .

Proof. Recall that Hi(Pn
k , i∗G) = Hi(H,G) by Cohomology of Schemes, Lemma

29.2.4. Hence we see that for i ≥ 1 we get

Hi(Pn
k ,F(m− i))→ Hi(H,G(m− i))→ Hi+1(Pn

k ,F(m− 1− i))

as part of the long exact sequence associated to the short exact sequence 0 →
F(m − 1 − i) → F(m − i) → i∗G(m − i) → 0 we obtain from the exact sequence
of Lemma 32.19.3 by tensoring with the invertible sheaf O(m − i). The lemma
follows. �

Lemma 32.19.9. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then F is (m+ 1)-regular.

Proof. We prove this by induction on n. If n = 0 every sheaf is m-regular for
all m and there is nothing to prove. By Lemma 32.19.7 we may replace k by an
infinite overfield and assume k is infinite. Thus we may apply Lemma 32.19.3. By
Lemma 32.19.8 we know that G is m-regular. By induction on n we see that G is
(m+1)-regular. Considering the long exact cohomology sequence associated to the
sequence

0→ F(m− i)→ F(m+ 1− i)→ i∗G(m+ 1− i)→ 0

the reader easily deduces for i ≥ 1 the vanishing of Hi(Pn
k ,F(m+ 1− i)) from the

(known) vanishing of Hi(Pn
k ,F(m− i)) and Hi(Pn

k ,G(m+ 1− i)). �

Lemma 32.19.10. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

If F is m-regular, then the multiplication map

H0(Pn
k ,F(m))⊗k H0(Pn

k ,O(1)) −→ H0(Pn
k ,F(m+ 1))

is surjective.
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Proof. Let k ⊂ k′ be an extension of fields. Let F ′ be as in Lemma 32.19.7. By
Cohomology of Schemes, Lemma 29.5.2 the base change of the linear map of the
lemma to k′ is the same linear map for the sheaf F ′. Since k → k′ is faithfully flat
it suffices to prove the lemma over k′, i.e., we may assume k is infinite.

Assume k is infinite. We prove the lemma by induction on n. The case n = 0 is
trivial as O(1) ∼= O is generated by T0. For n > 0 apply Lemma 32.19.3 and tensor
the sequence by O(m+ 1) to get

0→ F(m)
s−→ F(m+ 1)→ i∗G(m+ 1)→ 0

Let t ∈ H0(Pn
k ,F(m+1)). By induction the image t ∈ H0(H,G(m+1)) is the image

of
∑
gi ⊗ si with si ∈ Γ(H,O(1)) and gi ∈ H0(H,G(m)). Since F is m-regular we

have H1(Pn
k ,F(m − 1)) = 0, hence long exact cohomology sequence associated to

the short exact sequence

0→ F(m− 1)
s−→ F(m)→ i∗G(m)→ 0

shows we can lift gi to fi ∈ H0(Pn
k ,F(m)). We can also lift si to si ∈ H0(Pn

k ,O(1))
(see proof of Lemma 32.19.2 for example). After substracting the image of

∑
fi⊗si

from t we see that we may assume t = 0. But this exactly means that t is the image
of f ⊗ s for some f ∈ H0(Pn

k ,F(m)) as desired. �

Lemma 32.19.11. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

If F is m-regular, then F(m) is globally generated.

Proof. For all d� 0 the sheaf F(d) is globally generated. This follows for example
from the first part of Cohomology of Schemes, Lemma 29.15.1. Pick d ≥ m such
that F(d) is globally generated. Choose a basis f1, . . . , fr ∈ H0(Pn

k ,F). By Lemma
32.19.10 every element f ∈ H0(Pn

k ,F(d)) can be written as f =
∑
Pifi for some

Pi ∈ k[T0, . . . , Tn] homogeneous of degree d−m. Since the sections f generate F(d)
it follows that the sections fi generate F(m). �

32.19.12. Hilbert polynomials. Let k be a field. Let X be a proper scheme
over k. Let F be a coherent OX -module. In this situation the Euler characteristic
of F is the integer

χ(X,F) =
∑

(−1)i dimkH
i(X,F).

Note that only a finite number of the vector spaces Hi(X,F) are nonzero (Cohomol-
ogy of Schemes, Lemma 29.4.4) and that each of these spaces is finite dimensional
(Cohomology of Schemes, Lemma 29.17.4). Thus χ(X,F) ∈ Z is well defined.
Observe that this definition depends on the field k and not just on the pair (X,F).

Lemma 32.19.13. Let k be a field. Let X be a proper scheme over k. Let 0 →
F1 → F2 → F3 → 0 be a short exact sequence of coherent modules on X. Then

χ(X,F2) = χ(X,F1) + χ(X,F3)

Proof. Consider the long exact sequence of cohomology

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in
linear algebra shows that

0 = dimH0(X,F1)− dimH0(X,F2) + dimH0(X,F3)− dimH1(X,F1) + . . .

This immediately implies the lemma. �
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Lemma 32.19.14. Let k ⊂ k′ be an extension of fields. Let X be a proper scheme
over k. Let F be a coherent sheaf on X. Let F ′ be the pullback of F to Xk′ . Then
χ(X,F) = χ(X ′,F ′).

Proof. This is true because

Hi(Xk′ ,F ′) = Hi(X,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 29.5.2. �

Lemma 32.19.15. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

The function

d 7−→ χ(Pn
k ,F(d))

is a polynomial.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and

F(d) = F . Hence in this case the function is constant, i.e., a polynomial of degree
0. Assume n > 0. By Lemma 32.19.14 we may assume k is infinite. Apply Lemma
32.19.3. Applying Lemma 32.19.13 to the twisted sequences 0 → F(d − 1) →
F(d)→ i∗G(d)→ 0 we obtain

χ(Pn
k ,F(d))− χ(Pn

k ,F(d− 1)) = χ(H,G(d))

(this also uses the identification of the cohomology of i∗G with the cohomology of
G, see Cohomology of Schemes, Lemma 29.2.4). Since H ∼= Pn−1

k (Lemma 32.19.2)
by induction the right hand side is a polynomial. The lemma is finished by noting
that any function f : Z→ Z with the property that the map d 7→ f(d)− f(d−1) is
a polynomial, is itself a polynomial. We omit the proof of this fact (hint: compare
with Algebra, Lemma 10.57.5). �

Definition 32.19.16. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on
Pn
k . The function d 7→ χ(Pn

k ,F(d)) is called the Hilbert polynomial of F .

The Hilbert polynomial has coefficients in Q and not in general in Z. For example
the Hilbert polynomial of OPnk

is

d 7−→
(
d+ n

n

)
=
dn

n!
+ . . .

This follows from the following lemma and the fact that

H0(Pn
k ,OPnk

) = k[T0, . . . , Tn]d

(degree d part) whose dimension over k is
(
d+n
n

)
.

Lemma 32.19.17. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k

with Hilbert polynomial P ∈ Q[t]. Then

P (d) = dimkH
0(Pn

k ,F(d))

for all d� 0.

Proof. This follows from the vanishing of cohomology of high enough twists of F .
See Cohomology of Schemes, Lemma 29.15.1. �
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32.19.18. Boundedness of quotients. In this subsection we bound the reg-
ularity of quotients of a given coherent sheaf on Pn in terms of the Hilbert poly-
nomial.

Lemma 32.19.19. Let k be a field. Let n ≥ 0. Let r ≥ 1. Let P ∈ Q[t]. There
exists an integer m depending on n, r, and P with the following property: if

0→ K → O⊕r → F → 0

is a short exact sequence of coherent sheaves on Pn
k and F has Hilbert polynomial

P , then K is m-regular.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and any

coherent module is 0-regular and any surjective map is surjective on global sections.
Assume n > 0. Consider an exact sequence as in the lemma. Let P ′ ∈ Q[t] be
the polynomial P ′(t) = P (t) − P (t − 1). Let m′ be the integer which works for
n − 1, r, and P ′. By Lemmas 32.19.7 and 32.19.14 we may replace k by a field
extension, hence we may assume k is infinite. Apply Lemma 32.19.3 to the coherent
sheaf F . The Hilbert polynomial of F ′ = i∗F is P ′ (see proof of Lemma 32.19.15).
Since i∗ is right exact we see that F ′ is a quotient of O⊕rH = i∗O⊕r. Thus the

induction hypothesis applies to F ′ on H ∼= Pn−1
k (Lemma 32.19.2). Note that the

map K(−1)→ K is injective as K ⊂ O⊕r and has cokernel i∗H where H = i∗K. By
the snake lemma (Homology, Lemma 12.5.17) we obtain a commutative diagram
with exact columns and rows

0

��

0

��

0

��
0 // K(−1) //

��

O⊕r(−1) //

��

F(−1)

��

// 0

0 // K //

��

O⊕r //

��

F

��

// 0

0 // i∗H //

��

i∗O⊕rH //

��

i∗F ′ //

��

0

0 0 0

Thus the induction hypothesis applies to the exact sequence 0 → H → O⊕rH →
F ′ → 0 on H ∼= Pn−1

k (Lemma 32.19.2) and H is m′-regular. Recall that this
implies that H is d-regular for all d ≥ m′ (Lemma 32.19.9).

Let i ≥ 2 and d ≥ m′. It follows from the long exact cohomology sequence associ-
ated to the left column of the diagram above and the vanishing of Hi−1(H,H(d))
that the map

Hi(Pn
k ,K(d− 1)) −→ Hi(Pn

k ,K(d))

is injective. As these groups are zero for d � 0 (Cohomology of Schemes, Lemma
29.15.1) we conclude Hi(Pn

k ,K(d)) are zero for all d ≥ m′ and i ≥ 2.

We still have to control H1. First we observe that all the maps

H1(Pn
k ,K(m′ − 1))→ H1(Pn

k ,K(m′))→ H1(Pn
k ,K(m′ + 1))→ . . .
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are surjective by the vanishing of H1(H,H(d)) for d ≥ m′. Suppose d > m′ is such
that

H1(Pn
k ,K(d− 1)) −→ H1(Pn

k ,K(d))

is injective. Then H0(Pn
k ,K(d)) → H0(H,H(d)) is surjective. Consider the com-

mutative diagram

H0(Pn
k ,K(d))⊗k H0(Pn

k ,O(1)) //

��

H0(Pn
k ,K(d+ 1))

��
H0(H,H(d))⊗k H0(H,OH(1)) // H0(H,H(d+ 1))

By Lemma 32.19.10 we see that the bottom horizontal arrow is surjective. Hence
the right vertical arrow is surjective. We conclude that

H1(Pn
k ,K(d)) −→ H1(Pn

k ,K(d+ 1))

is injective. By induction we see that

H1(Pn
k ,K(d− 1))→ H1(Pn

k ,K(d))→ H1(Pn
k ,K(d+ 1))→ . . .

are all injective and we conclude that H1(Pn
k ,K(d−1)) = 0 because of the eventual

vanishing of these groups. Thus the dimensions of the groups H1(Pn
k ,K(d)) for

d ≥ m′ are strictly decreasing until they become zero. It follows that the regularity
of K is bounded by m′+dimkH

1(Pn
k ,K(m′)). On the other hand, by the vanishing

of the higher cohomology groups we have

dimkH
1(Pn

k ,K(m′)) = −χ(Pn
k ,K(m′)) + dimkH

0(Pn
k ,K(m′))

Note that the H0 has dimension bounded by the dimension of H0(Pn
k ,O⊕r(m′))

which is at most r
(
n+m′

n

)
if m′ > 0 and zero if not. Finally, the term χ(Pn

k ,K(m′))

is equal to r
(
n+m′

n

)
− P (m′). This gives a bound of the desired type finishing the

proof of the lemma. �

32.20. Glueing dimension one rings

This section contains some algebraic preliminaries to proving that a finite set of
codimension 1 points of a separated scheme is contained in an affine open.

Situation 32.20.1. Here we are given a commutative diagram of rings

A // K

R

OO

// B

OO

where K is a field and A, B are subrings of K with fraction field K. Finally,
R = A×K B = A ∩B.

Lemma 32.20.2. In Situation 32.20.1 assume that B is a valuation ring. Then
for every unit u of A either u ∈ R or u−1 ∈ R.

Proof. Namely, if the image c of u in K is in B, then u ∈ R. Otherwise, c−1 ∈ B
(Algebra, Lemma 10.48.3) and u−1 ∈ R. �

The following lemma explains the meaning of the condition “A⊗B → K is surjec-
tive” which comes up quite a bit in the following.

http://stacks.math.columbia.edu/tag/09MY
http://stacks.math.columbia.edu/tag/09MZ


32.20. GLUEING DIMENSION ONE RINGS 2147

Lemma 32.20.3. In Situation 32.20.1 assume A is a Noetherian ring of dimension
1. The following are equivalent

(1) A⊗B → K is not surjective,
(2) there exists a discrete valuation ring O ⊂ K containing both A and B.

Proof. It is clear that (2) implies (1). On the other hand, if A ⊗ B → K is not
surjective, then the image C ⊂ K is not a field hence C has a nonzero maximal
ideal m. Choose a valuation ring O ⊂ K dominating Cm. By Algebra, Lemma
10.115.11 applied to A ⊂ O the ring O is Noetherian. Hence O is a valuation ring
by Algebra, Lemma 10.48.18. �

Lemma 32.20.4. In Situation 32.20.1 assume

(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a discrete valuation ring,

Then we have the following two possibilities

(a) If A∗ is not contained in R, then Spec(A) → Spec(R) and Spec(B) →
Spec(R) are open immersions and K = A⊗R B.

(b) If A∗ is contained in R, then B dominates one of the local rings of A at
a maximal ideal and A⊗B → K is not surjective.

Proof. Assumption (a) implies there is a unit of A whose image in K lies in the
maximal ideal of B. Then u is a nonzerodivisor of R and for every a ∈ A there
exists an n such that una ∈ R. It follows that A = Ru.

Let mA be the radical of A. Let x ∈ mA be a nonzero element. Since dim(A) = 1
we see that K = Ax. After replacing x by xnum for some n ≥ 1 and m ∈ Z we
may assume x maps to a unit of B. We see that for every b ∈ B we have that xnb
in the image of R for some n. Thus B = Rx.

Let z ∈ R. If z 6∈ mA and z does not map to an element of mB , then z is invertible.
Thus x+ u is invertible in R. Hence Spec(R) = D(x) ∪D(u). We have seen above
that D(u) = Spec(A) and D(x) = Spec(B).

Case (b). If x ∈ mA, then 1 + x is a unit and hence 1 + x ∈ R, i.e, x ∈ R. Thus
we see that mA ⊂ R ⊂ A. In fact, in this case A is integral over R. Namely, write
A/mA = κ1 × . . . × κn as a product of fields. Say x = (c1, . . . , cr, 0, . . . , 0) is an
element with ci 6= 0. Then

x2 − x(c1, . . . , cr, 1, . . . , 1) = 0

Since R contains all units we see that A/mA is integral over the image of R in
it, and hence A is integral over R. It follows that R ⊂ A ⊂ B as B is integrally
closed. Moreover, if x ∈ mA is nonzero, then K = Ax =

⋃
x−nA =

⋃
x−nR. Hence

x−1 6∈ B, i.e., x ∈ mB . We conclude mA ⊂ mB . Thus A∩mB is a maximal ideal of
A thereby finishing the proof. �

Lemma 32.20.5. Let B be a semi-local Noetherian domain of dimension 1. Let B′

be the integral closure of B in its fraction field. Then B′ is a semi-local Dedekind
domain. Let x be a nonzero element of the radical of B′. Then for every y ∈ B′
there exists an n such that xny ∈ B.

Proof. Let mB be the radical of B. The structure of B′ results from Algebra,
Lemma 10.116.14. Given x, y ∈ B′ as in the statement of the lemma consider the
subring B ⊂ A ⊂ B′ generated by x and y. Then A is finite over B (Algebra,
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Lemma 10.35.5). Since the fraction fields of B and A are the same we see that the
finite module A/B is supported on the set of closed points of B. Thus mnBA ⊂ B
for a suitable n. Moreover, Spec(B′) → Spec(A) is surjective (Algebra, Lemma
10.35.15), hence A is semi-local as well. It also follows that x is in the radical mA of
A. Note that mA =

√
mBA. Thus xmy ∈ mBA for some m. Then xnmy ∈ B. �

Lemma 32.20.6. In Situation 32.20.1 assume

(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a Noetherian semi-local domain of dimension 1,
(3) A⊗B → K is surjective.

Then Spec(A)→ Spec(R) and Spec(B)→ Spec(R) are open immersions and K =
A⊗R B.

Proof. Special case: B is integrally closed in K. This means that B is a Dedekind
domain (Algebra, Lemma 10.116.13) whence all of its localizations at maximal
ideals are discrete valuation rings. Let m1, . . . ,mr be the maximal ideals of B. We
set

R1 = A×K Bm1

Observing that A⊗R1
Bm1

→ K is surjective we conclude from Lemma 32.20.4 that
A and Bm1

define open subschemes covering Spec(R1) and that K = A ⊗R1
Bm1

.
In particular R1 is a semi-local Noetherian ring of dimension 1. By induction we
define

Ri+1 = Ri ×K Bmi+1

for i = 1, . . . , r − 1. Observe that R = Rn because B = Bm1
∩ . . . ∩ Bmr (see

Algebra, Lemma 10.146.6). It follows from the inductive procedure that R → A
defines an open immersion Spec(A) → Spec(R). On the other hand, the maximal
ideals ni of R not in this open correspond to the maximal ideals mi of B and in
fact the ring map R → B defines an isomorphisms Rni → Bmi (details omitted;
hint: in each step we added exactly one maximal ideal to Spec(Ri)). It follows that
Spec(B)→ Spec(R) is an open immersion as desired.

General case. Let B′ ⊂ K be the integral closure of B. See Lemma 32.20.5. Then
the special case applies to R′ = A ×K B′. Pick x ∈ R′ which is not contained in
the maximal ideals of A and is contained in the maximal ideals of B′ (see Algebra,
Lemma 10.14.3). By Lemma 32.20.5 there exists an integer n such that xn ∈ R =
A ×K B. Replace x by xn so x ∈ R. For every y ∈ R′ there exists an integer n
such that xny ∈ R. On the other hand, it is clear that R′x = A. Thus Rx = A.
Exchanging the roles of A and B we also find an y ∈ R such that B = Ry. Note that
inverting both x and y leaves no primes except (0). Thus K = Rxy = Rx ⊗R Ry.
This finishes the proof. �

Lemma 32.20.7. Let K be a field. Let A1, . . . , Ar ⊂ K be Noetherian semi-local
rings of dimension 1 with fraction field K. If Ai ⊗ Aj → K is surjective for all
i 6= j, then there exists a Noetherian semi-local domain A ⊂ K of dimension 1
containing A1, . . . , Ar such that

(1) A→ Ai induces an open immersion ji : Spec(Ai)→ Spec(A),
(2) Spec(A) is the union of the opens ji(Spec(Ai)),
(3) each closed point of Spec(A) lies in exactly one of these opens.
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Proof. Namely, we can take A = A1∩ . . .∩Ar. First we note that (3), once (1) and
(2) have been proven, follows from the assumption that Ai ⊗Aj → K is surjective
since if m ∈ ji(Spec(Ai)) ∩ jj(Spec(Aj)), then Ai ⊗ Aj → K ends up in Am. To
prove (1) and (2) we argue by induction on r. If r > 1 by induction we have the
results (1) and (2) for B = A2 ∩ . . . ∩ Ar. Then we apply Lemma 32.20.6 to see
they hold for A = A1 ∩B. �

Lemma 32.20.8. Let A be a domain with fraction field K. Let B1, . . . , Br ⊂ K be
Noetherian 1-dimensional semi-local rings whose fraction fields are K. If A⊗Bi →
K are surjective for i = 1, . . . , r, then there exists an x ∈ A such that x−1 is in the
radical of Bi for i = 1, . . . , r.

Proof. Let B′i be the integral closure of Bi in K. Suppose we find a nonzero x ∈ A
such that x−1 is in the radical of B′i for i = 1, . . . , r. Then by Lemma 32.20.5, after
replacing x by a power we get x−1 ∈ Bi. Since Spec(B′i) → Spec(Bi) is surjective
we see that x−1 is then also in the radical of Bi. Thus we may assume that each
Bi is a semi-local Dedekind domain.

If Bi is not local, then remove Bi from the list and add back the finite collection
of local rings (Bi)m. Thus we may assume that Bi is a discrete valuation ring for
i = 1, . . . , r.

Let vi : K → Z, i = 1, . . . , r be the corresponding discrete valuations (see Algebra,
Lemma 10.116.13). We are looking for a nonzero x ∈ A with vi(x) < 0 for i =
1, . . . , r. We will prove this by induction on r.

If r = 1 and the result is wrong, then A ⊂ B and the map A ⊗ B → K is not
surjective, contradiction.

If r > 1, then by induction we can find a nonzero x ∈ A such that vi(x) < 0 for
i = 1, . . . , r − 1. If vr(x) < 0 then we are done, so we may assume vr(x) ≥ 0. By
the base case we can find y ∈ A nonzero such that vr(y) < 0. After replacing x by
a power we may assume that vi(x) < vi(y) for i = 1, . . . , r − 1. Then x + y is the
element we are looking for. �

Lemma 32.20.9. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let a1, a2 ∈ mA map to the
same element of L. Then an1 = an2 for some n > 0.

Proof. Write a1 = a2 + x. Then x maps to zero in L. Hence x is a nilpotent
element of A because

⋂
p is the radical of (0) and the annihilator I of x contains a

power of the maximal ideal because p 6∈ V (I) for all minimal primes. Say xk = 0
and mn ⊂ I. Then

ak+n
1 = ak+n

2 +

(
n+ k

1

)
an+k−1

2 x+

(
n+ k

2

)
an+k−2

2 x2+. . .+

(
n+ k

k − 1

)
an+1

2 xk−1 = an+k
2

because a2 ∈ mA. �

Lemma 32.20.10. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

and I =
⋂
p where the product and intersection are over the minimal primes of A.

Let f ∈ L be an element of the form f = i + a where a ∈ mA and i ∈ IL. Then
some power of f is in the image of A→ L.
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Proof. Since A is Noetherian we have It = 0 for some t > 0. Suppose that we
know that f = a + i with i ∈ IkL. Then fn = an + nan−1i mod Ik+1L. Hence it
suffices to show that nan−1i is in the image of Ik → IkL for some n � 0. To see
this, pick a g ∈ A such that mA =

√
(g) (Algebra, Lemma 10.59.7). Then L = Ag

for example by Algebra, Proposition 10.59.6. On the other hand, there is an n such
that an ∈ (g). Hence we can clear denominators for elements of L by multiplying
by a high power of a. �

Lemma 32.20.11. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let K → L be an integral ring
map. Then there exist a ∈ mA and x ∈ K which map to the same element of L
such that mA =

√
(a).

Proof. By Lemma 32.20.10 we may replace A by A/(
⋂

p) and assume that A is
a reduced ring (some details omitted). We may also replace K by the image of
K → L. Then K is a reduced ring. The map Spec(L)→ Spec(K) is surjective and
closed (details omitted). Hence Spec(K) is a finite discrete space. It follows that
K is a finite product of fields.

Let pj , j = 1, . . . ,m be the minimal primes of A. Set Lj = f.f.(Aj) so that
L =

∏
j=1,...,m Lj . Let Aj be the normalization of A/pj . Then Aj is a semi-local

Dedekind domain with at least one maximal ideal, see Algebra, Lemma 10.116.14.
Let n be the sum of the numbers of maximal ideals in A1, . . . , Am. For such a
maximal ideal m ⊂ Aj we consider the function

vm : L→ Lj → Z ∪ {∞}

where the second arrow is the discrete valuation corresponding to the discrete val-
uation ring (Aj)m extended by mapping 0 to ∞. In this way we obtain n functions
v1, . . . , vn : L → Z ∪ {∞}. We will find an element x ∈ K such that vi(x) < 0 for
all i = 1, . . . , n.

First we claim that for each i there exists an element x ∈ K with vi(x) < 0.
Namely, suppose that vi corresponds to m ⊂ Aj . If vi(x) ≥ 0 for all x ∈ K, then K
maps into (Aj)m inside of Lj = f.f.(Aj). The image of K in Lj is a field over Lj
is algebraic by Algebra, Lemma 10.35.16. Combined we get a contradiction with
Algebra, Lemma 10.48.7.

Suppose we have found an element x ∈ K such that v1(x) < 0, . . . , vr(x) < 0 for
some r < n. If vr+1(x) < 0, then x works for r+ 1. If not, then choose some y ∈ K
with vr+1(y) < 0 as is possible by the result of the previous paragraph. After
replacing x by xn for some n > 0, we may assume vi(x) < vi(y) for i = 1, . . . , r.
Then vj(x+y) = vj(x) < 0 for j = 1, . . . , r by properties of valuations and similarly
vr+1(x + y) = vr+1(y) < 0. Arguing by induction, we find x ∈ K with vi(x) < 0
for i = 1, . . . , n.

In particular, the element x ∈ K has nonzero projection in each factor of K (recall
that K is a finite product of fields and if some component of x was zero, then one
of the values vi(x) would be ∞). Hence x is invertible and x−1 ∈ K is an element
with ∞ > vi(x

−1) > 0 for all i. It follows from Lemma 32.20.5 that for some e < 0
the element xe ∈ K maps to an element of mA/pj ⊂ A/pj for all j = 1, . . . ,m.
Observe that the cokernel of the map mA →

∏
mA/pj is annihilated by a power

of mA. Hence after replacing e by a more negative e, we find an element a ∈ mA
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whose image in mA/pj is equal to the image of xe. The pair (a, xe) satisfies the
conclusions of the lemma. �

Lemma 32.20.12. Let A be a ring. Let p1, . . . , pr be a finite set of a primes of A.
Let S = A \

⋃
pi. Then S is a multiplicative system and S−1A is a semi-local ring

whose maximal ideals correspond to the maximal elements of the set {pi}.

Proof. If a, b ∈ A and a, b ∈ S, then a, b 6∈ pi hence ab 6∈ pi, hence ab ∈ S. Also
1 ∈ S. Thus S is a multiplicative subset of A. By the description of Spec(S−1A) in
Algebra, Lemma 10.16.5 and by Algebra, Lemma 10.14.2 we see that the primes of
S−1A correspond to the primes of A contained in one of the pi. Hence the maximal
ideals of S−1A correspond one-to-one with the maximal (w.r.t. inclusion) elements
of the set {p1, . . . , pr}. �

32.21. One dimensional Noetherian schemes

Some material leading up to a discussion of algebraic curves.

Lemma 32.21.1. Let X be a scheme all of whose local rings are Noetherian of
dimension ≤ 1. Let U ⊂ X be a retrocompact open. Denote j : U → X the
inclusion morphism. Then Rpj∗F = 0, p > 0 for every quasi-coherent OU -module
F .

Proof. We may check the vanishing of Rpj∗F at stalks. Formation of Rqj∗ com-
mutes with flat base change, see Cohomology of Schemes, Lemma 29.5.2. Thus we
may assume that X is the spectrum of a Noetherian local ring of dimension ≤ 1. In
this case X has a closed points x and finitely many other points x1, . . . , xn which
specialize to x but not each other (see Algebra, Lemma 10.30.6). If x ∈ U , then
U = X and the result is clear. If not, then U = {x1, . . . , xr} for some r after pos-
sibly renumbering the points. Then U is affine (Schemes, Lemma 25.11.7). Thus
the result by Cohomology of Schemes, Lemma 29.2.3. �

Lemma 32.21.2. Let X be an affine scheme all of whose local rings are Noetherian
of dimension ≤ 1. Then any quasi-compact open U ⊂ X is affine.

Proof. Denote j : U → X the inclusion morphism. Let F be a quasi-coherent
OU -module. By Lemma 32.21.1 the higher direct images Rpj∗F are zero. The OX -
module j∗F is quasi-coherent (Schemes, Lemma 25.24.1). Hence it has vanishing
higher cohomology groups by Cohomology of Schemes, Lemma 29.2.2. By the Leray
spectral sequence Cohomology, Lemma 20.14.6 we have Hp(U,F) = 0 for all p > 0.
Thus U is affine, for example by Cohomology of Schemes, Lemma 29.3.1. �

Lemma 32.21.3. Let X be a scheme. Let U ⊂ X be an open. Assume

(1) U is a retrocompact open of X,
(2) X \ U is discrete, and
(3) for x ∈ X \ U the local ring OX,x is Noetherian of dimension ≤ 1.

Then (1) there exists an invertible OX-module L and a section s such that U = Xs

and (2) the map Pic(X)→ Pic(U) is surjective.

Proof. Let X \ U = {xi; i ∈ I}. Choose affine opens Ui ⊂ X with xi ∈ X and
xj 6∈ Ui for j 6= i. This is possible by condition (2). Say Ui = Spec(Ai). Let
mi ⊂ Ai be the maximal ideal corresponding to xi. By our assumption on the
local rings there are only a finite number of prime ideals q ⊂ mi, q 6= mi (see
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Algebra, Lemma 10.30.6). Thus by prime avoidance (Algebra, Lemma 10.14.2) we
can find fi ∈ mi not contained in any of those primes. Then V (fi) = {mi} q Zi
for some closed subset Zi ⊂ Ui because Zi is a retrocompact open subset of V (fi)
closed under specialization, see Algebra, Lemma 10.40.7. After shrinking Ui we
may assume V (fi) = {xi}. Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗X given by fi on
U ∩Ui and by fi/fj on Ui ∩Uj . This defines a line bundle L such that the section
s defined by 1 on U and fi on Ui is as in the statement of the lemma.

LetN be an invertibleOU -module. Let Ni be the invertible (Ai)fi module such that

N|U∩Ui is equal to Ñi. Observe that (Ami)fi is an Artinian ring (as a dimension
zero Noetherian ring, see Algebra, Lemma 10.59.4). Thus it is a product of local
rings (Algebra, Lemma 10.51.6) and hence has trivial Picard group. Thus, after
shrinking Ui (i.e., after replacing Ai by (Ai)g for some g ∈ Ai, g 6∈ mi) we can
assume that Ni = (Ai)fi , i.e., that N|U∩Ui is trivial. In this case it is clear how
to extend N to an invertible sheaf over X (by extending it by a trivial invertible
module over each Ui). �

Lemma 32.21.4. Let X be an integral separated scheme. Let U ⊂ X be a
nonempty affine open such that X \U is a finite set of points x1, . . . , xr with OX,xi
Noetherian of dimension 1. Then there exists a globally generated invertible OX-
module L and a section s such that U = Xs.

Proof. Say U = Spec(A) and let K be the fraction field of X. Write Bi = OX,xi
and mi = mxi . Since xi 6∈ U we see that the open U ×X Spec(Bi) of Spec(Bi) has
only one point, i.e., U ×X Spec(Bi) = Spec(K). Since X is separated, we find that
Spec(K) is a closed subscheme of U × Spec(Bi), i.e., the map A ⊗ Bi → K is a
surjection. By Lemma 32.20.8 we can find a nonzero f ∈ A such that f−1 ∈ mi for
i = 1, . . . , r. Pick opens xi ∈ Ui ⊂ X such that f−1 ∈ O(Ui). Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗X given by f on
U ∩ Ui and by 1 on Ui ∩ Uj . This defines a line bundle L with two sections:

(1) a section s defined by 1 on U and f−1 on Ui is as in the statement of the
lemma, and

(2) a section t defined by f on U and 1 on Ui.

Note that Xt ⊃ U1 ∪ . . . ∪ Ur. Hence s, t generate L and the lemma is proved. �

Lemma 32.21.5. Let X be a quasi-compact scheme. If for every x ∈ X there
exists a pair (L, s) consisting of a globally generated invertible sheaf L and a global
section s such that x ∈ Xs and Xs is affine, then X has an ample invertible sheaf.

Proof. Since X is quasi-compact we can find a finite collection (Li, si), i = 1, . . . , n
of pairs such that Xsi is affine and X =

⋃
Xsi . Again because X is quasi-compact

we can find, for each i, a finite collection of sections ti,j , j = 1, . . . ,mi such that
X =

⋃
Xti,j . Set ti,0 = si. Consider the invertible sheaf

L = L1 ⊗OX . . .⊗OX Ln
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and the global sections

τJ = t1,j1 ⊗ . . .⊗ tn,jn
By Properties, Lemma 27.24.4 the open XτJ is affine as soon as ji = 0 for some
i. It is a simple matter to see that these opens cover X. Hence L is ample by
definition. �

Lemma 32.21.6. Let X be a Noetherian integral separated scheme of dimension
1. Then X has an ample invertible sheaf.

Proof. Choose an affine open covering X = U1 ∪ . . . ∪Un. Since X is Noetherian,
each of the sets X \Ui is finite. Thus by Lemma 32.21.4 we can find a pair (Li, si)
consisting of a globally generated invertible sheaf Li and a global section si such
that Ui = Xsi . We conclude that X has an ample invertible sheaf by Lemma
32.21.5. �

Lemma 32.21.7. Let X be a scheme. Let Z1, . . . , Zn ⊂ X be closed subschemes.
Let Li be an invertible sheaf on Zi. Assume that

(1) X is reduced,
(2) X =

⋃
Zi set theoretically, and

(3) Zi ∩ Zj is a discrete topological space for i 6= j.

Then there exists an invertible sheaf L on X whose restriction to Zi is Li. Moreover,
if we are given sections si ∈ Γ(Zi,Li) which are nonvanishing at the points of
Zi ∩ Zj, then we can choose L such that there exists a s ∈ Γ(X,L) with s|Zi = si
for all i.

Proof. Set T =
⋃
i 6=j Zi ∩ Zj . As X is reduced we have

X \ T =
⋃

(Zi \ T )

as schemes. Assumption (3) implies T is a discrete subset of X. Thus for each
t ∈ T we can find an open Ut ⊂ X with t ∈ Ut but t′ 6∈ Ut for t′ ∈ T , t′ 6= t.
By shrinking Ut if necessary, we may assume that there exist isomorphisms ϕt,i :
Li|Ut∩Zi → OUt∩Zi . Furthermore, for each i choose an open covering

Zi \ T =
⋃

j
Uij

such that there exist isomorphisms ϕi,j : Li|Uij ∼= OUij . Observe that

U : X =
⋃
Ut ∪

⋃
Uij

is an open covering of X. We claim that we can use the isomorphisms ϕt,i and ϕi,j
to define a 2-cocycle with values in O∗X for this covering that defines L as in the
statement of the lemma.

Namely, if i 6= i′, then Ui,j ∩Ui′,j′ = ∅ and there is nothing to do. For Ui,j ∩Ui,j′ we
have OX(Ui,j ∩Ui,j′) = OZi(Ui,j ∩Ui,j′) by the first remark of the proof. Thus the

transition function for Li (more precisely ϕi,j ◦ϕ−1
i,j′) defines the value of our cocycle

on this intersection. For Ut ∩ Ui,j we can do the same thing as before. Finally, for
t 6= t′ we have

Ut ∩ Ut′ =
∐

(Ut ∩ Ut′) ∩ Zi
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and moreover the intersections Ut ∩ Ut′ ∩ Zi is contained in Zti \ T . Hence by the
same reasoning as before we see that

OX(Ut ∩ Ut′) =
∏
OZi(Ut ∩ Ut′ ∩ Zi)

and we can use the transition functions fpr Li (more precisely ϕt,i ◦ϕ−1
t′,i) to define

the value of our cocycle on Ut ∩ Ut′ . This finishes the proof of existence of L.

Given sections si as in the last assertion of the lemma, in the argument above,
we choose Ut such that si|Ut∩Zi is nonvanishing and we choose ϕt,i such that
ϕt,i(si|Ut∩Zi) = 1. Then using 1 over Ut and ϕi,j(si|Ui,j ) over Ui,j will define a
section of L which restricts to si over Zi. �

Remark 32.21.8. Let A be a reduced ring. Let I, J be ideals of A such that
V (I) ∪ V (J) = Spec(A). Set B = A/J . Then I → IB is an isomorphism of A-
modules. Namely, we have IB = I+J/J = I/(I ∩J) and I ∩J is zero because A is
reduced and Spec(A) = V (I)∪V (J) = V (I∩J). Thus for any projective A-module
P we also have IP = I(P/JP ).

Lemma 32.21.9. Let X be a Noetherian reduced separated scheme of dimension
1. Then X has an ample invertible sheaf.

Proof. Let Zi, i = 1, . . . , n be the irreducible components of X. We view these as
reduced closed subschemes of X. By Lemma 32.21.6 there exist ample invertible
sheaves Li on Zi. Set T =

⋃
i 6=j Zi ∩ Zj . As X is Noetherian of dimension 1, the

set T is finite and consists of closed points of X. For each i we may, possibly after
replacing Li by a power, choose si ∈ Γ(Zi,Li) such that (Zi)si is affine and contains
T ∩ Zi, see Properties, Lemma 27.27.6.

By Lemma 32.21.7 we can find an invertible sheaf L on X and s ∈ Γ(X,L) such
that (L, s)|Zi = (Li, si). Observe that Xs contains T and is set theoretically equal
to the affine closed subschemes (Zi)si . Thus it is affine by Limits, Lemma 31.10.3.
To finish the proof, it suffices to find for every x ∈ X, x 6∈ T an integer m > 0
and a section t ∈ Γ(X,L⊗m) such that Xt is affine and x ∈ Xt. Since x 6∈ T we
see that x ∈ Zi for some unique i, say i = 1. Let Z ⊂ X be the reduced closed
subscheme whose underlying topological space is Z2 ∪ . . .∪Zn. Let I ⊂ OX be the
ideal sheaf of Z. Denote that I1 ⊂ OZ1 the inverse image of this ideal sheaf under
the inclusion morphism Z1 → X. Observe that

Γ(X, IL⊗m) = Γ(Z1, I1L⊗m1 )

see Remark 32.21.8. Thus it suffices to find m > 0 and t ∈ Γ(Z1, I1L⊗m1 ) with
x ∈ (Z1)t affine. Since L1 is ample and since x is not in Z1∩T = V (I1) we can find
a section t1 ∈ Γ(Z1, I1L⊗m1

1 ) with x ∈ (Z1)t1 , see Properties, Proposition 27.24.14.
Since L1 is ample we can find a section t2 ∈ Γ(Z1,L⊗m2

1 ) with x ∈ (Z1)t2 and (Z1)t2
affine, see Properties, Definition 27.24.1. Set m = m1 + m2 and t = t1t2. Then
t ∈ Γ(Z1, I1L⊗m1 ) with x ∈ (Z1)t by construction and (Z1)t is affine by Properties,
Lemma 27.24.4. �

Lemma 32.21.10. Let i : Z → X be a closed immersion of schemes inducing
a homeomorphism on underlying topological spaces. If the underlying topological
space of X is Noetherian and dim(X) ≤ 1, then Pic(X)→ Pic(Z) is surjective.
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Proof. Consider the short exact sequence

0→ (1 + I)∗ → O∗X → O∗Z → 0

of sheaves of abelian groups on X. Since dim(X) ≤ 1 we see that H2(X,F) = 0
for any abelian sheaf F , see Cohomology, Proposition 20.21.6. Hence the map
H1(X,O∗X) → H1(Z,O∗Z) is surjective. This proves the lemma by Cohomology,
Lemma 20.6.1. �

Proposition 32.21.11. Let X be a Noetherian separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Let Z ⊂ X be the reduction of X. By Lemma 32.21.9 the scheme Z has
an ample invertible sheaf. Thus by Lemma 32.21.10 there exists an invertible OX -
module L on X whose restriction to Z is ample. Then L is ample by an application
of Cohomology of Schemes, Lemma 29.14.5. �

Remark 32.21.12. In fact, if X is a scheme whose reduction is a Noetherian sep-
arated scheme of dimension 1, then X has an ample invertible sheaf. The argument
to prove this is the same as the proof of Proposition 32.21.11 except one uses Limits,
Lemma 31.10.4 instead of Cohomology of Schemes, Lemma 29.14.5.

32.22. Finding affine opens

We continue the discussion started in Properties, Section 27.27. It turns out that we
can find affines containing a finite given set of codimension 1 points on a separated
scheme. See Proposition 32.22.7.

We will improve on the following lemma in Descent, Lemma 34.21.4.

Lemma 32.22.1. Let f : X → Y be a morphism of schemes. Let X0 denote the
set of generic points of irreducible components of X. If

(1) f is separated,
(2) there is an open covering X =

⋃
Ui such that f |Ui : Ui → X is an open

immersion, and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is an open immersion.

Proof. Suppose that y = f(x) = f(x′). Pick a specialization y0  y where y0 is a
generic point of an irreducible component of Y . Since f is locally on the source an
isomorphism we can pick specializations x0  x and x′0  x′ mapping to y0  y.
Note that x0, x

′
0 ∈ X0. Hence x0 = x′0 by assumption (3). As f is separated we

conclude that x = x′. Thus f is an open immersion. �

Lemma 32.22.2. Let X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. If

(1) OX,x = OS,s,
(2) X is reduced,
(3) X → S is of finite type, and
(4) S has finitely many irreducible components,

then there exists an open neighbourhood U of x such that f |U is an open immersion.
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Proof. We may remove the (finitely many) irreducible components of S which
do not contain s. We may replace S by an affine open neighbourhood of s. We
may replace X by an affine open neighbourhood of x. Say S = Spec(A) and
X = Spec(B). Let q ⊂ B, resp. p ⊂ A be the prime ideal corresponding to x,
resp. s. As A is a reduced and all of the minimal primes of A are contained in
p we see that A ⊂ Ap. As X → S is of finite type, B is of finite type over A.
Let b1, . . . , bn ∈ B be elements which generate B over A Since Ap = Bq we can
find f ∈ A, f 6∈ p and ai ∈ A such that bi and ai/f have the same image in Bq.
Thus we can find g ∈ B, g 6∈ q such that g(fbi − ai) = 0 in B. It follows that the
image of Af → Bfg contains the images of b1, . . . , bn, in particular also the image
of g. Choose n ≥ 0 and f ′ ∈ A such that f ′/fn maps to the image of g in Bfg.
Since Ap = Bq we see that f ′ 6∈ p. We conclude that Aff ′ → Bfg is surjective.
Finally, as Aff ′ ⊂ Ap = Bq (see above) the map Aff ′ → Bfg is injective, hence an
isomorphism. �

Lemma 32.22.3. Let f : T → X be a morphism of schemes. Let X0, resp. T 0

denote the sets of generic points of irreducible components. Let t1, . . . , tm ∈ T be a
finite set of points with images xj = f(tj). If

(1) T is affine,
(2) X is quasi-separated,
(3) X0 is finite
(4) f(T 0) ⊂ X0 and f : T 0 → X0 is injective, and
(5) OX,xj = OT,tj ,

then there exists an affine open of X containing x1, . . . , xr.

Proof. Using Limits, Proposition 31.10.2 there is an immediate reduction to the
case where X and T are reduced. Details omitted.

Assume X and T are reduced. We may write T = limi∈I Ti as a directed limit of
schemes of finite presentation over X with affine transition morphisms, see Limits,
Lemma 31.6.1. Pick i ∈ I such that Ti is affine, see Limits, Lemma 31.3.10. Say
Ti = Spec(Ri) and T = Spec(R). Let R′ ⊂ R be the image of Ri → R. Then
T ′ = Spec(R′) is affine, reduced, of finite type over X, and T → T ′ dominant. For
j = 1, . . . , r let t′j ∈ T ′ be the image of tj . Consider the local ring maps

OX,xj → OT ′,t′j → OT,tj

Denote (T ′)0 the set of generic points of irreducible components of T ′. Let ξ  
t′j be a specialization with ξ ∈ (T ′)0. As T → T ′ is dominant we can choose

η ∈ T 0 mapping to ξ (warning: a priori we do not know that η specializes to
tj). Assumption (3) applied to η tells us that the image θ of ξ in X corresponds
to a minimal prime of OX,xj . Lifting ξ via the isomorphism of (5) we obtain a

specialization η′  tj with η′ ∈ X0 mapping to θ  xj . The injectivity of (4)
shows that η = η′. Thus every minimal prime of OT ′,t′j lies below a minimal prime

of OT,tj . We conclude that OT ′,t′j → OT,tj is injective, hence both maps above are

isomorphisms.

By Lemma 32.22.2 there exists an open U ⊂ T ′ containing all the points t′j such
that U → X is a local isomorphism as in Lemma 32.22.1. By that lemma we see
that U → X is an open immersion. Finally, by Properties, Lemma 27.27.5 we can
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find an open W ⊂ U ⊂ T ′ containing all the t′j . The image of W in X is the desired
affine open. �

Lemma 32.22.4. Let X be an integral separated scheme. Let x1, . . . , xr ∈ X be
a finite set of points such that OX,xi is Noetherian of dimension ≤ 1. Then there
exists an affine open subscheme of X containing all of x1, . . . , xr.

Proof. Let K be the field of rational functions of X. Set Ai = OX,xi . Then
Ai ⊂ K and K is the fraction field of Ai. Since X is separated, and xi 6= xj there
cannot be a valuation ring O ⊂ K dominating both Ai and Aj . Namely, considering
the diagram

Spec(O) //

��

Spec(A1)

��
Spec(A2) // X

and applying the valuative criterion of separatedness (Schemes, Lemma 25.22.1) we
would get xi = xj . Thus we see by Lemma 32.20.3 that Ai ⊗Aj → K is surjective
for all i 6= j. By Lemma 32.20.7 we see that A = A1 ∩ . . . ∩ Ar is a Noetherian
semi-local rings with exactly r maximal ideals m1, . . . ,mr such that Ai = Ami .
Moreover,

Spec(A) = Spec(A1) ∪ . . . ∪ Spec(Ar)

is an open covering and the intersection of any two pieces of this covering is Spec(K).
Thus the given morphisms Spec(Ai)→ X glue to a morphism of schemes

Spec(A) −→ X

mapping mi to xi and inducing isomorphisms of local rings. Thus the result follows
from Lemma 32.22.3. �

Lemma 32.22.5. Let A be a ring, I ⊂ A an ideal, p1, . . . , pr primes of A, and
f ∈ A/I an element. If I 6⊂ pi for all i, then there exists an f ∈ A, f 6∈ pi which
maps to f in A/I.

Proof. We may assume there are no inclusion relations among the pi (by removing
the smaller primes). First pick any f ∈ A lifting f . Let S be the set s ∈ {1, . . . , r}
such that f ∈ ps. If S is empty we are done. If not, consider the ideal J = I

∏
i 6∈S pi.

Note that J is not contained in ps for s ∈ S because there are no inclusions among
the pi and because I is not contained in any pi. Hence we can choose g ∈ J , g 6∈ ps
for s ∈ S by Algebra, Lemma 10.14.2. Then f + g is a solution to the problem
posed by the lemma. �

Lemma 32.22.6. Let X be a scheme. Let T ⊂ X be finite set of points. Assume

(1) X has finitely many irreducible components Z1, . . . , Zt, and
(2) Zi ∩ T is contained in an affine open of the reduced induced subscheme

corresponding to Zi.

Then there exists an affine open subscheme of X containing T .

Proof. Using Limits, Proposition 31.10.2 there is an immediate reduction to the
case where X is reduced. Details omitted. In the rest of the proof we endow every
closed subset of X with the induced reduced closed subscheme structure.
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We argue by induction that we can find an affine open U ⊂ Z1∪ . . .∪Zr containing
T ∩ (Z1 ∪ . . . ∪ Zr). For r = 1 this holds by assumption. Say r > 1 and let
U ⊂ Z1∪ . . .∪Zr−1 be an affine open containing T ∩ (Z1∪ . . .∪Zr−1). Let V ⊂ Xr

be an affine open containing T ∩ Zr (exists by assumption). Then U ∩ V contains
T ∩ (Z1 ∪ . . . ∪ Zr−1) ∩ Zr. Hence

∆ = (U ∩ Zr) \ (U ∩ V )

does not contain any element of T . Note that ∆ is a closed subset of U . By
prime avoidance (Algebra, Lemma 10.14.2), we can find a standard open U ′ of U
containing T ∩ U and avoiding ∆, i.e., U ′ ∩ Zr ⊂ U ∩ V . After replacing U by U ′

we may assume that U ∩ V is closed in U .

Using that by the same arguments as above also the set ∆′ = (U∩(Z1∪. . .∪Zr−1))\
(U ∩V ) does not contain any element of T we find a h ∈ O(V ) such that D(h) ⊂ V
contains T ∩ V and such that U ∩D(h) ⊂ U ∩ V . Using that U ∩ V is closed in U
we can use Lemma 32.22.5 to find an element g ∈ O(U) whose restriction to U ∩V
equals the restriction of h to U ∩ V and such that T ∩ U ⊂ D(g). Then we can
replace U by D(g) and V by D(h) to reach the situation where U ∩ V is closed in
both U and V . In this case the scheme U ∪ V is affine by Limits, Lemma 31.10.3.
This proves the induction step and thereby the lemma. �

Here is a conclusion we can draw from the material above.

Proposition 32.22.7. Let X be a separated scheme such that every quasi-compact
open has a finite number of irreducible components. Let x1, . . . , xr ∈ X be points
such that OX,xi is Noetherian of dimension ≤ 1. Then there exists an affine open
subscheme of X containing all of x1, . . . , xr.

Proof. We can replace X by a quasi-compact open containing x1, . . . , xr hence we
may assume that X has finitely many irreducible components. By Lemma 32.22.6
we reduce to the case where X is integral. This case is Lemma 32.22.4. �

32.23. Curves

In the stacks project we will use the following as our definition of a curve.

Definition 32.23.1. Let k be a field. A curve is a variety of dimension 1 over k.

Two standard examples of curves over k are the affine line A1
k and the projective

line P1
k. The scheme X = Spec(k[x, y]/(f)) is a curve if and only if f ∈ k[x, y] is

irreducible.

Our definition of a curve has the same problems as our definition of a variety, see the
discussion following Definition 32.3.1. Moreover, it means that every curve comes
with a specified field of definition. For example X = Spec(C[x]) is a curve over C
but we can also view it as a curve over R. The scheme Spec(Z) isn’t a curve, even
though the schemes Spec(Z) and A1

Fp
behave similarly in many respects.

Lemma 32.23.2. Let X be an irreducible scheme of dimension > 0 over a field k.
Let x ∈ X be a closed point. The open subscheme X \ {x} is not proper over k.

Proof. Namely, choose a specialization x′  x with x′ 6= x (for example take
x′ to be the generic point). By Schemes, Lemma 25.20.4 there exists a morphism
Spec(A)→ X where A is a valuation ring such that the generic point of Amaps to x′
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and the closed point of Spec(A) maps to x. Clearly the morphism Spec(f.f.(A))→
X \ {x} does not extend to a morphism Spec(A) → X \ {x}. Hence the valuative
criterion (Schemes, Proposition 25.20.6) shows that X → Spec(k) is not universally
closed, hence not proper. �

Lemma 32.23.3. Let X be a separated finite type scheme over a field k. If
dim(X) ≤ 1 then X is H-quasi-projective over k.

Proof. By Proposition 32.21.11 the scheme X has an ample invertible sheaf L.
By Morphisms, Lemma 28.40.3 we see that X is isomorphic to a locally closed
subscheme of Pn

k over Spec(k). This is the definiton of being H-quasi-projective
over k, see Morphisms, Definition 28.41.1. �

Lemma 32.23.4. Let X be a proper scheme over a field k. If dim(X) ≤ 1 then X
is H-projective over k.

Proof. By Lemma 32.23.3 we see that X is a locally closed subscheme of Pn
k for

some field k. Since X is proper over k it follows that X is a closed subscheme of
Pn
k (Morphisms, Lemma 28.42.7). �

Observe that if an affine scheme X over k is proper over k then X is finite over k
(Morphisms, Lemma 28.44.7) and hence has dimension 0 (Algebra, Lemma 10.51.2
and Proposition 10.59.6). Hence a scheme of dimension > 0 over k cannot be both
affine and proper over k. Thus the possibilities in the following lemma are mutually
exclusive.

Lemma 32.23.5. Let X be a curve over k. Then either X is an affine scheme or
X is H-projective over k.

Proof. By Lemma 32.23.3 we may assume X is a locally closed subscheme of Pn
k for

some n. Let X ⊂ Pn
k be the scheme theoretic image of X → Pn

k , see Morphisms,
Definition 28.6.2 and the description in Morphisms, Lemma 28.7.7. Since X is
irreducible, we see that X is irreducible. Then dim(X) = 1 ⇒ dim(X) = 1 for
example by looking at the generic point, see Lemma 32.13.3. As X is Noetherian,
it then follows that X \X = {x1, . . . , xn} is a finite set of closed points. By Lemma
32.21.4 we can find a globally generated invertible sheaf L on X and a section
s ∈ Γ(X,L) such that X = Xs.

Choose a basis s = s0, s1, . . . , sm of the finite dimensional k-vector space Γ(X,L)
(Cohomology of Schemes, Lemma 29.17.4). We obtain a corresponding morphism

f : X −→ Pm
k

such that the inverse image of D+(T0) is X, see Constructions, Lemma 26.13.1. In
particular, f is non-constant, i.e., Im(f) has more than one point. A topological
argument shows that f maps the generic point η of X to a nonclosed point of Pn

k .

Hence if y ∈ Pn
k is a closed point, then f−1({y}) is a closed set of X not containing

η, hence finite. By Cohomology of Schemes, Lemma 29.19.22 we conclude that f is
finite. Hence X = f−1(D+(T0)) is affine. �

2One can avoid using this lemma which relies on the theorem of formal functions. Namely,
X is projective hence it suffices to show a proper morphism f : X → Y with finite fibres between

quasi-projective schemes over k is finite. To do this, one chooses an affine open of X containing

the fibre of f over a point y using that any finite set of points of a quasi-projective scheme over k
is contained in an affine. Shrinking Y to a small affine neighbourhood of y one reduces to the case

of a proper morphism between affines. Such a morphism is finite by Morphisms, Lemma 28.44.7.
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The following lemma combined with Lemma 32.23.2 tells us that given a separated
scheme of finite type over k, then X \ Z is affine, whenever the closed subset Z
meets every irreducible component of X.

Lemma 32.23.6. Let X be a separated scheme of finite type over k. If dim(X) ≤ 1
and no irreducible component of X is proper of dimension 1, then X is affine.

Proof. Let X =
⋃
Xi be the decomposition of X into irreducible components. We

think of Xi as an integral scheme (using the reduced induced scheme structure,
see Schemes, Definition 25.12.5). In particular Xi is a singleton (hence affine) or
a curve hence affine by Lemma 32.23.5. Then

∐
Xi → X is finite surjective and∐

Xi is affine. Thus we see that X is affine by Cohomology of Schemes, Lemma
29.13.3. �

32.24. Generically finite morphisms

In this section we revisit the notion of a generically finite morphism of schemes as
studied in Morphisms, Section 28.47.

Lemma 32.24.1. Let f : X → Y be locally of finite type. Let y ∈ Y be a point
such that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the
following conditions is satisfied

(1) for every generic point η of an irreducible component of X the field ex-
tension κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that
f(η) y the field extension κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of an irreducible component of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. Condition (4) impliesX is locally Noetherian (Morphisms, Lemma 28.16.6).
The set of points at which morphism is quasi-finite is open (Morphisms, Lemma
28.49.2). A dense open of a locally Noetherian scheme contains all generic point
of irreducible components, hence (4) implies (3). Condition (3) implies condition
(1) by Morphisms, Lemma 28.21.5. Condition (1) implies condition (2). Thus it
suffices to prove the lemma in case (2) holds.

Assume (2) holds. Recall that Spec(OY,y) is the set of points of Y specializing to
y, see Schemes, Lemma 25.13.2. Combined with Morphisms, Lemma 28.21.13 this
shows we may replace Y by Spec(OY,y). Thus we may assume Y = Spec(B) where
B is a Noetherian local ring of dimension ≤ 1 and y is the closed point.

Let X =
⋃
Xi be the irreducible components of X viewed as reduced closed sub-

schemes. If we can show each fibre Xi,y is a discrete space, then Xy =
⋃
Xi,y is

discrete as well and we conclude that X → Y is quasi-finite at all points of Xy by
Morphisms, Lemma 28.21.6. Thus we may assume X is an integral scheme.

If X → Y maps the generic point η of X to y, then X is the spectrum of a finite
extension of κ(y) and the result is true. Assume that X maps η to a point corre-
sponding to a minimal prime p of B different from mB . We obtain a factorization
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X → Spec(B/q)→ Spec(B). Let x ∈ X be a point lying over y. By the dimension
formula (Morphisms, Lemma 28.31.1) we have

dim(OX,x) ≤ dim(B/q) + trdegκ(q)(R(X))− trdegκ(y)κ(x)

We know that dim(B/q) = 1, that the generic point of X is not equal to x and
specializes to x and that R(X) is algebraic over κ(q). Thus we get

1 ≤ 1− trdegκ(y)κ(x)

Hence every point x of Xy is closed in Xy by Morphisms, Lemma 28.21.2 and hence
X → Y is quasi-finite at every point x of Xy by Morphisms, Lemma 28.21.6 (which
also implies that Xy is a discrete topological space). �

Lemma 32.24.2. Let f : X → Y be a proper morphism. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field ex-
tension κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that
f(η) y the field extension κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then there exists an open neighbourhood V ⊂ Y of y such that f−1(V ) → V is
finite.

Proof. By Lemma 32.24.1 the morphism f is quasi-finite at every point of the fibre
Xy. Hence Xy is a discrete topological space (Morphisms, Lemma 28.21.6). As f
is proper the fibre Xy is quasi-compact, i.e., finite. Thus we can apply Cohomology
of Schemes, Lemma 29.19.2 to conclude. �
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CHAPTER 33

Topologies on Schemes

33.1. Introduction

In this document we explain what the different topologies on the category of schemes
are. Some references are [Gro71] and [BLR90]. Before doing so we would like to
point out that there are many different choices of sites (as defined in Sites, Definition
7.6.2) which give rise to the same notion of sheaf on the underlying category. Hence
our choices may be slightly different from those in the references but ultimately lead
to the same cohomology groups, etc.

33.2. The general procedure

In this section we explain a general procedure for producing the sites we will be
working with. Suppose we want to study sheaves over schemes with respect to some
topology τ . In order to get a site, as in Sites, Definition 7.6.2, of schemes with that
topology we have to do some work. Namely, we cannot simply say “consider all
schemes with the Zariski topology” since that would give a “big” category. Instead,
in each section of this chapter we will proceed as follows:

(1) We define a class Covτ of coverings of schemes satisfying the axioms of
Sites, Definition 7.6.2. It will always be the case that a Zariski open
covering of a scheme is a covering for τ .

(2) We single out a notion of standard τ -covering within the category of affine
schemes.

(3) We define what is an “absolute” big τ -site Schτ . These are the sites one
gets by appropriately choosing a set of schemes and a set of coverings.

(4) For any object S of Schτ we define the big τ -site (Sch/S)τ and for suitable
τ the small1 τ -site Sτ .

(5) In addition there is a site (Aff/S)τ using the notion of standard τ -covering
of affines whose category of sheaves is equivalent to the category of sheaves
on (Sch/S)τ .

The above is a little clumsy in that we do not end up with a canonical choice for
the big τ -site of a scheme, or even the small τ -site of a scheme. If you are willing
to ignore set theoretic difficulties, then you can work with classes and end up with
canonical big and small sites...

1The words big and small here do not relate to bigness/smallness of the corresponding
categories.
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33.3. The Zariski topology

Definition 33.3.1. Let T be a scheme. A Zariski covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is an open immersion and
such that T =

⋃
fi(Ti).

This defines a (proper) class of coverings. Next, we show that this notion satisfies
the conditions of Sites, Definition 7.6.2.

Lemma 33.3.2. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is a Zariski covering of T .
(2) If {Ti → T}i∈I is a Zariski covering and for each i we have a Zariski

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a Zariski covering.
(3) If {Ti → T}i∈I is a Zariski covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a Zariski covering.

Proof. Omitted. �

Lemma 33.3.3. Let T be an affine scheme. Let {Ti → T}i∈I be a Zariski covering
of T . Then there exists a Zariski covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is a standard open of T , see Schemes, Definition
25.5.2. Moreover, we may choose each Uj to be an open of one of the Ti.

Proof. Follows as T is quasi-compact and standard opens form a basis for its
topology. This is also proved in Schemes, Lemma 25.5.1. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 33.3.4. Compare Schemes, Definition 25.5.2. Let T be an affine
scheme. A standard Zariski covering of T is a a Zariski covering {Uj → T}j=1,...,m

with each Uj → T inducing an isomorphism with a standard affine open of T .

Definition 33.3.5. A big Zariski site is any site SchZar as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of Zariski coverings Cov0 among
these schemes.

(2) As underlying category of SchZar take any category Schα constructed as
in Sets, Lemma 3.9.2 starting with the set S0.

(3) As coverings of SchZar choose any set of coverings as in Sets, Lemma
3.11.1 starting with the category Schα and the class of Zariski coverings,
and the set Cov0 chosen above.

It is shown in Sites, Lemma 7.8.6 that, after having chosen the category Schα, the
category of sheaves on Schα does not depend on the choice of coverings chosen in
(3) above. In other words, the topos Sh(SchZar) only depends on the choice of the
category Schα. It is shown in Sets, Lemma 3.9.9 that these categories are closed
under many constructions of algebraic geometry, e.g., fibre products and taking
open and closed subschemes. We can also show that the exact choice of Schα does
not matter too much, see Section 33.10.

Another approach would be to assume the existence of a strongly inaccessible car-
dinal and to define SchZar to be the category of schemes contained in a chosen
universe with set of coverings the Zariski coverings contained in that same uni-
verse.

http://stacks.math.columbia.edu/tag/020O
http://stacks.math.columbia.edu/tag/020P
http://stacks.math.columbia.edu/tag/020Q
http://stacks.math.columbia.edu/tag/020R
http://stacks.math.columbia.edu/tag/020S
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Before we continue with the introduction of the big Zariski site of a scheme S, let
us point out that the topology on a big Zariski site SchZar is in some sense induced
from the Zariski topology on the category of all schemes.

Lemma 33.3.6. Let SchZar be a big Zariski site as in Definition 33.3.5. Let
T ∈ Ob(SchZar). Let {Ti → T}i∈I be an arbitrary Zariski covering of T . There
exists a covering {Uj → T}j∈J of T in the site SchZar which is tautologically
equivalent (see Sites, Definition 7.8.2) to {Ti → T}i∈I .

Proof. Since each Ti → T is an open immersion, we see by Sets, Lemma 3.9.9
that each Ti is isomorphic to an object Vi of SchZar. The covering {Vi → T}i∈I is
tautologically equivalent to {Ti → T}i∈I (using the identity map on I both ways).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of
T in the site SchZar by Sets, Lemma 3.11.1. �

Definition 33.3.7. Let S be a scheme. Let SchZar be a big Zariski site containing
S.

(1) The big Zariski site of S, denoted (Sch/S)Zar, is the site SchZar/S intro-
duced in Sites, Section 7.24.

(2) The small Zariski site of S, which we denote SZar, is the full subcategory
of (Sch/S)Zar whose objects are those U/S such that U → S is an open
immersion. A covering of SZar is any covering {Ui → U} of (Sch/S)Zar
with U ∈ Ob(SZar).

(3) The big affine Zariski site of S, denoted (Aff/S)Zar, is the full subcategory
of (Sch/S)Zar whose objects are affine U/S. A covering of (Aff/S)Zar is
any covering {Ui → U} of (Sch/S)Zar which is a standard Zariski covering.

It is not completely clear that the small Zariski site and the big affine Zariski site
are sites. We check this now.

Lemma 33.3.8. Let S be a scheme. Let SchZar be a big Zariski site containing S.
Both SZar and (Aff/S)Zar are sites.

Proof. Let us show that SZar is a site. It is a category with a given set of families
of morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of
Sites, Definition 7.6.2. Since (Sch/S)Zar is a site, it suffices to prove that given any
covering {Ui → U} of (Sch/S)Zar with U ∈ Ob(SZar) we also have Ui ∈ Ob(SZar).
This follows from the definitions as the composition of open immersions is an open
immersion.

Let us show that (Aff/S)Zar is a site. Reasoning as above, it suffices to show that
the collection of standard Zariski coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 7.6.2. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit
ideal. For each i ∈ {1, . . . , n} let gi1, . . . , gini ∈ Rfi be elements generating the unit
ideal of Rfi . Write gij = fij/f

eij
i which is possible. After replacing fij by fifij if

necessary, we have that D(fij) ⊂ D(fi) ∼= Spec(Rfi) is equal toD(gij) ⊂ Spec(Rfi).
Hence we see that the family of morphisms {D(gij) → Spec(R)} is a standard
Zariski covering. From these considerations it follows that (2) holds for standard
Zariski coverings. We omit the verification of (1) and (3). �

Lemma 33.3.9. Let S be a scheme. Let SchZar be a big Zariski site containing S.
The underlying categories of the sites SchZar, (Sch/S)Zar, SZar, and (Aff/S)Zar
have fibre products. In each case the obvious functor into the category Sch of all

http://stacks.math.columbia.edu/tag/03WV
http://stacks.math.columbia.edu/tag/020T
http://stacks.math.columbia.edu/tag/020U
http://stacks.math.columbia.edu/tag/020V
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schemes commutes with taking fibre products. The categories (Sch/S)Zar, and SZar
both have a final object, namely S/S.

Proof. For SchZar it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(SchZar).
The fibre product V ×U W in SchZar is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)Zar. This proves the result for (Sch/S)Zar. If
U → S, V → U and W → U are open immersions then so is V ×U W → S and
hence we get the result for SZar. If U, V,W are affine, so is V ×U W and hence the
result for (Aff/S)Zar. �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 33.3.10. Let S be a scheme. Let SchZar be a big Zariski site containing
S. The functor (Aff/S)Zar → (Sch/S)Zar is a special cocontinuous functor. Hence
it induces an equivalence of topoi from Sh((Aff/S)Zar) to Sh((Sch/S)Zar).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 7.28.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.28.1.
Denote the inclusion functor u : (Aff/S)Zar → (Sch/S)Zar. Being cocontinuous
just means that any Zariski covering of T/S, T affine, can be refined by a standard
Zariski covering of T . This is the content of Lemma 33.3.3. Hence (1) holds. We
see u is continuous simply because a standard Zariski covering is a Zariski covering.
Hence (2) holds. Parts (3) and (4) follow immediately from the fact that u is fully
faithful. And finally condition (5) follows from the fact that every scheme has an
affine open covering. �

Let us check that the notion of a sheaf on the small Zariski site corresponds to
notion of a sheaf on S.

Lemma 33.3.11. The category of sheaves on SZar is equivalent to the category of
sheaves on the underlying topological space of S.

Proof. We will use repeatedly that for any object U/S of SZar the morphism
U → S is an isomorphism onto an open subscheme. Let F be a sheaf on S. Then
we define a sheaf on SZar by the rule F ′(U/S) = F(Im(U → S)). For the converse,
we choose for every open subscheme U ⊂ S an object U ′/S ∈ Ob(SZar) with
Im(U ′ → S) = U (here you have to use Sets, Lemma 3.9.9). Given a sheaf G
on SZar we define a sheaf on S by setting G(U) = G(U ′/S). To see that G′ is a
sheaf we use that for any open covering U =

⋃
i∈I Ui the covering {Ui → U}i∈I is

combinatorially equivalent to a covering {U ′j → U ′}j∈J in SZar by Sets, Lemma
3.11.1, and we use Sites, Lemma 7.8.4. Details omitted. �

From now on we will not make any distinction between a sheaf on SZar or a sheaf
on S. We will always use the procedures of the proof of the lemma to go between
the two notions. Next, we establish some relationships between the topoi associated
to these sites.

Lemma 33.3.12. Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar. The functor TZar → (Sch/S)Zar is cocontinuous and induces a morphism
of topoi

if : Sh(TZar) −→ Sh((Sch/S)Zar)

http://stacks.math.columbia.edu/tag/020W
http://stacks.math.columbia.edu/tag/020X
http://stacks.math.columbia.edu/tag/020Y
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For a sheaf G on (Sch/S)Zar we have the formula (i−1
f G)(U/T ) = G(U/S). The

functor i−1
f also has a left adjoint if,! which commutes with fibre products and

equalizers.

Proof. Denote the functor u : TZar → (Sch/S)Zar. In other words, given and
open immersion j : U → T corresponding to an object of TZar we set u(U → T ) =
(f ◦ j : U → S). This functor commutes with fibre products, see Lemma 33.3.9.
Moreover, TZar has equalizers (as any two morphisms with the same source and
target are the same) and u commutes with them. It is clearly cocontinuous. It
is also continuous as u transforms coverings to coverings and commutes with fibre
products. Hence the lemma follows from Sites, Lemmas 7.20.5 and 7.20.6. �

Lemma 33.3.13. Let S be a scheme. Let SchZar be a big Zariski site containing S.
The inclusion functor SZar → (Sch/S)Zar satisfies the hypotheses of Sites, Lemma
7.20.8 and hence induces a morphism of sites

πS : (Sch/S)Zar −→ SZar

and a morphism of topoi

iS : Sh(SZar) −→ Sh((Sch/S)Zar)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 33.3.12. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : SZar → (Sch/S)Zar, in addition to the proper-
ties seen in the proof of Lemma 33.3.12 above, also is fully faithful and transforms
the final object into the final object. The lemma follows. �

Definition 33.3.14. In the situation of Lemma 33.3.13 the functor i−1
S = πS,∗ is

often called the restriction to the small Zariski site, and for a sheaf F on the big
Zariski site we denote F|SZar this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(SZar)(F|SZar ,G) = MorSh((Sch/S)Zar)(F , iS,∗G)

MorSh(SZar)(G,F|SZar ) = MorSh((Sch/S)Zar)(π
−1
S G,F)

Moreover, we have (iS,∗G)|SZar = G and we have (π−1
S G)|SZar = G.

Lemma 33.3.15. Let SchZar be a big Zariski site. Let f : T → S be a morphism
in SchZar. The functor

u : (Sch/T )Zar −→ (Sch/S)Zar, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)Zar −→ (Sch/T )Zar, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )Zar) −→ Sh((Sch/S)Zar)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

http://stacks.math.columbia.edu/tag/020Z
http://stacks.math.columbia.edu/tag/04BS
http://stacks.math.columbia.edu/tag/0210
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Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 33.3.12). Hence
Sites, Lemmas 7.20.5 and 7.20.6 apply and we deduce the formula for f−1

big and the

existence of fbig!. Moreover, the functor v is a right adjoint because given U/T and
V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply
Sites, Lemmas 7.21.1 and 7.21.2 to get the formula for fbig,∗. �

Lemma 33.3.16. Let SchZar be a big Zariski site. Let f : T → S be a morphism
in SchZar.

(1) We have if = fbig ◦ iT with if as in Lemma 33.3.12 and iT as in Lemma
33.3.13.

(2) The functor SZar → TZar, (U → S) 7→ (U ×S T → T ) is continuous and
induces a morphism of topoi

fsmall : Sh(TZar) −→ Sh(SZar).

The functors f−1
small and fsmall,∗ agree with the usual notions f−1 and f∗

is we identify sheaves on TZar, resp. SZar with sheaves on T , resp. S via
Lemma 33.3.11.

(3) We have a commutative diagram of morphisms of sites

TZar

fsmall

��

(Sch/T )Zar

fbig

��

πT
oo

SZar (Sch/S)Zar
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

Statement (2): See Sites, Example 7.15.2.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall
and fbig by the base change functor U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . �

In the situation of the lemma, using the terminology of Definition 33.3.14 we have:
for F a sheaf on the big Zariski site of T

(fbig,∗F)|SZar = fsmall,∗(F|TZar ),

This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small Zariski site of T , resp. S is given by πT,∗, resp. πS,∗.
A similar formula involving pullbacks and restrictions is false.

Lemma 33.3.17. Given schemes X, Y , Y in (Sch/S)Zar and morphisms f : X →
Y , g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 33.3.15. For the functors on the small
sites this is Sheaves, Lemma 6.21.2 via the identification of Lemma 33.3.11. �

http://stacks.math.columbia.edu/tag/0211
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We can think about a sheaf on the big Zariski site of S as a collection of “usual”
sheaves on all schemes over S.

Lemma 33.3.18. Let S be a scheme contained in a big Zariski site SchZar. A
sheaf F on the big Zariski site (Sch/S)Zar is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)Zar) a sheaf FT on T ,
(2) for every f : T ′ → T in (Sch/S)Zar a map cf : f−1FT → FT ′ .

These data are subject to the following conditions:

(i) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)Zar the composition
g−1cf ◦ cg is equal to cf◦g, and

(ii) if f : T ′ → T in (Sch/S)Zar is an open immersion then cf is an isomor-
phism.

Proof. Given a sheaf F on Sh((Sch/S)Zar) we set FT = i−1
p F where p : T → S

is the structure morphism. Note that FT (U) = F(U ′/S) for any open U ⊂ T ,
and U ′ → T an open immersion in (Sch/T )Zar with image U , see Lemmas 33.3.11
and 33.3.12. Hence given f : T ′ → T over S and U,U ′ → T we get a canonical
map FT (U) = F(U ′/S)→ F(U ′ ×T T ′/S) = FT ′(f−1(U)) where the middle is the
restriction map of F with respect to the morphism U ′ ×T T ′ → U ′ over S. The
collection of these maps are compatible with restrictions, and hence define an f -map
cf from FT to FT ′ , see Sheaves, Definition 6.21.7 and the discussion surrounding it.
It is clear that cf◦g is the composition of cf and cg, since composition of restriction
maps of F gives restriction maps.

Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F
on Sh((Sch/S)Zar) by simply setting F(T/S) = FT (T ). As restriction mapping,
given f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) (where we
think of cf as an f -map again). The condition on the cf guarantees that pullbacks
satisfy the required functoriality property. We omit the verification that this is a
sheaf. It is clear that the constructions so defined are mutually inverse. �

33.4. The étale topology

Let S be a scheme. We would like to define the étale-topology on the category of
schemes over S. According to our general principle we first introduce the notion of
an étale covering.

Definition 33.4.1. Let T be a scheme. An étale covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is étale and such that
T =

⋃
fi(Ti).

Lemma 33.4.2. Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is
an étale morphism, see Morphisms, Lemma 28.37.9. �

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 33.4.3. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an étale covering of T .
(2) If {Ti → T}i∈I is an étale covering and for each i we have an étale

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an étale covering.

http://stacks.math.columbia.edu/tag/0213
http://stacks.math.columbia.edu/tag/0215
http://stacks.math.columbia.edu/tag/0216
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(3) If {Ti → T}i∈I is an étale covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an étale covering.

Proof. Omitted. �

Lemma 33.4.4. Let T be an affine scheme. Let {Ti → T}i∈I be an étale covering
of T . Then there exists an étale covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose
each Uj to be open affine in one of the Ti.

Proof. Omitted. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 33.4.5. Let T be an affine scheme. A standard étale covering of T
is a family {fj : Uj → T}j=1,...,m with each Uj is affine and étale over T and
T =

⋃
fj(Uj).

In the definition above we do not assume the morphisms fj are standard étale. The
reason is that if we did then the standard étale coverings would not define a site on
Aff/S, for example because of Algebra, Lemma 10.138.15 part (4). On the other
hand, an étale morphism of affines is automatically standard smooth, see Algebra,
Lemma 10.138.2. Hence a standard étale covering is a standard smooth covering
and a standard syntomic covering.

Definition 33.4.6. A big étale site is any site Schétale as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of étale coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of étale coverings, and the set Cov0 chosen
above.

See the remarks following Definition 33.3.5 for motivation and explanation regard-
ing the definition of big sites.

Before we continue with the introduction of the big étale site of a scheme S, let
us point out that the topology on a big étale site Schétale is in some sense induced
from the étale topology on the category of all schemes.

Lemma 33.4.7. Let Schétale be a big étale site as in Definition 33.4.6. Let T ∈
Ob(Schétale). Let {Ti → T}i∈I be an arbitrary étale covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schétale which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard étale covering, then it is tautologically equiv-
alent to a covering in Schétale.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering in Schétale.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 33.4.3 the refinement
{Tij → T}i∈I,j∈Ji is an étale covering of T as well. Hence we may assume each
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Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9
we see that Wi is isomorphic to an object of SchZar. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of SchZar by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site SchZar by Sets, Lemma 3.9.9. The covering
{Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of the
schemes Ti is isomorphic to an object of Schétale by Sets, Lemma 3.9.9, and another
application of Sets, Lemma 3.11.1 gives what we want. �

Definition 33.4.8. Let S be a scheme. Let Schétale be a big étale site containing
S.

(1) The big étale site of S, denoted (Sch/S)étale, is the site Schétale/S intro-
duced in Sites, Section 7.24.

(2) The small étale site of S, which we denote Sétale, is the full subcategory
of (Sch/S)étale whose objects are those U/S such that U → S is étale.
A covering of Sétale is any covering {Ui → U} of (Sch/S)étale with U ∈
Ob(Sétale).

(3) The big affine étale site of S, denoted (Aff/S)étale, is the full subcategory
of (Sch/S)étale whose objects are affine U/S. A covering of (Aff/S)étale is
any covering {Ui → U} of (Sch/S)étale which is a standard étale covering.

It is not completely clear that the big affine étale site or the small étale site are
sites. We check this now.

Lemma 33.4.9. Let S be a scheme. Let Schétale be a big étale site containing S.
Both Sétale and (Aff/S)étale are sites.

Proof. Let us show that Sétale is a site. It is a category with a given set of
families of morphisms with fixed target. Thus we have to show properties (1), (2)
and (3) of Sites, Definition 7.6.2. Since (Sch/S)étale is a site, it suffices to prove
that given any covering {Ui → U} of (Sch/S)étale with U ∈ Ob(Sétale) we also
have Ui ∈ Ob(Sétale). This follows from the definitions as the composition of étale
morphisms is an étale morphism.

Let us show that (Aff/S)étale is a site. Reasoning as above, it suffices to show that
the collection of standard étale coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 7.6.2. This is clear since for example, given a standard étale
covering {Ti → T}i∈I and for each i we have a standard étale covering {Tij →
Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard étale covering because

⋃
i∈I Ji is

finite and each Tij is affine. �

Lemma 33.4.10. Let S be a scheme. Let Schétale be a big étale site containing S.
The underlying categories of the sites Schétale, (Sch/S)étale, Sétale, and (Aff/S)étale
have fibre products. In each case the obvious functor into the category Sch of all
schemes commutes with taking fibre products. The categories (Sch/S)étale, and
Sétale both have a final object, namely S/S.

Proof. For Schétale it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schétale).
The fibre product V ×U W in Schétale is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
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hence also a fibre product in (Sch/S)étale. This proves the result for (Sch/S)étale.
If U → S, V → U and W → U are étale then so is V ×U W → S and hence we get
the result for Sétale. If U, V,W are affine, so is V ×U W and hence the result for
(Aff/S)étale. �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 33.4.11. Let S be a scheme. Let Schétale be a big étale site containing
S. The functor (Aff/S)étale → (Sch/S)étale is special cocontinuous and induces an
equivalence of topoi from Sh((Aff/S)étale) to Sh((Sch/S)étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 7.28.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.28.1.
Denote the inclusion functor u : (Aff/S)étale → (Sch/S)étale. Being cocontinuous
just means that any étale covering of T/S, T affine, can be refined by a standard
étale covering of T . This is the content of Lemma 33.4.4. Hence (1) holds. We
see u is continuous simply because a standard étale covering is a étale covering.
Hence (2) holds. Parts (3) and (4) follow immediately from the fact that u is fully
faithful. And finally condition (5) follows from the fact that every scheme has an
affine open covering. �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 33.4.12. Let Schétale be a big étale site. Let f : T → S be a morphism
in Schétale. The functor Tétale → (Sch/S)étale is cocontinuous and induces a mor-
phism of topoi

if : Sh(Tétale) −→ Sh((Sch/S)étale)

For a sheaf G on (Sch/S)étale we have the formula (i−1
f G)(U/T ) = G(U/S). The

functor i−1
f also has a left adjoint if,! which commutes with fibre products and

equalizers.

Proof. Denote the functor u : Tétale → (Sch/S)étale. In other words, given an
étale morphism j : U → T corresponding to an object of Tétale we set u(U → T ) =
(f ◦ j : U → S). This functor commutes with fibre products, see Lemma 33.4.10.
Let a, b : U → V be two morphisms in Tétale. In this case the equalizer of a and b
(in the category of schemes) is

V ×∆V/T ,V×TV,(a,b) U ×T U
which is a fibre product of schemes étale over T , hence étale over T . Thus Tétale
has equalizers and u commutes with them. It is clearly cocontinuous. It is also con-
tinuous as u transforms coverings to coverings and commutes with fibre products.
Hence the Lemma follows from Sites, Lemmas 7.20.5 and 7.20.6. �

Lemma 33.4.13. Let S be a scheme. Let Schétale be a big étale site containing
S. The inclusion functor Sétale → (Sch/S)étale satisfies the hypotheses of Sites,
Lemma 7.20.8 and hence induces a morphism of sites

πS : (Sch/S)étale −→ Sétale

and a morphism of topoi

iS : Sh(Sétale) −→ Sh((Sch/S)étale)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 33.4.12. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).
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Proof. In this case the functor u : Sétale → (Sch/S)étale, in addition to the prop-
erties seen in the proof of Lemma 33.4.12 above, also is fully faithful and trans-
forms the final object into the final object. The lemma follows from Sites, Lemma
7.20.8. �

Definition 33.4.14. In the situation of Lemma 33.4.13 the functor i−1
S = πS,∗ is

often called the restriction to the small étale site, and for a sheaf F on the big étale
site we denote F|Sétale this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(Sétale)(F|Sétale ,G) = MorSh((Sch/S)étale)(F , iS,∗G)

MorSh(Sétale)(G,F|Sétale) = MorSh((Sch/S)étale)(π
−1
S G,F)

Moreover, we have (iS,∗G)|Sétale = G and we have (π−1
S G)|Sétale = G.

Lemma 33.4.15. Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor

u : (Sch/T )étale −→ (Sch/S)étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)étale −→ (Sch/T )étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )étale) −→ Sh((Sch/S)étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre prod-
ucts and equalizers (details omitted; compare with the proof of Lemma 33.4.12).
Hence Sites, Lemmas 7.20.5 and 7.20.6 apply and we deduce the formula for f−1

big

and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we
may apply Sites, Lemmas 7.21.1 and 7.21.2 to get the formula for fbig,∗. �

Lemma 33.4.16. Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale.

(1) We have if = fbig ◦ iT with if as in Lemma 33.4.12 and iT as in Lemma
33.4.13.

(2) The functor Sétale → Tétale, (U → S) 7→ (U ×S T → T ) is continuous and
induces a morphism of topoi

fsmall : Sh(Tétale) −→ Sh(Sétale).

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tétale

fsmall

��

(Sch/T )étale

fbig

��

πT
oo

Sétale (Sch/S)étale
πSoo
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so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Sétale → Tétale, u(U → S) = (U ×S T → T ) transforms coverings
into coverings and commutes with fibre products, see Lemma 33.4.3 (3) and 33.4.10.
Moreover, both Sétale, Tétale have final objects, namely S/S and T/T and u(S/S) =
T/T . Hence by Sites, Proposition 7.15.6 the functor u corresponds to a morphism
of sites Tétale → Sétale. This in turn gives rise to the morphism of topoi, see Sites,
Lemma 7.16.2. The description of the pushforward is clear from these references.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall
and fbig by the base change functors U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . �

In the situation of the lemma, using the terminology of Definition 33.4.14 we have:
for F a sheaf on the big étale site of T

(fbig,∗F)|Sétale = fsmall,∗(F|Tétale),
This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small étale site of T , resp. S is given by πT,∗, resp. πS,∗. A
similar formula involving pullbacks and restrictions is false.

Lemma 33.4.17. Given schemes X, Y , Y in Schétale and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 33.4.15. For the functors on the small sites
this follows from the description of the pushforward functors in Lemma 33.4.16. �

We can think about a sheaf on the big étale site of S as a collection of “usual”
sheaves on all schemes over S.

Lemma 33.4.18. Let S be a scheme contained in a big étale site Schétale. A sheaf
F on the big étale site (Sch/S)étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)étale) a sheaf FT on Tétale,
(2) for every f : T ′ → T in (Sch/S)étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(i) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)étale the composition
g−1
smallcf ◦ cg is equal to cf◦g, and

(ii) if f : T ′ → T in (Sch/S)étale is étale then cf is an isomorphism.

Proof. Given a sheaf F on Sh((Sch/S)étale) we set FT = i−1
p F where p : T → S

is the structure morphism. Note that FT (U) = F(U/S) for any U → T in Tétale
see Lemma 33.4.12. Hence given f : T ′ → T over S and U → T we get a canonical
map FT (U) = F(U/S) → F(U ×T T ′/S) = FT ′(U ×T T ′) where the middle is
the restriction map of F with respect to the morphism U ×T T ′ → U over S.
The collection of these maps are compatible with restrictions, and hence define a
map c′f : FT → fsmall,∗FT ′ where u : Tétale → T ′étale is the base change functor

associated to f . By adjunction of fsmall,∗ (see Sites, Section 7.14) with f−1
small this
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is the same as a map cf : f−1
smallFT → FT ′ . It is clear that c′f◦g is the composition

of c′f and fsmall,∗c
′
g, since composition of restriction maps of F gives restriction

maps, and this gives the desired relationship among cf , cg and cf◦g.

Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F on
Sh((Sch/S)étale) by simply setting F(T/S) = FT (T ). As restriction mapping, given
f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) where we think
of cf as a map FT → fsmall,∗FT ′ again. The condition on the cf guarantees that
pullbacks satisfy the required functoriality property. We omit the verification that
this is a sheaf. It is clear that the constructions so defined are mutually inverse. �

33.5. The smooth topology

In this section we define the smooth topology. This is a bit pointless as it will turn
out later (see More on Morphisms, Section 36.28) that this topology defines the
same topos as the étale topology. But still it makes sense and it is used occasionally.

Definition 33.5.1. Let T be a scheme. An smooth covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is smooth and such that
T =

⋃
fi(Ti).

Lemma 33.5.2. Any étale covering is a smooth covering, and a fortiori, any
Zariski covering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth
see Morphisms, Definition 28.37.1 and Lemma 33.4.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 33.5.3. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an smooth covering of T .
(2) If {Ti → T}i∈I is a smooth covering and for each i we have a smooth

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a smooth covering.
(3) If {Ti → T}i∈I is a smooth covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a smooth covering.

Proof. Omitted. �

Lemma 33.5.4. Let T be an affine scheme. Let {Ti → T}i∈I be a smooth covering
of T . Then there exists a smooth covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme, and such that each morphism
Uj → T is standard smooth, see Morphisms, Definition 28.35.1. Moreover, we may
choose each Uj to be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 10.132.10. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 33.5.5. Let T be an affine scheme. A standard smooth covering of T
is a family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard smooth
and T =

⋃
fj(Uj).

Definition 33.5.6. A big smooth site is any site Schsmooth as in Sites, Definition
7.6.2 constructed as follows:
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(1) Choose any set of schemes S0, and any set of smooth coverings Cov0

among these schemes.
(2) As underlying category take any category Schα constructed as in Sets,

Lemma 3.9.2 starting with the set S0.
(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the

category Schα and the class of smooth coverings, and the set Cov0 chosen
above.

See the remarks following Definition 33.3.5 for motivation and explanation regard-
ing the definition of big sites.

Before we continue with the introduction of the big smooth site of a scheme S,
let us point out that the topology on a big smooth site Schsmooth is in some sense
induced from the smooth topology on the category of all schemes.

Lemma 33.5.7. Let Schsmooth be a big smooth site as in Definition 33.5.6. Let
T ∈ Ob(Schsmooth). Let {Ti → T}i∈I be an arbitrary smooth covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsmooth which
refines {Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard smooth covering, then it is tautologically
equivalent to a covering of Schsmooth.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schsmooth.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 33.5.3 the refinement
{Tij → T}i∈I,j∈Ji is an smooth covering of T as well. Hence we may assume each
Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9
we see that Wi is isomorphic to an object of SchZar. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of SchZar by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site SchZar by Sets, Lemma 3.9.9. The covering
{Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of the
schemes Ti is isomorphic to an object of Schsmooth by Sets, Lemma 3.9.9, and
another application of Sets, Lemma 3.11.1 gives what we want. �

Definition 33.5.8. Let S be a scheme. Let Schsmooth be a big smooth site con-
taining S.

(1) The big smooth site of S, denoted (Sch/S)smooth, is the site Schsmooth/S
introduced in Sites, Section 7.24.

(2) The big affine smooth site of S, denoted (Aff/S)smooth, is the full sub-
category of (Sch/S)smooth whose objects are affine U/S. A covering of
(Aff/S)smooth is any covering {Ui → U} of (Sch/S)smooth which is a stan-
dard smooth covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 33.5.9. Let S be a scheme. Let Schétale be a big smooth site containing
S. The functor (Aff/S)smooth → (Sch/S)smooth is special cocontinuous and induces
an equivalence of topoi from Sh((Aff/S)smooth) to Sh((Sch/S)smooth).
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Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 7.28.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.28.1.
Denote the inclusion functor u : (Aff/S)smooth → (Sch/S)smooth. Being cocontin-
uous just means that any smooth covering of T/S, T affine, can be refined by a
standard smooth covering of T . This is the content of Lemma 33.5.4. Hence (1)
holds. We see u is continuous simply because a standard smooth covering is a
smooth covering. Hence (2) holds. Parts (3) and (4) follow immediately from the
fact that u is fully faithful. And finally condition (5) follows from the fact that
every scheme has an affine open covering. �

To be continued...

Lemma 33.5.10. Let Schsmooth be a big smooth site. Let f : T → S be a morphism
in Schsmooth. The functor

u : (Sch/T )smooth −→ (Sch/S)smooth, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)smooth −→ (Sch/T )smooth, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )smooth) −→ Sh((Sch/S)smooth)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.20.5 and 7.20.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right

adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.21.1 and 7.21.2 to get the formula
for fbig,∗. �

33.6. The syntomic topology

In this section we define the syntomic topology. This topology is quite interesting in
that it often has the same cohomology groups as the fppf topology but is technically
easier to deal with.

Definition 33.6.1. Let T be a scheme. An syntomic covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is syntomic and such that
T =

⋃
fi(Ti).

Lemma 33.6.2. Any smooth covering is a syntomic covering, and a fortiori, any
étale or Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic, see Morphisms, Lemma 28.35.7 and Lemma 33.5.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 33.6.3. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an syntomic covering of
T .
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(2) If {Ti → T}i∈I is a syntomic covering and for each i we have a syntomic
covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a syntomic covering.

(3) If {Ti → T}i∈I is a syntomic covering and T ′ → T is a morphism of
schemes then {T ′ ×T Ti → T ′}i∈I is a syntomic covering.

Proof. Omitted. �

Lemma 33.6.4. Let T be an affine scheme. Let {Ti → T}i∈I be a syntomic
covering of T . Then there exists a syntomic covering {Uj → T}j=1,...,m which is
a refinement of {Ti → T}i∈I such that each Uj is an affine scheme, and such that
each morphism Uj → T is standard syntomic, see Morphisms, Definition 28.32.1.
Moreover, we may choose each Uj to be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 10.131.15. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 33.6.5. Let T be an affine scheme. A standard syntomic covering of T
is a family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard syntomic
and T =

⋃
fj(Uj).

Definition 33.6.6. A big syntomic site is any site Schsyntomic as in Sites, Definition
7.6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of syntomic coverings Cov0

among these schemes.
(2) As underlying category take any category Schα constructed as in Sets,

Lemma 3.9.2 starting with the set S0.
(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the

category Schα and the class of syntomic coverings, and the set Cov0 chosen
above.

See the remarks following Definition 33.3.5 for motivation and explanation regard-
ing the definition of big sites.

Before we continue with the introduction of the big syntomic site of a scheme S, let
us point out that the topology on a big syntomic site Schsyntomic is in some sense
induced from the syntomic topology on the category of all schemes.

Lemma 33.6.7. Let Schsyntomic be a big syntomic site as in Definition 33.6.6. Let
T ∈ Ob(Schsyntomic). Let {Ti → T}i∈I be an arbitrary syntomic covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsyntomic which
refines {Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard syntomic covering, then it is tautologically
equivalent to a covering in Schsyntomic.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering in Schsyntomic.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 33.6.3 the refinement
{Tij → T}i∈I,j∈Ji is an syntomic covering of T as well. Hence we may assume each
Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9
we see that Wi is isomorphic to an object of SchZar. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of SchZar by a second application
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of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site SchZar by Sets, Lemma 3.9.9. The covering
{Uj → T}j∈J is a covering as in (1). In the situation of (2), (3) each of the
schemes Ti is isomorphic to an object of SchZar by Sets, Lemma 3.9.9, and another
application of Sets, Lemma 3.11.1 gives what we want. �

Definition 33.6.8. Let S be a scheme. Let Schsyntomic be a big syntomic site
containing S.

(1) The big syntomic site of S, denoted (Sch/S)syntomic, is the site Schsyntomic/S
introduced in Sites, Section 7.24.

(2) The big affine syntomic site of S, denoted (Aff/S)syntomic, is the full
subcategory of (Sch/S)syntomic whose objects are affine U/S. A covering
of (Aff/S)syntomic is any covering {Ui → U} of (Sch/S)syntomic which is
a standard syntomic covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 33.6.9. Let S be a scheme. Let Schsyntomic be a big syntomic site contain-
ing S. The functor (Aff/S)syntomic → (Sch/S)syntomic is special cocontinuous and
induces an equivalence of topoi from Sh((Aff/S)syntomic) to Sh((Sch/S)syntomic).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 7.28.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.28.1.
Denote the inclusion functor u : (Aff/S)syntomic → (Sch/S)syntomic. Being cocon-
tinuous just means that any syntomic covering of T/S, T affine, can be refined by
a standard syntomic covering of T . This is the content of Lemma 33.6.4. Hence
(1) holds. We see u is continuous simply because a standard syntomic covering is
a syntomic covering. Hence (2) holds. Parts (3) and (4) follow immediately from
the fact that u is fully faithful. And finally condition (5) follows from the fact that
every scheme has an affine open covering. �

To be continued...

Lemma 33.6.10. Let Schsyntomic be a big syntomic site. Let f : T → S be a
morphism in Schsyntomic. The functor

u : (Sch/T )syntomic −→ (Sch/S)syntomic, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)syntomic −→ (Sch/T )syntomic, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )syntomic) −→ Sh((Sch/S)syntomic)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.20.5 and 7.20.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right

adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.21.1 and 7.21.2 to get the formula
for fbig,∗. �
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33.7. The fppf topology

Let S be a scheme. We would like to define the fppf-topology2 on the category of
schemes over S. According to our general principle we first introduce the notion of
an fppf-covering.

Definition 33.7.1. Let T be a scheme. An fppf covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is flat, locally of finite
presentation and such that T =

⋃
fi(Ti).

Lemma 33.7.2. Any syntomic covering is an fppf covering, and a fortiori, any
smooth, étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a syntomic morphism is flat
and locally of finite presentation, see Morphisms, Lemmas 28.32.6 and 28.32.7, and
Lemma 33.6.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 33.7.3. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an fppf covering of T .
(2) If {Ti → T}i∈I is an fppf covering and for each i we have an fppf covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fppf covering.

(3) If {Ti → T}i∈I is an fppf covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an fppf covering.

Proof. The first assertion is clear. The second follows as the composition of
flat morphisms is flat (see Morphisms, Lemma 28.26.5) and the composition of
morphisms of finite presentation is of finite presentation (see Morphisms, Lemma
28.22.3). The third follows as the base change of a flat morphism is flat (see Mor-
phisms, Lemma 28.26.7) and the base change of a morphism of finite presentation is
of finite presentation (see Morphisms, Lemma 28.22.4). Moreover, the base change
of a surjective family of morphisms is surjective (proof omitted). �

Lemma 33.7.4. Let T be an affine scheme. Let {Ti → T}i∈I be an fppf covering
of T . Then there exists an fppf covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose
each Uj to be open affine in one of the Ti.

Proof. This follows directly from the definitions using that a morphism which is
flat and locally of finite presentation is open, see Morphisms, Lemma 28.26.9. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 33.7.5. Let T be an affine scheme. A standard fppf covering of T is a
family {fj : Uj → T}j=1,...,m with each Uj is affine, flat and of finite presentation
over T and T =

⋃
fj(Uj).

Definition 33.7.6. A big fppf site is any site Schfppf as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of fppf coverings Cov0 among
these schemes.

2 The letters fppf stand for “fidèlement plat de présentation finie”.
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(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of fppf coverings, and the set Cov0 chosen
above.

See the remarks following Definition 33.3.5 for motivation and explanation regard-
ing the definition of big sites.

Before we continue with the introduction of the big fppf site of a scheme S, let us
point out that the topology on a big fppf site Schfppf is in some sense induced from
the fppf topology on the category of all schemes.

Lemma 33.7.7. Let Schfppf be a big fppf site as in Definition 33.7.6. Let T ∈
Ob(Schfppf ). Let {Ti → T}i∈I be an arbitrary fppf covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schfppf which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard fppf covering, then it is tautologically equiv-
alent to a covering of Schfppf .

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schfppf .

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 33.7.3 the refinement
{Tij → T}i∈I,j∈Ji is an fppf covering of T as well. Hence we may assume each
Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9
we see that Wi is isomorphic to an object of SchZar. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of SchZar by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site SchZar by Sets, Lemma 3.9.9. The covering
{Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of the
schemes Ti is isomorphic to an object of Schfppf by Sets, Lemma 3.9.9, and another
application of Sets, Lemma 3.11.1 gives what we want. �

Definition 33.7.8. Let S be a scheme. Let Schfppf be a big fppf site containing
S.

(1) The big fppf site of S, denoted (Sch/S)fppf , is the site Schfppf/S intro-
duced in Sites, Section 7.24.

(2) The big affine fppf site of S, denoted (Aff/S)fppf , is the full subcategory
of (Sch/S)fppf whose objects are affine U/S. A covering of (Aff/S)fppf is
any covering {Ui → U} of (Sch/S)fppf which is a standard fppf covering.

It is not completely clear that the big affine fppf site is a site. We check this now.

Lemma 33.7.9. Let S be a scheme. Let Schfppf be a big fppf site containing S.
Then (Aff/S)fppf is a site.

Proof. Let us show that (Aff/S)fppf is a site. Reasoning as in the proof of Lemma
33.4.9 it suffices to show that the collection of standard fppf coverings of affines
satisfies properties (1), (2) and (3) of Sites, Definition 7.6.2. This is clear since
for example, given a standard fppf covering {Ti → T}i∈I and for each i we have a
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standard fppf covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard fppf
covering because

⋃
i∈I Ji is finite and each Tij is affine. �

Lemma 33.7.10. Let S be a scheme. Let Schfppf be a big fppf site containing S.
The underlying categories of the sites Schfppf , (Sch/S)fppf , and (Aff/S)fppf have
fibre products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The category (Sch/S)fppf has a final object,
namely S/S.

Proof. For Schfppf it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schfppf ).
The fibre product V ×U W in Schfppf is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)fppf . This proves the result for (Sch/S)fppf .
If U, V,W are affine, so is V ×U W and hence the result for (Aff/S)fppf . �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 33.7.11. Let S be a scheme. Let Schfppf be a big fppf site containing S.
The functor (Aff/S)fppf → (Sch/S)fppf is cocontinuous and induces an equivalence
of topoi from Sh((Aff/S)fppf ) to Sh((Sch/S)fppf ).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 7.28.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.28.1.
Denote the inclusion functor u : (Aff/S)fppf → (Sch/S)fppf . Being cocontinuous
just means that any fppf covering of T/S, T affine, can be refined by a standard
fppf covering of T . This is the content of Lemma 33.7.4. Hence (1) holds. We see u
is continuous simply because a standard fppf covering is a fppf covering. Hence (2)
holds. Parts (3) and (4) follow immediately from the fact that u is fully faithful.
And finally condition (5) follows from the fact that every scheme has an affine open
covering. �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 33.7.12. Let Schfppf be a big fppf site. Let f : T → S be a morphism in
Schfppf . The functor

u : (Sch/T )fppf −→ (Sch/S)fppf , V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)fppf −→ (Sch/T )fppf , (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )fppf ) −→ Sh((Sch/S)fppf )

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.20.5 and 7.20.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right

adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.21.1 and 7.21.2 to get the formula
for fbig,∗. �
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Lemma 33.7.13. Given schemes X, Y , Y in (Sch/S)fppf and morphisms f :
X → Y , g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 33.7.12. �

33.8. The fpqc topology

Definition 33.8.1. Let T be a scheme. An fpqc covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is flat and such that for
every affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and affine
opens Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃
fi(Ti). It is slightly harder to recognize

an fpqc covering, hence we provide some lemmas to do so.

Lemma 33.8.2. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering,
(2) each fi is flat and for every affine open U ⊂ T there exist quasi-compact

opens Ui ⊂ Ti which are almost all empty, such that U =
⋃
fi(Ui),

(3) each fi is flat and there exists an affine open covering T =
⋃
α∈A Uα and

for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-compact opens
Uα,j ⊂ Tiα,j such that Uα =

⋃
j=1,...,n(α) fiα,j (Uα,j).

If T is quasi-separated, these are also equivalent to

(4) each fi is flat, and for every t ∈ T there exist i1, . . . , in ∈ I and quasi-
compact opens Uj ⊂ Tij such that

⋃
j=1,...,n fij (Uj) is a (not necessarily

open) neighbourhood of t in T .

Proof. We omit the proof of the equivalence of (1), (2), and (3). From now on
assume T is quasi-separated. We prove (4) implies (2). Let U ⊂ T be an affine
open. To prove (2) it suffices to show that for every t ∈ U there exist finitely many
quasi-compact opens Uj ⊂ Tij such that fij (Uj) ⊂ U and such that

⋃
fij (Uj) is a

neighbourhood of t in U . By assumption there do exist finitely many quasi-compact
opens U ′j ⊂ Tij such that such that

⋃
fij (U

′
j) is a neighbourhood of t in T . Since T

is quasi-separated we see that Uj = U ′j ∩ f
−1
j (U) is quasi-compact open as desired.

Since it is clear that (2) implies (4) the proof is finished. �

Lemma 33.8.3. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering, and
(2) setting T ′ =

∐
i∈I Ti, and f =

∐
i∈I fi the family {f : T ′ → T} is an fpqc

covering.

Proof. Suppose that U ⊂ T is an affine open. If (1) holds, then we find i1, . . . , in ∈
I and affine opens Uj ⊂ Tij such that U =

⋃
j=1,...,n fij (Uj). Then U1q. . .qUn ⊂ T ′

is a quasi-compact open surjecting onto U . Thus {f : T ′ → T} is an fpqc covering
by Lemma 33.8.2. Conversely, if (2) holds then there exists a quasi-compact open
U ′ ⊂ T ′ with U = f(U ′). Then Uj = U ′ ∩ Tj is quasi-compact open in Tj and
empty for almost all j. By Lemma 33.8.2 we see that (1) holds. �
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Lemma 33.8.4. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) the family {fi : Ti → T}i∈I can be refined by a fpqc covering of T .

Then {fi : Ti → T}i∈I is a fpqc covering of T .

Proof. Let {gj : Xj → T}j∈J be an fpqc covering refining {fi : Ti → T}. Suppose
that U ⊂ T is affine open. Choose j1, . . . , jm ∈ J and Vk ⊂ Xjk affine open such
that U =

⋃
gjk(Vk). For each j pick ij ∈ I and a morphism hj : Xj → Tij such

that gj = fij ◦hj . Since hjk(Vk) is quasi-compact we can find a quasi-compact open

hjk(Vk) ⊂ Uk ⊂ f−1
ijk

(U). Then U =
⋃
fijk (Uk). We conclude that {fi : Ti → T}i∈I

is an fpqc covering by Lemma 33.8.2. �

Lemma 33.8.5. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) there exists an fpqc covering {gj : Sj → T}j∈J such that each {Sj×T Ti →

Sj}i∈I is an fpqc covering.

Then {fi : Ti → T}i∈I is a fpqc covering of T .

Proof. We will use Lemma 33.8.2 without further mention. Let U ⊂ T be an
affine open. By (2) we can find quasi-compact opens Vj ⊂ Sj for j ∈ J , almost
all empty, such that U =

⋃
gj(Vj). Then for each j we can choose quasi-compact

opens Wij ⊂ Sj ×T Ti for i ∈ I, almost all empty, with Vj =
⋃
i pr1(Wij). Thus

{Sj ×T Ti → T} is an fpqc covering. Since this covering refines {fi : Ti → T} we
conclude by Lemma 33.8.4. �

Lemma 33.8.6. Any fppf covering is an fpqc covering, and a fortiori, any syn-
tomic, smooth, étale or Zariski covering is an fpqc covering.

Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma 33.7.2. Let {fi : Ui → U}i∈I be an fppf covering. By definition
this means that the fi are flat which checks the first condition of Definition 33.8.1.
To check the second, let V ⊂ U be an affine open subset. Write f−1

i (V ) =
⋃
j∈Ji Vij

for some affine opens Vij ⊂ Ui. Since each fi is open (Morphisms, Lemma 28.26.9),
we see that V =

⋃
i∈I
⋃
j∈Ji fi(Vij) is an open covering of V . Since V is quasi-

compact, this covering has a finite refinement. This finishes the proof. �

The fpqc3 topology cannot be treated in the same way as the fppf topology4.
Namely, suppose that R is a nonzero ring. For any faithfully flat ring map R→ R′

the morphism Spec(R′) → Spec(R) is an fpqc-covering. We claim that there does
not exist a set A of fpqc-coverings of Spec(R) such that every fpqc-covering can be
refined by an element of A. For example, if R = k is a field, then for any set I
we can consider the purely transcendental field extension k ⊂ k({ti}i∈I). We leave
it to the reader to show that there does not exist a set of morphisms of schemes
{Sj → Spec(k)}j∈J such that every morphism Spec(k({ti}i∈I)) is dominated by
one of the schemes Sj .

3The letters fpqc stand for “fidèlement plat quasi-compacte”.
4A more precise statement would be that the analogue of Lemma 33.7.7 for the fpqc topology

does not hold.
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A mildly interesting option is to consider only those faithfully flat ring extensions
R → R′ where the cardinality of R′ is suitably bounded. (And if you consider all
schemes in a fixed universe as in SGA4 then you are bounding the cardinality by
a strongly inaccessible cardinal.) However, it is not so clear what happens if you
change the cardinal to a bigger one.

For these reasons we do not introduce fpqc sites and we will not consider cohomology
with respect to the fpqc-topology.

On the other hand, given a contravariant functor F : Schopp → Sets it does make
sense to ask whether F satisfies the sheaf property for the fpqc topology, see below.
Moreover, we can wonder about descent of object in the fpqc topology, etc. Simply
put, for certain results the correct generality is to work with fpqc coverings.

Lemma 33.8.7. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an fpqc covering of T .
(2) If {Ti → T}i∈I is an fpqc covering and for each i we have an fpqc covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fpqc covering.

(3) If {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an fpqc covering.

Proof. Part (1) is immediate. Recall that the composition of flat morphisms is flat
and that the base change of a flat morphism is flat (Morphisms, Lemmas 28.26.7
and 28.26.5). Thus we can apply Lemma 33.8.2 in each case to check that our
families of morphisms are fpqc coverings.

Proof of (2). Assume {Ti → T}i∈I is an fpqc covering and for each i we have an
fpqc covering {fij : Tij → Ti}j∈Ji . Let U ⊂ T be an affine open. We can find
quasi-compact opens Ui ⊂ Ti for i ∈ I, almost all empty, such that U =

⋃
fi(Ui).

Then for each i we can choose quasi-compact opens Wij ⊂ Tij for j ∈ Ji, almost
all empty, with Ui =

⋃
j fij(Uij). Thus {Tij → T} is an fpqc covering.

Proof of (3). Assume {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism
of schemes. Let U ′ ⊂ T ′ be an affine open which maps into the affine open U ⊂ T .
Choose quasi-compact opens Ui ⊂ Ti, almost all empty, such that U =

⋃
fi(Ui).

Then U ′×U Ui is a quasi-compact open of T ′×T Ti and U ′ =
⋃

pr1(U ′×U Ui). Since
T ′ can be covered by such affine opens U ′ ⊂ T ′ we see that {T ′ ×T Ti → T ′}i∈I is
an fpqc covering by Lemma 33.8.2 �

Lemma 33.8.8. Let T be an affine scheme. Let {Ti → T}i∈I be an fpqc covering
of T . Then there exists an fpqc covering {Uj → T}j=1,...,n which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose
each Uj to be open affine in one of the Ti.

Proof. This follows directly from the definition. �

Definition 33.8.9. Let T be an affine scheme. A standard fpqc covering of T is a
family {fj : Uj → T}j=1,...,n with each Uj is affine, flat over T and T =

⋃
fj(Uj).

Since we do not introduce the affine site we have to show directly that the collection
of all standard fpqc coverings satisfies the axioms.

Lemma 33.8.10. Let T be an affine scheme.
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(1) If T ′ → T is an isomorphism then {T ′ → T} is a standard fpqc covering
of T .

(2) If {Ti → T}i∈I is a standard fpqc covering and for each i we have a stan-
dard fpqc covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard
fpqc covering.

(3) If {Ti → T}i∈I is a standard fpqc covering and T ′ → T is a morphism of
affine schemes then {T ′ ×T Ti → T ′}i∈I is a standard fpqc covering.

Proof. This follows formally from the fact that compositions and base changes of
flat morphisms are flat (Morphisms, Lemmas 28.26.7 and 28.26.5) and that fibre
products of affine schemes are affine (Schemes, Lemma 25.17.2). �

Lemma 33.8.11. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of mor-
phisms of schemes with target T . Assume that

(1) each fi is flat, and
(2) every affine scheme Z and morphism h : Z → T there exists a standard

fpqc covering {Zj → Z}j=1,...,n which refines the family {Ti×TZ → Z}i∈I .

Then {fi : Ti → T}i∈I is a fpqc covering of T .

Proof. Let T =
⋃
Uα be an affine open covering. For each α the pullback family

{Ti ×T Uα → Uα} can be refined by a standard fpqc covering, hence is an fpqc
covering by Lemma 33.8.4. As {Uα → T} is an fpqc covering we conclude that
{Ti → T} is an fpqc covering by Lemma 33.8.5. �

Definition 33.8.12. Let F be a contravariant functor on the category of schemes
with values in sets.

(1) Let {Ui → T}i∈I be a family of morphisms of schemes with fixed target.
We say that F satisfies the sheaf property for the given family if for any
collection of elements ξi ∈ F (Ui) such that ξi|Ui×TUj = ξj |Ui×TUj there
exists a unique element ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) We say that F satisfies the sheaf property for the fpqc topology if it satisfies
the sheaf property for any fpqc covering.

We try to avoid using the terminology “F is a sheaf” in this situation since we are
not defining a category of fpqc sheaves as we explained above.

Lemma 33.8.13. Let F be a contravariant functor on the category of schemes with
values in sets. Then F satisfies the sheaf property for the fpqc topology if and only
if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard fpqc covering.

Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} with V , U affine and V → U faithfully
flat.

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be an fpqc covering. Let
si ∈ F (Ti) be a family of elements such that si and sj map to the same element
of F (Ti ×T Tj). Let W ⊂ T be the maximal open subset such that there exists a
unique s ∈ F (W ) with s|f−1

i (W ) = si|f−1
i (W ) for all i. Such a maximal open exists

because F satisfies the sheaf property for Zariski coverings; in fact W is the union
of all opens with this property. Let t ∈ T . We will show t ∈ W . To do this we
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pick an affine open t ∈ U ⊂ T and we will show there is a unique s ∈ F (U) with
s|f−1

i (U) = si|f−1
i (U) for all i.

By Lemma 33.8.8 we can find a standard fpqc covering {Uj → U}j=1,...,n refining
{U×T Ti → U}, say by morphisms hj : Uj → Tij . By (2) we obtain a unique element
s ∈ F (U) such that s|Uj = F (hj)(sij ). Note that for any scheme V → U over U
there is a unique section sV ∈ F (V ) which restricts to F (hj◦pr2)(sij ) on V ×UUj for
j = 1, . . . , n. Namely, this is true if V is affine by (2) as {V ×UUj → V } is a standard
fpqc covering and in general this follows from (1) and the affine case by choosing
an affine open covering of V . In particular, sV = s|V . Now, taking V = U ×T Ti
and using that sij |Tij×TTi = si|Tij×TTi we conclude that s|U×TTi = sV = si|U×TTi
which is what we had to show.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti →
T} is a standard fpqc covering, then

∐
Ti → T is a faithfully flat morphism of

affine schemes. In the presence of (1) we have F (
∐
Ti) =

∏
F (Ti) and similarly

F ((
∐
Ti)×T (

∐
Ti)) =

∏
F (Ti×T Ti′). Thus the sheaf condition for {Ti → T} and

{
∐
Ti → T} is the same. �

33.9. Change of topologies

Let f : X → Y be a morphism of schemes over a base scheme S. In this case we
have the following morphisms of sites (with suitable choices of sites as in Remark
33.9.1 below):

(1) (Sch/X)fppf −→ (Sch/Y )fppf ,
(2) (Sch/X)fppf −→ (Sch/Y )syntomic,
(3) (Sch/X)fppf −→ (Sch/Y )smooth,
(4) (Sch/X)fppf −→ (Sch/Y )étale,
(5) (Sch/X)fppf −→ (Sch/Y )Zar,
(6) (Sch/X)syntomic −→ (Sch/Y )syntomic,
(7) (Sch/X)syntomic −→ (Sch/Y )smooth,
(8) (Sch/X)syntomic −→ (Sch/Y )étale,
(9) (Sch/X)syntomic −→ (Sch/Y )Zar,

(10) (Sch/X)smooth −→ (Sch/Y )smooth,
(11) (Sch/X)smooth −→ (Sch/Y )étale,
(12) (Sch/X)smooth −→ (Sch/Y )Zar,
(13) (Sch/X)étale −→ (Sch/Y )étale,
(14) (Sch/X)étale −→ (Sch/Y )Zar,
(15) (Sch/X)Zar −→ (Sch/Y )Zar,
(16) (Sch/X)fppf −→ Yétale,
(17) (Sch/X)syntomic −→ Yétale,
(18) (Sch/X)smooth −→ Yétale,
(19) (Sch/X)étale −→ Yétale,
(20) (Sch/X)fppf −→ YZar,
(21) (Sch/X)syntomic −→ YZar,
(22) (Sch/X)smooth −→ YZar,
(23) (Sch/X)étale −→ YZar,
(24) (Sch/X)Zar −→ YZar,
(25) Xétale −→ Yétale,
(26) Xétale −→ YZar,
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(27) XZar −→ YZar,

In each case the underlying continuous functor Sch/Y → Sch/X, or Yτ → Sch/X
is the functor Y ′/Y 7→ X×Y Y ′/X. Namely, in the sections above we have seen the
morphisms fbig : (Sch/X)τ → (Sch/Y )τ and fsmall : Xτ → Yτ for τ as above. We
also have seen the morphisms of sites πY : (Sch/Y )τ → Yτ for τ ∈ {étale, Zariski}.
On the other hand, it is clear that the identity functor (Sch/X)τ → (Sch/X)τ ′

defines a morphism of sites when τ is a stronger topology than τ ′. Hence composing
these gives the list of possible morphisms above.

Because of the simple description of the underlying functor it is clear that given
morphisms of schemes X → Y → Z the composition of two of the morphisms of
sites above, e.g.,

(Sch/X)τ0 −→ (Sch/Y )τ1 −→ (Sch/Z)τ2

is the corresponding morphism of sites associated to the morphism of schemes
X → Z.

Remark 33.9.1. Take any category Schα constructed as in Sets, Lemma 3.9.2
starting with the set of schemes {X,Y, S}. Choose any set of coverings Covfppf
on Schα as in Sets, Lemma 3.11.1 starting with the category Schα and the class
of fppf coverings. Let Schfppf denote the big fppf site so obtained. Next, for
τ ∈ {Zariski, étale, smooth, syntomic} let Schτ have the same underlying category
as Schfppf with coverings Covτ ⊂ Covfppf simply the subset of τ -coverings. It is
straightforward to check that this gives rise to a big site Schτ .

33.10. Change of big sites

In this section we explain what happens on changing the big Zariski/fppf/étale
sites.

Let τ, τ ′ ∈ {Zariski, étale, smooth, syntomic, fppf}. Given two big sites Schτ
and Sch′τ ′ we say that Schτ is contained in Sch′τ ′ if Ob(Schτ ) ⊂ Ob(Sch′τ ′) and
Cov(Schτ ) ⊂ Cov(Sch′τ ′). In this case τ is stronger than τ ′, for example, no fppf
site can be contained in an étale site.

Lemma 33.10.1. Any set of big Zariski sites is contained in a common big Zariski
site. The same is true, mutatis mutandis, for big fppf and big étale sites.

Proof. This is true because the union of a set of sets is a set, and the constructions
in Sets, Lemmas 3.9.2 and 3.11.1 allow one to start with any initially given set of
schemes and coverings. �

Lemma 33.10.2. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Suppose given
big sites Schτ and Sch′τ . Assume that Schτ is contained in Sch′τ . The inclusion
functor Schτ → Sch′τ satisfies the assumptions of Sites, Lemma 7.20.8. There are
morphisms of topoi

g : Sh(Schτ ) −→ Sh(Sch′τ )

f : Sh(Sch′τ ) −→ Sh(Schτ )

such that f ◦ g ∼= id. For any object S of Schτ the inclusion functor (Sch/S)τ →
(Sch′/S)τ satisfies the assumptions of Sites, Lemma 7.20.8 also. Hence similarly
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we obtain morphisms

g : Sh((Sch/S)τ ) −→ Sh((Sch′/S)τ )

f : Sh((Sch′/S)τ ) −→ Sh((Sch/S)τ )

with f ◦ g ∼= id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 7.20.8 are immediate for the
functors Schτ → Sch′τ and (Sch/S)τ → (Sch′/S)τ . Property (a) holds by Lemma
33.3.6, 33.4.7, 33.5.7, 33.6.7, or 33.7.7. Property (d) holds because fibre products
in the categories Schτ , Sch′τ exist and are compatible with fibre products in the
category of schemes. �

Discussion: The functor g−1 = f∗ is simply the restriction functor which associates
to a sheaf G on Sch′τ the restriction G|Schτ . Hence this lemma simply says that
given any sheaf of sets F on Schτ there exists a canonical sheaf F ′ on Sch′τ such
that F|Sch′τ

= F ′. In fact the sheaf F ′ has the following description: it is the
sheafification of the presheaf

Sch′τ −→ Sets, V 7−→ colimV→U F(U)

where U is an object of Schτ . This is true because F ′ = f−1F = (upF)# according
to Sites, Lemmas 7.20.5 and 7.20.8.
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CHAPTER 34

Descent

34.1. Introduction

In the chapter on topologies on schemes (see Topologies, Section 33.1) we introduced
Zariski, étale, fppf, smooth, syntomic and fpqc coverings of schemes. In this chapter
we discuss what kind of structures over schemes can be descended through such
coverings. See for example [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c],
and [Gro95d]. This is also meant to introduce the notions of descent, descent
data, effective descent data, in the less formal setting of descent questions for quasi-
coherent sheaves, schemes, etc. The formal notion, that of a stack over a site, is
discussed in the chapter on stacks (see Stacks, Section 8.1).

34.2. Descent data for quasi-coherent sheaves

In this chapter we will use the convention where the projection maps pri : X× . . .×
X → X are labeled starting with i = 0. Hence we have pr0,pr1 : X × X → X,
pr0,pr1,pr2 : X ×X ×X → X, etc.

Definition 34.2.1. Let S be a scheme. Let {fi : Si → S}i∈I be a family of
morphisms with target S.

(1) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the
given family is given by a quasi-coherent sheaf Fi on Si for each i ∈ I, an
isomorphism of quasi-coherent OSi×SSj -modules ϕij : pr∗0Fi → pr∗1Fj for

each pair (i, j) ∈ I2 such that for every triple of indices (i, j, k) ∈ I3 the
diagram

pr∗0Fi

pr∗01ϕij $$

pr∗02ϕik

// pr∗2Fk

pr∗1Fj
pr∗12ϕjk

::

of OSi×SSj×SSk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, ϕij)→ (F ′i , ϕ′ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OSi -modules ψi : Fi → F ′i such that all the
diagrams

pr∗0Fi ϕij
//

pr∗0ψi

��

pr∗1Fj

pr∗1ψj

��
pr∗0F ′i

ϕ′ij // pr∗1F ′j
commute.

A good example to keep in mind is the following. Suppose that S =
⋃
Si is an

open covering. In that case we have seen descent data for sheaves of sets in Sheaves,

2191
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Section 6.33 where we called them “glueing data for sheaves of sets with respect
to the given covering”. Moreover, we proved that the category of glueing data is
equivalent to the category of sheaves on S. We will show the analogue in the setting
above when {Si → S}i∈I is an fpqc covering.

In the extreme case where the covering {S → S} is given by idS a descent datum
is necessarily of the form (F , idF ). The cocycle condition guarantees that the
identity on F is the only permitted map in this case. The following lemma shows
in particular that to every quasi-coherent sheaf of OS-modules there is associated
a unique descent datum with respect to any given family.

Lemma 34.2.2. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J be families of
morphisms of schemes with fixed target. Let (g, α : I → J, (gi)) : U → V be a
morphism of families of maps with fixed target, see Sites, Definition 7.8.1. Let
(Fj , ϕjj′) be a descent datum for quasi-coherent sheaves with respect to the family
{Vj → V }j∈J . Then

(1) The system (
g∗iFα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , ϕjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′i)) of families of maps with

fixed target with g = g′ there exists a functorial isomorphism of descent
data

(g∗iFα(i), (gi × gi′)∗ϕα(i)α(i′)) ∼= ((g′i)
∗Fα′(i), (g′i × g′i′)∗ϕα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗iFα(i) → (g′i)
∗Fα′(i) which give the isomor-

phism of descent data in part (3) are the pullbacks of the maps ϕα(i)α′(i) by the
morphisms (gi, g

′
i) : Ui → Vα(i) ×V Vα′(i). �

Any family U = {Si → S}i∈I is a refinement of the trivial covering {S → S} in a
unique way. For a quasi-coherent sheaf F on S we denote simply (F|Si , can) the
descent datum with respect to U obtained by the procedure above.

Definition 34.2.3. Let S be a scheme. Let {Si → S}i∈I be a family of morphisms
with target S.

(1) Let F be a quasi-coherent OS-module. We call the unique descent on F
datum with respect to the covering {S → S} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Si → S} is called the
canonical descent datum. Notation: (F|Si , can).

(3) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the
given covering is said to be effective if there exists a quasi-coherent sheaf
F on S such that (Fi, ϕij) is isomorphic to (F|Si , can).

Lemma 34.2.4. Let S be a scheme. Let S =
⋃
Ui be an open covering. Any

descent datum on quasi-coherent sheaves for the family U = {Ui → S} is effec-
tive. Moreover, the functor from the category of quasi-coherent OS-modules to the
category of descent data with respect to U is fully faithful.

Proof. This follows immediately from Sheaves, Section 6.33 and the fact that being
quasi-coherent is a local property, see Modules, Definition 17.10.1. �

To prove more we first need to study the case of modules over rings.
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34.3. Descent for modules

Let R → A be a ring map. By Simplicial, Example 14.5.5 this gives rise to a
cosimplicial R-algebra

A
//
// A⊗R Aoo

//
//
//
A⊗R A⊗R Aoo

oo

Let us denote this (A/R)• so that (A/R)n is the (n + 1)-fold tensor product of A
over R. Given a map ϕ : [n]→ [m] the R-algebra map (A/R)•(ϕ) is the map

a0 ⊗ . . .⊗ an 7−→
∏

ϕ(i)=0
ai ⊗

∏
ϕ(i)=1

ai ⊗ . . .⊗
∏

ϕ(i)=m
ai

where we use the convention that the empty product is 1. Thus the first few maps,
notation as in Simplicial, Section 14.5, are

δ1
0 : a0 7→ 1⊗ a0

δ1
1 : a0 7→ a0 ⊗ 1
σ0

0 : a0 ⊗ a1 7→ a0a1

δ2
0 : a0 ⊗ a1 7→ 1⊗ a0 ⊗ a1

δ2
1 : a0 ⊗ a1 7→ a0 ⊗ 1⊗ a1

δ2
2 : a0 ⊗ a1 7→ a0 ⊗ a1 ⊗ 1
σ1

0 : a0 ⊗ a1 ⊗ a2 7→ a0a1 ⊗ a2

σ1
1 : a0 ⊗ a1 ⊗ a2 7→ a0 ⊗ a1a2

and so on.

An R-module M gives rise to a cosimplicial (A/R)•-module (A/R)•⊗RM . In other
words Mn = (A/R)n ⊗R M and using the R-algebra maps (A/R)n → (A/R)m to
define the corresponding maps on M ⊗R (A/R)•.

The analogue to a descent datum for quasi-coherent sheaves in the setting of mod-
ules is the following.

Definition 34.3.1. Let R→ A be a ring map.

(1) A descent datum (N,ϕ) for modules with respect to R→ A is given by an
A-module N and a isomorphism of A⊗R A-modules

ϕ : N ⊗R A→ A⊗R N
such that the cocycle condition holds: the diagram of A⊗RA⊗RA-module
maps

N ⊗R A⊗R A ϕ02

//

ϕ01 ((

A⊗R A⊗R N

A⊗R N ⊗R A
ϕ12

66

commutes (see below for notation).
(2) A morphism (N,ϕ)→ (N ′, ϕ′) of descent data is a morphism of A-modules

ψ : N → N ′ such that the diagram

N ⊗R A ϕ
//

ψ⊗idA
��

A⊗R N

idA⊗ψ
��

N ′ ⊗R A
ϕ′ // A⊗R N ′

is commutative.

http://stacks.math.columbia.edu/tag/023G
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In the definition we use the notation that ϕ01 = ϕ ⊗ idA, ϕ12 = idA ⊗ ϕ, and
ϕ02(n ⊗ 1 ⊗ 1) =

∑
ai ⊗ 1 ⊗ ni if ϕ(n) =

∑
ai ⊗ ni. All three are A ⊗R A ⊗R A-

module homomorphisms. Equivalently we have

ϕij = ϕ⊗(A/R)1, (A/R)•(τ2
ij)

(A/R)2

where τ2
ij : [1] → [2] is the map 0 7→ i, 1 7→ j. Namely, (A/R)•(τ

2
02)(a0 ⊗ a1) =

a0 ⊗ 1⊗ a1, and similarly for the others1.

We need some more notation to be able to state the next lemma. Let (N,ϕ) be a
descent datum with respect to a ring map R→ A. For n ≥ 0 and i ∈ [n] we set

Nn,i = A⊗R . . .⊗R A⊗R N ⊗R A⊗R . . .⊗R A
with the factor N in the ith spot. It is an (A/R)n-module. If we introduce the
maps τni : [0]→ [n], 0 7→ i then we see that

Nn,i = N ⊗(A/R)0, (A/R)•(τni ) (A/R)n

For 0 ≤ i ≤ j ≤ n we let τnij : [1]→ [n] be the map such that 0 maps to i and 1 to
j. Similarly to the above the homomorphism ϕ induces isomorphisms

ϕnij = ϕ⊗(A/R)1, (A/R)•(τnij)
(A/R)n : Nn,i −→ Nn,j

of (A/R)n-modules when i < j. If i = j we set ϕnij = id. Since these are all
isomorphisms they allow us to move the factor N to any spot we like. And the
cocycle condition exactly means that it does not matter how we do this (e.g., as a
composition of two of these or at once). Finally, for any β : [n]→ [m] we define the
morphism

Nβ,i : Nn,i → Nm,β(i)

as the unique (A/R)•(β)-semi linear map such that

Nβ,i(1⊗ . . .⊗ n⊗ . . .⊗ 1) = 1⊗ . . .⊗ n⊗ . . .⊗ 1

for all n ∈ N . This hints at the following lemma.

Lemma 34.3.2. Let R→ A be a ring map. Given a descent datum (N,ϕ) we can
associate to it a cosimplicial (A/R)•-module N•

2 by the rules Nn = Nn,n and given
β : [n]→ [m] setting we define

N•(β) = (ϕmβ(n)m) ◦Nβ,n : Nn,n −→ Nm,m.

This procedure is functorial in the descent datum.

Proof. Here are the first few maps where ϕ(n⊗ 1) =
∑
αi ⊗ xi

δ1
0 : N → A⊗N n 7→ 1⊗ n
δ1
1 : N → A⊗N n 7→

∑
αi ⊗ xi

σ0
0 : A⊗N → N a0 ⊗ n 7→ a0n
δ2
0 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ 1⊗ a0 ⊗ n
δ2
1 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ a0 ⊗ 1⊗ n
δ2
2 : A⊗N → A⊗A⊗N a0 ⊗ n 7→

∑
a0 ⊗ αi ⊗ xi

σ1
0 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0a1 ⊗ n
σ1

1 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0 ⊗ a1n

1Note that τ2
ij = δ2

k, if {i, j, k} = [2] = {0, 1, 2}, see Simplicial, Definition 14.2.1.
2We should really write (N,ϕ)•.

http://stacks.math.columbia.edu/tag/023H
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with notation as in Simplicial, Section 14.5. We first verify the two properties
σ0

0 ◦ δ1
0 = id and σ0

0 ◦ δ1
1 = id. The first one, σ0

0 ◦ δ1
0 = id, is clear from the

explicit description of the morphisms above. To prove the second relation we have
to use the cocycle condition (because it does not holds for an arbitrary isomorphism
ϕ : N ⊗R A → A ⊗R N). Write p = σ0

0 ◦ δ1
1 : N → N . By the description of the

maps above we deduce that p is also equal to

p = ϕ⊗ id : N = (N ⊗R A)⊗(A⊗RA) A −→ (A⊗R N)⊗(A⊗RA) A = N

Since ϕ is an isomorphism we see that p is an isomorphism. Write ϕ(n ⊗ 1) =∑
αi ⊗ xi for certain αi ∈ A and xi ∈ N . Then p(n) =

∑
αixi. Next, write

ϕ(xi⊗ 1) =
∑
αij ⊗ yj for certain αij ∈ A and yj ∈ N . Then the cocycle condition

says that ∑
αi ⊗ αij ⊗ yj =

∑
αi ⊗ 1⊗ xi.

This means that p(n) =
∑
αixi =

∑
αiαijyj =

∑
αip(xi) = p(p(n)). Thus p is a

projector, and since it is an isomorphism it is the identity.

To prove fully that N• is a cosimplicial module we have to check all 5 types of
relations of Simplicial, Remark 14.5.3. The relations on composing σ’s are obvious.
The relations on composing δ’s come down to the cocycle condition for ϕ. In exactly
the same way as above one checks the relations σj ◦ δj = σj ◦ δj+1 = id. Finally,
the other relations on compositions of δ’s and σ’s hold for any ϕ whatsoever. �

Note that to an R-module M we can associate a canonical descent datum, namely
(M ⊗RA, can) where can : (M ⊗RA)⊗RA→ A⊗R (M ⊗RA) is the obvious map:
(m⊗ a)⊗ a′ 7→ a⊗ (m⊗ a′).

Lemma 34.3.3. Let R → A be a ring map. Let M be an R-module. The cosim-
plicial (A/R)•-module associated to the canonical descent datum is isomorphic to
the cosimplicial module (A/R)• ⊗RM .

Proof. Omitted. �

Definition 34.3.4. Let R→ A be a ring map. We say a descent datum (N,ϕ) is
effective if there exists an R-module M and an isomorphism of descent data from
(M ⊗R A, can) to (N,ϕ).

Let R → A be a ring map. Let (N,ϕ) be a descent datum. We may take the
cochain complex s(N•) associated with N• (see Simplicial, Section 14.24). It has
the following shape:

N → A⊗R N → A⊗R A⊗R N → . . .

We can describe the maps. The first map is the map

n 7−→ 1⊗ n− ϕ(n⊗ 1).

The second map on pure tensors has the values

a⊗ n 7−→ 1⊗ a⊗ n− a⊗ 1⊗ n+ a⊗ ϕ(n⊗ 1).

It is clear how the pattern continues.

In the special case where N = A ⊗R M we see that for any m ∈ M the element
1 ⊗ m is in the kernel of the first map of the cochain complex associated to the
cosimplicial module (A/R)• ⊗RM . Hence we get an extended cochain complex

(34.3.4.1) 0→M → A⊗RM → A⊗R A⊗RM → . . .

http://stacks.math.columbia.edu/tag/023I
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Here we think of the 0 as being in degree −2, the module M in degree −1, the
module A⊗RM in degree 0, etc. Note that this complex has the shape

0→ R→ A→ A⊗R A→ A⊗R A⊗R A→ . . .

when M = R.

Lemma 34.3.5. Suppose that R → A has a section. Then for any R-module M
the extended cochain complex (34.3.4.1) is exact.

Proof. By Simplicial, Lemma 14.27.4 the map R→ (A/R)• is a homotopy equiv-
alence of cosimplicial R-algebras (here R denotes the constant cosimplicial R-
algebra). Hence M → (A/R)• ⊗RM is a homotopy equivalence in the category of
cosimplicial R-modules, because ⊗RM is a functor from the category of R-algebras
to the category of R-modules, see Simplicial, Lemma 14.27.3. This implies that
the induced map of associated complexes is a homotopy equivalence, see Simpli-
cial, Lemma 14.27.5. Since the complex associated to the constant cosimplicial
R-module M is the complex

M
0 // M

1 // M
0 // M

1 // M . . .

we win (since the extended version simply puts an extra M at the beginning). �

Lemma 34.3.6. Suppose that R → A is faithfully flat, see Algebra, Definition
10.38.1. Then for any R-module M the extended cochain complex (34.3.4.1) is
exact.

Proof. Suppose we can show there exists a faithfully flat ring map R → R′ such
that the result holds for the ring map R′ → A′ = R′ ⊗R A. Then the result follows
for R→ A. Namely, for any R-module M the cosimplicial module (M ⊗R R′)⊗R′
(A′/R′)• is just the cosimplicial module R′⊗R (M⊗R (A/R)•). Hence the vanishing
of cohomology of the complex associated to (M ⊗R R′) ⊗R′ (A′/R′)• implies the
vanishing of the cohomology of the complex associated to M ⊗R (A/R)• by faithful
flatness of R → R′. Similarly for the vanishing of cohomology groups in degrees
−1 and 0 of the extended complex (proof omitted).

But we have such a faithful flat extension. Namely R′ = A works because the
ring map R′ = A → A′ = A ⊗A A has a section a ⊗ a′ 7→ aa′ and Lemma 34.3.5
applies. �

Here is how the complex relates to the question of effectivity.

Lemma 34.3.7. Let R→ A be a faithfully flat ring map. Let (N,ϕ) be a descent
datum. Then (N,ϕ) is effective if and only if the canonical map

A⊗R H0(s(N•)) −→ N

is an isomorphism.

Proof. If (N,ϕ) is effective, then we may write N = A ⊗R M with ϕ = can. It
follows that H0(s(N•)) = M by Lemmas 34.3.3 and 34.3.6. Conversely, suppose
the map of the lemma is an isomorphism. In this case set M = H0(s(N•)). This is
an R-submodule of N , namely M = {n ∈ N | 1⊗n = ϕ(n⊗ 1)}. The only thing to
check is that via the isomorphism A⊗RM → N the canonical descent data agrees
with ϕ. We omit the verification. �
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Lemma 34.3.8. Let R → A be a ring map, and let R → R′ be faithfully flat. Set
A′ = R′ ⊗R A. If all descent data for R′ → A′ are effective, then so are all descent
data for R→ A.

Proof. Let (N,ϕ) be a descent datum for R→ A. Set N ′ = R′ ⊗R N = A′ ⊗A N ,
and denote ϕ′ = idR′ ⊗ ϕ the base change of the descend datum ϕ. Then (N ′, ϕ′)
is a descent datum for R′ → A′ and H0(s(N ′•)) = R′⊗RH0(s(N•)). Moreover, the
map A′ ⊗R′ H0(s(N ′•)) → N ′ is identified with the base change of the A-module
map A⊗R H0(s(N))→ N via the faithfully flat map A→ A′. Hence we conclude
by Lemma 34.3.7. �

Here is the main result of this section. Its proof may seem a little clumsy; for a
more highbrow approach see Remark 34.3.11 below.

Proposition 34.3.9. Let R→ A be a faithfully flat ring map. Then

(1) any descent datum on modules with respect to R→ A is effective,
(2) the functor M 7→ (A⊗RM, can) from R-modules to the category of descent

data is an equivalence, and
(3) the inverse functor is given by (N,ϕ) 7→ H0(s(N•)).

Proof. We only prove (1) and omit the proofs of (2) and (3). As R→ A is faithfully
flat, there exists a faithfully flat base change R→ R′ such that R′ → A′ = R′⊗RA
has a section (namely take R′ = A as in the proof of Lemma 34.3.6). Hence, using
Lemma 34.3.8 we may assume that R→ A as a section, say σ : A→ R. Let (N,ϕ)
be a descent datum relative to R→ A. Set

M = H0(s(N•)) = {n ∈ N | 1⊗ n = ϕ(n⊗ 1)} ⊂ N
By Lemma 34.3.7 it suffices to show that A⊗RM → N is an isomorphism.

Take an element n ∈ N . Write ϕ(n⊗1) =
∑
ai⊗xi for certain ai ∈ A and xi ∈ N .

By Lemma 34.3.2 we have n =
∑
aixi in N (because σ0

0 ◦δ1
0 = id in any cosimplicial

object). Next, write ϕ(xi ⊗ 1) =
∑
aij ⊗ yj for certain aij ∈ A and yj ∈ N . The

cocycle condition means that∑
ai ⊗ aij ⊗ yj =

∑
ai ⊗ 1⊗ xi

in A ⊗R A ⊗R N . We conclude two things from this. First, by applying σ to
the first A we conclude that

∑
σ(ai)ϕ(xi ⊗ 1) =

∑
σ(ai) ⊗ xi which means that∑

σ(ai)xi ∈ M . Next, by applying σ to the middle A and multiplying out we
conclude that

∑
i ai(

∑
j σ(aij)yj) =

∑
aixi = n. Hence by the first conclusion we

see that A⊗RM → N is surjective. Finally, suppose that mi ∈M and
∑
aimi = 0.

Then we see by applying ϕ to
∑
aimi ⊗ 1 that

∑
ai ⊗ mi = 0. In other words

A⊗RM → N is injective and we win. �

Remark 34.3.10. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal.
The ring A =

∏
iRfi is a faithfully flat R-algebra. We remark that the cosimplicial

ring (A/R)• has the following ring in degree n:∏
i0,...,in

Rfi0 ...fin

Hence the results above recover Algebra, Lemmas 10.22.1, 10.22.2 and 10.23.4. But
the results above actually say more because of exactness in higher degrees. Namely,
it implies that Cech cohomology of quasi-coherent sheaves on affines is trivial, see
(insert future reference here).
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Remark 34.3.11. Let R be a ring. Let A• be a cosimplicial R-algebra. In this
setting a descent datum corresponds to an cosimplicial A•-module M• with the
property that for every n,m ≥ 0 and every ϕ : [n] → [m] the map M(ϕ) : Mn →
Mm induces an isomorphism

Mn ⊗An,A(ϕ) Am −→Mm.

Let us call such a cosimplicial module a cartesian module. In this setting, the proof
of Proposition 34.3.9 can be split in the following steps

(1) If R → R′ is faithfully flat, R → A any ring map, then descent data for
A/R are effective if descent data for (R′ ⊗R A)/R′ are effective.

(2) Let A be an R-algebra. Descent data for A/R correspond to cartesian
(A/R)•-modules.

(3) If R → A has a section then (A/R)• is homotopy equivalent to R, the
constant cosimplicial R-algebra with value R.

(4) If A• → B• is a homotopy equivalence of cosimplicial R-algebras then the
functor M• 7→ M• ⊗A• B• induces an equivalence of categories between
cartesian A•-modules and cartesian B•-modules.

For (1) see Lemma 34.3.8. Part (2) uses Lemma 34.3.2. Part (3) we have seen in
the proof of Lemma 34.3.5 (it relies on Simplicial, Lemma 14.27.4). Moreover, part
(4) is a triviality if you think about it right!

34.4. Descent for universally injective morphisms

Numerous constructions in algebraic geometry are made using techniques of descent,
such as constructing objects over a given space by first working over a somewhat
larger space which projects down to the given space, or verifying a property of a
space or a morphism by pulling back along a covering map. The utility of such tech-
niques is of course dependent on identification of a wide class of effective descent
morphisms. Early in the Grothendieckian development of modern algebraic geom-
etry, the class of morphisms which are quasi-compact and faithfully flat was shown
to be effective for descending objects, morphisms, and many properties thereof.

As usual, this statement comes down to a property of rings and modules. For
a homomorphism f : R → S to be an effective descent morphism for modules,
Grothendieck showed that it is sufficient for f to be faithfully flat. However, this
excludes many natural examples: for instance, any split ring homomorphism is an
effective descent morphism. One natural example of this even arises in the proof of
faithfully flat descent: for f : R→ S any ring homomorphism, 1S⊗f : S → S⊗RS
is split by the multiplication map whether or not it is flat.

One may then ask whether one there is a natural ring-theoretic condition imply-
ing effective descent for modules which includes both the case of a faithfully flat
morphism and that of a split ring homomorphism. It may surprise the reader (at
least it surprised this author) to learn that a complete answer to this question has
been known since around 1970! Namely, it is not hard to check that a necessary
condition for f : R → S to be an effective descent morphism for modules is that
f must be universally injective in the category of R-modules, that is, for any R-
module M , the map 1M ⊗ f : M → M ⊗R S must be injective. This then turns
out to be a sufficient condition as well. For example, if f is split in the category

http://stacks.math.columbia.edu/tag/039Y
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of R-modules (but not necessarily in the category of rings), then f is an effective
descent morphism for modules.

The history of this result is a bit involved: it was originally asserted by Olivier
[Oli70], who called universally injective morphisms pure, but without a clear in-
dication of proof. One can extract the result from the work of Joyal and Tierney
[JT84], but to the best of our knowledge, the first free-standing proof to appear
in the literature is that of Mesablishvili [Mes00]. The first purpose of this section
is to expose Mesablishvili’s proof; this requires little modification of his original
presentation aside from correcting typos, with the one exception that we make
explicit the relationship between the customary definition of a descent datum in
algebraic geometry and the one used in [Mes00]. The proof turns to be entirely
category-theoretic, and consequently can be put in the language of monads (and
thus applied in other contexts); see [JT04].

The second purpose of this section is to collect some information about which
properties of modules, algebras, and morphisms can be descended along universally
injective ring homomorphisms. The cases of finite modules and flat modules were
treated by Mesablishvili [Mes02].

34.4.1. Category-theoretic preliminaries. We start by recalling a few ba-
sic notions from category theory which will simplify the exposition. In this subsec-
tion, fix an ambient category.

For two morphisms g1, g2 : B → C, recall that an equalizer of g1 and g2 is a
morphism f : A → B which satisfies g1 ◦ f = g2 ◦ f and is universal for this
property. This second statement means that any commutative diagram

A′

e

  ����
A

f // B
g1 //

g2

// C

without the dashed arrow can be uniquely completed. We also say in this situation
that the diagram

(34.4.1.1) A
f // B

g1 //

g2

// C

is an equalizer. Reversing arrows gives the definition of a coequalizer. See Cate-
gories, Sections 4.10 and 4.11.

Since it involves a universal property, the property of being an equalizer is typically
not stable under applying a covariant functor. Just as for monomorphisms and
epimorphisms, one can get around this in some cases by exhibiting splittings.

Definition 34.4.2. A split equalizer is a diagram (34.4.1.1) with g1 ◦ f = g2 ◦ f
for which there exist auxiliary morphisms h : B → A and i : C → B such that

(34.4.2.1) h ◦ f = 1A, f ◦ h = i ◦ g1, i ◦ g2 = 1B .

The point is that the equalities among arrows force (34.4.1.1) to be an equalizer:
the map e factors uniquely through f by writing e = f ◦ (h ◦ e). Consequently,
applying a covariant functor to a split equalizer gives a split equalizer; applying a
contravariant functor gives a split coequalizer, whose definition is apparent.

http://stacks.math.columbia.edu/tag/08WH
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34.4.3. Universally injective morphisms. Recall that Rings denotes the
category of commutative rings with 1. For an object R of Rings we denote ModR
the category of R-modules.

Remark 34.4.4. Any functor F : A → B of abelian categories which is exact and
takes nonzero objects to nonzero objects reflects injections and surjections. Namely,
exactness implies that F preserves kernels and cokernels (compare with Homology,
Section 12.7). For example, if f : R → S is a faithfully flat ring homomorphism,
then • ⊗R S : ModR → ModS has these properties.

Let R be a ring. Recall that a morphism f : M → N in ModR is universally
injective if for all P ∈ ModR, the morphism f ⊗ 1P : M ⊗R P → N ⊗R P is
injective. See Algebra, Definition 10.79.1.

Definition 34.4.5. A ring map f : R→ S is universally injective if it is universally
injective as a morphism in ModR.

Example 34.4.6. Any split injection in ModR is universally injective. In partic-
ular, any split injection in Rings is universally injective.

Example 34.4.7. For a ring R and f1, . . . , fn ∈ R generating the unit ideal, the
morphism R→ Rf1

⊕ . . .⊕Rfn is universally injective. Although this is immediate
from Lemma 34.4.8, it is instructive to check it directly: we immediately reduce to
the case where R is local, in which case some fi must be a unit and so the map
R→ Rfi is an isomorphism.

Lemma 34.4.8. Any faithfully flat ring map is universally injective.

Proof. This is a reformulation of Algebra, Lemma 10.79.11. �

The key observation from [Mes00] is that universal injectivity can be usefully
reformulated in terms of a splitting, using the usual construction of an injective
cogenerator in ModR.

Definition 34.4.9. Let R be a ring. Define the contravariant functor C : ModR →
ModR by setting

C(M) = HomAb(M,Q/Z),

with the R-action on C(M) given by rf(s) = f(rs).

This functor was denoted M 7→M∨ in More on Algebra, Section 15.42.

Lemma 34.4.10. For a ring R, the functor C : ModR → ModR is exact and
reflects injections and surjections.

Proof. Exactness is More on Algebra, Lemma 15.42.2 and the other properties
follow from this, see Remark 34.4.4. �

Remark 34.4.11. We will use frequently the standard adjunction between Hom
and tensor product, in the form of the natural isomorphism of contravariant func-
tors

(34.4.11.1) C(•1 ⊗R •2) ∼= HomR(•1, C(•2)) : ModR ×ModR → ModR

taking f : M1⊗RM2 → Q/Z to the map m1 7→ (m2 7→ f(m1⊗m2)). See Algebra,
Lemma 10.13.5. A corollary of this observation is that if

C(M)
//
// C(N) // C(P )
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is a split coequalizer diagram in ModR, then so is

C(M ⊗R Q)
//
// C(N ⊗R Q) // C(P ⊗R Q)

for any Q ∈ ModR.

Lemma 34.4.12. Let R be a ring. A morphism f : M → N in ModR is universally
injective if and only if C(f) : C(N)→ C(M) is a split surjection.

Proof. By (34.4.11.1), for any P ∈ ModR we have a commutative diagram

HomR(P,C(N))
HomR(P,C(f))

//

∼=
��

HomR(P,C(M))

∼=
��

C(P ⊗R N)
C(1P⊗f) // C(P ⊗RM).

If f is universally injective, then 1C(M)⊗f : C(M)⊗RM → C(M)⊗RN is injective,
so both rows in the above diagram are surjective for P = C(M). We may thus lift
1C(M) ∈ HomR(C(M), C(M)) to some g ∈ HomR(C(N), C(M)) splitting C(f).
Conversely, if C(f) is a split surjection, then both rows in the above diagram are
surjective, so by Lemma 34.4.10, 1P ⊗ f is injective. �

Remark 34.4.13. Let f : M → N be a universally injective morphism in ModR.
By choosing a splitting g of C(f), we may construct a functorial splitting of
C(1P ⊗ f) for each P ∈ ModR. Namely, by (34.4.11.1) this amounts to splitting
HomR(P,C(f)) functorially in P , and this is achieved by the map g ◦ •.

34.4.14. Descent for modules and their morphisms. Throughout this
subsection, fix a ring map f : R → S. As seen in Section 34.3 we can use the
language of cosimplicial algebras to talk about descent data for modules, but in
this subsection we prefer a more down to earth terminology.

For i = 1, 2, 3, let Si be the i-fold tensor product of S over R. Define the ring
homomorphisms δ1

0 , δ
1
1 : S1 → S2, δ1

01, δ
1
02, δ

1
12 : S1 → S3, and δ2

0 , δ
2
1 , δ

2
2 : S2 → S3

by the formulas

δ1
0(a0) = 1⊗ a0

δ1
1(a0) = a0 ⊗ 1

δ2
0(a0 ⊗ a1) = 1⊗ a0 ⊗ a1

δ2
1(a0 ⊗ a1) = a0 ⊗ 1⊗ a1

δ2
2(a0 ⊗ a1) = a0 ⊗ a1 ⊗ 1

δ1
01(a0) = 1⊗ 1⊗ a0

δ1
02(a0) = 1⊗ a0 ⊗ 1

δ1
12(a0) = a0 ⊗ 1⊗ 1.

In other words, the upper index indicates the source ring, while the lower index
indicates where to insert factors of 1. (This notation is compatible with the notation
introduced in Section 34.3.)
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Recall3 from Definition 34.3.1 that for M ∈ ModS , a descent datum on M relative
to f is an isomorphism

θ : M ⊗S,δ1
0
S2 −→M ⊗S,δ1

1
S2

of S2-modules satisfying the cocycle condition

(34.4.14.1) (θ ⊗ δ2
2) ◦ (θ ⊗ δ0

2) = (θ ⊗ δ1
2) : M ⊗S,δ1

01
S3 →M ⊗S,δ1

12
S3.

Let DDS/R be the category of S-modules equipped with descent data relative to f .

For example, for M0 ∈ ModR and a choice of isomorphism M ∼= M0 ⊗R S gives
rise to a descent datum by identifying M ⊗S,δ1

0
S2 and M ⊗S,δ1

1
S2 naturally with

M0 ⊗R S2. This construction in particular defines a functor f∗ : ModR → DDS/R.

Definition 34.4.15. The functor f∗ : ModR → DDS/R is called base extension
along f . We say that f is a descent morphism for modules if f∗ is fully faithful.
We say that f is an effective descent morphism for modules if f∗ is an equivalence
of categories.

Our goal is to show that for f universally injective, we can use θ to locate M0

within M . This process makes crucial use of some equalizer diagrams.

Lemma 34.4.16. For (M, θ) ∈ DDS/R, the diagram
(34.4.16.1)

M
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2
⊗δ2

1

// M ⊗S,δ1
12
S3

is a split equalizer.

Proof. Define the ring homomorphisms σ0
0 : S2 → S1 and σ1

0 , σ
1
1 : S3 → S2 by the

formulas

σ0
0(a0 ⊗ a1) = a0a1

σ1
0(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2

σ1
1(a0 ⊗ a1 ⊗ a2) = a0 ⊗ a1a2.

We then take the auxiliary morphisms to be 1M ⊗ σ0
0 : M ⊗S,δ1

1
S2 → M and

1M ⊗ σ1
0 : M ⊗S,δ1

12
S3 →M ⊗S,δ1

1
S2. Of the compatibilities required in (34.4.2.1),

the first follows from tensoring the cocycle condition (34.4.14.1) with σ1
1 and the

others are immediate. �

Lemma 34.4.17. For (M, θ) ∈ DDS/R, the diagram
(34.4.17.1)

C(M ⊗S,δ1
12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2
⊗δ2

1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(M).

obtained by applying C to (34.4.16.1) is a split coequalizer.

Proof. Omitted. �

3To be precise, our θ here is the inverse of ϕ from Definition 34.3.1.
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Lemma 34.4.18. The diagram

(34.4.18.1) S1

δ1
1 // S2

δ2
2 //

δ2
1

// S3

is a split equalizer.

Proof. In Lemma 34.4.16, take (M, θ) = f∗(S). �

This suggests a definition of a potential quasi-inverse functor for f∗.

Definition 34.4.19. Define the functor f∗ : DDS/R → ModR by taking f∗(M, θ)
to be the R-submodule of M for which the diagram
(34.4.19.1)

f∗(M, θ) // M
θ◦(1M⊗δ1

0) //

1M⊗δ1
1

// M ⊗S,δ1
1
S2

is an equalizer.

Using Lemma 34.4.16 and the fact that the restriction functor ModS → ModR is
right adjoint to the base extension functor • ⊗R S : ModR → ModS , we deduce
that f∗ is right adjoint to f∗.

We are ready for the key lemma. In the faithfully flat case this is a triviality (see
Remark 34.4.21), but in the general case some argument is needed.

Lemma 34.4.20. If f is universally injective, then the diagram
(34.4.20.1)

f∗(M, θ)⊗R S
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2
⊗δ2

1

// M ⊗S,δ1
12
S3

obtained by tensoring (34.4.19.1) over R with S is an equalizer.

Proof. By Lemma 34.4.12 and Remark 34.4.13, the map C(1N⊗f) : C(N⊗RS)→
C(N) can be split functorially in N . This gives the upper vertical arrows in the
commutative diagram

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

//

��

C(M) //

��

C(f∗(M, θ))

��
C(M ⊗S,δ1

12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2
⊗δ2

1)

//

��

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

��

C(M)

��
C(M ⊗S,δ1

1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

// C(M) // C(f∗(M, θ))

in which the compositions along the columns are identity morphisms. The second
row is the coequalizer diagram (34.4.17.1); this produces the dashed arrow. From
the top right square, we obtain auxiliary morphisms C(f∗(M, θ)) → C(M) and
C(M)→ C(M⊗S,δ1

1
S2) which imply that the first row is a split coequalizer diagram.
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By Remark 34.4.11, we may tensor with S inside C to obtain the split coequalizer
diagram

C(M ⊗S,δ2
2◦δ1

1
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2
⊗δ2

1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(f∗(M, θ)⊗R S).

By Lemma 34.4.10, we conclude (34.4.20.1) must also be an equalizer. �

Remark 34.4.21. If f is a split injection in ModR, one can simplify the argument
by splitting f directly, without using C. Things are even simpler if f is faithfully
flat; in this case, the conclusion of Lemma 34.4.20 is immediate because tensoring
over R with S preserves all equalizers.

Theorem 34.4.22. The following conditions are equivalent.

(a) The morphism f is a descent morphism for modules.
(b) The morphism f is an effective descent morphism for modules.
(c) The morphism f is universally injective.

Proof. It is clear that (b) implies (a). We now check that (a) implies (c). If f
is not universally injective, we can find M ∈ ModR such that the map 1M ⊗ f :
M → M ⊗R S has nontrivial kernel N . The natural projection M → M/N is not
an isomorphism, but its image in DDS/R is an isomorphism. Hence f∗ is not fully
faithful.

We finally check that (c) implies (b). By Lemma 34.4.20, for (M, θ) ∈ DDS/R,
the natural map f∗f∗(M, θ) → M is an isomorphism of S-modules. On the other
hand, for M0 ∈ ModR, we may tensor (34.4.18.1) with M0 over R to obtain an
equalizer sequence, so M0 → f∗f

∗M is an isomorphism. Consequently, f∗ and f∗

are quasi-inverse functors, proving the claim. �

34.4.23. Descent for properties of modules. Throughout this subsection,
fix a universally injective ring map f : R → S, an object M ∈ ModR, and a ring
map R → A. We now investigate the question of which properties of M or A can
be checked after base extension along f . We start with some results from [Mes02].

Lemma 34.4.24. If M ∈ ModR is flat, then C(M) is an injective R-module.

Proof. Let 0→ N → P → Q→ 0 be an exact sequence in ModR. Since M is flat,

0→ N ⊗RM → P ⊗RM → Q⊗RM → 0

is exact. By Lemma 34.4.10,

0→ C(Q⊗RM)→ C(P ⊗RM)→ C(N ⊗RM)→ 0

is exact. By (34.4.11.1), this last sequence can be rewritten as

0→ HomR(Q,C(M))→ HomR(P,C(M))→ HomR(N,C(M))→ 0.

Hence C(M) is an injective object of ModR. �

Theorem 34.4.25. If M ⊗R S has one of the following properties as an S-module

(a) finitely generated;
(b) finitely presented;
(c) flat;
(d) faithfully flat;
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(e) finite projective;

then so does M as an R-module (and conversely).

Proof. To prove (a), choose a finite set {ni} of generators of M ⊗R S in ModS .
Write each ni as

∑
jmij ⊗ sij with mij ∈M and sij ∈ S. Let F be the finite free

R-module with basis eij and let F →M be the R-module map sending eij to mij .
Then F ⊗R S → M ⊗R S is surjective, so Coker(F → M) ⊗R S is zero and hence
Coker(F →M) is zero. This proves (a).

To see (b) assume M⊗RS is finitely presented. Then M is finitely generated by (a).
Choose a surjection R⊕n →M with kernel K. Then K⊗RS → S⊕r →M⊗RS → 0
is exact. By Algebra, Lemma 10.5.3 the kernel of S⊕r → M ⊗R S is a finite S-
module. Thus we can find finitely many elements k1, . . . , kt ∈ K such that the
images of ki ⊗ 1 in S⊕r generate the kernel of S⊕r →M ⊗R S. Let K ′ ⊂ K be the
submodule generated by k1, . . . , kt. Then M ′ = R⊕r/K ′ is a finitely presented R-
module with a morphism M ′ →M such that M ′⊗RS →M⊗RS is an isomorphism.
Thus M ′ ∼= M as desired.

To prove (c), let 0 → M ′ → M ′′ → M → 0 be a short exact sequence in ModR.
Since • ⊗R S is a right exact functor, M ′′ ⊗R S → M ⊗R S is surjective. So by
Lemma 34.4.10 the map C(M ⊗R S) → C(M ′′ ⊗R S) is injective. If M ⊗R S is
flat, then Lemma 34.4.24 shows C(M ⊗R S) is an injective object of ModS , so the
injection C(M ⊗R S) → C(M ′′ ⊗R S) is split in ModS and hence also in ModR.
Since C(M ⊗R S) → C(M) is a split surjection by Lemma 34.4.12, it follows that
C(M)→ C(M ′′) is a split injection in ModR. That is, the sequence

0→ C(M)→ C(M ′′)→ C(M ′)→ 0

is split exact. For N ∈ ModR, by (34.4.11.1) we see that

0→ C(M ⊗R N)→ C(M ′′ ⊗R N)→ C(M ′ ⊗R N)→ 0

is split exact. By Lemma 34.4.10,

0→M ′ ⊗R N →M ′′ ⊗R N →M ⊗R N → 0

is exact. This implies M is flat over R. Namely, taking M ′ a free module surjecting
onto M we conclude that TorR1 (M,N) = 0 for all modules N and we can use
Algebra, Lemma 10.72.7. This proves (c).

To deduce (d) from (c), note that if N ∈ ModR and M ⊗R N is zero, then M ⊗R
S ⊗S (N ⊗R S) ∼= (M ⊗R N)⊗R S is zero, so N ⊗R S is zero and hence N is zero.

To deduce (e) at this point, it suffices to recall that M is finitely generated and
projective if and only if it is finitely presented and flat. See Algebra, Lemma
10.75.2. �

There is a variant for R-algebras.

Theorem 34.4.26. If A⊗R S has one of the following properties as an S-algebra

(a) of finite type;
(b) of finite presentation;
(c) formally unramified;
(d) unramified;
(e) étale;

then so does A as an R-algebra (and of course conversely).

http://stacks.math.columbia.edu/tag/08XE
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Proof. To prove (a), choose a finite set {xi} of generators of A⊗R S over S. Write
each xi as

∑
j yij ⊗ sij with yij ∈ A and sij ∈ S. Let F be the polynomial R-

algebra on variables eij and let F → M be the R-algebra map sending eij to yij .
Then F ⊗R S → A ⊗R S is surjective, so Coker(F → A) ⊗R S is zero and hence
Coker(F → A) is zero. This proves (a).

To see (b) assume A ⊗R S is a finitely presented S-algebra. Then A is finite
type over R by (a). Choose a surjection R[x1, . . . , xn] → A with kernel I. Then
I ⊗R S → S[x1, . . . , xn] → A ⊗R S → 0 is exact. By Algebra, Lemma 10.6.3 the
kernel of S[x1, . . . , xn] → A ⊗R S is a finitely generated ideal. Thus we can find
finitely many elements y1, . . . , yt ∈ I such that the images of yi⊗ 1 in S[x1, . . . , xn]
generate the kernel of S[x1, . . . , xn] → A ⊗R S. Let I ′ ⊂ I be the ideal generated
by y1, . . . , yt. Then A′ = R[x1, . . . , xn]/I ′ is a finitely presented R-algebra with a
morphism A′ → A such that A′ ⊗R S → A⊗R S is an isomorphism. Thus A′ ∼= A
as desired.

To prove (c), recall that A is formally unramified over R if and only if the module
of relative differentials ΩA/R vanishes, see Algebra, Lemma 10.141.2 or [GD67,
Proposition 17.2.1]. Since Ω(A⊗RS)/S = ΩA/R ⊗R S, the vanishing descends by
Theorem 34.4.22.

To deduce (d) from the previous cases, recall that A is unramified over R if and
only if A is formally unramified and of finite type over R, see Algebra, Lemma
10.144.2.

To prove (e), recall that by Algebra, Lemma 10.138.8 or [GD67, Théorème 17.6.1]
the algebra A is étale over R if and only if A is flat, unramified, and of finite
presentation over R. �

Remark 34.4.27. It would make things easier to have a faithfully flat ring homo-
morphism g : R→ T for which T → S⊗RT has some extra structure. For instance,
if one could ensure that T → S⊗R T is split in Rings, then it would follow that ev-
ery property of a module or algebra which is stable under base extension and which
descends along faithfully flat morphisms also descends along universally injective
morphisms. An obvious guess would be to find g for which T is not only faithfully
flat but also injective in ModR, but even for R = Z no such homomorphism can
exist.

34.5. Fpqc descent of quasi-coherent sheaves

The main application of flat descent for modules is the corresponding descent state-
ment for quasi-coherent sheaves with respect to fpqc-coverings.

Lemma 34.5.1. Let S be an affine scheme. Let U = {fi : Ui → S}i=1,...,n be a
standard fpqc covering of S, see Topologies, Definition 33.8.1. Any descent datum
on quasi-coherent sheaves for U = {Ui → S} is effective. Moreover, the functor
from the category of quasi-coherent OS-modules to the category of descent data with
respect to U is fully faithful.

Proof. This is a restatement of Proposition 34.3.9 in terms of schemes. First, note
that a descent datum ξ for quasi-coherent sheaves with respect to U is exactly the
same as a descent datum ξ′ for quasi-coherent sheaves with respect to the covering
U ′ = {

∐
i=1,...,n Ui → S}. Moreover, effectivity for ξ is the same as effectivity for
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ξ′. Hence we may assume n = 1, i.e., U = {U → S} where U and S are affine. In
this case descent data correspond to descent data on modules with respect to the
ring map

Γ(S,O) −→ Γ(U,O).

Since U → S is surjective and flat, we see that this ring map is faithfully flat. In
other words, Proposition 34.3.9 applies and we win. �

Proposition 34.5.2. Let S be a scheme. Let U = {ϕi : Ui → S} be an fpqc
covering, see Topologies, Definition 33.8.1. Any descent datum on quasi-coherent
sheaves for U = {Ui → S} is effective. Moreover, the functor from the category of
quasi-coherent OS-modules to the category of descent data with respect to U is fully
faithful.

Proof. Let S =
⋃
j∈J Vj be an affine open covering. For j, j′ ∈ J we denote

Vjj′ = Vj∩Vj′ the intersection (which need not be affine). For V ⊂ S open we denote
UV = {V ×S Ui → V }i∈I which is a fpqc-covering (Topologies, Lemma 33.8.7). By
definition of an fpqc covering, we can find for each j ∈ J a finite set Kj , a map
i : Kj → I, affine opens Ui(k),k ⊂ Ui(k), k ∈ Kj such that Vj = {Ui(k),k → Vj}k∈Kj
is a standard fpqc covering of Vj . And of course, Vj is a refinement of UVj . Picture

Vj //

��

UVj //

��

U

��
Vj Vj // S

where the top horizontal arrows are morphisms of families of morphisms with fixed
target (see Sites, Definition 7.8.1).

To prove the proposition you show successively the faithfulness, fullyness, and es-
sential surjectivity of the functor from quasi-coherent sheaves to descent data.

Faithfulness. Let F , G be quasi-coherent sheaves on S and let a, b : F → G be
homomorphisms of OS-modules. Suppose ϕ∗i (a) = ϕ∗(b) for all i. Pick s ∈ S.
Then s = ϕi(u) for some i ∈ I and u ∈ Ui. Since OS,s → OUi,u is flat, hence
faithfully flat (Algebra, Lemma 10.38.16) we see that as = bs : Fs → Gs. Hence
a = b.

Fully faithfulness. Let F , G be quasi-coherent sheaves on S and let ai : ϕ∗iF → ϕ∗iG
be homomorphisms of OUi-modules such that pr∗0ai = pr∗1aj on Ui ×U Uj . We can
pull back these morphisms to get morphisms

ak : F|Ui(k),k
−→ G|Ui(k),k

k ∈ Kj with notation as above. Moreover, Lemma 34.2.2 assures us that these define
a morphism between (canonical) descent data on Vj . Hence, by Lemma 34.5.1, we
get correspondingly unique morphisms aj : F|Vj → G|Vj . To see that aj |Vjj′ =

aj′ |Vjj′ we use that both aj and aj′ agree with the pullback of the morphism (ai)i∈I
of (canonical) descent data to any covering refining both Vj,Vjj′ and Vj′,Vjj′ , and

using the faithfulness already shown. For example the covering Vjj′ = {Vk×SVk′ →
Vjj′}k∈Kj ,k′∈Kj′ will do.

Essential surjectivity. Let ξ = (Fi, ϕii′) be a descent datum for quasi-coherent
sheaves relative to the covering U . Pull back this descent datum to get descent

http://stacks.math.columbia.edu/tag/023T
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data ξj for quasi-coherent sheaves relative to the coverings Vj of Vj . By Lemma
34.5.1 once again there exist quasi-coherent sheaves Fj on Vj whose associated
canonical descent datum is isomorphic to ξj . By fully faithfulness (proved above)
we see there are isomorphisms

φjj′ : Fj |Vjj′ −→ Fj′ |Vjj′
corresponding to the isomorphism of descent data between the pullback of ξj and ξj′

to Vjj′ . To see that these maps φjj′ satisfy the cocycle condition we use faithfulness
(proved above) over the triple intersections Vjj′j′′ . Hence, by Lemma 34.2.4 we see
that the sheaves Fj glue to a quasi-coherent sheaf F as desired. We still have to
verify that the canonical descent datum relative to U associated to F is isomorphic
to the descent datum we started out with. This verification is omitted. �

34.6. Descent of finiteness properties of modules

In this section we prove that one can check quasi-coherent module has a certain
finiteness conditions by checking on the members of a covering.

Lemma 34.6.1. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a finite type OXi-
module. Then F is a finite type OX-module.

Proof. Omitted. For the affine case, see Algebra, Lemma 10.80.2. �

Lemma 34.6.2. Let f : (X,OX)→ (Y,OY ) be a morphism of locally ringed spaces.
Let F be a sheaf of OY -modules. If

(1) f is open as a map of topological spaces,
(2) f is surjective and flat, and
(3) f∗F is of finite type,

then F is of finite type.

Proof. Let y ∈ Y be a point. Choose a point x ∈ X mapping to y. Choose an
open x ∈ U ⊂ X and elements s1, . . . , sn of f∗F(U) which generate f∗F over U .
Since f∗F = f−1F ⊗f−1OY OX we can after shrinking U assume si =

∑
tij ⊗ aij

with tij ∈ f−1F(U) and aij ∈ OX(U). After shrinking U further we may assume
that tij comes from a section sij ∈ F(V ) for some V ⊂ Y open with f(U) ⊂ V .
Let N be the number of sections sij and consider the map

σ = (sij) : O⊕NV → F|V
By our choice of the sections we see that f∗σ|U is surjective. Hence for every u ∈ U
the map

σf(u) ⊗OY,f(u)
OX,u : O⊕NX,u −→ Ff(u) ⊗OY,f(u)

OX,u
is surjective. As f is flat, the local ring map OY,f(u) → OX,u is flat, hence faithfully
flat (Algebra, Lemma 10.38.16). Hence σf(u) is surjective. Since f is open, f(U) is
an open neighbourhood of y and the proof is done. �

Lemma 34.6.3. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is an OXi-module of
finite presentation. Then F is an OX-module of finite presentation.

Proof. Omitted. For the affine case, see Algebra, Lemma 10.80.2. �
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Lemma 34.6.4. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is locally generated
by r sections as an OXi-module. Then F is locally generated by r sections as an
OX-module.

Proof. By Lemma 34.6.1 we see that F is of finite type. Hence Nakayama’s lemma
(Algebra, Lemma 10.19.1) implies that F is generated by r sections in the neigh-
bourhood of a point x ∈ X if and only if dimκ(x) Fx ⊗ κ(x) ≤ r. Choose an i and
a point xi ∈ Xi mapping to x. Then dimκ(x) Fx ⊗ κ(x) = dimκ(xi)(f

∗
i F)xi ⊗ κ(xi)

which is ≤ r as f∗i F is locally generated by r sections. �

Lemma 34.6.5. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a flat OXi-module.
Then F is a flat OX-module.

Proof. Omitted. For the affine case, see Algebra, Lemma 10.80.2. �

Lemma 34.6.6. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a finite locally free
OXi-module. Then F is a finite locally free OX-module.

Proof. This follows from the fact that a quasi-coherent sheaf is finite locally free if
and only if it is of finite presentation and flat, see Algebra, Lemma 10.75.2. Namely,
if each f∗i F is flat and of finite presentation, then so is F by Lemmas 34.6.5 and
34.6.3. �

The definition of a locally projective quasi-coherent sheaf can be found in Proper-
ties, Section 27.19.

Lemma 34.6.7. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗i F is a locally projective
OXi-module. Then F is a locally projective OX-module.

Proof. Omitted. For Zariski coverings this is Properties, Lemma 27.19.2. For the
affine case this is Algebra, Theorem 10.92.5. �

Remark 34.6.8. Being locally free is a property of quasi-coherent modules which
does not descend in the fpqc topology. Namely, suppose that R is a ring and that
M is a projective R-module which is a countable direct sum M =

⊕
Ln of rank 1

locally free modules, but not locally free, see Examples, Lemma 82.26.5. Then M
becomes free on making the faithfully flat base change

R −→
⊕

m≥1

⊕
(i1,...,im)∈Z⊕m

L⊗i11 ⊗R . . .⊗R L⊗imm

But we don’t know what happens for fppf coverings. In other words, we don’t know
the answer to the following question: Suppose A→ B is a faithfully flat ring map
of finite presentation. Let M be an A-module such that M ⊗A B is free. Is M a
locally free A-module? It turns out that if A is Noetherian, then the answer is yes.
This follows from the results of [Bas63]. But in general we don’t know the answer.
If you know the answer, or have a reference, please email stacks.project@gmail.com.

We also add here two results which are related to the results above, but are of a
slightly different nature.

http://stacks.math.columbia.edu/tag/082U
http://stacks.math.columbia.edu/tag/05B1
http://stacks.math.columbia.edu/tag/05B2
http://stacks.math.columbia.edu/tag/05JZ
http://stacks.math.columbia.edu/tag/05VF
mailto:stacks.project@gmail.com
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Lemma 34.6.9. Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume f is a finite morphism. Then F is an OX-module
of finite type if and only if f∗F is an OY -module of finite type.

Proof. As f is finite it is affine. This reduces us to the case where f is the morphism

Spec(B) → Spec(A) given by a finite ring map A → B. Moreover, then F = M̃
is the sheaf of modules associated to the B-module M . Note that M is finite as a
B-module if and only if M is finite as an A-module, see Algebra, Lemma 10.7.2.
Combined with Properties, Lemma 27.16.1 this proves the lemma. �

Lemma 34.6.10. Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume f is finite and of finite presentation. Then F is
an OX-module of finite presentation if and only if f∗F is an OY -module of finite
presentation.

Proof. As f is finite it is affine. This reduces us to the case where f is the
morphism Spec(B) → Spec(A) given by a finite and finitely presented ring map

A → B. Moreover, then F = M̃ is the sheaf of modules associated to the B-
module M . Note that M is finitely presented as a B-module if and only if M is
finitely presented as an A-module, see Algebra, Lemma 10.7.4. Combined with
Properties, Lemma 27.16.2 this proves the lemma. �

34.7. Quasi-coherent sheaves and topologies

Let S be a scheme. Let F be a quasi-coherent OS-module. Consider the functor

(34.7.0.1) (Sch/S)opp −→ Ab, (f : T → S) 7−→ Γ(T, f∗F).

Lemma 34.7.1. Let S be a scheme. Let F be a quasi-coherent OS-module. Let τ ∈
{Zariski, fpqc, fppf, étale, smooth, syntomic}. The functor defined in (34.7.0.1)
satisfies the sheaf condition with respect to any τ -covering {Ti → T}i∈I of any
scheme T over S.

Proof. For τ ∈ {Zariski, fppf, étale, smooth, syntomic} a τ -covering is also a
fpqc-covering, see the results in Topologies, Lemmas 33.4.2, 33.5.2, 33.6.2, 33.7.2,
and 33.8.6. Hence it suffices to prove the theorem for a fpqc covering. Assume that
{fi : Ti → T}i∈I is an fpqc covering where f : T → S is given. Suppose that we have
a family of sections si ∈ Γ(Ti, f

∗
i f
∗F) such that si|Ti×TTj = sj |Ti×TTj . We have to

find the correspond section s ∈ Γ(T, f∗F). We can reinterpret the si as a family
of maps ϕi : f∗i OT = OTi → f∗i f

∗F compatible with the canonical descent data
associated to the quasi-coherent sheaves OT and f∗F on T . Hence by Proposition
34.5.2 we see that we may (uniquely) descend these to a map OT → f∗F which
gives us our section s. �

We may in particular make the following definition.

Definition 34.7.2. Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}. Let S be a
scheme. Let Schτ be a big site containing S. Let F be a quasi-coherent OS-module.

(1) The structure sheaf of the big site (Sch/S)τ is the sheaf of rings T/S 7→
Γ(T,OT ) which is denoted O or OS .

(2) If τ = étale the structure sheaf of the small site Sétale is the sheaf of rings
T/S 7→ Γ(T,OT ) which is denoted O or OS .

http://stacks.math.columbia.edu/tag/05B3
http://stacks.math.columbia.edu/tag/05B4
http://stacks.math.columbia.edu/tag/03DT
http://stacks.math.columbia.edu/tag/03DU
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(3) The sheaf of O-modules associated to F on the big site (Sch/S)τ is the
sheaf of O-modules (f : T → S) 7→ Γ(T, f∗F) which is denoted Fa (and
often simply F).

(4) Let τ = étale (resp. τ = Zariski). The sheaf of O-modules associated to
F on the small site Sétale (resp. SZar) is the sheaf of O-modules (f : T →
S) 7→ Γ(T, f∗F) which is denoted Fa (and often simply F).

Note how we use the same notation Fa in each case. No confusion can really arise
from this as by definition the rule that defines the sheaf Fa is independent of the
site we choose to look at.

Remark 34.7.3. In Topologies, Lemma 33.3.11 we have seen that the small Zariski
site of a scheme S is equivalent to S as a topological space in the sense that the
category of sheaves are naturally equivalent. Now that SZar is also endowed with a
structure sheaf O we see that sheaves of modules on the ringed site (SZar,O) agree
with sheaves of modules on the ringed space (S,OS).

Remark 34.7.4. Let f : T → S be a morphism of schemes. Each of the morphisms
of sites fsites listed in Topologies, Section 33.9 becomes a morphism of ringed
sites. Namely, each of these morphisms of sites fsites : (Sch/T )τ → (Sch/S)τ ′ , or
fsites : (Sch/S)τ → Sτ ′ is given by the continuous functor S′/S 7→ T ×S S′/S.
Hence, given S′/S we let

f ]sites : O(S′/S) −→ fsites,∗O(S′/S) = O(S ×S S′/T )

be the usual map pr]S′ : O(S′) → O(T ×S S′). Similarly, the morphism if :
Sh(Tτ ) → Sh((Sch/S)τ ) for τ ∈ {Zar, étale}, see Topologies, Lemmas 33.3.12 and
33.4.12, becomes a morphism of ringed topoi because i−1

f O = O. Here are some
special cases:

(1) The morphism of big sites fbig : (Sch/X)fppf → (Sch/Y )fppf , becomes a
morphism of ringed sites

(fbig, f
]
big) : ((Sch/X)fppf ,OX) −→ ((Sch/Y )fppf ,OY )

as in Modules on Sites, Definition 18.6.1. Similarly for the big syntomic,
smooth, étale and Zariski sites.

(2) The morphism of small sites fsmall : Xétale → Yétale becomes a morphism
of ringed sites

(fsmall, f
]
small) : (Xétale,OX) −→ (Yétale,OY )

as in Modules on Sites, Definition 18.6.1. Similarly for the small Zariski
site.

Let S be a scheme. It is clear that given an O-module on (say) (Sch/S)Zar the
pullback to (say) (Sch/S)fppf is just the fppf-sheafification. To see what happens
when comparing big and small sites we have the following.

Lemma 34.7.5. Let S be a scheme. Denote

idτ,Zar : (Sch/S)τ → SZar, τ ∈ {Zar, étale, smooth, syntomic, fppf}
idτ,étale : (Sch/S)τ → Sétale, τ ∈ {étale, smooth, syntomic, fppf}

idsmall,étale,Zar : Sétale → SZar,

the morphisms of ringed sites of Remark 34.7.4. Let F be a sheaf of OS-modules
which we view a sheaf of O-modules on SZar. Then

http://stacks.math.columbia.edu/tag/03FG
http://stacks.math.columbia.edu/tag/070R
http://stacks.math.columbia.edu/tag/070S
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(1) (idτ,Zar)
∗F is the τ -sheafification of the Zariski sheaf

(f : T → S) 7−→ Γ(T, f∗F)

on (Sch/S)τ , and
(2) (idsmall,étale,Zar)

∗F is the étale sheafification of the Zariski sheaf

(f : T → S) 7−→ Γ(T, f∗F)

on Sétale.

Let G be a sheaf of O-modules on Sétale. Then

(3) (idτ,étale)
∗G is the τ -sheafification of the étale sheaf

(f : T → S) 7−→ Γ(T, f∗smallG)

where fsmall : Tétale → Sétale is the morphism of ringed small étale sites
of Remark 34.7.4.

Proof. Proof of (1). We first note that the result is true when τ = Zar because
in that case we have the morphism of topoi if : Sh(TZar) → Sh(Sch/S)Zar) such
that idτ,Zar ◦ if = fsmall as morphisms TZar → SZar, see Topologies, Lemmas
33.3.12 and 33.3.16. Since pullback is transitive (see Modules on Sites, Lemma
18.13.3) we see that i∗f (idτ,Zar)

∗F = f∗smallF as desired. Hence, by the remark

preceding this lemma we see that (idτ,Zar)
∗F is the τ -sheafification of the presheaf

T 7→ Γ(T, f∗F).

The proof of (3) is exactly the same as the proof of (1), except that it uses Topolo-
gies, Lemmas 33.4.12 and 33.4.16. We omit the proof of (2). �

Remark 34.7.6. Remark 34.7.4 and Lemma 34.7.5 have the following applications:

(1) Let S be a scheme. The construction F 7→ Fa is the pullback under
the morphism of ringed sites idτ,Zar : ((Sch/S)τ ,O) → (SZar,O) or the
morphism idsmall,étale,Zar : (Sétale,O)→ (SZar,O).

(2) Let f : X → Y be a morphism of schemes. For any of the morphisms
fsites of ringed sites of Remark 34.7.4 we have

(f∗F)a = f∗sitesFa.
This follows from (1) and the fact that pullbacks are compatible with
compositions of morphisms of ringed sites, see Modules on Sites, Lemma
18.13.3.

Lemma 34.7.7. Let S be a scheme. Let F be a quasi-coherent OS-module. Let
τ ∈ {Zariski, fppf, étale, smooth, syntomic}.

(1) The sheaf Fa is a quasi-coherent O-module on (Sch/S)τ , as defined in
Modules on Sites, Definition 18.23.1.

(2) If τ = étale (resp. τ = Zariski), then the sheaf Fa is a quasi-coherent
O-module on Sétale (resp. SZar) as defined in Modules on Sites, Definition
18.23.1.

Proof. Let {Si → S} be a Zariski covering such that we have exact sequences⊕
k∈Ki

OSi −→
⊕

j∈Ji
OSi −→ F −→ 0

for some index sets Ki and Ji. This is possible by the definition of a quasi-coherent
sheaf on a ringed space (See Modules, Definition 17.10.1).

http://stacks.math.columbia.edu/tag/03FH
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Proof of (1). Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}. It is clear that
Fa|(Sch/Si)τ also sits in an exact sequence⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ F

a|(Sch/Si)τ −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 18.23.3.

Proof of (2). Let τ = étale. It is clear that Fa|(Si)étale also sits in an exact sequence⊕
k∈Ki

O|(Si)étale −→
⊕

j∈Ji
O|(Si)étale −→ F

a|(Si)étale −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 18.23.3. The case τ =
Zariski is similar (actually, it is really tautological since the corresponding ringed
topoi agree). �

Lemma 34.7.8. Let S be a scheme. Let

(a) τ ∈ {Zariski, fppf, étale, smooth, syntomic} and C = (Sch/S)τ , or
(b) let τ = étale and C = Sétale, or
(c) let τ = Zariski and C = SZar.

Let F be an abelian sheaf on C. Let U ∈ Ob(C) be affine. Let {Ui → U}i=1,...,n be
a standard affine τ -covering in C. Then

(1) V = {
∐
i=1,...,n Ui → U} is a τ -covering of U ,

(2) U is a refinement of V, and
(3) the induced map on Cech complexes (Cohomology on Sites, Equation (21.9.2.1))

Č•(V,F) −→ Č•(U ,F)

is an isomorphism of complexes.

Proof. This follows because

(
∐

i0=1,...,n
Ui0)×U . . .×U (

∐
ip=1,...,n

Uip) =
∐

i0,...,ip∈{1,...,n}
Ui0 ×U . . .×U Uip

and the fact that F(
∐
a Va) =

∏
a F(Va) since disjoint unions are τ -coverings. �

Lemma 34.7.9. Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let τ ,
C, U , U be as in Lemma 34.7.8. Then there is an isomorphism of complexes

Č•(U ,Fa) ∼= s((A/R)• ⊗RM)

(see Section 34.3) where R = Γ(U,OU ), M = Γ(U,Fa) and R → A is a faithfully
flat ring map. In particular

Ȟp(U ,Fa) = 0

for all p ≥ 1.

Proof. By Lemma 34.7.8 we see that Č•(U ,Fa) is isomorphic to Č•(V,Fa) where
V = {V → U} with V =

∐
i=1,...n Ui affine also. Set A = Γ(V,OV ). Since {V → U}

is a τ -covering we see that R→ A is faithfully flat. On the other hand, by definition
of Fa we have that the degree p term Čp(V,Fa) is

Γ(V ×U . . .×U V,Fa) = Γ(Spec(A⊗R . . .⊗R A),Fa) = A⊗R . . .⊗R A⊗RM
We omit the verification that the maps of the chech complex agree with the maps in
the complex s((A/R)• ⊗RM). The vanishing of cohomology is Lemma 34.3.6. �

Proposition 34.7.10. Let S be a scheme. Let F be a quasi-coherent sheaf on S.
Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}.

http://stacks.math.columbia.edu/tag/03FI
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(1) There is a canonical isomorphism

Hq(S,F) = Hq((Sch/S)τ ,Fa).

(2) There are canonical isomorphisms

Hq(S,F) = Hq(SZar,Fa) = Hq(Sétale,Fa).

Proof. The result for q = 0 is clear from the definition of Fa. Let C = (Sch/S)τ ,
or C = Sétale, or C = SZar.

We are going to apply Cohomology on Sites, Lemma 21.11.9 with F = Fa, B ⊂
Ob(C) the set of affine schemes in C, and Cov ⊂ CovC the set of standard affine
τ -coverings. Assumption (3) of the lemma is satisfied by Lemma 34.7.9. Hence we
conclude that Hp(U,Fa) = 0 for every affine object U of C.

Next, let U ∈ Ob(C) be any separated object. Denote f : U → S the structure
morphism. Let U =

⋃
Ui be an affine open covering. We may also think of this as

a τ -covering U = {Ui → U} of U in C. Note that Ui0 ×U . . .×U Uip = Ui0 ∩ . . .∩Uip
is affine as we assumed U separated. By Cohomology on Sites, Lemma 21.11.7 and
the result above we see that

Hp(U,Fa) = Ȟp(U ,Fa) = Hp(U, f∗F)

the last equality by Cohomology of Schemes, Lemma 29.2.5. In particular, if S is
separated we can take U = S and f = idS and the proposition is proved. We suggest
the reader skip the rest of the proof (or rewrite it to give a clearer exposition).

Choose an injective resolution F → I• on S. Choose an injective resolution Fa →
J • on C. Denote J n|S the restriction of J n to opens of S; this is a sheaf on the
topological space S as open coverings are τ -coverings. We get a complex

0→ F → J 0|S → J 1|S → . . .

which is exact since its sections over any affine open U ⊂ S is exact (by the
vanishing of Hp(U,Fa), p > 0 seen above). Hence by Derived Categories, Lemma
13.18.6 there exists map of complexes J •|S → I• which in particular induces a
map

RΓ(C,Fa) = Γ(S,J •) −→ Γ(S, I•) = RΓ(S,F).

Taking cohomology gives the map Hn(C,Fa)→ Hn(S,F) which we have to prove
is an isomorphism. Let U : S =

⋃
Ui be an affine open covering which we may

think of as a τ -covering also. By the above we get a map of double complexes

Č•(U ,J ) = Č•(U ,J |S) −→ Č•(U , I).

This map induces a map of spectral sequences

τEp,q2 = Ȟp(U , Hq(Fa)) −→ Ep,q2 = Ȟp(U , Hq(F))

The first spectral sequence converges to Hp+q(C,F) and the second to Hp+q(S,F).
On the other hand, we have seen that the induced maps τEp,q2 → Ep,q2 are bijections
(as all the intersections are separated being opens in affines). Whence also the maps
Hn(C,Fa)→ Hn(S,F) are isomorphisms, and we win. �

Proposition 34.7.11. Let S be a scheme. Let τ ∈ {Zariski, fppf, étale, smooth,
syntomic}.

http://stacks.math.columbia.edu/tag/03DX
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(1) The functor F 7→ Fa defines an equivalence of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O)

between the category of quasi-coherent sheaves on S and the category of
quasi-coherent O-modules on the big τ site of S.

(2) Let τ = étale, or τ = Zariski. The functor F 7→ Fa defines an equiva-
lence of categories

QCoh(OS) −→ QCoh(Sτ ,O)

between the category of quasi-coherent sheaves on S and the category of
quasi-coherent O-modules on the small τ site of S.

Proof. We have seen in Lemma 34.7.7 that the functor is well defined. It is straight-
forward to show that the functor is fully faithful (we omit the verification). To finish
the proof we will show that a quasi-coherent O-module on (Sch/S)τ gives rise to
a descent datum for quasi-coherent sheaves relative to a τ -covering of S. Hav-
ing produced this descent datum we will appeal to Proposition 34.5.2 to get the
corresponding quasi-coherent sheaf on S.

Let G be a quasi-coherent O-modules on the big τ site of S. By Modules on Sites,
Definition 18.23.1 there exists a τ -covering {Si → S}i∈I of S such that each of the
restrictions G|(Sch/Si)τ has a global presentation⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ G|(Sch/Si)τ −→ 0

for some index sets Ji and Ki. We claim that this implies that G|(Sch/Si)τ is
Fai for some quasi-coherent sheaf Fi on Si. Namely, this is clear for the direct
sums

⊕
k∈Ki O|(Sch/Si)τ and

⊕
j∈Ji O|(Sch/Si)τ . Hence we see that G|(Sch/Si)τ is a

cokernel of a map ϕ : Kai → Lai for some quasi-coherent sheaves Ki, Li on Si. By
the fully faithfulness of ( )a we see that ϕ = φa for some map of quasi-coherent
sheaves φ : Ki → Li on Si. Then it is clear that G|(Sch/Si)τ

∼= Coker(φ)a as claimed.

Since G lives on all of the category (Sch/Si)τ we see that

(pr∗0Fi)a ∼= G|(Sch/(Si×SSj))τ
∼= (pr∗1F)a

as O-modules on (Sch/(Si ×S Sj))τ . Hence, using fully faithfulness again we get
canonical isomorphisms

φij : pr∗0Fi −→ pr∗1Fj
of quasi-coherent modules over Si×S Sj . We omit the verification that these satisfy
the cocycle condition. Since they do we see by effectivity of descent for quasi-
coherent sheaves and the covering {Si → S} (Proposition 34.5.2) that there exists
a quasi-coherent sheaf F on S with F|Si ∼= Fi compatible with the given descent
data. In other words we are given O-module isomorphisms

φi : Fa|(Sch/Si)τ −→ G|(Sch/Si)τ

which agree over Si×S Sj . Hence, since HomO(Fa,G) is a sheaf (Modules on Sites,
Lemma 18.27.1), we conclude that there is a morphism of O-modules Fa → G
recovering the isomorphisms φi above. Hence this is an isomorphism and we win.

The case of the sites Sétale and SZar is proved in the exact same manner. �
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Lemma 34.7.12. Let S be a scheme. Let τ ∈ {Zariski, fppf, étale, smooth,
syntomic}. Let P be one of the properties of modules4 defined in Modules on Sites,
Definitions 18.17.1, 18.23.1, and 18.28.1. The equivalences of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O) and QCoh(OS) −→ QCoh(Sτ ,O)

defined by the rule F 7→ Fa seen in Proposition 34.7.11 have the property

F has P ⇔ Fa has P as an O-module

except (possibly) when P is “locally free” or “coherent”. If P =“coherent” the
equivalence holds for QCoh(OS)→ QCoh(Sτ ,O) when S is locally Noetherian and
τ is Zariski or étale.

Proof. This is immediate for the global properties, i.e., those defined in Modules
on Sites, Definition 18.17.1. For the local properties we can use Modules on Sites,
Lemma 18.23.3 to translate “Fa has P” into a property on the members of a
covering of X. Hence the result follows from Lemmas 34.6.1, 34.6.3, 34.6.4, 34.6.5,
and 34.6.6. Being coherent for a quasi-coherent module is the same as being of
finite type over a locally Noetherian scheme (see Cohomology of Schemes, Lemma
29.9.1) hence this reduces to the case of finite type modules (details omitted). �

Lemma 34.7.13. Let S be a scheme. Let τ ∈ {Zariski, fppf, étale, smooth,
syntomic}. The functors

QCoh(OS) −→ Mod((Sch/S)τ ,O) and QCoh(OS) −→ Mod(Sτ ,O)

defined by the rule F 7→ Fa seen in Proposition 34.7.11 are

(1) fully faithful,
(2) compatible with direct sums,
(3) compatible with colimits,
(4) right exact,
(5) exact as a functor QCoh(OS)→ Mod(Sτ ,O),
(6) not exact as a functor QCoh(OS)→ Mod((Sch/S)τ ,O) in general,
(7) given two quasi-coherent OS-modules F , G we have (F ⊗OS G)a = Fa⊗O
Ga,

(8) given two quasi-coherent OS-modules F , G such that F is of finite pre-
sentation we have (HomOS (F ,G))a = HomO(Fa,Ga), and

(9) given a short exact sequence 0 → Fa1 → E → Fa2 → 0 of O-modules then
E is quasi-coherent5, i.e., E is in the essential image of the functor.

Proof. Part (1) we saw in Proposition 34.7.11.

We have seen in Schemes, Section 25.24 that a colimit of quasi-coherent sheaves
on a scheme is a quasi-coherent sheaf. Moreover, in Remark 34.7.6 we saw that
F 7→ Fa is the pullback functor for a morphism of ringed sites, hence commutes
with all colimits, see Modules on Sites, Lemma 18.14.3. Thus (3) and its special
case (3) hold.

4The list is: free, finite free, generated by global sections, generated by r global sections,
generated by finitely many global sections, having a global presentation, having a global finite
presentation, locally free, finite locally free, locally generated by sections, locally generated by r

sections, finite type, of finite presentation, coherent, or flat.
5Warning: This is misleading. See part (6).
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This also shows that the functor is right exact (i.e., commutes with finite colimits),
hence (4).

The functor QCoh(OS)→ QCoh(Sétale,O), F 7→ Fa is left exact because an étale
morphism is flat, see Morphisms, Lemma 28.37.12. This proves (5).

To see (6), suppose that S = Spec(Z). Then 2 : OS → OS is injective but the
associated map of O-modules on (Sch/S)τ isn’t injective because 2 : F2 → F2 isn’t
injective and Spec(F2) is an object of (Sch/S)τ .

We omit the proofs of (7) and (8).

Let 0→ Fa1 → E → Fa2 → 0 be a short exact sequence of O-modules with F1 and
F2 quasi-coherent on S. Consider the restriction

0→ F1 → E|SZar → F2

to SZar. By Proposition 34.7.10 we see that on any affine U ⊂ S we have
H1(U,Fa1 ) = H1(U,F1) = 0. Hence the sequence above is also exact on the right.
By Schemes, Section 25.24 we conclude that F = E|SZar is quasi-coherent. Thus
we obtain a commutative diagram

Fa1 //

��

Fa //

��

Fa2 //

��

0

0 // Fa1 // E // Fa2 // 0

To finish the proof it suffices to show that the top row is also right exact. To do
this, denote once more U = Spec(A) ⊂ S an affine open of S. We have seen above
that 0 → F1(U) → E(U) → F2(U) → 0 is exact. For any affine scheme V/U ,
V = Spec(B) the map Fa1 (V )→ E(V ) is injective. We have Fa1 (V ) = F1(U)⊗A B
by definition. The injection Fa1 (V )→ E(V ) factors as

F1(U)⊗A B → E(U)⊗A B → E(U)

Considering A-algebras B of the form B = A ⊕ M we see that F1(U) → E(U)
is universally injective (see Algebra, Definition 10.79.1). Since E(U) = F(U) we
conclude that F1 → F remains injective after any base change, or equivalently that
Fa1 → Fa is injective. �

Proposition 34.7.14. Let f : T → S be a morphism of schemes.

(1) The equivalences of categories of Proposition 34.7.11 are compatible with
pullback. More precisely, we have f∗(Ga) = (f∗G)a for any quasi-coherent
sheaf G on S.

(2) The equivalences of categories of Proposition 34.7.11 part (1) are not
compatible with pushforward in general.

(3) If f is quasi-compact and quasi-separated, and τ ∈ {Zariski, étale} then
f∗ and fsmall,∗ preserve quasi-coherent sheaves and the diagram

QCoh(OT )
f∗

//

F7→Fa

��

QCoh(OS)

G7→Ga

��
QCoh(Tτ ,O)

fsmall,∗ // QCoh(Sτ ,O)

is commutative, i.e., fsmall,∗(Fa) = (f∗F)a.

http://stacks.math.columbia.edu/tag/03LC
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Proof. Part (1) follows from the discussion in Remark 34.7.6. Part (2) is just a
warning, and can be explained in the following way: First the statement cannot be
made precise since f∗ does not transform quasi-coherent sheaves into quasi-coherent
sheaves in general. Even if this is the case for f (and any base change of f), then
the compatibility over the big sites would mean that formation of f∗F commutes
with any base change, which does not hold in general. An explicit example is the
quasi-compact open immersion j : X = A2

k \ {0} → A2
k = Y where k is a field. We

have j∗OX = OY but after base change to Spec(k) by the 0 map we see that the
pushforward is zero.

Let us prove (3) in case τ = étale. Note that f , and any base change of f , transforms
quasi-coherent sheaves into quasi-coherent sheaves, see Schemes, Lemma 25.24.1.
The equality fsmall,∗(Fa) = (f∗F)a means that for any étale morphism g : U → S
we have Γ(U, g∗f∗F) = Γ(U ×S T, (g′)∗F) where g′ : U ×S T → T is the projection.
This is true by Cohomology of Schemes, Lemma 29.5.2. �

Lemma 34.7.15. Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. Let F be a quasi-coherent sheaf on T . For either the étale or Zariski
topology, there are canonical isomorphisms Rifsmall,∗(Fa) = (Rif∗F)a.

Proof. We prove this for the étale topology; we omit the proof in the case of the
Zariski topology. By Cohomology of Schemes, Lemma 29.4.4 the sheaves Rif∗F
are quasi-coherent so that the assertion makes sense. The sheaf Rifsmall,∗Fa is the
sheaf associated to the presheaf

U 7−→ Hi(U ×S T,Fa)

where g : U → S is an object of Sétale, see Cohomology on Sites, Lemma 21.8.4.
By our conventions the right hand side is the étale cohomology of the restriction of
Fa to the localization Tétale/U ×S T which equals (U ×S T )étale. By Proposition
34.7.10 this is presheaf the same as the presheaf

U 7−→ Hi(U ×S T, (g′)∗F),

where g′ : U ×S T → T is the projection. If U is affine then this is the same as
H0(U,Rif ′∗(g

′)∗F), see Cohomology of Schemes, Lemma 29.4.5. By Cohomology
of Schemes, Lemma 29.5.2 this is equal to H0(U, g∗Rif∗F) which is the value of
(Rif∗F)a on U . Thus the values of the sheaves of modules Rifsmall,∗(Fa) and
(Rif∗F)a on every affine object of Sétale are canonically isomorphic which implies
they are canonically isomorphic. �

The results in this section say there is virtually no difference between quasi-coherent
sheaves on S and quasi-coherent sheaves on any of the sites associated to S in the
chapter on topologies. Hence one often sees statements on quasi-coherent sheaves
formulated in either language, without restatements in the other.

34.8. Parasitic modules

Parasitic modules are those which are zero when restricted to schemes flat over the
base scheme. Here is the formal definition.

Definition 34.8.1. Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let F be a presheaf of O-modules on (Sch/S)τ .

http://stacks.math.columbia.edu/tag/071N
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(1) F is called parasitic6 if for every flat morphism U → S we have F(U) = 0.
(2) F is called parasitic for the τ -topology if for every τ -covering {Ui → S}i∈I

we have F(Ui) = 0 for all i.

If τ = fppf this means that F|UZar = 0 whenever U → S is flat and locally of
finite presentation; similar for the other cases.

Lemma 34.8.2. Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let G be a presheaf of O-modules on (Sch/S)τ .

(1) If G is parasitic for the τ -topology, then Hp
τ (U,G) = 0 for every U open in

S, resp. étale over S, resp. smooth over S, resp. syntomic over S, resp.
flat and locally of finite presentation over S.

(2) If G is parasitic then Hp
τ (U,G) = 0 for every U flat over S.

Proof. Proof in case τ = fppf ; the other cases are proved in the exact same
way. The assumption means that G(U) = 0 for any U → S flat and locally of
finite presentation. Apply Cohomology on Sites, Lemma 21.11.9 to the subset
B ⊂ Ob((Sch/S)fppf ) consisting of U → S flat and locally of finite presentation
and the collection Cov of all fppf coverings of elements of B. �

Lemma 34.8.3. Let f : T → S be a morphism of schemes. For any parasitic
O-module on (Sch/T )τ the pushforward f∗F and the higher direct images Rif∗F
are parasitic O-modules on (Sch/S)τ .

Proof. Recall that Rif∗F is the sheaf associated to the presheaf

U 7→ Hi((Sch/U ×S T )τ ,F)

see Cohomology on Sites, Lemma 21.8.4. If U → S is flat, then U ×S T → T is flat
as a base change. Hence the displayed group is zero by Lemma 34.8.2. If {Ui → U}
is a τ -covering then Ui×ST → T is also flat. Hence it is clear that the sheafification
of the displayed presheaf is zero on schemes U flat over S. �

Lemma 34.8.4. Let S be a scheme. Let τ ∈ {Zar, étale}. Let G be a sheaf of
O-modules on (Sch/S)fppf such that

(1) G|Sτ is quasi-coherent, and
(2) for every flat, locally finitely presented morphism g : U → S the canonical

map g∗τ,small(G|Sτ )→ G|Uτ is an isomorphism.

Then Hp(U,G) = Hp(U,G|Uτ ) for every U flat and locally of finite presentation
over S.

Proof. Let F be the pullback of G|Sτ to the big fppf site (Sch/S)fppf . Note that
F is quasi-coherent. There is a canonical comparison map ϕ : F → G which by
assumptions (1) and (2) induces an isomorphism F|Uτ → G|Uτ for all g : U → S
flat and locally of finite presentation. Hence in the short exact sequences

0→ Ker(ϕ)→ F → Im(ϕ)→ 0

and
0→ Im(ϕ)→ G → Coker(ϕ)→ 0

the sheaves Ker(ϕ) and Coker(ϕ) are parasitic for the fppf topology. By Lemma
34.8.2 we conclude that Hp(U,F) → Hp(U,G) is an isomorphism for g : U → S

6This may be nonstandard notation.
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flat and locally of finite presentation. Since the result holds for F by Proposition
34.7.10 we win. �

34.9. Fpqc coverings are universal effective epimorphisms

We apply the material above to prove an interesting result, namely Lemma 34.9.3.
By Sites, Section 7.13 this lemma implies that the representable presheaves on any
of the sites (Sch/S)τ are sheaves for τ ∈ {Zariski, fppf, étale, smooth, syntomic}.
First we prove a helper lemma.

Lemma 34.9.1. For a scheme X denote |X| the underlying set. Let f : X → S
be a morphism of schemes. Then

|X ×S X| → |X| ×|S| |X|
is surjective.

Proof. Follows immediately from the description of points on the fibre product in
Schemes, Lemma 25.17.5. �

Lemma 34.9.2. Let {fi : Ti → T}i∈I be a fpqc covering. Suppose that for each i we
have an open subset Wi ⊂ Ti such that for all i, j ∈ I we have pr−1

0 (Wi) = pr−1
1 (Wj)

as open subsets of Ti ×T Tj. Then there exists a unique open subset W ⊂ T such

that Wi = f−1
i (W ) for each i.

Proof. Apply Lemma 34.9.1 to the map
∐
i∈I Ti → T . It implies there exists a

subset W ⊂ T such that Wi = f−1
i (W ) for each i, namely W =

⋃
fi(Wi). To see

that W is open we may work Zariski locally on T . Hence we may assume that T
is affine. Using the definition of a fpqc covering, this reduces us to the case where
{fi : Ti → T} is a standard fpqc covering. In this case we may apply Morphisms,
Lemma 28.26.10 to the morphism

∐
Ti → T to conclude that W is open. �

Lemma 34.9.3. Let {Ti → T} be an fpqc covering, see Topologies, Definition
33.8.1. Then {Ti → T} is a universal effective epimorphism in the category of
schemes, see Sites, Definition 7.13.1. In other words, every representable functor
on the category of schemes satisfies the sheaf condition for the fpqc topology, see
Topologies, Definition 33.8.12.

Proof. Let S be a scheme. We have to show the following: Given morphisms
ϕi : Ti → S such that ϕi|Ti×TTj = ϕj |Ti×TTj there exists a unique morphism
T → S which restricts to ϕi on each Ti. In other words, we have to show that the
functor hS = MorSch(−, S) satisfies the sheaf property for the fpqc topology.

Thus Topologies, Lemma 33.8.13 reduces us to the case of a Zariski covering and
a covering {Spec(A)→ Spec(R)} with R→ A faithfully flat. The case of a Zariski
covering follows from Schemes, Lemma 25.14.1.

Suppose that R → A is a faithfully flat ring map. Denote π : Spec(A) → Spec(R)
the corresponding morphism of schemes. It is surjective and flat. Let f : Spec(A)→
S be a morphism such that f ◦pr1 = f ◦pr2 as maps Spec(A⊗RA)→ S. By Lemma
34.9.1 we see that as a map on the underlying sets f is of the form f = g ◦ π for
some (set theoretic) map g : Spec(R) → S. By Morphisms, Lemma 28.26.10 and
the fact that f is continuous we see that g is continuous.

Pick x ∈ Spec(R). Choose U ⊂ S affine open containing g(x). Say U = Spec(B).
By the above we may choose an r ∈ R such that x ∈ D(r) ⊂ g−1(U). The
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restriction of f to π−1(D(r)) into U corresponds to a ring map B → Ar. The two
induced ring maps B → Ar ⊗Rr Ar = (A ⊗R A)r are equal by assumption on f .
Note that Rr → Ar is faithfully flat. By Lemma 34.3.6 the equalizer of the two
arrows Ar → Ar⊗Rr Ar is Rr. We conclude that B → Ar factors uniquely through
a map B → Rr. This map in turn gives a morphism of schemes D(r) → U → S,
see Schemes, Lemma 25.6.4.

What have we proved so far? We have shown that for any prime p ⊂ R, there
exists a standard affine open D(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) :

π−1(D(r))→ S factors uniquely though some morphism of schemes D(r)→ S. We
omit the verification that these morphisms glue to the desired morphism Spec(R)→
S. �

34.10. Descent of finiteness properties of morphisms

Another application of flat descent for modules is the following amusing and use-
ful result. There is an algebraic version and a scheme theoretic version. (The
“Noetherian” reader should consult Lemma 34.10.2 instead of the next lemma.)

Lemma 34.10.1. Let R → A → B be ring maps. Assume R → B is of finite
presentation and A → B faithfully flat and of finite presentation. Then R → A is
of finite presentation.

Proof. Consider the algebra C = B ⊗A B together with the pair of maps p, q :
B → C given by p(b) = b ⊗ 1 and q(b) = 1 ⊗ b. Of course the two compositions
A→ B → C are the same. Note that as p : B → C is flat and of finite presentation
(base change of A → B), the ring map R → C is of finite presentation (as the
composite of R→ B → C).

We are going to use the criterion Algebra, Lemma 10.123.2 to show that R→ A is
of finite presentation. Let S be any R-algebra, and suppose that S = colimλ∈Λ Sλ
is written as a directed colimit of R-algebras. Let A → S be an R-algebra homo-
morphism. We have to show that A → S factors through one of the Sλ. Consider
the rings B′ = S ⊗A B and C ′ = S ⊗A C = B′ ⊗S B′. As B is faithfully flat of
finite presentation over A, also B′ is faithfully flat of finite presentation over S. By
Algebra, Lemma 10.156.1 part (2) applied to the pair (S → B′, B′) and the system
(Sλ) there exists a λ0 ∈ Λ and a flat, finitely presented Sλ0

-algebra Bλ0
such that

B′ = S ⊗Sλ0
Bλ0

. For λ ≥ λ0 set Bλ = Sλ ⊗Sλ0
Bλ0

and Cλ = Bλ ⊗Sλ Bλ.

We interrupt the flow of the argument to show that Sλ → Bλ is faithfully flat for λ
large enough. (This should really be a separate lemma somewhere else, maybe in the
chapter on limits.) Since Spec(Bλ0) → Spec(Sλ0) is flat and of finite presentation
it is open (see Morphisms, Lemma 28.26.9). Let I ⊂ Sλ0 be an ideal such that
V (I) ⊂ Spec(Sλ0

) is the complement of the image. Note that formation of the
image commutes with base change. Hence, since Spec(B′)→ Spec(S) is surjective,
and B′ = Bλ0

⊗Sλ0
S we see that IS = S. Thus for some λ ≥ λ0 we have ISλ = Sλ.

For this and all greater λ the morphism Spec(Bλ)→ Spec(Sλ) is surjective.

By analogy with the notation in the first paragraph of the proof denote pλ, qλ :
Bλ → Cλ the two canonical maps. ThenB′ = colimλ≥λ0

Bλ and C ′ = colimλ≥λ0
Cλ.

Since B and C are finitely presented over R there exist (by Algebra, Lemma 10.123.2
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applied several times) a λ ≥ λ0 and an R-algebra maps B → Bλ, C → Cλ such
that the diagram

C // Cλ

B //

p

OO

q

OO

Bλ

pλ

OO
qλ

OO

is commutative. OK, and this means that A → B → Bλ maps into the equalizer
of pλ and qλ. By By Lemma 34.3.6 we see that Sλ is the equalizer of pλ and qλ.
Thus we get the desired ring map A→ Sλ and we win. �

Here is an easier version of this dealing with the property of being of finite type.

Lemma 34.10.2. Let R→ A→ B be ring maps. Assume R→ B is of finite type
and A→ B faithfully flat and of finite presentation. Then R→ A is of finite type.

Proof. By Algebra, Lemma 10.156.2 there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation
and B = A⊗A0

B0. Since R→ B is of finite type by assumption, we may add some
elements to A0 and assume that the map B0 → B is surjective! In this case, since
A0 → B0 is faithfully flat, we see that as

(A0 → A)⊗A0 B0
∼= (B0 → B)

is surjective, also A0 → A is surjective. Hence we win. �

Lemma 34.10.3. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that f is surjective,
flat and locally of finite presentation and assume that p is locally of finite presen-
tation (resp. locally of finite type). Then q is locally of finite presentation (resp.
locally of finite type).

Proof. The problem is local on S and Y . Hence we may assume that S and Y
are affine. Since f is flat and locally of finite presentation, we see that f is open
(Morphisms, Lemma 28.26.9). Hence, since Y is quasi-compact, there exist finitely
many affine opens Xi ⊂ X such that Y =

⋃
f(Xi). Clearly we may replace X

by
∐
Xi, and hence we may assume X is affine as well. In this case the lemma is

equivalent to Lemma 34.10.1 (resp. Lemma 34.10.2) above. �

We use this to improve some of the results on morphisms obtained earlier.
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Lemma 34.10.4. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).

Proof. Combine Morphisms, Lemmas 28.32.16, 28.35.19, and 28.37.19 with Lemma
34.10.3 above. �

Actually we can strengthen this result as follows.

Lemma 34.10.5. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. Assume (1) and that p is smooth. By Lemma 34.10.3 we see that q is locally
of finite presentation. By Morphisms, Lemma 28.26.11 we see that q is flat. Hence
now it suffices to show that the fibres of q are smooth, see Morphisms, Lemma
28.35.3. Apply Varieties, Lemma 32.15.8 to the flat surjective morphisms Xs → Ys
for s ∈ S to conclude. We omit the proof of the étale case. �

Remark 34.10.6. With the assumptions (1) and p smooth in Lemma 34.10.5
it is not automatically the case that X → Y is smooth. A counter example is
S = Spec(k), X = Spec(k[s]), Y = Spec(k[t]) and f given by t 7→ s2. But see also
Lemma 34.10.7 for some information on the structure of f .

Lemma 34.10.7. Let

X
f

//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.

Then both q and f are syntomic.

Proof. By Lemma 34.10.3 we see that q is of finite presentation. By Morphisms,
Lemma 28.26.11 we see that q is flat. By Morphisms, Lemma 28.32.10 it now suffices
to show that the local rings of the fibres of Y → S and the fibres of X → Y are
local complete intersection rings. To do this we may take the fibre of X → Y → S
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at a point s ∈ S, i.e., we may assume S is the spectrum of a field. Pick a point
x ∈ X with image y ∈ Y and consider the ring map

OY,y −→ OX,x

This is a flat local homomorphism of local Noetherian rings. The local ring OX,x
is a complete intersection. Thus may use Avramov’s result, see Divided Power
Algebra, Lemma 23.8.9, to conclude that both OY,y and OX,x/myOX,x are complete
intersection rings. �

The following type of lemma is occasionally useful.

Lemma 34.10.8. Let X → Y → Z be morphism of schemes. Let P be one of the
following properties of morphisms of schemes: flat, locally finite type, locally finite
presentation. Assume that X → Z has P and that {X → Y } can be refined by an
fppf covering of Y . Then Y → Z is P .

Proof. Let Spec(C) ⊂ Z be an affine open and let Spec(B) ⊂ Y be an affine open
which maps into Spec(C). The assumption on X → Y implies we can find a stan-
dard affine fppf covering {Spec(Bj)→ Spec(B)} and lifts xj : Spec(Bj)→ X. Since
Spec(Bj) is quasi-compact we can find finitely many affine opens Spec(Ai) ⊂ X
lying over Spec(B) such that the image of each xj is contained in the union⋃

Spec(Ai). Hence after replacing each Spec(Bj) by a standard affine Zariski cov-
erings of itself we may assume we have a standard affine fppf covering {Spec(Bi)→
Spec(B)} such that each Spec(Bi)→ Y factors through an affine open Spec(Ai) ⊂
X lying over Spec(B). In other words, we have ring maps C → B → Ai → Bi for
each i. Note that we can also consider

C → B → A =
∏

Ai → B′ =
∏

Bi

and that the ring map B →
∏
Bi is faithfully flat and of finite presentation.

The case P = flat. In this case we know that C → A is flat and we have to
prove that C → B is flat. Suppose that N → N ′ → N ′′ is an exact sequence of
C-modules. We want to show that N ⊗C B → N ′ ⊗C B → N ′′ ⊗C B is exact. Let
H be its cohomology and let H ′ be the cohomology of N ⊗C B′ → N ′ ⊗C B′ →
N ′′ ⊗C B′. As B → B′ is flat we know that H ′ = H ⊗B B′. On the other hand
N ⊗C A → N ′ ⊗C A → N ′′ ⊗C A is exact hence has zero cohomology. Hence the
map H → H ′ is zero (as it factors through the zero module). Thus H ′ = 0. As
B → B′ is faithfully flat we conclude that H = 0 as desired.

The case P = locally finite type. In this case we know that C → A is of finite
type and we have to prove that C → B is of finite type. Because B → B′ is of
finite presentation (hence of finite type) we see that A → B′ is of finite type, see
Algebra, Lemma 10.6.2. Therefore C → B′ is of finite type and we conclude by
Lemma 34.10.2.

The case P = locally finite presentation. In this case we know that C → A is
of finite presentation and we have to prove that C → B is of finite presentation.
Because B → B′ is of finite presentation and B → A of finite type we see that
A→ B′ is of finite presentation, see Algebra, Lemma 10.6.2. Therefore C → B′ is
of finite presentation and we conclude by Lemma 34.10.1. �
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34.11. Local properties of schemes

It often happens one can prove the members of a covering of a scheme have a certain
property. In many cases this implies the scheme has the property too. For example,
if S is a scheme, and f : S′ → S is a surjective flat morphism such that S′ is a
reduced scheme, then S is reduced. You can prove this by looking at local rings
and using Algebra, Lemma 10.152.2. We say that the property of being reduced
descends through flat surjective morphisms. Some results of this type are collected
in Algebra, Section 10.152.

On the other hand, there are examples of surjective flat morphisms f : S′ → S
with S reduced and S′ not, for example the morphism Spec(k[x]/(x2))→ Spec(k).
Hence the property of being reduced does not ascend along flat morphisms. Having
infinite residue fields is a property which does ascend along flat morphisms (but
does not descend along surjective flat morphisms of course). Some results of this
type are collected in Algebra, Section 10.151.

Finally, we say that a property is local for the flat topology if it ascends along
flat morphisms and descends along flat surjective morphisms. A somewhat silly
example is the property of having residue fields of a given characteristic. To be
more precise, and to tie this in with the various topologies on schemes, we make
the following formal definition.

Definition 34.11.1. Let P be a property of schemes. Let τ ∈ {fpqc, fppf,
syntomic, smooth, étale, Zariski}. We say P is local in the τ -topology if for any
τ -covering {Si → S}i∈I (see Topologies, Section 33.2) we have

S has P ⇔ each Si has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for S if and only if it holds for any scheme S′ isomorphic to S. In fact,
if τ = fpqc, fppf, syntomic, smooth, étale, or Zariski, then if S has P and S′ → S
is flat, flat and locally of finite presentation, syntomic, smooth, étale, or an open
immersion, then S′ has P. This is true because we can always extend {S′ → S} to
a τ -covering.

We have the following implications: P is local in the fpqc topology ⇒ P is local in
the fppf topology⇒ P is local in the syntomic topology⇒ P is local in the smooth
topology ⇒ P is local in the étale topology ⇒ P is local in the Zariski topology.
This follows from Topologies, Lemmas 33.4.2, 33.5.2, 33.6.2, 33.7.2, and 33.8.6.

Lemma 34.11.2. Let P be a property of schemes. Let τ ∈ {fpqc, fppf, étale,
smooth, syntomic}. Assume that

(1) the property is local in the Zariski topology,
(2) for any morphism of affine schemes S′ → S which is flat, flat of finite

presentation, étale, smooth or syntomic depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic, property P holds for S′ if property P
holds for S, and

(3) for any surjective morphism of affine schemes S′ → S which is flat, flat of
finite presentation, étale, smooth or syntomic depending on whether τ is
fpqc, fppf, étale, smooth, or syntomic, property P holds for S if property
P holds for S′.

Then P is τ local on the base.
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Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 33.8.1 33.7.1 33.4.1 33.5.1, or 33.6.1 and Topologies, Lemma
33.8.8, 33.7.4, 33.4.4, 33.5.4, or 33.6.4. Details omitted. �

Remark 34.11.3. In Lemma 34.11.2 above if τ = smooth then in condition (3)
we may assume that the morphism is a (surjective) standard smooth morphism.
Similarly, when τ = syntomic or τ = étale.

34.12. Properties of schemes local in the fppf topology

In this section we find some properties of schemes which are local on the base in
the fppf topology.

Lemma 34.12.1. The property P(S) =“S is locally Noetherian” is local in the fppf
topology.

Proof. We will use Lemma 34.11.2. First we note that “being locally Noetherian”
is local in the Zariski topology. This is clear from the definition, see Properties,
Definition 27.5.1. Next, we show that if S′ → S is a flat, finitely presented mor-
phism of affines and S is locally Noetherian, then S′ is locally Noetherian. This is
Morphisms, Lemma 28.16.6. Finally, we have to show that if S′ → S is a surjective
flat, finitely presented morphism of affines and S′ is locally Noetherian, then S is
locally Noetherian. This follows from Algebra, Lemma 10.152.1. Thus (1), (2) and
(3) of Lemma 34.11.2 hold and we win. �

Lemma 34.12.2. The property P(S) =“S is Jacobson” is local in the fppf topology.

Proof. We will use Lemma 34.11.2. First we note that “being Jacobson” is local
in the Zariski topology. This is Properties, Lemma 27.6.3. Next, we show that if
S′ → S is a flat, finitely presented morphism of affines and S is Jacobson, then S′

is Jacobson. This is Morphisms, Lemma 28.17.9. Finally, we have to show that
if f : S′ → S is a surjective flat, finitely presented morphism of affines and S′ is
Jacobson, then S is Jacobson. Say S = Spec(A) and S′ = Spec(B) and S′ → S
given by A → B. Then A → B is finitely presented and faithfully flat. Moreover,
the ring B is Jacobson, see Properties, Lemma 27.6.3.

By Algebra, Lemma 10.156.6 there exists a diagram

B // B′

A

>>__

with A→ B′ finitely presented, faithfully flat and quasi-finite. In particular, B →
B′ is finite type, and we see from Algebra, Proposition 10.34.18 that B′ is Jacobson.
Hence we may assume that A → B is quasi-finite as well as faithfully flat and of
finite presentation.

Assume A is not Jacobson to get a contradiction. According to Algebra, Lemma
10.34.5 there exists a nonmaximal prime p ⊂ A and an element f ∈ A, f 6∈ p such
that V (p) ∩D(f) = {p}.
This leads to a contradiction as follows. First let p ⊂ m be a maximal ideal of A.
Pick a prime m′ ⊂ B lying over m (exists because A → B is faithfully flat, see
Algebra, Lemma 10.38.15). As A→ B is flat, by going down see Algebra, Lemma
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10.38.17, we can find a prime q ⊂ m′ lying over p. In particular we see that q is not
maximal. Hence according to Algebra, Lemma 10.34.5 again the set V (q)∩D(f) is
infinite (here we finally use that B is Jacobson). All points of V (q)∩D(f) map to
V (p)∩D(f) = {p}. Hence the fibre over p is infinite. This contradicts the fact that
A→ B is quasi-finite (see Algebra, Lemma 10.118.4 or more explicitly Morphisms,
Lemma 28.21.10). Thus the lemma is proved. �

34.13. Properties of schemes local in the syntomic topology

In this section we find some properties of schemes which are local on the base in
the syntomic topology.

Lemma 34.13.1. The property P(S) =“S is locally Noetherian and (Sk)” is local
in the syntomic topology.

Proof. We will check (1), (2) and (3) of Lemma 34.11.2. As a syntomic morphism
is flat of finite presentation (Morphisms, Lemmas 28.32.7 and 28.32.6) we have
already checked this for “being locally Noetherian” in the proof of Lemma 34.12.1.
We will use this without further mention in the proof. First we note that P is local in
the Zariski topology. This is clear from the definition, see Cohomology of Schemes,
Definition 29.11.1. Next, we show that if S′ → S is a syntomic morphism of affines
and S has P, then S′ has P. This is Algebra, Lemma 10.151.4 (use Morphisms,
Lemma 28.32.2 and Algebra, Definition 10.131.1 and Lemma 10.130.3). Finally, we
show that if S′ → S is a surjective syntomic morphism of affines and S′ has P,
then S has P. This is Algebra, Lemma 10.152.5. Thus (1), (2) and (3) of Lemma
34.11.2 hold and we win. �

Lemma 34.13.2. The property P(S) =“S is Cohen-Macaulay” is local in the
syntomic topology.

Proof. This is clear from Lemma 34.13.1 above since a scheme is Cohen-Macaulay
if and only if it is locally Noetherian and (Sk) for all k ≥ 0, see Properties, Lemma
27.12.2. �

34.14. Properties of schemes local in the smooth topology

In this section we find some properties of schemes which are local on the base in
the smooth topology.

Lemma 34.14.1. The property P(S) =“S is reduced” is local in the smooth topol-
ogy.

Proof. We will use Lemma 34.11.2. First we note that “being reduced” is local
in the Zariski topology. This is clear from the definition, see Schemes, Definition
25.12.1. Next, we show that if S′ → S is a smooth morphism of affines and S is
reduced, then S′ is reduced. This is Algebra, Lemma 10.151.6. Finally, we show
that if S′ → S is a surjective smooth morphism of affines and S′ is reduced, then
S is reduced. This is Algebra, Lemma 10.152.2. Thus (1), (2) and (3) of Lemma
34.11.2 hold and we win. �

Lemma 34.14.2. The property P(S) =“S is normal” is local in the smooth topol-
ogy.
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Proof. We will use Lemma 34.11.2. First we show “being normal” is local in the
Zariski topology. This is clear from the definition, see Properties, Definition 27.7.1.
Next, we show that if S′ → S is a smooth morphism of affines and S is normal, then
S′ is normal. This is Algebra, Lemma 10.151.7. Finally, we show that if S′ → S is
a surjective smooth morphism of affines and S′ is normal, then S is normal. This
is Algebra, Lemma 10.152.3. Thus (1), (2) and (3) of Lemma 34.11.2 hold and we
win. �

Lemma 34.14.3. The property P(S) =“S is locally Noetherian and (Rk)” is local
in the smooth topology.

Proof. We will check (1), (2) and (3) of Lemma 34.11.2. As a smooth morphism
is flat of finite presentation (Morphisms, Lemmas 28.35.9 and 28.35.8) we have
already checked this for “being locally Noetherian” in the proof of Lemma 34.12.1.
We will use this without further mention in the proof. First we note that P is local
in the Zariski topology. This is clear from the definition, see Properties, Definition
27.12.1. Next, we show that if S′ → S is a smooth morphism of affines and S
has P, then S′ has P. This is Algebra, Lemmas 10.151.5 (use Morphisms, Lemma
28.35.2, Algebra, Lemmas 10.132.4 and 10.135.3). Finally, we show that if S′ → S
is a surjective smooth morphism of affines and S′ has P, then S has P. This is
Algebra, Lemma 10.152.5. Thus (1), (2) and (3) of Lemma 34.11.2 hold and we
win. �

Lemma 34.14.4. The property P(S) =“S is regular” is local in the smooth topol-
ogy.

Proof. This is clear from Lemma 34.14.3 above since a locally Noetherian scheme
is regular if and only if it is locally Noetherian and (Rk) for all k ≥ 0. �

Lemma 34.14.5. The property P(S) =“S is Nagata” is local in the smooth topol-
ogy.

Proof. We will check (1), (2) and (3) of Lemma 34.11.2. First we note that being
Nagata is local in the Zariski topology. This is Properties, Lemma 27.13.6. Next,
we show that if S′ → S is a smooth morphism of affines and S is Nagata, then S′

is Nagata. This is Morphisms, Lemma 28.19.1. Finally, we show that if S′ → S is
a surjective smooth morphism of affines and S′ is Nagata, then S is Nagata. This
is Algebra, Lemma 10.152.7. Thus (1), (2) and (3) of Lemma 34.11.2 hold and we
win. �

34.15. Variants on descending properties

Sometimes one can descend properties, which are not local. We put results of this
kind in this section.

Lemma 34.15.1. If f : X → Y is a flat and surjective morphism of schemes and
X is reduced, then Y is reduced.

Proof. The result follows by looking at local rings (Schemes, Definition 25.12.1)
and Algebra, Lemma 10.152.2. �

Lemma 34.15.2. Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is regular, then Y is regular.
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Proof. This lemma reduces to the following algebra statement: If A → B is a
faithfully flat, finitely presented ring homomorphism with B Noetherian and reg-
ular, then A is Noetherian and regular. We see that A is Noetherian by Algebra,
Lemma 10.152.1 and regular by Algebra, Lemma 10.106.9. �

34.16. Germs of schemes

Definition 34.16.1. Germs of schemes.

(1) A pair (X,x) consisting of a scheme X and a point x ∈ X is called the
germ of X at x.

(2) A morphism of germs f : (X,x) → (S, s) is an equivalence class of mor-
phisms of schemes f : U → S with f(x) = s where U ⊂ X is an open
neighbourhood of x. Two such f , f ′ are said to be equivalent if and only
if f and f ′ agree in some open neighbourhood of x.

(3) We define the composition of morphisms of germs by composing represen-
tatives (this is well defined).

Before we continue we need one more definition.

Definition 34.16.2. Let f : (X,x) → (S, s) be a morphism of germs. We say f
is étale (resp. smooth) if there exists a representative f : U → S of f which is an
étale morphism (resp. a smooth morphism) of schemes.

34.17. Local properties of germs

Definition 34.17.1. Let P be a property of germs of schemes. We say that P is
étale local (resp. smooth local) if for any étale (resp. smooth) morphism of germs
(U ′, u′)→ (U, u) we have P(U, u)⇔ P(U ′, u′).

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of
the dimensions of open neighbourhoods of x in X, and any small enough open
neighbourhood has this dimension. Hence this is an invariant of the isomorphism
class of the germ. We denote this simply dimx(X). The following lemma tells us
that the assertion dimx(X) = d is an étale local property of germs.

Lemma 34.17.2. Let f : U → V be an étale morphism of schemes. Let u ∈ U
and v = f(u). Then dimu(U) = dimv(V ).

Proof. In the statement dimu(U) is the dimension of U at u as defined in Topology,
Definition 5.9.1 as the minimum of the Krull dimensions of open neighbourhoods
of u in U . Similarly for dimv(V ).

Let us show that dimv(V ) ≥ dimu(U). Let V ′ be an open neighbourhood of
v in V . Then there exists an open neighbourhood U ′ of u in U contained in
f−1(V ′) such that dimu(U) = dim(U ′). Suppose that Z0 ⊂ Z1 ⊂ . . . ⊂ Zn is
a chain of irreducible closed subschemes of U ′. If ξi ∈ Zi is the generic point
then we have specializations ξn  ξn−1  . . .  ξ0. This gives specializations
f(ξn) f(ξn−1) . . . f(ξ0) in V ′. Note that f(ξj) 6= f(ξi) if i 6= j as the fibres
of f are discrete (see Morphisms, Lemma 28.37.7). Hence we see that dim(V ′) ≥ n.
The inequality dimv(V ) ≥ dimu(U) follows formally.

Let us show that dimu(U) ≥ dimv(V ). Let U ′ be an open neighbourhood of u in U .
Note that V ′ = f(U ′) is an open neighbourhood of v by Morphisms, Lemma 28.26.9.
Hence dim(V ′) ≥ dimv(V ). Pick a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of irreducible closed
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subschemes of V ′. Let ξi ∈ Zi be the generic point, so we have specializations
ξn  ξn−1  . . .  ξ0. Since ξ0 ∈ f(U ′) we can find a point η0 ∈ U ′ with
f(η0) = ξ0. Consider the map of local rings

OV ′,ξ0 −→ OU ′,η0

which is a flat local ring map by Morphisms, Lemma 28.37.12. Note that the points
ξi correspond to primes of the ring on the left by Schemes, Lemma 25.13.2. Hence
by going down (see Algebra, Section 10.40) for the displayed ring map we can find
a sequence of specializations ηn  ηn−1  . . . η0 in U ′ mapping to the sequence
ξn  ξn−1  . . . ξ0 under f . This implies that dimu(U) ≥ dimv(V ). �

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x is an
invariant of the germ. The following lemma says that the property dim(OX,x) = d
is an étale local property of germs.

Lemma 34.17.3. Let f : U → V be an étale morphism of schemes. Let u ∈ U
and v = f(u). Then dim(OU,u) = dim(OV,v).

Proof. The algebraic statement we are asked to prove is the following: If A→ B is
an étale ring map and q is a prime of B lying over p ⊂ A, then dim(Ap) = dim(Bq).
This is More on Algebra, Lemma 15.33.2. �

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x
is an invariant of the germ. The following lemma says that the property “OX,x is
regular” is an étale local property of germs.

Lemma 34.17.4. Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then OU,u is a regular local ring if and only if OV,v is a regular local
ring.

Proof. The algebraic statement we are asked to prove is the following: If A → B
is an étale ring map and q is a prime of B lying over p ⊂ A, then Ap is regular if
and only if Bq is regular. This is More on Algebra, Lemma 15.33.3. �

34.18. Properties of morphisms local on the target

Suppose that f : X → Y is a morphism of schemes. Let g : Y ′ → Y be a morphism
of schemes. Let f ′ : X ′ → Y ′ be the base change of f by g:

X ′

f ′

��

g′
// X

f

��
Y ′

g // Y

Let P be a property of morphisms of schemes. Then we can wonder if (a) P(f)⇒
P(f ′), and also whether the converse (b) P(f ′) ⇒ P(f) is true. If (a) holds
whenever g is flat, then we say P is preserved under flat base change. If (b) holds
whenever g is surjective and flat, then we say P descends through flat surjective
base changes. If P is preserved under flat base changes and descends through flat
surjective base changes, then we say P is flat local on the target. Compare with
the discussion in Section 34.11. This turns out to be a very important notion which
we formalize in the following definition.
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Definition 34.18.1. Let P be a property of morphisms of schemes over a base.
Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. We say P is τ local on the
base, or τ local on the target, or local on the base for the τ -topology if for any τ -
covering {Yi → Y }i∈I (see Topologies, Section 33.2) and any morphism of schemes
f : X → Y over S we have

f has P ⇔ each Yi ×Y X → Yi has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the target then it is preserved by base changes
by morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 34.18.2. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P
be a property of morphisms which is τ local on the target. Let f : X → Y have
property P. For any morphism Y ′ → Y which is flat, resp. flat and locally of finite
presentation, resp. syntomic, resp. étale, resp. an open immersion, the base change
f ′ : Y ′ ×Y X → Y ′ of f has property P.

Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. �

A simple often used consequence of the above is that if f : X → Y has property P
which is τ -local on the target and f(X) ⊂ V for some open subscheme V ⊂ Y , then
also the induced morphism X → V has P. Proof: The base change f by V → Y
gives X → V .

Lemma 34.18.3. Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the target. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ Y such that the restriction XW (f) →W (f) has
P. Moreover,

(1) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth,
or étale and the base change f ′ : XY ′ → Y ′ has P, then g(Y ′) ⊂W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth,
or étale, then W (f ′) = g−1(W (f)), and

(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is

the base change of f by Yi → Y .

Proof. Consider the union W of the images g(Y ′) ⊂ Y of morphisms g : Y ′ → Y
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P.

Since such a morphism g is open (see Morphisms, Lemma 28.26.9) we see that
W ⊂ Y is an open subset of Y . Since P is local in the τ topology the restriction
XW → W has property P because we are given a covering {Y ′ → W} of W such
that the pullbacks have P. This proves the existence and proves that W (f) has
property (1). To see property (2) note that W (f ′) ⊃ g−1(W (f)) because P is stable
under base change by flat and locally of finite presentation, syntomic, smooth, or
étale morphisms, see Lemma 34.18.2. On the other hand, if Y ′′ ⊂ Y ′ is an open such
that XY ′′ → Y ′′ has property P, then Y ′′ → Y factors through W by construction,
i.e., Y ′′ ⊂ g−1(W (f)). This proves (2). Assertion (3) follows from (2) because each
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morphism Yi → Y is flat and locally of finite presentation, syntomic, smooth, or
étale by our definition of a τ -covering. �

Lemma 34.18.4. Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, étale, smooth, syntomic}. Assume that

(1) the property is preserved under flat, flat and locally of finite presenta-
tion, étale, smooth, or syntomic base change depending on whether τ is
fpqc, fppf, étale, smooth, or syntomic (compare with Schemes, Definition
25.18.3),

(2) the property is Zariski local on the base.
(3) for any surjective morphism of affine schemes S′ → S which is flat, flat

of finite presentation, étale, smooth or syntomic depending on whether τ
is fpqc, fppf, étale, smooth, or syntomic, and any morphism of schemes
f : X → S property P holds for f if property P holds for the base change
f ′ : X ′ = S′ ×S X → S′.

Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 33.8.1 33.7.1 33.4.1 33.5.1, or 33.6.1 and Topologies, Lemma
33.8.8, 33.7.4, 33.4.4, 33.5.4, or 33.6.4. Details omitted. �

Remark 34.18.5. (This is a repeat of Remark 34.11.3 above.) In Lemma 34.18.4
above if τ = smooth then in condition (3) we may assume that the morphism
is a (surjective) standard smooth morphism. Similarly, when τ = syntomic or
τ = étale.

34.19. Properties of morphisms local in the fpqc topology on the target

In this section we find a large number of properties of morphisms of schemes which
are local on the base in the fpqc topology. By contrast, in Examples, Section 82.55
we will show that the properties “projective” and “quasi-projective” are not local
on the base even in the Zariski topology.

Lemma 34.19.1. The property P(f) =“f is quasi-compact” is fpqc local on the
base.

Proof. A base change of a quasi-compact morphism is quasi-compact, see Schemes,
Lemma 25.19.3. Being quasi-compact is Zariski local on the base, see Schemes,
Lemma 25.19.2. Finally, let S′ → S be a flat surjective morphism of affine schemes,
and let f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′

is quasi-compact. Then X ′ is quasi-compact, and X ′ → X is surjective. Hence X
is quasi-compact. This implies that f is quasi-compact. Therefore Lemma 34.18.4
applies and we win. �

Lemma 34.19.2. The property P(f) =“f is quasi-separated” is fpqc local on the
base.

Proof. Any base change of a quasi-separated morphism is quasi-separated, see
Schemes, Lemma 25.21.13. Being quasi-separated is Zariski local on the base (from
the definition or by Schemes, Lemma 25.21.7). Finally, let S′ → S be a flat surjec-
tive morphism of affine schemes, and let f : X → S be a morphism. Assume that the
base change f ′ : X ′ → S′ is quasi-separated. This means that ∆′ : X ′ → X ′×S′ X ′
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is quasi-compact. Note that ∆′ is the base change of ∆ : X → X×SX via S′ → S.
By Lemma 34.19.1 this implies ∆ is quasi-compact, and hence f is quasi-separated.
Therefore Lemma 34.18.4 applies and we win. �

Lemma 34.19.3. The property P(f) =“f is universally closed” is fpqc local on
the base.

Proof. A base change of a universally closed morphism is universally closed by
definition. Being universally closed is Zariski local on the base (from the definition
or by Morphisms, Lemma 28.42.2). Finally, let S′ → S be a flat surjective morphism
of affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is universally closed. Let T → S be any morphism. Consider the
diagram

X ′

��

S′ ×S T ×S X

��

//oo T ×S X

��
S′ S′ ×S T //oo T

in which both squares are cartesian. Thus the assumption implies that the middle
vertical arrow is closed. The right horizontal arrows are flat, quasi-compact and
surjective (as base changes of S′ → S). Hence a subset of T is closed if and only
if its inverse image in S′ ×S T is closed, see Morphisms, Lemma 28.26.10. An easy
diagram chase shows that the right vertical arrow is closed too, and we conclude
X → S is universally closed. Therefore Lemma 34.18.4 applies and we win. �

Lemma 34.19.4. The property P(f) =“f is universally open” is fpqc local on the
base.

Proof. The proof is the same as the proof of Lemma 34.19.3. �

Lemma 34.19.5. The property P(f) =“f is separated” is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Schemes, Lemma
25.21.13. Being separated is Zariski local on the base (from the definition or by
Schemes, Lemma 25.21.8). Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is separated. This means that ∆′ : X ′ → X ′ ×S′ X ′ is a closed
immersion, hence universally closed. Note that ∆′ is the base change of ∆ : X →
X ×S X via S′ → S. By Lemma 34.19.3 this implies ∆ is universally closed. Since
it is an immersion (Schemes, Lemma 25.21.2) we conclude ∆ is a closed immersion.
Hence f is separated. Therefore Lemma 34.18.4 applies and we win. �

Lemma 34.19.6. The property P(f) =“f is surjective” is fpqc local on the base.

Proof. This is clear. �

Lemma 34.19.7. The property P(f) =“f is universally injective” is fpqc local on
the base.

Proof. A base change of a universally injective morphism is universally injective
(this is formal). Being universally injective is Zariski local on the base; this is
clear from the definition. Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is universally injective. Let K be a field, and let a, b : Spec(K) → X
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be two morphisms such that f ◦ a = f ◦ b. As S′ → S is surjective and by the
discussion in Schemes, Section 25.13 there exists a field extension K ⊂ K ′ and a
morphism Spec(K ′)→ S′ such that the following solid diagram commutes

Spec(K ′)

))
a′,b′ $$

��

X ′ //

��

S′

��
Spec(K)

a,b // X // S

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram
commute. Since X ′ → S′ is universally injective we get a′ = b′, by Morphisms,
Lemma 28.12.2. Clearly this forces a = b (by the discussion in Schemes, Section
25.13). Therefore Lemma 34.18.4 applies and we win.

An alternative proof would be to use the characterization of a universally injective
morphism as one whose diagonal is surjective, see Morphisms, Lemma 28.12.2. The
lemma then follows from the fact that the property of being surjective is fpqc local
on the base, see Lemma 34.19.6. (Hint: use that the base change of the diagonal is
the diagonal of the base change.) �

Lemma 34.19.8. The property P(f) =“f is locally of finite type” is fpqc local on
the base.

Proof. Being locally of finite type is preserved under base change, see Morphisms,
Lemma 28.16.4. Being locally of finite type is Zariski local on the base, see Mor-
phisms, Lemma 28.16.2. Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is locally of finite type. Let U ⊂ X be an affine open. Then
U ′ = S′×SU is affine and of finite type over S′. Write S = Spec(R), S′ = Spec(R′),
U = Spec(A), and U ′ = Spec(A′). We know that R → R′ is faithfully flat,
A′ = R′ ⊗R A and R′ → A′ is of finite type. We have to show that R → A is
of finite type. This is the result of Algebra, Lemma 10.122.1. It follows that f is
locally of finite type. Therefore Lemma 34.18.4 applies and we win. �

Lemma 34.19.9. The property P(f) =“f is locally of finite presentation” is fpqc
local on the base.

Proof. Being locally of finite presentation is preserved under base change, see
Morphisms, Lemma 28.22.4. Being locally of finite type is Zariski local on the
base, see Morphisms, Lemma 28.22.2. Finally, let S′ → S be a flat surjective
morphism of affine schemes, and let f : X → S be a morphism. Assume that the
base change f ′ : X ′ → S′ is locally of finite presentation. Let U ⊂ X be an affine
open. Then U ′ = S′ ×S U is affine and of finite type over S′. Write S = Spec(R),
S′ = Spec(R′), U = Spec(A), and U ′ = Spec(A′). We know that R → R′ is
faithfully flat, A′ = R′⊗RA and R′ → A′ is of finite presentation. We have to show
that R→ A is of finite presentation. This is the result of Algebra, Lemma 10.122.2.
It follows that f is locally of finite presentation. Therefore Lemma 34.18.4 applies
and we win. �
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Lemma 34.19.10. The property P(f) =“f is of finite type” is fpqc local on the
base.

Proof. Combine Lemmas 34.19.1 and 34.19.8. �

Lemma 34.19.11. The property P(f) =“f is of finite presentation” is fpqc local
on the base.

Proof. Combine Lemmas 34.19.1, 34.19.2 and 34.19.9. �

Lemma 34.19.12. The property P(f) =“f is proper” is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 34.19.3, 34.19.5 and 34.19.10. �

Lemma 34.19.13. The property P(f) =“f is flat” is fpqc local on the base.

Proof. Being flat is preserved under arbitrary base change, see Morphisms, Lemma
28.26.7. Being flat is Zariski local on the base by definition. Finally, let S′ → S
be a flat surjective morphism of affine schemes, and let f : X → S be a morphism.
Assume that the base change f ′ : X ′ → S′ is flat. Let U ⊂ X be an affine open.
Then U ′ = S′ ×S U is affine. Write S = Spec(R), S′ = Spec(R′), U = Spec(A),
and U ′ = Spec(A′). We know that R → R′ is faithfully flat, A′ = R′ ⊗R A and
R′ → A′ is flat. Goal: Show that R → A is flat. This follows immediately from
Algebra, Lemma 10.38.7. Hence f is flat. Therefore Lemma 34.18.4 applies and we
win. �

Lemma 34.19.14. The property P(f) =“f is an open immersion” is fpqc local on
the base.

Proof. The property of being an open immersion is stable under base change, see
Schemes, Lemma 25.18.2. The property of being an open immersion is Zariski local
on the base (this is obvious). Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is an open immersion. Then f ′ is universally open, and universally
injective. Hence we conclude that f is universally open by Lemma 34.19.4, and
universally injective by Lemma 34.19.7. In particular f(X) ⊂ S is open, and we
may replace S by f(S) and assume that f is surjective. This implies that f ′ is
an isomorphism and we have to show that f is an isomorphism also. Since f is
universally injective we see that f is bijective. Hence f is a homeomorphism. Let
x ∈ X and choose U ⊂ X an affine open neighbourhood of x. Since f(U) ⊂ S is
open, and S is affine we may choose a standard open D(g) ⊂ f(U) containing f(x)
where g ∈ Γ(S,OS). It is clear that U ∩ f−1(D(g)) is still affine and still an open
neighbourhood of x. Replace U by U ∩ f−1(D(g)) and write V = D(g) ⊂ S and
V ′ the inverse image of V in S′. Note that V ′ is a standard open of S′ as well and
in particular that V ′ is affine. Since f ′ is an isomorphism we have V ′ ×V U → V ′

is an isomorphism. In terms of rings this means that

O(V ′) −→ O(V ′)⊗O(V ) O(U)

is an isomorphism. Since O(V )→ O(V ′) is faithfully flat this implies that O(V )→
O(U) is an isomorphism. Hence U ∼= V and we see that f is an isomorphism.
Therefore Lemma 34.18.4 applies and we win. �

Lemma 34.19.15. The property P(f) =“f is an isomorphism” is fpqc local on the
base.
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Proof. Combine Lemmas 34.19.6 and 34.19.14. �

Lemma 34.19.16. The property P(f) =“f is affine” is fpqc local on the base.

Proof. A base change of an affine morphism is affine, see Morphisms, Lemma
28.13.8. Being affine is Zariski local on the base, see Morphisms, Lemma 28.13.3.
Finally, let g : S′ → S be a flat surjective morphism of affine schemes, and let
f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is affine.
In other words, X ′ is affine, say X ′ = Spec(A′). Also write S = Spec(R) and
S′ = Spec(R′). We have to show that X is affine.

By Lemmas 34.19.1 and 34.19.5 we see that X → S is separated and quasi-compact.
Thus f∗OX is a quasi-coherent sheaf of OS-algebras, see Schemes, Lemma 25.24.1.

Hence f∗OX = Ã for some R-algebra A. In fact A = Γ(X,OX) of course. Also, by
flat base change (see for example Cohomology of Schemes, Lemma 29.5.2) we have
g∗f∗OX = f ′∗OX′ . In other words, we have A′ = R′ ⊗R A. Consider the canonical
morphism

X −→ Spec(A)

over S from Schemes, Lemma 25.6.4. By the above the base change of this morphism
to S′ is an isomorphism. Hence it is an isomorphism by Lemma 34.19.15. Therefore
Lemma 34.18.4 applies and we win. �

Lemma 34.19.17. The property P(f) =“f is a closed immersion” is fpqc local on
the base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Assume that each fi : Yi ×Y X → Yi is a closed immersion. This implies
that each fi is affine, see Morphisms, Lemma 28.13.9. By Lemma 34.19.16 we
conclude that f is affine. It remains to show that OY → f∗OX is surjective. For
every y ∈ Y there exists an i and a point yi ∈ Yi mapping to y. By Cohomology
of Schemes, Lemma 29.5.2 the sheaf fi,∗(OYi×YX) is the pullback of f∗OX . By
assumption it is a quotient of OYi . Hence we see that(

OY,y −→ (f∗OX)y

)
⊗OY,y OYi,yi

is surjective. Since OYi,yi is faithfully flat over OY,y this implies the surjectivity of
OY,y −→ (f∗OX)y as desired. �

Lemma 34.19.18. The property P(f) =“f is quasi-affine” is fpqc local on the
base.

Proof. Let f : X → Y be a morphism of schemes. Let {gi : Yi → Y } be an
fpqc covering. Assume that each fi : Yi ×Y X → Yi is quasi-affine. This implies
that each fi is quasi-compact and separated. By Lemmas 34.19.1 and 34.19.5
this implies that f is quasi-compact and separated. Consider the sheaf of OY -
algebras A = f∗OX . By Schemes, Lemma 25.24.1 it is a quasi-coherent OY -algebra.
Consider the canonical morphism

j : X −→ Spec
Y

(A)

see Constructions, Lemma 26.4.7. By flat base change (see for example Cohomol-
ogy of Schemes, Lemma 29.5.2) we have g∗i f∗OX = fi,∗OX′ where gi : Yi → Y
are the given flat maps. Hence the base change ji of j by gi is the canonical mor-
phism of Constructions, Lemma 26.4.7 for the morphism fi. By assumption and
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Morphisms, Lemma 28.14.3 all of these morphisms ji are quasi-compact open im-
mersions. Hence, by Lemmas 34.19.1 and 34.19.14 we see that j is a quasi-compact
open immersion. Hence by Morphisms, Lemma 28.14.3 again we conclude that f
is quasi-affine. �

Lemma 34.19.19. The property P(f) =“f is a quasi-compact immersion” is fpqc
local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Write Xi = Yi ×Y X and fi : Xi → Yi the base change of f . Also
denote qi : Yi → Y the given flat morphisms. Assume each fi is a quasi-compact
immersion. By Schemes, Lemma 25.23.7 each fi is separated. By Lemmas 34.19.1
and 34.19.5 this implies that f is quasi-compact and separated. Let X → Z → Y be
the factorization of f through its scheme theoretic image. By Morphisms, Lemma
28.6.3 the closed subscheme Z ⊂ Y is cut out by the quasi-coherent sheaf of ideals
I = Ker(OY → f∗OX) as f is quasi-compact. By flat base change (see for example
Cohomology of Schemes, Lemma 29.5.2; here we use f is separated) we see fi,∗OXi
is the pullback q∗i f∗OX . Hence Yi ×Y Z is cut out by the quasi-coherent sheaf of
ideals q∗i I = Ker(OYi → fi,∗OXi). By Morphisms, Lemma 28.7.7 the morphisms
Xi → Yi×Y Z are open immersions. Hence by Lemma 34.19.14 we see that X → Z
is an open immersion and hence f is a immersion as desired (we already saw it was
quasi-compact). �

Lemma 34.19.20. The property P(f) =“f is integral” is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed
morphism. See Morphisms, Lemma 28.44.7. Hence the lemma follows on combining
Lemmas 34.19.3 and 34.19.16. �

Lemma 34.19.21. The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral morphism which is
locally of finite type. See Morphisms, Lemma 28.44.4. Hence the lemma follows on
combining Lemmas 34.19.8 and 34.19.20. �

Lemma 34.19.22. The properties P(f) =“f is locally quasi-finite” and P(f) =“f
is quasi-finite” are fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes, and let {Si → S} be an
fpqc covering such that each base change fi : Xi → Si is locally quasi-finite. We
have already seen (Lemma 34.19.8) that “locally of finite type” is fpqc local on
the base, and hence we see that f is locally of finite type. Then it follows from
Morphisms, Lemma 28.21.13 that f is locally quasi-finite. The quasi-finite case
follows as we have already seen that “quasi-compact” is fpqc local on the base
(Lemma 34.19.1). �

Lemma 34.19.23. The property P(f) =“f is locally of finite type of relative di-
mension d” is fpqc local on the base.

Proof. This follows immediately from the fact that being locally of finite type is
fpqc local on the base and Morphisms, Lemma 28.29.3. �

Lemma 34.19.24. The property P(f) =“f is syntomic” is fpqc local on the base.
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Proof. A morphism is syntomic if and only if it is locally of finite presentation,
flat, and has locally complete intersections as fibres. We have seen already that
being flat and locally of finite presentation are fpqc local on the base (Lemmas
34.19.13, and 34.19.9). Hence the result follows for syntomic from Morphisms,
Lemma 28.32.12. �

Lemma 34.19.25. The property P(f) =“f is smooth” is fpqc local on the base.

Proof. A morphism is smooth if and only if it is locally of finite presentation, flat,
and has smooth fibres. We have seen already that being flat and locally of finite
presentation are fpqc local on the base (Lemmas 34.19.13, and 34.19.9). Hence the
result follows for smooth from Morphisms, Lemma 28.35.15. �

Lemma 34.19.26. The property P(f) =“f is unramified” is fpqc local on the base.
The property P(f) =“f is G-unramified” is fpqc local on the base.

Proof. A morphism is unramified (resp. G-unramified) if and only if it is locally of
finite type (resp. finite presentation) and its diagonal morphism is an open immer-
sion (see Morphisms, Lemma 28.36.13). We have seen already that being locally
of finite type (resp. locally of finite presentation) and an open immersion is fpqc
local on the base (Lemmas 34.19.9, 34.19.8, and 34.19.14). Hence the result follows
formally. �

Lemma 34.19.27. The property P(f) =“f is étale” is fpqc local on the base.

Proof. A morphism is étale if and only if it flat and G-unramified. See Morphisms,
Lemma 28.37.16. We have seen already that being flat and G-unramified are fpqc
local on the base (Lemmas 34.19.13, and 34.19.26). Hence the result follows. �

Lemma 34.19.28. The property P(f) =“f is finite locally free” is fpqc local on
the base. Let d ≥ 0. The property P(f) =“f is finite locally free of degree d” is
fpqc local on the base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of
finite presentation (Morphisms, Lemma 28.46.2). Hence this follows from Lemmas
34.19.21, 34.19.13, and 34.19.9. If f : Z → U is finite locally free, and {Ui → U} is
a surjective family of morphisms such that each pullback Z ×U Ui → Ui has degree
d, then Z → U has degree d, for example because we can read off the degree in a
point u ∈ U from the fibre (f∗OZ)u ⊗OU,u κ(u). �

Lemma 34.19.29. The property P(f) =“f is a monomorphism” is fpqc local on
the base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc
covering, and assume each of the base changes fi : Xi → Si of f is a monomorphism.
Let a, b : T → X be two morphisms such that f ◦ a = f ◦ b. We have to show that
a = b. Since fi is a monomorphism we see that ai = bi, where ai, bi : Si×S T → Xi

are the base changes. In particular the compositions Si ×S T → T → X are equal.
Since

∐
Si ×S T → T is an epimorphism (see e.g. Lemma 34.9.3) we conclude

a = b. �

Lemma 34.19.30. The properties

P(f) =“f is a Koszul-regular immersion”,
P(f) =“f is an H1-regular immersion”, and
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P(f) =“f is a quasi-regular immersion”

are fpqc local on the base.

Proof. We will use the criterion of Lemma 34.18.4 to prove this. By Divisors, Defi-
nition 30.13.1 being a Koszul-regular (resp. H1-regular, quasi-regular) immersion is
Zariski local on the base. By Divisors, Lemma 30.13.4 being a Koszul-regular (resp.
H1-regular, quasi-regular) immersion is preserved under flat base change. The final
hypothesis (3) of Lemma 34.18.4 translates into the following algebra statement:
Let A → B be a faithfully flat ring map. Let I ⊂ A be an ideal. If IB is lo-
cally on Spec(B) generated by a Koszul-regular (resp. H1-regular, quasi-regular)
sequence in B, then I ⊂ A is locally on Spec(A) generated by a Koszul-regular
(resp. H1-regular, quasi-regular) sequence in A. This is More on Algebra, Lemma
15.22.4. �

34.20. Properties of morphisms local in the fppf topology on the target

In this section we find some properties of morphisms of schemes for which we could
not (yet) show they are local on the base in the fpqc topology which, however, are
local on the base in the fppf topology.

Lemma 34.20.1. The property P(f) =“f is an immersion” is fppf local on the
base.

Proof. The property of being an immersion is stable under base change, see
Schemes, Lemma 25.18.2. The property of being an immersion is Zariski local
on the base. Finally, let π : S′ → S be a surjective morphism of affine schemes,
which is flat and locally of finite presentation. Note that π : S′ → S is open by
Morphisms, Lemma 28.26.9. Let f : X → S be a morphism. Assume that the base
change f ′ : X ′ → S′ is an immersion. In particular we see that f ′(X ′) = π−1(f(X))
is locally closed. Hence by Topology, Lemma 5.5.4 we see that f(X) ⊂ S is locally

closed. Let Z ⊂ S be the closed subset Z = f(X) \ f(X). By Topology, Lemma
5.5.4 again we see that f ′(X ′) is closed in S′ \ Z ′. Hence we may apply Lemma
34.19.17 to the fpqc covering {S′ \Z ′ → S \Z} and conclude that f : X → S \Z is
a closed immersion. In other words, f is an immersion. Therefore Lemma 34.18.4
applies and we win. �

34.21. Application of fpqc descent of properties of morphisms

The following lemma may seem a bit frivolous but turns out is a useful tool in
studying étale and unramified morphisms.

Lemma 34.21.1. Let f : X → Y be a flat, quasi-compact, surjective monomor-
phism. Then f is an isomorphism.

Proof. As f is a flat, quasi-compact, surjective morphism we see {X → Y } is an
fpqc covering of Y . The diagonal ∆ : X → X ×Y X is an isomorphism. This
implies that the base change of f by f is an isomorphism. Hence we see f is an
isomorphism by Lemma 34.19.15. �

We can use this lemma to show the following important result. We will discuss this
and related results in more detail in Étale Morphisms, Section 40.14.

Lemma 34.21.2. A universally injective étale morphism is an open immersion.
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Proof. Let f : X → Y be an étale morphism which is universally injective. Then f
is open (Morphisms, Lemma 28.37.13) hence we can replace Y by f(X) and we may
assume that f is surjective. Then f is bijective and open hence a homeomorphism.
Hence f is quasi-compact. Thus by Lemma 34.21.1 it suffices to show that f is a
monomorphism. As X → Y is étale the morphism ∆X/Y : X → X×Y X is an open
immersion by Morphisms, Lemma 28.36.13 (and Morphisms, Lemma 28.37.16). As
f is universally injective ∆X/Y is also surjective, see Morphisms, Lemma 28.12.2.
Hence ∆X/Y is an isomorphism, i.e., X → Y is a monomorphism. �

We can reformulate the hypotheses in the lemma above a bit by using the following
characterization of flat universally injective morphisms.

Lemma 34.21.3. Let f : X → Y be a morphism of schemes. Let X0 denote the
set of generic points of irreducible components of X. If

(1) f is flat and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is universally injective.

Proof. We have to show that ∆ : X → X ×Y X is surjective, see Morphisms,
Lemma 28.12.2. As X → Y is separated, the image of ∆ is closed. Thus if ∆ is not
surjective, we can find a generic point η ∈ X ×S X of an irreducible component of
X×SX which is not in the image of ∆. The projection pr1 : X×Y X → X is flat as
a base change of the flat morphism X → Y , see Morphisms, Lemma 28.26.7. Hence
generalizations lift along pr1, see Morphisms, Lemma 28.26.8. We conclude that
ξ = pr1(η) ∈ X0. However, assumptions (2) and (3) guarantee that the scheme
(X ×Y X)f(ξ) has at most one point for every ξ ∈ X0. In other words, we have
∆(ξ) = η a contradiction. �

Thus we can reformulate Lemma 34.21.2 as follows.

Lemma 34.21.4. Let f : X → Y be a morphism of schemes. Let X0 denote the
set of generic points of irreducible components of X. If

(1) f is étale and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is an open immersion.

Proof. Immediate from Lemmas 34.21.3 and 34.21.2. �

34.22. Properties of morphisms local on the source

It often happens one can prove a morphism has a certain property after precom-
posing with some other morphism. In many cases this implies the morphism has
the property too. We formalize this in the following definition.

Definition 34.22.1. Let P be a property of morphisms of schemes. Let τ ∈
{Zariski, fpqc, fppf, étale, smooth, syntomic}. We say P is τ local on the source,
or local on the source for the τ -topology if for any morphism of schemes f : X → Y
over S, and any τ -covering {Xi → X}i∈I we have

f has P ⇔ each Xi → Y has P.
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To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the source then it is preserved by precomposing
with morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 34.22.2. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P
be a property of morphisms which is τ local on the source. Let f : X → Y have
property P. For any morphism a : X ′ → X which is flat, resp. flat and locally
of finite presentation, resp. syntomic, resp. étale, resp. an open immersion, the
composition f ◦ a : X ′ → Y has property P.

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. �

Lemma 34.22.3. Let P be a property of morphisms of schemes. Let τ ∈ {fpqc,
fppf, étale, smooth, syntomic}. Assume that

(1) the property is preserved under precomposing with flat, flat locally of finite
presentation, étale, smooth or syntomic morphisms depending on whether
τ is fpqc, fppf, étale, smooth, or syntomic,

(2) the property is Zariski local on the source,
(3) the property is Zariski local on the target,
(4) for any morphism of affine schemes X → Y , and any surjective morphism

of affine schemes X ′ → X which is flat, flat of finite presentation, étale,
smooth or syntomic depending on whether τ is fpqc, fppf, étale, smooth, or
syntomic, property P holds for f if property P holds for the composition
f ′ : X ′ → Y .

Then P is τ local on the source.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 33.8.1 33.7.1 33.4.1 33.5.1, or 33.6.1 and Topologies, Lemma
33.8.8, 33.7.4, 33.4.4, 33.5.4, or 33.6.4. Details omitted. (Hint: Use locality on the
source and target to reduce the verification of property P to the case of a morphism
between affines. Then apply (1) and (4).) �

Remark 34.22.4. (This is a repeat of Remarks 34.11.3 and 34.18.5 above.) In
Lemma 34.22.3 above if τ = smooth then in condition (4) we may assume that
the morphism is a (surjective) standard smooth morphism. Similarly, when τ =
syntomic or τ = étale.

34.23. Properties of morphisms local in the fpqc topology on the source

Here are some properties of morphisms that are fpqc local on the source.

Lemma 34.23.1. The property P(f) =“f is flat” is fpqc local on the source.

Proof. Since flatness is defined in terms of the maps of local rings (Morphisms,
Definition 28.26.1) what has to be shown is the following algebraic fact: Suppose
A→ B → C are local homomorphisms of local rings, and assume B → C are flat.
Then A→ B is flat if and only if A→ C is flat. If A→ B is flat, then A→ C is flat
by Algebra, Lemma 10.38.3. Conversely, assume A→ C is flat. Note that B → C
is faithfully flat, see Algebra, Lemma 10.38.16. Hence A → B is flat by Algebra,
Lemma 10.38.9. (Also see Morphisms, Lemma 28.26.11 for a direct proof.) �
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Lemma 34.23.2. Then property P(f : X → Y ) =“for every x ∈ X the map of
local rings OY,f(x) → OX,x is injective” is fpqc local on the source.

Proof. Omitted. This is just a (probably misguided) attempt to be playful. �

34.24. Properties of morphisms local in the fppf topology on the source

Here are some properties of morphisms that are fppf local on the source.

Lemma 34.24.1. The property P(f) =“f is locally of finite presentation” is fppf
local on the source.

Proof. Being locally of finite presentation is Zariski local on the source and the
target, see Morphisms, Lemma 28.22.2. It is a property which is preserved under
composition, see Morphisms, Lemma 28.22.3. This proves (1), (2) and (3) of Lemma
34.22.3. The final condition (4) is Lemma 34.10.1. Hence we win. �

Lemma 34.24.2. The property P(f) =“f is locally of finite type” is fppf local on
the source.

Proof. Being locally of finite type is Zariski local on the source and the target, see
Morphisms, Lemma 28.16.2. It is a property which is preserved under composition,
see Morphisms, Lemma 28.16.3, and a flat morphism locally of finite presentation is
locally of finite type, see Morphisms, Lemma 28.22.8. This proves (1), (2) and (3)
of Lemma 34.22.3. The final condition (4) is Lemma 34.10.2. Hence we win. �

Lemma 34.24.3. The property P(f) =“f is open” is fppf local on the source.

Proof. Being an open morphism is clearly Zariski local on the source and the
target. It is a property which is preserved under composition, see Morphisms,
Lemma 28.24.3, and a flat morphism of finite presentation is open, see Morphisms,
Lemma 28.26.9 This proves (1), (2) and (3) of Lemma 34.22.3. The final condition
(4) follows from Morphisms, Lemma 28.26.10. Hence we win. �

Lemma 34.24.4. The property P(f) =“f is universally open” is fppf local on the
source.

Proof. Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an
fppf covering. Denote fi : Xi → X the compositions. We have to show that f is
universally open if and only if each fi is universally open. If f is universally open,
then also each fi is universally open since the maps Xi → X are universally open
and compositions of universally open morphisms are universally open (Morphisms,
Lemmas 28.26.9 and 28.24.3). Conversely, assume each fi is universally open. Let
Y ′ → Y be a morphism of schemes. Denote X ′ = Y ′ ×Y X and X ′i = Y ′ ×Y Xi.
Note that {X ′i → X ′}i∈I is an fppf covering also. The morphisms f ′i : X ′i → Y ′

are open by assumption. Hence by the Lemma 34.24.3 above we conclude that
f ′ : X ′ → Y ′ is open as desired. �

34.25. Properties of morphisms local in the syntomic topology on the
source

Here are some properties of morphisms that are syntomic local on the source.

Lemma 34.25.1. The property P(f) =“f is syntomic” is syntomic local on the
source.
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Proof. Combine Lemma 34.22.3 with Morphisms, Lemma 28.32.2 (local for Zariski
on source and target), Morphisms, Lemma 28.32.3 (pre-composing), and Lemma
34.10.4 (part (4)). �

34.26. Properties of morphisms local in the smooth topology on the
source

Here are some properties of morphisms that are smooth local on the source.

Lemma 34.26.1. The property P(f) =“f is smooth” is smooth local on the source.

Proof. Combine Lemma 34.22.3 with Morphisms, Lemma 28.35.2 (local for Zariski
on source and target), Morphisms, Lemma 28.35.4 (pre-composing), and Lemma
34.10.4 (part (4)). �

34.27. Properties of morphisms local in the étale topology on the
source

Here are some properties of morphisms that are étale local on the source.

Lemma 34.27.1. The property P(f) =“f is étale” is étale local on the source.

Proof. Combine Lemma 34.22.3 with Morphisms, Lemma 28.37.2 (local for Zariski
on source and target), Morphisms, Lemma 28.37.3 (pre-composing), and Lemma
34.10.4 (part (4)). �

Lemma 34.27.2. The property P(f) =“f is locally quasi-finite” is étale local on
the source.

Proof. We are going to use Lemma 34.22.3. By Morphisms, Lemma 28.21.11 the
property of being locally quasi-finite is local for Zariski on source and target. By
Morphisms, Lemmas 28.21.12 and 28.37.6 we see the precomposition of a locally
quasi-finite morphism by an étale morphism is locally quasi-finite. Finally, suppose
that X → Y is a morphism of affine schemes and that X ′ → X is a surjective
étale morphism of affine schemes such that X ′ → Y is locally quasi-finite. Then
X ′ → Y is of finite type, and by Lemma 34.10.2 we see that X → Y is of finite
type also. Moreover, by assumption X ′ → Y has finite fibres, and hence X → Y
has finite fibres also. We conclude that X → Y is quasi-finite by Morphisms,
Lemma 28.21.10. This proves the last assumption of Lemma 34.22.3 and finishes
the proof. �

Lemma 34.27.3. The property P(f) =“f is unramified” is étale local on the
source. The property P(f) =“f is G-unramified” is étale local on the source.

Proof. We are going to use Lemma 34.22.3. By Morphisms, Lemma 28.36.3 the
property of being unramified (resp. G-unramified) is local for Zariski on source and
target. By Morphisms, Lemmas 28.36.4 and 28.37.5 we see the precomposition of
an unramified (resp. G-unramified) morphism by an étale morphism is unramified
(resp. G-unramified). Finally, suppose that X → Y is a morphism of affine schemes
and that f : X ′ → X is a surjective étale morphism of affine schemes such that
X ′ → Y is unramified (resp. G-unramified). Then X ′ → Y is of finite type (resp.
finite presentation), and by Lemma 34.10.2 (resp. Lemma 34.10.1) we see that
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X → Y is of finite type (resp. finite presentation) also. By Morphisms, Lemma
28.35.16 we have a short exact sequence

0→ f∗ΩX/Y → ΩX′/Y → ΩX′/X → 0.

As X ′ → Y is unramified we see that the middle term is zero. Hence, as f is
faithfully flat we see that ΩX/Y = 0. Hence X → Y is unramified (resp. G-
unramified), see Morphisms, Lemma 28.36.2. This proves the last assumption of
Lemma 34.22.3 and finishes the proof. �

34.28. Properties of morphisms étale local on source-and-target

Let P be a property of morphisms of schemes. There is an intuitive meaning to the
phrase “P is étale local on the source and target”. However, it turns out that this
notion is not the same as asking P to be both étale local on the source and étale
local on the target. Before we discuss this further we give two silly examples.

Example 34.28.1. Consider the property P of morphisms of schemes defined by
the rule P(X → Y ) =“Y is locally Noetherian”. The reader can verify that this is
étale local on the source and étale local on the target (omitted, see Lemma 34.12.1).
But it is not true that if f : X → Y has P and g : Y → Z is étale, then g ◦ f has
P. Namely, f could be the identity on Y and g could be an open immersion of a
locally Noetherian scheme Y into a non locally Noetherian scheme Z.

The following example is in some sense worse.

Example 34.28.2. Consider the property P of morphisms of schemes defined by
the rule P(f : X → Y ) =“for every y ∈ Y which is a specialization of some f(x),
x ∈ X the local ring OY,y is Noetherian”. Let us verify that this is étale local on the
source and étale local on the target. We will freely use Schemes, Lemma 25.13.2.

Local on the target: Let {gi : Yi → Y } be an étale covering. Let fi : Xi → Yi be
the base change of f , and denote hi : Xi → X the projection. Assume P(f). Let
f(xi)  yi be a specialization. Then f(hi(xi))  gi(yi) so P(f) implies OY,gi(yi)
is Noetherian. Also OY,gi(yi) → OYi,yi is a localization of an étale ring map. Hence
OYi,yi is Noetherian by Algebra, Lemma 10.30.1. Conversely, assume P(fi) for all
i. Let f(x)  y be a specialization. Choose an i and yi ∈ Yi mapping to y. Since
x can be viewed as a point of Spec(OY,y) ×Y X and OY,y → OYi,yi is faithfully
flat, there exists a point xi ∈ Spec(OYi,yi) ×Y X mapping to x. Then xi ∈ Xi,
and fi(xi) specializes to yi. Thus we see that OYi,yi is Noetherian by P(fi) which
implies that OY,y is Noetherian by Algebra, Lemma 10.152.1.

Local on the source: Let {hi : Xi → X} be an étale covering. Let fi : Xi → Y be
the composition f ◦ hi. Assume P(f). Let f(xi)  y be a specialization. Then
f(hi(xi))  y so P(f) implies OY,y is Noetherian. Thus P(fi) holds. Conversely,
assume P(fi) for all i. Let f(x) y be a specialization. Choose an i and xi ∈ Xi

mapping to x. Then y is a specialization of fi(xi) = f(x). Hence P(fi) implies
OY,y is Noetherian as desired.

We claim that there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y
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with surjective étale vertical arrows, such that h has P and f does not have P.
Namely, let

Y = Spec
(
C[xn;n ∈ Z]/(xnxm;n 6= m)

)
and let X ⊂ Y be the open subscheme which is the complement of the point all of
whose coordinates xn = 0. Let U = X, let V = X

∐
Y , let a, b the obvious map,

and let h : U → V be the inclusion of U = X into the first summand of V . The
claim above holds because U is locally Noetherian, but Y is not.

What should be the correct notion of a property which is étale local on the source-
and-target? We think that, by analogy with Morphisms, Definition 28.15.1 it should
be the following.

Definition 34.28.3. Let P be a property of morphisms of schemes. We say P is
étale local on source-and-target if

(1) (stable under precomposing with étale maps) if f : X → Y is étale and
g : Y → Z has P, then g ◦ f has P,

(2) (stable under étale base change) if f : X → Y has P and Y ′ → Y is étale,
then the base change f ′ : Y ′ ×Y X → Y ′ has P, and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P,
(b) for every x ∈ X there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with étale vertical arrows and u ∈ U with a(u) = x such that h has
P.

It turns out this definition excludes the behavior seen in Examples 34.28.1 and
34.28.2. We will compare this to the definition in the paper [DM69] by Deligne
and Mumford in Remark 34.28.8. Moreover, a property which is étale local on the
source-and-target is étale local on the source and étale local on the target. Finally,
the converse is almost true as we will see in Lemma 34.28.6.

Lemma 34.28.4. Let P be a property of morphisms of schemes which is étale local
on source-and-target. Then

(1) P is étale local on the source,
(2) P is étale local on the target,
(3) P is stable under postcomposing with étale morphisms: if f : X → Y has
P and g : Y → Z is étale, then g ◦ f has P, and

(4) P has a permanence property: given f : X → Y and g : Y → Z étale such
that g ◦ f has P, then f has P.

Proof. We write everything out completely.

Proof of (1). Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an
étale covering of X. If each composition hi : Xi → Y has P, then for each x ∈ X
we can find an i ∈ I and a point xi ∈ Xi mapping to x. Then (Xi, xi)→ (X,x) is
an étale morphism of germs, and idY : Y → Y is an étale morphism, and hi is as
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in part (3) of Definition 34.28.3. Thus we see that f has P. Conversely, if f has P
then each Xi → Y has P by Definition 34.28.3 part (1).

Proof of (2). Let f : X → Y be a morphism of schemes. Let {Yi → Y }i∈I be an
étale covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi for the base change of
f . If each hi : Xi → Yi has P, then for each x ∈ X we pick an i ∈ I and a point
xi ∈ Xi mapping to x. Then (Xi, xi) → (X,x) is an étale morphism of germs,
Yi → Y is étale, and hi is as in part (3) of Definition 34.28.3. Thus we see that f
has P. Conversely, if f has P, then each Xi → Yi has P by Definition 34.28.3 part
(2).

Proof of (3). Assume f : X → Y has P and g : Y → Z is étale. For every x ∈ X
we can think of (X,x)→ (X,x) as an étale morphism of germs, Y → Z is an étale
morphism, and h = f is as in part (3) of Definition 34.28.3. Thus we see that g ◦ f
has P.

Proof of (4). Let f : X → Y be a morphism and g : Y → Z étale such that g ◦ f
has P. Then by Definition 34.28.3 part (2) we see that prY : Y ×Z X → Y has P.
But the morphism (f, 1) : X → Y ×Z X is étale as a section to the étale projection
prX : Y ×Z X → X, see Morphisms, Lemma 28.37.18. Hence f = prY ◦ (f, 1) has
P by Definition 34.28.3 part (1). �

The following lemma is the analogue of Morphisms, Lemma 28.15.4.

Lemma 34.28.5. Let P be a property of morphisms of schemes which is étale local
on source-and-target. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(a) f has property P,
(b) for every x ∈ X there exists an étale morphism of germs a : (U, u) →

(X,x), an étale morphism b : V → Y , and a morphism h : U → V such
that f ◦ a = b ◦ h and h has P,

(c) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale the morphism h has P,
(d) for some diagram as in (c) with a : U → X surjective h has P,
(e) there exists an étale covering {Yi → Y }i∈I such that each base change

Yi ×Y X → Yi has P,
(f) there exists an étale covering {Xi → X}i∈I such that each composition

Xi → Y has P,
(g) there exists an étale covering {Yi → Y }i∈I and for each i ∈ I an étale

covering {Xij → Yi×Y X}j∈Ji such that each morphism Xij → Yi has P.

Proof. The equivalence of (a) and (b) is part of Definition 34.28.3. The equivalence
of (a) and (e) is Lemma 34.28.4 part (2). The equivalence of (a) and (f) is Lemma
34.28.4 part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent
to (g).

It is clear that (c) implies (a). If (a) holds, then for any diagram as in (c) the
morphism f ◦a has P by Definition 34.28.3 part (1), whereupon h has P by Lemma
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34.28.4 part (4). Thus (a) and (c) are equivalent. It is clear that (c) implies (d).
To see that (d) implies (a) assume we have a diagram as in (c) with a : U → X
surjective and h having P. Then b ◦ h has P by Lemma 34.28.4 part (3). Since
{a : U → X} is an étale covering we conclude that f has P by Lemma 34.28.4 part
(1). �

It seems that the result of the following lemma is not a formality, i.e., it actually
uses something about the geometry of étale morphisms.

Lemma 34.28.6. Let P be a property of morphisms of schemes. Assume

(1) P is étale local on the source,
(2) P is étale local on the target, and
(3) P is stable under postcomposing with open immersions: if f : X → Y has
P and Y ⊂ Z is an open subscheme then X → Z has P.

Then P is étale local on the source-and-target.

Proof. Let P be a property of morphisms of schemes which satisfies conditions
(1), (2) and (3) of the lemma. By Lemma 34.22.2 we see that P is stable under
precomposing with étale morphisms. By Lemma 34.18.2 we see that P is stable
under étale base change. Hence it suffices to prove part (3) of Definition 34.28.3
holds.

More precisely, suppose that f : X → Y is a morphism of schemes which satisfies
Definition 34.28.3 part (3)(b). In other words, for every x ∈ X there exists an
étale morphism ax : Ux → X, a point ux ∈ Ux mapping to x, an étale morphism
bx : Vx → Y , and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has
P. The proof of the lemma is complete once we show that f has P. Set U =

∐
Ux,

a =
∐
ax, V =

∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale, a surjective. Note that h has P as each hx does and P is étale local
on the target. Because a is surjective and P is étale local on the source, it suffices
to prove that b◦h has P. This reduces the lemma to proving that P is stable under
postcomposing with an étale morphism.

During the rest of the proof we let f : X → Y be a morphism with property P and
g : Y → Z is an étale morphism. Consider the following statements:

(∅) With no additional assumptions g ◦ f has property P.
(A) Whenever Z is affine g ◦ f has property P.

(AA) Whenever X and Z are affine g ◦ f has property P.
(AAA) Whenever X, Y , and Z are affine g ◦ f has property P.

Once we have proved (∅) the proof of the lemma will be complete.

Claim 1: (AAA)⇒ (AA). Namely, let f : X → Y , g : Y → Z be as above with X, Z
affine. As X is affine hence quasi-compact we can find finitely many affine open Yi ⊂
Y , i = 1, . . . , n such that X =

⋃
i=1,...,n f

−1(Yi). Set Xi = f−1(Yi). By Lemma

34.18.2 each of the morphisms Xi → Yi has P. Hence
∐
i=1,...,nXi →

∐
i=1,...,n Yi

has P as P is étale local on the target. By (AAA) applied to
∐
i=1,...,nXi →
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i=1,...,n Yi and the étale morphism

∐
i=1,...,n Yi → Z we see that

∐
i=1,...,nXi → Z

has P. Now {
∐
i=1,...,nXi → X} is an étale covering, hence as P is étale local on

the source we conclude that X → Z has P as desired.

Claim 2: (AAA) ⇒ (A). Namely, let f : X → Y , g : Y → Z be as above with
Z affine. Choose an affine open covering X =

⋃
Xi. As P is étale local on the

source we see that each f |Xi : Xi → Y has P. By (AA), which follows from (AAA)
according to Claim 1, we see that Xi → Z has P for each i. Since {Xi → X} is an
étale covering and P is étale local on the source we conclude that X → Z has P.

Claim 3: (AAA) ⇒ (∅). Namely, let f : X → Y , g : Y → Z be as above. Choose
an affine open covering Z =

⋃
Zi. Set Yi = g−1(Zi) and Xi = f−1(Yi). By Lemma

34.18.2 each of the morphisms Xi → Yi has P. By (A), which follows from (AAA)
according to Claim 2, we see that Xi → Zi has P for each i. Since P is local on
the target and Xi = (g ◦ f)−1(Zi) we conclude that X → Z has P.

Thus to prove the lemma it suffices to prove (AAA). Let f : X → Y and g : Y → Z
be as above X,Y, Z affine. Note that an étale morphism of affines has universally
bounded fibres, see Morphisms, Lemma 28.37.6 and Lemma 28.50.8. Hence we can
do induction on the integer n bounding the degree of the fibres of Y → Z. See
Morphisms, Lemma 28.50.7 for a description of this integer in the case of an étale
morphism. If n = 1, then Y → Z is an open immersion, see Lemma 34.21.2, and
the result follows from assumption (3) of the lemma. Assume n > 1.

Consider the following commutative diagram

X ×Z Y

��

fY

// Y ×Z Y

��

pr
// Y

��
X

f // Y
g // Z

Note that we have a decomposition into open and closed subschemes Y ×Z Y =
∆Y/Z(Y )qY ′, see Morphisms, Lemma 28.36.13. As a base change the degrees of the
fibres of the second projection pr : Y ×Z Y → Y are bounded by n, see Morphisms,
Lemma 28.50.4. On the other hand, pr|∆(Y ) : ∆(Y ) → Y is an isomorphism and
every fibre has exactly one point. Thus, on applying Morphisms, Lemma 28.50.7
we conclude the degrees of the fibres of the restriction pr|Y ′ : Y ′ → Y are bounded
by n− 1. Set X ′ = f−1

Y (Y ′). Picture

X qX ′
fqf ′

// ∆(Y )q Y ′ // Y

X ×Z Y
fY // Y ×Z Y

pr // Y

As P is étale local on the target and hence stable under étale base change (see
Lemma 34.18.2) we see that fY has P. Hence, as P is étale local on the source,
f ′ = fY |X′ has P. By induction hypothesis we see that X ′ → Y has P. As P
is local on the source, and {X → X ×Z Y,X ′ → X ×Y Z} is an étale covering,
we conclude that pr ◦ fY has P. Note that g ◦ f can be viewed as a morphism
g ◦ f : X → g(Y ). As pr ◦ fY is the pullback of g ◦ f : X → g(Y ) via the étale
covering {Y → g(Y )}, and as P is étale local on the target, we conclude that
g ◦ f : X → g(Y ) has property P. Finally, applying assumption (3) of the lemma
once more we conclude that g ◦ f : X → Z has property P. �
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Remark 34.28.7. Using Lemma 34.28.6 and the work done in the earlier sections
of this chapter it is easy to make a list of types of morphisms which are étale local
on the source-and-target. In each case we list the lemma which implies the property
is étale local on the source and the lemma which implies the property is étale local
on the target. In each case the third assumption of Lemma 34.28.6 is trivial to
check, and we omit it. Here is the list:

(1) flat, see Lemmas 34.23.1 and 34.19.13,
(2) locally of finite presentation, see Lemmas 34.24.1 and 34.19.9,
(3) locally finite type, see Lemmas 34.24.2 and 34.19.8,
(4) universally open, see Lemmas 34.24.4 and 34.19.4,
(5) syntomic, see Lemmas 34.25.1 and 34.19.24,
(6) smooth, see Lemmas 34.26.1 and 34.19.25,
(7) étale, see Lemmas 34.27.1 and 34.19.27,
(8) locally quasi-finite, see Lemmas 34.27.2 and 34.19.22,
(9) unramified, see Lemmas 34.27.3 and 34.19.26,

(10) G-unramified, see Lemmas 34.27.3 and 34.19.26, and
(11) add more here as needed.

Remark 34.28.8. At this point we have three possible definitions of what it means
for a property P of morphisms to be “étale local on the source and target”:

(ST) P is étale local on the source and P is étale local on the target,
(DM) (the definition in the paper [DM69, Page 100] by Deligne and Mumford)

for every diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows we have P(h)⇔ P(f), and
(SP) P is étale local on the source-and-target.

In this section we have seen that (SP) ⇒ (DM) ⇒ (ST). The Examples 34.28.1
and 34.28.2 show that neither implication can be reversed. Finally, Lemma 34.28.6
shows that the difference disappears when looking at properties of morphisms which
are stable under postcomposing with open immersions, which in practice will always
be the case.

34.29. Properties of morphisms of germs local on source-and-target

In this section we discuss the analogue of the material in Section 34.28 for mor-
phisms of germs of schemes.

Definition 34.29.1. Let Q be a property of morphisms of germs of schemes. We
say Q is étale local on the source-and-target if for any commutative diagram

(U ′, u′)

a

��

h′
// (V ′, v′)

b

��
(U, u)

h // (V, v)

with étale vertical arrows we have Q(h)⇔ Q(h′).
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Lemma 34.29.2. Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Consider the property Q of morphisms of germs defined
by the rule

Q((X,x)→ (S, s))⇔ there exists a representative U → S which has P
Then Q is étale local on the source-and-target as in Definition 34.29.1.

Proof. We first remark that as P is étale local on the source, see Lemma 34.28.4,
if (X,x)→ (S, s) has P, then there are arbitrarily small neighbourhoods U of x in
X such that a representative U → S of (X,x) → (S, s) has P. We will use this
without further mention. Let

(U ′, u′)
h′
//

a

��

(V ′, v′)

b

��
(U, u)

h // (V, v)

be as in Definition 34.29.1. We will use a rather pedantic notation in order to
distinguish between morphisms of germs and their representatives in this proof.

If P(h) holds, then P holds for a representative h1 : U1 → V of h. Let a1 : U ′1 → U
be a representative of a which is étale with a1(U ′1) ⊂ U1. As P is stable under
precomposing with étale morphisms we see that h1 ◦a1 : U ′1 → V has P. Moreover,
h1 ◦ a1 : U ′1 → V is a representative of b ◦ h′ by the commutativity of the diagram.
Choose a representative b1 : V ′1 → V of b. Choose a representative h′1 : U ′2 → V ′

with h′1(U ′1) ⊂ V ′1 , U ′2 ⊂ U ′1, and (h1 ◦ a1)|U ′2 = b1 ◦ h′1. Then we see that b1 ◦ h′1
has P. Hence h′ has P by Lemma 34.28.4 part (4).

Conversely, suppose P(h′) holds. Choose a representative b1 : V ′1 → V of b. Choose
a representative h′1 : U ′1 → V ′ with P and with h′1(U ′1) ⊂ V ′1 . Then b1 ◦ h′1 has
P by Lemma 34.28.4 part (3). Moreover, b1 ◦ h′1 : U ′1 → V is a representative of
h ◦ a by the commutativity of the diagram. Choose a representative h1 : U1 → V
of h. Choose a representative a1 : U ′2 → U with a1(U ′2) ⊂ U1, U ′2 ⊂ U ′1, and
h1 ◦ a1 = (b1 ◦ h′1)|U ′2 . The we see that h1 ◦ a1 has P. As P is étale local on the
source we conclude that h1|a1(U ′2) has P and we win. �

Lemma 34.29.3. Let P be a property of morphisms of schemes which is étale local
on source-and-target. Let Q be the associated property of morphisms of germs, see
Lemma 34.29.2. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f has property P, and
(2) for every x ∈ X the morphism of germs (X,x) → (Y, f(x)) has property
Q.

Proof. The implication (1) ⇒ (2) is direct from the definitions. The implication
(2) ⇒ (1) also follows from part (3) of Definition 34.28.3. �

A morphism of germs (X,x)→ (S, s) determines a well defined map of local rings.
Hence the following lemma makes sense.

Lemma 34.29.4. The property of morphisms of germs

P((X,x)→ (S, s)) = OS,s → OX,x is flat

is étale local on the source-and-target.
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Proof. Given a diagram as in Definition 34.29.1 we obtain the following diagram
of local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they
are essentially of finite presentation, flat, and unramified (see Algebra, Section
10.138). In particular the vertical maps are faithfully flat, see Algebra, Lemma
10.38.16. Now, if the upper horizontal arrow is flat, then the lower horizontal arrow
is flat by an application of Algebra, Lemma 10.38.9 with R = OV,v, S = OU,u and
M = OU ′,u′ . If the lower horizontal arrow is flat, then the ring map

OV ′,v′ ⊗OV,v OU,u ←− OV ′,v′

is flat by Algebra, Lemma 10.38.6. And the ring map

OU ′,u′ ←− OV ′,v′ ⊗OV,v OU,u

is a localization of a map between étale ring extensions of OU,u, hence flat by
Algebra, Lemma 10.138.9. �

Lemma 34.29.5. Consider a commutative diagram of morphisms of schemes

U ′ //

��

V ′

��
U // V

with étale vertical arrows and a point v′ ∈ U ′ mapping to v ∈ U . Then the morphism
of fibres U ′v′ → Uv is étale.

Proof. Note that U ′v → Uv is étale as a base change of the étale morphism U ′ → U .
The scheme U ′v is a scheme over V ′v . By Morphisms, Lemma 28.37.7 the scheme
V ′v is a disjoint union of spectra of finite separable field extensions of κ(v). One of
these is v′ = Spec(κ(v′)). Hence U ′v′ is an open and closed subscheme of U ′v and it
follows that U ′v′ → U ′v → Uv is étale (as a composition of an open immersion and
an étale morphism, see Morphisms, Section 28.37). �

Given a morphism of germs of schemes (X,x) → (S, s) we can define the fibre as
the isomorphism class of germs (Us, x) where U → S is any representative. We will
often abuse notation and just write (Xs, x).

Lemma 34.29.6. Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pd((X,x)→ (S, s)) = the local ring OXs,x of the fibre has dimension d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 34.29.1 we obtain an étale morphism of
fibres U ′v′ → Uv mapping u′ to u, see Lemma 34.29.5. Hence the result follows from
Lemma 34.17.3. �
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Lemma 34.29.7. Let r ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pr((X,x)→ (S, s))⇔ trdegκ(s)κ(x) = r

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 34.29.1 we obtain the following diagram
of local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they
are unramified (see Algebra, Section 10.138). Hence κ(u) ⊂ κ(u′) and κ(v) ⊂ κ(v′)
are finite separable field extensions. Thus we have trdegκ(v)κ(u) = trdegκ(v′)κ(u)
which proves the lemma. �

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of
the dimensions of open neighbourhoods of x in X, and any small enough open
neighbourhood has this dimension. Hence this is an invariant of the isomorphism
class of the germ. We denote this simply dimx(X).

Lemma 34.29.8. Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pd((X,x)→ (S, s))⇔ dimx(Xs) = d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 34.29.1 we obtain an étale morphism of
fibres U ′v′ → Uv mapping u′ to u, see Lemma 34.29.5. Hence now the equality
dimu(Uv) = dimu′(U

′
v′) follows from Lemma 34.17.2. �

34.30. Descent data for schemes over schemes

Most of the arguments in this section are formal relying only on the definition of a
descent datum. In Simplicial Spaces, Section 64.8 we will examine the relationship
with simplicial schemes which will somewhat clarify the situation.

Definition 34.30.1. Let f : X → S be a morphism of schemes.

(1) Let V → X be a scheme over X. A descent datum for V/X/S is an
isomorphism ϕ : V ×S X → X ×S V of schemes over X ×S X satisfying
the cocycle condition that the diagram

V ×S X ×S X
ϕ01

((

ϕ02

// X ×S X ×S V

X ×S V ×S X

ϕ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/X,ϕ) is a descent datum relative to X → S.
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(3) A morphism f : (V/X,ϕ)→ (V ′/X,ϕ′) of descent data relative to X → S
is a morphism f : V → V ′ of schemes over X such that the diagram

V ×S X ϕ
//

f×idX
��

X ×S V

idX×f
��

V ′ ×S X
ϕ′ // X ×S V ′

commutes.

There are all kinds of “miraculous” identities which arise out of the definition above.
For example the pullback of ϕ via the diagonal morphism ∆ : X → X ×S X can
be seen as a morphism ∆∗ϕ : V → V . This because X ×∆,X×SX (V ×S X) = V
and also X ×∆,X×SX (X ×S V ) = V . In fact, ∆∗ϕ is equal to the identity. This is
a good exercise if you are unfamiliar with this material.

Remark 34.30.2. Let X → S be a morphism of schemes. Let (V/X,ϕ) be a
descent datum relative to X → S. We may think of the isomorphism ϕ as an
isomorphism

(X ×S X)×pr0,X V −→ (X ×S X)×pr1,X V

of schemes over X ×S X. So loosely speaking one may think of ϕ as a map ϕ :
pr∗0V → pr∗1V

7. The cocycle condition then says that pr∗02ϕ = pr∗12ϕ ◦ pr∗01ϕ. In
this way it is very similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

Definition 34.30.3. Let S be a scheme. Let {Xi → S}i∈I be a family of mor-
phisms with target S.

(1) A descent datum (Vi, ϕij) relative to the family {Xi → S} is given by a
scheme Vi overXi for each i ∈ I, an isomorphism ϕij : Vi×SXj → Xi×SVj
of schemes over Xi×SXj for each pair (i, j) ∈ I2 such that for every triple
of indices (i, j, k) ∈ I3 the diagram

Vi ×S Xj ×S Xk

pr∗01ϕij

))

pr∗02ϕik

// Xi ×S Xj ×S Vk

Xi ×S Vj ×S Xk

pr∗12ϕjk
55

of schemes over Xi ×S Xj ×S Xk commutes (with obvious notation).
(2) A morphism ψ : (Vi, ϕij)→ (V ′i , ϕ

′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of Xi-schemes ψi : Vi → V ′i such that all the
diagrams

Vi ×S Xj ϕij
//

ψi×id

��

Xi ×S Vj

id×ψj
��

V ′i ×S Xj

ϕ′ij // Xi ×S V ′j
commute.

7Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions
34.30.1 and 34.30.3 we should have the opposite direction to what was done in Definition 34.2.1

by the general principle that “functions” and “spaces” are dual.
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This is the notion that comes up naturally for example when the question arises
whether the fibred category of relative curves is a stack in the fpqc topology (it
isn’t – at least not if you stick to schemes).

Remark 34.30.4. Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S. Let (Vi, ϕij) be a descent datum relative to {Xi → S}. We may
think of the isomorphisms ϕij as isomorphisms

(Xi ×S Xj)×pr0,Xi Vi −→ (Xi ×S Xj)×pr1,Xj Vj

of schemes over Xi ×S Xj . So loosely speaking one may think of ϕij as an iso-
morphism pr∗0Vi → pr∗1Vj over Xi ×S Xj . The cocycle condition then says that
pr∗02ϕik = pr∗12ϕjk ◦ pr∗01ϕij . In this way it is very similar to the case of a descent
datum on quasi-coherent sheaves.

The reason we will usually work with the version of a family consisting of a single
morphism is the following lemma.

Lemma 34.30.5. Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S. Set X =

∐
i∈I Xi, and consider it as an S-scheme. There is a

canonical equivalence of categories

category of descent data
relative to the family {Xi → S}i∈I

−→ category of descent data
relative to X/S

which maps (Vi, ϕij) to (V, ϕ) with V =
∐
i∈I Vi and ϕ =

∐
ϕij.

Proof. Observe that X ×S X =
∐
ij Xi ×S Xj and similarly for higher fibre prod-

ucts. Giving a morphism V → X is exactly the same as giving a family Vi → Xi.
And giving a descent datum ϕ is exactly the same as giving a family ϕij . �

Lemma 34.30.6. Pullback of descent data for schemes over schemes.

(1) Let

X ′
f
//

a′

��

X

a

��
S′

h // S

be a commutative diagram of morphisms of schemes. The construction

(V → X,ϕ) 7−→ f∗(V → X,ϕ) = (V ′ → X ′, ϕ′)

where V ′ = X ′ ×X V and where ϕ′ is defined as the composition

V ′ ×S′ X ′ (X ′ ×X V )×S′ X ′ (X ′ ×S′ X ′)×X×SX (V ×S X)

id×ϕ
��

X ′ ×S′ V ′ X ′ ×S′ (X ′ ×X V ) (X ′ ×S X ′)×X×SX (X ×S V )

defines a functor from the category of descent data relative to X → S to
the category of descent data relative to X ′ → S′.

(2) Given two morphisms fi : X ′ → X, i = 0, 1 making the diagram commute
the functors f∗0 and f∗1 are canonically isomorphic.
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Proof. We omit the proof of (1), but we remark that the morphism ϕ′ is the
morphism (f × f)∗ϕ in the notation introduced in Remark 34.30.2. For (2) we
indicate which morphism f∗0V → f∗1V gives the functorial isomorphism. Namely,
since f0 and f1 both fit into the commutative diagram we see there is a unique
morphism r : X ′ → X ×S X with fi = pri ◦ r. Then we take

f∗0V = X ′ ×f0,X V

= X ′ ×pr0◦r,X V

= X ′ ×r,X×SX (X ×S X)×pr0,X V
ϕ−→ X ′ ×r,X×SX (X ×S X)×pr1,X V

= X ′ ×pr1◦r,X V

= X ′ ×f1,X V

= f∗1V

We omit the verification that this works. �

Definition 34.30.7. With S, S′, X,X ′, f, a, a′, h as in Lemma 34.30.6 the functor

(V, ϕ) 7−→ f∗(V, ϕ)

constructed in that lemma is called the pullback functor on descent data.

Lemma 34.30.8 (Pullback of descent data for schemes over families). Let U =
{Ui → S′}i∈I and V = {Vj → S}j∈J be families of morphisms with fixed target.
Let α : I → J , h : S′ → S and gi : Ui → Vα(i) be a morphism of families of maps
with fixed target, see Sites, Definition 7.8.1.

(1) Let (Yj , ϕjj′) be a descent datum relative to the family {Vj → S′}. The
system (

g∗i Yα(i), (gi × gi′)∗ϕα(i)α(i′)

)
(with notation as in Remark 34.30.4) is a descent datum relative to V.

(2) This construction defines a functor between descent data relative to U and
descent data relative to V.

(3) Given a second α′ : I → J , h′ : S′ → S and g′i : Ui → Vα′(i) morphism of
families of maps with fixed target, then if h = h′ the two resulting functors
between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 34.30.5, with the pullback functors con-
structed in Lemma 34.30.6.

Proof. This follows from Lemma 34.30.6 via the correspondence of Lemma 34.30.5.
�

Definition 34.30.9. With U = {Ui → S′}i∈I , V = {Vj → S}j∈J , α : I → J ,
h : S′ → S, and gi : Ui → Vα(i) as in Lemma 34.30.8 the functor

(Yj , ϕjj′) 7−→ (g∗i Yα(i), (gi × gi′)∗ϕα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

If U and V have the same target S, and if U refines V (see Sites, Definition 7.8.1)
but no explicit pair (α, gi) is given, then we can still talk about the pullback functor
since we have seen in Lemma 34.30.8 that the choice of the pair does not matter
(up to a canonical isomorphism).
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Definition 34.30.10. Let S be a scheme. Let f : X → S be a morphism of
schemes.

(1) Given a scheme U over S we have the trivial descent datum of U relative
to id : S → S, namely the identity morphism on U .

(2) By Lemma 34.30.6 we get a canonical descent datum on X ×S U relative
to X → S by pulling back the trivial descent datum via f . We often
denote (X ×S U, can) this descent datum.

(3) A descent datum (V, ϕ) relative to X/S is is called effective if (V, ϕ) is
isomorphic to the canonical descent datum (X×SU, can) for some scheme
U over S.

Thus being effective means there exists a scheme U over S and an isomorphism
ψ : V → X ×S U of X-schemes such that ϕ is equal to the composition

V ×S X
ψ×idX−−−−→ X ×S U ×S X = X ×S X ×S U

idX×ψ−1

−−−−−−→ X ×S V

Definition 34.30.11. Let S be a scheme. Let {Xi → S} be a family of morphisms
with target S.

(1) Given a scheme U over S we have a canonical descent datum on the family
of schemes Xi×SU by pulling back the trivial descent datum for U relative
to {id : S → S}. We denote this descent datum (Xi ×S U, can).

(2) A descent datum (Vi, ϕij) relative to {Xi → S} is called effective if there
exists a scheme U over S such that (Vi, ϕij) is isomorphic to (Xi×SU, can).

34.31. Fully faithfulness of the pullback functors

It turns out that the pullback functor between descent data for fpqc-coverings is
fully faithful. In other words, morphisms of schemes satisfy fpqc descent. The
goal of this section is to prove this. The reader is encouraged instead to prove this
him/herself. The key is to use Lemma 34.9.3.

Lemma 34.31.1. A surjective and flat morphism is an epimorphism in the category
of schemes.

Proof. Suppose we have h : X ′ → X surjective and flat and a, b : X → Y mor-
phisms such that a ◦ h = b ◦ h. As h is surjective we see that a and b agree on
underlying topological spaces. Pick x′ ∈ X ′ and set x = h(x′) and y = a(x) = b(x).
Consider the local ring maps

a]x, b
]
x : OY,y → OX,x

These become equal when composed with the flat local homomorphism h]x′ : OX,x →
OX′,x′ . Since a flat local homomorphism is faithfully flat (Algebra, Lemma 10.38.16)

we conclude that h]x′ is injective. Hence a]x = b]x which implies a = b as desired. �

Lemma 34.31.2. Let h : S′ → S be a surjective, flat morphism of schemes. The
base change functor

Sch/S −→ Sch/S′, X 7−→ S′ ×S X

is faithful.
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Proof. Let X1, X2 be schemes over S. Let α, β : X2 → X1 be morphisms over S.
If α, β base change to the same morphism then we get a commutative diagram as
follows

X2

α

��

S′ ×S X2
oo

��

// X2

β

��
X1 S′ ×S X1
oo // X1

Hence it suffices to show that S′ ×S X2 → X2 is an epimorphism. As the base
change of a surjective and flat morphism it is surjective and flat (see Morphisms,
Lemmas 28.11.4 and 28.26.7). Hence the lemma follows from Lemma 34.31.1. �

Lemma 34.31.3. In the situation of Lemma 34.30.6 assume that f : X ′ → X is
surjective and flat. Then the pullback functor is faithful.

Proof. Let (Vi, ϕi), i = 1, 2 be descend data for X → S. Let α, β : V1 → V2 be
morphisms of descent data. Suppose that f∗α = f∗β. Our task is to show that
α = β. Note that α, β are morphisms of schemes over X, and that f∗α, f∗β are
simply the base changes of α, β to morphisms over X ′. Hence the lemma follows
from Lemma 34.31.2. �

Here is the key lemma of this section.

Lemma 34.31.4. In the situation of Lemma 34.30.6 assume

(1) {f : X ′ → X} is an fpqc covering (for example if f is surjective, flat, and
quasi-compact), and

(2) f × f : X ′ ×S′ X ′ → X ×S X is surjective and flat8.

Then the pullback functor is fully faithful.

Proof. Assumption (1) implies that f is surjective and flat. Hence the pullback
functor is faithful by Lemma 34.31.3. Let (V, ϕ) and (W,ψ) be two descent data
relative to X → S. Set (V ′, ϕ′) = f∗(V, ϕ) and (W ′, ψ′) = f∗(W,ψ). Let α′ : V ′ →
W ′ be a morphism of descent data for X ′ over S′. We have to show there exists a
morphism α : V →W of descent data for X over S whose pullback is α′.

Recall that V ′ is the base change of V by f and that ϕ′ is the base change of ϕ by
f × f (see Remark 34.30.2). By assumption the diagram

V ′ ×S′ X ′
ϕ′
//

α′×id

��

X ′ ×S′ V ′

id×α′

��
W ′ ×S′ X ′

ψ′ // X ′ ×S′ W ′

commutes. We claim the two compositions

V ′ ×V V ′
pri // V ′

α′ // W ′ // W , i = 0, 1

are the same. The reader is advised to prove this themselves rather than read the
rest of this paragraph. (Please email if you find a nice clean argument.) Let v0, v1

be points of V ′ which map to the same point v ∈ V . Let xi ∈ X ′ be the image of vi,
and let x be the point of X which is the image of v in X. In other words, vi = (xi, v)
in V ′ = X ′ ×X V . Write ϕ(v, x) = (x, v′) for some point v′ of V . This is possible

8This follows from (1) if S = S′.
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because ϕ is a morphism over X ×S X. Denote v′i = (xi, v
′) which is a point of

V ′. Then a calculation (using the definition of ϕ′) shows that ϕ′(vi, xj) = (xi, v
′
j).

Denote wi = α′(vi) and w′i = α′(v′i). Now we may write wi = (xi, ui) for some
point ui of W , and w′i = (xi, u

′
i) for some point u′i of W . The claim is equivalent to

the assertion: u0 = u1. A formal calculation using the definition of ψ′ (see Lemma
34.30.6) shows that the commutativity of the diagram displayed above says that

((xi, xj), ψ(ui, x)) = ((xi, xj), (x, u
′
j))

as points of (X ′ ×S′ X ′) ×X×SX (X ×S W ) for all i, j ∈ {0, 1}. This shows that
ψ(u0, x) = ψ(u1, x) and hence u0 = u1 by taking ψ−1. This proves the claim
because the argument above was formal and we can take scheme points (in other
words, we may take (v0, v1) = idV ′×V V ′).

At this point we can use Lemma 34.9.3. Namely, {V ′ → V } is a fpqc covering
as the base change of the morphism f : X ′ → X. Hence, by Lemma 34.9.3 the
morphism α′ : V ′ → W ′ → W factors through a unique morphism α : V → W
whose base change is necessarily α′. Finally, we see the diagram

V ×S X ϕ
//

α×id

��

X ×S V

id×α
��

W ×S X
ψ // X ×S W

commutes because its base change to X ′×S′X ′ commutes and the morphism X ′×S′
X ′ → X ×S X is surjective and flat (use Lemma 34.31.2). Hence α is a morphism
of descent data (V, ϕ)→ (W,ψ) as desired. �

The following two lemmas have been obsoleted by the improved exposition of the
previous material. But they are still true!

Lemma 34.31.5. Let X → S be a morphism of schemes. Let f : X → X be a
selfmap of X over S. In this case pullback by f is isomorphic to the identity functor
on the category of descent data relative to X → S.

Proof. This is clear from Lemma 34.30.6 since it tells us that f∗ ∼= id∗. �

Lemma 34.31.6. Let f : X ′ → X be a morphism of schemes over a base scheme
S. Assume there exists a morphism g : X → X ′ over S, for example if f has
a section. Then the pullback functor of Lemma 34.30.6 defines an equivalence of
categories between the category of descent data relative to X/S and X ′/S.

Proof. Let g : X → X ′ be a morphism over S. Lemma 34.31.5 above shows that
the functors f∗ ◦g∗ = (g◦f)∗ and g∗ ◦f∗ = (f ◦g)∗ are isomorphic to the respective
identity functors as desired. �

Lemma 34.31.7. Let f : X → X ′ be a morphism of schemes over a base scheme
S. Assume X → S is surjective and flat. Then the pullback functor of of Lemma
34.30.6 is a faithful functor from the category of descent data relative to X ′/S to
the category of descent data relative to X/S.

Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism
has a section, hence induces an equivalence of categories of descent data by Lemma
34.31.6. The second morphism is surjective and flat, hence induces a faithful functor
by Lemma 34.31.3. �
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Lemma 34.31.8. Let f : X → X ′ be a morphism of schemes over a base scheme
S. Assume {X → S} is an fpqc covering (for example if f is surjective, flat and
quasi-compact). Then the pullback functor of of Lemma 34.30.6 is a fully faithful
functor from the category of descent data relative to X ′/S to the category of descent
data relative to X/S.

Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism has
a section, hence induces an equivalence of categories of descent data by Lemma
34.31.6. The second morphism is an fpqc covering hence induces a fully faithful
functor by Lemma 34.31.4. �

Lemma 34.31.9. Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj →
S}j∈J , be families of morphisms with target S. Let α : I → J , id : S → S and
gi : Ui → Vα(i) be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1. Assume that for each j ∈ J the family {gi : Ui → Vj}α(i)=j is an
fpqc covering of Vj. Then the pullback functor

descent data relative to V −→ descent data relative to U
of Lemma 34.30.8 is fully faithful.

Proof. Consider the morphism of schemes

g : X =
∐

i∈I
Ui −→ Y =

∐
j∈J

Vj

over S which on the ith component maps into the α(i)th component via the mor-
phism gα(i). We claim that {g : X → Y } is an fpqc covering of schemes. Namely,
by Topologies, Lemma 33.8.3 for each j the morphism {

∐
α(i)=j Ui → Vj} is an fpqc

covering. Thus for every affine open V ⊂ Vj (which we may think of as an affine
open of Y ) we can find finitely many affine opens W1, . . . ,Wn ⊂

∐
α(i)=j Ui (which

we may think of as affine opens of X) such that V =
⋃
i=1,...,n g(Wi). This provides

enough affine opens of Y which can be covered by finitely many affine opens of
X so that Topologies, Lemma 33.8.2 part (3) applies, and the claim follows. Let
us write DD(X/S), resp. DD(U) for the category of descent data with respect to
X/S, resp. U , and similarly for Y/S and V. Consider the diagram

DD(Y/S) // DD(X/S)

DD(V)

Lemma 34.30.5

OO

// DD(U)

Lemma 34.30.5

OO

This diagram is commutative, see the proof of Lemma 34.30.8. The vertical arrows
are equivalences. Hence the lemma follows from Lemma 34.31.4 which shows the
top horizontal arrow of the diagram is fully faithful. �

The next lemma shows that, in order to check effectiveness, we may always Zariski
refine the given family of morphisms with target S.

Lemma 34.31.10. Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj →
S}j∈J , be families of morphisms with target S. Let α : I → J , id : S → S and
gi : Ui → Vα(i) be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1. Assume that for each j ∈ J the family {gi : Ui → Vj}α(i)=j is a
Zariski covering (see Topologies, Definition 33.3.1) of Vj. Then the pullback functor

descent data relative to V −→ descent data relative to U
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of Lemma 34.30.8 is an equivalence of categories. In particular, the category of
schemes over S is equivalent to the category of descent data relative to any Zariski
covering of S.

Proof. The functor is faithful and fully faithful by Lemma 34.31.9. Let us indicate
how to prove that it is essentially surjective. Let (Xi, ϕii′) be a descend datum
relative to U . Fix j ∈ J and set Ij = {i ∈ I | α(i) = j}. For i, i′ ∈ Ij note that
there is a canonical morphism

cii′ : Ui ×gi,Vj ,gi′ Ui′ → Ui ×S Ui′ .
Hence we can pullback ϕii′ by this morphism and set ψii′ = c∗ii′ϕii′ for i, i′ ∈ Ij .
In this way we obtain a descent datum (Xi, ψii′) relative to the Zariski covering
{gi : Ui → Vi}i∈Ij . Note that ψii′ is an isomorphism from the open Xi,Ui×VjUi′ of

Xi to the corresponding open of Xi′ . It follows from Schemes, Section 25.14 that
we may glue (Xi, ψii′) into a scheme Yj over Vj . Moreover, the morphisms ϕii′ for
i ∈ Ij and i′ ∈ Ij′ glue to a morphism ϕjj′ : Yj ×S Vj′ → Vj ×S Yj′ satisfying the
cocycle condition (details omitted). Hence we obtain the desired descent datum
(Yj , ϕjj′) relative to V. �

Lemma 34.31.11. Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj →
S}j∈J , be fpqc-coverings of S. If U is a refinement of V, then the pullback functor

descent data relative to V −→ descent data relative to U
is fully faithful. In particular, the category of schemes over S is identified with a
full subcategory of the category of descent data relative to any fpqc-covering of S.

Proof. Consider the fpqc-covering W = {Ui ×S Vj → S}(i,j)∈I×J of S. It is a
refinement of both U and V. Hence we have a 2-commutative diagram of functors
and categories

DD(V)

%%

// DD(U)

yy
DD(W)

Notation as in the proof of Lemma 34.31.9 and commutativity by Lemma 34.30.8
part (3). Hence clearly it suffices to prove the functors DD(V) → DD(W) and
DD(U)→ DD(W) are fully faithful. This follows from Lemma 34.31.9 as desired.

�

Remark 34.31.12. Lemma 34.31.11 says that morphisms of schemes satisfy fpqc
descent. In other words, given a scheme S and schemes X, Y over S the functor

(Sch/S)opp −→ Sets, T 7−→ MorT (XT , YT )

satisfies the sheaf condition for the fpqc topology. The simplest case of this is
the following. Suppose that T → S is a surjective flat morphism of affines. Let
ψ0 : XT → YT be a morphism of schemes over T which is compatible with the
canonical descent data. Then there exists a unique morphism ψ : X → Y whose
base change to T is ψ0. In fact this special case follows in a straightforward manner
from Lemma 34.31.4. And, in turn, that lemma is a formal consequence of the
following two facts: (a) the base change functor by a faithfully flat morphism is
faithful, see Lemma 34.31.2 and (b) a scheme satisfies the sheaf condition for the
fpqc topology, see Lemma 34.9.3.
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Lemma 34.31.13. Let X → S be a surjective, quasi-compact, flat morphism of
schemes. Let (V, ϕ) be a descent datum relative to X/S. Suppose that for all v ∈ V
there exists an open subscheme v ∈ W ⊂ V such that ϕ(W ×S X) ⊂ X ×S W and
such that the descent datum (W,ϕ|W×SX) is effective. Then (V, ϕ) is effective.

Proof. Let V =
⋃
Wi be an open covering with ϕ(Wi×S X) ⊂ X ×SWi and such

that the descent datum (Wi, ϕ|Wi×SX) is effective. Let Ui → S be a scheme and let
αi : (X ×S Ui, can)→ (Wi, ϕ|Wi×SX) be an isomorphism of descent data. For each
pair of indices (i, j) consider the open α−1

i (Wi∩Wj) ⊂ X×SUi. Because everything
is compatible with descent data and since {X → S} is an fpqc covering, we may
apply Lemma 34.9.2 to find an open Vij ⊂ Vj such that α−1

i (Wi ∩Wj) = X ×S Vij .
Now the identity morphism on Wi ∩ Wj is compatible with descent data, hence
comes from a unique morphism ϕij : Uij → Uji over S (see Remark 34.31.12). Then
(Ui, Uij , ϕij) is a glueing data as in Schemes, Section 25.14 (proof omitted). Thus
we may assume there is a scheme U over S such that Ui ⊂ U is open, Uij = Ui∩Uj
and ϕij = idUi∩Uj , see Schemes, Lemma 25.14.1. Pulling back to X we can use the
αi to get the desired isomorphism α : X ×S U → V . �

34.32. Descending types of morphisms

In the following we study the question as to whether descent data for schemes
relative to a fpqc-covering are effective. The first remark to make is that this is
not always the case. We will see this in Algebraic Spaces, Example 47.14.2. Even
projective morphisms do not always satisfy descent for fpqc-coverings, by Examples,
Lemma 82.56.1.

On the other hand, if the schemes we are trying to descend are particularly sim-
ple, then it is sometime the case that for whole classes of schemes descent data
are effective. We will introduce terminology here that describes this phenomenon
abstractly, even though it may lead to confusion if not used correctly later on.

Definition 34.32.1. Let P be a property of morphisms of schemes over a base. Let
τ ∈ {Zariski, fpqc, fppf, étale, smooth, syntomic}. We say morphisms of type P
satisfy descent for τ -coverings if for any τ -covering U : {Ui → S}i∈I (see Topologies,
Section 33.2), any descent datum (Xi, ϕij) relative to U such that each morphism
Xi → Ui has property P is effective.

Note that in each of the cases we have already seen that the functor from schemes
over S to descent data over U is fully faithful (Lemma 34.31.11 combined with
the results in Topologies that any τ -covering is also a fpqc-covering). We have
also seen that descent data are always effective with respect to Zariski coverings
(Lemma 34.31.10). It may be prudent to only study the notion just introduced
when P is either stable under any base change or at least local on the base in the
τ -topology (see Definition 34.18.1) in order to avoid erroneous arguments (relying
on P when descending halfway).

Here is the obligatory lemma reducing this question to the case of a covering given
by a single morphism of affines.

Lemma 34.32.2. Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, étale, smooth, syntomic}. Suppose that

(1) P is stable under any base change (see Schemes, Definition 25.18.3), and
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(2) for any surjective morphism of affines X → S which is flat, flat of finite
presentation, étale, smooth or syntomic depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic, any descent datum (V, ϕ) relative to X
over S such that P holds for V → X is effective.

Then morphisms of type P satisfy descent for τ -coverings.

Proof. Let S be a scheme. Let U = {ϕi : Ui → S}i∈I be a τ -covering of S.
Let (Xi, ϕii′) be a descent datum relative to U and assume that each morphism
Xi → Ui has property P. We have to show there exists a scheme X → S such that
(Xi, ϕii′) ∼= (Ui ×S X, can).

Before we start the proof proper we remark that for any family of morphisms
V : {Vj → S} and any morphism of families V → U , if we pullback the descent
datum (Xi, ϕii′) to a descent datum (Yj , ϕjj′) over V, then each of the morphisms
Yj → Vj has property P also. This is true because we assumed that P is stable
under any base change and the definition of pullback (see Definition 34.30.9). We
will use this without further mention.

First, let us prove the lemma when S is affine. By Topologies, Lemma 33.8.8, 33.7.4,
33.4.4, 33.5.4, or 33.6.4 there exists a standard τ -covering V : {Vj → S}j=1,...,m

which refines U . The pullback functor DD(U) → DD(V) between categories of
descent data is fully faithful by Lemma 34.31.11. Hence it suffices to prove that the
descend datum over the standard τ -covering V is effective. By Lemma 34.30.5 this
reduces to the covering {

∐
j=1,...,m Vj → S} for which we have assumed the result

in property (2) of the lemma. Hence the lemma holds when S is affine.

Assume S is general. Let V ⊂ S be an affine open. By the properties of site
the family UV = {V ×S Ui → V }i∈I is a τ -covering of V . Denote (Xi, ϕii′)V the
restriction (or pullback) of the given descent datum to UV . Hence by what we just
saw we obtain a scheme XV over V whose canonical descent datum with respect to
UV is isomorphic to (Xi, ϕii′)V . Suppose that V ′ ⊂ V is an affine open of V . Then
both XV ′ and V ′ ×V XV have canonical descent data isomorphic to (Xi, ϕii′)V ′ .
Hence, by Lemma 34.31.11 again we obtain a canonical morphism ρVV ′ : XV ′ → XV

over S which identifies XV ′ with the inverse image of V ′ in XV . We omit the
verification that given affine opens V ′′ ⊂ V ′ ⊂ V of S we have ρVV ′′ = ρVV ′ ◦ ρV

′

V ′′ .

By Constructions, Lemma 26.2.1 the data (XV , ρ
V
V ′) glue to a scheme X → S.

Moreover, we are given isomorphisms V ×S X → XV which recover the maps ρVV ′ .
Unwinding the construction of the schemes XV we obtain isomorphisms

V ×S Ui ×S X −→ V ×S Xi

compatible with the maps ϕii′ and compatible with restricting to smaller affine
opens in X. This implies that the canonical descent datum on Ui×SX is isomorphic
to the given descent datum and we win. �

34.33. Descending affine morphisms

In this section we show that “affine morphisms satisfy descent for fpqc-coverings”.
Here is the formal statement.

Lemma 34.33.1. Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering,
see Topologies, Definition 33.8.1. Let (Vi/Xi, ϕij) be a descent datum relative to
{Xi → S}. If each morphism Vi → Xi is affine, then the descent datum is effective.
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Proof. Being affine is a property of morphisms of schemes which is preserved under
any base change, see Morphisms, Lemma 28.13.8. Hence Lemma 34.32.2 applies
and it suffices to prove the statement of the lemma in case the fpqc-covering is given
by a single {X → S} flat surjective morphism of affines. Say X = Spec(A) and
S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, ϕ) be a descent
datum relative to X over S and assume that V → X is affine. Then V → X being
affine implies that V = Spec(B) for some A-algebra B (see Morphisms, Definition
28.13.1). The isomorphism ϕ corresponds to an isomorphism of rings

ϕ] : B ⊗R A←− A⊗R B

as A⊗R A-algebras. The cocycle condition on ϕ says that

B ⊗R A⊗R A A⊗R A⊗R Boo

vv
A⊗R B ⊗R A

hh

is commutative. Inverting these arrows we see that we have a descent datum for
modules with respect to R→ A as in Definition 34.3.1. Hence we may apply Propo-
sition 34.3.9 to obtain an R-module C = Ker(B → A ⊗R B) and an isomorphism
A⊗RC ∼= B respecting descent data. Given any pair c, c′ ∈ C the product cc′ in B
lies in C since the map ϕ is an algebra homomorphism. Hence C is an R-algebra
whose base change to A is isomorphic to B compatibly with descent data. Applying
Spec we obtain a scheme U over S such that (V, ϕ) ∼= (X×S U, can) as desired. �

Lemma 34.33.2. Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering,
see Topologies, Definition 33.8.1. Let (Vi/Xi, ϕij) be a descent datum relative to
{Xi → S}. If each morphism Vi → Xi is a closed immersion, then the descent
datum is effective.

Proof. This is true because a closed immersion is an affine morphism (Morphisms,
Lemma 28.13.9), and hence Lemma 34.33.1 applies. �

34.34. Descending quasi-affine morphisms

In this section we show that “quasi-affine morphisms satisfy descent for fpqc-
coverings”. Here is the formal statement.

Lemma 34.34.1. Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering,
see Topologies, Definition 33.8.1. Let (Vi/Xi, ϕij) be a descent datum relative to
{Xi → S}. If each morphism Vi → Xi is quasi-affine, then the descent datum is
effective.

Proof. Being quasi-affine is a property of morphisms of schemes which is preserved
under any base change, see Morphisms, Lemma 28.14.5. Hence Lemma 34.32.2
applies and it suffices to prove the statement of the lemma in case the fpqc-covering
is given by a single {X → S} flat surjective morphism of affines. Say X = Spec(A)
and S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, ϕ) be a
descent datum relative to X over S and assume that π : V → X is quasi-affine.

According to Morphisms, Lemma 28.14.3 this means that

V −→ Spec
X

(π∗OV ) = W
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is a quasi-compact open immersion of schemes over X. The projections pri : X ×S
X → X are flat and hence we have

pr∗0π∗OV = (π × idX)∗OV×SX , pr∗1π∗OV = (idX × π)∗OX×SV
by flat base change (Cohomology of Schemes, Lemma 29.5.2). Thus the isomor-
phism ϕ : V ×S X → X ×S V (which is an isomorphism over X ×S X) induces an
isomorphism of quasi-coherent sheaves of algebras

ϕ] : pr∗0π∗OV −→ pr∗1π∗OV
on X ×S X. The cocycle condition for ϕ implies the cocycle condition for ϕ]. An-
other way to say this is that it produces a descent datum ϕ′ on the affine scheme W
relative to X over S, which moreover has the property that the morphism V →W
is a morphism of descent data. Hence by Lemma 34.33.1 (or by effectivity of de-
scent for quasi-coherent algebras) we obtain a scheme U ′ → S with an isomorphism
(W,ϕ′) ∼= (X ×S U ′, can) of descent data. We note in passing that U ′ is affine by
Lemma 34.19.16.

And now we can think of V as a (quasi-compact) open V ⊂ X ×S U ′ with the
property that it is stable under the descent datum

can : X ×S U ′ ×S X → X ×S X ×S U ′, (x0, u
′, x1) 7→ (x0, x1, u

′).

In other words (x0, u
′) ∈ V ⇒ (x1, u

′) ∈ V for any x0, x1, u
′ mapping to the same

point of S. Because X → S is surjective we immediately find that V is the inverse
image of a subset U ⊂ U ′ under the morphism X ×S U ′ → U ′. Because X → S
is quasi-compact, flat and surjective also X ×S U ′ → U ′ is quasi-compact flat and
surjective. Hence by Morphisms, Lemma 28.26.10 this subset U ⊂ U ′ is open and
we win. �

34.35. Descent data in terms of sheaves

Here is another way to think about descent data in case of a covering on a site.

Lemma 34.35.1. Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}9. Let Schτ be
a big τ -site. Let S ∈ Ob(Schτ ). Let {Si → S}i∈I be a covering in the site (Sch/S)τ .
There is an equivalence of categories{

descent data (Xi, ϕii′) such that
each Xi ∈ Ob((Sch/S)τ )

}
↔
{

sheaves F on (Sch/S)τ such that
each hSi × F is representable

}
.

Moreover,

(1) the objects representing hSi × F on the right hand side correspond to the
schemes Xi on the left hand side, and

(2) the sheaf F is representable if and only if the corresponding descent datum
(Xi, ϕii′) is effective.

Proof. We have seen in Section 34.9 that representable presheaves are sheaves
on the site (Sch/S)τ . Moreover, the Yoneda lemma (Categories, Lemma 4.3.5)
guarantees that maps between representable sheaves correspond one to one with
maps between the representing objects. We will use these remarks without further
mention during the proof.

9The fact that fpqc is missing is not a typo. See discussion in Topologies, Section 33.8.
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Let us construct the functor from right to left. Let F be a sheaf on (Sch/S)τ such
that each hSi × F is representable. In this case let Xi be a representing object in
(Sch/S)τ . It comes equipped with a morphism Xi → Si. Then both Xi×S Si′ and
Si ×S Xi′ represent the sheaf hSi × F × hSi′ and hence we obtain an isomorphism

ϕii′ : Xi ×S Si′ → Si ×S Xi′

It is straightforward to see that the maps ϕii′ are morphisms over Si ×S Si′ and
satisfy the cocycle condition. The functor from right to left is given by this con-
struction F 7→ (Xi, ϕii′).

Let us construct a functor from left to right. For each i denote Fi the sheaf hXi .
The isomorphisms ϕii′ give isomorphisms

ϕii′ : Fi × hSi′ −→ hSi × Fi′
over hSi × hSi′ . Set F equal to the coequalizer in the following diagram

∐
i,i′ Fi × hSi′

pr0 //

pr1◦ϕii′
//
∐
i Fi

// F

The cocycle condition guarantees that hSi ×F is isomorphic to Fi and hence repre-
sentable. The functor from left to right is given by this construction (Xi, ϕii′) 7→ F .

We omit the verification that these constructions are mutually quasi-inverse func-
tors. The final statements (1) and (2) follow from the constructions. �

Remark 34.35.2. In the statement of Lemma 34.35.1 the condition that hSi × F
is representable is equivalent to the condition that the restriction of F to (Sch/Si)τ
is representable.
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CHAPTER 35

Derived Categories of Schemes

35.1. Introduction

In this chapter we discuss derived categories of modules on schemes. Most of the
material discussed here can be found in [TT90], [BN93], [BV03], and [LN07].
Of course there are many other references.

35.2. Conventions

If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.

If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
space (X,OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

35.3. Derived category of quasi-coherent modules

In this section we discuss the relationship between quasi-coherent modules and all
modules on a scheme X. A reference is [TT90, Appendix B]. By the discussion in
Schemes, Section 25.24 the embedding QCoh(OX) ⊂ Mod(OX) exhibits QCoh(OX)
as a weak Serre subcategory of the category of OX -modules. Denote

DQCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are quasi-coherent, see
Derived Categories, Section 13.13. Thus we obtain a canonical functor

(35.3.0.1) D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (13.13.1.1).

Lemma 35.3.1. Let X be a scheme. Then DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 19.13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Schemes, Section 25.24. �

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

2267
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Lemma 35.3.2. Let X be a scheme. Let E be an object of DQCoh(OX). Then
there exists an inverse system I•n of complexes of OX-modules such that

(1) I• = limn I•n represents E,
(2) I•n is a bounded below complex of injectives,
(3) I• → I•n induces an identification τ≥−nE → I•n in D(OX),
(4) the transition maps I•n+1 → I•n are termwise split surjections, and
(5) I• is a K-injective complex of OX-modules.

Moreover, E is the derived limit of the inverse system of its canonical truncations
τ≥−nE.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine open subsets of X. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all
U ∈ B, see Cohomology of Schemes, Lemma 29.2.2. Thus the lemma follows from
Cohomology, Lemmas 20.31.2 and 20.31.3. �

Lemma 35.3.3. Let X be a scheme. Let F : Mod(OX) → Ab be an additive
functor and N ≥ 0 an integer. Assume that

(1) F commutes with countable direct products,
(2) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX) the maps RpF (E) → RpF (τ≥p−N+1E) are isomor-
phisms.

Proof. By shifting the complex we see it suffices to prove the assertion for p = 0.
Write En = τ≥−nE. We have E = R limEn, see Lemma 35.3.2. Thus RF (E) =
R limRF (En) in D(Ab) by Injectives, Lemma 19.13.6. Thus we have a short exact
sequence

0→ R1 limR−1F (En)→ R0F (E)→ limR0F (En)→ 0

see More on Algebra, Remark 15.61.16. To finish the proof we will show that the
term on the left is zero and that the term on the right equals R0F (EN−1).

We have a distinguished triangle

H−n(E)[n]→ En → En−1 → H−n(E)[n+ 1]

(Derived Categories, Remark 13.12.4) in D(OX). Since H−n(E) is quasi-coherent
we have

RpF (H−n(E)[n]) = Rp+nF (H−n(E)) = 0

for p+ n ≥ N and

RpF (H−n(E)[n+ 1]) = Rp+n+1F (H−n(E)) = 0

for p+ n+ 1 ≥ N . We conclude that

RpF (En)→ RpF (En−1)

is an isomorphism for all n� p and an isomorphism for n ≥ N for p = 0. Thus the
systems RpF (En) all satisfy the ML condition and R1 lim gives zero (see discussion
in More on Algebra, Section 15.61). Moreover, the system R0F (τ≥−nE) is constant
starting with n = N − 1 as desired. �

The following lemma is the key ingredient to many of the results in this chapter.
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Lemma 35.3.4. Let X = Spec(A) be an affine scheme. All the functors in the
diagram

D(QCoh(OX))
(35.3.0.1)

// DQCoh(OX)

RΓ(X,−)xx
D(A)

˜
ff

are equivalences of triangulated categories. Moreover, for E in DQCoh(OX) we have
H0(X,E) = H0(X,H0(E)).

Proof. The functor RΓ(X,−) gives a functor D(OX) → D(A) and hence by re-
striction a functor

(35.3.4.1) RΓ(X,−) : DQCoh(OX) −→ D(A).

We will show this functor is quasi-inverse to (35.3.0.1) via the equivalence between
quasi-coherent modules on X and the category of A-modules.

Elucidation. Denote (Y,OY ) the one point space with sheaf of rings given by A.
Denote π : (X,OX) → (Y,OY ) the obvious morphism of ringed spaces. Then
RΓ(X,−) can be identified with Rπ∗ and the functor (35.3.0.1) via the equivalence
Mod(OY ) = ModA = QCoh(OX) can be identified with Lπ∗ = π∗ =˜(see Modules,
Lemma 17.10.5 and Schemes, Lemmas 25.7.1 and 25.7.5). Thus the functors

D(A)
//
DQCoh(OX)oo

are adjoint (by Cohomology, Lemma 20.29.1). In particular we obtain canonical
adjunction mappings

a : ˜RΓ(X,E) −→ E

for E in D(OX) and

b : M• −→ RΓ(X, M̃•)

for M• a complex of A-modules.

Let E be an object of DQCoh(OX). We may apply Lemma 35.3.3 to the functor
F (−) = Γ(X,−) with N = 1 by Cohomology of Schemes, Lemma 29.2.2. Hence

R0Γ(X,E) = R0Γ(X, τ≥0E) = Γ(X,H0(E))

(the last equality by definition of the canonical truncation). Using this we will show
that the adjunction mappings a and b induce isomorphisms H0(a) and H0(b). Thus
a and b are quasi-isomorphisms (as the statement is invariant under shifts) and the
lemma is proved.

In both cases we use that ˜ is an exact functor (Schemes, Lemma 25.5.4). Namely,
this implies that

H0
(

˜RΓ(X,E)
)

= ˜R0Γ(X,E) = ˜Γ(X,H0(E))

which is equal to H0(E) because H0(E) is quasi-coherent. Thus H0(a) is an iso-
morphism. For the other direction we have

H0(RΓ(X, M̃•)) = R0Γ(X, M̃•) = Γ(X,H0(M̃•)) = Γ(X, H̃0(M•)) = H0(M•)

which proves that H0(b) is an isomorphism. �
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Lemma 35.3.5. Let X = Spec(A) be an affine scheme. If K• is a K-flat complex

of A-modules, then K̃• is a K-flat complex of OX-modules.

Proof. By More on Algebra, Lemma 15.45.5 we see that K•⊗AAp is a K-flat com-
plex of Ap-modules for every p ∈ Spec(A). Hence we conclude from Cohomology,

Lemma 20.27.4 (and Schemes, Lemma 25.5.4) that K̃• is K-flat. �

Lemma 35.3.6. Let f : Y → X be a morphism of schemes.

(1) The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If X and Y are affine and f is given by the ring map A → B, then the

diagram

D(B) // DQCoh(OY )

D(A) //

−⊗L
AB

OO

DQCoh(OX)

Lf∗

OO

commutes.

Proof. We first prove the diagram

D(B) // D(OY )

D(A) //

−⊗L
AB

OO

D(OX)

Lf∗

OO

commutes. This is clear from Lemma 35.3.5 and the constructions of the functors
in question. To see (1) let E be an object of DQCoh(OX). To see that Lf∗E has
quasi-coherent cohomology sheaves we may work locally on X. Note that Lf∗ is
compatible with restricting to open subschemes. Hence we can assume that f is a
morphism of affine schemes as in (2). Then we can apply Lemma 35.3.4 to see that
E comes from a complex of A-modules. By the commutativity of the first diagram
of the proof the same holds for Lf∗E and we conclude (1) is true. �

Lemma 35.3.7. Let X be a scheme.

(1) For objects K,L of DQCoh(OX) the derived tensor product K⊗L
OX L is in

DQCoh(OX).
(2) If X = Spec(A) is affine then

M̃• ⊗L
OX K̃

• = ˜M• ⊗L
A K

•

for any pair of complexes of A-modules K•, M•.

Proof. The equality of (2) follows immediately from Lemma 35.3.5 and the con-
struction of the derived tensor product. To see (1) letK,L be objects ofDQCoh(OX).
To check that K ⊗L L is in DQCoh(OX) we may work locally on X, hence we may
assume X = Spec(A) is affine. By Lemma 35.3.4 we may represent K and L by
complexes of A-modules. Then part (2) implies the result. �
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35.4. Total direct image

The following lemma is the analogue of Cohomology of Schemes, Lemma 29.4.4.

Lemma 35.4.1. Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OS).
(2) If S is quasi-compact, there exists an integer N = N(X,S, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m > N .

(3) In fact, if S is quasi-compact we can find N = N(X,S, f) such that for
every morphism of schemes S′ → S the same conclusion holds for the
functor R(f ′)∗ where f ′ : X ′ → S′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that
Rf∗E has quasi-coherent cohomology sheaves. This question is local on S, hence
we may assume S is quasi-compact. Pick N = N(X,S, f) as in Cohomology of
Schemes, Lemma 29.4.4. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F
and all p ≥ N . In particular, for any affine open U ⊂ S we have Hp(f−1(U),F) = 0
for p ≥ N , see Cohomology of Schemes, Lemma 29.4.5.

Let E be an object of DQCoh(OX). Choose I• = lim I•n as in Lemma 35.3.2. As
I• is K-injective Rf∗E is represented by f∗I• = lim f∗I•n. Let U ⊂ S be any affine
open. The cohomology Hm(f∗I•n(U)) of

f∗Im−1
n (U)→ f∗Imn (U)→ f∗Im+1

n (U)

is equal toHm(f−1(U), τ≥−nE) because I•n is a bounded below complex of injectives
representing τ≥−nE. We have a distinguished triangle

H−n(E)[n]→ τ≥−nE → τ≥−n+1E → H−n(E)[n+ 1]

(Derived Categories, Remark 13.12.4) in D(OX). Since H−n(E) is quasi-coherent
we have Hm(f−1(U), H−n(E)[n]) = 0 for n+m ≥ N by our choice of N . Similarly,
Hm(f−1(U), H−n(E)[n+ 1]) = 0 for n+m+ 1 ≥ N . We conclude that

Hm(f∗I•n(U))→ Hm(f∗I•n−1(U))

is an isomorphism for all n ≥ N −m. Thus Cohomology, Lemma 20.31.1 applies to
show that the mth cohomology sheaf of lim f∗I•n agrees with the mth cohomology
sheaf of f∗I•n for n ≥ N −m. Since these cohomology sheaves are quasi-coherent
by Cohomology of Schemes, Lemma 29.4.4 we get (1).

Finally, we show that (2) and (3) hold with our choice of N . Namely, the stabi-
lization proven above gives that Hm(Rf∗E) is equal to Hm(Rf∗(τ≥−nE)) for all n
large enough which means we can work with objects in D+(OX) in order to prove
(2) and (3). In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 13.21.3) and the vanishing of Rpf∗H
q(E) for p ≥ N

to conclude. Some details omitted. �

Lemma 35.4.2. Let f : X → S be a quasi-separated and quasi-compact morphism
of schemes. Then Rf∗ : DQCoh(OX)→ DQCoh(OS) commutes with direct sums.
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Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕
Ei. We want

to show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 35.4.1.
Then R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited.
Observe that τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 13.21.3) to reduce to the case of a direct sum of
quasi-coherent sheaves. This case is handled by Cohomology of Schemes, Lemma
29.6.1. �

Lemma 35.4.3. Let f : X → S be an affine morphism of schemes. Then Rf∗ :
DQCoh(OX)→ DQCoh(OS) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is
an isomorphism if Rf∗α is an isomorphism. We may check this on cohomology
sheaves. In particular, the question is local on S. Hence we may assume S and
therefore X is affine. In this case the statement is clear from the description of
the derived categories DQCoh(OX) and DQCoh(OS) given in Lemma 35.3.4. Some
details omitted. �

Lemma 35.4.4. Let f : X → S be an affine morphism of schemes. For E in
DQCoh(OS) we have Rf∗Lf

∗E = E ⊗L
OS f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Schemes, Lemma 29.2.3). There is a canonical map E⊗Lf∗OX = E⊗LRf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on S. Hence
we may assume S and therefore X is affine. In this case the statement is clear
from the description of the derived categories DQCoh(OX) and DQCoh(OS) and the
functor Lf∗ given in Lemmas 35.3.4 and 35.3.6. Some details omitted. �

35.5. Derived category of coherent modules

Let X be a locally Noetherian scheme. In this case the category Coh(OX) ⊂
Mod(OX) of coherent OX -modules is a weak Serre subcategory, see Homology,
Section 12.9 and Cohomology of Schemes, Lemma 29.9.2. Denote

DCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 13.13. Thus we obtain a canonical functor

(35.5.0.1) D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (13.13.1.1).
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Lemma 35.5.1. Let S be a Noetherian scheme. Let f : X → S be a morphism of
schemes which is locally of finite type. Let E be an object of Db

Coh(OX) such that
the scheme theoretic support of Hi(E) is proper over S for all i. Then Rf∗E is an
object of Db

Coh(OS).

Proof. Consider the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 13.21.3. By assumption and Cohomology of Schemes,
Remark 29.17.3 the sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coherent,
i.e., E ∈ DCoh(OS). Boundedness from below is trivial. Boundedness from above
follows from Cohomology of Schemes, Lemma 29.4.4 or from Lemma 35.4.1. �

35.6. The coherator

Let X be a scheme. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any scheme X and moreover the adjunction mapping QX(F) → F is an iso-
morphism for every quasi-coherent module F , see Properties, Proposition 27.21.4.
Since QX is left exact (as a right adjoint) we can consider its right derived extension

RQX : D(OX) −→ D(QCoh(OX)).

As this functor is constructed by applying QX to a K-injective replacement we see
that RQX is a right adjoint to the canonical functor D(QCoh(OX))→ D(OX).

Lemma 35.6.1. Let f : X → Y be an affine morphism of schemes. Then f∗
defines a derived functor f∗ : D(QCoh(OX)) → D(QCoh(OY )). This functor has
the property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Schemes, Lemma 29.2.3. Hence f∗ defines a derived functor f∗ : D(QCoh(OX))→
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 13.17.8. For any complex ofOX -modules F• there is a canonical
map f∗F• → Rf∗F•. To finish the proof we show this is a quasi-isomorphism when
F• is a complex with each Fn quasi-coherent. As the statement is invariant under
shifts it suffices to show that H0(f∗(F•)) → R0f∗F• is an isomorphism. The
statement is local on Y hence we may assume Y affine. By Lemma 35.4.1 we
have R0f∗F• = R0f∗τ≥−nF• for all sufficiently large n. Thus we may assume
F• bounded below. As each Fn is f∗-acyclic by Cohomology of Schemes, Lemma
29.2.3 we see that f∗F• → Rf∗F• is a quasi-isomorphism by Leray’s acyclicity
lemma (Derived Categories, Lemma 13.17.7). �

Lemma 35.6.2. Let f : X → Y be a morphism of schemes. Assume that

(1) f is quasi-compact, quasi-separated, and flat, and
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(2) denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))

the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Then RQY ◦Rf∗ = Φ ◦RQX .

Proof. Since f is quasi-compact and quasi-separated, we see that f∗ preserve quasi-
coherence, see Schemes, Lemma 25.24.1. Recall that QCoh(OX) is a Grothendieck
abelian category (Properties, Proposition 27.21.4). Hence any K in D(QCoh(OX))
can be represented by a K-injective complex I• of QCoh(OX), see Injectives, The-
orem 19.12.6. Then we can define Φ(K) = f∗I•.

Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY ))→ D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY )→
D(OX) is left adjoint to Rf∗ : D(OX)→ D(OY ), see Cohomology, Lemma 20.29.1.
Similarly, the functor f∗ : D(QCoh(OY )) → D(QCoh(OX)) is left adjoint to Φ :
D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 13.28.4.

Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)

= HomD(OX)(f
∗A,E)

= HomD(QCoh(OX))(f
∗A,RQX(E))

= HomD(QCoh(OY ))(A,Φ(RQX(E)))

This implies what we want. �

Lemma 35.6.3. Let X = Spec(A) be an affine scheme. Then

(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-
coherent OX-module associated to the A-module Γ(X,F),

(2) RQX : D(OX) → D(QCoh(OX)) is the functor which sends E to the
complex of quasi-coherent OX-modules associated to the object RΓ(X,E)
of D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (35.3.0.1).

Proof. The functor QX is the functor

F 7→ ˜Γ(X,F)

by Schemes, Lemma 25.7.1. This immediately implies (1) and (2). The third
assertion follows from (the proof of) Lemma 35.3.4. �

Definition 35.6.4. Let X be a scheme. Let E be an object of D(OX). Let T ⊂ X
be a closed subset. We say E is supported on T if the cohomology sheaves Hi(E)
are supported on T .
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Proposition 35.6.5. Let X be a quasi-compact scheme with affine diagonal. Then
the functor (35.3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. In this proof we will denote iX : D(QCoh(OX)) → DQCoh(OX) the func-
tor of the lemma. Let E be an object of DQCoh(OX) and let A be an object of
D(QCoh(OX)). We have to show that the adjunction maps

RQX(iX(A))→ A and E → iX(RQX(E))

are isomorphisms. We will prove this by induction on n: the smallest integer n ≥ 0
such that E and iX(A) are supported on a closed subset of X which is contained
in the union of n affine opens of X.

Base case: n = 0. In this case E = 0, hence the map E → iX(RQX(E)) is
an isomorphism. Similarly iX(A) = 0. Thus the cohomology sheaves of iX(A)
are zero. Since the inclusion functor QCoh(OX) → Mod(OX) is fully faithful and
exact, we conclude that the cohomology objects of A are zero, i.e., A = 0 and
RQX(iX(A))→ A is an isomorphism as well.

Induction step. Suppose that E and iX(A) are supported on a closed subset T of
X contained in U1 ∪ . . . ∪ Un with Ui ⊂ X affine open. Set U = Un. The inclusion
morphism j : U → X is flat and affine (Morphisms, Lemma 28.13.11). Consider
the distinguished triangles

A→ j∗(A|U )→ A′ → A[1] and E → Rj∗(E|U )→ E′ → E[1]

where j∗ is as in Lemma 35.6.1. Note that E → Rj∗(E|U ) is a quasi-isomorphism
over U = Un. Since iX◦j∗ = Rj∗◦iU by Lemma 35.6.1 and since iX(A)|U = iU (A|U )
we see that iX(A)→ iX(j∗(A|U )) is a quasi-isomorphism over U . Hence iX(A′) and
E′ are supported on the closed subset T \U ofX which is contained in U1∪. . .∪Un−1.
By induction hypothesis the statement is true for A′ and E′. By Derived Categories,
Lemma 13.4.3 it suffices to prove the maps

RQX(iX(j∗(A|U )))→ j∗(A|U ) and Rj∗(E|U )→ iX(RQX(Rj∗E|U ))

are isomorphisms. By Lemmas 35.6.1 and 35.6.2 we have

RQX(iX(j∗(A|U ))) = RQX(Rj∗(iU (A|U ))) = j∗RQU (iU (A|U ))

and

iX(RQX(Rj∗(E|U ))) = iX(j∗RQU (E|U )) = Rj∗(iU (RQU (E|U )))

Finally, the maps

RQU (iU (A|U ))→ A|U and E|U → iU (RQU (E|U ))

are isomorphisms by Lemma 35.6.3. The result follows. �

Remark 35.6.6. Analyzing the proof of Proposition 35.6.5 we see that we have
shown the following. Let X be a quasi-compact and quasi-separated scheme. Sup-
pose that for every affine open U ⊂ X the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OX))
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of the left exact functor j∗ : QCoh(OU ) → QCoh(OX) fits into a commutative
diagram

D(QCoh(OU ))

Φ

��

iU
// DQCoh(OU )

Rj∗

��
D(QCoh(OX))

iX // DQCoh(OX)

Then the functor (35.3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

35.7. The coherator for Noetherian schemes

In the case of Noetherian schemes we can use the following lemma.

Lemma 35.7.1. Let X be a Noetherian scheme. Let J be an injective object of
QCoh(OX). Then J is a flasque sheaf of OX-modules.

Proof. Let U ⊂ X be an open subset and let s ∈ J (U) be a section. Let I ⊂ X
be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure
on X \ U (see Schemes, Definition 25.12.5). By Cohomology of Schemes, Lemma
29.10.4 the section s corresponds to a map σ : In → J for some n. As J is an
injective object of QCoh(OX) we can extend σ to a map s̃ : OX → J . Then s̃
corresponds to a global section of J restricting to s. �

Lemma 35.7.2. Let f : X → Y be a morphism of Noetherian schemes. Then
f∗ on quasi-coherent sheaves has a right derived extension Φ : D(QCoh(OX)) →
D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian schemes the morphism is quasi-compact and
quasi-separated (see Properties, Lemma 27.5.4 and Schemes, Remark 25.21.18).
Thus f∗ preserve quasi-coherence, see Schemes, Lemma 25.24.1. Next, Let K be
an object of D(QCoh(OX)). Since QCoh(OX) is a Grothendieck abelian category
(Properties, Proposition 27.21.4), we can represent K by a K-injective complex
I• such that each In is an injective object of QCoh(OX), see Injectives, Theorem
19.12.6. Thus we see that the functor Φ is defined by setting

Φ(K) = f∗I•

where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•
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is an isomorphism in D(OY ). To see this it suffices to prove the map induces an
isomorphism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X,Y, f) be as
in Lemma 35.4.1. Consider the short exact sequence

0→ σ≥m−N−1I• → I• → σ≤m−N−2I• → 0

of complexes of quasi-coherent sheaves on X. By Lemma 35.4.1 we see that the
cohomology sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we
see that Rmf∗I• is isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may
assume that I• is a bounded below complex of injective objects of QCoh(OX).
This follows from Leray’s acyclicity lemma (Derived Categories, Lemma 13.17.7)
via Cohomology, Lemma 20.13.5 and Lemma 35.7.1. �

Proposition 35.7.3. Let X be a Noetherian scheme. Then the functor (35.3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. This follows using the exact same argument as in the proof of Proposition
35.6.5 using Lemma 35.7.2. See discussion in Remark 35.6.6. �

35.8. Koszul complexes

Let A be a ring and let f1, . . . , fr be a sequence of elements of A. We have defined
the Koszul complex K•(f1, . . . , fr) in More on Algebra, Definition 15.20.2. It is
a chain complex sitting in degrees r, . . . , 0. We turn this into a cochain complex
K•(f1, . . . , fr) by setting K−n(f1, . . . , fr) = Kn(f1, . . . , fr) and using the same
differentials. In the rest of this section all the complexes will be cochain complexes.

We define a complex I•(f1, . . . , fr) such that we have a distinguished triangle

I•(f1, . . . , fr)→ A→ K•(f1, . . . , fr)→ I•(f1, . . . , fr)[1]

in K(A). In other words, we set

Ii(f1, . . . , fr) =

{
Ki−1(f1, . . . , fr) if i ≤ 0

0 else

and we use the negative of the differential on K•(f1, . . . , fr). The maps in the
distinguished triangle are the obvious ones. Note that I0(f1, . . . , fr) = A⊕r → A is
given by multiplication by fi on the ith factor. Hence I•(f1, . . . , fr) → A factors
as

I•(f1, . . . , fr)→ I → A

where I = (f1, . . . , fr). In fact, there is a short exact sequence

0→ H−1(K•(f1, . . . , fs))→ H0(I•(f1, . . . , fs))→ I → 0

and for every i < 0 we have Hi(I•(f1, . . . , fr)) = Hi−1(K•(f1, . . . , fr). Observe
that given a second sequence g1, . . . , gr of elements of A there are canonical maps

I•(f1g1, . . . , frgr)→ I•(f1, . . . , fr) and K•(f1g1, . . . , frgr)→ K•(f1, . . . , fr)

compatible with the maps described above. The first of these maps is given by
multiplication by gi on the ith summand of I0(f1g1, . . . , frgr) = A⊕r. In particular,
given f1, . . . , fr we obtain an inverse system of complexes

(35.8.0.1) I•(f1, . . . , fr)← I•(f2
1 , . . . , f

2
r )← I•(f3

1 , . . . , f
3
r )← . . .
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which will play an important role in that which is to follow. To easily formulate
the following lemmas we fix some notation.

Situation 35.8.1. Here A is a ring and f1, . . . , fr is a sequence of elements of A.
We set X = Spec(A) and U = D(f1) ∪ . . . ∪ D(fr) ⊂ X. We denote U : U =⋃
i=1,...,rD(fi) the given open covering of U .

Our first lemma is that the complexes above can be used to compute the cohomology
of quasi-coherent sheaves on U . Suppose given a complex I• of A-modules and an
A-module M . Then we define HomA(I•,M) to be the complex with nth term
HomA(I−n,M) and differentials given as the contragredients of the differentials on
I•.

Lemma 35.8.2. In Situation 35.8.1. Let M be an A-module and denote F the
associated OX-module. Then there is a canonical isomorphism of complexes

colime HomA(I•(fe1 , . . . , f
e
r ),M) −→ Č•alt(U ,F)

functorial in M .

Proof. Recall that the alternating Čech complex is the subcomplex of the usual
Čech complex given by alternating cochains, see Cohomology, Section 20.24. As
usual we view a p-cochain in Č•alt(U ,F) as an alternating function s on {1, . . . , r}p+1

whose value si0...ip at (i0, . . . , ip) lies in Mfi0 ...fip
= F(Ui0...ip). On the other hand,

a p-cochain t in HomA(I•(fe1 , . . . , f
e
r ),M) is given by a map t : ∧p+1(A⊕r) → M .

Write [i] ∈ A⊕r for the ith basis element and write

[i0, . . . , ip] = [i0] ∧ . . . ∧ [ip] ∈ ∧p+1(A⊕r)

Then we send t as above to s with

si0...ip =
t([i0, . . . , ip])

fei0 . . . f
e
ip

It is clear that s so defined is an alternating cochain. The construction of this map
is compatible with the transition maps of the system as the transition map

I•(fe1 , . . . , f
e
r )← I•(fe+1

1 , . . . , fe+1
r ),

of the (35.8.0.1) sends [i0, . . . , ip] to fi0 . . . fip [i0, . . . , ip]. It is clear from the de-
scription of the localizations Mfi0 ...fip

in Algebra, Lemma 10.9.9 that these maps
define an isomorphism of cochain modules in degree p in the limit. To finish the
proof we have to show that the map is compatible with differentials. To see this
recall that

d(s)i0...ip+1
=
∑p+1

j=0
(−1)jsi0...̂ij ...ip

=
∑p+1

j=0
(−1)j

t([i0, . . . , îj , . . . ip+1])

fei0 . . . f̂
e
ij
. . . feip+1

On the other hand, we have

d(t)([i0, . . . , ip+1])

fei0 . . . f
e
ip+1

=
t(d[i0, . . . , ip+1])

fei0 . . . f
e
ip+1

=

∑
j(−1)jfeij t([i0, . . . , îj , . . . ip+1])

fei0 . . . f
e
ip+1

The two formulas agree by inspection. �
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Suppose given a finite complex I• of A-modules and a complex of A-modules M•.
We obtain a double complex H•,• = HomA(I•,M•) where Hp,q = HomA(Ip,Mq).
The first differential comes from the differential on HomA(I•,Mq) and the second
from the differential on M•. Associated to this double complex is the total complex
with degree n term given by⊕

p+q=n
HomA(Ip,Mq)

and differential as in Homology, Definition 12.22.3. As our complex I• has only
finitely many nonzero terms, the direct sum displayed above is finite. The conven-
tions for taking the total complex associated to a Čech complex of a complex are
as in Cohomology, Section 20.26.

Lemma 35.8.3. In Situation 35.8.1. Let M• be a complex of A-modules and denote
F• the associated complex of OX-modules. Then there is a canonical isomorphism
of complexes

colime Tot(HomA(I•(fe1 , . . . , f
e
r ),M•)) −→ Tot(Č•alt(U ,F•))

functorial in M•.

Proof. Immediate from Lemma 35.8.2 and our conventions for taking associated
total complexes. �

Lemma 35.8.4. In Situation 35.8.1. Let F• be a complex of quasi-coherent OX-
modules. Then there is a canonical isomorphism

Tot(Č•alt(U ,F•)) −→ RΓ(U,F•)

in D(A) functorial in F•.

Proof. Let B be the set of affine opens of U . Since the higher cohomology groups
of a quasi-coherent module on an affine scheme are zero (Cohomology of Schemes,
Lemma 29.2.2) this is a special case of Cohomology, Lemma 20.32.2. �

In Situation 35.8.1 denote Ie the object of D(OX) corresponding to the complex of
A-modules I•(fe1 , . . . , f

e
r ) via the equivalence of Lemma 35.3.4. The maps (35.8.0.1)

give a system

I1 ← I2 ← I3 ← . . .

Moreover, there is a compatible system of maps Ie → OX which become isomor-
phisms when restricted to U . Thus we see that for every object E of D(OX) there
is a canonical map

(35.8.4.1) colime HomD(OX)(Ie, E) −→ H0(U,E)

constructed by sending a map Ie → E to its restriction to U and using that
HomD(OU )(OU , E|U ) = H0(U,E).

Proposition 35.8.5. In Situation 35.8.1. For every object E of DQCoh(OX) the
map (35.8.4.1) is an isomorphism.

Proof. By Lemma 35.3.4 we may assume that E is given by a complex of quasi-
coherent sheaves F•. Let M• = Γ(X,F•) be the corresponding complex of A-
modules. By Lemmas 35.8.3 and 35.8.4 we have quasi-isomorphisms

colime Tot(HomA(I•(fe1 , . . . , f
e
r ),M•)) −→ Tot(Č•alt(U ,F•)) −→ RΓ(U,F•)
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Taking H0 on both sides we obtain

colime HomD(A)(I
•(fe1 , . . . , f

e
r ),M•) = H0(U,E)

Since HomD(A)(I
•(fe1 , . . . , f

e
r ),M•) = HomD(OX)(Ie, E) by Lemma 35.3.4 the lemma

follows. �

In Situation 35.8.1 denote Ke the object of D(OX) corresponding to the complex
of A-modules K•(fe1 , . . . , f

e
r ) via the equivalence of Lemma 35.3.4. Thus we have

distinguished triangles
Ie → OX → Ke → Ie[1]

and a system
K1 ← K2 ← K3 ← . . .

compatible with the system (Ie). Moreover, there is a compatible system of maps

Ke → H0(Ke) = OX/(fe1 , . . . , fer )

Lemma 35.8.6. In Situation 35.8.1. Let E be an object of DQCoh(OX). Assume
that Hi(E)|U = 0 for i = −r + 1, . . . , 0. Then given s ∈ H0(X,E) there exists
an e ≥ 0 and a morphism Ke → E such that s is in the image of H0(X,Ke) →
H0(X,E).

Proof. Since U is covered by r affine opens we have Hj(U,F) = 0 for j ≥ r and any
quasi-coherent module (Cohomology of Schemes, Lemma 29.4.2). By Lemma 35.3.3
we see that H0(U,E) is equal to H0(U, τ≥−r+1E). There is a spectral sequence

Hj(U,Hi(τ≥−r+1E))⇒ Hi+j(U, τ≥−NE)

see Derived Categories, Lemma 13.21.3. Hence H0(U,E) = 0 by our assumed
vanishing of cohomology sheaves of E. We conclude that s|U = 0. Think of s as a
morphism OX → E in D(OX). By Proposition 35.8.5 the composition Ie → OX →
E is zero for some e. By the distinguished triangle Ie → OX → Ke → Ie[1] we
obtain a morphism Ke → E such that s is the composition OX → Ke → E. �

35.9. Pseudo-coherent and perfect complexes

In this section we make the connection between the general notions defined in
Cohomology, Sections 20.35, 20.36, 20.37, and 20.38 and the corresponding notions
for complexes of modules in More on Algebra, Sections 15.50, 15.51, and 15.56.

Lemma 35.9.1. Let X be a scheme. If E is an m-pseudo-coherent object of
D(OX), then Hi(E) is a quasi-coherent OX-module for i > m. If E is pseudo-
coherent, then E is an object of DQCoh(OX).

Proof. LocallyHi(E) is isomorphic toHi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. �

Lemma 35.9.2. Let X be a locally ringed space. A direct summand of a free
OX-module is finite locally free.

Proof. Omitted. �

Lemma 35.9.3. Let X = Spec(A) be an affine scheme. Let M• be a complex
of A-modules and let E be the corresponding object of D(OX). Then E is an m-
pseudo-coherent (resp. pseudo-coherent) as an object of D(OX) if and only if M•

is m-pseudo-coherent (resp. pseudo-coherent) as a complex of A-modules.
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Proof. It is immediate from the definitions that if M• is m-pseudo-coherent, so
is E. To prove the converse, assume E is m-pseudo-coherent. As X = Spec(A) is
quasi-compact with a basis for the topology given by standard opens, we can find
a standard open covering X = D(f1) ∪ . . . ∪D(fn) and strictly perfect complexes
E•i on D(fi) and maps αi : E•i → E|Ui inducing isomorphisms on Hj for j > m
and surjections on Hm. By Cohomology, Lemma 20.35.8 after refining the open

covering we may assume αi is given by a map of complexes E•i → M̃•|Ui for each i.
By Lemma 35.9.2 the terms Eni are finite locally free modules. Hence after refining
the open covering we may assume each Eni is a finite free OUi-module. From the
definition it follows that M•fi is an m-pseudo-coherent complex of Afi-modules. We
conclude by applying More on Algebra, Lemma 15.50.14.

The case “pseudo-coherent” follows from the fact that E is pseudo-coherent if and
only if E is m-pseudo-coherent for all m (by definition) and the same is true for
M• by More on Algebra, Lemma 15.50.5. �

Lemma 35.9.4. Let X be a Noetherian scheme. Let E be an object of DQCoh(OX).
For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i� 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−Coh(OX).

Proof. As X is quasi-compact we see that in both (1) and (2) the object E is
bounded above. Thus the question is local on X and we may assume X is affine.
Say X = Spec(A) for some Noetherian ring A. In this case E corresponds to a
complex of A-modules M• by Lemma 35.3.4. By Lemma 35.9.3 we see that E is
m-pseudo-coherent if and only if M• is m-pseudo-coherent. On the other hand,
Hi(E) is coherent if and only if Hi(M•) is a finite A-module (Properties, Lemma
27.16.1). Thus the result follows from More on Algebra, Lemma 15.50.16. �

Lemma 35.9.5. Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then

(1) E has tor amplitude in [a, b] if and only if M• has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if M• has finite tor dimension.

Proof. Part (2) follows trivially from part (1). In the proof of (1) we will use the
equivalence D(A) = DQCoh(X) of Lemma 35.3.4 without further mention. Assume
M• has tor amplitude in [a, b]. Then K• is isomorphic in D(A) to a complex K•

of flat A-modules with Ki = 0 for i 6∈ [a, b], see More on Algebra, Lemma 15.51.3.

Then E is isomorphic to K̃•. Since each K̃i is a flat OX -module, we see that E
has tor amplitude in [a, b] by Cohomology, Lemma 20.37.3.

Assume that E has tor amplitude in [a, b]. Then E is bounded whence M• is in
K−(A). Thus we may replace M• by a bounded above complex of A-modules. We
may even choose a projective resolution and assume that M• is a bounded above
complex of free A-modules. Then for any A-module N we have

E ⊗L
OX Ñ

∼= M̃• ⊗L
OX Ñ

∼= ˜M• ⊗A N

in D(OX). Thus the vanishing of cohomology sheaves of the left hand side implies
M• has tor amplitude in [a, b]. �
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Lemma 35.9.6. Let X be a quasi-separated scheme. Let E be an object of DQCoh(OX).
Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX F) = 0 for i 6∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let U ⊂ X be an affine open.
As X is quasi-separated the morphism j : U → X is quasi-compact and separated,
hence j∗ transforms quasi-coherent modules into quasi-coherent modules (Schemes,
Lemma 25.24.1). Thus the functor QCoh(OX) → QCoh(OU ) is essentially sur-
jective. It follows that condition (2) implies the vanishing of Hi(E|U ⊗L

OU G) for
i 6∈ [a, b] for all quasi-coherent OU -modules G. Write U = Spec(A) and let M• be
the complex of A-modules corresponding to E|U by Lemma 35.3.4. We have just
shown that M• ⊗L

A N has vanishing cohomology groups outside the range [a, b], in
other words M• has tor amplitude in [a, b]. By Lemma 35.9.5 we conclude that
E|U has tor amplitude in [a, b]. This proves the lemma. �

Lemma 35.9.7. Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then E is a perfect
object of D(OX) if and only if M• is perfect as an object of D(A).

Proof. This is a logical consequence of Lemmas 35.9.3 and 35.9.5, Cohomology,
Lemma 20.38.4, and More on Algebra, Lemma 15.56.2. �

As a consequence of our description of pseudo-coherent complexes on schemes we
can prove certain internal homs are quasi-coherent.

Lemma 35.9.8. Let X be a scheme.

(1) If L is in D+
QCoh(OX) and K in D(OX) is pseudo-coherent, then RHom(K,L)

is in DQCoh(OX).
(2) If L is in DQCoh(OX) and K in D(OX) is perfect, then RHom(K,L) is

in DQCoh(OX).
(3) If X = Spec(A) is affine and K,L ∈ D(A) then

RHom(K̃, L̃) = ˜RHom(K,L)

in the following two cases
(a) K is pseudo-coherent and L is bounded below,
(b) K is perfect and L arbitrary.

(4) If X = Spec(A) and K,L are in D(A), then the nth cohomology sheaf of

RHom(K̃, L̃) is the sheaf associated to the presheaf

X ⊃ D(f) 7−→ ExtnAf (K ⊗A Af , L⊗A Af )

for f ∈ A.

Proof. The construction of the internal hom in the derived category of OX com-
mutes with localization (see Cohomology, Section 20.34). Hence to prove (1) and
(2) we may replace X by an affine open. By Lemmas 35.3.4, 35.9.3, and 35.9.7 in
order to prove (1) and (2) it suffices to prove (3).

Part (3) follows from the computation of the internal hom of Cohomology, Lemma
20.35.10 by representing K by a bounded above (resp. finite) complex of finite
projective A-modules and L by a bounded above (resp. arbitrary) complex of A-
modules.
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To prove (4) recall that on any ringed space the nth cohomology sheaf ofRHom(A,B)
is the sheaf associated to the presheaf

U 7→ HomD(U)(A|U , B|U [n]) = ExtnD(OU )(A|U , B|U )

See Cohomology, Section 20.34. On the other hand, the restriction of K̃ to a
principal open D(f) is the image of K⊗AAf and similarly for L. Hence (4) follows
from the equivalence of categories of Lemma 35.3.4. �

35.10. Descent finiteness properties of complexes

This section is the analogue of Descent, Section 34.6 for objects of the derived
category of a scheme. The easiest such result is probably the following.

Lemma 35.10.1. Let f : X → Y be a surjective flat morphism of schemes (or
more generally locally ringed spaces). Let E ∈ D(OY ). Let a, b ∈ Z. Then E has
tor-amplitude in [a, b] if and only if Lf∗E has tor-amplitude in [a, b].

Proof. Pullback always preserves tor-amplitude, see Cohomology, Lemma 20.37.4.
We may check tor-amplitude in [a, b] on stalks, see Cohomology, Lemma 20.37.5. A
flat local ring homomorphism is faithfully flat by Algebra, Lemma 10.38.16. Thus
the result follows from More on Algebra, Lemma 15.51.14. �

Lemma 35.10.2. Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈
DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent if and only if each Lf∗i E
is m-pseudo-coherent.

Proof. Pullback always preserves m-pseudo-coherence, see Cohomology, Lemma
20.36.3. Conversely, assume that Lf∗i E is m-pseudo-coherent for all i. Let U ⊂ X
be an affine open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi :
Xi → X} is an fpqc covering, we can find finitely many affine open Vj ⊂ Xa(j) such
that fa(j)(Vj) ⊂ U and U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by

U and {fi : Xi → X} by {V → U} and assume that X is affine and our covering is
given by a single surjective flat morphism {f : Y → X} of affine schemes. In this
case the result follows from More on Algebra, Lemma 15.50.15 via Lemmas 35.3.4
and 35.9.3. �

Lemma 35.10.3. Let {fi : Xi → X} be an fppf covering of schemes. Let E ∈
D(OX). Let m ∈ Z. Then E is m-pseudo-coherent if and only if each Lf∗i E is
m-pseudo-coherent.

Proof. Pullback always preserves m-pseudo-coherence, see Cohomology, Lemma
20.36.3. Conversely, assume that Lf∗i E is m-pseudo-coherent for all i. Let U ⊂ X
be an affine open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi :
Xi → X} is an fppf covering, we can find finitely many affine open Vj ⊂ Xa(j) such
that fa(j)(Vj) ⊂ U and U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by

U and {fi : Xi → X} by {V → U} and assume that X is affine and our covering
is given by a single surjective flat morphism {f : Y → X} of finite presentation.

Since f is flat the derived functor Lf∗ is just given by f∗ and f∗ is exact. Hence
Hi(Lf∗E) = f∗Hi(E). Since Lf∗E is m-pseudo-coherent, we see that Lf∗E ∈
D−(OY ). Since f is surjective and flat, we see that E ∈ D−(OX). Let i ∈ Z
be the largest integer such that Hi(E) is nonzero. If i < m, then we are done.
Otherwise, f∗Hi(E) is a finite type OY -module by Cohomology, Lemma 20.36.9.
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Then by Descent, Lemma 34.6.2 the OX -module Hi(E) is of finite type. Thus,
after replacing X by the members of a finite affine open covering, we may assume
there exists a map

α : O⊕nX [−i] −→ E

such that Hi(α) is a surjection. Let C be the cone of α in D(OX). Pulling back to
Y and using Cohomology, Lemma 20.36.4 we find that Lf∗C is m-pseudo-coherent.
Moreover Hj(C) = 0 for j ≥ i. Thus by induction on i we see that C is m-pseudo-
coherent. Using Cohomology, Lemma 20.36.4 again we conclude. �

Lemma 35.10.4. Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈
D(OX). Then E is perfect if and only if each Lf∗i E is perfect.

Proof. Pullback always preserves perfect complexes, see Cohomology, Lemma 20.38.5.
Conversely, assume that Lf∗i E is perfect for all i. Then the cohomology sheaves of
each Lf∗i E are quasi-coherent, see Lemma 35.9.1 and Cohomology, Lemma 20.38.4.
Since the morphisms fi is flat we see that Hp(Lf∗i E) = f∗i H

p(E). Thus the co-
homology sheaves of E are quasi-coherent by Descent, Proposition 34.5.2. Having
said this the lemma follows formally from Cohomology, Lemma 20.38.4 and Lemmas
35.10.1 and 35.10.2. �

Lemma 35.10.5. Let i : Z → X be a morphism of ringed spaces such that i is
a closed immersion of underlying topological spaces and such that i∗OZ is pseudo-
coherent as an OX-module. Let E ∈ D(OX). Then E is m-pseudo-coherent if and
only if Ri∗E is m-pseudo-coherent.

Proof. Throughout this proof we will use that i∗ is an exact functor, and hence
that Ri∗ = i∗, see Modules, Lemma 17.6.1.

Assume E is m-pseudo-coherent. Let x ∈ X. We will find a neighbourhood of
x such that i∗E is m-peudo-coherent on it. If x 6∈ Z then this is clear. Thus
we may assume x ∈ Z. We will use that U ∩ Z for x ∈ U ⊂ X open form
a fundamental system of neighbourhoods of x in Z. After shrinking X we may
assume E is bounded above. We will argue by induction on the largest integer p
such that Hp(E) is nonzero. If p < m, then there is nothing to prove. If p ≥ m,
then Hp(E) is an OZ-module of finite type, see Cohomology, Lemma 20.36.9. Thus
we may choose, after shrinking X, a map O⊕nZ [−p]→ E which induces a surjection

O⊕nZ → Hp(E). Choose a distinguished triangle

O⊕nZ [−p]→ E → C → O⊕nZ [−p+ 1]

We see that Hj(C) = 0 for j ≥ p and that C is m-pseudo-coherent by Cohomol-
ogy, Lemma 20.36.4. By induction we see that i∗C is m-pseudo-coherent on X.
Since i∗OZ is m-pseudo-coherent on X as well, we conclude from the distinguished
triangle

i∗O⊕nZ [−p]→ i∗E → i∗C → i∗O⊕nZ [−p+ 1]

and Cohomology, Lemma 20.36.4 that i∗E is m-pseudo-coherent.

Assume that i∗E is m-pseudo-coherent. Let z ∈ Z. We will find a neighbourhood
of z such that E is m-peudo-coherent on it. We will use that U ∩Z for z ∈ U ⊂ X
open form a fundamental system of neighbourhoods of z in Z. After shrinking X
we may assume i∗E and hence E is bounded above. We will argue by induction on
the largest integer p such that Hp(E) is nonzero. If p < m, then there is nothing
to prove. If p ≥ m, then Hp(i∗E) = i∗H

p(E) is an OX -module of finite type, see

http://stacks.math.columbia.edu/tag/09UG
http://stacks.math.columbia.edu/tag/09VA


35.11. LIFTING COMPLEXES 2285

Cohomology, Lemma 20.36.9. Choose a complex E• of OZ-modules representing
E. We may choose, after shrinking X, a map α : O⊕nX [−p] → i∗E• which induces

a surjection O⊕nX → i∗H
p(E•). By adjunction we find a map α : O⊕nZ [−p] → E•

which induces a surjection O⊕nZ → Hp(E•). Choose a distinguished triangle

O⊕nZ [−p]→ E → C → O⊕nZ [−p+ 1]

We see that Hj(C) = 0 for j ≥ p. From the distinguished triangle

i∗O⊕nZ [−p]→ i∗E → i∗C → i∗O⊕nZ [−p+ 1]

the fact that i∗OZ is pseudo-coherent and Cohomology, Lemma 20.36.4 we conclude
that i∗C is m-pseudo-coherent. By induction we conclude that C is m-pseudo-
coherent. By Cohomology, Lemma 20.36.4 again we conclude that E is m-pseudo-
coherent. �

Lemma 35.10.6. Let f : X → Y be a finite morphism of schemes such that
f∗OX is pseudo-coherent as an OY -module1. Let E ∈ DQCoh(OX). Then E is
m-pseudo-coherent if and only if Rf∗E is m-pseudo-coherent.

Proof. This is a translation of More on Algebra, Lemma 15.50.11 into the language
of schemes. To do the translation, use Lemmas 35.3.4 and 35.9.3. �

35.11. Lifting complexes

Let U ⊂ X be an open subspace of a ringed space and denote j : U → X the
inclusion morphism. The functor D(OX)→ D(OU ) is essentially surjective as Rj∗
is a right inverse to restriction. In this section we extend this to complexes with
quasi-coherent cohomology sheaves, etc.

Lemma 35.11.1. Let X be a scheme and let j : U → X be a quasi-compact open
immersion. The functors

DQCoh(OX)→ DQCoh(OU ) and D+
QCoh(OX)→ D+

QCoh(OU )

are essentially surjective. If X is quasi-compact, then the functors

D−QCoh(OX)→ D−QCoh(OU ) and Db
QCoh(OX)→ Db

QCoh(OU )

are essentially surjective.

Proof. The argument preceding the lemma applies for the first case because Rj∗
maps DQCoh(OU ) into DQCoh(OX) by Lemma 35.4.1. It is clear that Rj∗ maps
D+

QCoh(OU ) into D+
QCoh(OX) which implies the statement on bounded below com-

plexes. Finally, Lemma 35.4.1 guarantees thatRj∗ mapsD−QCoh(OU ) intoD−QCoh(OX)
if X is quasi-compact. Combining these two we obtain the last statement. �

Lemma 35.11.2. Let X be an affine scheme and let U ⊂ X be a quasi-compact
open subscheme. For any pseudo-coherent object E of D(OU ) there exists a bounded
above complex of finite free OX-modules whose restriction to U is isomorphic to E.

Proof. By Lemma 35.9.1 we see that E is an object of DQCoh(OU ). By Lemma
35.11.1 we may assume E = E′|U for some object E′ of DQCoh(OX). Write
X = Spec(A). By Lemma 35.3.4 we can find a complex M• of A-modules whose
associated complex of OX -modules is a representative of E′.

1This means that f is pseudo-coherent, see More on Morphisms, Definition 36.40.2.
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Choose f1, . . . , fr ∈ A such that U = D(f1) ∪ . . . ∪ D(fr). By Lemma 35.9.3 the
complexes M•fj are pseudo-coherent complexes of Afj -modules. Let n be an integer.

Assume we have a map of complexes α : F • → M• where F • is bounded above,
F i = 0 for i < n, each F i is a finite free R-module, such that

Hi(αfj ) : Hi(F •fj )→ Hi(M•fj )

is an isomorphism for i > n and surjective for i = n. Picture

Fn //

α

��

Fn+1

α

��

// . . .

Mn−1 // Mn // Mn+1 // . . .

Since each M•fj has vanishing cohomology in large degrees we can find such a map

for n � 0. By induction on n we are going to extend this to a map of complexes
F • →M• such that Hi(αfj ) is an isomorphism for all i. The lemma will follow by

taking F̃ •.

The induction step will be to extend the diagram above by adding Fn−1. Let C• be
the cone on α (Derived Categories, Definition 13.9.1). The long exact sequence of
cohomology shows that Hi(C•fj ) = 0 for i ≥ n. By More on Algebra, Lemma 15.50.2

we see that C•fj is (n − 1)-pseudo-coherent. By More on Algebra, Lemma 15.50.3

we see that H−1(C•fj ) is a finite Afj -module. Choose a finite free A-module Fn−1

and an A-module β : Fn−1 → C−1 such that the composition Fn−1 → Cn−1 → Cn

is zero and such that Fn−1
fj

surjects onto Hn−1(C•fj ). (Some details omitted; hint:

clear denominators.) Since Cn−1 = Mn−1 ⊕ Fn we can write β = (αn−1,−dn−1).
The vanishing of the composition Fn−1 → Cn−1 → Cn implies these maps fit into
a morphism of complexes

Fn−1

αn−1

��

dn−1

// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Mn−1 // Mn // Mn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // M• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (F−1 → . . .)→M• induces
an isomorphism on cohomology localized at fj in degrees ≥ n and a surjection in
degree −1. This finishes the proof of the lemma. �

Lemma 35.11.3. Let X be a quasi-compact and quasi-separated scheme. Let E ∈
Db

QCoh(OX). There exists an integer n0 > 0 such that ExtnD(OX)(E , E) = 0 for
every finite locally free OX-module E and every n ≥ n0.

Proof. Recall that ExtnD(OX)(E , E) = HomD(OX)(E , E[n]). We have Mayer-Vietoris
for morphisms in the derived category, see Cohomology, Lemma 20.30.6. Thus if
X = U ∪ V and the result of the lemma holds for E|U , E|V , and E|U∩V for some
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bound n0, then the result holds for E with bound n0 + 1. Thus it suffices to prove
the lemma when X is affine, see Cohomology of Schemes, Lemma 29.4.1.

Assume X = Spec(A) is affine. Choose a complex of A-modules M• whose asso-
ciated complex of quasi-coherent modules represents E, see Lemma 35.3.4. Write

E = P̃ for some A-module P . Since E is finite locally free, we see that P is a finite
projective A-module. We have

HomD(OX)(E , E[n]) = HomD(A)(P,M
•[n])

= HomK(A)(P,M
•[n])

= HomA(P,Hn(M•))

The first equality by Lemma 35.3.4, the second equality by Derived Categories,
Lemma 13.19.8, and the final equality because HomA(P,−) is an exact functor. As
E and hence M• is bounded we get zero for all sufficiently large n. �

Lemma 35.11.4. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
For every perfect object E of D(OU ) there exists an integer r and a finite locally free
sheaf F on U such that F [−r]⊕ E is the restriction of a perfect object of D(OX).

Proof. Say X = Spec(A). Recall that a perfect complex is pseudo-coherent, see
Cohomology, Lemma 20.38.4. By Lemma 35.11.2 we can find a bounded above
complex F• of finite free A-modules such that E is isomorphic to F•|U in D(OU ).
By Cohomology, Lemma 20.38.4 and since U is quasi-compact, we see that E has
finite tor dimension, say E has tor amplitude in [a, b]. Pick r < a and set

F = Ker(Fr → Fr+1) = Im(Fr−1 → Fr).
Since E has tor amplitude in [a, b] we see that F|U is flat (Cohomology, Lemma
20.37.2). Hence F|U is flat and of finite presentation, thus finite locally free (Prop-
erties, Lemma 27.18.2). It follows that

(F → Fr → Fr+1 → . . .)|U
is a strictly perfect complex on U representing E. We obtain a distinguished triangle

F|U [−r − 1]→ E → (Fr → Fr+1 → . . .)|U → F|U [−r]
Note that (Fr → Fr+1 → . . .) is a perfect complex on X. To finish the proof it
suffices to pick r such that the map F|U [−r−1]→ E is zero in D(OU ), see Derived
Categories, Lemma 13.4.10. By Lemma 35.11.3 this holds if r � 0. �

Lemma 35.11.5. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
Let E,E′ be objects of DQCoh(OX) with E perfect. For every map α : E|U → E′|U
there exist maps

E
β←− E1

γ−→ E′

of perfect complexes on X such that β : E1 → E restricts to an isomorphism on U
and such that α = γ|U ◦ β|−1

U . Moreover we can assume E1 = E ⊗L
OX I for some

perfect complex I on X.

Proof. Write X = Spec(A). Write U = D(f1) ∪ . . . ∪ D(fr). Choose finite com-
plex of finite projective A-modules M• representing E (Lemma 35.9.7). Choose a
complex of A-modules (M ′)• representing E′ (Lemma 35.3.4). In this case the com-
plex H• = HomA(M•, (M ′)•) is a complex of A-modules whose associated complex
of quasi-coherent OX -modules represents RHom(E,E′), see Cohomology, Lemma
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20.35.9. Then α determines an element s of H0(U,RHom(E,E′)), see Cohomology,
Lemma 20.34.1. There exists an e and a map

ξ : I•(fe1 , . . . , f
e
r )→ HomA(M•, (M ′)•)

corresponding to s, see Proposition 35.8.5. Letting E1 be the object corresponding
to complex of quasi-coherent OX -modules associated to

Tot(I•(fe1 , . . . , f
e
r )⊗AM•)

we obtain E1 → E using the canonical map I•(fe1 , . . . , f
e
r )→ A and E1 → E′ using

ξ and Cohomology, Lemma 20.34.1. �

Lemma 35.11.6. Let X be an affine scheme. Let U ⊂ X be a quasi-compact
open. For every perfect object F of D(OU ) the object F ⊕ F [1] is the restriction of
a perfect object of D(OX).

Proof. By Lemma 35.11.4 we can find a perfect object E of D(OX) such that
E|U = F [r] ⊕ F for some finite locally free OU -module F . By Lemma 35.11.5 we
can find a morphism of perfect complexes α : E1 → E such that (E1)|U ∼= E|U and
such that α|U is the map(

idF [r] 0
0 0

)
: F [r]⊕ F → F [r]⊕ F

Then the cone on α is a solution. �

Lemma 35.11.7. Let X be a quasi-compact and quasi-separated scheme. Let f ∈
Γ(X,OX). For any morphism α : E → E′ in DQCoh(OX) such that

(1) E is perfect, and
(2) E′ is supported on T = V (f)

there exists an n ≥ 0 such that fnα = 0.

Proof. We have Mayer-Vietoris for morphisms in the derived category, see Coho-
mology, Lemma 20.30.6. Thus if X = U ∪ V and the result of the lemma holds
for f |U , f |V , and f |U∩V , then the result holds for f . Thus it suffices to prove the
lemma when X is affine, see Cohomology of Schemes, Lemma 29.4.1.

Let X = Spec(A). Then f ∈ A. We will use the equivalence D(A) = DQCoh(X) of
Lemma 35.3.4 without further mention. Represent E by a finite complex of finite
projective A-modules P •. This is possible by Lemma 35.9.7. Let t be the largest
integer such that P t is nonzero. The distinguished triangle

P t[−t]→ P • → σ≤t−1P
• → P t[−t+ 1]

shows that by induction on the length of the complex P • we can reduce to the
case where P • has a single nonzero term. This and the shift functor reduces us
to the case where P • consists of a single finite projective A-module P in degree
0. Represent E′ by a complex M• of A-modules. Then α corresponds to a map
P → H0(M•). Since the module H0(M•) is supported on V (f) by assumption (2)
we see that every element of H0(M•) is annihilated by a power of f . Since P is a
finite A-module the map fnα : P → H0(M•) is zero for some n as desired. �

Lemma 35.11.8. Let X be an affine scheme. Let T ⊂ X be a closed subset such
that X \T is quasi-compact. Let U ⊂ X be a quasi-compact open. For every perfect
object F of D(OU ) supported on T ∩ U the object F ⊕ F [1] is the restriction of a
perfect object E of D(OX) supported in T .
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Proof. Say T = V (g1, . . . , gs). After replacing gj by a power we may assume
multiplication by gj is zero on F , see Lemma 35.11.7. Choose E as in Lemma
35.11.6. Note that gj : E → E restricts to zero on U . Choose a distinguished
triangle

E
g1−→ E → C1 → E[1]

By Derived Categories, Lemma 13.4.10 the object C1 restricts to F ⊕F [1]⊕F [1]⊕
F [2] on U . Moreover, g1 : C1 → C1 has square zero by Derived Categories, Lemma
13.4.5. Namely, the diagram

E //

0

��

C1

g1

��

// E[1]

0

��
E // C1

// E[1]

is commutative since the compositions E
g1−→ E → C1 and C1 → E[1]

g1−→ E[1] are
zero. Continuing, setting Ci+1 equal to the cone of the map gi : Ci → Ci we obtain
a perfect complex Cs on X supported on T whose restriction to U gives

F ⊕ F [1]⊕s ⊕ F [2]⊕(s2) ⊕ . . .⊕ F [s]

Choose a morphisms of perfect complexes β : C ′ → Cs and γ : C ′ → Cs as in
Lemma 35.11.5 such that β|U is an isomorphism and such that γ|U ◦ β|−1

U is the
morphism

F ⊕ F [1]⊕s ⊕ F [2]⊕(s2) ⊕ . . .⊕ F [s]→ F ⊕ F [1]⊕s ⊕ F [2]⊕(s2) ⊕ . . .⊕ F [s]

which is the identity on all summands except for F where it is zero. By Lemma
35.11.5 we also have C ′ = Cs ⊗L I for some perfect complex I on X. Hence the
nullity of g2

j idCs implies the same thing for C ′. Thus C ′ is supported on T as well.
Then Cone(γ) is a solution. �

A special case of the following lemma can be found in [Nee96].

Lemma 35.11.9. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂
X be a quasi-compact open. Let T ⊂ X be a closed subset with X \T retro-compact
in X. Let E be an object of DQCoh(OX). Let α : P → E|U be a map where
P is a perfect object of D(OU ) supported on T ∩ U . Then there exists a map
β : R → E where R is a perfect object of D(OX) supported on T such that P is a
direct summand of R|U in D(OU ) compatible α and β|U .

Proof. Since X is quasi-compact there exists an integer m such that X = U ∪V1∪
. . .∪ Vm for some affine opens Vj of X. Arguing by induction on m we see that we
may assume m = 1. In other words, we may assume that X = U ∪V with V affine.
By Lemma 35.11.8 we can choose a perfect object Q in D(OV ) supported on T ∩V
and an isomorphism Q|U∩V → (P ⊕ P [1])|U∩V . By Lemma 35.11.5 we can replace
Q by Q⊗L I (still supported on T ∩ V ) and assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V
lifts to Q→ E|V . By Cohomology, Lemma 20.30.10 we find an morphism a : R→ E
of D(OX) such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to
Q→ E|V . Thus R is perfect and supported on T as desired. �
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Remark 35.11.10. The proof of Lemma 35.11.9 shows that

R|U = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]

for somem ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf ofR|U equals
that of P . By repeating the construction for the map P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]→
R|U , taking cones, and using induction we can achieve equality of cohomology
sheaves of R|U and P above any given degree.

35.12. Approximation by perfect complexes

In this section we discuss the observation, due to Neeman and Lipman, that a
pseudo-coherent complex can be “approximated” by perfect complexes.

Definition 35.12.1. Let X be a scheme. Consider triples (T,E,m) where

(1) T ⊂ X is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P )→ Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Namely, it is clear that if approxima-
tion holds for the triple (T,E,m), then

(1) E is m-pseudo-coherent, see Cohomology, Definition 20.36.1, and
(2) the cohomology sheaves Hi(E) are supported on T for i ≥ m.

Moreover, the “support” of a perfect complex is a closed subscheme whose comple-
ment is retrocompact in X (details omitted). Hence we cannot expect approxima-
tion to hold without this assumption on T . This partly explains the conditions in
the following definition.

Definition 35.12.2. Let X be a scheme. We say approximation by perfect com-
plexes holds on X if for any closed subset T ⊂ X with X \ T retro-compact in X
there exists an integer r such that for every triple (T,E,m) as in Definition 35.12.1
with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

We will prove that approximation by perfect complexes holds for quasi-compact
and quasi-separated schemes. It seems that the second condition is necessary for
our method of proof. It is possible that the first condition may be weakened to “E
is m-pseudo-coherent” by carefuly analyzing the arguments below.

Lemma 35.12.3. Let X be a scheme. Let U ⊂ X be an open subscheme. Let
(T,E,m) be a triple as in Definition 35.12.1. If

(1) T ⊂ U ,
(2) approximation holds for (T,E|U ,m), and
(3) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).
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Proof. Let j : U → X be the inclusion morphism. If P → E|U is an approximation
of the triple (T,E|U ,m) over U , then j!P = Rj∗P → j!(E|U ) → E is an approxi-
mation of (T,E,m) over X. See Cohomology, Lemmas 20.30.9 and 20.38.9. �

Lemma 35.12.4. Let X be an affine scheme. Then approximation holds for every
triple (T,E,m) as in Definition 35.12.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Say X = Spec(A). Write T = V (f1, . . . , fr). (The case r = 0, i.e., T = X
follows immediately from Lemma 35.9.3 and the definitions.) Let (T,E,m) be a
triple as in the lemma. Let t be the largest integer such that Ht(E) is nonzero. We
will proceed by induction on t. The base case is t < m; in this case the result is
trivial. Now suppose that t ≥ m. By Cohomology, Lemma 20.36.9 the sheaf Ht(E)
is of finite type. Since it is quasi-coherent it is generated by finitely many sections
(Properties, Lemma 27.16.1). For every s ∈ Γ(X,Ht(E)) = Ht(X,E) (see proof of
Lemma 35.3.4) we can find an e > 0 and a morphism Ke[−t]→ E such that s is in
the image of H0(Ke) = Ht(Ke[−t]) → Ht(E), see Lemma 35.8.6. Taking a finite
direct sum of these maps we obtain a map P → E where P is a perfect complex
supported on T , where Hi(P ) = 0 for i > t, and where Ht(P ) → E is surjective.
Choose a distinguished triangle

P → E → E′ → P [1]

Then E′ is m-pseudo-coherent (Cohomology, Lemma 20.36.4), Hi(E′) = 0 for
i ≥ t, and Hi(E′) is supported on T for i ≥ m − r + 1. By induction we find an
approximation P ′ → E′ of (T,E′,m). Fit the composition P ′ → E′ → P [1] into a
distringuished triangle P → P ′′ → P ′ → P [1] and extend the morphisms P ′ → E′

and P [1]→ P [1] into a morphism of distinguished triangles

P //

��

P ′′

��

// P ′

��

// P [1]

��
P // E // E′ // P [1]

using TR3. Then P ′′ is a perfect complex (Cohomology, Lemma 20.38.6) supported
on T . An easy diagram chase shows that P ′′ → E is the desired approximation. �

Lemma 35.12.5. Let X be a scheme. Let X = U ∪ V be an open covering with
U quasi-compact, V affine, and U ∩ V quasi-compact. If approximation by perfect
complexes holds on U , then approximation holds on X.

Proof. Let T ⊂ X be a closed subset with X \ T retro-compact in X. Let rU be
the integer of Definition 35.12.2 adapted to the pair (U, T ∩ U). Set T ′ = T \ U .
Note that T ′ ⊂ V and that V \ T ′ = (X \ T ) ∩ U ∩ V is quasi-compact by our
assumption on T . Let r′ be the number of affines needed to cover V \T ′. We claim
that r = max(rU , r

′) works for the pair (X,T ).

To see this choose a triple (T,E,m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
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(m− r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′.
Hence Lemma 35.12.4 guarantees the existence of an approximation P → E|V
of (T ′, E|V ,m) on V . Applying Lemma 35.12.3 we see that (T ′, E,m) can be
approximated. Such an approximation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ U,E|U ,m). This
in particular gives a surjection Ht(P ) → Ht(E|U ). By Lemma 35.11.8 we can
choose a perfect object Q in D(OV ) supported on T ∩ V and an isomorphism
Q|U∩V → (P ⊕ P [1])|U∩V . By Lemma 35.11.5 we can replace Q by Q ⊗L I and
assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V
lifts to Q→ E|V . By Cohomology, Lemma 20.30.10 we find an morphism a : R→ E
of D(OX) such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to
Q→ E|V . Thus R is perfect and supported on T and the map Ht(R)→ Ht(E) is
surjective on restriction to U . Choose a distinguised triangle

R→ E → E′ → R[1]

Then E′ is (m− r)-pseudo-coherent (Cohomology, Lemma 20.36.4), Hi(E′)|U = 0
for i ≥ t, and Hi(E′) is supported on T for i ≥ m − r. By induction we find an
approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distringuished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′

and R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology, Lemma 20.38.6) supported
on T . An easy diagram chase shows that R′′ → E is the desired approximation. �

Theorem 35.12.6. Let X be a quasi-compact and quasi-separated scheme. Then
approximation by perfect complexes holds on X.

Proof. This follows from the induction principle of Cohomology of Schemes, Lemma
29.4.1 and Lemmas 35.12.5 and 35.12.4. �

35.13. Generating derived categories

In this section we prove that the derived category DQCoh(OX) of a quasi-compact
and quasi-separated scheme can be generated by a single perfect object. We urge
the reader to read the proof of this result in the wonderful paper by Bondal and
van den Bergh, see [BV03].

Lemma 35.13.1. Let X be a quasi-compact and quasi-separated scheme. Let U be
a quasi-compact open subscheme. Let P be a perfect object of D(OU ). Then P is a
direct summand of the restriction of a perfect object of D(OX).

Proof. Special case of Lemma 35.11.9. �
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Lemma 35.13.2. In Situation 35.8.1 denote j : U → X the open immersion
and let K be the perfect object of D(OX) corresponding to the Koszul complex on
f1, . . . , fr over A. For E ∈ DQCoh(OX) the following are equivalent

(1) E = Rj∗(E|U ), and
(2) HomD(OX)(K[n], E) = 0 for all n ∈ Z.

Proof. Choose a distinguished triangle E → Rj∗(E|U ) → N → E[1]. Observe
that

HomD(OX)(K[n], Rj∗(E|U )) = HomD(OU )(K|U [n], E) = 0

for all n as K|U = 0. Thus it suffices to prove the result for N . In other words,
we may assume that E restricts to zero on U . Observe that there are distinguished
triangles

K•(fe11 , . . . , f
e′i
i , . . . , f

er
r )→ K•(fe11 , . . . , f

e′i+e
′′
i

i , . . . , ferr )→ K•(fe11 , . . . , f
e′′i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 15.20.11. Hence if HomD(OX)(K[n], E) =
0 for all n ∈ Z then the same thing is true for the K replaced by Ke as in Lemma
35.8.6. Thus our lemma follows immediately from that one and the fact that E is
determined by the complex of A-modules RΓ(X,E), see Lemma 35.3.4. �

Theorem 35.13.3. Let X be a quasi-compact and quasi-separated scheme. The
category DQCoh(OX) can be generated by a single perfect object. More precisely,
there exists a perfect object P of D(OX) such that for E ∈ DQCoh(OX) the following
are equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 29.4.1

If X is affine, then OX is a perfect generator. This follows from Lemma 35.3.4.

Assume that X = U ∪ V is an open covering with U quasi-compact such that the
theorem holds for U and V is an affine open. Let P be a perfect object of D(OU )
which is a generator for DQCoh(OU ). Using Lemma 35.13.1 we may choose a perfect
object Q of D(OX) whose restriction to U is a direct sum one of whose summands is
P . Say V = Spec(A). Let Z = X \U . This is a closed subset of V with V \Z quasi-
compact. Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be
the perfect object corresponding to the Koszul complex on f1, . . . , fr over A. Note
that since K is supported on Z ⊂ V closed, the pushforward K ′ = R(V → X)∗K
is a perfect object of D(OX) whose restriction to V is K (see Cohomology, Lemma
20.38.9). We claim that Q⊕K ′ is a generator for DQCoh(OX).

Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Cohomology, Lemma 20.30.9 we have K ′ = R(V → X)!K
and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Lemma 35.13.2 the vanishing of these groups implies that E|V is isomorphic
to R(U ∩ V → V )∗E|U∩V . This implies that E = R(U → X)∗E|U (small detail
omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
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which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

Here is an example.

Lemma 35.13.4. Let A be a ring. Let X = P1
A. Then

E = OX ⊕OX(−1)

is a generator (Derived Categories, Definition 13.33.1) of DQCoh(X).

Proof. Write X = Proj(A[X0, X1]). Let U = D+(X0) = Spec(A[x]) where x =
X0/X1. Let j : V = D+(X1) → P1 be the inclusion morphism. Consider the
complex

K = (OX(−1)
X1−−→ OX)

The restriction of K to U = Spec(A[x] is isomorphic to the Koszul complex A[x]
x−→

A[x] and the restriction to V is zero.

Let L be an object of DQCoh(X) with HomD(OX)(K,L[n]) = 0 for all n ∈ Z.
By Derived Categories of Schemes, Lemma 35.13.2 this implies that L|U is the
pushforward of a complex living on U ∩ V . This implies L = Rj∗(L|V ) (small
argument omitted). Then

HomD(OX)(OX , L) = HomD(OX)(OX , Rj∗(L|V ))

= HomD(OV )(OV , L|V )

= Hn(V,L|V )

Thus if in addition HomD(OX)(OX , L[n]) = 0 for all n, then we find Hn(V,L|V ) = 0
for all n and since V is affine this means L|V = 0 which in turn implies L = 0. The
lemma follows as K and OX are in 〈E〉, see Derived Categories, Lemma 13.33.2. �

The following result is an strengthening of Theorem 35.13.3 proved using exactly the
same methods. Let T ⊂ X be a closed subset of a scheme X. Let’s denote DT (OX)
the strictly full, saturated, triangulated subcategory consisting of complexes whose
cohomology sheaves are supported on T .

Lemma 35.13.5. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂
X be a closed subset such that X \T is quasi-compact. With notation as above, the
category DQCoh,T (OX) is generated by a single perfect object.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 29.4.1.

Assume X = Spec(A) is affine. In this case there exist f1, . . . , fr ∈ A such that
T = V (f1, . . . , fr). Let K be the Koszul complex on f1, . . . , fr as in Lemma
35.13.2. Then K is a perfect object with cohomology supported on T and hence
a perfect object of DQCoh,T (OX). On the other hand, if E ∈ DQCoh,T (OX) and
Hom(K,E[n]) = 0 for all n, then Lemma 35.13.2 tells us that E = Rj∗(E|X\T ) = 0.
Hence K generates DQCoh,T (OX), (by our definition of generators of triangulated
categories in Derived Categories, Definition 13.33.1).

Assume that X = U ∪ V is an open covering with U quasi-compact such that the
lemma holds for U and V is an affine open. Let P be a perfect object of D(OU )
supported on T ∩U which is a generator for DQCoh,T∩U (OU ). Using Lemma 35.11.9
we may choose a perfect object Q of D(OX) supported on T whose restriction to U
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is a direct sum one of whose summands is P . Write V = Spec(B). Let Z = X \U .
Then Z is a closed subset of V such that V \ Z is quasi-compact. As X is quasi-
separated, it follows that Z∩T is a closed subset of V such that W = V \ (Z∩T ) is
quasi-compact. Thus we can choose g1, . . . , gs ∈ B such that Z∩T = V (g1, . . . , gr).
Let K ∈ D(OV ) be the perfect object corresponding to the Koszul complex on
g1, . . . , gs over B. Note that since K is supported on (Z ∩ T ) ⊂ V closed, the
pushforward K ′ = R(V → X)∗K is a perfect object of D(OX) whose restriction to
V is K (see Cohomology, Lemma 20.38.9). We claim that Q ⊕ K ′ is a generator
for DQCoh,T (OX).

Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Cohomology, Lemma 20.30.9 we have K ′ = R(V → X)!K
and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Lemma 35.13.2 we have E|V = Rj∗E|W where j : W → V is the inclusion.
Picture

W
j
// V Z ∩ Too

��
U ∩ V

j′

OO

j′′

;;

Z

bb

Since E is supported on T we see that E|W is supported on T ∩W = T ∩ U ∩ V
which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj
′
∗(E|U∩V )) = Rj′′∗ (E|U∩V )

where the second equality is part (1) of Cohomology, Lemma 20.30.9. This implies
that E = R(U → X)∗E|U (small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

35.14. Compact and perfect objects

Let X be a Noetherian scheme of finite dimension. By Cohomology, Proposition
20.21.6 and Cohomology on Sites, Lemma 21.39.4 the sheaves of modules j!OU
are compact objects of D(OX) for all opens U ⊂ X. These sheaves are typically
not quasi-coherent, hence these do not give perfect object of the derived category
D(OX). However, if we restrict ourselves to complexes with quasi-coherent coho-
mology sheaves, then this does not happen. Here is the precise statement.

Proposition 35.14.1. Let X be a quasi-compact and quasi-separated scheme. An
object of DQCoh(OX) is compact if and only if it is perfect.

Proof. By Cohomology, Lemma 20.39.1 the perfect objects define compact objects
of D(OX). Conversely, let K be a compact object of DQCoh(OX). To show that
K is perfect, it suffices to show that K|U is perfect for every affine open U ⊂ X,
see Cohomology, Lemma 20.38.2. Observe that j : U → X is a quasi-compact
and separated morphism. Hence Rj∗ : DQCoh(OU )→ DQCoh(OX) commutes with
direct sums, see Lemma 35.4.2. Thus the adjointness of restriction to U and Rj∗
implies that K|U is a compact object of DQCoh(OU ). Hence we reduce to the case
that X is affine.
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Assume X = Spec(A) is affine. By Lemma 35.3.4 the problem is translated into
the same problem for D(A). For D(A) the result is More on Algebra, Proposition
15.57.2. �

The following result is a strengthening of Proposition 35.14.1. Let T ⊂ X be a
closed subset of a scheme X. As before DT (OX) denotes the the strictly full, satu-
rated, triangulated subcategory consisting of complexes whose cohomology sheaves
are supported on T . Since taking direct sums commutes with taking cohomology
sheaves, it follows that DT (OX) has direct sums and that they are equal to direct
sums in D(OX).

Lemma 35.14.2. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂
X be a closed subset such that X \ T is quasi-compact. An object of DQCoh,T (OX)
is compact if and only if it is perfect as an object of D(OX).

Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Cohomology, Lemma 20.39.1 the per-
fect objects define compact objects of D(OX) hence a fortiori of any subcategory
preserved under taking direct sums. For the converse we will use there exists a gen-
erator E ∈ DQCoh,T (OX) which is a perfect complex of OX -modules, see Lemma
35.13.5. Hence by the above, E is compact. Then it follows from Derived Cate-
gories, Proposition 13.34.6 that E is a classical generator of the full subcategory
of compact objects of DQCoh,T (OX). Thus any compact object can be constructed
out of E by a finite sequence of operations consisting of (a) taking shifts, (b) taking
finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these
operations preserves the property of being perfect and the result follows. �

The following lemma is an application of the ideas that go into the proof of the
preceding lemma.

Lemma 35.14.3. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂
X be a closed subset such that U = X \ T is quasi-compact. Let α : P → E be a
morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX-modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. Set D = DQCoh,T (OX). In both cases the complex K = RHom(P,E) is an
object of D. See Lemma 35.9.8 for quasi-coherence. It is clear that K is supported
on T as formation of RHom commutes with restriction to opens. The map α defines
an element of H0(K) = HomD(OX)(OX [0],K). Then it suffices to prove the result
for the map α : OX [0]→ K.

Let E ∈ D be a perfect generator, see Lemma 35.13.5. Write

K = hocolimKn

as in Derived Categories, Lemma 13.34.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn also in
D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α. By Derived Categories, Lemma 13.34.4
applied to the morphism OX [0]→ Kn in the ambient category D(OX) we see that
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αn factors as OX [0]→ Q→ Kn where Q is an object of 〈E〉. We conclude that Q
is a perfect complex supported on T .

Choose a distinguished triangle

I → OX [0]→ Q→ I[1]

By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. �

35.15. Derived categories as module categories

In this section we draw some conclusions of what has gone before. Before we do so
we need a couple more lemmas.

Lemma 35.15.1. Let X be a scheme. Let K• be a complex of OX-modules whose
cohomology sheaves are quasi-coherent. Let (E, d) = HomCompdg(OX)(K

•,K•) be
the endomorphism differential graded algebra. Then the functor

−⊗L
E K

• : D(E, d) −→ D(OX)

of Differential Graded Algebra, Lemma 22.25.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property (P) and let F• be
a filtration on P as in Differential Graded Algebra, Section 22.13. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. �

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 35.15.2. Let X be a quasi-compact and quasi-separated scheme. Let K,
L be objects of D(OX) with K perfect and L in Db

QCoh(OX). Then ExtnD(OX)(K,L)
is nonzero for only a finite number of n.

Proof. Since K is perfect we have

ExtiD(OX)(K,L) = Hi(X,K∧ ⊗L
OX L)

where K∧ is the “dual” perfect complex to K, see Cohomology, Lemma 20.38.10.
Note that P = K∧⊗L

OX L is in DQCoh(X) by Lemmas 35.3.7 and 35.9.1 (to see that
a perfect complex has quasi-coherent cohomology sheaves). On the other hand, the
spectral sequence

Ep,q1 = Hp(K∧ ⊗L
OX H

q(L))⇒ Hp+q(K∧ ⊗L
OX L) = Hp+q(P ),

the boundedness of L, and the finite tor amplitude of K∧ show that P has only
finitely many nonzero cohomology sheaves. It follows that Hn(X,P ) = 0 for n� 0.
But also Hn(X,P ) = 0 for n � 0 by Cohomology of Schemes, Lemma 29.4.3 and
the spectral sequence expressing Hn(X,P •) in terms of Hp(X,Hq(P •)) using that
the cohomology sheaves of P are quasi-coherent. �

The following result is taken from [BV03].
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Theorem 35.15.3. Let X be a quasi-compact and quasi-separated scheme. Then
there exist a differential graded algebra (E, d) with only a finite number of nonzero
cohomology groups Hi(E) such that DQCoh(OX) is equivalent to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gen-
erates DQCoh(OX). Such a thing exists by Theorem 35.13.3 and the existence of
K-injective resolutions. We will show the theorem holds with

(E,d) = HomCompdg(OX)(K
•,K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 22.25. Since K• is K-injective we
have

(35.15.3.1) Hn(E) = ExtnD(OX)(K
•,K•)

for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 35.15.2.
Consider the functor

−⊗L
E K

• : D(E,d) −→ D(OX)

of Differential Graded Algebra, Lemma 22.25.3. Since K• is perfect, it defines a
compact object of D(OX), see Proposition 35.14.1. Combined with (35.15.3.1) the
functor above is fully faithful as follows from Differential Graded Algebra, Lemmas
22.25.5. It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E,d)

by Differential Graded Algebra, Lemmas 22.25.4 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma
35.15.1 that we obtain

−⊗L
E K

• : D(E,d) −→ DQCoh(OX)

and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 13.7.2. �

Remark 35.15.4. Let X be a quasi-compact and quasi-separated scheme over a
ring R. By the construction of the proof of Theorem 35.15.3 there exists a differ-
ential graded algebra (A,d) over R such that DQCoh(X) is R-linearly equivalent
to D(A,d) as a triangulated category. One may ask: how unique is (A,d)? The
answer is (only) slightly better than just saying that (A,d) is well defined up to
derived equivalence. Namely, suppose that (B, d) is a second such pair. Then we
have

(A,d) = HomCompdg(OX)(K
•,K•)

and

(B, d) = HomCompdg(OX)(L
•, L•)

for some K-injective complexes K• and L• of OX -modules corresponding to perfect
generators of DQCoh(OX). Set

Ω = HomCompdg(OX)(K
•, L•) Ω′ = HomCompdg(OX)(L

•,K•)

Then Ω is a differential graded Bopp ⊗R A-module and Ω′ is a differential graded
Aopp ⊗R B-module. Moreover, the equivalence

D(A,d)→ DQCoh(OX)→ D(B, d)
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is given by the functor − ⊗L
A Ω′ and similarly for the quasi-inverse. Thus we are

in the situation of Differential Graded Algebra, Remark 22.27.10. If we ever need
this remark we will provide a precise statement with a detailed proof here.

35.16. Cohomology and base change, IV

This section continues the discussion of Cohomology of Schemes, Section 29.20.

Lemma 35.16.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. For E in DQCoh(OX) and K in DQCoh(OY ) we have

Rf∗(E)⊗L
OY K = Rf∗(E ⊗L

OX Lf
∗K)

Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY K → Rf∗(E ⊗L

OX
Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L
OY K) = Lf∗(Rf∗(E))⊗L

OX Lf
∗K −→ E ⊗L

OX Lf
∗K

coming from the map Lf∗Rf∗E → E. See Cohomology, Lemmas 20.28.2 and
20.29.1. To check it is an isomorphism we may work locally on Y . Hence we reduce
to the case that Y is affine.

Suppose that K =
⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If

the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗ and
⊗L preserve direct sums by construction and Rf∗ commutes with direct sums (for
complexes with quasi-coherent cohomology sheaves) by Lemma 35.4.2. Moreover,
suppose that K → L→M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K,L,M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is
an equivalence (Lemma 35.3.4). Let T be the property for K ∈ D(A) that the

statement of the lemma holds for K̃. The discussion above and More on Algebra,
Remark 15.45.11 shows that it suffices to prove T holds for A[k]. This finishes the
proof, as the statement of the lemma is clear for shifts of the structure sheaf. �

Definition 35.16.2. Let S be a scheme. Let X, Y be schemes over S. We say X
and Y are Tor independent over S if for every x ∈ X and y ∈ Y mapping to the
same point s ∈ S the rings OX,x and OY,y are Tor independent over OS,s (see More
on Algebra, Definition 15.47.1).

Lemma 35.16.3. Let g : S′ → S be a morphism of schemes. Let f : X → S be
quasi-compact and quasi-separated. Consider the base change diagram

X ′
h
//

f ′

��

X

f

��
S′

g // S

If X and S′ are Tor independent over S, then for all E ∈ DQCoh(OX) we have
Rf ′∗Lh

∗E = Lg∗Rf∗E.

Proof. For any object E of D(OX) we can use Cohomology, Remark 20.29.2 to
get a canonical base change map Lg∗Rf∗E → Rf ′∗Lh

∗E. To check this is an
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isomorphism we may work locally on S′. Hence we may assume g : S′ → S is a
morphism of affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lh

∗E = Rf∗(Rh∗Lh
∗E)

is an isomorphism, see Lemma 35.4.3 (and use Lemmas 35.3.6, 35.3.7, and 35.4.1
to see that the objects Rf ′∗Lh

∗E and Lg∗Rf∗E have quasi-coherent cohomology
sheaves). Note that h is affine as well (Morphisms, Lemma 28.13.8). By Lemma
35.4.4 the map becomes a map

Rf∗E ⊗L
OS g∗OS′ −→ Rf∗(E ⊗L

OX h∗OX′)
Observe that h∗OX′ = f∗g∗OS′ . Thus by Lemma 35.16.1 it suffices to prove that
Lf∗g∗OS′ = f∗g∗OS′ . This follows from our assumption that X and S′ are Tor
independent over S. Namely, to check it we may work locally on X, hence we may
also assume X is affine. Say X = Spec(A), S = Spec(R) and S′ = Spec(R′). Our
assumption implies that A and R′ are Tor independent over R (More on Algebra,

Lemma 15.47.4), i.e., TorRi (A,R′) = 0 for i > 0. In other words A⊗L
RR
′ = A⊗RR′

which exactly means that Lf∗g∗OS′ = f∗g∗OS′ (use Lemma 35.3.6). �

The following two lemmas remain true if we replace G with a bounded complex of
quasi-coherent OX -modules each flat over S.

Lemma 35.16.4. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E ∈ DQCoh(OX). Let G be a quasi-coherent OX-module flat over
S. Then formation of

Rf∗(E ⊗L
OX G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
S′

g // S

in other words X ′ = S′ ×S X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗(E ⊗L
OX G) = Rf ′∗(E

′ ⊗L
OX′ G

′)

To prove this, note that in Cohomology, Remark 20.29.2 we have constructed an
arrow

Lg∗Rf∗(E ⊗L
OX G) −→ R(f ′)∗(Lh

∗(E ⊗L
OX G)) = R(f ′)∗(E

′ ⊗L
OX Lh

∗G)

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗(E ⊗L
OX G) −→ Rf ′∗(E

′ ⊗L
OX′ G

′)

To check this map is an isomorphism we may work locally on S′. Hence we may
assume g : S′ → S is a morphism of affine schemes. In this case, we will use
the induction principle to prove this map is always an isomorphism for any quasi-
compact and quasi-separated X over S (Cohomology of Schemes, Lemma 29.4.1).

Suppose X = Spec(A) is affine. The functor ˜ : D(A) → DQCoh(OX) is an equiv-
alence (Lemma 35.3.4). Let T be the property for K ∈ D(A) that the canonical
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arrow above is an isomorphism for E = K̃. If we have T (Ki) for a family of
objects Ki, then we have T (

⊕
Ki). Namely, derived tensor product and derived

pullback commute with direct sums and the same holds for total direct image in
this case by Lemma 35.4.2. Moreover, if T holds for two out of three objects of
a distinguished triangle, then it holds for the third (Derived Categories, Lemma
13.4.3). By More on Algebra, Remark 15.45.11 this shows that it suffices to prove
T holds for A[k]. This reduces us to the case E = OX . In this case we are say-
ing that Lg∗f∗G = g∗f∗G (by flatness of G over S) equals f ′∗h

∗G which holds by
Cohomology of Schemes, Lemma 29.5.1.

The induction step. Suppose that X = U ∪ V is an open covering with U , V ,
U ∩ V quasi-compact such that the result holds for the restriction of E and G to
U , V , and U ∩ V . Denote a = f |U , b = f |V and c = f |U∩V . Let a′ : U ′ → S′,
b′ : V ′ → S′ and c′ : U ′ ∩ V ′ → S′ be the base changes of a, b, and c. Note that
formation of − ⊗L − commutes with restriction to opens. Set H = E ⊗L

OX G and

H ′ = E′ ⊗L
OX′ G

′. Using the distinguished triangles from relative Mayer-Vietoris

(Cohomology, Lemma 20.30.8) we obtain a commutative diagram

Lg∗Rf∗H //

��

Rf ′∗H
′

��
Lg∗Ra∗H|U ⊕ Lg∗Rb∗H|V //

��

Ra′∗H
′|U ′ ⊕Rb′∗H ′|V ′

��
Lg∗Rc∗H|U∩V //

��

Rc′∗H
′|U ′∩V ′

��
Lg∗Rf∗H[1] // Rf ′∗H

′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 13.4.3) and the proof of the lemma is finished. �

Lemma 35.16.5. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E ∈ D(OX) be perfect. Let G be a quasi-coherent OX-module flat
over S. Then formation of

Rf∗RHom(E,G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
S′

g // S

in other words X ′ = S′ ×S X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗RHom(E,G) = Rf ′∗RHom(E′,G′)

http://stacks.math.columbia.edu/tag/08IE
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To prove this, note that in Cohomology, Remark 20.34.10 we have constructed an
arrow

Lg∗Rf∗RHom(E,G) −→ R(f ′)∗RHom(Lh∗E,Lh∗G)

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗RHom(E,G)→ Rf ′∗RHom(E′,G′)

With these preliminaries out of the way, we deduce the result from Lemma 35.16.4.
Namely, since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology, Lemma 20.38.10, such that RHom(E,G) = Edual ⊗L

OX G. We omit
the verification that the base change map of Lemma 35.16.4 for Edual agrees with
the base change map for E constructed above. �

35.17. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation, see
Section 35.20.

Lemma 35.17.1. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the scheme theoretic support of Hi(E) is proper over S for all i,
(3) E has finite tor dimension as an object of D(f−1OS).

Then Rf∗E is a perfect object of D(OS).

Proof. By Lemma 35.5.1 we see that Rf∗E is an object of Db
Coh(OS). Hence

Rf∗E is pseudo-coherent (Lemma 35.9.4). Hence it suffices to show that Rf∗E has
finite tor dimension, see Cohomology, Lemma 20.38.4. By Lemma 35.9.6 it suffices
to check that Rf∗(E) ⊗L

OS F has universally bounded cohomology for all quasi-
coherent sheaves F on S. Bounded from above is clear as Rf∗(E) is bounded from
above. Let T ⊂ X be the union of the supports of Hi(E) for all i. Then T is proper
over S by assumptions (1) and (2). In particular there exists a quasi-compact open
X ′ ⊂ X containing T . Setting f ′ = f |X′ we have Rf∗(E) = Rf ′∗(E|X′) because E
restricts to zero on X \ T . Thus we may replace X by X ′ and assume f is quasi-
compact. Moreover, f is quasi-separated by Morphisms, Lemma 28.16.7. Now

Rf∗(E)⊗L
OS F = Rf∗

(
E ⊗L

OX Lf
∗F
)

= Rf∗

(
E ⊗L

f−1OS f
−1F

)
by Lemma 35.16.1 and Cohomology, Lemma 20.28.3. By assumption (3) the com-
plex E⊗L

f−1OS f
−1F has cohomology sheaves in a given finite range, say [a, b]. Then

Rf∗ of it has cohomology in the range [a,∞) and we win. �

35.18. Cohomology, Ext groups, and base change

The results in this section will be used to verify one of Artin’s criteria for Quot
functors, Hilbert schemes, and other moduli problems.

Lemma 35.18.1. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G be
a coherent OX-module flat over S with scheme theoretic support proper over S.
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Then K = Rf∗(E ⊗L
OX G) is a perfect object of D(OS) and there are functorial

isomorphisms

Hi(S,K ⊗L
OS F) −→ Hi(X,E ⊗L

OX (G ⊗OX f∗F))

for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. We have

G ⊗L
OX Lf

∗F = G ⊗L
f−1OS f

−1F = G ⊗f−1OS f
−1F = G ⊗OX f∗F

the first equality by Cohomology, Lemma 20.28.3, the second as G is a flat f−1OS-
module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX (G ⊗OX f∗F)) = Hi(X,E ⊗L

OX G ⊗
L
OX Lf

∗F)

= Hi(S,Rf∗(E ⊗L
OX G ⊗

L
OX Lf

∗F))

= Hi(S,Rf∗(E ⊗L
OX G)⊗L

OS F)

= Hi(S,K ⊗L
OS F)

The first equality by the above, the second by Leray (Cohomology, Lemma 20.14.1),
and the third equality by Lemma 35.16.1. The object K is perfect by Lemma
35.17.1. We check the lemma applies: Locally E is isomorphic to a finite complex
of finite free OX -modules. Hence locally E ⊗L

OX G is isomorphic to a finite com-
plex whose terms are finite direct sums of copies G. This immediately implies the
hypotheses on the cohomology sheaves Hi(E ⊗L

OX G). The hypothesis on the tor

dimension also follows as G is flat over f−1OS .

The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 of quasi-coherent OS-modules, the isomorphisms
fit into commutative diagrams

Hi(S,K ⊗L
OS F3) //

δ

��

Hi(X,E ⊗L
OX (G ⊗OX f∗F3))

δ

��
Hi+1(S,K ⊗L

OS F1) // Hi+1(X,E ⊗L
OX (G ⊗OX f∗F1))

where the boundary maps come from the distinguished triangle

K ⊗L
OS F1 → K ⊗L

OS F2 → K ⊗L
OS F3 → K ⊗L

OS F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX f∗F1 → G ⊗OX f∗F2 → G ⊗OX f∗F3 → 0

This sequence is exact because G is flat over S. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 35.18.2. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G be
a coherent OX-module flat over S with scheme theoretic support proper over S.
Then K = Rf∗RHom(E,G) is a perfect object of D(OS) and there are functorial
isomorphisms

Hi(S,K ⊗L
OS F) −→ ExtiOX (E,G ⊗OX f∗F)

for F quasi-coherent on S compatible with boundary maps (see proof).
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Proof. Since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology, Lemma 20.38.10. Observe that RHom(E,G) = Edual⊗L

OX G and that

ExtiOX (E,G ⊗OX f∗F) = Hi(X,Edual ⊗L
OX (G ⊗OX f∗F))

by construction of Edual. Thus the perfectness of K and the isomorphisms follow
from the corresponding results of Lemma 35.18.1 applied to Edual and G.

The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit into commutative
diagrams

Hi(S,K ⊗L
OS F3) //

δ

��

ExtiOX (E,G ⊗OX f∗F3)

δ

��
Hi+1(S,K ⊗L

OS F1) // Exti+1
OX (E,G ⊗OX f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OS F1 → K ⊗L

OS F2 → K ⊗L
OS F3 → K ⊗L

OS F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX f∗F1 → G ⊗OX f∗F2 → G ⊗OX f∗F3 → 0

This sequence is exact because G is flat over S. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 35.18.3. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) and G an OX-module.
Assume

(1) E ∈ D−Coh(OX), and
(2) G is a coherent OX-module flat over S with scheme theoretic support is

proper over S.

Then for every m ∈ Z there exists a perfect object K of D(OS) and functorial maps

αiF : ExtiOX (E,G ⊗OX f∗F) −→ Hi(S,K ⊗L
OS F)

for F quasi-coherent on S compatible with boundary maps (see proof) such that αiF
is an isomorphism for i ≤ m.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X,E,−m− 1) (possible by Theorem 35.12.6). Then the induced map

ExtiOX (E,G ⊗OX f∗F) −→ ExtiOX (P,G ⊗OX f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

ExtiOX (C,G ⊗OX f∗F) resp. Exti+1
OX (C,G ⊗OX f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in
degrees ≥ −m− 1 these Ext-groups are zero for i ≤ m+ 1 by Derived Categories,
Lemma 13.27.3. This reduces us to the case that E is a perfect complex which is
Lemma 35.18.2.

The statement on boundaries is explained in the proof of Lemma 35.18.2. �
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35.19. Limits and derived categories

In this section we collect some results about the derived category of a scheme which
is the limit of an inverse system of schemes. More precisely, we will work in the
following setting.

Situation 35.19.1. Let S = limi∈I Si be a limit of a directed system of schemes
over S with affine transition morphisms fi′i : Si′ → Si. We assume that Si is quasi-
compact and quasi-separated for all i ∈ I. We denote fi : S → Si the projection.
We also fix an element 0 ∈ I.

Lemma 35.19.2. In Situation 35.19.1. Let E0 and K0 be objects of D(OS0). Set
Ei = Lf∗i0E0 and Ki = Lf∗i0K0 for i ≥ 0 and set E = Lf∗0E0 and K = Lf∗0K0.
Then the map

colimi≥0 HomD(OSi )(Ei,Ki) −→ HomD(OS)(E,K)

is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OS0
), or

(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OS0) has finite tor dimension.

Proof. For every open U0 ⊂ S0 consider the condition P that the canonical map

colimi≥0 HomD(OUi )(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = f−1
0 (U0) and Ui = f−1

i0 (U0). We will prove P
holds for all quasi-compact opens U0 by the induction principle of Cohomology of
Schemes, Lemma 29.4.1. Condition (2) of this lemma follows immediately from
Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 20.30.6.
Thus it suffices to prove the lemma when S0 is affine.

Assume S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and S = Spec(A). We will
use Lemma 35.3.4 without further mention.

In case (1) the object E•0 corresponds to a finite complex of finite projective A0-
modules, see Lemma 35.9.7. We may represent the object K0 by a K-flat complex
K•0 of A0-modules. In this situation we are trying to prove

colimi≥0 HomD(Ai)(E
•
0 ⊗A0

Ai,K
•
0 ⊗A0

Ai) −→ HomD(A)(E
•
0 ⊗A0

A,K•0 ⊗A0
A)

Because E•0 is a bounded above complex of projective modules we can rewrite this
as

colimi≥0 HomK(A0)(E
•
0 ,K

•
0 ⊗A0

Ai) −→ HomK(A0)(E
•
0 ,K

•
0 ⊗A0

A)

Since there are only a finite number of nonzero modules En0 and since these are all
finitely presented modules, this map is an isomorphism.

In case (2) the object E0 corresponds to a bounded above complex E•0 of finite
free A0-modules, see Lemma 35.9.3. We may represent K0 by a finite complex K•0
of flat A0-modules, see Lemma 35.9.5 and More on Algebra, Lemma 15.51.3. In
particular K•0 is K-flat and we can argue as before to arrive at the map

colimi≥0 HomK(A0)(E
•
0 ,K

•
0 ⊗A0

Ai) −→ HomK(A0)(E
•
0 ,K

•
0 ⊗A0

A)

It is clear that this map is an isomorphism (only a finite number of terms are
involved since K•0 is bounded). �

Lemma 35.19.3. In Situation 35.19.1 the category of perfect objects of D(OS) is
the colimit of the categories of perfect objects of D(OSi).
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Proof. For every open U0 ⊂ S0 consider the condition P that the functor

colimi≥0Dperf (OUi) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and

where U = f−1
0 (U0) and Ui = f−1

i0 (U0). We will prove P holds for all quasi-
compact opens U0 by the induction principle of Cohomology of Schemes, Lemma
29.4.1. First, we observe that we already know the functor is fully faithful by
Lemma 35.19.2. Thus it suffices to prove essential surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have
S0 = U0 ∪ V0 and that P holds for U0, V0, and U0 ∩ V0. Let E be a perfect object
of D(OS). We can find i ≥ 0 and EU,i perfect on Ui and EV,i perfect on Vi whose
pullback to U and V are isomorphic to E|U and E|V . Denote

a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi
the maps adjoint to the isomorphisms Lf∗i EU,i → E|U and Lf∗i EV,i → E|V . By
fully faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui∩Vi →
EV,i|Ui∩Vi which pulls back to the identifications

Lf∗i EU,i|U∩V → E|U∩V → Lf∗i EV,i|U∩V .
Apply Cohomology, Lemma 20.30.10 to get an object Ei on Si and a map d : Ei →
Rfi,∗E which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei
is perfect and that d is adjoint to an isomorphism Lf∗i Ei → E.

Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and
S = Spec(A). Using Lemmas 35.3.4 and 35.9.7 we see that we have to show that

Dperf (A) = colimDperf (Ai)

This is clear from the fact that perfect complexes over rings are given by finite
complexes of finite projective (hence finitely presented) modules. �

35.20. Cohomology and base change, V

A final section on cohomology and base change continueing the discussion of Sec-
tions 35.16 and 35.17. An easy to grok special case is given in Remark 35.20.2.

Lemma 35.20.1. Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a perfect object. Let G be a finitely presented OX-module, flat over S,
with support proper over S. Then

K = Rf∗(E ⊗L
OX G)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 35.16.4. Thus it suffices to show
that K is a perfect object. If S is Noetherian, then this follows from Lemma 35.18.1.
We will reduce to this case by Noetherian approximation. We encourage the reader
to skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say S = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma
31.9.1 there exists an i and a scheme Xi of finite presentation over Ri whose base
change to R is X. By Limits, Lemma 31.9.2 we may assume after increasing i, that
there exists a finitely presented OXi -module Gi whose pullback to X is G. After
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increasing i we may assume Gi is flat over Ri, see Limits, Lemma 31.9.3. After
increasing i we may assume the support of Gi is proper over Ri, see Limits, Lemma
31.12.7. Finally, by Lemma 35.19.3 we may, after increasing i, assume there exists
a perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 35.18.1
to Xi → Spec(Ri), Ei, Gi and using the base change property already shown we
obtain the result. �

Remark 35.20.2. Let R be a ring. Let X be a scheme of finite presentation over
R. Let G be a finitely presented OX -module flat over R with scheme theoretic
support proper over R. By Lemma 35.20.1 there exists a finite complex of finite
projective R-modules M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 35.20.3. Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a perfect object. Let G be a finitely presented OX-module, flat over S,
with support proper over S. Then

K = Rf∗RHom(E,G)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 35.16.5. Thus it suffices to show
that K is a perfect object. If S is Noetherian, then this follows from Lemma 35.18.2.
We will reduce to this case by Noetherian approximation. We encourage the reader
to skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say S = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma
31.9.1 there exists an i and a scheme Xi of finite presentation over Ri whose base
change to R is X. By Limits, Lemma 31.9.2 we may assume after increasing i, that
there exists a finitely presented OXi-module Gi whose pullback to X is G. After
increasing i we may assume Gi is flat over Ri, see Limits, Lemma 31.9.3. After
increasing i we may assume the support of Gi is proper over Ri, see Limits, Lemma
31.12.7. Finally, by Lemma 35.19.3 we may, after increasing i, assume there exists
a perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 35.18.2
to Xi → Spec(Ri), Ei, Gi and using the base change property already shown we
obtain the result. �
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CHAPTER 36

More on Morphisms

36.1. Introduction

In this chapter we continue our study of properties of morphisms of schemes. A
fundamental reference is [DG67].

36.2. Thickenings

The following terminology may not be completely standard, but it is convenient.

Definition 36.2.1. Thickenings.

(1) We say a scheme X ′ is a thickening of a scheme X if X is a closed sub-
scheme of X ′ and the underlying topological spaces are equal.

(2) We say a scheme X ′ is a first order thickening of a scheme X if X is a
closed subscheme of X ′ and the quasi-coherent sheaf of ideals I ⊂ OX′
defining X has square zero.

(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings is a
morphism f ′ : X ′ → Y ′ such that f ′(X) ⊂ Y , i.e., such that f ′|X factors
through the closed subscheme Y . In this situation we set f = f ′|X : X →
Y and we say that (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of
thickenings.

(4) Let S be a scheme. We similarly define thickenings over S, and morphisms
of thickenings over S. This means that the schemes X,X ′, Y, Y ′ above
are schemes over S, and that the morphisms X → X ′, Y → Y ′ and
f ′ : X ′ → Y ′ are morphisms over S.

Finite order thickenings. Let iX : X → X ′ be a thickening. Any local section of

the kernel I = Ker(i]X) is locally nilpotent. Let us say that X ⊂ X ′ is a finite
order thickening if the ideal sheaf I is “globally” nilpotent, i.e., if there exists an
n ≥ 0 such that In+1 = 0. Technically the class of finite order thickenings X ⊂ X ′
is much easier to handle than the general case. Namely, in this case we have a
filtration

0 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′

and we see that X ′ is filtered by closed subspaces

X = X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over S. Using simple in-
duction arguments many results proved for first order thickenings can be rephrased
as results on finite order thickenings.

First order thickening are described as follows (see Modules, Lemma 17.23.11).

2309
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2310 36. MORE ON MORPHISMS

Lemma 36.2.2. Let X be a scheme over a base S. Consider a short exact sequence

0→ I → A → OX → 0

of sheaves on X where A is a sheaf of f−1OS-algebras, A → OX is a surjection of
sheaves of f−1OS-algebras, and I is its kernel. If

(1) I is an ideal of square zero in A, and
(2) I is quasi-coherent as an OX-module

then X ′ = (X,A) is a scheme and X → X ′ is a first order thickening over S.
Moreover, any first order thickening over S is of this form.

Proof. It is clear that X ′ is a locally ringed space. Let U = Spec(B) be an affine
open of X. Set A = Γ(U,A). Note that since H1(U, I) = 0 (see Cohomology of
Schemes, Lemma 29.2.2) the map A → B is surjective. By assumption the kernel
I = I(U) is an ideal of square zero in the ring A. By Schemes, Lemma 25.6.4 there
is a canonical morphism of locally ringed spaces

(U,A|U ) −→ Spec(A)

coming from the map B → Γ(U,A). Since this morphism fits into the commutative
diagram

(U,OX |U )

��

// Spec(B)

��
(U,A|U ) // Spec(A)

we see that it is a homeomorphism on underlying topological spaces. Thus to see
that it is an isomorphism, it suffices to check it induces an isomorphism on the
local rings. For u ∈ U corresponding to the prime p ⊂ A we obtain a commutative
diagram of short exact sequences

0 // Ip //

��

Ap
//

��

Bp
//

��

0

0 // Iu // Au // OX,u // 0.

The left and right vertical arrows are isomorphisms because I and OX are quasi-
coherent sheaves. Hence also the middle map is an isomorphism. Hence every point
of X ′ = (X,A) has an affine neighbourhood and X ′ is a scheme as desired. �

Lemma 36.2.3. Any thickening of an affine scheme is affine.

Proof. This is a special case of Limits, Proposition 31.10.2. �

Proof for a finite order thickening. Suppose that X ⊂ X ′ is a finite order
thickening with X affine. Then we may use Serre’s criterion to prove X ′ is affine.
More precisely, we will use Cohomology of Schemes, Lemma 29.3.1. Let F be
a quasi-coherent OX′ -module. It suffices to show that H1(X ′,F) = 0. Denote
i : X → X ′ the given closed immersion and denote I = Ker(i] : OX′ → i∗OX). By
our discussion of finite order thickenings (following Definition 36.2.1) there exists
an n ≥ 0 and a filtration

0 = Fn+1 ⊂ Fn ⊂ Fn−1 ⊂ . . . ⊂ F0 = F

http://stacks.math.columbia.edu/tag/05YV
http://stacks.math.columbia.edu/tag/06AD
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by quasi-coherent submodules such that Fa/Fa+1 is annihilated by I. Namely, we
can take Fa = IaF . Then Fa/Fa+1 = i∗Ga for some quasi-coherent OX -module
Ga, see Morphisms, Lemma 28.4.1. We obtain

H1(X ′,Fa/Fa+1) = H1(X ′, i∗Ga) = H1(X,Ga) = 0

The second equality comes from Cohomology of Schemes, Lemma 29.2.4 and the
last equality from Cohomology of Schemes, Lemma 29.2.2. Thus F has a finite
filtration whose successive quotients have vanishing first cohomology and it follows
by a simple induction argument that H1(X ′,F) = 0. �

Lemma 36.2.4. Let S ⊂ S′ be a thickening of schemes. Let X ′ → S′ be a mor-
phism and set X = S ×S′ X ′. Then (X ⊂ X ′) → (S ⊂ S′) is a morphism of
thickenings. If S ⊂ S′ is a first (resp. finite order) thickening, then X ⊂ X ′ is a
first (resp. finite order) thickening.

Proof. Omitted. �

Lemma 36.2.5. Let (f, f ′) : (X ⊂ X ′)→ (S ⊂ S′) be a morphism of thickenings.
Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open, and
(9) add more here.

Proof. Observe that S → S′ and X → X ′ are universal homeomorphisms (see
for example Morphisms, Lemma 28.45.4). This immediately implies parts (2), (3),
(4), (7), and (8). Part (1) follows from Lemma 36.2.3 which tells us that there is a
1-to-1 correspondence between affine opens of S and S′ and between affine opens
of X and X ′. Part (5) follows from (1) and (4) by Morphisms, Lemma 28.44.7.
Finally, note that

S ×X S = S ×X′ S → S ×X′ S′ → S′ ×X′ S′

is a thickening (the two arrows are thickenings by Lemma 36.2.4). Hence applying
(3) and (4) to the morphism (S ⊂ S′)→ (S ×X S → S′ ×X′ S′) we obtain (6). �

Lemma 36.2.6. Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings
such that X = S ×S′ X ′. If S ⊂ S′ is a finite order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(5) f is unramified if and only if f ′ is unramified,
(6) f is proper if and only if f ′ is proper,
(7) f is a finite morphism if and only if f ′ is an finite morphism, and
(8) add more here.

http://stacks.math.columbia.edu/tag/09ZU
http://stacks.math.columbia.edu/tag/09ZV
http://stacks.math.columbia.edu/tag/09ZW
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Proof. The properties P listed in the lemma are all stable under base change,
hence if f ′ has property P, then so does f . See Schemes, Lemma 25.18.2, and
Morphisms, Lemmas 28.16.4, 28.21.13, 28.30.2, 28.36.5, 28.42.5, 28.44.6.

The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. By induction on the order of the thickening we may
assume that S ⊂ S′ is a first order thickening, see discussion immediately following
Definition 36.2.1.

Most of the proofs will use a reduction to the affine case. Let U ′ ⊂ S′ be an affine
open and let V ′ ⊂ X ′ be an affine open lying over U ′. Let U ′ = Spec(A′) and denote
I ⊂ A′ be the ideal defining the closed subscheme U ′∩S. Say V ′ = Spec(B′). Then
V ′ ∩X = Spec(B′/IB′). Setting A = A′/I and B = B′/IB′ we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0

with exact rows and I2 = 0.

The translation of (1) into algebra: If A → B is surjective, then A′ → B′ is
surjective. This follows from Nakayama’s lemma (Algebra, Lemma 10.19.1).

The translation of (2) into algebra: If A → B is a finite type ring map, then
A′ → B′ is a finite type ring map. This follows from Nakayama’s lemma (Algebra,
Lemma 10.19.1) applied to a map A′[x1, . . . , xn]→ B′ such that A[x1, . . . , xn]→ B
is surjective.

Proof of (3). Follows from (2) and that quasi-finiteness of a morphism which is
locally of finite type can be checked on fibres, see Morphisms, Lemma 28.21.6.

Proof of (4). Follows from (2) and that the additional property of “being of relative
dimension d” can be checked on fibres (by definition, see Morphisms, Definition
28.30.1.

The translation of (5) into algebra: If A → B is unramified map, then A′ → B′

is unramified. Since A → B is of finite type we see that A′ → B′ is of finite type
by (2) above. Since A→ B is unramified we have ΩB/A = 0. By Algebra, Lemma
10.127.12 we have 0 = ΩB/A = ΩB′/A′/IΩB′/A′ . Hence ΩB′/A′ = 0 by Nakayama’s
lemma (Algebra, Lemma 10.19.1). Thus A′ → B′ is unramified.

Proof of (6). Follows by combining (2) with results of Lemma 36.2.5 and the fact
that proper equals quasi-compact + separated + locally of finite type + universally
closed.

Proof of (7). Follows by combining (2) with results of Lemma 36.2.5 and using
the fact that finite equals integral + locally of finite type (Morphisms, Lemma
28.44.4). �

36.3. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that
i : Z → X be an immersion of schemes. Choose an open subscheme U ⊂ X
such that i identifies Z with a closed subscheme Z ⊂ U . Let I ⊂ OU be the



36.4. FORMALLY UNRAMIFIED MORPHISMS 2313

quasi-coherent sheaf of ideals defining Z in U . Then we can consider the closed
subscheme Z ′ ⊂ U defined by the quasi-coherent sheaf of ideals I2.

Definition 36.3.1. Let i : Z → X be an immersion of schemes. The first order
infinitesimal neighbourhood of Z in X is the first order thickening Z ⊂ Z ′ over X
described above.

This thickening has the following universal property (which will assuage any fears
that the construction above depends on the choice of the open U).

Lemma 36.3.2. Let i : Z → X be an immersion of schemes. The first order in-
finitesimal neighbourhood Z ′ of Z in X has the following universal property: Given
any commutative diagram

Z

i

��

T
a

oo

��
X T ′

boo

where T ⊂ T ′ is a first order thickening over X, there exists a unique morphism
(a′, a) : (T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X.

Proof. Let U ⊂ X be the open used in the construction of Z ′, i.e., an open such
that Z is identified with a closed subscheme of U cut out by the quasi-coherent
sheaf of ideals I. Since |T | = |T ′| we see that b(T ′) ⊂ U . Hence we can think of b
as a morphism into U . Let J ⊂ OT ′ be the ideal cutting out T . Since b(T ) ⊂ Z by
the diagram above we see that b](b−1I) ⊂ J . As T ′ is a first order thickening of T
we see that J 2 = 0 hence b](b−1(I2)) = 0. By Schemes, Lemma 25.4.6 this implies
that b factors through Z ′. Denote a′ : T ′ → Z ′ this factorization and everything is
clear. �

Lemma 36.3.3. Let i : Z → X be an immersion of schemes. Let Z ⊂ Z ′ be the
first order infinitesimal neighbourhood of Z in X. Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Morphisms, Lemma 28.33.3.
This map is an isomorphism.

Proof. This is clear from the construction of Z ′ above. �

36.4. Formally unramified morphisms

Recall that a ring map R→ A is called formally unramified (see Algebra, Definition
10.141.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, at most one dotted arrow exists which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

http://stacks.math.columbia.edu/tag/04EY
http://stacks.math.columbia.edu/tag/04EZ
http://stacks.math.columbia.edu/tag/04F0
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Definition 36.4.1. Let f : X → S be a morphism of schemes. We say f is formally
unramified if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists at
most one dotted arrow making the diagram commute.

We first prove some formal lemmas, i.e., lemmas which can be proved by drawing
the corresponding diagrams.

Lemma 36.4.2. If f : X → S is a formally unramified morphism, then given any
solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists at most one
dotted arrow making the diagram commute. In other words, in Definition 36.4.1
the condition that T be affine may be dropped.

Proof. This is true because a morphism is determined by its restrictions to affine
opens. �

Lemma 36.4.3. A composition of formally unramified morphisms is formally un-
ramified.

Proof. This is formal. �

Lemma 36.4.4. A base change of a formally unramified morphism is formally
unramified.

Proof. This is formal. �

Lemma 36.4.5. Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S
be open such that f(U) ⊂ V . If f is formally unramified, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 36.4.1. If f is formally ramified, then there exists at most one
S-morphism a′ : T ′ → X such that a′|T = a. Hence clearly there exists at most
one such morphism into U . �

Lemma 36.4.6. Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally unramified if and only if OS(S)→ OX(X) is a formally
unramified ring map.

http://stacks.math.columbia.edu/tag/02H8
http://stacks.math.columbia.edu/tag/04F1
http://stacks.math.columbia.edu/tag/02HA
http://stacks.math.columbia.edu/tag/02HB
http://stacks.math.columbia.edu/tag/02HC
http://stacks.math.columbia.edu/tag/02HD
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Proof. This is immediate from the definitions (Definition 36.4.1 and Algebra, Def-
inition 10.141.1) by the equivalence of categories of rings and affine schemes, see
Schemes, Lemma 25.6.5. �

Here is a characterization in terms of the sheaf of differentials.

Lemma 36.4.7. Let f : X → S be a morphism of schemes. Then f is formally
unramified if and only if ΩX/S = 0.

Proof. We give two proofs.

First proof. It suffices to show that ΩX/S is zero on the members of an affine open
covering of X. Choose an affine open U ⊂ X with f(U) ⊂ V where V ⊂ S is an
affine open of S. By Lemma 36.4.5 the restriction fU : U → V is formally un-
ramified. By Morphisms, Lemma 28.34.5 we see that ΩX/S |U is the quasi-coherent
sheaf associated to theOX(U)-module ΩOX(U)/OS(V ). By Lemma 36.4.6 we see that
OS(V ) → OX(U) is a formally unramified ring map. Hence by Algebra, Lemma
10.141.2 we conclude that ΩX/S |U = 0 as desired.

Second proof. We recall some of the arguments of the proof of Morphisms, Lemma
28.34.5. Let W ⊂ X ×S X be an open such that ∆ : X → X ×S X induces a
closed immersion into W . Let J ⊂ OW be the ideal sheaf of this closed immersion.
Let X ′ ⊂W be the closed subscheme defined by the quasi-coherent sheaf of ideals
J 2. Consider the two morphisms p1, p2 : X ′ → X induced by the two projections
X ×S X → X. Note that p1 and p2 agree when composed with ∆ : X → X ′ and
that X → X ′ is a closed immersion defined by a an ideal whose square is zero.
Moreover there is a short exact sequence

0→ J /J 2 → OX′ → OX → 0

and ΩX/S = J /J 2. Moreover, J /J 2 is generated by the local sections p]1(f)−p]2(f)
for f a local section of OX .

Suppose that f : X → S is formally unramified. By assumption this means that
p1 = p2 when restricted to any affine open T ′ ⊂ X ′. Hence p1 = p2. By what was
said above we conclude that ΩX/S = J /J 2 = 0.

Conversely, suppose that ΩX/S = 0. Then X ′ = X. Take any pair of morphisms
f ′1, f

′
2 : T ′ → X fitting as dotted arrows in the diagram of Definition 36.4.1. This

gives a morphism (f ′1, f
′
2) : T ′ → X ×S X. Since f ′1|T = f ′2|T and |T | = |T ′| we see

that the image of T ′ under (f ′1, f
′
2) is contained in the open W chosen above. Since

(f ′1, f
′
2)(T ) ⊂ ∆(X) and since T is defined by an ideal of square zero in T ′ we see

that (f ′1, f
′
2) factors through X ′. As X ′ = X we conclude f ′1 = f ′2 as desired. �

Lemma 36.4.8. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is unramified (resp. G-unramified), and
(2) the morphism f is locally of finite type (resp. locally of finite presentation)

and formally unramified.

Proof. Use Lemma 36.4.7 and Morphisms, Lemma 28.36.2. �

http://stacks.math.columbia.edu/tag/02H9
http://stacks.math.columbia.edu/tag/02HE
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36.5. Universal first order thickenings

Let h : Z → X be a morphism of schemes. A universal first order thickening of Z
over X is a first order thickening Z ⊂ Z ′ over X such that given any first order
thickening T ⊂ T ′ over X and a solid commutative diagram

Z

~~

T

  

a
oo

Z ′

''

T ′
a′oo

b
ww

X

there exists a unique dotted arrow making the diagram commute. Note that in
this situation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over
X. Thus if a universal first order thickening exists, then it is unique up to unique
isomorphism. In general a universal first order thickening does not exist, but if h
is formally unramified then it does.

Lemma 36.5.1. Let h : Z → X be a formally unramified morphism of schemes.
There exists a universal first order thickening Z ⊂ Z ′ of Z over X.

Proof. During this proof we will say Z ⊂ Z ′ is a universal first order thickening of
Z over X if it satisfies the condition of the lemma. We will construct the universal
first order thickening Z ⊂ Z ′ over X by glueing, starting with the affine case which
is Algebra, Lemma 10.142.1. We begin with some general remarks.

If a universal first order thickening of Z over X exists, then it is unique up to unique
isomorphism. Moreover, suppose that V ⊂ Z and U ⊂ X are open subschemes such
that h(V ) ⊂ U . Let Z ⊂ Z ′ be a universal first order thickening of Z over X. Let
V ′ ⊂ Z ′ be the open subscheme such that V = Z ∩V ′. Then we claim that V ⊂ V ′
is the universal first order thickening of V over U . Namely, suppose given any
diagram

V

h

��

T
a

oo

��
U T ′

boo

where T ⊂ T ′ is a first order thickening over U . By the universal property of Z ′

we obtain (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′). But since we have equality |T | = |T ′| of
underlying topological spaces we see that a′(T ′) ⊂ V ′. Hence we may think of (a, a′)
as a morphism of thickenings (a, a′) : (T ⊂ T ′)→ (V ⊂ V ′) over U . Uniqueness is
clear also. In a completely similar manner one proves that if h(Z) ⊂ U and Z ⊂ Z ′
is a universal first order thickening over U , then Z ⊂ Z ′ is a universal first order
thickening over X.

Before we glue affine pieces let us show that the lemma holds if Z and X are affine.
Say X = Spec(R) and Z = Spec(S). By Algebra, Lemma 10.142.1 there exists a
first order thickening Z ⊂ Z ′ over X which has the universal property of the lemma

http://stacks.math.columbia.edu/tag/04F3
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for diagrams

Z

h

��

T
a

oo

��
X T ′

boo

where T, T ′ are affine. Given a general diagram we can choose an affine open
covering T ′ =

⋃
T ′i and we obtain morphisms a′i : T ′i → Z ′ over X such that

a′i|Ti = a|Ti . By uniqueness we see that a′i and a′j agree on any affine open of
T ′i ∩T ′j . Hence the morphisms a′i glue to a global morphism a′ : T ′ → Z ′ over X as
desired. Thus the lemma holds if X and Z are affine.

Choose an affine open covering Z =
⋃
Zi such that each Zi maps into an affine

open Ui of X. By Lemma 36.4.5 the morphisms Zi → Ui are formally unramified.
Hence by the affine case we obtain universal first order thickenings Zi ⊂ Z ′i over
Ui. By the general remarks above Zi ⊂ Z ′i is also a universal first order thickening
of Zi over X. Let Z ′i,j ⊂ Z ′i be the open subscheme such that Zi ∩ Zj = Z ′i,j ∩ Zi.
By the general remarks we see that both Z ′i,j and Z ′j,i are universal first order
thickenings of Zi ∩ Zj over X. Thus, by the first of our general remarks, we see
that there is a canonical isomorphism ϕij : Z ′i,j → Z ′j,i inducing the identity on
Zi ∩ Zj . We claim that these morphisms satisfy the cocycle condition of Schemes,
Section 25.14. (Verification omitted. Hint: Use that Z ′i,j ∩ Z ′i,k is the universal
first order thickening of Zi∩Zj ∩Zk which determines it up to unique isomorphism
by what was said above.) Hence we can use the results of Schemes, Section 25.14
to get a first order thickening Z ⊂ Z ′ over X which the property that the open
subscheme Z ′i ⊂ Z ′ with Zi = Z ′i ∩Z is a universal first order thickening of Zi over
X.

It turns out that this implies formally that Z ′ is a universal first order thickening
of Z over X. Namely, we have the universal property for any diagram

Z

h

��

T
a

oo

��
X T ′

boo

where a(T ) is contained in some Zi. Given a general diagram we can choose an
open covering T ′ =

⋃
T ′i such that a(Ti) ⊂ Zi. We obtain morphisms a′i : T ′i → Z ′

over X such that a′i|Ti = a|Ti . We see that a′i and a′j necessarily agree on T ′i ∩ T ′j
since both a′i|T ′i∩T ′j and a′j |T ′i∩T ′j are solutions of the problem of mapping into the

universal first oder thickening Z ′i ∩ Z ′j of Zi ∩ Zj over X. Hence the morphisms
a′i glue to a global morphism a′ : T ′ → Z ′ over X as desired. This finishes the
proof. �

Definition 36.5.2. Let h : Z → X be a formally unramified morphism of schemes.

(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′
constructed in Lemma 36.5.1.

(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal
first order thickening Z ′ over X.

We often denote the conormal sheaf CZ/X in this situation.

http://stacks.math.columbia.edu/tag/04F4
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Thus we see that there is a short exact sequence of sheaves

0→ CZ/X → OZ′ → OZ → 0

on Z. The following lemma proves that there is no conflict between this definition
and the definition in case Z → X is an immersion.

Lemma 36.5.3. Let i : Z → X be an immersion of schemes. Then

(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infini-

tesimal neighbourhood of Z in X of Definition 36.3.1, and
(3) the conormal sheaf of i in the sense of Morphisms, Definition 28.33.1

agrees with the conormal sheaf of i in the sense of Definition 36.5.2.

Proof. By Morphisms, Lemmas 28.36.7 and 28.36.8 an immersion is unramified,
hence formally unramified by Lemma 36.4.8. The other assertions follow by com-
bining Lemmas 36.3.2 and 36.3.3 and the definitions. �

Lemma 36.5.4. Let Z → X be a formally unramified morphism of schemes. Then
the universal first order thickening Z ′ is formally unramified over X.

Proof. There are two proofs. The first is to show that ΩZ′/X = 0 by working
affine locally and applying Algebra, Lemma 10.142.5. Then Lemma 36.4.7 implies
what we want. The second is a direct argument as follows.

Let T ⊂ T ′ be a first order thickening. Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Consider two morphisms a, b : T ′ → Z ′ fitting into the
diagram. Set T0 = c−1(Z) ⊂ T and T ′a = a−1(Z) (scheme theoretically). Since
Z ′ is a first order thickening of Z, we see that T ′ is a first order thickening of T ′a.
Moreover, since c = a|T we see that T0 = T ∩ T ′a (scheme theoretically). As T ′ is a
first order thickening of T it follows that T ′a is a first order thickening of T0. Now
a|T ′a and b|T ′a are morphisms of T ′a into Z ′ over X which agree on T0 as morphisms
into Z. Hence by the universal property of Z ′ we conclude that a|T ′a = b|T ′a . Thus
a and b are morphism from the first order thickening T ′ of T ′a whose restrictions
to T ′a agree as morphisms into Z. Thus using the universal property of Z ′ once
more we conclude that a = b. In other words, the defining property of a formally
unramified morphism holds for Z ′ → X as desired. �

Lemma 36.5.5. Consider a commutative diagram of schemes

Z
h
//

f

��

X

g

��
W

h′ // Y

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thickening
of Z over X. Let W ⊂ W ′ be the universal first order thickening of W over Y .
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There exists a canonical morphism (f, f ′) : (Z,Z ′) → (W,W ′) of thickenings over
Y which fits into the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal
sheaves f∗CW/Y → CZ/X .

Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Morphisms, Lemma 28.33.3 applied to
(Z ⊂ Z ′)→ (W ⊂W ′). �

Lemma 36.5.6. Let

Z
h
//

f

��

X

g

��
W

h′ // Y

be a fibre product diagram in the category of schemes with h′ formally unramified.
Then h is formally unramified and if W ⊂W ′ is the universal first order thickening
of W over Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening
of Z over X. In particular the canonical map f∗CW/Y → CZ/X of Lemma 36.5.5
is surjective.

Proof. The morphism h is formally unramified by Lemma 36.4.4. It is clear that
X ×Y W ′ is a first order thickening. It is straightforward to check that it has the
universal property because W ′ has the universal property (by mapping properties
of fibre products). See Morphisms, Lemma 28.33.4 for why this implies that the
map of conormal sheaves is surjective. �

Lemma 36.5.7. Let

Z
h
//

f

��

X

g

��
W

h′ // Y

be a fibre product diagram in the category of schemes with h′ formally unramified
and g flat. In this case the corresponding map Z ′ → W ′ of universal first order
thickenings is flat, and f∗CW/Y → CZ/X is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma 28.26.7.
Hence the first statement follows from the description of W ′ in Lemma 36.5.6. It is
clear that X ×Y W ′ is a first order thickening. It is straightforward to check that
it has the universal property because W ′ has the universal property (by mapping
properties of fibre products). See Morphisms, Lemma 28.33.4 for why this implies
that the map of conormal sheaves is an isomorphism. �
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Lemma 36.5.8. Taking the universal first order thickenings commutes with tak-
ing opens. More precisely, let h : Z → X be a formally unramified morphism of
schemes. Let V ⊂ Z, U ⊂ X be opens such that h(V ) ⊂ U . Let Z ′ be the universal
first order thickening of Z over X. Then h|V : V → U is formally unramified and
the universal first order thickening of V over U is the open subscheme V ′ ⊂ Z ′

such that V = Z ∩ V ′. In particular, CZ/X |V = CV/U .

Proof. The first statement is Lemma 36.4.5. The compatibility of universal thick-
enings can be deduced from the proof of Lemma 36.5.1, or from Algebra, Lemma
10.142.4 or deduced from Lemma 36.5.7. �

Lemma 36.5.9. Let h : Z → X be a formally unramified morphism of schemes
over S. Let Z ⊂ Z ′ be the universal first order thickening of Z over X with structure
morphism h′ : Z ′ → X. The canonical map

ch′ : (h′)∗ΩX/S −→ ΩZ′/S

induces an isomorphism h∗ΩX/S → ΩZ′/S ⊗OZ .

Proof. The map ch′ is the map defined in Morphisms, Lemma 28.34.8. If i : Z →
Z ′ is the given closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S ⊗ OZ .
Checking that it is an isomorphism reduces to the affine case by localization, see
Lemma 36.5.8 and Morphisms, Lemma 28.34.3. In this case the result is Algebra,
Lemma 10.142.5. �

Lemma 36.5.10. Let h : Z → X be a formally unramified morphism of schemes
over S. There is a canonical exact sequence

CZ/X → h∗ΩX/S → ΩZ/S → 0.

The first arrow is induced by dZ′/S where Z ′ is the universal first order neighbour-
hood of Z over X.

Proof. We know that there is a canonical exact sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Morphisms, Lemma 28.34.15. Hence the result follows on applying Lemma
36.5.9. �

Lemma 36.5.11. Let

Z
i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are formally unramified. Then
there is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 36.5.5 and the second from Lemma 36.5.10.
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Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 36.5.10 here
is a canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′ //

��

X

��
Z ′′ // Y

Apply Morphisms, Lemma 28.34.18 to the left triangle to get an exact sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

As Z ′′ is formally unramified over Y (see Lemma 36.5.4) we have ΩZ′/Z′′ = ΩZ/Y
(by combining Lemma 36.4.7 and Morphisms, Lemma 28.34.9). Then we have
(i′)∗ΩZ′/Y = i∗ΩX/Y by Lemma 36.5.9. �

Lemma 36.5.12. Let Z → Y → X be formally unramified morphisms of schemes.

(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is
the universal first order thickening of Y over X, then there is a morphism
Z ′ → Y ′ and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .

(2) There is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 36.5.5 and i : Z → Y is the first
morphism.

Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 36.5.5. The assertion
that Y ×Y ′ Z ′ is the universal first order thickening of Z over Y is clear from the
universal properties of Z ′ and Y ′. By Morphisms, Lemma 28.33.5 we have an exact
sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0

where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Morphisms, Lemma 28.33.4
there exists a surjection h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities
CY/Y ′ = CY/X , CZ/Z′ = CZ/X , and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. �

36.6. Formally étale morphisms

Recall that a ring map R → A is called formally étale (see Algebra, Definition
10.143.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, there exists exactly one dotted arrow which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

http://stacks.math.columbia.edu/tag/06AE
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Definition 36.6.1. Let f : X → S be a morphism of schemes. We say f is formally
étale if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists exactly
one dotted arrow making the diagram commute.

It is clear that a formally étale morphism is formally unramified. Hence if f : X → S
is formally étale, then ΩX/S is zero, see Lemma 36.4.7.

Lemma 36.6.2. If f : X → S is a formally étale morphism, then given any solid
commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists exactly one
dotted arrow making the diagram commute. In other words, in Definition 36.6.1
the condition that T be affine may be dropped.

Proof. Let T ′ =
⋃
T ′i be an affine open covering, and let Ti = T ∩ T ′i . Then we

get morphisms a′i : T ′i → X fitting into the diagram. By uniqueness we see that a′i
and a′j agree on any affine open subscheme of T ′i ∩ T ′j . Hence a′i and a′j agree on
T ′i ∩T ′j . Thus we see that the morphisms a′i glue to a global morphism a′ : T ′ → X.
The uniqueness of a′ we have seen in Lemma 36.4.2. �

Lemma 36.6.3. A composition of formally étale morphisms is formally étale.

Proof. This is formal. �

Lemma 36.6.4. A base change of a formally étale morphism is formally étale.

Proof. This is formal. �

Lemma 36.6.5. Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S
be open subschemes such that f(U) ⊂ V . If f is formally étale, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 36.6.1. If f is formally ramified, then there exists exactly one S-
morphism a′ : T ′ → X such that a′|T = a. Since |T ′| = |T | we conclude that
a′(T ′) ⊂ U which gives our unique morphism from T ′ into U . �

Lemma 36.6.6. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is formally étale,
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(2) f is formally unramified and the universal first order thickening of X over
S is equal to X,

(3) f is formally unramified and CX/S = 0, and
(4) ΩX/S = 0 and CX/S = 0.

Proof. Actually, the last assertion only make sense because ΩX/S = 0 implies that
CX/S is defined via Lemma 36.4.7 and Definition 36.5.2. This also makes it clear
that (3) and (4) are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified.
Hence we may assume f is formally unramified. The equivalence of (1), (2), and
(3) follow from the universal property of the universal first order thickening X ′

of X over S and the fact that X = X ′ ⇔ CX/S = 0 since after all by definition
CX/S = CX/X′ is the ideal sheaf of X in X ′. �

Lemma 36.6.7. An unramified flat morphism is formally étale.

Proof. Say X → S is unramified and flat. Then ∆ : X → X ×S X is an open
immersion, see Morphisms, Lemma 28.36.13. We have to show that CX/S is zero.
Consider the two projections p, q : X ×S X → X. As f is formally unramified (see
Lemma 36.4.8), q is formally unramified (see Lemma 36.4.4). As f is flat, p is flat,
see Morphisms, Lemma 28.26.7. Hence p∗CX/S = Cq by Lemma 36.5.7 where Cq
denotes the conormal sheaf of the formally unramified morphism q : X ×S X → X.
But ∆(X) ⊂ X ×S X is an open subscheme which maps isomorphically to X via
q. Hence by Lemma 36.5.8 we see that Cq|∆(X) = CX/X = 0. In other words, the
pullback of CX/S to X via the identity morphism is zero, i.e., CX/S = 0. �

Lemma 36.6.8. Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally étale if and only if OS(S)→ OX(X) is a formally étale
ring map.

Proof. This is immediate from the definitions (Definition 36.6.1 and Algebra, Def-
inition 10.143.1) by the equivalence of categories of rings and affine schemes, see
Schemes, Lemma 25.6.5. �

Lemma 36.6.9. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.

Proof. Assume f is étale. An étale morphism is locally of finite presentation,
flat and unramified, see Morphisms, Section 28.37. Hence f is locally of finite
presentation and formally étale, see Lemma 36.6.7.

Conversely, suppose that f is locally of finite presentation and formally étale. Being
étale is local in the Zariski topology on X and S, see Morphisms, Lemma 28.37.2.
By Lemma 36.6.5 we can cover X by affine opens U which map into affine opens
V such that U → V is formally étale (and of finite presentation, see Morphisms,
Lemma 28.22.2). By Lemma 36.6.8 we see that the ring maps O(V ) → O(U) are
formally étale (and of finite presentation). We win by Algebra, Lemma 10.143.2.
(We will give another proof of this implication when we discuss formally smooth
morphisms.) �
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36.7. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a
map. Throughout this section we use that a sheaf on a thickening X ′ of X can be
seen as a sheaf on X.

Lemma 36.7.1. Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be two first order
thickenings over S. Let (a, a′), (b, b′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be two morphisms of
thickenings over S. Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Morphisms, Lemma 28.33.3) are equal.

Then the map (a′)] − (b′)] factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is an OS-derivation.

Proof. Instead of working on Y we work on X. The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutive diagram with exact
rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)]

OO

(b′)]

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of the OS-algebra
maps (a′)] and (b′)] is an OS-derivation from a−1OY to CX/X′ . By adjointness of

the functors a−1 and a∗ this is the same thing as an OS-derivation from OY into
a∗CX/X′ . Some details omitted. �

Note that in the situation of the lemma above we may write D as

(36.7.1.1) D = dY/S ◦ θ

where θ is an OY -linear map θ : ΩY/S → a∗CX/X′ . Of course, then by adjunction
again we may view θ as an OX -linear map θ : a∗ΩY/S → CX/X′ .

Lemma 36.7.2. Let S be a scheme. Let (a, a′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of first order thickenings over S. Let

θ : a∗ΩY/S → CX/X′

be an OX-linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂
X ′)→ (Y ⊂ Y ′) such that (1) and (2) of Lemma 36.7.1 hold and the derivation D
and θ are related by Equation (36.7.1.1).

Proof. We simply set b = a and we define (b′)] to be the map

(a′)] +D : a−1OY ′ → OX′

where D is as in Equation (36.7.1.1). We omit the verification that (b′)] is a map
of sheaves of OS-algebras and that (1) and (2) of Lemma 36.7.1 hold. Equation
(36.7.1.1) holds by construction. �

http://stacks.math.columbia.edu/tag/04FG
http://stacks.math.columbia.edu/tag/02H5


36.7. INFINITESIMAL DEFORMATIONS OF MAPS 2325

Lemma 36.7.3. Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be first order
thickenings over S. Assume given a morphism a : X → Y and a map A : a∗CY/Y ′ →
CX/X′ of OX-modules. For an open subscheme U ′ ⊂ X ′ consider morphisms a′ :
U ′ → Y ′ such that

(1) a′ is a morphism over S,
(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Here U = X ∩ U ′. Then the rule

(36.7.3.1) U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}
defines a sheaf of sets on X ′.

Proof. Denote F the rule of the lemma. The restriction mapping F(U ′)→ F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition
in place it is clear that F is a sheaf since morphisms are defined locally. �

In the following lemma we identify sheaves on X and any thickening of X.

Lemma 36.7.4. Same notation and assumptions as in Lemma 36.7.3. There is
an action of the sheaf

HomOX (a∗ΩY/S , CX/X′)
on the sheaf (36.7.3.1). Moreover, the action is simply transitive for any open
U ′ ⊂ X ′ over which the sheaf (36.7.3.1) has a section.

Proof. This is a combination of Lemmas 36.7.1, 36.7.2, and 36.7.3. �

Remark 36.7.5. A special case of Lemmas 36.7.1, 36.7.2, 36.7.3, and 36.7.4 is
where Y = Y ′. In this case the map A is always zero. The sheaf of Lemma 36.7.3
is just given by the rule

U ′ 7→ {a′ : U ′ → Y over S with a′|U = a|U}
and we act on this by the sheaf HomOX (a∗ΩY/S , CX/X′). The action of a local
section θ on a′ is sometimes indicated by θ · a′. Note that this means nothing else
than the fact that (a′)] and (θ · a′)] differ by a derivation D which is related to θ
by Equation (36.7.1.1).

Lemma 36.7.6. Let S be a scheme. Let X ⊂ X ′ be a first order thickening over
S. Let Y be a scheme over S. Let a′, b′ : X ′ → Y be two morphisms over S with
a = a′|X = b′|X . This gives rise to a commutative diagram

X //

a

��

X ′

(b′,a′)

��
Y

∆Y/S // Y ×S Y
Since the horizontal arrows are immersions with conormal sheaves CX/X′ and ΩY/S,
by Morphisms, Lemma 28.33.3, we obtain a map θ : a∗ΩY/S → CX/X′ . Then this
θ and the derivation D of Lemma 36.7.1 are related by Equation (36.7.1.1).

Proof. Omitted. Hint: The equality may be checked on affine opens where it comes
from the following computation. If f is a local section of OY , then 1 ⊗ f − f ⊗ 1
is a local section of CY/(Y×SY ) corresponding to dY/S(f). It is mapped to the local

section (a′)](f)−(b′)](f) = D(f) of CX/X′ . In other words, θ(dY/S(f)) = D(f). �
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For later purposes we need a result that roughly states that the construction of
Lemma 36.7.2 is compatible with étale localization.

Lemma 36.7.7. Let

X1

��

X2
f
oo

��
S1 S2
oo

be a commutative diagram of schemes with X2 → X1 and S2 → S1 étale. Then the
map cf : f∗ΩX1/S1

→ ΩX2/S2
of Morphisms, Lemma 28.34.8 is an isomorphism.

Proof. We recall that an étale morphism U → V is a smooth morphism with
ΩU/V = 0. Using this we see that Morphisms, Lemma 28.34.9 implies ΩX2/S2

=
ΩX2/S1

and Morphisms, Lemma 28.35.16 implies that the map f∗ΩX1/S1
→ ΩX2/S1

(for the morphism f seen as a morphism over S1) is an isomorphism. Hence the
lemma follows. �

Lemma 36.7.8. Consider a commutative diagram of schemes

T2
//

h

��

T ′2
a′2

//

h′

��

X2

��

f~~
T1

// T ′1
a′1

// X1

��
S1 S2
oo

and assume that

(1) i1 : T1 → T ′1 is a first order thickening,
(2) i2 : T2 → T ′2 is a first order thickening, and
(3) X2 → X1 and S2 → S1 are étale.

Write ai = a′i ◦ ik for k = 1, 2. For any OT1-linear map θ1 : a∗1ΩX1/S1
→ CT1/T ′1

let
θ2 be the composition

a∗2ΩX2/S2
h∗a∗1ΩX1/S1

h∗θ1 // h∗CT1/T ′1
// CT2/T ′2

(equality sign is explained in the proof). Then the diagram

T ′2
θ2·a′2

//

��

X2

��
T ′1

θ1·a′1 // X1

commutes where the actions θ2 · a′2 and θ1 · a′1 are as in Remark 36.7.5.

Proof. The equality sign comes from the identification f∗ΩX1/S1
= ΩX2/S2

of
Lemma 36.7.7. Namely, using this we have a∗2ΩX2/S2

= a∗2f
∗ΩX1/S1

= h∗a∗1ΩX1/S1

because f ◦ a2 = a1 ◦ h. Having said this, the commutativity of the diagram may
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be checked on affine opens. Hence we may assume the schemes in the initial big
diagram are affine. Thus we obtain a commutative diagram of rings

B2/I2 B2
oo A2

a′2

oo

B1/I1

OO

B1

h′

OO

oo A1
a′1

oo
f

>>

R1
//

OO

R2

OO

with I2
1 = 0 and I2

2 = 0 and moreover with the property that A2 ⊗A1 ΩA1/R1
→

ΩA2/R2
is an isomorphism. Then θ1 : B1/I1 ⊗A1

ΩA1/R1
→ I1 is B1-linear. This

gives an R1-derivation D1 = θ1 ◦ dA1/R1
: A1 → I1. In a similar way we see that

θ2 : B2/I2⊗A2 ΩA2/R2
→ I2 gives rise to a R2-derivation D2 = θ2◦dA2/R2

: A2 → I2.
The construction of θ2 implies the following compatibility between θ1 and θ2: for
every x ∈ A1 we have

h′(D1(x)) = D2(f(x))

as elements of I2. Now by the construction of the action in Lemma 36.7.2 and
Remark 36.7.5 we know that θ1 ·a′1 corresponds to the ring map a′1 +D1 : A1 → B1

and θ2 · a′2 corresponds to the ring map a′2 + D2 : A2 → B2. By the displayed
equality above we obtain that h′ ◦ (a′1 +D1) = (a′2 +D2) ◦ f as desired. �

Remark 36.7.9. Lemma 36.7.8 can be improved in the following way. Suppose
that we have a commutative diagram of schemes as in Lemma 36.7.8 but we do
not assume that X2 → X1 and S2 → S1 are étale. Next, suppose we have θ1 :
a∗1ΩX1/S1

→ I1 and θ2 : a∗2ΩX2/S2
→ I2 such that for a local section t of OX1

we
have (h′)∗θ1(a∗1(dX1/S1

(t))) = θ2(a∗2(dX2/S2
(f∗t))), i.e., such that

f∗OX2 f∗D2

// f∗a2,∗CT2/T ′2

OX1

D1 //

f]

OO

a1,∗CT1/T ′1

induced by (h′)]

OO

is commutative where Di corresponds to θi as in Equation (36.7.1.1). Then we
have the conclusion of Lemma 36.7.8. The importance of the condition that both
X2 → X1 and S2 → S1 are étale is that it allows us to construct a θ2 from θ1.

36.8. Infinitesimal deformations of schemes

The following simple lemma is often a convenient tool to check whether an infini-
tesimal deformation of a map is flat.

Lemma 36.8.1. Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of first order
thickenings. Assume that f is flat. Then the following are equivalent

(1) f ′ is flat and X = S ×S′ X ′, and
(2) the canonical map f∗CS/S′ → CX/X′ is an isomorphism.

Proof. As the problem is local on X ′ we may assume that X,X ′, S, S′ are affine
schemes. Say S′ = Spec(A′), X ′ = Spec(B′), S = Spec(A), X = Spec(B) with

http://stacks.math.columbia.edu/tag/04BZ
http://stacks.math.columbia.edu/tag/063Y
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A = A′/I and B = B′/J for some square zero ideals. Then we obtain the following
commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

with exact rows. The canonical map of the lemma is the map

I ⊗A B = I ⊗A′ B′ −→ J.

The assumption that f is flat signifies that A→ B is flat.

Assume (1). Then A′ → B′ is flat and J = IB′. Flatness implies TorA
′

1 (B′, A) = 0
(see Algebra, Lemma 10.72.7). This means I⊗A′ B′ → B′ is injective (see Algebra,
Remark 10.72.8). Hence we see that I ⊗A B → J is an isomorphism.

Assume (2). Then it follows that J = IB′, so that X = S ×S′ X ′. Moreover, we

get TorA
′

1 (B′, A′/I) = 0 by reversing the implications in the previous paragraph.
Hence B′ is flat over A′ by Algebra, Lemma 10.95.8. �

The following lemma is the “nilpotent” version of the “critère de platitude par
fibres”, see Section 36.13.

Lemma 36.8.2. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume

(1) X ′ is flat over S′,
(2) f is flat,
(3) S ⊂ S′ is a finite order thickening, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and Y ′ is flat over S′ at all points in the image of f ′.

Proof. Immediate consequence of Algebra, Lemma 10.97.8. �

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 36.8.3. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume S ⊂ S′ is a finite order thickening, X ′ and Y ′ flat over S′

and X = S ×S′ X ′ and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,
(2) f is an isomorphism if and only if f ′ is an isomorphism,
(3) f is an open immersion if and only if f ′ is an open immersion,

http://stacks.math.columbia.edu/tag/06AF
http://stacks.math.columbia.edu/tag/06AG
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(4) f is quasi-compact if and only if f ′ is quasi-compact,
(5) f is universally closed if and only if f ′ is universally closed,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is a monomorphism if and only if f ′ is a monomorphism,
(8) f is surjective if and only if f ′ is surjective,
(9) f is universally injective if and only if f ′ is universally injective,

(10) f is affine if and only if f ′ is affine,
(11) f is locally of finite type if and only if f ′ is locally of finite type,
(12) f is quasi-finite if and only if f ′ is quasi-finite,
(13) f is locally of finite presentation if and only if f ′ is locally of finite pre-

sentation,
(14) f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(15) f is universally open if and only if f ′ is universally open,
(16) f is syntomic if and only if f ′ is syntomic,
(17) f is smooth if and only if f ′ is smooth,
(18) f is unramified if and only if f ′ is unramified,
(19) f is étale if and only if f ′ is étale,
(20) f is proper if and only if f ′ is proper,
(21) f is integral if and only if f ′ is integral,
(22) f is finite if and only if f ′ is finite,
(23) f is finite locally free (of rank d) if and only if f ′ is finite locally free (of

rank d), and
(24) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by X →
X ′. The properties P listed in (1) – (23) above are all stable under base change,
hence if f ′ has property P, then so does f . See Schemes, Lemmas 25.18.2, 25.19.3,
25.21.13, and 25.23.5 and Morphisms, Lemmas 28.11.4, 28.12.4, 28.13.8, 28.16.4,
28.21.13, 28.22.4, 28.30.2, 28.32.4, 28.35.5, 28.36.5, 28.37.4, 28.42.5, 28.44.6, and
28.46.4.

The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. By induction on the order of the thickening we may
assume that S ⊂ S′ is a first order thickening, see discussion immediately following
Definition 36.2.1. We make a couple of general remarks which we will use without
further mention in the arguments below. (I) Let W ′ ⊂ S′ be an affine open and
let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be affine opens lying over W ′ with f ′(U ′) ⊂ V ′. Let
W ′ = Spec(R′) and denote I ⊂ R′ be the ideal defining the closed subscheme
W ′ ∩ S. Say U ′ = Spec(B′) and V ′ = Spec(A′). Then we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0

with exact rows. Moreover, IA′ ∼= I ⊗R A and IB′ ∼= I ⊗R B, see proof of Lemma
36.8.1. (II) The morphisms X → X ′ and Y → Y ′ are universal homeomorphisms.
Hence the topology of the maps f and f ′ (after any base change) is identical. (III)
If f is flat, then f ′ is flat, see Lemma 36.8.2.
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Ad (1). This is general remark (III).

Ad (2). Assume f is an isomorphism. Choose an affine open V ′ ⊂ Y ′ and set
U ′ = (f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that V ∼= f−1(V ) =
U = Y ×Y ′ U ′ is affine. By Lemma 36.2.3 we see that U ′ is affine. Hence IB′ ∼=
I ⊗R B ∼= I ⊗R A ∼= IA′ and A ∼= B. By the exactness of the rows in the diagram
above we see that A′ ∼= B′, i.e., U ′ ∼= V ′. Thus f ′ is an isomorphism.

Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying
topological space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism
by (2). Hence f ′ is an open immersion.

Ad (4). Immediate from remark (II). See also Lemma 36.2.5 for a more general
statement.

Ad (5). Immediate from remark (II). See also Lemma 36.2.5 for a more general
statement.

Ad (6). Note that X ×Y X = Y ×Y ′ (X ′×Y ′ X ′) so that X ′×Y ′ X ′ is a thickening
of X ×Y X. Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we
win. See also Lemma 36.2.5 for a more general statement.

Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. Because f is a monomorphism and because X ′ ×Y ′ X ′ is a
thickening of X×Y X we see that ∆X′/Y ′ is surjective. Hence Lemma 36.8.2 implies
that X ′ ×Y ′ X ′ is flat over S′. Then (2) shows that ∆X′/Y ′ is an isomorphism.

Ad (8). This is clear. See also Lemma 36.2.5 for a more general statement.

Ad (9). Immediate from remark (II). See also Lemma 36.2.5 for a more general
statement.

Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ =
(f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine.
By Lemma 36.2.3 we see that U ′ is affine. Hence f ′ is affine. See also Lemma 36.2.5
for a more general statement.

Ad (11). Via remark (I) comes down to proving A′ → B′ is of finite type if
A → B is of finite type. Suppose that x1, . . . , xn ∈ B′ are elements whose images
in B generate B as an A-algebra. Then A′[x1, . . . , xn] → B is surjective as both
A′[x1, . . . , xn]→ B is surjective and I⊗RA[x1, . . . , xn]→ I⊗RB is surjective. See
also Lemma 36.2.6 for a more general statement.

Ad (12). Follows from (11) and that quasi-finiteness of a morphism of finite type
can be checked on fibres, see Morphisms, Lemma 28.21.6. See also Lemma 36.2.6
for a more general statement.

Ad (13). Via remark (I) comes down to proving A′ → B′ is of finite presentation if
A → B is of finite presentation. We may assume that B′ = A′[x1, . . . , xn]/K ′ for
some ideal K ′ by (11). We get a short exact sequence

0→ K ′ → A′[x1, . . . , xn]→ B′ → 0
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AsB′ is flat overR′ we see thatK ′⊗R′R is the kernel of the surjectionA[x1, . . . , xn]→
B. By assumption on A→ B there exist finitely many f ′1, . . . , f

′
m ∈ K ′ whose im-

ages in A[x1, . . . , xn] generate this kernel. Since I is nilpotent we see that f ′1, . . . , f
′
m

generate K ′ by Nakayama’s lemma, see Algebra, Lemma 10.19.1.

Ad (14). Follows from (11) and general remark (II). See also Lemma 36.2.6 for a
more general statement.

Ad (15). Immediate from general remark (II). See also Lemma 36.2.5 for a more
general statement.

Ad (16). Assume f is syntomic. By (13) f ′ is locally of finite presentation, by
general remark (III) f ′ is flat and the fibres of f ′ are the fibres of f . Hence f ′ is
syntomic by Morphisms, Lemma 28.32.11.

Ad (17). Assume f is smooth. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is smooth
by Morphisms, Lemma 28.35.3.

Ad (18). Assume f unramified. By (11) f ′ is locally of finite type and the fibres of
f ′ are the fibres of f . Hence f ′ is unramified by Morphisms, Lemma 28.36.12. See
also Lemma 36.2.6 for a more general statement.

Ad (19). Assume f étale. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is étale by
Morphisms, Lemma 28.37.8.

Ad (20). This follows from a combination of (6), (11), (4), and (5). See also Lemma
36.2.6 for a more general statement.

Ad (21). Combine (5) and (10) with Morphisms, Lemma 28.44.7. See also Lemma
36.2.5 for a more general statement.

Ad (22). Combine (21), and (11) with Morphisms, Lemma 28.44.4. See also Lemma
36.2.6 for a more general statement.

Ad (23). Assume f finite locally free. By (22) we see that f ′ is finite, by general
remark (III) f ′ is flat, and by (13) f ′ is locally of finite presentation. Hence f ′ is
finite locally free by Morphisms, Lemma 28.46.2. �

36.9. Formally smooth morphisms

Michael Artin’s position on differential criteria of smoothness (e.g., Morphisms,
Lemma 28.35.14) is that they are basically useless (in practice). In this section we
introduce the notion of a formally smooth morphism X → S. Such a morphism
is characterized by the property that T -valued points of X lift to infinitesimal
thickenings of T provided T is affine. The main result is that a morphism which
is formally smooth and locally of finite presentation is smooth, see Lemma 36.9.7.
It turns out that this criterion is often easier to use than the differential criteria
mentioned above.



2332 36. MORE ON MORPHISMS

Recall that a ring map R → A is called formally smooth (see Algebra, Definition
10.133.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, a dotted arrow exists which makes the
diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 36.9.1. Let f : X → S be a morphism of schemes. We say f is formally
smooth if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists a
dotted arrow making the diagram commute.

In the cases of formally unramified and formally étale morphisms the condition that
T ′ be affine could be dropped, see Lemmas 36.4.2 and 36.6.2. This is no longer true
in the case of formally smooth morphisms. In fact, a slightly more natural condition
would be that we should be able to fill in the dotted arrow Zariski locally on T ′.
In fact, analyzing the proof of Lemma 36.9.7 shows that this would be equivalent
to the definition as it currently stands.

Lemma 36.9.2. A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. �

Lemma 36.9.3. A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 10.133.2 for the algebraic version. �

Lemma 36.9.4. Let f : X → S be a morphism of schemes. Then f is formally
étale if and only if f is formally smooth and formally unramified.

Proof. Omitted. �

Lemma 36.9.5. Let f : X → S be a morphism of schemes. Let U ⊂ X and
V ⊂ S be open subschemes such that f(U) ⊂ V . If f is formally smooth, so is
f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 36.9.1. If f is formally smooth, then there exists an S-morphism
a′ : T ′ → X such that a′|T = a. Since the underlying sets of T and T ′ are the same
we see that a′ is a morphism into U (see Schemes, Section 25.3). And it clearly is
a V -morphism as well. Hence the dotted arrow above as desired. �

http://stacks.math.columbia.edu/tag/02H0
http://stacks.math.columbia.edu/tag/02H1
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36.9. FORMALLY SMOOTH MORPHISMS 2333

Lemma 36.9.6. Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally smooth if and only if OS(S) → OX(X) is a formally
smooth ring map.

Proof. This is immediate from the definitions (Definition 36.9.1 and Algebra, Def-
inition 10.133.1) by the equivalence of categories of rings and affine schemes, see
Schemes, Lemma 25.6.5. �

The following lemma is the main result of this section. It is a victory of the functorial
point of view in that it implies (combined with Limits, Proposition 31.5.1) that we
can recognize whether a morphism f : X → S is smooth in terms of “simple”
properties of the functor hX : Sch/S → Sets.

Lemma 36.9.7 (Infinitesimal lifting criterion). Let f : X → S be a morphism of
schemes. The following are equivalent:

(1) The morphism f is smooth, and
(2) the morphism f is locally of finite presentation and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a pair of affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that
f(U) ⊂ V . By Lemma 36.9.5 we see that U → V is formally smooth. By Lemma
36.9.6 we see that R → A is formally smooth. By Morphisms, Lemma 28.22.2 we
see that R→ A is of finite presentation. By Algebra, Proposition 10.133.13 we see
that R→ A is smooth. Hence by the definition of a smooth morphism we see that
X → S is smooth.

Conversely, assume that f : X → S is smooth. Consider a solid commutative
diagram

X

f

��

T

i
��

a
oo

S T ′oo

``

as in Definition 36.9.1. We will show the dotted arrow exists thereby proving that
f is formally smooth.

Let F be the sheaf of sets on T ′ of Lemma 36.7.3, see also Remark 36.7.5. Let

H = HomOT (a∗ΩX/S , CT/T ′)

be the sheaf of OT -modules on T introduced in Lemma 36.7.4. Our goal is simply
to show that F(T ) 6= ∅. In other words we are trying to show that F is a trivial
H-torsor on T (see Cohomology, Section 20.5). There are two steps: (I) To show
that F is a torsor we have to show that Ft 6= ∅ for all t ∈ T (see Cohomology,
Definition 20.5.1). (II) To show that F is the trivial torsor it suffices to show that
H1(T,H) = 0 (see Cohomology, Lemma 20.5.3 – we may use either cohomology of
H as an abelian sheaf or as an OT -module, see Cohomology, Lemma 20.14.3).

First we prove (I). To see this, for every t ∈ T we can choose an affine open U ⊂ T
neighbourhood of t such that a(U) is contained in an affine open Spec(A) = W ⊂ X
which maps to an affine open Spec(R) = V ⊂ S. By Morphisms, Lemma 28.35.2 the
ring map R→ A is smooth. Hence by Algebra, Proposition 10.133.13 the ring map
R→ A is formally smooth. Lemma 36.9.6 in turn implies that W → V is formally

http://stacks.math.columbia.edu/tag/02H4
http://stacks.math.columbia.edu/tag/02H6
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smooth. Hence we can lift a|U : U → W to a V -morphism a′ : U ′ → W ⊂ X
showing that F(U) 6= ∅.

Finally we prove (II). By Morphisms, Lemma 28.34.13 we see that ΩX/S is of finite
presentation (it is even finite locally free by Morphisms, Lemma 28.35.12). Hence
a∗ΩX/S is of finite presentation (see Modules, Lemma 17.11.4). Hence the sheaf
H = HomOT (a∗ΩX/S , CT/T ′) is quasi-coherent by the discussion in Schemes, Section

25.24. Thus by Cohomology of Schemes, Lemma 29.2.2 we have H1(T,H) = 0 as
desired. �

Locally projective quasi-coherent modules are defined in Properties, Section 27.19.

Lemma 36.9.8. Let f : X → Y be a formally smooth morphism of schemes. Then
ΩX/Y is locally projective on X.

Proof. Choose U ⊂ X and V ⊂ Y affine open such that f(U) ⊂ V . By Lemma
36.9.5 f |U : U → V is formally smooth. Hence Γ(V,OV )→ Γ(U,OU ) is a formally
smooth ring map, see Lemma 36.9.6. Hence by Algebra, Lemma 10.133.7 the
Γ(U,OU )-module ΩΓ(U,OU )/Γ(V,OV ) is projective. Hence ΩU/V is locally projective,
see Properties, Section 27.19. �

Lemma 36.9.9. Let f : X → Y , g : Y → S be morphisms of schemes. Assume f
is formally smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0

(see Morphisms, Lemma 28.34.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A→ B → C with B → C formally smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of Algebra, Lemma 10.127.7 is exact. This is Algebra, Lemma 10.133.9. �

Lemma 36.9.10. Let h : Z → X be a formally unramified morphism of schemes
over S. Assume that Z is formally smooth over S. Then the canonical exact
sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0

of Lemma 36.5.10 is short exact.

Proof. Let Z → Z ′ be the universal first order thickening of Z over X. From the
proof of Lemma 36.5.10 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

Since Z → S is formally smooth we can locally on Z ′ find a left inverse Z ′ → Z over
S to the inclusion map Z → Z ′. Thus the sequence is locally split, see Morphisms,
Lemma 28.34.16. �

Lemma 36.9.11. Let

Z
i
//

j   

X

f

��
Y

http://stacks.math.columbia.edu/tag/06B5
http://stacks.math.columbia.edu/tag/06B6
http://stacks.math.columbia.edu/tag/06B7
http://stacks.math.columbia.edu/tag/067W
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be a commutative diagram of schemes where i and j are formally unramified and f
is formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0

of Lemma 36.5.11 is exact and locally split.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 36.5.10 here
is a canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′

b // Y

In the proof of Lemma 36.5.11 we identified the sequence above with the sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

Let U ′′ ⊂ Z ′′ be an affine open. Denote U ⊂ Z and U ′ ⊂ Z ′ the corresponding affine
open subschemes. As f is formally smooth there exists a morphism h : U ′′ → X
which agrees with i on U and such that f ◦ h equals b|U ′′ . Since Z ′ is the universal
first order thickening we obtain a unique morphism g : U ′′ → Z ′ such that g = a◦h.
The universal property of Z ′′ implies that k◦g is the inclusion map U ′′ → Z ′′. Hence
g is a left inverse to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map
CZ/Z′′ → CZ/Z′ over U . �

36.10. Smoothness over a Noetherian base

It turns out that if the base is Noetherian then we can get away with less in the
formulation of formal smoothness. In some sense the following lemmas are the
beginning of deformation theory.

Lemma 36.10.1. Let f : X → S be a morphism of schemes. Let x ∈ X. Assume
that S is locally Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth at x,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)
βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square
zero, and α mapping the closed point of Spec(B) to x there exists a dotted
arrow making the diagram commute,

(3) same as in (2) but with B′ → B ranging over small extensions (see Alge-
bra, Definition 10.136.1), and

http://stacks.math.columbia.edu/tag/02HX
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(4) same as in (2) but with B′ → B ranging over small extensions such that α
induces an isomorphism κ(x)→ κ(m) where m ⊂ B is the maximal ideal.

Proof. Choose an affine neighbourhood V ⊂ S of f(x) and choose an affine neigh-
bourhood U ⊂ X of x such that f(U) ⊂ V . For any “test” diagram as in (2)
the morphism α will map Spec(B) into U and the morphism β will map Spec(B′)
into V (see Schemes, Section 25.13). Hence the lemma reduces to the morphism
f |U : U → V of affines. (Indeed, V is Noetherian and f |U is of finite type, see
Properties, Lemma 27.5.2 and Morphisms, Lemma 28.16.2.) In this affine case the
lemma is identical to Algebra, Lemma 10.136.2. �

Sometimes it is useful to know that one only needs to check the lifting criterion for
small extensions “centered” at points of finite type (see Morphisms, Section 28.17).

Lemma 36.10.2. Let f : X → S be a morphism of schemes. Assume that S is
locally Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)
βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite
type (!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 36.9.7) says
f is formally smooth and (2) holds.

Assume (2). The set of points x ∈ X where f is not smooth forms a closed subset
T of X. By the discussion in Morphisms, Section 28.17, if T 6= ∅ there exists a
point x ∈ T ⊂ X such that the morphism

Spec(κ(x))→ X → S

is of finite type (namely, pick any point x of T which is closed in an affine open of
X). By Morphisms, Lemma 28.17.2 given any local Artinian ring B′ with residue
field κ(x) then any morphism β : Spec(B′) → S is of finite type. Thus we see
that all the diagrams used in Lemma 36.10.1 (4) correspond to diagrams as in the
current lemma (2). Whence X → S is smooth a x a contradiction. �

Here is a useful application.

Lemma 36.10.3. Let f : X → S be a finite type morphism of locally Noetherian
schemes. Let Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood
Zn ⊂ S. Set Xn = Zn ×S X.

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over
a point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma
36.10.1 part (3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence
the morphism β factors through Zn and α factors through Xn for a suitable n.
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Thus the lifting property for Xn → Zn kicks in to get the desired dotted arrow
in the diagram. This proves (1). Part (2) follows from (1) and the fact that a
morphism is étale if and only if it is smooth of relative dimension 0. �

36.11. Pushouts in the category of schemes

In this section we collect some results on pushouts in the category of schemes. See
Categories, Section 36.11 for a general discussion of pushouts in any category.

Lemma 36.11.1. Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Then there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y qX X ′

in the category of schemes. Moreover Y ′ = Y qX X ′ is a thickening of Y and

OY ′ = OY ×f∗OX f ′∗OX′

as sheaves on |Y | = |Y ′|.

Proof. We first construct Y ′ as a ringed space. Namely, as topological space we
take Y ′ = Y . Denote f ′ : X ′ → Y ′ the map of topological spaces which equals
f . As structure sheaf OY ′ we take the right hand side of the equation of the
lemma. To see that Y ′ is a scheme, we have to show that any point has an affine
neighbourhood. Since the formation of the fibre product of sheaves commutes with
restricting to opens, we may assume Y is affine. Then X is affine (as f is affine)
and X ′ is affine as well (see Lemma 36.2.3). Say Y ← X → X ′ corresponds to
B → A ← A′. Set B′ = B ×A A′; this is the global sections of OY ′ . As A′ → A
is surjective with locally nilpotent kernel we see that B′ → B is surjective with
locally nilpotent kernel. Hence Spec(B′) = Spec(B) (as topological spaces). We
claim that Y ′ = Spec(B′). To see this we will show for g′ ∈ B′ with image g ∈ B
that OY ′(D(g)) = B′g′ . Namely, by More on Algebra, Lemma 15.4.3 we see that

(B′)g′ = Bg ×Ah A′h′
where h ∈ A, h′ ∈ A′ are the images of g′. Since Bg, resp. Ah, resp. A′h′ is equal to
OY (D(g)), resp. f∗OX(D(g)), resp. f ′∗OX′(D(g)) the claim follows.

Finally, we prove the universal property of the pushout holds for Y ′ and the mor-
phisms Y → Y ′ and X ′ → Y ′. Namely, let S be a scheme and let b : Y → S and
a′ : X ′ → S be morphisms such that

X //

��

X ′

a′

��
Y

b // S

commutes. Note that a′ = b◦f ′ on underlying topological spaces. Denote also (a′)] :
b−1OS → f ′∗OX′ the map which is adjoint to (a′)] : (a′)−1OS = (f ′)−1b−1OS →
OX′ . Then we get a map

b−1OS
(b],(a′)])−−−−−−→ OY ×f∗OX f ′∗OX′ = OY ′
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which defines a morphism of ringed spaces b′ : Y ′ → S compatible with a′ and
b. Since Y ⊂ Y ′ is a thickening it follows that b′ is a morphism of locally ringed
spaces, i.e., a morphism of schemes. This finishes the proof. �

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 4.29.3.

Lemma 36.11.2. Let X → X ′ be a thickening of schemes and let X → Y be
an affine morphism of schemes. Let Y ′ = Y qX X ′ be the pushout (see Lemma
36.11.1). Base change gives a functor

F : (Sch/Y ′) −→ (Sch/Y )×(Sch/Y ′) (Sch/X ′)

given by V ′ 7−→ (V ′ ×Y ′ Y, V ′ ×Y ′ X ′, 1) which has a left adjoint

G : (Sch/Y )×(Sch/Y ′) (Sch/X ′) −→ (Sch/Y ′)

which sends the triple (V,U ′, ϕ) to the pushout V q(V×YX) U
′. Finally, F ◦ G is

isomorphic to the identity functor.

Proof. Let (V,U ′, ϕ) be an object of the fibre product category. Set U = U ′×X′X.
Note that U → U ′ is a thickening. Since ϕ : V ×Y X → U ′ ×X′ X = U is an
isomorphism we have a morphism U → V over X → Y which identifies U with
the fibre product X ×Y V . In particular U → V is affine, see Morphisms, Lemma
28.13.8. Hence we can apply Lemma 36.11.1 to get a pushout V ′ = V qUU ′. Denote
V ′ → Y ′ the morphism we obtain in virtue of the fact that V ′ is a pushout and
because we are given morphisms V → Y and U ′ → X ′ agreeing on U as morphisms
into Y ′. Setting G(V,U ′, ϕ) = V ′ gives the functor G.

Let us prove that G is a left adjoint to F . Let Z be a scheme over Y ′. We have to
show that

Mor(V ′, Z) = Mor((V,U ′, ϕ), F (Z))

where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X ′. Then (g, f ′) is an element of the
right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, ϕ) → F (Z) is an element of the right hand side. We may consider

the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z, resp.
Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the universal
property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element of the left
hand side. We omit the verification that these constructions are mutually inverse.

To prove that F ◦G is isomorphic to the identity we have to show that the adjunction
mapping (V,U ′, ϕ) → F (G(V,U ′, ϕ)) is an isomorphism. To do this we may work
affine locally. Say X = Spec(A), X ′ = Spec(A′), and Y = Spec(B). Then A′ → A
and B → A are ring maps as in More on Algebra, Lemma 15.4.5 and Y ′ = Spec(B′)
with B′ = B×AA′. Next, suppose that V = Spec(D), U ′ = Spec(C ′) and ϕ is given
by an A-algebra isomorphism D⊗BA→ C ′⊗A′A = C ′/IC ′. Set D′ = D×C′/IC′C ′.
In this case the statement we have to prove is thatD′⊗B′B ∼= D andD′⊗B′A′ ∼= C ′.
This is a special case of More on Algebra, Lemma 15.4.5. �
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Lemma 36.11.3. Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Let Y ′ = Y qXX ′ be the pushout (see Lemma 36.11.1).
Let V ′ → Y ′ be a morphism of schemes. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and
U = X ×Y ′ V ′. There is an equivalence of categories between

(1) quasi-coherent OV ′-modules flat over Y ′, and
(2) the category of triples (G,F ′, ϕ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′-module flat over X, and
(c) ϕ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, ϕ). Then

(a) G′ is a finite type OV ′-module if and only if G and F ′ are finite type OY
and OU ′-modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′-module of
finite presentation if and only if G and F ′ are OY and OU ′-modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, ϕ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines we recover the equivalence
of More on Algebra, Lemma 15.4.12. Some details omitted.

Parts (a) and (b) follow from More on Algebra, Lemmas 15.4.11 and 15.4.13. �

Lemma 36.11.4. In the situation of Lemma 36.11.2. If V ′ = G(V,U ′, ϕ) for some
triple (V,U ′, ϕ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y

and U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′))→W ′ is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of schemes flat over Y ′ and the category of triples (V,U ′, ϕ) with V → Y and
U ′ → X ′ flat.

Proof. Looking over affine pieces the assertions of this lemma are equivalent to
the corresponding assertions of More on Algebra, Lemma 15.4.14. �

36.12. Openness of the flat locus

This result takes some work to prove, and (perhaps) deserves its own section. Here
it is.

Theorem 36.12.1. Let S be a scheme. Let f : X → S be a morphism which is
locally of finite presentation. Let F be a quasi-coherent OX-module which is locally
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of finite presentation. Then

U = {x ∈ X | F is flat over S at x}

is open in X.

Proof. We may test for openness locally on X hence we may assume that f is a
morphism of affine schemes. In this case the theorem is exactly Algebra, Theorem
10.125.4. �

Lemma 36.12.2. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′

g // S

be a cartesian diagram of schemes. Let F be a quasi-coherent OX-module. Let
x′ ∈ X ′ with images x = g′(x′) and s′ = g′(x′).

(1) If F is flat over S at x, then (g′)∗F is flat over S′ at x′.
(2) If g is flat at s′ and (g′)∗F is flat over S′ at x′, then F is flat over S at

x.

In particular, if g is flat, f is locally of finite presentation, and F is locally of finite
presentation, then formation of the open subset of Theorem 36.12.1 commutes with
base change.

Proof. Consider the commutative diagram of local rings

OX′,x′ OX,xoo

OS′,s′

OO

OS,soo

OO

Note that OX′,x′ is a localization of OX,x⊗OS,s OS′,s′ , and that ((g′)∗F)x′ is equal
to Fx ⊗OX,x OX′,x′ . Hence the lemma follows from Algebra, Lemma 10.96.1. �

36.13. Critère de platitude par fibres

Consider a commutative diagram of schemes (left hand diagram)

X
f

//

��

Y

��
S

Xs
fs

//

$$

Ys

zz
Spec(κ(s))

and a quasi-coherent OX -module F . Given a point x ∈ X lying over s ∈ S with
image y = f(x) we consider the question: Is F flat over Y at x? If F is flat over S
at x, then the theorem states this question is intimately related to the question of
whether the restriction of F to the fibre

Fs = (Xs → X)∗F

is flat over Ys at x. Below you will find a “Noetherian” version, a “finitely presented”
version, and earlier we treated a “nilpotent” version, see Lemma 36.8.2.
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Theorem 36.13.1. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX-module. Let x ∈ X. Set y = f(x) and s ∈ S
the image of x in S. Assume S, X, Y locally Noetherian, F coherent, and Fx 6= 0.
Then the following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Proof. Consider the ring maps

OS,s −→ OY,y −→ OX,x
and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local
ring of Ys at y is OY,y/msOY,y. Thus the implication (1) ⇒ (2) is Algebra, Lemma
10.95.15. If (2) holds, then the first ring map is faithfully flat and Fx is flat over
OY,y so by Algebra, Lemma 10.38.3 we see that Fx is flat over OS,s. Moreover,
Fx/msFx is the base change of the flat module Fx by OY,y → OY,y/msOY,y, hence
flat by Algebra, Lemma 10.38.6. �

Here is the non-Noetherian version.

Theorem 36.13.2. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX-module. Assume

(1) X is locally of finite presentation over S,
(2) F an OX-module of finite presentation, and
(3) Y is locally of finite type over S.

Let x ∈ X. Set y = f(x) and let s ∈ S be the image of x in S. If Fx 6= 0, then the
following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Consider the ring maps

OS,s −→ OY,y −→ OX,x
and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local
ring of Ys at y is OY,y/msOY,y. Thus the implication (1) ⇒ (2) is Algebra, Lemma
10.124.9. If (2) holds, then the first ring map is faithfully flat and Fx is flat over
OY,y so by Algebra, Lemma 10.38.3 we see that Fx is flat over OS,s. Moreover,
Fx/msFx is the base change of the flat module Fx by OY,y → OY,y/msOY,y, hence
flat by Algebra, Lemma 10.38.6.

By Morphisms, Lemma 28.22.11 the morphism f is locally of finite presentation.
Consider the set

(36.13.2.1) U = {x ∈ X | F flat at x over both Y and S}.
This set is open in X by Theorem 36.12.1. Note that if x ∈ U , then Fs is flat
at x over Ys as a base change of a flat module under the morphism Ys → Y , see
Morphisms, Lemma 28.26.6. Hence at every point of U ∩ Supp(F) condition (1) is
satisfied. On the other hand, it is clear that if x ∈ Supp(F) satisfies (1) and (2),
then x ∈ U . Thus the open set we are looking for is U ∩ Supp(F). �

These theorems are often used in the following simplified forms. We give only the
global statements – of course there are also pointwise versions.
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Lemma 36.13.3. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume

(1) S, X, Y are locally Noetherian,
(2) X is flat over S,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 36.13.1. �

Lemma 36.13.4. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat, and
(4) Y is locally of finite type over S.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 36.13.2. �

Lemma 36.13.5. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX-module. Assume

(1) X is locally of finite presentation over S,
(2) F an OX-module of finite presentation,
(3) F is flat over S, and
(4) Y is locally of finite type over S.

Then the set

U = {x ∈ X | F flat at x over Y }.
is open in X and its formation commutes with arbitrary base change: If S′ → S
is a morphism of schemes, and U ′ is the set of points of X ′ = X ×S S′ where
F ′ = F ×S S′ is flat over Y ′ = Y ×S S′, then U ′ = U ×S S′.

Proof. By Morphisms, Lemma 28.22.11 the morphism f is locally of finite presen-
tation. Hence U is open by Theorem 36.12.1. Because we have assumed that F is
flat over S we see that Theorem 36.13.2 implies

U = {x ∈ X | Fs flat at x over Ys}.

where s always denotes the image of x in S. (This description also works trivially
when Fx = 0.) Moreover, the assumptions of the lemma remain in force for the
morphism f ′ : X ′ → Y ′ and the sheaf F ′. Hence U ′ has a similar description. In
other words, it suffices to prove that given s′ ∈ S′ mapping to s ∈ S we have

{x′ ∈ X ′s′ | F ′s′ flat at x′ over Y ′s′}

is the inverse image of the corresponding locus in Xs. This is true by Lemma
36.12.2 because in the cartesian diagram

X ′s′

��

// Xs

��
Y ′s′

// Ys
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the horizontal morphisms are flat as they are base changes by the flat morphism
Spec(κ(s′))→ Spec(κ(s)). �

Lemma 36.13.6. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S, and
(3) Y is locally of finite type over S.

Then the set
U = {x ∈ X | X flat at x over Y }.

is open in X and its formation commutes with arbitrary base change.

Proof. This is a special case of Lemma 36.13.5. �

The following lemma is a variant of Algebra, Lemma 10.95.4. Note that the hy-
pothesis that (Fs)x is a flat OXs,x-module means that (Fs)x is a free OXs,x-module
which is always the case if x ∈ Xs is a generic point of an irreducible component
of Xs and Xs is reduced (namely, in this case OXs,x is a field, see Algebra, Lemma
10.24.1).

Lemma 36.13.7. Let f : X → S be a morphism of schemes of finite presentation.
Let F be a finitely presented OX-module. Let x ∈ X with image s ∈ S. If F
is flat at x over S and (Fs)x is a flat OXs,x-module, then F is finite free in a
neighbourhood of x.

Proof. If Fx ⊗ κ(x) is zero, then Fx = 0 by Nakayama’s lemma (Algebra, Lemma
10.19.1) and hence F is zero in a neighbourhood of x (Modules, Lemma 17.9.5)
and the lemma holds. Thus we may assume Fx ⊗ κ(x) is not zero and we see
that Theorem 36.13.2 applies with f = id : X → X. We conclude that Fx is flat
over OX,x. Hence Fx is free, see Algebra, Lemma 10.75.4 for example. Choose
an open neighbourhood x ∈ U ⊂ X and sections s1, . . . , sr ∈ F(U) which map
to a basis in Fx. The corresponding map ψ : O⊕rU → F|U is surjective after
shrinking U (Modules, Lemma 17.9.5). Then Ker(ψ) is of finite type (see Modules,
Lemma 17.11.3) and Ker(ψ)x = 0. Whence after shrinking U once more ψ is an
isomorphism. �

36.14. Normalization revisited

Normalization commutes with smooth base change.

Lemma 36.14.1. Let f : Y → X be a smooth morphism of schemes. Let A be a
quasi-coherent sheaf of OX-algebras. The integral closure of OY in f∗A is equal to
f∗A′ where A′ ⊂ A is the integral closure of OX in A.

Proof. This is a translation of Algebra, Lemma 10.140.4 into the language of
schemes. Details omitted. �

Lemma 36.14.2 (Normalization commutes with smooth base change). Let

Y2
//

f2

��

Y1

f1

��
X2

ϕ // X1
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be a fibre square in the category of schemes. Assume f1 is quasi-compact and quasi-
separated, and ϕ is smooth. Let Yi → X ′i → Xi be the normalization of Xi in Yi.
Then X ′2

∼= X2 ×X1 X
′
1.

Proof. The base change of the factorization Y1 → X ′1 → X1 to X2 is a factorization
Y2 → X2 ×X1

X ′1 → X1 and X2 ×X1
X ′1 → X1 is integral (Morphisms, Lemma

28.44.6). Hence we get a morphism h : X ′2 → X2×X1
X ′1 by the universal property of

Morphisms, Lemma 28.48.4. Observe thatX ′2 is the relative spectrum of the integral
closure of OX2 in f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the integral closure of OX2 , then
X2 ×X1 X

′
1 is the relative spectrum of ϕ∗A′, see Constructions, Lemma 26.4.6. By

Cohomology of Schemes, Lemma 29.5.2 we know that f2,∗OY2
= ϕ∗f1,∗OY1

. Hence
the result follows from Lemma 36.14.1. �

Lemma 36.14.3 (Normalization and smooth morphisms). Let X → Y be a smooth
morphism of schemes. Assume every quasi-compact open of Y has finitely many
irreducible components. Then the same is true for X and there is a canonical
isomorphism Xν = X ×Y Y ν .

Proof. As X → Y is flat we see that generic points of irreducible components of
X map to generic points of irreducible components of Y , see Morphisms, Lemma
28.26.8. On the other hand, the fibres of X → Y are locally Noetherian because
they are locally of finite type over a field. Thus every quasi-compact open of X has
finitely many irreducible components. Note that Xred = X ×Y Yred as a scheme
smooth over a reduced scheme is reduced, see Descent, Lemma 34.14.1. Hence we
may assume that X and Y are reduced (as the normalization of a scheme is equal
to the normalization of its reduction by definition). Next, note that X ′ = X×Y Y ν
is a normal scheme by Descent, Lemma 34.14.2. The morphism X ′ → Y ν is smooth
(hence flat) thus the generic points of irreducible components of X ′ lie over generic
points of irreducible components of Y ν . Since Y ν → Y is birational we conclude
that X ′ → X is birational too (because X ′ → Y ν induces an isomorphism on
fibres over generic points of Y ). We conclude that there exists a factorization
Xν → X ′ → X, see Morphisms, Lemma 28.48.15 which is an isomorphism as X ′ is
normal and integral over X. �

36.15. Normal morphisms

In the article [DM69] of Deligne and Mumford the notion of a normal morphism
is mentioned. This is just one in a series of types1 of morphisms that can all be
defined similarly. Over time we will add these in their own sections as needed.

Definition 36.15.1. Let f : X → Y be a morphism of schemes. Assume that all
the fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is normal at x if f is flat at x,
and the scheme Xy is geometrically normal at x over κ(y) (see Varieties,
Definition 32.8.1).

(2) We say f is a normal morphism if f is normal at every point of X.

So the condition that the morphism X → Y is normal is stronger than just requiring
all the fibres to be normal locally Noetherian schemes.

1 The other types are coprof ≤ k, Cohen-Macaulay, (Sk), regular, (Rk), and reduced. See
[DG67, IV Definition 6.8.1.].
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Lemma 36.15.2. Let f : X → Y be a morphism of schemes. Assume all fibres of
f are locally Noetherian. The following are equivalent

(1) f is normal, and
(2) f is flat and its fibres are geometrically normal schemes.

Proof. This follows directly from the definitions. �

Lemma 36.15.3. A smooth morphism is normal.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 28.35.8 the fibres Xy are locally of finite type over a field,
hence locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 28.35.9.
Finally, the fibres Xy are smooth over a field (by Morphisms, Lemma 28.35.5) and
hence geometrically normal by Varieties, Lemma 32.15.4. Thus f is normal by
Lemma 36.15.2. �

We want to show that this notion is local on the source and target for the smooth
topology. First we deal with the property of having locally Noetherian fibres.

Lemma 36.15.4. The property P(f) =“the fibres of f are locally Noetherian” is
local in the fppf topology on the source and the target.

Proof. Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an
fppf covering of Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and
let yi ∈ Yi be a point. Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Moreover, as ϕi is of finite presentation the field extension κ(y) ⊂ κ(yi) is finitely
generated. Hence in this situation we have that Xy is locally Noetherian if and
only if Xi,yi is locally Noetherian, see Varieties, Lemma 32.9.1. This fact implies
locality on the target.

Let {Xi → X} be an fppf covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
an fppf covering of the fibre. Hence the locality on the source follows from Descent,
Lemma 34.12.1. �

Lemma 36.15.5. The property P(f) =“the fibres of f are locally Noetherian and f
is normal” is local in the fppf topology on the target and local in the smooth topology
on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometri-
cally normal”. We have already seen that P1 and P2 are local in the fppf topology
on the source and the target, see Lemma 36.15.4, and Descent, Lemmas 34.19.13
and 34.23.1. Thus we have to deal with P3.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fpqc
covering of Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically normal if and only if Xi,yi

is geometrically normal, see Varieties, Lemma 32.8.4. This fact implies P3 is fpqc
local on the target.
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Let {Xi → X} be a smooth covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a smooth covering of the fibre. Hence the locality of P3 for the smooth topology on
the source follows from Descent, Lemma 34.14.2. Combining the above the lemma
follows. �

36.16. Regular morphisms

Compare with Section 36.15. The algebraic version of this notion is discussed in
More on Algebra, Section 15.30.

Definition 36.16.1. Let f : X → Y be a morphism of schemes. Assume that all
the fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is regular at x if f is flat at x,
and the scheme Xy is geometrically regular at x over κ(y) (see Varieties,
Definition 32.10.1).

(2) We say f is a regular morphism if f is regular at every point of X.

The condition that the morphism X → Y is regular is stronger than just requiring
all the fibres to be regular locally Noetherian schemes.

Lemma 36.16.2. Let f : X → Y be a morphism of schemes. Assume all fibres of
f are locally Noetherian. The following are equivalent

(1) f is regular,
(2) f is flat and its fibres are geometrically regular schemes,
(3) for every pair of affine opens U ⊂ X, V ⊂ Y with f(U) ⊂ V the ring map
O(V )→ O(U) is regular,

(4) there exists an open covering Y =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj is regular, and

(5) there exists an affine open covering Y =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring maps O(Vj)→ O(Ui) are regular.

Proof. The equivalence of (1) and (2) is immediate from the definitions. Let
x ∈ X with y = f(x). By definition f is flat at x if and only if OY,y → OX,x
is a flat ring map, and Xy is geometrically regular at x over κ(y) if and only
if OXy,x = OX,x/myOX,x is a geometrically regular algebra over κ(y). Hence
Whether or not f is regular at x depends only on the local homomorphism of local
rings OY,y → OX,x. Thus the equivalence of (1) and (4) is clear.

Recall (More on Algebra, Definition 15.30.1) that a ring map A → B is regular if
and only if it is flat and the fibre rings B⊗A κ(p) are Noetherian and geometrically
regular for all primes p ⊂ A. By Varieties, Lemma 32.10.3 this is equivalent to
Spec(B⊗A κ(p)) being a geometrically regular scheme over κ(p). Thus we see that
(2) implies (3). It is clear that (3) implies (5). Finally, assume (5). This implies
that f is flat (see Morphisms, Lemma 28.26.3). Moreover, if y ∈ Y , then y ∈ Vj
for some j and we see that Xy =

⋃
i∈Ij Ui,y with each Ui,y geometrically regular

over κ(y) by Varieties, Lemma 32.10.3. Another application of Varieties, Lemma
32.10.3 shows that Xy is geometrically regular. Hence (2) holds and the proof of
the lemma is finished. �

Lemma 36.16.3. A smooth morphism is regular.
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Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 28.35.8 the fibres Xy are locally of finite type over a field,
hence locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 28.35.9.
Finally, the fibres Xy are smooth over a field (by Morphisms, Lemma 28.35.5) and
hence geometrically regular by Varieties, Lemma 32.15.4. Thus f is regular by
Lemma 36.16.2. �

Lemma 36.16.4. The property P(f) =“the fibres of f are locally Noetherian and f
is regular” is local in the fppf topology on the target and local in the smooth topology
on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometri-
cally regular”. We have already seen that P1 and P2 are local in the fppf topology
on the source and the target, see Lemma 36.15.4, and Descent, Lemmas 34.19.13
and 34.23.1. Thus we have to deal with P3.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fpqc
covering of Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically regular if and only if Xi,yi

is geometrically regular, see Varieties, Lemma 32.10.4. This fact implies P3 is fpqc
local on the target.

Let {Xi → X} be a smooth covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a smooth covering of the fibre. Hence the locality of P3 for the smooth topology on
the source follows from Descent, Lemma 34.14.4. Combining the above the lemma
follows. �

36.17. Cohen-Macaulay morphisms

Compare with Section 36.15. Note that, as pointed out in Algebra, Section 10.155
and Varieties, Section 32.11 “geometrically Cohen-Macaulay” is the same as plain
Cohen-Macaulay.

Definition 36.17.1. Let f : X → Y be a morphism of schemes. Assume that all
the fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is Cohen-Macaulay at x if f is
flat at x, and the local ring of the scheme Xy at x is Cohen-Macaulay.

(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every
point of X.

Here is a translation.

Lemma 36.17.2. Let f : X → Y be a morphism of schemes. Assume all fibres of
f are locally Noetherian. The following are equivalent

(1) f is Cohen-Macaulay, and
(2) f is flat and its fibres are Cohen-Macaulay schemes.

Proof. This follows directly from the definitions. �
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Lemma 36.17.3. Let f : X → Y be a morphism of locally Noetherian schemes
which is locally of finite type and Cohen-Macaulay. For every point x in X with
image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),

where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Morphisms,
Lemma 28.30.4. Then f is flat, locally of finite type and of relative dimension d.
Hence the result follows from Morphisms, Lemma 28.30.6. �

Lemma 36.17.4. Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let
f ′ : X ′ = XY ′ → Y be the base change of f . Let x′ ∈ X ′ be a point with image
x ∈ X.

(1) If f is Cohen-Macaulay at x, then the base change f ′ : X ′ → Y ′ is Cohen-
Macaulay at x′.

(2) If Y ′ → Y is flat at f ′(x′) and f ′ is Cohen-Macaulay at x′, then f is
Cohen-Macaulay at x.

Proof. Note that the assumption on Y ′ → Y means that for y′ ∈ Y ′ mapping
to y ∈ Y the field extension κ(y) ⊂ κ(y′) is finitely generated. Hence also all the
fibres X ′y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 32.9.1. Thus

the lemma makes sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following
commutative diagram of local rings

OX′,x′ OX,xoo

OY ′,y′

OO

OY,yoo

OO

where the upper left corner is a localization of the tensor product of the upper right
and lower left corners over the lower right corner.

Assume f is Cohen-Macaulay at x. The flatness of OY,y → OX,x implies the flatness
of OY ′,y′ → OX′,x′ , see Algebra, Lemma 10.96.1. The fact that OX,x/myOX,x
is Cohen-Macaulay implies that OX′,x′/my′OX′,x′ , see Varieties, Lemma 32.11.1.
Hence we see that f ′ is Cohen-Macaulay at x′.

Assume Y ′ → Y is flat at y′ and f ′ is Cohen-Macaulay at x′. The flatness of
OY ′,y′ → OX′,x′ and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see
Algebra, Lemma 10.96.1. The fact that OX′,x′/my′OX′,x′ is Cohen-Macaulay im-
plies that OX,x/myOX,x, see Varieties, Lemma 32.11.1. Hence we see that f is
Cohen-Macaulay at x. �

Lemma 36.17.5. Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Let

W = {x ∈ X | f is Cohen-Macaulay at x}
Then

(1) W = {x ∈ X | OXf(x),x is Cohen-Macaulay},
(2) W is open in X,
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(3) W dense in every fibre of X → S,
(4) the formation of W commutes with arbitrary base change of f : For any

morphism g : S′ → S, consider the base change f ′ : X ′ → S′ of f and the
projection g′ : X ′ → X. Then the corresponding set W ′ for the morphism
f ′ is equal to W ′ = (g′)−1(W ).

Proof. As f is flat with locally Noetherian fibres the equality in (1) holds by
definition. Parts (2) and (3) follow from Algebra, Lemma 10.126.5. Part (4) follows
either from Algebra, Lemma 10.126.7 or Varieties, Lemma 32.11.1. �

Lemma 36.17.6. Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. For d ≥ 0 there exist opens Ud ⊂ X with the following
properties

(1) W =
⋃
d≥0 Ud is dense in every fibre of f , and

(2) Ud → S is of relative dimension d (see Morphisms, Definition 28.30.1).

Proof. This follows by combining Lemma 36.17.5 with Morphisms, Lemma 28.30.4.
�

Lemma 36.17.7. Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Suppose x′  x is a specialization of points of X with
image s′  s in S. If x is a generic point of an irreducible component of Xs then
dimx′(Xs′) = dimx(Xs).

Proof. The point x is contained in Ud for some d, where Ud as in Lemma 36.17.6.
�

Lemma 36.17.8. Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Let n ≥ 0 and let U ⊂ S be a dense open such that
dim(Xu) ≤ n for all u ∈ U . Then dim(Xs) ≤ n for all s ∈ S.

Proof. Let W ⊂ X be the open subscheme constructed and studied in Lemmas
36.17.5 and 36.17.6. Note that every generic point of every fibre is contained in W ,
hence it suffices to prove the result for W . Since W =

⋃
d≥0 Ud, it suffices to prove

that Ud = ∅ for d > n. Since f is flat and locally of finite presentation it is open
hence f(Ud) is open (Morphisms, Lemma 28.26.9). Thus if Ud is not empty, then
f(Ud) ∩ U 6= ∅. The lemma follows. �

Lemma 36.17.9. The property P(f) =“the fibres of f are locally Noetherian and
f is Cohen-Macaulay” is local in the fppf topology on the target and local in the
syntomic topology on the source.

Proof. We have P(f) = P1(f)∧P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Cohen-Macaulay”. We know that P1 is local
in the fppf topology on the source and the target, see Descent, Lemmas 34.19.13
and 34.23.1. Thus we have to deal with P2.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(y) ⊂ κ(yi) is a finitely generated field extension. Hence if Xy is locally
Noetherian, then Xi,yi is locally Noetherian, see Varieties, Lemma 32.9.1. And if
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in addition Xy is Cohen-Macaulay, then Xi,yi is Cohen-Macaulay, see Varieties,
Lemma 32.11.1. Thus P2 is fppf local on the target.

Let {Xi → X} be a syntomic covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology
on the source follows from Descent, Lemma 34.13.2. Combining the above the
lemma follows. �

36.18. Slicing Cohen-Macaulay morphisms

The results in this section eventually lead to the assertion that the fppf topology
is the same as the “finitely presented, flat, quasi-finite” topology. The following
lemma is very closely related to Divisors, Lemma 30.10.7.

Lemma 36.18.1. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the image h of h in OXs,x = OX,x/msOX,x is a nonzerodivisor.

Then there exists an affine open neighbourhood U ⊂ X of x such that h comes from
h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U with
x ∈ D and D → S flat and locally of finite presentation.

Proof. We are going to prove this by reducing to the Noetherian case. By openness
of flatness (see Theorem 36.12.1) we may assume, after replacing X by an open
neighbourhood of x, that X → S is flat. We may also assume that X and S
are affine. After possible shrinking X a bit we may assume that there exists an
h ∈ Γ(X,OX) which maps to our given h.

We may write S = Spec(A) and we may write A = colimiAi as a directed colimit
of finite type Z algebras. Then by Algebra, Lemma 10.156.1 or Limits, Lemmas
31.9.1, 31.7.2, and 31.9.1 we can find a cartesian diagram

X //

f

��

X0

f0

��
S // S0

with f0 flat and of finite presentation, X0 affine, and S0 affine and Noetherian.
Let x0 ∈ X0, resp. s0 ∈ S0 be the image of x, resp. s. We may also assume
there exists an element h0 ∈ Γ(X0,OX0

) which restricts to h on X. (If you used
the algebra reference above then this is clear; if you used the references to the
chapter on limits then this follows from Limits, Lemma 31.9.1 by thinking of h as
a morphism X → A1

S .) Note that OXs,x is a localization of O(X0)s0 ,x0
⊗κ(s0) κ(s),

so that O(X0)s0 ,x0
→ OXs,x is a flat local ring map, in particular faithfully flat.

Hence the image h0 ∈ O(X0)s0 ,x0
is contained in m(X0)s0 ,x0

and is a nonzerodivisor.
We claim that after replacing X0 by a principal open neighbourhood of x0 the
element h0 is a nonzerodivisor in B0 = Γ(X0,OX0

) such that B0/h0B0 is flat over
A0 = Γ(S0,OS0

). If so then

0→ B0
h0−→ B0 → B0/h0B0 → 0
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is a short exact sequence of flat A0-modules. Hence this remains exact on tensoring
with A (by Algebra, Lemma 10.38.11) and the lemma follows.

It remains to prove the claim above. The corresponding algebra statement is the
following (we drop the subscript 0 here): Let A→ B be a flat, finite type ring map
of Noetherian rings. Let q ⊂ B be a prime lying over p ⊂ A. Assume h ∈ q maps
to a nonzerodivisor in Bq/pBq. Goal: show that after possible replacing B by Bg
for some g ∈ B, g 6∈ q the element h becomes a nonzerodivisor and B/hB becomes
flat over A. By Algebra, Lemma 10.95.2 we see that h is a nonzerodivisor in Bq

and that Bq/hBq is flat over A. By openness of flatness, see Algebra, Theorem
10.125.4 or Theorem 36.12.1 we see that B/hB is flat over A after replacing B by
Bg for some g ∈ B, g 6∈ q. Finally, let I = {b ∈ B | hb = 0} be the annihilator of h.
Then IBq = 0 as h is a nonzerodivisor in Bq. Also I is finitely generated as B is
Noetherian. Hence there exists a g ∈ B, g 6∈ q such that IBg = 0. After replacing
B by Bg we see that h is a nonzerodivisor. �

Lemma 36.18.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h1, . . . , hr ∈ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the images of h1, . . . , hr in OXs,x = OX,x/msOX,x form a regular se-

quence.

Then there exists an affine open neighbourhood U ⊂ X of x such that h1, . . . , hr
come from h1, . . . , hr ∈ Γ(U,OU ) and such that Z = V (h1, . . . , hr)→ U is a regular
immersion with x ∈ Z and Z → S flat and locally of finite presentation. Moreover,
the base change ZS′ → US′ is a regular immersion for any scheme S′ over S.

Proof. (Our conventions on regular sequences imply that hi ∈ mx for each i.) The
case r = 1 follows from Lemma 36.18.1 combined with Divisors, Lemma 30.10.1
to see that V (h1) remains an effective Cartier divisor after base change. The case
r > 1 follows from a straightforward induction on r (applying the result for r = 1
exactly r times; details omitted).

Another way to prove the lemma is using the material from Divisors, Section 30.14.
Namely, first by openness of flatness (see Theorem 36.12.1) we may assume, after
replacing X by an open neighbourhood of x, that X → S is flat. We may also
assume that X and S are affine. After possible shrinking X a bit we may assume
that we have h1, . . . , hr ∈ Γ(X,OX). Set Z = V (h1, . . . , hr). Note that Xs is a
Noetherian scheme (because it is an algebraic κ(s)-scheme, see Varieties, Section
32.13) and that the topology on Xs is induced from the topology on X (see Schemes,
Lemma 25.18.5). Hence after shrinking X a bit more we may assume that Zs ⊂ Xs

is a regular immersion cut out by the r elements hi|Xs , see Divisors, Lemma 30.12.8
and its proof. It is also clear that r = dimx(Xs)− dimx(Zs) because

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),

dimx(Zs) = dim(OZs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OZs,x) + r

the first two equalities by Algebra, Lemma 10.112.3 and the second by r times
applying Algebra, Lemma 10.59.11. Hence Divisors, Lemma 30.14.6 part (3) ap-
plies to show that (after Zariski shrinking X) the morphism Z → X is a regular
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immersion to which Divisors, Lemma 30.14.4 applies (which gives the flatness and
the statement on base change). �

Lemma 36.18.3. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) OXs,x has depth ≥ 1.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is flat and of finite presentation.

Proof. Pick any h ∈ mx ⊂ OX,x which maps to a nonzerodivisor in OXs,x and
apply Lemma 36.18.1. �

Lemma 36.18.4. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is Cohen-Macaulay at x, and
(3) x is a closed point of Xs.

Then there exists a regular immersion Z → X containing x such that

(a) Z → S is flat and locally of finite presentation,
(b) Z → S is locally quasi-finite, and
(c) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We will
prove the lemma for affine S by induction on d = dimx(Xs).

The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. (Note that an open immersion is a regular immersion.) Namely,
if d = 0, then X → S is quasi-finite at x, see Morphisms, Lemma 28.30.5. Hence
there exists an affine open neighbourhood U ⊂ X such that U → S is quasi-finite,
see Morphisms, Lemma 28.49.2. Thus after replacing X by U we see that the fibre
Xs is a finite discrete set. Hence after replacing X by a further affine open neigh-
bourhood of X we see that that f−1({s}) = {x} (because the topology on Xs is
induced from the topology on X, see Schemes, Lemma 25.18.5). This proves the
lemma in this case.

Next, assume d > 0. Note that because x is a closed point of its fibre the exten-
sion κ(s) ⊂ κ(x) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma
28.21.3). Thus we see

depth(OXs,x) = dim(OXs,x) = d > 0

the first equality as OXs,x is Cohen-Macaulay and the second by Morphisms,
Lemma 28.29.1. Thus we may apply Lemma 36.18.3 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that ODs,x = OXs,x/(h) for some nonzerodivisor h, see Divi-
sors, Lemma 30.10.1. Hence ODs,x is Cohen-Macaulay of dimension one less than
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the dimension of OXs,x, see Algebra, Lemma 10.100.2 for example. Thus the mor-
phism D → S is flat, locally of finite presentation, and Cohen-Macaulay at x with
dimx(Ds) = dimx(Xs)− 1 = d− 1. By induction hypothesis we can find a regular
immersion Z → D having properties (a), (b), (c). As Z → D → U are both regular
immersions, we see that also Z → U is a regular immersion by Divisors, Lemma
30.13.7. This finishes the proof. �

Lemma 36.18.5. Let f : X → S be a flat morphism of schemes which is locally
of finite presentation Let s ∈ S be a point in the image of f . Then there exists a
commutative diagram

S′ //

g
��

X

f��
S

where g : S′ → S is flat, locally of finite presentation, locally quasi-finite, and
s ∈ g(S′).

Proof. The fibre Xs is not empty by assumption. Hence there exists a closed point
x ∈ Xs where f is Cohen-Macaulay, see Lemma 36.17.5. Apply Lemma 36.18.4 and
set S′ = S. �

The following lemma shows that sheaves for the fppf topology are the same thing
as sheaves for the “quasi-finite, flat, finite presentation” topology.

Lemma 36.18.6. Let S be a scheme. Let U = {Si → S}i∈I be an fppf covering of
S, see Topologies, Definition 33.7.1. Then there exists an fppf covering V = {Tj →
S}j∈J which refines (see Sites, Definition 7.8.1) U such that each Tj → S is locally
quasi-finite.

Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 36.18.5 we can find a morphism gs : Ts → S such that s ∈ gs(Ts) which
is flat, locally of finite presentation and locally quasi-finite and such that gs factors
through Si → S. Hence {Ts → S} is the desired covering of S that refines U . �

36.19. Generic fibres

Some results on the relationship between generic fibres and nearby fibres.

Lemma 36.19.1. Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Xη = ∅ then there exists a nonempty open
V ⊂ Y such that XV = V ×Y X = ∅.
Proof. Follows immediately from the more general Morphisms, Lemma 28.8.4. �

Lemma 36.19.2. Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Xη 6= ∅ then there exists a nonempty open
V ⊂ Y such that XV = V ×Y X → V is surjective.

Proof. This follows, upon taking affine opens, from Algebra, Lemma 10.29.2. (Of
course it also follows from generic flatness.) �

Lemma 36.19.3. Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Z ⊂ X is a closed subset with Zη nowhere
dense in Xη, then there exists a nonempty open V ⊂ Y such that Zy is nowhere
dense in Xy for all y ∈ V .
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Proof. Let Y ′ ⊂ Y be the reduction of Y . Set X ′ = Y ′ ×Y X and Z ′ = Y ′ ×Y Z.
As Y ′ → Y is a universal homeomorphism by Morphisms, Lemma 28.45.4 we see
that it suffices to prove the lemma for Z ′ ⊂ X ′ → Y ′. Thus we may assume that
Y is integral, see Properties, Lemma 27.3.4. By Morphisms, Proposition 28.28.1
there exists a nonempty affine open V ⊂ Y such that XV → V and ZV → Z are
flat and of finite presentation. We claim that V works. Pick y ∈ V . If Zy has a
nonempty interior, then Zy contains a generic point ξ of an irreducible component
of Xy. Note that η  f(ξ). Since ZV → V is flat we can choose a specialization
ξ′  ξ, ξ′ ∈ Z with f(ξ′) = η, see Morphisms, Lemma 28.26.8. By Lemma 36.17.7
we see that

dimξ′(Zη) = dimξ(Zy) = dimξ(Xy) = dimξ′(Xη).

Hence some irreducible component of Zη passing through ξ′ has dimension dimξ′(Xη)
which contradicts the assumption that Zη is nowhere dense in Xη and we win. �

Lemma 36.19.4. Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. Let U ⊂ X be an open subscheme such that Uη
is scheme theoretically dense in Xη. Then there exists a nonempty open V ⊂ Y
such that Uy is scheme theoretically dense in Xy for all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ = Y ′ ×Y X and U ′ = Y ′ ×Y U .
As Y ′ → Y induces a bijection on points, and as U ′ → U and X ′ → X induce
isomorphisms of scheme theoretic fibres, we may replace Y by Y ′ and X by X ′.
Thus we may assume that Y is integral, see Properties, Lemma 27.3.4. We may
also replace Y by a nonempty affine open. In other words we may assume that
Y = Spec(A) where A is a domain with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . .∪Xn for
some affine opens Xi. By Morphisms, Definition 28.7.1 we see that Ui = Xi ∩ U is
an open subscheme of Xi such that Ui,η is scheme theoretically dense in Xi,η. Thus
it suffices to prove the result for the pairs (Xi, Ui), in other words we may assume
that X is affine.

Write X = Spec(B). Note that BK is Noetherian as it is a finite type K-algebra.
Hence Uη is quasi-compact. Thus we can find finitely many g1, . . . , gm ∈ B such
that D(gj) ⊂ U and such that Uη = D(g1)η ∪ . . . ∪ D(gm)η. The fact that Uη
is scheme theoretically dense in Xη means that BK →

⊕
j(BK)gj is injective, see

Morphisms, Example 28.7.4. By Algebra, Lemma 10.22.4 this is equivalent to the
injectivity of BK →

⊕
j=1,...,mBK , b 7→ (g1b, . . . , gmb). Let M be the cokernel of

this map over A, i.e., such that we have an exact sequence

0→ I → B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely
presented A-algebra, and that M is flat over A, see Algebra, Lemma 10.114.3. The
flatness of B over A implies that B is torsion free as an A-module, see More on
Algebra, Lemma 15.15.3. Hence B ⊂ BK . By assumption IK = 0 which implies
that I = 0 (as I ⊂ B ⊂ BK is a subset of IK). Hence now we have a short exact
sequence

0→ B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0
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with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we
obtain a short exact sequence

0→ B ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

B ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 10.38.11. Reversing the arguments above this means that⋃
D(gj ⊗ 1) is scheme theoretically dense in Spec(B ⊗A κ). As

⋃
D(gj ⊗ 1) =⋃

D(gj)κ ⊂ Uκ we obtain that Uκ is scheme theoretically dense in Xκ which is
what we wanted to prove. �

Suppose given a morphism of schemes f : X → Y and a point y ∈ Y . Recall that the
fibre Xy is homeomorphic to the subset f−1({y}) of X with induced topology, see
Schemes, Lemma 25.18.5. Suppose given a closed subset T (y) ⊂ Xy. Let T be the
closure of T (y) in X. Endow T with the induced reduced scheme structure. Then
T is a closed subscheme of X with the property that Ty = T (y) set-theoretically.
In fact T is the smallest closed subscheme of X with this property. Thus it is
“harmless” to denote a closed subset of Xy by Ty if we so desire. In the following
lemma we apply this to the generic fibre of f .

Lemma 36.19.5. Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. Let Xη = Z1,η ∪ . . . ∪ Zn,η be a covering of
the generic fibre by closed subsets of Xη. Let Zi be the closure of Zi,η in X (see
discussion above). Then there exists a nonempty open V ⊂ Y such that Xy =
Z1,y ∪ . . . ∪ Zn,y for all y ∈ V .

Proof. If Y is Noetherian then U = X \ (Z1 ∪ . . . ∪ Zn) is of finite type over
Y and we can directly apply Lemma 36.19.1 to get that UV = ∅ for a nonempty
open V ⊂ Y . In general we argue as follows. As the question is topological we
may replace Y by its reduction. Thus Y is integral, see Properties, Lemma 27.3.4.
After shrinking Y we may assume that X → Y is flat, see Morphisms, Proposition
28.28.1. In this case every point x in Xy is a specialization of a point x′ ∈ Xη by
Morphisms, Lemma 28.26.8. As the Zi are closed in X and cover the generic fibre
this implies that Xy =

⋃
Zi,y for y ∈ Y as desired. �

The following lemma says that generic fibres of morphisms whose source is reduced
are reduced.

Lemma 36.19.6. Let f : X → Y be a morphism of schemes. Let η ∈ Y be a
generic point of an irreducible component of Y . Then (Xη)red = (Xred)η.

Proof. Choose an affine neighbourhood Spec(A) ⊂ Y of η. Choose an affine open
Spec(B) ⊂ X mapping into Spec(A) via the morphism f . Let p ⊂ A be the minimal

prime corresponding to η. Let Bred be the quotient of B by
√

(0). The algebraic
content of the lemma is that Bred ⊗A κ(p) is reduced. To prove this, suppose that
x ∈ Bred ⊗A κ(p) is nilpotent. Say xn = 0 for some n > 0. Pick an f ∈ A, f 6∈ p
such that fx is the image of y ∈ Bred. Then gyn ∈ pBred for some g ∈ A, g 6∈ p. By
Algebra, Lemma 10.24.1 we see that pAp is locally nilpotent. By Algebra, Lemma
10.31.2 we see that p(Bred)p is locally nilpotent. Hence we conclude that gyn is
nilpotent in (Bred)p. Thus there exists a h ∈ A, h 6∈ p and an m > 0 such that
h(gyn)m = 0 in Bred. This implies that hgy is nilpotent in Bred, i.e., that hgy = 0.
Of course this means that x = 0 as desired. �
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Lemma 36.19.7. Let f : X → Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′

g // V // Y

where

(1) V is a nonempty open of Y ,
(2) XV = V ×Y X,
(3) g : Y ′ → V is a finite universal homeomorphism,
(4) X ′ = (Y ′ ×Y X)red = (Y ′ ×V XV )red,
(5) g′ is a finite universal homeomorphism,
(6) Y ′ is an integral affine scheme,
(7) f ′ is flat and of finite presentation, and
(8) the generic fibre of f ′ is geometrically reduced.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the
radical of A is a prime ideal p. Let K = f.f(A/p) be the fraction field. Let p be
the characteristic of K if positive and 1 if the characteristic is zero. By Varieties,
Lemma 32.4.11 there exists a finite purely inseparable field extension K ⊂ K ′ such
that XK′ is geometrically reduced over K ′. Choose elements x1, . . . , xn ∈ K ′ which
generate K ′ over K and such that some p-power of xi is in A/p. Let A′ ⊂ K ′ be
the finite A-subalgebra of K ′ generated by x1, . . . , xn. Note that A′ is a domain
with fraction field K ′. By Algebra, Lemma 10.45.2 we see that A → A′ is a
universal homeomorphism. Set Y ′ = Spec(A′). Set X ′ = (Y ′ ×Y X)red. The
generic fibre of X ′ → Y ′ is (XK)red by Lemma 36.19.6 which is geometrically
reduced by construction. Note that X ′ → XV is a finite universal homeomorphism
as the composition of the reduction morphism X ′ → Y ′ ×Y X (see Morphisms,
Lemma 28.45.4) and the base change of g. At this point all of the properties of
the lemma hold except for possibly (7). This can be achieved by shrinking Y ′ and
hence V , see Morphisms, Proposition 28.28.1. �

Lemma 36.19.8. Let f : X → Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′

g // V // Y

where

(1) V is a nonempty open of Y ,
(2) XV = V ×Y X,
(3) g : Y ′ → V is surjective finite étale,
(4) X ′ = Y ′ ×Y X = Y ′ ×V XV ,
(5) g′ is surjective finite étale,
(6) Y ′ is an irreducible affine scheme, and
(7) all irreducible components of the generic fibre of f ′ are geometrically ir-

reducible.
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Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the
radical of A is a prime ideal p. Let K = f.f(A/p) be the fraction field. By
Varieties, Lemma 32.6.14 there exists a finite separable field extension K ⊂ K ′

such that all irreducible components of XK′ are geometrically irreducible over K ′.
Choose an element α ∈ K ′ which generates K ′ over K, see Fields, Lemma 9.18.1.
Let P (T ) ∈ K[T ] be the minimal polynomial for α over K. After replacing α by fα
for some f ∈ A, f 6∈ p we may assume that there exists a monic polynomial T d +
a1T

d−1 + . . .+ad ∈ A[T ] which maps to P (T ) ∈ K[T ] under the map A[T ]→ K[T ].
Set A′ = A[T ]/(P ). Then A→ A′ is a finite free ring map such that there exists a
unique prime q lying over p, such that K = κ(p) ⊂ κ(q) = K ′ is finite separable, and
such that pA′q is the maximal ideal of A′q. Hence g : Y ′ = Spec(A′)→ V = Spec(A)
is étale at q, see Algebra, Lemma 10.138.7. This means that there exists an open
W ⊂ Spec(A′) such that g|W : W → Spec(A) is étale. Since g is finite and since q
is the only point lying over p we see that Z = g(Y ′ \W ) is a closed subset of V not
containing p. Hence after replacing V by a principal affine open of V which does
not meet Z we obtain that g is finite étale. �

Lemma 36.19.9. Let S be an integral scheme with generic point η. Let f : X → S
and g : Y → S be morphisms of schemes such that

(1) f , g are locally of finite type,
(2) Xη, Yη are integral with generic points x, y, and
(3) κ(x) ∼= κ(y) as κ(η)-extensions.

Then there exist open subschemes x ∈ U ⊂ X, y ∈ V ⊂ Y and an S-isomorphism
U → V which induces the given isomorphism of residue fields.

Proof. The question is local around the points η, x, y. Hence we may replace S,
X, Y by affine neighbourhoods of η, x, y and hence reduce to the case that S, X, Y
are affine. Say S = Spec(R) and X = Spec(A), Y = Spec(B). By Algebra, Lemma
10.114.3 we may also assume that A and B are flat and of finite presentation over
R. Denote K = f.f.(R). The rings A, B are torsion free as R-modules because A,
B are flat over R, see More on Algebra, Lemma 15.15.3. Since A⊗RK and B⊗RK
are domains by assumption it follows that A and B are domains. Set L = f.f.(A)
and M = f.f.(B). Let ϕ : L→M be the given isomorphism of K-extensions.

Choose elements x1, . . . , xn ∈ A which generate A as an R-algebra, and choose
elements y1, . . . , ym ∈ B which generate B as an R-algebra. Write ϕ(xi) = bi/b
for some b, bi ∈ B. In other words, b is a common denominator for the elements
ϕ(xi) ∈ M = f.f.(B). Similarly, write ϕ−1(yj) = aj/a for some a, aj ∈ A. Note
that ϕ(a) ∈ Bb because a can be written as a polynomial in the xi. Similarly we
have ϕ−1(b) ∈ Aa. Thus ϕ gives an isomorphism

Aa −→ Bb

of R-algebras and the lemma is proven. �

36.20. Relative assassins

Lemma 36.20.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let ξ ∈ AssX/S(F) and set Z = {ξ} ⊂ X. If f is locally of
finite type and F is a finite type OX-module, then there exists a nonempty open
V ⊂ Z such that for every s ∈ f(V ) the generic points of Vs are elements of
AssX/S(F).
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Proof. We may replace S by an affine open neighbourhood of f(ξ) and X by
an affine open neighbourhood of ξ. Hence we may assume S = Spec(A), X =
Spec(B) and that f is given by the finite type ring map A → B, see Morphisms,

Lemma 28.16.2. Moreover, we may write F = M̃ for some finite B-module M , see
Properties, Lemma 27.16.1. Let q ⊂ B be the prime corresponding to ξ and let
p ⊂ A be the corresponding prime of A. By assumption q ∈ AssB(M ⊗A κ(p)),
see Algebra, Remark 10.64.6 and Divisors, Lemma 30.2.2. With this notation
Z = V (q) ⊂ Spec(B). In particular f(Z) ⊂ V (p). Hence clearly it suffices to prove
the lemma after replacing A, B, and M by A/pA, B/pB, and M/pM . In other
words we may assume that A is a domain with fraction field K and q ⊂ B is an
associated prime of M ⊗A K.

At this point we can use generic flatness. Namely, by Algebra, Lemma 10.114.3
there exists a nonzero g ∈ A such that Mg is flat as an Ag-module. After replacing
A by Ag we may assume that M is flat as an A-module.

In this case, by Algebra, Lemma 10.64.4 we see that q is also an associated prime of
M . Hence we obtain an injective B-module map B/q→M . Let Q be the cokernel
so that we obtain a short exact sequence

0→ B/q→M → Q→ 0

of finite B-modules. After applying generic flatness Algebra, Lemma 10.114.3 once
more, this time to the B-module Q, we may assume that Q is a flat A-module. In
particular we may assume the short exact sequence above is universally injective,
see Algebra, Lemma 10.38.11. In this situation (B/q) ⊗A κ(p′) ⊂ M ⊗A κ(p′)
for any prime p′ of A. The lemma follows as a minimal prime q′ of the support
of (B/q) ⊗A κ(p′) is an associated prime of (B/q) ⊗A κ(p′) by Divisors, Lemma
30.2.8. �

Lemma 36.20.2. Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) is not contained in Uη.

Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V the
set AssXy (Fy) is not contained in Uy.

Proof. Let ξ ∈ AssXη (Fη) be a point which is not contained in Uη. Set Z = {ξ}.
By assumption U ∩ Z is not dense in the irreducible scheme Zη. Hence by Lemma
36.19.3 after replacing Y by a nonempty open we may assume that Uy ∩ Zy is
nowhere dense in Zy. On the other hand, by Lemma 36.20.1 there exists a nonempty
open V ⊂ Z such that every generic point of Vy is an associated point of Fy. By
Lemma 36.19.2 the set f(V ) contains a nonempty open subset of Y and we win. �

Lemma 36.20.3. Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) ⊂ Uη.
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Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V we
have AssXy (Fy) ⊂ Uy.

Proof. (This proof is the same as the proof of Lemma 36.19.4. We urge the reader
to read that proof first.) Since the statement is about fibres it is clear that we
may replace Y by its reduction. Hence we may assume that Y is integral, see
Properties, Lemma 27.3.4. We may also assume that Y = Spec(A) is affine. Then
A is a domain with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . . ∪ Xn

for some affine opens Xi and set Fi = F|Xi . By assumption the generic fibre of
Ui = Xi ∩ U contains AssXi,η (Fi,η). Thus it suffices to prove the result for the
triples (Xi,Fi, Ui), in other words we may assume that X is affine.

Write X = Spec(B). Let N be a finite B-module such that F = Ñ . Note that
BK is Noetherian as it is a finite type K-algebra. Hence Uη is quasi-compact.
Thus we can find finitely many g1, . . . , gm ∈ B such that D(gj) ⊂ U and such that
Uη = D(g1)η ∪ . . .∪D(gm)η. Since AssXη (Fη) ⊂ Uη we see that NK →

⊕
j(NK)gj

is injective. By Algebra, Lemma 10.22.4 this is equivalent to the injectivity of
NK →

⊕
j=1,...,mNK , n 7→ (g1n, . . . , gmn). Let I and M be the kernel and cokernel

of this map over A, i.e., such that we have an exact sequence

0→ I → N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely
presented A-algebra and that both M and N are flat over A, see Algebra, Lemma
10.114.3. The flatness of N over A implies that N is torsion free as an A-module,
see More on Algebra, Lemma 15.15.3. Hence N ⊂ NK . By construction IK = 0
which implies that I = 0 (as I ⊂ N ⊂ NK is a subset of IK). Hence now we have
a short exact sequence

0→ N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we
obtain a short exact sequence

0→ N ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

N ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 10.38.11. Reversing the arguments above this means that⋃
D(gj ⊗ 1) contains AssB⊗Aκ(N ⊗A κ). As

⋃
D(gj ⊗ 1) =

⋃
D(gj)κ ⊂ Uκ we

obtain that Uκ contains AssX⊗κ(F ⊗ κ) which is what we wanted to prove. �

Lemma 36.20.4. Let f : X → S be a morphism which is locally of finite type. Let
F be a quasi-coherent OX-module of finite type. Let U ⊂ X be an open subscheme.
Let g : S′ → S be a morphism of schemes, let f ′ : X ′ = XS′ → S′ be the base change
of f , let g′ : X ′ → X be the projection, set F ′ = (g′)∗F , and set U ′ = (g′)−1(U).
Finally, let s′ ∈ S′ with image s = g(s′). In this case

AssXs(Fs) ⊂ Us ⇔ AssX′
s′

(F ′s′) ⊂ U ′s′ .

Proof. This follows immediately from Divisors, Lemma 30.7.2. See also Divisors,
Remark 30.7.3. �
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Lemma 36.20.5. Let f : X → Y be a morphism of finite presentation. Let F be a
quasi-coherent OX-module of finite presentation. Let U ⊂ X be an open subscheme
such that U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy (Fy) ⊂ Uy}
is locally constructible in Y .

Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such that E∩V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 31.9.1 we can find an i and a morphism fi : Xi → Spec(Ai) of
finite presentation whose base change to Y recovers f . After possibly increasing i
we may assume there exists a quasi-coherent OXi-module Fi of finite presentation
whose pullback to X is isomorphic to F , see Limits, Lemma 31.9.2. After possibly
increasing i one more time we may assume there exists an open subscheme Ui ⊂ Xi

whose inverse image in X is U , see Limits, Lemma 31.3.8. By Lemma 36.20.4 it
suffices to prove the lemma for fi. Thus we reduce to the case where Y is the
spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.15.3 to prove that E is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that E ∩ Z either contains a nonempty open subset
or is not dense in Z. This follows from Lemmas 36.20.2 and 36.20.3 applied to the
base change (X,F , U)×Y Z over Z. �

36.21. Reduced fibres

Lemma 36.21.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη is nonreduced, then there exists a
nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy is nonreduced.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of
f . Note that Y ′ → Y induces a bijection on points and that X ′ → X identifies
fibres. Hence we may assume that Y ′ is reduced, i.e., integral, see Properties,
Lemma 27.3.4. We may also replace Y by an affine open. Hence we may assume
that Y = Spec(A) with A a domain. Denote K = f.f.(A) the fraction field of
A. Pick an affine open Spec(B) = U ⊂ X and a section hη ∈ Γ(Uη,OUη ) = BK
which is nonzero and nilpotent. After shrinking Y we may assume that h comes
from h ∈ Γ(U,OU ) = B. After shrinking Y a bit more we may assume that h is
nilpotent. Let I = {b ∈ B | hb = 0} be the annihilator of h. Then C = B/I is a
finite type A-algebra whose generic fiber (B/I)K is nonzero (as hη 6= 0). We apply
generic flatness to A → C and A → B/hB, see Algebra, Lemma 10.114.3, and we
obtain a g ∈ A, g 6= 0 such that Cg is free as an Ag-module and (B/hB)g is flat as
an Ag-module. Replace Y by D(g) ⊂ Y . Now we have the short exact sequence

0→ C → B → B/hB → 0.

with B/hB flat over A and with C nonzero free as an A-module. It follows that for
any homomorphism A→ κ to a field the ring C ⊗A κ is nonzero and the sequence

0→ C ⊗A κ→ B ⊗A κ→ B/hB ⊗A κ→ 0

is exact, see Algebra, Lemma 10.38.11. Note that B/hB⊗Aκ = (B⊗Aκ)/h(B⊗Aκ)
by right exactness of tensor product. Thus we conclude that multiplication by h is
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not zero on B ⊗A κ. This clearly means that for any point y ∈ Y the element h
restricts to a nonzero element of Uy, whence Xy is nonreduced. �

Lemma 36.21.2. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
any morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′y′ is geometrically reduced}
= g−1({y ∈ Y | Xy is geometrically reduced}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y
the fibre X ′y′ = Xy ×y y′ is geometrically reduced over κ(y′) if and only if Xy is

geometrically reduced over κ(y). This follows from Varieties, Lemma 32.4.6. �

Lemma 36.21.3. Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη is not geometrically reduced, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy is not
geometrically reduced.

Proof. Apply Lemma 36.19.7 to get

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′

g // V // Y

with all the properties mentioned in that lemma. Let η′ be the generic point of
Y ′. Consider the morphism X ′ → XY ′ (which is the reduction morphism) and
the resulting morphism of generic fibres X ′η′ → Xη′ . Since X ′η′ is geometrically
reduced, and Xη is not this cannot be an isomorphism, see Varieties, Lemma 32.4.6.
Hence Xη′ is nonreduced. Hence by Lemma 36.21.1 the fibres of XY ′ → Y ′ are
nonreduced at all points y′ ∈ V ′ of a nonempty open V ′ ⊂ Y ′. Since g : Y ′ → V
is a homeomorphism Lemma 36.21.2 proves that g(V ′) is the open we are looking
for. �

Lemma 36.21.4. Let f : X → Y be a morphism of schemes. Assume

(1) Y is irreducible with generic point η,
(2) Xη is geometrically reduced, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically reduced fibres.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of f .
Note that Y ′ → Y induces a bijection on points and that X ′ → X identifies fibres.
Hence we may assume that Y ′ is reduced, i.e., integral, see Properties, Lemma
27.3.4. We may also replace Y by an affine open. Hence we may assume that
Y = Spec(A) with A a domain. Denote K = f.f.(A) the fraction field of A. After
shrinking Y a bit we may also assume that X → Y is flat and of finite presentation,
see Morphisms, Proposition 28.28.1.

As Xη is geometrically reduced there exists an open dense subset V ⊂ Xη such
that V → Spec(K) is smooth, see Varieties, Lemma 32.15.7. Let U ⊂ X be the set
of points where f is smooth. By Morphisms, Lemma 28.35.15 we see that V ⊂ Uη.
Thus the generic fibre of U is dense in the generic fibre of X. Since Xη is reduced,
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it follows that Uη is scheme theoretically dense in Xη, see Morphisms, Lemma
28.7.8. We note that as U → Y is smooth all the fibres of U → Y are geometrically
reduced. Thus it suffices to show that, after shrinking Y , for all y ∈ Y the scheme
Uy is scheme theoretically dense in Xy, see Morphisms, Lemma 28.7.9. This follows
from Lemma 36.19.4. �

Lemma 36.21.5. Let f : X → Y be a morphism of finite presentation. Then the
set

E = {y ∈ Y | Xy is geometrically reduced}
is locally constructible in Y .

Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such that E∩V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 31.9.1 we can find an i and a morphism fi : Xi → Spec(Ai) of
finite presentation whose base change to Y recovers f . By Lemma 36.21.2 it suffices
to prove the lemma for fi. Thus we reduce to the case where Y is the spectrum of
a Noetherian ring.

We will use the criterion of Topology, Lemma 5.15.3 to prove that E is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that E ∩ Z either contains a nonempty open subset
or is not dense in Z. If Xξ is geometrically reduced, then Lemma 36.21.4 (applied
to the morphism XZ → Z) implies that all fibres Xy are geometrically reduced for
a nonempty open V ⊂ Z. If Xξ is not geometrically reduced, then Lemma 36.21.3
(applied to the morphism XZ → Z) implies that all fibres Xy are geometrically
reduced for a nonempty open V ⊂ Z. Thus we win. �

36.22. Irreducible components of fibres

Lemma 36.22.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has n irreducible components, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at
least n irreducible components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma
27.3.4. Let Xη = X1,η ∪ . . . ∪ Xn,η be the decomposition of Xη into irreducible
components. Let Xi ⊂ X be the reduced closed subscheme whose generic fibre
is Xi,η. Note that Zi,j = Xi ∩ Xj is a closed subset of Xi whose generic fibre
Zi,j,η is nowhere dense in Xi,η. Hence after shrinking Y we may assume that Zi,j,y
is nowhere dense in Xi,y for every y ∈ Y , see Lemma 36.19.3. After shrinking
Y some more we may assume that Xy =

⋃
Xi,y for y ∈ Y , see Lemma 36.19.5.

Moreover, after shrinking Y we may assume that each Xi → Y is flat and of finite
presentation, see Morphisms, Proposition 28.28.1. The morphisms Xi → Y are
open, see Morphisms, Lemma 28.26.9. Thus there exists an open neighbourhood
V of η which is contained in f(Xi) for each i. For each y ∈ V the schemes Xi,y

are nonempty closed subsets of Xy, we have Xy =
⋃
Xi,y and the intersections

Zi,j,y = Xi,y ∩Xj,y are not dense in Xi,y. Clearly this implies that Xy has at least
n irreducible components. �
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Lemma 36.22.2. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
any morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′y′ is geometrically irreducible}
= g−1({y ∈ Y | Xy is geometrically irreducible}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibre X ′y′ = Xy ×y y′ is geometrically irreducible over κ(y′) if and only if Xy is

geometrically irreducible over κ(y). This follows from Varieties, Lemma 32.6.2. �

Lemma 36.22.3. Let f : X → Y be a morphism of schemes. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the number of irreducible components of
(Xy)K where K is a separably closed extension of κ(y). This is well defined and if
g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g

where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′y′)K′ (X ′y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between irreducible components, see Varieties, Lemma 32.6.7. �

Lemma 36.22.4. Let A be a domain with fraction field K. Let P ∈ A[x1, . . . , xn].
Denote K the algebraic closure of K. Assume P is irreducible in K[x1, . . . , xn].
Then there exists a f ∈ A such that Pϕ ∈ κ[x1, . . . , xn] is irreducible for all homo-
morphisms ϕ : Af → κ into fields.

Proof. There exists an automorphism Ψ of A[x1, . . . , xn] over A such that Ψ(P ) =
axdn+ lower order terms in xn with a 6= 0, see Algebra, Lemma 10.111.2. We may
replace P by Ψ(P ) and we may replace A by Aa. Thus we may assume that P is
monic in xn of degree d > 0. For i = 1, . . . , n − 1 let di be the degree of P in xi.
Note that this implies that Pϕ is monic of degree d in xn and has degree ≤ di in
xi for every homomorphism ϕ : A→ κ where κ is a field. Thus if Pϕ is reducible,
then we can write

Pϕ = Q1Q2

with Q1, Q2 monic of degree e1, e2 ≥ 0 in xn with e1 + e2 = d and having degree
≤ di in xi for i = 1, . . . , n− 1. In other words we can write

(36.22.4.1) Qj = xejn +
∑

0≤l<ej

(∑
L∈L

aj,l,Lx
L
)
xln
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where the sum is over the set L of multi-indices L of the form L = (l1, . . . , ln−1)
with 0 ≤ li ≤ di. For any e1, e2 ≥ 0 with e1 + e2 = d we consider the A-algebra

Be1,e2 = A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L]/(relations)

where the (relations) is the ideal generated by the coefficients of the polynomial

P −Q1Q2 ∈ A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L][x1, . . . , xn]

with Q1 and Q2 defined as in (36.22.4.1). OK, and the assumption that P is
irreducible over K implies that there does not exist any A-algebra homomorphism
Be1,e2 → K. By the Hilbert Nullstellensatz, see Algebra, Theorem 10.33.1 this
means that Be1,e2⊗AK = 0. As Be1,e2 is a finitely generated A-algebra this signifies
that we can find an fe1,e2 ∈ A such that (Be1,e2)fe1,e2 = 0. By construction this
means that if ϕ : Afe1,e2 → κ is a homomorphism to a field, then Pϕ does not have
a factorization Pϕ = Q1Q2 with Q1 of degree e1 in xn and Q2 of degree e2 in xn.
Thus taking f =

∏
e1,e2≥0,e1+e2=d fe1,e2 we win. �

Lemma 36.22.5. Let f : X → Y be a morphism of schemes. Assume

(1) Y is irreducible with generic point η,
(2) Xη is geometrically irreducible, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically irreducible fibres.

First proof of Lemma 36.22.5. We give two proofs of the lemma. These are
essentially equivalent; the second is more self contained but a bit longer. Choose a
diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′

g // V // Y

as in Lemma 36.19.7. Note that the generic fibre of f ′ is the reduction of the
geometric fibre of f (see Lemma 36.19.6) and hence is geometrically irreducible.
Suppose that the lemma holds for the morphism f ′. Then after shrinking V all the
fibres of f ′ are geometrically irreducible. As X ′ = (Y ′ ×V XV )red this implies that
all the fibres of Y ′ ×V XV are geometrically irreducible. Hence by Lemma 36.22.2
all the fibres of XV → V are geometrically irreducible and we win. In this way we
see that we may assume that the generic fibre is geometrically reduced as well as
geometrically irreducible and we may assume Y = Spec(A) with A a domain.

Let x ∈ Xη be the generic point. As Xη is geometrically irreducible and reduced we
see that L = κ(x) is a finitely generated extension of K = κ(η) = f.f.(A) which is
geometrically reduced and geometrically irreducible, see Varieties, Lemmas 32.4.2
and 32.6.6. In particular the field extension K ⊂ L is separable, see Algebra,
Lemma 10.43.1. Hence we can find x1, . . . , xr+1 ∈ L which generate L over K and
such that x1, . . . , xr is a transcendence basis for L over K, see Algebra, Lemma
10.41.3. Let P ∈ K(x1, . . . , xr)[T ] be the minimal polynomial for xr+1. Clearing
denominators we may assume that P has coefficients in A[x1, . . . , xr]. Note that as
L is geometrically reduced and geometrically irreducible over K, the polynomial P
is irreducible in K[x1, . . . , xr, T ] where K is the algebraic closure of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1))
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and set X ′ = Spec(B′). By construction the fraction field of B′ is isomorphic to
L = κ(x) as K-extensions. Hence there exists an open U ⊂ X, and open U ′ ⊂ X ′

and a Y -isomorphism U → U ′, see Lemma 36.19.9. Here is a diagram:

X

��

Uoo

��

U ′ //

��

X ′

~~

Spec(B′)

Y Y

Note that Uη ⊂ Xη and U ′η ⊂ X ′η are dense opens. Thus after shrinking Y by
applying Lemma 36.19.3 we obtain that Uy is dense in Xy and U ′y is dense in X ′y
for all y ∈ Y . Thus it suffices to prove the lemma for X ′ → Y which is the content
of Lemma 36.22.4. �

Second proof of Lemma 36.22.5. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ →
X be the reduction of X. Note that X ′ → X → Y factors through Y ′, see Schemes,
Lemma 25.12.6. As Y ′ → Y and X ′ → X are universal homeomorphisms by
Morphisms, Lemma 28.45.4 we see that it suffices to prove the lemma for X ′ → Y ′.
Thus we may assume that X and Y are reduced. In particular Y is integral, see
Properties, Lemma 27.3.4. Thus by Morphisms, Proposition 28.28.1 there exists a
nonempty affine open V ⊂ Y such that XV → V is flat and of finite presentation.
After replacing Y by V we may assume, in addition to (1), (2), (3) that Y is
integral affine, X is reduced, and f is flat and of finite presentation. In particular
f is universally open, see Morphisms, Lemma 28.26.9.

Pick a nonempty affine open U ⊂ X. Then U → Y is flat and of finite presentation
with geometrically irreducible generic fibre. The complement Xη \ Uη is nowhere
dense. Thus after shrinking Y we may assume Uy ⊂ Xy is open dense for all y ∈ Y ,
see Lemma 36.19.3. Thus we may replace X by U and we reduce to the case where
Y is integral affine and X is reduced affine, flat and of finite presentation over Y
with geometrically irreducible generic fibre Xη.

Write X = Spec(B) and Y = Spec(A). Then A is a domain, B is reduced, A→ B
is flat of finite presentation, and BK is geometrically irreducible over K = f.f.(A).
In particular we see that BK is a domain. Let L = f.f.(BK) be its fraction field.
Note that L is a finitely generated field extension of K as B is an A-algebra of
finite presentation. Let K ⊂ K ′ be a finite purely inseparable extension such
that (L ⊗K K ′)red is a separably generated field extension, see Algebra, Lemma
10.44.3. Choose x1, . . . , xn ∈ K ′ which generate the field extension K ′ over K,
and such that xqii ∈ A for some prime power qi (proof existence xi omitted). Let
A′ be the A-subalgebra of K ′ generated by x1, . . . , xn. Then A′ is a finite A-
subalgebra A′ ⊂ K ′ whose fraction field is K ′. Note that Spec(A′)→ Spec(A) is a
universal homeomorphism, see Algebra, Lemma 10.45.2. Hence it suffices to prove
the result after base changing to Spec(A′). We are going to replace A by A′ and
B by (B⊗A A′)red to arrive at the situation where L is a separably generated field
extension of K. Of course it may happen that (B ⊗A A′)red is no longer flat, or of
finite presentation over A′, but this can be remedied by replacing A′ by A′f for a

suitable f ∈ A′, see Algebra, Lemma 10.114.3.

At this point we know that A is a domain, B is reduced, A → B is flat and
of finite presentation, BK is a domain, and L = f.f.(BK) is a separably gener-
ated field extension of K = f.f.(A). By Algebra, Lemma 10.41.3 we may write
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L = K(x1, . . . , xr+1) where x1, . . . , xr are algebraically independent over K, and
xr+1 is separable over K(x1, . . . , xr). After clearing denominators we may assume
that the minimal polynomial P ∈ K(x1, . . . , xr)[T ] of xr+1 over K(x1, . . . , xr) has
coefficients in A[x1, . . . , xr]. Note that since L/K is separable and since L is ge-
ometrically irreducible over K, the polynomial P is irreducible over the algebraic
closure K of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1)).

By construction the fraction fields of B and B′ are isomorphic as K-extensions.
Hence there exists an isomorphism of A-algebras Bh ∼= B′h′ for suitable h ∈ B and
h′ ∈ B′, see Lemma 36.19.9. In other words X and X ′ = Spec(B′) have a common
affine open U . Here is a diagram:

X = Spec(B)

((

Uoo //

��

Spec(B′) = X ′

vv
Y = Spec(A)

After shrinking Y once more (by applying Lemma 36.19.3 to Z = X \ U in X and
Z ′ = X ′ \ U in X ′) we see that Uy is dense in Xy and Uy is dense in X ′y for all
y ∈ Y . Thus it suffices to prove the lemma for X ′ → Y which is the content of
Lemma 36.22.4. �

Lemma 36.22.6. Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically irreducible components of fibres
of f introduced in Lemma 36.22.3. Assume f of finite type. Let y ∈ Y be a point.
Then there exists a nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z
be the base change of f . Clearly it suffices to prove the lemma for fZ and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma 27.3.4. Our goal in this case is to produce a nonempty open V ⊂ Y such
that nX/Y |V is constant.

We apply Lemma 36.19.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As
g : Y ′ → V is surjective finite étale, in particular open (see Morphisms, Lemma
28.37.13), it suffices to prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′
is constant, see Lemma 36.22.3. Thus we see that we may assume that all irreducible
components of the generic fibre Xη are geometrically irreducible over κ(η).

At this point suppose that Xη = X1,η

⋃
. . .
⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) irreducible components. In particular nX/Y (η) =
n. Let Xi be the closure of Xi,η in X. After shrinking Y we may assume that
X =

⋃
Xi, see Lemma 36.19.5. After shrinking Y some more we see that each fibre

of f has at least n irreducible components, see Lemma 36.22.1. Hence nX/Y (y) ≥ n
for all y ∈ Y . After shrinking Y some more we obtain that Xi,y is geometrically
irreducible for each i and all y ∈ Y , see Lemma 36.22.5. Since Xy =

⋃
Xi,y this

shows that nX/Y (y) ≤ n and finishes the proof. �

Lemma 36.22.7. Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically irreducible components of fibres
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of f introduced in Lemma 36.22.3. Assume f of finite presentation. Then the level
sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbour-
hood V of y in Y such that En ∩ V is constructible in V . Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma 31.9.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 36.22.3 it suffices to prove the lemma for fi. Thus we reduce to the case
where Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.15.3 to prove that En is con-
structible in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible
closed subscheme. We have to show that En ∩ Z either contains a nonempty open
subset or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 36.22.6
shows that nX/Y is constant in a neighbourhood of ξ in Z. This clearly implies
what we want. �

36.23. Connected components of fibres

Lemma 36.23.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has n connected components, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at
least n connected components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma
27.3.4. Let Xη = X1,η ∪ . . . ∪ Xn,η be the decomposition of Xη into connected
components. Let Xi ⊂ X be the reduced closed subscheme whose generic fibre is
Xi,η. Note that Zi,j = Xi ∩Xj is a closed subset of X whose generic fibre Zi,j,η is
empty. Hence after shrinking Y we may assume that Zi,j = ∅, see Lemma 36.19.1.
After shrinking Y some more we may assume that Xy =

⋃
Xi,y for y ∈ Y , see

Lemma 36.19.5. Moreover, after shrinking Y we may assume that each Xi → Y is
flat and of finite presentation, see Morphisms, Proposition 28.28.1. The morphisms
Xi → Y are open, see Morphisms, Lemma 28.26.9. Thus there exists an open
neighbourhood V of η which is contained in f(Xi) for each i. For each y ∈ V the
schemes Xi,y are nonempty closed subsets of Xy, we have Xy =

⋃
Xi,y and the

intersections Zi,j,y = Xi,y ∩ Xj,y are empty! Clearly this implies that Xy has at
least n connected components. �

Lemma 36.23.2. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
any morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′y′ is geometrically connected}
= g−1({y ∈ Y | Xy is geometrically connected}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibre X ′y′ = Xy ×y y′ is geometrically connected over κ(y′) if and only if Xy is

geometrically connected over κ(y). This follows from Varieties, Lemma 32.5.3. �
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Lemma 36.23.3. Let f : X → Y be a morphism of schemes. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}
be the function which associates to y ∈ Y the number of connected components of
(Xy)K where K is a separably closed extension of κ(y). This is well defined and if
g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g

where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′y′)K′ (X ′y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between connected components, see Varieties, Lemma 32.5.6. �

Lemma 36.23.4. Let f : X → Y be a morphism of schemes. Assume

(1) Y is irreducible with generic point η,
(2) Xη is geometrically connected, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically connected fibres.

Proof. Choose a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′

g // V // Y

as in Lemma 36.19.8. Note that the generic fibre of f ′ is geometrically connected
(for example by Lemma 36.23.3). Suppose that the lemma holds for the morphism
f ′. This means that there exists a nonempty open W ⊂ Y ′ such that every fibre
of X ′ → Y ′ over W is geometrically connected. Then, as g is an open morphism
by Morphisms, Lemma 28.37.13 all the fibres of f at points of the nonempty open
V = g(W ) are geometrically connected, see Lemma 36.23.3. In this way we see
that we may assume that the irreducible components of the generic fibre Xη are
geometrically irreducible.

Let Y ′ be the reduction of Y , and set X ′ = Y ′ ×Y X. Then it suffices to prove
the lemma for the morphism X ′ → Y ′ (for example by Lemma 36.23.3 once again).
Since the generic fibre of X ′ → Y ′ is the same as the generic fibre of X → Y
we see that we may assume that Y is irreducible and reduced (i.e., integral, see
Properties, Lemma 27.3.4) and that the irreducible components of the generic fibre
Xη are geometrically irreducible.
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At this point suppose that Xη = X1,η

⋃
. . .
⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) irreducible components. Let Xi be the closure of
Xi,η in X. After shrinking Y we may assume that X =

⋃
Xi, see Lemma 36.19.5.

Let Zi,j = Xi ∩Xj . Let

{1, . . . , n} × {1, . . . , n} = I
∐

J

where (i, j) ∈ I if Zi,j,η = ∅ and (i, j) ∈ J if Zi,j,η 6= ∅. After shrinking Y we
may assume that Zi,j = ∅ for all (i, j) ∈ I, see Lemma 36.19.1. After shrinking
Y we obtain that Xi,y is geometrically irreducible for each i and all y ∈ Y , see
Lemma 36.22.5. After shrinking Y some more we achieve the situation where
each Zi,j → Y is flat and of finite presentation for all (i, j) ∈ J , see Morphisms,
Proposition 28.28.1. This means that f(Zi,j) ⊂ Y is open, see Morphisms, Lemma
28.26.9. We claim that

V =
⋂

(i,j)∈J
f(Zi,j)

works, i.e., that Xy is geometrically connected for each y ∈ V . Namely, the fact
that Xη is connected implies that the equivalence relation generated by the pairs
in J has only one equivalence class. Now if y ∈ V and K ⊃ κ(y) is a separably
closed extension, then the irreducible components of (Xy)K are the fibres (Xi,y)K .
Moreover, we see by construction and y ∈ V that (Xi,y)K meets (Xj,y)K if and only
(i, j) ∈ J . Hence the remark on equivalence classes shows that (Xy)K is connected
and we win. �

Lemma 36.23.5. Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically connected components of fibres
of f introduced in Lemma 36.23.3. Assume f of finite type. Let y ∈ Y be a point.
Then there exists a nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z
be the base change of f . Clearly it suffices to prove the lemma for fZ and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma 27.3.4. Our goal in this case is to produce a nonempty open V ⊂ Y such
that nX/Y |V is constant.

We apply Lemma 36.19.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As
g : Y ′ → V is surjective finite étale, in particular open (see Morphisms, Lemma
28.37.13), it suffices to prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′
is constant, see Lemma 36.22.3. Thus we see that we may assume that all irreducible
components of the generic fibre Xη are geometrically irreducible over κ(η). By
Varieties, Lemma 32.6.15 this implies that also the connected components of Xη

are geometrically connected.

At this point suppose that Xη = X1,η

⋃
. . .
⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) connected components. In particular nX/Y (η) =
n. Let Xi be the closure of Xi,η in X. After shrinking Y we may assume that
X =

⋃
Xi, see Lemma 36.19.5. After shrinking Y some more we see that each fibre

of f has at least n connected components, see Lemma 36.23.1. Hence nX/Y (y) ≥ n
for all y ∈ Y . After shrinking Y some more we obtain that Xi,y is geometrically
connected for each i and all y ∈ Y , see Lemma 36.23.4. Since Xy =

⋃
Xi,y this

shows that nX/Y (y) ≤ n and finishes the proof. �
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Lemma 36.23.6. Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometric connected components of fibres of
f introduced in Lemma 36.23.3. Assume f of finite presentation. Then the level
sets

En = {y ∈ Y | nX/Y (y) = n}

of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbour-
hood V of y in Y such that En ∩ V is constructible in V . Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma 31.9.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 36.23.3 it suffices to prove the lemma for fi. Thus we reduce to the case
where Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.15.3 to prove that En is con-
structible in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible
closed subscheme. We have to show that En ∩ Z either contains a nonempty open
subset or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 36.23.5
shows that nX/Y is constant in a neighbourhood of ξ in Z. This clearly implies
what we want. �

Lemma 36.23.7. Let f : X → S be a morphism of schemes. Assume that

(1) S is the spectrum of a discrete valuation ring,
(2) f is flat,
(3) X is connected,
(4) the closed fibre Xs is reduced.

Then the generic fibre Xη is connected.

Proof. Write Y = Spec(R) and let π ∈ R be a uniformizer. To get a contradiction
assume that Xη is disconnected. This means there exists a nontrivial idempotent
e ∈ Γ(Xη,OXη ). Let U = Spec(A) be any affine open in X. Note that π is a
nonzerodivisor on A as A is flat over R, see More on Algebra, Lemma 15.15.3 for
example. Then e|Uη corresponds to an element e ∈ A[1/π]. Let z ∈ A be an

element such that e = z/πn with n ≥ 0 minimal. Note that z2 = πnz. This means
that z mod πA is nilpotent if n > 0. By assumption A/πA is reduced, and hence
minimality of n implies n = 0. Thus we conclude that e ∈ A! In other words
e ∈ Γ(X,OX). As X is connected it follows that e is a trivial idempotent which is
a contradiction. �

36.24. Connected components meeting a section

The results in this section are in particular applicable to a group scheme G → S
and its neutral section e : S → G.

Situation 36.24.1. Here f : X → Y be a morphism of schemes, and s : Y → X
is a section of f . For every y ∈ Y we denote X0

y the connected component of Xy

containing s(y). Finally, we set X0 =
⋃
y∈Y X

0
y .
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Lemma 36.24.2. Let f : X → Y , s : Y → X be as in Situation 36.24.1. If
g : Y ′ → Y is any morphism, consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′

s′

AA

g // Y

s

]]

so that we obtain (X ′)0 ⊂ X ′. Then (X ′)0 = (g′)−1(X0).

Proof. Let y′ ∈ Y ′ with image y ∈ Y . We may think of X0
y as a closed subscheme

of Xy, see for example Morphisms, Definition 28.27.3. As s(y) ∈ X0
y we conclude

from Varieties, Lemma 32.5.14 that X0
y is a geometrically connected scheme over

κ(y). Hence X0
y ×y y′ → X ′y′ is a connected closed subscheme which contains s′(y′).

Thus X0
y ×y y′ ⊂ (X ′y′)

0. The other inclusion X0
y ×y y′ ⊃ (X ′y′)

0 is clear as the

image of (X ′y′)
0 in Xy is a connected subset of Xy which contains s(y). �

Lemma 36.24.3. Let f : X → Y , s : Y → X be as in Situation 36.24.1. Assume
f of finite type. Let y ∈ Y be a point. Then there exists a nonempty open V ⊂ {y}
such that the inverse image of X0 in the base change XV is open and closed in XV .

Proof. Let Z ⊂ Y be the induced reduced closed subscheme structure on {y}. Let
fZ : XZ → Z and sZ : Z → XZ be the base changes of f and s. By Lemma 36.24.2
we have (XZ)0 = (X0)Z . Hence it suffices to prove the lemma for the morphism
XZ → Z and the point x ∈ XZ which maps to the generic point of Z. In other
words we have reduced the problem to the case where Y is an integral scheme (see
Properties, Lemma 27.3.4) with generic point η. Our goal is to show that after
shrinking Y the subset X0 becomes an open and closed subset of X.

Note that the scheme Xη is of finite type over a field, hence Noetherian. Thus
its connected components are open as well as closed. Hence we may write Xη =
X0
η

∐
Tη for some open and closed subset Tη of Xη. Next, let T ⊂ X be the

closure of Tη and let X00 ⊂ X be the closure of X0
η . Note that Tη, resp. X0

η is the

generic fibre of T , resp. X00, see discussion preceding Lemma 36.19.5. Moreover,
that lemma implies that after shrinking Y we may assume that X = X00 ∪ T (set
theoretically). Note that (T ∩X00)η = Tη ∩X0

η = ∅. Hence after shrinking Y we

may assume that T ∩ X00 = ∅, see Lemma 36.19.1. In particular X00 is open in
X. Note that X0

η is connected and has a rational point, namely s(η), hence it is
geometrically connected, see Varieties, Lemma 32.5.14. Thus after shrinking Y we
may assume that all fibres of X00 → Y are geometrically connected, see Lemma
36.23.4. At this point it follows that the fibres X00

y are open, closed, and connected

subsets of Xy containing σ(y). It follows that X0 = X00 and we win. �

Lemma 36.24.4. Let f : X → Y , s : Y → X be as in Situation 36.24.1. If f is of
finite presentation then X0 is locally constructible in X.

Proof. Let x ∈ X. We have to show that there exists an open neighbourhood U
of x such that X0 ∩ U is constructible in U . This reduces us to the case where Y
is affine. Write Y = Spec(A) and A = colimAi as a directed limit of finite type
Z-algebras. By Limits, Lemma 31.9.1 we can find an i and a morphism fi : Xi →
Spec(Ai) of finite presentation, endowed with a section si : Spec(Ai) → Xi whose
base change to Y recovers f and the section s. By Lemma 36.24.2 it suffices to
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prove the lemma for fi, si. Thus we reduce to the case where Y is the spectrum of
a Noetherian ring.

Assume Y is a Noetherian affine scheme. Since f is of finite presentation, i.e., of
finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma
28.16.6. In order to prove the lemma in this case it suffices to show that for every
irreducible closed subset Z ⊂ X the intersection Z∩X0 either contains a nonempty
open of Z or is not dense in Z, see Topology, Lemma 5.15.3. Let x ∈ Z be the
generic point, and let y = f(x). By Lemma 36.24.3 there exists a nonempty open

subset V ⊂ {y} such that X0 ∩XV is open and closed in XV . Since f(Z) ⊂ {y}
and f(x) = y ∈ V we see that W = f−1(V ) ∩ Z is a nonempty open subset of Z.
It follows that X0 ∩W is open and closed in W . Since W is irreducible we see that
X0 ∩W is either empty or equal to W . This proves the lemma. �

Lemma 36.24.5. Let f : X → Y , s : Y → X be as in Situation 36.24.1. Let
y ∈ Y be a point. Assume

(1) f is of finite presentation and flat, and
(2) the fibre Xy is geometrically reduced.

Then X0 is a neighbourhood of X0
y in X.

Proof. We may replace Y with an affine open neighbourhood of y. Write Y =
Spec(A) and A = colimAi as a directed limit of finite type Z-algebras. By Limits,
Lemma 31.9.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite
presentation, endowed with a section si : Spec(Ai) → Xi whose base change to Y
recovers f and the section s. After possibly increasing i we may also assume that
fi is flat, see Limits, Lemma 31.7.6. Let yi be the image of y in Yi. Note that Xy =
(Xi,yi) ×yi y. Hence Xi,yi is geometrically reduced, see Varieties, Lemma 32.4.6.
By Lemma 36.24.2 it suffices to prove the lemma for the system fi, si, yi ∈ Yi. Thus
we reduce to the case where Y is the spectrum of a Noetherian ring.

Assume Y is the spectrum of a Noetherian ring. Since f is of finite presentation, i.e.,
of finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma
28.16.6. Let x ∈ X0 be a point lying over y. By Topology, Lemma 5.15.4 it suffices
to prove that for any irreducible closed Z ⊂ X passing through x the intersection
X0∩Z is dense in Z. In particular it suffices to prove that the generic point x′ ∈ Z
is in X0. By Properties, Lemma 27.5.9 we can find a discrete valuation ring R and
a morphism Spec(R)→ X which maps the special point to x and the generic point
to x′. We are going to think of Spec(R) as a scheme over Y via the composition
Spec(R) → X → Y . By Lemma 36.24.2 we have that (XR)0 is the inverse image
of X0. By construction we have a second section t : Spec(R) → XR (besides the
base change sR of s) of the structure morphism XR → Spec(R) such that t(ηR) is
a point of XR which maps to x′ and t(0R) is a point of XR which maps to x. Note
that t(0R) is in (XR)0 and that t(ηR)  t(0R). Thus it suffices to prove that this
implies that t(ηR) ∈ (XR)0. Hence it suffices to prove the lemma in the case where
Y is the spectrum of a discrete valuation ring and y its closed point.

Assume Y is the spectrum of a discrete valuation ring and y is its closed point. Our
goal is to prove that X0 is a neighbourhood of X0

y . Note that X0
y is open and closed

in Xy as Xy has finitely many irreducible components. Hence the complement
C = Xy \X0

y is closed in X. Thus U = X \C is an open neighbourhood of X0
y and

U0 = X0. Hence it suffices to prove the result for the morphism U → Y . In other
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words, we may assume that Xy is connected. Suppose that X is disconnected, say
X = X1 q . . . qXn is a decomposition into connected components. Then s(Y ) is
completely contained in one of the Xi. Say s(Y ) ⊂ X1. Then X0 ⊂ X1. Hence
we may replace X by X1 and assume that X is connected. At this point Lemma
36.23.7 implies that Xη is connected, i.e., X0 = X and we win. �

Lemma 36.24.6. Let f : X → Y , s : Y → X be as in Situation 36.24.1. Assume

(1) f is of finite presentation and flat, and
(2) all fibres of f are geometrically reduced.

Then X0 is open in X.

Proof. This is an immediate consequence of Lemma 36.24.5. �

36.25. Dimension of fibres

Lemma 36.25.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has dimension n, then there exists
a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has dimension n.

Proof. Let Z = {x ∈ X | dimx(Xf(x)) > n}. By Morphisms, Lemma 28.29.4 this
is a closed subset of X. By assumption Zη = ∅. Hence by Lemma 36.19.1 we may
shrink Y and assume that Z = ∅. Let Z ′ = {x ∈ X | dimx(Xf(x)) > n− 1} = {x ∈
X | dimx(Xf(x)) = n}. As before this is a closed subset of X. By assumption we
have Z ′η 6= ∅. Hence after shrinking Y we may assume that Z ′ → Y is surjective,
see Lemma 36.19.2. Hence we win. �

Lemma 36.25.2. Let f : X → Y be a morphism of finite type. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}
be the function which associates to y ∈ Y the dimension of Xy. If g : Y ′ → Y is a
morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. This follows from Morphisms, Lemma 28.29.3. �

Lemma 36.25.3. Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y giving the dimension of fibres of f introduced in Lemma 36.25.2.
Assume f of finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbour-
hood V of y in Y such that En ∩ V is constructible in V . Thus we may assume
that Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of fi-
nite type Z-algebras. By Limits, Lemma 31.9.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 36.25.2 it suffices to prove the lemma for fi. Thus we reduce to the case
where Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.15.3 to prove that En is con-
structible in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible
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closed subscheme. We have to show that En ∩ Z either contains a nonempty open
subset or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 36.25.1
shows that nX/Y is constant in a neighbourhood of ξ in Z. This implies what we
want. �

36.26. Limit arguments

Some lemmas involving limits of schemes, and Noetherian approximation. We stick
mostly to the affine case. Some of these lemmas are special cases of lemmas in the
chapter on limits.

Lemma 36.26.1. Let f : X → S be a morphism of affine schemes, which is of
finite presentation. Then there exists a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 Soo

such that

(1) X0, S0 are affine schemes,
(2) S0 of finite type over Z,
(3) f0 is finite of finite type.

Proof. Write S = Spec(A) and X = Spec(B). As f is of finite presentation we see
that B is of finite presentation as an A-algebra, see Morphisms, Lemma 28.22.2.
Thus the lemma follows from Algebra, Lemma 10.123.15. �

Lemma 36.26.2. Let f : X → S be a morphism of affine schemes, which is of
finite presentation. Let F be a quasi-coherent OX-module of finite presentation.
Then there exists a diagram as in Lemma 36.26.1 such that there exists a coherent
OX0

-module F0 with g∗F0 = F .

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite presenta-
tion we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
28.22.2. As F is of finite presentation over OX we see that M is of finite presenta-
tion as a B-module, see Properties, Lemma 27.16.2. Thus the lemma follows from
Algebra, Lemma 10.123.15. �

Lemma 36.26.3. Let f : X → S be a morphism of affine schemes, which is of
finite presentation. Let F be a quasi-coherent OX-module of finite presentation and
flat over S. Then we may choose a diagram as in Lemma 36.26.2 and sheaf F0

such that in addition F0 is flat over S0.

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite pre-
sentation we see that B is of finite presentation as an A-algebra, see Morphisms,
Lemma 28.22.2. As F is of finite presentation over OX we see that M is of finite
presentation as a B-module, see Properties, Lemma 27.16.2. As F is flat over S we
see that M is flat over A, see Morphisms, Lemma 28.26.2. Thus the lemma follows
from Algebra, Lemma 10.156.1. �

Lemma 36.26.4. Let f : X → S be a morphism of affine schemes, which is of
finite presentation and flat. Then there exists a diagram as in Lemma 36.26.1 such
that in addition f0 is flat.
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Proof. This is a special case of Lemma 36.26.3. �

Lemma 36.26.5. Let f : X → S be a morphism of affine schemes, which is
smooth. Then there exists a diagram as in Lemma 36.26.1 such that in addition f0

is smooth.

Proof. Write S = Spec(A), X = Spec(B), and as f is smooth we see that B is
smooth as an A-algebra, see Morphisms, Lemma 28.35.2. Hence the lemma follows
from Algebra, Lemma 10.133.14. �

Lemma 36.26.6. Let f : X → S be a morphism of affine schemes, which is of
finite presentation with geometrically reduced fibres. Then there exists a diagram
as in Lemma 36.26.1 such that in addition f0 has geometrically reduced fibres.

Proof. Apply Lemma 36.26.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 36.21.5 the set E ⊂ S0 of points where the fibre of f0 is geometrically
reduced is a constructible subset. By Lemma 36.21.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 31.3.7 we see that Spec(Ai) → S0

has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0

Spec(Ai) we see that all fibres of f0 are geometrically reduced. �

Lemma 36.26.7. Let f : X → S be a morphism of affine schemes, which is of
finite presentation with geometrically irreducible fibres. Then there exists a diagram
as in Lemma 36.26.1 such that in addition f0 has geometrically irreducible fibres.

Proof. Apply Lemma 36.26.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 36.22.7 the set E ⊂ S0 of points where the fibre of f0 is geometrically
irreducible is a constructible subset. By Lemma 36.22.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 31.3.7 we see that Spec(Ai) → S0

has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0

Spec(Ai) we see that all fibres of f0 are geometrically irreducible. �

Lemma 36.26.8. Let f : X → S be a morphism of affine schemes, which is of
finite presentation with geometrically connected fibres. Then there exists a diagram
as in Lemma 36.26.1 such that in addition f0 has geometrically connected fibres.
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Proof. Apply Lemma 36.26.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 36.23.6 the set E ⊂ S0 of points where the fibre of f0 is geometrically
connected is a constructible subset. By Lemma 36.23.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 31.3.7 we see that Spec(Ai) → S0

has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0

Spec(Ai) we see that all fibres of f0 are geometrically connected. �

Lemma 36.26.9. Let d ≥ 0 be an integer. Let f : X → S be a morphism of affine
schemes, which is of finite presentation all of whose fibres have dimension d. Then
there exists a diagram as in Lemma 36.26.1 such that in addition all fibres of f0

have dimension d.

Proof. Apply Lemma 36.26.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type
over Z. By Lemma 36.25.3 the set E ⊂ S0 of points where the fibre of f0 has
dimension d is a constructible subset. By Lemma 36.25.2 we have h(S) ⊂ E.
Write S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit
of finite type A0-algebras. By Limits, Lemma 31.3.7 we see that Spec(Ai) → S0

has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 have dimension d. �

Lemma 36.26.10. Let f : X → S be a morphism of affine schemes, which is stan-
dard syntomic (see Morphisms, Definition 28.32.1). Then there exists a diagram
as in Lemma 36.26.1 such that in addition f0 is standard syntomic.

Proof. This lemma is a copy of Algebra, Lemma 10.131.12. �

Lemma 36.26.11. (Noetherian approximation and combining properties.) Let P ,
Q be properties of morphisms of schemes which are stable under base change. Let
f : X → S be a morphism of finite presentation of affine schemes. Assume we can
find cartesian diagrams

X1

f1

��

Xoo

f

��
S1 Soo

and

X2

f2

��

Xoo

f

��
S2 Soo
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of affine schemes, with S1, S2 of finite type over Z and f1, f2 of finite type such that
f1 has property P and f2 has property Q. Then we can find a cartesian diagram

X0

f0

��

Xoo

f

��
S0 Soo

of affine schemes with S0 of finite type over Z and f0 of finite type such that f0 has
both property P and property Q.

Proof. The given pair of diagrams correspond to cocartesian diagrams of rings

B1
// B

A1

OO

// A

OO

and

B2
// B

A2

OO

// A

OO

Let A0 ⊂ A be a finite type Z-subalgebra of A containing the image of both A1 → A
and A2 → A. Such a subalgebra exists because by assumption both A1 and A2 are
of finite type over Z. Note that the rings B0,1 = B1 ⊗A1

A0 and B0,2 = B2 ⊗A2
A0

are finite type A0-algebras with the property that B0,1⊗A0 A
∼= B ∼= B0,2⊗A0 A as

A-algebras. As A is the directed colimit of its finite type A0-subalgebras, by Limits,
Lemma 31.9.1 we may assume after enlarging A0 that there exists an isomorphism
B0,1

∼= B0,2 as A0-algebras. Since properties P and Q are assumed stable under
base change we conclude that setting S0 = Spec(A0) and

X0 = X1 ×S1 S0 = Spec(B0,1) ∼= Spec(B0,2) = X2 ×S2 S0

works. �

36.27. Étale neighbourhoods

It turns out that some properties of morphisms are easier to study after doing an
étale base change. It is convenient to introduce the following terminology.

Definition 36.27.1. Let S be a scheme. Let s ∈ S be a point.

(1) An étale neighbourhood of (S, s) is a pair (U, u) together with an étale
morphism of schemes ϕ : U → S such that ϕ(u) = s.

(2) A morphism of étale neighbourhoods f : (V, v)→ (U, u) of (S, s) is simply
a morphism of S-schemes f : V → U such that f(v) = u.

(3) An elementary étale neighbourhood is an étale neighbourhood ϕ : (U, u)→
(S, s) such that κ(s) = κ(u).

If f : (V, v) → (U, u) is a morphism of étale neighbourhoods, then f is automat-
ically étale, see Morphisms, Lemma 28.37.18. Hence it turns (V, v) into an étale
neighbourhood of (U, u). Of course, since the composition of étale morphisms is
étale (Morphisms, Lemma 28.37.3) we see that conversely any étale neighbourhood
(V, v) of (U, u) is an étale neighbourhood of (S, s) as well. We also remark that
if U ⊂ S is an open neighbourhood of s, then (U, s) → (S, s) is an étale neigh-
bourhood. This follows from the fact that an open immersion is étale (Morphisms,
Lemma 28.37.9). We will use these remarks without further mention throughout
this section.
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Note that κ(s) ⊂ κ(u) is a finite separable extension if (U, u) → (S, s) is an étale
neighbourhood, see Morphisms, Lemma 28.37.15.

Lemma 36.27.2. Let S be a scheme. Let s ∈ S. Let κ(s) ⊂ k be a finite separable
field extension. Then there exists an étale neighbourhood (U, u) → (S, s) such that
the field extension κ(s) ⊂ κ(u) is isomorphic to κ(s) ⊂ k.

Proof. We may assume S is affine. In this case the lemma follows from Algebra,
Lemma 10.138.16. �

Lemma 36.27.3. Let S be a scheme, and let s be a point of S. The category of
étale neighborhoods has the following properties:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neigh-
borhoods of s. Assume h1, h2 induce the same map κ(u′) → κ(u) of
residue fields. Then there exist an étale neighborhood (U ′′, u′′) and a mor-
phism h : (U ′′, u′′) → (U, u) which equalizes h1 and h2, i.e., such that
h1 ◦ h = h2 ◦ h.

Proof. For part (1), consider the fibre product U = U1 ×S U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change, see
Morphisms, Lemma 28.37.4. There is a point of U mapping to both u1 and u2 for
example by the description of points of a fibre product in Schemes, Lemma 25.17.5.
For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)

��
U ′

∆ // U ′ ×S U ′.

Since h1 and h2 induce the same map of residue fields κ(u′)→ κ(u) there exists a
point u′′ ∈ U ′′ lying over u′ with κ(u′′) = κ(u′). In particular U ′′ 6= ∅. Moreover,
since U ′ is étale over S, so is the fibre product U ′ ×S U ′ (see Morphisms, Lemmas
28.37.4 and 28.37.3). Hence the vertical arrow (h1, h2) is étale by Morphisms,
Lemma 28.37.18. Therefore U ′′ is étale over U ′ by base change, and hence also
étale over S (because compositions of étale morphisms are étale). Thus (U ′′, u′′) is
a solution to the problem. �

Lemma 36.27.4. Let S be a scheme, and let s be a point of S. The category
of elementary étale neighborhoods of (S, s) is cofiltered (see Categories, Definition
4.20.1).

Proof. This is immediate from the definitions and Lemma 36.27.3. �

Lemma 36.27.5. Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category which is opposite to the category of
elementary étale neighbourhoods (U, u) of (S, s).
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Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
OS,s = Ap and κ(s) = κ(p). A cofinal system of elementary étale neighbourhoods
is given by those elementary étale neighbourhoods (U, u) such that U is affine and
U → S factors through Spec(A). In other words, we see that the right hand side
is equal to colim(B,q)B where the colimit is over étale A-algebras B endowed with
a prime q lying over p with κ(p) = κ(q). Thus the lemma follows from Algebra,
Lemma 10.145.21. �

36.28. Slicing smooth morphisms

In this section we explain a result that roughly states that smooth coverings of a
scheme S can be refined by étale coverings. The technique to prove this relies on a
slicing argument.

Lemma 36.28.1. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is smooth at x, and
(2) the image dh of dh in

ΩXs/s,x ⊗OXs,x κ(x) = ΩX/S,x ⊗OX,x κ(x)

is nonzero.

Then there exists an affine open neighbourhood U ⊂ X of x such that h comes from
h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U with
x ∈ D and D → S smooth.

Proof. As f is smooth at x we may assume, after replacing X by an open neigh-
bourhood of x that f is smooth. In particular we see that f is flat and locally
of finite presentation. By Lemma 36.18.1 we already know there exists an open
neighbourhood U ⊂ X of x such that h comes from h ∈ Γ(U,OU ) and such that
D = V (h) is an effective Cartier divisor in U with x ∈ D and D → S flat and of
finite presentation. By Morphisms, Lemma 28.34.15 we have a short exact sequence

CD/U → i∗ΩU/S → ΩD/S → 0

where i : D → U is the closed immersion and CD/U is the conormal sheaf of D
in U . As D is an effective Cartier divisor cut out by h ∈ Γ(U,OU ) we see that
CD/U = h · OS . Since U → S is smooth the sheaf ΩU/S is finite locally free, hence
its pullback i∗ΩU/S is finite locally free also. The first arrow of the sequence maps
the free generator h to the section dh|D of i∗ΩU/S which has nonzero value in the
fibre ΩU/S,x ⊗ κ(x) by assumption. By right exactness of ⊗κ(x) we conclude that

dimκ(x)

(
ΩD/S,x ⊗ κ(x)

)
= dimκ(x)

(
ΩU/S,x ⊗ κ(x)

)
− 1.

By Morphisms, Lemma 28.35.14 we see that ΩU/S,x ⊗ κ(x) can be generated by at
most dimx(Us) elements. By the displayed formula we see that ΩD/S,x⊗κ(x) can be
generated by at most dimx(Us)− 1 elements. Note that dimx(Ds) = dimx(Us)− 1
for example because dim(ODs,x) = dim(OUs,x) − 1 by Algebra, Lemma 10.59.11
(also Ds ⊂ Us is effective Cartier, see Divisors, Lemma 30.10.1) and then using
Morphisms, Lemma 28.29.1. Thus we conclude that ΩD/S,x⊗κ(x) can be generated
by at most dimx(Ds) elements and we conclude that D → S is smooth at x by
Morphisms, Lemma 28.35.14 again. After shrinking U we get that D → S is
smooth and we win. �
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Lemma 36.28.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x, and
(2) the map

ΩXs/s,x ⊗OXs,x κ(x) −→ Ωκ(x)/κ(s)

has a nonzero kernel.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma 10.127.8) we have ΩXs/s,x = ΩR/k. By Algebra,
Lemma 10.127.9 there is an exact sequence

m/m2 d−→ ΩR/k ⊗R κ→ Ωκ/k → 0.

Hence if (2) holds, there exists an element h ∈ m such that dh is nonzero. Choose
a lift h ∈ OX,x of h and apply Lemma 36.28.1. �

Remark 36.28.3. The second condition in Lemma 36.28.2 is necessary even if x
is a closed point of a positive dimensional fibre. An example is the following: Let k
be a field of characteristic p > 0 which is imperfect. Let a ∈ k be an element which
is not a pth power. Let m = (x, yp−a) ⊂ k[x, y]. This corresponds to a closed point
w of X = A2

k. Set S = A1
k and let f : X → S be the morphism corresponding to

k[x]→ k[x, y]. Then there does not exist any commutative diagram

S′
h

//

g
��

X

f��
S

with g étale and w in the image of h. This is clear as the residue field extension
κ(f(w)) ⊂ κ(w) is purely inseparable, but for any s′ ∈ S′ with g(s′) = f(w) the
extension κ(f(w)) ⊂ κ(s′) would be separable.

If you assume the residue field extension is separable then the phenomenon of
Remark 36.28.3 does not happen. Here is the precise result.

Lemma 36.28.4. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x,
(2) the residue field extension κ(s) ⊂ κ(x) is separable, and
(3) x is not a generic point of Xs.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes
with localization (see Algebra, Lemma 10.127.8) we have ΩXs/s,x = ΩR/k. By
assumption (2) and Algebra, Lemma 10.135.4 the map

d : m/m2 −→ ΩR/k ⊗R κ(m)
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is injective. Assumption (3) implies that m/m2 6= 0. Thus there exists an element
h ∈ m such that dh is nonzero. Choose a lift h ∈ OX,x of h and apply Lemma
36.28.1. �

The subscheme Z constructed in the following lemma is really a complete intersec-
tion in an affine open neighbourhood of x. If we ever need this we will explicitly
formulate a separate lemma stating this fact.

Lemma 36.28.5. Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x, and
(2) x is a closed point of Xs and κ(s) ⊂ κ(x) is separable.

Then there exists an immersion Z → X containing x such that

(1) Z → S is étale, and
(2) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We
may and do replace X by an affine open neighbourhood of x such that X → S is
smooth. We will prove the lemma for smooth morphisms of affines by induction on
d = dimx(Xs).

The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. Namely, if d = 0, then X → S is quasi-finite at x, see Morphisms,
Lemma 28.30.5. Hence there exists an affine open neighbourhood U ⊂ X such that
U → S is quasi-finite, see Morphisms, Lemma 28.49.2. Thus after replacing X by U
we see that X is quasi-finite and smooth over S, hence smooth of relative dimension
0 over S, hence étale over S. Moreover, the fibre Xs is a finite discrete set. Hence
after replacing X by a further affine open neighbourhood of X we see that that
f−1({s}) = {x} (because the topology on Xs is induced from the topology on X,
see Schemes, Lemma 25.18.5). This proves the lemma in this case.

Next, assume d > 0. Note that because x is a closed point of its fibre the exten-
sion κ(s) ⊂ κ(x) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma
28.21.3). Thus we see Ωκ(x)/κ(s) = 0 as this holds for algebraic separable field
extensions. Thus we may apply Lemma 36.28.2 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that dimx(Ds) = dimx(Xs)−1 for example because dim(ODs,x) =
dim(OXs,x)− 1 by Algebra, Lemma 10.59.11 (also Ds ⊂ Xs is effective Cartier, see
Divisors, Lemma 30.10.1) and then using Morphisms, Lemma 28.29.1. Thus the
morphism D → S is smooth with dimx(Ds) = dimx(Xs)− 1 = d− 1. By induction
hypothesis we can find an immersion Z → D as desired, which finishes the proof. �

Lemma 36.28.6. Let f : X → S be a smooth morphism of schemes. Let s ∈ S be
a point in the image of f . Then there exists an étale neighbourhood (S′, s′)→ (S, s)
and a S-morphism S′ → X.
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First proof of Lemma 36.28.6. By assumption Xs 6= ∅. By Varieties, Lemma
32.15.6 there exists a closed point x ∈ Xs such that κ(x) is a finite separable field
extension of κ(s). Hence by Lemma 36.28.5 there exists an immersion Z → X such
that Z → S is étale and such that x ∈ Z. Take (S′, s′) = (Z, x). �

Second proof of Lemma 36.28.6. Pick a point x ∈ X with f(x) = s. Choose a
diagram

X

��

Uoo

��

π
// Ad

V

~~
Y Voo

with π étale, x ∈ U and V = Spec(R) affine, see Morphisms, Lemma 28.37.20. In
particular s ∈ V . The morphism π : U → Ad

V is open, see Morphisms, Lemma
28.37.13. Thus W = π(V ) ∩ Ad

s is a nonempty open subset of Ad
s . Let w ∈ W

be a point with κ(s) ⊂ κ(w) finite separable, see Varieties, Lemma 32.15.5. By
Algebra, Lemma 10.110.1 there exist d elements f1, . . . , fd ∈ κ(s)[x1, . . . , xd] which
generate the maximal ideal corresponding to w in κ(s)[x1, . . . , xn]. After replacing
R by a principal localization we may assume there are f1, . . . , fd ∈ R[x1, . . . , xd]
which map to f1, . . . , fd ∈ κ(s)[x1, . . . , xd]. Consider the R-algebra

R′ = R[x1, . . . , xd]/(f1, . . . , fd)

and set S′ = Spec(R′). By construction we have a closed immersion j : S′ → Ad
V

over V . By construction the fibre of S′ → V over s is a single point s′ whose residue
field is finite separable over κ(s). Let q′ ⊂ R′ be the corresponding prime. By Al-
gebra, Lemma 10.131.11 we see that (R′)g is a relative global complete intersection
over R for some g ∈ R′, g 6∈ q. Thus S′ → V is flat and of finite presentation in a
neighbourhood of s′, see Algebra, Lemma 10.131.14. By construction the scheme
theoretic fibre of S′ → V over s is Spec(κ(s′)). Hence it follows from Morphisms,
Lemma 28.37.15 that S′ → S is étale at s′. Set

S′′ = U ×π,Ad
V ,j

S′.

By construction there exists a point s′′ ∈ S′′ which maps to s′ via the projection
p : S′′ → S′. Note that p is étale as the base change of the étale morphism π, see
Morphisms, Lemma 28.37.4. Choose a small affine neighbourhood S′′′ ⊂ S′′ of s′′

which maps into the nonempty open neighbourhood of s′ ∈ S′ where the morphism
S′ → S is étale. Then the étale neighbourhood (S′′′, s′′) → (S, s) is a solution to
the problem posed by the lemma. �

The following lemma shows that sheaves for the smooth topology are the same
thing as sheaves for the étale topology.

Lemma 36.28.7. Let S be a scheme. Let U = {Si → S}i∈I be a smooth covering
of S, see Topologies, Definition 33.5.1. Then there exists an étale covering V =
{Tj → S}j∈J (see Topologies, Definition 33.4.1) which refines (see Sites, Definition
7.8.1) U .

Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 36.28.6 we can find an étale morphism gs : Ts → S such that s ∈ gs(T )s
and such that gs factors through Si → S. Hence {Ts → S} is an étale covering of
S that refines U . �
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36.29. Finite free locally dominates étale

In this section we explain a result that roughly states that étale coverings of a
scheme S can be refined by Zariski coverings of finite locally free covers of S.

Lemma 36.29.1. Let S be a scheme. Let s ∈ S. Let f : (U, u) → (S, s) be an
étale neighbourhood. There exists an affine open neighbourhood s ∈ V ⊂ S and a
surjective, finite locally free morphism π : T → V such that for every t ∈ π−1(s)
there exists an open neighbourhood t ∈Wt ⊂ T and a commutative diagram

T

π

��

Wt
oo

ht

//

  

U

��
V // S

with ht(t) = u.

Proof. The problem is local on S hence we may replace S by any open neigh-
bourhood of s. We may also replace U by an open neighbourhood of u. Hence,
by Morphisms, Lemma 28.37.14 we may assume that U → S is a standard étale
morphism of affine schemes. In this case the lemma (with V = S) follows from
Algebra, Lemma 10.138.18. �

Lemma 36.29.2. Let f : U → S be a surjective étale morphism of affine schemes.
There exists a surjective, finite locally free morphism π : T → S and a finite open
covering T = T1∪ . . .∪Tn such that each Ti → S factors through U → S. Diagram:∐

Ti

!!}}
T

π

""

U
f

||
S

where the south-west arrow is a Zariski-covering.

Proof. This is a restatement of Algebra, Lemma 10.138.19. �

Remark 36.29.3. In terms of topologies the lemmas above mean the following.
Let S be any scheme. Let {fi : Ui → S} be an étale covering of S. There exists a
Zariski open covering S =

⋃
Vj , for each j a finite locally free, surjective morphism

Wj → Vj , and for each j a Zariski open covering {Wj,k →Wj} such that the family
{Wj,k → S} refines the given étale covering {fi : Ui → S}. What does this mean in
practice? Well, for example, suppose we have a descent problem which we know how
to solve for Zariski coverings and for fppf coverings of the form {π : T → S} with
π finite locally free and surjective. Then this descent problem has an affirmative
answer for étale coverings as well. This trick was used by Gabber in his proof that
Br(X) = Br′(X) for an affine scheme X, see [Hoo82].

36.30. Étale localization of quasi-finite morphisms

Now we come to a series of lemmas around the theme “quasi-finite morphisms
become finite after étale localization”. The general idea is the following. Suppose
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given a morphism of schemes f : X → S and a point s ∈ S. Let ϕ : (U, u)→ (S, s)
be an étale neighbourhood of s in S. Consider the fibre product XU = U ×SX and
the basic diagram

(36.30.0.1)

V //

!!

XU

��

// X

f

��
U

ϕ // S

where V ⊂ XU is open. Is there some standard model for the morphism fU : XU →
U , or for the morphism V → U for suitable opens V ? Of course the answer is no
in general. But for quasi-finite morphisms we can say something.

Lemma 36.30.1. Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume that

(1) f is locally of finite type, and
(2) x ∈ Xs is isolated2.

Then there exist

(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) an open subscheme V ⊂ XU (see 36.30.0.1)

such that

(i) V → U is a finite morphism,
(ii) there is a unique point v of V mapping to u in U , and
(iii) the point v maps to x under the morphism XU → X, inducing κ(x) =

κ(v).

Moreover, for any elementary étale neighbourhood (U ′, u′) → (U, u) setting V ′ =
U ′ ×U V ⊂ XU ′ the triple (U ′, u′, V ′) satisfies the properties (i), (ii), and (iii) as
well.

Proof. Let Y ⊂ X, W ⊂ S be affine opens such that f(Y ) ⊂ W and such that
x ∈ Y . Note that x is also an isolated point of the fibre of the morphism f |Y : Y →
W . If we can prove the theorem for f |Y : Y →W , then the theorem follows for f .
Hence we reduce to the case where f is a morphism of affine schemes. This case is
Algebra, Lemma 10.138.22. �

In the preceding and following lemma we do not assume that the morphism f is
separated. This means that the opens V , Vi created in them are not necessarily
closed in XU . Moreover, if we choose the neighbourhood U to be affine, then each
Vi is affine, but the intersections Vi ∩ Vj need not be affine (in the nonseparated
case).

Lemma 36.30.2. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X
be points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist

(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) for each i an open subscheme Vi ⊂ XU ,

2In the presence of (1) this means that f is quasi-finite at x, see Morphisms, Lemma 28.21.6.
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such that for each i we have

(i) Vi → U is a finite morphism,
(ii) there is a unique point vi of Vi mapping to u in U , and
(iii) the point vi maps to xi in X and κ(xi) = κ(vi).

Proof. We will use induction on n. Namely, suppose (U, u)→ (S, s) and Vi ⊂ XU ,
i = 1, . . . , n − 1 work for x1, . . . , xn−1. Since κ(s) = κ(u) the fibre (XU )u = Xs.
Hence there exists a unique point x′n ∈ Xu ⊂ XU corresponding to xn ∈ Xs.
Also x′n is isolated in Xu. Hence by Lemma 36.30.1 there exists an elementary
étale neighbourhood (U ′, u′) → (U, u) and an open Vn ⊂ XU ′ which works for x′n
and hence for xn. By the final assertion of Lemma 36.30.1 the open subschemes
V ′i = U ′ ×U Vi for i = 1, . . . , n − 1 still work with respect to x1, . . . , xn−1. Hence
we win. �

If we allow a nontrivial field extension κ(s) ⊂ κ(u), i.e., general étale neighbour-
hoods, then we can split the points as follows.

Lemma 36.30.3. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X
be points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist

(a) an étale neighbourhood (U, u)→ (S, s),
(b) for each i an integer mi and open subschemes Vi,j ⊂ XU , j = 1, . . . ,mi

such that we have

(i) each Vi,j → U is a finite morphism,
(ii) there is a unique point vi,j of Vi,j mapping to u in U with κ(u) ⊂ κ(vi,j)

finite purely inseparable,
(iv) if vi,j = vi′,j′ , then i = i′ and j = j′, and
(iii) the points vi,j map to xi in X and no other points of (XU )u map to xi.

Proof. This proof is a variant of the proof of Algebra, Lemma 10.138.24 in the
language of schemes. By Morphisms, Lemma 28.21.6 the morphism f is quasi-
finite at each of the points xi. Hence κ(s) ⊂ κ(xi) is finite for each i (Morphisms,
Lemma 28.21.5). For each i, let κ(s) ⊂ Li ⊂ κ(xi) be the subfield such that Li/κ(s)
is separable, and κ(xi)/Li is purely inseparable. Choose a finite Galois extension
κ(s) ⊂ L such that there exist κ(s)-embeddings Li → L for i = 1, . . . , n. Choose an
étale neighbourhood (U, u)→ (S, s) such that L ∼= κ(u) as κ(s)-extensions (Lemma
36.27.2).

Let yi,j , j = 1, . . . ,mi be the points of XU lying over xi ∈ X and u ∈ U . By
Schemes, Lemma 25.17.5 these points yi,j correspond exactly to the primes in the
rings κ(u) ⊗κ(s) κ(xi). This also explains why there are finitely many; in fact
mi = [Li : κ(s)] but we do not need this. By our choice of L (and elementary
field theory) we see that κ(u) ⊂ κ(yi,j) is finite purely inseparable for each pair
i, j. Also, by Morphisms, Lemma 28.21.13 for example, the morphism XU → U is
quasi-finite at the points yi,j for all i, j.

Apply Lemma 36.30.2 to the morphism XU → U , the point u ∈ U and the points
yi,j ∈ (XU )u. This gives an étale neighbourhood (U ′, u′)→ (U, u) with κ(u) = κ(u′)
and opens Vi,j ⊂ XU ′ with the properties (i), (ii), and (iii) of that lemma. We
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claim that the étale neighbourhood (U ′, u′)→ (S, s) and the opens Vi,j ⊂ XU ′ are
a solution to the problem posed by the lemma. We omit the verifications. �

Lemma 36.30.4. Let f : X → S be a morphism of schemes. Let s ∈ S. Let
x1, . . . , xn ∈ Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an elementary étale neighbourhood (U, u) → (S, s) and a decom-
position

U ×S X = W
∐

V1

∐
. . .
∐

Vn

into open and closed subschemes such that the morphisms Vi → U are finite, the
fibres of Vi → U over u are singletons {vi}, each vi maps to xi with κ(xi) = κ(vi),
and the fibre of W → U over u contains no points mapping to any of the xi.

Proof. Choose (U, u) → (S, s) and Vi ⊂ XU as in Lemma 36.30.2. Since XU →
U is separated (Schemes, Lemma 25.21.13) and Vi → U is finite hence proper
(Morphisms, Lemma 28.44.10) we see that Vi ⊂ XU is closed by Morphisms, Lemma
28.42.7. Hence Vi ∩ Vj is a closed subset of Vi which does not contain vi. Hence
the image of Vi ∩Vj in U is a closed set (because Vi → U proper) not containing u.
After shrinking U we may therefore assume that Vi ∩ Vj = ∅ for all i, j. This gives
the decomposition as in the lemma. �

Here is the variant where we reduce to purely inseparable field extensions.

Lemma 36.30.5. Let f : X → S be a morphism of schemes. Let s ∈ S. Let
x1, . . . , xn ∈ Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an étale neighbourhood (U, u)→ (S, s) and a decomposition

U ×S X = W
∐ ∐

i=1,...,n

∐
j=1,...,mi

Vi,j

into open and closed subschemes such that the morphisms Vi,j → U are finite, the
fibres of Vi,j → U over u are singletons {vi,j}, each vi,j maps to xi, κ(u) ⊂ κ(vi,j)
is purely inseparable, and the fibre of W → U over u contains no points mapping
to any of the xi.

Proof. This is proved in exactly the same way as the proof of Lemma 36.30.4
except that it uses Lemma 36.30.3 instead of Lemma 36.30.2. �

The following version may be a little easier to parse.

Lemma 36.30.6. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) f is locally of finite type,
(2) f is separated, and
(3) Xs has at most finitely many isolated points.
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Then there exists an elementary étale neighbourhood (U, u) → (S, s) and a decom-
position

U ×S X = W
∐

V

into open and closed subschemes such that the morphism V → U is finite, and the
fibre Wu of the morphism W → U contains no isolated points. In particular, if
f−1(s) is a finite set, then Wu = ∅.

Proof. This is clear from Lemma 36.30.4 by choosing x1, . . . , xn the complete set
of isolated points of Xs and setting V =

⋃
Vi. �

36.31. Zariski’s Main Theorem

We can use the results Section 36.30 to prove the scheme theoretic version of
Zariski’s main theorem.

Lemma 36.31.1. Let f : X → S be a morphism of schemes. Assume f is of
finite type and separated. Let S′ be the normalization of S in X, see Morphisms,
Definition 28.48.3. Picture:

X

f ��

f ′
// S′

ν
��

S

Then there exists an open subscheme U ′ ⊂ S′ such that

(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms, Lemma 28.49.2 the subset U ⊂ X of points where f is
quasi-finite is open. The lemma is equivalent to

(a) U ′ = f ′(U) ⊂ S′ is open,
(b) U = f−1(U ′), and
(c) U → U ′ is an isomorphism.

Let x ∈ U be arbitrary. We claim there exists an open neighbourhood f ′(x) ∈ V ⊂
S′ such that (f ′)−1V → V is an isomorphism. We first prove the claim implies
the lemma. Namely, then (f ′)−1V ∼= V is both locally of finite type over S (as an
open subscheme of X) and for v ∈ V the residue field extension κ(v) ⊃ κ(ν(v))
is algebraic (as V ⊂ S′ and S′ is integral over S). Hence the fibres of V → S
are discrete (Morphisms, Lemma 28.21.2) and (f ′)−1V → S is locally quasi-finite
(Morphisms, Lemma 28.21.8). This implies (f ′)−1V ⊂ U and V ⊂ U ′. Since x was
arbitrary we see that (a), (b), and (c) are true.

Let s = f(x). Let (T, t) → (S, s) be an elementary étale neighbourhood. Denote
by a subscript T the base change to T . Let y = (x, t) ∈ XT be the unique point
in the fibre Xt lying over x. Note that UT ⊂ XT is the set of points where fT is
quasi-finite, see Morphisms, Lemma 28.21.13. Note that

XT
f ′T−−→ S′T

νT−−→ T

is the normalization of T in XT , see Lemma 36.14.2. Suppose that the claim holds
for y ∈ UT ⊂ XT → S′T → T , i.e., suppose that we can find an open neighbourhood
f ′T (y) ∈ V ′ ⊂ S′T such that (f ′T )−1V ′ → V ′ is an isomorphism. The morphism
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S′T → S′ is étale hence the image V ⊂ S′ of V ′ is open. Observe that f ′(x) ∈ V as
f ′T (y) ∈ V ′. Observe that

(f ′T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as S′T×S′X = XT ). Since the left vertical arrow is an isomorphism
and {V ′ → V } is a étale covering, we conclude that the right vertical arrow is an
isomorphism by Descent, Lemma 34.19.15. In other words, the claim holds for
x ∈ U ⊂ X → S′ → S.

By the result of the previous paragraph we may replace S by an elementary étale
neighbourhood of s = f(x) in order to prove the claim. Thus we may assume there
is a decomposition

X = V qW
into open and closed subschemes where V → S is finite and x ∈ V , see Lemma
36.30.4. Since X is a disjoint union of V and W over S and since V → S is finite
we see that the normalization of S in X is the morphism

X = V qW −→ V qW ′ −→ S

where W ′ is the normalization of S in W , see Morphisms, Lemmas 28.48.7, 28.44.4,
and 28.48.8. The claim follows and we win. �

Lemma 36.31.2. Let f : X → S be a morphism of schemes. Assume f is quasi-
finite and separated. Let S′ be the normalization of S in X, see Morphisms, Defi-
nition 28.48.3. Picture:

X

f ��

f ′
// S′

ν
��

S

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. This follows from Lemma 36.31.1. Namely, by that lemma there exists
an open subscheme U ′ ⊂ S′ such that (f ′)−1(U ′) = X (!) and X → U ′ is an
isomorphism! In other words, f ′ is an open immersion. Note that f ′ is quasi-
compact as f is quasi-compact and ν : S′ → S is separated (Schemes, Lemma
25.21.15). It follows that f is quasi-affine by Morphisms, Lemma 28.14.3. �

Lemma 36.31.3. Let f : X → S be a morphism of schemes. Assume f is quasi-
finite and separated and assume that S is quasi-compact and quasi-separated. Then
there exists a factorization

X

f ��

j
// T

π
��

S

where j is a quasi-compact open immersion and π is finite.
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Proof. Let X → S′ → S be as in the conclusion of Lemma 36.31.2. By Properties,
Lemma 27.20.13 we can write ν∗OS′ = colimi∈I Ai as a directed colimit of finite
quasi-coherent OX -algebras Ai ⊂ ν∗OS′ . Then πi : Ti = Spec

S
(Ai)→ S is a finite

morphism for each i. Note that the transition morphisms Ti′ → Ti are affine and
that S′ = limTi.

By Limits, Lemma 31.3.8 there exists an i and a quasi-compact open Ui ⊂ Ti whose
inverse image in S′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse image of Ui in
Ti′ . Then X ∼= f ′(X) = limi′≥i Ui′ , see Limits, Lemma 31.2.2. By Limits, Lemma
31.3.13 we see that X → Ui′ is a closed immersion for some i′ ≥ i. (In fact X ∼= Ui′

for sufficiently large i′ but we don’t need this.) Hence X → Ti′ is an immersion.
By Morphisms, Lemma 28.3.2 we can factor this as X → T → Ti′ where the first
arrow is an open immersion and the second a closed immersion. Thus we win. �

Lemma 36.31.4. Let f : X → S be a morphism of schemes and U ⊂ S an open.
If

(1) f is separated, locally of finite presentation3, and flat,
(2) f−1(U)→ U is an isomorphism, and
(3) U ⊂ S is retrocompact and scheme theoretically dense,

then f is an open immersion.

Proof. The image f(X) ⊂ S is open (Morphisms, Lemma 28.26.9) hence we may
replace S by f(X). Thus we have to prove that f is an isomorphism. We may
assume S is affine. We can reduce to the case that X is quasi-compact because
it suffices to show that any quasi-compact open X ′ ⊂ X whose image is S maps
isomorphically to S. Thus we may assume f is quasi-compact. All the fibers of
f have dimension 0, see Lemma 36.17.8. Hence f is quasi-finite, see Morphisms,
Lemma 28.30.5. Let s ∈ S. Choose an elementary étale neighbourhood g : (T, t)→
(S, s) such that X×ST = V qW with V → T finite and Wt = ∅, see Lemma 36.30.6.
Denote π : V qW → T the given morphism. Since π is flat and locally of finite
presentation, we see that π(V ) is open in T (Morphisms, Lemma 28.26.9). After
shrinking T we may assume that T = π(V ). Since f is an isomorphism over U we
see that π is an isomorphism over g−1U . Since π(V ) = T this implies that π−1g−1U
is contained in V . By Morphisms, Lemma 28.26.13 we see that π−1g−1U ⊂ V qW
is scheme theoretically dense. Hence we deduce that W = ∅. Thus X ×S T = V is
finite over T . Shrinking T once more we may assume T is affine. Then V is affine
too and we see that

Γ(T,OT ) = Γ(g−1U,OT ) = Γ(π−1g−1U,OV ) = Γ(V,OV )

because the inverse image of U is schematically dense in both T and V (see above).
Thus X ×S T → T is an isomorphism. This implies that f is an isomorphism, for
example by Descent, Lemma 34.19.15. �

Lemma 36.31.5. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is finite,
(2) f is proper with finite fibres.
(3) f is universally closed, separated, locally of finite type and has finite fibres.

3You can replace “finite presentation” with “finite type” by More on Flatness, Lemma
37.10.12.
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Proof. We have (1) implies (2) by Morphisms, Lemmas 28.44.10, 28.21.10, and
28.44.9. By definition (2) implies (3).

Assume (3). Pick s ∈ S. By Morphisms, Lemma 28.21.7 we see that all the finitely
many points of Xs are isolated in Xs. Choose an elementary étale neighbourhood
(U, u) → (S, s) and decomposition XU = V

∐
W as in Lemma 36.30.6. Note that

Wu = ∅ because all points of Xs are isolated. Since f is universally closed we see
that the image of W in U is a closed set not containing u. After shrinking U we
may assume that W = ∅. In other words we see that XU = V is finite over U . Since
s ∈ S was arbitrary this means there exists a family {Ui → S} of étale morphisms
whose images cover S such that the base changes XUi → Ui are finite. Note that
{Ui → S} is an étale covering, see Topologies, Definition 33.4.1. Hence it is an fpqc
covering, see Topologies, Lemma 33.8.6. Hence we conclude f is finite by Descent,
Lemma 34.19.21. �

As a consequence we have the following useful results.

Lemma 36.31.6. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
that f is proper and f−1({s}) is a finite set. Then there exists an open neighbour-
hood V ⊂ S of s such that f |f−1(V ) : f−1(V )→ V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 28.21.7. By Morphisms, Lemma 28.49.2 the set of points at which f is
quasi-finite is an open U ⊂ X. Let Z = X \ U . Then s 6∈ f(Z). Since f is
proper the set f(Z) ⊂ S is closed. Choose any open neighbourhood V ⊂ S of
s with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence
it is quasi-finite (Morphisms, Lemma 28.21.9), hence has finite fibres (Morphisms,
Lemma 28.21.10), hence is finite by Lemma 36.31.5. �

Lemma 36.31.7. Consider a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Let s ∈ S. Assume

(1) X → S is a proper morphism,
(2) Y → S is separated and locally of finite type, and
(3) the image of Xs → Ys is finite.

Then there is an open subspace U ⊂ S containing s such that XU → YU factors
through a closed subscheme Z ⊂ YU finite over U .

Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms, Section 28.6.
By Morphisms, Lemma 28.42.9 the morphism X → Z is surjective and Z → S is
proper. Thus Xs → Zs is surjective. We see that either (3) implies Zs is finite.
Hence Z → S is finite in an open neighbourhood of s by Lemma 36.31.6. �

Lemma 36.31.8. Let f : Y → X be a quasi-finite morphism. There exists a dense
open U ⊂ X such that f |f−1(U) : f−1(U)→ U is finite.

Proof. If Ui ⊂ X, i ∈ I is a collection of opens such that the restrictions f |f−1(Ui) :

f−1(Ui)→ Ui are finite, then with U =
⋃
Ui the restriction f |f−1(U) : f−1(U)→ U
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is finite, see Morphisms, Lemma 28.44.3. Thus the problem is local on X and we
may assume that X is affine.

Assume X is affine. Write Y =
⋃
j=1,...,m Vj with Vj affine. This is possible since f

is quasi-finite and hence in particular quasi-compact. Each Vj → X is quasi-finite
and separated. Let η ∈ X be a generic point of an irreducible component of X.
We see from Morphisms, Lemmas 28.21.10 and 28.47.1 that there exists an open
neighbourhood η ∈ Uη such that f−1(Uη) ∩ Vj → Uη is finite. We may choose Uη
such that it works for each j = 1, . . . ,m. Note that the collection of generic points
of X is dense in X. Thus we see there exists a dense open W =

⋃
η Uη such that

each f−1(W ) ∩ Vj →W is finite. It suffices to show that there exists a dense open
U ⊂ W such that f |f−1(U) : f−1(U) → U is finite. Thus we may replace X by an
affine open subscheme of W and assume that each Vj → X is finite.

Assume X is affine, Y =
⋃
j=1,...,m Vj with Vj affine, and the restrictions f |Vj :

Vj → X are finite. Set

∆ij =
(
Vi ∩ Vj \ Vi ∩ Vj

)
∩ Vj .

This is a nowhere dense closed subset of Vj because it is the boundary of the open
subset Vi ∩Vj in Vj . By Morphisms, Lemma 28.46.7 the image f(∆ij) is a nowhere
dense closed subset of X. By Topology, Lemma 5.20.2 the union T =

⋃
f(∆ij) is

a nowhere dense closed subset of X. Thus U = X \ T is a dense open subset of
X. We claim that f |f−1(U) : f−1(U) → U is finite. To see this let U ′ ⊂ U be an

affine open. Set Y ′ = f−1(U ′) = U ′ ×X Y , V ′j = Y ′ ∩ Vj = U ′ ×X Vj . Consider the
restriction

f ′ = f |Y ′ : Y ′ −→ U ′

of f . This morphism now has the property that Y ′ =
⋃
j=1,...,m V

′
j is an affine open

covering, each V ′j → U ′ is finite, and V ′i ∩ V ′j is (open and) closed both in V ′i and
V ′j . Hence V ′i ∩ V ′j is affine, and the map

O(V ′i )⊗Z O(V ′j ) −→ O(V ′i ∩ V ′j )

is surjective. This implies that Y ′ is separated, see Schemes, Lemma 25.21.8. Fi-
nally, consider the commutative diagram∐

j=1,...,m V
′
j

%%

// Y ′

��
U ′

The south-east arrow is finite, hence proper, the horizontal arrow is surjective,
and the south-west arrow is separated. Hence by Morphisms, Lemma 28.42.8 we
conclude that Y ′ → U ′ is proper. Since it is also quasi-finite, we see that it is finite
by Lemma 36.31.5, and we win. �

Lemma 36.31.9. Let f : X → S be flat, locally of finite presentation, separated,
locally quasi-finite with universally bounded fibres. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
r=0,...,n Sr is characterized

by the following universal property: Given g : T → S the projection X ×S T → T
is finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).
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Proof. Let n be an integer bounding the degree of the fibres of X → S. By Mor-
phisms, Lemma 28.50.4 we see that any base change has degrees of fibres bounded
by n also. In particular, all the integers r that occur in the statement of the lemma
will be ≤ n. We will prove the lemma by induction on n. The base case is n = 0
which is obvious.

We claim the set of points s ∈ S with degκ(s)(Xs) = n is an open subset Sn ⊂ S
and that X ×S Sn → Sn is finite locally free of degree n. Namely, suppose that
s ∈ S is such a point. Choose an elementary étale morphism (U, u) → (S, s) and
a decomposition U ×S X = W q V as in Lemma 36.30.6. Since V → U is finite,
flat, and locally of finite presentation, we see that V → U is finite locally free,
see Morphisms, Lemma 28.46.2. After shrinking U to a smaller neighbourhood of
u we may assume V → U is finite locally free of some degree d, see Morphisms,
Lemma 28.46.5. As u 7→ s and Wu = ∅ we see that d = n. Since n is the maximum
degree of a fibre we see that W = ∅! Thus U ×S X → U is finite locally free of
degree n. By Descent, Lemma 34.19.28 we conclude that X → S is finite locally
free of degree n over Im(U → S) which is an open neighbourhood of s (Morphisms,
Lemma 28.37.13). This proves the claim.

Let S′ = S \ Sn endowed with the reduced induced scheme structure and set
X ′ = X ×S S′. Note that the degrees of fibres of X ′ → S′ are universally bounded
by n − 1. By induction we find a stratification S′ = S0 q . . . q Sn−1 adapted to
the morphism X ′ → S′. We claim that S =

∐
r=0,...,n Sr works for the morphism

X → S. Let g : T → S be a morphism of schemes and assume that X ×S T → T is
finite locally free of degree r. As remarked above this implies that r ≤ n. If r = n,
then it is clear that T → S factors through Sn. If r < n, then g(T ) ⊂ S′ = S \ Sd
(set theoretically) hence Tred → S factors through S′, see Schemes, Lemma 25.12.6.
Note that X ×S Tred → Tred is also finite locally free of degree r as a base change.
By the universal property of the stratification S′ =

∐
r=0,...,n−1 Sr we see that

g(T ) = g(Tred) is contained in Sr. Conversely, suppose that we have g : T → S
such that g(T ) ⊂ Sr (set theoretically). If r = n, then g factors through Sn and
it is clear that X ×S T → T is finite locally free of degree n as a base change. If
r < n, then X×S T → T is a morphism which is separated, flat, and locally of finite
presentation, such that the restriction to Tred is finite locally free of degree r. Since
Tred → T is a universal homeomorphism, we conclude that X ×S Tred → X ×S T
is a universal homeomorphism too and hence X ×S T → T is universally closed (as
this is true for the finite morphism X×S Tred → Tred). It follows that X×S T → T
is finite, for example by Lemma 36.31.5. Then we can use Morphisms, Lemma
28.46.2 to see that X ×S T → T is finite locally free. Finally, the degree is r as all
the fibres have degree r. �

Lemma 36.31.10. Let f : X → S be a morphism of schemes which is flat, locally
of finite presentation, separated, and quasi-finite. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
Sr is characterized by the

following universal property: Given a morphism g : T → S the projection X×ST →
T is finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).
Moreover, the inclusion maps Sr → S are quasi-compact.
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Proof. The question is local on S, hence we may assume that S is affine. By
Morphisms, Lemma 28.50.8 the fibres of f are universally bounded in this case.
Hence the existence of the stratification follows from Lemma 36.31.9.

We will show that Ur = S \Zr → S is quasi-compact for each r ≥ 0. This will prove
the final statement by elementary topology. Since a composition of quasi-compact
maps is quasi-compact it suffices to prove that Ur → Ur−1 is quasi-compact. Choose
an affine open W ⊂ Ur−1. Write W = Spec(A). Then Zr ∩W = V (I) for some
ideal I ⊂ A and X ×S Spec(A/I) → Spec(A/I) is finite locally free of degree
r. Note that A/I = colimA/Ii where Ii ⊂ I runs through the finitely generated
ideals. By Limits, Lemma 31.7.7 we see that X ×S Spec(A/Ii) → Spec(A/Ii)
is finite locally free of degree r for some i. (This uses that X → S is of finite
presentation, as it is locally of finite presentation, separated, and quasi-compact.)
Hence Spec(A/Ii) → Spec(A) = W factors (set theoretically) through Zr ∩W . It
follows that Zr ∩W = V (Ii) is the zero set of a finite subset of elements of A. This
means that W \ Zr is a finite union of standard opens, hence quasi-compact, as
desired. �

Lemma 36.31.11. Let f : X → S be a flat, locally of finite presentation, separated,
and locally quasi-finite morphism of schemes. Then there exist open subschemes

S = U0 ⊃ U1 ⊃ U2 ⊃ . . .
such that a morphism Spec(k)→ S factors through Ud if and only if X ×S Spec(k)
has degree ≥ d over k.

Proof. The statement simply means that the collection of points where the degree
of the fibre is ≥ d is open. Thus we can work locally on S and assume S is
affine. In this case, for every W ⊂ X quasi-compact open, the set of points Ud(W )
where the fibres of W → S have degree ≥ d is open by Lemma 36.31.10. Since
Ud =

⋃
W Ud(W ) the result follows. �

Lemma 36.31.12. Let f : X → S be a morphism of schemes which is flat, locally
of finite presentation, and locally quasi-finite. Let g ∈ Γ(X,OX) nonzero. Then
there exist an open V ⊂ X such that g|V 6= 0, an open U ⊂ S fitting into a
commutative diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module
map F⊕r → π∗OV whose image contains g|V .

Proof. We may assume X and S affine. We obtain a filtration ∅ = Z−1 ⊂ Z0 ⊂
Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S as in Lemmas 36.31.9 and 36.31.10. Let T ⊂ X be the
scheme theoretic support of the finite OX -module Im(g : OX → OX). Note that T
is the support of g as a section of OX (Modules, Definition 17.5.1) and for any open
V ⊂ X we have g|V 6= 0 if and only if V ∩T 6= ∅. Let r be the smallest integer such
that f(T ) ⊂ Zr set theoretically. Let ξ ∈ T be a generic point of an irreducible
component of T such that f(ξ) 6∈ Zr−1 (and hence f(ξ) ∈ Zr). We may replace
S by an affine neighbourhood of f(ξ) contained in S \ Zr−1. Write S = Spec(A)
and let I = (a1, . . . , am) ⊂ A be a finitely generated ideal such that V (I) = Zr
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(set theoretically, see Algebra, Lemma 10.28.1). Since the support of g is contained
in f−1V (I) by our choice of r we see that there exists an integer N such that
aNj g = 0 for j = 1, . . . ,m. Replacing aj by arj we may assume that Ig = 0. For any
A-module M write M [I] for the I-torsion of M , i.e., M [I] = {m ∈ M | Im = 0}.
Write X = Spec(B), so g ∈ B[I]. Since A→ B is flat we see that

B[I] = A[I]⊗A B ∼= A[I]⊗A/I B/IB

By our choice of Zr, the A/I-module B/IB is finite locally free of rank r. Hence
after replacing S by a smaller affine open neighbourhood of f(ξ) we may assume
that B/IB ∼= (A/IA)⊕r as A/I-modules. Choose a map ψ : A⊕r → B which
reduces modulo I to the isomorphism of the previous sentence. Then we see that
the induced map

A[I]⊕r −→ B[I]

is an isomorphism. The lemma follows by taking F the quasi-coherent sheaf asso-
ciated to the A-module A[I] and the map F⊕r → π∗OV the one corresponding to
A[I]⊕r ⊂ A⊕r → B. �

Lemma 36.31.13. Let f : X → Y be a separated, locally quasi-finite morphism
with Y affine. Then every finite set of points of X is contained in an open affine
of X.

Proof. Let x1, . . . , xn ∈ X. Choose a quasi-compact open U ⊂ X with xi ∈ U .
Then U → Y is quasi-affine by Lemma 36.31.2. Hence there exists an affine open
V ⊂ U containing x1, . . . , xn by Properties, Lemma 27.27.5. �

Lemma 36.31.14. Let U → X be a surjective étale morphism of schemes. Assume
X is quasi-compact and quasi-separated. Then there exists a surjective integral
morphism Y → X, such that for every y ∈ Y there is an open neighbourhood
V ⊂ Y such that V → X factors through U . In fact, we may assume Y → X is
finite and of finite presentation.

Proof. Since X is quasi-compact, there exist finitely many affine opens Ui ⊂ U
such that U ′ =

∐
Ui → X is surjective. After replacing U by U ′, we see that we

may assume U is affine. Then there exists an integer d bounding the degree of the
geometric fibres of U → X (see Morphisms, Lemma 28.50.8). We will prove the
lemma by induction on d for all quasi-compact and separated schemes U mapping
surjective and étale onto X. If d = 1, then U = X and the result holds with Y = U .
Assume d > 1.

We apply Lemma 36.31.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Note that

U ×X Y = U qW

where the first summand is the image of U → U ×X Y (which is closed by Schemes,
Lemma 25.21.11 and open because it is étale as a morphism between schemes étale
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over Y ) and the second summand is the (open and closed) complement. The image
V ⊂ Y of W is an open subscheme containing Y \ U .

The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since U ⊂ Y is dense, it
holds for all geometric points of Y for example by Lemma 36.31.9 (the degree of
the fibres of a quasi-compact étale morphism does not go up under specialization).
Thus we may apply the induction hypothesis to W → V and find a surjective
integral morphism Z → V with Z a scheme, which Zariski locally factors through
W . Choose a factorization Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′ open
immersion (Lemma 36.31.2). After replacing Z ′ by the scheme theoretic closure of
Z in Z ′ we may assume that Z is scheme theoretically dense in Z ′. After doing this
we have Z ′×Y V = Z. Finally, let T ⊂ Y be the induced reduced closed subscheme
structure on Y \ V . Consider the morphism

Z ′ q T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that
the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point.
If z 6∈ Z, then z maps to a point of Y \V ⊂ U and we find a neighbourhood of z on
which the morphism factors through U . If z ∈ Z, then we have a neighbourhood
V ⊂ Z which factors through W ⊂ U ×X Y and hence through U . This proves
existence.

Assume we have found Y → X integral and surjective which Zariski locally factors
through U . Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors

through U . We can write Y = limYi with Yi → X finite and of finite presentation,
see Limits, Lemma 31.6.2. For large enough i we can find affine opens Vi,j ⊂ Yi
whose inverse image in Y recovers Vj , see Limits, Lemma 31.3.8. For even larger i
the morphisms Vj → U over X come from morphisms Vi,j → U over X, see Limits,
Proposition 31.5.1. This finishes the proof. �

36.32. Application to morphisms with connected fibres

In this section we prove some lemmas that produce morphisms all of whose fibres
are geometrically connected or geometrically integral. This will be useful in our
study of the local structure of morphisms of finite type later.

Lemma 36.32.1. Consider a diagram of morphisms of schemes

Z
σ
//

  

X

��
Y

an a point y ∈ Y . Assume

(1) X → Y is of finite presentation and flat,
(2) Z → Y is finite locally free,
(3) Zy 6= ∅,
(4) all fibres of X → Y are geometrically reduced, and
(5) Xy is geometrically connected over κ(y).

Then there exists an open X0 ⊂ X such that X0
y = Xy and such that all nonempty

fibres of X0 → Y are geometrically connected.
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Proof. In this proof we will use that flat, finite presentation, finite locally free are
properties that are preserved under base change and composition. We will also use
that a finite locally free morphism is both open and closed. You can find these facts
as Morphisms, Lemmas 28.26.7, 28.22.4, 28.46.4, 28.26.5, 28.22.3, 28.46.3, 28.26.9,
and 28.44.10.

Note that XZ → Z is flat morphism of finite presentation which has a section s
coming from σ. Let X0

Z denote the subset of XZ defined in Situation 36.24.1. By
Lemma 36.24.6 it is an open subset of XZ .

The pullback XZ×Y Z of X to Z ×Y Z comes equipped with two sections s0, s1,
namely the base changes of s by pr0,pr1 : Z ×Y Z → Z. The construction of
Situation 36.24.1 gives two subsets (XZ×Y Z)0

s0 and (XZ×Y Z)0
s1 . By Lemma 36.24.2

these are the inverse images of X0
Z under the morphisms 1X × pr0, 1X × pr1 :

XZ×Y Z → XZ . In particular these subsets are open.

Let (Z ×Y Z)y = {z1, . . . , zn}. As Xy is geometrically connected, we see that the
fibres of (XZ×Y Z)0

s0 and (XZ×Y Z)0
s1 over each zi agree (being equal to the whole

fibre). Another way to say this is that

s0(zi) ∈ (XZ×Y Z)0
s1 and s1(zi) ∈ (XZ×Y Z)0

s0 .

Since the sets (XZ×Y Z)0
s0 and (XZ×Y Z)0

s1 are open in XZ×Y Z there exists an open
neighbourhood W ⊂ Z ×Y Z of (Z ×Y Z)y such that

s0(W ) ⊂ (XZ×Y Z)0
s1 and s1(W ) ⊂ (XZ×Y Z)0

s0 .

Then it follows directly from the construction in Situation 36.24.1 that

p−1(W ) ∩ (XZ×Y Z)0
s0 = p−1(W ) ∩ (XZ×Y Z)0

s1

where p : XZ×Y Z → Z ×W Z is the projection. Because Z ×Y Z → Y is finite
locally free, hence open and closed, there exists an open neighbourhood V ⊂ Y of
y such that q−1(V ) ⊂ W , where q : Z ×Y Z → Y is the structure morphism. To
prove the lemma we may replace Y by V . After we do this we see that X0

Z ⊂ YZ
is an open such that

(1X × pr0)−1(X0
Z) = (1X × pr1)−1(X0

Z).

This means that the image X0 ⊂ X of X0
Z is an open such that (XZ → X)−1(X0) =

X0
Z , see Descent, Lemma 34.9.2. At this point it is clear that X0 is the desired

open subscheme. �

Lemma 36.32.2. Let h : Y → S be a morphism of schemes. Let s ∈ S be a point.
Let T ⊂ Ys be an open subscheme. Assume

(1) h is flat and of finite presentation,
(2) all fibres of h are geometrically reduced, and
(3) T is geometrically connected over κ(s).

Then we can find an elementary étale neighbourhood (S′, s′)→ (S, s) and an open
V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically connected,
(b) Vs′ = T ×s s′.
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Proof. The problem is clearly local on S, hence we may replace S by an affine
open neighbourhood of s. The topology on Ys is induced from the topology on
X, see Schemes, Lemma 25.18.5. Hence we can find a quasi-compact open V ⊂ Y
such that Vs = T . The restriction of h to V is quasi-compact (as S affine and V
quasi-compact), quasi-separated, locally of finite presentation, and flat hence flat
of finite presentation. Thus after replacing Y by V we may assume, in addition to
(1) and (2) that Ys = T and S affine.

Pick a point y ∈ Ys such that h is Cohen-Macaulay at y, see Lemma 36.17.5. By
Lemma 36.18.4 there exists a diagram

Z //

��

Y

��
S

such that Z → S is flat, locally of finite presentation, locally quasi-finite with
Zs = {z}. Apply Lemma 36.30.1 to find an elementary neighbourhood (S′, s′) →
(S, s) and an open Z ′ ⊂ ZS′ = S′ ×S Z with Z ′ → S′ finite with a unique point
z′ ∈ Z ′ lying over s. Note that Z ′ → S′ is also locally of finite presentation
and flat (as an open of the base change of Z → S), hence Z ′ → S′ is finite
locally free, see Morphisms, Lemma 28.46.2. Note that YS′ → S′ is flat and of
finite presentation with geometrically reduced fibres as a base change of h. Also
Ys′ = Ys is geometrically connected. Apply Lemma 36.32.1 to Z ′ → YS′ over S′ to
get V ⊂ YS′ satisfying (2) whose fibres over S′ are either empty or geometrically
connected. As V → S′ is open (Morphisms, Lemma 28.26.9), after shrinking S′ we
may assume V → S′ is surjective, whence (1) holds. �

Lemma 36.32.3. Let h : Y → S be a morphism of schemes. Let s ∈ S be a point.
Let T ⊂ Ys be an open subscheme. Assume

(1) h is of finite presentation,
(2) h is normal, and
(3) T is geometrically irreducible over κ(s).

Then we can find an elementary étale neighbourhood (S′, s′)→ (S, s) and an open
V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically integral,
(b) Vs′ = T ×s s′.

Proof. Apply Lemma 36.32.2 to find an elementary étale neighbourhood (S′, s′)→
(S, s) and an open V ⊂ YS′ such that all fibres of V → S′ are geometrically integral
and Vs′ = T ×s s′. Note that V → S′ is open, see Morphisms, Lemma 28.26.9
Hence after replacing S′ by the image of V → S′ we see that all fibres of V → S′

are nonempty. As V is an open of the base change of h all fibres of V → S′ are
geometrically normal, see Lemma 36.15.2. In particular, they are geometrically
reduced. To finish the proof we have to show they are geometrically irreducible.
But, if t ∈ S′ then Vt is of finite type over κ(t) and hence Vt ×κ(t) κ(t) is of finite

type over κ(t) hence Noetherian. By choice of S′ → S the scheme Vt ×κ(t) κ(t) is

connected. Hence Vt ×κ(t) κ(t) is irreducible by Properties, Lemma 27.7.6 and we
win. �
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36.33. Application to the structure of finite type morphisms

The result in this section can be found in [GR71]. Loosely stated it says that a
finite type morphism is étale locally on the source and target the composition of
a finite morphism by a smooth morphism with geometrically connected fibres of
relative dimension equal to the fibre dimension of the original morphism.

Lemma 36.33.1. Let f : X → S be a morphism. Let x ∈ X and set s = f(x).
Assume that f is locally of finite type and that n = dimx(Xs). Then there exists a
commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

and a point x′ ∈ X ′ with g(x′) = x such that with y = π(x′) we have

(1) h : Y → S is smooth of relative dimension n,
(2) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(3) π is finite, and π−1({y}) = {x′}, and
(4) κ(y) is a purely transcendental extension of κ(s).

Moreover, if f is locally of finite presentation then π is of finite presentation.

Proof. The problem is local on X and S, hence we may assume that X and S
are affine. By Algebra, Lemma 10.121.3 after replacing X by a standard open
neighbourhood of x in X we may assume there is a factorization

X
π // An

S
// S

such that π is quasi-finite and such that κ(π(x)) is purely transcendental over κ(s).
By Lemma 36.30.1 there exists an elementary étale neighbourhood

(Y, y)→ (An
S , π(x))

and an open X ′ ⊂ X ×An
S
Y which contains a unique point x′ lying over y such

that X ′ → Y is finite. This proves (1) – (4) hold. For the final assertion, use
Morphisms, Lemma 28.22.11. �

Lemma 36.33.2. Let f : X → S be a morphism. Let x ∈ X and set s = f(x).
Assume that f is locally of finite type and that n = dimx(Xs). Then there exists a
commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′
�oo

_

��
Y ′

h

��

y′_

��
S S′

eoo s s′�oo

and a point x′ ∈ X ′ with g(x′) = x such that with y′ = π(x′), s′ = h(y′) we have

(1) h : Y ′ → S′ is smooth of relative dimension n,
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(2) all fibres of Y ′ → S′ are geometrically integral,
(3) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(4) π is finite, and π−1({y′}) = {x′},
(5) κ(y′) is a purely transcendental extension of κ(s′), and
(6) e : (S′, s′)→ (S, s) is an elementary étale neighbourhood.

Moreover, if f is locally of finite presentation, then π is of finite presentation.

Proof. The question is local on S, hence we may replace S by an affine open
neighbourhood of s. Next, we apply Lemma 36.33.1 to get a commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

where h is smooth of relative dimension n and κ(y) is a purely transcendental
extension of κ(s). Since the question is local on X also, we may replace Y by an
affine neighbourhood of y (and X ′ by the inverse image of this under π). As S
is affine this guarantees that Y → S is quasi-compact, separated and smooth, in
particular of finite presentation. Let T be the connected component of Ys containing
y. As Ys is Noetherian we see that T is open. We also see that T is geometrically
connected over κ(s) by Varieties, Lemma 32.5.14. Since T is also smooth over
κ(s) it is geometrically normal, see Varieties, Lemma 32.15.4. We conclude that T
is geometrically irreducible over κ(s) (as a connected Noetherian normal scheme is
irreducible, see Properties, Lemma 27.7.6). Finally, note that the smooth morphism
h is normal by Lemma 36.15.3. At this point we have verified all assumption of
Lemma 36.32.3 hold for the morphism h : Y → S and open T ⊂ Ys. As a result of
applying Lemma 36.32.3 we obtain e : S′ → S, s′ ∈ S′, Y ′ as in the commutative
diagram

X

��

X ′
g

oo

π

��

X ′ ×Y Y ′oo

��

x_

��

x′�oo
_

��

(x′, s′)�oo
_

��
Y

h

��

Y ′

��

oo y_

��

(y, s′)�oo
_

��
S S S′

eoo s s s′�oo

where e : (S′, s′) → (S, s) is an elementary étale neighbourhood, and where Y ′ ⊂
YS′ is an open neighbourhood all of whose fibres over S′ are geometrically irre-
ducible, such that Y ′s′ = T via the identification Ys = YS′,s′ . Let (y, s′) ∈ Y ′ be
the point corresponding to y ∈ T ; this is also the unique point of Y ×S S′ ly-
ing over y with residue field equal to κ(y) which maps to s′ in S′. Similarly, let
(x′, s′) ∈ X ′ ×Y Y ′ ⊂ X ′ ×S S′ be the unique point over x′ with residue field equal
to κ(x′) lying over s′. Then the outer part of this diagram is a solution to the
problem posed in the lemma. Some minor details omitted. �
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Lemma 36.33.3. Assumption and notation as in Lemma 36.33.2. In addition to
properties (1) – (6) we may also arrange it so that

(7) S′, Y ′, X ′ are affine.

Proof. Note that if Y ′ is affine, thenX ′ is affine as π is finite. Choose an affine open
neighbourhood U ′ ⊂ S′ of s′. Choose an affine open neighbourhood V ′ ⊂ h−1(U ′)
of y′. Let W ′ = h(V ′). This is an open neighbourhood of s′ in S′, see Morphisms,
Lemma 28.35.10, contained in U ′. Choose an affine open neighbourhood U ′′ ⊂
W ′ of s′. Then h−1(U ′′) ∩ V ′ is affine because it is equal to U ′′ ×U ′ V ′. By
construction h−1(U ′′)∩V ′ → U ′′ is a surjective smooth morphism whose fibres are
(nonempty) open subschemes of geometrically integral fibres of Y ′ → S′, and hence
geometrically integral. Thus we may replace S′ by U ′′ and Y ′ by h−1(U ′′)∩V ′. �

The significance of the property π−1({y′}) = {x′} is partially explained by the
following lemma.

Lemma 36.33.4. Let π : X → Y be a finite morphism. Let x ∈ X with y = π(x)
such that π−1({y}) = {x}. Then

(1) For every neighbourhood U ⊂ X of x in X, there exists a neighbourhood
V ⊂ Y of y such that π−1(V ) ⊂ U .

(2) The ring map OY,y → OX,x is finite.
(3) If π is of finite presentation, then OY,y → OX,x is of finite presentation.
(4) For any quasi-coherent OX-module F we have Fx = π∗Fy as OY,y-modules.

Proof. The first assertion is purely topological; use that π is a continuous and
closed map such that π−1({y}) = {x}. To prove the second and third parts we may
assume X = Spec(B) and Y = Spec(A). Then A → B is a finite ring map and y
corresponds to a prime p of A such that there exists a unique prime q of B lying
over p. Then Bq = Bp, see Algebra, Lemma 10.40.11. In other words, the map
Ap → Bq is equal to the map Ap → Bp you get from localizing A→ B at p. Thus
(2) and (3) follow from simple properties of localization (some details omitted). For

the final statement, suppose that F = M̃ for some B-module M . Then F = Mq

and π∗Fy = Mp. By the above these localizations agree. Alternatively you can use
part (1) and the definition of stalks to see that Fx = π∗Fy directly. �

36.34. Application to the fppf topology

We can use the above étale localization techniques to prove the following result
describing the fppf topology as being equal to the topology “generated by” Zariski
coverings and by coverings of the form {f : T → S} where f is surjective finite
locally free.

Lemma 36.34.1. Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exist

(1) a Zariski open covering S =
⋃
Uj,

(2) surjective finite locally free morphisms Wj → Uj,
(3) Zariski open coverings Wj =

⋃
kWj,k,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {Tj,k → S} refines the given covering {Si → S}.
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Proof. We may assume that each Si → S is locally quasi-finite, see Lemma 36.18.6.

Fix a point s ∈ S. Pick an i ∈ I and a point si ∈ Si mapping to s. Choose an
elementary étale neighbourhood (S′, s)→ (S, s) such that there exists an open

Si ×S S′ ⊃ V
which contains a unique point v ∈ V mapping to s ∈ S′ and such that V → S′ is
finite, see Lemma 36.30.1. Then V → S′ is finite locally free, because it is finite
and because Si×S S′ → S′ is flat and locally of finite presentation as a base change
of the morphism Si → S, see Morphisms, Lemmas 28.22.4, 28.26.7, and 28.46.2.
Hence V → S′ is open, and after shrinking S′ we may assume that V → S′ is
surjective finite locally free. Since we can do this for every point of S we conclude
that {Si → S} can be refined by a covering of the form {Va → S}a∈A where each
Va → S factors as Va → S′a → S with S′a → S étale and Va → S′a surjective finite
locally free.

By Remark 36.29.3 there exists a Zariski open covering S =
⋃
Uj , for each j a finite

locally free, surjective morphism Wj → Uj , and for each j a Zariski open covering
{Wj,k →Wj} such that the family {Wj,k → S} refines the étale covering {S′a → S},
i.e., for each pair j, k there exists an a(j, k) and a factorization Wj,K → S′a → S of
the morphism Wj,K → S. Set Tj,k = Wj,k ×S′a Va and everything is clear. �

36.35. Closed points in fibres

Some of the material in this section is taken from the preprint [OP10].

Lemma 36.35.1. Let f : X → S be a morphism of schemes. Let Z ⊂ X be a
closed subscheme. Let s ∈ S. Assume

(1) S is irreducible with generic point η,
(2) X is irreducible,
(3) f is dominant,
(4) f is locally of finite type,
(5) dim(Xs) ≤ dim(Xη),
(6) Z is locally principal in X, and
(7) Zη = ∅.

Then the fibre Zs is (set theoretically) a union of irreducible components of Xs.

Proof. Let Xred denote the reduction of X. Then Z ∩Xred is a locally principal
closed subscheme of Xred, see Divisors, Lemma 30.9.10. Hence we may assume
that X is reduced. In other words X is integral, see Properties, Lemma 27.3.4. In
this case the morphism X → S factors through Sred, see Schemes, Lemma 25.12.6.
Thus we may replace S by Sred and assume that S is integral too.

The assertion that f is dominant signifies that the generic point of X is mapped to
η, see Morphisms, Lemma 28.8.5. Moreover, the scheme Xη is an integral scheme
which is locally of finite type over the field κ(η). Hence d = dim(Xη) ≥ 0 is
equal to dimξ(Xη) for every point ξ of Xη, see Algebra, Lemmas 10.110.4 and
10.110.5. In view of Morphisms, Lemma 28.29.4 and condition (5) we conclude
that dimx(Xs) = d for every x ∈ Xs.

In the Noetherian case the assertion can be proved as follows. If the lemma does
not holds there exists x ∈ Zs which is a generic point of an irreducible component
of Zs but not a generic point of any irreducible component of Xs. Then we see
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that dimx(Zs) ≤ d − 1, because dimx(Xs) = d and in a neighbourhood of x in
Xs the closed subscheme Zs does not contain any of the irreducible components of
Xs. Hence after replacing X by an open neighbourhood of x we may assume that
dimz(Zf(z)) ≤ d − 1 for all z ∈ Z, see Morphisms, Lemma 28.29.4. Let ξ′ ∈ Z be
a generic point of an irreducible component of Z and set s′ = f(ξ). As Z 6= X is
locally principal we see that dim(OX,ξ) = 1, see Algebra, Lemma 10.59.10 (this is
where we use X is Noetherian). Let ξ ∈ X be the generic point of X and let ξ1
be a generic point of any irreducible component of Xs′ which contains ξ′. Then we
see that we have the specializations

ξ  ξ1  ξ′.

As dim(OX,ξ) = 1 one of the two specializations has to be an equality. By assump-
tion s′ 6= η, hence the first specialization is not an equality. Hence ξ′ = ξ1 is a
generic point of an irreducible component of Xs′ . Applying Morphisms, Lemma
28.29.4 one more time this implies dimξ′(Zs′) = dimξ′(Xs′) ≥ dim(Xη) = d which
gives the desired contradiction.

In the general case we reduce to the Noetherian case as follows. If the lemma is
false then there exists a point x ∈ X lying over s such that x is a generic point of
an irreducible component of Zs, but not a generic point of any of the irreducible
components of Xs. Let U ⊂ S be an affine neighbourhood of s and let V ⊂ X be an
affine neighbourhood of x with f(V ) ⊂ U . Write U = Spec(A) and V = Spec(B)
so that f |V is given by a ring map A → B. Let q ⊂ B, resp. p ⊂ A be the prime
corresponding to x, resp. s. After possibly shrinking V we may assume Z ∩ V is
cut out by some element g ∈ B. Denote K = f.f.(A). What we know at this point
is the following:

(1) A ⊂ B is a finitely generated extension of domains,
(2) the element g ⊗ 1 is invertible in B ⊗A K,
(3) d = dim(B ⊗A K) = dim(B ⊗A κ(p)),
(4) g ⊗ 1 is not a unit of B ⊗A κ(p), and
(5) g ⊗ 1 is not in any of the minimal primes of B ⊗A κ(p).

We are seeking a contradiction.

Pick elements x1, . . . , xn ∈ B which generate B over A. For a finitely generated
Z-algebra A0 ⊂ A let B0 ⊂ B be the A0-subalgebra generated by x1, . . . , xn, denote
K0 = f.f.(A0), and set p0 = A0 ∩ p. We claim that when A0 is large enough then
(1) – (5) also hold for the system (A0 ⊂ B0, g, p0).

We prove each of the conditions in turn. Part (1) holds by construction. For part
(2) write (g⊗ 1)h = 1 for some h⊗ 1/a ∈ B⊗AK. Write g =

∑
aIx

I , h =
∑
a′Ix

I

(multi-index notation) for some coefficients aI , a
′
I ∈ A. As soon as A0 contains a

and the aI , a
′
I then (2) holds because B0⊗A0 K0 ⊂ B⊗AK (as localizations of the

injective map B0 → B). To achieve (3) consider the exact sequence

0→ I → A[X1, . . . , Xn]→ B → 0

which defines I where the second map sends Xi to xi. Since ⊗ is right exact we see
that I⊗AK, respectively I⊗A κ(p) is the kernel of the surjection K[X1, . . . , Xn]→
B ⊗A K, respectively κ(p)[X1, . . . , Xn]→ B ⊗A κ(p). As a polynomial ring over a
field is Noetherian there exist finitely many elements hj ∈ I, j = 1, . . . ,m which
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generate I ⊗A K and I ⊗A κ(p). Write hj =
∑
aj,IX

I . As soon as A0 contains all
aj,I we get to the situation where

B0 ⊗A0 K0 ⊗K0 K = B ⊗A K and B0 ⊗A0 κ(p0)⊗κ(p0) κ(p) = B ⊗A κ(p).

By either Morphisms, Lemma 28.29.3 or Algebra, Lemma 10.112.5 we see that the
dimension equalities of (3) are satisfied. Part (4) is immediate. As B0⊗A0

κ(p0) ⊂
B ⊗A κ(p) each minimal prime of B0 ⊗A0

κ(p0) lies under a minimal prime of
B⊗A κ(p) by Algebra, Lemma 10.29.6. This implies that (5) holds. In this way we
reduce the problem to the Noetherian case which we have dealt with above. �

Here is an algebraic application of the lemma above. The fourth assumption of the
lemma holds if A→ B is flat, see Lemma 36.35.3.

Lemma 36.35.2. Let A→ B be a local homomorphism of local rings, and g ∈ mB.
Assume

(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A,
(3) g is not contained in any minimal prime over mAB, and
(4) dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Then A ⊂ B/gB, i.e., the generic point of Spec(A) is in the image of the morphism
Spec(B/gB)→ Spec(A).

Proof. Note that the two assertions are equivalent by Algebra, Lemma 10.29.6. To
start the proof let C be an A-algebra of finite type and q a prime of C such that B =
Cq. Of course we may assume that C is a domain and that g ∈ C. After replacing
C by a localization we see that dim(C/mAC) = dim(B/mAB)+trdegκ(mA)(κ(mB)),

see Morphisms, Lemma 28.29.1. Setting K = f.f.(A) we see by the same reference
that dim(C⊗AK) = trdegA(B). Hence assumption (4) means that the generic and
closed fibres of the morphism Spec(C)→ Spec(A) have the same dimension.

Suppose that the lemma is false. Then (B/gB)⊗A K = 0. This means that g ⊗ 1
is invertible in B ⊗A K = Cq ⊗A K. As Cq is a limit of principal localizations
we conclude that g ⊗ 1 is invertible in Ch ⊗A K for some h ∈ C, h 6∈ q. Thus
after replacing C by Ch we may assume that (C/gC)⊗A K = 0. We do one more
replacement of C to make sure that the minimal primes of C/mAC correspond
one-to-one with the minimal primes of B/mAB. At this point we apply Lemma
36.35.1 to X = Spec(C) → Spec(A) = S and the locally closed subscheme Z =
Spec(C/gC). Since ZK = ∅ we see that Z ⊗ κ(mA) has to contain an irreducible
component of X ⊗ κ(mA) = Spec(C/mAC). But this contradicts the assumption
that g is not contained in any prime minimal over mAB. The lemma follows. �

Lemma 36.35.3. Let A→ B be a local homomorphism of local rings. Assume

(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A, and
(3) B is flat over A.

Then we have

dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Proof. Let C be an A-algebra of finite type and q a prime of C such that B =
Cq. We may assume C is a domain. We have dimq(C/mAC) = dim(B/mAB) +
trdegκ(mA)(κ(mB)), see Morphisms, Lemma 28.29.1. Setting K = f.f.(A) we see
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by the same reference that dim(C ⊗A K) = trdegA(B). Thus we are really trying
to prove that dimq(C/mAC) = dim(C ⊗A K). Choose a valuation ring A′ in K
dominating A, see Algebra, Lemma 10.48.2. Set C ′ = C ⊗A A′. Choose a prime q′

of C ′ lying over q; such a prime exists because

C ′/mA′C
′ = C/mAC ⊗κ(mA) κ(mA′)

which proves that C/mAC → C ′/mA′C
′ is faithfully flat. This also proves that

dimq(C/mAC) = dimq′(C
′/mA′C

′), see Algebra, Lemma 10.112.6. Note that B′ =
C ′q′ is a localization of B ⊗A A′. Hence B′ is flat over A′. The generic fibre

B′ ⊗A′ K is a localization of B ⊗A K. Hence B′ is a domain. If we prove the
lemma for A′ ⊂ B′, then we get the equality dimq′(C

′/mA′C
′) = dim(C ′ ⊗A′ K)

which implies the desired equality dimq(C/mAC) = dim(C⊗AK) by what was said
above. This reduces the lemma to the case where A is a valuation ring.

Let A ⊂ B be as in the lemma with A a valuation ring. As before write B = Cq

for some domain C of finite type over A. By Algebra, Lemma 10.121.9 we obtain
dim(C/mAC) = dim(C ⊗A K) and we win. �

Lemma 36.35.4. Let f : X → S be a morphism of schemes. Let x  x′ be a
specialization of points in X. Set s = f(x) and s′ = f(x′). Assume

(1) x′ is a closed point of Xs′ , and
(2) f is locally of finite type.

Then the set

{x1 ∈ X such that f(x1) = s and x1 is closed in Xs and x x1  x′}
is dense in the closure of x in Xs.

Proof. We apply Schemes, Lemma 25.20.4 to the specialization x  x′. This
produces a morphism ϕ : Spec(B) → X where B is a valuation ring such that
ϕ maps the generic point to x and the closed point to x′. We may also assume
that κ(x) = f.f.(B). Let A = B ∩ κ(s). Note that this is a valuation ring (see
Algebra, Lemma 10.48.6) which dominates the image of OS,s′ → κ(s). Consider
the commutative diagram

Spec(B)

%%

// XA

��

// X

��
Spec(A) // S

The generic (resp. closed) point of B maps to a point xA (resp. x′A) of XA lying
over the generic (resp. closed) point of Spec(A). Note that x′A is a closed point of
the special fibre of XA by Morphisms, Lemma 28.21.4. Note that the generic fibre
of XA → Spec(A) is isomorphic to Xs. Thus we have reduced the lemma to the
case where S is the spectrum of a valuation ring, s = η ∈ S is the generic point,
and s′ ∈ S is the closed point.

We will prove the lemma by induction on dimx(Xη). If dimx(Xη) = 0, then there
are no other points of Xη specializing to x and x is closed in its fibre, see Morphisms,
Lemma 28.21.6, and the result holds. Assume dimx(Xη) > 0.

Let X ′ ⊂ X be the reduced induced scheme structure on the irreducible closed
subscheme {x} of X, see Schemes, Definition 25.12.5. To prove the lemma we may
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replace X by X ′ as this only decreases dimx(Xη). Hence we may also assume that
X is an integral scheme and that x is its generic point. In addition, we may replace
X by an affine neighbourhood of x′. Thus we have X = Spec(B) where A ⊂ B is
a finite type extension of domains. Note that in this case dimx(Xη) = dim(Xη) =
dim(Xs′), and that in fact Xs′ is equidimensional, see Algebra, Lemma 10.121.9.

Let W ⊂ Xη be a proper closed subset (this is the subset we want to “avoid”).
As Xs is of finite type over a field we see that W has finitely many irreducible
components W = W1 ∪ . . . ∪Wn. Let qj ⊂ B, j = 1, . . . , r be the corresponding
prime ideals. Let q ⊂ B be the maximal ideal corresponding to the point x′. Let
p1, . . . , ps ⊂ B be the minimal primes lying over mAB. There are finitely many
as these correspond to the irreducible components of the Noetherian scheme Xs′ .
Moreover, each of these irreducible components has dimension > 0 (see above)
hence we see that pi 6= q for all i. Now, pick an element g ∈ q such that g 6∈ qj
for all j and g 6∈ pi for all i, see Algebra, Lemma 10.14.2. Denote Z ⊂ X the
locally principal closed subscheme defined by h. Let Zη = Z1,η ∪ . . . ∪ Zn,η, n ≥ 0
be the decomposition of the generic fibre of Z into irreducible components (finitely
many as the generic fibre is Noetherian). Denote Zi ⊂ X the closure of Zi,η. After
replacing X by a smaller affine neighbourhood we may assume that x ∈ Zi for each
i = 1, . . . , n. By construction Z ∩Xs′ does not contain any irreducible component
of Xs′ . Hence by Lemma 36.35.1 we conclude that Zη 6= ∅! In other words n ≥ 1.
Letting x1 ∈ Z1 be the generic point we see that x1  x′ and f(x1) = η. Also,
by construction Z1,η ∩Wj ⊂Wj is a proper closed subset. Hence every irreducible
component of Z1,η∩Wj has codimension ≥ 2 in Xη whereas codim(Z1,η, Xη) = 1 by
Algebra, Lemma 10.59.10. Thus W∩Z1,η is a proper closed subset. At this point we
see that the induction hypothesis applies to Z1 → S and the specialization x1  x′.
This produces a closed point x2 of Z1,η not contained in W which specializes to
x′. Thus we obtain x  x2  x′, the point x2 is closed in Xη, and x2 6∈ W as
desired. �

Remark 36.35.5. The proof of Lemma 36.35.4 actually shows that there exists a
sequence of specializations

x x1  x2  . . . xd  x′

where all xi are in the fibre Xs, each specialization is immediate, and xd is a closed
point of Xs. The integer d = trdegκ(s)(κ(x)) = dim({x}) where the closure is taken
in Xs. Moreover, the points xi can be chosen to avoid any closed subset of Xs

which does not contain the point x.

Examples, Section 82.31 shows that the following lemma is false if A is not assumed
Noetherian.

Lemma 36.35.6. Let ϕ : A → B be a local ring map of local rings. Let V ⊂
Spec(B) be an open subscheme which contains at least one prime not lying over
mA. Assume A is Noetherian, ϕ essentially of finite type, and A/mA ⊂ B/mB is
finite. Then there exists a q ∈ V , mA 6= q∩A such that A→ B/q is the localization
of a quasi-finite ring map.

Proof. Since A is Noetherian and A → B is essentially of finite type, we know
that B is Noetherian too. By Properties, Lemma 27.6.4 the topological space
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Spec(B)\{mB} is Jacobson. Hence we can choose a closed point q which is contained
in the nonempty open

V \ {q ⊂ B | mA = q ∩A}.

(Nonempty by assumption, open because {mA} is a closed subset of Spec(A).) Then
Spec(B/q) has two points, namely mB and q and q does not lie over mA. Write
B/q = Cm for some finite type A-algebra C and prime ideal m. Then A → C
is quasi-finite at m by Algebra, Lemma 10.118.2 (2). Hence by Algebra, Lemma
10.119.14 we see that after replacing C by a principal localization the ring map
A→ C is quasi-finite. �

Lemma 36.35.7. Let f : X → S be a morphism of schemes. Let x ∈ X with
image s ∈ S. Let U ⊂ X be an open subscheme. Assume f locally of finite type, S
locally Noetherian, x a closed point of Xs, and assume there exists a point x′ ∈ U
with x′  x and f(x′) 6= s. Then there exists a closed subscheme Z ⊂ X such that
(a) x ∈ Z, (b) f |Z : Z → S is quasi-finite at x, and (c) there exists a z ∈ Z, z ∈ U ,
z  x and f(z) 6= s.

Proof. This is a reformulation of Lemma 36.35.6. Namely, set A = OS,s and
B = OX,x. Denote V ⊂ Spec(B) the inverse image of U . The ring map f ] : A→ B
is essentially of finite type. By assumption there exists at least one point of V which
does not map to the closed point of Spec(A). Hence all the assumptions of Lemma
36.35.6 hold and we obtain a prime q ⊂ B which does not lie over mA and such that
A→ B/q is the localization of a quasi-finite ring map. Let z ∈ X be the image of

the point q under the canonical morphism Spec(B) → X. Set Z = {z} with the
induced reduced scheme structure. As z  x we see that x ∈ Z and OZ,x = B/q.
By construction Z → S is quasi-finite at x. �

Remark 36.35.8. We can use Lemma 36.35.6 or its variant Lemma 36.35.7 to
give an alternative proof of Lemma 36.35.4 in case S is locally Noetherian. Here
is a rough sketch. Namely, first replace S by the spectrum of the local ring at s′.
Then we may use induction on dim(S). The case dim(S) = 0 is trivial because

then s′ = s. Replace X by the reduced induced scheme structure on {x}. Apply
Lemma 36.35.7 to X → S and x′ 7→ s′ and any nonempty open U ⊂ X containing
x. This gives us a closed subscheme x′ ∈ Z ⊂ X a point z ∈ Z such that Z → S is
quasi-finite at x′ and such that f(z) 6= s′. Then z is a closed point of Xf(z), and
z  x′. As f(z) 6= s′ we see dim(OS,f(z)) < dim(S). Since x is the generic point
of X we see x  z, hence s = f(x)  f(z). Apply the induction hypothesis to
s f(z) and z 7→ f(z) to win.

Lemma 36.35.9. Suppose that f : X → S is locally of finite type, S locally
Noetherian, x ∈ X a closed point of its fibre Xs, and U ⊂ X an open subscheme
such that U ∩Xs = ∅ and x ∈ U , then the conclusions of Lemma 36.35.7 hold.

Proof. Namely, we can reduce this to the cited lemma as follows: First we replace
X and S by affine neighbourhoods of x and s. ThenX is Noetherian, in particular U
is quasi-compact (see Morphisms, Lemma 28.16.6 and Topology, Lemmas 5.8.2 and
5.11.13). Hence there exists a specialization x′  x with x′ ∈ U (see Morphisms,
Lemma 28.6.5). Note that f(x′) 6= s. Thus we see all hypotheses of the lemma are
satisfied and we win. �

http://stacks.math.columbia.edu/tag/05GU
http://stacks.math.columbia.edu/tag/05GV
http://stacks.math.columbia.edu/tag/05GW


36.36. STEIN FACTORIZATION 2407

36.36. Stein factorization

Stein factorization is the statement that a proper morphism f : X → S with
f∗OX = OS has connected fibres.

Lemma 36.36.1. Let S be a scheme. Let f : X → S be a universally closed and
quasi-separated morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:

(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated and
surjective,

(2) the morphism π : S′ → S is integral,
(3) we have f ′∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 28.48.3.

Proof. By Morphisms, Lemma 28.42.10 the morphism f is quasi-compact. Hence
the normalization S′ of S in X is defined (Morphisms, Definition 28.48.3) we obtain
the factorization and (5) and (2) hold by construction. By Morphisms, Lemma
28.48.9 we see that (4) holds. The morphism f ′ is universally closed by Mor-
phisms, Lemma 28.42.7. It is quasi-compact by Schemes, Lemma 25.21.15 and
quasi-separated by Schemes, Lemma 25.21.14.

To show the remaining statements we may assume the base scheme S is affine, say
S = Spec(R). Then S′ = Spec(A) with A = Γ(X,OX) an integral R-algebra. Thus
it is clear that f ′∗OX is OS′ (because f ′∗OX is quasi-coherent, by Schemes, Lemma

25.24.1, and hence equal to Ã). This proves (3).

Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image
of f ′ is a closed subset V (I) ⊂ S′ = Spec(A). Pick h ∈ I. Then h|X = f ](h) is a
global section of the structure sheaf of X which vanishes at every point. As X is
quasi-compact this means that h|X is a nilpotent section, i.e., hn|X = 0 for some
n > 0. But A = Γ(X,OX), hence hn = 0. In other words I is contained in the
radical ideal of A and we conclude that V (I) = S′ as desired. �

Lemma 36.36.2. Let f : X → S be a morphism of schemes. Let s ∈ S. Then Xs is
geometrically connected, if and only if for every étale neighbourhood (U, u)→ (S, s)
the base change XU → U has connected fibre Xu.

Proof. If Xs is geometrically connected, then any base change of it is connected.
On the other hand, suppose that Xs is not geometrically connected. Then by
Varieties, Lemma 32.5.11 we see that Xs ×Spec(κ(s) Spec(k) is disconnected for
some finite separable field extension κ(s) ⊂ k. By Lemma 36.27.2 there exists an
affine étale neighbourhood (U, u) → (S, s) such that κ(s) ⊂ κ(u) is identified with
κ(s) ⊂ k. In this case Xu is disconnected. �

http://stacks.math.columbia.edu/tag/03GY
http://stacks.math.columbia.edu/tag/03GZ


2408 36. MORE ON MORPHISMS

Theorem 36.36.3 (Stein factorization; Noetherian case). Let S be a locally Noe-
therian scheme. Let f : X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:

(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is finite,
(3) we have f ′∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 28.48.3.

Proof. Let f = π◦f ′ be the factorization of Lemma 36.36.1. Note that besides the
conclusions of Lemma 36.36.1 we also have that f ′ is separated (Schemes, Lemma
25.21.14) and finite type (Morphisms, Lemma 28.16.8). Hence f ′ is proper. By
Cohomology of Schemes, Proposition 29.17.2 we see that f∗OX is a coherent OS-
module. Hence we see that π is finite, i.e., (2) holds.

This proves all but the most interesting assertion, namely that all the fibres of f ′ are
geometrically connected. It is clear from the discussion above that we may replace
S by S′, and we may therefore assume that S is Noetherian, affine, f : X → S is
proper, and f∗OX = OS . Let s ∈ S be a point of S. We have to show that Xs

is geometrically connected. By Lemma 36.36.2 we see that it suffices to show Xu

is connected for every étale neighbourhood (U, u) → (S, s). We may assume U is
affine. Thus U is Noetherian (Morphisms, Lemma 28.16.6), the base change fU :
XU → U is proper (Morphisms, Lemma 28.42.5), and that also (fU )∗OXU = OU
(Cohomology of Schemes, Lemma 29.5.2). Hence after replacing (f : X → S, s) by
the base change (fU : XU → U, u) it suffices to prove that the fibre Xs is connected.

At this point we apply the theorem on formal functions, more precisely Cohomology
of Schemes, Lemma 29.18.7. It tells us that

O∧S,s = limnH
0(Xn,OXn)

where Xn is the nth infinitesimal neighbourhood of Xs. Since the underlying topo-
logical space of Xn is equal to that of Xs we see that if Xs = T1

∐
T2 is a disjoint

union of nonempty open and closed subschemes, then similarly Xn = T1,n

∐
T2,n

for all n. And this in turn means H0(Xn,OXn) contains a nontrivial idempotent
e1,n, namely the function which is identically 1 on T1,n and identically 0 on T2,n.
It is clear that e1,n+1 restricts to e1,n on Xn. Hence e1 = lim e1,n is a nontrivial
idempotent of the limit. This contradicts the fact that O∧S,s is a local ring. Thus
the assumption was wrong, i.e., Xs is connected, and we win. �

Theorem 36.36.4 (Stein factorization; general case). Let S be a scheme. Let
f : X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S
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with the following properties:

(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is integral,
(3) we have f ′∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 28.48.3.

Proof. We may apply Lemma 36.36.1 to get the morphism f ′ : X → S′. Note
that besides the conclusions of Lemma 36.36.1 we also have that f ′ is separated
(Schemes, Lemma 25.21.14) and finite type (Morphisms, Lemma 28.16.8). Hence
f ′ is proper. At this point we have proved all of the statements except for the
statement that f ′ has geometrically connected fibres.

We may assume that S = Spec(R) is affine. Set R′ = Γ(X,OX). Then S′ =
Spec(R′). Thus we may replace S by S′ and assume that S = Spec(R) is affine
R = Γ(X,OX). Next, let s ∈ S be a point. Let U → S be an étale morphism
of affine schemes and let u ∈ U be a point mapping to s. Let XU → U be
the base change of X. By Lemma 36.36.2 it suffices to show that the fibre of
XU → U over u is connected. By Cohomology of Schemes, Lemma 29.5.2 we see
that Γ(XU ,OXU ) = Γ(U,OU ). Hence we have to show: Given S = Spec(R) affine,
X → S proper with Γ(X,OX) = R and s ∈ S is a point, the fibre Xs is connected.

By Limits, Lemma 31.12.6 we can write (X → S) = lim(Xi → Si) with Xi → Si
proper and of finite presentation and Si Noetherian. For i large enough Si is affine
(Limits, Lemma 31.3.10). Say Si = Spec(Ri). Let R′i = Γ(Xi,OXi). Observe that
we have ring maps Ri → R′i → R. Namely, we have the first because Xi is a scheme
over Ri and the second because we have X → Xi and R = Γ(X,OX). Note that
R = colimR′i by Limits, Lemma 31.3.3. Then

X

��

// Xi

��
S // S′i // Si

is commutative with S′i = Spec(R′i). Let s′i ∈ S′i be the image of s. We have
Xs = limXi,s′i

because X = limXi, S = limS′i, and κ(s) = colimκ(s′i). Now let
Xs = U q V with U and V open and closed. Then U, V are the inverse images
of opens Ui, Vi in Xi,s′i

(Limits, Lemma 31.3.8). By Theorem 36.36.3 the fibres of

Xi → S′i are connected, hence either U or V is empty. This finishes the proof. �

36.37. Descending separated locally quasi-finite morphisms

In this section we show that “separated locally quasi-finite morphisms satisfy de-
scent for fppf-coverings”. See Descent, Definition 34.32.1 for terminology. This is
in the marvellous (for many reasons) paper by Raynaud and Gruson hidden in the
proof of [GR71, Lemma 5.7.1]. It can also be found in [Mur95], and [ABD+66,
Exposé X, Lemma 5.4] under the additional hypothesis that the morphism is locally
of finite presentation. Here is the formal statement.

Lemma 36.37.1. Let S be a scheme. Let {Xi → S}i∈I be an fppf covering,
see Topologies, Definition 33.7.1. Let (Vi/Xi, ϕij) be a descent datum relative to

http://stacks.math.columbia.edu/tag/02W8
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{Xi → S}. If each morphism Vi → Xi is separated and locally quasi-finite, then
the descent datum is effective.

Proof. Being separated and being locally quasi-finite are properties of morphisms
of schemes which are preserved under any base change, see Schemes, Lemma
25.21.13 and Morphisms, Lemma 28.21.13. Hence Descent, Lemma 34.32.2 ap-
plies and it suffices to prove the statement of the lemma in case the fppf-covering is
given by a single {X → S} flat surjective morphism of finite presentation of affines.
Say X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring map.
Let (V, ϕ) be a descent datum relative to X over S and assume that π : V → X is
separated and locally quasi-finite.

Let W 1 ⊂ V be any affine open. Consider W = pr1(ϕ(W 1 ×S X)) ⊂ V . Here is a
picture

W 1 ×S X //

��

&&

ϕ(W 1 ×S X)

��

ww
V ×S X

ϕ //

&&

��

X ×S V

xx

��

X ×S X
1 //

pr0

��

X ×S X

pr1

��
W 1 // V // X X Voo Woo

Ok, and now since X → S is flat and of finite presentation it is universally open
(Morphisms, Lemma 28.26.9). Hence we conclude that W is open. Moreover, it is
also clearly the case that W is quasi-compact, and W 1 ⊂ W . Moreover, we note
that ϕ(W ×S X) = X ×S W by the cocycle condition for ϕ. Hence we obtain a
new descent datum (W,ϕ′) by restricting ϕ to W ×S X. Note that the morphism
W → X is quasi-compact, separated and locally quasi-finite. This implies that it is
separated and quasi-finite by definition. Hence it is quasi-affine by Lemma 36.31.2.
Thus by Descent, Lemma 34.34.1 we see that the descent datum (W,ϕ′) is effective.

In other words, we find that there exists an open covering V =
⋃
Wi by quasi-

compact opens Wi which are stable for the descent morphism ϕ. Moreover, for
each such quasi-compact open W ⊂ V the corresponding descent data (W,ϕ′)
is effective. It is an exercise to show this means the original descent datum is
effective by glueing the schemes obtained from descending the opens Wi (details
omitted). �

36.38. Relative finite presentation

Let R→ A be a finite type ring map. Let M be an A-module. In More on Algebra,
Section 15.58 we defined what it means for M to be finitely presented relative to
R. We also proved this notion has good localization properties and glues. Hence
we can define the corresponding global notion as follows.

Definition 36.38.1. Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module. We say F is finitely presented
relative to S or of finite presentation relative to S if there exists an affine open

http://stacks.math.columbia.edu/tag/05H1
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covering S =
⋃
Vi and for every i an affine open covering f−1(Vi) =

⋃
j Uij such

that F(Uij) is a OX(Uij)-module of finite presentation relative to OS(Vi).

Note that this implies that F is a finite type OX -module. If X → S is just locally
of finite type, then F may be of finite presentation relative to S, without X → S
being locally of finite presentation. We will see that X → S is locally of finite
presentation if and only if OX is of finite presentation relative to S.

Lemma 36.38.2. Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX-module. The following are equivalent

(1) F is of finite presentation relative to S,
(2) for every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the OX(U)-module
F(U) is finitely presented relative to OS(V ).

Moreover, if this is true, then for every open subschemes U ⊂ X and V ⊂ S with
f(U) ⊂ V the restriction F|U is of finite presentation relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij

be affine open coverings as in Definition 36.38.1. Let U ⊂ X and V ⊂ S be as
in (2). By More on Algebra, Lemma 15.58.8 it suffices to find a standard open
covering U =

⋃
Uk of U such that F(Uk) is finitely presented relative to OS(V ). In

other words, for every u ∈ U it suffices to find a standard affine open u ∈ U ′ ⊂ U
such that F(U ′) is finitely presented relative to OS(V ). Pick i such that f(u) ∈ Vi
and then pick j such that u ∈ Uij . By Schemes, Lemma 25.11.5 we can find
v ∈ V ′ ⊂ V ∩ Vi which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U ,
resp. f−1V ′ ∩ Uij are standard affine opens of U , resp. Uij . Applying the lemma
again we can find u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in
both f−1V ′ ∩U and f−1V ′ ∩Uij . Thus U ′ is also a standard affine open of U and
Uij . By More on Algebra, Lemma 15.58.4 the assumption that F(Uij) is finitely
presented relative to OS(Vi) implies that F(U ′) is finitely presented relative to
OS(Vi). Since OX(U ′) = OX(U ′) ⊗OS(Vi) OS(V ′) we see from More on Algebra,
Lemma 15.58.5 that F(U ′) is finitely presented relative to OS(V ′). Applying More
on Algebra, Lemma 15.58.4 again we conclude that F(U ′) is finitely presented
relative to OS(V ). This finishes the proof. �

Lemma 36.38.3. Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX-module.

(1) If f is locally of finite presentation, then F is of finite presentation relative
to S if and only if F is of finite presentation.

(2) The morphism f is locally of finite presentation if and only if OX is of
finite presentation relative to S.

Proof. Follows immediately from the definitions, see discussion following More on
Algebra, Definition 15.58.2. �

Lemma 36.38.4. Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let F be a quasi-coherent OX-module. Then F is of
finite presentation relative to S if and only if π∗F is of finite presentation relative
to S.

Proof. Translation of the result of More on Algebra, Lemma 15.58.3 into the lan-
guage of schemes. �

http://stacks.math.columbia.edu/tag/09T7
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Lemma 36.38.5. Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX-module. Let S′ → S be a morphism of
schemes, set X ′ = X ×S S′ and denote F ′ the pullback of F to X ′. If F is of finite
presentation relative to S, then F ′ is of finite presentation relative to S′.

Proof. Translation of the result of More on Algebra, Lemma 15.58.5 into the lan-
guage of schemes. �

Lemma 36.38.6. Let X → Y → S be morphisms of schemes which are locally
of finite type. Let G be a quasi-coherent OY -module. If f : X → Y is locally of
finite presentation and G of finite presentation relative to S, then f∗G is of finite
presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 15.58.6 into the lan-
guage of schemes. �

Lemma 36.38.7. Let X → Y → S be morphisms of schemes which are locally
of finite type. Let F be a quasi-coherent OX-module. If Y → S is locally of
finite presentation and F is of finite presentation relative to Y , then F is of finite
presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 15.58.7 into the lan-
guage of schemes. �

Lemma 36.38.8. Let X → S be a morphism of schemes which is locally of finite
type. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of quasi-coherent
OX-modules.

(1) If F ′,F ′′ are finitely presented relative to S, then so is F .
(2) If F ′ is a finite type OX-module and F is finitely presented relative to S,

then F ′′ is finitely presented relative to S.

Proof. Translation of the result of More on Algebra, Lemma 15.58.9 into the lan-
guage of schemes. �

Lemma 36.38.9. Let X → S be a morphism of schemes which is locally of finite
type. Let F ,F ′ be quasi-coherent OX-modules. If F ⊕ F ′ is finitely presented
relative to S, then so are F and F ′.

Proof. Translation of the result of More on Algebra, Lemma 15.58.10 into the
language of schemes. �

36.39. Relative pseudo-coherence

This section is the analogue of More on Algebra, Section 15.59 for schemes. We
strongly urge the reader to take a look at that section first.

Lemma 36.39.1. Let X → S be a finite type morphism of affine schemes. Let E
be an object of D(OX). Let m ∈ Z. The following are equivalent

(1) for some closed immersion i : X → An
S the object Ri∗E of D(OAn

S
) is

m-pseudo-coherent, and
(2) for all closed immersions i : X → An

S the object Ri∗E of D(OAn
S
) is

m-pseudo-coherent.

http://stacks.math.columbia.edu/tag/09TA
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Proof. Say S = Spec(R) and X = Spec(A). Let i correspond to the surjection α :
R[x1, . . . , xn]→ A and let X → Am

S correspond to β : R[y1, . . . , ym]→ A. Choose
fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) = α(xi).
Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi
��

yj 7→fj
// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

corresponding to the commutative diagram of closed immersions

An+m
S An

S
oo

Am
S

OO

X

OO

oo

Thus it suffices to show that under a closed immersion

f : Am
S → An+m

S

an object E of D(OAm
S

) is m-pseudo-coherent if and only if Rf∗E is m-pseudo-
coherent. This follows from Derived Categories of Schemes, Lemma 35.10.5 and
the fact that f∗OAm

S
is pseudo-coherent on An+m

S . This is straightforward to prove
directly, but it also follows from Derived Categories of Schemes, Lemma 35.9.3 and
More on Algebra, Lemma 15.59.3. �

Recall that if f : X → S is a morphism of scheme which is locally of finite type,
then for every pair of affine opens U ⊂ X and V ⊂ S such that f(U) ⊂ V , the ring
map OS(V )→ OX(U) is of finite type (Morphisms, Lemma 28.16.2). Hence there
always exist closed immersions U → An

V and the following definition makes sense.

Definition 36.39.2. Let f : X → S be a morphism of schemes which is locally of
finite type. Let E be an object of D(OX). Let F be an OX -module. Fix m ∈ Z.

(1) We say E is m-pseudo-coherent relative to S if there exists an affine open
covering S =

⋃
Vi and for each i an affine open covering f−1(Vi) =

⋃
Uij

such that the equivalent conditions of Lemma 36.39.1 are satisfied for each
of the pairs (Uij → Vi, E|Uij ).

(2) We say E is pseudo-coherent relative to S if E is m-pseudo-coherent rel-
ative to S for all m ∈ Z.

(3) We say F is m-pseudo-coherent relative to S if F viewed as an object of
D(OX) is m-pseudo-coherent relative to S.

(4) We say F is pseudo-coherent relative to S if F viewed as an object of
D(OX) is pseudo-coherent relative to S.

If X is quasi-compact and E is m-pseudo-coherent relative to S for some m, then
E is bounded above. We first prove the condition of relative pseudo-coherence
localizes well.

Lemma 36.39.3. Let S be an affine scheme. Let V ⊂ S be a standard open. Let
X → V be a finite type morphism of affine schemes. Let U ⊂ X be an affine open.
Let E be an object of D(OX). If the equivalent conditions of Lemma 36.39.1 are

http://stacks.math.columbia.edu/tag/09UI
http://stacks.math.columbia.edu/tag/09VD
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satisfied for the pair (X → V,E), then the equivalent conditions of Lemma 36.39.1
are satisfied for the pair (U → S,E|U ).

Proof. Write S = Spec(R), V = D(f), X = Spec(A), and U = D(g). Assume the
equivalent conditions of Lemma 36.39.1 are satisfied for the pair (X → V,E).

Choose Rf [x1, . . . , xn] → A surjective. Write Rf = R[x0]/(fx0 − 1). Then
R[x0, x1, . . . , xn] → A is surjective, and Rf [x1, . . . , xn] is pseudo-coherent as an
R[x0, . . . , xn]-module. Thus we have

X → An
V → An+1

S

and we can apply Derived Categories of Schemes, Lemma 35.10.5 to conclude that
the pushfoward E′ of E to An+1

S is m-pseudo-coherent.

Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. Consider the
surjection R[x0, . . . , xn+1]→ R[x0, . . . , xn, 1/g

′]. We obtain

X

��

U

��

oo

##
An+1
S D(g′)oo // An+2

S

where the lower left arrow is an open immersion and the lower right arrow is a closed
immersion. We conclude as before that the pushforward of E′|D(g′) to An+2

S is m-

pseudo-coherent. Since this is also the pushforward of E|U to An+2
S we conclude

the lemma is true. �

Lemma 36.39.4. Let X → S be a finite type morphism of affine schemes. Let
E be an object of D(OX). Let m ∈ Z. Let X =

⋃
Ui be a standard affine open

covering. The following are equivalent

(1) the equivalent conditions of Lemma 36.39.1 hold for the pairs (Ui →
S,E|Ui),

(2) the equivalent conditions of Lemma 36.39.1 hold for the pair (X → S,E).

Proof. The implication (2)⇒ (1) is Lemma 36.39.3. Assume (1). Say S = Spec(R)
and X = Spec(A) and Ui = D(fi). Write 1 =

∑
figi in A. Consider the surjections

R[xi, yi, zi]→ R[xi, yi, zi]/(
∑

yizi − 1)→ A.

which sends yi to fi and zi to gi. Note that R[xi, yi, zi]/(
∑
yizi − 1) is pseudo-

coherent as an R[xi, yi, zi]-module. Thus it suffices to prove that the pushforward
of E to T = Spec(R[xi, yi, zi]/(

∑
yizi − 1)) is m-pseudo-coherent, see Derived

Categories of Schemes, Lemma 35.10.5. For each i0 it suffices to prove the restriction
of this pushforward to Wi0 = Spec(R[xi, yi, zi, 1/yi0 ]/(

∑
yizi − 1)) is m-pseudo-

coherent. Note that there is a commutative diagram

X

��

Ui0
oo

��
T Wi0
oo

which implies that the pushforward of E to T restricted to Wi0 is the pushforward
of E|Ui0 to Wi0 . Since R[xi, yi, zi, 1/yi0 ]/(

∑
yizi−1) is isomorphic to a polynomial

ring over R this proves what we want. �

http://stacks.math.columbia.edu/tag/09VE
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Lemma 36.39.5. Let f : X → S be a morphism of schemes which is locally of
finite type. Let E be an object of D(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the equivalent

conditions of Lemma 36.39.1 are satisfied for the pair (U → V,E|U ).

Moreover, if this is true, then for every open subschemes U ⊂ X and V ⊂ S with
f(U) ⊂ V the restriction E|U is m-pseudo-coherent relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij

be affine open coverings as in Definition 36.39.2. Let U ⊂ X and V ⊂ S be as in
(2). By Lemma 36.39.4 it suffices to find a standard open covering U =

⋃
Uk of

U such that the equivalent conditions of Lemma 36.39.1 are satisfied for the pairs
(Uk → V,E|Uk). In other words, for every u ∈ U it suffices to find a standard
affine open u ∈ U ′ ⊂ U such that the equivalent conditions of Lemma 36.39.1 are
satisfied for the pair (U ′ → V,E|U ′). Pick i such that f(u) ∈ Vi and then pick
j such that u ∈ Uij . By Schemes, Lemma 25.11.5 we can find v ∈ V ′ ⊂ V ∩ Vi
which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U , resp. f−1V ′ ∩ Uij
are standard affine opens of U , resp. Uij . Applying the lemma again we can find
u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in both f−1V ′ ∩ U and
f−1V ′∩Uij . Thus U ′ is also a standard affine open of U and Uij . By Lemma 36.39.3
the assumption that the equivalent conditions of Lemma 36.39.1 are satisfied for
the pair (Uij → Vi, E|Uij ) implies that the equivalent conditions of Lemma 36.39.1
are satisfied for the pair (U ′ → V,E|U ′). �

For objects of the derived category whose cohomology sheaves are quasi-coherent,
we can relate relative m-pseudo-coherence to the notion defined in More on Alge-
bra, Definition 15.59.4. We will use the fact that for an affine scheme U = Spec(A)
the functor RΓ(U,−) induces an equivalence between DQCoh(OU ) and D(A), see
Derived Categories of Schemes, Lemma 35.3.4. This functor is compatible with
pullbacks: if E is an object of DQCoh(OU ) and A → B is a ring map correspond-
ing to a morphism of affine schemes g : V = Spec(B) → Spec(A) = U , then
RΓ(V,Lg∗E) = RΓ(U,E)⊗L

AB. See Derived Categories of Schemes, Lemma 35.3.6.

Lemma 36.39.6. Let f : X → S be a morphism of schemes which is locally of
finite type. Let E be an object of DQCoh(OX). Fix m ∈ Z. The following are
equivalent

(1) E is m-pseudo-coherent relative to S,
(2) there exists an affine open covering S =

⋃
Vi and for each i an affine

open covering f−1(Vi) =
⋃
Uij such that the complex of OX(Uij)-modules

RΓ(Uij , E) is m-pseudo-coherent relative to OS(Vi), and
(3) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the complex of
OX(U)-modules RΓ(U,E) is m-pseudo-coherent relative to OS(V ).

Proof. Let U and V be as in (2) and choose a closed immersion i : U → An
V . A

formal argument, using Lemma 36.39.5, shows it suffices to prove that Ri∗(E|U )
is m-pseudo-coherent if and only if RΓ(U,E) is m-pseudo-coherent relative to
OS(V ). Say U = Spec(A), V = Spec(R), and An

V = Spec(R[x1, . . . , xn]. By
the remarks preceding the lemma, E|U is quasi-isomorphic to the complex of quasi-
coherent sheaves on U associated to the object RΓ(U,E) of D(A). Note that

http://stacks.math.columbia.edu/tag/09UJ
http://stacks.math.columbia.edu/tag/09VF


2416 36. MORE ON MORPHISMS

RΓ(U,E) = RΓ(An
V , Ri∗(E|U )) as i is a closed immersion (and hence i∗ is exact).

Thus Ri∗E is associated to RΓ(U,E) viewed as an object of D(R[x1, . . . , xn]). We
conclude as m-pseudo-coherence of Ri∗(E|U ) is equivalent to m-pseudo-coherence
of RΓ(E,U) in D(R[x1, . . . , xn]) by Derived Categories of Schemes, Lemma 35.9.3
which is equivalent to RΓ(U,E) is m-pseudo-coherent relative to R = OS(V ) by
definition. �

Lemma 36.39.7. Let i : X → Y morphism of schemes locally of finite type over a
base scheme S. Assume that i induces a homeomorphism of X with a closed subset
of Y . Let E be an object of D(OX). Then E is m-pseudo-coherent relative to S if
and only if Ri∗E is m-pseudo-coherent relative to S.

Proof. By Morphisms, Lemma 28.45.2 the morphism i is affine. Thus we may
assume S, Y , and X are affine. Say S = Spec(R), Y = Spec(A), and X = Spec(B).
The condition means that A/rad(A) → B/rad(B) is surjective. As B is of finite
type over A, we can find b1, . . . , bm ∈ rad(B) which generate B as an A-algebra.
Say bNj = 0 for all j. Consider the diagram of rings

B R[xi, yj ]/(y
N
j )oo R[xi, yj ]oo

A

OO

R[xi]oo

OO 77

which translates into a diagram

X

��

// T

��

// An+m
S

||
Y // An

S

of affine schemes. By Lemma 36.39.5 we see that E is m-pseudo-coherent relative
to S if and only if its pushforward to An+m

S is m-pseudo-coherent. By Derived
Categories of Schemes, Lemma 35.10.5 we see that this is true if and only if its
pushforward to T is m-pseudo-coherent. The same lemma shows that this holds if
and only if the pushforward to An

S is m-pseudo-coherent. Again by Lemma 36.39.5
this holds if and only if Ri∗E is m-pseudo-coherent relative to S. �

Lemma 36.39.8. Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let E be an object of DQCoh(OX). Then E is m-
pseudo-coherent relative to S if and only if Rπ∗E is m-pseudo-coherent relative to
S.

Proof. Translation of the result of More on Algebra, Lemma 15.59.5 into the lan-
guage of schemes. Observe that Rπ∗ indeed maps DQCoh(OX) into DQCoh(OY ) by
Derived Categories of Schemes, Lemma 35.4.1. To do the translation use Lemma
36.39.5. �

Lemma 36.39.9. Let f : X → S be a morphism of schemes which is locally of
finite type. Let (E,E′, E′′) be a distinguished triangle of D(OX). Let m ∈ Z.

(1) If E is (m+1)-pseudo-coherent relative to S and E′ is m-pseudo-coherent
relative to S then E′′ is m-pseudo-coherent relative to S.

http://stacks.math.columbia.edu/tag/09VG
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(2) If E,E′′ are m-pseudo-coherent relative to S, then E′ is m-pseudo-coherent
relative to S.

(3) If E′ is (m+1)-pseudo-coherent relative to S and E′′ is m-pseudo-coherent
relative to S, then E is (m+ 1)-pseudo-coherent relative to S.

Moreover, if two out of three of E,E′, E′′ are pseudo-coherent relative to S, the so
is the third.

Proof. Immediate from Lemma 36.39.5 and Cohomology, Lemma 20.36.4. �

Lemma 36.39.10. Let X → S be a morphism of schemes which is locally of finite
type. Let F be an OX-module. Then

(1) F is m-pseudo-coherent relative to S for all m > 0,
(2) F is 0-pseudo-coherent relative to S if and only if F is a finite type OX-

module,
(3) F is (−1)-pseudo-coherent relative to S if and only if F is quasi-coherent

and finitely presented relative to S.

Proof. Part (1) is immediate from the definition. To see part (3) we may work
locally on X (both properties are local). Thus we may assume X and S are affine.
Choose a closed immersion i : X → An

S . Then we see that F is (−1)-pseudo-
coherent relative to S if and only if i∗F is (−1)-pseudo-coherent, which is true if
and only if i∗F is an OAn

S
-module of finite presentation, see Cohomology, Lemma

20.36.9. A module of finite presentation is quasi-coherent, see Modules, Lemma
17.11.2. By Morphisms, Lemma 28.4.1 we see that F is quasi-coherent if and only
if i∗F is quasi-coherent. Having said this part (3) follows. The proof of (2) is
similar but less involved. �

Lemma 36.39.11. Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E,K be objects of D(OX). If E ⊕K is m-pseudo-coherent
relative to S so are E and K.

Proof. Follows from Cohomology, Lemma 20.36.6 and the definitions. �

Lemma 36.39.12. Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let F• be a (locally) bounded above complex of OX-modules such
that F i is (m − i)-pseudo-coherent relative to S for all i. Then F• is m-pseudo-
coherent relative to S.

Proof. Follows from Cohomology, Lemma 20.36.7 and the definitions. �

Lemma 36.39.13. Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E be an object of D(OX). If E is (locally) bounded above and
Hi(E) is (m−i)-pseudo-coherent relative to S for all i, then E is m-pseudo-coherent
relative to S.

Proof. Follows from Cohomology, Lemma 20.36.8 and the definitions. �

Lemma 36.39.14. Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E be an object of D(OX) which is m-pseudo-coherent relative
to S. Let S′ → S be a morphism of schemes. Set X ′ = X ×S S′ and denote E′ the
derived pullback of E to X ′. If S′ and X are Tor independent over S, then E′ is
is m-pseudo-coherent relative to S′.
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Proof. The problem is local on X and X ′ hence we may assume X, S, S′, and
X ′ are affine. Choose a closed immersion i : X → An

S and denote i′ : X ′ → An
S′

the base change to S′. Denote g : X ′ → X and g′ : An
S′ → An

S the projections,
so E′ = Lg∗E. Since X and S′ are tor-independent over S, the base change map
(Cohomology, Remark 20.29.2) induces an isomorphism

Ri′∗(Lg
∗E) = L(g′)∗Ri∗E

Namely, for a point x′ ∈ X ′ lying over x ∈ X the base change map on stalks at x′

is the map
Ex ⊗L

OAn
S
,x
OAn

S′ ,x
′ −→ Ex ⊗L

OX,x OX′,x′

coming from the closed immersions i and i′. Note that the source is quasi-isomorphic
to a localization of Ex ⊗L

OS,s OS′,s′ which is isomorphic to the target as OX′,x′ is

isomorphic to (the same) localization of OX,x ⊗L
OS,s OS′,s′ by assumption. We

conclude the lemma holds by an application of Cohomology, Lemma 20.36.3. �

Lemma 36.39.15. Let f : X → Y be a morphism of schemes locally of finite type
over a base S. Let m ∈ Z. Let E be an object of D(OY ). Assume

(1) OX is pseudo-coherent relative to Y 4, and
(2) E is m-pseudo-coherent relative to S.

Then Lf∗E is m-pseudo-coherent relative to S.

Proof. The problem is local on X. Thus we may assume X, Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 15.59.13 we can find a com-
mutative diagram

X
i
//

f

��

Am
Y j

//

p
~~

An+m
S

||
Y // An

S

Observe that

Ri∗Lf
∗E = Ri∗Li

∗Lp∗E = Lp∗E ⊗L
OAn

Y

Ri∗OX

by Derived Categories of Schemes, Lemma 35.16.1. By assumption and the fact
that Y is affine, we can represent Ri∗OX = i∗OX by a complexes of finite free
OAn

Y
-modules F•, with F i = 0 for i > 0 (details omitted; use Derived Categories

of Schemes, Lemma 35.9.3 and More on Algebra, Lemma 15.59.7). By assumption
E is bounded above, say Hi(E) = 0 for i > a. Represent E by a complex E•
of OY -modules with E i = 0 for i > a. Then the derived tensor product above is
represented by Tot(p∗E• ⊗OAn

Y
F•).

Thus we have to show that j∗Tot(p∗E•⊗OAn
Y
F•) is m-pseudo-coherent as a complex

of OAn+m
S

-modules. Note that Tot(p∗E•⊗OAn
Y
F•) has a filtration by subcomplexes

with successive quotients the complexes p∗E• ⊗OAn
Y
F i[−i]. Note that for i � 0

the complexes p∗E• ⊗OAn
Y
F i[−i] have zero cohomology in degrees ≤ m and hence

are m-pseudo-coherent. Hence, applying Lemma 36.39.9 and induction, it suffices
to show that p∗E• ⊗OAn

Y
F i[−i] is pseudo-coherent relative to S for all i. Note

that F i = 0 for i > 0. Since also F i is finite free this reduces to proving that

4This means f is pseudo-coherent, see Definition 36.40.2.
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p∗E• is m-pseudo-coherent relative to R which follows from Lemma 36.39.14 for
instance. �

Lemma 36.39.16. Let f : X → Y be a morphism of schemes locally of finite
type over a base S. Let m ∈ Z. Let E be an object of D(OX). Assume OY is
pseudo-coherent relative to S5. Then the following are equivalent

(1) E is m-pseudo-coherent relative to Y , and
(2) E is m-pseudo-coherent relative to S.

Proof. The question is local on X, hence we may assume X, Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 15.59.13 we can find a com-
mutative diagram

X
i
//

f

��

Am
Y j

//

p
~~

An+m
S

||
Y // An

S

The assumption that OY is pseudo-coherent relative to S implies that OAm
Y

is
pseudo-coherent relative to Am

S (by flat base change; this can be seen by using for
example Lemma 36.39.14). This in turn implies that j∗OAn

Y
is pseudo-coherent

as an OAn+m
S

-module. Then the equivalence of the lemma follows from Derived

Categories of Schemes, Lemma 35.10.5. �

Lemma 36.39.17. Let
X

��

i
// P

��
S

be a commutative diagram of schemes. Assume i is a closed immersion and P → S
flat and locally of finite presentation. Let E be an object of D(OX). Then the
following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) Ri∗E is m-pseudo-coherent relative to S, and
(3) Ri∗E is m-pseudo-coherent on P .

Proof. The equivalence of (1) and (2) is Lemma 36.39.8. The equivalence of (2)
and (3) follows from Lemma 36.39.16 applied to id : P → P provided we can show
that OP is pseudo-coherent relative to S. This follows from More on Algebra,
Lemma 15.60.4 and the definitions. �

36.40. Pseudo-coherent morphisms

Avoid reading this section at all cost. If you need some of this material, first
take a look at the corresponding algebra sections, see More on Algebra, Sections
15.50, 15.59, and 15.60. For now the only thing you need to know is that a ring
map A → B is pseudo-coherent if and only if B = A[x1, . . . , xn]/I and B as an
A[x1, . . . , xn]-module has a resolution by finite free A[x1, . . . , xn]-modules.

Lemma 36.40.1. Let f : X → S be a morphism of schemes. The following are
equivalent

5This means Y → S is pseudo-coherent, see Definition 36.40.2.
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(1) there exist an affine open covering S =
⋃
Vj and for each j an affine

open covering f−1(Vj) =
⋃
Uji such that OS(Vj)→ OX(Uij) is a pseudo-

coherent ring map,
(2) for every pair of affine opens U ⊂ X, V ⊂ S such that f(U) ⊂ V the ring

map OS(V )→ OX(U) is pseudo-coherent, and
(3) f is locally of finite type and OX is pseudo-coherent relative to S.

Proof. To see the equivalence of (1) and (2) it suffices to check conditions (1)(a),
(b), (c) of Morphisms, Definition 28.15.1 for the property of being a pseudo-coherent
ring map. These properties follow (using localization is flat) from More on Algebra,
Lemmas 15.59.12, 15.59.11, and 15.59.16.

If (1) holds, then f is locally of finite type as a pseudo-coherent ring map is of finite
type by definition. Moreover, (1) implies via Lemma 36.39.6 and the definitions
that OX is pseudo-coherent relative to S. Conversely, if (3) holds, then we see that
for every U and V as in (2) the ring OX(U) is of finite type over OS(V ) and OX(U)
is as a module pseudo-coherent relative to OS(V ), see Lemmas 36.39.5 and 36.39.6.
This is the definition of a pseudo-coherent ring map, hence (2) and (1) hold. �

Definition 36.40.2. A morphism of schemes f : X → S is called pseudo-coherent
if the equivalent conditions of Lemma 36.40.1 are satisfied. In this case we also say
that X is pseudo-coherent over S.

Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent
in general.

Lemma 36.40.3. A flat base change of a pseudo-coherent morphism is pseudo-
coherent.

Proof. This translates into the following algebra result: Let A→ B be a pseudo-
coherent ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is pseudo-coherent.
This follows from the more general More on Algebra, Lemma 15.59.12. �

Lemma 36.40.4. A composition of pseudo-coherent morphisms of schemes is
pseudo-coherent.

Proof. This translates into the following algebra result: If A → B → C are
composable pseudo-coherent ring maps then A → C is pseudo-coherent. This
follows from either More on Algebra, Lemma 15.59.13 or More on Algebra, Lemma
15.59.15. �

Lemma 36.40.5. A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. �

Lemma 36.40.6. A flat morphism which is locally of finite presentation is pseudo-
coherent.

Proof. This follows from the fact that a flat ring map of finite presentation is
pseudo-coherent (and even perfect), see More on Algebra, Lemma 15.60.4. �

Lemma 36.40.7. Let f : X → Y be a morphism of schemes pseudo-coherent over
a base scheme S. Then f is pseudo-coherent.
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Proof. This translates into the following algebra result: If R → A → B are
composable ring maps and R → A, R → B pseudo-coherent, then R → B is
pseudo-coherent. This follows from More on Algebra, Lemma 15.59.15. �

Lemma 36.40.8. Let f : X → S be a morphism of schemes. If S is locally
Noetherian, then f is pseudo-coherent if and only if f is locally of finite type.

Proof. This translates into the following algebra result: If R → A is a finite
type ring map with R Noetherian, then R → A is pseudo-coherent if and only if
R → A is of finite type. To see this, note that a pseudo-coherent ring map is of
finite type by definition. Conversely, if R → A is of finite type, then we can write
A = R[x1, . . . , xn]/I and it follows from More on Algebra, Lemma 15.50.16 that
A is pseudo-coherent as an R[x1, . . . , xn]-module, i.e., R→ A is a pseudo-coherent
ring map. �

Lemma 36.40.9. The property P(f) =“f is pseudo-coherent” is fpqc local on the
base.

Proof. We will use the criterion of Descent, Lemma 34.18.4 to prove this. By Defi-
nition 36.40.2 being pseudo-coherent is Zariski local on the base. By Lemma 36.40.3
being pseudo-coherent is preserved under flat base change. The final hypothesis (3)
of Descent, Lemma 34.18.4 translates into the following algebra statement: Let
A→ B be a faithfully flat ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If
C ⊗A B is pseudo-coherent as an B[x1, . . . , xn]-module, then C is pseudo-coherent
as a A[x1, . . . , xn]-module. This is More on Algebra, Lemma 15.50.15. �

Lemma 36.40.10. Let A→ B be a flat ring map of finite presentation. Let I ⊂ B
be an ideal. Then A→ B/I is pseudo-coherent if and only if I is pseudo-coherent
as a B-module.

Proof. Choose a presentation B = A[x1, . . . , xn]/J . Note that B is pseudo-
coherent as an A[x1, . . . , xn]-module because A→ B is a pseudo-coherent ring map
by Lemma 36.40.6. Note that A → B/I is pseudo-coherent if and only if B/I is
pseudo-coherent as an A[x1, . . . , xn]-module. By More on Algebra, Lemma 15.50.11
we see this is equivalent to the condition that B/I is pseudo-coherent as an B-
module. This proves the lemma as the short exact sequence 0→ I → B → B/I → 0
shows that I is pseudo-coherent if and only if B/I is (see More on Algebra, Lemma
15.50.6). �

The following lemma will be obsoleted by the stronger Lemma 36.40.12.

Lemma 36.40.11. The property P(f) =“f is pseudo-coherent” is syntomic local
on the source.

Proof. We will use the criterion of Descent, Lemma 34.22.3 to prove this. It
follows from Lemmas 36.40.6 and 36.40.4 that being pseudo-coherent is preserved
under precomposing with flat morphisms locally of finite presentation, in particular
under precomposing with syntomic morphisms (see Morphisms, Lemmas 28.32.7
and 28.32.6). It is clear from Definition 36.40.2 that being pseudo-coherent is Zariski
local on the source and target. Hence, according to the aforementioned Descent,
Lemma 34.22.3 it suffices to prove the following: Suppose X ′ → X → Y are
morphisms of affine schemes with X ′ → X syntomic and X ′ → Y pseudo-coherent.
Then X → Y is pseudo-coherent. To see this, note that in any case X → Y
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is of finite presentation by Descent, Lemma 34.10.1. Choose a closed immersion
X → An

Y . By Algebra, Lemma 10.131.18 we can find an affine open covering X ′ =⋃
i=1,...,nX

′
i and syntomic morphisms Wi → An

Y lifting the morphisms X ′i → X,
i.e., such that there are fibre product diagrams

X ′i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′i and setting W =

∐
Wi we obtain a fibre product

diagram

X ′

��

// W

h

��
X // An

Y

with W → An
Y flat and of finite presentation and X ′ → Y still pseudo-coherent.

Since W → An
Y is open (see Morphisms, Lemma 28.26.9) and X ′ → X is surjective

we can find f ∈ Γ(An
Y ,O) such that X ⊂ D(f) ⊂ Im(h). Write Y = Spec(R), X =

Spec(A), X ′ = Spec(A′) and W = Spec(B), A = R[x1, . . . , xn]/I and A′ = B/IB.
Then R→ A′ is pseudo-coherent. Picture

A′ = B/IB Boo

A = R[x1, . . . , xn]/I

OO

R[x1, . . . , xn]oo

OO

By Lemma 36.40.10 we see that IB is pseudo-coherent as a B-module. The ring
map R[x1, . . . , xn]f → Bf is faithfully flat by our choice of f above. This implies
that If ⊂ R[x1, . . . , xn]f is pseudo-coherent, see More on Algebra, Lemma 15.50.15.
Applying Lemma 36.40.10 one more time we see that R→ A is pseudo-coherent. �

Lemma 36.40.12. The property P(f) =“f is pseudo-coherent” is fppf local on the
source.

Proof. Let f : X → S be a morphism of schemes. Let {gi : Xi → X} be an fppf
covering such that each composition f ◦gi is pseudo-coherent. According to Lemma
36.34.1 there exist

(1) a Zariski open covering X =
⋃
Uj ,

(2) surjective finite locally free morphisms Wj → Uj ,
(3) Zariski open coverings Wj =

⋃
kWj,k,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {hj,k : Tj,k → X} refines the given covering {Xi → X}.
Denote ψj,k : Tj,k → Xα(j,k) the morphisms that witness the fact that {Tj,k → X}
refines the given covering {Xi → X}. Note that Tj,k → X is a flat, locally finitely
presented morphism, so both Xi and Tj,k are pseudo-coherent over X by Lemma
36.40.6. Hence ψj,k : Tj,k → Xi is pseudo-coherent, see Lemma 36.40.7. Hence
Tj,k → S is pseudo coherent as the composition of ψj,k and f ◦ gα(j,k), see Lemma
36.40.4. Thus we see we have reduced the lemma to the case of a Zariski open
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covering (which is OK) and the case of a covering given by a single surjective finite
locally free morphism which we deal with in the following paragraph.

Assume that X ′ → X → S is a sequence of morphisms of schemes with X ′ → X
surjective finite locally free and X ′ → Y pseudo-coherent. Our goal is to show that
X → S is pseudo-coherent. Note that by Descent, Lemma 34.10.3 the morphism
X → S is locally of finite presentation. It is clear that the problem reduces to the
case that X ′, X and S are affine and X ′ → X is free of some rank r > 0. The
corresponding algebra problem is the following: Suppose R → A → A′ are ring
maps such that R → A′ is pseudo-coherent, R → A is of finite presentation, and
A′ ∼= A⊕r as an A-module. Goal: Show R→ A is pseudo-coherent. The assumption
that R→ A′ is pseudo-coherent means that A′ as an A′-module is pseudo-coherent
relative to R. By More on Algebra, Lemma 15.59.5 this implies that A′ as an
A-module is pseudo-coherent relative to R. Since A′ ∼= A⊕r as an A-module we
see that A as an A-module is pseudo-coherent relative to R, see More on Algebra,
Lemma 15.59.8. This by definition means that R → A is pseudo-coherent and we
win. �

36.41. Perfect morphisms

In order to understand the material in this section you have to understand the
material of the section on pseudo-coherent morphisms just a little bit. For now the
only thing you need to know is that a ring map A → B is perfect if and only if it
is pseudo-coherent and B has finite tor dimension as an A-module.

Lemma 36.41.1. Let f : X → S be a morphism of schemes which is locally of
finite type. The following are equivalent

(1) there exist an affine open covering S =
⋃
Vj and for each j an affine open

covering f−1(Vj) =
⋃
Uji such that OS(Vj) → OX(Uij) is a perfect ring

map, and
(2) for every pair of affine opens U ⊂ X, V ⊂ S such that f(U) ⊂ V the ring

map OS(V )→ OX(U) is perfect.

Proof. Assume (1) and let U, V be as in (2). It follows from Lemma 36.40.1 that
OS(V ) → OX(U) is pseudo-coherent. Hence it suffices to prove that the property
of a ring map being ”of finite tor dimension” satisfies conditions (1)(a), (b), (c)
of Morphisms, Definition 28.15.1. These properties follow from More on Algebra,
Lemmas 15.51.9, 15.51.12, and 15.51.13. Some details omitted. �

Definition 36.41.2. A morphism of schemes f : X → S is called perfect if the
equivalent conditions of Lemma 36.40.1 are satisfied. In this case we also say that
X is perfect over S.

Note that a perfect morphism is in particular pseudo-coherent, hence locally of
finite presentation. Beware that a base change of a perfect morphism is not perfect
in general.

Lemma 36.41.3. A flat base change of a perfect morphism is perfect.

Proof. This translates into the following algebra result: Let A → B be a perfect
ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is perfect. This result for
pseudo-coherent ring maps we have seen in Lemma 36.40.3. The corresponding fact
for finite tor dimension follows from More on Algebra, Lemma 15.51.12. �
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Lemma 36.41.4. A composition of perfect morphisms of schemes is perfect.

Proof. This translates into the following algebra result: If A → B → C are
composable perfect ring maps then A→ C is perfect. We have seen this is the case
for pseudo-coherent in Lemma 36.40.4 and its proof. By assumption there exist
integers n, m such that B has tor dimension ≤ n over A and C has tor dimension
≤ m over B. Then for any A-module M we have

M ⊗L
A C = (M ⊗L

A B)⊗L
B C

and the spectral sequence of More on Algebra, Example 15.48.4 shows that TorAp (M,C) =
0 for p > n+m as desired. �

Lemma 36.41.5. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. The implication (2) ⇒ (1) is More on Algebra, Lemma 15.60.4. The con-
verse follows from the fact that a pseudo-coherent morphism is locally of finite
presentation, see Lemma 36.40.5. �

Lemma 36.41.6. Let f : X → S be a morphism of schemes. Assume S is regular
and f is locally of finite type. Then f is perfect.

Proof. See More on Algebra, Lemma 15.60.5. �

Lemma 36.41.7. A regular immersion of schemes is perfect. A Koszul-regular
immersion of schemes is perfect.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors,
Lemma 30.13.2, it suffices to prove the second statement. This translates into
the following algebraic statement: Suppose that I ⊂ A is an ideal generated by
a Koszul-regular sequence f1, . . . , fr of A. Then A → A/I is a perfect ring map.
Since A→ A/I is surjective this is a presentation of A/I by a polynomial algebra
over A. Hence it suffices to see that A/I is pseudo-coherent as an A-module and
has finite tor dimension. By definition of a Koszul sequence the Koszul complex
K(A, f1, . . . , fr) is a finite free resolution of A/I. Hence A/I is a perfect complex
of A-modules and we win. �

Lemma 36.41.8. Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth and
X → S perfect. Then f : X → Y is perfect.

Proof. We can factor f as the composition

X −→ X ×S Y −→ Y

where the first morphism is the map i = (1, f) and the second morphism is the
projection. Since Y → S is flat, see Morphisms, Lemma 28.35.9, we see that
X ×S Y → Y is perfect by Lemma 36.41.3. As Y → S is smooth, also X ×S Y →
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X is smooth, see Morphisms, Lemma 28.35.5. Hence i is a section of a smooth
morphism, therefore i is a regular immersion, see Divisors, Lemma 30.14.7. This
implies that i is perfect, see Lemma 36.41.7. We conclude that f is perfect because
the composition of perfect morphisms is perfect, see Lemma 36.41.4. �

Remark 36.41.9. It is not true that a morphism between schemes X,Y per-
fect over a base S is perfect. An example is S = Spec(k), X = Spec(k), Y =
Spec(k[x]/(x2) and X → Y the unique S-morphism.

Lemma 36.41.10. The property P(f) =“f is perfect” is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 34.18.4 to prove this. By
Definition 36.41.2 being perfect is Zariski local on the base. By Lemma 36.41.3 being
perfect is preserved under flat base change. The final hypothesis (3) of Descent,
Lemma 34.18.4 translates into the following algebra statement: Let A → B be a
faithfully flat ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If C ⊗A B is
perfect as an B[x1, . . . , xn]-module, then C is perfect as a A[x1, . . . , xn]-module.
This is More on Algebra, Lemma 15.56.12. �

Lemma 36.41.11. Let f : X → S be a pseudo-coherent morphism of schemes.
Then f is perfect if and only if for every x ∈ X the ring OX,x has finite tor
dimension as an OS,f(x)-module.

Proof. This translates into the following algebra problem. Suppose that A → B
is a pseudo-coherent ring map. Write B = A[x1, . . . , xn]/I. Then the following are
equivalent

(1) Bq has finite tor dimension over Ap for all q (with p = A ∩ q), and
(2) B is perfect as an A[x1, . . . , xn]-module.

The implication (2) ⇒ (1) is clear. For the converse, consider a prime q of B lying
over p as in (1). Let q′ be the prime of A[x1, . . . , xn] corresponding to q. By More
on Algebra, Lemma 15.56.19 applied to Ap → A[x1, . . . , xn]q′ we see that Bq is a
perfect A[x1, . . . , xn]q′ -module. Hence B is a perfect A[x1, . . . , xn]-module by More
on Algebra, Lemma 15.56.18. Some details omitted. �

Lemma 36.41.12. The property P(f) =“f is perfect” is fppf local on the source.

Proof. Let {gi : Xi → X}i∈I be an fppf covering of schemes and let f : X → S
be a morphism such that each f ◦ gi is perfect. By Lemma 36.40.12 we conclude
that f is pseudo-coherent. Hence by Lemma 36.41.11 it suffices to check that OX,x
is an OS,f(x)-module of finite tor dimension for all x ∈ X. Pick i ∈ I and xi ∈ Xi

mapping to x. Then we see that OXi,xi has finite tor dimension over OS,f(x) and
that OX,x → OXi,xi is faithfully flat. The desired conclusion follows from More on
Algebra, Lemma 15.51.14. �

Lemma 36.41.13. Let i : Z → Y and j : Y → X be immersions of schemes.
Assume

(1) X is locally Noetherian,
(2) j ◦ i is a regular immersion, and
(3) i is perfect.

Then i and j are regular immersions.
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Proof. Since X (and hence Y ) is locally Noetherian all 4 types of regular immer-
sions agree, and moreover we may check whether a morphism is a regular immersion
on the level of local rings, see Divisors, Lemma 30.12.8. Thus the result follows
from Divided Power Algebra, Lemma 23.7.5. �

36.42. Local complete intersection morphisms

In Divisors, Section 30.13 we have defined 4 different types of regular immersions:
regular, Koszul-regular, H1-regular, and quasi-regular. In this section we consider
morphisms f : X → S which locally on X factors as

X
i

//

��

An
S

~~
S

where i is a ∗-regular immersion for ∗ ∈ {∅,Koszul,H1, quasi}. However, we don’t
know how to prove that this condition is independent of the factorization if ∗ = ∅,
i.e., when we require i to be a regular immersion. On the other hand, we want a
local complete intersection morphism to be perfect, which is only going to be true if
∗ = Koszul or ∗ = ∅. Hence we will define a local complete intersection morphism
or Koszul morphism to be a morphism of schemes f : X → S that locally on X has
a factorization as above with i a Koszul-regular immersion. To see that this works
we first prove this is independent of the chosen factorizations.

Lemma 36.42.1. Let S be a scheme. Let U , P , P ′ be schemes over S. Let u ∈ U .
Let i : U → P , i′ : U → P ′ be immersions over S. Assume P and P ′ smooth over
S. Then the following are equivalent

(1) i is a Koszul-regular immersion in a neighbourhood of x, and
(2) i′ is a Koszul-regular immersion in a neighbourhood of x.

Proof. Assume i is a Koszul-regular immersion in a neighbourhood of x. Consider
the morphism j = (i, i′) : U → P ×S P ′ = P ′′. Since P ′′ = P ×S P ′ → P is
smooth, it follows from Divisors, Lemma 30.14.8 that j is a Koszul-regular immer-
sion, whereupon it follows from Divisors, Lemma 30.14.11 that i′ is a Koszul-regular
immersion. �

Before we state the definition, let us make the following simple remark. Let f :
X → S be a morphism of schemes which is locally of finite type. Let x ∈ X.
Then there exist an open neighbourhood U ⊂ X and a factorization of f |U as the
composition of an immersion i : U → An

S followed by the projection An
S → S which

is smooth. Picture

X

��

Uoo

��

i
// An

S = P

π
{{

S

In fact you can do this with any affine open neighbourhood U of x in X, see
Morphisms, Lemma 28.40.2.

Definition 36.42.2. Let f : X → S be a morphism of schemes.
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(1) Let x ∈ X. We say that f is Koszul at x if f is of finite type at x and
there exists an open neighbourhood and a factorization of f |U as π ◦ i
where i : U → P is a Koszul-regular immersion and π : P → S is smooth.

(2) We say f is a Koszul morphism, or that f is a local complete intersection
morphism if f is Koszul at every point.

We have seen above that the choice of the factorization f |U = π◦ i is irrelevant, i.e.,
given a factorization of f |U as an immersion i followed by a smooth morphism π,
whether or not i is Koszul regular in a neighbourhood of x is an intrinsic property
of f at x. Let us record this here explicitly as a lemma so that we can refer to it

Lemma 36.42.3. Let f : X → S be a local complete intersection morphism. Let
P be a scheme smooth over S. Let U ⊂ X be an open subscheme and i : U → P
an immersion of schemes over S. Then i is a Koszul-regular immersion.

Proof. This is the defining property of a local complete intersection morphism.
See discussion above. �

It seems like a good idea to collect here some properties in common with all Koszul
morphisms.

Lemma 36.42.4. Let f : X → S be a local complete intersection morphism. Then

(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Since a perfect morphism is pseudo-coherent (because a perfect ring map is
pseudo-coherent) and a pseudo-coherent morphism is locally of finite presentation
(because a pseudo-coherent ring map is of finite presentation) it suffices to prove
the last statement. Being perfect is a local property, hence we may assume that f
factors as π ◦ i where π is smooth and i is a Koszul-regular immersion. A Koszul-
regular immersion is perfect, see Lemma 36.41.7. A smooth morphism is perfect as
it is flat and locally of finite presentation, see Lemma 36.41.5. Finally a composition
of perfect morphisms is perfect, see Lemma 36.41.4. �

Lemma 36.42.5. Let f : X = Spec(B) → S = Spec(A) be a morphism of affine
schemes. Then f is a local complete intersection morphism if and only if A → B
is a local complete intersection homomorphism, see More on Algebra, Definition
15.23.2.

Proof. Follows immediately from the definitions. �

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 36.42.6. A flat base change of a local complete intersection morphism is
a local complete intersection morphism.

Proof. Omitted. Hint: This is true because a base change of a smooth morphism
is smooth and a flat base change of a Koszul-regular immersion is a Koszul-regular
immersion, see Divisors, Lemma 30.13.3. �

Lemma 36.42.7. A composition of local complete intersection morphisms is a local
complete intersection morphism.
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Proof. Let g : Y → S and f : X → Y be local complete intersection morphisms.
Let x ∈ X and set y = f(x). Choose an open neighbourhood V ⊂ Y of y and
a factorization g|V = π ◦ i for some Koszul-regular immersion i : V → P and
smooth morphism π : P → S. Next choose an open neighbourhood U of x ∈ X
and a factorization f |U = π′ ◦ i′ for some Koszul-regular immersion i′ : U → P ′

and smooth morphism π′ : P ′ → Y . In fact, we may assume that P ′ = An
V , see

discussion preceding and following Definition 36.42.2. Picture:

X

��

Uoo
i′
// P ′ = An

V

��
Y

��

Voo
i

// P

��
S Soo

Set P ′′ = An
P . Then U → P ′ → P ′′ is a Koszul-regular immersion as a composition

of Koszul-regular immersions, namely i′ and the flat base change of i via P ′′ → P ,
see Divisors, Lemma 30.13.3 and Divisors, Lemma 30.13.7. Also P ′′ → P → S is
smooth as a composition of smooth morphisms, see Morphisms, Lemma 28.35.4.
Hence we conclude that X → S is Koszul at x as desired. �

Lemma 36.42.8. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Assume (2). By Morphisms, Lemma 28.32.10 for every point x of X there
exist affine open neighbourhoods U of x and V of f(x) such that f |U : U → V is
standard syntomic. This means that U = Spec(R[x1, . . . , xn]/(f1, . . . , fc)) → V =
Spec(R) where R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection
over R. By Algebra, Lemma 10.131.13 the sequence f1, . . . , fc is a regular sequence
in each local ring R[x1, . . . , xn]q for every prime q ⊃ (f1, . . . , fc). Consider the
Koszul complex K• = K•(R[x1, . . . , xn], f1, . . . , fc) with homology groups Hi =
Hi(K•). By More on Algebra, Lemma 15.21.2 we see that (Hi)q = 0, i > 0 for
every q as above. On the other hand, by More on Algebra, Lemma 15.20.6 we see
that Hi is annihilated by (f1, . . . , fc). Hence we see that Hi = 0, i > 0 and f1, . . . , fc
is a Koszul-regular sequence. This proves that U → V factors as a Koszul-regular
immersion U → An

V followed by a smooth morphism as desired.

Assume (1). Then f is a flat and locally of finite presentation (Lemma 36.42.4).
Hence, according to Morphisms, Lemma 28.32.10 it suffices to show that the local
rings OXs,x are local complete intersection rings. Choose, locally on X, a factoriza-
tion f = π ◦ i for some Koszul-regular immersion i : X → P and smooth morphism
π : P → S. Note that X → P is a relative quasi-regular immersion over S, see Di-
visors, Definition 30.14.2. Hence according to Divisors, Lemma 30.14.4 we see that
X → P is a regular immersion and the same remains true after any base change.
Thus each fibre is a regular immersion, whence all the local rings of all the fibres
of X are local complete intersections. �
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Lemma 36.42.9. A regular immersion of schemes is a local complete intersection
morphism. A Koszul-regular immersion of schemes is a local complete intersection
morphism.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors,
Lemma 30.13.2, it suffices to prove the second statement. The second statement
follows immediately from the definition. �

Lemma 36.42.10. Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth and
X → S is a local complete intersection morphism. Then f : X → Y is a local
complete intersection morphism.

Proof. Immediate from the definitions. �

The following lemma is of a different nature.

Lemma 36.42.11. Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume

(1) S is locally Noetherian,
(2) Y → S is locally of finite type,
(3) f : X → Y is perfect,
(4) X → S is a local complete intersection morphism.

Then X → Y is a local complete intersection morphism and Y → S is Koszul at
f(x) for all x ∈ X.

Proof. In the course of this proof all schemes will be locally Noetherian and all
rings will be Noetherian. We will use without further mention that regular se-
quences and Koszul regular sequences agree in this setting, see More on Algebra,
Lemma 15.21.6. Moreover, whether an ideal (resp. ideal sheaf) is regular may be
checked on local rings (resp. stalks), see Algebra, Lemma 10.67.8 (resp. Divisors,
Lemma 30.12.8)

The question is local. Hence we may assume S, X, Y are affine. In this situation
we may choose a commutative diagram

An+m
S

��

Xoo

��
An
S

��

Yoo

||
S
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whose horizontal arrows are closed immersions. Let x ∈ X be a point and consider
the corresponding commutative diagram of local rings

J // OAn+m
S ,x

// OX,x

I //

OO

OAn
S ,f(x)

//

OO

OY,f(x)

OO

where J and I are the kernels of the horizontal arrows. Since X → S is a local
complete intersection morphism, the ideal J is generated by a regular sequence.
Since X → Y is perfect the ring OX,x has finite tor dimension over OY,f(x). Hence
we may apply Divided Power Algebra, Lemma 23.7.6 to conclude that I and J/I are
generated by regular sequences. By our initial remarks, this finishes the proof. �

Lemma 36.42.12. The property P(f) =“f is a local complete intersection mor-
phism” is fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc
covering of S. Assume that each base change fi : Xi → Si of f is a local complete
intersection morphism. Note that this implies in particular that f is locally of finite
type, see Lemma 36.42.4 and Descent, Lemma 34.19.8. Let x ∈ X. Choose an open
neighbourhood U of x and an immersion j : U → An

S over S (see discussion pre-
ceding Definition 36.42.2). We have to show that j is a Koszul-regular immersion.
Since fi is a local complete intersection morphism, we see that the base change
ji : U ×S Si → An

Si
is a Koszul-regular immersion, see Lemma 36.42.3. Because

{An
Si
→ An

S} is a fpqc covering we see from Descent, Lemma 34.19.30 that j is a
Koszul-regular immersion as desired. �

Lemma 36.42.13. The property P(f) =“f is a local complete intersection mor-
phism” is syntomic local on the source.

Proof. We will use the criterion of Descent, Lemma 34.22.3 to prove this. It
follows from Lemmas 36.42.8 and 36.42.7 that being a local complete intersection
morphism is preserved under precomposing with syntomic morphisms. It is clear
from Definition 36.42.2 that being a local complete intersection morphism is Zariski
local on the source and target. Hence, according to the aforementioned Descent,
Lemma 34.22.3 it suffices to prove the following: Suppose X ′ → X → Y are
morphisms of affine schemes with X ′ → X syntomic and X ′ → Y a local complete
intersection morphism. Then X → Y is a local complete intersection morphism. To
see this, note that in any case X → Y is of finite presentation by Descent, Lemma
34.10.1. Choose a closed immersion X → An

Y . By Algebra, Lemma 10.131.18
we can find an affine open covering X ′ =

⋃
i=1,...,nX

′
i and syntomic morphisms

Wi → An
Y lifting the morphisms X ′i → X, i.e., such that there are fibre product

diagrams

X ′i

��

// Wi

��
X // An

Y
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After replacing X ′ by
∐
X ′i and setting W =

∐
Wi we obtain a fibre product

diagram of affine schemes

X ′

��

// W

h

��
X // An

Y

with h : W → An
Y syntomic and X ′ → Y still a local complete intersection mor-

phism. Since W → An
Y is open (see Morphisms, Lemma 28.26.9) and X ′ → X is

surjective we see that X is contained in the image of W → An
Y . Choose a closed

immersion W → An+m
Y over An

Y . Now the diagram looks like

X ′

��

// W

h

��

// An+m
Y

||
X // An

Y

Because h is syntomic and hence a local complete intersection morphism (see above)
the morphism W → An+m

Y is a Koszul-regular immersion. Because X ′ → Y is a

local complete intersection morphism the morphism X ′ → An+m
Y is a Koszul-

regular immersion. We conclude from Divisors, Lemma 30.13.8 that X ′ → W is a
Koszul-regular immersion. Hence, since being a Koszul-regular immersion is fpqc
local on the target (see Descent, Lemma 34.19.30) we conclude that X → An

Y is a
Koszul-regular immersion which is what we had to show. �

Lemma 36.42.14. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume both X and Y are flat and locally of finite presentation over S.
Then the set

{x ∈ X | f Koszul at x}.
is open in X and its formation commutes with arbitrary base change S′ → S.

Proof. The set is open by definition (see Definition 36.42.2). Let S′ → S be a
morphism of schemes. Set X ′ = S′ ×S X, Y ′ = S′ ×S Y , and denote f ′ : X ′ → Y ′

the base change of f . Let x′ ∈ X ′ be a point such that f ′ is Koszul at x′. Denote
s′ ∈ S′, x ∈ X, y′ ∈ Y ′ , y ∈ Y , s ∈ S the image of x′. Note that f is locally of
finite presentation, see Morphisms, Lemma 28.22.11. Hence we may choose an affine
neighbourhood U ⊂ X of x and an immersion i : U → An

Y . Denote U ′ = S′ ×S U
and i′ : U ′ → An

Y ′ the base change of i. The assumption that f ′ is Koszul at x′

implies that i′ is a Koszul-regular immersion in a neighbourhood of x′, see Lemma
36.42.3. The scheme X ′ is flat and locally of finite presentation over S′ as a base
change of X (see Morphisms, Lemmas 28.26.7 and 28.22.4). Hence i′ is a relative
H1-regular immersion over S′ in a neighbourhood of x′ (see Divisors, Definition
30.14.2). Thus the base change i′s′ : U ′s′ → An

Y ′
s′

is a H1-regular immersion in an

open neighbourhood of x′, see Divisors, Lemma 30.14.1 and the discussion following
Divisors, Definition 30.14.2. Since s′ = Spec(κ(s′))→ Spec(κ(s)) = s is a surjective
flat universally open morphism (see Morphisms, Lemma 28.24.4) we conclude that
the base change is : Us → An

Ys
is an H1-regular immersion in a neighbourhood of

x, see Descent, Lemma 34.19.30. Finally, note that An
Y is flat and locally of finite

presentation over S, hence Divisors, Lemma 30.14.6 implies that i is a (Koszul-
)regular immersion in a neighbourhood of x as desired. �
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Lemma 36.42.15. Let f : X → Y be a local complete intersection morphism of
schemes. Then f is unramified if and only if f is formally unramified and in this
case the conormal sheaf CX/Y is finite locally free on X.

Proof. The first assertion follows immediately from Lemma 36.4.8 and the fact
that a local complete intersection morphism is locally of finite type. To compute
the conormal sheaf of f we choose, locally on X, a factorization of f as f = p ◦ i
where i : X → V is a Koszul-regular immersion and V → Y is smooth. By Lemma
36.9.11 we see that CX/Y is a locally direct summand of CX/V which is finite locally
free as i is a Koszul-regular (hence quasi-regular) immersion, see Divisors, Lemma
30.13.5. �

Lemma 36.42.16. Let Z → Y → X be formally unramified morphisms of schemes.
Assume that Z → Y is a local complete intersection morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Lemma 36.5.12 is short exact.

Proof. The question is local on Z hence we may assume there exists a factorization
Z → An

Y → Y of the morphism Z → Y . Then we get a commutative diagram

Z
i′
// An

Y
//

��

An
X

��
Z

i // Y // X

As Z → Y is a local complete intersection morphism, we see that Z → An
Y is a

Koszul-regular immersion. Hence by Divisors, Lemma 30.13.6 the sequence

0→ (i′)∗CAn
Y /A

n
X
→ CZ/An

X
→ CZ/An

Y
→ 0

is exact and locally split. Note that i∗CY/X = (i′)∗CAn
Y /A

n
X

by Lemma 36.5.7 and
note that the diagram

(i′)∗CAn
Y /A

n
X

// CZ/An
X

i∗CY/X

∼=

OO

// CZ/X

OO

is commutative. Hence the lower horizontal arrow is a locally split injection. This
proves the lemma. �

36.43. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and
sheaves of differentials. In some sense these are all realizations of the triangle of
cotangent complexes associated to a pair of composable morphisms of schemes.

In the sequences below each of the maps are as constructed in either Morphisms,
Lemma 28.34.8 or Lemma 36.5.5. Let g : Z → Y and f : Y → X be morphisms of
schemes.

(1) There is a canonical exact sequence

g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,
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see Morphisms, Lemma 28.34.9. If g : Z → Y is formally smooth, then
this sequence is a short exact sequence, see Lemma 36.9.9.

(2) If g is formally unramified, then there is a canonical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,

see Lemma 36.5.10. If f◦g : Z → X is formally smooth, then this sequence
is a short exact sequence, see Lemma 36.9.10.

(3) If g and f ◦ g are formally unramified, then there is a canonical exact
sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,

see Lemma 36.5.11. If f : Y → X is formally smooth, then this sequence
is a short exact sequence, see Lemma 36.9.11.

(4) If g and f are formally unramified, then there is a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.

see Lemma 36.5.12. If g : Z → Y is a local complete intersection mor-
phism, then this sequence is a short exact sequence, see Lemma 36.42.16.

36.44. Weakly étale morphisms

A ring homomorphism A→ B is weakly étale if both A→ B and B⊗AB → B are
flat, see More on Algebra, Definition 15.67.1. The analogous notion for morphisms
of schemes is the following.

Definition 36.44.1. A morphism of schemes X → Y is weakly étale or absolutely
flat if both X → Y and the diagonal morphism X → X ×Y X are flat.

An étale morphism is weakly étale and conversely it turns out that a weakly étale
morphism is indeed somewhat like an étale morphism. For example, if X → Y is
weakly étale, then LX/Y = 0, as follows from Cotangent, Lemma 70.8.4. We will
prove a very precise result relating weakly étale morphisms to étale morphisms later
(see Pro-étale Cohomology, Section 46.9). In this section we stick with the basics.

Lemma 36.44.2. Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) X → Y is weakly étale, and
(2) for every x ∈ X the ring map OY,f(x) → OX,x is weakly étale.

Proof. Observe that under both assumptions (1) and (2) the morphism f is flat.
Thus we may assume f is flat. Let x ∈ X with image y = f(x) in Y . There are
canonical maps of rings

OX,x ⊗OY,y OX,x −→ OX×YX,∆X/Y (x) −→ OX,x
where the first map is a localization (hence flat) and the second map is a surjection
(hence an epimorphism of rings). Condition (1) means that for all x the second
arrow is flat. Condition (2) is that for all x the composition is flat. These conditions
are equivalent by Algebra, Lemma 10.38.3 and More on Algebra, Lemma 15.67.2.

�

Lemma 36.44.3. Let X → Y be a morphism of schemes such that X → X ×Y X
is flat. Let F be an OX-module. If F is flat over Y , then F is flat over X.
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Proof. Let x ∈ X with image y = f(x) in Y . Since X → X ×Y X is flat, we
see that OX,x ⊗OY,y OX,x → OX,x is flat. Hence the result follows from More on
Algebra, Lemma 15.67.2 and the definitions. �

Lemma 36.44.4. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is weakly étale.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is weakly étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj, j ∈ J, i ∈ Ij is weakly

étale.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open cover-

ings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of

weakly étale, for all j ∈ J, i ∈ Ij.
Moreover, if f is weakly étale then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is weakly-étale.

Proof. Suppose given open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V . Then
U ×V U ⊂ X ×Y X is open (Schemes, Lemma 25.17.3) and the diagonal ∆U/V of
f |U : U → V is the restriction ∆X/Y |U : U → U ×V U . Since flatness is a local
property of morphisms of schemes (Morphisms, Lemma 28.26.3) the final statement
of the lemma is follows as well as the equivalence of (1) and (3). If X and Y are
affine, then X → Y is weakly étale if and only if OY (Y )→ OX(X) is weakly étale
(use again Morphisms, Lemma 28.26.3). Thus (1) and (3) are also equivalent to (2)
and (4). �

Lemma 36.44.5. Let X → Y → Z be morphisms of schemes.

(1) If X → X ×Y X and Y → Y ×Z Y are flat, then X → X ×Z X is flat.
(2) If X → Y and Y → Z are weakly étale, then X → Z is weakly étale.

Proof. Part (1) follows from the factorization

X → X ×Y X → X ×Z X
of the diagonal of X over Z, the fact that

X ×Y X = (X ×Z X)×(Y×ZY ) Y,

the fact that a base change of a flat morphism is flat, and the fact that the compo-
sition of flat morphisms is flat (Morphisms, Lemmas 28.26.7 and 28.26.5). Part (2)
follows from part (1) and the fact (just used) that the composition of flat morphisms
is flat. �

Lemma 36.44.6. Let X → Y and Y ′ → Y be morphisms of schemes and let
X ′ = Y ′ ×Y X be the base change of X.

(1) If X → X ×Y X is flat, then X ′ → X ′ ×Y ′ X ′ is flat.
(2) If X → Y is weakly étale, then X ′ → Y ′ is weakly étale.

Proof. Assume X → X ×Y X is flat. The morphism X ′ → X ′ ×Y ′ X ′ is the base
change of X → X ×Y X by Y ′ → Y . Hence it is flat by Morphisms, Lemmas
28.26.7. This proves (1). Part (2) follows from (1) and the fact (just used) that the
base change of a flat morphism is flat. �
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Lemma 36.44.7. Let X → Y → Z be morphisms of schemes. Assume that X → Y
is flat and surjective and that X → X ×Z X is flat. Then Y → Y ×Z Y is flat.

Proof. Consider the commutative diagram

X //

��

X ×Z X

��
Y // Y ×Z Y

The top horizontal arrow is flat and the vertical arrows are flat. Hence X is flat over
Y ×Z Y . By Morphisms, Lemma 28.26.11 we see that Y is flat over Y ×Z Y . �

Lemma 36.44.8. Let f : X → Y be a weakly étale morphism of schemes. Then f
is formally unramified, i.e., ΩX/Y = 0.

Proof. Recall that f is formally unramified if and only if ΩX/Y = 0 by Lemma
36.4.7. Via Lemma 36.44.4 and Morphisms, Lemma 28.34.5 this follows from the
case of rings which is More on Algebra, Lemma 15.67.12. �

Lemma 36.44.9. Let f : X → Y be a morphism of schemes. Then X → Y is
weakly étale in each of the following cases

(1) X → Y is a flat monomorphism,
(2) X → Y is an open immersion,
(3) X → Y is flat and unramified,
(4) X → Y is étale.

Proof. If (1) holds, then ∆X/Y is an isomorphism, hence certainly f is weakly étale.
Case (2) is a special case of (1). The diagonal of an unramified morphism is an
open immersion (Morphisms, Lemma 28.36.13), hence flat. Thus a flat unramified
morphism is weakly étale. An étale morphism is flat and unramified (Morphisms,
Lemma 28.37.5), hence (4) follows from (3). �

Lemma 36.44.10. Let f : X → Y be a morphism of schemes. If Y is reduced and
f weakly étale, then X is reduced.

Proof. Via Lemma 36.44.4 this follows from the case of rings which is More on
Algebra, Lemma 15.67.8. �

The following lemma uses a nontrivial result about weakly étale ring maps.

Lemma 36.44.11. Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is weakly étale, and
(2) for x ∈ X the local ring map OY,f(x) → OX,x induces an isomorphism on

strict henselizations.

Proof. Let x ∈ X be a point with image y = f(x) in Y . Choose a separable
algebraic closure κsep of κ(x). Let OshX,x be the strict henselization corresponding

to κsep and OshY,y the strict henselization relative to the separable algebraic closure
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of κ(y) in κsep. Consider the commutative diagram

OX,x // OshX,x

OY,y

OO

// OshY,y

OO

local homomorphisms of local rings, see Algebra, Lemma 10.145.26. Since the strict
henselization is a filtered colimit of étale ring maps, More on Algebra, Lemma
15.67.13 shows the horizontal maps are weakly étale. Moreover, the horizontal
maps are faithfully flat by More on Algebra, Lemma 15.34.1.

Assume f weakly étale. By Lemma 36.44.2 the left vertical arrow is weakly étale.
By More on Algebra, Lemmas 15.67.9 and 15.67.11 the right vertical arrow is weakly
étale. By More on Algebra, Theorem 15.67.24 we conclude the right vertical map
is an isomorphism.

Assume OshY,y → OshX,x is an isomorphism. Then OY,y → OshX,x is weakly étale. Since

OX,x → OshX,x is faithfully flat we conclude that OY,y → OX,x is weakly étale by

More on Algebra, Lemma 15.67.10. Thus (2) implies (1) by Lemma 36.44.2. �

Lemma 36.44.12. Let f : X → Y be a morphism of schemes. If Y is a normal
scheme and f weakly étale, then X is a normal scheme.

Proof. By More on Algebra, Lemma 15.34.6 a scheme S is normal if and only if
for all s ∈ S the strict henselization of OS,s is a normal domain. Hence the lemma
follows from Lemma 36.44.11. �

Lemma 36.44.13. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. If X, Y are weakly étale over S, then f is weakly étale.

Proof. We will use Morphisms, Lemmas 28.26.7 and 28.26.5 without further men-
tion. Write X → Y as the composition X → X ×S Y → Y . The second morphism
is flat as the base change of the flat morphism X → S. The first is the base change
of the flat morphism Y → Y ×S Y by the morphism X×S Y → Y ×S Y , hence flat.
Thus X → Y is flat. The morphism X ×Y X → X ×S X is an immersion. Thus
Lemma 36.44.3 implies, that since X is flat over X ×S X it follows that X is flat
over X ×Y X. �

36.45. Reduced fibre theorem

In this section we discuss the simplest kind of theorem of the kind advertised by the
title. Although the proof of the result is kind of laborious, in essence it follows in
a straightforward manner from Epp’s result on eliminating ramification, see More
on Algebra, Theorem 15.69.21.

Let A be a Dedekind domain with fraction field K. Let X be a scheme flat and
of finite type over A. Let L be a finite extension of K. Let B be the integral
closure of A in L. Then B is a Dedekind domain (Algebra, Lemma 10.116.14). Let
XB = X ×Spec(A) Spec(B) be the base change. Then XB → Spec(B) is of finite
type (Morphisms, Lemma 28.16.4). Hence XB is Noetherian (Morphisms, Lemma
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28.16.6). Thus the normalization ν : Y → XB exists (see Morphisms, Definition
28.48.12 and the discussion following). Picture

(36.45.0.1) Y

##

ν
// XB

//

��

X

��
Spec(B) // Spec(A)

We sometimes call Y the normalized base change of X. In general the morphism ν
may not be finite. But if A is a Nagata ring (a condition that is virtually always
satisfied in practice) then ν is of finite and Y is of finite type over B, see Morphisms,
Lemmas 28.48.18 and 28.19.1.

Taking the normalized base change commutes with composition. More precisely, if
K ⊂ L ⊂ M are finite extensions of fields with integral closures A ⊂ B ⊂ C then
the normalized base change Z of Y → Spec(B) relative to L ⊂ M is equal to the
normalized base change of X → Spec(A) relative to K ⊂M .

Theorem 36.45.1. Let A be a Dedekind ring with fraction field K. Let X be a
scheme flat and of finite type over A. Assume A is a Nagata ring. There exists
a finite extension K ⊂ L such that the normalized base change Y is smooth over
Spec(B) at all generic points of all fibres.

Proof. During the proof we will repeatedly use that formation of the set of points
where a (flat, finitely presented) morphism like X → Spec(A) is smooth commutes
with base change, see Morphisms, Lemma 28.35.15.

We first choose a finite extension K ⊂ L such that (XL)red is geometrically reduced
over L, see Varieties, Lemma 32.4.11. Since Y → (XB)red is birational we see
applying Varieties, Lemma 32.4.8 that YL is geometrically reduced over L as well.
Hence YL → Spec(L) is smooth on a dense open V ⊂ YL by Varieties, Lemma
32.15.7. Thus the smooth locus U ⊂ Y of the morphism Y → Spec(B) is open (by
Morphisms, Definition 28.35.1) and is dense in the generic fibre. Replacing A by B
and X by Y we reduce to the case treated in the next paragraph.

Assume X is normal and the smooth locus U ⊂ X of X → Spec(A) is dense in
the generic fibre. This implies that U is dense in all but finitely many fibres, see
Lemma 36.19.3. Let x1, . . . , xr ∈ X \ U be the finitely many generic points of
irreducible components of X \ U which are moreover generic points of irreducible
components of fibres of X → Spec(A). Set Oi = OX,xi . Let Ai be the localization
of A at the maximal ideal corresponding to the image of xi in Spec(A). By More
on Algebra, Proposition 15.69.23 there exist finite extensions K ⊂ Ki which are
solutions for the extension of discrete valuation rings Ai → Oi. Let K ⊂ L be a
finite extension dominating all of the extensions K ⊂ Ki. Then K ⊂ L is still a
solution for Ai → Oi by More on Algebra, Lemma 15.69.4.

Consider the diagram (36.45.0.1) with the extension L/K we just produced. Note
that UB ⊂ XB is smooth over B, hence normal (for example use Algebra, Lemma
10.151.7). Thus Y → XB is an isomorphism over UB . Let y ∈ Y be a generic point
of an irreducible component of a fibre of Y → Spec(B) lying over the maximal ideal
m ⊂ B. Assume that y 6∈ UB . Then y maps to one of the points xi. It follows that
OY,y is a local ring of the integral closure of Oi in R(X) ⊗K L (details omitted).
Hence because K ⊂ L is a solution for Ai → Oi we see that Bm → OY,y is formally
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smooth (this is the definition of being a ”solution”). In other words, mOY,y = my
and the residue field extension is separable. Hence the local ring of the fibre at y
is κ(y). This implies the fibre is smooth over κ(m) at y for example by Algebra,
Lemma 10.135.5. This finishes the proof. �

36.46. Ind-quasi-affine morphisms

A bit of theory to be used later.

Definition 36.46.1. A scheme X is ind-quasi-affine if every quasi-compact open
of X is quasi-affine. Similarly, a morphism of schemes X → Y is ind-quasi-affine if
f−1(V ) is ind-quasi-affine for each affine open V in Y .

An example of an ind-quasi-affine scheme is an open of an affine scheme or an open
of a quasi-projective scheme. An ind-quasi-affine scheme X is separated because
any two affine opens U, V are contained in a separated open subscheme of X, namely
U ∪ V . Similarly an ind-quasi-affine morphism is separated.

Lemma 36.46.2. The property of being ind-quasi-affine is stable under base change.

Proof. Let f : X → Y be an ind-quasi-affine morphism. Let Z be an affine
scheme and let Z → Y be a morphism. To show: Z ×Y X is ind-quasi-affine. Let
W ⊂ Z ×Y X be a quasi-compact open. We can find finitely many affine opens
V1, . . . , Vn of Y and finitely many quasi-compact opens Ui ⊂ f−1(Vi) such that Z
maps into

⋃
V )i and W maps into

⋃
Ui. Then we may replace Y by

⋃
Vi and X

by
⋃
Wi. In this case f−1(Vi) is quasi-compact open (details omitted; use that f

is separated) and hence quasi-affine. Thus now X → Y is a quasi-affine morphism
(Morphisms, Lemma 28.14.3) and the result follows from the fact that the base
change of a quasi-affine morphism is quasi-affine (Morphisms, Lemma 28.14.5). �

Lemma 36.46.3. The property of being ind-quasi-affine is fpqc local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {gi : Yi → Y } be an fpqc
covering such that the base change fi : Xi → Yi is ind-quasi-affine for all i. We will
show f is ind-quasi-affine. Namely, let U ⊂ X be a quasi-compact open mapping
into an affine open V ⊂ Y . We have to show that U is quasi-affine. Let Vj ⊂ Yij ,
j = 1, . . . ,m be affine opens such that V =

⋃
gij (Vj) (exist by definition of fpqc

coverings). Then Vi ×Y X → Vi is ind-quasi-affine as well. Hence we may replace
Y by V and {gi : Yi → Y } by the finite covering {Vj → V }. We may replace X by
U , because Vj ×Y U ⊂ Vj ×Y X is open and hence Vj ×Y U → Vj is ind-quasi-affine
as well (ind-quasi-affineness is inherited by opens). Hence we may assume X is
quasi-compact and Y affine. In this case we have to show that X is quasi-affine
and we know that Xi is quasi-affine. Thus the result follows from Descent, Lemma
34.19.18. �

Lemma 36.46.4. A separated locally quasi-finite morphism of schemes is ind-
quasi-affine.

Proof. Let f : X → Y be a separated locally quasi-finite morphism of schemes.
Let V ⊂ Y be affine and U ⊂ f−1(V ) quasi-compact open. We have to show U
is quasi-affine. Since U → V is a separated quasi-finite morphism of schemes, this
follows from Zariski’s Main Theorem. See Lemma 36.31.2. �
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CHAPTER 37

More on Flatness

37.1. Introduction

In this chapter, we discuss some advanced results on flat modules and flat mor-
phisms of schemes. Most of these results can be found in the paper [GR71] by
Raynaud and Gruson.

Before reading this chapter we advise the reader to take a look at the following
results (this list also serves as a pointer to previous results):

(1) General discussion on flat modules in Algebra, Section 10.38.
(2) The relationship between Tor-groups and flatness, see Algebra, Section

10.72.
(3) Criteria for flatness, see Algebra, Section 10.95 (Noetherian case), Alge-

bra, Section 10.97 (Artinian case), Algebra, Section 10.124 (non-Noetherian
case), and finally More on Morphisms, Section 36.13.

(4) Generic flatness, see Algebra, Section 10.114 and Morphisms, Section
28.28.

(5) Openness of the flat locus, see Algebra, Section 10.125 and More on Mor-
phisms, Section 36.12.

(6) Flattening, see More on Algebra, Sections 15.9, 15.10, 15.11, 15.12, and
15.13.

(7) Additional results in More on Algebra, Sections 15.14, 15.15, 15.17, and
15.18.

37.2. Lemmas on étale localization

In this section we list some lemmas on étale localization which will be useful later
in this chapter. Please skip this section on a first reading.

Lemma 37.2.1. Let i : Z → X be a closed immersion of affine schemes. Let
Z ′ → Z be an étale morphism with Z ′ affine. Then there exists an étale morphism
X ′ → X with X ′ affine such that Z ′ ∼= Z ×X X ′ as schemes over Z.

Proof. See Algebra, Lemma 10.138.11. �

Lemma 37.2.2. Let
X

��

X ′oo

��
S S′oo

be a commutative diagram of schemes with X ′ → X and S′ → S étale. Let s′ ∈ S′
be a point. Then

X ′ ×S′ Spec(OS′,s′) −→ X ×S Spec(OS′,s′)

2441
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is étale.

Proof. This is true because X ′ → XS′ is étale as a morphism of schemes étale over
X, see Morphisms, Lemma 28.37.18 and the base change of an étale morphism is
étale, see Morphisms, Lemma 28.37.4. �

Lemma 37.2.3. Let X → T → S be morphisms of schemes with T → S étale. Let
F be a quasi-coherent OX-module. Let x ∈ X be a point. Then

F flat over S at x⇔ F flat over T at x

In particular F is flat over S if and only if F is flat over T .

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 28.37.12)
the implication “⇐” follows from Algebra, Lemma 10.38.3. For the converse assume
that F is flat at x over S. Denote x̃ ∈ X ×S T the point lying over x in X and
over the image of x in T in T . Then (X ×S T → X)∗F is flat at x̃ over T via pr2 :
X ×S T → T , see Morphisms, Lemma 28.26.6. The diagonal ∆T/S : T → T ×S T
is an open immersion; combine Morphisms, Lemmas 28.36.13 and 28.37.5. So X is
identified with open subscheme of X ×S T , the restriction of pr2 to this open is the
given morphism X → T , the point x̃ corresponds to the point x in this open, and
(X ×S T → X)∗F restricted to this open is F . Whence we see that F is flat at x
over T . �

Lemma 37.2.4. Let T → S be an étale morphism. Let t ∈ T with image s ∈ S.
Let M be a OT,t-module. Then

M flat over OS,s ⇔M flat over OT,t.

Proof. We may replace S by an affine neighbourhood of s and after that T by an

affine neighbourhood of t. Set F = (Spec(OT,t)→ T )∗M̃ . This is a quasi-coherent
sheaf (see Schemes, Lemma 25.24.1 or argue directly) on T whose stalk at t is M
(details omitted). Apply Lemma 37.2.3. �

Lemma 37.2.5. Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s)
the henselization (resp. strict henselization), see Algebra, Definition 10.145.18. Let
Msh be a OshS,s-module. The following are equivalent

(1) Msh is flat over OS,s,
(2) Msh is flat over OhS,s, and

(3) Msh is flat over OshS,s.
If Msh = Mh ⊗OhS,s O

sh
S,s this is also equivalent to

(4) Mh is flat over OS,s, and
(5) Mh is flat over OhS,s.

If Mh = M ⊗OS,s OhS,s this is also equivalent to

(6) M is flat over OS,s.

Proof. We may assume that S is an affine scheme. It is shown in Algebra, Lemmas
10.145.21 and 10.145.27 that OhS,s and OshS,s are filtered colimits of the rings OT,t
where T → S is étale and affine. Hence the local ring maps OS,s → OhS,s → OshS,s
are flat as directed colimits of étale ring maps, see Algebra, Lemma 10.38.2. Hence
(3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) follow from Algebra, Lemma 10.38.3. Of course
these maps are faithfully flat, see Algebra, Lemma 10.38.16. Hence the equivalences
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(6) ⇔ (5) and (5) ⇔ (3) follow from Algebra, Lemma 10.38.7. Thus it suffices to
show that (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5).

Assume (1). By Lemma 37.2.4 we see that Msh is flat over OT,t for any étale
neighbourhood (T, t) → (S, s). Since OhS,s and OshS,s are directed colimits of local

rings of the form OT,t (see above) we conclude that Msh is flat over OhS,s and OshS,s
by Algebra, Lemma 10.38.5. Thus (1) implies (2) and (3). Of course this implies
also (2) ⇒ (3) by replacing OS,s by OhS,s. The same argument applies to prove (4)

⇒ (5). �

Lemma 37.2.6. Let g : T → S be a finite flat morphism of schemes. Let G be a
quasi-coherent OS-module. Let t ∈ T be a point with image s ∈ S. Then

t ∈WeakAss(g∗G)⇔ s ∈WeakAss(G)

Proof. The implication “⇐” follows immediately from Divisors, Lemma 30.6.4.
Assume t ∈ WeakAss(g∗G). Let Spec(A) ⊂ S be an affine open neighbourhood of
s. Let G be the quasi-coherent sheaf associated to the A-module M . Let p ⊂ A
be the prime ideal corresponding to s. As g is finite flat we have g−1(Spec(A)) =
Spec(B) for some finite flat A-algebra B. Note that g∗G is the quasi-coherent
OSpec(B)-module associated to the B-module M ⊗A B and g∗g

∗G is the quasi-
coherentOSpec(A)-module associated to the A-module M⊗AB. By Algebra, Lemma

10.75.4 we have Bp
∼= A⊕np for some integer n ≥ 0. Note that n ≥ 1 as we assumed

there exists at least one point of T lying over s. Hence we see by looking at stalks
that

s ∈WeakAss(G)⇔ s ∈WeakAss(g∗g
∗G)

Now the assumption that t ∈ WeakAss(g∗G) implies that s ∈ WeakAss(g∗g
∗G) by

Divisors, Lemma 30.6.3 and hence by the above s ∈WeakAss(G). �

Lemma 37.2.7. Let h : U → S be an étale morphism of schemes. Let G be a
quasi-coherent OS-module. Let u ∈ U be a point with image s ∈ S. Then

u ∈WeakAss(h∗G)⇔ s ∈WeakAss(G)

Proof. After replacing S and U by affine neighbourhoods of s and u we may assume
that g is a standard étale morphism of affines, see Morphisms, Lemma 28.37.14.
Thus we may assume S = Spec(A) and X = Spec(A[x, 1/g]/(f)), where f is monic
and f ′ is invertible in A[x, 1/g]. Note that A[x, 1/g]/(f) = (A[x]/(f))g is also the
localization of the finite free A-algebra A[x]/(f). Hence we may think of U as an
open subscheme of the scheme T = Spec(A[x]/(f)) which is finite locally free over
S. This reduces us to Lemma 37.2.6 above. �

37.3. The local structure of a finite type module

The key technical lemma that makes a lot of the arguments in this chapter work is
the geometric Lemma 37.3.2.

Lemma 37.3.1. Let f : X → S be a finite type morphism of affine schemes. Let
F be a finite type quasi-coherent OX-module. Let x ∈ X with image s = f(x)
in S. Set Fs = F|Xs . Then there exist a closed immersion i : Z → X of finite
presentation, and a quasi-coherent finite type OZ-module G such that i∗G = F and
Zs = Supp(Fs).
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Proof. Say the morphism f : X → S is given by the ring map A→ B and that F
is the quasi-coherent sheaf associated to the B-module M . By Morphisms, Lemma
28.16.2 we know that A→ B is a finite type ring map, and by Properties, Lemma
27.16.1 we know that M is a finite B-module. In particular the support of F is
the closed subscheme of Spec(B) cut out by the annihilator I = {x ∈ B | xm =
0 ∀m ∈ M} of M , see Algebra, Lemma 10.39.5. Let q ⊂ B be the prime ideal
corresponding to x and let p ⊂ A be the prime ideal corresponding to s. Note that
Xs = Spec(B ⊗A κ(p)) and that Fs is the quasi-coherent sheaf associated to the
B ⊗A κ(p) module M ⊗A κ(p). By Morphisms, Lemma 28.5.3 the support of Fs is
equal to V (I(B ⊗A κ(p))). Since B ⊗A κ(p) is of finite type over κ(p) there exist
finitely many elements f1, . . . , fm ∈ I such that

I(B ⊗A κ(p)) = (f1, . . . , fn)(B ⊗A κ(p)).

Denote i : Z → X the closed subscheme cut out by (f1, . . . , fm), in a formula
Z = Spec(B/(f1, . . . , fm)). Since M is annihilated by I we can think of M as
an B/(f1, . . . , fm)-module. In other words, F is the pushforward of a finite type
module on Z. As Zs = Supp(Fs) by construction, this proves the lemma. �

Lemma 37.3.2. Let f : X → S be morphism of schemes which is locally of finite
type. Let F be a finite type quasi-coherent OX-module. Let x ∈ X with image
s = f(x) in S. Set Fs = F|Xs and n = dimx(Supp(Fs)). Then we can construct

(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′
eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′-module G,

such that the following properties hold

(1) X ′, Z ′, Y ′, S′ are affine schemes,
(2) i is a closed immersion of finite presentation,
(3) i∗(G) ∼= g∗F ,
(4) π is finite and π−1({y′}) = {z′},
(5) the extension κ(s′) ⊂ κ(y′) is purely transcendental,
(6) h is smooth of relative dimension n with geometrically integral fibres.

Proof. Let V ⊂ S be an affine neighbourhood of s. Let U ⊂ f−1(V ) be an affine
neighbourhood of x. Then it suffices to prove the lemma for f |U : U → V and F|U .
Hence in the rest of the proof we assume that X and S are affine.
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First, suppose that Xs = Supp(Fs), in particular n = dimx(Xs). Apply More on
Morphisms, Lemmas 36.33.2 and 36.33.3. This gives us a commutative diagram

X

��

X ′
g

oo

π

��
Y ′

h
��

S S′
eoo

and point x′ ∈ X ′. We set Z ′ = X ′, i = id, and G = g∗F to obtain a solution in
this case.

In general choose a closed immersion Z → X and a sheaf G on Z as in Lemma
37.3.1. Applying the result of the previous paragraph to Z → S and G we obtain a
diagram

X

f

��

Zoo

f |Z

��

Z ′
g

oo

π

��
Y ′

h
��

S S S′
eoo

and point z′ ∈ Z ′ satisfying all the required properties. We will use Lemma 37.2.1
to embed Z ′ into a scheme étale over X. We cannot apply the lemma directly as
we want X ′ to be a scheme over S′. Instead we consider the morphisms

Z ′ // Z ×S S′ // X ×S S′

The first morphism is étale by Morphisms, Lemma 28.37.18. The second is a closed
immersion as a base change of a closed immersion. Finally, as X, S, S′, Z, Z ′ are
all affine we may apply Lemma 37.2.1 to get an étale morphism of affine schemes
X ′ → X ×S S′ such that

Z ′ = (Z ×S S′)×(X×SS′) X
′ = Z ×X X ′.

As Z → X is a closed immersion of finite presentation, so is Z ′ → X ′. Let x′ ∈ X ′
be the point corresponding to z′ ∈ Z ′. Then the completed diagram

X

��

X ′

��

oo Z ′
i

oo

π

��
Y ′

h
��

S S′
eoo S′

is a solution of the original problem. �

Lemma 37.3.3. Assumptions and notation as in Lemma 37.3.2. If f is locally of
finite presentation then π is of finite presentation. In this case the following are
equivalent
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(1) F is an OX-module of finite presentation in a neighbourhood of x,
(2) G is an OZ′-module of finite presentation in a neighbourhood of z′, and
(3) π∗G is an OY ′-module of finite presentation in a neighbourhood of y′.

Still assuming f locally of finite presentation the following are equivalent to each
other

(a) Fx is an OX,x-module of finite presentation,
(b) Gz′ is an OZ′,z′-module of finite presentation, and
(c) (π∗G)y′ is an OY ′,y′-module of finite presentation.

Proof. Assume f locally of finite presentation. Then Z ′ → S is locally of finite
presentation as a composition of such, see Morphisms, Lemma 28.22.3. Note that
Y ′ → S is also locally of finite presentation as a composition of a smooth and an
étale morphism. Hence Morphisms, Lemma 28.22.11 implies π is locally of finite
presentation. Since π is finite we conclude that it is also separated and quasi-
compact, hence π is actually of finite presentation.

To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is a OX′ -
module of finite presentation in a neighbourhood of x′. The pullback of a module of
finite presentation is of finite presentation, see Modules, Lemma 17.11.4. Hence (1)
⇒ (4). The étale morphism g is open, see Morphisms, Lemma 28.37.13. Hence for
any open neighbourhood U ′ ⊂ X ′ of x′, the image g(U ′) is an open neighbourhood
of x and the map {U ′ → g(U ′)} is an étale covering. Thus (4) ⇒ (1) by Descent,
Lemma 34.6.3. Using Descent, Lemma 34.6.10 and some easy topological arguments
(see More on Morphisms, Lemma 36.33.4) we see that (4) ⇔ (2) ⇔ (3).

To prove the equivalence of (a), (b), (c) consider the ring maps

OX,x → OX′,x′ → OZ′,z′ ← OY ′,y′
The first ring map is faithfully flat. Hence Fx is of finite presentation over OX,x if
and only if g∗Fx′ is of finite presentation over OX′,x′ , see Algebra, Lemma 10.80.2.
The second ring map is surjective (hence finite) and finitely presented by assump-
tion, hence g∗Fx′ is of finite presentation over OX′,x′ if and only if Gz′ is of finite
presentation over OZ′,z′ , see Algebra, Lemma 10.7.4. Because π is finite, of finite
presentation, and π−1({y′}) = {x′} the ring homomorphism OY ′,y′ ← OZ′,z′ is
finite and of finite presentation, see More on Morphisms, Lemma 36.33.4. Hence
Gz′ is of finite presentation over OZ′,z′ if and only if π∗Gy′ is of finite presentation
over OY ′,y′ , see Algebra, Lemma 10.7.4. �

Lemma 37.3.4. Assumptions and notation as in Lemma 37.3.2. The following
are equivalent

(1) F is flat over S in a neighbourhood of x,
(2) G is flat over S′ in a neighbourhood of z′, and
(3) π∗G is flat over S′ in a neighbourhood of y′.

The following are equivalent also

(a) Fx is flat over OS,s,
(b) Gz′ is flat over OS′,s′ , and
(c) (π∗G)y′ is flat over OS′,s′ .

Proof. To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is
flat over S in a neighbourhood of x′. We will use Lemma 37.2.3 to equate flatness
over S and S′ without further mention. The étale morphism g is flat and open,
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see Morphisms, Lemma 28.37.13. Hence for any open neighbourhood U ′ ⊂ X ′ of
x′, the image g(U ′) is an open neighbourhood of x and the map U ′ → g(U ′) is
surjective and flat. Thus (4) ⇔ (1) by Morphisms, Lemma 28.26.11. Note that

Γ(X ′, g∗F) = Γ(Z ′,G) = Γ(Y ′, π∗G)

Hence the flatness of g∗F , G and π∗G over S′ are all equivalent (this uses that X ′,
Z ′, Y ′, and S′ are all affine). Some omitted topological arguments (compare More
on Morphisms, Lemma 36.33.4) regarding affine neighbourhoods now show that (4)
⇔ (2) ⇔ (3).

To prove the equivalence of (a), (b), (c) consider the commutative diagram of local
ring maps

OX′,x′ ι
// OZ′,z′ OY ′,y′α

oo OS′,s′
β
oo

OX,x

γ

OO

OS,s
ϕoo

ε

OO

We will use Lemma 37.2.4 to equate flatness over OS,s and OS′,s′ without further
mention. The map γ is faithfully flat. Hence Fx is flat over OS,s if and only
if g∗Fx′ is flat over OS′,s′ , see Algebra, Lemma 10.38.8. As OS′,s′ -modules the
modules g∗Fx′ , Gz′ , and π∗Gy′ are all isomorphic, see More on Morphisms, Lemma
36.33.4. This finishes the proof. �

37.4. One step dévissage

In this section we explain what is a one step dévissage of a module. A one step
dévissage exist étale locally on base and target. We discuss base change, Zariski
shrinking and étale localization of a one step dévissage.

Definition 37.4.1. Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A one step
dévissage of F/X/S over s is given by morphisms of schemes over S

X Z
ioo π // Y

and a quasi-coherent OZ-module G of finite type such that

(1) X, S, Z and Y are affine,
(2) i is a closed immersion of finite presentation,
(3) F ∼= i∗G,
(4) π is finite, and
(5) the structure morphism Y → S is smooth with geometrically irreducible

fibres of dimension dim(Supp(Fs)).
In this case we say (Z, Y, i, π,G) is a one step dévissage of F/X/S over s.

Note that such a one step dévissage can only exist if X and S are affine. In the
definition above we only require X to be (locally) of finite type over S and we
continue working in this setting below. In [GR71] the authors use consistently
the setup where X → S is locally of finite presentation and F quasi-coherent OX -
module of finite type. The advantage of this choice is that it “makes sense” to ask
for F to be of finite presentation as an OX -module, whereas in our setting it “does
not make sense”. Please see More on Morphisms, Section 36.38 for a discussion; the
observations made there show that in our setup we may consider the condition of F
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being “locally of finite presentation relative to S”, and we could work consistently
with this notion. Instead however, we will rely on the results of Lemma 37.3.3
and the observations in Remark 37.6.3 to deal with this issue in an ad hoc fashion
whenever it comes up.

Definition 37.4.2. Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s in S. A one step dévissage of F/X/S at x is a system (Z, Y, i, π,G, z, y), where
(Z, Y, i, π,G) is a one step dévissage of F/X/S over s and

(1) dimx(Supp(Fs)) = dim(Supp(Fs)),
(2) z ∈ Z is a point with i(z) = x and π(z) = y,
(3) we have π−1({y}) = {z},
(4) the extension κ(s) ⊂ κ(y) is purely transcendental.

A one step dévissage of F/X/S at x can only exist if X and S are affine. Condition
(1) assures us that Y → S has relative dimension equal to dimx(Supp(Fs)) via
condition (5) of Definition 37.4.1.

Lemma 37.4.3. Let f : X → S be morphism of schemes which is locally of finite
type. Let F be a finite type quasi-coherent OX-module. Let x ∈ X with image
s = f(x) in S. Then there exists a commutative diagram of pointed schemes

(X,x)

f

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

such that (S′, s′) → (S, s) and (X ′, x′) → (X,x) are elementary étale neighbour-
hoods, and such that g∗F/X ′/S′ has a one step dévissage at x′.

Proof. This is immediate from Definition 37.4.2 and Lemma 37.3.2. �

Lemma 37.4.4. Let S, X, F , s be as in Definition 37.4.1. Let (Z, Y, i, π,G) be
a one step dévissage of F/X/S over s. Let (S′, s′) → (S, s) be any morphism
of pointed schemes. Given this data let X ′, Z ′, Y ′, i′, π′ be the base changes of
X,Z, Y, i, π via S′ → S. Let F ′ be the pullback of F to X ′ and let G′ be the pullback
of G to Z ′. If S′ is affine, then (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′
over s′.

Proof. Fibre products of affines are affine, see Schemes, Lemma 25.17.2. Base
change preserves closed immersions, morphisms of finite presentation, finite mor-
phisms, smooth morphisms, morphisms with geometrically irreducible fibres, and
morphisms of relative dimension n, see Morphisms, Lemmas 28.2.4, 28.22.4, 28.44.6,
28.35.5, 28.30.2, and More on Morphisms, Lemma 36.22.2. We have i′∗G′ ∼= F ′ be-
cause pushforward along the finite morphism i commutes with base change, see Co-
homology of Schemes, Lemma 29.5.1. We have dim(Supp(Fs)) = dim(Supp(F ′s′))
by Morphisms, Lemma 28.29.3 because

Supp(Fs)×s s′ = Supp(F ′s′).

This proves the lemma. �
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Lemma 37.4.5. Let S, X, F , x, s be as in Definition 37.4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let (S′, s′) → (S, s) be a morphism of
pointed schemes which induces an isomorphism κ(s) = κ(s′). Let (Z ′, Y ′, i′, π′,G′)
be as constructed in Lemma 37.4.4 and let x′ ∈ X ′ (resp. z′ ∈ Z ′, y′ ∈ Y ′) be the
unique point mapping to both x ∈ X (resp. z ∈ Z, y ∈ Y ) and s′ ∈ S′. If S′ is
affine, then (Z ′, Y ′, i′, π′,G′, z′, y′) is a one step dévissage of F ′/X ′/S′ at x′.

Proof. By Lemma 37.4.4 (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over
s′. Properties (1) – (4) of Definition 37.4.2 hold for (Z ′, Y ′, i′, π′,G′, z′, y′) as the
assumption that κ(s) = κ(s′) insures that the fibres X ′s′ , Z

′
s′ , and Y ′s′ are isomorphic

to Xs, Zs, and Ys. �

Definition 37.4.6. Let S, X, F , x, s be as in Definition 37.4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let us define a standard shrinking of this
situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X, Z ′ ⊂ Z, and Y ′ ⊂ Y such
that s ∈ S′, x ∈ X ′, z ∈ Z ′, and y ∈ Y ′ and such that

(Z ′, Y ′, i|Z′ , π|Z′ ,G|Z′ , z, y)

is a one step dévissage of F|X′/X ′/S′ at x.

Lemma 37.4.7. With assumption and notation as in Definition 37.4.6 we have:

(1) If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,
Z ′ = ZS′ and Y ′ = YS′ we obtain a standard shrinking.

(2) Let W ⊂ Y be a standard open neighbourhood of y. Then there exists a
standard shrinking with Y ′ = W ×S S′.

(3) Let U ⊂ X be an open neighbourhood of x. Then there exists a standard
shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemma 37.4.5 and the fact that the inverse
image of a standard open under a morphism of affine schemes is a standard open,
see Algebra, Lemma 10.16.4.

Let W ⊂ Y as in (2). Because Y → S is smooth it is open, see Morphisms, Lemma
28.35.10. Hence we can find a standard open neighbourhood S′ of s contained in
the image of W . Then the fibres of WS′ → S′ are nonempty open subschemes
of the fibres of Y → S over S′ and hence geometrically irreducible too. Setting
Y ′ = WS′ and Z ′ = π−1(Y ′) we see that Z ′ ⊂ Z is a standard open neighbourhood
of z. Let h ∈ Γ(Z,OZ) be a function such that Z ′ = D(h). As i : Z → X is a
closed immersion, we can find a function h ∈ Γ(X,OX) such that i](h) = h. Take
X ′ = D(h) ⊂ X. In this way we obtain a standard shrinking as in (2).

Let U ⊂ X be as in (3). We may after shrinking U assume that U is a standard
open. By More on Morphisms, Lemma 36.33.4 there exists a standard open W ⊂ Y
neighbourhood of y such that π−1(W ) ⊂ i−1(U). Apply (2) to get a standard
shrinking X ′, S′, Z ′, Y ′ with Y ′ = WS′ . Since Z ′ ⊂ π−1(W ) ⊂ i−1(U) we may
replace X ′ by X ′ ∩ U (still a standard open as U is also standard open) without
violating any of the conditions defining a standard shrinking. Hence we win. �
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Lemma 37.4.8. Let S, X, F , x, s be as in Definition 37.4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let

(Y, y)

��

(Y ′, y′)oo

��
(S, s) (S′, s′)oo

be a commutative diagram of pointed schemes such that the horizontal arrows are
elementary étale neighbourhoods. Then there exists a commutative diagram

(X ′′, x′′)

uu ��

(Z ′′, z′′)oo

tt ��
(X,x)

��

(Z, z)oo

��

(S′′, s′′)

uu

(Y ′′, y′′)

tt

oo

(S, s) (Y, y)oo

of pointed schemes with the following properties:

(1) (S′′, s′′)→ (S′, s′) is an elementary étale neighbourhood and the morphism
S′′ → S is the composition S′′ → S′ → S,

(2) Y ′′ is an open subscheme of Y ′ ×S′ S′′,
(3) Z ′′ = Z ×Y Y ′′,
(4) (X ′′, x′′)→ (X,x) is an elementary étale neighbourhood, and
(5) (Z ′′, Y ′′, i′′, π′′,G′′, z′′, y′′) is a one step dévissage at x′′ of the sheaf F ′′.

Here F ′′ (resp. G′′) is the pullback of F (resp. G) via the morphism X ′′ → X (resp.
Z ′′ → Z) and i′′ : Z ′′ → X ′′ and π′′ : Z ′′ → Y ′′ are as in the diagram.

Proof. Let (S′′, s′′) → (S′, s′) be any elementary étale neighbourhood with S′′

affine. Let Y ′′ ⊂ Y ′ ×S′ S′′ be any affine open neighbourhood containing the point
y′′ = (y′, s′′). Then we obtain an affine (Z ′′, z′′) by (3). Moreover ZS′′ → XS′′

is a closed immersion and Z ′′ → ZS′′ is an étale morphism. Hence Lemma 37.2.1
applies and we can find an étale morphism X ′′ → XS′ of affines such that Z ′′ ∼=
X ′′ ×XS′ ZS′ . Denote i′′ : Z ′′ → X ′′ the corresponding closed immersion. Setting
x′′ = i′′(z′′) we obtain a commutative diagram as in the lemma. Properties (1),
(2), (3), and (4) hold by construction. Thus it suffices to show that (5) holds for a
suitable choice of (S′′, s′′)→ (S′, s′) and Y ′′.

We first list those properties which hold for any choice of (S′′, s′′) → (S′, s′) and
Y ′′ as in the first paragraph. As we have Z ′′ = X ′′ ×X Z by construction we see
that i′′∗G′′ = F ′′ (with notation as in the statement of the lemma), see Cohomology
of Schemes, Lemma 29.5.1. Set n = dim(Supp(Fs)) = dimx(Supp(Fs)). The mor-
phism Y ′′ → S′′ is smooth of relative dimension n (because Y ′ → S′ is smooth of
relative dimension n as the composition Y ′ → YS′ → S′ of an étale and smooth mor-
phism of relative dimension n and because base change preserves smooth morphisms
of relative dimension n). We have κ(y′′) = κ(y) and κ(s) = κ(s′′) hence κ(y′′) is a
purely transcendental extension of κ(s′′). The morphism of fibres X ′′s′′ → Xs is an
étale morphism of affine schemes over κ(s) = κ(s′′) mapping the point x′′ to the
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point x and pulling back Fs to F ′′s′′ . Hence

dim(Supp(F ′′s′′)) = dim(Supp(Fs)) = n = dimx(Supp(Fs)) = dimx′′(Supp(F ′′s′′))

because dimension is invariant under étale localization, see Descent, Lemma 34.17.2.
As π′′ : Z ′′ → Y ′′ is the base change of π we see that π′′ is finite and as κ(y) = κ(y′′)
we see that π−1({y′′}) = {z′′}.

At this point we have verified all the conditions of Definition 37.4.1 except we
have not verified that Y ′′ → S′′ has geometrically irreducible fibres. Of course
in general this is not going to be true, and it is at this point that we will use
that κ(s) ⊂ κ(y) is purely transcendental. Namely, let T ⊂ Y ′s′ be the irreducible
component of Y ′s′ containing y′ = (y, s′). Note that T is an open subscheme of
Y ′s′ as this is a smooth scheme over κ(s′). By Varieties, Lemma 32.5.14 we see
that T is geometrically connected because κ(s′) = κ(s) is algebraically closed in
κ(y′) = κ(y). As T is smooth we see that T is geometrically irreducible. Hence
More on Morphisms, Lemma 36.32.3 applies and we can find an elementary étale
morphism (S′′, s′′) → (S′, s′) and an affine open Y ′′ ⊂ Y ′S′′ such that all fibres
of Y ′′ → S′′ are geometrically irreducible and such that T = Y ′′s′′ . After shrinking
(first Y ′′ and then S′′) we may assume that both Y ′′ and S′′ are affine. This finishes
the proof of the lemma. �

Lemma 37.4.9. Let S, X, F , s be as in Definition 37.4.1. Let (Z, Y, i, π,G) be
a one step dévissage of F/X/S over s. Let ξ ∈ Ys be the (unique) generic point.
Then there exists an integer r > 0 and an OY -module map

α : O⊕rY −→ π∗G

such that

α : κ(ξ)⊕r −→ (π∗G)ξ ⊗OY,ξ κ(ξ)

is an isomorphism. Moreover, in this case we have

dim(Supp(Coker(α)s)) < dim(Supp(Fs)).

Proof. By assumption the schemes S and Y are affine. Write S = Spec(A) and
Y = Spec(B). As π is finite the OY -module π∗G is a finite type quasi-coherent OY -

module. Hence π∗G = Ñ for some finite B-module N . Let p ⊂ B be the prime ideal
corresponding to ξ. To obtain α set r = dimκ(p)N ⊗B κ(p) and pick x1, . . . , xr ∈ N
which form a basis of N ⊗B κ(p). Take α : B⊕r → N to be the map given by
the formula α(b1, . . . , br) =

∑
bixi. It is clear that α : κ(p)⊕r → N ⊗B κ(p) is an

isomorphism as desired. Finally, suppose α is any map with this property. Then
N ′ = Coker(α) is a finite B-module such that N ′⊗κ(p) = 0. By Nakayama’s lemma
(Algebra, Lemma 10.19.1) we see that N ′p = 0. Since the fibre Ys is geometrically
irreducible of dimension n with generic point ξ and since we have just seen that ξ
is not in the support of Coker(α) the last assertion of the lemma holds. �

37.5. Complete dévissage

In this section we explain what is a complete dévissage of a module and prove that
such exist. The material in this section is mainly bookkeeping.
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Definition 37.5.1. Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A complete
dévissage of F/X/S over s is given by a diagram

X Z1
i1
oo

π1

��
Y1 Z2

i2
oo

π2

��
Y2 Z3
oo

��... ...oo

��
Yn

of schemes over S, finite type quasi-coherent OZk -modules Gk, and OYk -module
maps

αk : O⊕rkYk
−→ πk,∗Gk, k = 1, . . . , n

satisfying the following properties:

(1) (Z1, Y1, i1, π1,G1) is a one step dévissage of F/X/S over s,
(2) the map αk induces an isomorphism

κ(ξk)⊕rk −→ (πk,∗Gk)ξk ⊗OYk,ξk κ(ξk)

where ξk ∈ (Yk)s is the unique generic point,
(3) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk) is a one step dévissage of

Coker(αk−1)/Yk−1/S over s,
(4) Coker(αn) = 0.

In this case we say that (Zk, Yk, ik, πk,Gk, αk)k=1,...,n is a complete dévissage of
F/X/S over s.

Definition 37.5.2. Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s ∈ S. A complete dévissage of F/X/S at x is given by a system

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n

such that (Zk, Yk, ik, πk,Gk, αk) is a complete dévissage of F/X/S over s, and such
that

(1) (Z1, Y1, i1, π1,G1, z1, y1) is a one step dévissage of F/X/S at x,
(2) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk, zk, yk) is a one step dévissage

of Coker(αk−1)/Yk−1/S at yk−1.

Again we remark that a complete dévissage can only exist if X and S are affine.

Lemma 37.5.3. Let S, X, F , s be as in Definition 37.5.1. Let (S′, s′)→ (S, s) be
any morphism of pointed schemes. Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete
dévissage of F/X/S over s. Given this data let X ′, Z ′k, Y

′
k, i
′
k, π
′
k be the base changes

of X,Zk, Yk, ik, πk via S′ → S. Let F ′ be the pullback of F to X ′ and let G′k be
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the pullback of Gk to Z ′k. Let α′k be the pullback of αk to Y ′k. If S′ is affine, then
(Z ′k, Y

′
k, i
′
k, π
′
k,G′k, α′k)k=1,...,n is a complete dévissage of F ′/X ′/S′ over s′.

Proof. By Lemma 37.4.4 we know that the base change of a one step dévissage
is a one step dévissage. Hence it suffices to prove that formation of Coker(αk)
commutes with base change and that condition (2) of Definition 37.5.1 is preserved
by base change. The first is true as π′k,∗G′k is the pullback of πk,∗Gk (by Cohomology

of Schemes, Lemma 29.5.1) and because ⊗ is right exact. The second because by
the same token we have

(πk,∗Gk)ξk ⊗OYk,ξk κ(ξk)⊗κ(ξk) κ(ξ′k) ∼= (π′k,∗G′k)ξ′k ⊗OY ′k,ξ′k κ(ξ′k)

with obvious notation. �

Lemma 37.5.4. Let S, X, F , x, s be as in Definition 37.5.2. Let (S′, s′)→ (S, s)
be a morphism of pointed schemes which induces an isomorphism κ(s) = κ(s′). Let
(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n be a complete dévissage of F/X/S at x. Let
(Z ′k, Y

′
k, i
′
k, π
′
k,G′k, α′k)k=1,...,n be as constructed in Lemma 37.5.3 and let x′ ∈ X ′

(resp. z′k ∈ Z ′, y′k ∈ Y ′) be the unique point mapping to both x ∈ X (resp. zk ∈ Zk,
yk ∈ Yk) and s′ ∈ S′. If S′ is affine, then (Z ′k, Y

′
k, i
′
k, π
′
k,G′k, α′k, z′k, y′k)k=1,...,n is a

complete dévissage of F ′/X ′/S′ at x′.

Proof. Combine Lemma 37.5.3 and Lemma 37.4.5. �

Definition 37.5.5. Let S, X, F , x, s be as in Definition 37.5.2. Consider a
complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n of F/X/S at x. Let us
define a standard shrinking of this situation to be given by standard opens S′ ⊂ S,
X ′ ⊂ X, Z ′k ⊂ Zk, and Y ′k ⊂ Yk such that sk ∈ S′, xk ∈ X ′, zk ∈ Z ′, and yk ∈ Y ′
and such that

(Z ′k, Y
′
k, i
′
k, π
′
k,G′k, α′k, zk, yk)k=1,...,n

is a one step dévissage of F ′/X ′/S′ at x where G′k = Gk|Z′k and F ′ = F|X′ .

Lemma 37.5.6. With assumption and notation as in Definition 37.5.5 we have:

(1) If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,
Z ′k = ZS′ and Y ′k = YS′ we obtain a standard shrinking.

(2) Let W ⊂ Yn be a standard open neighbourhood of y. Then there exists a
standard shrinking with Y ′n = W ×S S′.

(3) Let U ⊂ X be an open neighbourhood of x. Then there exists a standard
shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemmas 37.5.4 and 37.4.7.

Proof of (2). For convenience denote X = Y0. We apply Lemma 37.4.7 (2) to find a
standard shrinking S′, Y ′n−1, Z

′
n, Y

′
n of the one step dévissage of Coker(αn−1)/Yn−1/S

at yn−1 with Y ′n = W ×S S′. We may repeat this procedure and find a standard
shrinking S′′, Y ′′n−2, Z

′′
n−1, Y

′′
n−1 of the one step dévissage of Coker(αn−2)/Yn−2/S

at yn−2 with Y ′′n−1 = Y ′n−1×S S′′. We may continue in this manner until we obtain

S(n), Y
(n)
0 , Z

(n)
1 , Y

(n)
1 . At this point it is clear that we obtain our desired standard

shrinking by taking S(n), X(n), Z
(n−k)
k ×SS(n), and Y

(n−k)
k ×SS(n) with the desired

property.

Proof of (3). We use induction on the length of the complete dévissage. First
we apply Lemma 37.4.7 (3) to find a standard shrinking S′, X ′, Z ′1, Y

′
1 of the one
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step dévissage of F/X/S at x with X ′ ⊂ U . If n = 1, then we are done. If
n > 1, then by induction we can find a standard shrinking S′′, Y ′′1 , Z ′′k , and Y ′′k of
the complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of Coker(α1)/Y1/S at
x such that Y ′′1 ⊂ Y ′1 . Using Lemma 37.4.7 (2) we can find S′′′ ⊂ S′, X ′′′ ⊂ X ′, Z ′′′1

and Y ′′′1 = Y ′′1 ×S S′′′ which is a standard shrinking. The solution to our problem
is to take

S′′′, X ′′′, Z ′′′1 , Y
′′′
1 , Z ′′2 ×S S′′′, Y ′′2 ×S S′′′, . . . , Z ′′n ×S S′′′, Y ′′n ×S S′′′

This ends the proof of the lemma. �

Proposition 37.5.7. Let S be a scheme. Let X be locally of finite type over S.
Let x ∈ X be a point with image s ∈ S. There exists a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x.

Proof. We prove this by induction on the integer d = dimx(Supp(Fs)). By Lemma
37.4.3 there exists a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neigh-
bourhoods and such that g∗F/X ′/S′ has a one step dévissage at x′. The local
nature of the problem implies that we may replace (X,x) → (S, s) by (X ′, x′) →
(S′, s′). Thus after doing so we may assume that there exists a one step dévissage
(Z1, Y1, i1, π1,G1) of F/X/S at x.

We apply Lemma 37.4.9 to find a map

α1 : O⊕r1Y1
−→ π1,∗G1

which induces an isomorphism of vector spaces over κ(ξ1) where ξ1 ∈ Y1 is the
unique generic point of the fibre of Y1 over s. Moreover dimy1

(Supp(Coker(α1)s)) <
d. It may happen that the stalk of Coker(α1)s at y1 is zero. In this case we may
shrink Y1 by Lemma 37.4.7 (2) and assume that Coker(α1) = 0 so we obtain a
complete dévissage of length zero.

Assume now that the stalk of Coker(α1)s at y1 is not zero. In this case, by induction,
there exists a commutative diagram

(37.5.7.1)

(Y1, y1)

��

(Y ′1 , y
′
1)

h
oo

��
(S, s) (S′, s′)oo
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of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that h∗Coker(α1)/Y ′1/S

′ has a complete dévissage

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n

at y′1. (In particular i2 : Z2 → Y ′1 is a closed immersion into Y ′2 .) At this point
we apply Lemma 37.4.8 to S,X,F , x, s, the system (Z1, Y1, i1, π1,G1) and diagram
(37.5.7.1). We obtain a diagram

(X ′′, x′′)

tt ��

(Z ′′1 , z
′′
1 )oo

tt ��
(X,x)

��

(Z1, z1)oo

��

(S′′, s′′)

tt

(Y ′′1 , y
′′
1 )

tt

oo

(S, s) (Y1, y1)oo

with all the properties as listed in the referenced lemma. In particular Y ′′1 ⊂
Y ′1 ×S′ S′′. Set X1 = Y ′1 ×S′ S′′ and let F1 denote the pullback of Coker(α1). By
Lemma 37.5.4 the system

(37.5.7.2) (Zk ×S′ S′′, Yk ×S′ S′′, i′′k , π′′k ,G′′k , α′′k , z′′k , y′′k )k=2,...,n

is a complete dévissage of F1 to X1. Again, the nature of the problem allows us to
replace (X,x)→ (S, s) by (X ′′, x′′)→ (S′′, s′′). In this we see that we may assume:

(a) There exists a one step dévissage (Z1, Y1, i1, π1,G1) of F/X/S at x,
(b) there exists an α1 : O⊕r1Y1

→ π1,∗G1 such that α⊗κ(ξ1) is an isomorphism,
(c) Y1 ⊂ X1 is open, y1 = x1, and F1|Y1

∼= Coker(α1), and
(d) there exists a complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of
F1/X1/S at x1.

To finish the proof all we have to do is shrink the one step dévissage and the
complete dévissage such that they fit together to a complete dévissage. (We suggest
the reader do this on their own using Lemmas 37.4.7 and 37.5.6 instead of reading
the proof that follows.) Since Y1 ⊂ X1 is an open neighbourhood of x1 we may
apply Lemma 37.5.6 (3) to find a standard shrinking S′, X ′1, Z

′
2, Y

′
2 , . . . , Y

′
n of the

datum (d) so that X ′1 ⊂ Y1. Note that X ′1 is also a standard open of the affine
scheme Y1. Next, we shrink the datum (a) as follows: first we shrink the base S to
S′, see Lemma 37.4.7 (1) and then we shrink the result to S′′, X ′′, Z ′′1 , Y ′′1 using
Lemma 37.4.7 (2) such that eventually Y ′′1 = X ′1 ×S S′′ and S′′ ⊂ S′. Then we see
that

Z ′′1 , Y
′′
1 , Z

′
2 ×S′ S′′, Y ′2 ×S′ S′′, . . . , Y ′n ×S′ S′′

gives the complete dévissage we were looking for. �

Some more bookkeeping gives the following consequence.

Lemma 37.5.8. Let X → S be a finite type morphism of schemes. Let F be
a finite type quasi-coherent OX-module. Let s ∈ S be a point. There exists an
elementary étale neighbourhood (S′, s′)→ (S, s) and étale morphisms hi : Yi → XS′ ,
i = 1, . . . , n such that for each i there exists a complete dévissage of Fi/Yi/S′ over
s′, where Fi is the pullback of F to Yi and such that Xs = (XS′)s′ ⊂

⋃
hi(Yi).
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Proof. For every point x ∈ Xs we can find a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x′. As X → S is of
finite type the fibre Xs is quasi-compact, and since each g : X ′ → X as above is
open we can cover Xs by a finite union of g(X ′s′). Thus we can find a finite family
of such diagrams

(X,x)

��

(X ′i, x
′
i)gi

oo

��
(S, s) (S′i, s

′
i)

oo

i = 1, . . . , n

such that Xs =
⋃
gi(X

′
i). Set S′ = S′1 ×S . . .×S S′n and let Yi = Xi ×S′i S

′ be the

base change of X ′i to S′. By Lemma 37.5.3 we see that the pullback of F to Yi has
a complete dévissage over s and we win. �

37.6. Translation into algebra

It may be useful to spell out algebraically what it means to have a complete
dévissage. We introduce the following notion (which is not that useful so we give
it an impossibly long name).

Definition 37.6.1. Let R → S be a ring map. Let q be a prime of S lying over
the prime p of R. A elementary étale localization of the ring map R → S at q is
given by a commutative diagram of rings and accompanying primes

S // S′

R

OO

// R′

OO q q′

p p′

such that R → R′ and S → S′ are étale ring maps and κ(p) = κ(p′) and κ(q) =
κ(q′).

Definition 37.6.2. Let R → S be a finite type ring map. Let r be a prime of R.
Let N be a finite S-module. A complete dévissage of N/S/R over r is given by
R-algebra maps

A1 A2 ... An

S

??

B1

`` >>

...

`` ??

...

__ >>

Bn

aa

finite Ai-modules Mi and Bi-module maps αi : B⊕rii →Mi such that

(1) S → A1 is surjective and of finite presentation,
(2) Bi → Ai+1 is surjective and of finite presentation,
(3) Bi → Ai is finite,
(4) R→ Bi is smooth with geometrically irreducible fibres,
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(5) N ∼= M1 as S-modules,
(6) Coker(αi) ∼= Mi+1 as Bi-modules,
(7) αi : κ(pi)

⊕ri →Mi ⊗Bi κ(pi) is an isomorphism where pi = rBi, and
(8) Coker(αn) = 0.

In this situation we say that (Ai, Bi,Mi, αi)i=1,...,n is a complete dévissage of
N/S/R over r.

Remark 37.6.3. Note that the R-algebras Bi for all i and Ai for i ≥ 2 are of
finite presentation over R. If S is of finite presentation over R, then it is also the
case that A1 is of finite presentation over R. In this case all the ring maps in the
complete dévissage are of finite presentation. See Algebra, Lemma 10.6.2. Still
assuming S of finite presentation over R the following are equivalent

(1) M is of finite presentation over S,
(2) M1 is of finite presentation over A1,
(3) M1 is of finite presentation over B1,
(4) each Mi is of finite presentation both as an Ai-module and as a Bi-module.

The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Algebra, Lemma 10.7.4. If
M1 is finitely presented, so is Coker(α1) (see Algebra, Lemma 10.5.3) and hence
M2, etc.

Definition 37.6.4. Let R → S be a finite type ring map. Let q be a prime of S
lying over the prime r of R. Let N be a finite S-module. A complete dévissage of
N/S/R at q is given by a complete dévissage (Ai, Bi,Mi, αi)i=1,...,n of N/S/R over
r and prime ideals qi ⊂ Bi lying over r such that

(1) κ(r) ⊂ κ(qi) is purely transcendental,
(2) there is a unique prime q′i ⊂ Ai lying over qi ⊂ Bi,
(3) q = q′1 ∩ S and qi = q′i+1 ∩Ai,
(4) R→ Bi has relative dimension dimqi(Supp(Mi ⊗R κ(r))).

Remark 37.6.5. Let A → B be a finite type ring map and let N be a finite
B-module. Let q be a prime of B lying over the prime r of A. Set X = Spec(B),

S = Spec(A) and F = Ñ on X. Let x be the point corresponding to q and let
s ∈ S be the point corresponding to p. Then

(1) if there exists a complete dévissage of F/X/S over s then there exists a
complete dévissage of N/B/A over p, and

(2) there exists a complete dévissage of F/X/S at x if and only if there exists
a complete dévissage of N/B/A at q.

There is just a small twist in that we omitted the condition on the relative dimension
in the formulation of “a complete dévissage of N/B/A over p” which is why the
implication in (1) only goes in one direction. The notion of a complete dévissage
at q does have this condition built in. In any case we will only use that existence
for F/X/S implies the existence for N/B/A.

Lemma 37.6.6. Let R → S be a finite type ring map. Let M be a finite S-
module. Let q be a prime ideal of S. There exists an elementary étale localization
R′ → S′, q′, p′ of the ring map R → S at q such that there exists a complete
dévissage of (M ⊗S S′)/S′/R′ at q′.

Proof. This is a reformulation of Proposition 37.5.7 via Remark 37.6.5 �
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37.7. Localization and universally injective maps

Lemma 37.7.1. Let R→ S be a ring map. Let N be a S-module. Assume

(1) R is a local ring with maximal ideal m,
(2) S = S/mS is Noetherian, and
(3) N = N/mRN is a finite S-module.

Let Σ ⊂ S be the multiplicative subset of elements which are not a zerodivisor on N .
Then Σ−1S is a semi-local ring whose spectrum consists of primes q ⊂ S contained
in an element of AssS(N). Moreover, any maximal ideal of Σ−1S corresponds to
an associated prime of N over S.

Proof. Note that AssS(N) = AssS(N), see Algebra, Lemma 10.62.13. This is

a finite set by Algebra, Lemma 10.62.5. Say {q1, . . . , qr} = AssS(N). We have
Σ = S \ (

⋃
qi) by Algebra, Lemma 10.62.9. By the description of Spec(Σ−1S) in

Algebra, Lemma 10.16.5 and by Algebra, Lemma 10.14.2 we see that the primes of
Σ−1S correspond to the primes of S contained in one of the qi. Hence the maximal
ideals of Σ−1S correspond one-to-one with the maximal (w.r.t. inclusion) elements
of the set {q1, . . . , qr}. This proves the lemma. �

Lemma 37.7.2. Assumption and notation as in Lemma 37.7.1. Assume moreover
that

(1) S is local and R→ S is a local homomorphism,
(2) S is essentially of finite presentation over R,
(3) N is finitely presented over S, and
(4) N is flat over R.

Then each s ∈ Σ defines a universally injective R-module map s : N → N , and the
map N → Σ−1N is R-universally injective.

Proof. By Algebra, Lemma 10.124.4 the sequence 0 → N → N → N/sN → 0 is
exact and N/sN is flat over R. This implies that s : N → N is universally injective,
see Algebra, Lemma 10.38.11. The map N → Σ−1N is universally injective as the
directed colimit of the maps s : N → N . �

Lemma 37.7.3. Let R→ S be a ring map. Let N be an S-module. Let S → S′ be
a ring map. Assume

(1) R→ S is a local homomorphism of local rings
(2) S is essentially of finite presentation over R,
(3) N is of finite presentation over S,
(4) N is flat over R,
(5) S → S′ is flat, and
(6) the image of Spec(S′) → Spec(S) contains all primes q of S lying over

mR such that q is an associated prime of N/mRN .

Then N → N ⊗S S′ is R-universally injective.

Proof. Set N ′ = N ⊗R S′. Consider the commutative diagram

N

��

// N ′

��
Σ−1N // Σ−1N ′
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where Σ ⊂ S is the set of elements which are not a zerodivisor on N/mRN . If we
can show that the map N → Σ−1N ′ is universally injective, then N → N ′ is too
(see Algebra, Lemma 10.79.10).

By Lemma 37.7.1 the ring Σ−1S is a semi-local ring whose maximal ideals cor-
respond to associated primes of N/mRN . Hence the image of Spec(Σ−1S′) →
Spec(Σ−1S) contains all these maximal ideals by assumption. By Algebra, Lemma
10.38.15 the ring map Σ−1S → Σ−1S′ is faithfully flat. Hence Σ−1N → Σ−1N ′,
which is the map

N ⊗S Σ−1S −→ N ⊗S Σ−1S′

is universally injective, see Algebra, Lemmas 10.79.11 and 10.79.8. Finally, we apply
Lemma 37.7.2 to see that N → Σ−1N is universally injective. As the composition
of universally injective module maps is universally injective (see Algebra, Lemma
10.79.9) we conclude that N → Σ−1N ′ is universally injective and we win. �

Lemma 37.7.4. Let R→ S be a ring map. Let N be an S-module. Let S → S′ be
a ring map. Assume

(1) R→ S is of finite presentation and N is of finite presentation over S,
(2) N is flat over R,
(3) S → S′ is flat, and
(4) the image of Spec(S′)→ Spec(S) contains all primes q such that q is an

associated prime of N ⊗R κ(p) where p is the inverse image of q in R.

Then N → N ⊗S S′ is R-universally injective.

Proof. By Algebra, Lemma 10.79.12 it suffices to show that Nq → (N ⊗R S′)q is a
Rp-universally injective for any prime q of S lying over p in R. Thus we may apply
Lemma 37.7.3 to the ring maps Rp → Sq → S′q and the module Nq. �

The reader may want to compare the following lemma to Algebra, Lemmas 10.95.1
and 10.124.4 and the results of Section 37.24. In each case the conclusion is that
the map u : M → N is universally injective with flat cokernel.

Lemma 37.7.5. Let (R,m) be a local ring. Let u : M → N be an R-module map.
If M is a projective R-module, N is a flat R-module, and u : M/mM → N/mN is
injective then u is universally injective.

Proof. By Algebra, Theorem 10.82.4 the module M is free. If we show the result
holds for every finitely generated direct summand of M , then the lemma follows.
Hence we may assume that M is finite free. Write N = colimiNi as a directed
colimit of finite free modules, see Algebra, Theorem 10.78.4. Note that u : M → N
factors through Ni for some i (as M is finite free). Denote ui : M → Ni the
corresponding R-module map. As u is injective we see that ui : M/mM → Ni/mNi
is injective and remains injective on composing with the maps Ni/mNi → Ni′/mNi′

for all i′ ≥ i. As M and Ni′ are finite free over the local ring R this implies that
M → Ni′ is a split injection for all i′ ≥ i. Hence for any R-module Q we see that
M ⊗R Q→ Ni′ ⊗R Q is injective for all i′ ≥ i. As −⊗R Q commutes with colimits
we conclude that M ⊗R Q→ Ni′ ⊗R Q is injective as desired. �

Lemma 37.7.6. Assumption and notation as in Lemma 37.7.1. Assume moreover
that N is projective as an R-module. Then each s ∈ Σ defines a universally injective
R-module map s : N → N , and the map N → Σ−1N is R-universally injective.
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Proof. Pick s ∈ Σ. By Lemma 37.7.5 the map s : N → N is universally injective.
The map N → Σ−1N is universally injective as the directed colimit of the maps
s : N → N . �

37.8. Completion and Mittag-Leffler modules

Lemma 37.8.1. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume
R is Noetherian and complete with respect to I. The completion (

⊕
α∈AR)∧ is flat

and Mittag-Leffler.

Proof. By More on Algebra, Lemma 15.19.1 the map (
⊕

α∈AR)∧ →
∏
α∈AR is

universally injective. Thus, by Algebra, Lemmas 10.79.7 and 10.86.7 it suffices to
show that

∏
α∈AR is flat and Mittag-Leffler. By Algebra, Proposition 10.87.5 (and

Algebra, Lemma 10.87.4) we see that
∏
α∈AR is flat. Thus we conclude because a

product of copies of R is Mittag-Leffler, see Algebra, Lemma 10.88.3. �

Lemma 37.8.2. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is Noetherian and I-adically complete,
(2) M is flat over R, and
(3) M/IM is a projective R/I-module.

Then the I-adic completion M∧ is a flat Mittag-Leffler R-module.

Proof. Choose a surjection F → M where F is a free R-module. By Algebra,
Lemma 10.93.20 the module M∧ is a direct summand of the module F∧. Hence
it suffices to prove the lemma for F . In this case the lemma follows from Lemma
37.8.1. �

In Lemmas 37.8.3 and 37.8.4 the assumption that S be Noetherian holds if R→ S
is of finite type, see Algebra, Lemma 10.30.1.

Lemma 37.8.3. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring
map, and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module, and
(4) for any finite R-module Q, any q ∈ AssS(Q⊗R N) satisfies IS + q 6= S.

Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. We have to show that for any finite R-module Q the map Q ⊗R N →
Q ⊗R N∧ is injective, see Algebra, Theorem 10.79.3. As there is a canonical map
Q ⊗R N∧ → (Q ⊗R N)∧ it suffices to prove that the canonical map Q ⊗R N →
(Q⊗RN)∧ is injective. Hence we may replace N by Q⊗RN and it suffices to prove
the injectivity for the map N → N∧.

Let K = Ker(N → N∧). It suffices to show that Kq = 0 for q ∈ Ass(N) as N is a
submodule of

∏
q∈Ass(N)Nq, see Algebra, Lemma 10.62.18. Pick q ∈ Ass(N). By

the last assumption we see that there exists a prime q′ ⊃ IS + q. Since Kq is a
localization of Kq′ it suffices to prove the vanishing of Kq′ . Note that K =

⋂
InN ,

hence Kq′ ⊂
⋂
InNq′ . Hence Kq′ = 0 by Algebra, Lemma 10.49.4. �
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Lemma 37.8.4. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring
map, and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module,
(4) N is flat over R, and
(5) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q 6= S.

Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. This follows from Lemma 37.8.3 because Algebra, Lemma 10.64.5 and Re-
mark 10.64.6 guarantee that the set of associated primes of tensor products N⊗RQ
are contained in the set of associated primes of the modules N ⊗R κ(p). �

37.9. Projective modules

The following lemma can be used to prove projectivity by Noetherian induction on
the base, see Lemma 37.9.2.

Lemma 37.9.1. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring
map, and N an S-module. Assume

(1) R is Noetherian and I-adically complete,
(2) R→ S is of finite type,
(3) N is a finite S-module,
(4) N is flat over R,
(5) N/IN is projective as a R/I-module, and
(6) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q 6= S.

Then N is projective as an R-module.

Proof. By Lemma 37.8.4 the map N → N∧ is universally injective. By Lemma
37.8.2 the module N∧ is Mittag-Leffler. By Algebra, Lemma 10.86.7 we conclude
that N is Mittag-Leffler. Hence N is countably generated, flat and Mittag-Leffler
as an R-module, whence projective by Algebra, Lemma 10.90.1. �

Lemma 37.9.2. Let R be a ring. Let R→ S be a ring map. Assume

(1) R is Noetherian,
(2) R→ S is of finite type and flat, and
(3) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. Consider the set

{I ⊂ R | S/IS not projective as R/I-module}

We have to show this set is empty. To get a contradiction assume it is nonempty.
Then it contains a maximal element I. Let J =

√
I be its radical. If I 6= J ,

then S/JS is projective as a R/J-module, and S/IS is flat over R/I and J/I is a
nilpotent ideal in R/I. Applying Algebra, Lemma 10.74.5 we see that S/IS is a
projective R/I-module, which is a contradiction. Hence we may assume that I is
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a radical ideal. In other words we are reduced to proving the lemma in case R is a
reduced ring and S/IS is a projective R/I-module for every nonzero ideal I of R.

Assume R is a reduced ring and S/IS is a projective R/I-module for every nonzero
ideal I of R. By generic flatness, Algebra, Lemma 10.114.1 (applied to a localization
Rg which is a domain) or the more general Algebra, Lemma 10.114.7 there exists
a nonzero f ∈ R such that Sf is free as an Rf -module. Denote R∧ = limR/(fn)
the (f)-adic completion of R. Note that the ring map

R −→ Rf ×R∧

is a faithfully flat ring map, see Algebra, Lemma 10.93.3. Hence by faithfully
flat descent of projectivity, see Algebra, Theorem 10.92.5 it suffices to prove that
S⊗RR∧ is a projective R∧-module. To see this we will use the criterion of Lemma
37.9.1. First of all, note that S/fS = (S⊗RR∧)/f(S⊗RR∧) is a projective R/(f)-
module and that S ⊗R R∧ is flat and of finite type over R∧ as a base change of
such. Next, suppose that p∧ is a prime ideal of R∧. Let p ⊂ R be the corresponding
prime of R. As R → S has geometrically integral fibre rings, the same is true for
the fibre rings of any base change. Hence q∧ = p∧(S ⊗R R∧), is a prime ideals
lying over p∧ and it is the unique associated prime of S ⊗R κ(p∧). Thus we win if
f(S ⊗R R∧) + q∧ 6= S ⊗R R∧. This is true because p∧ + fR∧ 6= R∧ as f lies in the
radical of the f -adically complete ring R∧ and because R∧ → S⊗RR∧ is surjective
on spectra as its fibres are nonempty (irreducible spaces are nonempty). �

Lemma 37.9.3. Let R be a ring. Let R→ S be a ring map. Assume

(1) R→ S is of finite presentation and flat, and
(2) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. We can find a cocartesian diagram of rings

S0
// S

R0

OO

// R

OO

such that R0 is of finite type over Z, the map R0 → S0 is of finite type and
flat with geometrically integral fibres, see More on Morphisms, Lemmas 36.26.4,
36.26.6, 36.26.7, and 36.26.11. By Lemma 37.9.2 we see that S0 is a projective
R0-module. Hence S = S0 ⊗R0 R is a projective R-module, see Algebra, Lemma
10.91.1. �

Remark 37.9.4. Lemma 37.9.3 is a key step in the development of results in this
chapter. The analogue of this lemma in [GR71] is [GR71, I Proposition 3.3.1]:
If R → S is smooth with geometrically integral fibres, then S is projective as an
R-module. This is a special case of Lemma 37.9.3, but as we will later improve
on this lemma anyway, we do not gain much from having a stronger result at this
point. We briefly sketch the proof of this as it is given in [GR71].

(1) First reduce to the case where R is Noetherian as above.
(2) Since projectivity descends through faithfully flat ring maps, see Algebra,

Theorem 10.92.5 we may work locally in the fppf topology on R, hence
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we may assume that R → S has a section σ : S → R. (Just by the usual
trick of base changing to S.) Set I = Ker(S → R).

(3) Localizing a bit more on R we may assume that I/I2 is a free R-module
and that the completion S∧ of S with respect to I is isomorphic to
R[[t1, . . . , tn]], see Morphisms, Lemma 28.35.20. Here we are using that
R→ S is smooth.

(4) To prove that S is projective as an R-module, it suffices to prove that
S is flat, countably generated and Mittag-Leffler as an R-module, see
Algebra, Lemma 10.90.1. The first two properties are evident. Thus it
suffices to prove that S is Mittag-Leffler as an R-module. By Algebra,
Lemma 10.88.4 the module R[[t1, . . . , tn]] is Mittag-Leffler over R. Hence
Algebra, Lemma 10.86.7 shows that it suffices to show that the S → S∧

is universally injective as a map of R-modules.
(5) Apply Lemma 37.7.4 to see that S → S∧ is R-universally injective.

Namely, as R→ S has geometrically integral fibres, any associated point
of any fibre ring is just the generic point of the fibre ring which is in the
image of Spec(S∧)→ Spec(S).

There is an analogy between the proof as sketched just now, and the development
of the arguments leading to the proof of Lemma 37.9.3. In both a completion plays
an essential role, and both times the assumption of having geometrically integral
fibres assures one that the map from S to the completion of S is R-universally
injective.

37.10. Flat finite type modules, Part I

In some cases given a ring map R→ S of finite presentation and a finite S-module
N the flatness of N over R implies that N is of finite presentation. In this section
we prove this is true “pointwise”. We remark that the first proof of Proposition
37.10.3 uses the geometric results of Section 37.3 but not the existence of a complete
dévissage.

Lemma 37.10.1. Let (R,m) be a local ring. Let R→ S be a finitely presented flat
ring map with geometrically integral fibres. Write p = mS. Let q ⊂ S be a prime
ideal lying over m. Let N be a finite S-module. There exist r ≥ 0 and an S-module
map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) α is R-universally injective and Coker(α)q is R-flat,
(3) α is injective and Coker(α)q is R-flat,
(4) αp is an isomorphism and Coker(α)q is R-flat, and
(5) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p)N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix an α. The most interesting implication is (1) ⇒ (2) which we prove first.
Assume (1). Because S/mS is a domain with fraction field κ(p) we see that
(S/mS)⊕r → Np/mNp = N ⊗S κ(p) is injective. Hence by Lemmas 37.7.5 and
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37.9.3. the map S⊕r → Np is R-universally injective. It follows that S⊕r → N
is R-universally injective, see Algebra, Lemma 10.79.10. Then also the localiza-
tion αq is R-universally injective, see Algebra, Lemma 10.79.13. We conclude that
Coker(α)q is R-flat by Algebra, Lemma 10.79.7.

The implication (2) ⇒ (3) is immediate. If (3) holds, then αp is injective as a
localization of an injective module map. By Nakayama’s lemma (Algebra, Lemma
10.19.1) αp is surjective too. Hence (3) ⇒ (4). If (4) holds, then αp is an isomor-
phism, so α is injective as Sq → Sp is injective. Namely, elements of S \ p are
nonzerodivisors on S by a combination of Lemmas 37.7.6 and 37.9.3. Hence (4)
⇒ (5). Finally, if (5) holds, then Nq is R-flat as an extension of flat modules, see
Algebra, Lemma 10.38.12. Hence (5) ⇒ (1) and the proof is finished. �

Lemma 37.10.2. Let (R,m) be a local ring. Let R → S be a ring map of finite
presentation. Let N be a finite S-module. Let q be a prime of S lying over m.
Assume that Nq is flat over R, and assume there exists a complete dévissage of
N/S/R at q. Then N is a finitely presented S-module, free as an R-module, and
there exists an isomorphism

N ∼= B⊕r11 ⊕ . . .⊕B⊕rnn

as R-modules where each Bi is a smooth R-algebra with geometrically irreducible
fibres.

Proof. Let (Ai, Bi,Mi, αi, qi)i=1,...,n be the given complete dévissage. We prove
the lemma by induction on n. Note that N is finitely presented as an S-module
if and only if M1 is finitely presented as an B1-module, see Remark 37.6.3. Note
that Nq

∼= (M1)q1
as R-modules because (a) Nq

∼= (M1)q′1 where q′1 is the unique
prime in A1 lying over q1 and (b) (A1)q′1 = (A1)q1

by Algebra, Lemma 10.40.11,
so (c) (M1)q′1

∼= (M1)q1
. Hence (M1)q1

is a flat R-module. Thus we may re-
place (S,N) by (B1,M1) in order to prove the lemma. By Lemma 37.10.1 the
map α1 : B⊕r11 → M1 is R-universally injective and Coker(α1)q is R-flat. Note
that (Ai, Bi,Mi, αi, qi)i=2,...,n is a complete dévissage of Coker(α1)/B1/R at q1.
Hence the induction hypothesis implies that Coker(α1) is finitely presented as a
B1-module, free as an R-module, and has a decomposition as in the lemma. This
implies that M1 is finitely presented as a B1-module, see Algebra, Lemma 10.5.3. It
further implies that M1

∼= B⊕r11 ⊕Coker(α1) as R-modules, hence a decomposition
as in the lemma. Finally, B1 is projective as an R-module by Lemma 37.9.3 hence
free as an R-module by Algebra, Theorem 10.82.4. This finishes the proof. �

Proposition 37.10.3. Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is an OV -module of finite presentation and flat over OS′,s′ .
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First proof. This proof is longer but does not use the existence of a complete
dévissage. The problem is local around x and s, hence we may assume that X
and S are affine. During the proof we will finitely many times replace S by an
elementary étale neighbourhood of (S, s). The goal is then to find (after such a
replacement) an open V ⊂ X ×S Spec(OS,s) containing x such that F|V is flat
over S and finitely presented. Of course we may also replace S by Spec(OS,s) at
any point of the proof, i.e., we may assume S is a local scheme. We will prove the
lemma by induction on the integer n = dimx(Supp(Fs)).
We can choose

(1) elementary étale neighbourhoods g : (X ′, x′) → (X,x), e : (S′, s′) →
(S, s),

(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′
eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′-module G,

as in Lemma 37.3.2. We are going to replace S by Spec(OS′,s′), see remarks in first
paragraph of the proof. Consider the diagram

XOS′,s′

f

��

X ′OS′,s′

��

g
oo Z ′OS′,s′i

oo

π

��
Y ′OS′,s′

hxx
Spec(OS′,s′)

Here we have base changed the schemes X ′, Z ′, Y ′ over S′ via Spec(OS′,s′) → S′

and the scheme X over S via Spec(OS′,s′) → S. It is still the case that g is étale,
see Lemma 37.2.2. After replacing X by XOS′,s′ , X

′ by X ′OS′,s′ , Z
′ by Z ′OS′,s′ , and

Y ′ by Y ′OS′,s′ we may assume we have a diagram as Lemma 37.3.2 where in addition

S = S′ is a local scheme with closed point s. By Lemmas 37.3.3 and 37.3.4 the
result for Y ′ → S, the sheaf π∗G, and the point y′ implies the result for X → S, F
and x. Hence we may assume that S is local and X → S is a smooth morphism of
affines with geometrically irreducible fibres of dimension n.

The base case of the induction: n = 0. As X → S is smooth with geometrically
irreducible fibres of dimension 0 we see that X → S is an open immersion, see
Descent, Lemma 34.21.2. As S is local and the closed point is in the image of
X → S we conclude that X = S. Thus we see that F corresponds to a finite flat
OS,s module. In this case the result follows from Algebra, Lemma 10.75.4 which
tells us that F is in fact finite free.
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The induction step. Assume the result holds whenever the dimension of the support

in the closed fibre is < n. Write S = Spec(A), X = Spec(B) and F = Ñ for some
B-module N . Note that A is a local ring; denote its maximal ideal m. Then p = mB
is the unique minimal prime lying over m as X → S has geometrically irreducible
fibres. Finally, let q ⊂ B be the prime corresponding to x. By Lemma 37.10.1 we
can choose a map

α : B⊕r → N

such that κ(p)⊕r → N ⊗B κ(p) is an isomorphism. Moreover, as Nq is A-flat
the lemma also shows that α is injective and that Coker(α)q is A-flat. Set Q =
Coker(α). Note that the support of Q/mQ does not contain p. Hence it is certainly
the case that dimq(Supp(Q/mQ)) < n. Combining everything we know about Q
we see that the induction hypothesis applies to Q. It follows that there exists
an elementary étale morphism (S′, s) → (S, s) such that the conclusion holds for
Q⊗AA′ over B⊗AA′ where A′ = OS′,s′ . After replacing A by A′ we have an exact
sequence

0→ B⊕r → N → Q→ 0

(here we use that α is injective as mentioned above) of finite B-modules and we
also get an element g ∈ B, g 6∈ q such that Qg is finitely presented over Bg and flat
over A. Since localization is exact we see that

0→ B⊕rg → Ng → Qg → 0

is still exact. As Bg and Qg are flat over A we conclude that Ng is flat over A,
see Algebra, Lemma 10.38.12, and as Bg and Qg are finitely presented over Bg the
same holds for Ng, see Algebra, Lemma 10.5.3. �

Second proof. We apply Proposition 37.5.7 to find a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x. (In particular S′

and X ′ are affine.) By Morphisms, Lemma 28.26.11 we see that g∗F is flat at x′

over S and by Lemma 37.2.3 we see that it is flat at x′ over S′. Via Remark 37.6.5
we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage at the prime of Γ(X ′,OX′) corresponding to x′. We may
base change this complete dévissage to the local ring OS′,s′ of Γ(S′,OS′) at the
prime corresponding to s′. Thus Lemma 37.10.2 implies that

Γ(X ′,F ′)⊗Γ(S′,OS′ ) OS′,s′
is flat over OS′,s′ and of finite presentation over Γ(X ′,OX′) ⊗Γ(S′,OS′ ) OS′,s′ . In
other words, the restriction of F to X ′ ×S′ Spec(OS′,s′) is of finite presentation
and flat over OS′,s′ . Since the morphism X ′×S′ Spec(OS′,s′)→ X ×S Spec(OS′,s′)
is étale (Lemma 37.2.2) its image V ⊂ X ×S Spec(OS′,s′) is an open subscheme,
and by étale descent the restriction of F to V is of finite presentation and flat over
OS′,s′ . (Results used: Morphisms, Lemma 28.37.13, Descent, Lemma 34.6.3, and
Morphisms, Lemma 28.26.11.) �
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Lemma 37.10.4. Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX-module of finite type. Let s ∈ S. Then
the set

{x ∈ Xs | F flat over S at x}
is open in the fibre Xs.

Proof. Suppose x ∈ U . Choose an elementary étale neighbourhood (S′, s′) →
(S, s) and open V ⊂ X ×S Spec(OS′,s′) as in Proposition 37.10.3. Note that Xs′ =
Xs as κ(s) = κ(s′). If x′ ∈ V ∩Xs′ , then the pullback of F to X ×S S′ is flat over
S′ at x′. Hence F is flat at x′ over S, see Morphisms, Lemma 28.26.11. In other
words Xs ∩ V ⊂ U is an open neighbourhood of x in U . �

Lemma 37.10.5. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is flat over OS′,s′ .

Proof. (The only difference between this and Proposition 37.10.3 is that we do
not assume f is of finite presentation.) The question is local on X and S, hence
we may assume X and S are affine. Write X = Spec(B), S = Spec(A) and write
B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion i : X → An

S .
Denote t = i(x) ∈ An

S . We may apply Proposition 37.10.3 to An
S → S, the sheaf

i∗F and the point t. We obtain an elementary étale neighbourhood (S′, s′)→ (S, s)
and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗F to W is flat over OS′,s′ . This means that V :=
W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. �

Lemma 37.10.6. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ .

Proof. For every point x ∈ Xs we can use Proposition 37.10.3 to find an elementary
étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S Spec(OSx,sx) such
that x ∈ Xs = X ×S sx is contained in Vx and such that the pullback of F to Vx
is an OVx -module of finite presentation and flat over OSx,sx . In particular we may
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view the fibre (Vx)sx as an open neighbourhood of x in Xs. Because Xs is quasi-
compact we can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the
union of the (Vxi)sxi . Choose an elementary étale neighbourhood (S′, s′) → (S, s)

which dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms,
Lemma 36.27.4. Set V =

⋃
Vi where Vi is the inverse images of the open Vxi via

the morphism

X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )
By construction V contains Xs and by construction the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ . �

Lemma 37.10.7. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is flat over
OS′,s′ .

Proof. (The only difference between this and Lemma 37.10.6 is that we do not
assume f is of finite presentation.) For every point x ∈ Xs we can use Lemma
37.10.5 to find an elementary étale neighbourhood (Sx, sx) → (S, s) and an open
Vx ⊂ X ×S Spec(OSx,sx) such that x ∈ Xs = X ×S sx is contained in Vx and such
that the pullback of F to Vx is flat over OSx,sx . In particular we may view the
fibre (Vx)sx as an open neighbourhood of x in Xs. Because Xs is quasi-compact
we can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union
of the (Vxi)sxi . Choose an elementary étale neighbourhood (S′, s′) → (S, s) which

dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma
36.27.4. Set V =

⋃
Vi where Vi is the inverse images of the open Vxi via the

morphism

X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )
By construction V contains Xs and by construction the pullback of F to V is flat
over OS′,s′ . �

Lemma 37.10.8. Let S be a scheme. Let X be locally of finite type over S. Let
x ∈ X with image s ∈ S. If X is flat at x over S, then there exists an elementary
étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

V ⊂ X ×S Spec(OS′,s′)

which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that V →
Spec(OS′,s′) is flat and of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S are affine.
Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I. In other words
we obtain a closed immersion i : X → An

S . Denote t = i(x) ∈ An
S . We may apply
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Proposition 37.10.3 to An
S → S, the sheaf F = i∗OX and the point t. We obtain

an elementary étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗OX is flat and of finite presentation. This means that
V := W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. �

Lemma 37.10.9. Let f : X → S be a morphism which is locally of finite presen-
tation. Let F be a quasi-coherent OX-module of finite type. If x ∈ X and F is flat
at x over S, then Fx is an OX,x-module of finite presentation.

Proof. Let s = f(x). By Proposition 37.10.3 there exists an elementary étale
neighbourhood (S′, s′)→ (S, s) such that the pullback of F to X×S Spec(OS′,s′) is
of finite presentation in a neighbourhood of the point x′ ∈ Xs′ = Xs corresponding
to x. The ring map

OX,x −→ OX×SSpec(OS′,s′ ),x′ = OX×SS′,x′

is flat and local as a localization of an étale ring map. Hence Fx is of finite pre-
sentation over OX,x by descent, see Algebra, Lemma 10.80.2 (and also that a flat
local ring map is faithfully flat, see Algebra, Lemma 10.38.16). �

Lemma 37.10.10. Let f : X → S be a morphism which is locally of finite type.
Let x ∈ X with image s ∈ S. If f is flat at x over S, then OX,x is essentially of
finite presentation over OS,s.

Proof. We may assume X and S affine. Write X = Spec(B), S = Spec(A)
and write B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion
i : X → An

S . Denote t = i(x) ∈ An
S . We may apply Lemma 37.10.9 to An

S → S,
the sheaf F = i∗OX and the point t. We conclude that OX,x is of finite presentation
over OAn

S ,t
which implies what we want. �

Lemma 37.10.11. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ S be open. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over S,
(3) U ⊂ S is retrocompact and scheme theoretically dense,
(4) F|f−1U is of finite presentation.

Then F is of finite presentation.

Proof. The problem is local on X and S, hence we may assume X and S affine.
Write S = Spec(A) and X = Spec(B). Let N be a finite B-module such that F
is the quasi-coherent sheaf associated to N . We have U = D(f1) ∪ . . . ∪ D(fn)
for some fi ∈ A, see Algebra, Lemma 10.28.1. As U is schematically dense the
map A → Af1 × . . . × Afn is injective. Pick a prime q ⊂ B lying over p ⊂ A
corresponding to x ∈ X mapping to s ∈ S. By Lemma 37.10.9 the module Nq is
of finite presentation over Bq. Choose a surjection ϕ : B⊕m → N of B-modules.
Choose k1, . . . , kt ∈ Ker(ϕ) and set N ′ = B⊕m/

∑
Bkj . There is a canonical

surjection N ′ → N and N is the filtered colimit of the B-modules N ′ constructed
in this manner. Thus we see that we can choose k1, . . . , kt such that (a) N ′fi

∼= Nfi ,

i = 1, . . . , n and (b) N ′q
∼= Nq. This in particular implies that N ′q is flat over A. By
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openness of flatness, see Algebra, Theorem 10.125.4 we conclude that there exists
a g ∈ B, g 6∈ q such that N ′g is flat over A. Consider the commutative diagram

N ′g //

��

Ng

��∏
N ′gfi

// ∏Ngfi

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow
is an injective map as A→

∏
Afi is injective and N ′g is flat over A. Hence the top

horizontal arrow is injective, hence an isomorphism. This proves that Ng is of finite
presentation over Bg. We conclude by applying Algebra, Lemma 10.23.2. �

Lemma 37.10.12. Let f : X → S be a morphism of schemes. Let U ⊂ S be open.
Assume

(1) f is locally of finite type and flat,
(2) U ⊂ S is retrocompact and scheme theoretically dense,
(3) f |f−1U : f−1U → U is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S affine.
Choose a closed immersion i : X → An

S and apply Lemma 37.10.11 to i∗OX . Some
details omitted. �

37.11. Flat finitely presented modules

In some cases given a ring map R→ S of finite presentation and a finitely presented
S-module N the flatness of N over R implies that N is projective as an R-module,
at least after replacing S by an étale extension. In this section we collect a some
results of this nature.

Lemma 37.11.1. Let R be a ring. Let R→ S be a finitely presented flat ring map
with geometrically integral fibres. Let q ⊂ S be a prime ideal lying over the prime
r ⊂ R. Set p = rS. Let N be a finitely presented S-module. There exists r ≥ 0 and
an S-module map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) there exists an f ∈ R, f 6∈ r such that αf : S⊕rf → Nf is Rf -universally

injective and a g ∈ S, g 6∈ q such that Coker(α)g is R-flat,
(3) αr is Rr-universally injective and Coker(α)q is R-flat
(4) αr is injective and Coker(α)q is R-flat,
(5) αp is an isomorphism and Coker(α)q is R-flat, and
(6) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p)N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix a choice of α. We may apply Lemma 37.10.1 to the map αr : S⊕rr → Nr. Hence
we see that (1), (3), (4), (5), and (6) are all equivalent. Since it is also clear that
(2) implies (3) we see that all we have to do is show that (1) implies (2).
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Assume (1). By openness of flatness, see Algebra, Theorem 10.125.4, the set

U1 = {q′ ⊂ S | Nq′ is flat over R}
is open in Spec(S). It contains q by assumption and hence p. Because S⊕r and N
are finitely presented S-modules the set

U2 = {q′ ⊂ S | αq′ is an isomorphism}
is open in Spec(S), see Algebra, Lemma 10.76.2. It contains p by (5). As R → S
is finitely presented and flat the map Φ : Spec(S)→ Spec(R) is open, see Algebra,
Proposition 10.40.8. For any prime r′ ∈ Φ(U1∩U2) we see that there exists a prime q′

lying over r′ such that Nq′ is flat and such that αq′ is an isomorphism, which implies
that α⊗κ(p′) is an isomorphism where p′ = r′S. Thus αr′ is Rr′ -universally injective
by the implication (1) ⇒ (3). Hence if we pick f ∈ R, f 6∈ r such that D(f) ⊂
Φ(U1∩U2) then we conclude that αf is Rf -universally injective, see Algebra, Lemma
10.79.12. The same reasoning also shows that for any q′ ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2))
the module Coker(α)q′ is R-flat. Note that q ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2)). Hence we
can find a g ∈ S, g 6∈ q such that D(g) ⊂ U1 ∩ Φ−1(Φ(U1 ∩ U2)) and we win. �

Lemma 37.11.2. Let R → S be a ring map of finite presentation. Let N be a
finitely presented S-module flat over R. Let r ⊂ R be a prime ideal. Assume there
exists a complete dévissage of N/S/R over r. Then there exists an f ∈ R, f 6∈ r
such that

Nf ∼= B⊕r11 ⊕ . . .⊕B⊕rnn

as R-modules where each Bi is a smooth Rf -algebra with geometrically irreducible
fibres. Moreover, Nf is projective as an Rf -module.

Proof. Let (Ai, Bi,Mi, αi)i=1,...,n be the given complete dévissage. We prove the
lemma by induction on n. Note that the assertions of the lemma are entirely about
the structure of N as an R-module. Hence we may replace N by M1, and we may
think of M1 as a B1-module. See Remark 37.6.3 in order to see why M1 is of
finite presentation as a B1-module. By Lemma 37.11.1 we may, after replacing R
by Rf for some f ∈ R, f 6∈ r, assume the map α1 : B⊕r11 → M1 is R-universally

injective. Since M1 and B⊕r11 are R-flat and finitely presented as B1-modules we
see that Coker(α1) is R-flat (Algebra, Lemma 10.79.7) and finitely presented as a
B1-module. Note that (Ai, Bi,Mi, αi)i=2,...,n is a complete dévissage of Coker(α1).
Hence the induction hypothesis implies that, after replacing R by Rf for some
f ∈ R, f 6∈ r, we may assume that Coker(α1) has a decomposition as in the
lemma and is projective. In particular M1 = B⊕r11 ⊕ Coker(α1). This proves the
statement regarding the decomposition. The statement on projectivity follows as
B1 is projective as an R-module by Lemma 37.9.3. �

Remark 37.11.3. There is a variant of Lemma 37.11.2 where we weaken the
flatness condition by assuming only that N is flat at some given prime q lying over
r but where we strengthen the dévissage condition by assuming the existence of a
complete dévissage at q. Compare with Lemma 37.10.2.

The following is the main result of this section.

Proposition 37.11.4. Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
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(2) F is of finite presentation, and
(3) F is flat at x over S.

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. By openness of flatness, see More on Morphisms, Theorem 36.12.1 we may
replace X by an open neighbourhood of x and assume that F is flat over S. Next,
we apply Proposition 37.5.7 to find a diagram as in the statement of the proposition
such that g∗F/X ′/S′ has a complete dévissage over s′. (In particular S′ and X ′

are affine.) By Morphisms, Lemma 28.26.11 we see that g∗F is flat over S and by
Lemma 37.2.3 we see that it is flat over S′. Via Remark 37.6.5 we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage over the prime of Γ(S′,OS′) corresponding to s′. Thus
Lemma 37.11.2 implies that the result of the proposition holds after replacing S′

by a standard open neighbourhood of s′. �

In the rest of this section we prove a number of variants on this result. The first is
a “global” version.

Lemma 37.11.5. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. For every point x ∈ Xs we can use Proposition 37.11.4 to find a commuta-
tive diagram

(X,x)

��

(Yx, yx)
gx
oo

��
(S, s) (Sx, sx)oo

whose horizontal arrows are elementary étale neighbourhoods such that Yx, Sx are
affine and such that Γ(Yx, g

∗
xF) is a projective Γ(Sx,OSx)-module. In particular

gx(Yx)∩Xs is an open neighbourhood of x in Xs. Because Xs is quasi-compact we
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can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union of the
gxi(Yxi) ∩ Xs. Choose an elementary étale neighbourhood (S′, s′) → (S, s) which
dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma
36.27.4. We may also assume that S′ is affine. Set X ′ =

∐
Yxi ×Sxi S

′ and endow

it with the obvious morphism g : X ′ → X. By construction g(X ′) contains Xs and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g
∗
xiF)⊗Γ(Sxi ,OSxi ) Γ(S′,OS′).

This is a projective Γ(S′,OS′)-module, see Algebra, Lemma 10.91.1. �

The following two lemmas are reformulations of the results above in case F = OX .

Lemma 37.11.6. Let f : X → S be locally of finite presentation. Let x ∈ X with
image s ∈ S. If f is flat at x over S, then there exists a commutative diagram of
pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′,OX′) is a projective Γ(S′,OS′)-module.

Proof. This is a special case of Proposition 37.11.4. �

Lemma 37.11.7. Let f : X → S be of finite presentation. Let s ∈ S. If X is
flat over S at all points of Xs, then there exists an elementary étale neighbourhood
(S′, s′)→ (S, s) and a commutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

with g étale, Xs ⊂ g(X ′), such that X ′, S′ are affine, and such that Γ(X ′,OX′) is
a projective Γ(S′,OS′)-module.

Proof. This is a special case of Lemma 37.11.5. �

The following lemmas explain consequences of Proposition 37.11.4 in case we only
assume the morphism and the sheaf are of finite type (and not necessarily of finite
presentation).

Lemma 37.11.8. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.
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Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. To prove the lemma we may replace (S, s) by any elementary étale neigh-
bourhood, and we may also replace S by Spec(OS,s). Hence by Proposition 37.10.3
we may assume that F is finitely presented and flat over S in a neighbourhood of x.
In this case the result follows from Proposition 37.11.4 because Algebra, Theorem
10.82.4 assures us that projective = free over a local ring. �

Lemma 37.11.9. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. (The only difference with Lemma 37.11.8 is that we do not assume f is
of finite presentation.) The problem is local on X and S. Hence we may assume
X and S are affine, say X = Spec(B) and S = Spec(A). Since B is a finite type
A-algebra we can find a surjection A[x1, . . . , xn] → B. In other words, we can
choose a closed immersion i : X → An

S . Set t = i(x) and G = i∗F . Note that
Gt ∼= Fx are OS,s-modules. Hence G is flat over S at t. We apply Lemma 37.11.8
to the morphism An

S → S, the point t, and the sheaf G. Thus we can find an
elementary étale neighbourhood (S′, s′) → (S, s) and a commutative diagram of
pointed schemes

(An
S , t)

��

(Y, y)
h

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that Y → An
OS′,s′ is étale, κ(t) = κ(y), the scheme Y is affine, and such that

Γ(Y, h∗G) is a projective OS′,s′ -module. Then a solution to the original problem is
given by the closed subscheme X ′ = Y ×An

S
X of Y . �
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Lemma 37.11.10. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. For every point x ∈ Xs we can use Lemma 37.11.8 to find an elementary
étale neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine
of finite presentation over OSx,sx , the sheaf g∗xF is of finite presentation over OYx ,
and such that Γ(Yx, g

∗
xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an

open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ).

Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 36.27.4. Set

X ′ =
∐

Yxi ×Spec(OSxi ,sxi ) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′s′)
and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g
∗
xiF)⊗OSxi ,sxi OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. Some
minor details omitted. �

Lemma 37.11.11. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.
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Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. (The only difference with Lemma 37.11.10 is that we do not assume f is of
finite presentation.) For every point x ∈ Xs we can use Lemma 37.11.9 to find an
elementary étale neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine,
and such that Γ(Yx, g

∗
xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an

open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ).

Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 36.27.4. Set

X ′ =
∐

Yxi ×Spec(OSxi ,sxi ) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′s′)
and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g
∗
xiF)⊗OSxi ,sxi OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. �

37.12. Flat finite type modules, Part II

The following lemma will be superseded by the stronger Lemma 37.12.3 below.

Lemma 37.12.1. Let (R,m) be a local ring. Let R → S be of finite presentation.
Let N be a finitely presented S-module which is free as an R-module. Let M be an
R-module. Let q be a prime of S lying over m. Then

(1) if q ∈WeakAssS(M ⊗R N) then m ∈WeakAssR(M) and q ∈ AssS(N),

(2) if m ∈ WeakAssR(M) and q ∈ AssS(N) is a maximal element then q ∈
WeakAssS(M ⊗R N).

Here S = S/mS, q = qS, and N = N/mN .

Proof. Suppose that q 6∈ AssS(N). By Algebra, Lemmas 10.62.9, 10.62.5, and

10.14.2 there exists an element g ∈ q which is not a zerodivisor on N . Let g ∈ q
be an element which maps to g in q. By Lemma 37.7.6 the map g : N → N
is R-universally injective. In particular we see that g : M ⊗R N → M ⊗R N is
injective. Clearly this implies that q 6∈ WeakAssS(M ⊗R N). We conclude that
q ∈WeakAssS(M ⊗R N) implies q ∈ AssS(N).
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Assume q ∈WeakAssS(M⊗RN). Let z ∈M⊗RN be an element whose annihilator
in S has radical q. As N is a free R-module, we can find a finite free direct summand
F ⊂ N such that z ∈ M ⊗R F . The radical of the annihilator of z ∈ M ⊗R F in
R is m (by our assumption on z and because q lies over m). Hence we see that
m ∈WeakAss(M ⊗R F ) which implies that m ∈WeakAss(M) by Algebra, Lemma
10.65.3. This finishes the proof of (1).

Assume that m ∈ WeakAssR(M) and q ∈ AssS(N) is a maximal element. Let
y ∈M be an element whose annihilator I = AnnR(y) has radical m. Then R/I ⊂M
and by flatness of N over R we get N/IN = R/I ⊗R N ⊂ M ⊗R N . Hence it is
enough to show that q ∈WeakAss(N/IN). Write q = (g1, . . . , gn) for some gi ∈ S.
Choose lifts gi ∈ q. Consider the map

Ψ : N/IN −→ N/IN⊕n, z 7−→ (g1z, . . . , gnz).

We may think of this as a map of free R/I-modules. As the ring R/I is auto-
associated (since m/I is locally nilpotent) and since Ψ⊗R/m isn’t injective (since
q ∈ Ass(N)) we see by More on Algebra, Lemma 15.8.4 that Ψ isn’t injective. Pick
z ∈ N/IN nonzero in the kernel of Ψ. The annihilator of z contains I and gi,

whence its radical J =
√

AnnS(z) contains q. Let q′ ⊃ J be a minimal prime
over J . Then q′ ∈ WeakAss(M ⊗R N) (by definition) and by (1) we see that
q′ ∈ Ass(N). Then since q ⊂ q′ by construction the maximality of q implies q = q′

whence q ∈WeakAss(M ⊗R N). This proves part (2) of the lemma. �

Lemma 37.12.2. Let S be a scheme. Let f : X → S be locally of finite type. Let
x ∈ X with image s ∈ S. Let F be a finite type quasi-coherent sheaf on X. Let G
be a quasi-coherent sheaf on S. If F is flat at x over S, then

x ∈WeakAssX(F ⊗OX f∗G)⇔ s ∈WeakAssS(G) and x ∈ AssXs(Fs).

Proof. The question is local on X and S, hence we may assume X and S are
affine. Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I. In other
words we obtain a closed immersion i : X → An

S over S. Denote t = i(x) ∈ An
S .

Note that i∗F is a finite type quasi-coherent sheaf on An
S which is flat at t over S

and note that

i∗(F ⊗OX f∗G) = i∗F ⊗OAn
S
p∗G

where p : An
S → S is the projection. Note that t is a weakly associated point of

i∗(F ⊗OX f∗G) if and only if x is a weakly associated point of F ⊗OX f∗G, see
Divisors, Lemma 30.6.3. Similarly x ∈ AssXs(Fs) if and only if t ∈ AssAn

s
((i∗F)s)

(see Algebra, Lemma 10.62.13). Hence it suffices to prove the lemma in case X =
An
S . In particular we may assume that X → S is of finite presentation.

Recall that AssXs(Fs) is a locally finite subset of the locally Noetherian scheme Xs,
see Divisors, Lemma 30.2.5. After replacing X by a suitable affine neighbourhood
of x we may assume that

(∗) if x′ ∈ AssXs(Fs) and x x′ then x = x′.

(Proof omitted. Hint: using Algebra, Lemma 10.14.2 invert a function which does
not vanish at x but does vanish in all the finitely many points of AssXs(Fs) which
are specializations of x but not equal to x.) In words, no point of AssXs(Fs) is a
proper specialization of x.
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Suppose given a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)

eoo

of pointed schemes whose horizontal arrows are elementary étale neighbourhoods.
Then it suffices to prove the statement for x′, s′, g∗F and e∗G, see Lemma 37.2.7.
Note that property (∗) is preserved by such an étale localization by the same lemma
(if there is a proper specialization x′  x′′ on X ′s′ then this maps to a proper
specialization on Xs because the fibres of an étale morphism are discrete). We
may also replace S by the spectrum of its local ring as the condition of being
an associated point of a quasi-coherent sheaf depends only on the stalk of the
sheaf. Again property (∗) is preserved by this as well. Thus we may first apply
Proposition 37.10.3 to reduce to the case where F is of finite presentation and
flat over S, whereupon we may use Proposition 37.11.4 to reduce to the case that
X → S is a morphism of affines and Γ(X,F) is a finitely presented Γ(X,OX)-
module which is projective as a Γ(S,OS)-module. Localizing S once more we may
assume that Γ(S,OS) is a local ring such that s corresponds to the maximal ideal. In
this case Algebra, Theorem 10.82.4 guarantees that Γ(X,F) is free as an Γ(S,OS)-
module. The implication x ∈WeakAssX(F⊗OX f∗G)⇒ s ∈WeakAssS(G) and x ∈
AssXs(Fs) follows from part (1) of Lemma 37.12.1. The converse implication follows
from part (2) of Lemma 37.12.1 as property (∗) insures that the prime corresponding
to x gives rise to a maximal element of AssS(N) exactly as in the statement of part
(2) of Lemma 37.12.1. �

Lemma 37.12.3. Let R→ S be a ring map which is essentially of finite type. Let
N be a localization of a finite S-module flat over R. Let M be an R-module. Then

WeakAssS(M ⊗R N) =
⋃

p∈WeakAssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

Proof. This lemma is a translation of Lemma 37.12.2 into algebra. Details of
translation omitted. �

Lemma 37.12.4. Let f : X → S be a morphism which is locally of finite type.
Let F be a finite type quasi-coherent sheaf on X which is flat over S. Let G be a
quasi-coherent sheaf on S. Then we have

WeakAssX(F ⊗OX f∗G) =
⋃

s∈WeakAssS(G)
AssXs(Fs)

Proof. Immediate consequence of Lemma 37.12.2. �

Theorem 37.12.5. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume

(1) X → S is locally of finite presentation,
(2) F is an OX-module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is an OU -module of
finite presentation and flat over S.
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Proof. Let x ∈ X be such that F is flat at x over S. We have to find an open
neighbourhood of x such that F restricts to a S-flat finitely presented module on
this neighbourhood. The problem is local on X and S, hence we may assume that
X and S are affine. As Fx is a finitely presented OX,x-module by Lemma 37.10.9
we conclude from Algebra, Lemma 10.122.5 there exists a finitely presented OX -
module F ′ and a map ϕ : F ′ → F which induces an isomorphism ϕx : F ′x → Fx.
In particular we see that F ′ is flat over S at x, hence by openness of flatness More
on Morphisms, Theorem 36.12.1 we see that after shrinking X we may assume that
F ′ is flat over S. As F is of finite type after shrinking X we may assume that ϕ
is surjective, see Modules, Lemma 17.9.4 or alternatively use Nakayama’s lemma
(Algebra, Lemma 10.19.1). By Lemma 37.12.4 we have

WeakAssX(F ′) ⊂
⋃

s∈WeakAss(S)
AssXs(F ′s)

As WeakAss(S) is finite by assumption and since AssXs(F ′s) is finite by Divi-
sors, Lemma 30.2.5 we conclude that WeakAssX(F ′) is finite. Using Algebra,
Lemma 10.14.2 we may, after shrinking X once more, assume that WeakAssX(F ′)
is contained in the generalization of x. Now consider K = Ker(ϕ). We have
WeakAssX(K) ⊂ WeakAssX(F ′) (by Divisors, Lemma 30.5.4) but on the other
hand, ϕx is an isomorphism, also ϕx′ is an isomorphism for all x′  x. We con-
clude that WeakAssX(K) = ∅ whence K = 0 by Divisors, Lemma 30.5.5. �

Lemma 37.12.6. Let R → S be a ring map of finite presentation. Let M be a
finite S-module. Assume WeakAssS(S) is finite. Then

U = {q ⊂ S |Mq flat over R}
is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
a finitely presented Sg-module flat over R.

Proof. Follows immediately from Theorem 37.12.5. �

Lemma 37.12.7. Let f : X → S be a morphism of schemes which is locally of
finite type. Assume the set of weakly associated points of S is locally finite in S.
Then the set of points x ∈ X where f is flat is an open subscheme U ⊂ X and
U → S is flat and locally of finite presentation.

Proof. The problem is local on X and S, hence we may assume that X and S
are affine. Then X → S corresponds to a finite type ring map A → B. Choose
a surjection A[x1, . . . , xn] → B and consider B as an A[x1, . . . , xn]-module. An
application of Lemma 37.12.6 finishes the proof. �

Lemma 37.12.8. Let f : X → S be a morphism of schemes which is locally of
finite type and flat. If S is integral, then f is locally of finite presentation.

Proof. Special case of Lemma 37.12.7. �

Proposition 37.12.9. Let R be a domain. Let R→ S be a ring map of finite type.
Let M be a finite S-module.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module, then M is finitely presented as an S-module.

Proof. Part (1) is a special case of Lemma 37.12.8. For Part (2) choose a surjection
R[x1, . . . , xn] → S. By Lemma 37.12.6 we find that M is finitely presented as an
R[x1, . . . , xn]-module. We conclude by Algebra, Lemma 10.6.4. �
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Remark 37.12.10 (Finite type version of Theorem 37.12.5). Let f : X → S be a
morphism of schemes. Let F be a quasi-coherent OX -module. Assume

(1) X → S is locally of finite type,
(2) F is an OX -module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is flat over S and
locally finitely presented relative to S (see More on Morphisms, Definition 36.38.1).
If we ever need this result in the stacks project we will convert this remark into a
lemma with a proof.

Remark 37.12.11 (Algebra version of Remark 37.12.10). Let R → S be a ring
map of finite type. Let M be a finite S-module. Assume WeakAssS(S) is finite.
Then

U = {q ⊂ S |Mq flat over R}
is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
flat over R and an Sg-module finitely presented relative to R (see More on Algebra,
Definition 15.58.2). If we ever need this result in the stacks project we will convert
this remark into a lemma with a proof.

37.13. Examples of relatively pure modules

In the short section we discuss some examples of results that will serve as motivation
for the notion of a relatively pure module and the concept of an impurity which we
will introduce later. Each of the examples is stated as a lemma. Note the similarity
with the condition on associated primes to the conditions appearing in Lemmas
37.7.4, 37.8.3, 37.8.4, and 37.9.1. See also Algebra, Lemma 10.64.1 for a discussion.

Lemma 37.13.1. Let R be a local ring with maximal ideal m. Let R → S be a
ring map. Let N be an S-module. Assume

(1) N is projective as an R-module, and
(2) S/mS is Noetherian and N/mN is a finite S/mS-module.

Then for any prime q ⊂ S which is an associated prime of N⊗Rκ(p) where p = R∩q
we have q + mS 6= S.

Proof. Note that the hypotheses of Lemmas 37.7.1 and 37.7.6 are satisfied. We
will use the conclusions of these lemmas without further mention. Let Σ ⊂ S be
the multiplicative set of elements which are not zerodivisors on N/mN . The map
N → Σ−1N is R-universally injective. Hence we see that any q ⊂ S which is
an associated prime of N ⊗R κ(p) is also an associated prime of Σ−1N ⊗R κ(p).
Clearly this implies that q corresponds to a prime of Σ−1S. Thus q ⊂ q′ where q′

corresponds to an associated prime of N/mN and we win. �

The following lemma gives another (slightly silly) example of this phenomenon.

Lemma 37.13.2. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring
map. Let N be an S-module. If N is I-adically complete, then for any R-module
M and for any prime q ⊂ S which is an associated prime of N ⊗R M we have
q + IS 6= S.

Proof. Let S∧ denote the I-adic completion of S. Note that N is an S∧-module,
hence also N ⊗R M is an S∧-module. Let z ∈ N ⊗R M be an element such that
q = AnnS(z). Since z 6= 0 we see that AnnS∧(z) 6= S∧. Hence qS∧ 6= S∧. Hence
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there exists a maximal ideal m ⊂ S∧ with qS∧ ⊂ m. Since IS∧ ⊂ m by Algebra,
Lemma 10.93.11 we win. �

Note that the following lemma gives an alternative proof of Lemma 37.13.1 as a
projective module over a local ring is free, see Algebra, Theorem 10.82.4.

Lemma 37.13.3. Let R be a local ring with maximal ideal m. Let R → S be a
ring map. Let N be an S-module. Assume N is isomorphic as an R-module to
a direct sum of finite R-modules. Then for any R-module M and for any prime
q ⊂ S which is an associated prime of N ⊗RM we have q + mS 6= S.

Proof. Write N =
⊕

i∈IMi with each Mi a finite R-module. Let M be an R-
module and let q ⊂ S be an associated prime of N ⊗R M such that q + mS = S.
Let z ∈ N ⊗R M be an element with q = AnnS(z). After modifying the direct
sum decomposition a little bit we may assume that z ∈M1⊗RM for some element
1 ∈ I. Write 1 = f +

∑
xjgj for some f ∈ q, xj ∈ m, and gj ∈ S. For any g ∈ S

denote g′ the R-linear map

M1 → N
g−→ N →M1

where the first arrow is the inclusion map, the second arrow is multiplication by
g and the third arrow is the projection map. Because each xj ∈ R we obtain the
equality

f ′ +
∑

xjg
′
j = idM1

∈ EndR(M1)

By Nakayama’s lemma (Algebra, Lemma 10.19.1) we see that f ′ is surjective, hence
by Algebra, Lemma 10.15.4 we see that f ′ is an isomorphism. In particular the
map

M1 ⊗RM → N ⊗RM
f−→ N ⊗RM →M1 ⊗RM

is an isomorphism. This contradicts the assumption that fz = 0. �

Lemma 37.13.4. Let R be a henselian local ring with maximal ideal m. Let R→ S
be a ring map. Let N be an S-module. Assume N is countably generated and Mittag-
Leffler as an R-module. Then for any R-module M and for any prime q ⊂ S which
is an associated prime of N ⊗RM we have q + mS 6= S.

Proof. This lemma reduces to Lemma 37.13.3 by Algebra, Lemma 10.145.32. �

Suppose f : X → S is a morphism of schemes and F is a quasi-coherent module on
X. Let ξ ∈ AssX/S(F) and let Z = {ξ}. Picture

ξ_

��

Z //

��

X

f

��
f(ξ) S

Note that f(Z) ⊂ {f(ξ)} and that f(Z) is closed if and only if equality holds, i.e.,

f(Z) = {f(ξ)}. It follows from Lemma 37.13.1 that if S, X are affine, the fibres Xs

are Noetherian, F is of finite type, and Γ(X,F) is a projective Γ(S,OS)-module,

then f(Z) = {f(ξ)} is a closed subset. Slightly different analogous statements holds
for the cases described in Lemmas 37.13.2, 37.13.3, and 37.13.4.
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37.14. Impurities

We want to formalize the phenomenon of which we gave examples in Section 37.13
in terms of specializations of points of AssX/S(F). We also want to work locally
around a point s ∈ S. In order to do so we make the following definitions.

Situation 37.14.1. Here S, X are schemes and f : X → S is a finite type mor-
phism. Also, F is a finite type quasi-coherent OX -module. Finally s is a point of
S.

In this situation consider a morphism g : T → S, a point t ∈ T with g(t) = s, a
specialization t′  t, and a point ξ ∈ XT in the base change of X lying over t′.
Picture

(37.14.1.1)

ξ_

��
t′ // t_

��
s

XT

��

// X

��
T

g

��

g // S

S

Moreover, denote FT the pullback of F to XT .

Definition 37.14.2. In Situation 37.14.1 we say a diagram (37.14.1.1) defines an

impurity of F above s if ξ ∈ AssXT /T (FT ) and {ξ} ∩Xt = ∅. We will indicate this
by saying “let (g : T → S, t′  t, ξ) be an impurity of F above s”.

Lemma 37.14.3. In Situation 37.14.1. If there exists an impurity of F above s,
then there exists an impurity (g : T → S, t′  t, ξ) of F above s such that g is
locally of finite presentation and t a closed point of the fibre of g above s.

Proof. Let (g : T → S, t′  t, ξ) be any impurity of F above s. We apply Limits,

Lemma 31.13.1 to t ∈ T and Z = {ξ} to obtain an open neighbourhood V ⊂ T of
t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

As t′ specializes to t we may replace T by the open neighbourhood V of t. Thus
we have a commutative diagram

XT

��

// XT ′

��

// X

��
T

a // T ′
b // S

where b ◦ a = g. Let ξ′ ∈ XT ′ denote the image of ξ. By Divisors, Lemma 30.7.2
we see that ξ′ ∈ AssXT ′/T ′(FT ′). Moreover, by construction the closure of {ξ′} is
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contained in the closed subset Z ′ which avoids the fibre Xa(t). In this way we see
that (T ′ → S, a(t′) a(t), ξ′) is an impurity of F above s.

Thus we may assume that g : T → S is locally of finite presentation. Let Z = {ξ}.
By assumption Zt = ∅. By More on Morphisms, Lemma 36.19.1 this means that
Zt′′ = ∅ for t′′ in an open subset of {t}. Since the fibre of T → S over s is a
Jacobson scheme, see Morphisms, Lemma 28.17.10 we find that there exist a closed
point t′′ ∈ {t} such that Zt′′ = ∅. Then (g : T → S, t′  t′′, ξ) is the desired
impurity. �

Lemma 37.14.4. In Situation 37.14.1. Let (g : T → S, t′  t, ξ) be an impurity
of F above s. Assume S is affine and that T is written T = limi∈I Ti as a directed
colimit of affine schemes over S. Then for some i the triple (Ti → S, t′i  ti, ξi) is
an impurity of F above s.

Proof. The notation in the statement means this: Let fi : T → Ti be the projection
morphisms, let ti = fi(t) and t′i = fi(t

′). Finally ξi ∈ XTi is the image of ξ. By
Divisors, Lemma 30.7.2 it is true that ξi is a point of the relative assassin of FTi
over Ti. Thus the only point is to show that {ξi}∩Xti = ∅ for some i. Set Z = {ξ}.
Apply Limits, Lemma 31.13.1 to this situation to obtain an open neighbourhood
V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

We may assume V is an affine open of T , hence by Limits, Lemmas 31.3.8 and
31.3.10 we can find an i and an affine open Vi ⊂ Ti with V = f−1

i (Vi). By
Limits, Proposition 31.5.1 after possibly increasing i a bit we can find a morphism
ai : Vi → T ′ such that a = ai ◦ fi|V . The induced morphism XTi → XT ′ maps ξi
into Z ′. As Z ′ ∩Xa(t) = ∅ we conclude that (Ti → S, t′i  ti, ξi) is an impurity of
F above s. �

Lemma 37.14.5. In Situation 37.14.1. If there exists an impurity (g : T →
S, t′  t, ξ) of F above s with g quasi-finite at t, then there exists an impurity
(g : T → S, t′  t, ξ) such that (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. Let (g : T → S, t′  t, ξ) be an impurity of F above s such that g is
quasi-finite at t. After shrinking T we may assume that g is locally of finite type.
Apply More on Morphisms, Lemma 36.30.1 to T → S and t 7→ s. This gives us a
diagram

T

��

T ×S Uoo

��

Voo

{{
S Uoo
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where (U, u) → (S, s) is an elementary étale neighbourhood and V ⊂ T ×S U is
an open neighbourhood of v = (t, u) such that V → U is finite and such that v
is the unique point of V lying over u. Since the morphism V → T is étale hence
flat we see that there exists a specialization v′  v such that v′ 7→ t′. Note that
κ(t′) ⊂ κ(v′) is finite separable. Pick any point ζ ∈ Xv′ mapping to ξ ∈ Xt′ . By

Divisors, Lemma 30.7.2 we see that ζ ∈ AssXV /V (FV ). Moreover, the closure {ζ}
does not meet the fibre Xv as by assumption the closure {ξ} does not meet Xt. In
other words (V → S, v′  v, ζ) is an impurity of F above S.

Next, let u′ ∈ U ′ be the image of v′ and let θ ∈ XU be the image of ζ. Then θ 7→ u′

and u′  u. By Divisors, Lemma 30.7.2 we see that θ ∈ AssXU/U (F). Moreover,

as π : XV → XU is finite we see that π
(
{ζ}
)

= {π(ζ)}. Since v is the unique point

of V lying over u we see that Xu ∩ {π(ζ)} = ∅ because Xv ∩ {ζ} = ∅. In this way
we conclude that (U → S, u′  u, θ) is an impurity of F above s and we win. �

Lemma 37.14.6. In Situation 37.14.1. Assume that S is locally Noetherian. If
there exists an impurity of F above s, then there exists an impurity (g : T → S, t′  
t, ξ) of F above s such that g is quasi-finite at t.

Proof. We may replace S by an affine neighbourhood of s. By Lemma 37.14.3 we
may assume that we have an impurity (g : T → S, t′  t, ξ) of such that g is locally
of finite type and t a closed point of the fibre of g above s. We may replace T by
the reduced induced scheme structure on {t′}. Let Z = {ξ} ⊂ XT . By assumption
Zt = ∅ and the image of Z → T contains t′. By More on Morphisms, Lemma 36.20.1
there exists a nonempty open V ⊂ Z such that for any w ∈ f(V ) any generic point
ξ′ of Vw is in AssXT /T (FT ). By More on Morphisms, Lemma 36.19.2 there exists a
nonempty open W ⊂ T with W ⊂ f(V ). By More on Morphisms, Lemma 36.35.7
there exists a closed subscheme T ′ ⊂ T such that t ∈ T ′, T ′ → S is quasi-finite at
t, and there exists a point z ∈ T ′ ∩W , z  t which does not map to s. Choose
any generic point ξ′ of the nonempty scheme Vz. Then (T ′ → S, z  t, ξ′) is the
desired impurity. �

In the following we will use the henselization Sh = Spec(OhS,s) of S at s, see Étale

Cohomology, Definition 44.33.2. Since Sh → S maps to closed point of Sh to s and
induces an isomorphism of residue fields, we will indicate s ∈ Sh this closed point
also. Thus (Sh, s)→ (S, s) is a morphism of pointed schemes.

Lemma 37.14.7. In Situation 37.14.1. If there exists an impurity (Sh → S, s′  
s, ξ) of F above s then there exists an impurity (T → S, t′  t, ξ) of F above s
where (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. We may replace S by an affine neighbourhood of s. Say S = Spec(A)
and s corresponds to the prime p ⊂ A. Then OhS,s = colim(T,t) Γ(T,OT ) where
the limit is over the opposite of the cofiltered category of affine elementary étale
neighbourhoods (T, t) of (S, s), see More on Morphisms, Lemma 36.27.5 and its
proof. Hence Sh = limi Ti and we win by Lemma 37.14.4. �

Lemma 37.14.8. In Situation 37.14.1 the following are equivalent

(1) there exists an impurity (Sh → S, s′  s, ξ) of F above s where Sh is the
henselization of S at s,
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(2) there exists an impurity (T → S, t′  t, ξ) of F above s such that (T, t)→
(S, s) is an elementary étale neighbourhood, and

(3) there exists an impurity (T → S, t′  t, ξ) of F above s such that T → S
is quasi-finite at t.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3).
We have seen that (3) implies (2) in Lemma 37.14.5. We have seen that (1) implies
(2) in Lemma 37.14.7. Finally, if (T → S, t′  t, ξ) is an impurity of F above s
such that (T, t)→ (S, s) is an elementary étale neighbourhood, then we can choose
a factorization Sh → T → S of the structure morphism Sh → S. Choose any
point s′ ∈ Sh mapping to t′ and choose any ξ′ ∈ Xs′ mapping to ξ ∈ Xt′ . Then
(Sh → S, s′  s, ξ′) is an impurity of F above s. We omit the details. �

37.15. Relatively pure modules

The notion of a module pure relative to a base was introduced in [GR71].

Definition 37.15.1. Let f : X → S be a morphism of schemes which is of finite
type. Let F be a finite type quasi-coherent OX -module.

(1) Let s ∈ S. We say F is pure along Xs if there is no impurity (g : T →
S, t′  t, ξ) of F above s with (T, t) → (S, s) an elementary étale neigh-
bourhood.

(2) We say F is universally pure along Xs if there does not exist any impurity
of F above s.

(3) We say that X is pure along Xs if OX is pure along Xs.
(4) We say F is universally S-pure, or universally pure relative to S if F is

universally pure along Xs for every s ∈ S.
(5) We say F is S-pure, or pure relative to S if F is pure along Xs for every

s ∈ S.
(6) We say that X is S-pure or pure relative to S if OX is pure relative to S.

We intentionally restrict ourselves here to morphisms which are of finite type and
not just morphisms which are locally of finite type, see Remark 37.15.2 for a dis-
cussion. In the situation of the definition Lemma 37.14.8 tells us that the following
are equivalent

(1) F is pure along Xs,
(2) there is no impurity (g : T → S, t′  t, ξ) with g quasi-finite at t,
(3) there does not exist any impurity of the form (Sh → S, s′  s, ξ), where

Sh is the henselization of S at s.

If we denote Xh = X×SSh and Fh the pullback of F to Xh, then we can formulate
the last condition in the following more positive way:

(4) All points of AssXh/Sh(Fh) specialize to points of Xs.

In particular, it is clear that F is pure along Xs if and only if the pullback of F to
X ×S Spec(OS,s) is pure along Xs.

Remark 37.15.2. Let f : X → S be a morphism which is locally of finite type
and F a quasi-coherent finite type OX -module. In this case it is still true that (1)
and (2) above are equivalent because the proof of Lemma 37.14.5 does not use that
f is quasi-compact. It is also clear that (3) and (4) are equivalent. However, we
don’t know if (1) and (3) are equivalent. In this case it may sometimes be more

http://stacks.math.columbia.edu/tag/05J4
http://stacks.math.columbia.edu/tag/05J5


2486 37. MORE ON FLATNESS

convenient to define purity using the equivalent conditions (3) and (4) as is done in
[GR71]. On the other hand, for many applications it seems that the correct notion
is really that of being universally pure.

A natural question to ask is if the property of being pure relative to the base is
preserved by base change, i.e., if being pure is the same thing as being universally
pure. It turns out that this is true over Noetherian base schemes (see Lemma
37.15.5), or if the sheaf is flat (see Lemmas 37.17.3 and 37.17.4). It is not true in
general, even if the morphism and the sheaf are of finite presentation, see Examples,
Section 82.32 for a counter example. First we match our usage of “universally” to
the usual notion.

Lemma 37.15.3. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. The following are
equivalent

(1) F is universally pure along Xs, and
(2) for every morphism of pointed schemes (S′, s′) → (S, s) the pullback FS′

is pure along Xs′ .

In particular, F is universally pure relative to S if and only if every base change
FS′ of F is pure relative to S′.

Proof. This is formal. �

Lemma 37.15.4. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. Let (S′, s′) → (S, s)
be a morphism of pointed schemes. If S′ → S is quasi-finite at s′ and F is pure
along Xs, then FS′ is pure along Xs′ .

Proof. It (T → S′, t′  t, ξ) is an impurity of FS′ above s′ with T → S′ quasi-finite
at t, then (T → S, t′ → t, ξ) is an impurity of F above s with T → S quasi-finite
at t, see Morphisms, Lemma 28.21.12. Hence the lemma follows immediately from
the characterization (2) of purity given following Definition 37.15.1. �

Lemma 37.15.5. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. If OS,s is Noetherian
then F is pure along Xs if and only if F is universally pure along Xs.

Proof. First we may replace S by Spec(OS,s), i.e., we may assume that S is Noe-
therian. Next, use Lemma 37.14.6 and characterization (2) of purity given in dis-
cussion following Definition 37.15.1 to conclude. �

Purity satisfies flat descent.

Lemma 37.15.6. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. Let (S′, s′) → (S, s)
be a morphism of pointed schemes. Assume S′ → S is flat at s′.

(1) If FS′ is pure along Xs′ , then F is pure along Xs.
(2) If FS′ is universally pure along Xs′ , then F is universally pure along Xs.

Proof. Let (T → S, t′  t, ξ) be an impurity of F above s. Set T1 = T ×S S′,
and let t1 be the unique point of T1 mapping to t and s′. Since T1 → T is flat at
t1, see Morphisms, Lemma 28.26.7, there exists a specialization t′1  t1 lying over
t′  t, see Algebra, Section 10.40. Choose a point ξ1 ∈ Xt′1

which corresponds to a
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generic point of Spec(κ(t′1)⊗κ(t′) κ(ξ)), see Schemes, Lemma 25.17.5. By Divisors,
Lemma 30.7.2 we see that ξ1 ∈ AssXT1

/T1
(FT1

). As the Zariski closure of {ξ1} in

XT1
maps into the Zariski closure of {ξ} in XT we conclude that this closure is

disjoint from Xt1 . Hence (T1 → S′, t′1  t1, ξ1) is an impurity of FS′ above s′. In
other words we have proved the contrapositive to part (2) of the lemma. Finally, if
(T, t) → (S, s) is an elementary étale neighbourhood, then (T1, t1) → (S′, s′) is an
elementary étale neighbourhood too, and in this way we see that (1) holds. �

Lemma 37.15.7. Let i : Z → X be a closed immersion of schemes of finite type
over a scheme S. Let s ∈ S. Let F be a finite type, quasi-coherent sheaf on Z.
Then F is (universally) pure along Zs if and only if i∗F is (universally) pure along
Xs.

Proof. Omitted. �

37.16. Examples of relatively pure sheaves

Here are some example cases where it is possible to see what purity means.

Lemma 37.16.1. Let f : X → S be a proper morphism of schemes. Then ev-
ery finite type, quasi-coherent OX-module F is universally pure relative to S. In
particular X is universally pure relative to S.

Proof. Let (g : T → S, t′  t, ξ) be an impurity of F above s ∈ S. Since f is
proper, it is universally closed. Hence fT : XT → T is closed. Since fT (ξ) = t′ this

implies that t ∈ f({ξ}) which is a contradiction. �

Lemma 37.16.2. Let f : X → S be a separated, finite type morphism of schemes.
Let F be a finite type, quasi-coherent OX-module. Assume that Supp(Fs) is finite
for every s ∈ S. Then the following are equivalent

(1) F is pure relative to S,
(2) the scheme theoretic support of F is finite over S, and
(3) F is universally pure relative to S.

In particular, given a quasi-finite separated morphism X → S we see that X is pure
relative to S if and only if X → S is finite.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Definition
28.5.5. Then Z → S is a separated, finite type morphism of schemes with finite
fibres. Hence it is separated and quasi-finite, see Morphisms, Lemma 28.21.10. By
Lemma 37.15.7 it suffices to prove the lemma for Z → S and the sheaf F viewed
as a finite type quasi-coherent module on Z. Hence we may assume that X → S is
separated and quasi-finite and that Supp(F) = X.

It follows from Lemma 37.16.1 and Morphisms, Lemma 28.44.10 that (2) implies
(3). Trivially (3) implies (1). Assume (1) holds. We will prove that (2) holds. It is
clear that we may assume S is affine. By More on Morphisms, Lemma 36.31.3 we
can find a diagram

X

f ��

j
// T

π
��

S
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with π finite and j a quasi-compact open immersion. If we show that j is closed,
then j is a closed immersion and we conclude that f = π ◦ j is finite. To show that
j is closed it suffices to show that specializations lift along j, see Schemes, Lemma
25.19.8. Let x ∈ X, set t′ = j(x) and let t′  t be a specialization. We have to
show t ∈ j(X). Set s′ = f(x) and s = π(t) so s′  s. By More on Morphisms,
Lemma 36.30.4 we can find an elementary étale neighbourhood (U, u)→ (S, s) and
a decomposition

TU = T ×S U = V qW
into open and closed subschemes, such that V → U is finite and there exists a unique
point v of V mapping to u, and such that v maps to t in T . As V → T is étale, we
can lift generalizations, see Morphisms, Lemmas 28.26.8 and 28.37.12. Hence there
exists a specialization v′  v such that v′ maps to t′ ∈ T . In particular we see that
v′ ∈ XU ⊂ TU . Denote u′ ∈ U the image of t′. Note that v′ ∈ AssXU/U (F) because
Xu′ is a finite discrete set and Xu′ = Supp(Fu′). As F is pure relative to S we see
that v′ must specialize to a point in Xu. Since v is the only point of V lying over u
(and since no point of W can be a specialization of v′) we see that v ∈ Xu. Hence
t ∈ X. �

Lemma 37.16.3. Let f : X → S be a finite type, flat morphism of schemes with
geometrically integral fibres. Then X is universally pure over S.

Proof. Let ξ ∈ X with s′ = f(ξ) and s′  s a specialization of S. If ξ is
an associated point of Xs′ , then ξ is the unique generic point because Xs′ is an
integral scheme. Let ξ0 be the unique generic point of Xs. As X → S is flat we
can lift s′  s to a specialization ξ′  ξ0 in X, see Morphisms, Lemma 28.26.8.
The ξ  ξ′ because ξ is the generic point of Xs′ hence ξ  ξ0. This means that
(idS , s

′ → s, ξ) is not an impurity of OX above s. Since the assumption that f is
finite type, flat with geometrically integral fibres is preserved under base change,
we see that there doesn’t exist an impurity after any base change. In this way we
see that X is universally S-pure. �

Lemma 37.16.4. Let f : X → S be a finite type, affine morphism of schemes. Let
F be a finite type quasi-coherent OX-module such that f∗F is locally projective on
S, see Properties, Definition 27.19.1. Then F is universally pure over S.

Proof. After reducing to the case where S is the spectrum of a henselian local ring
this follows from Lemma 37.13.1. �

37.17. A criterion for purity

We first prove that given a flat family of finite type quasi-coherent sheaves the
points in the relative assassin specialize to points in the relative assassins of nearby
fibres (if they specialize at all).

Lemma 37.17.1. Let f : X → S be a morphism of schemes of finite type. Let
F be a quasi-coherent OX-module of finite type. Let s ∈ S. Assume that F is
flat over S at all points of Xs. Let x′ ∈ AssX/S(F) with f(x′) = s′ such that
s′  s is a specialization in S. If x′ specializes to a point of Xs, then x′  x with
x ∈ AssXs(Fs).

Proof. Let x′  t be a specialization with t ∈ Xs. We may replace X by an
affine neighbourhood of t and S by an affine neighbourhood of s. Choose a closed
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immersion i : X → An
S . Then it suffices to prove the lemma for the module i∗F on

An
S and the point i(x′). Hence we may assume X → S is of finite presentation.

Let x′  t be a specialization with t ∈ Xs. Set A = OS,s, B = OX,t, and N = Ft.
Note that B is essentially of finite presentation over A and that N is a finite B-
module flat over A. Also N is a finitely presented B-module by Lemma 37.10.9.
Let q′ ⊂ B be the prime ideal corresponding to x′ and let p′ ⊂ A be the prime
ideal corresponding to s′. The assumption x′ ∈ AssX/S(F) means that q′ is an
associated prime of N⊗Aκ(p′). Let Σ ⊂ B be the multiplicative subset of elements
which are not zerodivisors on N/mAN . By Lemma 37.7.2 the map N → Σ−1N is
universally injective. In particular, we see that N ⊗A κ(p′) → Σ−1N ⊗A κ(p′) is
injective which implies that q′ is an associated prime of Σ−1N⊗Aκ(p′) and hence q′

is in the image of Spec(Σ−1B)→ Spec(B). Thus Lemma 37.7.1 implies that q′ ⊂ q
for some prime q ∈ AssB(N/mAN) (which in particular implies that mA = A ∩ q).
If x ∈ Xs denotes the point corresponding to q, then x ∈ AssXs(Fs) and x′  x as
desired. �

Lemma 37.17.2. Let f : X → S be a morphism of schemes of finite type. Let F
be a quasi-coherent OX-module of finite type. Let s ∈ S. Let (S′, s′)→ (S, s) be an
elementary étale neighbourhood and let

X

��

X ′
g

oo

��
S S′oo

be a commutative diagram of morphisms of schemes. Assume

(1) F is flat over S at all points of Xs,
(2) X ′ → S′ is of finite type,
(3) g∗F is pure along X ′s′ ,
(4) g : X ′ → X is étale, and
(5) g(X ′) contains AssXs(Fs).

In this situation F is pure along Xs if and only if the image of X ′ → X ×S S′
contains the points of AssX×SS′/S′(F×S S′) lying over points in S′ which specialize
to s′.

Proof. Since the morphism S′ → S is étale, we see that if F is pure along Xs, then
F×S S′ is pure along Xs, see Lemma 37.15.4. Since purity satisfies flat descent, see
Lemma 37.15.6, we see that if F ×S S′ is pure along Xs′ , then F is pure along Xs.
Hence we may replace S by S′ and assume that S = S′ so that g : X ′ → X is an
étale morphism between schemes of finite type over S. Moreover, we may replace
S by Spec(OS,s) and assume that S is local.

First, assume that F is pure along Xs. In this case every point of AssX/S(F) spe-
cializes to a point of Xs by purity. Hence by Lemma 37.17.1 we see that every point
of AssX/S(F) specializes to a point of AssXs(Fs). Thus every point of AssX/S(F)
is in the image of g (as the image is open and contains AssXs(Fs)).
Conversely, assume that g(X ′) contains AssX/S(F). Let Sh = Spec(OhS,s) be the

henselization of S at s. Denote gh : (X ′)h → Xh the base change of g by Sh → S,
and denote Fh the pullback of F to Xh. By Divisors, Lemma 30.7.2 and Remark
30.7.3 the relative assassin AssXh/Sh(Fh) is the inverse image of AssX/S(F) via

http://stacks.math.columbia.edu/tag/05L4


2490 37. MORE ON FLATNESS

the projection Xh → X. As we have assumed that g(X ′) contains AssX/S(F) we

conclude that the base change gh((X ′)h) = g(X ′) ×S Sh contains AssXh/Sh(Fh).
In this way we reduce to the case where S is the spectrum of a henselian local
ring. Let x ∈ AssX/S(F). To finish the proof of the lemma we have to show that
x specializes to a point of Xs, see criterion (4) for purity in discussion following
Definition 37.15.1. By assumption there exists a x′ ∈ X ′ such that g(x′) = x. As
g : X ′ → X is étale, we see that x′ ∈ AssX′/S(g∗F), see Lemma 37.2.7 (applied to
the morphism of fibres X ′w → Xw where w ∈ S is the image of x′). Since g∗F is
pure along X ′s we see that x′  y for some y ∈ X ′s. Hence x = g(x′)  g(y) and
g(y) ∈ Xs as desired. �

Lemma 37.17.3. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let s ∈ S. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) F is flat over S at all points of Xs, and
(4) F is pure along Xs.

Then F is universally pure along Xs.

Proof. We first make a preliminary remark. Suppose that (S′, s′) → (S, s) is an
elementary étale neighbourhood. Denote F ′ the pullback of F to X ′ = X ×S S′.
By the discussion following Definition 37.15.1 we see that F ′ is pure along X ′s′ .
Moreover, F ′ is flat over S′ along X ′s′ . Then it suffices to prove that F ′ is universally
pure along X ′s′ . Namely, given any morphism (T, t) → (S, s) of pointed schemes
the fibre product (T ′, t′) = (T ×S S′, (t, s′)) is flat over (T, t) and hence if FT ′ is
pure along Xt′ then FT is pure along Xt by Lemma 37.15.6. Thus during the proof
we may always replace (s, S) by an elementary étale neighbourhood. We may also
replace S by Spec(OS,s) due to the local nature of the problem.

Choose an elementary étale neighbourhood (S′, s′) → (S, s) and a commutative
diagram

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module, see Lemma 37.11.11. Note that
X ′ → Spec(OS′,s′) is of finite type (as a quasi-compact morphism which is the
composition of an étale morphism and the base change of a finite type morphism).
By our preliminary remarks in the first paragraph of the proof we may replace S
by Spec(OS′,s′). Hence we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite type over S, where g is étale, Xs ⊂ g(X ′), with S local with
closed point s, with X ′ affine, and with Γ(X ′, g∗F) a free Γ(S,OS)-module. Note
that in this case g∗F is universally pure over S, see Lemma 37.16.4.
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In this situation we apply Lemma 37.17.2 to deduce that AssX/S(F) ⊂ g(X ′) from
our assumption that F is pure along Xs and flat over S along Xs. By Divisors,
Lemma 30.7.2 and Remark 30.7.3 we see that for any morphism of pointed schemes
(T, t)→ (S, s) we have

AssXT /T (FT ) ⊂ (XT → X)−1(AssX/S(F)) ⊂ g(X ′)×S T = gT (X ′T ).

Hence by Lemma 37.17.2 applied to the base change of our displayed diagram to
(T, t) we conclude that FT is pure along Xt as desired. �

Lemma 37.17.4. Let f : X → S be a finite type morphism of schemes. Let F be
a finite type quasi-coherent OX-module. Assume F is flat over S. In this case F
is pure relative to S if and only if F is universally pure relative to S.

Proof. Immediate consequence of Lemma 37.17.3 and the definitions. �

Lemma 37.17.5. Let I be a directed partially ordered set. Let (Si, gii′) be an
inverse system of affine schemes over I. Set S = limi Si and s ∈ S. Denote gi :
S → Si the projections and set si = gi(s). Suppose that f : X → S is a morphism
of finite presentation, F a quasi-coherent OX-module of finite presentation which
is pure along Xs and flat over S at all points of Xs. Then there exists an i ∈ I, a
morphism of finite presentation Xi → Si, a quasi-coherent OXi-module Fi of finite
presentation which is pure along (Xi)si and flat over Si at all points of (Xi)si such
that X ∼= Xi ×Si S and such that the pullback of Fi to X is isomorphic to F .

Proof. Let U ⊂ X be the set of points where F is flat over S. By More on
Morphisms, Theorem 36.12.1 this is an open subscheme of X. By assumption
Xs ⊂ U . As Xs is quasi-compact, we can find a quasi-compact open U ′ ⊂ U
with Xs ⊂ U ′. By Limits, Lemma 31.9.1 we can find an i ∈ I and a morphism
of finite presentation fi : Xi → Si whose base change to S is isomorphic to fi.
Fix such a choice and set Xi′ = Xi ×Si Si′ . Then X = limi′ Xi′ with affine
transition morphisms. By Limits, Lemma 31.9.2 we can, after possible increasing
i assume there exists a quasi-coherent OXi-module Fi of finite presentation whose
base change to S is isomorphic to F . By Limits, Lemma 31.3.8 after possibly
increasing i we may assume there exists an open U ′i ⊂ Xi whose inverse image in
X is U ′. Note that in particular (Xi)si ⊂ U ′i . By Limits, Lemma 31.9.3 (after
increasing i once more) we may assume that Fi is flat on U ′i . In particular we see
that Fi is flat along (Xi)si .

Next, we use Lemma 37.11.5 to choose an elementary étale neighbourhood (S′i, s
′
i)→

(Si, si) and a commutative diagram of schemes

Xi

��

X ′igi
oo

��
Si S′i
oo

such that gi is étale, (Xi)si ⊂ gi(X ′i), the schemes X ′i, S
′
i are affine, and such that

Γ(X ′i, g
∗
iFi) is a projective Γ(S′i,OS′i)-module. Note that g∗iFi is universally pure

over S′i, see Lemma 37.16.4. We may base change the diagram above to a diagram
with morphisms (S′i′ , s

′
i′)→ (Si′ , si′) and gi′ : X ′i′ → Xi′ over Si′ for any i′ ≥ i and

we may base change the diagram to a diagram with morphisms (S′, s′) → (S, s)
and g : X ′ → X over S.
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At this point we can use our criterion for purity. Set W ′i ⊂ Xi ×Si S′i equal to the
image of the étale morphism X ′i → Xi ×Si S′i. For every i′ ≥ i we have similarly
the image W ′i′ ⊂ Xi′ ×Si′ S

′
i′ and we have the image W ′ ⊂ X ×S S′. Taking images

commutes with base change, hence W ′i′ = W ′i ×S′i S
′
i′ and W ′ = Wi×S′i S

′. Because
F is pure along Xs the Lemma 37.17.2 implies that

(37.17.5.1) f−1(Spec(OS′,s′)) ∩AssX×SS′/S′(F ×S S
′) ⊂W ′

By More on Morphisms, Lemma 36.20.5 we see that

E = {t ∈ S′ | AssXt(Ft) ⊂W ′} and Ei′ = {t ∈ S′i′ | AssXt(Fi′,t) ⊂W ′i′}
are locally constructible subsets of S′ and S′i′ . By More on Morphisms, Lemma
36.20.4 we see that Ei′ is the inverse image of Ei under the morphism S′i′ →
S′i and that E is the inverse image of Ei under the morphism S′ → S′i. Thus
Equation (37.17.5.1) is equivalent to the assertion that Spec(OS′,s′) maps into Ei.
As OS′,s′ = colimi′≥iOS′

i′ ,s
′
i′

we see that Spec(OS′
i′ ,s
′
i′

) maps into Ei for some i′ ≥ i,
see Limits, Lemma 31.3.7. Then, applying Lemma 37.17.2 to the situation over Si′ ,
we conclude that Fi′ is pure along (Xi′)si′ . �

Lemma 37.17.6. Let f : X → S be a morphism of finite presentation. Let F be a
quasi-coherent OX-module of finite presentation flat over S. Then the set

U = {s ∈ S | F is pure along Xs}
is open in S.

Proof. Let s ∈ U . Using Lemma 37.11.5 we can find an elementary étale neigh-
bourhood (S′, s′)→ (S, s) and a commutative diagram

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module. Note that g∗F is universally pure
over S′, see Lemma 37.16.4. Set W ′ ⊂ X ×S S′ equal to the image of the étale
morphism X ′ → X ×S S′. Note that W is open and quasi-compact over S′. Set

E = {t ∈ S′ | AssXt(Ft) ⊂W ′}.
By More on Morphisms, Lemma 36.20.5 E is a constructible subset of S′. By
Lemma 37.17.2 we see that Spec(OS′,s′) ⊂ E. By Morphisms, Lemma 28.23.4 we
see that E contains an open neighbourhood V ′ of s′. Applying Lemma 37.17.2 once
more we see that for any point s1 in the image of V ′ in S the sheaf F is pure along
Xs1 . Since S′ → S is étale the image of V ′ in S is open and we win. �

37.18. How purity is used

Here are some examples of how purity can be used. The first lemma actually uses
a slightly weaker form of purity.

Lemma 37.18.1. Let f : X → S be a morphism of finite type. Let F be a quasi-
coherent sheaf of finite type on X. Assume S is local with closed point s. Assume
F is pure along Xs and that F is flat over S. Let ϕ : F → G of quasi-coherent
OX-modules. Then the following are equivalent
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(1) the map on stalks ϕx is injective for all x ∈ AssXs(Fs), and
(2) ϕ is injective.

Proof. Let K = Ker(ϕ). Our goal is to prove that K = 0. In order to do this
it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 30.5.5. We have
WeakAssX(K) ⊂ WeakAssX(F), see Divisors, Lemma 30.5.4. As F is flat we see
from Lemma 37.12.4 that WeakAssX(F) ⊂ AssX/S(F). By purity any point x′ of
AssX/S(F) is a generalization of a point of Xs, and hence is the specialization of
a point x ∈ AssXs(Fs), by Lemma 37.17.1. Hence the injectivity of ϕx implies the
injectivity of ϕx′ , whence Kx′ = 0. �

Proposition 37.18.2. Let f : X → S be an affine, finitely presented morphism of
schemes. Let F be a quasi-coherent OX-module of finite presentation, flat over S.
Then the following are equivalent

(1) f∗F is locally projective on S, and
(2) F is pure relative to S.

In particular, given a ring map A→ B of finite presentation and a finitely presented

B-module N flat over A we have: N is projective as an A-module if and only if Ñ
on Spec(B) is pure relative to Spec(A).

Proof. The implication (1) ⇒ (2) is Lemma 37.16.4. Assume F is pure relative to
S. Note that by Lemma 37.17.3 this implies F remains pure after any base change.
By Descent, Lemma 34.6.7 it suffices to prove f∗F is fpqc locally projective on S.
Pick s ∈ S. We will prove that the restriction of f∗F to an étale neighbourhood of
s is locally projective. Namely, by Lemma 37.11.5, after replacing S by an affine
elementary étale neighbourhood of s, we may assume there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 37.16.4. Hence by Lemma 37.17.2 we see that
the open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 36.20.5 E is a constructible subset of S. We have
seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 28.23.4 we see that E contains
an open neighbourhood of s. Hence after replacing S by an affine neighbourhood
of s we may assume that AssX/S(F) ⊂ g(X ′). By Lemma 37.7.4 this means that

Γ(X,F) −→ Γ(X ′, g∗F)

is Γ(S,OS)-universally injective. By Algebra, Lemma 10.86.7 we conclude that
Γ(X,F) is Mittag-Leffler as an Γ(S,OS)-module. Since Γ(X,F) is countably gen-
erated and flat as a Γ(S,OS)-module, we conclude it is projective by Algebra,
Lemma 10.90.1. �

We can use the proposition to improve some of our earlier results. The following
lemma is an improvement of Proposition 37.11.4.
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Lemma 37.18.3. Let f : X → S be a morphism which is locally of finite presen-
tation. Let F be a quasi-coherent OX-module which is of finite presentation. Let
x ∈ X with s = f(x) ∈ S. If F is flat at x over S there exists an affine elemen-
tary étale neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S S′ which
contains x′ = (x, s′) such that Γ(U ′,F|U ′) is a projective Γ(S′,OS′)-module.

Proof. During the proof we may replace X by an open neighbourhood of x and
we may replace S by an elementary étale neighbourhood of s. Hence, by openness
of flatness (see More on Morphisms, Theorem 36.12.1) we may assume that F is
flat over S. We may assume S and X are affine. After shrinking X some more we
may assume that any point of AssXs(Fs) is a generalization of x. This property
is preserved on replacing (S, s) by an elementary étale neighbourhood. Hence we
may apply Lemma 37.11.5 to arrive at the situation where there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 37.16.4.

Let U ⊂ g(X ′) be an affine open neighbourhood of x. We claim that F|U is pure
along Us. If we prove this, then the lemma follows because F|U will be pure relative
to S after shrinking S, see Lemma 37.17.6, whereupon the projectivity follows from
Proposition 37.18.2. To prove the claim we have to show, after replacing (S, s)
by an arbitrary elementary étale neighbourhood, that any point ξ of AssU/S(F|U )
lying over some s′ ∈ S, s′  s specializes to a point of Us. Since U ⊂ g(X ′) we
can find a ξ′ ∈ X ′ with g(ξ′) = ξ. Because g∗F is pure over S, using Lemma
37.17.1, we see there exists a specialization ξ′  x′ with x′ ∈ AssX′s(g

∗Fs). Then
g(x′) ∈ AssXs(Fs) (see for example Lemma 37.2.7 applied to the étale morphism
X ′s → Xs of Noetherian schemes) and hence g(x′)  x by our choice of X above!
Since x ∈ U we conclude that g(x′) ∈ U . Thus ξ = g(ξ′)  g(x′) ∈ Us as
desired. �

The following lemma is an improvement of Lemma 37.11.9.

Lemma 37.18.4. Let f : X → S be a morphism which is locally of finite type.
Let F be a quasi-coherent OX-module which is of finite type. Let x ∈ X with
s = f(x) ∈ S. If F is flat at x over S there exists an affine elementary étale
neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S Spec(OS′,s′) which
contains x′ = (x, s′) such that Γ(U ′,F|U ′) is a free OS′,s′-module.

Proof. The question is Zariski local on X and S. Hence we may assume that X
and S are affine. Then we can find a closed immersion i : X → An

S over S. It is
clear that it suffices to prove the lemma for the sheaf i∗F on An

S and the point
i(x). In this way we reduce to the case where X → S is of finite presentation. After
replacing S by Spec(OS′,s′) and X by an open of X×S Spec(OS′,s′) we may assume
that F is of finite presentation, see Proposition 37.10.3. In this case we may appeal
to Lemma 37.18.3 and Algebra, Theorem 10.82.4 to conclude. �
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Lemma 37.18.5. Let A→ B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is
henselian, then N is a filtered colimit

N = colimi Fi

of free A-modules Fi such that all transition maps ui : Fi → Fi′ of the system induce
injective maps ui : Fi/mAFi → Fi′/mAFi′ . Also, N is a Mittag-Leffler A-module.

Proof. We can find a morphism of finite type X → S = Spec(A) and a point x ∈ X
lying over the closed point s of S and a finite type quasi-coherent OX -module F
such that Fx ∼= N as an A-module. After shrinking X we may assume that each
point of AssXs(Fs) specializes to x. By Lemma 37.18.4 we see that there exists a
fundamental system of affine open neighbourhoods Ui ⊂ X of x such that Γ(Ui,F)
is a free A-module Fi. Note that if Ui′ ⊂ Ui, then

Fi/mAFi = Γ(Ui,s,Fs) −→ Γ(Ui′,s,Fs) = Fi′/mAFi′

is injective because a section of the kernel would be supported at a closed subset
of Xs not meeting x which is a contradiction to our choice of X above. Since
the maps Fi → Fi′ are A-universally injective (Lemma 37.7.5) it follows that N is
Mittag-Leffler by Algebra, Lemma 10.86.8. �

The following lemma should be skipped if reading through for the first time.

Lemma 37.18.6. Let A→ B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is a
valuation ring, then any element of N has a content ideal I ⊂ A (More on Algebra,
Definition 15.16.1).

Proof. Let A ⊂ Ah be the henselization. Let B′ be the localization of B ⊗A Ah
at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Then B → B′ is flat, hence faithfully
flat. Let N ′ = N ⊗B B′. Let x ∈ N and let x′ ∈ N ′ be the image. We claim
that for an ideal I ⊂ A we have x ∈ IN ⇔ x′ ∈ IN ′. Namely, N/IN → N ′/IN ′

is the tensor product of B → B′ with N/IN and B → B′ is universally injective
by Algebra, Lemma 10.79.11. By More on Algebra, Lemma 15.71.5 and Algebra,
Lemma 10.48.17 the map A→ Ah defines an inclusion preserving bijection I 7→ IAh

on sets of ideals. We conclude that x has a content ideal in A if and only if x′ has
a content ideal in Ah. The assertion for x′ ∈ N ′ follows from Lemma 37.18.5 and
Algebra, Lemma 10.86.6. �

37.19. Flattening functors

Let S be a scheme. Recall that a functor F : (Sch/S)opp → Sets is called limit
preserving if for every directed inverse system {Ti}i∈I of affine schemes with limit
T we have F (T ) = colimi F (Ti).

Situation 37.19.1. Let f : X → S be a morphism of schemes. Let u : F → G be
a homomorphism of quasi-coherent OX -modules. For any scheme T over S we will
denote uT : FT → GT the base change of u to T , in other words, uT is the pullback
of u via the projection morphism XT = X ×S T → X. In this situation we can
consider the functor
(37.19.1.1)

Fiso : (Sch/S)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.
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There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

Lemma 37.19.2. In Situation 37.19.1.

(1) Each of the functors Fiso, Finj, Fsurj, Fzero satisfies the sheaf property
for the fpqc topology.

(2) If f is quasi-compact and G is of finite type, then Fsurj is limit preserving.
(3) If f is quasi-compact and F of finite type, then Fzero is limit preserving.
(4) If f is quasi-compact, F is of finite type, and G is of finite presentation,

then Fiso is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies, Lemma 33.8.7. In particular, for every x ∈ XT there exists an i ∈ I and
an xi ∈ Xi mapping to x. Since OXT ,x → OXi,xi is flat, hence faithfully flat (see
Algebra, Lemma 10.38.16) we conclude that (ui)xi is injective, surjective, bijective,
or zero if and only if (uT )x is injective, surjective, bijective, or zero. Whence part
(1) of the lemma.

Proof of (2). Assume f quasi-compact and G of finite type. Let T = limi∈I Ti be a
directed limit of affine S-schemes and assume that uT is surjective. Set Xi = XTi =
X ×S Ti and ui = uTi : Fi = FTi → Gi = GTi . To prove part (2) we have to show
that ui is surjective for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since f is
quasi-compact the scheme Xi0 is quasi-compact. Hence we may choose affine opens
W1, . . . ,Wm ⊂ X and an affine open covering Xi0 = U1,i0 ∪ . . . ∪ Um,i0 such that
Uj,i0 maps into Wj under the projection morphism Xi0 → X. For any i ∈ I let Uj,i
be the inverse image of Uj,i0 . Setting Uj = limi Uj,i we see that XT = U1∪ . . .∪Um
is an affine open covering of XT . Now it suffices to show, for a given j ∈ {1, . . . ,m}
that ui|Uj,i is surjective for some i = i(j) ∈ I. Using Properties, Lemma 27.16.1 this
translates into the following algebra problem: Let A be a ring and let u : M → N
be an A-module map. Suppose that R = colimi∈I Ri is a directed colimit of A-
algebras. If N is a finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is surjective,
then for some i the map u⊗ 1 : M ⊗ARi → N ⊗ARi is surjective. This is Algebra,
Lemma 10.123.3 part (2).

Proof of (3). Exactly the same arguments as given in the proof of (2) reduces this to
the following algebra problem: Let A be a ring and let u : M → N be an A-module
map. Suppose that R = colimi∈I Ri is a directed colimit of A-algebras. If M is a
finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is zero, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is zero. This is Algebra, Lemma 10.123.3 part (1).

Proof of (4). Assume f quasi-compact and F ,G of finite presentation. Arguing
in exactly the same manner as in the previous paragraph (using in addition also
Properties, Lemma 27.16.2) part (3) translates into the following algebra statement:
Let A be a ring and let u : M → N be an A-module map. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras. Assume M is a finite A-module, N
is a finitely presented A-module, and u⊗1 : M ⊗AR→ N ⊗AR is an isomorphism.
Then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an isomorphism. This is
Algebra, Lemma 10.123.3 part (3). �

Situation 37.19.3. Let (A,mA) be a local ring. Denote C the category whose
objects are A-algebras A′ which are local rings such that the algebra structure
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A → A′ is a local homomorphism of local rings. A morphism between objects
A′, A′′ of C is a local homomorphism A′ → A′′ of A-algebras. Let A → B be a
local ring map of local rings and let M be a B-module. If A′ is an object of C we
set B′ = B ⊗A A′ and we set M ′ = M ⊗A A′ as a B′-module. Given A′ ∈ Ob(C),
consider the condition

(37.19.3.1) ∀q ∈ V (mA′B
′ + mBB

′) ⊂ Spec(B′) : M ′q is flat over A′.

Note the similarity with More on Algebra, Equation (15.12.1.1). In particular, if
A′ → A′′ is a morphism of C and (37.19.3.1) holds for A′, then it holds for A′′, see
More on Algebra, Lemma 15.12.2. Hence we obtain a functor

(37.19.3.2) Flf : C −→ Sets, A′ −→
{
{∗} if (37.19.3.1) holds,
∅ else.

Lemma 37.19.4. In Situation 37.19.3.

(1) If A′ → A′′ is a flat morphism in C then Ffl(A
′) = Flf (A′′).

(2) If A → B is essentially of finite presentation and M is a B-module of
finite presentation, then Ffl is limit preserving: If {Ai}i∈I is a directed
system of objects of C, then Ffl(colimiAi) = colimi Ffl(Ai).

Proof. Part (1) is a special case of More on Algebra, Lemma 15.12.3. Part (2) is
a special case of More on Algebra, Lemma 15.12.4. �

Lemma 37.19.5. In Situation 37.19.3 suppose that B → C is a local map of local
A-algebras and that M ∼= N as B-modules. Denote F ′lf : C → Sets the functor

associated to the pair (C,N). If B → C is finite, then Flf = F ′lf .

Proof. Let A′ be an object of C. Set C ′ = C⊗AA′ and N ′ = N ⊗AA′ similarly to
the definitions of B′, M ′ in Situation 37.19.3. Note that M ′ ∼= N ′ as B′-modules.
The assumption that B → C is finite has two consequences: (a) mC =

√
mBC and

(b) B′ → C ′ is finite. Consequence (a) implies that

V (mA′C
′ + mCC

′) = (Spec(C ′)→ Spec(B′))
−1
V (mA′B

′ + mBB
′).

Suppose q ⊂ V (mA′B
′ + mBB

′). Then M ′q is flat over A′ if and only if the C ′q-
module N ′q is flat over A′ (because these are isomorphic as A′-modules) if and only
if for every maximal ideal r of C ′q the module N ′r is flat over A′ (see Algebra, Lemma
10.38.19). As B′q → C ′q is finite by (b), the maximal ideals of C ′q correspond exactly
to the primes of C ′ lying over q (see Algebra, Lemma 10.35.20) and these primes
are all contained in V (mA′C

′ + mCC
′) by the displayed equation above. Thus the

result of the lemma holds. �

Lemma 37.19.6. In Situation 37.19.3 suppose that B → C is a flat local homo-
morphism of local rings. Set N = M ⊗B C. Denote F ′lf : C → Sets the functor

associated to the pair (C,N). Then Flf = F ′lf .

Proof. Let A′ be an object of C. Set C ′ = C⊗AA′ and N ′ = N⊗AA′ = M ′⊗B′C ′
similarly to the definitions of B′, M ′ in Situation 37.19.3. Note that

V (mA′B
′ + mBB

′) = Spec(κ(mB)⊗A κ(mA′))

and similarly for V (mA′C
′ + mCC

′). The ring map

κ(mB)⊗A κ(mA′) −→ κ(mC)⊗A κ(mA′)
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is faithfully flat, hence V (mA′C
′+mCC

′)→ V (mA′B
′+mBB

′) is surjective. Finally,
if r ∈ V (mA′C

′ + mCC
′) maps to q ∈ V (mA′B

′ + mBB
′), then M ′q is flat over A′ if

and only if N ′r is flat over A′ because B′ → C ′ is flat, see Algebra, Lemma 10.38.8.
The lemma follows formally from these remarks. �

Situation 37.19.7. Let f : X → S be a smooth morphism with geometrically
irreducible fibres. Let F be a quasi-coherent OX -module of finite type. For any
scheme T over S we will denote FT the base change of F to T , in other words, FT
is the pullback of F via the projection morphism XT = X ×S T → X. Note that
XT → T is smooth with geometrically irreducible fibres, see Morphisms, Lemma
28.35.5 and More on Morphisms, Lemma 36.22.2. Let p ≥ 0 be an integer. Given
a point t ∈ T consider the condition

(37.19.7.1) FT is free of rank p in a neighbourhood of ξt

where ξt is the generic point of the fibre Xt. This condition for all t ∈ T is stable
under base change, and hence we obtain a functor
(37.19.7.2)

Hp : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT satisfies (37.19.7.1) ∀t ∈ T,
∅ else.

Lemma 37.19.8. In Situation 37.19.7.

(1) The functor Hp satisfies the sheaf property for the fpqc topology.
(2) If F is of finite presentation, then functor Hp is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc1 covering of schemes over S. Set Xi = XTi =
X×STi and denote Fi the pullback of F to Xi. Assume that Fi satisfies (37.19.7.1)
for all i. Pick t ∈ T and let ξt ∈ XT denote the generic point of Xt. We have to
show that F is free in a neighbourhood of ξt. For some i ∈ I we can find a ti ∈ Ti
mapping to t. Let ξi ∈ Xi denote the generic point of Xti , so that ξi maps to ξt. The

fact that Fi is free of rank p in a neighbourhood of ξi implies that (Fi)xi ∼= O
⊕p
Xi,xi

which implies that FT,ξt ∼= O
⊕p
XT ,ξt

as OXT ,ξt → OXi,xi is flat, see for example
Algebra, Lemma 10.75.5. Thus there exists an affine neighbourhood U of ξt in XT

and a surjection O⊕pU → FU = FT |U , see Modules, Lemma 17.9.4. After shrinking
T we may assume that U → T is surjective. Hence U → T is a smooth morphism
of affines with geometrically irreducible fibres. Moreover, for every t′ ∈ T we see
that the induced map

α : O⊕pU,ξt′ −→ FU,ξt′
is an isomorphism (since by the same argument as before the module on the right
is free of rank p). It follows from Lemma 37.10.1 that

Γ(U,O⊕pU )⊗Γ(T,OT ) OT,t′ −→ Γ(U,FU )⊗Γ(T,OT ) OT,t′

is injective for every t′ ∈ T . Hence we see the surjection α is an isomorphism. This
finishes the proof of (1).

Assume that F is of finite presentation. Let T = limi∈I Ti be a directed limit of
affine S-schemes and assume that FT satisfies (37.19.7.1). Set Xi = XTi = X×S Ti
and denote Fi the pullback of F to Xi. Let U ⊂ XT denote the open subscheme

1It is quite easy to show that Hp is a sheaf for the fppf topology using that flat morphisms
of finite presentation are open. This is all we really need later on. But it is kind of fun to prove

directly that it also satisfies the sheaf condition for the fpqc topology.
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of points where FT is flat over T , see More on Morphisms, Theorem 36.12.1. By
assumption every generic point of every fibre is a point of U , i.e., U → T is a
smooth surjective morphism with geometrically irreducible fibres. We may shrink
U a bit and assume that U is quasi-compact. Using Limits, Lemma 31.3.8 we can
find an i ∈ I and a quasi-compact open Ui ⊂ Xi whose inverse image in XT is
U . After increasing i we may assume that Fi|Ui is flat over Ti, see Limits, Lemma
31.9.3. In particular, Fi|Ui is finite locally free hence defines a locally constant rank
function ρ : Ui → {0, 1, 2, . . .}. Let (Ui)p ⊂ Ui denote the open and closed subset
where ρ has value p. Let Vi ⊂ Ti be the image of (Ui)p; note that Vi is open and
quasi-compact. By assumption the image of T → Ti is contained in Vi. Hence there
exists an i′ ≥ i such that Ti′ → Ti factors through Vi by Limits, Lemma 31.3.8.
Then Fi′ satisfies (37.19.7.1) as desired. Some details omitted. �

Situation 37.19.9. Let f : X → S be a morphism of schemes which is of finite
type. Let F be a quasi-coherent OX -module of finite type. For any scheme T over
S we will denote FT the base change of F to T , in other words, FT is the pullback
of F via the projection morphism XT = X ×S T → X. Note that XT → T is of
finite type and that FT is an OXT -module of finite type, see Morphisms, Lemma
28.16.4 and Modules, Lemma 17.9.2. Let n ≥ 0. We say that FT is flat over T in
dimensions ≥ n if for every t ∈ T the closed subset Z ⊂ Xt of points where FT is
not flat over T (see Lemma 37.10.4) satisfies dim(Z) < n for all t ∈ T . Note that if
this is the case, and if T ′ → T is a morphism, then FT ′ is also flat in dimensions ≥ n
over T ′, see Morphisms, Lemmas 28.26.6 and 28.29.3. Hence we obtain a functor
(37.19.9.1)

Fn : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

Lemma 37.19.10. In Situation 37.19.9.

(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fn is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi is flat over Ti in
dimensions ≥ n for all i. Let t ∈ T . Choose an index i and a point ti ∈ Ti mapping
to t. Consider the cartesian diagram

XSpec(OT,t)

��

XSpec(OTi,ti )

��

oo

Spec(OT,t) Spec(OTi,ti)oo

As the lower horizontal morphism is flat we see from More on Morphisms, Lemma
36.12.2 that the set Zi ⊂ Xti where Fi is not flat over Ti and the set Z ⊂ Xt where
FT is not flat over T are related by the rule Zi = Zκ(ti). Hence we see that FT is
flat over T in dimensions ≥ n by Morphisms, Lemma 28.29.3.

Assume that f is quasi-compact and locally of finite presentation and that F is of
finite presentation. In this paragraph we first reduce the proof of (2) to the case
where f is of finite presentation. Let T = limi∈I Ti be a directed limit of affine S-
schemes and assume that FT is flat in dimensions ≥ n. Set Xi = XTi = X×STi and
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denote Fi the pullback of F to Xi. We have to show that Fi is flat in dimensions
≥ n for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since Ti0 is affine (hence
quasi-compact) there exist finitely many affine opens Wj ⊂ S, j = 1, . . . ,m and an
affine open overing Ti0 =

⋃
j=1,...,m Vj,i0 such that Ti0 → S maps Vj,i0 into Wj . For

i ≥ i0 denote Vj,i the inverse image of Vj,i0 in Ti. If we can show, for each j, that
there exists an i such that FVj,i0 is flat in dimensions ≥ n, then we win. In this way
we reduce to the case that S is affine. In this case X is quasi-compact and we can
choose a finite affine open covering X = W1 ∪ . . . ∪Wm. In this case the result for
(X → S,F) is equivalent to the result for (

∐
Wj ,

∐
F|Wj

). Hence we may assume
that f is of finite presentation.

Assume f is of finite presentation and F is of finite presentation. Let U ⊂ XT de-
note the open subscheme of points where FT is flat over T , see More on Morphisms,
Theorem 36.12.1. By assumption the dimension of every fibre of Z = XT \ U over
T has dimension ≤ n. By Limits, Lemma 31.14.3 we can find a closed subscheme
Z ⊂ Z ′ ⊂ XT such that dim(Z ′t) < n for all t ∈ T and such that Z ′ → XT is of
finite presentation. By Limits, Lemmas 31.9.1 and 31.7.4 there exists an i ∈ I and
a closed subscheme Z ′i ⊂ Xi of finite presentation whose base change to T is Z ′.
By Limits, Lemma 31.14.1 we may assume all fibres of Z ′i → Ti have dimension
< n. By Limits, Lemma 31.9.3 we may assume that Fi|Xi\T ′i is flat over Ti. This

implies that Fi is flat in dimensions ≥ n; here we use that Z ′ → XT is of finite
presentation, and hence the complement XT \ Z ′ is quasi-compact! Thus part (2)
is proved and the proof of the lemma is complete. �

Situation 37.19.11. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. For any scheme T over S we will denote FT the base change
of F to T , in other words, FT is the pullback of F via the projection morphism
XT = X ×S T → X. Since the base change of a flat module is flat we obtain a
functor

(37.19.11.1) Fflat : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.

Lemma 37.19.12. In Situation 37.19.11.

(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of schemes over S, then FT ′ is flat over T ′ if and only if FT is flat over
T , see More on Morphisms, Lemma 36.12.2. Part (2) follows from Limits, Lemma
31.9.3 after reducing to the case where X and S are affine (compare with the proof
of Lemma 37.19.10). �

37.20. Flattening stratifications

Just the definitions and an important baby case.

Definition 37.20.1. Let X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. We say that the universal flattening of F exists if the functor
Fflat defined in Situation 37.19.11 is representable by a scheme S′ over S. We say
that the universal flattening of X exists if the universal flattening of OX exists.

http://stacks.math.columbia.edu/tag/05MW
http://stacks.math.columbia.edu/tag/05MY
http://stacks.math.columbia.edu/tag/05P6


37.20. FLATTENING STRATIFICATIONS 2501

Note that if the universal flattening S′2 of F exists, then the morphism S′ → S is a
monomorphism of schemes such that FS′ is flat over S′ and such that a morphism
T → S factors through S′ if and only if FT is flat over T .

We define (compare with Topology, Remark 5.27.4) a (locally finite, scheme theo-
retic) stratification of a scheme S to be given by closed subschemes Zi ⊂ S indexed
by a partially ordered set I such that S =

⋃
Zi (set theoretically), such that every

point of S has a neighbourhood meeting only a finite number of Zi, and such that

Zi ∩ Zj =
⋃

k≤i,j
Zk.

Setting Si = Zi \
⋃
j<i Zj the actual stratification is the decomposition S =

∐
Si

into locally closed subschemes. We often only indicate the strata Si and leave the
construction of the closed subschemes Zi to the reader. Given a stratification we
obtain a monomorphism

S′ =
∐

i∈I
Si −→ S.

We will call this the monomorphism associated to the stratification. With this
terminology we can define what it means to have a flattening stratification.

Definition 37.20.2. Let X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. We say that F has a flattening stratification if the functor
Fflat defined in Situation 37.19.11 is representable by a monomorphism S′ → S
associated to a stratification of S by locally closed subschemes. We say that X has
a flattening stratification if OX has a flattening stratification.

When a flattening stratification exists, it is often important to understand the index
set labeling the strata and its partial ordering. This often has to do with ranks of
modules, as in the baby case below.

Lemma 37.20.3. Let S be a scheme. Let F be a finite type, quasi-coherent OS-
module. The closed subschemes

S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the fitting ideals of F have the following properties

(1) The intersection
⋂
Zr is empty.

(2) The functor (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subscheme S \ Zr.
(3) The functor Fr : (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subscheme Zr−1 \ Zr of S.

If F is of finite presentation, then Zr → S, S \Zr → S, and Zr−1 \Zr → S are of
finite presentation.

2The scheme S′ is sometimes called the universal flatificator. In [GR71] it is called the
platificateur universel. Existence of the universal flattening should not be confused with the type

of results discussed in More on Algebra, Section 15.18.
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Proof. We refer to More on Algebra, Section 15.5 for the construction of the fitting
ideals in the algebraic setting. Here we will construct the sequence

0 = I−1 ⊂ I0 ⊂ I1 ⊂ . . . ⊂ OS
of fitting ideals of F as an OS-module. Namely, if U ⊂ X is open, and⊕

i∈I
OU → O⊕nU → F|U → 0

is a presentation of F over U , then Ir|U is generated by the (n−r)× (n−r)-minors
of the matrix defining the first arrow of the presentation. In particular, Ir is locally

generated by sections, whence quasi-coherent. If U = Spec(A) and F|U = M̃ , then
Ir|U is the ideal sheaf associated to the fitting ideal Fitr(M) as in More on Algebra,
Definition 15.5.3. Let Zr ⊂ S be the closed subscheme corresponding to Ir.
For any morphism g : T → S we see from More on Algebra, Lemma 15.5.6 that FT
is locally generated by ≤ r sections if and only if Ir · OT = OT . This proves (2).

For any morphism g : T → S we see from More on Algebra, Lemma 15.5.7 that FT
is free of rank r if and only if Ir · OT = OT and Ir−1 · OT = 0. This proves (3).

The final statement of the lemma follows from the fact that if F is of finite presen-
tation, then each of the morphisms Zr → S is of finite presentation as Ir is locally
generated by finitely many minors. This implies that Zr−1 \ Zr is a retrocompact
open in Zr and hence the morphism Zr−1 \ Zr → Zr is of finite presentation as
well. �

Lemma 37.20.3 notwithstanding the following lemma does not hold if F is a finite
type quasi-coherent module. Namely, the stratification still exists but it isn’t true
that it represents the functor Fflat in general.

Lemma 37.20.4. Let S be a scheme. Let F be a quasi-coherent OS-module of
finite presentation. There exists a flattening stratification S′ =

∐
r≥0 Sr for F

(relative to idS : S → S) such that F|Sr is locally free of rank r. Moreover, each
Sr → S is of finite presentation.

Proof. Suppose that g : T → S is a morphism of schemes such that the pullback
FT = g∗F is flat. Then FT is a flat OT -module of finite presentation. Hence FT is
finite locally free, see Properties, Lemma 27.18.2. Thus T =

∐
r≥0 Tr, where FT |Tr

is locally free of rank r. This implies that

Fflat =
∐

r≥0
Fr

in the category of Zariski sheaves on Sch/S where Fr is as in Lemma 37.20.3. It
follows that Fflat is represented by

∐
r≥0(Zr−1 \ Zr) where Zr is as in Lemma

37.20.3. �

We end this section showing that if we do not insist on a canonical stratification,
then we can use generic flatness to construct some stratification such that our sheaf
is flat over the strata.

Lemma 37.20.5 (Generic flatness stratification). Let f : X → S be a morphism of
finite presentation between quasi-compact and quasi-separated schemes. Let F be an
OX-module of finite presentation. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
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such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and
F pulled back to X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. We can find a cartesian diagram

X

��

// X0

��
S // S0

and a finitely presented OX0
-module F0 which pulls back to F such that X0 and

S0 are of finite type over Z. See Limits, Proposition 31.4.4 and Lemmas 31.9.1 and
31.9.2. Thus we may assume X and S are of finite type over Z and F is a coherent
OX -module.

Assume X and S are of finite type over Z and F is a coherent OX -module. In
this case every quasi-coherent ideal is of finite type, hence we do not have to check
the condition that Si is cut out by a finite type ideal. Set S0 = Sred equal to the
reduction of S. By generic flatness as stated in Morphisms, Proposition 28.28.2
there is a dense open U0 ⊂ S0 such that F pulled back to X ×S U0 is flat over U0.
Let S1 ⊂ S0 be the reduced closed subscheme whose underlying closed subset is
S \ U0. We continue in this way, provided S1 6= ∅, to find S0 ⊃ S1 ⊃ . . .. Because
S is Noetherian any descending chain of closed subsets stabilizes hence we see that
St = ∅ for some t ≥ 0. �

37.21. Flattening stratification over an Artinian ring

A flatting stratification exists when the base scheme is the spectrum of an Artinian
ring.

Lemma 37.21.1. Let S be the spectrum of an Artinian ring. For any scheme X
over S, and any quasi-coherent OX-module there exists a universal flattening. In
fact the universal flattening is given by a closed immersion S′ → S, and hence is a
flattening stratification for F as well.

Proof. Choose an affine open covering X =
⋃
Ui. Then Fflat is the product of the

functors associated to each of the pairs (Ui,F|Ui). Hence it suffices to prove the
result for each (Ui,F|Ui). In the affine case the lemma follows immediately from
More on Algebra, Lemma 15.10.2. �

37.22. Flattening a map

Theorem 37.22.3 is the key to further flattening statements.

Lemma 37.22.1. Let S be a scheme. Let g : X ′ → X be a flat morphism of
schemes over S with X locally of finite type over S. Let F be a finite type OX-
module which is flat over S. If AssX/S(F) ⊂ g(X ′) then the canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FT → (gT )∗g
∗
TFT is injective for any mor-

phism T → S. The assumption AssX/S(F) ⊂ g(X ′) is preserved by base change,
see Divisors, Lemma 30.7.2 and Remark 30.7.3. The same holds for the assumption
of flatness and finite type. Hence it suffices to prove the injectivity of the displayed
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arrow. Let K = Ker(F → g∗g
∗F). Our goal is to prove that K = 0. In order to

do this it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 30.5.5.
We have WeakAssX(K) ⊂WeakAssX(F), see Divisors, Lemma 30.5.4. As F is flat
we see from Lemma 37.12.4 that WeakAssX(F) ⊂ AssX/S(F). By assumption any
point x of AssX/S(F) is the image of some x′ ∈ X ′. Since g is flat the local ring
map OX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ g∗Fx′ = Fx ⊗OX,x OX′,x′

is injective (see Algebra, Lemma 10.79.11). This implies that Kx = 0 as desired. �

Lemma 37.22.2. Let A be a ring. Let u : M → N be a surjective map of A-
modules. If M is projective as an A-module, then there exists an ideal I ⊂ A such
that for any ring map ϕ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is an isomorphism, and
(2) ϕ(I) = 0.

Proof. As M is projective we can find a projective A-module C such that F =
M ⊕ C is a free R-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we
see that we may assume M is free. In this case let I be the ideal of A generated
by coefficients of all the elements of Ker(u) with respect to some (fixed) basis of
M . The reason this works is that, since u is surjective and ⊗AB is right exact,
Ker(u⊗ 1) is the image of Ker(u)⊗A B in M ⊗A B. �

Theorem 37.22.3. In Situation 37.19.1 assume

(1) f is of finite presentation,
(2) F is of finite presentation, flat over S, and pure relative to S, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if G is of finite presentation.

Proof. We will use without further mention that F is universally pure over S, see
Lemma 37.17.3. By Lemma 37.19.2 and Descent, Lemmas 34.33.2 and 34.35.1 the
question is local for the étale topology on S. Hence it suffices to prove, given s ∈ S,
that there exists an étale neighbourhood of (S, s) so that the theorem holds.

Using Lemma 37.11.5 and after replacing S by an elementary étale neighbourhood
of s we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite presentation over S, where g is étale, Xs ⊂ g(X ′), the schemes
X ′ and S are affine, Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that g∗F is
universally pure over S, see Lemma 37.16.4. Hence by Lemma 37.17.2 we see that
the open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 36.20.5 E is a constructible subset of S. We
have seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 28.23.4 we see that E
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contains an open neighbourhood of s. Hence after replacing S by a smaller affine
neighbourhood of s we may assume that AssX/S(F) ⊂ g(X ′).

Since we have assumed that u is surjective we have Fiso = Finj . From Lemma
37.22.1 it follows that u : F → G is injective if and only if g∗u : g∗F → g∗G is
injective, and the same remains true after any base change. Hence we have reduced
to the case where, in addition to the assumptions in the theorem, X → S is a
morphism of affine schemes and Γ(X,F) is a projective Γ(S,OS)-module. This
case follows immediately from Lemma 37.22.2.

To see that Z is of finite presentation if G is of finite presentation, combine Lemma
37.19.2 part (4) with Limits, Remark 31.5.2. �

Lemma 37.22.4. Let f : X → S be a morphism of schemes which is of finite
presentation, flat, and pure. Let Y be a closed subscheme of X. Let F = f∗Y be
the Weil restriction functor of Y along f , defined by

F : (Sch/S)opp → Sets, T 7→
{
{∗} if YT → XT is an isomorphism,
∅ else.

Then F is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if Y → S is.

Proof. Let I be the ideal sheaf defining Y in X and let u : OX → OX/I be
the surjection. Then for an S-scheme T , the closed immersion YT → XT is an
isomorphism if and only if uT is an isomorphism. Hence the result follows from
Theorem 37.22.3. �

37.23. Flattening in the local case

In this section we start applying the earlier material to obtain a shadow of the
flattening stratification.

Theorem 37.23.1. In Situation 37.19.3 assume A is henselian, B is essentially
of finite type over A, and M is a finite B-module. Then there exists an ideal
I ⊂ A such that A/I corepresents the functor Flf on the category C. In other words
given a local homomorphism of local rings ϕ : A → A′ with B′ = B ⊗A A′ and
M ′ = M ⊗A A′ the following are equivalent:

(1) ∀q ∈ V (mA′B
′ + mBB

′) ⊂ Spec(B′) : M ′q is flat over A′, and
(2) ϕ(I) = 0.

If B is essentially of finite presentation over A and M of finite presentation over
B, then I is a finitely generated ideal.

Proof. Choose a finite type ring map A→ C and a finite C-module N and a prime
q of C such that B = Cq and M = Nq. In the following, when we say “the theorem
holds for (N/C/A, q) we mean that it holds for (A → B,M) where B = Cq and
M = Nq. By Lemma 37.19.6 the functor Flf is unchanged if we replace B by a
local ring flat over B. Hence, since A is henselian, we may apply Lemma 37.6.6
and assume that there exists a complete dévissage of N/C/A at q.

Let (Ai, Bi,Mi, αi, qi)i=1,...,n be such a complete dévissage of N/C/A at q. Let
q′i ⊂ Ai be the unique prime lying over qi ⊂ Bi as in Definition 37.6.4. Since
C → A1 is surjective and N ∼= M1 as C-modules, we see by Lemma 37.19.5 it
suffices to prove the theorem holds for (M1/A1/A, q

′
1). Since B1 → A1 is finite and
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q1 is the only prime of B1 over q′1 we see that (A1)q′1 → (B1)q1
is finite (see Algebra,

Lemma 10.40.11 or More on Morphisms, Lemma 36.33.4). Hence by Lemma 37.19.5
it suffices to prove the theorem holds for (M1/B1/A, q1).

At this point we may assume, by induction on the length n of the dévissage, that
the theorem holds for (M2/B2/A, q2). (If n = 1, then M2 = 0 which is flat over
A.) Reversing the last couple of steps of the previous paragraph, using that M2

∼=
Coker(α2) as B1-modules, we see that the theorem holds for (Coker(α1)/B1/A, q1).

Let A′ be an object of C. At this point we use Lemma 37.10.1 to see that if
(M1 ⊗A A′)q′ is flat over A′ for a prime q′ of B1 ⊗A A′ lying over mA′ , then
(Coker(α1)⊗A A′)q′ is flat over A′. Hence we conclude that Flf is a subfunctor of
the functor F ′lf associated to the module Coker(α1)q1 over (B1)q1 . By the previous

paragraph we know F ′lf is corepresented by A/J for some ideal J ⊂ A. Hence we

may replace A by A/J and assume that Coker(α1)q1
is flat over A.

Since Coker(α1) is a B1-module for which there exist a complete dévissage of
N1/B1/A at q1 and since Coker(α1)q1 is flat over A by Lemma 37.10.2 we see
that Coker(α1) is free as an A-module, in particular flat as an A-module. Hence
Lemma 37.10.1 implies Flf (A′) is nonempty if and only if α⊗ 1A′ is injective. Let
N1 = Im(α1) ⊂M1 so that we have exact sequences

0→ N1 →M1 → Coker(α1)→ 0 and B⊕r11 → N1 → 0

The flatness of Coker(α1) implies the first sequence is universally exact (see Algebra,
Lemma 10.79.5). Hence α ⊗ 1A′ is injective if and only if B⊕r11 ⊗A A′ → N1 ⊗A
A′ is an isomorphism. Finally, Theorem 37.22.3 applies to show this functor is
corepresentable by A/I for some ideal I and we conclude Flf is corepresentable by
A/I also.

To prove the final statement, suppose that A→ B is essentially of finite presentation
and M of finite presentation over B. Let I ⊂ A be the ideal such that Flf is
corepresented by A/I. Write I =

⋃
Iλ where Iλ ranges over the finitely generated

ideals contained in I. Then, since Flf (A/I) = {∗} we see that Flf (A/Iλ) = {∗} for
some λ, see Lemma 37.19.4 part (2). Clearly this implies that I = Iλ. �

Remark 37.23.2. Here is a scheme theoretic reformulation of Theorem 37.23.1.
Let (X,x)→ (S, s) be a morphism of pointed schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX -module. Assume S henselian local with
closed point s. There exists a closed subscheme Z ⊂ S with the following property:
for any morphism of pointed schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to x ∈ Xs, and
(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is of finite presentation at x and Fx of finite presentation over
OX,x, then Z → S is of finite presentation.

At this point we can obtain some very general results completely for free from the
result above. Note that perhaps the most interesting case is when E = Xs!

Lemma 37.23.3. Let S be the spectrum of a henselian local ring with closed point
s. Let X → S be a morphism of schemes which is locally of finite type. Let F be
a finite type quasi-coherent OX-module. Let E ⊂ Xs be a subset. There exists a
closed subscheme Z ⊂ S with the following property: for any morphism of pointed
schemes (T, t)→ (S, s) the following are equivalent
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(1) FT is flat over T at all points of the fibre Xt which map to a point of
E ⊂ Xs, and

(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ Xs is closed and quasi-compact, then Z → S is of finite presentation.

Proof. For x ∈ Xs denote Zx ⊂ S the closed subscheme we found in Remark
37.23.2. Then it is clear that Z =

⋂
x∈E Zx works!

To prove the final statement assume X locally of finite presentation, F of finite
presentation and Z closed and quasi-compact. First, choose finitely many affine
opens Wj ⊂ X such that E ⊂

⋃
Wj . It clearly suffices to prove the result for each

morphism Wj → S with sheaf F|Xj and closed subset E ∩ Wj . Hence we may
assume X is affine. In this case, More on Algebra, Lemma 15.12.4 shows that the
functor defined by (1) is “limit preserving”. Hence we can show that Z → S is of
finite presentation exactly as in the last part of the proof of Theorem 37.23.1. �

Remark 37.23.4. Tracing the proof of Lemma 37.23.3 to its origins we find a long
and winding road. But if we assume that

(1) f is of finite type,
(2) F is a finite type OX -module,
(3) E = Xs, and
(4) S is the spectrum of a Noetherian complete local ring.

then there is a proof relying completely on more elementary algebra as follows:
first we reduce to the case where X is affine by taking a finite affine open cover.
In this case Z exists by More on Algebra, Lemma 15.13.3. The key step in this
proof is constructing the closed subscheme Z step by step inside the truncations
Spec(OS,s/mns ). This relies on the fact that flattening stratifications always exist
when the base is Artinian, and the fact that OS,s = limOS,s/mns .

37.24. Variants of a lemma

In this section we discuss variants of Algebra, Lemmas 10.124.4 and 10.95.1. The
most general version is Proposition 37.24.13; this was stated as [GR71, Lemma
4.2.2] but the proof in loc.cit. only gives the weaker result as stated in Lemma
37.24.5. The intricate proof of Proposition 37.24.13 is due to Ofer Gabber. As we
currently have no application for the proposition we encourage the reader to skip
to the next section after reading the proof of Lemma 37.24.5; this lemma will be
used in the next section to prove Theorem 37.25.1.

Situation 37.24.1. Let ϕ : A → B be a local ring homomorphism of local rings
which is essentially of finite type. Let M be a flat A-module, N a finite B-module
and u : N →M an A-module map such that u : N/mAN →M/mAM is injective.

In this situation it is our goal to show that u is A-universally injective, N is of finite
presentation over B, and N is flat as an A-module. If this is true, we will say the
lemma holds in the given situation.

Lemma 37.24.2. If in Situation 37.24.1 the ring A is Noetherian then the lemma
holds.

http://stacks.math.columbia.edu/tag/052G
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Proof. Applying Algebra, Lemma 10.95.1 we see that u is injective and that
N/u(M) is flat over A. Then u is A-universally injective (Algebra, Lemma 10.38.11)
and N is A-flat (Algebra, Lemma 10.38.12). Since B is Noetherian in this case we
see that N is of finite presentation. �

Lemma 37.24.3. Let A0 be a local ring. If the lemma holds for every Situation
37.24.1 with A = A0, with B a localization of a polynomial algebra over A, and
N of finite presentation over B, then the lemma holds for every Situation 37.24.1
with A = A0.

Proof. Let A → B, u : N → M be as in Situation 37.24.1. Write B = C/I
where C is the localization of a polynomial algebra over A at a prime. If we can
show that N is finitely presented as a C-module, then a fortiori this shows that N
is finitely presented as a B-module (see Algebra, Lemma 10.6.4). Hence we may
assume that B is the localization of a polynomial algebra. Next, write N = B⊕n/K
for some submodule K ⊂ B⊕n. Since B/mAB is Noetherian (as it is essentially of
finite type over a field), there exist finitely many elements k1, . . . , ks ∈ K such that
for K ′ =

∑
Bki and N ′ = B⊕n/K ′ the canonical surjection N ′ → N induces an

isomorphism N ′/mAN
′ ∼= N/mAN . Now, if the lemma holds for the composition

u′ : N ′ → M , then u′ is injective, hence N ′ = N and u′ = u. Thus the lemma
holds for the original situation. �

Lemma 37.24.4. If in Situation 37.24.1 the ring A is henselian then the lemma
holds.

Proof. It suffices to prove this when B is essentially of finite presentation over
A and N is of finite presentation over B, see Lemma 37.24.3. Let us temporarily
make the additional assumption that N is flat over A. Then N is a filtered colimit
N = colimi Fi of free A-modules Fi such that the transition maps uii′ : Fi → Fi′ are
injective modulo mA, see Lemma 37.18.5. Each of the compositions ui : Fi → M
is A-universally injective by Lemma 37.7.5 wherefore u = colimui is A-universally
injective as desired.

Assume A is a henselian local ring, B is essentially of finite presentation over A, N
of finite presentation over B. By Theorem 37.23.1 there exists a finitely generated
ideal I ⊂ A such that N/IN is flat over A/I and such that N/I2N is not flat over
A/I2 unless I = 0. The result of the previous paragraph shows that the lemma
holds for u mod I : N/IN →M/IM over A/I. Consider the commutative diagram

0 // M ⊗A I/I2 // M/I2M // M/IM // 0

N ⊗A I/I2 //

u

OO

N/I2N //

u

OO

N/IN //

u

OO

0

whose rows are exact by right exactness of ⊗ and the fact that M is flat over A.
Note that the left vertical arrow is the map N/IN ⊗A/I I/I2 →M/IM ⊗A/I I/I2,
hence is injective. A diagram chase shows that the lower left arrow is injective, i.e.,
Tor1

A/I2(I/I2,M/I2) = 0 see Algebra, Remark 10.72.8. Hence N/I2N is flat over

A/I2 by Algebra, Lemma 10.95.8 a contradiction unless I = 0. �

http://stacks.math.columbia.edu/tag/0AT2
http://stacks.math.columbia.edu/tag/0AT3


37.24. VARIANTS OF A LEMMA 2509

The following lemma discusses the special case of Situation 37.24.1 where M has a
B-module structure and u is B-linear. This is the case most often used in practice
and it is significantly easier to prove than the general case.

Lemma 37.24.5. Let A → B be a local ring homomorphism of local rings which
is essentially of finite type. Let u : N → M be a B-module map. If N is a finite
B-module, M is flat over A, and u : N/mAN → M/mAM is injective, then u is
A-universally injective, N is of finite presentation over B, and N is flat over A.

Proof. Let A→ Ah be the henselization of A. Let B′ be the localization of B⊗AAh
at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Since B → B′ is flat (hence faithfully
flat, see Algebra, Lemma 10.38.16), we may replace A → B with Ah → B′, the
module M by M ⊗BB′, the module N by N ⊗BB′, and u by u⊗ idB′ , see Algebra,
Lemmas 10.80.2 and 10.38.8. Thus we may assume that A is a henselian local ring.
In this case our lemma follows from the more general Lemma 37.24.4. �

Lemma 37.24.6. If in Situation 37.24.1 the ring A is a valuation ring then the
lemma holds.

Proof. Recall that an A-module is flat if and only if it is torsion free, see More on
Algebra, Lemma 15.15.4. Let T ⊂ N be the A-torsion. Then u(T ) = 0 and N/T
is A-flat. Hence N/T is finitely presented over B, see More on Algebra, Lemma
15.17.6. Thus T is a finite B-module, see Algebra, Lemma 10.5.3. Since N/T is A-
flat we see that T/mAT ⊂ N/mAN , see Algebra, Lemma 10.38.11. As u is injective
but u(T ) = 0, we conclude that T/mAT = 0. Hence T = 0 by Nakayama’s lemma,
see Algebra, Lemma 10.19.1. At this point we have proved two out of the three
assertions (N is A-flat and of finite presentation over B) and what is left is to show
that u is universally injective.

By Algebra, Theorem 10.79.3 it suffices to show that N⊗AQ→M⊗AQ is injective
for every finitely presented A-module Q. By More on Algebra, Lemma 15.72.3 we
may assume Q = A/(a) with a ∈ mA nonzero. Thus it suffices to show that
N/aN → M/aM is injective. Let x ∈ N with u(x) ∈ aM . By Lemma 37.18.6
we know that x has a content ideal I ⊂ A. Since I is finitely generated (More on
Algebra, Lemma 15.16.2) and A is a valuation ring, we have I = (b) for some b (by
Algebra, Lemma 10.48.15). By More on Algebra, Lemma 15.16.3 the element u(x)
has content ideal I as well. Since u(x) ∈ aM we see that (b) ⊂ (a) by More on
Algebra, Definition 15.16.1. Since x ∈ bN we conclude x ∈ aN as desired. �

Consider the following situation

(37.24.6.1)
A→ B of finite presentation, S ⊂ B a multiplicative subset, and

N a finitely presented S−1B-module

In this situation a pure spreadout is an affine open U ⊂ Spec(B) with Spec(S−1B) ⊂
U and a finitely presented O(U)-module N ′ extending N such that N ′ is A-
projective and N ′ → N = S−1N ′ is A-universally injective.

In (37.24.6.1) if A→ A1 is a ring map, then we can base change: take B1 = B⊗AA1,
let S1 ⊂ B1 be the image of S, and let N1 = N ⊗A A1. This works because
S−1

1 B1 = S−1B ⊗A A1. We will use this without further mention in the following.

Lemma 37.24.7. In (37.24.6.1) if there exists a pure spreadout, then

(1) elements of N have content ideals in A, and

http://stacks.math.columbia.edu/tag/0AT4
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(2) if u : N → M is a morphism to a flat A-module M such that N/mN →
M/mM is injective for all maximal ideals m of A, then u is A-universally
injective.

Proof. Choose U , N ′ as in the definition of a pure spreadout. Any element x′ ∈ N ′
has a content ideal in A because N ′ is A-projective (this can easily be seen directly,
but it also follows from More on Algebra, Lemma 15.16.4 and Algebra, Example
10.88.1). Since N ′ → N is A-universally injective, we see that the image x ∈ N of
any x′ ∈ N ′ has a content ideal in A (it is the same as the content ideal of x′). For
a general x ∈ N we choose s ∈ S such that sx is in the image of N ′ → N and we
use that x and sx have the same content ideal.

Let u : N → M be as in (2). To show that u is A-universally injective, we may
replace A by a localization at a maximal ideal (small detail omitted). Assume A is
local with maximal ideal m. Pick s ∈ S and consider the composition

N ′ → N
1/s−−→ N

u−→M

Each of these maps is injective modulo m, hence the composition is A-universally
injective by Lemma 37.7.5. Since N = colims∈S(1/s)N ′ we conclude that u is
A-inversally injective as a colimit of universally injective maps. �

Lemma 37.24.8. In (37.24.6.1) for every p ∈ Spec(A) there is a finitely generated
ideal I ⊂ pAp such that over Ap/I we have a pure spreadout.

Proof. We may replace A by Ap. Thus we may asume A is local and p is the
maximal ideal m of A. We may write N = S−1N ′ for some finitely presented
B-module N ′ by clearing denominators in a presentation of N over S−1B. Since
B/mB is Noetherian, the kernel K of N ′/mN ′ → N/mN is finitely generated. Thus
we can pick s ∈ S such that K is annihilated by s. After replacing B by Bs which is
allowed as it just means passing to an affine open subscheme of Spec(B), we find that
the elements of S are injective on N ′/mN ′. At this point we choose a local subring
A0 ⊂ A essentially of finite type over Z, a finite type ring map A0 → B0 such that
B = A⊗A0

B0, and a finite B0-module N ′0 such that N ′ = B ⊗B0
N ′0 = A⊗A0

N ′0.
We claim that I = mA0A works. Namely, we have

N ′/IN ′ = N ′0/mA0
N ′0 ⊗κA0

A/I

which is free over A/I. Multiplication by the elements of S is injective after divid-
ing out by the maximal ideal, hence N ′/IN ′ → N/IN is universally injective for
example by Lemma 37.7.6. �

Lemma 37.24.9. In (37.24.6.1) assume N is A-flat, M is a flat A-module, and
u : N →M is an A-module map such that u⊗idκ(p) is injective for all p ∈ Spec(A).
Then u is A-universally injective.

Proof. By Algebra, Lemma 10.79.14 it suffices to check that N/IN → M/IM is
injective for every ideal I ⊂ A. After replacing A by A/I we see that it suffices to
prove that u is injective.

Proof that u is injective. Let x ∈ N be a nonzero element of the kernel of u. Then
there exists a weakly associated prime p of the module Ax, see Algebra, Lemma
10.65.4. Replacing A by Ap we may assume A is local and we find a nonzero
element y ∈ Ax whose annihilator has radical equal to mA, see Algebra, Lemma
10.65.2. Thus Supp(y) ⊂ Spec(S−1B) is nonempty and contained in the closed

http://stacks.math.columbia.edu/tag/0AT8
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fibre of Spec(S−1B) → Spec(A). Let I ⊂ mA be a finitely generated ideal so that
we have a pure spreadout over A/I, see Lemma 37.24.8. Then Iny = 0 for some
n. Now y ∈ AnnM (In) = AnnA(In) ⊗R N by flatness. Thus, to get the desired
contradiction, it suffices to show that

AnnA(In)⊗R N −→ AnnA(In)⊗RM
is injective. Since N and M are flat and since AnnA(In) is annihilated by In,
it suffices to show that Q ⊗A N → Q ⊗A M is injective for every A-module Q
annihilated by I. This holds by our choice of I and Lemma 37.24.7 part (2). �

Lemma 37.24.10. Let A be a local domain. Let S be a set of finitely generated
ideals of A. Assume that S is closed under products and such that

⋂
I∈S V (I) is

the complement of the generic point of Spec(A). Then
⋂
I∈S I = (0).

Proof. Let f ∈ A be nonzero. Then V (f) ⊂
⋃
I∈S V (I). Since the constructible

topology on V (f) is quasi-compact (Topology, Lemma 5.22.2 and Algebra, Lemma
10.25.2) we find that V (f) ⊂ V (I1)∪. . .∪V (In) for some Ij ∈ S. Because I1 . . . In ∈
S we see that V (f) ⊂ V (I) for some I. As I is finitely generated this implies that
Im ⊂ (f) for some m and since S is closed under products we see that I ⊂ (f2) for
some I ∈ S. Then it is not possible to have f ∈ I. �

Lemma 37.24.11. Let A be a local ring. Let I, J ⊂ A be ideals. If J is finitely
generated and I ⊂ Jn for all n ≥ 1, then V (I) contains the closed points of Spec(A)\
V (J).

Proof. Let p ⊂ A be a closed point of Spec(A) \ V (J). We want to show that
I ⊂ p. If not, then some f ∈ I maps to a nonzero element of A/p. Note that
V (J) ∩ Spec(A/p) is the set of non-generic points. Hence by Lemma 37.24.10
applied to the collection of ideals JnA/p we conclude that the image of f is zero in
A/p. �

Lemma 37.24.12. Let A be a local ring. Let I ⊂ A be an ideal. Let U ⊂ Spec(A)
be quasi-compact open. Let M be an A-module. Assume that

(1) M/IM is flat over A/I,
(2) M is flat over U ,

Then M/I2M is flat over A/I2 where I2 = Ker(I → Γ(U, I/I2)).

Proof. It suffices to show that M ⊗A I/I2 → IM/I2M is injective, see Algebra,
Lemma 10.95.9. This is true over U by assumption (2). Thus it suffices to show that
M⊗AI/I2 injects into its sections over U . We haveM⊗AI/I2 = M/IM⊗AI/I2 and
M/IM is a filtered colimit of finite free A/I-modules (Algebra, Theorem 10.78.4).
Hence it suffices to show that I/I2 injects into its sections over U , which follows
from the construction of I2. �

Proposition 37.24.13. Let A → B be a local ring homomorphism of local rings
which is essentially of finite type. Let M be a flat A-module, N a finite B-module
and u : N → M an A-module map such that u : N/mAN → M/mAM is injective.
Then u is A-universally injective, N is of finite presentation over B, and N is flat
over A.

Proof. We may assume that B is the localization of a finitely presented A-algebra
B0 and that N is the localization of a finitely presented B0-module M0, see Lemma

http://stacks.math.columbia.edu/tag/0ATA
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37.24.3. By Lemma 37.20.5 there exists a “generic flatness stratification” for M̃0

on Spec(B0) over Spec(A). Translating back to N we find a sequence of closed
subschemes

S = Spec(A) ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
with Si ⊂ S cut out by a finitely generated ideal of A such that the pullback of Ñ
to Spec(B) ×S (Si \ Si+1) is flat over Si \ Si+1. We will prove the proposition by
induction on t (the base case t = 1 will be proved in parallel with the other steps).
Let Spec(A/Ji) be the scheme theoretic closure of Si \ Si+1.

Claim 1. N/JiN is flat over A/Ji. This is immediate for i = t − 1 and follows
from the induction hypothesis for i > 0. Thus we may assume t > 1, St−1 6= ∅, and
J0 = 0 and we have to prove that N is flat. Let J ⊂ A be the ideal defining S1.
By induction on t again, we also have flatness modulo powers of J . Let Ah be the
henselization of A and let B′ be the localization of B ⊗A Ah at the maximal ideal
mB ⊗ Ah + B ⊗ mAh . Then B → B′ is faithfully flat. Set N ′ = N ⊗B B′. Note
that N ′ is Ah-flat if and only if N is A-flat. By Theorem 37.23.1 there is a smallest
ideal I ⊂ Ah such that N ′/IN ′ is flat over Ah/I, and I is finitely generated. By
the above I ⊂ JnAh for all n ≥ 1. Let Shi ⊂ Spec(Ah) be the inverse image of
Si ⊂ Spec(A). By Lemma 37.24.11 we see that V (I) contains the closed points of
U = Spec(Ah)−Sh1 . By construction N ′ is Ah-flat over U . By Lemma 37.24.12 we
see that N ′/I2N

′ is flat over A/I2, where I2 = Ker(I → Γ(U, I/I2)). Hence I = I2
by minimality of I. This implies that I = I2 locally on U , i.e., we have IOU,u = (0)
or IOU,u = (1) for all u ∈ U . Since V (I) contains the closed points of U we see that
I = 0 on U . Since U ⊂ Spec(Ah) is scheme theoretically dense (because replaced A
by A/J0 in the beginning of this paragraph), we see that I = 0. Thus N ′ is Ah-flat
and hence Claim 1 holds.

We return to the situation as laid out before Claim 1. With Ah the henselization
of A, with B′ the localization of B ⊗A Ah at the maximal ideal mB ⊗ Ah + B ⊗
mAh , and with N ′ = N ⊗B B′ we now see that the flattening ideal I ⊂ Ah of
Theorem 37.23.1 is nilpotent. If nil(Ah) denotes the ideal of nilpotent elements,
then nil(Ah) = nil(A)Ah (More on Algebra, Lemma 15.34.5). Hence there exists a
finitely generated nilpotent ideal I0 ⊂ A such that N/I0N is flat over A/I0.

Claim 2. For every prime ideal p ⊂ A the map κ(p) ⊗A N → κ(p) ⊗A M is
injective. We say p is bad it this is false. Suppose that C is a nonempty chain of
bad primes and set p∗ =

⋃
p∈C p. By Lemma 37.24.8 there is a finitely generated

ideal a ⊂ p∗Ap∗ such that there is a pure spreadout over V (a). If p∗ were good, then
it would follow from Lemma 37.24.7 that the points of V (a) are good. However,
since a is finitely generated and since p∗Ap∗ =

⋃
p∈C Ap∗ we see that V (a) contains

a p ∈ C, contradiction. Hence p∗ is bad. By Zorn’s lemma, if there exists a bad
prime, there exists a maximal one, say p. In other words, we may assume every
p′ ⊃ p, p′ 6= p is good. In this case we see that for every f ∈ A, f 6∈ p the map
u ⊗ idA/(p+f) is universally injective, see Lemma 37.24.9. Thus it suffices to show
thatN/pN is separated for the topology defined by the submodules f(N/pN). Since
B → B′ is faithfully flat, it is enough to prove the same for the module N ′/pN ′.
By Lemma 37.18.5 and More on Algebra, Lemma 15.16.4 elements of N ′/pN ′ have
content ideals in Ah/pAh. Thus it suffices to show that

⋂
f∈A,f 6∈p f(Ah/pAh) = 0.

Then it suffices to show the same for Ah/qAh for every prime q ⊂ Ah minimal over
pAh. Because A→ Ah is the henselization, every q contracts to p and every q′ ⊃ q,
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q′ 6= q contracts to a prime p′ which strictly contains p. Thus we get the vanishing
of the intersections from Lemma 37.24.10.

At this point we can put everything together. Namely, using Claim 1 and Claim
2 we see that N/I0N → M/I0M is A/I0-universally injective by Lemma 37.24.9.
Then the diagrams

N ⊗A (In0 /I
n+1
0 ) //

��

M ⊗A (In0 /I
n+1
0 )

In0 N/I
n+1
0 N // In0 M/In+1

0 M

show that the left vertical arrows are injective. Hence by Algebra, Lemma 10.95.9
we see that N is flat. In a similar way the universal injectivity of u can be reduced
(even without proving flatness of N first) to the one modulo I0. This finishes the
proof. �

37.25. Flat finite type modules, Part III

The following result is one of the main results of this chapter.

Theorem 37.25.1. Let f : X → S be locally of finite type. Let F be a quasi-
coherent OX-module of finite type. Let x ∈ X with image s ∈ S. The following are
equivalent

(1) F is flat at x over S, and
(2) for every x′ ∈ AssXs(Fs) which specializes to x we have that F is flat at

x′ over S.

Proof. It is clear that (1) implies (2) as Fx′ is a localization of Fx for every point
which specializes to x. Set A = OS,s, B = OX,x and N = Fx. Let Σ ⊂ B be the
multiplicative subset of B of elements which act as nonzerodivisors on N/mAN .
Assumption (2) implies that Σ−1N is A-flat by the description of Spec(Σ−1N) in
Lemma 37.7.1. On the other hand, the map N → Σ−1N is injective modulo mA
by construction. Hence applying Lemma 37.24.5 we win. �

Now we apply this directly to obtain the following useful results.

Lemma 37.25.2. Let S be a local scheme with closed point s. Let f : X → S be
locally of finite type. Let F be a finite type OX-module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
3,

(2) F is flat over S at every point of Xs.

Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at
points of the relative assassin of F over S by Theorem 37.25.1. �

3For example this holds if f is finite type and F is pure along Xs, or if f is proper.
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37.26. Universal flattening

If f : X → S is a proper, finitely presented morphism of schemes then one can find
a universal flattening of f . In this section we discuss this and some of its variants.

Lemma 37.26.1. In Situation 37.19.7. For each p ≥ 0 the functor Hp (37.19.7.2)
is representable by a locally closed immersion Sp → S. If F is of finite presentation,
then Sp → S is of finite presentation.

Proof. For each S we will prove the statement for all p ≥ 0 concurrently. The
functor Hp is a sheaf for the fppf topology by Lemma 37.19.8. Hence combin-
ing Descent, Lemma 34.35.1, More on Morphisms, Lemma 36.37.1 , and Descent,
Lemma 34.20.1 we see that the question is local for the étale topology on S. In
particular, the question is Zariski local on S.

For s ∈ S denote ξs the unique generic point of the fibre Xs. Note that for
every s ∈ S the restriction Fs of F is locally free of some rank p(s) ≥ 0 in some
neighbourhood of ξs. (As Xs is irreducible and smooth this follows from generic
flatness for Fs over Xs, see Algebra, Lemma 10.114.1 although this is overkill.) For
future reference we note that

p(s) = dimκ(ξs)(Fξs ⊗OX,ξs κ(ξs)).

In particular Hp(s)(s) is nonempty and Hq(s) is empty if q 6= p(s).

Let U ⊂ X be an open subscheme. As f : X → S is smooth, it is open. It is
immediate from (37.19.7.2) that the functor Hp for the pair (f |U : U → f(U),F|U )
and the functor Hp for the pair (f |f−1(f(U)),F|f−1(f(U))) are the same. Hence to
prove the existence of Sp over f(U) we may always replace X by U .

Pick s ∈ S. There exists an affine open neighbourhood U of ξs such that F|U can
be generated by at most p(s) elements. By the arguments above we see that in
order to prove the statement for Hp(s) in an neighbourhood of s we may assume
that F is generated by p(s) elements, i.e., that there exists a surjection

u : O⊕p(s)X −→ F

In this case it is clear that Hp(s) is equal to Fiso (37.19.1.1) for the map u (this fol-
lows immediately from Lemma 37.18.1 but also from Lemma 37.11.1 after shrinking
a bit more so that both S and X are affine.) Thus we may apply Theorem 37.22.3
to see that Hp(s) is representable by a closed immersion in a neighbourhood of s.

The result follows formally from the above. Namely, the arguments above show
that locally on S the function s 7→ p(s) is bounded. Hence we may use induction
on p = maxs∈S p(s). The functor Hp is representable by a closed immersion Sp → S
by the above. Replace S by S \ Sp which drops the maximum by at least one and
we win by induction hypothesis.

To see that Sp → S is of finite presentation if F is of finite presentation combine
Lemma 37.19.8 part (2) with Limits, Remark 31.5.2. �

Lemma 37.26.2. In Situation 37.19.9. Let h : X ′ → X be an étale morphism.
Set F ′ = h∗F and f ′ = f ◦h. Let F ′n be (37.19.9.1) associated to (f ′ : X ′ → S,F ′).
Then Fn is a subfunctor of F ′n and if h(X ′) ⊃ AssX/S(F), then Fn = F ′n.
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Proof. Let T → S be any morphism. Then hT : X ′T → XT is étale as a base
change of the étale morphism g. For t ∈ T denote Z ⊂ Xt the set of points where
FT is not flat over T , and similarly denote Z ′ ⊂ X ′t the set of points where F ′T is

not flat over T . As F ′T = h∗TFT we see that Z ′ = h−1
t (Z), see Morphisms, Lemma

28.26.11. Hence Z ′ → Z is an étale morphism, so dim(Z ′) ≤ dim(Z) (for example
by Descent, Lemma 34.17.2 or just because an étale morphism is smooth of relative
dimension 0). This implies that Fn ⊂ F ′n.

Finally, suppose that h(X ′) ⊃ AssX/S(F) and that T → S is a morphism such
that F ′n(T ) is nonempty, i.e., such that F ′T is flat in dimensions ≥ n over T . Pick
a point t ∈ T and let Z ⊂ Xt and Z ′ ⊂ X ′t be as above. To get a contradiction
assume that dim(Z) ≥ n. Pick a generic point ξ ∈ Z corresponding to a component
of dimension ≥ n. Let x ∈ AssXt(Ft) be a generalization of ξ. Then x maps to a
point of AssX/S(F) by Divisors, Lemma 30.7.2 and Remark 30.7.3. Thus we see
that x is in the image of hT , say x = hT (x′) for some x′ ∈ X ′T . But x′ 6∈ Z ′ as
x  ξ and dim(Z ′) < n. Hence F ′T is flat over T at x′ which implies that FT is
flat at x over T (by Morphisms, Lemma 28.26.11). Since this holds for every such
x we conclude that FT is flat over T at ξ by Theorem 37.25.1 which is the desired
contradiction. �

Lemma 37.26.3. Assume that X → S is a smooth morphism of affine schemes
with geometrically irreducible fibres of dimension d and that F is a quasi-coherent
OX-module of finite presentation. Then Fd =

∐
p=0,...,cHp for some c ≥ 0 with Fd

as in (37.19.9.1) and Hp as in (37.19.7.2).

Proof. As X is affine and F is quasi-coherent of finite presentation we know that
F can be generated by c ≥ 0 elements. Then dimκ(x)(Fx ⊗ κ(x)) in any point
x ∈ X never exceeds c. In particular Hp = ∅ for p > c. Moreover, note that there
certainly is an inclusion

∐
Hp → Fd. Having said this the content of the lemma is

that, if a base change FT is flat in dimensions ≥ d over T and if t ∈ T , then FT is
free of some rank r in an open neighbourhood U ⊂ XT of the unique generic point
ξ of Xt. Namely, then Hr contains the image of U which is an open neighbourhood
of t. The existence of U follows from More on Morphisms, Lemma 36.13.7. �

Lemma 37.26.4. In Situation 37.19.9. Let s ∈ S let d ≥ 0. Assume

(1) there exists a complete dévissage of F/X/S over some point s ∈ S,
(2) X is of finite presentation over S,
(3) F is an OX-module of finite presentation, and
(4) F is flat in dimensions ≥ d+ 1 over S.

Then after possibly replacing S by an open neighbourhood of s the functor Fd
(37.19.9.1) is representable by a monomorphism Zd → S of finite presentation.

Proof. A preliminary remark is that X, S are affine schemes and that it suffices to
prove Fd is representable by a closed subscheme on the category of affine schemes
over S. Hence throughout the proof of the lemma we work in the category of affine
schemes over S.

Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete dévissage of F/X/S over s, see
Definition 37.5.1. We will use induction on the length n of the dévissage. Recall
that Yk → S is smooth with geometrically irreducible fibres, see Definition 37.4.1.
Let dk be the relative dimension of Yk over S. Recall that ik,∗Gk = Coker(αk)
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and that ik is a closed immersion. By the definitions referenced above we have
d1 = dim(Supp(Fs)) and

dk = dim(Supp(Coker(αk−1)s)) = dim(Supp(Gk,s))
for k = 2, . . . , n. It follows that d1 > d2 > . . . > dn ≥ 0 because αk is an
isomorphism in the generic point of (Yk)s.

Note that i1 is a closed immersion and F = i1,∗G1. Hence for any morphism of
schemes T → S with T affine, we have FT = i1,T,∗G1,T and i1,T is still a closed
immersion of schemes over T . Thus FT is flat in dimensions ≥ d over T if and only
if G1,T is flat in dimensions ≥ d over T . Because π1 : Z1 → Y1 is finite we see in the
same manner that G1,T is flat in dimensions ≥ d over T if and only if π1,T,∗G1,T is
flat in dimensions ≥ d over T . The same arguments work for “flat in dimensions
≥ d + 1” and we conclude in particular that π1,∗G1 is flat over S in dimensions
≥ d+ 1 by our assumption on F .

Suppose that d1 > d. It follows from the discussion above that in particular π1,∗G1

is flat over S at the generic point of (Y1)s. By Lemma 37.11.1 we may replace S by
an affine neighbourhood of s and assume that α1 is S-universally injective. Because
α1 is S-universally injective, for any morphism T → S with T affine, we have a
short exact sequence

0→ O⊕r1Y1,T
→ π1,T,∗G1,T → Coker(α1)T → 0

and still the first arrow is T -universally injective. Hence the set of points of (Y1)T
where π1,T,∗G1,T is flat over T is the same as the set of points of (Y1)T where
Coker(α1)T is flat over S. In this way the question reduces to the sheaf Coker(α1)
which has a complete dévissage of length n− 1 and we win by induction.

If d1 < d then Fd is represented by S and we win.

The last case is the case d1 = d. This case follows from a combination of Lemma
37.26.3 and Lemma 37.26.1. �

Theorem 37.26.5. In Situation 37.19.9. Assume moreover that f is of finite
presentation, that F is an OX-module of finite presentation, and that F is pure
relative to S. Then Fn is representable by a monomorphism Zn → S of finite
presentation.

Proof. The functor Fn is a sheaf for the fppf topology by Lemma 37.19.10. Hence
combining Descent, Lemma 34.35.1, More on Morphisms, Lemma 36.37.1 , and
Descent, Lemmas 34.19.29 and 34.19.11 we see that the question is local for the
étale topology on S.

In particular the situation is local for the Zariski topology on S and we may assume
that S is affine. In this case the dimension of the fibres of f is bounded above, hence
we see that Fn is representable for n large enough. Thus we may use descending
induction on n. Suppose that we know Fn+1 is representable by a monomorphism
Zn+1 → S of finite presentation. Consider the base change Xn+1 = Zn+1 ×S X
and the pullback Fn+1 of F to Xn+1. The morphism Zn+1 → S is quasi-finite as it
is a monomorphism of finite presentation, hence Lemma 37.15.4 implies that Fn+1

is pure relative to Zn+1. Since Fn is a subfunctor of Fn+1 we conclude that in
order to prove the result for Fn it suffices to prove the result for the corresponding
functor for the situation Fn+1/Xn+1/Zn+1. In this way we reduce to proving the
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result for Fn in case Sn+1 = S, i.e., we may assume that F is flat in dimensions
≥ n+ 1 over S.

Fix n and assume F is flat in dimensions ≥ n+1 over S. To finish the proof we have
to show that Fn is representable by a monomorphism Zn → S of finite presentation.
Since the question is local in the étale topology on S it suffices to show that for
every s ∈ S there exists an elementary étale neighbourhood (S′, s′) → (S, s) such
that the result holds after base change to S′. Thus by Lemma 37.5.8 we may assume
there exist étale morphisms hj : Yj → X, j = 1, . . . ,m such that for each i there
exists a complete dévissage of Fj/Yj/S over s, where Fj is the pullback of F to Yj
and such that Xs ⊂

⋃
hj(Yj). Note that by Lemma 37.26.2 the sheaves Fj are still

flat over in dimensions ≥ n+1 over S. Set W =
⋃
hj(Yj), which is a quasi-compact

open of X. As F is pure along Xs we see that

E = {t ∈ S | AssXt(Ft) ⊂W}.

contains all generalizations of s. By More on Morphisms, Lemma 36.20.5 E is a
constructible subset of S. We have seen that Spec(OS,s) ⊂ E. By Morphisms,
Lemma 28.23.4 we see that E contains an open neighbourhood of s. Hence after
shrinking S we may assume that E = S. It follows from Lemma 37.26.2 that
it suffices to prove the lemma for the functor Fn associated to X =

∐
Yj and

F =
∐
Fj . If Fj,n denotes the functor for Yj → S and the sheaf Fi we see

that Fn =
∏
Fj,n. Hence it suffices to prove each Fj,n is representable by some

monomorphism Zj,n → S of finite presentation, since then

Zn = Z1,n ×S . . .×S Zm,n

Thus we have reduced the theorem to the special case handled in Lemma 37.26.4.
�

We make explicit what the theorem means in terms of universal flattenings in the
following lemma.

Lemma 37.26.6. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module.

(1) If f is of finite presentation, F is an OX-module of finite presentation,
and F is pure relative to S, then there exists a universal flattening S′ → S
of F . Moreover S′ → S is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to S, then there exists a
universal flattening S′ → S of X. Moreover S′ → S is a monomorphism
of finite presentation.

(3) If f is proper and of finite presentation and F is an OX-module of fi-
nite presentation, then there exists a universal flattening S′ → S of F .
Moreover S′ → S is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flat-
tening S′ → S of X.

Proof. These statements follow immediately from Theorem 37.26.5 applied to F0 =
Fflat and the fact that if f is proper then F is automatically pure over the base,
see Lemma 37.16.1. �
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37.27. Blowing up and flatness

In this section we begin our discussion of results of the form: “After a blowup the
strict transform becomes flat”. We will use the following (more or less standard)
notation in this section. If X → S is a morphism of schemes, F is a quasi-coherent
module on X, and T → S is a morphism of schemes, then we denote FT the
pullback of F to the base change XT = X ×S T .

Remark 37.27.1. Let S be a quasi-compact and quasi-separated scheme. Let
f : X → S be a morphism of schemes. Let F be a quasi-coherent module on X.
Let U ⊂ S be a quasi-compact open subscheme. Given a U -admissible blowup
S′ → S we denote X ′ the strict transform of X and F ′ the strict transform of F
which we think of as a quasi-coherent module on X ′ (via Divisors, Lemma 30.19.2).
Let P be a property of F/X/S which is stable under strict transform (as above)
for U -admissible blowups. The general problem in this section is: Show (under
auxiliary conditions on F/X/S) there exists a U -admissible blowup S′ → S such
that the strict transform F ′/X ′/S′ has P .

The general strategy will be to use that a composition of U -admissible blowups is
a U -admissible blowup, see Divisors, Lemma 30.20.2. In fact, we will make use of
the more precise Divisors, Lemma 30.18.12 and combine it with Divisors, Lemma
30.19.6. The result is that it suffices to find a sequence of U -admissible blowups

S = S0 ← S1 ← . . .← Sn

such that, setting F0 = F and X0 = X and setting Fi/Xi equal to the strict
transform of Fi−1/Xi−1, we arrive at Fn/Xn/Sn with property P .

In particular, choose a finite type quasi-coherent sheaf of ideals I ⊂ OS such that
V (I) = S \ U , see Properties, Lemma 27.22.1. Let S′ → S be the blowup in I
and let E ⊂ S′ be the exceptional divisor (Divisors, Lemma 30.18.4). Then we see
that we’ve reduced the problem to the case where there exists an effective Cartier
divisor D ⊂ S whose support is X \ U . In particular we may assume U is scheme
theoretically dense in S (Divisors, Lemma 30.9.4).

Suppose that P is local on S: If S =
⋃
Si is a finite open covering by quasi-compact

opens and P holds for FSi/XSi/Si then P holds for F/X/S. In this case the general
problem above is local on S as well, i.e., if given s ∈ S we can find a quasi-compact
open neighbourhood W of s such that the problem for FW /XW /W is solvable, then
the problem is solvable for F/X/S. This follows from Divisors, Lemmas 30.20.3
and 30.20.4.

Lemma 37.27.2. Let R be a local ring. Let M be a finite R-module. Let k ≥ 0.
Assume that Fitk(M) = (f) for some f ∈ R. Let M ′ be the quotient of M by
{x ∈M | fx = 0}. Then M ′ can be generated by k elements.

Proof. Choose generators x1, . . . , xn ∈M corresponding to the surjection R⊕n →
M . Since R is local if a set of elements E ⊂ (f) generates (f), then some e ∈ E
generates (f), see Algebra, Lemma 10.19.1. Hence we may pick z1, . . . , zn−k in the
kernel of R⊕n → M such that some (n − k) × (n − k) minor of the n × (n − k)
matrix A = (zij) is (f). After renumbering the xi we may assume the first minor
det(zij)1≤i,j≤n−k generates (f), i.e., det(zij)1≤i,j≤n−k = uf for some unit u ∈ R.
Every other minor is a multiple of f . By Algebra, Lemma 10.14.5 there exists a
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n− k × n− k matrix B such that

AB = f

(
u1n−k×n−k

C

)
for some matrix C with coefficients in R. This implies that for every i ≤ n− k the
element yi = uxi +

∑
j cjixj is annihilated by f . Since M/

∑
Ryi is generated by

the images of xn−k+1, . . . , xn we win. �

Lemma 37.27.3. Let R be a ring and let f ∈ R. Let r, d ≥ 0 be integers. Let
R→ S be a ring map and let M be an S-module. Assume

(1) R→ S is of finite presentation and flat,
(2) every fibre ring S ⊗R κ(p) is geometrically integral over R,
(3) M is a finite S-module,
(4) Mf is a finitely presented Sf -module,
(5) for all p ∈ R, f 6∈ p with q = pS the module Mq is free of rank r over Sq.

Then there exists a finitely generated ideal I ⊂ R with V (f) = V (I) such that for
all a ∈ I with R′ = R[ Ia ] the quotient

M ′ = (M ⊗R R′)/a-power torsion

over S′ = S ⊗R R′ satisfies the following: for every prime p′ ⊂ R′ there exists a
g ∈ S′, g 6∈ p′S′ such that M ′g is a free S′g-module of rank r.

Proof. Choose a surjection S⊕n → M , which is possible by (1). Choose a finite
submodule K ⊂ Ker(S⊕n →M) such that S⊕n/K →M becomes an isomorphism
after inverting f . This is possible by (2). Set M1 = S⊕n/K and suppose we can
prove the lemma for M1. Say I ⊂ R is the corresponding ideal. Then for a ∈ I the
map

M ′1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′a = Rf , see
Algebra, Lemma 10.56.3. But a is a nonzerodivisor on M ′1, whence the displayed
map is an isomorphism. Thus it suffices to prove the lemma in case M is a finitely
presented S-module.

Assume M is a finitely presented S-module satisfying (3). Then J = Fitr(M) ⊂ S
is a finitely generated ideal. By Lemma 37.9.3 we can write S as a direct summand
of a free R-module:

⊕
α∈AR = S⊕C. For any element h ∈ S writing h =

∑
aα in

the decomposition above, we say that the aα are the coefficents of h. Let I ′ ⊂ R
be the ideal generated by the coefficients of the elements of J . Multiplication by
an element of S defines an R-linear map S → S, hence I ′ is generated by the
coefficients of the generators of J , i.e., I ′ is a finitely generated ideal. We claim
that I = fI ′ works.

We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely,
if f 6∈ p, then q = pS is not an element of V (J) by property (3) and the fact that
formation of fitting ideals commute with base change (More on Algebra, Lemma
15.5.4). Hence there is an element of J which does not map to zero in S ⊗R κ(p).
Thus there exists an element of I ′ which is not contained in p, so p 6∈ V (fI ′) = V (I).

Let a ∈ I and let p′ ⊂ R′ = R[ Ia ] be a prime ideal. Set S′ = S ⊗S R′ and
q′ = p′S′. Every element g of JS′ = Fitr(M ⊗S S′) can be written as g =

∑
α cα

for some cα ∈ IS′. Since IR′ = aR′ we can write cα = ac′α for some c′α ∈ R′ and
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g = (
∑
c′α)a = g′a in S′. Moreover, we can find some g0 ∈ JS′ such that a = cα for

some α. For this element g0 = g′0a where g′0 is a unit in S′q′ . Thus we see that JS′q′
is the principal ideal generated by the nonzerodivisor a. It follows from Lemma
37.27.2 that M ′q′ can be generated by r elements. Since M ′ is finite, there exist

m1, . . . ,mr ∈M ′ and g ∈ S′, g 6∈ q′ such that the corresponding map (S′)⊕r →M ′

becomes surjective after inverting g.

Finally, consider the finitely generated ideal J ′ = Fitk−1(M ′). Note that J ′S′g
is generated by the coefficients of relations between m1, . . . ,mr (compatibility of
fitting ideal with base change). Thus it suffices to show that J ′ = 0, see More on
Algebra, Lemma 15.5.7. Since R′a = Rf (see above) and M ′a = Mf we see from (3)
that J ′a maps to zero in Sq′′ for any prime q′′ ⊂ S′ of the form q′′ = p′′S′ where
p′′ ⊂ R′a. Since S′a ⊂

∏
q′′ as above S

′
q′′ (as (S′a)p′′ ⊂ S′q′′ by Lemma 37.7.4) we see

that J ′R′a = 0. Since a is a nonzerodivisor in R′ we conclude that J ′ = 0 and we
win. �

Lemma 37.27.4. Let S be a quasi-compact and quasi-separated scheme. Let X →
S be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S
be a quasi-compact open. Assume

(1) X → S is affine, of finite presentation, flat, geometrically integral fibres,
(2) F is a module of finite type,
(3) FU is of finite presentation,
(4) F is flat over S at all generic points of fibres lying over points of U .

Then there exists a U -admissible blowup S′ → S and an open subscheme V ⊂ XS′

such that (a) the strict transform F ′ of F restricts to a finitely locally free OV -
module and (b) V → S′ is surjective.

Proof. Given F/X/S and U ⊂ S with hypotheses as in the lemma, denote P
the property “F is flat over S at all generic points of fibres”. It is clear that P
is preserved under strict transform, see Divisors, Lemma 30.19.3 and Morphisms,
Lemma 28.26.6. It is also clear that P is local on S. Hence any and all observations
of Remark 37.27.1 apply to the problem posed by the lemma.

Consider the function r : U → Z≥0 which assigns to u ∈ U the integer

r(u) = dimκ(ξu)(Fξu ⊗ κ(ξu))

where ξu is the generic point of the fibre Xu. By More on Morphisms, Lemma
36.13.7 and the fact that the image of an open in XS in S is open, we see that r(u)
is locally constant. Accordingly U = U0 qU1 q . . .qUc is a finite disjoint union of
open and closed subschemes where r is constant with value i on Ui. By Divisors,
Lemma 30.20.5 we can find a U -admissible blowup to decompose S into the disjoint
union of two schemes, the first containing U0 and the second U1∪. . .∪Uc. Repeating
this c−1 more times we may assume that S is a disjoint union S = S0qS1q . . .qSc
with Ui ⊂ Si. Thus we may assume the function r defined above is constant, say
with value r.

By Remark 37.27.1 we see that we may assume that we have an effective Cartier
divisor D ⊂ S whose support is S \ U . Another application of Remark 37.27.1
combined with Divisors, Lemma 30.9.2 tells us we may assume that S = Spec(R)
and D = Spec(R/(f)) for some nonzerodivisor f ∈ R. This case is handled by
Lemma 37.27.3. �
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Lemma 37.27.5. Let A → C be a finite locally free ring map of rank d. Let
h ∈ C be an element such that Ch is étale over A. Let J ⊂ C be an ideal. Set
I = Fit0(C/J) where we think of C/J as a finite A-module. Then ICh = JJ ′ for
some ideal J ′ ⊂ Ch. If J is finitely generated so are I and J ′.

Proof. We will use basic properties of fitting ideals, see More on Algebra, Lemma
15.5.4. Then IC is the fitting ideal of C/J⊗AC. Note that C → C⊗AC, c 7→ 1⊗c
has a section (the multiplication map). By assumption C → C ⊗A C is étale at
every prime in the image of Spec(Ch) under this section. Hence the multiplication
map C⊗ACh → Ch is étale in particular flat, see Algebra, Lemma 10.138.9. Hence
there exists a Ch-algebra such that C⊗ACh ∼= Ch⊕C ′ as Ch-algebras, see Algebra,
Lemma 10.138.10. Thus (C/J)⊗A Ch ∼= (Ch/Jh)⊕ C ′/I ′ as Ch-modules for some
ideal I ′ ⊂ C ′. Hence ICh = JJ ′ with J ′ = Fit0(C ′/I ′) where we view C ′/J ′ as a
Ch-module. �

Lemma 37.27.6. Let A→ B be an étale ring map. Let a ∈ A be a nonzerodivisor.
Let J ⊂ B be a finite type ideal with V (J) ⊂ V (aB). For every q ⊂ B there exists
a finite type ideal I ⊂ A with V (I) ⊂ V (a) and g ∈ B, g 6∈ q such that IBg = JJ ′

for some finite type ideal J ′ ⊂ Bg.

Proof. We may replace B by a principal localization at an element g ∈ B, g 6∈ q.
Thus we may assume that B is standard étale, see Algebra, Proposition 10.138.17.
Thus we may assume B is a localization of C = A[x]/(f) for some monic f ∈ A[x]
of some degree d. Say B = Ch for some h ∈ C. Choose elements h1, . . . , hn ∈ C
which generate J over B. The condition V (J) ⊂ V (aB) signifies that am =

∑
bihi

in B for some large m. Set hn+1 = am. As in Lemma 37.27.5 we take I =
Fit0(C/(h1, . . . , hr+1)). Since the module C/(h1, . . . , hr+1) is annihilated by am

we see that adm ∈ I which implies that V (I) ⊂ V (a). �

Lemma 37.27.7. Let S be a quasi-compact and quasi-separated scheme. Let X →
S be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S
be a quasi-compact open. Assume there exist finitely many commutative diagrams

Xi
ji
//

��

X

��
S∗i

// Si
ei // S

where

(1) ei : Si → S are quasi-compact étale morphisms and S =
⋃
ei(Si),

(2) ji : Xi → X are étale morphisms and X =
⋃
ji(Xi),

(3) S∗i → Si is an e−1
i (U)-admissible blowup such that the strict transform

F∗i of j∗i F is flat over S∗i .

Then there exists a U -admissible blowup S′ → S such that the strict transform of
F is flat over S′.

Proof. We claim that the hypotheses of the lemma are preserved under U -admissible
blowups. Namely, suppose b : S′ → S is a U -admissible blowup in the quasi-
coherent sheaf of ideals I. Moreover, let S′i → Si be the blowup in the quasi-
coherent sheaf of ideals Ji. Then the collection of morphisms e′i : S′i = Si×SS′ → S′

and j′i : X ′i = Xi ×S S′ → X ×S S′ satisfy conditions (1), (2), (3) for the strict
transform F ′ of F relative to the blowup S′ → S. First, observe that S′i is the
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blowup of Si in the pullback of I, see Divisors, Lemma 30.18.3. Second, consider
the blowup S′∗i → S′i of S′i in the pullback of the ideal Ji. By Divisors, Lemma
30.18.10 we get a commutative diagram

S′∗i
//

  ��

S′i

��
S∗i

// Si

and all the morphisms in the diagram above are blowups. Hence by Divisors,
Lemmas 30.19.3 and 30.19.6 we see

the strict transform of (j′i)
∗F ′ under S′∗i → S′i

= the strict transform of j∗i F under S′∗i → Si

= the strict transform of F ′i under S′∗i → S′i

= the pullback of F∗i via Xi ×Si S′∗i → Xi

which is therefore flat over S′∗i (Morphisms, Lemma 28.26.6). Having said this,
we see that all observations of Remark 37.27.1 apply to the problem of finding a
U -admissible blowup such that the strict transform of F becomes flat over the base
under assumptions as in the lemma. In particular, we may assume that S \ U is
the support of an effective Cartier divisor D ⊂ S. Another application of Remark
37.27.1 combined with Divisors, Lemma 30.9.2 shows we may assume that S =
Spec(A) and D = Spec(A/(a)) for some nonzerodivisor a ∈ A.

Pick an i and s ∈ Si. Lemma 37.27.6 implies we can find an open neighbourhood
s ∈Wi ⊂ Si and a finite type quasi-coherent ideal I ⊂ OS such that I ·OWi

= JiJ ′i
for some finite type quasi-coherent ideal J ′i ⊂ OWi and such that V (I) ⊂ V (a) =
S \U . Since Si is quasi-compact we can replace Si by a finite collection W1, . . . ,Wn

of these opens and assume that for each i there exists a quasi-coherent sheaf of ideals
Ii ⊂ OS such that Ii · OSi = JiJ ′i for some finite type quasi-coherent ideal J ′i ⊂
OSi . As in the discussion of the first paragraph of the proof, consider the blowup
S′ of S in the product I1 . . . In (this blowup is U -admissible by construction). The
base change of S′ → S to Si is the blowup in

Ji · J ′i I1 . . . Îi . . . In
which factors through the given blowup S∗i → Si (Divisors, Lemma 30.18.10). In
the notation of the diagram above this means that S′∗i = S′i. Hence after replacing
S by S′ we arrive in the situation that j∗i F is flat over Si. Hence j∗i F is flat over
S, see Lemma 37.2.3. By Morphisms, Lemma 28.26.11 we see that F is flat over
S. �

Theorem 37.27.8. Let S be a quasi-compact and quasi-separated scheme. Let X
be a scheme over S. Let F be a quasi-coherent module on X. Let U ⊂ S be a
quasi-compact open. Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over S,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

http://stacks.math.columbia.edu/tag/0815
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Then there exists a U -admissible blowup S′ → S such that the strict transform F ′
of F is an OX×SS′-module of finite presentation and flat over S′.

Proof. We first prove that we can find a U -admissible blowup such that the strict
transform is flat. The question is étale local on the source and the target, see Lemma
37.27.7 for a precise statement. In particular, we may assume that S = Spec(R)
and X = Spec(A) are affine. For s ∈ S write Fs = F|Xs (pullback of F to the
fibre). As X → S is of finite type d = maxs∈S dim(Supp(Fs)) is an integer. We
will do induction on d.

Let x ∈ X be a point of X lying over s ∈ S with dimx(Supp(Fs)) = d. Apply
Lemma 37.3.2 to get g : X ′ → X, e : S′ → S, i : Z ′ → X ′, and π : Z ′ → Y ′.
Observe that Y ′ → S′ is a smooth morphism of affines with geometrically irreducible
fibres of dimension d. Because the problem is étale local it suffices to prove the
theorem for g∗F/X ′/S′. Because i : Z ′ → X ′ is a closed immersion of finite
presentation (and since strict transform commutes with affine pushforward, see
Divisors, Lemma 30.19.4) it suffices to prove the flattening result for G. Since π is
finite (hence also affine) it suffices to prove the flattening result for π∗G/Y ′/S′. Thus
we may assume that X → S is a smooth morphism of affines with geometrically
irreducible fibres of dimension d.

Next, we apply a blow up as in Lemma 37.27.4. Doing so we reach the situation
where there exists an open V ⊂ X surjecting onto S such that F|V is finite locally
free. Let ξ ∈ X be the generic point of Xs. Let r = dimκ(ξ) Fξ ⊗ κ(ξ). Choose a

map α : O⊕rX → F which induces an isomorphism κ(ξ)⊕r → Fξ ⊗ κ(ξ). Because
F is locally free over V we find an open neighbourhood W of ξ where α is an
isomorphism. Shrink S to an affine open neighbourhood of s such that W → S
is surjective. Say F is the quasi-coherent module associated to the A-module N .
Since F is flat over S at all generic points of fibres (in fact at all points of W ), we
see that

αp : A⊕rp → Np

is universally injective for all primes p of R, see Lemma 37.10.1. Hence α is uni-
versally injective, see Algebra, Lemma 10.79.12. Set H = Coker(α). By Divisors,
Lemma 30.19.7 we see that, given a U -admissible blowup S′ → S the strict trans-
forms of F ′ and H′ fit into an exact sequence

0→ O⊕rX×SS′ → F
′ → H′ → 0

Hence Lemma 37.10.1 also shows that F ′ is flat at a point x′ if and only if H′ is
flat at that point. In particular HU is flat over U and HU is a module of finite
presentation. We may apply the induction hypothesis to H to see that there exists
a U -admissible blowup such that the strict transform H′ is flat as desired.

To finish the proof of the theorem we still have to show that F ′ is a module of
finite presentation (after possibly another U -admissible blowup). This follows from
Lemma 37.10.11 as we can assume U ⊂ S is scheme theoretically dense (see third
paragraph of Remark 37.27.1). This finishes the proof of the theorem. �

37.28. Applications

In this section we apply some of the results above.
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Lemma 37.28.1. Let S be a quasi-compact and quasi-separated scheme. Let X be
a scheme over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is of finite type and quasi-separated, and
(2) XU → U is flat and locally of finite presentation.

Then there exists a U -admissible blowup S′ → S such that the strict transform of
X is flat and of finite presentation over S′.

Proof. Since X → S is quasi-compact and quasi-separated by assumption, the
strict transform of X with respect to a blowing up S′ → S is also quasi-compact
and quasi-separated. Hence to prove the lemma it suffices to find a U -admissible
blowup such that the strict transform is flat and locally of finite presentation. Let
X = W1 ∪ . . . ∪Wn be a finite affine open covering. If we can find a U -admissible
blowup Si → S such that the strict transform of Wi is flat and locally of finite
presentation, then there exists a U -admissble blowing up S′ → S dominating all
Si → S which does the job (see Divisors, Lemma 30.20.4; see also Remark 37.27.1).
Hence we may assume X is affine.

Assume X is affine. By Morphisms, Lemma 28.40.2 we can choose an immersion
j : X → An

S over S. Let V ⊂ An
S be a quasi-compact open subscheme such that j

induces a closed immersion i : X → V over S. Apply Theorem 37.27.8 to V → S
and the quasi-coherent module i∗OX to obtain a U -admissible blowup S′ → S
such that the strict transform of i∗OX is flat over S′ and of finite presentation
over OV×SS′ . Let X ′ be the strict transform of X with respect to S′ → S. Let
i′ : X ′ → V ×SS′ be the induced morphism. Since taking strict transform commutes
with pushforward along affine morphisms (Divisors, Lemma 30.19.4), we see that
i′∗OX′ is flat over S and of finite presentation as a OV×SS′ -module. This implies
the lemma. �

Lemma 37.28.2. Let ϕ : X → S be a separated morphism of finite type with S
quasi-compact and quasi-separated. Let U ⊂ S be a quasi-compact open such that
ϕ−1U → U is an isomorphism. Then there exists a U -admissible blowup S′ → S
such that the strict transform X ′ of X is isomorphic to an open subscheme of S′.

Proof. The discussion in Remark 37.27.1 applies. Thus we may do a first U -
admissible blowup and assume the complement S \U is the support of an effective
Cartier divisor D. In particular U is scheme theoretically dense in S. Next, we do
another U -admissible blowup to get to the situation where X → S is flat and of
finite presentation, see Lemma 37.28.1. In this case the result follows from More
on Morphisms, Lemma 36.31.4. �

The following lemma says that a proper modification can be dominated by a blowup.

Lemma 37.28.3. Let ϕ : X → S be a proper morphism with S quasi-compact and
quasi-separated. Let U ⊂ S be a quasi-compact open such that ϕ−1U → U is an
isomorphism. Then there exists a U -admissible blowup S′ → S which dominates
X, i.e., such that there exists a factorization S′ → X → S of the blowup morphism.

Proof. The discussion in Remark 37.27.1 applies. Thus we may do a first U -
admissible blowup and assume the complement S \U is the support of an effective
Cartier divisor D. In particular U is scheme theoretically dense in S. Choose
another U -admissible blowup S′ → S such that the strict transform X ′ of X is an
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open subscheme of S′, see Lemma 37.28.2. Since X ′ → S′ is proper, and U ⊂ S′ is
dense, we see that X ′ = S′. Some details omitted. �
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CHAPTER 38

Groupoid Schemes

38.1. Introduction

This chapter is devoted to generalities concerning groupoid schemes. See for exam-
ple the beautiful paper [KM97] by Keel and Mori.

38.2. Notation

Let S be a scheme. If U , T are schemes over S we denote U(T ) for the set of
T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve
the letter T to denote a “test scheme” over S, as in the discussion that follows.
Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y
over S. For any scheme T over S we get an induced map of sets

f : X(T ) −→ Y (T )

which as indicated we denote by f also. In fact this construction is functorial
in the scheme T/S. Yoneda’s Lemma, see Categories, Lemma 4.3.5, says that f
determines and is determined by this transformation of functors f : hX → hY .
More generally, we use the same notation for maps between fibre products. For
example, if X, Y , Z are schemes over S, and if m : X ×S Y → Z ×S Z is a
morphism of schemes over S, then we think of m as corresponding to a collection
of maps between T -valued points

X(T )× Y (T ) −→ Z(T )× Z(T ).

And so on and so forth.

We continue our convention to label projection maps starting with index 0, so we
have pr0 : X ×S Y → X and pr1 : X ×S Y → Y .

38.3. Equivalence relations

Recall that a relation R on a set A is just a subset of R ⊂ A×A. We usually write
aRb to indicate (a, b) ∈ R. We say the relation is transitive if aRb, bRc⇒ aRc. We
say the relation is reflexive if aRa for all a ∈ A. We say the relation is symmetric if
aRb⇒ bRa. A relation is called an equivalence relation if it is transitive, reflexive
and symmetric.

In the setting of schemes we are going to relax the notion of a relation a little bit
and just require R→ A×A to be a map. Here is the definition.

Definition 38.3.1. Let S be a scheme. Let U be a scheme over S.

(1) A pre-relation on U over S is any morphism j : R→ U ×S U . In this case
we set t = pr0 ◦ j and s = pr1 ◦ j, so that j = (t, s).

(2) A relation on U over S is a monomorphism j : R→ U ×S U .

2527
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(3) A pre-equivalence relation is a pre-relation j : R→ U ×S U such that the
image of j : R(T )→ U(T )× U(T ) is an equivalence relation for all T/S.

(4) We say a morphism R→ U ×S U is an equivalence relation on U over S if
and only if for every T/S the T -valued points of R define an equivalence
relation on the set of T -valued points of U .

In other words, an equivalence relation is a pre-equivalence relation such that j is
a relation.

Lemma 38.3.2. Let S be a scheme. Let U be a scheme over S. Let j : R→ U×SU
be a pre-relation. Let g : U ′ → U be a morphism of schemes. Finally, set

R′ = (U ′ ×S U ′)×U×SU R
j′−→ U ′ ×S U ′

Then j′ is a pre-relation on U ′ over S. If j is a relation, then j′ is a relation.
If j is a pre-equivalence relation, then j′ is a pre-equivalence relation. If j is an
equivalence relation, then j′ is an equivalence relation.

Proof. Omitted. �

Definition 38.3.3. Let S be a scheme. Let U be a scheme over S. Let j : R →
U ×S U be a pre-relation. Let g : U ′ → U be a morphism of schemes. The pre-
relation j′ : R′ → U ′ ×S U ′ is called the restriction, or pullback of the pre-relation
j to U ′. In this situation we sometimes write R′ = R|U ′ .

Lemma 38.3.4. Let j : R → U ×S U be a pre-relation. Consider the relation on
points of the scheme U defined by the rule

x ∼ y ⇔ ∃ r ∈ R : t(r) = x, s(r) = y.

If j is a pre-equivalence relation then this is an equivalence relation.

Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ R with t(r) = x, s(r) = y and
pick r′ ∈ R with t(r′) = y, s(r′) = z. Pick a field K fitting into the following
commutative diagram

κ(r) // K

κ(y)

OO

// κ(r′)

OO

Denote xK , yK , zK : Spec(K)→ U the morphisms

Spec(K)→ Spec(κ(r))→ Spec(κ(x))→ U
Spec(K)→ Spec(κ(r))→ Spec(κ(y))→ U
Spec(K)→ Spec(κ(r′))→ Spec(κ(z))→ U

By construction (xK , yK) ∈ j(R(K)) and (yK , zK) ∈ j(R(K)). Since j is a pre-
equivalence relation we see that also (xK , zK) ∈ j(R(K)). This clearly implies that
x ∼ z.

The proof that ∼ is reflexive and symmetric is omitted. �
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38.4. Group schemes

Let us recall that a group is a pair (G,m) where G is a set, and m : G×G→ G is
a map of sets with the following properties:

(1) (associativity) m(g,m(g′, g′′)) = m(m(g, g′), g′′) for all g, g′, g′′ ∈ G,
(2) (identity) there exists a unique element e ∈ G (called the identity, unit,

or 1 of G) such that m(g, e) = m(e, g) = g for all g ∈ G, and
(3) (inverse) for all g ∈ G there exists a i(g) ∈ G such that m(g, i(g)) =

m(i(g), g) = e, where e is the identity.

Thus we obtain a map e : {∗} → G and a map i : G → G so that the quadruple
(G,m, e, i) satisfies the axioms listed above.

A homomorphism of groups ψ : (G,m)→ (G′,m′) is a map of sets ψ : G→ G′ such
that m′(ψ(g), ψ(g′)) = ψ(m(g, g′)). This automatically insures that ψ(e) = e′ and
i′(ψ(g)) = ψ(i(g)). (Obvious notation.) We will use this below.

Definition 38.4.1. Let S be a scheme.

(1) A group scheme over S is a pair (G,m), where G is a scheme over S and
m : G ×S G → G is a morphism of schemes over S with the following
property: For every scheme T over S the pair (G(T ),m) is a group.

(2) A morphism ψ : (G,m)→ (G′,m′) of group schemes over S is a morphism
ψ : G → G′ of schemes over S such that for every T/S the induced map
ψ : G(T )→ G′(T ) is a homomorphism of groups.

Let (G,m) be a group scheme over the scheme S. By the discussion above (and the
discussion in Section 38.2) we obtain morphisms of schemes over S: (identity) e :
S → G and (inverse) i : G→ G such that for every T the quadruple (G(T ),m, e, i)
satisfies the axioms of a group listed above.

Let (G,m), (G′,m′) be group schemes over S. Let f : G → G′ be a morphism
of schemes over S. It follows from the definition that f is a morphism of group
schemes over S if and only if the following diagram is commutative:

G×S G
f×f
//

m

��

G′ ×S G′

m

��
G

f // G′

Lemma 38.4.2. Let (G,m) be a group scheme over S. Let S′ → S be a morphism
of schemes. The pullback (GS′ ,mS′) is a group scheme over S′.

Proof. Omitted. �

Definition 38.4.3. Let S be a scheme. Let (G,m) be a group scheme over S.

(1) A closed subgroup scheme of G is a closed subscheme H ⊂ G such that
m|H×SH factors through H and induces a group scheme structure on H
over S.

(2) An open subgroup scheme of G is an open subscheme G′ ⊂ G such that
m|G′×SG′ factors through G′ and induces a group scheme structure on G′

over S.

Alternatively, we could say that H is a closed subgroup scheme of G if it is a group
scheme over S endowed with a morphism of group schemes i : H → G over S which
identifies H with a closed subscheme of G.

http://stacks.math.columbia.edu/tag/022S
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Definition 38.4.4. Let S be a scheme. Let (G,m) be a group scheme over S.

(1) We say G is a smooth group scheme if the structure morphism G → S is
smooth.

(2) We say G is a flat group scheme if the structure morphism G→ S is flat.
(3) We say G is a separated group scheme if the structure morphism G → S

is separated.

Add more as needed.

38.5. Examples of group schemes

Example 38.5.1 (Multiplicative group scheme). Consider the functor which as-
sociates to any scheme T the group Γ(T,O∗T ) of units in the global sections of the
structure sheaf. This is representable by the scheme

Gm = Spec(Z[x, x−1])

The morphism giving the group structure is the morphism

Gm ×Gm → Gm

Spec(Z[x, x−1]⊗Z Z[x, x−1]) → Spec(Z[x, x−1])

Z[x, x−1]⊗Z Z[x, x−1] ← Z[x, x−1]

x⊗ x ← x

Hence we see that Gm is a group scheme over Z. For any scheme S the base change
Gm,S is a group scheme over S whose functor of points is

T/S 7−→ Gm,S(T ) = Gm(T ) = Γ(T,O∗T )

as before.

Example 38.5.2 (Roots of unity). Let n ∈ N. Consider the functor which asso-
ciates to any scheme T the subgroup of Γ(T,O∗T ) consisting of nth roots of unity.
This is representable by the scheme

µn = Spec(Z[x]/(xn − 1)).

The morphism giving the group structure is the morphism

µn × µn → µn

Spec(Z[x]/(xn − 1)⊗Z Z[x]/(xn − 1)) → Spec(Z[x]/(xn − 1))

Z[x]/(xn − 1)⊗Z Z[x]/(xn − 1) ← Z[x]/(xn − 1)

x⊗ x ← x

Hence we see that µn is a group scheme over Z. For any scheme S the base change
µn,S is a group scheme over S whose functor of points is

T/S 7−→ µn,S(T ) = µn(T ) = {f ∈ Γ(T,O∗T ) | fn = 1}

as before.

Example 38.5.3 (Additive group scheme). Consider the functor which associates
to any scheme T the group Γ(T,OT ) of global sections of the structure sheaf. This
is representable by the scheme

Ga = Spec(Z[x])

http://stacks.math.columbia.edu/tag/047E
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The morphism giving the group structure is the morphism

Ga ×Ga → Ga

Spec(Z[x]⊗Z Z[x]) → Spec(Z[x])

Z[x]⊗Z Z[x] ← Z[x]

x⊗ 1 + 1⊗ x ← x

Hence we see that Ga is a group scheme over Z. For any scheme S the base change
Ga,S is a group scheme over S whose functor of points is

T/S 7−→ Ga,S(T ) = Ga(T ) = Γ(T,OT )

as before.

Example 38.5.4 (General linear group scheme). Let n ≥ 1. Consider the functor
which associates to any scheme T the group

GLn(Γ(T,OT ))

of invertible n× n matrices over the global sections of the structure sheaf. This is
representable by the scheme

GLn = Spec(Z[{xij}1≤i,j≤n][1/d])

where d = det((xij)) with (xij) the n × n matrix with entry xij in the (i, j)-spot.
The morphism giving the group structure is the morphism

GLn ×GLn → GLn

Spec(Z[xij , 1/d]⊗Z Z[xij , 1/d]) → Spec(Z[xij , 1/d])

Z[xij , 1/d]⊗Z Z[xij , 1/d] ← Z[xij , 1/d]∑
xik ⊗ xkj ← xij

Hence we see that GLn is a group scheme over Z. For any scheme S the base change
GLn,S is a group scheme over S whose functor of points is

T/S 7−→ GLn,S(T ) = GLn(T ) = GLn(Γ(T,OT ))

as before.

Example 38.5.5. The determinant defines a morphisms of group schemes

det : GLn −→ Gm

over Z. By base change it gives a morphism of group schemes GLn,S → Gm,S over
any base scheme S.

Example 38.5.6 (Constant group). Let G be an abstract group. Consider the
functor which associates to any scheme T the group of locally constant maps
T → G (where T has the Zariski topology and G the discrete topology). This
is representable by the scheme

GSpec(Z) =
∐

g∈G
Spec(Z).

The morphism giving the group structure is the morphism

GSpec(Z) ×Spec(Z) GSpec(Z) −→ GSpec(Z)
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which maps the component corresponding to the pair (g, g′) to the component
corresponding to gg′. For any scheme S the base change GS is a group scheme over
S whose functor of points is

T/S 7−→ GS(T ) = {f : T → G locally constant}

as before.

38.6. Properties of group schemes

In this section we collect some simple properties of group schemes which hold over
any base.

Lemma 38.6.1. Let S be a scheme. Let G be a group scheme over S. Then G→ S
is separated (resp. quasi-separated) if and only if the identity morphism e : S → G
is a closed immersion (resp. quasi-compact).

Proof. We recall that by Schemes, Lemma 25.21.12 we have that e is an immersion
which is a closed immersion (resp. quasi-compact) if G → S is separated (resp.
quasi-separated). For the converse, consider the diagram

G
∆G/S

//

��

G×S G

(g,g′) 7→m(i(g),g′)

��
S

e // G

It is an exercise in the functorial point of view in algebraic geometry to show that
this diagram is cartesian. In other words, we see that ∆G/S is a base change of
e. Hence if e is a closed immersion (resp. quasi-compact) so is ∆G/S , see Schemes,
Lemma 25.18.2 (resp. Schemes, Lemma 25.19.3). �

Lemma 38.6.2. Let S be a scheme. Let G be a group scheme over S. Let T be a
scheme over S and let ψ : T → G be a morphism over S. If T is flat over S, then
the morphism

T ×S G −→ G, (t, g) 7−→ m(ψ(t), g)

is flat. In particular, if G is flat over S, then m : G×S G→ G is flat.

Proof. Consider the diagram

T ×S G
(t,g)7→(t,m(ψ(t),g))

// T ×S G pr
//

��

G

��
T // S

The left top horizontal arrow is an isomorphism and the square is cartesian. Hence
the lemma follows from Morphisms, Lemma 28.26.7. �

Lemma 38.6.3. Let (G,m, e, i) be a group scheme over the scheme S. Denote
f : G → S the structure morphism. Assume f is flat. Then there exist canonical
isomorphisms

ΩG/S ∼= f∗CS/G ∼= f∗e∗ΩG/S

where CS/G denotes the conormal sheaf of the immersion e. In particular, if S is
the spectrum of a field, then ΩG/S is a free OG-module.
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Proof. In Morphisms, Lemma 28.34.5 we identified ΩG/S with the conormal sheaf
of the diagonal morphism ∆G/S . In the proof of Lemma 38.6.1 we showed that
∆G/S is a base change of the immersion e by the morphism (g, g′) 7→ m(i(g), g′).
This morphism is isomorphic to the morphism (g, g′) 7→ m(g, g′) hence is flat by
Lemma 38.6.2. Hence we get the first isomorphism by Morphisms, Lemma 28.33.4.
By Morphisms, Lemma 28.34.16 we have CS/G ∼= e∗ΩG/S .

If S is the spectrum of a field, then G → S is flat, and any OS-module on S is
free. �

38.7. Properties of group schemes over a field

In this section we collect some simple properties of group schemes over a field.

Lemma 38.7.1. If (G,m) is a group scheme over a field k, then the multiplication
map m : G×k G→ G is open.

Proof. The multiplication map is isomorphic to the projection map pr0 : G×kG→
G because the diagram

G×k G

m

��

(g,g′)7→(m(g,g′),g′)

// G×k G

(g,g′) 7→g
��

G
id // G

is commutative with isomorphisms as horizontal arrows. The projection is open by
Morphisms, Lemma 28.24.4. �

Lemma 38.7.2. Let G be a group scheme over a field. Then G is a separated
scheme.

Proof. Say S = Spec(k) with k a field, and let G be a group scheme over S.
By Lemma 38.6.1 we have to show that e : S → G is a closed immersion. By
Morphisms, Lemma 28.21.2 the image of e : S → G is a closed point of G. It is
clear that OG → e∗OS is surjective, since e∗OS is a skyscraper sheaf supported at
the neutral element of G with value k. We conclude that e is a closed immersion
by Schemes, Lemma 25.24.2. �

Lemma 38.7.3. Let G be a group scheme over a field k. Then

(1) every local ring OG,g of G has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of G passing through e, and
(3) Z is geometrically irreducible over k.

Proof. For any point g ∈ G there exists a field extension k ⊂ K and a K-valued
point g′ ∈ G(K) mapping to g. If we think of g′ as a K-rational point of the group
scheme GK , then we see that OG,g → OGK ,g′ is a faithfully flat local ring map (as
GK → G is flat, and a local flat ring map is faithfully flat, see Algebra, Lemma
10.38.16). The result for OGK ,g′ implies the result for OG,g, see Algebra, Lemma
10.29.5. Hence in order to prove (1) it suffices to prove it for k-rational points g of
G. In this case translation by g defines an automorphism G→ G which maps e to
g. Hence OG,g ∼= OG,e. In this way we see that (2) implies (1), since irreducible
components passing through e correspond one to one with minimal prime ideals of
OG,e.
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In order to prove (2) and (3) it suffices to prove (2) when k is algebraically closed.
In this case, let Z1, Z2 be two irreducible components of G passing through e. Since
k is algebraically closed the closed subscheme Z1 ×k Z2 ⊂ G ×k G is irreducible
too, see Varieties, Lemma 32.6.4. Hence m(Z1×k Z2) is contained in an irreducible
component of G. On the other hand it contains Z1 and Z2 since m|e×G = idG and
m|G×e = idG. We conclude Z1 = Z2 as desired. �

Remark 38.7.4. Warning: The result of Lemma 38.7.3 does not mean that ev-
ery irreducible component of G/k is geometrically irreducible. For example the
group scheme µ3,Q = Spec(Q[x]/(x3 − 1)) over Q has two irreducible components
corresponding to the factorization x3 − 1 = (x − 1)(x2 + x + 1). The first factor
corresponds to the irreducible component passing through the identity, and the
second irreducible component is not geometrically irreducible over Spec(Q).

Lemma 38.7.5. Let G be a group scheme which is locally of finite type over a field
k. Then G is equidimensional and dim(G) = dimg(G) for all g ∈ G. For any closed
point g ∈ G we have dim(G) = dim(OG,g).

Proof. Let us first prove that dimg(G) = dimg′(G) for any pair of points g, g′ ∈ G.
By Morphisms, Lemma 28.29.3 we may extend the ground field at will. Hence
we may assume that both g and g′ are defined over k. Hence there exists an
automorphism of G mapping g to g′, whence the equality. By Morphisms, Lemma
28.29.1 we have dimg(G) = dim(OG,g) + trdegk(κ(g)). On the other hand, the
dimension of G (or any open subset of G) is the supremum of the dimensions of
the local rings of of G, see Properties, Lemma 27.11.4. Clearly this is maximal for
closed points g in which case trdegk(κ(g)) = 0 (by the Hilbert Nullstellensatz, see
Morphisms, Section 28.17). Hence the lemma follows. �

The following result is sometimes referred to as Cartier’s theorem.

Lemma 38.7.6. Let G be a group scheme which is locally of finite type over a field
k of characteristic zero. Then the structure morphism G→ Spec(k) is smooth, i.e.,
G is a smooth group scheme.

Proof. By Lemma 38.6.3 the module of differentials of G over k is free. Hence
smoothness follows from Varieties, Lemma 32.15.1. �

Remark 38.7.7. Any group scheme over a field of characteristic 0 is reduced, see
[Per75, I, Theorem 1.1 and I, Corollary 3.9, and II, Theorem 2.4] and also [Per76,
Proposition 4.2.8]. This was a question raised in [Oor66, page 80]. We have seen
in Lemma 38.7.6 that this holds when the group scheme is locally of finite type.

Lemma 38.7.8. Let G be a group scheme which is locally of finite type over a
perfect field k of characteristic p > 0 (see Lemma 38.7.6 for the characteristic zero
case). If G is reduced then the structure morphism G→ Spec(k) is smooth, i.e., G
is a smooth group scheme.

Proof. By Lemma 38.6.3 the sheaf ΩG/k is free. Hence the lemma follows from
Varieties, Lemma 32.15.2. �

Remark 38.7.9. Let k be a field of characteristic p > 0. Let α ∈ k be an element
which is not a pth power. The closed subgroup scheme

G = V (xp + αyp) ⊂ G2
a,k

is reduced and irreducible but not smooth (not even normal).
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Lemma 38.7.10. Let G be a group scheme over a perfect field k. Then the reduc-
tion Gred of G is a closed subgroup scheme of G.

Proof. Omitted. Hint: Use that Gred ×k Gred is reduced by Varieties, Lemmas
32.4.3 and 32.4.7. �

The next lemma will be generalized slightly in More on Groupoids, Lemma 39.10.2.
Namely, if G′ → G is a morphism of group schemes over a field whose image is
open, then its image is closed.

Lemma 38.7.11. Let G be group scheme over a field k. Let G′ ⊂ G be an open
subgroup scheme. Then G′ is open and closed in G.

Proof. Suppose that k ⊂ K is a field extension such that G′K ⊂ GK is closed. Then
it follows from Morphisms, Lemma 28.26.10 that G′ is closed (as GK → G is flat,
quasi-compact and surjective). Hence it suffices to prove the lemma after replacing
k by some extension. Choose K to be an algebraically closed field extension of very
large cardinality. Then by Varieties, Lemma 32.12.2, we see that GK is a Jacobson
scheme all of whose closed points have residue field equal to K. In other words we
may assume G is a Jacobson scheme all of whose closed points have residue field k.

Let Z = G \G′. We have to show that Z is open. Because G is Jacobson and Z is
closed the closed points of Z are dense in Z. Moreover any closed point z ∈ Z is a k-
rational point and hence we translation by z defines an automorphism Lz : G→ G,
g 7→ m(z, g) with e 7→ z. As G′ is a subgroup scheme we conclude that Lz(G

′) ⊂ Z.
Altogether we see that

Z =
⋃

z∈Z(k)
Lz(G

′)

is a union of open subsets, and hence open as desired. �

Lemma 38.7.12. Let i : G′ → G be an immersion of group schemes over a field
k. Then i is a closed immersion, i.e., i(G′) is a closed subgroup scheme of G.

Proof. To show that i is a closed immersion it suffices to show that i(G′) is a
closed subset of G. Let k ⊂ k′ be a perfect extension of k. If i(G′k′) ⊂ Gk′ is closed,
then i(G′) ⊂ G is closed by Morphisms, Lemma 28.26.10 (as Gk′ → G is flat,
quasi-compact and surjective). Hence we may and do assume k is perfect. We will
use without further mention that products of reduced schemes over k are reduced.
We may replace G′ and G by their reductions, see Lemma 38.7.10. Let G′ ⊂ G be
the closure of i(G′) viewed as a reduced closed subscheme. By Varieties, Lemma
32.14.1 we conclude that G′×kG′ is the closure of the image of G′×kG′ → G×kG.
Hence

m
(
G′ ×k G′

)
⊂ G′

as m is continuous. It follows that G′ ⊂ G is a (reduced) closed subgroup scheme.
By Lemma 38.7.11 we see that i(G′) ⊂ G′ is also closed which implies that i(G′) =
G′ as desired. �

Lemma 38.7.13. Let G be a group scheme over a field. There exists an open and
closed subscheme G′ ⊂ G which is a countable union of affines.
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Proof. Let e ∈ U(k) be a quasi-compact open neighbourhood of the identity ele-
ment. By replacing U by U ∩ i(U) we may assume that U is invariant under the
inverse map. As G is separated this is still a quasi-compact set. Set

G′ =
⋃

n≥1
mn(U ×k . . .×k U)

where mn : G ×k . . . ×k G → G is the n-slot multiplication map (g1, . . . , gn) 7→
m(m(. . . (m(g1, g2), g3), . . .), gn). Each of these maps are open (see Lemma 38.7.1)
henceG′ is an open subgroup scheme. By Lemma 38.7.11 it is also a closed subgroup
scheme. �

Remark 38.7.14. If G is a group scheme over a field, is there always a quasi-
compact open and closed subgroup scheme? Or is there a counter example?

38.8. Actions of group schemes

Let (G,m) be a group and let V be a set. Recall that a (left) action of G on V is
given by a map a : G× V → V such that

(1) (associativity) a(m(g, g′), v) = a(g, a(g′, v)) for all g, g′ ∈ G and v ∈ V ,
and

(2) (identity) a(e, v) = v for all v ∈ V .

We also say that V is a G-set (this usually means we drop the a from the notation
– which is abuse of notation). A map of G-sets ψ : V → V ′ is any set map such
that ψ(a(g, v)) = a(g, ψ(v)) for all v ∈ V .

Definition 38.8.1. Let S be a scheme. Let (G,m) be a group scheme over S.

(1) An action of G on the scheme X/S is a morphism a : G×S X → X over
S such that for every T/S the map a : G(T )×X(T )→ X(T ) defines the
structure of a G(T )-set on X(T ).

(2) Suppose that X, Y are schemes over S each endowed with an action of G.
An equivariant or more precisely a G-equivariant morphism ψ : X → Y
is a morphism of schemes over S such that for every T/S the map ψ :
X(T )→ Y (T ) is a morphism of G(T )-sets.

In situation (1) this means that the diagrams

(38.8.1.1) G×S G×S X
1G×a

//

m×1X

��

G×S X

a

��
G×S X

a // X

G×S X a
// X

X

e×1X

OO

1X

;;

are commutative. In situation (2) this just means that the diagram

G×S X
id×f

//

a

��

G×S Y

a

��
X

f // Y

commutes.

Definition 38.8.2. Let S, G → S, and X → S as in Definition 38.8.1. Let
a : G×S X → X be an action of G on X/S. We say the action is free if for every
scheme T over S the action a : G(T )×X(T )→ X(T ) is a free action of the group
G(T ) on the set X(T ).
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Lemma 38.8.3. Situation as in Definition 38.8.2, The action a is free if and only
if

G×S X → X ×S X, (g, x) 7→ (a(g, x), x)

is a monomorphism.

Proof. Immediate from the definitions. �

38.9. Principal homogeneous spaces

In Cohomology on Sites, Definition 21.5.1 we have defined a torsor for a sheaf
of groups on a site. Suppose τ ∈ {Zariski, étale, smooth, syntomic, fppf} is a
topology and (G,m) is a group scheme over S. Since τ is stronger than the canonical
topology (see Descent, Lemma 34.9.3) we see that G (see Sites, Definition 7.13.3)
is a sheaf of groups on (Sch/S)τ . Hence we already know what it means to have a
torsor for G on (Sch/S)τ . A special situation arises if this sheaf is representable.
In the following definitions we define directly what it means for the representing
scheme to be a G-torsor.

Definition 38.9.1. Let S be a scheme. Let (G,m) be a group scheme over S. Let
X be a scheme over S, and let a : G×S X → X be an action of G on X.

(1) We say X is a pseudo G-torsor or that X is formally principally homoge-
neous under G if the induced morphism of schemes G×S X → X ×S X,
(g, x) 7→ (a(g, x), x) is an isomorphism of schemes over S.

(2) A pseudo G-torsor X is called trivial if there exists an G-equivariant iso-
morphism G→ X over S where G acts on G by left multiplication.

It is clear that if S′ → S is a morphism of schemes then the pullback XS′ of a
pseudo G-torsor over S is a pseudo GS′ -torsor over S′.

Lemma 38.9.2. In the situation of Definition 38.9.1.

(1) The scheme X is a pseudo G-torsor if and only if for every scheme T over
S the set X(T ) is either empty or the action of the group G(T ) on X(T )
is simply transitive.

(2) A pseudo G-torsor X is trivial if and only if the morphism X → S has a
section.

Proof. Omitted. �

Definition 38.9.3. Let S be a scheme. Let (G,m) be a group scheme over S. Let
X be a pseudo G-torsor over S.

(1) We say X is a principal homogeneous space or a G-torsor if there exists a
fpqc covering1 {Si → S}i∈I such that each XSi → Si has a section (i.e.,
is a trivial pseudo GSi-torsor).

(2) Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We say X is a G-torsor
in the τ topology, or a τ G-torsor, or simply a τ torsor if there exists a τ
covering {Si → S}i∈I such that each XSi → Si has a section.

(3) If X is a G-torsor, then we say that it is quasi-isotrivial if it is a torsor
for the étale topology.

1This means that the default type of torsor is a pseudo torsor which is trivial on an fpqc
covering. This is the definition in [ABD+66, Exposé IV, 6.5]. It is a little bit inconvenient for

us as we most often work in the fppf topology.
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(4) If X is a G-torsor, then we say that it is locally trivial if it is a torsor for
the Zariski topology.

We sometimes say “let X be a G-torsor over S” to indicate that X is a scheme over
S equipped with an action of G which turns it into a principal homogeneous space
over S. Next we show that this agrees with the notation introduced earlier when
both apply.

Lemma 38.9.4. Let S be a scheme. Let (G,m) be a group scheme over S. Let
X be a scheme over S, and let a : G ×S X → X be an action of G on X. Let
τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Then X is a G-torsor in the τ -
topology if and only if X is a G-torsor on (Sch/S)τ .

Proof. Omitted. �

Remark 38.9.5. Let (G,m) be a group scheme over the scheme S. In this situation
we have the following natural types of questions:

(1) If X → S is a pseudo G-torsor and X → S is surjective, then is X
necessarily a G-torsor?

(2) Is every G-torsor on (Sch/S)fppf representable? In other words, does
every G-torsor come from a fppf G-torsor?

(3) Is every G-torsor an fppf (resp. smooth, resp. étale, resp. Zariski) torsor?

In general the answers to these questions is no. To get a positive answer we need to
impose additional conditions on G→ S. For example: If S is the spectrum of a field,
then the answer to (1) is yes because then {X → S} is a fpqc covering trivializing
X. If G → S is affine, then the answer to (2) is yes (insert future reference here).
If G = GLn,S then the answer to (3) is yes and in fact any GLn,S-torsor is locally
trivial (insert future reference here).

38.10. Equivariant quasi-coherent sheaves

We think of “functions” as dual to “space”. Thus for a morphism of spaces the
map on functions goes the other way. Moreover, we think of the sections of a sheaf
of modules as “functions”. This leads us naturally to the direction of the arrows
chosen in the following definition.

Definition 38.10.1. Let S be a scheme, let (G,m) be a group scheme over S, and
let a : G×SX → X be an action of the group scheme G on X/S. An G-equivariant
quasi-coherent OX-module, or simply a equivariant quasi-coherent OX-module, is a
pair (F , α), where F is a quasi-coherent OX -module, and α is a OG×SX -module
map

α : a∗F −→ pr∗1F
where pr1 : G×S X → X is the projection such that

(1) the diagram

(1G × a)∗pr∗2F pr∗12α
// pr∗2F

(1G × a)∗a∗F

(1G×a)∗α

OO

(m× 1X)∗a∗F

(m×1X)∗α

OO

is a commutative in the category of OG×SG×SX -modules, and
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(2) the pullback

(e× 1X)∗α : F −→ F

is the identity map.

For explanation compare with the relevant diagrams of Equation (38.8.1.1).

Note that the commutativity of the first diagram guarantees that (e× 1X)∗α is an
idempotent operator on F , and hence condition (2) is just the condition that it is
an isomorphism.

Lemma 38.10.2. Let S be a scheme. Let G be a group scheme over S. Let
f : X → Y be a G-equivariant morphism between S-schemes endowed with G-
actions. Then pullback f∗ given by (F , α) 7→ (f∗F , (1G × f)∗α) defines a functor
from the category of G-equivariant sheaves on X to the category of quasi-coherent
G-equivariant sheaves on Y .

Proof. Omitted. �

38.11. Groupoids

Recall that a groupoid is a category in which every morphism is an isomorphism,
see Categories, Definition 4.2.5. Hence a groupoid has a set of objects Ob, a set
of arrows Arrows, a source and target map s, t : Arrows → Ob, and a composition
law c : Arrows×s,Ob,t Arrows→ Arrows. These maps satisfy exactly the following
axioms

(1) (associativity) c ◦ (1, c) = c ◦ (c, 1) as maps Arrows×s,Ob,t Arrows×s,Ob,t

Arrows→ Arrows,
(2) (identity) there exists a map e : Ob→ Arrows such that

(a) s ◦ e = t ◦ e = id as maps Ob→ Ob,
(b) c ◦ (1, e ◦ s) = c ◦ (e ◦ t, 1) = 1 as maps Arrows→ Arrows,

(3) (inverse) there exists a map i : Arrows→ Arrows such that
(a) s ◦ i = t, t ◦ i = s as maps Arrows→ Ob, and
(b) c ◦ (1, i) = e ◦ t and c ◦ (i, 1) = e ◦ s as maps Arrows→ Arrows.

If this is the case the maps e and i are uniquely determined and i is a bijection.
Note that if (Ob′,Arrows′, s′, t′, c′) is a second groupoid category, then a functor
f : (Ob,Arrows, s, t, c) → (Ob′,Arrows′, s′, t′, c′) is given by a pair of set maps
f : Ob→ Ob′ and f : Arrows→ Arrows′ such that s′ ◦ f = f ◦ s, t′ ◦ f = f ◦ t, and
c′ ◦ (f, f) = f ◦ c. The compatibility with identity and inverse is automatic. We
will use this below. (Warning: The compatibility with identity has to be imposed
in the case of general categories.)

Definition 38.11.1. Let S be a scheme.

(1) A groupoid scheme over S, or simply a groupoid over S is a quintuple
(U,R, s, t, c) where U and R are schemes over S, and s, t : R → U and
c : R ×s,U,t R → R are morphisms of schemes over S with the following
property: For any scheme T over S the quintuple

(U(T ), R(T ), s, t, c)

is a groupoid category in the sense described above.
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(2) A morphism f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) of groupoid schemes over
S is given by morphisms of schemes f : U → U ′ and f : R→ R′ with the
following property: For any scheme T over S the maps f define a functor
from the groupoid category (U(T ), R(T ), s, t, c) to the groupoid category
(U ′(T ), R′(T ), s′, t′, c′).

Let (U,R, s, t, c) be a groupoid over S. Note that, by the remarks preceding the
definition and the Yoneda lemma, there are unique morphisms of schemes e : U → R
and i : R → R over S such that for every scheme T over S the induced map
e : U(T ) → R(T ) is the identity, and i : R(T ) → R(T ) is the inverse of the
groupoid category. The septuple (U,R, s, t, c, e, i) satisfies commutative diagrams
corresponding to each of the axioms (1), (2)(a), (2)(b), (3)(a) and (3)(b) above,
and conversely given a septuple with this property the quintuple (U,R, s, t, c) is a
groupoid scheme. Note that i is an isomorphism, and e is a section of both s and
t. Moreover, given a groupoid scheme over S we denote

j = (t, s) : R −→ U ×S U

which is compatible with our conventions in Section 38.3 above. We sometimes say
“let (U,R, s, t, c, e, i) be a groupoid over S” to stress the existence of identity and
inverse.

Lemma 38.11.2. Given a groupoid scheme (U,R, s, t, c) over S the morphism
j : R→ U ×S U is a pre-equivalence relation.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 38.11.3. Given an equivalence relation j : R→ U over S there is a unique
way to extend it to a groupoid (U,R, s, t, c) over S.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 38.11.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. In
the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0

oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top (which
is really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. �
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Lemma 38.11.5. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S.
The diagram

(38.11.5.1) R×t,U,t R
pr1 //

pr0

//

pr0×c◦(i,1)

��

R
t //

idR

��

U

idU

��
R×s,U,t R

c //

pr0

//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid.
Note that, in terms of groupoids, the top left vertical arrow assigns to a pair of
morphisms (α, β) with the same target, the pair of morphisms (α, α−1 ◦ β). In any
groupoid this defines a bijection between Arrows×t,Ob,tArrows and Arrows×s,Ob,t

Arrows. Hence the second assertion of the lemma. The last assertion follows from
Lemma 38.11.4. �

38.12. Quasi-coherent sheaves on groupoids

See the introduction of Section 38.10 for our choices in direction of arrows.

Definition 38.12.1. Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme
over S. A quasi-coherent module on (U,R, s, t, c) is a pair (F , α), where F is a
quasi-coherent OU -module, and α is a OR-module map

α : t∗F −→ s∗F
such that

(1) the diagram

pr∗1t
∗F

pr∗1α
// pr∗1s

∗F

pr∗0s
∗F c∗s∗F

pr∗0t
∗F

pr∗0α

ee

c∗t∗F
c∗α

::

is a commutative in the category of OR×s,U,tR-modules, and
(2) the pullback

e∗α : F −→ F
is the identity map.

Compare with the commutative diagrams of Lemma 38.11.4.

The commutativity of the first diagram forces the operator e∗α to be idempotent.
Hence the second condition can be reformulated as saying that e∗α is an isomor-
phism. In fact, the condition implies that α is an isomorphism.

http://stacks.math.columbia.edu/tag/03C6
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Lemma 38.12.2. Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme over
S. If (F , α) is a quasi-coherent module on (U,R, s, t, c) then α is an isomorphism.

Proof. Pull back the commutative diagram of Definition 38.12.1 by the morphism
(i, 1) : R → R ×s,U,t R. Then we see that i∗α ◦ α = s∗e∗α. Pulling back by the
morphism (1, i) we obtain the relation α ◦ i∗α = t∗e∗α. By the second assumption
these morphisms are the identity. Hence i∗α is an inverse of α. �

Lemma 38.12.3. Let S be a scheme. Consider a morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes over S. Then pullback f∗ given by

(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) to
the category of quasi-coherent sheaves on (U,R, s, t, c).

Proof. Omitted. �

Lemma 38.12.4. Let S be a scheme. Consider a morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes over S. Assume that

(1) f : U → U ′ is quasi-compact and quasi-separated,
(2) the square

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian, and
(3) s′ and t′ are flat.

Then pushforward f∗ given by

(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U,R, s, t, c) to the
category of quasi-coherent sheaves on (U,R, s, t, c) which is right adjoint to pullback
as defined in Lemma 38.12.3.

Proof. Since U → U ′ is quasi-compact and quasi-separated we see that f∗ trans-
forms quasi-coherent sheaves into quasi-coherent sheaves (Schemes, Lemma 25.24.1).
Moreover, since the squares

R

t

��

f
// R′

t′

��
U

f // U ′

and

R

s

��

f
// R′

s′

��
U

f // U ′

are cartesian we find that (t′)∗f∗F = f∗t
∗F and (s′)∗f∗F = f∗s

∗F , see Coho-
mology of Schemes, Lemma 29.5.2. Thus it makes sense to think of f∗α as a
map (t′)∗f∗F → (s′)∗f∗F . A similar argument shows that f∗α satisfies the cocy-
cle condition. The functor is adjoint to the pullback functor since pullback and
pushforward on modules on ringed spaces are adjoint. Some details omitted. �

Lemma 38.12.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. The category of quasi-coherent modules on (U,R, s, t, c) has colimits.
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Proof. Let i 7→ (Fi, αi) be a diagram over the index category I. We can form the
colimit F = colimFi which is a quasi-coherent sheaf on U , see Schemes, Section
25.24. Since colimits commute with pullback we see that s∗F = colim s∗Fi and
similarly t∗F = colim t∗Fi. Hence we can set α = colimαi. We omit the proof that
(F , α) is the colimit of the diagram in the category of quasi-coherent modules on
(U,R, s, t, c). �

Lemma 38.12.6. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. If s, t are flat, then the category of quasi-coherent modules on (U,R, s, t, c) is
abelian.

Proof. Let ϕ : (F , α)→ (G, β) be a homomorphism of quasi-coherent modules on
(U,R, s, t, c). Since s is flat we see that

0→ s∗Ker(ϕ)→ s∗F → s∗G → s∗Coker(ϕ)→ 0

is exact and similarly for pullback by t. Hence α and β induce isomorphisms κ :
t∗Ker(ϕ) → s∗Ker(ϕ) and λ : t∗Coker(ϕ) → s∗Coker(ϕ) which satisfy the cocycle
condition. Then it is straightforward to verify that (Ker(ϕ), κ) and (Coker(ϕ), λ)
are a kernel and cokernel in the category of quasi-coherent modules on (U,R, s, t, c).
Moreover, the condition Coim(ϕ) = Im(ϕ) follows because it holds over U . �

38.13. Colimits of quasi-coherent modules

In this section we prove some technical results saying that under suitable assump-
tions every quasi-coherent module on a groupoid is a filtered colimit of “small”
quasi-coherent modules.

Lemma 38.13.1. Let (U,R, s, t, c) be a groupoid scheme over S. Assume s, t are
flat, quasi-compact, and quasi-separated. For any quasi-coherent module G on U ,
there exists a canonical isomorphism α : t∗t∗s

∗G → s∗t∗s
∗G which turns (t∗s

∗G, α)
into a quasi-coherent module on (U,R, s, t, c). This construction defines a functor

QCoh(OU ) −→ QCoh(U,R, s, t, c)

which is a right adjoint to the forgetful functor (F , β) 7→ F .

Proof. The pushforward of a quasi-coherent module along a quasi-compact and
quasi-separated morphism is quasi-coherent, see Schemes, Lemma 25.24.1. Hence
t∗s
∗G is quasi-coherent. With notation as in Lemma 38.11.4 we have

t∗t∗s
∗G = pr0,∗c

∗s∗G = pr0,∗pr∗1s
∗G = s∗t∗s

∗G

The middle equality because s ◦ c = s ◦ pr1 as morphisms R ×s,U,t R → U , and
the first and the last equality because we know that base change and pushforward
commute in these steps by Cohomology of Schemes, Lemma 29.5.2.

To verify the cocycle condition of Definition 38.12.1 for α and the adjointness
property we describe the construction G 7→ (G, α) in another way. Consider the
groupoid scheme (R,R×s,U,sR,pr0,pr1,pr02) associated to the equivalence relation
R×s,U,s R on R, see Lemma 38.11.3. There is a morphism

f : (R,R×s,U,s R,pr1,pr0,pr02) −→ (U,R, s, t, c)

of groupoid schemes given by t : R → U and R ×t,U,t R → R given by (r0, r1) 7→
r0 ◦ r−1

1 (we omit the verification of the commutativity of the required diagrams).

http://stacks.math.columbia.edu/tag/077S
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Since t, s : R→ U are quasi-compact, quasi-separated, and flat, and since we have
a cartesian square

R×s,U,s R

pr0

��

(r0,r1)7→r0◦r−1
1

// R

t

��
R

t // U

by Lemma 38.11.5 it follows that Lemma 38.12.4 applies to f . Note that

QCoh(R,R×s,U,s R,pr0,pr1,pr02) = QCoh(OU )

by the theory of descent of quasi-coherent sheaves as {t : R → U} is an fpqc
covering, see Descent, Proposition 34.5.2. Observe that pullback along f agrees
with the forgetful functor and that pushforward agrees with the construction that
assigns to G the pair (G, α). We omit the precise verifications. Thus the lemma
follows from Lemma 38.12.4. �

Lemma 38.13.2. Let f : Y → X be a morphism of schemes. Let F be a quasi-
coherent OX-module, let G be a quasi-coherent OY -module, and let ϕ : G → f∗F
be a module map. Assume

(1) ϕ is injective,
(2) f is quasi-compact, quasi-separated, flat, and surjective,
(3) X, Y are locally Noetherian, and
(4) G is a coherent OY -module.

Then F ∩ f∗G defined as the pullback

F // f∗f∗F

F ∩ f∗G

OO

// f∗G

OO

is a coherent OX-module.

Proof. We will freely use the characterization of coherent modules of Cohomology
of Schemes, Lemma 29.9.1 as well as the fact that coherent modules form a Serre
subcategory of QCoh(OX), see Cohomology of Schemes, Lemma 29.9.3. If f has a
section σ, then we see that F∩f∗G is contained in the image of σ∗G → σ∗f∗F = F ,
hence coherent. In general, to show that F ∩ f∗G is coherent, it suffices the show
that f∗(F ∩ f∗G) is coherent (see Descent, Lemma 34.6.1). Since f is flat this is
equal to f∗F ∩ f∗f∗G. Since f is flat, quasi-compact, and quasi-separated we see
f∗f∗G = p∗q

∗G where p, q : Y ×X Y → Y are the projections, see Cohomology of
Schemes, Lemma 29.5.2. Since p has a section we win. �

Let S be a scheme. Let (U,R, s, t, c) be a groupoid in schemes over S. Assume that
U is locally Noetherian. In the lemma below we say that a quasi-coherent sheaf
(F , α) on (U,R, s, t, c) is coherent if F is a coherent OU -module.

Lemma 38.13.3. Let (U,R, s, t, c) be a groupoid scheme over S. Assume that

(1) U , R are Noetherian,
(2) s, t are flat, quasi-compact, and quasi-separated.

Then every quasi-coherent module (F , α) on (U,R, s, t, c) is a filtered colimit of
coherent modules.

http://stacks.math.columbia.edu/tag/07TT
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Proof. We will use the characterization of Cohomology of Schemes, Lemma 29.9.1
of coherent modules on locally Noetherian scheme without further mention. Write
F = colimHi with Hi coherent, see Properties, Lemma 27.20.6. Given a quasi-
coherent sheaf H on U we denote t∗s

∗H the quasi-coherent sheaf on (U,R, s, t, c)
of Lemma 38.13.1. There is an adjunction map F → t∗s

∗F in QCoh(U,R, s, t, c).
Consider the pullback diagram

F // t∗s∗F

Fi //

OO

t∗s
∗Hi

OO

in other words Fi = F ∩ t∗s∗Hi. Then Fi is coherent by Lemma 38.13.2. On the
other hand, the diagram above is a pullback diagram in QCoh(U,R, s, t, c) also as
restriction to U is an exact functor by (the proof of) Lemma 38.12.6. Finally, be-
cause t is quasi-compact and quasi-separated we see that t∗ commutes with colimits
(see Cohomology of Schemes, Lemma 29.6.1). Hence t∗s

∗F = colim t∗Hi and hence
F = colimFi as desired. �

Here is a curious lemma that is useful when working with groupoids on fields. In
fact, this is the standard argument to prove that any representation of an algebraic
group is a colimit of finite dimensional representations.

Lemma 38.13.4. Let (U,R, s, t, c) be a groupoid scheme over S. Assume that

(1) U , R are affine,
(2) there exist ei ∈ OR(R) such that every element g ∈ OR(R) can be uniquely

written as
∑
s∗(fi)ei for some fi ∈ OU (U).

Then every quasi-coherent module (F , α) on (U,R, s, t, c) is a filtered colimit of
finite type quasi-coherent modules.

Proof. The assumption means that OR(R) is a free OU (U)-module via s with basis
ei. Hence for any quasi-coherent OU -module G we see that s∗G(R) =

⊕
i G(U)ei.

We will write s(−) to indicate pullback of sections by s and similarly for other
morphisms. Let (F , α) be a quasi-coherent module on (U,R, s, t, c). Let σ ∈ F(U).
By the above we can write

α(t(σ)) =
∑

s(σi)ei

for some unique σi ∈ F(U) (all but finitely many are zero of course). We can also
write

c(ei) =
∑

pr1(fij)pr0(ej)

as functions on R ×s,U,t R. Then the commutativity of the diagram in Definition
38.12.1 means that∑

pr1(α(t(σi)))pr0(ei) =
∑

pr1(s(σi)fij)pr0(ej)

(calculation omitted). Picking off the coefficients of pr0(el) we see that α(t(σl)) =∑
s(σi)fil. Hence the submodule G ⊂ F generated by the elements σi defines a

finite type quasi-coherent module preserved by α. Hence it is a subobject of F in
QCoh(U,R, s, t, c). This submodule contains σ (as one sees by pulling back the first
relation by e). Hence we win. �
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We suggest the reader skip the rest of this section. Let S be a scheme. Let
(U,R, s, t, c) be a groupoid in schemes over S. Let κ be a cardinal. In the following
we will say that a quasi-coherent sheaf (F , α) on (U,R, s, t, c) is κ-generated if F
is a κ-generated OU -module, see Properties, Definition 27.21.1.

Lemma 38.13.5. Let (U,R, s, t, c) be a groupoid scheme over S. Let κ be a
cardinal. There exists a set T and a family (Ft, αt)t∈T of κ-generated quasi-
coherent modules on (U,R, s, t, c) such that every κ-generated quasi-coherent module
on (U,R, s, t, c) is isomorphic to one of the (Ft, αt).

Proof. For each quasi-coherent module F on U there is a (possibly empty) set of
maps α : t∗F → s∗F such that (F , α) is a quasi-coherent modules on (U,R, s, t, c).
By Properties, Lemma 27.21.2 there exists a set of isomorphism classes of κ-
generated quasi-coherent OU -modules. �

Lemma 38.13.6. Let (U,R, s, t, c) be a groupoid scheme over S. Assume that s, t
are flat. There exists a cardinal κ such that every quasi-coherent module (F , α) on
(U,R, s, t, c) is the directed colimit of its κ-generated quasi-coherent submodules.

Proof. In the statement of the lemma and in this proof a submodule of a quasi-
coherent module (F , α) is a quasi-coherent submodule G ⊂ F such that α(t∗G) =
s∗G as subsheaves of s∗F . This makes sense because since s, t are flat the pullbacks
s∗ and t∗ are exact, i.e., preserve subsheaves. The proof will be a repeat of the
proof of Properties, Lemma 27.21.3. We urge the reader to read that proof first.

Choose an affine open covering U =
⋃
i∈I Ui. For each pair i, j choose affine open

coverings

Ui ∩ Uj =
⋃

k∈Iij
Uijk and s−1(Ui) ∩ t−1(Uj) =

⋃
k∈Jij

Wijk.

Write Ui = Spec(Ai), Uijk = Spec(Aijk), Wijk = Spec(Bijk). Let κ be any infinite
cardinal ≥ than the cardinality of any of the sets I, Iij , Jij .

Let (F , α) be a quasi-coherent module on (U,R, s, t, c). Set Mi = F(Ui), Mijk =
F(Uijk). Note that

Mi ⊗Ai Aijk = Mijk = Mj ⊗Aj Aijk
and that α gives isomorphisms

α|Wijk
: Mi ⊗Ai,t Bijk −→Mj ⊗Aj ,s Bijk

see Schemes, Lemma 25.7.3. Using the axiom of choice we choose a map

(i, j, k,m) 7→ S(i, j, k,m)

which associates to every i, j ∈ I, k ∈ Iij or k ∈ Jij and m ∈ Mi a finite subset
S(i, j, k,m) ⊂Mj such that we have

m⊗ 1 =
∑

m′∈S(i,j,k,m)
m′ ⊗ am′ or α(m⊗ 1) =

∑
m′∈S(i,j,k,m)

m′ ⊗ bm′

in Mijk for some am′ ∈ Aijk or bm′ ∈ Bijk. Moreover, let’s agree that S(i, i, k,m) =
{m} for all i, j = i, k,m when k ∈ Iij . Fix such a collection S(i, j, k,m)

Given a family S = (Si)i∈I of subsets Si ⊂ Mi of cardinality at most κ we set
S ′ = (S′i) where

S′j =
⋃

(i,j,k,m) such that m∈Si
S(i, j, k,m)
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Note that Si ⊂ S′i. Note that S′i has cardinality at most κ because it is a union
over a set of cardinality at most κ of finite sets. Set S(0) = S, S(1) = S ′ and by

induction S(n+1) = (S(n))′. Then set S(∞) =
⋃
n≥0 S(n). Writing S(∞) = (S

(∞)
i )

we see that for any element m ∈ S(∞)
i the image of m in Mijk can be written as a

finite sum
∑
m′ ⊗ am′ with m′ ∈ S(∞)

j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S
(∞)
i

we have

Ni ⊗Ai Aijk = Nj ⊗Aj Aijk and α(Ni ⊗Ai,t Bijk) = Nj ⊗Aj ,s Bijk
as submodules of Mijk or Mj ⊗Aj ,s Bijk. Thus there exists a quasi-coherent sub-
module G ⊂ F with G(Ui) = Ni such that α(t∗G) = s∗G as submodules of s∗F . In
other words, (G, α|t∗G) is a submodule of (F , α). Moreover, by construction G is
κ-generated.

Let {(Gt, αt)}t∈T be the set of κ-generated quasi-coherent submodules of (F , α).
If t, t′ ∈ T then Gt + Gt′ is also a κ-generated quasi-coherent submodule as it is
the image of the map Gt ⊕ Gt′ → F . Hence the system (ordered by inclusion) is
directed. The arguments above show that every section of F over Ui is in one of
the Gt (because we can start with S such that the given section is an element of
Si). Hence colimt Gt → F is both injective and surjective as desired. �

38.14. Groupoids and group schemes

There are many ways to construct a groupoid out of an action a of a group G on
a set V . We choose the one where we think of an element g ∈ G as an arrow
with source v and target a(g, v). This leads to the following construction for group
actions of schemes.

Lemma 38.14.1. Let S be a scheme. Let Y be a scheme over S. Let (G,m) be a
group scheme over Y with identity eG and inverse iG. Let X/Y be a scheme over
Y and let a : G ×Y X → X be an action of G on X/Y . Then we get a groupoid
scheme (U,R, s, t, c, e, i) over S in the following manner:

(1) We set U = X, and R = G×Y X.
(2) We set s : R→ U equal to (g, x) 7→ x.
(3) We set t : R→ U equal to (g, x) 7→ a(g, x).
(4) We set c : R×s,U,t R→ R equal to ((g, x), (g′, x′)) 7→ (m(g, g′), x′).
(5) We set e : U → R equal to x 7→ (eG(x), x).
(6) We set i : R→ R equal to (g, x) 7→ (iG(g), a(g, x)).

Proof. Omitted. Hint: It is enough to show that this works on the set level.
For this use the description above the lemma describing g as an arrow from v to
a(g, v). �

Lemma 38.14.2. Let S be a scheme. Let Y be a scheme over S. Let (G,m) be
a group scheme over Y . Let X be a scheme over Y and let a : G ×Y X → X be
an action of G on X over Y . Let (U,R, s, t, c) be the groupoid scheme constructed
in Lemma 38.14.1. The rule (F , α) 7→ (F , α) defines an equivalence of categories
between G-equivariant OX-modules and the category of quasi-coherent modules on
(U,R, s, t, c).
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Proof. The assertion makes sense because t = a and s = pr1 as morphisms R =
G×Y X → X, see Definitions 38.10.1 and 38.12.1. Using the translation in Lemma
38.14.1 the commutativity requirements of the two definitions match up exactly. �

38.15. The stabilizer group scheme

Given a groupoid scheme we get a group scheme as follows.

Lemma 38.15.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. The
scheme G defined by the cartesian square

G //

��

R

j=(t,s)

��
U

∆ // U ×S U

is a group scheme over U with composition law m induced by the composition law
c.

Proof. This is true because in a groupoid category the set of self maps of any
object forms a group. �

Since ∆ is an immersion we see that G = j−1(∆U/S) is a locally closed subscheme

of R. Thinking of it in this way, the structure morphism j−1(∆U/S)→ U is induced
by either s or t (it is the same), and m is induced by c.

Definition 38.15.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S.
The group scheme j−1(∆U/S) → U is called the stabilizer of the groupoid scheme
(U,R, s, t, c).

In the literature the stabilizer group scheme is often denoted S (because the word
stabilizer starts with an “s” presumably); we cannot do this since we have already
used S for the base scheme.

Lemma 38.15.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S, and
let G/U be its stabilizer. Denote Rt/U the scheme R seen as a scheme over U via
the morphism t : R→ U . There is a canonical left action

a : G×U Rt −→ Rt

induced by the composition law c.

Proof. In terms of points over T/S we define a(g, r) = c(g, r). �

Lemma 38.15.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let G be the stabilizer group scheme of R. Let

G0 = G×U,pr0
(U ×S U) = G×S U

as a group scheme over U ×S U . The action of G on R of Lemma 38.15.3 induces
an action of G0 on R over U ×S U which turns R into a pseudo G0-torsor over
U ×S U .

Proof. This is true because in a groupoid category C the set MorC(x, y) is a prin-
cipal homogeneous set under the group MorC(y, y). �
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Lemma 38.15.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let p ∈ U ×S U be a point. Denote Rp the scheme theoretic fibre of j = (t, s) :
R→ U ×S U . If Rp 6= ∅, then the action

G0,κ(p) ×κ(p) Rp −→ Rp

(see Lemma 38.15.4) which turns Rp into a Gκ(p)-torsor over κ(p).

Proof. The action is a pseudo-torsor by the lemma cited in the statement. And if
Rp is not the empty scheme, then {Rp → p} is an fpqc covering which trivializes
the pseudo-torsor. �

38.16. Restricting groupoids

Consider a (usual) groupoid C = (Ob,Arrows, s, t, c). Suppose we have a map of
sets g : Ob′ → Ob. Then we can construct a groupoid C′ = (Ob′,Arrows′, s′, t′, c′)
by thinking of a morphism between elements x′, y′ of Ob′ as a morphisms in C
between g(x′), g(y′). In other words we set

Arrows′ = Ob′ ×g,Ob,t Arrows×s,Ob,g Ob′.

with obvious choices for s′, t′, and c′. There is a canonical functor C′ → C which is
fully faithful, but not necessarily essentially surjective. This groupoid C′ endowed
with the functor C′ → C is called the restriction of the groupoid C to Ob′.

Lemma 38.16.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let g : U ′ → U be a morphism of schemes. Consider the following diagram

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′
g // U

where all the squares are fibre product squares. Then there is a canonical compo-
sition law c′ : R′ ×s′,U ′,t′ R′ → R′ such that (U ′, R′, s′, t′, c′) is a groupoid scheme
over S and such that U ′ → U , R′ → R defines a morphism (U ′, R′, s′, t′, c′) →
(U,R, s, t, c) of groupoid schemes over S. Moreover, for any scheme T over S the
functor of groupoids

(U ′(T ), R′(T ), s′, t′, c′)→ (U(T ), R(T ), s, t, c)

is the restriction (see above) of (U(T ), R(T ), s, t, c) via the map U ′(T )→ U(T ).

Proof. Omitted. �

Definition 38.16.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Let g : U ′ → U be a morphism of schemes. The morphism of groupoids
(U ′, R′, s′, t′, c′)→ (U,R, s, t, c) constructed in Lemma 38.16.1 is called the restric-
tion of (U,R, s, t, c) to U ′. We sometime use the notation R′ = R|U ′ in this case.
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Lemma 38.16.3. The notions of restricting groupoids and (pre-)equivalence rela-
tions defined in Definitions 38.16.2 and 38.3.3 agree via the constructions of Lem-
mas 38.11.2 and 38.11.3.

Proof. What we are saying here is that R′ of Lemma 38.16.1 is also equal to

R′ = (U ′ ×S U ′)×U×SU R −→ U ′ ×S U ′

In fact this might have been a clearer way to state that lemma. �

Lemma 38.16.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction of
(U,R, s, t, c) via g. Let G be the stabilizer of (U,R, s, t, c) and let G′ be the stabilizer
of (U ′, R′, s′, t′, c′). Then G′ is the base change of G by g, i.e., there is a canonical
identification G′ = U ′ ×g,U G.

Proof. Omitted. �

38.17. Invariant subschemes

In this section we discuss briefly the notion of an invariant subscheme.

Definition 38.17.1. Let (U,R, s, t, c) be a groupoid scheme over the base scheme
S.

(1) A subset W ⊂ U is set-theoretically R-invariant if t(s−1(W )) ⊂W .
(2) An open W ⊂ U is R-invariant if t(s−1(W )) ⊂W .
(3) A closed subscheme Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z).

Here we use the scheme theoretic inverse image, see Schemes, Definition
25.17.7.

(4) A monomorphism of schemes T → U is R-invariant if T×U,tR = R×s,U T
as schemes over R.

For subsets and open subschemes W ⊂ U the R-invariance is also equivalent to
requiring that s−1(W ) = t−1(W ) as subsets of R. If W ⊂ U is an R-equivariant
open subscheme then the restriction of R to W is just RW = s−1(W ) = t−1(W ).
Similarly, if Z ⊂ U is an R-invariant closed subscheme, then the restriction of R to
Z is just RZ = s−1(Z) = t−1(Z).

Lemma 38.17.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S.

(1) For any subset W ⊂ U the subset t(s−1(W )) is set-theoretically R-invariant.
(2) If s and t are open, then for every open W ⊂ U the open t(s−1(W )) is an

R-invariant open subscheme.
(3) If s and t are open and quasi-compact, then U has an open covering con-

sisting of R-invariant quasi-compact open subschemes.

Proof. Part (1) follows from Lemmas 38.3.4 and 38.11.2, namely, t(s−1(W )) is the
set of points of U equivalent to a point of W . Next, assume s and t open and
W ⊂ U open. Since s is open the set W ′ = t(s−1(W )) is an open subset of U .
Finally, assume that s, t are both open and quasi-compact. Then, if W ⊂ U is
a quasi-compact open, then also W ′ = t(s−1(W )) is a quasi-compact open, and
invariant by the discussion above. Letting W range over all affine opens of U we
see (3). �
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Lemma 38.17.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume s and t quasi-compact and flat and U quasi-separated. Let W ⊂ U be
quasi-compact open. Then t(s−1(W )) is an intersection of a nonempty family of
quasi-compact open subsets of U .

Proof. Note that s−1(W ) is quasi-compact open in R. As a continuous map t
maps the quasi-compact subset s−1(W ) to a quasi-compact subset t(s−1(W )). As t
is flat and s−1(W ) is closed under generalization, so is t(s−1(W )), see (Morphisms,
Lemma 28.26.8 and Topology, Lemma 5.18.5). Pick a quasi-compact open W ′ ⊂ U
containing t(s−1(W )). By Properties, Lemma 27.2.4 we see that W ′ is a spec-
tral space (here we use that U is quasi-separated). Then the lemma follows from
Topology, Lemma 5.23.7 applied to t(s−1(W )) ⊂W ′. �

Lemma 38.17.4. Assumptions and notation as in Lemma 38.17.3. There exists
an R-invariant open V ⊂ U and a quasi-compact open W ′ such that W ⊂ V ⊂
W ′ ⊂ U .

Proof. Set E = t(s−1(W )). Recall that E is set-theoretically R-invariant (Lemma
38.17.2). By Lemma 38.17.3 there exists a quasi-compact open W ′ containing E.
Let Z = U \ W ′ and consider T = t(s−1(Z)). Observe that Z ⊂ T and that
E ∩ T = ∅ because s−1(E) = t−1(E) is disjoint from s−1(Z). Since T is the image
of the closed subset s−1(Z) ⊂ R under the quasi-compact morphism t : R → U
we see that any point ξ in the closure T is the specialization of a point of T , see
Morphisms, Lemma 28.6.5 (and Morphisms, Lemma 28.6.3 to see that the scheme
theoretic image is the closure of the image). Say ξ′  ξ with ξ′ ∈ T . Suppose
that r ∈ R and s(r) = ξ. Since s is flat we can find a specialization r′  r in R
such that s(r′) = ξ′ (Morphisms, Lemma 28.26.8). Then t(r′) t(r). We conclude
that t(r′) ∈ T as T is set-theoretically invariant by Lemma 38.17.2. Thus T is a
set-theoretically R-invariant closed subset and V = U \T is the open we are looking
for. It is contained in W ′ which finishes the proof. �

38.18. Quotient sheaves

Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a scheme. Let j : R→
U ×S U be a pre-relation over S. Say U,R, S are objects of a τ -site Schτ (see
Topologies, Section 33.2). Then we can consider the functors

hU , hR : (Sch/S)oppτ −→ Sets.

These are sheaves, see Descent, Lemma 34.9.3. The morphism j induces a map
j : hR → hU × hU . For each object T ∈ Ob((Sch/S)τ ) we can take the equivalence
relation ∼T generated by j(T ) : R(T ) → U(T ) × U(T ) and consider the quotient.
Hence we get a presheaf

(38.18.0.1) (Sch/S)oppτ −→ Sets, T 7−→ U(T )/ ∼T

Definition 38.18.1. Let τ , S, and the pre-relation j : R → U ×S U be as above.
In this setting the quotient sheaf U/R associated to j is the sheafification of the
presheaf (38.18.0.1) in the τ -topology. If j : R → U ×S U comes from the action
of a group scheme G/S on U as in Lemma 38.14.1 then we sometimes denote the
quotient sheaf U/G.
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This means exactly that the diagram

hR
//
// hU // U/R

is a coequalizer diagram in the category of sheaves of sets on (Sch/S)τ . Using
the Yoneda embedding we may view (Sch/S)τ as a full subcategory of sheaves on
(Sch/S)τ and hence identify schemes with representable functors. Using this abuse
of notation we will often depict the diagram above simply

R
s //

t
// U // U/R

We will mostly work with the fppf topology when considering quotient sheaves of
groupoids/equivalence relations.

Definition 38.18.2. In the situation of Definition 38.18.1. We say that the pre-
relation j has a representable quotient if the sheaf U/R is representable. We will
say a groupoid (U,R, s, t, c) has a representable quotient if the quotient U/R with
j = (t, s) is representable.

The following lemma characterizes schemes M representing the quotient. It applies
for example if τ = fppf , U → M is flat, of finite presentation and surjective, and
R ∼= U ×M U .

Lemma 38.18.3. In the situation of Definition 38.18.1. Assume there is a scheme
M , and a morphism U →M such that

(1) the morphism U →M equalizes s, t,
(2) the morphism U → M induces a surjection of sheaves hU → hM in the

τ -topology, and
(3) the induced map (t, s) : R → U ×M U induces a surjection of sheaves

hR → hU×MU in the τ -topology.

In this case M represents the quotient sheaf U/R.

Proof. Condition (1) says that hU → hM factors through U/R. Condition (2)
says that U/R → hM is surjective as a map of sheaves. Condition (3) says that
U/R→ hM is injective as a map of sheaves. Hence the lemma follows. �

The following lemma is wrong if we do not require j to be a pre-equivalence relation
(but just a pre-relation say).

Lemma 38.18.4. Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a
scheme. Let j : R→ U ×S U be a pre-equivalence relation over S. Assume U,R, S
are objects of a τ -site Schτ . For T ∈ Ob((Sch/S)τ ) and a, b ∈ U(T ) the following
are equivalent:

(1) a and b map to the same element of (U/R)(T ), and
(2) there exists a τ -covering {fi : Ti → T} of T and morphisms ri : Ti → R

such that a ◦ fi = s ◦ ri and b ◦ fi = t ◦ ri.
In other words, in this case the map of τ -sheaves

hR −→ hU ×U/R hU
is surjective.
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Proof. Omitted. Hint: The reason this works is that the presheaf (38.18.0.1) in
this case is really given by T 7→ U(T )/j(R(T )) as j(R(T )) ⊂ U(T ) × U(T ) is an
equivalence relation, see Definition 38.3.1. �

Lemma 38.18.5. Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a
scheme. Let j : R → U ×S U be a pre-equivalence relation over S and g : U ′ → U
a morphism of schemes over S. Let j′ : R′ → U ′ ×S U ′ be the restriction of j to
U ′. Assume U,U ′, R, S are objects of a τ -site Schτ . The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If g defines a surjection hU ′ → hU of sheaves in the τ -topology (for
example if {g : U ′ → U} is a τ -covering), then U ′/R′ → U/R is an isomorphism.

Proof. Suppose ξ, ξ′ ∈ (U ′/R′)(T ) are sections which map to the same section of
U/R. Then we can find a τ -covering T = {Ti → T} of T such that ξ|Ti , ξ′|Ti are
given by ai, a

′
i ∈ U ′(Ti). By Lemma 38.18.4 and the axioms of a site we may after

refining T assume there exist morphisms ri : Ti → R such that g ◦ ai = s ◦ ri,
g ◦ a′i = t ◦ ri. Since by construction R′ = R ×U×SU (U ′ ×S U ′) we see that
(ri, (ai, a

′
i)) ∈ R′(Ti) and this shows that ai and a′i define the same section of

U ′/R′ over Ti. By the sheaf condition this implies ξ = ξ′.

If hU ′ → hU is a surjection of sheaves, then of course U ′/R′ → U/R is surjective
also. If {g : U ′ → U} is a τ -covering, then the map of sheaves hU ′ → hU is
surjective, see Sites, Lemma 7.13.4. Hence U ′/R′ → U/R is surjective also in this
case. �

Lemma 38.18.6. Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a
scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let g : U ′ → U a morphism
of schemes over S. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) to U ′.
Assume U,U ′, R, S are objects of a τ -site Schτ . The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If the composition

U ′ ×g,U,t R pr1

//

h

((
R

s
// U

defines a surjection of sheaves in the τ -topology then the map is bijective. This
holds for example if {h : U ′ ×g,U,t R → U} is a τ -covering, or if U ′ → U defines
a surjection of sheaves in the τ -topology, or if {g : U ′ → U} is a covering in the
τ -topology.

Proof. Injectivity follows on combining Lemmas 38.11.2 and 38.18.5. To see sur-
jectivity (see Sites, Section 7.12 for a characterization of surjective maps of sheaves)
we argue as follows. Suppose that T is a scheme and σ ∈ U/R(T ). There exists a
covering {Ti → T} such that σ|Ti is the image of some element fi ∈ U(Ti). Hence
we may assume that σ if the image of f ∈ U(T ). By the assumption that h is
a surjection of sheaves, we can find a τ -covering {ϕi : Ti → T} and morphisms
fi : Ti → U ′×g,U,tR such that f ◦ϕi = h◦fi. Denote f ′i = pr0 ◦fi : Ti → U ′. Then
we see that f ′i ∈ U ′(Ti) maps to g ◦f ′i ∈ U(Ti) and that g ◦f ′i ∼Ti h◦fi = f ◦ϕi no-
tation as in (38.18.0.1). Namely, the element of R(Ti) giving the relation is pr1 ◦fi.
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This means that the restriction of σ to Ti is in the image of U ′/R′(Ti)→ U/R(Ti)
as desired.

If {h} is a τ -covering, then it induces a surjection of sheaves, see Sites, Lemma
7.13.4. If U ′ → U is surjective, then also h is surjective as s has a section (namely
the neutral element e of the groupoid scheme). �

Lemma 38.18.7. Let S be a scheme. Let f : (U,R, j)→ (U ′, R′, j′) be a morphism
between equivalence relations over S. Assume that

R

s

��

f
// R′

s′

��
U

f // U ′

is cartesian. For any τ ∈ {Zariski, étale, fppf, smooth, syntomic} the diagram

U

��

// U/R

f

��
U ′ // U ′/R′

is a fibre product square of τ -sheaves.

Proof. By Lemma 38.18.4 the quotient sheaves have a simple description which
we will use below without further mention. We first show that

U −→ U ′ ×U ′/R′ U/R

is injective. Namely, assume a, b ∈ U(T ) map to the same element on the right
hand side. Then f(a) = f(b). After replacing T by the members of a τ -covering we
may assume that there exists an r ∈ R(T ) such that a = s(r) and b = t(r). Then
r′ = f(r) is a T -valued point of R′ with s′(r′) = t′(r′). Hence r′ = e′(f(a)) (where
e′ is the identity of the groupoid scheme associated to j′, see Lemma 38.11.3).
Because the first diagram of the lemma is cartesian this implies that r has to equal
e(a). Thus a = b.

Finally, we show that the displayed arrow is surjective. Let T be a scheme over S
and let (a′, b) be a section of the sheaf U ′ ×U ′/R′ U/R over T . After replacing T

by the members of a τ -covering we may assume that b is the class of an element
b ∈ U(T ). After replacing T by the members of a τ -covering we may assume that
there exists an r′ ∈ R′(T ) such that a′ = t(r′) and s′(r′) = f(b). Because the
first diagram of the lemma is cartesian we can find r ∈ R(T ) such that s(r) = b
and f(r) = r′. Then it is clear that a = t(r) ∈ U(T ) is a section which maps to
(a′, b). �

38.19. Descent in terms of groupoids

Cartesian morphisms are defined as follows.

Definition 38.19.1. Let S be a scheme. Let f : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) be
a morphism of groupoid schemes over S. We say f is cartesian, or that (U ′, R′, s′, t′, c′)
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is cartesian over (U,R, s, t, c), if the diagram

R′
f
//

s′

��

R

s

��
U ′

f // U

is a fibre square in the category of schemes. A morphism of groupoid schemes
cartesian over (U,R, s, t, c) is a morphism of groupoid schemes compatible with the
structure morphisms towards (U,R, s, t, c).

Cartesian morphisms are related to descent data. First we prove a general lemma
describing the category of cartesian groupoid schemes over a fixed groupoid scheme.

Lemma 38.19.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. The category of groupoid schemes cartesian over (U,R, s, t, c) is equivalent to
the category of pairs (V, ϕ) where V is a scheme over U and

ϕ : V ×U,t R −→ R×s,U V
is an isomorphism over R such that e∗ϕ = idV and such that

c∗ϕ = pr∗1ϕ ◦ pr∗0ϕ

as morphisms of schemes over R×s,U,t R.

Proof. The pullback notation in the lemma signifies base change. The displayed
formula makes sense because

(R×s,U,t R)×pr1,R,pr1
(V ×U,t R) = (R×s,U,t R)×pr0,R,pr0

(R×s,U V )

as schemes over R×s,U,t R.

Given (V, ϕ) we set U ′ = V and R′ = V ×U,t R. We set t′ : R′ → U ′ equal to
the projection V ×U,t R → V . We set s′ equal to ϕ followed by the projection
R×s,U V → V . We set c′ equal to the composition

R′ ×s′,U ′,t′ R′
ϕ,1−−→ (R×s,U V )×V (V ×U,t R)

−→ R×s,U V ×U,t R
ϕ−1,1−−−−→ V ×U,t (R×s,U,t R)

1,c−−→ V ×U,t R = R′

A computation, which we omit shows that we obtain a groupoid scheme over
(U,R, s, t, c). It is clear that this groupoid scheme is cartesian over (U,R, s, t, c).

Conversely, given f : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) cartesian then the morphisms

U ′ ×U,t R
t′,f←−− R′ f,s

′

−−→ R×s,U U ′

are isomorphisms and we can set V = U ′ and ϕ equal to the composition (f, s′) ◦
(t′, f)−1. We omit the proof that ϕ satisfies the conditions in the lemma. We omit
the proof that these constructions are mutually inverse. �

Let S be a scheme. Let f : X → Y be a morphism of schemes over S. Then we
obtain a groupoid scheme (X,X ×Y X,pr1,pr0, c) over S. Namely, j : X ×Y X →
X ×S X is an equivalence relation and we can take the associated groupoid, see
Lemma 38.11.3.
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Lemma 38.19.3. Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. The construction of Lemma 38.19.2 determines an equivalence

category of groupoids schemes
cartesian over (X,X ×Y X, . . .)

−→ category of descent data
relative to X/Y

Proof. This is clear from Lemma 38.19.2 and the definition of descent data on
schemes in Descent, Definition 34.30.1. �

38.20. Separation conditions

This really means conditions on the morphism j : R → U ×S U when given a
groupoid (U,R, s, t, c) over S. As in the previous section we first formulate the
corresponding diagram.

Lemma 38.20.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
G→ U be the stabilizer group scheme. The commutative diagram

R

∆R/U×SU

��

f 7→(f,s(f))
// R×s,U U

��

// U

��
R×(U×SU) R

(f,g) 7→(f,f−1◦g) // R×s,U G // G

the two left horizontal arrows are isomorphisms and the right square is a fibre
product square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. �

Lemma 38.20.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
G→ U be the stabilizer group scheme.

(1) The following are equivalent
(a) j : R→ U ×S U is separated,
(b) G→ U is separated, and
(c) e : U → G is a closed immersion.

(2) The following are equivalent
(a) j : R→ U ×S U is quasi-separated,
(b) G→ U is quasi-separated, and
(c) e : U → G is quasi-compact.

Proof. The group scheme G → U is the base change of R → U ×S U by the
diagonal morphism U → U ×S U , see Lemma 38.15.1. Hence if j is separated (resp.
quasi-separated), then G → U is separated (resp. quasi-separated). (See Schemes,
Lemma 25.21.13). Thus (a) ⇒ (b) in both (1) and (2).

If G → U is separated (resp. quasi-separated), then the morphism U → G, as
a section of the structure morphism G → U is a closed immersion (resp. quasi-
compact), see Schemes, Lemma 25.21.12. Thus (b) ⇒ (a) in both (1) and (2).

By the result of Lemma 38.20.1 (and Schemes, Lemmas 25.18.2 and 25.19.3) we see
that if e is a closed immersion (resp. quasi-compact) ∆R/U×SU is a closed immersion
(resp. quasi-compact). Thus (c) ⇒ (a) in both (1) and (2). �
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38.21. Finite flat groupoids, affine case

Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Assume U =
Spec(A), and R = Spec(B) are affine. In this case we get two ring maps s], t] :
A −→ B. Let C be the equalizer of s] and t]. In a formula

(38.21.0.1) C = {a ∈ A | t](a) = s](a)}.
We will sometimes call this the ring of R-invariant functions on U . What properties
does M = Spec(C) have? The first observation is that the diagram

R
s
//

t

��

U

��
U // M

is commutative, i.e., the morphism U → M equalizes s, t. Moreover, if T is any
affine scheme, and if U → T is a morphism which equalizes s, t, then U → T factors
through U →M . In other words, U →M is a coequalizer in the category of affine
schemes.

We would like to find conditions that guarantee the morphism U → M is really
a “quotient” in the category of schemes. We will discuss this at length elsewhere
(insert future reference here); here we just discuss some special cases. Namely, we
will focus on the case where s, t are finite locally free.

Example 38.21.1. Let k be a field. Let U = GL2,k. Let B ⊂ GL2 be the closed
subgroup scheme of upper triangular matrices. Then the quotient sheaf GL2,k/B
(in the Zariski, étale or fppf topology, see Definition 38.18.1) is representable by
the projective line: P1 = GL2,k/B. (Details omitted.) On the other hand, the ring
of invariant functions in this case is just k. Note that in this case the morphisms
s, t : R = GL2,k ×k B → GL2,k = U are smooth of relative dimension 3.

Recall that in Exercises, Exercises 83.15.6 and 83.15.7 we have defined the deter-
minant and the norm for finitely locally free modules and finite locally free ring
extensions. If ϕ : A → B is a finite locally free ring map, then we will denote
Normϕ(b) ∈ A the norm of b ∈ B.

Lemma 38.21.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A), and R = Spec(B) are affine, and s, t : R → U finite
locally free. Let C be as in (38.21.0.1). Let f ∈ A. Then Norms](t

](f)) ∈ C.

Proof. Consider the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0

oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

of Lemma 38.11.4. Think of f ∈ Γ(U,OU ). The commutativity of the top part of the

diagram shows that pr]0(t](f)) = c](t](f)) as elements of Γ(R×S,U,tR,O). Looking
at the right lower cartesian square the compatibility of the norm construction with
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base change shows that s](Norms](t
](f))) = Normpr1

(c](t](f))). Similarly we get

t](Norms](t
](f))) = Normpr1

(pr]0(t](f))). Hence by the first equality of this proof

we see that s](Norms](t
](f))) = t](Norms](t

](f))) as desired. �

Lemma 38.21.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume s, t : R→ U finite locally free. Then

U =
∐

r≥1
Ur

is a disjoint union of R-invariant opens such that the restriction Rr of R to Ur has
the property that s, t : Rr → Ur are finite locally free of rank 1.

Proof. By Morphisms, Lemma 28.46.5 there exists a decomposition U =
∐
r≥0 Ur

such that s : s−1(Ur)→ Ur is finite locally free of rank r. As s is surjective we see
that U0 = ∅. Note that u ∈ Ur ⇔ the scheme theoretic fibre s−1(u) has degree r
over κ(u). Now, if z ∈ R with s(z) = u and t(z) = u′ then pr−1

1 (z) see diagram
of Lemma 38.11.4 is a scheme over κ(z) which is the base change of both s−1(u)
and s−1(u′) via κ(u) → κ(z) and κ(u′) → κ(z) by the properties of that diagram.
Hence we see that the open subsets Ur are R-invariant. In particular the restriction
of R to Ur is just s−1(Ur) and s : Rr → Ur is finite locally free of rank r. As
t : Rr → Ur is isomorphic to s by the inverse of Rr we see that it has also rank
r. �

Lemma 38.21.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A), and R = Spec(B) are affine, and s, t : R → U finite
locally free. Let C ⊂ A be as in (38.21.0.1). Then A is integral over C.

Proof. First, by Lemma 38.21.3 we know that (U,R, s, t, c) is a disjoint union of
groupoid schemes (Ur, Rr, s, t, c) such that each s, t : Rr → Ur has constant rank
r. As U is quasi-compact, we have Ur = ∅ for almost all r. It suffices to prove the
lemma for each (Ur, Rr, s, t, c) and hence we may assume that s, t are finite locally
free of rank r.

Assume that s, t are finite locally free of rank r. Let f ∈ A. Consider the element
x− f ∈ A[x], where we think of x as the coordinate on A1. Since

(U ×A1, R×A1, s× idA1 , t× idA1 , c× idA1)

is also a groupoid scheme with finite source and target, we may apply Lemma
38.21.2 to it and we see that P (x) = Norms](t

](x − f)) is an element of C[x].
Because s] : A→ B is finite locally free of rank r we see that P is monic of degree
r. Moreover P (f) = 0 by Cayley-Hamilton (Algebra, Lemma 10.15.1). �

Lemma 38.21.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A), and R = Spec(B) are affine, and s, t : R → U finite
locally free. Let C ⊂ A be as in (38.21.0.1). Let C → C ′ be a ring map, and set
U ′ = Spec(A⊗C C ′), R′ = Spec(B ⊗C C ′). Then

(1) the maps s, t, c induce maps s′, t′, c′ such that (U ′, R′, s′, t′, c′) is a groupoid
scheme, and

(2) there is a canonical map ϕ : C ′ → C1 of C ′ into the R′-invariant functions
C1 on U ′ with the properties
(a) for every f ∈ C1 there exists an n > 0 such that fn is in the image

of ϕ, and
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(b) for every f ∈ Ker(ϕ) there exists an n > 0 such that fn = 0.
(3) if C → C ′ is flat then ϕ is an isomorphism.

Proof. The proof of part (1) is omitted. Let us denote A′ = A ⊗C C ′ and B′ =
B ⊗C C ′. Then we have

C1 = {x ∈ A′ | (t′)](x) = (s′)](x)} = {a ∈ A⊗C C ′ | t] ⊗ 1(x) = s] ⊗ 1(x)}.

In other words, C1 is the kernel of the difference map (t]− s])⊗ 1 which is just the
base change of the C-linear map t] − s] : A→ B by C → C ′. Hence (3) follows.

Proof of part (2)(b). Since C → A is integral (Lemma 38.21.4) and injective we
see that Spec(A) → Spec(C) is surjective, see Algebra, Lemma 10.35.15. Thus
also Spec(A′) → Spec(C ′) is surjective as a base change of a surjective morphism
(Morphisms, Lemma 28.11.4). Hence Spec(C1)→ Spec(C ′) is surjective also. This
implies that the kernel of ϕ is contained in the radical of the ring C ′, i.e., (2)(b)
holds.

Proof of part (2)(a). By Lemma 38.21.3 we know that A is a finite product of rings
Ar and B is a finite product of rings Br such that the groupoid scheme decomposes
accordingly (see the proof of Lemma 38.21.4). Then also C is a product of rings Cr
and correspondingly C ′ decomposes as a product. Hence we may and do assume
that the ring maps s], t] : A → B are finite locally free of a fixed rank r. Let
f ∈ C1 ⊂ A′ = A⊗C C ′. We may replace C ′ by a finitely generated C-subalgebra
of C ′ and hence we may assume that C ′ = C[X1, . . . , Xn]/I for some ideal I. Choose

a lift f̃ ∈ A⊗C C[Xi] = A[Xi] of the element f . Note that fr = Norm(s′)]((t
′)](f))

in A as t](f) = s](f). Hence we see that

h = Norms]⊗1(t] ⊗ 1(f)) ∈ A[Xi]

is invariant according to Lemma 38.21.2 and maps to fr in A′. Since C → C[Xi]
is flat we see from (3) that h ∈ C[Xi]. Hence it follows that fr is in the image of
ϕ. �

Lemma 38.21.6. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A), and R = Spec(B) are affine, and s, t : R → U finite
locally free. Let C ⊂ A be as in (38.21.0.1). Then U → M = Spec(C) has the
following properties:

(1) the map on points |U | → |M | is surjective and u0, u1 ∈ |U | map to the
same point if and only if there exists a r ∈ |R| with t(r) = u0 and s(r) =
u1, in a formula

|M | = |U |/|R|
(2) for any algebraically closed field k we have

M(k) = U(k)/R(k)

Proof. Let k be an algebraically closed field. Since C → A is integral (Lemma
38.21.4) and injective we see that Spec(A) → Spec(C) is surjective, see Algebra,
Lemma 10.35.15. Thus |M | → |U | is surjective. Let C → k be a ring map. Since
surjective morphisms are preserved under base change (Morphisms, Lemma 28.11.4)
we see that A ⊗C k is not zero. Now k ⊂ A ⊗C k is a nonzero integral extension.
Hence any residue field of A⊗C k is an algebraic extension of k, hence equal to k.
Thus we see that U(k)→M(k) is surjective.
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Let a0, a1 : A → k be ring maps. If there exists a ring map b : B → k such that
a0 = b ◦ t] and a1 = b ◦ s] then we see that a0|C = a1|C by definition. Conversely,
suppose that a0|C = a1|C . Let us name this algebra map c : C → k. Consider the
diagram

B

xx
k A

a0

oo
a1oo

OO OO

C

OO

c

ff

We are trying to construct the dotted arrow, and if we do then part (2) follows,
which in turn implies part (1). Since A→ B is finite and faithfully flat there exist
finitely many ring maps b1, . . . , bn : B → k such that bi ◦ s] = a1. If the dotted
arrow does not exist, then we see that none of the a′i = bi ◦ t], i = 1, . . . , n is equal
to a0. Hence the maximal ideals

m′i = Ker(a′i ⊗ 1 : A⊗C k → k)

of A ⊗C k are distinct from m = Ker(a0 ⊗ 1 : A ⊗C k → k). By Algebra, Lemma
10.14.2 we would get an element f ∈ A⊗C k with f ∈ m, but f 6∈ m′i for i = 1, . . . , n.
Consider the norm

g = Norms]⊗1(t] ⊗ 1(f)) ∈ A⊗C k

By Lemma 38.21.2 this lies in the invariants C1 ⊂ A ⊗C k of the base change
groupoid (base change via the map c : C → k). On the one hand, a1(g) ∈ k∗ since
the value of t](f) at all the points (which correspond to b1, . . . , bn) lying over a1

is invertible (insert future reference on property determinant here). On the other
hand, since f ∈ m, we see that f is not a unit, hence t](f) is not a unit (as t] ⊗ 1
is faithfully flat), hence its norm is not a unit (insert future reference on property
determinant here). We conclude that C1 contains an element which is not nilpotent
and not a unit. We will now show that this leads to a contradiction. Namely, apply
Lemma 38.21.5 to the map c : C → C ′ = k, then we see that the map of k into the
invariants C1 is injective and moreover, that for any element x ∈ C1 there exists
an integer n > 0 such that xn ∈ k. Hence every element of C1 is either a unit or
nilpotent. �

Lemma 38.21.7. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(A), and R = Spec(B) are affine, and
(2) there exist elements xi ∈ A, i ∈ I such that B =

⊕
i∈I s

](A)t](xi).

Then A =
⊕

i∈I Cxi, and B ∼= A ⊗C A where C ⊂ A is the R-invariant functions
on U as in (38.21.0.1).

Proof. During this proof we will write s, t : A→ B instead of s], t], and similarly
c : B → B⊗s,A,tB. We write p0 : B → B⊗s,A,tB, b 7→ b⊗1 and p1 : B → B⊗s,A,tB,
b 7→ 1 ⊗ b. By Lemma 38.11.5 and the definition of C we have the following
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commutative diagram

B ⊗s,A,t B B
coo

p0

oo A
t

oo

B

p1

OO

A
soo

t
oo

s

OO

C

OO

oo

Moreover the tow left squares are cocartesian in the category of rings, and the top
row is isomorphic to the diagram

B ⊗t,A,t B B
p1oo

p0

oo A
t

oo

which is an equalizer diagram according to Descent, Lemma 34.3.6 because condi-
tion (2) implies in particular that s (and hence also then isomorphic arrow t) is
faithfully flat. The lower row is an equalizer diagram by definition of C. We can
use the xi and get a commutative diagram

B ⊗s,A,t B B
coo

p0

oo A
t

oo

⊕
i∈I Bxi

p1

OO

⊕
i∈I Axi

soo

t
oo

s

OO

⊕
i∈I Cxi

OO

oo

where in the right vertical arrow we map xi to xi, in the middle vertical arrow we
map xi to t(xi) and in the left vertical arrow we map xi to c(t(xi)) = t(xi) ⊗ 1 =
p0(t(xi)) (equality by the commutativity of the top part of the diagram in Lemma
38.11.4). Then the diagram commutes. Moreover the middle vertical arrow is
an isomorphism by assumption. Since the left two squares are cocartesian we
conclude that also the left vertical arrow is an isomorphism. On the other hand,
the horizontal rows are exact (i.e., they are equalizers). Hence we conclude that
also the right vertical arrow is an isomorphism. �

Proposition 38.21.8. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Assume

(1) U = Spec(A), and R = Spec(B) are affine,
(2) s, t : R→ U finite locally free, and
(3) j = (t, s) is an equivalence.

In this case, let C ⊂ A be as in (38.21.0.1). Then U → M = Spec(C) is finite
locally free and R = U ×M U . Moreover, M represents the quotient sheaf U/R in
the fppf topology (see Definition 38.18.1).

Proof. During this proof we use the notation s, t : A→ B instead of the notation
s], t]. By Lemma 38.18.3 it suffices to show that C → A is finite locally free and
that the map

t⊗ s : A⊗C A −→ B

is an isomorphism. First, note that j is a monomorphism, and also finite (since
already s and t are finite). Hence we see that j is a closed immersion by Morphisms,
Lemma 28.44.13. Hence A⊗C A→ B is surjective.

We will perform base change by flat ring maps C → C ′ as in Lemma 38.21.5,
and we will use that formation of invariants commutes with flat base change, see
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part (3) of the lemma cited. We will show below that for every prime p ⊂ C,
there exists a local flat ring map Cp → C ′p such that the result holds after a
base change to C ′p. This implies immediately that A ⊗C A → B is injective (use
Algebra, Lemma 10.23.1). It also implies that C → A is flat, by combining Algebra,
Lemmas 10.38.16, 10.38.19, and 10.38.7. Then since U → Spec(C) is surjective also
(Lemma 38.21.6) we conclude that C → A is faithfully flat. Then the isomorphism
B ∼= A⊗C A implies that A is a finitely presented C-module, see Algebra, Lemma
10.80.2. Hence A is finite locally free over C, see Algebra, Lemma 10.75.2.

By Lemma 38.21.3 we know that A is a finite product of rings Ar and B is a finite
product of rings Br such that the groupoid scheme decomposes accordingly (see the
proof of Lemma 38.21.4). Then also C is a product of rings Cr and correspondingly
C ′ decomposes as a product. Hence we may and do assume that the ring maps
s, t : A→ B are finite locally free of a fixed rank r.

The local ring maps Cp → C ′p we are going to use are any local flat ring maps such
that the residue field of C ′p is infinite. By Algebra, Lemma 10.148.1 such local ring
maps exist.

Assume C is a local ring with maximal ideal m and infinite residue field, and assume
that s, t : A→ B is finite locally free of constant rank r > 0. Since C ⊂ A is integral
(Lemma 38.21.4) all primes lying over m are maximal, and all maximal ideals of A
lie over m. Similarly for C ⊂ B. Pick a maximal ideal m′ of A lying over m (exists
by Lemma 38.21.6). Since t : A→ B is finite locally free there exist at most finitely
many maximal ideals of B lying over m′. Hence we conclude (by Lemma 38.21.6
again) that A has finitely many maximal ideals, i.e., A is semi-local. This in turn
implies that B is semi-local as well. OK, and now, because t ⊗ s : A ⊗C A → B
is surjective, we can apply Algebra, Lemma 10.75.7 to the ring map C → A, the
A-module M = B (seen as an A-module via t) and the C-submodule s(A) ⊂ B.
This lemma implies that there exist x1, . . . , xr ∈ A such that M is free over A
on the basis s(x1), . . . , s(xr). Hence we conclude that C → A is finite free and
B ∼= A⊗C A by applying Lemma 38.21.7. �

38.22. Finite flat groupoids

In this section we prove a lemma that will help to show that the quotient of a scheme
by a finite flat equivalence relation is a scheme, provided that each equivalence class
is contained in an affine. See Properties of Spaces, Proposition 48.11.1.

Lemma 38.22.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume s, t are finite locally free. Let u ∈ U be a point such that t(s−1({u}))
is contained in an affine open of U . Then there exists an R-invariant affine open
neighbourhood of u in U .

Proof. Since s is finite locally free it has finite fibres. Hence t(s−1({u})) =
{u1, . . . , un} is a finite set. Note that u ∈ {u1, . . . , un}. Let W ⊂ U be an affine
open containing {u1, . . . , un}, in particular u ∈ W . Consider Z = R \ s−1(W ) ∩
t−1(W ). This is a closed subset of R. The image t(Z) is a closed subset of U which
can be loosely described as the set of points of U which are R-equivalent to a point
of U \W . Hence W ′ = U \ t(Z) is an R-invariant, open subscheme of U contained
in W , and {u1, . . . , un} ⊂W ′. Picture

{u1, . . . , un} ⊂W ′ ⊂W ⊂ U.
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Let f ∈ Γ(W,OW ) be an element such that {u1, . . . , un} ⊂ D(f) ⊂W ′. Such an f
exists by Algebra, Lemma 10.14.2. By our choice of W ′ we have s−1(W ′) ⊂ t−1(W ),
and hence we get a diagram

s−1(W ′)

s

��

t
// W

W ′

The vertical arrow is finite locally free by assumption. Set

g = Norms(t
]f) ∈ Γ(W ′,OW ′)

By construction g is a function on W ′ which is nonzero in u, as t](f) is nonzero
in each of the points of R lying over u, since f is nonzero in u1, . . . , un. Similarly,
D(g) ⊂ W ′ is equal to the set of points w such that f is not zero in any of the
points equivalent to w. This means that D(g) is an R-invariant affine open of W ′.
The final picture is

{u1, . . . , un} ⊂ D(g) ⊂ D(f) ⊂W ′ ⊂W ⊂ U
and hence we win. �
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CHAPTER 39

More on Groupoid Schemes

39.1. Introduction

This chapter is devoted to advanced topics on groupoid schemes. Even though the
results are stated in terms of groupoid schemes, the reader should keep in mind the
2-cartesian diagram

(39.1.0.1)

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 60.19.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

39.2. Notation

We continue to abide by the conventions and notation introduced in Groupoids,
Section 38.2.

39.3. Useful diagrams

We briefly restate the results of Groupoids, Lemmas 38.11.4 and 38.11.5 for easy
reference in this chapter. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. In the commutative diagram

(39.3.0.2)

U

R

s

��

t

::

R×s,U,t Rpr0

oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.
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The diagram

(39.3.0.3)

R×t,U,t R
pr1 //

pr0

//

pr0×c◦(i,1)

��

R
t //

idR

��

U

idU

��
R×s,U,t R

c //

pr0

//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

39.4. Sheaf of differentials

The following lemma is the analogue of Groupoids, Lemma 38.6.3.

Lemma 39.4.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. The sheaf of differentials of R seen as a scheme over U via t is a quotient of
the pullback via t of the conormal sheaf of the immersion e : U → R. In a formula:
there is a canonical surjection t∗CU/R → ΩR/U . If s is flat, then this map is an
isomorphism.

Proof. Note that e : U → R is an immersion as it is a section of the morphism s,
see Schemes, Lemma 25.21.12. Consider the following diagram

R
(1,i)
//

t

��

R×s,U,t R

c

��

(pr0,i◦pr1)
// R×t,U,t R

U
e // R

The square on the left is cartesian, because if a ◦ b = e, then b = i(a). The com-
position of the horizontal maps is the diagonal morphism of t : R → U . The right
top horizontal arrow is an isomorphism. Hence since ΩR/U is the conormal sheaf
of the composition it is isomorphic to the conormal sheaf of (1, i). By Morphisms,
Lemma 28.33.4 we get the surjection t∗CU/R → ΩR/U and if c is flat, then this is an
isomorphism. Since c is a base change of s by the properties of Diagram (39.3.0.3)
we conclude that if s is flat, then c is flat, see Morphisms, Lemma 28.26.7. �

39.5. Properties of groupoids

Let (U,R, s, t, c) be a groupoid scheme. The idea behind the results in this section
is that s : R → U is a base changes of the morphism U → [U/R] (see Diagram
(39.1.0.1). Hence the local properties of s : R → U should reflect local properties
of the morphism U → [U/R]. This doesn’t work, because [U/R] is not always an
algebraic stack, and hence we cannot speak of geometric or algebraic properties
of U → [U/R]. But it turns out that we can make some of it work without even
referring to the quotient stack at all.

Here is a first example of such a result. The open W ⊂ U ′ found in the lemma is
roughly speaking the locus where the morphism U ′ → [U/R] has property P.
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Lemma 39.5.1. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S.
Let g : U ′ → U be a morphism of schemes. Denote h the composition

h : U ′ ×g,U,t R pr1

// R
s
// U.

Let P,Q,R be properties of morphisms of schemes. Assume

(1) R ⇒ Q,
(2) Q is preserved under base change and composition,
(3) for any morphism f : X → Y which has Q there exists a largest open

W (P, f) ⊂ X such that f |W (P,f) has P, and
(4) for any morphism f : X → Y which has Q, and any morphism Y ′ → Y

which has R we have Y ′ ×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′

is the base change of f .

If s, t have R and g has Q, then there exists an open subscheme W ⊂ U ′ such that
W ×g,U,t R = W (P, h).

Proof. Note that the following diagram is commutative

U ′ ×g,U,t R×t,U,t R pr12

//

pr02

��
pr01

��

R×t,U,t R

pr1

��
pr0

��
U ′ ×g,U,t R

pr1 // R

with both squares cartesian (this uses that the two maps t ◦ pri : R ×t,U,t R → U
are equal). Combining this with the properties of diagram (39.3.0.3) we get a
commutative diagram

U ′ ×g,U,t R×t,U,t R
c◦(i,1)

//

pr02

��
pr01

��

R

s

��
t

��
U ′ ×g,U,t R

h // U

where both squares are cartesian.

Assume s, t have R and g has Q. Then h has Q as a composition of s (which has R
hence Q) and a base change of g (which has Q). Thus W (P, h) ⊂ U ′×g,U,tR exists.

By our assumptions we have pr−1
01 (W (P, h)) = pr−1

02 (W (P, h)) since both are the
largest open on which c ◦ (i, 1) has P. Note that the projection U ′ ×g,U,t R → U ′

has a section, namely σ : U ′ → U ′ ×g,U,t R, u′ 7→ (u′, e(g(u′))). Also via the
isomorphism

(U ′ ×g,U,t R)×U ′ (U ′ ×g,U,t R) = U ′ ×g,U,t R×t,U,t R

the two projections of the left hand side to U ′ ×g,U,t R agree with the morphisms

pr01 and pr02 on the right hand side. Since pr−1
01 (W (P, h)) = pr−1

02 (W (P, h)) we
conclude that W (P, h) is the inverse image of a subset of U , which is necessarily
the open set W = σ−1(W (P, h)). �

Remark 39.5.2. Warning: Lemma 39.5.1 should be used with care. For example,
it applies to P =“flat”, Q =“empty”, and R =“flat and locally of finite presenta-
tion”. But given a morphism of schemes f : X → Y the largest open W ⊂ X such
that f |W is flat is not the set of points where f is flat!
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Remark 39.5.3. Notwithstanding the warning in Remark 39.5.2 there are some
cases where Lemma 39.5.1 can be used without causing too much ambiguity. We
give a list. In each case we omit the verification of assumptions (1) and (2) and we
give references which imply (3) and (4). Here is the list:

(1) Q = R =“locally of finite type”, and P =“relative dimension ≤ d”.
See Morphisms, Definition 28.30.1 and Morphisms, Lemmas 28.29.4 and
28.29.3.

(2) Q = R =“locally of finite type”, and P =“locally quasi-finite”. This is
the case d = 0 of the previous item, see Morphisms, Lemma 28.30.5.

(3) Q = R =“locally of finite type”, and P =“unramified”. See Morphisms,
Lemmas 28.36.3 and 28.36.15.

What is interesting about the cases listed above is that we do not need to assume
that s, t are flat to get a conclusion about the locus where the morphism h has
property P. We continue the list:

(4) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“flat”. See More on Morphisms, Theorem 36.12.1 and
Lemma 36.12.2.

(5) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“Cohen-Macaulay”. See More on Morphisms, Definition
36.17.1 and More on Morphisms, Lemmas 36.17.4 and 36.17.5.

(6) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“syntomic” use Morphisms, Lemma 28.32.12 (the locus
is automatically open).

(7) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“smooth”. See Morphisms, Lemma 28.35.15 (the locus
is automatically open).

(8) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“étale”. See Morphisms, Lemma 28.37.17 (the locus is
automatically open).

Here is the second result. The R-invariant open W ⊂ U should be thought of as
the inverse image of the largest open of [U/R] over which the morphism U → [U/R]
has property P.

Lemma 39.5.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
τ ∈ {Zariski, fppf, étale, smooth, syntomic}1. Let P be a property of morphisms
of schemes which is τ -local on the target (Descent, Definition 34.18.1). Assume
{s : R → U} and {t : R → U} are coverings for the τ -topology. Let W ⊂ U be the
maximal open subscheme such that s|s−1(W ) : s−1(W )→ W has property P. Then
W is R-invariant, see Groupoids, Definition 38.17.1.

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 34.18.3. In Diagram (39.3.0.2) let W1 ⊂ R be the maximal open subscheme
over which the morphism pr1 : R ×s,U,t R → R has property P. It follows from
the aforementioned Descent, Lemma 34.18.3 and the assumption that {s : R→ U}
and {t : R→ U} are coverings for the τ -topology that t−1(W ) = W1 = s−1(W ) as
desired. �

1The fact that fpqc is missing is not a typo.
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Lemma 39.5.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
G→ U be its stabilizer group scheme. Let τ ∈ {fppf, étale, smooth, syntomic}. Let
P be a property of morphisms which is τ -local on the target. Assume {s : R→ U}
and {t : R → U} are coverings for the τ -topology. Let W ⊂ U be the maximal
open subscheme such that GW → W has property P. Then W is R-invariant (see
Groupoids, Definition 38.17.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 34.18.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)

is an isomorphism over R (where ◦ denotes composition in the groupoid). Hence
s−1(W ) = t−1(W ) by the properties of W proved in the aforementioned Descent,
Lemma 34.18.3. �

39.6. Comparing fibres

Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Diagram (39.3.0.2) gives us a
way to compare the fibres of the map s : R→ U in a groupoid. For a point u ∈ U
we will denote Fu = s−1(u) the scheme theoretic fibre of s : R → U over u. For
example the diagram implies that if u, u′ ∈ U are points such that s(r) = u and
t(r) = u′, then (Fu)κ(r)

∼= (Fu′)κ(r). This is a special case of the more general and
more precise Lemma 39.6.1 below. To see this take r′ = i(r).

A pair (X,x) consisting of a scheme X and a point x ∈ X is sometimes called
the germ of X at x. A morphism of germs f : (X,x) → (S, s) is a morphism
f : U → S defined on an open neighbourhood of x with f(x) = s. Two such f , f ′

are said to give the same morphism of germs if and only if f and f ′ agree in some
open neighbourhood of x. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We
temporarily introduce the following concept: We say that two morphisms of germs
f : (X,x)→ (S, s) and f ′ : (X ′, x′)→ (S′, s′) are isomorphic locally on the base in
the τ -topology, if there exists a pointed scheme (S′′, s′′) and morphisms of germs
g : (S′′, s′′)→ (S, s), and g′ : (S′′, s′′)→ (S′, s′) such that

(1) g and g′ are an open immersion (resp. étale, smooth, syntomic, flat and
locally of finite presentation) at s′′,

(2) there exists an isomorphism

(S′′ ×g,S,f X, x̃) ∼= (S′′ ×g′,S′,f ′ X ′, x̃′)

of germs over the germ (S′′, s′′) for some choice of points x̃ and x̃′ lying
over (s′′, x) and (s′′, x′).

Finally, we simply say that the maps of germs f : (X,x)→ (S, s) and f ′ : (X ′, x′)→
(S′, s′) are flat locally on the base isomorphic if there exist S′′, s′′, g, g′ as above but
with (1) replaced by the condition that g and g′ are flat at s′′ (this is much weaker
than any of the τ conditions above as a flat morphism need not be open).

Lemma 39.6.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
r, r′ ∈ R with t(r) = t(r′) in U . Set u = s(r), u′ = s(r′). Denote Fu = s−1(u) and
Fu′ = s−1(u′) the scheme theoretic fibres.

(1) There exists a common field extension κ(u) ⊂ k, κ(u′) ⊂ k and an iso-
morphism (Fu)k ∼= (Fu′)k.
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(2) We may choose the isomorphism of (1) such that a point lying over r
maps to a point lying over r′.

(3) If the morphisms s, t are flat then the morphisms of germs s : (R, r) →
(U, u) and s : (R, r′)→ (U, u′) are flat locally on the base isomorphic.

(4) If the morphisms s, t are étale (resp. smooth, syntomic, or flat and locally
of finite presentation) then the morphisms of germs s : (R, r) → (U, u)
and s : (R, r′) → (U, u′) are locally on the base isomorphic in the étale
(resp. smooth, syntomic, or fppf) topology.

Proof. We repeatedly use the properties and the existence of diagram (39.3.0.2).
By the properties of the diagram (and Schemes, Lemma 25.17.5) there exists a
point ξ of R×s,U,t R with pr0(ξ) = r and c(ξ) = r′. Let r̃ = pr1(ξ) ∈ R.

Proof of (1). Set k = κ(r̃). Since t(r̃) = u and s(r̃) = u′ we see that k is a
common extension of both κ(u) and κ(u′) and in fact that both (Fu)k and (Fu′)k
are isomorphic to the fibre of pr1 : R×s,U,t R→ R over r̃. Hence (1) is proved.

Part (2) follows since the point ξ maps to r, resp. r′.

Part (3) is clear from the above (using the point ξ for ũ and ũ′) and the definitions.

If s and t are flat and of finite presentation, then they are open morphisms (Mor-
phisms, Lemma 28.26.9). Hence the image of some affine open neighbourhood V ′′

of r̃ will cover an open neighbourhood V of u, resp. V ′ of u′. These can be used to
show that properties (1) and (2) of the definition of “locally on the base isomorphic
in the τ -topology”. �

39.7. Cohen-Macaulay presentations

Given any groupoid (U,R, s, t, c) with s, t flat and locally of finite presentation
there exists an “equivalent” groupoid (U ′, R′, s′, t′, c′) such that s′ and t′ are Cohen-
Macaulay morphisms (and locally of finite presentation). See More on Morphisms,
Section 36.17 for more information on Cohen-Macaulay morphisms. Here “equiva-
lent” can be taken to mean that the quotient stacks [U/R] and [U ′/R′] are equivalent
stacks, see Groupoids in Spaces, Section 60.19 and Section 60.24.

Lemma 39.7.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Assume
s and t are flat and locally of finite presentation. Then there exists an open U ′ ⊂ U
such that

(1) t−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism s
is Cohen-Macaulay,

(2) s−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism t
is Cohen-Macaulay,

(3) the morphism t|s−1(U ′) : s−1(U ′)→ U is surjective,

(4) the morphism s|t−1(U ′) : t−1(U ′)→ U is surjective, and

(5) the restriction R′ = s−1(U ′) ∩ t−1(U ′) of R to U ′ defines a groupoid
(U ′, R′, s′, t′, c′) which has the property that the morphisms s′ and t′ are
Cohen-Macaulay and locally of finite presentation.

Proof. Apply Lemma 39.5.1 with g = id and Q =“locally of finite presentation”,
R =“flat and locally of finite presentation”, and P =“Cohen-Macaulay”, see Re-
mark 39.5.3. This gives us an open U ′ ⊂ U such that Let t−1(U ′) ⊂ R is the largest
open subscheme of R on which the morphism s is Cohen-Macaulay. This proves
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(1). Let i : R → R be the inverse of the groupoid. Since i is an isomorphism, and
s ◦ i = t and t ◦ i = s we see that s−1(U ′) is also the largest open of R on which t
is Cohen-Macaulay. This proves (2). By More on Morphisms, Lemma 36.17.5 the
open subset t−1(U ′) is dense in every fibre of s : R → U . This proves (3). Same
argument for (4). Part (5) is a formal consequence of (1) and (2) and the discussion
of restrictions in Groupoids, Section 38.16. �

39.8. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(39.8.0.1)

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′
g // U

of a restriction. See Groupoids, Lemma 38.16.1.

Lemma 39.8.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition
and arbitrary base change, see Morphisms, Lemmas 28.16.3 and 28.16.4. Hence
(1) is clear from Diagram (39.8.0.1). For the other cases, see Morphisms, Lemmas
28.22.3, 28.22.4, 28.26.5, and 28.26.7. �

The following lemma could have been used to prove the results of the preceding
lemma in a more uniform way.

Lemma 39.8.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g, and let h = s ◦ pr1 : U ′ ×g,U,t R → U . If P is a property of
morphisms of schemes such that

(1) h has property P, and
(2) P is preserved under base change,

then s′, t′ have property P.

Proof. This is clear as s′ is the base change of h by Diagram (39.8.0.1) and t′ is
isomorphic to s′ as a morphism of schemes. �
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Lemma 39.8.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let g : U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g ◦ g′. Let
(U ′, R′, s′, t′, c′) be the restriction of R to U ′. Let h = s ◦ pr1 : U ′×g,U,t R→ U , let
h′ = s′ ◦ pr1 : U ′′ ×g′,U ′,t R → U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R → U . The
following diagram is commutative

U ′′ ×g′,U ′,t R′

h′

��

(U ′ ×g,U,t R)×U (U ′′ ×g′′,U,t R)oo //

��

U ′′ ×g′′,U,t R

h′′

��
U ′ U ′ ×g,U,t R

pr0oo h // U

with both squares cartesian where the left upper horizontal arrow is given by the
rule

(U ′ ×g,U,t R)×U (U ′′ ×g′′,U,t R) −→ U ′′ ×g′,U ′,t R′
((u′, r0), (u′′, r1)) 7−→ (u′′, (c(r1, i(r0)), (g′(u′′), u′)))

with notation as explained in the proof.

Proof. We work this out by exploiting the functorial point of view and reducing the
lemma to a statement on arrows in restrictions of a groupoid category. In the last
formula of the lemma the notation ((u′, r0), (u′′, r1)) indicates a T -valued point of
(U ′×g,U,tR)×U (U ′′×g′′,U,tR). This means that u′, u′′, r0, r1 are T -valued points of
U ′, U ′′, R,R and that g(u′) = t(r0), g(g′(u′′)) = g′′(u′′) = t(r1), and s(r0) = s(r1).
It would be more correct here to write g ◦ u′ = t ◦ r0 and so on but this makes the
notation even more unreadable. If we think of r1 and r0 as arrows in a groupoid
category then we can represent this by the picture

t(r0) = g(u′) s(r0) = s(r1)
r0oo r1 // t(r1) = g(g′(u′′))

This diagram in particular demonstrates that the composition c(r1, i(r0)) makes
sense. Recall that

R′ = R×(t,s),U×SU,g×g U
′ ×S U ′

hence a T -valued point of R′ looks like (r, (u′0, u
′
1)) with t(r) = g(u′0) and s(r) =

g(u′1). In particular given ((u′, r0), (u′′, r1)) as above we get the T -valued point
(c(r1, i(r0)), (g′(u′′), u′)) of R′ because we have t(c(r1, i(r0))) = t(r1) = g(g′(u′′))
and s(c(r1, i(r0))) = s(i(r0)) = t(r0) = g(u′). We leave it to the reader to show
that the left square commutes with this definition.

To show that the left square is cartesian, suppose we are given (v′′, p′) and (v′, p)
which are T -valued points of U ′′ ×g′,U ′,t R′ and U ′ ×g,U,t R with v′ = s′(p′). This
also means that g′(v′′) = t′(p′) and g(v′) = t(p). By the discussion above we know
that we can write p′ = (r, (u′0, u

′
1)) with t(r) = g(u′0) and s(r) = g(u′1). Using this

notation we see that v′ = s′(p′) = u′1 and g′(v′′) = t′(p′) = u′0. Here is a picture

s(p)
p // g(v′) = g(u′1)

r // g(u′0) = g(g′(v′′))

What we have to show is that there exists a unique T -valued point ((u′, r0), (u′′, r1))
as above such that v′ = u′, p = r0, v′′ = u′′ and p′ = (c(r1, i(r0)), (g′(u′′), u′)).
Comparing the two diagrams above it is clear that we have no choice but to take

((u′, r0), (u′′, r1)) = ((v′, p), (v′′, c(r, p))

Some details omitted. �
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Lemma 39.8.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let g : U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g ◦ g′. Let
(U ′, R′, s′, t′, c′) be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U ,
let h′ = s′ ◦ pr1 : U ′′ ×g′,U ′,t R → U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R → U .
Let τ ∈ {Zariski, étale, smooth, syntomic, fppf, fpqc}. Let P be a property of
morphisms of schemes which is preserved under base change, and which is local on
the target for the τ -topology. If

(1) h(U ′ ×U R) is open in U ,
(2) {h : U ′ ×U R→ h(U ′ ×U R)} is a τ -covering,
(3) h′ has property P,

then h′′ has property P. Conversely, if

(a) {t : R→ U} is a τ -covering,
(d) h′′ has property P,

then h′ has property P.

Proof. This follows formally from the properties of the diagram of Lemma 39.8.3.
In the first case, note that the image of the morphism h′′ is contained in the image
of h, as g′′ = g ◦ g′. Hence we may replace the U in the lower right corner of the
diagram by h(U ′ ×U R). This explains the significance of conditions (1) and (2) in
the lemma. In the second case, note that {pr0 : U ′ ×g,U,t R → U ′} is a τ -covering
as a base change of τ and condition (a). �

39.9. Properties of groupoids on fields

A “groupoid on a field” indicates a groupoid scheme (U,R, s, t, c) where U is the
spectrum of a field. It does not mean that (U,R, s, t, c) is defined over a field, more
precisely, it does not mean that the morphisms s, t : R→ U are equal. Given any
field k, an abstract group G and a group homomorphism ϕ : G→ Aut(k) we obtain
a groupoid scheme (U,R, s, t, c) over Z by setting

U = Spec(k)

R =
∐

g∈G
Spec(k)

s =
∐

g∈G
Spec(idk)

t =
∐

g∈G
Spec(ϕ(g))

c = composition in G

This example still is a groupoid scheme over Spec(kG). Hence, if G is finite, then
U = Spec(k) is finite over Spec(kG). In some sense our goal in this section is to
show that suitable finiteness conditions on s, t force any groupoid on a field to be
defined over a finite index subfield k′ ⊂ k.

If k is a field and (G,m) is a group scheme over k with structure morphism p : G→
Spec(k), then (Spec(k), G, p, p,m) is an example of a groupoid on a field (and in
this case of course the whole structure is defined over a field). Hence this section
can be viewed as the analogue of Groupoids, Section 38.7.

Lemma 39.9.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
If U is the spectrum of a field, then the composition morphism c : R ×s,U,t R → R
is open.
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Proof. The composition is isomorphic to the projection map pr1 : R×t,U,t R→ R
by Diagram (39.3.0.3). The projection is open by Morphisms, Lemma 28.24.4. �

Lemma 39.9.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. If U is the spectrum of a field, then R is a separated scheme.

Proof. By Groupoids, Lemma 38.7.2 the stabilizer group scheme G → U is sep-
arated. By Groupoids, Lemma 38.20.2 the morphism j = (t, s) : R → U ×S U is
separated. As U is the spectrum of a field the scheme U ×S U is affine (by the
construction of fibre products in Schemes, Section 25.17). Hence R is a separated
scheme, see Schemes, Lemma 25.21.13. �

Lemma 39.9.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. For any points r, r′ ∈ R there exists a field
extension k ⊂ k′ and points r1, r2 ∈ R×s,Spec(k) Spec(k′) and a diagram

R R×s,Spec(k) Spec(k′)
pr0oo ϕ // R×s,Spec(k) Spec(k′)

pr0 // R

such that ϕ is an isomorphism of schemes over Spec(k′), we have ϕ(r1) = r2,
pr0(r1) = r, and pr0(r2) = r′.

Proof. This is a special case of Lemma 39.6.1 parts (1) and (2). �

Lemma 39.9.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. Let k ⊂ k′ be a field extension, U ′ =
Spec(k′) and let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In
the defining diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U

all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.

Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, sur-
jective and flat. The morphisms s, t : R → U and the morphism U ′ → U are
universally open by Morphisms, Lemma 28.24.4. Since R is not empty and U is the
spectrum of a field the morphisms s, t : R → U are surjective and flat. Then you
conclude by using Morphisms, Lemmas 28.11.4, 28.11.2, 28.24.3, 28.13.8, 28.13.7,
28.26.7, and 28.26.5. �

Lemma 39.9.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. For any point r ∈ R there exist

(1) a field extension k ⊂ k′ with k′ algebraically closed,
(2) a point r′ ∈ R′ where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via

Spec(k′)→ Spec(k)

such that
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(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′, t′ : R′ → Spec(k′) induce isomorphisms k′ → κ(r′).

Proof. Translating the geometric statement into a statement on fields, this means
that we can find a diagram

k′ k′
1

oo

k′

τ

OO

κ(r)

σ

aa

k
s

oo

i

``

k

i

aa

t

OO

where i : k → k′ is the embedding of k into k′, the maps s, t : k → κ(r) are induced
by s, t : R → U , and the map τ : k′ → k′ is an automorphism. To produce such a
diagram we may proceed in the following way:

(1) Pick i : k → k′ a field map with k′ algebraically closed of very large
transcendence degree over k.

(2) Pick an embedding σ : κ(r) → k′ such that σ ◦ s = i. Such a σ exists
because we can just choose a transcendence basis {xα}α∈A of κ(r) over k
and find yα ∈ k′, α ∈ A which are algebraically independent over i(k), and
map s(k)({xα}) into k′ by the rules s(λ) 7→ i(λ) for λ ∈ k and xα 7→ yα
for α ∈ A. Then extend to τ : κ(α) → k′ using that k′ is algebraically
closed.

(3) Pick an automorphism τ : k′ → k′ such that τ ◦ i = σ ◦ t. To do this
pick a transcendence basis {xα}α∈A of k over its prime field. On the one
hand, extend {i(xα)} to a transcendence basis of k′ by adding {yβ}β∈B
and extend {σ(t(xα))} to a transcendence basis of k′ by adding {zγ}γ∈C .
As k′ is algebraically closed we can extend the isomorphism σ ◦ t ◦ i−1 :
i(k) → σ(t(k)) to an isomorphism τ ′ : i(k) → σ(t(k)) of their algebraic
closures in k′. As k′ has large transcendence degree we see that the sets
B and C have the same cardinality. Thus we can use a bijection B → C
to extend τ ′ to an isomorphism

i(k)({yβ}) −→ σ(t(k))({zγ})

and then since k′ is the algebraic closure of both sides we see that this
extends to an automorphism τ : k′ → k′ as desired.

This proves the lemma. �

Lemma 39.9.6. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. If r ∈ R is a point such that s, t induce
isomorphisms k → κ(r), then the map

R −→ R, x 7−→ c(r, x)

(see proof for precise notation) is an automorphism R→ R which maps e to r.

Proof. This is completely obvious if you think about groupoids in a functorial way.
But we will also spell it out completely. Denote a : U → R the morphism with
image r such that s◦a = idU which exists by the hypothesis that s : k → κ(r) is an
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isomorphism. Similarly, denote b : U → R the morphism with image r such that
t ◦ b = idU . Note that b = a ◦ (t ◦ a)−1, in particular a ◦ s ◦ b = b.

Consider the morphism Ψ : R→ R given on T -valued points by

(f : T → R) 7−→ (c(a ◦ t ◦ f, f) : T → R)

To see this is defined we have to check that s ◦ a ◦ t ◦ f = t ◦ f which is obvious as
s ◦ a = 1. Note that Φ(e) = a, so that in order to prove the lemma it suffices to
show that Φ is an automorphism of R. Let Φ : R → R be the morphism given on
T -valued points by

(g : T → R) 7−→ (c(i ◦ b ◦ t ◦ g, g) : T → R).

This is defined because s ◦ i ◦ b ◦ t ◦ g = t ◦ b ◦ t ◦ g = t ◦ g. We claim that Φ and Ψ
are inverse to each other. To see this we compute

c(a ◦ t ◦ c(i ◦ b ◦ t ◦ g, g), c(i ◦ b ◦ t ◦ g, g))

= c(a ◦ t ◦ i ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))

= c(a ◦ s ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))

= c(b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))

= c(c(b ◦ t ◦ g, i ◦ b ◦ t ◦ g), g))

= c(e, g)

= g

where we have used the relation a ◦ s ◦ b = b shown above. In the other direction
we have

c(i ◦ b ◦ t ◦ c(a ◦ t ◦ f, f), c(a ◦ t ◦ f, f))

= c(i ◦ b ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))

= c(i ◦ a ◦ (t ◦ a)−1 ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))

= c(i ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))

= c(c(i ◦ a ◦ t ◦ f, a ◦ t ◦ f), f)

= c(e, f)

= f

The lemma is proved. �

Lemma 39.9.7. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. By abuse of notation denote e ∈ R the
image of the identity morphism e : U → R. Then

(1) every local ring OR,r of R has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of R passing through e, and
(3) Z is geometrically irreducible over k via either s or t.

Proof. Let r ∈ R be a point. In this proof we will use the correspondence between
irreducible components of R passing through a point r and minimal primes of the
local ring OR,r without further mention. Choose k ⊂ k′ and r′ ∈ R′ as in Lemma
39.9.5. Note that OR,r → OR′,r′ is faithfully flat and local, see Lemma 39.9.4.
Hence the result for r′ ∈ R′ implies the result for r ∈ R. In other words we may
assume that s, t : k → κ(r) are isomorphisms. By Lemma 39.9.6 there exists an
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automorphism moving e to r. Hence we may assume r = e, i.e., part (1) follows
from part (2).

We first prove (2) in case k is separably algebraically closed. Namely, let X,Y ⊂ R
be irreducible components passing through e. Then by Varieties, Lemma 32.6.4
and 32.6.3 the scheme X ×s,U,t Y is irreducible as well. Hence c(X ×s,U,t Y ) ⊂ R
is an irreducible subset. We claim it contains both X and Y (as subsets of R).
Namely, let T be the spectrum of a field. If x : T → X is a T -valued point of X,
then c(x, e ◦ s ◦x) = x and e ◦ s ◦x factors through Y as e ∈ Y . Similarly for points
of Y . This clearly implies that X = Y , i.e., there is a unique irreducible component
of R passing through e.

Proof of (2) and (3) in general. Let k ⊂ k′ be a separable algebraic closure, and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via Spec(k′) → Spec(k). By
the previous paragraph there is exactly one irreducible component Z ′ of R′ passing
through e′. Denote e′′ ∈ R ×s,U U ′ the base change of e. As R′ → R ×s,U U ′

is faithfully flat, see Lemma 39.9.4, and e′ 7→ e′′ we see that there is exactly
one irreducible component Z ′′ of R ×s,k k′ passing through e′′. This implies, as
R×k k′ → R is faithfully flat, that there is exactly one irreducible component Z of
R passing through e. This proves (2).

To prove (3) let Z ′′′ ⊂ R ×k k′ be an arbitrary irreducible component of Z ×k k′.
By Varieties, Lemma 32.6.12 we see that Z ′′′ = σ(Z ′′) for some σ ∈ Gal(k′/k).
Since σ(e′′) = e′′ we see that e′′ ∈ Z ′′′ and hence Z ′′′ = Z ′′. This means that Z
is geometrically irreducible over Spec(k) via the morphism s. The same argument
implies that Z is geometrically irreducible over Spec(k) via the morphism t. �

Lemma 39.9.8. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then

(1) R is equidimensional,
(2) dim(R) = dimr(R) for all r ∈ R,
(3) for any r ∈ R we have trdegs(k)(κ(r)) = trdegt(k)(κ(r)), and

(4) for any closed point r ∈ R we have dim(R) = dim(OR,r).

Proof. Let r, r′ ∈ R. Then dimr(R) = dimr′(R) by Lemma 39.9.3 and Morphisms,
Lemma 28.29.3. By Morphisms, Lemma 28.29.1 we have

dimr(R) = dim(OR,r) + trdegs(k)(κ(r)) = dim(OR,r) + trdegt(k)(κ(r)).

On the other hand, the dimension of R (or any open subset of R) is the supremum
of the dimensions of the local rings of of R, see Properties, Lemma 27.11.4. Clearly
this is maximal for closed points r in which case trdegk(κ(r)) = 0 (by the Hilbert
Nullstellensatz, see Morphisms, Section 28.17). Hence the lemma follows. �

Lemma 39.9.9. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then
dim(R) = dim(G) where G is the stabilizer group scheme of R.

Proof. Let Z ⊂ R be the irreducible component passing through e (see Lemma
39.9.7) thought of as an integral closed subscheme of R. Let k′s, resp. k′t be the
integral closure of s(k), resp. t(k) in Γ(Z,OZ). Recall that k′s and k′t are fields, see
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Varieties, Lemma 32.17.4. By Varieties, Proposition 32.18.1 we have k′s = k′t as
subrings of Γ(Z,OZ). As e factors through Z we obtain a commutative diagram

k

t ##

1

))Γ(Z,OZ)
e // k

k

s
;;

1

55

This on the one hand shows that k′s = s(k), k′t = t(k), so s(k) = t(k), which
combined with the diagram above implies that s = t! In other words, we conclude
that Z is a closed subscheme of G = R×(t,s),U×SU,∆U . The lemma follows as both
G and R are equidimensional, see Lemma 39.9.8 and Groupoids, Lemma 38.7.5. �

Remark 39.9.10. Warning: Lemma 39.9.9 is wrong without the condition that s
and t are locally of finite type. An easy example is to start with the action

Gm,Q ×Q A1
Q → A1

Q

and restrict the corresponding groupoid scheme to the generic point of A1
Q. In

other words restrict via the morphism Spec(Q(x))→ Spec(Q[x]) = A1
Q. Then you

get a groupoid scheme (U,R, s, t, c) with U = Spec(Q(x)) and

R = Spec

(
Q(x)[y]

[
1

P (xy)
, P ∈ Q[T ], P 6= 0

])
In this case dim(R) = 1 and dim(G) = 0.

Lemma 39.9.11. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type, and
(3) the characteristic of k is zero.

Then s, t : R→ U are smooth.

Proof. By Lemma 39.4.1 the sheaf of differentials of R→ U is free. Hence smooth-
ness follows from Varieties, Lemma 32.15.1. �

Lemma 39.9.12. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type,
(3) R is reduced, and
(4) k is perfect.

Then s, t : R→ U are smooth.

Proof. By Lemma 39.4.1 the sheaf ΩR/U is free. Hence the lemma follows from
Varieties, Lemma 32.15.2. �
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39.10. Morphisms of groupoids on fields

This section studies morphisms between groupoids on fields. This is slightly more
general, but very akin to, studying morphisms of groupschemes over a field.

Situation 39.10.1. Let S be a scheme. Let U = Spec(k) be a scheme over S
with k a field. Let (U,R1, s1, t1, c1), (U,R2, s2, t2, c2) be groupoid schemes over S
with identical first component. Let a : R1 → R2 be a morphism such that (idU , a)
defines a morphism of groupoid schemes over S, see Groupoids, Definition 38.11.1.
In particular, the following diagrams commute

R2

t2

((
s2

��

a
  
R1

t1

��

s1
// U

U

R1 ×s1,U,t1 R1 c1
//

a×a
��

R1

a

��
R2 ×s2,U,t2 R2

c2 // R2

The following lemma is a generalization of Groupoids, Lemma 38.7.11.

Lemma 39.10.2. Notation and assumptions as in Situation 39.10.1. If a(R1) is
open in R2, then a(R1) is closed in R2.

Proof. Let r2 ∈ R2 be a point in the closure of a(R1). We want to show r2 ∈ a(R1).
Pick k ⊂ k′ and r′2 ∈ R′2 adapted to (U,R2, s2, t2, c2) and r2 as in Lemma 39.9.5.
Let R′i be the restriction of Ri via the morphism U ′ = Spec(k′) → U = Spec(k).
Let a′ : R′1 → R′2 be the base change of a. The diagram

R′1
a′
//

p1

��

R′2

p2

��
R1

a // R2

is a fibre square. Hence the image of a′ is the inverse image of the image of a via
the morphism p2 : R′2 → R2. By Lemma 39.9.4 the map p2 is surjective and open.
Hence by Topology, Lemma 5.5.4 we see that r′2 is in the closure of a′(R′1). This
means that we may assume that r2 ∈ R2 has the property that the maps k → κ(r2)
induced by s2 and t2 are isomorphisms.

In this case we can use Lemma 39.9.6. This lemma implies c(r2, a(R1)) is an open
neighbourhood of r2. Hence a(R1) ∩ c(r2, a(R1)) 6= ∅ as we assumed that r2 was
a point of the closure of a(R1). Using the inverse of R2 and R1 we see this means
c2(a(R1), a(R1)) contains r2. As c2(a(R1), a(R1)) ⊂ a(c1(R1, R1)) = a(R1) we
conclude r2 ∈ a(R1) as desired. �

Lemma 39.10.3. Notation and assumptions as in Situation 39.10.1. Let Z ⊂ R2

be the reduced closed subscheme (see Schemes, Definition 25.12.5) whose underlying
topological space is the closure of the image of a : R1 → R2. Then c2(Z×s2,U,t2Z) ⊂
Z set theoretically.
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Proof. Consider the commutative diagram

R1 ×s1,U,t1 R1
//

��

R1

��
R2 ×s2,U,t2 R2

// R2

By Varieties, Lemma 32.14.2 the closure of the image of the left vertical arrow is
(set theoretically) Z ×s2,U,t2 Z. Hence the result follows. �

Lemma 39.10.4. Notation and assumptions as in Situation 39.10.1. Assume that
k is perfect. Let Z ⊂ R2 be the reduced closed subscheme (see Schemes, Definition
25.12.5) whose underlying topological space is the closure of the image of a : R1 →
R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)

is a groupoid scheme over S.

Proof. We first explain why the statement makes sense. Since U is the spec-
trum of a perfect field k, the scheme Z is geometrically reduced over k (via either
projection), see Varieties, Lemma 32.4.3. Hence the scheme Z ×s2,U,t2 Z ⊂ Z is
reduced, see Varieties, Lemma 32.4.7. Hence by Lemma 39.10.3 we see that c in-
duces a morphism Z ×s2,U,t2 Z → Z. Finally, it is clear that e2 factors through Z
and that the map i2 : R2 → R2 preserves Z. Since the morphisms of the septu-
ple (U,R2, s2, t2, c2, e2, i2) satisfies the axioms of a groupoid, it follows that after
restricting to Z they satisfy the axioms. �

Lemma 39.10.5. Notation and assumptions as in Situation 39.10.1. If the image
a(R1) is a locally closed subset of R2 then it is a closed subset.

Proof. Let k ⊂ k′ be a perfect closure of the field k. Let R′i be the restriction of
Ri via the morphism U ′ = Spec(k′)→ Spec(k). Note that the morphisms R′i → Ri
are universal homeomorphisms as compositions of base changes of the universal
homeomorphism U ′ → U (see diagram in statement of Lemma 39.9.4). Hence it
suffices to prove that a′(R′1) is closed in R′2. In other words, we may assume that
k is perfect.

If k is perfect, then the closure of the image is a groupoid scheme Z ⊂ R2, by
Lemma 39.10.4. By the same lemma applied to idR1 : R1 → R1 we see that
(R2)red is a groupoid scheme. Thus we may apply Lemma 39.10.2 to the morphism
a|(R2)red : (R2)red → Z to conclude that Z equals the image of a. �

Lemma 39.10.6. Notation and assumptions as in Situation 39.10.1. Assume that
a : R1 → R2 is a quasi-compact morphism. Let Z ⊂ R2 be the scheme theoretic
image (see Morphisms, Definition 28.6.2) of a : R1 → R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)

is a groupoid scheme over S.
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Proof. The main difficulty is to show that c2|Z×s2,U,t2Z maps into Z. Consider the
commutative diagram

R1 ×s1,U,t1 R1
//

a×a
��

R1

��
R2 ×s2,U,t2 R2

// R2

By Varieties, Lemma 32.14.3 we see that the scheme theoretic image of a × a is
Z ×s2,U,t2 Z. By the commutativity of the diagram we conclude that Z ×s2,U,t2 Z
maps into Z by the bottom horizontal arrow. As in the proof of Lemma 39.10.4 it
is also true that i2(Z) ⊂ Z and that e2 factors through Z. Hence we conclude as
in the proof of that lemma. �

Lemma 39.10.7. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U is the spectrum of a field. Let Z ⊂ U ×S U be the reduced closed
subscheme (see Schemes, Definition 25.12.5) whose underlying topological space is
the closure of the image of j = (t, s) : R→ U ×S U . Then pr02(Z×pr1,U,pr0

Z) ⊂ Z
set theoretically.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 39.10.3. But we can also prove it directly as follows.

Write U = Spec(k). Denote Rs (resp. Zs, resp. U2
s ) the scheme R (resp. Z, resp.

U ×S U) viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote

tR (resp. tZ, resp. tU
2) the scheme R (resp. Z, resp. U ×S U) viewed as a scheme

over k via t (resp. pr0|Z , resp. pr0). The morphism j induces morphisms of schemes
js : Rs → U2

s and tj : tR→ tU
2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj
��

R

j

��
U2
s ×k tU2 // U ×S U

By Varieties, Lemma 32.14.2 we see that the closure of the image of js × tj is
Zs ×k tZ. By the commutativity of the diagram we conclude that Zs ×k tZ maps
into Z by the bottom horizontal arrow. �

Lemma 39.10.8. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U is the spectrum of a perfect field. Let Z ⊂ U ×S U be the reduced
closed subscheme (see Schemes, Definition 25.12.5) whose underlying topological
space is the closure of the image of j = (t, s) : R→ U ×S U . Then

(U,Z, pr0|Z , pr1|Z , pr02|Z×pr1,U,pr0
Z)

is a groupoid scheme over S.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 39.10.4. But we can also prove it directly as follows.

We first explain why the statement makes sense. Since U is the spectrum of a perfect
field k, the scheme Z is geometrically reduced over k (via either projection), see
Varieties, Lemma 32.4.3. Hence the scheme Z ×pr1,U,pr0

Z ⊂ Z is reduced, see
Varieties, Lemma 32.4.7. Hence by Lemma 39.10.7 we see that pr02 induces a
morphism Z ×pr1,U,pr0

Z → Z. Finally, it is clear that ∆U/S factors through Z
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and that the map σ : U ×S U → U ×S U , (x, y) 7→ (y, x) preserves Z. Since
(U,U×S U,pr0,pr1,pr02,∆U/S , σ) satisfies the axioms of a groupoid, it follows that
after restricting to Z they satisfy the axioms. �

Lemma 39.10.9. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U is the spectrum of a field and assume R is quasi-compact (equivalently s, t
are quasi-compact). Let Z ⊂ U×SU be the scheme theoretic image (see Morphisms,
Definition 28.6.2) of j = (t, s) : R→ U ×S U . Then

(U,Z, pr0|Z , pr1|Z , pr02|Z×pr1,U,pr0
Z)

is a groupoid scheme over S.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 39.10.6. But we can also prove it directly as follows.

The main difficulty is to show that pr02|Z×pr1,U,pr0
Z maps into Z. Write U =

Spec(k). Denote Rs (resp. Zs, resp. U2
s ) the scheme R (resp. Z, resp. U ×S U)

viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote tR (resp.

tZ, resp. tU
2) the scheme R (resp. Z, resp. U ×S U) viewed as a scheme over

k via t (resp. pr0|Z , resp. pr0). The morphism j induces morphisms of schemes
js : Rs → U2

s and tj : tR→ tU
2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj
��

R

j

��
U2
s ×k tU2 // U ×S U

By Varieties, Lemma 32.14.3 we see that the scheme theoretic image of js × tj is
Zs ×k tZ. By the commutativity of the diagram we conclude that Zs ×k tZ maps
into Z by the bottom horizontal arrow. As in the proof of Lemma 39.10.8 it is also
true that σ(Z) ⊂ Z and that ∆U/S factors through Z. Hence we conclude as in the
proof of that lemma. �

39.11. Slicing groupoids

The following lemma shows that we may slice a Cohen-Macaulay groupoid scheme
in order to reduce the dimension of the fibres, provided that the dimension of the
stabilizer is small. This is an essential step in the process of improving a given
presentation of a quotient stack.

Situation 39.11.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Let g : U ′ → U be a morphism of schemes. Let u ∈ U be a point, and let
u′ ∈ U ′ be a point such that g(u′) = u. Given these data, denote (U ′, R′, s′, t′, c′) the
restriction of (U,R, s, t, c) via the morphism g. Denote G→ U the stabilizer group
scheme of R, which is a locally closed subscheme of R. Denote h the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U.

Denote Fu = s−1(u) (scheme theoretic fibre), and Gu the scheme theoretic fibre of
G over u. Similarly for R′ we denote F ′u′ = (s′)−1(u′). Because g(u′) = u we have

F ′u′ = h−1(u)×Spec(κ(u)) Spec(κ(u′)).

The point e(u) ∈ R may be viewed as a point on Gu and Fu also, and e′(u′) is a
point of R′ (resp. G′u′ , resp. F ′u′) which maps to e(u) in R (resp. Gu, resp. Fu).

http://stacks.math.columbia.edu/tag/04QD
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Lemma 39.11.2. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme
over S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-
Macaulay and locally of finite presentation. Let u ∈ U be a finite type point of
the scheme U , see Morphisms, Definition 28.17.3. With notation as in Situation
39.11.1, set

d1 = dim(Gu), d2 = dime(u)(Fu).

If d2 > d1, then there exist an affine scheme U ′ and a morphism g : U ′ → U such
that (with notation as in Situation 39.11.1)

(1) g is an immersion
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay at (u, e(u)), and
(5) we have dime′(u)(F

′
u) = d2 − 1.

Proof. Let Spec(A) ⊂ U be an affine neighbourhood of u such that u corresponds
to a closed point of U , see Morphisms, Lemma 28.17.4. Let Spec(B) ⊂ R be an
affine neighbourhood of e(u) which maps via j into the open Spec(A)×S Spec(A) ⊂
U ×S U . Let m ⊂ A be the maximal ideal corresponding to u. Let q ⊂ B be the
prime ideal corresponding to e(u). Pictures:

B A
s
oo

A

t

OO

and

Bq Ams
oo

Am

t

OO

Note that the two induced maps s, t : κ(m)→ κ(q) are equal and isomorphisms as
s ◦ e = t ◦ e = idU . In particular we see that q is a maximal ideal as well. The ring
maps s, t : A→ B are of finite presentation and flat. By assumption the ring

OFu,e(u) = Bq/s(m)Bq

is Cohen-Macaulay of dimension d2. The equality of dimension holds by Morphisms,
Lemma 28.29.1.

Let R′′ be the restriction of R to u = Spec(κ(u)) via the morphism Spec(κ(u))→ U .
As u → U is locally of finite type, we see that (Spec(κ(u)), R′′, s′′, t′′, c′′) is a
groupoid scheme with s′′, t′′ locally of finite type, see Lemma 39.8.1. By Lemma
39.9.9 this implies that dim(G′′) = dim(R′′). We also have dim(R′′) = dime′′(R

′′) =
dim(OR′′,e′′), see Lemma 39.9.8. By Groupoids, Lemma 38.16.4 we have G′′ = Gu.
Hence we conclude that dim(OR′′,e′′) = d1.

As a scheme R′′ is

R′′ = R×(U×SU)

(
Spec(κ(m))×S Spec(κ(m))

)
Hence an affine open neighbourhood of e′′ is the spectrum of the ring

B ⊗(A⊗A) (κ(m)⊗ κ(m)) = B/s(m)B + t(m)B

We conclude that

OR′′,e′′ = Bq/s(m)Bq + t(m)Bq

and so now we know that this ring has dimension d1.

http://stacks.math.columbia.edu/tag/0461
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We claim this implies we can find an element f ∈ m such that

dim(Bq/(s(m)Bq + fBq) < d2

Namely, suppose nj ⊃ s(m)Bq, j = 1, . . . ,m correspond to the minimal primes of
the local ring Bq/s(m)Bq. There are finitely many as this ring is Noetherian (since
it is essentially of finite type over a field – but also because a Cohen-Macaulay ring
is Noetherian). By the Cohen-Macaulay condition we have dim(Bq/nj) = d2, for
example by Algebra, Lemma 10.100.4. Note that dim(Bq/(nj + t(m)Bq)) ≤ d1 as
it is a quotient of the ring OR′′,e′′ = Bq/s(m)Bq + t(m)Bq which has dimension
d1. As d1 < d2 this implies that m 6⊂ t−1(ni). By prime avoidance, see Algebra,
Lemma 10.14.2, we can find f ∈ m with t(f) 6∈ nj for j = 1, . . . ,m. For this choice
of f we have the displayed inequality above, see Algebra, Lemma 10.59.11.

Set A′ = A/fA and U ′ = Spec(A′). Then it is clear that U ′ → U is an immersion,
locally of finite presentation and that u ∈ U ′. Thus (1), (2) and (3) of the lemma
hold. The morphism

U ′ ×g,U,t R −→ U

factors through Spec(A) and corresponds to the ring map

B/t(f)B A/(f)⊗A,t B A
soo

Now, we see t(f) is not a zerodivisor on Bq/s(m)Bq as this is a Cohen-Macaulay ring
of positive dimension and f is not contained in any minimal prime, see for example
Algebra, Lemma 10.100.2. Hence by Algebra, Lemma 10.124.5 we conclude that
s : Am → Bq/t(f)Bq is flat with fibre ring Bq/(s(m)Bq + t(f)Bq) which is Cohen-
Macaulay by Algebra, Lemma 10.100.2 again. This implies part (4) of the lemma.
To see part (5) note that by Diagram (39.8.0.1) the fibre F ′u is equal to the fibre of h
over u. Hence dime′(u)(F

′
u) = dim(Bq/(s(m)Bq + t(f)Bq)) by Morphisms, Lemma

28.29.1 and the dimension of this ring is d2 − 1 by Algebra, Lemma 10.100.2 once
more. This proves the final assertion of the lemma and we win. �

Now that we know how to slice we can combine it with the preceding material to get
the following “optimal” result. It is optimal in the sense that since Gu is a locally
closed subscheme of Fu one always has the inequality dim(Gu) = dime(u)(Gu) ≤
dime(u)(Fu) so it is not possible to slice more than in the lemma.

Lemma 39.11.3. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme
over S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-
Macaulay and locally of finite presentation. Let u ∈ U be a finite type point of
the scheme U , see Morphisms, Definition 28.17.3. With notation as in Situation
39.11.1 there exist an affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay and locally of

finite presentation,
(5) the morphisms s′, t′ : R′ → U ′ are Cohen-Macaulay and locally of finite

presentation, and
(6) dime(u)(F

′
u) = dim(G′u).
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Proof. As s is locally of finite presentation the scheme Fu is locally of finite type
over κ(u). Hence dime(u)(Fu) <∞ and we may argue by induction on dime(u)(Fu).

If dime(u)(Fu) = dim(Gu) there is nothing to prove. Assume dime(u)(Fu) >
dim(Gu). This means that Lemma 39.11.2 applies and we find a morphism g :
U ′ → U which has properties (1), (2), (3), instead of (6) we have dime(u)(F

′
u) <

dime(u)(Fu), and instead of (4) and (5) we have that the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U

is Cohen-Macaulay at the point (u, e(u)). We apply Remark 39.5.3 and we obtain
an open subscheme U ′′ ⊂ U ′ such that U ′′ ×g,U,t R ⊂ U ′ ×g,U,t R is the largest
open subscheme on which h is Cohen-Macaulay. Since (u, e(u)) ∈ U ′′ ×g,U,t R we
see that u ∈ U ′′. Hence we may replace U ′ by U ′′ and assume that in fact h is
Cohen-Macaulay everywhere! By Lemma 39.8.2 we conclude that s′, t′ are locally
of finite presentation and Cohen-Macaulay (use Morphisms, Lemma 28.22.4 and
More on Morphisms, Lemma 36.17.4).

By construction dime′(u)(F
′
u) < dime(u)(Fu), so we may apply the induction hy-

pothesis to (U ′, R′, s′, t′, c′) and the point u ∈ U ′. Note that u is also a finite type
point of U ′ (for example you can see this using the characterization of finite type
points from Morphisms, Lemma 28.17.4). Let g′ : U ′′ → U ′ and (U ′′, R′′, s′′, t′′, c′′)
be the solution of the corresponding problem starting with (U ′, R′, s′, t′, c′) and the
point u ∈ U ′. We claim that the composition

g′′ = g ◦ g′ : U ′′ −→ U

is a solution for the original problem. Properties (1), (2), (3), (5), and (6) are
immediate. To see (4) note that the morphism

h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R −→ U

is locally of finite presentation and Cohen-Macaulay by an application of Lemma
39.8.4 (use More on Morphisms, Lemma 36.17.9 to see that Cohen-Macaulay mor-
phisms are fppf local on the target). �

In case the stabilizer group scheme has fibres of dimension 0 this leads to the
following slicing lemma.

Lemma 39.11.4. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme
over S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-
Macaulay and locally of finite presentation. Let u ∈ U be a finite type point of
the scheme U , see Morphisms, Definition 28.17.3. Assume that G → U is locally
quasi-finite. With notation as in Situation 39.11.1 there exist an affine scheme U ′

and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is flat, locally of finite presentation,

and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation, and

locally quasi-finite.
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Proof. Take g : U ′ → U as in Lemma 39.11.3. Since h−1(u) = F ′u we see that
h has relative dimension ≤ 0 at (u, e(u)). Hence, by Remark 39.5.3, we obtain
an open subscheme U ′′ ⊂ U ′ such that u ∈ U ′′ and U ′′ ×g,U,t R is the maximal
open subscheme of U ′ ×g,U,t R on which h has relative dimension ≤ 0. After
replacing U ′ by U ′′ we see that h has relative dimension ≤ 0. This implies that h is
locally quasi-finite by Morphisms, Lemma 28.30.5. Since it is still locally of finite
presentation and Cohen-Macaulay we see that it is flat, locally of finite presentation
and locally quasi-finite, i.e., (4) above holds. This implies that s′ is flat, locally
of finite presentation and locally quasi-finite as a base change of h, see Lemma
39.8.2. �

39.12. Étale localization of groupoids

In this section we begin applying the étale localization techniques of More on Mor-
phisms, Section 36.30 to groupoid schemes. More advanced material of this kind
can be found in More on Groupoids in Spaces, Section 61.12. Lemma 39.12.2 will be
used to prove results on algebraic spaces separated and quasi-finite over a scheme,
namely Morphisms of Spaces, Proposition 49.44.2 and its corollary Morphisms of
Spaces, Lemma 49.45.1.

Lemma 39.12.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let p ∈ S be a point, and let u ∈ U be a point lying over p. Assume that

(1) U → S is locally of finite type,
(2) U → S is quasi-finite at u,
(3) U → S is separated,
(4) R→ S is separated,
(5) s, t are flat and locally of finite presentation, and
(6) s−1({u}) is finite.

Then there exists an étale neighbourhood (S′, p′) → (S, p) with κ(p) = κ(p′) and a
base change diagram

R′
∐
W ′ S′ ×S R //

s′

��
t′

��

R

s

��
t

��
U ′
∐
W S′ ×S U //

��

U

��
S′ // S

where the equal signs are decompositions into open and closed subschemes such that

(a) there exists a point u′ of U ′ mapping to u in U ,
(b) the fibre (U ′)p′ equals t′

(
(s′)−1({u′})

)
set theoretically,

(c) the fibre (R′)p′ equals (s′)−1
(
(U ′)p′

)
set theoretically,

(d) the schemes U ′ and R′ are finite over S′,
(e) we have s′(R′) ⊂ U ′ and t′(R′) ⊂ U ′,
(f) we have c′(R′ ×s′,U ′,t′ R′) ⊂ R′ where c′ is the base change of c, and
(g) the morphisms s′, t′, c′ determine a groupoid structure by taking the system

(U ′, R′, s′|R′ , t′|R′ , c′|R′×s′,U′,t′R′).
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Proof. Let us denote f : U → S the structure morphism of U . By assumption (6)
we can write s−1({u}) = {r1, . . . , rn}. Since this set is finite, we see that s is quasi-
finite at each of these finitely many inverse images, see Morphisms, Lemma 28.21.7.
Hence we see that f ◦ s : R → S is quasi-finite at each ri (Morphisms, Lemma
28.21.12). Hence ri is isolated in the fibre Rp, see Morphisms, Lemma 28.21.6.
Write t({r1, . . . , rn}) = {u1, . . . , um}. Note that it may happen that m < n and
note that u ∈ {u1, . . . , um}. Since t is flat and locally of finite presentation, the
morphism of fibres tp : Rp → Up is flat and locally of finite presentation (Morphisms,
Lemmas 28.26.7 and 28.22.4), hence open (Morphisms, Lemma 28.26.9). The fact
that each ri is isolated in Rp implies that each uj = t(ri) is isolated in Up. Using
Morphisms, Lemma 28.21.6 again, we see that f is quasi-finite at u1, . . . , um.

Denote Fu = s−1(u) and Fuj = s−1(uj) the scheme theoretic fibres. Note that Fu
is finite over κ(u) as it is locally of finite type over κ(u) with finitely many points
(for example it follows from the much more general Morphisms, Lemma 28.50.8).
By Lemma 39.6.1 we see that Fu and Fuj become isomorphic over a common field
extension of κ(u) and κ(uj). Hence we see that Fuj is finite over κ(uj). In particular

we see s−1({uj}) is a finite set for each j = 1, . . . ,m. Thus we see that assumptions
(2) and (6) hold for each uj also (above we saw that U → S is quasi-finite at
uj). Hence the argument of the first paragraph applies to each uj and we see that
R→ U is quasi-finite at each of the points of

{r1, . . . , rN} = s−1({u1, . . . , um})
Note that t({r1, . . . , rN}) = {u1, . . . , um} and t−1({u1, . . . , um}) = {r1, . . . , rN}
since R is a groupoid2. Moreover, we have pr0(c−1({r1, . . . , rN})) = {r1, . . . , rN}
and pr1(c−1({r1, . . . , rN})) = {r1, . . . , rN}. Similarly we get e({u1, . . . , um}) ⊂
{r1, . . . , rN} and i({r1, . . . , rN}) = {r1, . . . , rN}.
We may apply More on Morphisms, Lemma 36.30.4 to the pairs (U → S, {u1, . . . , um})
and (R → S, {r1, . . . , rN}) to get an étale neighbourhood (S′, p′) → (S, p) which
induces an identification κ(p) = κ(p′) such that S′×S U and S′×S R decompose as

S′ ×S U = U ′
∐

W, S′ ×S R = R′
∐

W ′

with U ′ → S′ finite and (U ′)p′ mapping bijectively to {u1, . . . , um}, and R′ → S′

finite and (R′)p′ mapping bijectively to {r1, . . . , rN}. Moreover, no point of Wp′

(resp. (W ′)p′) maps to any of the points uj (resp. ri). At this point (a), (b), (c), and
(d) of the lemma are satisfied. Moreover, the inclusions of (e) and (f) hold on fibres
over p′, i.e., s′((R′)p′) ⊂ (U ′)p′ , t

′((R′)p′) ⊂ (U ′)p′ , and c′((R′ ×s′,U ′,t′ R′)p′) ⊂
(R′)p′ .

We claim that we can replace S′ by a Zariski open neighbourhood of p′ so that the
inclusions of (e) and (f) hold. For example, consider the set E = (s′|R′)−1(W ).
This is open and closed in R′ and does not contain any points of R′ lying over
p′. Since R′ → S′ is closed, after replacing S′ by S′ \ (R′ → S′)(E) we reach a
situation where E is empty. In other words s′ maps R′ into U ′. Note that this
property is preserved under further shrinking S′. Similarly, we can arrange it so
that t′ maps R′ into U ′. At this point (e) holds. In the same manner, consider the

2Explanation in groupoid language: The original set {r1, . . . , rn} was the set of arrows with
source u. The set {u1, . . . , um} was the set of objects isomorphic to u. And {r1, . . . , rN} is the

set of all arrows between all the objects equivalent to u.
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set E = (c′|R′×s′,U′,t′R′)
−1(W ′). It is open and closed in the scheme R′ ×s′,U ′,t′ R′

which is finite over S′, and does not contain any points lying over p′. Hence after
replacing S′ by S′ \(R′×s′,U ′,t′R′ → S′)(E) we reach a situation where E is empty.
In other words we obtain the inclusion in (f). We may repeat the argument also
with the identity e′ : S′ ×S U → S′ ×S R and the inverse i′ : S′ ×S R → S′ ×S R
so that we may assume (after shrinking S′ some more) that (e′|U ′)−1(W ′) = ∅ and
(i′|R′)−1(W ′) = ∅.

At this point we see that we may consider the structure

(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′R′ , e
′|U ′ , i′|R′).

The axioms of a groupoid scheme over S′ hold because they hold for the groupoid
scheme (S′ ×S U, S′ ×S R, s′, t′, c′, e′, i′). �

Lemma 39.12.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let p ∈ S be a point, and let u ∈ U be a point lying over p. Assume assumptions
(1) – (6) of Lemma 39.12.1 hold as well as

(7) j : R→ U ×S U is universally closed3.

Then we can choose (S′, p′) → (S, p) and decompositions S′ ×S U = U ′ qW and
S′ ×S R = R′ qW ′ and u′ ∈ U ′ such that (a) – (g) of Lemma 39.12.1 hold as well
as

(h) R′ is the restriction of S′ ×S R to U ′.

Proof. We apply Lemma 39.12.1 for the groupoid (U,R, s, t, c) over the scheme S
with points p and u. Hence we get an étale neighbourhood (S′, p′) → (S, p) and
disjoint union decompositions

S′ ×S U = U ′ qW, S′ ×S R = R′ qW ′

and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), and (g). We may shrink
S′ to a smaller neighbourhood of p′ without affecting the conclusions (a) – (g). We
will show that for a suitable shrinking conclusion (h) holds as well. Let us denote
j′ the base change of j to S′. By conclusion (e) it is clear that

j′−1(U ′ ×S′ U ′) = R′ qRest

for some open and closed Rest piece. Since U ′ → S′ is finite by conclusion (d) we
see that U ′×S′U ′ is finite over S′. Since j is universally closed, also j′ is universally
closed, and hence j′|Rest is universally closed too. By conclusions (b) and (c) we
see that the fibre of

(U ′ ×S′ U ′ → S′) ◦ j′|Rest : Rest −→ S′

over p′ is empty. Hence, since Rest → S′ is closed as a composition of closed
morphisms, after replacing S′ by S′\Im(Rest→ S′), we may assume that Rest = ∅.
And this is exactly the condition that R′ is the restriction of S′ ×S R to the open
subscheme U ′ ⊂ S′ ×S U , see Groupoids, Lemma 38.16.3 and its proof. �

3In view of the other conditions this is equivalent to requiring j to be proper.
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39.13. Finite groupoids

A groupoid scheme (U,R, s, t, c) is sometimes called finite if the morphisms s and
t are finite. This is potentially confusing as it doesn’t imply that U or R or the
quotient sheaf U/R is finite over anything.

Lemma 39.13.1. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite. There exists a sequence of R-invariant closed subschemes

U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .
such that

⋂
Zr = ∅ and such that s−1(Zr−1) \ s−1(Zr)→ Zr−1 \Zr is finite locally

free of rank r.

Proof. Let {Zr} be the stratification of U given by the fitting ideals of the finite
type quasi-coherent modules s∗OR. See More on Flatness, Lemma 37.20.3. Since
the identity e : U → R is a section to s we see that s∗OR contains OS as a direct
summand. Hence U = Z−1 = Z0 (details omitted). Since formation of fitting ideals
commutes with base change (More on Algebra, Lemma 15.5.4) we find that s−1(Zr)
corresponds to the rth fitting ideal of pr1,∗OR×s,U,tR because the lower right square
of diagram (39.3.0.2) is cartesian. Using the fact that the lower left square is also
cartesian we conclude that s−1(Zr) = t−1(Zr), in other words Zr is R-invariant.
The morphism s−1(Zr−1) \ s−1(Zr) → Zr−1 \ Zr is finite locally free of rank r
because the module s∗OR pulls back to a finite locally free module of rank r on
Zr−1 \ Zr by More on Flatness, Lemma 37.20.3. �

Lemma 39.13.2. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite. There exists an open subscheme W ⊂ U and a closed subscheme
W ′ ⊂W such that

(1) W and W ′ are R-invariant,
(2) U = t(s−1(W )) set theoretically,
(3) W is a thickening of W ′, and
(4) the maps s′, t′ of the restriction (W ′, R′, s′, t′, c′) are finite locally free.

Proof. Consider the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 39.13.1.

We will construct disjoint unions W =
∐
r≥1Wr and W ′ =

∐
r≥1W

′
r with each

W ′r → Wr a thickening of R-invariant subschemes of U such that the morphisms
s′r, t

′
r of the restrictions (W ′r, R

′
r, s
′
r, t
′
r, c
′
r) are finite locally free of rank r. To begin

we setW1 = W ′1 = U\Z1. This is anR-invariant open subscheme of U , it is true that
W0 is a thickening of W ′0, and the maps s′1, t′1 of the restriction (W ′1, R

′
1, s
′
1, t
′
1, c
′
1)

are isomorphisms, i.e., finite locally free of rank 1. Moreover, every point of U \Z1

is in t(s−1(W1)).

Assume we have found subschemes W ′r ⊂Wr ⊂ U for r ≤ n such that

(1) W1, . . . ,Wn are disjoint,
(2) Wr and W ′r are R-invariant,
(3) U \ Zn ⊂

⋃
r≤n t(s

−1(Wr)) set theoretically,

(4) Wr is a thickening of W ′r,
(5) the maps s′r, t

′
r of the restriction (W ′r, R

′
r, s
′
r, t
′
r, c
′
r) are finite locally free

of rank r.

Then we set

Wn+1 = Zn \
(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)
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set theoretically and

W ′n+1 = Zn \
(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

scheme theoretically. Then Wn+1 is an R-invariant open subscheme of U because

Zn+1 \ U \ Zn+1 is open in U and U \ Zn+1 is contained in the closed subset⋃
r≤n t(s

−1(Wr)) we are removing by property (3) and the fact that t is a closed

morphism. It is clear that W ′n+1 is a closed subscheme of Wn+1 with the same
underlying topological space. Finally, properties (1), (2) and (3) are clear and
property (5) follows from Lemma 39.13.1.

By Lemma 39.13.1 we have
⋂
Zr = ∅. Hence every point of U is contained in U \Zn

for some n. Thus we see that U =
⋃
r≥1 t(s

−1(Wr)) set theoretically and we see

that (2) holds. Thus W ′ ⊂W satisfy (1), (2), (3), and (4). �

Let (U,R, s, t, c) be a groupoid scheme. Given a point u ∈ U the R-orbit of u is the
subset t(s−1({u})) of U .

Lemma 39.13.3. In Lemma 39.13.2 assume in addition that s and t are of finite
presentation. Then

(1) the morphism W ′ →W is of finite presentation, and
(2) if u ∈ U is a point whose R-orbit consists of generic points of irreducible

components of U , then u ∈W .

Proof. In this case the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 39.13.1
is given by closed immersions Zk → U of finite presentation, see More on Flatness,
Lemma 37.20.3. Part (1) follows immediately from this as W ′ →W is locally given
by intersecting the open W by Zr. To see part (2) let {u1, . . . , un} be the orbit
of u. Since the closed subschemes Zk are R-invariant and

⋂
Zk = ∅, we find an k

such that ui ∈ Zk and ui 6∈ Zk+1 for all i. The image of Zk → U and Zk+1 → U
is locally constructible (Morphisms, Theorem 28.23.3). Since ui ∈ U is a generic
point of an irreducible component of U , there exists an open neighbourhood Ui of
ui which is contained in Zk \Zk+1 set theoretically (Properties, Lemma 27.2.2). In
the proof of Lemma 39.13.2 we have constructed W as a disjoint union

∐
Wr with

Wr ⊂ Zr−1 \Zr such that U =
⋃
t(s−1(Wr)). As {u1, . . . , un} is an R-orbit we see

that u ∈ t(s−1(Wr)) implies ui ∈ Wr for some i which implies Ui ∩Wr 6= ∅ which
implies r = k. Thus we conclude that u is in

Wk+1 = Zk \
(
Zk+1 ∪

⋃
r≤k

t(s−1(Wr))
)

as desired. �

Lemma 39.13.4. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite and of finite presentation and U quasi-separated. Let u1, . . . , um ∈ U
be points whose orbits consist of generic points of irreducible components of U .
Then there exist R-invariant subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening of finite presentation,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally

free.
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Proof. Let W ′ ⊂ W ⊂ U be as in Lemma 39.13.2. By Lemma 39.13.3 we get
uj ∈W and that W ′ →W is a thickening of finite presentation. By Limits, Lemma
31.10.3 it suffices to find an R-invariant affine open subscheme V ′ of W ′ containing
uj (because then we can let V ⊂ W be the corresponding open subscheme which
will be affine). Thus we may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′)
to W ′. In other words, we may assume we have a groupoid scheme (U,R, s, t, c)
whose morphisms s and t are finite locally free. By Properties, Lemma 27.27.1 we
can find an affine open containing the union of the orbits of u1, . . . , um. Finally, we
can apply Groupoids, Lemma 38.22.1 to conclude. �

The following lemma is a special case of Lemma 39.13.4 but we redo the argument
as it is slightly easier in this case (it avoids using Lemma 39.13.3).

Lemma 39.13.5. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t finite, U is locally Noetherian, and u1, . . . , um ∈ U points whose orbits consist
of generic points of irreducible components of U . Then there exist R-invariant
subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally

free.

Proof. Let {uj1, . . . , ujnj} be the orbit of uj . Let W ′ ⊂ W ⊂ U be as in Lemma

39.13.2. Since U = t(s−1(W )) we see that at least one uji ∈ W . Since uji is a
generic point of an irreducible component and U locally Noetherian, this implies
that uji ∈ W . Since W is R-invariant, we conclude that uj ∈ W and in fact
the whole orbit is contained in W . By Cohomology of Schemes, Lemma 29.13.3 it
suffices to find an R-invariant affine open subscheme V ′ of W ′ containing u1, . . . , um
(because then we can let V ⊂ W be the corresponding open subscheme which will
be affine). Thus we may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′) to
W ′. In other words, we may assume we have a groupoid scheme (U,R, s, t, c) whose
morphisms s and t are finite locally free. By Properties, Lemma 27.27.1 we can find
an affine open containing {uij} (a locally Noetherian scheme is quasi-separated by
Properties, Lemma 27.5.4). Finally, we can apply Groupoids, Lemma 38.22.1 to
conclude. �

Lemma 39.13.6. Let (U,R, s, t, c) be a groupoid scheme over a scheme S with
s, t integral. Let g : U ′ → U be an integral morphism such that every R-orbit in
U meets g(U ′). Let (U ′, R′, s′, t′, c′) be the restriction of R to U ′. If u′ ∈ U ′ is
contained in an R′-invariant affine open, then the image u ∈ U is contained in an
R-invariant affine open of U .

Proof. Let W ′ ⊂ U ′ be an R′-invariant affine open. Set R̃ = U ′×g,U,tR with maps

pr0 : R̃ → U ′ and h = s ◦ pr1 : R̃ → U . Observe that pr0 and h are integral. It

follows that W̃ = pr−1
0 (W ′) is affine. SinceW ′ is R′-invariant, the imageW = h(W̃ )

is set theoretically R-invariant and W̃ = h−1(W ) set theoretically (details omitted).

Thus, if we can show thatW is open, thenW is a scheme and the morphism W̃ →W
is integral surjective which implies that W is affine by Limits, Proposition 31.10.2.
However, our assumption on orbits meeting U ′ implies that h : R̃→ U is surjective.
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Since an integral surjective morphism is submersive (Topology, Lemma 5.5.5 and
Morphisms, Lemma 28.44.7) it follows that W is open. �

The following technical lemma produces “almost” invariant functions in the situa-
tion of a finite groupoid on a quasi-affine scheme.

Lemma 39.13.7. Let (U,R, s, t, c) be a groupoid scheme with s, t finite and of finite
presentation. Let u1, . . . , um ∈ U be points whose R-orbits consist of generic points
of irreducible components of U . Let j : U → Spec(A) be an immersion. Let I ⊂ A
be an ideal such that j(U) ∩ V (I) = ∅ and V (I) ∪ j(U) is closed in Spec(A). Then
there exists an h ∈ I such that j−1D(h) is an R-invariant affine open subscheme
of U containing u1, . . . , um.

Proof. Let u1, . . . , um ∈ V ′ ⊂ V ⊂ U be as in Lemma 39.13.4. Since U \ V is
closed in U , j an immersion, and V (I) ∪ j(U) is closed in Spec(A), we can find
an ideal J ⊂ I such that V (J) = V (I) ∪ j(U \ V ). For example we can take the
ideal of elements of I which vanish on j(U \ V ). Thus we can replace (U,R, s, t, c),
j : U → Spec(A), and I by (V ′, R′, s′, t′, c′), j|V ′ : V ′ → Spec(A), and J . In other
words, we may assume that U is affine and that s and t are finite locally free. Take
any f ∈ I which does not vanish at all the points in the R-orbits of u1, . . . , um
(Algebra, Lemma 10.14.2). Consider

g = Norms(t
](j](f))) ∈ Γ(U,OU )

Since f ∈ I and since V (I) ∪ j(U) is closed we see that U ∩ D(f) → D(f) is a
closed immersion. Hence fng is the image of an element h ∈ I for some n > 0.
We claim that h works. Namely, we have seen in Groupoids, Lemma 38.21.2 that
g is an R-invariant function, hence D(g) ⊂ U is R-invariant. Since f does not
vanish on the orbit of uj , the function g does not vanish at uj . Moreover, we have
V (g) ⊃ V (j](f)) and hence j−1D(h) = D(g). �

Lemma 39.13.8. Let (U,R, s, t, c) be a groupoid scheme. If s, t are quasi-finite,
and u, u′ ∈ R are distinct points in the same orbit, then u′ is not a specialization
of u.

Proof. Let r ∈ R with s(r) = u and t(r) = u′. If u  u′ then we can find a
nontrivial specialization r  r′ with s(r′) = u′, see Schemes, Lemma 25.19.8. Set
u′′ = t(r′). Note that u′′ 6= u′ as there are no specializations in the fibres of a
quasi-finite morphism. Hence we can continue and find a nontrivial specialization
r′  r′′ with s(r′′) = u′′, etc. This shows that the orbit of u contains an infinite
sequence u  u′  u′′  . . . of specializiations which is nonsense as the orbit
t(s−1({u})) is finite. �

Lemma 39.13.9. Let j : V → Spec(A) be a quasi-compact immersion of schemes.
Let f ∈ A be such that j−1D(f) is affine and j(V ) ∩ V (f) is closed. Then V is
affine.

Proof. We encourage the reader to find their own proof of this lemma. Let A′ =
Γ(V,OV ). Then j′ : V → Spec(A′) is a quasi-compact open immersion, see Proper-
ties, Lemma 27.15.4. Let f ′ ∈ A′ be the image of f . Then (j′)−1D(f ′) = j−1D(f)
is affine. On the other hand, j′(V )∩ V (f ′) is a subscheme of Spec(A′) which maps
isomorphically to the closed subscheme j(V ) ∩ V (f) of Spec(A). Hence it is closed
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in Spec(A′) for example by Schemes, Lemma 25.21.12. Thus we may replace A by
A′ and assume that j is an open immersion and A = Γ(V,OV ).

In this case we claim that j(V ) = Spec(A) which finishes the proof. If not, then we
can find a principal affine open D(g) ⊂ Spec(A) which meets the complement and
avoids the closed subset j(V ) ∩ V (f). Note that j maps j−1D(f) isomorphically
onto D(f), see Properties, Lemma 27.15.3. Hence D(g) meets V (f). On the other
hand, j−1D(g) is a principal open of the affine open j−1D(f) hence affine. Hence
by Properties, Lemma 27.15.3 again we see that D(g) is isomorphic to j−1D(g) ⊂
j−1D(f) which implies thatD(g) ⊂ D(f). This contradiction finishes the proof. �

Lemma 39.13.10. Let (U,R, s, t, c) be a groupoid scheme. Let u ∈ U . Assume

(1) s, t are finite morphisms,
(2) U is separated and locally Noetherian,
(3) dim(OU,u′) ≤ 1 for every point u′ in the orbit of u.

Then u is contained in an R-invariant affine open of U .

Proof. The R-orbit of u is finite. By conditions (2) and (3) it is contained in an
affine open U ′ of U , see Varieties, Proposition 32.22.7. Then t(s−1(U \ U ′)) is an
R-invariant closed subset of U which does not contain u. Thus U \ t(s−1(U \U ′)) is
an R-invariant open of U ′ containing u. Replacing U by this open we may assume
U is quasi-affine.

By Lemma 39.13.6 we may replace U by its reduction and assume U is reduced.
This means R-invariant subschemes W ′ ⊂ W ⊂ U of Lemma 39.13.2 are equal
W ′ = W . As U = t(s−1(W )) some point u′ of the R-orbit of u is contained in W
and by Lemma 39.13.6 we may replace U by W and u by u′. Hence we may assume
there is a dense open R-invariant subscheme W ⊂ U such that the morphisms
sW , tW of the restriction (W,RW , sW , tW , cW ) are finite locally free.

If u ∈ W then we are done by Groupoids, Lemma 38.22.1 (because W is quasi-
affine so any finite set of points of W is contained in an affine open, see Properties,
Lemma 27.27.5). Thus we assume u 6∈W and hence none of the points of the orbit
of u is in W . Let ξ ∈ U be a point with a nontrivial specialization to a point u′ in
the orbit of u. Since there are no specializations among the points in the orbit of u
(Lemma 39.13.8) we see that ξ is not in the orbit. By assumption (3) we see that
ξ is a generic point of U and hence ξ ∈ W . As U is Noetherian there are finitely
many of these points ξ1, . . . , ξm ∈ W . Because sW , tW are flat the orbit of each ξj
consists of generic points of irreducible components of W (and hence U).

Let j : U → Spec(A) be an immersion of U into an affine scheme (this is possible as
U is quasi-affine). Let J ⊂ A be an ideal such that V (J)∩j(W ) = ∅ and V (J)∪j(W )
is closed. Apply Lemma 39.13.7 to the groupoid scheme (W,RW , sW , tW , cW ), the
morphism j|W : W → Spec(A), the points ξj , and the ideal J to find an f ∈ J
such that (j|W )−1D(f) is an RW -invariant affine open containing ξj for all j. Since
f ∈ J we see that j−1D(f) ⊂ W , i.e., j−1D(f) is an R-invariant affine open of U
contained in W containing all ξj .

Let Z be the reduced induced closed subscheme structure on

U \ j−1D(f) = j−1V (f).

Then Z is set theoretically R-invariant (but it may not be scheme theoretically
R-invariant). Let (Z,RZ , sZ , tZ , cZ) be the restriction of R to Z. Since Z → U is
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finite, it follows that sZ and tZ are finite. Since u ∈ Z the orbit of u is in Z and
agrees with the RZ-orbit of u viewed as a point of Z. Since dim(OU,u′) ≤ 1 and
since ξj 6∈ Z for all j, we see that dim(OZ,u′) ≤ 0 for all u′ in the orbit of u. In
other words, the RZ-orbit of u consists of generic points of irreducible components
of Z.

Let I ⊂ A be an ideal such that V (I) ∩ j(U) = ∅ and V (I) ∪ j(U) is closed.
Apply Lemma 39.13.7 to the groupoid scheme (Z,RZ , sZ , tZ , cZ), the restruction
j|Z , the ideal I, and the point u ∈ Z to obtain h ∈ I such that j−1D(h) ∩ Z is an
RZ-invariant open affine containing u.

Consider the RW -invariant (Groupoids, Lemma 38.21.2) function

g = NormsW (t]W (j](h)|W )) ∈ Γ(W,OW )

(In the following we only need the restriction of g to j−1D(f) and in this case the
norm is along a finite locally free morphism of affines.) We claim that

V = (Wg ∩ j−1D(f)) ∪ (j−1D(h) ∩ Z)

is an R-invariant affine open of U which finishes the proof of the lemma. It is set
theoretically R-invariant by construction. As V is a constuctible set, to see that it
is open it suffices to show it is closed under generalization in U (Topology, Lemma
5.18.9 or the more general Topology, Lemma 5.22.5). Since Wg∩j−1D(f) is open in
U , it suffices to consider a specialization u1  u2 of U with u2 ∈ j−1D(h)∩Z. This
means that h is nonzero in j(u2) and u2 ∈ Z. If u1 ∈ Z, then j(u1)  j(u2) and
since h is nonzero in j(u2) it is nonzero in j(u1) which implies u1 ∈ V . If u1 6∈ Z
and also not in Wg ∩ j−1D(f), then u1 ∈ W , u1 6∈ Wg because the complement of
Z = j−1V (f) is contained in W ∩ j−1D(f). Hence there exists a point r1 ∈ R with
s(r1) = u1 such that h is zero in t(r1). Since s is finite we can find a specialization
r1  r2 with s(r2) = u2. However, then we conclude that f is zero in u′2 = t(r2)
which contradicts the fact that j−1D(h)∩Z is R-invariant and u2 is in it. Thus V
is open.

Observe that V ⊂ j−1D(h) for our function h ∈ I. Thus we obtain an immersion

j′ : V −→ Spec(Ah)

Let f ′ ∈ Ah be the image of f . Then (j′)−1D(f ′) is the principal open determined
by g in the affine open j−1D(f) of U . Hence (j′)−1D(f) is affine. Finally, j′(V ) ∩
V (f ′) = j′(j−1D(h)∩Z) is closed in Spec(Ah/(f

′)) = Spec((A/f)h) = D(h)∩V (f)
by our choice of h ∈ I and the ideal I. Hence we can apply Lemma 39.13.9 to
conclude that V is affine as claimed above. �

39.14. Descending ind-quasi-affine morphisms

Ind-quasi-affine morphisms were defined in More on Morphisms, Section 36.46. This
section is the analogue of Descent, Section 34.34 for ind-quasi-affine-morphisms.

Let X be a quasi-separated scheme. Let E ⊂ X be a subset which is an intersection
of a nonempty family of quasi-compact opens of X. Say E =

⋂
i∈I Ui with Ui ⊂ X

quasi-compact open and I nonempty. By adding finite intersections we may assume
that for i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩ Uj . In this situation we have

(39.14.0.1) Γ(E,F|E) = colim Γ(Ui,F|Ui)
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for any sheaf F defined on X. Namely, fix i0 ∈ I and replace X by Ui0 and I by
{i ∈ I | Ui ⊂ Ui0}. Then X is quasi-compact and quasi-separated, hence a spectral
space, see Properties, Lemma 27.2.4. Then we see the equality holds by Topology,
Lemma 5.23.7 and Sheaves, Lemma 6.29.4. (In fact, the formula holds for higher
cohomology groups as well if F is abelian, see Cohomology, Lemma 20.20.2.)

Lemma 39.14.1. Let X be an ind-quasi-affine scheme. Let E ⊂ X be an inter-
section of a nonempty family of quasi-compact opens of X. Set A = Γ(E,OX |E)
and Y = Spec(A). Then the canonical morphsm

j : (E,OX |E) −→ (Y,OY )

of Schemes, Lemma 25.6.4 determines an isomorphism (E,OX |E) → (E′,OY |E′)
where E′ ⊂ Y is an intersection of quasi-compact opens. If W ⊂ E is open in X,
then j(W ) is open in Y .

Proof. Note that (E,OX |E) is a locally ringed space so that Schemes, Lemma
25.6.4 applies to A → Γ(E,OX |E). Write E =

⋂
i∈I Ui with I 6= ∅ and Ui ⊂ X

quasi-compact open. We may and do assume that for i, j ∈ I there exists a k ∈ I
with Uk ⊂ Ui ∩ Uj . Set Ai = Γ(Ui,OUi). We obtain commutative diagrams

(E,OX |E) //

��

(Spec(A),OSpec(A))

��
(Ui,OUi) // (Spec(Ai),OSpec(Ai))

Since Ui is quasi-affine, we see that Ui → Spec(Ai) is a quasi-compact open im-
mersion. On the other hand A = colimAi. Hence Spec(A) = lim Spec(Ai) as
topological spaces (Limits, Lemma 31.3.2). Since E = limUi (by Topology, Lemma
5.23.7) we see that E → Spec(A) is a homeomorphism onto its image E′ and that
E′ is the intersection of the inverse images of the opens Ui ⊂ Spec(Ai) in Spec(A).
For any e ∈ E the local ring OX,e is the value of OUi,e which is the same as the
value on Spec(A).

To prove the final assertion of the lemma we argue as follows. Pick i, j ∈ I with
Ui ⊂ Uj . Consider the following commtuative diagrams

Ui //

��

Spec(Ai)

��
Ui // Spec(Aj)

W //

��

Spec(Ai)

��
W // Spec(Aj)

W //

��

Spec(A)

��
W // Spec(Aj)

By Properties, Lemma 27.15.5 the first diagram is cartesian. Hence the second is
cartesian as well. Passing to the limit we find that the third diagram is cartesian,
so the top horizontal arrow of this diagram is an open immersion. �

Lemma 39.14.2. Suppose given a cartesian diagram

X

f

��

// Spec(B)

��
Y // Spec(A)
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of schemes. Let E ⊂ Y be an intersection of a nonempty family of quasi-compact
opens of Y . Then

Γ(f−1(E),OX |f−1(E)) = Γ(E,OY |E)⊗A B

provided Y is quasi-separated and A→ B is flat.

Proof. Write E =
⋂
i∈I Vi with Vi ⊂ Y quasi-compact open. We may and do

assume that for i, j ∈ I there exists a k ∈ I with Vk ⊂ Vi ∩ Vj . Then we have
similarly that f−1(E) =

⋂
i∈I f

−1(Vi) in X. Thus the result follows from equation

(39.14.0.1) and the corresponding result for Vi and f−1(Vi) which is Cohomology
of Schemes, Lemma 29.5.2. �

Lemma 39.14.3 (Gabber). Let S be a scheme. Let {Xi → S}i∈I be an fpqc
covering. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi → S}, see Descent,
Definition 34.30.3. If each morphism Vi → Xi is ind-quasi-affine, then the descent
datum is effective.

Proof. Being ind-quasi-affine is a property of morphisms of schemes which is pre-
served under any base change, see More on Morphisms, Lemma 36.46.2. Hence
Descent, Lemma 34.32.2 applies and it suffices to prove the statement of the lemma
in case the fpqc-covering is given by a single {X → S} flat surjective morphism of
affines. Say X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring
map. Let (V, ϕ) be a descent datum relative to X over S and assume that V → X
is ind-quasi-affine, in other words, V is ind-quasi-affine.

Let (U,R, s, t, c) be the groupoid scheme over S with U = X and R = X ×S X
and s, t, c as usual. By Groupoids, Lemma 38.19.3 the pair (V, ϕ) corresponds to a
cartesian morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoid schemes. Let u′ ∈
U ′ be any point. By Groupoids, Lemmas 38.17.2, 38.17.3, and 38.17.4 we can choose
u′ ∈ W ⊂ E ⊂ U ′ where W is open and R′-invariant, and E is set-theoretically
R′-invariant and an intersection of a nonempty family of quasi-compact opens.

Translating back to (V, ϕ), for any v ∈ V we can find v ∈ W ⊂ E ⊂ V with the
following properties: (a) W is open and ϕ(W ×S X) = X ×S W and (b) E an
intersection of quasi-compact opens and ϕ(E ×S X) = X ×S E set-theoretically.
Here we use the notation E ×S X to mean the inverse image of E in V ×S X by
the projection morphism and similarly for X ×S E. By Lemma 39.14.2 this implies
that ϕ defines an isomorphism

Γ(E,OV |E)⊗R A = Γ(E ×S X,OV×SX |E×SX)

→ Γ(X ×S E,OX×SV |X×SE)

= A⊗R Γ(E,OV |E)

of A ⊗R A-algebras which we will call ψ. The cocycle condition for ϕ tranlates
into the cocycle condition for ψ as in Descent, Definition 34.3.1 (details omitted).
By Descent, Proposition 34.3.9 we find an R-algebra R′ and an isomorphism χ :
R′⊗RA→ Γ(E,OV |E) of A-algebras, compatible with ψ and the canonical descent
datum on R′ ⊗R A.

By Lemma 39.14.1 we obtain a canonical “embedding”

j : (E,OV |E) −→ Spec(Γ(E,OV |E)) = Spec(R′ ⊗R A)

http://stacks.math.columbia.edu/tag/0APK
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of locally ringed spaces. The construction of this map is canonical and we get a
commutative diagram

E ×S X ϕ
//

xx

j′

))

X ×S E

&&

j′′

uu
E

j

%%

Spec(R′ ⊗R A⊗R A)

uu ))

E

j

yy
Spec(R′ ⊗R A)

))

Spec(R′ ⊗R A)

uu
Spec(R′)

where j′ and j′′ come from the same construction applied to E ×S X ⊂ V ×S X
and X ×S E ⊂ X ×S V via χ and the identifications used to construct ψ. It
follows that j(W ) is an open subscheme of Spec(R′ ⊗R A) whose inverse image
under the two projections Spec(R′ ⊗R A ⊗R A) → Spec(R′ ⊗R A) are equal. By
Descent, Lemma 34.9.2 we find an open W0 ⊂ Spec(R′) whose base change to
Spec(A) is j(W ). Contemplating the diagram above we see that the descent datum
(W,ϕ|W×SX) is effective. By Descent, Lemma 34.31.13 we see that our descent
datum is effective. �

39.15. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra

(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology



2598 39. MORE ON GROUPOID SCHEMES

(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic

Spaces
(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic

Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index



CHAPTER 40

Étale Morphisms of Schemes

40.1. Introduction

In this Chapter, we discuss étale morphisms of schemes. We illustrate some of the
more important concepts by working with the Noetherian case. Our principal goal
is to collect for the reader with enough commutative algebra results to start reading
a treatise on étale cohomology. An auxiliary goal is to provide enough evidence to
ensure that the reader stops calling the phrase “the étale topology of schemes” an
exercise in general nonsense, if (s)he does indulge in such blasphemy.

We will refer to the other chapters of the stacks project for standard results in
algebraic geometry (on schemes and commutative algebra). We will provide detailed
proofs of the new results that we state here.

40.2. Conventions

In this chapter, frequently schemes will be assumed locally Noetherian and fre-
quently rings will be assumed Noetherian. But in all the statements we will reit-
erate this when necessary, and make sure we list all the hypotheses! On the other
hand, here are some general facts that we will use often and are useful to keep in
mind:

(1) A ring homomorphism A→ B of finite type with A Noetherian is of finite
presentation. See Algebra, Lemma 10.30.4.

(2) A morphism (locally) of finite type between locally Noetherian schemes
is automatically (locally) of finite presentation. See Morphisms, Lemma
28.22.9.

(3) Add more like this here.

40.3. Unramified morphisms

We first define the notion of unramified morphisms for local rings, and then globalize
it to get one for arbitrary schemes.

Definition 40.3.1. Let A, B be Noetherian local rings. A local homomorphism
A→ B is said to be unramified homomorphism of local rings if

(1) mAB = mB ,
(2) κ(mB) is a finite separable extension of κ(mA), and
(3) B is essentially of finite type over A (this means that B is the localization

of a finite type A-algebra at a prime).

This is the local version of the definition in Algebra, Section 10.144. In that section
a ring map R→ S is defined to be unramified if and only if it is of finite type, and

2599
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ΩS/R = 0. It is shown in Algebra, Lemmas 10.144.5 and 10.144.7 that given a ring
map R→ S of finite type, and a prime q of S lying over p ⊂ R, then we have

R→ S is unramified at q⇔ pSq = qSq and κ(p) ⊂ κ(q) finite separable

Thus we see that for a local homomorphism of local rings the properties of our
definition above are closely related to the question of being unramified. In fact, we
have proved the following lemma.

Lemma 40.3.2. Let A → B be of finite type with A a Noetherian ring. Let q be
a prime of B lying over p ⊂ A. Then A → B is unramified at q if and only if
Ap → Bq is an unramified homomorphism of local rings.

Proof. See discussion above. �

We will characterize the property of being unramified in terms of completions. For
a Noetherian local ring A we denote A∧ the completion of A with respect to the
maximal ideal. It is also a Noetherian local ring, see Algebra, Lemma 10.93.10.

Lemma 40.3.3. Let A, B be Noetherian local rings. Let A→ B be a local homo-
morphism.

(1) if A → B is an unramified homomorphism of local rings, then B∧ is a
finite A∧ module,

(2) if A → B is an unramified homomorphism of local rings and κ(mA) =
κ(mB), then A∧ → B∧ is surjective,

(3) if A → B is an unramified homomorphism of local rings and κ(mA) is
separably closed, then A∧ → B∧ is surjective,

(4) if A and B are complete discrete valuation rings, then A → B is an
unramified homomorphism of local rings if and only the uniformizer for
A maps to a uniformizer for B, and the residue field extension is finite
separable (and B is essentially of finite type over A).

Proof. Part (1) is a special case of Algebra, Lemma 10.93.18. For part (2), note
that the κ(mA)-vector space B∧/mA∧B

∧ is generated by 1. Hence by Nakayama’s
lemma (Algebra, Lemma 10.19.1) the map A∧ → B∧ is surjective. Part (3) is a
special case of part (2). Part (4) is immediate from the definitions. �

Lemma 40.3.4. Let A, B be Noetherian local rings. Let A → B be a local ho-
momorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A→ B is an unramified homomorphism of local rings
(2) A∧ → B∧ is an unramified homomorphism of local rings, and
(3) A∧ → B∧ is unramified.

Proof. The equivalence of (1) and (2) follows from the fact that mAA
∧ is the

maximal ideal of A∧ (and similarly for B) and faithful flatness of B → B∧. For
example if A∧ → B∧ is unramified, then mAB

∧ = (mAB)B∧ = mBB
∧ and hence

mAB = mB .

Assume the equivalent conditions (1) and (2). By Lemma 40.3.3 we see that A∧ →
B∧ is finite. Hence A∧ → B∧ is of finite presentation, and by Algebra, Lemma
10.144.7 we conclude that A∧ → B∧ is unramified at mB∧ . Since B∧ is local we
conclude that A∧ → B∧ is unramified.

http://stacks.math.columbia.edu/tag/039G
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Assume (3). By Algebra, Lemma 10.144.5 we conclude that A∧ → B∧ is an un-
ramified homomorphism of local rings, i.e., (2) holds. �

Definition 40.3.5. (See Morphisms, Definition 28.36.1 for the definition in the
general case.) Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X.

(1) We say f is unramified at x if OY,f(x) → OX,x is an unramified homomor-
phism of local rings.

(2) The morphism f : X → Y is said to be unramified if it is unramified at
all points of X.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is unramified is open.

Lemma 40.3.6. Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X. The morphism f is unramified at x in the sense of Definition
40.3.5 if and only if it is unramified in the sense of Morphisms, Definition 28.36.1.

Proof. This follows from Lemma 40.3.2 and the definitions. �

Here are some results on unramified morphisms. The formulations as given in
this list apply only to morphisms locally of finite type between locally Noetherian
schemes. In each case we give a reference to the general result as proved earlier in
the project, but in some cases one can prove the result more easily in the Noetherian
case. Here is the list:

(1) Unramifiedness is local on the source and the target in the Zariski topol-
ogy.

(2) Unramified morphisms are stable under base change and composition. See
Morphisms, Lemmas 28.36.5 and 28.36.4.

(3) Unramified morphisms of schemes are locally quasi-finite and quasi-compact
unramified morphisms are quasi-finite. See Morphisms, Lemma 28.36.10

(4) Unramified morphisms have relative dimension 0. See Morphisms, Defi-
nition 28.30.1 and Morphisms, Lemma 28.30.5.

(5) A morphism is unramified if and only if all its fibres are unramified. That
is, unramifiedness can be checked on the scheme theoretic fibres. See
Morphisms, Lemma 28.36.12.

(6) Let X and Y be unramified over a base scheme S. Any S-morphism from
X to Y is unramified. See Morphisms, Lemma 28.36.16.

40.4. Three other characterizations of unramified morphisms

The following theorem gives three equivalent notions of being unramified at a point.
See Morphisms, Lemma 28.36.14 for (part of) the statement for general schemes.

Theorem 40.4.1. Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism of schemes which is locally of finite type. Let x be a point of X. The
following are equivalent

(1) f is unramified at x,
(2) the stalk ΩX/Y,x of the module of relative differentials at x is trivial,

http://stacks.math.columbia.edu/tag/024N
http://stacks.math.columbia.edu/tag/039J
http://stacks.math.columbia.edu/tag/024P
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(3) there exist open neighbourhoods U of x and V of f(x), and a commutative
diagram

U
i

//

��

An
V

~~
V

where i is a closed immersion defined by a quasi-coherent sheaf of ideals
I such that the differentials dg for g ∈ Ii(x) generate ΩAn

V /V,i(x), and

(4) the diagonal ∆X/Y : X → X ×Y X is a local isomorphism at x.

Proof. The equivalence of (1) and (2) is proved in Morphisms, Lemma 28.36.14.

If f is unramified at x, then f is unramified in an open neighbourhood of x; this
does not follow immediately from Definition 40.3.5 of this chapter but it does follow
from Morphisms, Definition 28.36.1 which we proved to be equivalent in Lemma
40.3.6. Choose affine opens V ⊂ Y , U ⊂ X with f(U) ⊂ V and x ∈ U , such that
f is unramified on U , i.e., f |U : U → V is unramified. By Morphisms, Lemma
28.36.13 the morphism U → U ×V U is an open immersion. This proves that (1)
implies (4).

If ∆X/Y is a local isomorphism at x, then ΩX/Y,x = 0 by Morphisms, Lemma
28.34.7. Hence we see that (4) implies (2). At this point we know that (1), (2) and
(4) are all equivalent.

Assume (3). The assumption on the diagram combined with Morphisms, Lemma
28.34.15 show that ΩU/V,x = 0. Since ΩU/V,x = ΩX/Y,x we conclude (2) holds.

Finally, assume that (2) holds. To prove (3) we may localize onX and Y and assume
that X and Y are affine. Say X = Spec(B) and Y = Spec(A). The point x ∈ X
corresponds to a prime q ⊂ B. Our assumption is that ΩB/A,q = 0 (see Morphisms,
Lemma 28.34.5 for the relationship between differentials on schemes and modules
of differentials in commutative algebra). Since Y is locally Noetherian and f locally
of finite type we see that A is Noetherian and B ∼= A[x1, . . . , xn]/(f1, . . . , fm), see
Properties, Lemma 27.5.2 and Morphisms, Lemma 28.16.2. In particular, ΩB/A is
a finite B-module. Hence we can find a single g ∈ B, g 6∈ q such that the principal
localization (ΩB/A)g is zero. Hence after replacing B by Bg we see that ΩB/A =
0 (formation of modules of differentials commutes with localization, see Algebra,
Lemma 10.127.8). This means that d(fj) generate the kernel of the canonical map
ΩA[x1,...,xn]/A ⊗A B → ΩB/A. Thus the surjection A[x1, . . . , xn]→ B of A-algebras
gives the commutative diagram of (3), and the theorem is proved. �

How can we use this theorem? Well, here are a few remarks:

(1) Suppose that f : X → Y and g : Y → Z are two morphisms locally of
finite type between locally Noetherian schemes. There is a canonical short
exact sequence

f∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0

see Morphisms, Lemma 28.34.9. The theorem therefore implies that if
g ◦ f is unramified, then so is f . This is Morphisms, Lemma 28.36.16.

(2) Since ΩX/Y is isomorphic to the conormal sheaf of the diagonal morphism
(Morphisms, Lemma 28.34.7) we see that if X → Y is a monomorphism of
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locally Noetherian schemes and locally of finite type, then X → Y is un-
ramified. In particular, open and closed immersions of locally Noetherian
schemes are unramified. See Morphisms, Lemmas 28.36.7 and 28.36.8.

(3) The theorem also implies that the set of points where a morphism f : X →
Y (locally of finite type of locally Noetherian schemes) is not unramified is
the support of the coherent sheaf ΩX/Y . This allows one to give a scheme
theoretic definition to the “ramification locus”.

40.5. The functorial characterization of unramified morphisms

In basic algebraic geometry we learn that some classes of morphisms can be char-
acterized functorially, and that such descriptions are quite useful. Unramified mor-
phisms too have such a characterization.

Theorem 40.5.1. Let f : X → S be a morphism of schemes. Assume S is a
locally Noetherian scheme, and f is locally of finite type. Then the following are
equivalent:

(1) f is unramified,
(2) the morphism f is formally unramified: for any affine S-scheme T and

subscheme T0 of T defined by a square-zero ideal, the natural map

HomS(T,X) −→ HomS(T0, X)

is injective.

Proof. See More on Morphisms, Lemma 36.4.8 for a more general statement and
proof. What follows is a sketch of the proof in the current case.

Firstly, one checks both properties are local on the source and the target. This we
may assume that S and X are affine. Say X = Spec(B) and S = Spec(R). Say
T = Spec(C). Let J be the square-zero ideal of C with T0 = Spec(C/J). Assume
that we are given the diagram

B

φ

��

φ̄

!!
R //

??

C // C/J

Secondly, one checks that the association φ′ 7→ φ′−φ gives a bijection between the
set of liftings of φ̄ and the module DerR(B, J). Thus, we obtain the implication
(1) ⇒ (2) via the description of unramified morphisms having trivial module of
differentials, see Theorem 40.4.1.

To obtain the reverse implication, consider the surjection q : C = (B ⊗R B)/I2 →
B = C/J defined by the square zero ideal J = I/I2 where I is the kernel of
the multiplication map B ⊗R B → B. We already have a lifting B → C defined
by, say, b 7→ b ⊗ 1. Thus, by the same reasoning as above, we obtain a bijective
correspondence between liftings of id : B → C/J and DerR(B, J). The hypothesis
therefore implies that the latter module is trivial. But we know that J ∼= ΩB/R.
Thus, B/R is unramified. �

http://stacks.math.columbia.edu/tag/024R
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40.6. Topological properties of unramified morphisms

The first topological result that will be of utility to us is one which says that
unramified and separated morphisms have “nice” sections. The material in this
section does not require any Noetherian hypotheses.

Proposition 40.6.1. Sections of unramified morphisms.

(1) Any section of an unramified morphism is an open immersion.
(2) Any section of a separated morphism is a closed immersion.
(3) Any section of an unramified separated morphism is open and closed.

Proof. Fix a base scheme S. If f : X ′ → X is any S-morphism, then the graph
Γf : X ′ → X ′ ×S X is obtained as the base change of the diagonal ∆X/S : X →
X ×S X via the projection X ′ ×S X → X ×S X. If g : X → S is separated (resp.
unramified) then the diagonal is a closed immersion (resp. open immersion) by
Schemes, Definition 25.21.3 (resp. Morphisms, Lemma 28.36.13). Hence so is the
graph as a base change (by Schemes, Lemma 25.18.2). In the special case X ′ = S,
we obtain (1), resp. (2). Part (3) follows on combining (1) and (2). �

We can now explicitly describe the sections of unramified morphisms.

Theorem 40.6.2. Let Y be a connected scheme. Let f : X → Y be unramified
and separated. Every section of f is an isomorphism onto a connected component.
There exists a bijective correspondence

sections of f ↔
{

connected components X ′ of X such that
the induced map X ′ → Y is an isomorphism

}
In particular, given x ∈ X there is at most one section passing through x.

Proof. Direct from Proposition 40.6.1 part (3). �

The preceding theorem gives us some idea of the “rigidity” of unramified morphisms.
Further indication is provided by the following proposition which, besides being
intrinsically interesting, is also useful in the theory of the algebraic fundamental
group (see [Gro71, Exposé V]). See also the more general Morphisms, Lemma
28.36.17.

Proposition 40.6.3. Let S is be a scheme. Let π : X → S be unramified and
separated. Let Y be an S-scheme and y ∈ Y a point. Let f, g : Y → X be two
S-morphisms. Assume

(1) Y is connected
(2) x = f(y) = g(y), and
(3) the induced maps f ], g] : κ(x)→ κ(y) on residue fields are equal.

Then f = g.

Proof. The maps f, g : Y → X define maps f ′, g′ : Y → XY = Y ×S X which are
sections of the structure map XY → Y . Note that f = g if and only if f ′ = g′.
The structure map XY → Y is the base change of π and hence unramified and
separated also (see Morphisms, Lemmas 28.36.5 and Schemes, Lemma 25.21.13).
Thus according to Theorem 40.6.2 it suffices to prove that f ′ and g′ pass through the
same point of XY . And this is exactly what the hypotheses (2) and (3) guarantee,
namely f ′(y) = g′(y) ∈ XY . �

http://stacks.math.columbia.edu/tag/024T
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Lemma 40.6.4. Let S be a Noetherian scheme. Let X → S be a quasi-compact
unramified morphism. Let Y → S be a morphism with Y Noetherian. Then
MorS(Y,X) is a finite set.

Proof. Assume first X → S is separated (which is often the case in practice). Since
Y is Noetherian it has finitely many connected components. Thus we may assume
Y is connected. Choose a point y ∈ Y with image s ∈ S. Since X → S is unramified
and quasi-compact then fibre Xs is finite, say Xs = {x1, . . . , xn} and κ(s) ⊂ κ(xi)
is a finite field extension. See Morphisms, Lemma 28.36.10, 28.21.5, and 28.21.10.
For each i there are at most finitely many κ(s)-algebra maps κ(xi) → κ(y) (by
elementary field theory). Thus MorS(Y,X) is finite by Proposition 40.6.3.

General case. There exists a nonempty open U ⊂ X such that XU → U is finite
(in particular separated), see Morphisms, Lemma 28.47.1 (the lemma applies since
we’ve already seen above that a quasi-compact unramified morphism is quasi-finite
and since X → S is quasi-separated by Morphisms, Lemma 28.16.7). Let Z ⊂ S be
the reduced closed subscheme supported on the complement of U . By Noetherian
induction, we see that MorZ(YZ , XZ) is finite (details omitted). By the result of
the first paragraph the set MorU (YU , XU ) is finite. Thus it suffices to show that

MorS(Y,X) −→ MorZ(YZ , XZ)×MorU (YU , XU )

is injective. This follows from the fact that the set of points where two morphisms
a, b : Y → X agree is open in Y , due to the fact that ∆ : X → X ×S X is open, see
Morphisms, Lemma 28.36.13. �

40.7. Universally injective, unramified morphisms

Recall that a morphism of schemes f : X → Y is universally injective if any base
change of f is injective (on underlying topological spaces), see Morphisms, Defini-
tion 28.12.1. Universally injective and unramified morphisms can be characterized
as follows.

Lemma 40.7.1. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified,
(5) f is locally of finite type and Xy is either empty or Xy → y is an isomor-

phism for all y ∈ Y .

Proof. We have seen in More on Morphisms, Lemma 36.4.8 that being formally
unramified and locally of finite type is the same thing as being unramified. Hence
(4) is equivalent to (2). A monomorphism is certainly universally injective and
formally unramified hence (3) implies (4). It is clear that (1) implies (3). Finally, if
(2) holds, then ∆ : X → X ×S X is both an open immersion (Morphisms, Lemma
28.36.13) and surjective (Morphisms, Lemma 28.12.2) hence an isomorphism, i.e.,
f is a monomorphism. In this way we see that (2) implies (1).

Condition (3) implies (5) because monomorphisms are preserved under base change
(Schemes, Lemma 25.23.5) and because of the description of monomorphisms to-
wards the spectra of fields in Schemes, Lemma 25.23.10. Condition (5) implies (4)
by Morphisms, Lemmas 28.12.2 and 28.36.12. �

http://stacks.math.columbia.edu/tag/0AKI
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This leads to the following useful characterization of closed immersions.

Lemma 40.7.2. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is a closed immersion,
(2) f is a proper monomorphism,
(3) f is proper, unramified, and universally injective,
(4) f is universally closed, unramified, and a monomorphism,
(5) f is universally closed, unramified, and universally injective,
(6) f is universally closed, locally of finite type, and a monomorphism,
(7) f is universally closed, universally injective, locally of finite type, and

formally unramified.

Proof. The equivalence of (4) – (7) follows immediately from Lemma 40.7.1.

Let f : X → S satisfy (6). Then f is separated, see Schemes, Lemma 25.23.3 and
has finite fibres. Hence More on Morphisms, Lemma 36.31.5 shows f is finite. Then
Morphisms, Lemma 28.44.13 implies f is a closed immersion, i.e., (1) holds.

Note that (1) ⇒ (2) because a closed immersion is proper and a monomorphism
(Morphisms, Lemma 28.42.6 and Schemes, Lemma 25.23.7). By Lemma 40.7.1 we
see that (2) implies (3). It is clear that (3) implies (5). �

Here is another result of a similar flavor.

Lemma 40.7.3. Let π : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) π is finite,
(2) π is unramified,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable1.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U
is a closed immersion.

Proof. The question is local on S. Hence we may assume that S = Spec(A). By
definition of a finite morphism this implies X = Spec(B). Note that the ring map
ϕ : A → B defining π is a finite unramified ring map. Let p ⊂ A be the prime
corresponding to s. Let q ⊂ B be the prime corresponding to x. By Conditions (2),
(3) and (4) imply that Bq/pBq = κ(p). Algebra, Lemma 10.40.11 we have Bq = Bp

(note that a finite ring map satisfies going up, see Algebra, Section 10.40.) Hence
we see that Bp/pBp = κ(p). As B is a finite A-module we see from Nakayama’s
lemma (see Algebra, Lemma 10.19.1) that Bp = ϕ(Ap). Hence (using the finiteness
of B as an A-module again) there exists a f ∈ A, f 6∈ p such that Bf = ϕ(Af ) as
desired. �

The topological results presented above will be used to give a functorial character-
ization of étale morphisms similar to Theorem 40.5.1.

1In view of condition (2) this is equivalent to κ(s) = κ(x).
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40.8. Examples of unramified morphisms

Here are a few examples.

Example 40.8.1. Let k be a field. Unramified quasi-compact morphisms X →
Spec(k) are affine. This is true because X has dimension 0 and is Noetherian, hence
is a finite discrete set, and each point gives an affine open, so X is a finite disjoint
union of affines hence affine. Noether normalization forces X to be the spectrum
of a finite k-algebra A. This algebra is a product of finite separable field extensions
of k. Thus, an unramified quasi-compact morphism to Spec(k) corresponds to a
finite number of finite separable field extensions of k. In particular, an unramified
morphism with a connected source and a one point target is forced to be a finite
separable field extension. As we will see later, X → Spec(k) is étale if and only if it
is unramified. Thus, in this case at least, we obtain a very easy description of the
étale topology of a scheme. Of course, the cohomology of this topology is another
story.

Example 40.8.2. Property (3) in Theorem 40.4.1 gives us a canonical source
of examples for unramified morphisms. Fix a ring R and an integer n. Let I =
(g1, . . . , gm) be an ideal in R[x1, . . . , xn]. Let q ⊂ R[x1, . . . , xn] be a prime. Assume
I ⊂ q and that the matrix(

∂gi
∂xj

)
mod q ∈ Mat(n×m,κ(q))

has rank n. Then the morphism f : Z = Spec(R[x1, . . . , xn]/I) → Spec(R) is
unramified at the point x ∈ Z ⊂ An

R corresponding to q. Clearly we must have
m ≥ n. In the extreme case m = n, i.e., the differential of the map An

R → An
R

defined by the gi’s is an isomorphism of the tangent spaces, then f is also flat x
and, hence, is an étale map (see Algebra, Definition 10.132.6, Lemma 10.132.7 and
Example 10.132.8).

Example 40.8.3. Fix an extension of number fields L/K with rings of integers
OL and OK . The injection K → L defines a morphism f : Spec(OL)→ Spec(OK).
As discussed above, the points where f is unramified in our sense correspond to the
set of points where f is unramified in the conventional sense. In the conventional
sense, the locus of ramification in Spec(OL) can be defined by vanishing set of the
different; this is an ideal in OL. In fact, the different is nothing but the annihilator
of the module ΩOL/OK . Similarly, the discriminant is an ideal in OK , namely it
is the norm of the different. The vanishing set of the discriminant is precisely
the set of points of K which ramify in L. Thus, denoting by X the complement
of the closed subset defined by the different in Spec(OL), we obtain a morphism
X → Spec(OL) which is unramified. Furthermore, this morphism is also flat, as any
local homomorphism of discrete valuation rings is flat, and hence this morphism is
actually étale. If L/K is Galois, then denoting by Y the complement of the closed
subset defined by the discriminant in Spec(OK), we see that we get even a finite
étale morphism X → Y . Thus, this is an example of a finite étale covering.

40.9. Flat morphisms

This section simply exists to summarize the properties of flatness that will be useful
to us. Thus, we will be content with stating the theorems precisely and giving
references for the proofs.
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After briefly recalling the necessary facts about flat modules over Noetherian rings,
we state a theorem of Grothendieck which gives sufficient conditions for “hyperplane
sections” of certain modules to be flat.

Definition 40.9.1. Flatness of modules and rings.

(1) A module N over a ring A is said to be flat if the functor M 7→M ⊗A N
is exact.

(2) If this functor is also faithful, we say that N is faithfully flat over A.
(3) A morphism of rings f : A → B is said to be flat (resp. faithfully flat) if

the functor M 7→M ⊗A B is exact (resp. faithful and exact).

Here is a list of facts with references to the algebra chapter.

(1) Free and projective modules are flat. This is clear for free modules and
follows for projective modules as they are direct summands of free modules
and ⊗ commutes with direct sums.

(2) Flatness is a local property, that is, M is flat over A if and only if Mp is
flat over Ap for all p ∈ Spec(A). See Algebra, Lemma 10.38.19.

(3) If M is a flat A-module and A→ B is a ring map, then M ⊗A B is a flat
B-module. See Algebra, Lemma 10.38.6.

(4) Finite flat modules over local rings are free. See Algebra, Lemma 10.75.4.
(5) If f : A → B is a morphism of arbitrary rings, f is flat if and only if the

induced maps Af−1(q) → Bq are flat for all q ∈ Spec(B). See Algebra,
Lemma 10.38.19

(6) If f : A→ B is a local homomorphism of local rings, f is flat if and only
if it is faithfully flat. See Algebra, Lemma 10.38.16.

(7) A map A → B of rings is faithfully flat if and only if it is flat and the
induced map on spectra is surjective. See Algebra, Lemma 10.38.15.

(8) If A is a noetherian local ring, the completion A∧ is faithfully flat over A.
See Algebra, Lemma 10.93.4.

(9) Let A be a Noetherian local ring and M an A-module. Then M is flat
over A if and only if M ⊗A A∧ is flat over A∧. (Combine the previous
statement with Algebra, Lemma 10.38.7.)

Before we move on to the geometric category, we present Grothendieck’s theorem,
which provides a convenient recipe for producing flat modules.

Theorem 40.9.2. Let A, B be Noetherian local rings. Let f : A → B be a local
homomorphism. If M is a finite B-module that is flat as an A-module, and t ∈ mB
is an element such that multiplication by t is injective on M/mAM , then M/tM is
also A-flat.

Proof. See Algebra, Lemma 10.95.1. See also [Mat70, Section 20]. �

Definition 40.9.3. (See Morphisms, Definition 28.26.1). Let f : X → Y be a
morphism of schemes. Let F be a quasi-coherent OX -module.

(1) Let x ∈ X. We say F is flat over Y at x ∈ X if Fx is a flat OY,f(x)-module.
This uses the map OY,f(x) → OX,x to think of Fx as a OY,f(x)-module.

(2) Let x ∈ X. We say f is flat at x ∈ X if OY,f(x) → OX,x is flat.
(3) We say f is flat if it is flat at all points of X.
(4) A morphism f : X → Y that is flat and surjective is sometimes said to be

faithfully flat.
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Once again, here is a list of results:

(1) The property (of a morphism) of being flat is, by fiat, local in the Zariski
topology on the source and the target.

(2) Open immersions are flat. (This is clear because it induces isomorphisms
on local rings.)

(3) Flat morphisms are stable under base change and composition. Mor-
phisms, Lemmas 28.26.7 and 28.26.5.

(4) If f : X → Y is flat, then the pullback functor QCoh(OY )→ QCoh(OX)
is exact. This is immediate by looking at stalks.

(5) Let f : X → Y be a morphism of schemes, and assume Y is quasi-compact
and quasi-separated. In this case if the functor f∗ is exact then f is flat.
(Proof omitted. Hint: Use Properties, Lemma 27.20.1 to see that Y has
“enough” ideal sheaves and use the characterization of flatness in Algebra,
Lemma 10.38.4.)

40.10. Topological properties of flat morphisms

We “recall” below some openness properties that flat morphisms enjoy.

Theorem 40.10.1. Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is locally of finite type. Let F be a coherent OX-module. The set
of points in X where F is flat over S is an open set. In particular the set of points
where f is flat is open in X.

Proof. See More on Morphisms, Theorem 36.12.1. �

Theorem 40.10.2. Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is flat and locally of finite type. Then f is (universally) open.

Proof. See Morphisms, Lemma 28.26.9. �

Theorem 40.10.3. A faithfully flat quasi-compact morphism is a quotient map for
the Zariski topology.

Proof. See Morphisms, Lemma 28.26.10. �

An important reason to study flat morphisms is that they provide the adequate
framework for capturing the notion of a family of schemes parametrized by the
points of another scheme. Naively one may think that any morphism f : X → S
should be thought of as a family parametrized by the points of S. However, without
a flatness restriction on f , really bizarre things can happen in this so-called family.
For instance, we aren’t guaranteed that relative dimension (dimension of the fibres)
is constant in a family. Other numerical invariants, such as the Hilbert polynomial,
too may change from fibre to fibre. Flatness prevents such things from happening
and, therefore, provides some “continuity” to the fibres.

40.11. Étale morphisms

In this section, we will define étale morphisms and prove a number of important
properties about them. The most important one, no doubt, is the functorial char-
acterization presented in Theorem 40.16.1. Following this, we will also discuss a
few properties of rings which are insensitive to an étale extension (properties which
hold for a ring if and only if they hold for all its étale extensions) to motivate the
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basic tenet of étale cohomology – étale morphisms are the algebraic analogue of
local isomorphisms.

As the title suggests, we will define the class of étale morphisms – the class of mor-
phisms (whose surjective families) we shall deem to be coverings in the category of
schemes over a base scheme S in order to define the étale site Sétale. Intuitively, an
étale morphism is supposed to capture the idea of a covering space and, therefore,
should be close to a local isomorphism. If we’re working with varieties over alge-
braically closed fields, this last statement can be made into a definition provided
we replace “local isomorphism” with “formal local isomorphism” (isomorphism af-
ter completion). One can then give a definition over any base field by asking that
the base change to the algebraic closure be étale (in the aforementioned sense).
But, rather than proceeding via such aesthetically displeasing constructions, we
will adopt a cleaner, albeit slightly more abstract, algebraic approach.

Definition 40.11.1. Let A, B be Noetherian local rings. A local homomorphism
f : A → B is said to be a étale homomorphism of local rings if it is flat and
unramified homomorphism of local rings (please see Definition 40.3.1).

This is the local version of the definition of an étale ring map in Algebra, Section
10.138. The exact definition given in that section is that it is a smooth ring map
of relative dimension 0. It is shown (in Algebra, Lemma 10.138.2) that an étale
R-algebra S always has a presentation

S = R[x1, . . . , xn]/(f1, . . . , fn)

such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2

. . . . . . . . . . . .
∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in S. The following two lemmas link the two notions.

Lemma 40.11.2. Let A→ B be of finite type with A a Noetherian ring. Let q be
a prime of B lying over p ⊂ A. Then A→ B is étale at q if and only if Ap → Bq

is an étale homomorphism of local rings.

Proof. See Algebra, Lemmas 10.138.3 (flatness of étale maps), 10.138.5 (étale maps
are unramified) and 10.138.7 (flat and unramified maps are étale). �

Lemma 40.11.3. Let A, B be Noetherian local rings. Let A → B be a local
homomorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A→ B is an étale homomorphism of local rings
(2) A∧ → B∧ is an étale homomorphism of local rings, and
(3) A∧ → B∧ is étale.

Moreover, in this case B∧ ∼= (A∧)⊕n as A∧-modules for some n ≥ 1.

Proof. To see the equivalences of (1), (2) and (3), as we have the corresponding
results for unramified ring maps (Lemma 40.3.4) it suffices to prove that A→ B is
flat if and only if A∧ → B∧ is flat. This is clear from our lists of properties of flat
maps since the ring maps A → A∧ and B → B∧ are faithfully flat. For the final
statement, by Lemma 40.3.3 we see that B∧ is a finite flat A∧ module. Hence it is
finite free by our list of properties on flat modules in Section 40.9. �
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The integer n which occurs in the lemma above is nothing other than the degree
[κ(mB) : κ(mA)] of the residue field extension. In particular, if κ(mA) is separably
closed, we see that A∧ → B∧ is an isomorphism, which vindicates our earlier claims.

Definition 40.11.4. (See Morphisms, Definition 28.37.1.) Let Y be a locally
Noetherian scheme. Let f : X → Y be a morphism of schemes which is locally of
finite type.

(1) Let x ∈ X. We say f is étale at x ∈ X if OY,f(x) → OX,x is an étale
homomorphism of local rings.

(2) The morphism is said to be étale if it is étale at all its points.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is étale is open.

Lemma 40.11.5. Let Y be a locally Noetherian scheme. Let f : X → Y be locally
of finite type. Let x ∈ X. The morphism f is étale at x in the sense of Definition
40.11.4 if and only if it is unramified at x in the sense of Morphisms, Definition
28.37.1.

Proof. This follows from Lemma 40.11.2 and the definitions. �

Here are some results on étale morphisms. The formulations as given in this list
apply only to morphisms locally of finite type between locally Noetherian schemes.
In each case we give a reference to the general result as proved earlier in the project,
but in some cases one can prove the result more easily in the Noetherian case. Here
is the list:

(1) An étale morphism is unramified. (Clear from our definitions.)

(2) Étaleness is local on the source and the target in the Zariski topology.

(3) Étale morphisms are stable under base change and composition. See Mor-
phisms, Lemmas 28.37.4 and 28.37.3.

(4) Étale morphisms of schemes are locally quasi-finite and quasi-compact
étale morphisms are quasi-finite. (This is true because it holds for unram-
ified morphisms as seen earlier.)

(5) Étale morphisms have relative dimension 0. See Morphisms, Definition
28.30.1 and Morphisms, Lemma 28.30.5.

(6) A morphism is étale if and only if it is flat and all its fibres are étale. See
Morphisms, Lemma 28.37.8.

(7) Étale morphisms are open. This is true because an étale morphism is flat,
and Theorem 40.10.2.

(8) Let X and Y be étale over a base scheme S. Any S-morphism from X to
Y is étale. See Morphisms, Lemma 28.37.18.

40.12. The structure theorem

We present a theorem which describes the local structure of étale and unramified
morphisms. Besides its obvious independent importance, this theorem also allows
us to make the transition to another definition of étale morphisms that captures
the geometric intuition better than the one we’ve used so far.
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2612 40. ÉTALE MORPHISMS OF SCHEMES

To state it we need the notion of a standard étale ring map, see Algebra, Definition
10.138.14. Namely, suppose that R is a ring and f, g ∈ R[t] are polynomials such
that

(a) f is a monic polynomial, and
(b) f ′ = df/dt is invertible in the localization R[t]g/(f).

Then the map
R −→ R[t]g/(f) = R[t, 1/g]/(f)

is a standard étale algebra, and any standard étale algebra is isomorphic to one of
these. It is a pleasant exercise to prove that such a ring map is flat, and unramified
and hence étale (as expected of course). A special case of a standard étale ring map
is any ring map

R −→ R[t]f ′/(f) = R[t, 1/f ′]/(f)

with f a monic polynomial, and any standard étale algebra is (isomorphic to) a
principal localization of one of these.

Theorem 40.12.1. Let f : A→ B be an étale homomorphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a localization of B′ at a prime.

Proof. Write B = B′q for some finite type A-algebra B′ (we can do this because B
is essentially of finite type over A). By Lemma 40.11.2 we see that A→ B′ is étale
at q. Hence we may apply Algebra, Proposition 10.138.17 to see that a principal
localization of B′ is standard étale. �

Here is the version for unramified homomorphisms of local rings.

Theorem 40.12.2. Let f : A→ B be an unramified morphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a quotient of a localization of B′ at a prime.

Proof. Write B = B′q for some finite type A-algebra B′ (we can do this because
B is essentially of finite type over A). By Lemma 40.3.2 we see that A → B′ is
unramified at q. Hence we may apply Algebra, Proposition 10.144.8 to see that a
principal localization of B′ is a quotient of a standard étale A-algebra. �

Via standard lifting arguments, one then obtains the following geometric statement
which will be of essential use to us.

Theorem 40.12.3. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X. If ϕ
is étale at x, then there exist exist affine opens V ⊂ Y and U ⊂ X with x ∈ U and
ϕ(U) ⊂ V such that we have the following diagram

X

��

Uoo

��

j
// Spec(R[t]f ′/(f))

��
Y Voo Spec(R)

where j is an open immersion, and f ∈ R[t] is monic.

Proof. This is equivalent to Morphisms, Lemma 28.37.14 although the statements
differ slightly. �
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40.13. Étale and smooth morphisms

An étale morphism is smooth of relative dimension zero. The projection An
S → S

is a standard example of a smooth morphism of relative dimension n. It turns
out that any smooth morphism is étale locally of this form. Here is the precise
statement.

Theorem 40.13.1. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X. If ϕ is
smooth at x, then there exist exist and integer n ≥ 0 and affine opens V ⊂ Y and
U ⊂ X with x ∈ U and ϕ(U) ⊂ V such that there exists a commutative diagram

X

��

Uoo

��

π
// An

R

��

Spec(R[x1, . . . , xn])

vv
Y Voo Spec(R)

where π is étale.

Proof. See Morphisms, Lemma 28.37.20. �

40.14. Topological properties of étale morphisms

We present a few of the topological properties of étale and unramified morphisms.
First, we give what Grothendieck calls the fundamental property of étale morphisms,
see [Gro71, Exposé I.5].

Theorem 40.14.1. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is an open immersion,
(2) f is universally injective and étale, and
(3) f is a flat monomorphism, locally of finite presentation.

Proof. An open immersion is universally injective since any base change of an
open immersion is an open immersion. Moreover, it is étale by Morphisms, Lemma
28.37.9. Hence (1) implies (2).

Assume f is universally injective and étale. Since f is étale it is flat and locally
of finite presentation, see Morphisms, Lemmas 28.37.12 and 28.37.11. By Lemma
40.7.1 we see that f is a monomorphism. Hence (2) implies (3).

Assume f is flat, locally of finite presentation, and a monomorphism. Then f is
open, see Morphisms, Lemma 28.26.9. Thus we may replace Y by f(X) and we
may assume f is surjective. Then f is open and bijective hence a homeomorphism.
Hence f is quasi-compact. Hence Descent, Lemma 34.21.1 shows that f is an
isomorphism and we win. �

Here is another result of a similar flavor.

Lemma 40.14.2. Let π : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) π is finite,
(2) π is étale,
(3) π−1({s}) = {x}, and
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(4) κ(s) ⊂ κ(x) is purely inseparable2.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U
is an isomorphism.

Proof. By Lemma 40.7.3 there exists an open neighbourhood U of s such that
π|π−1(U) : π−1(U)→ U is a closed immersion. But a morphism which is étale and
a closed immersion is an open immersion (for example by Theorem 40.14.1). Hence
after shrinking U we obtain an isomorphism. �

40.15. Topological invariance of the étale topology

Next, we present an extremely crucial theorem which, roughly speaking, says that
étaleness is a topological property.

Theorem 40.15.1. Let X and Y be two schemes over a base scheme S. Let S0 be
a closed subscheme of S whose ideal sheaf has square zero. Denote X0 (resp. Y0)
the base change S0 ×S X (resp. S0 ×S Y ). If X is étale over S, then the map

MorS(Y,X) −→ MorS0
(Y0, X0)

is bijective.

Proof. After base changing via Y → S, we may assume that Y = S. In this case
the theorem states that any S-morphism σ0 : S0 → X actually factors uniquely
through a section S → X of the étale structure morphism X → S.

Existence. Since we have equality of underlying topological spaces |S0| = |S| and
|X0| = |X|, by Theorem 40.6.2, the section σ0 is uniquely determined by a connected
component X ′ of X such that the base change X ′0 = S0×SX ′ maps isomorphically
to S0. In particular, X ′ → S is a universal homeomorphism and therefore univer-
sally injective. Since X ′ → S is étale, it follows from Theorem 40.14.1 that X ′ → S
is an isomorphism and, therefore, it has an inverse σ which is the required section.

Uniqueness. This follows from Theorem 40.5.1, or directly from Theorem 40.6.2,
or, if one carefuly observes, from our proof itself. �

From the proof of preceeding theorem, we also obtain one direction of the promised
functorial characterization of étale morphisms. The following theorem will be
strengthened in Étale Cohomology, Theorem 44.46.1.

Theorem 40.15.2 (Une equivalence remarquable de catégories). Let S be a scheme.
Let S0 ⊂ S be a closed subscheme defined by an ideal with square zero. The functor

X 7−→ X0 = S0 ×S X
defines an equivalence of categories

{schemes X étale over S} ↔ {schemes X0 étale over S0}

Proof. By Theorem 40.15.1 we see that this functor is fully faithful. It remains to
show that the functor is essentially surjective. Let Y → S0 be an étale morphism
of schemes.

Suppose that the result holds if S and Y are affine. In that case, we choose an
affine open covering Y =

⋃
Vj such that each Vj maps into an affine open of S. By

assumption (affine case) we can find étale morphisms Wj → S such that Wj,0
∼= Vj

2In view of condition (2) this is equivalent to κ(s) = κ(x).
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(as schemes over S0). Let Wj,j′ ⊂ Wj be the open subscheme whose underlying
topological space corresponds to Vj ∩ Vj′ . Because we have isomorphisms

Wj,j′,0
∼= Vj ∩ Vj′ ∼= Wj′,j,0

as schemes over S0 we see by fully faithfulness that we obtain isomorphisms θj,j′ :
Wj,j′ → Wj′,j of schemes over S. We omit the verification that these isomor-
phisms satisfy the cocycle condition of Schemes, Section 25.14. Applying Schemes,
Lemma 25.14.2 we obtain a scheme X → S by glueing the schemes Wj along the
identifications θj,j′ . It is clear that X → S is étale and X0

∼= Y by construction.

Thus it suffices to show the lemma in case S and Y are affine. Say S = Spec(R)
and S0 = Spec(R/I) with I2 = 0. By Algebra, Lemma 10.138.2 we know that Y is
the spectrum of a ring A with

A = (R/I)[x1, . . . , xn]/(f1, . . . , fn)

such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2

. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in A. Choose any lifts fi ∈ R[x1, . . . , xn]. Since I
is nilpotent it follows that the determinant of the matrix of partials of the fi is
invertible in the algebra A defined by

A = R[x1, . . . , xn]/(f1, . . . , fn)

Hence R → A is étale and (R/I)⊗R A ∼= A. To prove the general case one argues
with glueing affine pieces. �

40.16. The functorial characterization

We finally present the promised functorial characterization. Thus there are four
ways to think about étale morphisms of schemes:

(1) as a smooth morphism of relative dimension 0,
(2) as locally finitely presented, flat, and unramified morphisms,
(3) using the structure theorem, and
(4) using the functorial characterization.

Theorem 40.16.1. Let f : X → S be a morphism that is locally of finite presen-
tation. The following are equivalent

(1) f is étale,
(2) for all affine S-schemes Y , and closed subschemes Y0 ⊂ Y defined by

square-zero ideals, the natural map

MorS(Y,X) −→ MorS(Y0, X)

is bijective.

Proof. This is More on Morphisms, Lemma 36.6.9. �

This characterization says that solutions to the equations defining X can be lifted
uniquely through nilpotent thickenings.
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2616 40. ÉTALE MORPHISMS OF SCHEMES

40.17. Étale local structure of unramified morphisms

In the chapter More on Morphisms, Section 36.30 the reader can find some results
on the étale local structure of quasi-finite morphisms. In this section we want to
combine this with the topological properties of unramified morphisms we have seen
in this chapter. The basic overall picture to keep in mind is

V //

!!

XU

��

// X

f

��
U // S

see More on Morphisms, Equation (36.30.0.1). We start with a very general case.

Lemma 40.17.1. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is unramified at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is a closed immersion passing through u,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j.

Proof. By Morphisms, Definition 28.36.1 there exists an open neighbourhood of
each xi which is locally of finite type over S. ReplacingX by an open neighbourhood
of {x1, . . . , xn} we may assume f is locally of finite type. Apply More on Morphisms,
Lemma 36.30.3 to get the étale neighbourhood (U, u) and the opens Vi,j finite over
U . By Lemma 40.7.3 after possibly shrinking U we get that Vi,j → U is a closed
immersion. �

Lemma 40.17.2. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X
be points having the same image s in S. Assume f is separated and f is unramified
at each xi. Then there exists an étale neighbourhood (U, u)→ (S, s) and a disjoint
union decomposition

XU = W q
∐

i,j
Vi,j

such that

(1) Vi,j → U is a closed immersion passing through u,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. Apply Lemma 40.17.1. We may assume U is affine, so XU is separated.
Then Vi,j → XU is a closed map, see Morphisms, Lemma 28.42.7. Suppose (i, j) 6=
(i′, j′). Then Vi,j ∩ Vi′,j′ is closed in Vi,j and its image in U does not contain u.
Hence after shrinking U we may assume that Vi,j ∩Vi′,j′ = ∅. Moreover,

⋃
Vi,j is a

closed and open subscheme of XU and hence has an open and closed complement
W . This finishes the proof. �

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite unramified morphism
is étale locally on the base a closed immersion.
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Lemma 40.17.3. Let f : X → S be a finite unramified morphism of schemes. Let
s ∈ S. There exists an étale neighbourhood (U, u) → (S, s) and a disjoint union
decomposition

XU =
∐

j
Vj

such that each Vj → U is a closed immersion.

Proof. Since X → S is finite the fibre over S is a finite set {x1, . . . , xn} of points of
X. Apply Lemma 40.17.2 to this set (a finite morphism is separated, see Morphisms,
Section 28.44). The image of W in U is a closed subset (as XU → U is finite, hence
proper) which does not contain u. After removing this from U we see that W = ∅
as desired. �

40.18. Étale local structure of étale morphisms

This is a bit silly, but perhaps helps form intuition about étale morphisms. We
simply copy over the results of Section 40.17 and change “closed immersion” into
“isomorphism”.

Lemma 40.18.1. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X
be points having the same image s in S. Assume f is étale at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is an isomorphism,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j.

Proof. An étale morphism is unramified, hence we may apply Lemma 40.17.1.
Now Vi,j → U is a closed immersion and étale. Hence it is an open immersion,
for example by Theorem 40.14.1. Replace U by the intersection of the images of
Vi,j → U to get the lemma. �

Lemma 40.18.2. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X
be points having the same image s in S. Assume f is separated and f is étale at
each xi. Then there exists an étale neighbourhood (U, u) → (S, s) and a disjoint
union decomposition

XU = W q
∐

i,j
Vi,j

such that

(1) Vi,j → U is an isomorphism,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. An étale morphism is unramified, hence we may apply Lemma 40.17.2. As
in the proof of Lemma 40.18.1 the morphisms Vi,j → U are open immersions and
we win after replacing U by the intersection of their images. �

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite étale morphism is étale
locally on the base a “topological covering space”, i.e., a finite product of copies of
the base.
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Lemma 40.18.3. Let f : X → S be a finite étale morphism of schemes. Let
s ∈ S. There exists an étale neighbourhood (U, u) → (S, s) and a disjoint union
decomposition

XU =
∐

j
Vj

such that each Vj → U is an isomorphism.

Proof. An étale morphism is unramified, hence we may apply Lemma 40.17.3. As
in the proof of Lemma 40.18.1 we see that Vi,j → U is an open immersion and we
win after replacing U by the intersection of their images. �

40.19. Permanence properties

In what follows, we present a few “permanence” properties of étale homomorphisms
of Noetherian local rings (as defined in Definition 40.11.1). See More on Algebra,
Sections 15.32 and 15.34 for the analogue of this material for the completion and
henselization of a Noetherian local ring.

Lemma 40.19.1. Let A, B be Noetherian local rings. Let A → B be a étale
homomorphism of local rings. Then dim(A) = dim(B).

Proof. See for example Algebra, Lemma 10.108.7. �

Proposition 40.19.2. Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then depth(A) = depth(B)

Proof. See Algebra, Lemma 10.151.2. �

Proposition 40.19.3. Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is Cohen-Macaulay if and only if B is
so.

Proof. A local ring A is Cohen-Macaulay if and only dim(A) = depth(A). As both
of these invariants is preserved under an étale extension, the claim follows. �

Proposition 40.19.4. Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is regular if and only if B is so.

Proof. If B is regular, then A is regular by Algebra, Lemma 10.106.9. Assume A is
regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) = dim(B)
(see Lemma 40.19.1). On the other hand, mB is the maximal ideal of B and hence
mB/mB = mB/m2B is generated by at most dim(B) elements. Thus B is regular.
(You can also use the slightly more general Algebra, Lemma 10.108.8.) �

Proposition 40.19.5. Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is reduced if and only if B is so.

Proof. It is clear from the faithful flatness of A → B that if B is reduced, so
is A. See also Algebra, Lemma 10.152.2. Conversely, assume A is reduced. By
assumption B is a localization of a finite type A-algebra B′ at some prime q. After
replacing B′ by a localization we may assume that B′ is étale over A, see Lemma
40.11.2. Then we see that Algebra, Lemma 10.151.6 applies to A → B′ and B′ is
reduced. Hence B is reduced. �
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Remark 40.19.6. The result on “reducedness” does not hold with a weaker def-
inition of étale local ring maps A → B where one drops the assumption that B is
essentially of finite type over A. Namely, it can happen that a Noetherian local
domain A has nonreduced completion A∧, see Examples, Section 82.15. But the
ring map A → A∧ is flat, and mAA

∧ is the maximal ideal of A∧ and of course A
and A∧ have the same residue fields. This is why it is important to consider this
notion only for ring extensions which are essentially of finite type (or essentially of
finite presentation if A is not Noetherian).

Proposition 40.19.7. Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is a normal domain if and only if B is
so.

Proof. See Algebra, Lemma 10.152.3 for descending normality. Conversely, assume
A is normal. By assumption B is a localization of a finite type A-algebra B′ at
some prime q. After replacing B′ by a localization we may assume that B′ is étale
over A, see Lemma 40.11.2. Then we see that Algebra, Lemma 10.151.7 applies to
A→ B′ and we conclude that B′ is normal. Hence B is a normal domain. �

The preceeding propositions give some indication as to why we’d like to think
of étale maps as “local isomorphisms”. Another property that gives an excellent
indication that we have the “right” definition is the fact that for C-schemes of
finite type, a morphism is étale if and only if the associated morphism on analytic
spaces (the C-valued points given the complex topology) is a local isomorphism
in the analytic sense (open embedding locally on the source). This fact can be
proven with the aid of the structure theorem and the fact that the analytification
commutes with the formation of the completed local rings – the details are left to
the reader.
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CHAPTER 41

Chow Homology and Chern Classes

41.1. Introduction

In this chapter we discuss Chow homology groups and the construction of chern
classes of vector bundles as elements of operational Chow cohomology groups (ev-
erything with Z-coefficients). We follow the first few chapters of [Ful98], except
that we have been less precise about the supports of the cycles involved. More
classical discussions of Chow groups can be found in [Sam56], [Che58a], and
[Che58b]. Of course there are many others.

To make the material a little bit more challenging we decided to treat a somewhat
more general case than is usually done. Namely we assume our schemes X are
locally of finite type over a fixed locally Noetherian base scheme which is universally
catenary and has a given dimension function. This seems to be all that is needed
to be able to define the Chow homology groups A∗(X) and the action of capping
with chern classes on them. This is an indication that we should be able to define
these also for algebraic stacks locally of finite type over such a base.

In another chapter we will define the intersection products on A∗(X) using Serre’s
Tor-formula in case X is nonsingular (see [Ser00], or [Ser65]) and we have a good
moving lemma. See (insert future reference here).

41.2. Determinants of finite length modules

The material in this section is related to the material in the paper [KM76] and to
the material in the thesis [Ros09]. If you have a good reference then please email
stacks.project@gmail.com.

Given any field κ and any finite dimensional κ-vector space V we set detκ(V ) =
∧n(V ) where n = dimκ(V ). We want to generalize this slightly.

Definition 41.2.1. Let R be a local ring with maximal ideal m and residue field
κ. Let M be a finite length R-module. Say l = lengthR(M).

(1) Given elements x1, . . . , xr ∈M we denote 〈x1, . . . , xr〉 = Rx1 + . . .+Rxr
the R-submodule of R generated by x1, . . . , xr.

(2) We will say an l-tuple of elements (e1, . . . , el) of M is admissible if mei ∈
〈e1, . . . , ei−1〉 for i = 1, . . . , l.

(3) A symbol [e1, . . . , el] will mean (e1, . . . , el) is an admissible l-tuple.
(4) An admissible relation between symbols is one of the following:

(a) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we
have ea ∈ 〈e1, . . . , ea−1〉, then [e1, . . . , el] = 0,

2621

mailto:stacks.project@gmail.com
http://stacks.math.columbia.edu/tag/02P6


2622 41. CHOW HOMOLOGY AND CHERN CLASSES

(b) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we
have ea = λe′a + x with λ ∈ R∗, and x ∈ 〈e1, . . . , ea−1〉, then

[e1, . . . , el] = λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el]

where λ ∈ κ∗ is the image of λ in the residue field, and
(c) if (e1, . . . , el) is an admissible sequence and mea ⊂ 〈e1, . . . , ea−2〉 then

[e1, . . . , el] = −[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el].

(5) We define the determinant of the finite length R-module M to be

detκ(M) =

{
κ-vector space generated by symbols

κ-linear combinations of admissible relations

}
We stress that always l = lengthR(M). We also stress that it does not follow that
the symbol [e1, . . . , el] is additive in the entries (this will typically not be the case).
Before we can show that the determinant detκ(M) actually has dimension 1 we
have to show that it has dimension at most 1.

Lemma 41.2.2. With notations as above we have dimκ(detκ(M)) ≤ 1.

Proof. Fix an admissible sequence (f1, . . . , fl) of M such that

lengthR(〈f1, . . . , fi〉) = i

for i = 1, . . . , l. Such an admissible sequence exists exactly because M has length l.
We will show that any element of detκ(M) is a κ-multiple of the symbol [f1, . . . , fl].
This will prove the lemma.

Let (e1, . . . , el) be an admissible sequence of M . It suffices to show that [e1, . . . , el]
is a multiple of [f1, . . . , fl]. First assume that 〈e1, . . . , el〉 6= M . Then there exists
an i ∈ [1, . . . , l] such that ei ∈ 〈e1, . . . , ei−1〉. It immediately follows from the
first admissible relation that [e1, . . . , en] = 0 in detκ(M). Hence we may assume
that 〈e1, . . . , el〉 = M . In particular there exists a smallest index i ∈ {1, . . . , l}
such that f1 ∈ 〈e1, . . . , ei〉. This means that ei = λf1 + x with x ∈ 〈e1, . . . , ei−1〉
and λ ∈ R∗. By the second admissible relation this means that [e1, . . . , el] =
λ[e1, . . . , ei−1, f1, ei+1, . . . , el]. Note that mf1 = 0. Hence by applying the third
admissible relation i− 1 times we see that

[e1, . . . , el] = (−1)i−1λ[f1, e1, . . . , ei−1, ei+1, . . . , el].

Note that it is also the case that 〈f1, e1, . . . , ei−1, ei+1, . . . , el〉 = M . By induction
suppose we have proven that our original symbol is equal to a scalar times

[f1, . . . , fj , ej+1, . . . , el]

for some admissible sequence (f1, . . . , fj , ej+1, . . . , el) whose elements generate M ,
i.e., with 〈f1, . . . , fj , ej+1, . . . , el〉 = M . Then we find the smallest i such that
fj+1 ∈ 〈f1, . . . , fj , ej+1, . . . , ei〉 and we go through the same process as above to see
that

[f1, . . . , fj , ej+1, . . . , el] = (scalar)[f1, . . . , fj , fj+1, ej+1, . . . , êi, . . . , el]

Continuing in this vein we obtain the desired result. �

Before we show that detκ(M) always has dimension 1, let us show that it agrees
with the usual top exterior power in the case the module is a vector space over κ.
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Lemma 41.2.3. Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module which is annihilated by m. Let l = n = dimκ(M).
Then the map

detκ(M) −→ ∧lκ(M), [e1, . . . , el] 7−→ e1 ∧ . . . ∧ el
is an isomorphism.

Proof. It is clear that the rule described in the lemma gives a κ-linear map since all
of the admissible relations are satisfied by the usual symbols e1 ∧ . . .∧ el. It is also
clearly a surjective map. Since by Lemma 41.2.2 the left hand side has dimension
at most one we see that the map is an isomorphism. �

Lemma 41.2.4. Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module. The determinant detκ(M) defined above is a
κ-vector space of dimension 1. It is generated by the symbol [f1, . . . , fl] for any
admissible sequence such that 〈f1, . . . fl〉 = M .

Proof. We know detκ(M) has dimension at most 1, and in fact that it is generated
by [f1, . . . , fl], by Lemma 41.2.2 and its proof. We will show by induction on
l = length(M) that it is nonzero. For l = 1 it follows from Lemma 41.2.3. Choose
a nonzero element f ∈M with mf = 0. Set M = M/〈f〉, and denote the quotient
map x 7→ x. We will define a surjective map

ψ : detk(M)→ detκ(M)

which will prove the lemma since by induction the determinant of M is nonzero.

We define ψ on symbols as follows. Let (e1, . . . , el) be an admissible sequence. If
f 6∈ 〈e1, . . . , el〉 then we simply set ψ([e1, . . . , el]) = 0. If f ∈ 〈e1, . . . , el〉 then we
choose an i minimal such that f ∈ 〈e1, . . . , ei〉 and write ei = λf+x for some λ ∈ R
and x ∈ 〈e1, . . . , ei−1〉. In this case we set

ψ([e1, . . . , el]) = λ[e1, . . . , ei−1, ei+1, . . . , el].

Note that it is indeed the case that (e1, . . . , ei−1, ei+1, . . . , el) is an admissible se-
quence in M , so this makes sense. Let us show that extending this rule κ-linearly
to linear combinations of symbols does indeed lead to a map on determinants. To
do this we have to show that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea ∈ 〈e1, . . . , ea−1〉. Suppose that f ∈ 〈e1, . . . , ei〉
with i minimal. Then it is immediate that i 6= a. Since it is also the case that
ea ∈ 〈e1, . . . , êi, . . . , ea−1〉 we see immediately that the same admissible relation for
detκ(M) forces the symbol [e1, . . . , ei−1, ei+1, . . . , el] to be zero as desired.

Type (b) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea = λe′a+x with λ ∈ R∗, and x ∈ 〈e1, . . . , ea−1〉. Suppose
that f ∈ 〈e1, . . . , ei〉 with i minimal. Say ei = µf + y with y ∈ 〈e1, . . . , ei−1〉. If
i < a then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ei−1, ei+1, . . . , ea−1, e
′
a, ea+1, . . . , el]

which follows from ea = λe′a + x and the corresponding admissible relation for
detκ(M). If i > a then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , ei−1, ei+1, . . . , el]
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which follows from ea = λe′a + x and the corresponding admissible relation for
detκ(M). The interesting case is when i = a. In this case we have ea = λe′a + x =
µf + y. Hence also e′a = λ−1(µf + y − x). Thus we see that

ψ([e1, . . . , el]) = µ[e1, . . . , ei−1, ei+1, . . . , el] = ψ(λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el])

as desired.

Type (c) relations. Suppose that (e1, . . . , el) is an admissible sequence and mea ⊂
〈e1, . . . , ea−2〉. Suppose that f ∈ 〈e1, . . . , ei〉 with i minimal. Say ei = λf + x with
x ∈ 〈e1, . . . , ei−1〉. If i < a− 1, then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ei−1, ei+1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M). Similarly, if i > a,
then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M). If i = a, then the
desired equality is

λ[e1, . . . , ea−1, ea+1, . . . , el] = λ[e1, . . . , ea−2, ea−1, ea+1, . . . , el]

which is tautological. Finally, the interesting case is i = a−1. This case itself splits
into two cases as to whether f ∈ 〈e1, . . . , ea−2, ea〉 or not. If not, then we see that
the desired equality is

λ[e1, . . . , ea−2, ea, . . . , el] = λ[e1, . . . , ea−2, ea, ea+1, . . . , el]

which is tautological since after switching ea−1 and ea the smallest index such that
f is in the becomes equal to i′ = a and it is again ea which is removed. On the other
hand, suppose that f ∈ 〈e1, . . . , ea−2, ea〉. In this case we see that we can, besides
the equality ea−1 = λf +x of above, also write ea = µf +y with y ∈ 〈e1, . . . , ea−2〉.
Clearly this means that both ea ∈ 〈e1, . . . , ea−1〉 and ea−1 ∈ 〈e1, . . . , ea−2, ea〉.
Thus we can use relations of type (a) and the compatibility of ψ with these shown
above to see that both

ψ([e1, . . . , el]) and ψ([e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el])

are zero, as desired.

At this point we have shown that ψ is well defined, and all that remains is to show
that it is surjective. To see this let (f2, . . . , f l) be an admissible sequence in M . We
can choose lifts f2, . . . , fl ∈M , and then (f, f2, . . . , fl) is an admissible sequence in
M . Since ψ([f, f2, . . . , fl]) = [f2, . . . , fl] we win. �

Let R be a local ring with maximal ideal m and residue field κ. Note that if ϕ :
M → N is an isomorphism of finite length R-modules, then we get an isomorphism

detκ(ϕ) : detκ(M)→ detκ(N)

simply by the rule

detκ(ϕ)([e1, . . . , el]) = [ϕ(e1), . . . , ϕ(el)]

for any symbol [e1, . . . , el] for M . Hence we see that detκ is a functor

(41.2.4.1)

{
finite length R-modules

with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
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This is typical for a “determinant functor” (see [Knu02]), as is the following addi-
tivity property.

Lemma 41.2.5. Let (R,m, κ) be a local ring. For every short exact sequence

0→ K → L→M → 0

of finite length R-modules there exists a canonical isomorphism

γK→L→M : detκ(K)⊗κ detκ(M) −→ detκ(L)

defined by the rule on nonzero symbols

[e1, . . . , ek]⊗ [f1, . . . , fm] −→ [e1, . . . , ek, f1, . . . , fm]

with the following properties:

(1) For every isomorphism of short exact sequences, i.e., for every commuta-
tive diagram

0 // K //

u

��

L //

v

��

M //

w

��

0

0 // K ′ // L′ // M ′ // 0

with short exact rows and isomorphisms u, v, w we have

γK′→L′→M ′ ◦ (detκ(u)⊗ detκ(w)) = detκ(v) ◦ γK→L→M ,
(2) for every commutative square of finite length R-modules with exact rows

and columns

0

��

0

��

0

��
0 // A //

��

B //

��

C //

��

0

0 // D //

��

E //

��

F //

��

0

0 // G //

��

H //

��

I //

��

0

0 0 0

the following diagram is commutative

detκ(A)⊗ detκ(C)⊗ detκ(G)⊗ detκ(I)

ε

��

γA→B→C⊗γG→H→I
// detκ(B)⊗ detκ(H)

γB→E→H

��
detκ(E)

detκ(A)⊗ detκ(G)⊗ detκ(C)⊗ detκ(I)
γA→D→G⊗γC→F→I // detκ(D)⊗ detκ(F )

γD→E→F

OO

where ε is the switch of the factors in the tensor product times (−1)cg with
c = lengthR(C) and g = lengthR(G), and

http://stacks.math.columbia.edu/tag/02PA


2626 41. CHOW HOMOLOGY AND CHERN CLASSES

(3) the map γK→L→M agrees with the usual isomorphism if 0 → K → L →
M → 0 is actually a short exact sequence of κ-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of
the map γK→L→M is simply that if (e1, . . . , el) is an admissible sequence in K,
and (f1, . . . , fm) is an admissible sequence in M , then it is not guaranteed that
(e1, . . . , el, f1, . . . , fm) is an admissible sequence in L (where of course fi ∈ L sig-
nifies a lift of f i). However, if the symbol [e1, . . . , el] is nonzero in detκ(K), then
necessarily K = 〈e1, . . . , ek〉 (see proof of Lemma 41.2.2), and in this case it is true
that (e1, . . . , ek, f1, . . . , fm) is an admissible sequence. Moreover, by the admissible
relations of type (b) for detκ(L) we see that the value of [e1, . . . , ek, f1, . . . , fm] in
detκ(L) is independent of the choice of the lifts fi in this case also. Given this
remark, it is clear that an admissible relation for e1, . . . , ek in K translates into an
admissible relation among e1, . . . , ek, f1, . . . , fm in L, and similarly for an admissi-
ble relation among the f1, . . . , fm. Thus γ defines a linear map of vector spaces as
claimed in the lemma.

By Lemma 41.2.4 we know detκ(L) is generated by any single symbol [x1, . . . , xk+m]
such that (x1, . . . , xk+m) is an admissible sequence with L = 〈x1, . . . , xk+m〉. Hence
it is clear that the map γK→L→M is surjective and hence an isomorphism.

Property (1) holds because

detκ(v)([e1, . . . , ek, f1, . . . , fm])

= [v(e1), . . . , v(ek), v(f1), . . . , v(fm)]

= γK′→L′→M ′([u(e1), . . . , u(ek)]⊗ [w(f1), . . . , w(fm)]).

Property (2) means that given a symbol [α1, . . . , αa] generating detκ(A), a symbol
[γ1, . . . , γc] generating detκ(C), a symbol [ζ1, . . . , ζg] generating detκ(G), and a
symbol [ι1, . . . , ιi] generating detκ(I) we have

[α1, . . . , αa, γ̃1, . . . , γ̃c, ζ̃1, . . . , ζ̃g, ι̃1, . . . , ι̃i]

= (−1)cg[α1, . . . , αa, ζ̃1, . . . , ζ̃g, γ̃1, . . . , γ̃c, ι̃1, . . . , ι̃i]

(for suitable lifts x̃ in E) in detκ(E). This holds because we may use the admissible

relations of type (c) cg times in the following order: move the ζ̃1 past the elements

γ̃c, . . . , γ̃1 (allowed since mζ̃1 ⊂ A), then move ζ̃2 past the elements γ̃c, . . . , γ̃1

(allowed since mζ̃2 ⊂ A+Rζ̃1), and so on.

Part (3) of the lemma is obvious. This finishes the proof. �

We can use the maps γ of the lemma to define more general maps γ as follows.
Suppose that (R,m, κ) is a local ring. Let M be a finite length R-module and
suppose we are given a finite filtration (see Homology, Definition 12.16.1)

M = Fn ⊃ Fn+1 ⊃ . . . ⊃ Fm−1 ⊃ Fm = 0.

Then there is a canonical isomorphism

γ(M,F ) :
⊗

i
detκ(F i/F i+1) −→ detκ(M)

well defined up to sign(!). One can make the sign explicit either by giving a well
defined order of the terms in the tensor product (starting with higher indices un-
fortunately), and by thinking of the target category for the functor detκ as the
category of 1-dimensional super vector spaces. See [KM76, Section 1].
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Here is another typical result for determinant functors. It is not hard to show. The
tricky part is usually to show the existence of a determinant functor.

Lemma 41.2.6. Let (R,m, κ) be any local ring. The functor

detκ :

{
finite length R-modules

with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
endowed with the maps γK→L→M is characterized by the following properties

(1) its restriction to the subcategory of modules annihilated by m is isomorphic
to the usual determinant functor (see Lemma 41.2.3), and

(2) (1), (2) and (3) of Lemma 41.2.5 hold.

Proof. Omitted. �

Lemma 41.2.7. Let (R,m, κ) be a local ring. Let I ⊂ m be an ideal, and set

R′ = R/I. Let detR,κ denote the determinant functor on the category ModfR finite

length R-modules and denote detR′,κ the determinant on the category ModfR′ of

finite length R′-modules. Then ModfR′ ⊂ ModfR is a full subcategory and there exists
an isomorphism of functors

detR,κ |Modf
R′

= detR′,κ

compatible with the isomorphisms γK→L→M for either of these functors.

Proof. This can be shown by using the characterization of the pair (detR′,κ, γ)
in Lemma 41.2.6. But really the isomorphism is obtained by mapping a symbol
[x1, . . . , xl] ∈ detR,κ(M) to the corresponding symbol [x1, . . . , xl] ∈ detR′,κ(M)
which “obviously” works. �

Here is a case where we can compute the determinant of a linear map. In fact there
is nothing mysterious about this in any case, see Example 41.2.9 for a random
example.

Lemma 41.2.8. Let R be a local ring with residue field κ. Let u ∈ R∗ be a unit. Let
M be a module of finite length over R. Denote uM : M →M the map multiplication
by u. Then

detκ(uM ) : detκ(M) −→ detκ(M)

is multiplication by ul where l = lengthR(M) and u ∈ κ∗ is the image of u.

Proof. Denote fM ∈ κ∗ the element such that detκ(uM ) = fM iddetκ(M). Suppose
that 0 → K → L → M → 0 is a short exact sequence of finite R-modules. Then
we see that uk, uL, uM give an isomorphism of short exact sequences. Hence by
Lemma 41.2.5 (1) we conclude that fKfM = fL. This means that by induction on
length it suffices to prove the lemma in the case of length 1 where it is trivial. �

Example 41.2.9. Consider the local ring R = Zp. Set M = Zp/(p
2) ⊕ Zp/(p

3).
Let u : M →M be the map given by the matrix

u =

(
a b
pc d

)
where a, b, c, d ∈ Zp, and a, d ∈ Z∗p. In this case detκ(u) equals multiplication by

a2d3 mod p ∈ F∗p. This can easily be seen by consider the effect of u on the symbol

[p2e, pe, pf, e, f ] where e = (0, 1) ∈M and f = (1, 0) ∈M .

http://stacks.math.columbia.edu/tag/02PB
http://stacks.math.columbia.edu/tag/02PC
http://stacks.math.columbia.edu/tag/02PD
http://stacks.math.columbia.edu/tag/02PE
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41.3. Periodic complexes

Of course there is a very general notion of periodic complexes. We can require
periodicity of the maps, or periodicity of the objects. We will add these here as
needed. For the moment we only need the following cases.

Definition 41.3.1. Let R be a ring.

(1) A 2-periodic complex over R is given by a quadruple (M,N,ϕ, ψ) consist-
ing of R-modules M , N and R-module maps ϕ : M → N , ψ : N → M
such that

. . . // M
ϕ // N

ψ // M
ϕ // N // . . .

is a complex. In this setting we define the cohomology modules of the
complex to be the R-modules

H0(M,N,ϕ, ψ) = Ker(ϕ)/Im(ψ), and H1(M,N,ϕ, ψ) = Ker(ψ)/Im(ϕ).

We say the 2-periodic complex is exact if the cohomology groups are zero.
(2) A (2, 1)-periodic complex over R is given by a triple (M,ϕ, ψ) consisting

of an R-module M and R-module maps ϕ : M → M , ψ : M → M such
that

. . . // M
ϕ // M

ψ // M
ϕ // M // . . .

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules H0(M,ϕ, ψ), H1(M,ϕ, ψ) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without
further mention for (2, 1)-periodic complexes. It is clear that the collection of
2-periodic complexes (resp. (2, 1)-periodic complexes) forms a category with mor-
phisms (f, g) : (M,N,ϕ, ψ)→ (M ′, N ′, ϕ′, ψ′) pairs of morphisms f : M →M ′ and
g : N → N ′ such that ϕ′ ◦ f = f ◦ ϕ and ψ′ ◦ g = g ◦ ψ. In fact it is an abelian
category, with kernels and cokernels as in Homology, Lemma 12.12.3. Also, note
that a special case are the (2, 1)-periodic complexes of the form (M, 0, ψ). In this
special case we have

H0(M, 0, ψ) = Coker(ψ), and H1(M, 0, ψ) = Ker(ψ).

Definition 41.3.2. Let R be a local ring. Let (M,N,ϕ, ψ) be a 2-periodic complex
over R whose cohomology groups have finite length over R. In this case we define
the multiplicity of (M,N,ϕ, ψ) to be the integer

eR(M,N,ϕ, ψ) = lengthR(H0(M,N,ϕ, ψ))− lengthR(H1(M,N,ϕ, ψ))

We will sometimes (especially in the case of a (2, 1)-periodic complex with ϕ = 0)
call this the Herbrand quotient1.

Lemma 41.3.3. Let R be a local ring.

(1) If (M,N,ϕ, ψ) is a 2-periodic complex such that M , N have finite length.
Then eR(M,N,ϕ, ψ) = lengthR(M)− lengthR(N).

(2) If (M,ϕ, ψ) is a (2, 1)-periodic complex such that M has finite length.
Then eR(M,ϕ, ψ) = 0.

1If the residue field of R is finite with q elements it is customary to call the Herbrand
quotient h(M,N,ϕ, ψ) = qeR(M,N,ϕ,ψ) which is equal to the number of elements of H0 divided

by the number of elements of H1.

http://stacks.math.columbia.edu/tag/02PG
http://stacks.math.columbia.edu/tag/02PH
http://stacks.math.columbia.edu/tag/02PI
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(3) Suppose that we have a short exact sequence of (2, 1)-periodic complexes

0→ (M1, N1, ϕ1, ψ1)→ (M2, N2, ϕ2, ψ2)→ (M3, N3, ϕ3, ψ3)→ 0

If two out of three have cohomology modules of finite length so does the
third and we have

eR(M2, N2, ϕ2, ψ2) = eR(M1, N1, ϕ1, ψ1) + eR(M3, N3, ϕ3, ψ3).

Proof. Proof of (3). Abbreviate A = (M1, N1, ϕ1, ψ1), B = (M2, N2, ϕ2, ψ2) and
C = (M3, N3, ϕ3, ψ3). We have a long exact cohomology sequence

. . .→ H1(C)→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ . . .

This gives a finite exact sequence

0→ I → H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ K → 0

with 0 → K → H1(C) → I → 0 a filtration. By additivity of the length function
(Algebra, Lemma 10.50.3) we see the result. The proofs of (1) and (2) are omitted.

�

Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a (2, 1)-periodic complex
over R. Assume that M has finite length and that (M,ϕ, ψ) is exact. We are going
to use the determinant construction to define an invariant of this situation. See
Section 41.2. Let us abbreviate Kϕ = Ker(ϕ), Iϕ = Im(ϕ), Kψ = Ker(ψ), and
Iψ = Im(ψ). The short exact sequences

0→ Kϕ →M → Iϕ → 0, 0→ Kψ →M → Iψ → 0

give isomorphisms

γϕ : detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(M), γψ : detκ(Kψ)⊗ detκ(Iψ) −→ detκ(M),

see Lemma 41.2.5. On the other hand the exactness of the complex gives equalities
Kϕ = Iψ, and Kψ = Iϕ and hence an isomorphism

σ : detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(Kψ)⊗ detκ(Iψ)

by switching the factors. Using this notation we can define our invariant.

Definition 41.3.4. Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,ϕ, ψ)
is exact. The determinant of (M,ϕ, ψ) is the element

detκ(M,ϕ, ψ) ∈ κ∗

such that the composition

detκ(M)
γψ◦σ◦γ−1

ϕ−−−−−−→ detκ(M)

is multiplication by (−1)lengthR(Iϕ)lengthR(Iψ) detκ(M,ϕ, ψ).

Remark 41.3.5. Here is a more down to earth description of the determinant
introduced above. Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,ϕ, ψ)
is exact. Let us abbreviate Iϕ = Im(ϕ), Iψ = Im(ψ) as above. Assume that
lengthR(Iϕ) = a and lengthR(Iψ) = b, so that a + b = lengthR(M) by exactness.
Choose admissible sequences x1, . . . , xa ∈ Iϕ and y1, . . . , yb ∈ Iψ such that the sym-
bol [x1, . . . , xa] generates detκ(Iϕ) and the symbol [x1, . . . , xb] generates detκ(Iψ).

http://stacks.math.columbia.edu/tag/02PJ
http://stacks.math.columbia.edu/tag/02PK
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Choose x̃i ∈M such that ϕ(x̃i) = xi. Choose ỹj ∈M such that ψ(ỹj) = yj . Then
detκ(M,ϕ, ψ) is characterized by the equality

[x1, . . . , xa, ỹ1, . . . , ỹb] = (−1)ab detκ(M,ϕ, ψ)[y1, . . . , yb, x̃1, . . . , x̃a]

in detκ(M). This also explains the sign.

Lemma 41.3.6. Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,ϕ, ψ)
is exact. Then

detκ(M,ϕ, ψ) detκ(M,ψ, ϕ) = 1.

Proof. Omitted. �

Lemma 41.3.7. Let R be a local ring with residue field κ. Let (M,ϕ, ϕ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,ϕ, ϕ)
is exact. Then lengthR(M) = 2lengthR(Im(ϕ)) and

detκ(M,ϕ, ψ) = (−1)lengthR(Im(ϕ)) = (−1)
1
2 lengthR(M)

Proof. Follows directly from the sign rule in the definitions. �

Lemma 41.3.8. Let R be a local ring with residue field κ. Let M be a finite length
R-module.

(1) if ϕ : M →M is an isomorphism then detκ(M,ϕ, 0) = detκ(ϕ).
(2) if ψ : M →M is an isomorphism then detκ(M, 0, ψ) = detκ(ψ)−1.

Proof. Let us prove (1). Set ψ = 0. Then we may, with notation as above
Definition 41.3.4, identify Kϕ = Iψ = 0, Iϕ = Kψ = M . With these identifications,
the map

γϕ : κ⊗ detκ(M) = detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(M)

is identified with detκ(ϕ−1). On the other hand the map γψ is identified with the
identity map. Hence γψ ◦ σ ◦ γ−1

ϕ is equal to detκ(ϕ) in this case. Whence the
result. We omit the proof of (2). �

Lemma 41.3.9. Let R be a local ring with residue field κ. Suppose that we have a
short exact sequence of (2, 1)-periodic complexes

0→ (M1, ϕ1, ψ1)→ (M2, ϕ2, ψ2)→ (M3, ϕ3, ψ3)→ 0

with all Mi of finite length, and each (M1, ϕ1, ψ1) exact. Then

detκ(M2, ϕ2, ψ2) = detκ(M1, ϕ1, ψ1) detκ(M3, ϕ3, ψ3).

in κ∗.

http://stacks.math.columbia.edu/tag/02PL
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Proof. Let us abbreviate Iϕ,i = Im(ϕi), Kϕ,i = Ker(ϕi), Iψ,i = Im(ψi), and
Kψ,i = Ker(ψi). Observe that we have a commutative square

0

��

0

��

0

��
0 // Kϕ,1

//

��

Kϕ,2
//

��

Kϕ,3
//

��

0

0 // M1
//

��

M2
//

��

M3
//

��

0

0 // Iϕ,1 //

��

Iϕ,2 //

��

Iϕ,3 //

��

0

0 0 0

of finite length R-modules with exact rows and columns. The top row is exact
since it can be identified with the sequence Iψ,1 → Iψ,2 → Iψ,3 → 0 of images, and
similarly for the bottom row. There is a similar diagram involving the modules
Iψ,i and Kψ,i. By definition detκ(M2, ϕ2, ψ2) corresponds, up to a sign, to the
composition of the left vertical maps in the following diagram

detκ(M1)⊗ detκ(M3)
γ //

γ−1⊗γ−1

��

detκ(M2)

γ−1

��
detκ(Kϕ,1)⊗ detκ(Iϕ,1)⊗ detκ(Kϕ,3)⊗ detκ(Iϕ,3)

σ⊗σ
��

γ⊗γ // detκ(Kϕ,2)⊗ detκ(Iϕ,2)

σ

��
detκ(Kψ,1)⊗ detκ(Iψ,1)⊗ detκ(Kψ,3)⊗ detκ(Iψ,3)

γ⊗γ
��

γ⊗γ // detκ(Kψ,2)⊗ detκ(Iψ,2)

γ

��
detκ(M1)⊗ detκ(M3)

γ // detκ(M2)

The top and bottom squares are commutative up to sign by applying Lemma 41.2.5
(2). The middle square is trivially commutative (we are just switching factors).
Hence we see that detκ(M2, ϕ2, ψ2) = εdetκ(M1, ϕ1, ψ1) detκ(M3, ϕ3, ψ3) for some
sign ε. And the sign can be worked out, namely the outer rectangle in the diagram
above commutes up to

ε = (−1)length(Iϕ,1)length(Kϕ,3)+length(Iψ,1)length(Kψ,3)

= (−1)length(Iϕ,1)length(Iψ,3)+length(Iψ,1)length(Iϕ,3)

(proof omitted). It follows easily from this that the signs work out as well. �

Example 41.3.10. Let k be a field. Consider the ring R = k[T ]/(T 2) of dual
numbers over k. Denote t the class of T in R. Let M = R and ϕ = ut, ψ = vt with
u, v ∈ k∗. In this case detk(M) has generator e = [t, 1]. We identify Iϕ = Kϕ =
Iψ = Kψ = (t). Then γϕ(t ⊗ t) = u−1[t, 1] (since u−1 ∈ M is a lift of t ∈ Iϕ) and
γψ(t⊗ t) = v−1[t, 1] (same reason). Hence we see that detk(M,ϕ, ψ) = −u/v ∈ k∗.

http://stacks.math.columbia.edu/tag/02PP
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Example 41.3.11. Let R = Zp and let M = Zp/(p
l). Let ϕ = pbu and ϕ = pav

with a, b ≥ 0, a+ b = l and u, v ∈ Z∗p. Then a computation as in Example 41.3.10
shows that

detFp(Zp/(p
l), pbu, pav) = (−1)abua/vb mod p

= (−1)ordp(α)ordp(β)α
ordp(β)

βordp(α)
mod p

with α = pbu, β = pav ∈ Zp. See Lemma 41.4.10 for a more general case (and a
proof).

Example 41.3.12. Let R = k be a field. Let M = k⊕a ⊕ k⊕b be l = a + b
dimensional. Let ϕ and ψ be the following diagonal matrices

ϕ = diag(u1, . . . , ua, 0, . . . , 0), ψ = diag(0, . . . , 0, v1, . . . , vb)

with ui, vj ∈ k∗. In this case we have

detk(M,ϕ, ψ) =
u1 . . . ua
v1 . . . vb

.

This can be seen by a direct computation or by computing in case l = 1 and using
the additivity of Lemma 41.3.9.

Example 41.3.13. Let R = k be a field. LetM = k⊕a⊕k⊕a be l = 2a dimensional.
Let ϕ and ψ be the following block matrices

ϕ =

(
0 U
0 0

)
, ψ =

(
0 V
0 0

)
,

with U, V ∈ Mat(a× a, k) invertible. In this case we have

detk(M,ϕ, ψ) = (−1)a
det(U)

det(V )
.

This can be seen by a direct computation. The case a = 1 is similar to the compu-
tation in Example 41.3.10.

Example 41.3.14. Let R = k be a field. Let M = k⊕4. Let

ϕ =


0 0 0 0
u1 0 0 0
0 0 0 0
0 0 u2 0

 ϕ =


0 0 0 0
0 0 v2 0
0 0 0 0
v1 0 0 0


with u1, u2, v1, v2 ∈ k∗. Then we have

detk(M,ϕ, ψ) = −u1u2

v1v2
.

Next we come to the analogue of the fact that the determinant of a composition
of linear endomorphisms is the product of the determinants. To avoid very long
formulae we write Iϕ = Im(ϕ), and Kϕ = Ker(ϕ) for any R-module map ϕ : M →
M . We also denote ϕψ = ϕ ◦ ψ for a pair of morphisms ϕ,ψ : M →M .

Lemma 41.3.15. Let R be a local ring with residue field κ. Let M be a finite
length R-module. Let α, β, γ be endomorphisms of M . Assume that

(1) Iα = Kβγ , and similarly for any permutation of α, β, γ,
(2) Kα = Iβγ , and similarly for any permutation of α, β, γ.

Then

http://stacks.math.columbia.edu/tag/02PQ
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(1) The triple (M,α, βγ) is an exact (2, 1)-periodic complex.
(2) The triple (Iγ , α, β) is an exact (2, 1)-periodic complex.
(3) The triple (M/Kβ , α, γ) is an exact (2, 1)-periodic complex.
(4) We have

detκ(M,α, βγ) = detκ(Iγ , α, β) detκ(M/Kβ , α, γ).

Proof. It is clear that the assumptions imply part (1) of the lemma.

To see part (1) note that the assumptions imply that Iγα = Iαγ , and similarly for
kernels and any other pair of morphisms. Moreover, we see that Iγβ = Iβγ = Kα ⊂
Iγ and similarly for any other pair. In particular we get a short exact sequence

0→ Iβγ → Iγ
α−→ Iαγ → 0

and similarly we get a short exact sequence

0→ Iαγ → Iγ
β−→ Iβγ → 0.

This proves (Iγ , α, β) is an exact (2, 1)-periodic complex. Hence part (2) of the
lemma holds.

To see that α, γ give well defined endomorphisms of M/Kβ we have to check that
α(Kβ) ⊂ Kβ and γ(Kβ) ⊂ Kβ . This is true because α(Kβ) = α(Iγα) = Iαγα ⊂
Iαγ = Kβ , and similarly in the other case. The kernel of the map α : M/Kβ →
M/Kβ is Kβα/Kβ = Iγ/Kβ . Similarly, the kernel of γ : M/Kβ → M/Kβ is equal
to Iα/Kβ . Hence we conclude that (3) holds.

We introduce r = lengthR(Kα), s = lengthR(Kβ) and t = lengthR(Kγ). By
the exact sequences above and our hypotheses we have lengthR(Iα) = s + t,
lengthR(Iβ) = r + t, lengthR(Iγ) = r + s, and length(M) = r + s+ t. Choose

(1) an admissible sequence x1, . . . , xr ∈ Kα generating Kα

(2) an admissible sequence y1, . . . , ys ∈ Kβ generating Kβ ,
(3) an admissible sequence z1, . . . , zt ∈ Kγ generating Kγ ,
(4) elements x̃i ∈M such that βγx̃i = xi,
(5) elements ỹi ∈M such that αγỹi = yi,
(6) elements z̃i ∈M such that βαz̃i = zi.

With these choices the sequence y1, . . . , ys, αz̃1, . . . , αz̃t is an admissible sequence
in Iα generating it. Hence, by Remark 41.3.5 the determinant D = detκ(M,α, βγ)
is the unique element of κ∗ such that

[y1, . . . , ys, αz̃1, . . . , αz̃s, x̃1, . . . , x̃r]

= (−1)r(s+t)D[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

By the same remark, we see that D1 = detκ(M/Kβ , α, γ) is characterized by

[y1, . . . , ys, αz̃1, . . . , αz̃t, x̃1, . . . , x̃r] = (−1)rtD1[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t]

By the same remark, we see that D2 = detκ(Iγ , α, β) is characterized by

[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t] = (−1)rsD2[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

Combining the formulas above we see that D = D1D2 as desired. �

Lemma 41.3.16. Let R be a local ring with residue field κ. Let α : (M,ϕ, ψ) →
(M ′, ϕ′, ψ′) be a morphism of (2, 1)-periodic complexes over R. Assume

(1) M , M ′ have finite length,

http://stacks.math.columbia.edu/tag/02PV
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(2) (M,ϕ, ψ), (M ′, ϕ′, ψ′) are exact,
(3) the maps ϕ, ψ induce the zero map on K = Ker(α), and
(4) the maps ϕ, ψ induce the zero map on Q = Coker(α).

Denote N = α(M) ⊂ M ′. We obtain two short exact sequences of (2, 1)-periodic
complexes

0→ (N,ϕ′, ψ′)→ (M ′, ϕ′, ψ′)→ (Q, 0, 0)→ 0
0→ (K, 0, 0)→ (M,ϕ, ψ)→ (N,ϕ′, ψ′)→ 0

which induce two isomorphisms αi : Q→ K, i = 0, 1. Then

detκ(M,ϕ, ψ) = detκ(α−1
0 ◦ α1) detκ(M ′, ϕ′, ψ′)

In particular, if α0 = α1, then detκ(M,ϕ, ψ) = detκ(M ′, ϕ′, ψ′).

Proof. There are (at least) two ways to prove this lemma. One is to produce
an enormous commutative diagram using the properties of the determinants. The
other is to use the characterization of the determinants in terms of admissible
sequences of elements. It is the second approach that we will use.

First let us explain precisely what the maps αi are. Namely, α0 is the composition

α0 : Q = H0(Q, 0, 0)→ H1(N,ϕ′, ψ′)→ H2(K, 0, 0) = K

and α1 is the composition

α1 : Q = H1(Q, 0, 0)→ H2(N,ϕ′, ψ′)→ H3(K, 0, 0) = K

coming from the boundary maps of the short exact sequences of complexes displayed
in the lemma. The fact that the complexes (M,ϕ, ψ), (M ′, ϕ′, ψ′) are exact implies
these maps are isomorphisms.

We will use the notation Iϕ = Im(ϕ), Kϕ = Ker(ϕ) and similarly for the other
maps. Exactness for M and M ′ means that Kϕ = Iψ and three similar equalities.
We introduce k = lengthR(K), a = lengthR(Iϕ), b = lengthR(Iψ). Then we see
that lengthR(M) = a + b, and lengthR(N) = a + b − k, lengthR(Q) = k and
lengthR(M ′) = a+b. The exact sequences below will show that also lengthR(Iϕ′) =
a and lengthR(Iψ′) = b.

The assumption that K ⊂ Kϕ = Iψ means that ϕ factors through N to give an
exact sequence

0→ α(Iψ)→ N
ϕα−1

−−−→ Iψ → 0.

Here ϕα−1(x′) = y means x′ = α(x) and y = ϕ(x). Similarly, we have

0→ α(Iϕ)→ N
ψα−1

−−−→ Iϕ → 0.

The assumption that ψ′ induces the zero map on Q means that Iψ′ = Kϕ′ ⊂ N .
This means the quotient ϕ′(N) ⊂ Iϕ′ is identified with Q. Note that ϕ′(N) = α(Iϕ).
Hence we conclude there is an isomorphism

ϕ′ : Q→ Iϕ′/α(Iϕ)

simply described by ϕ′(x′ mod N) = ϕ′(x′) mod α(Iϕ). In exactly the same way
we get

ψ′ : Q→ Iψ′/α(Iψ)

Finally, note that α0 is the composition

Q
ϕ′ // Iϕ′/α(Iϕ)

ψα−1|I
ϕ′/α(Iϕ)

// K
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and similarly α1 = ϕα−1|Iψ′/α(Iψ) ◦ ψ′.

To shorten the formulas below we are going to write αx instead of α(x) in the
following. No confusion should result since all maps are indicated by greek letters
and elements by roman letters. We are going to choose

(1) an admissible sequence z1, . . . , zk ∈ K generating K,
(2) elements z′i ∈M such that ϕz′i = zi,
(3) elements z′′i ∈M such that ψz′′i = zi,
(4) elements xk+1, . . . , xa ∈ Iϕ such that z1, . . . , zk, xk+1, . . . , xa is an admis-

sible sequence generating Iϕ,
(5) elements x̃i ∈M such that ϕx̃i = xi,
(6) elements yk+1, . . . , yb ∈ Iψ such that z1, . . . , zk, yk+1, . . . , yb is an admis-

sible sequence generating Iψ,
(7) elements ỹi ∈M such that ψỹi = yi, and
(8) elements w1, . . . , wk ∈ M ′ such that w1 mod N, . . . , wk mod N are an

admissible sequence in Q generating Q.

By Remark 41.3.5 the element D = detκ(M,ϕ, ψ) ∈ κ∗ is characterized by

[z1, . . . , zk, xk+1, . . . , xa, z
′′
1 , . . . , z

′′
k , ỹk+1, . . . , ỹb]

= (−1)abD[z1, . . . , zk, yk+1, . . . , yb, z
′
1, . . . , z

′
k, x̃k+1, . . . , x̃a]

Note that by the discussion above αxk+1, . . . , αxa, ϕw1, . . . , ϕwk is an admissible
sequence generating Iϕ′ and αyk+1, . . . , αyb, ψw1, . . . , ψwk is an admissible sequence
generating Iψ′ . Hence by Remark 41.3.5 the element D′ = detκ(M ′, ϕ′, ψ′) ∈ κ∗ is
characterized by

[αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb, w1, . . . , wk]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a, w1, . . . , wk]

Note how in the first, resp. second displayed formula the the first, resp. last k
entries of the symbols on both sides are the same. Hence these formulas are really
equivalent to the equalities

[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= (−1)abD[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

and

[αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

in detκ(N). Note that ϕ′w1, . . . , ϕ
′wk and αz′′1 , . . . , z

′′
k are admissible sequences

generating the module Iϕ′/α(Iϕ). Write

[ϕ′w1, . . . , ϕ
′wk] = λ0[αz′′1 , . . . , αz

′′
k ]

in detκ(Iϕ′/α(Iϕ)) for some λ0 ∈ κ∗. Similarly, write

[ψ′w1, . . . , ψ
′wk] = λ1[αz′1, . . . , αz

′
k]

in detκ(Iψ′/α(Iψ)) for some λ1 ∈ κ∗. On the one hand it is clear that

αi([w1, . . . , wk]) = λi[z1, . . . , zk]

for i = 0, 1 by our description of αi above, which means that

detκ(α−1
0 ◦ α1) = λ1/λ0
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and on the other hand it is clear that

λ0[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= [αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb]

and

λ1[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

= [αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

which imply λ0D = λ1D
′. The lemma follows. �

41.4. Symbols

The correct generality for this construction is perhaps the situation of the following
lemma.

Lemma 41.4.1. Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Assume ϕ,ψ : M →M are two injective A-module maps, and assume
ϕ(ψ(M)) = ψ(ϕ(M)), for example if ϕ and ψ commute. Then lengthR(M/ϕψM) <
∞ and (M/ϕψM,ϕ, ψ) is an exact (2, 1)-periodic complex.

Proof. Let q be a minimal prime of the support of M . Then Mq is a finite length
Aq-module, see Algebra, Lemma 10.61.3. Hence both ϕ and ψ induce isomorphisms
Mq → Mq. Thus the support of M/ϕψM is {mA} and hence it has finite length
(see lemma cited above). Finally, the kernel of ϕ on M/ϕψM is clearly ψM/ϕψM ,
and hence the kernel of ϕ is the image of ψ on M/ϕψM . Similarly the other way
since M/ϕψM = M/ψϕM by assumption. �

Lemma 41.4.2. Let A be a Noetherian local ring. Let a, b ∈ A.

(1) If M is a finite A-module of dimension 1 such that a, b are nonzerodivisors
on M , then lengthA(M/abM) <∞ and (M/abM, a, b) is a (2, 1)-periodic
exact complex.

(2) If a, b are nonzerodivisors and dim(A) = 1 then lengthA(A/(ab)) <∞ and
(A/(ab), a, b) is a (2, 1)-periodic exact complex.

In particular, in these cases detκ(M/abM, a, b) ∈ κ∗, resp. detκ(A/(ab), a, b) ∈ κ∗
are defined.

Proof. Follows from Lemma 41.4.1. �

Definition 41.4.3. Let A be a Noetherian local ring with residue field κ. Let a, b ∈
A. Let M be a finite A-module of dimension 1 such that a, b are nonzerodivisors
on M . We define the symbol associated to M,a, b to be the element

dM (a, b) = detκ(M/abM, a, b) ∈ κ∗

Lemma 41.4.4. Let A be a Noetherian local ring. Let a, b, c ∈ A. Let M be a
finite A-module with dim(M) = 1. Assume a, b, c are nonzerodivisors on M . Then

dM (a, bc) = dM (a, b)dM (a, c)

and dM (a, b)dM (b, a) = 1.

Proof. The first statement is immediate from Lemma 41.3.15 above. The second
comes from Lemma 41.3.6. �

http://stacks.math.columbia.edu/tag/02PX
http://stacks.math.columbia.edu/tag/02PY
http://stacks.math.columbia.edu/tag/02PZ
http://stacks.math.columbia.edu/tag/02Q0


41.4. SYMBOLS 2637

Definition 41.4.5. Let A be a Noetherian local domain of dimension 1 with residue
field κ. Let K be the fraction field of A. We define the tame symbol of A to be the
map

K∗ ×K∗ −→ κ∗, (x, y) 7−→ dA(x, y)

where dA(x, y) is extended to K∗ ×K∗ by the multiplicativity of Lemma 41.4.4.

It is clear that we may extend more generally dM (−,−) to certain rings of fractions
of A (even if A is not a domain).

Lemma 41.4.6. Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Let b ∈ A be a nonzerodivisor on M , and let u ∈ A∗. Then

dM (u, b) = ulengthM (M/bM) mod mA.

In particular, if M = A, then dA(u, b) = uordA(b) mod mA.

Proof. Note that in this case M/ubM = M/bM on which multiplication by b is
zero. Hence dM (u, b) = detκ(u|M/bM ) by Lemma 41.3.8. The lemma then follows
from Lemma 41.2.8. �

Lemma 41.4.7. Let A be a Noetherian local ring. Let a, b ∈ A. Let

0→M →M ′ →M ′′ → 0

be a short exact sequence of A-modules of dimension 1 such that a, b are nonzero-
divisors on all three A-modules. Then

dM ′(a, b) = dM (a, b)dM ′′(a, b)

in κ∗.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-
periodic complexes

0→ (M/abM, a, b)→ (M ′/abM ′, a, b)→ (M ′′/abM ′′, a, b)→ 0

Hence the lemma follows from Lemma 41.3.9. �

Lemma 41.4.8. Let A be a Noetherian local ring. Let α : M → M ′ be a homo-
morphism of finite A-modules of dimension 1. Let a, b ∈ A. Assume

(1) a, b are nonzerodivisors on both M and M ′, and
(2) dim(Ker(α)),dim(Coker(α)) ≤ 0.

Then dM (a, b) = dM ′(a, b).

Proof. If a ∈ A∗, then the equality follows from the equality length(M/bM) =
length(M ′/bM ′) and Lemma 41.4.6. Similarly if b is a unit the lemma holds as well
(by the symmetry of Lemma 41.4.4). Hence we may assume that a, b ∈ mA. This in
particular implies that m is not an associated prime of M , and hence α : M →M ′

is injective. This permits us to think of M as a submodule of M ′. By assumption
M ′/M is a finite A-module with support {mA} and hence has finite length. Note
that for any third module M ′′ with M ⊂ M ′′ ⊂ M ′ the maps M → M ′′ and
M ′′ → M ′ satisfy the assumptions of the lemma as well. This reduces us, by
induction on the length of M ′/M , to the case where lengthA(M ′/M) = 1. Finally,
in this case consider the map

α : M/abM −→M ′/abM ′.
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By construction the cokernel Q of α has length 1. Since a, b ∈ mA, they act trivially
on Q. It also follows that the kernel K of α has length 1 and hence also a, b act
trivially on K. Hence we may apply Lemma 41.3.16. Thus it suffices to see that
the two maps αi : Q → K are the same. In fact, both maps are equal to the map
q = x′ mod Im(α) 7→ abx′ ∈ K. We omit the verification. �

Lemma 41.4.9. Let A be a Noetherian local ring. Let M be a finite A-module with
dim(M) = 1. Let a, b ∈ A nonzerodivisors on M . Let q1, . . . , qt be the minimal
primes in the support of M . Then

dM (a, b) =
∏

i=1,...,t
dA/qi(a, b)

lengthAqi
(Mqi

)

as elements of κ∗.

Proof. Choose a filtration by A-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mj/Mj−1 is isomorphic to A/pj for some prime ideal pj of
A. See Algebra, Lemma 10.61.1. For each j we have either pj = qi for some i, or
pj = mA. Moreover, for a fixed i, the number of j such that pj = qi is equal to
lengthAqi

(Mqi) by Algebra, Lemma 10.61.5. Hence dMj
(a, b) is defined for each j

and

dMj
(a, b) =

{
dMj−1

(a, b)dA/qi(a, b) if pj = qi
dMj−1

(a, b) if pj = mA

by Lemma 41.4.7 in the first instance and Lemma 41.4.8 in the second. Hence the
lemma. �

Lemma 41.4.10. Let A be a discrete valuation ring with fraction field K. For
nonzero x, y ∈ K we have

dA(x, y) = (−1)ordA(x)ordA(y)x
ordA(y)

yordA(x)
mod mA,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when x, y ∈ A. Let t ∈ A be
a uniformizer. Write x = tbu and y = tbv for some a, b ≥ 0 and u, v ∈ A∗. Set
l = a+ b. Then tl−1, . . . , tb is an admissible sequence in (x)/(xy) and tl−1, . . . , ta is
an admissible sequence in (y)/(xy). Hence by Remark 41.3.5 we see that dA(x, y)
is characterized by the equation

[tl−1, . . . , tb, v−1tb−1, . . . , v−1] = (−1)abdA(x, y)[tl−1, . . . , ta, u−1ta−1, . . . , u−1].

Hence by the admissible relations for the symbols [x1, . . . , xl] we see that

dA(x, y) = (−1)abua/vb mod mA

as desired. �

We add the following lemma here. It is very similar to Algebra, Lemma 10.115.2.

Lemma 41.4.11. Let R be a local Noetherian domain of dimension 1 with maximal
ideal m. Let a, b ∈ m be nonzero. There exists a finite ring extension R ⊂ R′

with same field of fractions, and t, a′, b′ ∈ R′ such that a = ta′ and b = tb′ and
R′ = a′R′ + b′R′.
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Proof. Set I = (a, b). The idea is to blow up R in I as in the proof of Algebra,
Lemma 10.115.2. Instead of doing the algebraic argument we work geometrically.
Let X = Proj(

⊕
Id/Id+1). By Divisors, Lemma 30.18.7 this is an integral scheme.

The morphism X → Spec(R) is projective by Divisors, Lemma 30.18.11. By Alge-
bra, Lemma 10.109.2 and the fact that X is quasi-compact we see that the fibre of
X → Spec(R) over m is finite. By Properties, Lemma 27.27.5 there exists an affine
open U ⊂ X containing this fibre. Hence X = U because X → Spec(R) is closed.
In other words X is affine, say X = Spec(R′). By Morphisms, Lemma 28.16.2
we see that R → R′ is of finite type. Since X → Spec(R) is proper and affine it
is integral (see Morphisms, Lemma 28.44.7). Hence R → R′ is of finite type and
integral, hence finite (Algebra, Lemma 10.35.5). By Divisors, Lemma 30.18.4 we
see that IR′ is a locally principal ideal. Since R′ is semi-local we see that IR′ is
principal, see Algebra, Lemma 10.75.6, say IR′ = (t). Then we have a = a′t and
b = b′t and everything is clear. �

Lemma 41.4.12. Let A be a Noetherian local ring. Let a, b ∈ A. Let M be a finite
A-module of dimension 1 on which each of a, b, b− a are nonzerodivisors. Then

dM (a, b− a)dM (b, b) = dM (b, b− a)dM (a, b)

in κ∗.

Proof. By Lemma 41.4.9 it suffices to show the relation when M = A/q for some
prime q ⊂ A with dim(A/q) = 1.

In case M = A/q we may replace A by A/q and a, b by their images in A/q. Hence
we may assume A = M and A a local Noetherian domain of dimension 1. The
reason is that the residue field κ of A and A/q are the same and that for any A/q-
module M the determinant taken over A or over A/q are canonically identified. See
Lemma 41.2.7.

It suffices to show the relation when both a, b are in the maximal ideal. Namely,
the case where one or both are units follows from Lemma 41.4.6.

Choose an extension A ⊂ A′ and factorizations a = ta′, b = tb′ as in Lemma 41.4.11.
Note that also b− a = t(b′ − a′) and that A′ = (a′, b′) = (a′, b′ − a′) = (b′ − a′, b′).
Here and in the following we think of A′ as an A-module and a, b, a′, b′, t as A-
module endomorphisms of A′. We will use the notation dAA′(a

′, b′) and so on to
indicate

dAA′(a
′, b′) = detκ(A′/a′b′A′, a′, b′)

which is defined by Lemma 41.4.1. The upper index A is used to distinguish this
from the already defined symbol dA′(a

′, b′) which is different (for example because
it has values in the residue field of A′ which may be different from κ). By Lemma
41.4.8 we see that dA(a, b) = dAA′(a, b), and similarly for the other combinations.
Using this and multiplicativity we see that it suffices to prove

dAA′(a
′, b′ − a′)dAA′(b′, b′) = dAA′(b

′, b′ − a′)dAA′(a′, b′)

Now, since (a′, b′) = A′ and so on we have

A′/(a′(b′ − a′)) ∼= A′/(a′)⊕A′/(b′ − a′)
A′/(b′(b′ − a′)) ∼= A′/(b′)⊕A′/(b′ − a′)

A′/(a′b′) ∼= A′/(a′)⊕A′/(b′)

http://stacks.math.columbia.edu/tag/02Q8
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Moreover, note that multiplication by b′ − a′ on A/(a′) is equal to multiplication
by b′, and that multiplication by b′−a′ on A/(b′) is equal to multiplication by −a′.
Using Lemmas 41.3.8 and 41.3.9 we conclude

dAA′(a
′, b′ − a′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′−a′))

dAA′(b
′, b′ − a′) = detκ(−a′|A′/(b′))−1 detκ(b′|A′/(b′−a′))

dAA′(a
′, b′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′))

Hence we conclude that

(−1)lengthA(A′/(b′))dAA′(a
′, b′ − a′) = dAA′(b

′, b′ − a′)dAA′(a′, b′)
the sign coming from the −a′ in the second equality above. On the other hand, by
Lemma 41.3.7 we have dAA′(b

′, b′) = (−1)lengthA(A′/(b′)), and the lemma is proved.
�

The tame symbol is a Steinberg symbol.

Lemma 41.4.13. Let A be a Noetherian local domain of dimension 1. Let K =
f.f.(A). For x ∈ K \ {0, 1} we have

dA(x, 1− x) = 1

Proof. Write x = a/b with a, b ∈ A. The hypothesis implies, since 1−x = (b−a)/b,
that also b− a 6= 0. Hence we compute

dA(x, 1− x) = dA(a, b− a)dA(a, b)−1dA(b, b− a)−1dA(b, b)

Thus we have to show that dA(a, b − a)dA(b, b) = dA(b, b − a)dA(a, b). This is
Lemma 41.4.12. �

41.5. Lengths and determinants

In this section we use the determinant to compare lattices. The key lemma is the
following.

Lemma 41.5.1. Let R be a noetherian local ring. Let q ⊂ R be a prime with
dim(R/q) = 1. Let ϕ : M → N be a homomorphism of finite R-modules. Assume
there exist x1, . . . , xl ∈M and y1, . . . , yl ∈M with the following properties

(1) M = 〈x1, . . . , xl〉,
(2) 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 ∼= R/q for i = 1, . . . , l,
(3) N = 〈y1, . . . , yl〉, and
(4) 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉 ∼= R/q for i = 1, . . . , l.

Then ϕ is injective if and only if ϕq is an isomorphism, and in this case we have

lengthR(Coker(ϕ)) = ordR/q(f)

where f ∈ κ(q) is the element such that

[ϕ(x1), . . . , ϕ(xl)] = f [y1, . . . , yl]

in detκ(q)(Nq).

Proof. First, note that the lemma holds in case l = 1. Namely, in this case x1 is a
basis of M over R/q and y1 is a basis of N over R/q and we have ϕ(x1) = fy1 for
some f ∈ R. Thus ϕ is injective if and only if f 6∈ q. Moreover, Coker(ϕ) = R/(f, q)
and hence the lemma holds by definition of ordR/q(f) (see Algebra, Definition
10.117.2).

http://stacks.math.columbia.edu/tag/02Q9
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In fact, suppose more generally that ϕ(xi) = fiyi for some fi ∈ R, fi 6∈ q. Then
the induced maps

〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 −→ 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉

are all injective and have cokernels isomorphic to R/(fi, q). Hence we see that

lengthR(Coker(ϕ)) =
∑

ordR/q(fi).

On the other hand it is clear that

[ϕ(x1), . . . , ϕ(xl)] = f1 . . . fl[y1, . . . , yl]

in this case from the admissible relation (b) for symbols. Hence we see the result
holds in this case also.

We prove the general case by induction on l. Assume l > 1. Let i ∈ {1, . . . , l} be
minimal such that ϕ(x1) ∈ 〈y1, . . . , yi〉. We will argue by induction on i. If i = 1,
then we get a commutative diagram

0 // 〈x1〉 //

��

〈x1, . . . , xl〉 //

��

〈x1, . . . , xl〉/〈x1〉 //

��

0

0 // 〈y1〉 // 〈y1, . . . , yl〉 // 〈y1, . . . , yl〉/〈y1〉 // 0

and the lemma follows from the snake lemma and induction on l. Assume now that
i > 1. Write ϕ(x1) = a1y1 + . . . + ai−1yi−1 + ayi with aj , a ∈ R and a 6∈ q (since
otherwise i was not minimal). Set

x′j =

{
xj if j = 1
axj if j ≥ 2

and y′j =

{
yj if j < i
ayj if j ≥ i

Let M ′ = 〈x′1, . . . , x′l〉 and N ′ = 〈y′1, . . . , y′l〉. Since ϕ(x′1) = a1y
′
1+. . .+ai−1y

′
i−1+y′i

by construction and since for j > 1 we have ϕ(x′j) = aϕ(xi) ∈ 〈y′1, . . . , y′l〉 we get a
commutative diagram of R-modules and maps

M ′

��

ϕ′
// N ′

��
M

ϕ // N

By the result of the second paragraph of the proof we know that lengthR(M/M ′) =
(l−1)ordR/q(a) and similarly lengthR(M/M ′) = (l−i+1)ordR/q(a). By a diagram
chase this implies that

lengthR(Coker(ϕ′)) = lengthR(Coker(ϕ)) + i ordR/q(a).

On the other hand, it is clear that writing

[ϕ(x1), . . . , ϕ(xl)] = f [y1, . . . , yl], [ϕ′(x′1), . . . , ϕ(x′l)] = f ′[y′1, . . . , y
′
l]

we have f ′ = aif . Hence it suffices to prove the lemma for the case that ϕ(x1) =
a1y1 + . . . ai−1yi−1 + yi, i.e., in the case that a = 1. Next, recall that

[y1, . . . , yl] = [y1, . . . , yi−1, a1y1 + . . . ai−1yi−1 + yi, yi+1, . . . , yl]

by the admissible relations for symbols. The sequence y1, . . . , yi−1, a1y1 + . . . +
ai−1yi−1 +yi, yi+1, . . . , yl satisfies the conditions (3), (4) of the lemma also. Hence,
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we may actually assume that ϕ(x1) = yi. In this case, note that we have qx1 = 0
which implies also qyi = 0. We have

[y1, . . . , yl] = −[y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl]

by the third of the admissible relations defining detκ(q)(Nq). Hence we may replace
y1, . . . , yl by the sequence y′1, . . . , y

′
l = y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl (which also

satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant
i by 1 and we win by induction on i. �

To use the previous lemma we show that often sequences of elements with the
required properties exist.

Lemma 41.5.2. Let R be a local Noetherian ring. Let q ⊂ R be a prime ideal. Let
M be a finite R-module such that q is one of the minimal primes of the support of
M . Then there exist x1, . . . , xl ∈M such that

(1) the support of M/〈x1, . . . , xl〉 does not contain q, and
(2) 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 ∼= R/q for i = 1, . . . , l.

Moreover, in this case l = lengthRq
(Mq).

Proof. The condition that q is a minimal prime in the support of M implies that
l = lengthRq

(Mq) is finite (see Algebra, Lemma 10.61.3). Hence we can find

y1, . . . , yl ∈ Mq such that 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉 ∼= κ(q) for i = 1, . . . , l. We
can find fi ∈ R, fi 6∈ q such that fiyi is the image of some element zi ∈ M .
Moreover, as R is Noetherian we can write q = (g1, . . . , gt) for some gj ∈ R. By
assumption gjyi ∈ 〈y1, . . . , yi−1〉 inside the module Mq. By our choice of zi we
can find some further elements fji ∈ R, fij 6∈ q such that fijgjzi ∈ 〈z1, . . . , zi−1〉
(equality in the module M). The lemma follows by taking

x1 = f11f12 . . . f1tz1, x2 = f11f12 . . . f1tf21f22 . . . f2tz2,

and so on. Namely, since all the elements fi, fij are invertible in Rq we still have
that Rqx1 + . . .+Rqxi/Rqx1 + . . .+Rqxi−1

∼= κ(q) for i = 1, . . . , l. By construction,
qxi ∈ 〈x1, . . . , xi−1〉. Thus 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 is an R-module generated by
one element, annihilated q such that localizing at q gives a q-dimensional vector
space over κ(q). Hence it is isomorphic to R/q. �

Here is the main result of this section. We will see below the various different
consequences of this proposition. The reader is encouraged to first prove the easier
Lemma 41.5.4 his/herself.

Proposition 41.5.3. Let R be a local Noetherian ring with residue field κ. Suppose
that (M,ϕ, ψ) is a (2, 1)-periodic complex over R. Assume

(1) M is a finite R-module,
(2) the cohomology modules of (M,ϕ, ψ) are of finite length, and
(3) dim(Supp(M)) = 1.

Let qi, i = 1, . . . , t be the minimal primes of the support of M . Then we have2

−eR(M,ϕ, ψ) =
∑

i=1,...,t
ordR/qi

(
detκ(qi)(Mqi , ϕqi , ψqi)

)
2 Obviously we could get rid of the minus sign by redefining detκ(M,ϕ, ψ) as the inverse of

its current value, see Definition 41.3.4.

http://stacks.math.columbia.edu/tag/02QC
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Proof. We first reduce to the case t = 1 in the following way. Note that Supp(M) =
{m, q1, . . . , qt}, where m ⊂ R is the maximal ideal. Let Mi denote the image of
M →Mqi , so Supp(Mi) = {m, qi}. The map ϕ (resp. ψ) induces an R-module map
ϕi : Mi → Mi (resp. ψi : Mi → Mi). Thus we get a morphism of (2, 1)-periodic
complexes

(M,ϕ, ψ) −→
⊕

i=1,...,t
(Mi, ϕi, ψi).

The kernel and cokernel of this map have support equal to {m} (or are zero). Hence
by Lemma 41.3.3 these (2, 1)-periodic complexes have multiplicity 0. In other words
we have

eR(M,ϕ, ψ) =
∑

i=1,...,t
eR(Mi, ϕi, ψi)

On the other hand we clearly have Mqi = Mi,qi , and hence the terms of the right
hand side of the formula of the lemma are equal to the expressions

ordR/qi
(
detκ(qi)(Mi,qi , ϕi,qi , ψi,qi)

)
In other words, if we can prove the lemma for each of the modules Mi, then the
lemma holds. This reduces us to the case t = 1.

Assume we have a (2, 1)-periodic complex (M,ϕ, ψ) over a Noetherian local ring
with M a finite R-module, Supp(M) = {m, q}, and finite length cohomology mod-
ules. The proof in this case follows from Lemma 41.5.1 and careful bookkeeping.
Denote Kϕ = Ker(ϕ), Iϕ = Im(ϕ), Kψ = Ker(ψ), and Iψ = Im(ψ). Since R is
Noetherian these are all finite R-modules. Set

a = lengthRq
(Iϕ,q) = lengthRq

(Kψ,q), b = lengthRq
(Iψ,q) = lengthRq

(Kϕ,q).

Equalities because the complex becomes exact after localizing at q. Note that
l = lengthRq

(Mq) is equal to l = a+ b.

We are going to use Lemma 41.5.2 to choose sequences of elements in finite R-
modules N with support contained in {m, q}. In this case Nq has finite length,
say n ∈ N. Let us call a sequence w1, . . . , wn ∈ N with properties (1) and (2)
of Lemma 41.5.2 a “good sequence”. Note that the quotient N/〈w1, . . . , wn〉 of
N by the submodule generated by a good sequence has support (contained in)
{m} and hence has finite length (Algebra, Lemma 10.61.3). Moreover, the symbol
[w1, . . . , wn] ∈ detκ(q)(Nq) is a generator, see Lemma 41.2.4.

Having said this we choose good sequences

x1, . . . , xb in Kϕ, t1, . . . , ta in Kψ,
y1, . . . , ya in Iϕ ∩ 〈t1, . . . ta〉, s1, . . . , sb in Iψ ∩ 〈x1, . . . , xb〉.

We will adjust our choices a little bit as follows. Choose lifts ỹi ∈M of yi ∈ Iϕ and
s̃i ∈M of si ∈ Iψ. It may not be the case that qỹ1 ⊂ 〈x1, . . . , xb〉 and it may not be
the case that qs̃1 ⊂ 〈t1, . . . , ta〉. However, using that q is finitely generated (as in the
proof of Lemma 41.5.2) we can find a d ∈ R, d 6∈ q such that qdỹ1 ⊂ 〈x1, . . . , xb〉 and
qds̃1 ⊂ 〈t1, . . . , ta〉. Thus after replacing yi by dyi, ỹi by dỹi, si by dsi and s̃i by ds̃i
we see that we may assume also that x1, . . . , xb, ỹ1, . . . , ỹb and t1, . . . , ta, s̃1, . . . , s̃b
are good sequences in M .

Finally, we choose a good sequence z1, . . . , zl in the finite R-module

〈x1, . . . , xb, ỹ1, . . . , ỹa〉 ∩ 〈t1, . . . , ta, s̃1, . . . , s̃b〉.
Note that this is also a good sequence in M .
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Since Iϕ,q = Kψ,q there is a unique element h ∈ κ(q) such that [y1, . . . , ya] =
h[t1, . . . , ta] inside detκ(q)(Kψ,q). Similarly, as Iψ,q = Kϕ,q there is a unique element
h ∈ κ(q) such that [s1, . . . , sb] = g[x1, . . . , xb] inside detκ(q)(Kϕ,q). We can also do
this with the three good sequences we have in M . All in all we get the following
identities

[y1, . . . , ya] = h[t1, . . . , ta]

[s1, . . . , sb] = g[x1, . . . , xb]

[z1, . . . , zl] = fϕ[x1, . . . , xb, ỹ1, . . . , ỹa]

[z1, . . . , zl] = fψ[t1, . . . , ta, s̃1, . . . , s̃b]

for some g, h, fϕ, fψ ∈ κ(q).

Having set up all this notation let us compute detκ(q)(M,ϕ, ψ). Namely, consider

the element [z1, . . . , zl]. Under the map γψ ◦ σ ◦ γ−1
ϕ of Definition 41.3.4 we have

[z1, . . . , zl] = fϕ[x1, . . . , xb, ỹ1, . . . , ỹa]

7→ fϕ[x1, . . . , xb]⊗ [y1, . . . , ya]

7→ fϕh/g[t1, . . . , ta]⊗ [s1, . . . , sb]

7→ fϕh/g[t1, . . . , ta, s̃1, . . . , s̃b]

= fϕh/fψg[z1, . . . , zl]

This means that detκ(q)(Mq, ϕq, ψq) is equal to fϕh/fψg up to a sign.

We abbreviate the following quantities

kϕ = lengthR(Kϕ/〈x1, . . . , xb〉)
kψ = lengthR(Kψ/〈t1, . . . , ta〉)
iϕ = lengthR(Iϕ/〈y1, . . . , ya〉)
iψ = lengthR(Iψ/〈s1, . . . , sa〉)
mϕ = lengthR(M/〈x1, . . . , xb, ỹ1, . . . , ỹa〉)
mψ = lengthR(M/〈t1, . . . , ta, s̃1, . . . , s̃b〉)
δϕ = lengthR(〈x1, . . . , xb, ỹ1, . . . , ỹa〉〈z1, . . . , zl〉)
δψ = lengthR(〈t1, . . . , ta, s̃1, . . . , s̃b〉〈z1, . . . , zl〉)

Using the exact sequences 0→ Kϕ →M → Iϕ → 0 we get mϕ = kϕ+ iϕ. Similarly
we have mψ = kψ + iψ. We have δϕ + mϕ = δψ + mψ since this is equal to the
colength of 〈z1, . . . , zl〉 in M . Finally, we have

δϕ = ordR/q(fϕ), δψ = ordR/q(fψ)

by our first application of the key Lemma 41.5.1.
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Next, let us compute the multiplicity of the periodic complex

eR(M,ϕ, ψ) = lengthR(Kϕ/Iψ)− lengthR(Kψ/Iϕ)

= lengthR(〈x1, . . . , xb〉/〈s1, . . . , sb〉) + kϕ − iψ
−lengthR(〈t1, . . . , ta〉/〈y1, . . . , ya〉)− kψ + iϕ

= ordR/q(g/h) + kϕ − iψ − kψ + iϕ

= ordR/q(g/h) +mϕ −mψ

= ordR/q(g/h) + δψ − δϕ
= ordR/q(fψg/fϕh)

where we used the key Lemma 41.5.1 twice in the third equality. By our computa-
tion of detκ(q)(Mq, ϕq, ψq) this proves the proposition. �

In most applications the following lemma suffices.

Lemma 41.5.4. Let R be a Noetherian local ring with maximal ideal m. Let M be
a finite R-module, and let ψ : M →M be an R-module map. Assume that

(1) Ker(ψ) and Coker(ψ) have finite length, and
(2) dim(Supp(M)) ≤ 1.

Write Supp(M) = {m, q1, . . . , qt} and denote fi ∈ κ(qi)
∗ the element such that

detκ(qi)(ψqi) : detκ(qi)(Mqi)→ detκ(qi)(Mqi) is multiplication by fi. Then we have

lengthR(Coker(ψ))− lengthR(Ker(ψ)) =
∑

i=1,...,t
ordR/qi(fi).

Proof. Recall that H0(M, 0, ψ) = Coker(ψ) and H1(M, 0, ψ) = Ker(ψ), see re-
marks above Definition 41.3.2. The lemma follows by combining Proposition 41.5.3
with Lemma 41.3.8.

Alternative proof. Reduce to the case Supp(M) = {m, q} as in the proof of Proposi-
tion 41.5.3. Then directly combine Lemmas 41.5.1 and 41.5.2 to prove this specific
case of Proposition 41.5.3. There is much less bookkeeping in this case, and the
reader is encouraged to work this out. Details omitted. �

Lemma 41.5.5. Let R be a Noetherian local ring with maximal ideal m. Let M be
a finite R-module. Let x ∈ R. Assume that

(1) dim(Supp(M)) ≤ 1, and
(2) dim(M/xM) ≤ 0.

Write Supp(M) = {m, q1, . . . , qt}. Then

lengthR(Mx)− lengthR(xM) =
∑

i=1,...,t
ordR/qi(x)lengthRqi

(Mqi).

where Mx = M/xM and xM = Ker(x : M →M).

Proof. This is a special case of Lemma 41.5.4. To see that fi = x
lengthRqi

(Mqi
)

see
Lemma 41.2.8. �

Lemma 41.5.6. Let R be a Noetherian local ring with maximal ideal m. Let
I ⊂ R be an ideal and let x ∈ R. Assume x is a nonzerodivisor on R/I and that
dim(R/I) = 1. Then

lengthR(R/(x, I)) =
∑

i
lengthR(R/(x, qi))lengthRqi

((R/I)qi)

http://stacks.math.columbia.edu/tag/02QE
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where q1, . . . , qn are the minimal primes over I. More generally if M is any finite
Cohen-Macaulay module of dimension 1 over R and dim(M/xM) = 0, then

lengthR(M/xM) =
∑

i
lengthR(R/(x, qi))lengthRqi

(Mqi).

where q1, . . . , qt are the minimal primes of the support of M .

Proof. These are special cases of Lemma 41.5.5. �

Lemma 41.5.7. Let A be a Noetherian local ring. Let M be a finite A-module.
Let a, b ∈ A. Assume

(1) dim(A) = 1,
(2) both a and b are nonzerodivisors in A,
(3) A has no embedded primes,
(4) M has no embedded associated primes,
(5) Supp(M) = Spec(A).

Let I = {x ∈ A | x(a/b) ∈ A}. Let q1, . . . , qt be the minimal primes of A. Then
(a/b)IM ⊂M and

lengthA(M/(a/b)IM)− lengthA(M/IM) =
∑

i
lengthAqi

(Mqi)ordA/qi(a/b)

Proof. Since M has no embedded associated primes, and since the support of M
is Spec(A) we see that Ass(M) = {q1, . . . , qt}. Hence a, b are nonzerodivisors on
M . Note that

lengthA(M/(a/b)IM)

= lengthA(bM/aIM)

= lengthA(M/aIM)− lengthA(M/bM)

= lengthA(M/aM) + lengthA(aM/aIM)− lengthA(M/bM)

= lengthA(M/aM) + lengthA(M/IM)− lengthA(M/bM)

as the injective map b : M → bM maps (a/b)IM to aIM and the injective map
a : M → aM maps IM to aIM . Hence the left hand side of the equation of the
lemma is equal to

lengthA(M/aM)− lengthA(M/bM).

Applying the second formula of Lemma 41.5.6 with x = a, b respectively and using
Algebra, Definition 10.117.2 of the ord-functions we get the result. �

41.6. Application to tame symbol

In this section we apply the results above to show the following lemma.

Lemma 41.6.1. Let A be a 2-dimensional Noetherian local domain. Let K =
f.f.(A). Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A such that either
f or g is not an element of A∗q. Then we have∑

i=1,...,t
ordA/qi(dAqi

(f, g)) = 0

We can also write this as∑
height(q)=1

ordA/q(dAq
(f, g)) = 0

since at any height one prime q of A where f, g ∈ A∗q we have dAq
(f, g) = 1 by

Lemma 41.4.6.

http://stacks.math.columbia.edu/tag/02QH
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Proof. Since the tame symbols dAq
(f, g) are additive (Lemma 41.4.4) and the

order functions ordA/q are additive (Algebra, Lemma 10.117.1) it suffices to prove
the formula when f = a ∈ A and g = b ∈ A. In this case we see that we have to
show ∑

height(q)=1
ordA/q(detκ(Aq/(ab), a, b)) = 0

By Proposition 41.5.3 this is equivalent to showing that

eA(A/(ab), a, b) = 0.

Since the complex A/(ab)
a−→ A/(ab)

b−→ A/(ab)
a−→ A/(ab) is exact we win. �

41.7. Setup

We will throughout work over a locally Noetherian universally catenary base S
endowed with a dimension function δ. Although it is likely possible to generalize
(parts of) the discussion in the chapter, it seems that this is a good first approx-
imation. We usually do not assume our schemes are separated or quasi-compact.
Many interesting algebraic stacks are non-separated and/or non-quasi-compact and
this is a good case study to see how to develop a reasonable theory for those as
well. In order to reference these hypotheses we give it a number.

Situation 41.7.1. Here S is a locally Noetherian, and universally catenary scheme.
Moreover, we assume S is endowed with a dimension function δ : S −→ Z.

See Morphisms, Definition 28.18.1 for the notion of a universally catenary scheme,
and see Topology, Definition 5.19.1 for the notion of a dimension function. Recall
that any locally Noetherian catenary scheme locally has a dimension function, see
Properties, Lemma 27.11.3. Moreover, there are lots of schemes which are univer-
sally catenary, see Morphisms, Lemma 28.18.4.

Let (S, δ) be as in Situation 41.7.1. Any scheme X locally of finite type over S is
locally Noetherian and catenary. In fact, X has a canonical dimension function

δ = δX/S : X −→ Z

associated to (f : X → S, δ) given by the rule δX/S(x) = δ(f(x))+trdegκ(f(x))κ(x).
See Morphisms, Lemma 28.31.2. Moreover, if h : X → Y is a morphism of schemes
locally of finite type over S, and x ∈ X, y = h(x), then obviously δX/S(x) =
δY/S(y) + trdegκ(y)κ(x). We will freely use this function and its properties in the
following.

Here are the basic examples of setups as above. In fact, the main interest lies in
the case where the base is the spectrum of a field, or the case where the base is the
spectrum of a Dedekind ring (e.g. Z, or a discrete valuation ring).

Example 41.7.2. Here S = Spec(k) and k is a field. We set δ(pt) = 0 where pt
indicates the unique point of S. The pair (S, δ) is an example of a situation as in
Situation 41.7.1 by Morphisms, Lemma 28.18.4.

Example 41.7.3. Here S = Spec(A), where A is a Noetherian domain of dimension
1. For example we could consider A = Z. We set δ(p) = 0 if p is a maximal ideal
and δ(p) = 1 if p = (0) corresponds to the generic point. This is an example of
Situation 41.7.1 by Morphisms, Lemma 28.18.4.

In good cases δ corresponds to the dimension function.
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Lemma 41.7.4. Let (S, δ) be as in Situation 41.7.1. Assume in addition S is a
Jacobson scheme, and δ(s) = 0 for every closed point s of S. Let X be locally of
finite type over S. Let Z ⊂ X be an integral closed subscheme and let ξ ∈ Z be its
generic point. The following integers are the same:

(1) δX/S(ξ),
(2) dim(Z), and
(3) dim(OZ,z) where z is a closed point of Z.

Proof. Let X → S, ξ ∈ Z ⊂ X be as in the lemma. Since X is locally of
finite type over S we see that X is Jacobson, see Morphisms, Lemma 28.17.9.
Hence closed points of X are dense in every closed subset of Z and map to closed
points of S. Hence given any chain of irreducible closed subsets of Z we can
end it with a closed point of Z. It follows that dim(Z) = supz(dim(OZ,z) (see
Properties, Lemma 27.11.4) where z ∈ Z runs over the closed points of Z. Note
that dim(OZ,z) = δ(ξ)− δ(z)) by the properties of a dimension function. For each
closed z ∈ Z the field extension κ(z) ⊃ κ(f(z)) is finite, see Morphisms, Lemma
28.17.8. Hence δX/S(z) = δ(f(z)) = 0 for z ∈ Z closed. It follows that all three
integers are equal. �

In the situation of the lemma above the value of δ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. However, in
general we cannot expect the equality to hold. For example if S = Spec(C[[t]])
and X = Spec(C((t))) then we would get δ(x) = 1 for the unique point of X,
but dim(X) = 0. Still we want to think of δX/S as giving the dimension of the
irreducible closed subschemes. Thus we introduce the following terminology.

Definition 41.7.5. Let (S, δ) as in Situation 41.7.1. For any scheme X locally of
finite type over S and any irreducible closed subset Z ⊂ X we define

dimδ(Z) = δ(ξ)

where ξ ∈ Z is the generic point of Z. We will call this the δ-dimension of Z.
If Z is a closed subscheme of X, then we define dimδ(Z) as the supremum of the
δ-dimensions of its irreducible components.

41.8. Cycles

Since we are not assuming our schemes are quasi-compact we have to be a little
careful when defining cycles. We have to allow infinite sums because a rational
function may have infinitely many poles for example. In any case, if X is quasi-
compact then a cycle is a finite sum as usual.

Definition 41.8.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let k ∈ Z.

(1) A collection of closed subschemes {Zi}i∈I of X is said to be locally finite
if for every quasi-compact open U ⊂ X the set

#{i ∈ I | Zi ∩ U 6= ∅}

is finite.
(2) A cycle on X is a formal sum

α =
∑

nZ [Z]
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where the sum is over integral closed subschemes Z ⊂ X, each nZ ∈ Z,
and the collection {Z;nZ 6= 0} is locally finite.

(3) A k-cycle, on X is a cycle

α =
∑

nZ [Z]

where nZ 6= 0⇒ dimδ(Z) = k.
(4) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subschemes of δ-dimension k. Addition of k-cycles α =

∑
nZ [Z]

and β =
∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],

i.e., by adding the coefficients.

41.9. Cycle associated to a closed subscheme

Lemma 41.9.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme.

(1) The collection of irreducible components of Z is locally finite.
(2) Let Z ′ ⊂ Z be an irreducible component and let ξ ∈ Z ′ be its generic point.

Then

lengthOX,ξOZ,ξ <∞
(3) If dimδ(Z) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point of an

irreducible component of Z.

Proof. Let U ⊂ X be a quasi-compact open subscheme. Then U is a Noether-
ian scheme, and hence has a Noetherian underlying topological space (Properties,
Lemma 27.5.5). Hence every subspace is Noetherian and has finitely many irre-
ducible components (see Topology, Lemma 5.8.2). This proves (1).

Let Z ′ ⊂ Z, ξ ∈ Z ′ be as in (2). Then dim(OZ,ξ) = 0 (for example by Properties,
Lemma 27.11.4). Hence OZ,ξ is Noetherian local ring of dimension zero, and hence
has finite length over itself (see Algebra, Proposition 10.59.6). Hence, it also has
finite length over OX,ξ, see Algebra, Lemma 10.50.12.

Assume ξ ∈ Z and δ(ξ) = k. Consider the closure Z ′ = {ξ}. It is an irreducible
closed subscheme with dimδ(Z

′) = k by definition. Since dimδ(Z) = k it must be
an irreducible component of Z. Hence we see (3) holds. �

Definition 41.9.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let Z ⊂ X be a closed subscheme.

(1) For any irreducible component Z ′ ⊂ Z with generic point ξ the integer
mZ′,Z = lengthOX,ξOZ,ξ (Lemma 41.9.1) is called the multiplicity of Z ′

in Z.
(2) Assume dimδ(Z) ≤ k. The k-cycle associated to Z is

[Z]k =
∑

mZ′,Z [Z ′]

where the sum is over the irreducible components of Z of δ-dimension k.
(This is a k-cycle by Lemma 41.9.1.)
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It is important to note that we only define [Z]k if the δ-dimension of Z does not
exceed k. In other words, by convention, if we write [Z]k then this implies that
dimδ(Z) ≤ k.

41.10. Cycle associated to a coherent sheaf

Lemma 41.10.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let F be a coherent OX-module.

(1) The collection of irreducible components of the support of F is locally
finite.

(2) Let Z ′ ⊂ Supp(F) be an irreducible component and let ξ ∈ Z ′ be its generic
point. Then

lengthOX,ξFξ <∞
(3) If dimδ(Supp(F)) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point

of an irreducible component of Supp(F).

Proof. By Cohomology of Schemes, Lemma 29.9.7 the support Z of F is a closed
subset of X. We may think of Z as a reduced closed subscheme of X (Schemes,
Lemma 25.12.4). Hence (1) and (3) follow immediately by applying Lemma 41.9.1
to Z ⊂ X.

Let ξ ∈ Z ′ be as in (2). In this case for any specialization ξ′  ξ in X we have
Fξ′ = 0. Recall that the non-maximal primes of OX,ξ correspond to the points of
X specializing to ξ (Schemes, Lemma 25.13.2). Hence Fξ is a finite OX,ξ-module
whose support is {mξ}. Hence it has finite length by Algebra, Lemma 10.61.3. �

Definition 41.10.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let F be a coherent OX -module.

(1) For any irreducible component Z ′ ⊂ Supp(F) with generic point ξ the
integer mZ′,F = lengthOX,ξFξ (Lemma 41.10.1) is called the multiplicity

of Z ′ in F .
(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ′,F [Z ′]

where the sum is over the irreducible components of Supp(F) of δ-dimension
k. (This is a k-cycle by Lemma 41.10.1.)

It is important to note that we only define [F ]k if F is coherent and the δ-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then
this implies that F is coherent on X and dimδ(Supp(F)) ≤ k.

Lemma 41.10.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let Z ⊂ X be a closed subscheme. If dimδ(Z) ≤ k, then [Z]k = [OZ ]k.

Proof. This is because in this case the multiplicities mZ′,Z and mZ′,OZ agree by
definition. �

Lemma 41.10.4. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let 0 → F → G → H → 0 be a short exact sequence of coherent
sheaves on X. Assume that the δ-dimension of the supports of F , G, and H is ≤ k.
Then [G]k = [F ]k + [H]k.

Proof. Follows immediately from additivity of lengths, see Algebra, Lemma 10.50.3.
�
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41.11. Preparation for proper pushforward

Lemma 41.11.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a morphism. Assume X, Y integral and
dimδ(X) = dimδ(Y ). Then either f(X) is contained in a proper closed subscheme
of Y , or f is dominant and the extension of function fields R(Y ) ⊂ R(X) is finite.

Proof. The closure f(X) ⊂ Y is irreducible as X is irreducible (Topology, Lemmas

5.7.2 and 5.7.3). If f(X) 6= Y , then we are done. If f(X) = Y , then f is dominant
and by Morphisms, Lemma 28.8.5 we see that the generic point ηY of Y is in the
image of f . Of course this implies that f(ηX) = ηY , where ηX ∈ X is the generic
point of X. Since δ(ηX) = δ(ηY ) we see that R(Y ) = κ(ηY ) ⊂ κ(ηX) = R(X) is an
extension of transcendence degree 0. Hence R(Y ) ⊂ R(X) is a finite extension by
Morphisms, Lemma 28.47.4 (which applies by Morphisms, Lemma 28.16.8). �

Lemma 41.11.2. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is quasi-compact, and
{Zi}i∈I is a locally finite collection of closed subsets of X. Then {f(Zi)}i∈I is a
locally finite collection of closed subsets of Y .

Proof. Let V ⊂ Y be a quasi-compact open subset. Since f is quasi-compact the
open f−1(V ) is quasi-compact. Hence the set {i ∈ I | Zi ∩ f−1(V ) 6= ∅} is finite by
assumption (Definition 41.8.1). Since this is the same as the set

{i ∈ I | f(Zi) ∩ V 6= ∅} = {i ∈ I | f(Zi) ∩ V 6= ∅}
the lemma is proved. �

41.12. Proper pushforward

Definition 41.12.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subscheme with dimδ(Z) = k. We define

f∗[Z] =

{
0 if dimδ(f(Z)) < k,

deg(Z/f(Z))[f(Z)] if dimδ(f(Z)) = k.

Here we think of f(Z) ⊂ Y as an integral closed subscheme. The degree
of Z over f(Z) is finite if dimδ(f(Z)) = dimδ(Z) by Lemma 41.11.1.

(2) Let α =
∑
nZ [Z] be a k-cycle on X. The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma
41.11.2 above.

By definition the proper pushforward of cycles

f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant functor
on the category of schemes locally of finite type over S with morphisms equal to
proper morphisms.

Lemma 41.12.2. Let (S, δ) be as in Situation 41.7.1. Let X, Y , and Z be locally
of finite type over S. Let f : X → Y and g : Y → Z be proper morphisms. Then
g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).
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Proof. Let W ⊂ X be an integral closed subscheme of dimension k. Consider
W ′ = f(Z) ⊂ Y and W ′′ = g(f(Z)) ⊂ Z. Since f , g are proper we see that
W ′ (resp. W ′′) is an integral closed subscheme of Y (resp. Z). We have to show
that g∗(f∗[W ]) = (f ◦ g)∗[W ]. If dimδ(W

′′) < k, then both sides are zero. If
dimδ(W

′′) = k, then we see the induced morphisms

W −→W ′ −→W ′′

both satisfy the hypotheses of Lemma 41.11.1. Hence

g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (f ◦ g)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Morphisms, Lemma 28.47.6 to conclude. �

Lemma 41.12.3. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k. Then

f∗[Z]k = [f∗OZ ]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then

f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules
by Cohomology of Schemes, Proposition 29.17.2.

Proof. Part (1) follows from (2) and Lemma 41.10.3. Let F be a coherent sheaf on
X. Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Schemes, Lemma 29.9.7
there exists a closed subscheme i : Z → X and a coherent OZ-module G such that
i∗G ∼= F and such that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic
image of f |Z : Z → Y .Consider the commutative diagram of schemes

Z
i
//

f |Z
��

X

f

��
Z ′

i′ // Y

We have f∗F = f∗i∗G = i′∗(f |Z)∗G by going around the diagram in two ways.
Suppose we know the result holds for closed immersions and for f |Z . Then we see
that

f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k

as desired. The case of a closed immersion is straightforward (omitted). Note that
f |Z : Z → Z ′ is a dominant morphism (see Morphisms, Lemma 28.6.3). Thus
we have reduced to the case where dimδ(X) ≤ k and f : X → Y is proper and
dominant.

Assume dimδ(X) ≤ k and f : X → Y is proper and dominant. Since f is dominant,
for every irreducible component Z ⊂ Y with generic point η there exists a point
ξ ∈ X such that f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the
expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].

whenever nZ 6= 0, or mZ 6= 0 the integral closed subscheme Z is actually an irre-
ducible component of Y of δ-dimension k. Pick such an integral closed subscheme
Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X with f(ξ) = η we
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have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible component of X of
δ-dimension k as well (see Lemma 41.9.1). Since f is quasi-compact and X is locally
Noetherian, there can be only finitely many of these and hence f−1({η}) is finite.
By Morphisms, Lemma 28.47.1 there exists an open neighbourhood η ∈ V ⊂ Y
such that f−1(V )→ V is finite. Replacing Y by V and X by f−1(V ) we reduce to
the case where Y is affine, and f is finite.

Write Y = Spec(R) and X = Spec(A) (possible as a finite morphism is affine).

Then R and A are Noetherian rings and A is finite over R. Moreover F = M̃ for
some finite A-module M . Note that f∗F corresponds to M viewed as an R-module.
Let p ⊂ R be the minimal prime corresponding to η ∈ Y . The coefficient of Z in
[f∗F ]k is clearly lengthRp

(Mp). Let qi, i = 1, . . . , t be the primes of A lying over p.

Then Ap =
∏
Aqi since Ap is an Artinian ring being finite over the dimension zero

local Noetherian ring Rp. Clearly the coefficient of Z in f∗[F ]k is∑
i=1,...,t

[κ(qi) : κ(p)]lengthAqi
(Mqi)

Hence the desired equality follows from Algebra, Lemma 10.50.12. �

41.13. Preparation for flat pullback

Recall that a morphism f : X → Y which is locally of finite type is said to have
relative dimension r if every nonempty fibre is equidimensional of dimension r. See
Morphisms, Definition 28.30.1.

Lemma 41.13.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension
r. For any closed subset Z ⊂ Y we have

dimδ(f
−1(Z)) = dimδ(Z) + r.

If Z is irreducible and Z ′ ⊂ f−1(Z) is an irreducible component, then Z ′ dominates
Z and dimδ(Z

′) = dimδ(Z) + r.

Proof. It suffices to prove the final statement. We may replace Y by the integral
closed subscheme Z and X by the scheme theoretic inverse image f−1(Z) = Z×Y X.
Hence we may assume Z = Y is integral and f is a flat morphism of relative
dimension r. Since Y is locally Noetherian the morphism f which is locally of finite
type, is actually locally of finite presentation. Hence Morphisms, Lemma 28.26.9
applies and we see that f is open. Let ξ ∈ X be a generic point of an irreducible
component of X. By the openness of f we see that f(ξ) is the generic point η
of Z = Y . Note that dimξ(Xη) = r by assumption that f has relative dimension
r. On the other hand, since ξ is a generic point of X we see that OX,ξ = OXη,ξ
has only one prime ideal and hence has dimension 0. Thus by Morphisms, Lemma
28.29.1 we conclude that the transcendence degree of κ(ξ) over κ(η) is r. In other
words, δ(ξ) = δ(η) + r as desired. �

Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.

Lemma 41.13.2. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume {Zi}i∈I is a locally finite
collection of closed subsets of Y . Then {f−1(Zi)}i∈I is a locally finite collection of
closed subsets of Y .
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Proof. Let U ⊂ X be a quasi-compact open subset. Since the image f(U) ⊂ Y
is a quasi-compact subset there exists a quasi-compact open V ⊂ Y such that
f(U) ⊂ V . Note that

{i ∈ I | f−1(Zi) ∩ U 6= ∅} ⊂ {i ∈ I | Zi ∩ V 6= ∅}.

Since the right hand side is finite by assumption we win. �

41.14. Flat pullback

In the following we use f−1(Z) to denote the scheme theoretic inverse image of a
closed subscheme Z ⊂ Y for a morphism of schemes f : X → Y . We recall that
the scheme theoretic inverse image is the fibre product

f−1(Z) //

��

X

��
Z // Y

and it is also the closed subscheme of X cut out by the quasi-coherent sheaf of ideals
f−1(I)OX , if I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to Z in
Y . (This is discussed in Schemes, Section 25.4 and Lemma 25.17.6 and Definition
25.17.7.)

Definition 41.14.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a morphism. Assume f is flat of relative
dimension r.

(1) Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. We define
f∗[Z] to be the (k + r)-cycle on X to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f
−1(Z)) = k + r by Lemma 41.13.1.

(2) Let α =
∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the

sum

f∗α =
∑

nif
∗[Zi]

where each f∗[Zi] is defined as above. The sum is locally finite by Lemma
41.13.2.

(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle
is called the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)

are all surjective. The reason is that given any integral closed subscheme Z ′ ⊂ U , we
can take the closure of Z of Z ′ in X and think of it as a reduced closed subscheme
of X (see Schemes, Lemma 25.12.4). And clearly Z ∩ U = Z ′, in other words
j∗[Z] = [Z ′] whence the surjectivity. In fact a little bit more is true.
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Lemma 41.14.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let U ⊂ X be an open subscheme, and denote i : Y = X \ U → X as
a reduced closed subscheme of X. For every k ∈ Z the sequence

Zk(Y )
i∗ // Zk(X)

j∗ // Zk(U) // 0

is an exact complex of abelian groups.

Proof. By the description above the basis elements [Z] of the free abelian group
Zk(X) map either to (distinct) basis elements [Z ∩ U ] or to zero if Z ⊂ Y . Hence
the lemma is clear. �

Lemma 41.14.3. Let (S, δ) be as in Situation 41.7.1. Let X,Y, Z be locally of
finite type over S. Let f : X → Y and g : Y → Z be flat morphisms of relative
dimensions r and s. Then g ◦ f is flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).

Proof. The composition is flat of relative dimension r + s by Morphisms, Lemma
28.30.3. Suppose that

(1) W ⊂ Z is a closed integral subscheme of δ-dimension k,
(2) W ′ ⊂ Y is a closed integral subscheme of δ-dimension k + s with W ′ ⊂

g−1(W ), and
(3) W ′′ ⊂ Y is a closed integral subscheme of δ-dimension k + s + r with

W ′′ ⊂ f−1(W ′).

We have to show that the coefficient n of [W ′′] in (g ◦ f)∗[W ] agrees with the
coefficient m of [W ′′] in f∗(g∗[W ]). That it suffices to check the lemma in these
cases follows from Lemma 41.13.1. Let ξ′′ ∈W ′′, ξ′ ∈W ′ and ξ ∈W be the generic
points. Consider the local rings A = OZ,ξ, B = OY,ξ′ and C = OX,ξ′′ . Then we
have local flat ring maps A→ B, B → C and moreover

n = lengthC(C/mAC), and m = lengthC(C/mBC)lengthB(B/mAB)

Hence the equality follows from Algebra, Lemma 10.50.14. �

Lemma 41.14.4. Let (S, δ) be as in Situation 41.7.1. Let X,Y be locally of finite
type over S. Let f : X → Y be a flat morphism of relative dimension r.

(1) Let Z ⊂ Y be a closed subscheme with dimδ(Z) ≤ k. Then we have
dimδ(f

−1(Z)) ≤ k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).
(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have

dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).

Proof. Part (1) follows from part (2) by Lemma 41.10.3 and the fact that f∗OZ =
Of−1(Z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Schemes,
Lemma 29.9.1 to see that F is of finite type, hence f∗F is of finite type (Modules,
Lemma 17.9.2), hence f∗F is coherent (Cohomology of Schemes, Lemma 29.9.1
again). Thus the lemma makes sense. Let W ⊂ Y be an integral closed subscheme
of δ-dimension k, and let W ′ ⊂ X be an integral closed subscheme of dimension
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k + r mapping into W under f . We have to show that the coefficient n of [W ] in
f∗[F ]k agrees with the coefficient m of [W ] in [f∗F ]k+r. Let ξ ∈ W and ξ′ ∈ W ′
be the generic points. Let A = OY,ξ, B = OX,ξ′ and set M = Fξ as an A-module.
(Note that M has finite length by our dimension assumptions, but we actually do
not need to verify this. See Lemma 41.10.1.) We have f∗Fξ′ = B ⊗AM . Thus we
see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 10.50.13. �

41.15. Push and pull

In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 41.15.1. Let (S, δ) be as in Situation 41.7.1. Let

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

be a fibre product diagram of schemes locally of finite type over S. Assume f : X →
Y proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and
g′ is flat of relative dimension r. For any k-cycle α on X we have

g∗f∗α = f ′∗(g
′)∗α

in Zk+r(Y
′).

Proof. The assertion that f ′ is proper follows from Morphisms, Lemma 28.42.5.
The assertion that g′ is flat of relative dimension r follows from Morphisms, Lemmas
28.30.2 and 28.26.7. It suffices to prove the equality of cycles when α = [W ] for some
integral closed subscheme W ⊂ X of δ-dimension k. Note that in this case we have
α = [OW ]k, see Lemma 41.10.3. By Lemmas 41.12.3 and 41.14.4 it therefore suffices
to show that f ′∗(g

′)∗OW is isomorphic to g∗f∗OW . This follows from cohomology
and base change, see Cohomology of Schemes, Lemma 29.5.2. �

Lemma 41.15.2. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a finite locally free morphism of degree d
(see Morphisms, Definition 28.46.1). Then f is both proper and flat of relative
dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).

Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma
28.46.2, and a finite morphism is proper by Morphisms, Lemma 28.44.10. We omit
showing that a finite morphism has relative dimension 0. Thus the formula makes
sense. To prove it, let Z ⊂ Y be an integral closed subscheme of δ-dimension
k. It suffices to prove the formula for α = [Z]. Since the base change of a finite
locally free morphism is finite locally free (Morphisms, Lemma 28.46.4) we see that
f∗f
∗OZ is a finite locally free sheaf of rank d on Z. Hence

f∗f
∗[Z] = f∗f

∗[OZ ]k = [f∗f
∗OZ ]k = d[Z]
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where we have used Lemmas 41.14.4 and 41.12.3. �

41.16. Preparation for principal divisors

Recall that if Z is an irreducible closed subset of a scheme X, then the codimension
of Z in X is equal to the dimension of the local ring OX,ξ, where ξ ∈ Z is the generic
point. See Properties, Lemma 27.11.4.

Definition 41.16.1. Let X be a locally Noetherian scheme. Assume X is integral.
Let f ∈ R(X)∗. For every integral closed subscheme Z ⊂ X of codimension 1 we
define the order of vanishing of f along Z as the integer

ordZ(f) = ordOX,ξ(f)

where the right hand side is the notion of Algebra, Definition 10.117.2 and ξ is the
generic point of Z.

Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole
along Z and that −ordZ(f) > 0 is the order of pole of f along Z. Note that for
f, g ∈ R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).

Lemma 41.16.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral. If Z ⊂ X is an integral closed subscheme of
codimension 1, then dimδ(Z) = dimδ(X)− 1.

Proof. This is more or less the defining property of a dimension function. �

Lemma 41.16.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral. Let f ∈ R(X)∗. Then the set

{Z ⊂ X | Z is integral, closed of codimension 1 and ordZ(f) 6= 0}
is locally finite in X.

Proof. This is true simply because there exists a nonempty open subscheme U ⊂ X
such that f corresponds to a section of Γ(U,O∗X), and hence the codimension 1
irreducibles which can occur in the set of the lemma are all irreducible components
of X \ U . Hence Lemma 41.9.1 gives the desired result. �

Lemma 41.16.4. Let f : X → Y be a morphism of schemes. Let ξ ∈ Y be a point.
Assume that

(1) X, Y are integral,
(2) X is locally Noetherian
(3) f is proper, dominant and R(X) ⊂ R(Y ) is finite, and
(4) dim(OY,ξ) = 1.

Then there exists an open neighbourhood V ⊂ Y of ξ such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. This lemma is a special case of Varieties, Lemma 32.24.2. Here is a direct
argument in this case. By Cohomology of Schemes, Lemma 29.19.2 it suffices to
prove that f−1({ξ}) is finite. We replace Y by an affine open, say Y = Spec(R).
Note that R is Noetherian, as X is assumed locally Noetherian. Since f is proper
it is quasi-compact. Hence we can find a finite affine open covering X = U1 ∪
. . . ∪ Un with each Ui = Spec(Ai). Note that R → Ai is a finite type injective

http://stacks.math.columbia.edu/tag/02RJ
http://stacks.math.columbia.edu/tag/02RK
http://stacks.math.columbia.edu/tag/02RL
http://stacks.math.columbia.edu/tag/02RM


2658 41. CHOW HOMOLOGY AND CHERN CLASSES

homomorphism of domains with f.f.(R) ⊂ f.f.(Ai) finite. Thus the lemma follows
from Algebra, Lemma 10.109.2. �

41.17. Principal divisors

The following definition is the key to everything that follows.

Definition 41.17.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral with dimδ(X) = n. Let f ∈ R(X)∗. The
principal divisor associated to f is the (n− 1)-cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

where the sum is over integral closed subschemes of codimension 1 and ordZ(f) is
as in Definition 41.16.1. This makes sense by Lemmas 41.16.2 and 41.16.3.

Lemma 41.17.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral with dimδ(X) = n. Let f, g ∈ R(X)∗. Then

div(fg) = div(f) + div(g)

in Zn−1(X).

Proof. This is clear from the additivity of the ord functions. �

An important role in the discussion of principal divisors is played by the “universal”
principal divisor [0]− [∞] on P1

S . To make this more precise, let us denote

D0, D∞ ⊂ P1
S = Proj

S
(OS [X0, X1])

the closed subscheme cut out by the section X1, resp. X0 of O(1). These are
effective Cartier divisors, see Divisors, Definition 30.9.1 and Lemma 30.9.20. The
following lemma says that loosely speaking we have “div(X1/X0) = [D0] − [D1]”
and that this is the universal principal divisor.

Lemma 41.17.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let f ∈ R(X)∗. Let
U ⊂ X be a nonempty open such that f corresponds to a section f ∈ Γ(U,O∗X).
Let Y ⊂ X ×S P1

S be the closure of the graph of f : U → P1
S. Then

(1) the projection morphism p : Y → X is proper,
(2) p|p−1(U) : p−1(U)→ U is an isomorphism,

(3) the pullbacks q−1D0 and q−1D∞ via the morphism q : Y → P1
S are effec-

tive Cartier divisors on Y ,
(4) we have

divY (f) = [q−1D0]n−1 − [q−1D∞]n−1

(5) we have

divX(f) = p∗divY (f)

(6) if we view Y0 = q−1D0, and Y∞ = q−1D∞ as closed subschemes of X via
the morphism p then we have

divX(f) = [Y0]n−1 − [Y∞]n−1
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Proof. Since X is integral, we see that U is integral. Hence Y is integral, and
(1, f)(U) ⊂ Y is an open dense subscheme. Also, note that the closed subscheme
Y ⊂ X ×S P1

S does not depend on the choice of the open U , since after all it is the
closure of the one point set {η′} = {(1, f)(η)} where η ∈ X is the generic point.
Having said this let us prove the assertions of the lemma.

For (1) note that p is the composition of the closed immersion Y → X×SP1
S = P1

X

with the proper morphism P1
X → X. As a composition of proper morphisms is

proper (Morphisms, Lemma 28.42.4) we conclude.

It is clear that Y ∩ U ×S P1
S = (1, f)(U). Thus (2) follows. It also follows that

dimδ(Y ) = n.

Note that q(η′) = f(η) is not contained inD0 orD∞ since f ∈ R(X)∗. Hence q−1D0

and q−1D∞ are effective Cartier divisors on Y by Divisors, Lemma 30.9.12. Thus
we see (3). It also follows that dimδ(q

−1D0) = n− 1 and dimδ(q
−1D∞) = n− 1.

Consider the effective Cartier divisor q−1D0. At every point ξ ∈ q−1D0 we have
f ∈ OY,ξ and the local equation for q−1D0 is given by f . In particular, if δ(ξ) = n−1
so ξ is the generic point of a integral closed subscheme Z of δ-dimension n−1, then
we see that the coefficient of [Z] in divY (f) is

ordZ(f) = lengthOY,ξ(OY,ξ/fOY,ξ) = lengthOY,ξ(Oq−1D0,ξ)

which is the coefficient of [Z] in [q−1D0]n−1. A similar argument using the rational
function 1/f shows that −[q−1D∞] agrees with the terms with negative coefficients
in the expression for divY (f). Hence (4) follows.

Note that D0 → S is an isomorphism. Hence we see that X ×S D0 → X is an
isomorphism as well. Clearly we have q−1D0 = Y ∩ X ×S D0 (scheme theoretic
intersection) inside X ×S P1

S . Hence it is really the case that Y0 → X is a closed
immersion. By the same token we see that

p∗Oq−1D0
= OY0

and hence by Lemma 41.12.3 we have p∗[q
−1D0]n−1 = [Y0]n−1. Of course the same

is true for D∞ and Y∞. Hence to finish the proof of the lemma it suffices to prove
the last assertion.

Let Z ⊂ X be an integral closed subscheme of δ-dimension n − 1. We want to
show that the coefficient of [Z] in div(f) is the same as the coefficient of [Z] in
[Y0]n−1− [Y∞]n−1. We may apply Lemma 41.16.4 to the morphism p : Y → X and
the generic point ξ ∈ Z. Hence we may replace X by an affine open neighbourhood
of ξ and assume that p : Y → X is finite. WriteX = Spec(R) and Y = Spec(A) with
p induced by a finite homomorphism R→ A of Noetherian domains which induces
an isomorphism f.f.(R) ∼= f.f.(A) of fraction fields. Now we have f ∈ f.f.(R) and
a prime p ⊂ R with dim(Rp) = 1. The coefficient of [Z] in divX(f) is ordRp

(f).
The coefficient of [Z] in p∗divY (f) is∑

q lying over p
[κ(q) : κ(p)]ordAq

(f)

The desired equality therefore follows from Algebra, Lemma 10.117.8. �

This lemma will be superseded by the more general Lemma 41.20.1.
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Lemma 41.17.4. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Assume X, Y are integral and n = dimδ(Y ). Let f : X → Y be a flat
morphism of relative dimension r. Let g ∈ R(Y )∗. Then

f∗(divY (g)) = divX(g)

in Zn+r−1(X).

Proof. Note that since f is flat it is dominant so that f induces an embedding
R(Y ) ⊂ R(X), and hence we may think of g as an element of R(X)∗. Let Z ⊂ X
be an integral closed subscheme of δ-dimension n+ r − 1. Let ξ ∈ Z be its generic
point. If dimδ(f(Z)) > n− 1, then we see that the coefficient of [Z] in the left and

right hand side of the equation is zero. Hence we may assume that Z ′ = f(Z) is
an integral closed subscheme of Y of δ-dimension n − 1. Let ξ′ = f(ξ). It is the
generic point of Z ′. Set A = OY,ξ′ , B = OX,ξ. The ring map A→ B is a flat local
homomorphism of Noetherian local domains of dimension 1. We have g ∈ f.f.(A).
What we have to show is that

ordA(g)lengthB(B/mAB) = ordB(g).

This follows from Algebra, Lemma 10.50.13 (details omitted). �

41.18. Two fun results on principal divisors

The first lemma implies that the pushforward of a principal divisor along a generi-
cally finite morphism is a principal divisor.

Lemma 41.18.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of
finite type over S. Assume X, Y are integral and n = dimδ(X) = dimδ(Y ). Let
p : X → Y be a dominant proper morphism. Let f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).

Then we have p∗div(f) = div(g).

Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension n − 1. We
want to show that the coefficient of [Z] in p∗div(f) and div(g) are equal. We may
apply Lemma 41.16.4 to the morphism p : X → X and the generic point ξ ∈ Z.
Hence we may replace X by an affine open neighbourhood of ξ and assume that
p : Y → X is finite. Write X = Spec(R) and Y = Spec(A) with p induced by
a finite homomorphism R → A of Noetherian domains which induces an finite
field extension f.f.(R) ⊂ f.f.(A) of fraction fields. Now we have f ∈ f.f.(A),
g = Nm(f) ∈ f.f.(R), and a prime p ⊂ R with dim(Rp) = 1. The coefficient of [Z]
in divY (g) is ordRp

(g). The coefficient of [Z] in p∗divX(f) is∑
q lying over p

[κ(q) : κ(p)]ordAq
(f)

The desired equality therefore follows from Algebra, Lemma 10.117.8. �

The following lemma says that the degree of a principal divisor on a proper curve
is zero.

Lemma 41.18.2. Let K be any field. Let X be a 1-dimensional integral scheme
endowed with a proper morphism c : X → Spec(K). Let f ∈ K(X)∗ be an invertible
rational function. Then∑

x∈X closed
[κ(x) : K]ordOX,x(f) = 0
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where ord is as in Algebra, Definition 10.117.2. In other words, c∗div(f) = 0.

Proof. Consider the diagram

Y
p

//

q

��

X

c

��
P1
K

c′ // Spec(K)

that we constructed in Lemma 41.17.3 starting with X and the rational function
f over S = Spec(K). We will use all the results of this lemma without further
mention. We have to show that c∗divX(f) = c∗p∗divY (f) = 0. This is the same
as proving that c′∗q∗divY (f) = 0. If q(Y ) is a closed point of P1

K then we see
that divX(f) = 0 and the lemma holds. Thus we may assume that q is dominant.
Since divY (f) = [q−1D0]0 − [q−1D∞]0 we see (by definition of flat pullback) that
divY (f) = q∗([D0]0 − [D∞]0). Suppose we can show that q : Y → P1

K is finite
locally free of degree d (see Morphisms, Definition 28.46.1). Then byy Lemma
41.15.2 we get q∗divY (f) = d([D0]0 − [D∞]0). Since clearly c′∗[D0]0 = c′∗[D∞]0 we
win.

It remains to show that q is finite locally free. (It will automatically have some given
degree as P1

K is connected.) Since dim(P1
K) = 1 we see that q is finite for example

by Lemma 41.16.4. All local rings of P1
K at closed points are regular local rings of

dimension 1 (in other words discrete valuation rings), since they are localizations
of K[T ] (see Algebra, Lemma 10.110.1). Hence for y ∈ Y closed the local ring OY,y
will be flat over OP1

K ,q(y) as soon as it is torsion free. This is obviously the case as
OY,y is a domain and q is dominant. Thus q is flat. Hence q is finite locally free by
Morphisms, Lemma 28.46.2. �

41.19. Rational equivalence

In this section we define rational equivalence on k-cycles. We will allow locally finite
sums of images of principal divisors (under closed immersions). This leads to some
pretty strange phenomena, see Example 41.19.3. However, if we do not allow these
then we do not know how to prove that capping with chern classes of line bundles
factors through rational equivalence.

Definition 41.19.1. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Let k ∈ Z.

(1) Given any locally finite collection {Wj ⊂ X} of integral closed subschemes
with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)

∗ we may consider∑
(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the
morphism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of
the form displayed above.

(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if
α− β is rationally equivalent to zero.

(4) We define

Ak(X) = Zk(X)/ ∼rat
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to be the Chow group of k-cycles on X. This is sometimes called the Chow
group of k-cycles module rational equivalence on X.

There are many other interesting (adequate) equivalence relations. Rational equiv-
alence is the coarsest one of them all. A very simple but important lemma is the
following.

Lemma 41.19.2. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally of
finite type over S. Let U ⊂ X be an open subscheme, and denote i : Y = X\U → X
as a reduced closed subscheme of X. Let k ∈ Z. Suppose α, β ∈ Zk(X). If
α|U ∼rat β|U then there exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

Ak(Y )
i∗ // Ak(X)

j∗ // Ak(U) // 0

is an exact complex of abelian groups.

Proof. Let {Wj}j∈J be a locally finite collection of integral closed subschemes
of δ-dimension k + 1, and let fj ∈ R(Wj)

∗ be elements such that (α − β)|U =∑
(ij)∗div(fj) as in the definition. Set W ′j ⊂ X equal to the closure of Wj . Suppose

that V ⊂ X is a quasi-compact open. Then also V ∩U is quasi-compact open in U
as V is Noetherian. Hence the set {j ∈ J |Wj ∩ V 6= ∅} = {j ∈ J |W ′j ∩ V 6= ∅} is
finite since {Wj} is locally finite. In other words we see that {W ′j} is also locally
finite. Since R(Wj) = R(W ′j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle supported on Y and the lemma follows (see Lemma 41.14.2). �

Example 41.19.3. Here is a “strange” example. Suppose that S is the spectrum
of a field k with δ as in Example 41.7.2. Suppose that X = C1∪C2∪. . . is an infinite
union of curves Cj ∼= P1

k glued together in the following way: The point ∞ ∈ Cj is
glued transversally to the point 0 ∈ Cj+1 for j = 1, 2, 3, . . .. Take the point 0 ∈ C1.
This gives a zero cycle [0] ∈ Z0(X). The “strangeness” in this situation is that
actually [0] ∼rat 0! Namely we can choose the rational function fj ∈ R(Cj) to be
the function which has a simple zero at 0 and a simple pole at ∞ and no other
zeros or poles. Then we see that the sum

∑
(ij)∗div(fj) is exactly the 0-cycle [0].

In fact it turns out that A0(X) = 0 in this example. If you find this too bizarre,
then you can just make sure your spaces are always quasi-compact (so X does not
even exist for you).

Remark 41.19.4. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Suppose we have infinite collections αi, βi ∈ Zk(X), i ∈ I of k-
cycles on X. Suppose that the supports of αi and βi form locally finite collections of
closed subsets of X so that

∑
αi and

∑
βi are defined as cycles. Moreover, assume

that αi ∼rat βi for each i. Then it is not clear that
∑
αi ∼rat

∑
βi. Namely,

the problem is that the rational equivalences may be given by locally finite families
{Wi,j , fi,j ∈ R(Wi,j)

∗}j∈Ji but the union {Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I
such that αi, βi are supported on Ti and such that αi = βi in Ak(Ti), in other words,
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the families {Wi,j , fi,j ∈ R(Wi,j)
∗}j∈Ji consist of subschemes Wi,j ⊂ Ti. In this

case it is true that
∑
αi ∼rat

∑
βi on X, simply because the family {Wi,j}i∈I,j∈Ji

is automatically locally finite in this case.

41.20. Properties of rational equivalence

Lemma 41.20.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be schemes locally
of finite type over S. Let f : X → Y be a flat morphism of relative dimension
r. Let α ∼rat β be rationally equivalent k-cycles on Y . Then f∗α ∼rat f∗β as
(k + r)-cycles on X.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ Y

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)

∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on Y . Then we have to show that

f∗(
∑

ij,∗div(fj))

is rationally equivalent to zero on X.

Consider the fibre products

i′j : W ′j = Wj ×Y X −→ X.

For each j, consider the collection {W ′j,l}l∈Lj of irreducible components W ′j,l ⊂W ′j
having δ-dimension k + 1. We may write

[W ′j ]k+1 =
∑

l∈Lj
nj,l[W

′
j,l]k+1

for some nj,l > 0. By Lemma 41.13.1 we see that W ′j,l → Wj is dominant and

hence we can let fj,l ∈ R(W ′j,l)
∗ denote the image of fj under the map of fields

R(Wj)→ R(W ′j,l). We claim that

(1) the collection {W ′j,l}j∈J,l∈Lj is locally finite on X, and

(2) with obvious notation f∗(
∑
ij,∗div(fj)) =

∑
i′j,l,∗div(f

nj,l
j,l ).

Clearly this claim implies the lemma.

To show (1), note that {W ′j} is a locally finite collection of closed subschemes of X
by Lemma 41.13.2. Hence if U ⊂ X is quasi-compact, then U meets only finitely
many W ′j . By Lemma 41.9.1 the collection of irreducible components of each Wj is
locally finite as well. Hence we see only finitely many W ′j,l meet U as desired.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k+ r. We have to show
that the coefficient n of [Z] in f∗(

∑
ij,∗div(fj)) is equal to the coefficient m of

[Z] in
∑
i′j,l,∗div(f

nj,l
j,l ). Let Z ′ be the closure of f(Z) which is an integral closed

subscheme of Y . By Lemma 41.13.1 we have dimδ(Z
′) ≥ k. If dimδ(Z

′) > k, then
the coefficients n and m are both zero, since the generic point of Z will not be
contained in any W ′j or W ′j,l. Hence we may assume that dimδ(Z

′) = k.

We are going to translate the equality of n and m into algebra. Namely, let ξ′ ∈ Z ′
and ξ ∈ Z be the generic points. Set A = OY,ξ′ and B = OX,ξ. Note that A, B
are Noetherian, A→ B is flat, local, and that mAB is an ideal of definition of the
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local ring B. There are finitely many j such that Wj passes through ξ′, and these
correspond to prime ideals

p1, . . . , pT ⊂ A
with the property that dim(A/pt) = 1 for each t = 1, . . . , T . The rational functions
fj correspond to elements ft ∈ κ(pt)

∗. Say pt corresponds to Wj . By construction,
the closed subschemes W ′j,l which meet ξ correspond 1− 1 with minimal primes

ptB ⊂ qt,1, . . . , qt,St ⊂ B
over ptB. The integers nj,l correspond to the integers

nt,s = lengthBqt,s
((B/ptB)Bqt,s

)

The rational functions fj,l correspond to the images ft,s ∈ κ(qt,s)
∗ of the elements

ft ∈ κ(pt)
∗. Putting everything together we see that

n =
∑

ordA/pt(ft)lengthB(B/mAB)

and that
m =

∑
ordB/qt,s(ft,s)lengthBqt,s

((B/ptB)Bqt,s
)

Note that it suffices to prove the equality for each t ∈ {1, . . . , T} separately. Writing
ft = x/y for some nonzero x, y ∈ A/pt coming from x, y ∈ A we see that it suffices
to prove

lengthA/pt(A/(pt, x))lengthB(B/mAB) = lengthB(B/(x, pt)B)

(equality uses Algebra, Lemma 10.50.13) equals∑
s=1,...,St

ordB/qt,s(B/(x, qt,s))lengthBqt,s
((B/ptB)Bqt,s

)

and similarly for y. Note that as x 6∈ pt we see that x is a nonzerodivisor on A/pt.
As A→ B is flat it follows that x is a nonzerodivisor on the module M = B/ptB.
Hence the equality above follows from Lemma 41.5.6. �

Lemma 41.20.2. Let (S, δ) be as in Situation 41.7.1. Let X, Y be schemes locally
of finite type over S. Let p : X → Y be a proper morphism. Suppose α, β ∈ Zk(X)
are rationally equivalent. Then p∗α is rationally equivalent to p∗β.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)

∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on X. Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X.

Note that the sum is equal to ∑
p∗ij,∗div(fj).

Let W ′j ⊂ Y be the integral closed subscheme which is the image of p ◦ ij . The
collection {W ′j} is locally finite in Y by Lemma 41.11.2. Hence it suffices to show,
for a given j, that either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj) for some
gj ∈ R(W ′j)

∗.

http://stacks.math.columbia.edu/tag/02S2


41.21. DIFFERENT CHARACTERIZATIONS OF RATIONAL EQUIVALENCE 2665

The arguments above therefore reduce us to the case of a since integral closed
subscheme W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as
above. We get a commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′

i′ // Y

Note that p∗i∗div(f) = i′∗(p
′)∗div(f) by Lemma 41.12.2. As explained above we

have to show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero.
There are three cases to distinguish.

The case dimδ(W
′) < k. In this case automatically (p′)∗div(f) = 0 and there is

nothing to prove.

The case dimδ(W
′) = k. Let us show that (p′)∗div(f) = 0 in this case. Let η ∈W ′

be the generic point. Note that c : Wη → Spec(K) is a proper integral curve over
K = κ(η) whose function field K(Wη) is identified with R(W ). Here is a diagram

Wη
//

c

��

W

p′

��
Spec(K) // W ′

Let us denote fη ∈ K(Wη)∗ the rational function corresponding to f ∈ R(W )∗.
Moreover, the closed points ξ of Wη correspond 1 − 1 to the closed integral sub-
schemes Z = Zξ ⊂W of δ-dimension k with p′(Z) = W ′. Note that the multiplicity
of Zξ in div(f) is equal to ordOWη,ξ(fη) simply because the local rings OWη,ξ and

OW,ξ are identified (as subrings of their fraction fields). Hence we see that the mul-
tiplicity of [W ′] in (p′)∗div(f) is equal to the multiplicity of [Spec(K)] in c∗div(fη).
By Lemma 41.18.2 this is zero.

The case dimδ(W
′) = k + 1. In this case Lemma 41.18.1 applies, and we see that

indeed p′∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. �

41.21. Different characterizations of rational equivalence

Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally of finite type over S.
Given any closed subscheme Z ⊂ X ×S P1

S = X × P1 we let Z0, resp. Z∞ be the

scheme theoretic closed subscheme Z0 = pr−1
2 (D0), resp. Z∞ = pr−1

2 (D∞). Here
D0, D∞ are as defined just above Lemma 41.17.3.

Lemma 41.21.1. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally of
finite type over S. Let W ⊂ X×SP1

S be an integral closed subscheme of δ-dimension
k + 1. Assume W 6= W0, and W 6= W∞. Then

(1) W0, W∞ are effective Cartier divisors of W ,
(2) W0, W∞ can be viewed as closed subschemes of X and

[W0]k ∼rat [W∞]k,

(3) for any locally finite family of integral closed subschemes Wi ⊂ X ×S
P1
S of δ-dimension k + 1 with Wi 6= (Wi)0 and Wi 6= (Wi)∞ we have∑
([(Wi)0]k − [(Wi)∞]k) ∼rat 0 on X, and
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(4) for any α ∈ Zk(X) with α ∼rat 0 there exists a locally finite family
of integral closed subschemes Wi ⊂ X ×S P1

S as above such that α =∑
([(Wi)0]k − [(Wi)∞]k).

Proof. Part (1) follows from Divisors, Lemma 30.9.12 since the generic point of W
is not mapped into D0 or D∞ under the projection X×S P1

S → P1
S by assumption.

Since X ×S D0 → X is an isomorphism we see that W0 is isomorphic to a closed
subscheme of X. Similarly for W∞. Consider the morphism p : W → X. It is
proper and on W we have [W0]k ∼rat [W∞]k. Hence part (2) follows from Lemma
41.20.2 as clearly p∗[W0]k = [W0]k and similarly for W∞.

The only content of statement (3) is, given parts (1) and (2), that the collection
{(Wi)0, (Wi)∞} is a locally finite collection of closed subschemes of X. This is clear.

Suppose that α ∼rat 0. By definition this means there exist integral closed sub-
schemes Vi ⊂ X of δ-dimension k + 1 and rational functions fi ∈ R(Vi)

∗ such that
the family {Vi}i∈I is locally finite in X and such that α =

∑
(Vi → X)∗div(fi). Let

Wi ⊂ Vi ×S P1
S ⊂ X ×S P1

S

be the closure of the graph of the rational map fi as in Lemma 41.17.3. Then we
have that (Vi → X)∗div(fi) is equal to [(Wi)0]k − [(Wi)∞]k by that same lemma.
Hence the result is clear. �

Lemma 41.21.2. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Let Z be a closed subscheme of X ×P1. Assume dimδ(Z) ≤
k + 1, dimδ(Z0) ≤ k, dimδ(Z∞) ≤ k and assume any embedded point ξ (Divisors,
Definition 30.4.1) of Z has δ(ξ) < k. Then

[Z0]k ∼rat [Z∞]k

as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Z which have
δ-dimension k + 1. Write

[Z]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Lemma 41.9.1. We claim that

[Z0]k =
∑

ni[(Wi)0]k

and similarly for [Z∞]k. If we prove this then the lemma follows from Lemma
41.21.1.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [Z0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point.

Set ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S ,ξ
. Let I ⊂ A

be the ideal cutting out Z, in other words so that A/I = OZ,ξ. Let t ∈ A be
the element cutting out X ×S D0 (i.e., the coordinate of P1 at zero pulled back).
By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence dim(A/I) = 1. Since ξ is
not an embedded point by definition we see that A/I is Cohen-Macaulay. Since
dimδ(Z0) = k we see that dim(A/(t, I)) = 0 which implies that t is a nonzerodivisor
on A/I. Finally, the irreducible closed subschemes Wi passing through ξ correspond
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to the minimal primes I ⊂ qi over I. The multiplicities ni correspond to the lengths
lengthAqi

(A/I)qi . Hence we see that

n = lengthA(A/(t, I))

and

m =
∑

lengthA(A/(t, qi))lengthAqi
(A/I)qi

Thus the result follows from Lemma 41.5.6. �

Lemma 41.21.3. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally of
finite type over S. Let F be a coherent sheaf on X ×P1. Let i0, i∞ : X → X ×P1

be the closed immersion such that it(x) = (x, t). Denote F0 = i∗0F and F∞ = i∗∞F .
Assume

(1) dimδ(Supp(F)) ≤ k + 1,
(2) dimδ(Supp(F0)) ≤ k, dimδ(Supp(F∞)) ≤ k, and
(3) any nonmaximal associated point (insert future reference here) ξ ∈ Supp(F)

of F has δ(ξ) < k.

Then

[F0]k ∼rat [F∞]k

as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Supp(F) which
have δ-dimension k + 1. Write

[F ]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Lemma 41.10.1. We claim that

[F0]k =
∑

ni[(Wi)0]k

and similarly for [F∞]k. If we prove this then the lemma follows from Lemma
41.21.1.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [F0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set

ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S ,ξ
. Let M = Fξ as

an A-module. Let t ∈ A be the element cutting out X ×S D0 (i.e., the coordinate
of P1 at zero pulled back). By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence
dim(M) = 1. Since ξ is not an associated point of F by definition we see that M is
Cohen-Macaulay module. Since dimδ(Supp(F0)) = k we see that dim(M/tM) = 0
which implies that t is a nonzerodivisor on M . Finally, the irreducible closed
subschemes Wi passing through ξ correspond to the minimal primes qi of Ass(M).
The multiplicities ni correspond to the lengths lengthAqi

Mqi . Hence we see that

n = lengthA(M/tM)

and

m =
∑

lengthA(A/(t, qi)A)lengthAqi
Mqi

Thus the result follows from Lemma 41.5.6. �
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41.22. Rational equivalence and K-groups

In this section we compare the cycle groups Zk(X) and the Chow groups Ak(X)
with certain K0-groups of abelian categories of coherent sheaves on X. We avoid
having to talk about K1(A) for an abelian category A by dint of Homology, Lemma
12.10.3. In particular, the motivation for the precise form of Lemma 41.22.4 is that
lemma.

Let us introduce the following notation. Let (S, δ) be as in Situation 41.7.1. Let
X be a scheme locally of finite type over S. We denote Coh(X) = Coh(OX) the
category of coherent sheaves on X. It is an abelian category, see Cohomology of
Schemes, Lemma 29.9.2. For any k ∈ Z we let Coh≤k(X) be the full subcategory
of Coh(X) consisting of those coherent sheaves F having dimδ(Supp(F)) ≤ k.

Lemma 41.22.1. Let us introduce the following notation. Let (S, δ) be as in Sit-
uation 41.7.1. Let X be a scheme locally of finite type over S. The categories
Coh≤k(X) are Serre subcategories of the abelian category Coh(X).

Proof. Omitted. The definition of a Serre subcategory is Homology, Definition
12.9.1. �

Lemma 41.22.2. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. There are maps

Zk(X) −→ K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X)

whose composition is the identity. The first is the map∑
nZ [Z] 7→

[⊕
nZ>0

O⊕nZZ

]
−
[⊕

nZ<0
O⊕−nZZ

]
and the second comes from the map F 7→ [F ]k. If X is quasi-compact, then both
maps are isomorphisms.

Proof. Note that the direct sum
⊕

nZ>0O
⊕nZ
Z is indeed a coherent sheaf on X

since the family {Z | nZ > 0} is locally finite on X. The map F → [F ]k is additive
on Coh≤k(X), see Lemma 41.10.4. And [F ]k = 0 if F ∈ Coh≤k−1(X). This implies
we have the left map as shown in the lemma. It is clear that their composition is
the identity.

In case X is quasi-compact we will show that the right arrow is injective. Sup-
pose that q ∈ K0(Coh≤k(X)/Coh≤k+1(X)) maps to zero in Zk(X). By Homology,
Lemma 12.10.3 we can find a q̃ ∈ K0(Coh≤k(X)) mapping to q. Write q̃ = [F ]− [G]
for some F ,G ∈ K0(Coh≤k(X)). Since X is quasi-compact we may apply Coho-
mology of Schemes, Lemma 29.12.3. This shows that there exist integral closed
subschemes Zj , Ti ⊂ X and (nonzero) ideal sheaves Ij ⊂ OZj , Ii ⊂ OTi such that
F , resp. G have filtrations whose successive quotients are the sheaves Ij , resp. Ii.
In particular we see that dimδ(Zj),dimδ(Ti) ≤ k. In other words we have

[F ] =
∑

j
[Ij ], [G] =

∑
i
[Ii],

in K0(Coh≤k(X)). Our assumption is that
∑
j [Ij ]k −

∑
i[Ii]k = 0. It is clear that

we may throw out the indices j, resp. i such that dimδ(Zj) < k, resp. dimδ(Ti) < k,
since the corresponding sheaves are in Cohk−1(X) and also do not contribute to
the cycle. Moreover, the exact sequences 0 → Ij → OZj → OZj/Ij → 0 and
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0 → Ii → OTi → OZi/Ii → 0 show similarly that we may replace Ij , resp. Ii by
OZj , resp. OTi . OK, and finally, at this point it is clear that our assumption∑

j
[OZj ]k −

∑
i
[OTi ]k = 0

implies that in K0(Cohk(X)) we have also
∑
j [OZj ]−

∑
i[OTi ] = 0 as desired. �

Remark 41.22.3. It seems likely that the arrows of Lemma 41.22.2 are not iso-
morphisms if X is not quasi-compact. For example, suppose X is an infinite disjoint
union X =

∐
n∈N P1

k over a field k. Let F , resp. G be the coherent sheaf on X
whose restriction to the nth summand is equal to the skyscraper sheaf at 0 asso-
ciated to OP1

k,0
/mn0 , resp. κ(0)⊕n. The cycle associated to F is equal to the cycle

associated to G, namely both are equal to
∑
n[0n] where 0n ∈ X denotes 0 on the

nth component of X. But there seems to be no way to show that [F ] = [G] in
K0(Coh(X)) since any proof we can envision uses infinitely many relations.

Lemma 41.22.4. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Let F be a coherent sheaf on X. Let

. . . // F
ϕ // F

ψ // F
ϕ // F // . . .

be a complex as in Homology, Equation (12.10.2.1). Assume that

(1) dimδ(Supp(F)) ≤ k + 1.
(2) dimδ(Supp(Hi(F , ϕ, ψ))) ≤ k for i = 0, 1.

Then we have
[H0(F , ϕ, ψ)]k ∼rat [H1(F , ϕ, ψ)]k

as k-cycles on X.

Proof. Let {Wj}j∈J be the collection of irreducible components of Supp(F) which
have δ-dimension k+1. Note that {Wj} is a locally finite collection of closed subsets
of X by Lemma 41.10.1. For every j, let ξj ∈Wj be the generic point. Set

fj = detκ(ξj)(Fξj , ϕξj , ψξj ) ∈ R(Wj)
∗.

See Definition 41.3.4 for notation. We claim that

−[H0(F , ϕ, ψ)]k + [H1(F , ϕ, ψ)]k =
∑

(Wj → X)∗div(fj)

If we prove this then the lemma follows.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z] in [H0(F , ϕ, ψ)]k −
[H1(F , ϕ, ψ)]k is the same as the coefficient m of [Z] in

∑
(Wj → X)∗div(fj). Let

ξ ∈ Z be the generic point. Consider the local ring A = OX,ξ. Let M = Fξ as an
A-module. Denote ϕ,ψ : M →M the action of ϕ,ψ on the stalk. By our choice of
ξ ∈ Z we have δ(ξ) = k and hence dim(M) = 1. Finally, the integral closed sub-
schemes Wj passing through ξ correspond to the minimal primes qi of Supp(M). In
each case the element fj ∈ R(Wj)

∗ corresponds to the element detκ(qi)(Mqi , ϕ, ψ)
in κ(qi)

∗. Hence we see that

n = −eA(M,ϕ, ψ)

and
m =

∑
ordA/qi(detκ(qi)(Mqi , ϕ, ψ))

Thus the result follows from Proposition 41.5.3. �
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Lemma 41.22.5. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Denote Bk(X) the image of the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ K0(Coh≤k+1(X)/Coh≤k−1(X)).

There is a commutative diagram

K0

(
Coh≤k(X)

Coh≤k−1(X)

)
//

��

Bk(X)

��

� � // K0

(
Coh≤k+1(X)

Coh≤k−1(X)

)

Zk(X) // Ak(X)

where the left vertical arrow is the one from Lemma 41.22.2. If X is quasi-compact
then both vertical arrows are isomorphisms.

Proof. Suppose we have an element [A] − [B] of K0(Coh≤k(X)/Coh≤k−1(X))
which maps to zero in Bk(X), i.e., in K0(Coh≤k+1(X)/Coh≤k−1(X)). Suppose
[A] = [A] and [B] = [B] for some coherent sheaves A,B on X supported in
δ-dimension ≤ k. The assumption that [A] − [B] maps to zero in the group
K0(Coh≤k+1(X)/Coh≤k−1(X)) means that there exists coherent sheaves A′,B′ on
X supported in δ-dimension ≤ k − 1 such that [A ⊕ A′] − [B ⊕ B′] is zero in
K0(Cohk+1(X)) (use part (1) of Homology, Lemma 12.10.3). By part (2) of Ho-
mology, Lemma 12.10.3 this means there exists a (2, 1)-periodic complex (F , ϕ, ψ) in
the category Coh≤k+1(X) such thatA⊕A′ = H0(F , ϕ, ψ) and B⊕B′ = H1(F , ϕ, ψ).
By Lemma 41.22.4 this implies that

[A⊕A′]k ∼rat [B ⊕ B′]k
This proves that [A]− [B] maps to zero via the composition

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X) −→ Ak(X).

In other words this proves the commutative diagram exists.

Next, assume that X is quasi-compact. By Lemma 41.22.2 the left vertical arrow is
bijective. Hence it suffices to show any α ∈ Zk(X) which is rationally equivalent to
zero maps to zero in Bk(X) via the inverse of the left vertical arrow composed with
the horizontal arrow. By Lemma 41.21.1 we see that α =

∑
([(Wi)0]k − [(Wi)∞]k)

for some closed integral subschemes Wi ⊂ X×S P1
S of δ-dimension k+1. Moreover

the family {Wi} is finite because X is quasi-compact. Note that the ideal sheaves
Ii,Ji ⊂ OWi

of the effective Cartier divisors (Wi)0, (Wi)∞ are isomorphic (as OWi
-

modules). This is true because the ideal sheaves ofD0 andD∞ on P1 are isomorphic
and Ii,Ji are the pullbacks of these. (Some details omitted.) Hence we have short
exact sequences

0→ Ii → OWi → O(Wi)0
→ 0, 0→ Ji → OWi → O(Wi)∞ → 0

of coherent OWi
-modules. Also, since [(Wi)0]k = [p∗O(Wi)0

]k in Zk(X) we see that
the inverse of the left vertical arrow maps [(Wi)0]k to the element [p∗O(Wi)0

] in
K0(Coh≤k(X)/Coh≤k−1(X)). Thus we have

α =
∑

([(Wi)0]k − [(Wi)∞]k)

7→
∑(

[p∗O(Wi)0
]− [p∗O(Wi)∞ ]

)
=

∑
([p∗OWi ]− [p∗Ii]− [p∗OWi ] + [p∗Ji])
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in K0(Coh≤k+1(X)/Coh≤k−1(X)). By what was said above this is zero, and we
win. �

Remark 41.22.6. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Assume X is quasi-compact. The result of Lemma 41.22.5 in
particular gives a map

Ak(X) −→ K0(Coh(X)/Coh≤k−1(X)).

We have not been able to find a statement or conjecture in the literature as to
whether this map is should be injective or not. If X is connected nonsingular,
then, using the isomorphism K0(X) = K0(X) (see insert future reference here)
and chern classes (see below), one can show that the map is an isomorphism up to
(p− 1)!-torsion where p = dimδ(X)− k.

41.23. Preparation for the divisor associated to an invertible sheaf

For the following remarks, see Divisors, Section 30.15. Let X be a scheme. Let L
be an invertible OX -module. Let ξ ∈ X be a point. If sξ, s

′
ξ ∈ Lξ generate Lξ as

OX,ξ-module, then there exists a unit u ∈ O∗X,ξ such that sξ = us′ξ. The stalk of the

sheaf of meromorphic sections KX(L) of L at x is equal to KX,x⊗OX,xLx. Thus the
image of any meromorphic section s of L in the stalk at x can be written as s = fsξ
with f ∈ KX,x. Below we will abbreviate this by saying f = s/sξ. Also, if X is
integral we have KX,x = R(X) is equal to the function field of X, so s/sξ ∈ R(X). If
s is a regular meromorphic section (see Divisors, Definition 30.15.11), then actually
f ∈ R(X)∗. (On an integral scheme a regular meromorphic section is the same
thing as a nonzero meromorphic section.) Hence the following definition makes
sense.

Definition 41.23.1. Let X be a locally Noetherian scheme. Assume X is integral.
Let L be an invertible OX -module. Let s ∈ Γ(X,KX(L)) be a regular meromorphic
section of L. For every integral closed subscheme Z ⊂ X of codimension 1 we define
the order of vanishing of s along Z as the integer

ordZ,L(s) = ordOX,ξ(s/sξ)

where the right hand side is the notion of Algebra, Definition 10.117.2, ξ ∈ Z is the
generic point, and sξ ∈ Lξ is a generator.

Lemma 41.23.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Assume X is integral. Let L be an invertible OX-module. Let s ∈ KX(L)
be a regular (i.e., nonzero) meromorphic section of L. Then the set

{Z ⊂ X | Z is irreducible, closed of codimension 1 and ordZ,L(s) 6= 0}

is locally finite in X.

Proof. This is true simply because there exists a nonempty open subscheme U ⊂ X
such that s corresponds to a section of Γ(U,L) which generates L over U . Hence
the codimension 1 irreducibles which can occur in the set of the lemma are all
irreducible components of X \U . Hence Lemma 41.9.1 gives the desired result. �
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Lemma 41.23.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-
module. Let s, s′ ∈ KX(L) be nonzero meromorphic sections of L. Then f = s/s′

is an element of R(X)∗ and we have∑
ordZ,L(s)[Z] =

∑
ordZ,L(s′)[Z] + div(f)

(where the sums are over integral closed subschemes Z ⊂ X of δ-dimension n− 1)
as elements of Zn−1(X).

Proof. This is clear from the definitions. Note that Lemma 41.23.2 guarantees
that the sums are indeed elements of Zn−1(X). �

41.24. The divisor associated to an invertible sheaf

The material above allows us to define the divisor associated to an invertible sheaf.

Definition 41.24.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let L be an invertible
OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s as

divL(s) :=
∑

ordZ,L(s)[Z] ∈ Zn−1(X)

where the sum is over integral closed subschemes Z ⊂ X of δ-dimension
n− 1.

(2) We define Weil divisor associated to L
c1(L) ∩ [X] = class of divL(s) ∈ An−1(X)

where s is any nonzero meromorphic section of L over X. This is well
defined by Lemma 41.23.3.

There are some cases where it is easy to compute the Weil divisor associated to an
invertible sheaf.

Lemma 41.24.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-module.
Let s ∈ Γ(X,L) be a nonzero global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and

c1(L) ∩ [X] = [Z(s)]n−1

in An−1(X).

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension n − 1. Let
ξ ∈ Z be its generic point. Choose a generator sξ ∈ Lξ. Write s = fsξ for some
f ∈ OX,ξ. By definition of Z(s), see Divisors, Definition 30.9.18 we see that Z(s)
is cut out by a quasi-coherent sheaf of ideals I ⊂ OX such that Iξ = (f). Hence
lengthOX,x(OZ(s),ξ) = lengthOX,x(OX,ξ/(f)) = ordOX,x(f) as desired. �

Lemma 41.24.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let L, N be invertible
OX-modules. Then
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(1) Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st
is a nonzero meromorphic section of L ⊗N , and

divL⊗N (st) = divL(s) + divN (t)

in Zn−1(X).
(2) We have

c1(L) ∩ [X] + c1(N ) ∩ [X] = c1(L ⊗OX N ) ∩ [X]

in An−1(X).

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st is a
nonzero meromorphic section of L⊗N . Let Z ⊂ X be an integral closed subscheme
of δ-dimension n − 1. Let ξ ∈ Z be its generic point. Choose generators sξ ∈ Lξ,
and tξ ∈ Nξ. Then sξtξ is a generator for (L ⊗ N )ξ. So st/(sξtξ) = (s/sξ)(t/tξ).
Hence we see that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)

by the additivity of the ordZ function. �

The following lemma will be superseded by the more general Lemma 41.25.4.

Lemma 41.24.4. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Assume X, Y are integral and n = dimδ(Y ). Let L be an invertible
OY -module. Let f : X → Y be a flat morphism of relative dimension r. Let L be
an invertible sheaf on Y . Then

f∗(c1(L) ∩ [Y ]) = c1(f∗L) ∩ [X]

in An+r−1(X).

Proof. Let s be a nonzero meromorphic section of L. We will show that actually
f∗divL(s) = divf∗L(f∗s) and hence the lemma holds. To see this let ξ ∈ Y be a
point and let sξ ∈ Lξ be a generator. Write s = gsξ with g ∈ R(X)∗. Then there is
an open neighbourhood V ⊂ Y of ξ such that sξ ∈ L(V ) and such that sξ generates
L|V . Hence we see that

divL(s)|V = div(g)|V .
In exactly the same way, since f∗sξ generates L over f−1(V ) and since f∗s = gf∗sξ
we also have

divL(f∗s)|f−1(V ) = div(g)|f−1(V ).

Thus the desired equality of cycles over f−1(V ) follows from the corresponding
result for pullbacks of principal divisors, see Lemma 41.17.4. �

41.25. Intersecting with Cartier divisors

Definition 41.25.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L be an invertible OX -module. We define, for every integer k, an
operation

c1(L) ∩ − : Zk+1(X)→ Ak(X)

called intersection with the first chern class of L.

(1) Given an integral closed subscheme i : W → X with dimδ(W ) = k+ 1 we
define

c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])

where the right hand side is defined in Definition 41.24.1.
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(2) For a general (k + 1)-cycle α =
∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

Write each c1(L) ∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral

closed subschemes of Wi. Since {Wi} is a locally finite collection of integral closed
subschemes on X, it follows easily that {Zi,j}i,j is a locally finite collection of
closed subschemes of X. Hence c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another,

more convenient, way to think about this is to observe that the morphism
∐
Wi →

X is proper. Hence c1(L) ∩ α can be viewed as the pushforward of a class in
Ak(

∐
Wi) =

∏
Ak(Wi). This also explains why the result is well defined up to

rational equivalence on X.

The main goal for the next few sections is to show that intersecting with c1(L)
factors through rational equivalence, and is commutative. This is not a triviality.

Lemma 41.25.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L, N be an invertible sheaves on X. Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX N ) ∩ α
in Ak(X) for every α ∈ Zk−1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Lemma 41.24.3 and the definitions.
To see that c1(OX) ∩ α = 0 consider the section 1 ∈ Γ(X,OX). This restricts to
an everywhere nonzero section on any integral closed subscheme W ⊂ X. Hence
c1(OX) ∩ [W ] = 0 as desired. �

The following lemma is a useful result in order to compute the intersection product
of the c1 of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 30.9.18.

Lemma 41.25.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L be an invertible OX-module. Let Z ⊂ X be a closed subscheme.
Assume dimδ(Z) ≤ k + 1. Let s ∈ Γ(Z,L|Z). Assume

(1) dimδ(Z(s)) ≤ k, and
(2) for every generic point ξ of an irreducible component of Z(s) of dimension

k the multiplication by s induces an injection OZ,ξ → (L|Z)ξ.

This holds for example if s is a regular section of L|Z . Then

[Z(s)]k = c1(L) ∩ [Z]k+1

in Ak(X).

Proof. Write
[Z]k+1 =

∑
ni[Wi]

where Wi ⊂ Z are the irreducible components of Z of δ-dimension k+1 and ni > 0.
By assumption the restriction si = s|Wi

∈ Γ(Wi,L|Wi
) is not zero, and hence is a

regular section. By Lemma 41.24.2 we see that [Z(si)]k represents c1(L|Wi
). Hence

by definition

c1(L) ∩ [Z]k+1 =
∑

ni[Z(si)]k

In fact, the proof below will show that we have

(41.25.3.1) [Z(s)]k =
∑

ni[Z(si)]k
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as k-cycles on X.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. Let ξ′ ∈ Z ′ be
its generic point. We want to compare the coefficient n of [Z ′] in the expression∑
ni[Z(si)]k with the coefficient m of [Z ′] in the expression [Z(s)]k. Choose a

generator sξ′ ∈ Lξ. Let I ⊂ OX be the ideal sheaf of Z. Write A = OX,ξ′ , L = Lξ′
and I = Iξ′ . Then L = Asξ′ and L/IL = (A/I)sξ′ = (L|Z)ξ′ . Write s = fsξ′ for
some (unique) f ∈ A/I. Hypothesis (2) means that f : A/I → A/I is injective.
Since dimδ(Z) ≤ k + 1 and dimδ(Z

′) = k we have dim(A/I) = 0 or 1. We have

m = lengthA(A/(f, I))

which is finite in either case.

If dim(A/I) = 0, then f : A/I → A/I being injective implies that f ∈ (A/I)∗.
Hence in this case m is zero. Moreover, the condition dim(A/I) = 0 means that ξ′

does not lie on any irreducible component of δ-dimension k + 1, i.e., n = 0 as well.

Now, let dim(A/I) = 1. Since A is a Noetherian local ring there are finitely
many minimal primes q1, . . . , qt ⊃ I over I. These correspond 1-1 with Wi passing
through ξ′. Moreover ni = lengthAqi

((A/I)qi). Also, the multiplicity of [Z ′] in

[Z(si)]k is lengthA(A/(f, qi)). Hence the equation to prove in this case is

lengthA(A/(f, I)) =
∑

lengthAqi
((A/I)qi)lengthA(A/(f, qi))

which follows from Lemma 41.5.6. �

Lemma 41.25.4. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a flat morphism of relative dimension r. Let L be
an invertible sheaf on Y . Let α be a k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α
in Ak+r−1(X).

Proof. Write α =
∑
ni[Wi]. We claim it suffices to show that f∗(c1(L) ∩ [Wi]) =

c1(f∗L) ∩ f∗[Wi] for each i. Proof of this claim is omitted. (Remarks: it is clear
in the quasi-compact case. Something similar happened in the proof of Lemma
41.20.1, and one can copy the method used there here. Another possibility is to
check the cycles and rational equivalences used for all Wi combined at each step
form a locally finite collection).

Let W ⊂ Y be an integral closed subscheme of δ-dimension k. We have to show that
f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Consider the following fibre product diagram

W ′ = W ×Y X //

��

X

��
W // Y

and let W ′i ⊂ W ′ be the irreducible components of δ-dimension k + r. Write
[W ′]k+r =

∑
ni[W

′
i ] with ni > 0 as per definition. So f∗[W ] =

∑
ni[W

′
i ]. Choose

a nonzero meromorphic section s of L|W . Since each W ′i → W is dominant we see
that si = s|W ′i is a nonzero meromorphic section for each i. We claim that we have
the following equality of cycles∑

nidivL|Wi (si) = f∗divL|W (s)
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in Zk+r−1(X).

Having formulated the problem as an equality of cycles we may work locally on Y .
Hence we may assume Y and also W affine, and s = p/q for some nonzero sections
p ∈ Γ(W,L) and q ∈ Γ(W,O). If we can show both∑

nidivL|Wi (pi) = f∗divL|W (p), and
∑

nidivO|Wi (qi) = f∗divO|W (q)

(with obvious notations) then we win by the additivity, see Lemma 41.24.3. Thus we
may assume that s ∈ Γ(W,L|W ). In this case we may apply the equality (41.25.3.1)
obtained in the proof of Lemma 41.25.3 to see that∑

nidivL|Wi (si) = [Z(s′)]k+r−1

where s′ ∈ f∗L|W ′ denotes the pullback of s to W ′. On the other hand we have

f∗divL|W (s) = f∗[Z(s)]k−1 = [f−1(Z(s))]k+r−1,

by Lemmas 41.24.2 and 41.14.4. Since Z(s′) = f−1(Z(s)) we win. �

Lemma 41.25.5. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a proper morphism. Let L be an invertible sheaf on
Y . Let s be a nonzero meromorphic section s of L on Y . Assume X, Y integral, f
dominant, and dimδ(X) = dimδ(Y ). Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).

In particular

f∗(c1(f∗L) ∩ [X]) = c1(L) ∩ f∗[Y ].

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ] by
definition. It turns out that we can re-use Lemma 41.18.1 to prove this. Namely,
since we are trying to prove an equality of cycles, we may work locally on Y . Hence
we may assume that L = OY . In this case s corresponds to a rational function
g ∈ R(Y ), and we are simply trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).

Comparing with the result of the aforementioned Lemma 41.18.1 we see this true
since NmR(X)/R(Y )(g) = g[R(X):R(Y )] as g ∈ R(Y )∗. �

Lemma 41.25.6. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let p : X → Y be a proper morphism. Let α ∈ Zk+1(X). Let L be an
invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in Ak(Y ).

Proof. Suppose that p has the property that for every integral closed subscheme
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of
capping with c1(L) the lemma holds.

We will use this remark to reduce to a special case. Namely, write α =
∑
ni[Wi]

with ni 6= 0 and Wi pairwise distinct. Let W ′i ⊂ Y be the image of Wi (as an
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integral closed subscheme). Consider the diagram

X ′ =
∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′i

q′ // Y.

Since {Wi} is locally finite on X, and p is proper we see that {W ′i} is locally finite on
Y and that q, q′, p′ are also proper morphisms. We may think of

∑
ni[Wi] also as a

k-cycle α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L)∩α′) = c1(p∗L)∩q∗α′

and (q′)∗(c1((q′)∗L) ∩ p′∗α′) = c1(L) ∩ q′∗p′∗α′ by the initial remark of the proof.
Hence it suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi].

Clearly, this means we may assume X, Y integral, f : X → Y dominant and
α = [X]. In this case the result follows from Lemma 41.25.5. �

41.26. Cartier divisors and K-groups

In this section we describe how the intersection with the first chern class of an
invertible sheaf L corresponds to tensoring with L −O in K-groups.

Lemma 41.26.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L be an invertible OX-module. Let F be a coherent OX-module.
Let s ∈ Γ(X,KX(L)) be a meromorphic section of L. Assume

(1) dimδ(X) ≤ k + 1,
(2) X has no embedded points,
(3) F has no embedded associated points,
(4) the support of F is X, and
(5) the section s is regular meromorphic.

In this situation let I ⊂ OX be the ideal of denominators of s, see Divisors, Defi-
nition 30.15.15. Then we have the following:

(1) there are short exact sequences

0 → IF 1−→ F → Q1 → 0

0 → IF s−→ F ⊗OX L → Q2 → 0

(2) the coherent sheaves Q1, Q2 are supported in δ-dimension ≤ k,
(3) the section s restricts to a regular meromorphic section si on every irre-

ducible component Xi of X of δ-dimension k + 1, and
(4) writing [F ]k+1 =

∑
mi[Xi] we have

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

in Zk(X), in particular

[Q2]k − [Q1]k = c1(L) ∩ [F ]k+1

in Ak(X).

Proof. Recall from Divisors, Lemma 30.15.16 the existence of injective maps 1 :
IF → F and s : IF → F⊗OXL whose cokernels are supported on a closed nowhere
dense subsets T . Denote Qi there cokernels as in the lemma. We conclude that
dimδ(Supp(Qi)) ≤ k. By Divisors, Lemmas 30.15.4 and 30.15.12 the pullbacks si
are defined and are regular meromorphic sections for L|Xi . The equality of cycles
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in (4) implies the equality of cycle classes in (4). Hence the only remaining thing
to show is that

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

holds in Zk(X). To see this, let Z ⊂ X be an integral closed subscheme of δ-
dimension k. Let ξ ∈ Z be the generic point. Let A = OX,ξ and M = Fξ.
Moreover, choose a generator sξ ∈ Lξ. Then we can write s = (a/b)sξ where
a, b ∈ A are nonzerodivisors. In this case I = Iξ = {x ∈ A | x(a/b) ∈ A}. In this
case the coefficient of [Z] in the left hand side is

lengthA(M/(a/b)IM)− lengthA(M/IM)

and the coefficient of [Z] in the right hand side is∑
lengthAqi

(Mqi)ordA/qi(a/b)

where q1, . . . , qt are the minimal primes of the 1-dimensional local ring A. Hence
the result follows from Lemma 41.5.7. �

Lemma 41.26.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L be an invertible OX-module. Let F be a coherent OX-module.
Assume dimδ(Support(F)) ≤ k + 1. Then the element

[F ⊗OX L]− [F ] ∈ K0(Coh≤k+1(X)/Coh≤k−1(X))

lies in the subgroup Bk(X) of Lemma 41.22.5 and maps to the element c1(L)∩[F ]k+1

via the map Bk(X)→ Ak(X).

Proof. Let

0→ K → F → F ′ → 0

be the short exact sequence constructed in Divisors, Lemma 30.4.5. This in par-
ticular means that F ′ has no embedded associated points. Since the support of K
is nowhere dense in the support of F we see that dimδ(Supp(K)) ≤ k. We may
re-apply Divisors, Lemma 30.4.5 starting with K to get a short exact sequence

0→ K′′ → K → K′ → 0

where now dimδ(Supp(K′′)) < k and K′ has no embedded associated points. Sup-
pose we can prove the lemma for the coherent sheaves F ′ and K′. Then we see
from the equations

[F ]k+1 = [F ′]k+1 + [K′]k+1 + [K′′]k+1

(use Lemma 41.10.4),

[F ⊗OX L]− [F ] = [F ′ ⊗OX L]− [F ′] + [K′ ⊗OX L]− [K′] + [K′′ ⊗OX L]− [K′′]
(use the ⊗L is exact) and the trivial vanishing of [K′′]k+1 and [K′′ ⊗OX L] − [K′′]
in K0(Coh≤k+1(X)/Coh≤k−1(X)) that the result holds for F . What this means is
that we may assume that the sheaf F has no embedded associated points.

Assume X, F as in the lemma, and assume in addition that F has no embedded
associated points. Consider the sheaf of ideals I ⊂ OX , the corresponding closed
subscheme i : Z → X and the coherent OZ-module G constructed in Divisors,
Lemma 30.4.6. Recall that Z is a locally Noetherian scheme without embedded
points, G is a coherent sheaf without embedded associated points, with Supp(G) =
Z and such that i∗G = F . Moreover, set N = L|Z .
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By Divisors, Lemma 30.15.13 the invertible sheaf N has a regular meromorphic
section s over Z. Let us denote J ⊂ OZ the sheaf of denominators of s. By
Lemma 41.26.1 there exist short exact sequences

0 → JG 1−→ G → Q1 → 0

0 → JG s−→ G ⊗OZ N → Q2 → 0

such that dimδ(Supp(Qi)) ≤ k and such that the cycle [Q2]k − [Q1]k is a represen-
tative of c1(N ) ∩ [G]k+1. We see (using the fact that i∗(G ⊗ N ) = F ⊗ L by the
projection formula, see Cohomology, Lemma 20.8.2) that

[F ⊗OX L]− [F ] = [i∗Q2]− [i∗Q1]

in K0(Coh≤k+1(X)/Coh≤k−1(X)). This already shows that [F ⊗OX L]− [F ] is an
element of Bk(X). Moreover we have

[i∗Q2]k − [i∗Q1]k = i∗ ([Q2]k − [Q1]k)

= i∗ (c1(N ) ∩ [G]k+1)

= c1(L) ∩ i∗[G]k+1

= c1(L) ∩ [F ]k+1

by the above and Lemmas 41.25.6 and 41.12.3. And this agree with the image of
the element under Bk(X)→ Ak(X) by definition. Hence the lemma is proved. �

41.27. Blowing up lemmas

In this section we prove some lemmas on representing Cartier divisors by suitable
effective Cartier divisors on blow-ups. These lemmas can be found in [Ful98,
Section 2.4]. We have adapted the formulation so they also work in the non-finite
type setting. It may happen that the morphism b of Lemma 41.27.7 is a composition
of infinitely many blow ups, but over any given quasi-compact open W ⊂ X one
needs only finitely many blow-ups (and this is the result of loc. cit.).

Lemma 41.27.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a proper morphism. Let D ⊂ Y be an effective
Cartier divisor. Assume X, Y integral, n = dimδ(X) = dimδ(Y ) and f dominant.
Then

f∗[f
−1(D)]n−1 = [R(X) : R(Y )][D]n−1.

In particular if f is birational then f∗[f
−1(D)]n−1 = [D]n−1.

Proof. Immediate from Lemma 41.25.5 and the fact that D is the zero scheme of
the canonical section 1D of OX(D). �

Lemma 41.27.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral with dimδ(X) = n. Let L be an invertible OX-
module. Let s be a nonzero meromorphic section of L. Let U ⊂ X be the maximal
open subscheme such that s corresponds to a section of L over U . There exists a
projective morphism

π : X ′ −→ X

such that

(1) X ′ is integral,
(2) π|π−1(U) : π−1(U)→ U is an isomorphism,

http://stacks.math.columbia.edu/tag/02SZ
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(3) there exist effective Cartier divisors D,E ⊂ X ′ such that

π∗L = OX′(D − E),

(4) the meromorphic section s corresponds, via the isomorphism above, to the
meromorphic section 1D ⊗ (1E)−1 (see Divisors, Definition 30.9.14),

(5) we have

π∗([D]n−1 − [E]n−1) = divL(s)

in Zn−1(X).

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of denominators of s. Namely,
we declare a local section f of OX to be a local section of I if and only if fs is

a local section of L. On any affine open U = Spec(A) of X write L|U = L̃ for
some invertible A-module L. Then A is a Noetherian domain with fraction field
K = R(X) and we may think of s|U as an element of L⊗AK (see Divisors, Lemma

30.15.7). Let I = {x ∈ A | xs ∈ L}. Then we see that I|U = Ĩ (details omitted)
and hence I is quasi-coherent.

Consider the closed subscheme Z ⊂ X defined by I. It is clear that U = X \ Z.
This suggests we should blow up Z. Let

π : X ′ = Proj
X

(⊕
n≥0
In
)
−→ X

be the blowing up of X along Z. The quasi-coherent sheaf of OX -algebras
⊕

n≥0 In
is generated in degree 1 over OX . Moreover, the degree 1 part is a coherent OX -
module, in particular of finite type. Hence we see that π is projective and OX′(1)
is relatively very ample.

By Divisors, Lemma 30.18.7 we have X ′ is integral. By Divisors, Lemma 30.18.4
there exists an effective Cartier divisor E ⊂ X ′ such that π−1I · OX′ = IE . Also,
by the same lemma we see that π−1(U) ∼= U .

Denote s′ the pullback of the meromorphic section s to a meromorphic section of
L′ = π∗L over X ′. It follows from the fact that Is ⊂ L that IEs′ ⊂ L′. In
other words, s′ gives rise to an OX′ -linear map IE → L′, or in other words a
section t ∈ L′ ⊗OX′(E). By Divisors, Lemma 30.9.20 we obtain a unique effective
Cartier divisor D ⊂ X ′ such that L′ ⊗OX′(E) ∼= OX′(D) with t corresponding to
1D. Reversing this procedure we conclude that L′ = OX′(−E) ∼= OX′(D) with s′

corresponding to 1D ⊗ 1−1
E as in (4).

We still have to prove (5). By Lemma 41.25.5 we have

π∗(divL′(s
′)) = divL(s).

Hence it suffices to show that divL′(s
′) = [D]n−1 − [E]n−1. This follows from the

equality s′ = 1D ⊗ 1−1
E and additivity, see Lemma 41.24.3. �

Definition 41.27.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of
finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two
effective Cartier divisors in X. Let Z ⊂ X be an integral closed subscheme with
dimδ(Z) = n− 1. The ε-invariant of this situation is

εZ(D1, D2) = nZ ·mZ

where nZ , resp. mZ is the coefficient of Z in the (n−1)-cycle [D1]n−1, resp. [D2]n−1.

http://stacks.math.columbia.edu/tag/02T1
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Lemma 41.27.4. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two effective Cartier
divisors in X. Let Z be an open and closed subscheme of the scheme D1 ∩ D2.
Assume dimδ(D1 ∩ D2 \ Z) ≤ n − 2. Then there exists a morphism b : X ′ → X,
and Cartier divisors D′1, D

′
2, E on X ′ with the following properties

(1) X ′ is integral,
(2) b is projective,
(3) b is the blow up of X in the closed subscheme Z,
(4) E = b−1(Z),
(5) b−1(D1) = D′1 + E, and b−1D2 = D′2 + E,
(6) dimδ(D

′
1 ∩D′2) ≤ n− 2, and if Z = D1 ∩D2 then D′1 ∩D′2 = ∅,

(7) for every integral closed subscheme W ′ with dimδ(W
′) = n− 1 we have

(a) if εW ′(D
′
1, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n−1

and

εW ′(D
′
1, E) < εW (D1, D2),

(b) if εW ′(D
′
2, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n−1

and

εW ′(D
′
2, E) < εW (D1, D2),

Proof. Note that the quasi-coherent ideal sheaf I = ID1
+ ID2

defines the scheme
theoretic intersection D1 ∩D2 ⊂ X. Since Z is a union of connected components
of D1 ∩ D2 we see that for every z ∈ Z the kernel of OX,z → OZ,z is equal to
Iz. Let b : X ′ → X be the blow up of X in Z. (So Zariski locally around Z it is
the blow up of X in I.) Denote E = b−1(Z) the corresponding effective Cartier
divisor, see Divisors, Lemma 30.18.4. Since Z ⊂ D1 we have E ⊂ f−1(D1) and
hence D1 = D′1+E for some effective Cartier divisor D′1 ⊂ X ′, see Divisors, Lemma
30.9.8. Similarly D2 = D′2 + E. This takes care of assertions (1) – (5).

Note that if W ′ is as in (7) (a) or (7) (b), then the image W of W ′ is contained
in D1 ∩ D2. If W is not contained in Z, then b is an isomorphism at the generic
point of W and we see that dimδ(W ) = dimδ(W

′) = n − 1 which contradicts the
assumption that dimδ(D1 ∩D2 \ Z) ≤ n − 2. Hence W ⊂ Z. This means that to
prove (6) and (7) we may work locally around Z on X.

Thus we may assume that X = Spec(A) with A a Noetherian domain, and D1 =
Spec(A/a), D2 = Spec(A/b) and Z = D1 ∩D2. Set I = (a, b). Since A is a domain
and a, b 6= 0 we can cover the blow up by two patches, namely U = Spec(A[s]/(as−
b)) and V = Spec(A[t]/(bt − a)). These patches are glued using the isomorphism
A[s, s−1]/(as − b) ∼= A[t, t−1]/(bt − a) which maps s to t−1. The effective Cartier
divisor E is described by Spec(A[s]/(as− b, a)) ⊂ U and Spec(A[t]/(bt−a, b)) ⊂ V .
The closed subscheme D′1 corresponds to Spec(A[t]/(bt − a, t)) ⊂ U . The closed
subscheme D′2 corresponds to Spec(A[s]/(as − b, s)) ⊂ V . Since “ts = 1” we see
that D′1 ∩D′2 = ∅.

Suppose we have a prime q ⊂ A[s]/(as− b) of height one with s, a ∈ q. Let p ⊂ A
be the corresponding prime of A. Observe that a, b ∈ p. By the dimension formula
we see that dim(Ap) = 1 as well. The final assertion to be shown is that

ordAp
(a)ordAp

(b) > ordBq
(a)ordBq

(s)

http://stacks.math.columbia.edu/tag/02T2
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where B = A[s]/(as − b). By Algebra, Lemma 10.120.1 we have ordAp
(x) ≥

ordBq
(x) for x = a, b. Since ordBq

(s) > 0 we win by additivity of the ord function
and the fact that as = b. �

Definition 41.27.5. Let X be a scheme. Let {Di}i∈I be a locally finite collection
of effective Cartier divisors on X. Suppose given a function I → Z≥0, i 7→ ni.
The sum of the effective Cartier divisors D =

∑
niDi, is the unique effective

Cartier divisor D ⊂ X such that on any quasi-compact open U ⊂ X we have
D|U =

∑
Di∩U 6=∅ niDi|U is the sum as in Divisors, Definition 30.9.6.

Lemma 41.27.6. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = n. Let {Di}i∈I be a locally finite
collection of effective Cartier divisors on X. Suppose given ni ≥ 0 for i ∈ I. Then

[D]n−1 =
∑

i
ni[Di]n−1

in Zn−1(X).

Proof. Since we are proving an equality of cycles we may work locally on X. Hence
this reduces to a finite sum, and by induction to a sum of two effective Cartier
divisors D = D1 + D2. By Lemma 41.24.2 we see that D1 = divOX(D1)(1D1)
where 1D1

denotes the canonical section of OX(D1). Of course we have the same
statement for D2 and D. Since 1D = 1D1

⊗ 1D2
via the identification OX(D) =

OX(D1)⊗OX(D2) we win by Lemma 41.24.3. �

Lemma 41.27.7. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = d. Let {Di}i∈I be a locally finite
collection of effective Cartier divisors on X. Assume that for all {i, j, k} ⊂ I,
#{i, j, k} = 3 we have Di ∩Dj ∩Dk = ∅. Then there exist

(1) an open subscheme U ⊂ X with dimδ(X \ U) ≤ d− 3,
(2) a morphism b : U ′ → U , and
(3) effective Cartier divisors {D′j}j∈J on U ′

with the following properties:

(1) b is proper morphism b : U ′ → U ,
(2) U ′ is integral,
(3) b is an isomorphism over the complement of the union of the pairwise

intersections of the Di|U ,
(4) {D′j}j∈J is a locally finite collection of effective Cartier divisors on U ′,
(5) dimδ(D

′
j ∩D′j′) ≤ d− 2 if j 6= j′, and

(6) b−1(Di|U ) =
∑
nijD

′
j for certain nij ≥ 0.

Moreover, if X is quasi-compact, then we may assume U = X in the above.

Proof. Let us first prove this in the quasi-compact case, since it is perhaps the
most interesting case. In this case we produce inductively a sequence of blowups

X = X0
b0←− X1

b1←− X2 ← . . .

and finite sets of effective Cartier divisors {Dn,i}i∈In . At each stage these will have
the property that any triple intersection Dn,i∩Dn,j ∩Dn,k is empty. Moreover, for
each n ≥ 0 we will have In+1 = In

∐
P (In) where P (In) denotes the set of pairs of

elements of In. Finally, we will have

b−1
n (Dn,i) = Dn+1,i +

∑
i′∈In,i′ 6=i

Dn+1,{i,i′}

http://stacks.math.columbia.edu/tag/02T3
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We conclude that for each n ≥ 0 we have (b0 ◦ . . . ◦ bn)−1(Di) is a nonnegative
integer combination of the divisors Dn+1,j , j ∈ In+1.

To start the induction we set X0 = X and I0 = I and D0,i = Di.

Given (Xn, {Dn,i}i∈In) let Xn+1 be the blow up of Xn in the closed subscheme
Zn =

⋃
{i,i′}∈P (In)Dn,i ∩Dn,i′ . Note that the closed subschemes Dn,i ∩Dn,i′ are

pairwise disjoint by our assumption on triple intersections. In other words we may
write Zn =

∐
{i,i′}∈P (In)Dn,i ∩ Dn,i′ . Moreover, in a Zariski neighbourhood of

Dn,i ∩ Dn,i′ the morphism bn is equal to the blow up of the scheme Xn in the
closed subscheme Dn,i ∩ Dn,i′ , and the results of Lemma 41.27.4 apply. Hence
setting Dn+1,{i,i′} = b−1

n (Di ∩Di′) we get an effective Cartier divisor. The Cartier

divisors Dn+1,{i,i′} are pairwise disjoint. Clearly we have b−1
n (Dn,i) ⊃ Dn+1,{i,i′}

for every i′ ∈ In, i′ 6= i. Hence, applying Divisors, Lemma 30.9.8 we see that
indeed b−1(Dn,i) = Dn+1,i+

∑
i′∈In,i′ 6=iDn+1,{i,i′} for some effective Cartier divisor

Dn+1,i on Xn+1. In a neighbourhood of Dn+1,{i,i′} these divisors Dn+1,i play
the role of the primed divisors of Lemma 41.27.4. In particular we conclude that
Dn+1,i ∩Dn+1,i′ = ∅ if i 6= i′, i, i′ ∈ In by part (6) of Lemma 41.27.4. This already
implies that triple intersections of the divisors Dn+1,i are zero.

OK, and at this point we can use the quasi-compactness of X to conclude that the
invariant
(41.27.7.1)

ε(X, {Di}i∈I) = max{εZ(Di, Di′) | Z ⊂ X,dimδ(Z) = d− 1, {i, i′} ∈ P (I)}
is finite, since after all each Di has at most finitely many irreducible components.
We claim that for some n the invariant ε(Xn, {Dn,i}i∈In) is zero. Namely, if not
then by Lemma 41.27.4 we have a strictly decreasing sequence

ε(X, {Di}i∈I) = ε(X0, {D0,i}i∈I0) > ε(X1, {D1,i}i∈I1) > . . .

of positive integers which is a contradiction. Take n with invariant ε(Xn, {Dn,i}i∈In)
equal to zero. This means that there is no integral closed subscheme Z ⊂ Xn

and no pair of indices i, i′ ∈ In such that εZ(Dn,i, Dn,i′) > 0. In other words,
dimδ(Dn,i, Dn,i′) ≤ d− 2 for all pairs {i, i′} ∈ P (In) as desired.

Next, we come to the general case where we no longer assume that the scheme X is
quasi-compact. The problem with the idea from the first part of the proof is that
we may get and infinite sequence of blow ups with centers dominating a fixed point
of X. In order to avoid this we cut out suitable closed subsets of codimension ≥ 3
at each stage. Namely, we will construct by induction a sequence of morphisms
having the following shape

X = X0

U0

j0

OO

X1
b0oo

U1

j1

OO

X2
b1oo

U2

j2

OO

X3
b2oo
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Each of the morphisms jn : Un → Xn will be an open immersion. Each of the mor-
phisms bn : Xn+1 → Un will be a proper birational morphism of integral schemes.
As in the quasi-compact case we will have effective Cartier divisors {Dn,i}i∈In
on Xn. At each stage these will have the property that any triple intersection
Dn,i∩Dn,j∩Dn,k is empty. Moreover, for each n ≥ 0 we will have In+1 = In

∐
P (In)

where P (In) denotes the set of pairs of elements of In. Finally, we will arrange it
so that

b−1
n (Dn,i|Un) = Dn+1,i +

∑
i′∈In,i′ 6=i

Dn+1,{i,i′}

We start the induction by setting X0 = X, I0 = I and D0,i = Di.

Given (Xn, {Dn,i}) we construct the open subscheme Un as follows. For each pair
{i, i′} ∈ P (In) consider the closed subscheme Dn,i ∩ Dn,i′ . This has “good” irre-
ducible components which have δ-dimension d−2 and “bad” irreducible components
which have δ-dimension d− 1. Let us set

Bad(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−1
W

and similarly

Good(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−2
W.

Then Dn,i ∩Dn,i′ = Bad(i, i′)∪Good(i, i′) and moreover we have dimδ(Bad(i, i′)∩
Good(i, i′)) ≤ d− 3. Here is our choice of Un:

Un = Xn \
⋃
{i,i′}∈P (In)

Bad(i, i′) ∩Good(i, i′).

By our condition on triple intersections of the divisors Dn,i we see that the union
is actually a disjoint union. Moreover, we see that (as a scheme)

Dn,i|Un ∩Dn,i′ |Un = Zn,i,i′
∐

Gn,i,i′

where Zn,i,i′ is δ-equidimension of dimension d− 1 and Gn,i,i′ is δ-equidimensional
of dimension d−2. (So topologically Zn,i,i′ is the union of the bad components but
throw out intersections with good components.) Finally we set

Zn =
⋃
{i,i′}∈P (In)

Zn,i,i′ =
∐
{i,i′}∈P (In)

Zn,i,i′ ,

and we let bn : Xn+1 → Xn be the blow up in Zn. Note that Lemma 41.27.4 applies
to the morphism bn : Xn+1 → Xn locally around each of the loci Dn,i|Un ∩Dn,i′ |Un .
Hence, exactly as in the first part of the proof we obtain effective Cartier divisors
Dn+1,{i,i′} for {i, i′} ∈ P (In) and effective Cartier divisors Dn+1,i for i ∈ In such

that b−1
n (Dn,i|Un) = Dn+1,i +

∑
i′∈In,i′ 6=iDn+1,{i,i′}. For each n denote πn : Xn →

X the morphism obtained as the composition j0 ◦ . . . ◦ jn−1 ◦ bn−1.

Claim: given any quasi-compact open V ⊂ X for all sufficiently large n the maps

π−1
n (V )← π−1

n+1(V )← . . .

are all isomorphisms. Namely, if the map π−1
n (V ) ← π−1

n+1(V ) is not an isomor-

phism, then Zn,i,i′ ∩ π−1
n (V ) 6= ∅ for some {i, i′} ∈ P (In). Hence there exists an

irreducible component W ⊂ Dn,i ∩Dn,i′ with dimδ(W ) = d − 1. In particular we
see that εW (Dn,i, Dn,i′) > 0. Applying Lemma 41.27.4 repeatedly we see that

εW (Dn,i, Dn,i′) < ε(V, {Di|V })− n
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with ε(V, {Di|V }) as in (41.27.7.1). Since V is quasi-compact, we have ε(V, {Di|V }) <
∞ and taking n > ε(V, {Di|V }) we see the result.

Note that by construction the difference Xn \ Un has dimδ(Xn \ Un) ≤ d− 3. Let
Tn = πn(Xn \ Un) be its image in X. Traversing in the diagram of maps above
using each bn is closed it follows that T0∪ . . .∪Tn is a closed subset of X for each n.
Any t ∈ Tn satisfies δ(t) ≤ d− 3 by construction. Hence Tn ⊂ X is a closed subset
with dimδ(Tn) ≤ d−3. By the claim above we see that for any quasi-compact open
V ⊂ X we have Tn∩V 6= ∅ for at most finitely many n. Hence {Tn}n≥0 is a locally

finite collection of closed subsets, and we may set U = X \
⋃
Tn. This will be U as

in the lemma.

Note that Un ∩ π−1
n (U) = π−1

n (U) by construction of U . Hence all the morphisms

bn : π−1
n+1(U) −→ π−1

n (U)

are proper. Moreover, by the claim they eventually become isomorphisms over each
quasi-compact open of X. Hence we can define

U ′ = limn π
−1
n (U).

The induced morphism b : U ′ → U is proper since this is local on U , and over
each compact open the limit stabilizes. Similarly we set J =

⋃
n≥0 In using the

inclusions In → In+1 from the construction. For j ∈ J choose an n0 such that j
corresponds to i ∈ In0

and define D′j = limn≥n0
Dn,i. Again this makes sense as

locally over X the morphisms stabilize. The other claims of the lemma are verified
as in the case of a quasi-compact X. �

41.28. Intersecting with effective Cartier divisors

To be able to prove the commutativity of intersection products we need a little
more precision in terms of supports of the cycles. Here is the relevant notion.

Definition 41.28.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let D be an effective Cartier divisor on X, and denote i : D → X the
closed immersion. We define, for every integer k, a Gysin homomorphism

i∗ : Zk+1(X)→ Ak(D).

(1) Given a integral closed subscheme W ⊂ X with dimδ(W ) = k + 1 we
define
(a) if W 6⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(OX(D)|W ) ∩ [W ]), where i′ : W → D

is the induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) We denote D · α = i∗i
∗α the pushforward of the class to a class on X.

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
i∗α the pullback of the class α.

Lemma 41.28.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let D be an effective Cartier divisor on X. Let α be a (k + 1)-cycle
on X. Then D · α = c1(OX(D)) ∩ α in Ak(X).

http://stacks.math.columbia.edu/tag/02T8
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Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subschemes

with dimδ(Wj) = k. Since D is the zero scheme of the canonical section 1D of
OX(D) we see that D ∩ Wj is the zero scheme of the restriction 1D|Wj . Hence
for each j such that Wj 6⊂ D we have c1(OX(D)) ∩ [Wj ] = [D ∩Wj ]k by Lemma
41.25.3. So we have

c1(OX(D)) ∩ α =
∑

Wj 6⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(OX(D)|Wj
) ∩ [Wj ])

in Ak(X) by Definition 41.25.1. The right hand side matches (termwise) the push-
forward of the class i∗α on D from Definition 41.28.1. Hence we win. �

The following lemma will be superseded later.

Lemma 41.28.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let D be an effective Cartier divisor on X. Let W ⊂ X be a closed
subscheme such that D′ = W ∩D is an effective Cartier divisor on W .

D′
i′
//

i′′

��

W

��
D

i // X

For any (k + 1)-cycle on W we have i∗α = (i′′)∗(i
′)∗α in Ak(D).

Proof. Suppose α = [Z] for some integral closed subscheme Z ⊂ W . In case
Z 6⊂ D we have Z ∩ D′ = Z ∩ D scheme theoretically. Hence the equality holds
as cycles. In case Z ⊂ D we also have Z ⊂ D′ and the equality holds since
OX(D)|Z ∼= OW (D′)|Z and the definition of i∗ and (i′)∗ in these cases. �

Lemma 41.28.4. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let i : D → X be an effective Cartier divisor on X.

(1) Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k+1 and such that
D ∩ Z is an effective Cartier divisor on Z. Then i∗[Z]k+1 = [D ∩ Z]k.

(2) Let F be a coherent sheaf on X such that dimδ(Support(F)) ≤ k + 1 and
1D : F → F ⊗OX OX(D) is injective. Then

i∗[F ]k+1 = [i∗F ]k

in Ak(D).

Proof. Assume Z ⊂ X as in (1). Then set F = OZ . The assumption that D∩Z is
an effective Cartier divisor is equivalent to the assumption that 1D : F → F ⊗OX
OX(D) is injective. Moreover [Z]k+1 = [F ]k+1] and [D ∩ Z]k = [OD∩Z ]k = [i∗F ]k.
See Lemma 41.10.3. Hence part (1) follows from part (2).

Write [F ]k+1 =
∑
mj [Wj ] with mj > 0 and pairwise distinct integral closed

subschemes Wj ⊂ X of δ-dimension k + 1. The assumption that 1D : F →
F ⊗OX OX(D) is injective implies that Wj 6⊂ D for all j. By definition we see
that

i∗[F ]k+1 =
∑

[D ∩Wj ]k.

We claim that ∑
[D ∩Wj ]k = [i∗F ]k

as cycles. Let Z ⊂ D be an integral closed subscheme of δ-dimension k. Let
ξ ∈ Z be its generic point. Let A = OX,ξ. Let M = Fξ. Let f ∈ A be an
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element generating the ideal of D, i.e., such that OD,ξ = A/fA. By assumption
dim(M) = 1, f : M → M is injective, and lengthA(M/fM) < ∞. Moreover,
lengthA(M/fM) is the coefficient of [Z] in [i∗F ]k. On the other hand, let q1, . . . , qt
be the minimal primes in the support of M . Then∑

lengthAqi
(Mqi)ordA/qi(f)

is the coefficient of [Z] in
∑

[D ∩ Wj ]k. Hence we see the equality by Lemma
41.5.6. �

Lemma 41.28.5. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let {ij : Dj → X}j∈J be a locally finite collection of effective Cartier
divisors on X. Let nj > 0, j ∈ J . Set D =

∑
j∈J njDj, and denote i : D → X the

inclusion morphism. Let α ∈ Zk+1(X). Then

p :
∐

j∈J
Dj −→ D

is proper and

i∗α = p∗

(∑
nji
∗
jα
)

in Ak(D).

Proof. The proof of this lemma is made a bit longer than expected by a subtlety
concerning infinite sums of rational equivalences. In the quasi-compact case the
family Dj is finite and the result is altogether easy and a straightforward conse-
quence of Lemmas 41.24.2 and 41.24.3 and the definitions.

The morphism p is proper since the family {Dj}j∈J is locally finite. Write α =∑
a∈Ama[Wa] with Wa ⊂ X an integral closed subscheme of δ-dimension k + 1.

Denote ia : Wa → X the closed immersion. We assume that ma 6= 0 for all a ∈ A
such that {Wa}a∈A is locally finite on X.

Observe that by Definition 41.28.1 the class i∗α is the class of a cycle
∑
maβa for

certain βa ∈ Zk(Wa∩D). Namely, if Wa 6⊂ D then βa = [D∩Wa]k and if Wa ⊂ D,
then βa is a cycle representing c1(OX(D)) ∩ [Wa].

For each a ∈ A write J = Ja,1
∐
Ja,2

∐
Ja,3 where

(1) j ∈ Ja,1 if and only if Wa ∩Dj = ∅,
(2) j ∈ Ja,2 if and only if Wa 6= Wa ∩D1 6= ∅, and
(3) j ∈ Ja,3 if and only if Wa ⊂ Dj .

Since the family {Dj} is locally finite we see that Ja,3 is a finite set. For every
a ∈ A and j ∈ J we choose a cycle βa,j ∈ Zk(Wa ∩Dj) as follows

(1) if j ∈ Ja,1 we set βa,j = 0,
(2) if j ∈ Ja,2 we set βa,j = [Dj ∩Wa]k, and
(3) if j ∈ Ja,3 we choose βa,j ∈ Zk(Wa) representing c1(i∗aOX(Dj)) ∩ [Wj ].

We claim that

βa ∼rat
∑

j∈J
njβa,j

in Ak(Wa ∩D).

Case I: Wa 6⊂ D. In this case Ja,3 = ∅. Thus it suffices to show that [D ∩Wa]k =∑
nj [Dj ∩Wa]k as cycles. This is Lemma 41.27.6.
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Case II: Wa ⊂ D. In this case βa is a cycle representing c1(i∗aOX(D))∩ [Wa]. Write
D = Da,1 +Da,2 +Da,3 with Da,s =

∑
j∈Ja,s njDj . By Lemma 41.24.3 we have

c1(i∗aOX(D)) ∩ [Wa] = c1(i∗aOX(Da,1)) ∩ [Wa] + c1(i∗aOX(Da,2)) ∩ [Wa]

+c1(i∗aOX(Da,3)) ∩ [Wa].

It is clear that the first term of the sum is zero. Since Ja,3 is finite we see that
the last term agrees with

∑
j∈Ja,3 njc1(i∗aLj) ∩ [Wa], see Lemma 41.24.3. This is

represented by
∑
j∈Ja,3 njβa,j . Finally, by Case I we see that the middle term is

represented by the cycle
∑
j∈Ja,2 nj [Dj∩Wa]k =

∑
j∈Ja,2 njβa,j . Whence the claim

in this case.

At this point we are ready to finish the proof of the lemma. Namely, we have
i∗D ∼rat

∑
maβa by our choice of βa. For each a we have βa ∼rat

∑
j βa,j with

the rational equivalence taking place on D ∩ Wa. Since the collection of closed
subschemes D∩Wa is locally finite on D, we see that also

∑
maβa ∼rat

∑
a,jmaβa,j

on D! (See Remark 41.19.4.) Ok, and now it is clear that
∑
amaβa,j (viewed as

a cycle on Dj) represents i∗jα and hence
∑
a,jmaβa,j represents p∗

∑
j i
∗
jα and we

win. �

Lemma 41.28.6. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = n. Let D, D′ be effective Cartier
divisors on X. Assume dimδ(D ∩D′) = n − 2. Let i : D → X, resp. i′ : D′ → X
be the corresponding closed immersions. Then

(1) there exists a cycle α ∈ Zn−2(D ∩ D′) whose pushforward to D rep-
resents i∗[D′]n−1 ∈ An−2(D) and whose pushforward to D′ represents
(i′)∗[D]n−1 ∈ An−2(D′), and

(2) we have

D · [D′]n−1 = D′ · [D]n−1

in An−2(X).

Proof. Part (2) is a trivial consequence of part (1). Let us write [D]n−1 =
∑
na[Za]

and [D′]n−1 =
∑
mb[Zb] with Za the irreducible components of D and [Zb] the

irreducible components of D′. According to Definition 41.28.1, we have i∗D′ =∑
mbi

∗[Zb] and (i′)∗D =
∑
na(i′)∗[Za]. By assumption, none of the irreducible

components Zb is contained in D, and hence i∗[Zb] = [Zb ∩ D]n−2 by definition.
Similarly (i′)∗[Za] = [Za ∩ D′]n−2. Hence we are trying to prove the equality of
cycles ∑

na[Za ∩D′]n−2 =
∑

mb[Zb ∩D]n−2

which are indeed supported on D∩D′. Let W ⊂ X be an integral closed subscheme
with dimδ(W ) = n − 2. Let ξ ∈ W be its generic point. Set R = OX,ξ. It is a
Noetherian local domain. Note that dim(R) = 2. Let f ∈ R, resp. f ′ ∈ R be an
element defining the ideal of D, resp. D′. By assumption dim(R/(f, f ′)) = 0. Let
q′1, . . . , q

′
t ⊂ R be the minimal primes over (f ′), let q1, . . . , qs ⊂ R be the minimal

primes over (f). The equality above comes down to the equality∑
i=1,...,s

lengthRqi
(Rqi/(f))ordR/qi(f

′) =
∑

j=1,...,t

lengthRq′
j

(Rq′j
/(f ′))ordR/q′j (f).
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By Lemma 41.5.5 applied with M = R/(f) the left hand side of this equation is
equal to

lengthR(R/(f, f ′))− lengthR(Ker(f ′ : R/(f)→ R/(f)))

OK, and now we note that Ker(f ′ : R/(f) → R/(f)) is canonically isomorphic to
((f) ∩ (f ′))/(ff ′) via the map x mod (f) 7→ f ′x mod (ff ′). Hence the left hand
side is

lengthR(R/(f, f ′))− lengthR((f) ∩ (f ′)/(ff ′))

Since this is symmetric in f and f ′ we win. �

Lemma 41.28.7. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = n. Let {Dj}j∈J be a locally
finite collection of effective Cartier divisors on X. Let nj ,mj ≥ 0 be collections of
nonnegative integers. Set D =

∑
njDj and D′ =

∑
mjDj. Assume that dimδ(Dj∩

Dj′) = n− 2 for every j 6= j′. Then D · [D′]n−1 = D′ · [D]n−1 in An−2(X).

Proof. This lemma is a trivial consequence of Lemmas 41.27.6 and 41.28.6 in case
the sums are finite, e.g., if X is quasi-compact. Hence we suggest the reader skip
the proof.

Here is the proof in the general case. Let ij : Dj → X be the closed immersions
Let p :

∐
Dj → X denote coproduct of the morphisms ij . Let {Za}a∈A be the

collection of irreducible components of
⋃
Dj . For each j we write

[Dj ]n−1 =
∑

dj,a[Za].

By Lemma 41.27.6 we have

[D]n−1 =
∑

njdj,a[Za], [D′]n−1 =
∑

mjdj,a[Za].

By Lemma 41.28.5 we have

D · [D′]n−1 = p∗

(∑
nji
∗
j [D
′]n−1

)
, D′ · [D]n−1 = p∗

(∑
mj′i

∗
j′ [D]n−1

)
.

As in the definition of the Gysin homomorphisms (see Definition 41.28.1) we choose
cycles βa,j on Dj ∩ Za representing i∗j [Za]. (Note that in fact βa,j = [Dj ∩ Za]n−2

if Za is not contained in Dj , i.e., there is no choice in that case.) Now since p is a
closed immersion when restricted to each of the Dj we can (and we will) view βa,j
as a cycle on X. Plugging in the formulas for [D]n−1 and [D′]n−1 obtained above
we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j , D′ · [D]n−1 =

∑
j,j′,a

mj′njdj,aβa,j′ .

Moreover, with the same conventions we also have

Dj · [Dj′ ]n−1 =
∑

dj′,aβa,j .
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In these terms Lemma 41.28.6 (see also its proof) says that for j 6= j′ the cycles∑
dj′,aβa,j and

∑
dj,aβa,j′ are equal as cycles! Hence we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j

=
∑

j 6=j′
njmj′

(∑
a
dj′,aβa,j

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j 6=j′
njmj′

(∑
a
dj,aβa,j′

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j,j′,a
mj′njdj,aβa,j′

= D′ · [D]n−1

and we win. �

Here is the key lemma of this chapter. A stronger version of this lemma asserts that
D · [D′]n−1 = D′ · [D]n−1 holds in An−2(D ∩D′) for suitable representatives of the
dot products involved. The first proof of the lemma together with Lemmas 41.28.5,
41.28.6, and 41.28.7 can be modified to show this (see [Ful98]). It is not so clear
how to modify the second proof to prove the refined version. An application of the
refined version is a proof that the Gysin homomorphism factors through rational
equivalence. We will show this by another method later.

Lemma 41.28.8. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = n. Let D, D′ be effective Cartier
divisors on X. Then

D · [D′]n−1 = D′ · [D]n−1

in An−2(X).

First proof of Lemma 41.28.8. First, let us prove this in caseX is quasi-compact.
In this case, apply Lemma 41.27.7 to X and the two element set {D,D′} of effective
Cartier divisors. Thus we get a proper morphism b : X ′ → X, a finite collection of
effective Cartier divisors D′j ⊂ X ′ intersecting pairwise in codimension ≥ 2, with

b−1(D) =
∑
njD

′
j , and b−1(D′) =

∑
mjD

′
j . Note that b∗[b

−1(D)]n−1 = [D]n−1 in
Zn−1(X) and similarly for D′, see Lemma 41.27.1. Hence, by Lemma 41.25.6 we
have

D · [D′]n−1 = b∗
(
b−1(D) · [b−1(D′)]n−1

)
in An−2(X) and similarly for the other term. Hence the lemma follows from the
equality b−1(D) · [b−1(D′)]n−1 = b−1(D′) · [b−1(D)]n−1 in An−2(X ′) of Lemma
41.28.7.

Note that in the proof above, each referenced lemma works also in the general case
(when X is not assumed quasi-compact). The only minor change in the general
case is that the morphism b : U ′ → U we get from applying Lemma 41.27.7 has
as its target an open U ⊂ X whose complement has codimension ≥ 3. Hence by
Lemma 41.19.2 we see that An−2(U) = An−2(X) and after replacing X by U the
rest of the proof goes through unchanged. �

Second proof of Lemma 41.28.8. Let I = OX(−D) and I ′ = OX(−D′) be the
invertible ideal sheaves of D and D′. We denote ID′ = I ⊗OX OD′ and I ′D =
I ′ ⊗OX OD. We can restrict the inclusion map I → OX to D′ to get a map

ϕ : ID′ −→ OD′
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and similarly
ψ : I ′D −→ OD

It is clear that
Coker(ϕ) ∼= OD∩D′ ∼= Coker(ψ)

and

Ker(ϕ) ∼=
I ∩ I ′

II ′
∼= Ker(ψ).

Hence we see that
γ = [ID′ ]− [OD′ ] = [I ′D]− [OD]

in K0(Coh≤n−1(X)). On the other hand it is clear that

[I ′D]n−1 = [D]n−1, [ID′ ]n−1 = [D′]n−1.

and that
OX(D′)⊗ I ′D = OD, OX(D)⊗ ID′ = OD′ .

By Lemma 41.26.2 (applied two times) this means that the element γ is an element
of Bn−2(X), and maps to both c1(OX(D′)) ∩ [D]n−1 and to c1(OX(D)) ∩ [D′]n−1

and we win (since the map Bn−2(X)→ An−2(X) is well defined – which is the key
to this proof). �

41.29. Commutativity

At this point we can start using the material above and start proving more inter-
esting results.

Lemma 41.29.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = n. Let L, N be invertible on X.
Choose a nonzero meromorphic section s of L and a nonzero meromorphic section
t of N . Set α = divL(s) and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β
in An−2(X).

Proof. By Lemma 41.27.2 (applied twice) there exists a proper morphism π : X ′ →
X and effective Cartier divisors D1, E1, D2, E2 on X ′ such that

b∗L = OX′(D1 − E1), b∗N = OX′(D2 − E2),

and such that

α = π∗([D1]n−1 − [E1]n−1), β = π∗([D2]n−1 − [E2]n−1).

By the projection formula of Lemma 41.25.6 and the additivity of Lemma 41.25.2
it is enough to show the equality

c1(OX′(D1)) ∩ [D2]n−1 = c1(OX′(D2)) ∩ [D1]n−1

and three other similar equalities involving Di and Ej . By Lemma 41.28.2 this is
the same as showing that D1 · [D2]n−1 = D2 · [D1]n−1 and so on. Thus the result
follows from Lemma 41.28.8. �

Lemma 41.29.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L be invertible on X. The operation α 7→ c1(L)∩α factors through
rational equivalence to give an operation

c1(L) ∩ − : Ak+1(X)→ Ak(X)
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Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 41.25.1 is zero. By Definition 41.19.1 there exists a locally finite family
{Wj} of integral closed subschemes with dimδ(Wj) = k + 2 and rational functions
fj ∈ R(Wj)

∗ such that

α =
∑

(ij)∗divWj (fj)

Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where
α′ ∈ Zk+1(

∐
Wj) is the sum of the principal divisors divWj (fj). By the projection

formula (Lemma 41.25.6) we have c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to
show that each c1(L|Wj

) ∩ divWj
(fj) is zero. In other words we may assume that

X is integral and α = divX(f) for some f ∈ R(X)∗.

Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of
f as a regular meromorphic section of the invertible sheaf N = OX . Choose
a meromorphic section s of L and denote β = divL(s). By Lemma 41.29.1 we
conclude that

c1(L) ∩ α = c1(OX) ∩ β.
However, by Lemma 41.25.2 we see that the right hand side is zero in Ak(X) as
desired. �

For any integer s ≥ 0 we will denote

c1(L)s ∩ − : Ak+s(X)→ Ak(X)

the s-fold iterate of the operation c1(L)∩−. This makes sense by the lemma above.

Lemma 41.29.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let L, N be invertible on X. For any α ∈ Ak+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α

as elements of Ak(X).

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subschemes Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :∐
Zj → X. Set α′ =

∑
mj [Zj ] as a (k+ 2)-cycle on

∐
Zj . By several applications

of Lemma 41.25.6 we see that c1(L)∩ c1(N )∩ α = p∗(c1(p∗L)∩ c1(p∗N )∩ α′) and
c1(N ) ∩ c1(L) ∩ α = p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the
formula in case X is integral and α = [X]. In this case the result follows from
Lemma 41.29.1 and the definitions. �

41.30. Gysin homomorphisms

We want to show the Gysin homomorphisms factor through rational equivalence.
One method (see [Ful98]) is to prove a more precise version of the key Lemma
41.28.8 keeping track of supports. Having obtained this one can find analogues of
the lemmas of Section 41.29 for the Gysin homomorphism and get the result. We
will use another method.

Lemma 41.30.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let X be integral and n = dimδ(X). Let a ∈ Γ(X,OX) be a nonzero
function. Let i : D = Z(a) → X be the closed immersion of the zero scheme of a.
Let f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).
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Proof. Write divX(f) =
∑
nj [Zj ] for some integral closed subschemes Zj ⊂ X of

δ-dimension n − 1. We may assume that the family {Zj}j∈J is locally finite and
that f ∈ Γ(U,O∗U ) where U = X \

⋃
Zj (see Lemma 41.16.3 and its proof).

Write J = J1

∐
J2 where J1 = {j ∈ J | Zj ⊂ D}. Note that OX(D) ∼= OX because

a−1 is a trivializing global section. Hence by Definition 41.28.1 of i∗ we see that
i∗divX(f) is represented by ∑

j∈J2

nj [D ∩ Zj ]n−2.

Namely, the terms involving c1(OX(D)|Zj ) ∩ Zj may be dropped since c1(O) ∩ −
is the zero operation anyway (see Lemma 41.25.2).

For each j let ξj ∈ Zj be its generic point. Let Bj = OX,ξj , which has residue field
κj = κ(ξj) = R(Zj). For j ∈ J1, let

fj = dBj (f, a)

be the tame symbol, see Definition 41.4.5. We claim that we have the following
equality of cycles∑

j∈J2

nj [D ∩ Zj ]n−2 =
∑

j∈J1

(Zj → D)∗divZj (fj)

on D. Indeed, note that [D∩Zj ]n−2 = divZj (a). Hence nj [D∩Zj ]n−2 = divZj (a
nj ).

Since nj = ordBj (f) we see that in fact also nj [D ∩ Zj ]n−2 = divZj (dBj (a, f)), as

a is a unit in Bj see Lemma 41.4.6. Note that dBj (f, a) = dBj (a, f)−1, see Lemma
41.4.4. Hence altogether we are trying to show that∑

j∈J
(Zj → D)∗divZj (dBj (a, f)) = 0

as an (n− 2)-cycle. Consider any codimension 2 integral closed subscheme W ⊂ X
with generic point ζ ∈ X. Set A = OX,ζ . Applying Lemma 41.6.1 to (A, a, f) we
see that the coefficient of [W ] in the expression above is zero as desired. �

Lemma 41.30.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let X be integral and n = dimδ(X). Let i : D → X be an effective
Cartier divisor. Let f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).

Proof. This proof is a repeat of the proof of Lemma 41.30.1. So make sure you’ve
read that one first.

Write divX(f) =
∑
nj [Zj ] for some integral closed subschemes Zj ⊂ X of δ-

dimension n− 1. We may assume that the family {Zj}j∈J is locally finite and that
f ∈ Γ(U,O∗U ) where U = X \

⋃
Zj (see Lemma 41.16.3 and its proof).

Write J = J1

∐
J2 where J1 = {j ∈ J | Zj ⊂ D}. For each j let ξj ∈ Zj be its

generic point. Let us write L = OX(D). Choose s̃j ∈ Lξj a generator. Denote
sj ∈ Lξj ⊗ κ(ξj) the corresponding nonzero meromorphic section of L|Zj . Then by
Definition 41.28.1 of i∗ we see that i∗divX(f) is represented by the cycle∑

j∈J2

nj [D ∩ Zj ]n−2 +
∑

j∈J2

njdivL|Zj (sj)

on D. Our goal is to show that this is rationally equivalent to zero on D.

Let Bj = OX,ξj , which has residue field κj = κ(ξj) = R(Zj). Write s = aj s̃j for
some aj ∈ Bj . For j ∈ J1 let

fj = dBj (f, aj) ∈ κ∗j = R(Zj)
∗
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be the tame symbol, see Definition 41.4.5. We claim that we have the following
equality of cycles∑

j∈J2

nj [D ∩ Zj ]n−2 +
∑

j∈J2

njdivL|Zj (sj) =
∑

j∈J1

(Zj → D)∗divZj (fj)

on D. This will clearly prove the lemma.

Note that for j ∈ J2 we have [D ∩ Zj ]n−2 = divL|Zj (s|Zj ). Since s|Zj = aj |Zjsj we

see that [D ∩ Zj ]n−2 = divL|Zj (sj) + divZj (aj |Zj ). Hence, still for j ∈ J2, we have

nj [D ∩ Zj ]n−2 = njdivL|Zj (sj) + divZj ((aj |Zj )nj )

Since nj = ordBj (f) we see that divZj ((aj |Zj )nj ) = divZj (dBj (aj , f)), as aj is a

unit in Bj (since j ∈ J2), see Lemma 41.4.6. Note that dBj (f, aj) = dBj (aj , f)−1,
see Lemma 41.4.4. Hence altogether we are trying to show that

(41.30.2.1)
∑

j∈J
njdivL|Zj (sj) =

∑
j∈J

(Zj → D)∗divZj (dBj (aj , f))

as an (n− 2)-cycle.

Consider any codimension 2 integral closed subscheme W ⊂ X with generic point
ζ ∈ X. Set A = OX,ζ . Choose a generator sζ ∈ Lζ . For those j such that ζ ∈ Zj
we may write s̃j = bjsζ with bj ∈ B∗j . We may also write s = aζsζ for some
aζ ∈ A. Then we see that aj = bjaζ . The coefficient of [W ] on the right hand side
of Equation (41.30.2.1) is ∑

ζ∈Zj
njordA/qj (bj).

where qj ⊂ A is the height one prime corresponding to Zj . Note that Bj = Aqj in
this case. The coefficient of [W ] on the left hand side of Equation (41.30.2.1) is∑

ζ∈Zj
ordA/qj (dAqj

(bjaζ , f)).

Since bj is a unit, and nj = ordAqj
(f) we see that dAqj

(bjaζ , f) = bj
nj
dAqj

(aζ , f)

by Lemmas 41.4.4 and 41.4.6. By additivity of ord we see that it suffices to prove

0 =
∑

ζ∈Zj
ordA/qj (dAqj

(aζ , f))

which is Lemma 41.6.1. �

Lemma 41.30.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let i : D → X be an effective Cartier divisor on X. The Gysin
homomorphism factors through rational equivalence to give a map i∗ : Ak+1(X)→
Ak(D).

Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subschemes Wj ⊂ X of δ-dimension k + 2
and fj ∈ R(Wj)

∗ such that α =
∑
ij,∗divWj

(fj). By construction of the map i∗

we see that i∗α =
∑
i∗ij,∗divWj

(fj) where each cycle i∗ij,∗divWj
(fj) is supported

on D ∩Wj . If we can show that each i∗ij,∗divWj (fj) is rationally equivalent on
Wj ∩D, then we see that i∗α ∼rat 0 (this is clear if the sum is finite, in general see
Remark 41.19.4).

Pick an index j. If Wj ⊂ D, then we see that i∗ij,∗divWj
(fj) is simply equal to

i′j,∗c1(OX(D)|Wj
) ∩ divWj

(fj)
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where i′j : Wj → D is the inclusion map. This is rationally equivalent to zero by
Lemma 41.29.2. If Wj 6⊂ D, then we see that i∗ij,∗divWj

(fj) is simply equal to

(i′)∗divWj
(fj)

where i′ : D∩Wj →Wj is the corresponding closed immersion (see Lemma 41.28.3).
Hence in this case Lemma 41.30.2 applies, and we win. �

41.31. Relative effective Cartier divisors

Lemma 41.31.1. Let A→ B be a ring map. Let f ∈ B. Assume that

(1) A→ B is flat,
(2) f is a nonzerodivisor, and
(3) A→ B/fB is flat.

Then for every ideal I ⊂ A the map f : B/IB → B/IB is injective.

Proof. Note that IB = I ⊗A B and I(B/fB) = I ⊗A B/fB by the flatness of
B and B/fB over A. In particular IB/fIB ∼= I ⊗A B/fB maps injectively into
B/fB. Hence the result follows from the snake lemma applied to the diagram

0 // I ⊗A B //

f

��

B //

f

��

B/IB //

f

��

0

0 // I ⊗A B // B // B/IB // 0

with exact rows. �

Lemma 41.31.2. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let p : X → Y be a flat morphism of relative dimension r. Let
i : D → X be an effective Cartier divisor with the property that p|D : D → Y is flat
of relative dimension r − 1. Let L = OX(D). For any α ∈ Ak+1(Y ) we have

i∗p∗α = (p|D)∗α

in Ak+r(D) and

c1(L) ∩ p∗α = i∗((p|D)∗α)

in Ak+r(X).

Proof. Let W ⊂ Y be an integral closed subvariety of δ-dimension k + 1. By
Lemma 41.31.1 we see that D ∩ p−1W is an effective Cartier divisor on p−1W . By
Lemma 41.28.4 we see that i∗[p−1W ]k+r+1 = [D∩W ]k+r = [(p|D)−1(W )]k+r. Since
by definition p∗[W ] = [p−1W ]k+r+1 and (p|D)∗[W ] = [(p|D)−1(W )]k+r we see we
have equality of cycles. Hence if α =

∑
mj [Wj ], then we get i∗α =

∑
mji

∗[Wj ] =∑
mj(p|D)∗[Wj ] as cycles. This proves then first equality. To deduce the second

from the first apply Lemma 41.28.2. �

41.32. Affine bundles

Lemma 41.32.1. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a flat morphism of relative dimension r.
Assume that for every y ∈ Y , there exists an open neighbourhood U ⊂ Y such
that f |f−1(U) : f−1(U) → U is identified with the morphism U ×Ar → U . Then
f∗ : Ak(Y )→ Ak+r(X) is surjective for all k ∈ Z.
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Proof. Let α ∈ Ak+r(X). Write α =
∑
mj [Wj ] with mj 6= 0 and Wj pairwise

distinct integral closed subschemes of δ-dimension k + r. Then the family {Wj} is
locally finite in X. For any quasi-compact open V ⊂ Y we see that f−1(V ) ∩Wj

is nonempty only for finitely many j. Hence the collection Zj = f(Wj) of closures
of images is a locally finite collection of integral closed subschemes of Y .

Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f
−1(Zj)) is rationally equivalent to f∗j βj for some k-

cycle βj ∈ Ak(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj

will be rationally equivalent to α (see Remark 41.19.4). This reduces us to the case
Y integral, and α = [W ] for some integral closed subscheme of X dominating Y .
In particular we may assume that d = dimδ(Y ) <∞.

Hence we can use induction on d = dimδ(Y ). If d < k, then Ak+r(X) = 0 and the
lemma holds. By assumption there exists a dense open V ⊂ Y such that f−1(V ) ∼=
V ×Ar as schemes over V . Suppose that we can show that α|f−1(V ) = f∗β for some
β ∈ Zk(V ). By Lemma 41.14.2 we see that β = β′|V for some β′ ∈ Zk(Y ). By the
exact sequence Ak(f−1(Y \V ))→ Ak(X)→ Ak(f−1(V )) of Lemma 41.19.2 we see
that α − f∗β′ comes from a cycle α′ ∈ Ak+r(f

−1(Y \ V )). Since dimδ(Y \ V ) < d
we win by induction on d.

Thus we may assume that X = Y ×Ar. In this case we can factor f as

X = Y ×Ar → Y ×Ar−1 → . . .→ Y ×A1 → Y.

Hence it suffices to do the case r = 1. By the argument in the second paragraph of
the proof we are reduced to the case α = [W ], Y integral, and W → Y dominant.
Again we can do induction on d = dimδ(Y ). If W = Y ×A1, then [W ] = f∗[Y ].
Lastly, W ⊂ Y × A1 is a proper inclusion, then W → Y induces a finite field
extension R(Y ) ⊂ R(W ). Let P (T ) ∈ R(Y )[T ] be the monic irreducible polynomial
such that the generic fibre of W → Y is cut out by P in A1

R(Y ). Let V ⊂ Y be a

nonempty open such that P ∈ Γ(V,OY )[T ], and such that W ∩ f−1(V ) is still cut
out by P . Then we see that α|f−1(V ) ∼rat 0 and hence α ∼rat α′ for some cycle α′

on (Y \ V )×A1. By induction on the dimension we win. �

Remark 41.32.2. We will see later (Lemma 41.33.3) that if X is a vectorbundle
over Y then the pullback map Ak(Y ) → Ak+r(X) is an isomorphism. Is this true
in general?

41.33. Projective space bundle formula

Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type over S. Consider
a finite locally free OX -module E of rank r. Our convention is that the projective
bundle associated to E is the morphism

P(E) = Proj
X

(Sym∗(E))
π // X
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over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is
a surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be
the projective bundle associated to E” to denote the situation where P = P(E) and
OP (1) = OP(E)(1).

Lemma 41.33.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Let E be a finite locally free OX-module E of rank r. Let (π : P → X,OP (1))
be the projective bundle associated to E. For any α ∈ Ak(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ Ak+r−1−s(X)

is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k. Note that
π∗[Z] = [π−1(Z)] as π−1(Z) is integral of δ-dimension r − 1. If s < r − 1, then by
construction c1(OP (1))s ∩ π∗[Z] is represented by a (k+ r− 1− s)-cycle supported
on π−1(Z). Hence the pushforward of this cycle is zero for dimension reasons.

Let s = r−1. By the argument given above we see that π∗(c1(OP (1))s∩π∗α) = n[Z]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons
as above it suffices to prove this result after replacing X by X \ T where T ⊂ Z
is a proper closed subset. Let ξ be the generic point of Z. We can choose el-
ements e1, . . . , er−1 ∈ Eξ which form part of a basis of Eξ. These give rational
sections s1, . . . , sr−1 of OP (1)|π−1(Z) whose common zero set is the closure of the
image a rational section of P(E|Z) → Z union a closed subset whose support
maps to a proper closed subset T of Z. After removing T from X (and corre-
spondingly π−1(T ) from P ), we see that s1, . . . , sn form a sequence of global sec-
tions si ∈ Γ(π−1(Z),Oπ−1(Z)(1)) whose common zero set is the image of a section

Z → π−1(Z). Hence we see successively that

π∗[Z] = [π−1(Z)]

c1(OP (1)) ∩ π∗[Z] = [Z(s1)]

c1(OP (1))2 ∩ π∗[Z] = [Z(s1) ∩ Z(s2)]

. . . = . . .

c1(OP (1))r−1 ∩ π∗[Z] = [Z(s1) ∩ . . . ∩ Z(sr−1)]

by repeated applications of Lemma 41.25.3. Since the pushforward by π of the
image of a section of π over Z is clearly [Z] we see the result when α = [Z].
We omit the verification that these arguments imply the result for a general cycle
α =

∑
nj [Zj ]. �

Lemma 41.33.2 (Projective space bundle formula). Let (S, δ) be as in Situation
41.7.1. Let X be locally of finite type over S. Let E be a finite locally free OX-
module E of rank r. Let (π : P → X,OP (1)) be the projective bundle associated to
E. The map ⊕r−1

i=0
Ak+i(X) −→ Ak+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.
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Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 41.33.1 we see
that

0 = π∗(π
∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that

0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.

It remains to show the map is surjective. Let Xi, i ∈ I be the irreducible compo-
nents of X. Then Pi = P(E|Xi), i ∈ I are the irreducible components of P . If the
map is surjective for each of the morphisms Pi → Xi, then the map is surjective
for π : P → X. Details omitted. Hence we may assume X is irreducible. Thus
dimδ(X) <∞ and in particular we may use induction on dimδ(X).

The result is clear if dimδ(X) < k. Let α ∈ Ak+r−1(P ). For any locally closed
subscheme T ⊂ X denote γT :

⊕
Ak+i(T )→ Ak+r−1(π−1(T )) the map

γT (α0, . . . , αr−1) = π∗α0 + . . .+ c1(Oπ−1(T )(1))r−1 ∩ π∗αr−1.

Suppose for some nonempty open U ⊂ X we have α|π−1(U) = γU (α0, . . . , αr−1).
Then we may choose lifts α′i ∈ Ak+i(X) and we see that α−γX(α′0, . . . , α

′
r−1) is by

Lemma 41.19.2 rationally equivalent to a k-cycle on PY = P(E|Y ) where Y = X \U
as a reduced closed subscheme. Note that dimδ(Y ) < dimδ(X). By induction the
result holds for PY → Y and hence the result holds for α. Hence we may replace
X by any nonempty open of X.

In particular we may assume that E ∼= O⊕rX . In this case P(E) = X ×Pr−1. Let us
use the stratification

Pr−1 = Ar−1
∐

Ar−2
∐

. . .
∐

A0

The closure of each stratum is a Pr−1−i which is a representative of c1(O(1))i ∩
[Pr−1]. Hence P has a similar stratification

P = Ur−1
∐

Ur−2
∐

. . .
∐

U0

Let P i be the closure of U i. Let πi : P i → X be the restriction of π to P i.
Let α ∈ Ak+r−1(P ). By Lemma 41.32.1 we can write α|Ur−1 = π∗α0|Ur−1 for
some α0 ∈ Ak(X). Hence the difference α − π∗α0 is the image of some α′ ∈
Ak+r−1(P r−2). By Lemma 41.32.1 again we can write α′|Ur−2 = (πr−2)∗α1|Ur−2

for some α1 ∈ Ak+1(X). By Lemma 41.31.2 we see that the image of (πr−2)∗α1

represents c1(OP (1)) ∩ π∗α1. We also see that α− π∗α0 − c1(OP (1)) ∩ π∗α1 is the
image of some α′′ ∈ Ak+r−1(P r−3). And so on. �

Lemma 41.33.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on X. Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X. Then p∗ : Ak(X) → Ak+r(E) is an iso-
morphism for all k.
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Proof. For surjectivity see Lemma 41.32.1. Let (π : P → X,OP (1)) be the
projective space bundle associated to the finite locally free sheaf E ⊕ OX . Let
s ∈ Γ(P,OP (1)) correspond to the global section (0, 1) ∈ Γ(X, E ⊕ OX). Let
D = Z(s) ⊂ P . Note that (π|D : D → X,OP (1)|D) is the projective space bundle
associated to E . We denote πD = π|D and OD(1) = OP (1)|D. Moreover, D is an ef-
fective Cartier divisor on P . Hence OP (D) = OP (1) (see Divisors, Lemma 30.9.20).
Also there is an isomorphism E ∼= P \ D. Denote j : E → P the corresponding
open immersion. For injectivity we use that the kernel of

j∗ : Ak+r(P ) −→ Ak+r(E)

are the cycles supported in the effective Cartier divisor D, see Lemma 41.19.2. So
if p∗α = 0, then π∗α = i∗β for some β ∈ Ak+r(D). By Lemma 41.33.2 we may
write

β = π∗Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗Dβr−1.

for some βi ∈ Ak+i(X). By Lemmas 41.31.2 and 41.25.6 this implies

π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕ OX is r + 1 this contradicts Lemma 41.25.6 unless all α and
all βi are zero. �

41.34. The Chern classes of a vector bundle

We can use the projective space bundle formula to define the chern classes of a
rank r vector bundle in terms of the expansion of c1(O(1))r in terms of the lower
powers, see formula (41.34.1.1). The reason for the signs will be explained later.

Definition 41.34.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let E be a finite locally
free sheaf of rank r on X. Let (π : P → X,OP (1)) be the projective space bundle
associated to E .

(1) By Lemma 41.33.2 there are elements ci ∈ An−i(X), i = 0, . . . , r such
that c0 = [X], and

(41.34.1.1)
∑r

i=0
(−1)ic1(OP (1))i ∩ π∗cr−i = 0.

(2) With notation as above we set ci(E)∩ [X] = ci as an element of An−i(X).
We call these the chern classes of E on X.

(3) The total chern class of E on X is the combination

c(E) ∩ [X] = c0(E) ∩ [X] + c1(E) ∩ [X] + . . .+ cr(E) ∩ [X]

which is an element of A∗(X) =
⊕

k∈ZAk(X).

Let us check that this does not give a new notion in case the vector bundle has
rank 1.

Lemma 41.34.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-
module. The first chern class of L on X of Definition 41.34.1 is equal to the Weil
divisor associated to L by Definition 41.24.1.
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Proof. In this proof we use c1(L) ∩ [X] to denote the construction of Definition
41.24.1. Since L has rank 1 we have P(L) = X and OP(L)(1) = L by our normal-
izations. Hence (41.34.1.1) reads

(−1)1c1(L) ∩ c0 + (−1)0c1 = 0

Since c0 = [X], we conclude c1 = c1(L) ∩ [X] as desired. �

Remark 41.34.3. We could also rewrite equation 41.34.1.1 as

(41.34.3.1)
∑r

i=0
c1(OP (−1))i ∩ π∗cr−i = 0.

but we find it easier to work with the tautological quotient sheaf OP (1) instead of
its dual.

41.35. Intersecting with chern classes

Definition 41.35.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on X. We define, for every
integer k and any 0 ≤ j ≤ r, an operation

cj(E) ∩ − : Zk(X)→ Ak−j(X)

called intersection with the jth chern class of E .

(1) Given an integral closed subscheme i : W → X of δ-dimension k we define

cj(E) ∩ [W ] = i∗(cj(i
∗E) ∩ [W ]) ∈ Ak−j(X)

where cj(i
∗E) ∩ [W ] is as defined in Definition 41.34.1.

(2) For a general k-cycle α =
∑
ni[Wi] we set

cj(E) ∩ α =
∑

nicj(E) ∩ [Wi]

Again, if E has rank 1 then this agrees with our previous definition.

Lemma 41.35.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let (π : P → X,OP (1))
be the projective bundle associated to E. For α ∈ Zk(X) the elements cj(E)∩α are
the unique elements αj of Ak−j(X) such that α0 = α and∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

holds in the Chow group of P .

Proof. The uniqueness of α0, . . . , αr such that α0 = α and such that the displayed
equation holds follows from the projective space bundle formula Lemma 41.33.2.
The identity holds by definition for α = [X]. For a general k-cycle α on X write
α =

∑
na[Wa] with na 6= 0, and ia : Wa → X pairwise distinct integral closed

subschemes. Then the family {Wa} is locally finite on X. Set Pa = π−1(Wa) =
P(E|Wa

). Denote i′a : Pa → P the corresponding closed immersions. Consider the
fibre product diagram

P ′

π′

��

∐
Pa

πa

��

i′a

// P

π

��
X ′

∐
Wa

ia // X
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The morphism p : X ′ → X is proper. Moreover π′ : P ′ → X ′ together with
the invertible sheaf OP ′(1) =

∐
OPa(1) which is also the pullback of OP (1) is the

projective bundle associated to E ′ = p∗E . By definition

cj(E) ∩ [α] =
∑

ia,∗(cj(E|Wa) ∩ [Wa]).

Write βa,j = cj(E|Wa
) ∩ [Wa] which is an element of Ak−j(Wa). We have∑r

i=0
(−1)ic1(OPa(1))i ∩ π∗a(βa,r−i) = 0

for each a by definition. Thus clearly we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(βr−i) = 0

with βj =
∑
naβa,j ∈ Ak−j(X

′). Denote p′ : P ′ → P the morphism
∐
i′a. We

have π∗p∗βj = p′∗(π
′)∗βj by Lemma 41.15.1. By the projection formula of Lemma

41.25.6 we conclude that∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗βj) = 0

Since p∗βj is a representative of cj(E) ∩ α we win. �

This characterization of chern classes allows us to prove many more properties.

Lemma 41.35.3. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on X. If α ∼rat β are
rationally equivalent k-cycles on X then cj(E) ∩ α = cj(E) ∩ β in Ak−j(X).

Proof. By Lemma 41.35.2 the elements αj = cj(E) ∩ α, j ≥ 1 and βj = cj(E) ∩
β, j ≥ 1 are uniquely determined by the same equation in the chow group of
the projective bundle associated to E . (This of course relies on the fact that flat
pullback is compatible with rational equivalence, see Lemma 41.20.1.) Hence they
are equal. �

In other words capping with chern classes of finite locally free sheaves factors
through rational equivalence to give maps

cj(E) ∩ − : Ak(X)→ Ak−j(X).

Lemma 41.35.4. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on Y . Let f : X → Y be
a flat morphism of relative dimension r. Let α be a k-cycle on Y . Then

f∗(cj(E) ∩ α) = cj(f
∗E) ∩ f∗α

Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 41.35.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E .
Consider the fibre product diagram

PX = P(f∗E)
fP

//

πX

��

P

π

��
X

f // Y

http://stacks.math.columbia.edu/tag/02U7
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Note that OPX (1) = f∗POP (1). By Lemmas 41.25.4 and 41.14.3 we see that∑r

i=0
(−1)ic1(OPX (1))i ∩ π∗X(f∗αr−i) = 0

holds in the chow group of PX . Since f∗α0 = f∗α the lemma follows from the
uniqueness in Lemma 41.35.2. �

Lemma 41.35.5. Let (S, δ) be as in Situation 41.7.1. Let X, Y be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on X. Let p : X → Y be
a proper morphism. Let α be a k-cycle on X. Let E be a finite locally free sheaf on
Y . Then

p∗(cj(p
∗E) ∩ α) = cj(E) ∩ p∗α

Proof. Write αj = cj(p
∗E) ∩ α, so α0 = α. By Lemma 41.35.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗X(αr−i) = 0

in the chow group of the projective bundle (πX : PX → X,OPX (1)) associated to
p∗E . Let (π : P → Y,OP (1)) be the projective bundle associated to E . Consider
the fibre product diagram

PX = P(p∗E)
pP
//

πX

��

P

π

��
X

p // Y

Note that OPX (1) = p∗POP (1). Pushing the displayed equality above to P and
using Lemmas 41.15.1, 41.25.6 and 41.14.3 we see that∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗αr−i) = 0

holds in the chow group of P . Since p∗α0 = p∗α the lemma follows from the
uniqueness in Lemma 41.35.2. �

Lemma 41.35.6. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E, F be finite locally free sheaves on X of ranks r and s. For any
α ∈ Ak(X) we have

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α

as elements of Ak−i−j(X).

Proof. Consider

π : P(E)×X P(F) −→ X

with invertible sheaves L = pr∗1OP(E)(1) and N = pr∗2OP(F)(1). Write αi,j for the
left hand side and βi,j for the right hand side. Also write αj = cj(F) ∩ α and
βi = ci(E) ∩ α. In particular this means that α0 = α = β0, and α0,j = αj = β0,j ,
αi,0 = βi = βi,0. From Lemma 41.35.2 (pulled back to the space above using

http://stacks.math.columbia.edu/tag/02U9
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Lemma 41.25.4 for the first two) we see that

0 =
∑

j=0,...,s
(−1)jc1(N )j ∩ π∗αs−j

0 =
∑

i=0,...,r
(−1)ic1(L)i ∩ π∗βr−i

0 =
∑

i=0,...,r
(−1)ic1(L)i ∩ π∗αr−i,s−j

0 =
∑

j=0,...,s
(−1)jc1(N )j ∩ π∗βr−i,s−j

We can combine the first and the third of these to get

(−1)r+sc1(L)r ∩ c1(N )s ∩ π∗α

=
∑

j=1,...,s
(−1)r+j−1c1(L)r ∩ c1(N )j ∩ π∗αs−j

=
∑

j=1,...,s
(−1)j−1+rc1(N )j ∩ c1(L)r ∩ π∗α0,s−j

=
∑s

j=1

∑r

i=1
(−1)i+jc1(N )j ∩ c1(L)i ∩ π∗αr−i,s−j

using that capping with c1(L) commutes with capping with c1(N ). In exactly the
same way one shows that

(−1)r+sc1(L)r ∩ c1(N )s ∩ π∗α =
∑s

j=1

∑r

i=1
(−1)i+jc1(N )j ∩ c1(L)i ∩ π∗βr−i,s−j

By the projective space bundle formula Lemma 41.33.2 applied twice these repre-
sentations are unique. Whence the result. �

41.36. Polynomial relations among chern classes

Definition 41.36.1. Let P (xi,j) ∈ Z[xi,j ] be a polynomial. We write P as a finite
sum ∑

s

∑
I=((i1,j1),(i2,j2),...,(is,js))

aIxi1,j1 . . . xis,js .

Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type over S. Let Ei be
a finite collection of finite locally free sheaves on X. We say that P is a polynomial
relation among the chern classes and we write P (cj(Ei)) = 0 if for any morphism
f : Y → X of an integral scheme locally of finite type over S the cycle∑

s

∑
I=((i1,j1),(i2,j2),...,(is,js))

aI cj1(f∗Ei1) ∩ . . . ∩ cjs(f∗Eis) ∩ [Y ]

is zero in A∗(Y ).

This is not an elegant definition but it will do for now. It makes sense because
we showed in Lemma 41.35.6 that capping with chern classes of vector bundles is
commutative. By our definitions and results above this is equivalent with requiring
all the operations∑

s

∑
I
aI cj1(f∗Ei1) ∩ . . . ∩ cjs(f∗Eis) ∩ − : A∗(Y )→ A∗(Y )

to be zero for all morphisms f : Y → X which are locally of finite type.

An example of such a relation is the relation

c1(L ⊗OX N ) = c1(L) + c1(N )

proved in Lemma 41.25.2. More generally, here is what happens when we tensor
an arbitrary locally free sheaf by an invertible sheaf.

http://stacks.math.columbia.edu/tag/02UC
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Lemma 41.36.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let L be an invertible
sheaf on X. Then

(41.36.2.1) ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

is a valid polynomial relation in the sense described above.

Proof. This should hold for any triple (X, E ,L). In particular it should hold when
X is integral, and in fact by definition of a polynomial relation it is enough to prove
it holds when capping with [X] for such X. Thus assume that X is integral. Let
(π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) be the projective space bundle
associated to E , resp. E ⊗ L. Consider the canonical morphism

P

π   

g
// P ′

π′~~
X

see Constructions, Lemma 26.20.1. It has the property that g∗OP ′(1) = OP (1) ⊗
π∗L. This means that we have∑r

i=0
(−1)i(ξ + x)i ∩ π∗(cr−i(E ⊗ L) ∩ [X]) = 0

in A∗(P ), where ξ represents c1(OP (1)) and x represents c1(π∗L). By simple alge-
bra this is equivalent to∑r

i=0
(−1)iξi

(∑r

j=i
(−1)j−i

(
j

i

)
xj−i ∩ π∗(cr−j(E ⊗ L) ∩ [X])

)
= 0

Comparing with Equation (41.34.1.1) it follows from this that

cr−i(E) ∩ [X] =
∑r

j=i

(
j

i

)
(−c1(L))j−i ∩ cr−j(E ⊗ L) ∩ [X]

Reworking this (getting rid of minus signs, and renumbering) we get the desired
relation. �

Some example cases of (41.36.2.1) are

c1(E ⊗ L) = c1(E) + rc1(L)

c2(E ⊗ L) = c2(E) + (r − 1)c1(E)c1(L) +

(
r

2

)
c1(L)2

c3(E ⊗ L) = c3(E) + (r − 2)c2(E)c1(L) +

(
r − 1

2

)
c1(E)c1(L)2 +

(
r

3

)
c1(L)3

41.37. Additivity of chern classes

All of the preliminary lemmas follow trivially from the final result.

Lemma 41.37.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E, F be finite locally free sheaves on X of ranks r, r − 1 which fit
into a short exact sequence

0→ OX → E → F → 0

http://stacks.math.columbia.edu/tag/02UD
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Then
cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1

are valid polynomial relations among chern classes.

Proof. By Definition 41.36.1 it suffices to show that if X is integral then cj(E) ∩
[X] = cj(F) ∩ [X]. Let (π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) denote
the projective space bundle associated to E , resp. F . The surjection E → F gives
rise to a closed immersion

i : P ′ −→ P

over X. Moreover, the element 1 ∈ Γ(X,OX) ⊂ Γ(X, E) gives rise to a global
section s ∈ Γ(P,OP (1)) whose zero set is exactly P ′. Hence P ′ is an effective
Cartier divisor on P such that OP (P ′) ∼= OP (1). Hence we see that

c1(OP (1)) ∩ π∗α = i∗((π
′)∗α)

for any cycle class α on X by Lemma 41.31.2. By Lemma 41.35.2 we see that
αj = cj(F) ∩ [X], j = 0, . . . , r − 1 satisfy∑r−1

j=0
(−1)jc1(OP ′(1))j ∩ (π′)∗αj = 0

Pushing this to P and using the remark above as well as Lemma 41.25.6 we get∑r−1

j=0
(−1)jc1(OP (1))j+1 ∩ π∗αj = 0

By the uniqueness of Lemma 41.35.2 we conclude that cr(E)∩ [X] = 0 and cj(E)∩
[X] = αj = cj(F) ∩ [X] for j = 0, . . . , r − 1. Hence the lemma holds. �

Lemma 41.37.2. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E, F be finite locally free sheaves on X of ranks r, r − 1 which fit
into a short exact sequence

0→ L → E → F → 0

where L is an invertible sheaf Then

c(E) = c(L)c(F)

is a valid polynomial relation among chern classes.

Proof. This relation really just says that ci(E) = ci(F)+c1(L)ci−1(F). By Lemma
41.37.1 we have cj(E⊗L⊗−1) = cj(E⊗L⊗−1) for j = 0, . . . , r (were we set cr(F) = 0
by convention). Applying Lemma 41.36.2 we deduce

i∑
j=0

(
r − i+ j

j

)
(−1)jci−j(E)c1(L)j =

i∑
j=0

(
r − 1− i+ j

j

)
(−1)jci−j(F)c1(L)j

Setting ci(E) = ci(F) + c1(L)ci−1(F) gives a “solution” of this equation. The
lemma follows if we show that this is the only possible solution. We omit the
verification. �

Lemma 41.37.3. Let (S, δ) be as in Situation 41.7.1. Let X be a scheme locally
of finite type over S. Suppose that E sits in an exact sequence

0→ E1 → E → E2 → 0

of finite locally free sheaves Ei of rank ri. Then

c(E) = c(E1)c(E2)

http://stacks.math.columbia.edu/tag/02UH
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is a polynomial relation among chern classes.

Proof. We may assume that X is integral and we have to show the identity when
capping against [X]. By induction on r1. The case r1 = 1 is Lemma 41.37.2.
Assume r1 > 1. Let (π : P → X,OP (1)) denote the projective space bundle
associated to E1. Note that

(1) π∗ : A∗(X)→ A∗(P ) is injective, and
(2) π∗E1 sits in a short exact sequence 0 → F → π∗E1 → L → 0 where L is

invertible.

The first assertion follows from the projective space bundle formula and the second
follows from the definition of a projective space bundle. (In fact L = OP (1).) Let
Q = π∗E/F , which sits in an exact sequence 0 → L → Q → π∗E2 → 0. By
induction we have

c(π∗E) ∩ [P ] = c(F) ∩ c(π∗E/F) ∩ [P ]

= c(F) ∩ c(L) ∩ c(π∗E2) ∩ [P ]

= c(π∗E1) ∩ c(π∗E2) ∩ [P ]

Since [P ] = π∗[X] we win by Lemma 41.35.4. �

Lemma 41.37.4. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let Li, i = 1, . . . , r be invertible OX-modules on X. Let E be a finite
locally free rank r OX-module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1
∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

is a valid polynomial relation among chern classes in the sense of Definition 41.36.1.

Proof. Apply Lemma 41.37.2 and induction. �

41.38. The splitting principle

In our setting it is not so easy to say what the splitting principle exactly says/is.
Here is a possible formulation.

Lemma 41.38.1. Let (S, δ) be as in Situation 41.7.1. Let X be locally of finite
type over S. Let E be a finite locally free sheaf E on X of rank r. There exists a
projective flat morphism of relative dimension d π : P → X such that

(1) for any morphism f : Y → X the map π∗Y : A∗(Y ) → A∗+r(Y ×X P ) is
injective, and

(2) π∗E has a filtration with successive quotients L1, . . . ,Lr for some invertible
OP -modules Li.

Proof. Omitted. Hint: Use a composition of projective space bundles, i.e., a flag
variety over X. �

The splitting principle refers to the practice of symbolically writing

c(E) =
∏

(1 + xi)

http://stacks.math.columbia.edu/tag/02UJ
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with xi = c1(Li). The expressions xi are then called the Chern roots of E . In order
to prove polynomial relations among chern classes of vector bundles it is permissible
to do calculations using the chern roots.

For example, let us calculate the chern classes of the dual vector bundle E∧. Note
that if E has a filtration with subquotients invertible sheaves Li then E∧ has a
filtration with subquotients the invertible sheaves L−1

i . Hence if xi are the chern
roots of E , then the −xi are the chern roots of E∧. It follows that

cj(E∧) = (−1)jcj(E)

is a valid polynomial relation among chern classes.

In the same vain, let us compute the chern classes of a tensor product of vector
bundles. Namely, suppose that E , F are finite locally free of ranks r, s. Write

c(E) =
∏r

i=1
(1 + xi), c(E) =

∏s

j=1
(1 + yj)

where xi, yj are the chern roots of E , F . Then we see that

c(E ⊗OX F) =
∏

i,j
(1 + xi + yj)

Here are some examples of what this means in terms of chern classes

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = r2c2(F) + rsc1(F)c1(E) + s2c2(E)

41.39. Chern classes and tensor product

We define the Chern character of a finite locally free sheaf of rank r to be the formal
expression

ch(E) :=
∑r

i=1
exi

if the xi are the chern roots of E . Writing this in terms of chern classes ci = ci(E)
we see that

ch(E) = r+c1+
1

2
(c21−2c2)+

1

6
(c31−3c1c2+3c3)+

1

24
(c41−4c21c2+4c1c3+2c22−4c4)+. . .

What does it mean that the coefficients are rational numbers? Well this simply
means that we think of these as operations

chj(E) ∩ − : Ak(X) −→ Ak−j(X)⊗Z Q

and we think of polynomial relations among them as relations between these oper-
ations with values in the groups Ak−j(Y ) ⊗Z Q for varying Y . By the above we
have in case of an exact sequence

0→ E1 → E → E2 → 0

that

ch(E) = ch(E1) + ch(E2)

Using the Chern character we can express the compatibility of the chern classes
and tensor product as follows:

ch(E1 ⊗OX E2) = ch(E1)ch(E2)

This follows directly from the discussion of the chern roots of the tensor product
in the previous section.



2708 41. CHOW HOMOLOGY AND CHERN CLASSES

41.40. Todd classes

A final class associated to a vector bundle E of rank r is its Todd class Todd(E). In
terms of the chern roots x1, . . . , xr it is defined as

Todd(E) =
∏r

i=1

xi
1− e−xi

In terms of the chern classes ci = ci(E) we have

Todd(E) = 1+
1

2
c1 +

1

12
(c21 + c2)+

1

24
c1c2 +

1

720
(−c41 +4c21c2 +3c22 + c1c3− c4)+ . . .

We have made the appropriate remarks about denominators in the previous section.
It is the case that given an exact sequence

0→ E1 → E → E2 → 0

we have
Todd(E) = Todd(E1)Todd(E2).

41.41. Grothendieck-Riemann-Roch

Let (S, δ) be as in Situation 41.7.1. Let X,Y be locally of finite type over S. Let
E be a finite locally free sheaf E on X of rank r. Let f : X → Y be a proper
smooth morphism. Assume that Rif∗E are locally free sheaves on Y of finite rank
(for example if Y is a point). The Grothendieck-Riemann-Roch theorem implies
that in this case we have

f∗(Todd(TX/Y )ch(E)) =
∑

(−1)ich(Rif∗E)

Here
TX/Y = HomOX (ΩX/Y ,OX)

is the relative tangent bundle of X over Y . The theorem is more general and
becomes easier to prove when formulated in correct generality. We will return to
this elsewhere (insert future reference here).
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CHAPTER 42

Adequate Modules

42.1. Introduction

For any scheme X the category QCoh(OX) of quasi-coherent modules is abelian
and a weak Serre subcategory of the abelian category of all OX -modules. The same
thing works for the category of quasi-coherent modules on an algebraic space X
viewed as a subcategory of the category of all OX -modules on the small étale site
of X. Moreover, for a quasi-compact and quasi-separated morphism f : X → Y
the pushforward f∗ and higher direct images preserve quasi-coherency.

Next, let X be a scheme and let O be the structure sheaf on one of the big sites
of X, say, the big fppf site. The category of quasi-coherent O-modules is abelian
(in fact it is equivalent to the category of usual quasi-coherent OX -modules on the
scheme X we mentioned above) but its imbedding into Mod(O) is not exact. An
example is the map of quasi-coherent modules

OA1
k
−→ OA1

k

on A1
k = Spec(k[x]) given by multiplication by x. In the abelian category of

quasi-coherent sheaves this map is injective, whereas in the abelian category of
all O-modules on the big site of A1

k this map has a nontrivial kernel as we see
by evaluating on sections over Spec(k[x]/(x)) = Spec(k). Moreover, for a quasi-
compact and quasi-separated morphism f : X → Y the functor fbig,∗ does not
preserve quasi-coherency.

In this chapter we introduce a larger category of modules, closely related to quasi-
coherent modules, which “fixes” the two problems mentioned above.

42.2. Conventions

In this chapter we fix τ ∈ {Zar, étale, smooth, syntomic, fppf} and we fix a big
τ -site Schτ as in Topologies, Section 33.2. All schemes will be objects of Schτ . In
particular, given a scheme S we obtain sites (Aff/S)τ ⊂ (Sch/S)τ . The structure
sheaf O on these sites is defined by the rule O(T ) = Γ(T,OT ).

All rings A will be such that Spec(A) is (isomorphic to) an object of Schτ . Given a
ring A we denote AlgA the category of A-algebras whose objects are the A-algebras
B of the form B = Γ(U,OU ) where S is an affine object of Schτ . Thus given an
affine scheme S = Spec(A) the functor

(Aff/S)τ −→ AlgA, U 7−→ O(U)

is an equivalence.

2711
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42.3. Adequate functors

In this section we discuss a topic closely related to direct images of quasi-coherent
sheaves. Most of this material was taken from the paper [Jaf97].

Definition 42.3.1. Let A be a ring. A module-valued functor is a functor F :
AlgA → Ab such that

(1) for every object B of AlgA the group F (B) is endowed with the structure
of a B-module, and

(2) for any morphism B → B′ of AlgA the map F (B)→ F (B′) is B-linear.

A morphism of module-valued functors is a transformation of functors ϕ : F → G
such that F (B)→ G(B) is B-linear for all B ∈ Ob(AlgA).

Let S = Spec(A) be an affine scheme. The category of module-valued functors on
AlgA is equivalent to the category PMod((Aff/S)τ ,O) of presheaves of O-modules.
The equivalence is given by the rule which assigns to the module-valued functor
F the presheaf F defined by the rule F(U) = F (O(U)). This is clear from the
equivalence (Aff/S)τ → AlgA, U 7→ O(U) given in Section 42.2. The quasi-inverse
sets F (B) = F(Spec(B)).

An important special case of a module-valued functor comes about as follows. Let
M be an A-module. Then we will denote M the module-valued functor B 7→
M ⊗A B (with obvious B-module structure). Note that if M → N is a map of A-
modules then there is an associated morphism M → N of module-valued functors.
Conversely, any morphism of module-valued functors M → N comes from an A-
module map M → N as the reader can see by evaluating on B = A. In other words
ModA is a full subcategory of the category of module-valued functors on AlgA.

Given and A-module map ϕ : M → N then Coker(M → N) = Q where Q =
Coker(M → N) because ⊗ is right exact. But this isn’t the case for the kernel in
general: for example an injective map of A-modules need not be injective after base
change. Thus the following definition makes sense.

Definition 42.3.2. Let A be a ring. A module-valued functor F on AlgA is called

(1) adequate if there exists a map of A-modules M → N such that F is
isomorphic to Ker(M → N).

(2) linearly adequate if F is isomorphic to the kernel of a map A⊕n → A⊕m.

Note that F is adequate if and only if there exists an exact sequence 0 → F →
M → N and F is linearly adequate if and only if there exists an exact sequence
0→ F → A⊕n → A⊕m.

Let A be a ring. In this section we will show the category of adequate functors on
AlgA is abelian (Lemmas 42.3.10 and 42.3.11) and has a set of generators (Lemma
42.3.6). We will also see that it is a weak Serre subcategory of the category of all
module-valued functors on AlgA (Lemma 42.3.16) and that it has arbitrary colimits
(Lemma 42.3.12).

Lemma 42.3.3. Let A be a ring. Let F be an adequate functor on AlgA. If
B = colimBi is a filtered colimit of A-algebras, then F (B) = colimF (Bi).

Proof. This holds because for any A-module M we have M⊗AB = colimM⊗ABi
(see Algebra, Lemma 10.11.9) and because filtered colimits commute with exact
sequences, see Algebra, Lemma 10.8.9. �
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Remark 42.3.4. Consider the category Algfp,A whose objects are A-algebras B
of the form B = A[x1, . . . , xn]/(f1, . . . , fm) and whose morphisms are A-algebra
maps. Every A-algebra B is a filtered colimit of finitely presented A-algebra, i.e., a
filtered colimit of objects of Algfp,A. By Lemma 42.3.3 we conclude every adequate
functor F is determined by its restriction to Algfp,A. For some questions we can
therefore restrict to functors on Algfp,A. For example, the category of adequate
functors does not depend on the choice of the big τ -site chosen in Section 42.2.

Lemma 42.3.5. Let A be a ring. Let F be an adequate functor on AlgA. If B → B′

is flat, then F (B)⊗B B′ → F (B′) is an isomorphism.

Proof. Choose an exact sequence 0→ F →M → N . This gives the diagram

0 // F (B)⊗B B′ //

��

(M ⊗A B)⊗B B′ //

��

(N ⊗A B)⊗B B′

��
0 // F (B′) // M ⊗A B′ // N ⊗A B′

where the rows are exact (the top one because B → B′ is flat). Since the right two
vertical arrows are isomorphisms, so is the left one. �

Lemma 42.3.6. Let A be a ring. Let F be an adequate functor on AlgA. Then
there exists a surjection L→ F with L a direct sum of linearly adequate functors.

Proof. Choose an exact sequence 0→ F →M → N where M → N is given by ϕ :
M → N . By Lemma 42.3.3 it suffices to construct L→ F such that L(B)→ F (B)
is surjective for every finitely presented A-algebra B. Hence it suffices to construct,
given a finitely presented A-algebra B and an element ξ ∈ F (B) a map L → F
with L linearly adequate such that ξ is in the image of L(B) → F (B). (Because
there is a set worth of such pairs (B, ξ) up to isomorphism.)

To do this write
∑
i=1,...,nmi ⊗ bi the image of ξ in M(B) = M ⊗A B. We know

that
∑
ϕ(mi) ⊗ bi = 0 in N ⊗A B. As N is a filtered colimit of finitely presented

A-modules, we can find a finitely presented A-module N ′, a commutative diagram
of A-modules

A⊕n //

m1,...,mn

��

N ′

��
M // N

such that (b1, . . . , bn) maps to zero in N ′ ⊗A B. Choose a presentation A⊕l →
A⊕k → N ′ → 0. Choose a lift A⊕n → A⊕k of the map A⊕n → N ′ of the diagram.
Then we see that there exist (c1, . . . , cl) ∈ B⊕l such that (b1, . . . , bn, c1, . . . , cl) maps
to zero in B⊕k under the map B⊕n ⊕ B⊕l → B⊕k. Consider the commutative
diagram

A⊕n ⊕A⊕l //

��

A⊕k

��
M // N

where the left vertical arrow is zero on the summand A⊕l. Then we see that L equal
to the kernel of A⊕n+l → A⊕k works because the element (b1, . . . , bn, c1, . . . , cl) ∈
L(B) maps to ξ. �
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Consider a graded A-algebra B =
⊕

d≥0Bd. Then there are two A-algebra maps

p, a : B → B[t, t−1], namely p : b 7→ b and a : b 7→ tdeg(b)b where b is homogeneous.
If F is a module-valued functor on AlgA, then we define

(42.3.6.1) F (B)(k) = {ξ ∈ F (B) | tkF (p)(ξ) = F (a)(ξ)}.

For functors which behave well with respect to flat ring extensions this gives a
direct sum decomposition. This amounts to the fact that representations of Gm

are completely reducible.

Lemma 42.3.7. Let A be a ring. Let F be a module-valued functor on AlgA.
Assume that for B → B′ flat the map F (B) ⊗B B′ → F (B′) is an isomorphism.
Let B be a graded A-algebra. Then

(1) F (B) =
⊕

k∈Z F (B)(k), and
(2) the map B → B0 → B induces map F (B) → F (B) whose image is

contained in F (B)(0).

Proof. Let x ∈ F (B). The map p : B → B[t, t−1] is free hence we know that

F (B[t, t−1]) =
⊕

k∈Z
F (p)(F (B)) · tk =

⊕
k∈Z

F (B) · tk

as indicated we drop the F (p) in the rest of the proof. Write F (a)(x) =
∑
tkxk for

some xk ∈ F (B). Denote ε : B[t, t−1] → B the B-algebra map t 7→ 1. Note that
the compositions ε◦p, ε◦a : B → B[t, t−1]→ B are the identity. Hence we see that

x = F (ε)(F (a)(x)) = F (ε)(
∑

tkxk) =
∑

xk.

On the other hand, we claim that xk ∈ F (B)(k). Namely, consider the commutative
diagram

B
a

//

a′

��

B[t, t−1]

f

��
B[s, s−1]

g // B[t, s, t−1, s−1]

where a′(b) = sdeg(b)b, f(b) = b, f(t) = st and g(b) = tdeg(b)b and g(s) = s. Then

F (g)(F (a′))(x) = F (g)(
∑

skxk) =
∑

skF (a)(xk)

and going the other way we see

F (f)(F (a))(x) = F (f)(
∑

tkxk) =
∑

(st)kxk.

Since B → B[s, t, s−1, t−1] is free we see that F (B[t, s, t−1, s−1]) =
⊕

k,l∈Z F (B) ·
tksl and comparing coefficients in the expressions above we find F (a)(xk) = tkxk
as desired.

Finally, the image of F (B0) → F (B) is contained in F (B)(0) because B0 → B
a−→

B[t, t−1] is equal to B0 → B
p−→ B[t, t−1]. �

As a particular case of Lemma 42.3.7 note that

M(B)(k) = M ⊗A Bk
where Bk is the degree k part of the graded A-algebra B.
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Lemma 42.3.8. Let A be a ring. Given a solid diagram

0 // L

ϕ

��

// A⊕n //

}}

A⊕m

M

of module-valued functors on AlgA with exact row there exists a dotted arrow making
the diagram commute.

Proof. Suppose that the map A⊕n → A⊕m is given by them×n-matrix (aij). Con-
sider the ring B = A[x1, . . . , xn]/(

∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B)

maps to zero in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Note that
ξ has the following universal property: for any A-algebra C and any ξ′ ∈ L(C) there
exists an A-algebra map B → C such that ξ maps to ξ′ via the map L(B)→ L(C).

Note that B is a graded A-algebra, hence we can use Lemmas 42.3.7 and 42.3.5
to decompose the values of our functors on B into graded pieces. Note that ξ ∈
L(B)(1) as (x1, . . . , xn) is an element of degree one in A⊕n(B). Hence we see that
ϕ(ξ) ∈ M(B)(1) = M ⊗A B1. Since B1 is generated by x1, . . . , xn as an A-module
we can write ϕ(ξ) =

∑
mi ⊗ xi. Consider the map A⊕n → M which maps the

ith basis vector to mi. By construction the associated map A⊕n → M maps the
element ξ to ϕ(ξ). It follows from the universal property mentioned above that the
diagram commutes. �

Lemma 42.3.9. Let A be a ring. Let ϕ : F → M be a map of module-valued
functors on AlgA with F adequate. Then Coker(ϕ) is adequate.

Proof. By Lemma 42.3.6 we may assume that F =
⊕
Li is a direct sum of linearly

adequate functors. Choose exact sequences 0 → Li → A⊕ni → A⊕mi . For each i
choose a map A⊕ni →M as in Lemma 42.3.8. Consider the diagram

0 //⊕Li //

��

⊕
A⊕ni //

zz

⊕
A⊕mi

M

Consider the A-modules

Q = Coker(
⊕

A⊕ni →M⊕
⊕

A⊕mi) and P = Coker(
⊕

A⊕ni →
⊕

A⊕mi).

Then we see that Coker(ϕ) is isomorphic to the kernel of Q→ P . �

Lemma 42.3.10. Let A be a ring. Let ϕ : F → G be a map of adequate functors
on AlgA. Then Coker(ϕ) is adequate.

Proof. Choose an injection G → M . Then we have an injection G/F → M/F .
By Lemma 42.3.9 we see that M/F is adequate, hence we can find an injection
M/F → N . Composing we obtain an injection G/F → N . By Lemma 42.3.9 the
cokernel of the induced map G → N is adequate hence we can find an injection
N/G→ K. Then 0→ G/F → N → K is exact and we win. �

Lemma 42.3.11. Let A be a ring. Let ϕ : F → G be a map of adequate functors
on AlgA. Then Ker(ϕ) is adequate.
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Proof. Choose an injection F →M and an injection G→ N . Denote F →M ⊕N
the diagonal map so that

F

��

// G

��
M ⊕N // N

commutes. By Lemma 42.3.10 we can find a module map M ⊕N → K such that F
is the kernel of M ⊕N → K. Then Ker(ϕ) is the kernel of M ⊕N → K ⊕N . �

Lemma 42.3.12. Let A be a ring. An arbitrary direct sum of adequate functors
on AlgA is adequate. A colimit of adequate functors is adequate.

Proof. The statement on direct sums is immediate. A general colimit can be
written as a kernel of a map between direct sums, see Categories, Lemma 4.14.11.
Hence this follows from Lemma 42.3.11. �

Lemma 42.3.13. Let A be a ring. Let F,G be module-valued functors on AlgA.
Let ϕ : F → G be a transformation of functors. Assume

(1) ϕ is additive,
(2) for every A-algebra B and ξ ∈ F (B) and unit u ∈ B∗ we have ϕ(uξ) =

uϕ(ξ) in G(B), and
(3) for any flat ring map B → B′ we have G(B)⊗B B′ = G(B′).

Then ϕ is a morphism of module-valued functors.

Proof. Let B be an A-algebra, ξ ∈ F (B), and b ∈ B. We have to show that
ϕ(bξ) = bϕ(ξ). Consider the ring map

B → B′ = B[x, y, x−1, y−1]/(x+ y − b).
This ring map is faithfully flat, hence G(B) ⊂ G(B′). On the other hand

ϕ(bξ) = ϕ((x+ y)ξ) = ϕ(xξ) + ϕ(yξ) = xϕ(ξ) + yϕ(ξ) = (x+ y)ϕ(ξ) = bϕ(ξ)

because x, y are units in B′. Hence we win. �

Lemma 42.3.14. Let A be a ring. Let 0 → M → G → L → 0 be a short exact
sequence of module-valued functors on AlgA with L linearly adequate. Then G is
adequate.

Proof. We first point out that for any flat A-algebra map B → B′ the map
G(B) ⊗B B′ → G(B′) is an isomorphism. Namely, this holds for M and L, see
Lemma 42.3.5 and hence follows for G by the five lemma. In particular, by Lemma
42.3.7 we see that G(B) =

⊕
k∈ZG(B)(k) for any graded A-algebra B.

Choose an exact sequence 0 → L → A⊕n → A⊕m. Suppose that the map
A⊕n → A⊕m is given by the m × n-matrix (aij). Consider the graded A-algebra
B = A[x1, . . . , xn]/(

∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B) maps to zero

in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Observe that
ξ ∈ L(B)(1). The map

HomA(B,C) −→ L(C), f 7−→ L(f)(ξ)

defines an isomorphism of functors. The reason is that f is determined by the
images ci = f(xi) ∈ C which have to satisfy the relations

∑
aijcj = 0. And L(C)

is the set of n-tuples (c1, . . . , cn) satisfying the relations
∑
aijcj = 0.
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Since the value of each of the functors M , G, L on B is a direct sum of its weight
spaces (by the lemma mentioned above) exactness of 0 → M → G → L → 0
implies the sequence 0 → M(B)(1) → G(B)(1) → L(B)(1) → 0 is exact. Thus we
may choose an element θ ∈ G(B)(1) mapping to ξ.

Consider the graded A-algebra

C = A[x1, . . . , xn, y1, . . . , yn]/(
∑

aijxj ,
∑

aijyj)

There are three graded A-algebra homomorphisms p1, p2,m : B → C defined by
the rules

p1(xi) = xi, p1(xi) = yi, m(xi) = xi + yi.

We will show that the element

τ = G(m)(θ)−G(p1)(θ)−G(p2)(θ) ∈ G(C)

is zero. First, τ maps to zero in L(C) by a direct calculation. Hence τ is an
element of M(C). Moreover, since m, p1, p2 are graded algebra maps we see that
τ ∈ G(C)(1) and since M ⊂ G we conclude

τ ∈M(C)(1) = M ⊗A C1.

We may write uniquely τ = M(p1)(τ1) +M(p2)(τ2) with τi ∈M ⊗AB1 = M(B)(1)

because C1 = p1(B1) ⊕ p2(B1). Consider the ring map q1 : C → B defined by
xi 7→ xi and yi 7→ 0. Then M(q1)(τ) = M(q1)(M(p1)(τ1) + M(p2)(τ2)) = τ1. On
the other hand, because q1◦m = q1◦p1 we see that G(q1)(τ) = −G(q1◦p2)(τ). Since
q1 ◦ p2 factors as B → A→ B we see that G(q1 ◦ p2)(τ) is in G(B)(0), see Lemma
42.3.7. Hence τ1 = 0 because it is in G(B)(0) ∩M(B)(1) ⊂ G(B)(0) ∩G(B)(1) = 0.
Similarly τ2 = 0, whence τ = 0.

Since θ ∈ G(B) we obtain a transformation of functors

ψ : L(−) = HomA(B,−) −→ G(−)

by mapping f : B → C to G(f)(θ). Since θ is a lift of ξ the map ψ is a right inverse
of G→ L. In terms of ψ the statements proved above have the following meaning:
τ = 0 means that ψ is additive and θ ∈ G(B)(1) implies that for any A-algebra
D we have ψ(ul) = uψ(l) in G(D) for l ∈ L(D) and u ∈ D∗ a unit. This implies
that ψ is a morphism of module-valued functors, see Lemma 42.3.13. Clearly this
implies that G ∼= M ⊕ L and we win. �

Remark 42.3.15. Let A be a ring. The proof of Lemma 42.3.14 shows that any
extension 0→M → E → L→ 0 of module-valued functors on AlgA with L linearly
adequate splits. It uses only the following properties of the module-valued functor
F = M :

(1) F (B)⊗B B′ → F (B′) is an isomorphism for a flat ring map B → B′, and
(2) F (C)(1) = F (p1)(F (B)(1))⊕F (p2)(F (B)(1)) whereB = A[x1, . . . , xn]/(

∑
aijxj)

and C = A[x1, . . . , xn, y1, . . . , yn]/(
∑
aijxj ,

∑
aijyj).

These two properties hold for any adequate functor F ; details omitted. Hence we
see that L is a projective object of the abelian category of adequate functors.

Lemma 42.3.16. Let A be a ring. Let 0 → F → G → H → 0 be a short exact
sequence of module-valued functors on AlgA. If F and H are adequate, so is G.
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Proof. Choose an exact sequence 0 → F → M → N . If we can show that
(M ⊕ G)/F is adequate, then G is the kernel of the map of adequate functors
(M⊕G)/F → N , hence adequate by Lemma 42.3.11. Thus we may assume F = M .

We can choose a surjection L → H where L is a direct sum of linearly adequate
functors, see Lemma 42.3.6. If we can show that the pullback G×H L is adequate,
then G is the cokernel of the map Ker(L → H) → G ×H L hence adequate by
Lemma 42.3.10. Thus we may assume that H =

⊕
Li is a direct sum of linearly

adequate functors. By Lemma 42.3.14 each of the pullbacks G×H Li is adequate.
By Lemma 42.3.12 we see that

⊕
G×H Li is adequate. Then G is the cokernel of⊕

i 6=i′
F −→

⊕
G×H Li

where ξ in the summand (i, i′) maps to (0, . . . , 0, ξ, 0, . . . , 0,−ξ, 0, . . . , 0) with nonzero
entries in the summands i and i′. Thus G is adequate by Lemma 42.3.10. �

Lemma 42.3.17. Let A→ A′ be a ring map. If F is an adequate functor on AlgA,
then its restriction F ′ to AlgA′ is adequate too.

Proof. Choose an exact sequence 0 → F → M → N . Then F ′(B′) = F (B′) =
Ker(M ⊗AB′ → N ⊗AB′). Since M ⊗AB′ = M ⊗AA′⊗A′ B′ and similarly for N
we see that F ′ is the kernel of M ⊗A A′ → N ⊗A A′. �

Lemma 42.3.18. Let A → A′ be a ring map. If F ′ is an adequate functor on
AlgA′ , then the module-valued functor F : B 7→ F ′(A′ ⊗A B) on AlgA is adequate
too.

Proof. Choose an exact sequence 0→ F ′ →M ′ → N ′. Then

F (B) = F ′(A′ ⊗A B)

= Ker(M ′ ⊗A′ (A′ ⊗A B)→ N ′ ⊗A′ (A′ ⊗A B))

= Ker(M ′ ⊗A B → N ′ ⊗A B)

Thus F is the kernel of M → N where M = M ′ and N = N ′ viewed as A-
modules. �

Lemma 42.3.19. Let A = A1×. . .×An be a product of rings. An adequate functor
over A is the same thing as a sequence F1, . . . , Fn of adequate functors Fi over Ai.

Proof. This is true because an A-algebra B is canonically a product B1× . . .×Bn
and the same thing holds for A-modules. Setting F (B) =

∐
Fi(Bi) gives the

correspondence. Details omitted. �

Lemma 42.3.20. Let A→ A′ be a ring map and let F be a module-valued functor
on AlgA such that

(1) the restriction F ′ of F to the category of A′-algebras is adequate, and
(2) for any A-algebra B the sequence

0→ F (B)→ F (B ⊗A A′)→ F (B ⊗A A′ ⊗A A′)
is exact.

Then F is adequate.

Proof. The functors B → F (B ⊗A A′) and B 7→ F (B ⊗A A′ ⊗A A′) are adequate,
see Lemmas 42.3.18 and 42.3.17. Hence F as a kernel of a map of adequate functors
is adequate, see Lemma 42.3.11. �
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42.4. Higher exts of adequate functors

Let A be a ring. In Lemma 42.3.16 we have seen that any extension of adequate
functors in the category of module-valued functors on AlgA is adequate. In this
section we show that the same remains true for higher ext groups.

Lemma 42.4.1. Let A be a ring. For every module-valued functor F on AlgA there
exists a morphism Q(F ) → F of module-valued functors on AlgA such that (1)
Q(F ) is adequate and (2) for every adequate functor G the map Hom(G,Q(F ))→
Hom(G,F ) is a bijection.

Proof. Choose a set {Li}i∈I of linearly adequate functors such that every linearly
adequate functor is isomorphic to one of the Li. This is possible. Suppose that we
can find Q(F ) → F with (1) and (2)’ or every i ∈ I the map Hom(Li, Q(F )) →
Hom(Li, F ) is a bijection. Then (2) holds. Namely, combining Lemmas 42.3.6 and
42.3.11 we see that every adequate functor G sits in an exact sequence

K → L→ G→ 0

with K and L direct sums of linearly adequate functors. Hence (2)’ implies that
Hom(L,Q(F )) → Hom(L,F ) and Hom(K,Q(F )) → Hom(K,F ) are bijections,
whence the same thing for G.

Consider the category I whose objects are pairs (i, ϕ) where i ∈ I and ϕ : Li → F
is a morphism. A morphism (i, ϕ) → (i′, ϕ′) is a map ψ : Li → Li′ such that
ϕ′ ◦ ψ = ϕ. Set

Q(F ) = colim(i,ϕ)∈Ob(I) Li

There is a natural map Q(F ) → F , by Lemma 42.3.12 it is adequate, and by
construction it has property (2)’. �

Lemma 42.4.2. Let A be a ring. Denote P the category of module-valued functors
on AlgA and A the category of adequate functors on AlgA. Denote i : A → P the
inclusion functor. Denote Q : P → A the construction of Lemma 42.4.1. Then

(1) i is fully faithful, exact, and its image is a weak Serre subcategory,
(2) P has enough injectives,
(3) the functor Q is a right adjoint to i hence left exact,
(4) Q transforms injectives into injectives,
(5) A has enough injectives.

Proof. This lemma just collects some facts we have already seen so far. Part (1)
is clear from the definitions, the characterization of weak Serre subcategories (see
Homology, Lemma 12.9.3), and Lemmas 42.3.10, 42.3.11, and 42.3.16. Recall that
P is equivalent to the category PMod((Aff/Spec(A))τ ,O). Hence (2) by Injectives,
Proposition 19.8.5. Part (3) follows from Lemma 42.4.1 and Categories, Lemma
4.24.4. Parts (4) and (5) follow from Homology, Lemmas 12.25.1 and 12.25.3. �

Let A be a ring. As in Formal Deformation Theory, Section 68.10 given an A-
algebra B and an B-module N we set B[N ] equal to the R-algebra with underlying
B-module B⊕N with multiplication given by (b,m)(b′,m′) = (bb′, bm′+b′m). Note
that this construction is functorial in the pair (B,N) where morphism (B,N) →
(B′, N ′) is given by an A-algebra map B → B′ and an B-module map N → N ′. In
some sense the functor TF of pairs defined in the following lemma is the tangent

http://stacks.math.columbia.edu/tag/06Z6
http://stacks.math.columbia.edu/tag/06Z7


2720 42. ADEQUATE MODULES

space of F . Below we will only consider pairs (B,N) such that B[N ] is an object
of AlgA.

Lemma 42.4.3. Let A be a ring. Let F be a module valued functor. For every
B ∈ Ob(AlgA) and B-module N there is a canonical decomposition

F (B[N ]) = F (B)⊕ TF (B,N)

characterized by the following properties

(1) TF (B,N) = Ker(F (B[N ])→ F (B)),
(2) there is a B-module structure TF (B,N) compatible with B[N ]-module

structure on F (B[N ]),
(3) TF is a functor from the category of pairs (B,N),
(4) there are canonical maps N ⊗B F (B) → TF (B,N) inducing a transfor-

mation between functors defined on the category of pairs (B,N),
(5) TF (B, 0) = 0 and the map TF (B,N)→ TF (B,N ′) is zero when N → N ′

is the zero map.

Proof. Since B → B[N ] → B is the identity we see that F (B) → F (B[N ]) is
a direct summand whose complement is TF (N,B) as defined in (1). This con-
struction is functorial in the pair (B,N) simply because given a morphism of pairs
(B,N)→ (B′, N ′) we obtain a commutative diagram

B′ // B′[N ′] // B′

B //

OO

B[N ] //

OO

B

OO

in AlgA. The B-module structure comes from the B[N ]-module structure and the
ring map B → B[N ]. The map in (4) is the composition

N ⊗B F (B) −→ B[N ]⊗B[N ] F (B[N ]) −→ F (B[N ])

whose image is contained in TF (B,N). (The first arrow uses the inclusions N →
B[N ] and F (B) → F (B[N ]) and the second arrow is the multiplication map.) If
N = 0, then B = B[N ] hence TF (B, 0) = 0. If N → N ′ is zero then it factors as
N → 0→ N ′ hence the induced map is zero since TF (B, 0) = 0. �

Let A be a ring. Let M be an A-module. Then the module-valued functor M has
tangent space TM given by the rule TM(B,N) = N ⊗A M . In particular, for B
given, the functor N 7→ TM(B,N) is additive and right exact. It turns out this
also holds for injective module-valued functors.

Lemma 42.4.4. Let A be a ring. Let I be an injective object of the category of
module-valued functors. Then for any B ∈ Ob(AlgA) and short exact sequence
0→ N1 → N → N2 → 0 of B-modules the sequence

TI(B,N1)→ TI(B,N)→ TI(B,N2)→ 0

is exact.

Proof. We will use the results of Lemma 42.4.3 without further mention. Denote
h : AlgA → Sets the functor given by h(C) = MorA(B[N ], C). Similarly for h1 and
h2. The map B[N ]→ B[N2] corresponding to the surjection N → N2 is surjective.
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It corresponds to a map h2 → h such that h2(C) → h(C) is injective for all A-
algebras C. On the other hand, there are two maps p, q : h→ h1, corresponding to
the zero map N1 → N and the injection N1 → N . Note that

h2
// h

//
// h1

is an equalizer diagram. Denote Oh the module-valued functor C 7→
⊕

h(C) C.

Similarly for Oh1
and Oh2

. Note that

HomP(Oh, F ) = F (B[N ])

where P is the category of of module-valued functors on AlgA. We claim there is
an equalizer diagram

Oh2
// Oh

//
// Oh1

in P. Namely, suppose that C ∈ Ob(AlgA) and ξ =
∑
i=1,...,n ci · fi where ci ∈ C

and fi : B[N ]→ C is an element of Oh(C). If p(ξ) = q(ξ), then we see that∑
ci · fi ◦ z =

∑
ci · fi ◦ y

where z, y : B[N1] → B[N ] are the maps z : (b,m1) 7→ (b, 0) and y : (b,m1) 7→
(b,m1). This means that for every i there exists a j such that fj ◦z = fi◦y. Clearly,

this implies that fi(N1) = 0, i.e., fi factors through a unique map f i : B[N2]→ C.
Hence ξ is the image of ξ =

∑
ci ·f i. Since I is injective, it transforms this equalizer

diagram into a coequalizer diagram

I(B[N1])
//
// I(B[N ]) // I(B[N2])

This diagram is compatible with the direct sum decompositions I(B[N ]) = I(B)⊕
TI(B,N) and I(B[Ni]) = I(B) ⊕ TI(B,Ni). The zero map N → N1 induces the
zero map TI(B,N)→ TI(B,N1). Thus we see that the coequalizer property above
means we have an exact sequence TI(B,N1) → TI(B,N) → TI(B,N2) → 0 as
desired. �

Lemma 42.4.5. Let A be a ring. Let F be a module-valued functor such that for
any B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a short exact
sequence of B-modules into a right exact sequence. Then

(1) TF (B,N1 ⊕N2) = TF (B,N1)⊕ TF (B,N2),
(2) there is a second functorial B-module structure on TF (B,N) defined by

setting x · b = TF (B, b · 1N )(x) for x ∈ TF (B,N) and b ∈ B,
(3) the canonical map N ⊗B F (B)→ TF (B,N) of Lemma 42.4.3 is B-linear

also with respect to the second B-module structure,
(4) given a finitely presented B-module N there is a canonical isomorphism

TF (B,B) ⊗B N → TF (B,N) where the tensor product uses the second
B-module structure on TF (B,B).

Proof. We will use the results of Lemma 42.4.3 without further mention. The
maps N1 → N1 ⊕N2 and N2 → N1 ⊕N2 give a map TF (B,N1) ⊕ TF (B,N2) →
TF (B,N1⊕N2) which is injective since the maps N1⊕N2 → N1 and N1⊕N2 → N2

induce an inverse. Since TF is right exact we see that TF (B,N1) → TF (B,N1 ⊕
N2)→ TF (B,N2)→ 0 is exact. Hence TF (B,N1)⊕TF (B,N2)→ TF (B,N1⊕N2)
is an isomorphism. This proves (1).
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To see (2) the only thing we need to show is that x · (b1 + b2) = x · b1 + x · b2.
(Associativity and additivity are clear.) To see this consider

N
(b1,b2)−−−−→ N ⊕N +−→ N

and apply TF (B,−).

Part (3) follows immediately from the fact that N ⊗B F (B)→ TF (B,N) is func-
torial in the pair (B,N).

Suppose N is a finitely presented B-module. Choose a presentation B⊕m → B⊕n →
N → 0. This gives an exact sequence

TF (B,B⊕m)→ TF (B,B⊕n)→ TF (B,N)→ 0

by right exactness of TF (B,−). By part (1) we can write TF (B,B⊕m) = TF (B,B)⊕m

and TF (B,B⊕n) = TF (B,B)⊕n. Next, suppose that B⊕m → B⊕n is given by the
matrix T = (bij). Then the induced map TF (B,B)⊕m → TF (B,B)⊕n is given by
the matrix with entries TF (B, bij · 1B). This combined with right exactness of ⊗
proves (4). �

Example 42.4.6. Let F be a module-valued functor as in Lemma 42.4.5. It is
not always the case that the two module structures on TF (B,N) agree. Here is an
example. Suppose A = Fp where p is a prime. Set F (B) = B but with B-module
structure given by b ·x = bpx. Then TF (B,N) = N with B-module structure given
by b · x = bpx for x ∈ N . However, the second B-module structure is given by
x · b = bx. Note that in this case the canonical map N ⊗B F (B) → TF (B,N) is
zero as raising an element n ∈ B[N ] to the pth power is zero.

In the following lemma we will frequently use the observation that if 0→ F → G→
H → 0 is an exact sequence of module-valued functors on AlgA, then for any pair
(B,N) the sequence 0→ TF (B,N)→ TG(B,N)→ TH(B,N)→ 0 is exact. This
follows from the fact that 0→ F (B[N ])→ G(B[N ])→ H(B[N ])→ 0 is exact.

Lemma 42.4.7. Let A be a ring. For F a module-valued functor on AlgA say (∗)
holds if for all B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a
short exact sequence of B-modules into a right exact sequence. Let 0→ F → G→
H → 0 be a short exact sequence of module-valued functors on AlgA.

(1) If (∗) holds for F,G then (∗) holds for H.
(2) If (∗) holds for F,H then (∗) holds for G.
(3) If H ′ → H is morphism of module-valued functors on AlgA and (∗) holds

for F , G, H, and H ′, then (∗) holds for G×H H ′.
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Proof. Let B be given. Let 0 → N1 → N2 → N3 → 0 be a short exact sequence
of B-modules. Part (1) follows from a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) //

��

TH(B,N3) // 0

0 0

with exact horizontal rows and exact columns involving TF and TG. To prove part
(2) we do a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) // TH(B,N3) //

��

0

0 0

with exact horizontal rows and exact columns involving TF and TH. Part (3)
follows from part (2) as G×H H ′ sits in the exact sequence 0→ F → G×H H ′ →
H ′ → 0. �

Most of the work in this section was done in order to prove the following key
vanishing result.

Lemma 42.4.8. Let A be a ring. Let M , P be A-modules with P of finite presen-
tation. Then ExtiP(P ,M) = 0 for i > 0 where P is the category of module-valued
functors on AlgA.

Proof. Choose an injective resolution M → I• in P, see Lemma 42.4.2. By Derived
Categories, Lemma 13.27.2 any element of ExtiP(P ,M) comes from a morphism
ϕ : P → Ii with di ◦ ϕ = 0. We will prove that the Yoneda extension

E : 0→M → I0 → . . .→ Ii−1 ×Ker(di) P → P → 0

of P by M associated to ϕ is trivial, which will prove the lemma by Derived Cate-
gories, Lemma 13.27.5.

For F a module-valued functor on AlgA say (∗) holds if for all B ∈ Ob(AlgA) the
functor TF (B,−) on B-modules transforms a short exact sequence of B-modules
into a right exact sequence. Recall that the module-valued functors M, In, P each
have property (∗), see Lemma 42.4.4 and the remarks preceding it. By splitting 0→
M → I• into short exact sequences we find that each of the functors Im(dn−1) =
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Ker(dn) ⊂ In has property (∗) by Lemma 42.4.7 and also that Ii−1 ×Ker(di) P has
property (∗).
Thus we may assume the Yoneda extension is given as

E : 0→M → Fi−1 → . . .→ F0 → P → 0

where each of the module-valued functors Fj has property (∗). Set Gj(B) =
TFj(B,B) viewed as a B-module via the second B-module structure defined in
Lemma 42.4.5. Since TFj is a functor on pairs we see that Gj is a module-
valued functor on AlgA. Moreover, since E is an exact sequence the sequence
Gj+1 → Gj → Gj−1 is exact (see remark preceding Lemma 42.4.7). Observe that
TM(B,B) = M ⊗A B = M(B) and that the two B-module structures agree on
this. Thus we obtain a Yoneda extension

E′ : 0→M → Gi−1 → . . .→ G0 → P → 0

Moreover, the canonical maps

Fj(B) = B ⊗B Fj(B) −→ TFj(B,B) = Gj(B)

of Lemma 42.4.3 (4) are B-linear by Lemma 42.4.5 (3) and functorial in B. Hence
a map

0 // M //

1

��

Fi−1
//

��

. . . // F0
//

��

P //

1

��

0

0 // M // Gi−1
// . . . // G0

// P // 0

of Yoneda extensions. In particular we see that E and E′ have the same class in
ExtiP(P ,M) by the lemma on Yoneda Exts mentioned above. Finally, let N be a
A-module of finite presentation. Then we see that

0→ TM(A,N)→ TFi−1(A,N)→ . . .→ TF0(A,N)→ TP (A,N)→ 0

is exact. By Lemma 42.4.5 (4) with B = A this translates into the exactness of the
sequence of A-modules

0→M ⊗A N → Gi−1(A)⊗A N → . . .→ G0(A)⊗A N → P ⊗A N → 0

Hence the sequence of A-modules 0→ M → Gi−1(A)→ . . .→ G0(A)→ P → 0 is
universally exact, in the sense that it remains exact on tensoring with any finitely
presented A-module N . Let K = Ker(G0(A)→ P ) so that we have exact sequences

0→ K → G0(A)→ P → 0 and G2(A)→ G1(A)→ K → 0

Tensoring the second sequence with N we obtain that K ⊗AN = Coker(G2(A)⊗A
N → G1(A)⊗AN). Exactness of G2(A)⊗AN → G1(A)⊗AN → G0(A)⊗AN then
implies that K ⊗A N → G0(A) ⊗A N is injective. By Algebra, Theorem 10.79.3
this means that the A-module extension 0 → K → G0(A) → P → 0 is exact, and
because P is assumed of finite presentation this means the sequence is split, see
Algebra, Lemma 10.79.4. Any splitting P → G0(A) defines a map P → G0 which
splits the surjection G0 → P . Thus the Yoneda extension E′ is equivalent to the
trivial Yoneda extension and we win. �

Lemma 42.4.9. Let A be a ring. Let M be an A-module. Let L be a linearly
adequate functor on AlgA. Then ExtiP(L,M) = 0 for i > 0 where P is the category
of module-valued functors on AlgA.
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Proof. Since L is linearly adequate there exists an exact sequence

0→ L→ A⊕m → A⊕n → P → 0

Here P = Coker(A⊕m → A⊕n) is the cokernel of the map of finite free A-modules
which is given by the definition of linearly adequate functors. By Lemma 42.4.8 we
have the vanishing of ExtiP(P ,M) and ExtiP(A,M) for i > 0. Let K = Ker(A⊕n →
P ). By the long exact sequence of Ext groups associated to the exact sequence
0 → K → A⊕n → P → 0 we conclude that ExtiP(K,M) = 0 for i > 0. Repeating
with the sequence 0→ L→ A⊕m → K → 0 we win. �

Lemma 42.4.10. With notation as in Lemma 42.4.2 we have RpQ(F ) = 0 for all
p > 0 and any adequate functor F .

Proof. Choose an exact sequence 0 → F → M0 → M1. Set M2 = Coker(M0 →
M1) so that 0 → F → M0 → M1 → M2 → 0 is a resolution. By Derived
Categories, Lemma 13.21.3 we obtain a spectral sequence

RpQ(Mq)⇒ Rp+qQ(F )

Since Q(Mq) = Mq it suffices to prove RpQ(M) = 0, p > 0 for any A-module M .

Choose an injective resolution M → I• in the category P. Suppose that RiQ(M)
is nonzero. Then Ker(Q(Ii) → Q(Ii+1)) is strictly bigger than the image of
Q(Ii−1)→ Q(Ii). Hence by Lemma 42.3.6 there exists a linearly adequate functor
L and a map ϕ : L → Q(Ii) mapping into the kernel of Q(Ii) → Q(Ii+1) which
does not factor through the image of Q(Ii−1)→ Q(Ii). Because Q is a left adjoint
to the inclusion functor the map ϕ corresponds to a map ϕ′ : L→ Ii with the same
properties. Thus ϕ′ gives a nonzero element of ExtiP(L,M) contradicting Lemma
42.4.9. �

42.5. Adequate modules

In Descent, Section 34.7 we have seen that quasi-coherent modules on a scheme S
are the same as quasi-coherent modules on any of the big sites (Sch/S)τ associated
to S. We have seen that there are two issues with this identification:

(1) QCoh(OS)→ Mod((Sch/S)τ ,O), F 7→ Fa is not exact in general, and
(2) given a quasi-compact and quasi-separated morphism f : X → S the

functor f∗ does not preserve quasi-coherent sheaves on the big sites in
general.

Part (1) means that we cannot define a triangulated subcategory of D(O) consisting
of complexes whose cohomology sheaves are quasi-coherent. Part (2) means that
Rf∗F isn’t a complex with quasi-coherent cohomology sheaves even when F is
quasi-coherent and f is quasi-compact and quasi-separated. Moreover, the examples
given in the proofs of Descent, Lemma 34.7.13 and Descent, Proposition 34.7.14 are
not of a pathological nature.

In this section we discuss a slightly larger category of O-modules on (Sch/S)τ with
contains the quasi-coherent modules, is abelian, and is preserved under f∗ when f
is quasi-compact and quasi-separated. To do this, suppose that S is a scheme. Let
F be a presheaf of O-modules on (Sch/S)τ . For any affine object U = Spec(A) of
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(Sch/S)τ we can restrict F to (Aff/U)τ to get a presheaf of O-modules on this site.
The corresponding module-valued functor, see Section 42.3, will be denoted

F = FF,A : AlgA −→ Ab, B 7−→ F(Spec(B))

The assignment F 7→ FF,A is an exact functor of abelian categories.

Definition 42.5.1. A sheaf of O-modules F on (Sch/S)τ is adequate if there exists
a τ -covering {Spec(Ai)→ S}i∈I such that FF,Ai is adequate for all i ∈ I.

We will see below that the category of adequate O-modules is independent of the
chosen topology τ .

Lemma 42.5.2. Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
For any affine scheme Spec(A) over S the functor FF,A is adequate.

Proof. Let {Spec(Ai) → S}i∈I be a τ -covering such that FF,Ai is adequate for
all i ∈ I. We can find a standard affine τ -covering {Spec(A′j) → Spec(A)}j=1,...,m

such that Spec(A′j)→ Spec(A)→ S factors through Spec(Ai(j)) for some i(j) ∈ I.
Then we see that FF,A′j is the restriction of FF,Ai(j) to the category of A′j-algebras.

Hence FF,A′j is adequate by Lemma 42.3.17. By Lemma 42.3.19 the sequence FF,A′j
corresponds to an adequate “product” functor F ′ over A′ = A′1× . . .×A′m. As F is
a sheaf (for the Zariski topology) this product functor F ′ is equal to FF,A′ , i.e., is
the restriction of F to A′-algebras. Finally, {Spec(A′)→ Spec(A)} is a τ -covering.
It follows from Lemma 42.3.20 that FF,A is adequate. �

Lemma 42.5.3. Let S = Spec(A) be an affine scheme. The category of adequate
O-modules on (Sch/S)τ is equivalent to the category of adequate module-valued
functors on AlgA.

Proof. Given an adequate module F the functor FF,A is adequate by Lemma
42.5.2. Given an adequate functor F we choose an exact sequence 0→ F →M →
N and we consider the O-module F = Ker(Ma → Na) where Ma denotes the

quasi-coherent O-module on (Sch/S)τ associated to the quasi-coherent sheaf M̃ on
S. Note that F = FF,A, in particular the module F is adequate by definition.
We omit the proof that the constructions define mutually inverse equivalences of
categories. �

Lemma 42.5.4. Let f : T → S be a morphism of schemes. The pullback f∗F of
an adequate O-module F on (Sch/S)τ is an adequate O-module on (Sch/T )τ .

Proof. The pullback map f∗ : Mod((Sch/S)τ ,O) → Mod((Sch/T )τ ,O) is given
by restriction, i.e., f∗F(V ) = F(V ) for any scheme V over T . Hence this lemma
follows immediately from Lemma 42.5.2 and the definition. �

Here is a characterization of the category of adequate O-modules. To understand
the significance, consider a map G → H of quasi-coherent OS-modules on a scheme
S. The cokernel of the associated map Ga → Ha of O-modules is quasi-coherent
because it is equal to (H/G)a. But the kernel of Ga → Ha in general isn’t quasi-
coherent. However, it is adequate.

Lemma 42.5.5. Let S be a scheme. Let F be an O-module on (Sch/S)τ . The
following are equivalent

(1) F is adequate,
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(2) there exists an affine open covering S =
⋃
Si and maps of quasi-coherent

OSi-modules Gi → Hi such that F|(Sch/Si)τ is the kernel of Gai → Hai
(3) there exists a τ -covering {Si → S}i∈I and maps of OSi-quasi-coherent

modules Gi → Hi such that F|(Sch/Si)τ is the kernel of Gai → Hai ,
(4) there exists a τ -covering {fi : Si → S}i∈I such that each f∗i F is adequate,
(5) for any affine scheme U over S the restriction F|(Sch/U)τ is the kernel of

a map Ga → Ha of quasi-coherent OU -modules.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. By definition,
the functor F is adequate if and only if there exists a map of A-modules M → N
such that F = Ker(M → N). Combining with Lemmas 42.5.2 and 42.5.3 we see
that (1) and (5) are equivalent.

It is clear that (5) implies (2) and (2) implies (3). If (3) holds then we can refine
the covering {Si → S} such that each Si = Spec(Ai) is affine. Then we see, by the
prelimiary remarks of the proof, that FF,Ai is adequate. Thus F is adequate by
definition. Hence (3) implies (1).

Finally, (4) is equivalent to (1) using Lemma 42.5.4 for one direction and that a
composition of τ -coverings is a τ -covering for the other. �

Just like is true for quasi-coherent sheaves the category of adequate modules is
independent of the topology.

Lemma 42.5.6. Let F be an adequate O-module on (Sch/S)τ . For any surjective
flat morphism Spec(B)→ Spec(A) of affines over S the extended Čech complex

0→ F(Spec(A))→ F(Spec(B))→ F(Spec(B ⊗A B))→ . . .

is exact. In particular F satisfies the sheaf condition for fpqc coverings, and is a
sheaf of O-modules on (Sch/S)fppf .

Proof. With A → B as in the lemma let F = FF,A. This functor is adequate by
Lemma 42.5.2. By Lemma 42.3.5 since A → B, A → B ⊗A B, etc are flat we see
that F (B) = F (A)⊗A B, F (B ⊗A B) = F (A)⊗A B ⊗A B, etc. Exactness follows
from Descent, Lemma 34.3.6.

Thus F satisfies the sheaf condition for τ -coverings (in particular Zariski coverings)
and any faithfully flat covering of an affine by an affine. Arguing as in the proofs of
Descent, Lemma 34.5.1 and Descent, Proposition 34.5.2 we conclude that F satisfies
the sheaf condition for all fpqc coverings (made out of objects of (Sch/S)τ ). Details
omitted. �

Lemma 42.5.6 shows in particular that for any pair of topologies τ, τ ′ the collec-
tion of adequate modules for the τ -topology and the τ ′-topology are identical (as
presheaves of modules on the underlying category Sch/S).

Definition 42.5.7. Let S be a scheme. The category of adequate O-modules on
(Sch/S)τ is denoted Adeq(O) or Adeq((Sch/S)τ ,O). If we want to think just about
the abelian category of adequate modules without choosing a topology we simply
write Adeq(S).

Lemma 42.5.8. Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .

(1) The restriction F|SZar is a quasi-coherent OS-module on the scheme S.
(2) The restriction F|Sétale is the quasi-coherent module associated to F|SZar .

http://stacks.math.columbia.edu/tag/06VL
http://stacks.math.columbia.edu/tag/07AH
http://stacks.math.columbia.edu/tag/06VM


2728 42. ADEQUATE MODULES

(3) For any affine scheme U over S we have Hq(U,F) = 0 for all q > 0.
(4) There is a canonical isomorphism

Hq(S,F|SZar ) = Hq((Sch/S)τ ,F).

Proof. By Lemma 42.3.5 and Lemma 42.5.2 we see that for any flat morphism of
affines U → V over S we have F(U) = F(V )⊗O(V )O(U). This works in particular
if U ⊂ V ⊂ S are affine opens of S, hence F|SZar is quasi-coherent. Thus (1) holds.

Let S′ → S be an étale morphism of schemes. Then for U ⊂ S′ affine open mapping
into an affine open V ⊂ S we see that F(U) = F(V )⊗O(V ) O(U) because U → V
is étale, hence flat. Therefore F|S′Zar is the pullback of F|SZar . This proves (2).

We are going to apply Cohomology on Sites, Lemma 21.11.9 to the site (Sch/S)τ
with B the set of affine schemes over S and Cov the set of standard affine τ -
coverings. Assumption (3) of the lemma is satisfied by Descent, Lemma 34.7.8 and
Lemma 42.5.6 for the case of a covering by a single affine. Hence we conclude that
Hp(U,F) = 0 for every affine scheme U over S. This proves (3). In exactly the
same way as in the proof of Descent, Proposition 34.7.10 this implies the equality
of cohomologies (4). �

Remark 42.5.9. Let S be a scheme. We have functors u : QCoh(OS)→ Adeq(O)
and v : Adeq(O)→ QCoh(OS). Namely, the functor u : F 7→ Fa comes from taking
the associated O-module which is adequate by Lemma 42.5.5. Conversely, the
functor v comes from restriction v : G 7→ G|SZar , see Lemma 42.5.8. Since Fa can be
described as the pullback of F under a morphism of ringed topoi ((Sch/S)τ ,O)→
(SZar,OS), see Descent, Remark 34.7.6 and since restriction is the pushforward we
see that u and v are adjoint as follows

HomOS (F , vG) = HomO(uF ,G)

where O denotes the structure sheaf on the big site. It is immediate from the
description that the adjunction mapping F → vuF is an isomorphism for all quasi-
coherent sheaves.

Lemma 42.5.10. Let S be a scheme. Let F be a presheaf of O-modules on
(Sch/S)τ . If for every affine scheme Spec(A) over S the functor FF,A is adequate,
then the sheafification of F is an adequate O-module.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. The sheafifi-
cation F# = (F+)+, see Sites, Section 7.10. By construction

(F)+(U) = colimU Ȟ
0(U ,F)

where the colimit is over coverings in the site (Sch/S)τ . Since U is affine it suffices
to take the limit over standard affine τ -coverings U = {Ui → U}i∈I = {Spec(Ai)→
Spec(A)}i∈I of U . Since each A→ Ai and A→ Ai ⊗A Aj is flat we see that

Ȟ0(U ,F) = Ker(
∏

F (A)⊗A Ai →
∏

F (A)⊗A Ai ⊗A Aj)

by Lemma 42.3.5. Since A →
∏
Ai is faithfully flat we see that this always is

canonically isomorphic to F (A) by Descent, Lemma 34.3.6. Thus the presheaf (F)+

has the same value as F on all affine schemes over S. Repeating the argument once
more we deduce the same thing for F# = ((F)+)+. Thus FF,A = FF#,A and we

conclude that F# is adequate. �
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Lemma 42.5.11. Let S be a scheme.

(1) The category Adeq(O) is abelian.
(2) The functor Adeq(O)→ Mod((Sch/S)τ ,O) is exact.
(3) If 0 → F1 → F2 → F3 → 0 is a short exact sequence of O-modules and
F1 and F3 are adequate, then F2 is adequate.

(4) The category Adeq(O) has colimits and Adeq(O) → Mod((Sch/S)τ ,O)
commutes with them.

Proof. Let ϕ : F → G be a map of adequate O-modules. To prove (1) and (2) it
suffices to show that K = Ker(ϕ) andQ = Coker(ϕ) computed in Mod((Sch/S)τ ,O)
are adequate. Let U = Spec(A) be an affine scheme over S. Let F = FF,A and
G = FG,A. By Lemmas 42.3.11 and 42.3.10 the kernel K and cokernel Q of the
induced map F → G are adequate functors. Because the kernel is computed on the
level of presheaves, we see that K = FK,A and we conclude K is adequate. To prove
the result for the cokernel, denote Q′ the presheaf cokernel of ϕ. Then Q = FQ′,A
and Q = (Q′)#. Hence Q is adequate by Lemma 42.5.10.

Let 0 → F1 → F2 → F3 → 0 is a short exact sequence of O-modules and F1 and
F3 are adequate. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A.
The sequence of functors

0→ F1 → F2 → F3 → 0

is exact, because for V = Spec(B) affine over U we have H1(V,F1) = 0 by Lemma
42.5.8. Since F1 and F3 are adequate functors by Lemma 42.5.2 we see that F2 is
adequate by Lemma 42.3.16. Thus F2 is adequate.

Let I → Adeq(O), i 7→ Fi be a diagram. Denote F = colimi Fi the colimit
computed in Mod((Sch/S)τ ,O). To prove (4) it suffices to show that F is adequate.
Let F ′ = colimi Fi be the colimit computed in presheaves of O-modules. Then
F = (F ′)#. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A. By
Lemma 42.3.12 the functor colimi Fi = FF ′,A is adequate. Lemma 42.5.10 shows
that F is adequate. �

The following lemma tells us that the total direct image Rf∗F of an adequate
module under a quasi-compact and quasi-separated morphism is a complex whose
cohomology sheaves are adequate.

Lemma 42.5.12. Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. For any adequate OT -module on (Sch/T )τ the pushforward f∗F and
the higher direct images Rif∗F are adequate OS-modules on (Sch/S)τ .

Proof. First we explain how to compute the higher direct images. Choose an
injective resolution F → I•. Then Rif∗F is the ith cohomology sheaf of the
complex f∗I•. Hence Rif∗F is the sheaf associated to the presheaf which associates
to an object U/S of (Sch/S)τ the module

Ker(f∗Ii(U)→ f∗Ii+1(U))

Im(f∗Ii−1(U)→ f∗Ii(U))
=

Ker(Ii(U ×S T )→ Ii+1(U ×S T ))

Im(Ii−1(U ×S T )→ Ii(U ×S T ))

= Hi(U ×S T,F)

= Hi((Sch/U ×S T )τ ,F|(Sch/U×ST )τ )

= Hi(U ×S T,F|(U×ST )Zar )
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The first equality by Topologies, Lemma 33.7.12 (and its analogues for other topolo-
gies), the second equality by definition of cohomology of F over an object of
(Sch/T )τ , the third equality by Cohomology on Sites, Lemma 21.8.1, and the last
equality by Lemma 42.5.8. Thus by Lemma 42.5.10 it suffices to prove the claim
stated in the following paragraph.

Let A be a ring. Let T be a scheme quasi-compact and quasi-separated over A.
Let F be an adequate OT -module on (Sch/T )τ . For an A-algebra B set TB =
T ×Spec(A) Spec(B) and denote FB = F|(TB)Zar the restriction of F to the small
Zariski site of TB . (Recall that this is a “usual” quasi-coherent sheaf on the scheme
TB , see Lemma 42.5.8.) Claim: The functor

B 7−→ Hq(TB ,FB)

is adequate. We will prove the lemma by the usual procedure of cutting T into
pieces.

Case I: T is affine. In this case the schemes TB are all affine and Hq(TB ,FB) = 0
for all q ≥ 1. The functor B 7→ H0(TB ,FB) is adequate by Lemma 42.3.18.

Case II: T is separated. Let n be the minimal number of affines needed to cover
T . We argue by induction on n. The base case is Case I. Choose an affine open
covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1 and U = Vn. Observe that

U ∩ V = (V1 ∩ Vn) ∪ . . . ∪ (Vn−1 ∩ Vn)

is also a union of n−1 affine opens as T is separated, see Schemes, Lemma 25.21.8.
Note that for each B the base changes UB , VB and (U ∩ V )B = UB ∩ VB behave in
the same way. Hence we see that for each B we have a long exact sequence

0→ H0(TB ,FB)→ H0(UB ,FB)⊕H0(VB ,FB)→ H0((U∩V )B ,FB)→ H1(TB ,FB)→ . . .

functorial in B, see Cohomology, Lemma 20.9.2. By induction hypothesis the func-
tors B 7→ Hq(UB ,FB), B 7→ Hq(VB ,FB), and B 7→ Hq((U ∩ V )B ,FB) are ade-
quate. Using Lemmas 42.3.11 and 42.3.10 we see that our functor B 7→ Hq(TB ,FB)
sits in the middle of a short exact sequence whose outer terms are adequate. Thus
the claim follows from Lemma 42.3.16.

Case III: General quasi-compact and quasi-separated case. The proof is again by
induction on the number n of affines needed to cover T . The base case n = 1 is
Case I. Choose an affine open covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1

and U = Vn. Note that since T is quasi-separated U ∩ V is a quasi-compact open
of an affine scheme, hence Case II applies to it. The rest of the argument proceeds
in exactly the same manner as in the paragraph above and is omitted. �

42.6. Parasitic adequate modules

In this section we start comparing adequate modules and quasi-coherent modules
on a scheme S. Recall that there are functors u : QCoh(OS) → Adeq(O) and
v : Adeq(O)→ QCoh(OS) satisfying the adjunction

HomQCoh(OS)(F , vG) = HomAdeq(O)(uF ,G)

and such that F → vuF is an isomorphism for every quasi-coherent sheaf F , see
Remark 42.5.9. Hence u is a fully faithful embedding and we can identify QCoh(OS)
with a full subcategory of Adeq(O). The functor v is exact but u is not left exact
in general. The kernel of v is the subcategory of parasitic adequate modules.
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In Descent, Definition 34.8.1 we give the definition of a parasitic module. For
adequate modules the notion does not depend on the chosen topology.

Lemma 42.6.1. Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
The following are equivalent:

(1) vF = 0,
(2) F is parasitic,
(3) F is parasitic for the τ -topology,
(4) F(U) = 0 for all U ⊂ S open, and
(5) there exists an affine open covering S =

⋃
Ui such that F(Ui) = 0 for all

i.

Proof. The implications (2)⇒ (3)⇒ (4)⇒ (5) are immediate from the definitions.
Assume (5). Suppose that S =

⋃
Ui is an affine open covering such that F(Ui) = 0

for all i. Let V → S be a flat morphism. There exists an affine open covering
V =

⋃
Vj such that each Vj maps into some Ui. As the morphism Vj → S is flat,

also Vj → Ui is flat. Hence the corresponding ring map Ai = O(Ui)→ O(Vj) = Bj
is flat. Thus by Lemma 42.5.2 and Lemma 42.3.5 we see that F(Ui)⊗AiBj → F(Vj)
is an isomorphism. Hence F(Vj) = 0. Since F is a sheaf for the Zariski topology
we conclude that F(V ) = 0. In this way we see that (5) implies (2).

This proves the equivalence of (2), (3), (4), and (5). As (1) is equivalent to (3) (see
Remark 42.5.9) we conclude that all five conditions are equivalent. �

Let S be a scheme. The subcategory of parasitic adequate modules is a Serre
subcategory of Adeq(O). The quotient is the category of quasi-coherent modules.

Lemma 42.6.2. Let S be a scheme. The subcategory C ⊂ Adeq(O) of parasitic
adequate modules is a Serre subcategory. Moreover, the functor v induces an equiv-
alence of categories

Adeq(O)/C = QCoh(OS).

Proof. The category C is the kernel of the exact functor v : Adeq(O)→ QCoh(OS),
see Lemma 42.6.1. Hence it is a Serre subcategory by Homology, Lemma 12.9.4.
By Homology, Lemma 12.9.6 we obtain an induced exact functor v : Adeq(O)/C →
QCoh(OS). Because u is a right inverse to v we see right away that v is essentially
surjective. We see that v is faithful by Homology, Lemma 12.9.7. Because u is a
right inverse to v we finally conclude that v is fully faithful. �

Lemma 42.6.3. Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. For any parasitic adequate OT -module on (Sch/T )τ the pushforward
f∗F and the higher direct images Rif∗F are parasitic adequate OS-modules on
(Sch/S)τ .

Proof. We have already seen in Lemma 42.5.12 that these higher direct images
are adequate. Hence it suffices to show that (Rif∗F)(Ui) = 0 for any τ -covering
{Ui → S} open. And Rif∗F is parasitic by Descent, Lemma 34.8.3. �

42.7. Derived categories of adequate modules, I

Let S be a scheme. We continue the discussion started in Section 42.6. The exact
functor v induces a functor

D(Adeq(O)) −→ D(QCoh(OS))
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and similarly for bounded versions.

Lemma 42.7.1. Let S be a scheme. Let C ⊂ Adeq(O) denote the full subcategory
consisting of parasitic adequate modules. Then

D(Adeq(O))/DC(Adeq(O)) = D(QCoh(OS))

and similarly for the bounded versions.

Proof. Follows immediately from Derived Categories, Lemma 13.13.3. �

Next, we look for a description the other way around by looking at the functors

K+(QCoh(OS)) −→ K+(Adeq(O)) −→ D+(Adeq(O)) −→ D+(QCoh(OS)).

In some cases the derived category of adequate modules is a localization of the
homotopy category of complexes of quasi-coherent modules at universal quasi-
isomorphisms. Let S be a scheme. A map of complexes ϕ : F• → G• of quasi-
coherent OS-modules is said to be a universal quasi-isomorphism if for every mor-
phism of schemes f : T → S the pullback f∗ϕ is a quasi-isomorphism.

Lemma 42.7.2. Let U = Spec(A) be an affine scheme. The bounded below derived
category D+(Adeq(O)) is the localization of K+(QCoh(OU )) at the multiplicative
subset of universal quasi-isomorphisms.

Proof. If ϕ : F• → G• is a morphism of complexes of quasi-coherent OU -modules,
then uϕ : uF• → uG• is a quasi-isomorphism if and only if ϕ is a universal quasi-
isomorphism. Hence the collection S of universal quasi-isomorphisms is a satu-
rated multiplicative system compatible with the triangulated structure by Derived
Categories, Lemma 13.5.3. Hence S−1K+(QCoh(OU )) exists and is a triangulated
category, see Derived Categories, Proposition 13.5.5. We obtain a canonical functor
can : S−1K+(QCoh(OU ))→ D+(Adeq(O)) by Derived Categories, Lemma 13.5.6.

Note that, almost by definition, every adequate module on U has an embedding into
a quasi-coherent sheaf, see Lemma 42.5.5. Hence by Derived Categories, Lemma
13.16.4 given F• ∈ Ob(K+(Adeq(O))) there exists a quasi-isomorphism F• → uG•
where G• ∈ Ob(K+(QCoh(OU ))). This proves that can is essentially surjective.

Similarly, suppose that F• and G• are bounded below complexes of quasi-coherent
OU -modules. A morphism in D+(Adeq(O)) between these consists of a pair f :
uF• → H• and s : uG• → H• where s is a quasi-isomorphism. Pick a quasi-
isomorphism s′ : H• → uE•. Then we see that s′ ◦ f : F → E• and the universal
quasi-isomorphism s′◦s : G• → E• give a morphism in S−1K+(QCoh(OU )) mapping
to the given morphism. This proves the ”fully” part of full faithfulness. Faithfulness
is proved similarly. �

Lemma 42.7.3. Let U = Spec(A) be an affine scheme. The inclusion functor

Adeq(O)→ Mod((Sch/U)τ ,O)

has a right adjoint A1. Moreover, the adjunction mapping A(F) → F is an iso-
morphism for every adequate module F .

1This is the “adequator”.
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Proof. By Topologies, Lemma 33.7.11 (and similarly for the other topologies) we
may work with O-modules on (Aff/U)τ . Denote P the category of module-valued
functors on AlgA and A the category of adequate functors on AlgA. Denote i : A →
P the inclusion functor. Denote Q : P → A the construction of Lemma 42.4.1. We
have the commutative diagram

(42.7.3.1)

Adeq(O)
k
// Mod((Aff/U)τ ,O)

j
// PMod((Aff/U)τ ,O)

A i // P
The left vertical equality is Lemma 42.5.3 and the right vertical equality was ex-
plained in Section 42.3. Define A(F) = Q(j(F)). Since j is fully faithful it follows
immediately that A is a right adjoint of the inclusion functor k. Also, since k is
fully faithful too, the final assertion follows formally. �

The functor A is a right adjoint hence left exact. Since the inclusion functor is
exact, see Lemma 42.5.11 we conclude that A transforms injectives into injectives,
and that the category Adeq(O) has enough injectives, see Homology, Lemma 12.25.3
and Injectives, Theorem 19.8.4. This also follows from the equivalence in (42.7.3.1)
and Lemma 42.4.2.

Lemma 42.7.4. Let U = Spec(A) be an affine scheme. For any object F of
Adeq(O) we have RpA(F) = 0 for all p > 0 where A is as in Lemma 42.7.3.

Proof. With notation as in the proof of Lemma 42.7.3 choose an injective reso-
lution k(F) → I• in the category of O-modules on (Aff/U)τ . By Cohomology on
Sites, Lemmas 21.12.2 and Lemma 42.5.8 the complex j(I•) is exact. On the other
hand, each j(In) is an injective object of the category of presheaves of modules by
Cohomology on Sites, Lemma 21.12.1. It follows that RpA(F) = RpQ(j(k(F))).
Hence the result now follows from Lemma 42.4.10. �

Let S be a scheme. By the discussion in Section 42.5 the embedding Adeq(O) ⊂
Mod((Sch/S)τ ,O) exhibits Adeq(O) as a weak Serre subcategory of the category of
all O-modules. Denote

DAdeq(O) ⊂ D(O) = D(Mod((Sch/S)τ ,O))

the triangulated subcategory of complexes whose cohomology sheaves are adequate,
see Derived Categories, Section 13.13. We obtain a canonical functor

D(Adeq(O)) −→ DAdeq(O)

see Derived Categories, Equation (13.13.1.1).

Lemma 42.7.5. If U = Spec(A) is an affine scheme, then the bounded below
version

(42.7.5.1) D+(Adeq(O)) −→ D+
Adeq(O)

of the functor above is an equivalence.

Proof. Let A : Mod(O) → Adeq(O) be the right adjoint to the inclusion functor
constructed in Lemma 42.7.3. Since A is left exact and since Mod(O) has enough
injectives, A has a right derived functor RA : D+

Adeq(O)→ D+(Adeq(O)). We claim

that RA is a quasi-inverse to (42.7.5.1). To see this the key fact is that if F is an
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adequate module, then the adjunction map F → RA(F) is a quasi-isomorphism by
Lemma 42.7.4.

Namely, to prove the lemma in full it suffices to show:

(1) Given F• ∈ K+(Adeq(O)) the canonical map F• → RA(F•) is a quasi-
isomorphism, and

(2) given G• ∈ K+(Mod(O)) the canonical map RA(G•) → G• is a quasi-
isomorphism.

Both (1) and (2) follow from the key fact via a spectral sequence argument using
one of the spectral sequences of Derived Categories, Lemma 13.21.3. Some details
omitted. �

Lemma 42.7.6. Let U = Spec(A) be an affine scheme. Let F and G be adequate
O-modules. For any i ≥ 0 the natural map

ExtiAdeq(O)(F ,G) −→ ExtiMod(O)(F ,G)

is an isomorphism.

Proof. By definition these ext groups are computed as hom sets in the derived
category. Hence this follows immediately from Lemma 42.7.5. �

42.8. Pure extensions

We want to characterize extensions of quasi-coherent sheaves on the big site of an
affine schemes in terms of algebra. To do this we introduce the following notion.

Definition 42.8.1. Let A be a ring.

(1) An A-module P is said to be pure projective if for every universally
exact sequence 0 → K → M → N → 0 of A-module the sequence
0→ HomA(P,K)→ HomA(P,M)→ HomA(P,N)→ 0 is exact.

(2) An A-module I is said to be pure injective if for every universally ex-
act sequence 0 → K → M → N → 0 of A-module the sequence 0 →
HomA(N, I)→ HomA(M, I)→ HomA(K, I)→ 0 is exact.

Let’s characterize pure projectives.

Lemma 42.8.2. Let A be a ring.

(1) A module is pure projective if and only if it is a direct summand of a direct
sum of finitely presented A-modules.

(2) For any module M there exists a universally exact sequence 0 → N →
P →M → 0 with P pure projective.

Proof. First note that a finitely presented A-module is pure projective by Algebra,
Theorem 10.79.3. Hence a direct summand of a direct sum of finitely presented A-
modules is indeed pure projective. Let M be any A-module. Write M = colimi∈I Pi
as a filtered colimit of finitely presented A-modules. Consider the sequence

0→ N →
⊕

Pi →M → 0.

For any finitely presented A-module P the map HomA(P,
⊕
Pi) → HomA(P,M)

is surjective, as any map P → M factors through some Pi. Hence by Algebra,
Theorem 10.79.3 this sequence is universally exact. This proves (2). If now M is
pure projective, then the sequence is split and we see that M is a direct summand
of
⊕
Pi. �
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Let’s characterize pure injectives.

Lemma 42.8.3. Let A be a ring. For any A-module M set M∧ = HomZ(M,Q/Z).

(1) For any A-module M the A-module M∧ is pure injective.
(2) An A-module I is pure injective if and only if the map I → (I∧)∧ splits.
(3) For any module M there exists a universally exact sequence 0 → M →

I → N → 0 with I pure injective.

Proof. We will use the properties of the functor M 7→M∧ found in More on Alge-
bra, Section 15.42 without further mention. Part (1) holds because HomA(N,M∧) =
HomZ(N ⊗A M,Q/Z) and because Q/Z is injective in the category of abelian
groups. Hence if I → (I∧)∧ is split, then I is pure injective. We claim that
for any A-module M the evaluation map ev : M → (M∧)∧ is universally injec-
tive. To see this note that ev∧ : ((M∧)∧)∧ → M∧ has a right inverse, namely
ev′ : M∧ → ((M∧)∧)∧. Then for any A-module N applying the exact faithful
functor ∧ to the map N ⊗AM → N ⊗A (M∧)∧ gives

HomA(N, ((M∧)∧)∧) =
(
N ⊗A (M∧)∧

)∧
→
(
N ⊗AM

)∧
= HomA(N,M∧)

which is surjective by the existence of the right inverse. The claim follows. The
claim implies (3) and the necessity of the condition in (2). �

Before we continue we make the following observation which we will use frequently
in the rest of this section.

Lemma 42.8.4. Let A be a ring.

(1) Let L → M → N be a universally exact sequence of A-modules. Let
K = Im(M → N). Then K → N is universally injective.

(2) Any universally exact complex can be split into universally exact short
exact sequences.

Proof. Proof of (1). For any A-module T the sequence L ⊗A T → M ⊗A T →
K⊗AT → 0 is exact by right exactness of ⊗. By assumption the sequence L⊗AT →
M ⊗A T → N ⊗A T is exact. Combined this shows that K ⊗A T → N ⊗A T is
injective.

Part (2) means the following: Suppose that M• is a universally exact complex of
A-modules. Set Ki = Ker(di) ⊂ M i. Then the short exact sequences 0 → Ki →
M i → Ki+1 → 0 are universally exact. This follows immediately from part (1). �

Definition 42.8.5. Let A be a ring. Let M be an A-module.

(1) A pure projective resolution P• →M is a universally exact sequence

. . .→ P1 → P0 →M → 0

with each Pi pure projective.
(2) A pure injective resolution M → I• is a universally exact sequence

0→M → I0 → I1 → . . .

with each Ii pure injective.

These resolutions satisfy the usual uniqueness properties among the class of all
universally exact left or right resolutions.

Lemma 42.8.6. Let A be a ring.
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(1) Any A-module has a pure projective resolution.

Let M → N be a map of A-modules. Let P• → M be a pure projective resolution
and let N• → N be a universally exact resolution.

(2) There exists a map of complexes P• → N• inducing the given map

M = Coker(P1 → P0)→ Coker(N1 → N0) = N

(3) two maps α, β : P• → N• inducing the same map M → N are homotopic.

Proof. Part (1) follows immediately from Lemma 42.8.2. Before we prove (2)
and (3) note that by Lemma 42.8.4 we can split the universally exact complex
N• → N → 0 into universally exact short exact sequences 0→ K0 → N0 → N → 0
and 0→ Ki → Ni → Ki−1 → 0.

Proof of (2). Because P0 is pure projective we can find a map P0 → N0 lifting the
map P0 → M → N . We obtain an induced map P1 → F0 → N0 wich ends up in
K0. Since P1 is pure projective we may lift this to a map P1 → N1. This in turn
induces a map P2 → P1 → N1 which maps to zero into N0, i.e., into K1. Hence we
may lift to get a map P2 → N2. Repeat.

Proof of (3). To show that α, β are homotopic it suffices to show the difference
γ = α− β is homotopic to zero. Note that the image of γ0 : P0 → N0 is contained
in K0. Hence we may lift γ0 to a map h0 : P0 → N1. Consider the map γ′1 =
γ1 − h0 ◦ dP,1 : P1 → N1. By our choice of h0 we see that the image of γ′1 is
contained in K1. Since P1 is pure projective may lift γ′1 to a map h1 : P1 → N2.
At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. �

Lemma 42.8.7. Let A be a ring.

(1) Any A-module has a pure injective resolution.

Let M → N be a map of A-modules. Let M →M• be a universally exact resolution
and let N → I• be a pure injective resolution.

(2) There exists a map of complexes M• → I• inducing the given map

M = Ker(M0 →M1)→ Ker(I0 → I1) = N

(3) two maps α, β : M• → I• inducing the same map M → N are homotopic.

Proof. This lemma is dual to Lemma 42.8.6. The proof is identical, except one
has to reverse all the arrows. �

Using the material above we can define pure extension groups as follows. Let A be
a ring and let M , N be A-modules. Choose a pure injective resolution N → I•.
By Lemma 42.8.7 the complex

HomA(M, I•)

is well defined up to homotopy. Hence its ith cohomology module is a well defined
invariant of M and N .

Definition 42.8.8. Let A be a ring and let M , N be A-modules. The ith
pure extension module PextiA(M,N) is the ith cohomology module of the complex
HomA(M, I•) where I• is a pure injective resolution of N .

Warning: It is not true that an exact sequence of A-modules gives rise to a long
exact sequence of pure extensions groups. (You need a universally exact sequence
for this.) We collect some facts which are obvious from the material above.
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Lemma 42.8.9. Let A be a ring.

(1) PextiA(M,N) = 0 for i > 0 whenever N is pure injective,
(2) PextiA(M,N) = 0 for i > 0 whenever M is pure projective, in particular

if M is an A-module of finite presentation,
(3) PextiA(M,N) is also the ith cohomology module of the complex HomA(P•, N)

where P• is a pure projective resolution of M .

Proof. To see (3) consider the double complex

A•,• = HomA(P•, I
•)

Each of its rows is exact except in degree 0 where its cohomology is HomA(M, Iq).
Each of its columns is exact except in degree 0 where its cohomology is HomA(Pp, N).
Hence the two spectral sequences associated to this complex in Homology, Section
12.22 degenerate, giving the equality. �

42.9. Higher exts of quasi-coherent sheaves on the big site

It turns out that the module-valued functor I associated to a pure injective module
I gives rise to an injective object in the category of adequate functors on AlgA.
Warning: It is not true that a pure projective module gives rise to a projective
object in the category of adequate functors. We do have plenty of projective objects,
namely, the linearly adequate functors.

Lemma 42.9.1. Let A be a ring. Let A be the category of adequate functors on
AlgA. The injective objects of A are exactly the functors I where I is a pure injective
A-module.

Proof. Let I be an injective object of A. Choose an embedding I →M for some A-
module M . As I is injective we see that M = I⊕F for some module-valued functor
F . Then M = I(A) ⊕ F (A) and it follows that I = I(A). Thus we see that any
injective object is of the form I for some A-module I. It is clear that the module I
has to be pure injective since any universally exact sequence 0→M → N → L→ 0
gives rise to an exact sequence 0→M → N → L→ 0 of A.

Finally, suppose that I is a pure injective A-module. Choose an embedding I → J
into an injective object of A (see Lemma 42.4.2). We have seen above that J = I ′

for some A-module I ′ which is pure injective. As I → I ′ is injective the map I → I ′

is universally injective. By assumption on I it splits. Hence I is a summand of
J = I ′ whence an injective object of the category A. �

Let U = Spec(A) be an affine scheme. Let M be an A-module. We will use
the notation Ma to denote the quasi-coherent sheaf of O-modules on (Sch/U)τ
associated to the quasi-coherent sheaf M̃ on U . Now we have all the notation in
place to formulate the following lemma.

Lemma 42.9.2. Let U = Spec(A) be an affine scheme. Let M , N be A-modules.
For all i we have a canonical isomorphism

ExtiMod(O)(M
a, Na) = PextiA(M,N)

functorial in M and N .
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Proof. Let us construct a canonical arrow from right to left. Namely, if N → I•

is a pure injective resolution, then Ma → (I•)a is an exact complex of (adequate)
O-modules. Hence any element of PextiA(M,N) gives rise to a map Na → Ma[i]
in D(O), i.e., an element of the group on the left.

To prove this map is an isomorphism, note that we may replace ExtiMod(O)(M
a, Na)

by ExtiAdeq(O)(M
a, Na), see Lemma 42.7.6. Let A be the category of adequate

functors on AlgA. We have seen that A is equivalent to Adeq(O), see Lemma
42.5.3; see also the proof of Lemma 42.7.3. Hence now it suffices to prove that

ExtiA(M,N) = PextiA(M,N)

However, this is clear from Lemma 42.9.1 as a pure injective resolution N → I•

exactly corresponds to an injective resolution of N in A. �

42.10. Derived categories of adequate modules, II

Let S be a scheme. Denote OS the structure sheaf of S and O the structure sheaf
of the big site (Sch/S)τ . In Descent, Remark 34.7.4 we constructed a morphism of
ringed sites

(42.10.0.1) f : ((Sch/S)τ ,O) −→ (SZar,OS).

In the previous sections have seen that the functor f∗ : Mod(O)→ Mod(OS) trans-
forms adequate sheaves into quasi-coherent sheaves, and induces an exact func-
tor v : Adeq(O) → QCoh(OS), and in fact that f∗ = v induces an equivalence
Adeq(O)/C → QCoh(OS) where C is the subcategory of parasitic adequate mod-
ules. Moreover, the functor f∗ transforms quasi-coherent modules into adequate
modules, and induces a functor u : QCoh(OS)→ Adeq(O) which is a left adjoint to
v.

There is a very similar relationship between DAdeq(O) and DQCoh(S). First we
explain why the category DAdeq(O) is independent of the chosen topology.

Remark 42.10.1. Let S be a scheme. Let τ, τ ′ ∈ {Zar, étale, smooth, syntomic, fppf}.
Denote Oτ , resp. Oτ ′ the structure sheaf O viewed as a sheaf on (Sch/S)τ , resp.
(Sch/S)τ ′ . Then DAdeq(Oτ ) and DAdeq(Oτ ′) are canonically isomorphic. This
follows from Cohomology on Sites, Lemma 21.22.6. Namely, assume τ is stronger
than the topology τ ′, let C = (Sch/S)fppf , and let B the collection of affine schemes
over S. Assumptions (1) and (2) we’ve seen above. Assumption (3) is clear and
assumption (4) follows from Lemma 42.5.8.

Remark 42.10.2. Let S be a scheme. The morphism f see (42.10.0.1) induces
adjoint functors Rf∗ : DAdeq(O) → DQCoh(S) and Lf∗ : DQCoh(S) → DAdeq(O).
Moreover Rf∗Lf

∗ ∼= idDQCoh(S).

We sketch the proof. By Remark 42.10.1 we may assume the topology τ is the
Zariski topology. We will use the existence of the unbounded total derived functors
Lf∗ and Rf∗ on O-modules and their adjointness, see Cohomology on Sites, Lemma
21.19.1. In this case f∗ is just the restriction to the subcategory SZar of (Sch/S)Zar.
Hence it is clear that Rf∗ = f∗ induces Rf∗ : DAdeq(O) → DQCoh(S). Suppose
that G• is an object of DQCoh(S). We may choose a system K•1 → K•2 → . . . of
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bounded above complexes of flat OS-modules whose transition maps are termwise
split injectives and a diagram

K•1

��

// K•2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the properties (1), (2), (3) listed in Derived Categories, Lemma 13.28.1 where
P is the collection of flat OS-modules. Then Lf∗G• is computed by colim f∗K•n, see
Cohomology on Sites, Lemmas 21.18.1 and 21.18.3 (note that our sites have enough

points by Étale Cohomology, Lemma 44.30.1). We have to see that Hi(Lf∗G•) =
colimHi(f∗K•n) is adequate for each i. By Lemma 42.5.11 we conclude that it
suffices to show that each Hi(f∗K•n) is adequate.

The adequacy of Hi(f∗K•n) is local on S, hence we may assume that S = Spec(A) is
affine. Because S is affine DQCoh(S) = D(QCoh(OS)), see the discussion in Derived
Categories of Schemes, Section 35.3. Hence there exists a quasi-isomorphism F• →
K•n where F• is a bounded above complex of flat quasi-coherent modules. Then
f∗F• → f∗K•n is a quasi-isomorphism, and the cohomology sheaves of f∗F• are
adequate.

The final assertion Rf∗Lf
∗ ∼= idDQCoh(S) follows from the explicit description of the

functors above. (In plain English: if F is quasi-coherent and p > 0, then Lpf
∗F is

a parasitic adequate module.)

Remark 42.10.3. Remark 42.10.2 above implies we have an equivalence of derived
categories

DAdeq(O)/DC(O) −→ DQCoh(S)

where C is the category of parasitic adequate modules. Namely, it is clear that
DC(O) is the kernel of Rf∗, hence a functor as indicated. For any object X of
DAdeq(O) the map Lf∗Rf∗X → X maps to a quasi-isomorphism in DQCoh(S),
hence Lf∗Rf∗X → X is an isomorphism in DAdeq(O)/DC(O). Finally, for X,Y
objects of DAdeq(O) the map

Rf∗ : HomDAdeq(O)/DC(O)(X,Y )→ HomDQCoh(S)(Rf∗X,Rf∗Y )

is bijective as Lf∗ gives an inverse (by the remarks above).
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CHAPTER 43

Dualizing Complexes

43.1. Introduction

A reference is the book [Har66].

The goals of this chapter are the following:

(1) Define what it means to have a dualizing complex ω•A over a Noetherian
ring A, namely
(a) we have ω•A ∈ D+(A),
(b) the cohomology modules Hi(ω•A) are all finite A-modules,
(c) ω•A has finite injective dimension, and
(d) we have A→ RHomA(ω•A, ω

•
A) is a quasi-isomorphism.

(2) List elementary properties of dualizing complexes.
(3) Show a dualizing complex gives rise to a dimension function.
(4) Show a dualizing complex gives rise to a good notion of a reflexive hull.
(5) Prove the finiteness theorem when a dualizing complex exists.

43.2. Essential surjections and injections

We will mostly work in categories of modules, but we may as well make the definition
in general.

Definition 43.2.1. Let A be an abelian category.

(1) An injection A ⊂ B of A is essential, or we say that B is an essential
extension of A, if every nonzero subobject B′ ⊂ B has nonzero intersection
with A.

(2) A surjection f : A → B of A is essential if for every proper subobject
A′ ⊂ A we have f(A′) 6= B.

Some lemmas about this notion.

Lemma 43.2.2. Let A be an abelian category.

(1) If A ⊂ B and B ⊂ C are essential extensions, then A ⊂ C is an essential
extension.

(2) If A ⊂ B is an essential extension and C ⊂ B is a subobject, then A∩C ⊂
C is an essential extension.

(3) If A→ B and B → C are essential surjections, then A→ C is an essential
surjection.

(4) Given an essential surjection f : A → B and a surjection A → C with
kernel K, the morphism C → B/f(K) is an essential surjection.

Proof. Omitted. �

2741
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Lemma 43.2.3. Let R be a ring. Let M be an R-module. Let E = colimEi
be a filtered colimit of R-modules. Suppose given a compatible system of essential
injections M → Ei of R-modules. Then M → E is an essential extension of M .

Proof. Immediate from the definitions and the fact that filtered colimits are exact
(Algebra, Lemma 10.8.9). �

Lemma 43.2.4. Let R be a ring. Let M ⊂ N be R-modules. The following are
equivalent

(1) M ⊂ N is an essential extension,
(2) for all x ∈ N there exists an f ∈ R such that fx ∈M and fx 6= 0.

Proof. Assume (1) and let x ∈ N be a nonzero element. By (1) we have Rx∩M 6=
0. This implies (2).

Assume (2). Let N ′ ⊂ N be a nonzero submodule. Pick x ∈ N ′ nonzero. By (2)
we can find f ∈ with fx ∈ N and fx 6= 0. Thus N ′ ∩M 6= 0. �

43.3. Injective modules

Some results about injective modules over rings.

Lemma 43.3.1. Let R be a ring. Any product of injective R-modules is injective.

Proof. Special case of Homology, Lemma 12.23.3. �

Lemma 43.3.2. Let R → S be a flat ring map. If E is an injective S-module,
then E is injective as an R-module.

Proof. This is true because HomR(M,E) = HomS(M⊗RS,E) by Algebra, Lemma
10.13.3 and the fact that tensoring with S is exact. �

Lemma 43.3.3. Let R → S be an epimorphism of rings. Let E be an S-module.
If E is injective as an R-module, then E is an injective S-module.

Proof. This is true because HomR(N,E) = HomS(N,E) for any S-module N , see
Algebra, Lemma 10.103.14. �

Lemma 43.3.4. Let R → S be a ring map. If E is an injective R-module, then
HomR(S,E) is an injective S-module.

Proof. This is true because HomS(N,HomR(S,E)) = HomR(N,E) by Algebra,
Lemma 10.13.4. �

Lemma 43.3.5. Let R be a ring. Let I be an injective R-module. Let E ⊂ I be a
submodule. The following are equivalent

(1) E is injective, and
(2) for all E ⊂ E′ ⊂ I with E ⊂ E′ essential we have E = E′.

In particular, an R-module is injective if and only if every essential extension is
trivial.

Proof. The final assertion follows from the first and the fact that the category of
R-modules has enough injectives (More on Algebra, Section 15.42).

Assume (1). Let E ⊂ E′ ⊂ I as in (2). Then the map idE : E → E can be
extended to a map α : E′ → E. The kernel of α has to be zero because it intersects
E trivially and E′ is an essential extension. Hence E = E′.
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Assume (2). Let M ⊂ N be R-modules and let ϕ : M → E be an R-module map.
In order to prove (1) we have to show that ϕ extends to a morphism N → E.
Consider the set S of pairs (M ′, ϕ′) where M ⊂ M ′ ⊂ N and ϕ′ : M ′ → E is an
R-module map agreeing with ϕ on M . We define an ordering on S by the rule
(M ′, ϕ′) ≤ (M ′′, ϕ′′) if and only if M ′ ⊂ M ′′ and ϕ′′|M ′ = ϕ′. It is clear that we
can take the maximum of a totally ordered subset of S. Hence by Zorn’s lemma we
may assume (M,ϕ) is a maximal element.

Choose an extension ψ : N → I of ϕ composed with the inclusion E → I. This is
possible as I is injective. If ψ(N) ⊂ E, then ψ is the desired extension. If ψ(N) is
not contained in E, then by (2) the inclusion E ⊂ E+ψ(N) is not essential. hence
we can find a nonzero submodule K ⊂ E +ψ(N) meeting E in 0. This means that
M ′ = ψ−1(E +K) strictly contains M . Thus we can extend ϕ to M ′ using

M ′
ψ|M′−−−→ E +K → (E +K)/K = E

This contradicts the maximality of (M,ϕ). �

Example 43.3.6. Let R be a reduced ring. Let p ⊂ R be a minimal prime so
that K = Rp is a field (Algebra, Lemma 10.24.1). Then K is an injective R-
module. Namely, we have HomR(M,K) = HomK(Mp,K) for any R-module M .
Since localization is an exact functor and taking duals is an exact functor on K-
vector spaces we conclude HomR(−,K) is an exact functor, i.e., K is an injective
R-module.

Lemma 43.3.7. Let R be a ring. Let E be an R-module. The following are
equivalent

(1) E is an injective R-module, and
(2) given an ideal I ⊂ R and a module map ϕ : I → E there exists an

extension of ϕ to and R-module map R→ E.

Proof. The implication (1) ⇒ (2) follows from the definitions. Thus we assume
(2) holds and we prove (1). First proof: Since R is a generator for the category of
R-modules, this follows from Injectives, Lemma 19.11.5.

Second proof: We have to show that every essential extension E ⊂ E′ is trivial.
Pick x ∈ E′ and set I = {f ∈ R | fx ∈ E}. The map I → E, f 7→ fx extends to
ψ : R → E by (2). Then x′ = x − ψ(1) is an element of E′ whose annihilator in
E′/E is I and which is annihilated by I as an element of E′. Thus Rx′ = (R/I)x′

does not intersect E. Since E ⊂ E′ is an essential extension it follows that x′ ∈ E
as desired. �

Lemma 43.3.8. Let R be a Noetherian ring. A direct sum of injective modules is
injective.

Proof. Let Ei be a family of injective modules parametrized by a set I. Set
E =

⋃
Ei. To show that E is injective we use Lemma 43.3.7. Thus let ϕ : I → E

be a module map from an ideal of R into E. As I is a finite R-module (because R
is Noetherian) we can find finitely many elements i1, . . . , ir ∈ I such that ϕ maps
into

⋃
j=1,...,r Eij . Then we can extend ϕ into

⋃
j=1,...,r Eij using the injectivity of

the modules Eij . �

Lemma 43.3.9. Let R be a Noetherian ring. Let S ⊂ R be a multiplicative subset.
If E is an injective R-module, then S−1E is an injective S−1R-module.
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Proof. Since R→ S−1R is an epimorphism of rings, it suffices to show that S−1E
is injective as an R-module, see Lemma 43.3.3. To show this we use Lemma 43.3.7.
Thus let I ⊂ R be an ideal and let ϕ : I → S−1E be an R-module map. As I is a
finitely presented R-module (because R is Noetherian) we can find find an f ∈ S
and an R-module map I → E such that fϕ is the composition I → E → S−1E
(Algebra, Lemma 10.10.2). Then we can extend I → E to a homomorphism R→ E.
Then the composition

R→ E → S−1E
f−1

−−→ S−1E

is the desired extension of ϕ to R. �

Lemma 43.3.10. Let R be a Noetherian ring. Let I be an injective R-module.

(1) Let f ∈ R. Then E =
⋃
I[fn] = I[f∞] is an injective submodule of I.

(2) Let J ⊂ R be an ideal. Then the J-power torsion submodule I[J∞] is an
injective submodule of I.

Proof. We will use Lemma 43.3.5 to prove (1). Suppose that E ⊂ E′ ⊂ I and
that E′ is an essential extension of E. We will show that E′ = E. If not, then we
can find x ∈ E′ and x 6∈ E. Let J = {a ∈ R | ax ∈ E′}. Since R is Noetherian we
can choose x with J maximal. Since R is Noetherian we can write J = (g1, . . . , gt)
for some gi ∈ R. Say fni annihilates gix. Set n = max{ni}. Then x′ = fnx is
an element of E′ not in E and is annihilated by J . By maximality of J we see
that Rx′ = (R/J)x′ ∩ E = (0). Hence E′ is not an essential extension of E a
contradiction.

To prove (2) write J = (f1, . . . , ft). Then I[J∞] is equal to

(. . . ((I[f∞1 ])[f∞2 ]) . . .)[f∞t ]

and the result follows from (1) and induction. �

Lemma 43.3.11. Let A be a Noetherian ring. Let E be an injective A-module.
Then E⊗AA[x] has injective-amplitude [0, 1] as an object of D(A[x]). In particular,
E ⊗A A[x] has finite injective dimension as an A[x]-module.

Proof. Let us write E[x] = E ⊗A A[x]. Consider the short exact sequence of
A[x]-modules

0→ E[x]→ HomA(A[x], E[x])→ HomA(A[x], E[x])→ 0

where the first map sends p ∈ E[x] to f 7→ fp and the second map sends ϕ to
f 7→ ϕ(xf) − xϕ(f). The second map is surjective because HomA(A[x], E[x]) =∏
n≥0E[x] as an abelian group and the map sends (en) to (en+1 − xen) which is

surjective. As an A-module we have E[x] ∼=
⊕

n≥0E which is injective by Lemma

43.3.8. Hence the A[x]-module HomA(A[x], I[x]) is injective by Lemma 43.3.4 and
the proof is complete. �

43.4. Projective covers

In this section we briefly discuss projective covers.

Definition 43.4.1. Let R be a ring. A surjection P → M of R-modules is said
to be a projective cover, or sometimes a projective envelope, if P is a projective
R-module and P →M is an essential surjection.
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Projective covers do not always exist. For example, if k is a field and R = k[x] is
the polynomial ring over k, then the module M = R/(x) does not have a projective
cover. Namely, for any surjection f : P →M with P projective over R, the proper
submodule (x− 1)P surjects onto M . Hence f is not essential.

Lemma 43.4.2. Let R be a ring and let M be an R-module. If a projective cover
of M exists, then it is unique up to isomorphism.

Proof. Let P → M and P ′ → M be projective covers. Because P is a projective
R-module and P ′ → M is surjective, we can find an R-module map α : P → P ′

compatible with the maps to M . Since P ′ → M is essential, we see that α is
surjective. As P ′ is a projectiveR-module we can choose a direct sum decomposition
P = Ker(α) ⊕ P ′. Since P ′ → M is surjective and since P → M is essential we
conclude that Ker(α) is zero as desired. �

Here is an example where projective covers exist.

Lemma 43.4.3. Let (R,m, κ) be a local ring. Any finite R-module has a projective
cover.

Proof. Let M be a finite R-module. Let r = dimκ(M/mM). Choose x1, . . . , xr ∈
M mapping to a basis of M/mM . Consider the map f : R⊕r →M . By Nakayama’s
lemma this is a surjection (Algebra, Lemma 10.19.1). If N ⊂ R⊕R is a proper
submodule, then N/mN → κ⊕r is not surjective (by Nakayama’s lemma again)
hence N/mN →M/mM is not surjective. Thus f is an essential surjection. �

43.5. Injective hulls

In this section we briefly discuss injective hulls.

Definition 43.5.1. Let R be a ring. A injection M → I of R-modules is said to
be an injective hull if I is a injective R-module and M → I is an essential injection.

Injective hulls always exist.

Lemma 43.5.2. Let R be a ring. Any R-module has an injective hull.

Proof. Let M be an R-module. By More on Algebra, Section 15.42 the category
of R-modules has enough injectives. Choose an injection M → I with I an injective
R-module. Consider the set S of submodules M ⊂ E ⊂ I such that E is an essential
extension of M . We order S by inclusion. If {Eα} is a totally ordered subset of S,
then

⋃
Eα is an essential extension of M too (Lemma 43.2.3). Thus we can apply

Zorn’s lemma and find a maximal element E ∈ S. We claim M ⊂ E is an injective
hull, i.e., E is an injective R-module. This follows from Lemma 43.3.5. �

Lemma 43.5.3. Let R be a ring. Let M , N be R-modules and let M → E and
N → E′ be injective hulls. Then

(1) for any R-module map ϕ : M → N there exists an R-module map ψ :
E → E′ such that

M //

ϕ

��

E

ψ

��
N // E′

commutes,
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(2) if ϕ is injective, then ψ is injective,
(3) if ϕ is an essential injection, then ψ is an isomorphism,
(4) if ϕ is an isomorphism, then ψ is an isomorphism,
(5) if M → I is an embedding of M into an injective R-module, then there is

an isomorphism I ∼= E ⊕ I ′ compatible with the embeddings of M ,

In particular, the injective hull E of M is unique up to isomorphism.

Proof. Part (1) follows from the fact that E′ is an injective R-module. Part (2)
follows as Ker(ψ) ∩M = 0 and E is an essential extension of M . Assume ϕ is an
essential injection. Then E ∼= ψ(E) ⊂ E′ by (2) which implies E′ = ψ(E) ⊕ E′′
because E is injective. Since E′ is an essential extension of M (Lemma 43.2.2) we
get E′′ = 0. Part (4) is a special case of (3). Assume M → I as in (5). Choose
a map α : E → I extending the map M → I. Arguing as before we see that α is
injective. Thus as before α(E) splits off from I. This proves (5). �

Example 43.5.4. Let R be a domain with fraction field K. Then R ⊂ K is
an injective hull of R. Namely, by Example 43.3.6 we see that K is an injective
R-module and by Lemma 43.2.4 we see that R ⊂ K is an essential extension.

Definition 43.5.5. An object X of an additive category is called indecomposable
if it is nonzero and if X = Y ⊕ Z, then either Y = 0 or Z = 0.

Lemma 43.5.6. Let R be a ring. Let E be an indecomposable injective R-module.
Then

(1) E is the injective hull of any nonzero submodule of E,
(2) the intersection of any two nonzero submodules of E is nonzero,
(3) EndR(E,E) is a noncommutative local ring with maximal ideal those ϕ :

E → E whose kernel is nonzero, and
(4) the set of zerodivisors on E is a prime ideal p of R and E is an injective

Rp-module.

Proof. Part (1) follows from Lemma 43.5.3. Part (2) follows from part (1) and the
definition of injective hulls.

Proof of (3). Set A = EndR(E,E) and I = {ϕ ∈ A | Ker(f) 6= 0}. The statement
means that I is a two sided ideal and that any ϕ ∈ A, ϕ 6∈ I is invertible. Suppose ϕ
and ψ are not injective. Then Ker(ϕ)∩Ker(ψ) is nonzero by (2). Hence ϕ+ψ ∈ I.
It follows that I is a two sided ideal. If ϕ ∈ A, ϕ 6∈ I, then E ∼= ϕ(E) ⊂ E is an
injective submodule, hence E = ϕ(E) because E is indecomposable.

Proof of (4). Consider the ring map R → A and let p ⊂ R be the inverse image
of the maximal ideal I. Then it is clear that p is a prime ideal and that R → A
extends to Rp → A. Thus E is an Rp-module. It follows from Lemma 43.3.3 that
E is injective as an Rp-module. �

Lemma 43.5.7. Let p ⊂ R be a prime of a ring R. Let E be the injective hull of
R/p. Then

(1) E is indecomposable,
(2) E is the injective hull of κ(p),
(3) E is the injective hull of κ(p) over the ring Rp.
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Proof. As R/p ⊂ κ(p) we can extend the embedding to a map κ(p) → E. Hence
(2) holds. For f ∈ R, f 6∈ p the map f : κ(p)→ κ(p) is an isomorphism hence the
map f : E → E is an isomorphism, see Lemma 43.5.3. Thus E is an Rp-module.
It is injective as an Rp-module by Lemma 43.3.3. Finally, let E′ ⊂ E be a nonzero
injective R-submodule. Then J = (R/p)∩E′ is nonzero. After shrinking E′ we may
assume that E′ is the injective hull of J (see Lemma 43.5.3 for example). Observe
that R/p is an essential extension of J for example by Lemma 43.2.4. Hence E′ → E
is an isomorphism by Lemma 43.5.3 part (3). Hence E is indecomposable. �

Lemma 43.5.8. Let R be a Noetherian ring. Let E be an indecomposable injective
R-module. Then there exists a prime ideal p of R such that E is the injective hull
of κ(p).

Proof. Let p be the prime ideal found in Lemma 43.5.6. Say p = (f1, . . . , fr). Pick
a nonzero element x ∈

⋂
Ker(fi : E → E), see Lemma 43.5.6. Then (Rp)x is a

module isomorphic to κ(p) inside E. We conclude by Lemma 43.5.6. �

Proposition 43.5.9 (Structure injective modules over Noetherian rings). Let R
be a Noetherian ring. Every injective module is a direct sum of indecomposable
injective modules. Every indecomposable injective module is the injective hull of the
residue field at a prime.

Proof. The second statement is Lemma 43.5.8. For the second statement, let I
be an injective R-module. We will use transfinite induction to construct Iα ⊂ I
for ordinals α which are direct sums of indecomposable injective R-modules Eβ+1

for β < α. For α = 0 we let I0 = 0. Suppose given an ordinal α such that Iα
has been constructed. Then Iα is an injective R-module by Lemma 43.3.8. Hence
I ∼= Iα ⊕ I ′. If I ′ = 0 we are done. If not, then I ′ has an associated prime by
Algebra, Lemma 10.62.7. Thus I ′ contains a copy of R/p for some prime p. Hence
I ′ contains an indecomposable submodule E by Lemmas 43.5.3 and 43.5.7. Set
Iα+1 = Iα ⊕ Eα. If α is a limit ordinal and Iβ has been constructed for β < α,
then we set Iα =

⋃
β<α Iβ . Observe that Iα =

⊕
β<αEβ+1. This concludes the

proof. �

43.6. Duality over Artinian local rings

Let (R,m, κ) be an artinian local ring. Recall that this implies R is Noetherian
and that R has finite length as an R-module. Moreover an R-module is finite if
and only if it has finite length. We will use these facts without further mention in
this section. Please see Algebra, Sections 10.50 and 10.51 and Algebra, Proposition
10.59.6 for more details.

Lemma 43.6.1. Let (R,m, κ) be an artinian local ring. Let E be an injective hull
of κ. For every finite R-module M we have

lengthR(M) = lengthR(HomR(M,E))

In particular, the injective hull E of κ is a finite R-module.

Proof. Because E is an essential extension of κ we have κ = E[m] where E[m]
is the m-torsion in E (notation as in More on Algebra, Section 15.63). Hence
HomR(κ,E) ∼= κ and the equality of lengths holds for M = κ. We prove the dis-
played equality of the lemma by induction on the length of M . If M is nonzero there

http://stacks.math.columbia.edu/tag/08Y9
http://stacks.math.columbia.edu/tag/08YA
http://stacks.math.columbia.edu/tag/08YX


2748 43. DUALIZING COMPLEXES

exists a surjection M → κ with kernel M ′. Since the functor M 7→ HomR(M,E) is
exact we obtain a short exact sequence

0→ HomR(κ,E)→ HomR(M,E)→ HomR(M ′, E)→ 0.

Additivity of length for this sequence and the sequence 0 → M ′ → M → κ → 0
and the equality for M ′ (induction hypothesis) and κ implies the equality for M .
The final statement of the lemma follows as E = HomR(R,E). �

Lemma 43.6.2. Let (R,m, κ) be an artinian local ring. Let E be an injective hull
of κ. For any finite R-module M the evaluation map

M −→ HomR(HomR(M,E), E)

is an isomorphism. In particular R = HomR(E,E).

Proof. Observe that the displayed arrow is injective. Namely, if x ∈ M is a
nonzero element, then there is a nonzero map Rx → κ which we can extend to a
map ϕ : M → E that doesn’t vanish on x. Since the source and target of the arrow
have the same length by Lemma 43.6.1 we conclude it is an isomorphism. The final
statement follows on taking M = R. �

To state the next lemma, denote ModfgR the category of finite R-modules over a
ring R.

Lemma 43.6.3. Let (R,m, κ) be an artinian local ring. Let E be an injective
hull of κ. The functor D(−) = HomR(−, E) induces an exact anti-equivalence

ModfgR → ModfgR and D ◦D ∼= id.

Proof. We have seen that D ◦ D = id on ModfgR in Lemma 43.6.2. It follows
immediately that D is an anti-equivalence. �

Lemma 43.6.4. Assumptions and notation as in Lemma 43.6.3. Let I ⊂ R be an
ideal and M a finite R-module. Then

D(M [I]) = D(M)/ID(M) and D(M/IM) = D(M)[I]

Proof. Say I = (f1, . . . , ft). Consider the map

M⊕t
f1,...,ft−−−−−→M

with cokernel M/IM . Applying the exact functor D we conclude that D(M/IM)
is D(M)[I]. The other case is proved in the same way. �

43.7. Injective hull of the residue field

Most of our results will be for Noetherian local rings in this section.

Lemma 43.7.1. Let R → S be a surjective map of local rings with kernel I. Let
E be the injective hull of the residue field of R over R. Then E[I] is the injective
hull of the residue field of S over S.

Proof. Observe that E[I] = HomR(S,E) as S = R/I. Hence E[I] is an injective
S-module by Lemma 43.3.4. Since E is an essential extension of κ = R/mR it
follows that E[I] is an essential extension of κ as well. The result follows. �

Lemma 43.7.2. Let (R,m, κ) be a local ring. Let E be the injective hull of κ.
Let M be a m-power torsion R-module with n = dimκ(M [m]) < ∞. Then M is
isomorphic to a submodule of E⊕n.
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Proof. Observe that E⊕n is the injective hull of κ⊕n = M [m]. Thus there is an
R-module map M → E⊕n which is injective on M [m]. Since M is m-power torsion
the inclusion M [m] ⊂ M is an essential extension (for example by Lemma 43.2.4)
we conclude that the kernel of M → E⊕n is zero. �

Lemma 43.7.3. Let (R,m, κ) be a Noetherian local ring. Let E be an injective
hull of κ over R. Let En be an injective hull of κ over R/mn. Then E =

⋃
En and

En = E[mn].

Proof. We have En = E[mn] by Lemma 43.7.1. We have E =
⋃
En because⋃

En = E[m∞] is an injective R-submodule which contains κ, see Lemma 43.3.10.
�

The following lemma tells us the injective hull of the residue field of a Noetherian
local ring only depends on the completion.

Lemma 43.7.4. Let R→ S be a flat local homomorphism of local Noetherian rings
such that R/mR ∼= S/mRS. Then the injective hull of the residue field of R is the
injective hull of the residue field of S.

Proof. Set κ = R/mR = S/mS . Let ER be the injective hull of κ over R. Let
ES be the injective hull of κ over S. Observe that ES is an injective R-module
by Lemma 43.3.2. Choose an extension ER → ES of the identification of residue
fields. This map is an isomorphism by Lemma 43.7.3 because R → S induces an
isomorphism R/mnR → S/mnS for all n. �

Lemma 43.7.5. Let (R,m, κ) be a Noetherian local ring. Let E be an injective
hull of κ over R. Then HomR(E,E) is canonically isomorphic to the completion of
R.

Proof. Write E =
⋃
En with En = E[mn] as in Lemma 43.7.3. Any endomorphism

of E preserves this filtration. Hence

HomR(E,E) = lim HomR(En, En)

The lemma follows as HomR(En, En) = HomR/mn(En, En) = R/mn by Lemma
43.6.2. �

Lemma 43.7.6. Let (R,m, κ) be a Noetherian local ring. Let E be an injective
hull of κ over R. Then E satisfies the descending chain condition.

Proof. If E ⊂M1 ⊂M2 . . . is a sequence of submodules, then

HomR(E,E)→ HomR(M1, E)→ HomR(M2, E)→ . . .

is sequence of surjections. By Lemma 43.7.5 each of these is a module over the com-
pletion R∧ = HomR(E,E). Since R∧ is Noetherian (Algebra, Lemma 10.93.10) the
sequence stabilizes: HomR(Mn, E) = HomR(Mn+1, E) = . . .. Since E is injec-
tive, this can only happen if HomR(Mn/Mn+1, E) is zero. However, if Mn/Mn+1

is nonzero, then it contains a nonzero element annihilated by m, because E is m-
power torsion by Lemma 43.7.3. In this case Mn/Mn+1 has a nonzero map into E,
contradicting the assumed vanishing. This finishes the proof. �

Lemma 43.7.7. Let (R,m, κ) be a Noetherian local ring. Let E be an injective
hull of κ.

(1) For an R-module M the following are equivalent:
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(a) M satisfies the ascending chain condition,
(b) M is a finite R-module, and
(c) there exist n,m and an exact sequence R⊕m → R⊕n →M → 0.

(2) For an R-module M the following are equivalent:
(a) M satisfies the descending chain condition,
(b) M is m-power torsion and dimκ(M [m]) <∞, and
(c) there exist n,m and an exact sequence 0→M → E⊕n → E⊕m.

Proof. We omit the proof of (1).

Let M be an R-module with the descending chain condition. Let x ∈ M . Then
mnx is a descending chain of submodules, hence stabilizes. Thus mnx = mn+1x for
some n. By Nakayama’s lemma (Algebra, Lemma 10.19.1) this implies mnx = 0,
i.e., x is m-power torsion. Since M [m] is a vector space over κ it has to be finite
dimensional in order to have the descending chain condition.

Assume that M is m-power torsion and has a finite dimensional m-torsion sub-
module M [m]. By Lemma 43.7.2 we see that M is a submodule of E⊕n for some
n. Consider the quotient N = E⊕n/M . By Lemma 43.7.6 the module E has the
descending chain condition hence so do E⊕n and N . Therefore N satisfies (2)(a)
which implies N satisfies (2)(b) by the second paragraph of the proof. Thus by
Lemma 43.7.2 again we see that N is a submodule of E⊕m for some m. Thus we
have a short exact sequence 0→M → E⊕n → E⊕m.

Assume we have a short exact sequence 0→M → E⊕n → E⊕m. Since E satisfies
the descending chain condition by Lemma 43.7.6 so does M . �

Proposition 43.7.8 (Matlis duality). Let (R,m, κ) be a complete local Noetherian
ring. Let E be an injective hull of κ over R. The functor D(−) = HomR(−, E)
induces an anti-equivalence{

R-modules with the
descending chain condition

}
←→

{
R-modules with the

ascending chain condition

}
and we have D ◦D = id on either side of the equivalence.

Proof. By Lemma 43.7.5 we have R = HomR(E,E) = D(E). Of course we have
E = HomR(R,E) = D(R). Since E is injective the functor D is exact. The result
now follows immediately from the description of the categories in Lemma 43.7.7. �

43.8. Local cohomology

Let A be a ring and let I ⊂ A be a finitely generated ideal (if I is not finitely
generated perhaps a different definition should be used). Let Z = V (I) ⊂ Spec(A).
Recall that the category I∞-torsion of I-power torsion modules only depends on
the closed subset Z and not on the choice of the finitely generated ideal I such that
Z = V (I), see More on Algebra, Lemma 15.62.6. In this section we will consider
the functor

H0
I : ModA −→ I∞-torsion, M 7−→M [I∞] =

⋃
M [In]

which sends M to the submodule of I-power torsion as well as its relationship with
the functors

HZ : Ab(X) −→ Ab(Z)

and ΓZ(−) = Γ(Z,HZ(−)) of Cohomology, Section 20.22.
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Let A be a ring and let I be a finitely generated ideal. Note that I∞-torsion is a
Grothendieck abelian category (direct sums exist, filtered colimits are exact, and⊕
A/In is a generator by More on Algebra, Lemma 15.62.2). Hence the derived

category D(I∞-torsion) exists, see Injectives, Remark 19.13.3. Our functor H0
I is

left exact and has a derived extension which we will denote

RΓI : D(A) −→ D(I∞-torsion).

Warning: this functor does not deserve the name local cohomology unless the ring
A is Noetherian. The functors H0

I , RΓI , and the satellites Hp
I only depend on the

closed subset Z ⊂ Spec(A) and not on the choice of the finitely generated ideal I
such that V (I) = Z. However, we insist on using the subscript I for the functors
above as the notation RΓZ is going to be used for a different functor, see (43.8.4.1),
which agrees with the functor RΓI only (as far as we know) in case A is Noetherian
(see Lemma 43.8.9).

Lemma 43.8.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor RΓI is right adjoint to the functor D(I∞-torsion)→ D(A).

Proof. This follows from the fact that taking I-power torsion submodules is the
right adjoint to the inclusion functor I∞-torsion→ ModA. See Derived Categories,
Lemma 13.28.4. �

Lemma 43.8.2. Let A be a ring and let I ⊂ A be a finitely generated ideal. For
any object K of D(A) we have

RΓI(K) = hocolim RHom(A/In,K)

in D(A) and
RqΓI(K) = colimn ExtqA(A/In,K)

as modules for all q ∈ Z.

Proof. Let J• be a K-injective complex representing K. Then

RΓI(K) = J•[I∞] = colimJ•[In] = colim HomA(A/In, J•)

By Derived Categories, Lemma 13.31.4 we obtain the first equality. The second
equality is clear because Hq(HomA(A/In, J•)) = ExtqA(A/In,K) and because fil-
tered colimits are exact in the category of abelian groups. �

Lemma 43.8.3. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then RΓI(K

•) = 0.

Proof. Namely, in this case the cohomology modules of RΓI(K
•) are both f -power

torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. �

Let A be a ring and I ⊂ A a finitely generated ideal. By More on Algebra,
Lemma 15.62.5 the category of I-power torsion modules is a Serre subcategory of
the category of all A-modules, hence there is a functor

(43.8.3.1) D(I∞-torsion)→ DI∞-torsion(A)

see Derived Categories, Section 13.13.

Lemma 43.8.4. Let A be a ring and let I be a finitely generated ideal. Let M and
N be I-power torsion modules.
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(1) HomD(A)(M,N) = HomD(I∞-torsion)(M,N),

(2) Ext1D(A)(M,N) = Ext1D(I∞-torsion)(M,N),

(3) Ext2D(I∞-torsion)(M,N)→ Ext2D(A)(M,N) is not surjective in general,

(4) (43.8.3.1) is not an equivalence in general.

Proof. Parts (1) and (2) follow immediately from the fact that I-power torsion
forms a Serre subcategory of ModA. Part (4) follows from part (3).

For part (3) let A be a ring with an element f ∈ A such that A[f ] contains a nonzero
element x and A contains elements xn with fnxn = x. Such a ring A exists because
we can take

A = Z[f, x, xn]/(fx, fnxn − x)

Given A set I = (f). Then the exact sequence

0→ A[f ]→ A
f−→ A→ A/fA→ 0

defines an element in Ext2
A(A/fA,A[f ]). We claim this element does not come from

an element of Ext2
D(f∞-torsion)(A/fA,A[f ]). Namely, if it did, then there would be

an exact sequence

0→ A[f ]→M → N → A/fA→ 0

where M and N are f -power torsion modules defining the same 2 extension class.
Since A→ A is a complex of free modules and since the 2 extension classes are the
same we would be able to find a map

0 // A[f ] //

��

A //

ϕ

��

A //

ψ

��

A/fA //

��

0

0 // A[f ] // M // N // A/fA // 0

(some details omitted). Then we could replace M by the image of ϕ and N by
the image of ψ. Then M would be a cyclic module, hence fnM = 0 for some
n. Considering ϕ(xn+1) we get a contradiction with the fact that fn+1xn = x is
nonzero in A[f ]. �

Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
We will construct a functor

(43.8.4.1) RΓZ : D(A) −→ DI∞-torsion(A).

which is right adjoint to the inclusion functor. The cohomology modules of RΓZ(K)
are the local cohomology groups of K with respect to Z. In fact, we will show
RΓZ computes cohomology with support in Z for the assocated complex of quasi-
comherent sheaves on Spec(A). By Lemma 43.8.4 this functor will in general not
be equal to RΓI(−) even viewed as functors into D(A).

Lemma 43.8.5. Let A be a ring and let I ⊂ A be a finitely generated ideal. There
exists a right adjoint RΓZ (43.8.4.1) to the inclusion functor DI∞-torsion(A) →
D(A). In fact, if I is generated by f1, . . . , fr ∈ A, then we have

RΓZ(K) = (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )⊗L
A K

functorially in K.
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Proof. Say I = (f1, . . . , fr) be an ideal. Let K• be a complex of A-modules. There
is a canonical map of complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A.

from the extended Čech complex to A. Tensoring with K•, taking associated total
complex, we get a map

Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)
−→ K•

in D(A). We claim the cohomology modules of the complex on the left are I-power
torsion, i.e., the LHS is an object of DI∞-torsion(A). Namely, we have

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) = colimK(A, fn1 , . . . , f
n
r )

by More on Algebra, Lemma 15.20.13. Moreover, multiplication by fni on the
complexK(A, fn1 , . . . , f

n
r ) is homotopic to zero by More on Algebra, Lemma 15.20.6.

Since

Hq (LHS) = colimHq(Tot(K• ⊗A K(A, fn1 , . . . , f
n
r )))

we obtain our claim. On the other hand, if K• is an object of DI∞-torsion(A), then
the complexes K• ⊗A Afi0 ...fip have vanishing cohomology. Hence in this case the

map LHS → K• is an isomorphism in D(A). The construction

RΓZ(K•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

is functorial in K• and defines an exact functor D(A) → DI∞-torsion(A) between
triangulated categories. It follows formally from the existence of the natural trans-
formation RΓZ → id given above and the fact that this evaluates to an isomorphism
on K• in the subcategory, that RΓZ is the desired right adjoint. �

Lemma 43.8.6. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then RΓZ(K•) = 0.

Proof. Namely, in this case the cohomology modules of RΓZ(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. �

Lemma 43.8.7. Let A be a ring and let I ⊂ A be a finitely generated ideal. For
K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L

A RΓZ(L) = RΓZ(K)⊗L
A L = RΓZ(K)⊗L

A RΓZ(L)

If K or L is in DI∞-torsion(A) then so is K ⊗L
A L.

Proof. By Lemma 43.8.5 we know that RΓZ is given by C⊗L− for some C ∈ D(A).
Hence, for K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L L⊗L

A C = K ⊗L
A RΓZ(L)

The other equalities follow formally from this one. This also implies the last state-
ment of the lemma. �

The following lemma tells us that the functor RΓZ is related to local cohomology.
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Lemma 43.8.8. Let A be a ring and let I be a finitely generated ideal. With
Z = V (I) ⊂ X = Spec(A) there is a functorial isomorphism

RΓZ(K•) = RΓZ(K̃•)

where on the left we have (43.8.4.1) and on the right we have the functor of Coho-
mology, Section 20.22.

Proof. Denote F• = K̃• be the complex of quasi-coherent OX -modules on X as-
sociated to K•. By Cohomology, Section 20.22 there exists a distinguished triangle

RΓZ(X,F•)→ RΓ(X,F•)→ RΓ(U,F•)→ RΓZ(X,F•)[1]

where U = X \ Z. We know that RΓ(X,F•) = K• for example by Derived
Categories of Schemes, Lemma 35.3.4. Say I = (f1, . . . , fr). Then we obtain a
finite affine open covering U : U = D(f1) ∪ . . . ∪D(fr). By Derived Categories of
Schemes, Lemma 35.8.4 the alternating Čech complex

Tot(Č•alt(U ,F•))

computes RΓ(U,F•). Working through the definitions we find

RΓ(U,F•) = Tot
(
K• ⊗A (

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

It is clear that RΓ(X,F•) → RΓ(U,F•) is given by the map from A into
∏
Afi .

Hence we conclude that

RΓZ(X,F•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

By Lemma 43.8.5 this complex computes RΓZ(K•) and we see the lemma holds. �

Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
There is a natural transformation of functors

(43.8.8.1) (43.8.3.1) ◦RΓI(−) −→ RΓZ(−)

Namely, given a complex of A-modules K• the canonical map RΓI(K
•) → K•

in D(A) factors (uniquely) through RΓZ(K•) as RΓI(K
•) has I-power torsion

cohomology modules (see Lemma 43.8.1). In general this map is not an isomorphism
(we’ve seen this above).

Lemma 43.8.9. Let A be a Noetherian ring and let I ⊂ A be an ideal. Denote
j : D(I∞-torsion)→ DI∞-torsion(A) the functor (43.8.3.1).

(1) the adjunction j(RΓI(K))→ K is an isomorphism for K ∈ DI∞-torsion(A),
(2) the functor j is an equivalence,
(3) the transformation of functors (43.8.8.1) is an isomorphism,

Proof. A formal argument, which we omit, shows that it suffices to prove (1).

Let M be an I-power torsion A-module. Choose an embedding M → J into an
injective A-module. Then J [I∞] is an injective A-module, see Lemma 43.3.10,
and we obtain an embedding M → J [I∞]. Thus every I-power torsion module
has an injective resolution M → J• with Jn also I-power torsion. It follows that
RΓI(M) = M (this is not a triviality and this is not true in general if A is not
Noetherian). Next, suppose that K ∈ D+

I∞-torsion(A). Then the spectral sequence

RqΓI(H
p(K))⇒ Rp+qΓI(K)

http://stacks.math.columbia.edu/tag/0A6T
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(Derived Categories, Lemma 13.21.3) converges and above we have seen that only
the terms with q = 0 are nonzero. Thus we see that RΓI(K) → K is an isomor-
phism.

Suppose K is an arbitrary object of DI∞-torsion(A). We have

RqΓI(K) = colim ExtqA(A/In,K)

by Lemma 43.8.2. Choose f1, . . . , fr ∈ A generating I. Let K•n = K(A, fn1 , . . . , f
n
r )

be the Koszul complex with terms in degrees −r, . . . , 0. Since the pro-objects
{A/In} and {K•n} in D(A) are the same by More on Algebra, Lemma 15.64.18, we
see that

RqΓI(K) = colim ExtqA(K•n,K)

Pick any complex K• of A-modules representing K. Since K•n is a finite complex
of finite free modules we see that

ExtqA(Kn,K) = Hq(Tot((K•n)∨ ⊗A K•))
where (K•n)∨ is the dual of the complex K•n. See More on Algebra, Lemma 15.55.2.
As (K•n)∨ is a complex of finite free A-modules sitting in degrees 0, . . . , r we see
that the terms of the complex Tot((K•n)∨ ⊗A K•)) are the same as the terms of
the complex Tot((K•n)∨⊗A τ≥q−r−2K

•)) in degrees q− 1 and higher. Hence we see
that

ExtqA(Kn,K) = ExtqA(Kn, τ≥q−r−2K)

for all n. It follows that

RqΓI(K) = RqΓI(τ≥q−r−2K) = Hq(τ≥q−r−2K) = Hq(K)

Thus we see that the map RΓI(K)→ K is an isomorphism. �

Lemma 43.8.10. If A is a Noetherian ring and I = (f1, . . . , fr) an ideal. There
are canonical isomorphisms

RΓI(A)→ (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )→ RΓZ(A)

in D(A).

Proof. This follows from Lemma 43.8.9 and the computation of the functor RΓZ
in Lemma 43.8.5. �

Lemma 43.8.11. Let A → B be a ring map. Let I ⊂ A be a finitely generated
ideal. Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). For K in D(A) we
have RΓZ(K)⊗L

A B = RΓY (K ⊗L
A B).

Proof. This follows from uniquess of adjoint functors as both RΓZ(−) ⊗L
A B and

RΓY (−⊗L
A B) are right adjoint to the functor D(IB)∞torsion(B)→ D(A). Alterna-

tively, one can use the description of RΓZ and RΓY in terms of alternating Čech
complexes (Lemma 43.8.5) and use that formation of the extended Čech complex
commutes with base change. �

Lemma 43.8.12. If A→ B is a homomorphism of Noetherian rings and I ⊂ A is
an ideal, then in D(B) we have

RΓI(A)⊗L
A B = RΓZ(A)⊗L

A B = RΓY (B) = RΓIB(B)

where Y = V (IB) ⊂ Spec(B).

Proof. Combine Lemmas 43.8.10 and 43.8.11. �
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The following lemma is the analogue of More on Algebra, Lemma 15.64.26 for
complexes with torsion cohomologies.

Lemma 43.8.13. Let A → B be a flat ring map and let I ⊂ A be a finitely
generated ideal such that A/I = B/IB. Then base change and restriction induce
quasi-inverse equivalences DI∞-torsion(A) = D(IB)∞-torsion(B).

Proof. More precisely the functors are K 7→ K ⊗L
A B for K in DI∞-torsion(A) and

M 7→MA for M in D(IB)∞-torsion(B). The reason this works is that Hi(K⊗L
AB) =

Hi(K) ⊗A B = Hi(K). The first equality holds as A → B is flat and the second
by More on Algebra, Lemma 15.63.2. �

The following lemma was shown for Hom and Ext1 of modules in More on Algebra,
Lemmas 15.63.3 and 15.63.8.

Lemma 43.8.14. Let A → B be a flat ring map and let I ⊂ A be a finitely
generated ideal such that A/I → B/IB is an isomorphism. For K ∈ DI∞-torsion(A)
and L ∈ D(A) the map

RHomA(K,L) −→ RHomB(K ⊗A B,L⊗A B)

is a quasi-isomorphism. In particular, if M , N are A-modules and M is I-power
torsion, then the canonical map

ExtiA(M,N) −→ ExtiB(M ⊗A B,N ⊗A B)

is an isomorphism for all i.

Proof. Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). Since the cohomol-
ogy modules of K are I power torsion, the canonical map RΓZ(L)→ L induces an
isomorphism

RHomA(K,RΓZ(L))→ RHomA(K,L)

in D(A). Similarly, the cohomology modules of K ⊗A B are IB power torsion and
we have an isomorphism

RHomB(K ⊗A B,RΓY (L⊗A B))→ RHomB(K ⊗A B,L⊗A B)

in D(B). By Lemma 43.8.11 we have RΓZ(L) ⊗A B = RΓY (L ⊗A B). Hence it
suffices to show that the map

RHomA(K,RΓZ(L))→ RHomB(K ⊗A B,RΓZ(L)⊗A B)

is a quasi-isommorphism. This follows from Lemma 43.8.13. �

43.9. Torsion versus complete modules

Let A be a ring and let I be a finitely generated ideal. In this case we can consider
the derived category DI∞-torsion(A) of complexes with I-power torsion cohomology
modules (Section 43.8) and the derived category Dcomp(A, I) of derived complete
complexes (More on Algebra, Section 15.64). In this section we show these cate-
gories are equivalent. A more general statement can be found in [DG02].

Lemma 43.9.1. Let A be a ring and let I be a finitely generated ideal. Let RΓZ
be as in Lemma 43.8.5. Let ∧ denote derived completion as in More on Algebra,
Lemma 15.64.9. For an object K in D(A) we have

RΓZ(K∧) = RΓZ(K) and (RΓZ(K))∧ = K∧

in D(A).
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Proof. Choose f1, . . . , fr ∈ A generating I. Recall that

K∧ = RHom
(

(A→
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr ),K
)

by More on Algebra, Lemma 15.64.9. Hence the cone C = Cone(K → K∧) is given
by

RHom
(

(
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr ),K
)

which can be represented by a complex endowed with a finite filtration whose
succesive quotients are isomorphic to

RHom(Afi0 ...fip ,K), p > 0

These complexes vanish on applying RΓZ , see Lemma 43.8.6. Applying RΓZ to
the distinguished triangle K → K∧ → C → K[1] we see that the first formula of
the lemma is correct.

Recall that

RΓZ(K) = K ⊗L (A→
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr )

by Lemma 43.8.5. Hence the cone C = Cone(RΓZ(K)→ K) can be represented by
a complex endowed with a finite filtration whose succesive quotients are isomorphic
to

K ⊗A Afi0 ...fip , p > 0

These complexes vanish on applying ∧, see More on Algebra, Lemma 15.64.10.
Applying derived completion to the distinguished triangle RΓZ(K) → K → C →
RΓZ(K)[1] we see that the second formula of the lemma is correct. �

The following result is a special case of a very general phenomenon concerning
admissible subcategories of a triangulated category.

Proposition 43.9.2. Let A be a ring and let I ⊂ A be a finitely generated ideal.
The functors RΓZ and ∧ define quasi-inverse equivalences of categories

DI∞-torsion(A)↔ Dcomp(A, I)

Proof. Follows immediately from Lemma 43.9.1. �

The following addendum of the proposition above makes the correspondence on
morphisms more precise.

Lemma 43.9.3. With notation as in Lemma 43.9.1. For objects K,L in D(A)
there is a canonical isomorphism

RHom(K∧, L∧) −→ RHom(RΓZ(K), RΓZ(L))

in D(A).

Proof. Say I = (f1, . . . , fr). Denote C = (A →
∏
Afi → . . . → Af1...fr ) the

alternating Čech complex. Then derived completion is given by RHom(C,−) and
local cohomology by C ⊗L −. Combinging the isomorphism

RHom(K ⊗L C,L⊗L C) = RHom(K,RHom(C,L⊗L C))

(More on Algebra, Lemma 15.55.1) and the map

L→ RHom(C,L⊗L C)

http://stacks.math.columbia.edu/tag/0A6X
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(More on Algebra, Lemma 15.55.8) we obtain a map

γ : RHom(K,L)→ RHom(K ⊗L C,L⊗L C)

On the other hand, the right hand side is derived complete as it is equal to

RHom(C,RHom(K,L⊗L C)).

Thus γ factors through the derived completion of RHom(K,L) by the universal
property of derived completion. However, the derived completion goes inside the
RHom by More on Algebra, Lemma 15.64.11 and we obtain the desired map.

To show that the map of the lemma is an isomorphism we may assume that K and
L are derived complete, i.e., K = K∧ and L = L∧. In this case we are looking at
the map

γ : RHom(K,L) −→ RHom(RΓZ(K), RΓZ(L))

By Proposition 43.9.2 we know that the cohomology groups of the left and the
right hand side coincide. In other words, we have to check that the map γ sends a
morphism α : K → L in D(A) to the morphism RΓZ(α) : RΓZ(K)→ RΓZ(L). We
omit the verification (hint: note that RΓZ(α) is just the map α⊗ idC : K ⊗L C →
L⊗LC which is almost the same as the construction of the map in More on Algebra,
Lemma 15.55.8). �

43.10. Trivial duality for a ring map

Let A→ B be a ring homomorphism. Consider the functor

Hom(B,−) : ModA −→ ModB , M 7−→ HomA(B,M)

This functor is left exact and has a derived extension RHom(B,−) : D(A)→ D(B).
Note that for every K ∈ D(A) there is a canonical map i∗RHom(B,K)→ K where
i∗ : D(B)→ D(A) is the obvious functor.

Lemma 43.10.1. With notation as above. The functor RHom(B,−) is the right
adjoint to the functor i∗ : D(B)→ D(A).

Proof. This is a consequence of the fact that i∗ and HomA(B,−) are adjoint
functors by Algebra, Lemma 10.13.3. See Derived Categories, Lemma 13.28.4. �

Lemma 43.10.2. With notation as above. For K in D(A) we have Rq Hom(B,K) =
ExtqA(B,K) as A-modules (the left hand side starts out as a B-module).

Proof. Omitted. �

Let A be a Noetherian ring. We will denote

DCoh(A) ⊂ D(A)

the full subcategory consisting of those objects K of D(A) whose cohomology mod-
ules are all finite A-modules. This makes sense by Derived Categories, Section
13.13 because as A is Noetherian, the subcategory of finite A-modules is a Serre
subcategory of ModA.

Lemma 43.10.3. With notation as above, assume A→ B is a finite ring map of
Noetherian rings. Then RHom(B,−) maps D+

Coh(A) into D+
Coh(B).
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Proof. We have to show: if K ∈ D+(A) has finite cohomology modules, then
the complex RHom(B,K) has finite cohomology modules too. This follows for
example from Lemma 43.10.2 if we can show the ext modules ExtiA(B,K) are finite
A-modules. Since K is bounded below there is a convergent spectral sequence

ExtpA(B,Hq(K))⇒ Extp+qA (B,K)

This finishes the proof as the modules ExtpA(B,Hq(K)) are finite by Algebra,
Lemma 10.69.9. �

Remark 43.10.4. Let A be a ring and let I ⊂ A be an ideal. Set B = A/I. In
this case the functor HomA(B,−) is equal to the functor

ModA −→ ModB , M 7−→M [I]

which sends M to the submodule of I-torsion.

43.11. Sections with support in a closed subscheme

Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces such that i is a ho-
momorphism onto a closed subset and such that i] : OX → i∗OZ is surjective.
(For example a closed immersion of schemes.) Let I = Ker(i]). For a sheaf of
OX -modules F the sheaf

HomOX (i∗OZ ,F)

a sheaf of OX -modules annihilated by I. Hence by Modules, Lemma 17.13.4 there
is a sheaf of OZ-modules, which we will denote Hom(OZ ,F), such that

i∗Hom(OZ ,F) = HomOX (i∗OZ ,F)

as OX -modules. We spell out what this means.

Lemma 43.11.1. With notation as above. The functor Hom(OZ ,−) is a right
adjoint to the functor i∗ : Mod(OZ)→ Mod(OX). For V ⊂ Z open we have

Γ(V,Hom(OZ ,F)) = {s ∈ Γ(U,F) | Is = 0}

where U ⊂ X is an open whose intersection with Z is V .

Proof. Let G be a sheaf of OZ-modules. Then

HomOX (i∗G,F) = Homi∗OZ (i∗G,HomOX (i∗OZ ,F)) = HomOZ (G,Hom(OZ ,F))

The first equality by Modules, Lemma 17.19.5 and the second by the fully faithful-
ness of i∗, see Modules, Lemma 17.13.4. The description of sections is left to the
reader. �

The functor

Mod(OX) −→ Mod(OZ), F 7−→ Hom(OZ ,F)

is left exact and has a derived extension

RHom(OZ ,−) : D(OX)→ D(OZ).

Lemma 43.11.2. With notation as above. The functor RHom(OZ ,−) is the right
adjoint of the functor i∗ : D(OZ)→ D(OX).

Proof. This is a consequence of the fact that i∗ and Hom(OZ ,−) are adjoint
functors by Lemma 43.11.1. See Derived Categories, Lemma 13.28.4. �
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Lemma 43.11.3. With notation as above. For any OX-module F we have

i∗RHom(OZ ,F) = RHom(i∗OZ ,F)

in D(OX).

Proof. Omitted. �

Lemma 43.11.4. In the situation above, assume i : Z → X is a pseudo-coherent
morphism of schemes (for example if X is locally Noetherian). Then

(1) RHom(OZ ,−) maps D+
QCoh(OX) into D+

QCoh(OZ), and

(2) if X = Spec(A) and Z = Spec(B), then the diagram

D+(B) // D+
QCoh(OZ)

D+(A) //

RHom(B,−)

OO

D+
QCoh(OX)

RHom(OZ ,−)

OO

is commutative.

Proof. To explain the parenthetical remark, if X is locally Noetherian, then i is
pseudo-coherent by More on Morphisms, Lemma 36.40.8.

Let K be an object of D+
QCoh(OX). To prove (1), by Morphisms, Lemma 28.4.1 it

suffices to show that i∗ applied to Hn(RHom(OZ ,K)) produces a quasi-coherent
module on X. By Lemma 43.11.3 this means we have to show that RHom(i∗OZ ,K)
is in DQCoh(OX). Since i is pseudo-coherent the sheaf OZ is a pseudo-coherent
OX -module. Hence the result follows from Derived Categories of Schemes, Lemma
35.9.8.

Assume X = Spec(A) and Z = Spec(B) as in (2). Let I• be a bounded below
complex of injective A-modules representing an object K of D+(A). Then we know
that RHom(B,K) = HomA(B, I•) viewed as a complex of B-modules. Choose a
quasi-isomorphism

Ĩ• −→ I•

where I• is a bounded below complex of injective OX -modules. It follows from the
description of the functor Hom(OZ ,−) in Lemma 43.11.1 that there is a map

HomA(B, I•) −→ Γ(Z,Hom(OZ , I•))

Observe that Hom(OZ , I•) represents RHom(OZ , K̃). Applying the universal
property of the ˜ functor we obtain a map

˜HomA(B, I•) −→ RHom(OZ , K̃)

in D(OZ). We may check that this map is an isomorphism in D(OZ) after applying
i∗. However, once we apply i∗ we obtain the isomorphism of Derived Categories of
Schemes, Lemma 35.9.8 via the identification of Lemma 43.11.3. �

Lemma 43.11.5. In this situation above. Assume X is a locally Noetherian
scheme. Then RHom(OZ ,−) maps D+

Coh(OX) into D+
Coh(OZ).

Proof. The question is local on X, hence we may assume that X is affine. Say
X = Spec(A) and Z = Spec(B) with A Noetherian and A → B surjective. In
this case, we can apply Lemma 43.11.4 to translate the question into algebra. The
corresponding algebra result is a consequence of Lemma 43.10.3. �
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Lemma 43.11.6. Let i : D → X be the inclusion of an effective Cartier divisor.
Denote N = i∗OX(D) the normal sheaf of i (Morphisms, Section 28.33). Then for
a finite locally free OX-module E we have RHom(OD, E) = i∗E ⊗OD N [−1].

Proof. Omitted. This lemma can be significantly generalized. �

43.12. Dualizing complexes

In this section we define dualizing complexes for Noetherian rings.

Definition 43.12.1. Let A be a Noetherian ring. A dualizing complex is a complex
of A-modules ω•A such that

(1) ω•A has finite injective dimension,
(2) Hi(ω•A) is a finite A-module for all i, and
(3) A→ RHom(ω•A, ω

•
A) is a quasi-isomorphism.

This definition takes some time getting used to. It is perhaps a good idea to prove
some of the following lemmas yourself without reading the proofs.

Lemma 43.12.2. Let A be a Noetherian ring. If ω•A is a dualizing complex, then
the functor

D : K 7−→ RHom(K,ω•A)

is an anti-equivalence DCoh(A)→ DCoh(A) which exchanges D+
Coh(A) and D−Coh(A)

and induces an equivalence Db
Coh(A) → Db

Coh(A). Moreover D ◦ D is isomorphic
to the identity functor.

Proof. Let K be an object of DCoh(A). Pick an integer n and consider the distin-
guihsed triangle

τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 13.12.4. Since ω•A has finite injective dimension
we see that RHom(τ≥n+1K,ω

•
A) has vanishing cohomology in degrees ≥ n − c for

some constant c. On the other hand, we obtain a spectral sequence

ExtpA(H−q(τ≤nK,ω
•
A)⇒ Extp+qA (τ≤nK,ω

•
A) = Hp+q(RHom(τ≤nK,ω

•
A))

which shows that these cohomology modules are finite. Since for n > p+ q+ c this
is equal to Hp+q(RHom(K,ω•A)) we see that RHom(K,ω•A) is indeed an object
of DCoh(A). By More on Algebra, Lemma 15.55.6 and the assumptions on the
dualizing complex we obtain a canonical isomorphism

K = RHom(ω•A, ω
•
A)⊗L

A K −→ RHom(RHom(K,ω•A), ω•A)

Thus our functor has a quasi-inverse and the proof is complete. �

Lemma 43.12.3. Let A be a Noetherian ring. Let K ∈ Db
Coh(A). Let m be a

maximal ideal of A. If Hi(K)/mHi(K) 6= 0, then there exists a finite A-module E
annihilated by a power of m and a map K → E[−i] which is nonzero on Hi(K).

Proof. Let I be the injective hull of the residue field of m. If Hi(K)/mHi(K) 6= 0,
then there exists a nonzero map Hi(K) → I. Since I is injective, we can lift this
to a nonzero map K → I[−i]. Recall that I =

⋃
I[mn], see Lemma 43.7.2 and that

each of the modules E = I[mn] is of the desired type. Thus it suffices to prove that

HomD(A)(K, I) = colim HomD(A)(K, I[mn])
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This would be immediate if K where a compact object (or a perfect object) of
D(A). This is not the case, but K is a pseudo-coherent object which is enough here.
Namely, we can represent K by a bounded above complex of finite free R-modules
K•. In this case the Hom groups above are computed by using HomK(A)(K

•,−).
As each Kn is finite free the limit statement holds and the proof is complete. �

Let R be a ring. We will say that an object L of D(R) is invertible if there is an
open covering Spec(R) =

⋃
D(fi) such that L⊗RRfi ∼= Rfi [−ni] for some integers

ni. In this case, the function

p 7→ np, where np is the unique integer such that Hnp(L⊗ κ(p)) 6= 0

is locally constant on Spec(R). In particular, it follows that L =
⊕
Hn(L)[−n]

which gives a well defined complex of R-modules (with zero differentials) represent-
ing L. Since each Hn(L) is finite projective and nonzero for only a finite number
of n we also see that L is a perfect object of D(R).

Lemma 43.12.4. Let A be a Noetherian ring. Let F : Db
Coh(A)→ Db

Coh(A) be an
A-linear equivalence of categories. Then F (A) is an invertible object of D(A).

Proof. Let m ⊂ A be a maximal ideal with residue field κ. Consider the object
F (κ). Since κ = HomD(A)(κ, κ) we find that all cohomology groups of F (κ) are
annihilated by m. We also see that

ExtiA(κ, κ) = ExtiA(F (κ), F (κ)) = HomD(A)(F (κ), F (κ)[−i])

is zero for i < 0. Say Ha(F (κ)) 6= 0 and Hb(F (κ)) 6= 0 with a minimal and b
maximal (so in particular a ≤ b). Then there is a nonzero map

F (κ)→ Hb(F (κ))[−b]→ Ha(F (κ))[−b]→ F (κ)[a− b]
in D(A) (nonzero because it induces a nonzero map on cohomology). This proves
that b = a. We conclude that F (κ) = κ[−a].

Let G be a quasi-inverse to our functor F . Arguing as above we find an integer
b such that G(κ) = κ[−b]. On composing we find a + b = 0. Let E be a finite
A-module wich is annihilated by a power of m. Arguing by induction on the length
of E we find that G(E) = E′[−b] for some finite A-module E′ annihilated by a
power of m. Then E[−a] = F (E′). Next, we consider the groups

ExtiA(A,E′) = ExtiA(F (A), F (E′)) = HomD(A)(F (A), E[−a+ i])

The left hand side is nonzero if and only if i = 0 and then we get E′. Applying
this with E = E′ = κ and using Nakayama’s lemma this implies that Hj(F (A))
is zero for j > a and generated by 1 element for j = a. On the other hand, if
Hj(F (A))m is not zero for some j < a, then there is a map F (A)→ E[−a+ i] for
some i < 0 and some E (Lemma 43.12.3) Thus we see that F (A)m = M [−a] for
some Am-module M generated by 1 element. However, since

Am = HomD(A)(A,A)m = HomD(A)(F (A), F (A))m = HomAm
(M,M)

we see that M ∼= Am. We conclude that there exists an element f ∈ A, f 6∈ m such
that F (A)f is isomorphic to Af [−a]. This finishes the proof. �

Lemma 43.12.5. Let A be a Noetherian ring. If ω•A and (ω′A)• are dualizing
complexes, then (ω′A)• is quasi-isomorphic to ω•A⊗L

A L for some invertible object L
of D(A).
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Proof. By Lemmas 43.12.2 and 43.12.4 the functorK 7→ RHom(RHom(K,ω•A), (ω′A)•)
maps A to an invertible object L. In other words, there is an isomorphism

L −→ RHom(ω•A, (ω
′
A)•)

Since L has finite tor dimension, this means that we can apply More on Algebra,
Lemma 15.55.6 to see that

RHom(ω•A, (ω
′
A)•)⊗L

A K −→ RHom(RHom(K,ω•A), (ω′A)•)

is an isomorphism for K in Db
Coh(A). In particular, setting K = ω•A finishes the

proof. �

Lemma 43.12.6. Let A be a Noetherian ring. Let B = S−1A be a localization. If
ω•A is a dualizing complex, then ω•A ⊗A B is a dualizing complex for B.

Proof. Let ω•A → I• be a quasi-isomorphism with I• a bounded complex of injec-
tives. Then S−1I• is a bounded complex of injective B = S−1A-modules (Lemma
43.3.9) representing ω•A ⊗A B. Thus ω•A ⊗A B has finite injective dimension. Since
Hi(ω•A⊗AB) = Hi(ω•A)⊗AB by flatness of A→ B we see that ω•A⊗AB has finite
cohomology modules. Finally, the map

B −→ RHom(ω•A ⊗A B,ω•A ⊗A B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 15.55.7. �

Lemma 43.12.7. Let A be a Noetherian ring. Let f1, . . . , fn ∈ A generate the unit
ideal. If ω•A is a complex of A-modules such that (ω•A)fi is a dualizing complex for
Afi for all i, then ω•A is a dualizing complex for A.

Proof. Consider the double complex∏
i0

(ω•A)fi0 →
∏

i0<i1
(ω•A)fi0fi1 → . . .

The associated total complex is quasi-isomorphic to ω•A for example by Descent, Re-
mark 34.3.10 or by Derived Categories of Schemes, Lemma 35.8.4. By assumption
the complexes (ω•A)fi have finite injective dimension as complexes of Afi-modules.
This implies that each of the complexes (ω•A)fi0 ...fip , p > 0 has finite injective di-
mension over Afi0 ...fip , see Lemma 43.3.9. This in turn implies that each of the

complexes (ω•A)fi0 ...fip , p > 0 has finite injective dimension over A, see Lemma

43.3.2. Hence ω•A has finite injective dimension as a complex of A-modules (as
it can be represented by a complex endowed with a finite filtration whose graded
parts have finite injective dimension). Since Hn(ω•A)fi is a finite Afi module for
each i we see that Hi(ω•A) is a finite A-module, see Algebra, Lemma 10.23.2. Fi-
nally, the (derived) base change of the map A → RHom(ω•A, ω

•
A) to Afi is the

map Afi → RHom((ω•A)fi , (ω
•
A)fi) by More on Algebra, Lemma 15.55.7. Hence we

deduce that A→ RHom(ω•A, ω
•
A) is an isomorphism and the proof is complete. �

Lemma 43.12.8. Let A→ B be a surjective homomorphism of Noetherian rings.
Let ω•A be a dualizing complex. Then RHom(B,ω•A) is a dualizing complex for B.

Proof. Let ω•A → I• be a quasi-isomorphism with I• a bounded complex of injec-
tives. Then HomA(B, I•) is a bounded complex of injective B-modules (Lemma
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43.3.4) representing RHom(B,ω•A). Thus RHom(B,ω•A) has finite injective dimen-
sion. By Lemma 43.10.3 it is an object of DCoh(B). Finally, we compute

HomD(B)(RHom(B,ω•A), RHom(B,ω•A)) = HomD(A)(RHom(B,ω•A), ω•A) = B

and for n 6= 0 we compute

HomD(B)(RHom(B,ω•A), RHom(B,ω•A)[n]) = HomD(A)(RHom(B,ω•A), ω•A[n]) = 0

which proves the last property of a dualizing complex. In the displayed equations,
the first equality holds by Lemma 43.10.1 and the second equality holds by Lemma
43.12.2. �

Lemma 43.12.9. Let A be a Noetherian ring. If ω•A is a dualizing complex, then
ω•A ⊗A A[x] is a dualizing complex for A[x].

Proof. Set B = A[x] and ω•B = ω•A ⊗A B. It follows from Lemma 43.3.11 and
More on Algebra, Lemma 15.53.4 that ω•B has finite injective dimension. Since
Hi(ω•B) = Hi(ω•A) ⊗A B by flatness of A → B we see that ω•A ⊗A B has finite
cohomology modules. Finally, the map

B −→ RHom(ω•B , ω
•
B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 15.55.7. �

Proposition 43.12.10. Let A be a Noetherian ring which has a dualizing complex.
Then any A-algebra essentially of finite type over A has a dualixing complex.

Proof. This follows from a combination of Lemmas 43.12.6, 43.12.8, and 43.12.9.
�

Lemma 43.12.11. Let A be a Noetherian ring. Let ω•A be a dualizing complex.
Let m ⊂ A be a maximal ideal and set κ = A/m. Then RHomA(κ, ω•A) ∼= κ[n] for
some n ∈ Z.

Proof. This is true because RHomA(κ, ω•A) is a dualizing complex over κ (Lemma
43.12.8), because dualizing complexes over κ are unique up to shifts (Lemma
43.12.5), and because κ is a dualizing complex over κ. �

43.13. Dualizing complexes over local rings

In this section (A,m, κ) will be a Noetherian local ring endowed with a dualizing
complex ω•A such that the integer n of Lemma 43.12.11 is zero. More precisely,
we assume that RHomA(κ, ω•A) = κ[0]. In this case we will say that the dualizing
complex is normalized. Observe that a normalized dualizing complex is unique up
to isomorphism and that any other dualizing complex for A is isomorphic to a shift
of a normalized one (Lemma 43.12.5).

Lemma 43.13.1. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let A→ B be surjective. Then ω•B = RHomA(B,ω•A) is a normalized
dualizing complex for B.

Proof. By Lemma 43.12.8 the complex ω•B is dualizing for B. We compute

RHomB(κ,RHomA(B,ω•A)) = RHomA(κ, ω•A) ∼= κ[0]

The first equality by Lemma 43.10.1. �
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Lemma 43.13.2. Let (A,m, κ) be a Noetherian local ring. Let F be an A-linear
self-equivalence of the category of finite length A-modules. Then F is isomorphic
to the identity functor.

Proof. Since κ is the unique simple object of the category we have F (κ) ∼= κ. Since
our category is abelian, we find that F is exact. Hence F (E) has the same length
as E for all finite length modules E. Since Hom(E, κ) = Hom(F (E), F (κ)) ∼=
Hom(F (E), κ) we conclude from Nakayama’s lemma that E and F (E) have the
same number of generators. Hence F (A/mn) is a cyclic A-module. Pick a generator
e ∈ F (A/mn). Since F is A-linear we conclude that mne = 0. The map A/mn →
F (A/mn) has to be an isomorphism as the lengths are equal. Pick an element

e ∈ limF (A/mn)

which maps to a generator for all n (small argument omitted). Then we obtain
a system of isomorphisms A/mn → F (A/mn) compatible with all A-module maps

A/mn → A/mn
′

(by A-linearity of F again). Since any finite lenghth module is a
cokernel of a map between direct sums of cyclic modules, we obtain the isomorphism
of the lemma. �

Lemma 43.13.3. Let (A,m, κ) be a Noetherian local ring with normalized dual-
izing complex ω•A. Let E be an injective hull of κ. Then there exists a functorial
isomorphism

RHom(N,ω•A) = HomA(N,E)[0]

for N running through the finite length A-modules.

Proof. By induction on the length of N we see that RHom(N,ω•A) is a module of
finite length sitting in degree 0. Thus RHomA(−, ω•A) induces an anti-equivalence
on the category of finite length modules. Since the same is true for HomA(−, E)
by Proposition 43.7.8 we see that

N 7−→ HomA(RHom(N,ω•A), E)

is an equivalence as in Lemma 43.13.2. Hence it is isommorphic to the identity
functor. Since HomA(−, E) applied twice is the identity (Proposition 43.7.8) we
obtain the statement of the lemma. �

Lemma 43.13.4. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. If dim(A) = 0, then ω•A

∼= E[0] where E is an injective hull of the
residue field.

Proof. Immediate from Lemma 43.13.3. �

Lemma 43.13.5. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex. Let I ⊂ m be an ideal of finite length. Set B = A/I. Then there is a
distinguished triangle

ω•B → ω•A → HomA(I, E)[0]→ ω•B [1]

in D(A) where E is an injective hull of κ and ω•B is a normalized dualizing complex
for B.

Proof. Use the short exact sequence 0 → I → A → B → 0 and Lemmas 43.13.3
and 43.13.1. �
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Lemma 43.13.6. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let f ∈ m be a nonzerodivisor. Set B = A/(f). Then there is a
distinguished triangle

ω•B → ω•A → ω•A → ω•B [1]

in D(A) where ω•B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0 → A → A → B → 0 and Lemma 43.13.1.
�

Lemma 43.13.7. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let d = dim(A). Then

(1) if Hi(ω•A) is nonzero, then i ∈ {−d, . . . , 0},
(2) the dimension of the support of Hi(ω•A) is at most −i,

Proof. We prove this by induction on the dimension of A. If dim(A) = 0 this
follows immediately from Lemma 43.13.4.

Assume that the result holds for rings of dimension < d and that A has depth
at least 1. Then we can find a nonzero divisor f and apply Lemma 43.13.6 and
the induction hypothesis to B. It follows that multiplication by f is surjective on
Hi(ω•A) for i > 0 and i < d. By Nakayama we conclude these cohomology modules
are zero, i.e., (1) holds. If the dimension of the support of Hi(ω•A) is e, then the
dimension of the support of Hi(ω•A)/fHi(ω•A) ⊂ Hi+1(ω•B) is at least e− 1. Hence
our induction assumption gives that e ≤ −i.

If A has depth 0, then we let I = A[m∞] be the maximal ideal of A having finite
length. Then B = A/I has depth ≥ 1 so we know the result for B. Applying
Lemma 43.13.5 we obtain the result for A. �

Lemma 43.13.8. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let p be a minimal prime of A with dim(A/p) = e. Then Hi(ω•A)p is
nonzero if and only if i = −e.

Proof. Since Ap has dimension zero, there exists an integer n > 0 such that pnAp

is zero. Set B = A/pn and ω•B = RHomA(B,ω•A). Since Bp = Ap we see that
(ω•B)p ∼= (ω•A)p by using More on Algebra, Lemma 15.55.7. By Lemma 43.13.1 we
may replace A by B. After doing so, we see that dim(A) = e. Then we see that
Hi(ω•A)p can only be nonzero if i = −e by Lemma 43.13.7. On the other hand,
since (ω•A)p is a dualizing complex for the nonzero ring Ap (Lemma 43.12.6) we see
that the remaining module has to be nonzero. �

43.14. The dimension function of a dualizing complex

Our results in the local setting have the following consequence: a Noetherian ring
with has a dualizing complex is a universally catenary ring of finite dimension.

Lemma 43.14.1. Let A be a Noetherian ring. Let p be a minimal prime of A.
Then Hi(ω•A)p is nonzero for exactly one i.

Proof. The complex ω•A ⊗A Ap is a dualizing complex for Ap (Lemma 43.12.6).
The dimension of Ap is zero as p is minimal. Hence the result follows from Lemma
43.13.4. �
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Let A be a Noetherian ring and let ω•A be a dualizing complex. Lemma 43.12.11
allows us to define a function

δ = δω•A : Spec(A) −→ Z

by mapping p to the integer of Lemma 43.12.11 for the dualizing complex (ω•A)p
over Ap (Lemma 43.12.6) and the residue field κ(p). To be precise, we define δ(p)
to be the unique integer such that

(ω•A)p[−δ(p)]

is a normalized dualizing complex over the Noetherian local ring Ap.

Lemma 43.14.2. Let A be a Noetherian ring and let ω•A be a dualizing complex.
Let A → B be a surjective ring map and let ω•B = RHom(B,ω•A) be the dualizing
complex for B of Lemma 43.12.8. Then we have

δω•B = δω•A |Spec(B)

Proof. This follows from the definition of the functions and Lemma 43.13.1. �

Lemma 43.14.3. Let A be a Noetherian ring and let ω•A be a dualizing complex.
The function δ = δω•A defined above is a dimension function (Topology, Definition
5.19.1).

Proof. Let p ⊂ q be an immediate specialization. We have to show that δ(p) =
δ(q) + 1. We may replace A by A/p, the complex ω•A by ω•A/p = RHom(A/p, ω•A),

the prime p by (0), and the prime q by q/p, see Lemma 43.14.2. Thus we may
assume that A is a domain, p = (0), and q is a prime ideal of height 1.

Then Hi(ω•A)(0) is nonzero for exactly one i, say i0, by Lemma 43.14.1. In fact
i0 = −δ((0)) because (ω•A)(0)[−δ((0))] is a normalized dualizing complex over the
field A(0).

On the other hand (ω•A)q[−δ(q)] is a normalized dualizing complex for Aq. By
Lemma 43.13.8 we see that

He((ω•A)q[−δ(q)])(0) = He−δ(q)(ω•A)(0)

is nonzero only for e = −dim(Aq) = −1. We conclude

−δ((0)) = −1− δ(p)

as desired. �

Lemma 43.14.4. Let A be a Noetherian ring which has a dualizing complex. Then
A is universally catenary of finite dimension.

Proof. Because Spec(A) has a dimension function by Lemma 43.14.3 it is catenary,
see Topology, Lemma 5.19.2. Hence A is catenary, see Algebra, Lemma 10.101.2.
It follows from Proposition 43.12.10 that A is universally catenary.

Because any dualizing complex ω•A is in Db
Coh(A) the values of the function δω•A in

minimal primes are bounded by Lemma 43.14.1. On the other hand, for a maximal
ideal m with residue field κ the integer i = −δ(m) is the unique integer such that
ExtiA(κ, ω•A) is nonzero (Lemma 43.12.11). Since ω•A has finite injective dimension
these values are bounded too. Since the dimension of A is the maximal value of
δ(p) − δ(m) where p ⊂ m are a pair consisting of a minimal prime and a maximal
prime we find that the dimension of Spec(A) is bounded. �
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43.15. The local duality theorem

The main result in this section is due to Grothendieck.

Lemma 43.15.1. Let (A,m, κ) be a Noetherian local ring. Let ω•A be a normalized
dualizing complex. Let Z = V (m) ⊂ Spec(A). Then E = R0ΓZ(ω•A) is an injective
hull of κ and RΓZ(ω•A) = E[0].

Proof. By Lemma 43.8.9 we have RΓm = RΓZ . Thus

RΓZ(ω•A) = RΓm(ω•A) = hocolim RHom(A/mn, ω•A)

by Lemma 43.8.2. Let E′ be an injective hull of the residue field. By Lemma 43.13.3
we can find isomorphisms

RHom(A/mn, ω•A) ∼= HomA(A/In, E′)[0]

compatible with transition maps. Since E′ =
⋃
E′[mn] = colim HomA(A/In, E′)

by Lemma 43.7.3 we conclude that E ∼= E′ and that all other cohomology groups
of the complex RΓZ(ω•A) are zero. �

Remark 43.15.2. Let (A,m, κ) be a Noetherian local ring with a normalized
dualizing complex ω•A. By Lemma 43.15.1 above we see that RΓZ(ω•A) is an injective
hull of the residue field placed in degree 0. In fact, this gives a “construction” or
“realization” of the injective hull which is slightly more canonical than just picking
any old injective hull. Namely, a normalized dualizing complex is unique up to
isomorphism, with group of automorphisms the group of units of A, whereas an
injective hull of κ is unique up to isomorphism, with group of automorphisms the
group of units of the completion A∧ of A with respect to m.

Here is the main result of this section.

Theorem 43.15.3. Let (A,m, κ) be a Noetherian local ring. Let ω•A be a normalized
dualizing complex. Let E be an injective hull of the residue field. Let Z = V (m) ⊂
Spec(A). Denote ∧ derived completion with respect to m. Then

RHom(K,ω•A)∧ ∼= RHom(RΓZ(K), E[0])

for K in D(A).

Proof. Observe that E[0] ∼= RΓZ(ω•A) by Lemma 43.15.1. By More on Algebra,
Lemma 15.64.11 completion on the left hand side goes inside. Thus we have to
prove

RHom(K∧, (ω•A)∧) = RHom(RΓZ(K), RΓZ(ω•A))

This follows from the equivalence between Dcomp(A,m) and Dm∞-torsion(A) given
in Proposition 43.9.2. More precisely, it is a special case of Lemma 43.9.3. �

Here is a special case of the theorem above.

Lemma 43.15.4. Let (A,m, κ) be a Noetherian local ring. Let ω•A be a normalized
dualizing complex. Let E be an injective hull of the residue field. Let K ∈ DCoh(A).
Then

ExtiA(K,ω•A)∧ = HomA(Hi
m(K), E)

where ∧ denotes m-adic completion.
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Proof. By Lemma 43.12.2 we see that RHom(K,ω•A) is an object of DCoh(A). It
follows that the cohomology modules of the derived completion of RHom(K,ω•A)

are equal to the usual completions ExtiA(K,ω•A)∧ by More on Algebra, Lemma
15.64.20. On the other hand, we have RΓm = RΓZ for Z = V (m) by Lemma 43.8.9.
Moreover, the functor HomA(−, E) is exact hence factors through cohomology.
Hence the lemma is consequence of Theorem 43.15.3. �

43.16. Dualizing complexes on schemes

We define a dualizing complex on a locally Noetherian scheme to be a complex
which affine locally comes from a dualizing complex on the corresponding ring.
This is not completely standard but agrees with all definitions in the literature on
Noetherian schemes of finite dimension.

Lemma 43.16.1. Let X be a locally Noetherian scheme. Let K be an object of
D(OX). The following are equivalent

(1) For every affine open U = Spec(A) ⊂ X there exists a dualizing complex
ω•A for A such that K|U is isomorphic to the image of ω•A by the functor˜: D(A)→ D(OU ).

(2) There is an affine open covering X =
⋃
Ui, Ui = Spec(Ai) such that

for each i there exists a dualizing complex ω•i for Ai such that K|U is
isomorphic to the image of ω•i by the functor˜: D(Ai)→ D(OUi).

Proof. Assume (2) and let U = Spec(A) be an affine open of X. Since condition
(2) implies that K is in DQCoh(OX) we find an object ω•A in D(A) whose associated
complex of quasi-coherent sheaves is isomorphic to K|U , see Derived Categories of
Schemes, Lemma 35.3.4. We will show that ω•A is a dualizing complex for A which
will finish the proof.

Since X =
⋃
Ui is an open covering, we can find a standard open covering U =

D(f1) ∪ . . . ∪ D(fm) such that each D(fj) is a standard open in one of the affine
opens Ui, see Schemes, Lemma 25.11.5. Say D(fj) = D(gj) for gj ∈ Aij . Then
Afj
∼= (Aij )gj and we have

(ω•A)fj
∼= (ω•i )gj

in the derived category by Derived Categories of Schemes, Lemma 35.3.4. By
Lemma 43.12.6 we find that the complex (ω•A)fj is a dualizing complex over Afj
for j = 1, . . . ,m. This implies that ω•A is dualizing by Lemma 43.12.7. �

Definition 43.16.2. Let X be a locally Noetherian scheme. An object K of
D(OX) is called a dualizing complex if K satisfies the equivalent conditions of
Lemma 43.16.1.

Please see remarks made at the beginning of this section.

Lemma 43.16.3. Let A be a Noetherian ring and let X = Spec(A). Let K,L be
objects of D(A). If K ∈ DCoh(A) and L has finite injective dimension, then

RHom(K̃, L̃) = ˜RHom(K,L)

in D(OX).
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Proof. We may assume that L is given by a finite complex I• of injective A-
modules. By induction on the length of I• and compatibility of the constructions
with distinguished triangles, we reduce to the case that L = I[0] where I is an
injective A-module. In this case, Derived Categories of Schemes, Lemma 35.9.8,

tells us that the nth cohomology sheaf of RHom(K̃, L̃) is the sheaf associated to
the presheaf

D(f) 7−→ ExtnAf (K ⊗A Af , I ⊗A Af )

Since A is Noetherian, the Af -module I ⊗A Af is injective (Lemma 43.3.9). Hence
we see that

ExtnAf (K ⊗A Af , I ⊗A Af ) = HomAf (H−n(K ⊗A Af ), I ⊗A Af )

= HomAf (H−n(K)⊗A Af , I ⊗A Af )

= HomA(H−n(K), I)⊗A Af
The last equality because H−n(K) is a finite A-module. This proves that the
canonical map

˜RHom(K,L) −→ RHom(K̃, L̃)

is a quasi-isomorphism in this case and the proof is done. �

Lemma 43.16.4. Let K be a dualizing complex on a locally Noetherian scheme
X. Then K is an object of DCoh(OX) and D = RHom(−,K) induces an anti-
equivalence

D : DCoh(OX) −→ DCoh(OX)

such that D ◦ D ∼= id. If X is quasi-compact, then D exchanges D+
Coh(OX) and

D−Coh(OX) and induces an equivalence Db
Coh(OX)→ Db

Coh(OX).

Proof. Let U ⊂ X be an affine open. Say U = Spec(A) and let ω•A be a dualizing
complex for A corresponding to K|U as in Lemma 43.16.1. By Lemma 43.16.3 the
diagram

DCoh(A) //

RHom(−,ω•A)

��

DCoh(OU )

RHom(−,K|U )

��
DCoh(A) // D(OU )

commutes. We conclude that D sends DCoh(OX) into DCoh(OX). Moreover, the
canonical map

L −→ RHom(RHom(L,K),K)

(Cohomology on Sites, Lemma 21.26.5) is an isomorphism for all L because this is
true on affines by Lemma 43.12.2. The statement on boundedness properties of the
functor D in the quasi-compact case also folow from the corresponding statements
of Lemma 43.12.2. �

43.17. Twisted inverse image

References for this section are [Nee96] and [LN07]. Let f : X → Y be a morphism
of schemes. In some papers, a twisted inverse image for f is defined to be a right
adjoint to the functor Rf∗ : DQCoh(OX)→ DQCoh(OX). However, this terminology
is not universally accepted and we refrain from giving a formal definition. We also
will not use the notation f ! for such a functor, as this would clash (for general
morphisms f) with the notation in [Har66].
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Lemma 43.17.1. Let f : X → Y be a morphism between quasi-separated and
quasi-compact schemes. The functor Rf∗ : DQCoh(X) → DQCoh(Y ) has a right
adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 13.35.2. First off, the category DQCoh(OX) has direct sums,
see Derived Categories of Schemes, Lemma 35.3.1. The category DQCoh(OX) is
compactly generated by Derived Categories of Schemes, Theorem 35.13.3. Since
X and Y are quasi-compact and quasi-separated, so is f , see Schemes, Lemmas
25.21.14 and 25.21.15. Hence the functor Rf∗ commutes with direct sums, see
Derived Categories of Schemes, Lemma 35.4.2. This finishes the proof. �

Example 43.17.2. Let A → B be a ring map. Let Y = Spec(A) and X =
Spec(B) and f : X → Y the morphism corresponding to A → B. Then Rf∗
corresponds to restriction D(B)→ D(A) via the equivalences D(B)→ DQCoh(OX)
and D(A) → DQCoh(OY ). Hence the right adjoint corresponds to the functor
K 7−→ RHom(B,K) of Section 43.10.

Example 43.17.3. If f : X → Y is a separated finite type morphism of Noether-
ian schemes, then twisted inverse image does not map DCoh(OY ) into DCoh(OX).
Namely, let k be a field and consider the morphism f : A1

k → Spec(k). By Example
43.17.2 this corresponds to the question of whether RHom(B,−) maps DCoh(A)
into DCoh(B) where A = k and B = k[x]. This is not true because

RHom(k[x], k) =
(∏

n≥0
k
)

[0]

which is not a finite k[x]-module. Hence a(OY ) does not have coherent cohomology
sheaves.

Example 43.17.4. If f : X → Y is a proper or even finite morphism of Noetherian
schemes, then twisted inverse image does not map D−QCoh(OY ) into D−QCoh(OX).

Namely, let k be a field, let k[ε] be the dual numbers over k, let X = Spec(k), and
let Y = Spec(k[ε]). Then Extik[ε](k, k) is nonzero for all i ≥ 0. Hence a(OY ) is not
bounded above by Example 43.17.2.

Lemma 43.17.5. Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint to Rf∗
of Lemma 43.17.1. Then a maps D+

QCoh(OY ) into D+
QCoh(OX).

Proof. By Derived Categories of Schemes, Lemma 35.4.1 the functor Rf∗ has
finite cohomological dimension. In other words, there exist an integer N such that
Hi(Rf∗L) = 0 for i ≥ N + c if Hj(L) = 0 for j ≥ c. Say K ∈ D+

QCoh(OY ) has

Hk(K) = 0 for k ≥ c. Then

HomD(OX)(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0

by what we said above. Clearly, this implies that a(K) is bounded below. �

We often want to know whether the twisted inverse image commutes with base
change. Thus we consider a cartesian square

(43.17.5.1)

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y
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of quasi-compact and quasi-separated schemes. Denote

a : DQCoh(OY )→ DQCoh(OX),

a′ : DQCoh(OY ′)→ DQCoh(OX′),
b : DQCoh(OX)→ DQCoh(OX′),
b′ : DQCoh(OY )→ DQCoh(OY ′)

the right adjoints to Rf∗, Rf
′
∗, Rg∗, and Rg′∗ (Lemma 43.17.1). Since Rf∗ ◦Rg′∗ =

Rg∗ ◦Rf ′∗ we get

b′ ◦ a = a′ ◦ b.
Another compatibility comes from the base change map of Cohomology, Remark
20.29.2. It induces a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′∗ ◦ a′

Lemma 43.17.6. In diagram (43.17.5.1) assume that g is flat or more generally
that f and g are Tor independent. Then a ◦Rg∗ ←− Rg′∗ ◦ a′ is an isomorphism.

Proof. In this case the base change map Lg∗ ◦ Rf∗K −→ Rf ′∗ ◦ L(g′)∗K is an
isomorphism for every K in DQCoh(OX) by Derived Categories of Schemes, Lemma
35.16.3. Thus the corresponding transformation between adjoint functors is an
isomorphism as well. �

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
V ⊂ Y be a quasi-compact open subscheme and set U = f−1(V ). This gives a
cartesian square

U
j′
//

f |U
��

X

f

��
V

j // Y

as in (43.17.5.1). By Lemma 43.17.6 we have a ◦ Rj∗ = Rj′∗ ◦ a′ where a and a′

are the twisted inverse images corresponding to f and f |U . Let K ∈ DQCoh(OY ).
Then we get a map

(43.17.6.1) a(K)|U −→ a(Rj∗K|V )|U = (Rj′∗a
′(K|V ))|U = a′(K|V )

where the first arrow comes from the adjunction map K → Rj∗K|V .

Example 43.17.7. There is a finite morphsm f : X → Y of Noetherian schemes
such that (43.17.6.1) is not an isomorphism for some K ∈ DCoh(OY ). Namely, let
X = Spec(B) → Y = Spec(A) with A = k[x, ε] where k is a field and ε2 = 0 and
B = k[x] = A/(ε). For n ∈ N set Mn = A/(ε, xn). Observe that

ExtiA(B,Mn) = Mn, i ≥ 0

because B has the free periodic resolution . . . → A → A → A with maps given
by multiplication by ε. Consider the object K =

⊕
Kn[n] =

∏
Kn[n] of DCoh(A)
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(equality in D(A) by Derived Categories, Lemmas 13.31.2 and 13.32.2). Then we
see that a(K) correspnds to RHom(B,K) by Example 43.17.2 and

H0(RHom(B,K)) = Ext0
A(B,K) =

∏
n≥1

ExtnA(B.Mn) =
∏

n≥1
Mn

by the above. But this module has elements which are not annihilated by any
power of x, whereas the complex K does have every element of its cohomology
annihilated by a power of x. In other words, for the map (43.17.6.1) with V = D(x)
and U = D(x) and the complex K, the left hand side is nonzero and the right hand
side is zero.

Lemma 43.17.8. Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. Let V ⊂ Y be quasi-compact open with inverse image U ⊂ X.
If for every Q ∈ D+

QCoh(OY ) supported on Y \ V the twisted inverse image a(Q) is

supported on X \ U , then (43.17.6.1) is an isomorphism for all K in D+
QCoh(OY ).

Proof. Choose a distinguished triangle

K → Rj∗K|V → Q→ K[1]

Observe that Q is supported on Y \ V (Derived Categories of Schemes, Definition
35.6.4). Applying the twisted inverse image a we obtain a distinguished triangle

a(K)→ a(Rj∗K|V )→ a(Q)→ a(K)[1]

on X. If a(Q) is supported on X \ U , then restricting to U the map a(K)|U →
a(Rj∗K|V )|U is an isomorphism, i.e., (43.17.6.1) is an isomorphism. �

Lemma 43.17.9. Let f : X → Y be a proper1 morphism of Noetherian schemes.
The assumption and hence the conclusion of Lemma 43.17.8 holds for all opens V
of Y .

Proof. Let Q ∈ D+
QCoh(OY ) be supported on Y \ V . To get a contradiction,

assume that a(Q) is not supported on X \ U . Then we can find a perfect complex
PU on U and a nonzero map PU → a(Q)|U (follows from Derived Categories of
Schemes, Theorem 35.13.3). Then using Derived Categories of Schemes, Lemma
35.11.9 we may assume there is a perfect complex P on X and a map P → a(Q)
whose restriction to U is nonzero. By definition of the twisted inverse image this
map is adjoint to a map Rf∗P → Q.

Because f is proper and X and Y Noetherian, the complex Rf∗P is pseudo-
coherent, see Derived Categories of Schemes, Lemmas 35.5.1 and 35.9.4. Thus we
may apply Derived Categories of Schemes, Lemma 35.14.3 and get a map I → OY
of perfect complexes whose restriction to V is an isomorphism such that the com-
position I ⊗L

OY Rf∗P → Rf∗P → K is zero. By Derived Categories of Schemes,

Lemma 35.16.1 we have I ⊗L
OY Rf∗P = Rf∗(Lf

∗I ⊗L
OX P ). We conclude that the

composition
Lf∗I ⊗L

OX P → P → a(K)

is zero. However, the restriction to U is the map P |U → a(K)|U which we assumed
to be nonzero. This contradiction finishes the proof. �

1This proof works for those morphisms of quasi-compact and quasi-separated schemes such

that Rf∗P is pseudo-coherent for all P perfect on X. It follows easily from a theorem of Kiehl
[Kie72] that this holds if f is proper and pseudo-coherent. This is the correct generality for this

lemma and some of the other results in this section.
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Lemma 43.17.10. Let f : X → Y be a proper morphism of Noetherian schemes.
Let a be the twisted inverse image. Then the canonical map

Rf∗RHom(L, a(K)) −→ RHom(Rf∗L,K)

is an isomorphism for all L ∈ DQCoh(OX) and all K ∈ D+
QCoh(OY ).

Proof. Since a is the right adjoint to Rf∗ there is a adjunction map Rf∗a(K)→ K.
On the other hand, there is a canonical map

Rf∗RHom(L, a(K))→ RHom(Rf∗L,Rf∗a(K))

which works on the level of complexes. Combining these we obtain the map of the
lemma. Taking H0(V,−) for an open V of Y with inverse image U in X we get

HomD(OU )(L|U , a(K)|U ) −→ HomD(OV )(Rf∗L|V ,K|V )

Since we’ve shown above that a(K)|U is the twisted inverse image of K|V (Lemma
43.17.9) the two sides of this arrow are isomorphic. We omit the verification that
the two maps agree. A similar argument works for Hn(V,−). Thus the map defined
above is an isomorphism on cohomology and hence an isomorphism in the derived
category. �

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
a be the twisted inverse image (Lemma 43.17.1). There is a canonical map

(43.17.10.1) Lf∗K ⊗L
OX a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles. Namely, this map is
adjoint to a map

Rf∗(Lf
∗K ⊗L

OX a(OY )) = K ⊗L
OX Rf∗(a(OY )) −→ K

(equality by Derived Categories of Schemes, Lemma 35.16.1) for which we use the
adjunction map Rf∗a(OY )→ OY and the indentity on K.

Lemma 43.17.11. Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. The map (43.17.10.1) is an isomorphism for every perfect object
K of D(OY ).

Proof. For a perfect object K on Y and L ∈ DQCoh(OX) we have

HomD(OY )(Rf∗L,K) = HomD(OY )(Rf∗L⊗L
OY K

∧,OY )

= HomD(OX)(L⊗L
OX Lf

∗K∧, a(OY ))

= HomD(OX)(L, a(OY )⊗L
OX Lf

∗K)

Hence the result by the Yoneda lemma. �

Lemma 43.17.12. Let i : Z → X be a closed immersion of quasi-compact and
quasi-separated schemes. Let a : DQCoh(OX)→ DQCoh(OZ) be the twisted inverse
image, i.e., the right adjoint to Ri∗. Then there is a functorial isomorphism

a(K) = RHom(OZ ,K)

for K ∈ D+
QCoh(OX).

Proof. By Lemma 43.11.2 the functor RHom(OZ ,−) is a right adjoint to Ri∗ :
D(OZ)→ D(OX). Moreover, by Lemma 43.11.4 and Lemma 43.17.5 bothRHom(OZ ,−)
and a map D+

QCoh(OX) into D+
QCoh(OZ). Hence we obtain the isomorphism by

uniqueness of adjoint functors. �
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Remark 43.17.13. The map (43.17.6.1) is a special case of a base change map.
Namely, suppose that we have a diagram (43.17.5.1) where f and g are Tor inde-
pendent. Let K ∈ DQCoh(OX). Then we can consider the composition
(43.17.13.1)

L(g′)∗a(K)→ L(g′)∗a(Rg∗Lg
∗K) = L(g′)∗Rg′∗a

′(Lg∗K)→ a′(Lg∗K)

We need the assumption on Tor independence to get the equality sign (the canon-
ical map goes the other way). The two arrows come from the adjunction maps
id → Rg∗Lg

∗ and L(g′)∗Rg′∗ → id. Alternatively, we can think of (43.17.5.1) by
adjointness of L(g′)∗ and R(g′)∗ as the map

a(K)→ a(Rg∗Lg
∗K) = Rg′∗a

′(Lg∗K)

If M ∈ DQCoh(OX) then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)

→ HomY (Rf∗M,Rg∗Lg
∗K)

= HomY ′(Lg
∗Rf∗M,Lg∗K)

= HomY ′(Rf
′
∗L(g′)∗M,Lg∗K)

= HomX′(L(g′)∗M,a′(Lg∗K))

= HomX(M,Rg′∗a
′(Lg∗K))

which makes things a little bit more explicit.

Lemma 43.17.14. Let A → A′ be a ring map. Let X be a quasi-compact and
quasi-separated scheme over A. Let h : X ′ = X ×Spec(A) Spec(A′) → X be the
projection. Assume X and Spec(B) are Tor independent over Spec(A). We have

HomX(M,K ⊗L
OX h∗OX′) = H0(RΓ(X,RHom(M,K))⊗L

A A
′)

in the following two cases

(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and A′ has finite tor
dimension over A.

Proof. The complex RHom(M,K) is an object of DQCoh(OX) and we have

RHom(M,K ⊗L
OX h∗OX′) = RHom(M,K)⊗L

OX h∗OX′

in both cases (details omitted; hints: you can check this when X is affine and use
Derived Categories of Schemes, Lemma 35.9.8 to identify the RHom complexes).
Hence, by replacing K by RHom(M,K) we reduce to proving

H0(X,K ⊗L
OX h∗OX′) = H0(RΓ(X,K)⊗L

A A
′)

Note that the left hand side is equal to H0(X ′, Lh∗K) by Derived Categories of
Schemes, Lemma 35.4.4. Hence the lemma is an example of by Derived Categories
of Schemes, Lemma 35.16.3. �

Lemma 43.17.15. In diagram (43.17.5.1) assume

(1) g : Y ′ → Y is a morphism of affine schemes,
(2) f : X → Y is proper,
(3) Y Noetherian, and
(4) f or g is flat.
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Then the base change map (43.17.13.1) is an isomorphism for all K ∈ DQCoh(OX)
if f is flat and for K ∈ D+

QCoh(OX) if g is flat.

Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine
morphism, the morphism g′ is affine. Hence Rg′∗ reflects isomorphisms, see Derived
Categories of Schemes, Lemma 35.4.3. Thus (43.17.13.1) is an isomorphism for
K ∈ DQCoh(OX) if and only if the map a(K) → a(Rg∗Lg

∗K) = Rg′∗a
′(Lg∗K)

induces an isomorphism

a(K)⊗L
OX g

′
∗OX′ → a(Rg∗Lg

∗K)

(see Derived Categories of Schemes, Lemma 35.4.4). As DQCoh(OX) is generated
by perfect objects (see Derived Categories of Schemes, Theorem 35.13.3), it suffices
to check we obtain an isomorphism after applying the functor HomX(M,−) where
M is perfect on X. On the left hand side we get

HomX(M,a(K)⊗L
OX g

′
∗OX′) = H0(RΓ(X,RHom(M,a(K)))⊗L

A A
′)

= H0(RΓ(Y,RHom(Rf∗M,K))⊗L
A A

′)

The first equality by Lemma 43.17.14. Observe that RΓ(X,RHom(M,a(K))) is
the complex of A-modules whose cohomology groups are HomX(M,a(K)[n]) and
similary for RΓ(Y,RHom(Rf∗M,K)), see Cohomology, Lemma 20.34.1. Hence
the second equality follows from the definition of a. In the case that f is flat the
complex Rf∗M is perfect on Y (Derived Categories of Schemes, Lemma 35.17.1)
and in general the complex Rf∗M is pseudo-coherent on Y (Derived Categories of
Schemes, Lemmas 35.5.1 and 35.9.4). Thus we get on the right hand side

HomX(M,a(Rg∗Lg
∗K)) = HomY (Rf∗M,Rg∗Lg

∗K)

= HomY (Rf∗M,K ⊗L
OY g∗OY ′)

= H0(RΓ(Y,RHom(Rf∗M,K))⊗L
A A

′)

by the same arguments. Thus we get the same outcome as before. We omit the
verification that our map induces the given identifications. �

43.18. Flat and proper morphisms

The correct generality for this section would be to consider proper perfect mor-
phisms of quasi-compact and quasi-separated schemes, see [LN07].

Lemma 43.18.1. Let f : X → Y be a flat and proper morphism of Noetherian
schemes. Let a be the twisted inverse image. Then a commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By Derived Categories of Schemes,
Lemma 35.17.1 the complex Rf∗P is perfect on Y . Let Ki be a family of objects
of DQCoh(OY ). Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition
35.14.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Schemes,
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Theorem 35.13.3) we conclude that the map
⊕
a(Ki) → a(

⊕
Ki) is an isomor-

phism, i.e., a commutes with direct sums. �

Lemma 43.18.2. Let f : X → Y be a flat and proper morphism of Noetherian
schemes. Let a be the twisted inverse image. Let T ⊂ Y be closed. Then

(1) if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is supported on f−1(T ),
(2) the map (43.17.6.1) is an isomorphism for K ∈ DQCoh(OY ), and
(3) the canonical map

Rf∗RHom(L, a(K)) −→ RHom(Rf∗L,K)

is an isomorphism for all L ∈ DQCoh(OX) and all K ∈ DQCoh(OY ).

Proof. Arguing exactly as in the proof of Lemma 43.17.10 we see that (2) implies
(3). Arguing exactly as in the proof of Lemma 43.17.8 we see that (1) implies (2).

Proof of (1). We will use the notation DQCoh,T (OY ) and DQCoh,f−1(T )(OX) to

denote complexes whose cohomology sheaves are supported on T and f−1(T ). By
Lemma 43.18.1 the functor a commutes with direct sums. Hence the strictly full,
saturated, triangulated subcategory D with objects

{Q ∈ DQCoh,T (OY ) | a(Q) ∈ DQCoh,f−1(T )(OX)}
is preserved by direct sums (and hence derived colimits). On the other hand, the
category DQCoh,T (OY ) is generated by a perfect object E (see Derived Categories
of Schemes, Lemma 35.13.5). By Lemma 43.17.9 we see that E ∈ D. By Derived
Categories, Lemma 13.34.3 every object Q of DQCoh,T (OY ) is a derived colimit of
a system Q1 → Q2 → Q3 → . . . such that the cones of the transition maps are
direct sums of shifts of E. Arguing by induction we see that En ∈ D for all n and
finally that Q is in D. Thus (1) is true. �

Lemma 43.18.3. Let f : X → Y be a proper flat morphism of Noetherian schemes.
The map (43.17.10.1) is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 43.18.1 we know that a commutes with direct sums. Hence
the collection of objects of DQCoh(OY ) for which (43.17.10.1) is an isomorphism is
a strictly full, saturated, triangulated subcategory of DQCoh(OY ) which is more-
over preserved under taking direct sums. Since DQCoh(OY ) is a module category
(Derived Categories of Schemes, Theorem 35.15.3) generated by a single perfect
object (Derived Categories of Schemes, Theorem 35.13.3) we can argue as in More
on Algebra, Remark 15.45.11 to see that it suffices to prove (43.17.10.1) is an iso-
morphism for a single perfect object. However, the result holds for perfect objects,
see Lemma 43.17.11. �

Lemma 43.18.4. Let f : X → Y be a proper flat morphism of Noetherian schemes.
Let g : Y ′ → Y be a morphism of finite type. Then the base change map (43.17.13.1)
is an isomorphism for all K ∈ DQCoh(OX).

Proof. By Lemma 43.18.2 formation of the functors a and a′ commutes with re-
striction to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of
affine schemes. In this case the statement follows from Lemma 43.17.15. �

Lemma 43.18.5. Let f : X = P1
Y → Y be the projection where Y is a Noe-

therian scheme. Let a be the twisted inverse image. Then a(OY ) is isomorphic to
OX(−2)[1].

http://stacks.math.columbia.edu/tag/0AAA
http://stacks.math.columbia.edu/tag/0A9U
http://stacks.math.columbia.edu/tag/0AAB
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2778 43. DUALIZING COMPLEXES

Proof. Recall that there is an identification Rf∗(OX(−2)[1]) = OY , see Cohomol-
ogy of Schemes, Lemma 29.8.3 or 29.8.4. This determines a map OX(−2)[1] →
a(OY ). By Lemma 43.17.9 construction of the twisted inverse image is local on
the base. In particular, to check that OX(−2)[1] → a(OY ) is an isomorphism, we
may work locally on Y . In other words, we may assume Y is affine. In the affine
case the sheaves OX and OX(−1) generate DQCoh(X), see Derived Categories of
Schemes, Lemma 35.13.4. Hence it suffices to show that the maps

H−n+1(X,O(−2)) = HomD(OX)(OX [n],OX(−2)[1])

→ HomD(OX)(OX [n], a(OY ))

= HomD(OY )(Rf∗(OX)[n],OY )

= H−n(Y,OY )

and

H−n+1(X,OX(−1)) = HomD(OX)(OX(−1)[n],OX(−2)[1])

→ HomD(OX)(OX(−1)[n], a(OY ))

= HomD(OY )(Rf∗(OX(−1))[n],OY )

= 0

(where we used Cohomology of Schemes, Lemma 29.8.1) are isomorphisms for all
n ∈ Z. This is clear from the explicit computation of cohomology in Cohomology
of Schemes, Lemma 29.8.1. �

Example 43.18.6. The base change map (43.17.13.1) is not an isomorphism if
f is proper and perfect and g is perfect. Let k be a field. Let Y = A2

k and let
f : X → Y be the blow up of Y in the origin. Denote E ⊂ X the exceptional
divisor. Then we can factor f as

X
i−→ P1

Y
p−→ Y

This gives a factorization a = c ◦ b where b is the twisted inverse image for p and
c is the twisted inverse image for i. Denote O(n) the Serre twist of the structure
sheaf on P1

Y and denote OX(n) its restriction to X. Note that X ⊂ P1
Y is cut

out by a degree one equation, hence O(X) = O(1). By Lemma 43.18.5 we have
b(OY ) = O(−2)[1]. By Lemma 43.17.12 we have

a(OY ) = c(b(OY )) = c(O(−2)[1]) = RHom(OX ,O(−2)[1]) = OX(−1)

Last equality by Lemma 43.11.6. Hence the restriction of a(OY ) to E = P1
k is an

invertible sheaf of degree −1 placed in cohomological degree 0. But on the other
hand, a′(OSpec(k)) = OE(−2)[1] which is an invertible sheaf of degree −2 placed in
cohomological degree −1, so different.

43.19. Upper shriek functors

In this section all schemes are Noetherian (but we will make sure all the assumptions
are mentioned explicitly in the statements).

Let S be a Noetherian scheme. We will say a schemeX over S has a compactification
over S if there exists an open immersion X → X into a scheme X proper over S.
If X has a compactification over S, then X → S is separated and of finite type. It
is a theorem of Nagata (see [Con07], [Nag56], [Nag57], [Nag62a], and [Nag63])

http://stacks.math.columbia.edu/tag/0AAC
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that the converse is true as well (we will give a precise statement and a proof if we
ever need this result).

Lemma 43.19.1. Let S be a Noetherian scheme. Let X be a scheme over S which
has a compactification over S.

(1) Any two compactifications of X/S can be dominated by a third.
(2) If X → Y → S is a factorization with Y → S of separated of finite type,

then X has a compactification over Y .

Proof. Omitted. �

Given a morphism f : X → Y of compactifyable schemes over a Noetherian base
scheme S, we will define an exact functor

f ! : D+
QCoh(OY )→ D+

QCoh(OX)

of triangulated categories. Namely, we choose a compactification X → X over Y
which is possible by Lemma 43.19.1. Denote f : X → Y the structure morphism.
We let a : DQCoh(OY ) → DQCoh(OX) be the twisted inverse image, i.e., the right

adjoint of Rf∗ constructed in Lemma 43.17.1. Then we set

f !K = a(K)|X
for K ∈ D+

QCoh(OY ). The result is an object of D+
QCoh(OX) by Lemma 43.17.5.

Lemma 43.19.2. The functor f ! is independent of the choice of the compactifi-
cation (up to canonical isomorphism). If f is an open immersion, then f ! = f∗.
Moreover, if f : X → Y , g : Y → Z are morphisms of compactifyable schemes over
S, then there is a canonical isomorphism f ! ◦ g! = (g ◦ f)!.

Proof. We first prove the last statement. Choose a compactification Y → Y → Z
over Z and then choose a compactification X → X → Y over Y using Lemma
43.19.1. Let a be the twisted inverse image for X → Y and let b be the twisted
inverse image for Y → Z. Then a◦b is the twisted inverse image for the composition
X → Z. Let a′ be the twisted inverse image for X×Y Y → Y . Let K be an object of

D+
QCoh(OZ . To prove the statement on compositions it suffices to find a functorial

isomorphism between

a′(b(K)|Y ) and a(b(K))|X×Y Y
in D(OX). The canonical map (43.17.6.1) from left to right is an isomorphism by
Lemma 43.17.9.

Independence of the choice of the compactification is a special case of the argument
above where X → Y is an isomorphism. The statement on open immersions is
immediate from the construction (once it is shown to be independent of choices). �

Lemma 43.19.3. Let S be a Noetherian scheme. Let Y be a compactifyable scheme
over S and let f : X = A1

Y → Y be the projection. Then there is a (noncanonical)
isomorphism f !(−) ∼= Lf∗(−)[1] of functors.

Proof. Since X = A1
Y ⊂ P1

Y and since OP1
Y

(−2)|X ∼= OX this follows from
Lemmas 43.18.5 and 43.18.3. �

Lemma 43.19.4. Let S be a Noetherian scheme. Let Y be a compactifyable scheme
over S and let i : X → Y be a closed immersion. Then there is a canonical
isomorphism i!(−) = RHom(OX ,−) of functors.

http://stacks.math.columbia.edu/tag/0A9Z
http://stacks.math.columbia.edu/tag/0AA0
http://stacks.math.columbia.edu/tag/0AA1
http://stacks.math.columbia.edu/tag/0AA2
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Proof. This is a restatement of Lemma 43.17.12. �

Lemma 43.19.5. Let S be a Noetherian scheme. Let f : X → Y be a morphism
of compactifyable schemes over S. If K is a dualizing complex for Y , then f !K is
a dualizing complex for X.

Proof. The question is local on X hence we may assume that X and Y are affine
schemes mapping into an affine open of S. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. By Lemmas 43.19.3 and 43.12.9 and induction we
see that the p!K is a dualizing complex on An

Y where p : An
Y → Y is the projec-

tion. Similarly, by Lemmas 43.12.8, 43.11.4, and 43.19.4 we see that i! transforms
dualizing complexes into dualizing complexes. �
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CHAPTER 44

Étale Cohomology

44.1. Introduction

These are the notes of a course on étale cohomology taught by Johan de Jong at
Columbia University in the Fall of 2009. The original note takers were Thibaut
Pugin, Zachary Maddock and Min Lee. Over time we will add references to back-
ground material in the rest of the stacks project and provide rigorous proofs of all
the statements.

44.2. Which sections to skip on a first reading?

We want to use the material in this chapter for the development of theory related
to algebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have
added some pretty technical material to the original exposition of étale cohomology
for schemes. The reader can recognize this material by the frequency of the word
“topos”, or by discussions related to set theory, or by proofs dealing with very
general properties of morphisms of schemes. Some of these discussions can be
skipped on a first reading.

In particular, we suggest that the reader skip the following sections:

(1) Comparing big and small topoi, Section 44.39.
(2) Recovering morphisms, Section 44.41.
(3) Push and pull, Section 44.42.
(4) Property (A), Section 44.43.
(5) Property (B), Section 44.44.
(6) Property (C), Section 44.45.
(7) Topological invariance of the small étale site, Section 44.46.
(8) Integral universally injective morphisms, Section 44.48.
(9) Big sites and pushforward, Section 44.49.

(10) Exactness of big lower shriek, Section 44.50.

Besides these sections there are some sporadic results that may be skipped that the
reader can recognize by the keywords given above.

44.3. Prologue

These lectures are about another cohomology theory. The first thing to remark is
that the Zariski topology is not entirely satisfactory. One of the main reasons that
it fails to give the results that we would want is that if X is a complex variety and
F is a constant sheaf then

Hi(X,F) = 0, for all i > 0.

The reason for that is the following. In an irreducible scheme (a variety in par-
ticular), any two nonempty open subsets meet, and so the restriction mappings of
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a constant sheaf are surjective. We say that the sheaf is flasque. In this case, all
higher Čech cohomology groups vanish, and so do all higher Zariski cohomology
groups. In other words, there are “not enough” open sets in the Zariski topology
to detect this higher cohomology.

On the other hand, if X is a smooth projective complex variety, then

H2 dimX
Betti (X(C),Λ) = Λ for Λ = Z, Z/nZ,

where X(C) means the set of complex points of X. This is a feature that would be
nice to replicate in algebraic geometry. In positive characteristic in particular.

44.4. The étale topology

It is very hard to simply “add” extra open sets to refine the Zariski topology.
One efficient way to define a topology is to consider not only open sets, but also
some schemes that lie over them. To define the étale topology, one considers all
morphisms ϕ : U → X which are étale. If X is a smooth projective variety over C,
then this means

(1) U is a disjoint union of smooth varieties, and
(2) ϕ is (analytically) locally an isomorphism.

The word “analytically” refers to the usual (transcendental) topology over C. So
the second condition means that the derivative of ϕ has full rank everywhere (and
in particular all the components of U have the same dimension as X).

A double cover – loosely defined as a finite degree 2 map between varieties – for
example

Spec(C[t]) −→ Spec(C[t]), t 7−→ t2

will not be an étale morphism if it has a fibre consisting of a single point. In the
example this happens when t = 0. For a finite map between varieties over C to
be étale all the fibers should have the same number of points. Removing the point
t = 0 from the source of the map in the example will make the morphism étale.
But we can remove other points from the source of the morphism also, and the
morphism will still be étale. To consider the étale topology, we have to look at all
such morphisms. Unlike the Zariski topology, these need not be merely be open
subsets of X, even though their images always are.

Definition 44.4.1. A family of morphisms {ϕi : Ui → X}i∈I is called an étale
covering if each ϕi is an étale morphism and their images cover X, i.e., X =⋃
i∈I ϕi(Ui).

This “defines” the étale topology. In other words, we can now say what the sheaves
are. An étale sheaf F of sets (resp. abelian groups, vector spaces, etc) on X is the
data:

(1) for each étale morphism ϕ : U → X a set (resp. abelian group, vector
space, etc) F(U),

(2) for each pair U, U ′ of étale schemes over X, and each morphism U → U ′

over X (which is automatically étale) a restriction map ρUU ′ : F(U) →
F(U ′)

These data have to satisfy the following sheaf axiom:

http://stacks.math.columbia.edu/tag/03N5
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(∗) for every étale covering {ϕi : Ui → X}i∈I , the diagram

∅ // F(U) // Πi∈IF(Ui)
//
// Πi,j∈IF(Ui ×U Uj)

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark 44.4.2. In the last statement, it is essential not to forget the case where
i = j which is in general a highly nontrivial condition (unlike in the Zariski topol-
ogy). In fact, frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an
étale sheaf, and cohomology will simply be the corresponding right-derived functors.
In other words, once more theory has been developed and statements have been
made precise, there will be no obstacle to defining cohomology.

44.5. Feats of the étale topology

For a natural number n ∈ N = {1, 2, 3, 4, . . .} it is true that

H2
étale(P

1
C,Z/nZ) = Z/nZ.

More generally, if X is a complex variety, then its étale Betti numbers with coeffi-
cients in a finite field agree with the usual Betti numbers of X(C), i.e.,

dimFq H
2i
étale(X,Fq) = dimFq H

2i
Betti(X(C),Fq).

This is extremely satisfactory. However, these equalities only hold for torsion coef-
ficients, not in general. For integer coefficients, one has

H2
étale(P

1
C,Z) = 0.

There are ways to get back to nontorsion coefficients from torsion ones by a limit
procedure which we will come to shortly.

44.6. A computation

How do we compute the cohomology of P1
C with coefficients Λ = Z/nZ? We

use Čech cohomology. A covering of P1
C is given by the two standard opens

U0, U1, which are both isomorphic to A1
C, and which intersection is isomorphic

to A1
C \ {0} = Gm,C. It turns out that the Mayer-Vietoris sequence holds in étale

cohomology. This gives an exact sequence

Hi−1
étale(U0∩U1,Λ)→ Hi

étale(P
1
C ,Λ)→ Hi

étale(U0,Λ)⊕Hi
étale(U1,Λ)→ Hi

étale(U0∩U1,Λ).

To get the answer we expect, we would need to show that the direct sum in the
third term vanishes. In fact, it is true that, as for the usual topology,

Hq
étale(A

1
C,Λ) = 0 for q ≥ 1,

and

Hq
étale(A

1
C \ {0},Λ) =

{
Λ if q = 1, and
0 for q ≥ 2.

These results are already quite hard (what is an elementary proof?). Let us explain
how we would compute this once the machinery of étale cohomology is at our
disposal.

Higher cohomology. This is taken care of by the following general fact: if X is
an affine curve over C, then

Hq
étale(X,Z/nZ) = 0 for q ≥ 2.

http://stacks.math.columbia.edu/tag/03N6


2786 44. ÉTALE COHOMOLOGY

This is proved by considering the generic point of the curve and doing some Galois
cohomology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

H1
étale(X,Z/nZ) =

{
sheaves of sets F on the étale site Xétale endowed with an

action Z/nZ×F → F such that F is a Z/nZ-torsor.

}/
∼=

=

{
morphisms Y → X which are finite étale together
with a free Z/nZ action such that X = Y/(Z/nZ).

}/
∼= .

The first identification is very general (it is true for any cohomology theory on a
site) and has nothing to do with the étale topology. The second identification is
a consequence of descent theory. The last set describes a collection of geometric
objects on which we can get our hands.

The curve A1
C has no nontrivial finite étale covering and hence H1

étale(A
1
C,Z/nZ) =

0. This can be seen either topologically or by using the argument in the next
paragraph.

Let us describe the finite étale coverings ϕ : Y → A1
C \ {0}. It suffices to consider

the case where Y is connected, which we assume. We are going to find out what Y
can be by applying the Riemann-Hurwitz formula (of course this is a bit silly, and
you can go ahead and skip the next section if you like). Say that this morphism is
n to 1, and consider a projective compactification

Y �
� //

ϕ

��

Ȳ

ϕ̄

��
A1

C \ {0}
� � // P1

C

Even though ϕ is étale and does not ramify, ϕ̄ may ramify at 0 and ∞. Say that
the preimages of 0 are the points y1, . . . , yr with indices of ramification e1, . . . er,
and that the preimages of ∞ are the points y′1, . . . , y

′
s with indices of ramification

d1, . . . ds. In particular,
∑
ei = n =

∑
dj . Applying the Riemann-Hurwitz formula,

we get

2gY − 2 = −2n+
∑

(ei − 1) +
∑

(dj − 1)

and therefore gY = 0, r = s = 1 and e1 = d1 = n. Hence Y ∼= A1
C \ {0}, and it

is easy to see that ϕ(z) = λzn for some λ ∈ C∗. After reparametrizing Y we may
assume λ = 1. Thus our covering is given by taking the nth root of the coordinate
on A1

C \ {0}.

Remember that we need to classify the coverings of A1
C \ {0} together with free

Z/nZ-actions on them. In our case any such action corresponds to an automor-
phism of Y sending z to ζnz, where ζn is a primitive nth root of unity. There are
φ(n) such actions (here φ(n) means the Euler function). Thus there are exactly
φ(n) connected finite étale coverings with a given free Z/nZ-action, each corre-
sponding to a primitive nth root of unity. We leave it to the reader to see that the
disconnected finite étale degree n coverings of A1

C \ {0} with a given free Z/nZ-
action correspond one-to-one with nth roots of 1 which are not primitive. In other
words, this computation shows that

H1
étale(A

1
C \ {0},Z/nZ) = Hom(µn(C),Z/nZ) ∼= Z/nZ.
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The first identification is canonical, the second isn’t, see Remark 44.66.7. Since the
proof of Riemann-Hurwitz does not use the computation of cohomology, the above
actually constitutes a proof (provided we fill in the details on vanishing, etc).

44.7. Nontorsion coefficients

To study nontorsion coefficients, one makes the following definition:

Hi
étale(X,Q`) :=

(
limnH

i
étale(X,Z/`

nZ)
)
⊗Z` Q`.

The symbol limn denote the limit of the system of cohomology groupsHi
étale(X,Z/`

nZ)
indexed by n, see Categories, Section 4.21. Thus we will need to study systems of
sheaves satisfying some compatibility conditions.

44.8. Sheaf theory

At this point we start talking about sites and sheaves in earnest. There is an
amazing amount of useful abstract material that could fit in the next few sections.
Some of this material is worked out in earlier chapters, such as the chapter on sites,
modules on sites, and cohomology on sites. We try to refrain from adding to much
material here, just enough so the material later in this chapter makes sense.

44.9. Presheaves

A reference for this section is Sites, Section 7.2.

Definition 44.9.1. Let C be a category. A presheaf of sets (respectively, an abelian
presheaf) on C is a functor Copp → Sets (resp. Ab).

Terminology. If U ∈ Ob(C), then elements of F(U) are called sections of F over
U . For ϕ : V → U in C, the map F(ϕ) : F(V ) → F(U) is called the restriction
map and is often denoted s 7→ s|V or sometimes s 7→ ϕ∗s. The notation s|V is
ambiguous since the restriction map depends on ϕ, but it is a standard abuse of
notation. We also use the notation Γ(U,F) = F(U).

Saying that F is a functor means that if W → V → U are morphisms in C and
s ∈ Γ(U,F) then (s|V )|W = s|W , with the abuse of notation just seen. Moreover,
the restriction mappings corresponding to the identity morphisms idU : U → U are
the identity.

The category of presheaves of sets (respectively of abelian presheaves) on C is de-
noted PSh(C) (resp. PAb(C)). It is the category of functors from Copp to Sets (resp.
Ab), which is to say that the morphisms of presheaves are natural transformations
of functors. We only consider the categories PSh(C) and PAb(C) when the category
C is small. (Our convention is that a category is small unless otherwise mentioned,
and if it isn’t small it should be listed in Categories, Remark 4.2.2.)

Example 44.9.2. Given an object X ∈ Ob(C), we consider the functor

hX : Copp −→ Sets
U 7−→ hX(U) = MorC(U,X)

V
ϕ−→ U 7−→ ϕ ◦ − : hX(U)→ hX(V ).

It is a presheaf, called the representable presheaf associated to X. It is not true
that representable presheaves are sheaves in every topology on every site.

http://stacks.math.columbia.edu/tag/03NC
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Lemma 44.9.3 (Yoneda). Let C be a category, and X,Y ∈ Ob(C). There is a
natural bijection

MorC(X,Y ) −→ MorPSh(C)(hX , hY )
ψ 7−→ hψ = ψ ◦ − : hX → hY .

Proof. See Categories, Lemma 4.3.5. �

44.10. Sites

Definition 44.10.1. Let C be a category. A family of morphisms with fixed target
U = {ϕi : Ui → U}i∈I is the data of

(1) an object U ∈ C,
(2) a set I (possibly empty), and
(3) for all i ∈ I, a morphism ϕi : Ui → U of C with target U .

There is a notion of a morphism of families of morphisms with fixed target. A
special case of that is the notion of a refinement. A reference for this material is
Sites, Section 7.8.

Definition 44.10.2. A site1 consists of a category C and a set Cov(C) consisting
of families of morphisms with fixed target called coverings, such that

(1) (isomorphism) if ϕ : V → U is an isomorphism in C, then {ϕ : V → U} is
a covering,

(2) (locality) if {ϕi : Ui → U}i∈I is a covering and for all i ∈ I we are given
a covering {ψij : Uij → Ui}j∈Ii , then

{ϕi ◦ ψij : Uij → U}(i,j)∈∏i∈I{i}×Ii

is also a covering, and
(3) (base change) if {Ui → U}i∈I is a covering and V → U is a morphism in
C, then
(a) for all i ∈ I the fibre product Ui ×U V exists in C, and
(b) {Ui ×U V → V }i∈I is a covering.

For us the category underlying a site is always “small”, i.e., its collection of objects
form a set, and the collection of coverings of a site is a set as well (as in the
definition above). We will mostly, in this chapter, leave out the arguments that cut
down the collection of objects and coverings to a set. For further discussion, see
Sites, Remark 7.6.3.

Example 44.10.3. If X is a topological space, then it has an associated site XZar

defined as follows: the objects of XZar are the open subsets of X, the morphisms
between these are the inclusion mappings, and the coverings are the usual topolog-
ical (surjective) coverings. Observe that if U, V ⊂ W ⊂ X are open subsets then
U ×W V = U ∩ V exists: this category has fiber products. All the verifications are
trivial and everything works as expected.

1What we call a site is a called a category endowed with a pretopology in [AGV71, Exposé
II, Définition 1.3]. In [Art62] it is called a category with a Grothendieck topology.
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44.11. Sheaves

Definition 44.11.1. A presheaf F of sets (resp. abelian presheaf) on a site C is
said to be a separated presheaf if for all coverings {ϕi : Ui → U}i∈I ∈ Cov(C) the
map

F(U) −→
∏

i∈I
F(Ui)

is injective. Here the map is s 7→ (s|Ui)i∈I . The presheaf F is a sheaf if for all
coverings {ϕi : Ui → U}i∈I ∈ Cov(C), the diagram

(44.11.1.1) F(U) // ∏
i∈I F(Ui)

//
//
∏
i,j∈I F(Ui ×U Uj),

where the first map is s 7→ (s|Ui)i∈I and the two maps on the right are (si)i∈I 7→
(si|Ui×UUj ) and (si)i∈I 7→ (sj |Ui×UUj ), is an equalizer diagram in the category of
sets (resp. abelian groups).

Remark 44.11.2. For the empty covering (where I = ∅), this implies that F(∅) is
an empty product, which is a final object in the corresponding category (a singleton,
for both Sets and Ab).

Example 44.11.3. Working this out for the site XZar associated to a topological
space, see Example 44.10.3, gives the usual notion of sheaves.

Definition 44.11.4. We denote Sh(C) (resp. Ab(C)) the full subcategory of PSh(C)
(resp. PAb(C)) whose objects are sheaves. This is the category of sheaves of sets
(resp. abelian sheaves) on C.

44.12. The example of G-sets

Let G be a group and define a site TG as follows: the underlying category is the
category of G-sets, i.e., its objects are sets endowed with a left G-action and the
morphisms are equivariant maps; and the coverings of TG are the families {ϕi :
Ui → U}i∈I satisfying U =

⋃
i∈I ϕi(Ui).

There is a special object in the site TG, namely the G-set G endowed with its natural
action by left translations. We denote it GG. Observe that there is a natural group
isomorphism

ρ : Gopp −→ AutG-Sets(GG)
g 7−→ (h 7→ hg).

In particular, for any presheaf F , the set F(GG) inherits a G-action via ρ. (Note
that by contravariance of F , the set F(GG) is again a left G-set.) In fact, the
functor

Sh(TG) −→ G-Sets
F 7−→ F(GG)

is an equivalence of categories. Its quasi-inverse is the functor X 7→ hX . Without
giving the complete proof (which can be found in Sites, Section 7.9) let us try to
explain why this is true.

(1) If S is a G-set, we can decompose it into orbits S =
∐
i∈I Oi. The sheaf

axiom for the covering {Oi → S}i∈I says that

F(S) // ∏
i∈I F(Oi)

//
//
∏
i,j∈I F(Oi ×S Oj)
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2790 44. ÉTALE COHOMOLOGY

is an equalizer. Observing that fibered products in G-Sets are induced
from fibered products in Sets, and using the fact that F(∅) is aG-singleton,
we get that ∏

i,j∈I
F(Oi ×S Oj) =

∏
i∈I
F(Oi)

and the two maps above are in fact the same. Therefore the sheaf axiom
merely says that F(S) =

∏
i∈I F(Oi).

(2) If S is the G-set S = G/H and F is a sheaf on TG, then we claim that

F(G/H) = F(GG)H

and in particular F({∗}) = F(GG)G. To see this, let’s use the sheaf axiom
for the covering {GG→ G/H} of S. We have

GG×G/H GG ∼= G×H
(g1, g2) 7−→ (g1, g1g

−1
2 )

is a disjoint union of copies of GG (as a G-set). Hence the sheaf axiom
reads

F(G/H) // F(GG)
//
//
∏
h∈H F(GG)

where the two maps on the right are s 7→ (s)h∈H and s 7→ (hs)h∈H .
Therefore F(G/H) = F(GG)H as claimed.

This doesn’t quite prove the claimed equivalence of categories, but it shows at least
that a sheaf F is entirely determined by its sections over GG. Details (and set
theoretical remarks) can be found in Sites, Section 7.9.

44.13. Sheafification

Definition 44.13.1. Let F be a presheaf on the site C and U = {Ui → U} ∈
Cov(C). We define the zeroth Čech cohomology group of F with respect to U by

Ȟ0(U ,F) =
{

(si)i∈I ∈
∏

i∈I
F(Ui) such that si|Ui×UUj = sj |Ui×UUj

}
.

There is a canonical map F(U) → Ȟ0(U ,F), s 7→ (s|Ui)i∈I . We say that a mor-
phism of coverings from a covering V = {Vj → V }j∈J to U is a triple (χ, α, χj),
where χ : V → U is a morphism, α : J → I is a map of sets, and for all j ∈ J the
morphism χj fits into a commutative diagram

Vj χj
//

��

Uα(j)

��
V

χ // U.

Given the data χ, α, {χj}i∈J we define

Ȟ0(U ,F) −→ Ȟ0(V,F)

(si)i∈I 7−→
(
χ∗j
(
sα(j)

))
j∈J .

We then claim that

(1) the map is well-defined, and
(2) depends only on χ and is independent of the choice of α, {χj}i∈J .

http://stacks.math.columbia.edu/tag/03NR
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We omit the proof of the first fact. To see part (2), consider another triple (ψ, β, ψj)
with χ = ψ. Then we have the commutative diagram

Vj
(χj ,ψj)

//

��

Uα(j) ×U Uβ(j)

xx &&
Uα(j)

''

Uβ(j)

ww
V

χ=ψ // U.

Given a section s ∈ F(U), its image in F(Vj) under the map given by (χ, α, {χj}i∈J)
is χ∗jsα(j), and its image under the map given by (ψ, β, {ψj}i∈J) is ψ∗j sβ(j). These

two are equal since by assumption s ∈ Ȟ(U ,F) and hence both are equal to the
pullback of the common value

sα(j)|Uα(j)×UUβ(j)
= sβ(j)|Uα(j)×UUβ(j)

pulled back by the map (χj , ψj) in the diagram.

Theorem 44.13.2. Let C be a site and F a presheaf on C.

(1) The rule

U 7→ F+(U) := colimU covering of U Ȟ
0(U ,F)

is a presheaf. And the colimit is a directed one.
(2) There is a canonical map of presheaves F → F+.
(3) If F is a separated presheaf then F+ is a sheaf and the map in (2) is

injective.
(4) F+ is a separated presheaf.
(5) F# = (F+)+ is a sheaf, and the canonical map induces a functorial iso-

morphism

HomPSh(C)(F ,G) = HomSh(C)(F#,G)

for any G ∈ Sh(C).

Proof. See Sites, Theorem 7.10.10. �

In other words, this means that the natural map F → F# is a left adjoint to the
forgetful functor Sh(C)→ PSh(C).

44.14. Cohomology

The following is the basic result that makes it possible to define cohomology for
abelian sheaves on sites.

Theorem 44.14.1. The category of abelian sheaves on a site is an abelian category
which has enough injectives.

Proof. See Modules on Sites, Lemma 18.3.1 and Injectives, Theorem 19.7.4. �

So we can define cohomology as the right-derived functors of the sections functor:
if U ∈ Ob(C) and F ∈ Ab(C),

Hp(U,F) := RpΓ(U,F) = Hp(Γ(U, I•))

http://stacks.math.columbia.edu/tag/03NS
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where F → I• is an injective resolution. To do this, we should check that the
functor Γ(U,−) is left exact. This is true and is part of why the category Ab(C)
is abelian, see Modules on Sites, Lemma 18.3.1. For more general discussion of
cohomology on sites (including the global sections functor and its right derived
functors), see Cohomology on Sites, Section 21.3.

44.15. The fpqc topology

Before doing étale cohomology we study a bit the fpqc topology, since it works well
for quasi-coherent sheaves.

Definition 44.15.1. Let T be a scheme. An fpqc covering of T is a family {ϕi :
Ti → T}i∈I such that

(1) each ϕi is a flat morphism and
⋃
i∈I ϕi(Ti) = T , and

(2) for each affine open U ⊂ T there exists a finite set K, a map i : K → I
and affine opens Ui(k) ⊂ Ti(k) such that U =

⋃
k∈K ϕi(k)(Ui(k)).

Remark 44.15.2. The first condition corresponds to fp, which stands for fidèlement
plat, faithfully flat in french, and the second to qc, quasi-compact. The second part
of the first condition is unnecessary when the second condition holds.

Example 44.15.3. Examples of fpqc coverings.

(1) Any Zariski open covering of T is an fpqc covering.
(2) A family {Spec(B)→ Spec(A)} is an fpqc covering if and only if A→ B

is a faithfully flat ring map.
(3) If f : X → Y is flat, surjective and quasi-compact, then {f : X → Y } is

an fpqc covering.
(4) The morphism ϕ :

∐
x∈A1

k
Spec(OA1

k,x
) → A1

k, where k is a field, is flat

and surjective. It is not quasi-compact, and in fact the family {ϕ} is not
an fpqc covering.

(5) Write A2
k = Spec(k[x, y]). Denote ix : D(x) → A2

k and iy : D(y) ↪→ A2
k

the standard opens. Then the families {ix, iy,Spec(k[[x, y]]) → A2
k} and

{ix, iy,Spec(OA2
k,0

)→ A2
k} are fpqc coverings.

Lemma 44.15.4. The collection of fpqc coverings on the category of schemes sat-
isfies the axioms of site.

Proof. See Topologies, Lemma 33.8.7. �

It seems that this lemma allows us to define the fpqc site of the category of schemes.
However, there is a set theoretical problem that comes up when considering the fpqc
topology, see Topologies, Section 33.8. It comes from our requirement that sites are
“small”, but that no small category of schemes can contain a cofinal system of fpqc
coverings of a given nonempty scheme. Although this does not strictly speaking
prevent us from defining “partial” fpqc sites, it does not seem prudent to do so.
The work-around is to allow the notion of a sheaf for the fpqc topology (see below)
but to prohibit considering the category of all fpqc sheaves.

Definition 44.15.5. Let S be a scheme. The category of schemes over S is denoted
Sch/S. Consider a functor F : (Sch/S)opp → Sets, in other words a presheaf of sets.
We say F satisfies the sheaf property for the fpqc topology if for every fpqc covering
{Ui → U}i∈I of schemes over S the diagram (44.11.1.1) is an equalizer diagram.
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We similarly say that F satisfies the sheaf property for the Zariski topology if for
every open covering U =

⋃
i∈I Ui the diagram (44.11.1.1) is an equalizer diagram.

See Schemes, Definition 25.15.3. Clearly, this is equivalent to saying that for every
scheme T over S the restriction of F to the opens of T is a (usual) sheaf.

Lemma 44.15.6. Let F be a presheaf on Sch/S. Then F satisfies the sheaf prop-
erty for the fpqc topology if and only if

(1) F satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism Spec(B) → Spec(A) of affine schemes

over S, the sheaf axiom holds for the covering {Spec(B) → Spec(A)}.
Namely, this means that

F(Spec(A)) // F(Spec(B))
//
// F(Spec(B ⊗A B))

is an equalizer diagram.

Proof. See Topologies, Lemma 33.8.13. �

An alternative way to think of a presheaf F on Sch/S which satisfies the sheaf
condition for the fpqc topology is as the following data:

(1) for each T/S, a usual (i.e., Zariski) sheaf FT on TZar,
(2) for every map f : T ′ → T over S, a restriction mapping f−1FT → FT ′

such that

(a) the restriction mappings are functorial,
(b) if f : T ′ → T is an open immersion then the restriction mapping f−1FT →
FT ′ is an isomorphism, and

(c) for every faithfully flat morphism Spec(B)→ Spec(A) over S, the diagram

FSpec(A)(Spec(A)) // FSpec(B)(Spec(B))
//
// FSpec(B⊗AB)(Spec(B ⊗A B))

is an equalizer.

Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/S
satisfying the sheaf condition for the Zariski topology. By Lemma 44.15.6 condition
(c) then suffices to get the sheaf condition for the fpqc topology.

Example 44.15.7. Consider the presheaf

F : (Sch/S)opp −→ Ab
T/S 7−→ Γ(T,ΩT/S).

The compatibility of differentials with localization implies that F is a sheaf on the
Zariski site. However, it does not satisfy the sheaf condition for the fpqc topology.
Namely, consider the case S = Spec(Fp) and the morphism

ϕ : V = Spec(Fp[v])→ U = Spec(Fp[u])

given by mapping u to vp. The family {ϕ} is an fpqc covering, yet the restriction
mapping F(U)→ F(V ) sends the generator du to d(vp) = 0, so it is the zero map,
and the diagram

F(U)
0 // F(V )

//
// F(V ×U V )

is not an equalizer. We will see later that F does in fact give rise to a sheaf on the
étale and smooth sites.
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Lemma 44.15.8. Any representable presheaf on Sch/S satisfies the sheaf condition
for the fpqc topology.

Proof. See Descent, Lemma 34.9.3. �

We will return to this later, since the proof of this fact uses descent for quasi-
coherent sheaves, which we will discuss in the next section. A fancy way of express-
ing the lemma is to say that the fpqc topology is weaker than the canonical topology,
or that the fpqc topology is subcanonical. In the setting of sites this is discussed in
Sites, Section 7.13.

Remark 44.15.9. The fpqc is the finest topology that we will see. Hence any
presheaf satisfying the sheaf condition for the fpqc topology will be a sheaf in the
subsequent sites (étale, smooth, etc). In particular representable presheaves will be
sheaves on the étale site of a scheme for example.

Example 44.15.10. Let S be a scheme. Consider the additive group scheme
Ga,S = A1

S over S, see Groupoids, Example 38.5.3. The associated representable
presheaf is given by

hGa,S
(T ) = MorS(T,Ga,S) = Γ(T,OT ).

By the above we now know that this is a presheaf of sets which satisfies the sheaf
condition for the fpqc topology. On the other hand, it is clearly a presheaf of rings
as well. Hence we can think of this as a functor

O : (Sch/S)opp −→ Rings
T/S 7−→ Γ(T,OT )

which satisfies the sheaf condition for the fpqc topology. Correspondingly there is
a notion of O-module, and so on and so forth.

44.16. Faithfully flat descent

Definition 44.16.1. Let U = {ti : Ti → T}i∈I be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to U is
a family (Fi, ϕij)i,j∈I where

(1) for all i, Fi is a quasi-coherent sheaf on Ti, and
(2) for all i, j ∈ I the map ϕij : pr∗0Fi ∼= pr∗1Fj is an isomorphism on Ti×T Tj

such that the diagrams

pr∗0Fi

pr∗02ϕik $$

pr∗01ϕij // pr∗1Fj

pr∗12ϕjkzz
pr∗2Fk

commute on Ti ×T Tj ×T Tk.

This descent datum is called effective if there exist a quasi-coherent sheaf F over
T and OTi-module isomorphisms ϕi : t∗iF ∼= Fi satisfying the cocycle condition,
namely

ϕij = pr∗1(ϕj) ◦ pr∗0(ϕi)
−1.

In this and the next section we discuss some ingredients of the proof of the following
theorem, as well as some related material.
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Theorem 44.16.2. If V = {Ti → T}i∈I is an fpqc covering, then all descent data
for quasi-coherent sheaves with respect to V are effective.

Proof. See Descent, Proposition 34.5.2. �

In other words, the fibered category of quasi-coherent sheaves is a stack on the
fpqc site. The proof of the theorem is in two steps. The first one is to realize that
for Zariski coverings this is easy (or well-known) using standard glueing of sheaves
(see Sheaves, Section 6.33) and the locality of quasi-coherence. The second step is
the case of an fpqc covering of the form {Spec(B) → Spec(A)} where A → B is a
faithfully flat ring map. This is a lemma in algebra, which we now present.

Descent of modules. If A→ B is a ring map, we consider the complex

(B/A)• : B → B ⊗A B → B ⊗A B ⊗A B → . . .

where B is in degree 0, B ⊗A B in degree 1, etc, and the maps are given by

b 7→ 1⊗ b− b⊗ 1,

b0 ⊗ b1 7→ 1⊗ b0 ⊗ b1 − b0 ⊗ 1⊗ b1 + b0 ⊗ b1 ⊗ 1,

etc.

Lemma 44.16.3. If A→ B is faithfully flat, then the complex (B/A)• is exact in
positive degrees, and H0((B/A)•) = A.

Proof. See Descent, Lemma 34.3.6. �

Grothendieck proves this in three steps. Firstly, he assumes that the map A → B
has a section, and constructs an explicit homotopy to the complex where A is the
only nonzero term, in degree 0. Secondly, he observes that to prove the result,
it suffices to do so after a faithfully flat base change A → A′, replacing B with
B′ = B ⊗A A′. Thirdly, he applies the faithfully flat base change A→ A′ = B and
remarks that the map A′ = B → B′ = B ⊗A B has a natural section.

The same strategy proves the following lemma.

Lemma 44.16.4. If A → B is faithfully flat and M is an A-module, then the
complex (B/A)• ⊗AM is exact in positive degrees, and H0((B/A)• ⊗AM) = M .

Proof. See Descent, Lemma 34.3.6. �

Definition 44.16.5. Let A → B be a ring map and N a B-module. A descent
datum for N with respect to A → B is an isomorphism ϕ : N ⊗A B ∼= B ⊗A N of
B ⊗A B-modules such that the diagram of B ⊗A B ⊗A B-modules

N ⊗A B ⊗A B

ϕ01 ((

ϕ02 // B ⊗A N ⊗A B

ϕ12vv
B ⊗A B ⊗A N

commutes.

If N ′ = B⊗AM for some A-module M, then it has a canonical descent datum given
by the map

ϕcan : N ′ ⊗A B → B ⊗A N ′
b0 ⊗m⊗ b1 7→ b0 ⊗ b1 ⊗m.
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Definition 44.16.6. A descent datum (N,ϕ) is called effective if there exists an
A-module M such that (N,ϕ) ∼= (B ⊗A M,ϕcan), with the obvious notion of iso-
morphism of descent data.

Theorem 44.16.2 is a consequence the following result.

Theorem 44.16.7. If A → B is faithfully flat then descent data with respect to
A→ B are effective.

Proof. See Descent, Proposition 34.3.9. See also Descent, Remark 34.3.11 for an
alternative view of the proof. �

Remarks 44.16.8. The results on descent of modules have several applications:

(1) The exactness of the Čech complex in positive degrees for the covering
{Spec(B)→ Spec(A)} where A→ B is faithfully flat. This will give some
vanishing of cohomology.

(2) If (N,ϕ) is a descent datum with respect to a faithfully flat map A→ B,
then the corresponding A-module is given by

M = Ker

(
N −→ B ⊗A N
n 7−→ 1⊗ n− ϕ(n⊗ 1)

)
.

See Descent, Proposition 34.3.9.

44.17. Quasi-coherent sheaves

We can apply the descent of modules to study quasi-coherent sheaves.

Proposition 44.17.1. For any quasi-coherent sheaf F on S the presheaf

Fa : Sch/S → Ab
(f : T → S) 7→ Γ(T, f∗F)

is an O-module which satisfies the sheaf condition for the fpqc topology.

Proof. This is proved in Descent, Lemma 34.7.1. We indicate the proof here. As
established in Lemma 44.15.6, it is enough to check the sheaf property on Zariski
coverings and faithfully flat morphisms of affine schemes. The sheaf property for
Zariski coverings is standard scheme theory, since Γ(U, i∗F) = F(U) when i : U ↪→
S is an open immersion.

For {Spec(B)→ Spec(A)} with A → B faithfully flat and F|Spec(A) = M̃ this

corresponds to the fact that M = H0 ((B/A)• ⊗AM), i.e., that

0→M → B ⊗AM → B ⊗A B ⊗AM

is exact by Lemma 44.16.4. �

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly
introduce this here. For more information please consult Modules on Sites, Section
18.23. Let C be a category, and let U be an object of C. Then C/U indicates the
category of objects over U , see Categories, Example 4.2.13. If C is a site, then
C/U is a site as well, namely the coverings of V/U are families {Vi/U → V/U}
of morphisms of C/U with fixed target such that {Vi → V } is a covering of C.
Moreover, given any sheaf F on C the restriction F|C/U (defined in the obvious
manner) is a sheaf as well. See Sites, Section 7.24 for details.
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Definition 44.17.2. Let C be a ringed site, i.e., a site endowed with a sheaf of rings
O. A sheaf of O-modules F on C is called quasi-coherent if for all U ∈ Ob(C) there
exists a covering {Ui → U}i∈I of C such that the restriction F|C/Ui is isomorphic
to the cokernel of an O-linear map of free O-modules⊕

k∈K
O|C/Ui −→

⊕
l∈L
O|C/Ui .

The direct sum over K is the sheaf associated to the presheaf V 7→
⊕

k∈K O(V )
and similarly for the other.

Although it is useful to be able to give a general definition as above this notion is
not well behaved in general.

Remark 44.17.3. In the case where C has a final object, e.g. S, it suffices to check
the condition of the definition for U = S in the above statement. See Modules on
Sites, Lemma 18.23.3.

Theorem 44.17.4 (Meta theorem on quasi-coherent sheaves). Let S be a scheme.
Let C be a site. Assume that

(1) the underlying category C is a full subcategory of Sch/S,
(2) any Zariski covering of T ∈ Ob(C) can be refined by a covering of C,
(3) S/S is an object of C,
(4) every covering of C is an fpqc covering of schemes.

Then the presheaf O is a sheaf on C and any quasi-coherent O-module on (C,O) is
of the form Fa for some quasi-coherent sheaf F on S.

Proof. After some formal arguments this is exactly Theorem 44.16.2. Details
omitted. In Descent, Proposition 34.7.11 we prove a more precise version of the
theorem for the big Zariski, fppf, étale, smooth, and syntomic sites of S, as well as
the small Zariski and étale sites of S. �

In other words, there is no difference between quasi-coherent modules on the scheme
S and quasi-coherent O-modules on sites C as in the theorem. More precise state-
ments for the big and small sites (Sch/S)fppf , Sétale, etc can be found in Descent,
Section 34.7. In this chapter we will sometimes refer to a “site as in Theorem
44.17.4” in order to conveniently state results which hold in any of those situations.

44.18. Cech cohomology

Our next goal is to use descent theory to show that Hi(C,Fa) = Hi
Zar(S,F) for all

quasi-coherent sheaves F on S, and any site C as in Theorem 44.17.4. To this end,
we introduce Čech cohomology on sites. See [Art62] and Cohomology on Sites,
Sections 21.9, 21.10 and 21.11 for more details.

Definition 44.18.1. Let C be a category, U = {Ui → U}i∈I a family of morphisms
of C with fixed target, and F ∈ PAb(C) an abelian presheaf. We define the Čech
complex Č•(U ,F) by∏

i0∈I
F(Ui0)→

∏
i0,i1∈I

F(Ui0 ×U Ui1)→
∏

i0,i1,i2∈I
F(Ui0 ×U Ui1 ×U Ui2)→ . . .

where the first term is in degree 0, and the maps are the usual ones. Again, it is
essential to allow the case i0 = i1 etc. The Čech cohomology groups are defined by

Ȟp(U ,F) = Hp(Č•(U ,F)).
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Lemma 44.18.2. The functor Č•(U ,−) is exact on the category PAb(C).

In other words, if 0→ F1 → F2 → F3 → 0 is a short exact sequence of presheaves
of abelian groups, then

0→ Č• (U ,F1)→ Č•(U ,F2)→ Č•(U ,F3)→ 0

is a short exact sequence of complexes.

Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some
category with values in Ab, it is automatically an abelian category: a sequence
F1 → F2 → F3 is exact in PAb if and only if for all U ∈ Ob(C), the sequence
F1(U) → F2(U) → F3(U) is exact in Ab. So the complex above is merely a prod-
uct of short exact sequences in each degree. See also Cohomology on Sites, Lemma
21.10.1. �

This shows that Ȟ•(U ,−) is a δ-functor. We now proceed to show that it is a
universal δ-functor. We thus need to show that it is an effaceable functor. We start
by recalling the Yoneda lemma.

Lemma 44.18.3 (Yoneda Lemma). For any presheaf F on a category C there is
a functorial isomorphism

HomPSh(C)(hU ,F) = F(U).

Proof. See Categories, Lemma 4.3.5. �

Given a set E we denote (in this section) Z[E] the free abelian group on E. In a
formula Z[E] =

⊕
e∈E Z, i.e., Z[E] is a free Z-module having a basis consisting of

the elements of E. Using this notation we introduce the free abelian presheaf on a
presheaf of sets.

Definition 44.18.4. Let C be a category. Given a presheaf of sets G, we define
the free abelian presheaf on G, denoted ZG , by the rule

ZG(U) = Z[G(U)]

for U ∈ Ob(C) with restriction maps induced by the restriction maps of G. In the
special case G = hU we write simply ZU = ZhU .

The functor G 7→ ZG is left adjoint to the forgetful functor PAb(C) → PSh(C).
Thus, for any presheaf F , there is a canonical isomorphism

HomPAb(C)(ZU ,F) = HomPSh(C)(hU ,F) = F(U)

the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 44.18.5. The Čech complex Č•(U ,F) can be described explicitly as follows

Č•(U ,F) =

∏
i0∈I

HomPAb(C)(ZUi0 ,F)→
∏

i0,i1∈I
HomPAb(C)(ZUi0×UUi1 ,F)→ . . .


= HomPAb(C)

⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0×UUi1 ← . . .

 ,F


Proof. This follows from the formula above. See Cohomology on Sites, Lemma
21.10.3. �
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This reduces us to studying only the complex in the first argument of the last Hom.

Lemma 44.18.6. The complex of abelian presheaves

Z•U :
⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0×UUi1 ←
⊕

i0,i1,i2∈I
ZUi0×UUi1×UUi2 ← . . .

is exact in all degrees except 0 in PAb(C).

Proof. For any V ∈ Ob(C) the complex of abelian groups Z•U (V ) is

Z
[∐

i0∈I MorC(V,Ui0)
]
← Z

[∐
i0,i1∈I MorC(V,Ui0 ×U Ui1)

]
← . . . =⊕

ϕ:V→U

(
Z
[∐

i0∈I Morϕ(V,Ui0)
]
← Z

[∐
i0,i1∈I Morϕ(V,Ui0)×Morϕ(V,Ui1)

]
← . . .

)
where

Morϕ(V,Ui) = {V → Ui such that V → Ui → U equals ϕ}.
Set Sϕ =

∐
i∈I Morϕ(V,Ui), so that

Z•U (V ) =
⊕

ϕ:V→U
(Z[Sϕ]← Z[Sϕ × Sϕ]← Z[Sϕ × Sϕ × Sϕ]← . . .) .

Thus it suffices to show that for each S = Sϕ, the complex

Z[S]← Z[S × S]← Z[S × S × S]← . . .

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix
s ∈ S and define K : n(s0,...,sp) 7→ n(s,s0,...,sp). One easily checks that K is a
nullhomotopy for the operator

δ : η(s0,...,sp) 7→
∑p

i=0
(−1)pη(s0,...,ŝi,...,sp).

See Cohomology on Sites, Lemma 21.10.4 for more details. �

Lemma 44.18.7. Let C be a category. If I is an injective object of PAb(C) and U
is a family of morphisms with fixed target in C, then Ȟp(U , I) = 0 for all p > 0.

Proof. The Čech complex is the result of applying the functor HomPAb(C)(−, I)
to the complex Z•U , i.e.,

Ȟp(U , I) = Hp(HomPAb(C)(Z
•
U , I)).

But we have just seen that Z•U is exact in negative degrees, and the functor
HomPAb(C)(−, I) is exact, hence HomPAb(C)(Z

•
U , I) is exact in positive degrees. �

Theorem 44.18.8. On PAb(C) the functors Ȟp(U ,−) are the right derived functors
of Ȟ0(U ,−).

Proof. By the Lemma 44.18.7, the functors Ȟp(U ,−) are universal δ-functors since
they are effaceable. So are the right derived functors of Ȟ0(U ,−). Since they agree
in degree 0, they agree by the universal property of universal δ-functors. For more
details see Cohomology on Sites, Lemma 21.10.6. �

Remark 44.18.9. Observe that all of the preceding statements are about presheaves
so we haven’t made use of the topology yet.
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44.19. The Cech-to-cohomology spectral sequence

This spectral sequence is fundamental in proving foundational results on cohomol-
ogy of sheaves.

Lemma 44.19.1. The forgetful functor Ab(C)→ PAb(C) transforms injectives into
injectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint,
namely sheafification, which is an exact functor. For more details see Cohomology
on Sites, Lemma 21.11.1. �

Theorem 44.19.2. Let C be a site. For any covering U = {Ui → U}i∈I of U ∈
Ob(C) and any abelian sheaf F on C there is a spectral sequence

Ep,q2 = Ȟp(U , Hq(F))⇒ Hp+q(U,F),

where Hq(F) is the abelian presheaf V 7→ Hq(V,F).

Proof. Choose an injective resolution F → I• in Ab(C), and consider the double
complex Č•(U , I•) and the maps

Γ(U, I•) // Č•(U , I•)

Č•(U ,F)

OO

Here the horizontal map is the natural map Γ(U, I•)→ Č0(U , I•) to the left column,
and the vertical map is induced by F → I0 and lands in the bottom row. By
assumption, I• is a complex of injectives in Ab(C), hence by Lemma 44.19.1, it is
a complex of injectives in PAb(C). Thus, the rows of the double complex are exact
in positive degrees (Lemma 44.18.7), and the kernel of the horizontal map is equal
to Γ(U, I•), since I• is a complex of sheaves. In particular, the cohomology of the
total complex is the standard cohomology of the global sections functor H0(U,F).

For the vertical direction, the qth cohomology group of the pth column is∏
i0,...,ip

Hq(Ui0 ×U . . .×U Uip ,F) =
∏

i0,...,ip

Hq(F)(Ui0 ×U . . .×U Uip)

in the entry Ep,q1 . So this is a standard double complex spectral sequence, and
the E2-page is as prescribed. For more details see Cohomology on Sites, Lemma
21.11.6. �

Remark 44.19.3. This is a Grothendieck spectral sequence for the composition
of functors

Ab(C) −→ PAb(C) Ȟ0

−−→ Ab.

44.20. Big and small sites of schemes

Let S be a scheme. Let τ be one of the topologies we will be discussing. Thus
τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Of course if you are only interested
in the étale topology, then you can simply assume τ = étale throughout. Moreover,
we will discuss étale morphisms, étale coverings, and étale sites in more detail
starting in Section 44.25. In order to proceed with the discussion of cohomology
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of quasi-coherent sheaves it is convenient to introduce the big τ -site and in case
τ ∈ {étale, Zariski}, the small τ -site of S. In order to do this we first introduce
the notion of a τ -covering.

Definition 44.20.1. (See Topologies, Definitions 33.7.1, 33.6.1, 33.5.1, 33.4.1, and
33.3.1.) Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. A family of morphisms
of schemes {fi : Ti → T}i∈I with fixed target is called a τ -covering if and only if each
fi is flat of finite presentation, syntomic, smooth, étale, resp. an open immersion,
and we have

⋃
fi(Ti) = T .

It turns out that the class of all τ -coverings satisfies the axioms (1), (2) and (3) of
Definition 44.10.2 (our definition of a site), see Topologies, Lemmas 33.7.3, 33.6.3,
33.5.3, 33.4.3, and 33.3.2. In order to be able to compare any of these new topologies
to the fpqc topology and to use the preceding results on descent on modules we
single out a special class of τ -coverings of affine schemes called standard coverings.

Definition 44.20.2. (See Topologies, Definitions 33.7.5, 33.6.5, 33.5.5, 33.4.5, and
33.3.4.) Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let T be an affine
scheme. A standard τ -covering of T is a family {fj : Uj → T}j=1,...,m with each Uj
is affine, and each fj flat and of finite presentation, standard syntomic, standard
smooth, étale, resp. the immersion of a standard principal open in T and T =⋃
fj(Uj).

Lemma 44.20.3. Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Any τ -covering
of an affine scheme can be refined by a standard τ -covering.

Proof. See Topologies, Lemmas 33.7.4, 33.6.4, 33.5.4, 33.4.4, and 33.3.3. �

Finally, we come to our definition of the sites we will be working with. This is
actually somewhat involved since, contrary to what happens in [AGV71], we do
not want to choose a universe. Instead we pick a “partial universe” (which just
means a suitably large set), and consider all schemes contained in this set. Of
course we make sure that our favorite base scheme S is contained in the partial
universe. Having picked the underlying category we pick a suitably large set of τ -
coverings which turns this into a site. The details are in the chapter on topologies
on schemes; there is a lot of freedom in the choices made, but in the end the
actual choices made will not affect the étale (or other) cohomology of S (just as
in [AGV71] the actual choice of universe doesn’t matter at the end). Moreover,
the way the material is written the reader who is happy using strongly inaccessible
cardinals (i.e., universes) can do so as a substitute.

Definition 44.20.4. Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale,
Zariski}.

(1) A big τ -site of S is any of the sites (Sch/S)τ constructed as explained
above and in more detail in Topologies, Definitions 33.7.8, 33.6.8, 33.5.8,
33.4.8, and 33.3.7.

(2) If τ ∈ {étale, Zariski}, then the small τ -site of S is the full subcategory Sτ
of (Sch/S)τ whose objects are schemes T over S whose structure morphism
T → S is étale, resp. an open immersion. A covering in Sτ is a covering
{Ui → U} in (Sch/S)τ such that U is an object of Sτ .

The underlying category of the site (Sch/S)τ has reasonable “closure” properties,
i.e., given a scheme T in it any locally closed subscheme of T is isomorphic to an
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object of (Sch/S)τ . Other such closure properties are: closed under fibre products of
schemes, taking countable disjoint unions, taking finite type schemes over a given
scheme, given an affine scheme Spec(R) one can complete, localize, or take the
quotient of R by an ideal while staying inside the category, etc. On the other hand,
for example arbitrary disjoint unions of schemes in (Sch/S)τ will take you outside
of it. Also note that, given an object T of (Sch/S)τ there will exist τ -coverings
{Ti → T}i∈I (as in Definition 44.20.1) which are not coverings in (Sch/S)τ for
example because the schemes Ti are not objects of the category (Sch/S)τ . But
our choice of the sites (Sch/S)τ is such that there always does exist a covering
{Uj → T}j∈J of (Sch/S)τ which refines the covering {Ti → T}i∈I , see Topologies,
Lemmas 33.7.7, 33.6.7, 33.5.7, 33.4.7, and 33.3.6. We will mostly ignore these issues
in this chapter.

If F is a sheaf on (Sch/S)τ or Sτ , then we denote

Hp
τ (U,F), in particular Hp

τ (S,F)

the cohomology groups of F over the object U of the site, see Section 44.14. Thus we
have Hp

fppf (S,F), Hp
syntomic(S,F), Hp

smooth(S,F), Hp
étale(S,F), and Hp

Zar(S,F).
The last two are potentially ambiguous since they might refer to either the big or
small étale or Zariski site. However, this ambiguity is harmless by the following
lemma.

Lemma 44.20.5. Let τ ∈ {étale, Zariski}. If F is an abelian sheaf defined on
(Sch/S)τ , then the cohomology groups of F over S agree with the cohomology groups
of F|Sτ over S.

Proof. By Topologies, Lemmas 33.3.13 and 33.4.13 the functors Sτ → (Sch/S)τ
satisfy the hypotheses of Sites, Lemma 7.20.8. Hence our lemma follows from
Cohomology on Sites, Lemma 21.8.2. �

For completeness we state and prove the invariance under choice of partial universe
of the cohomology groups we are considering. We will prove invariance of the small
étale topos in Lemma 44.21.3 below. For notation and terminology used in this
lemma we refer to Topologies, Section 33.10.

Lemma 44.20.6. Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let (Sch/S)τ and (Sch′/S)τ be two big τ -sites of S, and assume that the
first is contained in the second. In this case

(1) for any abelian sheaf F ′ defined on (Sch′/S)τ and any object U of (Sch/S)τ
we have

Hp
τ (U,F ′|(Sch/S)τ ) = Hp

τ (U,F ′)

In words: the cohomology of F ′ over U computed in the bigger site agrees
with the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)τ there is an abelian sheaf F ′ on
(Sch/S)′τ whose restriction to (Sch/S)τ is isomorphic to F .

Proof. By Topologies, Lemma 33.10.2 the inclusion functor (Sch/S)τ → (Sch′/S)τ
satisfies the assumptions of Sites, Lemma 7.20.8. This implies (2) and (1) follows
from Cohomology on Sites, Lemma 21.8.2. �
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44.21. The étale topos

A topos is the category of sheaves of sets on a site, see Sites, Definition 7.16.1.
Hence it is customary to refer to the use the phrase “étale topos of a scheme” to
refer to the category of sheaves on the small étale site of a scheme. Here is the
formal definition.

Definition 44.21.1. Let S be a scheme.

(1) The étale topos, or the small étale topos of S is the category Sh(Sétale) of
sheaves of sets on the small étale site of S.

(2) The Zariski topos, or the small Zariski topos of S is the category Sh(SZar)
of sheaves of sets on the small Zariski site of S.

(3) For τ ∈ {fppf, syntomic, smooth, étale, Zariski} a big τ -topos is the cat-
egory of sheaves of set on a big τ -topos of S.

Note that the small Zariski topos of S is simply the category of sheaves of sets on
the underlying topological space of S, see Topologies, Lemma 33.3.11. Whereas the
small étale topos does not depend on the choices made in the construction of the
small étale site, in general the big topoi do depend on those choices.

Here is a lemma, which is one of many possible lemmas expressing the fact that it
doesn’t matter too much which site we choose to define the small étale topos of a
scheme.

Lemma 44.21.2. Let S be a scheme. Let Saffine,étale denote the full subcategory
of Sétale whose objects are those U/S ∈ Ob(Sétale) with U affine. A covering of
Saffine,étale will be a standard étale covering, see Topologies, Definition 33.4.5.
Then restriction

F 7−→ F|Saffine,étale
defines an equivalence of topoi Sh(Sétale) ∼= Sh(Saffine,étale).

Proof. This you can show directly from the definitions, and is a good exercise. But
it also follows immediately from Sites, Lemma 7.28.1 by checking that the inclusion
functor Saffine,étale → Sétale is a special cocontinuous functor (see Sites, Definition
7.28.2). �

Lemma 44.21.3. Let S be a scheme. The étale topos of S is independent (up
to canonical equivalence) of the construction of the small étale site in Definition
44.20.4.

Proof. We have to show, given two big étale sites Schétale and Sch′étale containing
S, then Sh(Sétale) ∼= Sh(S′étale) with obvious notation. By Topologies, Lemma
33.10.1 we may assume Schétale ⊂ Sch′étale. By Sets, Lemma 3.9.9 any affine scheme
étale over S is isomorphic to an object of both Schétale and Sch′étale. Thus the
induced functor Saffine,étale → S′affine,étale is an equivalence. Moreover, it is clear
that both this functor and a quasi-inverse map transform standard étale coverings
into standard étale coverings. Hence the result follows from Lemma 44.21.2. �

44.22. Cohomology of quasi-coherent sheaves

We start with a simple lemma (which holds in greater generality than stated). It
says that the Čech complex of a standard covering is equal to the Čech complex of
an fpqc covering of the form {Spec(B)→ Spec(A)} with A→ B faithfully flat.
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Lemma 44.22.1. Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let F be an abelian sheaf on (Sch/S)τ , or on Sτ in case τ = étale, and
let U = {Ui → U}i∈I be a standard τ -covering of this site. Let V =

∐
i∈I Ui. Then

(1) V is an affine scheme,
(2) V = {V → U} is a τ -covering and an fpqc covering,
(3) the Čech complexes Č•(U ,F) and Č•(V,F) agree.

Proof. As the covering is a standard τ -covering each of the schemes Ui is affine
and I is a finite set. Hence V is an affine scheme. It is clear that V → U is flat
and surjective, hence V is an fpqc covering, see Example 44.15.3. Note that U is a
refinement of V and hence there is a map of Čech complexes Č•(V,F)→ Č•(U ,F),
see Cohomology on Sites, Equation (21.9.2.1). Next, we observe that if T =

∐
j∈J Tj

is a disjoint union of schemes in the site on which F is defined then the family of
morphisms with fixed target {Tj → T}j∈J is a Zariski covering, and so

(44.22.1.1) F(T ) = F(
∐

j∈J
Tj) =

∏
j∈J
F(Tj)

by the sheaf condition of F . This implies the map of Čech complexes above is an
isomorphism in each degree because

V ×U . . .×U V =
∏

i0,...ip
Ui0 ×U . . .×U Uip

as schemes. �

Note that Equality (44.22.1.1) is false for a general presheaf. Even for sheaves it
does not hold on any site, since coproducts may not lead to coverings, and may not
be disjoint. But it does for all the usual ones (at least all the ones we will study).

Remark 44.22.2. In the statement of Lemma 44.22.1 the covering U is a refine-
ment of V but not the other way around. Coverings of the form {V → U} do not
form an initial subcategory of the category of all coverings of U . Yet it is still true
that we can compute Čech cohomology Ȟn(U,F) (which is defined as the colimit
over the opposite of the category of coverings U of U of the Cech cohomology groups
of F with respect to U) in terms of the coverings {V → U}. We will formulate a
precise lemma (it only works for sheaves) and add it here if we ever need it.

Lemma 44.22.3 (Locality of cohomology). Let C be a site, F an abelian sheaf
on C, U an object of C, p > 0 an integer and ξ ∈ Hp(U,F). Then there exists a
covering U = {Ui → U}i∈I of U in C such that ξ|Ui = 0 for all i ∈ I.

Proof. Choose an injective resolution F → I•. Then ξ is represented by a cocycle
ξ̃ ∈ Ip(U) with dp(ξ̃) = 0. By assumption, the sequence Ip−1 → Ip → Ip+1 in
exact in Ab(C), which means that there exists a covering U = {Ui → U}i∈I such

that ξ̃|Ui = dp−1(ξi) for some ξi ∈ Ip−1(Ui). Since the cohomology class ξ|Ui is

represented by the cocycle ξ̃|Ui which is a coboundary, it vanishes. For more details
see Cohomology on Sites, Lemma 21.8.3. �

Theorem 44.22.4. Let S be a scheme and F a quasi-coherent OS-module. Let
C be either (Sch/S)τ for τ ∈ {fppf, syntomic, smooth, étale, Zariski} or Sétale.
Then

Hp(S,F) = Hp
τ (S,Fa)

for all p ≥ 0 where

http://stacks.math.columbia.edu/tag/03OZ
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(1) the left hand side indicates the usual cohomology of the sheaf F on the
underlying topological space of the scheme S, and

(2) the right hand side indicates cohomology of the abelian sheaf Fa (see
Proposition 44.17.1) on the site C.

Proof. We are going to show that Hp(U, f∗F) = Hp
τ (U,Fa) for any object f :

U → S of the site C. The result is true for p = 0 by the sheaf property.

Assume that U is affine. Then we want to prove that Hp
τ (U,Fa) = 0 for all p > 0.

We use induction on p.

p = 1 Pick ξ ∈ H1
τ (U,Fa). By Lemma 44.22.3, there exists an fpqc covering

U = {Ui → U}i∈I such that ξ|Ui = 0 for all i ∈ I. Up to refining U ,
we may assume that U is a standard τ -covering. Applying the spectral
sequence of Theorem 44.19.2, we see that ξ comes from a cohomology
class ξ̌ ∈ Ȟ1(U ,Fa). Consider the covering V = {

∐
i∈I Ui → U}. By

Lemma 44.22.1, Ȟ•(U ,Fa) = Ȟ•(V,Fa). On the other hand, since V is

a covering of the form {Spec(B) → Spec(A)} and f∗F = M̃ for some
A-module M , we see the Čech complex Č•(V,F) is none other than the
complex (B/A)• ⊗AM . Now by Lemma 44.16.4, Hp((B/A)• ⊗AM) = 0
for p > 0, hence ξ̌ = 0 and so ξ = 0.

p > 1 Pick ξ ∈ Hp
τ (U,Fa). By Lemma 44.22.3, there exists an fpqc covering

U = {Ui → U}i∈I such that ξ|Ui = 0 for all i ∈ I. Up to refining U , we may
assume that U is a standard τ -covering. We apply the spectral sequence
of Theorem 44.19.2. Observe that the intersections Ui0 ×U . . .×U Uip are
affine, so that by induction hypothesis the cohomology groups

Ep,q2 = Ȟp(U , Hq(Fa))

vanish for all 0 < q < p. We see that ξ must come from a ξ̌ ∈ Ȟp(U ,Fa).
Replacing U with the covering V containing only one morphism and using
Lemma 44.16.4 again, we see that the Čech cohomology class ξ̌ must be
zero, hence ξ = 0.

Next, assume that U is separated. Choose an affine open covering U =
⋃
i∈I Ui of

U . The family U = {Ui → U}i∈I is then an fpqc covering, and all the intersections
Ui0×S . . .×SUip are affine since U is separated. So all rows of the spectral sequence
of Theorem 44.19.2 are zero, except the zeroth row. Therefore

Hp
τ (S,Fa) = Ȟp(U ,Fa) = Ȟp(U ,F) = Hp(S,F)

where the last equality results from standard scheme theory, see Cohomology of
Schemes, Lemma 29.2.5.

The general case is technical and (to extend the proof as given here) requires a
discussion about maps of spectral sequences, so we won’t treat it. It follows from
Descent, Proposition 34.7.10 (whose proof takes a slightly different approach) com-
bined with Cohomology on Sites, Lemma 21.8.1. �

Remark 44.22.5. Comment on Theorem 44.22.4. Since S is a final object in
the category C, the cohomology groups on the right-hand side are merely the
right derived functors of the global sections functor. In fact the proof shows that
Hp(U, f∗F) = Hp

τ (U,Fa) for any object f : U → S of the site C.

http://stacks.math.columbia.edu/tag/03P3
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44.23. Examples of sheaves

Let S and τ be as in Section 44.20. We have already seen that any representable
presheaf is a sheaf on (Sch/S)τ or Sτ , see Lemma 44.15.8 and Remark 44.15.9.
Here are some special cases.

Definition 44.23.1. On any of the sites (Sch/S)τ or Sτ of Section 44.20.

(1) The sheaf T 7→ Γ(T,OT ) is denoted OS , or Ga, or Ga,S if we want to
indicate the base scheme.

(2) Similarly, the sheaf T 7→ Γ(T,O∗T ) is denoted O∗S , or Gm, or Gm,S if we
want to indicate the base scheme.

(3) The constant sheaf Z/nZ on any site is the sheafification of the constant

presheaf U 7→ Z/nZ.

The first is a sheaf by Theorem 44.17.4 for example. The second is a sub presheaf of
the first, which is easily seen to be a sheaf itself. The third is a sheaf by definition.
Note that each of these sheaves is representable. The first and second by the schemes
Ga,S and Gm,S , see Groupoids, Section 38.4. The third by the finite étale group
scheme Z/nZS sometimes denoted (Z/nZ)S which is just n copies of S endowed
with the obvious group scheme structure over S, see Groupoids, Example 38.5.6
and the following remark.

Remark 44.23.2. Let G be an abstract group. On any of the sites (Sch/S)τ or
Sτ of Section 44.20 the sheafification G of the constant presheaf associated to G in
the Zariski topology of the site already gives

Γ(U,G) = {Zariski locally constant maps U → G}

This Zariski sheaf is representable by the group scheme GS according to Groupoids,
Example 38.5.6. By Lemma 44.15.8 any representable presheaf satisfies the sheaf
condition for the τ -topology as well, and hence we conclude that the Zariski sheafi-
fication G above is also the τ -sheafification.

Definition 44.23.3. Let S be a scheme. The structure sheaf of S is the sheaf of
rings OS on any of the sites SZar, Sétale, or (Sch/S)τ discussed above.

If there is some possible confusion as to which site we are working on then we will
indicate this by using indices. For example we may use OSétale to stress the fact
that we are working on the small étale site of S.

Remark 44.23.4. In the terminology introduced above a special case of Theorem
44.22.4 is

Hp
fppf (X,Ga) = Hp

étale(X,Ga) = Hp
Zar(X,Ga) = Hp(X,OX)

for all p ≥ 0. Moreover, we could use the notation Hp
fppf (X,OX) to indicate the

cohomology of the structure sheaf on the big fppf site of X.

44.24. Picard groups

The following theorem is sometimes called “Hilbert 90”.

http://stacks.math.columbia.edu/tag/03P4
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Theorem 44.24.1. For any scheme X we have canonical identifications

H1
fppf (X,Gm) = H1

syntomic(X,Gm)

= H1
smooth(X,Gm)

= H1
étale(X,Gm)

= H1
Zar(X,Gm)

= Pic(X)

= H1(X,O∗X)

Proof. Let τ be one of the topologies considered in Section 44.20. By Cohomology
on Sites, Lemma 21.7.1 we see that H1

τ (X,Gm) = H1
τ (X,O∗τ ) = Pic(Oτ ) where

Oτ is the structure sheaf of the site (Sch/X)τ . Now an invertible Oτ -module is
a quasi-coherent Oτ -module. By Theorem 44.17.4 or the more precise Descent,
Proposition 34.7.11 we see that Pic(Oτ ) = Pic(X). The last equality is proved in
the same way. �

44.25. The étale site

At this point we start exploring the étale site of a scheme in more detail. As a first
step we discuss a little the notion of an étale morphism.

44.26. Étale morphisms

For more details, see Morphisms, Section 28.37 for the formal definition and Étale
Morphisms, Sections 40.11, 40.12, 40.13, 40.14, 40.16, and 40.19 for a survey of
interesting properties of étale morphisms.

Recall that an algebra A over an algebraically closed field k is smooth if it is of
finite type and the module of differentials ΩA/k is finite locally free of rank equal
to the dimension. A scheme X over k is smooth over k if it is locally of finite type
and each affine open is the spectrum of a smooth k-algebra. If k is not algebraically
closed then an A-algebra is said to be a smooth k-algebra if A ⊗k k is a smooth
k-algebra. A ring map A→ B is smooth if it is flat, finitely presented, and for all
primes p ⊂ A the fibre ring κ(p)⊗A B is smooth over the residue field κ(p). More
generally, a morphism of schemes is smooth if it is flat, locally of finite presentation,
and the geometric fibers are smooth.

For these facts please see Morphisms, Section 28.35. Using this we may define an
étale morphism as follows.

Definition 44.26.1. A morphism of schemes is étale if it is smooth of relative
dimension 0.

In particular, a morphism of schemes X → S is étale if it is smooth and ΩX/S = 0.

Proposition 44.26.2. Facts on étale morphisms.

(1) Let k be a field. A morphism of schemes U → Spec(k) is étale if and only
if U ∼=

∐
i∈I Spec(ki) such that for each i ∈ I the ring ki is a field which

is a finite separable extension of k.
(2) Let ϕ : U → S be a morphism of schemes. The following conditions are

equivalent:
(a) ϕ is étale,

http://stacks.math.columbia.edu/tag/03P8
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(b) ϕ is locally finitely presented, flat, and all its fibres are étale,
(c) ϕ is flat, unramified and locally of finite presentation.

(3) A ring map A → B is étale if and only if B ∼= A[x1, . . . , xn]/(f1, . . . , fn)

such that ∆ = det
(
∂fi
∂xj

)
is invertible in B.

(4) The base change of an étale morphism is étale.
(5) Compositions of étale morphisms are étale.
(6) Fibre products and products of étale morphisms are étale.
(7) An étale morphism has relative dimension 0.
(8) Let Y → X be an étale morphism. If X is reduced (respectively regular)

then so is Y .
(9) Étale morphisms are open.

(10) If X → S and Y → S are étale, then any S-morphism X → Y is also
étale.

Proof. We have proved these facts (and more) in the preceding chapters. Here is a
list of references: (1) Morphisms, Lemma 28.37.7. (2) Morphisms, Lemmas 28.37.8
and 28.37.16. (3) Algebra, Lemma 10.138.2. (4) Morphisms, Lemma 28.37.4. (5)
Morphisms, Lemma 28.37.3. (6) Follows formally from (4) and (5). (7) Morphisms,
Lemmas 28.37.6 and 28.30.5. (8) See Algebra, Lemmas 10.151.6 and 10.151.5, see

also more results of this kind in Étale Morphisms, Section 40.19. (9) See Morphisms,
Lemma 28.26.9 and 28.37.12. (10) See Morphisms, Lemma 28.37.18. �

Definition 44.26.3. A ring map A→ B is called standard étale if B ∼= (A[t]/(f))g
with f, g ∈ A[t], with f monic, and df/dt invertible in B.

It is true that a standard étale ring map is étale. Namely, suppose that B =
(A[t]/(f))g with f, g ∈ A[t], with f monic, and df/dt invertible in B. Then A[t]/(f)
is a finite free A-module of rank equal to the degree of the monic polynomial f .
Hence B, as a localization of this free algebra is finitely presented and flat over A.
To finish the proof that B is étale it suffices to show that the fibre rings

κ(p)⊗A B ∼= κ(p)⊗A (A[t]/(f))g ∼= κ(p)[t, 1/g]/(f)

are finite products of finite separable field extensions. Here f, g ∈ κ(p)[t] are the
images of f and g. Let

f = f1 . . . faf
e1
a+1 . . . f

eb
a+b

be the factorization of f into powers of pairwise distinct irreducible monic factors
f i with e1, . . . , eb > 0. By assumption df/dt is invertible in κ(p)[t, 1/g]. Hence we
see that at least all the f i, i > a are invertible. We conclude that

κ(p)[t, 1/g]/(f) ∼=
∏

i∈I
κ(p)[t]/(f i)

where I ⊂ {1, . . . , a} is the subset of indices i such that f i does not divide g.
Moreover, the image of df/dt in the factor κ(p)[t]/(f i) is clearly equal to a unit
times df i/dt. Hence we conclude that κi = κ(p)[t]/(f i) is a finite field extension
of κ(p) generated by one element whose minimal polynomial is separable, i.e., the
field extension κ(p) ⊂ κi is finite separable as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we
introduce the following notation. A ring map A → B is étale at a prime q of B if
there exists h ∈ B, h 6∈ q such that A→ Bh is étale. Here is the result.

http://stacks.math.columbia.edu/tag/03PD
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Theorem 44.26.4. A ring map A → B is étale at a prime q if and only if there
exists g ∈ B, g 6∈ q such that Bg is standard étale over A.

Proof. See Algebra, Proposition 10.138.17. �

44.27. Étale coverings

We recall the definition.

Definition 44.27.1. An étale covering of a scheme U is a family of morphisms of
schemes {ϕi : Ui → U}i∈I such that

(1) each ϕi is an étale morphism,
(2) the Ui cover U , i.e., U =

⋃
i∈I ϕi(Ui).

Lemma 44.27.2. Any étale covering is an fpqc covering.

Proof. (See also Topologies, Lemma 33.8.6.) Let {ϕi : Ui → U}i∈I be an étale
covering. Since an étale morphism is flat, and the elements of the covering should
cover its target, the property fp (faithfully flat) is satisfied. To check the property
qc (quasi-compact), let V ⊂ U be an affine open, and write ϕ−1

i =
⋃
j∈Ji Vij for

some affine opens Vij ⊂ Ui. Since ϕi is open (as étale morphisms are open), we
see that V =

⋃
i∈I
⋃
j∈Ji ϕi(Vij) is an open covering of U . Further, since V is

quasi-compact, this covering has a finite refinement. �

So any statement which is true for fpqc coverings remains true a fortiori for étale
coverings. For instance, the étale site is subcanonical.

Definition 44.27.3. (For more details see Section 44.20, or Topologies, Section
33.4.) Let S be a scheme. The big étale site over S is the site (Sch/S)étale, see Def-
inition 44.20.4. The small étale site over S is the site Sétale, see Definition 44.20.4.
We define similarly the big and small Zariski sites on S, denoted (Sch/S)Zar and
SZar.

Loosely speaking the big étale site of S is made up out of schemes over S and
coverings the étale coverings. The small étale site of S is made up out of schemes
étale over S with coverings the étale coverings. Actually any morphism between
objects of Sétale is étale, in virtue of Proposition 44.26.2, hence to check that
{Ui → U}i∈I in Sétale is a covering it suffices to check that

∐
Ui → U is surjective.

The small étale site has fewer objects than the big étale site, it contains only the
“opens” of the étale topology on S. It is a full subcategory of the big étale site,
and its topology is induced from the topology on the big site. Hence it is true that
the restriction functor from the big étale site to the small one is exact and maps
injectives to injectives. This has the following consequence.

Proposition 44.27.4. Let S be a scheme and F an abelian sheaf on (Sch/S)étale.
Then F|Sétale is a sheaf on Sétale and

Hp
étale(S,F|Sétale) = Hp

étale(S,F)

for all p ≥ 0.

Proof. This is a special case of Lemma 44.20.5. �

In accordance with the general notation introduced in Section 44.20 we write
Hp
étale(S,F) for the above cohomology group.
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44.28. Kummer theory

Let n ∈ N and consider the functor µn defined by

Schopp −→ Ab
S 7−→ µn(S) = {t ∈ Γ(S,O∗S) | tn = 1}.

By Groupoids, Example 38.5.2 this is a representable functor, and the scheme
representing it is denoted µn also. By Lemma 44.15.8 this functor satisfies the
sheaf condition for the fpqc topology (in particular, it is also satisfies the sheaf
condition for the étale, Zariski, etc topology).

Lemma 44.28.1. If n ∈ O∗S then

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on both the small and big étale site of S.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices
to show that the last map is surjective. Let U be a scheme over S. Let f ∈
Gm(U) = Γ(U,O∗U ). We need to show that we can find an étale cover of U over
the members of which the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f))
π−→ U.

(See Constructions, Section 26.3 or 26.4 for a discussion of the relative spectrum.)
Let Spec(A) ⊂ U be an affine open, and say f |Spec(A) corresponds to the unit

a ∈ A∗. Then π−1(Spec(A)) = Spec(B) with B = A[T ]/(Tn − a). The ring map
A → B is finite free of rank n, hence it is faithfully flat, and hence we conclude
that Spec(B) → Spec(A) is surjective. Since this holds for every affine open in
U we conclude that π is surjective. In addition, n and Tn−1 are invertible in B,
so nTn−1 ∈ B∗ and the ring map A → B is standard étale, in particular étale.
Since this holds for every affine open of U we conclude that π is étale. Hence
U = {π : U ′ → U} is an étale covering. Moreover, f |U ′ = (f ′)n where f ′ is the
class of T in Γ(U ′,O∗U ′), so U has the desired property. �

Remark 44.28.2. Lemma 44.28.1 is false when “étale” is replaced with “Zariski”.
Since the étale topology is coarser than the smooth topology, see Topologies, Lemma
33.5.2 it follows that the sequence is also exact in the smooth topology.

By Theorem 44.24.1 and Lemma 44.28.1 and general properties of cohomology we
obtain the long exact cohomology sequence

0 // H0
étale(S, µn,S) // Γ(S,O∗S)

(·)n // Γ(S,O∗S)

yy
H1
étale(S, µn,S) // Pic(S)

(·)n // Pic(S)

yy
H2
étale(S, µn,S) // . . .

at least if n is invertible on S. When n is not invertible on S we can apply the
following lemma.

http://stacks.math.columbia.edu/tag/03PL
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Lemma 44.28.3. For any n ∈ N the sequence

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on the site (Sch/S)fppf and (Sch/S)syntomic.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices
to show that the last map is surjective. Since the syntomic topology is stronger
than the fppf topology, see Topologies, Lemma 33.7.2, it suffices to prove this for
the syntomic topology. Let U be a scheme over S. Let f ∈ Gm(U) = Γ(U,O∗U ).
We need to show that we can find a syntomic cover of U over the members of which
the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f))
π−→ U.

(See Constructions, Section 26.3 or 26.4 for a discussion of the relative spectrum.)
Let Spec(A) ⊂ U be an affine open, and say f |Spec(A) corresponds to the unit

a ∈ A∗. Then π−1(Spec(A)) = Spec(B) with B = A[T ]/(Tn − a). The ring map
A → B is finite free of rank n, hence it is faithfully flat, and hence we conclude
that Spec(B) → Spec(A) is surjective. Since this holds for every affine open in
U we conclude that π is surjective. In addition, B is a global relative complete
intersection over A, so the ring map A → B is standard syntomic, in particular
syntomic. Since this holds for every affine open of U we conclude that π is syntomic.
Hence U = {π : U ′ → U} is a syntomic covering. Moreover, f |U ′ = (f ′)n where f ′

is the class of T in Γ(U ′,O∗U ′), so U has the desired property. �

Remark 44.28.4. Lemma 44.28.3 is false for the smooth, étale, or Zariski topology.

By Theorem 44.24.1 and Lemma 44.28.3 and general properties of cohomology we
obtain the long exact cohomology sequence

0 // H0
fppf (S, µn,S) // Γ(S,O∗S)

(·)n // Γ(S,O∗S)

yy
H1
fppf (S, µn,S) // Pic(S)

(·)n // Pic(S)

yy
H2
fppf (S, µn,S) // . . .

for any scheme S and any integer n. Of course there is a similar sequence with
syntomic cohomology.

Let n ∈ N and let S be any scheme. There is another more direct way to describe
the first cohomology group with values in µn. Consider pairs (L, α) where L is an
invertible sheaf on S and α : L⊗n → OS is a trivialization of the nth tensor power
of L. Let (L′, α′) be a second such pair. An isomorphism ϕ : (L, α) → (L′, α′) is
an isomorphism ϕ : L → L′ of invertible sheaves such that the diagram

L⊗n

ϕ⊗n

��

α
// OS

1

��
(L′)⊗n α′ // OS

http://stacks.math.columbia.edu/tag/040N
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commutes. Thus we have
(44.28.4.1)

IsomS((L, α), (L′, α′)) =

{
∅ if they are not isomorphic

H0(S, µn,S) · ϕ if ϕ isomorphism of pairs

Moreover, given two pairs (L, α), (L′, α′) the tensor product

(L, α)⊗ (L′, α′) = (L ⊗ L′, α⊗ α′)
is another pair. The pair (OS , 1) is an identity for this tensor product operation,
and an inverse is given by

(L, α)−1 = (L⊗−1, α⊗−1).

Hence the collection of isomorphism classes of pairs forms an abelian group. Note
that

(L, α)⊗n = (L⊗n, α⊗n)
α−→ (OS , 1)

hence every element of this group has order dividing n. We warn the reader that
this group is in general not the n-torsion in Pic(S).

Lemma 44.28.5. Let S be a scheme. There is a canonical identification

H1
étale(S, µn) = group of pairs (L, α) up to isomorphism as above

if n is invertible on S. In general we have

H1
fppf (S, µn) = group of pairs (L, α) up to isomorphism as above.

The same result holds with fppf replaced by syntomic.

Proof. We first prove the second isomorphism. Let (L, α) be a pair as above.
Choose an affine open covering S =

⋃
Ui such that L|Ui ∼= OUi . Say si ∈ L(Ui)

is a generator. Then α(s⊗ni ) = fi ∈ O∗S(Ui). Writing Ui = Spec(Ai) we see there
exists a global relative complete intersection Ai → Bi = Ai[T ]/(Tn − fi) such that
fi maps to an nth power in Bi. In other words, setting Vi = Spec(Bi) we obtain a
syntomic covering V = {Vi → S}i∈I and trivializations ϕi : (L, α)|Vi → (OVi , 1).

We will use this result (the existence of the covering V) to associate to this pair a
cohomology class in H1

syntomic(S, µn,S). We give two (equivalent) constructions.

First construction: using Čech cohomology. Over the double overlaps Vi ×S Vj we
have the isomorphism

(OVi×SVj , 1)
pr∗0ϕ

−1
i−−−−−→ (L|Vi×SVj , α|Vi×SVj )

pr∗1ϕj−−−−→ (OVi×SVj , 1)

of pairs. By (44.28.4.1) this is given by an element ζij ∈ µn(Vi×S Vj). We omit the

verification that these ζij ’s give a 1-cocycle, i.e., give an element (ζi0i1) ∈ Č(V, µn)

with d(ζi0i1) = 0. Thus its class is an element in Ȟ1(V, µn) and by Theorem 44.19.2
it maps to a cohomology class in H1

syntomic(S, µn,S).

Second construction: Using torsors. Consider the presheaf

µn(L, α) : U 7−→ IsomU ((OU , 1), (L, α)|U )

on (Sch/S)syntomic. We may view this as a subpresheaf of HomO(O,L) (internal
hom sheaf, see Modules on Sites, Section 18.27). Since the conditions defining this
subpresheaf are local, we see that it is a sheaf. By (44.28.4.1) this sheaf has a free
action of the sheaf µn,S . Hence the only thing we have to check is that it locally
has sections. This is true because of the existence of the trivializing cover V. Hence

http://stacks.math.columbia.edu/tag/040Q
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µn(L, α) is a µn,S-torsor and by Cohomology on Sites, Lemma 21.5.3 we obtain a
corresponding element of H1

syntomic(S, µn,S).

Ok, now we have to still show the following

(1) The two constructions give the same cohomology class.
(2) Isomorphic pairs give rise to the same cohomology class.
(3) The cohomology class of (L, α) ⊗ (L′, α′) is the sum of the cohomology

classes of L, α) and (L′, α′).
(4) If the cohomology class is trivial, then the pair is trivial.
(5) Any element of H1

syntomic(S, µn,S) is the cohomology class of a pair.

We omit the proof of (1). Part (2) is clear from the second construction, since
isomorphic torsors give the same cohomology classes. Part (3) is clear from the
first construction, since the resulting Cech classes add up. Part (4) is clear from
the second construction since a torsor is trivial if and only if it has a global section,
see Cohomology on Sites, Lemma 21.5.2.

Part (5) can be seen as follows (although a direct proof would be preferable). Sup-
pose ξ ∈ H1

syntomic(S, µn,S). Then ξ maps to an element ξ ∈ H1
syntomic(S,Gm,S)

with nξ = 0. By Theorem 44.24.1 we see that ξ corresponds to an invertible sheaf
L whose nth tensor power is isomorphic to OS . Hence there exists a pair (L, α′)
whose cohomology class ξ′ has the same image ξ′ in H1

syntomic(S,Gm,S). Thus it
suffices to show that ξ−ξ′ is the class of a pair. By construction, and the long exact
cohomology sequence above, we see that ξ − ξ′ = ∂(f) for some f ∈ H0(S,O∗S).
Consider the pair (OS , f). We omit the verification that the cohomology class
of this pair is ∂(f), which finishes the proof of the first identification (with fppf
replaced with syntomic).

To see the first, note that if n is invertible on S, then the covering V constructed in
the first part of the proof is actually an étale covering (compare with the proof of
Lemma 44.28.1). The rest of the proof is independent of the topology, apart from
the very last argument which uses that the Kummer sequence is exact, i.e., uses
Lemma 44.28.1. �

44.29. Neighborhoods, stalks and points

We can associate to any geometric point of S a stalk functor which is exact. A
map of sheaves on Sétale is an isomorphism if and only if it is an isomorphism on
all these stalks. A complex of abelian sheaves is exact if and only if the complex of
stalks is exact at all geometric points. Altogether this means that the small étale
site of a scheme S has enough points. It also turns out that any point of the small
étale topos of S (an abstract notion) is given by a geometric point. Thus in some
sense the small étale topos of S can be understood in terms of geometric points
and neighbourhoods.

Definition 44.29.1. Let S be a scheme.

(1) A geometric point of S is a morphism Spec(k)→ S where k is algebraically
closed. Such a point is usually denoted s, i.e., by an overlined small
case letter. We often use s to denote the scheme Spec(k) as well as the
morphism, and we use κ(s) to denote k.

(2) We say s lies over s to indicate that s ∈ S is the image of s.

http://stacks.math.columbia.edu/tag/03PO
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(3) An étale neighborhood of a geometric point s of S is a commutative dia-
gram

U

ϕ

��
s

s //

ū

??

S

where ϕ is an étale morphism of schemes. We write (U, u)→ (S, s).
(4) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an S-morphism

h : U → U ′ such that u′ = h ◦ u.

Remark 44.29.2. Since U and U ′ are étale over S, any S-morphism between
them is also étale, see Proposition 44.26.2. In particular all morphisms of étale
neighborhoods are étale.

Remark 44.29.3. Let S be a scheme and s ∈ S a point. In More on Morphisms,
Definition 36.27.1 we defined the notion of an étale neighbourhood (U, u)→ (S, s)
of (S, s). If s is a geometric point of S lying over s, then any étale neighbourhood
(U, u)→ (S, s) gives rise to an étale neighbourhood (U, u) of (S, s) by taking u ∈ U
to be the unique point of U such that u lies over u. Conversely, given an étale
neighbourhood (U, u) of (S, s) the residue field extension κ(s) ⊂ κ(u) is finite
separable (see Proposition 44.26.2) and hence we can find an embedding κ(u) ⊂ κ(s)
over κ(s). In other words, we can find a geometric point u of U lying over u such
that (U, u) is an étale neighbourhood of (S, s). We will use these observations to
go between the two types of étale neighbourhoods.

Lemma 44.29.4. Let S be a scheme, and let s be a geometric point of S. The
category of étale neighborhoods is cofiltered. More precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neighbor-
hoods of s. Then there exist an étale neighborhood (U ′′, u′′) and a mor-
phism h : (U ′′, u′′) → (U, u) which equalizes h1 and h2, i.e., such that
h1 ◦ h = h2 ◦ h.

Proof. For part (1), consider the fibre product U = U1 ×S U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change, see
Proposition 44.26.2. The map s → U defined by (u1, u2) gives it the structure of
an étale neighborhood mapping to both U1 and U2. For part (2), define U ′′ as the
fibre product

U ′′ //

��

U

(h1,h2)

��
U ′

∆ // U ′ ×S U ′.
Since u and u′ agree over S with s, we see that u′′ = (u, u′) is a geometric point
of U ′′. In particular U ′′ 6= ∅. Moreover, since U ′ is étale over S, so is the fibre
product U ′ ×S U ′ (see Proposition 44.26.2). Hence the vertical arrow (h1, h2) is
étale by Remark 44.29.2 above. Therefore U ′′ is étale over U ′ by base change, and
hence also étale over S (because compositions of étale morphisms are étale). Thus
(U ′′, u′′) is a solution to the problem. �

http://stacks.math.columbia.edu/tag/03PP
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Lemma 44.29.5. Let S be a scheme. Let s be a geometric point of S. Let (U, u)
an étale neighborhood of s. Let U = {ϕi : Ui → U}i∈I be an étale covering. Then
there exist i ∈ I and ui : s → Ui such that ϕi : (Ui, ui) → (U, u) is a morphism of
étale neighborhoods.

Proof. As U =
⋃
i∈I ϕi(Ui), the fibre product s ×u,U,ϕi Ui is not empty for some

i. Then look at the cartesian diagram

s×u,U,ϕi Ui
pr1

��

pr2

// Ui

ϕi

��
Spec(k) = s

σ

DD

u // U

The projection pr1 is the base change of an étale morphisms so it is étale, see
Proposition 44.26.2. Therefore, s ×u,U,ϕi Ui is a disjoint union of finite separable
extensions of k, by Proposition 44.26.2. Here s = Spec(k). But k is algebraically
closed, so all these extensions are trivial, and there exists a section σ of pr1. The
composition pr2 ◦ σ gives a map compatible with u. �

Definition 44.29.6. Let S be a scheme. Let F be a presheaf on Sétale. Let s be
a geometric point of S. The stalk of F at s is

Fs = colim(U,u) F(U)

where (U, u) runs over all étale neighborhoods of s in S.

By Lemma 44.29.4, this colimit is over a filtered index category, namely the op-
posite of the category of étale neighbourhoods. In other words, an element of Fs
can be thought of as a triple (U, u, σ) where σ ∈ F(U). Two triples (U, u, σ),
(U ′, u′, σ′) define the same element of the stalk if there exists a third étale neigh-
bourhood (U ′′, u′′) and morphisms of étale neighbourhoods h : (U ′′, u′′) → (U, u),
h′ : (U ′′, u′′)→ (U ′, u′) such that h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section
4.19.

Lemma 44.29.7. Let S be a scheme. Let s be a geometric point of S. Consider
the functor

u : Sétale −→ Sets,

U 7−→ |Us| = {u such that (U, u) is an étale neighbourhood of s}.
Here |Us| denotes the underlying set of the geometric fibre. Then u defines a point p
of the site Sétale (Sites, Definition 7.31.2) and its associated stalk functor F 7→ Fp
(Sites, Equation 7.31.1.1) is the functor F 7→ Fs defined above.

Proof. In the proof of Lemma 44.29.5 we have seen that the scheme Us is a disjoint
union of schemes isomorphic to s. Thus we can also think of |Us| as the set of
geometric points of U lying over s, i.e., as the collection of morphisms u : s → U
fitting into the diagram of Definition 44.29.1. From this it follows that u(S) is a
singleton, and that u(U ×V W ) = u(U)×u(V ) u(W ) whenever U → V and W → V
are morphisms in Sétale. And, given a covering {Ui → U}i∈I in Sétale we see that∐
u(Ui) → u(U) is surjective by Lemma 44.29.5. Hence Sites, Proposition 7.32.2

applies, so p is a point of the site Sétale. Finally, the our functor F 7→ Fs is given by
exactly the same colimit as the functor F 7→ Fp associated to p in Sites, Equation
7.31.1.1 which proves the final assertion. �

http://stacks.math.columbia.edu/tag/03PR
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Remark 44.29.8. Let S be a scheme and let s : Spec(k)→ S and s′ : Spec(k′)→ S
be two geometric points of S. A morphism a : s→ s′ of geometric points is simply
a morphism a : Spec(k) → Spec(k′) such that a ◦ s′ = s. Given such a morphism
we obtain a functor from the category of étale neighbourhoods of s′ to the category
of étale neighbourhoods of s by the rule (U, u′) 7→ (U, u′ ◦ a). Hence we obtain a
canonical map

Fs′ = colim(U,u′) F(U) −→ colim(U,u) F(U) = Fs
from Categories, Lemma 4.14.7. Using the description of elements of stalks as triples
this maps the element of Fs′ represented by the triple (U, u′, σ) to the element
of Fs represented by the triple (U, u′ ◦ a, σ). Since the functor above is clearly
an equivalence we conclude that this canonical map is an isomorphism of stalk
functors.

Let us make sure we have the map of stalks corresponding to a pointing in the
correct direction. Note that the above means, according to Sites, Definition 7.36.2,
that a defines a morphism a : p → p′ between the points p, p′ of the site Sétale
associated to s, s′ by Lemma 44.29.7. There are more general morphisms of points
(corresponding to specializations of points of S) which we will describe later, and
which will not be isomorphisms (insert future reference here).

Lemma 44.29.9. Let S be a scheme. Let s be a geometric point of S.

(1) The stalk functor PAb(Sétale)→ Ab, F 7→ Fs is exact.
(2) We have (F#)s = Fs for any presheaf of sets F on Sétale.
(3) The functor Ab(Sétale)→ Ab, F 7→ Fs is exact.
(4) Similarly the functors PSh(Sétale)→ Sets and Sh(Sétale)→ Sets given by

the stalk functor F 7→ Fx are exact (see Categories, Definition 4.23.1)
and commute with arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the
result follows from the general material in Modules on Sites, Section 18.35. This is
true because F 7→ Fs comes from a point of the small étale site of S, see Lemma
44.29.7. We will only give a direct proof of (1), (2) and (3), and omit a direct proof
of (4).

Exactness as a functor on PAb(Sétale) is formal from the fact that directed colimits
commute with all colimits and with finite limits. The identification of the stalks in
(2) is via the map

κ : Fs −→ (F#)s

induced by the natural morphism F → F#, see Theorem 44.13.2. We claim that
this map is an isomorphism of abelian groups. We will show injectivity and omit
the proof of surjectivity.

Let σ ∈ Fs. There exists an étale neighborhood (U, u) → (S, s) such that σ is the
image of some section s ∈ F(U). If κ(σ) = 0 in (F#)s then there exists a morphism
of étale neighborhoods (U ′, u′)→ (U, u) such that s|U ′ is zero in F#(U ′). It follows
there exists an étale covering {U ′i → U ′}i∈I such that s|U ′i = 0 in F(U ′i) for all

i. By Lemma 44.29.5 there exist i ∈ I and a morphism u′i : s → U ′i such that
(U ′i , u

′
i) → (U ′, u′) → (U, u) are morphisms of étale neighborhoods. Hence σ = 0

since (U ′i , u
′
i) → (U, u) is a morphism of étale neighbourhoods such that we have

s|U ′i = 0. This proves κ is injective.

http://stacks.math.columbia.edu/tag/04FN
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To show that the functor Ab(Sétale) → Ab is exact, consider any short exact se-
quence in Ab(Sétale): 0 → F → G → H → 0. This gives us the exact sequence of
presheaves

0→ F → G → H → H/pG → 0,

where /p denotes the quotient in PAb(Sétale). Taking stalks at s, we see that
(H/pG)s̄ = (H/G)s̄ = 0, since the sheafification of H/pG is 0. Therefore,

0→ Fs → Gs → Hs → 0 = (H/pG)s

is exact, since taking stalks is exact as a functor from presheaves. �

Theorem 44.29.10. Let S be a scheme. A map a : F → G of sheaves of sets is
injective (resp. surjective) if and only if the map on stalks as : Fs → Gs is injective
(resp. surjective) for all geometric points of S. A sequence of abelian sheaves on
Sétale is exact if and only if it is exact on all stalks at geometric points of S.

Proof. The necessity of exactness on stalks follows from Lemma 44.29.9. For
the converse, it suffices to show that a map of sheaves is surjective (respectively
injective) if and only if it is surjective (respectively injective) on all stalks. We
prove this in the case of surjectivity, and omit the proof in the case of injectivity.

Let α : F → G be a map of abelian sheaves such that Fs → Gs is surjective for
all geometric points. Fix U ∈ Ob(Sétale) and s ∈ G(U). For every u ∈ U choose
some u → U lying over u and an étale neighborhood (Vu, vu) → (U, u) such that
s|Vu = α(sVu) for some sVu ∈ F(Vu). This is possible since α is surjective on stalks.
Then {Vu → U}u∈U is an étale covering on which the restrictions of s are in the
image of the map α. Thus, α is surjective, see Sites, Section 7.12. �

Remarks 44.29.11. On points of the geometric sites.

(1) Theorem 44.29.10 says that the family of points of Sétale given by the
geometric points of S (Lemma 44.29.7) is conservative, see Sites, Definition
7.37.1. In particular Sétale has enough points.

(2) Suppose F is a sheaf on the big étale site of S. Let T → S be an object
of the big étale site of S, and let t be a geometric point of T . Then we
define Ft as the stalk of the restriction F|Tétale of F to the small étale site
of T . In other words, we can define the stalk of F at any geometric point
of any scheme T/S ∈ Ob((Sch/S)étale).

(3) The big étale site of S also has enough points, by considering all geometric
points of all objects of this site, see (2).

The following lemma should be skipped on a first reading.

Lemma 44.29.12. Let S be a scheme.

(1) Let p be a point of the small étale site Sétale of S given by a functor
u : Sétale → Sets. Then there exists a geometric point s of S such that p
is isomorphic to the point of Sétale associated to s in Lemma 44.29.7.

(2) Let p : Sh(pt)→ Sh(Sétale) be a point of the small étale topos of S. Then
p comes from a geometric point of S, i.e., the stalk functor F 7→ Fp is
isomorphic to a stalk functor as defined in Definition 44.29.6.

Proof. By Sites, Lemma 7.31.7 there is a one to one correspondence between points
of the site and points of the associated topos, hence it suffices to prove (1). By
Sites, Proposition 7.32.2 the functor u has the following properties: (a) u(S) = {∗},
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(b) u(U ×V W ) = u(U)×u(V ) u(W ), and (c) if {Ui → U} is an étale covering, then∐
u(Ui)→ u(U) is surjective. In particular, if U ′ ⊂ U is an open subscheme, then

u(U ′) ⊂ u(U). Moreover, by Sites, Lemma 7.31.7 we can write u(U) = p−1(h#
U ), in

other words u(U) is the stalk of the representable sheaf hU . If U = V qW , then
we see that hU = (hV q hW )# and we get u(U) = u(V )q u(W ) since p−1 is exact.

Consider the restriction of u to SZar. By Sites, Examples 7.32.4 and 7.32.5 there
exists a unique point s ∈ S such that for S′ ⊂ S open we have u(S′) = {∗} if s ∈ S′
and u(S′) = ∅ if s 6∈ S′. Note that if ϕ : U → S is an object of Sétale then ϕ(U) ⊂ S
is open (see Proposition 44.26.2) and {U → ϕ(U)} is an étale covering. Hence we
conclude that u(U) = ∅ ⇔ s ∈ ϕ(U).

Pick a geometric point s : s→ S lying over s, see Definition 44.29.1 for customary
abuse of notation. Suppose that ϕ : U → S is an object of Sétale with U affine.
Note that ϕ is separated, and that the fibre Us of ϕ over s is an affine scheme over
Spec(κ(s)) which is the spectrum of a finite product of finite separable extensions

ki of κ(s). Hence we may apply Étale Morphisms, Lemma 40.18.2 to get an étale
neighbourhood (V, v) of (S, s) such that

U ×S V = U1 q . . .q Un qW
with Ui → V an isomorphism and W having no point lying over v. Thus we
conclude that

u(U)× u(V ) = u(U ×S V ) = u(U1)q . . .q u(Un)q u(W )

and of course also u(Ui) = u(V ). After shrinking V a bit we can assume that V
has exactly one point lying over s, and hence W has no point lying over s. By the
above this then gives u(W ) = ∅. Hence we obtain

u(U)× u(V ) = u(U1)q . . .q u(Un) =
∐

i=1,...,n
u(V )

Note that u(V ) 6= ∅ as s is in the image of V → S. In particular, we see that in
this situation u(U) is a finite set with n elements.

Consider the limit

lim(V,v) u(V )

over the category of étale neighbourhoods (V, v) of s. It is clear that we get the
same value when taking the limit over the subcategory of (V, v) with V affine. By
the previous paragraph (applied with the roles of V and U switched) we see that
in this case u(V ) is always a finite nonempty set. Moreover, the limit is cofiltered,
see Lemma 44.29.4. Hence by Categories, Section 4.20 the limit is nonempty. Pick
an element x from this limit. This means we obtain a xV,v ∈ u(V ) for every étale
neighbourhood (V, v) of (S, s) such that for every morphism of étale neighbourhoods
ϕ : (V ′, v′)→ (V, v) we have u(ϕ)(xV ′,v′) = xV,v.

We will use the choice of x to construct a functorial bijective map

c : |Us| −→ u(U)

for U ∈ Ob(Sétale) which will conclude the proof. See Lemma 44.29.7 and its proof
for a description of |Us|. First we claim that it suffices to construct the map for U
affine. We omit the proof of this claim. Assume U → S in Sétale with U affine, and
let u : s→ U be an element of |Us|. Choose a (V, v) such that U ×S V decomposes
as in the third paragraph of the proof. Then the pair (u, v) gives a geometric
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point of U ×S V lying over v and determines one of the components Ui of U ×S V .
More precisely, there exists a section σ : V → U ×S V of the projection prU such
that (u, v) = σ ◦ v. Set c(u) = u(prU )(u(σ)(xV,v)) ∈ u(U). We have to check
this is independent of the choice of (V, v). By Lemma 44.29.4 the category of étale
neighbourhoods is cofiltered. Hence it suffice to show that given a morphism of étale
neighbourhood ϕ : (V ′, v′) → (V, v) and a choice of a section σ′ : V ′ → U ×S V ′
of the projection such that (u, v′) = σ′ ◦ v′ we have u(σ′)(xV ′,v′) = u(σ)(xV,v).
Consider the diagram

V ′

σ′

��

ϕ
// V

σ

��
U ×S V ′

1×ϕ // U ×S V
Now, it may not be the case that this diagram commutes. The reason is that the
schemes V ′ and V may not be connected, and hence the decompositions used to
construct σ′ and σ above may not be unique. But we do know that σ ◦ ϕ ◦ v′ =
(1× ϕ) ◦ σ′ ◦ v′ by construction. Hence, since U ×S V is étale over S, there exists
an open neighbourhood V ′′ ⊂ V ′ of v′ such that the diagram does commute when
restricted to V ′′, see Morphisms, Lemma 28.36.17. This means we may extend the
diagram above to

V ′′ //

σ′|V ′′
��

V ′

σ′

��

ϕ
// V

σ

��
U ×S V ′′ // U ×S V ′

1×ϕ // U ×S V

such that the left square and the outer rectangle commute. Since u is a functor
this implies that xV ′′,v′ maps to the same element in u(U ×S V ) no matter which
route we take through the diagram. On the other hand, it maps to the elements
xV ′,v′ and xV,v in u(V ′) and u(V ). This implies the desired equality u(σ′)(xV ′,v′) =
u(σ)(xV,v).

In a similar manner one proves that the construction c : |Us| → u(U) is functorial
in U ; details omitted. And finally, by the results of the third paragraph it is clear
that the map c is bijective which ends the proof of the lemma. �

44.30. Points in other topologies

In this section we briefly discuss the existence of points for some sites other than
the étale site of a scheme. We refer to Sites, Section 7.37 and Topologies, Section
33.2 ff for the terminology used in this section. All of the geometric sites have
enough points.

Lemma 44.30.1. Let S be a scheme. All of the following sites have enough points
SZar, Sétale, (Sch/S)Zar, (Aff/S)Zar, (Sch/S)étale, (Aff/S)étale, (Sch/S)smooth,
(Aff/S)smooth, (Sch/S)syntomic, (Aff/S)syntomic, (Sch/S)fppf , and (Aff/S)fppf .

Proof. For each of the big sites the associated topos is equivalent to the topos
defined by the site (Aff/S)τ , see Topologies, Lemmas 33.3.10, 33.4.11, 33.5.9, 33.6.9,
and 33.7.11. The result for the sites (Aff/S)τ follows immediately from Deligne’s
result Sites, Proposition 7.38.3.

http://stacks.math.columbia.edu/tag/06VX
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The result for SZar is clear. The result for Sétale either follows from (the proof of)
Theorem 44.29.10 or from Lemma 44.21.2 and Deligne’s result applied to Saffine,étale.

�

The lemma above guarantees the existence of points, but it doesn’t tell us what
these points look like. We can explicitly construct some points as follows. Suppose
s : Spec(k) → S is a geometric point with k algebraically closed. Consider the
functor

u : (Sch/S)fppf −→ Sets, u(U) = U(k) = MorS(Spec(k), U).

Note that U 7→ U(k) commutes with direct limits as S(k) = {s} and (U1 ×U
U2)(k) = U1(k) ×U(k) U2(k). Moreover, if {Ui → U} is an fppf covering, then∐
Ui(k)→ U(k) is surjective. By Sites, Proposition 7.32.2 we see that u defines a

point p of (Sch/S)fppf with stalks

Fp = colim(U,x) F(U)

where the colimit is over pairs U → S, x ∈ U(k) as usual. But... this category has
an initial object, namely (Spec(k), id), hence we see that

Fp = F(Spec(k))

which isn’t terribly interesting! In fact, in general these points won’t form a con-
servative family of points. A more interesting type of point is described in the
following remark.

Remark 44.30.2. Let S = Spec(A) be an affine scheme. Let (p, u) be a point of
the site (Aff/S)fppf , see Sites, Sections 7.31 and 7.32. Let B = Op be the stalk of
the structure sheaf at the point p. Recall that

B = colim(U,x)O(U) = colim(Spec(C),xC) C

where xC ∈ u(Spec(C)). It can happen that Spec(B) is an object of (Aff/S)fppf
and that there is an element xB ∈ u(Spec(B)) mapping to the compatible system
xC . In this case the system of neighbourhoods has an initial object and it follows
that Fp = F(Spec(B)) for any sheaf F on (Aff/S)fppf . It is straightforward to
see that if F 7→ F(Spec(B)) defines a point of Sh((Aff/S)fppf ), then B has to
be a local A-algebra such that for every faithfully flat, finitely presented ring map
B → B′ there is a section B′ → B. Conversely, for any such A-algebra B the
functor F 7→ F(Spec(B)) is the stalk functor of a point. Details omitted. It is not
clear what a general point of the site (Aff/S)fppf looks like.

44.31. Supports of abelian sheaves

First we talk about supports of local sections.

Lemma 44.31.1. Let S be a scheme. Let F be a subsheaf of the final object of
the étale topos of S (see Sites, Example 7.10.2). Then there exists a unique open
W ⊂ S such that F = hW .

Proof. The condition means that F(U) is a singleton or empty for all ϕ : U →
S in Ob(Sétale). In particular local sections always glue. If F(U) 6= ∅, then
F(ϕ(U)) 6= ∅ because {ϕ : U → ϕ(U)} is a covering. Hence we can take W =⋃
ϕ:U→S,F(U) 6=∅ ϕ(U). �
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Lemma 44.31.2. Let S be a scheme. Let F be an abelian sheaf on Sétale. Let
σ ∈ F(U) be a local section. There exists an open subset W ⊂ U such that

(1) W ⊂ U is the largest Zariski open subset of U such that σ|W = 0,
(2) for every ϕ : V → U in Sétale we have

σ|V = 0⇔ ϕ(V ) ⊂W,
(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W
where s = (U → S) ◦ u.

Proof. Since F is a sheaf in the étale topology the restriction of F to UZar is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma 17.5.2. Let ϕ : V → U be an arrow of Sétale.
Note that ϕ(V ) ⊂ U is an open subset and that {V → ϕ(V )} is an étale covering.
Hence if σ|V = 0, then by the sheaf condition for F we see that σ|ϕ(V ) = 0. This
proves (2). To prove (3) we have to show that if (U, u, σ) defines the zero element
of Fs, then u ∈ W . This is true because the assumption means there exists a
morphism of étale neighbourhoods (V, v)→ (U, u) such that σ|V = 0. Hence by (2)
we see that V → U maps into W , and hence u ∈W . �

Let S be a scheme. Let s ∈ S. Let F be a sheaf on Sétale. By Remark 44.29.8 the
isomorphism class of the stalk of the sheaf F at a geometric points lying over s is
well defined.

Definition 44.31.3. Let S be a scheme. Let F be an abelian sheaf on Sétale.

(1) The support of F is the set of points s ∈ S such that Fs 6= 0 for any
(some) geometric point s lying over s.

(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W ,
where W ⊂ U is the largest open subset of U on which σ restricts to zero
(see Lemma 44.31.2).

In general the support of an abelian sheaf is not closed. For example, suppose that
S = Spec(A1

C). Let it : Spec(C)→ S be the inclusion of the point t ∈ C. We will
see later that Ft = it,∗(Z/2Z) is an abelian sheaf whose support is exactly {t}, see
Section 44.47. Then ⊕

n∈N
Fn

is an abelian sheaf with support {1, 2, 3, . . .} ⊂ S. This is true because taking stalks
commutes with colimits, see Lemma 44.29.9. Thus an example of an abelian sheaf
whose support is not closed. Here are some basic facts on supports of sheaves and
sections.

Lemma 44.31.4. Let S be a scheme. Let F be an abelian sheaf on Sétale. Let
U ∈ Ob(Sétale) and σ ∈ F(U).

(1) The support of σ is closed in U .
(2) The support of σ + σ′ is contained in the union of the supports of σ, σ′ ∈
F(U).

(3) If ϕ : F → G is a map of abelian sheaves on Sétale, then the support of
ϕ(σ) is contained in the support of σ ∈ F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F .
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(5) If F → G is surjective then the support of G is a subset of the support of
F .

(6) If F → G is injective then the support of F is a subset of the support of
G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for
the restriction of F and G to UZar, see Modules, Lemma 17.5.2. Part (4) is a direct
consequence of Lemma 44.31.2 part (3). Parts (5) and (6) follow from the other
parts. �

Lemma 44.31.5. The support of a sheaf of rings on Sétale is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. �

44.32. Henselian rings

We begin by stating a theorem which has already been used many times in the stacks
project. There are many versions of this result; here we just state the algebraic
version.

Theorem 44.32.1. Let A → B be finite type ring map and p ⊂ A a prime ideal.
Then there exist an étale ring map A→ A′ and a prime p′ ⊂ A′ lying over p such
that

(1) κ(p) = κ(p′),
(2) B ⊗A A′ = B1 × . . .×Br × C,
(3) A′ → Bi is finite and there exists a unique prime qi ⊂ Bi lying over p′,

and
(4) all irreducible components of the fibre Spec(C⊗A′ κ(p′)) of C over p′ have

dimension at least 1.

Proof. See Algebra, Lemma 10.138.23, or see [GD67, Théorème 18.12.1]. For a
slew of versions in terms of morphisms of schemes, see More on Morphisms, Section
36.30. �

Recall Hensel’s lemma. There are many versions of this lemma. Here are two:

(f) if f ∈ Zp[T ] monic and f mod p = g0h0 with gcd(g0, h0) = 1 then f
factors as f = gh with ḡ = g0 and h̄ = h0,

(r) if f ∈ Zp[T ], monic a0 ∈ Fp, f̄(a0) = 0 but f̄ ′(a0) 6= 0 then there exists
a ∈ Zp with f(a) = 0 and ā = a0.

Both versions are true (we will see this later). The first version asks for lifts of
factorizations into coprime parts, and the second version asks for lifts of simple
roots modulo the maximal ideal. It turns out that requiring these conditions for a
general local ring are equivalent, and are equivalent to many other conditions. We
use the root lifting property as the definition of a henselian local ring as it is often
the easiest one to check.

Definition 44.32.2. (See Algebra, Definition 10.145.1.) A local ring (R,m, κ) is
called henselian if for all f ∈ R[T ] monic, for all a0 ∈ κ such that f̄(a0) = 0 and
f̄ ′(a0) 6= 0, there exists an a ∈ R such that f(a) = 0 and a mod m = a0.
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A good example of henselian local rings to keep in mind is complete local rings.
Recall (Algebra, Definition 10.149.1) that a complete local ring is a local ring (R,m)
such that R ∼= limnR/m

n, i.e., it is complete and separated for the m-adic topology.

Theorem 44.32.3. Complete local rings are henselian.

Proof. Newton’s method. See Algebra, Lemma 10.145.10. �

Theorem 44.32.4. Let (R,m, κ) be a local ring. The following are equivalent:

(1) R is henselian,
(2) for any f ∈ R[T ] and any factorization f̄ = g0h0 in κ[T ] with gcd(g0, h0) =

1, there exists a factorization f = gh in R[T ] with ḡ = g0 and h̄ = h0,
(3) any finite R-algebra S is isomorphic to a finite product of finite local rings,
(4) any finite type R-algebra A is isomorphic to a product A ∼= A′ × C where

A′ ∼= A1 × . . . × Ar is a product of finite local R-algebras and all the
irreducible components of C ⊗R κ have dimension at least 1,

(5) if A is an étale R-algebra and n is a maximal ideal of A lying over m such
that κ ∼= A/n, then there exists an isomorphism ϕ : A ∼= R×A′ such that
ϕ(n) = m×A′ ⊂ R×A′.

Proof. This is just a subset of the results from Algebra, Lemma 10.145.3. Note
that part (5) above corresponds to part (8) of Algebra, Lemma 10.145.3 but is
formulated slightly differently. �

Lemma 44.32.5. If R is henselian and A is a finite R-algebra, then A is a finite
product of henselian local rings.

Proof. See Algebra, Lemma 10.145.4. �

Definition 44.32.6. A local ring R is called strictly henselian if it is henselian and
its residue field is separably closed.

Example 44.32.7. In the case R = C[[t]], the étale R-algebras are finite products
of the trivial extension R→ R and the extensions R→ R[X,X−1]/(Xn − t). The
latter ones factor through the open D(t) ⊂ Spec(R), so any étale covering can be
refined by the covering {id : Spec(R) → Spec(R)}. We will see below that this is
a somewhat general fact on étale coverings of spectra of henselian rings. This will
show that higher étale cohomology of the spectrum of a strictly henselian ring is
zero.

Theorem 44.32.8. Let (R,m, κ) be a local ring and κ ⊂ κsep a separable algebraic
closure. There exist canonical flat local ring maps R→ Rh → Rsh where

(1) Rh, Rsh are filtered colimits of étale R-algebras,
(2) Rh is henselian, Rsh is strictly henselian,
(3) mRh (resp. mRsh) is the maximal ideal of Rh (resp. Rsh), and
(4) κ = Rh/mRh, and κsep = Rsh/mRsh as extensions of κ.

Proof. The structure of Rh and Rsh is described in Algebra, Lemmas 10.145.16
and 10.145.17. �

The rings constructed in Theorem 44.32.8 are called respectively the henselization
and the strict henselization of the local ring R, see Algebra, Definition 10.145.18.
Many of the properties of R are reflected in its (strict) henselization, see More on
Algebra, Section 15.34.
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44.33. Stalks of the structure sheaf

In this section we identify the stalk of the structure sheaf at a geometric point with
the strict henselization of the local ring at the corresponding “usual” point.

Lemma 44.33.1. Let S be a scheme. Let s be a geometric point of S lying over
s ∈ S. Let κ = κ(s) and let κ ⊂ κsep ⊂ κ(s) denote the separable algebraic closure
of κ in κ(s). Then there is a canonical identification

(OS,s)sh ∼= OS,s
where the left hand side is the strict henselization of the local ring OS,s as described
in Theorem 44.32.8 and right hand side is the stalk of the structure sheaf OS on
Sétale at the geometric point s.

Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
OS,s = Ap and κ(s) = κ(p). Thus we have κ(p) ⊂ κsep ⊂ κ(s). Recall that

OS,s = colim(U,u)O(U)

where the limit is over the étale neighbourhoods of (S, s). A cofinal system is given
by those étale neighbourhoods (U, u) such that U is affine and U → S factors
through Spec(A). In other words, we see that

OS,s = colim(B,q,φ)B

where the colimit is over étale A-algebras B endowed with a prime q lying over p
and a κ(p)-algebra map φ : κ(q) → κ(s). Note that since κ(q) is finite separable
over κ(p) the image of φ is contained in κsep. Via these translations the result of
the lemma is equivalent to the result of Algebra, Lemma 10.145.27. �

Definition 44.33.2. Let S be a scheme. Let s be a geometric point of S lying
over the point s ∈ S.

(1) The étale local ring of S at s is the stalk of the structure sheaf OS on
Sétale at s. We sometimes call this the strict henselization of OS,s relative
to the geometric point s. Notation used: OS,s = OshS,s.

(2) The henselization of OS,s is the henselization of the local ring of S at s.
See Algebra, Definition 10.145.18, and Theorem 44.32.8. Notation: OhS,s.

(3) The strict henselization of S at s is the scheme Spec(OshS,s).
(4) The henselization of S at s is the scheme Spec(OhS,s).

Lemma 44.33.3. Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category of étale neighbourhoods (U, u) of (S, s)
such that κ(s) = κ(u).

Proof. This lemma is a copy of More on Morphisms, Lemma 36.27.5. �

Remark 44.33.4. Let S be a scheme. Let s ∈ S. If S is locally noetherian then
OhS,s is also noetherian and it has the same completion:

ÔS,s ∼= ÔhS,s.
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In particular, OS,s ⊂ OhS,s ⊂ ÔS,s. The henselization of OS,s is in general much
smaller than its completion and inherits many of its properties. For example, if
OS,s is reduced, then so is OhS,s, but this is not true for the completion in general.
Insert future references here.

Lemma 44.33.5. Let S be a scheme. The small étale site Sétale endowed with its
structure sheaf OS is a locally ringed site, see Modules on Sites, Definition 18.39.4.

Proof. This follows because the stalks OshS,s = OS,s are local, and because Sétale
has enough points, see Lemma 44.33.1, Theorem 44.29.10, and Remarks 44.29.11.
See Modules on Sites, Lemmas 18.39.2 and 18.39.3 for the fact that this implies the
small étale site is locally ringed. �

44.34. Functoriality of small étale topos

So far we haven’t yet discussed the functoriality of the étale site, in other words
what happens when given a morphism of schemes. A precise formal discussion can
be found in Topologies, Section 33.4. In this and the next sections we discuss this
material briefly specifically in the setting of small étale sites.

Let f : X → Y be a morphism of schemes. We obtain a functor

(44.34.0.1) u : Yétale −→ Xétale, V/Y 7−→ X ×Y V/X.

This functor has the following important properties

(1) u(final object) = final object,
(2) u preserves fibre products,
(3) if {Vj → V } is a covering in Yétale, then {u(Vj)→ u(V )} is a covering in

Xétale.

Each of these is easy to check (omitted). As a consequence we obtain what is called
a morphism of sites

fsmall : Xétale −→ Yétale,

see Sites, Definition 7.15.1 and Sites, Proposition 7.15.6. It is not necessary to know
about the abstract notion in detail in order to work with étale sheaves and étale co-
homology. It usually suffices to know that there are functors fsmall,∗ (pushforward)

and f−1
small (pullback) on étale sheaves, and to know some of their simple properties.

We will discuss these properties in the next sections, but we will sometimes refer
to the more abstract material for proofs since that is often the natural setting to
prove them.

44.35. Direct images

Let us define the pushforward of a presheaf.

Definition 44.35.1. Let f : X → Y be a morphism of schemes. Let F a presheaf
of sets on Xétale. The direct image, or pushforward of F (under f) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X).

We sometimes write f∗ = fsmall,∗ to distinguish from other direct image functors
(such as usual Zariski pushforward or fbig,∗).
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This is a well-defined étale presheaf since the base change of an étale morphism is
again étale. A more categorical way of saying this is that f∗F is the composition
of functors F ◦ u where u is as in Equation (44.34.0.1). This makes it clear that
the construction is functorial in the presheaf F and hence we obtain a functor

f∗ = fsmall,∗ : PSh(Xétale) −→ PSh(Yétale)

Note that if F is a presheaf of abelian groups, then f∗F is also a presheaf of abelian
groups and we obtain

f∗ = fsmall,∗ : PAb(Xétale) −→ PAb(Yétale)

as before (i.e., defined by exactly the same rule).

Remark 44.35.2. We claim that the direct image of a sheaf is a sheaf. Namely,
if {Vj → V } is an étale covering in Yétale then {X ×Y Vj → X ×Y V } is an étale
covering in Xétale. Hence the sheaf condition for F with respect to {X ×Y Vi →
X ×Y V } is equivalent to the sheaf condition for f∗F with respect to {Vi → V }.
Thus if F is a sheaf, so is f∗F .

Definition 44.35.3. Let f : X → Y be a morphism of schemes. Let F a sheaf of
sets on Xétale. The direct image, or pushforward of F (under f) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X)

which is a sheaf by Remark 44.35.2. We sometimes write f∗ = fsmall,∗ to distinguish
from other direct image functors (such as usual Zariski pushforward or fbig,∗).

The exact same discussion as above applies and we obtain functors

f∗ = fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

and

f∗ = fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

called direct image again.

The functor f∗ on abelian sheaves is left exact. (See Homology, Section 12.7 for
what it means for a functor between abelian categories to be left exact.) Namely,
if 0 → F1 → F2 → F3 is exact on Xétale, then for every U/X ∈ Ob(Xétale) the
sequence of abelian groups 0→ F1(U)→ F2(U)→ F3(U) is exact. Hence for every
V/Y ∈ Ob(Yétale) the sequence of abelian groups 0 → f∗F1(V ) → f∗F2(V ) →
f∗F3(V ) is exact, because this is the previous sequence with U = X ×Y V .

Definition 44.35.4. Let f : X → Y be a morphism of schemes. The right derived
functors {Rpf∗}p≥1 of f∗ : Ab(Xétale)→ Ab(Yétale) are called higher direct images.

The higher direct images and their derived category variants are discussed in more
detail in (insert future reference here).

44.36. Inverse image

In this section we briefly discuss pullback of sheaves on the small étale sites. The
precise construction of this is in Topologies, Section 33.4.

http://stacks.math.columbia.edu/tag/03PX
http://stacks.math.columbia.edu/tag/03PY
http://stacks.math.columbia.edu/tag/04I2


44.36. INVERSE IMAGE 2827

Definition 44.36.1. Let f : X → Y be a morphism of schemes. The inverse
image, or pullback2 functors are the functors

f−1 = f−1
small : Sh(Yétale) −→ Sh(Xétale)

and
f−1 = f−1

small : Ab(Yétale) −→ Ab(Xétale)

which are left adjoint to f∗ = fsmall,∗. Thus f−1 thus characterized by the fact
that

HomSh(Xétale)(f
−1G,F) = HomSh(Yétale)(G, f∗F)

functorially, for any F ∈ Sh(Xétale) and G ∈ Sh(Yétale). We similarly have

HomAb(Xétale)(f
−1G,F) = HomAb(Yétale)(G, f∗F)

for F ∈ Ab(Xétale) and G ∈ Ab(Yétale).

It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly
general setting, see Remark 44.36.3 below. The general machinery shows that f−1G
is the sheaf associated to the presheaf

(44.36.1.1) U/X 7−→ colimU→X×Y V G(V/Y )

where the colimit is over the category of pairs (V/Y, ϕ : U/X → X ×Y V/X). To
see this apply Sites, Proposition 7.15.6 to the functor u of Equation (44.34.0.1)
and use the description of us = (up )# in Sites, Sections 7.14 and 7.5. We will
occasionally use this formula for the pullback in order to prove some of its basic
properties.

Lemma 44.36.2. Let f : X → Y be a morphism of schemes.

(1) The functor f−1 : Ab(Yétale)→ Ab(Xétale) is exact.
(2) The functor f−1 : Sh(Yétale)→ Sh(Xétale) is exact, i.e., it commutes with

finite limits and colimits, see Categories, Definition 4.23.1.
(3) Let x → X be a geometric point. Let G be a sheaf on Yétale. Then there

is a canonical identification

(f−1G)x = Gy.
where y = f ◦ x.

(4) For any V → Y étale we have f−1hV = hX×Y V .

Proof. The exactness of f−1 on sheaves of sets is a consequence of Sites, Proposi-
tion 7.15.6 applied to our functor u of Equation (44.34.0.1). In fact the exactness
of pullback is part of the definition of of a morphism of topoi (or sites if you like).
Thus we see (2) holds. It implies part (1) since given an abelian sheaf G on Yétale
the underlying sheaf of sets of f−1F is the same as f−1 of the underlying sheaf of
sets of F , see Sites, Section 7.43. See also Modules on Sites, Lemma 18.30.2. In
the literature (1) and (2) are sometimes deduced from (3) via Theorem 44.29.10.

Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma 7.33.1. We
will also prove (3) directly as follows. Note that by Lemma 44.29.9 taking stalks
commutes with sheafification. Now recall that f−1G is the sheaf associated to the
presheaf

U −→ colimU→X×Y V G(V ),

2We use the notation f−1 for pullbacks of sheaves of sets or sheaves of abelian groups, and
we reserve f∗ for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.
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see Equation (44.36.1.1). Thus we have

(f−1G)x = colim(U,u) f
−1G(U)

= colim(U,u) colima:U→X×Y V G(V )

= colim(V,v) G(V )

= Gy
in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to
the pair (V, a ◦ u).

Part (4) can be proved in a similar manner by identifying the colimits which de-
fine f−1hV . Or you can use Yoneda’s lemma (Categories, Lemma 4.3.5) and the
functorial equalities

MorSh(Xétale)(f
−1hV ,F) = MorSh(Yétale)(hV , f∗F) = f∗F(V ) = F(X ×Y V )

combined with the fact that representable presheaves are sheaves. See also Sites,
Lemma 7.14.5 for a completely general result. �

The pair of functors (f∗, f
−1) define a morphism of small étale topoi

fsmall : Sh(Xétale) −→ Sh(Yétale)

Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi.
We will try to point out when results are general and when they are specific to the
étale topos.

Remark 44.36.3. More generally, let C1, C2 be sites, and assume they have final
objects and fibre products. Let u : C2 → C1 be a functor satisfying:

(1) if {Vi → V } is a covering of C2, then {u(Vi)→ Vi} is a covering of C1 (we
say that u is continuous), and

(2) u commutes with finite limits (i.e., u is left exact, i.e., u preserves fibre
products and final objects).

Then one can define f∗ : Sh(C1)→ Sh(C2) by f∗F(V ) = F(u(V )). Moreover, there
exists an exact functor f−1 which is left adjoint to f∗, see Sites, Definition 7.15.1
and Proposition 7.15.6. Warning: It is not enough to require simply that u is
continuous and commutes with fibre products in order to get a morphism of topoi.

44.37. Functoriality of big topoi

Given a morphism of schemes f : X → Y there are a whole host of morphisms of
topoi associated to f , see Topologies, Section 33.9 for a list. Perhaps the most used
ones are the morphisms of topoi

fbig = fbig,τ : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )

where τ ∈ {Zariski, étale, smooth, syntomic, fppf}. These each correspond to a
continuous functor

(Sch/Y )τ −→ (Sch/X)τ , V/Y 7−→ X ×Y V/X

which preserves final objects, fibre products and covering, and hence defines a
morphism of sites

fbig : (Sch/X)τ −→ (Sch/Y )τ .
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See Topologies, Sections 33.3, 33.4, 33.5, 33.6, and 33.7. In particular, pushforward
along fbig is given by the rule

(fbig,∗F)(V/Y ) = F(X ×Y V/X)

It turns out that these morphisms of topoi have an inverse image functor f−1
big which

is very easy to describe. Namely, we have

(f−1
bigG)(U/X) = G(U/Y )

where the structure morphism of U/Y is the composition of the structure morphism
U → X with f , see Topologies, Lemmas 33.3.15, 33.4.15, 33.5.10, 33.6.10, and
33.7.12.

44.38. Functoriality and sheaves of modules

In this section we are going to reformulate some of the material explained in Descent,
Section 34.7 in the setting of étale topologies. Let f : X → Y be a morphism of
schemes. We have seen above, see Sections 44.34, 44.35, and 44.36 that this induces
a morphism fsmall of small étale sites. In Descent, Remark 34.7.4 we have seen that
f also induces a natural map

f ]small : OYétale −→ fsmall,∗OXétale
of sheaves of rings on Yétale such that (fsmall, f

]
small) is a morphism of ringed sites.

See Modules on Sites, Definition 18.6.1 for the definition of a morphism of ringed

sites. Let us just recall here that f ]small is defined by the compatible system of
maps

pr]V : O(V ) −→ O(X ×Y V )

for V varying over the objects of Yétale.

It is clear that this construction is compatible with compositions of morphisms of
schemes. More precisely, if f : X → Y and g : Y → Z are morphisms of schemes,
then we have

(gsmall, g
]
small) ◦ (fsmall, f

]
small) = ((g ◦ f)small, (g ◦ f)]small)

as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition 18.13.1
we see that given a morphism f : X → Y of schemes we get well defined pullback
and direct image functors

f∗small : Mod(OYétale) −→ Mod(OXétale),
fsmall,∗ : Mod(OXétale) −→ Mod(OYétale)

which are adjoint in the usual way. If g : Y → Z is another morphism of schemes,
then we have (g ◦ f)∗small = f∗small ◦ g∗small and (g ◦ f)small,∗ = gsmall,∗ ◦ fsmall,∗
because of what we said about compositions.

There is quite a bit of difference between the category of all OX modules on X and
the category between all OXétale -modules on Xétale. But the results of Descent,
Section 34.7 tell us that there is not much difference between considering quasi-
coherent modules on S and quasi-coherent modules on Sétale. (We have already
seen this in Theorem 44.17.4 for example.) In particular, if f : X → Y is any
morphism of schemes, then the pullback functors f∗small and f∗ match for quasi-
coherent sheaves, see Descent, Proposition 34.7.14. Moreover, the same is true for
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pushforward provided f is quasi-compact and quasi-separated, see Descent, Lemma
34.7.15.

A few words about functoriality of the structure sheaf on big sites. Let f : X → Y
be a morphism of schemes. Choose any of the topologies τ ∈ {Zariski, étale,
smooth, syntomic, fppf}. Then the morphism fbig : (Sch/X)τ → (Sch/Y )τ be-
comes a morphism of ringed sites by a map

f ]big : OY −→ fbig,∗OX

see Descent, Remark 34.7.4. In fact it is given by the same construction as in the
case of small sites explained above.

44.39. Comparing big and small topoi

Let X be a scheme. In Topologies, Lemma 33.4.13 we have introduced comparison
morphisms πX : (Sch/X)étale → Xétale and iX : Sh(Xétale) → Sh((Sch/X)étale)
with πX ◦ iX = id and πX,∗ = i−1

X . In Descent, Remark 34.7.4 we have extended
these to a morphism of ringed sites

πX : ((Sch/X)étale,O)→ (Xétale,OX)

and a morphism of ringed topoi

iX : (Sh(Xétale),OX)→ (Sh((Sch/X)étale),O)

Note that the restriction i−1
X = πX,∗ (see Topologies, Definition 33.4.14) transforms

O into OX . Hence i∗XF = i−1
X F for any O-module F on (Sch/X)étale. In particular

i∗X is exact. This functor is often denoted F 7→ F|Xétale .

Lemma 44.39.1. Let X be a scheme.

(1) I|Xétale is injective in Ab(Xétale) for I injective in Ab((Sch/X)étale), and
(2) I|Xétale is injective in Mod(Xétale,OX) for I injective in Mod((Sch/X)étale,O).

Proof. This follows formally from the fact that the restriction functor πX,∗ = i−1
X

is an exact left adjoint of iX,∗, see Homology, Lemma 12.25.1. �

Let f : X → Y be a morphism of schemes. The commutative diagram of Topologies,
Lemma 33.4.16 (3) leads to a commutative diagram of ringed sites

(Tétale,OT )

fsmall

��

((Sch/T )étale,O)

fbig

��

πT
oo

(Sétale,OS) ((Sch/S)étale,O)
πSoo

as one easily sees by writing out the definitions of f ]small, f
]
big, π

]
S , and π]T . In

particular this means that

(44.39.1.1) (fbig,∗F)|Yétale = fsmall,∗(F|Xétale)

for any sheaf F on (Sch/X)étale and if F is a sheaf of O-modules, then (44.39.1.1)
is an isomorphism of OY -modules on Yétale.

Lemma 44.39.2. Let f : X → Y be a morphism of schemes.

http://stacks.math.columbia.edu/tag/0758
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(1) For any F ∈ Ab((Sch/X)étale) we have

(Rfbig,∗F)|Yétale = Rfsmall,∗(F|Xétale).

in D(Yétale).
(2) For any object F of Mod((Sch/X)étale,O) we have

(Rfbig,∗F)|Yétale = Rfsmall,∗(F|Xétale).

in D(Mod(Yétale,OY )).

Proof. Follows immediately from Lemma 44.39.1 and (44.39.1.1) on choosing an
injective resolution of F . �

44.40. Comparing topologies

In this section we start studying what happens when you compare sheaves with
respect to different topologies.

Lemma 44.40.1. Let S be a scheme. Let F be a sheaf of sets on Sétale. Let
s, t ∈ F(S). Then there exists an open W ⊂ S characterized by the following
property: A morphism f : T → S factors through W if and only if s|T = t|T
(restriction is pullback by fsmall).

Proof. Consider the presheaf which assigns to U ∈ Ob(Sétale) the emptyset if
s|U 6= t|U and a singleton else. It is clear that this is a subsheaf of the final object
of Sh(Sétale). By Lemma 44.31.1 we find an open W ⊂ S representing this presheaf.
For a geometric point x of S we see that x ∈W if and only if the stalks of s and t
at x agree. By the description of stalks of pullbacks in Lemma 44.36.2 we see that
W has the desired property. �

Lemma 44.40.2. Let S be a scheme. Let τ ∈ {Zariski, étale}. Consider the
morphism

π : (Sch/S)τ −→ Sτ

of Topologies, Lemma 33.3.13 or 33.4.13. Let F be a sheaf on Sτ . Then π−1F is
given by the rule

π−1F(T ) = Γ(Tτ , f
−1
smallF)

where f : T → S. Moreover, π−1F satisfies the sheaf condition with respect to fpqc
coverings.

Proof. Observe that we have a morphism if : Sh(Tτ ) → Sh(Sch/S)τ ) such that
π ◦ if = fsmall as morphisms Tτ → Sτ , see Topologies, Lemmas 33.3.12, 33.3.16,

33.4.12, and 33.4.16. Since pullback is transitive we see that i−1
f π−1F = f−1

smallF
as desired.

Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following:
Given a sheaf G on Tτ and given sections si ∈ Γ(Ti, g

−1
i,smallG) whose pullbacks to

Ti ×T Tj agree, there is a unique section s of G over T whose pullback to Ti agrees
with si.

Let V → T be an object of Tτ and let t ∈ G(V ). For every i there is a largest open
Wi ⊂ Ti ×T V such that the pullbacks of si and t agree as sections of the pullback
of G to Wi ⊂ Ti×T V , see Lemma 44.40.1. Because si and sj agree over Ti×T Tj we
find that Wi and Wj pullback to the same open over Ti ×T Tj ×T V . By Descent,

http://stacks.math.columbia.edu/tag/09XM
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2832 44. ÉTALE COHOMOLOGY

Lemma 34.9.2 we find an open W ⊂ V whose inverse image to Ti ×T V recovers
Wi.

By construction of g−1
i,smallG there exists a τ -covering {Tij → Ti}j∈Ji , for each

j an open immersion or étale morphism Vij → T , a section tij ∈ G(Vij), and
commutative diagrams

Tij //

��

Vij

��
Ti // T

such that si|Tij is the pullback of tij . In other words, after replacing the covering
{Ti → T} by {Tij → T} we may assume there are factorizations Ti → Vi → T with
Vi ∈ Ob(Tτ ) and sections ti ∈ G(Vi) pulling back to si over Ti. By the result of
the previous paragraph we find opens Wi ⊂ Vi such that ti|Wi

“agrees with” every
sj over Tj ×T Wi. Note that Ti → Vi factors through Wi. Hence {Wi → T} is a
τ -covering and the lemma is proven. �

Lemma 44.40.3. Let S be a scheme. Let f : T → S be a morphism such that

(1) f is flat and quasi-compact, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(T, f−1
smallF).

Proof. There is a canonical map Γ(S,F) → Γ(T, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let α ∈ Γ(T, f−1
smallF). Since {T → S} is an fpqc

covering we can use Lemma 44.40.2 to see that suffices to prove that α pulls back
to the same section over T ×S T by the two projections. Let s→ S be a geometric
point. It suffices to show the agreement holds over (T ×S T )s as every geometric
point of T ×S T is contained in one of these geometric fibres. In other words, we are
trying to show that α|Xs pulls back to the same section over (T ×S T )s by the two
projections Ts ×s Ts. Howeover, since F|Ts is the pullback of F|s it is a constant
sheaf with value Fs. Since Ts is connected by assumption, any section of a constant
sheaf is constant and this proves what we want. �

Lemma 44.40.4. Let k ⊂ K be an extension of fields with k separably algebraically
closed. Let S be a scheme over k. Denote p : SK = S ×Spec(k) Spec(K) → S the

projection. Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(SK , p
−1
smallF).

Proof. Follows from Lemma 44.40.3. Namely, it is clear that p is flat and quasi-
compact as the base change of Spec(K) → Spec(k). On the other hand, if s :
Spec(L) → S is a geometric point, then the fibre of p over s is the spectrum of
K ⊗k L which is irreducible hence connected by Algebra, Lemma 10.45.4. �

44.41. Recovering morphisms

In this section we prove that the rule which associates to a scheme its locally ringed
small étale topos is fully faithful in a suitable sense, see Theorem 44.41.5.

Lemma 44.41.1. Let f : X → Y be a morphism of schemes. The morphism of

ringed sites (fsmall, f
]
small) associated to f is a morphism of locally ringed sites, see

Modules on Sites, Definition 18.39.8.
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Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale)
and (Yétale,OYétale) are locally ringed sites, see Lemma 44.33.5. Moreover, we know
that Xétale has enough points, see Theorem 44.29.10 and Remarks 44.29.11. Hence

it suffices to prove that (fsmall, f
]
small) satisfies condition (3) of Modules on Sites,

Lemma 18.39.7. To see this take a point p of Xétale. By Lemma 44.29.12 p corre-
sponds to a geometric point x of X. By Lemma 44.36.2 the point q = fsmall ◦ p
corresponds to the geometric point y = f ◦ x of Y . Hence the assertion we have to
prove is that the induced map of stalks

OY,y −→ OX,x
is a local ring map. Suppose that a ∈ OY,y is an element of the left hand side which
maps to an element of the maximal ideal of the right hand side. Suppose that a is
the equivalence class of a triple (V, v, a) with V → Y étale, v : x→ V over Y , and

a ∈ O(V ). It maps to the equivalence class of (X ×Y V, x× v,pr]V (a)) in the local
ring OX,x. But it is clear that being in the maximal ideal means that pulling back

pr]V (a) to an element of κ(x) gives zero. Hence also pulling back a to κ(x) is zero.
Which means that a lies in the maximal ideal of OY,y. �

Lemma 44.41.2. Let X, Y be schemes. Let f : X → Y be a morphism of schemes.

Let t be a 2-morphism from (fsmall, f
]
small) to itself, see Modules on Sites, Definition

18.8.1. Then t = id.

Proof. This means that t : f−1
small → f−1

small is a transformation of functors such
that the diagram

f−1
smallOY

f]small $$

f−1
smallOYt

oo

f]smallzz
OX

is commutative. Suppose V → Y is étale with V affine. By Morphisms, Lemma
28.40.2 we may choose an immersion i : V → An

Y over Y . In terms of sheaves this
means that i induces an injection hi : hV →

∏
j=1,...,nOY of sheaves. The base

change i′ of i to X is an immersion (Schemes, Lemma 25.18.2). Hence i′ : X×Y V →
An
X is an immersion, which in turn means that hi′ : hX×Y V →

∏
j=1,...,nOX is an

injection of sheaves. Via the identification f−1
smallhV = hX×Y V of Lemma 44.36.2

the map hi′ is equal to

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f] // ∏

j=1,...,nOX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into
the commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j=1,...,n f

−1
smallOY

∏
f] //

∏
t

��

∏
j=1,...,nOX

id

��
f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f] // ∏

j=1,...,nOX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion

http://stacks.math.columbia.edu/tag/04IJ
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above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yétale admits a surjection from a (huge) coproduct of sheaves of the
form hV with V affine (combine Lemma 44.21.2 with Sites, Lemma 7.13.5). Thus
we conclude that t : f−1

small → f−1
small is the identity transformation as desired. �

Lemma 44.41.3. Let X, Y be schemes. Any two morphisms a, b : X → Y of

schemes for which there exists a 2-isomorphism (asmall, a
]
small)

∼= (bsmall, b
]
small) in

the 2-category of ringed topoi are equal.

Proof. Let us argue this carefuly since it is a bit confusing. Let t : a−1
small → b−1

small

be the 2-isomorphism. Consider any open V ⊂ Y . Note that hV is a subsheaf
of the final sheaf ∗. Thus both a−1

smallhV = ha−1(V ) and b−1
smallhV = hb−1(V ) are

subsheaves of the final sheaf. Thus the isomorphism

t : a−1
smallhV = ha−1(V ) → b−1

smallhV = hb−1(V )

has to be the identity, and a−1(V ) = b−1(V ). It follows that a and b are equal on
underlying topological spaces. Next, take a section f ∈ OY (V ). This determines
and is determined by a map of sheaves of sets f : hV → OY . Pull this back and
apply t to get a commutative diagram

hb−1(V ) b−1
smallhV

b−1
small(f)

��

a−1
smallhV

a−1
small(f)

��

t
oo ha−1(V )

b−1
smallOY

b] $$

a−1
smallOYt

oo

a]zz
OX

where the triangle is commutative by definition of a 2-isomorphism in Modules on
Sites, Section 18.8. Above we have seen that the composition of the top horizontal
arrows comes from the identity a−1(V ) = b−1(V ). Thus the commutativity of the

diagram tells us that a]small(f) = b]small(f) in OX(a−1(V )) = OX(b−1(V )). Since
this holds for every open V and every f ∈ OY (V ) we conclude that a = b as
morphisms of schemes. �

Lemma 44.41.4. Let X, Y be affine schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of

schemes f : X → Y such that (g, g#) is 2-isomorphic to (fsmall, f
]
small), see Mod-

ules on Sites, Definition 18.8.1.

Proof. In this proof we write OX for the structure sheaf of the small étale site
Xétale, and similarly for OY . Say Y = Spec(B) and X = Spec(A). Since B =
Γ(Yétale,OY ), A = Γ(Xétale,OX) we see that g] induces a ring map ϕ : B → A.
Let f = Spec(ϕ) : X → Y be the corresponding morphism of affine schemes. We
will show this f does the job.

Let V → Y be an affine scheme étale over Y . Thus we may write V = Spec(C)
with C an étale B-algebra. We can write

C = B[x1, . . . , xn]/(P1, . . . , Pn)
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with Pi polynomials such that ∆ = det(∂Pi/∂xj) is invertible in C, see for example
Algebra, Lemma 10.138.2. If T is a scheme over Y , then a T -valued point of V
is given by n sections of Γ(T,OT ) which satisfy the polynomial equations P1 =
0, . . . , Pn = 0. In other words, the sheaf hV on Yétale is the equalizer of the two
maps ∏

i=1,...,nOY
a //

b
//
∏
j=1,...,nOY

where b(h1, . . . , hn) = 0 and a(h1, . . . , hn) = (P1(h1, . . . , hn), . . . , Pn(h1, . . . , hn)).
Since g−1 is exact we conclude that the top row of the following solid commutative
diagram is an equalizer diagram as well:

g−1hV //

��

∏
i=1,...,n g

−1OY
g−1a //

g−1b

//

∏
g]

��

∏
j=1,...,n g

−1OY
∏
g]

��
hX×Y V

// ∏
i=1,...,nOX

a′ //

b′
//
∏
j=1,...,nOX

Here b′ is the zero map and a′ is the map defined by the images P ′i = ϕ(Pi) ∈
A[x1, . . . , xn] via the same rule a′(h1, . . . , hn) = (P ′1(h1, . . . , hn), . . . , P ′n(h1, . . . , hn)).
that a was defined by. The commutativity of the diagram follows from the fact that
ϕ = g] on global sections. The lower row is an equalizer diagram also, by exactly
the same arguments as before since X ×Y V is the affine scheme Spec(A ⊗B C)
and A ⊗B C = A[x1, . . . , xn]/(P ′1, . . . , P

′
n). Thus we obtain a unique dotted arrow

g−1hV → hX×Y V fitting into the diagram

We claim that the map of sheaves g−1hV → hX×Y V is an isomorphism. Since the
small étale site of X has enough points (Theorem 44.29.10) it suffices to prove this
on stalks. Hence let x be a geometric point of X, and denote p the associate point
of the small étale topos of X. Set q = g ◦ p. This is a point of the small étale topos
of Y . By Lemma 44.29.12 we see that q corresponds to a geometric point y of Y .
Consider the map of stalks

(g])p : OY,y = OY,q = (g−1OY )p −→ OX,p = OX,x

Since (g, g]) is a morphism of locally ringed topoi (g])p is a local ring homomor-
phism of strictly henselian local rings. Applying localization to the big commuta-
tive diagram above and Algebra, Lemma 10.145.31 we conclude that (g−1hV )p →
(hX×Y V )p is an isomorphism as desired.

We claim that the isomorphisms g−1hV → hX×Y V are functorial. Namely, suppose
that V1 → V2 is a morphism of affine schemes étale over Y . Write Vi = Spec(Ci)
with

Ci = B[xi,1, . . . , xi,ni ]/(Pi,1, . . . , Pi,ni)

The morphism V1 → V2 is given by a B-algebra map C2 → C1 which in turn is
given by some polynomials Qj ∈ B[x1,1, . . . , x1,n1

] for j = 1, . . . , n2. Then it is an
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easy matter to show that the diagram of sheaves

hV1

��

// ∏
i=1,...,n1

OY

Q1,...,Qn2

��
hV2

// ∏
i=1,...,n2

OY

is commutative, and pulling back toXétale we obtain the solid commutative diagram

g−1hV1

��

++

// ∏
i=1,...,n1

g−1OY

g]

��

Q1,...,Qn2

++
g−1hV2

��

// ∏
i=1,...,n2

g−1OY

g]

��

hX×Y V1
//

++

∏
i=1,...,n1

OX
Q′1,...,Q

′
n2

++
hX×Y V2

// ∏
i=1,...,n2

OX

where Q′j ∈ A[x1,1, . . . , x1,n1
] is the image of Qj via ϕ. Since the dotted arrows

exist, make the two squares commute, and the horizontal arrows are injective we
see that the whole diagram commutes. This proves functoriality (and also that the
construction of g−1hV → hX×Y V is independent of the choice of the presentation,
although we strictly speaking do not need to show this).

At this point we are able to show that fsmall,∗ ∼= g∗. Namely, let F be a sheaf on
Xétale. For every V ∈ Ob(Xétale) affine we have

(g∗F)(V ) = MorSh(Yétale)(hV , g∗F)

= MorSh(Xétale)(g
−1hV ,F)

= MorSh(Xétale)(hX×Y V ,F)

= F(X ×Y V )

= fsmall,∗F(V )

where in the third equality we use the isomorphism g−1hV ∼= hX×Y V constructed
above. These isomorphisms are clearly functorial in F and functorial in V as
the isomorphisms g−1hV ∼= hX×Y V are functorial. Now any sheaf on Yétale is
determined by the restriction to the subcategory of affine schemes (Lemma 44.21.2),
and hence we obtain an isomorphism of functors fsmall,∗ ∼= g∗ as desired.

Finally, we have to check that, via the isomorphism fsmall,∗ ∼= g∗ above, the maps

f ]small and g] agree. By construction this is already the case for the global sections
of OY , i.e., for the elements of B. We only need to check the result on sections
over an affine V étale over Y (by Lemma 44.21.2 again). Writing V = Spec(C),
C = B[xi]/(Pj) as before it suffices to check that the coordinate functions xi are
mapped to the same sections of OX over X ×Y V . And this is exactly what it
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means that the diagram

g−1hV //

��

∏
i=1,...,n g

−1OY
∏
g]

��
hX×Y V

// ∏
i=1,...,nOX

commutes. Thus the lemma is proved. �

Here is a version for general schemes.

Theorem 44.41.5. Let X, Y be schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of

schemes f : X → Y such that (g, g#) is isomorphic to (fsmall, f
]
small). In other

words, the construction

Sch −→ Locally ringed topoi, X −→ (Xétale,OX)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. You can prove this theorem by carefuly adjusting the arguments of the
proof of Lemma 44.41.4 to the global setting. However, we want to indicate how
we can glue the result of that lemma to get a global morphism due to the rigidity
provided by the result of Lemma 44.41.2. Unfortunately, this is a bit messy.

Let us prove existence when Y is affine. In this case choose an affine open covering
X =

⋃
Ui. For each i the inclusion morphism ji : Ui → X induces a morphism

of locally ringed topoi (ji,small, j
]
i,small) : (Sh(Ui,étale),OUi)→ (Sh(Xétale),OX) by

Lemma 44.41.1. We can compose this with (g, g]) to obtain a morphism of locally
ringed topoi

(g, g]) ◦ (ji,small, j
]
i,small) : (Sh(Ui,étale),OUi)→ (Sh(Xétale),OX)

see Modules on Sites, Lemma 18.39.9. By Lemma 44.41.4 there exists a unique
morphism of schemes fi : Ui → Y and a 2-isomorphism

ti : (fi,small, f
]
i,small) −→ (g, g]) ◦ (ji,small, j

]
i,small).

Set Ui,i′ = Ui ∩ Ui′ , and denote ji,i′ : Ui,i′ → Ui the inclusion morphism. Since we
have ji ◦ ji,i′ = ji′ ◦ ji′,i we see that

(g, g]) ◦ (ji,small, j
]
i,small) ◦ (ji,i′,small, j

]
i,i′,small) =

(g, g]) ◦ (ji′,small, j
]
i′,small) ◦ (ji′,i,small, j

]
i′,i,small)

Hence by uniqueness (see Lemma 44.41.3) we conclude that fi ◦ ji,i′ = fi′ ◦ ji′,i, in
other words the morphisms of schemes fi = f ◦ ji are the restrictions of a global
morphism of schemes f : X → Y . Consider the diagram of 2-isomorphisms (where
we drop the components ] to ease the notation)

g ◦ ji,small ◦ ji,i′,small
ti?idj

i,i′,small// fsmall ◦ ji,small ◦ ji,i′,small

g ◦ ji′,small ◦ ji′,i,small
ti′?idji′,i,small// fsmall ◦ ji′,small ◦ ji′,i,small

http://stacks.math.columbia.edu/tag/04I7
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The notation ? indicates horizontal composition, see Categories, Definition 4.27.1
in general and Sites, Section 7.35 for our particular case. By the result of Lemma
44.41.2 this diagram commutes. Hence for any sheaf G on Yétale the isomorphisms
ti : f−1

smallG|Ui → g−1G|Ui agree over Ui,i′ and we obtain a global isomorphism

t : f−1
smallG → g−1G. It is clear that this isomorphism is functorial in G and is

compatible with the maps f ]small and g] (because it is compatible with these maps
locally). This proves the theorem in case Y is affine.

In the general case, let V ⊂ Y be an affine open. Then hV is a subsheaf of the final
sheaf ∗ on Yétale. As g is exact we see that g−1hV is a subsheaf of the final sheaf on
Xétale. Hence by Lemma 44.31.1 there exists an open subscheme W ⊂ X such that
g−1hV = hW . By Modules on Sites, Lemma 18.39.11 there exists a commutative
diagram of morphisms of locally ringed topoi

(Sh(Wétale),OW ) //

g′

��

(Sh(Xétale),OX)

g

��
(Sh(Vétale),OV ) // (Sh(Yétale),OY )

where the horizontal arrows are the localization morphisms (induced by the inclu-
sion morphisms V → Y and W → X) and where g′ is induced from g. By the
result of the preceding paragraph we obtain a morphism of schemes f ′ : W → V
and a 2-isomorphism t : (f ′small, (f

′
small)

]) → (g′, (g′)]). Exactly as before these
morphisms f ′ (for varying affine opens V ⊂ Y ) agree on overlaps by uniqueness,
so we get a morphism f : X → Y . Moreover, the 2-isomorphisms t are compat-
ible on overlaps by Lemma 44.41.2 again and we obtain a global 2-isomorphism
(fsmall, (fsmall)

])→ (g, (g)]). as desired. Some details omitted. �

44.42. Push and pull

Let f : X → Y be a morphism of schemes. Here is a list of conditions we will
consider in the following:

(A) For every étale morphism U → X and u ∈ U there exist an étale morphism
V → Y and a disjoint union decomposition X ×Y V = W qW ′ and a
morphism h : W → U over X with u in the image of h.

(B) For every V → Y étale, and every étale covering {Ui → X ×Y V } there
exists an étale covering {Vj → V } such that for each j we have X×Y Vj =∐
Wji where Wij → X ×Y V factors through Ui → X ×Y V for some i.

(C) For every U → X étale, there exists a V → Y étale and a surjective
morphism X ×Y V → U over X.

It turns out that each of these properties has meaning in terms of the behaviour of
the functor fsmall,∗. We will work this out in the next few sections.

44.43. Property (A)

Please see Section 44.42 for the definition of propery (A).

Lemma 44.43.1. Let f : X → Y be a morphism of schemes. Assume (A).

(1) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) reflects injections and surjections,

(2) f−1
smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,

(3) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is faithful.
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Proof. Let F be an abelian sheaf on Xétale. Let U be an object of Xétale. By
assumption we can find a covering {Wi → U} in Xétale such that each Wi is an
open and closed subscheme of X ×Y Vi for some object Vi of Yétale. The sheaf
condition shows that

F(U) ⊂
∏
F(Wi)

and that F(Wi) is a direct summand of F(X ×Y Vi) = fsmall,∗F(Vi). Hence it is
clear that fsmall,∗ reflects injections.

Next, suppose that a : G → F is a map of abelian sheaves such that fsmall,∗a is
surjective. Let s ∈ F(U) with U as above. With Wi, Vi as above we see that
it suffices to show that s|Wi

is étale locally the image of a section of G under
a. Since F(Wi) is a direct summand of F(X ×Y Vi) it suffices to show that for
any V ∈ Ob(Yétale) any element s ∈ F(X ×Y V ) is étale locally on X ×Y V the
image of a section of G under a. Since F(X ×Y V ) = fsmall,∗F(V ) we see by
assumption that there exists a covering {Vj → V } such that s is the image of
sj ∈ fsmall,∗G(Vj) = G(X ×Y Vj). This proves fsmall,∗ reflects surjections.

Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma 18.15.1.
�

Lemma 44.43.2. Let f : X → Y be a separated locally quasi-finite morphism of
schemes. Then property (A) above holds.

Proof. Let U → X be an étale morphism and u ∈ U . The geometric statement (A)
reduces directly to the case where U and Y are affine schemes. Denote x ∈ X and
y ∈ Y the images of u. Since X → Y is locally quasi-finite, and U → X is locally
quasi-finite (see Morphisms, Lemma 28.37.6) we see that U → Y is locally quasi-
finite (see Morphisms, Lemma 28.21.12). Moreover both X → Y and U → Y are
separated. Thus More on Morphisms, Lemma 36.30.5 applies to both morphisms.
This means we may pick an étale neighbourhood (V, v)→ (Y, y) such that

X ×Y V = W qR, U ×Y V = W ′ qR′

and points w ∈W , w′ ∈W ′ such that

(1) W , R are open and closed in X ×Y V ,
(2) W ′, R′ are open and closed in U ×Y V ,
(3) W → V and W ′ → V are finite,
(4) w, w′ map to v,
(5) κ(v) ⊂ κ(w) and κ(v) ⊂ κ(w′) are purely inseparable, and
(6) no other point of W or W ′ maps to v.

Here is a commutative diagram

U

��

U ×Y Voo

��

W ′ qR′

��

oo

X

��

X ×Y Voo

��

W qRoo

Y Voo

After shrinking V we may assume that W ′ maps into W : just remove the image the
inverse image of R in W ′; this is a closed set (as W ′ → V is finite) not containing
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v. Then W ′ → W is finite because both W → V and W ′ → V are finite. Hence
W ′ → W is finite étale, and there is exactly one point in the fibre over w with
κ(w) = κ(w′). Hence W ′ → W is an isomorphism in an open neighbourhood W ◦

of w, see Étale Morphisms, Lemma 40.14.2. Since W → V is finite the image of
W \W ◦ is a closed subset T of V not containing v. Thus after replacing V by
V \ T we may assume that W ′ → W is an isomorphism. Now the decomposition
X ×Y V = W qR and the morphism W → U are as desired and we win. �

Lemma 44.43.3. Let f : X → Y be an integral morphism of schemes. Then
property (A) holds.

Proof. Let U → X be étale, and let u ∈ U be a point. We have to find V → Y
étale, a disjoint union decomposition X×Y V = W qW ′ and an X-morphism W →
U with u in the image. We may shrink U and Y and assume U and Y are affine. In
this case also X is affine, since an integral morphism is affine by definition. Write
Y = Spec(A), X = Spec(B) and U = Spec(C). Then A → B is an integral ring
map, and B → C is an étale ring map. By Algebra, Lemma 10.138.3 we can find a
finite A-subalgebra B′ ⊂ B and an étale ring map B′ → C ′ such that C = B⊗B′C ′.
Thus the question reduces to the étale morphism U ′ = Spec(C ′)→ X ′ = Spec(B′)
over the finite morphism X ′ → Y . In this case the result follows from Lemma
44.43.2. �

Lemma 44.43.4. Let f : X → Y be a morphism of schemes. Denote fsmall :
Sh(Xétale) → Sh(Yétale) the associated morphism of small étale topoi. Assume at
least one of the following

(1) f is integral, or
(2) f is separated and locally quasi-finite.

Then the functor fsmall,∗ : Ab(Xétale)→ Ab(Yétale) has the following properties

(1) the map f−1
smallfsmall,∗F → F is always surjective,

(2) fsmall,∗ is faithful, and
(3) fsmall,∗ reflects injections and surjections.

Proof. Combine Lemmas 44.43.2, 44.43.3, and 44.43.1. �

44.44. Property (B)

Please see Section 44.42 for the definition of propery (B).

Lemma 44.44.1. Let f : X → Y be a morphism of schemes. Assume (B) holds.
Then the functor fsmall,∗ : Sh(Xétale) → Sh(Yétale) transforms surjections into
surjections.

Proof. This follows from Sites, Lemma 7.40.2. �

Lemma 44.44.2. Let f : X → Y be a morphism of schemes. Suppose

(1) V → Y is an étale morphism of schemes,
(2) {Ui → X ×Y V } is an étale covering, and
(3) v ∈ V is a point.

Assume that for any such data there exists an étale neighbourhood (V ′, v′)→ (V, v),
a disjoint union decomposition X ×Y V ′ =

∐
W ′i , and morphisms W ′i → Ui over

X ×Y V . Then property (B) holds.
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Proof. Omitted. �

Lemma 44.44.3. Let f : X → Y be a finite morphism of schemes. Then property
(B) holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V . We
have to find a V ′ → V and decomposition and maps as in Lemma 44.44.2. We may
shrink V and Y , hence we may assume that V and Y are affine. Since X is finite
over Y , this also implies that X is affine. During the proof we may (finitely often)
replace (V, v) by an étale neighbourhood (V ′, v′) and correspondingly the covering
{Ui → X ×Y V } by {V ′ ×V Ui → X ×Y V ′}.

Since X ×Y V → V is finite there exist finitely many (pairwise distinct) points
x1, . . . , xn ∈ X ×Y V mapping to v. We may apply More on Morphisms, Lemma
36.30.5 to X ×Y V → V and the points x1, . . . , xn lying over v and find an étale
neighbourhood (V ′, v′)→ (V, v) such that

X ×Y V ′ = R q
∐

Ta

with Ta → V ′ finite with exactly one point pa lying over v′ and moreover κ(v′) ⊂
κ(pa) purely inseparable, and such that R → V ′ has empty fibre over v′. Because
X → Y is finite, also R → V ′ is finite. Hence after shrinking V ′ we may assume
that R = ∅. Thus we may assume that X ×Y V = X1 q . . .qXn with exactly one
point xl ∈ Xl lying over v with moreover κ(v) ⊂ κ(xl) purely inseparable. Note
that this property is preserved under refinement of the étale neighbourhood (V, v).

For each l choose an il and a point ul ∈ Uil mapping to xl. Now we apply property
(A) for the finite morphism X ×Y V → V and the étale morphisms Uil → X ×Y V
and the points ul. This is permissible by Lemma 44.43.3 This gives produces an
étale neighbourhood (V ′, v′)→ (V, v) and decompositions

X ×Y V ′ = Wl qRl

and X-morphisms al : Wl → Uil whose image contains uil . Here is a picture:

Uil

��
Wl

22

// Wl qRl X ×Y V ′ //

��

X ×Y V //

��

X

��
V ′ // V // Y

After replacing (V, v) by (V ′, v′) we conclude that each xl is contained in an open
and closed neighbourhood Wl such that the inclusion morphism Wl → X ×Y V
factors through Ui → X ×Y V for some i. Replacing Wl by Wl ∩ Xl we see
that these open and closed sets are disjoint and moreover that {x1, . . . , xn} ⊂
W1 ∪ . . . ∪Wn. Since X ×Y V → V is finite we may shrink V and assume that
X ×Y V = W1 q . . .qWn as desired. �

Lemma 44.44.4. Let f : X → Y be an integral morphism of schemes. Then
property (B) holds.
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Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V .
We have to find a V ′ → V and decomposition and maps as in Lemma 44.44.2. We
may shrink V and Y , hence we may assume that V and Y are affine. Since X is
integral over Y , this also implies that X and X ×Y V are affine. We may refine the
covering {Ui → X ×Y V }, and hence we may assume that {Ui → X ×Y V }i=1,...,n

is a standard étale covering. Write Y = Spec(A), X = Spec(B), V = Spec(C), and
Ui = Spec(Bi). Then A→ B is an integral ring map, and B ⊗A C → Bi are étale
ring maps. By Algebra, Lemma 10.138.3 we can find a finite A-subalgebra B′ ⊂ B
and an étale ring map B′ ⊗A C → B′i for i = 1, . . . , n such that Bi = B ⊗B′ B′i.
Thus the question reduces to the étale covering {Spec(B′i) → X ′ ×Y V }i=1,...,n

with X ′ = Spec(B′) finite over Y . In this case the result follows from Lemma
44.44.3. �

Lemma 44.44.5. Let f : X → Y be a morphism of schemes. Assume f is integral
(for example finite). Then

(1) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on
abelian sheaves),

(2) f−1
smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,

(3) fsmall,∗ : Ab(Xétale) → Ab(Yétale) is faithful and reflects injections and
surjections, and

(4) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact.

Proof. Parts (2), (3) we have seen in Lemma 44.43.4. Part (1) follows from Lem-
mas 44.44.4 and 44.44.1. Part (4) is a consequence of part (1), see Modules on
Sites, Lemma 18.15.2. �

44.45. Property (C)

Please see Section 44.42 for the definition of propery (C).

Lemma 44.45.1. Let f : X → Y be a morphism of schemes. Assume (C) holds.
Then the functor fsmall,∗ : Sh(Xétale) → Sh(Yétale) reflects injections and surjec-
tions.

Proof. Follows from Sites, Lemma 7.40.4. We omit the verification that property
(C) implies that the functor Yétale → Xétale, V 7→ X×Y V satisfies the assumption
of Sites, Lemma 7.40.4. �

Remark 44.45.2. Property (C) holds if f : X → Y is an open immersion. Namely,
if U ∈ Ob(Xétale), then we can view U also as an object of Yétale and U ×Y X = U .
Hence property (C) does not imply that fsmall,∗ is exact as this is not the case for
open immersions (in general).

Lemma 44.45.3. Let f : X → Y be a morphism of schemes. Assume that for any
V → Y étale we have that

(1) X ×Y V → V has property (C), and
(2) X ×Y V → V is closed.

Then the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous, see Sites,
Definition 7.41.3.

Proof. Let V → Y be an object of Yétale and let {Ui → X ×Y V }i∈I be a covering
of Xétale. By assumption (1) for each i we can find an étale morphism hi : Vi → V
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and a surjective morphism X×Y Vi → Ui over X×Y V . Note that
⋃
hi(Vi) ⊂ V is an

open set containing the closed set Z = Im(X×Y V → V ). Let h0 : V0 = V \Z → V
be the open immersion. It is clear that {Vi → V }i∈I∪{0} is an étale covering
such that for each i ∈ I ∪ {0} we have either Vi ×Y X = ∅ (namely if i = 0), or
Vi ×Y X → V ×Y X factors through Ui → X ×Y V (if i 6= 0). Hence the functor
Yétale → Xétale is almost cocontinuous. �

Lemma 44.45.4. Let f : X → Y be an integral morphism of schemes which defines
a homeomorphism of X with a closed subset of Y . Then property (C) holds.

Proof. Let g : U → X be an étale morphism. We need to find an object V → Y
of Yétale and a surjective morphism X ×Y V → U over X. Suppose that for every
u ∈ U we can find an object Vu → Y of Yétale and a morphism hu : X ×Y Vu → U
over X with u ∈ Im(hu). Then we can take V =

∐
Vu and h =

∐
hu and we win.

Hence given a point u ∈ U we find a pair (Vu, hu) as above. To do this we may
shrink U and assume that U is affine. In this case g : U → X is locally quasi-finite.
Let g−1(g({u})) = {u, u2, . . . , un}. Since there are no specializations ui  u we
may replace U by an affine neighbourhood so that g−1(g({u})) = {u}.
The image g(U) ⊂ X is open, hence f(g(U)) is locally closed in Y . Choose an open
V ⊂ Y such that f(g(U)) = f(X) ∩ V . It follows that g factors through X ×Y V
and that the resulting {U → X ×Y V } is an étale covering. Since f has property
(B) , see Lemma 44.44.4, we see that there exists an étale covering {Vj → V } such
that X ×Y Vj → X ×Y V factor through U . This implies that V ′ =

∐
Vj is étale

over Y and that there is a morphism h : X ×Y V ′ → U whose image surjects onto
g(U). Since u is the only point in its fibre it must be in the image of h and we
win. �

We urge the reader to think of the following lemma as a way station3 on the jour-
ney towards the ultimate truth regarding fsmall,∗ for integral universally injective
morphisms.

Lemma 44.45.5. Let f : X → Y be a morphism of schemes. Assume that f is
universally injective and integral (for example a closed immersion). Then

(1) fsmall,∗ : Sh(Xétale)→ Sh(Yétale) reflects injections and surjections,
(2) fsmall,∗ : Sh(Xétale) → Sh(Yétale) commutes with pushouts and coequaliz-

ers (and more generally finite connected colimits),
(3) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on

abelian sheaves),
(4) the map f−1

smallfsmall,∗F → F is surjective for any sheaf (of sets or of
abelian groups) F on Xétale,

(5) the functor fsmall,∗ is faithful (on sheaves of sets and on abelian sheaves),
(6) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact, and
(7) the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous.

Proof. By Lemmas 44.43.3, 44.44.4 and 44.45.4 we know that the morphism f
has properties (A), (B), and (C). Moreover, by Lemma 44.45.3 we know that the
functor Yétale → Xétale is almost cocontinuous. Now we have

(1) property (C) implies (1) by Lemma 44.45.1,
(2) almost continuous implies (2) by Sites, Lemma 7.41.6,

3A way station is a place where people stop to eat and rest when they are on a long journey.
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(3) property (B) implies (3) by Lemma 44.44.1.

Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma
7.40.1 and Modules on Sites, Lemma 18.15.2. Property (7) we saw above. �

44.46. Topological invariance of the small étale site

In the following theorem we show that the small étale site is a topological invariant
in the following sense: If f : X → Y is a morphism of schemes which is a universal
homeomorphism, then Xétale

∼= Yétale as sites. This improves the result of Étale
Morphisms, Theorem 40.15.2.

Theorem 44.46.1. Let f : X → Y be a morphism of schemes. Assume f is
integral, universally injective and surjective (i.e., f is a universal homeomorphism,
see Morphisms, Lemma 28.45.3). The functor

V 7−→ VX = X ×Y V

defines an equivalence of categories

{schemes V étale over Y } ↔ {schemes U étale over X}

Proof. We claim that it suffices to prove that the functor defines an equivalence

(44.46.1.1) {affine schemes V étale over Y } ↔ {affine schemes U étale over X}

when X and Y are affine. We omit the proof of this claim.

Assume X and Y affine. Let us prove (44.46.1.1) is fully faithful. Suppose that
V, V ′ are affine schemes étale over Y , and that ϕ : VX → V ′X is a morphism over
X. To prove that ϕ = ψX for some ψ : V → V ′ over Y we may work locally on V .
The graph

Γϕ ⊂ (V ×Y V ′)X

of ϕ is an open and closed subscheme, see Étale Morphisms, Proposition 40.6.1.
Since f is a universal homeomorphism we see that there exists an open and closed
subscheme Γ ⊂ V ×Y V ′ with ΓX = Γϕ. We see that Γ is an affine scheme endowed
with an étale, universally injective, and surjective morphism Γ → V . This implies
that Γ→ V is an isomorphism (see Étale Morphisms, Theorem 40.14.1), and hence
Γ is the graph of a morphism ψ : V → V ′ over Y as desired.

Let us prove (44.46.1.1) is essentially surjective. Let U → X be an affine scheme
étale over X. We have to find V → Y étale (and affine) such that X ×Y V is
isomorphic to U over X. Note that an étale morphism of affines has universally
bounded fibres, see Morphisms, Lemmas 28.37.6 and 28.50.8. Hence we can do
induction on the integer n bounding the degree of the fibres of U → X. See
Morphisms, Lemma 28.50.7 for a description of this integer in the case of an étale
morphism. If n = 1, then U → X is an open immersion (see Étale Morphisms,
Theorem 40.14.1), and the result is clear. Assume n > 1.

By Lemma 44.45.4 there exists an étale morphism of schemes W → Y and a
surjective morphism WX → U over X. As U is quasi-compact we may replace W
by a disjoint union of finitely many affine opens of W , hence we may assume that
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W is affine as well. Here is a diagram

U

��

U ×Y Woo

��

WX qR

X

��

WX
oo

��
Y Woo

The disjoint union decomposition arises because by construction the étale morphism
of affine schemes U ×Y W → WX has a section. OK, and now we see that the
morphism R→ X ×Y W is an étale morphism of affine schemes whose fibres have
degree universally bounded by n − 1. Hence by induction assumption there exists
a scheme V ′ →W étale such that R ∼= WX ×W V ′. Taking V ′′ = W qV ′ we find a
scheme V ′′ étale over W whose base change to WX is isomorphic to U ×Y W over
X ×Y W .

At this point we can use descent to find V over Y whose base change to X is
isomorphic to U over X. Namely, by the fully faithfulness of the functor (44.46.1.1)
corresponding to the universal homeomorphism X ×Y (W ×Y W ) → (W ×Y W )
there exists a unique isomorphism ϕ : V ′′ ×Y W → W ×Y V ′′ whose base change
to X ×Y (W ×Y W ) is the canonical descent datum for U ×Y W over X ×Y W .
In particular ϕ satisfies the cocycle condition. Hence by Descent, Lemma 34.33.1
we see that ϕ is effective (recall that all schemes above are affine). Thus we obtain
V → Y and an isomorphism V ′′ ∼= W ×Y V such that the canonical descent datum
on W ×Y V/W/Y agrees with ϕ. Note that V → Y is étale, by Descent, Lemma
34.19.27. Moreover, there is an isomorphism VX ∼= U which comes from descending
the isomorphism

VX ×XWX = X×Y V ×Y W = (X×Y W )×W (W ×Y V ) ∼= WX ×W V ′′ ∼= U ×Y W

which we have by construction. Some details omitted. �

Remark 44.46.2. In the situation of Theorem 44.46.1 it is also true that V 7→ VX
induces an equivalence between those étale morphisms V → Y with V affine and
those étale morphisms U → X with U affine. This follows for example from Limits,
Proposition 31.10.2.

Proposition 44.46.3 (Topological invariance of étale cohomology). Let X0 →
X be a universal homeomorphism of schemes (for example the closed immersion
defined by a nilpotent sheaf of ideals). Then

(1) the étale sites Xétale and (X0)étale are isomorphic,
(2) the étale topoi Sh(Xétale) and Sh((X0)étale) are equivalent, and
(3) Hq

étale(X,F) = Hq
étale(X0,F|X0) for all q and for any abelian sheaf F on

Xétale.

Proof. The equivalence of categories Xétale → (X0)étale is given by Theorem
44.46.1. We omit the proof that under this equivalence the étale coverings cor-
respond. Hence (1) holds. Parts (2) and (3) follow formally from (1). �
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44.47. Closed immersions and pushforward

Before stating and proving Proposition 44.47.4 in its correct generality we briefly
state and prove it for closed immersions. Namely, some of the preceding arguments
are quite a bit easier to follow in the case of a closed immersion and so we repeat
them here in their simplified form.

In the rest of this section i : Z → X is a closed immersion. The functor

Sch/X −→ Sch/Z, U 7−→ UZ = Z ×X U

will be denoted U 7→ UZ as indicated. Since being a closed immersion is preserved
under arbitrary base change the scheme UZ is a closed subscheme of U .

Lemma 44.47.1. Let i : Z → X be a closed immersion of schemes. Let U,U ′ be
schemes étale over X. Let h : UZ → U ′Z be a morphism over Z. Then there exists
a diagram

U W
aoo b // U ′

such that aZ : WZ → UZ is an isomorphism and h = bZ ◦ (aZ)−1.

Proof. Consider the scheme M = U ×Y U ′. The graph Γh ⊂ MZ of h is open.
This is true for example as Γh is the image of a section of the étale morphism
pr1,Z : MZ → UZ , see Étale Morphisms, Proposition 40.6.1. Hence there exists an
open subscheme W ⊂ M whose intersection with the closed subset MZ is Γh. Set
a = pr1|W and b = pr2|W . �

Lemma 44.47.2. Let i : Z → X be a closed immersion of schemes. Let V →
Z be an étale morphism of schemes. There exist étale morphisms Ui → X and
morphisms Ui,Z → V such that {Ui,Z → V } is a Zariski covering of V .

Proof. Since we only have to find a Zariski covering of V consisting of schemes of
the form UZ with U étale over X, we may Zariski localize on X and V . Hence we
may assumeX and V affine. In the affine case this is Algebra, Lemma 10.138.11. �

If x : Spec(k) → X is a geometric point of X, then either x factors (uniquely)
through the closed subscheme Z, or Zx = ∅. If x factors through Z we say that x is
a geometric point of Z (because it is) and we use the notation “x ∈ Z” to indicate
this.

Lemma 44.47.3. Let i : Z → X be a closed immersion of schemes. Let G be a
sheaf of sets on Zétale. Let x be a geometric point of X. Then

(ismall,∗G)x =

{
∗ if x 6∈ Z
Fx if x ∈ Z

where ∗ denotes a singleton set.

Proof. Note that ismall,∗G|Uétale = ∗ is the final object in the category of étale
sheaves on U , i.e., the sheaf which associates a singleton set to each scheme étale
over U . This explains the value of (ismall,∗G)x if x 6∈ Z.

Next, suppose that x ∈ Z. Note that

(ismall,∗G)x = colim(U,u) G(UZ)

and on the other hand
Gx = colim(V,v) G(V ).
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Let C1 = {(U, u)}opp be the opposite of the category of étale neighbourhoods of x in
X, and let C2 = {(V, v)}opp be the opposite of the category of étale neighbourhoods
of x in Z. The canonical map

Gx −→ (ismall,∗G)x

corresponds to the functor F : C1 → C2, F (U, u) = (UZ , x). Now Lemmas 44.47.2
and 44.47.1 imply that C1 is cofinal in C2, see Categories, Definition 4.17.1. Hence it
follows that the displayed arrow is an isomorphism, see Categories, Lemma 4.17.2.

�

Proposition 44.47.4. Let i : Z → X be a closed immersion of schemes.

(1) The functor

ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to X \ Z is isomorphic to ∗, and
(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Xétale

whose support is contained in Z.

In both cases i−1
small is a left inverse to the functor ismall,∗.

Proof. Let’s discuss the case of sheaves of sets. For any sheaf G on Z the morphism
i−1
smallismall,∗G → G is an isomorphism by Lemma 44.47.3 (and Theorem 44.29.10).

This implies formally that ismall,∗ is fully faithful, see Sites, Lemma 7.40.1. It is
clear that ismall,∗G|Uétale ∼= ∗ where U = X \ Z. Conversely, suppose that F is a
sheaf of sets on X such that F|Uétale ∼= ∗. Consider the adjunction mapping

F −→ ismall,∗i
−1
smallF

Combining Lemmas 44.47.3 and 44.36.2 we see that it is an isomorphism. This
finishes the proof of (1). The proof of (2) is identical. �

44.48. Integral universally injective morphisms

Here is the general version of Proposition 44.47.4.

Proposition 44.48.1. Let f : X → Y be a morphism of schemes which is integral
and universally injective.

(1) The functor

fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

is fully faithful and its essential image is those sheaves of sets F on Yétale
whose restriction to Y \ f(X) is isomorphic to ∗, and

(2) the functor

fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

is fully faithful and its essential image is those abelian sheaves on Yétale
whose support is contained in f(X).

In both cases f−1
small is a left inverse to the functor fsmall,∗.
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Proof. We may factor f as

X
h // Z

i // Y

where h is integral, universally injective and surjective and i : Z → Y is a closed
immersion. Apply Proposition 44.47.4 to i and apply Theorem 44.46.1 to h. �

44.49. Big sites and pushforward

In this section we prove some technical results on fbig,∗ for certain types of mor-
phisms of schemes.

Lemma 44.49.1. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X →
Y be a monomorphism of schemes. Then the canonical map f−1

big fbig,∗F → F is an

isomorphism for any sheaf F on (Sch/X)τ .

Proof. In this case the functor (Sch/X)τ → (Sch/Y )τ is continuous, cocontinuous
and fully faithful. Hence the result follows from Sites, Lemma 7.20.7. �

Remark 44.49.2. In the situation of Lemma 44.49.1 it is true that the canonical
map F → f−1

big fbig!F is an isomorphism for any sheaf of sets F on (Sch/X)τ . The
proof is the same. This also holds for sheaves of abelian groups. However, note
that the functor fbig! for sheaves of abelian groups is defined in Modules on Sites,
Section 18.16 and is in general different from fbig! on sheaves of sets. The result
for sheaves of abelian groups follows from Modules on Sites, Lemma 18.16.4.

Lemma 44.49.3. Let f : X → Y be a closed immersion of schemes. Let U → X be
a syntomic (resp. smooth, resp. étale) morphism. Then there exist syntomic (resp.
smooth, resp. étale) morphisms Vi → Y and morphisms Vi ×Y X → U such that
{Vi ×Y X → U} is a Zariski covering of U .

Proof. Let us prove the lemma when τ = syntomic. The question is local on
U . Thus we may assume that U is an affine scheme mapping into an affine of Y .
Hence we reduce to proving the following case: Y = Spec(A), X = Spec(A/I),
and U = Spec(B), where A/I → B be a syntomic ring map. By Algebra, Lemma
10.131.18 we can find elements gi ∈ B such that Bgi = Ai/IAi for certain syntomic
ring maps A→ Ai. This proves the lemma in the syntomic case. The proof of the
smooth case is the same except it uses Algebra, Lemma 10.132.19. In the étale case
use Algebra, Lemma 10.138.11. �

Lemma 44.49.4. Let f : X → Y be a closed immersion of schemes. Let {Ui → X}
be a syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp.
smooth, resp. étale) covering {Vj → Y } such that for each j, either Vj ×Y X = ∅,
or the morphism Vj ×Y X → X factors through Ui for some i.

Proof. For each i we can choose syntomic (resp. smooth, resp. étale) morphisms
gij : Vij → Y and morphisms Vij×Y X → Ui over X, such that {Vij×Y X → Ui} are
Zariski coverings, see Lemma 44.49.3. This in particular implies that

⋃
ij gij(Vij)

contains the closed subset f(X). Hence the family of syntomic (resp. smooth, resp.
étale) maps gij together with the open immersion Y \ f(X)→ Y forms the desired
syntomic (resp. smooth, resp. étale) covering of Y . �
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Lemma 44.49.5. Let f : X → Y be a closed immersion of schemes. Let τ ∈
{syntomic, smooth, étale}. The functor V 7→ X ×Y V defines an almost cocontin-
uous functor (see Sites, Definition 7.41.3) (Sch/Y )τ → (Sch/X)τ between big τ
sites.

Proof. We have to show the following: given a morphism V → Y and any syntomic
(resp. smooth, resp. étale) covering {Ui → X ×Y V }, there exists a smooth (resp.
smooth, resp. étale) covering {Vj → V } such that for each j, either X ×Y Vj is
empty, or X ×Y Vj → Z ×Y V factors through one of the Ui. This follows on
applying Lemma 44.49.4 above to the closed immersion X ×Y V → V . �

Lemma 44.49.6. Let f : X → Y be a closed immersion of schemes. Let τ ∈
{syntomic, smooth, étale}.

(1) The pushforward fbig,∗ : Sh((Sch/X)τ ) → Sh((Sch/Y )τ ) commutes with
coequalizers and pushouts.

(2) The pushforward fbig,∗ : Ab((Sch/X)τ )→ Ab((Sch/Y )τ ) is exact.

Proof. This follows from Sites, Lemma 7.41.6, Modules on Sites, Lemma 18.15.3,
and Lemma 44.49.5 above. �

Remark 44.49.7. In Lemma 44.49.6 the case τ = fppf is missing. The reason
is that given a ring A, an ideal I and a faithfully flat, finitely presented ring map
A/I → B, there is no reason to think that one can find any flat finitely presented
ring map A→ B with B/IB 6= 0 such that A/I → B/IB factors through B. Hence
the proof of Lemma 44.49.5 does not work for the fppf topology. In fact it is likely
false that fbig,∗ : Ab((Sch/X)fppf )→ Ab((Sch/Y )fppf ) is exact when f is a closed
immersion. If you know an example, please email stacks.project@gmail.com.

44.50. Exactness of big lower shriek

This is just the following technical result. Note that the functor fbig! has nothing
whatsoever to do with cohomology with compact support in general.

Lemma 44.50.1. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X →
Y be a morphism of schemes. Let

fbig : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )

be the corresponding morphism of topoi as in Topologies, Lemma 33.3.15, 33.4.15,
33.5.10, 33.6.10, or 33.7.12.

(1) The functor f−1
big : Ab((Sch/Y )τ )→ Ab((Sch/X)τ ) has a left adjoint

fbig! : Ab((Sch/X)τ )→ Ab((Sch/Y )τ )

which is exact.
(2) The functor f∗big : Mod((Sch/Y )τ ,O) → Mod((Sch/X)τ ,O) has a left

adjoint

fbig! : Mod((Sch/X)τ ,O)→ Mod((Sch/Y )τ ,O)

which is exact.

Moreover, the two functors fbig! agree on underlying sheaves of abelian groups.
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Proof. Recall that fbig is the morphism of topoi associated to the continuous and
cocontinuous functor u : (Sch/X)τ → (Sch/Y )τ , U/X 7→ U/Y . Moreover, we have
f−1
bigO = O. Hence the existence of fbig! follows from Modules on Sites, Lemma

18.16.2, respectively Modules on Sites, Lemma 18.40.1. Note that if U is an object
of (Sch/X)τ then the functor u induces an equivalence of categories

u′ : (Sch/X)τ/U −→ (Sch/Y )τ/U

because both sides of the arrow are equal to (Sch/U)τ . Hence the agreement of
fbig! on underlying abelian sheaves follows from the discussion in Modules on Sites,
Remark 18.40.2. The exactness of fbig! follows from Modules on Sites, Lemma
18.16.3 as the functor u above which commutes with fibre products and equalizers.

�

Next, we prove a technical lemma that will be useful later when comparing sheaves
of modules on different sites associated to algebraic stacks.

Lemma 44.50.2. Let X be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Let C1 ⊂ C2 ⊂ (Sch/X)τ be full subcategories with the following properties:

(1) For an object U/X of Ct,
(a) if {Ui → U} is a covering of (Sch/X)τ , then Ui/X is an object of Ct,
(b) U ×A1/X is an object of Ct.

(2) X/X is an object of Ct.
We endow Ct with the structure of a site whose coverings are exactly those coverings
{Ui → U} of (Sch/X)τ with U ∈ Ob(Ct). Then

(i) The functor C1 → C2 is fully faithful, continuous, and cocontinuous.

Denote g : Sh(C1) → Sh(C2) the corresponding morphism of topoi. Denote Ot the
restriction of O to Ct. Denote g! the functor of Modules on Sites, Definition 18.16.1.

(ii) The canonical map g!O1 → O2 is an isomorphism.

Proof. Assertion (i) is immediate from the definitions. In this proof all schemes
are schemes over X and all morphisms of schemes are morphisms of schemes over
X. Note that g−1 is given by restriction, so that for an object U of C1 we have
O1(U) = O2(U) = O(U). Recall that g!O1 is the sheaf associated to the presheaf
gp!O1 which associates to V in C2 the group

colimV→U O(U)

where U runs over the objects of C1 and the colimit is taken in the category of
abelian groups. Below we will use frequently that if

V → U → U ′

are morphisms with U,U ′ ∈ Ob(C1) and if f ′ ∈ O(U ′) restricts to f ∈ O(U),
then (V → U, f) and (V → U ′, f ′) define the same element of the colimit. Also,
g!O1 → O2 maps the element (V → U, f) simply to the pullback of f to V .

Surjectivity. Let V be a scheme and let h ∈ O(V ). Then we obtain a morphism
V → X ×A1 induced by h and the structure morphism V → X. Writing A1 =
Spec(Z[x]) we see the element x ∈ O(X ×A1) pulls back to h. Since X ×A1 is an
object of C1 by assumptions (1)(b) and (2) we obtain the desired surjectivity.

Injectivity. Let V be a scheme. Let s =
∑
i=1,...,n(V → Ui, fi) be an element of the

colimit displayed above. For any i we can use the morphism fi : Ui → X×A1 to see
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that (V → Ui, fi) defines the same element of the colimit as (fi : V → X ×A1, x).
Then we can consider

f1 × . . .× fn : V → X ×An

and we see that s is equivalent in the colimit to∑
i=1,...,n

(f1×. . .×fn : V → X×An, xi) = (f1×. . .×fn : V → X×An, x1+. . .+xn)

Now, if x1 + . . .+ xn restricts to zero on V , then we see that f1 × . . .× fn factors
through X ×An−1 = V (x1 + . . . + xn). Hence we see that s is equivalent to zero
in the colimit. �

44.51. Étale cohomology

In the following sections we prove some basic results on étale cohomology. Here is
an example of something we know for cohomology of topological spaces which also
holds for étale cohomology.

Lemma 44.51.1 (Mayer-Vietoris for étale cohomology). Let X be a scheme. Sup-
pose that X = U ∪ V is a union of two opens. For any abelian sheaf F on Xétale

there exists a long exact cohomology sequence

0→ H0
étale(X,F)→ H0

étale(U,F)⊕H0
étale(V,F)→ H0

étale(U ∩ V,F)
→ H1

étale(X,F)→ H1
étale(U,F)⊕H1

étale(V,F)→ H1
étale(U ∩ V,F)

This long exact sequence is functorial in F .

Proof. Observe that if I is an injective abelian sheaf, then

0→ I(X)→ I(U)⊕ I(V )→ I(U ∩ V )→ 0

is exact. This is true in the first and middle spots as I is a sheaf. It is true on
the right, because I(U)→ I(U ∩ V ) is surjective by Cohomology on Sites, Lemma
21.12.6. Another way to prove it would be to show that the cokernel of the map
I(U)⊕ I(V )→ I(U ∩ V ) is the first Čech cohomology group of I with respect to
the covering X = U ∪ V which vanishes by Lemmas 44.18.7 and 44.19.1. Thus, if
F → I• is an injective resolution, then

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0

is a short exact sequence of complexes and the associated long exact cohomology
sequence is the sequence of the statement of the lemma. �

44.52. Colimits

We recall that if (Fi, ϕii′) is a diagram of sheaves on a site C its colimit (in the
category of sheaves) is the sheafification of the presheaf U 7→ colimi Fi(U). See
Sites, Lemma 7.10.13. If the system is directed, U is a quasi-compact object of
C which has a cofinal system of coverings by quasi-compact objects, then F(U) =
colimFi(U), see Sites, Lemma 7.11.2. See Cohomology on Sites, Lemma 21.16.1
for a result dealing with higher cohomology groups of colimits of abelian sheaves.

We first state and prove a very general result on colimits and cohomology and then
we explain what it means in some special cases.

Theorem 44.52.1. Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-
compact and quasi-separated for all i ∈ I. Assume given
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(1) an abelian sheaf Fi on (Xi)étale for all i ∈ I,
(2) for i′ ≥ i a map ϕi′i : f−1

i′i Fi → Fi′ of abelian sheaves on (Xi′)étale

such that ϕi′′i = ϕi′′i′ ◦ f−1
i′′i′ϕi′i whenever i′′ ≥ i′ ≥ i. Denote fi : X → Xi the

projection and set F = colim f−1
i Fi. Then

colimi∈I H
p
étale(Xi,Fi) = Hp

étale(X,F).

for all p ≥ 0.

Proof. Let us use the affine étale sites of X and Xi as introduced in Lemma
44.21.2. We claim that

Xaffine,étale = colim(Xi)affine,étale

as sites (see Sites, Lemma 7.11.6). If we prove this, then the theorem follows
from Cohomology on Sites, Lemma 21.16.2. The category of schemes of finite
presentation over X is the colimit of the categories of schemes of finite presentation
over Xi, see Limits, Lemma 31.9.1. The same holds for the subcategories of affine
objects étale over X by Limits, Lemmas 31.3.10 and 31.7.8. Finally, if {U j → U}
is a covering of Xaffine,étale and if U ji → Ui is morphism of affine schemes étale
over Xi whose base change to X is U j → U , then we see that the base change
of {U ji → Ui} to some Xi′ is a covering for i′ large enough, see Limits, Lemma
31.7.11. �

The following two results are special cases of the theorem above.

Lemma 44.52.2. Let X be a quasi-compact and quasi-separated scheme. Let
(Fi, ϕij) be a system of abelian sheaves on Xétale over the partially ordered set
I. If I is directed then

colimi∈I H
p
étale(X,Fi) = Hp

étale(X, colimi∈I Fi).

Proof. This is a special case of Theorem 44.52.1. We also sketch a direct proof.
We prove it for all X at the same time, by induction on p.

(1) For any quasi-compact and quasi-separated scheme X and any étale cov-
ering U of X, show that there exists a refinement V = {Vj → X}j∈J
with J finite and each Vj quasi-compact and quasi-separated such that all
Vj0 ×X . . .×X Vjp are also quasi-compact and quasi-separated.

(2) Using the previous step and the definition of colimits in the category of
sheaves, show that the theorem holds for p = 0 and all X.

(3) Using the locality of cohomology (Lemma 44.22.3), the Čech-to-cohomology
spectral sequence (Theorem 44.19.2) and the fact that the induction hy-
pothesis applies to all Vj0 ×X . . .×X Vjp in the above situation, prove the
induction step p→ p+ 1.

�

Lemma 44.52.3. Let A be a ring, (I,≤) a directed poset and (Bi, ϕij) a system
of A-algebras. Set B = colimi∈I Bi. Let X → Spec(A) be a quasi-compact and
quasi-separated morphism of schemes. Let F an abelian sheaf on Xétale. Denote
Yi = X ×Spec(A) Spec(Bi), Y = X ×Spec(A) Spec(B), Gi = (Yi → X)−1F and

G = (Y → X)−1F . Then

Hp
étale(Y,G) = colimi∈I H

p
étale(Xi,Gi).
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Proof. This is a special case of Theorem 44.52.1. We also outline a direct proof as
follows.

(1) Given V → Y étale with V quasi-compact and quasi-separated, there exist
i ∈ I and Vi → Yi such that V = Vi ×Yi Y . If all the schemes considered
were affine, this would correspond to the following algebra statement: if
B = colimBi and B → C is étale, then there exist i ∈ I and Bi → Ci
étale such that C ∼= B⊗BiCi. This is proved in Algebra, Lemma 10.138.3.

(2) In the situation of (1) show that G(V ) = colimi′≥i Gi′(Vi′) where Vi′ is the
base change of Vi to Yi′ .

(3) By (1), we see that for every étale covering V = {Vj → Y }j∈J with J
finite and the Vjs quasi-compact and quasi-separated, there exists i ∈ I
and an étale covering Vi = {Vij → Yi}j∈J such that V ∼= Vi ×Yi Y .

(4) Show that (2) and (3) imply

Ȟ∗(V,G) = colimi∈I Ȟ
∗(Vi,Gi).

(5) Cleverly use the Čech-to-cohomology spectral sequence (Theorem 44.19.2).

�

Lemma 44.52.4. Let f : X → Y be a morphism of schemes and F ∈ Ab(Xétale).
Then Rpf∗F is the sheaf associated to the presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,F|X×Y V ).

Proof. This lemma is valid for topological spaces, and the proof in this case is the
same. See Cohomology on Sites, Lemma 21.8.4 for details. �

Lemma 44.52.5. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We
assume the structure morphism gi : Xi → S is quasi-compact and quasi-separated
for all i ∈ I and we set g : X → S. Assume given

(1) an abelian sheaf Fi on (Xi)étale for all i ∈ I,
(2) for i′ ≥ i a map ϕi′i : f−1

i′i Fi → Fi′ of abelian sheaves on (Xi′)étale

such that ϕi′′i = ϕi′′i′ ◦ f−1
i′′i′ϕi′i whenever i′′ ≥ i′ ≥ i. Denote fi : X → Xi the

projection and set F = colim f−1
i Fi. Then

colimi∈I R
pgi,∗Fi = Rpg∗F

for all p ≥ 0.

Proof. Recall (Lemma 44.52.4) that Rpgi,∗Fi is the sheaf associated to the presheaf
U 7→ Hp

étale(U×SXi,Fi) and similarly for Rpg∗F . Moreover, the colimit of a system
of sheaves is the sheafification of the colimit on the level of presheaves. Note that
every object of Sétale has a covering by quasi-compact and quasi-separated objects
(e.g., affine schemes). Moreover, if U is a quasi-compact and quasi-separated object,
then we have

colimHp
étale(U ×S Xi,Fi) = Hp

étale(U ×S X,F)

by Theorem 44.52.1. Thus the lemma follows. �
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44.53. Stalks of higher direct images

Theorem 44.53.1. Let f : X → S be a quasi-compact and quasi-separated mor-
phism of schemes, F an abelian sheaf on Xétale, and s a geometric point of S.
Then

(Rpf∗F)s = Hp
étale(X ×S Spec(OshS,s), p−1F)

where p : X ×S Spec(OshS,s)→ X is the projection.

Proof. Let I be the category of étale neighborhoods of s on S. By Lemma 44.52.4
we have

(Rpf∗F)s = colim(V,v)∈Iopp H
p(X ×S V,F|X×SV ).

We may replace I by the initial subcategory consisting of affine étale neighbour-
hoods of s. Observe that

Spec(OshS,s) = lim(V,v)∈I V

by Lemma 44.33.1 and Limits, Lemma 31.2.1. Since fibre products commute with
limits we also obtain

X ×S Spec(OshS,s) = lim(V,v)∈I X ×S V

We conclude by Lemma 44.52.3. �

44.54. The Leray spectral sequence

Lemma 44.54.1. Let f : X → Y be a morphism and I an injective object of
Ab(Xétale). Let V ∈ Ob(Yétale). Then

(1) for any covering V = {Vj → V }j∈J we have Ȟp(V, f∗I) = 0 for all p > 0,
(2) f∗I is acyclic for the functor Γ(V,−), and
(3) if g : Y → Z, then f∗I is acyclic for g∗.

Proof. Observe that Č•(V, f∗I) = Č•(V×Y X, I) which has vanishing higher coho-
mology groups by Lemma 44.18.7. This proves (1). The second statement follows
as a sheaf which has vanishing higher Čech cohomology groups for any covering has
vanishing higher cohomology groups. This a wonderful exercise in using the Čech-
to-cohomology spectral sequence, but see Cohomology on Sites, Lemma 21.11.9 for
details and a more precise and general statement. Part (3) is a consequence of (2)
and the description of Rpg∗ in Lemma 44.52.4. �

Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition 44.54.2 (Leray spectral sequence). Let f : X → Y be a morphism
of schemes and F an étale sheaf on X. Then there is a spectral sequence

Ep,q2 = Hp
étale(Y,R

qf∗F)⇒ Hp+q
étale(X,F).

Proof. See Lemma 44.54.1 and see Derived Categories, Section 13.22. �

44.55. Vanishing of finite higher direct images

The next goal is to prove that the higher direct images of a finite morphism of
schemes vanish.
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Lemma 44.55.1. Let R be a strictly henselian local ring. Set S = Spec(R) and
let s be its closed point. Then the global sections functor Γ(S,−) : Ab(Sétale)→ Ab
is exact. In fact we have Γ(S,F) = Fs for any sheaf of sets F . In particular

∀p ≥ 1, Hp
étale(S,F) = 0

for all F ∈ Ab(Sétale).

Proof. If we show that Γ(S,F) = Fs the Γ(S,−) is exact as the stalk functor is
exact. Let (U, u) be an étale neighbourhood of s. Pick an affine open neighborhood
Spec(A) of u in U . Then R→ A is étale and κ(s) = κ(u). By Theorem 44.32.4 we
see that A ∼= R×A′ as an R-algebra compatible with maps to κ(s) = κ(u). Hence
we get a section

Spec(A) // U

��
S

cc

It follows that in the system of étale neighbourhoods of s the identity map (S, s)→
(S, s) is cofinal. Hence Γ(S,F) = Fs. The final statement of the lemma follows
as the higher derived functors of an exact functor are zero, see Derived Categories,
Lemma 13.17.8. �

Proposition 44.55.2. Let f : X → Y be a finite morphism of schemes.

(1) For any geometric point y : Spec(k)→ Y we have

(f∗F)y =
∏

x:Spec(k)→X, f(x)=y
Fx.

for F in Sh(Xétale) and

(f∗F)y =
⊕

x:Spec(k)→X, f(x)=y
Fx.

for F in Ab(Xétale).
(2) For any q ≥ 1 we have Rqf∗F = 0.

Proof. Let Xsh
y denote the fiber product X ×Y Spec(OshY,y). By Theorem 44.53.1

the stalk of Rqf∗F at y is computed by Hq
étale(X

sh
y ,F). Since f is finite, Xsh

ȳ is

finite over Spec(OshY,y), thus Xsh
ȳ = Spec(A) for some ring A finite over OshY,ȳ. Since

the latter is strictly henselian, Lemma 44.32.5 implies that A is a finite product
of henselian local rings A = A1 × . . . × Ar. Since the residue field of OshY,y is
separably closed the same is true for each Ai. Hence Ai is strictly henselian. This
implies that Xsh

y =
∐r
i=1 Spec(Ai). The vanishing of Lemma 44.55.1 implies that

(Rqf∗F)y = 0 for q > 0 which implies (2) by Theorem 44.29.10. Part (1) follows
from the corresponding statement of Lemma 44.55.1. �

Lemma 44.55.3. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

of schemes with f a finite morphism. For any sheaf of sets F on Xétale we have
f ′∗(g

′)−1F = g−1f∗F .
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Proof. In great generality there is a pullback map g−1f∗F → f ′∗(g
′)−1F , see Sites,

Section 7.44. To check this map is an isomorphism it suffices to check on stalks
(Theorem 44.29.10). This is clear from the description of stalks in Proposition
44.55.2 and Lemma 44.36.2. �

The following lemma is a case of cohomological descent dealing with étale sheaves
and finite surjective morphisms. We will significantly generalize this result once we
prove the proper base change theorem.

Lemma 44.55.4. Let f : X → Y be a surjective finite morphism of schemes. Set
fn : Xn → Y equal to the (n+1)-fold fibre product of X over Y . For F ∈ Ab(Yétale)
set Fn = fn,∗f

−1
n F . There is an exact sequence

0→ F → F0 → F1 → F2 → . . .

on Xétale. Moreover, there is a spectral sequence

Ep,q1 = Hq
étale(Xp, f

−1
p F)

converging to Hp+q(Yétale,F). This spectral sequence is functorial in F .

Proof. If we prove the first statement of the lemma, then we obtain a spectral
sequence with Ep,q1 = Hq

étale(Y,F) convering to Hp+q(Yétale,F), see Derived Cat-
egories, Lemma 13.21.3. On the other hand, since Rifp,∗f

−1
p F = 0 for i > 0

(Proposition 44.55.2) we get

Hq
étale(Xp, f

−1
p F) = Hq

étale(Y, fp,∗f
−1
p F) = Hq

étale(Y,Fp)

by Proposition 44.54.2 and we get the spectral sequence of the lemma.

To prove the first statement of the lemma, observe that Xn forms a simplicial
scheme over Y , see Simplicial, Example 14.3.5. Observe moreover, that for each of
the projections dj : Xn+1 → Xn there is a map d−1

j f−1
n F → f−1

n+1F . These maps
induce maps

δj : Fn → Fn+1

for j = 0, . . . , n + 1. We use the alternating sum of these maps to define the
differentials Fn → Fn+1. Similarly, there is a canonical augmentation F → F0,
namely this is just the canonical map F → f∗f

−1F . To check that this sequence
of sheaves is an exact complex it suffices to check on stalks at geometric points
(Theorem 44.29.10). Thus we let y : Spec(k) → Y be a geometric point. Let
E = {x : Spec(k) → X | f(x) = y}. Then E is a finite nonempty set and we see
that

(Fn)y =
⊕

e∈En+1
Fy

by Proposition 44.55.2 and Lemma 44.36.2. Thus we have to see that given an
abelian group M the sequence

0→M →
⊕

e∈E
M →

⊕
e∈E2

M → . . .

is exact. Here the first map is the diagonal map and the map
⊕

e∈En+1 M →⊕
e∈En+2 M is the alternating sum of the maps induced by the (n+ 2) projections

En+2 → En+1. This can be shown directly or deduced by applying Simplicial,
Lemma 14.25.9 to the map E → {∗}. �
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Remark 44.55.5. In the situation of Lemma 44.55.4 if G is a sheaf of sets on
Yétale, then we have

Γ(Y,G) = Equalizer( Γ(X0, f
−1
0 G)

//
// Γ(X1, f

−1
1 G) )

This is proved in exactly the same way, by showing that the sheaf G is the equalizer
of the two maps f0,∗f

−1
0 G → f1,∗f

−1
1 G.

Here is a fun generalization of Lemma 44.55.1.

Lemma 44.55.6. Let S be a scheme all of whose local rings are strictly henselian.
Then for any abelian sheaf F on Sétale we have Hi(Sétale,F) = Hi(SZar,F).

Proof. Let ε : Sétale → SZar be the morphism of sites given by the inclusion
functor. The Zariski sheaf Rpε∗F is the sheaf associated to the presheaf U 7→
Hp
étale(U,F). Thus the stalk at x ∈ X is colimHp

étale(U,F) = Hp
étale(Spec(OX,x),Gx)

where Gx denotes the pullback of F to Spec(OX,x), see Lemma 44.52.3. Thus the
higher direct images of Rpε∗F are zero by Lemma 44.55.1 and we conclude by the
Leray spectral sequence. �

Lemma 44.55.7. Let S be an affine scheme such that (1) all points are closed,
and (2) all residue fields are separably algebraically closed. Then for any abelian
sheaf F on Sétale we have Hi(Sétale,F) = 0 for i > 0.

Proof. Condition (1) implies that the underlying topological space of S is profinite,
see Algebra, Lemma 10.25.5. Thus the higher cohomology groups of an abelian sheaf
on the topological space S (i.e., Zariski cohomology) is trivial, see Cohomology,
Lemma 20.23.3. The local rings are strictly henselian by Algebra, Lemma 10.145.11.
Thus étale cohomology of S is computed by Zariski cohomology by Lemma 44.55.6
and the proof is done. �

44.56. Schemes étale over a point

In this section we describe schemes étale over the spectrum of a field. Before we
state the result we introduce the category of G-sets for a topological group G.

Definition 44.56.1. Let G be a topological group. A G-set, sometime called a
discrete G-set, is a set X endowed with a left action a : G×X → X such that a is
continuous when X is given the discrete topology and G×X the product topology.
A morphism of G-sets f : X → Y is simply any G-equivariant map from X to Y .
The category of G-sets is denoted G-Sets.

The condition that a : G×X → X is continuous signifies simply that the stabilizer
of any x ∈ X is open in G. If G is an abstract group G (i.e., a group but not a
topological group) then this agrees with our preceding definition (see for example
Sites, Example 7.6.5) provided we endow G with the discrete topology.

Recall that if K ⊂ L is an infinite Galois extension the Galois group G = Gal(L/K)
comes endowed with a canonical topology. Namely the open subgroups are the
subgroups of the form Gal(L/K ′) ⊂ G where K ′/K is a finite subextension of
L/K. The index of an open subgroup is always finite. We say that G is a profinite
(topological) group.
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2858 44. ÉTALE COHOMOLOGY

Lemma 44.56.2. Let K be a field. Let Ksep a separable closure of K. Consider
the profinite group

G = AutSpec(K)(Spec(Ksep))opp = Gal(Ksep/K)

The functor

schemes étale over K −→ G-Sets
X/K 7−→ MorSpec(K)(Spec(Ksep), X)

is an equivalence of categories.

Proof. A scheme X over K is étale over K if and only if X ∼=
∐
i∈I Spec(Ki) with

each Ki a finite separable extension of K. The functor of the lemma associates to
X the G-set ∐

i
HomK(Ki,K

sep)

with its natural left G-action. Each element has an open stabilizer by definition of
the topology on G. Conversely, any G-set S is a disjoint union of its orbits. Say
S =

∐
Si. Pick si ∈ Si and denote Gi ⊂ G its open stabilizer. By Galois theory

the fields (Ksep)Gi are finite separable field extensions of K, and hence the scheme∐
i
Spec((Ksep)Gi)

is étale over K. This gives an inverse to the functor of the lemma. Some details
omitted. �

Remark 44.56.3. Under the correspondence of the lemma, the coverings in the
small étale site Spec(K)étale of K correspond to surjective families of maps in
G-Sets.

44.57. Galois action on stalks

In this section we define an action of the absolute Galois group of a residue field of
a point s of S on the stalk functor at any geometric point lying over s.

Galois action on stalks. Let S be a scheme. Let s be a geometric point of S. Let
σ ∈ Aut(κ(s)/κ(s)). Define an action of σ on the stalk Fs of a sheaf F as follows

(44.57.0.1)
Fs −→ Fs

(U, u, t) 7−→ (U, u ◦ Spec(σ), t).

where we use the description of elements of the stalk in terms of triples as in
the discussion following Definition 44.29.6. This is a left action, since if σi ∈
Aut(κ(s)/κ(s)) then

σ1 · (σ2 · (U, u, t)) = σ1 · (U, u ◦ Spec(σ2), t)

= (U, u ◦ Spec(σ2) ◦ Spec(σ1), t)

= (U, u ◦ Spec(σ1 ◦ σ2), t)

= (σ1 ◦ σ2) · (U, u, t)
It is clear that this action is functorial in the sheaf F . We note that we could have
defined this action by referring directly to Remark 44.29.8.

Definition 44.57.1. Let S be a scheme. Let s be a geometric point lying over the
point s of S. Let κ(s) ⊂ κ(s)sep ⊂ κ(s) denote the separable algebraic closure of
κ(s) in the algebraically closed field κ(s).

http://stacks.math.columbia.edu/tag/03QR
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(1) In this situation the absolute Galois group of κ(s) is Gal(κ(s)sep/κ(s)). It
is sometimes denoted Galκ(s).

(2) The geometric point s is called algebraic if κ(s) ⊂ κ(s) is an algebraic
closure of κ(s).

Example 44.57.2. The geometric point Spec(C)→ Spec(Q) is not algebraic.

Let κ(s) ⊂ κ(s)sep ⊂ κ(s) be as in the definition. Note that as κ(s) is algebraically
closed the map

Aut(κ(s)/κ(s)) −→ Gal(κ(s)sep/κ(s)) = Galκ(s)

is surjective. Suppose (U, u) is an étale neighbourhood of s, and say u lies over the
point u of U . Since U → S is étale, the residue field extension κ(s) ⊂ κ(u) is finite
separable. This implies the following

(1) If σ ∈ Aut(κ(s)/κ(s)sep) then σ acts trivially on Fs.
(2) More precisely, the action of Aut(κ(s)/κ(s)) determines and is determined

by an action of the absolute Galois group Galκ(s) on Fs.
(3) Given (U, u, t) representing an element ξ of Fs any element of Gal(κ(s)sep/K)

acts trivially, where κ(s) ⊂ K ⊂ κ(s)sep is the image of u] : κ(u)→ κ(s).

Altogether we see that Fs becomes a Galκ(s)-set (see Definition 44.56.1). Hence we
may think of the stalk functor as a functor

Sh(Sétale) −→ Galκ(s)-Sets, F 7−→ Fs

and from now on we usually do think about the stalk functor in this way.

Theorem 44.57.3. Let S = Spec(K) with K a field. Let s be a geometric point
of S. Let G = Galκ(s) denote the absolute Galois group. Taking stalks induces an
equivalence of categories

Sh(Sétale) −→ G-Sets, F 7−→ Fs.

Proof. Let us construct the inverse to this functor. In Lemma 44.56.2 we have
seen that given a G-set M there exists an étale morphism X → Spec(K) such that
MorK(Spec(Ksep), X) is isomorphic to M as a G-set. Consider the sheaf F on
Spec(K)étale defined by the rule U 7→ MorK(U,X). This is a sheaf as the étale
topology is subcanonical. Then we see that Fs = MorK(Spec(Ksep), X) = M as
G-sets (details omitted). This gives the inverse of the functor and we win. �

Remark 44.57.4. Another way to state the conclusions of Lemmas 44.56.2 and
Theorem 44.57.3 is to say that every sheaf on Spec(K)étale is representable by a
scheme X étale over Spec(K). This does not mean that every sheaf is representable
in the sense of Sites, Definition 7.13.3. The reason is that in our construction of
Spec(K)étale we chose a sufficiently large set of schemes étale over Spec(K), whereas
sheaves on Spec(K)étale form a proper class.

Lemma 44.57.5. Assumptions and notations as in Theorem 44.57.3. There is a
functorial bijection

Γ(S,F) = (Fs)G

http://stacks.math.columbia.edu/tag/03QY
http://stacks.math.columbia.edu/tag/03QT
http://stacks.math.columbia.edu/tag/04JL
http://stacks.math.columbia.edu/tag/04JM
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Proof. We can prove this using formal arguments and the result of Theorem 44.57.3
as follows. Given a sheaf F corresponding to the G-set M = Fs we have

Γ(S,F) = MorSh(Sétale)(hSpec(K),F)

= MorG-Sets)({∗},M)

= MG

Here the first identification is explained in Sites, Sections 7.2 and 7.13, the second
results from Theorem 44.57.3 and the third is clear. We will also give a direct
proof4.

Suppose that t ∈ Γ(S,F) is a global section. Then the triple (S, s, t) defines an
element of Fs which is clearly invariant under the action of G. Conversely, suppose
that (U, u, t) defines an element of Fs which is invariant. Then we may shrink U and
assume U = Spec(L) for some finite separable field extension of K, see Proposition
44.26.2. In this case the map F(U) → Fs is injective, because for any morphism
of étale neighbourhoods (U ′, u′) → (U, u) the restriction map F(U) → F(U ′) is
injective since U ′ → U is a covering of Sétale. After enlarging L a bit we may
assume K ⊂ L is a finite Galois extension. At this point we use that

Spec(L)×Spec(K) Spec(L) =
∐

σ∈Gal(L/K)
Spec(L)

where the maps Spec(L) → Spec(L ⊗K L) come from the ring maps a ⊗ b 7→
aσ(b). Hence we see that the condition that (U, u, t) is invariant under all of G
implies that t ∈ F(Spec(L)) maps to the same element of F(Spec(L) ×Spec(K)

Spec(L)) via restriction by either projection (this uses the injectivity mentioned
above; details omitted). Hence the sheaf condition of F for the étale covering
{Spec(L)→ Spec(K)} kicks in and we conclude that t comes from a unique section
of F over Spec(K). �

Remark 44.57.6. Let S be a scheme and let s : Spec(k) → S be a geometric
point of S. By definition this means that k is algebraically closed. In particular
the absolute Galois group of k is trivial. Hence by Theorem 44.57.3 the category
of sheaves on Spec(k)étale is equivalent to the category of sets. The equivalence is
given by taking sections over Spec(k). This finally provides us with an alternative
definition of the stalk functor. Namely, the functor

Sh(Sétale) −→ Sets, F 7−→ Fs

is isomorphic to the functor

Sh(Sétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ s∗F

To prove this rigorously one can use Lemma 44.36.2 part (3) with f = s. Moreover,
having said this the general case of Lemma 44.36.2 part (3) follows from functoriality
of pullbacks.

4For the doubting Thomases out there.
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44.58. Group cohomology

Notation. If we write Hi(G,M) we will mean that G is a topological group and
M a discrete G-module with continuous G-action. This includes the case of an
abstract group G, which simply means that G is viewed as a topological group with
the discrete topology. When the module has a nondiscrete topology, we will use
the notation Hi

cont(G,M) to indicate the cohomology theory discussed in [Tat76].

Definition 44.58.1. Let G be a topological group. A G-module, sometime called a
discrete G-module, is an abelian group M endowed with a left action a : G×M →M
by group homomorphisms such that a is continuous when M is given the discrete
topology and G×M the product topology. A morphism of G-modules f : M → N
is simply any G-equivariant homomorphism from M to N . The category of G-
modules is denoted ModG.

The condition that a : G×M → M is continuous is equivalent with the condition
that the stabilizer of any x ∈ M is open in G. If G is an abstract group then this
corresponds to the notion of an abelian group endowed with a G-action provided
we endow G with the discrete topology.

The category ModG has enough injectives, see Injectives, Lemma 19.3.1. Consider
the left exact functor

ModG −→ Ab, M 7−→MG = {x ∈M | g · x = x ∀g ∈ G}
We sometimes denote MG = H0(G,M) and sometimes we write MG = ΓG(M).
This functor has a total right derived functor RΓG(M) and ith right derived functor
RiΓG(M) = Hi(G,M) for any i ≥ 0.

Definition 44.58.2. Let G be a topological group. Let M be a G-module.

(1) The right derived functors Hi(G,M) are called the continuous group co-
homology groups of M .

(2) If G is an abstract group endowed with the discrete topology then the
Hi(G,M) are called the group cohomology groups of M .

(3) If G is a Galois group, then the groups Hi(G,M) are called the Galois
cohomology groups of M .

(4) If G is the absolute Galois group of a field K, then the groups Hi(G,M)
are sometimes called the Galois cohomology groups of K with coefficients
in M . In this case we sometimes write Hi(K,M) instead of Hi(G,M).

We can compute continuous group cohomology by the complex of inhomogeneous
cochains. In fact, we can define this when M is an arbitrary topological abelian
group endowed with a continuous G-action. Namely, we consider the complex

C•cont(G,M) : M → Mapscont(G,M)→ Mapscont(G×G,M)→ . . .

where the boundary map is defined for n ≥ 1 by the rule

d(f)(g1, . . . , gn+1) = g1(f(g2, . . . , gn+1))

+
∑

j=1,...,n
(−1)jf(g1, . . . , gjgj+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)

and for n = 0 sends m ∈M to the map g 7→ g(m)−m. We define

Hi
cont(G,M) = Hi(C•cont(G,M))

http://stacks.math.columbia.edu/tag/04JP
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Since the terms of the complex involve continuous maps from G and self products
of G into the topological module M , it is not clear that this turns a short exact
sequence of topological modules into a long exact cohomology sequence. (One dif-
ficulty is that the category of topological abelian groups isn’t an abelian category!)
However, this is true when the topology on the modules is discrete. In fact, if M
is a G-module as in Definition 44.58.1, then there is a canonical isomorphism

Hi(G,M) = Hi
cont(G,M)

of cohomology groups.

44.59. Cohomology of a point

As a consequence of the discussion in the preceding sections we obtain the equiva-
lence of étale cohomology of the spectrum of a field with Galois cohomology.

Lemma 44.59.1. Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. The stalk functor induces an
equivalence of categories

Ab(Sétale) −→ ModG, F 7−→ Fs.

Proof. In Theorem 44.57.3 we have seen the equivalence between sheaves of sets
and G-sets. The current lemma follows formally from this as an abelian sheaf is
just a sheaf of sets endowed with a commutative group law, and a G-module is just
a G-set endowed with a commutative group law. �

Lemma 44.59.2. Notation and assumptions as in Lemma 44.59.1. Let F be an
abelian sheaf on Spec(K)étale which corresponds to the G-module M . Then

(1) in D(Ab) we have a canonical isomorphism RΓ(S,F) = RΓG(M),
(2) H0

étale(S,F) = MG, and
(3) Hq

étale(S,F) = Hq(G,M).

Proof. Combine Lemma 44.59.1 with Lemma 44.57.5. �

Example 44.59.3. Sheaves on Spec(K)étale. Let G = Gal(Ksep/K) be the abso-
lute Galois group of K.

(1) The constant sheaf Z/nZ corresponds to the module Z/nZ with trivial
G-action,

(2) the sheaf Gm|Spec(K)étale corresponds to (Ksep)∗ with its G-action,
(3) the sheaf Ga|Spec(Ksep) corresponds to (Ksep,+) with its G-action, and
(4) the sheaf µn|Spec(Ksep) corresponds to µn(Ksep) with its G-action.

By Remark 44.23.4 and Theorem 44.24.1 we have the following identifications for
cohomology groups:

H0
étale(Sétale,Gm) = Γ(S,O∗S)

H1
étale(Sétale,Gm) = H1

Zar(S,O∗S) = Pic(S)

Hi
étale(Sétale,Ga) = Hi

Zar(S,OS)

Also, for any quasi-coherent sheaf F on Sétale we have

Hi(Sétale,F) = Hi
Zar(S,F),

see Theorem 44.22.4. In particular, this gives the following sequence of equalities

0 = Pic(Spec(K)) = H1
étale(Spec(K)étale,Gm) = H1(G, (Ksep)∗)
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which is none other than Hilbert’s 90 theorem. Similarly, for i ≥ 1,

0 = Hi(Spec(K),O) = Hi
étale(Spec(K)étale,Ga) = Hi(G,Ksep)

where the Ksep indicates Ksep as a Galois module with addition as group law. In
this way we may consider the work we have done so far as a complicated way of
computing Galois cohomology groups.

44.60. Cohomology of curves

The next task at hand is to compute the étale cohomology of a smooth curve over
an algebraically closed field with torsion coefficients, and in particular show that
it vanishes in degree at least 3. To prove this, we will compute cohomology at the
generic point, which amounts to some Galois cohomology.

44.61. Brauer groups

Brauer groups of fields are defined using finite central simple algebras. In this sec-
tion we review the relevant facts about Brauer groups, most of which are discussed
in the chapter Brauer Groups, Section 11.1. For other references, see [Ser62],
[Ser97] or [Wei48].

Theorem 44.61.1. Let K be a field. For a unital, associative (not necessarily
commutative) K-algebra A the following are equivalent

(1) A is finite central simple K-algebra,
(2) A is a finite dimensional K-vector space, K is the center of A, and A has

no nontrivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗K K̄ ∼= Mat(d× d, K̄),
(4) there exists d ≥ 1 such that A⊗K Ksep ∼= Mat(d× d,Ksep),
(5) there exist d ≥ 1 and a finite Galois extension K ⊂ K ′ such that A ⊗K′

K ′ ∼= Mat(d× d,K ′),
(6) there exist n ≥ 1 and a finite central skew field D over K such that

A ∼= Mat(n× n,D).

The integer d is called the degree of A.

Proof. This is a copy of Brauer Groups, Lemma 11.8.6. �

Lemma 44.61.2. Let A be a finite central simple algebra over K. Then

A⊗K Aopp −→ EndK(A)
a⊗ a′ 7−→ (x 7→ axa′)

is an isomorphism of algebras over K.

Proof. See Brauer Groups, Lemma 11.4.10. �

Definition 44.61.3. Two finite central simple algebras A1 and A2 over K are
called similar, or equivalent if there exist m,n ≥ 1 such that Mat(n × n,A1) ∼=
Mat(m×m,A2). We write A1 ∼ A2.

By Brauer Groups, Lemma 11.5.1 this is an equivalence relation.

Definition 44.61.4. Let K be a field. The Brauer group of K is the set Br(K) of
similarity classes of finite central simple algebras over K, endowed with the group
law induced by tensor product (over K). The class of A in Br(K) is denoted by
[A]. The neutral element is [K] = [Mat(d× d,K)] for any d ≥ 1.
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The previous lemma implies that inverses exist and that −[A] = [Aopp]. The Brauer
group of a field is always torsion. In fact, we will see that [A] has order deg(A)
for any finite central simple algebra A (see Lemma 44.62.2). In general the Brauer
group is not finitely generated, for example the Brauer group of a non-Archimedean
local field is Q/Z. The Brauer group of C(x, y) is uncountable.

Lemma 44.61.5. Let K be a field and let Ksep be a separable algebraic closure.
Then the set of isomorphism classes of central simple algebras of degree d over K
is in bijection with the non-abelian cohomology H1(Gal(Ksep/K),PGLd(K

sep)).

Sketch of proof. The Skolem-Noether theorem (see Brauer Groups, Theorem
11.6.1) implies that for any field L the group AutL-Algebras(Matd(L)) equals PGLd(L).
By Theorem 44.61.1, we see that central simple algebras of degree d correspond to
forms of the K-algebra Matd(K). Combined we see that isomorphism classes of de-
gree d central simple algebras correspond to elements ofH1(Gal(Ksep/K),PGLd(K

sep)).
For more details on twisting, see for example [Sil86]. �

If A is a finite central simple algebra of degree d over a field K, we denote ξA the
corresponding cohomology class in H1(Gal(Ksep/K),PGLd(K

sep)). Consider the
short exact sequence

1→ (Ksep)∗ → GLd(K
sep)→ PGLd(K

sep)→ 1,

which gives rise to a long exact cohomology sequence (up to degree 2) with cobound-
ary map

δd : H1(Gal(Ksep/K),PGLd(K
sep)) −→ H2(Gal(Ksep/K), (Ksep)∗).

Explicitly, this is given as follows: if ξ is a cohomology class represented by the
1-cocycle (gσ), then δd(ξ) is the class of the 2-cocycle

(44.61.5.1) (σ, τ) 7−→ g̃−1
σ g̃στσ(g̃−1

τ ) ∈ (Ksep)∗

where g̃σ ∈ GLd(K
sep) is a lift of gσ. Using this we can make explicit the map

δ : Br(K) −→ H2(Gal(Ksep/K), (Ksep)∗), [A] 7−→ δdegA(ξA)

as follows. AssumeA has degree d overK. Choose an isomorphism ϕ : Matd(K
sep)→

A ⊗K Ksep. For σ ∈ Gal(Ksep/K) choose an element g̃σ ∈ Gld(K
sep) such that

ϕ−1 ◦ σ(ϕ) is equal to the map x 7→ g̃σxg̃
−1
σ . The class in H2 is defined by the two

cocycle (44.61.5.1).

Theorem 44.61.6. Let K be a field with separable algebraic closure Ksep. The map
δ : Br(K)→ H2(Gal(Ksep/K), (Ksep)∗) defined above is a group isomorphism.

Sketch of proof. In the abelian case (d = 1), one has the identification

H1(Gal(Ksep/K),GLd(K
sep)) = H1

étale(Spec(K),GLd(O))

the latter of which is trivial by fpqc descent. If this were true in the non-abelian
case, this would readily imply injectivity of δ. (See [Del77].) Rather, to prove
this, one can reinterpret δ([A]) as the obstruction to the existence of a K-vector
space V with a left A-module structure and such that dimK V = degA. In the
case where V exists, one has A ∼= EndK(V ). For surjectivity, pick a cohomology
class ξ ∈ H2(Gal(Ksep/K), (Ksep)∗), then there exists a finite Galois extension
K ⊂ K ′ ⊂ Ksep such that ξ is the image of some ξ′ ∈ H2(Gal(K ′|K), (K ′)∗). Then
write down an explicit central simple algebra over K using the data K ′, ξ′. �
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44.62. The Brauer group of a scheme

Let S be a scheme. An OS-algebra A is called Azumaya if it is étale locally a
matrix algebra, i.e., if there exists an étale covering U = {ϕi : Ui → S}i∈I such
that ϕ∗iA ∼= Matdi(OUi) for some di ≥ 1. Two such A and B are called equivalent
if there exist finite locally free OS-modules F and G which have positive rank at
every s ∈ S such that

A⊗OS HomOS (F ,F) ∼= B ⊗OS HomOS (G,G)

as OS-algebras. The Brauer group of S is the set Br(S) of equivalence classes of
Azumaya OS-algebras with the operation induced by tensor product (over OS).

Lemma 44.62.1. Let S be a scheme. Let F and G be finite locally free sheaves
of OS-modules of positive rank. If there exists an isomorphism HomOS (F ,F) ∼=
HomOS (G,G) of OS-algebras, then there exists an invertible sheaf L on S such that
F ⊗OS L ∼= G and such that this isomorphism induces the given isomorphism of
endomorphism algebras.

Proof. Fix an isomorphism HomOS (F ,F) → HomOS (G,G). Consider the sheaf
L ⊂ Hom(F ,G) generated as an OS-module by the local isomorphisms ϕ : F → G
such that conjugation by ϕ is the given isomorphism of endomorphism algebras. A
local calculation (reducing to the case that F and G are finite free and S is affine)
shows that L is invertible. Another local calculation shows that the evaluation map

F ⊗OS L −→ G

is an isomorphism. �

The argument given in the proof of the following lemma can be found in [Sal81].

Lemma 44.62.2. Let S be a scheme. Let A be an Azumaya algebra which is locally
free of rank d2 over S. Then the class of A in the Brauer group of S is annihilated
by d.

Proof. Choose an étale covering {Ui → S} and choose isomorphisms A|Ui →
Hom(Fi,Fi) for some locally free OUi-modules Fi of rank d. (We may assume Fi
is free.) Consider the composition

pi : F⊗di → ∧d(Fi)→ F⊗di
The first arrow is the usual projection and the second arrow is the isomorphism of
the top exterior power of Fi with the submodule of sections of F⊗di which transform
according to the sign character under the action of the symmetric group on d
letters. Then p2

i = pi and the rank of pi is 1. Using the given isomorphism
A|Ui → Hom(Fi,Fi) and the canonical isomorphism

Hom(Fi,Fi)⊗d = Hom(F⊗di ,F⊗di )

we may think of pi as a section ofA⊗d over Ui. We claim that pi|Ui×SUj = pj |Ui×SUj
as sections of A⊗d. Namely, applying Lemma 44.62.1 we obtain an invertible sheaf
Lij and a canonical isomorphism

Fi|Ui×SUj ⊗ Lij −→ Fj |Ui×SUj .
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Using this isomorphism we see that pi maps to pj . Since A⊗d is a sheaf on Sétale
(Proposition 44.17.1) we find a canonical global section p ∈ Γ(S,A⊗d). A local
calculation shows that

H = Im(A⊗d → A⊗d, f 7→ fp)

is a locally free module of rank dd and that (left) multiplication by A⊗d induces an
isomorphism A⊗d → Hom(H,H). In other words, A⊗d is the trivial element of the
Brauer group of S as desired. �

In this setting, the analogue of the isomorphism δ of Theorem 44.61.6 is a map

δS : Br(S)→ H2
étale(S,Gm).

It is true that δS is injective. If S is quasi-compact or connected, then Br(S) is
a torsion group, so in this case the image of δS is contained in the cohomological
Brauer group of S

Br′(S) := H2
étale(S,Gm)torsion.

So if S is quasi-compact or connected, there is an inclusion Br(S) ⊂ Br′(S). This
is not always an equality: there exists a nonseparated singular surface S for which
Br(S) ⊂ Br′(S) is a strict inclusion. If S is quasi-projective, then Br(S) = Br′(S).
However, it is not known whether this holds for a smooth proper variety over C,
say.

44.63. Galois cohomology

In this section we will use the following result from Galois cohomology to get van-
ishing of higher étale cohomology groups over the spectrum of a field.

Proposition 44.63.1. Let K be a field with separable algebraic closure Ksep. As-
sume that for any finite extension K ′ of K we have Br(K ′) = 0. Then

(1) Hq(Gal(Ksep/K), (Ksep)∗) = 0 for all q ≥ 1, and
(2) Hq(Gal(Ksep/K),M) = 0 for any torsion Gal(Ksep/K)-module M and

any q ≥ 2,

Proof. Omitted. �

Definition 44.63.2. A field K is called Cr if for every 0 < dr < n and every
f ∈ K[T1, . . . , Tn] homogeneous of degree d, there exist α = (α1, . . . , αn), αi ∈ K
not all zero, such that f(α) = 0. Such an α is called a nontrivial solution of f .

Example 44.63.3. An algebraically closed field is Cr.

In fact, we have the following simple lemma.

Lemma 44.63.4. Let k be an algebraically closed field. Let f1, . . . , fs ∈ k[T1, . . . , Tn]
be homogeneous polynomials of degree d1, . . . , ds with di > 0. If s < n, then
f1 = . . . = fs = 0 have a common nontrivial solution.

Proof. Omitted. �

The following result computes the Brauer group of C1 fields.

Theorem 44.63.5. Let K be a C1 field. Then Br(K) = 0.
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Proof. Let D be a finite dimensional division algebra over K with center K. We
have seen that

D ⊗K Ksep ∼= Matd(K
sep)

uniquely up to inner isomorphism. Hence the determinant det : Matd(K
sep) →

Ksep is Galois invariant and descends to a homogeneous degree d map

det = Nred : D −→ K

called the reduced norm. Since K is C1, if d > 1, then there exists a nonzero
x ∈ D with Nred(x) = 0. This clearly implies that x is not invertible, which is a
contradiction. Hence Br(K) = 0. �

Definition 44.63.6. Let k be a field. A variety is separated, integral scheme of
finite type over k. A curve is a variety of dimension 1.

Theorem 44.63.7 (Tsen’s theorem). The function field of a variety of dimension
r over an algebraically closed field k is Cr.

Proof. For projective space one can show directly that the field k(x1, . . . , xr) is
Cr (exercise).

General case. Without loss of generality, we may assume X to be projective. Let
f ∈ K[T1, . . . , Tn]d with 0 < dr < n. Say the coefficients of f are in Γ(X,OX(H))
for some ample H ⊂ X. Let α = (α1, . . . , αn) with αi ∈ Γ(X,OX(eH)). Then
f(α) ∈ Γ(X,OX((de + 1)H)). Consider the system of equations f(α) = 0. Then
by asymptotic Riemann-Roch,

• the number of variables is n dimK Γ(X,OX(eH)) ∼ n e
r

r! (Hr), and

• the number of equations is dimK Γ(X,OX((de+ 1)H)) ∼ (de+1)r

r! (Hr).

Since n > dr, there are more variables than equations, and since there is a trivial
solution, there are also nontrivial solutions. �

Lemma 44.63.8. Let C be a curve over an algebraically closed field k. Then the
Brauer group of the function field of C is zero: Br(k(C)) = 0.

Proof. This is clear from Tsen’s theorem, Theorem 44.63.7. �

Lemma 44.63.9. Let k be an algebraically closed field and k ⊂ K a field extension
of transcendence degree 1. Then for all q ≥ 1, Hq

étale(Spec(K),Gm) = 0.

Proof. Recall that Hq
étale(Spec(K),Gm) = Hq(Gal(Ksep/K), (Ksep)∗) by Lemma

44.59.2. Thus by Proposition 44.63.1 it suffices to show that if K ⊂ K ′ is a finite
field extension, then Br(K ′) = 0. Now observe that K ′ = colimK ′′, where K ′′

runs over the finitely generated subextensions of k contained in K ′ of transcendence
degree 1. Note that Br(K ′) = colim Br(K ′′) which reduces us to a finitely generated
field extension K ′′/k of transcendence degree 1. Such a field is the function field of
a curve over k, hence has trivial Brauer group by Lemma 44.63.8. �

44.64. Higher vanishing for the multiplicative group

In this section, we fix an algebraically closed field k and a smooth curve X over
k. We denote ix : x ↪→ X the inclusion of a closed point of X and j : η ↪→ X the
inclusion of the generic point. We also denote X0 the set of closed points of X.
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Theorem 44.64.1 (The Fundamental Exact Sequence). There is a short exact
sequence of étale sheaves on X

0 −→ Gm,X −→ j∗Gm,η −→
⊕

x∈X0
ix∗Z −→ 0.

Proof. Let ϕ : U → X be an étale morphism. Then by properties of étale mor-
phisms (Proposition 44.26.2), U =

∐
i Ui where each Ui is a smooth curve mapping

to X. The above sequence for X is a product of the corresponding sequences for
each Ui, so it suffices to treat the case where U is connected, hence irreducible. In
this case, there is a well known exact sequence

1 −→ Γ(U,O∗U ) −→ k(U)∗ −→
⊕

y∈U0
Zy.

This amounts to a sequence

0 −→ Γ(U,O∗U ) −→ Γ(η ×X U,O∗η×XU ) −→
⊕

x∈X0
Γ(x×X U,Z)

which, unfolding definitions, is nothing but a sequence

0 −→ Gm(U) −→ j∗Gm,η(U) −→
(⊕

x∈X0
ix∗Z

)
(U).

This defines the maps in the Fundamental Exact Sequence and shows it is exact
except possibly at the last step. To see surjectivity, let us recall that if U is a
nonsingular curve and D is a divisor on U , then there exists a Zariski open covering
{Uj → U} of U such that D|Uj = div(fj) for some fj ∈ k(U)∗. �

Lemma 44.64.2. For any q ≥ 1, Rqj∗Gm,η = 0.

Proof. We need to show that (Rqj∗Gm,η)x̄ = 0 for every geometric point x̄ of X.

Assume that x̄ lies over a closed point x of X. Let Spec(A) be an affine open
neighbourhood of x in X, and K the fraction field of A. Then

Spec(OshX,x̄)×X η = Spec(OshX,x̄ ⊗A K).

The ring OshX,x̄ ⊗A K is a localization of the discrete valuation ring OshX,x̄, so it is

either OshX,x̄ again, or its fraction field Ksh
x̄ . But since some local uniformizer gets

inverted, it must be the latter. Hence

(Rqj∗Gm,η)(X,x̄) = Hq
étale(SpecKsh

x̄ ,Gm).

Now recall that OshX,x̄ = colim(U,ū)→x̄O(U) = colimA⊂B B where A → B is étale,

hence Ksh
x̄ is an algebraic extension of K = k(X), and we may apply Lemma 44.63.9

to get the vanishing.

Assume that x̄ = η̄ lies over the generic point η of X (in fact, this case is superflu-
ous). Then OX,η̄ = κ(η)sep and thus

(Rqj∗Gm,η)η̄ = Hq
étale(Spec(κ(η)sep)×X η,Gm)

= Hq
étale(Spec(κ(η)sep),Gm)

= 0 for q ≥ 1

since the corresponding Galois group is trivial. �

Lemma 44.64.3. For all p ≥ 1, Hp
étale(X, j∗Gm,η) = 0.
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Proof. The Leray spectral sequence reads

Ep,q2 = Hp
étale(X,R

qj∗Gm,η)⇒ Hp+q
étale(η,Gm,η),

which vanishes for p + q ≥ 1 by Lemma 44.63.9. Taking q = 0, we get the desired
vanishing. �

Lemma 44.64.4. For all q ≥ 1, Hq
étale(X,

⊕
x∈X0 ix∗Z) = 0.

Proof. For X quasi-compact and quasi-separated, cohomology commutes with col-
imits, so it suffices to show the vanishing of Hq

étale(X, ix∗Z). But then the inclusion
ix of a closed point is finite so Rpix∗Z = 0 for all p ≥ 1 by Proposition 44.55.2.
Applying the Leray spectral sequence, we see that Hq

étale(X, ix∗Z) = Hq
étale(x,Z).

Finally, since x is the spectrum of an algebraically closed field, all higher cohomol-
ogy on x vanishes. �

Concluding this series of lemmata, we get the following result.

Theorem 44.64.5. Let X be a smooth curve over an algebraically closed field.
Then

Hq
étale(X,Gm) = 0 for all q ≥ 2.

Proof. See discussion above. �

We also get the cohomology long exact sequence

0→ H0
étale(X,Gm)→ H0

étale(X, j∗Gmη)→ H0
étale(X,

⊕
ix∗Z)→ H1

étale(X,Gm)→ 0

although this is the familiar

0→ H0
Zar(X,O∗X)→ k(X)∗ → Div(X)→ Pic(X)→ 0.

44.65. The Artin-Schreier sequence

Let p be a prime number. Let S be a scheme in characteristic p. The Artin-Schreier
sequence is the short exact sequence

0 −→ Z/pZ
S
−→ Ga,S

F−1−−−→ Ga,S −→ 0

where F − 1 is the map x 7→ xp − x.

Lemma 44.65.1. Let p be a prime. Let S be a scheme of characteristic p.

(1) If S is affine, then Hq
étale(S,Z/pZ) = 0 for all q ≥ 2.

(2) If S is a quasi-compact and quasi-separated scheme of dimension d, then
Hq
étale(S,Z/pZ) = 0 for all q ≥ 2 + d.

Proof. Recall that the étale cohomology of the structure sheaf is equal to its coho-
mology on the underlying topological space (Theorem 44.22.4). The first statement
follows from the Artin-Schreier exact sequence and the vanishing of cohomology of
the structure sheaf on an affine scheme (Cohomology of Schemes, Lemma 29.2.2).
The second statement follows by the same argument from the vanishing of Coho-
mology, Proposition 20.23.4 and the fact that S is a spectral space (Properties,
Lemma 27.2.4). �
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Lemma 44.65.2. Let k be an algebraically closed field of characteristic p > 0. Let
V be a finite dimensional k-vector space. Let F : V → V be a frobenius linear map,
i.e., an additive map such that F (λv) = λpF (v) for all λ ∈ k and v ∈ V . Then
F − 1 : V → V is surjective with kernel a finite dimensional Fp-vector space of
dimension ≤ dimk(V ).

Proof. If F = 0, then the statement holds. If we have a filtration of V by F -stable
subvector spaces such that the statement holds for each graded piece, then it holds
for (V, F ). Combining these two remarks we may assume the kernel of F is zero.

Choose a basis v1, . . . , vn of V and write F (vi) =
∑
aijvj . Observe that v =

∑
λivi

is in the kernel if and only if
∑
λpi aijvj = 0. Since k is algebraically closed this

implies the matrix (aij) is invertible. Let (bij) be its inverse. Then to see that
F − 1 is surjective we pick w =

∑
µivi ∈ V and we try to solve

(F − 1)(
∑

λivi) =
∑

λpi aijvj −
∑

λjvj =
∑

µjvj

This is equivalent to ∑
λpjvj −

∑
bijλivj =

∑
bijµivj

in other words

λpj −
∑

bijλi =
∑

bijµi, j = 1, . . . ,dim(V ).

The algebra

A = k[x1, . . . , xn]/(xpj −
∑

bijxi −
∑

bijµi)

is standard smooth over k (Algebra, Definition 10.132.6) because the matrix (bij)
is invertible and the partial derivatives of xpj are zero. A basis of A over k is the set

of monomials xe11 . . . xenn with ei < p, hence dimk(A) = pn. Since k is algebraically
closed we see that Spec(A) has exactly pn points. It follows that F − 1 is surjective
and every fibre has pn points, i.e., the kernel of F−1 is a group with pn elements. �

Lemma 44.65.3. Let X be a separated scheme of finite type over a field k. Let F
be a coherent sheaf of OX-modules. Then dimkH

d(X,F) <∞ where d = dim(X).

Proof. We will prove this by induction on d. The case d = 0 holds because in that
case X is the spectrum of a finite dimensinal k-algebra A (Varieties, Lemma 32.13.2)
and every coherent sheaf F corresponds to a finite A-module M = H0(X,F) which
has dimkM <∞.

Assume d > 0 and the result has been shown for separated shemes of finite type of
dimension < d. The scheme X is Noetherian. Consider the property P of coherent
sheaves on X defined by the rule

P(F)⇔ dimkH
d(X,F) <∞

We are going to use the result of Cohomology of Schemes, Lemma 29.12.4 to prove
that P holds for every coherent sheaf on X.

Let

0→ F1 → F → F2 → 0

be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of cohomology

Hd(X,F1)→ Hd(X,F)→ Hd(X,F2)
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Thus if P holds for F1 and F2, then it hods for F .

Let Z ⊂ X be an integral closed subscheme. Let I be a coherent sheaf of ideals on Z.
To finish the proof have to show that Hd(X, i∗I) = Hd(Z, I) is finite dimensional.
If dim(Z) < d, then the result holds because the cohomology group will be zero
(Cohomology, Proposition 20.21.6). In this way we reduce to the situation discussed
in the following paragraph.

Assume X is a variety of dimension d and F = I is a coherent ideal sheaf. In this
case we have a short exact sequence

0→ I → OX → i∗OZ → 0

where i : Z → X is the closed subscheme defined by I. By induction hypothesis
we see that Hd−1(Z,OZ) = Hd−1(X, i∗OZ) is finite dimensional. Thus we see that
it suffices to prove the result for the structure sheaf.

We can apply Chow’s lemma (Cohomology of Schemes, Lemma 29.16.1) to the
morphism X → Spec(k). Thus we get a diagram

X

g
""

X ′

g′

��

π
oo

i
// Pn

k

{{
Spec(k)

as in the statement of Chow’s lemma. Also, let U ⊂ X be the dense open subscheme
such that π−1(U)→ U is an isomorphism. We may assume X ′ is a variety as well,
see Cohomology of Schemes, Remark 29.16.2. The morphism i′ = (i, π) : X ′ → Pn

X

is a closed immersion (loc. cit.). Hence

L = i∗OPnk
(1) ∼= (i′)∗OPnX

(1)

is π-relatively ample (for example by Morphisms, Lemma 28.40.7). Hence by Coho-
mology of Schemes, Lemma 29.15.4 there exists an n ≥ 0 such that Rpπ∗L⊗n = 0
for all p > 0. Set G = π∗L⊗n. Choose any nonzero global section s of L⊗n. Since
G = π∗L⊗n, the section s corresponds to section of G, i.e., a map OX → G. Since
s|U 6= 0 as X ′ is a variety and L invertible, we see that OX |U → G|U is nonzero. As
G|U = KL⊗n|π−1(U) is invertible we conclude that we have a short exact sequence

0→ OX → G → Q→ 0

where Q is coherent and supported on a proper closed subscheme of X. Ar-
guing as before using our induction hypothesis, we see that it suffices to prove
dimHd(X,G) <∞.

By the Leray spectral sequence (Cohomology, Lemma 20.14.6) we see thatHd(X,G) =

Hd(X ′,L⊗n). Let X
′ ⊂ Pn

k be the closure of X ′. Then X
′

is a projective variety

of dimension d over k and X ′ ⊂ X
′

is a dense open. The invertible sheaf L is the
restriction of OX′(n) to X. By Cohomology, Proposition 20.23.4 the map

Hd(X
′
,OX′(n)) −→ Hd(X ′,L⊗n)

is surjective. Since the cohomology group on the left has finite dimension by Co-
homology of Schemes, Lemma 29.15.1 the proof is complete. �

Lemma 44.65.4. Let X be separated of finite type over an algebraically closed field
k of characteristic p > 0. Then Hq

étale(X,Z/pZ) = 0 for q ≥ dim(X) + 1.
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Proof. Let d = dim(X). By the vanishing established in Lemma 44.65.1 it suffices

to show that Hd+1
étale(X,Z/pZ) = 0. By Lemma 44.65.3 we see that Hd(X,OX)

is a finite dimensional k-vector space. Hence the long exact cohomology sequence
associated to the Artin-Schreier sequence ends with

Hd(X,OX)
F−1−−−→ Hd(X,OX)→ Hd+1

étale(X,Z/pZ)→ 0

By Lemma 44.65.2 the map F − 1 in this sequence is surjective. This proves the
lemma. �

Lemma 44.65.5. Let X be a proper scheme over an algebraically closed field k of
characteristic p > 0. Then

(1) Hq
étale(X,Z/pZ) is a finite Z/pZ-module for all q, and

(2) Hq
étale(X,Z/pZ)→ Hq

étale(Xk′ ,Z/pZ)) is an isomorphism if k ⊂ k′ is an
extension of algebraically closed fields.

Proof. By Cohomology of Schemes, Lemma 29.17.4) and the comparison of coho-
mology of Theorem 44.22.4 the cohomology groups Hq

étale(X,Ga) = Hq(X,OX)
are finite dimensional k-vector spaces. Hence by Lemma 44.65.2 the long exact
cohomology sequence associated to the Artin-Schreier sequence, splits into short
exact sequences

0→ Hq
étale(X,Z/pZ)→ Hq(X,OX)

F−1−−−→ Hq(X,OX)→ 0

and moreover the Fp-dimension of the cohomology groups Hq
étale(X,Z/pZ) is equal

to the k-dimension of the vector space Hq(X,OX). This proves the first state-
ment. The second statement follows as Hq(X,OX) ⊗k k′ → Hq(Xk′ ,OXk′ ) is an
isomorphism by flat base change (Cohomology of Schemes, Lemma 29.5.2). �

44.66. Picard groups of curves

Our next step is to use the Kummer sequence to deduce some information about
the cohomology group of a curve with finite coefficients. In order to get vanishing
in the long exact sequence, we review some facts about Picard groups.

Let X be a smooth projective curve over an algebraically closed field k. There
exists a short exact sequence

0→ Pic0(X)→ Pic(X)
deg−−→ Z→ 0.

The abelian group Pic0(X) can be identified with Pic0(X) = Pic0
X/k(k), i.e., the

k-valued points of an abelian variety Pic0
X/k of dimension g = g(X) over k.

Definition 44.66.1. Let k be a field. An abelian variety is a group scheme over k
which is also a proper variety over k.

Proposition 44.66.2. Let A be an abelian variety over an algebraically closed field
k. Then

(1) A is projective over k;
(2) A is a commutative group scheme;
(3) the morphism [n] : A→ A is surjective for all n ≥ 1, in other words A(k)

is a divisible abelian group;

(4) A[n] = Ker(A
[n]−−→ A) is a finite flat group scheme of rank n2 dimA over

k. It is reduced if and only if n ∈ k∗;
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(5) if n ∈ k∗ then A(k)[n] = A[n](k) ∼= (Z/nZ)2 dim(A).

Proof. See Mumford’s book on abelian varieties, [Mum70]. �

Consequently, if n ∈ k∗ then Pic0(X)[n] ∼= (Z/nZ)
2g

as abelian groups.

Lemma 44.66.3. Let X be a smooth projective curve of genus g over an alge-
braically closed field k and let n ≥ 1 be invertible in k. Then there are canonical
identifications

Hq
étale(X,µn) =


µn(k) if q = 0,

Pic0(X)[n] if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.

Since µn ∼= Z/nZ, this gives (noncanonical) identifications

Hq
étale(X,Z/nZ) ∼=


Z/nZ if q = 0,

(Z/nZ)2g if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.

Proof. The Kummer sequence 0 → µn,X → Gm,X
(·)n−−→ Gm,X → 0 give the long

exact cohomology sequence

0 // µn(k) // k∗
(·)n // k∗

zz
H1
étale(X,µn) // Pic(X)

(·)n // Pic(X)

zz
H2
étale(X,µn) // 0 // 0 . . .

The n power map k∗ → k∗ is surjective since k is algebraically closed. So we need

to compute the kernel and cokernel of the map Pic(X)
(·)n−−→ Pic(X). Consider the

commutative diagram with exact rows

0 // Pic0(X) //

(·)n
����

Pic(X)
deg
//

(·)n

��

Z //� _

n

��

0

0 // Pic0(X) // Pic(X)
deg // Z // 0

where the left vertical map is surjective by Proposition 44.66.2 (3). Applying the
snake lemma gives the desired identifications. �

Lemma 44.66.4. Let π : X → Y be a nonconstant morphism of smooth projective
curves over an algebraically closed field k and let n ≥ 1 be invertible in k. The map

π∗ : H2
étale(Y, µn) −→ H2

étale(X,µn)

is given by multiplication by the degree of π.
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Proof. Observe that the statement makes sense as we have identified both coho-
mology groups H2

étale(Y, µn) and H2
étale(X,µn) with Z/nZ in Lemma 44.66.3. In

fact, if L is a line bundle of degree 1 on Y with class [L] ∈ H1
étale(Y,Gm), then

the coboundary of [L] is the generator of H2
étale(Y, µn). Here the coboundary is the

coboundary of the long exact sequence of cohomology associated to the Kummer
sequence. Thus the result of the lemma follows from the fact that the degree of the
line bundle π∗L on X is deg(π). Some details omitted. �

Lemma 44.66.5. Let X be an affine smooth curve over an algebraically closed
field k and n ∈ k∗. Then

(1) H0
étale(X,µn) = µn(k);

(2) H1
étale(X,µn) ∼= (Z/nZ)

2g+r−1
, where r is the number of points in X̄−X

for some smooth projective compactification X̄ of X, and
(3) for all q ≥ 2, Hq

étale(X,µn) = 0.

Proof. Write X = X̄ − {x1, . . . , xr}. Then Pic(X) = Pic(X̄)/R, where R is the
subgroup generated by OX̄(xi), 1 ≤ i ≤ r. Since r ≥ 1, we see that Pic0(X) →
Pic(X) is surjective, hence Pic(X) is divisible. Applying the Kummer sequence, we
get (1) and (3). For (2), recall that

H1
étale(X,µn) = {(L, α)|L ∈ Pic(X), α : L⊗n → OX}/ ∼=

= {(L̄, D, ᾱ)}/R̃

where L̄ ∈ Pic0(X̄), D is a divisor on X̄ supported on {x1, . . . , xr} and ᾱ :
L̄⊗n ∼= OX̄(D) is an isomorphism. Note that D must have degree 0. Further

R̃ is the subgroup of triples of the form (OX̄(D′), nD′, 1⊗n) where D′ is supported
on {x1, . . . , xr} and has degree 0. Thus, we get an exact sequence

0 −→ H1
étale(X̄, µn) −→ H1

étale(X,µn) −→
r⊕
i=1

Z/nZ
∑
−−−→ Z/nZ −→ 0

where the middle map sends the class of a triple (L̄, D, ᾱ) with D =
∑r
i=1 ai(xi)

to the r-tuple (ai)
r
i=1. It now suffices to use Lemma 44.66.3 to count ranks. �

Remark 44.66.6. The “natural” way to prove the previous corollary is to excise
X from X̄. This is possible, we just haven’t developed that theory.

Remark 44.66.7. Let k be an algebraically closed field. Let n be an integer prime
to the characteristic of k. Recall that

Gm,k = A1
k \ {0} = P1

k \ {0,∞}
We claim there is a canonical isomorphism

H1
étale(Gm,k, µn) = Z/nZ

What does this mean? This means there is an element 1k in H1
étale(Gm,k, µn) such

that for every morphism Spec(k′)→ Spec(k) the pullback map on étale cohomology
for the map Gm,k′ → Gm,k maps 1k to 1k′ . (In particular this element is fixed under
all automorphisms of k.) To see this, consider the µn,Z-torsor Gm,Z → Gm,Z,
x 7→ xn. By the indentification of torsors with first cohomology, this pulls back
to give our canonical elements 1k. Twisting back we see that there are canonical
identifications

H1
étale(Gm,k,Z/nZ) = Hom(µn(k),Z/nZ),
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i.e., these isomorphisms are compatible with respect to maps of algebraically closed
fields, in particular with respect to automorphisms of k.

44.67. Extension by zero

The general material in Modules on Sites, Section 18.19 allows us to make the
following definition.

Definition 44.67.1. Let j : U → X be an étale morphism of schemes.

(1) The restriction functor j−1 : Sh(Xétale) → Sh(Uétale) has a left adjoint
jSh! : Sh(Xétale)→ Sh(Uétale).

(2) The restriction functor j−1 : Ab(Xétale) → Ab(Uétale) has a left adjoint
which is denoted j! : Ab(Uétale) → Ab(Xétale) and called extension by
zero.

(3) Let Λ be a ring. The restriction functor j−1 : Mod(Xétale,Λ)→ Mod(Uétale,Λ)
has a left adjoint which is denoted j! : Mod(Uétale,Λ) → Mod(Xétale,Λ)
and called extension by zero.

If F is an abelian sheaf on Xétale, then j!F 6= jSh! F in general. On the other hand
j! for sheaves of Λ-modules agrees with j! on underlying abelian sheaves (Mod-
ules on Sites, Remark 18.19.5). The functor j! is characterized by the functorial
isomorphism

HomX(j!F ,G) = HomU (F , j−1G)

for all F ∈ Ab(Uétale) and G ∈ Ab(Xétale). Similarly for sheaves of Λ-modules.

To describe it more explicitly, recall that j−1 is just the restriction via the functor
Uétale → Xétale. In other words, j−1G(U ′) = G(U ′) for U ′ étale over U . For
F ∈ Ab(Uétale) we consider the presheaf

jPSh! F : Xétale −→ Ab, V 7−→
⊕

V→U
F(V )

Then j!F is the sheafification of jPSh! F .

Exercise 44.67.2. Prove directly that j! is left adjoint to j−1 and that j∗ is right
adjoint to j−1.

Proposition 44.67.3. Let j : U → X be an étale morphism of schemes. Let F in
Ab(Uétale). If x : Spec(k)→ X is a geometric point of X, then

(j!F)x =
⊕

u:Spec(k)→U, f(u)=x
Fū.

In particular, j! is an exact functor.

Proof. Exactness of j! is very general, see Modules on Sites, Lemma 18.19.3. Of
course it does also follow from the description of stalks. The formula for the stalk
of j!F can be deduced directly from the explicit description of j! given above. On
the other hand, we can deduce it from the very general Modules on Sites, Lemma
18.37.1 and the description of points of the small étale site in terms of geometric
points, see Lemma 44.29.12. �

Lemma 44.67.4 (Extension by zero commutes with base change). Let f : Y → X
be a morphism of schemes. Let j : V → X be an étale morphism. Consider the
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fibre product

V ′ = Y ×X V

f ′

��

j′
// Y

f

��
V

j // X

Then we have j′!f
′−1 = f−1j! on abelian sheaves and on sheaves of modules.

Proof. This is true because j′!f
′−1 is left adjoint to f ′∗(j

′)−1 and f−1j! is left adjoint
to j−1f∗. Further f ′∗(j

′)−1 = j−1f∗ because f∗ commutes with étale localization (by
construction). In fact, the lemma holds very generally in the setting of a morphism
of sites, see Modules on Sites, Lemma 18.20.1. �

Lemma 44.67.5. Let j : U → X be finite and étale. Then j! = j∗ on abelian
sheaves and sheaves of Λ-modules.

Proof. We prove this in the case of abelian sheaves. By Modules on Sites, Remark
18.19.7 there is a natural transformation j! → j∗. It suffices to check this is an
isomorphism étale locally on X. Thus we may assume U → X is a finite disjoint
union of isomorphisms, see Étale Morphisms, Lemma 40.18.3. We omit the proof
in this case. �

Lemma 44.67.6. Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. For every abelian sheaf on Xétale there is a canonical short exact
sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xétale.

Proof. We obtain the maps by the adjointness properties of the functors involved.
For a geometric point x in X we have either x ∈ U in which case the map on the
left hand side is an isomorphism on stalks and the stalk of i∗i

−1F is zero or x ∈ Z
in which case the map on the right hand side is an isomorphism on stalks and
the stalk of j!j

−1F is zero. Here we have used the description of stalks of Lemma
44.47.3 and Proposition 44.67.3. �

44.68. Locally constant sheaves

This section is the analogue of Modules on Sites, Section 18.42 for the étale site.

Definition 44.68.1. Let X be a scheme. Let F be a sheaf of sets on Xétale.

(1) Let E be a set. We say F is the constant sheaf with value E if F is the
sheafification of the presheaf U 7→ E. Notation: EX or E.

(2) We say F is a constant sheaf if it is isomorphic to a sheaf as in (1).
(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite sets.

Let F be a sheaf of abelian groups on Xétale.

(1) Let A be an abelian group. We say F is the constant sheaf with value A
if F is the sheafification of the presheaf U 7→ A. Notation: AX or A.
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(2) We say F is a constant sheaf if it is isomorphic as an abelian sheaf to a
sheaf as in (1).

(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite abelian groups.

Let Λ be a ring. Let F be a sheaf of Λ-modules on Xétale.

(1) Let M be a Λ-module. We say F is the constant sheaf with value M if F
is the sheafification of the presheaf U 7→M . Notation: MX or M .

(2) We say F is a constant sheaf if it is isomorphic as a sheaf of Λ-modules
to a sheaf as in (1).

(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

Lemma 44.68.2. Let f : X → Y be a morphism of schemes. If G is a locally
constant sheaf of sets, abelian groups, or Λ-modules on Yétale, the same is true for
f−1G on Xétale.

Proof. Holds for any morphism of topoi, see Modules on Sites, Lemma 18.42.2. �

Lemma 44.68.3. Let f : X → Y be a finite étale morphism of schemes. If F
is a (finite) locally constant sheaf of sets, (finite) locally constant sheaf of abelian
groups, or (finite type) locally constant sheaf of Λ-modules on Xétale, the same is
true for f∗F on Yétale.

Proof. The construction of f∗ commutes with étale localization. A finite étale
morphism is locally isomorphic to a disjoint union of isomorphisms, see Étale Mor-
phisms, Lemma 40.18.3. Thus the lemma says that if Fi, i = 1, . . . , n are (finite)
locally constant sheaves of sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly

for sheaves of abelian groups and modules. �

Lemma 44.68.4. Let X be a scheme and F a sheaf of sets on Xétale. Then the
following are equivalent

(1) F is finite locally constant, and
(2) F = hU for some finite étale morphism U → X.

Proof. A finite étale morphism is locally isomorphic to a disjoint union of isomor-
phisms, see Étale Morphisms, Lemma 40.18.3. Thus (2) implies (1). Conversely, if
F is finite locally constant, then there exists an étale covering {Xi → X} such that
F|Xi is representable by Ui → Xi finite étale. Arguing exactly as in the proof of
Descent, Lemma 34.35.1 we obtain a descent datum for schemes (Ui, ϕij) relative
to {Xi → X} (details omitted). This descent datum is effective for example by
Descent, Lemma 34.33.1 and the resulting morphism of schemes U → X is finite
étale by Descent, Lemmas 34.19.21 and 34.19.27. �

Lemma 44.68.5. Let X be a scheme.

(1) Let ϕ : F → G be a map of locally constant sheaves of sets on Xétale. If
F is finite locally constant, there exists an étale covering {Ui → X} such
that ϕ|Ui is the map of constant sheaves associated to a map of sets.

(2) Let ϕ : F → G be a map of locally constant sheaves of abelian groups
on Xétale. If F is finite locally constant, there exists an étale covering

http://stacks.math.columbia.edu/tag/095A
http://stacks.math.columbia.edu/tag/095B
http://stacks.math.columbia.edu/tag/03RV
http://stacks.math.columbia.edu/tag/095C
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{Ui → X} such that ϕ|Ui is the map of constant abelian sheaves associated
to a map of abelian groups.

(3) Let Λ be a ring. Let ϕ : F → G be a map of locally constant sheaves
of Λ-modules on Xétale. If F is of finite type, then there exists an étale
covering {Ui → X} such that ϕ|Ui is the map of constant sheaves of Λ-
modules associated to a map of Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 18.42.3. �

Lemma 44.68.6. Let X be a scheme.

(1) The category of finite locally constant sheaves of sets is closed under finite
limits and colimits inside Sh(Xétale).

(2) The category of finite locally constant abelian sheaves is a weak Serre
subcategory of Ab(Xétale).

(3) Let Λ be a Noetherian ring. The category of finite type, locally constant
sheaves of Λ-modules on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).

Proof. This holds on any site, see Modules on Sites, Lemma 18.42.5. �

Lemma 44.68.7. Let X be a scheme. Let Λ be a ring. The tensor product of
two locally constant sheaves of Λ-modules on Xétale is a locally constant sheaf of
Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 18.42.6. �

Lemma 44.68.8. Let X be a connected scheme. Let Λ be a ring and let F be a
locally constant sheaf of Λ-modules. Then there exists a Λ-module M and an étale
covering {Ui → X} such that F|Ui ∼= M |Ui .

Proof. Choose an étale covering {Ui → X} such that F|Ui is constant, say F|Ui ∼=
MiUi

. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For each

Λ-module M let IM = {i ∈ I |Mi
∼= M}. As étale morphisms are open we see that

UM =
⋃
i∈IM Im(Ui → X) is an open subset of X. Then X =

∐
UM is a disjoint

open covering of X. As X is connected only one UM is nonempty and the lemma
follows. �

44.69. Constructible sheaves

Let X be a scheme. A constructible locally closed subscheme of X is a locally closed
subscheme T ⊂ X such that the underlying topological space of T is a constructible
subset of X. If T, T ′ ⊂ X are locally closed subschemes with the same underlying
topological space, then Tétale ∼= T ′étale by the topological invariance of the étale
site (Theorem 44.46.1). Thus in the following definition we may assume are locally
closed subschemes are reduced.

Definition 44.69.1. Let X be a scheme.

(1) A sheaf of sets on Xétale is constructible if for every affine open U ⊂ X
there exists a finite decomposition of U into constructible locally closed
subschemes U =

∐
i Ui such that F|Ui is finite locally constant for all i.

(2) A sheaf of abelian groups on Xétale is constructible if for every affine open
U ⊂ X there exists a finite decomposition of U into constructible locally
closed subschemes U =

∐
i Ui such that F|Ui is finite locally constant for

all i.
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(3) Let Λ be a Noetherian ring. A sheaf of Λ-modules on Xétale is constructible
if for every affine open U ⊂ X there exists a finite decomposition of U
into constructible locally closed subschemes U =

∐
i Ui such that F|Ui is

of finite type and locally constant for all i.

It seems that this is the accepted definition. An alternative, which lends itself more
readily to generalizations beyond the étale site of a scheme, would have been to
define constructible sheaves by starting with hU , jU !Z/nZ, and jU !Λ where U runs
over all quasi-compact and quasi-separated objects of Xétale, and then take the
smallest full subcategory of Sh(Xétale), Ab(Xétale), and Mod(Xétale,Λ) containing
these and closed under finite limits and colimits. It follows from Lemma 44.69.6
and Lemmas 44.71.5, 44.71.7, and 44.71.6 that this produces the same category if
X is quasi-compact and quasi-separated. In general this does not produce the same
category however.

A disjoint union decomposition U =
∐
Ui of a scheme by locally closed subschemes

will be called a partition of U (compare with Topology, Section 5.27).

Lemma 44.69.2. Let X be a quasi-compact and quasi-separated scheme. Let F be
a sheaf of sets on Xétale. The following are equivalent

(1) F is constructible,
(2) there exists an open covering X =

⋃
Ui such that F|Ui is constructible,

and
(3) there exists a partition X =

⋃
Xi by constructible locally closed sub-

schemes such that F|Xi is finite locally constant.

A similar statement holds for abelian sheaves and sheaves of Λ-modules if Λ is
Noetherian.

Proof. It is clear that (1) implies (2).

Assume (2). For every x ∈ X we can find an i and an affine open neighbourhood
Vx ⊂ Ui of x. Hence we can find a finite affine open covering X =

⋃
Vj such that for

each j there exists a finite decomposition Vj =
∐
Vj,k by locally closed constructible

subsets such that F|Vj,k is finite locally constant. By Topology, Lemma 5.14.5 each
Vj,k is constructible as a subset of X. By Topology, Lemma 5.27.6 we can find
a finite stratification X =

∐
Xl with constructible locally closed strata such that

each Vj,k is a union of Xl. Thus (3) holds.

Assume (3) holds. Let U ⊂ X be an affine open. Then U ∩Xi is a constructible
locally closed subset of U (for example by Properties, Lemma 27.2.1) and U =∐
U ∩Xi is a partition of U as in Definition 44.69.1. Thus (1) holds. �

Lemma 44.69.3. Let X be a quasi-compact and quasi-separated scheme. Let F be
a sheaf of sets, abelian groups, Λ-modules (with Λ Noetherian) on Xétale. If there
exist constructible locally closed subschemes Ti ⊂ X such that (a) X =

⋃
Tj and

(b) F|Tj is constructible, then F is constructible.

Proof. First, we can assume the covering is finite as X is quasi-compact in the
spectral topology (Topology, Lemma 5.22.2 and Properties, Lemma 27.2.4). Ob-
serve that each Ti is a quasi-compact and quasi-separated scheme in its own right
(because it is constructible in X; details omitted). Thus we can find a finite par-
tition Ti =

∐
Ti,j into locally closed constructible parts of Ti such that F|Ti,j is

finite locally constant (Lemma 44.69.2). By Topology, Lemma 5.14.12 we see that
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Ti,j is a constructible locally closed subscheme of X. Then we can apply Topology,
Lemma 5.27.6 to X =

⋃
Ti,j to find the desired partition of X. �

Lemma 44.69.4. Let X be a scheme. Checking constructibility of a sheaf of sets,
abelian groups, Λ-modules (with Λ Noetherian) can be done Zariski locally on X.

Proof. The statement means if X =
⋃
Ui is an open covering such that F|Ui is

constructible, then F is constructible. If U ⊂ X is affine open, then U =
⋃
U ∩ Ui

and F|U∩Ui is constructible (it is trivial that the restriction of a constructible
sheaf to an open is constructible). It follows from Lemma 44.69.2 that F|U is
constructible, i.e., a suitable partition of U exists. �

Lemma 44.69.5. Let f : X → Y be a morphism of schemes. If F is a constructible
sheaf of sets, abelian groups, or Λ-modules (with Λ Noetherian) on Yétale, the same
is true for f−1F on Xétale.

Proof. By Lemma 44.69.4 this reduces to the case where X and Y are affine. By
Lemma 44.69.2 it suffices to find a finite partition of X by constructible locally
closed subschemes such that f−1F is finite locally constant on each of them. To
find it we just pull back the partition of Y adapted to F and use Lemma 44.68.2. �

Lemma 44.69.6. Let X be a scheme.

(1) The category of constructible sheaves of sets is closed under finite limits
and colimits inside Sh(Xétale).

(2) The category of constructible abelian sheaves is a weak Serre subcategory
of Ab(Xétale).

(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-
modules on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).

Proof. We prove (3). We will use the criterion of Homology, Lemma 12.9.3. Sup-
pose that ϕ : F → G is a map of constructible sheaves of Λ-modules. We have
to show that K = Ker(ϕ) and Q = Coker(ϕ) are constructible. Similarly, suppose
that 0→ F → E → G → 0 is a short exact sequence of sheaves of Λ-modules with
F , G constructible. We have to show that E is constructible. In both cases we can
replace X with the members of an affine open covering. Hence we may assume X
is affine. The we may further replace X by the members of a finite partition of X
by constructible locally closed subschemes on which F and G are of finite type and
locally constant. Thus we may apply Lemma 44.68.6 to conclude.

The proofs of (1) and (2) are very similar and are omitted. �

Lemma 44.69.7. Let X be a scheme. Let Λ be a Noetherian ring. The tensor
product of two constructible sheaves of Λ-modules on Xétale is a constructible sheaf
of Λ-modules.

Proof. The question immediately reduces to the case where X is affine. Since
any two partitions of X with constructible locally closed strata have a common
refinement of the same type and since pullbacks commute with tensor product we
reduce to Lemma 44.68.7. �

Lemma 44.69.8. Let X be a quasi-compact and quasi-separated scheme.

(1) Let F → G be a map of constructible sheaves of sets on Xétale. Then the
set of points x ∈ X where Fx → Fx is surjective, resp. injective, resp. is
isomorphic to a given map of sets, is constructible in X.
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(2) Let F be a constructible abelian sheaf on Xétale. The support of F is
constructible.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules
on Xétale. The support of F is constructible.

Proof. Proof of (1). LetX =
∐
Xi be a partion ofX by locally closed constructible

subschemes such that both F and G are finite locally constant over the parts (use
Lemma 44.69.2 for both F and G and choose a common refinement). Then apply
Lemma 44.68.5 to the restriction of the map to each part.

The proof of (2) and (3) is omitted. �

The following lemma will turn out to be very useful later on. It roughly says that
the category of constructible sheaves has a kind of weak “Noetherian” property.

Lemma 44.69.9. Let X be a quasi-compact and quasi-separated scheme. Let F =
colimi∈I Fi be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of
modules.

(1) If F and Fi are constructible sheaves of sets, then the ind-object Fi is
essentially constant with value F .

(2) If F and Fi are constructible sheaves of abelian groups, then the ind-object
Fi is essentially constant with value F .

(3) Let Λ be a Noetherian ring. If F and Fi are constructible sheaves of
Λ-modules, then the ind-object Fi is essentially constant with value F .

Proof. Proof of (1). We will use without further mention that finite limits and
colimits of constructible sheaves are constructible (Lemma 44.68.6). For each i let
Ti ⊂ X be the set of points x ∈ X where Fi,x → Fx is not surjective. Because Fi
and F are constructible Ti is a constructible subset of X (Lemma 44.69.8). Since
the stalks of F are finite and since F = colimi∈I Fi we see that for all x ∈ X we have
x 6∈ Ti for i large enough. Since X is a spectral space by Properties, Lemma 27.2.4
the constructible topology on X is quasi-compact by Topology, Lemma 5.22.2. Thus
Ti = ∅ for i large enough. Thus Fi → F is surjective for i large enough. Assume
now that Fi → F is surjective for all i. Choose i ∈ I. For i′ ≥ i denote Si′ ⊂ X the
set of points x such that the number of elements in Im(Fi,x → Fx) is equal to the
number of elements in Im(Fi,x → Fi′,x). Because Fi, Fi′ and F are constructible
Si′ is a constructible subset of X (details omitted; hint: use Lemma 44.69.8). Since
the stalks of Fi and F are finite and since F = colimi′≥i Fi′ we see that for all
x ∈ X we have x 6∈ Si′ for i′ large enough. By the same argument as above we can
find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F as desired.

Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of
sets. Thus case (2) follows from (1).

Proof of (3). We will use without further mention that the category of constructible
sheaves of Λ-modules is abelian (Lemma 44.68.6). For each i let Qi be the cokernel
of the map Fi → F . The support Ti of Qi is a constructible subset of X as Qi is
constructible (Lemma 44.69.8). Since the stalks of F are finite Λ-modules and since
F = colimi∈I Fi we see that for all x ∈ X we have x 6∈ Ti for i large enough. Since
X is a spectral space by Properties, Lemma 27.2.4 the constructible topology on X
is quasi-compact by Topology, Lemma 5.22.2. Thus Ti = ∅ for i large enough. This
proves the first assertion. For the second, assume now that Fi → F is surjective
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for all i. Choose i ∈ I. For i′ ≥ i denote Ki′ the image of Ker(Fi → F) in Fi′ .
The support Si′ of Ki′ is a constructible subset of X as Ki′ is constructible. Since
the stalks of Ker(Fi → F) are finite Λ-modules and since F = colimi′≥i Fi′ we see
that for all x ∈ X we have x 6∈ Si′ for i′ large enough. By the same argument as
above we can find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F
as desired. �

44.70. Auxiliary lemmas on morphisms

Some lemmas that are useful for proving functioriality properties of constructible
sheaves.

Lemma 44.70.1. Let U → X be an étale morphism of quasi-compact and quasi-
separated schemes (for example an étale morphism of Noetherian schemes). Then
there exists a partition X =

∐
iXi by constructible locally closed subschemes such

that Xi ×X U → Xi is finite étale for all i.

Proof. If U → X is separated, then this is More on Morphisms, Lemma 36.31.10.
In general, we may assume X is affine. Choose a finite affine open covering U =⋃
Uj . Apply the previous case to all the morphisms Uj → X and Uj∩Uj′ → X and

choose a common refinement X =
∐
Xi of the resulting partitions. After refining

the partition further we may assume Xi affine as well. Fix i and set V = U ×X Xi.
The morphisms Vj = Uj ×X Xi → Xi and Vjj′ = (Uj ∩ Uj′)×X Xi → Xi are finite
étale. Hence Vj and Vjj′ are affine schemes and Vjj′ ⊂ Vj is closed as well as open
(since Vjj′ → Xi is proper, so Morphisms, Lemma 28.42.7 applies). Then V =

⋃
Vj

is separated because O(Vj) → O(Vjj′) is surjective, see Schemes, Lemma 25.21.8.
Thus the previous case applies to V → Xi and we can further refine the partition
if needed (it actually isn’t but we don’t need this). �

In the Noetherian case one can prove the preceding lemma by Noetherian induction
and the following amusing lemma.

Lemma 44.70.2. Let f : X → Y be a morphism of schemes which is quasi-
compact, quasi-separated, and locally of finite type. If η is a generic point of on
irreducible component of Y such that f−1(η) is finite, then there exists an open
V ⊂ Y containing η such that f−1(V )→ V is finite.

Proof. This is Morphisms, Lemma 28.47.1. �

The statement of the following lemma can be strengthened a bit.

Lemma 44.70.3. Let f : Y → X be a quasi-finite and finitely presented morphism
of affine schemes.

(1) There exists a surjective morphism of affine schemes X ′ → X and a closed
subscheme Z ′ ⊂ Y ′ = X ′ ×X Y such that
(a) Z ′ ⊂ Y ′ is a thickening, and
(b) Z ′ → X ′ is a finite étale morphism.

(2) There exists a finite partition X =
∐
Xi by locally closed, constructible,

affine strata, and surjective finite locally free morphisms X ′i → Xi such
that the reduction of Y ′i = X ′i×XY → X ′i is isomorphic to

∐ni
j=1(X ′i)red →

(X ′i)red for some ni.
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Proof. Setting X ′ =
∐
X ′i we see that (2) implies (1). Write X = Spec(A) and

Y = Spec(B). Write A as a filtered colimit of finite type Z-algebras Ai. Since B
is an A-algebra of finite presentation, we see that there exists 0 ∈ I and a finite
type ring map A0 → B0 such that B = colimBi with Bi = Ai⊗A0

B0, see Algebra,
Lemma 10.123.6. For i sufficiently large we see that Ai → Bi is quasi-finite, see
Limits, Lemma 31.14.2. Thus we reduce to the case of finite type algebras over Z,
in particular we reduce to the Noetherian case. (Details omitted.)

Assume X and Y Noetherian. In this case any locally closed subset of X is con-
structible. By Lemma 44.70.2 and Noetherian induction we see that there is a
finite partition X =

∐
Xi of X by locally closed strata such that Y ×X Xi → Xi

is finite. We can refine this partition to get affine strata. Thus after replacing X
by X ′ =

∐
Xi we may assume Y → X is finite.

Assume X and Y Noetherian and Y → X finite. Suppose that we can prove (2)
after base change by a surjective, flat, quasi-finite morphism U → X. Thus we
have a partition U =

∐
Ui and finite locally free morphisms U ′i → Ui such that

U ′i ×X Y → U ′i is isomorphic to
∐ni
j=1(U ′i)red → (U ′i)red for some ni. Then, by the

argument in the previous paragraph, we can find a partition X =
∐
Xj with locally

closed affine strata such that Xj ×X Ui → Xj is finite for all i, j. By Morphisms,
Lemma 28.46.2 each Xj ×X Ui → Xj is finite locally free. Hence Xj ×X U ′i → Xj

is finite locally free (Morphisms, Lemma 28.46.3). It follows that X =
∐
Xj and

X ′j =
∐
iXj ×X U ′i is a solution for Y → X. Thus it suffices to prove the result (in

the Noetherian case) after a surjective flat quasi-finite base change.

Applying Morphisms, Lemma 28.46.6 we see we may assume that Y is a closed
subscheme of an affine scheme Z which is (set theoretically) a finite union Z =⋃
i∈I Zi of closed subschemes mapping isomorphically to X. In this case we will

find a finite partition of X =
∐
Xj with affine locally closed strata that works

(in other words X ′j = Xj). Set Ti = Y ∩ Zi. This is a closed subscheme of X.
As X is Noetherian we can find a finite partition of X =

∐
Xj by affine locally

closed subschemes, such that each Xj ×X Ti is (set theoretically) a union of strata
Xj ×X Zi. Replacing X by Xj we see that we may assume I = I1q I2 with Zi ⊂ Y
for i ∈ I1 and Zi ∩ Y = ∅ for i ∈ I2. Replacing Z by

⋃
i∈I1 Zi we see that we may

assume Y = Z. Finally, we can replace X again by the members of a partition as
above such that for every i, i′ ⊂ I the intersection Zi ∩ Zi′ is either empty or (set
theoretically) equal to Zi and Zi′ . This clearly means that Y is (set theoretically)
equal to a disjoint union of the Zi which is what we wanted to show. �

44.71. More on constructible sheaves

Let Λ be a Noetherian ring. Let X be a scheme. We often consider Xétale as a
ringed site with sheaf of rings Λ. In case of abelian sheaves we often take Λ = Z/nZ
for a suitable integer n.

Lemma 44.71.1. Let j : U → X be an étale morphism of quasi-compact and
quasi-separated schemes.

(1) The sheaf hU is a constructible sheaf of sets.
(2) The sheaf j!M is a constructible abelian sheaf for a finite abelian group

M .
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(3) If Λ is a Noetherian ring and M is a finite Λ-module, then j!M is a
constructible sheaf of Λ-modules on Xétale.

Proof. By Lemma 44.70.1 there is a partition
∐
iXi such that πi : j−1(Xi)→ Xi

is finite étale. The restriction of hU to Xi is hj−1(Xi) which is finite locally constant
by Lemma 44.68.4. For cases (2) and (3) we note that

j!(M)|Xi = πi!(M) = πi∗(M)

by Lemmas 44.67.4 and 44.67.5. Thus it suffices to show the lemma for π : Y → X
finite étale. This is Lemma 44.68.3. �

Lemma 44.71.2. Let X be a quasi-compact and quasi-separated scheme.

(1) Let F be a sheaf of sets on Xétale. Then F is a filtered colimit of con-
structible sheaves of sets.

(2) Let F be a torsion abelian sheaf on Xétale. Then F is a filtered colimit of
constructible abelian sheaves.

(3) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale. Then
F is a filtered colimit of constructible sheaves of Λ-modules.

Proof. Let B be the collection of quasi-compact and quasi-separated objects of
Xétale. By Modules on Sites, Lemma 18.29.6 any sheaf of sets is a filtered colimit
of sheaves of the form

Coequalizer
( ∐

j=1,...,m hVj
//
//
∐
i=1,...,n jUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas
44.71.1 and 44.69.6 these coequalizers are constructible. This proves (1).

Let Λ be a Noetherian ring. By Modules on Sites, Lemma 18.29.6 Λ-modules F is
a filtered colimit of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj −→

⊕
i=1,...,n

jUi!ΛUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas
44.71.1 and 44.69.6 these cokernels are constructible. This proves (3).

Proof of (2). First write F =
⋃
F [n] where F [n] is the n-torsion subsheaf. Then

we can view F [n] as a sheaf of Z/nZ-modules and apply (3). �

Lemma 44.71.3. Let f : X → Y be a surjective morphism of quasi-compact and
quasi-separated schemes.

(1) Let F be a sheaf of sets on Yétale. Then F is constructible if and only if
f−1F is constructible.

(2) Let F be an abelian sheaf on Yétale. Then F is constructible if and only
if f−1F is constructible.

(3) Let Λ be a Noetherian ring. Let F be sheaf of Λ-modules on Yétale. Then
F is constructible if and only if f−1F is constructible.

Proof. One implication follows from Lemma 44.69.5. For the converse, assume
f−1F is constructible. Write F = colimFi as a filtered colimit of constructible
sheaves (of sets, abelian groups, or modules) using Lemma 44.71.2. Since f−1 is
a left adjoint it commutes with colimits (Categories, Lemma 4.24.4) and we see
that f−1F = colim f−1Fi. By Lemma 44.69.9 we see that f−1Fi → f−1F is
surjective for all i large enough. Since f is surjective we conclude (by looking at
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stalks using Lemma 44.36.2 and Theorem 44.29.10) that Fi → F is surjective for
all i large enough. Thus F is the quotient of a constructible sheaf G. Applying
the argument once more to G ×F G or the kernel of G → F we conclude using that
f−1 is exact and that the category of constructible sheaves (of sets, abelian groups,
or modules) is preserved under finite (co)limits or (co)kernels inside Sh(Yétale),
Sh(Xétale), Ab(Yétale), Ab(Xétale), Mod(Yétale,Λ), and Mod(Xétale,Λ), see Lemma
44.69.6. �

Lemma 44.71.4. Let f : X → Y be a finite étale morphism of schemes. Let Λ
be a Noetherian ring. If F is a constructible sheaf of sets, constructible sheaf of
abelian groups, or constructible sheaf of Λ-modules on Xétale, the same is true for
f∗F on Yétale.

Proof. By Lemma 44.69.4 it suffices to check this Zariski locally on Y and by
Lemma 44.71.3 we may replace Y by an étale cover (the construction of f∗ commutes
with étale localization). A finite étale morphism is étale locally isomorphic to a

disjoint union of isomorphisms, see Étale Morphisms, Lemma 40.18.3. Thus, in the
case of sheaves of sets, the lemma says that if Fi, i = 1, . . . , n are constructible
sheaves of sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly for sheaves of

abelian groups and modules. �

Lemma 44.71.5. Let X be a quasi-compact and quasi-separated scheme. The cat-
egory of constructible sheaves of sets is the full subcategory of Sh(Xétale) consisting
of sheaves F which are coequalizers

F1
//
// F0

// F

such that Fi, i = 0, 1 is a finite coproduct of sheaves of the form hU with U a
quasi-compact and quasi-separated object of Xétale.

Proof. In the proof of Lemma 44.71.2 we have seen that sheaves of this form are
constructible. For the converse, suppose that for every constructible sheaf of sets
F we can find a surjection F0 → F with F0 as in the lemma. Then we find our
surjection F1 → F0 ×F F0 because the latter is constructible by Lemma 44.69.6.

By Topology, Lemma 5.27.6 we may choose a finite stratification X =
∐
i∈I Xi

such that F is finite locally constant on each stratum. We will prove the result by
induction on the cardinality of I. Let i ∈ I be a minimal element in the partial
ordering of I. Then Xi ⊂ X is closed. By induction, there exist finitely many
quasi-compact and quasi-separated objects Uα of (X \ Xi)étale and a surjective
map

∐
hUα → F|X\Xi . These determine a map∐

hUα → F

which is surjective after restricting to X \ Xi. By Lemma 44.68.4 we see that
F|Xi = hV for some scheme V finite étale over Xi. Let v be a geometric point
of V lying over x ∈ Xi. We may think of v as an element of the stalk Fx = Vx.
Thus we can find an étale neighbourhood (U, u) of x and a section s ∈ F(U) whose
stalk at x gives v. Thinking of s as a map s : hU → F , restricting to Xi we obtain
a morphism s|Xi : U ×X Xi → V over Xi which maps u to v. Since V is quasi-
compact (finite over the closed subscheme Xi of the quasi-compact scheme X) a
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finite number s(1), . . . , s(m) of these sections of F over U (1), . . . , U (m) will determine
a jointly surjective map ∐

s(j)|Xi :
∐

U (j) ×X Xi −→ V

Then we obtain the surjection∐
hUα q

∐
hU(j) → F

as desired. �

Lemma 44.71.6. Let X be a quasi-compact and quasi-separated scheme. Let Λ
be a Noetherian ring. The category of constructible sheaves of Λ-modules is exactly
the category of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj −→

⊕
i=1,...,n

jUi!ΛUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. In fact, we can
even assume Ui and Vj affine.

Proof. In the proof of Lemma 44.71.2 we have seen modules of this form are con-
structible. Since the category of constructible modules is abelian (Lemma 44.69.6)
it suffices to prove that given a constructible module F there is a surjection⊕

i=1,...,n
jUi!ΛUi −→ F

for some affine objects Ui in Xétale. By Modules on Sites, Lemma 18.29.6 there is
a surjection

Ψ :
⊕

i∈I
jUi!ΛUi −→ F

with Ui affine and the direct sum over a possibly infinite index set I. For every
finite subset I ′ ⊂ I set

TI′ = Supp(Coker(
⊕

i∈I′
jUi!ΛUi −→ F))

By the very definition of constructible sheaves, the set TI′ is a constructible subset
of X. We want to show that TI′ = ∅ for some I ′. Since every stalk Fx is a finite
type Λ-module and since Ψ is surjective, for every x ∈ X there is an I ′ such that
x 6∈ TI′ . In other words we have ∅ =

⋂
I′⊂I finite TI′ . Since X is a spectral space

by Properties, Lemma 27.2.4 the constructible topology on X is quasi-compact by
Topology, Lemma 5.22.2. Thus TI′ = ∅ for some I ′ ⊂ I finite as desired. �

Lemma 44.71.7. Let X be a quasi-compact and quasi-separated scheme. The
category of constructible abelian sheaves is exactly the category of abelian sheaves
of the form

Coker
(⊕

j=1,...,m
jVj !Z/mjZ

Vj
−→

⊕
i=1,...,n

jUi!Z/niZUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale and mj, ni
positive integers. In fact, we can even assume Ui and Vj affine.

Proof. This follows from Lemma 44.71.6 applied with Λ = Z/nZ and the fact
that, since X is quasi-compact, every constructible abelian sheaf is annihilated by
some positive integer n (details omitted). �
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Lemma 44.71.8. Let X be a quasi-compact and quasi-separated scheme. Let Λ
be a Noetherian ring. Let F be a constructible sheaf of sets, abelian groups, or Λ-
modules on Xétale. Let G = colimGi be a filtered colimit of sheaves of sets, abelian
groups, or Λ-modules. Then

Mor(F ,G) = colim Mor(F ,Gi)

in the category of sheaves of sets, abelian groups, or Λ-modules on Xétale.

Proof. The case of sheaves of sets. By Lemma 44.71.5 it suffices to prove the lemma
for hU where U is a quasi-compact and quasi-separated object of Xétale. Recall that
Mor(hU ,G) = G(U). Hence the result follows from Sites, Lemma 7.11.2.

In the case of abelian sheaves or sheaves of modules, the result follows in the same
way using Lemmas 44.71.7 and 44.71.6. For the case of abelian sheaves, we add
that Mor(jU !Z/nZ,G) is equal to the n-torsion elements of G(U). �

Lemma 44.71.9. Let f : X → Y be a finite and finitely presented morphism of
schemes. Let Λ be a Noetherian ring. If F is a constructible sheaf of sets, abelian
groups, or Λ-modules on Xétale, then f∗F is too.

Proof. It suffices to prove this when X and Y are affine by Lemma 44.69.4. By
Lemmas 44.55.3 and 44.71.3 we may base change to any affine scheme surjective
over X. By Lemma 44.70.3 this reduces us to the case of a finite étale morphism
(because a thickening leads to an equivalence of étale topoi and even small étale
sites, see Theorem 44.46.1). The finite étale case is Lemma 44.71.4. �

Lemma 44.71.10. Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms. We assume that Xi is quasi-compact and quasi-
separated for all i ∈ I.

(1) The category of constructible sheaves of sets on Xétale is the colimit of the
categories of constructible sheaves of sets on (Xi)étale.

(2) The category of constructible abelian sheaves on Xétale is the colimit of
the categories of constructible abelian sheaves on (Xi)étale.

(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-
modules on Xétale is the colimit of the categories of constructible sheaves
of Λ-modules on (Xi)étale.

Proof. Proof of (1). Denote fi : X → Xi the projection maps. There are 3 parts to
the proof corresponding to “faithful”, “fully faithful”, and “essentially surjective”.

Faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose that
a, b : F0 → G0 are maps such that f−1

0 a = f−1
0 b. Let E ⊂ X0 be the set of points

x ∈ X0 such that ax = bx. By Lemma 44.69.8 the subset E ⊂ X0 is constructible.
By assumption X → X0 maps into E. By Limits, Lemma 31.3.7 we find an i ≥ 0
such that Xi → X0 maps into E. Hence f−1

i0 a = f−1
i0 b.

Fully faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose
that a : f−1

0 F0 → f−1
0 G0 is a map. We claim there is an i and a map ai : f−1

i0 F0 →
f−1
i0 G0 which pulls back to a on X. By Lemma 44.71.5 we can replace F0 by a finite

coproduct of sheaves represented by quasi-compact and quasi-separated objects of
(X0)étale. Thus we have to show: If U0 → X0 is such an object of (X0)étale, then

f−1
0 G(U) = colimi≥0 f

−1
i0 G(Ui)
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where U = X ×X0
U0 and Ui = Xi ×X0

U0. This is a special case of Theorem
44.52.1.

Essentially surjective. We have to show every constructible F on X is isomorphic
to f−1

i F for some constructible Fi on Xi. Applying Lemma 44.71.5 and using the
results of the previous two paragraphs, we see that it suffices to prove this for hU for
some quasi-compact and quasi-separated object U of Xétale. In this case we have
to show that U is the base change of a quasi-compact and quasi-separated scheme
étale over Xi for some i. This follows from Limits, Lemmas 31.9.1 and 31.7.8.

Proof of (3). The argument is very similar to the argument for sheaves of sets, but
using Lemma 44.71.6 instead of Lemma 44.71.5. Details omitted. Part (2) follows
from part (3) because every constructible abelian sheaf over a quasi-compact scheme
is a constructible sheaf of Z/nZ-modules for some n. �

Lemma 44.71.11. Let X be an irreducible scheme with generic point η.

(1) Let S′ ⊂ S be an inclusion of sets. If we have S′ ⊂ G ⊂ S in Sh(Xétale)
and S′ = Gη, then G = S′.

(2) Let A′ ⊂ A be an inclusion of abelian groups. If we have A′ ⊂ G ⊂ A in
Ab(Xétale) and A′ = Gη, then G = A′.

(3) Let M ′ ⊂ M be an inclsuion of modules over a ring Λ. If we have M ′ ⊂
G ⊂M in Mod(Xétale,Λ) and M ′ = Gη, then G = M ′.

Proof. This is true because for every étale morphism U → X with U 6= ∅ the point
η is in the image. �

Lemma 44.71.12. Let X be an integral normal scheme with function field K. Let
E be a set.

(1) Let g : Spec(K)→ X be the inclusion of the generic point. Then g∗E = E.
(2) Let j : U → X be the inclusion of a nonempty open. Then j∗E = E.

Proof. Proof of (1). Let x ∈ X be a point. Let OX,x be a strict henselization of
OX,x. By More on Algebra, Lemma 15.34.6 we see that OX,x is a normal domain.
Hence Spec(K) ×X Spec(OX,x) is irreducible. It follows that the stalk (g∗Ex is
equal to E, see Theorem 44.53.1.

Proof of (2). Since g factors through j there is a map j∗E → g∗E. This map is
injective because for every scheme V étale over X the set Spec(K) ×X V is dense
in U ×X V . On the other hand, we have a map E → j∗E and we conclude. �

44.72. Constructible sheaves on Noetherian schemes

If X is a Noetherian scheme then any locally closed subset is a constructible locally
closed subset (Topology, Lemma 5.15.1). Hence an abelian sheaf F on Xétale is
constructible if and only if there exists a finite partition X =

∐
Xi such that F|Xi is

finite locally constant. (By convention a partition of a topological space has locally
closed parts, see Topology, Section 5.27.) In other words, we can omit the adjective
“constructible” in Definition 44.69.1. Actually, the category of constructible sheaves
on Noetherian schemes has some additional properties which we will catalogue in
this section.

Proposition 44.72.1. Let X be a Noetherian scheme. Let Λ be a Noetherian ring.

(1) Any sub or quotient sheaf of a constructible sheaf of sets is constructible.
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(2) The category of constructible abelian sheaves on Xétale is a (strong) Serre
subcategory of Ab(Xétale). In particular, every sub and quotient sheaf of
a constructible abelian sheaf on Xétale is constructible.

(3) The category of constructible sheaves of Λ-modules on Xétale is a (strong)
Serre subcategory of Mod(Xétale,Λ). In particular, every submodule and
quotient module of a constructible sheaf of Λ-modules on Xétale is con-
structible.

Proof. Proof of (1). Let G ⊂ F with F a constructible sheaf of sets on Xétale.
Let η ∈ X be a generic point of an irreducible component of X. By Noetherian
induction it suffices to find an open neighbourhood U of η such that G|U is locally
constant. To do this we may replace X by an étale neighbourhood of η. Hence we
may assume F is constant and X is irreducible.

Say F = S for some finite set S. Then S′ = Gη ⊂ S say S′ = {s1, . . . , st}. Pick an
étale neighbourhood (U, u) of η and sections σ1, . . . , σt ∈ G(U) which map to si in
Gη ⊂ S. Since σi maps to an element si ∈ S′ ⊂ S = Γ(X,F) we see that the two
pullbacks of σi to U ×X U are the same as sections of G. By the sheaf condition
for G we find that σi comes from a section of G over the open Im(U → X) of X.
Shrinking X we may assume S′ ⊂ G ⊂ S. Then we see that S′ = G by Lemma
44.71.11.

Let F → Q be a surjection with F a constructible sheaf of sets on Xétale. Then
set G = F ×Q F . By the first part of the proof we see that G is constructible as a
subsheaf of F×F . This in turn implies that Q is constructible, see Lemma 44.69.6.

Proof of (3). we already know that constructible sheaves of modules form a weak
Serre subcategory, see Lemma 44.69.6. Thus it suffices to show the statement on
submodules.

Let G ⊂ F be a submodule of a constructible sheaf of Λ-modules on Xétale. Let η ∈
X be a generic point of an irreducible component of X. By Noetherian induction it
suffices to find an open neighbourhood U of η such that G|U is locally constant. To
do this we may replace X by an étale neighbourhood of η. Hence we may assume
F is constant and X is irreducible.

Say F = M for some finite Λ-module M . Then M ′ = Gη ⊂ M . Pick finitely
many elements s1, . . . , st generating M ′ as a Λ-module. (This is possible as Λ is
Noetherian and M is finite.) Pick an étale neighbourhood (U, u) of η and sections
σ1, . . . , σt ∈ G(U) which map to si in Gη ⊂ M . Since σi maps to an element
si ∈ M ′ ⊂ M = Γ(X,F) we see that the two pullbacks of σi to U ×X U are the
same as sections of G. By the sheaf condition for G we find that σi comes from
a section of G over the open Im(U → X) of X. Shrinking X we may assume
M ′ ⊂ G ⊂M . Then we see that M ′ = G by Lemma 44.71.11.

Proof of (2). This follows in the usual manner from (3). Details omitted. �

The following lemma tells us that every object of the abelian category of con-
structible sheaves on X is “Noetherian”, i.e., satisfies a.c.c. for subobjects.

Lemma 44.72.2. Let X be a Noetherian scheme. Let Λ be a Noetherian ring.
Consider inclusions

F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ F
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in the category of sheaves of sets, abelian groups, or Λ-modules. If F is con-
structible, then for some n we have Fn = Fn+1 = Fn+2 = . . ..

Proof. By Proposition 44.72.1 we see that Fi and colimFi are constructible. Then
the lemma follows from Lemma 44.69.9. �

Lemma 44.72.3. Let X be a Noetherian scheme.

(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective
map of sheaves

F −→
∐

i=1,...,n
fi,∗Ei

where fi : Yi → X is a finite morphism and Ei is a finite set.
(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective

map of abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite abelian group.
(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules

on Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite Λ-module.

Moreover, we may assume each Yi is irreducible, reduced, maps onto an irreducible
and reduced closed subscheme Zi ⊂ X such that Yi → Zi is finite étale over a
nonempty open of Zi.

Proof. Proof of (1). Because we have the ascending chain condition for subsheaves
of F (Lemma 44.72.2), it suffices to show that for every point x ∈ X we can
find a map ϕ : F → f∗E where f : Y → X is finite and E is a finite set such
that ϕx : Fx → (f∗S)x is injective. (This argument can be avoided by picking a
partition of X as in Lemma 44.69.2 and constructing a Yi → X for each irreducible
component of each part.) Let Z ⊂ X be the induced reduced scheme structure

(Schemes, Definition 25.12.5) on {x}. Since F is constructible, there is a finite
separable extension κ(x) ⊂ Spec(K) such that F|Spec(K) is the constant sheaf
with value E for some finite set E. Let Y → Z be the normalization of Z in
Spec(K). By Morphisms, Lemma 28.48.10 we see that Y is a normal integral
scheme. As κ(x) ⊂ K is finite, it is clear that K is the function field of Y . Denote
g : Spec(K) → Y the inclusion. The map F|Spec(K) → E is adjoint to a map
F|Y → g∗E = E (Lemma 44.71.12). This in turn is adjoint to a map ϕ : F → f∗E.
Observe that the stalk of ϕ at a geometric point x is injective: we may take a lift
y ∈ Y of x and the commutative diagram

Fx

��

(F|Y )y

(f∗E)x // Ey

proves the injectivity. We are not yet done, however, as the morphism f : Y → Z
is integral but in general not finite5.

5If X is a Nagata scheme, for example of finite type over a field, then Y → Z is finite.
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To fix the problem stated in the last sentence of the previous paragraph, we write
Y = limi∈I Yi with Yi irreducible, integral, and finite over Z. Namely, apply Prop-
erties, Lemma 27.20.13 to f∗OY viewed as a sheaf of OZ-algebras and apply the
functor Spec

Z
. Then f∗E = colim fi,∗E by Lemma 44.52.5. By Lemma 44.71.8 the

map F → f∗E factors through fi,∗E for some i. Since Yi → Z is a finite morphism
of integral schemes and since the function field extension induced by this morphism
is finite separable, we see that the morphism is finite étale over a nonempty open of
Z (use Algebra, Lemma 10.135.9; details omitted). This finishes the proof of (1).

The proofs of (2) and (3) are identical to the proof of (1). �

In the following lemma we use a standard trick to reduce a very general statement
to the Noetherian case.

Lemma 44.72.4. Let X be a quasi-compact and quasi-separated scheme.

(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective
map of sheaves

F −→
∐

i=1,...,n
fi,∗Ei

where fi : Yi → X is a finite and finitely presented morphism and Ei is a
finite set.

(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective
map of abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism and Mi is
a finite abelian group.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules
on Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism and Mi is
a finite Λ-module.

Proof. We will reduce this lemma to the Noetherian case by absolute Noetherian
approximation. Namely, by Limits, Proposition 31.4.4 we can write X = limt∈T Xt

with each Xt of finite type over Spec(Z) and with affine transition morphisms. By
Lemma 44.71.10 the category of constructible sheaves (of sets, abelian groups, or
Λ-modules) on Xétale is the colimit of the corresponding categories for Xt. Thus
our constructible sheaf F is the pullback of a similar constructible sheaf Ft over
Xt for some t. Then we apply the Noetherian case (Lemma 44.72.3) to find an
injection

Ft −→
∐

i=1,...,n
fi,∗Ei or Ft −→

⊕
i=1,...,n

fi,∗Mi

over Xt for some finite morphisms fi : Yi → Xt. Since Xt is Noetherian the
morphisms fi are of finite presentation. Since pullback is exact and since formation
of fi,∗ commutes with base change (Lemma 44.55.3), we conclude. �
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44.73. Cohomology with support in a closed subscheme

Let X be a scheme and let Z ⊂ X be a closed subscheme. Let F be an abelian
sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Definition 44.31.3). This is a left exact functor
which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)

and cohomology groups with support in Z defined by Hq
Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on Xétale. Let U = X \Z. Then the restriction
map I(X)→ I(U) is surjective (Cohomology on Sites, Lemma 21.12.6) with kernel
ΓZ(X, I). It immediately follows that for K ∈ D(Xétale) there is a distinguished
triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).

For an abelian sheaf F on Xétale we can consider the subsheaf of sections with
support in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}
Here we use the support of a section from Definition 44.31.3. Using the equivalence
of Proposition 44.47.4 we may view HZ(F) as an abelian sheaf on Zétale. Thus we
obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)

which is left exact, but in general not exact.

Lemma 44.73.1. Let i : Z → X be a closed immersion of schemes. Let I be
an injective abelian sheaf on Xétale. Then HZ(I) is an injective abelian sheaf on
Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Section 44.47)
and as I is injective on Xétale we conclude that HZ(I) is injective on Zétale. �

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 44.73.2. Let i : Z → X be a closed immersion of schemes. Let G be an
injective abelian sheaf on Zétale. Then HpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact and transforms injective abelian
sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 21.14.2). �
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Lemma 44.73.3. Let i : Z → X be a closed immersion of schemes. Let j : U → X
be the inclusion of the complement of Z. Let F be an abelian sheaf on Xétale. There
is a distinguished triangle

i∗RHZ(F)→ F → Rj∗(F|U )→ i∗RHZ(F)[1]

in D(Xétale). This produces an exact sequence

0→ i∗HZ(F)→ F → j∗(F|U )→ i∗H1
Z(F)→ 0

and isomorphisms Rpj∗(F|U ) ∼= i∗Hp+1
Z (F) for p ≥ 1.

Proof. To get the distinguished triangle, choose an injective resolution F → I•.
Then we obtain a short exact sequence of complexes

0→ i∗HZ(I•)→ I• → j∗(I•|U )→ 0

by the discussion above. Thus the distinguished triangle by Derived Categories,
Section 13.12. �

Let X be a scheme and let Z ⊂ X be a closed subscheme. We denote DZ(Xétale) the
strictly full saturated triangulated subcategory of D(Xétale) consisting of complexes
whose cohomology sheaves are supported on Z. Note that DZ(Xétale) only depends
on the underlying closed subset of X.

Lemma 44.73.4. Let i : Z → X be a closed immersion of schemes. The map
Rismall,∗ = ismall,∗ : D(Zétale) → D(Xétale) induces an equivalence D(Zétale) →
DZ(Xétale) with quasi-inverse

i−1
small|DZ(Xétale) = RHZ |DZ(Xétale)

Proof. Recall that i−1
small and ismall,∗ is an adjoint pair of exact functors such

that i−1
smallismall,∗ is isomorphic to the identify functor on abelian sheaves. See

Proposition 44.47.4 and Lemma 44.36.2. Thus ismall,∗ : D(Zétale)→ DZ(Xétale) is

fully faithfull and i−1
small determines a left inverse. On the other hand, suppose that

K is an object of DZ(Xétale) and consider the adjunction map K → ismall,∗i
−1
smallK.

Using exactness of ismall,∗ and i−1
small this induces the adjunction maps Hn(K) →

ismall,∗i
−1
smallH

n(K) on cohomology sheaves. Since these cohomology sheaves are
supported on Z we see these adjunction maps are isomorphisms and we conclude
that D(Zétale)→ DZ(Xétale) is an equivalence.

To finish the proof we have to show that RHZ(K) = i−1
smallK if K is an object of

DZ(Xétale). To do this we can use that K = ismall,∗i
−1
smallK as we’ve just proved

this is the case. Then we can choose a K-injective representative I• for i−1
smallK.

Since ismall,∗ is the right adjoint to the exact functor i−1
small, the complex ismall,∗I•

is K-injective (Derived Categories, Lemma 13.29.10). We see that RHZ(K) is
computed by HZ(ismall,∗I•) = I• as desired. �

Lemma 44.73.5. Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let F
be a quasi-coherent OX-module and denote Fa the associated quasi-coherent sheaf
on the small étale site of X (Proposition 44.17.1). Then

(1) Hq
Z(X,F) agrees with Hq

Z(Xétale,Fa),
(2) if the complement of Z is retrocompact in X, then i∗HqZ(Fa) is a quasi-

coherent sheaf of OX-modules equal to (i∗Hq(F))a.
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Proof. Let j : U → X be the inclusion of the complement of Z. The statement (1)
on cohomology groups follows from the long exact sequences for cohomology with
supports and the agreements Hq(Xétale,Fa) = Hq(X,F) and Hq(Uétale,Fa) =
Hq(U,F), see Theorem 44.22.4. If j : U → X is a quasi-compact morphism, i.e., if
U ⊂ X is restrocompact, then Rqj∗ transforms quasi-coherent sheaves into quasi-
coherent sheaves (Cohomology of Schemes, Lemma 29.4.4) and commutes with
taking associated sheaf on étale sites (Descent, Lemma 34.7.15). We conclude by
applying Lemma 44.73.3. �

44.74. Affine analog of proper base change

In this section we discuss a result by Ofer Gabber, see [Gab94]. This was also
proved by Roland Huber, see [Hub93b].

Lemma 44.74.1. Let X be an integral normal scheme with separably closed func-
tion field.

(1) A separated étale morphism U → X is a disjoint union of open immer-
sions.

(2) All local rings of X are strictly henselian.

Proof. Let R be a normal domain whose fraction field is separably algebraically
closed. Let R → A be an étale ring map. Then A ⊗R K is as a K-algebra a
finite product

∏
i=1,...,nK of copies of K. Let ei, i = 1, . . . , n be the corresponding

idempotents of A ⊗R K. Since A is normal (Algebra, Lemma 10.151.7) the idem-
potents ei are in A (Algebra, Lemma 10.36.11). Hence A =

∏
Aei and we may

assume A ⊗R K = K. Since A ⊂ A ⊗R K = K (by flatness of R → A and since
R ⊂ K) we conclude that A is a domain. By the same argument we conclude that
A⊗RA ⊂ (A⊗RA)⊗RK = K. It follows that the map A⊗RA→ A is injective as
well as surjective. Thus R→ A defines an open immersion by Morphisms, Lemma
28.12.2 and Étale Morphisms, Theorem 40.14.1.

Let f : U → X be a separated étale morphism. Let η ∈ X be the generic point and
let f−1({η}) = {ξi}i∈I . The result of the previous paragraph shows the following:
For any affine open U ′ ⊂ U whose image in X is contained in an affine we have
U ′ =

∐
i∈I U

′
i where U ′i is the set of point of U ′ which are specializations of ξi.

Moreover, the morphism U ′i → X is an open immersion. It follows that Ui =

{ξi} is an open and closed subscheme of U and that Ui → X is locally on the
source an isomorphism. By Morphisms, Lemma 28.10.6 the fact that Ui → X is
separated, implies that Ui → X is injective and we conclude that Ui → X is an
open immersion, i.e., (1) holds.

Part (2) follows from part (1) and the description of the strict henselization of OX,x
as the local ring at x on the étale site of X (Lemma 44.33.1). �

Lemma 44.74.2. Let X be an affine integral normal scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. Let V → Z be an étale morphism
with V affine. Then V is a finite disjoint union of open subschemes of Z. If V → Z
is surjective and finite étale, then V → Z has a section.

Proof. By Algebra, Lemma 10.138.11 we can lift V to an affine scheme U étale
over X. Apply Lemma 44.74.1 to U → X to get the first statement.
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The final statement is a consequence of the first. Let V =
∐
i=1,...,n Vi be a finite

decomposition into open and closed subschemes with Vi → Z an open immersion.
As V → Z is finite we see that Vi → Z is also closed. Let Ui ⊂ Z be the image.
Then we have a decomposition into open and closed subshemes

Z =
∐

(A,B)

⋂
i∈A

Ui ∩
⋂

i∈B
U ci

where the disjoint union is over {1, . . . , n} = A q B where A has at least one
element. Each of the strata is contained in a single Ui and we find our section. �

Lemma 44.74.3. Let X be a normal integral affine scheme with with separably
closed function field. Let Z ⊂ X be a closed subscheme. For any finite abelian
group M we have H1

étale(Z,M) = 0.

Proof. By Cohomology on Sites, Lemma 21.5.3 an element of H1
étale(Z,M) corre-

sponds to a M -torsor F on Zétale. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over Z, Lemma 44.68.4.
Of course V → Z is surjective as a torsor is locally trivial. Since V → Z has a
section by Lemma 44.74.2 we are done. �

Lemma 44.74.4. Let X be a normal integral affine scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M
we have Hq

étale(Z,M) = 0 for q ≥ 1.

Proof. We have seen that the result is true for H1 in Lemma 44.74.3. We will
prove the result for q ≥ 2 by induction on q. Let ξ ∈ Hq

étale(Z,M).

Let X = Spec(R). Let I ⊂ R be the set of elements f ∈ R sch that ξ|Z∩D(f) = 0.
All local rings of Z are strictly henselian by Lemma 44.74.1 and Algebra, Lemma
10.145.30. Hence étale cohomology on Z or open subschemes of Z is equal to Zariski
cohomology, see Lemma 44.55.6. In particular ξ is Zariski locally trivial. It follows
that for every prime p of R there exists an f ∈ I with f 6∈ p. Thus if we can show
that I is an ideal, then 1 ∈ I and we’re done. It is clear that f ∈ I, r ∈ R implies
rf ∈ I. Thus we now assume that f, g ∈ I and we show that f + g ∈ I. Note that

D(f + g) ∩ Z = D(f(f + g)) ∩ Z ∪D(g(f + g)) ∩ Z
By Mayer-Vietoris (Cohomology, Lemma 20.9.2 which applies as étale cohomology
on open subschemes of Z equals Zariski cohomology) we have an exact sequence

Hq−1
étale(D(fg(f + g)) ∩ Z,M)

��
Hq
étale(D(f + g) ∩ Z,M)

��
Hq
étale(D(f(f + g)) ∩ Z,M)⊕Hq

étale(D(g(f + g)) ∩ Z,M)

and the result follows as the first group is zero by induction. �

Lemma 44.74.5. Let X be an affine scheme.

(1) There exists an integral surjective morphism X ′ → X such that for every
closed subscheme Z ′ ⊂ X ′, every finite abelian group M , and every q ≥ 1
we have Hq

étale(Z
′,M) = 0.
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(2) For any closed subscheme Z ⊂ X, finite abelian group M , q ≥ 1, and
ξ ∈ Hq

étale(Z,M) there exists a finite surjective morphism X ′ → X of
finite presentation such that ξ pulls back to zero in Hq

étale(X
′ ×X Z,M).

Proof. Write X = Spec(A). Write A = Z[xi]/J for some ideal J . Let R be the
integral closure of Z[xi] in an algebraic closure of the fraction field of Z[xi]. Let
A′ = R/JR and set X ′ = Spec(A′). This gives an example as in (1) by Lemma
44.74.4.

Proof of (2). Let X ′ → X be the integral surjective morphism we found above.
Certainly, ξ maps to zero in Hq

étale(X
′ ×X Z,M). We may write X ′ as a limit

X ′ = limX ′i of schemes finite and of finite presentation over X; this is easy to do in
our current affine case, but it is a special case of the more general Limits, Lemma
31.6.2. By Lemma 44.52.3 we see that ξ maps to zero in Hq

étale(X
′
i ×X Z,M) for

some i large enough. �

Lemma 44.74.6. Let X be an affine scheme. Let F be a torsion abelian sheaf on
Xétale. Let Z ⊂ X be a closed subscheme. Let ξ ∈ Hq

étale(Z,F|Z) for some q > 0.
Then there exists an injective map F → F ′ of torsion abelian sheaves on Xétale

such that the image of ξ in Hq
étale(Z,F ′|Z) is zero.

Proof. By Lemmas 44.71.2 and 44.52.2 we can find a map G → F with G a con-
structible abelian sheaf and ξ coming from an element ζ of Hq

étale(Z,G|Z). Suppose
we can find an injective map G → G′ of torsion abelian sheaves on Xétale such that
the image of ζ in Hq

étale(Z,G′|Z) is zero. Then we can take F ′ to be the pushout

F ′ = G′ qG F

and we conclude the result of the lemma holds. (Observe that restriction to Z is
exact, so commutes with finite limits and colimits and moreover it commutes with
arbitrary colimits as a left adjoint to pushforward.) Thus we may assume F is
constructible.

Assume F is constructible. By Lemma 44.72.4 it suffices to prove the result when
F is of the form f∗M where M is a finite abelian group and f : Y → X is a finite
morphism of finite presentation (such sheaves are still constructible by Lemma
44.71.9 but we won’t need this). Since formation of f∗ commutes with any base
change (Lemma 44.55.3) we see that the restriction of f∗M to Z is equal to the
pushforward of M via Y ×X Z → Z. By the Leray spectral sequence (Proposition
44.54.2) and vanishing of higher direct images (Proposition 44.55.2), we find

Hq
étale(Z, f∗M |Z) = Hq

étale(Y ×X Z,M).

By Lemma 44.74.5 we can find a finite surjective morphism Y ′ → Y of finite
presentation such that ξ maps to zero in Hq(Y ′ ×X Z,M). Denoting f ′ : Y ′ → X
the compostion Y ′ → Y → X we claim the map

f∗M −→ f ′∗M

is injective which finishes the proof by what was said above. To see the desired
injectivity we can look at stalks. Namely, if x : Spec(k)→ X is a geometric point,
then

(f∗M)x =
⊕

f(y)=x
M

http://stacks.math.columbia.edu/tag/09ZE
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by Proposition 44.55.2 and similarly for the other sheaf. Since Y ′ → Y is surjective
and finite we see that the induced map on geometric points lifting x is surjective
too and we conclude. �

The lemma above will take care of higher cohomology groups in Gabber’s result.
The following lemma will be used to deal with global sections.

Lemma 44.74.7. Let X be a quasi-compact and quasi-separated scheme. Let i :
Z → X be a closed immersion. Assume that

(1) for any sheaf F on XZar the map Γ(X,F)→ Γ(Z, i−1F) is bijective, and
(2) for any finite morphism X ′ → X assumption (1) holds for Z×XX ′ → X ′.

Then for any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1
smallF).

Proof. Let F be a sheaf on Xétale. There is a canonical (base change) map

i−1(F|XZar ) −→ (i−1
smallF)|ZZar

of sheaves on ZZar. This map is injective as can be seen by looking on stalks. The
stalk on the left hand side at z ∈ Z is the stalk of F|XZar at z. The stalk on the right
hand side is the colimit over all elementary étale neighbourhoods (U, u) → (X, z)
such that U×XZ → Z has a section over a neighbourhood of z. As étale morphisms
are open, the image of U → X is an open neighbourhood of z in X and injectivity
follows.

It follows from this and assumption (1) that the map Γ(X,F) → Γ(Z, i−1
smallF) is

injective. By (2) the same thing is true on all X ′ finite over X.

Let s ∈ Γ(Z, i−1
smallF). By construction of i−1

smallF there exists an étale covering
{Vj → Z}, étale morphisms Uj → X, sections sj ∈ F(Uj) and morphisms Vj → Uj
over X such that s|Vj is the pullback of sj . Observe that every closed subscheme
T ⊂ X meets Z by assumption (1) applied to the sheaf (T → X)∗Z for example.
Thus we see that

∐
Uj → X is surjective. By More on Morphisms, Lemma 36.31.14

we can find a finite surjective morphism X ′ → X such that X ′ → X Zariski locally
factors through

∐
Uj → X. It follows that s|Z′ Zariski locally comes from a section

of F|X′ . In other words, s|Z′ comes from t′ ∈ Γ(X ′,F|X′) by assumption (2). By
injectivity we conclude that the two pullbacks of t′ to X ′×XX ′ are the same (after
all this is true for the pullbacks of s to Z ′×Z Z ′). Hence we conclude t′ comes from
a section of F over X by Remark 44.55.5. �

Lemma 44.74.8. Let X be a topological space and let Z ⊂ X be a closed subset.
Suppose that for every x ∈ X the intersection Z ∩ {x} is connected (in particular
nonempty). Then for any sheaf F on X we have Γ(X,F) = Γ(Z,F|Z).

Proof. Let’s view a global section of F as an assignment x 7→ sx ∈ Fx satisfying
the continuity property (*) introduced in Sheaves, Section 6.17. If x  z is a
specialization on X, then there is a corresponding map on stalks Fz → Fx. Thus,
given a global section s = (sz)z∈Z of F|Z we can assign to every x ∈ X a value

sx by chooseing a z ∈ Z ∩ {x} and taking the image of sz. The fact that sx is

independent of the choice of z comes from the fact that we assumed Z ∩ {x} is
connected (details omitted). It is clear that this rule satisfies (*) and provides us
with a section s̃ of F over X which restricts to s. �

Lemma 44.74.9. Let (A, I) be a henselian pair. Set X = Spec(A) and Z =
Spec(A/I). For any sheaf F on Xétale we have Γ(X,F) = Γ(Z,F|Z).

http://stacks.math.columbia.edu/tag/09ZF
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Proof. Combine Lemmas 44.74.7 and 44.74.8 and More on Algebra, Lemmas 15.7.9
and 15.7.11. �

Finally, we can state and prove Gabber’s theorem.

Theorem 44.74.10 (Gabber). Let (A, I) be a henselian pair. Set X = Spec(A)
and Z = Spec(A/I). For any torsion abelian sheaf F on Xétale we have Hq

étale(X,F) =
Hq
étale(Z,F|Z).

Proof. The result holds for q = 0 by Lemma 44.74.9. Let q ≥ 1. Suppose the
result has been shown in all degrees < q. Let F be a torsion abelian sheaf. Let
F → F ′ be an injective map of torsion abelian sheaves (to be chosen later) with
cokernel Q so that we have the short exact sequence

0→ F → F ′ → Q→ 0

of torsion abelian sheaves on Xétale. This gives a map of long exact cohomology
sequences over X and Z part of which looks like

Hq−1
étale(X,F ′)

��

// Hq−1
étale(X,Q)

��

// Hq
étale(X,F)

��

// Hq
étale(X,F ′)

��
Hq−1
étale(Z,F ′|Z) // Hq−1

étale(Z,Q|Z) // Hq
étale(Z,F|Z) // Hq

étale(Z,F ′|Z)

Using this commutative diagram of abelian groups with exact rows we will finish
the proof.

Injectivity for F . Let ξ be a nonzero element of Hq
étale(X,F). By Lemma 44.74.6

applied with Z = X (!) we can find F ⊂ F ′ such that ξ maps to zero to the right.

Then ξ is the image of an element of Hq−1
étale(X,Q) and bijectivity for q − 1 implies

ξ does not map to zero in Hq
étale(Z,F|Z).

Surjectivity for F . Let ξ be an element of Hq
étale(Z,F|Z). By Lemma 44.74.6

applied with Z = Z we can find F ⊂ F ′ such that ξ maps to zero to the right.
Then ξ is the image of an element of Hq−1

étale(Z,Q|Z) and bijectivity for q−1 implies
ξ is in the image of the vertical map. �

Lemma 44.74.11. Let (A, I) be a henselian pair. Set X = Spec(A) and Z =
Spec(A/I). The functor

U 7−→ U ×X Z

is an equivalence of categories between finite étale schemes over X and finite étale
schemes over Z.

Proof. This is a translation of More on Algebra, Lemma 15.7.12. �

Lemma 44.74.12. Let X be a scheme with affine diagonal which can be covered
by n+ 1 affine opens. Let Z ⊂ X be a closed subscheme. Let A be a torsion sheaf
of rings on Xétale and let I be an injective sheaf of A-modules on Xétale. Then
Hq
étale(Z, I|Z) = 0 for q > n.

Proof. We will prove this by induction on n. If n = 0, then X is affine. Say
X = Spec(A) and Z = Spec(A/I). Let Ah be the filtered colimit of étale A-algebras
B such that A/I → B/IB is an isomorphism. Then (Ah, IAh) is a henselian pair

http://stacks.math.columbia.edu/tag/09ZI
http://stacks.math.columbia.edu/tag/09ZS
http://stacks.math.columbia.edu/tag/0A51


44.75. COHOMOLOGY OF TORSION SHEAVES ON CURVES 2899

and A/I = Ah/IAh, see More on Algebra, Lemma 15.7.13 and its proof. Set
Xh = Spec(Ah). By Theorem 44.74.10 we see that

Hq
étale(Z, I|Z) = Hq

étale(X
h, I|Xh)

By Theorem 44.52.1 we have

Hq
étale(X

h,F|Xh) = colimA→B H
q
étale(Spec(B), I|Spec(B))

where the colimit is over theA-algebrasB as above. Since the morphisms Spec(B)→
Spec(A) are étale, the restriction I|Spec(B) is an injective sheaf of A|Spec(B)-modules
(Cohomology on Sites, Lemma 21.8.1). Thus the cohomology groups on the right
are zero and we get the result in this case.

Induction step. We can use Mayer-Vietoris to do the induction step. Namely,
suppose that X = U ∪ V where U is a union of n affine opens and V is affine.
Then, using that the diagonal of X is affine, we see that U ∩ V is the union of n
affine opens. Mayer-Vietoris gives an exact sequence

Hq−1
étale(U ∩V ∩Z,F|Z)→ Hq

étale(Z, I|Z)→ Hq
étale(U ∩Z,F|Z)⊕Hq

étale(V ∩Z,F|Z)

and by our induction hypothesis we obtain vanishing for q > n as desired. �

44.75. Cohomology of torsion sheaves on curves

The goal of this section is to prove Theorem 44.75.12. The proof uses the “méthode
de la trace” as explained in [AGV71, Exposé IX, §5].

Let f : Y → X be an étale morphism of schemes. There are pairs of adjoint
functors (f!, f

−1) and (f−1, f∗) between Ab(Xétale) and Ab(Yétale). The adjunction
map id → f∗f

−1 is called restriction. The adjunction map f∗f
−1 = f!f

−1 → id is
often called the trace map. If f is finite, then f∗ = f! and we can view this as a
map f∗f

−1 → id.

Definition 44.75.1. Let f : Y → X be a finite étale morphism of schemes. The
map f∗f

−1 → id described above is called the trace.

Let f : Y → X be a finite étale morphism. The trace map is characterized by the
following two properties:

(1) it commutes with étale localization and

(2) if Y =
∐d
i=1X then the trace map is the sum map f∗f

−1F = F⊕d → F .

It follows that if f has constant degree d, then the composition

F res−−→ f∗f
−1F trace−−−→ F

is multiplication by d. An example of the “méthode de la trace” is the following
observation: if F is an abelian sheaf on Xétale such that multiplication by d is an
isomorphism F ∼= F , and if furthermore Hq

étale(Y, f
−1F) = 0 then Hq

étale(X,F) = 0
as well. Indeed, multiplication by d induces an isomorphism on Hq

étale(X,F) which
factors through Hq

étale(Y, f
−1F) = 0. This will be used in the proof of Lemma

44.75.11 below.

Situation 44.75.2. Here k is an algebraically closed field, X is a separated, finite
type scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale.

In Situation 44.75.2 we want to prove the following statements

(1) Hq
étale(X,F) = 0 for q > 2,

http://stacks.math.columbia.edu/tag/03SE
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(2) Hq
étale(X,F) = 0 for q > 1 if X is affine,

(3) Hq
étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,

(4) Hq
étale(X,F) is finite if F is constructible and torsion prime to char(k),

(5) Hq
étale(X,F) is finite if X is proper and F constructible,

(6) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k ⊂ k′ of algebraically closed fields if F is torsion prime to char(k),

(7) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k ⊂ k′ of algebraically closed fields if X is proper,

(8) H2
étale(X,F)→ H2

étale(U,F) is surjective for all U ⊂ X open.

Given any Situation 44.75.2 we will say that “statements (1) – (8) hold” if those
statements that apply to the given situation are true. We start the proof with the
following consequence of our computation of cohomology with constant coefficients.

Lemma 44.75.3. In Situation 44.75.2 assume X is smooth and F = Z/`Z for

some prime number `. Then statements (1) – (8) hold for F .

Proof. Since X is smooth, we see that X is a finite disjoint union of smooth curves.
Hence we may assume X is a smooth curve.

Case I: ` different from the characteristic of k. This case follows from Lemma 44.66.3
(projective case) and Lemma 44.66.5 (affine case). Statement (6) on cohomology
and extension of algebraically closed ground field follows from the fact that the
genus g and the number of “punctures” r do not change when passing from k to
k′. Statement (8) follows as H2

étale(U,F) is zero as soon as U 6= X, because then
U is affine (Varieties, Lemmas 32.23.2 and 32.23.5).

Case II: ` is equal to the characteristic of k. Vanishing by Lemma 44.65.4. State-
ments (5) and (7) follow from Lemma 44.65.5. �

Remark 44.75.4 (Invariance under extension of algebraically closed ground field).
Let k be an algebraically closed field of characteristic p > 0. In Section 44.65 we
have seen that there is an exact sequence

k[x]→ k[x]→ H1
étale(A

1
k,Z/pZ)→ 0

where the first arrow maps f(x) to fp− f . A set of representatives for the cokernel
is formed by the polynomials ∑

p 6|n
λnx

n

with λn ∈ k. (If k is not algebraically closed you have to add some constants to
this as well.) In particular when k′ ⊃ k is an algebraically closed overfield, then
the map

H1
étale(A

1
k,Z/pZ)→ H1

étale(A
1
k′ ,Z/pZ)

is not an isomorphism in general. In particular, the map π1(A1
k′)→ π1(A1

k) between
étale fundamental groups (insert future reference here) is not an isomorphism either.
Thus the étale homotopy type of the affine line depends on the algebraically closed
ground field. From Lemma 44.75.3 above we see that this is a phenomenon which
only happens in characteristic p with p-power torsion coefficients.

Lemma 44.75.5. Let k be an algebraically closed field. Let X be a separated finite
type scheme over k of dimension ≤ 1. Let 0→ F1 → F → F2 → 0 be a short exact
sequence of torsion abelian sheaves on X. If statements (1) – (8) hold for F1 and
F2, then they hold for F .
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Proof. This is mostly immediate from the definitions and the long exact sequence
of cohomology. Also observe that F is constructible (resp. of torsion prime to the
characteristic of k) if and only if both F1 and F2 are constructible (resp. of torsion
prime to the characteristic of k). See Proposition 44.72.1. Some details omitted. �

Lemma 44.75.6. Let k be an algebraically closed field. Let f : X → Y be a finite
morphism of separated finite type schemes over k of dimension ≤ 1. Let F be a
torsion abelian sheaf on X. If statements (1) – (8) hold for F , then they hold for
f∗F .

Proof. Follows from the vanishing of the higher direct images Rqf∗ (Proposition
44.55.2), the Leray spectral sequence (Proposition 44.54.2), and the fact that for-
mation of f∗ commutes with arbitrary base change (Lemma 44.55.3). �

Lemma 44.75.7. In Situation 44.75.2 assume X is smooth. Let j : U → X an
open immersion. Let ` be a prime number. Let F = j!Z/`Z. Then statements (1)

– (8) hold for F .

Proof. Consider the short exact sequence

0 −→ j!Z/`Z
U
−→ Z/`Z

X
−→

⊕
x∈X\U

ix∗(Z/`Z) −→ 0.

Statements (1) – (8) hold for Z/`Z by Lemma 44.75.3. Since the inclusion mor-
phisms ix : x → X are finite and since x is the spectrum of an irreducible curve,
we see that Hq

étale(X, ix∗Z/`Z) is zero for q > 0 and equal to Z/`Z for q = 0. Thus
we get from the long exact cohomology sequence

0 // H0
étale(X,F) // H0(X,Z/`Z

X
) //⊕

x∈X\U Z/`Z

vv
H1
étale(X,F) // H1

étale(X,Z/`ZX
) // 0

and Hq
étale(X,F) = Hq

étale(X,Z/`ZX
) for q ≥ 2. Each of the statements (1) – (8)

follows by inspection. �

Lemma 44.75.8. In Situation 44.75.2 assume X reduced. Let j : U → X an open
immersion. Let ` be a prime number and F = j!Z/`Z. Then statements (1) – (8)
hold for F .

Proof. The difference with Lemma 44.75.7 is that here we do not assume X is
smooth. Let ν : X ′ → X be the normalization morphism which is finite as varieties
are Nagata schemes. Let j′ : U ′ → X ′ be the inverse image of U . By Lemma 44.75.7
the result holds for j′!Z/`Z. By Lemma 44.75.6 the result holds for ν∗j

′
!Z/`Z. In

general it won’t be true that ν∗j
′
!Z/`Z is equal to j!Z/`Z, but there will be a

canonical injective map

j!Z/`Z −→ ν∗j
′
!Z/`Z

whose cokernel is of the form
⊕

x∈Z ix∗Mx where Z ⊂ X is a finite set of closed
points and Mx is a finite dimensional F`-vector space for each x ∈ Z. We obtain a
short exact sequence

0→ j!Z/`Z→ ν∗j
′
!Z/`Z→

⊕
x∈Z

ix∗Mx → 0
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and we can argue exactly as in the proof of Lemma 44.75.7 to finish the argument.
Some details omitted. �

Exercise 44.75.9. Let f : X → Y be a finite étale morphism with X and Y irre-
ducible. Then there exists a finite étale Galois morphism X ′ → Y which dominates
X over Y .

Lemma 44.75.10. Let S be an irreducible scheme. Let ` be a prime number. Let
F a finite locally constant sheaf of F`-vector spaces on Sétale. There exists a finite
étale morphism f : T → S of degree prime to ` such that f−1F has a finite filtration
whose successive quotients are Z/`Z

T
.

Proof. Since F is finite locally constant and S irreducible, we see that F has
constant rank r. Let T → S be a finite étale covering such that f−1F is isomorphic
to Z/`Z

⊕r
. We may assume T is irreducible and T → S is Galois with group G.

This means simply that we have G ⊂ Aut(T/S) and that G maps isomorphically
to the Galois group of the field extension in the generic points. Observe that the
action of G on T lifts to an action of G on f−1F ∼= Z/`Z

⊕r
. Looking at the stalk

in the generic point we obtain a representation ρ : G → GLr(F`). Let H ⊂ G be
an `-Sylow subgroup. We claim that T/H → S works. Namely, since H is a finite
`-group, the irreducible constituents of the representation ρ|H are each trivial of
rank 1. Moreover the degree of T/H → S is prime to `. Some details omitted. �

Lemma 44.75.11. In Situation 44.75.2 assume X reduced. Let j : U → X an
open immersion with U irreducible. Let ` be a prime number. Let G a finite locally
constant sheaf of F`-vector spaces on U . Let F = j!G. Then statements (1) – (8)
hold for F .

Proof. Let f : V → U be a finite étale morphism of degree prime to ` as in Lemma
44.75.10. The trace map gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the lemma with
F = j!f∗f

−1G. By Zariski’s Main theorem (More on Morphisms, Lemma 36.31.3)
we can choose a diagram

V
j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. Since f is finite
this implies that V = U ×X Y . Hence j!f∗f

−1G = f∗j
′
!f
−1G by Lemma 44.55.3.

By Lemma 44.75.6 it suffices to prove the lemma for j′!f
−1G. The existence of the

filtration given by Lemma 44.75.10, the fact that j′! is exact, and Lemma 44.75.5
reduces us to the case F = j′!Z/`Z which is Lemma 44.75.8. �

Theorem 44.75.12. If k is an algebraically closed field, X is a separated, finite
type scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale,
then

(1) Hq
étale(X,F) = 0 for q > 2,

(2) Hq
étale(X,F) = 0 for q > 1 if X is affine,

(3) Hq
étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,
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(4) Hq
étale(X,F) is finite if F is constructible and torsion prime to char(k),

(5) Hq
étale(X,F) is finite if X is proper and F constructible,

(6) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k ⊂ k′ of algebraically closed fields if F is torsion prime to char(k),

(7) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k ⊂ k′ of algebraically closed fields if X is proper,

(8) H2
étale(X,F)→ H2

étale(U,F) is surjective for all U ⊂ X open.

Proof. The theorem says that in Situation 44.75.2 statements (1) – (8) hold. Our
first step is to replace X by its reduction, which is permissible by Proposition
44.46.3. By Lemma 44.71.2 we can write F as a filtered colimit of constructible
abelian sheaves. Taking cohomology commutes with colimits, see Lemma 44.52.2.
Moreover, pullback via Xk′ → X commutes with colimits as a left adjoint. Thus it
suffices to prove the statements for a constructible sheaf.

In this paragraph we use Lemma 44.75.5 without further mention. Writing F =
F1⊕ . . .⊕Fr where Fi is `i-primary for some prime `i, we may assume that `n kills
F for some prime `. Now consider the exact sequence

0→ F [`]→ F → F/F [`]→ 0.

Thus we see that it suffices to assume that F is `-torsion. This means that F is a
constructible sheaf of F`-vector spaces for some prime number `.

By definition this means there is a dense open U ⊂ X such that F|U is finite
locally constant sheaf of F`-vector spaces. Since dim(X) ≤ 1 we may assume, after
shrinking U , that U = U1 q . . .qUn is a disjoint union of irreducible schemes (just
remove the closed points which lie in the intersections of ≥ 2 components of U).
Consider the short exact sequence

0→ j!j
−1F → F →

⊕
x∈Z

ix∗Mx → 0

where Z = X \ U and Mx is a finite dimensional F` vector space, see Lemma
44.67.6. Since the étale cohomology of ix∗Mx vanishes in degrees ≥ 1 and is equal
to Mx in degree 0 it suffices to prove the theorem for j!j

−1F (argue exactly as in
the proof of Lemma 44.75.7). Thus we reduce to the case F = j!G where G is a
finite locally constant sheaf of F`-vector spaces on U .

Since we chose U = U1 q . . .q Un with Ui irreducible we have

j!G = j1!(G|U1
)⊕ . . .⊕ jn!(G|Un)

where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui) is handled in
Lemma 44.75.11. �

Remarks 44.75.13. The “trace method” is very general. For instance, it applies
in Galois cohomology, and this is essentially how Proposition 44.63.1 is proved.

Theorem 44.75.14. Let X be a finite type, dimension 1 scheme over an alge-
braically closed field k. Let F be a torsion sheaf on Xétale. Then

Hq
étale(X,F) = 0, ∀q ≥ 3.

If X affine then also H2
étale(X,F) = 0.
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Proof. If X is separated, this follows immediately from the more precise Theorem
44.75.12. If X is nonseparated, choose an affine open covering X = X1 ∪ . . . ∪Xn.
By induction on n we may assume the vanishing holds over U = X1 ∪ . . . ∪Xn−1.
Then Mayer-Vietoris (Lemma 44.51.1) gives

H2
étale(U,F)⊕H2

étale(Xn,F)→ H2
étale(U ∩Xn,F)→ H3

étale(X,F)→ 0

However, since U ∩ Xn is an open of an affine scheme and hence affine by our
dimension assumption, the group H2

étale(U ∩Xn,F) vanishes by Theorem 44.75.12.
�

Lemma 44.75.15. Let k ⊂ k′ be an extension of separably closed fields. Let X be
a proper scheme over k of dimension ≤ 1. Let F be a torsion abelian sheaf on X.
Then the map Hq

étale(X,F)→ Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for q ≥ 0.

Proof. We have seen this for algebraically closed fields in Theorem 44.75.12. Given
k ⊂ k′ as in the statement of the lemma we can choose a diagram

k′ // k
′

k

OO

// k

OO

where k ⊂ k and k′ ⊂ k
′

are the algebraic closures. Since k and k′ are separably

closed the field extensions k ⊂ k and k′ ⊂ k
′

are algebraic and purely inseparable.
In this case the morphisms Xk → X and Xk

′ → Xk′ are universal homeomorphisms.
Thus the cohomology of F may be computed on Xk and the cohomology of F|Xk′
may be computed on Xk

′ , see Proposition 44.46.3. Hence we deduce the general
case from the case of algebraically closed fields. �

44.76. Finite étale covers of proper schemes

The results in this section in some sense say that taking R1f∗G commute with base
change if f : X → Y is a proper morphism and G is a finite group.

Lemma 44.76.1. Let A be a henselian local ring. Let X be a proper scheme over
A with closed fibre X0. Then the functor

U 7−→ U0 = U ×X X0

is an equivalence of categories between schemes finite étale over X and schemes
finite étale over X0.

Proof. The proof given here is an example of applying algebraization and approx-
imation. We proceed in a number of stages.

Essential surjectivity when A is a complete local Noetherian ring. Let Xn =
X ×Spec(A) Spec(A/mn+1). By Proposition 44.46.3 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between small étale sites. Moreover, if Un → Xn

corresponds to a finite étale morphism U0 → X0, then Un → Xn is finite too, for
example by More on Morphisms, Lemma 36.2.6. In this case the morphism U0 →
Spec(A/m) is proper as X0 is proper over A/m. Thus we may apply Grothendieck’s
algebraization theorem (in the form of Cohomology of Schemes, Lemma 29.23.2)

http://stacks.math.columbia.edu/tag/0A5E
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to see that there is a finite morphism U → X whose restriction to X0 recovers U0.
By More on Morphisms, Lemma 36.10.3 we see that U → X is étale at every point
of U0. However, since every point of U specializes to a point of U0 (as U is proper
over A), we conclude that U → X is étale. In this way we conclude the functor is
essentially surjective.

Fully faithfulness when A is a complete local Noetherian ring. Let U → X and
V → X be finite étale morphisms and let ϕ0 : U0 → V0 be a morphism over X0.
Look at the morphism

Γϕ0
: U0 −→ U0 ×X0

V0

This morphism is both finite étale and a closed immersion. By essential surjectivity
aplied to X = U ×X V we find a finite étale morphism W → U ×X V whose special
fibre is isomorphic to Γϕ0

. Consider the projection W → U . It is finite étale and an

isomorphism over U0 by construction. By Étale Morphisms, Lemma 40.14.2W → U
is an isomorphism in an open neighbourhood of U0. Thus it is an isomorphism and
the composition ϕ : U ∼= W → V is the desired lift of ϕ0.

Essential surjectivity when A is a henselian local Noetherian G-ring. Let U0 → X0

be a finite étale morphism. Let A∧ be the completion of A with respect to the
maximal ideal. Let X∧ be the base change of X to A∧. By the result above
there exists a finite étale morphism V → X∧ whose special fibre is U0. Write
A∧ = colimAi with A → Ai of finite type. By Limits, Lemma 31.9.1 there exists
an i and a finitely presented morphism Ui → XAi whose base change to X∧ is
V . After increasing i we may assume that Ui → XAi is finite and étale (Limits,
Lemmas 31.7.3 and 31.7.8). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

the ring map Ai → A∧ can be reinterpreted as a solution (a1, . . . , an) in A∧ for
the system of equations fj = 0. By Smoothing Ring Maps, Theorem 16.13.1 we
can approximate this solution (to order 11 for example) by a solution (b1, . . . , bn)
in A. Translating back we find an A-algebra map Ai → A which gives the same
closed point as the original map Ai → A∧ (as 11 > 1). The base change U → X of
V → XAi by this ring map will therefore be a finite étale morphsm whose special
fibre is isomorphic to U0.

Fully faithfulness when A is a henselian local Noetherian G-ring. This can be
deduced from essential surjectivity in exactly the same manner as was done in the
case that A is complete Noetherian.

General case. Let (A,m) be a henselian local ring. Set S = Spec(A) and denote
s ∈ S the closed point. By Limits, Lemma 31.12.6 we can write X → Spec(A)
as a cofiltered limit of proper morphisms Xi → Si with Si of finite type over Z.
For each i let si ∈ Si be the image of s. Since S = limSi and A = OS,s we have
A = colimOSi,si . The ring Ai = OSi,si is a Noetherian local G-ring (More on
Algebra, Proposition 15.39.12). By More on Algebra, Lemma 15.7.17 we see that
A = colimAhi . By More on Algebra, Lemma 15.39.8 the rings Ahi are G-rings. Thus
we see that A = colimAhi and

X = lim(Xi ×Si Spec(Ahi ))

as schemes. The category of schemes finite étale over X is the limit of the category
of schemes finite étale over Xi×Si Spec(Ahi ) (by Limits, Lemmas 31.9.1, 31.7.3, and
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31.7.8) The same thing is true for schemes finite étale over X0 = lim(Xi ×Si si).
Thus we formally deduce the result for X/ Spec(A) from the result for the (Xi ×Si
Spec(Ahi ))/ Spec(Ahi ) which we dealt with above. �

Lemma 44.76.2. Let k ⊂ k′ be an extension of algebraically closed fields. Let X
be a proper scheme over k. Then the functor

U 7−→ Uk′

is an equivalence of categories between schemes finite étale over X and schemes
finite étale over Xk′ .

Proof. Let us prove the functor is essentially surjective. Let U ′ → Xk′ be a finite
étale morphism. Write k′ = colimAi as a filtered colimit of finite type k-algebras.
By Limits, Lemma 31.9.1 there exists an i and a finitely presented morphism Ui →
XAi whose base change to Xk′ is U ′. After increasing i we may assume that Ui →
XAi is finite and étale (Limits, Lemmas 31.7.3 and 31.7.8). Since k is algebraically
closed we can find a k-valued point t in Spec(Ai). Let U = (Ui)t be the fibre
of Ui over t. Let Ahi be the henselization of (Ai)m where m is the maximal ideal
corresponding to the point t. By Lemma 44.76.1 we see that (Ui)Ahi = U×Spec(Ahi )

as schemes over XAhi
. Now since Ahi is algebraic over Ai (see for example discussion

in Smoothing Ring Maps, Example 16.13.3) and since k′ is algebraically closed
we can find a ring map Ahi → k′ extending the given incusion Ai ⊂ k′. Hence
we conclude that U ′ is isomorphic to the base change of U . The proof of fully
faithfulness is exactly the same. �

Lemma 44.76.3. Let A be a henselian local ring. Let X be a proper scheme over
A with closed fibre X0. Let M be a finite abelian group. Then H1

étale(X,M) =
H1
étale(X0,M).

Proof. By Cohomology on Sites, Lemma 21.5.3 an element of H1
étale(X,M) corre-

sponds to a M -torsor F on Xétale. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over X, Lemma 44.68.4.
Conversely, a scheme V finite étale over X with an M -action which turns it into an
M -torsor over X gives rise to a cohomology class. The same translation between
cohomology classes over X0 and torsors finite étale over X0 holds. Thus the lemma
is a consequence of the equivalence of categories of Lemma 44.76.1. �

The following technical lemma is a key ingredient in the proof of the proper base
change theorem. The argument can be made to work for any proper scheme over
A whose special fibre has dimension ≤ 1, but in fact the conclusion will be a
consequence of the proper base change theorem and we only need this particular
version in its proof.

Lemma 44.76.4. Let A be a henselian local ring. Let X = P1
A. Let X0 ⊂ X be the

closed fibre. Let ` be a prime number. Let I be an injective sheaf of Z/`Z-modules
on Xétale. Then Hq

étale(X0, I|X0
) = 0 for q > 0.

Proof. Observe that X is a separated scheme which can be covered by 2 affine
opens. Hence for q > 1 this follows from Gabber’s affine variant of the proper
base change theorem, see Lemma 44.74.12. Thus we may assume q = 1. Let
ξ ∈ H1

étale(X0, I|X0
). Goal: show that ξ is 0. By Lemmas 44.71.2 and 44.52.2 we

can find a map F → I with F a constructible sheaf of Z/`Z-modules and ξ coming
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from an element ζ of H1
étale(X0,F|X0

). Suppose we have an injective map F → F ′
of sheaves of Z/`Z-modules on Xétale. Since I is injective we can extend the given
map F → I to a map F ′ → I. In this situation we may replace F by F ′ and ζ by
the image of ζ in H1

étale(X0,F ′|X0
). Also, if F = F1 ⊕F2 is a direct sum, then we

may replace F by Fi and ζ by the image of ζ in H1
étale(X0,Fi|X0

).

By Lemma 44.72.4 and the remarks above we may assume F is of the form f∗M
where M is a finite Z/`Z-module and f : Y → X is a finite morphism of finite
presentation (such sheaves are still constructible by Lemma 44.71.9 but we won’t
need this). Since formation of f∗ commutes with any base change (Lemma 44.55.3)
we see that the restriction of f∗M to X0 is equal to the pushforward of M via
the induced morphism Y0 → X0 of special fibres. By the Leray spectral sequence
(Proposition 44.54.2) and vanishing of higher direct images (Proposition 44.55.2),
we find

H1
étale(X0, f∗M |X0

) = H1
étale(Y0,M).

Since Y → Spec(A) is proper we can use Lemma 44.76.3 to see that theH1
étale(Y0,M)

is equal to H1
étale(Y,M). Thus we see that our cohomology class ζ lifts to a coho-

mology class

ζ̃ ∈ H1
étale(Y,M) = H1

étale(X, f∗M)

However, ζ̃ maps to zero in H1
étale(X, I) as I is injective and by commutativity of

H1
étale(X, f∗M) //

��

H1
étale(X, I)

��
H1
étale(X0, (f∗M)|X0) // H1

étale(X0, I|X0)

we conclude that the image ξ of ζ is zero as well. �

44.77. The proper base change theorem

The proper base change theorem is stated and proved in this section. Our approach
follows roughly the proof in [AGV71, XII, Theorem 5.1] using Gabber’s ideas (from
the affine case) to slightly simplify the arguments.

Lemma 44.77.1. Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let Z = X ×Spec(A) Spec(A/I). For any sheaf F on the
topological space associated to X we have Γ(X,F) = Γ(Z,F|Z).

Proof. We will use Lemma 44.74.8 to prove this. To do this let Y ⊂ X be an
irreducible closed subscheme. We have to show that Y ∩Z = Y ×Spec(A) Spec(A/I)
is connected. Thus we may assume that X is irreducible and we have to show
that Z is connected. Let X → Spec(B) → Spec(A) be the Stein factorization of
f (More on Morphisms, Theorem 36.36.4). Then A → B is integral and (B, IB)
is a henselian pair (More on Algebra, Lemma 15.7.9). Thus we may assume the
fibres of X → Spec(A) are geometrically connected. On the other hand, the image
T ⊂ Spec(A) of f is irreducible and closed as X is proper over A. Hence T ∩ V (I)
is connected by More on Algebra, Lemma 15.7.11. Now Y ×Spec(A) Spec(A/I) →
T ∩ V (I) is a surjective closed map with connected fibres. The result now follows
from Topology, Lemma 5.6.4. �

http://stacks.math.columbia.edu/tag/0A0B
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Lemma 44.77.2. Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let i : Z → X be the closed immersion of X ×Spec(A)

Spec(A/I) into X. For any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1
smallF).

Proof. This follows from Lemma 44.74.7 and 44.77.1 and the fact that any scheme
finite over X is proper over Spec(A). �

Lemma 44.77.3. Let A be a henselian local ring. Let f : X → Spec(A) be a proper
morphism of schemes. Let X0 ⊂ X be the fibre of f over the closed point. For any
sheaf F on Xétale we have Γ(X,F) = Γ(X0,F|X0).

Proof. This is a special case of Lemma 44.77.2. �

Let f : X → S be a morphism of schemes. Let s : Spec(k) → S be a geometric
point. The fibre of f at s is the scheme Xs = Spec(k) ×s,S X viewed as a scheme

over Spec(k). If F is a sheaf on Xétale, then denote Fs = p−1
smallF the pullback of

F to (Xs)étale. In the following we will consider the set

Γ(Xs,Fs)

Let s ∈ S be the image point of s. Let κ(s)sep be the separable algebraic closure of
κ(s) in k as in Definition 44.57.1. By Lemma 44.40.4. pullback defines a bijection

Γ(Xκ(s)sep , p
−1
sepF) −→ Γ(Xs,Fs)

where psep : Xκ(s)sep = Spec(κ(s)sep)×S X → X is the projection.

Lemma 44.77.4. Let f : X → S be a proper morphism of schemes. Let s→ S be
a geometric point. For any sheaf F on Xétale the canonical map

(f∗F)s −→ Γ(Xs,Fs)

is bijective.

Proof. By Theorem 44.53.1 (for sheaves of sets) we have

(f∗F)s = Γ(X ×S Spec(OshS,s), p−1
smallF)

where p : X ×S Spec(OshS,s) → X is the projection. Since the residue field of the

strictly henselian local ring OshS,s is κ(s)sep we conclude from the discussion above
the lemma and Lemma 44.77.3. �

Lemma 44.77.5. Let f : X → Y be a proper morphism of schemes. Let g : Y ′ ⊂ Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X with projections f ′ : X ′ → Y ′ and
g′ : X ′ → X. Let F be any sheaf on Xétale. Then g−1f∗F = f ′∗(g

′)−1F .

Proof. There is a canonical map g−1f∗F → f ′∗(g
′)−1F . Namely, it is adjoint to

the map

f∗F −→ g∗f
′
∗(g
′)−1F = f∗g

′
∗(g
′)−1F

which is f∗ applied to the canonical map F → g′∗(g
′)−1F . To check this map is an

isomorphism we can compute what happens on stalks. Let y′ : Spec(k)→ Y ′ be a
geometric point with image y in Y . By Lemma 44.77.4 the stalks are Γ(X ′y′ ,Fy′)
and Γ(Xy,Fy) respectively. Here the sheaves Fy and Fy′ are the pullbacks of F
by the projections Xy → X and X ′y′ → X. Thus we see that the groups agree by
Lemma 44.40.4. We omit the verification that this isomorphism is compatible with
our map. �
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At this point we start discussing the proper base change theorem. To do so we
introduce some notation. consider a commutative diagram

(44.77.5.1)

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

of morphisms of schemes. Then we obtain a commutative diagram of sites

X ′étale g′small

//

f ′small
��

Xétale

fsmall

��
Y ′étale

gsmall // Yétale

For any object E of D(Xétale) we obtain a canonical base change map

(44.77.5.2) g−1
smallRfsmall,∗E −→ Rf ′small,∗(g

′
small)

−1E

in D(Y ′étale). See Cohomology on Sites, Remark 21.19.2 where we use the constant
sheaf Z as our sheaf of rings. We will usually omit the subscripts small in this
formula. For example, if E = F [0] where F is an abelian sheaf on Xétale, the base
change map is a map

(44.77.5.3) g−1Rf∗F −→ Rf ′∗(g
′)−1F

in D(Y ′étale).

The map (44.77.5.2) has no chance of being an isomorphism in the generality given
above. The goal is to show it is an isomorphism if the diagram (44.77.5.1) is carte-
sian, f : X → Y proper, and the cohomology sheaves of E are torsion. To study
this question we introduce the following terminology. Let us say that cohomology
commutes with base change for f : X → Y if (44.77.5.3) is an isomorphism for
every diagram (44.77.5.1) where X ′ = Y ′ ×Y X and every torsion abelian sheaf F .

Lemma 44.77.6. Let f : X → Y be a proper morphism of schemes. The following
are equivalent

(1) cohomology commutes with base change for f (see above),
(2) for every prime number ` and every injective sheaf of Z/`Z-modules I on

Xétale and every diagram (44.77.5.1) where X ′ = Y ′ ×Y X the sheaves
Rqf ′∗(g

′)−1I are zero for q > 0.

Proof. It is clear that (1) implies (2). Conversely, assume (2) and let F be an
abelian sheaf on Xétale. Let Y ′ → Y be a morphism of schemes and let X ′ =
Y ′×Y X with projections g′ : X ′ → X and f ′ : X ′ → Y ′ as in diagram (44.77.5.1).
We want to show the maps of sheaves

g−1Rqf∗F −→ Rqf ′∗(g
′)−1F

are isomorphisms for all q ≥ 0.

For every n ≥ 1, let F [n] be the subsheaf of sections of F annihilated by n. Then
F = colimF [n]. The functors g−1 and (g′)−1 commute with arbitrary colimits (as
left adjoints). Taking higher direct images along f or f ′ commutes with filtered
colimits by Lemma 44.52.5. Hence we see that

g−1Rqf∗F = colim g−1Rqf∗F [n] and Rqf ′∗(g
′)−1F = colimRqf ′∗(g

′)−1F [n]

http://stacks.math.columbia.edu/tag/0A4B
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Thus it suffices to prove the result in case F is annihilated by a positive integer n.

If n = `n′ for some prime number `, then we obtain a short exact sequence

0→ F [`]→ F → F/F [`]→ 0

Observe that F/F [`] is annihilated by n′. Moreover, if the result holds for both
F [`] and F/F [`], then the result holds by the long exact sequence of higher direct
images (and the 5 lemma). In this way we reduce to the case that F is annihilated
by a prime number `.

Assume F is annihilated by a prime number `. Choose an injective resolution
F → I• in D(Xétale,Z/`Z). Applying assumption (2) and Leray’s acyclicity lemma
(Derived Categories, Lemma 13.17.7) we see that

f ′∗(g
′)−1I•

computes Rf ′∗(g
′)−1F . We conclude by applying Lemma 44.77.5. �

Lemma 44.77.7. Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f ,
(2) cohomology commutes with base change for g ◦ f , and
(3) f is surjective.

Then cohomology commutes with base change for g.

Proof. We will use the equivalence of Lemma 44.77.6 without further mention.
Let ` be a prime number. Let I be an injective sheaf of Z/`Z-modules on Yétale.
Choose an injective map of sheaves f−1I → J where J is an injective sheaf of
Z/`Z-modules on Zétale. Since f is surjective the map I → f∗J is injective (look
at stalks in geometric points). Since I is injective we see that I is a direct summand
of f∗J . Thus it suffices to prove the desired vanishing for f∗J .

Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′×Z Y and X ′ = Z ′×Z X =
Y ′×YX. Denote a : X ′ → X, b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 44.77.5 we have b−1f∗J = f ′∗a

−1J .
On the other hand, we know that Rqf ′∗a

−1J and Rq(g′ ◦ f ′)∗a−1J are zero for
q > 0. Using the spectral sequence (Cohomology on Sites, Lemma 21.14.7)

Rpg′∗R
qf ′∗a

−1J ⇒ Rp+q(g′ ◦ f ′)∗a−1J
we conclude that Rpg′∗(b

−1f∗J ) = Rpg′∗(f
′
∗a
−1J ) = 0 for p > 0 as desired. �

Lemma 44.77.8. Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f , and
(2) cohomology commutes with base change for g.

Then cohomology commutes with base change for f ◦ g.

Proof. We will use the equivalence of Lemma 44.77.6 without further mention.
Let ` be a prime number. Let I be an injective sheaf of Z/`Z-modules on Xétale.
Then f∗I is an injective sheaf of Z/`Z-modules on Yétale (Cohomology on Sites,
Lemma 21.14.2). The result follows formally from this, but we will also spell it out.

Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′×Z Y and X ′ = Z ′×Z X =
Y ′×YX. Denote a : X ′ → X, b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly

http://stacks.math.columbia.edu/tag/0A4C
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for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 44.77.5 we have b−1f∗I = f ′∗a
−1I.

On the other hand, we know that Rqf ′∗a
−1I and Rq(g′)∗b

−1f∗I are zero for q > 0.
Using the spectral sequence (Cohomology on Sites, Lemma 21.14.7)

Rpg′∗R
qf ′∗a

−1I ⇒ Rp+q(g′ ◦ f ′)∗a−1I

we conclude that Rp(g′ ◦ f ′)∗a−1I = 0 for p > 0 as desired. �

Lemma 44.77.9. Let f : X → Y be a finite morphism of schemes. Then coho-
mology commutes with base change for f .

Proof. Observe that a finite morphism is proper, see Morphisms, Lemma 28.44.10.
Moreover, the base change of a finite morphism is finite, see Morphisms, Lemma
28.44.6. Thus the result follows from Lemma 44.77.6 combined with Proposition
44.55.2. �

Lemma 44.77.10. To prove that cohomology commutes with base change for every
proper morphism of schemes it suffices to prove it holds for the morphism P1

S → S
for every scheme S.

Proof. Let f : X → Y be a proper morphism of schemes. Let Y =
⋃
Yi be an

affine open covering and set Xi = f−1(Yi). If we can prove cohomology commutes
with base change for Xi → Yi, then cohomology commutes with base change for
f . Namely, the formation of the higher direct images commutes with Zariski (and
even étale) localization on the base, see Lemma 44.52.4. Thus we may assume Y
is affine.

Let Y be an affine scheme and let X → Y be a proper morphism. By Chow’s
lemma there exists a commutative diagram

X

  

X ′

��

π
oo // Pn

Y

}}
Y

where X ′ → Pn
Y is an immersion, and π : X ′ → X is proper and surjective, see

Limits, Lemma 31.11.1. Since X → Y is proper, we find that X ′ → Y is proper
(Morphisms, Lemma 28.42.4). Hence X ′ → Pn

Y is a closed immersion (Morphisms,
Lemma 28.42.7). It follows that X ′ → X ×Y Pn

Y = Pn
X is a closed immersion (as

an immersion with closed image).

By Lemma 44.77.7 it suffices to prove cohomology commutes with base change for
π and X ′ → Y . These morphisms both factor as a closed immersion followed by
a projection Pn

S → S (for some S). By Lemma 44.77.9 the result holds for closed
immersions (as closed immersions are finite). By Lemma 44.77.8 it suffices to prove
the result for projections Pn

S → S.

For every n ≥ 1 there is a finite surjective morphism

P1
S ×S . . .S ×P1

S −→ Pn
S

given on coordinates by

((x1 : y1), (x2 : y2), . . . , (xn : yn)) 7−→ (F0 : . . . : Fn)

http://stacks.math.columbia.edu/tag/0A4E
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where F0, . . . , Fn in x1, . . . , yn are the polynomials with integer coefficients such
that ∏

(xit+ yi) = F0t
n + F1t

n−1 + . . .+ Fn

Applying Lemmas 44.77.7, 44.77.9, and 44.77.8 one more time we conclude that
the lemma is true. �

Theorem 44.77.11. Let f : X → Y be a proper morphism of schemes. Let
g : Y ′ → Y be a morphism of schemes. Set X ′ = Y ′ ×Y X and consider the
cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

Let F be an abelian torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′∗(g
′)−1F

is an isomorphism.

Proof. In the terminology introduced above, this means that cohomology com-
mutes with base change for every proper morphism of schemes. By Lemma 44.77.10
it suffices to prove that cohomology commutes with base change for the morphism
P1
S → S for every scheme S.

Let S be the spectrum of a strictly henselian local ring with closed point s. Set
X = P1

S and X0 = Xs = P1
s. Let F be a sheaf of Z/`Z-modules on Xétale. The

key to our proof is that

Hq
étale(X,F) = Hq

étale(X0,F|X0
).

Namely, choose a resolution F → I• by injective sheaves of Z/`Z-modules. Then
I•|X0 is a resolution of F|X0 by right H0

étale(X0,−)-acyclic objects, see Lemma
44.76.4. Leray’s acyclicity lemma tells us the right hand side is computed by the
complex H0

étale(X0, I•|X0
) which is equal to H0

étale(X, I•) by Lemma 44.77.3. This
complex computes the left hand side.

Assume S is general and F is a sheaf of Z/`Z-modules on Xétale. Let s : Spec(k)→
S be a geometric point of S lying over s ∈ S. We have

(Rqf∗F)s = Hq
étale(P

1
OshS,s

,F|P1

Osh
S,s

) = Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
)

where κ(s)sep is the residue field of OshS,s, i.e., the separable algebraic closure of

κ(s) in k. The first equality by Theorem 44.53.1 and the second equality by the
displayed formula in the previous paragraph.

Finally, consider any morphism of schemes g : T → S where S and F are as above.
Set f ′ : P1

T → T the projection and let g′ : P1
T → P1

T the morphism induced by g.
Consider the base change map

g−1Rqf∗F −→ Rqf ′∗(g
′)−1F

Let t be a geometric point of T with image s = g(t). By our discussion above the
map on stalks at t is the map

Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
) −→ Hq

étale(P
1
κ(t)sep ,F|P1

κ(t)sep
)

http://stacks.math.columbia.edu/tag/095T
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Since κ(s)sep ⊂ κ(t)sep this map is an isomorphism by Lemma 44.75.15.

This proves cohomology commutes with base change for P1
S → S and sheaves of

Z/`Z-modules. In particular, for an injective sheaf of Z/`Z-modules the higher
direct images of any base change are zero. In other words, condition (2) of Lemma
44.77.6 holds and the proof is complete. �

44.78. Applications of proper base change

As an application of the proper base change theorem we obtain the following.

Lemma 44.78.1. Let f : X → Y be a proper morphism of schemes all of whose
fibres have dimension ≤ n. Then for any abelian torsion sheaf F on Xétale we have
Rqf∗F = 0 for q > 2n.

Proof. Omitted. Hints: By the proper base change theorem it suffices to prove
that for a proper scheme X over an algebraically closed field, the étale cohomology
of F vanishes above 2 dimX. By the proper base change theorem and dévissage
(using Chow’s lemma for example) one can reduce to the case where the dimension
of X is 1. The case of curves is Theorem 44.75.14. See also Remarks 44.75.13. �

Lemma 44.78.2. Let f : X → Y be a morphism of finite type with Y quasi-
compact. Then the dimension of the fibres of f is bounded.

Proof. By Morphisms, Lemma 28.29.4 the set Un ⊂ X of points where the dimen-
sion of the fibre is ≤ n is open. Since f is of finite type, every point is contained
in some Un. Since Y is quasi-compact and f is of finite type, we see that X is
quasi-compact. Hence X = Un for some n. �

44.79. The trace formula

A typical course in étale cohomology would normally state and prove the proper
and smooth base change theorems, purity and Poincaré duality. All of these can be
found in [Del77, Arcata]. Instead, we are going to study the trace formula for the
frobenius, following the account of Deligne in [Del77, Rapport]. We will only look
at dimension 1, but using proper base change this is enough for the general case.
Since all the cohomology groups considered will be étale, we drop the subscript

étale. Let us now describe the formula we are after. Let X be a finite type scheme
of dimension 1 over a finite field k, ` a prime number and F a constructible, flat
Z/`nZ sheaf. Then

(44.79.0.1)
∑

x∈X(k)
Tr(Frob|Fx̄) =

∑2

i=0
(−1)iTr(π∗X |Hi

c(X ⊗k k̄,F))

as elements of Z/`nZ. As we will see, this formulation is slightly wrong as stated.
Let us nevertheless describe the symbols that occur therein.

44.80. Frobenii

In this section we will prove a “baffling” theorem. A topological analogue of the
baffling theorem is the following.

Exercise 44.80.1. Let X be a topological space and g : X → X a continuous
map such that g−1(U) = U for all opens U of X. Then g induces the identity on
cohomology on X (for any coefficients).

http://stacks.math.columbia.edu/tag/095U
http://stacks.math.columbia.edu/tag/0A3V
http://stacks.math.columbia.edu/tag/03SO


2914 44. ÉTALE COHOMOLOGY

We now turn to the statement for the étale site.

Lemma 44.80.2. Let X be a scheme and g : X → X a morphism. Assume that
for all ϕ : U → X étale, there is an isomorphism

U

ϕ
��

∼ // U ×ϕ,X,g X

pr2

yy
X

functorial in U . Then g induces the identity on cohomology (for any sheaf).

Proof. The proof is formal and without difficulty. �

Definition 44.80.3. Let X be a scheme in characteristic p. The absolute frobenius
of X is the morphism FX : X → X which is the identity on the induced topological

space, and which takes a function to its pth power. Thus F ]X : OX → OX is given
by g 7→ gp.

Theorem 44.80.4 (The Baffling Theorem). Let X be a scheme in characteris-
tic p > 0. Then the absolute frobenius induces (by pullback) the trivial map on
cohomology, i.e., for all integers j ≥ 0,

F ∗X : Hj(X,Z/nZ) −→ Hj(X,Z/nZ)

is the identity.

This theorem is purely formal. It is a good idea, however, to review how to compute
the pullback of a cohomology class. Let us simply say that in the case where
cohomology agrees with Čech cohomology, it suffices to pull back (using the fiber
products on a site) the Čech cocycles. The general case is quite technical, see
Hypercoverings, Theorem 24.9.1. To prove the theorem, we merely verify that the
assumption of Lemma 44.80.2 holds for the frobenius.

Proof of Theorem 44.80.4. We need to verify the existence of a functorial iso-
morphism as above. For an étale morphism ϕ : U → S, consider the diagram

U

%%

FU

$$

ϕ

&&

U ×ϕ,X,FX X
pr1 //

pr2

��

U

ϕ

��
X

FX // X.

The dotted arrow is an étale morphism which induces an isomorphism on the un-
derlying topological spaces, so it is an isomorphism. �

Definition 44.80.5. Let k be a finite field with q = pf elements. Let X be a
scheme over k. The geometric frobenius of X is the morphism πX : X → X over

Spec(k) which equals F fX .

Since πX is a morphism over k, we can base change it to any scheme over k. In
particular we can base chage it to the algebraic closure k̄ and get a morphism
πX : Xk̄ → Xk̄. Using πX also for this base change should not be confusing as Xk̄

does not have a geometric frobenius of its own.

http://stacks.math.columbia.edu/tag/03SP
http://stacks.math.columbia.edu/tag/03SM
http://stacks.math.columbia.edu/tag/03SN
http://stacks.math.columbia.edu/tag/03SQ
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Lemma 44.80.6. Let F be a sheaf on Xétale. Then there are canonical isomor-
phisms π−1

X F ∼= F and F ∼= πX∗F .

This is false for the fppf site.

Proof. Let ϕ : U → X be étale. Recall that πX∗F(U) = F(U ×ϕ,X,πX X). Since

πX = F fX , it follows from the proof of Theorem 44.80.4 that there is a functorial
isomorphism

U

ϕ
��

γU
// U ×ϕ,X,πX X

pr2

yy
X

where γU = (ϕ, F fU ). Now we define an isomorphism

F(U) −→ πX∗F(U) = F(U ×ϕ,X,πX X)

by taking the restriction map of F along γ−1
U . The other isomorphism is analogous.

�

Remark 44.80.7. It may or may not be the case that F fU equals πU .

We continue discussion cohomology of sheaves on our scheme X over the finite field
k with q = pf elements. Fix an algebraic clsoure k̄ of k and write Gk = Gal(k̄/k)
for the absolute Galois group of k. Let F be an abelian sheaf on Xétale. We will
define a left Gk-module structure cohomology group Hj(Xk̄,F|Xk̄) as follows: if
σ ∈ Gk, the diagram

Xk̄

  

Spec(σ)×idX // Xk̄

~~
X

commutes. Thus we can set, for ξ ∈ Hj(Xk̄,F|Xk̄)

σ · ξ := (Spec(σ)× idX)∗ξ ∈ Hj(Xk̄, (Spec(σ)× idX)−1F|Xk̄) = Hj(Xk̄,F|Xk̄),

where the last equality follows from the commutativity of the previous diagram.
This endows the latter group with the structure of a Gk-module.

Lemma 44.80.8. In the situation above denote α : X → Spec(k) the structure
morphism. Consider the stalk (Rjα∗F)Spec(k̄) endowed with its natural Galois ac-
tion as in Section 44.57. Then the identification

(Rjα∗F)Spec(k̄)
∼= Hj(Xk̄,F|Xk̄)

from Theorem 44.53.1 is an isomorphism of Gk-modules.

A similar result holds comparing (Rjα!F)Spec(k̄) with Hj
c (Xk̄,F|Xk̄).

Proof. Omitted. �

Definition 44.80.9. The arithmetic frobenius is the map frobk : k̄ → k̄, x 7→ xq

of Gk.

Theorem 44.80.10. Let F be an abelian sheaf on Xétale. Then for all j ≥ 0, frobk
acts on the cohomology group Hj(Xk̄,F|Xk̄) as the inverse of the map π∗X .

http://stacks.math.columbia.edu/tag/03SR
http://stacks.math.columbia.edu/tag/03SS
http://stacks.math.columbia.edu/tag/03ST
http://stacks.math.columbia.edu/tag/03SU
http://stacks.math.columbia.edu/tag/03SV
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The map π∗X is defined by the composition

Hj(Xk̄,F|Xk̄)
πX
∗
k̄−−−→ Hj(Xk̄, (π

−1
X F)|Xk̄) ∼= Hj(Xk̄,F|Xk̄).

where the last isomorphism comes from the canonical isomorphism π−1
X F ∼= F of

Lemma 44.80.6.

Proof. The composition Xk̄

Spec(frobk)−−−−−−−→ Xk̄
πX−−→ Xk̄ is equal to F fXk̄ , hence the

result follows from the baffling theorem suitably generalized to nontrivial coeffi-

cients. Note that the previous composition commutes in the sense that F fXk̄ =

πX ◦ Spec(frobk) = Spec(frobk) ◦ πX . �

Definition 44.80.11. If x ∈ X(k) is a rational point and x̄ : Spec(k̄) → X the
geometric point lying over x, we let πx : Fx̄ → Fx̄ denote the action by frob−1

k and
call it the geometric frobenius6

We can now make a more precise statement (albeit a false one) of the trace formula
(44.79.0.1). Let X be a finite type scheme of dimension 1 over a finite field k, ` a
prime number and F a constructible, flat Z/`nZ sheaf. Then

(44.80.11.1)
∑

x∈X(k)
Tr(πX |Fx̄) =

∑2

i=0
(−1)iTr(π∗X |Hi

c(Xk̄,F))

as elements of Z/`nZ. The reason this equation is wrong is that the trace in the
right-hand side does not make sense for the kind of sheaves considered. Before
addressing this issue, we try to motivate the appearance of the geometric frobenius
(apart from the fact that it is a natural morphism!).

Let us consider the case where X = P1
k and F = Z/`Z. For any point, the Galois

module Fx̄ is trivial, hence for any morphism ϕ acting on Fx̄, the left-hand side is∑
x∈X(k)

Tr(ϕ|Fx̄) = #P1
k(k) = q + 1.

Now P1
k is proper, so compactly supported cohomology equals standard cohomol-

ogy, and so for a morphism π : P1
k → P1

k, the right-hand side equals

Tr(π∗|H0(P1
k̄,Z/`Z)) + Tr(π∗|H2(P1

k̄,Z/`Z)).

The Galois module H0(P1
k̄
,Z/`Z) = Z/`Z is trivial, since the pullback of the

identity is the identity. Hence the first trace is 1, regardless of π. For the second
trace, we need to compute the pullback π∗ : H2(P1

k̄
,Z/`Z)) for a map π : P1

k̄
→ P1

k̄
.

This is a good exercise and the answer is multiplication by the degree of π (for a
proof see Lemma 44.66.4). In other words, this works as in the familiar situation
of complex cohomology. In particular, if π is the geometric frobenius we get

Tr(π∗X |H2(P1
k̄,Z/`Z)) = q

and if π is the arithmetic frobenius then we get

Tr(frob∗k|H2(P1
k̄,Z/`Z)) = q−1.

The latter option is clearly wrong.

6This notation is not standard. This operator is denoted Fx in [Del77]. We will likely change
this notation in the future.

http://stacks.math.columbia.edu/tag/03SW
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Remark 44.80.12. The computation of the degrees can be done by lifting (in
some obvious sense) to characteristic 0 and considering the situation with complex
coefficients. This method almost never works, since lifting is in general impossible
for schemes which are not projective space.

The question remains as to why we have to consider compactly supported coho-
mology. In fact, in view of Poincaré duality, it is not strictly necessary for smooth
varieties, but it involves adding in certain powers of q. For example, let us consider
the case where X = A1

k and F = Z/`Z. The action on stalks is again trivial, so we
only need look at the action on cohomology. But then π∗X acts as the identity on
H0(A1

k̄
,Z/`Z) and as multiplication by q on H2

c (A1
k̄
,Z/`Z).

44.81. Traces

We now explain how to take the trace of an endomorphism of a module over a
noncommutative ring. Fix a finite ring Λ with cardinality prime to p. Typically,
Λ is the group ring (Z/`nZ)[G] for some finite group G. By convention, all the
Λ-modules considered will be left Λ-modules.

We introduce the following notation: We set Λ\ to be the quotient of Λ by its
additive subgroup generated by the commutators (i.e., the elements of the form
ab− ba, a, b ∈ Λ). Note that Λ\ is not a ring.

For instance, the module (Z/`nZ)[G]\ is the dual of the class functions, so

(Z/`nZ)[G]\ =
⊕

conjugacy classes of G
Z/`nZ.

For a free Λ-module, we have EndΛ(Λ⊕m) = Matn(Λ). Note that since the modules
are left modules, representation of endomorphism by matrices is a right action: if
a ∈ End(Λ⊕m) has matrix A and v ∈ Λ, then a(v) = vA.

Definition 44.81.1. The trace of the endomorphism a is the sum of the diagonal
entries of a matrix representing it. This defines an additive map Tr : EndΛ(Λ⊕m)→
Λ\.

Exercise 44.81.2. Given maps

Λ⊕n
a−→ Λ⊕n

b−→ Λ⊕m

show that Tr(ab) = Tr(ba).

We extend the definition of the trace to a finite projective Λ-module P and an
endomorphism ϕ of P as follows. Write P as the summand of a free Λ-module, i.e.,

consider maps P
a−→ Λ⊕n

b−→ P with

(1) Λ⊕n = Im(a)⊕Ker(b); and
(2) b ◦ a = idP .

Then we set Tr(ϕ) = Tr(aϕb). It is easy to check that this is well-defined, using
the previous exercise.

44.82. Why derived categories?

With this definition of the trace, let us now discuss another issue with the formula as
stated. Let C be a smooth projective curve over k. Then there is a correspondence
between finite locally constant sheaves F on Cétale which stalks are isomorphic
to (Z/`nZ)

⊕m
on the one hand, and continuous representations ρ : π1(C, c̄) →

http://stacks.math.columbia.edu/tag/03SY
http://stacks.math.columbia.edu/tag/03T0
http://stacks.math.columbia.edu/tag/03T1
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GLm(Z/`nZ)) (for some fixed choice of c̄) on the other hand. We denote Fρ the
sheaf corresponding to ρ. Then H2(Ck̄,Fρ) is the group of coinvariants for the

action of ρ(π1(C, c̄)) on (Z/`nZ)
⊕m

, and there is a short exact sequence

0 −→ π1(Ck̄, c̄) −→ π1(C, c̄) −→ Gk −→ 0.

For instance, let Z = Zσ act on Z/`2Z via σ(x) = (1 + `)x. The coinvariants
are (Z/`2Z)σ = Z/`Z, which is not a flat Z/`Z-module. Hence we cannot take
the trace of some action on H2(Ck̄,Fρ), at least not in the sense of the previous
section.

In fact, our goal is to consider a trace formula for `-adic coefficients. But Q` =
Z`[1/`] and Z` = lim Z/`nZ, and even for a flat Z/`nZ sheaf, the individual coho-
mology groups may not be flat, so we cannot compute traces. One possible remedy
is consider the total derived complex RΓ(Ck̄,Fρ) in the derived category D(Z/`nZ)
and show that it is a perfect object, which means that it is quasi-isomorphic to a
finite complex of finite free module. For such complexes, we can define the trace,
but this will require an account of derived categories.

44.83. Derived categories

To set up notation, let A be an abelian category. Let Comp(A) be the abelian
category of complexes in A. Let K(A) be the category of complexes up to ho-
motopy, with objects equal to complexes in A and objects equal to homotopy
classes of morphisms of complexes. This is not an abelian category. Loosely
speaking, D(A) is defined to be the category obtained by inverting all quasi-
isomorphisms in Comp(A) or, equivalently, in K(A). Moreover, we can define
Comp+(A),K+(A), D+(A) analogously using only bounded below complexes. Sim-
ilarly, we can define Comp−(A),K−(A), D−(A) using bounded above complexes,

and we can define Compb(A),Kb(A), Db(A) using bounded complexes.

Remark 44.83.1. Notes on derived categories.

(1) There are some set-theoretical problems when A is somewhat arbitrary,
which we will happily disregard.

(2) The categories K(A) and D(A) may be endowed with the structure of tri-
angulated category, but we will not need these structures in the following
discussion.

(3) The categories Comp(A) and K(A) can also be defined when A is an
additive category.

The homology functorHi : Comp(A)→ A taking a complexK• 7→ Hi(K•) extends
to functors Hi : K(A)→ A and Hi : D(A)→ A.

Lemma 44.83.2. An object E of D(A) is contained in D+(A) if and only if
Hi(E) = 0 for all i� 0. Similar statements hold for D− and D+.

Proof. Hint: use truncation functors. See Derived Categories, Lemma 13.11.6. �

Lemma 44.83.3. Morphisms between objects in the derived category.

(1) Let I• ∈ Comp+(A) with In injective for all n ∈ Z. Then

HomD(A)(K
•, I•) = HomK(A)(K

•, I•).

http://stacks.math.columbia.edu/tag/03T4
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(2) Let P • ∈ Comp−(A) with Pn is projective for all n ∈ Z. Then

HomD(A)(P
•,K•) = HomK(A)(P

•,K•).

(3) If A has enough injectives and I ⊂ A is the additive subcategory of injec-
tives, then D+(A) ∼= K+(I) (as triangulated categories).

(4) If A has enough projectives and P ⊂ A is the additive subcategory of
projectives, then D−(A) ∼= K−(P).

Proof. Omitted. �

Definition 44.83.4. Let F : A → B be a left exact functor and assume that A
has enough injectives. We define the total right derived functor of F as the functor
RF : D+(A)→ D+(B) fitting into the diagram

D+(A)
RF // D+(B)

K+(I)

OO

F // K+(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.
Similarly, let G : A → B be a right exact functor and assume that A has enough
projectives. We define the total right derived functor of G as the functor LG :
D−(A)→ D−(B) fitting into the diagram

D−(A)
LG // D−(B)

K−(P)

OO

G // K−(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.

Remark 44.83.5. In these cases, it is true that RiF (K•) = Hi(RF (K•)), where
the left hand side is defined to be ith homology of the complex F (K•).

44.84. Filtered derived category

It turns out we have to do it all again and build the filtered derived category also.

Definition 44.84.1. Let A be an abelian category.

(1) Let Fil(A) be the category of filtered objects (A,F ) of A, where F is a
filtration of the form

A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0.

This is an additive category.
(2) We denote Filf (A) the full subcategory of Fil(A) whose objects (A,F )

have finite filtration. This is also an additive category.
(3) An object I ∈ Filf (A) is called filtered injective (respectively projective)

provided that grp(I) = grpF (I) = F pI/F p+1I is injective (resp. projective)
in A for all p.

(4) The category of complexes Comp(Filf (A)) ⊃ Comp+(Filf (A)) and its

homotopy category K(Filf (A)) ⊃ K+(Filf (A)) are defined as before.

http://stacks.math.columbia.edu/tag/03T7
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http://stacks.math.columbia.edu/tag/03TA
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(5) A morphism α : K• → L• of complexes in Comp(Filf (A)) is called a
filtered quasi-isomorphism provided that

grp(α) : grp(K•)→ grp(L•)

is a quasi-isomorphism for all p ∈ Z.
(6) We defineDF (A) (resp. DF+(A)) by inverting the filtered quasi-isomorphisms

in K(Filf (A)) (resp. K+(Filf (A))).

Lemma 44.84.2. If A has enough injectives, then DF+(A) ∼= K+(I), where I
is the full additive subcategory of Filf (A) consisting of filtered injective objects.
Similarly, if A has enough projectives, then DF−(A) ∼= K+(P), where P is the full

additive subcategory of Filf (A) consisting of filtered projective objects.

Proof. Omitted. �

44.85. Filtered derived functors

And then there are the filtered derived functors.

Definition 44.85.1. Let T : A → B be a left exact functor and assume that A
has enough injectives. Define RT : DF+(A)→ DF+(B) to fit in the diagram

DF+(A)
RT // DF+(B)

K+(I)

OO

T // K+(Filf (B)).

OO

This is well-defined by the previous lemma. Let G : A → B be a right exact functor
and assume that A has enough projectives. Define LG : DF+(A) → DF+(B) to
fit in the diagram

DF−(A)
LG // DF−(B)

K−(P)

OO

G // K−(Filf (B)).

OO

Again, this is well-defined by the previous lemma. The functors RT , resp. LG, are
called the filtered derived functor of T , resp. G.

Proposition 44.85.2. In the situation above, we have

grp ◦RT = RT ◦ grp

where the RT on the left is the filtered derived functor while the one on the right is
the total derived functor. That is, there is a commuting diagram

DF+(A)
RT //

grp

��

DF+(B)

grp

��
D+(A)

RT // D+(B).

Proof. Omitted. �

Given K• ∈ DF+(B), we get a spectral sequence

Ep,q1 = Hp+q(grpK•)⇒ Hp+q(forget filt(K•)).

http://stacks.math.columbia.edu/tag/03TB
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44.86. Application of filtered complexes

Let A be an abelian category with enough injectives, and 0→ L→M → N → 0 a

short exact sequence in A. Consider M̃ ∈ Filf (A) to be M along with the filtration
defined by

F 1M = L, FnM = M for n ≤ 0, and FnM = 0 for n ≥ 2.

By definition, we have

forget filt(M̃) = M, gr0(M̃) = N, gr1(M̃) = L

and grn(M̃) = 0 for all other n 6= 0, 1. Let T : A → B be a left exact functor.

Assume thatA has enough injectives. Then RT (M̃) ∈ DF+(B) is a filtered complex
with

grp(RT (M̃))
qis
=

 0 if p 6= 0, 1,
RT (N) if p = 0,
RT (L) if p = 1.

and forget filt(RT (M̃))
qis
= RT (M). The spectral sequence applied to RT (M̃) gives

Ep,q1 = Rp+qT (grp(M̃))⇒ Rp+qT (forget filt(M̃)).

Unwinding the spectral sequence gives us the long exact sequence

0 // T (L) // T (M) // T (N)

{{
R1T (L) // R1T (M) // . . .

This will be used as follows. Let X/k be a scheme of finite type. Let F be a flat
constructible Z/`nZ-module. Then we want to show that the trace

Tr(π∗X |RΓc(Xk̄,F)) ∈ Z/`nZ

is additive on short exact sequences. To see this, it will not be enough to work with
RΓc(Xk̄,−) ∈ D+(Z/`nZ), but we will have to use the filtered derived category.

44.87. Perfectness

Let Λ be a (possibly noncommutative) ring, ModΛ the category of left Λ-modules,
K(Λ) = K(ModΛ) its homotopy category, and D(Λ) = D(ModΛ) the derived
category.

Definition 44.87.1. We denote byKperf (Λ) the category whose objects are bounded
complexes of finite projective Λ-modules, and whose morphisms are morphisms of
complexes up to homotopy. The functor Kperf (Λ) → D(Λ) is fully faithful (De-
rived Categories, Lemma 13.19.8). Denote Dperf (Λ) its essential image. An object
of D(Λ) is called perfect if it is in Dperf (Λ).

Proposition 44.87.2. Let K ∈ Dperf (Λ) and f ∈ EndD(Λ)(K). Then the trace

Tr(f) ∈ Λ\ is well defined.

Proof. We will use Derived Categories, Lemma 13.19.8 without further mention
in this proof. Let P • be a bounded complex of finite projective Λ-modules and

http://stacks.math.columbia.edu/tag/03TH
http://stacks.math.columbia.edu/tag/03TI
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let α : P • → K be an isomorphism in D(Λ). Then α−1 ◦ f ◦ α corresponds to a
morphism of complexes f• : P • → P • well defined up to homotopy. Set

Tr(f) =
∑
i

(−1)iTr(f i : P i → P i) ∈ Λ\.

Given P • and α, this is independent of the choice of f•. Namely, any other choice
is of the form f̃• = f• + dh+ hd for some hi : P i → P i−1(i ∈ Z). But

Tr(dh) =
∑
i

(−1)iTr(P i
dh−→ P i)

=
∑
i

(−1)iTr(P i−1 hd−→ P i−1)

= −
∑
i

(−1)i−1Tr(P i−1 hd−→ P i−1)

= −Tr(hd)

and so
∑
i(−1)iTr((dh+hd)|P i) = 0. Furthermore, this is independent of the choice

of (P •, α): suppose (Q•, β) is another choice. The compositions

Q•
β−→ K

α−1

−−→ P • and P •
α−→ K

β−1

−−→ Q•

are representable by morphisms of complexes γ•1 and γ•2 respectively, such that
γ•1 ◦γ•2 is homotopic to the identity. Thus, the morphism of complexes γ•2 ◦f• ◦γ•1 :
Q• → Q• represents the morphism β−1 ◦ f ◦ β in D(Λ). Now

Tr(γ•2 ◦ f• ◦ γ•1 |Q•) = Tr(γ•1 ◦ γ•2 ◦ f•|P•)
= Tr(f•|P•)

by the fact that γ•1 ◦ γ•2 is homotopic to the identity and the independence of the
choice of f• we saw above. �

44.88. Filtrations and perfect complexes

We now present a filtered version of the category of perfect complexes. An object
(M,F ) of Filf (ModΛ) is called filtered finite projective if for all p, grpF (M) is finite
and projective. We then consider the homotopy category KFperf(Λ) of bounded

complexes of filtered finite projective objects of Filf (ModΛ). We have a diagram
of categories

KF (Λ) ⊃ KFperf(Λ)
↓ ↓

DF (Λ) ⊃ DFperf(Λ)

where the vertical functor on the right is fully faithful and the category DFperf(Λ)
is its essential image, as before.

Lemma 44.88.1 (Additivity). Let K ∈ DFperf(Λ) and f ∈ EndDF (K). Then

Tr(f |K) =
∑

p∈Z
Tr(f |grpK).

Proof. By Proposition 44.87.2, we may assume we have a bounded complex P • of
filtered finite projectives of Filf (ModΛ) and a map f• : P • → P • in Comp(Filf (ModΛ)).
So the lemma follows from the following result, which proof is left to the reader. �

http://stacks.math.columbia.edu/tag/03TK
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Lemma 44.88.2. Let P ∈ Filf (ModΛ) be filtered finite projective, and f : P → P

an endomorphism in Filf (ModΛ). Then

Tr(f |P ) =
∑

p
Tr(f |grp(P )).

Proof. Omitted. �

44.89. Characterizing perfect objects

For the commutative case see More on Algebra, Sections 15.50, 15.51, and 15.56.

Definition 44.89.1. Let Λ be a (possibly noncommutative) ring. An object K ∈
D(Λ) has finite Tor-dimension if there exist a, b ∈ Z such that for any right Λ-
module N , we have Hi(N ⊗L

Λ K) = 0 for all i 6∈ [a, b].

This in particular means that K ∈ Db(Λ) as we see by taking N = Λ.

Lemma 44.89.2. Let Λ be a left noetherian ring and K ∈ D(Λ). Then K is perfect
if and only if the two following conditions hold:

(1) K has finite Tor-dimension, and
(2) for all i ∈ Z, Hi(K) is a finite Λ-module.

Proof. See More on Algebra, Lemma 15.56.2 for the proof in the commutative
case. �

The reader is strongly urged to try and prove this. The proof relies on the fact that
a finite module on a finitely left-presented ring is flat if and only if it is projective.

Remark 44.89.3. A variant of this lemma is to consider a Noetherian scheme X
and the category Dperf (OX) of complexes which are locally quasi-isomorphic to a
finite complex of finite locally free OX -modules. Objects K of Dperf (OX) can be
characterized by having coherent cohomology sheaves and bounded tor dimension.

44.90. Complexes with constructible cohomology

Let Λ be a ring. Let X a scheme. Let K(X,Λ) the homotopy category of sheaves
of Λ-modules on Xétale. Denote D(X,Λ) the corresponding derived category. We
denote by Db(X,Λ) (respectively D+, D−) the full subcategory of bounded (resp.
above, below) complexes in D(X,Λ).

Definition 44.90.1. Let X be a scheme. Let Λ be a Noetherian ring. We denote
Dc(X,Λ) the full subcategory of D(X,Λ) of complexes whose cohomology sheaves
are constructible sheaves of Λ-modules.

This definition makes sense by Lemma 44.69.6 and Derived Categories, Section
13.13. Thus we see that Dc(X,Λ) is a strictly full, saturated triangulated subcate-
gory of Dc(X,Λ).

Lemma 44.90.2. Let Λ be a Noetherian ring. If j : U → X is an étale morphism
of schemes, then

(1) K|U ∈ Dc(U,Λ) if K ∈ Dc(X,Λ), and
(2) j!M ∈ Dc(X,Λ) if M ∈ Dc(U,Λ) and the morphism j is quasi-compact

and quasi-separated.

Proof. The first assertion is clear. The second follows from the fact that j! is exact
and Lemma 44.71.1. �

http://stacks.math.columbia.edu/tag/03TL
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Lemma 44.90.3. Let Λ be a Noetherian ring. Let f : X → Y be a morphism of
schemes. If K ∈ Dc(Y,Λ) then Lf∗K ∈ Dc(X,Λ).

Proof. This follows as f−1 = f∗ is exact and Lemma 44.69.5. �

Lemma 44.90.4. Let X be a quasi-compact and quasi-separated scheme. Let Λ be
a Noetherian ring. Let K ∈ D(X,Λ) and b ∈ Z such that Hb(K) is constructible.
Then there exist a sheaf F which is a finite direct sum of jU !Λ with U ∈ Ob(Xétale)
affine and a map F [−b]→ K in D(X,Λ) inducing a surjection F → Hb(K).

Proof. Represent K by a complex K• of sheaves of Λ-modules. Consider the
surjection

Ker(Kb → Kb+1) −→ Hb(K)

By Modules on Sites, Lemma 18.29.5 we may choose a surjection
⊕

i∈I jUi!Λ →
Ker(Kb → Kb+1) with Ui affine. For I ′ ⊂ I finite, denote HI′ ⊂ Hb(K) the image
of
⊕

i∈I′ jUi!Λ. By Lemma 44.69.9 we see that HI′ = Hb(K) for some I ′ ⊂ I finite.
The lemma follows taking F =

⊕
i∈I′ jUi!Λ. �

Lemma 44.90.5. Let X be a quasi-compact and quasi-separated scheme. Let Λ be
a Noetherian ring. Let K ∈ D−(X,Λ). Then the following are equivalent

(1) K is in Dc(X,Λ),
(2) K can be represented by a bounded above complex whose terms are finite

direct sums of jU !Λ with U ∈ Ob(Xétale) affine,
(3) K can be represented by a bounded above complex of flat constructible

sheaves of Λ-modules.

Proof. It is clear that (2) implies (3) and that (3) implies (1). Assume K is
in D−c (X,Λ). Say Hi(K) = 0 for i > b. By induction on a we will construct
a complex Fa → . . . → Fb such that each F i is a finite direct sum of of jU !Λ
with U ∈ Ob(Xétale) affine and a map F• → K which induces an isomorphism
Hi(F•)→ Hi(K) for i > a and a surjection Ha(F•)→ Ha(K). For a = b this can
be done by Lemma 44.90.4. Given such a datum choose a distinguished triangle

F• → K → L→ F•[1]

Then we see that Hi(L) = 0 for i ≥ a. Choose Fa−1[−a + 1] → L as in Lemma
44.90.4. The composition Fa−1[−a+ 1]→ L→ F• corresponds to a map Fa−1 →
Fa such that the composition with Fa → Fa+1 is zero. By TR4 we obtain a map

(Fa−1 → . . .→ Fb)→ K

in D(X,Λ). This finishes the induction step and the proof of the lemma. �

Lemma 44.90.6. Let X be a scheme. Let Λ be a Noetherian ring. Let K,L ∈
D−c (X,Λ). Then K ⊗L

Λ L is in D−c (X,Λ).

Proof. This follows from Lemmas 44.90.5 and 44.69.7. �

Definition 44.90.7. Let X be a scheme. Let Λ be a Noetherian ring. We denote
Dctf (X,Λ) the full subcategory of Dc(X,Λ) consisting of objects having locally
finite tor dimension.

http://stacks.math.columbia.edu/tag/095Y
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This is a strictly full, saturated triangulated subcategory of Dc(X,Λ) and D(X,Λ).
By our conventions, see Cohomology on Sites, Definition 21.35.1, we see that

Dctf (X,Λ) ⊂ Db(X,Λ)

if X is quasi-compact. A good way to think about objects of Dctf (X,Λ) is given
in Lemma 44.90.9.

Remark 44.90.8. The situation with objects ofDctf (X,Λ) is different fromDperf (OX)
in Remark 44.89.3. Namely, it can happen that a complex of OX -modules is locally
quasi-isomorphic to a finite complex of finite locally free OX -modules, without be-
ing globally quasi-isomorphic to a bounded complex of locally free OX -modules.
The following lemma shows this does not happen for Dctf on a Noetherian scheme.

Lemma 44.90.9. Let Λ be a Noetherian ring. Let X be a quasi-compact and
quasi-separated scheme. Let K ∈ D(X,Λ). The following are equivalent

(1) K ∈ Dctf (X,Λ), and
(2) K can be represented by a finite complex of constructible flat sheaves of

Λ-modules.

In fact, if K has tor amplitude in [a, b] then we can represent K by a complex
Fa → . . .→ Fb with Fp a constructible flat sheaf of Λ-modules.

Proof. It is clear that a finite complex of constructible flat sheaves of Λ-modules
has finite tor dimension. It is also clear that it is an object of Dc(X,Λ). Thus we
see that (2) implies (1).

Assume (1). Choose a, b ∈ Z such that Hi(K ⊗L
Λ G) = 0 if i 6∈ [a, b] for all sheaves

of Λ-modules G. We will prove the final assertion holds by induction on b − a. If
a = b, then K = Ha(K)[−a] is a flat constructible sheaf and the result holds. Next,
assume b > a. Represent K by a complex K• of sheaves of Λ-modules. Consider
the surjection

Ker(Kb → Kb+1) −→ Hb(K)

By Lemma 44.71.6 we can find finitely many affine schemes Ui étale over X and
a surjection

⊕
jUi!ΛUi → Hb(K). After replacing Ui by standard étale coverings

{Uij → Ui} we may assume this surjection lifts to a map F =
⊕
jUi!ΛUi →

Ker(Kb → Kb+1). This map determines a distinguished triangle

F [−b]→ K → L→ F [−b+ 1]

in D(X,Λ). Since Dctf (X,Λ) is a triangulated subcategory we see that L is in it
too. In fact L has tor amplitude in [a, b − 1] as F surjects onto Hb(K) (details
omitted). By induction hypothesis we can find a finite complex Fa → . . .→ Fb−1

of flat constructible sheaves of Λ-modules representing L. The map L→ F [−b+ 1]
corresponds to a map Fb → F annihilating the image of Fb−1 → Fb. Then it
follows from axiom TR3 that K is represented by the complex

Fa → . . .→ Fb−1 → Fb

which finishes the proof. �

Remark 44.90.10. Let Λ be a Noetherian ring. Let X be a scheme. For a
bounded complex K• of constructible flat Λ-modules on Xétale each stalk Kp

x is a
finite projective Λ-module. Hence the stalks of the complex are perfect complexes
of Λ-modules.

http://stacks.math.columbia.edu/tag/03TS
http://stacks.math.columbia.edu/tag/03TT
http://stacks.math.columbia.edu/tag/03TR
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Remark 44.90.11. Lemma 44.90.9 can be used to prove that if f : X → Y is a
separated, finite type morphism of schemes and Y is noetherian, then Rf! induces
a functor Dctf (X,Λ)→ Dctf (Y,Λ). We only need this fact in the case where Y is
the spectrum of a field and X is a curve.

Lemma 44.90.12. Let Λ be a Noetherian ring. If j : U → X is an étale morphism
of schemes, then

(1) K|U ∈ Dctf (U,Λ) if K ∈ Dctf (X,Λ), and
(2) j!M ∈ Dctf (X,Λ) if M ∈ Dctf (U,Λ) and the morphism j is quasi-compact

and quasi-separated.

Proof. Perhaps the easiest way to prove this lemma is to reduce to the case where
X is affine and then apply Lemma 44.90.9 to translate it into a statement about
finite complexes of flat constructible sheaves of Λ-modules where the result follows
from Lemma 44.71.1. �

Lemma 44.90.13. Let Λ be a Noetherian ring. Let f : X → Y be a morphism of
schemes. If K ∈ Dctf (Y,Λ) then Lf∗K ∈ Dctf (X,Λ).

Proof. Apply Lemma 44.90.9 to reduce this to a question about finite complexes
of flat constructible sheaves of Λ-modules. Then the statement follows as f−1 = f∗

is exact and Lemma 44.69.5. �

Lemma 44.90.14. Let X be a connected scheme. Let Λ be a Noetherian ring.
Let K ∈ Dctf (X,Λ) have locally constant cohomology sheaves. Then there exists a
finite complex of finite projective Λ-modules M• and an étale covering {Ui → X}
such that K|Ui ∼= M•|Ui in D(Ui,Λ).

Proof. Choose an étale covering {Ui → X} such that K|Ui is constant, say K|Ui ∼=
M•i Ui

for some finite complex of finite Λ-modules M•i . See Cohomology on Sites,

Lemma 21.40.1. Observe that Ui×X Uj is empty if M•i is not isomorphic to M•j in
D(Λ). For each complex of Λ-modules M• let IM• = {i ∈ I |M•i ∼= M• in D(Λ)}.
As étale morphisms are open we see that UM• =

⋃
i∈IM• Im(Ui → X) is an open

subset of X. Then X =
∐
UM• is a disjoint open covering of X. As X is connected

only one UM• is nonempty. As K is in Dctf (X,Λ) we see that M• is a perfect
complex of Λ-modules, see More on Algebra, Lemma 15.56.2. Hence we may assume
M• is a finite complex of finite projective Λ-modules. �

44.91. Cohomology of nice complexes

The following is a special case of a more general result about compactly supported
cohomology of objects of Dctf (X,Λ).

Proposition 44.91.1. Let X be a projective curve over a field k, Λ a finite ring
and K ∈ Dctf (X,Λ). Then RΓ(Xk̄,K) ∈ Dperf (Λ).

Sketch of proof. The first step is to show:

(1) The cohomology of RΓ(Xk̄,K) is bounded.

Consider the spectral sequence

Hi(Xk̄, H
j(K))⇒ Hi+j(RΓ(Xk̄,K)).

Since K is bounded and Λ is finite, the sheaves Hj(K) are torsion. Moreover,
Xk̄ has finite cohomological dimension, so the left-hand side is nonzero for finitely
many i and j only. Therefore, so is the right-hand side.
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(2) The cohomology groups Hi+j(RΓ(Xk̄,K)) are finite.

Since the sheaves Hj(K) are constructible, the groups Hi(Xk̄, H
j(K)) are finite

(Section 44.75) so it follows by the spectral sequence again.

(3) RΓ(Xk̄,K) has finite Tor-dimension.

Let N be a right Λ-module (in fact, since Λ is finite, it suffices to assume that N
is finite). By the projection formula (change of module),

N ⊗L
Λ RΓ(Xk̄,K) = RΓ(Xk̄, N ⊗L

Λ K).

Therefore,

Hi(N ⊗L
Λ RΓ(Xk̄,K)) = Hi(RΓ(Xk̄, N ⊗L

Λ K)).

Now consider the spectral sequence

Hi(Xk̄, H
j(N ⊗L

Λ K))⇒ Hi+j(RΓ(Xk̄, N ⊗L
Λ K)).

Since K has finite Tor-dimension, Hj(N ⊗L
Λ K) vanishes universally for j small

enough, and the left-hand side vanishes whenever i < 0. Therefore RΓ(Xk̄,K) has
finite Tor-dimension, as claimed. So it is a perfect complex by Lemma 44.89.2. �

44.92. Lefschetz numbers

The fact that the total cohomology of a constructible complex of finite tor dimension
is a perfect complex is the key technical reason why cohomology behaves well, and
allows us to define rigorously the traces occurring in the trace formula.

Definition 44.92.1. Let Λ be a finite ring, X a projective curve over a finite
field k and K ∈ Dctf (X,Λ) (for instance K = Λ). There is a canonical map

cK : π−1
X K → K, and its base change cK |Xk̄ induces an action denoted π∗X on

the perfect complex RΓ(Xk̄,K|Xk̄). The global Lefschetz number of K is the trace

Tr(π∗X |RΓ(Xk̄,K)) of that action. It is an element of Λ\.

Definition 44.92.2. With Λ, X, k,K as in Definition 44.92.1. SinceK ∈ Dctf (X,Λ),
for any geometric point x̄ of X, the complex Kx̄ is a perfect complex (in Dperf (Λ)).
As we have seen in Section 44.80, the Frobenius πX acts on Kx̄. The local Lefschetz
number of K is the sum ∑

x∈X(k)
Tr(πX |Kx)

which is again an element of Λ\.

At last, we can formulate precisely the trace formula.

Theorem 44.92.3 (Lefschetz Trace Formula). Let X be a projective curve over
a finite field k, Λ a finite ring and K ∈ Dctf (X,Λ). Then the global and local
Lefschetz numbers of K are equal, i.e.,

(44.92.3.1) Tr(π∗X |RΓ(Xk̄,K)) =
∑

x∈X(k)
Tr(πX |Kx̄)

in Λ\.

Proof. See discussion below. �

We will use, rather than prove, the trace formula. Nevertheless, we will give quite
a few details of the proof of the theorem as given in [Del77] (some of the things
that are not adequately explained are listed in Section 44.99).
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We only stated the formula for curves, and in some weak sense it is a consequence
of the following result.

Theorem 44.92.4 (Weil). Let C be a nonsingular projective curve over an alge-
braically closed field k, and ϕ : C → C a k-endomorphism of C distinct from the
identity. Let V (ϕ) = ∆C · Γϕ, where ∆C is the diagonal, Γϕ is the graph of ϕ, and

the intersection number is taken on C × C. Let J = Pic0
C/k be the jacobian of C

and denote ϕ∗ : J → J the action induced by ϕ by taking pullbacks. Then

V (ϕ) = 1− TrJ(ϕ∗) + degϕ.

Proof. The number V (ϕ) is the number of fixed points of ϕ, it is equal to

V (ϕ) =
∑

c∈|C|:ϕ(c)=c
mFix(ϕ)(c)

where mFix(ϕ)(c) is the multiplicity of c as a fixed point of ϕ, namely the order or
vanishing of the image of a local uniformizer under ϕ− idC . Proofs of this theorem
can be found in [Lan02] and [Wei48]. �

Example 44.92.5. Let C = E be an elliptic curve and ϕ = [n] be multiplication
by n. Then ϕ∗ = ϕt is multiplication by n on the jacobian, so it has trace 2n and
degree n2. On the other hand, the fixed points of ϕ are the points p ∈ E such that
np = p, which is the (n−1)-torsion, which has cardinality (n−1)2. So the theorem
reads

(n− 1)2 = 1− 2n+ n2.

Jacobians. We now discuss without proofs the correspondence between a curve
and its jacobian which is used in Weil’s proof. Let C be a nonsingular projective
curve over an algebraically closed field k and choose a base point c0 ∈ C(k). Denote
by A1(C × C) (or Pic(C × C), or CaCl(C × C)) the abelian group of codimension
1 divisors of C × C. Then

A1(C × C) = pr∗1(A1(C))⊕ pr∗2(A1(C))⊕R

where

R = {Z ∈ A1(C × C) | Z|C×{c0} ∼rat 0 and Z|{c0}×C ∼rat 0}.

In other words, R is the subgroup of line bundles which pull back to the trivial one
under either projection. Then there is a canonical isomorphism of abelian groups
R ∼= End(J) which maps a divisor Z in R to the endomorphism

J → J
[OC(D)] 7→ (pr1|Z)∗(pr2|Z)∗(D).

http://stacks.math.columbia.edu/tag/03U1
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The aforementioned correspondence is the following. We denote by σ the automor-
phism of C × C that switches the factors.

End(J) R

composition of α, β pr13∗(pr12
∗(α) ◦ pr23

∗(β))

idJ ∆C − {c0} × C − C × {c0}

ϕ∗ Γϕ − C × {ϕ(c0)} −
∑
ϕ(c)=c0

{c} × C

the trace form
α, β 7→ Tr(αβ)

α, β 7→ −
∫
C×C α.σ

∗β

the Rosati involution
α 7→ α†

α 7→ σ∗α

positivity of Rosati
Tr(αα†) > 0

Hodge index theorem on C × C
−
∫
C×C ασ

∗α > 0.

In fact, in light of the Kunneth formula, the subgroup R corresponds to the 1, 1
hodge classes in H1(C)⊗H1(C).

Weil’s proof. Using this correspondence, we can prove the trace formula. We
have

V (ϕ) =

∫
C×C

Γϕ.∆

=

∫
C×C

Γϕ. (∆C − {c0} × C − C × {c0}) +

∫
C×C

Γϕ. ({c0} × C + C × {c0}) .

Now, on the one hand∫
C×C

Γϕ. ({c0} × C + C × {c0}) = 1 + degϕ

and on the other hand, since R is the orthogonal of the ample divisor {c0} × C +
C × {c0},∫

C×C
Γϕ. (∆C − {c0} × C − C × {c0})

=

∫
C×C

Γϕ − C × {ϕ(c0)} −
∑

ϕ(c)=c0

{c} × C

 . (∆C − {c0} × C − C × {c0})

= −TrJ(ϕ∗ ◦ idJ).

Recapitulating, we have

V (ϕ) = 1− TrJ(ϕ∗) + degϕ

which is the trace formula.
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Lemma 44.92.6. Consider the situation of Theorem 44.92.4 and let ` be a prime
number invertible in k. Then∑2

i=0
(−1)iTr(ϕ∗|Hi(C,Z/`nZ)) = V (ϕ) mod `n.

Sketch of proof. Observe first that the assumption makes sense becauseHi(C,Z/`nZ)

is a free Z/`nZ-module for all i. The trace of ϕ∗ on the 0th degree cohomology is
1. The choice of a primitive `nth root of unity in k gives an isomorphism

Hi(C,Z/`nZ) ∼= Hi(C, µ`n)

compatibly with the action of the geometric Frobenius. On the other hand, H1(C, µ`n) =
J [`n]. Therefore,

Tr(ϕ∗|H1(C,Z/`nZ))) = TrJ(ϕ∗) mod `n

= TrZ/`nZ(ϕ∗ : J [`n]→ J [`n]).

Moreover, H2(C, µ`n) = Pic(C)/`nPic(C) ∼= Z/`nZ where ϕ∗ is multiplication by
degϕ. Hence

Tr(ϕ∗|H2(C,Z/`nZ)) = degϕ.

Thus we have
2∑
i=0

(−1)iTr(ϕ∗|Hi(C,Z/`nZ)) = 1− TrJ(ϕ∗) + degϕ mod `n

and the corollary follows from Theorem 44.92.4. �

An alternative way to prove this corollary is to show that

X 7→ H∗(X,Q`) = Q` ⊗ limnH
∗(X,Z/`nZ)

defines a Weil cohomology theory on smooth projective varieties over k. Then the
trace formula

V (ϕ) =

2∑
i=0

(−1)iTr(ϕ∗|Hi(C,Q`))

is a formal consequence of the axioms (it’s an exercise in linear algebra, the proof
is the same as in the topological case).

44.93. Preliminaries and sorites

Notation: We fix the notation for this section. We denote by A a commutative
ring, Λ a (possibly noncommutative) ring with a ring map A→ Λ which image lies
in the center of Λ. We let G be a finite group, Γ a monoid extension of G by N,
meaning that there is an exact sequence

1→ G→ Γ̃→ Z→ 1

and Γ consists of those elements of Γ̃ which image is nonnegative. Finally, we let
P be an A[Γ]-module which is finite and projective as an A[G]-module, and M a
Λ[Γ]-module which is finite and projective as a Λ-module.

Our goal is to compute the trace of 1 ∈ N acting over Λ on the coinvariants of G
on P ⊗AM , that is, the number

TrΛ (1; (P ⊗AM)G) ∈ Λ\.

The element 1 ∈ N will correspond to the Frobenius.

http://stacks.math.columbia.edu/tag/03U3
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Lemma 44.93.1. Let e ∈ G denote the neutral element. The map

Λ[G] −→ Λ\∑
λg · g 7−→ λe

factors through Λ[G]\. We denote ε : Λ[G]\ → Λ\ the induced map.

Proof. We have to show the map annihilates commutators. One has(∑
λgg
)(∑

µgg
)
−
(∑

µgg
)(∑

λgg
)

=
∑
g

( ∑
g1g2=g

λg1
µg2
− µg1

λg2

)
g

The coefficient of e is∑
g

(
λgµg−1 − µgλg−1

)
=
∑
g

(
λgµg−1 − µg−1λg

)
which is a sum of commutators, hence it it zero in Λ\. �

Definition 44.93.2. Let f : P → P be an endomorphism of a finite projective
Λ[G]-module P . We define

TrGΛ (f ;P ) := ε
(
TrΛ[G](f ;P )

)
to be the G-trace of f on P .

Lemma 44.93.3. Let f : P → P be an endomorphism of the finite projective
Λ[G]-module P . Then

TrΛ(f ;P ) = #G · TrGΛ (f ;P ).

Proof. By additivity, reduce to the case P = Λ[G]. In that case, f is given by
right multiplication by some element

∑
λg · g of Λ[G]. In the basis (g)g∈G, the

matrix of f has coefficient λg−1
2 g1

in the (g1, g2) position. In particular, all diagonal

coefficients are λe, and there are #G such coefficients. �

Lemma 44.93.4. The map A→ Λ defines an A-module structure on Λ\.

Proof. This is clear. �

Lemma 44.93.5. Let P be a finite projective A[G]-module and M a Λ[G]-module,
finite projective as a Λ-module. Then P ⊗A M is a finite projective Λ[G]-module,
for the structure induced by the diagonal action of G.

Note that P ⊗A M is naturally a Λ-module since M is. Explicitly, together with
the diagonal action this reads(∑

λgg
)

(p⊗m) =
∑

gp⊗ λggm.

Proof. For any Λ[G]-module N one has

HomΛ[G] (P ⊗AM,N) = HomA[G] (P,HomΛ(M,N))

where the G-action on HomΛ(M,N) is given by (g · ϕ)(m) = gϕ(g−1m). Now
it suffices to observe that the right-hand side is a composition of exact functors,
because of the projectivity of P and M . �

Lemma 44.93.6. With assumptions as in Lemma 44.93.5, let u ∈ EndA[G](P ) and
v ∈ EndΛ[G](M). Then

TrGΛ (u⊗ v;P ⊗AM) = TrGA(u;P ) · TrΛ(v;M).

http://stacks.math.columbia.edu/tag/03U5
http://stacks.math.columbia.edu/tag/03U6
http://stacks.math.columbia.edu/tag/03U7
http://stacks.math.columbia.edu/tag/03U8
http://stacks.math.columbia.edu/tag/03U9
http://stacks.math.columbia.edu/tag/03UA
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Sketch of proof. Reduce to the case P = A[G]. In that case, u is right multipli-
cation by some element a =

∑
agg of A[G], which we write u = Ra. There is an

isomorphism of Λ[G]-modules

ϕ : A[G]⊗AM ∼= (A[G]⊗AM)
′

g ⊗m 7−→ g ⊗ g−1m

where (A[G]⊗AM)
′

has the module structure given by the left G-action, together
with the Λ-linearity on M . This transport of structure changes u⊗v into

∑
g agRg⊗

g−1v. In other words,

ϕ ◦ (u⊗ v) ◦ ϕ−1 =
∑
g

agRg ⊗ g−1v.

Working out explicitly both sides of the equation, we have to show

TrGΛ

(∑
g

agRg ⊗ g−1v

)
= ae · TrΛ(v;M).

This is done by showing that

TrGΛ
(
agRg ⊗ g−1v

)
=

{
0 if g 6= e

aeTrΛ (v;M) if g = e

by reducing to M = Λ. �

Notation: Consider the monoid extension 1 → G → Γ → N → 1 and let γ ∈ Γ.
Then we write Zγ = {g ∈ G|gγ = γg}.

Lemma 44.93.7. Let P be a Λ[Γ]-module, finite and projective as a Λ[G]-module,
and γ ∈ Γ. Then

TrΛ(γ, P ) = #Zγ · Tr
Zγ
Λ (γ, P ) .

Proof. This follows readily from Lemma 44.93.3. �

Lemma 44.93.8. Let P be an A[Γ]-module, finite projective as A[G]-module. Let
M be a Λ[Γ]-module, finite projective as a Λ-module. Then

Tr
Zγ
Λ (γ, P ⊗AM) = Tr

Zγ
A (γ, P ) · TrΛ(γ,M).

Proof. This follows directly from Lemma 44.93.6. �

Lemma 44.93.9. Let P be a Λ[Γ]-module, finite projective as Λ[G]-module. Then
the coinvariants PG = Λ ⊗Λ[G] P form a finite projective Λ-module, endowed with
an action of Γ/G = N. Moreover, we have

TrΛ(1;PG) =
∑′

γ 7→1
Tr

Zγ
Λ (γ, P )

where
∑′
γ 7→1 means taking the sum over the G-conjugacy classes in Γ.

Sketch of proof. We first prove this after multiplying by #G.

#G · TrΛ(1;PG) = TrΛ(
∑

γ 7→1
γ, PG) = TrΛ(

∑
γ 7→1

γ, P )

where the second equality follows by considering the commutative triangle

PG �
� a // P

b // // PG

c

hh

http://stacks.math.columbia.edu/tag/03UB
http://stacks.math.columbia.edu/tag/03UC
http://stacks.math.columbia.edu/tag/03UD
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where a is the canonical inclusion, b the canonical surjection and c =
∑
γ 7→1 γ.

Then we have

(
∑

γ 7→1
γ)|P = a ◦ c ◦ b and (

∑
γ 7→1

γ)|PG = b ◦ a ◦ c

hence they have the same trace. We then have

#G · TrΛ(1;PG) =
∑
γ 7→1

′ #G

#Zγ
TrΛ(γ, P ) = #G

∑
γ 7→1

′
Tr
Zγ
Λ (γ, P ).

To finish the proof, reduce to case Λ torsion-free by some universality argument.
See [Del77] for details. �

Remark 44.93.10. Let us try to illustrate the content of the formula of Lemma
44.93.8. Suppose that Λ, viewed as a trivial Γ-module, admits a finite resolution
0→ Pr → . . .→ P1 → P0 → Λ→ 0 by some Λ[Γ]-modules Pi which are finite and
projective as Λ[G]-modules. In that case

H∗ ((P•)G) = TorΛ[G]
∗ (Λ,Λ) = H∗(G,Λ)

and

Tr
Zγ
Λ (γ, P•) =

1

#Zγ
TrΛ(γ, P•) =

1

#Zγ
Tr(γ,Λ) =

1

#Zγ
.

Therefore, Lemma 44.93.8 says

TrΛ(1, PG) = Tr
(
1|H∗(G,Λ)

)
=
∑
γ 7→1

′ 1

#Zγ
.

This can be interpreted as a point count on the stack BG. If Λ = F` with ` prime
to #G, then H∗(G,Λ) is F` in degree 0 (and 0 in other degrees) and the formula
reads

1 =
∑

σ-conjugacy
classes〈γ〉

1

#Zγ
mod `.

This is in some sense a “trivial” trace formula for G. Later we will see that
(44.92.3.1) can in some cases be viewed as a highly nontrivial trace formula for
a certain type of group, see Section 44.108.

44.94. Proof of the trace formula

Theorem 44.94.1. Let k be a finite field and X a finite type, separated scheme of
dimension at most 1 over k. Let Λ be a finite ring whose cardinality is prime to
that of k, and K ∈ Dctf (X,Λ). Then

(44.94.1.1) Tr(π∗X |RΓc(Xk̄,K)) =
∑

x∈X(k)
Tr(πx|Kx̄)

in Λ\.

Please see Remark 44.94.2 for some remarks on the statement. Notation: For short,
we write

T ′(X,K) =
∑

x∈X(k)
Tr(πx|Kx̄)

for the right-hand side of (44.94.1.1) and

T ′′(X,K) = Tr(π∗x|RΓc(Xk̄,K))

for the left-hand side.

http://stacks.math.columbia.edu/tag/03UE
http://stacks.math.columbia.edu/tag/03UG
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Proof of Theorem 44.94.1. The proof proceeds in a number of steps.

Step 1. Let j : U ↪→ X be an open immersion with complement Y = X − U
and i : Y ↪→ X. Then T ′′(X,K) = T ′′(U , j−1K) + T ′′(Y, i−1K) and T ′(X,K) =
T ′(U , j−1K) + T ′(Y, i−1K).

This is clear for T ′. For T ′′ use the exact sequence

0→ j!j
−1K → K → i∗i

−1K → 0

to get a filtration on K. This gives rise to an object K̃ ∈ DF (X,Λ) whose graded
pieces are j!j

−1K and i∗i
−1K, both of which lie in Dctf (X,Λ). Then, by filtered

derived abstract nonsense (INSERT REFERENCE), RΓc(Xk̄,K) ∈ DFperf (Λ),
and it comes equipped with π∗x in DFperf (Λ). By the discussion of traces on filtered
complexes (INSERT REFERENCE) we get

Tr(π∗X |RΓc(Xk̄,K)) = Tr(π∗X |RΓc(Xk̄,j!j
−1K)) + Tr(π∗X |RΓc(Xk̄,i∗i

−1K))

= T ′′(U, i−1K) + T ′′(Y, i−1K).

Step 2. The theorem holds if dimX ≤ 0.

Indeed, in that case

RΓc(Xk̄,K) = RΓ(Xk̄,K) = Γ(Xk̄,K) =
⊕

x̄∈Xk̄
Kx̄ ← πX ∗ .

Since the fixed points of πX : Xk̄ → Xk̄ are exactly the points x̄ ∈ Xk̄ which lie
over a k-rational point x ∈ X(k) we get

Tr
(
π∗X |RΓc(Xk̄,K)

)
=
∑

x∈X(k)
Tr(πx̄|Kx̄).

Step 3. It suffices to prove the equality T ′(U ,F) = T ′′(U ,F) in the case where

• U is a smooth irreducible affine curve over k,
• U(k) = ∅,
• K = F is a finite locally constant sheaf of Λ-modules on U whose stalk(s)

are finite projective Λ-modules, and
• Λ is killed by a power of a prime ` and ` ∈ k∗.

Indeed, because of Step 2, we can throw out any finite set of points. But we have
only finitely many rational points, so we may assume there are none7. We may
assume that U is smooth irreducible and affine by passing to irreducible components
and throwing away the bad points if necessary. The assumptions of F come from
unwinding the definition of Dctf (X,Λ) and those on Λ from considering its primary
decomposition.

For the remainder of the proof, we consider the situation

V

f

��

// Y

f̄

��
U // X

where U is as above, f is a finite étale Galois covering, V is connected and the hori-
zontal arrows are projective completions. Denoting G = Aut(V|U), we also assume
(as we may) that f−1F = M is constant, where the module M = Γ(V, f−1F) is a

7At this point, there should be an evil laugh in the background.
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Λ[G]-module which is finite and projective over Λ. This corresponds to the trivial
monoid extension

1→ G→ Γ = G×N→ N→ 1.

In that context, using the reductions above, we need to show that T ′′(U ,F) = 0.

Step 4. There is a natural action of G on f∗f
−1F and the trace map f∗f

−1F → F
defines an isomorphism

(f∗f
−1F)⊗Λ[G] Λ = (f∗f

−1F)G ∼= F .

To prove this, simply unwind everything at a geometric point.

Step 5. Let A = Z/`nZ with n � 0. Then f∗f
−1F ∼= (f∗A) ⊗A M with diagonal

G-action.

Step 6. There is a canonical isomorphism (f∗A⊗AM)⊗Λ[G] Λ ∼= F .

In fact, this is a derived tensor product, because of the projectivity assumption on
F .

Step 7. There is a canonical isomorphism

RΓc(Uk̄,F) = (RΓc(Uk̄, f∗A)⊗L
AM)⊗L

Λ[G] Λ,

compatible with the action of π∗U .

This comes from the universal coefficient theorem, i.e., the fact that RΓc commutes
with ⊗L, and the flatness of F as a Λ-module.

We have

Tr(π∗U |RΓc(Uk̄,F)) =
∑
g∈G

′
Tr
Zg
Λ

(
(g, π∗U )|RΓc(Uk̄,f∗A)⊗L

AM

)
=

∑
g∈G

′
Tr
Zg
A ((g, π∗U )|RΓc(Uk̄,f∗A)) · TrΛ(g|M )

where Γ acts on RΓc(Uk̄,F) by G and (e, 1) acts via π∗U . So the monoidal extension
is given by Γ = G×N→ N, γ 7→ 1. The first equality follows from Lemma 44.93.9
and the second from Lemma 44.93.8.

Step 8. It suffices to show that Tr
Zg
A ((g, π∗U )|RΓc(Uk̄,f∗A)) ∈ A maps to zero in Λ.

Recall that

#Zg · Tr
Zg
A ((g, π∗U )|RΓc(Uk̄,f∗A)) = TrA((g, π∗U )|RΓc(Uk̄,f∗A))

= TrA((g−1πV)∗|RΓc(Vk̄,A)).

The first equality is Lemma 44.93.7, the second is the Leray spectral sequence,
using the finiteness of f and the fact that we are only taking traces over A. Now
since A = Z/`nZ with n � 0 and #Zg = `a for some (fixed) a, it suffices to show
the following result.

Step 9. We have TrA((g−1πV)∗|RΓc(V,A)) = 0 in A.

By additivity again, we have

TrA((g−1πV)∗|RΓc(Vk̄A)) + TrA((g−1πV)∗|RΓc(Y−V)k̄,A))

= TrA((g−1πY )∗|RΓ(Yk̄,A))
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The latter trace is the number of fixed points of g−1πY on Y , by Weil’s trace
formula Theorem 44.92.4. Moreover, by the 0-dimensional case already proven in
step 2,

TrA((g−1πV)∗|RΓc(Y−V)k̄,A))

is the number of fixed points of g−1πY on (Y − V)k̄. Therefore,

TrA((g−1πV)∗|RΓc(Vk̄,A))

is the number of fixed points of g−1πY on Vk̄. But there are no such points: if
ȳ ∈ Yk̄ is fixed under g−1πY , then f̄(ȳ) ∈ Xk̄ is fixed under πX . But U has no
k-rational point, so we must have f̄(ȳ) ∈ (X − U)k̄ and so ȳ /∈ Vk̄, a contradiction.
This finishes the proof. �

Remark 44.94.2. Remarks on Theorem 44.94.1.

(1) This formula holds in any dimension. By a dévissage lemma (which uses
proper base change etc.) it reduces to the current statement – in that
generality.

(2) The complex RΓc(Xk̄,K) is defined by choosing an open immersion j :
X ↪→ X̄ with X̄ projective over k of dimension at most 1 and setting

RΓc(Xk̄,K) := RΓ(X̄k̄, j!K).

This is independent of the choice of X̄ follows from (insert reference here).
We define Hi

c(Xk̄,K) to be the ith cohomology group of RΓc(Xk̄,K).

Remark 44.94.3. Even though all we did are reductions and mostly algebra, the
trace formula Theorem 44.94.1 is much stronger than Weil’s geometric trace formula
(Theorem 44.92.4) because it applies to coefficient systems (sheaves), not merely
constant coefficients.

44.95. Applications

OK, having indicated the proof of the trace formula, let’s try to use it for something.

44.96. On l-adic sheaves

Definition 44.96.1. Let X be a noetherian scheme. A Z`-sheaf on X, or simply
a `-adic sheaf is an inverse system {Fn}n≥1 where

(1) Fn is a constructible Z/`nZ-module on Xétale, and
(2) the transition maps Fn+1 → Fn induce isomorphisms Fn+1 ⊗Z/`n+1Z

Z/`nZ ∼= Fn.

We say that F is lisse if each Fn is locally constant. A morphism of such is merely
a morphism of inverse systems.

Lemma 44.96.2. Let {Gn}n≥1 be an inverse system of constructible Z/`nZ-modules.
Suppose that for all k ≥ 1, the maps

Gn+1/`
kGn+1 → Gn/`kGn

are isomorphisms for all n� 0 (where the bound possibly depends on k). In other
words, assume that the system {Gn/`kGn}n≥1 is eventually constant, and call Fk
the corresponding sheaf. Then the system {Fk}k≥1 forms a Z`-sheaf on X.

Proof. The proof is obvious. �

Lemma 44.96.3. The category of Z`-sheaves on X is abelian.

http://stacks.math.columbia.edu/tag/03UI
http://stacks.math.columbia.edu/tag/03UJ
http://stacks.math.columbia.edu/tag/03UM
http://stacks.math.columbia.edu/tag/03UN
http://stacks.math.columbia.edu/tag/03UO
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Proof. Let Φ = {ϕn}n≥1 : {Fn} → {Gn} be a morphism of Z`-sheaves. Set

Coker(Φ) =
{

Coker
(
Fn

ϕn−−→ Gn
)}

n≥1

and Ker(Φ) is the result of Lemma 44.96.2 applied to the inverse system ⋂
m≥n

Im (Ker(ϕm)→ Ker(ϕn))


n≥1

.

That this defines an abelian category is left to the reader. �

Example 44.96.4. Let X = Spec(C) and Φ : Z` → Z` be multiplication by `.
More precisely,

Φ =
{

Z/`nZ
`−→ Z/`nZ

}
n≥1

.

To compute the kernel, we consider the inverse system

. . .→ Z/`Z
0−→ Z/`Z

0−→ Z/`Z.

Since the images are always zero, Ker(Φ) is zero as a system.

Remark 44.96.5. If F = {Fn}n≥1 is a Z`-sheaf on X and x̄ is a geometric

point then Mn = {Fn,x̄} is an inverse system of finite Z/`nZ-modules such that
Mn+1 →Mn is surjective and Mn = Mn+1/`

nMn+1. It follows that

M = limnMn = limFn,x̄
is a finite Z`-module. Indeed, M/`M = M1 is finite over F`, so by Nakayama M is
finite over Z`. Therefore, M ∼= Z⊕r` ⊕⊕ti=1Z`/`

eiZ` for some r, t ≥ 0, ei ≥ 1. The
module M = Fx̄ is called the stalk of F at x̄.

Definition 44.96.6. A Z`-sheaf F is torsion if `n : F → F is the zero map for
some n. The abelian category of Q`-sheaves on X is the quotient of the abelian
category of Z`-sheaves by the Serre subcategory of torsion sheaves. In other words,
its objects are Z`-sheaves on X, and if F ,G are two such, then

HomQ`
(F ,G) = HomZ` (F ,G)⊗Z` Q`.

We denote by F 7→ F ⊗Q` the quotient functor (right adjoint to the inclusion). If
F = F ′ ⊗Q` where F ′ is a Z`-sheaf and x̄ is a geometric point, then the stalk of
F at x̄ is Fx̄ = F ′x̄ ⊗Q`.

Remark 44.96.7. Since a Z`-sheaf is only defined on a noetherian scheme, it is
torsion if and only if its stalks are torsion.

Definition 44.96.8. If X is a separated scheme of finite type over an algebraically
closed field k and F = {Fn}n≥1 is a Z`-sheaf on X, then we define

Hi(X,F) := limnH
i(X,Fn) and Hi

c(X,F) := limnH
i
c(X,Fn).

If F = F ′ ⊗Q` for a Z`-sheaf F ′ then we set

Hi
c(X,F) := Hi

c(X,F ′)⊗Z` Q`.

We call these the `-adic cohomology of X with coefficients F .

http://stacks.math.columbia.edu/tag/03UP
http://stacks.math.columbia.edu/tag/03UQ
http://stacks.math.columbia.edu/tag/03UR
http://stacks.math.columbia.edu/tag/03US
http://stacks.math.columbia.edu/tag/03UT
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44.97. L-functions

Definition 44.97.1. Let X be a scheme of finite type over a finite field k. Let Λ
be a finite ring of order prime to the characteristic of k and F a constructible flat
Λ-module on Xétale. Then we set

L(X,F) :=
∏

x∈|X|
det(1− π∗xT deg x|Fx̄)−1 ∈ Λ[[T ]]

where |X| is the set of closed points of X, deg x = [κ(x) : k] and x̄ is a geometric
point lying over x. This definition clearly generalizes to the case where F is replace
by a K ∈ Dctf (X,Λ). We call this the L-function of F .

Remark 44.97.2. Intuitively, T should be thought of as T = tf where pf = #k.
The definitions are then independent of the size of the ground field.

Definition 44.97.3. Now assume that F is a Q`-sheaf on X. In this case we define

L(X,F) :=
∏

x∈|X|
det(1− π∗xT deg x|Fx̄)−1 ∈ Q`[[T ]].

Note that this product converges since there are finitely many points of a given
degree. We call this the L-function of F .

44.98. Cohomological interpretation

This is how Grothendieck interpreted the L-function.

Theorem 44.98.1 (Finite Coefficients). Let X be a scheme of finite type over a
finite field k. Let Λ be a finite ring of order prime to the characteristic of k and F
a constructible flat Λ-module on Xétale. Then

L(X,F) = det(1− π∗X T |RΓc(Xk̄,F))
−1 ∈ Λ[[T ]].

Proof. Omitted. �

Thus far, we don’t even know whether each cohomology group Hi
c(Xk̄,F) is free.

Theorem 44.98.2 (Adic sheaves). Let X be a scheme of finite type over a finite
field k, and F a Q`-sheaf on X. Then

L(X,F) =
∏

i
det(1− π∗XT |Hic(Xk̄,F))

(−1)i+1

∈ Q`[[T ]].

Proof. This is sketched below. �

Remark 44.98.3. Since we have only developed some theory of traces and not of
determinants, Theorem 44.98.1 is harder to prove than Theorem 44.98.2. We will
only prove the latter, for the former see [Del77]. Observe also that there is no
version of this theorem more general for Z` coefficients since there is no `-torsion.

We reduce the proof of Theorem 44.98.2 to a trace formula. Since Q` has charac-
teristic 0, it suffices to prove the equality after taking logarithmic derivatives. More

http://stacks.math.columbia.edu/tag/03UV
http://stacks.math.columbia.edu/tag/03UW
http://stacks.math.columbia.edu/tag/03UX
http://stacks.math.columbia.edu/tag/03UZ
http://stacks.math.columbia.edu/tag/03V0
http://stacks.math.columbia.edu/tag/03V1
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precisely, we apply T d
dT log to both sides. We have on the one hand

T
d

dT
logL(X,F) = T

d

dT
log

∏
x∈|X|

det(1− π∗xT deg x|Fx̄)−1

=
∑
x∈|X|

T
d

dT
log(det(1− π∗xT deg x|Fx̄)−1)

=
∑
x∈|X|

deg x
∑
n≥1

Tr((πnx )∗|Fx̄)Tn deg x

where the last equality results from the formula

T
d

dT
log
(

det (1− fT |M )
−1
)

=
∑
n≥1

Tr(fn|M )Tn

which holds for any commutative ring Λ and any endomorphism f of a finite pro-
jective Λ-module M . On the other hand, we have

T
d

dT
log
(∏

i
det(1− π∗XT |Hic(Xk̄,F))

(−1)i+1
)

=
∑

i
(−1)i

∑
n≥1

Tr
(
(πnX)∗|Hic(Xk̄,F)

)
Tn

by the same formula again. Now, comparing powers of T and using the Mobius
inversion formula, we see that Theorem 44.98.2 is a consequence of the following
equality ∑

d|n

d
∑
x∈|X|

deg x=d

Tr((π
n/d
X )∗|Fx̄) =

∑
i

(−1)iTr((πnX)∗|Hic(Xk̄,F)).

Writing kn for the degree n extension of k, Xn = X×Spec kSpec(kn) and nF = F|Xn ,
this boils down to∑

x∈Xn(kn)

Tr(π∗X |nFx̄) =
∑
i

(−1)iTr((πnX)∗|Hic((Xn)k̄,nF))

which is a consequence of Theorem 44.98.5.

Theorem 44.98.4. Let X/k be as above, let Λ be a finite ring with #Λ ∈ k∗ and
K ∈ Dctf (X,Λ). Then RΓc(Xk̄,K) ∈ Dperf (Λ) and∑

x∈X(k)

Tr (πx|Kx̄) = Tr
(
π∗X |RΓc(Xk̄,K)

)
.

Proof. Note that we have already proved this (REFERENCE) when dimX ≤ 1.
The general case follows easily from that case together with the proper base change
theorem. �

Theorem 44.98.5. Let X be a separated scheme of finite type over a finite field k
and F be a Q`-sheaf on X. Then dimQ`

Hi
c(Xk̄,F) is finite for all i, and is nonzero

for 0 ≤ i ≤ 2 dimX only. Furthermore, we have∑
x∈X(k)

Tr (πx|Fx̄) =
∑
i

(−1)iTr
(
π∗X |Hic(Xk̄,F)

)
.

http://stacks.math.columbia.edu/tag/03V3
http://stacks.math.columbia.edu/tag/03V2
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Proof. We explain how to deduce this from Theorem 44.98.4. We first use some
étale cohomology arguments to reduce the proof to an algebraic statement which
we subsequently prove.

Let F be as in the theorem. We can write F as F ′ ⊗ Q` where F ′ = {F ′n} is
a Z`-sheaf without torsion, i.e., ` : F ′ → F ′ has trivial kernel in the category
of Z`-sheaves. Then each F ′n is a flat constructible Z/`nZ-module on Xétale, so
F ′n ∈ Dctf (X,Z/`nZ) and F ′n+1⊗L

Z/`n+1Z Z/`nZ = F ′n. Note that the last equality

holds also for standard (non-derived) tensor product, since F ′n is flat (it is the same
equality). Therefore,

(1) the complex Kn = RΓc (Xk̄,F ′n) is perfect, and it is endowed with an
endomorphism πn : Kn → Kn in D(Z/`nZ),

(2) there are identifications

Kn+1 ⊗L
Z/`n+1Z Z/`nZ = Kn

in Dperf (Z/`nZ), compatible with the endomorphisms πn+1 and πn (see
[Del77, Rapport 4.12]),

(3) the equality Tr (π∗X |Kn) =
∑
x∈X(k) Tr

(
πx|(F ′n)x̄

)
holds, and

(4) for each x ∈ X(k), the elements Tr(πx|F ′n,x̄) ∈ Z/`nZ form an element of

Z` which is equal to Tr(πx|Fx̄) ∈ Q`.

It thus suffices to prove the following algebra lemma. �

Lemma 44.98.6. Suppose we have Kn ∈ Dperf (Z/`nZ), πn : Kn → Kn and
isomorphisms ϕn : Kn+1 ⊗L

Z/`n+1Z Z/`nZ → Kn compatible with πn+1 and πn.

Then

(1) the elements tn = Tr(πn|Kn) ∈ Z/`nZ form an element t∞ = {tn} of Z`,
(2) the Z`-module Hi

∞ = limnH
i(kn) is finite and is nonzero for finitely many

i only, and
(3) the operators Hi(πn) : Hi(Kn)→ Hi(Kn) are compatible and define πi∞ :

Hi
∞ → Hi

∞ satisfying∑
(−1)iTr(πi∞|Hi∞⊗Z`

Q`
) = t∞.

Proof. Since Z/`nZ is a local ring and Kn is perfect, each Kn can be represented
by a finite complex K•n of finite free Z/`nZ-modules such that the map Kp

n → Kp+1
n

has image contained in `Kp+1
n . It is a fact that such a complex is unique up to

isomorphism. Moreover πn can be represented by a morphism of complexes π•n :
K•n → K•n (which is unique up to homotopy). By the same token the isomorphism
ϕn : Kn+1 ⊗L

Z/`n+1Z Z/`nZ→ Kn is represented by a map of complexes

ϕ•n : K•n+1 ⊗Z/`n+1Z Z/`nZ→ K•n.

In fact, ϕ•n is an isomorphism of complexes, thus we see that

• there exist a, b ∈ Z independent of n such that Ki
n = 0 for all i /∈ [a, b],

and
• the rank of Ki

n is independent of n.

Therefore, the module Ki
∞ = limn{Ki

n, ϕ
i
n} is a finite free Z`-module and K•∞ is

a finite complex of finite free Z`-modules. By induction on the number of nonzero
terms, one can prove that Hi (K•∞) = limnH

i (K•n) (this is not true for unbounded
complexes). We conclude that Hi

∞ = Hi (K•∞) is a finite Z`-module. This proves

http://stacks.math.columbia.edu/tag/03V4
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ii. To prove the remainder of the lemma, we need to overcome the possible non-
commutativity of the diagrams

K•n+1

π•n+1

��

ϕ•n // K•n

π•n

��
K•n+1

ϕ•n

// K•n.

However, this diagram does commute in the derived category, hence it commutes up
to homotopy. We inductively replace π•n for n ≥ 2 by homotopic maps of complexes
making these diagrams commute. Namely, if hi : Ki

n+1 → Ki−1
n is a homotopy, i.e.,

π•n ◦ ϕ•n − ϕ•n ◦ π•n+1 = dh+ hd,

then we choose h̃i : Ki
n+1 → Ki−1

n+1 lifting hi. This is possible because Ki
n+1 free

and Ki−1
n+1 → Ki−1

n is surjective. Then replace π•n by π̃•n defined by

π̃•n+1 = π•n+1 + dh̃+ h̃d.

With this choice of {π•n}, the above diagrams commute, and the maps fit together
to define an endomorphism π•∞ = limn π

•
n of K•∞. Then part i is clear: the elements

tn =
∑

(−1)iTr
(
πin|Ki

n

)
fit into an element t∞ of Z`. Moreover

t∞ =
∑

(−1)iTrZ`(π
i
∞|Ki

∞
)

=
∑

(−1)iTrQ`
(πi∞|Ki

∞⊗Z`
Q`

)

=
∑

(−1)iTr(π∞|Hi(K•∞⊗Q`))

where the last equality follows from the fact that Q` is a field, so the complex
K•∞ ⊗Q` is quasi-isomorphic to its cohomology Hi(K•∞ ⊗Q`). The latter is also
equal to Hi(K•∞) ⊗Z Q` = Hi

∞ ⊗Q`, which finishes the proof of the lemma, and
also that of Theorem 44.98.5. �

44.99. List of things which we should add above

What did we skip the proof of in the lectures so far:

(1) curves and their Jacobians,
(2) proper base change theorem,
(3) inadequate discussion of RΓc,
(4) more generally, given f : X → S finite type, separated S quasi-projective,

discussion of Rf! on étale sheaves.
(5) discussion of ⊗L

(6) discussion of why RΓc commutes with ⊗L

44.100. Examples of L-functions

We use Theorem 44.98.2 for curves to give examples of L-functions
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44.101. Constant sheaves

Let k be a finite field, X a smooth, geometrically irreducible curve over k and
F = Q` the constant sheaf. If x̄ is a geometric point of X, the Galois module
Fx̄ = Q` is trivial, so

det(1− π∗x T deg x|Fx̄)−1 =
1

1− T deg x
.

Applying Theorem 44.98.2, we get

L(X,F) =

2∏
i=0

det(1− π∗XT |Hic(Xk̄,Q`))
(−1)i+1

=
det(1− π∗XT |H1

c (Xk̄,Q`))

det(1− π∗XT |H0
c (Xk̄,Q`)) · det(1− π∗XT |H2

c (Xk̄,Q`))
.

To compute the latter, we distinguish two cases.

Projective case. Assume that X is projective, so Hi
c(Xk̄,Q`) = Hi(Xk̄,Q`), and

we have

Hi(Xk̄,Q`) =


Q` π∗X = 1 if i = 0,

Q2g
` π∗X =? if i = 1,

Q` π∗X = q if i = 2.

The identification of the action of π∗X on H2 comes from Lemma 44.66.4 and the
fact that the degree of πX is q = #(k). We do not know much about the action
of π∗X on the degree 1 cohomology. Let us call α1, . . . , α2g its eigenvalues in Q̄`.
Putting everything together, Theorem 44.98.2 yields the equality∏

x∈|X|

1

1− T deg x
=

det(1− π∗XT |H1(Xk̄,Q`))

(1− T )(1− qT )
=

(1− α1T ) . . . (1− α2gT )

(1− T )(1− qT )

from which we deduce the following result.

Lemma 44.101.1. Let X be a smooth, projective, geometrically irreducible curve
over a finite field k. Then

(1) the L-function L(X,Q`) is a rational function,
(2) the eigenvalues α1, . . . , α2g of π∗X on H1(Xk̄,Q`) are algebraic integers

independent of `,
(3) the number of rational points of X on kn, where [kn : k] = n, is

#X(kn) = 1−
∑2g

i=1
αni + qn,

(4) for each i, |αi| < q.

Proof. Part (3) is Theorem 44.98.5 applied to F = Q` on X ⊗ kn. For part (4),
use the following result. �

Exercise 44.101.2. Let α1, . . . , αn ∈ C. Then for any conic sector containing the
positive real axis of the form Cε = {z ∈ C | | arg z| < ε} with ε > 0, there exists
an integer k ≥ 1 such that αk1 , . . . , α

k
n ∈ Cε.

Then prove that |αi| ≤ q for all i. Then, use elementary considerations on complex
numbers to prove (as in the proof of the prime number theorem) that |αi| < q. In
fact, the Riemann hypothesis says that for all |αi| =

√
q for all i. We will come

back to this later.

http://stacks.math.columbia.edu/tag/03V8
http://stacks.math.columbia.edu/tag/03V9
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Affine case. Assume now that X is affine, say X = X̄ − {x1, . . . , xn} where
j : X ↪→ X̄ is a projective nonsingular completion. Then H0

c (Xk̄,Q`) = 0 and
H2
c (Xk̄,Q`) = H2(X̄k̄,Q`) so Theorem 44.98.2 reads

L(X,Q`) =
∏
x∈|X|

1

1− T deg x
=

det(1− π∗XT |H1
c (Xk̄,Q`))

1− qT
.

On the other hand, the previous case gives

L(X,Q`) = L(X̄,Q`)

n∏
i=1

(
1− T deg xi

)
=

∏n
i=1(1− T deg xi)

∏2g
j=1(1− αjT )

(1− T )(1− qT )
.

Therefore, we see that dimH1
c (Xk̄,Q`) = 2g+

∑n
i=1 deg(xi)−1, and the eigenvalues

α1, . . . , α2g of π∗
X̄

acting on the degree 1 cohomology are roots of unity. More
precisely, each xi gives a complete set of deg(xi)th roots of unity, and one occurrence
of 1 is omitted. To see this directly using coherent sheaves, consider the short exact
sequence on X̄

0→ j!Q` → Q` →
n⊕
i=1

Q`,xi → 0.

The long exact cohomology sequence reads

0→ Q` →
n⊕
i=1

Q⊕ deg xi
` → H1

c (Xk̄,Q`)→ H1
c (X̄k̄,Q`)→ 0

where the action of Frobenius on
⊕n

i=1 Q⊕ deg xi
` is by cyclic permutation of each

term; and H2
c (Xk̄,Q`) = H2

c (X̄k̄,Q`).

44.102. The Legendre family

Let k be a finite field of odd characteristic, X = Spec(k[λ, 1
λ(λ−1) ]), and consider

the family of elliptic curves f : E → X on P2
X whose affine equation is y2 =

x(x − 1)(x − λ). We set F = Rf1
∗Q` =

{
R1f∗Z/`

nZ
}
n≥1
⊗Q`. In this situation,

the following is true

• for each n ≥ 1, the sheaf R1f∗(Z/`
nZ) is finite locally constant – in fact,

it is free of rank 2 over Z/`nZ,
• the system {R1f∗Z/`

nZ}n≥1 is a lisse `-adic sheaf, and
• for all x ∈ |X|, det(1 − πx T deg x|Fx̄) = (1 − αxT

deg x)(1 − βxT
deg x)

where αx, βx are the eigenvalues of the geometric frobenius of Ex acting
on H1(Ex̄,Q`).

Note that Ex is only defined over κ(x) and not over k. The proof of these facts uses
the proper base change theorem and the local acyclicity of smooth morphisms. For
details, see [Del77]. It follows that

L(E/X) := L(X,F) =
∏
x∈|X|

1

(1− αxT deg x)(1− βxT deg x)
.
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Applying Theorem 44.98.2 we get

L(E/X) =

2∏
i=0

det
(
1− π∗XT |Hic(Xk̄,F)

)(−1)i+1

,

and we see in particular that this is a rational function. Furthermore, it is relatively
easy to show that H0

c (Xk̄,F) = H2
c (Xk̄,F) = 0, so we merely have

L(E/X) = det(1− π∗XT |H1
c (X,F)).

To compute this determinant explicitly, consider the Leray spectral sequence for
the proper morphism f : E → X over Q`, namely

Hi
c(Xk̄, R

jf∗Q`)⇒ Hi+j
c (Ek̄,Q`)

which degenerates. We have f∗Q` = Q` and R1f∗Q` = F . The sheaf R2f∗Q` =
Q`(−1) is the Tate twist of Q`, i.e., it is the sheaf Q` where the Galois action is
given by multiplication by #κ(x) on the stalk at x̄. It follows that, for all n ≥ 1,

#E(kn) =
∑

i
(−1)iTr(πnE

∗|Hic(Ek̄,Q`))

=
∑

i,j
(−1)i+jTr(πnX

∗|Hic(Xk̄,Rjf∗Q`))

= (qn − 2) + Tr(πnX
∗|H1

c (Xk̄,F)) + qn(qn − 2)

= q2n − qn − 2 + Tr(πnX
∗|H1

c (Xk̄,F))

where the first equality follows from Theorem 44.98.5, the second one from the Leray
spectral sequence and the third one by writing down the higher direct images of
Q` under f . Alternatively, we could write

#E(kn) =
∑

x∈X(kn)

#Ex(kn)

and use the trace formula for each curve. We can also find the number of kn-rational
points simply by counting. The zero section contributes qn− 2 points (we omit the
points where λ = 0, 1) hence

#E(kn) = qn − 2 + #{y2 = x(x− 1)(x− λ), λ 6= 0, 1}.
Now we have

#{y2 = x(x− 1)(x− λ), λ 6= 0, 1}

= #{y2 = x(x− 1)(x− λ) in A3} −#{y2 = x2(x− 1)} −#{y2 = x(x− 1)2}

= #{λ = −y2

x(x−1) + x, x 6= 0, 1}+ #{y2 = x(x− 1)(x− λ), x = 0, 1} − 2(qn − εn)

= qn(qn − 2) + 2qn − 2(qn − εn)

= q2n − 2qn + 2εn

where εn = 1 if −1 is a square in kn, 0 otherwise, i.e.,

εn =
1

2

(
1 +

(
−1

kn

))
=

1

2

(
1 + (−1)

qn−1
2

)
.

Thus #E(kn) = q2n− qn− 2 + 2εn. Comparing with the previous formula, we find

Tr(πnX
∗|H1

c (Xk̄,F)) = 2εn = 1 + (−1)
qn−1

2 ,
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which implies, by elementary algebra of complex numbers, that if −1 is a square
in k∗n, then dimH1

c (Xk̄,F) = 2 and the eigenvalues are 1 and 1. Therefore, in that
case we have

L(E/X) = (1− T )2.

44.103. Exponential sums

A standard problem in number theory is to evaluate sums of the form

Sa,b(p) =
∑

x∈Fp−{0,1}

e
2πixa(x−1)b

p .

In our context, this can be interpreted as a cohomological sum as follows. Consider
the base scheme S = Spec(Fp[x,

1
x(x−1) ]) and the affine curve f : X → P1−{0, 1,∞}

over S given by the equation yp−1 = xa(x− 1)b. This is a finite étale Galois cover
with group F∗p and there is a splitting

f∗(Q̄
∗
` ) =

⊕
χ:F∗p→Q̄∗`

Fχ

where χ varies over the characters of F∗p and Fχ is a rank 1 lisse Q`-sheaf on which
F∗p acts via χ on stalks. We get a corresponding decomposition

H1
c (Xk̄,Q`) =

⊕
χ

H1(P1
k̄ − {0, 1,∞},Fχ)

and the cohomological interpretation of the exponential sum is given by the trace
formula applied to Fχ over P1 − {0, 1,∞} for some suitable χ. It reads

Sa,b(p) = −Tr(π∗X |H1(P1
k̄
−{0,1,∞},Fχ)).

The general yoga of Weil suggests that there should be some cancellation in the
sum. Applying (roughly) the Riemann-Hurwitz formula, we see that

2gX − 2 ≈ −2(p− 1) + 3(p− 2) ≈ p
so gX ≈ p/2, which also suggests that the χ-pieces are small.

44.104. Trace formula in terms of fundamental groups

In the following sections we reformulate the trace formula completely in terms of
the fundamental group of a curve, except if the curve happens to be P1.

44.105. Fundamental groups

X connected scheme x→ X geometric point consider the functor

Fx : finite étale
schemes over X −→ finite sets

Y/X 7−→ Fx(Y ) =
{

geom points y
of Y lying over x

}
= Yx

Set
π1(X,x) = Aut(Fx) = set of automorphisms of the functor Fx

Note that for every finite étale Y → X there is an action

π1(X,x)× Fx(Y )→ Fx(Y )

Definition 44.105.1. A subgroup of the form Stab(y ∈ Fx(Y )) ⊂ π1(X,x) is
called open.

http://stacks.math.columbia.edu/tag/03VE
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Theorem 44.105.2 (Grothendieck). Let X be a connected scheme.

(1) There is a topology on π1(X,x) such that the open subgroups form a fun-
damental system of open nbhds of e ∈ π1(X,x).

(2) With topology of (1) the group π1(X,x) is a profinite group.
(3) The functor

schemes finite
étale over X → finite discrete continuous

π1(X,x)-sets

Y/X 7→ Fx(Y ) with its natural action

is an equivalence of categories.

Proof. See [Gro71]. �

Proposition 44.105.3. Let X be an integral normal Noetherian scheme. Let y →
X be an algebraic geometric point lying over the generic point η ∈ X. Then

πx(X, η) = Gal(M/κ(η))

(κ(η), function field of X) where

κ(η) ⊃M ⊃ κ(η) = k(X)

is the max sub-extension such that for every finite sub extension M ⊃ L ⊃ κ(η) the
normalization of X in L is finite étale over X.

Proof. Omitted. �

Change of base point. For any x1, x2 geom. points of X there exists an isom.
of fibre functions

Fx1
∼= Fx2

(This is a path from x1 to x2.) Conjugation by this path gives isom

π1(X,x1) ∼= π1(X,x2)

well defined up to inner actions.

Functoriality. For any morphism X1 → X2 of connected schemes any x ∈ X1

there is a canonical map
π1(X1, x)→ π1(X2, x)

(Why? because the fibre functor ...)

Base field. Let X be a variety over a field k. Then we get

π1(X,x)→ π1(Spec(k), x) =prop Gal(ksep/k)

This map is surjective if and only if X is geometrically connected over k. So in the
geometrically connected case we get s.e.s. of profinite groups

1→ π1(Xk, x)→ π1(X,x)→ Gal(ksep/k)→ 1

(π1(Xk, x): geometric fundamental group of X, π1(X,x): arithmetic fundamental
group of X)

Comparison. If X is a variety over C then

π1(X,x) = profinite completion of π1(X(C)( usual topology), x)

(have x ∈ X(C))

Frobenii. X variety over k, #k <∞. For any x ∈ X closed point, let

Fx ∈ π1(x, x) = Gal(κ(x)sep/κ(x))

http://stacks.math.columbia.edu/tag/03VF
http://stacks.math.columbia.edu/tag/03VG
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be the geometric frobenius. Let η be an alg. geom. gen. pt. Then

π1(X, η)←∼= π1(X,x)
functoriality

←
π1(x, x)

Easy fact:

π1(X, η) →deg π1(Spec(k), η)∗ = Gal(ksep/k)
||

Ẑ · FSpec(k)

Fx 7→ deg(x) · FSpec(k)

Recall: deg(x) = [κ(x) : k]

Fundamental groups and lisse sheaves. Let X be a connected scheme, x geom.
pt. There are equivalences of categories

(Λ finite ring) fin. loc. const. sheaves of
Λ-modules of Xétale

↔ finite (discrete) Λ-modules
with continuous π1(X,x)-action

(` a prime) lisse `-adic
sheaves ↔ finitely generated Z`-modules M with continuous

π1(X,x)-action where we use `-adic topology on M

In particular lisse Ql-sheaves correspond to continuous homomorphisms

π1(X,x)→ GLr(Ql), r ≥ 0

Notation: A module with action (M,ρ) corresponds to the sheaf Fρ.

Trace formulas. X variety over k, #k <∞.

(1) Λ finite ring (#Λ,#k) = 1

ρ : π1(X,x)→ GLr(Λ)

continuous. For every n ≥ 1 we have

∑
d|n

d

 ∑
x∈|X|,

deg(x)=d

Tr(ρ(Fn/dx ))

 = Tr
(
(πnx )∗|RΓc(Xk,Fρ)

)
(2) l 6= char(k) prime, ρ : π1(X,x)→ GLr(Ql). For any n ≥ 1

∑
d|n

d

 ∑
x∈|X|

deg(x)=d

Tr
(
ρ(Fn/dx )

) =

2 dimX∑
i=0

(−1)iTr
(
π∗X |Hic(Xk,Fρ)

)

Weil conjectures. (Deligne-Weil I, 1974) X smooth proj. over k, #k = q, then
the eigenvalues of π∗X on Hi(Xk,Ql) are algebraic integers α with |α| = q1/2.

Deligne’s conjectures. (almost completely proved by Lafforgue + . . .) Let X be
a normal variety over k finite

ρ : π1(X,x) −→ GLr(Ql)

continuous. Assume: ρ irreducible det(ρ) of finite order. Then

(1) there exists a number field E such that for all x ∈ |X|(closed points) the
char. poly of ρ(Fx) has coefficients in E.

(2) for any x ∈ |X| the eigenvalues αx,i, i = 1, . . . , r of ρ(Fx) have complex
absolute value 1. (these are algebraic numbers not necessary integers)
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(3) for every finite place λ( not dividing p), of E (maybe after enlarging E a
bit) there exists

ρλ : π1(X,x)→ GLr(Eλ)

compatible with ρ. (some char. polys of Fx’s)

Theorem 44.105.4 (Deligne, Weil II). For a sheaf Fρ with ρ satisfying the conclu-
sions of the conjecture above then the eigenvalues of π∗X on Hi

c(Xk,Fρ) are algebraic
numbers α with absolute values

|α| = qw/2, for w ∈ Z, w ≤ i

Moreover, if X smooth and proj. then w = i.

Proof. See [Del74a]. �

44.106. Profinite groups, cohomology and homology

Let G be a profinite group.

Cohomology. Consider the category of discrete modules with continuousG-action.
This category has enough injectives and we can define

Hi(G,M) = RiH0(G,M) = Ri(M 7→MG)

Also there is a derived version RH0(G,−).

Homology. Consider the category of compact abelian groups with continuous
G-action. This category has enough projectives and we can define

Hi(G,M) = LiH0(G,M) = Li(M 7→MG)

and there is also a derived version.

Trivial duality. The functor M 7→ M∧ = Homcont(M,S1) exchanges the cate-
gories above and

Hi(G,M)∧ = Hi(G,M
∧)

Moreover, this functor maps torsion discrete G-modules to profinite continuous
G-modules and vice versa, and if M is either a discrete or profinite continuous
G-module, then M∧ = Hom(M,Q/Z).

Notes on Homology.

(1) If we look at Λ-modules for a finite ring Λ then we can identify

Hi(G,M) = Tor
Λ[[G]]
i (M,Λ)

where Λ[[G]] is the limit of the group algebras of the finite quotients of G.
(2) If G is a normal subgroup of Γ, and Γ is also profinite then

• H0(G,−): discrete Γ-module→ discrete Γ/G-modules
• H0(G,−): compact Γ-modules → compact Γ/G-modules

and hence the profinite group Γ/G acts on the cohomology groups of G
with values in a Γ-module. In other words, there are derived functors

RH0(G,−) : D+(discrete Γ-modules) −→ D+(discrete Γ/G-modules)

and similarly for LH0(G,−).

http://stacks.math.columbia.edu/tag/03VH
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44.107. Cohomology of curves, revisited

Let k be a field, X be geometrically connected, smooth curve over k. We have the
fundamental short exact sequence

1→ π1(Xk, η)→ π1(X, η)→ Gal(k
sep

/k)→ 1

If Λ is a finite ring with #Λ ∈ k∗ and M a finite Λ-module, and we are given

ρ : π1(X, η)→ AutΛ(M)

continuous, then Fρ denotes the associated sheaf on Xétale.

Lemma 44.107.1. There is a canonical isomorphism

H2
c (Xk,Fρ) = (M)π1(Xk,η)(−1)

as Gal(k
sep

/k)-modules.

Here the subscript π1(Xk,η) indicates co-invariants, and (−1) indicates the Tate twist

i.e., σ ∈ Gal(k
sep

/k) acts via

χcycl(σ)−1.σ on RHS

where
χcycl : Gal(k

sep

/k)→
∏

l 6=char(k)
Z∗l

is the cyclotomic character.

Reformulation (Deligne, Weil II, page 338). For any finite locally constant sheaf F
on X there is a maximal quotient F → F ′′ with F ′′/Xk a constant sheaf, hence

F ′′ = (X → Spec(k))−1F ′′

where F ′′ is a sheaf Spec(k), i.e., a Gal(k
sep

/k)-module. Then

H2
c (Xk,F)→ H2

c (Xk,F
′′)→ F ′′(−1)

is an isomorphism.

Proof of Lemma 44.107.1. Let Y →ϕ X be the finite étale Galois covering cor-
responding to Ker(ρ) ⊂ π1(X, η). So

Aut(Y/X) = Ind(ρ)

is Galois group. Then ϕ∗Fρ = MY and

ϕ∗ϕ
∗Fρ → Fρ

which gives

H2
c (Xk, ϕ∗ϕ

∗Fρ)→ H2
c (Xk,Fρ)

= H2
c (Yk, ϕ

∗Fρ)
= H2

c (Yk,M) = ⊕ irred. comp. of
Y
k

M

Im(ρ)→ H2
c (Yk,M) = ⊕ irred. comp. of

Y
k

M →Im(ρ)equivalent H
2
c (Xk,Fρ)→

trivial Im(ρ)
action

irreducible curve C/k, H2
c (C,M) = M .

Since
set of irreducible

components of Yk
=

Im(ρ)

Im(ρ|π1(Xk,η))

http://stacks.math.columbia.edu/tag/03VK
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We conclude that H2
c (Xk,Fρ) is a quotient of Mπ1(Xk,η). On the other hand, there

is a surjection

Fρ → F ′′ =
sheaf on X associated to

(M)π1(Xk,η) ← π1(X, η)

H2
c (Xk,Fρ)→Mπ1(Xk,η)

The twist in Galois action comes from the fact that H2
c (Xk, µn) =can Z/nZ. �

Remark 44.107.2. Thus we conclude that if X is also projective then we have
functorially in the representation ρ the identifications

H0(Xk,Fρ) = Mπ1(Xk,η)

and
H2
c (Xk,Fρ) = Mπ1(Xk,η)(−1)

Of course if X is not projective, then H0
c (Xk,Fρ) = 0.

Proposition 44.107.3. Let X/k as before but Xk 6= P1
k

The functors (M,ρ) 7→
H2−i
c (Xk,Fρ) are the left derived functor of (M,ρ) 7→ H2

c (Xk,Fρ) so

H2−i
c (Xk,Fρ) = Hi(π1(Xk, η),M)(−1)

Moreover, there is a derived version, namely

RΓc(Xk,Fρ) = LH0(π1(Xk, η),M(−1)) = M(−1)⊗L
Λ[[π1(Xk,η)]] Λ

in D(Λ[[Ẑ]]). Similarly, the functors (M,ρ) 7→ Hi(Xk,Fρ) are the right derived

functor of (M,ρ) 7→Mπ1(Xk,η) so

Hi(Xk,Fρ) = Hi(π1(Xk, η),M)

Moreover, in this case there is a derived version too.

Proof. (Idea) Show both sides are universal δ-functors. �

Remark 44.107.4. By the proposition and Trivial duality then you get

H2−i
c (Xk,Fρ)×H

i(Xk,F
∧
ρ (1))→ Q/Z

a perfect pairing. If X is projective then this is Poincare duality.

44.108. Abstract trace formula

Suppose given an extension of profinite groups,

1→ G→ Γ
deg−−→ Ẑ→ 1

We say Γ has an abstract trace formula if and only if there exist

(1) an integer q ≥ 1, and
(2) for every d ≥ 1 a finite set Sd and for each x ∈ Sd a conjugacy class Fx ∈ Γ

with deg(Fx) = d

such that the following hold

(1) for all ` not dividing q have cd`(G) <∞, and
(2) for all finite rings Λ with q ∈ Λ∗, for all finite projective Λ-modules M

with continuous Γ-action, for all n > 0 we have∑
d|n

d
(∑

x∈Sd
Tr(Fn/dx |M )

)
= qnTr(Fn|M⊗L

Λ[[G]]
Λ)

in Λ\.

http://stacks.math.columbia.edu/tag/03VL
http://stacks.math.columbia.edu/tag/03VM
http://stacks.math.columbia.edu/tag/03VN


44.109. AUTOMORPHIC FORMS AND SHEAVES 2951

Here M ⊗L
Λ[[G]] Λ = LH0(G,M) denotes derived homology, and F = 1 in Γ/G = Ẑ.

Remark 44.108.1. Here are some observations concerning this notion.

(1) If modeling projective curves then we can use cohomology and we don’t
need factor qn.

(2) The only examples I know are Γ = π1(X, η) where X is smooth, geometri-
cally irreducible and K(π, 1) over finite field. In this case q = (#k)dimX .
Modulo the proposition, we proved this for curves in this course.

(3) Given the integer q then the sets Sd are uniquely determined. (You can
multiple q by an integer m and then replace Sd by md copies of Sd without
changing the formula.)

Example 44.108.2. Fix an integer q ≥ 1

1 → G = Ẑ(q) → Γ → Ẑ → 1
=
∏
l 6|q Zl F 7→ 1

with FxF−1 = ux, u ∈ (Ẑ(q))∗. Just using the trivial modules Z/mZ we see

qn − (qu)n ≡
∑

d|n
d#Sd

in Z/mZ for all (m, q) = 1 (up to u → u−1) this implies qu = a ∈ Z and |a| < q.
The special case a = 1 does occur with

Γ = πt1(Gm,Fp , η), #S1 = q − 1, and #S2 =
(q2 − 1)− (q − 1)

2

44.109. Automorphic forms and sheaves

References: See especially the amazing papers [Dri83], [Dri84] and [Dri80] by
Drinfeld.

Unramified cusp forms. Let k be a finite field of characteristic p. Let X geo-
metrically irreducible projective smooth curve over k. Set K = k(X) equal to the
function field of X. Let v be a place of K which is the same thing as a closed point
x ∈ X. Let Kv be the completion of K at v, which is the same thing as the fraction

field of the completion of the local ring of X at x, i.e., Kv = f.f.(ÔX,x). Denote
Ov ⊂ Kv the ring of integers. We further set

O =
∏

v
Ov ⊂ A =

′∏
v

Kv

and we let Λ be any ring with p invertible in Λ.

Definition 44.109.1. An unramified cusp form on GL2(A) with values in Λ8 is a
function

f : GL2(A)→ Λ

such that

(1) f(xγ) = f(x) for all x ∈ GL2(A) and all γ ∈ GL2(K)
(2) f(ux) = f(x) for all x ∈ GL2(A) and all u ∈ GL2(O)

8This is likely nonstandard notation.

http://stacks.math.columbia.edu/tag/03VP
http://stacks.math.columbia.edu/tag/03VQ
http://stacks.math.columbia.edu/tag/03VS
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(3) for all x ∈ GL2(A),∫
A mod K

f

(
x

(
1 z
0 1

))
dz = 0

see [dJ01, Section 4.1] for an explanation of how to make sense out of
this for a general ring Λ in which p is invertible.

Hecke Operators. For v a place of K and f an unramified cusp form we set

Tv(f)(x) =

∫
g∈Mv

f(g−1x)dg,

and

Uv(f)(x) = f

((
π−1
v 0
0 π−1

v

)
x

)
Notations used: here πv ∈ Ov is a uniformizer

Mv = {h ∈Mat(2× 2, Ov)|deth = πvO
∗
v}

and dg = is the Haar measure on GL2(Kv) with
∫

GL2(Ov)
dg = 1. Explicitly we

have

Tv(f)(x) = f

((
π−1
v 0
0 1

)
x

)
+

qv∑
i=1

f

((
1 0

−π−1
v λi π−1

v

)
x

)
with λi ∈ Ov a set of representatives of Ov/(πv) = κv, qv = #κv.

Eigenforms. An eigenform f is an unramified cusp form such that some value of f
is a unit and Tvf = tvf and Uvf = uvf for some (uniquely determined) tv, uv ∈ Λ.

Theorem 44.109.2. Given an eigenform f with values in Ql and eigenvalues

uv ∈ Z
∗
l then there exists

ρ : π1(X)→ GL2(E)

continuous, absolutely irreducible where E is a finite extension of Q` contained in
Ql such that tv = Tr(ρ(Fv)), and uv = q−1

v det (ρ(Fv)) for all places v.

Proof. See [Dri80]. �

Theorem 44.109.3. Suppose Ql ⊂ E finite, and

ρ : π1(X)→ GL2(E)

absolutely irreducible, continuous. Then there exists an eigenform f with values
in Ql whose eigenvalues tv, uv satisfy the equalities tv = Tr(ρ(Fv)) and uv =
q−1
v det(ρ(Fv)).

Proof. See [Dri83]. �

Remark 44.109.4. We now have, thanks to Lafforgue and many other mathemati-
cians, complete theorems like this two above for GLn and allowing ramification! In
other words, the full global Langlands correspondence for GLn is known for func-
tion fields of curves over finite fields. At the same time this does not mean there
aren’t a lot of interesting questions left to answer about the fundamental groups of
curves over finite fields, as we shall see below.

http://stacks.math.columbia.edu/tag/03VT
http://stacks.math.columbia.edu/tag/03VU
http://stacks.math.columbia.edu/tag/03VV
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Central character. If f is an eigenform then

χf : O∗\A∗/K∗ → Λ∗

(1, . . . , πv, 1, . . . , 1) 7→ u−1
v

is called the central character. If corresponds to the determinant of ρ via normal-
izations as above. Set

C(Λ) =

{
unr. cusp forms f with coefficients in Λ

such that Uvf = ϕ−1
v f∀v

}
Proposition 44.109.5. If Λ is Noetherian then C(Λ) is a finitely generated Λ-
module. Moreover, if Λ is a field with prime subfield F ⊂ Λ then

C(Λ) = (C(F))⊗F Λ

compatibly with Tv acting.

Proof. See [dJ01, Proposition 4.7]. �

This proposition trivially implies the following lemma.

Lemma 44.109.6. Algebraicity of eigenvalues. If Λ is a field then the eigenvalues
tv for f ∈ C(Λ) are algebraic over the prime subfield F ⊂ Λ.

Proof. Follows from Proposition 44.109.5. �

Combining all of the above we can do the following very useful trick.

Lemma 44.109.7. Switching l. Let E be a number field. Start with

ρ : π1(X)→ SL2(Eλ)

absolutely irreducible continuous, where λ is a place of E not lying above p. Then
for any second place λ′ of E not lying above p there exists a finite extension E′λ′
and a absolutely irreducible continuous representation

ρ′ : π1(X)→ SL2(E′λ′)

which is compatible with ρ in the sense that the characteristic polynomials of all
Frobenii are the same.

Note how this is an instance of Deligne’s conjecture!

Proof. To prove the switching lemma use Theorem 44.109.3 to obtain f ∈ C(Ql)
eigenform ass. to ρ. Next, use Proposition 44.109.5 to see that we may choose
f ∈ C(E′) with E ⊂ E′ finite. Next we may complete E′ to see that we get
f ∈ C(E′λ′) eigenform with E′λ′ a finite extension of Eλ′ . And finally we use
Theorem 44.109.2 to obtain ρ′ : π1(X) → SL2(E′λ′) abs. irred. and continuous
after perhaps enlarging E′λ′ a bit again. �

Speculation: If for a (topological) ring Λ we have(
ρ : π1(X)→ SL2(Λ)

abs irred

)
↔ eigen forms in C(Λ)

then all eigenvalues of ρ(Fv) algebraic (won’t work in an easy way if Λ is a finite
ring. Based on the speculation that the Langlands correspondence works more
generally than just over fields one arrives at the following conjecture.

http://stacks.math.columbia.edu/tag/03VW
http://stacks.math.columbia.edu/tag/03VX
http://stacks.math.columbia.edu/tag/03VY
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Conjecture. (See [dJ01]) For any continuous

ρ : π1(X)→ GLn(Fl[[t]])

we have #ρ(π1(Xk)) <∞.

A rephrasing in the language of sheaves: ”For any lisse sheaf of Fl((t))-modules the
geom monodromy is finite.”

Theorem 44.109.8. The Conjecture holds if n ≤ 2.

Proof. See [dJ01]. �

Theorem 44.109.9. Conjecture holds if l > 2n modulo some unproven things.

Proof. See [Gai07]. �

It turns out the conjecture is useful for something. See work of Drinfeld on Kashi-
wara’s conjectures. But there is also the much more down to earth application as
follows.

Theorem 44.109.10. (See [dJ01, Theorem 3.5]) Suppose

ρ0 : π1(X)→ GLn(Fl)

is a continuous, l 6= p. Assume

(1) Conj. holds for X,
(2) ρ0|π1(Xk) abs. irred., and

(3) l does not divide n.

Then the universal determination ring Runiv of ρ0 is finite flat over Zl.

Explanation: There is a representation ρuniv : π1(X) → GLn(Runiv) (Univ. Defo
ring) Runiv loc. complete, residue field Fl and (Runiv → Fl) ◦ ρuniv

∼= ρ0. And
given any R → Fl, R local complete and ρ : π1(X) → GLn(R) then there exists
ψ : Runiv → R such that ψ ◦ ρuniv

∼= ρ. The theorem says that the morphism

Spec(Runiv) −→ Spec(Zl)

is finite and flat. In particular, such a ρ0 lifts to a ρ : π1(X)→ GLn(Ql).

Notes:

(1) The theorem on deformations is easy.
(2) Any result towards the conjecture seems hard.
(3) It would be interesting to have more conjectures on π1(X)!

44.110. Counting points

Let X be a smooth, geometrically irreducible, projective curve over k and q = #k.
The trace formula gives: there exists algebraic integers w1, . . . , w2g such that

#X(kn) = qn −
∑2gX

i=1
wni + 1.

If σ ∈ Aut(X) then for all i, there exists j such that σ(wi) = wj .

Riemann-Hypothesis. For all i we have |ωi| =
√
q.

This was formulated by Emil Artin, in 1924, for hyperelliptic curves. Proved by
Weil 1940. Weil gave two proofs

• using intersection theory on X ×X, using the Hodge index theorem, and

http://stacks.math.columbia.edu/tag/03VZ
http://stacks.math.columbia.edu/tag/03W0
http://stacks.math.columbia.edu/tag/03W1
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• using the Jacobian of X.

There is another proof whose initial idea is due to Stephanov, and which was given
by Bombieri: it uses the function field k(X) and its Frobenius operator (1969). The
starting point is that given f ∈ k(X) one observes that fq−f is a rational function
which vanishes in all the Fq-rational points of X, and that one can try to use this
idea to give an upper bound for the number of points.

44.111. Precise form of Chebotarev

As a first application let us prove a precise form of Chebotarev for a finite étale
Galois covering of curves. Let ϕ : Y → X be a finite étale Galois covering with
group G. This corresponds to a homomorphism

π1(X) −→ G = Aut(Y/X)

Assume Yk = irreducible. If C ⊂ G is a conjugacy class then for all n > 0, we have

|#{x ∈ X(kn) | Fx ∈ C} −
#C

#G
·#X(kn)| ≤ (#C)(2g − 2)

√
qn

(Warning: Please check the coefficient #C on the right hand side carefuly before
using.)

Sketch. Write

ϕ∗(Ql) = ⊕π∈ĜFπ

where Ĝ is the set of isomorphism classes of irred representations of G over Ql. For

π ∈ Ĝ let χπ : G→ Ql be the character of π. Then

H∗(Yk,Ql) = ⊕π∈ĜH
∗(Yk,Ql)π =(ϕ finite ) ⊕π∈ĜH

∗(Xk,Fπ)

If π 6= 1 then we have

H0(Xk,Fπ) = H2(Xk,Fπ) = 0, dimH1(Xk,Fπ) = (2gX − 2)d2
π

(can get this from trace formula for acting on ...) and we see that

|
∑

x∈X(kn)

χπ(Fx)| ≤ (2gX − 2)d2
π

√
qn

Write 1C =
∑
π aπχπ, then aπ = 〈1C , χπ〉, and a1 = 〈1C , χ1〉 = #C

#G where

〈f, h〉 =
1

#G

∑
g∈G

f(g)h(g)

Thus we have the relation

#C

#G
= ||1C ||2 =

∑
|aπ|2
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Final step:

# {x ∈ X(kn) | Fx ∈ C} =
∑

x∈X(kn)

1C(x)

=
∑

x∈X(kn)

∑
π

aπχπ(Fx)

=
#C

#G
#X(kn)︸ ︷︷ ︸

term for π=1

+
∑
π 6=1

aπ
∑

x∈X(kn)

χπ(Fx)

︸ ︷︷ ︸
error term (to be bounded by E)

We can bound the error term by

|E| ≤
∑
π∈Ĝ,
π 6=1

|aπ|(2g − 2)d2
π

√
qn

≤
∑
π 6=1

#C

#G
(2gX − 2)d3

π

√
qn

By Weil’s conjecture, #X(kn) ∼ qn. �

44.112. How many primes decompose completely?

This section gives a second application of the Riemann Hypothesis for curves over
a finite field. For number theorists it may be nice to look at the paper by Ihara,
entitled “How many primes decompose completely in an infinite unramified Galois
extension of a global field?”, see [Iha83]. Consider the fundamental exact sequence

1→ π1(Xk)→ π1(X)
deg−−→ Ẑ→ 1

Proposition 44.112.1. There exists a finite set x1, . . . , xn of closed points of X
such that that set of all frobenius elements corresponding to these points topologi-
cally generate π1(X).

Another way to state this is: There exist x1, . . . , xn ∈ |X| such that the smallest
normal closed subgroup Γ of π1(X) containing 1 frobenius element for each xi is
all of π1(X). i.e., Γ = π1(X).

Proof. Pick N � 0 and let

{x1, . . . , xn} =
set of all closed points of

X of degree ≤ N over k

Let Γ ⊂ π1(X) be as in the variant statement for these points. Assume Γ 6= π1(X).
Then we can pick a normal open subgroup U of π1(X) containing Γ with U 6= π1(X).
By R.H. for X our set of points will have some xi1 of degree N , some xi2 of degree

N − 1. This shows deg : Γ → Ẑ is surjective and so the same holds for U . This
exactly means if Y → X is the finite étale Galois covering corresponding to U , then
Yk irreducible. Set G = Aut(Y/X). Picture

Y →G X, G = π1(X)/U

By construction all points of X of degree ≤ N , split completely in Y . So, in
particular

#Y (kN ) ≥ (#G)#X(kN )

http://stacks.math.columbia.edu/tag/03W5
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Use R.H. on both sides. So you get

qN + 1 + 2gY q
N/2 ≥ #G#X(kN ) ≥ #G(qN + 1− 2gXq

N/2)

Since 2gY − 2 = (#G)(2gX − 2), this means

qN + 1 + (#G)(2gX − 1) + 1)qN/2 ≥ #G(qN + 1− 2gXq
N/2)

Thus we see that G has to be the trivial group if N is large enough. �

Weird Question. Set WX = deg−1(Z) ⊂ π1(X). Is it true that for some finite
set of closed points x1, . . . , xn of X the set of all frobenii corresponding to these
points algebraically generate WX?

By a Baire category argument this translates into the same question for all Frobenii.

44.113. How many points are there really?

If the genus of the curve is large relative to q, then the main term in the formula
#X(k) = q−

∑
ωi + 1 is not q but the second term

∑
ωi which can (a priori) have

size about 2gX
√
q. In the paper [VD83] the authors Drinfeld and Vladut show

that this maximum is (as predicted by Ihara earlier) actually at most about g
√
q.

Fix q and let k be a field with k elements. Set

A(q) = lim sup
gX→∞

#X(k)

gX

where X runs over geometrically irreducible smooth projective curves over k. With
this definition we have the following results:

• RH ⇒ A(q) ≤ 2
√
q

• Ihara ⇒ A(q) ≤
√

2q
• DV ⇒ A(q) ≤ √q − 1 (actually this is sharp if q is a square)

Proof. Given X let w1, . . . , w2g and g = gX be as before. Set αi = wi√
q , so |αi| = 1.

If αi occurs then αi = α−1
i also occurs. Then

N = #X(k) ≤ X(kr) = qr + 1− (
∑
i

αri )q
r/2

Rewriting we see that for every r ≥ 1

−
∑
i

αri ≥ Nq−r/2 − qr/2 − q−r/2

Observe that

0 ≤ |αni + αn−1
i + . . .+ αi + 1|2 = (n+ 1) +

n∑
j=1

(n+ 1− j)(αji + α−ji )

So

2g(n+ 1) ≥ −
∑
i

 n∑
j=1

(n+ 1− j)(αji + α−ji )


= −

n∑
j=1

(n+ 1− j)

(∑
i

αji +
∑
i

α−ji

)
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Take half of this to get

g(n+ 1) ≥ −
n∑
j=1

(n+ 1− j)(
∑
i

αji )

≥ N
n∑
j=1

(n+ 1− j)q−j/2 −
n∑
j=1

(n+ 1− j)(qj/2 + q−j/2)

This gives

N

g
≤

 n∑
j=1

n+ 1− j
n+ 1

q−j/2

−1

·

1 +
1

g

n∑
j=1

n+ 1− j
n+ 1

(qj/2 + q−j/2)


Fix n let g →∞

A(q) ≤

 n∑
j=1

n+ 1− j
n+ 1

q−j/2

−1

So

A(q) ≤ limn→∞(. . .) =

 ∞∑
j=1

q−j/2

−1

=
√
q − 1

�
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CHAPTER 45

Crystalline Cohomology

45.1. Introduction

This chapter is based on a lecture series given by Johan de Jong held in 2012 at
Columbia University. The goals of this chapter are to give a quick introduction to
crystalline cohomology. A reference is the book [Ber74].

We have moved the more elementary purely algebraic discussion of divided power
rings to a preliminary chapter as it is also useful in discussing Tate resolutions in
commutative algebra. Please see Divided Power Algebra, Section 23.1.

45.2. Divided power envelope

The construction of the following lemma will be dubbed the divided power envelope.
It will play an important role later.

Lemma 45.2.1. Let (A, I, γ) be a divided power ring. Let A→ B be a ring map.
Let J ⊂ B be an ideal with IB ⊂ J . There exists a homomorphism of divided power
rings

(A, I, γ) −→ (D, J̄, γ̄)

such that

Hom(A,I,γ)((D, J̄, γ̄), (C,K, δ)) = Hom(A,I)((B, J), (C,K))

functorially in the divided power algebra (C,K, δ) over (A, I, γ). Here the LHS is
morphisms of divided power rings over (A, I, γ) and the RHS is morphisms of (ring,
ideal) pairs over (A, I).

Proof. Denote C the category of divided power rings (C,K, δ). Consider the func-
tor F : C −→ Sets defined by

F (C,K, δ) =

{
(ϕ,ψ)

∣∣∣∣ ϕ : (A, I, γ)→ (C,K, δ) homomorphism of divided power rings
ψ : (B, J)→ (C,K) an A-algebra homomorphism with ψ(J) ⊂ K

}
We will show that Divided Power Algebra, Lemma 23.3.3 applies to this functor
which will prove the lemma. Suppose that (ϕ,ψ) ∈ F (C,K, δ). Let C ′ ⊂ C be the
subring generated by ϕ(A), ψ(B), and δn(ψ(f)) for all f ∈ J . Let K ′ ⊂ K ∩C ′ be
the ideal of C ′ generated by ϕ(I) and δn(ψ(f)) for f ∈ J . Then (C ′,K ′, δ|K′) is a
divided power ring and C ′ has cardinality bounded by the cardinal κ = |A|⊗ |B|ℵ0 .
Moreover, ϕ factors as A → C ′ → C and ψ factors as B → B′ → B. This proves
assumption (1) of Divided Power Algebra, Lemma 23.3.3 holds. Assumption (2) is
clear as limits in the category of divided power rings commute with the forgetful
functor (C,K, δ) 7→ (C,K), see Divided Power Algebra, Lemma 23.3.2 and its
proof. �

2961

http://stacks.math.columbia.edu/tag/07H8


2962 45. CRYSTALLINE COHOMOLOGY

Definition 45.2.2. Let (A, I, γ) be a divided power ring. Let A → B be a ring
map. Let J ⊂ B be an ideal with IB ⊂ J . The divided power algebra (D, J̄, γ̄)
constructed in Lemma 45.2.1 is called the divided power envelope of J in B relative
to (A, I, γ) and is denoted DB(J) or DB,γ(J).

Let (A, I, γ)→ (C,K, δ) be a homomorphism of divided power rings. The universal
property of DB,γ(J) = (D, J̄, γ̄) is

ring maps B → C
which map J into K

←→ divided power homomorphisms
(D, J̄, γ̄)→ (C,K, δ)

and the correspondence is given by precomposing with the map B → D which
corresponds to idD. Here are some properties of (D, J̄, γ̄) which follow directly
from the universal property. There are A-algebra maps

(45.2.2.1) B −→ D −→ B/J

The first arrow maps J into J̄ and J̄ is the kernel of the second arrow. The elements
γ̄n(x) where n > 0 and x is an element in the image of J → D generate J̄ as an
ideal in D and generate D as a B-algebra.

Lemma 45.2.3. Let (A, I, γ) be a divided power ring. Let ϕ : B′ → B be a
surjection of A-algebras with kernel K. Let IB ⊂ J ⊂ B be an ideal. Let J ′ ⊂
B′ be the inverse image of J . Write DB′,γ(J ′) = (D′, J̄ ′, γ̄). Then DB,γ(J) =
(D′/K ′, J̄ ′/K ′, γ̄) where K ′ is the ideal generated by the elements γ̄n(k) for n ≥ 1
and k ∈ K.

Proof. Write DB,γ(J) = (D, J̄, γ̄). The universal property of D′ gives us a homo-
morphism D′ → D of divided power algebras. As B′ → B and J ′ → J are surjec-
tive, we see that D′ → D is surjective (see remarks above). It is clear that γ̄n(k) is
in the kernel for n ≥ 1 and k ∈ K, i.e., we obtain a homomorphism D′/K ′ → D.
Conversely, there exists a divided power structure on J̄ ′/K ′ ⊂ D′/K ′, see Divided
Power Algebra, Lemma 23.4.3. Hence the universal property of D gives an inverse
D → D′/K ′ and we win. �

In the situation of Definition 45.2.2 we can choose a surjection P → B where P
is a polynomial algebra over A and let J ′ ⊂ P be the inverse image of J . The
previous lemma describes DB,γ(J) in terms of DP,γ(J ′). Note that γ extends to a
divided power structure γ′ on IP by Divided Power Algebra, Lemma 23.4.2. Hence
DP,γ(J ′) = DP,γ′(J

′) is an example of a special case of divided power envelopes we
describe in the following lemma.

Lemma 45.2.4. Let (B, I, γ) be a divided power algebra. Let I ⊂ J ⊂ B be an
ideal. Let (D, J̄, γ̄) be the divided power envelope of J relative to γ. Choose elements
ft ∈ J , t ∈ T such that J = I + (ft). Then there exists a surjection

Ψ : B〈xt〉 −→ D

of divided power rings mapping xt to the image of ft in D. The kernel of Ψ is
generated by the elements xt − ft and all

δn

(∑
rtxt − r0

)
whenever

∑
rtft = r0 in B for some rt ∈ B, r0 ∈ I.

http://stacks.math.columbia.edu/tag/07H9
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Proof. In the statement of the lemma we think of B〈xt〉 as a divided power ring
with ideal J ′ = IB〈xt〉+B〈xt〉+, see Divided Power Algebra, Remark 23.5.2. The
existence of Ψ follows from the universal property of divided power polynomial
rings. Surjectivity of Ψ follows from the fact that its image is a divided power
subring of D, hence equal to D by the universal property of D. It is clear that
xt − ft is in the kernel. Set

R = {(r0, rt) ∈ I ⊕
⊕

t∈T
B |

∑
rtft = r0 in B}

If (r0, rt) ∈ R then it is clear that
∑
rtxt− r0 is in the kernel. As Ψ is a homomor-

phism of divided power rings and
∑
rtxt = r0 ∈ J ′ it follows that δn(

∑
rtxt − r0)

is in the kernel as well. Let K ⊂ B〈xt〉 be the ideal generated by xt − ft and the
elements δn(

∑
rtxt − r0) for (r0, rt) ∈ R. To show that K = Ker(Ψ) it suffices to

show that δ extends to B〈xt〉/K. Namely, if so the universal property of D gives a
map D → B〈xt〉/K inverse to Ψ. Hence we have to show that K ∩ J ′ is preserved
by δn, see Divided Power Algebra, Lemma 23.4.3. Let K ′ ⊂ B〈xt〉 be the ideal
generated by the elements

(1) δm(
∑
rtxt − r0) where m > 0 and (r0, rt) ∈ R,

(2) x
[m]
t′ (xt − ft) where m > 0 and t′, t ∈ I.

We claim that K ′ = K ∩J ′. The claim proves that K ∩J ′ is preserved by δn, n > 0
by the criterion of Divided Power Algebra, Lemma 23.4.3 (2)(c) and a computation
of δn of the elements listed which we leave to the reader. To prove the claim note
that K ′ ⊂ K ∩ J ′. Conversely, if h ∈ K ∩ J ′ then, modulo K ′ we can write

h =
∑

rt(xt − ft)

for some rt ∈ B. As h ∈ K ∩ J ′ ⊂ J ′ we see that r0 =
∑
rtft ∈ I. Hence

(r0, rt) ∈ R and we see that

h =
∑

rtxt − r0

is in K ′ as desired. �

Lemma 45.2.5. Let (A, I, γ) be a divided power ring. Let B be an A-algebra and
IB ⊂ J ⊂ B an ideal. Let xi be a set of variables. Then

DB[xi],γ(JB[xi] + (xi)) = DB,γ(J)〈xi〉

Proof. One possible proof is to deduce this from Lemma 45.2.4 as any relation
between xi in B[xi] is trivial. On the other hand, the lemma follows from the uni-
versal property of the divided power polynomial algebra and the universal property
of divided power envelopes. �

Conditions (1) and (2) of the following lemma hold if B → B′ is flat at all primes
of V (IB′) ⊂ Spec(B′) and is very closely related to that condition, see Algebra,
Lemma 10.95.8. It in particular says that taking the divided power envelope com-
mutes with localization.

Lemma 45.2.6. Let (A, I, γ) be a divided power ring. Let B → B′ be a homomor-
phism of A-algebras. Assume that

(1) B/IB → B′/IB′ is flat, and

(2) TorB1 (B′, B/IB) = 0.

http://stacks.math.columbia.edu/tag/07KE
http://stacks.math.columbia.edu/tag/07HD
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Then for any ideal IB ⊂ J ⊂ B the canonical map

DB(J)⊗B B′ −→ DB′(JB
′)

is an isomorphism.

Proof. Set D = DB(J) and denote J̄ ⊂ D its divided power ideal with divided
power structure γ̄. The universal property of D produces a B-algebra map D →
DB′(JB

′), whence a map as in the lemma. It suffices to show that the divided
powers γ̄ extend to D ⊗B B′ since then the universal property of DB′(JB

′) will
produce a map DB′(JB

′)→ D ⊗B B′ inverse to the one in the lemma.

Choose a surjection P → B′ where P is a polynomial algebra over B. In particular
B → P is flat, hence D → D ⊗B P is flat by Algebra, Lemma 10.38.6. Then γ̄
extends to D ⊗B P by Divided Power Algebra, Lemma 23.4.2; we will denote this
extension γ̄ also. Set a = Ker(P → B′) so that we have the short exact sequence

0→ a→ P → B′ → 0

Thus TorB1 (B′, B/IB) = 0 implies that a ∩ IP = Ia. Now we have the following
commutative diagram

B/J ⊗B a
β
// B/J ⊗B P // B/J ⊗B B′

D ⊗B a
α //

OO

D ⊗B P //

OO

D ⊗B B′

OO

J̄ ⊗B a //

OO

J̄ ⊗B P //

OO

J̄ ⊗B B′

OO

This diagram is exact even with 0’s added at the top and the right. We have to
show the divided powers on the ideal J̄ ⊗B P preserve the ideal Im(α) ∩ J̄ ⊗B P ,
see Divided Power Algebra, Lemma 23.4.3. Consider the exact sequence

0→ a/Ia→ P/IP → B′/IB′ → 0

(which uses that a ∩ IP = Ia as seen above). As B′/IB′ is flat over B/IB this
sequence remains exact after applying B/J⊗B/IB−, see Algebra, Lemma 10.38.11.
Hence

Ker(B/J ⊗B/IB a/Ia→ B/J ⊗B/IB P/IP ) = Ker(a/Ja→ P/JP )

is zero. Thus β is injective. It follows that Im(α) ∩ J̄ ⊗B P is the image of J̄ ⊗ a.
Now if f ∈ J̄ and a ∈ a, then γ̄n(f ⊗ a) = γ̄n(f)⊗ an hence the result is clear. �

The following lemma is a special case of [dJ95, Proposition 2.1.7] which in turn is
a generalization of [Ber74, Proposition 2.8.2].

Lemma 45.2.7. Let (B, I, γ) → (B′, I ′, γ′) be a homomorphism of divided power
rings. Let I ⊂ J ⊂ B and I ′ ⊂ J ′ ⊂ B′ be ideals. Assume

(1) B/I → B′/I ′ is flat, and
(2) J ′ = JB′ + I ′.

Then the canonical map

DB,γ(J)⊗B B′ −→ DB′,γ′(J
′)

is an isomorphism.

http://stacks.math.columbia.edu/tag/07HE
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Proof. Set D = DB(J) and denote J̄ ⊂ D its divided power ideal with divided
power structure γ̄. The universal property of D produces a homomorphism of
divided power rings D → DB′(J

′), whence a map as in the lemma. It suffices to
show that there exist divided powers on the image of D⊗B I ′+ J̄⊗BB′ → D⊗BB′
compatible with γ̄ and γ′ since then the universal property of DB′(J

′) will produce
a map DB′(J

′)→ D ⊗B B′ inverse to the one in the lemma.

Choose elements ft ∈ J which generate J/I. Set R = {(r0, rt) ∈ I ⊕
⊕

t∈T B |∑
rtft = r0 in B} as in the proof of Lemma 45.2.4. This lemma shows that

D = B〈xt〉/K

where K is generated by the elements xt − ft and δn(
∑
rtxt − r0) for (r0, rt) ∈ R.

Thus we see that

(45.2.7.1) D ⊗B B′ = B′〈xt〉/K ′

where K ′ is generated by the images in B′〈xt〉 of the generators of K listed above.
Let f ′t ∈ B′ be the image of ft. By assumption (1) we see that the elements f ′t ∈ J ′
generate J ′/I ′ and we see that xt − f ′t ∈ K ′. Set

R′ = {(r′0, r′t) ∈ I ′ ⊕
⊕

t∈T
B′ |

∑
r′tf
′
t = r′0 in B′}

To finish the proof we have to show that δ′n(
∑
r′txt − r′0) ∈ K ′ for (r′0, r

′
t) ∈ R′,

because then the presentation (45.2.7.1) of D⊗B B′ is identical to the presentation
ofDB′,γ′(J

′) obtain in Lemma 45.2.4 from the generators f ′t . Suppose that (r′0, r
′
t) ∈

R′. Then
∑
r′tf
′
t = 0 in B′/I ′. As B/I → B′/I ′ is flat by assumption (1) we can

apply the equational criterion of flatness (Algebra, Lemma 10.38.10) to see that
there exist an m > 0 and rjt ∈ B and cj ∈ B′, j = 1, . . . ,m such that

rj0 =
∑

rjtft ∈ I for j = 1, . . . ,m, and r′t =
∑

cjrjt.

Note that this also implies that r′0 =
∑
cjrj0. Then we have

δ′n(
∑

r′txt − r′0) = δ′n(
∑

cj(
∑

rjtxt − rj0))

=
∑

cn1
1 . . . cnmm δn1

(
∑

r1txt − r10) . . . δnm(
∑

rmtxt − rm0)

where the sum is over n1 + . . .+ nm = n. This proves what we want. �

45.3. Some explicit divided power thickenings

The constructions in this section will help us to define the connection on a crystal
in modules on the crystalline site.

Lemma 45.3.1. Let (A, I, γ) be a divided power ring. Let M be an A-module. Let
B = A⊕M as an A-algebra where M is an ideal of square zero and set J = I⊕M .
Set

δn(x+ z) = γn(x) + γn−1(x)z

for x ∈ I and z ∈ M . Then δ is a divided power structure and A → B is a
homomorphism of divided power rings from (A, I, γ) to (B, J, δ).

Proof. We have to check conditions (1) – (5) of Divided Power Algebra, Definition
23.2.1. We will prove this directly for this case, but please see the proof of the next

http://stacks.math.columbia.edu/tag/07HH
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lemma for a method which avoids calculations. Conditions (1) and (3) are clear.
Condition (2) follows from

δn(x+ z)δm(x+ z) = (γn(x) + γn−1(x)z)(γm(x) + γm−1(x)z)

= γn(x)γm(x) + γn(x)γm−1(x)z + γn−1(x)γm(x)z

=
(n+m)!

n!m!
γn+m(x) +

(
(n+m− 1)!

n!(m− 1)!
+

(n+m− 1)!

(n− 1)!m!

)
γn+m−1(x)z

=
(n+m)!

n!m!
δn+m(x+ z)

Condition (5) follows from

δn(δm(x+ z)) = δn(γm(x) + γm−1(x)z)

= γn(γm(x)) + γn−1(γm(x))γm−1(x)z

=
(nm)!

n!(m!)n
γnm(x) +

((n− 1)m)!

(n− 1)!(m!)n−1
γ(n−1)m(x)γm−1(x)z

=
(nm)!

n!(m!)n
(γnm(x) + γnm−1(x)z)

by elementary number theory. To prove (4) we have to see that

δn(x+ x′ + z + z′) = γn(x+ x′) + γn−1(x+ x′)(z + z′)

is equal to ∑n

i=0
(γi(x) + γi−1(x)z)(γn−i(x

′) + γn−i−1(x′)z′)

This follows easily on collecting the coefficients of 1, z, and z′ and using condition
(4) for γ. �

Lemma 45.3.2. Let (A, I, γ) be a divided power ring. Let M , N be A-modules.
Let q : M ×M → N be an A-bilinear map. Let B = A ⊕M ⊕N as an A-algebra
with multiplication

(x, z, w) · (x′, z′, w′) = (xx′, xz′ + x′z, xw′ + x′w + q(z, z′) + q(z′, z))

and set J = I ⊕M ⊕N . Set

δn(x, z, w) = (γn(x), γn−1(x)z, γn−1(z)w + γn−2(x)q(z, z))

for (a,m, n) ∈ J . Then δ is a divided power structure and A → B is a homomor-
phism of divided power rings from (A, I, γ) to (B, J, δ).

Proof. Suppose we want to prove that property (4) of Divided Power Algebra,
Definition 23.2.1 is satisfied. Pick (x, z, w) and (x′, z′, w′) in J . Pick a map

A0 = Z〈s, s′〉 −→ A, s 7−→ x, s′ 7−→ x′

which is possible by the universal property of divided power polynomial rings. Set
M0 = A0 ⊕ A0 and N0 = A0 ⊕ A0 ⊕M0 ⊗A0

M0. Let q0 : M0 ×M0 → N0 be the
obvious map. Define M0 →M as the A0-linear map which sends the basis vectors
of M0 to z and z′. Define N0 → N as the A0 linear map which sends the first two

basis vectors of N0 to w and w′ and uses M0⊗A0 M0 →M ⊗AM
q−→ N on the last

summand. Then we see that it suffices to prove the identity (4) for the situation
(A0,M0, N0, q0). Similarly for the other identities. This reduces us to the case of a

http://stacks.math.columbia.edu/tag/07HI
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Z-torsion free ring A and A-torsion free modules. In this case all we have to do is
show that

n!δn(x, z, w) = (x, z, w)n

in the ring A, see Divided Power Algebra, Lemma 23.2.2. To see this note that

(x, z, w)2 = (x2, 2xz, 2xw + 2q(z, z))

and by induction

(x, z, w)n = (xn, nxn−1z, nxn−1w + n(n− 1)xn−2q(z, z))

On the other hand,

n!δn(x, z, w) = (n!γn(x), n!γn−1(x)z, n!γn−1(x)w + n!γn−2(x)q(z, z))

which matches. This finishes the proof. �

45.4. Compatibility

This section isn’t required reading; it explains how our discussion fits with that of
[Ber74]. Consider the following technical notion.

Definition 45.4.1. Let (A, I, γ) and (B, J, δ) be divided power rings. Let A→ B
be a ring map. We say δ is compatible with γ if there exists a divided power
structure γ̄ on J + IB such that

(A, I, γ)→ (B, J + IB, γ̄) and (B, J, δ)→ (B, J + IB, γ̄)

are homomorphisms of divided power rings.

Let p be a prime number. Let (A, I, γ) be a divided power ring. Let A → C be
a ring map with p nilpotent in C. Assume that γ extends to IC (see Divided
Power Algebra, Lemma 23.4.2). In this situation, the (big affine) crystalline site
of Spec(C) over Spec(A) as defined in [Ber74] is the opposite of the category of
systems

(B, J, δ, A→ B,C → B/J)

where

(1) (B, J, δ) is a divided power ring with p nilpotent in B,
(2) δ is compatible with γ, and
(3) the diagram

B // B/J

A

OO

// C

OO

is commutative.

The conditions “γ extends to C and δ compatible with γ” are used in [Ber74] to
insure that the crystalline cohomology of Spec(C) is the same as the crystalline
cohomology of Spec(C/IC). We will avoid this issue by working exclusively with C
such that IC = 01. In this case, for a system (B, J, δ, A→ B,C → B/J) as above,
the commutativity of the displayed diagram above implies IB ⊂ J and compatibil-
ity is equivalent to the condition that (A, I, γ) → (B, J, δ) is a homomorphism of
divided power rings.

1Of course there will be a price to pay.
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45.5. Affine crystalline site

In this section we discuss the algebraic variant of the crystalline site. Our basic
situation in which we discuss this material will be as follows.

Situation 45.5.1. Here p is a prime number, (A, I, γ) is a divided power ring such
that A is a Z(p)-algebra, and A→ C is a ring map such that IC = 0 and such that
p is nilpotent in C.

Usually the prime number p will be contained in the divided power ideal I.

Definition 45.5.2. In Situation 45.5.1.

(1) A divided power thickening of C over (A, I, γ) is a homomorphism of di-
vided power algebras (A, I, γ) → (B, J, δ) such that p is nilpotent in B
and a ring map C → B/J such that

B // B/J

C

OO

A

OO

// A/I

OO

is commutative.
(2) A homomorphism of divided power thickenings

(B, J, δ, C → B/J) −→ (B′, J ′, δ′, C → B′/J ′)

is a homomorphism ϕ : B → B′ of divided power A-algebras such that
C → B/J → B′/J ′ is the given map C → B′/J ′.

(3) We denote CRIS(C/A, I, γ) or simply CRIS(C/A) the category of divided
power thickenings of C over (A, I, γ).

(4) We denote Cris(C/A, I, γ) or simply Cris(C/A) the full subcategory con-
sisting of (B, J, δ, C → B/J) such that C → B/J is an isomorphism. We
often denote such an object (B → C, δ) with J = Ker(B → C) being
understood.

Note that for a divided power thickening (B, J, δ) as above the ideal J is locally
nilpotent, see Divided Power Algebra, Lemma 23.2.6. There is a canonical functor

(45.5.2.1) CRIS(C/A) −→ C-algebras, (B, J, δ) 7−→ B/J

This category does not have equalizers or fibre products in general. It also doesn’t
have an initial object (= empty colimit) in general.

Lemma 45.5.3. In Situation 45.5.1.

(1) CRIS(C/A) has products,
(2) CRIS(C/A) has all finite nonempty colimits and (45.5.2.1) commutes with

these, and
(3) Cris(C/A) has all finite nonempty colimits and Cris(C/A)→ CRIS(C/A)

commutes with them.
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Proof. The empty product is (C, 0, ∅). If (Bt, Jt, δt) is a family of objects of
CRIS(C/A) then we can form the product (

∏
Bt,
∏
Jt,
∏
δt) as in Divided Power

Algebra, Lemma 23.3.4. The map C →
∏
Bt/

∏
Jt =

∏
Bt/Jt is clear.

Given two objects (B, J, γ) and (B′, J ′, γ′) of CRIS(C/A) we can form a cocartesian
diagram

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

in the category of divided power rings. Then we see that we have

B′′/J ′′ = B/J ⊗A/I B′/J ′ ←− C ⊗A/I C

see Divided Power Algebra, Remark 23.3.5. Denote J ′′ ⊂ K ⊂ B′′ the ideal such
that

B′′/J ′′ // B′′/K

C ⊗A/I C //

OO

C

OO

is a pushout, i.e., B′′/K ∼= B/J ⊗C B′/J ′. Let DB′′(K) = (D, K̄, δ̄) be the divided
power envelope of K in B′′ relative to (B′′, J ′′, δ′′). Then it is easily verified that
(D, K̄, δ̄) is a coproduct of (B, J, δ) and (B′, J ′, δ′) in CRIS(C/A).

Next, we come to coequalizers. Let α, β : (B, J, δ) → (B′, J ′, δ′) be morphisms of
CRIS(C/A). Consider B′′ = B′/(α(b) − β(b)). Let J ′′ ⊂ B′′ be the image of J ′.
Let DB′′(J

′′) = (D, J̄, δ̄) be the divided power envelope of J ′′ in B′′ relative to
(B′, J ′, δ′). Then it is easily verified that (D, J̄, δ̄) is the coequalizer of (B, J, δ) and
(B′, J ′, δ′) in CRIS(C/A).

By Categories, Lemma 4.18.6 we have all finite nonempty colimits in CRIS(C/A).
The constructions above shows that (45.5.2.1) commutes with them. This formally
implies part (3) as Cris(C/A) is the fibre category of (45.5.2.1) over C. �

Remark 45.5.4. In Situation 45.5.1 we denote Cris∧(C/A) the category whose
objects are pairs (B → C, δ) such that

(1) B is a p-adically complete A-algebra,
(2) B → C is a surjection of A-algebras,
(3) δ is a divided power structure on Ker(B → C),
(4) A→ B is a homomorphism of divided power rings.

Morphisms are defined as in Definition 45.5.2. Then Cris(C/A) ⊂ Cris∧(C/A) is
the full subcategory consisting of those B such that p is nilpotent in B. Conversely,
any object (B → C, δ) of Cris∧(C/A) is equal to the limit

(B → C, δ) = lime(B/p
eB → C, δ)

where for e � 0 the object (B/peB → C, δ) lies in Cris(C/A), see Divided Power
Algebra, Lemma 23.4.5. In particular, we see that Cris∧(C/A) is a full subcategory
of the category of pro-objects of Cris(C/A), see Categories, Remark 4.22.4.
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Lemma 45.5.5. In Situation 45.5.1. Let P → C be a surjection of A-algebras with
kernel J . Write DP,γ(J) = (D, J̄, γ̄). Let (D∧, J∧, γ̄∧) be the p-adic completion of
D, see Divided Power Algebra, Lemma 23.4.5. For every e ≥ 1 set Pe = P/peP
and Je ⊂ Pe the image of J and write DPe,γ(Je) = (De, J̄e, γ̄). Then for all e large
enough we have

(1) peD ⊂ J̄ and peD∧ ⊂ J̄∧ are preserved by divided powers,
(2) D∧/peD∧ = D/peD = De as divided power rings,
(3) (De, J̄e, γ̄) is an object of Cris(C/A),
(4) (D∧, J̄∧, γ̄∧) is equal to lime(De, J̄e, γ̄), and
(5) (D∧, J̄∧, γ̄∧) is an object of Cris∧(C/A).

Proof. Part (1) follows from Divided Power Algebra, Lemma 23.4.5. It is a general
property of p-adic completion that D/peD = D∧/peD∧. Since D/peD is a divided
power ring and since P → D/peD factors through Pe, the universal property of De

produces a map De → D/peD. Conversely, the universal property of D produces
a map D → De which factors through D/peD. We omit the verification that these
maps are mutually inverse. This proves (2). If e is large enough, then peC = 0,
hence we see (3) holds. Part (4) follows from Divided Power Algebra, Lemma
23.4.5. Part (5) is clear from the definitions. �

Lemma 45.5.6. In Situation 45.5.1. Let P be a polynomial algebra over A and let
P → C be a surjection of A-algebras with kernel J . With (De, J̄e, γ̄) as in Lemma
45.5.5: for every object (B, JB , δ) of CRIS(C/A) there exists an e and a morphism
De → B of CRIS(C/A).

Proof. We can find an A-algebra homomorphism P → B lifting the map C →
B/JB . By our definition of CRIS(C/A) we see that peB = 0 for some e hence
P → B factors as P → Pe → B. By the universal property of the divided power
envelope we conclude that Pe → B factors through De. �

Lemma 45.5.7. In Situation 45.5.1. Let P be a polynomial algebra over A and
let P → C be a surjection of A-algebras with kernel J . Let (D, J̄, γ̄) be the p-adic
completion of DP,γ(J). For every object (B → C, δ) of Cris∧(C/A) there exists a
morphism D → B of Cris∧(C/A).

Proof. We can find an A-algebra homomorphism P → B compatible with maps to
C. By our definition of Cris(C/A) we see that P → B factors as P → DP,γ(J)→ B.
As B is p-adically complete we can factor this map through D. �

45.6. Module of differentials

In this section we develop a theory of modules of differentials for divided power
rings.

Definition 45.6.1. Let A be a ring. Let (B, J, δ) be a divided power ring. Let
A→ B be a ring map. Let M be an B-module. A divided power A-derivation into
M is a map θ : B → M which is additive, annihilates the elements of A, satisfies
the Leibniz rule θ(bb′) = bθ(b′) + b′θ(b) and satisfies

θ(γn(x)) = γn−1(x)θ(x)

for all n ≥ 1 and all x ∈ J .
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In the situation of the definition, just as in the case of usual derivations, there exists
a universal divided power A-derivation

dB/A,δ : B → ΩB/A,δ

such that any divided power A-derivation θ : B → M is equal to θ = ξ ◦ dB/A,δ
for some B-linear map ΩB/A,δ → M . If (A, I, γ) → (B, J, δ) is a homomorphism
of divided power rings, then we can forget the divided powers on A and consider
the divided power derivations of B over A. Here are some basic properties of the
divided power module of differentials.

Lemma 45.6.2. Let A be a ring. Let (B, J, δ) be a divided power ring and A→ B
a ring map.

(1) Consider B[x] with divided power ideal (JB[x], δ′) where δ′ is the extension
of δ to B[x]. Then

ΩB[x]/A,δ′ = ΩB/A,δ ⊗B B[x]⊕B[x]dx.

(2) Consider B〈x〉 with divided power ideal (JB〈x〉+B〈x〉+, δ′). Then

ΩB〈x〉/A,δ′ = ΩB/A,δ ⊗B B〈x〉 ⊕B〈x〉dx.
(3) Let K ⊂ J be an ideal preserved by δn for all n > 0. Set B′ = B/K

and denote δ′ the induced divided power on J/K. Then ΩB′/A,δ′ is the
quotient of ΩB/A,δ⊗B B′ by the B′-submodule generated by dk for k ∈ K.

Proof. These are proved directly from the construction of ΩB/A,δ as the free B-
module on the elements db modulo the relations

(1) d(b+ b′) = db+ db′, b, b′ ∈ B,
(2) da = 0, a ∈ A,
(3) d(bb′) = bdb′ + b′db, b, b′ ∈ B,
(4) dδn(f) = δn−1(f)df , f ∈ J , n > 1.

Note that the last relation explains why we get “the same” answer for the divided
power polynomial algebra and the usual polynomial algebra: in the first case x is
an element of the divided power ideal and hence dx[n] = x[n−1]dx. �

Let (A, I, γ) be a divided power ring. In this setting the correct version of the
powers of I is given by the divided powers

I [n] = ideal generate by γe1(x1) . . . γet(xt) with
∑

ej ≥ n and xj ∈ I.

Of course we have In ⊂ I [n]. Note that I [1] = I. Sometimes we also set I [0] = A.

Lemma 45.6.3. Let (A, I, γ) → (B, J, δ) be a homomorphism of divided power
rings. Let (B(1), J(1), δ(1)) be the coproduct of (B, J, δ) with itself over (A, I, γ),
i.e., such that

(B, J, δ) // (B(1), J(1), δ(1))

(A, I, γ) //

OO

(B, J, δ)

OO

is cocartesian. Denote K = Ker(B(1) → B). Then K ∩ J(1) ⊂ J(1) is preserved
by the divided power structure and

ΩB/A,δ = K/
(
K2 + (K ∩ J(1))[2]

)
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canonically.

Proof. The fact that K ∩ J(1) ⊂ J(1) is preserved by the divided power structure
follows from the fact that B(1)→ B is a homomorphism of divided power rings.

Recall that K/K2 has a canonical B-module structure. Denote s0, s1 : B → B(1)
the two coprojections and consider the map d : B → K/K2 + (K ∩ J(1))[2] given
by b 7→ s1(b) − s0(b). It is clear that d is additive, annihilates A, and satisfies the
Leibniz rule. We claim that d is an A-derivation. Let x ∈ J . Set y = s1(x) and
z = s0(x). Denote δ the divided power structure on J(1). We have to show that
δn(y)− δn(z) = δn−1(y)(y− z) modulo K2 + (K ∩ J(1))[2] for n ≥ 1. We will show
this by induction on n. It is true for n = 1. Let n > 1 and that it holds for all
smaller values. Note that

δn(z − y) =
∑n

i=0
(−1)n−iδi(z)δn−i(y)

is an element of K2 + (K ∩ J(1))[2]. From this and induction we see that working
modulo K2 + (K ∩ J(1))[2] we have

δn(y)− δn(z)

= δn(y) +
∑n−1

i=0
(−1)n−iδi(z)δn−i(y)

= δn(y) + (−1)nδn(y) +
∑n−1

i=1
(−1)n−i(δi(y)− δi−1(y)(y − z))δn−i(y)

Using that δi(y)δn−i(y) =
(
n
i

)
δn(y) and that δi−1(y)δn−i(y) =

(
n−1
i

)
δn−1(y) the

reader easily verifies that this expression comes out to give δn−1(y)(y−z) as desired.

Let M be a B-module. Let θ : B → M be a divided power A-derivation. Set
D = B ⊕M where M is an ideal of square zero. Define a divided power structure
on J ⊕M ⊂ D by setting δn(x + m) = δn(x) + δn−1(x)m for n > 1, see Lemma
45.3.1. There are two divided power algebra homomorphisms B → D: the first is
given by the inclusion and the second by the map b 7→ b + θ(b). Hence we get a
canonical homomorphism B(1)→ D of divided power algebras over (A, I, γ). This
induces a map K →M which annihilates K2 (as M is an ideal of square zero) and
(K∩J(1))[2] as M [2] = 0. The composition B → K/K2 +(K∩J(1))[2] →M equals
θ by construction. It follows that d is a universal divided power A-derivation and
we win. �

Remark 45.6.4. Let A → B be a ring map and let (J, δ) be a divided power
structure on B. The universal module ΩB/A,δ comes with a little bit of extra
structure, namely the B-submodule N of ΩB/A,δ generated by dB/A,δ(J). In terms
of the isomorphism given in Lemma 45.6.3 this corresponds to the image of K∩J(1)
in ΩB/A,δ. Consider the A-algebra D = B ⊕ Ω1

B/A,δ with ideal J̄ = J ⊕ N and

divided powers δ̄ as in the proof of the lemma. Then (D, J̄, δ̄) is a divided power ring
and the two maps B → D given by b 7→ b and b 7→ b+dB/A,δ(b) are homomorphisms
of divided power rings over A. Moreover, N is the smallest submodule of ΩB/A,δ
such that this is true.

Lemma 45.6.5. In Situation 45.5.1. Let (B, J, δ) be an object of CRIS(C/A). Let
(B(1), J(1), δ(1)) be the coproduct of (B, J, δ) with itself in CRIS(C/A). Denote
K = Ker(B(1) → B). Then K ∩ J(1) ⊂ J(1) is preserved by the divided power
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structure and

ΩB/A,δ = K/
(
K2 + (K ∩ J(1))[2]

)
canonically.

Proof. Word for word the same as the proof of Lemma 45.6.3. The only point
that has to be checked is that the divided power ring D = B ⊕M is an object of
CRIS(C/A) and that the two maps B → C are morphisms of CRIS(C/A). Since
D/(J ⊕M) = B/J we can use C → B/J to view D as an object of CRIS(C/A)
and the statement on morphisms is clear from the construction. �

Lemma 45.6.6. Let (A, I, γ) be a divided power ring. Let A → B be a ring map
and let IB ⊂ J ⊂ B be an ideal. Let DB,γ(J) = (D, J̄, γ̄) be the divided power
envelope. Then we have

ΩD/A,γ̄ = ΩB/A ⊗B D

Proof. We will prove this first when B is flat over A. In this case γ extends to a
divided power structure γ′ on IB, see Divided Power Algebra, Lemma 23.4.2. Hence
D = DB′,γ′(J) is equal to a quotient of the divided power ring (D′, J ′, δ) where
D′ = B〈xt〉 and J ′ = IB〈xt〉+B〈xt〉+ by the elements xt−ft and δn(

∑
rtxt− r0),

see Lemma 45.2.4 for notation and explanation. Write d : D′ → ΩD′/A,δ for the
universal derivation. Note that

ΩD′/A,δ = ΩB/A ⊗B D′ ⊕
⊕

D′dxt,

see Lemma 45.6.2. We conclude that ΩD/A,γ̄ is the quotient of ΩD′/A,δ⊗D′D by the
submodule generated by d applied to the generators of the kernel of D′ → D listed
above, see Lemma 45.6.2. Since d(xt− ft) = −dft + dxt we see that we have dxt =
dft in the quotient. In particular we see that ΩB/A ⊗B D → ΩD/A,γ is surjective
with kernel given by the images of d applied to the elements δn(

∑
rtxt − r0).

However, given a relation
∑
rtft − r0 = 0 in B with rt ∈ B and r0 ∈ IB we see

that

dδn(
∑

rtxt − r0) = δn−1(
∑

rtxt − r0)d(
∑

rtxt − r0)

= δn−1(
∑

rtxt − r0)
(∑

rtd(xt − ft) +
∑

(xt − ft)drt
)

because
∑
rtft− r0 = 0 in B. Hence this is already zero in ΩB/A⊗AD and we win

in the case that B is flat over A.

In the general case we write B as a quotient of a polynomial ring P → B and let
J ′ ⊂ P be the inverse image of J . Then D = D′/K ′ with notation as in Lemma
45.2.3. By the case handled in the first paragraph of the proof we have ΩD′/A,γ̄′ =
ΩP/A⊗PD′. Then ΩD/A,γ̄ is the quotient of ΩP/A⊗PD by the submodule generated
by dγ̄′n(k) where k is an element of the kernel of P → B, see Lemma 45.6.2 and
the description of K ′ from Lemma 45.2.3. Since dγ̄′n(k) = γ̄′n−1(k)dk we see again
that it suffices to divided by the submodule generated by dk with k ∈ Ker(P → B)
and since ΩB/A is the quotient of ΩP/A ⊗A B by these elements (Algebra, Lemma
10.127.9) we win. �
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Remark 45.6.7. Let B be a ring. Write ΩB = ΩB/Z for the absolute2 module

of differentials of B. Let d : B → ΩB denote the universal derivation. Set ΩiB =
∧iB(ΩB) as in Algebra, Section 10.12. The absolute de Rham complex

Ω0
B → Ω1

B → Ω2
B → . . .

Here d : ΩpB → Ωp+1
B is defined by the rule

d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp

which we will show is well defined; note that d ◦ d = 0 so we get a complex.
Recall that ΩB is the B-module generated by elements db subject to the relations
d(a + b) = da + db and d(ab) = bda + adb for a, b ∈ B. To prove that our map is
well defined for p = 1 we have to show that the elements

ad(b+ c)− adb− adc and ad(bc)− acdb− abdc, a, b, c ∈ B

are mapped to zero by our rule. This is clear by direct computation (using the
Leibniz rule). Thus we get a map

ΩB ⊗Z . . .⊗Z ΩB −→ Ωp+1
B

defined by the formula

ω1 ⊗ . . .⊗ ωp 7−→
∑

(−1)i+1ω1 ∧ . . . ∧ d(ωi) ∧ . . . ∧ ωp

which matches our rule above on elements of the form b0db1 ⊗ db2 ⊗ . . . ⊗ dbp. It
is clear that this map is alternating. To finish we have to show that

ω1 ⊗ . . .⊗ fωi ⊗ . . .⊗ ωp and ω1 ⊗ . . .⊗ fωj ⊗ . . .⊗ ωp
are mapped to the same element. By Z-linearity and the alternating property, it is
enough to show this for p = 2, i = 1, j = 2, ω1 = a1db1 and ω2 = a2db2. Thus we
need to show that

dfa1 ∧ db1 ∧ a2db2 − fa1db1 ∧ da2 ∧ db2

= da1 ∧ db1 ∧ fa2db2 − a1db1 ∧ dfa2 ∧ db2

in other words that

(a2dfa1 + fa1da2 − fa2da1 − a1dfa2) ∧ db1 ∧ db2 = 0.

This follows from the Leibniz rule.

Lemma 45.6.8. Let B be a ring. Let π : ΩB → Ω be a surjective B-module map.
Denote d : B → Ω the composition of π with dB : B → ΩB. Set Ωi = ∧iB(Ω).
Assume that the kernel of π is generated, as a B-module, by elements ω ∈ ΩB such
that dB(ω) ∈ Ω2

B maps to zero in Ω2. Then there is a de Rham complex

Ω0 → Ω1 → Ω2 → . . .

whose differential is defined by the rule

d : Ωp → Ωp+1, d (f0df1 ∧ . . . ∧ dfp) = df0 ∧ df1 ∧ . . . ∧ dfp

2This actually makes sense: if ΩB is the module of differentials where we only assume the
Leibniz rule and not the vanishing of d1, then the Leibniz rule gives d1 = d(1·1) = 1d1+1d1 = 2d1

and hence d1 = 0 in ΩB .
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Proof. We will show that there exists a commutative diagram

Ω0
B

��

dB

// Ω1
B

π

��

dB

// Ω2
B

∧2π
��

dB

// . . .

Ω0 d // Ω1 d // Ω2 d // . . .

the description of the map d will follow from the construction of dB in Remark
45.6.7. Since the left most vertical arrow is an isomorphism we have the first
square. Because π is surjective, to get the second square it suffices to show that
dB maps the kernel of π into the kernel of ∧2π. We are given that any element of
the kernel of π is of the form

∑
biωi with π(ωi) = 0 and ∧2π(dB(ωi)) = 0. By the

Leibniz rule for dB we have dB(
∑
biωi) =

∑
bidB(ωi) +

∑
dB(bi)∧ ωi. Hence this

maps to zero under ∧2π.

For i > 1 we note that ∧iπ is surjective with kernel the image of Ker(π) ∧ Ωi−1
B →

ΩiB . For ω1 ∈ Ker(π) and ω2 ∈ Ωi−1
B we have

dB(ω1 ∧ ω2) = dB(ω1) ∧ ω2 − ω1 ∧ dB(ω2)

which is in the kernel of ∧i+1π by what we just proved above. Hence we get the
(i+ 1)st square in the diagram above. This concludes the proof. �

Remark 45.6.9. Let A → B be a ring map and let (J, δ) be a divided power
structure on B. Set ΩiB/A,δ = ∧iBΩB/A,δ where ΩB/A,δ is the target of the universal

divided power A-derivation d = dB/A : B → ΩB/A,δ. Note that ΩB/A,δ is the
quotient of ΩB by the B-submodule generated by the elements da = 0 for a ∈ A
and dδn(x) − δn−1(x)dx for x ∈ J . We claim Lemma 45.6.8 applies. To see this
it suffices to verify the elements da and dδn(x)− δn−1(x)dx of ΩB are mapped to
zero in Ω2

B/A,δ. This is clear for the first, and for the last we observe that

d(δn−1(x)) ∧ dx = δn−2(x)dx ∧ dx = 0

in Ω2
B/A,δ as desired. Hence we obtain a divided power de Rham complex

Ω0
B/A,δ → Ω1

B/A,δ → Ω2
B/A,δ → . . .

which will play an important role in the sequel.

Remark 45.6.10. Let B be a ring. Let ΩB → Ω be a quotient satisfying the
assumptions of Lemma 45.6.8. Let M be a B-module. A connection is an additive
map

∇ : M −→M ⊗B Ω

such that ∇(bm) = b∇(m) + m ⊗ db for b ∈ B and m ∈ M . In this situation we
can define maps

∇ : M ⊗B Ωi −→M ⊗B Ωi+1

by the rule ∇(m⊗ ω) = ∇(m) ∧ ω +m⊗ dω. This works because if b ∈ B, then

∇(bm⊗ ω)−∇(m⊗ bω) = ∇(bm)⊗ ω + bm⊗ dω −∇(m)⊗ bω −m⊗ d(bω)

= b∇(m)⊗ ω +m⊗ db ∧ ω + bm⊗ dω

− b∇(m)⊗ ω − bm⊗ d(ω)−m⊗ db ∧ ω = 0

As is customary we say the connection is integrable if and only if the composition

M
∇−→M ⊗B Ω1 ∇−→M ⊗B Ω2

http://stacks.math.columbia.edu/tag/07HZ
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is zero. In this case we obtain a complex

M
∇−→M ⊗B Ω1 ∇−→M ⊗B Ω2 ∇−→M ⊗B Ω3 ∇−→M ⊗B Ω4 → . . .

which is called the de Rham complex of the connection.

Remark 45.6.11. Let ϕ : B → B′ be a ring map. Let ΩB → Ω and ΩB′ → Ω′

be quotients satisfying the assumptions of Lemma 45.6.8. Assume that the map
ΩB → ΩB′ , b1db2 7→ ϕ(b1)dϕ(b2) fits into a commutative diagram

B //

��

ΩB //

��

Ω

ϕ

��
B′ // ΩB′ // Ω′

In this situation, given any pair (M,∇) where M is a B-module and ∇ : M →
M ⊗B Ω is a connection we obtain a base change (M ⊗B B′,∇′) where

∇′ : M ⊗B B′ −→ (M ⊗B B′)⊗B′ Ω′ = M ⊗B Ω′

is defined by the rule

∇′(m⊗ b′) =
∑

mi ⊗ b′dϕ(bi) +m⊗ db′

if ∇(m) =
∑
mi ⊗ dbi. If ∇ is integrable, then so is ∇′, and in this case there is a

canonical map of de Rham complexes

(45.6.11.1) M ⊗B Ω• −→ (M ⊗B B′)⊗B′ (Ω′)• = M ⊗B (Ω′)•

which maps m⊗ η to m⊗ ϕ(η).

Lemma 45.6.12. Let A → B be a ring map and let (J, δ) be a divided power
structure on B. Let p be a prime number. Assume that A is a Z(p)-algebra and
that p is nilpotent in B/J . Then we have

lime ΩBe/A,δ̄ = lime ΩB/A,δ/p
eΩB/A,δ = lime ΩB∧/A,δ∧/p

eΩB∧/A,δ∧

see proof for notation and explanation.

Proof. By Divided Power Algebra, Lemma 23.4.5 we see that δ extends to Be =
B/peB for all sufficiently large e. Hence the first limit make sense. The lemma also
produces a divided power structure δ∧ on the completion B∧ = limeBe, hence the
last limit makes sense. By Lemma 45.6.2 and the fact that dpe = 0 (always) we see
that the surjection ΩB/A,δ → ΩBe/A,δ̄ has kernel peΩB/A,δ. Similarly for the kernel
of ΩB∧/A,δ∧ → ΩBe/A,δ̄. Hence the lemma is clear. �

45.7. Divided power schemes

Some remarks on how to globalize the previous notions.

Definition 45.7.1. Let C be a site. Let O be a sheaf of rings on C. Let I ⊂ O be a
sheaf of ideals. A divided power structure γ on I is a sequence of maps γn : I → I,
n ≥ 1 such that for any object U of C the triple

(O(U), I(U), γ)

is a divided power ring.
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To be sure this applies in particular to sheaves of rings on topological spaces. But
it’s good to be a little bit more general as the structure sheaf of the crystalline
site lives on a... site! A triple (C, I, γ) as in the definition above is sometimes
called a divided power topos in this chapter. Given a second (C′, I ′, γ′) and given
a morphism of ringed topoi (f, f ]) : (Sh(C),O) → (Sh(C′),O′) we say that (f, f ])
induces a morphism of divided power topoi if f ](f−1I ′) ⊂ I and the diagrams

f−1I ′

f−1γ′n
��

f]
// I

γn

��
f−1I ′

f] // I

are commutative for all n ≥ 1. If f comes from a morphism of sites induced by a
functor u : C′ → C then this just means that

(O′(U ′), I ′(U ′), γ′) −→ (O(u(U ′)), I(u(U ′)), γ)

is a homomorphism of divided power rings for all U ′ ∈ Ob(C′).
In the case of schemes we require the divided power ideal to be quasi-coherent.
But apart from this the definition is exactly the same as in the case of topoi. Here
it is.

Definition 45.7.2. A divided power scheme is a triple (S, I, γ) where S is a scheme,
I is a quasi-coherent sheaf of ideals, and γ is a divided power structure on I. A
morphism of divided power schemes (S, I, γ)→ (S′, I ′, γ′) is a morphism of schemes
f : S → S′ such that f−1I ′OS ⊂ I and such that

(OS(U ′), I(U ′), γ) −→ (OS′(f−1U ′), I(f−1U ′), γ)

is a homomorphism of divided power rings for all U ′ ⊂ S′ open.

Recall that there is a 1-to-1 correspondence between quasi-coherent sheaves of ideals
and closed immersions, see Morphisms, Section 28.2. Thus given a divided power
scheme (T,J , γ) we get a canonical closed immersion U → T defined by J . Con-
versely, given a closed immersion U → T and a divided power structure γ on the
sheaf of ideals J associated to U → T we obtain a divided power scheme (T,J , γ).
In many situations we only want to consider such triples (U, T, γ) when the mor-
phism U → T is a thickening, see More on Morphisms, Definition 36.2.1.

Definition 45.7.3. A triple (U, T, γ) as above is called a divided power thickening
if U → T is a thickening.

Fibre products of divided power schemes exist when one of the three is a divided
power thickening. Here is a formal statement.

Lemma 45.7.4. Let (U ′, T ′, δ′)→ (S′0, S
′, γ′) and (S0, S, γ)→ (S′0, S

′, γ′) be mor-
phisms of divided power schemes. If (U ′, T ′, δ′) is a divided power thickening, then
there exists a divided power scheme (T0, T, δ) and

T //

��

T ′

��
S // S′

which is a cartesian diagram in the category of divided power schemes.
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Proof. Omitted. Hints: If T exists, then T0 = S0 ×S′0 U
′ (argue as in Divided

Power Algebra, Remark 23.3.5). Since T ′ is a divided power thickening, we see
that T (if it exists) will be a divided power thickening too. Hence we can define T
as the scheme with underlying topological space the underlying topological space
of T0 = S0 ×S′0 U

′ and as structure sheaf on affine pieces the ring given by Lemma
45.5.3. �

We make the following observation. Suppose that (U, T, γ) is triple as above. As-
sume that T is a scheme over Z(p) and that p is locally nilpotent on U . Then

(1) p locally nilpotent on T ⇔ U → T is a thickening (see Divided Power
Algebra, Lemma 23.2.6), and

(2) peOT is locally on T preserved by γ for e� 0 (see Divided Power Algebra,
Lemma 23.4.5).

This suggest that good results on divided power thickenings will be available under
the following hypotheses.

Situation 45.7.5. Here p is a prime number and (S, I, γ) is a divided power scheme
over Z(p). We set S0 = V (I) ⊂ S. Finally, X → S0 is a morphism of schemes such
that p is locally nilpotent on X.

It is in this situation that we will define the big and small crystalline sites.

45.8. The big crystalline site

We first define the big site. Given a divided power scheme (S, I, γ) we say (T,J , δ)
is a divided power scheme over (S, I, γ) if T comes endowed with a morphism T → S
of divided power schemes. Similarly, we say a divided power thickening (U, T, δ)
is a divided power thickening over (S, I, γ) if T comes endowed with a morphism
T → S of divided power schemes.

Definition 45.8.1. In Situation 45.7.5.

(1) A divided power thickening of X relative to (S, I, γ) is given by a divided
power thickening (U, T, δ) over (S, I, γ) and an S-morphism U → X.

(2) A morphism of divided power thickenings of X relative to (S, I, γ) is de-
fined in the obvious manner.

The category of divided power thickenings of X relative to (S, I, γ) is denoted
CRIS(X/S, I, γ) or simply CRIS(X/S).

For any (U, T, δ) in CRIS(X/S) we have that p is locally nilpotent on T , see dis-
cussion after Definition 45.7.3. A good way to visualize all the data associated to
(U, T, δ) is the commutative diagram

T

��

Uoo

��
X

��
S S0
oo
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where S0 = V (I) ⊂ S. Morphisms of CRIS(X/S) can be similarly visualized as
huge commutative diagrams. In particular, there is a canonical forgetful functor

(45.8.1.1) CRIS(X/S) −→ Sch/X, (U, T, δ) 7−→ U

as well as its one sided inverse (and left adjoint)

(45.8.1.2) Sch/X −→ CRIS(X/S), U 7−→ (U,U, ∅)
which is sometimes useful.

Lemma 45.8.2. In Situation 45.7.5. The category CRIS(X/S) has all finite
nonempty limits, in particular products of pairs and fibre products. The functor
(45.8.1.1) commutes with limits.

Proof. Omitted. Hint: See Lemma 45.5.3 for the affine case. See also Divided
Power Algebra, Remark 23.3.5. �

Lemma 45.8.3. In Situation 45.7.5. Let

(U3, T3, δ3)

��

// (U2, T2, δ2)

��
(U1, T1, δ1) // (U, T, δ)

be a fibre square in the category of divided power thickenings of X relative to
(S, I, γ). If T2 → T is flat, then T3 = T1 ×T T2 (as schemes).

Proof. This is true because a divided power structure extends uniquely along a
flat ring map. See Divided Power Algebra, Lemma 23.4.2. �

The lemma above means that the base change of a flat morphism of divided power
thickenings is another flat morphism, and in fact is the “usual” base change of the
morphism. This implies that the following definition makes sense.

Definition 45.8.4. In Situation 45.7.5.

(1) A family of morphisms {(Ui, Ti, δi)→ (U, T, δ)} of divided power thicken-
ings of X/S is a Zariski, étale, smooth, syntomic, or fppf covering if and
only if the family of morphisms of schemes {Ti → T} is one.

(2) The big crystalline site of X over (S, I, γ), is the category CRIS(X/S)
endowed with the Zariski topology.

(3) The topos of sheaves on CRIS(X/S) is denoted (X/S)CRIS or sometimes
(X/S, I, γ)CRIS

3.

There are some obvious functorialities concerning these topoi.

Remark 45.8.5 (Functoriality). Let p be a prime number. Let (S, I, γ) →
(S′, I ′, γ′) be a morphism of divided power schemes over Z(p). Set S0 = V (I)
and S′0 = V (I ′). Let

X
f
//

��

Y

��
S0

// S′0

3This clashes with our convention to denote the topos associated to a site C by Sh(C).
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be a commutative diagram of morphisms of schemes and assume p is locally nilpo-
tent on X and Y . Then we get a continuous and cocontinuous functor

CRIS(X/S) −→ CRIS(Y/S′)

by letting (U, T, δ) correspond to (U, T, δ) with U → X → Y as the S′-morphism
from U to Y . Hence we get a morphism of topoi

fCRIS : (X/S)CRIS −→ (Y/S′)CRIS

see Sites, Section 7.20.

Remark 45.8.6 (Comparison with Zariski site). In Situation 45.7.5. The functor
(45.8.1.1) is continuous, cocontinuous, and commutes with products and fibred
products. Hence we obtain a morphism of topoi

UX/S : (X/S)CRIS −→ Sh((Sch/X)Zar)

from the big crystalline topos of X/S to the big Zariski topos of X. See Sites,
Section 7.20.

Remark 45.8.7 (Structure morphism). In Situation 45.7.5. Consider the closed
subscheme S0 = V (I) ⊂ S. If we assume that p is locally nilpotent on S0 (which is
always the case in practice) then we obtain a situation as in Definition 45.8.1 with
S0 instead of X. Hence we get a site CRIS(S0/S). If f : X → S0 is the structure
morphism of X over S, then we get a commutative diagram of morphisms of ringed
topoi

(X/S)CRIS
fCRIS

//

UX/S

��

(S0/S)CRIS

US0/S

��
Sh((Sch/X)Zar)

fbig // Sh((Sch/S0)Zar)

))
Sh((Sch/S)Zar)

by Remark 45.8.5. We think of the composition (X/S)CRIS → Sh((Sch/S)Zar) as
the structure morphism of the big crystalline site. Even if p is not locally nilpotent
on S0 the structure morphism

(X/S)CRIS −→ Sh((Sch/S)Zar)

is defined as we can take the lower route through the diagram above. Thus it is
the morphism of topoi corresponding to the cocontinuous functor CRIS(X/S) →
(Sch/S)Zar given by the rule (U, T, δ)/S 7→ T/S, see Sites, Section 7.20.

Remark 45.8.8 (Compatibilities). The morphisms defined above satisfy numer-
ous compatibilities. For example, in the situation of Remark 45.8.5 we obtain a
commutative diagram of ringed topoi

(X/S)CRIS

��

// (Y/S′)CRIS

��
Sh((Sch/S)Zar) // Sh((Sch/S′)Zar)

where the vertical arrows are the structure morphisms.
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45.9. The crystalline site

Since (45.8.1.1) commutes with products and fibre products, we see that looking at
those (U, T, δ) such that U → X is an open immersion defines a full subcategory
preserved under fibre products (and more generally finite nonempty limits). Hence
the following definition makes sense.

Definition 45.9.1. In Situation 45.7.5.

(1) The (small) crystalline site of X over (S, I, γ), denoted Cris(X/S, I, γ)
or simply Cris(X/S) is the full subcategory of CRIS(X/S) consisting of
those (U, T, δ) in CRIS(X/S) such that U → X is an open immersion. It
comes endowed with the Zariski topology.

(2) The topos of sheaves on Cris(X/S) is denoted (X/S)cris or sometimes
(X/S, I, γ)cris

4.

For any (U, T, δ) in Cris(X/S) the morphism U → X defines an object of the small
Zariski site XZar of X. Hence a canonical forgetful functor

(45.9.1.1) Cris(X/S) −→ XZar, (U, T, δ) 7−→ U

and a left adjoint

(45.9.1.2) XZar −→ Cris(X/S), U 7−→ (U,U, ∅)
which is sometimes useful.

We can compare the small and big crystalline sites, just like we can compare the
small and big Zariski sites of a scheme, see Topologies, Lemma 33.3.13.

Lemma 45.9.2. Assumptions as in Definition 45.8.1. The inclusion functor

Cris(X/S)→ CRIS(X/S)

commutes with finite nonempty limits, is fully faithful, continuous, and cocontinu-
ous. There are morphisms of topoi

(X/S)cris
i−→ (X/S)CRIS

π−→ (X/S)cris

whose composition is the identity and of which the first is induced by the inclusion
functor. Moreover, π∗ = i−1.

Proof. For the first assertion see Lemma 45.8.2. This gives us a morphism of topoi
i : (X/S)cris → (X/S)CRIS and a left adjoint i! such that i−1i! = i−1i∗ = id, see
Sites, Lemmas 7.20.5, 7.20.6, and 7.20.7. We claim that i! is exact. If this is true,
then we can define π by the rules π−1 = i! and π∗ = i−1 and everything is clear.
To prove the claim, note that we already know that i! is right exact and preserves
fibre products (see references given). Hence it suffices to show that i!∗ = ∗ where
∗ indicates the final object in the category of sheaves of sets. To see this it suffices
to produce a set of objects (Ui, Ti, δi), i ∈ I of Cris(X/S) such that∐

i∈I
h(Ui,Ti,δi) → ∗

is surjective in (X/S)CRIS (details omitted; hint: use that Cris(X/S) has products
and that the functor Cris(X/S)→ CRIS(X/S) commutes with them). In the affine
case this follows from Lemma 45.5.6. We omit the proof in general. �

4This clashes with our convention to denote the topos associated to a site C by Sh(C).
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Remark 45.9.3 (Functoriality). Let p be a prime number. Let (S, I, γ) →
(S′, I ′, γ′) be a morphism of divided power schemes over Z(p). Let

X
f
//

��

Y

��
S0

// S′0

be a commutative diagram of morphisms of schemes and assume p is locally nilpo-
tent on X and Y . By analogy with Topologies, Lemma 33.3.16 we define

fcris : (X/S)cris −→ (Y/S′)cris

by the formula fcris = πY ◦ fCRIS ◦ iX where iX and πY are as in Lemma 45.9.2 for
X and Y and where fCRIS is as in Remark 45.8.5.

Remark 45.9.4 (Comparison with Zariski site). In Situation 45.7.5. The functor
(45.9.1.1) is continuous, cocontinuous, and commutes with products and fibred
products. Hence we obtain a morphism of topoi

uX/S : (X/S)cris −→ Sh(XZar)

relating the small crystalline topos of X/S with the small Zariski topos of X. See
Sites, Section 7.20.

Lemma 45.9.5. In Situation 45.7.5. Let X ′ ⊂ X and S′ ⊂ S be open subschemes
such that X ′ maps into S′. Then there is a fully faithful functor Cris(X ′/S′) →
Cris(X/S) which gives rise to a morphism of topoi fitting into the commutative
diagram

(X ′/S′)cris
//

uX′/S′

��

(X/S)cris

uX/S

��
Sh(X ′Zar)

// Sh(XZar)

Moreover, this diagram is an example of localization of morphisms of topoi as in
Sites, Lemma 7.30.1.

Proof. The fully faithful functor comes from thinking of objects of Cris(X ′/S′) as
divided power thickenings (U, T, δ) of X where U → X factors through X ′ ⊂ X
(since then automatically T → S will factor through S′). This functor is clearly co-
continuous hence we obtain a morphism of topoi as indicated. Let hX′ ∈ Sh(XZar)
be the representable sheaf associated to X ′ viewed as an object of XZar. It is
clear that Sh(X ′Zar) is the localization Sh(XZar)/hX′ . On the other hand, the cat-

egory Cris(X/S)/u−1
X/ShX′ (see Sites, Lemma 7.29.3) is canonically identified with

Cris(X ′/S′) by the functor above. This finishes the proof. �

Remark 45.9.6 (Structure morphism). In Situation 45.7.5. Consider the closed
subscheme S0 = V (I) ⊂ S. If we assume that p is locally nilpotent on S0 (which is
always the case in practice) then we obtain a situation as in Definition 45.8.1 with
S0 instead of X. Hence we get a site Cris(S0/S). If f : X → S0 is the structure
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morphism of X over S, then we get a commutative diagram of ringed topoi

(X/S)cris
fcris

//

uX/S

��

(S0/S)cris

uS0/S

��
Sh(XZar)

fsmall // Sh(S0,Zar)

&&
Sh(SZar)

see Remark 45.9.3. We think of the composition (X/S)cris → Sh(SZar) as the
structure morphism of the crystalline site. Even if p is not locally nilpotent on S0

the structure morphism

τX/S : (X/S)cris −→ Sh(SZar)

is defined as we can take the lower route through the diagram above.

Remark 45.9.7 (Compatibilities). The morphisms defined above satisfy numer-
ous compatibilities. For example, in the situation of Remark 45.9.3 we obtain a
commutative diagram of ringed topoi

(X/S)cris

��

// (Y/S′)cris

��
Sh((Sch/S)Zar) // Sh((Sch/S′)Zar)

where the vertical arrows are the structure morphisms.

45.10. Sheaves on the crystalline site

Notation and assumptions as in Situation 45.7.5. In order to discuss the small and
big crystalline sites of X/S simultaneously in this section we let

C = CRIS(X/S) or C = Cris(X/S).

A sheaf F on C gives rise to a restriction FT for every object (U, T, δ) of C. Namely,
FT is the Zariski sheaf on the scheme T defined by the rule

FT (W ) = F(U ∩W,W, δ|W )

for W ⊂ T is open. Moreover, if f : T → T ′ is a morphism between objects (U, T, δ)
and (U ′, T ′, δ′) of C, then there is a canonical comparison map

(45.10.0.1) cf : f−1FT ′ −→ FT .

Namely, if W ′ ⊂ T ′ is open then f induces a morphism

f |f−1W ′ : (U ∩ f−1(W ′), f−1W ′, δ|f−1W ′) −→ (U ′ ∩W ′,W ′, δ|W ′)

of C, hence we can use the restriction mapping (f |f−1W ′)
∗ of F to define a map

FT ′(W ′) → FT (f−1W ′). These maps are clearly compatible with further restric-
tion, hence define an f -map from FT ′ to FT (see Sheaves, Section 6.21 and especially
Sheaves, Definition 6.21.7). Thus a map cf as in (45.10.0.1). Note that if f is an
open immersion, then cf is an isomorphism, because in that case FT is just the
restriction of FT ′ to T .
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Conversely, given Zariski sheaves FT for every object (U, T, δ) of C and comparison
maps cf as above which (a) are isomorphisms for open immersions, and (b) satisfy
a suitable cocycle condition, we obtain a sheaf on C. This is proved exactly as in
Topologies, Lemma 33.3.18.

The structure sheaf on C is the sheaf OX/S defined by the rule

OX/S : (U, T, δ) 7−→ Γ(T,OT )

This is a sheaf by the definition of coverings in C. Suppose that F is a sheaf ofOX/S-
modules. In this case the comparison mappings (45.10.0.1) define a comparison
map

(45.10.0.2) cf : f∗FT −→ FT ′

of OT -modules.

Another type of example comes by starting with a sheaf G on (Sch/X)Zar or XZar

(depending on whether C = CRIS(X/S) or C = Cris(X/S)). Then G defined by the
rule

G : (U, T, δ) 7−→ G(U)

is a sheaf on C. In particular, if we take G = Ga = OX , then we obtain

Ga : (U, T, δ) 7−→ Γ(U,OU )

There is a surjective map of sheaves OX/S → Ga defined by the canonical maps
Γ(T,OT )→ Γ(U,OU ) for objects (U, T, δ). The kernel of this map is denoted JX/S ,
hence a short exact sequence

0→ JX/S → OX/S → Ga → 0

Note that JX/S comes equipped with a canonical divided power structure. After
all, for each object (U, T, δ) the third component δ is a divided power structure on
the kernel of OT → OU . Hence the (big) crystalline topos is a divided power topos.

45.11. Crystals in modules

It turns out that a crystal is a very general gadget. However, the definition may
be a bit hard to parse, so we first give the definition in the case of modules on the
crystalline sites.

Definition 45.11.1. In Situation 45.7.5. Let C = CRIS(X/S) or C = Cris(X/S).
Let F be a sheaf of OX/S-modules on C.

(1) We say F is locally quasi-coherent if for every object (U, T, δ) of C the
restriction FT is a quasi-coherent OT -module.

(2) We say F is quasi-coherent if it is quasi-coherent in the sense of Modules
on Sites, Definition 18.23.1.

(3) We say F is a crystal in OX/S-modules if all the comparison maps (45.10.0.2)
are isomorphisms.

It turns out that we can relate these notions as follows.

Lemma 45.11.2. With notation X/S, I, γ, C,F as in Definition 45.11.1. The
following are equivalent

(1) F is quasi-coherent, and
(2) F is locally quasi-coherent and a crystal in OX/S-modules.

http://stacks.math.columbia.edu/tag/07IS
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Proof. Assume (1). Let f : (U ′, T ′, δ′) → (U, T, δ) be an object of C. We have
to prove (a) FT is a quasi-coherent OT -module and (b) cf : f∗FT → FT ′ is an
isomorphism. The assumption means that we can find a covering {(Ti, Ui, δi) →
(T,U, δ)} and for each i the restriction of F to C/(Ti, Ui, δi) has a global pre-
sentation. Since it suffices to prove (a) and (b) Zariski locally, we may replace
f : (T ′, U ′, δ′) → (T,U, δ) by the base change to (Ti, Ui, δi) and assume that F
restricted to C/(T,U, δ) has a global presentation⊕

j∈J
OX/S |C/(U,T,δ) −→

⊕
i∈I
OX/S |C/(U,T,δ) −→ F|C/(U,T,δ) −→ 0

It is clear that this gives a presentation⊕
j∈J
OT −→

⊕
i∈I
OT −→ FT −→ 0

and hence (a) holds. Moreover, the presentation restricts to T ′ to give a similar
presentation of FT ′ , whence (b) holds.

Assume (2). Let (U, T, δ) be an object of C. We have to find a covering of (U, T, δ)
such that F has a global presentation when we restrict to the localization of C at
the members of the covering. Thus we may assume that T is affine. In this case we
can choose a presentation⊕

j∈J
OT −→

⊕
i∈I
OT −→ FT −→ 0

as FT is assumed to be a quasi-coherent OT -module. Then by the crystal property
of F we see that this pulls back to a presentation of FT ′ for any morphism f :
(U ′, T ′, δ′)→ (U, T, δ) of C. Thus the desired presentation of F|C/(U,T,δ). �

Definition 45.11.3. If F satisfies the equivalent conditions of Lemma 45.11.2,
then we say that F is a crystal in quasi-coherent modules. We say that F is a
crystal in finite locally free modules if, in addition, F is finite locally free.

Of course, as Lemma 45.11.2 shows, this notation is somewhat heavy since a quasi-
coherent module is always a crystal. But it is standard terminology in the literature.

Remark 45.11.4. To formulate the general notion of a crystal we use the language
of stacks and strongly cartesian morphisms, see Stacks, Definition 8.4.1 and Cate-
gories, Definition 4.31.1. In Situation 45.7.5 let p : C → Cris(X/S) be a stack. A
crystal in objects of C on X relative to S is a cartesian section σ : Cris(X/S)→ C,
i.e., a functor σ such that p ◦σ = id and such that σ(f) is strongly cartesian for all
morphisms f of Cris(X/S). Similarly for the big crystalline site.

45.12. Sheaf of differentials

In this section we will stick with the (small) crystalline site as it seems more natural.
We globalize Definition 45.6.1 as follows.

Definition 45.12.1. In Situation 45.7.5 let F be a sheaf of OX/S-modules on
Cris(X/S). An S-derivation D : OX/S → F is a map of sheaves such that for every
object (U, T, δ) of Cris(X/S) the map

D : Γ(T,OT ) −→ Γ(T,F)

is a divided power Γ(V,OV )-derivation where V ⊂ S is any open such that T → S
factors through V .
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This means that D is additive, satisfies the Leibniz rule, annihilates functions com-
ing from S, and satisfies D(f [n]) = f [n−1]D(f) for a local section f of the divided
power ideal JX/S . This is a special case of a very general notion which we now
describe.

Please compare the following discussion with Modules on Sites, Section 18.32. Let
C be a site, let A → B be a map of sheaves of rings on C, let J ⊂ B be a sheaf of
ideals, let δ be a divided power structure on J , and let F be a sheaf of B-modules.
Then there is a notion of a divided power A-derivation D : B → F . This means
that D is A-linear, satisfies the Leibniz rule, and satisfies D(δn(x)) = δn−1(x)D(x)
for local sections x of J . In this situation there exists a universal divided power
A-derivation

dB/A,δ : B −→ ΩB/A,δ
Moreover, dB/A,δ is the composition

B −→ ΩB/A −→ ΩB/A,δ

where the first map is the universal derivation constructed in the proof of Modules
on Sites, Lemma 18.32.2 and the second arrow is the quotient by the submodule
generated by the local sections dB/A(δn(x))− δn−1(x)dB/A(x).

We translate this into a relative notion as follows. Suppose (f, f ]) : (Sh(C),O) →
(Sh(C′),O′) is a morphism of ringed topoi, J ⊂ O a sheaf of ideals, δ a divided
power structure on J , and F a sheaf of O-modules. In this situation we say
D : O → F is a divided power O′-derivation if D is a divided power f−1O′-
derivation as defined above. Moreover, we write

ΩO/O′,δ = ΩO/f−1O′,δ

which is the receptacle of the universal divided power O′-derivation.

Applying this to the structure morphism

(X/S)Cris −→ Sh(SZar)

(see Remark 45.9.6) we recover the notion of Definition 45.12.1 above. In particular,
there is a universal divided power derivation

dX/S : OX/S → ΩX/S

Note that we omit from the notation the decoration indicating the module of dif-
ferentials is compatible with divided powers (it seems unlikely anybody would ever
consider the usual module of differentials of the structure sheaf on the crystalline
site).

Lemma 45.12.2. Let (T,J , δ) be a divided power scheme. Let T → S be a mor-
phism of schemes. The quotient ΩT/S → ΩT/S,δ described above is a quasi-coherent
OT -module. For W ⊂ T affine open mapping into V ⊂ S affine open we have

Γ(W,ΩT/S,δ) = ΩΓ(W,O)/Γ(V,OV ),δ

where the right hand side is as constructed in Section 45.6.

Proof. Omitted. �

Lemma 45.12.3. In Situation 45.7.5. For (U, T, δ) in Cris(X/S) the restriction
(ΩX/S)T to T is ΩT/S,δ and the restriction dX/S |T is equal to dT/S,δ.

Proof. Omitted. �
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Lemma 45.12.4. In Situation 45.7.5. For any affine object (U, T, δ) of Cris(X/S)
mapping into an affine open V ⊂ S we have

Γ((U, T, δ),ΩX/S) = ΩΓ(T,O)/Γ(V,OV ),δ

where the right hand side is as constructed in Section 45.6.

Proof. Combine Lemmas 45.12.2 and 45.12.3. �

Lemma 45.12.5. In Situation 45.7.5. Let (U, T, δ) be an object of Cris(X/S). Let

(U(1), T (1), δ(1)) = (U, T, δ)× (U, T, δ)

in Cris(X/S). Let K ⊂ OT (1) be the quasi-coherent sheaf of ideals corresponding to
the closed immersion ∆ : T → T (1). Then K ⊂ JT (1) is preserved by the divided
structure on JT (1) and we have

(ΩX/S)T = K/K[2]

Proof. Note that U = U(1) as U → X is an open immersion and as (45.9.1.1)
commutes with products. Hence we see that K ⊂ JT (1). Given this fact the lemma
follows by working affine locally on T and using Lemmas 45.12.4 and 45.6.5. �

It turns out that ΩX/S is not a crystal in quasi-coherent OX/S-modules. But it
does satisfy two closely related properties (compare with Lemma 45.11.2).

Lemma 45.12.6. In Situation 45.7.5. The sheaf of differentials ΩX/S has the
following two properties:

(1) ΩX/S is locally quasi-coherent, and
(2) for any morphism (U, T, δ)→ (U ′, T ′, δ′) of Cris(X/S) where f : T → T ′

is a closed immersion the map cf : f∗(ΩX/S)T ′ → (ΩX/S)T is surjective.

Proof. Part (1) follows from a combination of Lemmas 45.12.2 and 45.12.3. Part
(2) follows from the fact that (ΩX/S)T = ΩT/S,δ is a quotient of ΩT/S and that
f∗ΩT ′/S → ΩT/S is surjective. �

45.13. Two universal thickenings

The constructions in this section will help us define a connection on a crystal
in modules on the crystalline site. In some sense the constructions here are the
“sheafified, universal” versions of the constructions in Section 45.3.

Remark 45.13.1. In Situation 45.7.5. Let (U, T, δ) be an object of Cris(X/S).
Write ΩT/S,δ = (ΩX/S)T , see Lemma 45.12.3. We explicitly describe a first order
thickening T ′ of T . Namely, set

OT ′ = OT ⊕ ΩT/S,δ

with algebra structure such that ΩT/S,δ is an ideal of square zero. Let J ⊂ OT be
the ideal sheaf of the closed immersion U → T . Set J ′ = J ⊕ ΩT/S,δ. Define a
divided power structure on J ′ by setting

δ′n(f, ω) = (δn(f), δn−1(f)ω),

see Lemma 45.3.1. There are two ring maps

p0, p1 : OT → OT ′
The first is given by f 7→ (f, 0) and the second by f 7→ (f, dT/S,δf). Note that
both are compatible with the divided power structures on J and J ′ and so is the

http://stacks.math.columbia.edu/tag/07J0
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quotient map OT ′ → OT . Thus we get an object (U, T ′, δ′) of Cris(X/S) and a
commutative diagram

T

id

~~
i
��

id

  
T T ′

p0oo p1 // T

of Cris(X/S) such that i is a first order thickening whose ideal sheaf is identified
with ΩT/S,δ and such that p∗1 − p∗0 : OT → OT ′ is identified with the universal
derivation dT/S,δ composed with the inclusion ΩT/S,δ → OT ′ .

Remark 45.13.2. In Situation 45.7.5. Let (U, T, δ) be an object of Cris(X/S).
Write ΩT/S,δ = (ΩX/S)T , see Lemma 45.12.3. We also write Ω2

T/S,δ for its second

exterior power. We explicitly describe a second order thickening T ′′ of T . Namely,
set

OT ′′ = OT ⊕ ΩT/S,δ ⊕ ΩT/S,δ ⊕ Ω2
T/S,δ

with algebra structure defined in the following way

(f, ω1, ω2, η)·(f ′, ω′1, ω′2, η′) = (ff ′, fω′1+f ′ω1, fω
′
2+f ′ω′2, fη

′+f ′η+ω1∧ω′2+ω′1∧ω2).

Let J ⊂ OT be the ideal sheaf of the closed immersion U → T . Let J ′′ be
the inverse image of J under the projection OT ′′ → OT . Define a divided power
structure on J ′′ by setting

δ′′n(f, ω1, ω2, η) = (δn(f), δn−1(f)ω1, δn−1(f)ω2, δn−1(f)η + δn−2(f)ω1 ∧ ω2)

see Lemma 45.3.2. There are three ring maps q0, q1, q2 : OT → OT ′′ given by

q0(f) = (f, 0, 0, 0),

q1(f) = (f, df, 0, 0),

q2(f) = (f, df, df, 0)

where d = dT/S,δ. Note that all three are compatible with the divided power
structures on J and J ′′. There are three ring maps q01, q12, q02 : OT ′ → OT ′′
where OT ′ is as in Remark 45.13.1. Namely, set

q01(f, ω) = (f, ω, 0, 0),

q12(f, ω) = (f, df, ω,dω),

q02(f, ω) = (f, ω, ω, 0)

These are also compatible with the given divided power structures. Let’s do the
verifications for q12: Note that q12 is a ring homomorphism as

q12(f, ω)q12(g, η) = (f, df, ω,dω)(g,dg, η, dη)

= (fg, fdg + gdf, fη + gω, fdη + gdω + df ∧ η + dg ∧ ω)

= q12(fg, fη + gω) = q12((f, ω)(g, η))

Note that q12 is compatible with divided powers because

δ′′n(q12(f, ω)) = δ′′n((f, df, ω,dω))

= (δn(f), δn−1(f)df, δn−1(f)ω, δn−1(f)dω + δn−2(f)d(f) ∧ ω)

= q12((δn(f), δn−1(f)ω)) = q12(δ′n(f, ω))

http://stacks.math.columbia.edu/tag/07J3
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The verifications for q01 and q02 are easier. Note that q0 = q01 ◦ p0, q1 = q01 ◦ p1,
q1 = q12 ◦ p0, q2 = q12 ◦ p1, q0 = q02 ◦ p0, and q2 = q02 ◦ p1. Thus (U, T ′′, δ′′) is an
object of Cris(X/S) and we get morphisms

T ′′
//
//
//
T ′

//
// T

of Cris(X/S) satisfying the relations described above. In applications we will use
qi : T ′′ → T and qij : T ′′ → T ′ to denote the morphisms associated to the ring
maps described above.

45.14. The de Rham complex

In Situation 45.7.5. Working on the (small) crystalline site, we define ΩiX/S =

∧iOX/SΩX/S for i ≥ 0. The universal S-derivation dX/S gives rise to the de Rham

complex

OX/S → Ω1
X/S → Ω2

X/S → . . .

on Cris(X/S), see Lemma 45.12.4 and Remark 45.6.9.

45.15. Connections

In Situation 45.7.5. Given an OX/S-module F on Cris(X/S) a connection is a map
of abelian sheaves

∇ : F −→ F ⊗OX/S ΩX/S

such that ∇(fs) = f∇(s) + s⊗ df for local sections s, f of F and OX/S . Given a

connection there are canonical maps ∇ : F ⊗OX/S ΩiX/S −→ F ⊗OX/S Ωi+1
X/S defined

by the rule ∇(s ⊗ ω) = ∇(s) ∧ ω + s ⊗ dω as in Remark 45.6.10. We say the
connection is integrable if ∇ ◦ ∇ = 0. If ∇ is integrable we obtain the de Rham
complex

F → F ⊗OX/S Ω1
X/S → F ⊗OX/S Ω2

X/S → . . .

on Cris(X/S). It turns out that any crystal in OX/S-modules comes equipped with
a canonical integrable connection.

Lemma 45.15.1. In Situation 45.7.5. Let F be a crystal in OX/S-modules on
Cris(X/S). Then F comes equipped with a canonical integrable connection.

Proof. Say (U, T, δ) is an object of Cris(X/S). Let (U, T ′, δ′) be the infinitesimal
thickening of T by (ΩX/S)T = ΩT/S,δ constructed in Remark 45.13.1. It comes
with projections p0, p1 : T ′ → T and a diagonal i : T → T (1). By assumption we
get isomorphisms

p∗0FT
c0−→ FT ′

c1←− p∗1FT
of OT ′ -modules. Pulling c = c−1

1 ◦ c0 back to T by i we obtain the identity map
of FT . Hence if s ∈ Γ(T,FT ) then ∇(s) = p∗1s− c(p∗0s) is a section of p∗1FT which
vanishes on pulling back by ∆. Hence ∇(s) is a section of

FT ⊗OT ΩT/S,δ

because this is the kernel of p∗1FT → FT as ΩT/S,δ is the kernel of OT ′ → OT by
construction.

The collection of maps

∇ : Γ(T,FT )→ Γ(T,FT ⊗OT ΩT/S,δ)

http://stacks.math.columbia.edu/tag/07J6
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so obtained is functorial in T because the construction of T ′ is functorial in T .
Hence we obtain a connection.

To show that the connection is integrable we consider the object (U, T ′′, δ′′) con-
structed in Remark 45.13.2. Because F is a sheaf we see that

q∗0FT q∗01c
//

q∗02c ##

q∗1FT

q∗12c{{
q∗2FT

is a commutative map of OT ′′ -modules. For s ∈ Γ(T,FT ) we have c(p∗0s) = p∗1s −
∇(s). Write ∇(s) =

∑
p∗1si · ωi where si is a local section of FT and ωi is a local

section of ΩT/S,δ. We think of ωi as a local section of the structure sheaf of OT ′
and hence we write product instead of tensor product. On the one hand

q∗12c ◦ q∗01c(q
∗
0s) = q∗12c(q

∗
1s−

∑
q∗1si · q∗01ωi)

= q∗2s−
∑

q∗2si · q∗12ωi −
∑

q∗2si · q∗01ωi +
∑

q∗12∇(si) · q∗01ωi

and on the other hand

q∗02c(q
∗
0s) = q∗2s−

∑
q∗2si · q∗02ωi.

From the formulae of Remark 45.13.2 we see that q∗01ωi + q∗12ωi − q∗02ωi = dωi.
Hence the difference of the two expressions above is∑

q∗2si · dωi −
∑

q∗12∇(si) · q∗01ωi

Note that q∗12ω · q∗01ω
′ = ω′ ∧ ω = −ω ∧ ω′ by the definition of the multiplication

on OT ′′ . Thus the expression above is ∇2(s) viewed as a section of the subsheaf
FT ⊗ Ω2

T/S,δ of q∗2F . Hence we get the integrability condition. �

45.16. Cosimplicial algebra

This section should be moved somewhere else. A cosimplicial ring is a cosimplicial
object in the category of rings. Given a ring R, a cosimplicial R-algebra is a cosim-
plicial object in the category of R-algebras. A cosimplicial ideal in a cosimplicial
ring A∗ is given by an ideal In ⊂ An for all n such that A(f)(In) ⊂ Im for all
f : [n]→ [m] in ∆.

Let A∗ be a cosimplicial ring. Let C be the category of pairs (A,M) where A is a
ring and M is a module over A. A morphism (A,M)→ (A′,M ′) consists of a ring
map A→ A′ and an A-module map M →M ′ where M ′ is viewed as an A-module
via A→ A′ and the A′-module structure on M ′. Having said this we can define a
cosimplicial module M∗ over A∗ as a cosimplicial object (A∗,M∗) of C whose first
entry is equal to A∗. A homomorphism ϕ∗ : M∗ → N∗ of cosimplicial modules
over A∗ is a morphism (A∗,M∗)→ (A∗, N∗) of cosimplicial objects in C whose first
component is 1A∗ .

A homotopy between homomorphisms ϕ∗, ψ∗ : M∗ → N∗ of cosimplicial modules
over A∗ is a homotopy between the associated maps (A∗,M∗) → (A∗, N∗) whose
first component is the trivial homotopy (dual to Simplicial, Example 14.25.3). We
spell out what this means. Such a homotopy is a homotopy

h : M∗ −→ Hom(∆[1], N∗)
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between ϕ∗ and ψ∗ as homomorphisms of cosimplicial abelian groups such that for
each n the map hn : Mn →

∏
α∈∆[1]n

Nn is An-linear. The following lemma is a

version of Simplicial, Lemma 14.27.3 for cosimplicial modules.

Lemma 45.16.1. Let A∗ be a cosimplicial ring. Let ϕ∗, ψ∗ : K∗ → M∗ be homo-
morphisms of cosimplicial A∗-modules.

(1) If ϕ∗ and ψ∗ are homotopic, then

ϕ∗ ⊗ 1, ψ∗ ⊗ 1 : K∗ ⊗A∗ L∗ −→M∗ ⊗A∗ L∗
are homotopic for any cosimplicial A∗-module L∗.

(2) If ϕ∗ and ψ∗ are homotopic, then

∧i(ϕ∗),∧i(ψ∗) : ∧i(K∗) −→ ∧i(M∗)

are homotopic.
(3) If ϕ∗ and ψ∗ are homotopic, and A∗ → B∗ is a homomorphism of cosim-

plicial rings, then

ϕ∗ ⊗ 1, ψ∗ ⊗ 1 : K∗ ⊗A∗ B∗ −→M∗ ⊗A∗ B∗
are homotopic as homomorphisms of cosimplicial B∗-modules.

(4) If I∗ ⊂ A∗ is a cosimplicial ideal, then the induced maps

ϕ∧∗ , ψ
∧
∗ : K∧∗ −→M∧∗

between completions are homotopic.
(5) Add more here as needed, for example symmetric powers.

Proof. Let h : M∗ −→ Hom(∆[1], N∗) be the given homotopy. In degree n we have

hn = (hn,α) : Kn −→
∏

α∈∆[1]n
Kn

see Simplicial, Section 14.27. In order for a collection of hn,α to form a homotopy,
it is necessary and sufficient if for every f : [n]→ [m] we have

hm,α ◦M∗(f) = N∗(f) ◦ hn,α◦f
see Simplicial, Equation (14.27.1.1). We also should have that ψn = hn,0:[n]→[1]

and ϕn = hn,1:[n]→[1].

In each of the cases of the lemma we can produce the corresponding maps. Case
(1). We can use the homotopy h⊗ 1 defined in degree n by setting

(h⊗ 1)n,α = hn,α ⊗ 1Ln : Kn ⊗An Ln −→Mn ⊗An Ln.

Case (2). We can use the homotopy ∧ih defined in degree n by setting

∧i(h)n,α = ∧i(hn,α) : ∧An(Kn) −→ ∧iAn(Mn).

Case (3). We can use the homotopy h⊗ 1 defined in degree n by setting

(h⊗ 1)n,α = hn,α ⊗ 1 : Kn ⊗An Bn −→Mn ⊗An Bn.

Case (4). We can use the homotopy h∧ defined in degree n by setting

(h∧)n,α = h∧n,α : K∧n −→M∧n .

This works because each hn,α is An-linear. �

http://stacks.math.columbia.edu/tag/07KQ
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45.17. Crystals in quasi-coherent modules

In Situation 45.5.1. Set X = Spec(C) and S = Spec(A). We are going to classify
crystals in quasi-coherent modules on Cris(X/S). Before we do so we fix some
notation.

Choose a polynomial ring P = A[xi] over A and a surjection P → C of A-algebras
with kernel J = Ker(P → C). Set

(45.17.0.1) D = limeDP,γ(J)/peDP,γ(J)

for the p-adically completed divided power envelope. This ring comes with a divided
power ideal J̄ and divided power structure γ̄, see Lemma 45.5.5. Set De = D/peD
and denote J̄e the image of J̄ in De. We will use the short hand

(45.17.0.2) ΩD = lime ΩDe/A,γ̄ = lime ΩD/A,γ̄/p
eΩD/A,γ̄

for the p-adic completion of the module of divided power differentials, see Lemma
45.6.12. It is also the p-adic completion of ΩDP,γ(J)/A,γ̄ which is free on dxi, see
Lemma 45.6.6. Hence any element of ΩD can be written uniquely as a sum

∑
fidxi

with for all e only finitely many fi not in peD. Moreover, the maps dDe/A,γ̄ : De →
ΩDe/A,γ̄ fit together to define a divided power A-derivation

(45.17.0.3) d : D −→ ΩD

on p-adic completions.

We will also need the “products Spec(D(n)) of Spec(D)”, see Proposition 45.21.1
and its proof for an explanation. Formally these are defined as follows. For n ≥ 0
let J(n) = Ker(P ⊗A . . . ⊗A P → C) where the tensor product has n + 1 factors.
We set

(45.17.0.4) D(n) = limeDP⊗A...⊗AP,γ(J(n))/peDP⊗A...⊗AP,γ(J(n))

equal to the p-adic completion of the divided power envelope. We denote J̄(n)
its divided power ideal and γ̄(n) its divided powers. We also introduce D(n)e =
D(n)/peD(n) as well as the p-adically completed module of differentials

(45.17.0.5) ΩD(n) = lime ΩD(n)e/A,γ̄ = lime ΩD(n)/A,γ̄/p
eΩD(n)/A,γ̄

and derivation

(45.17.0.6) d : D(n) −→ ΩD(n)

Of course we have D = D(0). Note that the rings D(0), D(1), D(2), . . . form a
cosimplicial object in the category of divided power rings.

Lemma 45.17.1. Let D and D(n) be as in (45.17.0.1) and (45.17.0.4). The
coprojection P → P ⊗A . . .⊗A P , f 7→ f ⊗ 1⊗ . . .⊗ 1 induces an isomorphism

(45.17.1.1) D(n) = limeD〈ξi(j)〉/peD〈ξi(j)〉
of algebras over D with

ξi(j) = xi ⊗ 1⊗ . . .⊗ 1− 1⊗ . . .⊗ 1⊗ xi ⊗ 1⊗ . . .⊗ 1

for j = 1, . . . , n.

Proof. We have
P ⊗A . . .⊗A P = P [ξi(j)]

and J(n) is generated by J and the elements ξi(j). Hence the lemma follows from
Lemma 45.2.5. �
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Lemma 45.17.2. Let D and D(n) be as in (45.17.0.1) and (45.17.0.4). Then
(D, J̄, γ̄) and (D(n), J̄(n), γ̄(n)) are objects of Cris∧(C/A), see Remark 45.5.4, and

D(n) =
∐

j=0,...,n
D

in Cris∧(C/A).

Proof. The first assertion is clear. For the second, if (B → C, δ) is an object of
Cris∧(C/A), then we have

MorCris∧(C/A)(D,B) = HomA((P, J), (B,Ker(B → C)))

and similarly for D(n) replacing (P, J) by (P ⊗A . . .⊗A P, J(n)). The property on
coproducts follows as P ⊗A . . .⊗A P is a coproduct. �

In the lemma below we will consider pairs (M,∇) satisfying the following conditions

(1) M is a p-adically complete D-module,
(2) ∇ : M →M ⊗∧D ΩD is a connection, i.e., ∇(fm) = m⊗ df + f∇(m),
(3) ∇ is integrable (see Remark 45.6.10), and
(4) ∇ is topologically quasi-nilpotent: If we write ∇(m) =

∑
θi(m)dxi for

some operators θi : M → M , then for any m ∈ M there are only finitely
many pairs (i, k) such that θki (m) 6∈ pM .

The operators θi are sometimes denoted ∇∂/∂xi in the literature. In the following
lemma we construct a functor from crystals in quasi-coherent modules on Cris(X/S)
to the category of such pairs. We will show this functor is an equivalent in Propo-
sition 45.17.4.

Lemma 45.17.3. In the situation above there is a functor

crystals in quasi-coherent
OX/S-modules on Cris(X/S)

−→ pairs (M,∇) satisfying
(1), (2), (3), and (4)

Proof. Let F be a crystal in quasi-coherent modules on X/S. Set Te = Spec(De)
so that (X,Te, γ̄) is an object of Cris(X/S) for e� 0. We have morphisms

(X,Te, γ̄)→ (X,Te+1, γ̄)→ . . .

which are closed immersions. We set

M = lime Γ((X,Te, γ̄),F) = lime Γ(Te,FTe) = limeMe

Note that since F is locally quasi-coherent we have FTe = M̃e. Since F is a crystal
we have Me = Me+1/p

eMe+1. Hence we see that Me = M/peM and that M is
p-adically complete.

By Lemma 45.15.1 we know that F comes endowed with a canonical integrable
connection ∇ : F → F ⊗ ΩX/S . If we evaluate this connection on the objects Te
constructed above we obtain a canonical integrable connection

∇ : M −→M ⊗∧D ΩD

To see that this is topologically nilpotent we work out what this means.

Now we can do the same procedure for the rings D(n). This produces a p-adically
complete D(n)-module M(n). Again using the crystal property of F we obtain
isomorphisms

M ⊗∧D,p0
D(1)→M(1)←M ⊗∧D,p1

D(1)

http://stacks.math.columbia.edu/tag/07L4
http://stacks.math.columbia.edu/tag/07JG


2994 45. CRYSTALLINE COHOMOLOGY

compare with the proof of Lemma 45.15.1. Denote c the composition from left to
right. Pick m ∈ M . Write ξi = xi ⊗ 1 − 1 ⊗ xi. Using (45.17.1.1) we can write
uniquely

c(m⊗ 1) =
∑

K
θK(m)⊗

∏
ξ

[ki]
i

for some θK(m) ∈M where the sum is over multi-indices K = (ki) with ki ≥ 0 and∑
ki < ∞. Set θi = θK where K has a 1 in the ith spot and zeros elsewhere. We

have
∇(m) =

∑
θi(m)dxi.

as can be seen by comparing with the definition of∇. Namely, the defining equation
is p∗1m = ∇(m)− c(p∗0m) in Lemma 45.15.1 but the sign works out because in the
stacks project we consistently use df = p1(f) − p0(f) modulo the ideal of the
diagonal squared, and hence ξi = xi⊗ 1− 1⊗ xi maps to −dxi modulo the ideal of
the diagonal squared.

Denote qi : D → D(2) and qij : D(1) → D(2) the coprojections corresponding to
the indices i, j. As in the last paragraph of the proof of Lemma 45.15.1 we see that

q∗02c = q∗12c ◦ q∗01c.

This means that∑
K′′

θK′′(m)⊗
∏

ζ ′′i
[k′′i ]

=
∑

K′,K
θK′(θK(m))⊗

∏
ζ ′i

[k′i]
∏

ζ
[ki]
i

in M ⊗∧D,q2 D(2) where

ζi = xi ⊗ 1⊗ 1− 1⊗ xi ⊗ 1,

ζ ′i = 1⊗ xi ⊗ 1− 1⊗ 1⊗ xi,
ζ ′′i = xi ⊗ 1⊗ 1− 1⊗ 1⊗ xi.

In particular ζ ′′i = ζi + ζ ′i and we have that D(2) is the p-adic completion of the
divided power polynomial ring in ζi, ζ

′
i over q2(D), see Lemma 45.17.1. Comparing

coefficients in the expression above it follows immediately that θi ◦ θj = θj ◦ θi (this
provides an alternative proof of the integrability of ∇) and that

θK(m) = (
∏

θkii )(m).

In particular, as the sum expressing c(m ⊗ 1) above has to converge p-adically we
conclude that for each i and each m ∈M only a finite number of θki (m) are allowed
to be nonzero modulo p. �

Proposition 45.17.4. The functor

crystals in quasi-coherent
OX/S-modules on Cris(X/S)

−→ pairs (M,∇) satisfying
(1), (2), (3), and (4)

of Lemma 45.17.3 is an equivalence of categories.

Proof. Let (M,∇) be given. We are going to construct a crystal in quasi-coherent
modules F . Write ∇(m) =

∑
θi(m)dxi. Then θi ◦ θj = θj ◦ θi and we can set

θK(m) = (
∏
θkii )(m) for any multi-index K = (ki) with ki ≥ 0 and

∑
ki <∞.

Let (U, T, δ) be any object of Cris(X/S) with T affine. Say T = Spec(B) and the
ideal of U → T is JB ⊂ B. By Lemma 45.5.6 there exists an integer e and a
morphism

f : (U, T, δ) −→ (X,Te, γ̄)
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where Te = Spec(De) as in the proof of Lemma 45.17.3. Choose such an e and f ;
denote f : D → B also the corresponding divided power A-algebra map. We will
set FT equal to the quasi-coherent sheaf of OT -modules associated to the B-module

M ⊗D,f B.
However, we have to show that this is independent of the choice of f . Suppose that
g : D → B is a second such morphism. Since f and g are morphisms in Cris(X/S)
we see that the image of f − g : D → B is contained in the divided power ideal JB .
Write ξi = f(xi) − g(xi) ∈ JB . By analogy with the proof of Lemma 45.17.3 we
define an isomorphism

cf,g : M ⊗D,f B −→M ⊗D,g B
by the formula

m⊗ 1 7−→
∑

K
θK(m)⊗

∏
ξ

[ki]
i

which makes sense by our remarks above and the fact that ∇ is topologically quasi-
nilpotent (so the sum is finite!). A computation shows that

cg,h ◦ cf,g = cf,h

if given a third morphism h : (U, T, δ) −→ (X,Te, γ̄). It is also true that cf,f =
1. Hence these maps are all isomorphisms and we see that the module FT is
independent of the choice of f .

If a : (U ′, T ′, δ′) → (U, T, δ) is a morphism of affine objects of Cris(X/S), then
choosing f ′ = f◦a it is clear that there exists a canonical isomorphism a∗FT → FT ′ .
We omit the verification that this map is independent of the choice of f . Using
these maps as the restriction maps it is clear that we obtain a crystal in quasi-
coherent modules on the full subcategory of Cris(X/S) consisting of affine objects.
We omit the proof that this extends to a crystal on all of Cris(X/S). We also omit
the proof that this procedure is a functor and that it is quasi-inverse to the functor
constructed in Lemma 45.17.3. �

Lemma 45.17.5. In Situation 45.5.1. Let A→ P ′ → C be ring maps with A→ P ′

smooth and P ′ → C surjective with kernel J ′. Let D′ be the p-adic completion of
DP ′,γ(J ′). There are homomorphisms of divided power A-algebras

a : D −→ D′, b : D′ −→ D

compatible with the maps D → C and D′ → C such that a ◦ b = idD′ . These maps
induce an equivalence of categories of pairs (M,∇) satisfying (1), (2), (3), and (4)
over D and pairs (M ′,∇′) satisfying (1), (2), (3), and (4) over D′. In particular,
the equivalence of categories of Proposition 45.17.4 also holds for the corresponding
functor towards pairs over D′.

Proof. We can pick the map P = A[xi] → C such that it factors through a
surjection of A-algebras P → P ′ (we may have to increase the number of variables
in P to do this). Hence we obtain a surjective map a : D → D′ by functoriality
of divided power envelopes and completion. Pick e large enough so that De is
a divided power thickening of C over A. Then De → C is a surjection whose
kernel is locally nilpotent, see Divided Power Algebra, Lemma 23.2.6. Setting
D′e = D′/peD′ we see that the kernel of De → D′e is locally nilpotent. Hence by
Algebra, Lemma 10.133.16 we can find a lift βe : P ′ → De of the map P ′ → D′e.
Note that De+i+1 → De+i×D′e+iD

′
e+i+1 is surjective with square zero kernel for any
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i ≥ 0 because pe+iD → pe+iD′ is surjective. Applying the usual lifting property
(Algebra, Proposition 10.133.13) successively to the diagrams

P ′ // De+i ×D′e+i D
′
e+i+1

A

OO

// De+i+1

OO

we see that we can find an A-algebra map β : P ′ → D whose composition with a is
the given map P ′ → D′. By the universal property of the divided power envelope
we obtain a map DP ′,γ(J ′)→ D. As D is p-adically complete we obtain b : D′ → D
such that a ◦ b = idD′ .

Consider the base change functor

(M,∇) 7−→ (M ⊗∧D D′,∇′)
from pairs for D to pairs for D′, see Remark 45.6.11. Similarly, we have the
base change functor corresponding to the divided power homomorphism D′ → D.
To finish the proof of the lemma we have to show that the base change for the
compositions b ◦ a : D → D and a ◦ b : D′ → D′ are isomorphic to the identity
functor. This is clear for the second as a ◦ b = idD′ . To prove it for the first, we
use the functorial isomorphism

cidD,b◦a : M ⊗D,idD D −→M ⊗D,b◦a D
of the proof of Proposition 45.17.4. The only thing to prove is that these maps are
horizontal, which we omit.

The last statement of the proof now follows. �

Remark 45.17.6. The equivalence of Proposition 45.17.4 holds if we start with
a surjection P → C where P/A satisfies the strong lifting property of Algebra,
Lemma 10.133.16. To prove this we can argue as in the proof of Lemma 45.17.5.
(Details will be added here if we ever need this.) Presumably there is also a direct
proof of this result, but the advantage of using polynomial rings is that the rings
D(n) are p-adic completions of divided power polynomial rings and the algebra is
simplified.

45.18. General remarks on cohomology

In this section we do a bit of work to translate the cohomology of modules on the
cristalline site of an affine scheme into an algebraic question.

Lemma 45.18.1. In Situation 45.7.5. Let F be a locally quasi-coherent OX/S-
module on Cris(X/S). Then we have

Hp((U, T, δ),F) = 0

for all p > 0 and all (U, T, δ) with T or U affine.

Proof. As U → T is a thickening we see that U is affine if and only if T is affine, see
Limits, Lemma 31.10.1. Having said this, let us apply Cohomology on Sites, Lemma
21.11.9 to the collection B of affine objects (U, T, δ) and the collection Cov of affine
open coverings U = {(Ui, Ti, δi)→ (U, T, δ)}. The Čech complex Č∗(U ,F) for such
a covering is simply the Cech complex of the quasi-coherent OT -module FT (here
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we are using the assumption that F is locally quasi-coherent) with respect to the
affine open covering {Ti → T} of the affine scheme T . Hence the Čech cohomology
is zero by Cohomology of Schemes, Lemma 29.2.5 and 29.2.2. Thus the hypothesis
of Cohomology on Sites, Lemma 21.11.9 are satisfied and we win. �

Lemma 45.18.2. In Situation 45.7.5. Assume moreover X and S are affine
schemes. Consider the full subcategory C ⊂ Cris(X/S) consisting of divided power
thickenings (X,T, δ) endowed with the chaotic topology (see Sites, Example 7.6.6).
For any locally quasi-coherent OX/S-module F we have

RΓ(C,F|C) = RΓ(Cris(X/S),F)

Proof. We will use without further mention that C and Cris(X/S) have prod-
ucts and fibre products, see Lemma 45.8.2. Note that the inclusion functor u :
C → Cris(X/S) is fully faithful, continuous and commutes with products and fibre
products. We claim it defines a morphism of ringed sites

f : (Cris(X/S),OX/S) −→ (Sh(C),OX/S |C)

To see this we will use Sites, Lemma 7.15.5. Note that C has fibre products and
u commutes with them so the categories Iu(U,T,δ) are disjoint unions of directed

categories (by Sites, Lemma 7.5.1 and Categories, Lemma 4.19.7). Hence it suffices
to show that Iu(U,T,δ) is connected. Nonempty follows from Lemma 45.5.6 and

connectedness follows from the fact that C has products and that u commutes with
them (compare with the proof of Sites, Lemma 7.5.2).

Note that f∗F = F|C . Hence the lemma follows if Rpf∗F = 0 for p > 0, see
Cohomology on Sites, Lemma 21.14.6. By Cohomology on Sites, Lemma 21.8.4
it suffices to show that Hp((X,T, δ),F) = 0 for all (X,T, δ). This follows from
Lemma 45.18.1. �

Lemma 45.18.3. In Situation 45.5.1. Set C = (Cris(C/A))opp and C∧ = (Cris∧(C/A))opp

endowed with the chaotic topology, see Remark 45.5.4 for notation. There is a mor-
phism of topoi

g : Sh(C) −→ Sh(C∧)

such that if F is a sheaf of abelian groups on C, then

Rpg∗F(B → C, δ) =

 lime F(Be → C, δ) if p = 0
R1 lime F(Be → C, δ) if p = 1

0 else

where Be = B/peB for e� 0.

Proof. Any functor between categories defines a morphism between chaotic topoi
in the same direction, for example because such a functor can be considered as a
cocontinuous functor between sites, see Sites, Section 7.20. Proof of the description
of g∗F is omitted. Note that in the statement we take (Be → C, δ) is an object of
Cris(C/A) only for e large enough. Let I be an injective abelian sheaf on C. Then
the transition maps

I(Be → C, δ)← I(Be+1 → C, δ)

are surjective as the morphisms

(Be → C, δ) −→ (Be+1 → C, δ)
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are monomorphisms in the category C. Hence for an injective abelian sheaf both
sides of the displayed formula of the lemma agree. Taking an injective resolution
of F one easily obtains the result (sheaves are presheaves, so exactness is measured
on the level of groups of sections over objects). �

Lemma 45.18.4. Let C be a category endowed with the chaotic topology. Let X be
an object of C such that every object of C has a morphism towards X. Assume that
C has products. Then for every abelian sheaf F on C the total cohomology RΓ(C,F)
is represented by the complex

F(X)→ F(X ×X)→ F(X ×X ×X)→ . . .

associated to the cosimplicial abelian group [n] 7→ F(Xn).

Proof. Note that Hq(Xp,F) = 0 for all q > 0 as sheaves are presheaves on C. The
assumption on X is that hX → ∗ is surjective. Using that Hq(X,F) = Hp(hX ,F)
and Hp(C,F) = Hp(∗,F) we see that our statement is a special case of Cohomology
on Sites, Lemma 21.13.2. �

45.19. Cosimplicial preparations

In this section we compare crystalline cohomology with de Rham cohomology. We
follow [BdJ11].

Example 45.19.1. Suppose that A∗ is any cosimplicial ring. Consider the cosim-
plicial module M∗ defined by the rule

Mn =
⊕

i=0,...,n
Anei

For a map f : [n] → [m] define M∗(f) : Mn → Mm to be the unique A∗(f)-linear
map which maps ei to ef(i). We claim the identity on M∗ is homotopic to 0.
Namely, a homotopy is given by a map of cosimplicial modules

h : M∗ −→ Hom(∆[1],M∗)

see Section 45.16. For j ∈ {0, . . . , n + 1} we let αnj : [n] → [1] be the map de-
fined by αnj (i) = 0 ⇔ i < j. Then ∆[1]n = {αn0 , . . . , αnn+1} and correspondingly
Hom(∆[1],M∗)n =

∏
j=0,...,n+1Mn, see Simplicial, Sections 14.25 and 14.27. In-

stead of using this product representation, we think of an element in Hom(∆[1],M∗)n
as a function ∆[1]n →Mn. Using this notation, we define h in degree n by the rule

hn(ei)(α
n
j ) =

{
ei if i < j
0 else

We first check h is a morphism of cosimplicial modules. Namely, for f : [n] → [m]
we will show that

(45.19.1.1) hm ◦M∗(f) = Hom(∆[1],M∗)(f) ◦ hn

The left hand side of (45.19.1.1) evaluated at ei and then in turn evaluated at αmj
is

hm(ef(i))(α
m
j ) =

{
ef(i) if f(i) < j

0 else
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Note that αmj ◦ f = αnj′ where 0 ≤ j′ ≤ n+ 1 is the unique index such that f(i) < j

if and only if i < j′. Thus the right hand side of (45.19.1.1) evaluated at ei and
then in turn evaluated at αmj is

M∗(f)(hn(ei)(α
m
j ◦ f) = M∗(f)(hn(ei)(α

n
j′)) =

{
ef(i) if i < j′

0 else

It follows from our description of j′ that the two answers are equal. Hence h is
a map of cosimplicial modules. Let 0 : ∆[0] → ∆[1] and 1 : ∆[0] → ∆[1] be
the obvious maps, and denote ev0, ev1 : Hom(∆[1],M∗) → M∗ the corresponding
evaluation maps. The reader verifies readily that the the compositions

ev0 ◦ h, ev1 ◦ h : M∗ −→M∗

are 0 and 1 respectively, whence h is the desired homotopy between 0 and 1.

Lemma 45.19.2. With notation as in (45.17.0.5) the complex

ΩD(0) → ΩD(1) → ΩD(2) → . . .

is homotopic to zero as a D(∗)-cosimplicial module.

Proof. We are going to use the principle of Simplicial, Lemma 14.27.3 and more
specifically Lemma 45.16.1 which tells us that homotopic maps between (co)simplicial
objects are transformed by any functor into homotopic maps. The complex of the
lemma is equal to the p-adic completion of the base change of the cosimplicial
module

M∗ =
(
ΩP/A → ΩP⊗AP/A → ΩP⊗AP⊗AP/A → . . .

)
via the cosimplicial ring map P ⊗A . . . ⊗A P → D(n). This follows from Lemma
45.6.6, see comments following (45.17.0.2). Hence it suffices to show that the cosim-
plicial module M∗ is homotopic to zero (uses base change and p-adic completion).
We can even assume A = Z and P = Z[{xi}i∈I ] as we can use base change with
Z→ A. In this case P⊗n+1 is the polynomial algebra on the elements

xi(e) = 1⊗ . . .⊗ xi ⊗ . . .⊗ 1

with xi in the eth slot. The modules of the complex are free on the generators
dxi(e). Note that if f : [n]→ [m] is a map then we see that

M∗(f)(dxi(e)) = dxi(f(e))

Hence we see that M∗ is a direct sum over I of copies of the module studied in
Example 45.19.1 and we win. �

Lemma 45.19.3. With notation as in (45.17.0.4) and (45.17.0.5), given any
cosimplicial module M∗ over D(∗) and i > 0 the cosimplicial module

M0 ⊗∧D(0) ΩiD(0) →M1 ⊗∧D(1) ΩiD(1) →M2 ⊗∧D(2) ΩiD(2) → . . .

is homotopic to zero, where ΩiD(n) is the p-adic completion of the ith exterior power

of ΩD(n).

Proof. By Lemma 45.19.2 the endomorphisms 0 and 1 of ΩD(∗) are homotopic. If

we apply the functor ∧i we see that the same is true for the cosimplicial module
∧iΩD(∗), see Lemma 45.16.1. Another application of the same lemma shows the

p-adic completion ΩiD(∗) is homotopy equivalent to zero. Tensoring with M∗ we

see that M∗ ⊗D(∗) ΩiD(∗) is homotopic to zero, see Lemma 45.16.1 again. A final

application of the p-adic completion functor finishes the proof. �
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45.20. Divided power Poincaré lemma

Just the simplest possible version.

Lemma 45.20.1. Let A be a ring. Let P = A〈xi〉 be a divided power polynomial
ring over A. For any A-module M the complex

0→M →M ⊗A P →M ⊗A Ω1
P/A,δ →M ⊗A Ω2

P/A,δ → . . .

is exact. Let D be the p-adic completion of P . Let ΩiD be the p-adic completion
of the ith exterior power of ΩD/A,δ. For any p-adically complete A-module M the
complex

0→M →M ⊗∧A D →M ⊗∧A Ω1
D →M ⊗∧A Ω2

D → . . .

is exact.

Proof. It suffices to show that the complex

E : (0→ A→ P → Ω1
P/A,δ → Ω2

P/A,δ → . . .)

is homotopy equivalent to zero as a complex of A-modules. For every multi-index
K = (ki) we can consider the subcomplex E(K) which in degree j consists of⊕

I={i1,...,ij}⊂Supp(K)
A
∏

i6∈I
x

[ki]
i

∏
i∈I

x
[ki−1]
i dxi1 ∧ . . . ∧ dxij

Since E =
⊕
E(K) we see that it suffices to prove each of the complexes E(K) is

homotopic to zero. If K = 0, then E(K) : (A→ A) is homotopic to zero. If K has
nonempty (finite) support S, then the complex E(K) is isomorphic to the complex

0→ A→
⊕

s∈S
A→ ∧2(

⊕
s∈S

A)→ . . .→ ∧#S(
⊕

s∈S
A)→ 0

which is homotopic to zero, for example by More on Algebra, Lemma 15.20.5. �

An alternative (more direct) approach to the following lemma is explained in Ex-
ample 45.25.2.

Lemma 45.20.2. Let A be a ring. Let (B, J, δ) be a divided power ring. Let
P = B〈xi〉 be a divided power polynomial ring over B with divided power ideal
J = IP + B〈xi〉+ as usual. Let M be a B-module endowed with an integrable
connection ∇ : M →M ⊗B Ω1

B/A,δ. Then the map of de Rham complexes

M ⊗B Ω∗B/A,δ −→M ⊗P Ω∗P/A,δ

is a quasi-isomorphism. Let D, resp. D′ be the p-adic completion of B, resp. P
and let ΩiD, resp. ΩiD′ be the p-adic completion of ΩiB/A,δ, resp. ΩiP/A,δ. Let M

be a p-adically complete D-module endowed with an integral connection ∇ : M →
M ⊗∧D Ω1

D. Then the map of de Rham complexes

M ⊗∧D Ω∗D −→M ⊗∧D Ω∗D′

is a quasi-isomorphism.

Proof. Consider the decreasing filtration F ∗ on Ω∗B/A,δ given by the subcomplexes

F i(Ω∗B/A,δ) = σ≥iΩ
∗
B/A,δ. See Homology, Section 12.13. This induces a decreasing

filtration F ∗ on Ω∗P/A,δ by setting

F i(Ω∗P/A,δ) = F i(Ω∗B/A,δ) ∧ Ω∗P/A,δ.
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We have a split short exact sequence

0→ Ω1
B/A,δ ⊗B P → Ω1

P/A,δ → Ω1
P/B,δ → 0

and the last module is free on dxi. It follows from this that F i(Ω∗P/A,δ)→ Ω∗P/A,δ
is a termwise split injection and that

griF (Ω∗B/A,δ) = ΩiB/A,δ ⊗B Ω∗P/B,δ

as complexes. Thus we can define a filtration F ∗ on M ⊗B Ω∗B/A,δ by setting

F i(M ⊗B Ω∗P/A,δ) = M ⊗B F i(Ω∗P/A,δ)
and we have

griF (M ⊗B Ω∗P/A,δ) = M ⊗B ΩiB/A,δ ⊗B Ω∗P/B,δ
as complexes. By Lemma 45.20.1 each of these complexes is quasi-isomorphic to
M ⊗B ΩiB/A,δ placed in degree 0. Hence we see that the first displayed map of

the lemma is a morphism of filtered complexes which induces a quasi-isomorphism
on graded pieces. This implies that it is a quasi-isomorphism, for example by the
spectral sequence associated to a filtered complex, see Homology, Section 12.21.

The proof of the second quasi-isomorphism is exactly the same. �

45.21. Cohomology in the affine case

Let’s go back to the situation studied in Section 45.17. We start with (A, I, γ)
and A/I → C and set X = Spec(C) and S = Spec(A). Then we choose a poly-
nomial ring P over A and a surjection P → C with kernel J . We obtain D and
D(n) see (45.17.0.1) and (45.17.0.4). Set T (n)e = Spec(D(n)/peD(n)) so that
(X,T (n)e, δ(n)) is an object of Cris(X/S). Let F be a sheaf of OX/S-modules and
set

M(n) = lime Γ((X,T (n)e, δ(n)),F)

for n = 0, 1, 2, 3, . . .. This forms a cosimplicial module over the cosimplicial ring
D(0), D(1), D(2), . . ..

Proposition 45.21.1. With notations as above assume that

(1) F is locally quasi-coherent, and
(2) for any morphism (U, T, δ)→ (U ′, T ′, δ′) of Cris(X/S) where f : T → T ′

is a closed immersion the map cf : f∗FT ′ → FT is surjective.

Then the complex
M(0)→M(1)→M(2)→ . . .

computes RΓ(Cris(X/S),F).

Proof. Using assumption (1) and Lemma 45.18.2 we see that RΓ(Cris(X/S),F)
is isomorphic to RΓ(C,F). Note that the categories C used in Lemmas 45.18.2 and
45.18.3 agree. Let f : T → T ′ be a closed immersion as in (2). Surjectivity of
cf : f∗FT ′ → FT is equivalent to surjectivity of FT ′ → f∗FT . Hence, if F satisfies
(1) and (2), then we obtain a short exact sequence

0→ K → FT ′ → f∗FT → 0

of quasi-coherent OT ′ -modules on T ′, see Schemes, Section 25.24 and in particular
Lemma 25.24.1. Thus, if T ′ is affine, then we conclude that the restriction map
F(U ′, T ′, δ′)→ F(U, T, δ) is surjective by the vanishing of H1(T ′,K), see Cohomol-
ogy of Schemes, Lemma 29.2.2. Hence the transition maps of the inverse systems in
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Lemma 45.18.3 are surjective. We conclude that that Rpg∗(F|C) = 0 for all p ≥ 1
where g is as in Lemma 45.18.3. The object D of the category C∧ satisfies the
assumption of Lemma 45.18.4 by Lemma 45.5.7 with

D × . . .×D = D(n)

in C because D(n) is the n + 1-fold coproduct of D in Cris∧(C/A), see Lemma
45.17.2. Thus we win. �

Lemma 45.21.2. Assumptions and notation as in Proposition 45.21.1. Then

Hj(Cris(X/S),F ⊗OX/S ΩiX/S) = 0

for all i > 0 and all j ≥ 0.

Proof. Using Lemma 45.12.6 it follows that H = F ⊗OX/S ΩiX/S also satisfies as-

sumptions (1) and (2) of Proposition 45.21.1. WriteM(n)e = Γ((X,T (n)e, δ(n)),F)
so that M(n) = limeM(n)e. Then

lime Γ((X,T (n)e, δ(n)),H) = limeM(n)e ⊗D(n)e ΩD(n)/p
eΩD(n)

= limeM(n)e ⊗D(n) ΩD(n)

By Lemma 45.19.3 the cosimplicial modules

M(0)e ⊗D(0) ΩiD(0) →M(1)e ⊗D(1) ΩiD(1) →M(2)e ⊗D(2) ΩiD(2) → . . .

are homotopic to zero. Because the transition maps M(n)e+1 →M(n)e are surjec-
tive, we see that the inverse limit of the associated complexes are acyclic5. Hence
the vanishing of cohomology of H by Proposition 45.21.1. �

Proposition 45.21.3. Assumptions as in Proposition 45.21.1 but now assume that
F is a crystal in quasi-coherent modules. Let (M,∇) be the corresponding module
with connection over D, see Proposition 45.17.4. Then the complex

M ⊗∧D Ω∗D

computes RΓ(Cris(X/S),F).

Proof. We will prove this using the two spectral sequences associated to the double
complex K∗,∗ with terms

Ka,b = M ⊗∧D ΩaD(b)

What do we know so far? Well, Lemma 45.19.3 tells us that each columnKa,∗, a > 0
is acyclic. Proposition 45.21.1 tells us that the first column K0,∗ is quasi-isomorphic
to RΓ(Cris(X/S),F). Hence the first spectral sequence associated to the double
complex shows that there is a canonical quasi-isomorphism of RΓ(Cris(X/S),F)
with Tot(K∗,∗).

Next, let’s consider the rows K∗,b. By Lemma 45.17.1 each of the b + 1 maps
D → D(b) presents D(b) as the p-adic completion of a divided power polynomial
algebra over D. Hence Lemma 45.20.2 shows that the map

M ⊗∧D Ω∗D −→M ⊗∧D(b) Ω∗D(b) = K∗,b

5Actually, they are even homotopic to zero as the homotopies fit together, but we don’t need

this. The reason for this roundabout argument is that the limit limeM(n)e ⊗D(n) Ωi
D(n)

isn’t

the p-adic completion of M(n)⊗D(n) Ωi
D(n)

as with the assumptions of the lemma we don’t know

that M(n)e = M(n)e+1/peM(n)e+1. If F is a crystal then this does hold.
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is a quasi-isomorphism. Note that each of these maps defines the same map on
cohomology (and even the same map in the derived category) as the inverse is
given by the co-diagonal map D(b)→ D (corresponding to the multiplication map
P ⊗A . . . ⊗A P → P ). Hence if we look at the E1 page of the second spectral
sequence we obtain

Ea,b1 = Ha(M ⊗∧D Ω∗D)

with differentials

Ea,01
0−→ Ea,11

1−→ Ea,21
0−→ Ea,31

1−→ . . .

as each of these is the alternation sum of the given identifications Ha(M ⊗∧D Ω∗D) =

Ea,01 = Ea,11 = . . .. Thus we see that the E2 page is equal Ha(M ⊗∧D Ω∗D) on the
first row and zero elsewhere. It follows that the identification of M ⊗∧D Ω∗D with
the first row induces a quasi-isomorphism of M ⊗∧D Ω∗D with Tot(K∗,∗). �

Lemma 45.21.4. Assumptions as in Proposition 45.21.3. Let A → P ′ → C be
ring maps with A → P ′ smooth and P ′ → C surjective with kernel J ′. Let D′ be
the p-adic completion of DP ′,γ(J ′). Let (M ′,∇′) be the pair over D′ corresponding
to F , see Lemma 45.17.5. Then the complex

M ′ ⊗∧D′ Ω∗D′

computes RΓ(Cris(X/S),F).

Proof. Choose a : D → D′ and b : D′ → D as in Lemma 45.17.5. Note that the
base change M = M ′ ⊗D′,b D with its connection ∇ corresponds to F . Hence we
know that M ⊗∧D Ω∗D computes the crystalline cohomology of F , see Proposition
45.21.3. Hence it suffices to show that the base change maps (induced by a and b)

M ′ ⊗∧D′ Ω∗D′ −→M ⊗∧D Ω∗D and M ⊗∧D Ω∗D −→M ′ ⊗∧D′ Ω∗D′

are quasi-isomorphisms. Since a ◦ b = idD′ we see that the composition one way
around is the identity on the complex M ′ ⊗∧D′ Ω∗D′ . Hence it suffices to show that
the map

M ⊗∧D Ω∗D −→M ⊗∧D Ω∗D
induced by b ◦ a : D → D is a quasi-isomorphism. (Note that we have the same
complex on both sides as M = M ′ ⊗∧D′,b D, hence M ⊗∧D,b◦a D = M ′ ⊗∧D′,b◦a◦b
D = M ′ ⊗∧D′,b D = M .) In fact, we claim that for any divided power A-algebra
homomorphism ρ : D → D compatible with the augmentation to C the induced
map M ⊗∧D Ω∗D →M ⊗∧D,ρ Ω∗D is a quasi-isomorphism.

Write ρ(xi) = xi + zi. The elements zi are in the divided power ideal of D because
ρ is compatible with the augmentation to C. Hence we can factor the map ρ as a
composition

D
σ−→ D〈ξi〉∧

τ−→ D

where the first map is given by xi 7→ xi + ξi and the second map is the divided
power D-algebra map which maps ξi to zi. (This uses the universal properties of
polynomial algebra, divided power polynomial algebras, divided power envelopes,
and p-adic completion.) Note that there exists an automorphism α of D〈ξi〉∧ with
α(xi) = xi − ξi and α(ξi) = ξi. Applying Lemma 45.20.2 to α ◦ σ (which maps
xi to xi) and using that α is an isomorphism we conclude that σ induces a quasi-
isomorphism of M ⊗∧D Ω∗D with M ⊗∧D,σ Ω∗D〈xi〉∧ . On the other hand the map τ

has as a left inverse the map D → D〈xi〉∧, xi 7→ xi and we conclude (using Lemma
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45.20.2 once more) that τ induces a quasi-isomorphism of M ⊗∧D,σ Ω∗D〈xi〉∧ with

M ⊗∧D,τ◦σ Ω∗D. Composing these two quasi-isomorphisms we obtain that ρ induces

a quasi-isomorphism M ⊗∧D Ω∗D →M ⊗∧D,ρ Ω∗D as desired. �

45.22. Two counter examples

Before we turn to some of the successes of crystalline cohomology, let us give two
examples which explain why crystalline cohomology does not work very well if the
schemes in question are either not proper over the base, or singular. The first
example can be found in [BO83].

Example 45.22.1. Let A = Zp with divided power ideal (p) endowed with its
unique divided powers γ. Let C = Fp[x, y]/(x2, xy, y2). We choose the presentation

C = P/J = Zp[x, y]/(x2, xy, y2, p)

Let D = DP,γ(J)∧ with divided power ideal (J̄ , γ̄) as in Section 45.17. We will
denote x, y also the images of x and y in D. Consider the element

τ = γ̄p(x
2)γ̄p(y

2)− γ̄p(xy)2 ∈ D

We note that pτ = 0 as

p!γ̄p(x
2)γ̄p(y

2) = x2pγ̄p(y
2) = γ̄p(x

2y2) = xpypγ̄p(xy) = p!γ̄p(xy)2

in D. We also note that dτ = 0 in ΩD as

d(γ̄p(x
2)γ̄p(y

2)) = γ̄p−1(x2)γ̄p(y
2)dx2 + γ̄p(x

2)γ̄p−1(y2)dy2

= 2xγ̄p−1(x2)γ̄p(y
2)dx+ 2yγ̄p(x

2)γ̄p−1(y2)dy

= 2/(p− 1)!(x2p−1γ̄p(y
2)dx+ y2p−1γ̄p(x

2)dy)

= 2/(p− 1)!(xp−1γ̄p(xy
2)dx+ yp−1γ̄p(x

2y)dy)

= 2/(p− 1)!(xp−1ypγ̄p(xy)dx+ xpyp−1γ̄p(xy)dy)

= 2γ̄p−1(xy)γ̄p(xy)(ydx+ xdy)

= d(γ̄p(xy)2)

Finally, we claim that τ 6= 0 in D. To see this it suffices to produce an object
(B → Fp[x, y]/(x2, xy, y2), δ) of Cris(C/S) such that τ does not map to zero in B.
To do this take

B = Fp[x, y, u, v]/(x3, x2y, xy2, y3, xu, yu, xv, yv, u2, v2)

with the obvious surjection to C. Let K = Ker(B → C) and consider the map

δp : K −→ K, ay2 + bxy + cy2 + du+ ev + fuv 7−→ apu+ cpv

One checks this satisfies the assumptions (1), (2), (3) of Divided Power Algebra,
Lemma 23.5.3 and hence defines a divided power structure. Moreover, we see that
τ maps to uv which is not zero in B. Set X = Spec(C) and S = Spec(A). We draw
the following conclusions

(1) H0(Cris(X/S),OX/S) has p-torsion, and

(2) pulling back by frobenius F ∗ : H0(Cris(X/S),OX/S)→ H0(Cris(X/S),OX/S)
is not injective.
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Namely, τ defines a nonzero torsion element of H0(Cris(X/S),OX/S) by Proposi-
tion 45.21.3. Similarly, F ∗(τ) = σ(τ) where σ : D → D is the map induced by
any lift of Frobenius on P . If we choose σ(x) = xp and σ(y) = yp, then an easy
computation shows that F ∗(τ) = 0.

The next example shows that even for affine n-space crystalline cohomology does
not give the correct thing.

Example 45.22.2. Let A = Zp with divided power ideal (p) endowed with its
unique divided powers γ. Let C = Fp[x1, . . . , xr]. We choose the presentation

C = P/J = P/pP with P = Zp[x1, . . . , xr]

Note that pP has divided powers by Divided Power Algebra, Lemma 23.4.2. Hence
setting D = P∧ with divided power ideal (p) we obtain a situation as in Section
45.17. We conclude that RΓ(Cris(X/S),OX/S) is represented by the complex

D → Ω1
D → Ω2

D → . . .→ ΩrD

see Proposition 45.21.3. Assuming r > 0 we conclude the following

(1) The cristalline cohomology of the cristalline structure sheaf of X = Ar
Fp

over S = Spec(Zp) is zero except in degrees 0, . . . , r.
(2) We have H0(Cris(X/S),OX/S) = Zp.
(3) The cohomology group Hr(Cris(X/S),OX/S) is infinite and is not a tor-

sion abelian group.
(4) The cohomology group Hr(Cris(X/S),OX/S) is not separated for the p-

adic topology.

While the first two statements are reasonable, parts (3) and (4) are disconcerting!
The truth of these statements follows immediately from working out what the
complex displayed above looks like. Let’s just do this in case r = 1. Then we are
just looking at the two term complex of p-adically complete modules

d : D =
(⊕

n≥0
Zpx

n
)∧
−→ Ω1

D =
(⊕

n≥1
Zpx

n−1dx
)∧

The map is given by diag(0, 1, 2, 3, 4, . . .) except that the first summand is missing
on the right hand side. Now it is clear that

⊕
n>0 Zp/nZp is a subgroup of the

cokernel, hence the cokernel is infinite. In fact, the element

ω =
∑

e>0
pexp

2e−1dx

is clearly not a torsion element of the cokernel. But it gets worse. Namely, consider
the element

η =
∑

e>0
pexp

e−1dx

For every t > 0 the element η is congruent to
∑
e>t p

exp
e−1dx modulo the image of

d which is divisible by pt. But η is not in the image of d because it would have to
be the image of a +

∑
e>0 x

pe for some a ∈ Zp which is not an element of the left

hand side. In fact, pNη is similarly not in the image of d for any integer N . This
implies that η “generates” a copy of Qp inside of H1

cris(A
1
Fp
/ Spec(Zp)).
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45.23. Applications

In this section we collect some applications of the material in the previous sections.

Proposition 45.23.1. In Situation 45.7.5. Let F be a crystal in quasi-coherent
modules on Cris(X/S). The truncation map of complexes

(F → F ⊗OX/S Ω1
X/S → F ⊗OX/S Ω2

X/S → . . .) −→ F [0],

while not a quasi-isomorphism, becomes a quasi-isomorphism after applying RuX/S,∗.
In fact, for any i > 0, we have

RuX/S,∗(F ⊗OX/S ΩiX/S) = 0.

Proof. By Lemma 45.15.1 we get a de Rham complex as indicated in the lemma.
We abbreviate H = F ⊗ ΩiX/S . Let X ′ ⊂ X be an affine open subscheme which

maps into an affine open subscheme S′ ⊂ S. Then

(RuX/S,∗H)|X′Zar = RuX′/S′,∗(H|Cris(X′/S′)),

see Lemma 45.9.5. Thus Lemma 45.21.2 shows that RuX/S,∗H is a complex of
sheaves on XZar whose cohomology on any affine open is trivial. As X has a
basis for its topology consisting of affine opens this implies that RuX/S,∗H is quasi-
isomorphic to zero. �

Remark 45.23.2. The proof of Proposition 45.23.1 shows that the conclusion

RuX/S,∗(F ⊗OX/S ΩiX/S) = 0

for i > 0 is true for any OX/S-module F which satisfies conditions (1) and (2) of

Proposition 45.21.1. This applies to the following non-crystals: ΩiX/S for all i, and

any sheaf of the form F , where F is a quasi-coherent OX -module. In particular, it
applies to the sheafOX = Ga. But note that we need something like Lemma 45.15.1
to produce a de Rham complex which requires F to be a crystal. Hence (currently)
the collection of sheaves of modules for which the full statement of Proposition
45.23.1 holds is exactly the category of crystals in quasi-coherent modules.

In Situation 45.7.5. Let F be a crystal in quasi-coherent modules on Cris(X/S).
Let (U, T, δ) be an object of Cris(X/S). Proposition 45.23.1 allows us to construct
a canonical map

(45.23.2.1) RΓ(Cris(X/S),F) −→ RΓ(T,FT ⊗OT Ω∗T/S,δ)

Namely, we have RΓ(Cris(X/S),F) = RΓ(Cris(X/S),F ⊗ Ω∗X/S), we can restrict

global cohomology classes to T , and ΩX/S restricts to ΩT/S,δ by Lemma 45.12.3.

45.24. Some further results

In this section we mention some results whose proof is missing. We will formulate
these as a series of remarks and we will convert them into actual lemmas and
propositions only when we add detailed proofs.
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Remark 45.24.1 (Higher direct images). Let p be a prime number. Let (S, I, γ)→
(S′, I ′, γ′) be a morphism of divided power schemes over Z(p). Let

X
f
//

��

X ′

��
S0

// S′0

be a commutative diagram of morphisms of schemes and assume p is locally nilpo-
tent on X and X ′. Let F be an OX/S-module on Cris(X/S). Then Rfcris,∗F can
be computed as follows.

Given an object (U ′, T ′, δ′) of Cris(X ′/S′) set U = X ×X′ U ′ = f−1(U ′) (an open
subscheme of X). Denote (T0, T, δ) the divided power scheme over S such that

T //

��

T ′

��
S // S′

is cartesian in the category of divided power schemes, see Lemma 45.7.4. There is
an induced morphism U → T0 and we obtain a morphism (U/T )cris → (X/S)cris,
see Remark 45.9.3. Let FU be the pullback of F . Let τU/T : (U/T )cris → TZar be
the structure morphism. Then we have

(45.24.1.1) (Rfcris,∗F)T ′ = R(T → T ′)∗
(
RτU/T,∗FU

)
where the left hand side is the restriction (see Section 45.10).

Hints: First, show that Cris(U/T ) is the localization (in the sense of Sites, Lemma
7.29.3) of Cris(X/S) at the sheaf of sets f−1

crish(U ′,T ′,δ′). Next, reduce the statement
to the case where F is an injective module and pushforward of modules using
that the pullback of an injective OX/S-module is an injective OU/T -module on
Cris(U/T ). Finally, check the result holds for plain pushforward.

Remark 45.24.2 (Mayer-Vietoris). In the situation of Remark 45.24.1 suppose
we have an open covering X = X ′ ∪X ′′. Denote X ′′′ = X ′ ∩X ′′. Let f ′, f ′′, and
f ′′ be the restriction of f to X ′, X ′′, and X ′′′. Moreover, Let F ′, F ′′, and F ′′′ be
the restriction of F to the crystalline sites of X ′, X ′′, and X ′′′. Then there exists
a distinguished triangle

Rfcris,∗F −→ Rf ′cris,∗F ′ ⊕Rf ′′cris,∗F ′′ −→ Rf ′′′cris,∗F ′′′ −→ Rfcris,∗F [1]

in D(OX′/S′).
Hints: This is a formal consequence of the fact that the subcategories Cris(X ′/S),
Cris(X ′′/S), Cris(X ′′′/S) correspond to open subobjects of the final sheaf on Cris(X/S)
and that the last is the intersection of the first two.

Remark 45.24.3 (Čech complex). Let p be a prime number. Let (A, I, γ) be a
divided power ring with A a Z(p)-algebra. Set S = Spec(A) and S0 = Spec(A/I).

Let X be a separated6 scheme over S0 such that p is locally nilpotent on X. Let F
be a crystal in quasi-coherent OX/S-modules.

6This assumption is not strictly necessary, as using hypercoverings the construction of the
remark can be extended to the general case.
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Choose an affine open covering X =
⋃
λ∈Λ Uλ of X. Write Uλ = Spec(Cλ). Choose

a polynomial algebra Pλ over A and a surjection Pλ → Cλ. Having fixed these
choices we can construct a Čech complex which computes RΓ(Cris(X/S),F).

Given n ≥ 0 and λ0, . . . , λn ∈ Λ write Uλ0...λn = Uλ0
∩ . . . ∩ Uλn . This is an affine

scheme by assumption. Write Uλ0...λn = Spec(Cλ0...λn). Set

Pλ0...λn = Pλ0
⊗A . . .⊗A Pλn

which comes with a canonical surjection onto Cλ0...λn . Denote the kernel Jλ0...λn

and set Dλ0...λn the p-adically completed divided power envelope of Jλ0...λn in
Pλ0...λn relative to γ. Let Mλ0...λn be the Pλ0...λn-module corresponding to the
restriction of F to Cris(Uλ0...λn/S) via Proposition 45.17.4. By construction we
obtain a cosimplicial divided power ring D(∗) having in degree n the ring

D(n) =
∏

λ0...λn
Dλ0...λn

(use that divided power envelopes are functorial and the trivial cosimplicial struc-
ture on the ring P (∗) defined similarly). Since Mλ0...λn is the “value” of F on the
objects Spec(Dλ0...λn) we see that M(∗) defined by the rule

M(n) =
∏

λ0...λn
Mλ0...λn

forms a cosimplicial D(∗)-module. Now we claim that we have

RΓ(Cris(X/S),F) = s(M(∗))
Here s(−) denotes the cochain complex associated to a cosimplicial module (see
Simplicial, Section 14.24).

Hints: The proof of this is similar to the proof of Proposition 45.21.1 (in particular
the result holds for any module satisfying the assumptions of that proposition).

Remark 45.24.4 (Alternating Čech complex). Let p be a prime number. Let
(A, I, γ) be a divided power ring with A a Z(p)-algebra. Set S = Spec(A) and
S0 = Spec(A/I). Let X be a separated quasi-compact scheme over S0 such that p
is locally nilpotent on X. Let F be a crystal in quasi-coherent OX/S-modules.

Choose a finite affine open covering X =
⋃
λ∈Λ Uλ of X and a total ordering on Λ.

Write Uλ = Spec(Cλ). Choose a polynomial algebra Pλ over A and a surjection
Pλ → Cλ. Having fixed these choices we can construct an alternating Čech complex
which computes RΓ(Cris(X/S),F).

We are going to use the notation introduced in Remark 45.24.3. Denote Ωλ0...λn the
p-adically completed module of differentials of Dλ0...λn over A compatible with the
divided power structure. Let ∇ be the integrable connection on Mλ0...λn coming
from Proposition 45.17.4. Consider the double complex M•,• with terms

Mn,m =
⊕

λ0<...<λn
Mλ0...λn ⊗∧Dλ0...λn

ΩmDλ0...λn
.

For the differential d1 (increasing n) we use the usual Čech differential and for the
differential d2 we use the connection, i.e., the differential of the de Rham complex.
We claim that

RΓ(Cris(X/S),F) = Tot(M•,•)

Here Tot(−) denotes the total complex associated to a double complex, see Homol-
ogy, Definition 12.22.3.

http://stacks.math.columbia.edu/tag/07MN
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Hints: We have

RΓ(Cris(X/S),F) = RΓ(Cris(X/S),F ⊗OX/S Ω•X/S)

by Proposition 45.23.1. The right hand side of the formula is simply the alternating
Čech complex for the covering X =

⋃
λ∈Λ Uλ (which induces an open covering of the

final sheaf of Cris(X/S)) and the complex F ⊗OX/S Ω•X/S , see Proposition 45.21.3.

Now the result follows from a general result in cohomology on sites, namely that the
alternating Čech complex computes the cohomology provided it gives the correct
answer on all the pieces (insert future reference here).

Remark 45.24.5 (Quasi-coherence). In the situation of Remark 45.24.1 assume
that S → S′ is quasi-compact and quasi-separated and that X → S0 is quasi-
compact and quasi-separated. Then for a crystal in quasi-coherent OX/S-modules

F the sheaves Rifcris,∗F are locally quasi-coherent.

Hints: We have to show that the restrictions to T ′ are quasi-coherent OT ′ -modules,
where (U ′, T ′, δ′) is any object of Cris(X ′/S′). It suffices to do this when T ′ is affine.
We use the formula (45.24.1.1), the fact that T → T ′ is quasi-compact and quasi-
separated (as T is affine over the base change of T ′ by S → S′), and Cohomology of
Schemes, Lemma 29.4.4 to see that it suffices to show that the sheaves RiτU/T,∗FU
are quasi-coherent. Note that U → T0 is also quasi-compact and quasi-separated,
see Schemes, Lemmas 25.21.15 and 25.21.15.

This reduces us to proving that RiτX/S,∗F is quasi-coherent on S in the case that
p locally nilpotent on S. Here τX/S is the structure morphism, see Remark 45.9.6.
We may work locally on S, hence we may assume S affine (see Lemma 45.9.5). In-
duction on the number of affines covering X and Mayer-Vietoris (Remark 45.24.2)
reduces the question to the case where X is also affine (as in the proof of Coho-
mology of Schemes, Lemma 29.4.4). Say X = Spec(C) and S = Spec(A) so that
(A, I, γ) and A → C are as in Situation 45.5.1. Choose a polynomial algebra P
over A and a surjection P → C as in Section 45.17. Let (M,∇) be the module
corresponding to F , see Proposition 45.17.4. Applying Proposition 45.21.3 we see
that RΓ(Cris(X/S),F) is represented by M ⊗D Ω∗D. Note that completion isn’t
necessary as p is nilpotent in A! We have to show that this is compatible with
taking principal opens in S = Spec(A). Suppose that g ∈ A. Then we conclude
that similarly RΓ(Cris(Xg/Sg),F) is computed by Mg ⊗Dg Ω∗Dg (again this uses

that p-adic completion isn’t necessary). Hence we conclude because localization is
an exact functor on A-modules.

Remark 45.24.6 (Boundedness). In the situation of Remark 45.24.1 assume that
S → S′ is quasi-compact and quasi-separated and that X → S0 is of finite type
and quasi-separated. Then there exists an integer i0 such that for any crystal in
quasi-coherent OX/S-modules F we have Rifcris,∗F = 0 for all i > i0.

Hints: Arguing as in Remark 45.24.5 (using Cohomology of Schemes, Lemma 29.4.4)
we reduce to proving that Hi(Cris(X/S),F) = 0 for i � 0 in the situation of
Proposition 45.21.3 when C is a finite type algebra over A. This is clear as we can
choose a finite polynomial algebra and we see that ΩiD = 0 for i� 0.

Remark 45.24.7 (Specific boundedness). In Situation 45.7.5 let F be a crystal
in quasi-coherent OX/S-modules. Assume that S0 has a unique point and that
X → S0 is of finite presentation.

http://stacks.math.columbia.edu/tag/07MP
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(1) If dimX = d andX/S0 has embedding dimension e, thenHi(Cris(X/S),F) =
0 for i > d+ e.

(2) If X is separated and can be covered by q affines, and X/S0 has embedding
dimension e, then Hi(Cris(X/S),F) = 0 for i > q + e.

Hints: In case (1) we can use that

Hi(Cris(X/S),F) = Hi(XZar, RuX/S,∗F)

and that RuX/S,∗F is locally calculated by a de Rham complex constructed using an
embedding of X into a smooth scheme of dimension e over S (see Lemma 45.21.4).
These de Rham complexes are zero in all degrees > e. Hence (1) follows from
Cohomology, Proposition 20.21.6. In case (2) we use the alternating Čech complex
(see Remark 45.24.4) to reduce to the case X affine. In the affine case we prove the
result using the de Rham complex associated to an embedding of X into a smooth
scheme of dimension e over S (it takes some work to construct such a thing).

Remark 45.24.8 (Base change map). In the situation of Remark 45.24.1 assume
S = Spec(A) and S′ = Spec(A′) are affine. Let F ′ be an OX′/S′-module. Let F be
the pullback of F ′. Then there is a canonical base change map

L(S′ → S)∗RτX′/S′,∗F ′ −→ RτX/S,∗F
where τX/S and τX′/S′ are the structure morphisms, see Remark 45.9.6. On global
sections this gives a base change map

(45.24.8.1) RΓ(Cris(X ′/S′),F ′)⊗L
A′ A −→ RΓ(Cris(X/S),F)

in D(A).

Hint: Compose the very general base change map of Cohomology on Sites, Remark
21.19.2 with the canonical map Lf∗crisF ′ → f∗crisF ′ = F .

Remark 45.24.9 (Base change isomorphism). The map (45.24.8.1) is an isomor-
phism provided all of the following conditions are satisfied:

(1) p is nilpotent in A′,
(2) F ′ is a crystal in quasi-coherent OX′/S′ -modules,
(3) X ′ → S′0 is a quasi-compact, quasi-separated morphism,
(4) X = X ′ ×S′0 S0,
(5) F ′ is a flat OX′/S′ -module,
(6) X ′ → S′0 is a local complete intersection morphism (see More on Mor-

phisms, Definition 36.42.2; this holds for example if X ′ → S′0 is syntomic
or smooth),

(7) X ′ and S0 are Tor independent over S′0 (see More on Algebra, Definition
15.47.1; this holds for example if either S0 → S′0 or X ′ → S′0 is flat).

Hints: Condition (1) means that in the arguments below p-adic completion does
nothing and can be ignored. Using condition (3) and Mayer Vietoris (see Re-
mark 45.24.2) this reduces to the case where X ′ is affine. In fact by condition
(6), after shrinking further, we can assume that X ′ = Spec(C ′) and we are given
a presentation C ′ = A′/I ′[x1, . . . , xn]/(f̄ ′1, . . . , f̄

′
c) where f̄ ′1, . . . , f̄

′
c is a Koszul-

regular sequence in A′/I ′. (This means that smooth locally f̄ ′1, . . . , f̄
′
c forms a

regular sequence, see More on Algebra, Lemma 15.21.17.) We choose a lift of
f̄ ′i to an element f ′i ∈ A′[x1, . . . , xn]. By (4) we see that X = Spec(C) with
C = A/I[x1, . . . , xn]/(f̄1, . . . , f̄c) where fi ∈ A[x1, . . . , xn] is the image of f ′i . By

http://stacks.math.columbia.edu/tag/07MS
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property (7) we see that f̄1, . . . , f̄c is a Koszul-regular sequence in A/I[x1, . . . , xn].
The divided power envelope of I ′A′[x1, . . . , xn] + (f ′1, . . . , f

′
c) in A′[x1, . . . , xn] rela-

tive to γ′ is

D′ = A′[x1, . . . , xn]〈ξ1, . . . , ξc〉/(ξi − f ′i)
see Lemma 45.2.4. Then you check that ξ1 − f ′1, . . . , ξn − f ′n is a Koszul-regular
sequence in the ring A′[x1, . . . , xn]〈ξ1, . . . , ξc〉. Similarly the divided power envelope
of IA[x1, . . . , xn] + (f1, . . . , fc) in A[x1, . . . , xn] relative to γ is

D = A[x1, . . . , xn]〈ξ1, . . . , ξc〉/(ξi − fi)

and ξ1−f1, . . . , ξn−fn is a Koszul-regular sequence in the ringA[x1, . . . , xn]〈ξ1, . . . , ξc〉.
It follows that D′ ⊗L

A′ A = D. Condition (2) implies F ′ corresponds to a pair
(M ′,∇) consisting of a D′-module with connection, see Proposition 45.17.4. Then
M = M ′ ⊗D′ D corresponds to the pullback F . By assumption (5) we see that M ′

is a flat D′-module, hence

M = M ′ ⊗D′ D = M ′ ⊗D′ D′ ⊗L
A′ A = M ′ ⊗L

A′ A

Since the modules of differentials ΩD′ and ΩD (as defined in Section 45.17) are free
D′-modules on the same generators we see that

M ⊗D Ω•D = M ′ ⊗D′ Ω•D′ ⊗D′ D = M ′ ⊗D′ Ω•D′ ⊗L
A′ A

which proves what we want by Proposition 45.21.3.

Remark 45.24.10 (Rlim). Let p be a prime number. Let (A, I, γ) be a divided
power ring with A an algebra over Z(p) with p nilpotent in A/I. Set S = Spec(A)
and S0 = Spec(A/I). Let X be a scheme over S0 with p locally nilpotent on X.
Let F be any OX/S-module. For e � 0 we have (pe) ⊂ I is preserved by γ, see
Divided Power Algebra, Lemma 23.4.5. Set Se = Spec(A/peA) for e � 0. Then
Cris(X/Se) is a full subcategory of Cris(X/S) and we denote Fe the restriction of
F to Cris(X/Se). Then

RΓ(Cris(X/S),F) = R limeRΓ(Cris(X/Se),Fe)

Hints: Suffices to prove this for F injective. In this case the sheaves Fe are injective
modules too, the transition maps Γ(Fe+1) → Γ(Fe) are surjective, and we have
Γ(F) = lime Γ(Fe) because any object of Cris(X/S) is locally an object of one of
the categories Cris(X/Se) by definition of Cris(X/S).

Remark 45.24.11 (Comparison). Let p be a prime number. Let (A, I, γ) be a
divided power ring with p nilpotent in A. Set S = Spec(A) and S0 = Spec(A/I).
Let Y be a smooth scheme over S and set X = Y ×S S0. Let F be a crystal in
quasi-coherent OX/S-modules. Then

(1) γ extends to a divided power structure on the ideal of X in Y so that
(X,Y, γ) is an object of Cris(X/S),

(2) the restriction FY (see Section 45.10) comes endowed with a canonical
integrable connection ∇ : FY → FY ⊗OY ΩY/S , and

(3) we have

RΓ(Cris(X/S),F) = RΓ(Y,FY ⊗OY Ω•Y/S)

in D(A).

http://stacks.math.columbia.edu/tag/07MV
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Hints: See Divided Power Algebra, Lemma 23.4.2 for (1). See Lemma 45.15.1 for
(2). For Part (3) note that there is a map, see (45.23.2.1). This map is an isomor-
phism when X is affine, see Lemma 45.21.4. This shows that RuX/S,∗F and FY ⊗
Ω•Y/S are quasi-isomorphic as complexes on YZar = XZar. SinceRΓ(Cris(X/S),F) =

RΓ(XZar, RuX/S,∗F) the result follows.

Remark 45.24.12 (Perfectness). Let p be a prime number. Let (A, I, γ) be a
divided power ring with p nilpotent in A. Set S = Spec(A) and S0 = Spec(A/I).
Let X be a proper smooth scheme over S0. Let F be a crystal in finite locally
free quasi-coherent OX/S-modules. Then RΓ(Cris(X/S),F) is a perfect object of
D(A).

Hints: By Remark 45.24.9 we have

RΓ(Cris(X/S),F)⊗L
A A/I

∼= RΓ(Cris(X/S0),F|Cris(X/S0))

By Remark 45.24.11 we have

RΓ(Cris(X/S0),F|Cris(X/S0)) = RΓ(X,FX ⊗ Ω•X/S0
)

Using the stupid filtration on the de Rham complex we see that the last displayed
complex is perfect in D(A/I) as soon as the complexes

RΓ(X,FX ⊗ ΩqX/S0
)

are perfect complexes in D(A/I), see More on Algebra, Lemma 15.56.4. This is
true by standard arguments in coherent cohomology using that FX ⊗ ΩqX/S0

is a

finite locally free sheaf and X → S0 is proper and flat (insert future reference here).
Applying More on Algebra, Lemma 15.57.4 we see that

RΓ(Cris(X/S),F)⊗L
A A/I

n

is a perfect object of D(A/In) for all n. This isn’t quite enough unless A is Noe-
therian. Namely, even though I is locally nilpotent by our assumption that p is
nilpotent, see Divided Power Algebra, Lemma 23.2.6, we cannot conclude that
In = 0 for some n. A counter example is Fp〈x〉. To prove it in general when F =
OX/S the argument of http://math.columbia.edu/~dejong/wordpress/?p=2227
works. When the coefficients F are non-trivial the argument of [Fal99] seems to
be as follows. Reduce to the case pA = 0 by More on Algebra, Lemma 15.57.4.

In this case the Frobenius map A → A, a 7→ ap factors as A → A/I
ϕ−→ A (as

xp = 0 for x ∈ I). Set X(1) = X ⊗A/I,ϕ A. The absolute Frobenius morphism

of X factors through a morphism FX : X → X(1) (a kind of relative Frobenius).
Affine locally if X = Spec(C) then X(1) = Spec(C ⊗A/I,ϕ A) and FX corresponds
to C ⊗A/I,ϕ A→ C, c⊗ a 7→ cpa. This defines morphisms of ringed topoi

(X/S)cris
(FX)cris−−−−−→ (X(1)/S)cris

u
X(1)/S−−−−−→ Sh(X

(1)
Zar)

whose composition is denoted FrobX . One then shows that RFrobX,∗F is repre-
sentable by a perfect complex of OX(1)-modules(!) by a local calculation.

Remark 45.24.13 (Complete perfectness). Let p be a prime number. Let (A, I, γ)
be a divided power ring with A a p-adically complete ring and p nilpotent in A/I.
Set S = Spec(A) and S0 = Spec(A/I). Let X be a proper smooth scheme over
S0. Let F be a crystal in finite locally free quasi-coherent OX/S-modules. Then
RΓ(Cris(X/S),F) is a perfect object of D(A).

http://stacks.math.columbia.edu/tag/07MX
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Hints: We know that K = RΓ(Cris(X/S),F) is the derived limit K = R limKe of
the cohomologies over A/peA, see Remark 45.24.10. Each Ke is a perfect complex
of D(A/peA) by Remark 45.24.12. Since A is p-adically complete the result follows
from More on Algebra, Lemma 15.65.3.

Remark 45.24.14 (Complete comparison). Let p be a prime number. Let (A, I, γ)
be a divided power ring with A a Noetherian p-adically complete ring and p nilpo-
tent in A/I. Set S = Spec(A) and S0 = Spec(A/I). Let Y be a proper smooth
scheme over S and set X = Y ×SS0. Let F be a finite type crystal in quasi-coherent
OX/S-modules. Then

(1) there exists a coherentOY -module FY endowed with integrable connection

∇ : FY −→ FY ⊗OY ΩY/S

such that FY /peFY is the module with connection over A/peA found in
Remark 45.24.11, and

(2) we have

RΓ(Cris(X/S),F) = RΓ(Y,FY ⊗OY Ω•Y/S)

in D(A).

Hints: The existence of FY is Grothendieck’s existence theorem (insert future ref-
erence here). The isomorphism of cohomologies follows as both sides are computed
as R lim of the versions modulo pe (see Remark 45.24.10 for the left hand side; use
the theorem on formal functions, see Cohomology of Schemes, Theorem 29.18.5 for
the right hand side). Each of the versions modulo pe are isomorphic by Remark
45.24.11.

45.25. Pulling back along purely inseparable maps

By an αp-cover we mean a morphism of the form

X ′ = Spec(C[z]/(zp − c)) −→ Spec(C) = X

where C is an Fp-algebra and c ∈ C. Equivalently, X ′ is an αp-torsor over X.
An iterated αp-cover7 is a morphism of schemes in characteristic p which is locally
on the target a composition of finitely many αp-covers. In this section we prove
that pullback along such a morphism induces a quasi-isomorphism on crystalline
cohomology after inverting the prime p. In fact, we prove a precise version of
this result. We beging with a preliminary lemma whose formulation needs some
notation.

Assume we have a ring mapB → B′ and quotients ΩB → Ω and ΩB′ → Ω′ satisfying
the assumptions of Remark 45.6.11. Thus (45.6.11.1) provides a canonical map of
complexes

c•M : M ⊗B Ω• −→M ⊗B (Ω′)•

for all B-modules M endowed with integrable connection ∇ : M →M ⊗B ΩB .

Suppose we have a ∈ B, z ∈ B′, and a map θ : B′ → B′ satisfying the following
assumptions

(1) d(a) = 0,

7This is nonstandard notation.
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(2) Ω′ = B′⊗BΩ⊕B′dz; we write d(f) = d1(f)+∂z(f)dz with d1(f) ∈ B′⊗Ω
and ∂z(f) ∈ N ′ for all f ∈ B′,

(3) θ : B′ → B′ is B-linear,
(4) ∂z ◦ θ = a,
(5) B → B′ is universally injective (and hence Ω→ Ω′ is injective),
(6) af − θ(∂z(f)) ∈ B for all f ∈ B′,
(7) (θ⊗1)(d1(f))−d1(θ(f)) ∈ Ω for all f ∈ B′ where θ⊗1 : B′⊗Ω→ B′⊗Ω

These conditions are not logically independent. For example, assumption (4) im-
plies that ∂z(af − θ(∂z(f))) = 0. Hence if the image of B → B′ is the collection of
elements annihilated by ∂z, then (6) follows. A similar argument can be made for
condition (7).

Lemma 45.25.1. In the situation above there exists a map of complexes

e•M : M ⊗B (Ω′)• −→M ⊗B Ω•

such that c•M ◦ e•M and e•M ◦ c•M are homotopic to multiplication by a.

Proof. In this proof all tensor products are over B. Assumption (2) implies that

M ⊗ (Ω′)i = (B′ ⊗M ⊗ Ωi)⊕ (B′dz ⊗M ⊗ Ωi−1)

for all i ≥ 0. A collection of additive generators for M⊗(Ω′)i is formed by elements
of the form fω and elements of the form fdz ∧ η where f ∈ B′, ω ∈ M ⊗ Ωi, and
η ∈M ⊗ Ωi−1.

For f ∈ B′ we write

ε(f) = af − θ(∂z(f)) and ε′(f) = (θ ⊗ 1)(d1(f))− d1(θ(f))

so that ε(f) ∈ B and ε′(f) ∈ Ω by assumptions (6) and (7). We define e•M by the
rules eiM (fω) = ε(f)ω and eiM (fdz ∧ η) = ε′(f) ∧ η. We will see below that the
collection of maps eiM is a map of complexes.

We define

hi : M ⊗B (Ω′)i −→M ⊗B (Ω′)i−1

by the rules hi(fω) = 0 and hi(fdz ∧ η) = θ(f)η for elements as above. We claim
that

d ◦ h+ h ◦ d = a− c•M ◦ e•M

Note that multiplication by a is a map of complexes by (1). Hence, since c•M is an
injective map of complexes by assumption (5), we conclude that e•M is a map of
complexes. To prove the claim we compute

(d ◦ h+ h ◦ d)(fω) = h (d(f) ∧ ω + f∇(ω))

= θ(∂z(f))ω

= afω − ε(f)ω

= afω − ciM (eiM (fω))

http://stacks.math.columbia.edu/tag/07Q7
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The second equality because dz does not occur in ∇(ω) and the third equality by
assumption (6). Similarly, we have

(d ◦ h+ h ◦ d)(fdz ∧ η) = d(θ(f)η) + h (d(f) ∧ dz ∧ η − fdz ∧∇(η))

= d(θ(f)) ∧ η + θ(f)∇(η)− (θ ⊗ 1)(d1(f)) ∧ η − θ(f)∇(η)

= d1(θ(f)) ∧ η + ∂z(θ(f))dz ∧ η − (θ ⊗ 1)(d1(f)) ∧ η
= afdz ∧ η − ε′(f) ∧ η
= afdz ∧ η − ciM (eiM (fdz ∧ η))

The second equality because d(f) ∧ dz ∧ η = −dz ∧ d1(f) ∧ η. The fourth equality
by assumption (4). On the other hand it is immediate from the definitions that
eiM (ciM (ω)) = ε(1)ω = aω. This proves the lemma. �

Example 45.25.2. A standard example of the situation above occurs when B′ =
B〈z〉 is the divided power polynomial ring over a divided power ring (B, J, δ) with
divided powers δ′ on J ′ = B′+ + JB′ ⊂ B′. Namely, we take Ω = ΩB,δ and
Ω′ = ΩB′,δ′ . In this case we can take a = 1 and

θ(
∑

bmz
[m]) =

∑
bmz

[m+1]

Note that

f − θ(∂z(f)) = f(0)

equals the constant term. It follows that in this case Lemma 45.25.1 recovers the
crystalline Poincaré lemma (Lemma 45.20.2).

Lemma 45.25.3. In Situation 45.5.1. Assume D and ΩD are as in (45.17.0.1)
and (45.17.0.2). Let λ ∈ D. Let D′ be the p-adic completion of

D[z]〈ξ〉/(ξ − (zp − λ))

and let ΩD′ be the p-adic completion of the module of divided power differentials
of D′ over A. For any pair (M,∇) over D satisfying (1), (2), (3), and (4) the
canonical map of complexes (45.6.11.1)

c•M : M ⊗∧D Ω•D −→M ⊗∧D Ω•D′

has the following property: There exists a map e•M in the opposite direction such
that both c•M ◦ e•M and e•M ◦ c•M are homotopic to multiplication by p.

Proof. We will prove this using Lemma 45.25.1 with a = p. Thus we have to
find θ : D′ → D′ and prove (1), (2), (3), (4), (5), (6), (7). We first collect some
information about the rings D and D′ and the modules ΩD and ΩD′ .

Writing

D[z]〈ξ〉/(ξ − (zp − λ)) = D〈ξ〉[z]/(zp − ξ − λ)

we see that D′ is the p-adic completion of the free D-module⊕
i=0,...,p−1

⊕
n≥0

ziξ[n]D

where ξ[0] = 1. It follows that D → D′ has a continuous D-linear section, in
particular D → D′ is universally injective, i.e., (5) holds. We think of D′ as a

divided power algebra over A with divided power ideal J
′

= JD′+ (ξ). Then D′ is

http://stacks.math.columbia.edu/tag/07Q8
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also the p-adic completion of the divided power envelope of the ideal generated by
zp − λ in D, see Lemma 45.2.4. Hence

ΩD′ = ΩD ⊗∧D D′ ⊕D′dz

by Lemma 45.6.6. This proves (2). Note that (1) is obvious.

At this point we construct θ. (We wrote a PARI/gp script theta.gp verifying some
of the formulas in this proof which can be found in the scripts subdirectory of the
stacks project.) Before we do so we compute the derivative of the elements ziξ[n].
We have dzi = izi−1dz. For n ≥ 1 we have

dξ[n] = ξ[n−1]dξ = −ξ[n−1]dλ+ pzp−1ξ[n−1]dz

because ξ = zp − λ. For 0 < i < p and n ≥ 1 we have

d(ziξ[n]) = izi−1ξ[n]dz + ziξ[n−1]dξ

= izi−1ξ[n]dz + ziξ[n−1]d(zp − λ)

= −ziξ[n−1]dλ+ (izi−1ξ[n] + pzi+p−1ξ[n−1])dz

= −ziξ[n−1]dλ+ (izi−1ξ[n] + pzi−1(ξ + λ)ξ[n−1])dz

= −ziξ[n−1]dλ+ ((i+ pn)zi−1ξ[n] + pλzi−1ξ[n−1])dz

the last equality because ξξ[n−1] = nξ[n]. Thus we see that

∂z(z
i) = izi−1

∂z(ξ
[n]) = pzp−1ξ[n−1]

∂z(z
iξ[n]) = (i+ pn)zi−1ξ[n] + pλzi−1ξ[n−1]

Motivated by these formulas we define θ by the rules

θ(zj) = p z
j+1

j+1 j = 0, . . . p− 1,

θ(zp−1ξ[m]) = ξ[m+1] m ≥ 1,

θ(zjξ[m]) = pzj+1ξ[m]−θ(pλzjξ[m−1])
(j+1+pm) 0 ≤ j < p− 1,m ≥ 1

where in the last line we use induction on m to define our choice of θ. Working this
out we get (for 0 ≤ j < p− 1 and 1 ≤ m)

θ(zjξ[m]) = pzj+1ξ[m]

(j+1+pm) −
p2λzj+1ξ[m−1]

(j+1+pm)(j+1+p(m−1)) + . . .+ (−1)mpm+1λmzj+1

(j+1+pm)...(j+1)

although we will not use this expression below. It is clear that θ extends uniquely
to a p-adically continuous D-linear map on D′. By construction we have (3) and
(4). It remains to prove (6) and (7).

Proof of (6) and (7). As θ is D-linear and continuous it suffices to prove that
p− θ ◦∂z, resp. (θ⊗ 1) ◦d1−d1 ◦ θ gives an element of D, resp. ΩD when evaluated
on the elements ziξ[n]8. Set D0 = Z(p)[λ] and D′0 = Z(p)[z, λ]〈ξ〉/(ξ − zp + λ).
Observe that each of the expressions above is an element of D′0 or ΩD′0 . Hence it
suffices to prove the result in the case of D0 → D′0. Note that D0 and D′0 are torsion
free rings and that D0 ⊗Q = Q[λ] and D′0 ⊗Q = Q[z, λ]. Hence D0 ⊂ D′0 is the

8This can be done by direct computation: It turns out that p − θ ◦ ∂z evaluated on ziξ[n]

gives zero except for 1 which is mapped to p and ξ which is mapped to −pλ. It turns out that

(θ ⊗ 1) ◦ d1 − d1 ◦ θ evaluated on ziξ[n] gives zero except for zp−1ξ which is mapped to −λ.
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subring of elements annihilated by ∂z and (6) follows from (4), see the discussion
directly preceding Lemma 45.25.1. Similarly, we have d1(f) = ∂λ(f)dλ hence

((θ ⊗ 1) ◦ d1 − d1 ◦ θ) (f) = (θ(∂λ(f))− ∂λ(θ(f))) dλ

Applying ∂z to the coefficient we obtain

∂z (θ(∂λ(f))− ∂λ(θ(f))) = p∂λ(f)− ∂z(∂λ(θ(f)))

= p∂λ(f)− ∂λ(∂z(θ(f)))

= p∂λ(f)− ∂λ(pf) = 0

whence the coefficient does not depend on z as desired. This finishes the proof of
the lemma. �

Note that an iterated αp-cover X ′ → X (as defined in the introduction to this
section) is finite locally free. Hence if X is connected the degree of X ′ → X is
constant and is a power of p.

Lemma 45.25.4. Let p be a prime number. Let (S, I, γ) be a divided power scheme
over Z(p) with p ∈ I. We set S0 = V (I) ⊂ S. Let f : X ′ → X be an iterated
αp-cover of schemes over S0 with constant degree q. Let F be any crystal in quasi-
coherent sheaves on X and set F ′ = f∗crisF . In the distinguished triangle

RuX/S,∗F −→ f∗RuX′/S,∗F ′ −→ E −→ RuX/S,∗F [1]

the object E has cohomology sheaves annihilated by q.

Proof. Note that X ′ → X is a homeomorphism hence we can identify the under-
lying topological spaces of X and X ′. The question is clearly local on X, hence we
may assume X, X ′, and S affine and X ′ → X given as a composition

X ′ = Xn → Xn−1 → Xn−2 → . . .→ X0 = X

where each morphism Xi+1 → Xi is an αp-cover. Denote Fi the pullback of F to
Xi. It suffices to prove that each of the maps

RΓ(Cris(Xi/S),Fi) −→ RΓ(Cris(Xi+1/S),Fi+1)

fits into a triangle whose third member has cohomology groups annihilated by p.
(This uses axiom TR4 for the triangulated category D(X). Details omitted.)

Hence we may assume that S = Spec(A), X = Spec(C), X ′ = Spec(C ′) and
C ′ = C[z]/(zp − c) for some c ∈ C. Choose a polynomial algebra P over A and
a surjection P → C. Let D be the p-adically completed divided power envelop
of Ker(P → C) in P as in (45.17.0.1). Set P ′ = P [z] with surjection P ′ → C ′

mapping z to the class of z in C ′. Choose a lift λ ∈ D of c ∈ C. Then we see
that the p-adically completed divided power envelope D′ of Ker(P ′ → C ′) in P ′ is
isomorphic to the p-adic completion of D[z]〈ξ〉/(ξ−(zp−λ)), see Lemma 45.25.3 and
its proof. Thus we see that the result follows from this lemma by the computation
of cohomology of crystals in quasi-coherent modules in Proposition 45.21.3. �

The bound in the following lemma is probably not optimal.

Lemma 45.25.5. With notations and assumptions as in Lemma 45.25.4 the map

f∗ : Hi(Cris(X/S),F) −→ Hi(Cris(X ′/S),F ′)
has kernel and cokernel annihilated by qi+1.

http://stacks.math.columbia.edu/tag/07Q9
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Proof. This follows from the fact that E has nonzero cohomology sheaves in de-
grees −1 and up, so that the spectral sequence Ha(Hb(E))⇒ Ha+b(E) converges.
This combined with the long exact cohomology sequence associated to a distin-
guished triangle gives the bound. �

In Situation 45.7.5 assume that p ∈ I. Set

X(1) = X ×S0,FS0
S0.

Denote FX/S0
: X → X(1) the relative Frobenius morphism.

Lemma 45.25.6. In the situation above, assume that X → S0 is smooth of relative
dimension d. Then FX/S0

is an iterated αp-cover of degree pd. Hence Lemmas
45.25.4 and 45.25.5 apply to this situation. In particular, for any crystal in quasi-
coherent modules G on Cris(X(1)/S) the map

F ∗X/S0
: Hi(Cris(X(1)/S),G) −→ Hi(Cris(X/S), F ∗X/S0,crisG)

has kernel and cokernel annihilated by pd(i+1).

Proof. It suffices to prove the first statement. To see this we may assume that X
is étale over Ad

S0
, see Morphisms, Lemma 28.37.20. Denote ϕ : X → Ad

S0
this étale

morphism. In this case the relative Frobenius of X/S0 fits into a diagram

X

��

// X(1)

��
Ad
S0

// Ad
S0

where the lower horizontal arrow is the relative frobenius morphism of Ad
S0

over
S0. This is the morphism which raises all the coordinates to the pth power, hence
it is an iterated αp-cover. The proof is finished by observing that the diagram is a

fibre square, see the proof of Étale Cohomology, Theorem 44.80.4. �

45.26. Frobenius action on crystalline cohomology

In this section we prove that Frobenius pullback induces a quasi-isomorphism on
crystalline cohomology after inverting the prime p. But in order to even formulate
this we need to work in a special situation.

Situation 45.26.1. In Situation 45.7.5 assume the following

(1) S = Spec(A) for some divided power ring (A, I, γ) with p ∈ I,
(2) there is given a homomorphism of divided power rings σ : A → A such

that σ(x) = xp mod pA for all x ∈ A.

In Situation 45.26.1 the morphism Spec(σ) : S → S is a lift of the absolute Frobe-
nius FS0

: S0 → S0 and since the diagram

X

��

FX

// X

��
S0

FS0 // S0

http://stacks.math.columbia.edu/tag/07QB
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is commutative where FX : X → X is the absolute Frobenius morphism of X. Thus
we obtain a morphism of crystalline topoi

(FX)cris : (X/S)cris −→ (X/S)cris

see Remark 45.9.3. Here is the terminology concerning F -crystals following the
notation of Saavedra, see [SR72].

Definition 45.26.2. In Situation 45.26.1 an F -crystal on X/S (relative to σ) is a
pair (E , FE) given by a crystal in finite locally free OX/S-modules E together with
a map

FE : (FX)∗crisE −→ E
An F -crystal is called nondegenerate if there exists an integer i ≥ 0 a map V : E →
(FX)∗crisE such that V ◦ FE = piid.

Remark 45.26.3. Let (E , F ) be an F -crystal as in Definition 45.26.2. In the
literature the nondegeneracy condition is often part of the definition of an F -crystal.
Moreover, often it is also assumed that F ◦V = pnid. What is needed for the result
below is that there exists an integer j ≥ 0 such that Ker(F ) and Coker(F ) are killed
by pj . If the rank of E is bounded (for example if X is quasi-compact), then both
of these conditions follow from the nondegeneracy condition as formulated in the
definition. Namely, suppose R is a ring, r ≥ 1 is an integer and K,L ∈ Mat(r×r,R)
are matrices with KL = pi1r×r. Then det(K) det(L) = pri. Let L′ be the adjugate
matrix of L, i.e., L′L = LL′ = det(L). Set K ′ = priK and j = ri + i. Then we
have K ′L = pj1r×r as KL = pi and

LK ′ = LK det(L) det(M) = LKLL′ det(M) = LpiL′ det(M) = pj1r×r

It follows that if V is as in Definition 45.26.2 then setting V ′ = pNV where N >
i · rank(E) we get V ′ ◦ F = pN+i and F ◦ V ′ = pN+i.

Theorem 45.26.4. In Situation 45.26.1 let (E , FE) be a nondegenerate F -crystal.
Assume A is a p-adically complete Noetherian ring and that X → S0 is proper
smooth. Then the canonical map

FE ◦ (FX)∗cris : RΓ(Cris(X/S), E)⊗L
A,σ A −→ RΓ(Cris(X/S), E)

becomes an isomorphism after inverting p.

Proof. We first write the arrow as a composition of three arrows. Namely, set

X(1) = X ×S0,FS0
S0

and denote FX/S0
: X → X(1) the relative Frobenius morphism. Denote E(1) the

base change of E by Spec(σ), in other words the pullback of E to Cris(X(1)/S) by
the morphism of crystalline topoi associated to the commutative diagram

X(1) //

��

X

��
S

Spec(σ) // S

Then we have the base change map

(45.26.4.1) RΓ(Cris(X/S), E)⊗L
A,σ A −→ RΓ(Cris(X(1)/S), E(1))

http://stacks.math.columbia.edu/tag/07N3
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see Remark 45.24.8. Note that the composition of FX/S0
: X → X(1) with the

projection X(1) → X is the absolute Frobenius morphism FX . Hence we see that
F ∗X/S0

E(1) = (FX)∗crisE . Thus pullback by FX/S0
is a map

(45.26.4.2) F ∗X/S0
: RΓ(Cris(X(1)/S), E(1)) −→ RΓ(Cris(X/S), (FX)∗crisE)

Finally we can use FE to get a map

(45.26.4.3) RΓ(Cris(X/S), (FX)∗crisE) −→ RΓ(Cris(X/S), E)

The map of the theorem is the composition of the three maps (45.26.4.1), (45.26.4.2),
and (45.26.4.3) above. The first is a quasi-isomorphism modulo all powers of p by
Remark 45.24.9. Hence it is a quasi-isomorphism since the complexes involved are
perfect in D(A) see Remark 45.24.13. The third map is a quasi-isomorphism after
inverting p simply because FE has an inverse up to a power of p, see Remark 45.26.3.
Finally, the second is an isomorphism after inverting p by Lemma 45.25.6. �
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CHAPTER 46

Pro-étale Cohomology

46.1. Introduction

The material in this chapter and more can be found in the preprint [BS13].

The goal of this chapter is to introduce the pro-étale topology and show how it
simplifies the introduction of `-adic cohomology in algebraic geometry.

A brief overview of the history of this material as we have understood it. In [Gro77,
Exposés V and VI] Grothendieck et al developed a theory for dealing with `-adic
sheaves as inverse systems of sheaves of Z/`nZ-modules. In his second paper on the
Weil conjectures ([Del74a]) Deligne introduced a derived category of `-adic sheaves
as a certain 2-limit of categories of complexes of sheaves of Z/`nZ-modules on the
étale site of a scheme X. This approach is used in the paper by Beilinson, Bernstein,
and Deligne ([BBD82]) as the basis for their beautiful theory of perverse sheaves.

In a paper entitled “Continuous Étale Cohomology” ([Jan88]) Uwe Jannsen dis-
cusses an important variant of the cohomology of a `-adic sheaf on a variety over
a field. His paper is followed up by a paper of Torsten Ekedahl ([Eke90]) who
discusses the adic formalism needed to work comfortably with derived categories
defined as limits.

The goal of this chapter is to show that, if we work with the pro-étale site of a
scheme, then one can avoid some of the technicalities these authors encountered.
This comes at the expense of having to work with non-Noetherian schemes, even
when one is only interested in working with `-adic sheaves and cohomology of such
on varieties over an algebraically closed field.

46.2. Some topology

Some preliminaries. We have defined spectral spaces and spectral maps of spectral
spaces in Topology, Section 5.22. The spectrum of a ring is a spectral space, see
Algebra, Lemma 10.25.2.

Lemma 46.2.1. Let X be a spectral space. Let X0 ⊂ X be the set of closed points.
The following are equivalent

(1) Every open covering of X can be refined by a finite disjoint union decom-
position X =

∐
Ui with Ui open and closed in X.

(2) The composition X0 → X → π0(X) is bijective.

Moreover, if X0 is closed in X and every point of X specializes to a unique point
of X0, then these conditions are satisfied.

3023
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Proof. We will use without further mention that X0 is quasi-compact (Topology,
Lemma 5.11.9) and π0(X) is profinite (Topology, Lemma 5.22.8). Picture

X0

f ""

// X

π

��
π0(X)

If (2) holds, the continuous bijective map f : X0 → π0(X) is a homeomorphism
by Topology, Lemma 5.16.8. Given an open covering X =

⋃
Ui, we get an open

covering π0(X) =
⋃
f(X0 ∩ Ui). By Topology, Lemma 5.21.3 we can find a finite

open covering of the form π0(X) =
∐
Vj which refines this covering. Since X0 →

π0(X) is bijective each connected component of X has a unique closed point, whence
is equal to the set of points specializing to this closed point. Hence π−1(Vj) is the
set of points specializing to the points of f−1(Vj). Now, if f−1(Vj) ⊂ X0 ∩ Ui ⊂
Ui, then it follows that π−1(Vj) ⊂ Ui (because the open set Ui is closed under
generalizations). In this way we see that the open covering X =

∐
π−1(Vj) refines

the covering we started out with. In this way we see that (2) implies (1).

Assume (1). Let x, y ∈ X be closed points. Then we have the open covering
X = (X \ {x}) ∪ (X \ {y}). It follows from (1) that there exists a disjoint union
decomposition X = U q V with U and V open (and closed) and x ∈ U and y ∈ V .
In particular we see that every connected component of X has at most one closed
point. By Topology, Lemma 5.11.8 every connected component (being closed) also
does have a closed point. Thus X0 → π0(X) is bijective. In this way we see that
(1) implies (2).

Assume X0 is closed in X and every point specializes to a unique point of X0.
Then X0 is a spectral space (Topology, Lemma 5.22.4) consisting of closed points,
hence profinite (Topology, Lemma 5.22.7). Let x, y ∈ X0 be distinct. By Topology,
Lemma 5.21.3 we can find a disjoint union decomposition X0 = U0 q V0 with U0

and V0 open and closed. Let {Ui} be the set of quasi-compact open subsets of
X such that U0 = X0 ∩ Ui. Similarly, let {Vj} be the set of quasi-compact open
subsets of X such that and V0 = X0 ∩ Vj . If Ui ∩ Vj is nonempty for all i, j, then
there exists a point ξ contained in all of them (use the Ui ∩ Vj is constructible,
hence closed in the constructible topology, and use Topology, Lemmas 5.22.2 and
5.11.6). However, since X is sober and V0 is closed in X, the intersection

⋂
Ui is

the set of points specializing to U0. Similarly,
⋂
Vj is the set of points specializing

to V0. Since U0 ∩ V0 is empty this is a contradiction. Thus we find disjoint quasi-
compact opens U, V ⊂ X such that U0 = X0 ∩ U and V0 = X0 ∩ V . Observe that
X = U∪V = UqV as X0 ⊂ U∪V (use Topology, Lemma 5.11.8). This proves that
x, y are not in the same connected component of X. In other words, X0 → π0(X)
is injective. The map is also surjective by Topology, Lemma 5.11.8 and the fact
that connected components are closed. In this way we see that the final condition
implies (1). �

Example 46.2.2. Let T be a profinite space. Let t ∈ T be a point and assume
that T \{t} is not quasi-compact. Let X = T ×{0, 1}. Consider the topology on X
with a subbase given by the sets U×{0, 1} for U ⊂ T open, X \{(t, 0)}, and U×{1}
for U ⊂ T open with t 6∈ U . The set of closed points of X is X0 = T × {0} and
(t, 1) is in the closure of X0. Moreover, X0 → π0(X) is a bijection. This example
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shows that conditions (1) and (2) of Lemma 46.2.1 do no imply the set of closed
points is closed.

It turns out it is more convenient to work with spectral spaces which have the
slightly stronger property mentioned in the final statement of Lemma 46.2.1. We
give this property a name.

Definition 46.2.3. A spectral space X is w-local if the set of closed points X0 is
closed and every point of X specializes to a unique closed point. A continuous map
f : X → Y of w-local spaces is w-local if it is spectral and maps any closed point of
X to a closed point of Y .

We have seen in the proof of Lemma 46.2.1 that in this case X0 → π0(X) is a
homeomorphism and that X0

∼= π0(X) is a profinite space. Moreover, a connected
component of X is exactly the set of points specializing to a given x ∈ X0.

Lemma 46.2.4. Let X be a w-local spectral space. If Y ⊂ X is closed, then Y is
w-local.

Proof. The subset Y0 ⊂ Y of closed points is closed because Y0 = X0 ∩ Y . Since
X is w-local, every y ∈ Y specializes to a unique point of X0. This specialization
is in Y , and hence also in Y0, because {y} ⊂ Y . In conclusion, Y is w-local. �

Lemma 46.2.5. Let X be a spectral space. Let

Y //

��

T

��
X // π0(X)

be a cartesian diagram in the category of topological spaces with T profinite. Then
Y is spectral and T = π0(Y ). If moreover X is w-local, then Y is w-local, Y → X
is w-local, and the set of closed points of Y is the inverse image of the set of closed
points of X.

Proof. Note that Y is a closed subspace of X × T as π0(X) is a profinite space
hence Hausdorff (use Topology, Lemmas 5.22.8 and 5.3.4). Since X × T is spectral
(Topology, Lemma 5.22.9) it follows that Y is spectral (Topology, Lemma 5.22.4).
Let Y → π0(Y ) → T be the canonical factorization (Topology, Lemma 5.6.8). It
is clear that π0(Y ) → T is surjective. The fibres of Y → T are homeomorphic
to the fibres of X → π0(X). Hence these fibres are connected. It follows that
π0(Y ) → T is injective. We conclude that π0(Y ) → T is a homeomorphism by
Topology, Lemma 5.16.8.

Next, assume that X is w-local and let X0 ⊂ X be the set of closed points. The
inverse image Y0 ⊂ Y of X0 in Y maps bijectively onto T as X0 → π0(X) is a
bijection by Lemma 46.2.1. Moreover, Y0 is quasi-compact as a closed subset of
the spectral space Y . Hence Y0 → π0(Y ) = T is a homeomorphism by Topology,
Lemma 5.16.8. It follows that all points of Y0 are closed in Y . Conversely, if y ∈ Y
is a closed point, then it is closed in the fibre of Y → π0(Y ) = T and hence its
image x in X is closed in the (homeomorphic) fibre of X → π0(X). This implies
x ∈ X0 and hence y ∈ Y0. Thus Y0 is the collection of closed points of Y and for
each y ∈ Y0 the set of generalizations of y is the fibre of Y → π0(Y ). The lemma
follows. �
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46.3. Local isomorphisms

We start with a definition.

Definition 46.3.1. Let ϕ : A→ B be a ring map.

(1) We say A → B is a local isomorphism if for every prime q ⊂ B there
exists a g ∈ B, g 6∈ q such that A → Bg induces an open immersion
Spec(Bg)→ Spec(A).

(2) We say A→ B identifies local rings if for every prime q ⊂ B the canonical
map Aϕ−1(q) → Bq is an isomorphism.

We list some elementary properties.

Lemma 46.3.2. Let A→ B and A→ A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B.

(1) If A→ B is a local isomorphism, then A′ → B′ is a local isomorphism.
(2) If A→ B identifies local rings, then A′ → B′ identifies local rings.

Proof. Omitted. �

Lemma 46.3.3. Let A→ B and B → C be ring maps.

(1) If A → B and B → C are local isomorphisms, then A → C is a local
isomorphism.

(2) If A → B and B → C identify local rings, then A → C identifies local
rings.

Proof. Omitted. �

Lemma 46.3.4. Let A be a ring. Let B → C be an A-algebra homomorphism.

(1) If A → B and A → C are local isomorphisms, then B → C is a local
isomorphism.

(2) If A → B and A → C identify local rings, then B → C identifies local
rings.

Proof. Omitted. �

Lemma 46.3.5. Let A→ B be a local isomorphism. Then

(1) A→ B is étale,
(2) A→ B identifies local rings,
(3) A→ B is quasi-finite.

Proof. Omitted. �

Lemma 46.3.6. Let A → B be a local isomorphism. Then there exist n ≥ 0,
g1, . . . , gn ∈ B, f1, . . . , fn ∈ A such that (g1, . . . , gn) = B and Afi

∼= Bgi .

Proof. Omitted. �

Lemma 46.3.7. Let p : (Y,OY ) → (X,OX) and q : (Z,OZ) → (X,OX) be mor-
phisms of locally ringed spaces. If OY = p−1OX , then

MorLRS/(X,OX)((Z,OZ), (Y,OY )) −→ MorTop/X(Z, Y ), (f, f ]) 7−→ f

is bijective. Here LRS/(X,OX) is the category of locally ringed spaces over X and
Top/X is the category of topological spaces over X.

Proof. This is immediate from the definitions. �

http://stacks.math.columbia.edu/tag/096E
http://stacks.math.columbia.edu/tag/096F
http://stacks.math.columbia.edu/tag/096G
http://stacks.math.columbia.edu/tag/096H
http://stacks.math.columbia.edu/tag/096I
http://stacks.math.columbia.edu/tag/096J
http://stacks.math.columbia.edu/tag/096K


46.5. CONSTRUCTING W-LOCAL AFFINE SCHEMES 3027

Lemma 46.3.8. Let A be a ring. Set X = Spec(A). The functor

B 7−→ Spec(B)

from the category of A-algebras B such that A → B identifies local rings to the
category of topological spaces over X is fully faithful.

Proof. This follows from Lemma 46.3.7 and the fact that if A→ B identifies local
rings, then the pullback of the structure sheaf of Spec(A) via p : Spec(B)→ Spec(A)
is equal to the structure sheaf of Spec(B). �

46.4. Ind-Zariski algebra

We start with a definition; please see Remark 46.6.9 for a comparison with the
corresponding definition of the article [BS13].

Definition 46.4.1. A ring map A→ B is said to be ind-Zariski if B can be written
as a filtered colimit B = colimBi with each A→ Bi a local isomorphism.

An example of an Ind-Zariski map is a localization A→ S−1A, see Algebra, Lemma
10.9.9. The category of ind-Zariski algebras is closed under several natural opera-
tions.

Lemma 46.4.2. Let A→ B and A→ A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B. If A→ B is ind-Zariski, then A′ → B′ is ind-Zariski.

Proof. Omitted. �

Lemma 46.4.3. Let A→ B and B → C be ring maps. If A→ B and B → C are
ind-Zariski, then A→ C is ind-Zariski.

Proof. Omitted. �

Lemma 46.4.4. Let A be a ring. Let B → C be an A-algebra homomorphism. If
A→ B and A→ C are ind-Zariski, then B → C is ind-Zariski.

Proof. Omitted. �

Lemma 46.4.5. A filtered colimit of ind-Zariski A-algebras is ind-Zariski over A.

Proof. Omitted. �

Lemma 46.4.6. Let A→ B be ind-Zariski. Then A→ B identifies local rings,

Proof. Omitted. �

46.5. Constructing w-local affine schemes

An affine scheme X is called w-local if its underlying topological space is w-local
(Definition 46.2.3). It turns out given any ring A there is a canonical faithfully
flat ind-Zariski ring map A → Aw such that Spec(Aw) is w-local. The key to
constructing Aw is the following simple lemma.

Lemma 46.5.1. Let A be a ring. Set X = Spec(A). Let Z ⊂ X be a locally closed
subscheme which of the form D(f) ∩ V (I) for some f ∈ A and ideal I ⊂ A. Then

(1) there exists a multiplicative subset S ⊂ A such that Spec(S−1A) maps by
a homeomorphism to the set of points of X specializing to Z,

(2) the A-algebra A∼Z = S−1A depends only on the underlying locally closed
subset Z ⊂ X,
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(3) Z is a closed subscheme of Spec(A∼Z ),

If A→ A′ is a ring map and Z ′ ⊂ X ′ = Spec(A′) is a locally closed subscheme of the
same form which maps into Z, then there is a unique A-algebra map A∼Z → (A′)∼Z′ .

Proof. Let S ⊂ A be the multiplicative set of elements which map to invertible
elements of Γ(Z,OZ) = (A/I)f . If p is a prime of A which does not specialize to
Z, then p generates the unit ideal in (A/I)f . Hence we can write fn = g + h for
some n ≥ 0, g ∈ p, h ∈ I. Then g ∈ S and we see that p is not in the spectrum of
S−1A. Conversely, if p does specialize to Z, say p ⊂ q ⊃ I with f 6∈ q, then we see
that S−1A maps to Aq and hence p is in the spectrum of S−1A. This proves (1).

The isomorphism class of the localization S−1A depends only on the corresponding
subset Spec(S−1A) ⊂ Spec(A), whence (2) holds. By construction S−1A maps
surjectively onto (A/I)f , hence (3). The final statement follows as the multiplicative
subset S′ ⊂ A′ corresponding to Z ′ contains the image of the multiplicative subset
S. �

Let A be a ring. Let E ⊂ A be a finite subset. We get a stratification of X =
Spec(A) into locally closed subschemes by looking at the vanishing behaviour of the
elements of E. More precisely, given a disjoint union decomposition E = E′ q E′′
we set
(46.5.1.1)

Z(E′, E′′) =
⋂

f∈E′
D(f) ∩

⋂
f∈E′′

V (f) = D(
∏

f∈E′
f) ∩ V (

∑
f∈E′′

fA)

The points of Z(E′, E′′) are exactly those x ∈ X such that f ∈ E′ maps to a
nonzero element in κ(x) and f ∈ E′′ maps to zero in κ(x). Thus it is clear that

(46.5.1.2) X =
∐

E=E′qE′′
Z(E′, E′′)

set theoretically. Observe that each stratum is constructible.

Lemma 46.5.2. Let X = Spec(A) as above. Given any finite stratification X =∐
Ti by constructible subsets, there exists a finite subset E ⊂ A such that the

stratification (46.5.1.2) refines X =
∐
Ti.

Proof. We may write Ti =
⋃
j Ui,j ∩ V ci,j as a finite union for some Ui,j and Vi,j

quasi-compact open in X. Then we may write Ui,j =
⋃
D(fi,j,k) and Vi,j =⋃

D(gi,j,l). Then we set E = {fi,j,k} ∪ {gi,j,l}. This does the job, because the
stratification (46.5.1.2) is the one whose strata are labeled by the vanishing pattern
of the elements of E which clearly refines the given stratification. �

We continue the discussion. Given a finite subset E ⊂ A we set

(46.5.2.1) AE =
∏

E=E′qE′′
A∼Z(E′,E′′)

with notation as in Lemma 46.5.1. This makes sense because (46.5.1.1) shows that
each Z(E′, E′′) has the correct shape. We take the spectrum of this ring and denote
it

(46.5.2.2) XE = Spec(AE) =
∐

E=E′qE′′
XE′,E′′

with XE′,E′′ = Spec(A∼Z(E′,E′′)). Note that

(46.5.2.3) ZE =
∐

E=E′qE′′
Z(E′, E′′) −→ XE
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is a closed subscheme. By construction the closed subscheme ZE contains all the
closed points of the affine scheme XE as every point of XE′,E′′ specializes to a point
of Z(E′, E′′).

Let I(A) be the partially ordered set of all finite subsets of A. This is a directed
partially ordered set. For E1 ⊂ E2 there is a canonical transition mapAE1 → AE2 of
A-algebras. Namely, given a decomposition E2 = E′2qE′′2 we set E′1 = E1∩E′2 and
E′′1 = E1∩E′′2 . Then observe that Z(E′1, E

′′
1 ) ⊂ Z(E′2, E

′′
2 ) hence a unique A-algebra

map A∼Z(E′1,E
′′
1 ) → A∼Z(E′2,E

′′
2 ) by Lemma 46.5.1. Using these maps collectively we

obtain the desired ring map AE1
→ AE2

. Observe that the corresponding map of
affine schemes

(46.5.2.4) XE2 −→ XE1

maps ZE2
into ZE1

. By uniqueness we obtain a system of A-algebras over I(A) and
we set

(46.5.2.5) Aw = colimE∈I(A)AE

This A-algebra is ind-Zariski and faithfully flat over A. Finally, we set Xw =
Spec(Aw) and endow it with the closed subscheme Z = limE∈I(A) ZE . In a formula

(46.5.2.6) Xw = limE∈I(A)XE ⊃ Z = limE∈I(A) ZE

Lemma 46.5.3. Let X = Spec(A) be an affine scheme. With A → Aw, Xw =
Spec(Aw), and Z ⊂ Xw as above.

(1) A→ Aw is ind-Zariski and faithfully flat,
(2) Xw → X induces a bijection Z → X,
(3) Z is the set of closed points of Xw,
(4) Z is a reduced scheme, and
(5) every point of Xw specializes to a unique point of Z.

In particular, Xw is w-local (Definition 46.2.3).

Proof. The map A→ Aw is ind-Zariski by construction. For every E the morphism
ZE → X is a bijection, hence (2). As Z ⊂ Xw we conclude Xw → X is surjective
and A→ Aw is faithfully flat by Algebra, Lemma 10.38.15. This proves (1).

Suppose that y ∈ Xw, y 6∈ Z. Then there exists an E such that the image of y in
XE is not contained in ZE . Then for all E ⊂ E′ also y maps to an element of XE′

not contained in ZE′ . Let TE′ ⊂ XE′ be the reduced closed subscheme which is
the closure of the image of y. It is clear that T = limE⊂E′ TE′ is the closure of y in
Xw. For every E ⊂ E′ the scheme TE′ ∩ ZE′ is nonempty by construction of XE′ .
Hence limTE′ ∩ ZE′ is nonempty and we conclude that T ∩ Z is nonempty. Thus
y is not a closed point. It follows that every closed point of Xw is in Z.

Suppose that y ∈ Xw specializes to z, z′ ∈ Z. We will show that z = z′ which will
finish the proof of (3) and will imply (5). Let x, x′ ∈ X be the images of z and z′.
Since Z → X is bijective it suffices to show that x = x′. If x 6= x′, then there exists
an f ∈ A such that x ∈ D(f) and x′ ∈ V (f) (or vice versa). Set E = {f} so that

XE = Spec(Af )q Spec(A∼V (f))

Then we see that z and z′ map xE and x′E which are in different parts of the
given decomposition of XE above. But then it impossible for xE and x′E to be
specializations of a common point. This is the desired contradiction.
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Recall that given a finite subset E ⊂ A we have ZE is a disjoint union of the locally
closed subschemes Z(E′, E′′) each isomorphic to the spectrum of (A/I)f where I is
the ideal generated by E′′ and f the product of the elements of E′. Any nilpotent
element b of (A/I)f is the class of g/fn for some g ∈ A. Then setting E′ = E ∪{g}
the reader verifies that b is pulls back to zero under the transition map ZE′ → ZE
of the system. This proves (4). �

Remark 46.5.4. Let A be a ring. Let κ be an infinite cardinal bigger or equal
than the cardinality of A. Then the cardinality of Aw (Lemma 46.5.3) is at most
κ. Namely, each AE has cardinality at most κ and the set of finite subsets of A
has cardinality at most κ as well. Thus the result follows as κ ⊗ κ = κ, see Sets,
Section 3.6.

Lemma 46.5.5 (Universal property of the construction). Let A be a ring. Let
A→ Aw be the ring map constructed in Lemma 46.5.3. For any ring map A→ B
such that Spec(B) is w-local, there is a unique factorization A → Aw → B such
that Spec(B)→ Spec(Aw) is w-local.

Proof. Denote Y = Spec(B) and Y0 ⊂ Y the set of closed points. Denote
f : Y → X the given morphism. Recall that Y0 is profinite, in particular ev-
ery constructible subset of Y0 is open and closed. Let E ⊂ A be a finite subset.
Recall that Aw = colimAE and that the set of closed points of Spec(Aw) is the
limit of the closed subsets ZE ⊂ XE = Spec(AE). Thus it suffices to show there is
a unique factorization A → AE → B such that Y → XE maps Y0 into ZE . Since
ZE → X = Spec(A) is bijective, and since the strata Z(E′, E′′) are constructible
we see that

Y0 =
∐

f−1(Z(E′, E′′)) ∩ Y0

is a disjoint union decomposition into open and closed subsets. As Y0 = π0(Y )
we obtain a corresponding decomposition of Y into open and closed pieces. Thus
it suffices to construct the factorization in case f(Y0) ⊂ Z(E′, E′′) for some de-
composition E = E′ q E′′. In this case f(Y ) is contained in the set of points of
X specializing to Z(E′, E′′) which is homeomorphic to XE′,E′′ . Thus we obtain a
unique continuous map Y → XE′,E′′ over X. By Lemma 46.3.7 this corresponds to
a unique morphism of schemes Y → XE′,E′′ over X. This finishes the proof. �

Recall that the spectrum of a ring is profinite if and only if every point is closed.
There are in fact a whole slew of equivalent conditions that imply this. See Algebra,
Lemma 10.25.5 or Topology, Lemma 5.22.7.

Lemma 46.5.6. Let A be a ring such that Spec(A) is profinite. Let A → B be a
ring map. Then Spec(B) is profinite in each of the following cases:

(1) if q, q′ ⊂ B lie over the same prime of A, then neither q ⊂ q′, nor q′ ⊂ q,
(2) A→ B induces algebraic extensions of residue fields,
(3) A→ B is a local isomorphism,
(4) A→ B identifies local rings,
(5) A→ B is weakly étale,
(6) A→ B is quasi-finite,
(7) A→ B is unramified,
(8) A→ B is étale,
(9) B is a filtered colimit of A-algebras as in (1) – (8),

(10) etc.
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Proof. By the references mentioned above (Algebra, Lemma 10.25.5 or Topology,
Lemma 5.22.7) there are no specializations between distinct points of Spec(A) and
Spec(B) is profinite if and only if there are no specializations between distinct points
of Spec(B). These specializations can only happen in the fibres of Spec(B) →
Spec(A). In this way we see that (1) is true.

The assumption in (2) implies all primes of B are maximal by Algebra, Lemma
10.34.9. Thus (2) holds. If A → B is a local isomorphism or identifies local rings,
then the residue field extensions are trivial, so (3) and (4) follow from (2). If A→ B
is weakly étale, then More on Algebra, Lemma 15.67.16 tells us it induces separable
algebraic residue field extensions, so (5) follows from (2). If A → B is quasi-
finite, then the fibres are finite discrete topological spaces. Hence (6) follows from
(1). Hence (3) follows from (1). Cases (7) and (8) follow from this as unramified
and étale ring map are quasi-finite (Algebra, Lemmas 10.144.6 and 10.138.6). If
B = colimBi is a filtered colimit of A-algebras, then Spec(B) = colim Spec(Bi),
hence if each Spec(Bi) is profinite, so is Spec(B). This proves (9). �

Lemma 46.5.7. Let A be a ring. Let V (I) ⊂ Spec(A) be a closed subset which
is a profinite topological space. Then there exists an ind-Zariski ring map A → B
such that Spec(B) is w-local, the set of closed points is V (IB), and A/I ∼= B/IB.

Proof. Let A → Aw and Z ⊂ Y = Spec(Aw) as in Lemma 46.5.3. Let T ⊂ Z
be the inverse image of V (I). Then T → V (I) is a homeomorphism by Topology,
Lemma 5.16.8. Let B = (Aw)∼T , see Lemma 46.5.1. It is clear that B is w-local
with closed points V (IB). The ring map A/I → B/IB is ind-Zariski and induces a
homeomorphism on underlying topological spaces. Hence it is an isomorphism by
Lemma 46.3.8. �

Lemma 46.5.8. Let A be a ring such that X = Spec(A) is w-local. Let I ⊂ A be
the radical ideal cutting out the set X0 of closed points in X. Let A→ B be a ring
map inducing algebraic extensions on residue fields at primes. Then

(1) every point of Z = V (IB) is a closed point of Spec(B),
(2) there exists an ind-Zariski ring map B → C such that

(a) B/IB → C/IC is an isomorphism,
(b) the space Y = Spec(C) is w-local,
(c) the induced map p : Y → X is w-local, and
(d) p−1(X0) is the set of closed points of Y .

Proof. By Lemma 46.5.6 applied to A/I → B/IB all points of Z = V (IB) =
Spec(B/IB) are closed, in fact Spec(B/IB) is a profinite space. To finish the proof
we apply Lemma 46.5.7 to IB ⊂ B. �

46.6. Identifying local rings versus ind-Zariski

An ind-Zariski ring map A→ B identifies local rings (Lemma 46.4.6). The converse
does not hold (Examples, Section 82.37). However, it turns out that there is a kind
of structure theorem for ring maps which identify local rings in terms of ind-Zariski
ring maps, see Proposition 46.6.6.

Let A be a ring. Let X = Spec(A). The space of connected components π0(X) is
a profinite space by Topology, Lemma 5.22.8 (and Algebra, Lemma 10.25.2).
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Lemma 46.6.1. Let A be a ring. Let X = Spec(A). Let T ⊂ π0(X) be a closed
subset. There exists a surjective ind-Zariski ring map A→ B such that Spec(B)→
Spec(A) induces a homeomorphism of Spec(B) with the inverse image of T in X.

Proof. Let Z ⊂ X be the inverse image of T . Then Z is the intersection Z =
⋂
Zα

of the open and closed subsets of X containing Z, see Topology, Lemma 5.11.12.
For each α we have Zα = Spec(Aα) where A → Aα is a local isomorphism (a
localization at an idempotent). Setting B = colimAα proves the lemma. �

Lemma 46.6.2. Let A be a ring and let X = Spec(A). Let T be a profinite space
and let T → π0(X) be a continuous map. There exists an ind-Zariski ring map
A→ B such that with Y = Spec(B) the diagram

Y //

��

π0(Y )

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(Y ) = T as spaces
over π0(X).

Proof. Namely, write T = limTi as the limit of an inverse system finite discrete
spaces over a directed partially ordered set (see Topology, Lemma 5.21.2). For each
i let Zi = Im(T → π0(X)×Ti). This is a closed subset. Observe that X ×Ti is the
spectrum of Ai =

∏
t∈Ti A and that A → Ai is a local isomorphism. By Lemma

46.6.1 we see that Zi ⊂ π0(X×Ti) = π0(X)×Ti corresponds to a surjection Ai → Bi
which is ind-Zariski such that Spec(Bi) = X ×π0(X) Zi as subsets of X × Ti. The
transition maps Ti → Ti′ induce maps Zi → Zi′ and X ×π0(X) Zi → X ×π0(X) Zi′ .
Hence ring maps Bi′ → Bi (Lemmas 46.3.8 and 46.4.6). Set B = colimBi. Because
T = limZi we have X ×π0(X) T = limX ×π0(X) Zi and hence Y = Spec(B) =
lim Spec(Bi) fits into the cartesian diagram

Y //

��

T

��
X // π0(X)

of topological spaces. By Lemma 46.2.5 we conclude that T = π0(Y ). �

Example 46.6.3. Let k be a field. Let T be a profinite topological space. There
exists an ind-Zariski ring map k → A such that Spec(A) is homeomorphic to T .
Namely, just apply Lemma 46.6.2 to T → π0(Spec(k)) = {∗}. In fact, in this case
we have

A = colim Map(Ti, k)

whenever we write T = limTi as a filtered limit with each Ti finite.

Lemma 46.6.4. Let A→ B be ring map such that

(1) A→ B identifies local rings,
(2) the topological spaces Spec(B), Spec(A) are w-local,
(3) Spec(B)→ Spec(A) is w-local, and
(4) π0(Spec(B))→ π0(Spec(A)) is bijective.

Then A→ B is an isomorphism
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Proof. Let X0 ⊂ X = Spec(A) and Y0 ⊂ Y = Spec(B) be the sets of closed points.
By assumption Y0 maps into X0 and the induced map Y0 → X0 is a bijection. As
a space Spec(A) is the disjoint union of the spectra of the local rings of A at closed
points. Similarly for B. Hence X → Y is a bijection. Since A→ B is flat we have
going down (Algebra, Lemma 10.38.17). Thus Algebra, Lemma 10.40.11 shows
for any prime q ⊂ B lying over p ⊂ A we have Bq = Bp. Since Bq = Ap by
assumption, we see that Ap = Bp for all primes p of A. Thus A = B by Algebra,
Lemma 10.23.1. �

Lemma 46.6.5. Let A→ B be ring map such that

(1) A→ B identifies local rings,
(2) the topological spaces Spec(B), Spec(A) are w-local, and
(3) Spec(B)→ Spec(A) is w-local.

Then A→ B is ind-Zariski.

Proof. Set X = Spec(A) and Y = Spec(B). Let X0 ⊂ X and Y0 ⊂ Y be the set
of closed points. Let A → A′ be the ind-Zariski morphism of affine schemes such
that with X ′ = Spec(A′) the diagram

X ′ //

��

π0(X ′)

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(X ′) = π0(Y ) as
spaces over π0(X), see Lemma 46.6.2. By Lemma 46.2.5 we see that X ′ is w-local
and the set of closed points X ′0 ⊂ X ′ is the inverse image of X0.

We obtain a continuous map Y → X ′ of underlying topological spaces over X
identifying π0(Y ) with π0(X ′). By Lemma 46.3.8 (and Lemma 46.4.6) this is cor-
responds to a morphism of affine schemes Y → X ′ over X. Since Y → X maps Y0

into X0 we see that Y → X ′ maps Y0 into X ′0, i.e., Y → X ′ is w-local. By Lemma
46.6.4 we see that Y ∼= X ′ and we win. �

The following proposition is a warm up for the type of result we will prove later.

Proposition 46.6.6. Let A→ B be a ring map which identifies local rings. Then
there exists a faithfully flat, ind-Zariski ring map B → B′ such that A → B′ is
ind-Zariski.

Proof. Let A → Aw, resp. B → Bw be the faithfully flat, ind-Zariski ring map
constructed in Lemma 46.5.3 for A, resp. B. Since Spec(Bw) is w-local, there exists
a unique factorization A → Aw → Bw such that Spec(Bw) → Spec(Aw) is w-local
by Lemma 46.5.5. Note that Aw → Bw identifies local rings, see Lemma 46.3.4.
By Lemma 46.6.5 this means Aw → Bw is ind-Zariski. Since B → Bw is faithfully
flat, ind-Zariski (Lemma 46.5.3) and the composition A → B → Bw is ind-Zariski
(Lemma 46.4.3) the proposition is proved. �

The proposition above allows us to characterize the affine, weakly contractible ob-
jects in the pro-Zariski site of an affine scheme.

Lemma 46.6.7. Let A be a ring. The following are equivalent

(1) every faithfully flat ring map A→ B identifying local rings has a section,
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3034 46. PRO-ÉTALE COHOMOLOGY

(2) every faithfully flat ind-Zariski ring map A→ B has a section, and
(3) A satisfies

(a) Spec(A) is w-local, and
(b) π0(Spec(A)) is extremally disconnected.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 46.6.6.

Assume (3)(a) and (3)(b). Let A → B be faithfully flat and ind-Zariski. We will
use without further mention the fact that a flat map A→ B is faithfully flat if and
only if every closed point of Spec(A) is in the image of Spec(B)→ Spec(A) We will
show that A→ B has a section.

Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of
Spec(A). We may replace B by the ring C constructed in Lemma 46.5.8 for A→ B
and I ⊂ A. Thus we may assume Spec(B) is w-local such that the set of closed
points of Spec(B) is V (IB).

Assume Spec(B) is w-local and the set of closed points of Spec(B) is V (IB). Choose
a continuous section to the surjective continuous map V (IB)→ V (I). This is pos-
sible as V (I) ∼= π0(Spec(A)) is extremally disconnected, see Topology, Proposition
5.25.6. The image is a closed subspace T ⊂ π0(Spec(B)) ∼= V (JB) mapping home-
omorphically onto π0(A). Replacing B by the ind-Zariski quotient ring constructed
in Lemma 46.6.1 we see that we may assume π0(Spec(B))→ π0(Spec(A)) is bijec-
tive. At this point A→ B is an isomorphism by Lemma 46.6.4.

Assume (1) or equivalently (2). Let A → Aw be the ring map constructed in
Lemma 46.5.3. By (1) there is a section Aw → A. Thus Spec(A) is homeomorphic
to a closed subset of Spec(Aw). By Lemma 46.2.4 we see (3)(a) holds. Finally,
let T → π0(A) be a surjective map with T an extremally disconnected, quasi-
compact, Hausdorff topological space (Topology, Lemma 5.25.9). Choose A → B
as in Lemma 46.6.2 adapted to T → π0(Spec(A)). By (1) there is a section B →
A. Thus we see that T = π0(Spec(B)) → π0(Spec(A)) has a section. A formal
categorical argument, using Topology, Proposition 5.25.6, implies that π0(Spec(A))
is extremally disconnected. �

Lemma 46.6.8. Let A be a ring. There exists a faithfully flat, ind-Zariski ring
map A→ B such that B satisfies the equivalent conditions of Lemma 46.6.7.

Proof. We first apply Lemma 46.5.3 to see that we may assume that Spec(A) is w-
local. Choose an extremally disconnected space T and a surjective continuous map
T → π0(Spec(A)), see Topology, Lemma 5.25.9. Note that T is profinite. Apply
Lemma 46.6.2 to find an ind-Zariski ring map A → B such that π0(Spec(B)) →
π0(Spec(A)) realizes T → π0(Spec(A)) and such that

Spec(B) //

��

π0(Spec(B))

��
Spec(A) // π0(Spec(A))

is cartesian in the category of topological spaces. Note that Spec(B) is w-local,
that Spec(B)→ Spec(A) is w-local, and that the set of closed points of Spec(B) is
the inverse image of the set of closed points of Spec(A), see Lemma 46.2.5. Thus
condition (3) of Lemma 46.6.7 holds for B. �
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Remark 46.6.9. In each of Lemmas 46.6.1, 46.6.2, Proposition 46.6.6, and Lemma
46.6.8 we find an ind-Zariski ring map with some properties. In the paper [BS13]
the authors use the notion of an ind-(Zariski localization) which is a filtered colimit
of finite products of principal localizations. It is possible to replace ind-Zariski by
ind-(Zariski localization) in each of the results listed above. However, we do not
need this and the notion of an ind-Zariski homomorphism of rings as defined here
has slightly better formal properties. Moreover, the notion of an ind-Zariski ring
map is the natural analogue of the notion of an ind-étale ring map defined in the
next section.

46.7. Ind-étale algebra

We start with a definition.

Definition 46.7.1. A ring map A→ B is said to be ind-étale if B can be written
as a filtered colimit of étale A-algebras.

The category of ind-étale algebras is closed under a number of natural operations.

Lemma 46.7.2. Let A→ B and A→ A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B. If A→ B is ind-étale, then A′ → B′ is ind-étale.

Proof. Omitted. �

Lemma 46.7.3. Let A→ B and B → C be ring maps. If A→ B and B → C are
ind-étale, then A→ C is ind-étale.

Proof. Omitted. �

Lemma 46.7.4. A filtered colimit of ind-étale A-algebras is ind-étale over A.

Proof. Omitted. �

Lemma 46.7.5. Let A be a ring. Let B → C be an A-algebra map of ind-étale
A-algebras. Then C is an ind-étale B-algebra.

Proof. Write B = colimBi and C = colimCj as filtered colimits of étale A-
algebras. Then

C = B ⊗B C = colim(i,j)B ⊗Bi Cj
where the colimit is over the partially ordered set of pairs (i, j) such that Bi →
B → C factors through Cj → C. Note that the factorization Bi → Cj is étale by
Algebra, Lemma 10.138.9. Some details omitted. �

Lemma 46.7.6. Let A → B be ind-étale. Then A → B is weakly étale (More on
Algebra, Definition 15.67.1).

Proof. This follows from More on Algebra, Lemma 15.67.13. �

Lemma 46.7.7. Let A be a ring and let I ⊂ A be an ideal. The base change
functor

ind-étale A-algebras −→ ind-étale A/I-algebras, C 7−→ C/IC

has a fully faithful right adjoint v. In particular, given an ind-étale A/I-algebra C
there exists an ind-étale A-algebra C = v(C) such that C = C/IC.
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Proof. Let C be an ind-étale A/I-algebra. Consider the category C of factoriza-
tions A→ B → C where A→ B is étale. (We ignore some set theoretical issues in
this proof.) We will show that this category is directed and that C = colimC B is
an ind-étale A-algebra such that C = C/IC.

We first prove that C is directed (Categories, Definition 4.19.1). The category is
nonempty as A→ A→ C is an object. Suppose that A→ B → C and A→ B′ → C
are two objects of C. Then A → B ⊗A B′ → C is another (use Algebra, Lemma
10.138.3). Suppose that f, g : B → B′ are two maps between objects A→ B → C
and A → B′ → C of C. Then a coequalizer is A → B′ ⊗f,B,g B′ → C. This is
an object of C by Algebra, Lemmas 10.138.3 and 10.138.9. Thus the category C is
directed.

Write C = colimBi as a filtered colimit with Bi étale over A/I. For every i there
exists A → Bi étale with Bi = Bi/IBi, see Algebra, Lemma 10.138.11. Thus
C → C is surjective. Since C/IC → C is ind-étale (Lemma 46.7.5) we see that it
is flat. Hence C is a localization of C/IC at some multiplicative subset S ⊂ C/IC
(Algebra, Lemma 10.104.2). Take an f ∈ C mapping to an element of S ⊂ C/IC.
Choose A → B → C in C and g ∈ B mapping to f in the colimit. Then we see
that A → Bg → C is an object of C as well. Thus f is an invertible element of C.

It follows that C/IC = C.

Next, we claim that for an ind-étale algebra D over A we have

MorA(D,C) = MorA/I(D/ID,C)

Namely, let D/ID → C be an A/I-algebra map. Write D = colimi∈I Di as a
filtered colimit over a partially ordered set I with Di étale over A. By choice of C
we obtain a transformation I → C and hence a map D → C compatible with maps
to C. Whence the claim.

It follows that the functor v defined by the rule

C 7−→ v(C) = colimA→B→C B

is a right adjoint to the base change functor u as required by the lemma. The
functor v is fully faithful because u◦v = id by construction, see Categories, Lemma
4.24.3. �

46.8. Constructing ind-étale algebras

Let A be a ring. Recall that any étale ring map A→ B is isomorphic to a standard
smooth ring map of relative dimension 0. Such a ring map is of the form

A −→ A[x1, . . . , xn]/(f1, . . . , fn)

where the determinant of the n×n-matrix with entries ∂fi/∂xj is invertible in the
quotient ring. See Algebra, Lemma 10.138.2.

Let S(A) be the set of all faithfully flat1 standard smooth A-algebras of relative
dimension 0. Let I(A) be the partially ordered (by inclusion) set of finite subsets
E of S(A). Note that I(A) is a directed partially ordered set. For E = {A →
B1, . . . , A→ Bn} set

BE = B1 ⊗A . . .⊗A Bn
1In the presence of flatness, e.g., for smooth or étale ring maps, this just means that the

induced map on spectra is surjective. See Algebra, Lemma 10.38.15.
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Observe that BE is a faithfully flat étale A-algebra. For E ⊂ E′, there is a canonical
transition map BE → BE′ of étale A-algebras. Namely, say E = {A→ B1, . . . , A→
Bn} and E′ = {A → B1, . . . , A → Bn+m} then BE → BE′ sends b1 ⊗ . . . ⊗ bn to
the element b1 ⊗ . . .⊗ bn ⊗ 1⊗ . . .⊗ 1 of BE′ . This construction defines a system
of faithfully flat étale A-algebras over I(A) and we set

T (A) = colimE∈I(A)BE

Observe that T (A) is a faithfully flat ind-étaleA-algebra (Algebra, Lemma 10.38.20).
By construction given any faithfully flat étale A-algebra B there is a (non-unique)
A-algebra map B → T (A). Namely, pick some (A → B0) ∈ S(A) and an isomor-
phism B ∼= B0. Then the canonical coprojection

B → B0 → T (A) = colimE∈I(A)BE

is the desired map.

Lemma 46.8.1. Given a ring A there exists a faithfully flat ind-étale A-algebra C
such that every faithfully flat étale ring map C → B has a section.

Proof. Set T 1(A) = T (A) and Tn+1(A) = T (Tn(A)). Let

C = colimTn(A)

This algebra is faithfully flat over each Tn(A) and in particular over A, see Algebra,
Lemma 10.38.20. Moreover, C is ind-étale over A by Lemma 46.7.4. If C → B
is étale, then there exists an n and an étale ring map Tn(A) → B′ such that
B = C ⊗Tn(A) B

′, see Algebra, Lemma 10.138.3. If C → B is faithfully flat, then
Spec(B)→ Spec(C)→ Spec(Tn(A)) is surjective, hence Spec(B′)→ Spec(Tn(A))
is surjective. In other words, Tn(A) → B′ is faithfully flat. By our construction,
there is a Tn(A)-algebra map B′ → Tn+1(A). This induces a C-algebra map
B → C which finishes the proof. �

Remark 46.8.2. Let A be a ring. Let κ be an infinite cardinal bigger or equal
than the cardinality of A. Then the cardinality of T (A) is at most κ. Namely, each
BE has cardinality at most κ and the index set I(A) has cardinality at most κ as
well. Thus the result follows as κ⊗ κ = κ, see Sets, Section 3.6. It follows that the
ring constructed in the proof of Lemma 46.8.1 has cardinality at most κ as well.

Remark 46.8.3. The construction A 7→ T (A) is functorial in the following sense:
If A→ A′ is a ring map, then we can construct a commutative diagram

A //

��

T (A)

��
A′ // T (A′)

Namely, given (A → A[x1, . . . , xn]/(f1, . . . , fn)) in S(A) we can use the ring map
ϕ : A → A′ to obtain a corresponding element (A′ → A′[x1, . . . , xn]/(fϕ1 , . . . , f

ϕ
n ))

of S(A′) where fϕ means the polynomial obtained by applying ϕ to the coefficients
of the polynomial f . Moreover, there is a commutative diagram

A //

��

A[x1, . . . , xn]/(f1, . . . , fn)

��
A′ // A′[x1, . . . , xn]/(fϕ1 , . . . , f

ϕ
n )
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which is a in the category of rings. For E ⊂ S(A) finite, set E′ = ϕ(E) and
define BE → BE′ in the obvious manner. Taking the colimit gives the desired map
T (A)→ T (A′), see Categories, Lemma 4.14.7.

Lemma 46.8.4. Let A be a ring such that every faithfully flat étale ring map
A→ B has a section. Then the same is true for every quotient ring A/I.

Proof. Omitted. �

Lemma 46.8.5. Let A be a ring such that every faithfully flat étale ring map
A → B has a section. Then every local ring of A at a maximal ideal is strictly
henselian.

Proof. Let m be a maximal ideal of A. Let A → B be an étale ring map and let
q ⊂ B be a prime lying over m. By the description of the strict henselization Ashm
in Algebra, Lemma 10.145.27 it suffices to show that Am = Bq. Note that there are
finitely many primes q = q1, q2, . . . , qn lying over m and there are no specializations
between them as an étale ring map is quasi-finite, see Algebra, Lemma 10.138.6.
Thus qi is a maximal ideal and we can find g ∈ q2 ∩ . . . ∩ qn, g 6∈ q (Algebra,
Lemma 10.14.2). After replacing B by Bg we see that q is the only prime of B
lying over m. The image U ⊂ Spec(A) of Spec(B) → Spec(A) is open (Algebra,
Proposition 10.40.8). Thus the complement Spec(A) \ U is closed and we can find
f ∈ A, f 6∈ p such that Spec(A) = U ∪ D(f). The ring map A → B × Af is
faithfully flat and étale, hence has a section σ : B × Af → A by assumption on
A. Observe that σ is étale, hence flat as a map between étale A-algebras (Algebra,
Lemma 10.138.9). Since q is the only prime of B × Af lying over A we find that
Ap → Bq has a section which is also flat. Thus Ap → Bq → Ap are flat local ring
maps whose composition is the identity. Since a flat local homomorphism of local
rings is injective we conclude these maps are isomorphisms as desired. �

Lemma 46.8.6. Let A be a ring such that every faithfully flat étale ring map A→
B has a section. Let Z ⊂ Spec(A) be a closed subscheme of the form D(f) ∩ V (I)
and let A→ A∼Z be as constructed in Lemma 46.5.1. Then every faithfully flat étale
ring map A∼Z → C has a section.

Proof. There exists an étale ring map A → B′ such that C = B′ ⊗A A∼Z as A∼Z -
algebras. The image U ′ ⊂ Spec(A) of Spec(B′) → Spec(A) is open and contains
V (I), hence we can find f ∈ I such that Spec(A) = U ′∪D(f). Then A→ B′×Af is
étale and faithfully flat. By assumption there is a section B′×Af → A. Localizing
we obtain the desired section C → A∼Z . �

Lemma 46.8.7. Let A→ B be a ring map inducing algebraic extensions on residue
fields. There exists a commutative diagram

B // D

A //

OO

C

OO

with the following properties:

(1) A→ C is faithfully flat and ind-étale,
(2) B → D is faithfully flat and ind-étale,
(3) Spec(C) is w-local,
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(4) Spec(D) is w-local,
(5) Spec(D)→ Spec(C) is w-local,
(6) the set of closed points of Spec(D) is the inverse image of the set of closed

points of Spec(C),
(7) the set of closed points of Spec(C) surjects onto Spec(A),
(8) the set of closed points of Spec(D) surjects onto Spec(B),
(9) for m ⊂ C maximal the local ring Cm is strictly henselian.

Proof. There is a faithfully flat, ind-Zariski ring map A→ A′ such that Spec(A′)
is w-local and such that the set of closed points of Spec(A′) maps onto Spec(A), see
Lemma 46.5.3. Let I ⊂ A′ be the ideal such that V (I) is the set of closed points of
Spec(A′). Choose A′ → C ′ as in Lemma 46.8.1. Note that the local rings C ′m′ at
maximal ideals m′ ⊂ C ′ are strictly henselian by Lemma 46.8.5. We apply Lemma
46.5.8 to A′ → C ′ and I ⊂ A′ to get C ′ → C with C ′/IC ′ ∼= C/IC. Note that
since A′ → C ′ is faithfully flat, Spec(C ′/IC ′) surjects onto the set of closed points
of A′ and in particular onto Spec(A). Moreover, as V (IC) ⊂ Spec(C) is the set of
closed points of C and C ′ → C is ind-Zariski (and identifies local rings) we obtain
properties (1), (3), (7), and (9).

Denote J ⊂ C the ideal such that V (J) is the set of closed points of Spec(C). Set
D′ = B ⊗A C. The ring map C → D′ induces algebraic residue field extensions.
Keep in mind that since V (J) → Spec(A) is surjective the map T = V (JD) →
Spec(B) is surjective too. Apply Lemma 46.5.8 to C → D′ and J ⊂ C to get
D′ → D with D′/JD′ ∼= D/JD. All of the remaining properties given in the
lemma are immediate from the results of Lemma 46.5.8. �

46.9. Weakly étale versus pro-étale

Recall that a ring homomorphism A → B is weakly étale if A → B is flat and
B ⊗A B → B is flat. We have proved some properties of such ring maps in More
on Algebra, Section 15.67. In particular, if A → B is a local homomorphism, and
A is a strictly henselian local rings, then A = B, see More on Algebra, Theorem
15.67.24. Using this theorem and the work we’ve done above we obtain the following
structure theorem for weakly étale ring maps.

Proposition 46.9.1. Let A→ B be a weakly étale ring map. Then there exists a
faithfully flat, ind-étale ring map B → B′ such that A→ B′ is ind-étale.

Proof. The ring map A → B induces (separable) algebraic extensions of residue
fields, see More on Algebra, Lemma 15.67.16. Thus we may apply Lemma 46.8.7
and choose a diagram

B // D

A //

OO

C

OO

with the properties as listed in the lemma. Note that C → D is weakly étale by
More on Algebra, Lemma 15.67.11. Pick a maximal ideal m ⊂ D. By construction
this lies over a maximal ideal m′ ⊂ C. By More on Algebra, Theorem 15.67.24 the
ring map Cm′ → Dm is an isomorphism. As every point of Spec(C) specializes to
a closed point we conclude that C → D identifies local rings. Thus Proposition
46.6.6 applies to the ring map C → D. Pick D → D′ faithfully flat and ind-Zariski

http://stacks.math.columbia.edu/tag/097Z
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such that C → D′ is ind-Zariski. Then B → D′ is a solution to the problem posed
in the proposition. �

46.10. Constructing w-contractible covers

In this section we construct w-contractible covers of affine schemes.

Definition 46.10.1. Let A be a ring. We say A is w-contractible if every faithfully
flat weakly-etale ring map A→ B has a section.

We remark that by Proposition 46.9.1 an equivalent definition would be to ask
that every faithfully flat, ind-étale ring map A → B has a section. Here is a key
observation that will allow us to construct w-contractible rings.

Lemma 46.10.2. Let A be a ring. The following are equivalent

(1) A is w-contractible,
(2) every faithfully flat, ind-étale ring map A→ B has a section, and
(3) A satisfies

(a) Spec(A) is w-local,
(b) π0(Spec(A)) is extremally disconnected, and
(c) for every maximal ideal m ⊂ A the local ring Am is strictly henselian.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 46.9.1.

Assume (3)(a), (3)(b), and (3)(c). Let A→ B be faithfully flat and ind-étale. We
will use without further mention the fact that a flat map A → B is faithfully flat
if and only if every closed point of Spec(A) is in the image of Spec(B)→ Spec(A)
We will show that A→ B has a section.

Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of
Spec(A). We may replace B by the ring C constructed in Lemma 46.5.8 for A→ B
and I ⊂ A. Thus we may assume Spec(B) is w-local such that the set of closed
points of Spec(B) is V (IB). In this case A→ B identifies local rings by condition
(3)(c) as it suffices to check this at maximal ideals of B which lie over maximal
ideals of A. Thus A→ B has a section by Lemma 46.6.7.

Assume (1) or equivalently (2). We have (3)(c) by Lemma 46.8.5. Properties (3)(a)
and (3)(b) follow from Lemma 46.6.7. �

Proposition 46.10.3. For every ring A there exists a faithfully flat, ind-étale ring
map A→ D such that D is w-contractible.

Proof. Applying Lemma 46.8.7 to idA : A→ A we find a faithfully flat, ind-étale
ring map A→ C such that C is w-local and such that every local ring at a maximal
ideal of C is strictly henselian. Choose an extremally disconnected space T and a
surjective continuous map T → π0(Spec(C)), see Topology, Lemma 5.25.9. Note
that T is profinite. Apply Lemma 46.6.2 to find an ind-Zariski ring map C → D
such that π0(Spec(D))→ π0(Spec(C)) realizes T → π0(Spec(C)) and such that

Spec(D) //

��

π0(Spec(D))

��
Spec(C) // π0(Spec(C))
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is cartesian in the category of topological spaces. Note that Spec(D) is w-local,
that Spec(D)→ Spec(C) is w-local, and that the set of closed points of Spec(D) is
the inverse image of the set of closed points of Spec(C), see Lemma 46.2.5. Thus it
is still true that the local rings of D at its maximal ideals are strictly henselian (as
they are isomorphic to the local rings at the corresponding maximal ideals of C).
It follows from Lemma 46.10.2 that D is w-contractible. �

Remark 46.10.4. Let A be a ring. Let κ be an infinite cardinal bigger or equal
than the cardinality of A. Then the cardinality of the ring D constructed in Propo-
sition 46.10.3 is at most

κ222κ

.

Namely, the ring map A→ D is constructed as a composition

A→ Aw = A′ → C ′ → C → D.

Here the first three steps of the construction are carried out in the first paragraph of
the proof of Lemma 46.8.7. For the first step we have |Aw| ≤ κ by Remark 46.5.4.
We have |C ′| ≤ κ by Remark 46.8.2. Then |C| ≤ κ because C is a localization of
(C ′)w (it is constructed from C ′ by an application of Lemma 46.5.7 in the proof
of Lemma 46.5.8). Thus C has at most 2κ maximal ideals. Finally, the ring map
C → D identifies local rings and the cardinality of the set of maximal ideals of D

is at most 222κ

by Topology, Remark 5.25.10. Since D ⊂
∏

m⊂DDm we see that D
has at most the size displayed above.

Lemma 46.10.5. Let A→ B be a quasi-finite and finitely presented ring map. If
the residue fields of A are separably algebraically closed and Spec(A) is extremally
disconnected, then Spec(B) is extremally disconnected.

Proof. Set X = Spec(A) and Y = Spec(B). Choose a finite partition X =
∐
Xi

and X ′i → Xi as in Étale Cohomology, Lemma 44.70.3. Because X is extremally
disconnected, every constructible locally closed subset is open and closed, hence
we see that X is topologically the disjoint union of the strata Xi. Thus we may
replace X by the Xi and assume there exists a surjective finite locally free morphism
X ′ → X such that (X ′ ×X Y )red is isomorphic to a finite disjoint union of copies
of X ′red. Picture ∐

i=1,...,rX
′ //

��

Y

��
X ′ // X

The assumption on the residue fields of A implies that this diagram is a fibre product
diagram on underlying sets of points (details omitted). Since X is extremally
disconnected and X ′ is Hausdorff (Lemma 46.5.6), the continuous map X ′ → X
has a continuous section σ. Then

∐
i=1,...,r σ(X) → Y is a bijective continuous

map. By Topology, Lemma 5.16.8 we see that it is a homeomorphism and the
proof is done. �

Lemma 46.10.6. Let A → B be a finite and finitely presented ring map. If A is
w-contractible, so is B.
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Proof. We will use the criterion of Lemma 46.10.2. Set X = Spec(A) and Y =
Spec(B). As Y → X is a finite morphism, we see that the set of closed points Y0 of
Y is the inverse image of the set of closed points X0 of X. Moreover, every point
of Y specializes to a unique point of Y0 as (a) this is true for X and (b) the map
X → Y is separated. For every y ∈ Y0 with image x ∈ X0 we see thatOY,y is strictly
henselian by Algebra, Lemma 10.145.4 applied to OX,x → B ⊗A OX,x. It remains
to show that Y0 is extremally disconnected. To do this we look at X0 ×X Y → X0

where X0 ⊂ X is the reduced induced scheme structure. Note that the underlying
topological space of X0 ×X Y agrees with Y0. Now the desired result follows from
Lemma 46.10.5. �

Lemma 46.10.7. Let A be a ring. Let Z ⊂ Spec(A) be a closed subset of the form
Z = V (f1, . . . , fr). Set B = A∼Z , see Lemma 46.5.1. If A is w-contractible, so is
B.

Proof. Let A∼Z → B be a weakly étale faithfully flat ring map. Consider the ring
map

A −→ Af1
× . . .×Afr ×B

this is faithful flat and weakly étale. If A is w-contractible, then there is a section
σ. Consider the morphism

Spec(A∼Z )→ Spec(A)
Spec(σ)−−−−−→

∐
Spec(Afi)q Spec(B)

Every point of Z ⊂ Spec(A∼Z ) maps into the component Spec(B). Since every point
of Spec(A∼Z ) specializes to a point of Z we find a morphism Spec(A∼Z ) → Spec(B)
as desired. �

46.11. The pro-étale site

The (small) pro-étale site of a scheme has some remarkable properties. In particular,
it has enough w-contractible objects which implies a number of useful consequences
for the derived category of abelian sheaves and for inverse systems of sheaves. Thus
it is well adapted to deal with some of the intricacies of working with `-adic sheaves.

On the other hand, the pro-étale topology is a bit like the fpqc topology (see
Topologies, Section 33.8) in that the topos of sheaves on the small pro-étale site of
a scheme depends on the choice of the underlying category of schemes. Thus we
cannot speak of the pro-étale topos of a scheme. However, it will be true that the
cohomology groups of a sheaf are unchanged if we enlarge our underlying category
of schemes.

Another curiosity is that we define pro-étale coverings using weakly étale morphisms
of schemes, see More on Morphisms, Section 36.44. The reason is that, on the one
hand, it is somewhat awkward to define the notion of a pro-étale morphism of
schemes, and on the other, Proposition 46.9.1 assures us that we obtain the same
sheaves with the definition that follows.

Definition 46.11.1. Let T be a scheme. A pro-étale covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is weakly-étale and such
that for every affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and
affine opens Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .
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To be sure this condition implies that T =
⋃
fi(Ti). Here is a lemma that will allow

us to recognize pro-étale coverings. It will also allow us to reduce many lemmas
about pro-étale coverings to the corresponding results for fpqc coverings.

Lemma 46.11.2. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of mor-
phisms of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is a pro-étale covering,
(2) each fi is weakly étale and {fi : Ti → T}i∈I is an fpqc covering,
(3) each fi is weakly étale and for every affine open U ⊂ T there exist

quasi-compact opens Ui ⊂ Ti which are almost all empty, such that U =⋃
fi(Ui),

(4) each fi is weakly étale and there exists an affine open covering T =⋃
α∈A Uα and for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-

compact opens Uα,j ⊂ Tiα,j such that Uα =
⋃
j=1,...,n(α) fiα,j (Uα,j).

If T is quasi-separated, these are also equivalent to

(5) each fi is weakly étale, and for every t ∈ T there exist i1, . . . , in ∈ I
and quasi-compact opens Uj ⊂ Tij such that

⋃
j=1,...,n fij (Uj) is a (not

necessarily open) neighbourhood of t in T .

Proof. The equivalence of (1) and (2) is immediate from the definitions. Hence
the lemma follows from Topologies, Lemma 33.8.2. �

Lemma 46.11.3. Any étale covering and any Zariski covering is a pro-étale cov-
ering.

Proof. This follows from the corresponding result for fpqc coverings (Topologies,
Lemma 33.8.6), Lemma 46.11.2, and the fact that an étale morphism is a weakly
étale morphism, see More on Morphisms, Lemma 36.44.9. �

Lemma 46.11.4. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is a pro-étale covering of T .
(2) If {Ti → T}i∈I is a pro-étale covering and for each i we have a pro-étale

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a pro-étale covering.
(3) If {Ti → T}i∈I is a pro-étale covering and T ′ → T is a morphism of

schemes then {T ′ ×T Ti → T ′}i∈I is a pro-étale covering.

Proof. This follows from the fact that composition and base changes of weakly
étale morphisms are weakly étale (More on Morphisms, Lemmas 36.44.5 and 36.44.6),
Lemma 46.11.2, and the corresponding results for fpqc coverings, see Topologies,
Lemma 33.8.7. �

Lemma 46.11.5. Let T be an affine scheme. Let {Ti → T}i∈I be a pro-étale
covering of T . Then there exists a pro-étale covering {Uj → T}j=1,...,n which is a
refinement of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we
may choose each Uj to be open affine in one of the Ti.

Proof. This follows directly from the definition. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 46.11.6. Let T be an affine scheme. A standard pro-étale covering of
T is a family {fi : Ti → T}i=1,...,n with each Tj is affine, each fi is weakly étale,
and T =

⋃
fi(Ti).
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We interrupt the discussion for an explanation of the notion of w-contractible rings
in terms of pro-étale coverings.

Lemma 46.11.7. Let T = Spec(A) be an affine scheme. The following are equiv-
alent

(1) A is w-contractible, and
(2) every pro-étale covering of T can be refined by a Zariski covering of the

form T =
∐
i=1,...,n Ui.

Proof. Assume A is w-contractible. By Lemma 46.11.5 it suffices to prove we can
refine every standard pro-étale covering {fi : Ti → T}i=1,...,n by a Zariski covering
of T . The morphism

∐
Ti → T is a surjective weakly étale morphism of affine

schemes. Hence by Definition 46.10.1 there exists a morphism σ : T →
∐
Ti over

T . Then the Zariski covering T =
∐
σ−1(Ti) refines {fi : Ti → T}.

Conversely, assume (2). IfA→ B is faithfully flat and weakly étale, then {Spec(B)→
T} is a pro-étale covering. Hence there exists a Zariski covering T =

∐
Ui and mor-

phisms Ui → Spec(B) over T . Since T =
∐
Ui we obtain T → Spec(B), i.e., an

A-algebra map B → A. This means A is w-contractible. �

We follow the general outline given in Topologies, Section 33.2 for constructing
the big pro-étale site we will be working with. However, because we need a bit
larger rings to accommodate for the size of certain constructions we modify the
constructions slightly.

Definition 46.11.8. A big pro-étale site is any site Schpro-étale as in Sites, Defini-
tion 7.6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of pro-étale coverings Cov0

among these schemes.
(2) Change the function Bound of Sets, Equation (3.9.1.1) into

Bound(κ) = max{κ222κ

, κℵ0 , κ+}.
(3) As underlying category take any category Schα constructed as in Sets,

Lemma 3.9.2 starting with the set S0 and the function Bound.
(4) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the

category Schα and the class of pro-étale coverings, and the set Cov0 chosen
above.

See the remarks following Topologies, Definition 33.3.5 for motivation and expla-
nation regarding the definition of big sites.

Before we continue with the introduction of the big and small pro-étale sites of a
scheme, let us point out that (1) our category contains many weakly contractible
objects, and (2) the topology on a big pro-étale site Schpro-étale is in some sense
induced from the pro-étale topology on the category of all schemes.

Lemma 46.11.9. Let Schpro-étale be a big pro-étale site as in Definition 46.11.8.
Let T = Spec(A) be an affine object of Schpro-étale. If A is w-contractible, then T
is a weakly contractible (Sites, Definition 7.39.2) object of Schpro-étale.

Proof. Let F → G be a surjection of sheaves on Schpro-étale. Let s ∈ G(T ). We
have to show that s is in the image of F(T ) → G(T ). We can find a covering
{Ti → T} of Schpro-étale such that s lifts to a section of F over Ti (Sites, Definition

http://stacks.math.columbia.edu/tag/098F
http://stacks.math.columbia.edu/tag/098G
http://stacks.math.columbia.edu/tag/098H


46.11. THE PRO-ÉTALE SITE 3045

7.12.1). By Lemma 46.11.7 we can refine {Ti → T} by a Zariski covering of the
form T =

∐
j=1,...,m Vj . Hence we get tj ∈ F(Uj) mapping to s|Uj . Since Zariski

coverings are coverings in Schpro-étale (Lemma 46.11.3) we conclude that F(T ) =∏
F(Uj). Thus, taking t = (t1, . . . , tm) ∈ F(T ) is a section mapping to s. �

Lemma 46.11.10. Let Schpro-étale be a big pro-étale site as in Definition 46.11.8.
For every object T of Schpro-étale there exists a covering {Ti → T} in Schpro-étale
with each Ti affine and the spectrum of a w-contractible ring. In particular, Ti is
weakly contractible in Schpro-étale.

Proof. For those readers who do not care about set-theoretical issues this lemma
is a trivial consequence of Lemma 46.11.9 and Proposition 46.10.3. Here are the
details. Choose an affine open covering T =

⋃
Ui. Write Ui = Spec(Ai). Choose

faithfully flat, ind-étale ring maps Ai → Di such that Di is w-contractible as in
Proposition 46.10.3. The family of morphisms {Spec(Di)→ T} is a pro-étale cover-
ing. If we can show that Spec(Di) is isomorphic to an object, say Ti, of Schpro-étale,
then {Ti → T} will be combinatorially equivalent to a covering of Schpro-étale by
the construction of Schpro-étale in Definition 46.11.8 and more precisely the appli-
cation of Sets, Lemma 3.11.1 in the last step. To prove Spec(Di) is isomorphic to
an object of Schpro-étale, it suffices to prove that |Di| ≤ Bound(Size(T )) by the
construction of Schpro-étale in Definition 46.11.8 and more precisely the application
of Sets, Lemma 3.9.2 in step (3). Since |Ai| ≤ size(Ui) ≤ size(T ) by Sets, Lemmas

3.9.4 and 3.9.7 we get |Di| ≤ κ222κ

where κ = size(T ) by Remark 46.10.4. Thus by
our choice of the function Bound in Definition 46.11.8 we win. �

Lemma 46.11.11. Let Schpro-étale be a big pro-étale site as in Definition 46.11.8.
Let T ∈ Ob(Schpro-étale). Let {Ti → T}i∈I be an arbitrary pro-étale covering of
T . There exists a covering {Uj → T}j∈J of T in the site Schpro-étale which refines
{Ti → T}i∈I .

Proof. Namely, we first let {Vk → T} be a covering as in Lemma 46.11.10. Then
the pro-étale coverings {Ti ×T Vk → Vk} can be refined by a finite disjoint open
covering Vk = Vk,1q . . .qVk,nk , see Lemma 46.11.7. Then {Vk,i → T} is a covering
of Schpro-étale which refines {Ti → T}i∈I . �

Definition 46.11.12. Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S.

(1) The big pro-étale site of S, denoted (Sch/S)pro-étale, is the site Schpro-étale/S
introduced in Sites, Section 7.24.

(2) The small pro-étale site of S, which we denote Spro-étale, is the full subcat-
egory of (Sch/S)pro-étale whose objects are those U/S such that U → S
is weakly étale. A covering of Spro-étale is any covering {Ui → U} of
(Sch/S)pro-étale with U ∈ Ob(Spro-étale).

(3) The big affine pro-étale site of S, denoted (Aff/S)pro-étale, is the full sub-
category of (Sch/S)pro-étale whose objects are affine U/S. A covering of
(Aff/S)pro-étale is any covering {Ui → U} of (Sch/S)pro-étale which is a
standard pro-étale covering.

It is not completely clear that the small pro-étale site and the big affine pro-étale
site are sites. We check this now.
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Lemma 46.11.13. Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S. Both Spro-étale and (Aff/S)pro-étale are sites.

Proof. Let us show that Spro-étale is a site. It is a category with a given set of
families of morphisms with fixed target. Thus we have to show properties (1), (2)
and (3) of Sites, Definition 7.6.2. Since (Sch/S)pro-étale is a site, it suffices to prove
that given any covering {Ui → U} of (Sch/S)pro-étale with U ∈ Ob(Spro-étale) we
also have Ui ∈ Ob(Spro-étale). This follows from the definitions as the composition
of weakly étale morphisms is weakly étale.

To show that (Aff/S)pro-étale is a site, reasoning as above, it suffices to show that
the collection of standard pro-étale coverings of affines satisfies properties (1), (2)
and (3) of Sites, Definition 7.6.2. This follows from Lemma 46.11.2 and the corre-
sponding result for standard fpqc coverings (Topologies, Lemma 33.8.10). �

Lemma 46.11.14. Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S. Let Sch be the category of all schemes.

(1) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale, and (Aff/S)pro-étale
have fibre products agreeing with fibre products in Sch.

(2) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale have equalizers agree-
ing with equalizers in Sch.

(3) The categories (Sch/S)pro-étale, and Spro-étale both have a final object,
namely S/S.

(4) The category Schpro-étale has a final object agreeing with the final object
of Sch, namely Spec(Z).

Proof. The category Schpro-étale contains Spec(Z) and is closed under products and
fibre products by construction, see Sets, Lemma 3.9.9. Suppose we have U → S,
V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schpro-étale). The fibre
product V ×U W in Schpro-étale is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)pro-étale. This proves the result for (Sch/S)pro-étale. If
U → S, V → U and W → U are weakly étale then so is V ×UW → S (see More on
Morphisms, Section 36.44) and hence we get fibre products for Spro-étale. If U, V,W
are affine, so is V ×U W and hence we get fibre products for (Aff/S)pro-étale.

Let a, b : U → V be two morphisms in Schpro-étale. In this case the equalizer of a
and b (in the category of schemes) is

V ×∆V/ Spec(Z),V×Spec(Z)V,(a,b) (U ×Spec(Z) U)

which is an object of Schpro-étale by what we saw above. Thus Schpro-étale has
equalizers. If a and b are morphisms over S, then the equalizer (in the category of
schemes) is also given by

V ×∆V/S ,V×SV,(a,b) (U ×S U)

hence we see that (Sch/S)pro-étale has equalizers. Moreover, if U and V are weakly-
étale over S, then so is the equalizer above as a fibre product of schemes weakly
étale over S. Thus Spro-étale has equalizers. The statements on final objects is
clear. �

Next, we check that the big affine pro-étale site defines the same topos as the big
pro-étale site.
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Lemma 46.11.15. Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S. The functor (Aff/S)pro-étale → (Sch/S)pro-étale is a special cocontin-
uous functor. Hence it induces an equivalence of topoi from Sh((Aff/S)pro-étale) to
Sh((Sch/S)pro-étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 7.28.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.28.1.
Denote the inclusion functor u : (Aff/S)pro-étale → (Sch/S)pro-étale. Being cocon-
tinuous just means that any pro-étale covering of T/S, T affine, can be refined by
a standard pro-étale covering of T . This is the content of Lemma 46.11.5. Hence
(1) holds. We see u is continuous simply because a standard pro-étale covering is
a pro-étale covering. Hence (2) holds. Parts (3) and (4) follow immediately from
the fact that u is fully faithful. And finally condition (5) follows from the fact that
every scheme has an affine open covering. �

Lemma 46.11.16. Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale. The functor Tpro-étale → (Sch/S)pro-étale is cocontinuous
and induces a morphism of topoi

if : Sh(Tpro-étale) −→ Sh((Sch/S)pro-étale)

For a sheaf G on (Sch/S)pro-étale we have the formula (i−1
f G)(U/T ) = G(U/S).

The functor i−1
f also has a left adjoint if,! which commutes with fibre products and

equalizers.

Proof. Denote the functor u : Tpro-étale → (Sch/S)pro-étale. In other words, given
a weakly étale morphism j : U → T corresponding to an object of Tpro-étale we
set u(U → T ) = (f ◦ j : U → S). This functor commutes with fibre products, see
Lemma 46.11.14. Moreover, Tpro-étale has equalizers and u commutes with them by
Lemma 46.11.14. It is clearly cocontinuous. It is also continuous as u transforms
coverings to coverings and commutes with fibre products. Hence the lemma follows
from Sites, Lemmas 7.20.5 and 7.20.6. �

Lemma 46.11.17. Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S. The inclusion functor Spro-étale → (Sch/S)pro-étale satisfies the hy-
potheses of Sites, Lemma 7.20.8 and hence induces a morphism of sites

πS : (Sch/S)pro-étale −→ Spro-étale

and a morphism of topoi

iS : Sh(Spro-étale) −→ Sh((Sch/S)pro-étale)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 46.11.16. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Spro-étale → (Sch/S)pro-étale, in addition to
the properties seen in the proof of Lemma 46.11.16 above, also is fully faithful and
transforms the final object into the final object. The lemma follows from Sites,
Lemma 7.20.8. �

Definition 46.11.18. In the situation of Lemma 46.11.17 the functor i−1
S = πS,∗

is often called the restriction to the small pro-étale site, and for a sheaf F on the
big pro-étale site we denote F|Spro-étale this restriction.
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With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(Spro-étale)(F|Spro-étale ,G) = MorSh((Sch/S)pro-étale)(F , iS,∗G)

MorSh(Spro-étale)(G,F|Spro-étale) = MorSh((Sch/S)pro-étale)(π
−1
S G,F)

Moreover, we have (iS,∗G)|Spro-étale = G and we have (π−1
S G)|Spro-étale = G.

Lemma 46.11.19. Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale. The functor

u : (Sch/T )pro-étale −→ (Sch/S)pro-étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)pro-étale −→ (Sch/T )pro-étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )pro-étale) −→ Sh((Sch/S)pro-étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 46.11.16).
Hence Sites, Lemmas 7.20.5 and 7.20.6 apply and we deduce the formula for f−1

big

and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we
may apply Sites, Lemmas 7.21.1 and 7.21.2 to get the formula for fbig,∗. �

Lemma 46.11.20. Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale.

(1) We have if = fbig ◦ iT with if as in Lemma 46.11.16 and iT as in Lemma
46.11.17.

(2) The functor Spro-étale → Tpro-étale, (U → S) 7→ (U ×S T → T ) is contin-
uous and induces a morphism of topoi

fsmall : Sh(Tpro-étale) −→ Sh(Spro-étale).

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tpro-étale

fsmall

��

(Sch/T )pro-étale

fbig

��

πT
oo

Spro-étale (Sch/S)pro-étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Spro-étale → Tpro-étale, u(U → S) = (U ×S T → T ) transforms
coverings into coverings and commutes with fibre products, see Lemmas 46.11.4
and 46.11.14. Moreover, both Spro-étale, Tpro-étale have final objects, namely S/S
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and T/T and u(S/S) = T/T . Hence by Sites, Proposition 7.15.6 the functor u
corresponds to a morphism of sites Tpro-étale → Spro-étale. This in turn gives rise to
the morphism of topoi, see Sites, Lemma 7.16.2. The description of the pushforward
is clear from these references.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall
and fbig by the base change functors U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . �

In the situation of the lemma, using the terminology of Definition 46.11.18 we have:
for F a sheaf on the big pro-étale site of T

(fbig,∗F)|Spro-étale = fsmall,∗(F|Tpro-étale),

This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small pro-étale site of T , resp. S is given by πT,∗, resp. πS,∗.
A similar formula involving pullbacks and restrictions is false.

Lemma 46.11.21. Given schemes X, Y , Y in Schpro-étale and morphisms f :
X → Y , g : Y → Z we have gbig ◦fbig = (g ◦f)big and gsmall ◦fsmall = (g ◦f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 46.11.19. For the functors on the
small sites this follows from the description of the pushforward functors in Lemma
46.11.20. �

We can think about a sheaf on the big pro-étale site of S as a collection of sheaves
on the small pro-étale site on schemes over S.

Lemma 46.11.22. Let S be a scheme contained in a big pro-étale site Schpro-étale.
A sheaf F on the big pro-étale site (Sch/S)pro-étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)pro-étale) a sheaf FT on Tpro-étale,

(2) for every f : T ′ → T in (Sch/S)pro-étale a map cf : f−1
smallFT → FT ′ .

These data are subject to the following conditions:

(i) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)pro-étale the composition

g−1
smallcf ◦ cg is equal to cf◦g, and

(ii) if f : T ′ → T in (Sch/S)pro-étale is weakly étale then cf is an isomorphism.

Proof. Identical to the proof of Topologies, Lemma 33.4.18. �

Lemma 46.11.23. Let S be a scheme. Let Saffine,pro-étale denote the full subcat-
egory of Spro-étale consisting of affine objects. A covering of Saffine,pro-étale will be
a standard étale covering, see Definition 46.11.6. Then restriction

F 7−→ F|Saffine,étale
defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Saffine,pro-étale).

Proof. This you can show directly from the definitions, and is a good exercise. But
it also follows immediately from Sites, Lemma 7.28.1 by checking that the inclusion
functor Saffine,pro-étale → Spro-étale is a special cocontinuous functor (see Sites,
Definition 7.28.2). �
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Lemma 46.11.24. Let S be an affine scheme. Let Sapp denote the full subcategory
of Spro-étale consisting of affine objects U such that O(S) → O(U) is ind-étale. A
covering of Sapp will be a standard pro-étale covering, see Definition 46.11.6. Then
restriction

F 7−→ F|Sapp
defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Sapp).

Proof. By Lemma 46.11.23 we may replace Spro-étale by Saffine,pro-étale. The
lemma follows from Sites, Lemma 7.28.1 by checking that the inclusion functor
Sapp → Saffine,pro-étale is a special cocontinuous functor, see Sites, Definition
7.28.2. The conditions of Sites, Lemma 7.28.1 follow immediately from the def-
inition and the facts (a) any object U of Saffine,pro-étale has a covering {V → U}
with V ind-étale over X (Proposition 46.9.1) and (b) the functor u is fully faith-
ful. �

Next we show that cohomology of sheaves is independent of the choice of a partial
universe. Namely, the functor g∗ of the lemma below is an embedding of pro-étale
topoi which does not change cohomology.

Lemma 46.11.25. Let S be a scheme. Let Spro-étale ⊂ S′pro-étale be two small pro-
étale sites of S as constructed in Definition 46.11.12. Then the inclusion functor
satisfies the assumptions of Sites, Lemma 7.20.8. Hence there exist morphisms of
topoi

Sh(Spro-étale)
g // Sh(S′pro-étale)

f // Sh(Spro-étale)

whose composition is isomorphic to the identity and with f∗ = g−1. Moreover,

(1) for F ′ ∈ Ab(S′pro-étale) we have Hp(S′pro-étale,F ′) = Hp(Spro-étale, g
−1F ′),

(2) for F ∈ Ab(Spro-étale) we have

Hp(Spro-étale,F) = Hp(S′pro-étale, g∗F) = Hp(S′pro-étale, f
−1F).

Proof. The inclusion functor is fully faithful and continuous. We have seen that
Spro-étale and S′pro-étale have fibre products and final objects and that our functor

commutes with these (Lemma 46.11.14). It follows from Lemma 46.11.11 that the
inclusion functor is cocontinuous. Hence the existence of f and g follows from Sites,
Lemma 7.20.8. The equality in (1) is Cohomology on Sites, Lemma 21.8.2. Part
(2) follows from (1) as F = g−1g∗F = g−1f−1F . �

Lemma 46.11.26. Let S be a scheme. The topology on each of the pro-étale sites
Spro-étale, (Sch/S)pro-étale, Saffine,pro-étale, and (Aff/S)pro-étale is subcanonical.

Proof. Combine Lemma 46.11.2 and Descent, Lemma 34.9.3. �

Lemma 46.11.27. Let S be a scheme. The pro-étale sites Spro-étale, (Sch/S)pro-étale,
Saffine,pro-étale, and (Aff/S)pro-étale and if S is affine Sapp have enough quasi-
compact, weakly contractible objects, see Sites, Definition 7.39.2.

Proof. Follows immediately from Lemma 46.11.10. �
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46.12. Points of the pro-étale site

We first apply Deligne’s criterion to show that there are enough points.

Lemma 46.12.1. Let S be a scheme. The pro-étale sites Spro-étale, (Sch/S)pro-étale,
Saffine,pro-étale, and (Aff/S)pro-étale have enough points.

Proof. The big topos is equivalent to the topos defined by (Aff/S)pro-étale, see
Lemma 46.11.15. The topos of sheaves on Spro-étale is equivalent to the topos associ-
ated to Saffine,pro-étale, see Lemma 46.11.23. The result for the sites (Aff/S)pro-étale
and Saffine,pro-étale follows immediately from Deligne’s result Sites, Proposition
7.38.3. �

Let S be a scheme. Let s : Spec(k)→ S be a geometric point. We define a pro-étale
neighbourhood of s to be a commutative diagram

Spec(k)
u
//

s
##

U

��
S

with U → S weakly étale. In exactly the same manner as in the chapter on
étale cohomology one shows that the category of pro-étale neighbourhoods of s is
cofiltered. Moreover, if (U, u) is a pro-étale neighbourhood, and if {Ui → U} is a
pro-étale covering, then there exists an i and a lift of u to a geometric point ui of
Ui. For F in Sh(Spro-étale) define the stalk of F at s by the formula

Fs = colim(U,u) F(U)

where the colimit is over all pro-étale neighbourhoods (U, u) of s with U ∈ Ob(Spro-étale).
A formal argument using the facts above shows the functor F 7→ Fs defines a point
of the topos Sh(Spro-étale): it is an exact functor which commutes with arbitrary
colimits. In fact, this functor has another description.

Lemma 46.12.2. In the situation above the scheme Spec(OshS,s) is an object of
Xpro-étale and there is a canonical isomorphism

F(Spec(OshS,s)) = Fs
functorial in F .

Proof. The first statement is clear from the construction of the strict henselization
as a filtered colimit of étale algebras over S, or by the characterization of weakly
étale morphisms of More on Morphisms, Lemma 36.44.11. The second statement
follows as by Olivier’s theorem (More on Algebra, Theorem 15.67.24) the scheme
Spec(OshS,s) is an initial object of the category of pro-étale neighbourhoods of s. �

Contrary to the situation with the étale topos of S it is not true that every point
of Sh(Spro-étale) is of this form, and it is not true that the collection of points
associated to geometric point is conservative. Namely, suppose that S = Spec(k)
where k is an algebraically closed field. Let A be an abelian group. Consider the
sheaf F on Spro-étale defined by the rule

F(U) =
{functions U → A}

{locally constant functions}
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Then F(U) = 0 if U = S = Spec(k) but in general F is not zero. Namely, Spro-étale
contains objects with infinitely many points. For example, let E = limEn be an
inverse limit of finite sets with surjective transition maps, e.g., E = lim Z/nZ. The
scheme Spec(colim Map(En, k)) is an object of Spro-étale because colim Map(En, k)
is weakly étale (even ind-Zariski) over k. Thus F is a nonzero abelian sheaf whose
stalk at the unique geometric point of S is zero.

The solution is to use the existence of quasi-compact, weakly contractible ob-
jects. First, there are enough quasi-compact, weakly contractible objects by Lemma
46.11.27. Second, if W ∈ Ob(Spro-étale) is quasi-compact, weakly contractible, then
the functor

Sh(Spro-étale) −→ Sets, F 7−→ F(W )

is an exact functor Sh(Spro-étale) → Sets which commutes with all limits. The
functor

Ab(Spro-étale) −→ Ab, F 7−→ F(W )

is exact and commutes with direct sums (as W is quasi-compact, see Sites, Lemma
7.11.2), hence commutes with all limits and colimits. Moreover, we can check ex-
actness of a complex of abelian sheaves by evaluation at the quasi-compact, weakly
contractible objects of Spro-étale, see Cohomology on Sites, Proposition 21.38.2.

46.13. Compact generation

Let S be a scheme. The site Spro-étale has enough quasi-compact, weakly con-
tractible objects U . For any sheaf of rings A on Spro-étale the corresponding ob-
jects jU !AU are compact objects of the derived category D(A), see Cohomology
on Sites, Lemma 21.39.5. Since every complex of A-modules is quasi-isomorphic
to a complex whose terms are direct sums of the modules jU !AU (details omitted).
Thus we see that D(A) is generated by its compact objects.

The same argument works for the big pro-étale site of S.

46.14. Generalities on derived completion

We urge the reader to skip this section on a first reading.

The algebra version of this material can be found in More on Algebra, Section
15.64. Let O be a sheaf of rings on a site C. Let f be a global section of O. We
denote Of the sheaf associated to the presheaf of localizations U 7→ O(U)f .

Lemma 46.14.1. Let (C,O) be a ringed site. Let f be a global section of O.

(1) For L,N ∈ D(Of ) we have RHomO(L,N) = RHomOf (L,N). In partic-
ular the two Of -structures on RHomO(L,N) agree.

(2) For K ∈ D(O) and L ∈ D(Of ) we have

RHomO(L,K) = RHomOf (L,RHomO(Of ,K))

In particular RHomO(Of , RHomO(Of ,K)) = RHomO(Of ,K).
(3) If g is a second global section of O, then

RHomO(Of , RHomO(Og,K)) = RHomO(Ogf ,K).
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Proof. Proof of (1). Let J • be a K-injective complex of Of -modules representing
N . By Cohomology on Sites, Lemma 21.20.3 it follows that J • is a K-injective
complex of O-modules as well. Let F• be a complex of Of -modules representing
L. Then

RHomO(L,N) = RHomO(F•,J •) = RHomOf (F•,J •)

by Modules on Sites, Lemma 18.11.4 because J • is a K-injective complex of O and
of Of -modules.

Proof of (2). Let I• be a K-injective complex of O-modules representing K. Then
RHomO(Of ,K) is represented by HomO(Of , I•) which is a K-injective complex
of Of -modules and of O-modules by Cohomology on Sites, Lemmas 21.20.4 and
21.20.3. Let F• be a complex of Of -modules representing L. Then

RHomO(L,K) = RHomO(F•, I•) = RHomOf (F•,HomO(Of , I•))

by Modules on Sites, Lemma 18.27.5 and because HomO(Of , I•) is a K-injective
complex of Of -modules.

Proof of (3). This follows from the fact that RHomO(Og, I•) is K-injective as a
complex ofO-modules and the fact thatHomO(Of ,HomO(Og,H)) = HomO(Ogf ,H)
for all sheaves of O-modules H. �

Let K ∈ D(O). We denote T (K, f) a derived limit (Derived Categories, Definition
13.32.1) of the system

. . .→ K
f−→ K

f−→ K

in D(O).

Lemma 46.14.2. Let (C,O) be a ringed site. Let f be a global section of O. Let
K ∈ D(O). The following are equivalent

(1) RHomO(Of ,K) = 0,
(2) RHomO(L,K) = 0 for all L in D(Of ),
(3) T (K, f) = 0.

Proof. It is clear that (2) implies (1). The implication (1) ⇒ (2) follows from
Lemma 46.14.1. A free resolution of the O-module Of is given by

0→
⊕

n∈N
O →

⊕
n∈N
O → Of → 0

where the first map sends a local section (x0, x1, . . .) to (fx0−x1, fx1−x2, . . .) and
the second map sends (x0, x1, . . .) to x0+x1/f+x2/f

2+. . .. ApplyingHomO(−, I•)
where I• is a K-injective complex of O-modules representing K we get a short exact
sequence of complexes

0→ HomO(Of , I•)→
∏
I• →

∏
I• → 0

because In is an injective O-module. The products are products in D(O), see
Injectives, Lemma 19.13.4. This means that the object T (K, f) is a representative
of RHomO(Of ,K) in D(O). Thus the equivalence of (1) and (3). �

Lemma 46.14.3. Let (C,O) be a ringed site. Let K ∈ D(O). The rule which
associates to U the set I(U) of sections f ∈ O(U) such that T (K|U , f) = 0 is a
sheaf of ideals in O.
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Proof. We will use the results of Lemma 46.14.2 without further mention. If f ∈
I(U), and g ∈ O(U), then OU,gf is an OU,f -module hence RHomO(OU,gf ,K|U ) =
0, hence gf ∈ I(U). Suppose f, g ∈ O(U). Then there is a short exact sequence

0→ OU,f+g → OU,f(f+g) ⊕OU,g(f+g) → OU,gf(f+g) → 0

because f, g generate the unit ideal in O(U)f+g. This follows from Algebra, Lemma
10.22.1 and the easy fact that the last arrow is surjective. Because RHomO(−,K|U )
is an exact functor of triangulated categories the vanishing ofRHomOU (OU,f(f+g),K|U ),
RHomOU (OU,g(f+g),K|U ), and RHomOU (OU,gf(f+g),K|U ), implies the vanishing
of RHomOU (OU,f+g,K|U ). We omit the verification of the sheaf condition. �

We can make the following definition for any ringed site.

Definition 46.14.4. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals.
Let K ∈ D(O). We say that K is derived complete with respect to I if for every
object U of C and f ∈ I(U) the object T (K|U , f) of D(OU ) is zero.

It is clear that the full subcategory Dcomp(O) = Dcomp(O, I) ⊂ D(O) consisting
of derived complete objects is a saturated triangulated subcategory, see Derived
Categories, Definitions 13.3.4 and 13.6.1. This subcategory is preserved under
products and homotopy limits in D(O). But it is not preserved under countable
direct sums in general.

Lemma 46.14.5. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. If
K ∈ D(O) and L ∈ Dcomp(O), then RHomO(K,L) ∈ Dcomp(O).

Proof. Let U be an object of C and let f ∈ I(U). Recall that

HomD(OU )(OU,f , RHomO(K,L)|U ) = HomD(OU )(K|U ⊗L
OU OU,f , L|U )

by Cohomology on Sites, Lemma 21.26.2. The right hand side is zero by Lemma
46.14.2 and the relationship between internal hom and actual hom, see Cohomol-
ogy on Sites, Lemma 21.26.1. The same vanishing holds for all U ′/U . Thus
the object RHomOU (OU,f , RHomO(K,L)|U ) of D(OU ) has vanishing 0th coho-
mology sheaf (by locus citatus). Similarly for the other cohomology sheaves, i.e.,
RHomOU (OU,f , RHomO(K,L)|U ) is zero in D(OU ). By Lemma 46.14.2 we con-
clude. �

Lemma 46.14.6. Let C be a site. Let O → O′ be a homomorphism of sheaves of
rings. Let I ⊂ O be a sheaf of ideals. The inverse image of Dcomp(O, I) under the
restriction functor D(O′)→ D(O) is Dcomp(O′, IO′).

Proof. Using Lemma 46.14.3 we see that K ′ ∈ D(O′) is in Dcomp(O′, IO′) if
and only if T (K ′|U , f) is zero for every local section f ∈ I(U). Observe that the
cohomology sheaves of T (K ′|U , f) are computed in the category of abelian sheaves,
so it doesn’t matter whether we think of f as a section of O or take the image of
f as a section of O′. The lemma follows immediately from this and the definition
of derived complete objects. �

Lemma 46.14.7. Let f : (Sh(D),O′)→ (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O and I ′ ⊂ O′ be sheaves of ideals such that f ] sends f−1I into I ′. Then
Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I).

http://stacks.math.columbia.edu/tag/0999
http://stacks.math.columbia.edu/tag/099A
http://stacks.math.columbia.edu/tag/099C
http://stacks.math.columbia.edu/tag/099J


46.14. GENERALITIES ON DERIVED COMPLETION 3055

Proof. We may assume f is given by a morphism of ringed sites correspond-
ing to a continuous functor C → D (Modules on Sites, Lemma 18.7.2 ). Let U
be an object of C and let g be a section of I over U . We have to show that
HomD(OU )(OU,g, Rf∗K|U ) = 0 whenever K is derived complete with respect to
I ′. Namely, by Cohomology on Sites, Lemma 21.26.1 this, applied to all objects
over U and all shifts of K, will imply that RHomOU (OU,g, Rf∗K|U ) is zero, which
implies that T (Rf∗K|U , g) is zero (Lemma 46.14.2) which is what we have to show
(Definition 46.14.4). Let V in D be the image of U . Then

HomD(OU )(OU,g, Rf∗K|U ) = HomD(O′V )(O′V,g′ ,K|V ) = 0

where g′ = f ](g) ∈ I ′(V ). The second equality because K is derived complete and
the first equality because the derived pullback of OU,g is O′V,g′ and Cohomology on
Sites, Lemma 21.19.1. �

The following lemma is the simplest case where one has derived completion.

Lemma 46.14.8. Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections
of O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Then the inclusion
functor Dcomp(O) → D(O) has a left adjoint, i.e., given any object K of D(O)
there exists a map K → K∧ with K∧ in Dcomp(O) such that the map

HomD(O)(K
∧, E) −→ HomD(O)(K,E)

is bijective whenever E is in Dcomp(O). In fact we have

K∧ = RHomO(O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr ,K)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr ) −→ O

which induces a map K → K∧. It suffices to prove that K∧ is derived complete
and that K → K∧ is an isomorphism if K is derived complete.

Let f be a global section of O. By Lemma 46.14.1 the object RHomO(Of ,K∧) is
equal to

RHomO((Of →
∏

i0
Offi0 →

∏
i0<i1

Offi0fi1 → . . .→ Off1...fr ),K)

If f = fi for some i, then f1, . . . , fr generate the unit ideal in Of , hence the

extended alternating Čech complex

Of →
∏

i0
Offi0 →

∏
i0<i1

Offi0fi1 → . . .→ Off1...fr

is zero (even homotopic to zero). In this way we see that K∧ is derived complete.

If K is derived complete, then RHomO(Of ,K) is zero for all f = fi0 . . . fip , p ≥ 0.
Thus K → K∧ is an isomorphism in D(O). �

Next we explain why derived completion is a completion.
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Lemma 46.14.9. Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections
of O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Let K ∈ D(O). The
derived completion K∧ of Lemma 46.14.8 is given by the formula

K∧ = R limK ⊗L
O Kn

where Kn = K(O, fn1 , . . . , fnr ) is the Koszul complex on fn1 , . . . , f
n
r over O.

Proof. In More on Algebra, Lemma 15.20.13 we have seen that the extended al-
ternating Čech complex

O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr

is a colimit of the Koszul complexes Kn = K(O, fn1 , . . . , fnr ) sitting in degrees
0, . . . , r. Note that Kn is a finite chain complex of finite free O-modules with dual
HomO(Kn,O) = Kn where Kn is the Koszul cochain complex sitting in degrees
−r, . . . , 0 (as usual). By Lemma 46.14.8 the functor K 7→ K∧ is gotten by taking
RHom from the extended alternating Čech complex into K:

K∧ = RHom(colimKn,K)

This is equal to R lim(K ⊗L
O Kn) by Cohomology on Sites, Lemma 21.36.10. �

Lemma 46.14.10. There exist a way to construct

(1) for every pair (A, I) consisting of a ring A and a finitely generated ideal
I ⊂ A a complex K(A, I) of A-modules,

(2) a map K(A, I)→ A of complexes of A-modules,
(3) for every ring map A → B and finitely generated ideal I ⊂ A a map of

complexes K(A, I)→ K(B, IB),

such that

(a) for A→ B and I ⊂ A finitely generated the diagram

K(A, I) //

��

A

��
K(B, IB) // B

commutes,
(b) for A→ B → C and I ⊂ A finitely generated the composition of the maps

K(A, I)→ K(B, IB)→ K(C, IC) is the map K(A, I)→ K(C, IC).
(c) for A→ B and a finitely generated ideal I ⊂ A the induced map K(A, I)⊗L

A

B → K(B, IB) is an isomorphism in D(B), and
(d) if I = (f1, . . . , fr) ⊂ A then there is a commutative diagram

(A→
∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) //

��

K(A, I)

��
A

1 // A

in D(A) whose horizontal arrows are isomorphisms.

Proof. Let S be the set of rings A0 of the form A0 = Z[x1, . . . , xn]/J . Every
finite type Z-algebra is isomorphic to an element of S. Let A0 be the category
whose objects are pairs (A0, I0) where A0 ∈ S and I0 ⊂ A0 is an ideal and whose
morphisms (A0, I0)→ (B0, J0) are ring maps ϕ : A0 → B0 such that J0 = ϕ(I0)B0.
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Suppose we can construct K(A0, I0) → A0 functorially for objects of A0 having
properties (a), (b), (c), and (d). Then we take

K(A, I) = colimϕ:(A0,I0)→(A,I)K(A0, I0)

where the colimit is over ring maps ϕ : A0 → A such that ϕ(I0)A = I with (A0, I0)
in A0. A morphism between (A0, I0) → (A, I) and (A′0, I

′
0) → (A, I) are given by

maps (A0, I0)→ (A′0, I
′
0) in A0 commuting with maps to A. The category of these

(A0, I0) → (A, I) is filtered (details omitted). Moreover, colimϕ:(A0,I0)→(A,I)A0 =
A so that K(A, I) is a complex of A-modules. Finally, given ϕ : A→ B and I ⊂ A
for every (A0, I0)→ (A, I) in the colimit, the composition (A0, I0)→ (B, IB) lives
in the colimit for (B, IB). In this way we get a map on colimits. Properties (a),
(b), (c), and (d) follow readily from this and the corresponding properties of the
complexes K(A0, I0).

Endow C0 = Aopp0 with the chaotic topology. We equip C0 with the sheaf of rings
O : (A, I) 7→ A. The ideals I fit together to give a sheaf of ideals I ⊂ O. Choose
an injective resolution O → J •. Consider the object

F• =
⋃

n
J •[In]

Let U = (A, I) ∈ Ob(C0). Since the topology in C0 is chaotic, the value J •(U) is
a resolution of A by injective A-modules. Hence the value F•(U) is an object of
D(A) representing the image of RΓI(A) in D(A), see Dualizing Complexes, Section
43.8. Choose a complex of O-modules K• and a commutative diagram

O // J •

K• //

OO

F•

OO

where the horizontal arrows are quasi-isomorphisms. This is possible by the con-
struction of the derived category D(O). Set K(A, I) = K•(U) where U = (A, I).
Properties (a) and (b) are clear and properties (c) and (d) follow from Dualizing
Complexes, Lemmas 43.8.10 and 43.8.12. �

Lemma 46.14.11. Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of
ideals. There exists a map K → O in D(O) such that for every U ∈ Ob(C) such
that I|U is generated by f1, . . . , fr ∈ I(U) there is an isomorphism

(OU →
∏

i0
OU,fi0 →

∏
i0<i1

OU,fi0fi1 → . . .→ OU,f1...fr ) −→ K|U

compatible with maps to OU .

Proof. Let C′ ⊂ C be the full subcategory of objects U such that I|U is generated
by finitely many sections. Then C′ → C is a special cocontinuous functor (Sites,
Definition 7.28.2). Hence it suffices to work with C′, see Sites, Lemma 7.28.1. in
other words we may assume that for every object U of C there exists a finitely
generated ideal I ⊂ I(U) such that I|U = Im(I ⊗OU → OU ). We will say that I
generates I|U . Warning: We do not know that I(U) is a finitely generated ideal in
O(U).

Let U be an object and I ⊂ O(U) a finitely generated ideal which generates I|U .
On the category C/U consider the complex of presheaves

K•U,I : U ′/U 7−→ K(O(U ′), IO(U ′))

http://stacks.math.columbia.edu/tag/099E
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with K(−,−) as in Lemma 46.14.10. We claim that the sheafification of this is
independent of the choice of I. Indeed, if I ′ ⊂ O(U) is a finitely generated ideal
which also generates I|U , then there exists a covering {Uj → U} such that IO(Uj) =
I ′O(Uj). (Hint: this works because both I and I ′ are finitely generated and generate
I|U .) Hence K•U,I and K•U,I′ are the same for any object lying over one of the Uj .
The statement on sheafifications follows. Denote K•U the common value.

The independence of choice of I also shows that K•U |C/U ′ = K•U ′ whenever we are
given a morphism U ′ → U and hence a localization morphism C/U ′ → C/U . Thus
the complexes K•U glue to give a single well defined complex K• of O-modules.
The existence of the map K• → O and the quasi-isomorphism of the lemma follow
immediately from the corresponding properties of the complexes K(−,−) in Lemma
46.14.10. �

Proposition 46.14.12. Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf
of ideals. There exists a left adjoint to the inclusion functor Dcomp(O)→ D(O).

Proof. Let K → O in D(O) be as constructed in Lemma 46.14.11. Let E ∈ D(O).
Then E∧ = RHom(K,E) together with the map E → E∧ will do the job. Namely,
locally on the site C we recover the adjoint of Lemma 46.14.8. This shows that E∧

is always derived complete and that E → E∧ is an isomorphism if E is derived
complete. �

Remark 46.14.13 (Localization and derived completion). Let (C,O) be a ringed
site. Let I ⊂ O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived comple-
tion functor of Proposition 46.14.12. It follows from the construction in the proof
of the proposition that K∧|U is the derived completion of K|U for any U ∈ Ob(C).
But we can also prove this as follows. From the definition of derived complete
objects it follows that K∧|U is derived complete. Thus we obtain a canonical map
a : (K|U )∧ → K∧|U . On the other hand, if E is a derived complete object of
D(OU ), then Rj∗E is a derived complete object of D(O) by Lemma 46.14.7. Here
j is the localization morphism (Modules on Sites, Section 18.19). Hence we also
obtain a canonical map b : K∧ → Rj∗((K|U )∧). We omit the (formal) verification
that the adjoint of b is the inverse of a.

Remark 46.14.14 (Completed tensor product). Let (C,O) be a ringed site. Let
I ⊂ O be a finite type sheaf of ideals. Denote K 7→ K∧ the adjoint of Proposition
46.14.12. Then we set

K ⊗∧O L = (K ⊗L
O L)∧

This completed tensor product defines a functor Dcomp(O)×Dcomp(O)→ Dcomp(O)
such that we have

HomDcomp(O)(K,RHomO(L,M)) = HomDcomp(O)(K ⊗∧O L,M)

for K,L,M ∈ Dcomp(O). Note that RHomO(L,M) ∈ Dcomp(O) by Lemma
46.14.5.

Lemma 46.14.15. Let C be a site. Assume ϕ : O → O′ is a flat homomorphism of
sheaves of rings. Let f1, . . . , fr be global sections of O such that O/(f1, . . . , fr) ∼=

http://stacks.math.columbia.edu/tag/099F
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O′/(f1, . . . , fr). Then the map of extended alternating Čech complexes

O →
∏
i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr

��
O′ →

∏
i0
O′fi0 →

∏
i0<i1

O′fi0fi1 → . . .→ O′f1...fr

is a quasi-isomorphism.

Proof. Observe that the second complex is the tensor product of the first complex
with O′. We can write the first extended alternating Čech complex as a colimit
of the Koszul complexes Kn = K(O, fn1 , . . . , fnr ), see More on Algebra, Lemma
15.20.13. Hence it suffices to prove Kn → Kn ⊗O O′ is a quasi-isomorphism. Since
O → O′ is flat it suffices to show that Hi → Hi ⊗O O′ is an isomorphism where
Hi is the ith cohomology sheaf Hi = Hi(Kn). These sheaves are annihilated by
fn1 , . . . , f

n
r , see More on Algebra, Lemma 15.20.6. Thus it suffices to show that

O/(fn1 , . . . , fnr ) → O′/(fn1 , . . . , fnr ) is an isomorphism. Equivalently, we will show
that O/(f1, . . . , fr)

n → O′/(f1, . . . , fr)
n is an isomorphism for all n. This holds

for n = 1 by assumption. It follows for all n by induction using Modules on Sites,
Lemma 18.28.13 applied to the ring map O/(f1, . . . , fr)

n+1 → O/(f1, . . . , fr)
n and

the module O′/(f1, . . . , fr)
n+1. �

Lemma 46.14.16. Let C be a site with enough points. Let O → O′ be a homo-
morphism of sheaves of rings. Let I ⊂ O be a finite type sheaf of ideals. If O → O′
is flat and O/I ∼= O′/IO′, then the restriction functor D(O′)→ D(O) induces an
equivalence Dcomp(O′, IO′)→ Dcomp(O, I).

Proof. Let K → O be the morphism of D(O) constructed in Lemma 46.14.11. Set
K ′ = K ⊗O O′. Then K ′ → O′ is a map in D(O′) satisfying the same condition
with respect to I ′ = IO′. The map K → K ′ is a quasi-isomorphism by Lemma
46.14.15. Now, let E ∈ Dcomp(O, I). By the proof of Proposition 46.14.12 we have
the first equality in

E = RHomO(K,E) = RHomO(K ′, E)

Since K ′ is a complex of O′ modules, this shows that E is the image of some
E′ ∈ D(O′). By Lemma 46.14.6 we have E′ ∈ Dcomp(O′). Thus the functor is
essentially surjective. In fact the functor E 7→ RHomO(K ′, E) is a quasi-inverse to
the restriction functor. The formula above shows this in one direction. The other
direction hinges on the fact that for E′ ∈ Dcomp(O′) the map

RHomO(K ′, E′)→ RHomO(O′, E′)

is an isomorphism in D(O′) for both O′-module structures and the existence of a
map E′ → RHomO(O′, E′) which is O′-linear for both O′-module structures on
the target. Details omitted. �

Lemma 46.14.17. Let f : (Sh(D),O′)→ (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O and I ′ ⊂ O′ be finite type sheaves of ideals such that f ] sends f−1I into
I ′. Then Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I) and has a left adjoint Lf∗comp
which is Lf∗ followed by derived completion.

http://stacks.math.columbia.edu/tag/099I
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Proof. The first statement we have seen in Lemma 46.14.7. Note that the sec-
ond statement makes sense as we have a derived completion functor D(O′) →
Dcomp(O′, I ′) by Proposition 46.14.12. OK, so now let K ∈ Dcomp(O, I) and
M ∈ Dcomp(O′, I ′). Then we have

RHom(K,Rf∗M) = RHom(Lf∗K,M) = RHom(Lf∗compK,M)

by the universal property of derived completion. �

Lemma 46.14.18. Let f : (Sh(D),O′) → (Sh(C),O) be a morphism of ringed
topoi. Let I ⊂ O be a finite type sheaf of ideals. Let I ′ ⊂ O′ be the ideal gener-
ated by f ](f−1I). Then Rf∗ commutes with derived completion, i.e., Rf∗(K

∧) =
(Rf∗K)∧.

Proof. By Proposition 46.14.12 the derived completion functors exist. By Lemma
46.14.7 the object Rf∗(K

∧) is derived complete, and hence we obtain a canonical
map (Rf∗K)∧ → Rf∗(K

∧) by the universal property of derived completion. We
may check this map is an isomorphism locally on C. Thus, since derived completion
commutes with localization (Remark 46.14.13) we may assume that I is generated
by global sections f1, . . . , fr. Then I ′ is generated by gi = f ](fi). By Lemma
46.14.9 we have to prove that

R lim
(
Rf∗K ⊗L

O K(O, fn1 , . . . , fnr )
)

= Rf∗
(
R limK ⊗L

O′ K(O′, gn1 , . . . , gnr )
)

Because Rf∗ commutes with R lim (Cohomology on Sites, Lemma 21.21.2) it suffices
to prove that

Rf∗K ⊗L
O K(O, fn1 , . . . , fnr ) = Rf∗

(
K ⊗L

O′ K(O′, gn1 , . . . , gnr )
)

This follows from the projection formula (Cohomology on Sites, Lemma 21.37.1)
and the fact that Lf∗K(O, fn1 , . . . , fnr ) = K(O′, gn1 , . . . , gnr ). �

46.15. Application to theorem on formal functions

We interrupt the flow of the exposition to talk a little bit about derived completion
in the setting of quasi-coherent modules on schemes and to use this to give a
somewhat different proof of the theorem on formal functions. We give some pointers
to the literature in Remark 46.15.5.

Lemma 46.14.18 is a (very formal) derived version of the theorem on formal func-
tions (Cohomology of Schemes, Theorem 29.18.5). To make this more explicit,
suppose f : X → S is a morphism of schemes, I ⊂ OS is a quasi-coherent sheaf of
ideals, and F is a quasi-coherent sheaf on X. Then the lemma says that

(46.15.0.1) Rf∗(F∧) = (Rf∗F)∧

where F∧ is the derived completion of F with respect to f−1I · OX and the right
hand side is the derived completion of F with respect to I. To see that this gives
back the theorem on formal functions we have to do a bit of work. (We will work
out what it means in the setting of the usual theorem on formal functions, but dear
reader, we encourage you to try and discover new variants of the theorem on formal
functions by using this in other cases.)

Lemma 46.15.1. Let X be a scheme. Let (Kn) be an inverse system of DQCoh(OX)
such that the maps Hq(Kn+1) → Hq(Kn) are surjective for all q ∈ Z and n ≥ 1.
Then the derived limit K = R limKn in D(OX) has cohomology sheaves Hq(K) =
limHq(Kn). Moreover, R limHq(Kn) = limHq(Kn).

http://stacks.math.columbia.edu/tag/0A0G
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Proof. This follows from Cohomology on Sites, Lemma 21.22.5. Namely, let B be
the set of affine opens of XZar. The required vanishing follows from Cohomology
of Schemes, Lemma 29.2.2 and the vanishing of R1 lim because the transition maps
H0(U,Hq(Kn+1)) → H0(U,Hq(Kn)) are surjective for affine open subschemes of
X by Schemes, Lemma 25.7.5. �

Lemma 46.15.2. Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals.

(1) A coherent OX-module F has derived completion F∧ equal to limF/InF .
(2) A pseudo-coherent object K of D(OX) has derived completion K∧ with

cohomology sheaves Hq(K∧) equal to Hq(K)∧.

Proof. Proof of (1). Since derived completion commutes with localization (Remark

46.14.13) we may assume X = Spec(A) and I = Ĩ for an ideal I ⊂ A. Say I =
(f1, . . . , fr). Let Kn = K(A, fn1 , . . . , f

n
r ) be the Koszul complex. By Lemma 46.14.9

the derived completion of F is given by R limF ⊗A Kn. Let U = Spec(B) ⊂ X be
an affine open. Since RΓ(U,−) commutes with R lim (Injectives, Lemma 19.13.6)
we see that

RΓ(U,F∧) = R limF(U)⊗A Kn

This is the derived completion of F(U) with respect to IB by More on Algebra,
Lemma 15.64.16 and the fact that Kn ⊗A B = K(B, fn1 , . . . , f

n
r ). By More on

Algebra, Lemma 15.64.20 we conclude that RΓ(U,F∧) has vanishing cohomology
in degrees different from 0 and H0(U,F∧) is the completion of F(U) in degree 0.
Since the affine opens form a basis for the topology, the lemma follows.

Part (2) can either be proved in exactly the same manner as part (1) or it can be
deduced from part (1) using the derived completion is an exact functor between
triangulated categories. Details omitted. �

Lemma 46.15.3. Let S = Spec(A) be an affine Noetherian scheme. Let I ⊂ A be
an ideal and let I ⊂ OS be the corresponding quasi-coherent sheaf of ideals. Let K
be a pseudo-coherent object of D(OS) with derived completion K∧. Then

Hp(S,K∧) = Hp(S,K)∧ = limHp(S,K)/InHp(S,K)

Proof. Follows from Lemma 46.15.2 and the fact that RΓ(S,−) commutes with
derived limits. Alternately one could prove this by applying Lemma 46.14.18 to the
morphism of ringed spaces (S,OS) → (pt, A) and using More on Algebra, Lemma
15.64.20. �

Lemma 46.15.4. Let f : X → S be a morphism of Noetherian schemes with
S = Spec(A) affine. Let I ⊂ A be an ideal. Let F be a coherent OX-module.
Assume that Rf∗F is a bounded complex with coherent cohomology sheaves. Then
there are short exact sequences

0→ R1 limHp−1(X,F/InF)→ Hp(X,F)∧ → limHp(X,F/InF)→ 0

of A-modules. If f is proper, then the R1 lim term is zero.

Proof. We are going to prove this by working out what (46.15.0.1) means in this
setting. Let us apply Hp(−) to obtain

Hp(X,F∧) = Hp(S, (Rf∗F)∧)
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Lemma 46.15.3 tells us that the right hand side is equal to

Hp(S,Rf∗F)∧ = Hp(X,F)∧ = limHp(X,F/InF).

On the other hand, Lemmas 46.15.2 and 46.15.1 tell us that F∧ = limF/InF =
R limF/InF . Since RΓ(X,−) commutes with derived limits we obtain for LHS

Hp(X,F∧) = Hp(R limRΓ(X,F/InF))

By More on Algebra, Remark 15.61.16 we obtain exact sequences as in the state-
ment of the lemma. The vanishing of the R1 lim term follows from Cohomology of
Schemes, Lemma 29.18.4. �

Remark 46.15.5. Here are some references to discussions of related material the
literature. It seems that a “derived formal functions theorem” for proper maps goes
back to [Lur04, Theorem 6.3.1]. There is the discussion in [Lur11], especially
Chapter 4 which discusses the affine story, see More on Algebra, Section 15.64.
In [GR13, Section 2.9] one finds a discussion of proper base change and derived
completion using (ind) coherent modules. An analogue of (46.15.0.1) for complexes
of quasi-coherent modules can be found as [HLP14, Theorem 6.5]

46.16. Derived completion in the constant Noetherian case

Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Recall from
Modules on Sites, Lemma 18.41.4 that

Λ∧ = lim Λ/In

is a flat Λ-algebra and that the map Λ → Λ∧ identifies quotients by I. Hence
Lemma 46.14.16 tells us that

Dcomp(C,Λ) = Dcomp(C,Λ∧)

In particular the cohomology sheaves Hi(K) of an object K of Dcomp(C,Λ) are
sheaves of Λ∧-modules. For notational convenience we often work with Dcomp(C,Λ).

Lemma 46.16.1. Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. The left adjoint to the inclusion functor Dcomp(C,Λ) → D(C,Λ) of
Proposition 46.14.12 sends K to

K∧ = R lim(K ⊗L
Λ Λ/In)

In particular, K is derived complete if and only if K = R lim(K ⊗L
Λ Λ/In).

Proof. Choose generators f1, . . . , fr of I. By Lemma 46.14.9 we have

K∧ = R lim(K ⊗L
Λ Kn)

where Kn = K(Λ, fn1 , . . . , f
n
r ). In More on Algebra, Lemma 15.64.18 we have seen

that the pro-systems {Kn} and {Λ/In} of D(Λ) are isomorphic. Thus the lemma
follows. �

Lemma 46.16.2. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let f :
Sh(D)→ Sh(C) be a morphism of topoi. Then

(1) Rf∗ sends Dcomp(D,Λ) into Dcomp(C,Λ),
(2) the map Rf∗ : Dcomp(D,Λ) → Dcomp(C,Λ) has a left adjoint Lf∗comp :

Dcomp(C,Λ)→ Dcomp(D,Λ) which is Lf∗ followed by derived completion,
(3) Rf∗ commutes with derived completion,
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(4) for K in Dcomp(D,Λ) we have Rf∗K = R limRf∗(K ⊗L
Λ Λ/In).

(5) for M in Dcomp(C,Λ) we have Lf∗compM = R limLf∗(M ⊗L
Λ Λ/In).

Proof. We have seen (1) and (2) in Lemma 46.14.17. Part (3) follows from Lemma
46.14.18. For (4) let K be derived complete. Then

Rf∗K = Rf∗(R limK ⊗L
Λ Λ/In) = R limRf∗(K ⊗L

Λ Λ/In)

the first equality by Lemma 46.16.1 and the second because Rf∗ commutes with
R lim (Cohomology on Sites, Lemma 21.21.2). This proves (4). To prove (5), by
Lemma 46.16.1 we have

Lf∗compM = R lim(Lf∗M ⊗L
Λ Λ/In)

Since Lf∗ commutes with derived tensor product by Cohomology on Sites, Lemma
21.18.4 and since Lf∗Λ/In = Λ/In we get (5). �

46.17. Derived completion on the pro-étale site

Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Although
the general theory (see Sections 46.14 and 46.16) concerning Dcomp(C,Λ) is quite
satisfactory it is somewhat useless as it is hard to explicitly give examples of derived
complete complexes. We know that

(1) every object M of D(C,Λ/In) restricts to a derived complete object of
D(C,Λ), and

(2) for every K ∈ D(C,Λ) the derived completion K∧ = R lim(K ⊗L
Λ Λ/In)

is derived complete.

The first type of objects are trivially complete and perhaps not interesting. The
problem with (2) is that derived completion in general is somewhat mysterious, even
in case K = Λ. Namely, by definition of homotopy limits there is a distinguished
triangle

R lim(Λ/In)→
∏

Λ/In →
∏

Λ/In → R lim(Λ/In)[1]

in D(C,Λ) where the products are in D(C,Λ). These are computed by taking
products of injective resolutions (Injectives, Lemma 19.13.4), so we see that the
sheaf Hp(

∏
Λ/In) is the sheafification of the presheaf

U 7−→
∏

Hp(U,Λ/In).

As an explicit example, if X = Spec(C[t, t−1]), C = Xétale, Λ = Z, I = (2), and
p = 1, then we get the sheafification of the presheaf

U 7→
∏

H1(Uétale,Z/2
nZ)

for U étale over X. Note that H1(Xétale,Z/mZ) is cyclic of order m with generator

αm given by the finite étale Z/mZ-covering given by the equation t = sm (see Étale
Cohomology, Section 44.6). Then the section

α = (α2n) ∈
∏

H1(Xétale,Z/2
nZ)

of the presheaf above does not restrict to zero on any nonempty étale scheme over
X, whence the sheaf associated to the presheaf is not zero.

However, on the pro-étale site this phenomenon does not occur. The reason is
that we have enough (quasi-compact) weakly contractible objects. In the following
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proposition we collect some results about derived completion in the Noetherian con-
stant case for sites having enough weakly contractible objects (see Sites, Definition
7.39.2).

Proposition 46.17.1. Let C be a site. Assume C has enough weakly contractible
objects. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.

(1) The category of derived complete sheaves Λ-modules is a weak Serre sub-
category of Mod(C,Λ).

(2) A sheaf F of Λ-modules satisfies F = limF/InF if and only if F is
derived complete and

⋂
InF = 0.

(3) The sheaf Λ∧ is derived complete.
(4) If . . .→ F3 → F2 → F1 is an inverse system of derived complete sheaves

of Λ-modules, then limFn is derived complete.
(5) An object K ∈ D(C,Λ) is derived complete if and only if each cohomology

sheaf Hp(K) is derived complete.
(6) An object K ∈ Dcomp(C,Λ) is bounded above if and only if K ⊗L

Λ Λ/I is
bounded above.

(7) An object K ∈ Dcomp(C,Λ) is bounded if K ⊗L
Λ Λ/I has finite tor dimen-

sion.

Proof. Let B ⊂ Ob(C) be a subset such that every U ∈ B is weakly contractible
and every object of C has a covering by elements of B. We will use the results
of Cohomology on Sites, Lemma 21.38.1 and Proposition 21.38.2 without further
mention.

Recall that R lim commutes with RΓ(U,−), see Injectives, Lemma 19.13.6. Let
f ∈ I. Recall that T (K, f) is the homotopy limit of the system

. . .K
f−→ K

f−→ K

in D(C,Λ). Thus

RΓ(U, T (K, f)) = T (RΓ(U,K), f).

Since we can test isomorphisms of maps between objects of D(C,Λ) by evaluating
at U ∈ B we conclude an object K of D(C,Λ) is derived complete if and only if for
every U ∈ B the object RΓ(U,K) is derived complete as an object of D(Λ).

The remark above implies that items (1), (5) follow from the corresponding results
for modules over rings, see More on Algebra, Lemmas 15.64.1 and 15.64.6. In
the same way (2) can be deduced from More on Algebra, Proposition 15.64.5 as
(InF)(U) = In · F(U) for U ∈ B (by exactness of evaluating at U).

Proof of (4). The homotopy limit R limFn is in Dcomp(X,Λ) (see discussion fol-
lowing Definition 46.14.4). By part (5) just proved we conclude that limFn =
H0(R limFn) is derived complete. Part (3) is a special case of (4).

Proof of (6) and (7). Follows from Lemma 46.16.1 and Cohomology on Sites,
Lemma 21.35.8 and the computation of homotopy limits in Cohomology on Sites,
Proposition 21.38.2. �
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46.18. Comparison with the étale site

Let X be a scheme. With suitable choices of sites (as in Topologies, Remark 33.9.1)
the functor u : Xétale → Xpro-étale sending U/X to U/X defines a morphism of
sites

ε : Xpro-étale −→ Xétale

This follows from Sites, Proposition 7.15.6. A fundamental fact about this compar-
ison morphism is the following.

Lemma 46.18.1. Let X be a scheme. Let Y = limYi be an inverse limit of quasi-
compact and quasi-separated schemes étale over X with affine transition morphisms.
For any sheaf F on Xétale we have ε−1F(Y ) = colimF(Yi).

Proof. Let F = hU be a representable sheaf on Xétale with U an object of Xétale.
In this case ε−1hU = hu(U) where u(U) is U viewed as an object of Xpro-étale (Sites,
Lemma 7.14.5). Then

hu(U)(Y ) = MorX(Y,U) = colim MorX(Yi, U) = colimhU (Yi)

by Limits, Proposition 31.5.1. Hence the lemma holds for every representable sheaf.
Since every sheaf is a coequalizer of a map of coproducts of representable sheaves
(Sites, Lemma 7.13.5) we obtain the result in general. �

Lemma 46.18.2. Let X be a scheme. For every sheaf F on Xétale the adjunction
map F → ε∗ε

−1F is an isomorphism.

Proof. Suppose that U is a quasi-compact and quasi-separated scheme étale over
X. Then

ε∗ε
−1F(U) = ε−1F(U) = F(U)

the second equality by (a special case of) Lemma 46.18.1. Since every object of
Xétale has a covering by quasi-compact and quasi-separated objects we conclude.

�

Lemma 46.18.3. Let X be an affine scheme. For injective abelian sheaf I on
Xétale we have Hp(Xpro-étale, ε

−1I) = 0 for p > 0.

Proof. We are going to use Cohomology on Sites, Lemma 21.11.9 to prove this.
The idea is simple: We show that every standard pro-étale covering of X is a limit
of coverings in Xétale. If this holds then Lemma 46.18.1 will kick in to show the
Čech cohomology groups of ε−1I are colimits of those of I which are zero in positive
degree.

Here are the details. Let B ⊂ Ob(Xpro-étale) be the set of affine schemes U over
X such that O(X) → O(U) is ind-étale. Let Cov be the set of pro-étale coverings
{Ui → U}i=1,...,n with U,Ui ∈ B such that O(U) → O(Ui) is ind-étale for i =
1, . . . , n. Properties (1) and (2) of Cohomology on Sites, Lemma 21.11.9 hold for B
and Cov by Proposition 46.9.1 (it also follows from Lemma 46.11.10).

To check condition (3) suppose that {Ui → U}i=1,...,n is an element of Cov. Then
we can write Ui = lima∈Ai Ui,a with Ui,a → U étale and Ui,a affine. Next we write
U = limb∈B Ub with Ub affine and Ub → U étale. By Limits, Lemma 31.9.1 for each
i and a ∈ Ai we can choose a b(i, a) ∈ B and for all b ≥ b(i, a) an affine scheme
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Ui,a,b étale over Ub such that Ui,a = limb≥b(i,a) Ui,a,b
2. Moreover, any transition

map Ui,a → Ui,a′ comes from an essentially unique morphism Ui,a,b → Ui,a′,b for
b large enough (by the same reference). Finally, given a1 ∈ A1, . . . , an ∈ An the
morphism U1,a1

q . . . q Un,an → U is surjective, hence for b large enough the map
U1,a1,b q . . . q Un,an,b → Ub is surjective by Limits, Lemma 31.7.11. Let D be the
category of coverings {Ui,ai,b → Ub}i=1,...,n so obtained. This category is cofiltered.
We claim that, given i0, . . . , ip ∈ {1, . . . , n} we have

Ui0 ×U Ui1 ×U . . .×U Uip = limD Ui0,ai0 ,b ×Ub Ui1,ai1 ,b ×Ub . . .×Ub Uip,aip ,b
This is clear from the fact that it holds for p = −1 (i.e., U = limD Ub) and for p = 0
(i.e., Ui = limD Ui,ai,b) and the fact that fibre products commute with limits. Then
finally it follows from Lemma 46.18.1 that

Č•({Ui → U}, ε−1I) = colimDopp Č•({Ui,ai,b → Ub}, I)

Since each of the Čech complexes on the right hand side is acyclic in positive degrees
(Cohomology on Sites, Lemma 21.11.2) it follows that the one on the left is too.
This prove condition (3) of Cohomology on Sites, Lemma 21.11.9. Since X ∈ B the
lemma follows. �

Lemma 46.18.4. Let X be a scheme. For an abelian sheaf F on Xétale we have
Rε∗(ε

−1F) = F .

Proof. Let I be an injective abelian sheaf on Xétale. Recall that Rqε∗(ε
−1I) is the

sheaf associated to U 7→ Hq(Upro-étale, ε
−1I), see Cohomology on Sites, Lemma

21.8.4. By Lemma 46.18.3 we see that this is zero for q > 0 and U affine and
étale over X. Since every object of Xétale has a covering by affine objects, it
follows that Rqε∗(ε

−1I) = 0 for q > 0. Combined with Lemma 46.18.2 we conclude
that Rε∗ε

−1I = I for every injective abelian sheaf. Since every abelian sheaf has
a resolution by injective sheaves, the result follows. (Hint: use Leray acyclicity
theorem – Derived Categories, Lemma 13.17.7.) �

Lemma 46.18.5. Let X be a scheme. For an abelian sheaf F on Xétale we have

Hi(Xétale,F) = Hi(Xpro-étale, ε
−1F)

for all i.

Proof. Immediate consequence of Lemma 46.18.4 and the Leray spectral sequence
(Cohomology on Sites, Lemma 21.14.6). �

Lemma 46.18.6. Let X be a scheme. Let G be a sheaf of (possibly noncommuta-
tive) groups on Xétale. We have

H1(Xétale,G) = H1(Xpro-étale, ε
−1G)

where H1 is defined as the set of isomorphism classes of torsors (see Cohomology
on Sites, Section 21.5).

Proof. Since the functor ε−1 is fully faithful by Lemma 46.18.2 it is clear that
the map H1(Xétale,G) → H1(Xpro-étale, ε

−1G) is injective. To show surjectivity it
suffices to show that any ε−1G-torsor F is étale locally trivial. To do this we may
assume that X is affine. Thus we reduce to proving surjectivity for X affine.

2To be sure, we pick Ui,a,b = Ub ×Ub(i,a)
Ui,a,b(i,a) although this isn’t necessary for what

follows.
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Choose a covering {U → X} with (a) U affine, (b) O(X) → O(U) ind-étale,
and (c) F(U) nonempty. We can do this by Proposition 46.9.1 and the fact that
standard pro-étale coverings of X are cofinal among all pro-étale coverings of X
(Lemma 46.11.5). Write U = limUi as a limit of affine schemes étale over X. Pick
s ∈ F(U). Let g ∈ ε−1G(U ×X U) be the unique section such that g · pr∗1s = pr∗2s
in F(U ×X U). Then g satisfies the cocycle condition

pr∗12g · pr∗23g = pr∗13g

in ε−1G(U ×X U ×X U). By Lemma 46.18.1 we have

ε−1G(U ×X U) = colimG(Ui ×X Ui)

and

ε−1G(U ×X U ×X U) = colimG(Ui ×X Ui ×X Ui)

hence we can find an i and an element gi ∈ G(Ui) mapping to g satisfying the
cocycle condition. The cocycle gi then defines a torsor for G on Xétale whose
pullback is isomorphic to F by construction. Some details omitted (namely, the
relationship between torsors and 1-cocycles which should be added to the chapter
on cohomology on sites). �

Lemma 46.18.7. Let X be a scheme. Let Λ be a ring.

(1) The essential image of ε−1 : Mod(Xétale,Λ) → Mod(Xpro-étale,Λ) is a
weak Serre subcategory C.

(2) The functor ε−1 defines an equivalence of categories of D+(Xétale,Λ) with
D+
C (Xpro-étale,Λ).

Proof. To prove (1) we will prove conditions (1) – (4) of Homology, Lemma 12.9.3.
Since ε−1 is fully faithful (Lemma 46.18.2) and exact, everything is clear except for
condition (4). However, if

0→ ε−1F1 → G → ε−1F2 → 0

is a short exact sequence of sheaves of Λ-modules on Xpro-étale, then we get

0→ ε∗ε
−1F1 → ε∗G → ε∗ε

−1F2 → R1ε∗ε
−1F1

which by Lemma 46.18.4 is the same as a short exact sequence

0→ F1 → ε∗G → F2 → 0

Pulling pack we find that G = ε−1ε∗G. This proves (1).

By (1) and the discussion in Derived Categories, Section 13.13 we obtain a strictly
full, saturated, triangulated subcategory DC(Xpro-étale,Λ). It is clear that ε−1 maps
D(Xétale,Λ) into DC(Xpro-étale,Λ). If M is in D+(Xétale,Λ), then Lemma 46.18.4
shows that M → Rε∗ε

−1M is an isomorphism. If K is in D+
C (Xpro-étale,Λ), then

the spectral sequence

Rqε∗H
p(K)⇒ Hp+q(Rε∗K)

and the vanishing in Lemma 46.18.4 shows that Hp(Rε∗K) = Rε∗H
p(K). Since

ε is a flat morphism of ringed sites (ringed by the constant sheaf Λ) we see that
ε−1Rε∗K has cohomology sheaves ε−1Rε∗H

p(K). Since we’ve assumed Hp(K) is in
C we conclude by Lemma 46.18.4 once more that ε−1Rε∗K → K is an isomorphism.
In this way we see that ε−1 and Rε∗ are quasi-inverse functors proving (2). �
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Let Λ be a ring. In Modules on Sites, Section 18.42 we have defined the notion of
a locally constant sheaf of Λ-modules on a site. If M is a Λ-module, then M is of
finite presentation as a sheaf of Λ-modules if and only if M is a finitely presented
Λ-module, see Modules on Sites, Lemma 18.41.5.

Lemma 46.18.8. Let X be a scheme. Let Λ be a ring. The functor ε−1 defines
an equivalence of categorieslocally constant sheaves

of Λ-modules on Xétale

of finite presentation

←→
 locally constant sheaves

of Λ-modules on Xpro-étale

of finite presentation


Proof. Let F be a locally constant sheaf of Λ-modules on Xpro-étale of finite pre-
sentation. Choose a pro-étale covering {Ui → X} such that F|Ui is constant, say
F|Ui ∼= MiUi

. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For

each Λ-module M let IM = {i ∈ I | Mi
∼= M}. As pro-étale coverings are fpqc

coverings and by Descent, Lemma 34.9.2 we see that UM =
⋃
i∈IM Im(Ui → X) is

an open subset of X. Then X =
∐
UM is a disjoint open covering of X. We may

replace X by UM for some M and assume that Mi = M for all i.

Consider the sheaf I = Isom(M,F). This sheaf is a torsor for G = Isom(M,M).
By Modules on Sites, Lemma 18.42.4 we have G = G where G = IsomΛ(M,M).
Since torsors for the étale topology and the pro-étale topology agree by Lemma
46.18.6 it follows that I has sections étale locally on X. Thus F is étale locally a
constant sheaf which is what we had to show. �

Lemma 46.18.9. Let X be a scheme. Let Λ be a Noetherian ring. Let Dflc(Xétale,Λ),
resp. Dflc(Xpro-étale,Λ) be the full subcategory of D(Xétale,Λ), resp. D(Xpro-étale,Λ)
consisting of those complexes whose cohomology sheaves are locally constant sheaves
of Λ-modules of finite type. Then

ε−1 : D+
flc(Xétale,Λ) −→ D+

flc(Xpro-étale,Λ)

is an equivalence of categories.

Proof. The categories Dflc(Xétale,Λ) and Dflc(Xpro-étale,Λ) are strictly full, sat-
urated, triangulated subcategories of D(Xétale,Λ) and D(Xpro-étale,Λ) by Modules
on Sites, Lemma 18.42.5 and Derived Categories, Section 13.13 The statement of
the lemma follows by combining Lemmas 46.18.7 and 46.18.8. �

Lemma 46.18.10. Let X be a scheme. Let Λ be a Noetherian ring. Let K be an
object of D(Xpro-étale,Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is

(1) in the essential image of ε−1 : D(Xétale,Λ/I)→ D(Xpro-étale,Λ/I), and
(2) has tor amplitude in [a,∞) for some a ∈ Z,

then (1) and (2) hold for Kn as an object of D(Xpro-étale,Λ/I
n).

Proof. For assertion (2) this follows from the more general Cohomology on Sites,
Lemma 21.35.8. The second assertion follows from the fact that the essential image
of ε−1 is a triangulated subcategory of D+(Xpro-étale,Λ/I

n) (Lemma 46.18.7), the
distinguished triangles

K ⊗L
Λ I

n/In+1 → Kn+1 → Kn → K ⊗L
Λ I

n/In+1[1]

and the isomorphism

K ⊗L
Λ I

n/In+1 = K1 ⊗L
Λ/I I

n/In+1
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�

46.19. Cohomology of a point

Let Λ be a Noetherian ring complete with respect to an ideal I ⊂ Λ. Let k be a
field. In this section we “compute”

Hi(Spec(k)pro-étale,Λ
∧)

where Λ∧ = lim Λ/In as before. Let ksep be a separable algebraic closure of k.
Then

U = {Spec(ksep)→ Spec(k)}
is a pro-étale covering of Spec(k). We will use the Čech to cohomology spectral
sequence with respect to this covering. Set U0 = Spec(ksep) and

Un = Spec(ksep)×Spec(k) Spec(ksep)×Spec(k) . . .×Spec(k) Spec(ksep)

= Spec(ksep ⊗k ksep ⊗k . . .⊗k ksep)

(n+ 1 factors). Note that the underlying topological space |U0| of U0 is a singleton
and for n ≥ 1 we have

|Un| = G× . . .×G (n factors)

as profinite spaces where G = Gal(ksep/k). Namely, every point of Un has residue
field ksep and we identify (σ1, . . . , σn) with the point corresponding to the surjection

ksep ⊗k ksep ⊗k . . .⊗k ksep −→ ksep, λ0 ⊗ λ1 ⊗ . . . λn 7−→ λ0σ1(λ1) . . . σn(λn)

Then we compute

RΓ((Un)pro-étale,Λ
∧) = R limRΓ((Un)pro-étale,Λ/I

n)

= R limRΓ((Un)étale,Λ/I
n)

= limH0(Un,Λ/I
n)

= Mapscont(G× . . .×G,Λ)

The first equality because RΓ commutes with derived limits and as Λ∧ is the de-
rived limit of the sheaves Λ/In by Proposition 46.17.1. The second equality by

Lemma 46.18.5. The third equality by Étale Cohomology, Lemma 44.55.7. The
fourth equality uses Étale Cohomology, Remark 44.23.2 to identify sections of the
constant sheaf Λ/In. Then it uses the fact that Λ is complete with respect to I and

hence equal to lim Λ/In as a topological space, to see that lim Mapcont(G,Λ/I
n) =

Mapcont(G,Λ) and similarly for higher powers of G. At this point Cohomology on
Sites, Lemmas 21.11.3 and 21.11.7 tell us that

Λ→ Mapscont(G,Λ)→ Mapscont(G×G,Λ)→ . . .

computes the pro-étale cohomology. In other words, we see that

Hi(Spec(k)pro-étale,Λ
∧) = Hi

cont(G,Λ)

where the right hand side is continuous cohomology as defined by Tate in [Tat76].
Of course, this is as it should be.

Lemma 46.19.1. Let k be a field. Let G = Gal(ksep/k) be its absolute Galois
group. Further,

(1) let M be a profinite abelian group with a continuous G-action, or
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(2) let Λ be a Noetherian ring and I ⊂ Λ an ideal an let M be an I-adically
complete Λ-module with continuous G-action.

Then there is a canonical sheaf M∧ on Spec(k)pro-étale associated to M such that

Hi(Spec(k),M∧) = Hi
cont(G,M)

as abelian groups or Λ-modules.

Proof. Proof in case (2). Set Mn = M/InM . Then M = limMn as M is assumed
I-adically complete. Since the action of G is continuous we get continuous ac-
tions of G on Mn. By Étale Cohomology, Theorem 44.57.3 this action corresponds
to a (locally constant) sheaf Mn of Λ/In-modules on Spec(k)étale. Pull back to
Spec(k)pro-étale by the comparison morphism ε and take the limit

M∧ = lim ε−1Mn

to get the sheaf promised in the lemma. Exactly the same argument as given in
the introduction of this section gives the comparison with Tate’s continuous Galois
cohomology. �

46.20. Weakly contractible hypercoverings

Let X be a scheme. For every object U ∈ Ob(Xpro-étale) there exists a cover-
ing {V → U} of Xpro-étale with V weakly contractible. This follows from Lemma
46.11.10 and the elementary fact that a disjoint union of weakly contractible ob-
jects in Xpro-étale is weakly contractible (discussion of set theoretic issues omitted).
This observation leads to the existence of hypercoverings made up out weakly con-
tractible objects.

Lemma 46.20.1. Let X be a scheme.

(1) For every object U of Xpro-étale there exists a hypercovering K of U in
Xpro-étale such that each term Kn consists of a single weakly contractible
object of Xpro-étale covering U .

(2) For every quasi-compact and quasi-separated object U of Xpro-étale there
exists a hypercovering K of U in Xpro-étale such that each term Kn consists
of a single affine and weakly contractible object of Xpro-étale covering U .

Proof. Let B ⊂ Ob(Xpro-étale) be the set of weakly contractible objects ofXpro-étale.
We have seen above that every object of Xpro-étale has a covering by an element of
B. Apply Hypercoverings, Lemma 24.11.1 to get (1).

Let Xqcqs,pro-étale ⊂ Xpro-étale be the full subcategory consisting of quasi-compact
and quasi-separated objects. Note that Xqcqs,pro-étale is preserved under fibre
products. A covering of Xqcqs,pro-étale will be a finite pro-étale covering. Then
Xqcqs,pro-étale → Xpro-étale is a special cocontinuous functor hence Xqcqs,pro-étale de-
fines the same topos as Xpro-étale. Details omitted; see Sites, Definition 7.28.2 and
Lemma 7.28.1. In particular, if K is a hypercovering of an object U in Xqcqs,pro-étale

then K is a hypercovering of Xpro-étale. Let B ⊂ Ob(Xqcqs,pro-étale) be the set of
affine and weakly contractible objects. By Lemma 46.11.10 and the fact that finite
unions of affines are affine, for every object U of Xqcqs,pro-étale there exists a cover-
ing {V → U} of Xqcqs,pro-étale with V ∈ B. Apply Hypercoverings, Lemma 24.11.1
to get (2). �

http://stacks.math.columbia.edu/tag/09A1


46.20. WEAKLY CONTRACTIBLE HYPERCOVERINGS 3071

In the following lemma we use the Čech complex F(K) associated to a hypercov-
ering K in a site. See Hypercoverings, Section 24.4. If K is a hypercovering of U
and Kn = {Un → U}, then the Čech complex looks like this:

F(K) = (F(U0)→ F(U1)→ F(U2)→ . . .)

Lemma 46.20.2. Let X be a scheme. Let E ∈ D+(Xpro-étale) be represented
by a bounded below complex E• of abelian sheaves. Let K be a hypercovering of
U ∈ Ob(Xpro-étale) with Kn = {Un → U} where Un is a weakly contractible object
of Xpro-étale. Then

RΓ(U,E) = Tot(E•(K))

in D(Ab).

Proof. If E = E [n] is the object associated to a single abelian sheaf on Xpro-étale,
then the spectral sequence of Hypercoverings, Lemma 24.4.3 implies that

RΓ(Xpro-étale, E) = E(K)

because the higher cohomology groups of any sheaf over Un vanish, see Cohomology
on Sites, Lemma 21.38.1.

If E• is bounded below, then we can choose an injective resolution E• → I• and
consider the map of complexes

Tot(E•(K)) −→ Tot(I•(K))

For every n the map E•(Un) → I•(Un) is a quasi-isomorphism because taking
sections over Un is exact. Hence the displayed map is a quasi-isomorphism by one
of the spectral sequences of Homology, Lemma 12.22.6. Using the result of the first
paragraph we see that for every p the complex Ip(K) is acyclic in degrees n > 0
and computes Ip(U) in degree 0. Thus the other spectral sequence of Homology,
Lemma 12.22.6 shows Tot(I•(K)) computes RΓ(U,E) = I•(U). �

Lemma 46.20.3. Let X be a quasi-compact and quasi-separated scheme. The func-
tor RΓ(X,−) : D+(Xpro-étale)→ D(Ab) commutes with direct sums and homotopy
colimits.

Proof. The statement means the following: Suppose we have a family of ob-
jects Ei of D+(Xpro-étale) such that

⊕
Ei is an object of D+(Xpro-étale). Then

RΓ(X,
⊕
Ei) =

⊕
RΓ(X,Ei). To see this choose a hypercovering K of X with

Kn = {Un → X} where Un is an affine and weakly contractible scheme, see Lemma
46.20.1. Let N be an integer such that Hp(Ei) = 0 for p < N . Choose a complex
of abelian sheaves E•i representing Ei with Epi = 0 for p < N . The termwise direct
sum

⊕
E•i represents

⊕
Ei in D(Xpro-étale), see Injectives, Lemma 19.13.4. By

Lemma 46.20.2 we have

RΓ(X,
⊕

Ei) = Tot((
⊕
E•i )(K))

and
RΓ(X,Ei) = Tot(E•i (K))

Since each Un is quasi-compact we see that

Tot((
⊕
E•i )(K)) =

⊕
Tot(E•i (K))

by Modules on Sites, Lemma 18.29.2. The statement on homotopy colimits is a
formal consequence of the fact that RΓ is an exact functor of triangulated categories
and the fact (just proved) that it commutes with direct sums. �
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Remark 46.20.4. Let X be a scheme. Because Xpro-étale has enough weakly
contractible objects for all K in D(Xpro-étale) we have K = R lim τ≥−nK by Coho-
mology on Sites, Proposition 21.38.2. Since RΓ commutes with R lim by Injectives,
Lemma 19.13.6 we see that

RΓ(X,K) = R limRΓ(X, τ≥−nK)

in D(Ab). This will allows us to extend some results from bounded below complexes
to all complexes.

46.21. Functoriality of the pro-étale site

Let f : X → Y be a morphism of schemes. The functor Ypro-étale → Xpro-étale,
V 7→ X ×Y V induces a morphism of sites fpro-étale : Xpro-étale → Ypro-étale, see
Sites, Proposition 7.15.6. In fact, we obtain a commutative diagram of morphisms
of sites

Xpro-étale ε
//

fpro-étale

��

Xétale

fétale

��
Ypro-étale

ε // Yétale

where ε is as in Section 46.18. In particular we have ε−1f−1
étale = f−1

pro-étaleε
−1. Here

is the corresponding result for pushforward.

Lemma 46.21.1. Let f : X → Y be a morphism of schemes.

(1) Let F be a sheaf of sets on Xétale. Then we have fpro-étale,∗ε
−1F =

ε−1fétale,∗F .
(2) Let F be an abelian sheaf on Xétale. Then we have Rfpro-étale,∗ε

−1F =
ε−1Rfétale,∗F .

Proof. Proof of (1). Let F be a sheaf of sets on Xétale. There is a canonical
map ε−1fétale,∗F → fpro-étale,∗ε

−1F , see Sites, Section 7.44. To show it is an
isomorphism we may work (Zariski) locally on Y , hence we may assume Y is affine.
In this case every object of Ypro-étale has a covering by objects V = limVi which
are limits of affine schemes Vi étale over Y (by Proposition 46.9.1 for example).
Evaluating the map ε−1fétale,∗F → fpro-étale,∗ε

−1F on V we obtain a map

colim Γ(X ×Y Vi,F) −→ Γ(X ×Y V, ε∗F).

see Lemma 46.18.1 for the left hand side. By Lemma 46.18.1 we have

Γ(X ×Y V, ε∗F) = Γ(X ×Y V,F)

Hence the result holds by Étale Cohomology, Lemma 44.52.3.

Proof of (2). Arguing in exactly the same manner as above we see that it suffices
to show that

colimHi
étale(X ×Y Vi,F) −→ Hi

étale(X ×Y V,F)

which follows once more from Étale Cohomology, Lemma 44.52.3. �
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46.22. Finite morphisms and pro-étale sites

It is not clear that a finite morphism of schemes determines an exact pushforward
on abelian pro-étale sheaves.

Lemma 46.22.1. Let f : Z → X be a finite morphism of schemes which is locally
of finite presentation. Then fpro-étale,∗ : Ab(Zpro-étale)→ Ab(Xpro-étale) is exact.

Proof. The prove this we may work (Zariski) locally on X and assume that X
is affine, say X = Spec(A). Then Z = Spec(B) for some finite A-algebra B of
finite presentation. The construction in the proof of Proposition 46.10.3 produces
a faithfully flat, ind-étale ring map A → D with D w-contractible. We may check
exactness of a sequence of sheaves by evaluating on U = Spec(D) be such an object.
Then fpro-étale,∗F evaluated at U is equal to F evaluated at V = Spec(D ⊗A B).
Since D ⊗A B is w-contractible by Lemma 46.10.6 evaluation at V is exact. �

46.23. Closed immersions and pro-étale sites

It is not clear (and likely false) that a closed immersion of schemes determines an
exact pushforward on abelian pro-étale sheaves.

Lemma 46.23.1. Let i : Z → X be a closed immersion morphism of affine
schemes. Denote Xapp and Zapp the sites introduced in Lemma 46.11.24. The
base change functor

u : Xapp → Zapp, U 7−→ u(U) = U ×X Z

is continuous and has a fully faithful left adjoint v. For V in Zapp the morphism
V → v(V ) is a closed immersion identifying V with u(v(V )) = v(V ) ×X Z and
every point of v(V ) specializes to a point of V . The functor v is cocontinuous and
sends coverings to coverings.

Proof. The existence of the adjoint follows immediately from Lemma 46.7.7 and
the definitions. It is clear that u is continuous from the definition of coverings in
Xapp.

Write X = Spec(A) and Z = Spec(A/I). Let V = Spec(C) be an object of Zapp
and let v(V ) = Spec(C). We have seen in the statement of Lemma 46.7.7 that
V equals v(V ) ×X Z = Spec(C/IC). Any g ∈ C which maps to an invertible
element of C/IC = C is invertible in C. Namely, we have the A-algebra maps
C → Cg → C/IC and by adjointness we obtain an C-algebra map Cg → C. Thus
every point of v(V ) specializes to a point of V .

Suppose that {Vi → V } is a covering in Zapp. Then {v(Vi) → v(V )} is a finite
family of morphisms of Zapp such that every point of V ⊂ v(V ) is in the image
of one of the maps v(Vi) → v(V ). As the morphisms v(Vi) → v(V ) are flat (since
they are weakly étale) we conclude that {v(Vi)→ v(V )} is jointly surjective. This
proves that v sends coverings to coverings.

Let V be an object of Zapp and let {Ui → v(V )} be a covering in Xapp. Then we
see that {u(Ui) → u(v(V )) = V } is a covering of Zapp. By adjointness we obtain
morphisms v(u(Ui)) → Ui. Thus the family {v(u(Ui)) → v(V )} refines the given
covering and we conclude that v is cocontinuous. �
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Lemma 46.23.2. Let Z → X be a closed immersion morphism of affine schemes.
The corresponding morphism of topoi i = ipro-étale is equal to the morphism of topoi
associated to the fully faithful cocontinuous functor v : Zapp → Xapp of Lemma
46.23.1. It follows that

(1) i−1F is the sheaf associated to the presheaf V 7→ F(v(V )),
(2) for a weakly contractible object V of Zapp we have i−1F(V ) = F(v(V )),
(3) i−1 : Sh(Xpro-étale)→ Sh(Zpro-étale) has a left adjoint iSh! ,
(4) i−1 : Ab(Xpro-étale)→ Ab(Zpro-étale) has a left adjoint i!,
(5) id→ i−1iSh! , id→ i−1i!, and i−1i∗ → id are isomorphisms, and
(6) i∗, i

Sh
! and i! are fully faithful.

Proof. By Lemma 46.11.24 we may describe ipro-étale in terms of the morphism
of sites u : Xapp → Zapp, V 7→ V ×X Z. The first statement of the lemma follows
from Sites, Lemma 7.21.2 (but with the roles of u and v reversed).

Proof of (1). By the description of i as the morphism of topoi associated to v this
holds by the construction, see Sites, Lemma 7.20.1.

Proof of (2). Since the functor v sends coverings to coverings by Lemma 46.23.1 we
see that the presheaf G : V 7→ F(v(V )) is a separated presheaf (Sites, Definition
7.10.9). Hence the sheafification of G is G+, see Sites, Theorem 7.10.10. Next, let V
be a weakly contractible object of Zapp. Let V = {Vi → V }i=1,...,n be any covering
in Zapp. Set V ′ = {

∐
Vi → V }. Since v commutes with finite disjoint unions (as

a left adjoint or by the construction) and since F sends finite disjoint unions into
products, we see that

H0(V,G) = H0(V ′,G)

(notation as in Sites, Section 7.10; compare with Étale Cohomology, Lemma 44.22.1).
Thus we may assume the covering is given by a single morphism, like so {V ′ → V }.
Since V is weakly contractible, this covering can be refined by the trivial covering
{V → V }. It therefore follows that the value of G+ = i−1F on V is simply F(v(V ))
and (2) is proved.

Proof of (3). Every object of Zapp has a covering by weakly contractible objects
(Lemma 46.11.27). By the above we see that we would have iSh! hV = hv(V ) for

V weakly contractible if iSh! existed. The existence of iSh! then follows from Sites,
Lemma 7.23.1.

Proof of (4). Existence of i! follows in the same way by setting i!ZV = Zv(V ) for V
weakly contractible in Zapp, using similar for direct sums, and applying Homology,
Lemma 12.25.6. Details omitted.

Proof of (5). Let V be a contractible object of Zapp. Then i−1iSh! hV = i−1hv(V ) =

hu(v(V )) = hV . (It is a general fact that i−1hU = hu(U).) Since the sheaves hV for V

contractible generate Sh(Zapp) (Sites, Lemma 7.13.5) we conclude id→ i−1iSh! is an
isomorphism. Similarly for the map id→ i−1i!. Then (i−1i∗H)(V ) = i∗H(v(V )) =
H(u(v(V ))) = H(V ) and we find that i−1i∗ → id is an isomorphism.

The fully faithfulness statements of (6) now follow from Categories, Lemma 4.24.3.
�

Lemma 46.23.3. Let i : Z → X be a closed immersion of schemes. Then

(1) i−1
pro-étale commutes with limits,
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(2) ipro-étale,∗ is fully faithful, and

(3) i−1
pro-étaleipro-étale,∗

∼= idSh(Zpro-étale).

Proof. Assertions (2) and (3) are equivalent by Sites, Lemma 7.40.1. Parts (1)
and (3) are (Zariski) local on X, hence we may assume that X is affine. In this
case the result follows from Lemma 46.23.2. �

Lemma 46.23.4. Let i : Z → X be an integral universally injective and surjective
morphism of schemes. Then ipro-étale,∗ and i−1

pro-étale are quasi-inverse equivalences
of categories of pro-étale topoi.

Proof. There is an immediate reduction to the case that X is affine. Then Z is
affine too. Set A = O(X) and B = O(Z). Then the categories of étale algebras

over A and B are equivalent, see Étale Cohomology, Theorem 44.46.1 and Remark
44.46.2. Thus the categories of ind-étale algebras over A and B are equivalent. In
other words the categories Xapp and Zapp of Lemma 46.11.24 are equivalent. We
omit the verification that this equivalence sends coverings to coverings and vice
versa. Thus the result as Lemma 46.11.24 tells us the pro-étale topos is the topos
of sheaves on Xapp. �

Lemma 46.23.5. Let i : Z → X be a closed immersion of schemes. Let U → X
be an object of Xpro-étale such that

(1) U is affine and weakly contractible, and
(2) every point of U specializes to a point of U ×X Z.

Then i−1
pro-étaleF(U ×X Z) = F(U) for all abelian sheaves on Xpro-étale.

Proof. Since pullback commutes with restriction, we may replace X by U . Thus
we may assume that X is affine and weakly contractible and that every point of
X specializes to a point of Z. By Lemma 46.23.2 part (1) it suffices to show that
v(Z) = X in this case. Thus we have to show: If A is a w-contractible ring, I ⊂ A
an ideal contained in the radical of A and A → B → A/I is a factorization with
A → B ind-étale, then there is a unique section B → A compatible with maps
to A/I. Observe that B/IB = A/I × R as A/I-algebras. After replacing B by
a localization we may assume B/IB = A/I. Note that Spec(B) → Spec(A) is
surjective as the image contains V (I) and hence all closed points and is closed
under specialization. Since A is w-contractible there is a section B → A. Since
B/IB = A/I this section is compatible with the map to A/I. We omit the proof of
uniqueness (hint: use that A and B have isomorphic local rings at maximal ideals
of A). �

Lemma 46.23.6. Let i : Z → X be a closed immersion of schemes. If X \ i(Z) is
a retrocompact open of X, then ipro-étale,∗ is exact.

Proof. The question is local on X hence we may assume X is affine. Say X =
Spec(A) and Z = Spec(A/I). There exist f1, . . . , fr ∈ I such that Z = V (f1, . . . , fr)
set theoretically, see Algebra, Lemma 10.28.1. By Lemma 46.23.4 we may assume
that Z = Spec(A/(f1, . . . , fr)). In this case the functor ipro-étale,∗ is exact by
Lemma 46.22.1. �
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46.24. Extension by zero

The general material in Modules on Sites, Section 18.19 allows us to make the
following definition.

Definition 46.24.1. Let j : U → X be a weakly étale morphism of schemes.

(1) The restriction functor j−1 : Sh(Xpro-étale) → Sh(Upro-étale) has a left
adjoint jSh! : Sh(Xpro-étale)→ Sh(Upro-étale).

(2) The restriction functor j−1 : Ab(Xpro-étale) → Ab(Upro-étale) has a left
adjoint which is denoted j! : Ab(Upro-étale) → Ab(Xpro-étale) and called
extension by zero.

(3) Let Λ be a ring. The functor j−1 : Mod(Xpro-étale,Λ)→ Mod(Upro-étale,Λ)
has a left adjoint j! : Mod(Upro-étale,Λ) → Mod(Xpro-étale,Λ) and called
extension by zero.

As usual we compare this to what happens in the étale case.

Lemma 46.24.2. Let j : U → X be an étale morphism of schemes. Let G be an
abelian sheaf on Uétale. Then ε−1j!G = j!ε

−1G as sheaves on Xpro-étale.

Proof. This is true because both are left adjoints to jpro-étale,∗ε
−1 = ε−1jétale,∗,

see Lemma 46.21.1. �

Lemma 46.24.3. Let j : U → X be a weakly étale morphism of schemes. Let
i : Z → X be a closed immersion such that U ×X Z = ∅. Let V → X be an affine
object of Xpro-étale such that every point of V specializes to a point of VZ = Z×X V .
Then j!F(V ) = 0 for all abelian sheaves on Upro-étale.

Proof. Let {Vi → V } be a pro-étale covering. The lemma follows if we can refine
this covering to a covering where the members have no morphisms into U over X
(see construction of j! in Modules on Sites, Section 18.19). First refine the covering
to get a finite covering with Vi affine. For each i let Vi = Spec(Ai) and let Zi ⊂ Vi
be the inverse image of Z. Set Wi = Spec(A∼i,Zi) with notation as in Lemma 46.5.1.

Then
∐
Wi → V is weakly étale and the image contains all points of VZ . Hence

the image contains all points of V by our assumption on specializations. Thus
{Wi → V } is a pro-étale covering refining the given one. But each point in Wi

specializes to a point lying over Z, hence there are no morphisms Wi → U over
X. �

Lemma 46.24.4. Let j : U → X be an open immersion of schemes. Then id ∼=
j−1j! and j−1j∗ ∼= id and the functors j! and j∗ are fully faithful.

Proof. See Sites, Lemma 7.26.4 and Categories, Lemma 4.24.3. �

Here is the relationship between extension by zero and restriction to the comple-
mentary closed subscheme.

Lemma 46.24.5. Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. Assume that j is a quasi-compact morphism. For every abelian sheaf
on Xpro-étale there is a canonical short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xpro-étale where all the functors are for the pro-étale topology.
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Proof. We obtain the maps by the adjointness properties of the functors involved.
It suffices to show that Xpro-étale has enough objects (Sites, Definition 7.39.2) on
which the sequence evaluates to a short exact sequence. Let V = Spec(A) be an
affine object of Xpro-étale such that A is w-contractible (there are enough objects
of this type). Then V ×X Z is cut out by an ideal I ⊂ A. The assumption that j
is quasi-compact implies there exist f1, . . . , fr ∈ I such that V (I) = V (f1, . . . , fr).
We obtain a faithfully flat, ind-Zariski ring map

A −→ Af1
× . . .×Afr ×A∼V (I)

with A∼V (I) as in Lemma 46.5.1. Since Vi = Spec(Afi) → X factors through U we

have

j!j
−1F(Vi) = F(Vi) and i∗i

−1F(Vi) = 0

On the other hand, for the scheme V ∼ = Spec(A∼V (I)) we have

j!j
−1F(V ∼) = 0 and F(V ∼) = i∗i

−1F(V ∼)

the first equality by Lemma 46.24.3 and the second by Lemmas 46.23.5 and 46.10.7.
Thus the sequence evaluates to an exact sequence on Spec(Af1 × . . .×Afr ×A∼V (I))

and the lemma is proved. �

Lemma 46.24.6. Let j : U → X be a quasi-compact open immersion morphism
of schemes. The functor j! : Ab(Upro-étale)→ Ab(Xpro-étale) commutes with limits.

Proof. Since j! is exact it suffices to show that j! commutes with products. The
question is local on X, hence we may assume X affine. Let G be an abelian sheaf
on Upro-étale. Note that there always is a canonical map

j!G → j∗G

see Modules on Sites, Remark 18.19.7. In our particular case this map can be
obtained from the fact that j−1j∗G = G. Hence applying the exact sequence of
Lemma 46.24.5 we get

0→ j!G → j∗G → i∗i
−1j∗G → 0

where i : Z → X is the inclusion of the reduced induced scheme structure on
the complement Z = X \ U . The functors j∗ and i∗ commute with products as
right adjoints. The functor i−1 commutes with products by Lemma 46.23.3. Hence
j! does because on the pro-étale site products are exact (Cohomology on Sites,
Proposition 21.38.2). �

46.25. Constructible sheaves on the pro-étale site

We stick to constructible sheaves of Λ-modules for a Noetherian ring. In the future
we intend to discuss constructible sheaves of sets, groups, etc.

Definition 46.25.1. Let X be a scheme. Let Λ be a Noetherian ring. A sheaf of
Λ-modules on Xpro-étale is constructible if for every affine open U ⊂ X there exists
a finite decomposition of U into constructible locally closed subschemes U =

∐
i Ui

such that F|Ui is of finite type and locally constant for all i.

Again this does not give anything “new”.

http://stacks.math.columbia.edu/tag/09BP
http://stacks.math.columbia.edu/tag/09AJ
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Lemma 46.25.2. Let X be a scheme. Let Λ be a Noetherian ring. The functor
ε−1 defines an equivalence of categories{

constructible sheaves of
Λ-modules on Xétale

}
←→

{
constructible sheaves of
Λ-modules on Xpro-étale

}
between constructible sheaves of Λ-modules on Xétale and constructible sheaves of
Λ-modules on Xpro-étale.

Proof. By Lemma 46.18.2 the functor ε−1 is fully faithful and commutes with
pullback (restriction) to the strata. Hence ε−1 of a constructible étale sheaf is a
constructible pro-étale sheaf. To finish the proof let F be a constructible sheaf of
Λ-modules on Xpro-étale as in Definition 46.25.1. There is a canonical map

ε−1ε∗F −→ F

We will show this map is an isomorphism. This will prove that F is in the essential
image of ε−1 and finish the proof (details omitted).

To prove this we may assume that X is affine. In this case we have a finite partition
X =

∐
iXi by constructible locally closed strata such that F|Xi is locally constant

of finite type. Let U ⊂ X be one of the open strata in the partition and let Z ⊂ X
be the reduced induced structure on the complement. By Lemma 46.24.5 we have
a short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xpro-étale. Functoriality gives a commutative diagram

0 // ε−1ε∗j!j
−1F //

��

ε−1ε∗F //

��

ε−1ε∗i∗i
−1F //

��

0

0 // j!j−1F // F // i∗i−1F // 0

By induction on the length of the partition we know that on the one hand ε−1ε∗i
−1F →

i−1F and ε−1ε∗j
−1F → j−1F are isomorphisms and on the other that i−1F = ε−1A

and j−1F = ε−1B for some constructible sheaves of Λ-modules A on Zétale and B
on Uétale. Then

ε−1ε∗j!j
−1F = ε−1ε∗j!ε

−1B = ε−1ε∗ε
−1j!B = ε−1j!B = j!ε

−1B = j!j
−1F

the second equality by Lemma 46.24.2, the third equality by Lemma 46.18.2, and
the fourth equality by Lemma 46.24.2 again. Similarly, we have

ε−1ε∗i∗i
−1F = ε−1ε∗i∗ε

−1A = ε−1ε∗ε
−1i∗A = ε−1i∗A = i∗ε

−1A = i∗i
−1F

this time using Lemma 46.21.1. By the five lemma we conclude the vertical map
in the middle of the big diagram is an isomorphism. �

Lemma 46.25.3. Let X be a scheme. Let Λ be a Noetherian ring. The category
of constructible sheaves of Λ-modules on Xpro-étale is a weak Serre subcategory of
Mod(Xpro-étale,Λ).

Proof. This is a formal consequence of Lemmas 46.25.2 and 46.18.7 and the result
for the étale site (Étale Cohomology, Lemma 44.69.6). �
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Lemma 46.25.4. Let X be a scheme. Let Λ be a Noetherian ring. Let Dc(Xétale,Λ),
resp. Dc(Xpro-étale,Λ) be the full subcategory of D(Xétale,Λ), resp. D(Xpro-étale,Λ)
consisting of those complexes whose cohomology sheaves are constructible sheaves
of Λ-modules. Then

ε−1 : D+
c (Xétale,Λ) −→ D+

c (Xpro-étale,Λ)

is an equivalence of categories.

Proof. The categories Dc(Xétale,Λ) and Dc(Xpro-étale,Λ) are strictly full, sat-

urated, triangulated subcategories of D(Xétale,Λ) and D(Xpro-étale,Λ) by Étale
Cohomology, Lemma 44.69.6 and Lemma 46.25.3 and Derived Categories, Section
13.13. The statement of the lemma follows by combining Lemmas 46.18.7 and
46.25.2. �

Lemma 46.25.5. Let X be a scheme. Let Λ be a Noetherian ring. Let K,L ∈
D−c (Xpro-étale,Λ). Then K ⊗L

Λ L is in D−c (Xpro-étale,Λ).

Proof. Note that Hi(K ⊗L
Λ L) is the same as Hi(τ≥i−1K ⊗L

Λ τ≥i−1L). Thus we
may assume K and L are bounded. In this case we can apply Lemma 46.25.4 to
reduce to the case of the étale site, see Étale Cohomology, Lemma 44.90.6. �

Lemma 46.25.6. Let X be a scheme. Let Λ be a Noetherian ring. Let K be an
object of D(Xpro-étale,Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is in D−c (Xpro-étale,Λ/I),

then Kn is in D−c (Xpro-étale,Λ/I
n) for all n.

Proof. Consider the distinguished triangles

K ⊗L
Λ I

n/In+1 → Kn+1 → Kn → K ⊗L
Λ I

n/In+1[1]

and the isomorphisms

K ⊗L
Λ I

n/In+1 = K1 ⊗L
Λ/I I

n/In+1

By Lemma 46.25.5 we see that this tensor product has constructible cohomology
sheaves (and vanishing when K1 has vanishing cohomology). Hence by induction
on n using Lemma 46.25.3 we see that each Kn has constructible cohomology
sheaves. �

46.26. Constructible adic sheaves

In this section we define the notion of a constructible Λ-sheaf as well as some
variants.

Definition 46.26.1. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X
be a scheme. Let F be a sheaf of Λ-modules on Xpro-étale.

(1) We say F is a constructible Λ-sheaf if F = limF/InF and each F/InF
is a constructible sheaf of Λ/In-modules.

(2) If F is a constructible Λ-sheaf, then we say F is lisse if each F/InF is
locally constant.

(3) We say F is adic lisse3 if there exists a I-adically complete Λ-module M
with M/IM finite such that F is locally isomorphic to

M∧ = limM/InM.

3This may be nonstandard notation.
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(4) We say F is adic constructible4 if for every affine open U ⊂ X there exists
a decomposition U =

∐
Ui into constructible locally closed subschemes

such that F|Ui is adic lisse.

The definition of a constructible Λ-sheaf is equivalent to the one in [Gro77, Exposé
VI, Definition 1.1.1] when Λ = Z` and I = (`). It is clear that we have the
implications

lisse adic +3

��

adic constructible

��
lisse constructible Λ-sheaf +3 constructible Λ-sheaf

The vertical arrows can be inverted in some cases (see Lemmas 46.26.2 and 46.26.5).
In general neither the category of adic constructible sheaves nor the category of adic
constructible sheaves is closed under kernels and cokernels.

Namely, let X be an affine scheme whose underlying topological space |X| is home-
omorphic to Λ = Z`, see Example 46.6.3. Denote f : |X| → Z` = Λ a homeomor-
phism. We can think of f as a section of Λ∧ over X and multiplication by f then
defines a two term complex

Λ∧
f−→ Λ∧

on Xpro-étale. The sheaf Λ∧ is adic lisse. However, the cokernel of the map above,
is not adic constructible, as the isomorphism type of the stalks of this cokernel
attains infinitely many values: Z/`nZ and Z`. The cokernel is a constructible
Z`-sheaf. However, the kernel is not even a constructible Z`-sheaf as it is zero a
non-quasi-compact open but not zero.

Lemma 46.26.2. Let X be a Noetherian scheme. Let Λ be a Noetherian ring
and let I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then
there exists a finite partition X =

∐
Xi by locally closed subschemes such that the

restriction F|Xi is lisse.

Proof. Let R =
⊕
In/In+1. Observe that R is a Noetherian ring. Since each of

the sheaves F/InF is a constructible sheaf of Λ/InΛ-modules also InF/In+1F is a
constructible sheaf of Λ/I-modules and hence the pullback of a constructible sheaf
Gn on Xétale by Lemma 46.25.2. Set G =

⊕
Gn. This is a sheaf of R-modules on

Xétale and the map
G0 ⊗Λ/I R −→ G

is surjective because the maps

F/IF ⊗ In/In+1 → InF/In+1F

are surjective. Hence G is a constructible sheaf of R-modules by Étale Cohomology,
Proposition 44.72.1. Choose a partition X =

∐
Xi such that G|Xi is a locally

constant sheaf of R-modules of finite type (Étale Cohomology, Lemma 44.69.2).
We claim this is a partition as in the lemma. Namely, replacing X by Xi we may
assume G is locally constant. It follows that each of the sheaves InF/In+1F is
locally constant. Using the short exact sequences

0→ InF/In+1F → F/In+1F → F/InF → 0

4This may be nonstandard notation.
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induction and Modules on Sites, Lemma 18.42.5 the lemma follows. �

Lemma 46.26.3. Let X be a weakly contractible affine scheme. Let Λ be a Noe-
therian ring and I ⊂ Λ be an ideal. Let F be a sheaf of Λ-modules on Xpro-étale

such that

(1) F = limF/InF ,
(2) F/InF is a constant sheaf of Λ/In-modules,
(3) F/IF is of finite type.

Then F ∼= M∧ where M is a finite Λ∧-module.

Proof. Pick a Λ/In-module Mn such that F/InF ∼= Mn. Since we have the

surjections F/In+1F → F/InF we conclude that there exist surjections Mn+1 →
Mn inducing isomorphisms Mn+1/I

nMn+1 →Mn. Fix a choice of such surjections
and set M = limMn. Then M is an I-adically complete Λ-module with M/InM =
Mn, see Algebra, Lemma 10.94.1. Since M1 is a finite type Λ-module (Modules on
Sites, Lemma 18.41.5) we see that M is a finite Λ∧-module. Consider the sheaves

In = Isom(Mn,F/InF)

on Xpro-étale. Modding out by In defines a transition map

In+1 −→ In
By our choice of Mn the sheaf In is a torsor under

Isom(Mn,Mn) = IsomΛ(Mn,Mn)

(Modules on Sites, Lemma 18.42.4) since F/InF is (étale) locally isomorphic to
Mn. It follows from More on Algebra, Lemma 15.66.1 that the system of sheaves
(In) is Mittag-Leffler. For each n let I ′n ⊂ In be the image of IN → In for all
N � n. Then

. . .→ I ′3 → I ′2 → I ′1 → ∗
is a sequence of sheaves of sets on Xpro-étale with surjective transition maps. Since
∗(X) is a singleton (not empty) and since evaluating at X transforms surjective
maps of sheaves of sets into surjections of sets, we can pick s ∈ lim I ′n(X). The
sections define isomorphisms M∧ → limF/InF = F and the proof is done. �

Lemma 46.26.4. Let X be a connected scheme. Let Λ be a Noetherian ring and
let I ⊂ Λ be an ideal. If F is a lisse constructible Λ-sheaf on Xpro-étale, then F is
adic lisse.

Proof. By Lemma 46.18.8 we have F/InF = ε−1Gn for some locally constant

sheaf Gn of Λ/In-modules. By Étale Cohomology, Lemma 44.68.8 there exists a
finite Λ/In-module Mn such that Gn is locally isomorphic to Mn. Choose a covering
{Wt → X}t∈T with each Wt affine and weakly contractible. Then F|Wt

satisfies the
assumptions of Lemma 46.26.3 and hence F|Wt

∼= Nt
∧ for some finite Λ∧-module

Nt. Note that Nt/I
nNt ∼= Mn for all t and n. Hence Nt ∼= Nt′ for all t, t′ ∈ T , see

More on Algebra, Lemma 15.66.2. This proves that F is adic lisse. �

Lemma 46.26.5. Let X be a Noetherian scheme. Let Λ be a Noetherian ring and
let I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then F is
adic constructible.
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Proof. This is a consequence of Lemmas 46.26.2 and 46.26.4, the fact that a
Noetherian scheme is locally connected (Topology, Lemma 5.8.6), and the defi-
nitions. �

It will be useful to identify the constructible Λ-sheaves inside the category of derived
complete sheaves of Λ-modules. It turns out that the naive analogue of More on
Algebra, Lemma 15.64.22 is wrong in this setting. However, here is the analogue
of More on Algebra, Lemma 15.64.21.

Lemma 46.26.6. Let X be a scheme. Let Λ be a ring and let I ⊂ Λ be a finitely
generated ideal. Let F be a sheaf of Λ-modules on Xpro-étale. If F is derived
complete and F/IF = 0, then F = 0.

Proof. Assume that F/IF is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such that G = F/(f1, . . . , fi)F is nonzero. If i does not exist, then F = 0
which is what we want to show. Then G is derived complete as a cokernel of a map
between derived complete modules, see Proposition 46.17.1. By our choice of i we
have that fi+1 : G → G is surjective. Hence

lim(. . .→ G fi+1−−−→ G fi+1−−−→ G)

is nonzero, contradicting the derived completeness of G. �

Lemma 46.26.7. Let X be a weakly contractible affine scheme. Let Λ be a Noether-
ian ring and let I ⊂ Λ be an ideal. Let F be a derived complete sheaf of Λ-modules
on Xpro-étale with F/IF a locally constant sheaf of Λ/I-modules of finite type. Then
there exists an integer t and a surjective map

(Λ∧)⊕t → F

Proof. Since X is weakly contractible, there exists a finite disjoint open covering
X =

∐
Ui such that F/IF|Ui is isomorphic to the constant sheaf associated to a

finite Λ/I-module Mi. Choose finitely many generators mij of Mi. We can find
sections sij ∈ F(X) restricting to mij viewed as a section of F/IF over Ui. Let t
be the total number of sij . Then we obtain a map

α : Λ⊕t −→ F
which is surjective modulo I by construction. By Lemma 46.16.1 the derived com-
pletion of Λ⊕t is the sheaf (Λ∧)⊕t. Since F is derived complete we see that α factors
through a map

α∧ : (Λ∧)⊕t −→ F
Then Q = Coker(α∧) is a derived complete sheaf of Λ-modules by Proposition
46.17.1. By construction Q/IQ = 0. It follows from Lemma 46.26.6 that Q = 0
which is what we wanted to show. �

46.27. A suitable derived category

Let X be a scheme. It will turn out that for many schemes X a suitable derived
category of `-adic sheaves can be gotten by considering the derived complete objects
K of D(Xpro-étale,Λ) with the property that K⊗L

ΛF` is bounded with constructible
cohomology sheaves. Here is the general definition.

Definition 46.27.1. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X
be a scheme. An object K of D(Xpro-étale,Λ) is called constructible if
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(1) K is derived complete with respect to I,
(2) K ⊗L

Λ Λ/I has constructible cohomology sheaves and locally has finite tor
dimension.

We denote Dcons(X,Λ) the full subcategory of constructible K in D(Xpro-étale,Λ).

Recall that with our conventions a complex of finite tor dimension is bounded
(Cohomology on Sites, Definition 21.35.1). In fact, let’s collect everything proved
so far in a lemma.

Lemma 46.27.2. In the situation above suppose K is in Dcons(X,Λ) and X is
quasi-compact. Set Kn = K ⊗L

Λ Λ/In. There exist a, b such that

(1) K = R limKn and Hi(K) = 0 for i 6∈ [a, b],
(2) each Kn has tor amplitude in [a, b],
(3) each Kn has constructible cohomology sheaves,

(4) each Kn = ε−1Ln for some Ln ∈ Dctf (Xétale,Λ/I
n) (Étale Cohomology,

Definition 44.90.7).

Proof. By definition of local having finite tor dimension, we can find a, b such that
K1 has tor amplitude in [a, b]. Part (2) follows from Cohomology on Sites, Lemma
21.35.8. Then (1) follows as K is derived complete by the description of limits in
Cohomology on Sites, Proposition 21.38.2 and the fact that Hb(Kn+1)→ Hb(Kn)
is surjective as Kn = Kn+1⊗L

Λ Λ/In. Part (3) follows from Lemma 46.25.6, Part (4)
follows from Lemma 46.25.4 and the fact that Ln has finite tor dimension because
Kn does (small argument omitted). �

Lemma 46.27.3. Let X be a weakly contractible affine scheme. Let Λ be a Noe-
therian ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ) such
that the cohomology sheaves of K ⊗L

Λ Λ/I are locally constant. Then there exists

a finite disjoint open covering X =
∐
Ui and for each i a finite collection of finite

projective Λ∧-modules Ma, . . . ,Mb such that K|Ui is represented by a complex

(Ma)∧ → . . .→ (M b)∧

in D(Ui,pro-étale,Λ) for some maps of sheaves of Λ-modules (M i)∧ → (M i+1)∧.

Proof. We freely use the results of Lemma 46.27.2. Choose a, b as in that lemma.
We will prove the lemma by induction on b− a. Let F = Hb(K). Note that F is a
derived complete sheaf of Λ-modules by Proposition 46.17.1. Moreover F/IF is a
locally constant sheaf of Λ/I-modules of finite type. Apply Lemma 46.26.7 to get
a surjection ρ : (Λ∧)⊕t → F .

If a = b, then K = F [−b]. In this case we see that

F ⊗L
Λ Λ/I = F/IF

As X is weakly contractible and F/IF locally constant, we can find a finite disjoint
union decomposition X =

∐
Ui by affine opens Ui and Λ/I-modules M i such that

F/IF restricts to M i on Ui. After refining the covering we may assume the map

ρ|Ui mod I : Λ/I
⊕t −→M i

is equal to αi for some surjective module map αi : Λ/I⊕t → M i, see Modules on

Sites, Lemma 18.42.3. Note that each M i is a finite Λ/I-module. Since F/IF has
tor amplitude in [0, 0] we conclude that M i is a flat Λ/I-module. Hence M i is finite
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projective (Algebra, Lemma 10.75.2). Hence we can find a projector pi : (Λ/I)⊕t →
(Λ/I)⊕t whose image maps isomorphically to M i under the map αi. We can lift
pi to a projector pi : (Λ∧)⊕t → (Λ∧)⊕t5. Then Mi = Im(pi) is a finite I-adically
complete Λ∧-module with Mi/IMi = M i. Over Ui consider the maps

Mi
∧ → (Λ∧)⊕t → F|Ui

By construction the composition induces an isomorphism modulo I. The source
and target are derived complete, hence so are the cokernel Q and the kernel K. We
have Q/IQ = 0 by construction hence Q is zero by Lemma 46.26.6. Then

0→ K/IK →M i → F/IF → 0

is exact by the vanishing of Tor1 see at the start of this paragraph; also use that

Λ∧/IΛ
∧

by Modules on Sites, Lemma 18.41.4 to see that Mi
∧/IMi

∧ = M i. Hence
K/IK = 0 by construction and we conclude that K = 0 as before. This proves the
result in case a = b.

If b > a, then we lift the map ρ to a map

ρ̃ : (Λ∧)⊕t[−b] −→ K

in D(Xpro-étale,Λ). This is possible as we can think of K as a complex of Λ∧-
modules by discussion in the introduction to Section 46.16 and because Xpro-étale

is weakly contractible hence there is no obstruction to lifting the elements ρ(es) ∈
H0(X,F) to elements of Hb(X,K). Fitting ρ̃ into a distinguished triangle

(Λ∧)⊕t[−b]→ K → L→ (Λ∧)⊕t[−b+ 1]

we see that L is an object of Dcons(X,Λ) such that L ⊗L
Λ Λ/I has tor amplitude

contained in [a, b− 1] (details omitted). By induction we can describe L locally as
stated in the lemma, say L is isomorphic to

(Ma)∧ → . . .→ (M b−1)∧

The map L → (Λ∧)⊕t[−b + 1] corresponds to a map (M b−1)∧ → (Λ∧)⊕t which
allows us to extend the complex by one. The corresponding complex is isomorphic
to K in the derived category by the properties of triangulated categories. This
finishes the proof. �

Motivated by what happens for constructible Λ-sheaves we introduce the following
notion.

Definition 46.27.4. Let X be a scheme. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. Let K ∈ D(Xpro-étale,Λ).

(1) We say K is adic lisse6 if there exists a finite complex of finite projective
Λ∧-modules M• such that K is locally isomorphic to

Ma∧ → . . .→M b∧

(2) We say K is adic constructible7 if for every affine open U ⊂ X there exists
a decomposition U =

∐
Ui into constructible locally closed subschemes

such that K|Ui is adic lisse.

5Proof: by Algebra, Lemma 10.31.6 we can lift pi to a compatible system of projectors

pi,n : (Λ/In)⊕t → (Λ/In)⊕t and then we set pi = lim pi,n which works because Λ∧ = lim Λ/In.
6This may be nonstandard notation
7This may be nonstandard notation.
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The difference between the local structure obtained in Lemma 46.27.3 and the
structure of an adic lisse complex is that the maps M i∧ → M i+1∧ in Lemma
46.27.3 need not be constant, whereas in the definition above they are required to
be constant.

Lemma 46.27.5. Let X be a weakly contractible affine scheme. Let Λ be a Noe-
therian ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ) such that
K ⊗L

Λ Λ/In is isomorphic in D(Xpro-étale,Λ/I
n) to a complex of constant sheaves

of Λ/In-modules. Then

H0(X,K ⊗L
Λ Λ/In)

has the Mittag-Leffler condition.

Proof. Say K ⊗L
Λ Λ/In is isomorphic to En for some object En of D(Λ/In). Since

K ⊗L
Λ Λ/I has finite tor dimension and has finite type cohomology sheaves we see

that E1 is perfect (see More on Algebra, Lemma 15.56.2). The transition maps

K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In

locally come from (possibly many distinct) maps of complexes En+1 → En in
D(Λ/In+1) see Cohomology on Sites, Lemma 21.40.3. For each n choose one such
map and observe that it induces an isomorphism En+1 ⊗L

Λ/In+1 Λ/In → En in

D(Λ/In). By More on Algebra, Lemma 15.65.3 we can find a finite complex M•

of finite projective Λ∧-modules and isomorphisms M•/InM• → En in D(Λ/In)
compatible with the transition maps.

Now observe that for each finite collection of indices n > m > k the triple of maps

H0(X,K ⊗L
Λ Λ/In)→ H0(X,K ⊗L

Λ Λ/Im)→ H0(X,K ⊗L
Λ Λ/Ik)

is isomorphic to

H0(X,M•/InM•)→ H0(X,M•/ImM•)→ H0(X,M•/IkM•)

Namely, choose any isomorphism

M•/InM• → K ⊗L
Λ Λ/In

induces similar isomorphisms module Im and Ik and we see that the assertion is
true. Thus to prove the lemma it suffices to show that the systemH0(X,M•/InM•)
has Mittag-Leffler. Since taking sections over X is exact, it suffices to prove that
the system of Λ-modules

H0(M•/InM•)

has Mittag-Leffler. Set A = Λ∧ and consider the spectral sequence

TorA−p(H
q(M•), A/InA)⇒ Hp+q(M•/InM•)

By More on Algebra, Lemma 15.19.3 the pro-systems {TorA−p(H
q(M•), A/InA)}

are zero for p > 0. Thus the pro-system {H0(M•/InM•)} is equal to the pro-
system {H0(M•)/InH0(M•)} and the lemma is proved. �

Lemma 46.27.6. Let X be a connected scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. If K is in Dcons(X,Λ) such that K ⊗Λ Λ/I has locally constant

cohomology sheaves, then K is adic lisse (Definition 46.27.4).
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Proof. Write Kn = K ⊗L
Λ Λ/In. We will use the results of Lemma 46.27.2 with-

out further mention. By Cohomology on Sites, Lemma 21.40.5 we see that Kn

has locally constant cohomology sheaves for all n. We have Kn = ε−1Ln some Ln
in Dctf (Xétale,Λ/I

n) with locally constant cohomology sheaves. By Étale Coho-
mology, Lemma 44.90.14 there exist perfect Mn ∈ D(Λ/In) such that Ln is étale
locally isomorphic to Mn. The maps Ln+1 → Ln corresponding to Kn+1 → Kn

induces isomorphisms Ln+1 ⊗L
Λ/In+1 Λ/In → Ln. Looking locally on X we con-

clude that there exist maps Mn+1 → Mn in D(Λ/In+1) inducing isomorphisms
Mn+1⊗Λ/In+1 Λ/In →Mn, see Cohomology on Sites, Lemma 21.40.3. Fix a choice
of such maps. By More on Algebra, Lemma 15.65.3 we can find a finite complex M•

of finite projective Λ∧-modules and isomorphisms M•/InM• → Mn in D(Λ/In)
compatible with the transition maps. To finish the proof we will show that K is
locally isomorphic to

M•∧ = limM•/InM• = R limM•/InM•

Let E• be the dual complex to M•, see More on Algebra, Lemma 15.56.21 and its
proof. Consider the objects

Hn = RHomΛ/In(M•/InM•,Kn) = E•/InE• ⊗L
Λ/In Kn

of D(Xpro-étale,Λ/I
n). Modding out by In defines a transition map Hn+1 → Hn.

Set H = R limHn. Then H is an object of Dcons(X,Λ) (details omitted) with
H ⊗L

Λ Λ/In = Hn. Choose a covering {Wt → X}t∈T with each Wt affine and
weakly contractible. By our choice of M• we see that

Hn|Wt
∼= RHomΛ/In(M•/InM•,M•/InM•)

= Tot(E•/InE• ⊗Λ/In M
•/InM•)

Thus we may apply Lemma 46.27.5 to H = R limHn. We conclude the system
H0(Wt, Hn) satisfies Mittag-Leffler. Since for all n � 1 there is an element of
H0(Wt, Hn) which maps to an isomorphism in

H0(Wt, H1) = Hom(M•/IM•,K1)

we find an element (ϕt,n) in the inverse limit which produces an isomorphism mod
I. Then

R limϕt,n : M•∧|Wt
= R limM•/InM•|Wt

−→ R limKn|Wt
= K|Wt

is an isomorphism. This finishes the proof. �

Proposition 46.27.7. Let X be a Noetherian scheme. Let Λ be a Noetherian ring
and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ). Then K is adic
constructible (Definition 46.27.4).

Proof. This is a consequence of Lemma 46.27.6 and the fact that a Noetherian
scheme is locally connected (Topology, Lemma 5.8.6), and the definitions. �

46.28. Proper base change

In this section we explain how to prove the proper base change theorem for derived
complete objects on the pro-étale site using the proper base change theorem for
étale cohomology following the general theme that we use the pro-étale topology
only to deal with “limit issues” and we use results proved for the étale topology to
handle everything else.
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Theorem 46.28.1. Let f : X → Y be a proper morphism of schemes. Let g :
Y ′ → Y be a morphism of schemes giving rise to the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal such that Λ/I is torsion. Let
K be an object of D(Xpro-étale) such that

(1) K is derived complete, and
(2) K⊗L

Λ Λ/In is bounded below with cohomology sheaves coming from Xétale,

(3) Λ/In is a perfect Λ-module8.

Then the base change map

Lg∗compRf∗K −→ Rf ′∗L(g′)∗compK

is an isomorphism.

Proof. We omit the construction of the base change map (this uses only formal
properties of derived pushforward and completed derived pullback, compare with
Cohomology on Sites, Remark 21.19.2). Write Kn = K ⊗L

Λ Λ/In. By Lemma
46.16.1 we have K = R limKn because K is derived complete. By Lemmas 46.16.2
and 46.16.1 we can unwind the left hand side

Lg∗compRf∗K = R limLg∗(Rf∗K)⊗L
Λ Λ/In = R limLg∗Rf∗Kn

the last equality because Λ/In is a perfect module and the projection formula
(Cohomology on Sites, Lemma 21.37.1). Using Lemma 46.16.2 we can unwind the
right hand side

Rf ′∗L(g′)∗compK = Rf ′∗R limL(g′)∗Kn = R limRf ′∗L(g′)∗Kn

the last equality because Rf ′∗ commutes with R lim (Cohomology on Sites, Lemma
21.21.2). Thus it suffices to show the maps

Lg∗Rf∗Kn −→ Rf ′∗L(g′)∗Kn

are isomorphisms. By Lemma 46.18.7 and our second condition we can write Kn =
ε−1Ln for some Ln ∈ D+(Xétale,Λ/I

n). By Lemma 46.21.1 and the fact that ε−1

commutes with pullbacks we obtain

Lg∗Rf∗Kn = Lg∗Rf∗ε
∗Ln = Lg∗ε−1Rf∗Ln = ε−1Lg∗Rf∗Ln

and

Rf ′∗L(g′)∗Kn = Rf ′∗L(g′)∗ε−1Ln = Rf ′∗ε
−1L(g′)∗Ln = ε−1Rf ′∗L(g′)∗Ln

(this also uses that Ln is bounded below). Finally, by the proper base change

theorem for étale cohomology (Étale Cohomology, Theorem 44.77.11) we have

Lg∗Rf∗Ln = Rf ′∗L(g′)∗Ln

(again using that Ln is bounded below) and the theorem is proved. �

8This assumption can be removed if K is a constructible complex, see [BS13].
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CHAPTER 47

Algebraic Spaces

47.1. Introduction

Algebraic spaces were first introduced by Michael Artin, see [Art69b], [Art70],
[Art73], [Art71b], [Art71a], [Art69a], [Art69c], and [Art74]. Some of the
foundational material was developed jointly with Knutson, who produced the book
[Knu71]. Artin defined (see [Art69c, Definition 1.3]) an algebraic space as a sheaf
for the étale topology which is locally in the étale topology representable. In most
of Artin’s work the categories of schemes considered are schemes locally of finite
type over a fixed excellent Noetherian base.

Our definition is slightly different. First of all we consider sheaves for the fppf
topology. This is just a technical point and scarcely makes any difference. Second,
we include the condition that the diagonal is representable.

After defining algebraic spaces we make some foundational observations. The main
result in this chapter is that with our definitions an algebraic space is the same thing
as an étale equivalence relation, see the discussion in Section 47.9 and Theorem
47.10.5. The analogue of this theorem in Artin’s setting is [Art69c, Theorem
1.5], or [Knu71, Proposition II.1.7]. In other words, the sheaf defined by an étale
equivalence relation has a representable diagonal. It follows that our definition
agrees with Artin’s original definition in a broad sense. It also means that one
can give examples of algebraic spaces by simply writing down an étale equivalence
relation.

In Section 47.13 we introduce various separation axioms on algebraic spaces that
we have found in the literature. Finally in Section 47.14 we give some weird and
not so weird examples of algebraic spaces.

47.2. General remarks

We work in a suitable big fppf site Schfppf as in Topologies, Definition 33.7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . We will
record elsewhere what changes if you change the big fppf site (insert future reference
here).

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 33.7.8. The
absolute case can be recovered by taking S = Spec(Z).

If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T,U).
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Note that any fpqc covering is a universal effective epimorphism, see Descent,
Lemma 34.9.3. Hence the topology on Schfppf is weaker than the canonical topol-
ogy and all representable presheaves are sheaves.

47.3. Representable morphisms of presheaves

Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf → Sets. Let
a : F → G be a representable transformation of functors, see Categories, Definition
4.8.2. This means that for every U ∈ Ob((Sch/S)fppf ) and any ξ ∈ G(U) the
fiber product hU ×ξ,G F is representable. Choose a representing object Vξ and an
isomorphism hVξ → hU ×GF . By the Yoneda lemma, see Categories, Lemma 4.3.5,
the projection hVξ → hU ×G F → hU comes from a unique morphism of schemes
aξ : Vξ → U . Suggestively we could represent this by the diagram

Vξ //

aξ

��

hVξ

��

// F

a

��
U // hU

ξ // G

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas
about this notion that work in great generality.

Lemma 47.3.1. Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism
of schemes. Then

hf : hX −→ hY

is a representable transformation of functors.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf
has fibre products. �

Lemma 47.3.2. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G→ H be representable transformations of functors. Then

b ◦ a : F −→ H

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �

Lemma 47.3.3. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformations of functors. Let b : H → G
be any transformation of functors. Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Then the base change a′ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �
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Lemma 47.3.4. Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of func-
tors. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable transformation of functors.

Proof. Write a1× a2 as the composition F1×F2 → G1×F2 → G1×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 47.3.2 and 47.3.3. �

Lemma 47.3.5. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. If G is a sheaf,
then so is F .

Proof. Let {ϕi : Ti → T} be a covering of the site (Sch/S)fppf . Let si ∈ F (Ti)
which satisfy the sheaf condition. Then σi = a(si) ∈ G(Ti) satisfy the sheaf
condition also. Hence there exists a unique σ ∈ G(T ) such that σi = σ|Ti . By
assumption F ′ = hT ×σ,G,a F is a representable presheaf and hence (see remarks in
Section 47.2) a sheaf. Note that (ϕi, si) ∈ F ′(Ti) satisfy the sheaf condition also,
and hence come from some unique (idT , s) ∈ F ′(T ). Clearly s is the section of F
we are looking for. �

Lemma 47.3.6. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Then ∆F/G :
F → F ×G F is representable.

Proof. Let U ∈ Ob((Sch/S)fppf ). Let ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ =
a(ξ1) = a(ξ2) ∈ G(U). By assumption there exist a scheme V and a morphism
V → U representing the fibre product hU ×ξ′,GF . In particular, the elements ξ1, ξ2
give morphisms f1, f2 : U → V over U . Because V represents the fibre product
hU ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2 we see that if g : U ′ → U is a morphism
then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that hU ×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2) U
which is a scheme. �

47.4. Lists of useful properties of morphisms of schemes

For ease of reference we list in the following remarks the properties of morphisms
which possess some of the properties required of them in later results.

Remark 47.4.1. Here is a list of properties/types of morphisms which are stable
under arbitrary base change:

(1) closed, open, and locally closed immersions, see Schemes, Lemma 25.18.2,
(2) quasi-compact, see Schemes, Lemma 25.19.3,
(3) universally closed, see Schemes, Definition 25.20.1,
(4) (quasi-)separated, see Schemes, Lemma 25.21.13,
(5) monomorphism, see Schemes, Lemma 25.23.5
(6) surjective, see Morphisms, Lemma 28.11.4,
(7) universally injective, see Morphisms, Lemma 28.12.2,
(8) affine, see Morphisms, Lemma 28.13.8,
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(9) quasi-affine, see Morphisms, Lemma 28.14.5,
(10) (locally) of finite type, see Morphisms, Lemma 28.16.4,
(11) (locally) quasi-finite, see Morphisms, Lemma 28.21.13,
(12) (locally) of finite presentation, see Morphisms, Lemma 28.22.4,
(13) locally of finite type of relative dimension d, see Morphisms, Lemma

28.30.2,
(14) universally open, see Morphisms, Definition 28.24.1,
(15) flat, see Morphisms, Lemma 28.26.7,
(16) syntomic, see Morphisms, Lemma 28.32.4,
(17) smooth, see Morphisms, Lemma 28.35.5,
(18) unramified (resp. G-unramified), see Morphisms, Lemma 28.36.5,
(19) étale, see Morphisms, Lemma 28.37.4,
(20) proper, see Morphisms, Lemma 28.42.5,
(21) H-projective, see Morphisms, Lemma 28.43.8,
(22) (locally) projective, see Morphisms, Lemma 28.43.9,
(23) finite or integral, see Morphisms, Lemma 28.44.6,
(24) finite locally free, see Morphisms, Lemma 28.46.4.

Add more as needed.

Remark 47.4.2. Of the properties of morphisms which are stable under base
change (as listed in Remark 47.4.1) the following are also stable under compositions:

(1) closed, open and locally closed immersions, see Schemes, Lemma 25.24.3,
(2) quasi-compact, see Schemes, Lemma 25.19.4,
(3) universally closed, see Morphisms, Lemma 28.42.4,
(4) (quasi-)separated, see Schemes, Lemma 25.21.13,
(5) monomorphism, see Schemes, Lemma 25.23.4,
(6) surjective, see Morphisms, Lemma 28.11.2,
(7) universally injective, see Morphisms, Lemma 28.12.5,
(8) affine, see Morphisms, Lemma 28.13.7,
(9) quasi-affine, see Morphisms, Lemma 28.14.4,

(10) (locally) of finite type, see Morphisms, Lemma 28.16.3,
(11) (locally) quasi-finite, see Morphisms, Lemma 28.21.12,
(12) (locally) of finite presentation, see Morphisms, Lemma 28.22.3,
(13) universally open, see Morphisms, Lemma 28.24.3,
(14) flat, see Morphisms, Lemma 28.26.5,
(15) syntomic, see Morphisms, Lemma 28.32.3,
(16) smooth, see Morphisms, Lemma 28.35.4,
(17) unramified (resp. G-unramified), see Morphisms, Lemma 28.36.4,
(18) étale, see Morphisms, Lemma 28.37.3,
(19) proper, see Morphisms, Lemma 28.42.4,
(20) H-projective, see Morphisms, Lemma 28.43.7,
(21) finite or integral, see Morphisms, Lemma 28.44.5,
(22) finite locally free, see Morphisms, Lemma 28.46.3.

Add more as needed.

Remark 47.4.3. Of the properties mentioned which are stable under base change
(as listed in Remark 47.4.1) the following are also fpqc local on the base (and a
fortiori fppf local on the base):

(1) for immersions we have this for
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(a) closed immersions, see Descent, Lemma 34.19.17,
(b) open immersions, see Descent, Lemma 34.19.14, and
(c) quasi-compact immersions, see Descent, Lemma 34.19.19,

(2) quasi-compact, see Descent, Lemma 34.19.1,
(3) universally closed, see Descent, Lemma 34.19.3,
(4) (quasi-)separated, see Descent, Lemmas 34.19.2, and 34.19.5,
(5) monomorphism, see Descent, Lemma 34.19.29,
(6) surjective, see Descent, Lemma 34.19.6,
(7) universally injective, see Descent, Lemma 34.19.7,
(8) affine, see Descent, Lemma 34.19.16,
(9) quasi-affine, see Descent, Lemma 34.19.18,

(10) (locally) of finite type, see Descent, Lemmas 34.19.8, and 34.19.10,
(11) (locally) quasi-finite, see Descent, Lemma 34.19.22,
(12) (locally) of finite presentation, see Descent, Lemmas 34.19.9, and 34.19.11,
(13) locally of finite type of relative dimension d, see Descent, Lemma 34.19.23,
(14) universally open, see Descent, Lemma 34.19.4,
(15) flat, see Descent, Lemma 34.19.13,
(16) syntomic, see Descent, Lemma 34.19.24,
(17) smooth, see Descent, Lemma 34.19.25,
(18) unramified (resp. G-unramified), see Descent, Lemma 34.19.26,
(19) étale, see Descent, Lemma 34.19.27,
(20) proper, see Descent, Lemma 34.19.12,
(21) finite or integral, see Descent, Lemma 34.19.21,
(22) finite locally free, see Descent, Lemma 34.19.28.

Note that the property of being an “immersion” may not be fpqc local on the base,
but in Descent, Lemma 34.20.1 we proved that it is fppf local on the base.

47.5. Properties of representable morphisms of presheaves

Here is the definition that makes this work.

Definition 47.5.1. With S, and a : F → G representable as above. Let P be a
property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 25.18.3, and
(2) is fppf local on the base, see Descent, Definition 34.18.1.

In this case we say that a has property P if for every U ∈ Ob((Sch/S)fppf ) and any
ξ ∈ G(U) the resulting morphism of schemes Vξ → U has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.

Remark 47.5.2. Consider the property P =“surjective”. In this case there could
be some ambiguity if we say “let F → G be a surjective map”. Namely, we could
mean the notion defined in Definition 47.5.1 above, or we could mean a surjective
map of presheaves, see Sites, Definition 7.3.1, or, if both F and G are sheaves, we
could mean a surjective map of sheaves, see Sites, Definition 7.12.1, If not mentioned
otherwise when discussing morphisms of algebraic spaces we will always mean the
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first. See Lemma 47.5.9 for a case where surjectivity implies surjectivity as a map
of sheaves.

Here is a sanity check.

Lemma 47.5.3. Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism
of schemes. Let P be as in Definition 47.5.1. Then hX −→ hY has property P if
and only if f has property P.

Proof. Note that the lemma makes sense by Lemma 47.3.1. Proof omitted. �

Lemma 47.5.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 47.5.1 which is stable under composition.
Let a : F → G, b : G→ H be representable transformations of functors. If a and b
have property P so does b ◦ a : F −→ H.

Proof. Note that the lemma makes sense by Lemma 47.3.2. Proof omitted. �

Lemma 47.5.5. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 47.5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a has property P then also the base change a′ has property P.

Proof. Note that the lemma makes sense by Lemma 47.3.3. Proof omitted. �

Lemma 47.5.6. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 47.5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Assume that b induces a surjective map of fppf sheaves H# → G#. In this case, if
a′ has property P, then also a has property P.

Proof. First we remark that by Lemma 47.3.3 the transformation a′ is repre-
sentable. Let U ∈ Ob((Sch/S)fppf ), and let ξ ∈ G(U). By assumption there exists
an fppf covering {Ui → U}i∈I and elements ξi ∈ H(Ui) mapping to ξ|U via b. From
general category theory it follows that for each i we have a fibre product diagram

Ui ×ξi,H,a′ (H ×b,G,a F ) //

��

U ×ξ,G,a F

��
Ui // U
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By assumption the left vertical arrow is a morphism of schemes which has property
P. Since P is local in the fppf topology this implies that also the right vertical
arrow has property P as desired. �

Lemma 47.5.7. Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of func-
tors. Let P be a property as in Definition 47.5.1 which is stable under composition.
If a1 and a2 have property P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 47.3.4. Proof omitted. �

Lemma 47.5.8. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Let P, P ′
be properties as in Definition 47.5.1. Suppose that for any morphism of schemes
f : X → Y we have P(f)⇒ P ′(f). If a has property P then a has property P ′.

Proof. Formal. �

Lemma 47.5.9. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves.
Let a : F → G be representable, flat, locally of finite presentation, and surjective.
Then a : F → G is surjective as a map of sheaves.

Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G. By
assumption T ′ = F ×G T is (representable by) a scheme and the morphism T ′ → T
is a flat, locally of finite presentation, and surjective. Hence {T ′ → T} is an fppf
covering such that g|T ′ ∈ G(T ′) comes from an element of F (T ′), namely the map
T ′ → F . This proves the map is surjective as a map of sheaves, see Sites, Definition
7.12.1. �

Here is a characterization of those functors for which the diagonal is representable.

Lemma 47.5.10. Let S be a scheme contained in Schfppf . Let F be a presheaf of
sets on (Sch/S)fppf . The following are equivalent:

(1) The diagonal F → F × F is representable.
(2) For every scheme U over S, U/S ∈ Ob((Sch/S)fppf ) and any ξ ∈ F (U)

the map ξ : hU → F is representable.

Proof. This is completely formal, see Categories, Lemma 4.8.4. It depends only
on the fact that the category (Sch/S)fppf has products of pairs of objects and fibre
products, see Topologies, Lemma 33.7.10. �

In the situation of the lemma, for any morphism ξ : hU → F as in the lemma, it
makes sense to say that ξ has property P, for any property as in Definition 47.5.1.
In particular this holds for P = “surjective” and P = “étale”, see Remark 47.4.3
above. We will use these in the definition of algebraic spaces below.

47.6. Algebraic spaces

Here is the definition.

Definition 47.6.1. Let S be a scheme contained in Schfppf . An algebraic space
over S is a presheaf

F : (Sch/S)oppfppf −→ Sets

with the following properties
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(1) The presheaf F is a sheaf.
(2) The diagonal morphism F → F × F is representable.
(3) There exists a scheme U ∈ Ob(Schfppf ) and a map hU → F which is

surjective, and étale.

There are two differences with the “usual” definition, for example the definition in
Knutson’s book [Knu71].

The first is that we require F to be a sheaf in the fppf topology. One reason
for doing this is that many natural examples of algebraic spaces satisfy the sheaf
condition for the fppf coverings (and even for fpqc coverings). Also, one of the
reasons that algebraic spaces have been so useful is via Michael Artin’s results on
algebraic spaces. Built into his method is a condition which guarantees the result
is locally of finite presentation over S. Combined it somehow seems to us that the
fppf topology is the natural topology to work with. In the end the category of
algebraic spaces ends up being the same. See Bootstrap, Section 62.12.

The second is that we only require the diagonal map for F to be representable,
whereas in [Knu71] it is required that it also be quasi-compact. If F = hU for
some scheme U over S this corresponds to the condition that U be quasi-separated.
Our point of view is to try to prove a certain number of the results that follow
only assuming that the diagonal of F be representable, and simply add an addition
hypothesis wherever this is necessary. In any case it has the pleasing consequence
that the following lemma is true.

Lemma 47.6.2. A scheme is an algebraic space. More precisely, given a scheme
T ∈ Ob((Sch/S)fppf ) the representable functor hT is an algebraic space.

Proof. The functor hT is a sheaf by our remarks in Section 47.2. The diagonal
hT → hT × hT = hT×T is representable because (Sch/S)fppf has fibre products.
The identity map hT → hT is surjective étale. �

Definition 47.6.3. Let F , F ′ be algebraic spaces over S. A morphism f : F → F ′

of algebraic spaces over S is a transformation of functors from F to F ′.

The category of algebraic spaces over S contains the category (Sch/S)fppf as a
full subcategory via the Yoneda embedding T/S 7→ hT . From now on we no longer
distinguish between a scheme T/S and the algebraic space it represents. Thus when
we say “Let f : T → F be a morphism from the scheme T to the algebraic space
F”, we mean that T ∈ Ob((Sch/S)fppf ), that F is an algebraic space over S, and
that f : hT → F is a morphism of algebraic spaces over S.

47.7. Fibre products of algebraic spaces

The category of algebraic spaces over S has both products and fibre products.

Lemma 47.7.1. Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Then F ×G is an algebraic space, and is a product in the category
of algebraic spaces over S.

Proof. It is clear that H = F ×G is a sheaf. The diagonal of H is simply the prod-
uct of the diagonals of F and G. Hence it is representable by Lemma 47.3.4. Finally,
if U → F and V → G are surjective étale morphisms, with U, V ∈ Ob((Sch/S)fppf ),
then U × V → F ×G is surjective étale by Lemma 47.5.7. �
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Lemma 47.7.2. Let S be a scheme contained in Schfppf . Let H be a sheaf on
(Sch/S)fppf whose diagonal is representable. Let F,G be algebraic spaces over S.
Let F → H, G→ H be maps of sheaves. Then F ×H G is an algebraic space.

Proof. We check the 3 conditions of Definition 47.6.1. A fibre product of sheaves
is a sheaf, hence F ×H G is a sheaf. The diagonal of F ×H G is the left vertical
arrow in

F ×H G //

∆

��

F ×G

∆F×∆G

��
(F × F )×(H×H) (G×G) // (F × F )× (G×G)

which is cartesian. Hence ∆ is representable as the base change of the morphism
on the right which is representable, see Lemmas 47.3.4 and 47.3.3. Finally, let
U, V ∈ Ob((Sch/S)fppf ) and a : U → F , b : V → G be surjective and étale. As ∆H

is representable, we see that U ×H V is a scheme. The morphism

U ×H V −→ F ×H G

is surjective and étale as a composition of the base changes U ×H V → U ×H G
and U ×H G→ F ×H G of the étale surjective morphisms U → F and V → G, see
Lemmas 47.3.2 and 47.3.3. This proves the last condition of Definition 47.6.1 holds
and we conclude that F ×H G is an algebraic space. �

Lemma 47.7.3. Let S be a scheme contained in Schfppf . Let F → H, G→ H be
morphisms of algebraic spaces over S. Then F ×H G is an algebraic space, and is
a fibre product in the category of algebraic spaces over S.

Proof. It follows from the stronger Lemma 47.7.2 that F ×H G is an algebraic
space. It is clear that F ×H G is a fibre product in the category of algebraic spaces
over S since that is a full subcategory of the category of (pre)sheaves of sets on
(Sch/S)fppf . �

47.8. Glueing algebraic spaces

In this section we really start abusing notation and not distinguish between schemes
and the spaces they represent.

Lemma 47.8.1. Let S ∈ Ob(Schfppf ). Let U ∈ Ob((Sch/S)fppf ). Given a set
I and sheaves Fi on Ob((Sch/S)fppf ), if U ∼=

∐
i∈I Fi as sheaves, then each Fi is

representable by an open and closed subscheme Ui and U ∼=
∐
Ui as schemes.

Proof. By assumption this means there exists an fppf covering {Uj → U}j∈J such
that each Uj → U factors through Fi(j) for some i(j) ∈ I. Denote Vj = Im(Uj →
U). This is an open of U by Morphisms, Lemma 28.26.9, and {Uj → Vj} is an
fppf covering. Hence it follows that Vj → U factors through Fi(j) since Fi(j) is a
subsheaf. It follows from Fi ∩ Fi′ = ∅, i 6= i′ that Vj ∩ Vj′ = ∅ unless i(j) = i(j′).
Hence we can take Ui =

⋃
j, i(j)=i Vj and everything is clear. �

Lemma 47.8.2. Let S ∈ Ob(Schfppf ). Let F be an algebraic space over S. Given
a set I and sheaves Fi on Ob((Sch/S)fppf ), if F ∼=

∐
i∈I Fi as sheaves, then each

Fi is an algebraic space over S.
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Proof. It follows directly from the representability of F → F×F that each diagonal
morphism Fi → Fi × Fi is representable. Choose a scheme U in (Sch/S)fppf and
a surjective étale morphism U →

∐
Fi (this exist by hypothesis). By considering

the inverse image of Fi we get a decomposition of U (as a sheaf) into a coproduct
of sheaves. By Lemma 47.8.1 we get correspondingly U ∼=

∐
Ui. Then it follows

easily that Ui → Fi is surjective and étale (from the corresponding property of
U → F ). �

The condition on the size of I and the Fi in the following lemma may be ignored
by those not worried about set theoretic questions.

Lemma 47.8.3. Let S ∈ Ob(Schfppf ). Suppose given a set I and algebraic spaces
Fi, i ∈ I. Then F =

∐
i∈I Fi is an algebraic space provided I, and the Fi are

not too “large”: for example if we can choose surjective étale morphisms Ui → Fi
such that

∐
i∈I Ui is isomorphic to an object of (Sch/S)fppf , then F is an algebraic

space.

Proof. By construction F is a sheaf. We omit the verification that the diagonal
morphism of F is representable. Finally, if U is an object of (Sch/S)fppf isomorphic
to
∐
i∈I Ui then it is straightforward to verify that the resulting map U →

∐
Fi is

surjective and étale. �

Here is the analogue of Schemes, Lemma 25.15.4.

Lemma 47.8.4. Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an algebraic space,
(b) each Fi → F is a representable,
(c) each Fi → F is an open immersion (see Definition 47.5.1),
(d) the map

∐
Fi → F is surjective as a map of sheaves, and

(e)
∐
Fi is an algebraic space (set theoretic condition, see Lemma 47.8.3).

Then F is an algebraic space.

Proof. Let T be an object of (Sch/S)fppf . Let T → F be a morphism. By
assumption (2)(b) and (2)(c) the fibre product Fi×F T is representable by an open
subscheme Vi ⊂ T . It follows that (

∐
Fi)×F T is represented by the scheme

∐
Vi

over T . By assumption (2)(d) there exists an fppf covering {Tj → T}j∈J such that
Tj → T → F factors through Fi, i = i(j). Hence Tj → T factors through the open
subscheme Vi(j) ⊂ T . Since {Tj → T} is jointly surjective, it follows that T =

⋃
Vi

is an open covering. In particular, the transformation of functors
∐
Fi → F is

representable and surjective in the sense of Definition 47.5.1 (see Remark 47.5.2 for
a discussion).

Next, let T ′ → F be a second morphism from an object in (Sch/S)fppf . Write as
above T ′ =

⋃
V ′i with V ′i = T ′ ×F Fi. To show that the diagonal F → F × F

is representable we have to show that G = T ×F T ′ is representable, see Lemma
47.5.10. Consider the subfunctors Gi = G ×F Fi. Note that Gi = Vi ×Fi V ′i ,
and hence is representable as Fi is an algebraic space. By the above the Gi form a
Zariski covering of F . Hence by Schemes, Lemma 25.15.4 we see G is representable.
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Choose a scheme U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U →
∐
Fi

(this exist by hypothesis). We may write U =
∐
Ui with Ui the inverse image of

Fi, see Lemma 47.8.1. We claim that U → F is surjective and étale. Surjectivity
follows as

∐
Fi → F is surjective (see first paragraph of the proof) by applying

Lemma 47.5.4. Consider the fibre product U ×F T where T → F is as above. We
have to show that U ×F T → T is étale. Since U ×F T =

∐
Ui ×F T it suffices

to show each Ui ×F T → T is étale. Since Ui ×F T = Ui ×Fi Vi this follows from
the fact that Ui → Fi is étale and Vi → T is an open immersion (and Morphisms,
Lemmas 28.37.9 and 28.37.3). �

47.9. Presentations of algebraic spaces

Given an algebraic space we can find a “presentation” of it.

Lemma 47.9.1. Let F be an algebraic space over S. Let f : U → F be a surjective
étale morphism from a scheme to F . Set R = U ×F U . Then

(1) j : R→ U×SU defines an equivalence relation on U over S (see Groupoids,
Definition 38.3.1).

(2) the morphisms s, t : R→ U are étale, and
(3) the diagram

R
//
// U // F

is a coequalizer diagram in Sh((Sch/S)fppf ).

Proof. Let T/S be an object of (Sch/S)fppf . Then R(T ) = {(a, b) ∈ U(T )×U(T ) |
f ◦ a = f ◦ b} which is clearly defines an equivalence relation on U(T ). The
morphisms s, t : R→ U are étale because the morphism U → F is étale.

To prove (3) we first show that U → F is a surjection of sheaves, see Sites, Definition
7.12.1. Let ξ ∈ F (T ) with T as above. Let V = T ×ξ,F,f U . By assumption V
is a scheme and V → T is surjective étale. Hence {V → T} is a covering for the
fppf topology. Since ξ|V factors through U by construction we conclude U → F is
surjective. Surjectivity implies that F is the coequalizer of the diagram by Sites,
Lemma 7.12.3. �

This lemma suggests the following definitions.

Definition 47.9.2. Let S be a scheme. Let U be a scheme over S. An étale
equivalence relation on U over S is an equivalence relation j : R → U ×S U such
that s, t : R→ U are étale morphisms of schemes.

Definition 47.9.3. Let F be an algebraic space over S. A presentation of F is
given by a scheme U over S and an étale equivalence relation R on U over S, and
a surjective étale morphism U → F such that R = U ×F U .

Equivalently we could ask for the existence of an isomorphism

U/R ∼= F

where the quotient U/R is as defined in Groupoids, Section 38.18. To construct
algebraic spaces we will study the converse question, namely, for which equivalence
relations the quotient sheaf U/R is an algebraic space. It will finally turn out this
is always the case if R is an étale equivalence relation on U over S, see Theorem
47.10.5.
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47.10. Algebraic spaces and equivalence relations

Suppose given a scheme U over S and an étale equivalence relation R on U over S.
We would like to show this defines an algebraic space. We will produce a series of
lemmas that prove the quotient sheaf U/R (see Groupoids, Definition 38.18.1) has
all the properties required of it in Definition 47.6.1.

Lemma 47.10.1. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R→ U ×S U be an étale equivalence relation on U over S. Let U ′ → U be an étale
morphism. Let R′ be the restriction of R to U ′, see Groupoids, Definition 38.3.3.
Then j′ : R′ → U ′ ×S U ′ is an étale equivalence relation also.

Proof. It is clear from the description of s′, t′ in Groupoids, Lemma 38.16.1 that
s′, t′ : R′ → U ′ are étale as compositions of base changes of étale morphisms (see
Morphisms, Lemma 28.37.4 and 28.37.3). �

We will often use the following lemma to find open subspaces of algebraic spaces.
A slight improvement (with more general hypotheses) of this lemma is Bootstrap,
Lemma 62.7.1.

Lemma 47.10.2. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R→ U ×S U be a pre-relation. Let g : U ′ → U be a morphism. Assume

(1) j is an equivalence relation,
(2) s, t : R→ U are surjective, flat and locally of finite presentation,
(3) g is flat and locally of finite presentation.

Let R′ = R|U ′ be the restriction of R to U . Then U ′/R′ → U/R is representable,
and is an open immersion.

Proof. By Groupoids, Lemma 38.3.2 the morphism j′ = (t′, s′) : R′ → U ′ ×S U ′
defines an equivalence relation. Since g is flat and locally of finite presentation
we see that g is universally open as well (Morphisms, Lemma 28.26.9). For the
same reason s, t are universally open as well. Let W 1 = g(U ′) ⊂ U , and let
W = t(s−1(W 1)). Then W 1 and W are open in U . Moreover, as j is an equivalence
relation we have t(s−1(W )) = W (see Groupoids, Lemma 38.17.2 for example).

By Groupoids, Lemma 38.18.5 the map of sheaves F ′ = U ′/R′ → F = U/R is
injective. Let a : T → F be a morphism from a scheme into U/R. We have to show
that T ×F F ′ is representable by an open subscheme of T .

The morphism a is given by the following data: an fppf covering {ϕj : Tj → T}j∈J
of T and morphisms aj : Tj → U such that the maps

aj × aj′ : Tj ×T Tj′ −→ U ×S U

factor through j : R→ U ×S U via some (unique) maps rjj′ : Tj ×T Tj′ → R. The
system (aj) corresponds to a in the sense that the diagrams

Tj aj
//

��

U

��
T

a // F

commute.
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Consider the open subsets Wj = a−1
j (W ) ⊂ Tj . Since t(s−1(W )) = W we see that

Wj ×T Tj′ = r−1
jj′ (t

−1(W )) = r−1
jj′ (s

−1(W )) = Tj ×T Wj′ .

By Descent, Lemma 34.9.2 this means there exists an open WT ⊂ T such that
ϕ−1
j (WT ) = Wj for all j ∈ J . We claim that WT → T represents T ×F F ′ → T .

First, let us show that WT → T → F is an element of F ′(WT ). Since {Wj →
WT }j∈J is an fppf covering of WT , it is enough to show that each Wj → U → F
is an element of F ′(Wj) (as F ′ is a sheaf for the fppf topology). Consider the
commutative diagram

W ′j
//

��

##

U ′

g

��
s−1(W 1)

s
//

t

��

W 1

��
Wj

aj |Wj // W // F

where W ′j = Wj ×W s−1(W 1) ×W 1 U ′. Since t and g are surjective, flat and
locally of finite presentation, so is W ′j → Wj . Hence the restriction of the element
Wj → U → F to W ′j is an element of F ′ as desired.

Suppose that f : T ′ → T is a morphism of schemes such that a|T ′ ∈ F ′(T ′). We
have to show that f factors through the open WT . Since {T ′ ×T Tj → T} is
an fppf covering of T ′ it is enough to show each T ′ ×T Tj → T factors through
WT . Hence we may assume f factors as ϕj ◦ fj : T ′ → Tj → T for some j. In
this case the condition a|T ′ ∈ F ′(T ′) means that there exists some fppf covering
{ψi : T ′i → T ′}i∈I and some morphisms bi : T ′i → U ′ such that

T ′i bi

//

fj◦ψi
��

U ′
g
// U

��
Tj

aj // U // F

is commutative. This commutativity means that there exists a morphism r′i : T ′i →
R such that t◦r′i = aj ◦fj ◦ψi, and s◦r′i = g◦bi. This implies that Im(fj ◦ψi) ⊂Wj

and we win. �

The following lemma is not completely trivial although it looks like it should be
trivial.

Lemma 47.10.3. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. If the quotient U/R is
an algebraic space, then U → U/R is étale and surjective. Hence (U,R,U → U/R)
is a presentation of the algebraic space U/R.

Proof. Denote c : U → U/R the morphism in question. Let T be a scheme
and let a : T → U/R be a morphism. We have to show that the morphism
(of schemes) π : T ×a,U/R,c U → T is étale and surjective. The morphism a
corresponds to an fppf covering {ϕi : Ti → T} and morphisms ai : Ti → U such
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that ai× ai′ : Ti×T Ti′ → U ×S U factors through R, and such that c ◦ ai = ϕi ◦ a.
Hence

Ti ×ϕi,T T ×a,U/R,c U = Ti ×c◦ai,U/R,c U = Ti ×ai,U U ×c,U/R,c U = Ti ×ai,U,t R.

Since t is étale and surjective we conclude that the base change of π to Ti is surjective
and étale. Since the property of being surjective and étale is local on the base in
the fpqc topology (see Remark 47.4.3) we win. �

Lemma 47.10.4. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. Assume that U is
affine. Then the quotient F = U/R is an algebraic space, and U → F is étale and
surjective.

Proof. Since j : R → U ×S U is a monomorphism we see that j is separated (see
Schemes, Lemma 25.23.3). Since U is affine we see that U ×S U (which comes
equipped with a monomorphism into the affine scheme U ×U) is separated. Hence
we see that R is separated. In particular the morphisms s, t are separated as well
as étale.

Since the composition R→ U×SU → U is locally of finite type we conclude that j is
locally of finite type (see Morphisms, Lemma 28.16.8). As j is also a monomorphism
it has finite fibres and we see that j is locally quasi-finite by Morphisms, Lemma
28.21.7. Altogether we see that j is separated and locally quasi-finite.

Our first step is to show that the quotient map c : U → F is representable. Consider
a scheme T and a morphism a : T → F . We have to show that the sheaf G =
T ×a,F,c U is representable. As seen in the proofs of Lemmas 47.10.2 and 47.10.3
there exists an fppf covering {ϕi : Ti → T}i∈I and morphisms ai : Ti → U such
that ai× ai′ : Ti×T Ti′ → U ×S U factors through R, and such that c ◦ ai = ϕi ◦ a.
As in the proof of Lemma 47.10.3 we see that

Ti ×ϕi,T G = Ti ×ϕi,T T ×a,U/R,c U
= Ti ×c◦ai,U/R,c U
= Ti ×ai,U U ×c,U/R,c U
= Ti ×ai,U,t R

Since t is separated and étale, and in particular separated and locally quasi-finite
(by Morphisms, Lemmas 28.36.10 and 28.37.16) we see that the restriction of G
to each Ti is representable by a morphism of schemes Xi → Ti which is separated
and locally quasi-finite. By Descent, Lemma 34.35.1 we obtain a descent datum
(Xi, ϕii′) relative to the fppf-covering {Ti → T}. Since each Xi → Ti is separated
and locally quasi-finite we see by More on Morphisms, Lemma 36.37.1 that this
descent datum is effective. Hence by Descent, Lemma 34.35.1 (2) we conclude that
G is representable as desired.

The second step of the proof is to show that U → F is surjective and étale. This
is clear from the above since in the first step above we saw that G = T ×a,F,c U is
a scheme over T which base changes to schemes Xi → Ti which are surjective and
étale. Thus G → T is surjective and étale (see Remark 47.4.3). Alternatively one
can reread the proof of Lemma 47.10.3 in the current situation.
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The third and final step is to show that the diagonal map F → F × F is repre-
sentable. We first observe that the diagram

R //

j

��

F

∆

��
U ×S U // F × F

is a fibre product square. By Lemma 47.3.4 the morphism U ×S U → F × F
is representable (note that hU × hU = hU×SU ). Moreover, by Lemma 47.5.7 the
morphism U ×S U → F × F is surjective and étale (note also that étale and
surjective occur in the lists of Remarks 47.4.3 and 47.4.2). It follows either from
Lemma 47.3.3 and the diagram above, or by writing R → F as R → U → F and
Lemmas 47.3.1 and 47.3.2 that R→ F is representable as well. Let T be a scheme
and let a : T → F × F be a morphism. We have to show that G = T ×a,F×F,∆ F
is representable. By what was said above the morphism (of schemes)

T ′ = (U ×S U)×F×F,a T −→ T

is surjective and étale. Hence {T ′ → T} is an étale covering of T . Note also that

T ′ ×T G = T ′ ×U×SU,j R
as can be seen contemplating the following cube

R //

��

F

��

T ′ ×T G //

��

88

G

��

<<

U ×S U // F × F

T ′ //

88

T

<<

Hence we see that the restriction of G to T ′ is representable by a scheme X, and
moreover that the morphism X → T ′ is a base change of the morphism j. Hence
X → T ′ is separated and locally quasi-finite (see second paragraph of the proof).
By Descent, Lemma 34.35.1 we obtain a descent datum (X,ϕ) relative to the fppf-
covering {T ′ → T}. Since X → T is separated and locally quasi-finite we see by
More on Morphisms, Lemma 36.37.1 that this descent datum is effective. Hence by
Descent, Lemma 34.35.1 (2) we conclude that G is representable as desired. �

Theorem 47.10.5. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. Then the quotient
U/R is an algebraic space, and U → U/R is étale and surjective, in other words
(U,R,U → U/R) is a presentation of U/R.

Proof. By Lemma 47.10.3 it suffices to prove that U/R is an algebraic space. Let
U ′ → U be a surjective, étale morphism. Then {U ′ → U} is in particular an fppf
covering. Let R′ be the restriction of R to U ′, see Groupoids, Definition 38.3.3.
According to Groupoids, Lemma 38.18.6 we see that U/R ∼= U ′/R′. By Lemma
47.10.1 R′ is an étale equivalence relation on U ′. Thus we may replace U by U ′.
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We apply the previous remark to U ′ =
∐
Ui, where U =

⋃
Ui is an affine open

covering of S. Hence we may and do assume that U =
∐
Ui where each Ui is an

affine scheme.

Consider the restrictionRi ofR to Ui. By Lemma 47.10.1 this is an étale equivalence
relation. Set Fi = Ui/Ri and F = U/R. It is clear that

∐
Fi → F is surjective. By

Lemma 47.10.2 each Fi → F is representable, and an open immersion. By Lemma
47.10.4 applied to (Ui, Ri) we see that Fi is an algebraic space. Then by Lemma
47.10.3 we see that Ui → Fi is étale and surjective. From Lemma 47.8.3 it follows
that

∐
Fi is an algebraic space. Finally, we have verified all hypotheses of Lemma

47.8.4 and it follows that F = U/R is an algebraic space. �

47.11. Algebraic spaces, retrofitted

We start building our arsenal of lemmas dealing with algebraic spaces.

Lemma 47.11.1. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let G→ F be a representable transformation of functors. Then G is
an algebraic space.

Proof. By Lemma 47.3.5 we see that G is a sheaf. The diagram

G×F G //

��

F

∆F

��
G×G // F × F

is cartesian. Hence we see that G ×F G → G × G is representable by Lemma
47.3.3. By Lemma 47.3.6 we see that G → G ×F G is representable. Hence ∆G :
G → G × G is representable as a composition of representable transformations,
see Lemma 47.3.2. Finally, let U be an object of (Sch/S)fppf and let U → F be
surjective and étale. By assumption U ×F G is representable by a scheme U ′. By
Lemma 47.5.5 the morphism U ′ → G is surjective and étale. This verifies the final
condition of Definition 47.6.1 and we win. �

Lemma 47.11.2. Let S be a scheme contained in Schfppf . Let F , G be algebraic
spaces over S. Let G→ F be a representable morphism. Let U ∈ Ob((Sch/S)fppf ),
and q : U → F surjective and étale. Set V = G×F U . Finally, let P be a property
of morphisms of schemes as in Definition 47.5.1. Then G → F has property P if
and only if V → U has property P.

Proof. (This lemma follows from Lemmas 47.5.5 and 47.5.6, but we give a direct
proof here also.) It is clear from the definitions that if G→ F has property P, then
V → U has property P. Conversely, assume V → U has property P. Let T → F
be a morphism from a scheme to F . Let T ′ = T ×F G which is a scheme since
G → F is representable. We have to show that T ′ → T has property P. Consider
the commutative diagram of schemes

V

��

T ×F V

��

oo // T ×F G

��

T ′

U T ×F Uoo // T
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where both squares are fibre product squares. Hence we conclude the middle arrow
has property P as a base change of V → U . Finally, {T ×F U → T} is a fppf
covering as it is surjective étale, and hence we conclude that T ′ → T has property
P as it is local on the base in the fppf topology. �

Lemma 47.11.3. Let S be a scheme contained in Schfppf . Let G → F be a
transformation of presheaves on (Sch/S)fppf . Let P be a property of morphisms of
schemes. Assume

(1) P is preserved under any base change, fppf local on the base, and mor-
phisms of type P satisfy descent for fppf coverings, see Descent, Definition
34.32.1,

(2) G is a sheaf,
(3) F is an algebraic space,
(4) there exists a U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U →

F such that V = G×F U is representable, and
(5) V → U has P.

Then G is an algebraic space, G→ F is representable and has property P.

Proof. Let R = U ×F U , and denote t, s : R → U the projection morphisms as
usual. Let T be a scheme and let T → F be a morphism. Then U ×F T → T is
surjective étale, hence {U ×F T → T} is a covering for the étale topology. Consider

W = G×F (U ×F T ) = V ×F T = V ×U (U ×F T ).

It is a scheme since F is an algebraic space. The morphism W → U ×F T has
property P since it is a base change of V → U . There is an isomorphism

W ×T (U ×F T ) = (G×F (U ×F T ))×T (U ×F T )

= (U ×F T )×T (G×F (U ×F T ))

= (U ×F T )×T W
over (U ×F T ) ×T (U ×F T ). The middle equality maps ((g, (u1, t)), (u2, t)) to
((u1, t), (g, (u2, t))). This defines a descent datum for W/U ×F T/T , see Descent,
Definition 34.30.1. This follows from Descent, Lemma 34.35.1. Namely we have a
sheafG×FT , whose base change to U×FT is represented byW and the isomorphism
above is the one from the proof of Descent, Lemma 34.35.1. By assumption on P
the descent datum above is representable. Hence by the last statement of Descent,
Lemma 34.35.1 we see that G×F T is representable. This proves that G→ F is a
representable transformation of functors.

As G→ F is representable, we see that G is an algebraic space by Lemma 47.11.1.
The fact that G→ F has property P now follows from Lemma 47.11.2. �

Lemma 47.11.4. Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Let a : F → G be a morphism. Given any V ∈ Ob((Sch/S)fppf )
and a surjective étale morphism q : V → G there exists a U ∈ Ob((Sch/S)fppf )
and a commutative diagram

U

p

��

α
// V

q

��
F

a // G
with p surjective and étale.
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Proof. First choose W ∈ Ob((Sch/S)fppf ) with surjective étale morphism W →
F . Next, put U = W×GV . SinceG is an algebraic space we see that U is isomorphic
to an object of (Sch/S)fppf . As q is surjective étale, we see that U →W is surjective
étale (see Lemma 47.5.5). Thus U → F is surjective étale as a composition of
surjective étale morphisms (see Lemma 47.5.4). �

47.12. Immersions and Zariski coverings of algebraic spaces

At this point an interesting phenomenon occurs. We have already defined the notion
of an open immersion of algebraic spaces (through Definition 47.5.1) but we have
yet to define the notion of a point1. Thus the Zariski topology of an algebraic space
has already been defined, but there is no space yet!

Perhaps superfluously we formally introduce immersions as follows.

Definition 47.12.1. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic
space over S.

(1) A morphism of algebraic spaces over S is called an open immersion if it
is representable, and an open immersion in the sense of Definition 47.5.1.

(2) An open subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is an open immersion.

(3) A morphism of algebraic spaces over S is called a closed immersion if it
is representable, and a closed immersion in the sense of Definition 47.5.1.

(4) A closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is a closed immersion.

(5) A morphism of algebraic spaces over S is called an immersion if it is
representable, and an immersion in the sense of Definition 47.5.1.

(6) A locally closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an
algebraic space and F ′ → F is an immersion.

We note that these definitions make sense since an immersion is in particular a
monomorphism (see Schemes, Lemma 25.23.7 and Lemma 47.5.8), and hence the
image of an immersion G → F of algebraic spaces is a subfunctor F ′ ⊂ F which
is (canonically) isomorphic to G. Thus some of the discussion of Schemes, Section
25.10 carries over to the setting of algebraic spaces.

Lemma 47.12.2. Let S ∈ Ob(Schfppf ) be a scheme. A composition of (closed,
resp. open) immersions of algebraic spaces over S is a (closed, resp. open) immer-
sion of algebraic spaces over S.

Proof. See Lemma 47.5.4 and Remarks 47.4.3 (see very last line of that remark)
and 47.4.2. �

Lemma 47.12.3. Let S ∈ Ob(Schfppf ) be a scheme. A base change of a (closed,
resp. open) immersion of algebraic spaces over S is a (closed, resp. open) immersion
of algebraic spaces over S.

Proof. See Lemma 47.5.5 and Remark 47.4.3 (see very last line of that remark). �

1We will associate a topological space to an algebraic space in Properties of Spaces, Section
48.4, and its opens will correspond exactly to the open subspaces defined below.
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Lemma 47.12.4. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. Let F1, F2 be locally closed subspaces of F . If F1 ⊂ F2 as subfunctors of F ,
then F1 is a locally closed subspace of F2. Similarly for closed and open subspaces.

Proof. Let T → F2 be a morphism with T a scheme. Since F2 → F is a monomor-
phism, we see that T ×F2

F1 = T ×F F1. The lemma follows formally from this. �

Let us formally define the notion of a Zariski open covering of algebraic spaces.
Note that in Lemma 47.8.4 we have already encountered such open coverings as a
method for constructing algebraic spaces.

Definition 47.12.5. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic
space over S. A Zariski covering {Fi ⊂ F}i∈I of F is given by a set I, a collection
of open subspaces Fi ⊂ F such that

∐
Fi → F is a surjective map of sheaves.

Note that if T is a schemes, and a : T → F is a morphism, then each of the fibre
products T ×F Fi is identified with an open subscheme Ti ⊂ T . The final condition
of the definition signifies exactly that T =

⋃
i∈I Ti.

It is clear that the collection FZar of open subspaces of F is a set (as (Sch/S)fppf
is a site, hence a set). Moreover, we can turn FZar into a category by letting the
morphisms be inclusions of subfunctors (which are automatically open immersions
by Lemma 47.12.4). Finally, Definition 47.12.5 provides the notion of a Zariski
covering {Fi → F ′}i∈I in the category FZar. Hence, just as in the case of a
topological space (see Sites, Example 7.6.4) by suitably choosing a set of coverings
we may obtain a Zariski site of the algebraic space F .

Definition 47.12.6. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic
space over S. A small Zariski site FZar of an algebraic space F is one of the sites
described above.

Hence this gives a notion of what it means for something to be true Zariski locally
on an algebraic space, which is how we will use this notion. In general the Zariski
topology is not fine enough for our purposes. For example we can consider the
category of Zariski sheaves on an algebraic space. It will turn out that this is not
the correct thing to consider, even for quasi-coherent sheaves. One only gets the
desired result when using the étale or fppf site of F to define quasi-coherent sheaves.

47.13. Separation conditions on algebraic spaces

A separation condition on an algebraic space F is a condition on the diagonal
morphism F → F×F . Let us first list the properties the diagonal has automatically.
Since the diagonal is representable by definition the following lemma makes sense
(through Definition 47.5.1).

Lemma 47.13.1. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism. Then

(1) ∆ is locally of finite type,
(2) ∆ is a monomorphism,
(3) ∆ is separated, and
(4) ∆ is locally quasi-finite.

http://stacks.math.columbia.edu/tag/02YX
http://stacks.math.columbia.edu/tag/02YY
http://stacks.math.columbia.edu/tag/02YZ
http://stacks.math.columbia.edu/tag/02X4
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Proof. Let F = U/R be a presentation of F . As in the proof of Lemma 47.10.4
the diagram

R //

j

��

F

∆

��
U ×S U // F × F

is cartesian. Hence according to Lemma 47.11.2 it suffices to show that j has the
properties listed in the lemma. (Note that each of the properties (1) – (4) occur
in the lists of Remarks 47.4.1 and 47.4.3.) Since j is an equivalence relation it is
a monomorphism. Hence it is separated by Schemes, Lemma 25.23.3. As R is an
étale equivalence relation we see that s, t : R → U are étale. Hence s, t are locally
of finite type. Then it follows from Morphisms, Lemma 28.16.8 that j is locally of
finite type. Finally, as it is a monomorphism its fibres are finite. Thus we conclude
that it is locally quasi-finite by Morphisms, Lemma 28.21.7. �

Here are some common types of separation conditions, relative to the base scheme
S. There is also an absolute notion of these conditions which we will discuss in
Properties of Spaces, Section 48.3. Moreover, we will discuss separation conditions
for a morphism of algebraic spaces in Morphisms of Spaces, Section 49.4.

Definition 47.13.2. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism.

(1) We say F is separated over S if ∆ is a closed immersion.
(2) We say F is locally separated over S2 if ∆ is an immersion.
(3) We say F is quasi-separated over S if ∆ is quasi-compact.
(4) We say F is Zariski locally quasi-separated over S3 if there exists a Zariski

covering F =
⋃
i∈I Fi such that each Fi is quasi-separated.

Note that if the diagonal is quasi-compact (when F is separated or quasi-separated)
then the diagonal is actually quasi-finite and separated, hence quasi-affine (by More
on Morphisms, Lemma 36.31.2).

47.14. Examples of algebraic spaces

In this section we construct some examples of algebraic spaces. Some of these were
suggested by B. Conrad. Since we do not yet have a lot of theory at our disposal
the discussion is a bit awkward in some places.

Example 47.14.1. Let k be a field of characteristic 6= 2. Let U = A1
k. Set

j : R = ∆
∐

Γ −→ U ×k U

where ∆ = {(x, x) | x ∈ A1
k} and Γ = {(x,−x) | x ∈ A1

k, x 6= 0}. It is clear that
s, t : R → U are étale, and hence j is an étale equivalence relation. The quotient
X = U/R is an algebraic space by Theorem 47.10.5. Since R is quasi-compact
we see that X is quasi-separated. On the other hand, X is not locally separated
because the morphism j is not an immersion.

2In the literature this often refers to quasi-separated and locally separated algebraic spaces.
3This definition was suggested by B. Conrad.

http://stacks.math.columbia.edu/tag/02X5
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Example 47.14.2. Let k be a field. Let k ⊂ k′ be a degree 2 Galois extension
with Gal(k′/k) = {1, σ}. Let S = Spec(k[x]) and U = Spec(k′[x]). Note that

U ×S U = Spec((k′ ⊗k k′)[x]) = ∆(U)
∐

∆′(U)

where ∆′ = (1, σ) : U → U ×S U . Take

R = ∆(U)
∐

∆′(U \ {0U})

where 0U ∈ U denotes the k′-rational point whose x-coordinate is zero. It is easy
to see that R is an étale equivalence relation on U over S and hence X = U/R is
an algebraic space by Theorem 47.10.5. Here are some properties of X (some of
which will not make sense until later):

(1) X → S is an isomorphism over S \ {0S},
(2) the morphism X → S is étale (see Properties of Spaces, Definition 48.13.2)
(3) the fibre 0X of X → S over 0S is isomorphic to Spec(k′) = 0U ,
(4) X is not a scheme because if it where, then OX,0X would be a local

domain (O,m, κ) with fraction field k(x), with x ∈ m and residue field
κ = k′ which is impossible,

(5) X is not separated, but it is locally separated and quasi-separated,
(6) there exists a surjective, finite, étale morphism S′ → S such that the base

change X ′ = S′ ×S X is a scheme (namely, if we base change to S′ =
Spec(k′[x]) then U splits into two copies of S′ and X ′ becomes isomorphic
to the affine line with 0 doubled, see Schemes, Example 25.14.3), and

(7) if we think ofX as a finite type algebraic space over Spec(k), then similarly
the base change Xk′ is a scheme but X is not a scheme.

In particular, this gives an example of a descent datum for schemes relative to the
covering {Spec(k′)→ Spec(k)} which is not effective.

See also Examples, Lemma 82.56.1, which shows that descent data need not be
effective even for a projective morphism of schemes. That example gives a smooth
separated algebraic space of dimension 3 over C which is not a scheme.

We will use the following lemma as a convenient way to construct algebraic spaces
as quotients of schemes by free group actions.

Lemma 47.14.3. Let U → S be a morphism of Schfppf . Let G be an abstract
group. Let G→ AutS(U) be a group homomorphism. Assume

(∗) if u ∈ U is a point, and g(u) = u for some non-identity element g ∈ G,
then g induces a nontrivial automorphism of κ(u).

Then

j : R =
∐

g∈G
U −→ U ×S U, (g, x) 7−→ (g(x), x)

is an étale equivalence relation and hence

F = U/R

is an algebraic space by Theorem 47.10.5.

Proof. In the statement of the lemma the symbol AutS(U) denotes the group of
automorphisms of U over S. Assume (∗) holds. Let us show that

j : R =
∐

g∈G
U −→ U ×S U, (g, x) 7−→ (g(x), x)

http://stacks.math.columbia.edu/tag/03FN
http://stacks.math.columbia.edu/tag/02Z2
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is a monomorphism. This signifies that if T is a nonempty scheme, and h : T → U is
a T -valued point such that g◦h = g′◦h then g = g′. Suppose T 6= ∅, h : T → U and
g◦h = g′◦h. Let t ∈ T . Consider the composition Spec(κ(t))→ Spec(κ(h(t)))→ U .
Then we conclude that g−1 ◦g′ fixes u = h(t) and acts as the identity on its residue
field. Hence g = g′ by (∗).

Thus if (∗) holds we see that j is a relation (see Groupoids, Definition 38.3.1).
Moreover, it is an equivalence relation since on T -valued points for a connected
scheme T we see that R(T ) = G × U(T ) → U(T ) × U(T ) (recall that we always
work over S). Moreover, the morphisms s, t : R→ U are étale since R is a disjoint
product of copies of U . This proves that j : R → U ×S U is an étale equivalence
relation. �

Given a scheme U and an action of a group G on U we say the action of G on U
is free if condition (∗) of Lemma 47.14.3 holds. This is equivalent to the notion
of a free action of the constant group scheme GS on U as defined in Groupoids,
Definition 38.8.2. The lemma can be interpreted as saying that quotients of schemes
by free actions of groups exist in the category of algebraic spaces.

Definition 47.14.4. Notation U → S, G, R as in Lemma 47.14.3. If the action of
G on U satisfies (∗) we say G acts freely on the scheme U . In this case the algebraic
space U/R is denoted U/G and is called the quotient of U by G.

This notation is consistent with the notation U/G introduced in Groupoids, Defini-
tion 38.18.1. We will later make sense of the quotient as an algebraic stack without
any assumptions on the action whatsoever; when we do this we will use the notation
[U/G]. Before we discuss the examples we prove some more lemmas to facilitate
the discussion. Here is a lemma discussing the various separation conditions for
this quotient when G is finite.

Lemma 47.14.5. Notation and assumptions as in Lemma 47.14.3. Assume G is
finite. Then

(1) if U → S is quasi-separated, then U/G is quasi-separated, and
(2) if U → S is separated, then U/G is separated.

Proof. In the proof of Lemma 47.13.1 we saw that it suffices to prove the corre-
sponding properties for the morphism j : R→ U×SU . If U → S is quasi-separated,
then for every affine open V ⊂ U the opens g(V )∩ V are quasi-compact. It follows
that j is quasi-compact. If U → S is separated, the diagonal ∆U/S is a closed
immersion. Hence j : R→ U ×S U is a finite coproduct of closed immersions with
disjoint images. Hence j is a closed immersion. �

Lemma 47.14.6. Notation and assumptions as in Lemma 47.14.3. If Spec(k)→
U/G is a morphism, then there exist

(1) a finite Galois extension k ⊂ k′,
(2) a finite subgroup H ⊂ G,
(3) an isomorphism H → Gal(k′/k), and
(4) an H-equivariant morphism Spec(k′)→ U .

Conversely, such data determine a morphism Spec(k)→ U/G.

http://stacks.math.columbia.edu/tag/02Z3
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Proof. Consider the fibre product V = Spec(k)×U/G U . Here is a diagram

V //

��

U

��
Spec(k) // U/G

This is a nonempty scheme étale over Spec(k) and hence is a disjoint union of
spectra of fields finite separable over k (Morphisms, Lemma 28.37.7). So write V =∐
i∈I Spec(ki). The action of G on U induces an action of G on V =

∐
Spec(ki).

Pick an i, and let H ⊂ G be the stabilizer of i. Since

V ×Spec(k) V = Spec(k)×U/G U ×U/G U = Spec(k)×U/G U ×G = V ×G

we see that (a) the orbit of Spec(ki) is V and (b) Spec(ki⊗kki) = Spec(ki)×H. Thus
H is finite and is the Galois group of ki/k. We omit the converse construction. �

It follows from this lemma for example that if k′/k is a finite Galois extension, then
Spec(k′)/Gal(k′/k) ∼= Spec(k). What happens if the extension is infinite? Here is
an example.

Example 47.14.7. Let S = Spec(Q). Let U = Spec(Q). Let G = Gal(Q/Q) with
obvious action on U . Then by construction property (∗) of Lemma 47.14.3 holds
and we obtain an algebraic space

X = Spec(Q)/G −→ S = Spec(Q).

Of course this is totally ridiculous as an approximation of S! Namely, by the Artin-
Schreier theorem, see [Jac64, Theorem 17, page 316], the only finite subgroups
of Gal(Q/Q) are {1} and the conjugates of the order two group Gal(Q/Q ∩ R).
Hence, if Spec(k)→ X is a morphism with k algebraic over Q, then it follows from
Lemma 47.14.6 and the theorem just mentioned that either k is Q or isomorphic
to Q ∩R.

What is wrong with the example above is that the Galois group comes equipped
with a topology, and this should somehow be part of any construction of a quotient
of Spec(Q). The following example is much more reasonable in my opinion and
may actually occur in “nature”.

Example 47.14.8. Let k be a field of characteristic zero. Let U = A1
k and let

G = Z. As action we take n(x) = x + n, i.e., the action of Z on the affine line by
translation. The only fixed point is the generic point and it is clearly the case that
Z injects into the automorphism group of the field k(x). (This is where we use the
characteristic zero assumption.) Consider the morphism

γ : Spec(k(x)) −→ X = A1
k/Z

of the generic point of the affine line into the quotient. We claim that this morphism
does not factor through any monomorphism Spec(L)→ X of the spectrum of a field
to X. (Contrary to what happens for schemes, see Schemes, Section 25.13.) In fact,
since Z does not have any finite subgroups we see from Lemma 47.14.6 that for any
such factorization k(x) = L. Finally, γ is not a monomorphism since

Spec(k(x))×γ,X,γ Spec(k(x)) ∼= Spec(k(x))× Z.

http://stacks.math.columbia.edu/tag/02Z6
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This example suggests that in order to define points of an algebraic space X we
should consider equivalence classes of morphisms from spectra of fields into X and
not the set of monomorphisms from spectra of fields.

We finish with a truly awful example.

Example 47.14.9. Let k be a field. Let A =
∏
n∈N k be the infinite product. Set

U = Spec(A) seen as a scheme over S = Spec(k). Note that the projection maps
prn : A→ k define open and closed immersions fn : S → U . Set

R = U q
∐

(n,m)∈N2, n 6=m
S

with morphism j equal to ∆U/S on the component U and j = (fn, fm) on the
component S corresponding to (n,m). It is clear from the remark above that s, t
are étale. It is also clear that j is an equivalence relation. Hence we obtain an
algebraic space

X = U/R.

To see what this means we specialize to the case where the field k is finite with q
elements. Let us first discuss the topological space |U | associated to the scheme
U a little bit. All elements of A satisfy xq = x. Hence every residue field of A is
isomorphic to k, and all points of U are closed. But the topology on U isn’t the
discrete topology. Let un ∈ |U | be the point corresponding to fn. As mentioned
above the points un are the open points (and hence isolated). This implies there
have to be other points since we know U is quasi-compact, see Algebra, Lemma
10.16.10 (hence not equal to an infinite discrete set). Another way to see this is
because the (proper) ideal

I = {x = (xn) ∈ A | all but a finite number of xn are zero}
is contained in a maximal ideal. Note also that every element x of A is of the form
x = ue where u is a unit and e is an idempotent. Hence a basis for the topology
of A consists of open and closed subsets (see Algebra, Lemma 10.20.1.) So the
topology on |U | is totally disconnected, but nontrivial. Finally, note that {un} is
dense in |U |.
We will later define a topological space |X| associated to X, see Properties of
Spaces, Section 48.4. What can we say about |X|? It turns out that the map
|U | → |X| is surjective and continuous. All the points un map to the same point
x0 of |X|, and none of the other points get identified. Since {un} is dense in |U |
we conclude that the closure of x0 in |X| is |X|. In other words |X| is irreducible
and x0 is a generic point of |X|. This seems bizarre since also x0 is the image of a
section S → X of the structure morphism X → S (and in the case of schemes this
would imply it was a closed point, see Morphisms, Lemma 28.21.2).

Whatever you think is actually going on in this example, it certainly shows that
some care has to be exercised when defining irreducible components, connectedness,
etc of algebraic spaces.

47.15. Change of big site

In this section we briefly discuss what happens when we change big sites. The
upshot is that we can always enlarge the big site at will, hence we may assume any
set of schemes we want to consider is contained in the big fppf site over which we
consider our algebraic space. Here is a precise statement of the result.

http://stacks.math.columbia.edu/tag/02Z8
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Lemma 47.15.1. Suppose given big sites Schfppf and Sch′fppf . Assume that

Schfppf is contained in Sch′fppf , see Topologies, Section 33.10. Let S be an ob-
ject of Schfppf . Let

g : Sh((Sch/S)fppf ) −→ Sh((Sch′/S)fppf ),

f : Sh((Sch′/S)fppf ) −→ Sh((Sch/S)fppf )

be the morphisms of topoi of Topologies, Lemma 33.10.2. Let F be a sheaf of sets
on (Sch/S)fppf . Then

(1) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ) over S, then
f−1F is representable too, in fact it is representable by the same scheme
X, now viewed as an object of (Sch′/S)fppf , and

(2) if F is an algebraic space over S, then f−1F is an algebraic space over S
also.

Proof. Let X ∈ Ob((Sch/S)fppf ). Let us write hX for the representable sheaf on
(Sch/S)fppf associated to X, and h′X for the representable sheaf on (Sch′/S)fppf
associated to X. By the description of f−1 in Topologies, Section 33.10 we see that
f−1hX = h′X . This proves (1).

Next, suppose that F is an algebraic space over S. By Lemma 47.9.1 this means
that F = hU/hR for some étale equivalence relation R → U ×S U in (Sch/S)fppf .
Since f−1 is an exact functor we conclude that f−1F = h′U/h

′
R. Hence f−1F is an

algebraic space over S by Theorem 47.10.5. �

Note that this lemma is purely set theoretical and has virtually no content. More-
over, it is not true (in general) that the restriction of an algebraic space over the
bigger site is an algebraic space over the smaller site (simply by reasons of cardi-
nality). Hence we can only ever use a simple lemma of this kind to enlarge the base
category and never to shrink it.

Lemma 47.15.2. Suppose Schfppf is contained in Sch′fppf . Let S be an object
of Schfppf . Denote Spaces/S the category of algebraic spaces over S defined using
Schfppf . Similarly, denote Spaces′/S the category of algebraic spaces over S defined
using Sch′fppf . The construction of Lemma 47.15.1 defines a fully faithful functor

Spaces/S −→ Spaces′/S

whose essential image consists of those X ′ ∈ Ob(Spaces′/S) such that there exist
U,R ∈ Ob((Sch/S)fppf )4 and morphisms

U −→ X ′ and R −→ U ×X′ U
in Sh((Sch′/S)fppf ) which are surjective as maps of sheaves (for example if the
displayed morphisms are surjective and étale).

Proof. In Sites, Lemma 7.20.8 we have seen that the functor f−1 : Sh((Sch/S)fppf )→
Sh((Sch′/S)fppf ) is fully faithful (see discussion in Topologies, Section 33.10).
Hence we see that the displayed functor of the lemma is fully faithful.

4Requiring the existence of R is necessary because of our choice of the function Bound in

Sets, Equation (3.9.1.1). The size of the fibre product U ×X′ U can grow faster than Bound in
terms of the size of U . We can illustrate this by setting S = Spec(A), U = Spec(A[xi, i ∈ I]) and

R =
∐

(λi)∈AI Spec(A[xi, yi]/(xi − λiyi)). In this case the size of R grows like κκ where κ is the

size of U .

http://stacks.math.columbia.edu/tag/03FP
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Suppose that X ′ ∈ Ob(Spaces′/S) such that there exists U ∈ Ob((Sch/S)fppf )
and a map U → X ′ in Sh((Sch′/S)fppf ) which is surjective as a map of sheaves.
Let U ′ → X ′ be a surjective étale morphism with U ′ ∈ Ob((Sch′/S)fppf ). Let
κ = size(U), see Sets, Section 3.9. Then U has an affine open covering U =

⋃
i∈I Ui

with |I| ≤ κ. Observe that U ′×X′ U → U is étale and surjective. For each i we can
pick a quasi-compact open U ′i ⊂ U ′ such that U ′i×X′ Ui → Ui is surjective (because
the scheme U ′×X′ Ui is the union of the Zariski opens W ×X′ Ui for W ⊂ U ′ affine
and because U ′×X′ Ui → Ui is étale hence open). Then

∐
i∈I U

′
i → X is surjective

étale because of our assumption that U → X and hence
∐
Ui → X is a surjection

of sheaves (details omitted). Because U ′i ×X′ U → U ′i is a surjection of sheaves and
because U ′i is quasi-compact, we can find a quasi-compact open Wi ⊂ U ′i×X′U such
that Wi → U ′i is surjective as a map of sheaves (details omitted). Then Wi → U
is étale and we conclude that size(Wi) ≤ size(U), see Sets, Lemma 3.9.7. By Sets,
Lemma 3.9.11 we conclude that size(U ′i) ≤ size(U). Hence

∐
i∈I U

′
i is isomorphic

to an object of (Sch/S)fppf by Sets, Lemma 3.9.5.

Now let X ′, U → X ′ and R → U ×X′ U be as in the statement of the lemma. In
the previous paragraph we have seen that we can find U ′ ∈ Ob((Sch/S)fppf ) and a
surjective étale morphism U ′ → X ′ in Sh((Sch′/S)fppf ). Then U ′ ×X′ U → U ′ is a
surjection of sheaves, i.e., we can find an fppf covering {U ′i → U ′} such that U ′i → U ′

factors through U ′×X′ U → U ′. By Sets, Lemma 3.9.12 we can find Ũ → U ′ which
is surjective, flat, and locally of finite presentation, with size(Ũ) ≤ size(U ′), such

that Ũ → U ′ factors through U ′ ×X′ U → U ′. Then we consider

U ′ ×X′ U ′

��

Ũ ×X′ Ũoo

��

// U ×X′ U

��
U ′ ×S U ′ Ũ ×S Ũoo // U ×S U

The squares are cartesian. We know the objects of the bottom row are represented
by objects of (Sch/S)fppf . By the result of the argument of the previous paragraph,
the same is true for U ×X′ U (as we have the surjection of sheaves R→ U ×X′ U by
assumption). Since (Sch/S)fppf is closed under fibre products (by construction),

we see that Ũ ×X′ Ũ is represented by an object of (Sch/S)fppf . Finally, the map

Ũ ×X′ Ũ → U ′ ×X′ U ′ is a surjection of fppf sheaves as Ũ → U ′ is so. Thus
we can once more apply the result of the previous paragraph to conclude that
R′ = U ′ ×X′ U ′ is represented by an object of (Sch/S)fppf . At this point Lemma
47.9.1 and Theorem 47.10.5 imply that X = hU ′/hR′ is an object of Spaces/S such
that f−1X ∼= X ′ as desired. �

47.16. Change of base scheme

In this section we briefly discuss what happens when we change base schemes. The
upshot is that given a morphism S → S′ of base schemes, any algebraic space over S
can be viewed as an algebraic space over S′. And, given an algebraic space F ′ over
S′ there is a base change F ′S which is an algebraic space over S. We explain only
what happens in case S → S′ is a morphism of the big fppf site under consideration,
if only S or S′ is contained in the big site, then one first enlarges the big site as in
Section 47.15.
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Lemma 47.16.1. Suppose given a big site Schfppf . Let g : S → S′ be morphism
of Schfppf . Let j : (Sch/S)fppf → (Sch/S′)fppf be the corresponding localization
functor. Let F be a sheaf of sets on (Sch/S)fppf . Then

(1) for a scheme T ′ over S′ we have j!F (T ′/S′) =
∐
ϕ:T ′→S F (T ′

ϕ−→ S),

(2) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ), then j!F is rep-
resentable by j(X) which is X viewed as a scheme over S′, and

(3) if F is an algebraic space over S, then j!F is an algebraic space over S′,
and if F = U/R is a presentation, then j!F = j(U)/j(R) is a presentation.

Let F ′ be a sheaf of sets on (Sch/S′)fppf . Then

(4) for a scheme T over S we have j−1F ′(T/S) = F ′(T/S′),
(5) if F ′ is representable by a scheme X ′ ∈ Ob((Sch/S′)fppf ), then j−1F ′ is

representable, namely by X ′S = S ×S′ X ′, and
(6) if F ′ is an algebraic space, then j−1F ′ is an algebraic space, and if F ′ =

U ′/R′ is a presentation, then j−1F ′ = U ′S/R
′
S is a presentation.

Proof. The functors j!, j∗ and j−1 are defined in Sites, Lemma 7.24.7 where it is
also shown that j = jS/S′ is the localization of (Sch/S′)fppf at the object S/S′.
Hence all of the material on localization functors is available for j. The formula in
(1) is Sites, Lemma 7.26.1. By definition j! is the left adjoint to restriction j−1,
hence j! is right exact. By Sites, Lemma 7.24.5 it also commutes with fibre products
and equalizers. By Sites, Lemma 7.24.3 we see that j!hX = hj(X) hence (2) holds.
If F is an algebraic space over S, then we can write F = U/R (Lemma 47.9.1) and
we get

j!F = j(U)/j(R)

because j! being right exact commutes with coequalizers, and moreover j(R) =
j(U)×j!F j(U) as j! commutes with fibre products. Since the morphisms j(s), j(t) :
j(R)→ j(U) are simply the morphisms s, t : R → U (but viewed as morphisms of
schemes over S′), they are still étale. Thus (j(U), j(R), s, t) is an étale equivalence
relation. Hence by Theorem 47.10.5 we conclude that j!F is an algebraic space.

Proof of (4), (5), and (6). The description of j−1 is in Sites, Section 7.24. The
restriction of the representable sheaf associated to X ′/S′ is the representable sheaf
associated to X ′S = S ×S′ Y ′ by Sites, Lemma 7.26.2. The restriction functor
j−1 is exact, hence j−1F ′ = U ′S/R

′
S . Again by exactness the sheaf R′S is still

an equivalence relation on U ′S . Finally the two maps R′S → U ′S are étale as base
changes of the étale morphisms R′ → U ′. Hence j−1F ′ = U ′S/R

′
S is an algebraic

space by Theorem 47.10.5 and we win. �

Note how the presentation j!F = j(U)/j(R) is just the presentation of F but viewed
as a presentation by schemes over S′. Hence the following definition makes sense.

Definition 47.16.2. Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site.

(1) If F ′ is an algebraic space over S′, then the base change of F ′ to S is the
algebraic space j−1F ′ described in Lemma 47.16.1. We denote it F ′S .

(2) If F is an algebraic space over S, then F viewed as an algebraic space over
S′ is the algebraic space j!F over S′ described in Lemma 47.16.1. We
often simply denote this F ; if not then we will write j!F .
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The algebraic space j!F comes equipped with a canonical morphism j!F → S of
algebraic spaces over S′. This is true simply because the sheaf j!F maps to hS (see
for example the explicit description in Lemma 47.16.1). In fact, in Sites, Lemma
7.24.4 we have seen that the category of sheaves on (Sch/S)fppf is equivalent to
the category of pairs (F ′,F ′ → hS) consisting of a sheaf on (Sch/S′)fppf and
a map of sheaves F ′ → hS . The equivalence assigns to the sheaf F the pair
(j!F , j!F → hS). This, combined with the above, leads to the following result for
categories of algebraic spaces.

Lemma 47.16.3. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. The construction above give an equivalence of categories{

category of algebraic
spaces over S

}
↔

 category of pairs (F ′, F ′ → S) consisting
of an algebraic space F ′ over S′ and a

morphism F ′ → S of algebraic spaces over S′


Proof. Let F be an algebraic space over S. The functor from left to right assigns
the pair (j!F, j!F → S) ot F which is an object of the right hand side by Lemma
47.16.1. Since this defines an equivalence of categories of sheaves by Sites, Lemma
7.24.4 to finish the proof it suffices to show: if F is a sheaf and j!F is an algebraic
space, then F is an algebraic space. To do this, write j!F = U ′/R′ as in Lemma
47.9.1 with U ′, R′ ∈ Ob((Sch/S′)fppf ). Then the compositions U ′ → j!F → S and
R′ → j!F → S are morphisms of schemes over S′. Denote U,R the corresponding
objects of (Sch/S)fppf . The two morphisms R′ → U ′ are morphisms over S and
hence correspond to morphisms R→ U . Since these are simply the same morphisms
(but viewed over S) we see that we get an étale equivalence relation over S. As
j! defines an equivalence of categories of sheaves (see reference above) we see that
F = U/R and by Theorem 47.10.5 we see that F is an algebraic space. �

The following lemma is a slight rephrasing of the above.

Lemma 47.16.4. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. Let F ′ be a sheaf on (Sch/S′)fppf . The following are equivalent:

(1) The restriction F ′|(Sch/S)fppf is an algebraic space over S, and
(2) the sheaf hS × F ′ is an algebraic space over S′.

Proof. The restriction and the product match under the equivalence of categories
of Sites, Lemma 7.24.4 so that Lemma 47.16.3 above gives the result. �

We finish this section with a lemma on a compatibility.

Lemma 47.16.5. Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. Let F be an algebraic space over S. Let T be a scheme over S and let
f : T → F be a morphism over S. Let f ′ : T ′ → F ′ be the morphism over S′ we get
from f by applying the equivalence of categories described in Lemma 47.16.3. For
any property P as in Definition 47.5.1 we have P(f ′)⇔ P(f).

Proof. Suppose that U is a scheme over S, and U → F is a surjective étale
morphism. Denote U ′ the scheme U viewed as a scheme over S′. In Lemma 47.16.1
we have seen that U ′ → F ′ is surjective étale. Since

j(T ×f,F U) = T ′ ×f ′,F ′ U ′
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the morphism of schemes T ×f,F U → U is identified with the morphism of schemes
T ′×f ′,F ′U ′ → U ′. It is the same morphism, just viewed over different base schemes.
Hence the lemma follows from Lemma 47.11.2. �
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CHAPTER 48

Properties of Algebraic Spaces

48.1. Introduction

Please see Spaces, Section 47.1 for a brief introduction to algebraic spaces, and
please read some of that chapter for our basic definitions and conventions con-
cerning algebraic spaces. In this chapter we start introducing some basic notions
and properties of algebraic spaces. A fundamental reference for the case of quasi-
separated algebraic spaces is [Knu71].

The discussion is somewhat awkward at times since we made the design decision
to first talk about properties of algebraic spaces by themselves, and only later
about properties of morphisms of algebraic spaces. We make an exception for this
rule regarding étale morphisms of algebraic spaces, which we introduce in Section
48.13. But until that section whenever we say a morphism has a certain property,
it automatically means the source of the morphism is a scheme (or perhaps the
morphism is representable).

Some of the material in the chapter (especially regarding points) will be improved
upon in the chapter on decent algebraic spaces.

48.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X × X. The reason is that we want to avoid
confusion when changing base schemes, as in Spaces, Section 47.16.

48.3. Separation axioms

In this section we collect all the “absolute” separation conditions of algebraic spaces.
Since in our language any algebraic space is an algebraic space over some definite
base scheme, any absolute property ofX over S corresponds to a conditions imposed
on X viewed as an algebraic space over Spec(Z). Here is the precise formulation.

Definition 48.3.1. (Compare Spaces, Definition 47.13.2.) Consider a big fppf site
Schfppf = (Sch/ Spec(Z))fppf . Let X be an algebraic space over Spec(Z). Let
∆ : X → X ×X be the diagonal morphism.

(1) We say X is separated if ∆ is a closed immersion.
(2) We say X is locally separated1 if ∆ is an immersion.

1In the literature this often refers to quasi-separated and locally separated algebraic spaces.

3121
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(3) We say X is quasi-separated if ∆ is quasi-compact.
(4) We say X is Zariski locally quasi-separated2 if there exists a Zariski cov-

ering X =
⋃
i∈I Xi (see Spaces, Definition 47.12.5) such that each Xi is

quasi-separated.

Let S is a scheme contained in Schfppf , and let X be an algebraic space over S.
Then we say X is separated, locally separated, quasi-separated, or Zariski locally
quasi-separated if X viewed as an algebraic space over Spec(Z) (see Spaces, Defini-
tion 47.16.2) has the corresponding property.

It is true that an algebraic space X over S which is separated (in the absolute
sense above) is separated over S (and similarly for the other absolute separation
properties above). This will be discussed in great detail in Morphisms of Spaces,
Section 49.4. We will see in Lemma 48.6.6 that being Zariski locally separated is
independent of the base scheme (hence equivalent to the absolute notion).

Lemma 48.3.2. Let S be a scheme. Let X be an algebraic space over S. We have
the following implications among the separation axioms of Definition 48.3.1:

(1) separated implies all the others,
(2) quasi-separated implies Zariski locally quasi-separated.

Proof. Omitted. �

Lemma 48.3.3. Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is a quasi-separated algebraic space,
(2) for U → X, V → X with U , V quasi-compact schemes the fibre product

U ×X V is quasi-compact,
(3) for U → X, V → X with U , V affine the fibre product U ×X V is quasi-

compact.

Proof. Using Spaces, Lemma 47.16.3 we see that we may assume S = Spec(Z).
Since U ×X V = X×X×X (U ×V ) and since U ×V is quasi-compact if U and V are
so, we see that (1) implies (2). It is clear that (2) implies (3). Assume (3). Choose
a scheme W and a surjective étale morphism W → X. Then W ×W → X ×X is
surjective étale. Hence it suffices to show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W
is quasi-compact, see Spaces, Lemma 47.5.6. If U ⊂ W and V ⊂ W are affine
opens, then j−1(U × V ) = U ×X V is quasi-compact by assumption. Since the
affine opens U × V form an affine open covering of W × W (Schemes, Lemma
25.17.4) we conclude by Schemes, Lemma 25.19.2. �

Lemma 48.3.4. Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is a separated algebraic space,
(2) for U → X, V → X with U , V affine the fibre product U ×X V is affine

and
O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.

2 This notion was suggested by B. Conrad.
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Proof. Using Spaces, Lemma 47.16.3 we see that we may assume S = Spec(Z).
Since U ×X V = X ×X×X (U × V ) and since U × V is affine if U and V are so, we
see that (1) implies (2). Assume (2). Choose a scheme W and a surjective étale
morphism W → X. Then W ×W → X ×X is surjective étale. Hence it suffices to
show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W

is a closed immersion, see Spaces, Lemma 47.5.6. If U ⊂ W and V ⊂ W are
affine opens, then j−1(U × V ) = U ×X V is affine by assumption and the map
U ×X V → U × V is a closed immersion because the corresponding ring map is
surjective. Since the affine opens U × V form an affine open covering of W ×W
(Schemes, Lemma 25.17.4) we conclude by Morphisms, Lemma 28.2.1. �

48.4. Points of algebraic spaces

As is clear from Spaces, Example 47.14.8 a point of an algebraic space should not
be defined as a monomorphism from the spectrum of a field. Instead we define
them as equivalence classes of morphisms of spectra of fields exactly as explained
in Schemes, Section 25.13.

Let S be a scheme. Let F be a presheaf on (Sch/S)fppf . Let K is a field. Consider
a morphism

Spec(K) −→ F.

By the Yoneda Lemma this is given by an element p ∈ F (Spec(K)). We say that
two such pairs (Spec(K), p) and (Spec(L), q) are equivalent if there exists a third
field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K)

p // F.

In other words, there are field extensions K → Ω and L → Ω such that p and q
map to the same element of F (Spec(Ω)). We omit the verification that this defines
an equivalence relation.

Definition 48.4.1. Let S be a scheme. Let X be an algebraic space over S. A
point of X is an equivalence class of morphisms from spectra of fields into X. The
set of points of X is denoted |X|.

Note that if f : X → Y is a morphism of algebraic spaces over S, then there is an
induced map |f | : |X| → |Y | which maps a representative x : Spec(K)→ X to the
representative f ◦ x : Spec(K)→ Y .

Lemma 48.4.2. Let S be a scheme. Let X be a scheme over S. The points of X as
a scheme are in canonical 1-1 correspondence with the points of X as an algebraic
space.

Proof. This is Schemes, Lemma 25.13.3. �
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Lemma 48.4.3. Let S be a scheme. Let

Z ×Y X //

��

X

��
Z // Y

be a cartesian diagram of algebraic spaces. Then the map of sets of points

|Z ×Y X| −→ |Z| ×|Y | |X|

is surjective.

Proof. Namely, suppose given fieldsK, L and morphisms Spec(K)→ X, Spec(L)→
Z, then the assumption that they agree as elements of |Y | means that there is a
common extension K ⊂M and L ⊂M such that Spec(M)→ Spec(K)→ X → Y
and Spec(M)→ Spec(L)→ Z → Y agree. And this is exactly the condition which
says you get a morphism Spec(M)→ Z ×Y X. �

Lemma 48.4.4. Let S be a scheme. Let X be an algebraic space over S. Let
f : T → X be a morphism from a scheme to X. The following are equivalent

(1) f : T → X is surjective (according to Spaces, Definition 47.5.1), and
(2) |f | : |T | → |X| is surjective.

Proof. Assume (1). Let x : Spec(K) → X be a morphism from the spectrum
of a field into X. By assumption the morphism of schemes Spec(K) ×X T →
Spec(K) is surjective. Hence there exists a field extension K ⊂ K ′ and a morphism
Spec(K ′)→ Spec(K)×X T such that the left square in the diagram

Spec(K ′) //

��

Spec(K)×X T

��

// T

��
Spec(K) Spec(K)

x // X

is commutative. This shows that |f | : |T | → |X| is surjective.

Assume (2). Let Z → X be a morphism where Z is a scheme. We have to show
that the morphism of schemes Z ×X T → T is surjective, i.e., that |Z ×X T | → |Z|
is surjective. This follows from (2) and Lemma 48.4.3. �

Lemma 48.4.5. Let S be a scheme. Let X be an algebraic space over S. Let
X = U/R be a presentation of X, see Spaces, Definition 47.9.3. Then the image
of |R| → |U | × |U | is an equivalence relation and |X| is the quotient of |U | by this
equivalence relation.

Proof. The assumption means that U is a scheme, p : U → X is a surjective, étale
morphism, R = U ×X U is a scheme and defines an étale equivalence relation on
U such that X = U/R as sheaves. By Lemma 48.4.4 we see that |U | → |X| is
surjective. By Lemma 48.4.3 the map

|R| −→ |U | ×|X| |U |

is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X|. Combining these two
statements we get the result of the lemma. �
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Lemma 48.4.6. Let S be a scheme. There exists a unique topology on the set of
points of algebraic spaces over S with the following properties:

(1) for every morphism of algebraic spaces X → Y over S the map |X| → |Y |
is continuous, and

(2) for every étale morphism U → X with U a scheme the map of topological
spaces |U | → |X| is continuous and open.

Proof. Let X be an algebraic space over S. Let p : U → X be a surjective étale
morphism where U is a scheme over S. We define W ⊂ |X| is open if and only if
|p|−1(W ) is an open subset of |U |. This is a topology on |X|.

Let us prove that the topology is independent of the choice of the presentation.
To do this it suffices to show that if U ′ is a scheme, and U ′ → X is an étale
morphism, then the map |U ′| → |X| (with topology on |X| defined using U → X
as above) is open and continuous; which in addition will prove that (2) holds. Set
U ′′ = U ×X U ′, so that we have the commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are étale we see that both U ′′ → U and U ′′ → U ′ are
étale morphisms of schemes. Moreover, U ′′ → U ′ is surjective. Hence we get a
commutative diagram of maps of sets

|U ′′| //

��

|U ′|

��
|U | // |X|

The lower horizontal arrow is surjective (see Lemma 48.4.4 or Lemma 48.4.5) and
continuous by definition of the topology on |X|. The top horizontal arrow is surjec-
tive, continuous, and open by Morphisms, Lemma 28.37.13. The left vertical arrow
is continuous and open (by Morphisms, Lemma 28.37.13 again.) Hence it follows
formally that the right vertical arrow is continuous and open.

To finish the proof we prove (1). Let a : X → Y be a morphism of algebraic spaces.
According to Spaces, Lemma 47.11.4 we can find a diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective and étale. This gives rise
to the diagram

|U |

p

��

α
// |V |

q

��
|X| a // |Y |

http://stacks.math.columbia.edu/tag/03BX
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where all but the lower horizontal arrows are known to be continuous and the two
vertical arrows are surjective and open. It follows that the lower horizontal arrow
is continuous as desired. �

Definition 48.4.7. Let S be a scheme. Let X be an algebraic space over S. The
underlying topological space of X is the set of points |X| endowed with the topology
constructed in Lemma 48.4.6.

It turns out that this topological space carries the same information as the small
Zariski site XZar of Spaces, Definition 47.12.6.

Lemma 48.4.8. Let S be a scheme. Let X be an algebraic space over S.

(1) The rule X ′ 7→ |X ′| defines an inclusion preserving bijection between open
subspaces X ′ (see Spaces, Definition 47.12.1) of X, and opens of the topo-
logical space |X|.

(2) A family {Xi ⊂ X}i∈I of open subspaces of X is a Zariski covering (see
Spaces, Definition 47.12.5) if and only if |X| =

⋃
|Xi|.

In other words, the small Zariski site XZar of X is canonically identified with a
site associated to the topological space |X| (see Sites, Example 7.6.4).

Proof. In order to prove (1) let us construct the inverse of the rule. Namely,
suppose that W ⊂ |X| is open. Choose a presentation X = U/R corresponding to
the surjective étale map p : U → X and étale maps s, t : R → U . By construction
we see that |p|−1(W ) is an open of U . Denote W ′ ⊂ U the corresponding open
subscheme. It is clear that R′ = s−1(W ′) = t−1(W ′) is a Zariski open of R
which defines an étale equivalence relation on W ′. By Spaces, Lemma 47.10.2 the
morphism X ′ = W ′/R′ → X is an open immersion. Hence X ′ is an algebraic space
by Spaces, Lemma 47.11.1. By construction |X ′| = W , i.e., X ′ is a subspace of X
corresponding to W . Thus (1) is proved.

To prove (2), note that if {Xi ⊂ X}i∈I is a collection of open subspaces, then it is a
Zariski covering if and only if the U =

⋃
U ×XXi is an open covering. This follows

from the definition of a Zariski covering and the fact that the morphism U → X is
surjective as a map of presheaves on (Sch/S)fppf . On the other hand, we see that
|X| =

⋃
|Xi| if and only if U =

⋃
U ×X Xi by Lemma 48.4.5 (and the fact that

the projections U ×X Xi → Xi are surjective and étale). Thus the equivalence of
(2) follows. �

Lemma 48.4.9. Let S be a scheme. Let X, Y be algebraic spaces over S. Let
X ′ ⊂ X be an open subspace. Let f : Y → X be a morphism of algebraic spaces
over S. Then f factors through X ′ if and only if |f | : |Y | → |X| factors through
|X ′| ⊂ |X|.

Proof. By Spaces, Lemma 47.12.3 we see that Y ′ = Y ×X X ′ → Y is an open
immersion. If |f |(|Y |) ⊂ |X ′|, then clearly |Y ′| = |Y |. Hence Y ′ = Y by Lemma
48.4.8. �

Lemma 48.4.10. Let S be a scheme. Let X be an algebraic spaces over S. Let
U be a scheme and let f : U → X be an étale morphism. Let X ′ ⊂ X be the
open subspace corresponding to the open |f |(|U |) ⊂ |X| via Lemma 48.4.8. Then f
factors through a surjective étale morphism f ′ : U → X ′. Moreover, if R = U×XU ,
then R = U ×X′ U and X ′ has the presentation X ′ = U/R.
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Proof. The existence of the factorization follows from Lemma 48.4.9. The mor-
phism f ′ is surjective according to Lemma 48.4.4. To see f ′ is étale, suppose that
T → X ′ is a morphism where T is a scheme. Then T ×X U = T ×X′ U as X”→ X
is a monomorphism of sheaves. Thus the projection T ×X′ U → T is étale as we
assumed f étale. We have U ×X U = U ×X′ U as X ′ → X is a monomorphism.
Then X ′ = U/R follows from Spaces, Lemma 47.9.1. �

Lemma 48.4.11. Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism} −→ |X|
This map is injective.

Proof. Suppose that ϕi : Spec(ki) → X are monomorphisms for i = 1, 2. If ϕ1

and ϕ2 define the same point of |X|, then we see that the scheme

Y = Spec(k1)×ϕ1,X,ϕ2
Spec(k2)

is nonempty. Since the base change of a monomorphism is a monomorphism this
means that the projection morphisms Y → Spec(ki) are monomorphisms. Hence
Spec(k1) = Y = Spec(k2) as schemes over X, see Schemes, Lemma 25.23.10. We
conclude that ϕ1 = ϕ2, which proves the lemma. �

We will see in Decent Spaces, Lemma 50.10.1 that this map is a bijection when X
is decent.

48.5. Quasi-compact spaces

Definition 48.5.1. Let S be a scheme. Let X be an algebraic space over S. We
say X is quasi-compact if there exists a surjective étale morphism U → X with U
quasi-compact.

Lemma 48.5.2. Let S be a scheme. Let X be an algebraic space over S. Then X
is quasi-compact if and only if |X| is quasi-compact.

Proof. Choose a scheme U and an étale surjective morphism U → X. We will
use Lemma 48.4.4. If U is quasi-compact, then since |U | → |X| is surjective we
conclude that |X| is quasi-compact. If |X| is quasi-compact, then since |U | → |X|
is open we see that there exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X|
is surjective (and still étale). Hence we win. �

Lemma 48.5.3. A finite disjoint union of quasi-compact algebraic spaces is a
quasi-compact algebraic space.

Proof. This is clear from Lemma 48.5.2 and the corresponding topological fact. �

Example 48.5.4. The space A1
Q/Z is a quasi-compact algebraic space.

Lemma 48.5.5. Let S be a scheme. Let X be an algebraic space over S. Every
point of |X| has a fundamental system of open quasi-compact neighbourhoods. In
particular |X| is locally quasi-compact in the sense of Topology, Definition 5.12.1.

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U → |X| of topological spaces. To be a bit more
precise, if u ∈ U maps to x ∈ |X|, then the images of the affine neighbourhoods of
u will give a fundamental system of quasi-compact open neighbourhoods of x. �
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48.6. Special coverings

In this section we collect some straightforward lemmas on the existence of étale
surjective coverings of algebraic spaces.

Lemma 48.6.1. Let S be a scheme. Let X be an algebraic space over S. There
exists a surjective étale morphism U → X where U is a disjoint union of affine
schemes. We may in addition assume each of these affines maps into an affine
open of S.

Proof. Let V → X be a surjective étale morphism. Let V =
⋃
i∈I Vi be a Zariski

open covering such that each Vi maps into an affine open of S. Then set U =
∐
i∈I Vi

with induced morphism U → V → X. This is étale and surjective as a composition
of étale and surjective representable transformations of functors (via the general
principle Spaces, Lemma 47.5.4 and Morphisms, Lemmas 28.11.2 and 28.37.3). �

Lemma 48.6.2. Let S be a scheme. Let X be an algebraic space over S. There
exists a Zariski covering X =

⋃
Xi such that each algebraic space Xi has a surjective

étale covering by an affine scheme. We may in addition assume each Xi maps into
an affine open of S.

Proof. By Lemma 48.6.1 we can find a surjective étale morphism U =
∐
Ui → X,

with Ui affine and mapping into an affine open of S. Let Xi ⊂ X be the open
subspace of X such that Ui → X factors through an étale surjective morphism
Ui → Xi, see Lemma 48.4.10. Since U =

⋃
Ui we see that X =

⋃
Xi. As Ui → Xi

is surjective it follows that Xi → S maps into an affine open of S. �

Lemma 48.6.3. Let S be a scheme. Let X be an algebraic space over S. Then
X is quasi-compact if and only if there exists an étale surjective morphism U → X
with U an affine scheme.

Proof. If there exists an étale surjective morphism U → X with U affine then X
is quasi-compact by Definition 48.5.1. Conversely, if X is quasi-compact, then |X|
is quasi-compact. Let U =

∐
i∈I Ui be a disjoint union of affine schemes with an

étale and surjective map ϕ : U → X (Lemma 48.6.1). Then |X| =
⋃
ϕ(|Ui|) and

by quasi-compactness there is a finite subset i1, . . . , in such that |X| =
⋃
ϕ(|Uij |).

Hence Ui1 ∪ . . .∪Uin is an affine scheme with a finite surjective morphism towards
X. �

The following lemma will be obsoleted by the discussion of separated morphisms in
the chapter on morphisms of algebraic spaces.

Lemma 48.6.4. Let S be a scheme. Let X be an algebraic space over S. Let U be
a separated scheme and U → X étale. Then U → X is separated, and R = U ×X U
is a separated scheme.

Proof. Let X ′ ⊂ X be the open subscheme such that U → X factors through
an étale surjection U → X ′, see Lemma 48.4.10. If U → X ′ is separated, then
so is U → X, see Spaces, Lemma 47.5.4 (as the open immersion X ′ → X is
separated by Spaces, Lemma 47.5.8 and Schemes, Lemma 25.23.7). Moreover,
since U ×X′ U = U ×X U it suffices to prove the result after replacing X by X ′,
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i.e., we may assume U → X surjective. Consider the commutative diagram

R = U ×X U //

��

U

��
U // X

In the proof of Spaces, Lemma 47.13.1 we have seen that j : R → U ×S U is
separated. The morphism of schemes U → S is separated as U is a separated
scheme, see Schemes, Lemma 25.21.14. Hence U ×S U → U is separated as a base
change, see Schemes, Lemma 25.21.13. Hence the scheme U ×S U is separated (by
the same lemma). Since j is separated we see in the same way that R is separated.
Hence R → U is a separated morphism (by Schemes, Lemma 25.21.14 again).
Thus by Spaces, Lemma 47.11.2 and the diagram above we conclude that U → X
is separated. �

Lemma 48.6.5. Let S be a scheme. Let X be an algebraic space over S. If there
exists a quasi-separated scheme U and a surjective étale morphism U → X such that
either of the projections U ×X U → U is quasi-compact, then X is quasi-separated.

Proof. We may think of X as an algebraic space over Z. Consider the cartesian
diagram

U ×X U //

j

��

X

∆

��
U × U // X ×X

Since U is quasi-separated the projection U ×U → U is quasi-separated (as a base
change of a quasi-separated morphism of schemes, see Schemes, Lemma 25.21.13).
Hence the assumption in the lemma implies j is quasi-compact by Schemes, Lemma
25.21.15. By Spaces, Lemma 47.11.2 we see that ∆ is quasi-compact as desired. �

Lemma 48.6.6. Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is Zariski locally quasi-separated over S,
(2) X is Zariski locally quasi-separated,
(3) there exists a Zariski open covering X =

⋃
Xi such that for each i there

exists an affine scheme Ui and a quasi-compact surjective étale morphism
Ui → Xi, and

(4) there exists a Zariski open covering X =
⋃
Xi such that for each i there

exists an affine scheme Ui which maps into an affine open of S and a
quasi-compact surjective étale morphism Ui → Xi.

Proof. Assume Ui → Xi ⊂ X are as in (3). To prove (4) choose for each i a finite
affine open covering Ui = Ui1 ∪ . . . ∪ Uini such that each Uij maps into an affine
open of S. The compositions Uij → Ui → Xi are étale and quasi-compact (see
Spaces, Lemma 47.5.4). Let Xij ⊂ Xi be the open subspace corresponding to the
image of |Uij | → |Xi|, see Lemma 48.4.10. Note that Uij → Xij is quasi-compact as
Xij ⊂ Xi is a monomorphism and as Uij → X is quasi-compact. Then X =

⋃
Xij

is a covering as in (4). The implication (4) ⇒ (3) is immediate.

Assume (4). To show that X is Zariski locally quasi-separated over S it suffices
to show that Xi is quasi-separated over S. Hence we may assume there exists an
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affine scheme U mapping into an affine open of S and a quasi-compact surjective
étale morphism U → X. Consider the fibre product square

U ×X U //

��

U ×S U

��
X

∆X/S // X ×S X

The right vertical arrow is surjective étale (see Spaces, Lemma 47.5.7) and U ×S U
is affine (as U maps into an affine open of S, see Schemes, Section 25.17), and
U ×X U is quasi-compact because the projection U ×X U → U is quasi-compact
as a base change of U → X. It follows from Spaces, Lemma 47.11.2 that ∆X/S is
quasi-compact as desired.

Assume (1). To prove (3) there is an immediate reduction to the case where X
is quasi-separated over S. By Lemma 48.6.2 we can find a Zariski open covering
X =

⋃
Xi such that each Xi maps into an affine open of S, and such that there

exist affine schemes Ui and surjective étale morphisms Ui → Xi. Since Ui → S
maps into an affine open of S we see that Ui ×S Ui is affine, see Schemes, Section
25.17. As X is quasi-separated over S, the morphisms

Ri = Ui ×Xi Ui = Ui ×X Ui −→ Ui ×S Ui
as base changes of ∆X/S are quasi-compact. Hence we conclude that Ri is a quasi-
compact scheme. This in turn implies that each projection Ri → Ui is quasi-
compact. Hence, applying Spaces, Lemma 47.11.2 to the covering Ui → Xi and the
morphism Ui → Xi we conclude that the morphisms Ui → Xi are quasi-compact
as desired.

At this point we see that (1), (3), and (4) are equivalent. Since (3) does not refer
to the base scheme we conclude that these are also equivalent with (2). �

48.7. Properties of Spaces defined by properties of schemes

Any étale local property of schemes gives rise to a corresponding property of alge-
braic spaces via the following lemma.

Lemma 48.7.1. Let S be a scheme. Let X be an algebraic space over S. Let P be
a property of schemes which is local in the étale topology, see Descent, Definition
34.11.1. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the scheme U
has property P, and

(2) for every scheme U and every étale morphism U → X the scheme U has
property P.

If X is representable this is equivalent to P(X).

Proof. The implication (2) ⇒ (1) is immediate. For the converse, choose a sur-
jective étale morphism U → X with U a scheme that has P and let V be an étale
X-scheme. Then U ×X V → V is an étale surjection of schemes, so V inherits
P from U ×X V , which in turn inherits P from U (see discussion following De-
scent, Definition 34.11.1). The last claim is clear from (1) and Descent, Definition
34.11.1. �
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Definition 48.7.2. Let P be a property of schemes which is local in the étale
topology. Let S be a scheme. Let X be an algebraic space over S. We say X has
property P if any of the equivalent conditions of Lemma 48.7.1 hold.

Remark 48.7.3. Here is a list of properties which are local for the étale topology
(keep in mind that the fpqc, fppf, syntomic, and smooth topologies are stronger
than the étale topology):

(1) locally Noetherian, see Descent, Lemma 34.12.1,
(2) Jacobson, see Descent, Lemma 34.12.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 34.13.1,
(4) Cohen-Macaulay, see Descent, Lemma 34.13.2,
(5) reduced, see Descent, Lemma 34.14.1,
(6) normal, see Descent, Lemma 34.14.2,
(7) locally Noetherian and (Rk), see Descent, Lemma 34.14.3,
(8) regular, see Descent, Lemma 34.14.4,
(9) Nagata, see Descent, Lemma 34.14.5.

Any étale local property of germs of schemes gives rise to a corresponding property
of algebraic spaces. Here is the obligatory lemma.

Lemma 48.7.4. Let P be a property of germs of schemes which is étale local, see
Descent, Definition 34.17.1. Let S be a scheme. Let X be an algebraic space over
S. Let x ∈ |X| be a point of X. Consider étale morphisms a : U → X where U is
a scheme. The following are equivalent

(1) for any U → X as above and u ∈ U with a(u) = x we have P(U, u), and
(2) for some U → X as above and u ∈ U with a(u) = x we have P(U, u).

If X is representable, then this is equivalent to P(X,x).

Proof. Omitted. �

Definition 48.7.5. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Let P be a property of germs of schemes which is étale local. We say X
has property P at x if any of the equivalent conditions of Lemma 48.7.4 hold.

48.8. Dimension at a point

We can use Descent, Lemma 34.17.2 to define the dimension of an algebraic space
X at a point x. This will give us a different notion than the topological one (i.e.,
the dimension of |X| at x).

Definition 48.8.1. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point of X. We define the dimension of X at x to be the element
dimx(X) ∈ {0, 1, 2, . . . ,∞} such that dimx(X) = dimu(U) for any (equivalently
some) pair (a : U → X,u) consisting of an étale morphism a : U → X from a
scheme to X and a point u ∈ U with a(u) = x. See Definition 48.7.5, Lemma
48.7.4, and Descent, Lemma 34.17.2.

Warning: It is not the case that dimx(X) = dimx(|X|) in general. A counter
example is the algebraic space X of Spaces, Example 47.14.9. Namely, in this
example we have dimx(X) = 0 and dimx(|X|) = 1 (this holds for any x ∈ |X|).
In particular, it also means that the dimension of X (as defined below) is different
from the dimension of |X|.
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Definition 48.8.2. Let S be a scheme. Let X be an algebraic space over S. The
dimension dim(X) of X is defined by the rule

dim(X) = supx∈|X| dimx(X)

By Properties, Lemma 27.10.2 we see that this is the usual notion if X is a scheme.
There is another integer that measures the dimension of a scheme at a point, namely
the dimension of the local ring. This invariant is compatible with étale morphisms
also, see Section 48.20.

48.9. Reduced spaces

We have already defined reduced algebraic spaces in Section 48.7. Here we just
prove some simple lemmas regarding reduced algebraic spaces.

Lemma 48.9.1. Let S be a scheme. Let Z → X be an immersion of algebraic
spaces. Then |Z| → |X| is a homeomorphism of |Z| onto a locally closed subset of
|X|.

Proof. Let U be a scheme and U → X a surjective étale morphism. Then Z ×X
U → U is an immersion of schemes, hence gives a homeomorphism of |Z ×X U |
with a locally closed subset T ′ of |U |. By Lemma 48.4.3 the subset T ′ is the
inverse image of the image T of |Z| → |X|. The map |Z| → |X| is injective
because the transformation of functors Z → X is injective, see Spaces, Section
47.12. By Topology, Lemma 5.5.4 we see that T is locally closed in |X|. Moreover,
the continuous map |Z| → T is a homeomorphism as the map |Z ×X U | → T ′ is a
homeomorphism and |Z ×Y U | → |Z| is submersive. �

The following lemma will help us construct (locally) closed subspaces.

Lemma 48.9.2. Let S be a scheme. Let j : R → U ×S U be an étale equivalence
relation. Let X = U/R be the associated algebraic space (Spaces, Theorem 47.10.5).
There is a canonical bijection

R-invariant locally closed subschemes Z ′ of U ↔ locally closed subspaces Z of X

Moreover, if Z → X is closed (resp. open) if and only if Z ′ → U is closed (resp.
open).

Proof. Denote ϕ : U → X the canonical map. The bijection sends Z → X to
Z ′ = Z ×X U → U . It is immediate from the definition that Z ′ → U is an
immersion, resp. closed immersion, resp. open immersion if Z → X is so. It is also
clear that Z ′ is R-invariant (see Groupoids, Definition 38.17.1).

Conversely, assume that Z ′ → U is an immersion which is R-invariant. Let R′ be
the restriction of R to Z ′, see Groupoids, Definition 38.16.2. Since R′ = R×s,UZ ′ =
Z ′×U,tR in this case we see that R′ is an étale equivalence relation on Z ′. By Spaces,
Theorem 47.10.5 we see Z = Z ′/R′ is an algebraic space. By construction we have
U×XZ = Z ′, so U×XZ → Z is an immersion. Note that the property “immersion”
is preserved under base change and fppf local on the base (see Spaces, Section 47.4).
Moreover, immersions are separated and locally quasi-finite (see Schemes, Lemma
25.23.7 and Morphisms, Lemma 28.21.15). Hence by More on Morphisms, Lemma
36.37.1 immersions satisfy descent for fppf covering. This means all the hypotheses
of Spaces, Lemma 47.11.3 are satisfied for Z → X, P =“immersion”, and the étale
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surjective morphism U → X. We conclude that Z → X is representable and an
immersion, which is the definition of a subspace (see Spaces, Definition 47.12.1).

It is clear that these constructions are inverse to each other and we win. �

Lemma 48.9.3. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. There exists a unique closed subspace Z ⊂ X with the
following properties: (a) we have |Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective étale morphism, where U is a scheme. Set
R = U ×X U , so that X = U/R, see Spaces, Lemma 47.9.1. As usual we denote
s, t : R → U the two projection morphisms. By Lemma 48.4.5 we see that T
corresponds to a closed subset T ′ ⊂ |U | such that s−1(T ′) = t−1(T ′). Let Z ′ ⊂ U
be the reduced induced scheme structure on T ′. In this case the fibre products
Z ′×U,tR and Z ′×U,sR are closed subschemes of R (Schemes, Lemma 25.18.2) which
are étale over Z ′ (Morphisms, Lemma 28.37.4), and hence reduced (because being
reduced is local in the étale topology, see Remark 48.7.3). Since they have the same
underlying topological space (see above) we conclude that Z ′ ×U,t R = Z ′ ×U,s R.
Thus we can apply Lemma 48.9.2 to obtain a closed subspace Z ⊂ X whose pullback
to U is Z ′. By construction |Z| = T and Z is reduced. This proves existence. We
omit the proof of uniqueness. �

Lemma 48.9.4. Let S be a scheme. Let X, Y be algebraic spaces over S. Let
Z ⊂ X be a closed subspace. Assume Y is reduced. A morphism f : Y → X factors
through Z if and only if f(|Y |) ⊂ |Z|.

Proof. Assume f(|Y |) ⊂ |Z|. Choose a diagram

V

b
��

h
// U

a

��
Y

f // X

where U , V are schemes, and the vertical arrows are surjective and étale. The
scheme V is reduced, see Lemma 48.7.1. Hence h factors through a−1(Z) by
Schemes, Lemma 25.12.6. So a ◦h factors through Z. As Z ⊂ X is a subsheaf, and
V → Y is a surjection of sheaves on (Sch/S)fppf we conclude that X → Y factors
through Z. �

Definition 48.9.5. Let S be a scheme, and let X be an algebraic space over S.
Let Z ⊂ |X| be a closed subset. An algebraic space structure on Z is given by a
closed subspace Z ′ of X with |Z ′| equal to Z. The reduced induced algebraic space
structure on Z is the one constructed in Lemma 48.9.3. The reduction Xred of X
is the reduced induced algebraic space structure on |X|.

48.10. The schematic locus

Every algebraic space has a largest open subspace which is a scheme; this is more
or less clear but we also write out the proof below. Of course this subspace may
be empty, for example if X = A1

Q/Z (the universal counter example). On the
other hand, if X is for example quasi-separated, then this largest open subscheme
is actually dense in X!
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Lemma 48.10.1. Let S be a scheme. Let X be an algebraic space over S. There
exists a largest open subspace X ′ ⊂ X which is a scheme.

Proof. Let U → X be an étale surjective morphism, where U is a scheme. Let
R = U ×X U . The open subspaces of X correspond 1 − 1 with open subschemes
of U which are R-invariant. Hence there is a set of them. Let Xi, i ∈ I be the
set of open subspaces of X which are schemes, i.e., are representable. Consider the
open subspace X ′ ⊂ X whose underlying set of points is the open

⋃
|Xi| of |X|.

By Lemma 48.4.4 we see that ∐
Xi −→ X ′

is a surjective map of sheaves on (Sch/S)fppf . But since each Xi → X ′ is repre-
sentable by open immersions we see that in fact the map is surjective in the Zariski
topology. (Because if T → X ′ is a morphism from a scheme into X ′, then Xi×′X T
is an open subscheme of T .) Hence we can apply Schemes, Lemma 25.15.4 to see
that X ′ is a scheme. �

In the rest of this section we say that an open subspace X ′ of an algebraic space
X is dense if the corresponding open subset |X ′| ⊂ |X| is dense.

Lemma 48.10.2. Let S be a scheme. Let X be an algebraic space over S. If there
exists a finite, étale, surjective morphism U → X where U is a scheme, then there
exists a dense open subspace of X which is a scheme.

Proof. Assume X is an algebraic space, U a scheme, and U → X is a finite étale
surjective morphism. Write R = U ×X U and denote s, t : R → U the projections
as usual. Note that s, t are surjective, finite and étale. Claim: The union of the
R-invariant affine opens of U is topologically dense in U .

Proof of the claim3. Let W ⊂ U be an affine open. Set W ′ = t(s−1(W )) ⊂ U .
Since s−1(W ) is affine (hence quasi-compact) we see that W ′ ⊂ U is a quasi-
compact open. By Properties, Lemma 27.27.3 there exists a dense open W ′′ ⊂W ′
which is a separated scheme. Set ∆′ = W ′ \W ′′. This is a nowhere dense closed
subset of W ′′. Since t|s−1(W ) : s−1(W ) → W ′ is open (because it is étale) we see

that the inverse image (t|s−1(W ))
−1(∆′) ⊂ s−1(W ) is a nowhere dense closed subset

(see Topology, Lemma 5.20.6). Hence, by Morphisms, Lemma 28.46.7 we see that

∆ = s
(
(t|s−1(W ))

−1(∆′)
)

is a nowhere dense closed subset of W . Pick any point η ∈ W , η 6∈ ∆ which is a
generic point of an irreducible component of W (and hence of U). By our choices
above the finite set t(s−1({η})) = {η1, . . . , ηn} is contained in the separated scheme
W ′′. Note that the fibres of s is are finite discrete spaces, and that generalizations
lift along the étale morphism t, see Morphisms, Lemmas 28.37.12 and 28.26.8. In
this way we see that each ηi is a generic point of an irreducible component of W ′′.
Thus, by Properties, Lemma 27.27.1 we can find an affine open V ⊂W ′′ such that
{η1, . . . , ηn} ⊂ V . By Groupoids, Lemma 38.22.1 this implies that η is contained
in an R-invariant affine open subscheme of U . The claim follows as W was chosen
as an arbitrary affine open of U and because the set of generic points of irreducible
components of W \∆ is dense in W .

3The claim is easier to prove if U is assumed quasi-separated, since in that case Properties,
Lemma 27.27.1 may be applied immediately to the R-equivalence class of any generic point of U .
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Using the claim we can finish the proof. Namely, if W ⊂ U is an R-invariant affine
open, then the restriction RW of R to W equals RW = s−1(W ) = t−1(W ) (see
Groupoids, Definition 38.17.1 and discussion following it). In particular the maps
RW → W are finite étale also. It follows in particular that RW is affine. Thus
we see that W/RW is a scheme, by Groupoids, Proposition 38.21.8. On the other
hand, W/RW is an open subspace of X by Spaces, Lemma 47.10.2. Hence having a
dense collection of points contained in R-invariant affine open of U certainly implies
that the schematic locus of X (see Lemma 48.10.1) is open dense in X. �

We will improve the following proposition to the case of decent algebraic spaces in
Decent Spaces, Theorem 50.9.2.

Proposition 48.10.3. Let S be a scheme. Let X be an algebraic space over S.
If X is Zariski locally quasi-separated (for example if X is quasi-separated), then
there exists a dense open subspace of X which is a scheme.

Proof. By Lemma 48.10.1 and Lemma 48.6.6 we may assume that there exists
an affine scheme U and a surjective, quasi-compact, étale morphism U → X. Set
R = U ×X U , and denote s, t : R → U the projections as usual. Note that s, t are
surjective, quasi-compact and étale, hence also quasi-finite (see Étale Morphisms,
Section 40.11). By More on Morphisms, Lemma 36.31.8 there exists a dense open
subscheme W ⊂ U such that s−1(W )→ W is finite. By Descent, Lemma 34.19.21
being finite is fpqc (and in particular étale) local on the target. Hence we may
apply More on Groupoids, Lemma 39.5.4 which says that the largest open W ⊂ U
over which s is finite is R-invariant. It is still dense of course. The restriction RW
of R to W equals RW = s−1(W ) = t−1(W ) (see Groupoids, Definition 38.17.1 and
discussion following it). By construction sW , tW : RW → W are finite étale. If we
can show the open subspace W/RW ⊂ X (see Spaces, Lemma 47.10.2) contains a
dense open subspace which is a scheme, then the proposition follows for X. This
reduces us to Lemma 48.10.2. �

48.11. Obtaining a scheme

We have used in the previous section that the quotient U/R of an affine scheme U
by an equivalence relation R is a scheme if the morphisms s, t : R → U are finite
étale. This is a special case of the following result.

Proposition 48.11.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Assume

(1) s, t : R→ U finite locally free,
(2) j = (t, s) is an equivalence, and
(3) for a dense set of points u ∈ U the R-equivalence class t(s−1({u})) is

contained in an affine open of U .

Then there exists a finite locally free morphism U → M of schemes over S such
that R = U ×M U and such that M represents the quotient sheaf U/R in the fppf
topology.

Proof. By assumption (3) and Groupoids, Lemma 38.22.1 we can find an open
covering U =

⋃
Ui such that each Ui is an R-invariant affine open of U . Set

Ri = R|Ui . Consider the fppf sheaves F = U/R and Fi = Ui/Ri. By Spaces,
Lemma 47.10.2 the morphisms Fi → F are representable and open immersions. By
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Groupoids, Proposition 38.21.8 the sheaves Fi are representable by affine schemes.
Hence we conclude that F is representable by a scheme, see Schemes, Lemma
25.15.4. �

For example, if U is isomorphic to a locally closed subscheme of an affine scheme or
isomorphic to a locally closed subscheme of Proj(A) for some graded ring A, then
the third assumption holds by Properties, Lemma 27.27.5. In particular we can
apply this to free actions of finite groups and finite group schemes on quasi-affine
or quasi-projective schemes. For example, the quotient X/G of a quasi-projective
variety X by a free action of a finite group G is a scheme. Here is a detailed
statement.

Lemma 48.11.2. Let S be a scheme. Let G→ S be a group scheme. Let X → S
be a morphism of schemes. Let a : G×S X → X be an action. Assume that

(1) G→ S is finite locally free,
(2) the action a is free,
(3) X → S is affine, or quasi-affine, or projective, or quasi-projective, or X

is isomorphic to an open subscheme of an affine scheme or isomorphic to
an open subscheme of Proj(A) for some graded ring A.

Then the fppf quotient sheaf X/G is a scheme.

Proof. Since the action is free the morphism j = (a,pr) : G×S X → X ×S X is a
monomorphism and hence an equivalence relation, see Groupoids, Lemma 38.8.3.
The maps s, t : G ×S X → X are finite locally free as we’ve assumed that G → S
is finite locally free. To conclude it now suffices to prove the last assumption of
Proposition 48.11.1 holds. Since the action of G is over S it suffices to prove that
any finite set of points in a fibre of X → S is contained in an affine open of X. If X
is isomorphic to an open subscheme of an affine scheme or isomorphic to an open
subscheme of Proj(A) for some graded ring A this follows from Properties, Lemma
27.27.5. In the remaining cases, we may replace S by an affine open and we get
back to the case we just dealt with. Some details omitted. �

48.12. Points on quasi-separated spaces

Points can behave very badly on algebraic spaces in the generality introduced in
the stacks project. However, for quasi-separated spaces their behaviour is mostly
like the behaviour of points on schemes. We prove a few results on this in this
section.

The following lemma is a key lemma which we will use to prove that certain algebraic
spaces are isomorphic to the spectrum of a field.

Lemma 48.12.1. Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k)→ X. If X
is quasi-separated, then X ∼= Spec(k′) where k′ ⊂ k is a finite separable extension.

Proof. Set R = Spec(k)×X Spec(k), so that we have a fibre product diagram

R
s

//

t

��

Spec(k)

��
Spec(k) // X
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By Spaces, Lemma 47.9.1 we know X = Spec(k)/R is the quotient sheaf. Because
Spec(k) → X is étale, the morphisms s and t are étale. Hence R =

∐
i∈I Spec(ki)

is a disjoint union of spectra of fields, and both s and t induce finite separable field
extensions s, t : k ⊂ ki, see Morphisms, Lemma 28.37.7. Because

R = Spec(k)×X Spec(k) = (Spec(k)×S Spec(k))×X×SX,∆ X

and since ∆ is quasi-compact by assumption we conclude that R → Spec(k) ×S
Spec(k) is quasi-compact. Hence R is quasi-compact as Spec(k) ×S Spec(k) is
affine. We conclude that I is finite. This implies that s and t are finite locally free
morphisms. Hence by Groupoids, Proposition 38.21.8 we conclude that Spec(k)/R
is represented by Spec(k′), with k′ ⊂ k finite locally free where

k′ = {x ∈ k | si(x) = ti(x) for all i ∈ I}
It is easy to see that k′ is a field. �

Remark 48.12.2. The lemma above holds for decent algebraic spaces, see Decent
Spaces, Lemma 50.10.2. In fact a decent algebraic space with one point is a scheme,
see Decent Spaces, Lemma 50.12.1. This also holds when X is locally separated,
because a locally separated algebraic space is decent, see Decent Spaces, Lemma
50.13.2.

Lemma 48.12.3. Let S be a scheme. Let X be an algebraic space over S. Let
U be a scheme. Let ϕ : U → X be an étale morphism such that the projections
R = U ×X U → U are quasi-compact; for example if ϕ is quasi-compact. Then the
fibres of

|U | → |X| and |R| → |X|
are finite.

Proof. Denote R = U ×X U , and s, t : R → U the projections. Let u ∈ U be
a point, and let x ∈ |X| be its image. The fibre of |U | → |X| over x is equal to
s(t−1({u})) by Lemma 48.4.3, and the fibre of |R| → |X| over x is t−1(s(t−1({u}))).
Since t : R→ U is étale and quasi-compact, it has finite fibres (as its fibres are dis-
joint unions of spectra of fields by Morphisms, Lemma 28.37.7 and quasi-compact).
Hence we win. �

Lemma 48.12.4. Let S be a scheme. Let X be a Zariski locally quasi-separated
algebraic space over S. Then the topological space |X| is sober (see Topology, Defi-
nition 5.7.4).

Proof. Combining Topology, Lemma 5.7.5 and Lemma 48.6.6 we see that we may
assume that there exists an affine scheme U and a surjective, quasi-compact, étale
morphism U → X. Set R = U ×X U with projection maps s, t : R→ U . Applying
Lemma 48.12.3 we see that the fibres of s, t are finite. It follows all the assumptions
of Topology, Lemma 5.18.7 are met, and we conclude that |X| is Kolmogorov4.

It remains to show that every irreducible closed subset T ⊂ |X| has a generic
point. By Lemma 48.9.3 there exists a closed subspace Z ⊂ X with |Z| = |T |.
Note that U ×X Z → Z is a quasi-compact, surjective, étale morphism from an
affine scheme to Z, hence Z is Zariski locally quasi-separated by Lemma 48.6.6. By

4 Actually we use here also Schemes, Lemma 25.11.1 (soberness schemes), Morphisms, Lem-
mas 28.37.12 and 28.26.8 (generalizations lift along étale morphisms), Lemma 48.4.5 (points on

an algebraic space in terms of a presentation), and Lemma 48.4.6 (openness quotient map).
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Proposition 48.10.3 we see that there exists an open dense subspace Z ′ ⊂ Z which
is a scheme. This means that |Z ′| ⊂ T is open dense. Hence the topological space
|Z ′| is irreducible, which means that Z ′ is an irreducible scheme. By Schemes,
Lemma 25.11.1 we conclude that |Z ′| is the closure of a single point η ∈ |Z ′| ⊂ T

and hence also T = {η}, and we win. �

Lemma 48.12.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The topological space |X| is a spectral space.

Proof. By Topology, Definition 5.22.1 we have to check that |X| is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. By Lemma 48.12.4 we see that |X| is sober. By
Lemma 48.5.2 we see that |X| is quasi-compact. By Lemma 48.6.3 there exists
an affine scheme U and a surjective étale morphism f : U → X. Since |f | :
|U | → |X| is open and continuous and since |U has a basis of quasi-compact opens,
we conclude that |X| has a basis of quasi-compact opens. Finally, suppose that
A,B ⊂ |X| are quasi-compact open. Then |f |−1(A), |f |−1(B) are quasi-compact
open subsets of |U |. Since U is affine we may apply Algebra, Lemma 10.16.10 to
see that |f |−1(A) ∩ |f |−1(B) is quasi-compact. As

A ∩B = |f |(|f |−1(A) ∩ |f |−1(B))

we conclude that A ∩B is quasi-compact and the proof is finished. �

48.13. Étale morphisms of algebraic spaces

This section really belongs in the chapter on morphisms of algebraic spaces, but
we need the notion of an algebraic space étale over another in order to define
the small étale site of an algebraic space. Thus we need to do some preliminary
work on étale morphisms from schemes to algebraic spaces, and étale morphisms
between algebraic spaces. For more about étale morphisms of algebraic spaces, see
Morphisms of Spaces, Section 49.36.

Lemma 48.13.1. Let S be a scheme. Let X be an algebraic space over S. Let U ,
U ′ be schemes over S.

(1) If U → U ′ is an étale morphism of schemes, and if U ′ → X is an étale
morphism from U ′ to X, then the composition U → X is an étale mor-
phism from U to X.

(2) If ϕ : U → X and ϕ′ : U ′ → X are étale morphisms towards X, and if
χ : U → U ′ is a morphism of schemes such that ϕ = ϕ′ ◦ χ, then χ is an
étale morphism of schemes.

Proof. Recall that our definition of an étale morphism from a scheme into an al-
gebraic space comes from Spaces, Definition 47.5.1 via the fact that any morphism
from a scheme into an algebraic space is representable. Part (1) of the lemma
follows from this, the fact that étale morphisms are preserved under composition
(Morphisms, Lemma 28.37.3) and Spaces, Lemmas 47.5.4 and 47.5.3 (which are for-
mal). To prove part (2) choose a scheme W over S and a surjective étale morphism
W → X. Consider the base change χW : W×XU →W×XU ′ of χ. As W×XU and
W ×X U ′ are étale over W , we conclude that χW is étale, by Morphisms, Lemma
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28.37.19. On the other hand, in the commutative diagram

W ×X U //

��

W ×X U ′

��
U // U ′

the two vertical arrows are étale and surjective. Hence by Descent, Lemma 34.10.4
we conclude that U → U ′ is étale. �

Definition 48.13.2. Let S be a scheme. A morphism f : X → Y between algebraic
spaces over S is called étale if and only if for every étale morphism ϕ : U → X
where U is a scheme, the composition ϕ ◦ f is étale also.

If X and Y are schemes, then this agree with the usual notion of an étale morphism
of schemes. In fact, whenever X → Y is a representable morphism of algebraic
spaces, then this agrees with the notion defined via Spaces, Definition 47.5.1. This
follows by combining Lemma 48.13.3 below and Spaces, Lemma 47.11.2.

Lemma 48.13.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is étale,
(2) there exists a surjective étale morphism ϕ : U → X, where U is a scheme,

such that the composition f◦ϕ is étale (as a morphism of algebraic spaces),
(3) there exists a surjective étale morphism ψ : V → Y , where V is a scheme,

such that the base change V ×XY → V is étale (as a morphism of algebraic
spaces),

(4) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and the left vertical
arrow is surjective such that the horizontal arrow is étale.

Proof. Let us prove that (4) implies (1). Assume a diagram as in (4) given. Let
W → X be an étale morphism with W a scheme. Then we see that W ×X U → U
is étale. Hence W ×X U → V is étale, and also W ×X U → Y is étale by Lemma
48.13.1 (1). Since also the projection W ×X U → W is surjective and étale, we
conclude from Lemma 48.13.1 (2) that W → Y is étale.

Let us prove that (1) implies (4). Assume (1). Choose a commutative diagram

U

��

// V

��
X // Y

where U → X and V → Y are surjective and étale, see Spaces, Lemma 47.11.4. By
assumption the morphism U → Y is étale, and hence U → V is étale by Lemma
48.13.1 (2).

We omit the proof that (2) and (3) are also equivalent to (1). �
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Lemma 48.13.4. The composition of two étale morphisms of algebraic spaces is
étale.

Proof. This is immediate from the definition. �

Lemma 48.13.5. The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.

Proof. Let X → Y be an étale morphism of algebraic spaces over S. Let Z → Y
be a morphism of algebraic spaces. Choose a scheme U and a surjective étale
morphism U → X. Choose a scheme W and a surjective étale morphism W → Z.
Then U → Y is étale, hence in the diagram

W ×Y U

��

// W

��
Z ×Y X // Z

the top horizontal arrow is étale. Moreover, the left vertical arrow is surjective and
étale (verification omitted). Hence we conclude that the lower horizontal arrow is
étale by Lemma 48.13.3. �

Lemma 48.13.6. Let S be a scheme. Let X,Y, Z be algebraic spaces. Let g : X →
Z, h : Y → Z be étale morphisms and let f : X → Y be a morphism such that
h ◦ f = g. Then f is étale.

Proof. Choose a commutative diagram

U

��

χ
// V

��
X // Y

where U → X and V → Y are surjective and étale, see Spaces, Lemma 47.11.4.
By assumption the morphisms ϕ : U → X → Z and ψ : V → Y → Z are étale.
Moreover, ψ◦χ = ϕ by our assumption on f, g, h. Hence U → V is étale by Lemma
48.13.1 part (2). �

Lemma 48.13.7. Let S be a scheme. If X → Y is an étale morphism of algebraic
spaces over S, then the associated map |X| → |Y | of topological spaces is open.

Proof. This is clear from the diagram in Lemma 48.13.3 and Lemma 48.4.6. �

Finally, here is a fun lemma. It is not true that an algebraic space with an étale
morphism towards a scheme is a scheme, see Spaces, Example 47.14.2. But it is
true if the target is the spectrum of a field.

Lemma 48.13.8. Let S be a scheme. Let X → Spec(k) be étale morphism over
S, where k is a field. Then X is a scheme.

Proof. Let U be an affine scheme, and let U → X be an étale morphism. By
Definition 48.13.2 we see that U → Spec(k) is an étale morphism. Hence U =∐
i=1,...,n Spec(ki) is a finite disjoint union of spectra of finite separable extensions

ki of k, see Morphisms, Lemma 28.37.7. The R = U ×X U → U ×Spec(k) U is a
monomorphism and U ×Spec(k) U is also a finite disjoint union of spectra of finite
separable extensions of k. Hence by Schemes, Lemma 25.23.10 we see that R is
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similarly a finite disjoint union of spectra of finite separable extensions of k. This
U and R are affine and both projections R→ U are finite locally free. Hence U/R
is a scheme by Groupoids, Proposition 38.21.8. By Spaces, Lemma 47.10.2 it is also
an open subspace of X. By Lemma 48.10.1 we conclude that X is a scheme. �

48.14. Spaces and fpqc coverings

Let S be a scheme. An algebraic space over S is defined as a sheaf in the fppf
topology with additional properties. Hence it is not immediately clear that it
satisfies the sheaf property for the fpqc topology (see Topologies, Definition 33.8.12).
In this section we give Gabber’s argument showing this is true. However, when we
say that the algebraic space X satisfies the sheaf property for the fpqc topology we
really only consider fpqc coverings {fi : Ti → T}i∈I such that T, Ti are objects of
the big site (Sch/S)fppf (as per our conventions, see Section 48.2).

Proposition 48.14.1 (Gabber). Let S be a scheme. Let X be an algebraic space
over S. Then X satisfies the sheaf property for the fpqc topology.

Proof. Since X is a sheaf for the Zariski topology it suffices to show the following.
Given a surjective flat morphism of affines f : T ′ → T we have: X(T ) is the
equalizer of the two maps X(T ′) → X(T ′ ×T T ′). See Topologies, Lemma 33.8.13
(there is a little argument omitted here because the lemma cited is formulated for
functors defined on the category of all schemes).

Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Spaces, Lemma 47.13.1 the morphism ∆X/S is a representable monomorphism.
Hence E → T is a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f
implies that T ′ → T factors (uniquely) through E. Consider the commutative
diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

Since the projection T ′×T E → T ′ is a monomorphism with a section we conclude it
is an isomorphism. Hence we conclude that E → T is an isomorphism by Descent,
Lemma 34.19.15. This means a = b as desired.

Next, let c : T ′ → X be a morphism such that the two compositions T ′ ×T T ′ →
T ′ → X are the same. We have to find a morphism a : T → X whose composition
with T ′ → T is c. Choose an affine scheme U and an étale morphism U → X such
that the image of |U | → |X| contains the image of |c| : |T ′| → |X|. This is possible
by Lemmas 48.4.6 and 48.6.1, the fact that a finite union of affines is affine, and
the fact that |T ′| is quasi-compact (small argument omitted). Since U → X is
separated (Lemma 48.6.4), we see that

V = U ×X,c T ′ −→ T ′

is a surjective, étale, separated morphism of schemes (to see that it is surjective
use Lemma 48.4.3 and our choice of U → X). The fact that c ◦ pr0 = c ◦ pr1 means

http://stacks.math.columbia.edu/tag/0APL


3142 48. PROPERTIES OF ALGEBRAIC SPACES

that we obtain a descent datum on V/T ′/T (Descent, Definition 34.30.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0
(T ′ ×T T ′)

= (T ′ ×T T ′)×c◦pr1,X U

= (T ′ ×T T ′)×T ′ V

The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 36.46.4
(because étale morphisms are locally quasi-finite, see Morphisms, Lemma 28.37.6).
By More on Groupoids, Lemma 39.14.3 the descent datum is effective. Say W → T
is a morphism such that there is an isomorphism α : T ′×TW → V compatible with
the given descent datum on V and the canonical descent datum on T ′×T W . Then
W → T is surjective and étale (Descent, Lemmas 34.19.6 and 34.19.27). Consider
the composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions c′ ◦ (pr0, 1), c′ ◦ (pr1, 1) : (T ′ ×T T ′)×T W → T ′ ×T W → U
agree by our choice of α and the corresponding property of c (computation omitted).
Hence b′ descends to a morphism b : W → U by Descent, Lemma 34.9.3. The
diagram

T ′ ×T W //

��

W
b
// U

��
T ′

c // X

is commutative. What this means is that we have proved the existence of a étale
locally on T , i.e., we have an a′ : W → X. However, since we have proved unique-
ness in the first paragraph, we find that this étale local solutions satisfy the glueing
condition, i.e., we have pr∗0a

′ = pr∗1a
′ as elements of X(W ×T W ). Since X is an

étale sheaf we find an unique a ∈ X(T ) restricting to a′ on W . �

48.15. The étale site of an algebraic space

In this section we define the small étale site of an algebraic space. This is the
analogue of the small étale site Sétale of a scheme. Lemma 48.13.1 implies that in
the definition below any morphism between objects of the étale site of X is étale,
and that any scheme étale over an object of Xétale is also an object of Xétale.

Definition 48.15.1. Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The small étale site Xétale of X is
defined as follows:

(1) An object of Xétale is a morphism ϕ : U → X where U ∈ Ob((Sch/S)étale)
is a scheme and ϕ is an étale morphism,

(2) a morphism (ϕ : U → X) → (ϕ′ : U ′ → X) is given by a morphism of
schemes χ : U → U ′ such that ϕ = ϕ′ ◦ χ, and

(3) a family of morphisms {(Ui → X)→ (U → X)}i∈I of Xétale is a covering
if and only if {Ui → U}i∈I is a covering of (Sch/S)étale.

A consequence of our choice is that the étale site of an algebraic space in general
does not have a final object! On the other hand, if X happens to be a scheme, then
the definition above agrees with Topologies, Definition 33.4.8.
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There are several other choices we could have made here. For example we could
have considered all algebraic spaces U which are étale over X, or we could have
considered all affine schemes U which are étale over X. We decided not to do so,
since we like to think of plain old schemes as the fundamental objects of algebraic
geometry. On the other hand, we do need these notions also, since the small étale
site of an algebraic space is not sufficiently flexible, especially when discussing
functoriality of the small étale site, see Lemma 48.15.7 below.

Definition 48.15.2. Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The site Xspaces,étale of X is defined
as follows:

(1) An object ofXspaces,étale is a morphism ϕ : U → X where U is an algebraic
space over S and ϕ is an étale morphism of algebraic spaces over S,

(2) a morphism (ϕ : U → X) → (ϕ′ : U ′ → X) of Xspaces,étale is given by a
morphism of algebraic spaces χ : U → U ′ such that ϕ = ϕ′ ◦ χ, and

(3) a family of morphisms {ϕi : (Ui → X)→ (U → X)}i∈I of Xspaces,étale is
a covering if and only if |U | =

⋃
ϕi(|Ui|).

(As usual we choose a set of coverings of this type, including at least the coverings
in Xétale, as in Sets, Lemma 3.11.1 to turn Xspaces,étale into a site.)

Since the identity morphism of X is étale it is clear that Xspaces,étale does have a
final object. Let us show right away that the corresponding topos equals the small
étale topos of X.

Lemma 48.15.3. The functor

Xétale −→ Xspaces,étale, U/X 7−→ U/X

is a special cocontinuous functor (Sites, Definition 7.28.2) and hence induces an
equivalence of topoi Sh(Xétale)→ Sh(Xspaces,étale).

Proof. We have to show that the functor satisfies the assumptions (1) – (5) of
Sites, Lemma 7.28.1. It is clear that the functor is continuous and cocontinuous,
which proves assumptions (1) and (2). Assumptions (3) and (4) hold simply because
the functor is fully faithful. Assumption (5) holds, because an algebraic space by
definition has a covering by a scheme. �

Remark 48.15.4. Let us explain the meaning of Lemma 48.15.3. Let S be a
scheme, and let X be an algebraic space over S. Let F be a sheaf on the small
étale site Xétale of X. The lemma says that there exists a unique sheaf F ′ on
Xspaces,étale which restricts back to F on the subcategory Xétale. If U → X is
an étale morphism of algebraic spaces, then how do we compute F ′(U)? Well,
by definition of an algebraic space there exists a scheme U ′ and a surjective étale
morphism U ′ → U . Then {U ′ → U} is a covering in Xspaces,étale and hence we get
an equalizer diagram

F ′(U) // F(U ′)
//
// F(U ′ ×U U ′).

Note that U ′ ×U U ′ is a scheme, and hence we may write F and not F ′. Thus we
see how to compute F ′ when given the sheaf F .
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Lemma 48.15.5. Let S be a scheme. Let X be an algebraic space over S. Let
Xaffine,étale denote the full subcategory of Xétale whose objects are those U/X ∈
Ob(Xétale) with U affine. A covering of Xaffine,étale will be a standard étale cov-
ering, see Topologies, Definition 33.4.5. Then restriction

F 7−→ F|Xaffine,étale
defines an equivalence of topoi Sh(Sétale) ∼= Sh(Saffine,étale).

Proof. This you can show directly from the definitions, and is a good exercise.
But it also follows immediately from Sites, Lemma 7.28.1 by checking that the
inclusion functor Xaffine,étale → Xétale is a special cocontinuous functor as in
Sites, Definition 7.28.2. �

Definition 48.15.6. Let S be a scheme. Let X be an algebraic space over S.
The étale topos of X, or more precisely the small étale topos of X is the category
Sh(Xétale) of sheaves of sets on Xétale.

By Lemma 48.15.3 we have Sh(Xétale) = Sh(Xspaces,étale), so we can also think of
this as the category of sheaves of sets on Xspaces,étale. Similarly, by Lemma 48.15.5
we see that Sh(Xétale) = Sh(Xaffine,étale). It turns out that the topos is functorial
with respect to morphisms of algebraic spaces. Here is a precise statement.

Lemma 48.15.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) The continuous functor

Yspaces,étale −→ Xspaces,étale, V 7−→ X ×Y V

induces a morphism of sites

fspaces,étale : Xspaces,étale → Yspaces,étale.

(2) The rule f 7→ fspaces,étale is compatible with compositions, in other words
(f ◦g)spaces,étale = fspaces,étale ◦gspaces,étale (see Sites, Definition 7.15.4).

(3) The morphism of topoi associated to fspaces,étale induces, via Lemma
48.15.3, a morphism of topoi fsmall : Sh(Xétale)→ Sh(Yétale) whose con-
struction is compatible with compositions.

(4) If f is a representable morphism of algebraic spaces, then fsmall comes
from a morphism of sites Xétale → Yétale, corresponding to the continuous
functor V 7→ X ×Y V .

Proof. Let us show that the functor described in (1) satisfies the assumptions of
Sites, Proposition 7.15.6. Thus we have to show that Yspaces,étale has a final object
(namely Y ) and that the functor transforms this into a final object in Xspaces,étale

(namely X). This is clear as X ×Y Y = X in any category. Next, we have to show
that Yspaces,étale has fibre products. This is true since the category of algebraic
spaces has fibre products, and since V ×Y V ′ is étale over Y if V and V ′ are étale
over Y (see Lemmas 48.13.4 and 48.13.5 above). OK, so the proposition applies
and we see that we get a morphism of sites as described in (1).

Part (2) you get by unwinding the definitions. Part (3) is clear by using the equiv-
alences for X and Y from Lemma 48.15.3 above. Part (4) follows, because if f is
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representable, then the functors above fit into a commutative diagram

Xétale
// Xspaces,étale

Yétale //

OO

Yspaces,étale

OO

of categories. �

We can do a little bit better than the lemma above in describing the relationship
between sheaves on X and sheaves on Y . Namely, we can formulate this in turns
of f -maps, compare Sheaves, Definition 6.21.7, as follows.

Definition 48.15.8. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of
sets on Yétale. An f -map ϕ : G → F is a collection of maps ϕ(U,V,g) : G(V )→ F(U)
indexed by commutative diagrams

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale such that whenever given an extended diagram

U ′ //

g′

��

U

g

��

// X

f

��
V ′ // V // Y

with V ′ → V and U ′ → U étale morphisms of schemes the diagram

G(V )
ϕ(U,V,g)

//

restriction of G
��

F(U)

restriction of F
��

G(V ′)
ϕ(U′,V ′,g′) // F(U ′)

commutes.

Lemma 48.15.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets on
Yétale. There are canonical bijections between the following three sets:

(1) The set of maps G → fsmall,∗F .

(2) The set of maps f−1
smallG → F .

(3) The set of f -maps ϕ : G → F .

Proof. Note that (1) and (2) are the same because the functors fsmall,∗ and f−1
small

are a pair of adjoint functors. Suppose that α : f−1
smallG → F is a map of sheaves

on Yétale. Let a diagram

U

g

��

jU
// X

f

��
V

jV // Y
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as in Definition 48.15.8 be given. By the commutativity of the diagram we also get
a map g−1

small(jV )−1G → (jU )−1F (compare Sites, Section 7.24 for the description
of the localization functors). Hence we certainly get a map ϕ(V,U,g) : G(V ) =

(jV )−1G(V ) → (jU )−1F(U) = F(U). We omit the verification that this rule is
compatible with further restrictions and defines an f -map from G to F .

Conversely, suppose that we are given an f -map ϕ = (ϕ(U,V,g)). Let G′ (resp. F ′)
denote the extension of G (resp. F) to Yspaces,étale (resp. Xspaces,étale), see Lemma
48.15.3. Then we have to construct a map of sheaves

G′ −→ (fspaces,étale)∗F ′

To do this, let V → Y be an étale morphism of algebraic spaces. We have to
construct a map of sets

G′(V )→ F ′(X ×Y V )

Choose an étale surjective morphism V ′ → V with V ′ a scheme, and after that
choose an étale surjective morphism U ′ → X ×U V ′ with U ′ a scheme. We get a
morphism of schemes g′ : U ′ → V ′ and also a morphism of schemes

g′′ : U ′ ×X×Y V U ′ −→ V ′ ×V V ′

Consider the following diagram

F ′(X ×Y V ) // F(U ′)
//
// F(U ′ ×X×Y V U ′)

G′(X ×Y V ) //

OO

G(V ′)
//
//

ϕ(U′,V ′,g′)

OO

G(V ′ ×V V ′)

ϕ(U′′,V ′′,g′′)

OO

The compatibility of the maps ϕ... with restriction shows that the two right squares
commute. The definition of coverings in Xspaces,étale shows that the horizontal rows
are equalizer diagrams. Hence we get the dotted arrow. We leave it to the reader
to show that these arrows are compatible with the restriction mappings. �

If the morphism of algebraic spaces X → Y is étale, then the morphism of topoi
Sh(Xétale)→ Sh(Yétale) is a localization. Here is a statement.

Lemma 48.15.10. Let S be a scheme, and let f : X → Y be a morphism of
algebraic spaces over S. Assume f is étale. In this case there is a functor

j : Xétale → Yétale, (ϕ : U → X) 7→ (f ◦ ϕ : U → Y )

which is cocontinuous. The morphism of topoi fsmall is the morphism of topoi
associated to j, see Sites, Lemma 7.20.1. Moreover, j is continuous as well, hence
Sites, Lemma 7.20.5 applies. In particular f−1

smallG(U) = G(jU) for all sheaves G
on Yétale.

Proof. Note that by our very definition of an étale morphism of algebraic spaces
(Definition 48.13.2) it is indeed the case that the rule given defines a functor j
as indicated. It is clear that j is cocontinuous and continuous, simply because a
covering {Ui → U} of j(ϕ : U → X) in Yétale is the same thing as a covering of
(ϕ : U → X) in Xétale. It remains to show that j induces the same morphism of
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topoi as fsmall. To see this we consider the diagram

Xétale
//

j

��

Xspaces,étale

jspaces

��
Yétale // Yspaces,étale

v:V 7→X×Y V

UU

of categories. Here the functor jspaces is the obvious extension of j to the category
Xspaces,étale. Thus the inner square is commutative. In fact jspaces can be iden-
tified with the localization functor jX : Yspaces,étale/X → Yspaces,étale discussed in
Sites, Section 7.24. Hence, by Sites, Lemma 7.26.2 the cocontinuous functor jspaces
and the functor v of the diagram induce the same morphism of topoi. By Sites,
Lemma 7.20.2 the commutativity of the inner square (consisting of cocontinuous
functors between sites) gives a commutative diagram of associated morphisms of
topoi. Hence, by the construction of fsmall in Lemma 48.15.7 we win. �

The lemma above says that the pullback of G via an étale morphism f : X → Y of
algebraic spaces is simply the restriction of G to the category Xétale. We will often
use the short hand

(48.15.10.1) G|Xétale = f−1
smallG

to indicate this. Note that the functor j : Xétale → Yétale of the lemma in this
situation is faithful, but not fully faithful in general. We will discuss this in a more
technical fashion in Section 48.25.

Lemma 48.15.11. Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′

g // Y

be a cartesian square of algebraic spaces over S. Let F be a sheaf on Xétale. If g
is étale, then

(1) f ′small,∗(F|X′) = (fsmall,∗F)|Y ′ in Sh(Y ′étale)
5, and

(2) if F is an abelian sheaf, then Rif ′small,∗(F|X′) = (Rifsmall,∗F)|Y ′ .

Proof. Consider the following diagram of functors

X ′spaces,étale j
// Xspaces,étale

Y ′spaces,étale
j //

V ′ 7→V ′×Y ′X
′

OO

Yspaces,étale

V 7→V×YX

OO

The horizontal arrows are localizations and the vertical arrows induce morphisms
of sites. Hence the last statement of Sites, Lemma 7.27.1 gives (1). To see (2) apply
(1) to an injective resolution of F and use that restriction is exact and preserves
injectives (see Cohomology on Sites, Lemma 21.8.1). �

5Also (f ′)−1
small(G|Y ′ ) = (f−1

smallG)|X′ because of commutativity of the diagram and

(48.15.10.1)
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The following lemma says that you can think of a sheaf on the small étale site of
an algebraic space as a compatible collection of sheaves on the small étale sites of
schemes étale over the space. Please note that all the comparison mappings cf in
the lemma are isomorphisms, which is compatible with Topologies, Lemma 33.4.18
and the fact that all morphisms between objects of Xétale are étale.

Lemma 48.15.12. Let S be a scheme. Let X be an algebraic space over S. A
sheaf F on Xétale is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f−1

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition g−1
smallcf ◦ cg is equal to cf◦g.

Proof. Given a sheaf F on Xétale and an object ϕ : U → X of Xétale we set
FU = ϕ−1

smallF . If ϕ′ : U ′ → X is a second object of Xétale, and f : U ′ → U
is a morphism between them, then the isomorphism cf comes from the fact that

f−1
small ◦ ϕ

−1
small = (ϕ′)−1

small, see Lemma 48.15.7. The condition on the transitivity
of the isomorphisms cf follows from the functoriality of the small étale sites also;
verification omitted.

Conversely, suppose we are given a collection of data (FU , cf ) as in the lemma. In
this case we simply define F by the rule U 7→ FU (U). Details omitted. �

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism ϕ : U → X, see
Spaces, Definition 47.9.3. In particular, we obtain a groupoid (U,R, s, t, c, e, i) such
that j = (t, s) : R→ U ×S U , see Groupoids, Lemma 38.11.3.

Lemma 48.15.13. With S, ϕ : U → X, and (U,R, s, t, c, e, i) as above. For any
sheaf F on Xétale the sheaf6 G = ϕ−1F comes equipped with a canonical isomor-
phism

α : t−1G −→ s−1G
such that the diagram

pr−1
1 t−1G

pr−1
1 α

// pr−1
1 s−1G

pr−1
0 s−1G c−1s−1G

pr−1
0 t−1G

pr−1
0 α

ff

c−1t−1G
c−1α

99

is a commutative. The functor F 7→ (G, α) defines an equivalence of categories
between sheaves on Xétale and pairs (G, α) as above.

First proof of Lemma 48.15.13. Let C = Xspaces,étale. By Lemma 48.15.10
and its proof we have Uspaces,étale = C/U and the pullback functor ϕ−1 is just the

6In this lemma and its proof we write simply ϕ−1 instead of ϕ−1
small and similarly for all the

other pullbacks.
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restriction functor. Moreover, {U → X} is a covering of the site C and R = U×XU .
The isomorphism α is just the canonical identification(

F|C/U
)
|C/U×XU =

(
F|C/U

)
|C/U×XU

and the commutativity of the diagram is the cocycle condition for glueing data.
Hence this lemma is a special case of glueing of sheaves, see Sites, Section 7.25. �

Second proof of Lemma 48.15.13. The existence of α comes from the fact that
ϕ◦ t = ϕ◦s and that pullback is functorial in the morphism, see Lemma 48.15.7. In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
α fits into the commutative diagram. The construction F 7→ (ϕ−1F , α) is clearly
functorial in the sheaf F . Hence we obtain the functor.

Conversely, suppose that (G, α) is a pair. Let V → X be an object of Xétale. In this
case the morphism V ′ = U ×X V → V is a surjective étale morphism of schemes,
and hence {V ′ → V } is an étale covering of V . Set G′ = (V ′ → V )−1G. Since
R = U ×X U with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V with
projection maps s′, t′ : V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence α
pulls back to an isomorphism α′ : (t′)−1G′ → (s′)−1G′. Having said this we simply
define

F(V ) Equalizer(G(V ′)
//
// G(V ′ ×V V ′).

We omit the verification that this defines a sheaf. To see that G(V ) = F(V ) if
there exists a morphism V → U note that in this case the equalizer is H0({V ′ →
V },G) = G(V ). �

48.16. Points of the small étale site

This section is the analogue of Étale Cohomology, Section 44.29.

Definition 48.16.1. Let S be a scheme. Let X be an algebraic space over S.

(1) A geometric point of X is a morphism x : Spec(k) → X, where k is an
algebraically closed field. We often abuse notation and write x = Spec(k).

(2) For every geometric point x we have the corresponding “image” point
x ∈ |X|. We say that x is a geometric point lying over x.

It turns out that we can take stalks of sheaves on Xétale at geometric point exactly
in the same way as was done in the case of the small étale site of a scheme. In order
to do this we define the notion of an étale neighbourhood as follows.

Definition 48.16.2. Let S be a scheme. Let X be an algebraic space over S. Let
x be a geometric point of X.

(1) An étale neighborhood of x of X is a commutative diagram

U

ϕ

��
x̄

x̄ //

ū

??

X

where ϕ is an étale morphism of algebraic spaces over S. We will use the
notation ϕ : (U, u)→ (X,x) to indicate this situation.

(2) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an X-morphism
h : U → U ′ such that u′ = h ◦ u.

http://stacks.math.columbia.edu/tag/0486
http://stacks.math.columbia.edu/tag/04JV


3150 48. PROPERTIES OF ALGEBRAIC SPACES

Note that we allow U to be an algebraic space. When we take stalks of a sheaf
on Xétale we have to restrict to those U which are in Xétale, and so in this case
we will only consider the case where U is a scheme. Alternately we can work with
the site Xspace,étale and consider all étale neighbourhoods. And there won’t be any
difference because of the last assertion in the following lemma.

Lemma 48.16.3. Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. The category of étale neighborhoods is cofiltered. More
precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of x in X. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neighbor-
hoods of s. Then there exist an étale neighborhood (U ′′, u′′) and a mor-
phism h : (U ′′, u′′) → (U, u) which equalizes h1 and h2, i.e., such that
h1 ◦ h = h2 ◦ h.

Moreover, given any étale neighbourhood (U, u) → (X,x) there exists a morphism
of étale neighbourhoods (U ′, u′)→ (U, u) where U ′ is a scheme.

Proof. For part (1), consider the fibre product U = U1 ×X U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change and
composition, see Lemmas 48.13.5 and 48.13.4. The map u→ U defined by (u1, u2)
gives it the structure of an étale neighborhood mapping to both U1 and U2.

For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)

��
U ′

∆ // U ′ ×X U ′.

Since u and u′ agree over X with x, we see that u′′ = (u, u′) is a geometric point
of U ′′. In particular U ′′ 6= ∅. Moreover, since U ′ is étale over X, so is the fibre
product U ′×X U ′ (as seen above in the case of U1×X U2). Hence the vertical arrow
(h1, h2) is étale by Lemma 48.13.6. Therefore U ′′ is étale over U ′ by base change,
and hence also étale over X (because compositions of étale morphisms are étale).
Thus (U ′′, u′′) is a solution to the problem posed by (2).

To see the final assertion, choose any surjective étale morphism U ′ → U where U ′

is a scheme. Then U ′×U u is a scheme surjective and étale over u = Spec(k) with k
algebraically closed. It follows (see Morphisms, Lemma 28.37.7) that U ′ ×U u→ u
has a section which gives us the desired u′. �

Lemma 48.16.4. Let S be a scheme. Let X be an algebraic space over S. Let
x : Spec(k) → X be a geometric point of X lying over x ∈ |X|. Let ϕ : U → X be
an étale morphism of algebraic spaces and let u ∈ |U | with ϕ(u) = x. Then there
exists a geometric point u : Spec(k)→ U lying over u with x = f ◦ u.

Proof. Choose an affine scheme U ′ with u′ ∈ U ′ and an étale morphism U ′ → U
which maps u′ to u. If we can prove the lemma for (U ′, u′)→ (X,x) then the lemma
follows. Hence we may assume that U is a scheme, in particular that U → X is
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representable. Then look at the cartesian diagram

Spec(k)×x,X,ϕ U

pr1

��

pr2

// U

ϕ

��
Spec(k)

x // X

The projection pr1 is the base change of an étale morphisms so it is étale, see
Lemma 48.13.5. Therefore, the scheme Spec(k)×x,X,ϕU is a disjoint union of finite
separable extensions of k, see Morphisms, Lemma 28.37.7. But k is algebraically
closed, so all these extensions are trivial, so Spec(k) ×x,X,ϕ U is a disjoint union
of copies of Spec(k) and each of these corresponds to a geometric point u with
f ◦ u = x. By Lemma 48.4.3 the map

|Spec(k)×x,X,ϕ U | −→ |Spec(k)| ×|X| |U |

is surjective, hence we can pick u to lie over u. �

Lemma 48.16.5. Let S be a scheme. Let X be an algebraic space over S. Let x be
a geometric point of X. Let (U, u) an étale neighborhood of x. Let {ϕi : Ui → U}i∈I
be an étale covering in Xspaces,étale. Then there exist i ∈ I and ui : x → Ui such
that ϕi : (Ui, ui)→ (U, u) is a morphism of étale neighborhoods.

Proof. Let u ∈ |U | be the image of u. As |U | =
⋃
i∈I ϕi(|Ui|) there exists an i and

a point ui ∈ Ui mapping to x. Apply Lemma 48.16.4 to (Ui, ui)→ (U, u) and u to
get the desired geometric point. �

Definition 48.16.6. Let S be a scheme. Let X be an algebraic space over S. Let
F be a presheaf on Xétale. Let x be a geometric point of X. The stalk of F at x is

Fx̄ = colim(U,u) F(U)

where (U, u) runs over all étale neighborhoods of x in X with U ∈ Ob(Xétale).

By Lemma 48.16.3, this colimit is over a filtered index category, namely the opposite
of the category of étale neighborhoods in Xétale. More precisely Lemma 48.16.3
says the opposite of the category of all étale neighbourhoods is filtered, and the full
subcategory of those which are in Xétale is a cofinal subcategory hence also filtered.

This means an element of Fx can be thought of as a triple (U, u, σ) where U ∈
Ob(Xétale) and σ ∈ F(U). Two triples (U, u, σ), (U ′, u′, σ′) define the same element
of the stalk if there exists a third étale neighbourhood (U ′′, u′′), U ′′ ∈ Ob(Xétale)
and morphisms of étale neighbourhoods h : (U ′′, u′′) → (U, u), h′ : (U ′′, u′′) →
(U ′, u′) such that h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section 4.19.

This also implies that if F ′ is the sheaf on Xspaces,étale corresponding to F on
Xétale, then

(48.16.6.1) Fx = colim(U,u) F ′(U)

where now the colimit is over all the étale neighbourhoods of x. We will often jump
between the point of view of using Xétale and Xspaces,étale without further mention.

In particular this means that if F is a presheaf of abelian groups, rings, etc then
Fx is an abelian group, ring, etc simply by the usual way of defining the group
structure on a directed colimit of abelian groups, rings, etc.
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Lemma 48.16.7. Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. Consider the functor

u : Xétale −→ Sets, U 7−→ |Ux|

Then u defines a point p of the site Xétale (Sites, Definition 7.31.2) and its as-
sociated stalk functor F 7→ Fp (Sites, Equation 7.31.1.1) is the functor F 7→ Fx
defined above.

Proof. In the proof of Lemma 48.16.5 we have seen that the scheme Ux is a disjoint
union of schemes isomorphic to x. Thus we can also think of |Ux| as the set of
geometric points of U lying over x, i.e., as the collection of morphisms u : x → U
fitting into the diagram of Definition 48.16.1. From this it follows that u(X) is a
singleton, and that u(U ×V W ) = u(U)×u(V ) u(W ) whenever U → V and W → V
are morphisms in Xétale. And, given a covering {Ui → U}i∈I in Xétale we see that∐
u(Ui) → u(U) is surjective by Lemma 48.16.5. Hence Sites, Proposition 7.32.2

applies, so p is a point of the site Xétale. Finally, the our functor F 7→ Fs is given by
exactly the same colimit as the functor F 7→ Fp associated to p in Sites, Equation
7.31.1.1 which proves the final assertion. �

Lemma 48.16.8. Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X.

(1) The stalk functor PAb(Xétale)→ Ab, F 7→ Fx is exact.
(2) We have (F#)x = Fx for any presheaf of sets F on Xétale.
(3) The functor Ab(Xétale)→ Ab, F 7→ Fx is exact.
(4) Similarly the functors PSh(Xétale) → Sets and Sh(Xétale) → Sets given

by the stalk functor F 7→ Fx are exact (see Categories, Definition 4.23.1)
and commute with arbitrary colimits.

Proof. This result follows from the general material in Modules on Sites, Section
18.35. This is true because F 7→ Fx comes from a point of the small étale site of
X, see Lemma 48.16.7. See the proof of Étale Cohomology, Lemma 44.29.9 for a
direct proof of some of these statements in the setting of the small étale site of a
scheme. �

We will see below that the stalk functor F 7→ Fx is really the pullback along the
morphism x. In that sense the following lemma is a generalization of the lemma
above.

Lemma 48.16.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) The functor f−1
small : Ab(Yétale)→ Ab(Xétale) is exact.

(2) The functor f−1
small : Sh(Yétale) → Sh(Xétale) is exact, i.e., it commutes

with finite limits and colimits, see Categories, Definition 4.23.1.
(3) For any étale morphism V → Y of algebraic spaces we have f−1

smallhV =
hX×Y V .

(4) Let x → X be a geometric point. Let G be a sheaf on Yétale. Then there
is a canonical identification

(f−1
smallG)x = Gy.

where y = f ◦ x.
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Proof. Recall that fsmall is defined via fspaces,small in Lemma 48.15.7. Parts (1),
(2) and (3) are general consequences of the fact that fspaces,étale : Xspaces,étale →
Yspaces,étale is a morphism of sites, see Sites, Definition 7.15.1 for (2), Modules on
Sites, Lemma 18.30.2 for (1), and Sites, Lemma 7.14.5 for (3).

Proof of (4). This statement is a special case of Sites, Lemma 7.33.1 via Lemma
48.16.7. We also provide a direct proof. Note that by Lemma 48.16.8. taking stalks
commutes with sheafification. Let G′ be the sheaf on Yspaces,étale whose restriction

to Yétale is G. Recall that f−1
spaces,étaleG′ is the sheaf associated to the presheaf

U −→ colimU→X×Y V G′(V ),

see Sites, Sections 7.14 and 7.5. Thus we have

(f−1
spaces,étaleG

′)x = colim(U,u) f
−1
spaces,étaleG

′(U)

= colim(U,u) colima:U→X×Y V G′(V )

= colim(V,v) G′(V )

= G′y
in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to
the pair (V, a ◦ u). Since the stalk of G′ (resp. f−1

spaces,étaleG′) agrees with the stalk

of G (resp. f−1
smallG), see Equation (48.16.6.1) the result follows. �

Remark 48.16.10. This remark is the analogue of Étale Cohomology, Remark
44.57.6. Let S be a scheme. Let X be an algebraic space over S. Let x : Spec(k)→
X be a geometric point of X. By Étale Cohomology, Theorem 44.57.3 the category
of sheaves on Spec(k)étale is equivalent to the category of sets (by taking a sheaf to
its global sections). Hence it follows from Lemma 48.16.9 part (4) applied to the
morphism x that the functor

Sh(Xétale) −→ Sets, F 7−→ Fx
is isomorphic to the functor

Sh(Xétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ x∗F
Hence we may view the stalk functors as pullback functors along geometric mor-
phisms (and not just some abstract morphisms of topoi as in the result of Lemma
48.16.7).

Remark 48.16.11. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. We claim that for any pair of geometric points x and x′ lying over x the
stalk functors are isomorphic. By definition of |X| we can find a third geometric
point x′′ so that there exists a commutative diagram

x′′ //

��

x′′

  

x′

x′

��
x

x // X.

Since the stalk functor F 7→ Fx is given by pullback along the morphism x (and
similarly for the others) we conclude by functoriality of pullbacks.

The following theorem says that the small étale site of an algebraic space has enough
points.
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Theorem 48.16.12. Let S be a scheme. Let X be an algebraic space over S. A
map a : F → G of sheaves of sets is injective (resp. surjective) if and only if the
map on stalks ax : Fx → Gx is injective (resp. surjective) for all geometric points
of X. A sequence of abelian sheaves on Xétale is exact if and only if it is exact on
all stalks at geometric points of S.

Proof. We know the theorem is true if X is a scheme, see Étale Cohomology,
Theorem 44.29.10. Choose a surjective étale morphism f : U → X where U is a
scheme. Since {U → X} is a covering (in Xspaces,étale) we can check whether a map
of sheaves is injective, or surjective by restricting to U . Now if u : Spec(k)→ U is
a geometric point of U , then (F|U )u = Fx where x = f ◦ u. (This is clear from the
colimits defining the stalks at u and x, but it also follows from Lemma 48.16.9.)
Hence the result for U implies the result for X and we win. �

The following lemma should be skipped on a first reading.

Lemma 48.16.13. Let S be a scheme. Let X be an algebraic space over S. Let
p : Sh(pt)→ Sh(Xétale) be a point of the small étale topos of X. Then there exists
a geometric point x of X such that the stalk functor F 7→ Fp is isomorphic to the
stalk functor F 7→ Fx.

Proof. By Sites, Lemma 7.31.7 there is a one to one correspondence between points
of the site and points of the associated topos. Hence we may assume that p is
given by a functor u : Xétale → Sets which defines a point of the site Xétale. Let
U ∈ Ob(Xétale) be an object whose structure morphism j : U → X is surjective.
Note that hU is a sheaf which surjects onto the final sheaf. Since taking stalks
is exact we see that (hU )p = u(U) is not empty (use Sites, Lemma 7.31.3). Pick
x ∈ u(U). By Sites, Lemma 7.34.1 we obtain a point q : Sh(pt) → Sh(Uétale) such

that p = jsmall◦q, so that Fp = (F|U )q functorially. By Étale Cohomology, Lemma
44.29.12 there is a geometric point u of U and a functorial isomorphism Gq = Gu
for G ∈ Sh(Uétale). Set x = j ◦ u. Then we see that Fx ∼= (F|U )u functorially in F
on Xétale by Lemma 48.16.9 and we win. �

48.17. Supports of abelian sheaves

First we talk about supports of local sections.

Lemma 48.17.1. Let S be a scheme. Let X be an algebraic space over S. Let F
be a subsheaf of the final object of the étale topos of X (see Sites, Example 7.10.2).
Then there exists a unique open W ⊂ X such that F = hW .

Proof. The condition means that F(U) is a singleton or empty for all ϕ : U →
X in Ob(Xspaces,étale). In particular local sections always glue. If F(U) 6= ∅,
then F(ϕ(U)) 6= ∅ because ϕ(U) ⊂ X is an open subspace (Lemma 48.13.7) and
{ϕ : U → ϕ(U)} is a covering in Xspaces,étale. Take W =

⋃
ϕ:U→S,F(U) 6=∅ ϕ(U) to

conclude. �

Lemma 48.17.2. Let S be a scheme. Let X be an algebraic space over S. Let F
be an abelian sheaf on Xspaces,étale. Let σ ∈ F(U) be a local section. There exists
an open subspace W ⊂ U such that

(1) W ⊂ U is the largest open subspace of U such that σ|W = 0,
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(2) for every ϕ : V → U in Xétale we have

σ|V = 0⇔ ϕ(V ) ⊂W,

(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W

where s = (U → S) ◦ u.

Proof. Since F is a sheaf in the étale topology the restriction of F to UZar is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma 17.5.2. Let ϕ : V → U be an arrow of Xétale.
Note that ϕ(V ) ⊂ U is an open subspace (Lemma 48.13.7) and that {V → ϕ(V )}
is an étale covering. Hence if σ|V = 0, then by the sheaf condition for F we see
that σ|ϕ(V ) = 0. This proves (2). To prove (3) we have to show that if (U, u, σ)
defines the zero element of Fs, then u ∈ W . This is true because the assumption
means there exists a morphism of étale neighbourhoods (V, v) → (U, u) such that
σ|V = 0. Hence by (2) we see that V → U maps into W , and hence u ∈W . �

Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|. Let F be
a sheaf on Xétale. By Remark 48.16.11 the isomorphism class of the stalk of the
sheaf F at a geometric points lying over x is well defined.

Definition 48.17.3. Let S be a scheme. Let X be an algebraic space over S. Let
F be an abelian sheaf on Xétale.

(1) The support of F is the set of points x ∈ |X| such that Fx 6= 0 for any
(some) geometric point x lying over x.

(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W ,
where W ⊂ U is the largest open subset of U on which σ restricts to zero
(see Lemma 48.17.2).

Lemma 48.17.4. Let S be a scheme. Let X be an algebraic space over S. Let F
be an abelian sheaf on Xétale. Let U ∈ Ob(Xétale) and σ ∈ F(U).

(1) The support of σ is closed in |X|.
(2) The support of σ + σ′ is contained in the union of the supports of σ, σ′ ∈
F(X).

(3) If ϕ : F → G is a map of abelian sheaves on Xétale, then the support of
ϕ(σ) is contained in the support of σ ∈ F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F .

(5) If F → G is surjective then the support of G is a subset of the support of
F .

(6) If F → G is injective then the support of F is a subset of the support of
G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for
the restriction of F and G to UZar, see Modules, Lemma 17.5.2. Part (4) is a direct
consequence of Lemma 48.17.2 part (3). Parts (5) and (6) follow from the other
parts. �

Lemma 48.17.5. The support of a sheaf of rings on the small étale site of an
algebraic space is closed.
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Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. �

48.18. The structure sheaf of an algebraic space

The structure sheaf of an algebraic space is the sheaf of rings of the following lemma.

Lemma 48.18.1. Let S be a scheme. Let X be an algebraic space over S. The
rule U 7→ Γ(U,OU ) defines a sheaf of rings on Xétale.

Proof. Immediate from the definition of a covering and Descent, Lemma 34.7.1.
�

Definition 48.18.2. Let S be a scheme. Let X be an algebraic space over S. The
structure sheaf of X is the sheaf of rings OX on the small étale site Xétale described
in Lemma 48.18.1.

According to Lemma 48.15.12 the sheaf OX corresponds to a system of étale sheaves
(OX)U for U ranging through the objects of Xétale. It is clear from the proof of
that lemma and our definition that we have simply (OX)U = OU where OU is the
structure sheaf of Uétale as introduced in Descent, Definition 34.7.2. In particular,
if X is a scheme we recover the sheaf OX on the small étale site of X.

Via the equivalence Sh(Xétale) = Sh(Xspaces,étale) of Lemma 48.15.3 we may also
think of OX as a sheaf of rings on Xspaces,étale. It is explained in Remark 48.15.4
how to compute OX(Y ), and in particular OX(X), when Y → X is an object of
Xspaces,étale.

Lemma 48.18.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there is a canonical map f ] : f−1

smallOY → OX such that

(fsmall, f
]) : (Xétale,OX) −→ (Yétale,OY )

is a morphism of ringed topoi. Furthermore,

(1) The construction f 7→ (fsmall, f
]) is compatible with compositions.

(2) If f is a morphism of schemes, then f ] is the map described in Descent,
Remark 34.7.4.

Proof. By Lemma 48.15.9 it suffices to give an f -map from OY to OX . In other
words, for every commutative diagram

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale we have to give a map of rings (f ])(U,V,g) : Γ(V,OV )→
Γ(U,OU ). Of course we just take (f ])(U,V,g) = g]. It is clear that this is compatible
with restriction mappings and hence indeed gives an f -map. We omit checking
compatibility with compositions and agreement with the construction in Descent,
Remark 34.7.4. �
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48.19. Stalks of the structure sheaf

This section is the analogue of Étale Cohomology, Section 48.19.

Lemma 48.19.1. Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. Let (U, u) be an étale neighbourhood of x where U is a
scheme. Then we have

OX,x = OU,u = OshU,u
where the left hand side is the stalk of the structure sheaf of X, and the right hand
side is the strict henselization of the local ring of U at the point u at which u is
centered.

Proof. We know that the structure sheaf OU on Uétale is the restriction of the
structure sheaf of X. Hence the first equality follows from Lemma 48.16.9 part (4).

The second equality is explained in Étale Cohomology, Lemma 44.33.1. �

Definition 48.19.2. Let S be a scheme. Let X be an algebraic space over S. Let
x be a geometric point of X lying over the point x ∈ |X|.

(1) The étale local ring of X at x is the stalk of the structure sheaf OX on
Xétale at x. Notation: OX,x.

(2) The strict henselization of X at x is the scheme Spec(OX,x).

The isomorphism type of the strict henselization of X at x (as a scheme over X)
depends only on the point x ∈ |X| and not on the choice of the geometric point
lying over x, see Remark 48.16.11.

Lemma 48.19.3. Let S be a scheme. Let X be an algebraic space over S. The
small étale site Xétale endowed with its structure sheaf OX is a locally ringed site,
see Modules on Sites, Definition 18.39.4.

Proof. This follows because the stalks OX,x are local, and because Sétale has
enough points, see Lemmas 48.19.1 and Theorem 48.16.12. See Modules on Sites,
Lemma 18.39.2 and 18.39.3 for the fact that this implies the small étale site is
locally ringed. �

48.20. Dimension of local rings

It turns out the dimension of the local ring of an algebraic space is a well defined
concept.

Lemma 48.20.1. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) for some scheme U and étale morphism a : U → X and point u ∈ U with
a(u) = x we have dim(OU,u) = d,

(2) for any scheme U , any étale morphism a : U → X, and any point u ∈ U
with a(u) = x we have dim(OU,u) = d,

(3) dim(OX,x) = d for some geometric point x lying over x, and
(4) dim(OX,x) = d for any geometric point x lying over x.

Proof. The equivalence of (1) and (2) follows from a combination of Lemma 48.7.4
and Descent, Lemma 34.17.3. The equivalence of (3) and (4) follows from the fact
that the isomorphism type of OX,x only depends on x ∈ |X|, see Remark 48.16.11.
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Using Lemma 48.19.1 the equivalence of (1)+(2) and (3)+(4) comes down to the
following statement: Given any local ring R we have dim(R) = dim(Rsh). This is
More on Algebra, Lemma 15.34.7. �

Definition 48.20.2. Let S be a scheme. Let X be an algebraic space over S.
Let x ∈ |X| be a point. The dimension of the local ring of X at x is the element
d ∈ {0, 1, 2, . . . ,∞} satisfying the equivalent conditions of Lemma 48.20.1.

Lemma 48.20.3. Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Let x ∈ X. Then (1) dimx(X) = dimf(x)(Y ) and (2) the
dimension of the local ring of X at x equals the dimension of the local ring of Y at
y. If f is surjective, then (3) dim(X) = dim(Y ).

Proof. Choose a scheme U and a point u ∈ U and an étale morphism U → X
which maps u to x. Then the composition U → Y is also étale and maps u to y.
Thus the statements (1) and (2) follow as the relevant integers are defined in terms
of the behaviour of the scheme U at u. See Definition 48.8.1 for (1). Part (3) is an
immediate consequence of (1), see Definition 48.8.2. �

48.21. Local irreducibility

A point on an algebraic space has a well defined étale local ring, which corresponds
to the strict henselization of the local ring in the case of a scheme. In general we
cannot see how many irreducible components of the algebraic space pass through
the given point from the étale local ring. Here is something we can do.

Lemma 48.21.1. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The following are equivalent

(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u has a unique minimal prime,

(2) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
there is a unique irreducible component of U through u, and

(3) OX,x has a unique minimal prime for any geometric point x lying over x.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1 − 1 correspondence with minimal primes
of the local ring of U at u. Let a : U → X and u ∈ U be as in (1). Then
OU,u → OX,x is flat in particular injective. Hence if f, g ∈ OU,u are non-nilpotent
elements such that fg = 0, then the same is true in OX,x. Conversely, suppose that
f, g ∈ OX,x are non-nilpotent such that fg = 0. Since OX,x is the filtered colimit
of the rings OU,u we see that f, g are the images of elements of OU,u for some choice
of a : U → X. Hence we see that OU,u doesn’t have a unique minimal prime. In
this way we see the equivalence of (1) and (3). �

Definition 48.21.2. Let S be a scheme. Let X be an algebraic space over S.
Let x ∈ |X|. We say that X is geometrically unibranch at x if the equivalent
conditions of Lemma 48.21.1 hold. We say that X is geometrically unibranch if X
is geometrically unibranch at every x ∈ |X|.
To prove this is consistent with the definition of [DG67] for schemes we offer the
following lemma (see [Art66, Lemma 2.2]).

Lemma 48.21.3. Let A be a local ring. Let Ash be a strict henselization of A.
The following are equivalent
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(1) Ash has a unique minimal prime, and
(2) A has a unique minimal prime p and the integral closure A′ of A/p in its

fraction field is a local ring whose residue field is purely inseparable over
the residue field of A.

Proof. Denote m the maximal ideal of the ring A. Denote κ, κsh the residue field
of A, Ash.

Assume (1). Let psh be the unique minimal prime of Ash. The flatness of A→ Ash

implies that p = A ∩ psh is the unique minimal prime of A (by going down, see
Algebra, Lemma 10.38.17). Also, since Ash/pAsh = (A/p)sh (see Algebra, Lemma
10.145.30) is reduced by More on Algebra, Lemma 15.34.4 we see that psh = pAsh.
Since A → A′ is integral, every maximal ideal of A′ lies over m (by going up for
integral ring maps, see Algebra, Lemma 10.35.20). If A′ is not local, then we can
find distinct maximal ideals m1, m2. Choosing elements f1, f2 ∈ A′ with fi ∈
mi, fi 6∈ m3−i we find a finite subalgebra B = A[f1, f2] ⊂ A′ with distinct maximal
ideals B ∩ mi, i = 1, 2. If A′ is local with maximal ideal m′, but A/m ⊂ A′/m′ is
not purely inseparable, then we can find a f ∈ A′ whose image in A′/m′ generates
finite, not purely inseparable extension of A/m and we find a finite local subalgebra
B = A[f ] ⊂ A′ whose residue field is not a purely inseparable extension of A/m.
Note that the inclusions

A/p ⊂ B ⊂ κ(p)

give, on tensoring with the flat ring map A→ Ash the inclusions

Ash/psh ⊂ B ⊗A Ash ⊂ κ(p)⊗A Ash ⊂ κ(psh)

the last inclusion because κ(p)⊗A Ash = κ(p)⊗A/p Ash/psh is a localization of the

domain Ash/psh. Note that B⊗Aκsh has at least two maximal ideals because B/mB
either has two maximal ideals or one whose residue field is not purely inseparable
over κ, and because κsh is separably algebraically closed. Hence, as Ash is strictly
henselian we see that B⊗AAsh is a product of ≥ 2 local rings, see Algebra, Lemma
10.145.7. But we’ve just seen that B ⊗A Ash is a subring of a domain and we get
a contradiction.

Assume (2). Let A → B be a local map of local rings which is a localization of
an étale A-algebra. In particular mB is the unique prime containing mAB. Then
B′ = A′ ⊗A B is integral over B and the assumption that A → A′ is local with
purely inseparable residue field extension implies that B′ is local. On the other
hand, A′ → B′ is the localization of an étale ring map, hence B′ is normal, see
Algebra, Lemma 10.151.7. Thus B′ is a (local) normal domain. Finally, we have

B/pB ⊂ B ⊗A κ(p) = B′ ⊗A′ f.f.(A′) ⊂ f.f.(B′)

Hence B/pB is a domain, which implies that B has a unique minimal prime (since
by flatness of A→ B these all have to lie over p). Hence, by Lemma 48.21.1 we see
that Ash has a unique minimal prime. �

48.22. Noetherian spaces

We have already defined locally Noetherian algebraic spaces in Section 48.7.

Definition 48.22.1. Let S be a scheme. Let X be an algebraic space over S. We
say X is Noetherian if X is quasi-compact, quasi-separated and locally Noetherian.
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Note that a Noetherian algebraic space X is not just quasi-compact and locally
Noetherian, but also quasi-separated. This does not conflict with the definition
of a Noetherian scheme, as a locally Noetherian scheme is quasi-separated, see
Properties, Lemma 27.5.4. This does not hold for algebraic spaces. Namely, X =
A1
k/Z, see Spaces, Example 47.14.8 is locally Noetherian and quasi-compact but

not quasi-separated (hence not Noetherian according to our definitions).

A consequence of the choice made above is that an algebraic space of finite type over
a Noetherian algebraic space is not automatically Noetherian, i.e., the analogue
of Morphisms, Lemma 28.16.6 does not hold. The correct statement is that an
algebraic space of finite presentation over a Noetherian algebraic space is Noetherian
(see Morphisms of Spaces, Lemma 49.27.6).

A Noetherian algebraic space X is very close to being a scheme. In the rest of this
section we collect some lemmas to illustrate this.

Lemma 48.22.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X is locally Noetherian then |X| is a locally Noetherian topological space.
(2) If X is quasi-compact and locally Noetherian, then |X| is a Noetherian

topological space.

Proof. Assume X is locally Noetherian. Choose a scheme U and a surjective étale
morphism U → X. As X is locally Noetherian we see that U is locally Noetherian.
By Properties, Lemma 27.5.5 this means that |U | is a locally Noetherian topological
space. Since |U | → |X| is open and surjective we conclude that |X| is locally
Noetherian by Topology, Lemma 5.8.3. This proves (1). If X is quasi-compact and
locally Noetherian, then |X| is quasi-compact and locally Noetherian. Hence |X|
is Noetherian by Topology, Lemma 5.11.14. �

Lemma 48.22.3. Let S be a scheme. Let X be an algebraic space over S. If X is
Noetherian, then |X| is a sober Noetherian topological space.

Proof. A quasi-separated algebraic space has an underlying sober topological space,
see Lemma 48.12.4. It is Noetherian by Lemma 48.22.2. �

Lemma 48.22.4. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let x be a geometric point of X. Then OX,x is a Noetherian local ring.

Proof. Choose an étale neighbourhood (U, u) of x where U is a scheme. Then
OX,x is the strict henselization of the local ring of U at u, see Lemma 48.19.1. By
our definition of Noetherian spaces the scheme U is Noetherian. Hence we conclude
by More on Algebra, Lemma 15.34.3. �

48.23. Regular algebraic spaces

We have already defined regular algebraic spaces in Section 48.7.

Lemma 48.23.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. The following are equivalent

(1) X is regular, and
(2) every étale local ring OX,x is regular.
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Proof. Let U be a scheme and let U → X be a surjective étale morphism. By
assumption U is locally Noetherian. Moreover, every étale local ring OX,x is the
strict henselization of a local ring on U and conversely, see Lemma 48.19.1. Thus by
More on Algebra, Lemma 15.34.10 we see that (2) is equivalent to every local ring
of U being regular, i.e., U being a regular scheme (see Properties, Lemma 27.9.2).
This equivalent to (1) by Definition 48.7.2. �

We can use Descent, Lemma 34.17.4 to define what it means for an algebraic space
X to be regular at a point x.

Definition 48.23.2. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. We say X is regular at x if OU,u is a regular local ring for any
(equivalently some) pair (a : U → X,u) consisting of an étale morphism a : U → X
from a scheme to X and a point u ∈ U with a(u) = x.

See Definition 48.7.5, Lemma 48.7.4, and Descent, Lemma 34.17.4.

Lemma 48.23.3. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The following are equivalent

(1) X is regular at x, and
(2) the étale local ring OX,x is regular for any (equivalently some) geometric

point x lying over x.

Proof. Let U be a scheme, u ∈ U a point, and let a : U → X be an étale morphism
mapping u to x. For any geometric point x of X lying over x, the étale local ring
OX,x is the strict henselization of a local ring on U at u, see Lemma 48.19.1. Thus
we conclude by More on Algebra, Lemma 15.34.10. �

48.24. Sheaves of modules on algebraic spaces

If X is an algebraic space, then a sheaf of modules on X is a sheaf of OX -modules
on the small étale site of X where OX is the structure sheaf of X. The category of
sheaves of modules is denoted Mod(OX).

Given a morphism f : X → Y of algebraic spaces, by Lemma 48.18.3 we get a
morphism of ringed topoi and hence by Modules on Sites, Definition 18.13.1 we get
well defined pullback and direct image functors

(48.24.0.1) f∗ : Mod(OY ) −→ Mod(OX), f∗ : Mod(OX) −→ Mod(OY )

which are adjoint in the usual way. If g : Y → Z is another morphism of algebraic
spaces over S, then we have (g ◦ f)∗ = f∗ ◦ g∗ and (g ◦ f)∗ = g∗ ◦ f∗ simply because
the morphisms of ringed topoi compose in the corresponding way (by the lemma).

Lemma 48.24.1. Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Then f−1OY = OX , and f∗G = f−1

smallG for any sheaf of
OY -modules G. In particular, f∗ : Mod(OX)→ Mod(OY ) is exact.

Proof. By the description of inverse image in Lemma 48.15.10 and the definition
of the structure sheaves it is clear that f−1

smallOY = OX . Since the pullback

f∗G = f−1
smallG ⊗f−1

smallOY
OX

by definition we conclude that f∗G = f−1
smallG. The exactness is clear because f−1

small

is exact, as fsmall is a morphism of topoi. �

http://stacks.math.columbia.edu/tag/0AH9
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We continue our abuse of notation introduced in Equation (48.15.10.1) by writing

(48.24.1.1) G|Xétale = f∗G = f−1
smallG

in the situation of the lemma above. We will discuss this in a more technical fashion
in Section 48.25.

Lemma 48.24.2. Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′

g // Y

be a cartesian square of algebraic spaces over S. Let F ∈ Mod(OX). If g is étale,
then f ′∗(F|X′) = (f∗F)|Y ′7 and Rif ′∗(F|X′) = (Rif∗F)|Y ′ in Mod(OY ′).
Proof. This is a reformulation of Lemma 48.15.11 in the case of modules. �

Lemma 48.24.3. Let S be a scheme. Let X be an algebraic space over S. A sheaf
F of OX-modules is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU of OU -modules on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗smallFU → FU ′ .

These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition g−1
smallcf ◦ cg is equal to cf◦g.

Proof. Combine Lemmas 48.24.1 and 48.15.12, and use the fact that any morphism
between objects of Xétale is an étale morphism of schemes. �

48.25. Étale localization

Reading this section should be avoided at all cost.

Let X → Y be an étale morphism of algebraic spaces. Then X is an object of
Yspaces,étale and it is immediate from the definitions, see also the proof of Lemma
48.15.10, that

(48.25.0.1) Xspaces,étale = Yspaces,étale/X

where the right hand side is the localization of the site Yspaces,étale at the object
X, see Sites, Definition 7.24.1. Moreover, this identification is compatible with the
structure sheaves by Lemma 48.24.1. Hence the ringed site (Xspaces,étale,OX) is
identified with the localization of the ringed site (Yspaces,étale,OY ) at the object
X:

(48.25.0.2) (Xspaces,étale,OX) = (Yspaces,étale/X,OY |Yspaces,étale/X)

The localization of a ringed site used on the right hand side is defined in Modules
on Sites, Definition 18.19.1.

Assume now X → Y is an étale morphism of algebraic spaces and X is a scheme.
Then X is an object of Yétale and it follows that

(48.25.0.3) Xétale = Yétale/X

and

(48.25.0.4) (Xétale,OX) = (Yétale/X,OY |Yétale/X)

7Also (f ′)∗(G|Y ′ ) = (f∗G)|X′ by commutativity of the diagram and (48.24.1.1)

http://stacks.math.columbia.edu/tag/03LX
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as above.

Finally, if X → Y is an étale morphism of algebraic spaces and X is an affine
scheme, then X is an object of Yaffine,étale and

(48.25.0.5) Xaffine,étale = Yaffine,étale/X

and

(48.25.0.6) (Xaffine,étale,OX) = (Yaffine,étale/X,OY |Yaffine,étale/X)

as above.

Next, we show that these localizations are compatible with morphisms.

Lemma 48.25.1. Let S be a scheme. Let

U

p

��

g
// V

q

��
X

f // Y

be a commutative diagram of algebraic spaces over S with p and q étale. Via the
identifications (48.25.0.2) for U → X and V → Y the morphism of ringed topoi

(gspaces,étale, g
]) : (Sh(Uspaces,étale),OU ) −→ (Sh(Vspaces,étale),OV )

is 2-isomorphic to the morphism (fspaces,étale,c, f
]
c ) constructed in Modules on Sites,

Lemma 18.20.2 starting with the morphism of ringed sites (fspaces,étale, f
]) and the

map c : U → V ×Y X corresponding to g.

Proof. The morphism (fspaces,étale,c, f
]
c ) is defined as a composition f ′ ◦ j of a

localization and a base change map. Similarly g is a composition U → V ×Y X → V .
Hence it suffices to prove the lemma in the following two cases: (1) f = id, and (2)
U = X ×Y V . In case (1) the morphism g : U → V is étale, see Lemma 48.13.6.
Hence (gspaces,étale, g

]) is a localization morphism by the discussion surrounding
Equations (48.25.0.1) and (48.25.0.2) which is exactly the content of the lemma
in this case. In case (2) the morphism gspaces,étale comes from the morphism of
ringed sites given by the functor Vspaces,étale → Uspaces,étale, V

′/V 7→ V ′ ×V U/U
which is also what the morphism f ′ is defined by, see Sites, Lemma 7.27.1. We
omit the verification that (f ′)] = g] in this case (both are the restriction of f ] to
Uspaces,étale). �

Lemma 48.25.2. Same notation and assumptions as in Lemma 48.25.1 except
that we also assume U and V are schemes. Via the identifications (48.25.0.4) for
U → X and V → Y the morphism of ringed topoi

(gsmall, g
]) : (Sh(Uétale),OU ) −→ (Sh(Vétale),OV )

is 2-isomorphic to the morphism (fsmall,s, f
]
s) constructed in Modules on Sites,

Lemma 18.22.3 starting with (fsmall, f
]) and the map s : hU → f−1

smallhV corre-
sponding to g.

Proof. Note that (gsmall, g
]) is 2-isomorphic as a morphism of ringed topoi to the

morphism of ringed topoi associated to the morphism of ringed sites (gspaces,étale, g
]).

Hence we conclude by Lemma 48.25.1 and Modules on Sites, Lemma 18.22.4. �
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48.26. Recovering morphisms

In this section we prove that the rule which associates to an algebraic space its
locally ringed small étale topos is fully faithful in a suitable sense, see Theorem
48.26.4.

Lemma 48.26.1. Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. The morphism of ringed topoi (fsmall, f

]) associated to f is a
morphism of locally ringed topoi, see Modules on Sites, Definition 18.39.8.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale)
and (Yétale,OYétale) are locally ringed sites, see Lemma 48.19.3. Moreover, we know
that Xétale has enough points, see Theorem 48.16.12. Hence it suffices to prove that
(fsmall, f

]) satisfies condition (3) of Modules on Sites, Lemma 18.39.7. To see this
take a point p of Xétale. By Lemma 48.16.13 p corresponds to a geometric point
x of X. By Lemma 48.16.9 the point q = fsmall ◦ p corresponds to the geometric
point y = f ◦x of Y . Hence the assertion we have to prove is that the induced map
of étale local rings

OY,y −→ OX,x

is a local ring map. You can prove this directly, but instead we deduce it from the
corresponding result for schemes. To do this choose a commutative diagram

U

��

ψ
// V

��
X // Y

where U and V are schemes, and the vertical arrows are surjective étale (see Spaces,
Lemma 47.11.4). Choose a lift u : x → U (possible by Lemma 48.16.5). Set
v = ψ ◦ u. We obtain a commutative diagram of étale local rings

OU,u OV,voo

OX,x

OO

OY,y.oo

OO

By Étale Cohomology, Lemma 44.41.1 the top horizontal arrow is a local ring map.
Finally by Lemma 48.19.1 the vertical arrows are isomorphisms. Hence we win. �

Lemma 48.26.2. Let S be a scheme. Let X, Y be algebraic spaces over S. Let
f : X → Y be a morphism of algebraic spaces over S. Let t be a 2-morphism from
(fsmall, f

]) to itself, see Modules on Sites, Definition 18.8.1. Then t = id.

Proof. Let X ′, resp. Y ′ be X viewed as an algebraic space over Spec(Z), see
Spaces, Definition 47.16.2. It is clear from the construction that (Xsmall,O) is
equal to (X ′small,O) and similarly for Y . Hence we may work with X ′ and Y ′. In
other words we may assume that S = Spec(Z).

http://stacks.math.columbia.edu/tag/04KJ
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Assume S = Spec(Z), f : X → Y and t are as in the lemma. This means that
t : f−1

small → f−1
small is a transformation of functors such that the diagram

f−1
smallOY

f] $$

f−1
smallOYt

oo

f]zz
OX

is commutative. Suppose V → Y is étale with V affine. Write V = Spec(B).
Choose generators bj ∈ B, j ∈ J for B as a Z-algebra. Set T = Spec(Z[{xj}j∈J ]).
In the following we will use that MorSch(U, T ) =

∏
j∈J Γ(U,OU ) for any scheme U

without further mention. The surjective ring map Z[xj ]→ B, xj 7→ bj corresponds
to a closed immersion V → T . We obtain a monomorphism

i : V −→ TY = T × Y

of algebraic spaces over Y . In terms of sheaves on Yétale the morphism i induces an
injection hi : hV →

∏
j∈J OY of sheaves. The base change i′ : X×Y V → TX of i to

X is a monomorphism too (Spaces, Lemma 47.5.5). Hence i′ : X ×Y V → TX is a
monomorphism, which in turn means that hi′ : hX×Y V →

∏
j∈J OX is an injection

of sheaves. Via the identification f−1
smallhV = hX×Y V of Lemma 48.16.9 the map

hi′ is equal to

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f] // ∏

j∈J OX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into
the commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j∈J f

−1
smallOY

∏
f] //

∏
t

��

∏
j∈J OX

id

��
f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f] // ∏

j∈J OX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yétale admits a surjection from a (huge) coproduct of sheaves of the
form hV with V affine (combine Lemma 48.15.5 with Sites, Lemma 7.13.5). Thus
we conclude that t : f−1

small → f−1
small is the identity transformation as desired. �

Lemma 48.26.3. Let S be a scheme. Let X, Y be algebraic spaces over S. Any
two morphisms a, b : X → Y of algebraic spaces over S for which there exists a
2-isomorphism (asmall, a

]) ∼= (bsmall, b
]) in the 2-category of ringed topoi are equal.

Proof. Let t : a−1
small → b−1

small be the 2-isomorphism. We may equivalently think

of t as a transformation t : a−1
spaces,étale → b−1

spaces,étale since there is not difference
between sheaves on Xétale and sheaves on Xspaces,étale. Choose a commutative

http://stacks.math.columbia.edu/tag/04M6
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diagram

U

p

��

α
// V

q

��
X

a // Y
where U and V are schemes, and p and q are surjective étale. Consider the diagram

hU α
// a−1
spaces,étalehV

t

��
hU // b−1

spaces,étalehV

Since the sheaf b−1
spaces,étalehV is isomorphic to hV×Y,bX we see that the dotted arrow

comes from a morphism of schemes β : U → V fitting into a commutative diagram

U

p

��

β
// V

q

��
X

b // Y

We claim that there exists a sequence of 2-isomorphisms

(αsmall, α
]) ∼= (αspaces,étale, α

])

∼= (aspaces,étale,c, a
]
c)

∼= (bspaces,étale,d, b
]
d)

∼= (βspaces,étale, β
])

∼= (βsmall, β
])

The first and the last 2-isomorphisms come from the identifications between sheaves
on Uspaces,étale and sheaves on Uétale and similarly for V . The second and fourth
2-isomorphisms are those of Lemma 48.25.1 with c : U → X ×a,Y V induced by α
and d : U → X ×b,Y V induced by β. The middle 2-isomorphism comes from the

transformation t. Namely, the functor a−1
spaces,étale,c corresponds to the functor

(H → hV ) 7−→ (a−1
spaces,étaleH×a−1

spaces,étalehV ,α
hU → hU )

and similarly for b−1
spaces,étale,d, see Sites, Lemma 7.27.3. This uses the identification

of sheaves on Yspaces,étale/V as arrows (H → hV ) in Sh(Yspaces,étale) and similarly
for U/X, see Sites, Lemma 7.24.4. Via this identification the structure sheaf OV
corresponds to the pair (OY ×hV → hV ) and similarly for OU , see Modules on Sites,
Lemma 18.21.3. Since t switches α and β we see that t induces an isomorphism

t : a−1
spaces,étaleH×a−1

spaces,étalehV ,α
hU −→ b−1

spaces,étaleH×b−1
spaces,étalehV ,β

hU

over hU functorially in (H → hV ). Also, t is compatible with a]c and b]d as t is

compatible with a] and b] by our description of the structure sheaves OU and
OV above. Hence, the morphisms of ringed topoi (αsmall, α

]) and (βsmall, β
]) are

2-isomorphic. By Étale Cohomology, Lemma 44.41.3 we conclude α = β! Since
p : U → X is a surjection of sheaves it follows that a = b. �

Here is the main result of this section.
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Theorem 48.26.4. Let X, Y be algebraic spaces over Spec(Z). Let

(g, g]) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of
algebraic spaces f : X → Y such that (g, g]) is isomorphic to (fsmall, f

]). In other
words, the construction

Spaces/ Spec(Z) −→ Locally ringed topoi, X −→ (Xétale,OX)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. The uniqueness we have seen in Lemma 48.26.3. Thus it suffices to prove
existence. In this proof we will freely use the identifications of Equation (48.25.0.4)
as well as the result of Lemma 48.25.2.

Let U ∈ Ob(Xétale), let V ∈ Ob(Yétale) and let s ∈ g−1hV (U) be a section. We
may think of s as a map of sheaves s : hU → g−1hV . By Modules on Sites, Lemma
18.22.3 we obtain a commutative diagram of morphisms of ringed topoi

(Sh(Xétale/U),OU )
(j,j])

//

(gs,g
]
s)

��

(Sh(Xétale),OX)

(g,g])

��
(Sh(Vétale),OV ) // (Sh(Yétale),OY ).

By Étale Cohomology, Theorem 44.41.5 we obtain a unique morphism of schemes
fs : U → V such that (gs, g

]
s) is 2-isomorphic to (fs,small, f

]
s). The construction

(U, V, s) fs just explained satisfies the following functoriality property: Suppose
given morphisms a : U ′ → U in Xétale and b : V ′ → V in Yétale and a map
s′ : hU ′ → g−1hV ′ such that the diagram

hU ′

a

��

s′
// g−1hV ′

g−1b

��
hU

s // g−1hV

commutes. Then the diagram

U ′
fs′
//

a

��

u(V ′)

u(b)

��
U

fs // u(V )

of schemes commutes. The reason this is true is that the same condition holds for
the morphisms (gs, g

]
s) constructed in Modules on Sites, Lemma 18.22.3 and the

uniqueness in Étale Cohomology, Theorem 44.41.5.

The problem is to glue the morphisms fs to a morphism of algebraic spaces. To
do this first choose a scheme V and a surjective étale morphism V → Y . This
means that hV → ∗ is surjective and hence g−1hV → ∗ is surjective too. This
means there exists a scheme U and a surjective étale morphism U → X and a
morphism s : hU → g−1hV . Next, set R = V ×Y V and R′ = U ×X U . Then
we get g−1hR = g−1hV × g−1hV as g−1 is exact. Thus s induces a morphism

http://stacks.math.columbia.edu/tag/04KL
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s × s : hR′ → g−1hR. Applying the constructions above we see that we get a
commutative diagram of morphisms of schemes

R′

����

fs×s

// R

����
U

fs // V

Since we have X = U/R′ and Y = V/R (see Spaces, Lemma 47.9.1) we conclude
that this diagram defines a morphism of algebraic spaces f : X → Y fitting into
an obvious commutative diagram. Now we still have to show that (fsmall, f

]) is
2-isomorphic to (g, g]). Let tV : f−1

s,small → g−1
s and tR : f−1

s×s,small → g−1
s×s be the

2-isomorphisms which are given to us by the construction above. Let G be a sheaf
on Yétale. Then we see that tV defines an isomorphism

f−1
smallG|Uétale = f−1

s,smallG|Vétale
tV−→ g−1

s G|Vétale = g−1G|Uétale .

Moreover, this isomorphism pulled back to R′ via either projection R′ → U is the
isomorphism

f−1
smallG|R′étale = f−1

s×s,smallG|Rétale
tR−→ g−1

s×sG|Rétale = g−1G|R′étale .

Since {U → X} is a covering in the site Xspaces,étale this means the first displayed

isomorphism descends to an isomorphism t : f−1
smallG → g−1G of sheaves (small

detail omitted). The isomorphism is functorial in G since tV and tR are transfor-
mations of functors. Finally, t is compatible with f ] and g] as tV and tR are (some
details omitted). This finishes the proof of the theorem. �

Lemma 48.26.5. Let X, Y be algebraic spaces over Z. If

(g, g]) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

is an isomorphism of ringed topoi, then there exists a unique morphism f : X → Y
of algebraic spaces such that (g, g]) is isomorphic to (fsmall, f

]) and moreover f is
an isomorphism of algebraic spaces.

Proof. By Theorem 48.26.4 it suffices to show that (g, g]) is a morphism of locally
ringed topoi. By Modules on Sites, Lemma 18.39.7 (and since the site Xétale has
enough points) it suffices to check that the map OY,q → OX,p induced by g] is a
local ring map where q = f ◦p and p is any point of Xétale. As it is an isomorphism
this is clear. �

48.27. Quasi-coherent sheaves on algebraic spaces

In Descent, Section 34.7 we have seen that for a scheme U , there is no difference
between a quasi-coherent OU -module on U , or a quasi-coherent O-module on the
small étale site of U . Hence the following definition is compatible with our original
notion of a quasi-coherent sheaf on a scheme (Schemes, Section 25.24), when applied
to a representable algebraic space.

Definition 48.27.1. Let S be a scheme. Let X be an algebraic space over
S. A quasi-coherent OX -module is a quasi-coherent module on the ringed site
(Xétale,OX) in the sense of Modules on Sites, Definition 18.23.1. The category of
quasi-coherent sheaves on X is denoted QCoh(OX).
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Note that as being quasi-coherent is an intrinsic notion (see Modules on Sites,
Lemma 18.23.2) this is equivalent to saying that the corresponding OX -module on
Xspaces,étale is quasi-coherent.

As usual, quasi-coherent sheaves behave well with respect to pullback.

Lemma 48.27.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The pullback functor f∗ : Mod(OY ) → Mod(OX) preserves quasi-
coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 18.23.4. �

Note that this pullback functor agrees with the usual pullback functor between
quasi-coherent sheaves of modules if X and Y happen to be schemes, see De-
scent, Proposition 34.7.14. Here is the obligatory lemma comparing this with
quasi-coherent sheaves on the objects of the small étale site of X.

Lemma 48.27.3. Let S be a scheme. Let X be an algebraic space over S. A
quasi-coherent OX-module F is given by the following data:

(1) for every U ∈ Ob(Xétale) a quasi-coherent OU -module FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗smallFU → FU ′ .

These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition g−1
smallcf ◦ cg is equal to cf◦g.

Proof. Combine Lemmas 48.27.2 and 48.24.3. �

Lemma 48.27.4. Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX-module. Let x ∈ |X| be a point and let x be a geometric
point lying over x. Finally, let ϕ : (U, u)→ (X,x) be an étale neighbourhood where
U is a scheme. Then

(ϕ∗F)u ⊗OU,u OX,x = Fx
where u ∈ U is the image of u.

Proof. Note that OX,x = OshU,u by Lemma 48.19.1 hence the tensor product makes
sense. Moreover, from Definition 48.16.6 it is clear that

Fu = colim(ϕ∗F)u

where the colimit is over ϕ : (U, u) → (X,x) as in the lemma. Hence there is a
canonical map from left to right in the statement of the lemma. We have a similar
colimit description for OX,x and by Lemma 48.27.3 we have

((ϕ′)∗F)u′ = (ϕ∗F)u ⊗OU,u OU ′,u′

whenever (U ′, u′) → (U, u) is a morphism of étale neighbourhoods. To complete
the proof we use that ⊗ commutes with colimits. �

Lemma 48.27.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. Let x be a geometric point of
X and let y = f ◦ x be the image in Y . Then there is a canonical isomorphism

(f∗G)x = Gy ⊗OY,y OX,x
of the stalk of the pullback with the tensor product of the stalk with the local ring of
X at x.
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Proof. Since f∗G = f−1
smallG ⊗f−1

smallOY
OX this follows from the description of

stalks of pullbacks in Lemma 48.16.9 and the fact that taking stalks commutes with
tensor products. A more direct way to see this is as follows. Choose a commutative
diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective étale. By Lemma 48.16.4
we can choose a geometric point u of U such that x = p ◦ u. Set v = α ◦ u. Then
we see that

(f∗G)x = (p∗f∗G)u ⊗OU,u OX,x
= (α∗q∗G)u ⊗OU,u OX,x
= (q∗G)v ⊗OV,v OU,u ⊗OU,u OX,x
= (q∗G)v ⊗OV,v OX,x
= (q∗G)v ⊗OV,v OY,y ⊗OY,y OX,x
= Gy ⊗OY,y OX,x

Here we have used Lemma 48.27.4 (twice) and the corresponding result for pullbacks
of quasi-coherent sheaves on schemes, see Sheaves, Lemma 6.26.4. �

Lemma 48.27.6. Let S be a scheme. Let X be an algebraic space over S. Let F
be a sheaf of OX-modules. The following are equivalent

(1) F is a quasi-coherent OX-module,
(2) there exists an étale morphism f : Y → X of algebraic spaces over S with
|f | : |Y | → |X| surjective such that f∗F is quasi-coherent on Y ,

(3) there exists a scheme U and a surjective étale morphism ϕ : U → X such
that ϕ∗F is a quasi-coherent OU -module, and

(4) for every affine scheme U and étale morphism ϕ : U → X the restriction
ϕ∗F is a quasi-coherent OU -module.

Proof. It is clear that (1) implies (2) by considering idX . Assume f : Y → X is
as in (2), and let V → Y be a surjective étale morphism from a scheme towards Y .
Then the composition V → X is surjective étale as well and by Lemma 48.27.2 the
pullback of F to V is quasi-coherent as well. Hence we see that (2) implies (3).

Let U → X be as in (3). Let us use the abuse of notation introduced in Equation
(48.24.1.1). As F|Uétale is quasi-coherent there exists an étale covering {Ui → U}
such that F|Ui,étale has a global presentation, see Modules on Sites, Definition
18.17.1 and Lemma 18.23.3. Let V → X be an object of Xétale. Since U → X
is surjective and étale, the family of maps {Ui ×X V → V } is an étale covering
of V . Via the morphisms Ui ×X V → Ui we can restrict the global presentations
of F|Ui,étale to get a global presentation of F|(Ui×XV )étale Hence the sheaf F on
Xétale satisfies the condition of Modules on Sites, Definition 18.23.1 and hence is
quasi-coherent.

The equivalence of (3) and (4) comes from the fact that any scheme has an affine
open covering. �
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Lemma 48.27.7. Let S be a scheme. Let X be an algebraic space over S. The
category QCoh(OX) of quasi-coherent sheaves on X has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(4) Given a short exact sequence of OX-modules 0 → F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(5) Given two quasi-coherent OX-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherent OX-modules F , G such that F is of finite presen-

tation (see Section 48.28), then the internal hom HomOX (F ,G) is quasi-
coherent.

Proof. Note that we have the corresponding result for quasi-coherent modules on
schemes, see Schemes, Section 25.24. We will reduce the lemma to this case by
étale localization. Choose a scheme U and a surjective étale morphism ϕ : U → X.
In order to formulate this proof correctly, we temporarily go back to making the
(pedantic) distinction between a quasi-coherent sheaf G on the scheme U and the
associated quasi-coherent sheaf Ga (see Descent, Definition 34.7.2) on Uétale We
have a commutative diagram

QCoh(OX) //

��

QCoh(OU )

��
Mod(OX) // Mod(OU )

The bottom horizontal arrow is the restriction functor (48.24.1.1) G 7→ G|Uétale .
This functor has both a left adjoint and a right adjoint, see Modules on Sites,
Section 18.19, hence commutes with all limits and colimits. Moreover, we know
that an object of Mod(OX) is in QCoh(OX) if and only if its restriction to U
is in QCoh(OU ), see Lemma 48.27.6. Let Fi be a family of quasi-coherent OX -
modules. Then

⊕
Fi is an OX -module whose restriction to U is the direct sum

of the restrictions. Let Gi be a quasi-coherent sheaf on U with Fi|Uétale = Gai .
Combining the above with Descent, Lemma 34.7.13 we see that(⊕

Fi
)
|Uétale =

⊕
Fi|Uétale =

⊕
Gai =

(⊕
Gi
)a

hence
⊕
Fi is quasi-coherent and (1) follows. The other statements are proved just

so (using the same references). �

It is in general not the case that the pushforward of a quasi-coherent sheaf along
a morphism of algebraic spaces is quasi-coherent. We will return to this issue in
Morphisms of Spaces, Section 49.11.

48.28. Properties of modules

In Modules on Sites, Sections 18.17, 18.23, and Definition 18.28.1 we have defined
a number of intrinsic properties of modules of O-module on any ringed topos. If X
is an algebraic space, we will apply these notions freely to modules on the ringed
site (Xétale,OX), or equivalently on the ringed site (Xspaces,étale,OX).

Global properties P:
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(a) free,
(b) finite free,
(c) generated by global sections,
(d) generated by finitely many global sections,
(e) having a global presentation, and
(f) having a global finite presentation.

Local properties P:

(g) locally free,
(f) finite locally free,
(h) locally generated by sections,
(i) locally generated by r sections,
(j) finite type,
(k) quasi-coherent (see Section 48.27),
(l) of finite presentation,

(m) coherent, and
(n) flat.

Here are some results which follow immediately from the definitions:

(1) In each case, except for P =“coherent”, the property is preserved under
pullback, see Modules on Sites, Lemmas 18.17.2, 18.23.4, and 18.38.3.

(2) Each of the properties above (including coherent) are preserved under
pullbacks by étale morphisms of algebraic spaces (because in this case
pullback is given by restriction, see Lemma 48.15.10).

(3) Assume f : Y → X is a surjective étale morphism of algebraic spaces. For
each of the local properties (g) – (m), the fact that f∗F has P implies
that F has P. This follows as {Y → X} is a covering in Xspaces,étale and
Modules on Sites, Lemma 18.23.3.

(4) If X is a scheme, F is a quasi-coherent module on Xétale, and P any
property except “coherent” or “locally free”, then P for F on Xétale is
equivalent to the corresponding property for F|XZar , i.e., it corresponds
to P for F when we think of it as a quasi-coherent sheaf on the scheme
X. See Descent, Lemma 34.7.12.

(5) If X is a locally Noetherian scheme, F is a quasi-coherent module on
Xétale, then F is coherent on Xétale if and only if F|XZar is coherent, i.e.,
it corresponds to the usual notion of a coherent sheaf on the scheme X
being coherent. See Descent, Lemma 34.7.12.

48.29. Locally projective modules

Recall that in Properties, Section 27.19 we defined the notion of a locally projective
quasi-coherent module.

Lemma 48.29.1. Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX-module. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the restriction
F|U is locally projective on U , and

(2) for any scheme U and any étale morphism U → X the restriction F|U is
locally projective on U .

Proof. Let U → X be as in (1) and let V → X be étale where V is a scheme. Then
{U ×X V → V } is an fppf covering of schemes. Hence if F|U is locally projective,
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then F|U×XV is locally projective (see Properties, Lemma 27.19.3) and hence F|V
is locally projective, see Descent, Lemma 34.6.7. �

Definition 48.29.2. Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. We say F is locally projective if the equivalent
conditions of Lemma 48.29.1 are satisfied.

Lemma 48.29.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. If G is locally projective on
Y , then f∗G is locally projective on X.

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Denote ψ : U → V the
induced morphism. Then

f∗G|U = ψ∗(G|V )

Hence the lemma follows from the definition and the result in the case of schemes,
see Properties, Lemma 27.19.3. �

48.30. Quasi-coherent sheaves and presentations

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism ϕ : U → X, see
Spaces, Definition 47.9.3. In particular, we obtain a groupoid (U,R, s, t, c), such
that j = (t, s) : R → U ×S U , see Groupoids, Lemma 38.11.3. In Groupoids,
Definition 38.12.1 we have the defined the notion of a quasi-coherent sheaf on an
arbitrary groupoid. With these notions in place we have the following observation.

Proposition 48.30.1. With S, ϕ : U → X, and (U,R, s, t, c) as above. For
any quasi-coherent OX-module F the sheaf ϕ∗F comes equipped with a canonical
isomorphism

α : t∗ϕ∗F −→ s∗ϕ∗F
which satisfies the conditions of Groupoids, Definition 38.12.1 and therefore defines
a quasi-coherent sheaf on (U,R, s, t, c). The functor F 7→ (ϕ∗F , α) defines an
equivalence of categories

Quasi-coherent
OX-modules

←→ Quasi-coherent modules
on (U,R, s, t, c)

Proof. In the statement of the proposition, and in this proof we think of a quasi-
coherent sheaf on a scheme as a quasi-coherent sheaf on the small étale site of that
scheme. This is permissible by the results of Descent, Section 34.7.

The existence of α comes from the fact that ϕ ◦ t = ϕ ◦ s and that pullback
is functorial in the morphism, see discussion surrounding Equation (48.24.0.1). In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
α satisfies condition (1) of Groupoids, Definition 38.12.1. To see condition (2) of the
definition it suffices to see that α is an isomorphism which is clear. The construction
F 7→ (ϕ∗F , α) is clearly functorial in the quasi-coherent sheaf F . Hence we obtain
the functor from left to right in the displayed formula of the lemma.

Conversely, suppose that (F , α) is a quasi-coherent sheaf on (U,R, s, t, c). Let
V → X be an object of Xétale. In this case the morphism V ′ = U ×X V → V is a
surjective étale morphism of schemes, and hence {V ′ → V } is an étale covering of
V . Moreover, the quasi-coherent sheaf F pulls back to a quasi-coherent sheaf F ′ on
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V ′. Since R = U ×X U with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V
with projection maps V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence
α pulls back to an isomorphism α′ : pr∗0F ′ → pr∗1F ′, and the pair (F ′, α′) is a
descend datum for quasi-coherent sheaves with respect to {V ′ → V }. By Descent,
Proposition 34.5.2 this descent datum is effective, and we obtain a quasi-coherent
OV -module FV on Vétale. To see that this gives a quasi-coherent sheaf on Xétale

we have to show (by Lemma 48.27.3) that for any morphism f : V1 → V2 in Xétale

there is a canonical isomorphism cf : FV1 → FV2 compatible with compositions
of morphisms. We omit the verification. We also omit the verification that this
defines a functor from the category on the right to the category on the left which
is inverse to the functor described above. �

Proposition 48.30.2. Let S be a scheme Let X be an algebraic space over S.

(1) The category QCoh(OX) is a Grothendieck abelian category. Consequently,
QCoh(OX) has enough injectives and all limits.

(2) The inclusion functor QCoh(OX)→ Mod(OX) has a right adjoint8

Q : Mod(OX) −→ QCoh(OX)

such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties,
Proposition 27.21.4. We advise the reader to read that proof first.

Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are exact, and
(c) has a generator, see Injectives, Section 19.10. By Lemma 48.27.7 colimits in
QCoh(OX) exist and agree with colimits in Mod(OX). By Modules on Sites, Lemma
18.14.2 filtered colimits are exact. Hence (a) and (b) hold.

To construct a generator, choose a presentation X = U/R so that (U,R, s, t, c) is an
étale groupoid scheme and in particular s and t are flat morphisms of schemes. Pick
a cardinal κ as in Groupoids, Lemma 38.13.6. Pick a collection (Et, αt)t∈T of κ-
generated quasi-coherent modules on (U,R, s, t, c) as in Groupoids, Lemma 38.13.5.
Let Ft be the quasi-coherent module on X which corresponds to the quasi-coherent
module (Et, αt) via the equivalence of categories of Proposition 48.30.1. Then we
see that every quasi-coherent module H is the directed colimit of its quasi-coherent
submodules which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 19.11.6 and
Lemma 19.13.2.

Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)

This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 19.13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial
isomorphism HomX(G,F) = HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda
lemma (Categories, Lemma 4.3.5) the construction F  Q(F) is functorial in
F . By construction Q is a right adjoint to the inclusion functor. The fact that

8This functor is sometimes called the coherator.
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Q(F)→ F is an isomorphism when F is quasi-coherent is a formal consequence of
the fact that the inclusion functor QCoh(OX)→ Mod(OX) is fully faithful. �

48.31. Morphisms towards schemes

Here is the analogue of Schemes, Lemma 25.6.4.

Lemma 48.31.1. Let X be an algebraic space over Z. Let T be an affine scheme.
The map

Mor(X,T ) −→ Hom(Γ(T,OT ),Γ(X,OX))

which maps f to f ] (on global sections) is bijective.

Proof. We construct the inverse of the map. Let ϕ : Γ(T,OT ) → Γ(X,OX) be
a ring map. Choose a presentation X = U/R, see Spaces, Definition 47.9.3. By
Schemes, Lemma 25.6.4 the composition

Γ(T,OT )→ Γ(X,OX)→ Γ(U,OU )

corresponds to a unique morphism of schemes g : U → T . By the same lemma the
two compositions R → U → T are equal. Hence we obtain a morphism f : X =
U/R→ T such that U → X → T equals g. By construction the diagram

Γ(U,OU ) Γ(X,OX)
f]
oo

Γ(T,OT )

g]

ff
ϕ

OO

commutes. Hence f ] equals ϕ because U → X is an étale covering and OX is a
sheaf on Xétale. The uniqueness of f follows from the uniqueness of g. �

48.32. Quotients by free actions

Let S be a scheme. Let X be an algebraic space over S. Let G be an abstract
group. Let a : G → Aut(X) be a homomorphism, i.e., a is an action of G on X.
We will say the action is free if for every scheme T over S the map

G×X(T ) −→ X(T )

is free. (We cannot use a criterion as in Spaces, Lemma 47.14.3 because points
may not have well defined residue fields.) In case the action is free we’re going to
construct the quotient X/G as an algebraic space. This is a special case of the
general Bootstrap, Lemma 62.11.7 that we will prove later.

Lemma 48.32.1. Let S be a scheme. Let X be an algebraic space over S. Let G
be an abstract group with a free action on X. Then the quotient sheaf X/G is an
algebraic space.

Proof. The statement means that the sheaf F associated to the presheaf

T 7−→ X(T )/G

is an algebraic space. To see this we will construct a presentation. Namely, choose
a scheme U and a surjective étale morphism ϕ : U → X. Set V =

∐
g∈G U and set

ψ : V → X equal to a(g) ◦ ϕ on the component corresponding to g ∈ G. Let G act
on V by permuting the components, i.e., g0 ∈ G maps the component corresponding
to g to the component corresponding to g0g via the identity morphism of U . Then
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ψ is a G-equivariant morphism, i.e., we reduce to the case dealt with in the next
paragraph.

Assume that there exists a G-action on U and that U → X is surjective, étale
and G-equivariant. In this case there is an induced action of G on R = U ×X U
compatible with the projection mappings t, s : R→ U . Now we claim that

X/G = U/
∐

g∈G
R

where the map

j :
∐

g∈G
R −→ U ×S U

is given by (r, g) 7→ (t(r), g(s(r))). Note that j is a monomorphism: If (t(r), g(s(r))) =
(t(r′), g′(s(r′))), then t(r) = t(r′), hence r and r′ have the same image in X under
both s and t, hence g = g′ (as G acts freely on X), hence s(r) = s(r′), hence r = r′

(as R is an equivalence relation on U). Moreover j is an equivalence relation (de-
tails omitted). Both projections

∐
g∈GR→ U are étale, as s and t are étale. Thus

j is an étale equivalence relation and U/
∐
g∈GR is an algebraic space by Spaces,

Theorem 47.10.5. There is a map

U/
∐

g∈G
R −→ X/G

induced by the map U → X. We omit the proof that it is an isomorphism of
sheaves. �
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CHAPTER 49

Morphisms of Algebraic Spaces

49.1. Introduction

In this chapter we introduce some types of morphisms of algebraic spaces. A refer-
ence is [Knu71].

The goal is to extend the definition of each of the types of morphisms of schemes
defined in the chapters on schemes, and on morphisms of schemes to the category
of algebraic spaces. Each case is slightly different and it seems best to treat them
all separately.

49.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

49.3. Properties of representable morphisms

Let S be a scheme. Let f : X → Y be a representable morphism of algebraic
spaces. In Spaces, Section 47.5 we defined what it means for f to have property P
in case P is a property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 25.18.3, and
(2) is fppf local on the base, see Descent, Definition 34.18.1.

Namely, in this case we say f has property P if and only if for every scheme U and
any morphism U → Y the morphism of schemes X ×Y U → U has property P.

According to the lists in Spaces, Section 47.4 this applies to the following prop-
erties: (1)(a) closed immersions, (1)(b) open immersions, (1)(c) quasi-compact
immersions, (2) quasi-compact, (3) universally-closed, (4) (quasi-)separated, (5)
monomorphism, (6) surjective, (7) universally injective, (8) affine, (9) quasi-affine,
(10) (locally) of finite type, (11) (locally) quasi-finite, (12) (locally) of finite presen-
tation, (13) locally of finite type of relative dimension d, (14) universally open, (15)
flat, (16) syntomic, (17) smooth, (18) unramified (resp. G-unramified), (19) étale,
(20) proper, (21) finite or integral, (22) finite locally free, and (23) immersion.

In this chapter we will redefine these notions for not necessarily representable mor-
phisms of algebraic spaces. Whenever we do this we will make sure that the new
definition agrees with the old one, in order to avoid ambiguity.

3179



3180 49. MORPHISMS OF ALGEBRAIC SPACES

Note that the definition above applies whenever X is a scheme, since a morphism
from a scheme to an algebraic space is representable. And in particular it applies
when both X and Y are schemes. In Spaces, Lemma 47.5.3 we have seen that in
this case the definitions match, and no ambiguity arise.

Furthermore, in Spaces, Lemma 47.5.5 we have seen that the property of repre-
sentable morphisms of algebraic spaces so defined is stable under arbitrary base
change by a morphism of algebraic spaces. And finally, in Spaces, Lemmas 47.5.4
and 47.5.7 we have seen that if P is stable under compositions, which holds for the
properties (1)(a), (1)(b), (1)(c), (2) – (23), except (13) above, then taking products
of representable morphisms preserves property P and compositions of representable
morphisms preserves property P.

We will use these facts below, and whenever we do we will simply refer to this
section as a reference.

49.4. Separation axioms

It makes sense to list some a priori properties of the diagonal of a morphism of
algebraic spaces.

Lemma 49.4.1. Let S be a scheme contained in Schfppf . Let f : X → Y be a
morphism of algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal
morphism. Then

(1) ∆X/Y is representable,
(2) ∆X/Y is locally of finite type,
(3) ∆X/Y is a monomorphism,
(4) ∆X/Y is separated, and
(5) ∆X/Y is locally quasi-finite.

Proof. We are going to use the fact that ∆X/S is representable (by definition of
an algebraic space) and that it satisfies properties (2) – (5), see Spaces, Lemma
47.13.1. Note that we have a factorization

X −→ X ×Y X −→ X ×S X

of the diagonal ∆X/S : X → X×SX. Since X×Y X → X×SX is a monomorphism,
and since ∆X/S is representable, it follows formally that ∆X/Y is representable. In
particular, the rest of the statements now make sense, see Section 49.3.

Choose a surjective étale morphism U → X, with U a scheme. Consider the
diagram

R = U ×X U //

��

U ×Y U

��

// U ×S U

��
X // X ×Y X // X ×S X

Both squares are cartesian, hence so is the outer rectangle. The top row consists of
schemes, and the vertical arrows are surjective étale morphisms. By Spaces, Lemma
47.11.2 the properties (2) – (5) for ∆X/Y are equivalent to those of R→ U×Y U . In
the proof of Spaces, Lemma 47.13.1 we have seen that R→ U ×S U has properties
(2) – (5). The morphism U ×Y U → U ×S U is a monomorphism of schemes. These
facts imply that R→ U ×Y U have properties (2) – (5).
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Namely: For (3), note that R → U ×Y U is a monomorphism as the composition
R→ U×SU is a monomorphism. For (2), note that R→ U×Y U is locally of finite
type, as the composition R→ U ×S U is locally of finite type (Morphisms, Lemma
28.16.8). A monomorphism which is locally of finite type is locally quasi-finite be-
cause it has finite fibres (Morphisms, Lemma 28.21.7), hence (5). A monomorphism
is separated (Schemes, Lemma 25.23.3), hence (4). �

Definition 49.4.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.

(2) We say f is locally separated1 if ∆X/Y is an immersion.
(3) We say f is quasi-separated if ∆X/Y is quasi-compact.

This definition makes sense since ∆X/Y is representable, and hence we know what
it means for it to have one of the properties described in the definition. We will see
below (Lemma 49.4.13) that this definition matches the ones we already have for
morphisms of schemes and representable morphisms.

Lemma 49.4.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated, then f is locally separated and f is quasi-separated.

Proof. This is true, via the general principle Spaces, Lemma 47.5.8, because a
closed immersion of schemes is an immersion and is quasi-compact. �

Lemma 49.4.4. All of the separation axioms listed in Definition 49.4.2 are stable
under base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic spaces. Let
f ′ : X ′ → Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change
of ∆X/Y by the morphism X ′ ×Y ′ X ′ → X ×Y X. By the results of Section 49.3
each of the properties of the diagonal used in Definition 49.4.2 is stable under base
change. Hence the lemma is true. �

Lemma 49.4.5. Let S be a scheme. Let f : X → Z, g : Y → Z and Z → T be
morphisms of algebraic spaces over S. Consider the induced morphism i : X×ZY →
X ×T Y . Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and
a monomorphism,

(2) if Z → T is locally separated, then i is an immersion,
(3) if Z → T is separated, then i is a closed immersion, and
(4) if Z → T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z
is a fibre product diagram. Hence i is the base change of the diagonal morphism
∆Z/T . Thus the lemma follows from Lemma 49.4.1, and the material in Section
49.3. �

1In the literature this term often refers to quasi-separated and locally separated morphisms.
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Lemma 49.4.6. Let S be a scheme. Let T be an algebraic space over S. Let
g : X → Y be a morphism of algebraic spaces over T . Consider the graph i : X →
X ×T Y of g. Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and
a monomorphism,

(2) if Y → T is locally separated, then i is an immersion,
(3) if Y → T is separated, then i is a closed immersion, and
(4) if Y → T is quasi-separated, then i is quasi-compact.

Proof. This is a special case of Lemma 49.4.5 applied to the morphism X =
X ×Y Y → X ×T Y . �

Lemma 49.4.7. Let S be a scheme. Let f : X → T be a morphism of algebraic
spaces over S. Let s : T → X be a section of f (in a formula f ◦ s = idT ). Then

(1) s is representable, locally of finite type, locally quasi-finite, separated and
a monomorphism,

(2) if f is locally separated, then s is an immersion,
(3) if f is separated, then s is a closed immersion, and
(4) if f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 49.4.6 applied to g = s so the morphism
i = s : T → T ×T X. �

Lemma 49.4.8. All of the separation axioms listed in Definition 49.4.2 are stable
under composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic spaces to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.

Our separation axiom is defined by requiring the diagonal to have some property
P. By Lemma 49.4.5 above we see that the second arrow also has this property.
Hence the lemma follows since the composition of (representable) morphisms with
property P also is a morphism with property P, see Section 49.3. �

Lemma 49.4.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If Y is separated and f is separated, then X is separated.
(2) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.
(3) If Y is locally separated and f is locally separated, then X is locally sepa-

rated.
(4) If Y is separated over S and f is separated, then X is separated over S.
(5) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-

separated over S.
(6) If Y is locally separated over S and f is locally separated, then X is locally

separated over S.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 49.4.8 and Spaces,
Definition 47.13.2. Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by
thinking of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces,
Definition 48.3.1. �
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Lemma 49.4.10. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S.

(1) If g ◦ f is separated then so is f .
(2) If g ◦ f is locally separated then so is f .
(3) If g ◦ f is quasi-separated then so is f .

Proof. Consider the factorization

X → X ×Y X → X ×Z X
of the diagonal morphism of g◦f . In any case the last morphism is a monomorphism.
Hence for any scheme T and morphism T → X ×Y X we have the equality

X ×(X×YX) T = X ×(X×ZX) T.

Hence the result is clear. �

Lemma 49.4.11. Let S be a scheme. Let X be an algebraic space over S.

(1) If X is separated then X is separated over S.
(2) If X is locally separated then X is locally separated over S.
(3) If X is quasi-separated then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic spaces over S.

(4) If X is separated over S then f is separated.
(5) If X is locally separated over S then f is locally separated.
(6) If X is quasi-separated over S then f is quasi-separated.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 49.4.10 and Spaces,
Definition 47.13.2. Parts (1), (2), and (3) follow from parts (4), (5), and (6) by
thinking of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces,
Definition 48.3.1. �

Lemma 49.4.12. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P be any of the separation axioms of Definition 49.4.2. The
following are equivalent

(1) f is P,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is P,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(4) for every affine scheme Z and every morphism Z → Y the algebraic space

Z ×Y X is P (see Properties of Spaces, Definition 48.3.1),
(5) there exists a scheme V and a surjective étale morphism V → Y such that

the base change V ×Y X → V has P, and
(6) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi has P.

Proof. We will repeatedly use Lemma 49.4.4 without further mention. In partic-
ular, it is clear that (1) implies (2) and (2) implies (3).

Let us prove that (3) and (4) are equivalent. Note that if Z is an affine scheme,
then the morphism Z → Spec(Z) is a separated morphism as a morphism of al-
gebraic spaces over Spec(Z). If Z ×Y X → Z is P, then Z ×Y X → Spec(Z) is
P as a composition (see Lemma 49.4.8). Hence the algebraic space Z ×Y X is P.
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Conversely, if the algebraic space Z ×Y X is P, then Z ×Y X → Spec(Z) is P, and
hence by Lemma 49.4.10 we see that Z ×Y X → Z is P.

Let us prove that (3) implies (5). Assume (3). Let V be a scheme and let V → Y
be étale surjective. We have to show that V ×Y X → V has property P. In other
words, we have to show that the morphism

V ×Y X −→ (V ×Y X)×V (V ×Y X) = V ×Y X ×Y X

has the corresponding property (i.e., is a closed immersion, immersion, or quasi-
compact). Let V =

⋃
Vj be an affine open covering of V . By assumption we know

that each of the morphisms

Vj ×Y X −→ Vj ×Y X ×Y X

does have the corresponding property. Since being a closed immersion, immersion,
quasi-compact immersion, or quasi-compact is Zariski local on the target, and since
the Vj cover V we get the desired conclusion.

Let us prove that (5) implies (1). Let V → Y be as in (5). Then we have the fibre
product diagram

V ×Y X //

��

X

��
V ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is a closed immersion, immersion, quasi-
compact immersion, or quasi-compact. It follows from Spaces, Lemma 47.5.6 that
also the right vertical arrow is a closed immersion, immersion, quasi-compact im-
mersion, or quasi-compact.

It is clear that (1) implies (6) by taking the covering Y = Y . Assume Y =
⋃
Yi is

as in (6). Choose schemes Vi and surjective étale morphisms Vi → Yi. Note that
the morphisms Vi ×Y X → Vi have P as they are base changes of the morphisms
f−1(Yi) → Yi. Set V =

∐
Vi. Then V → Y is a morphism as in (5) (details

omitted). Hence (6) implies (5) and we are done. �

Lemma 49.4.13. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S.

(1) The morphism f is locally separated.
(2) The morphism f is (quasi-)separated in the sense of Definition 49.4.2

above if and only if f is (quasi-)separated in the sense of Section 49.3.

In particular, if f : X → Y is a morphism of schemes over S, then f is (quasi-
)separated in the sense of Definition 49.4.2 if and only if f is (quasi-)separated as
a morphism of schemes.

Proof. This is the equivalence of (1) and (2) of Lemma 49.4.12 combined with
the fact that any morphism of schemes is locally separated, see Schemes, Lemma
25.21.2. �
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49.5. Surjective morphisms

We have already defined in Section 49.3 what it means for a representable morphism
of algebraic spaces to be surjective.

Lemma 49.5.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is surjective if and only if |f | : |X| → |Y | is
surjective.

Proof. Namely, if f : X → Y is representable, then it is surjective if and only if for
every scheme T and every morphism T → Y the base change fT : T ×Y X → T of f
is a surjective morphism of schemes, in other words, if and only if |fT | is surjective.
By Properties of Spaces, Lemma 48.4.3 the map |T ×Y X| → |T | ×|Y | |X| is always
surjective. Hence |fT | : |T ×Y X| → |T | is surjective if |f | : |X| → |Y | is surjective.
Conversely, if |fT | is surjective for every T → Y as above, then by taking T to be
the spectrum of a field we conclude that |X| → |Y | is surjective. �

This clears the way for the following definition.

Definition 49.5.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is surjective if the map |f | : |X| → |Y | of associated
topological spaces is surjective.

Lemma 49.5.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is surjective,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is surjective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is surjective,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a surjective morphism,
(5) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is surjective,
(6) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are surjective étale such
that the top horizontal arrow is surjective, and

(7) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is surjective.

Proof. Omitted. �

Lemma 49.5.4. The composition of surjective morphisms is surjective.

Proof. This is immediate from the definition. �

Lemma 49.5.5. The base change of a surjective morphism is surjective.

Proof. Follows immediately from Properties of Spaces, Lemma 48.4.3. �
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49.6. Open morphisms

For a representable morphism of algebraic spaces we have already defined (in Section
49.3) what it means to be universally open. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 49.6.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally open, and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjec-
tive étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V
is universally open. By Properties of Spaces, Section 48.4 in the commutative dia-
gram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is open it follows that the right vertical
arrow is open. This proves (2). The implication (2) ⇒ (1) is immediate from the
definitions. �

Thus we may use the following natural definition.

Definition 49.6.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is open if the map of topological spaces |f | : |X| → |Y | is open.
(2) We say f is universally open if for every morphism of algebraic spaces

Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|
is open, i.e., the base change Z ×Y X → Z is open.

Note that an étale morphism of algebraic spaces is universally open, see Properties
of Spaces, Definition 48.13.2 and Lemmas 48.13.7 and 48.13.5.

Lemma 49.6.3. The base change of a universally open morphism of algebraic
spaces by any morphism of algebraic spaces is universally open.

Proof. This is immediate from the definition. �

Lemma 49.6.4. The composition of a pair of (universally) open morphisms of
algebraic spaces is (universally) open.

Proof. Omitted. �

Lemma 49.6.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent
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(1) f is universally open,
(2) for every scheme Z and every morphism Z → Y the projection |Z×YX| →
|Z| is open,

(3) for every affine scheme Z and every morphism Z → Y the projection
|Z ×Y X| → |Z| is open, and

(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is a universally open morphism of algebraic spaces, and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally open.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V → Y . We are going to show
that V ×Y X → V is a universally open morphism of algebraic spaces. Let Z → V
be a morphism from an algebraic space to V . Let W → Z be a surjective étale
morphism where W =

∐
Wi is a disjoint union of affine schemes, see Properties of

Spaces, Lemma 48.6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is open. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma 48.13.7). By assumption (3),
and the fact that Wi is affine we see that the left vertical arrows are open. Hence
it follows that the right vertical arrow is open.

Assume V → Y is as in (4). We will show that f is universally open. Let Z → Y
be a morphism of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is open by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma 48.13.7). It follows that the right vertical arrow is
open.

Of course (1) implies (5) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such

that the base change of f to Zi is open. By a simple topological argument this
implies that Z ×Y X → Z is open. Hence (1) holds. �

Lemma 49.6.6. Let S be a scheme. Let p : X → Spec(k) be a morphism of
algebraic spaces over S where k is a field. Then p : X → Spec(k) is universally
open.

Proof. Choose a scheme U and a surjective étale morphism U → X. The com-
position U → Spec(k) is universally open (as a morphism of schemes) by Mor-
phisms, Lemma 28.24.4. Let Z → Spec(k) be a morphism of schemes. Then
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U ×Spec(k) Z → X ×Spec(k) Z is surjective, see Lemma 49.5.5. Hence the first of the
maps

|U ×Spec(k) Z| → |X ×Spec(k) Z| → |Z|
is surjective. Since the composition is open by the above we conclude that the
second map is open as well. Whence p is universally open by Lemma 49.6.5. �

49.7. Submersive morphisms

Definition 49.7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is submersive2 if the continuous map |X| → |Y | is submersive,
see Topology, Definition 5.5.3.

(2) We say f is universally submersive if for every morphism of algebraic
spaces Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

49.8. Quasi-compact morphisms

By Section 49.3 we know what it means for a representable morphism of algebraic
spaces to be quasi-compact. In order to formulate the definition for a general
morphism of algebraic spaces we make the following observation.

Lemma 49.8.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent:

(1) f is quasi-compact, and
(2) for every quasi-compact algebraic space Z and any morphism Z → Y the

algebraic space Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic spaces with Z quasi-
compact. By Properties of Spaces, Definition 48.5.1 there exists a quasi-compact
scheme U and a surjective étale morphism U → Z. Since f is representable and
quasi-compact we see by definition that U ×Y X is a scheme, and that U ×Y X →
U is quasi-compact. Hence U ×Y X is a quasi-compact scheme. The morphism
U ×Y X → Z ×Y X is étale and surjective (as the base change of the representable
étale and surjective morphism U → Z, see Section 49.3). Hence by definition
Z ×Y X is quasi-compact.

Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to
show that p : Z ×Y X → Z is quasi-compact. Let U ⊂ Z be affine open. Then
p−1(U) = U ×Y Z and the scheme U ×Y Z is quasi-compact by assumption (2).
Hence p is quasi-compact, see Schemes, Section 25.19. �

This motivates the following definition.

Definition 49.8.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-compact if for every quasi-compact algebraic space
Z and morphism Z → Y the fibre product Z ×Y X is quasi-compact.

By Lemma 49.8.1 above this agrees with the already existing notion for repre-
sentable morphisms of algebraic spaces.

2This is very different from the notion of a submersion of differential manifolds.
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Lemma 49.8.3. The base change of a quasi-compact morphism of algebraic spaces
by any morphism of algebraic spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 49.8.4. The composition of a pair of quasi-compact morphisms of algebraic
spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 49.8.5. Let S be a scheme.

(1) If X → Y is a surjective morphism of algebraic spaces over S, and X is
quasi-compact then Y is quasi-compact.

(2) If

X
f

//

p
  

Y

q
��

Z

is a commutative diagram of morphisms of algebraic spaces over S and f
is surjective and p is quasi-compact, then q is quasi-compact.

Proof. Assume X is quasi-compact and X → Y is surjective. By Definition 49.5.2
the map |X| → |Y | is surjective, hence we see Y is quasi-compact by Properties of
Spaces, Lemma 48.5.2 and the topological fact that the image of a quasi-compact
space under a continuous map is quasi-compact, see Topology, Lemma 5.11.7. Let
f, p, q be as in (2). Let T → Z be a morphism whose source is a quasi-compact
algebraic space. By assumption T ×Z X is quasi-compact. By Lemma 49.5.5 the
morphism T ×Z X → T ×Z Y is surjective. Hence by part (1) we see T ×Z Y is
quasi-compact too. Thus q is quasi-compact. �

Lemma 49.8.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let g : Y ′ → Y be a universally open and surjective morphism of
algebraic spaces such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then f
is quasi-compact.

Proof. Let Z → Y be a morphism of algebraic spaces with Z quasi-compact.
As g is universally open and surjective, we see that Y ′ ×Y Z → Z is open and
surjective. As every point of |Y ′×Y Z| has a fundamental system of quasi-compact
open neighbourhoods (see Properties of Spaces, Lemma 48.5.5) we can find a quasi-
compact open W ⊂ |Y ′ ×Y Z| which surjects onto Z. Denote f ′′ : W ×Y X → W
the base change of f ′ by W → Y ′. By assumption W ×Y X is quasi-compact. As
W → Z is surjective we see that W ×Y X → Z ×Y X is surjective. Hence Z ×Y X
is quasi-compact by Lemma 49.8.5. Thus f is quasi-compact. �

Lemma 49.8.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is quasi-compact,
(2) for every scheme Z and any morphism Z → Y the morphism of algebraic

spaces Z ×Y X → Z is quasi-compact,
(3) for every affine scheme Z and any morphism Z → Y the algebraic space

Z ×Y X is quasi-compact,
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(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is a quasi-compact morphism of algebraic spaces, and

(5) there exists a surjective étale morphism Y ′ → Y of algebraic spaces such
that Y ′×Y X → Y ′ is a quasi-compact morphism of algebraic spaces, and

(6) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is quasi-compact.

Proof. We will use Lemma 49.8.3 without further mention. It is clear that (1)
implies (2) and that (2) implies (3). Assume (3). Let Z be a quasi-compact algebraic
space over S, and let Z → Y be a morphism. By Properties of Spaces, Lemma
48.6.3 there exists an affine scheme U and a surjective étale morphism U → Z.
Then U ×Y X → Z ×Y X is a surjective morphism of algebraic spaces, see Lemma
49.5.5. By assumption |U ×Y X| is quasi-compact. It surjects onto |Z×Y X|, hence
we conclude that |Z ×Y X| is quasi-compact, see Topology, Lemma 5.11.7. This
proves that (3) implies (1).

The implications (1) ⇒ (4), (4) ⇒ (5) are clear. The implication (5) ⇒ (1) follows
from Lemma 49.8.6 and the fact that an étale morphism of algebraic spaces is
universally open (see discussion following Definition 49.6.2).

Of course (1) implies (6) by taking the covering Y = Y . Assume Y =
⋃
Yi is as

in (6). Let Z be affine and let Z → Y be a morphism. Then there exists a finite
standard affine covering Z = Z1 ∪ . . . ∪ Zn such that each Zj → Y factors through
Yij for some ij . Hence the algebraic space

Zj ×Y X = Zj ×Yij f
−1(Yij )

is quasi-compact. Since Z ×Y X =
⋃
j=1,...,n Zj ×Y X is a Zariski covering we see

that |Z ×Y X| =
⋃
j=1,...,n |Zj ×Y X| (see Properties of Spaces, Lemma 48.4.8) is

a finite union of quasi-compact spaces, hence quasi-compact. Thus we see that (6)
implies (3). �

The following (and the next) lemma guarantees in particular that a morphism
X → Spec(A) is quasi-compact as soon as X is a quasi-compact algebraic space

Lemma 49.8.8. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. If g ◦ f is quasi-compact and g is quasi-separated then
f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 49.4.7 because it is a section of the quasi-
separated morphism X ×Z Y → X (a base change of g, see Lemma 49.4.4). The
second map is quasi-compact as it is the base change of f , see Lemma 49.8.3. And
compositions of quasi-compact morphisms are quasi-compact, see Lemma 49.8.4.

�

Lemma 49.8.9. Let f : X → Y be a morphism of algebraic spaces over a scheme
S.

(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then

f is quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic spaces is

quasi-compact and quasi-separated.

http://stacks.math.columbia.edu/tag/03KS
http://stacks.math.columbia.edu/tag/073B


49.9. UNIVERSALLY CLOSED MORPHISMS 3191

Proof. Part (1) follows from Lemma 49.8.8 with Z = S = Spec(Z). Part (2)
follows from (1) and Lemma 49.4.10. For (3) let X → Y and Z → Y be morphisms
of quasi-compact and quasi-separated algebraic spaces. Then X ×Y Z → Z is
quasi-compact and quasi-separated as a base change of X → Y using (2) and
Lemmas 49.8.3 and 49.4.4. Hence X×Y Z is quasi-compact and quasi-separated as
an algebraic space quasi-compact and quasi-separated over Z, see Lemmas 49.4.9
and 49.8.4. �

49.9. Universally closed morphisms

For a representable morphism of algebraic spaces we have already defined (in Section
49.3) what it means to be universally closed. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 49.9.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally closed, and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjec-
tive étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V
is universally closed. By Properties of Spaces, Section 48.4 in the commutative di-
agram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) ⇒ (1) is immediate
from the definitions. �

Thus we may use the following natural definition.

Definition 49.9.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is closed if the map of topological spaces |X| → |Y | is closed.
(2) We say f is universally closed if for every morphism of algebraic spaces

Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|
is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 49.9.3. The base change of a universally closed morphism of algebraic
spaces by any morphism of algebraic spaces is universally closed.

Proof. This is immediate from the definition. �

Lemma 49.9.4. The composition of a pair of (universally) closed morphisms of
algebraic spaces is (universally) closed.
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Proof. Omitted. �

Lemma 49.9.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is universally closed,
(2) for every scheme Z and every morphism Z → Y the projection |Z×YX| →
|Z| is closed,

(3) for every affine scheme Z and every morphism Z → Y the projection
|Z ×Y X| → |Z| is closed,

(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is a universally closed morphism of algebraic spaces, and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally closed.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V → Y . We are going to show
that V ×Y X → V is a universally closed morphism of algebraic spaces. Let Z → V
be a morphism from an algebraic space to V . Let W → Z be a surjective étale
morphism where W =

∐
Wi is a disjoint union of affine schemes, see Properties of

Spaces, Lemma 48.6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is closed. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma 48.13.7). By assumption (3),
and the fact that Wi is affine we see that the left vertical arrows are closed. Hence
it follows that the right vertical arrow is closed.

Assume (4). We will show that f is universally closed. Let Z → Y be a morphism
of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma 48.13.7). It follows that the right vertical arrow is
closed.

Of course (1) implies (5) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such

that the base change of f to Zi is closed. By a simple topological argument this
implies that Z ×Y X → Z is closed. Hence (1) holds. �

Example 49.9.6. Strange example of a universally closed morphism. Let Q ⊂ k
be a field of characteristic zero. Let X = A1

k/Z as in Spaces, Example 47.14.8. We
claim the structure morphism p : X → Spec(k) is universally closed. Namely, if
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Z/k is a scheme, and T ⊂ |X ×k Z| is closed, then T corresponds to a Z-invariant
closed subset of T ′ ⊂ |A1 × Z|. It is easy to see that this implies that T ′ is the
inverse image of a subset T ′′ of Z. By Morphisms, Lemma 28.26.10 we have that
T ′′ ⊂ Z is closed. Of course T ′′ is the image of T . Hence p is universally closed by
Lemma 49.9.5.

Lemma 49.9.7. Let S be a scheme. A universally closed morphism of algebraic
spaces over S is quasi-compact.

Proof. This proof is a repeat of the proof in the case of schemes, see Morphisms,
Lemma 28.42.10. Let f : X → Y be a morphism of algebraic spaces over S. Assume
that f is not quasi-compact. Our goal is to show that f is not universally closed.
By Lemma 49.8.7 there exists an affine scheme Z and a morphism Z → Y such
that Z×Y X → Z is not quasi-compact. To achieve our goal it suffices to show that
Z ×Y X → Z is not universally closed, hence we may assume that Y = Spec(B)
for some ring B.

Write X =
⋃
i∈I Xi where the Xi are quasi-compact open subspaces of X. For

example, choose a surjective étale morphism U → X where U is a scheme, choose
an affine open covering U =

⋃
Ui and let Xi ⊂ X be the image of Ui. We will

use later that the morphisms Xi → Y are quasi-compact, see Lemma 49.8.8. Let
T = Spec(B[ai; i ∈ I]). Let Ti = D(ai) ⊂ T . Let Z ⊂ T ×Y X be the reduced
closed subspace whose underlying closed set of points is |T ×Y Z| \

⋃
i∈I |Ti×Y Xi|,

see Properties of Spaces, Lemma 48.9.3. (Note that Ti×Y Xi is an open subspace of
T ×Y X as Ti → T and Xi → X are open immersions, see Spaces, Lemmas 47.12.3
and 47.12.2.) Here is a diagram

Z //

##

T ×Y X

fT
��

q
// X

f

��
T

p // Y

It suffices to prove that the image fT (|Z|) is not closed in |T |.
We claim there exists a point y ∈ Y such that there is no affine open neighborhood
V of y in Y such that XV is quasi-compact. If not then we can cover Y with
finitely many such V and for each V the morphism YV → V is quasi-compact by
Lemma 49.8.8 and then Lemma 49.8.7 implies f quasi-compact, a contradiction.
Fix a y ∈ Y as in the claim.

Let t ∈ T be the point lying over y with κ(t) = κ(y) such that ai = 1 in κ(t) for all
i. Suppose z ∈ |Z| with fT (z) = t. Then q(t) ∈ Xi for some i. Hence fT (z) 6∈ Ti
by construction of Z, which contradicts the fact that t ∈ Ti by construction. Hence
we see that t ∈ |T | \ fT (|Z|).
Assume fT (|Z|) is closed in |T |. Then there exists an element g ∈ B[ai; i ∈ I] with
fT (|Z|) ⊂ V (g) but t 6∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(y). Hence this coefficient is invertible
on some affine open neighborhood V of y. Let J be the finite set of j ∈ I such
that the variable aj appears in g. Since XV is not quasi-compact and each Xi,V

is quasi-compact, we may choose a point x ∈ |XV | \
⋃
j∈J |Xj,V |. In other words,

x ∈ |X| \
⋃
j∈J |Xj | and x lies above some v ∈ V . Since g has a coefficient that is

invertible on V , we can find a point t′ ∈ T lying above v such that t′ 6∈ V (g) and
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t′ ∈ V (ai) for all i /∈ J . This is true because V (ai; i ∈ I\J) = Spec(B[aj ; j ∈ J ]) and
the set of points of this scheme lying over v is bijective with Spec(κ(v)[aj ; j ∈ J ])
and g restricts to a nonzero element of this polynomial ring by construction. In
other words t′ 6∈ Ti for each i 6∈ J . By Properties of Spaces, Lemma 48.4.3 we can
find a point z of X ×Y T mapping to x ∈ X and to t′ ∈ T . Since x 6∈ |Xj | for j ∈ J
and t′ 6∈ Ti for i ∈ I \ J we see that z ∈ |Z|. On the other hand fT (z) = t′ 6∈ V (g)
which contradicts fT (Z) ⊂ V (g). Thus the assumption “fT (|Z|) closed” is wrong
and we conclude indeed that fT is not closed as desired. �

The target of a separated algebraic space under a surjective universally closed
morphism is separated.

Lemma 49.9.8. Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y be a surjective universally closed morphism of algebraic spaces over B.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over B, then Y is quasi-separated over B.
(4) If X is separated over B, then Y is separated over B.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = B = Spec(Z)
(see Properties of Spaces, Definition 48.3.1). Consider the commutative diagram

X

��

∆X/B

// X ×B X

��
Y

∆Y/B // Y ×B Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
X ×BX → X ×B Y → Y ×B Y . Hence it is also quasi-compact, see Lemma 49.9.7.

Assume X is quasi-separated over B, i.e., ∆X/B is quasi-compact. Then if Z is
quasi-compact and Z → Y ×B Y is a morphism, then Z ×Y×BY X → Z ×Y×BY Y
is surjective and Z×Y×BY X is quasi-compact by our remarks above. We conclude
that ∆Y/B is quasi-compact, i.e., Y is quasi-separated over B.

Assume X is separated over B, i.e., ∆X/B is a closed immersion. Then if Z is affine,
and Z → Y ×B Y is a morphism, then Z×Y×BY X → Z×Y×BY Y is surjective and
Z ×Y×BY X → Z is universally closed by our remarks above. We conclude that
∆Y/B is universally closed. It follows that ∆Y/B is representable, locally of finite
type, a monomorphism (see Lemma 49.4.1) and universally closed, hence a closed

immersion, see Étale Morphisms, Lemma 40.7.2 (and also the abstract principle
Spaces, Lemma 47.5.8). Thus Y is separated over B. �

49.10. Monomorphisms

A representable morphism X → Y of algebraic spaces is a monomorphism according
to Section 49.3 if for every scheme Z and morphism Z → Y the morphism Z ×Y
X → Z is representable by a monomorphism of schemes. This means exactly
that Z ×Y X → Z is an injective map of sheaves on (Sch/S)fppf . Since this is
supposed to hold for all Z and all maps Z → Y this is in turn equivalent to the
map X → Y being an injective map of sheaves on (Sch/S)fppf . Thus we may define
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a monomorphism of a (possibly nonrepresentable3) morphism of algebraic spaces
as follows.

Definition 49.10.1. Let S be a scheme. A morphism of algebraic spaces over S is
called a monomorphism if it is an injective map of sheaves, i.e., a monomorphism
in the category of sheaves on (Sch/S)fppf .

The following lemma shows that this also means that it is a monomorphism in the
category of algebraic spaces over S.

Lemma 49.10.2. Let S be a scheme. Let j : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) j is a monomorphism (as in Definition 49.10.1),
(2) j is a monomorphism in the category of algebraic spaces over S, and
(3) the diagonal morphism ∆X/Y : X → X ×Y X is an isomorphism.

Proof. Note that X ×Y X is both the fibre product in the category of sheaves on
(Sch/S)fppf and the fibre product in the category of algebraic spaces over S, see
Spaces, Lemma 47.7.3. The equivalence of (1) and (3) is a general characteriza-
tion of injective maps of sheaves on any site. The equivalence of (2) and (3) is a
characterization of monomorphisms in any category with fibre products. �

Lemma 49.10.3. A monomorphism of algebraic spaces is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma
49.10.2 above. �

Lemma 49.10.4. A composition of monomorphisms is a monomorphism.

Proof. True because a composition of injective sheaf maps is injective. �

Lemma 49.10.5. The base change of a monomorphism is a monomorphism.

Proof. This is a general fact about fibre products in a category of sheaves. �

Lemma 49.10.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is a monomorphism,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is a monomorphism,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is a monomorphism,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

the base change V ×Y X → V is a monomorphism, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is a monomorphism.

Proof. We will use without further mention that a base change of a monomorphism
is a monomorphism, see Lemma 49.10.5. In particular it is clear that (1) ⇒ (2)
⇒ (3) ⇒ (4) (by taking V to be a disjoint union of affine schemes étale over Y ,
see Properties of Spaces, Lemma 48.6.1). Let V be a scheme, and let V → Y be

3We do not know whether or not every monomorphism of algebraic spaces is representable.
If you do, please email stacks.project@gmail.com.
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a surjective étale morphism. If V ×Y X → V is a monomorphism, then it follows
that X → Y is a monomorphism. Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G

if c is a surjection of sheaves, and a is injective, then also d is injective. Thus (4)
implies (1). Proof of the equivalence of (5) and (1) is omitted. �

Lemma 49.10.7. An immersion of algebraic spaces is a monomorphism. In par-
ticular, any immersion is separated.

Proof. Let f : X → Y be an immersion of algebraic spaces. For any morphism
Z → Y with Z representable the base change Z ×Y X → Z is an immersion
of schemes, hence a monomorphism, see Schemes, Lemma 25.23.7. Hence f is
representable, and a monomorphism. �

We will improve on the following lemma in Decent Spaces, Lemma 50.17.1.

Lemma 49.10.8. Let S be a scheme. Let k be a field and let Z → Spec(k) be a
monomorphism of algebraic spaces over S. Then either Z = ∅ or Z = Spec(k).

Proof. By Lemmas 49.10.3 and 49.4.9 we see that Z is a separated algebraic space.
Hence there exists an open dense subspace Z ′ ⊂ Z which is a scheme, see Properties
of Spaces, Proposition 48.10.3. By Schemes, Lemma 25.23.10 we see that either
Z ′ = ∅ or Z ′ ∼= Spec(k). In the first case we conclude that Z = ∅ and in the second
case we conclude that Z ′ = Z = Spec(k) as Z → Spec(k) is a monomorphism which
is an isomorphism over Z ′. �

Lemma 49.10.9. Let S be a scheme. If X → Y is a monomorphism of algebraic
spaces over S, then |X| → |Y | is injective.

Proof. Immediate from the definitions. �

49.11. Pushforward of quasi-coherent sheaves

We first prove a simple lemma that relates pushforward of sheaves of modules for a
morphism of algebraic spaces to pushforward of sheaves of modules for a morphism
of schemes.

Lemma 49.11.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let U → X be a surjective étale morphism from a scheme to X. Set
R = U ×X U and denote t, s : R → U the projection morphisms as usual. Denote
a : U → Y and b : R → Y the induced morphisms. For any object F of Mod(OX)
there exists an exact sequence

0→ f∗F → a∗(F|U )→ b∗(F|R)

where the second arrow is the difference t∗ − s∗.

Proof. We denote F also its extension to a sheaf of modules on Xspaces,étale, see
Properties of Spaces, Remark 48.15.4. Let V → Y be an object of Yétale. Then
V ×Y X is an object of Xspaces,étale, and by definition f∗F(V ) = F(V ×Y X). Since
U → X is surjective étale, we see that {V ×Y U → V ×Y X} is a covering. Also,
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we have (V ×Y U)×X (V ×Y U) = V ×Y R. Hence, by the sheaf condition of F on
Xspaces,étale we have a short exact sequence

0→ F(V ×Y X)→ F(V ×Y U)→ F(V ×Y R)

where the second arrow is the difference of restricting via t or s. This exact sequence
is functorial in V and hence we obtain the lemma. �

Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of representable algebraic spaces X and Y over S. By Descent, Proposition
34.7.14 the functor f∗ : QCoh(OX) → QCoh(OY ) agrees with the usual functor if
we think of X and Y as schemes.

More generally, suppose f : X → Y is a representable, quasi-compact, and quasi-
separated morphism of algebraic spaces over S. Let V be a scheme and let V → Y
be an étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be the base
change of f . Then for any quasi-coherent OX -module F we have

(49.11.1.1) f ′∗(F|U ) = (f∗F)|V ,
see Properties of Spaces, Lemma 48.24.2. And because f ′ : U → V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute f ′∗(F|U ) by thinking of F|U as a quasi-coherent sheaf
on the scheme U , and f ′ as a morphism of schemes. We will frequently use this
without further mention.

The next level of generality is to consider an arbitrary quasi-compact and quasi-
separated morphism of algebraic spaces.

Lemma 49.11.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then f∗ transforms quasi-
coherent OX-modules into quasi-coherent OY -modules.

Proof. Let F be a quasi-coherent sheaf on X. We have to show that f∗F is a
quasi-coherent sheaf on Y . For this it suffices to show that for any affine scheme
V and étale morphism V → Y the restriction of f∗F to V is quasi-coherent, see
Properties of Spaces, Lemma 48.27.6. Let f ′ : V ×Y X → V be the base change of
f by V → Y . Note that f ′ is also quasi-compact and quasi-separated, see Lemmas
49.8.3 and 49.4.4. By (49.11.1.1) we know that the restriction of f∗F to V is f ′∗ of
the restriction of F to V ×Y X. Hence we may replace f by f ′, and assume that
Y is an affine scheme.

Assume Y is an affine scheme. Since f is quasi-compact we see that X is quasi-
compact. Thus we may choose an affine scheme U and a surjective étale morphism
U → X, see Properties of Spaces, Lemma 48.6.3. By Lemma 49.11.1 we get an
exact sequence

0→ f∗F → a∗(F|U )→ b∗(F|R).

where R = U ×X U . As X → Y is quasi-separated we see that R → U ×Y U is a
quasi-compact monomorphism. This implies that R is a quasi-compact separated
scheme (as U and Y are affine at this point). Hence a : U → Y and b : R → Y
are quasi-compact and quasi-separated morphisms of schemes. Thus by Descent,
Proposition 34.7.14 the sheaves a∗(F|U ) and b∗(F|R) are quasi-coherent (see also
the discussion preceding this lemma). This implies that f∗F is a kernel of quasi-
coherent modules, and hence itself quasi-coherent, see Properties of Spaces, Lemma
48.27.7. �
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Higher direct images are discussed in Cohomology of Spaces, Section 51.3.

49.12. Immersions

Open, closed and locally closed immersions of algebraic spaces were defined in
Spaces, Section 47.12. Namely, a morphism of algebraic spaces is a closed immer-
sion (resp. open immersion, resp. immersion) if it is representable and a closed
immersion (resp. open immersion, resp. immersion) in the sense of Section 49.3.

In particular these types of morphisms are stable under base change and composi-
tions of morphisms in the category of algebraic spaces over S, see Spaces, Lemmas
47.12.2 and 47.12.3.

Lemma 49.12.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is a closed immersion (resp. open immersion, resp. immersion),
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is a closed immersion (resp. open immersion, resp. immersion),
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is a closed immersion (resp. open immersion, resp. immersion),
(4) there exists a scheme V and a surjective étale morphism V → Y such

that V ×Y X → V is a closed immersion (resp. open immersion, resp.
immersion), and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is a closed immersion (resp. open immersion, resp. immer-
sion).

Proof. Using that a base change of a closed immersion (resp. open immersion, resp.
immersion) is another one it is clear that (1) implies (2) and (2) implies (3). Also
(3) implies (4) since we can take V to be a disjoint union of affines, see Properties
of Spaces, Lemma 48.6.1.

Assume V → Y is as in (4). Let P be the property closed immersion (resp. open
immersion, resp. immersion) of morphisms of schemes. Note that property P is
preserved under any base change and fppf local on the base (see Section 49.3).
Moreover, morphisms of type P are separated and locally quasi-finite (in each of
the three cases, see Schemes, Lemma 25.23.7, and Morphisms, Lemma 28.21.15).
Hence by More on Morphisms, Lemma 36.37.1 the morphisms of type P satisfy
descent for fppf covering. Thus Spaces, Lemma 47.11.3 applies and we see that
X → Y is representable and has property P, in other words (1) holds.

The equivalence of (1) and (5) follows from the fact that P is Zariski local on the
target (since we saw above that P is in fact fppf local on the target). �

Lemma 49.12.2. Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S.

(1) If Z → X is representable, locally of finite type, locally quasi-finite, sepa-
rated, and a monomorphism, then Z → Y is representable, locally of finite
type, locally quasi-finite, separated, and a monomorphism.

(2) If Z → X is an immersion and Y → X is locally separated, then Z → Y
is an immersion.
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(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is
a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram

Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove (1).
The first horizontal arrow is a section of Y ×X Z → Z, whence representable, lo-
cally of finite type, locally quasi-finite, separated, and a monomorphism by Lemma
49.4.7. The arrow Y ×X Z → Y is a base change of Z → X hence is repre-
sentable, locally of finite type, locally quasi-finite, separated, and a monomorphism
(as each of these properties of morphisms of schemes is stable uynder base change,
see Spaces, Remark 47.4.1). Hence the same is true for the composition (as each of
these properties of morphisms of schemes is stable under composition, see Spaces,
Remark 47.4.2). This proves (1). The other results are proved in exactly the same
manner. �

Lemma 49.12.3. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then |i| : |Z| → |X| is a homeomorphism onto a locally closed
subset, and i is a closed immersion if and only if the image |i|(|Z|) ⊂ |X| is a
closed subset.

Proof. The first statement is Properties of Spaces, Lemma 48.9.1. Let U be a
scheme and let U → X be a surjective étale morphism. By assumption T = U×XZ
is a scheme and the morphism j : T → U is an immersion of schemes. By Lemma
49.12.1 the morphism i is a closed immersion if and only if j is a closed immersion.
By Schemes, Lemma 25.10.4 this is true if and only if j(T ) is closed in U . However,
the subset j(T ) ⊂ U is the inverse image of |i|(|Z|) ⊂ |X|, see Properties of Spaces,
Lemma 48.4.3. This finishes the proof. �

Remark 49.12.4. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Since i is a monomorphism we may think of |Z| as a subset of |X|; in
the rest of this remark we do so. Let ∂|Z| be the boundary of |Z| in the topological
space |X|. In a formula

∂|Z| = |Z| \ |Z|.
Let ∂Z be the reduced closed subspace of X with |∂Z| = ∂|Z| obtained by taking
the reduced induced closed subspace structure, see Properties of Spaces, Definition
48.9.5. By construction we see that |Z| is closed in |X|\|∂Z| = |X \∂Z|. Hence it is
true that any immersion of algebraic spaces can be factored as a closed immersion
followed by an open immersion (but not the other way in general, see Morphisms,
Example 28.3.4).

Remark 49.12.5. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a locally closed subset. Let ∂T be the boundary of T in the topological
space |X|. In a formula

∂T = T \ T.
Let U ⊂ X be the open subspace of X with |U | = |X|\∂T , see Properties of Spaces,
Lemma 48.4.8. Let Z be the reduced closed subspace of U with |Z| = T obtained
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by taking the reduced induced closed subspace structure, see Properties of Spaces,
Definition 48.9.5. By construction Z → U is a closed immersion of algebraic spaces
and U → X is an open immersion, hence Z → X is an immersion of algebraic
spaces over S (see Spaces, Lemma 47.12.2). Note that Z is a reduced algebraic
space and that |Z| = T as subsets of |X|. We sometimes say Z is the reduced
induced subspace structure on T .

Lemma 49.12.6. Let S be a scheme. Let Z → X be an immersion of algebraic
spaces over S. Assume Z → X is quasi-compact. There exists a factorization Z →
Z → X where Z → Z is an open immersion and Z → X is a closed immersion.

Proof. Let U be a scheme and let U → X be surjective étale. As usual denote
R = U ×X U with projections s, t : R → U . Set T = Z ×U X. Let T ⊂ U be
the scheme theoretic image of T → U . Note that s−1T = t−1T as taking scheme
theoretic images of quasi-compact morphisms commute with flat base change, see
Morphisms, Lemma 28.26.14. Hence we obtain a closed subspace Z ⊂ X whose
pullback to U is T , see Properties of Spaces, Lemma 48.9.2. By Morphisms, Lemma
28.7.7 the morphism T → T is an open immersion. It follows that Z → Z is an
open immersion and we win. �

49.13. Closed immersions

In this section we elucidate some of the results obtained previously on immersions
of algebraic spaces. See Spaces, Section 47.12 and Section 49.12 in this chapter.
This section is the analogue of Morphisms, Section 28.2 for algebraic spaces.

Lemma 49.13.1. Let S be a scheme. Let X be an algebraic space over S. For
every closed immersion i : Z → X the sheaf i∗OZ is a quasi-coherent OX-module,
the map i] : OX → i∗OZ is surjective and its kernel is a quasi-coherent sheaf of
ideals. The rule Z 7→ Ker(OX → i∗OZ) defines an inclusion reversing bijection

closed subspaces
Z ⊂ X −→ quasi-coherent sheaves

of ideals I ⊂ OX
Moreover, given a closed subscheme Z corresponding to the quasi-coherent sheaf of
ideals I ⊂ OX a morphism of algebraic spaces h : Y → X factors through Z if and
only if the map h∗I → h∗OX = OY is zero.

Proof. Let U → X be a surjective étale morphism whose source is a scheme.
Consider the diagram

U ×X Z //

i′

��

Z

i

��
U // X

By Lemma 49.12.1 we see that i is a closed immersion if and only if i′ is a closed
immersion. By Properties of Spaces, Lemma 48.24.2 we see that i′∗OU×XZ is the
restriction of i∗OZ to U . Hence the assertions on OX → i∗OZ are equivalent to the
corresponding assertions on OU → i′∗OU×XZ . And since i′ is a closed immersion of
schemes, these results follow from Morphisms, Lemma 28.2.1.

Let us prove that given a quasi-coherent sheaf of ideals I ⊂ OX the formula

Z(T ) = {h : T → X | h∗I → OT is zero}
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defines a closed subspace of X. It is clearly a subfunctor of X. To show that Z → X
is representable by closed immersions, let ϕ : U → X be a morphism from a scheme
towards X. Then Z ×X U is represented by the analogous subfunctor of U corre-
sponding to the sheaf of ideals Im(ϕ∗I → OU ). By Properties of Spaces, Lemma
48.27.2 the OU -module ϕ∗I is quasi-coherent on on U , and hence Im(ϕ∗I → OU ) is
a quasi-coherent sheaf of ideals on U . By Schemes, Lemma 25.4.6 we conclude that
Z ×X U is represented by the closed subscheme of U associated to Im(ϕ∗I → OU ).
Thus Z is a closed subspace of X.

In the formula for Z above the inputs T are schemes since algebraic spaces are
sheaves on (Sch/S)fppf . We omit the verification that the same formula remains
true if T is an algebraic space. �

Definition 49.13.2. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. The inverse image f−1(Z) of the
closed subspace Z is the closed subspace Z ×X Y of Y .

This definition makes sense by Lemma 49.12.1. If I ⊂ OX is the quasi-coherent
sheaf of ideals corresponding to Z via Lemma 49.13.1 then f−1IOY = Im(f∗I →
OY ) is the sheaf of ideals corresponding to f−1(Z).

Lemma 49.13.3. A closed immersion of algebraic spaces is quasi-compact.

Proof. This follows from Schemes, Lemma 25.19.5 by general principles, see Spaces,
Lemma 47.5.8. �

Lemma 49.13.4. A closed immersion of algebraic spaces is separated.

Proof. This follows from Schemes, Lemma 25.23.7 by general principles, see Spaces,
Lemma 47.5.8. �

Lemma 49.13.5. Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S.

(1) The functor

ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to X \ Z is isomorphic to ∗, and
(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Xétale

whose support is contained in Z.

In both cases i−1
small is a left inverse to the functor ismall,∗.

Proof. Let U be a scheme and let U → X be surjective étale. Set V = Z ×X U .
Then V is a scheme and i′ : V → U is a closed immersion of schemes. By Properties
of Spaces, Lemma 48.15.11 for any sheaf G on Z we have

(i−1
smallismall,∗G)|V = (i′)−1

smalli
′
small,∗(G|V )

By Étale Cohomology, Proposition 44.47.4 the map (i′)−1
smalli

′
small,∗(G|V )→ G|V is

an isomorphism. Since V → Z is surjective and étale this implies that i−1
smallismall,∗G →

G is an isomorphism. This clearly implies that ismall,∗ is fully faithful, see Sites,

http://stacks.math.columbia.edu/tag/083Q
http://stacks.math.columbia.edu/tag/04CG
http://stacks.math.columbia.edu/tag/04CH
http://stacks.math.columbia.edu/tag/04E5


3202 49. MORPHISMS OF ALGEBRAIC SPACES

Lemma 7.40.1. To prove the statement on the essential image, consider a sheaf of
sets F on Xétale whose restriction to X \ Z is isomorphic to ∗. As in the proof of

Étale Cohomology, Proposition 44.47.4 we consider the adjunction mapping

F −→ ismall,∗i
−1
smallF .

As in the first part we see that the restriction of this map to U is an isomorphism
by the corresponding result for the case of schemes. Since U is an étale covering of
X we conclude it is an isomorphism. �

The following lemma holds more generally in the setting of a closed immersion of
topoi (insert future reference here).

Lemma 49.13.6. Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let A be a sheaf of rings on Xétale. Let B be a sheaf of
rings on Zétale. Let ϕ : A → ismall,∗B (or what is the same thing ϕ : i−1

smallA → B)
be a homomorphism of sheaves of rings. Then for any sheaf of A-modules F the
adjunction mapping F → ismall,∗i

−1
smallF induces an isomorphism

F ⊗A ismall,∗B −→ ismall,∗(i
−1
smallF ⊗i−1

smallA
B).

Proof. During this proof we drop the subscript small from the notation. There
is a map i−1F → i−1F ⊗i−1A B to which we can apply i∗ and compose with the
adjunction map:

F −→ i∗(i
−1F) −→ i∗(i

−1F ⊗i−1A B).

The composition is A-linear where A acts on the target via ϕ. Note that this target
i∗(i
−1F ⊗i−1A B) has a canonical i∗B-module structure. Hence by the universal

property of tensor product we obtain a map as in the lemma.

Let G be a sheaf of i∗B-modules on Xétale. Since the support of the sheaf of rings
i∗B is contained in Z we see that the support of G is contained in Z. Hence by
Lemma 49.13.5 we conclude that there exists a unique sheaf of B-modules H and
an isomorphism i∗H = G as i∗B-modules. To show that the map of the lemma is an
isomorphism we show that the right hand side of the arrow satisfies the universal
property enjoyed by the tensor product on the left (i.e., we will use Yoneda’s lemma,
see Categories, Lemma 4.3.5). To see this we have to show that maps into G agree.
This can be seen using the following sequence of canonical isomorphisms

Homi∗B(F ⊗A i∗B,G) = HomA(F ,G)

= HomA(F , i∗(H))

= Homi−1A(i−1F ,H)

= HomB(i−1F ⊗i−1A B,H)

= Homi∗B(i∗(i
−1F ⊗i−1A B), i∗H)

= Homi∗B(i∗(i
−1F ⊗i−1A B),G)

The fifth equality holds because of the equivalence of categories in Lemma 49.13.5.
�
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49.14. Closed immersions and quasi-coherent sheaves

This section is the analogue of Morphisms, Section 28.4.

Lemma 49.14.1. Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting
out Z.

(1) For any OX-module F the adjunction map F → i∗i
∗F induces an iso-

morphism F/IF ∼= i∗i
∗F .

(2) The functor i∗ is a left inverse to i∗, i.e., for any OZ-module G the ad-
junction map i∗i∗G → G is an isomorphism.

(3) The functor
i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherent OX-
modules F such that IF = 0.

Proof. During this proof we work exclusively with sheaves on the small étale sites,
and we use i∗, i

−1, . . . to denote pushforward and pullback of sheaves of abelian
groups instead of ismall,∗, i

−1
small.

Let F be an OX -module. By Lemma 49.13.6 we see that i∗i
∗F = F ⊗OX OZ . By

Lemma 49.13.1 we see that we have a short exact sequence

0→ I → OX → i∗OZ → 0

It follows from properties of the tensor product that F ⊗OX i∗OZ = F/IF . This
proves (1) (except that we omit the verification that the map is induced by the
adjunction mapping).

Let G be any OZ-module. By Lemma 49.13.5 we see that i−1i∗G = G. Hence
to prove (2) we have to show that the canonical map G ⊗i−1OX OZ → G is an
isomorphism. This follows from general properties of tensor products if we can
show that i−1OX → OZ is surjective. By Lemma 49.13.5 it suffices to prove that
i∗i
−1OX → i∗OZ is surjective. Since the surjective map OX → i∗OZ factors

through this map we see that (2) holds.

Finally we prove the most interesting part of the lemma, namely part (3). A closed
immersion is quasi-compact and separated, see Lemmas 49.13.3 and 49.13.4. Hence
Lemma 49.11.2 applies and the pushforward of a quasi-coherent sheaf on Z is indeed

a quasi-coherent sheaf on X. Thus we obtain our functor iQCoh∗ : QCoh(OZ) →
QCoh(OX). It is clear from part (2) that iQCoh∗ is fully faithful since it has a left
inverse, namely i∗.

Now we turn to the description of the essential image of the functor i∗. It is clear
that I(i∗G) = 0 for any OZ-module, since I is the kernel of the map OX → i∗OZ
which is the map we use to put an OX -module structure on i∗G. Next, suppose that
F is any quasi-coherent OX -module such that IF = 0. Then we see that F is an
i∗OZ-module because i∗OZ = OX/I. Hence in particular its support is contained
in Z. We apply Lemma 49.13.5 to see that F ∼= i∗G for some OZ-module G. The
only small detail left over is to see why G is quasi-coherent. This is true because
G ∼= i∗F by part (2) and Properties of Spaces, Lemma 48.27.2. �

Let i : Z → X be a closed immersion of algebraic spaces. Because of the lemma
above we often, by abuse of notation, denote F the sheaf i∗F on X.
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Lemma 49.14.2. Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX-module. Let G ⊂ F be a OX-submodule. There exists a
unique quasi-coherent OX-submodule G′ ⊂ G with the following property: For every
quasi-coherent OX-module H the map

HomOX (H,G′) −→ HomOX (H,G)

is bijective. In particular G′ is the largest quasi-coherent OX-submodule of F con-
tained in G.

Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
Properties of Spaces, Lemma 48.27.7. The module G′ is contained in G. Hence this
is the largest quasi-coherent OX -module contained in G.

To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be
an OX -module map. The image of the composition H → G → F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence
α factors through G′ as desired. �

Lemma 49.14.3. Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. There is a functor4 i! : QCoh(OX)→ QCoh(OZ) which is
a right adjoint to i∗. (Compare Modules, Lemma 17.6.3.)

Proof. Given quasi-coherent OX -module G we consider the subsheaf HZ(G) of G
of local sections annihilated by I. By Lemma 49.14.2 there is a canonical largest
quasi-coherent OX -submodule HZ(G)′. By construction we have

HomOX (i∗F ,HZ(G)′) = HomOX (i∗F ,G)

for any quasi-coherent OZ-module F . Hence we can set i!G = i∗(HZ(G)′). Details
omitted. �

49.15. Supports of modules

In this section we collect some elementary results on supports of quasi-coherent
modules on algebraic spaces. Let X be an algebraic space. The support of an
abelian sheaf on Xétale has been defined in Properties of Spaces, Section 48.17. We
use the same definition for supports of modules. The following lemma tells us this
agrees with the notion as defined for quasi-coherent modules on schemes.

Lemma 49.15.1. Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX-module. Let U be a scheme and let ϕ : U → X be an étale
morphism. Then

Supp(ϕ∗F) = |ϕ|−1(Supp(F))

where the left hand side is the support of ϕ∗F as a quasi-coherent module on the
scheme U .

4This is likely nonstandard notation.
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Proof. Let u ∈ U be a (usual) point and let x be a geometric point lying over u.
By Properties of Spaces, Lemma 48.27.4 we have (ϕ∗F)u ⊗OU,u OX,x = Fx. Since
OU,u → OX,x is the strict henselization by Properties of Spaces, Lemma 48.19.1 we
see that it is faithfully flat (see More on Algebra, Lemma 15.34.1). Thus we see
that (ϕ∗F)u = 0 if and only if Fx = 0. This proves the lemma. �

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 49.15.2. Let S be a scheme. Let X be an algebraic space over S. Let F
be a finite type quasi-coherent OX-module. Then

(1) The support of F is closed.
(2) For a geometric point x lying over x ∈ |X| we have

x ∈ Supp(F)⇔ Fx 6= 0⇔ Fx ⊗OX,x κ(x) 6= 0.

(3) For any morphism of algebraic spaces f : Y → X the pullback f∗F is of
finite type as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Choose a scheme U and a surjective étale morphism ϕ : U → X. By
Lemma 49.15.1 the inverse image of the support of F is the support of ϕ∗F which
is closed by Morphisms, Lemma 28.5.3. Thus (1) follows from the definition of the
topology on |X|.
The first equivalence in (2) is the definition of support. The second equivalence
follows from Nakayama’s lemma, see Algebra, Lemma 10.19.1.

Let f : Y → X be as in (3). Note that f∗F is of finite type by Properties of Spaces,
Section 48.28. For the final assertion, let y be a geometric point of Y mapping to
the geometric point x on X. Recall that

(f∗F)y = Fx ⊗OX,x OY,y,
see Properties of Spaces, Lemma 48.27.5. Hence (f∗F)y ⊗ κ(y) is nonzero if and
only if Fx ⊗ κ(x) is nonzero. By (2) this implies x ∈ Supp(F) if and only if
y ∈ Supp(f∗F), which is the content of assertion (3). �

Our next task is to show that the scheme theoretic support of a finite type quasi-
coherent module (see Morphisms, Definition 28.5.5) also makes sense for finite type
quasi-coherent modules on algebraic spaces.

Lemma 49.15.3. Let S be a scheme. Let X be an algebraic space over S. Let F
be a finite type quasi-coherent OX-module. There exists a smallest closed subspace
i : Z → X such that there exists a quasi-coherent OZ-module G with i∗G ∼= F .
Moreover:

(1) If U is a scheme and ϕ : U → X is an étale morphism then Z ×X U is
the scheme theoretic support of ϕ∗F .

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is Z.

Proof. Choose a scheme U and a surjective étale morphism ϕ : U → X. Let
R = U×X U with projections s, t : R→ U . Let i′ : Z ′ → U be the scheme theoretic
support of ϕ∗F and let G′ be the (unique up to unique isomorphism) finite type
quasi-coherent OZ′ -module with i′∗G′ = ϕ∗F , see Morphisms, Lemma 28.5.4. As
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s∗ϕ∗F = t∗ϕ∗F we see that R′ = s−1Z ′ = t−1Z ′ as closed subschemes of R by
Morphisms, Lemma 28.26.12. Thus we may apply Properties of Spaces, Lemma
48.9.2 to find a closed subspace i : Z → X whose pullback to U is Z ′. Writing
s′, t′ : R′ → Z ′ the projections and j′ : R′ → R the given closed immersion, we see
that

j′∗(s
′)∗G′ = s∗i′∗G′ = s∗ϕ∗F = t∗ϕ∗F = t∗i′∗G′ = j′∗(t

′)∗G′

(the first and the last equality by Cohomology of Schemes, Lemma 29.5.2). Hence
the uniqueness of Morphisms, Lemma 28.26.12 applied to R′ → R gives an isomor-
phism α : (t′)∗G′ → (s′)∗G′ compatible with the canonical isomorphism t∗ϕ∗F =
s∗ϕ∗F via j′∗. Clearly α satisfies the cocycle condition, hence we may apply Prop-
erties of Spaces, Proposition 48.30.1 to obtain a quasi-coherent module G on Z
whose restriction to Z ′ is G′ compatible with α. Again using the equivalence of the
proposition mentioned above (this time for X) we conclude that i∗G ∼= F .

This proves existence. The other properties of the lemma follow by comparing with
the result for schemes using Lemma 49.15.1. Detailed proofs omitted. �

Definition 49.15.4. Let S be a scheme. Let X be an algebraic space over S. Let
F be a finite type quasi-coherent OX -module. The scheme theoretic support of F
is the closed subspace Z ⊂ X constructed in Lemma 49.15.3.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma 49.14.1).

49.16. Scheme theoretic image

Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 49.16.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. There exists a closed subspace Z ⊂ Y such that f factors through Z
and such that for any other closed subspace Z ′ ⊂ Y such that f factors through Z ′

we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z
to be the closed subscheme determined by I, see Lemma 49.13.1. In general the
lemma requires us to show that there exists a largest quasi-coherent sheaf of ideals
I ′ contained in I. This follows from Lemma 49.14.2. �

Suppose that in the situation of Lemma 49.16.1 above X and Y are representable.
Then the closed subspace Z ⊂ Y found in the lemma agrees with the closed sub-
scheme Z ⊂ Y found in Morphisms, Lemma 28.6.1. The reason is that closed
subspaces (or subschemes) are in a inclusion reversing correspondence with quasi-
coherent ideal sheaves on Xétale and X. As the category of quasi-coherent modules
on Xétale and X are the same (Properties of Spaces, Section 48.27) we conclude.
Thus the following definition agrees with the earlier definition for morphisms of
schemes.

Definition 49.16.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. The scheme theoretic image of f is the smallest closed
subspace Z ⊂ Y through which f factors, see Lemma 49.16.1 above.
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We often just denote f : X → Z the factorization of f . If the morphism f is not
quasi-compact, then (in general) the construction of the scheme theoretic image
does not commute with restriction to open subspaces of Y .

Lemma 49.16.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let Z ⊂ Y be the scheme theoretic image of f . If f is quasi-compact
then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subspace corresponding to I,
(3) for any étale morphism V → Y the scheme theoretic image of X×Y V → V

is equal to Z ×Y V , and
(4) the image |f |(|X|) ⊂ |Z| is a dense subset of |Z|.

Proof. To prove (3) it suffices to prove (1) since the formation of I commutes with
étale localization. If (1) holds then in the proof of Lemma 49.16.1 we showed (2).
Let us prove that I is quasi-coherent. Since the property of being quasi-coherent
is étale local we may assume Y is an affine scheme. As f is quasi-compact, we
can find an affine scheme U and a surjective étale morphism U → X. Denote f ′

the composition U → X → Y . Then f∗OX is a subsheaf of f ′∗OU , and hence
I = Ker(OY → OX′). By Lemma 49.11.2 the sheaf f ′∗OU is quasi-coherent on Y .
Hence I is quasi-coherent as a kernel of a map between coherent modules. Finally,
part (4) follows from parts (1), (2), and (3) as the ideal I will be the unit ideal in
any point of |Y | which is not contained in the closure of |f |(|X|). �

Lemma 49.16.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X is reduced. Then

(1) the scheme theoretic image Z of f is the reduced induced algebraic space

structure on |f |(|X|), and
(2) for any étale morphism V → Y the scheme theoretic image of X×Y V → V

is equal to Z ×Y V .

Proof. Part (1) is true because the reduced induced algebraic space structure on

|f |(|X|) is the smallest closed subspace of Y through which f factors, see Properties
of Spaces, Lemma 48.9.4. Part (2) follows from (1), the fact that |V | → |Y | is open,
and the fact that being reduced is preserved under étale localization. �

Lemma 49.16.5. Let S be a scheme. Let f : X → Y be a quasi-compact morphism
of algebraic spaces over S. Let Z be the scheme theoretic image of f . Let z ∈ |Z|.
There exists a valuation ring A with fraction field K and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Let Z ′ ⊂ V
be the scheme theoretic image of X ×Y V → V . By Lemma 49.16.3 Z ′ = Z ×Y V .
Thus we can choose a point z′ ∈ Z ′ mapping to z. By Morphisms, Lemma 28.6.5
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we can choose a diagram

Spec(K) //

��

X ×Y V

��{{
Spec(A) // Z ′ // V

such that the closed point of Spec(A) maps to z′. Composing with the projections
Z ′ → Z and X ×Y V → X we obtain a solution. �

49.17. Scheme theoretic closure and density

This section is the analogue of Morphisms, Section 28.7.

Lemma 49.17.1. Let S be a scheme. Let W ⊂ S be a scheme theoretically dense
open subscheme (Morphisms, Definition 28.7.1). Let f : X → S be a morphism of
schemes which is flat, locally of finite presentation, and locally quasi-finite. Then
f−1(W ) is scheme theoretically dense in X.

Proof. We will use the characterization of Morphisms, Lemma 28.7.5. Assume
V ⊂ X is an open and g ∈ Γ(V,OV ) is a function which restricts to zero on
f−1(W ) ∩ V . We have to show that g = 0. Assume g 6= 0 to get a contradiction.
By More on Morphisms, Lemma 36.31.12 we may shrink V , find an open U ⊂ S
fitting into a commutative diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module
map F⊕r → π∗OV whose image contains g|V . Say (g1, . . . , gr) ∈ Γ(U,F⊕r) maps
to g. Then we see that gi|W∩U = 0 because g|f−1W∩V = 0. Hence gi = 0 because
F ⊂ OU and W is scheme theoretically dense in S. This implies g = 0 which is the
desired contradiction. �

Lemma 49.17.2. Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. The following are equivalent

(1) for every étale morphism ϕ : V → X (of algebraic spaces) the scheme
theoretic closure of ϕ−1(U) in V is equal to V ,

(2) there exists a scheme V and a surjective étale morphism ϕ : V → X such
that the scheme theoretic closure of ϕ−1(U) in V is equal to V ,

Proof. Observe that if V → V ′ is a morphism of algebraic spaces étale over X,
and Z ⊂ V , resp. Z ′ ⊂ V ′ is the scheme theoretic closure of U ×X V , resp. U ×X V ′
in V , resp. V ′, then Z maps into Z ′. Thus if V → V ′ is surjective and étale then
Z = V implies Z ′ = V ′. Next, note that an étale morphism is flat, locally of finite
presentation, and locally quasi-finite (see Morphisms, Section 28.37). Thus Lemma
49.17.1 implies that if V and V ′ are schemes, then Z ′ = V ′ implies Z = V . A formal
argument using that every algebraic space has an étale covering by a scheme shows
that (1) and (2) are equivalent. �

It follows from Lemma 49.17.2 that the following definition is compatible with the
definition in the case of schemes.
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Definition 49.17.3. Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace.

(1) The scheme theoretic image of the morphism U → X is called the scheme
theoretic closure of U in X.

(2) We say U is scheme theoretically dense in X if the equivalent conditions
of Lemma 49.17.2 are satisfied.

With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X. This is somewhat inelegant.
But with suitable finiteness conditions we will see that it does hold.

Lemma 49.17.4. Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. If U → X is quasi-compact, then U is scheme
theoretically dense in X if and only if the scheme theoretic closure of U in X is X.

Proof. Follows from Lemma 49.16.3 part (3). �

Lemma 49.17.5. Let S be a scheme. Let j : U → X be an open immersion of
algebraic spaces over S. Then U is scheme theoretically dense in X if and only if
OX → j∗OU is injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
algebraic space V étale over X. Hence the scheme theoretic closure of U ×X V in V
is equal to V , see proof of Lemma 49.16.1. Conversely, assume the scheme theoretic
closure of U ×X V is equal to V for all V étale over X. Suppose that OX → j∗OU
is not injective. Then we can find an affine, say V = Spec(A), étale over X and
a nonzero element f ∈ A such that f maps to zero in Γ(V ×X U,O). In this case
the scheme theoretic closure of V ×X U in V is clearly contained in Spec(A/(f)) a
contradiction. �

Lemma 49.17.6. Let S be a scheme. Let X be an algebraic space over S. If U ,
V are scheme theoretically dense open subspaces of X, then so is U ∩ V .

Proof. Let W → X be any étale morphism. Consider the map O(W )→ O(W ×X
V ) → O(W ×X (V ∩ U)). By Lemma 49.17.5 both maps are injective. Hence the
composite is injective. Hence by Lemma 49.17.5 U∩V is scheme theoretically dense
in X. �

Lemma 49.17.7. Let S be a scheme. Let h : Z → X be an immersion of algebraic
spaces over S. Assume either Z → X is quasi-compact or Z is reduced. Let
Z ⊂ X be the scheme theoretic image of h. Then the morphism Z → Z is an open
immersion which identifies Z with a scheme theoretically dense open subspace of Z.
Moreover, Z is topologically dense in Z.

Proof. In both cases the formation of Z commutes with étale localization, see
Lemmas 49.16.3 and 49.16.4. Hence this lemma follows from the case of schemes,
see Morphisms, Lemma 28.7.7. �

Lemma 49.17.8. Let S be a scheme. Let B be an algebraic space over S. Let
f, g : X → Y be morphisms of algebraic spaces over B. Let U ⊂ X be an open
subspace such that f |U = g|U . If the scheme theoretic closure of U in X is X and
Y → B is separated, then f = g.
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Proof. As Y → B is separated the fibre product Y ×∆,Y×BY,(f,g) X is a closed
subspace Z ⊂ X. As f |U = g|U we see that U ⊂ Z. Hence Z = X as U is assumed
scheme theoretically dense in X. �

49.18. Dominant morphisms

We copy the definition of a dominant morphism of schemes to get the notion of a
dominant morphism of algebraic spaces. We caution the reader that this definition
is not well behaved unless the morphism is quasi-compact and the algebraic spaces
satisfy some separation axioms.

Definition 49.18.1. Let S be a scheme. A morphism f : X → Y of algebraic
spaces over S is called dominant if the image of |f | : |X| → |Y | is dense in |Y |.

49.19. Universally injective morphisms

We have already defined in Section 49.3 what it means for a representable morphism
of algebraic spaces to be universally injective. For a field K over S (recall this means
that we are given a structure morphism Spec(K) → S) and an algebraic space X
over S we write X(K) = MorS(Spec(K), X). We first translate the condition for
representable morphisms into a condition on the functor of points.

Lemma 49.19.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is universally injective if and only if for all fields
K the map X(K)→ Y (K) is injective.

Proof. We are going to use Morphisms, Lemma 28.12.2 without further mention.
Suppose that f is universally injective. Then for any field K and any morphism
Spec(K) → Y the morphism of schemes Spec(K) ×Y X → Spec(K) is universally
injective. Hence there exists at most one section of the morphism Spec(K)×Y X →
Spec(K). Hence the map X(K)→ Y (K) is injective. Conversely, suppose that for
every field K the map X(K)→ Y (K) is injective. Let T → Y be a morphism from
a scheme into Y , and consider the base change fT : T ×Y X → T . For any field K
we have

(T ×Y X)(K) = T (K)×Y (K) X(K)

by definition of the fibre product, and hence the injectivity of X(K)→ Y (K) guar-
antees the injectivity of (T ×Y X)(K)→ T (K) which means that fT is universally
injective as desired. �

Next, we translate the property that the transformation between field valued points
is injective into something more geometric.

Lemma 49.19.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) the map X(K)→ Y (K) is injective for every field K over S
(2) for every morphism Y ′ → Y of algebraic spaces over S the induced map
|Y ′ ×Y X| → |Y ′| is injective, and

(3) the diagonal morphism X → X ×Y X is surjective.

Proof. Assume (1). Let g : Y ′ → Y be a morphism of algebraic spaces, and
denote f ′ : Y ′ ×Y X → Y ′ the base change of f . Let Ki, i = 1, 2 be fields and let
ϕi : Spec(Ki) → Y ′ ×Y X be morphisms such that f ′ ◦ ϕ1 and f ′ ◦ ϕ2 define the
same element of |Y ′|. By definition this means there exists a field Ω and embeddings
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αi : Ki ⊂ Ω such that the two morphisms f ′ ◦ ϕi ◦ αi : Spec(Ω) → Y ′ are equal.
Here is the corresponding commutative diagram

Spec(Ω)

..

α1

&&

α2

// Spec(K2)

ϕ2

&&
Spec(K1)

ϕ1 // Y ′ ×Y X

f ′

��

g′ // X

f

��
Y ′

g // Y.

In particular the compositions g ◦ f ′ ◦ ϕi ◦ αi are equal. By assumption (1) this
implies that the morphism g′ ◦ ϕi ◦ αi are equal, where g′ : Y ′ ×Y X → X is the
projection. By the universal property of the fibre product we conclude that the
morphisms ϕi ◦αi : Spec(Ω)→ Y ′×Y X are equal. In other words ϕ1 and ϕ2 define
the same point of Y ′ ×Y X. We conclude that (2) holds.

Assume (2). Let K be a field over S, and let a, b : Spec(K)→ X be two morphisms
such that f ◦a = f ◦b. Denote c : Spec(K)→ Y the common value. By assumption
|Spec(K)×c,Y X| → |Spec(K)| is injective. This means there exists a field Ω and
embeddings αi : K → Ω such that

Spec(Ω)
α1

//

α2

��

Spec(K)

a

��
Spec(K)

b // Spec(K)×c,Y X

is commutative. Composing with the projection to Spec(K) we see that α1 = α2.
Denote the common value α. Then we see that {α : Spec(Ω) → Spec(K)} is a
fpqc covering of Spec(K) such that the two morphisms a, b become equal on the
members of the covering. By Properties of Spaces, Proposition 48.14.1 we conclude
that a = b. We conclude that (1) holds.

Assume (3). Let x, x′ ∈ |X| be a pair of points such that f(x) = f(x′) in |Y |. By
Properties of Spaces, Lemma 48.4.3 we see there exists a x′′ ∈ |X ×Y X| whose
projections are x and x′. By assumption and Properties of Spaces, Lemma 48.4.4
there exists a x′′′ ∈ |X| with ∆X/Y (x′′′) = x′′. Thus x = x′. In other words f is
injective. Since condition (3) is stable under base change we see that f satisfies (2).

Assume (2). Then in particular |X ×Y X| → |X| is injective which implies imme-
diately that |∆X/Y | : |X| → |X ×Y X| is surjective, which implies that ∆X/Y is
surjective by Properties of Spaces, Lemma 48.4.4. �

By the two lemmas above the following definition does not conflict with the already
defined notion of a universally injective representable morphism of algebraic spaces.

Definition 49.19.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is universally injective if for every morphism Y ′ → Y the
induced map |Y ′ ×Y X| → |Y ′| is injective.

To be sure this means that any or all of the equivalent conditions of Lemma 49.19.2
hold.
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Remark 49.19.4. A universally injective morphism of schemes is separated, see
Morphisms, Lemma 28.12.3. This is not the case for morphisms of algebraic spaces.
Namely, the algebraic space X = A1

k/{x ∼ −x | x 6= 0} constructed in Spaces,
Example 47.14.1 comes equipped with a morphism X → A1

k which maps the point
with coordinate x to the point with coordinate x2. This is an isomorphism away
from 0, and there is a unique point of X lying above 0. As X isn’t separated this
is a universally injective morphism of algebraic spaces which is not separated.

Lemma 49.19.5. The base change of a universally injective morphism is univer-
sally injective.

Proof. Omitted. Hint: This is formal. �

Lemma 49.19.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is universally injective,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is universally injective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is universally injective,
(4) there exists a scheme Z and a surjective morphism Z → Y such that

Z ×Y X → Z is universally injective, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally injective.

Proof. We will use that being universally injective is preserved under base change
(Lemma 49.19.5) without further mention in this proof. It is clear that (1) ⇒ (2)
⇒ (3) ⇒ (4).

Assume g : Z → Y as in (4). Let y : Spec(K) → Y be a morphism from the
spectrum of a field into Y . By assumption we can find an extension field α : K ⊂ K ′
and a morphism z : Spec(K ′) → Z such that y ◦ α = g ◦ z (with obvious abuse
of notation). By assumption the morphism Z ×Y X → Z is universally injective,
hence there is at most one lift of g ◦z : Spec(K ′)→ Y to a morphism into X. Since
{α : Spec(K ′) → Spec(K)} is a fpqc covering this implies there is at most one lift
of y : Spec(K) → Y to a morphism into X, see Properties of Spaces, Proposition
48.14.1. Thus we see that (1) holds.

We omit the verification that (5) is equivalent to (1). �

Lemma 49.19.7. A composition of universally injective morphisms is universally
injective.

Proof. Omitted. �

49.20. Affine morphisms

We have already defined in Section 49.3 what it means for a representable morphism
of algebraic spaces to be affine.

Lemma 49.20.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is affine if and only if for all affine schemes Z
and morphisms Z → Y the scheme X ×Y Z is affine.

http://stacks.math.columbia.edu/tag/05VS
http://stacks.math.columbia.edu/tag/03MW
http://stacks.math.columbia.edu/tag/03MX
http://stacks.math.columbia.edu/tag/03MY
http://stacks.math.columbia.edu/tag/03WE


49.20. AFFINE MORPHISMS 3213

Proof. This follows directly from the definition of an affine morphism of schemes
(Morphisms, Definition 28.13.1). �

This clears the way for the following definition.

Definition 49.20.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is affine if for every affine scheme Z and morphism Z → Y
the algebraic space X ×Y Z is representable by an affine scheme.

Lemma 49.20.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and affine,
(2) f is affine,
(3) for every affine scheme V and étale morphism V → Y the scheme X×Y V

is affine,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is affine, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is affine.

Proof. It is clear that (1) implies (2), that (2) implies (3), and that (3) implies (4)
by taking V to be a disjoint union of affines étale over Y , see Properties of Spaces,
Lemma 48.6.1. Assume V → Y is as in (4). Then for every affine open W of V
we see that W ×Y X is an affine open of V ×Y X. Hence by Properties of Spaces,
Lemma 48.10.1 we conclude that V ×Y X is a scheme. Moreover the morphism
V ×Y X → V is affine. This means we can apply Spaces, Lemma 47.11.3 because
the class of affine morphisms satisfies all the required properties (see Morphisms,
Lemmas 28.13.8 and Descent, Lemmas 34.19.16 and 34.33.1). The conclusion of
applying this lemma is that f is representable and affine, i.e., (1) holds.

The equivalence of (1) and (5) follows from the fact that being affine is Zariski local
on the target (the reference above shows that being affine is in fact fpqc local on
the target). �

Lemma 49.20.4. The composition of affine morphisms is affine.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 49.20.5. The base change of an affine morphism is affine.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 49.20.6. A closed immersion is affine.

Proof. Follows immediately from the corresponding statement for morphisms of
schemes, see Morphisms, Lemma 28.13.9. �

Lemma 49.20.7. Let S be a scheme. Let X be an algebraic space over S. There
is an anti-equivalence of categories

algebraic space
affine over X

←→ quasi-coherent sheaves
of OX-algebras

which associates to f : Y → X the sheaf f∗OY . Moreover, this equivalence is
compatible with arbitrary base change.
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Proof. This lemma is the analogue of Morphisms, Lemma 28.13.5. Let A be
a quasi-coherent sheaf of OX -algebras. We will construct an affine morphism of
algebraic spaces π : Y = Spec

X
(A) → X with π∗OY ∼= A. To do this, choose a

scheme U and a surjective étale morphism ϕ : U → X. As usual denote R = U×XU
with projections s, t : R → U . Denote ψ : R → X the composition ψ = ϕ ◦ s =
ϕ ◦ t. By the aforementioned lemma there exists an affine morphisms of schemes
π0 : V → U and π1 : W → R with π0,∗OV ∼= ϕ∗A and π1,∗OW ∼= ψ∗A. Since the
construction is compatible with base change there exist morphisms s′, t′ : W → V
such that the diagrams

W
s′
//

��

V

��
R

s // U

and

W
t′
//

��

V

��
R

t // U

are cartesian. It follows that s′, t′ are étale. It is a formal consequence of the above
that (t′, s′) : W → V ×S V is a monomorphism. We omit the verification that
W → V ×S V is an equivalence relation (hint: think about the pullback of A to
U×XU×XU = R×s,U,tR). The quotient sheaf Y = V/W is an algebraic space, see
Spaces, Theorem 47.10.5. By Groupoids, Lemma 38.18.7 we see that Y ×X U ∼= V .
Hence Y → X is affine by Lemma 49.20.3. Finally, the isomorphism of

(Y ×X U → U)∗OY×XU = π0,∗OV ∼= ϕ∗A
is compatible with glueing isomorphisms, whence (Y → X)∗OY ∼= A by Properties
of Spaces, Proposition 48.30.1. We omit the verification that this construction is
compatible with base change. �

Definition 49.20.8. Let S be a scheme. Let X be an algebraic space over S.
Let A be a quasi-coherent sheaf of OX -algebras. The relative spectrum of A over
X, or simply the spectrum of A over X is the affine morphism Spec(A) → X
corresponding to A under the equivalence of categories of Lemma 49.20.7.

Forming the relative spectrum commutes with arbitrary base change.

Remark 49.20.9. Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Then f has a canonical
factorization

Y −→ Spec
X

(f∗OY ) −→ X

This makes sense because f∗OY is quasi-coherent by Lemma 49.11.2. The morphism
Y → Spec

X
(f∗OY ) comes from the canonical OY -algebra map f∗f∗OY → OY

which corresponds to a canonical morphism Y → Y ×X Spec
X

(f∗OY ) over Y (see

Lemma 49.20.7) whence a factorization of f as above.

Lemma 49.20.10. Let S be a scheme. Let f : Y → X be an affine morphism
of algebraic spaces over S. Let A = f∗OY . The functor F 7→ f∗F induces an
equivalence of categories{

category of quasi-coherent
OY -modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OX-module if and only if it is
quasi-coherent as an A-module.

Proof. Omitted. �
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Lemma 49.20.11. Let S be a scheme. Let B be an algebraic space over S. Suppose
g : X → Y is a morphism of algebraic spaces over B.

(1) If X is affine over B and ∆ : Y → Y ×B Y is affine, then g is affine.
(2) If X is affine over B and Y is separated over B, then g is affine.
(3) A morphism from an affine scheme to an algebraic space with affine diag-

onal is affine.
(4) A morphism from an affine scheme to a separated algebraic space is affine.

Proof. Proof of (1). The base changeX×BY → Y is affine by Lemma 49.20.5. The
morphism (1, g) : X → X×BY is the base change of Y → Y ×BY by the morphism
X×B Y → Y ×B Y . Hence it is affine by Lemma 49.20.5. The composition of affine
morphisms is affine (see Lemma 49.20.4) and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma 49.20.6) and Y/B separated means ∆
is a closed immersion. Parts (3) and (4) are special cases of (1) and (2). �

Lemma 49.20.12. Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let A be an Artinian ring. Any morphism Spec(A)→ X is affine.

Proof. Let U → X be an étale morphism with U affine. To prove the lemma we
have to show that Spec(A) ×X U is affine, see Lemma 49.20.3. Since X is quasi-
separated the scheme Spec(A) ×X U is quasi-compact. Moreover, the projection
morphism Spec(A) ×X U → Spec(A) is étale. Hence this morphism has finite
discrete fibers and moreover the topology on Spec(A) is discrete. Thus Spec(A)×X
U is a scheme whose underlying topological space is a finite discrete set. We are
done by Schemes, Lemma 25.11.7. �

49.21. Quasi-affine morphisms

We have already defined in Section 49.3 what it means for a representable morphism
of algebraic spaces to be quasi-affine.

Lemma 49.21.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is quasi-affine if and only if for all affine schemes
Z and morphisms Z → Y the scheme X ×Y Z is quasi-affine.

Proof. This follows directly from the definition of a quasi-affine morphism of
schemes (Morphisms, Definition 28.14.1). �

This clears the way for the following definition.

Definition 49.21.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-affine if for every affine scheme Z and morphism
Z → Y the algebraic space X ×Y Z is representable by a quasi-affine scheme.

Lemma 49.21.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and quasi-affine,
(2) f is quasi-affine,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is quasi-affine, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is quasi-affine.
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Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to
be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 48.6.1.
Assume V → Y is as in (3). Then for every affine open W of V we see that W×Y X
is a quasi-affine open of V ×Y X. Hence by Properties of Spaces, Lemma 48.10.1
we conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is
quasi-affine. This means we can apply Spaces, Lemma 47.11.3 because the class of
quasi-affine morphisms satisfies all the required properties (see Morphisms, Lemmas
28.14.5 and Descent, Lemmas 34.19.18 and 34.34.1). The conclusion of applying
this lemma is that f is representable and quasi-affine, i.e., (1) holds.

The equivalence of (1) and (4) follows from the fact that being quasi-affine is Zariski
local on the target (the reference above shows that being quasi-affine is in fact fpqc
local on the target). �

Lemma 49.21.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Omitted. �

Lemma 49.21.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Omitted. �

Lemma 49.21.6. Let S be a scheme. A quasi-compact and quasi-separated mor-
phism of algebraic spaces f : Y → X is quasi-affine if and only if the canonical
factorization Y → Spec

X
(f∗OY ) (Remark 49.20.9) is an open immersion.

Proof. Let U → X be a surjective morphism where U is a scheme. Since we
may check whether f is quasi-affine after base change to U (Lemma 49.21.3), since
f∗OY |V is equal to (Y ×X U → U)∗OY×XU (Properties of Spaces, Lemma 48.24.2),
and since formation of relative spectrum commutes with base change (Lemma
49.20.7), we see that the assertion reduces to the case that X is a scheme. If X is
a scheme and either f is quasi-affine or Y → Spec

X
(f∗OY ) is an open immersion,

then Y is a scheme as well. Thus we reduce to Morphisms, Lemma 28.14.3. �

49.22. Types of morphisms étale local on source-and-target

Given a property of morphisms of schemes which is étale local on the source-and-
target, see Descent, Definition 34.28.3 we may use it to define a corresponding prop-
erty of morphisms of algebraic spaces, namely by imposing either of the equivalent
conditions of the lemma below.

Lemma 49.22.1. Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Consider commutative diagrams

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes and the vertical arrows are étale. The following are
equivalent

(1) for any diagram as above the morphism h has property P, and
(2) for some diagram as above with a : U → X surjective the morphism h has

property P.
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If X and Y are representable, then this is also equivalent to f (as a morphism of
schemes) having property P. If P is also preserved under any base change, and
fppf local on the base, then for representable morphisms f this is also equivalent to
f having property P in the sense of Section 49.3.

Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is
immediate (taking into account Spaces, Lemma 47.11.4). Assume

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

are two diagrams as in the lemma. Assume U → X is surjective and h has property
P. To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the diagram

U

h

��

U ×X U ′oo

(h,h′)

��

// U ′

h′

��
V V ×Y V ′oo // V ′

By Descent, Lemma 34.28.5 we see that h has P implies (h, h′) has P and since
U ×X U ′ → U ′ is surjective this implies (by the same lemma) that h′ has P.

If X and Y are representable, then Descent, Lemma 34.28.5 applies which shows
that (1) and (2) are equivalent to f having P.

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property P.
The left vertical arrow is étale and surjective and the right vertical arrow is étale.
Thus Descent, Lemma 34.28.5 once again kicks in and shows that Z ×Y X → Z
has property P. �

Definition 49.22.2. Let S be a scheme. Let P be a property of morphisms of
schemes which is étale local on the source-and-target. We say a morphism f : X →
Y of algebraic spaces over S has property P if the equivalent conditions of Lemma
49.22.1 hold.

Here are a couple of obvious remarks.

Remark 49.22.3. Let S be a scheme. Let P be a property of morphisms of
schemes which is étale local on the source-and-target. Suppose that moreover P is
stable under compositions. Then the class of morphisms of algebraic spaces having
property P is stable under composition.
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Remark 49.22.4. Let S be a scheme. Let P be a property of morphisms of
schemes which is étale local on the source-and-target. Suppose that moreover P is
stable under base change. Then the class of morphisms of algebraic spaces having
property P is stable under base change.

Given a property of morphisms of germs of schemes which is étale local on the
source-and-target, see Descent, Definition 34.29.1 we may use it to define a corre-
sponding property of morphisms of algebraic spaces at a point, namely by imposing
either of the equivalent conditions of the lemma below.

Lemma 49.22.5. Let Q be a property of morphisms of germs which is étale local
on the source-and-target. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let x ∈ |X| be a point of X. Consider the diagrams

U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

where U and V are schemes, a, b are étale, and u, v, x, y are points of the corre-
sponding spaces. The following are equivalent

(1) for any diagram as above we have Q((U, u)→ (V, v)), and
(2) for some diagram as above we have Q((U, u)→ (V, v)).

If X and Y are representable, then this is also equivalent to Q((X,x)→ (Y, y)).

Proof. Omitted. Hint: Very similar to the proof of Lemma 49.22.1. �

Definition 49.22.6. Let Q be a property of morphisms of germs of schemes which
is étale local on the source-and-target. Let S be a scheme. Given a morphism
f : X → Y of algebraic spaces over S and a point x ∈ |X| we say that f has
property Q at x if the equivalent conditions of Lemma 49.22.5 hold.

The following lemma should not be used blindly to go from a property of morphisms
to a property of morphisms at a point. For example if P is the property of being
flat, then the property Q in the following lemma means “f is flat in an open
neighbourhood of x” which is not the same as “f is flat at x”.

Lemma 49.22.7. Let P be a property of morphisms of schemes which is étale
local on the source-and-target. Consider the property Q of morphisms of germs
associated to P in Descent, Lemma 34.29.2. Then

(1) Q is étale local on the source-and-target.
(2) given a morphism of algebraic spaces f : X → Y and x ∈ |X| the following

are equivalent
(a) f has Q at x, and
(b) there is an open neighbourhood X ′ ⊂ X of x such that X ′ → Y has
P.

(3) given a morphism of algebraic spaces f : X → Y the following are equiv-
alent:
(a) f has P,
(b) for every x ∈ |X| the morphism f has Q at x.
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Proof. See Descent, Lemma 34.29.2 for (1). The implication (1)(a) ⇒ (2)(b) fol-
lows on letting X ′ = a(U) ⊂ X given a diagram as in Lemma 49.22.5. The implica-
tion (2)(b) ⇒ (1)(a) is clear. The equivalence of (3)(a) and (3)(b) follows from the
corresponding result for morphisms of schemes, see Descent, Lemma 34.29.3. �

Remark 49.22.8. We will apply Lemma 49.22.7 above to all cases listed in De-
scent, Remark 34.28.7 except “flat”. In each case we will do this by defining f to
have property P at x if f has P in a neighbourhood of x.

49.23. Morphisms of finite type

The property “locally of finite type” of morphisms of schemes is étale local on
the source-and-target, see Descent, Remark 34.28.7. It is also stable under base
change and fpqc local on the target, see Morphisms, Lemma 28.16.4, and Descent,
Lemmas 34.19.8. Hence, by Lemma 49.22.1 above, we may define what it means
for a morphism of algebraic spaces to be locally of finite type as follows and it
agrees with the already existing notion defined in Section 49.3 when the morphism
is representable.

Definition 49.23.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f locally of finite type if the equivalent conditions of Lemma 49.22.1
hold with P = locally of finite type.

(2) Let x ∈ |X|. We say f is of finite type at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite
type.

(3) We say f is of finite type if it is locally of finite type and quasi-compact.

Consider the algebraic space A1
k/Z of Spaces, Example 47.14.8. The morphism

A1
k/Z→ Spec(k) is of finite type.

Lemma 49.23.2. The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.16.3. �

Lemma 49.23.3. A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. See Remark 49.22.4 and Morphisms, Lemma 28.16.4. �

Lemma 49.23.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally of finite type,
(2) for every x ∈ |X| the morphism f is of finite type at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally of finite type,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is locally of finite type,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally of finite type,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is locally of finite type,
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(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally of finite type,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, U → X is surjec-
tive, and the top horizontal arrow is locally of finite type, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is locally of finite type.

Proof. Each of the conditions (2), (3), (4), (5), (6), (7), and (9) imply condition
(8) in a straightforward manner. For example, if (5) holds, then we can choose a
scheme V which is a disjoint union of affines and a surjective morphism V → Y
(see Properties of Spaces, Lemma 48.6.1). Then V ×Y X → V is locally of finite
type by (5). Choose a scheme U and a surjective étale morphism U → V ×Y X.
Then U → V is locally of finite type by Lemma 49.23.2. Hence (8) is true.

The conditions (1), (7), and (8) are equivalent by definition.

To finish the proof, we show that (1) implies all of the conditions (2), (3), (4), (5),
(6), and (9). For (2) this is immediate. For (3), (4), (5), and (9) this follows from
the fact that being locally of finite type is preserved under base change, see Lemma
49.23.3. For (6) we can take U = X and we’re done. �

Lemma 49.23.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and Y is locally Noetherian, then X is
locally Noetherian.

Proof. Let

U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes and the vertical arrows are
surjective étale. If f is locally of finite type, then U → V is locally of finite
type. If Y is locally Noetherian, then V is locally Noetherian. By Morphisms,
Lemma 28.16.6 we see that U is locally Noetherian, which means that X is locally
Noetherian. �

Lemma 49.23.6. Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then f : X → Y
is locally of finite type.
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Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrows are étale and surjective, see Spaces,
Lemma 47.11.4. At this point we can use Lemma 49.23.4 and Morphisms, Lemma
28.16.8 to conclude. �

Lemma 49.23.7. An immersion is locally of finite type.

Proof. Follows from the general principle Spaces, Lemma 47.5.8 and Morphisms,
Lemmas 28.16.5. �

49.24. Points and geometric points

In this section we make some remarks on points and geometric points (see Properties
of Spaces, Definition 48.16.1). One way to think about a geometric point of X is
to consider a geometric point s : Spec(k)→ S of S and a lift of s to a morphism x
into X. Here is a diagram

Spec(k)
x
//

s
##

X

��
S.

We often say “let k be an algebraically closed field over S” to indicate that Spec(k)
comes equipped with a morphism Spec(k)→ S. In this situation we write

X(k) = MorS(Spec(k), X) = {x ∈ X lying over s}
for the set of k-valued points of X. In this case the map X(k) → |X| maps into
the subset |Xs| ⊂ |X|. Here Xs = Spec(κ(s)) ×S X, where s ∈ S is the point
corresponding to s. As Spec(κ(s)) → S is a monomorphism, also the base change
Xs → X is a monomorphism, and |Xs| is indeed a subset of |X|.

Lemma 49.24.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. The following are equivalent:

(1) f is surjective, and
(2) for every algebraically closed field k over S the induced map X(k)→ Y (k)

is surjective.

Proof. Choose a diagram

U

��

// V

��
X // Y

with U , V schemes over S and vertical arrows surjective and étale, see Spaces,
Lemma 47.11.4. Since f is locally of finite type we see that U → V is locally of
finite type.

Assume (1) and let y ∈ Y (k). Then U → Y is surjective and locally of finite type
by Lemmas 49.5.4 and 49.23.2. Let Z = U ×Y,y Spec(k). This is a scheme. The
projection Z → Spec(k) is surjective and locally of finite type by Lemmas 49.5.5
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and 49.23.3. It follows from Varieties, Lemma 32.12.1 that Z has a k valued point
z. The image x ∈ X(k) of z maps to y as desired.

Assume (2). By Properties of Spaces, Lemma 48.4.4 it suffices to show that |X| →
|Y | is surjective. Let y ∈ |Y |. Choose a u ∈ U mapping to y. Let k ⊃ κ(u) be
an algebraic closure. Denote u ∈ U(k) the corresponding point and y ∈ Y (k) its
image. By assumption there exists a x ∈ X(k) mapping to y. Then it is clear that
the image x ∈ |X| of x maps to y. �

In order to state the next lemma we introduce the following notation. Given a
scheme T we denote

λ(T ) = sup{ℵ0, |κ(t)|; t ∈ T}.

In words λ(T ) is the smallest infinite cardinal bounding all the cardinalities of
residue fields ot T . Note that if R is a ring then the cardinality of any residue
field κ(p) of R is bounded by the cardinality of R (details omitted). This implies
that λ(T ) ≤ size(T ) where size(T ) is the size of the scheme T as introduced in
Sets, Section 3.9. If K ⊂ L is a finitely generated field extension then |K| ≤ |L| ≤
max{ℵ0, |K|}. It follows that if T ′ → T is a morphism of schemes which is locally
of finite type then λ(T ′) ≤ λ(T ), and if T ′ → T is also surjective then equality
holds. Next, suppose that S is a scheme and that X is an algebraic space over S.
In this case we define

λ(X) := λ(U)

where U is any scheme over S which has a surjective étale morphism towards X.
The reason that this is independent of the choice of U is that given a pair of such
schemes U and U ′ the fibre product U ×X U ′ is a scheme which admits a surjective
étale morphism to both U and U ′, whence λ(U) = λ(U ×X U ′) = λ(U ′) by the
discussion above.

Lemma 49.24.2. Let S be a scheme. Let X, Y be algebraic spaces over S.

(1) As k ranges over all algebraically closed fields over S the collection of
geometric points y ∈ Y (k) cover all of |Y |.

(2) As k ranges over all algebraically closed fields over S with |k| ≥ λ(Y ) and
|k| > λ(X) the geometric points y ∈ Y (k) cover all of |Y |.

(3) For any geometric point s : Spec(k)→ S where k has cardinality > λ(X)
the map

X(k) −→ |Xs|

is surjective.
(4) Let X → Y be a morphism of algebraic spaces over S. For any geometric

point s : Spec(k)→ S where k has cardinality > λ(X) the map

X(k) −→ |X| ×|Y | Y (k)

is surjective.
(5) Let X → Y be a morphism of algebraic spaces over S. The following are

equivalent:
(a) the map X → Y is surjective,
(b) for all algebraically closed fields k over S with |k| > λ(X), and |k| ≥

λ(Y ) the map X(k)→ Y (k) is surjective.
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Proof. To prove part (1) choose a surjective étale morphism V → Y where V is
a scheme. For each v ∈ V choose an algebraic closure κ(v) ⊂ kv. Consider the
morphisms x : Spec(kv)→ V → Y . By construction of |Y | these cover |Y |.
To prove part (2) we will use the following two facts whose proofs we omit: (i) If K is
a field andK is algebraic closure then |K| ≤ max{ℵ0, |K|}. (ii) For any algebraically
closed field k and any cardinal ℵ, ℵ ≥ |k| there exists an extension of algebraically
closed fields k ⊂ k′ with |k′| = ℵ. Now we set ℵ = max{λ(X), λ(Y )}+. Here λ+ > λ
indicates the next bigger cardinal, see Sets, Section 3.6. Now (i) implies that the
fields ku constructed in the first paragraph of the proof all have cardinality bounded
by λ(X). Hence by (ii) we can find extensions ku ⊂ k′u such that |k′u| = ℵ. The
morphisms x′ : Spec(k′u)→ X cover |X| as desired. To really finish the proof of (2)
we need to show that the schemes Spec(k′u) are (isomorphic to) objects of Schfppf
because our conventions are that all schemes are objects of Schfppf ; the rest of
this paragraph should be skipped by anyone who is not interested in set theoretical
considerations. By construction there exists an object T of Schfppf such that λ(X)
and λ(Y ) are bounded by size(T ). By our construction of the category Schfppf
in Topologies, Definitions 33.7.6 as the category Schα constructed in Sets, Lemma
3.9.2 we see that any scheme whose size is ≤ size(T )+ is isomorphic to an object
of Schfppf . See the expression for the function Bound in Sets, Equation (3.9.1.1).
Since ℵ ≤ size(T )+ we conclude.

The notation Xs in part (3) means the fibre product Spec(κ(s))×SX, where s ∈ S is
the point corresponding to s. Hence part (2) follows from (4) with Y = Spec(κ(s)).

Let us prove (4). Let X → Y be a morphism of algebraic spaces over S. Let k be an
algebraically closed field over S of cardinality > λ(X). Let y ∈ Y (k) and x ∈ |X|
which map to the same element y of |Y |. We have to find x ∈ X(k) mapping to x
and y. Choose a commutative diagram

U

��

// V

��
X // Y

with U , V schemes over S and vertical arrows surjective and étale, see Spaces,
Lemma 47.11.4. Choose a u ∈ |U | which maps to x, and denote v ∈ |V | the
image. We will think of u = Spec(κ(u)) and v = Spec(κ(v)) as schemes. Note that
V ×Y Spec(k) is a scheme étale over k. Hence it is a disjoint union of spectra of
finite separable extensions of k, see Morphisms, Lemma 28.37.7. As v maps to y
we see that v×Y Spec(k) is a nonempty scheme. As v → V is a monomorphism, we
see that v×Y Spec(k)→ V ×Y Spec(k) is a monomorphism. Hence v×Y Spec(k) is
a disjoint union of spectra of finite separable extensions of k, by Schemes, Lemma
25.23.10. We conclude that the morphism v ×Y Spec(k) → Spec(k) has a section,
i.e., we can find a morphism v : Spec(k) → V lying over v and over y. Finally we
consider the scheme

u×V,v Spec(k) = Spec(κ(u)⊗κ(v) k)

where κ(v)→ k is the field map defining the morphism v. Since the cardinality of k
is larger than the cardinality of κ(u) by assumption we may apply Algebra, Lemma
10.34.12 to see that any maximal ideal m ⊂ κ(u) ⊗κ(v) k has a residue field which
is algebraic over k and hence equal to k. Such a maximal ideal will hence produce
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a morphism u : Spec(k) → U lying over u and mapping to v. The composition
Spec(k) → U → X will be the desired geometric point x ∈ X(k). This concludes
the proof of part (4).

Part (5) is a formal consequence of parts (2) and (4) and Properties of Spaces,
Lemma 48.4.4. �

49.25. Points of finite type

Let S be a scheme. Let X be an algebraic space over S. A finite type point
x ∈ |X| is a point which can be represented by a morphism Spec(k)→ X which is
locally of finite type. Finite type points are a suitable replacement of closed points
for algebraic spaces and algebraic stacks. There are always “enough of them” for
example.

Lemma 49.25.1. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) There exists a morphism Spec(k) → X which is locally of finite type and
represents x.

(2) There exists a scheme U , a closed point u ∈ U , and an étale morphism
ϕ : U → X such that ϕ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u))→ U is of finite type,
and U → X is representable and locally of finite type (by the general principle
Spaces, Lemma 47.5.8 and Morphisms, Lemmas 28.37.11 and 28.22.8). Hence we
see (1) holds by Lemma 49.23.2.

Conversely, assume Spec(k) → X is locally of finite type and represents x. Let
U → X be a surjective étale morphism where U is a scheme. By assumption
U×XSpec(k)→ U is locally of finite type. Pick a finite type point v of U×XSpec(k)
(there exists at least one, see Morphisms, Lemma 28.17.4). By Morphisms, Lemma
28.17.5 the image u ∈ U of v is a finite type point of U . Hence by Morphisms,
Lemma 28.17.4 after shrinking U we may assume that u is a closed point of U , i.e.,
(2) holds. �

Definition 49.25.2. Let S be a scheme. Let X be an algebraic space over S. We
say a point x ∈ |X| is a finite type point5 if the equivalent conditions of Lemma
49.25.1 are satisfied. We denote Xft-pts the set of finite type points of X.

We can describe the set of finite type points as follows.

Lemma 49.25.3. Let S be a scheme. Let X be an algebraic space over S. We
have

Xft-pts =
⋃

ϕ:U→X étale
|ϕ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes
étale over X or over all affine schemes étale over X.

Proof. Immediate from Lemma 49.25.1. �

Lemma 49.25.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then f(Xft-pts) ⊂ Yft-pts.

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite
type point”.
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Proof. Take x ∈ Xft-pts. Represent x by a locally finite type morphism x :
Spec(k) → X. Then f ◦ x is locally of finite type by Lemma 49.23.2. Hence
f(x) ∈ Yft-pts. �

Lemma 49.25.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 49.25.4. Let y ∈ |Y | be a finite type
point. Represent y by a morphism Spec(k)→ Y which is locally of finite type. As
f is surjective the algebraic space Xk = Spec(k) ×Y X is nonempty, therefore has
a finite type point x ∈ |Xk| by Lemma 49.25.3. Now Xk → X is a morphism which
is locally of finite type as a base change of Spec(k) → Y (Lemma 49.23.3). Hence
the image of x in X is a finite type point by Lemma 49.25.4 which maps to y by
construction. �

Lemma 49.25.6. Let S be a scheme. Let X be an algebraic space over S. For any
locally closed subset T ⊂ |X| we have

T 6= ∅ ⇒ T ∩Xft-pts 6= ∅.
In particular, for any closed subset T ⊂ |X| we see that T ∩Xft-pts is dense in T .

Proof. Let i : Z → X be the reduced induce subspace structure on T , see Remark
49.12.5. Any immersion is locally of finite type, see Lemma 49.23.7. Hence by
Lemma 49.25.4 we see Zft-pts ⊂ Xft-pts ∩T . Finally, any nonempty affine scheme U
with an étale morphism towards Z has at least one closed point. Hence Z has at
least one finite type point by Lemma 49.25.3. The lemma follows. �

Here is another, more technical, characterization of a finite type point on an alge-
braic space.

Lemma 49.25.7. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) x is a finite type point,
(2) there exists an algebraic space Z whose underlying topological space |Z| is

a singleton, and a morphism f : Z → X which is locally of finite type such
that {x} = |f |(|Z|), and

(3) there exists an algebraic space Z and a morphism f : Z → X with the
following properties:
(a) there is a surjective étale morphism z : Spec(k) → Z where k is a

field,
(b) f is locally of finite type,
(c) f is a monomorphism, and
(d) x = f(z).

Proof. Assume x is a finite type point. Choose an affine scheme U , a closed point
u ∈ U , and an étale morphism ϕ : U → X with ϕ(u) = x, see Lemma 49.25.3.
Set u = Spec(κ(u)) as usual. The projection morphisms u ×X u → u are the
compositions

u×X u→ u×X U → u×X X = u

where the first arrow is a closed immersion (a base change of u→ U) and the second
arrow is étale (a base change of the étale morphism U → X). Hence u ×X U is a
disjoint union of spectra of finite separable extensions of k (see Morphisms, Lemma
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28.37.7) and therefore the closed subscheme u ×X u is a disjoint union of finite
separable extension of k, i.e., u×X u→ u is étale. By Spaces, Theorem 47.10.5 we
see that Z = u/u×X u is an algebraic space. By construction the diagram

u

��

// U

��
Z // X

is commutative with étale vertical arrows. Hence Z → X is locally of finite type
(see Lemma 49.23.4). By construction the morphism Z → X is a monomorphism
and the image of z is x. Thus (3) holds.

It is clear that (3) implies (2). If (2) holds then x is a finite type point of X by
Lemma 49.25.4 (and Lemma 49.25.6 to see that Zft-pts is nonempty, i.e., the unique
point of Z is a finite type point of Z). �

49.26. Quasi-finite morphisms

The property “locally quasi-finite” of morphisms of schemes is étale local on the
source-and-target, see Descent, Remark 34.28.7. It is also stable under base change
and fpqc local on the target, see Morphisms, Lemma 28.21.13, and Descent, Lemma
34.19.22. Hence, by Lemma 49.22.1 above, we may define what it means for a
morphism of algebraic spaces to be locally quasi-finite as follows and it agrees
with the already existing notion defined in Section 49.3 when the morphism is
representable.

Definition 49.26.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is locally quasi-finite if the equivalent conditions of Lemma
49.22.1 hold with P = locally quasi-finite.

(2) Let x ∈ |X|. We say f is quasi-finite at x if there exists an open neigh-
bourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally quasi-finite.

(3) A morphism of algebraic spaces f : X → Y is quasi-finite if it is locally
quasi-finite and quasi-compact.

The last part is compatible with the notion of quasi-finiteness for morphisms of
schemes by Morphisms, Lemma 28.21.9.

Lemma 49.26.2. Let S be a scheme. Let f : X → Y and g : Y ′ → Y be morphisms
of algebraic spaces over S. Denote f ′ : X ′ → Y ′ the base change of f by g. Denote
g′ : X ′ → X the projection. Assume f is locally of finite type. Let W ⊂ |X|, resp.
W ′ ⊂ |X ′| be the set of points where f , resp. f ′ is quasi-finite.

(1) W ⊂ |X| and W ′ ⊂ |X ′| are open,
(2) W ′ = (g′)−1(W ), i.e., formation of the locus where f is quasi-finite com-

mutes with base change,
(3) the base change of a locally quasi-finite morphism is locally quasi-finite,

and
(4) the base change of a quasi-finite morphism is quasi-finite.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme V ′ and
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a surjective étale morphism V ′ → Y ′ ×Y V . Set U ′ = V ′ ×V U so that U ′ → X ′ is
a surjective étale morphism as well. Picture

U ′

��

// U

��
V ′ // V

lying over

X ′

��

// X

��
Y ′ // Y

Choose u ∈ |U | with image x ∈ |X|. The property of being ”locally quasi-finite” is
étale local on the source-and-target, see Descent, Remark 34.28.7. Hence Lemmas
49.22.5 and 49.22.7 apply and we see that f : X → Y is quasi-finite at x if and
only if U → V is quasi-finite at u. Similarly for f ′ : X ′ → Y ′ and the morphism
U ′ → V ′. Hence parts (1), (2), and (3) reduce to Morphisms, Lemmas 28.21.13
and 28.49.2. Part (4) follows from (3) and Lemma 49.8.3. �

Lemma 49.26.3. The composition of quasi-finite morphisms is quasi-finite. The
same holds for locally quasi-finite.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.21.12. �

Lemma 49.26.4. A base change of a quasi-finite morphism is quasi-finite. The
same holds for locally quasi-finite.

Proof. Immediate consequence of Lemma 49.26.2. �

The following lemma characterizes locally quasi-finite morphisms as those mor-
phisms which are locally of finite type and have “discrete fibres”. However, this is
not the same thing as asking |X| → |Y | to have discrete fibres as the discussion in
Examples, Section 82.42 shows.

Lemma 49.26.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume f is locally of finite type. The following are equivalent

(1) f is locally quasi-finite,
(2) for every morphism Spec(k) → Y where k is a field the space |Xk| is

discrete. Here Xk = Spec(k)×Y X.

Proof. Assume f is locally quasi-finite. Let Spec(k) → Y be as in (2). Choose a
surjective étale morphism U → X where U is a scheme. Then Uk = Spec(k)×Y U →
Xk is an étale morphism of algebraic spaces by Properties of Spaces, Lemma 48.13.5.
By Lemma 49.26.4 we see that Xk → Spec(k) is locally quasi-finite. By definition
this means that Uk → Spec(k) is locally quasi-finite. Hence |Uk| is discrete by
Morphisms, Lemma 28.21.8. Since |Uk| → |Xk| is surjective and open we conclude
that |Xk| is discrete.

Conversely, assume (2). Choose a surjective étale morphism V → Y where V is a
scheme. Choose a surjective étale morphism U → V ×Y X where U is a scheme.
Note that U → V is locally of finite type as f is locally of finite type. Picture

U //

##

X ×Y V

��

// V

��
X // Y

If f is not locally quasi-finite then U → V is not locally quasi-finite. Hence there
exists a specialization u  u′ for some u, u′ ∈ U lying over the same point v ∈ V ,
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see Morphisms, Lemma 28.21.6. We claim that u, u′ do not have the same image in
Xv = Spec(κ(v))×Y X which will contradict the assumption that |Xv| is discrete as
desired. Let d = trdegκ(v)(κ(u)) and d′ = trdegκ(v)(κ(u′)). Then we see that d > d′

by Morphisms, Lemma 28.29.6. Note that Uv (the fibre of U → V over v) is the fibre
product of U and Xv over X×Y V , hence Uv → Xv is étale (as a base change of the
étale morphism U → X ×Y V ). If u, u′ ∈ Uv map to the same element of |Xv| then
there exists a point r ∈ Rv = Uv×Xv Uv with t(r) = u and s(r) = u′, see Properties
of Spaces, Lemma 48.4.3. Note that s, t : Rv → Uv are étale morphisms of schemes
over κ(v), hence κ(u) ⊂ κ(r) ⊃ κ(u′) are finite separable extensions of fields over
κ(v) (see Morphisms, Lemma 28.37.7). We conclude that the transcendence degrees
are equal. This contradiction finishes the proof. �

Lemma 49.26.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally quasi-finite,
(2) for every x ∈ |X| the morphism f is quasi-finite at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally quasi-finite,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is locally quasi-finite,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally quasi-finite,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is locally quasi-finite,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally quasi-finite,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is locally quasi-finite, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is locally quasi-finite.

Proof. Omitted. �

Lemma 49.26.7. An immersion is locally quasi-finite.

Proof. Omitted. �

Lemma 49.26.8. Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. If X → Z is locally quasi-finite, then X → Y is locally quasi-finite.
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Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 47.11.4.) Apply
Morphisms, Lemma 28.21.16 to the top row. �

Lemma 49.26.9. Let S be a scheme. Let f : X → Y be a finite type morphism of
algebraic spaces over S. Let y ∈ |Y |. There are at most finitely many points of |X|
lying over y at which f is quasi-finite.

Proof. Choose a field k and a morphism Spec(k) → Y in the equivalence class
determined by y. The fibre Xk = Spec(k)×Y X is an algebraic space of finite type
over a field, in particular quasi-compact. The map |Xk| → |X| surjects onto the
fibre of |X| → |Y | over y (Properties of Spaces, Lemma 48.4.3). Moreover, the
set of points where Xk → Spec(k) is quasi-finite maps onto the set of points lying
over y where f is quasi-finite by Lemma 49.26.2. Choose an affine scheme U and
a surjective étale morphism U → Xk (Properties of Spaces, Lemma 48.6.3). Then
U → Spec(k) is a morphism of finite type and there are at most a finite number of
points where this morphism is quasi-finite, see Morphisms, Lemma 28.21.14. Since
Xk → Spec(k) is quasi-finite at a point x′ if and only if it is the image of a point
of U where U → Spec(k) is quasi-finite, we conclude. �

Lemma 49.26.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and a monomorphism, then f is separated
and locally quasi-finite.

Proof. A monomorphism is separated, see Lemma 49.10.3. By Lemma 49.26.6 it
suffices to prove the lemma after performing a base change by Z → Y with Z affine.
Hence we may assume that Y is an affine scheme. Choose an affine scheme U and
an étale morphism U → X. Since X → Y is locally of finite type the morphism
of affine schemes U → Y is of finite type. Since X → Y is a monomorphism we
have U ×X U = U ×Y U . In particular the maps U ×Y U → U are étale. Let
y ∈ Y . Then either Uy is empty, or Spec(κ(u)) ×Spec(κ(y)) Uy is isomorphic to the
fibre of U ×Y U → U over u for some u ∈ U lying over y. This implies that the
fibres of U → Y are finite discrete sets (as U ×Y U → U is an étale morphism of
affine schemes, see Morphisms, Lemma 28.37.7). Hence U → Y is quasi-finite, see
Morphisms, Lemma 28.21.6. As U → X was an arbitrary étale morphism with U
affine this implies that X → Y is locally quasi-finite. �

49.27. Morphisms of finite presentation

The property “locally of finite presentation” of morphisms of schemes is étale local
on the source-and-target, see Descent, Remark 34.28.7. It is also stable under base
change and fpqc local on the target, see Morphisms, Lemma 28.22.4, and Descent,
Lemma 34.19.9. Hence, by Lemma 49.22.1 above, we may define what it means for
a morphism of algebraic spaces to be locally of finite presentation as follows and it
agrees with the already existing notion defined in Section 49.3 when the morphism
is representable.
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Definition 49.27.1. Let S be a scheme. Let X → Y be a morphism of algebraic
spaces over S.

(1) We say f is locally of finite presentation if the equivalent conditions of
Lemma 49.22.1 hold with P =“locally of finite presentation”.

(2) Let x ∈ |X|. We say f is of finite presentation at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite
presentation6.

(3) A morphism of algebraic spaces f : X → Y is of finite presentation if it is
locally of finite presentation, quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation.

Lemma 49.27.2. The composition of morphisms of finite presentation is of finite
presentation. The same holds for locally of finite presentation.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.22.3. Also use the result for
quasi-compact and for quasi-separated morphisms (Lemmas 49.8.4 and 49.4.8). �

Lemma 49.27.3. A base change of a morphism of finite presentation is of finite
presentation The same holds for locally of finite presentation.

Proof. See Remark 49.22.4 and Morphisms, Lemma 28.22.4. Also use the result for
quasi-compact and for quasi-separated morphisms (Lemmas 49.8.3 and 49.4.4). �

Lemma 49.27.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally of finite presentation,
(2) for every x ∈ |X| the morphism f is of finite presentation at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally of finite presentation,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is locally of finite presentation,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally of finite presentation,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is locally of finite presentation,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally of finite presentation,

6It seems awkward to use “locally of finite presentation at x”, but the current terminology
may be misleading in the sense that “of finite presentation at x” does not mean that there is an

open neighbourhood X′ ⊂ X such that f |X′ is of finite presentation.
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(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is sur-
jective such that the top horizontal arrow is locally of finite presentation,
and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is locally of finite presentation.

Proof. Omitted. �

Lemma 49.27.5. A morphism which is locally of finite presentation is locally of
finite type. A morphism of finite presentation is of finite type.

Proof. Let f : X → Y be a morphism of algebraic spaces which is locally of
finite presentation. This means there exists a diagram as in Lemma 49.22.1 with
h locally of finite presentation and surjective vertical arrow a. By Morphisms,
Lemma 28.22.8 h is locally of finite type. Hence X → Y is locally of finite type by
definition. If f is of finite presentation then it is quasi-compact and it follows that
f is of finite type. �

Lemma 49.27.6. Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. If f is of finite presentation and Y is Noetherian, then X is
Noetherian.

Proof. Assume f is of finite presentation and Y Noetherian. By Lemmas 49.27.5
and 49.23.5 we see that X is locally Noetherian. As f is quasi-compact and Y
is quasi-compact we see that X is quasi-compact. As f is of finite presentation
it is quasi-separated (see Definition 49.27.1) and as Y is Noetherian it is quasi-
separated (see Properties of Spaces, Definition 48.22.1). Hence X is quasi-separated
by Lemma 49.4.9. Hence we have checked all three conditions of Properties of
Spaces, Definition 48.22.1 and we win. �

Lemma 49.27.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If Y is locally Noetherian and f locally of finite type then f is locally of
finite presentation.

(2) If Y is locally Noetherian and f of finite type and quasi-separated then f
is of finite presentation.

Proof. Assume f : X → Y locally of finite type and Y locally Noetherian. This
means there exists a diagram as in Lemma 49.22.1 with h locally of finite type and
surjective vertical arrow a. By Morphisms, Lemma 28.22.9 h is locally of finite
presentation. Hence X → Y is locally of finite presentation by definition. This
proves (1). If f is of finite type and quasi-separated then it is also quasi-compact
and quasi-separated and (2) follows immediately. �

Lemma 49.27.8. Let S be a scheme. Let Y be an algebraic space over S which is
quasi-compact and quasi-separated. If X is of finite presentation over Y , then X
is quasi-compact and quasi-separated.
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Proof. Omitted. �

Lemma 49.27.9. Let S be a scheme. Let f : X → Y and Y → Z be morphisms
of algebraic spaces over S. If X is locally of finite presentation over Z, and Y is
locally of finite type over Z, then f is locally of finite presentation.

Proof. Choose a scheme W and a surjective étale morphism W → Z. Then choose
a scheme V and a surjective étale morphism V →W×Z Y . Finally choose a scheme
U and a surjective étale morphism U → V ×Y X. By definition U is locally of finite
presentation over W and V is locally of finite type over W . By Morphisms, Lemma
28.22.11 the morphism U → V is locally of finite presentation. Hence f is locally
of finite presentation. �

Lemma 49.27.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S with diagonal ∆ : X → X ×Y X. If f is locally of finite type then
∆ is locally of finite presentation. If f is quasi-separated and locally of finite type,
then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism over X (via the second projection X ×Y X →
X). Assume f is locally of finite type. Note that X is of finite presentation
over X and X ×Y X is of finite type over X (by Lemma 49.23.3). Thus the first
statement holds by Lemma 49.27.9. The second statement follows from the first, the
definitions, and the fact that a diagonal morphism is separated (Lemma 49.4.1). �

Lemma 49.27.11. An open immersion of algebraic spaces is locally of finite pre-
sentation.

Proof. An open immersion is by definition representable, hence we can use the
general principle Spaces, Lemma 47.5.8 and Morphisms, Lemma 28.22.5. �

Lemma 49.27.12. A closed immersion i : Z → X is of finite presentation if and
only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of
finite type (as an OX-module).

Proof. Let U be a scheme and let U → X be a surjective étale morphism. By
Lemma 49.27.4 we see that i′ : Z ×X U → U is of finite presentation if and only
if i is. By Properties of Spaces, Section 48.28 we see that I is of finite type if and
only if I|U = Ker(OU → i′∗OZ×XU ) is. Hence the result follows from the case of
schemes, see Morphisms, Lemma 28.22.7. �

49.28. Flat morphisms

The property “flat” of morphisms of schemes is étale local on the source-and-target,
see Descent, Remark 34.28.7. It is also stable under base change and fpqc local on
the target, see Morphisms, Lemma 28.26.7 and Descent, Lemma 34.19.13. Hence,
by Lemma 49.22.1 above, we may define the notion of a flat morphism of algebraic
spaces as follows and it agrees with the already existing notion defined in Section
49.3 when the morphism is representable.

Definition 49.28.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is flat if the equivalent conditions of Lemma 49.22.1 with P =“flat”.
(2) Let x ∈ |X|. We say f is flat at x if the equivalent conditions of Lemma

49.22.5 holds with Q =“induced map local rings is flat”.
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Note that the second part makes sense by Descent, Lemma 34.29.4.

We do a quick sanity check.

Lemma 49.28.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is flat if and only if f is flat at all points of |X|.

Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. By
definition f is flat if and only h is flat (Definition 49.22.2). By definition f is flat
at x ∈ |X| if and only if h is flat at some (equivalently any) u ∈ U which maps
to x (Definition 49.22.6). Thus the lemma follows from the fact that a morphism
of schemes is flat if and only if it is flat at all points of the source (Morphisms,
Definition 28.26.1). �

Lemma 49.28.3. The composition of flat morphisms is flat.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.26.5. �

Lemma 49.28.4. The base change of a flat morphism is flat.

Proof. See Remark 49.22.4 and Morphisms, Lemma 28.26.7. �

Lemma 49.28.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is flat,
(2) for every x ∈ |X| the morphism f is flat at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is flat,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is flat,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is flat,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is flat,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is flat,

(8) there exists a commutative diagram

U

��

// V

��
X // Y
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where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is flat, and

(9) there exists a Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is flat.

Proof. Omitted. �

Lemma 49.28.6. A flat morphism locally of finite presentation is universally open.

Proof. Let f : X → Y be a flat morphism locally of finite presentation of algebraic
spaces over S. Choose a diagram

U
α
//

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 47.11.4. By Lemmas 49.28.5 and 49.27.4 the morphism α is flat
and locally of finite presentation. Hence by Morphisms, Lemma 28.26.9 we see
that α is universally open. Hence X → Y is universally open according to Lemma
49.6.5. �

Lemma 49.28.7. Let S be a scheme. Let f : X → Y be a flat, quasi-compact,
surjective morphism of algebraic spaces over S. A subset T ⊂ |Y | is open (resp.
closed) if and only f−1(|T |) is open (resp. closed) in |X|. In other words f is
submersive, and in fact universally submersive.

Proof. Choose affine schemes Vi and étale morphisms Vi → Y such that V =∐
Vi → Y is surjective, see Properties of Spaces, Lemma 48.6.1. For each i the

algebraic space Vi ×Y X is quasi-compact. Hence we can find an affine scheme Ui
and a surjective étale morphism Ui → Vi ×Y X, see Properties of Spaces, Lemma
48.6.3. Then the composition Ui → Vi ×Y X → Vi is a surjective, flat morphism of
affines. Of course then U =

∐
Ui → X is surjective and étale and U = V ×Y X.

Moreover, the morphism U → V is the disjoint union of the morphisms Ui → Vi.
Hence U → V is surjective, quasi-compact and flat. Consider the diagram

U //

��

X

��
V // Y

By definition of the topology on |Y | the set T is closed (resp. open) if and only
if g−1(T ) ⊂ |V | is closed (resp. open). The same holds for f−1(T ) and its in-
verse image in |U |. Since U → V is quasi-compact, surjective, and flat we win by
Morphisms, Lemma 28.26.10. �

Lemma 49.28.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x be a geometric point of X lying over the point x ∈ |X|. Let
y = f ◦ x. The following are equivalent

(1) f is flat at x, and
(2) the map on étale local rings OY,y → OX,x is flat.
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Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x. We can find
a geometric point u : Spec(k) → U lying over u with x = a ◦ u, see Properties of
Spaces, Lemma 48.16.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = OshU,u and OY,y = OshV,v
see Properties of Spaces, Lemma 48.19.1. We obtain a commutative diagram

OU,u // OX,x

OV,v

OO

// OY,y

OO

of local rings with flat horizontal arrows. We have to show that the left vertical
arrow is flat if and only if the right vertical arrow is. Algebra, Lemma 10.38.8 tells
us OU,u is flat over OV,v if and only if OX,x is flat over OV,v. Hence the result
follows from More on Flatness, Lemma 37.2.5. �

Lemma 49.28.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is flat if and only if the morphism of sites (fsmall, f

]) :
(Xétale,OX)→ (Yétale,OY ) associated to f is flat.

Proof. Flatness of (fsmall, f
]) is defined in terms of flatness of OX as a f−1

smallOY -
module. This can be checked at stalks, see Modules on Sites, Lemma 18.38.2 and
Properties of Spaces, Theorem 48.16.12. But we’ve already seen that flatness of f
can be checked on stalks, see Lemma 49.28.8. �

Lemma 49.28.10. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let F be a finite type quasi-coherent OX-module with scheme the-
oretic support Z ⊂ X. If f is flat, then f−1(Z) is the scheme theoretic support of
f∗F .

Proof. Using the characterization of the scheme theoretic support as given in
Lemma 49.15.3 and using the characterization of flat morphisms in terms of étale
coverings in Lemma 49.28.5 we reduce to the case of schemes which is Morphisms,
Lemma 28.26.12. �

Lemma 49.28.11. Let S be a scheme. Let f : X → Y be a flat morphism of
algebraic spaces over S. Let V → Y be a quasi-compact open immersion. If V is
scheme theoretically dense in Y , then f−1V is scheme theoretically dense in X.

Proof. Using the characterization of scheme theoretically dense opens in Lemma
49.17.2 and using the characterization of flat morphisms in terms of étale coverings
in Lemma 49.28.5 we reduce to the case of schemes which is Morphisms, Lemma
28.26.13. �
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Lemma 49.28.12. Let S be a scheme. Let f : X → Y be a flat morphism of
algebraic spaces over S. Let g : V → Y be a quasi-compact morphism of algebraic
spaces. Let Z ⊂ Y be the scheme theoretic image of g and let Z ′ ⊂ X be the scheme
theoretic image of the base change V ×Y X → X. Then Z ′ = f−1Z.

Proof. Let Y ′ → Y be a surjective étale morphism such that Y ′ is a disjoint union
of affine schemes (Properties of Spaces, Lemma 48.6.1). Let X ′ → X ×Y Y ′ be a
surjective étale morphism such that X ′ is a disjoint union of affine schemes. By
Lemma 49.28.5 the morphism X ′ → Y ′ is flat. Set V ′ = V ×Y Y ′. By Lemma
49.16.3 the inverse image of Z in Y ′ is the scheme theoretic image of V ′ → Y ′ and
the inverse image of Z ′ in X ′ is the scheme theoretic image of V ′ ×Y ′ X ′ → X ′.
Since X ′ → X is surjective étale, it suffices to prove the result in the case of the
morphisms X ′ → Y ′ and V ′ → Y ′. Thus we may assume X and Y are affine
schemes. In this case V is a quasi-compact algebraic space. Choose an affine
scheme W and a surjective étale morphism W → V (Properties of Spaces, Lemma
48.6.3). It is clear that the scheme theoretic image of V → Y agrees with the scheme
theoretic image of W → Y and similarly for V ×Y X → Y and W ×Y X → X.
Thus we reduce to the case of schemes which is Morphisms, Lemma 28.26.14. �

49.29. Flat modules

In this section we define what it means for a module to be flat at a point. To do
this we will use the notion of the stalk of a sheaf on the small étale site Xétale of
an algebraic space, see Properties of Spaces, Definition 48.16.6.

Lemma 49.29.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X|. The following
are equivalent

(1) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x the
module a∗F is flat at u over V ,

(2) the stalk Fx is flat over the étale local ring OY,y where x is any geometric
point lying over x and y = f ◦ x.

Proof. During this proof we fix a geometric proof x : Spec(k)→ X over x and we
denote y = f ◦x its image in Y . Given a diagram as in (1) we can find a geometric
point u : Spec(k)→ U lying over u with x = a◦u, see Properties of Spaces, Lemma
48.16.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = OshU,u and OY,y = OshV,v
see Properties of Spaces, Lemma 48.19.1. We obtain a commutative diagram

OU,u // OX,x

OV,v

OO

// OY,y

OO
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of local rings. Finally, we have

Fx = (ϕ∗F)u ⊗OU,u OX,x
by Properties of Spaces, Lemma 48.27.4. Thus Algebra, Lemma 10.38.8 tells us
(ϕ∗F)u is flat over OV,v if and only if Fx is flat over OV,v. Hence the result follows
from More on Flatness, Lemma 37.2.5. �

Definition 49.29.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let F be a quasi-coherent sheaf on X.

(1) Let x ∈ |X|. We say F is flat at x over Y if the equivalent conditions of
Lemma 49.29.1 hold.

(2) We say F is flat over Y if F is flat over Y at all x ∈ |X|.

Having defined this we have the obligatory base change lemma. This lemma implies
that formation of the flat locus of a quasi-coherent sheaf commutes with flat base
change.

Lemma 49.29.3. Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′

g // Y

be a cartesian diagram of algebraic spaces over S. Let x′ ∈ |X ′| with image x ∈ |X|.
Let F be a quasi-coherent sheaf on X and denote F ′ = (g′)∗F .

(1) If F is flat at x over Y then F ′ is flat at x′ over Y ′.
(2) If g is flat at f ′(x′) and F ′ is flat at x′ over Y ′, then F is flat at x over

Y .

In particular, if F is flat over Y , then F ′ is flat over Y ′.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme V ′

and a surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme
endowed with a surjective étale morphism U ′ = V ′ ×V U → Y ′ ×Y X = X ′. Pick
u′ ∈ U ′ mapping to x′ ∈ |X ′|. Then we can check flatness of F ′ at x′ over Y ′ in
terms of flatness of F ′|U ′ at u′ over V ′. Hence the lemma follows from More on
Morphisms, Lemma 36.12.2. �

The following lemma discusses “composition” of flat morphisms in terms of mod-
ules. It also shows that flatness satisfies a kind of top down descent.

Lemma 49.29.4. Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X| with image
y ∈ |Y |.

(1) If F is flat at x over Y and Y is flat at y over Z, then F is flat at x over
Z.

(2) Let x : Spec(K)→ X be a representative of x. If
(a) F is flat at x over Y ,
(b) x∗F 6= 0, and
(c) F is flat at x over Z,

then Y is flat at y over Z.
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(3) Let x be a geometric point of X lying over x with image y in Y . If Fx is
a faithfully flat OY,y-module and F is flat at x over Z, then Y is flat at
y over Z.

Proof. Pick x and y as in part (3) and denote z the induced geometric point of
Z. Via the characterization of flatness in Lemmas 49.29.1 and 49.28.8 the lemma
reduces to a purely algebraic question on the local ring map OZ,z → OY,y and
the module Fx. Part (1) follows from Algebra, Lemma 10.38.3. We remark that
condition (2)(b) guarantees that Fx/myFx is nonzero. Hence (2)(a) + (2)(b) imply
that Fx is a faithfully flat OY,y-module, see Algebra, Lemma 10.38.14. Thus (2) is
a special case of (3). Finally, (3) follows from Algebra, Lemma 10.38.9. �

Sometimes the base change happens “up on top”. Here is a precise statement.

Lemma 49.29.5. Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms
of algebraic spaces over S. Let G be a quasi-coherent sheaf on Y . Let x ∈ |X| with
image y ∈ |Y |. If f is flat at x, then

G flat over Z at y ⇔ f∗G flat over Z at x.

In particular: If f is surjective and flat, then G is flat over Z, if and only if f∗G is
flat over Z.

Proof. Pick a geometric point x of X and denote y the image in Y and z the
image in Z. Via the characterization of flatness in Lemmas 49.29.1 and 49.28.8 and
the description of the stalk of f∗G at x of Properties of Spaces, Lemma 48.27.5
the lemma reduces to a purely algebraic question on the local ring maps OZ,z →
OY,y → OX,x and the module Gy. This algebraic statement is Algebra, Lemma
10.38.8. �

49.30. Generic flatness

This section is the analogue of Morphisms, Section 28.28.

Proposition 49.30.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) Y is reduced,
(2) f is of finite type, and
(3) F is a finite type OX-module.

Then there exists an open dense subspace W ⊂ Y such that the base change XW →
W of f is flat, locally of finite presentation, and quasi-compact and such that F|XW
is flat over W and of finite presentation over OXW .

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let
XV = V ×Y X and let FV be the restriction of F to XV . Suppose that the result
holds for the morphism XV → V and the sheaf FV . Then there exists an open
subscheme V ′ ⊂ V such that XV ′ → V ′ is flat and of finite presentation and FV ′
is an OXV ′ -module of finite presentation flat over V ′. Let W ⊂ Y be the image
of the étale morphism V ′ → Y , see Properties of Spaces, Lemma 48.4.10. Then
V ′ →W is a surjective étale morphism, hence we see that XW →W is flat, locally
of finite presentation, and quasi-compact by Lemmas 49.27.4, 49.28.5, and 49.8.7.
By the discussion in Properties of Spaces, Section 48.28 we see that FW is of finite
presentation as a OXW -module and by Lemma 49.29.3 we see that FW is flat over
W . This argument reduces the proposition to the case where Y is a scheme.
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Suppose we can prove the proposition when Y is an affine scheme. Let f : X → Y
be a finite type morphism of algebraic spaces over S with Y a scheme, and let
F be a finite type, quasi-coherent OX -module. Choose an affine open covering
Y =

⋃
Vj . By assumption we can find dense open Wj ⊂ Vj such that XWj

→ Wj

is flat, locally of finite presentation, and quasi-compact and such that F|XWj is flat

over Wj and of finite presentation as an OXWj -module. In this situation we simply

take W =
⋃
Wj and we win. Hence we reduce the proposition to the case where Y

is an affine scheme.

Let Y be an affine scheme over S, let f : X → Y be a finite type morphism of
algebraic spaces over S, and let F be a finite type, quasi-coherent OX -module.
Since f is of finite type it is quasi-compact, hence X is quasi-compact. Thus we
can find an affine scheme U and a surjective étale morphism U → X, see Properties
of Spaces, Lemma 48.6.3. Note that U → Y is of finite type (this is what it means
for f to be of finite type in this case). Hence we can apply Morphisms, Proposition
28.28.2 to see that there exists a dense open W ⊂ Y such that UW →W is flat and
of finite presentation and such that F|UW is flat over W and of finite presentation
as an OUW -module. According to our definitions this means that the base change
XW → W of f is flat, locally of finite presentation, and quasi-compact and F|XW
is flat over W and of finite presentation over OXW . �

We cannot improve the result of the lemma above to requiring XW → W to be of
finite presentation as A1

Q/Z → Spec(Q) gives a counter example. The problem is
that the diagonal morphism ∆X/Y may not be quasi-compact, i.e., f may not be
quasi-separated. Clearly, this is also the only problem.

Proposition 49.30.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let F be a quasi-coherent sheaf of OX-modules. Assume

(1) Y is reduced,
(2) f is quasi-separated,
(3) f is of finite type, and
(4) F is a finite type OX-module.

Then there exists an open dense subspace W ⊂ Y such that the base change XW →
W of f is flat and of finite presentation and such that F|XW is flat over W and of
finite presentation over OXW .

Proof. This follows immediately from Proposition 49.30.1 and the fact that “of
finite presentation” = “locally of finite presentation” + “quasi-compact” + “quasi-
separated”. �

49.31. Relative dimension

In this section we define the relative dimension of a morphism of algebraic spaces
at a point, and some closely related properties.

Definition 49.31.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let x ∈ |X|. Let d, r ∈ {0, 1, 2, . . . ,∞}.

(1) We say the dimension of the local ring of the fibre of f at x is d if the
equivalent conditions of Lemma 49.22.5 hold for the property Pd described
in Descent, Lemma 34.29.6.
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(2) We say the transcendence degree of x/f(x) is r if the equivalent conditions
of Lemma 49.22.5 hold for the property Pr described in Descent, Lemma
34.29.7.

(3) We say the f has relative dimension d at x if the equivalent conditions
of Lemma 49.22.5 hold for the property Pd described in Descent, Lemma
34.29.8.

Let us spell out what this means. Namely, choose some diagrams

U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

as in Lemma 49.22.5. Then we have

relative dimension of f at x = dimu(Uv)
dimension of local ring of the fibre of f at x = dim(OUv,u)

transcendence degree of x/f(x) = trdegκ(v)(κ(u))

Note that if Y = Spec(k) is the spectrum of a field, then the relative dimension
of X/Y at x is the same as dimx(X), the transcendence degree of x/f(x) is the
transcendence degree over k, and the dimension of the local ring of the fibre of f
at x is just the dimension of the local ring at x, i.e., the relative notions become
absolute notions in that case.

Definition 49.31.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let d ∈ {0, 1, 2, . . .}.

(1) We say f has relative dimension ≤ d if f has relative dimension ≤ d at
all x ∈ |X|.

(2) We say f has relative dimension d if f has relative dimension d at all
x ∈ |X|.

Having relative dimension equal to d means roughly speaking that all nonempty
fibres are equidimensional of dimension d.

Lemma 49.31.3. Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let x ∈ |X| and let y ∈ |Y |, z ∈ |Z| be the images. Assume X → Y
is locally quasi-finite and Y → Z locally of finite type. Then the transcendence
degree of x/z is equal to the transcendence degree of y/z.

Proof. We can choose commutative diagrams

U

��

// V

��

// W

��
X // Y // Z

u

��

// v

��

// w

��
x // y // z

where U, V,W are schemes and the vertical arrows are étale. By definition the
morphism U → V is locally quasi-finite which implies that κ(v) ⊂ κ(u) is finite, see
Morphisms, Lemma 28.21.5. Hence the result is clear. �

Lemma 49.31.4. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian algebraic spaces over S which is flat, locally of finite type and of relative
dimension d. For every point x in |X| with image y in |Y | we have dimx(X) =
dimy(Y ) + d.
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Proof. By definition of the dimension of an algebraic space at a point (Properties
of Spaces, Definition 48.8.1) and by definition of having relative dimension d, this
reduces to the corresponding statement for schemes (Morphisms, Lemma 28.30.6).

�

49.32. Morphisms and dimensions of fibres

This section is the analogue of Morphisms, Section 28.29. The formulations in this
section are a bit awkward since we do not have local rings of algebraic spaces at
points.

Lemma 49.32.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Assume f is locally of finite type. Then we have

relative dimension of f at x
=

dimension of local ring of the fibre of f at x
+

transcendence degree of x/f(x)

where the notation is as in Definition 49.31.1.

Proof. This follows immediately from Morphisms, Lemma 28.29.1 applied to h :
U → V and u ∈ U as in Lemma 49.22.5. �

Lemma 49.32.2. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. Let x ∈ |X| and set y = f(x). Assume f and g locally
of finite type. Then

relative dimension of g ◦ f at x
≤

relative dimension of f at x
+

relative dimension of g at y

Moreover, equality holds if for some morphism Spec(k) → Z from the spectrum of
a field in the class of g(f(x)) = g(y) the morphism Xk → Yk is flat at x. This
holds for example if f is flat at x.

Proof. Choose a diagram

U

��

// V

��

// W

��
X // Y // Z

with U, V,W schemes and vertical arrows étale and surjective. (See Spaces, Lemma
47.11.4.) Choose u ∈ U mapping to x. Set v, w equal to the images of u in V,W .
Apply Morphisms, Lemma 28.29.2 to the top row and the points u, v, w. Details
omitted. �

Lemma 49.32.3. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y
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be a fibre product diagram of algebraic spaces over S. Let x′ ∈ |X ′|. Set x = g′(x′).
Assume f locally of finite type. Then we have

relative dimension of f at x
=

relative dimension of f ′ at x′

Proof. Choose a surjective étale morphism V → Y with V a scheme. By Spaces,
Lemma 47.11.4 we may choose morphisms of schemes V ′ → V lifting the morphism
g and U → V lifting the morphism f such that V ′ → Y ′ and U → X are also
surjective and étale. Set U ′ = V ′ ×V U . Then the induced morphism U ′ → X ′

is also surjective and étale (argument omitted). Hence we can choose a u′ ∈ U ′

mapping to x′. At this point the result follows by applying Morphisms, Lemma
28.29.3 to the diagram of schemes involving U ′, U, V ′, V and the point u′. �

Lemma 49.32.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let n ≥ 0. Assume f is locally of finite type. The set

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}
is open in |X|.
Proof. Choose a diagram

U
h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 47.11.4. By Morphisms, Lemma 28.29.4 the set Un of points where
h has relative dimension ≤ n is open in U . By our definition of relative dimension
for morphisms of algebraic spaces at points we see that Un = a−1(Wn). The lemma
follows by definition of the topology on |X|. �

Lemma 49.32.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S Let n ≥ 0. Assume f is locally of finite presentation. The open

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}
of Lemma 49.32.4 is retrocompact in |X|. (See Topology, Definition 5.11.1.)

Proof. Choose a diagram

U
h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale,
see Spaces, Lemma 47.11.4. In the proof of Lemma 49.32.4 we have seen that
a−1(Wn) = Un is the corresponding set for the morphism h. By Morphisms, Lemma
28.29.5 we see that Un is retrocompact in U . The lemma follows by definition of
the topology on |X|, compare with Properties of Spaces, Lemma 48.5.5 and its
proof. �

Lemma 49.32.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Then f is locally quasi-finite if
and only if f has relative dimension 0 at each x ∈ |X|.
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Proof. Choose a diagram

U
h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 47.11.4. The definitions imply that h is locally quasi-finite if and
only if f is locally quasi-finite, and that f has relative dimension 0 at all x ∈ |X| if
and only if h has relative dimension 0 at all u ∈ U . Hence the result follows from
the result for h which is Morphisms, Lemma 28.30.5. �

Lemma 49.32.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Then there exists a canonical
open subspace X ′ ⊂ X such that f |X′ : X ′ → Y is locally quasi-finite, and such
that the relative dimension of f at any x ∈ |X|, x 6∈ |X ′| is ≥ 1. Formation of X ′

commutes with arbitrary base change.

Proof. Combine Lemmas 49.32.4, 49.32.6, and 49.32.3. �

Lemma 49.32.8. Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

where X → Y is a morphism of algebraic spaces over S which is locally of finite
type and where k is a field over S. Let z ∈ |F | be such that dimz(F ) = 0. Then,
after replacing X by an open subspace containing p(z), the morphism

X −→ Y

is locally quasi-finite.

Proof. Let X ′ ⊂ X be the open subspace over which f is locally quasi-finite found
in Lemma 49.32.7. Since the formation of X ′ commutes with arbitrary base change
we see that z ∈ X ′ ×Y Spec(k). Hence the lemma is clear. �

49.33. Syntomic morphisms

The property “syntomic” of morphisms of schemes is étale local on the source-and-
target, see Descent, Remark 34.28.7. It is also stable under base change and fpqc
local on the target, see Morphisms, Lemma 28.32.4 and Descent, Lemma 34.19.24.
Hence, by Lemma 49.22.1 above, we may define the notion of a syntomic morphism
of algebraic spaces as follows and it agrees with the already existing notion defined
in Section 49.3 when the morphism is representable.

Definition 49.33.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is syntomic if the equivalent conditions of Lemma 49.22.1 hold
with P =“syntomic”.

(2) Let x ∈ |X|. We say f is syntomic at x if there exists an open neighbour-
hood X ′ ⊂ X of x such that f |X′ : X ′ → Y is syntomic.
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Lemma 49.33.2. The composition of syntomic morphisms is syntomic.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.32.3. �

Lemma 49.33.3. The base change of a syntomic morphism is syntomic.

Proof. See Remark 49.22.4 and Morphisms, Lemma 28.32.4. �

Lemma 49.33.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is syntomic,
(2) for every x ∈ |X| the morphism f is syntomic at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is syntomic,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is syntomic,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a syntomic morphism,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is syntomic,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is syntomic,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is syntomic, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is syntomic.

Proof. Omitted. �

49.34. Smooth morphisms

The property “smooth” of morphisms of schemes is étale local on the source-and-
target, see Descent, Remark 34.28.7. It is also stable under base change and fpqc
local on the target, see Morphisms, Lemma 28.35.5 and Descent, Lemma 34.19.25.
Hence, by Lemma 49.22.1 above, we may define the notion of a smooth morphism
of algebraic spaces as follows and it agrees with the already existing notion defined
in Section 49.3 when the morphism is representable.

Definition 49.34.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.
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(1) We say f is smooth if the equivalent conditions of Lemma 49.22.1 hold
with P =“smooth”.

(2) Let x ∈ |X|. We say f is smooth at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is smooth.

Lemma 49.34.2. The composition of smooth morphisms is smooth.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.35.4. �

Lemma 49.34.3. The base change of a smooth morphism is smooth.

Proof. See Remark 49.22.4 and Morphisms, Lemma 28.35.5. �

Lemma 49.34.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is smooth,
(2) for every x ∈ |X| the morphism f is smooth at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is smooth,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is smooth,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a smooth morphism,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is smooth,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is smooth,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is smooth, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is smooth.

Proof. Omitted. �

Lemma 49.34.5. A smooth morphism of algebraic spaces is locally of finite pre-
sentation.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 49.22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 28.35.8 h is locally of finite presentation.
Hence X → Y is locally of finite presentation by definition. �
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Lemma 49.34.6. A smooth morphism of algebraic spaces is locally of finite type.

Proof. Combine Lemmas 49.34.5 and 49.27.5. �

Lemma 49.34.7. A smooth morphism of algebraic spaces is flat.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 49.22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 28.35.8 h is flat. Hence X → Y is flat by
definition. �

Lemma 49.34.8. A smooth morphism of algebraic spaces is syntomic.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 49.22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 28.35.7 h is syntomic. Hence X → Y is
syntomic by definition. �

Lemma 49.34.9. Let X and Y be locally Noetherian algebraic spaces over a scheme
S, and let f : X → Y be a smooth morphism. For every point x ∈ |X| with image
y ∈ |Y |,

dimx(X) = dimy(Y ) + dimx(Xy)

where dimx(Xy) is the relative dimension of f at x as in Definition 49.31.1.

Proof. By definition of the dimension of an algebraic space at a point (Properties of
Spaces, Definition 48.8.1), this reduces to the corresponding statement for schemes
(Morphisms, Lemma 28.35.21). �

49.35. Unramified morphisms

The property “unramified” (resp. “G-unramified”) of morphisms of schemes is étale
local on the source-and-target, see Descent, Remark 34.28.7. It is also stable under
base change and fpqc local on the target, see Morphisms, Lemma 28.36.5 and De-
scent, Lemma 34.19.26. Hence, by Lemma 49.22.1 above, we may define the notion
of an unramified morphism (resp. G-unramified morphism) of algebraic spaces as
follows and it agrees with the already existing notion defined in Section 49.3 when
the morphism is representable.

Definition 49.35.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is unramified if the equivalent conditions of Lemma 49.22.1 hold
with P = unramified.

(2) Let x ∈ |X|. We say f is unramified at x if there exists an open neigh-
bourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is unramified.

(3) We say f is G-unramified if the equivalent conditions of Lemma 49.22.1
hold with P = G-unramified.

(4) Let x ∈ |X|. We say f is G-unramified at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is G-unramified.

Because of the following lemma, from here on we will only develop theory for
unramified morphisms, and whenever we want to use a G-unramified morphism we
will simply say “an unramified morphism locally of finite presentation”.
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Lemma 49.35.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is G-unramified if and only if f is unramified and locally of
finite presentation.

Proof. Consider any diagram as in Lemma 49.22.1. Then all we are saying is that
the morphism h is G-unramified if and only if it is unramified and locally of finite
presentation. This is clear from Morphisms, Definition 28.36.1. �

Lemma 49.35.3. The composition of unramified morphisms is unramified.

Proof. See Remark 49.22.3 and Morphisms, Lemma 28.36.4. �

Lemma 49.35.4. The base change of an unramified morphism is unramified.

Proof. See Remark 49.22.4 and Morphisms, Lemma 28.36.5. �

Lemma 49.35.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is unramified,
(2) for every x ∈ |X| the morphism f is unramified at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is unramified,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is unramified,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is an unramified morphism,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is unramified,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is unramified,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is unramified, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is unramified.

Proof. Omitted. �

Lemma 49.35.6. An unramified morphism of algebraic spaces is locally of finite
type.

Proof. Via a diagram as in Lemma 49.22.1 this translates into Morphisms, Lemma
28.36.9. �
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Lemma 49.35.7. If f is unramified at x then f is quasi-finite at x. In particular,
an unramified morphism is locally quasi-finite.

Proof. Via a diagram as in Lemma 49.22.1 this translates into Morphisms, Lemma
28.36.10. �

Lemma 49.35.8. An immersion of algebraic spaces is unramified.

Proof. Let i : X → Y be an immersion of algebraic spaces. Choose a scheme V
and a surjective étale morphism V → Y . Then V ×Y X → V is an immersion of
schemes, hence unramified (see Morphisms, Lemmas 28.36.7 and 28.36.8). Thus by
definition i is unramified. �

Lemma 49.35.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If f is unramified, then the diagonal morphism ∆X/Y : X → X ×Y X is
an open immersion.

(2) If f is locally of finite type and ∆X/Y is an open immersion, then f is
unramified.

Proof. We know in any case that ∆X/Y is a representable monomorphism, see
Lemma 49.4.1. Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → X ×Y V . Consider the
commutative diagram

U

��

∆U/V

// U ×V U

��

// V

∆V/Y

��
X

∆X/Y // X ×Y X // V ×Y V

with cartesian right square. The left vertical arrow is surjective étale. The right
vertical arrow is étale as a morphism between schemes étale over Y , see Properties
of Spaces, Lemma 48.13.6. Hence the middle vertical arrow is étale too (but it need
not be surjective).

Assume f is unramified. Then U → V is unramified, hence ∆U/V is an open
immersion by Morphisms, Lemma 28.36.13. Looking at the left square of the dia-
gram above we conclude that ∆X/Y is an étale morphism, see Properties of Spaces,
Lemma 48.13.3. Hence ∆X/Y is a representable étale monomorphism, which im-

plies that it is an open immersion by Étale Morphisms, Theorem 40.14.1. (See also
Spaces, Lemma 47.5.8 for the translation from schemes language into the language
of functors.)

Assume that f is locally of finite type and that ∆X/Y is an open immersion. This
implies that U → V is locally of finite type too (by definition of a morphism of
algebraic spaces which is locally of finite type). Looking at the displayed diagram
above we conclude that ∆U/V is étale as a morphism between schemes étale over
X ×Y X, see Properties of Spaces, Lemma 48.13.6. But since ∆U/V is the diagonal
of a morphism between schemes we see that it is in any case an immersion, see
Schemes, Lemma 25.21.2. Hence it is an open immersion, and we conclude that
U → V is unramified by Morphisms, Lemma 28.36.13. This in turn means that f
is unramified by definition. �
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Lemma 49.35.10. Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that X → Z is locally of finite type. Then
there exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X| is the set of points
where f is unramified. Moreover, for any morphism of algebraic spaces Z ′ → Z, if
f ′ : X ′ → Y ′ is the base change of f by Z ′ → Z, then U(f ′) is the inverse image
of U(f) under the projection X ′ → X.

Proof. This lemma is the analogue of Morphisms, Lemma 28.36.15 and in fact
we will deduce the lemma from it. By Definition 49.35.1 the set {x ∈ |X| :
f is unramified at x} is open in X. Hence we only need to prove the final state-
ment. By Lemma 49.23.6 the morphism X → Y is locally of finite type. By Lemma
49.23.3 the morphism X ′ → Y ′ is locally of finite type.

Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme V
and a surjective étale morphism V →W ×Z Y . Choose a scheme U and a surjective
étale morphism U → V ×Y X. Finally, choose a scheme W ′ and a surjective étale
morphism W ′ →W×ZZ ′. Set V ′ = W ′×W V and U ′ = W ′×WU , so that we obtain
surjective étale morphisms V ′ → Y ′ and U ′ → X ′. We will use without further
mention an étale morphism of algebraic spaces induces an open map of associated
topological spaces (see Properties of Spaces, Lemma 48.13.7). This combined with
Lemma 49.35.5 implies that U(f) is the image in |X| of the set T of points in U
where the morphism U → V is unramified. Similarly, U(f ′) is the image in |X ′|
of the set T ′ of points in U ′ where the morphism U ′ → V ′ is unramified. Now, by
construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned Morphisms,
Lemma 28.36.15 applies to show that T ′ is the inverse image of T . Since |U ′| → |X ′|
is surjective this implies the lemma. �

Lemma 49.35.11. Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. If X → Z is unramified, then X → Y is unramified.

Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 47.11.4.) Apply
Morphisms, Lemma 28.36.16 to the top row. �
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49.36. Étale morphisms

The notion of an étale morphism of algebraic spaces was defined in Properties of
Spaces, Definition 48.13.2. Here is what it means for a morphism to be étale at a
point.

Definition 49.36.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let x ∈ |X|. We say f is étale at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is étale

Lemma 49.36.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is étale,
(2) for every x ∈ |X| the morphism f is étale at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is étale,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y

X → Z is étale,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is an étale morphism,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such

that the composition f ◦ ϕ is étale,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is étale,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X sur-
jective such that the top horizontal arrow is étale, and

(9) there exist Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is étale.

Proof. Combine Properties of Spaces, Lemmas 48.13.3, 48.13.5 and 48.13.4. Some
details omitted. �

Lemma 49.36.3. The composition of two étale morphisms of algebraic spaces is
étale.

Proof. This is a copy of Properties of Spaces, Lemma 48.13.4. �

Lemma 49.36.4. The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 48.13.5. �
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Lemma 49.36.5. An étale morphism of algebraic spaces is locally quasi-finite.

Proof. Let X → Y be an étale morphism of algebraic spaces, see Properties of
Spaces, Definition 48.13.2. By Properties of Spaces, Lemma 48.13.3 we see this
means there exists a diagram as in Lemma 49.22.1 with h étale and surjective
vertical arrow a. By Morphisms, Lemma 28.37.6 h is locally quasi-finite. Hence
X → Y is locally quasi-finite by definition. �

Lemma 49.36.6. An étale morphism of algebraic spaces is smooth.

Proof. The proof is identical to the proof of Lemma 49.36.5. It uses the fact that
an étale morphism of schemes is smooth (by definition of an étale morphism of
schemes). �

Lemma 49.36.7. An étale morphism of algebraic spaces is flat.

Proof. The proof is identical to the proof of Lemma 49.36.5. It uses Morphisms,
Lemma 28.37.12. �

Lemma 49.36.8. An étale morphism of algebraic spaces is locally of finite presen-
tation.

Proof. The proof is identical to the proof of Lemma 49.36.5. It uses Morphisms,
Lemma 28.37.11. �

Lemma 49.36.9. An étale morphism of algebraic spaces is locally of finite type.

Proof. An étale morphism is locally of finite presentation and a morphism locally
of finite presentation is locally of finite type, see Lemmas 49.36.8 and 49.27.5. �

Lemma 49.36.10. An étale morphism of algebraic spaces is unramified.

Proof. The proof is identical to the proof of Lemma 49.36.5. It uses Morphisms,
Lemma 28.37.5. �

Lemma 49.36.11. Let S be a scheme. Let X,Y be algebraic spaces étale over an
algebraic space Z. Any morphism X → Y over Z is étale.

Proof. This is a copy of Properties of Spaces, Lemma 48.13.6. �

Lemma 49.36.12. A locally finitely presented, flat, unramified morphism of alge-
braic spaces is étale.

Proof. Let X → Y be a locally finitely presented, flat, unramified morphism
of algebraic spaces. By Properties of Spaces, Lemma 48.13.3 we see this means
there exists a diagram as in Lemma 49.22.1 with h locally finitely presented, flat,
unramified and surjective vertical arrow a. By Morphisms, Lemma 28.37.16 h is
étale. Hence X → Y is étale by definition. �

49.37. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry.
Here is the definition of a proper morphism of algebraic spaces.

Definition 49.37.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. We say f is proper if f is separated, finite type, and
universally closed.
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Lemma 49.37.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is proper,
(2) for every scheme Z and every morphism Z → Y the projection Z×Y X →

Z is proper,
(3) for every affine scheme Z and every morphism Z → Y the projection

Z ×Y X → Z is proper,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is proper, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is proper.

Proof. Combine Lemmas 49.4.12, 49.23.4, 49.8.7, and 49.9.5. �

Lemma 49.37.3. A base change of a proper morphism is proper.

Proof. See Lemmas 49.4.4, 49.23.3, and 49.9.3. �

Lemma 49.37.4. A composition of proper morphisms is proper.

Proof. See Lemmas 49.4.8, 49.23.2, and 49.9.4. �

Lemma 49.37.5. A closed immersion of algebraic spaces is a proper morphism of
algebraic spaces.

Proof. As a closed immersion is by definition representable this follows from
Spaces, Lemma 47.5.8 and the corresponding result for morphisms of schemes,
see Morphisms, Lemma 28.42.6. �

Lemma 49.37.6. Let S be a scheme. Consider a commutative diagram of algebraic
spaces

X //

  

Y

~~
B

over S.

(1) If X → B is universally closed and Y → B is separated, then the mor-
phism X → Y is universally closed. In particular, the image of |X| in |Y |
is closed.

(2) If X → B is proper and Y → B is separated, then the morphism X → Y
is proper.

Proof. Assume X → B is universally closed and Y → B is separated. We factor
the morphism as X → X×B Y → Y . The first morphism is a closed immersion, see
Lemma 49.4.6 hence universally closed. The projection X ×B Y → Y is the base
change of a universally closed morphism and hence universally closed, see Lemma
49.9.3. Thus X → Y is universally closed as the composition of universally closed
morphisms, see Lemma 49.9.4. This proves (1). To deduce (2) combine (1) with
Lemmas 49.4.10, 49.8.8, and 49.23.6. �

Lemma 49.37.7. Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y be a morphism of algebraic spaces over B. If X is universally closed
over B and f is surjective then Y is universally closed over B. In particular, if
also Y is separated and of finite type over B, then Y is proper over B.
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Proof. Assume X is universally closed and f surjective. Denote p : X → B,
q : Y → B the structure morphisms. Let B′ → B be a morphism of algebraic
spaces over S. The base change f ′ : XB′ → YB′ is surjective (Lemma 49.5.5), and
the base change p′ : XB′ → B′ is closed. If T ⊂ YB′ is closed, then (f ′)−1(T ) ⊂ XB′

is closed, hence p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. �

Lemma 49.37.8. Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B

be a commutative diagram of morphism of algebraic spaces over S. Assume

(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,

Then the scheme theoretic image Z ⊂ Y of h is proper over B and X → Z is
surjective.

Proof. The scheme theoretic image of h is constructed in Section 49.16. Observe
that h is quasi-compact (Lemma 49.8.9) hence |h|(|X|) ⊂ |Z| is dense (Lemma
49.16.3). On the other hand |h|(|X|) is closed in |Y | (Lemma 49.37.6) hence X → Z
is surjective. Thus Z → B is a proper (Lemma 49.37.7). �

Lemma 49.37.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is separated,
(2) ∆X/Y : X → X ×Y X is universally closed, and
(3) ∆X/Y : X → X ×Y X is proper.

Proof. The implication (1)⇒ (3) follows from Lemma 49.37.5. We will use Spaces,
Lemma 47.5.8 without further mention in the rest of the proof. Recall that ∆X/Y

is a representable monomorphism which is locally of finite type, see Lemma 49.4.1.
Since proper ⇒ universally closed for morphisms of schemes we conclude that (3)

implies (2). If ∆X/Y is universally closed then Étale Morphisms, Lemma 40.7.2
implies that it is a closed immersion. Thus (2) ⇒ (1) and we win. �

49.38. Valuative criteria

We first formally state the definition and then we discuss how this differs from the
case of morphisms of schemes.

Definition 49.38.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f satisfies the uniqueness part of the valuative criterion if
given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists at most one dotted
arrow (without requiring existence). We say f satisfies the existence part of the
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valuative criterion if given any solid diagram as above there exists an extension K ⊂
K ′ of fields, a valuation ring A′ ⊂ K ′ dominating A and a morphism Spec(A′)→ X
such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

We say f satisfies the valuative criterion if f satisfies both the existence and unique-
ness part.

The formulation of the existence part of the valuative criterion is slightly different
for morphisms of algebraic spaces, since it may be necessary to extend the fraction
field of the valuation ring. In practice this difference almost never plays a role.

(1) Checking the uniqueness part of the valuative criterion never involves any
fraction field extensions, hence this is exactly the same as in the case of
schemes.

(2) It is necessary to allow for field extensions in general, see Example 49.38.6.
(3) For morphisms of algebraic spaces it always sufffices to take a finite sep-

arable extensions K ⊂ K ′ in the existence part of the valuative criterion,
see Lemma 49.38.3.

(4) If f : X → Y is a separated morphism of algebraic spaces, then we can
always take K = K ′ when we check the existence part of the valuative
criterion, see Lemma 49.38.5.

(5) In particular, for a quasi-compact and quasi-separated morphism f : X →
Y , we get an equivalence between “f is separated and universally closed”
and “f satisfies the usual valuative criterion”, see Decent Spaces, Lemma
50.14.4. In particular, the valuative criterion for properness is the usual
one, see Decent Spaces, Lemma 50.14.5.

The results of (5) come later because their proof uses an argument concerning
specializations of points on algebraic spaces, which is a topic we address in great
detail in the chapter on decent spaces.

As a first step in the theory, we show that the criterion is identical to the criterion
as formulated for morphisms of schemes in case the morphism of algebraic spaces
is representable.

Lemma 49.38.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is representable. The following are equivalent

(1) f satisfies the existence part of the valuation criterion as in Definition
49.38.1,

(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y
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where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 25.20.3.

Proof. It suffices to show that given a commutative diagram of the form

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

ϕ

44

Spec(A) // Y

as in Definition 49.38.1, then we can find a morphism Spec(A)→ X fitting into the
diagram too. Set XA = Spec(A)×Y Y . As f is representable we see that XA is a
scheme. The morphism ϕ gives a morphism ϕ′ : Spec(A′) → XA. Let x ∈ XA be
the image of the closed point of ϕ′ : Spec(A′) → XA. Then we have the following
commutative diagram of rings

K ′ Koo OXA,xoo

vv
A′

OO

Aoo Aoo

OO

Since A is a valuation ring, and since A′ dominates A, we see that K ∩ A′ = A.
Hence the ring map OXA,x → K has image contained in A. Whence a morphism
Spec(A)→ XA (see Schemes, Section 25.13) as desired. �

Lemma 49.38.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuation criterion as in Definition
49.38.1,

(2) f satisfies the existence part of the valuation criterion as in Definition
49.38.1 modified by requiring the extension K ⊂ K ′ to be finite separable.

Proof. We have to show that (1) implies (2). Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 49.38.1 with K ⊂ K ′ arbitrary. Choose a scheme U and a surjective
étale morphism U → X. Then

Spec(A′)×X U −→ Spec(A′)

is surjective étale. Let p be a point of Spec(A′)×X U mapping to the closed point
of Spec(A′). Let p′  p be a generalization of p mapping to the generic point
of Spec(A′). Such a generalization exists because generalizations lift along flat
morphisms of schemes, see Morphisms, Lemma 28.26.8. Then p′ corresponds to a
point of the scheme Spec(K ′)×X U . Note that

Spec(K ′)×X U = Spec(K ′)×Spec(K) (Spec(K)×X U)
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Hence p′ maps to a point q′ ∈ Spec(K)×XU whose residue field is a finite separable
extension of K. Finally, p′  p maps to a specialization u′  u on the scheme U .
With all this notation we get the following diagram of rings

κ(p′) κ(q′)oo κ(u′)oo

OSpec(A′)×XU,p

ff

OU,uoo

OO

K ′

OO

A′oo

OO

Aoo

OO

This means that the ring B ⊂ κ(q′) generated by the images of A and OU,u maps
to a subring of κ(p′) contained in the image B′ of OSpec(A′)×XU,p → κ(p′). Note
that B′ is a local ring. Let m ⊂ B be the maximal ideal. By construction A ∩ m,
(resp. OU,u ∩m, resp. A′ ∩m) is the maximal ideal of A (resp. OU,u, resp. A′). Set
q = B ∩m. This is a prime ideal such that A ∩ q is the maximal ideal of A. Hence
Bq ⊂ κ(q′) is a local ring dominating A. By Algebra, Lemma 10.48.2 we can find a
valuation ring A1 ⊂ κ(q′) with field of fractions κ(q′) dominating Bq. The (local)
ring map OU,u → A1 gives a morphism Spec(A1)→ U → X such that the diagram

Spec(κ(q′)) //

��

Spec(K) // X

��
Spec(A1) //

44

Spec(A) // Y

is commutative. Since f.f.(A1) = κ(q′) ⊃ K is finite separable by construction the
lemma is proved. �

Lemma 49.38.4. Let S be a scheme. Let f : X → Y be a separated morphism of
algebraic spaces over S. Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) //

;;

Y

as in Definition 49.38.1 with K ⊂ K ′ arbitrary. Then the dotted arrow exists
making the diagram commute.

Proof. We have to show that we can find a morphism Spec(A) → X fitting into
the diagram.

Consider the base change XA = Spec(A) ×Y X of X. Then XA → Spec(A) is
a separated morphism of algebraic spaces (Lemma 49.4.4). Base changing all the
morphisms of the diagram above we obtain

Spec(K ′) //

��

Spec(K) // XA

��
Spec(A′) //

44

Spec(A) Spec(A)
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Thus we may replace X by XA, assume that Y = Spec(A) and that we have a
diagram as above. We may and do replace X by a quasi-compact open subspace
containing the image of |Spec(A′)| → |X|.

The morphism Spec(A′) → X is quasi-compact by Lemma 49.8.8. Let Z ⊂ X
be the scheme theoretic image of Spec(A′) → X. Then Z is a reduced (Lemma
49.16.4), quasi-compact (as a closed subspace of X), separated (as a closed subspace
of X) algebraic space over A. Consider the base change

Spec(K ′) = Spec(A′)×Spec(A) Spec(K)→ X ×Spec(A) Spec(K) = XK

of the morphism Spec(A′) → X by the flat morphism of schemes Spec(K) →
Spec(A). By Lemma 49.28.12 we see that the scheme theoretic image of this mor-
phism is the base change ZK of Z. On the other hand, by assumption (i.e., the com-
mutative diagram above) this morphism factors through a morphism Spec(K) →
ZK which is a section to the structure morphism ZK → Spec(K). As ZK is
separated, this section is a closed immersion (Lemma 49.4.7). We conclude that
ZK = Spec(K).

Let V → Z be a surjective étale morphism with V an affine scheme (Properties
of Spaces, Lemma 48.6.3). Say V = Spec(B). Then V ×Z Spec(A′) = Spec(C) is
affine as Z is separated. Note that B → C is injective as V is the scheme theoretic
image of V ×Z Spec(A′) → V by Lemma 49.16.3. On the other hand, A′ → C
is étale as corresponds to the base change of V → Z. Since A′ is a torsion free
A-module, the flatness of A′ → C implies C is a torsion free A-module, hence B is
a torsion freee A-module. Note that being torsion free as an A-module is equivalent
to being flat (More on Algebra, Lemma 15.15.4). Next, we write

V ×Z V = Spec(B′)

Note that the two ring maps B → B′ are étale as V → Z is étale. The canonical
surjective map B ⊗A B → B′ becomes an isomorphism after tensoring with K
over A because ZK = Spec(K). Howeover, B ⊗A B is torsion free as an A-module
by our remarks above. Thus B′ = B ⊗A B. It follows that the base change of
the ring map A → B by the faithfully flat ring map A → B is étale (note that
Spec(B) → Spec(A) is surjective as X → Spec(A) is surjective). Hence A → B is
étale (Descent, Lemma 34.19.27), in other words, V → X is étale. Since we have
V ×Z V = V ×Spec(A) V we conclude that Z = Spec(A) as algebraic spaces (for
example by Spaces, Lemma 47.9.1) and the proof is complete. �

Lemma 49.38.5. Let S be a scheme. Let f : X → Y be a separated morphism of
algebraic spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuation criterion as in Definition
49.38.1,

(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y
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where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 25.20.3.

Proof. We have to show that (1) implies (2). Suppose given a commutative dia-
gram

Spec(K) //

��

X

��
Spec(A) // Y

as in part (2). By (1) there exists a commutative diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 49.38.1 with K ⊂ K ′ arbitrary. By Lemma 49.38.4 we can find a
morphism Spec(A)→ X fitting into the diagram, i.e., (2) holds. �

Example 49.38.6. Consider the algebraic spaceX constructed in Spaces, Example
47.14.2. Recall that it is the affine line with zero doubled in a Galois twisted relative
to a degree two Galois extension k ⊂ k′. As such it comes with a morphism

π : X −→ S = A1
k

which is quasi-compact. We claim that π is universally closed. Namely, after base
change by Spec(k′)→ Spec(k) the morphism π is identified with the morphism

affine line with zero doubled −→ affine line

which is universally closed (some details omitted). Since the morphism Spec(k′)→
Spec(k) is universally closed and surjective, a diagram chase shows that π is uni-
versally closed. On the other hand, consider the diagram

Spec(k((x))) //

��

X

π

��
Spec(k[[x]]) //

99

A1
k

Since the unique point of X above 0 ∈ A1
k corresponds to a monomorphism

Spec(k′) → X it is clear there cannot exist a dotted arrow! This shows that a
finite separable field extension is needed in general.

Lemma 49.38.7. The base change of a morphism of algebraic spaces which satis-
fies the existence part of (resp. uniqueness part of) the valuative criterion by any
morphism of algebraic spaces satisfies the existence part of (resp. uniqueness part
of) the valuative criterion.

Proof. Let f : X → Y be a morphism of algebraic spaces over the scheme S. Let
Z → Y be any morphism of algebraic spaces over S. Consider a solid commutative
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diagram of the following shape

Spec(K) //

��

Z ×Y X //

��

X

��
Spec(A) //

99 44

Z // Y

Then the set of north-west dotted arrows making the diagram commute is in 1-1
correspondence with the set of west-north-west dotted arrows making the diagram
commute. This proves the lemma in the case of “uniqueness”. For the existence
part, assume f satisfies the existence part of the valuative criterion. If we are
given a solid commutative diagram as above, then by assumption there exists an
extension K ⊂ K ′ of fields and a valuation ring A′ ⊂ K ′ dominating A and a
morphism Spec(A′)→ X fitting into the following commutative diagram

Spec(K ′) //

��

Spec(K) // Z ×Y X // X

��
Spec(A′) //

22

Spec(A) // Z // Y

And by the remarks above the skew arrow corresponds to an arrow Spec(A′) →
Z ×Y X as desired. �

Lemma 49.38.8. The composition of two morphisms of algebraic spaces which sat-
isfy the (existence part of, resp. uniqueness part of) the valuative criterion satisfies
the (existence part of, resp. uniqueness part of) the valuative criterion.

Proof. Let f : X → Y , g : Y → Z be morphisms of algebraic spaces over the
scheme S. Consider a solid commutative diagram of the following shape

Spec(K)

��

// X

f

��
Y

g

��
Spec(A) //

;;

DD

Z

If we have the uniqueness part for g, then there exists at most one north-west
dotted arrow making the diagram commute. If we also have the uniqueness part
for f , then we have at most one north-north-west dotted arrow making the diagram
commute. The proof in the existence case comes from contemplating the following
diagram

Spec(K ′′) //

��

Spec(K ′) // Spec(K) // X

f

��
Y

g

��
Spec(A′′) //

55

Spec(A′) //

44

Spec(A) // Z
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Namely, the existence part for g gives us the extension K ′, the valuation ring A′

and the arrow Spec(A′) → Y , whereupon the existence part for f gives us the
extension K ′′, the valuation ring A′′ and the arrow Spec(A′′)→ X. �

49.39. Valuative criterion for universal closedness

The existence part of the valuative criterion implies universal closedness for quasi-
compact morphisms, see Lemma 49.39.1. In the case of schemes, this is an “if and
only if” statement, but for morphisms of algebraic spaces this is wrong. Example
49.9.6 shows that A1

k/Z → Spec(k) is universally closed, but it is easy to see that
the existence part of the valuative criterion fails. We revisit this topic in Decent
Spaces, Section 50.14 and show the converse holds if the source of the morphism is
a decent space (see also Decent Spaces, Lemma 50.15.11 for a relative version).

Lemma 49.39.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is quasi-compact, and
(2) f satisfies the existence part of the valuative criterion.

Then f is universally closed.

Proof. By Lemmas 49.8.3 and 49.38.7 properties (1) and (2) are preserved under
any base change. By Lemma 49.9.5 we only have to show that T ×Y X → T is
universally closed, whenever T is an affine scheme over S mapping into Y . Hence it
suffices to prove: If Y is an affine scheme, f : X → Y is quasi-compact and satisfies
the existence part of the valuative criterion, then f : |X| → |Y | is closed. In this
situation X is a quasi-compact algebraic space. By Properties of Spaces, Lemma
48.6.3 there exists an affine scheme U and a surjective étale morphism ϕ : U → X.
Let T ⊂ |X| closed. The inverse image ϕ−1(T ) ⊂ U is closed, and hence is the set
of points of an affine closed subscheme Z ⊂ U . Thus, by Algebra, Lemma 10.40.5
we see that f(T ) = f(ϕ(|Z|)) ⊂ |Y | is closed if it is closed under specialization.

Let y′  y be a specialization in Y with y′ ∈ f(T ). Choose a point x′ ∈ T ⊂ |X|
mapping to y′ under f . We may represent x′ by a morphism Spec(K) → X for
some field K. Thus we have the following diagram

Spec(K)
x′
//

��

X

f

��
Spec(OY,y) // Y,

see Schemes, Section 25.13 for the existence of the left vertical map. Choose a
valuation ring A ⊂ K dominating the image of the ring map OY,y → K (this is
possible since the image is a local ring and not a field as y′ 6= y, see Algebra,
Lemma 10.48.2). By assumption there exists a field extension K ⊂ K ′ and a
valuation ring A′ ⊂ K ′ dominating A, and a morphism Spec(A′) → X fitting into
the commutative diagram. Since A′ dominates A, and A dominates OY,y we see
that the closed point of Spec(A′) maps to a point x ∈ X with f(x) = y which is a
specialization of x′. Hence x ∈ T as T is closed, and hence y ∈ f(T ) as desired. �

Lemma 49.39.2. Let S be a scheme. Let f : X → Y be a flat morphism. Let
Spec(A) → Y be a morphism where A is a valuation ring. If the closed point of
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Spec(A) maps to a point of |Y | in the image of |X| → |Y |, then there exists a
commutative diagram

Spec(A′) //

��

X

��
Spec(A) // Y

where A→ A′ is a local ring map of valuation rings.

Proof. Omitted. �

Lemma 49.39.3. Let S be a scheme. Let f : X → Y and h : U → Y be morphisms
of algebraic spaces over S. If

(1) f and h are quasi-compact,
(2) |h|(|U |) is dense in |X|, and

given any commutative solid diagram

Spec(K) //

��

U // X

��
Spec(A) //

66

Y

where A is a valuation ring with field of fractions K

(3) there exists at most one dotted arrow making the diagram commute, and
(4) there exists an extension K ⊂ K ′ of fields, a valuation ring A′ ⊂ K ′

dominating A and a morphism Spec(A′) → X such that the following
diagram commutes

Spec(K ′) //

��

Spec(K) // U // X

��
Spec(A′) //

33

Spec(A) // Y

then f is universally closed. If moreover

(5) f is quasi-separated

then f is separated and universally closed.

Proof. Assume (1), (2), (3), and (4). We will verify the existence part of the
valuative criterion for f which will imply f is universally closed by Lemma 49.39.1.
To do this, consider a commutative diagram

(49.39.3.1)

Spec(K) //

��

X

��
Spec(A) // Y

where A is a valuation ring andK is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X, and S by their respective
reductions by Properties of Spaces, Lemma 48.9.4. In this case the assumption
that h(U) is dense means that the scheme theoretic image of h : U → X is X, see
Lemma 49.16.4.
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Reduction to the case Y affine. Choose an étale morphism Spec(R) → Y such
that the closed point of Spec(A) maps to an element of Im(|Spec(R)| → |Y |). By
Lemma 49.39.2 we can find a local ring map A → A′ of valuation rings and a
morphism Spec(A′)→ Spec(R) fitting into a commutative diagram

Spec(A′) //

��

Spec(R)

��
Spec(A) // Y

Since in Definition 49.38.1 we allow for extensions of valuation rings it is clear that
we may replace A by A′, Y by Spec(R), X by X×Y Spec(R) and U by U×Y Spec(R).

From now on we assume that Y = Spec(R) is an affine scheme. Let Spec(B)→ X
be an étale morphism from an affine scheme such that the morphism Spec(K)→ X
is in the image of |Spec(B)| → |X|. Since we may replace K by an extension
K ′ ⊃ K and A by a valuation ring A′ ⊂ K ′ dominating A (which exists by Algebra,
Lemma 10.48.2), we may assume the morphism Spec(K) → X factors through
Spec(B) (by definition of |X|). In other words, we may think of K as a B-algebra.
Choose a polynomial algebra P over B and a B-algebra surjection P → K. Then
Spec(P )→ X is flat as a composition Spec(P )→ Spec(B)→ X. Hence the scheme
theoretic image of the morphism U ×X Spec(P )→ Spec(P ) is Spec(P ) by Lemma
49.28.12. By Lemma 49.16.5 we can find a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed
point of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra
map ϕ : K → A′/mA′ . Choose a valuation ring A′′ ⊂ A′/mA′ dominating ϕ(A)
with field of fractions K ′′ = A′/mA′ (Algebra, Lemma 10.48.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.

which is a valuation ring by Algebra, Lemma 10.48.9. As C is an R-algebra with
fraction field K ′, we obtain a solid commutative diagram

Spec(K ′1) //

��

Spec(K ′) //

��

U // X

��
Spec(C1) //

33

Spec(C) // Y

as in the statement of the lemma. Thus assumption (4) produces C → C1 and the
dotted arrows making the diagram commute. Let A′1 = (C1)p be the localization
of C1 at a prime p ⊂ C1 lying over mA′ ⊂ C. Since C → C1 is flat by More on
Algebra, Lemma 15.15.4 such a prime p exists by Algebra, Lemmas 10.38.16 and
10.38.15. Note that A′ is the localization of C at mA′ and that A′1 is a valuation
ring (Algebra, Lemma 10.48.8). In other words, A′ → A′1 is a local ring map of
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valuation rings. Assumption (3) implies

Spec(A′1) //

��

Spec(C1) // X

Spec(A′) // Spec(P ) // Spec(B)

OO

commutes. Hence the restriction of the morphism Spec(C1) → X to Spec(C1/p)
restricts to the composition

Spec(κ(p))→ Spec(A′/mA′) = Spec(K ′′)→ Spec(K)→ X

on the generic point of Spec(C1/p). Moreover, C1/p is a valuation ring (Alge-
bra, Lemma 10.48.8) dominating A′′ which dominates A. Thus the morphism
Spec(C1/p) → X witnesses the existence part of the valuative criterion for the
diagram (49.39.3.1) as desired.

Next, suppose that (5) is satisfied as well, i.e., the morphism ∆ : X → X ×S X
is quasi-compact. In this case assumptions (1) – (4) hold for h and ∆. Hence the
first part of the proof shows that ∆ is universally closed. By Lemma 49.37.9 we
conclude that f is separated. �

49.40. Valuative criterion of separatedness

Lemma 49.40.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated, then f satisfies the uniqueness part of the valuative
criterion.

Proof. Let a diagram as in Definition 49.38.1 be given. Suppose there are two
distinct morphisms a, b : Spec(A)→ X fitting into the diagram. Let Z ⊂ Spec(A)
be the equalizer of a and b. Then Z = Spec(A)×(a,b),X×YX,∆ X. If f is separated,
then ∆ is a closed immersion, and this is a closed subscheme of Spec(A). By
assumption it contains the generic point of Spec(A). Since A is a domain this
implies Z = Spec(A). Hence a = b as desired. �

Lemma 49.40.2 (Valuative criterion separatedness). Let S be a scheme. Let f :
X → Y be a morphism of algebraic spaces over S. Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.

Proof. Assumption (1) means ∆X/Y is quasi-compact. We claim the morphism
∆X/Y : X → X ×Y X satisfies the existence part of the valuative criterion. Let a
solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×Y X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→
X over Y . By assumption (2) we see that a = b. Hence using a as the dotted arrow
works. Hence Lemma 49.39.1 applies, and we see that ∆X/Y is universally closed.
Since always ∆X/Y is locally of finite type and separated, we conclude from More on
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Morphisms, Lemma 36.31.5 that ∆X/Y is a finite morphism (also, use the general
principle of Spaces, Lemma 47.5.8). At this point ∆X/Y is a representable, finite
monomorphism, hence a closed immersion by Morphisms, Lemma 28.44.13. �

49.41. Integral and finite morphisms

We have already defined in Section 49.3 what it means for a representable morphism
of algebraic spaces to be integral (resp. finite).

Lemma 49.41.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is integral (resp. finite) if and only if for all
affine schemes Z and morphisms Z → Y the scheme X ×Y Z is affine and integral
(resp. finite) over Z.

Proof. This follows directly from the definition of an integral (resp. finite) mor-
phism of schemes (Morphisms, Definition 28.44.1). �

This clears the way for the following definition.

Definition 49.41.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say that f is integral if for every affine scheme Z and morphisms
Z → Y the algebraic space X ×Y Z is representable by an affine scheme
integral over Z.

(2) We say that f is finite if for every affine scheme Z and morphisms Z → Y
the algebraic space X×Y Z is representable by an affine scheme finite over
Z.

Lemma 49.41.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and integral (resp. finite),
(2) f is integral (resp. finite),
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is integral (resp. finite), and
(4) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is integral (resp. finite).

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to
be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 48.6.1.
Assume V → Y is as in (3). Then for every affine open W of V we see that W×Y X
is an affine open of V ×Y X. Hence by Properties of Spaces, Lemma 48.10.1 we
conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine.
This means we can apply Spaces, Lemma 47.11.3 because the class of integral (resp.
finite) morphisms satisfies all the required properties (see Morphisms, Lemmas
28.44.6 and Descent, Lemmas 34.19.20, 34.19.21, and 34.33.1). The conclusion of
applying this lemma is that f is representable and integral (resp. finite), i.e., (1)
holds.

The equivalence of (1) and (4) follows from the fact that being integral (resp. finite)
is Zariski local on the target (the reference above shows that being integral or finite
is in fact fpqc local on the target). �
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Lemma 49.41.4. The composition of integral (resp. finite) morphisms is integral
(resp. finite).

Proof. Omitted. �

Lemma 49.41.5. The base change of an integral (resp. finite) morphism is integral
(resp. finite).

Proof. Omitted. �

Lemma 49.41.6. A finite morphism of algebraic spaces is integral. An integral
morphism of algebraic spaces which is locally of finite type is finite.

Proof. In both cases the morphism is representable, and you can check the condi-
tion after a base change by an affine scheme mapping into Y , see Lemmas 49.41.3.
Hence this lemma follows from the same lemma for the case of schemes, see Mor-
phisms, Lemma 28.44.4. �

Lemma 49.41.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. In both cases the morphism is representable, and you can check the condi-
tion after a base change by an affine scheme mapping into Y , see Lemmas 49.41.3,
49.20.3, and 49.9.5. Hence the result follows from Morphisms, Lemma 28.44.7. �

Lemma 49.41.8. A finite morphism of algebraic spaces is quasi-finite.

Proof. Let f : X → Y be a morphism of algebraic spaces. By Definition 49.41.2
and Lemmas 49.8.7 and 49.26.6 both properties may be checked after base change
to an affine over Y , i.e., we may assume Y affine. If f is finite then X is a scheme.
Hence the result follows from the corresponding result for schemes, see Morphisms,
Lemma 28.44.9. �

Lemma 49.41.9. A finite morphism of algebraic spaces is proper.

Proof. Let f : X → Y be a morphism of algebraic spaces. We think of proper
as synonymous to “finite type, separated, and universally closed”. By Definition
49.41.2 and Lemmas 49.23.4, 49.4.12, and 49.9.5 both properties may be checked
after base change to an affine over Y , i.e., we may assume Y affine. If f is finite
then X is a scheme. Hence the result follows from the corresponding result for
schemes, see Morphisms, Lemma 28.44.10. �

Lemma 49.41.10. A closed immersion is finite (and a fortiori integral).

Proof. Omitted. �

Lemma 49.41.11. Let S be a scheme. Let f : X → Y and g : Y → Z be
morphisms of algebraic spaces over S.

(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.
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Proof. Assume g ◦ f is finite (resp. integral) and g separated. The base change
X ×Z Y → Y is finite (resp. integral) by Lemma 49.41.5. The morphism X →
X ×Z Y is a closed immersion as Y → Z is separated, see Lemma 49.4.7. A closed
immersion is finite (resp. integral), see Lemma 49.41.10. The composition of finite
(resp. integral) morphisms is finite (resp. integral), see Lemma 49.41.4. Thus we
win. �

49.42. Finite locally free morphisms

We have already defined in Section 49.3 what it means for a representable morphism
of algebraic spaces to be finite locally free.

Lemma 49.42.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is finite locally free if and only if f is affine and
the sheaf f∗OX is a finite locally free OY -module.

Proof. Assume f is finite locally free (as defined in Section 49.3). This means
that for every morphism V → Y whose source is a scheme the base change f ′ :
V ×Y X → V is a finite locally free morphism of schemes. This in turn means (by
the definition of a finite locally free morphism of schemes) that f ′∗OV×YX is a finite
locally free OV -module. We may choose V → Y to be surjective and étale. By
Properties of Spaces, Lemma 48.24.2 we conclude the restriction of f∗OX to V is
finite locally free. Hence by Modules on Sites, Lemma 18.23.3 applied to the sheaf
f∗OX on Yspaces,étale we conclude that f∗OX is finite locally free.

Conversely, assume f is affine and that f∗OX is a finite locally free OY -module.
Let V be a scheme, and let V → Y be a surjective étale morphism. Again by
Properties of Spaces, Lemma 48.24.2 we see that f ′∗OV×YX is finite locally free.
Hence f ′ : V ×Y X → V is finite locally free (as it is also affine). By Spaces,
Lemma 47.11.3 we conclude that f is finite locally free (use Morphisms, Lemma
28.46.4 Descent, Lemmas 34.19.28 and 34.33.1). Thus we win. �

This clears the way for the following definition.

Definition 49.42.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. We say that f is finite locally free if f is affine and f∗OX
is a finite locally free OY -module. In this case we say f is has rank or degree d if
the sheaf f∗OX is finite locally free of rank d.

Lemma 49.42.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and finite locally free,
(2) f is finite locally free,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is finite locally free, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each morphism f−1(Yi)→

Yi is finite locally free.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to
be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 48.6.1.
Assume V → Y is as in (3). Then for every affine open W of V we see that W×Y X
is an affine open of V ×Y X. Hence by Properties of Spaces, Lemma 48.10.1 we
conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine.

http://stacks.math.columbia.edu/tag/03ZU
http://stacks.math.columbia.edu/tag/03ZV
http://stacks.math.columbia.edu/tag/03ZW


49.43. NORMALIZATION OF ALGEBRAIC SPACES 3267

This means we can apply Spaces, Lemma 47.11.3 because the class of finite locally
free morphisms satisfies all the required properties (see Morphisms, Lemma 28.46.4
Descent, Lemmas 34.19.28 and 34.33.1). The conclusion of applying this lemma is
that f is representable and finite locally free, i.e., (1) holds.

The equivalence of (1) and (4) follows from the fact that being finite locally free is
Zariski local on the target (the reference above shows that being finite locally free
is in fact fpqc local on the target). �

Lemma 49.42.4. The composition of finite locally free morphisms is finite locally
free.

Proof. Omitted. �

Lemma 49.42.5. The base change of a finite locally free morphism is finite locally
free.

Proof. Omitted. �

Lemma 49.42.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If Y is locally Noetherian these are also equivalent to

(3) f is finite and flat.

Proof. In each of the three cases the morphism is representable and you can check
the property after base change by a surjective étale morphism V → Y , see Lemmas
49.41.3, 49.42.3, 49.28.5, and 49.27.4. If Y is locally Noetherian, then V is locally
Noetherian. Hence the result follows from the corresponding result in the schemes
case, see Morphisms, Lemma 28.46.2. �

49.43. Normalization of algebraic spaces

This section is the analogue of Morphisms, Section 28.48.

Lemma 49.43.1. Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent sheaf of OX-algebras. There exists a quasi-coherent sheaf of OX-
algebras A′ ⊂ A such that for any affine object U of Xétale the ring A′(U) ⊂ A(U)
is the integral closure of OX(U) in A(U).

Proof. By Properties of Spaces, Lemma 48.15.5 it suffices to prove that the rule
given above defines a quasi-coherent module on Xaffine,étale. To see this it suffices
to show the following: Let U1 → U2 be a morphism of affine objects of Xétale.
Say Ui = Spec(Ri). Say A|(U1)étale is the quasi-coherent sheaf associated to the
R2-algebra A. Let A′ ⊂ A be the integral closure of R2 in A. Then A′ ⊗R2

R1 is
the integral closure of R1 in A⊗R2

R1. This is Algebra, Lemma 10.140.2. �

Definition 49.43.2. Let S be a scheme. Let X be an algebraic space over S. Let
A be a quasi-coherent sheaf of OX -algebras. The integral closure of OX in A is the
quasi-coherent OX -subalgebra A′ ⊂ A constructed in Lemma 49.43.1 above.
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We will apply this in particular when A = f∗OY for a quasi-compact and quasi-
separated morphism of algebraic spaces f : Y → X (see Lemma 49.11.2). We can
then take the relative spectrum of the quasi-coherent OX -algebra (Lemma 49.20.7)
to obtain the normalization of X in Y .

Definition 49.43.3. Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let O′ be the integral closure
of OX in f∗OY . The normalization of X in Y is the morphism of algebraic spaces

ν : X ′ = Spec
X

(O′)→ X

over S. It comes equipped with a natural factorization

Y
f ′−→ X ′

ν−→ X

of the initial morphism f .

To get the factorization, use Remark 49.20.9 and functoriality of the Spec construc-
tion.

Lemma 49.43.4. Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let Y → X ′ → X be the
normalization of X in Y .

(1) If W → X is an étale morphism of algebraic spaces over S, then W ×XX ′
is the normalization of W in W ×X Y .

(2) If Y and X are representable, then Y ′ is representable and is canonically
isomorphic to the normalization of the scheme X in the scheme Y as
constructed in Morphisms, Section 28.48.

Proof. It is immediate from the construction that the formation of the normaliza-
tion of X in Y commutes with étale base change, i.e., part (1) holds. On the other
hand, ifX and Y are schemes, then for U ⊂ X affine open, f∗OY (U) = OY (f−1(U))
and hence ν−1(U) is the spectrum of exactly the same ring as we get in the corre-
sponding construction for schemes. �

Here is a characterization of this construction.

Lemma 49.43.5. Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. The factorization f = ν ◦ f ′,
where ν : X ′ → X is the normalization of X in Y is characterized by the following
two properties:

(1) the morphism ν is integral, and
(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a

commutative diagram

Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for a unique morphism h : X ′ → Z.

Moreover, in (2) the morphism h : X ′ → Z is the normalization of Z in Y .
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Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 49.43.3.
The morphism ν is integral by construction, which proves (1). Assume given a
factorization f = π ◦ g with π : Z → X integral as in (2). By Definition 49.41.2
π is affine, and hence Z is the relative spectrum of a quasi-coherent sheaf of OX -
algebras B. The morphism g : X → Z corresponds to a map of OX -algebras
χ : B → f∗OY . Since B(U) is integral over OX(U) for every affine U étale over
X (by Definition 49.41.2) we see from Lemma 49.43.1 that χ(B) ⊂ O′. By the
functoriality of the relative spectrum Lemma 49.20.7 this provides us with a unique
morphism h : X ′ → Z. We omit the verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it char-
acterizes it as an initial object in a category. The morphism h in (2) is integral by
Lemma 49.41.11. Given a factorization g = π′ ◦g′ with π′ : Z ′ → Z integral, we get
a factorization f = (π ◦ π′) ◦ g′ and we get a morphism h′ : X ′ → Z ′. Uniqueness
implies that π′◦h′ = h. Hence the characterization (1), (2) applies to the morphism
h : X ′ → Z which gives the last statement of the lemma. �

Lemma 49.43.6. Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Suppose that Y = Y1

∐
Y2 is a

disjoint union of two algebraic spaces. Write fi = f |Yi . Let X ′i be the normalization
of X in Yi. Then X ′1

∐
X ′2 is the normalization of X in Y .

Proof. Omitted. �

Lemma 49.43.7. Let S be a scheme. Let f : Y → X be an integral morphism of
algebraic spaces over S. Then the integral closure of X in Y is equal to Y .

Proof. Omitted. �

Lemma 49.43.8. Let S be a scheme. Let f : X → Y be a quasi-compact, quasi-
separated and universally closed morphisms of algebraic spaces over S. Then f∗OX
is integral over OY . In other words, the normalization of Y in X is equal to the
factorization

X −→ Spec
Y

(f∗OX) −→ Y

of Remark 49.20.9.

Proof. The question is étale local on Y , hence we may reduce to the case where
Y = Spec(R) is affine. Let h ∈ Γ(X,OX). We have to show that h satisfies a
monic equation over R. Think of h as a morphism as in the following commutative
diagram

X
h

//

f ��

A1
Y

~~
Y

Let Z ⊂ A1
Y be the scheme theoretic image of h, see Definition 49.16.2. The

morphism h is quasi-compact as f is quasi-compact and A1
Y → Y is separated,

see Lemma 49.8.8. By Lemma 49.16.3 the morphism X → Z has dense image
on underlying topological spaces. By Lemma 49.37.6 the morphism X → Z is
closed. Hence h(X) = Z (set theoretically). Thus we can use Lemma 49.37.7 to
conclude that Z → Y is universally closed (and even proper). Since Z ⊂ A1

Y , we
see that Z → Y is affine and proper, hence integral by Lemma 49.41.7. Writing
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A1
Y = Spec(R[T ]) we conclude that the ideal I ⊂ R[T ] of Z contains a monic

polynomial P (T ) ∈ R[T ]. Hence P (h) = 0 and we win. �

Lemma 49.43.9. Let S be a scheme. Let X be an algebraic space over S. Let U be
a scheme and let U → X be a surjective étale morphism. Assume that every quasi-
compact open of U has finitely many irreducible components. Then there exists an
integral morphism of algebraic spaces

Xν −→ X

such that Xν ×X U is the normalization of U .

Proof. Set R = U ×X U with projections s, t : R→ U and j = (t, s) : R→ U ×S U
so that X = U/R, see Spaces, Lemma 47.9.1. The assumption on U means that the
normalization Uν of U is defined, see Morphisms, Definition 28.48.12. By More on
Morphisms, Lemma 36.14.3 taking normalization commutes with étale morphisms
of schemes. Thus we see that the normalization Rν of R is isomorphic to both
R ×s,U Uν and Uν ×U,t R. Thus we obtain two étale morphisms sν : Rν → Uν

and tν : Rν → Uν of schemes. The induced morphism jν : Rν → Uν ×S Uν is
a monomorphism as Rν is a subscheme of the restriction of R to Uν . A formal
computation with fibre products shows that Rν ×sν ,Uν ,tν Rν is the normalization
of R×s,U,tR. Hence the (étale) morphism c : R×s,U,tR→ R extends to cν as well.
Combined we see that we obtain an étale equivalence relation. Setting Xν = Uν/Rν

(Spaces, Theorem 47.10.5) we win by Groupoids, Lemma 38.18.7. �

49.44. Separated, locally quasi-finite morphisms

In this section we prove that an algebraic space which is locally quasi-finite and
separated over a scheme, is representable. This implies that a separated and locally
quasi-finite morphism is representable (see Lemma 49.45.1). But first... a lemma
(which will be obsoleted by Proposition 49.44.2).

Lemma 49.44.1. Let S be a scheme. Consider a commutative diagram

V ′ //

$$

T ′ ×T X //

��

X

��
T ′ // T

of algebraic spaces over S. Assume

(1) T ′ → T is an étale morphism of affine schemes,
(2) X → T is a separated, locally quasi-finite morphism,
(3) V ′ is an open subspace of T ′ ×T X, and
(4) V ′ → T ′ is quasi-affine.

In this situation the image U of V ′ in X is a quasi-compact open subspace of X
which is representable.

Proof. We first make some trivial observations. Note that V ′ is representable by
Lemma 49.21.3. It is also quasi-compact (as a quasi-affine scheme over an affine
scheme, see Morphisms, Lemma 28.14.2). Since T ′ ×T X → X is étale (Properties
of Spaces, Lemma 48.13.5) the map |T ′ ×T X| → |X| is open, see Properties of
Spaces, Lemma 48.13.7. Let U ⊂ X be the open subspace corresponding to the
image of |V ′|, see Properties of Spaces, Lemma 48.4.8. As |V ′| is quasi-compact
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we see that |U | is quasi-compact, hence U is a quasi-compact algebraic space, by
Properties of Spaces, Lemma 48.5.2.

By Morphisms, Lemma 28.50.8 the morphism T ′ → T is universally bounded.
Hence we can do induction on the integer n bounding the degree of the fibres of
T ′ → T , see Morphisms, Lemma 28.50.7 for a description of this integer in the case
of an étale morphism. If n = 1, then T ′ → T is an open immersion (see Étale
Morphisms, Theorem 40.14.1), and the result is clear. Assume n > 1.

Consider the affine scheme T ′′ = T ′ ×T T ′. As T ′ → T is étale we have a de-
composition (into open and closed affine subschemes) T ′′ = ∆(T ′) q T ∗. Namely
∆ = ∆T ′/T is open by Morphisms, Lemma 28.36.13 and closed because T ′ → T
is separated as a morphism of affines. As a base change the degrees of the fibres
of the second projection pr1 : T ′ ×T T ′ → T ′ are bounded by n, see Morphisms,
Lemma 28.50.4. On the other hand, pr1|∆(T ′) : ∆(T ′)→ T ′ is an isomorphism and
every fibre has exactly one point. Thus, on applying Morphisms, Lemma 28.50.7 we
conclude the degrees of the fibres of the restriction pr1|T∗ : T ∗ → T ′ are bounded
by n− 1. Hence the induction hypothesis applied to the diagram

p−1
0 (V ′) ∩X∗ //

%%

X∗
p1|X∗

//

��

X ′

��
T ∗

pr1|T∗ // T ′

gives that p1(p−1
0 (V ′) ∩X∗) is a quasi-compact scheme. Here we set X ′′ = T ′′ ×T

X, X∗ = T ∗ ×T X, and X ′ = T ′ ×T X, and p0, p1 : X ′′ → X ′ are the base
changes of pr0,pr1. Most of the hypotheses of the lemma imply by base change the
corresponding hypothesis for the diagram above. For example p−1

0 (V ′) = T ′′×T ′ V ′
is a scheme quasi-affine over T ′′ as a base change. Some verifications omitted.

By Properties of Spaces, Lemma 48.10.1 we conclude that

p1(p−1
0 (V ′)) = V ′ ∪ p1(p−1

0 (V ′) ∩X∗)

is a quasi-compact scheme. Moreover, it is clear that p1(p−1
0 (V ′)) is the inverse

image of the quasi-compact open subspace U ⊂ X discussed in the first paragraph
of the proof. In other words, T ′ ×T U is a scheme! Note that T ′ ×T U is quasi-
compact and separated and locally quasi-finite over T ′, as T ′ ×T X → T ′ is locally
quasi-finite and separated being a base change of the original morphism X → T
(see Lemmas 49.4.4 and 49.26.4). This implies by More on Morphisms, Lemma
36.31.2 that T ′ ×T U → T ′ is quasi-affine.

By Descent, Lemma 34.35.1 this gives a descent datum on T ′ ×T U/T ′ relative to
the étale covering {T ′ →W}, where W ⊂ T is the image of the morphism T ′ → T .
Because U ′ is quasi-affine over T ′ we see from Descent, Lemma 34.34.1 that this
datum is effective, and by the last part of Descent, Lemma 34.35.1 this implies that
U is a scheme as desired. Some minor details omitted. �

Proposition 49.44.2. Let S be a scheme. Let f : X → T be a morphism of
algebraic spaces over S. Assume

(1) T is representable,
(2) f is locally quasi-finite, and
(3) f is separated.
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Then X is representable.

Proof. Let T =
⋃
Ti be an affine open covering of the scheme T . If we can show

that the open subspaces Xi = f−1(Ti) are representable, then X is representable,
see Properties of Spaces, Lemma 48.10.1. Note that Xi = Ti×T X and that locally
quasi-finite and separated are both stable under base change, see Lemmas 49.4.4
and 49.26.4. Hence we may assume T is an affine scheme.

By Properties of Spaces, Lemma 48.6.2 there exists a Zariski covering X =
⋃
Xi

such that each Xi has a surjective étale covering by an affine scheme. By Prop-
erties of Spaces, Lemma 48.10.1 again it suffices to prove the proposition for each
Xi. Hence we may assume there exists an affine scheme U and a surjective étale
morphism U → X. This reduces us to the situation in the next paragraph.

Assume we have

U −→ X −→ T

where U and T are affine schemes, U → X is étale surjective, and X → T is
separated and locally quasi-finite. By Lemmas 49.36.5 and 49.26.3 the morphism
U → T is locally quasi-finite. Since U and T are affine it is quasi-finite. Set
R = U ×X U . Then X = U/R, see Spaces, Lemma 47.9.1. As X → T is separated
the morphism R→ U ×T U is a closed immersion, see Lemma 49.4.5. In particular
R is an affine scheme also. As U → X is étale the projection morphisms t, s : R→ U
are étale as well. In particular s and t are quasi-finite, flat and of finite presentation
(see Morphisms, Lemmas 28.37.6, 28.37.12 and 28.37.11).

Let (U,R, s, t, c) be the groupoid associated to the étale equivalence relation R on
U . Let u ∈ U be a point, and denote p ∈ T its image. We are going to use
More on Groupoids, Lemma 39.12.2 for the groupoid (U,R, s, t, c) over the scheme
T with points p and u as above. By the discussion in the previous paragraph
all the assumptions (1) – (7) of that lemma are satisfied. Hence we get an étale
neighbourhood (T ′, p′)→ (T, p) and disjoint union decompositions

UT ′ = U ′ qW, RT ′ = R′ qW ′

and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), (g), and (h) of the
aforementioned More on Groupoids, Lemma 39.12.2. We may and do assume that
T ′ is affine (after possibly shrinking T ′). Conclusion (h) implies that R′ = U ′×XT ′
U ′ with projection mappings identified with the restrictions of s′ and t′. Thus
(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′R′) of conclusion (g) is an étale equivalence relation.

By Spaces, Lemma 47.10.2 we conclude that U ′/R′ is an open subspace of XT ′ . By
conclusion (d) the schemes U ′, R′ are affine and the morphisms s′|R′ , t′|R′ are finite
étale. Hence Groupoids, Proposition 38.21.8 kicks in and we see that U ′/R′ is an
affine scheme.

We conclude that for every pair of points (u, p) as above we can find an étale
neighbourhood (T ′, p′) → (T, p) with κ(p) = κ(p′) and a point u′ ∈ UT ′ mapping
to u such that the image x′ of u′ in |XT ′ | has an open neighbourhood V ′ in XT ′

which is an affine scheme. We apply Lemma 49.44.1 to obtain an open subspace
W ⊂ X which is a scheme, and which contains x (the image of u in |X|). Since
this works for every x we see that X is a scheme by Properties of Spaces, Lemma
48.10.1. This ends the proof. �



49.46. ZARISKI’S MAIN THEOREM (REPRESENTABLE CASE) 3273

49.45. Applications

An alternative proof of the following lemma is to see it as a consequence of Zariski’s
main theorem for (nonrepresentable) morphisms of algebraic spaces as discussed
in More on Morphisms of Spaces, Section 58.24. Namely, More on Morphisms
of Spaces, Lemma 58.24.2 implies that a quasi-finite and separated morphism of
algebraic spaces is quasi-affine and therefore representable.

Lemma 49.45.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally quasi-finite and separated, then f is representable.

Proof. This is immediate from Proposition 49.44.2 and the fact that being locally
quasi-finite and separated is preserved under any base change, see Lemmas 49.26.4
and 49.4.4. �

Lemma 49.45.2. Let S be a scheme. Let f : X → Y be an étale and universally
injective morphism of algebraic spaces over S. Then f is an open immersion.

Proof. Let T → Y be a morphism from a scheme into Y . If we can show that
X ×Y T → T is an open immersion, then we are done. Since being étale and
being universally injective are properties of morphisms stable under base change
(see Lemmas 49.36.4 and 49.19.5) we may assume that Y is a scheme. Note that
the diagonal ∆X/Y : X → X ×Y X is étale, a monomorphism, and surjective by
Lemma 49.19.2. Hence we see that ∆X/Y is an isomorphism (see Spaces, Lemma
47.5.9), in particular we see that X is separated over Y . It follows that X is a
scheme too, by Proposition 49.44.2. Finally, X → Y is an open immersion by
the fundamental theorem for étale morphisms of schemes, see Étale Morphisms,
Theorem 40.14.1. �

49.46. Zariski’s Main Theorem (representable case)

This is the version you can prove using that normalization commutes with étale
localization. Before we can prove more powerful versions (for non-representable
morphisms) we need to develop more tools. See More on Morphisms of Spaces,
Section 58.24.

Lemma 49.46.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is representable, of finite type, and separated. Let Y ′ be the
normalization of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that

(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. Let W → Y be a surjective étale morphism where W is a scheme. Then
W ×Y X is a scheme as well. By Lemma 49.43.4 the algebraic space W ×Y Y ′ is
representable and is the normalization of the scheme W in the scheme W ×Y X.

http://stacks.math.columbia.edu/tag/0418
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Picture

W ×Y X

(1,f) $$

(1,f ′)

// W ×Y Y ′

(1,ν)zz
W

By More on Morphisms, Lemma 36.31.1 the result of the lemma holds over W . Let
V ′ ⊂W ×Y Y ′ be the open subscheme such that

(1) (1, f ′)−1(V ′)→ V ′ is an isomorphism, and
(2) (1, f ′)−1(V ′) ⊂W ×Y X is the set of points at which (1, f) is quasi-finite.

By Lemma 49.32.7 there is a maximal open set of points U ⊂ X where f is quasi-
finite and W×Y U = (1, f ′)−1(V ′). The morphism f ′|U : U → Y ′ is an open immer-
sion by Lemma 49.12.1 as its base change to W is the isomorphism (1, f ′)−1(V ′)→
V ′ followed by the open immersion V ′ → W ×Y Y ′. Setting U ′ = Im(U → Y ′)
finishes the proof (omitted: the verification that (f ′)−1(U ′) = U). �

In the following lemma we can drop the assumption of being representable as we’ve
shown that a locally quasi-finite separated morphism is representable.

Lemma 49.46.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization
of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. By Lemma 49.45.1 the morphism f is representable. Hence we may apply
Lemma 49.46.1. Thus there exists an open subspace U ′ ⊂ Y ′ such that (f ′)−1(U ′) =
X (!) and X → U ′ is an isomorphism! In other words, f ′ is an open immersion.
Note that f ′ is quasi-compact as f is quasi-compact and ν : Y ′ → Y is separated
(Lemma 49.8.8). Hence for every affine scheme Z and morphism Z → Y the fibre
product Z ×Y X is a quasi-compact open subscheme of the affine scheme Z ×Y Y ′.
Hence f is quasi-affine by definition. �

49.47. Universal homeomorphisms

In Morphisms, Section 28.45 we have shown that a morphism of schemes is a univer-
sal homeomorphism if and only if it is integral, universally injective, and surjective.
In particular the class of universal homeomorphisms of schemes is closed under
composition and arbitrary base change and is fppf local on the base (as this is true
for integral, universally injective, and surjective morphisms). Thus, if we apply the
discussion in Section 49.3 to this notion we see that we know what it means for a
representable morphism of algebraic spaces to be a universal homeomorphism.

Lemma 49.47.1. Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is a universal homeomorphism (as discussed
above) if and only if for every morphism of algebraic spaces Z → Y the base change
map Z ×Y X → Z induces a homeomorphism |Z ×Y X| → |Z|.

http://stacks.math.columbia.edu/tag/0ABS
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Proof. If for every morphism of algebraic spaces Z → Y the base change map Z×Y
X → Z induces a homeomorphism |Z×Y X| → |Z|, then the same is true whenever
Z is a scheme, which formally implies that f is a universal homeomorphism in the
sense of Section 49.3. Conversely, if f is a universal homeomorphism in the sense of
Section 49.3 then X → Y is integral, universally injective and surjective (by Spaces,
Lemma 47.5.8 and Morphisms, Lemma 28.45.3). Hence f is universally closed, see
Lemma 49.41.7 and universally injective and (universally) surjective, i.e., f is a
universal homeomorphism. �

Definition 49.47.2. Let S be a scheme. A morphisms f : X → Y of algebraic
spaces over S is called a universal homeomorphism if and only if for every morphism
of algebraic spaces Z → Y the base change Z×Y X → Z induces a homeomorphism
|Z ×Y X| → |Z|.

This definition does not clash with the pre-existing definition for representable
morphisms of algebraic spaces by our Lemma 49.47.1. For morphisms of algebraic
spaces it is not the case that universal homeomorphisms are always integral.

Example 49.47.3. This is a continuation of Remark 49.19.4. Consider the alge-
braic space X = A1

k/{x ∼ −x | x 6= 0}. There are morphisms

A1
k −→ X −→ A1

k

such that the first arrow is étale surjective, the second arrow is universally injective,
and the composition is the map x 7→ x2. Hence the composition is universally
closed. Thus it follows that the map X → A1

k is a universal homeomorphism, but
X → A1

k is not separated.

Let S be a scheme. Let f : X → Y be a universal homeomorphism of alge-
braic spaces over S. Then f is universally closed, hence is quasi-compact, see
Lemma 49.9.7. But f need not be separated (see example above), and not even
quasi-separated: an example is to take infinite dimensional affine space A∞ =
Spec(k[x1, x2, . . .]) modulo the equivalence relation given by flipping finitely many
signs of nonzero coordinates (details omitted).

Lemma 49.47.4. Let S be a scheme. Let X be an algebraic space over S. The
canonical closed immersion Xred → X (see Properties of Spaces, Definition 48.9.5)
is a universal homeomorphism.

Proof. Omitted. �

We put the following result here as we do not currently have a better place to put
it.

Lemma 49.47.5. Let S be a scheme. Let f : Y → X be a universally injective,
integral morphism of algebraic spaces over S.

(1) The functor

fsmall,∗ : Sh(Yétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to |X| \ f(|Y |) is isomorphic to ∗, and
(2) the functor

fsmall,∗ : Ab(Yétale) −→ Ab(Xétale)

http://stacks.math.columbia.edu/tag/05Z5
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is fully faithful and its essential image is those abelian sheaves on Yétale
whose support is contained in f(|Y |).

In both cases f−1
small is a left inverse to the functor fsmall,∗.

Proof. Since f is integral it is universally closed (Lemma 49.41.7). In particular,
f(|Y |) is a closed subset of |X| and the statements make sense. The rest of the proof

is identical to the proof of Lemma 49.13.5 except that we use Étale Cohomology,
Proposition 44.48.1 instead of Étale Cohomology, Proposition 44.47.4. �
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CHAPTER 50

Decent Algebraic Spaces

50.1. Introduction

In this chapter we talk study “local” properties of general algebraic spaces, i.e.,
those algebraic spaces which aren’t quasi-separated. Quasi-separated algebraic
spaces are studied in [Knu71]. It turns out that essentially new phenomena happen,
especially regarding points and specializations of points, on more general algebraic
spaces. On the other hand, for most basic results on algebraic spaces, one needn’t
worry about these phenomena, which is why we have decided to have this material
in a separate chapter following the standard development of the theory.

50.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

50.3. Universally bounded fibres

We briefly discuss what it means for a morphism from a scheme to an algebraic
space to have universally bounded fibres. Please refer to Morphisms, Section 28.50
for similar definitions and results on morphisms of schemes.

Definition 50.3.1. Let S be a scheme. Let X be an algebraic space over S, and
let U be a scheme over S. Let f : U → X be a morphism over S. We say the fibres
of f are universally bounded1 if there exists an integer n such that for all fields k
and all morphisms Spec(k)→ X the fibre product Spec(k)×X U is a finite scheme
over k whose degree over k is ≤ n.

This definition makes sense because the fibre product Spec(k) ×Y X is a scheme.
Moreover, if Y is a scheme we recover the notion of Morphisms, Definition 28.50.1
by virtue of Morphisms, Lemma 28.50.2.

Lemma 50.3.2. Let S be a scheme. Let X be an algebraic space over S. Let
V → U be a morphism of schemes over S, and let U → X be a morphism from U
to X. If the fibres of V → U and U → X are universally bounded, then so are the
fibres of V → X.

1This is probably nonstandard notation.
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Proof. Let n be an integer which works for V → U , and let m be an integer which
works for U → X in Definition 50.3.1. Let Spec(k) → X be a morphism, where k
is a field. Consider the morphisms

Spec(k)×X V −→ Spec(k)×X U −→ Spec(k).

By assumption the scheme Spec(k)×X U is finite of degree at most m over k, and
n is an integer which bounds the degree of the fibres of the first morphism. Hence
by Morphisms, Lemma 28.50.3 we conclude that Spec(k) ×X V is finite over k of
degree at most nm. �

Lemma 50.3.3. Let S be a scheme. Let Y → X be a representable morphism
of algebraic spaces over S. Let U → X be a morphism from a scheme to X. If
the fibres of U → X are universally bounded, then the fibres of U ×X Y → Y are
universally bounded.

Proof. This is clear from the definition, and properties of fibre products. (Note
that U ×X Y is a scheme as we assumed Y → X representable, so the definition
applies.) �

Lemma 50.3.4. Let S be a scheme. Let g : Y → X be a representable morphism
of algebraic spaces over S. Let f : U → X be a morphism from a scheme towards
X. Let f ′ : U ×X Y → Y be the base change of f . If

Im(|f | : |U | → |X|) ⊂ Im(|g| : |Y | → |X|)

and f ′ has universally bounded fibres, then f has universally bounded fibres.

Proof. Let n ≥ 0 be an integer bounding the degrees of the fibre products Spec(k)×Y
(U ×X Y ) as in Definition 50.3.1 for the morphism f ′. We claim that n works for
f also. Namely, suppose that x : Spec(k) → X is a morphism from the spectrum
of a field. Then either Spec(k)×X U is empty (and there is nothing to prove), or x
is in the image of |f |. By Properties of Spaces, Lemma 48.4.3 and the assumption
of the lemma we see that this means there exists a field extension k ⊂ k′ and a
commutative diagram

Spec(k′) //

��

Y

��
Spec(k) // X

Hence we see that

Spec(k′)×Y (U ×X Y ) = Spec(k′)×Spec(k) (Spec(k)×X U)

Since the scheme Spec(k′) ×Y (U ×X Y ) is assumed finite of degree ≤ n over k′

it follows that also Spec(k) ×X U is finite of degree ≤ n over k as desired. (Some
details omitted.) �

Lemma 50.3.5. Let S be a scheme. Let X be an algebraic space over S. Consider
a commutative diagram

U

g   

f
// V

h~~
X
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where U and V are schemes. If g has universally bounded fibres, and f is surjective
and flat, then also h has universally bounded fibres.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
n ≥ 0 is an integer which bounds the degrees of the schemes Spec(k) ×X U as in
Definition 50.3.1. We claim n also works for h. Let Spec(k) → X be a morphism
from the spectrum of a field to X. Consider the morphism of schemes

Spec(k)×X V −→ Spec(k)×X U

It is flat and surjective. By assumption the scheme on the left is finite of degree
≤ n over Spec(k). It follows from Morphisms, Lemma 28.50.9 that the degree of
the scheme on the right is also bounded by n as desired. �

Lemma 50.3.6. Let S be a scheme. Let X be an algebraic space over S, and let
U be a scheme over S. Let ϕ : U → X be a morphism over S. If the fibres of ϕ are
universally bounded, then there exists an integer n such that each fibre of |U | → |X|
has at most n elements.

Proof. The integer n of Definition 50.3.1 works. Namely, pick x ∈ |X|. Represent
x by a morphism x : Spec(k)→ X. Then we get a commutative diagram

Spec(k)×X U //

��

U

��
Spec(k)

x // X

which shows (via Properties of Spaces, Lemma 48.4.3) that the inverse image of
x in |U | is the image of the top horizontal arrow. Since Spec(k) ×X U is finite of
degree ≤ n over k it has at most n points. �

50.4. Finiteness conditions and points

In this section we elaborate on the question of when points can be represented by
monomorphisms from spectra of fields into the space.

Remark 50.4.1. Before we give the proof of the next lemma let us recall some
facts about étale morphisms of schemes:

(1) An étale morphism is flat and hence generalizations lift along an étale
morphism (Morphisms, Lemmas 28.37.12 and 28.26.8).

(2) An étale morphism is unramified, an unramified morphism is locally quasi-
finite, hence fibres are discrete (Morphisms, Lemmas 28.37.16, 28.36.10,
and 28.21.6).

(3) A quasi-compact étale morphism is quasi-finite and in particular has finite
fibres (Morphisms, Lemmas 28.21.9 and 28.21.10).

(4) An étale scheme over a field k is a disjoint union of spectra of finite
separable field extension of k (Morphisms, Lemma 28.37.7).

For a general discussion of étale morphisms, please see Étale Morphisms, Section
40.11.

Lemma 50.4.2. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:
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(1) there exists a family of schemes Ui and étale morphisms ϕi : Ui → X such
that

∐
ϕi :

∐
Ui → X is surjective, and such that for each i the fibre of

|Ui| → |X| over x is finite, and
(2) for every affine scheme U and étale morphism ϕ : U → X the fibre of
|U | → |X| over x is finite.

Proof. The implication (2) ⇒ (1) is trivial. Let ϕi : Ui → X be a family of étale
morphisms as in (1). Let ϕ : U → X be an étale morphism from an affine scheme
towards X. Consider the fibre product diagrams

U ×X Ui pi
//

qi

��

Ui

ϕi

��
U

ϕ // X

∐
U ×X Ui ∐

pi

//

∐
qi

��

∐
Ui∐

ϕi

��
U

ϕ // X

Since qi is étale it is open (see Remark 50.4.1). Moreover, the morphism
∐
qi is

surjective. Hence there exist finitely many indices i1, . . . , in and a quasi-compact
opens Wij ⊂ U ×X Uij which surject onto U . The morphism pi is étale, hence
locally quasi-finite (see remark on étale morphisms above). Thus we may apply
Morphisms, Lemma 28.50.8 to see the fibres of pij |Wij

: Wij → Ui are finite. Hence

by Properties of Spaces, Lemma 48.4.3 and the assumption on ϕi we conclude that
the fibre of ϕ over x is finite. In other words (2) holds. �

Lemma 50.4.3. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) there exists a scheme U , an étale morphism ϕ : U → X, and points
u, u′ ∈ U mapping to x such that setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |

over (u, u′) is finite,
(2) for every scheme U , étale morphism ϕ : U → X and any points u, u′ ∈ U

mapping to x setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |

over (u, u′) is finite,
(3) there exists a morphism Spec(k) → X with k a field in the equivalence

class of x such that the projections Spec(k) ×X Spec(k) → Spec(k) are
étale and quasi-compact, and

(4) there exists a monomorphism Spec(k) → X with k a field in the equiva-
lence class of x.

Proof. Assume (1), i.e., let ϕ : U → X be an étale morphism from a scheme
towards X, and let u, u′ be points of U lying over x such that the fibre of |R| →
|U | ×|X| |U | over (u, u′) is a finite set. In this proof we think of a point u =
Spec(κ(u)) as a scheme. Note that u → U , u′ → U are monomorphisms (see
Schemes, Lemma 25.23.6), hence u ×X u′ → R = U ×X U is a monomorphism.
In this language the assumption really means that u ×X u′ is a scheme whose
underlying topological space has finitely many points. Let ψ : W → X be an étale
morphism from a scheme towards X. Let w,w′ ∈ W be points of W mapping to
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x. We have to show that w ×X w′ is a scheme whose underlying topological space
has finitely many points. Consider the fibre product diagram

W ×X U
p

//

q

��

U

ϕ

��
W

ψ // X

As x is the image of u and u′ we may pick points w̃, w̃′ in W ×X U with q(w̃) = w,
q(w̃′) = w′, u = p(w̃) and u′ = p(w̃′), see Properties of Spaces, Lemma 48.4.3. As
p, q are étale the field extensions κ(w) ⊂ κ(w̃) ⊃ κ(u) and κ(w′) ⊂ κ(w̃′) ⊃ κ(u′)
are finite separable, see Remark 50.4.1. Then we get a commutative diagram

w ×X w′

��

w̃ ×X w̃′oo

��

// u×X u′

��
w ×X w′ w̃ ×S w̃′oo // u×S u′

where the squares are fibre product squares. The lower horizontal morphisms are
étale and quasi-compact, as any scheme of the form Spec(k) ×S Spec(k′) is affine,
and by our observations about the field extensions above. Thus we see that the
top horizontal arrows are étale and quasi-compact and hence have finite fibres. We
have seen above that |u×X u′| is finite, so we conclude that |w ×X w′| is finite. In
other words, (2) holds.

Assume (2). Let U → X be an étale morphism from a scheme U such that x is in
the image of |U | → |X|. Let u ∈ U be a point mapping to x. Then we have seen
in the previous paragraph that u = Spec(κ(u))→ X has the property that u×X u
has a finite underlying topological space. On the other hand, the projection maps
u×X u→ u are the composition

u×X u −→ u×X U −→ u×X X = u,

i.e., the composition of a monomorphism (the base change of the monomorphism
u → U) by an étale morphism (the base change of the étale morphism U → X).
Hence u×X U is a disjoint union of spectra of fields finite separable over κ(u) (see
Remark 50.4.1). Since u×X u is finite the image of it in u×X U is a finite disjoint
union of spectra of fields finite separable over κ(u). By Schemes, Lemma 25.23.10
we conclude that u×X u is a finite disjoint union of spectra of fields finite separable
over κ(u). In other words, we see that u ×X u → u is quasi-compact and étale.
This means that (3) holds.

Let us prove that (3) implies (4). Let Spec(k) → X be a morphism from the
spectrum of a field into X, in the equivalence class of x such that the two projections
t, s : R = Spec(k)×X Spec(k)→ Spec(k) are quasi-compact and étale. This means
in particular that R is an étale equivalence relation on Spec(k). By Spaces, Theorem
47.10.5 we know that the quotient sheaf X ′ = Spec(k)/R is an algebraic space. By
Groupoids, Lemma 38.18.6 the map X ′ → X is a monomorphism. Since s, t are
quasi-compact, we see that R is quasi-compact and hence Properties of Spaces,
Lemma 48.12.1 applies to X ′, and we see that X ′ = Spec(k′) for some field k′.
Hence we get a factorization

Spec(k) −→ Spec(k′) −→ X
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which shows that Spec(k′)→ X is a monomorphism mapping to x ∈ |X|. In other
words (4) holds.

Finally, we prove that (4) implies (1). Let Spec(k)→ X be a monomorphism with k
a field in the equivalence class of x. Let U → X be a surjective étale morphism from
a scheme U to X. Let u ∈ U be a point over x. Since Spec(k) ×X u is nonempty,
and since Spec(k)×X u→ u is a monomorphism we conclude that Spec(k)×X u = u
(see Schemes, Lemma 25.23.10). Hence u→ U → X factors through Spec(k)→ X,
here is a picture

u //

��

U

��
Spec(k) // X

Since the right vertical arrow is étale this implies that k ⊂ κ(u) is a finite separable
extension. Hence we conclude that

u×X u = u×Spec(k) u

is a finite scheme, and we win by the discussion of the meaning of property (1) in
the first paragraph of this proof. �

Lemma 50.4.4. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Let U be a scheme and let ϕ : U → X be an étale morphism. The
following are equivalent:

(1) x is in the image of |U | → |X|, and setting R = U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

(2) there exists a monomorphism Spec(k) → X with k a field in the equiva-
lence class of x, and the fibre product Spec(k)×X U is a finite nonempty
scheme over k.

Proof. Assume (1). This clearly implies the first condition of Lemma 50.4.3 and
hence we obtain a monomorphism Spec(k)→ X in the class of x. Taking the fibre
product we see that Spec(k)×X U → Spec(k) is a scheme étale over Spec(k) with
finitely many points, hence a finite nonempty scheme over k, i.e., (2) holds.

Assume (2). By assumption x is in the image of |U | → |X|. The finiteness of the
fibre of |U | → |X| over x is clear since this fibre is equal to |Spec(k) ×X U | by
Properties of Spaces, Lemma 48.4.3. The finiteness of the fibre of |R| → |X| above
x is also clear since it is equal to the set underlying the scheme

(Spec(k)×X U)×Spec(k) (Spec(k)×X U)

which is finite over k. Thus (1) holds. �

Lemma 50.4.5. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) for every affine scheme U , any étale morphism ϕ : U → X setting R =
U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

http://stacks.math.columbia.edu/tag/040U
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(2) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and for each i, setting Ri = Ui ×X Ui the fibres of both

|Ui| −→ |X| and |Ri| −→ |X|
over x are finite,

(3) there exists a monomorphism Spec(k) → X with k a field in the equiva-
lence class of x, and for any affine scheme U and étale morphism U → X
the fibre product Spec(k)×X U is a finite scheme over k, and

(4) there exists a quasi-compact monomorphism Spec(k) → X with k a field
in the equivalence class of x.

Proof. The equivalence of (1) and (3) follows on applying Lemma 50.4.4 to every
étale morphism U → X with U affine. It is clear that (3) implies (2). Assume
Ui → X and Ri are as in (2). We conclude from Lemma 50.4.2 that for any affine
scheme U and étale morphism U → X the fibre of |U | → |X| over x is finite.
Say this fibre is {u1, . . . , un}. Then, as Lemma 50.4.3 (1) applies to Ui → X
for some i such that x is in the image of |Ui| → |X|, we see that the fibre of
|R = U ×X U | → |U | ×|X| |U | is finite over (ua, ub), a, b ∈ {1, . . . , n}. Hence the
fibre of |R| → |X| over x is finite. In this way we see that (1) holds. At this point
we know that (1), (2), and (3) are equivalent.

If (4) holds, then for any affine scheme U and étale morphism U → X the scheme
Spec(k) ×X U is on the one hand étale over k (hence a disjoint union of spectra
of finite separable extensions of k by Remark 50.4.1) and on the other hand quasi-
compact over U (hence quasi-compact). Thus we see that (3) holds. Conversely, if
Ui → X is as in (2) and Spec(k)→ X is a monomorphism as in (3), then∐

Spec(k)×X Ui −→
∐

Ui

is quasi-compact (because over each Ui we see that Spec(k)×X Ui is a finite disjoint
union spectra of fields). Thus Spec(k) → X is quasi-compact by Morphisms of
Spaces, Lemma 49.8.7. �

Lemma 50.4.6. Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent:

(1) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and each Ui → X has universally bounded fibres, and
(2) for every affine scheme U and étale morphism ϕ : U → X the fibres of

U → X are universally bounded.

Proof. The implication (2) ⇒ (1) is trivial. Assume (1). Let (ϕi : Ui → X)i∈I
be a collection of étale morphisms from schemes towards X, covering X, such that
each ϕi has universally bounded fibres. Let ψ : U → X be an étale morphism from
an affine scheme towards X. For each i consider the fibre product diagram

U ×X Ui pi
//

qi

��

Ui

ϕi

��
U

ψ // X

Since qi is étale it is open (see Remark 50.4.1). Moreover, we have U =
⋃

Im(qi),
since the family (ϕi)i∈I is surjective. Since U is affine, hence quasi-compact we
can finite finitely many i1, . . . , in ∈ I and quasi-compact opens Wj ⊂ U ×X Uij

http://stacks.math.columbia.edu/tag/03JT
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such that U =
⋃
pij (Wj). The morphism pij is étale, hence locally quasi-finite

(see remark on étale morphisms above). Thus we may apply Morphisms, Lemma
28.50.8 to see the fibres of pij |Wj : Wj → Uij are universally bounded. Hence by
Lemma 50.3.2 we see that the fibres of Wj → X are universally bounded. Thus
also

∐
j=1,...,nWj → X has universally bounded fibres. Since

∐
j=1,...,nWj → X

factors through the surjective étale map
∐
qij |Wj

:
∐
j=1,...,nWj → U we see that

the fibres of U → X are universally bounded by Lemma 50.3.5. In other words (2)
holds. �

Lemma 50.4.7. Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent:

(1) there exists a Zariski covering X =
⋃
Xi and for each i a scheme Ui and

a quasi-compact surjective étale morphism Ui → Xi, and
(2) there exist schemes Ui and étale morphisms Ui → X such that the projec-

tions Ui ×X Ui → Ui are quasi-compact and
∐
Ui → X is surjective.

Proof. If (1) holds then the morphisms Ui → Xi → X are étale (combine Mor-
phisms, Lemma 28.37.3 and Spaces, Lemmas 47.5.4 and 47.5.3 ). Moreover, as
Ui ×X Ui = Ui ×Xi Ui, both projections Ui ×X Ui → Ui are quasi-compact.

If (2) holds then let Xi ⊂ X be the open subspace corresponding to the image of the
open map |Ui| → |X|, see Properties of Spaces, Lemma 48.4.10. The morphisms
Ui → Xi are surjective. Hence Ui → Xi is surjective étale, and the projections
Ui×Xi Ui → Ui are quasi-compact, because Ui×Xi Ui = Ui×X Ui. Thus by Spaces,
Lemma 47.11.2 the morphisms Ui → Xi are quasi-compact. �

50.5. Conditions on algebraic spaces

In this section we discuss the relationship between various natural conditions on
algebraic spaces we have seen above. Please read Section 50.6 to get a feeling for
the meaning of these conditions.

Lemma 50.5.1. Let S be a scheme. Let X be an algebraic space over S. Consider
the following conditions on X:

(α) For every x ∈ |X|, the equivalent conditions of Lemma 50.4.2 hold.
(β) For every x ∈ |X|, the equivalent conditions of Lemma 50.4.3 hold.
(γ) For every x ∈ |X|, the equivalent conditions of Lemma 50.4.5 hold.
(δ) The equivalent conditions of Lemma 50.4.6 hold.
(ε) The equivalent conditions of Lemma 50.4.7 hold.
(ζ) The space X is Zariski locally quasi-separated.
(η) The space X is quasi-separated
(θ) The space X is representable, i.e., X is a scheme.
(ι) The space X is a quasi-separated scheme.

http://stacks.math.columbia.edu/tag/03IH
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We have

(θ)

�$
(ι)

:B

�$

(ζ) +3 (ε) +3 (δ) +3 (γ) ks +3 (α) + (β)

(η)

:B

Proof. The implication (γ) ⇔ (α) + (β) is immediate. The implications in the
diamond on the left are clear from the definitions.

Assume (ζ), i.e., that X is Zariski locally quasi-separated. Then (ε) holds by
Properties of Spaces, Lemma 48.6.6.

Assume (ε). By Lemma 50.4.7 there exists a Zariski open covering X =
⋃
Xi

such that for each i there exists a scheme Ui and a quasi-compact surjective étale
morphism Ui → Xi. Choose an i and an affine open subscheme W ⊂ Ui. It suffices
to show that W → X has universally bounded fibres, since then the family of all
these morphisms W → X covers X. To do this we consider the diagram

W ×X Ui p
//

q

��

Ui

��
W // X

Since W → X factors through Xi we see that W ×X Ui = W ×Xi Ui, and hence q
is quasi-compact. Since W is affine this implies that the scheme W ×X Ui is quasi-
compact. Thus we may apply Morphisms, Lemma 28.50.8 and we conclude that p
has universally bounded fibres. From Lemma 50.3.4 we conclude that W → X has
universally bounded fibres as well.

Assume (δ). Let U be an affine scheme, and let U → X be an étale morphism.
By assumption the fibres of the morphism U → X are universally bounded. Thus
also the fibres of both projections R = U ×X U → U are universally bounded, see
Lemma 50.3.3. And by Lemma 50.3.2 also the fibres of R → X are universally
bounded. Hence for any x ∈ X the fibres of |U | → |X| and |R| → |X| over x
are finite, see Lemma 50.3.6. In other words, the equivalent conditions of Lemma
50.4.5 hold. This proves that (δ)⇒ (γ). �

Lemma 50.5.2. Let S be a scheme. Let P be one of the properties (α), (β), (γ),
(δ), (ε), (ζ), or (θ) of algebraic spaces listed in Lemma 50.5.1. Then if X is an
algebraic space over S, and X =

⋃
Xi is a Zariski open covering such that each Xi

has P, then X has P.

Proof. Let X be an algebraic space over S, and let X =
⋃
Xi is a Zariski open

covering such that each Xi has P.

The case P = (α). The condition (α) for Xi means that for every x ∈ |Xi| and
every affine scheme U , and étale morphism ϕ : U → Xi the fibre of ϕ : |U | → |Xi|
over x is finite. Consider x ∈ X, an affine scheme U and an étale morphism U → X.
Since X =

⋃
Xi is a Zariski open covering there exits a finite affine open covering

U = U1∪ . . .∪Un such that each Uj → X factors through some Xij . By assumption

http://stacks.math.columbia.edu/tag/03KE
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the fibres of |Uj | → |Xij | over x are finite for j = 1, . . . , n. Clearly this means that
the fibre of |U | → |X| over x is finite. This proves the result for (α).

The case P = (β). The condition (β) forXi means that every x ∈ |Xi| is represented
by a monomorphism from the spectrum of a field towards Xi. Hence the same
follows for X as Xi → X is a monomorphism and X =

⋃
Xi.

The case P = (γ). Note that (γ) = (α) + (β) by Lemma 50.5.1 hence the lemma
for (γ) follows from the cases treated above.

The case P = (δ). The condition (δ) for Xi means there exist schemes Uij and
étale morphisms Uij → Xi with universally bounded fibres which cover Xi. These
schemes also give an étale surjective morphism

∐
Uij → X and Uij → X still has

universally bounded fibres.

The case P = (ε). The condition (ε) for Xi means we can find a set Ji and
morphisms ϕij : Uij → Xi such that each ϕij is étale, both projections Uij ×Xi
Uij → Uij are quasi-compact, and

∐
j∈Ji Uij → Xi is surjective. In this case the

compositions Uij → Xi → X are étale (combine Morphisms, Lemmas 28.37.3 and
28.37.9 and Spaces, Lemmas 47.5.4 and 47.5.3 ). Since Xi ⊂ X is a subspace we
see that Uij ×Xi Uij = Uij ×X Uij , and hence the condition on fibre products is
preserved. And clearly

∐
i,j Uij → X is surjective. Hence X satisfies (ε).

The case P = (ζ). The condition (ζ) for Xi means that Xi is Zariski locally
quasi-separated. It is immediately clear that this means X is Zariski locally quasi-
separated.

For (θ), see Properties of Spaces, Lemma 48.10.1. �

Lemma 50.5.3. Let S be a scheme. Let P be one of the properties (β), (γ), (δ),
(ε), or (θ) of algebraic spaces listed in Lemma 50.5.1. Let X, Y be algebraic spaces
over S. Let X → Y be a representable morphism. If Y has property P, so does X.

Proof. Assume f : X → Y is a representable morphism of algebraic spaces, and
assume that Y has P. Let x ∈ |X|, and set y = f(x) ∈ |Y |.

The case P = (β). Condition (β) for Y means there exists a monomorphism
Spec(k) → Y representing y. The fibre product Xy = Spec(k) ×Y X is a scheme,
and x corresponds to a point of Xy, i.e., to a monomorphism Spec(k′) → Xy. As
Xy → X is a monomorphism also we see that x is represented by the monomorphism
Spec(k′)→ Xy → X. In other words (β) holds for X.

The case P = (γ). Since (γ) ⇒ (β) we have seen in the preceding paragraph that
y and x can be represented by monomorphisms as in the following diagram

Spec(k′)
x
//

��

X

��
Spec(k)

y // Y

Also, by definition of property (γ) via Lemma 50.4.5 (2) there exist schemes Vi and
étale morphisms Vi → Y such that

∐
Vi → Y is surjective and for each i, setting

Ri = Vi ×Y Vi the fibres of both

|Vi| −→ |Y | and |Ri| −→ |Y |

http://stacks.math.columbia.edu/tag/03KF
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over y are finite. This means that the schemes (Vi)y and (Ri)y are finite schemes
over y = Spec(k). As X → Y is representable, the fibre products Ui = Vi×Y X are
schemes. The morphisms Ui → X are étale, and

∐
Ui → X is surjective. Finally,

for each i we have

(Ui)x = (Vi ×Y X)x = (Vi)y ×Spec(k) Spec(k′)

and

(Ui ×X Ui)x = ((Vi ×Y X)×X (Vi ×Y X))x = (Ri)y ×Spec(k) Spec(k′)

hence these are finite over k′ as base changes of the finite schemes (Vi)y and (Ri)y.
This implies that (γ) holds for X, again via the second condition of Lemma 50.4.5.

The case P = (δ). Let V → Y be an étale morphism with V an affine scheme.
Since Y has property (δ) this morphism has universally bounded fibres. By Lemma
50.3.3 the base change V ×Y X → X also has universally bounded fibres. Hence
the first part of Lemma 50.4.6 applies and we see that Y also has property (δ).

The case P = (ε). We will repeatedly use Spaces, Lemma 47.5.5. Let Vi → Y be
as in Lemma 50.4.7 (2). Set Ui = X ×Y Vi. The morphisms Ui → X are étale,
and

∐
Ui → X is surjective. Because Ui ×X Ui = X ×Y (Vi ×Y Vi) we see that the

projections Ui ×Y Ui → Ui are base changes of the projections Vi ×Y Vi → Vi, and
so quasi-compact as well. Hence X satisfies Lemma 50.4.7 (2).

The case P = (θ). In this case the result is Categories, Lemma 4.8.3. �

50.6. Reasonable and decent algebraic spaces

In Lemma 50.5.1 we have seen a number of conditions on algebraic spaces related
to the behaviour of étale morphisms from affine schemes into X and related to
the existence of special étale coverings of X by schemes. We tabulate the different
types of conditions here:

(α) fibres of etale morphisms from affines are finite
(β) points come from monomorphisms of spectra of fields
(γ) points come from quasi-compact monomorphisms of spectra of fields
(δ) fibres of etale morphisms from affines are universally bounded
(ε) cover by etale morphisms from schemes quasi-compact onto their image

The conditions in the following definition are not exactly conditions on the diagonal
of X, but they are in some sense separation conditions on X.

Definition 50.6.1. Let S be a scheme. Let X be an algebraic space over S.

(1) We say X is decent if for every point x ∈ X the equivalent conditions of
Lemma 50.4.5 hold, in other words property (γ) of Lemma 50.5.1 holds.

(2) We say X is reasonable if the equivalent conditions of Lemma 50.4.6 hold,
in other words property (δ) of Lemma 50.5.1 holds.

(3) We say X is very reasonable if the equivalent conditions of Lemma 50.4.7
hold, i.e., property (ε) of Lemma 50.5.1 holds.

http://stacks.math.columbia.edu/tag/03I8
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We have the following implications among these conditions on algebraic spaces:

representable

%-
very reasonable +3 reasonable +3 decent

quasi-separated

19

The notion of a very reasonable algebraic space is obsolete. It was introduced
because the assumption was needed to prove some results which are now proven for
the class of decent spaces. The class of decent spaces is the largest class of spaces
X where one has a good relationship between the topology of |X| and properties
of X itself.

Example 50.6.2. The algebraic space A1
Q/Z constructed in Spaces, Example

47.14.8 is not decent as its “generic point” cannot be represented by a monomor-
phism from the spectrum of a point.

Remark 50.6.3. Reasonable algebraic spaces are technically easier to work with
than very reasonable algebraic spaces. For example, if X → Y is a quasi-compact
étale surjective morphism of algebraic spaces and X is reasonable, then so is Y , see
Lemma 50.15.8 but we don’t know if this is true for the property “very reasonable”.
Below we give another technical property enjoyed by reasonable algebraic spaces.

Lemma 50.6.4. Let S be a scheme. Let X be a quasi-compact reasonable algebraic
space. Then there exists a directed system of quasi-compact and quasi-separated
algebraic spaces Xi such that X = colimiXi (colimit in the category of sheaves).

Proof. We sketch the proof. By Properties of Spaces, Lemma 48.6.3 we have
X = U/R with U affine. In this case, reasonable means U → X is universally
bounded. Hence there exists an integer N such that the “fibres” of U → X have
degree at most N , see Definition 50.3.1. Denote s, t : R→ U and c : R×s,U,tR→ R
the groupoid structural maps.

Claim: for every quasi-compact open A ⊂ R there exists an open R′ ⊂ R such that

(1) A ⊂ R′,
(2) R′ is quasi-compact, and
(3) (U,R′, s|R′ , t|R′ , c|R′×s,U,tR′) is a groupoid scheme.

Note that e : U → R is open as it is a section of the étale morphism s : R→ U , see
Étale Morphisms, Proposition 40.6.1. Moreover U is affine hence quasi-compact.
Hence we may replace A by A∪e(U) ⊂ R, and assume that A contains e(U). Next,
we define inductively A1 = A, and

An = c(An−1 ×s,U,t A) ⊂ R

for n ≥ 2. Arguing inductively, we see that An is quasi-compact for all n ≥ 2, as
the image of the quasi-compact fibre product An−1×s,U,tA. If k is an algebraically
closed field over S, and we consider k-points then

An(k) =

{
(u, u′) ∈ U(k) :

there exist u = u1, u2, . . . , un ∈ U(k) with
(ui, ui+1) ∈ A for all i = 1, . . . , n− 1.

}
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But as the fibres of U(k) → X(k) have size at most N we see that if n >
N then we get a repeat in the sequence above, and we can shorten it proving
AN = An for all n ≥ N . This implies that R′ = AN gives a groupoid scheme
(U,R′, s|R′ , t|R′ , c|R′×s,U,tR′), proving the claim above.

Consider the map of sheaves on (Sch/S)fppf

colimR′⊂R U/R
′ −→ U/R

where R′ ⊂ R runs over the quasi-compact open subschemes of R which give étale
equivalence relations as above. Each of the quotients U/R′ is an algebraic space (see
Spaces, Theorem 47.10.5). Since R′ is quasi-compact, and U affine the morphism
R′ → U ×Spec(Z) U is quasi-compact, and hence U/R′ is quasi-separated. Finally,
if T is a quasi-compact scheme, then

colimR′⊂R U(T )/R′(T ) −→ U(T )/R(T )

is a bijection, since every morphism from T into R ends up in one of the open
subrelations R′ by the claim above. This clearly implies that the colimit of the
sheaves U/R′ is U/R. In other words the algebraic space X = U/R is the colimit
of the quasi-separated algebraic spaces U/R′. �

Lemma 50.6.5. Let S be a scheme. Let X, Y be algebraic spaces over S. Let
X → Y be a representable morphism. If Y is decent (resp. reasonable), then so is
X.

Proof. Translation of Lemma 50.5.3. �

Lemma 50.6.6. Let S be a scheme. Let X → Y be an étale morphism of algebraic
spaces over S. If Y is decent, resp. reasonable, then so is X.

Proof. Let U be an affine scheme and U → X an étale morphism. Set R = U×XU
and R′ = U ×Y U . Note that R→ R′ is a monomorphism.

Let x ∈ |X|. To show that X is decent, we have to show that the fibres of |U | → |X|
and |R| → |X| over x are finite. But if Y is decent, then the fibres of |U | → |Y |
and |R′| → |Y | are finite. Hence the result for “decent”.

To show that X is reasonable, we have to show that the fibres of U → X are
universally bounded. However, if Y is reasonable, then the fibres of U → Y are
universally bounded, which immediately implies the same thing for the fibres of
U → X. Hence the result for “reasonable”. �

50.7. Points and specializations

There exists an étale morphism of algebraic spaces f : X → Y and a nontrivial
specializations between points in a fibre of |f | : |X| → |Y |, see Examples, Lemma
82.42.1. If the source of the morphism is a scheme we can avoid this by imposing
condition (α) on Y .

Lemma 50.7.1. Let S be a scheme. Let X be an algebraic space over S. Let
U → X be an étale morphism from a scheme to X. Assume u, u′ ∈ |U | map to
the same point x of |X|, and u′  u. If the pair (X,x) satisfies the equivalent
conditions of Lemma 50.4.2 then u = u′.
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Proof. Assume the pair (X,x) satisfies the equivalent conditions for Lemma 50.4.2.
Let U be a scheme, U → X étale, and let u, u′ ∈ |U | map to x of |X|, and u′  u.
We may and do replace U by an affine neighbourhood of u. Let t, s : R = U×XU →
U be the étale projection maps.

Pick a point r ∈ R with t(r) = u and s(r) = u′. This is possible by Properties
of Spaces, Lemma 48.4.5. Because generalizations lift along the étale morphism t
(Remark 50.4.1) we can find a specialization r′  r with t(r′) = u′. Set u′′ = s(r′).
Then u′′  u′. Thus we may repeat and find r′′  r′ with t(r′′) = u′′. Set
u′′′ = s(r′′), and so on. Here is a picture:

r′′

s

!!

t

~~ ��
u′′

��

r′

s

!!

t

~~ ��

u′′′

��
u′

��

r

s

!!

t

~~

u′′

��
u u′

In Remark 50.4.1 we have seen that there are no specializations among points in
the fibres of the étale morphism s. Hence if u(n+1) = u(n) for some n, then also
r(n) = r(n−1) and hence also (by taking t) u(n) = u(n−1). This then forces the
whole tower to collapse, in particular u = u′. Thus we see that if u 6= u′, then
all the specializations are strict and {u, u′, u′′, . . .} is an infinite set of points in U
which map to the point x in |X|. As we chose U affine this contradicts the second
part of Lemma 50.4.2, as desired. �

Lemma 50.7.2. Let S be an algebraic space. Let X be an algebraic space over S.
Let x, x′ ∈ |X| and assume x′  x, i.e., x is a specialization of x′. Assume the pair
(X,x′) satisfies the equivalent conditions of Lemma 50.4.5. Then for every étale
morphism ϕ : U → X from a scheme U and any u ∈ U with ϕ(u) = x, exists a
point u′ ∈ U , u′  u with ϕ(u′) = x′.

Proof. We may replace U by an affine open neighbourhood of u. Hence we may
assume that U is affine. As x is in the image of the open map |U | → |X|, so is x′.
Thus we may replace X by the Zariski open subspace corresponding to the image
of |U | → |X|, see Properties of Spaces, Lemma 48.4.10. In other words we may
assume that U → X is surjective and étale. Let s, t : R = U ×X U → U be the
projections. By our assumption that (X,x′) satisfies the equivalent conditions of
Lemma 50.4.5 we see that the fibres of |U | → |X| and |R| → |X| over x′ are finite.
Say {u′1, . . . , u′n} ⊂ U and {r′1, . . . , r′m} ⊂ R form the complete inverse image of
{x′}. Consider the closed sets

T = {u′1} ∪ . . . ∪ {u′n} ⊂ |U |, T ′ = {r′1} ∪ . . . ∪ {r′m} ⊂ |R|.
Trivially we have s(T ′) ⊂ T . Because R is an equivalence relation we also have
t(T ′) = s(T ′) as the set {r′j} is invariant under the inverse of R by construction.
Let w ∈ T be any point. Then u′i  w for some i. Choose r ∈ R with s(r) = w.
Since generalizations lift along s : R → U , see Remark 50.4.1, we can find r′  r
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with s(r′) = u′i. Then r′ = r′j for some j and we conclude that w ∈ s(T ′). Hence
T = s(T ′) = t(T ′) is an |R|-invariant closed set in |U |. This means T is the inverse
image of a closed (!) subset T ′′ = ϕ(T ) of |X|, see Properties of Spaces, Lemmas

48.4.5 and 48.4.6. Hence T ′′ = {x′}. Thus T contains some point u1 mapping to x
as x ∈ T ′′. I.e., we see that for some i there exists a specialization u′i  u1 which
maps to the given specialization x′  x.

To finish the proof, choose a point r ∈ R such that s(r) = u and t(r) = u1 (using
Properties of Spaces, Lemma 48.4.3). As generalizations lift along t, and u′i  u1

we can find a specialization r′  r such that t(r′) = u′i. Set u′ = s(r′). Then
u′  u and ϕ(u′) = x′ as desired. �

50.8. Stratifying algebraic spaces by schemes

In this section we prove that a quasi-compact and quasi-separated algebraic space
has a finite stratification by locally closed subspaces each of which is a scheme and
such that the glueing of the parts is by elementary distinguihsed squares. We first
prove a slightly weaker result for reasonable algebraic spaces.

Lemma 50.8.1. Let S be a scheme. Let W → X be a morphism of a scheme W to
an algebraic space X which is flat, locally of finite presentation, separated, locally
quasi-finite with universally bounded fibres. There exist reduced closed subspaces

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = X

such that with Xr = Zr \ Zr−1 the stratification X =
∐
r=0,...,nXr is characterized

by the following universal property: Given g : T → X the projection W ×X T → T
is finite locally free of degree r if and only if g(|T |) ⊂ |Xr|.

Proof. Let n be an integer bounding the degrees of the fibres of W → X. Choose
a scheme U and a surjective étale morphism U → X. Apply More on Morphisms,
Lemma 36.31.9 to W ×X U → U . We obtain closed subsets

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 ⊂ . . . ⊂ Yn = U

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Yr) = t−1(Yr)

as closed subsets of R. In other words the closed subsets Yr ⊂ U are R-invariant.
This means that |Yr| is the inverse image of a closed subset Zr ⊂ |X|. Denote
Zr ⊂ X also the reduced induced algebraic space structure, see Properties of Spaces,
Definition 48.9.5.

Let g : T → X be a morphism of algebraic spaces. Choose a scheme V and a
surjective étale morphism V → T . To prove the final assertion of the lemma it
suffices to prove the assertion for the composition V → X (by our definition of
finite locally free morphisms, see Morphisms of Spaces, Section 49.42). Similarly,
the morphism of schemes W ×X V → V is finite locally free of degree r if and only
if the morphism of schemes

W ×X (U ×X V ) −→ U ×X V
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is finite locally free of degree r (see Descent, Lemma 34.19.28). By construction
this happens if and only if |U ×X V | → |U | maps into |Yr|, which is true if and only
if |V | → |X| maps into |Zr|. �

Lemma 50.8.2. Let S be a scheme. Let W → X be a morphism of a scheme W
to an algebraic space X which is flat, locally of finite presentation, separated, and
locally quasi-finite. Then there exist open subspaces

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .
such that a morphism Spec(k)→ X factors through Xd if and only if W×X Spec(k)
has degree ≥ d over k.

Proof. Choose a scheme U and a surjective étale morphism U → X. Apply More
on Morphisms, Lemma 36.31.11 to W ×X U → U . We obtain open subschemes

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .
characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Ud) = t−1(Ud)

as open subschemes of R. In other words the open subschemes Ud ⊂ U are R-
invariant. This means that Ud is the inverse image of an open subspace Xd ⊂ X
(Properties of Spaces, Lemma 48.9.2). �

Lemma 50.8.3. Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a separated scheme Vp and a surjective étale morphism fp :
Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. By Properties of Spaces, Lemma 48.6.3 we can choose an affine scheme U
and a surjective étale morphism U → X. Let n be an integer bounding the degrees
of the fibres of U → X which exists as X is reasonable, see Definition 50.6.1. For
p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

where the fibre product has p factors. Since U is separated, the morphism U → X
is separated and all fibre products U ×X . . . ×X U are separated schemes. Since
U → X is separated the diagonal U → U×XU is a closed immersion. Since U → X
is étale the diagonal U → U ×X U is an open immersion, see Morphisms of Spaces,
Lemmas 49.36.10 and 49.35.9. Similarly, all the diagonal morphisms are open and
closed immersions and Wp is an open and closed subscheme of U ×X . . . ×X U .
Moreover, the morphism

U ×X . . .×X U −→ U ×Spec(Z) . . .×Spec(Z) U

is locally quasi-finite and separated (Morphisms of Spaces, Lemma 49.4.5) and its
target is an affine scheme. Hence every finite set of points of U ×X . . . ×X U is
contained in an affine open, see More on Morphisms, Lemma 36.31.13. Therefore,
the same is true for Wp. There is a free action of the symmetric group Sp on Wp

over X (because we threw out the fix point locus from U ×X . . . ×X U). By the
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above and Properties of Spaces, Proposition 48.11.1 the quotient Vp = Wp/Sp is a
scheme. Since the action of Sp on Wp was over X, there is a morphism Vp → X.
Since Wp → X is étale and since Wp → Vp is surjective étale, it follows that also
Vp → X is étale, see Properties of Spaces, Lemma 48.13.3.

We let Up ⊂ X be the open subspace which is the image of Vp → X. By construction
morphism Spec(k)→ X with k algebraically closed, factors through Up if and only
if U ×X Spec(k) has ≥ p points. It follows that the Up give a filtration of X as
stated in the lemma. Moreover, Spec(k) → X factors through Tp if and only if
U ×X Spec(k) has exactly p points. In this case we see that Vp ×X Spec(k) has
exactly one point. Set Zp = f−1

p (Tp) ⊂ Vp. This is a closed subscheme of Vp. Then
Zp → Tp is an étale morphism between algebraic spaces which induces a bijection
on k-valued points for any algebraically closed field k. To be sure this implies
that Zp → Tp is universally injective, whence an open immersion by Morphisms of
Spaces, Lemma 49.45.2 hence an isomorphism and we win. �

Lemma 50.8.4. Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

such that each Tp = Up\Up+1 (with reduced induced subspace structure) is a scheme.

Proof. Immediate consequence of Lemma 50.8.3. �

The following result is almost identical to [GR71, Proposition 5.7.8].

Lemma 50.8.5. Let X be a quasi-compact and quasi-separated algebraic space over
Spec(Z). There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 50.8.3. Observe
that a quasi-separated space is reasonable, see Decent Spaces, Lemma 50.5.1 and
Decent Spaces, Definition 50.6.1. At the end of the argument we add that since
X is quasi-separated the schemes V ×X . . . ×X V are all quasi-compact. Hence
the schemes Wp are quasi-compact. Hence the schemes Vp = Wp/Sp are quasi-
compact. �

50.9. Schematic locus

In this section we prove that a decent algebraic space has a dense open subspace
which is a scheme. We first prove this for reasonable algebraic spaces.

Proposition 50.9.1. Let S be a scheme. Let X be an algebraic space over S. If
X is reasonable, then there exists a dense open subspace of X which is a scheme.

Proof. By Properties of Spaces, Lemma 48.10.1 the question is local on X. Hence
we may assume there exists an affine scheme U and a surjective étale morphism
U → X (Properties of Spaces, Lemma 48.6.1). Let n be an integer bounding the
degrees of the fibres of U → X which exists as X is reasonable, see Definition
50.6.1. We will argue by induction on n that whenever
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(1) U → X is a surjective étale morphism whose fibres have degree ≤ n, and
(2) U is isomorphic to a locally closed subscheme of an affine scheme

then the schematic locus is dense in X.

Let Xn ⊂ X be the open subspace which is the complement of the closed subspace
Zn−1 ⊂ X constructed in Lemma 50.8.1 using the morphism U → X. Let Un ⊂ U
be the inverse image of Xn. Then Un → Xn is finite locally free of degree n. Hence
Xn is a scheme by Properties of Spaces, Proposition 48.11.1 (and the fact that any
finite set of points of Un is contained in an affine open of Un, see Properties, Lemma
27.27.5).

Let X ′ ⊂ X be the open subspace such that |X ′| is the interior of |Zn−1| in |X|
(see Topology, Definition 5.20.1). Let U ′ ⊂ U be the inverse image. Then U ′ → X ′

is surjective étale and has degrees of fibres bounded by n− 1. By induction we see
that the schematic locus of X ′ is an open dense X ′′ ⊂ X ′. By elementary topology
we see that X ′′ ∪Xn ⊂ X is open and dense and we win. �

Theorem 50.9.2 (David Rydh). Let S be a scheme. Let X be an algebraic space
over S. If X is decent, then there exists a dense open subspace of X which is a
scheme.

Proof. Assume X is a decent algebraic space for which the theorem is false. By
Properties of Spaces, Lemma 48.10.1 there exists a largest open subspace X ′ ⊂ X
which is a scheme. Since X ′ is not dense in X, there exists an open subspace
X ′′ ⊂ X such that |X ′′| ∩ |X ′| = ∅. Replacing X by X ′′ we get a nonempty decent
algebraic space X which does not contain any open subspace which is a scheme.

Choose a nonempty affine scheme U and an étale morphism U → X. We may and
do replace X by the open subscheme corresponding to the image of |U | → |X|.
Consider the sequence of open subspaces

X = X0 ⊃ X1 ⊃ X2 . . .

constructed in Lemma 50.8.2 for the morphism U → X. Note that X0 = X1 as
U → X is surjective. Let U = U0 = U1 ⊃ U2 . . . be the induced sequence of open
subschemes of U .

Choose a nonempty open affine V1 ⊂ U1 (for example V1 = U1). By induction we
will construct a sequence of nonempty affine opens V1 ⊃ V2 ⊃ . . . with Vn ⊂ Un.
Namely, having constructed V1, . . . , Vn−1 we can always choose Vn unless Vn−1 ∩
Un = ∅. But if Vn−1 ∩ Un = ∅, then the open subspace X ′ ⊂ X with |X ′| =
Im(|Vn−1| → |X|) is contained in |X|\|Xn|. Hence Vn−1 → X ′ is an étale morphism
whose fibres have degree bounded by n − 1. In other words, X ′ is reasonable (by
definition), hence X ′ contains a nonempty open subscheme by Proposition 50.9.1.
This is a contradiction which shows that we can pick Vn.

By Limits, Lemma 31.3.4 the limit V∞ = limVn is a nonempty scheme. Pick a
morphism Spec(k) → V∞. The composition Spec(k) → V∞ → U → X has image
contained in all Xd by construction. In other words, the fibred U ×X Spec(k) has
infinite degree which contradicts the definition of a decent space. This contradiction
finishes the proof of the theorem. �
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50.10. Points on spaces

In this section we prove some properties of points on decent algebraic spaces.

Lemma 50.10.1. Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism} −→ |X|
This map is always injective. If X is decent then this map is a bijection.

Proof. We have seen in Properties of Spaces, Lemma 48.4.11 that the map is an
injection in general. By Lemma 50.5.1 it is surjective when X is decent (actually
one can say this is part of the definition of being decent). �

The following lemma is a tiny bit stronger than Properties of Spaces, Lemma
48.12.1. We will improve this lemma in Lemma 50.12.1.

Lemma 50.10.2. Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) → X. If
X is decent, then X ∼= Spec(k′) where k′ ⊂ k is a finite separable extension.

Proof. The assumption implies that |X| = {x} is a singleton. Since X is decent
we can find a quasi-compact monomorphism Spec(k′)→ X whose image is x. Then
the projection U = Spec(k′) ×X Spec(k) → Spec(k) is a monomorphism, whence
U = Spec(k), see Schemes, Lemma 25.23.10. Hence the projection Spec(k) = U →
Spec(k′) is étale and we win. �

The following lemma shows that specialization of points behaves well on decent
algebraic spaces. Spaces, Example 47.14.9 shows that this is not true in general.

Lemma 50.10.3. Let S be a scheme. Let X be a decent algebraic space over S.
Let U → X be an étale morphism from a scheme to X. If u, u′ ∈ |U | map to the
same point of |X|, and u′  u, then u = u′.

Proof. Combine Lemmas 50.5.1 and 50.7.1. �

Lemma 50.10.4. Let S be an algebraic space. Let X be a decent algebraic space
over S. Let x, x′ ∈ |X| and assume x′  x, i.e., x is a specialization of x′. Then for
every étale morphism ϕ : U → X from a scheme U and any u ∈ U with ϕ(u) = x,
exists a point u′ ∈ U , u′  u with ϕ(u′) = x′.

Proof. Combine Lemmas 50.5.1 and 50.7.2. �

Lemma 50.10.5. Let S be a scheme. Let X be a decent algebraic space over S.
Then |X| is Kolmogorov (see Topology, Definition 5.7.4).

Proof. Let x1, x2 ∈ |X| with x1  x2 and x2  x1. We have to show that x1 = x2.
Pick a scheme U and an étale morphism U → X such that x1, x2 are both in the
image of |U | → |X|. By Lemma 50.10.4 we can find a specialization u1  u2 in U
mapping to x1  x2. By Lemma 50.10.4 we can find u′2  u1 mapping to x2  x1.
This means that u′2  u2 is a specialization between points of U mapping to the
same point of X, namely x2. This is not possible, unless u′2 = u2, see Lemma
50.10.3. Hence also u1 = u2 as desired. �

Proposition 50.10.6. Let S be a scheme. Let X be a decent algebraic space over
S. Then the topological space |X| is sober (see Topology, Definition 5.7.4).
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Proof. We have seen in Lemma 50.10.5 that |X| is Kolmogorov. Hence it remains
to show that every irreducible closed subset T ⊂ |X| has a generic point. By
Properties of Spaces, Lemma 48.9.3 there exists a closed subspace Z ⊂ X with
|Z| = |T |. By definition this means that Z → X is a representable morphism
of algebraic spaces. Hence Z is a decent algebraic space by Lemma 50.5.3. By
Theorem 50.9.2 we see that there exists an open dense subspace Z ′ ⊂ Z which is a
scheme. This means that |Z ′| ⊂ T is open dense. Hence the topological space |Z ′|
is irreducible, which means that Z ′ is an irreducible scheme. By Schemes, Lemma
25.11.1 we conclude that |Z ′| is the closure of a single point η ∈ T and hence also

T = {η}, and we win. �

For decent algebraic spaces dimension works as expected.

Lemma 50.10.7. Let S be a scheme. Dimension as defined in Properties of Spaces,
Section 48.8 behaves well on decent algebraic spaces X over S.

(1) If x ∈ |X|, then dimx(|X|) = dimx(X), and
(2) dim(|X|) = dim(X).

Proof. Proof of (1). Choose a scheme U with a point u ∈ U and an étale morphism
h : U → X mapping u to x. By definition the dimension of X at x is dimu(|U |).
Thus we may pick U such that dimx(X) = dim(|U |). Let d be an integer. If
dim(U) ≥ d, then there exists a sequence of nontrivial specializations ud  . . . u0

in U . Taking the image we find a corresponding sequence h(ud)  . . .  h(u0)
each of which is nontrivial by Lemma 50.10.3. Hence we see that the image of |U | in
|X| has dimension at least d. Conversely, suppose that xd  . . . x0 is a sequence
of specializations in |X| with x0 in the image of |U | → |X|. Then we can lift this
to a sequence of specializations in U by Lemma 50.10.4.

Part (2) is an immediate consequence of part (1) and the definitions. �

Lemma 50.10.8. Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The following are equivalent

(1) x is a generic point of an irreducible component of |X|,
(2) for any étale morphism (Y, y)→ (X,x) of pointed algebraic spaces, y is a

generic point of an irreducible component of |Y |,
(3) the dimension of the local ring of X at x is zero (Properties of Spaces,

Definition 48.20.2).

Proof. Observe that any Y as in (2) is decent by Lemma 50.6.6. Thus it suffices to
prove the equivalence of (1) and (3) as then the equivalence with (2) follows since
the dimension of the local ring of Y at y is equal to the dimension of the local ring
of X at x. Let f : U → X be an étale morphism from an affine scheme and let
u ∈ U be a point mapping to x.

Assume (1). Let u′  u be a specialization in U . Then f(u′) = f(u) = x. By
Lemma 50.10.3 we see that u′ = u. Hence u is a generic point of an irreducible
component of U . Thus dim(OU,u) = 0 and we see that (2) holds.

Assume (2). The point x is contained in an irreducible component T ⊂ |X|. Since
|X| is sober (Proposition 50.10.6) we T has a generic point x′. Of course x′  
x. Then we can lift this specialization to u′  u in U (Lemma 50.10.4). This
contradicts the assumption that dim(OU,u) = 0 unless u′ = u, i.e., x′ = x. �
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Lemma 50.10.9. Let S be a scheme. Let X → Y be a locally quasi-finite morphism
of algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Then the dimension of
the local ring of Y at y is ≥ to the dimension of the local ring of X at x.

Proof. The definition of the dimension of the local ring of a point on an algebraic
space is given in Properties of Spaces, Definition 48.20.2. Choose an étale morphism
(V, v)→ (Y, y) where V is a scheme. Choose an étale morphism U → V ×Y X and
a point u ∈ U mapping to x ∈ |X| and v ∈ V . Then U → V is locally quasi-finite
and we have to prove that

dim(OV,v) ≥ dim(OU,u)

This is Algebra, Lemma 10.121.4. �

50.11. Reduced singleton spaces

A singleton space is an algebraic space X such that |X| is a singleton. It turns
out that these can be more interesting than just being the spectrum of a field, see
Spaces, Example 47.14.7. We develop a tiny bit of machinery to be able to talk
about these.

Lemma 50.11.1. Let S be a scheme. Let Z be an algebraic space over S. Let k be a
field and let Spec(k)→ Z be surjective and flat. Then any morphism Spec(k′)→ Z
where k′ is a field is surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 49.29.5 that Spec(k′)→ Z is flat. It is
surjective as by assumption |Z| is a singleton. �

Lemma 50.11.2. Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k) → Z where k is a field,

and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k)→ Z

where k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective étale
morphism. Then W is a reduced scheme. Let η ∈W be a generic point of an irre-
ducible component of W . Since W is reduced we have OW,η = κ(η). It follows that
the canonical morphism η = Spec(κ(η))→W is flat. We see that the composition
η → Z is flat (see Morphisms of Spaces, Lemma 49.28.3). It is also surjective as
|Z| is a singleton. In other words (2) holds.

Assume (2). Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
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is a scheme étale over k. Hence W ×Z Spec(k) is a disjoint union of spectra of fields
(see Remark 50.4.1), in particular reduced. Since W ×Z Spec(k)→W is surjective
and flat we conclude that W is reduced (Descent, Lemma 34.15.1). In other words
(1) holds.

It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and an étale morphism W → Z. Pick a closed point w ∈ W and set k = κ(w).
The composition

Spec(k)
w−→W −→ Z

is locally of finite type by Morphisms of Spaces, Lemmas 49.23.2 and 49.36.9. It is
also flat and surjective by Lemma 50.11.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic spaces
than the preceding lemma.

Lemma 50.11.3. Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→

Z where k is a field.

Proof. Assume (2) holds. By Lemma 50.11.2 we see that Z is reduced and |Z| is
a singleton. Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a locally finitely presented, surjective, flat morphism Spec(k)→
Z. Then W ×Z Spec(k) is a scheme étale over k, hence a disjoint union of spectra of
fields (see Remark 50.4.1), hence locally Noetherian. Since W ×Z Spec(k)→W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude that W is locally Noetherian (Descent, Lemma
34.12.1). In other words (1) holds.

Assume (1). Pick a nonempty affine scheme W and an étale morphism W → Z.
Pick a closed point w ∈ W and set k = κ(w). Because W is locally Noetherian
the morphism w : Spec(k) → W is of finite presentation, see Morphisms, Lemma
28.22.7. Hence the composition

Spec(k)
w−→W −→ Z

is locally of finite presentation by Morphisms of Spaces, Lemmas 49.27.2 and
49.36.8. It is also flat and surjective by Lemma 50.11.1. Hence (2) holds. �

Lemma 50.11.4. Let S be a scheme. Let Z ′ → Z be a monomorphism of alge-
braic spaces over S. Assume there exists a field k and a locally finitely presented,
surjective, flat morphism Spec(k)→ Z. Then either Z ′ is empty or Z ′ = Z.

Proof. We may assume that Z ′ is nonempty. In this case the fibre product
T = Z ′ ×Z Spec(k) is nonempty, see Properties of Spaces, Lemma 48.4.3. Now
T is an algebraic space and the projection T → Spec(k) is a monomorphism.
Hence T = Spec(k), see Morphisms of Spaces, Lemma 49.10.8. We conclude that
Spec(k)→ Z factors through Z ′. But as Spec(k)→ Z is surjective, flat and locally
of finite presentation, we see that Spec(k)→ Z is surjective as a map of sheaves on
(Sch/S)fppf (see Spaces, Remark 47.5.2) and we conclude that Z ′ = Z. �

The following lemma says that to each point of an algebraic space we can associate
a canonical reduced, locally Noetherian singleton algebraic space.
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Lemma 50.11.5. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Then there exists a unique monomorphism Z → X of algebraic spaces
over S such that Z is an algebraic space which satisfies the equivalent conditions of
Lemma 50.11.3 and such that the image of |Z| → |X| is {x}.

Proof. Choose a scheme U and a surjective étale morphism U → X. Set R =
U ×X U so that X = U/R is a presentation (see Spaces, Section 47.9). Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let

R′ = U ′ ×X U ′ = R×(U×SU) (U ′ ×S U ′).
Because U ′ → U is a monomorphism we see that the projections s′, t′ : R′ → U ′

factor as a monomorphism followed by an étale morphism. Hence, as U ′ is a disjoint
union of spectra of fields, using Remark 50.4.1, and using Schemes, Lemma 25.23.10
we conclude that R′ is a disjoint union of spectra of fields and that the morphisms
s′, t′ : R′ → U ′ are étale. Hence Z = U ′/R′ is an algebraic space by Spaces,
Theorem 47.10.5. As R′ is the restriction of R by U ′ → U we see Z → X is a
monomorphism by Groupoids, Lemma 38.18.6. Since Z → X is a monomorphism
we see that |Z| → |X| is injective, see Morphisms of Spaces, Lemma 49.10.9. By
Properties of Spaces, Lemma 48.4.3 we see that

|U ′| = |Z ×X U ′| → |Z| ×|X| |U ′|
is surjective which implies (by our choice of U ′) that |Z| → |X| has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., we see that Z satisfies the equivalent conditions of Lemma 50.11.3.

Let us prove uniqueness of Z → X. Suppose that Z ′ → X is a second such
monomorphism of algebraic spaces. Then the projections

Z ′ ←− Z ′ ×X Z −→ Z

are monomorphisms. The algebraic space in the middle is nonempty by Properties
of Spaces, Lemma 48.4.3. Hence the two projections are isomorphisms by Lemma
50.11.4 and we win. �

We introduce the following terminology which foreshadows the residual gerbes we
will introduce later, see Properties of Stacks, Definition 77.11.8.

Definition 50.11.6. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The residual space of X at x2 is the monomorphism Zx → X constructed
in Lemma 50.11.5.

In particular we know that Zx is a locally Noetherian, reduced, singleton algebraic
space and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.

It turns out that Zx is a regular algebraic space as follows from the following lemma.

Lemma 50.11.7. A reduced, locally Noetherian singleton algebraic space Z is reg-
ular.

2This is nonstandard notation.
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Proof. Let Z be a reduced, locally Noetherian singleton algebraic space over a
scheme S. Let W → Z be a surjective étale morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 50.11.3). The scheme T = W ×Z Spec(k) is étale over k in particular
regular, see Remark 50.4.1. Since T →W is locally of finite presentation, flat, and
surjective it follows that W is regular, see Descent, Lemma 34.15.2. By definition
this means that Z is regular. �

50.12. Decent spaces

In this section we collect some useful facts on decent spaces.

Lemma 50.12.1. Let S be a scheme. Let X be a decent algebraic space over S.

(1) If |X| is a singleton then X is a scheme.
(2) If |X| is a singleton and X is reduced, then X ∼= Spec(k) for some field

k.

Proof. Assume |X| is a singleton. It follows immediately from Theorem 50.9.2
that X is a scheme, but we can also argue directly as follows. Choose an affine
scheme U and a surjective étale morphism U → X. Set R = U ×X U . Then U
and R have finitely many points by Lemma 50.4.5 (and the definition of a decent
space). All of these points are closed in U and R by Lemma 50.10.3. It follows that
U and R are affine schemes. We may shrink U to a singleton space. Then U is the
spectrum of a henselian local ring, see Algebra, Lemma 10.145.11. The projections
R → U are étale, hence finite étale because U is the spectrum of a 0-dimensional
henselian local ring, see Algebra, Lemma 10.145.3. It follows that X is a scheme
by Groupoids, Proposition 38.21.8.

Part (2) follows from (1) and the fact that a reduced singleton scheme is the spec-
trum of a field. �

Remark 50.12.2. We will see in Limits of Spaces, Lemma 52.15.3 that an algebraic
space whose reduction is a scheme is a scheme.

Lemma 50.12.3. Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
κ(s) ⊂ k is algebraic. Then the image x of Spec(k)→ X is a closed point of |X|.

Proof. Suppose that x x′ for some x′ ∈ |X|. Choose an étale morphism U → X
where U is a scheme and a point u′ ∈ U ′ mapping to x′. Choose a specialization
u  u′ in U with u mapping to x in X, see Lemma 50.10.4. Then u is the image
of a point w of the scheme W = Spec(k)×X U . Since the projection W → Spec(k)
is étale we see that κ(w) ⊃ k is finite. Hence κ(w) ⊃ κ(s) is algebraic. Hence
κ(u) ⊃ κ(s) is algebraic. Thus u is a closed point of U by Morphisms, Lemma
28.21.2. Thus u = u′, whence x = x′. �
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Lemma 50.12.4. Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
κ(s) ⊂ k is finite. Then Spec(k) → X is finite morphism. If κ(s) = k then
Spec(k)→ X is closed immersion.

Proof. By Lemma 50.12.3 the image point x ∈ |X| is closed. Let Z ⊂ X be
the reduced closed subspace with |Z| = {x} (Properties of Spaces, Lemma 48.9.3).
Note that Z is a decent algebraic space by Lemma 50.6.5. By Lemma 50.12.1 we see
that Z = Spec(k′) for some field k′. Of course k ⊃ k′ ⊃ κ(s). Then Spec(k) → Z
is a finite morphism of schemes and Z → X is a finite morphism as it is a closed
immersion. Hence Spec(k) → X is finite (Morphisms of Spaces, Lemma 49.41.4).
If k = κ(s), then Spec(k) = Z and Spec(k)→ X is a closed immersion. �

Lemma 50.12.5. Let S be a scheme. Suppose X is a decent algebraic space over
S. Let x ∈ |X| be a closed point. Then x can be represented by a closed immersion
i : Spec(k)→ X from the spectrum of a field.

Proof. We know that x can be represented by a quasi-compact monomorphism
i : Spec(k) → X where k is a field (Definition 50.6.1). Let U → X be an étale
morphism where U is an affine scheme. As x is closed and X decent, the fibre F
of |U | → |X| over x consists of closed points (Lemma 50.10.3). As i is a monomor-
phism, so is Uk = U ×X Spec(k)→ U . In particular, the map |Uk| → F is injective.
Since Uk is quasi-compact and étale over a field, we see that Uk is a finite disjoint
union of spectra of fields (Remark 50.4.1). Say Uk = Spec(k1) q . . . q Spec(kr).
Since Spec(ki)→ U is a monomorphism, we see that its image ui has residue field
κ(ui) = ki. Since ui ∈ F is a closed point we conclude the morphism Spec(ki)→ U
is a closed immersion. As the ui are pairwise distinct, Uk → U is a closed immer-
sion. Hence i is a closed immersion (Morphisms of Spaces, Lemma 49.12.1). This
finishes the proof. �

50.13. Locally separated spaces

It turns out that a locally separated algebraic space is decent.

Lemma 50.13.1. Let A be a ring. Let k be a field. Let pn, n ≥ 1 be a sequence of
pairwise distinct primes of A. Moreover, for each n let k → κ(p) be an embedding.
Then the closure of the image of∐

n 6=m
Spec(κ(pn)⊗k κ(pm)) −→ Spec(A⊗A)

meets the diagonal.

Proof. Set kn = κ(pn). We may assume that A =
∏
kn. Denote xn = Spec(kn)

the open and closed point corresponding to A → kn. Then Spec(A) = Z q {xn}
where Z is a nonempty closed subset. Namely, Z = V (en;n ≥ 1) where en is the
idempotent of A corresponding to the factor kn and Z is nonempty as the ideal
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generated by the en is not equal to A. We will show that the closure of the image
contains ∆(Z). The kernel of the map

(
∏

kn)⊗k (
∏

km) −→
∏

n6=m
kn ⊗k km

is the ideal generated by en⊗ en, n ≥ 1. Hence the closure of the image of the map
on spectra is V (en⊗ en;n ≥ 1) whose intersection with ∆(Spec(A)) is ∆(Z). Thus
it suffices to show that∐

n 6=m
Spec(kn ⊗k km) −→ Spec(

∏
n 6=m

kn ⊗k km)

has dense image. This follows as the family of ring maps
∏
n 6=m kn⊗kkm → kn⊗kkm

is jointly injective. �

Lemma 50.13.2 (David Rydh). A locally separated algebraic space is decent.

Proof. Let S be a base scheme. Let X be a locally separated algebraic space over
S. Let x ∈ |X|. Choose a scheme U , an étale morphism U → X, and a point
u ∈ U mapping to x in |X|. As usual we identify u = Spec(κ(u)). As X is locally
separated the morphism

u×X u→ u× u

is an immersion (Morphisms of Spaces, Lemma 49.4.5). Hence More on Groupoids,
Lemma 39.10.5 tells us that it is a closed immersion (use Schemes, Lemma 25.10.4).
As u×Xu→ u×XU is a monomorphism (base change of u→ U) and as u×XU → u
is étale we conclude that u×X u is a disjoint union of spectra of fields (see Remark
50.4.1 and Schemes, Lemma 25.23.10). Since it is also closed in the affine scheme
u× u we conclude u×X u is a finite disjoint union of spectra of fields. Thus x can
be represented by a monomorphism Spec(k) → X where k is a field, see Lemma
50.4.3.

Next, let U = Spec(A) be an affine scheme and let U → X be an étale morphism.
To finish the proof it suffices to show that F = U ×X Spec(k) is finite. Write
F =

∐
i∈I Spec(ki) as the disjoint union of finite separable extensions of k. We

have to show that I is finite. Set R = U ×X U . As X is locally separated, the
morphism j : R → U × U is an immersion. Let e : U → R be the diagonal map.
Using that e is a morphism between étale schemes over U such that ∆ = j ◦ e is
a closed immersion, we conclude that R = e(U)

∐
W for some open and closed

subscheme W ⊂ R. Since j is an immersion and j|e(U) is a closed immersion we

conclude that j(W )∩∆(U) = ∅ in U ×U . Note that W contains Spec(ki⊗k ki′) for
all i 6= i′, i, i′ ∈ I. By Lemma 50.13.1 we conclude that I is finite as desired. �

50.14. Valuative criterion

For a quasi-compact morphism from a decent space the valuative criterion is nec-
essary in order for the morphism to be universally closed.

Proposition 50.14.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Assume f is quasi-compact, and X is decent. Then f is
universally closed if and only if the existence part of the valuative criterion holds.
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Proof. In Morphisms of Spaces, Lemma 49.39.1 we have seen one of the implica-
tions. To prove the other, assume that f is universally closed. Let

Spec(K) //

��

X

��
Spec(A) // Y

be a diagram as in Morphisms of Spaces, Definition 49.38.1. Let XA = Spec(A)×Y
X, so that we have

Spec(K) //

%%

XA

��
Spec(A)

By Morphisms of Spaces, Lemma 49.8.3 we see that XA → Spec(A) is quasi-
compact. Since XA → X is representable, we see that XA is decent also, see
Lemma 50.5.3. Moreover, as f is universally closed, we see that XA → Spec(A) is
universally closed. Hence we may and do replace X by XA and Y by Spec(A).

Let x′ ∈ |X| be the equivalence class of Spec(K) → X. Let y ∈ |Y | = |Spec(A)|
be the closed point. Set y′ = f(x′); it is the generic point of Spec(A). Since f

is universally closed we see that f({x′}) contains {y′}, and hence contains y. Let

x ∈ {x′} be a point such that f(x) = y. Let U be a scheme, and ϕ : U → X an
étale morphism such that there exists a u ∈ U with ϕ(u) = x. By Lemma 50.7.2
and our assumption that X is decent there exists a specialization u′  u on U with
ϕ(u′) = x′. This means that there exists a common field extension K ⊂ K ′ ⊃ κ(u′)
such that

Spec(K ′) //

��

U

��
Spec(K) //

&&

X

��
Spec(A)

is commutative. This gives the following commutative diagram of rings

K ′ OU,uoo

K

OO

A

bb

OO

By Algebra, Lemma 10.48.2 we can find a valuation ring A′ ⊂ K ′ dominating the
image of OU,u in K ′. Since by construction OU,u dominates A we see that A′

dominates A also. Hence we obtain a diagram resembling the second diagram of
Morphisms of Spaces, Definition 49.38.1 and the proposition is proved. �
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The following lemma is a special case of the more general Lemma 50.15.11.

Lemma 50.14.2. Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Assume f is quasi-compact and quasi-separated. Then f is
universally closed if and only if the existence part of the valuative criterion holds
(Morphisms of Spaces, Definition 49.38.1).

Proof. This is a combination of Morphisms of Spaces, Lemma 49.39.1 and Propo-
sition 50.14.1. Namely, the implication in one direction is given by Morphisms
of Spaces, Lemma 49.39.1. For the converse, assume f is quasi-separated, quasi-
compact, and universally closed and assume given a diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in Morphisms of Spaces, Definition 49.38.1. A formal argument shows that the
existence of the desired diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

can be reduced to the case of the morphism XA → Spec(A). In this case the alge-
braic space XA is quasi-separated, hence decent (property (γ) of Lemma 50.5.1).
Hence the existence of A ⊂ A′ and the arrow Spec(A′)→ XA follows from Propo-
sition 50.14.1. �

Lemma 50.14.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and separated. Then the following are
equivalent

(1) f is universally closed,
(2) the existence part of the valuative criterion holds as in Morphisms of

Spaces, Definition 49.38.1, and
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 25.20.3.

Proof. Since f is separated parts (2) and (3) are equivalent by Morphisms of
Spaces, Lemma 49.38.5. The equivalence of (3) and (1) follows from Lemma 50.14.2.

�
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Lemma 50.14.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and quasi-separated. Then the following
are equivalent

(1) f is separated and universally closed,
(2) the valuative criterion holds as in Morphisms of Spaces, Definition 49.38.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defi-
nition 25.20.3.

Proof. Since f is quasi-separated, the uniqueness part of the valutative criterion
implies f is separated (Morphisms of Spaces, Lemma 49.40.2). Conversely, if f is
separated, then it satisfies the uniqueness part of the valuative criterion (Morphisms
of Spaces, Lemma 49.40.1). Having said this, we see that in each of the three cases
the morphism f is separated and satisfies the uniqueness part of the valuative
criterion. In this case the lemma is a formal consequence of Lemma 50.14.3. �

Lemma 50.14.5 (Valuative criterion for properness). Let S be a scheme. Let
f : X → Y be a morphism of algebraic spaces over S. Assume f is of finite type
and quasi-separated. Then the following are equivalent

(1) f is proper,
(2) the valuative criterion holds as in Morphisms of Spaces, Definition 49.38.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defi-
nition 25.20.3.

Proof. Formal consequence of Lemma 50.14.4 and the definitions. �

50.15. Relative conditions

This is a (yet another) technical section dealing with conditions on algebraic spaces
having to do with points. It is probably a good idea to skip this section.

Definition 50.15.1. Let S be a scheme. We say an algebraic space X over S has
property (β) if X has the corresponding property of Lemma 50.5.1. Let f : X → Y
be a morphism of algebraic spaces over S.

(1) We say f has property (β) if for any scheme T and morphism T → Y the
fibre product T ×Y X has property (β).
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(2) We say f is decent if for any scheme T and morphism T → Y the fibre
product T ×Y X is a decent algebraic space.

(3) We say f is reasonable if for any scheme T and morphism T → Y the fibre
product T ×Y X is a reasonable algebraic space.

(4) We say f is very reasonable if for any scheme T and morphism T → Y
the fibre product T ×Y X is a very reasonable algebraic space.

We refer to Remark 50.15.10 for an informal discussion. It will turn out that the
class of very reasonable morphisms is not so useful, but that the classes of decent
and reasonable morphisms are useful.

Lemma 50.15.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We have the following implications among the conditions on f :

representable

$,
very reasonable +3 reasonable +3 decent +3 (β)

quasi-separated

2:

Proof. This is clear from the definitions, Lemma 50.5.1 and Morphisms of Spaces,
Lemma 49.4.12. �

Here is another sanity check.

Lemma 50.15.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If X is decent (resp. is reasonable, resp. has property (β) of Lemma
50.5.1), then f is decent (resp. reasonable, resp. has property (β)).

Proof. Let T be a scheme and let T → Y be a morphism. Then T → Y is
representable, hence the base change T ×Y X → X is represenble. Hence if X is
decent (or reasonable), then so is T×Y X, see Lemma 50.6.5. Similarly, for property
(β), see Lemma 50.5.3. �

Lemma 50.15.4. Having property (β), being decent, or being reasonable is pre-
served under arbitrary base change.

Proof. This is immediate from the definition. �

Lemma 50.15.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ω ∈ {β, decent, reasonable}. Suppose that Y has property (ω)
and f : X → Y has (ω). Then X has (ω).

Proof. Let us prove the lemma in case ω = β. In this case we have to show that
any x ∈ |X| is represented by a monomorphism from the spectrum of a field into
X. Let y = f(x) ∈ |Y |. By assumption there exists a field k and a monomorphism
Spec(k) → Y representing y. Then x corresponds to a point x′ of Spec(k) ×Y X.
By assumption x′ is represented by a monomorphism Spec(k′) → Spec(k) ×Y X.
Clearly the composition Spec(k′)→ X is a monomorphism representing x.

http://stacks.math.columbia.edu/tag/03M5
http://stacks.math.columbia.edu/tag/0ABX
http://stacks.math.columbia.edu/tag/03L0
http://stacks.math.columbia.edu/tag/0ABY


50.15. RELATIVE CONDITIONS 3309

Let us prove the lemma in case ω = decent. Let x ∈ |X| and y = f(x) ∈ |Y |. By
the result of the preceding paragraph we can choose a diagram

Spec(k′)
x

//

��

X

f

��
Spec(k)

y // Y

whose horizontal arrows monomorphisms. As Y is decent the morphism y is quasi-
compact. As f is decent the algebraic space Spec(k) ×Y X is decent. Hence the
monomorphism Spec(k′) → Spec(k) ×Y X is quasi-compact. Then the monomor-
phism x : Spec(k′)→ X is quasi-compact as a composition of quasi-compact mor-
phisms (use Morphisms of Spaces, Lemmas 49.8.3 and 49.8.4). As the point x was
arbitrary this implies X is decent.

Let us prove the lemma in case ω = reasonable. Choose V → Y étale with
V an affine scheme. Choose U → V ×Y X étale with U an affine scheme. By
assumption V → Y has universally bounded fibres. By Lemma 50.3.3 the morphism
V ×Y X → X has universally bounded fibres. By assumption on f we see that
U → V ×Y X has universally bounded fibres. By Lemma 50.3.2 the composition
U → X has universally bounded fibres. Hence there exists sufficiently many étale
morphisms U → X from schemes with universally bounded fibres, and we conclude
that X is reasonable. �

Lemma 50.15.6. Having property (β), being decent, or being reasonable is pre-
served under compositions.

Proof. Let ω ∈ {β, decent, reasonable}. Let f : X → Y and g : Y → Z be
morphisms of algebraic spaces over the scheme S. Assume f and g both have
property (ω). Then we have to show that for any scheme T and morphism T → Z
the space T×ZX has (ω). By Lemma 50.15.4 this reduces us to the following claim:
Suppose that Y is an algebraic space having property (ω), and that f : X → Y is
a morphism with (ω). Then X has (ω). This is the content of Lemma 50.15.5. �

Lemma 50.15.7. Let S be a scheme. Let f : X → Y , g : Z → Y be morphisms
of algebraic spaces over S. If X and Y are decent (resp. reasonable, resp. have
property (β) of Lemma 50.5.1), then so does X ×Y Z.

Proof. Namely, by Lemma 50.15.3 the morphism X → Y has the property. Then
the base change X×Y Z → Z has the property by Lemma 50.15.4. And finally this
implies X ×Y Z has the property by Lemma 50.15.5. �

Lemma 50.15.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable}. Assume

(1) f is quasi-compact,
(2) f is étale,
(3) |f | : |X| → |Y | is surjective, and
(4) the algebraic space X has property P.

Then Y has property P.

Proof. Let us prove this in case P = (β). Let y ∈ |Y | be a point. We have to
show that y can be represented by a monomorphism from a field. Choose a point
x ∈ |X| with f(x) = y. By assumption we may represent x by a monomorphism
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Spec(k)→ X, with k a field. By Lemma 50.4.3 it suffices to show that the projec-
tions Spec(k) ×Y Spec(k) → Spec(k) are étale and quasi-compact. We can factor
the first projection as

Spec(k)×Y Spec(k) −→ Spec(k)×Y X −→ Spec(k)

The first morphism is a monomorphism, and the second is étale and quasi-compact.
By Properties of Spaces, Lemma 48.13.8 we see that Spec(k) ×Y X is a scheme.
Hence it is a finite disjoint union of spectra of finite separable field extensions of
k. By Schemes, Lemma 25.23.10 we see that the first arrow identifies Spec(k) ×Y
Spec(k) with a finite disjoint union of spectra of finite separable field extensions of
k. Hence the projection morphism is étale and quasi-compact.

Let us prove this in case P = decent. We have already seen in the first para-
graph of the proof that this implies that every y ∈ |Y | can be represented by a
monomorphism y : Spec(k) → Y . Pick such a y. Pick an affine scheme U and an
étale morphism U → X such that the image of |U | → |Y | contains y. By Lemma
50.4.5 it suffices to show that Uy is a finite scheme over k. The fibre product
Xy = Spec(k) ×Y X is a quasi-compact étale algebraic space over k. Hence by
Properties of Spaces, Lemma 48.13.8 it is a scheme. So it is a finite disjoint union
of spectra of finite separable extensions of k. Say Xy = {x1, . . . , xn} so xi is given
by xi : Spec(ki) → X with [ki : k] < ∞. By assumption X is decent, so the
schemes Uxi = Spec(ki)×X U are finite over ki. Finally, we note that Uy =

∐
Uxi

as a scheme and we conclude that Uy is finite over k as desired.

Let us prove this in case P = reasonable. Pick an affine scheme V and an étale
morphism V → Y . We have the show the fibres of V → Y are universally bounded.
The algebraic space V ×Y X is quasi-compact. Thus we can find an affine scheme
W and a surjective étale morphism W → V ×Y X, see Properties of Spaces, Lemma
48.6.3. Here is a picture (solid diagram)

W //

$$

V ×Y X //

��

X

f

��

Spec(k)
x

oo

y
{{

V // Y

The morphism W → X is universally bounded by our assumption that the space
X is reasonable. Let n be an integer bounding the degrees of the fibres of W → X.
We claim that the same integer works for bounding the fibres of V → Y . Namely,
suppose y ∈ |Y | is a point. Then there exists a x ∈ |X| with f(x) = y (see above).
This means we can find a field k and morphisms x, y given as dotted arrows in the
diagram above. In particular we get a surjective étale morphism

Spec(k)×x,X W → Spec(k)×x,X (V ×Y X) = Spec(k)×y,Y V
which shows that the degree of Spec(k) ×y,Y V over k is less than or equal to the
degree of Spec(k) ×x,X W over k, i.e., ≤ n, and we win. (This last part of the
argument is the same as the argument in the proof of Lemma 50.3.4. Unfortu-
nately that lemma is not general enough because it only applies to representable
morphisms.) �

Lemma 50.15.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable, very reasonable}. The following
are equivalent
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(1) f is P,
(2) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(3) for every affine scheme Z and every morphism Z → Y the algebraic space

Z ×Y X is P, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each morphism f−1(Yi)→

Yi has P.

If P ∈ {(β), decent, reasonable}, then this is also equivalent to

(5) there exists a scheme V and a surjective étale morphism V → Y such that
the base change V ×Y X → V has P.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial. The implication (3)
⇒ (1) can be seen as follows. Let Z → Y be a morphism whose source is a scheme
over S. Consider the algebraic space Z ×Y X. If we assume (3), then for any affine
open W ⊂ Z, the open subspace W ×Y X of Z ×Y X has property P. Hence by
Lemma 50.5.2 the space Z×Y X has property P, i.e., (1) holds. A similar argument
(omitted) shows that (4) implies (1).

The implication (1) ⇒ (5) is trivial. Let V → Y be an étale morphism from a
scheme as in (5). Let Z be an affine scheme, and let Z → Y be a morphism.
Consider the diagram

Z ×Y V q
//

p

��

V

��
Z // Y

Since p is étale, and hence open, we can choose finitely many affine open subschemes
Wi ⊂ Z ×Y V such that Z =

⋃
p(Wi). Consider the commutative diagram

V ×Y X

��

(
∐
Wi)×Y Xoo

��

// Z ×Y X

��
V

∐
Wi

oo // Z

We know V ×Y X has property P. By Lemma 50.5.3 we see that (
∐
Wi) ×Y X

has property P. Note that the morphism (
∐
Wi) ×Y X → Z ×Y X is étale and

quasi-compact as the base change of
∐
Wi → Z. Hence by Lemma 50.15.8 we

conclude that Z ×Y X has property P. �

Remark 50.15.10. An informal description of the properties (β), decent, rea-
sonable, very reasonable was given in Section 50.6. A morphism has one of these
properties if (very) loosely speaking the fibres of the morphism have the corre-
sponding properties. Being decent is useful to prove things about specializations
of points on |X|. Being reasonable is a bit stronger and technically quite easy to
work with.

Here is a lemma we promised earlier which uses decent morphisms.

Lemma 50.15.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and decent. (For example if f is repre-
sentable, or quasi-separated, see Lemma 50.15.2.) Then f is universally closed if
and only if the existence part of the valuative criterion holds.
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Proof. In Morphisms of Spaces, Lemma 49.39.1 we proved that any quasi-compact
morphism which satisfies the existence part of the valuative criterion is universally
closed. To prove the other, assume that f is universally closed. In the proof of
Proposition 50.14.1 we have seen that it suffices to show, for any valuation ring
A, and any morphism Spec(A) → Y , that the base change fA : XA → Spec(A)
satisfies the existence part of the valuative criterion. By definition the algebraic
space XA has property (γ) and hence Proposition 50.14.1 applies to the morphism
fA and we win. �

50.16. Points of fibres

Let S be a scheme. Consider a cartesian diagram

(50.16.0.1) W
q
//

p

��

Z

g

��
X

f // Y

of algebraic spaces over S. Let x ∈ |X| and z ∈ |Z| be points mapping to the same
point y ∈ |Y |. We may ask: When is the set

(50.16.0.2) Fx,z = {w ∈ |W | such that p(w) = x and q(w) = z}

finite?

Example 50.16.1. If X,Y, Z are schemes, then the set Fx,z is equal to the spec-
trum of κ(x) ⊗κ(y) κ(z) (Schemes, Lemma 25.17.5). Thus we obtain a finite set if
either κ(y) ⊂ κ(x) is finite or if κ(y) ⊂ κ(z) is finite. In particular, this is always
the case if g is quasi-finite at z (Morphisms, Lemma 28.21.5).

Example 50.16.2. Let K be a characteristic 0 field endowed with an automor-
phism σ of infinite order. Set Y = Spec(K)/Z and X = A1

K/Z where Z acts on K
via σ and on A1

K = Spec(K[t]) via t 7→ t + 1. Let Z = Spec(K). Then W = A1
K .

Picture

A1
K q

//

p

��

Spec(K)

g

��
A1
K/Z

f // Spec(K)/Z

Take x corresponding to t = 0 and z the unique point of Spec(K). Then we see
that Fx,z = Z as a set.

Lemma 50.16.3. In the situation of (50.16.0.1) if Z ′ → Z is a morphism and
z′ ∈ |Z ′| maps to z, then the induced map Fx,z′ → Fx,z is surjective.

Proof. Set W ′ = X ×Y Z ′ = W ×Z Z ′. Then |W ′| → |W | ×|Z| |Z ′| is surjective by
Properties of Spaces, Lemma 48.4.3. Hence the surjectivity of Fx,z′ → Fx,z. �

Lemma 50.16.4. In diagram (50.16.0.1) the set (50.16.0.2) is finite if f is of
finite type and f is quasi-finite at x.

Proof. The morphism p is quasi-finite at every w ∈ Fx,z, see Morphisms of Spaces,
Lemma 49.26.2. Hence the lemma follows from Morphisms of Spaces, Lemma
49.26.9. �
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Lemma 50.16.5. In diagram (50.16.0.1) the set (50.16.0.2) is finite if y can be
represented by a monomorphism Spec(k)→ Y where k is a field and g is quasi-finite
at z. (Special case: Y is decent and g is étale.)

Proof. By Lemma 50.16.3 applied twice we may replace Z by Zk = Spec(k)×Y Z
and X by Xk = Spec(k)×Y X. We may and do replace Y by Spec(k) as well. Note
that Zk → Spec(k) is quasi-finite at z by Morphisms of Spaces, Lemma 49.26.2.
Choose a scheme V , a point v ∈ V , and an étale morphism V → Zk mapping v to
z. Choose a scheme U , a point u ∈ U , and an étale morphism U → Xk mapping u
to x. Again by Lemma 50.16.3 it suffices to show Fu,v is finite for the diagram

U ×Spec(k) V //

��

V

��
U // Spec(k)

The morphism V → Spec(k) is quasi-finite at v (follows from the general discussion
in Morphisms of Spaces, Section 49.22 and the definition of being quasi-finite at a
point). At this point the finiteness follows from Example 50.16.1. The parenthetical
remark of the statement of the lemma follows from the fact that on decent spaces
points are represented by monomorphisms from fields and from the fact that an
étale morphism of algebraic spaces is quasi-finite. �

Lemma 50.16.6. Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Let y ∈ |Y | and assume that y is represented by a quasi-
compact monomorphism Spec(k) → Y . Then |Xk| → |X| is a homeomorphism
onto f−1({y}) ⊂ |X| with induced topology.

Proof. We will use Properties of Spaces, Lemma 48.13.7 and Morphisms of Spaces,
Lemma 49.10.9 without further mention. Let V → Y be an étale morphism with
V affine such that there exists a v ∈ V mapping to y. Since Spec(k)→ Y is quasi-
compact there are a finite number of points of V mapping to y (Lemma 50.4.5).
After shrinking V we may assume v is the only one. Choose a scheme U and a
surjective étale morphism U → X. Consider the commutative diagram

U

��

UVoo

��

Uvoo

��
X

��

XV
oo

��

Xv
oo

��
Y Voo voo

Since Uv → UV identifies Uv with a subset of UV with the induced topology
(Schemes, Lemma 25.18.5), and since |UV | → |XV | and |Uv| → |Xv| are surjec-
tive and open, we see that |Xv| → |XV | is a homeomorphism onto its image (with
induced topology). On the other hand, the inverse image of f−1({y}) under the
open map |XV | → |X| is equal to |Xv|. We conclude that |Xv| → f−1({y}) is open.
The morphism Xv → X factors through Xk and |Xk| → |X| is injective with image
f−1({y}) by Properties of Spaces, Lemma 48.4.3. Using |Xv| → |Xk| → f−1({y})
the lemma follows because Xv → Xk is surjective. �

http://stacks.math.columbia.edu/tag/0AC7
http://stacks.math.columbia.edu/tag/0AC8


3314 50. DECENT ALGEBRAIC SPACES

Lemma 50.16.7. Let X be an algebraic space locally of finite type over a field k.
Let x ∈ |X|. Consider the conditions

(1) dimx(|X|) = 0,
(2) x is closed in |X| and if x′  x in |X| then x′ = x,
(3) x is an isolated point of |X|,
(4) dimx(X) = 0,
(5) X → Spec(k) is quasi-finite at x.

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) is equivalent to
the others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lem-
mas 49.32.7 and 49.32.8.

Let U → X be an étale morphism where U is an affine scheme and let u ∈ U be a
point mapping to x. Moreover, if x is a closed point, e.g., in case (2) or (3), then
we may and do assume that u is a closed point. Observe that dimu(U) = dimx(X)
by definition and that this is equal to dim(OU,u) if u is a closed point, see Algebra,
Lemma 10.110.6.

If dimx(X) > 0 and u is closed, by the arguments above we can choose a nontrivial
specialization u′  u in U . Then the transcendence degree of κ(u′) over k exceeds
the transcendence degree of κ(u) over k. It follows that the images x and x′ in X
are distinct, because the transcendence degree of x/k and x′/k are well defined, see
Morphisms of Spaces, Definition 49.31.1. This applies in particular in cases (2) and
(3) and we conclude that (2) and (3) imply (4).

Conversely, if X → Spec(k) is locally quasi-finite at x, then U → Spec(k) is locally
quasi-finite at u, hence u is an isolated point of U (Morphisms, Lemma 28.21.6).
It follows that (5) implies (2) and (3) as |U | → |X| is continuous and open.

Assume X is decent and (1) holds. Then dimx(X) = dimx(|X|) by Lemma 50.10.7
and the proof is complete. �

Lemma 50.16.8. Let X be an algebraic space locally of finite type over a field k.
Consider the conditions

(1) |X| is a finite set,
(2) |X| is a discrete space,
(3) dim(|X|) = 0,
(4) dim(X) = 0,
(5) X → Spec(k) is locally quasi-finite,

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) implies the
others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces,
Lemma 49.32.7.

Let U → X be a surjective étale morphism where U is a scheme.

If dim(U) > 0, then choose a nontrivial specialization u  u′ in U and the tran-
scendence degree of κ(u) over k exceeds the transcendence degree of κ(u′) over k.
It follows that the images x and x′ in X are distinct, because the transcendence
degree of x/k and x′/k is well defined, see Morphisms of Spaces, Definition 49.31.1.
We conclude that (2) and (3) imply (4).
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Conversely, if X → Spec(k) is locally quasi-finite, then U is locally Noetherian
(Morphisms, Lemma 28.16.6) of dimension 0 (Morphisms, Lemma 28.30.5) and
hence is a disjoint union of spectra of Artinian local rings (Properties, Lemma
27.10.3). Hence U is a discrete topological space, and since |U | → |X| is continuous
and open, the same is true for |X|. In other words, (4) implies (2) and (3).

Assume X is decent and (1) holds. Then we may choose U above to be affine.
The fibres of |U | → |X| are finite (this is a part of the defining property of decent
spaces). Hence U is a finite type scheme over k with finitely many points. Hence U
is quasi-finite over k (Morphisms, Lemma 28.21.7) which by definition means that
X → Spec(k) is locally quasi-finite. �

Lemma 50.16.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let
F = f−1({y}) with induced topology from |X|. Let k be a field and let Spec(k)→ Y
be in the equivalence class defining y. Set Xk = Spec(k)×Y X. Let x̃ ∈ |Xk| map
to x ∈ |X|. Consider the following conditions

(1) dimx(F ) = 0,
(2) x is isolated in F ,
(3) x is closed in F and if x′  x in F , then x = x′,
(4) dimx̃(|Xk|) = 0,
(5) x̃ is isolated in |Xk|,
(6) x̃ is closed in |Xk| and if x̃′  x̃ in |Xk|, then x̃ = x̃′,
(7) dimx̃(Xk) = 0,
(8) f is quasi-finite at x.

Then we have

(4)
f decent

+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then all conditions are
equivalent.

Proof. By Lemma 50.16.7 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is quasi-finite at x̃. Thus by Morphisms
of Spaces, Lemma 49.26.2 they are also equivalent to (8). If f is decent, then Xk

is a decent algebraic space and Lemma 50.16.7 shows that (4) implies (5).

If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 50.16.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. �

Lemma 50.16.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let y ∈ |Y |. Let k be a field and
let Spec(k) → Y be in the equivalence class defining y. Set Xk = Spec(k) ×Y X
and let F = f−1({y}) with the induced topology from |X|. Consider the following
conditions

(1) F is finite,
(2) F is a discrete topological space,
(3) dim(F ) = 0,
(4) |Xk| is a finite set,
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(5) |Xk| is a discrete space,
(6) dim(|Xk|) = 0,
(7) dim(Xk) = 0,
(8) f is quasi-finite at all points of |X| lying over y.

Then we have

(1) (4)ks
f decent

+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then (1) implies all the
other conditions.

Proof. By Lemma 50.16.8 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is locally quasi-finite. Thus by Morphisms
of Spaces, Lemma 49.26.2 they are also equivalent to (8). If f is decent, then Xk

is a decent algebraic space and Lemma 50.16.8 shows that (4) implies (5).

The map |Xk| → F is surjective by Properties of Spaces, Lemma 48.4.3 and we see
(4) ⇒ (1).

If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 50.16.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. �

50.17. Monomorphisms

Here is another case where monomorphisms are representable.

Lemma 50.17.1. Let S be a scheme. Let Y be a disjoint union of spectra of zero
dimensional local rings over S. Let f : X → Y be a monomorphism of algebraic
spaces over S. Then f is representable, i.e., X is a scheme.

Proof. This immediately reduces to the case Y = Spec(A) where A is a zero
dimensional local ring, i.e., Spec(A) = {mA} is a singleton. If X = ∅, then there
is nothing to prove. If not, choose a nonempty affine scheme U = Spec(B) and an
étale morphism U → X. As |X| is a singleton (as a subset of |Y |, see Morphisms
of Spaces, Lemma 49.10.9) we see that U → X is surjective. Note that U ×X U =
U ×Y U = Spec(B ⊗A B). Thus we see that the ring maps B → B ⊗A B are étale.
Since

(B ⊗A B)/mA(B ⊗A B) = (B/mAB)⊗A/mA (B/mAB)

we see that B/mAB → (B ⊗A B)/mA(B ⊗A B) is flat and in fact free of rank
equal to the dimension of B/mAB as a A/mA-vector space. Since B → B ⊗A B is
étale, this can only happen if this dimension is finite (see for example Morphisms,
Lemmas 28.50.7 and 28.50.8). Every prime of B lies over mA (the unique prime
of A). Hence Spec(B) = Spec(B/mA) as a topological space, and this space is
a finite discrete set as B/mAB is an Artinian ring, see Algebra, Lemmas 10.51.2
and 10.51.6. Hence all prime ideals of B are maximal and B = B1 × . . . × Bn
is a product of finitely many local rings of dimension zero, see Algebra, Lemma
10.51.5. Thus B → B ⊗A B is finite étale as all the local rings Bi are henselian by
Algebra, Lemma 10.145.11. Thus X is an affine scheme by Groupoids, Proposition
38.21.8. �
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50.18. Birational morphisms

The following definition of a birational morphism of algebraic spaces seems to be
the closest to our definition (Morphisms, Definition 28.9.1) of a birational morphism
of schemes.

Definition 50.18.1. Let S be a scheme. Let X and Y algebraic spaces over S.
Assume X and Y are decent and that |X| and |Y | have finitely many irreducible
components. We say a morphism f : X → Y is birational if

(1) |f | induces a bijection between the set of generic points of irreducible com-
ponents of |X| and the set of generic points of the irreducible components
of |Y |, and

(2) for every generic point x ∈ |X| of an irreducible component the local ring
map OY,f(x) → OX,x is an isomorphism (see clarification below).

Clarification: Since X and Y are decent the topological spaces |X| and |Y | are
sober (Proposition 50.10.6). Hence condition (1) makes sense. Moreover, because
we have assumed that |X| and |Y | have finitely many irreducible components, we
see that the generic points x1, . . . , xn ∈ |X|, resp. y1, . . . , yn ∈ |Y | are contained in
any dense open of |X|, resp. |Y |. In particular, they are contained in the schematic
locus of X, resp. Y by Theorem 50.9.2. Thus we can define OX,xi , resp. OY,yi to
be the local ring of this scheme at xi, resp. yi.

Another and perhaps better way to say all of this is that the morphism f : X → Y
is birational if there exist dense open subspaces X ′ ⊂ X and Y ′ ⊂ Y such that

(1) f(X ′) ⊂ Y ′,
(2) X ′ and Y ′ are representable, and
(3) f |X′ : X ′ → Y ′ is birational in the sense of Morphisms, Definition 28.9.1.

However, we do insist that X and Y are decent with finitely many irreducible
components.

Lemma 50.18.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. If
f is birational then f is dominant.

Proof. Follows immediately from the definitions. See Morphisms of Spaces, Defi-
nition 49.18.1. �

50.19. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra

(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites

http://stacks.math.columbia.edu/tag/0ACV
http://stacks.math.columbia.edu/tag/0ACW


3318 50. DECENT ALGEBRAIC SPACES

(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic

Spaces
(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces

(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic

Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index



CHAPTER 51

Cohomology of Algebraic Spaces

51.1. Introduction

In this chapter we write about cohomology of algebraic spaces. Although we prove
some results on cohomology of abelian sheaves, we focus mainly on cohomology
of quasi-coherent sheaves, i.e., we prove analogues of the results in the chapter
“Cohomology of Schemes”. Some of the results in this chapter can be found in
[Knu71].

An important missing ingredient in this chapter is the induction principle, i.e., the
analogue for quasi-compact and quasi-separated algebraic spaces of Cohomology
of Schemes, Lemma 29.4.1. This is formulated precisely and proved in detail in
Derived Categories of Spaces, Section 57.8. Instead of the induction principle, in
this chapter we use the alternating Čech complex, see Section 51.5. It is designed
to prove vanishing statements such as Proposition 51.6.2, but in some cases the
induction principle is a more powerful and perhaps more “standard” tool. We
encourage the reader to take a look at the induction principle after reading some
of the material in this section.

51.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

51.3. Higher direct images

Before discussing what happens with higher direct images of quasi-coherent sheaves
we formulate and prove a result which holds for all abelian sheaves (in particular
also quasi-coherent modules).

Lemma 51.3.1. Let S be a scheme. Let f : X → Y be an integral (for example
finite) morphism of algebraic spaces. Then f∗ : Ab(Xétale)→ Ab(Yétale) is an exact
functor and Rpf∗ = 0 for p > 0.

Proof. By Properties of Spaces, Lemma 48.15.11 we may compute the higher direct
images on an étale cover of Y . Hence we may assume Y is a scheme. This implies
that X is a scheme (Morphisms of Spaces, Lemma 49.41.3). In this case we may

apply Étale Cohomology, Lemma 44.44.5. For the finite case the reader may wish
to consult the less technical Étale Cohomology, Proposition 44.55.2. �

3319
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Let S be a scheme. Let X be a representable algebraic space over S. Let F
be a quasi-coherent module on X (see Properties of Spaces, Section 48.27). By
Descent, Proposition 34.7.10 the cohomology groups Hi(X,F) agree with the usual
cohomology group computed in the Zariski topology of the corresponding quasi-
coherent module on the scheme representing X.

More generally, let f : X → Y be a quasi-compact and quasi-separated morphism
of representable algebraic spaces X and Y . Let F be a quasi-coherent module
on X. By Descent, Lemma 34.7.15 the sheaf Rif∗F agrees with the usual higher
direct image computed for the Zariski topology of the quasi-coherent module on
the scheme representing X mapping to the scheme representing Y .

More generally still, suppose f : X → Y is a representable, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. Let V be a scheme and let
V → Y be an étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be
the base change of f . Then for any quasi-coherent OX -module F we have

(51.3.1.1) Rif ′∗(F|U ) = (Rif∗F)|V ,

see Properties of Spaces, Lemma 48.24.2. And because f ′ : U → V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute Rif ′∗(F|U ) by thinking of F|U as a quasi-coherent sheaf
on the scheme U , and f ′ as a morphism of schemes. We will frequently use this
without further mention.

Next, we prove that higher direct images of quasi-coherent sheaves are quasi-
coherent for any quasi-compact and quasi-separated morphism of algebraic spaces.
In the proof we use a trick; a “better” proof would use a relative Cech complex, as
discussed in Sheaves on Stacks, Sections 73.17 and 73.18 ff.

Lemma 51.3.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then Rif∗ transforms
quasi-coherent OX-modules into quasi-coherent OY -modules.

Proof. Let V → Y be an étale morphism where V is an affine scheme. Set
U = V ×Y X and denote f ′ : U → V the induced morphism. Let F be a
quasi-coherent OX -module. By Properties of Spaces, Lemma 48.24.2 we have
Rif ′∗(F|U ) = (Rif∗F)|V . Since the property of being a quasi-coherent module
is local in the étale topology on Y (see Properties of Spaces, Lemma 48.27.6) we
may replace Y by V , i.e., we may assume Y is an affine scheme.

Assume Y is affine. Since f is quasi-compact we see that X is quasi-compact. Thus
we may choose an affine scheme U and a surjective étale morphism g : U → X, see
Properties of Spaces, Lemma 48.6.3. Picture

U
g
//

f◦g   

X

f

��
Y

The morphism g : U → X is representable, separated and quasi-compact because
X is quasi-separated. Hence the lemma holds for g (by the discussion above the
lemma). It also holds for f ◦ g : U → Y (as this is a morphism of affine schemes).
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In the situation described in the previous paragraph we will show by induction on
n that IHn: for any quasi-coherent sheaf F on X the sheaves RifF are quasi-
coherent for i ≤ n. The case n = 0 follows from Morphisms of Spaces, Lemma
49.11.2. Assume IHn. In the rest of the proof we show that IHn+1 holds.

Let H be a quasi-coherent OU -module. Consider the Leray spectral sequence

Ep,q2 = Rpf∗R
qg∗H ⇒ Rp+q(f ◦ g)∗H

Cohomology on Sites, Lemma 21.14.7. As Rqg∗H is quasi-coherent by IHn all the
sheaves Rpf∗R

qg∗H are quasi-coherent for p ≤ n. The sheaves Rp+q(f ◦ g)∗H are
all quasi-coherent (in fact zero for p + q > 0 but we do not need this). Looking
in degrees ≤ n+ 1 the only module which we do not yet know is quasi-coherent is
En+1,0

2 = Rn+1f∗g∗H. Moreover, the differentials dn+1,0
r : En+1,0

r → En+1+r,1−r
r

are zero as the target is zero. Using that QCoh(OX) is a weak Serre subcategory
of Mod(OX) (Properties of Spaces, Lemma 48.27.7) it follows that Rn+1f∗g∗H is
quasi-coherent (details omitted).

Let F be a quasi-coherent OX -module. Set H = g∗F . The adjunction mapping
F → g∗g

∗F = g∗H is injective as U → X is surjective étale. Consider the exact
sequence

0→ F → g∗H → G → 0

where G is the cokernel of the first map and in particular quasi-coherent. Applying
the long exact cohomology sequence we obtain

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → Rn+1f∗g∗H → Rn+1f∗G
The cokernel of the first arrow is quasi-coherent and we have seen above that
Rn+1f∗g∗H is quasi-coherent. Thus Rn+1f∗F has a 2-step filtration where the first
step is quasi-coherent and the second a submodule of a quasi-coherent sheaf. Since
F is an arbitrary quasi-coherent OX -module, this result also holds for G. Thus we
can choose an exact sequence 0 → A → Rn+1f∗G → B with A, B quasi-coherent
OY -modules. Then the kernel K of Rn+1f∗g∗H → Rn+1f∗G → B is quasi-coherent,
whereupon we obtain a map K → A whose kernel K′ is quasi-coherent too. Hence
Rn+1f∗F sits in an exact sequence

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → K′ → 0

with all modules quasi-coherent except for possibly Rn+1f∗F . We conclude that
Rn+1f∗F is quasi-coherent, i.e., IHn+1 holds as desired. �

Lemma 51.3.3. Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S. For any quasi-coherent OX-module
F and any affine object V of Yétale we have

Hq(V ×Y X,F) = H0(V,Rqf∗F)

for all q ∈ Z.

Proof. Since formation of Rf∗ commutes with étale localization (Properties of
Spaces, Lemma 48.24.2) we may replace Y by V and assume Y = V is affine. Con-
sider the Leray spectral sequence Ep,q2 = Hp(Y,Rqf∗F) converging to Hp+q(X,F),
see Cohomology on Sites, Lemma 21.14.5. By Lemma 51.3.2 we see that the sheaves
Rqf∗F are quasi-coherent. By Cohomology of Schemes, Lemma 29.2.2 we see that
Ep,q2 = 0 when p > 0. Hence the spectral sequence degenerates at E2 and we
win. �
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51.4. Colimits and cohomology

The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 51.4.1. Let S be a scheme. Let X be an algebraic space over S. If X is
quasi-compact and quasi-separated, then

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

is an isomorphism for every filtered diagram of abelian sheaves on Xétale.

Proof. This follows from Cohomology on Sites, Lemma 21.16.1. Namely, let B ⊂
Ob(Xspaces,étale) be the set of quasi-compact and quasi-separated spaces étale over
X. Note that if U ∈ B then, because U is quasi-compact, the collection of finite
coverings {Ui → U} with Ui ∈ B is cofinal in the set of coverings of U in Xétale.
By Morphisms of Spaces, Lemma 49.8.9 the set B satisfies all the assumptions of
Cohomology on Sites, Lemma 21.16.1. Since X ∈ B we win. �

Lemma 51.4.2. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let F = colimFi be a filtered
colimit of abelian sheaves on Xétale. Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf on Yspaces,étale associated to V 7→ Hp(V ×Y
X,F), see Cohomology on Sites, Lemma 21.8.4 and Properties of Spaces, Lemma
48.15.7. Recall that the colimit is the sheaf associated to the presheaf colimit.
Hence we can apply Lemma 51.4.1 to Hp(V ×Y X,−) where V is affine to conclude
(because when V is affine, then V ×Y X is quasi-compact and quasi-separated).
Strictly speaking this also uses Properties of Spaces, Lemma 48.15.5 to see that
there exist enough affine objects. �

The following lemma tells us that finitely presented modules behave as expected in
quasi-compact and quasi-separated algebraic spaces.

Lemma 51.4.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let I be a partially ordered set and let (Fi, ϕii′) be a system
over I of quasi-coherent OX-modules. Let G be an OX-module of finite presentation.
Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

Proof. Choose an affine scheme U and a surjective étale morphism U → X. Set
R = U ×X U . Note that R is a quasi-compact (as X is quasi-separated and U
quasi-compact) and separated (as U is separated) scheme. Hence we have

colimi HomU (G|U ,Fi|U ) = HomU (G|U , colimi Fi|U ).

by Modules, Lemma 17.11.6 (and the material on restriction to schemes étale over
X, see Properties of Spaces, Sections 48.27 and 48.28). Similarly for R. Since
QCoh(OX) = QCoh(U,R, s, t, c) (see Properties of Spaces, Proposition 48.30.1) the
result follows formally. �
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51.5. The alternating Čech complex

Let S be a scheme. Let f : U → X be an étale morphism of algebraic spaces over
S. The functor

j : Uspaces,étale −→ Xspaces,étale, V/U 7−→ V/X

induces an equivalence of Uspaces,étale with the localization Xspaces,étale/U , see
Properties of Spaces, Section 48.25. Hence there exist functors

f! : Ab(Uétale) −→ Ab(Xétale), f! : Mod(OU ) −→ Mod(OX),

which are left adjoint to

f−1 : Ab(Xétale) −→ Ab(Uétale), f∗ : Mod(OX) −→ Mod(OU )

see Modules on Sites, Section 18.19. Warning: This functor, a priori, has nothing
to do with cohomology with compact supports! We dubbed this functor “extension
by zero” in the reference above. Note that the two versions of f! agree as f∗ = f−1

for sheaves of OX -modules.

As we are going to use this construction below let us recall some of its properties.
Given an abelian sheaf G on Uétale the sheaf f! is the sheafification of the presheaf

V/X 7−→ f!G(V ) =
⊕

ϕ∈MorX(V,U)
G(V

ϕ−→ U),

see Modules on Sites, Lemma 18.19.2. Moreover, if G is an OU -module, then f!G
is the sheafification of the exact same presheaf of abelian groups which is endowed
with an OX -module structure in an obvious way (see loc. cit.). Let x : Spec(k)→ X
be a geometric point. Then there is a canonical identification

(f!G)x =
⊕

u
Gu

where the sum is over all u : Spec(k) → U such that f ◦ u = x, see Modules on
Sites, Lemma 18.37.1 and Properties of Spaces, Lemma 48.16.13. In the following
we are going to study the sheaf f!Z. Here Z denotes the constant sheaf on Xétale

or Uétale.

Lemma 51.5.1. Let S be a scheme. Let fi : Ui → X be étale morphisms of
algebraic spaces over S. Then there are isomorphisms

f1,!Z⊗Z f2,!Z −→ f12,!Z

where f12 : U1 ×X U2 → X is the structure morphism and

(f1 q f2)!Z −→ f1,!Z⊕ f2,!Z

Proof. Once we have defined the map it will be an isomorphism by our description
of stalks above. To define the map it suffices to work on the level of presheaves.
Thus we have to define a map(⊕

ϕ1∈MorX(V,U1)
Z

)
⊗Z

(⊕
ϕ2∈MorX(V,U2)

Z

)
−→

⊕
ϕ∈MorX(V,U1×XU2)

Z

We map the element 1ϕ1 ⊗ 1ϕ2 to the element 1ϕ1×ϕ2 with obvious notation. We
omit the proof of the second equality. �
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Another important feature is the trace map

Trf : f!Z −→ Z.

The trace map is adjoint to the map Z→ f−1Z (which is an isomorphism). If x is
above, then Trf on stalks at x is the map

(Trf )x : (f!Z)x =
⊕

u
Z −→ Z = Zx

which sums the given integers. This is true because it is adjoint to the map 1 : Z→
f−1Z. In particular, if f is surjective as well as étale then Trf is surjective.

Assume that f : U → X is a surjective étale morphism of algebraic spaces. Consider
the Koszul complex associated to the trace map we discussed above

. . .→ ∧3f!Z→ ∧2f!Z→ f!Z→ Z→ 0

Here the exterior powers are over the sheaf of rings Z. The maps are defined by
the rule

e1 ∧ . . . ∧ en 7−→
∑

i=1,...,n
(−1)i+1Trf (ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en

where e1, . . . , en are local sections of f!Z. Let x be a geometric point of X and set
Mx = (f!Z)x =

⊕
u Z. Then the stalk of the complex above at x is the complex

. . .→ ∧3Mx → ∧2Mx →Mx → Z→ 0

which is exact because Mx → Z is surjective, see More on Algebra, Lemma 15.20.5.
Hence if we let K• = K•(f) be the complex with Ki = ∧i+1f!Z, then we obtain a
quasi-isomorphism

(51.5.1.1) K• −→ Z[0]

We use the complex K• to define what we call the alternating Čech complex asso-
ciated to f : U → X.

Definition 51.5.2. Let S be a scheme. Let f : U → X be a surjective étale
morphism of algebraic spaces over S. Let F be an object of Ab(Xétale). The
alternating Čech complex1 Č•alt(f,F) associated to F and f is the complex

Hom(K0,F)→ Hom(K1,F)→ Hom(K2,F)→ . . .

with Hom groups computed in Ab(Xétale).

The reader may verify that if U =
∐
Ui and f |Ui : Ui → X is the open immersion

of a subspace, then Č•alt(f,F) agrees with the complex introduced in Cohomology,
Section 20.24 for the Zariski covering X =

⋃
Ui and the restriction of F to the

Zariski site of X. What is more important however, is to relate the cohomology of
the alternating Čech complex to the cohomology.

Lemma 51.5.3. Let S be a scheme. Let f : U → X be a surjective étale mor-
phism of algebraic spaces over S. Let F be an object of Ab(Xétale). There exists a
canonical map

Č•alt(f,F) −→ RΓ(X,F)

in D(Ab). Moreover, there is a spectral sequence with E1-page

Ep,q1 = ExtqAb(Xétale)
(Kp,F)

converging to Hp+q(X,F) where Kp = ∧p+1f!Z.

1This may be nonstandard notation
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Proof. Recall that we have the quasi-isomorphism K• → Z[0], see (51.5.1.1).
Choose an injective resolution F → I• in Ab(Xétale). Consider the double complex
A•,• with terms

Ap,q = Hom(Kp, Iq)
where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Kp+1 → Kp and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
differential Iq → Iq+1. Denote sA• the total complex associated to the double
complex A•,•. We will use the two spectral sequences (′Er,

′dr) and (′′Er,
′′dr)

associated to this double complex, see Homology, Section 12.22.

Because K• is a resolution of Z we see that the complexes

A•,q : Hom(K0, Iq)→ Hom(K1, Iq)→ Hom(K2, Iq)→ . . .

are acyclic in positive degrees and have H0 equal to Γ(X, Iq). Hence by Homology,
Lemma 12.22.7 and its proof the spectral sequence (′′Er,

′′dr) degenerates, and the
natural map

I•(X) −→ sA•

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude
that Hn(sA•) = Hn(X,F).

The map Č•alt(f,F) → RΓ(X,F) of the lemma is the composition of Č•alt(f,F) →
SA• with the inverse of the displayed quasi-isomorphism.

Finally, consider the spectral sequence (′Er,
′dr). We have

Ep,q1 = qth cohomology of Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

This proves the lemma. �

It follows from the lemma that it is important to understand the ext groups
ExtAb(Xétale)(K

p,F), i.e., the right derived functors of F 7→ Hom(Kp,F).

Lemma 51.5.4. Let S be a scheme. Let f : U → X be a surjective, étale, and
separated morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

where the fibre product has p+ 1 factors. There is a free action of Sp+1 on Wp over
X and

Hom(Kp,F) = Sp+1-anti-invariant elements of F(Wp)

functorially in F where Kp = ∧p+1f!Z.

Proof. Because U → X is separated the diagonal U → U ×X U is a closed im-
mersion. Since U → X is étale the diagonal U → U ×X U is an open immersion,
see Morphisms of Spaces, Lemmas 49.36.10 and 49.35.9. Hence Wp is an open and
closed subspace of Up+1 = U ×X . . . ×X U . The action of Sp+1 on Wp is free as
we’ve thrown out the fixed points of the action. By Lemma 51.5.1 we see that

(f!Z)⊗p+1 = fp+1
! Z = (Wp → X)!Z⊕Rest

where fp+1 : Up+1 → X is the structure morphism. Looking at stalks over a
geometric point x of X we see that(⊕

u 7→x
Z
)⊗p+1

−→ (Wp → X)!Zx
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is the quotient whose kernel is generated by all tensors 1u0
⊗ . . .⊗1up where ui = uj

for some i 6= j. Thus the quotient map

(f!Z)⊗p+1 −→ ∧p+1f!Z

factors through (Wp → X)!Z, i.e., we get

(f!Z)⊗p+1 −→ (Wp → X)!Z −→ ∧p+1f!Z

This already proves that Hom(Kp,F) is (functorially) a subgroup of

Hom((Wp → X)!Z,F) = F(Wp)

To identify it with the Sp+1-anti-invariants we have to prove that the surjection
(Wp → X)!Z → ∧p+1f!Z is the maximal Sp+1-anti-invariant quotient. In other
words, we have to show that ∧p+1f!Z is the quotient of (Wp → X)!Z by the
subsheaf generated by the local sections s − sign(σ)σ(s) where s is a local section
of (Wp → X)!Z. This can be checked on the stacks, where it is clear. �

Lemma 51.5.5. Let S be a scheme. Let W be an algebraic space over S. Let G be
a finite group acting freely on W . Let U = W/G, see Properties of Spaces, Lemma
48.32.1. Let χ : G → {+1,−1} be a character. Then there exists a rank 1 locally
free sheaf of Z-modules Z(χ) on Uétale such that for every abelian sheaf F on Uétale
we have

H0(W,F|W )χ = H0(U,F ⊗Z Z(χ))

Proof. The quotient morphism q : W → U is a G-torsor, i.e., there exists a
surjective étale morphism U ′ → U such that W ×U U ′ =

∐
g∈G U

′ as spaces with

G-action over U ′. (Namely, U ′ = W works.) Hence q∗Z is a finite locally free
Z-module with an action of G. For any geometric point u of U , then we get G-
equivariant isomorphisms

(q∗Z)u =
⊕

w 7→u
Z =

⊕
g∈G

Z = Z[G]

where the second = uses a geometric point w0 lying over u and maps the summand
corresponding to g ∈ G to the summand corresponding to g(w0). We have

H0(W,F|W ) = H0(U,F ⊗Z q∗Z)

because q∗F|W = F ⊗Z q∗Z as one can check by restricting to U ′. Let

Z(χ) = (q∗Z)χ ⊂ q∗Z

be the subsheaf of sections that transform according to χ. For any geometric point
u of U we have

Z(χ)u = Z ·
∑

g
χ(g)g ⊂ Z[G] = (q∗Z)u

It follows that Z(χ) is locally free of rank 1 (more precisely, this should be checked
after restricting to U ′). Note that for any Z-module M the χ-semi-invariants of
M [G] are the elements of the form m ·

∑
g χ(g)g. Thus we see that for any abelian

sheaf F on U we have

(F ⊗Z q∗Z)
χ

= F ⊗Z Z(χ)

because we have equality at all stalks. The result of the lemma follows by taking
global sections. �

Now we can put everything together and obtain the following pleasing result.
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Lemma 51.5.6. Let S be a scheme. Let f : U → X be a surjective, étale, and
separated morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

(with p + 1 factors) as in Lemma 51.5.4. Let χp : Sp+1 → {+1,−1} be the sign
character. Let Up = Wp/Sp+1 and Z(χp) be as in Lemma 51.5.5. Then the spectral
sequence of Lemma 51.5.3 has E1-page

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))

and converges to Hp+q(X,F).

Proof. Note that since the action of Sp+1 on Wp is over X we do obtain a morphism
Up → X. Since Wp → X is étale and since Wp → Up is surjective étale, it follows
that also Up → X is étale, see Morphisms of Spaces, Lemma 49.36.2. Therefore
an injective object of Ab(Xétale) restricts to an injective object of Ab(Up,étale), see
Cohomology on Sites, Lemma 21.8.1. Moreover, the functor G 7→ G ⊗Z Z(χp)) is
an auto-equivalence of Ab(Up), whence transforms injective objects into injective
objects and is exact (because Z(χp) is an invertible Z-module). Thus given an
injective resolution F → I• in Ab(Xétale) the complex

Γ(Up, I0|Up ⊗Z Z(χp))→ Γ(Up, I1|Up ⊗Z Z(χp))→ Γ(Up, I2|Up ⊗Z Z(χp))→ . . .

computes H∗(Up,F|Up ⊗Z Z(χp)). On the other hand, by Lemma 51.5.5 it is equal
to the complex of Sp+1-anti-invariants in

Γ(Wp, I0)→ Γ(Wp, I1)→ Γ(Wp, I2)→ . . .

which by Lemma 51.5.4 is equal to the complex

Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

which computes Ext∗Ab(Xétale)
(Kp,F). Putting everything together we win. �

51.6. Higher vanishing for quasi-coherent sheaves

In this section we show that given a quasi-compact and quasi-separated algebraic
space X there exists an integer n = n(X) such that the cohomology of any quasi-
coherent sheaf on X vanishes beyond degree n.

Lemma 51.6.1. With S, W , G, U , χ as in Lemma 51.5.5. If F is a quasi-coherent
OU -module, then so is F ⊗Z Z(χ).

Proof. The OU -module structure is clear. To check that F ⊗Z Z(χ) is quasi-
coherent it suffices to check étale locally. Hence the lemma follows as Z(χ) is finite
locally free as a Z-module. �

The following proposition is interesting even if X is a scheme. It is the natural
generalization of Cohomology of Schemes, Lemma 29.4.2. Before we state it, observe
that given an étale morphism f : U → X from an affine scheme towards a quasi-
separated algebraic space X the fibres of f are universally bounded, in particular
there exists an integer d such that the fibres of |U | → |X| all have size at most d;
this is the implication (η)⇒ (δ) of Decent Spaces, Lemma 50.5.1.
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Proposition 51.6.2. Let S be a scheme. Let X be an algebraic space over S.
Assume X is quasi-compact and separated. Let U be an affine scheme, and let
f : U → X be a surjective étale morphism. Let d be an upper bound for the size
of the fibres of |U | → |X|. Then for any quasi-coherent OX-module F we have
Hq(X,F) = 0 for q ≥ d.

Proof. We will use the spectral sequence of Lemma 51.5.6. The lemma applies
since f is separated as U is separated, see Morphisms of Spaces, Lemma 49.4.10.
Since X is separated the scheme U ×X . . .×X U is a closed subscheme of U ×Spec(Z)

. . .×Spec(Z) U hence is affine. Thus Wp is affine. Hence Up = Wp/Sp+1 is an affine
scheme by Groupoids, Proposition 38.21.8. The discussion in Section 51.3 shows
that cohomology of quasi-coherent sheaves onWp (as an algebraic space) agrees with
the cohomology of the corresponding quasi-coherent sheaf on the underlying affine
scheme, hence vanishes in positive degrees by Cohomology of Schemes, Lemma
29.2.2. By Lemma 51.6.1 the sheaves F|Up ⊗Z Z(χp) are quasi-coherent. Hence
Hq(Wp,F|Up ⊗Z Z(χp)) is zero when q > 0. By our definition of the integer d we

see that Wp = ∅ for p ≥ d. Hence also H0(Wp,F|Up ⊗Z Z(χp)) is zero when p ≥ d.
This proves the proposition. �

In the following lemma we establish that a quasi-compact and quasi-separated al-
gebraic space has finite cohomological dimension for quasi-coherent modules. We
are explicit about the bound only because we will use it later to prove a similar
result for higher direct images.

Lemma 51.6.3. Let S be a scheme. Let X be an algebraic space over S. Assume
X is quasi-compact and quasi-separated. Then we can choose

(1) an affine scheme U ,
(2) a surjective étale morphism f : U → X,
(3) an integer d bounding the degrees of the fibres of U → X,
(4) for every p = 0, 1, . . . , d a surjective étale morphism Vp → Up from an

affine scheme Vp where Up is as in Lemma 51.5.6, and
(5) an integer dp bounding the degree of the fibres of Vp → Up.

Moreover, whenever we have (1) – (5), then for any quasi-coherent OX-module F
we have Hq(X,F) = 0 for q ≥ max(dp + p).

Proof. Since X is quasi-compact we can find a surjective étale morphism U → X
with U affine, see Properties of Spaces, Lemma 48.6.3. By Decent Spaces, Lemma
50.5.1 the fibres of f are universally bounded, hence we can find d. We have
Up = Wp/Sp+1 and Wp ⊂ U ×X . . . ×X U is open and closed. Since X is quasi-
separated the schemes Wp are quasi-compact, hence Up is quasi-compact. Since U
is separated, the schemes Wp are separated, hence Up is separated by (the absolute
version of) Spaces, Lemma 47.14.5. By Properties of Spaces, Lemma 48.6.3 we can
find the morphisms Vp → Wp. By Decent Spaces, Lemma 50.5.1 we can find the
integers dp.

At this point the proof uses the spectral sequence

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))⇒ Hp+q(X,F)

see Lemma 51.5.6. By definition of the integer d we see that Up = 0 for p ≥ d. By
Proposition 51.6.2 and Lemma 51.6.1 we see that Hq(Up,F|Up ⊗Z Z(χp)) is zero
for q ≥ dp for p = 0, . . . , d. Whence the lemma. �

http://stacks.math.columbia.edu/tag/072B
http://stacks.math.columbia.edu/tag/072C


51.8. COHOMOLOGY WITH SUPPORT IN A CLOSED SUBSPACE 3329

51.7. Vanishing for higher direct images

We apply the results of Section 51.6 to obtain vanishing of higher direct images of
quasi-coherent sheaves for quasi-compact and quasi-separated morphisms. This is
useful because it allows one to argue by descending induction on the cohomological
degree in certain situations.

Lemma 51.7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) f is quasi-compact and quasi-separated, and
(2) Y is quasi-compact.

Then there exists an integer n(X → Y ) such that for any algebraic space Y ′, any
morphism Y ′ → Y and any quasi-coherent sheaf F ′ on X ′ = Y ′ ×Y X the higher
direct images Rif ′∗F ′ are zero for i ≥ n(X → Y ).

Proof. Let V → Y be a surjective étale morphism where V is an affine scheme,
see Properties of Spaces, Lemma 48.6.3. Suppose we prove the result for the base
change fV : V ×Y X → V . Then the result holds for f with n(X → Y ) = n(XV →
V ). Namely, if Y ′ → Y and F ′ are as in the lemma, then Rif ′∗F ′|V×Y Y ′ is equal
to Rif ′V,∗F ′|X′V where f ′V : X ′V = V ×Y Y ′ ×Y X → V ×Y Y ′ = Y ′V , see Properties
of Spaces, Lemma 48.24.2. Thus we may assume that Y is an affine scheme.

Moreover, to prove the vanishing for all Y ′ → Y and F ′ it suffices to do so when Y ′

is an affine scheme. In this case, Rif ′∗F ′ is quasi-coherent by Lemma 51.3.2. Hence
it suffices to prove that Hi(X ′,F ′) = 0, because Hi(X ′,F ′) = H0(Y ′, Rif ′∗F ′) by
Cohomology on Sites, Lemma 21.14.6 and the vanishing of higher cohomology of
quasi-coherent sheaves on affine algebraic spaces (Proposition 51.6.2).

Choose U → X, d, Vp → Up and dp as in Lemma 51.6.3. For any affine scheme Y ′

and morphism Y ′ → Y denote X ′ = Y ′×Y X, U ′ = Y ′×Y U , V ′p = Y ′×Y Vp. Then
U ′ → X ′, d′ = d, V ′p → U ′p and d′p = d is a collection of choices as in Lemma 51.6.3

for the algebraic space X ′ (details omitted). Hence we see that Hi(X ′,F ′) = 0 for
i ≥ max(p+ dp) and we win. �

Lemma 51.7.2. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then Rif∗F = 0 for i > 0 and any quasi-coherent OX-
module F .

Proof. Recall that an affine morphism of algebraic spaces is representable. Hence
this follows from (51.3.1.1) and Cohomology of Schemes, Lemma 29.2.3. �

51.8. Cohomology with support in a closed subspace

This section is the analogue of Cohomology, Section 20.22 and Étale Cohomology,
Section 44.73 for abelian sheaves on algebraic spaces.

Let S be a scheme. Let X be an algebraic space over S and let Z ⊂ X be a closed
subspace. Let F be an abelian sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Properties of Spaces, Definition 48.17.3). This
is a left exact functor which is not exact in general. Hence we obtain a derived
functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)
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and cohomology groups with support in Z defined by Hq
Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on Xétale. Let U ⊂ X be the open subspace
which is the complement of Z. Then the restriction map I(X) → I(U) is surjec-
tive (Cohomology on Sites, Lemma 21.12.6) with kernel ΓZ(X, I). It immediately
follows that for K ∈ D(Xétale) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).

For an abelian sheaf F on Xétale we can consider the subsheaf of sections with
support in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}
Here we use the support of a section from Properties of Spaces, Definition 48.17.3.
Using the equivalence of Morphisms of Spaces, Lemma 49.13.5 we may view HZ(F)
as an abelian sheaf on Zétale. Thus we obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)

which is left exact, but in general not exact.

Lemma 51.8.1. Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let I be an injective abelian sheaf on Xétale. Then HZ(I)
is an injective abelian sheaf on Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Lemma
51.3.1) and as I is injective on Xétale we conclude that HZ(I) is injective on
Zétale. �

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 51.8.2. Let S be a scheme. Let i : Z → X be a closed immersion of alge-
braic spaces over S. Let G be an injective abelian sheaf on Zétale. Then HpZ(i∗G) = 0
for p > 0.

Proof. This is true because the functor i∗ is exact (Lemma 51.3.1) and trans-
forms injective abelian sheaves into injective abelian sheaves (Cohomology on Sites,
Lemma 21.14.2). �

Lemma 51.8.3. Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Let Z ⊂ Y be a closed subspace such that f−1(Z) → Z is
an isomorphism of algebraic spaces. Let F be an abelian sheaf on X. Then

HqZ(F) = Hqf−1(Z)(f
−1F)
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as abelian sheaves on Z = f−1(Z) and we have Hq
Z(Y,F) = Hq

f−1(Z)(X, f
−1F).

Proof. Because f is étale an injective resolution of F pulls back to an injective
resolution of f−1F . Hence it suffices to check the equality for HZ(−) which follows
from the definitions. The proof for cohomology with supports is the same. Some
details omitted. �

Let S be a scheme and let X be an algebraic space over S. Let T ⊂ |X| be a closed
subset. We denote DT (Xétale) the strictly full saturated triangulated subcategory
of D(Xétale) consisting of objects whose cohomology sheaves are supported on T .

Lemma 51.8.4. Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. The map Ri∗ = i∗ : D(Zétale) → D(Xétale) induces an
equivalence D(Zétale)→ D|Z|(Xétale) with quasi-inverse

i−1|DZ(Xétale) = RHZ |D|Z|(Xétale)

Proof. Recall that i−1 and i∗ is an adjoint pair of exact functors such that i−1i∗
is isomorphic to the identify functor on abelian sheaves. See Properties of Spaces,
Lemma 48.16.9 and Morphisms of Spaces, Lemma 49.13.5. Thus i∗ : D(Zétale) →
DZ(Xétale) is fully faithfull and i−1 determines a left inverse. On the other hand,
suppose that K is an object of DZ(Xétale) and consider the adjunction map K →
i∗i
−1K. Using exactness of i∗ and i−1 this induces the adjunction maps Hn(K)→

i∗i
−1Hn(K) on cohomology sheaves. Since these cohomology sheaves are sup-

ported on Z we see these adjunction maps are isomorphisms and we conclude that
D(Zétale)→ DZ(Xétale) is an equivalence.

To finish the proof we have to show that RHZ(K) = i−1K if K is an object of
DZ(Xétale). To do this we can use that K = i∗i

−1K as we’ve just proved this is
the case. Then we can choose a K-injective representative I• for i−1K. Since i∗ is
the right adjoint to the exact functor i−1, the complex i∗I• is K-injective (Derived
Categories, Lemma 13.29.10). We see that RHZ(K) is computed byHZ(i∗I•) = I•
as desired. �

51.9. Vanishing above the dimension

Let S be a scheme. Let X be a quasi-compact and quasi-separated algebraic space
over S. In this case |X| is a spectral space, see Properties of Spaces, Lemma 48.12.5.
Moreover, the dimension of X (as defined in Properties of Spaces, Definition 48.8.2)
is equal to the Krull dimension of |X|, see Decent Spaces, Lemma 50.10.7. We will
show that for quasi-coherent sheaves on X we have vanishing of cohomology above
the dimension. This result is already interesting for quasi-separated algebraic spaces
of finite type over a field.

Lemma 51.9.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume dim(X) ≤ d for some integer d. Let F be a quasi-
coherent sheaf F on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for any quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d for any closed subspace Z ⊂ X whose complement
is quasi-compact.
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Proof. By Properties of Spaces, Lemma 48.20.3 every algebraic space Y étale over
X has dimension ≤ d. If Y is quasi-separated, the dimension of Y is equal to the
Krull dimension of |Y | by Decent Spaces, Lemma 50.10.7. Also, if Y is a scheme,
then étale cohomology of F over Y , resp. étale cohomology of F with support in
a closed subscheme, agrees with usual cohomology of F , resp. usual cohomology
with support in the closed subscheme. See Descent, Proposition 34.7.10 and Étale
Cohomology, Lemma 44.73.5. We will use these facts without further mention.

By Decent Spaces, Lemma 50.8.5 there exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up\Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

As Un = Vn is a scheme, our initial remarks imply the cohomology of F over Un
vanishes in degrees > d by Cohomology, Proposition 20.23.4. Suppose we have
shown, by induction, that Hq(Up+1,F|Up+1

) = 0 for q > d. It suffices to show
Hq
Tp

(Up,F) for q > d is zero in order to conclude the vanishing of cohomology of F
over Up in degrees > d. However, we have

Hq
Tp

(Up,F) = Hq

f−1
p (Tp)

(Vp,F)

by Lemma 51.8.3 and as Vp is a scheme we obtain the desired vanishing from
Cohomology, Proposition 20.23.4. In this way we conclude that (1) is true.

To prove (2) let U ⊂ X be a quasi-compact open subspace. Consider the open
subspace U ′ = U∪Un. Let Z = U ′\U . Then g : Un → U ′ is an étale morphism such
that g−1(Z)→ Z is an isomorphism. Hence by Lemma 51.8.3 we have Hq

Z(U ′,F) =
Hq
Z(Un,F) which vanishes in degree > d because Un is a scheme and we can apply

Cohomology, Proposition 20.23.4. We conclude that Hd(U ′,F) → Hd(U,F) is
surjective. Assume, by induction, that we have reduced our problem to the case
where U contains Up+1. Then we set U ′ = U ∪ Up, set Z = U ′ \ U , and we
argue using the morphism fp : Vp → U ′ which is étale and has the property that
f−1
p (Z)→ Z is an isomorphism. In other words, we again see that

Hq
Z(U ′,F) = Hq

f−1
p (Z)

(Vp,F)

and we again see this vanishes in degrees > d. We conclude that Hd(U ′,F) →
Hd(U,F) is surjective. Eventually we reach the stage where U1 = X ⊂ U which
finishes the proof.

A formal argument shows that (2) implies (3). �

51.10. Cohomology and base change, I

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. Let
F be a quasi-coherent sheaf on X. Suppose further that g : Y ′ → Y is a morphism
of algebraic spaces over S. Denote X ′ = XY ′ = Y ′×Y X the base change of X and
denote f ′ : X ′ → Y ′ the base change of f . Also write g′ : X ′ → X the projection,
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and set F ′ = (g′)∗F . Here is a diagram representing the situation:

(51.10.0.1)

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′∗F ′ Y ′
g // Y Rf∗F

Here is the basic result for a flat base change.

Lemma 51.10.1. In the situation above, assume that g is flat and that f is quasi-
compact and quasi-separated. Then we have

Rpf ′∗F ′ = g∗Rpf∗F

for all p ≥ 0 with notation as in (51.10.0.1).

Proof. The morphism g′ is flat by Morphisms of Spaces, Lemma 49.28.4. Note that
flatness of g and g′ is equivalent to flatness of the morphisms of small étale ringed
sites, see Morphisms of Spaces, Lemma 49.28.9. Hence we can apply Cohomology
on Sites, Lemma 21.15.1 to obtain a base change map

g∗Rpf∗F −→ Rpf ′∗F ′

To prove this map is an isomorphism we can work locally in the étale topology on
Y ′. Thus we may assume that Y and Y ′ are affine schemes. Say Y = Spec(A) and
Y ′ = Spec(B). In this case we are really trying to show that the map

Hp(X,F)⊗A B −→ Hp(XB ,FB)

is an isomorphism where XB = Spec(B) ×Spec(A) X and FB is the pullback of F
to XB .

Fix A → B a flat ring map and let X be a quasi-compact and quasi-separated
algebraic space over A. Note that g′ : XB → X is affine as a base change of
Spec(B)→ Spec(A). Hence the higher direct images Ri(g′)∗FB are zero by Lemma
51.7.2. Thus Hp(XB ,FB) = Hp(X, g′∗FB), see Cohomology on Sites, Lemma
21.14.6. Moreover, we have

g′∗FB = F ⊗A B

where A, B denotes the constant sheaf of rings with value A, B. Namely, it is clear
that there is a map from right to left. For any affine scheme U étale over X we
have

g′∗FB(U) = FB(Spec(B)×Spec(A) U)

= Γ(Spec(B)×Spec(A) U, (Spec(B)×Spec(A) U → U)∗F|U )

= B ⊗A F(U)

hence the map is an isomorphism. Write B = colimMi as a filtered colimit of
finite free A-modules Mi using Lazard’s theorem, see Algebra, Theorem 10.78.4.

http://stacks.math.columbia.edu/tag/073K


3334 51. COHOMOLOGY OF ALGEBRAIC SPACES

We deduce that

Hp(X, g′∗FB) = Hp(X,F ⊗A B)

= Hp(X, colimi F ⊗AMi)

= colimiH
p(X,F ⊗AMi)

= colimiH
p(X,F)⊗AMi

= Hp(X,F)⊗A colimiMi

= Hp(X,F)⊗A B

The first equality because g′∗FB = F ⊗A B as seen above. The second because ⊗
commutes with colimits. The third equality because cohomology on X commutes
with colimits (see Lemma 51.4.1). The fourth equality because Mi is finite free
(i.e., because cohomology commutes with finite direct sums). The fifth because ⊗
commutes with colimits. The sixth by choice of our system. �

Lemma 51.10.2. Let S be a scheme. Let f : X → Y be an affine morphism
of algebraic spaces over S. Let F be a quasi-coherent OX-module. In this case
f∗F ∼= Rf∗F is a quasi-coherent sheaf, and for every diagram (51.10.0.1) we have
g∗f∗F = f ′∗(g

′)∗F .

Proof. By the discussion surrounding (51.3.1.1) this reduces to the case of an
affine morphism of schemes which is treated in Cohomology of Schemes, Lemma
29.5.1. �

51.11. Coherent modules on locally Noetherian algebraic spaces

This section is the analogue of Cohomology of Schemes, Section 29.9. In Modules on
Sites, Definition 18.23.1 we have defined coherent modules on any ringed topos. We
use this notion to define coherent modules on locally Noetherian algebraic spaces.
Although it is possible to work with coherent modules more generally we resist the
urge to do so.

Definition 51.11.1. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. A quasi-coherent module F on X is called coherent if F is a coherent
OX -module on the site Xétale in the sense of Modules on Sites, Definition 18.23.1.

Of course this definition is a bit hard to work with. We usually use the characteri-
zation given in the lemma below.

Lemma 51.11.2. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be an OX-module. The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite type OX-module,
(3) F is a finitely presented OX-module,
(4) for any étale morphism ϕ : U → X where U is a scheme the pullback ϕ∗F

is a coherent module on U , and
(5) there exists a surjective étale morphism ϕ : U → X where U is a scheme

such that the pullback ϕ∗F is a coherent module on U .

In particular OX is coherent, any invertible OX-module is coherent, and more gen-
erally any finite locally free OX-module is coherent.
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Proof. To be sure, if X is a locally Noetherian algebraic space and U → X is
an étale morphism, then U is locally Noetherian, see Properties of Spaces, Section
48.7. The lemma then follows from the points (1) – (5) made in Properties of
Spaces, Section 48.28 and the corresponding result for coherent modules on locally
Noetherian schemes, see Cohomology of Schemes, Lemma 29.9.1. �

Lemma 51.11.3. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. The category of coherent OX-modules is abelian. More precisely, the
kernel and cokernel of a map of coherent OX-modules are coherent. Any extension
of coherent sheaves is coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X. Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces,
Equation (48.24.1.1). By Lemma 51.11.2 we can check whether an OX -module F
is coherent by checking whether f∗F is coherent. Hence the lemma follows from
the case of schemes which is Cohomology of Schemes, Lemma 29.9.2. �

Coherent modules form a Serre subcategory of the category of quasi-coherent OX -
modules. This does not hold for modules on a general ringed topos.

Lemma 51.11.4. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX-module. Any quasi-coherent submodule of F is
coherent. Any quasi-coherent quotient module of F is coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X. Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces,
Equation (48.24.1.1). By Lemma 51.11.2 we can check whether an OX -module G
is coherent by checking whether f∗H is coherent. Hence the lemma follows from
the case of schemes which is Cohomology of Schemes, Lemma 29.9.3. �

Lemma 51.11.5. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S,. Let F , G be coherent OX-modules. The OX-modules F ⊗OX G and
HomOX (F ,G) are coherent.

Proof. Via Lemma 51.11.2 this follows from the result for schemes, see Cohomology
of Schemes, Lemma 29.9.4. �

Lemma 51.11.6. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F , G be coherent OX-modules. Let ϕ : G → F be a homomorphism of
OX-modules. Let x be a geometric point of X lying over x ∈ |X|.

(1) If Fx = 0 then there exists an open neighbourhood X ′ ⊂ X of x such that
F|X′ = 0.

(2) If ϕx : Gx → Fx is injective, then there exists an open neighbourhood
X ′ ⊂ X of x such that ϕ|X′ is injective.

(3) If ϕx : Gx → Fx is surjective, then there exists an open neighbourhood
X ′ ⊂ X of x such that ϕ|X′ is surjective.

(4) If ϕx : Gx → Fx is bijective, then there exists an open neighbourhood
X ′ ⊂ X of x such that ϕ|X′ is an isomorphism.

Proof. Let ϕ : U → X be an étale morphism where U is a scheme and let u ∈ U
be a point mapping to x. By Properties of Spaces, Lemmas 48.27.4 and 48.19.1 as
well as More on Algebra, Lemma 15.34.1 we see that ϕx is injective, surjective, or
bijective if and only if ϕu : ϕ∗Fu → ϕ∗Gu has the corresponding property. Thus we
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can apply the schemes version of this lemma to see that (after possibly shrinking
U) the map ϕ∗F → ϕ∗G is injective, surjective, or an isomorphism. Let X ′ ⊂ X
be the open subspace corresponding to |ϕ|(|U |) ⊂ |X|, see Properties of Spaces,
Lemma 48.4.8. Since {U → X ′} is a covering for the étale topology, we conclude
that ϕ|X′ is injective, surjective, or an isomorphism as desired. Finally, observe
that (1) follows from (2) by looking at the map F → 0. �

Lemma 51.11.7. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let F be a coherent OX-module. Let i : Z → X be the scheme
theoretic support of F and G the quasi-coherent OZ-module such that i∗G = F , see
Morphisms of Spaces, Definition 49.15.4. Then G is a coherent OZ-module.

Proof. The statement of the lemma makes sense as a coherent module is in partic-
ular of finite type. Moreover, as Z → X is a closed immersion it is locally of finite
type and hence Z is locally Noetherian, see Morphisms of Spaces, Lemmas 49.23.7
and 49.23.5. Finally, as G is of finite type it is a coherent OZ-module by Lemma
51.11.2 �

Lemma 51.11.8. Let S be a scheme. Let i : Z → X be a closed immersion of
locally Noetherian algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf
of ideals cutting out Z. The functor i∗ induces an equivalence between the category
of coherent OX-modules annihilated by I and the category of coherent OZ-modules.

Proof. The functor is fully faithful by Morphisms of Spaces, Lemma 49.14.1. Let
F be a coherent OX -module annihilated by I. By Morphisms of Spaces, Lemma
49.14.1 we can write F = i∗G for some quasi-coherent sheaf G on Z. To check that G
is coherent we can work étale locally (Lemma 51.11.2). Choosing an étale covering
by a scheme we conclude that G is coherent by the case of schemes (Cohomology
of Schemes, Lemma 29.9.8). Hence the functor is fully faithful and the proof is
done. �

Lemma 51.11.9. Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S with Y locally Noetherian. Let F be a coherent OX-module.
Assume f is finite and Y locally Noetherian. Then Rpf∗F = 0 for p > 0 and f∗F
is coherent.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Then V ×Y
X → V is a finite morphism of locally Noetherian schemes. By (51.3.1.1) we reduce
to the case of schemes which is Cohomology of Schemes, Lemma 29.9.9. �

51.12. Coherent sheaves on Noetherian spaces

In this section we mention some properties of coherent sheaves on Noetherian al-
gebraic spaces.

Lemma 51.12.1. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent OX-module. The ascending chain condition holds for quasi-
coherent submodules of F . In other words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F

of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.
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Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 48.6.3). Then U is a Noetherian scheme (by Mor-
phisms of Spaces, Lemma 49.23.5). If Fn|U = Fn+1|U = . . . then Fn = Fn+1 = . . ..
Hence the result follows from the case of schemes, see Cohomology of Schemes,
Lemma 29.10.1. �

Lemma 51.12.2. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. Let I ⊂ OX be a quasi-coherent sheaf of ideals
corresponding to a closed subspace Z ⊂ X. Then there is some n ≥ 0 such that
InF = 0 if and only if Supp(F) ⊂ Z (set theoretically).

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 48.6.3). Then U is a Noetherian scheme (by Mor-
phisms of Spaces, Lemma 49.23.5). Note that InF|U = 0 if and only if InF = 0
and similarly for the condition on the support. Hence the result follows from the
case of schemes, see Cohomology of Schemes, Lemma 29.10.2. �

Lemma 51.12.3 (Artin-Rees). Let S be a scheme. Let X be a Noetherian algebraic
space over S. Let F be a coherent sheaf on X. Let G ⊂ F be a quasi-coherent
subsheaf. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Then there exists a c ≥ 0
such that for all n ≥ c we have

In−c(IcF ∩ G) = InF

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 48.6.3). Then U is a Noetherian scheme (by Mor-
phisms of Spaces, Lemma 49.23.5). The equality of the lemma holds if and only if
it holds after restricting to U . Hence the result follows from the case of schemes,
see Cohomology of Schemes, Lemma 29.10.3. �

Lemma 51.12.4. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a quasi-coherent OX-module. Let G be a coherent OX-module. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Denote Z ⊂ X the corresponding closed
subspace and set U = X \ Z. There is a canonical isomorphism

colimn HomOX (InG,F) −→ HomOU (G|U ,F|U ).

In particular we have an isomorphism

colimn HomOX (In,F) −→ Γ(U,F).

Proof. Let W be an affine scheme and let W → X be a surjective étale morphism
(see Properties of Spaces, Lemma 48.6.3). Set R = W ×X W . Then W and R are
Noetherian schemes, see Morphisms of Spaces, Lemma 49.23.5. Hence the result
hold for the restrictions of F , G, and I, U , Z to W and R by Cohomology of
Schemes, Lemma 29.10.4. It follows formally that the result holds over X. �

51.13. Devissage of coherent sheaves

This section is the analogue of Cohomology of Schemes, Section 29.12.

Lemma 51.13.1. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. Suppose that Supp(F) = Z ∪ Z ′ with Z, Z ′

closed. Then there exists a short exact sequence of coherent sheaves

0→ G′ → F → G → 0
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with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.

Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed
subspace structure on Z, see Properties of Spaces, Lemma 48.9.3. Consider the
subsheaves G′n = InF and the quotients Gn = F/InF . For each n we have a short
exact sequence

0→ G′n → F → Gn → 0

For every geometric point x of Z ′ \Z we have Ix = OX,x and hence Gn,x = 0. Thus
we see that Supp(Gn) ⊂ Z. Note that X \Z ′ is a Noetherian algebraic space. Hence
by Lemma 51.12.2 there exists an n such that G′n|X\Z′ = InF|X\Z′ = 0. For such
an n we see that Supp(G′n) ⊂ Z ′. Thus setting G′ = G′n and G = Gn works. �

In the following we will freely use the scheme theoretic support of finite type mod-
ules as defined in Morphisms of Spaces, Definition 49.15.4.

Lemma 51.13.2. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. Assume that the scheme theoretic support of
F is a reduced Z ⊂ X with |Z| irreducible. Then there exist an integer r > 0, a
nonzero sheaf of ideals I ⊂ OZ , and an injective map of coherent sheaves

i∗
(
I⊕r

)
→ F

whose cokernel is supported on a proper closed subspace of Z.

Proof. By assumption there exists a coherent OZ-module G with support Z and
F ∼= i∗G, see Lemma 51.11.7. Hence it suffices to prove the lemma for the case
Z = X and i = id.

By Properties of Spaces, Proposition 48.10.3 there exists a dense open subspace
U ⊂ X which is a scheme. Note that U is a Noetherian integral scheme. After
shrinking U we may assume that F|U ∼= O⊕rU (for example by Cohomology of
Schemes, Lemma 29.12.2 or by a direct algebra argument). Let I ⊂ OX be a quasi-
coherent sheaf of ideals whose associated closed subspace is the complement of U
in X (see for example Properties of Spaces, Section 48.9). By Lemma 51.12.4 there
exists an n ≥ 0 and a morphism In(O⊕rX ) → F which recovers our isomorphism

over U . Since In(O⊕rX ) = (In)⊕r we get a map as in the lemma. It is injective:
namely, if σ is a nonzero section of I⊕r over a scheme W étale over X, then because
X hence W is reduced the support of σ contains a nonempty open of W . But the
kernel of (In)⊕r → F is zero over a dense open, hence σ cannot be a section of the
kernel. �

Lemma 51.13.3. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that for each j = 1, . . . ,m there exists a reduced closed
subspace Zj ⊂ X with |Zj | irreducible and a sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1
∼= (Zj → X)∗Ij

Proof. Consider the collection

T =

{
T ⊂ |X| closed such that there exists a coherent sheaf F

with Supp(F) = T for which the lemma is wrong

}
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We are trying to show that T is empty. If not, then because |X| is Noetherian
(Properties of Spaces, Lemma 48.22.2) we can choose a minimal element T ∈ T .
This means that there exists a coherent sheaf F on X whose support is T and for
which the lemma does not hold. Clearly T 6= ∅ since the only sheaf whose support
is empty is the zero sheaf for which the lemma does hold (with m = 0).

If T is not irreducible, then we can write T = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 51.13.1 to get a short exact sequence
of coherent sheaves

0→ G1 → F → G2 → 0

with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has a filtration as in the
statement of the lemma. By considering the induced filtration on F we arrive at a
contradiction. Hence we conclude that T is irreducible.

Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced
closed subspace structure on T , see Properties of Spaces, Lemma 48.9.3. By Lemma
51.12.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = InF ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .

Assume T is irreducible and JF = 0 where J is as above. Then the scheme
theoretic support of F is T , see Morphisms of Spaces, Lemma 49.14.1. Hence we
can apply Lemma 51.13.2. This gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0

where the support of Q is a proper closed subset of T . Hence we see that Q has
a filtration of the desired type by minimality of T . But then clearly F does too,
which is our final contradiction. �

Lemma 51.13.4. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every reduced closed subspace Z ⊂ X with |Z| irreducible and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for i∗I.

Then property P holds for every coherent sheaf on X.

Proof. First note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from the property (1) for P. On the other hand, by Lemma 51.13.3 we
can filter any F with successive subquotients as in (2). Hence the lemma follows. �

Here is a more useful variant of the lemma above.

Lemma 51.13.5. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let P be a property of coherent sheaves on X. Assume
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(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there

exists a coherent sheaf G on Z such that
(a) Supp(G) = Z,
(b) for every nonzero quasi-coherent sheaf of ideals I ⊂ OZ there exists

a quasi-coherent subsheaf G′ ⊂ IG such that Supp(G/G′) is proper
closed in Z and such that P holds for i∗G′.

Then property P holds for every coherent sheaf on X.

Proof. Consider the collection

T =

{
T ⊂ |X| closed such that there exists a coherent sheaf F

with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian
(Properties of Spaces, Lemma 48.22.2) we can choose a minimal element T ∈ T .
This means that there exists a coherent sheaf F on X whose support is T and for
which the lemma does not hold. Clearly T 6= ∅ because the only sheaf with support
in ∅ for which P does hold (by property (2)).

If T is not irreducible, then we can write T = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 51.13.1 to get a short exact sequence
of coherent sheaves

0→ G1 → F → G2 → 0

with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has P. Hence F has property
P by (1), a contradiction.

Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced
closed subspace structure on T , see Properties of Spaces, Lemma 48.9.3. By Lemma
51.12.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = InF ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .

Assume T is irreducible and JF = 0 where J is as above. Denote i : Z → X the
closed subspace corresponding to J . Then F = i∗H for some coherent OZ-module
H, see Morphisms of Spaces, Lemma 49.14.1 and Lemma 51.11.7. Let G be the
coherent sheaf on Z satisfying (3)(a) and (3)(b). We apply Lemma 51.13.2 to get
injective maps

I⊕r11 → H and I⊕r22 → G
where the support of the cokernels are proper closed in Z. Hence we find an
nonempty open V ⊂ Z such that

H⊕r2V
∼= G⊕r1V

Let I ⊂ OZ be a quasi-coherent ideal sheaf cutting out Z \ V we obtain (Lemma
51.12.4) a map

InG⊕r1 −→ H⊕r2
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which is an isomorphism over V . The kernel is supported on Z\V hence annihilated
by some power of I, see Lemma 51.12.2. Thus after increasing n we may assume the
displayed map is injective, see Lemma 51.12.3. Applying (3)(b) we find G′ ⊂ InG
such that

(i∗G′)⊕r1 −→ i∗H⊕r2 = F⊕r2

is injective with cokernel supported in a proper closed subset of Z and such that
property P holds for i∗G′. By (1) property P holds for (i∗G′)⊕r1 . By (1) and
minimality of T = |Z| property P holds for F⊕r2 . And finally by (2) property P
holds for F which is the desired contradiction. �

Lemma 51.13.6. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves on X if two out of three
have property P so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there

exists a coherent sheaf G on X whose scheme theoretic support is Z such
that P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. We will show that conditions (1) and (2) of Lemma 51.13.4 hold. This is
clear for condition (1). To show that (2) holds, let

T =

{
i : Z → X reduced closed subspace with |Z| irreducible such

that i∗I does not have P for some quasi-coherent I ⊂ OZ

}
If T is nonempty, then since X is Noetherian, we can find an i : Z → X which is
minimal in T . We will show that this leads to a contradiction.

Let G be the sheaf whose scheme theoretic support is Z whose existence is assumed
in assumption (3). Let ϕ : i∗I⊕r → G be as in Lemma 51.13.2. Let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = Coker(ϕ)

be a filtration as in Lemma 51.13.3. By minimality of Z and assumption (1) we see
that Coker(ϕ) has property P. As ϕ is injective we conclude using assumption (1)
once more that i∗I⊕r has property P. Using assumption (2) we conclude that i∗I
has property P.

Finally, if J ⊂ OZ is a second quasi-coherent sheaf of ideals, set K = I ∩ J and
consider the short exact sequences

0→ K → I → I/K → 0 and 0→ K → J → J /K → 0

Arguing as above, using the minimality of Z, we see that i∗I/K and i∗J /K satisfy
P. Hence by assumption (1) we conclude that i∗K and then i∗J satisfy P. In other
words, Z is not an element of T which is the desired contradiction. �

51.14. Limits of coherent modules

A colimit of coherent modules (on a locally Noetherian algebraic space) is typically
not coherent. But it is quasi-coherent as any colimit of quasi-coherent modules
on an algebraic space is quasi-coherent, see Properties of Spaces, Lemma 48.27.7.
Conversely, if the algebraic space is Noetherian, then every quasi-coherent module
is a filtered colimit of coherent modules.
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Lemma 51.14.1. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Every quasi-coherent OX-module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule
which contains both of them (see Lemmas 51.11.3 and 51.11.4). In this way we see
that the system is directed. Hence it now suffices to show that F can be written
as a filtered colimit of coherent modules, as then we can take the images of these
modules in F to conclude there are enough of them.

Let U be an affine scheme and U → X a surjective étale morphism. Set R =
U ×X U so that X = U/R as usual. By Properties of Spaces, Proposition 48.30.1
we see that QCoh(OX) = QCoh(U,R, s, t, c). Hence we reduce to showing the
corresponding thing for QCoh(U,R, s, t, c). Thus the result follows from the more
general Groupoids, Lemma 38.13.3. �

Lemma 51.14.2. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S with Y Noetherian. Then every quasi-coherent OX-module
is a filtered colimit of finitely presented OX-modules.

Proof. Let F be a quasi-coherent OX -module. Write f∗F = colimHi with Hi
a coherent OY -module, see Lemma 51.14.1. By Lemma 51.11.2 the modules Hi
are OY -modules of finite presentation. Hence f∗Hi is an OX -module of finite
presentation, see Properties of Spaces, Section 48.28. We claim the map

colim f∗Hi = f∗f∗F → F

is surjective as f is assumed affine, Namely, choose a scheme V and a surjective
étale morphism V → Y . Set U = X ×Y V . Then U is a scheme, f ′ : U → V
is affine, and U → X is surjective étale. By Properties of Spaces, Lemma 48.24.2
we see that f ′∗(F|U ) = f∗F|V and similarly for pullbacks. Thus the restriction of
f∗f∗F → F to U is the map

f∗f∗F|U = (f ′)∗(f∗F)|V ) = (f ′)∗f ′∗(F|U )→ F|U

which is surjective as f ′ is an affine morphism of schemes. Hence the claim holds.

We conclude that every quasi-coherent module on X is a quotient of a filtered
colimit of finitely presented modules. In particular, we see that F is a cokernel of
a map

colimj∈J Gj −→ colimi∈I Hi
with Gj and Hi finitely presented. Note that for every j ∈ I there exist i ∈ I and
a morphism α : Gj → Hi such that

Gj α
//

��

Hi

��
colimj∈J Gj // colimi∈I Hi

commutes, see Lemma 51.4.3. In this situation Coker(α) is a finitely presented
OX -module which comes endowed with a map Coker(α)→ F . Consider the set K
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of triples (i, j, α) as above. We say that (i, j, α) ≤ (i′, j′, α′) if and only if i ≤ i′,
j ≤ j′, and the diagram

Gj α
//

��

Hi

��
Gj′

α′ // Hi′

commutes. It follows from the above that K is a directed partially ordered set,

F = colim(i,j,α)∈K Coker(α),

and we win. �

51.15. Vanishing cohomology

In this section we show that a quasi-compact and quasi-separated algebraic space
is affine if it has vanishing higher cohomology for all quasi-coherent sheaves. We
do this in a sequence of lemmas all of which will become obsolete once we prove
Proposition 51.15.9.

Situation 51.15.1. Here S is a scheme and X is a quasi-compact and quasi-
separated algebraic space over S with the following property: For every quasi-
coherent OX -module F we have H1(X,F) = 0. We set A = Γ(X,OX).

We would like to show that the canonical morphism

p : X −→ Spec(A)

(see Properties of Spaces, Lemma 48.31.1) is an isomorphism. If M is an A-module

we denote M ⊗A OX the quasi-coherent module p∗M̃ .

Lemma 51.15.2. In Situation 51.15.1 for an A-module M we have p∗(M ⊗A
OX) = M̃ and Γ(X,M ⊗A OX) = M .

Proof. The equality p∗(M ⊗A OX) = M̃ follows from the equality Γ(X,M ⊗A
OX) = M as p∗(M ⊗A OX) is a quasi-coherent module on Spec(A) by Morphisms
of Spaces, Lemma 49.11.2. Observe that Γ(X,

⊕
i∈I OX) =

⊕
i∈I A by Lemma

51.4.1. Hence the lemma holds for free modules. Choose a short exact sequence
F1 → F0 →M where F0, F1 are free A-modules. Since H1(X,−) is zero the global
sections functor is right exact. Moreover the pullback p∗ is right exact as well.
Hence we see that

Γ(X,F1 ⊗A OX)→ Γ(X,F0 ⊗A OX)→ Γ(X,M ⊗A OX)→ 0

is exact. The result follows. �

The following lemma shows that Situation 51.15.1 is preserved by base change of
X → Spec(A) by Spec(A′)→ Spec(A).

Lemma 51.15.3. In Situation 51.15.1.

(1) Given an affine morphism X ′ → X of algebraic spaces, we have H1(X ′,F ′) =
0 for every quasi-coherent OX′-module F ′.

(2) Given an A-algebra A′ setting X ′ = X ×Spec(A) Spec(A′) the morphism
X ′ → X is affine and Γ(X ′,OX′) = A′.
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Proof. Part (1) follows from Lemma 51.7.2 and the Leray spectral sequence (Co-
homology on Sites, Lemma 21.14.5). Let A → A′ be as in (2). Then X ′ → X
is affine because affine morphisms are preserved under base change (Morphisms of
Spaces, Lemma 49.20.5) and the fact that a morphism of affine schemes is affine.
The equality Γ(X ′,OX′) = A′ follows as (X ′ → X)∗OX′ = A′ ⊗A OX by Lemma
51.10.2 and thus

Γ(X ′,OX′) = Γ(X, (X ′ → X)∗OX′) = Γ(X,A′ ⊗A OX) = A′

by Lemma 51.15.2. �

Lemma 51.15.4. In Situation 51.15.1. Let Z0, Z1 ⊂ |X| be disjoint closed subsets.
Then there exists an a ∈ A such that Z0 ⊂ V (a) and Z1 ⊂ V (a− 1).

Proof. We may and do endow Z0, Z1 with the reduced induced subspace structure
(Properties of Spaces, Definition 48.9.5) and we denote i0 : Z0 → X and i1 : Z1 →
X the corresponding closed immersions. Since Z0∩Z1 = ∅ we see that the canonical
map of quasi-coherent OX -modules

OX −→ i0,∗OZ0
⊕ i1,∗OZ1

is surjective (look at stalks at geometric points). Since H1(X,−) is zero on the
kernel of this map the induced map of global sections is surjective. Thus we can
find a ∈ A which maps to the global section (0, 1) of the right hand side. �

Lemma 51.15.5. In Situation 51.15.1 the morphism p : X → Spec(A) is surjec-
tive.

Proof. Let A → k be a ring homomorphism where k is a field. It suffices to
show that Xk = Spec(k) ×Spec(A) X is nonempty. By Lemma 51.15.3 we have
Γ(Xk,O) = k. Hence Xk is nonempty. �

Lemma 51.15.6. In Situation 51.15.1 the morphism p : X → Spec(A) is univer-
sally closed.

Proof. Let Z ⊂ |X| be a closed subset. We may and do endow Z with the reduced
induced subspace structure (Properties of Spaces, Definition 48.9.5) and we denote
i : Z → X the corresponding closed immersions. Then i is affine (Morphisms of
Spaces, Lemma 49.20.6). Hence Z is another algebraic space as in Situation 51.15.1
by Lemma 51.15.3. Set B = Γ(Z,OZ). Since OX → i∗OZ is surjective, we see that
A→ B is surjective by the vanishing of H1 of the kernel. Consider the commutative
diagram

Z
i

//

��

X

��
Spec(B) // Spec(A)

By Lemma 51.15.5 the map Z → Spec(B) is surjective and by the above Spec(B)→
Spec(A) is a closed immersion. Thus p is closed.

By Lemma 51.15.3 we see that the base change of p by Spec(A′) → Spec(A) is
closed for every ring map A → A′. Hence p is universally closed by Morphisms of
Spaces, Lemma 49.9.5. �

Lemma 51.15.7. In Situation 51.15.1 the morphism p : X → Spec(A) is univer-
sally injective.
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Proof. Let A→ k be a ring homomorphism where k is a field. It suffices to show
that Spec(k)×Spec(A) X has at most one point (see Morphisms of Spaces, Lemma
49.19.6). Using Lemma 51.15.3 we may assume that A is a field and we have to
show that |X| has at most one point.

Let’s think of X as an algebraic space over Spec(k) and let’s use the notation
X(K) to denote K-valued points of X for any extension k ⊂ K, see Morphisms of
Spaces, Section 49.24. If k ⊂ K is an algebraically closed field extension of large
transcendence degree, then we see that X(K) → |X| is surjective, see Morphisms
of Spaces, Lemma 49.24.2. Hence, after replacing k by K, we see that it suffices to
prove that X(k) is a singleton (in the case A = k).

Let x, x′ ∈ X(k). By Decent Spaces, Lemma 50.12.3 we see that x and x′ are closed
points of |X|. Hence x and x′ map to distinct points of Spec(k) if x 6= x′ by Lemma
51.15.4. We conclude that x = x′ as desired. �

Lemma 51.15.8. In Situation 51.15.1 the morphism p : X → Spec(A) is sepa-
rated.

Proof. We will use the results of Lemmas 51.15.2, 51.15.3 51.15.5, 51.15.6, and
51.15.7 without further mention. We will use the valuative criterion of separated-
ness, see Morphisms of Spaces, Lemma 49.40.2. Let R be a valuation ring over A
with fraction field K. Let Spec(K) → X be a morphism over Spec(A). We have
to show that we can extend this to a morphism Spec(R)→ X in at most one way.
We may replace A by R and X by Spec(R)×Spec(A)X. Hence we may assume that
A = R is a valuation ring with field of fractions K and that we have a K-point x
in X.

Let X ′ ⊂ X be the scheme theoretic image of x : Spec(K)→ X. Then Γ(X ′,OX′)
is a subring of K containing A. If not equal to A, then there is no extension of x
at all and the result is true. If not, then we may replace X by X ′ by one of the
lemmas mentioned at the start of the proof.

Let U = Spec(B) be an affine scheme and let U → X be a surjective étale morphism.
Then U ×X,x Spec(K) is a quasi-compact scheme étale over K. Hence U ×X,x
Spec(K) = Spec(C) is affine and

C = K1 × . . .×Kn

with each Ki a finite separable extension of K (Morphisms, Lemma 28.37.7). The
scheme theoretic image of U×X,xSpec(K)→ U is U (Morphisms of Spaces, Lemma
49.16.3). which implies that B ⊂ C (Morphisms, Example 28.6.4). Thus B is a
reduced flat A-algebra (use More on Algebra, Lemma 15.15.4). Choose a finite
Galois extension K ⊂ K ′ such that each Ki embeds into K ′ over K and choose
a valuation ring A′ ⊂ K ′ dominating A (see Algebra, Lemma 10.48.2). After
replacing A by A′, X by Spec(A′)×Spec(A) X, x by the morphism

x′ : Spec(K ′) −→ Spec(A′)×Spec(A) Spec(K)
(1,x)−−−→ Spec(A′)×Spec(A) X,

and U by Spec(A′) ×Spec(A) U we may assume that Ki = K for all i (small detail
omitted; note in particular that it still suffices to show that x′ has at most one
extension).

If X is normal then B is a finite product B = B1× . . .×Bn of normal domains (see
Algebra, Lemma 10.36.14). Each of these has fraction field K by the above. One
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of these rings Bi, say B1 has a prime ideal lying over mA because X → Spec(A) is
surjective. Then A = B1 as A is a valuation ring. Thus we see that there exists
an étale morphism Spec(A) → X! Of course this implies that X = Spec(A) (for
example by Morphisms of Spaces, Lemma 49.45.2 and the fact that Spec(A)→ X
is surjective as |X| = |Spec(A)|) and we win in the case that X is normal.

In the general (possibly nonnormal) case we see that U = Spec(B) has finitely many
irreducible components (as all minimal primes of B lie over (0) ⊂ A by flatness of
A→ B). Thus we may consider the normalization Xν → X of X, see Morphisms of
Spaces, Lemma 49.43.9. Note that Xν → X is integral hence affine and universally
closed (see Morphisms of Spaces, Lemma 49.41.7). Note that Xν ×X U = Uν , in
particular Xν → Spec(A) is flat (as the integral closure of B in its total quotient
ring is torsion free over A hence flat). Set Aν = Γ(Xν ,OXν ) and consider the
diagram

Xν

��

// X

��
Spec(Aν) // Spec(A)

By the lemmas mentioned at the beginning of the proof, the left vertical arrow
is (universally) surjective and the right vertical arrow is universally closed. Since
the top horizontal arrow is universally closed by construction we conclude that
Spec(Aν) → Spec(A) is universally closed. Hence A ⊂ Aν is integral, see Mor-
phisms, Lemma 28.44.7. Finally, Aν is a torsion free A-algebra with Aν ⊗AK = K
(as Spec(K) maps ontoXK = Xν

K). Hence A = Aν . Observe that x : Spec(K)→ X
lifts to xν : Spec(K)→ Xν and that

Uν ×Xν ,xν Spec(K) = X ×U,x Spec(K) =
∐

i=1,...,n
Spec(K)

as normalization does not chance the scheme U over its generic points. Finally, as
Xν → X is universally closed any morphism Spec(A) → X extending x lifts to a
morphism into Xν extending xν (see Decent Spaces, Proposition 50.14.1). Thus
it suffices there is at most one morphism Spec(A) → Xν extending xν . This was
proved above. �

Proposition 51.15.9. A quasi-compact and quasi-separated algebraic space is affine
if and only if all higher cohomology groups of quasi-coherent sheaves vanish. More
precisely, any algebraic space as in Situation 51.15.1 is an affine scheme.

Proof. Choose an affine scheme U = Spec(B) and a surjective étale morphism
ϕ : U → X. Set R = U ×X U . As p is separated (Lemma 51.15.8) we see that R is
a closed subscheme of U ×Spec(A) U = Spec(B ⊗A B). Hence R = Spec(C) is affine
too and the ring map

B ⊗A B −→ C

is surjective. Let us denote the two maps s, t : B → C as usual. Pick g1, . . . , gm ∈ B
such that s(g1), . . . , s(gm) generate C over t : B → C (which is possible as t : B → C
is of finite presentation and the displayed map is surjective). Then g1, . . . , gm give
global sections of ϕ∗OU and the map

OX [z1, . . . , zn] −→ ϕ∗OU , zj 7−→ gj
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is surjective: you can check this by restricting to U . Namely, ϕ∗ϕ∗OU = t∗OR
(by Lemma 51.10.1) hence you get exactly the condition that s(gi) generate C over
t : B → C. By the vanishing of H1 of the kernel we see that

Γ(X,OX [x1, . . . , xn]) = A[x1, . . . , xn] −→ Γ(X,ϕ∗OU ) = Γ(U,OU ) = B

is surjective. Thus we conclude that B is a finite type A-algebra. Hence X →
Spec(A) is of finite type and separated. By Lemma 51.15.7 and Morphisms of
Spaces, Lemma 49.26.5 it is also locally quasi-finite. Hence X → Spec(A) is rep-
resentable by Morphisms of Spaces, Lemma 49.45.1 and X is a scheme. Finally
X is affine, hence equal to Spec(A), by an application of Cohomology of Schemes,
Lemma 29.3.1. �

51.16. Finite morphisms and affines

This section is the analogue of Cohomology of Schemes, Section 29.13.

Lemma 51.16.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume

(1) f finite,
(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coherent
OX -module F we have H1(X,F) = 0. This implies that H1(X,F) = 0 for every
quasi-coherent OX -module F by Lemmas 51.14.1 and 51.4.1. Then it follows that
X is affine from Proposition 51.15.9.

Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.

We are going to apply Lemma 51.13.5. Thus we have to verify (1), (2) and (3) of
that lemma for P. Property (1) follows from the long exact cohomology sequence
associated to a short exact sequence of sheaves. Property (2) follows since H1(X,−)
is an additive functor. To see (3) let i : Z → X be a reduced closed subspace with
|Z| irreducible. Let W = Z ×X Y and denote i′ : W → Y the corresponding
closed immersion. Denote f ′ : W → Z the other projection which is a finite
morphism of algebraic spaces. Since W is a closed subscheme of Y , it is affine. We
claim that G = f∗i

′
∗OW = i∗f

′
∗OW satisfies properties (3)(a) and (3)(b) of Lemma

51.13.5 which will finish the proof. Property (3)(a) is clear as W → Z is surjective
(because f is surjective). To see (3)(b) let I be a nonzero quasi-coherent sheaf of
ideals on Z. We simply take G′ = IG. Namely, we have

IG = f ′∗(I ′)
where I ′ = Im((f ′)∗I → OW ). This is true because f ′ is a (representable) affine
morphism of algebraic spaces and hence the result can be checked on an étale
covering of Z by a scheme in which case the result is Cohomology of Schemes,
Lemma 29.13.2. Finally, f ′ is affine, hence R1f ′∗I ′ = 0 by Lemma 51.7.2. As
W is affine we have H1(W, I ′) = 0 hence the Leray spectral sequence (in the
form Cohomology on Sites, Lemma 21.14.6) implies that H1(Z, f ′∗I ′) = 0. Since
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i : Z → X is affine we conclude that R1i∗f
′
∗I ′ = 0 hence H1(X, i∗f

′
∗I ′) = 0 by

Leray again and we win. �

51.17. A weak version of Chow’s lemma

In this section we quickly prove the following lemma in order to help us prove the
basic results on cohomology of coherent modules on proper algebraic spaces.

Lemma 51.17.1. Let A be a ring. Let X be an algebraic space over Spec(A)
whose structure morphism X → Spec(A) is separated of finite type. Then there
exists a proper surjective morphism X ′ → X where X ′ is a scheme which is H-
quasi-projective over Spec(A).

Proof. Let W be an affine scheme and let f : W → X be a surjective étale
morphism. There exists an integer d such that all geometric fibres of f have ≤ d
points (because X is a separated algebraic hence reasonable, see Decent Spaces,
Lemma 50.5.1). Picking d minimal we get a nonempty open U ⊂ X such that
f−1(U)→ U is finite étale of degree d, see Decent Spaces, Lemma 50.8.1. Let

V ⊂W ×X W ×X . . .×X W

(d factors in the fibre product) be the complement of all the diagonals. Because
W → X is separated the diagonal W → W ×X W is a closed immersion. Since
W → X is étale the diagonal W →W ×XW is an open immersion, see Morphisms
of Spaces, Lemmas 49.36.10 and 49.35.9. Hence the diagonals are open and closed
subschemes of the quasi-compact scheme W×X . . .×XW . In particular we conclude
V is a quasi-compact scheme. Choose an open immersion W ⊂ Y with Y H-
projective over A (this is possible as W is affine and of finite type over A; for
example we can use Morphisms, Lemmas 28.40.2 and 28.43.11). Let

Z ⊂ Y ×A Y ×A . . .×A Y

be the scheme theoretic image of the composition V → W ×X . . . ×X W → Y ×A
. . . ×A Y . Observe that this morphism is quasi-compact since V is quasi-compact
and Y ×A . . . ×A Y is separated. Note that V → Z is an open immersion as
V → Y ×A . . .×AY is an immersion, see Morphisms, Lemma 28.7.7. The projection
morphisms give d morphisms gi : Z → Y . These morphisms gi are projective as Y
is projective over A, see material in Morphisms, Section 28.43. We set

X ′ =
⋃
g−1
i (W ) ⊂ Z

There is a morphism X ′ → X whose restriction to g−1
i (W ) is the composition

g−1
i (W ) → W → X. Namely, these morphisms agree over V hence agree over

g−1
i (W )∩ g−1

j (W ) by Morphisms of Spaces, Lemma 49.17.8. Claim: the morphism

X ′ → X is proper.

If the claim holds, then the lemma follows by induction on d. Namely, by construc-
tion X ′ is H-quasi-projective over Spec(A). The image of X ′ → X contains the
open U as V surjects onto U . Denote T the reduced induced algebraic space struc-
ture on X \U . Then T ×X W is a closed subscheme of W , hence affine. Moreover,
the morphism T ×X W → T is étale and every geometric fibre has < d points. By
induction hypothesis there exists a proper surjective morphism T ′ → T where T ′ is
a scheme H-quasi-projective over Spec(A). Since T is a closed subspace of X we see
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that T ′ → X is a proper morphism. Thus the lemma follows by taking the proper
surjective morphism X ′ q T ′ → X.

Proof of the claim. By construction the morphism X ′ → X is separated and of
finite type. We will check conditions (1) – (4) of Morphisms of Spaces, Lemma
49.39.3 for the morphisms V → X ′ and X ′ → X. Conditions (1) and (2) we have
seen above. Condition (3) holds as X ′ → X is separated (as a morphism whose
source is a separated algebraic space). Thus it suffices to check liftability to X ′ for
diagrams

Spec(K) //

��

V

��
Spec(R) // X

where R is a valuation ring with fraction field K. Note that the top horizontal map
is given by d pairwise distinct K-valued points w1, . . . , wd of W . In fact, this is a
complete set of inverse images of the point x ∈ X(K) coming from the diagram.
Since W → X is surjective, we can, after possibly replacing R by an extension of
valuation rings, lift the morphism Spec(R)→ X to a morphism w : Spec(R)→W ,
see Morphisms of Spaces, Lemma 49.39.2. Since w1, . . . , wd is a complete collection
of inverse images of x we see that w|Spec(K) is equal to one of them, say wi. Thus
we see that we get a commutative diagram

Spec(K) //

��

Z

gi

��
Spec(R)

w // Y

By the valuative criterion of properness for the projective morphism gi we can lift
w to z : Spec(R) → Z, see Morphisms, Lemma 28.43.5 and Schemes, Proposition
25.20.6. The image of z is in g−1

i (W ) ⊂ X ′ and the proof is complete. �

51.18. Noetherian valuative criterion

We prove a version of the valuative criterion for properness using discrete valuation
rings. A lot more can be added here. In particular, we should formulate and prove
the analogues to Limits, Lemmas 31.12.1, 31.12.2, 31.12.3, 31.13.2, and 31.13.3.

Lemma 51.18.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume

(1) Y is locally Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is at
most one dotted arrow making the diagram commute.

Then f is separated.
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Proof. To prove f is separated, we may work étale locally on Y (Morphisms of
Spaces, Lemma 49.4.12). Choose an affine scheme U and an étale morphism U →
X ×Y X. Set V = X ×∆,X×YX U which is quasi-compact because f is quasi-
separated. Consider a commutative diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

We can interpret the composition Spec(A)→ U → X×Y X as a pair of morphisms
a, b : Spec(A) → X agreeing as morphisms into Y and equal when restricted to
Spec(K). Hence our assumption (3) guarantees a = b and we find the dotted arrow
in the diagram. By Limits, Lemma 31.12.3 we conclude that V → U is proper. In
other words, ∆ is proper. Since ∆ is a monomorphism, we find that ∆ is a closed
immersion (Étale Morphisms, Lemma 40.7.2) as desired. �

Lemma 51.18.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume

(1) Y is locally Noetherian,
(2) f is of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is a
unique dotted arrow making the diagram commute.

Then f is proper.

Proof. It suffices to prove f is universally closed because f is separated by Lemma
51.18.1. To do this we may work étale locally on Y (Morphisms of Spaces, Lemma
49.9.5). Hence we may assume Y is a Noetherian affine scheme. Choose X ′ → X as
in the weak form of Chow’s lemma (Lemma 51.17.1). We claim that X ′ → Spec(A)
is universally closed. The claim implies the lemma by Morphisms of Spaces, Lemma
49.37.7. To prove this, according to Limits, Lemma 31.13.3 it suffices to prove that
in every solid commutative diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

whereA is a dvr with fraction fieldK we can find the dotted arrow a. By assumption
we can find the dotted arrow b. Then the morphism X ′ ×X,b Spec(A) → Spec(A)
is a proper morphism of schemes and by the valuative criterion for morphisms of
schemes we can lift b to the desired morphism a. �
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Remark 51.18.3 (Variant for complete discrete valuation rings). In Lemmas
51.18.1 and 51.18.2 it suffices to consider complete discrete valuation rings. To
be precise in Lemma 51.18.1 we can replace condition (3) by the following condi-
tion: Given any commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a complete discrete valuation ring with fraction field K there exists at
most one dotted arrow making the diagram commute. Namely, given any diagram
as in Lemma 51.18.1 (3) the completion A∧ is a discrete valuation ring (More on
Algebra, Lemma 15.32.5) and the uniqueness of the arrow Spec(A∧) → X implies
the uniqueness of the arrow Spec(A) → X for example by Properties of Spaces,
Proposition 48.14.1. Similarly in Lemma 51.18.2 we can replace condition (3) by
the following condition: Given any commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

where A is a complete discrete valuation ring with fraction field K there exists
an extension A ⊂ A′ of complete discrete valuation rings inducing a fraction field
extension K ⊂ K ′ such that there exists a unique arrow Spec(A′)→ X making the
diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

commute. Namely, given any diagram as in Lemma 51.18.2 part (3) the existence
of any commutative diagram

Spec(L) //

��

Spec(K) // X

��
Spec(B) //

44

Spec(A) // Y

for any extension A ⊂ B of discrete valuation rings will imply there exists an arrow
Spec(A) → X fitting into the diagram. This was shown in Morphisms of Spaces,
Lemma 49.38.4. In fact, it follows from these considerations that it suffices to look
for dotted arrows in diagrams for any class of discrete valuation rings such that,
given any discrete valuation ring, there is an extension of it that is in the class. For
example, we could take complete discrete valuation rings with algebraically closed
residue field.
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51.19. Higher direct images of coherent sheaves

In this section we prove the fundamental fact that the higher direct images of a
coherent sheaf under a proper morphism are coherent. First we prove a helper
lemma.

Lemma 51.19.1. Let S be a scheme. Consider a commutative diagram

X
i
//

f   

Pn
Y

��
Y

of algebraic spaces over S. Assume i is a closed immersion and Y Noetherian. Set
L = i∗OPnY

(1). Let F be a coherent module on X. Then there exists an integer d0

such that for all d ≥ d0 we have Rpf∗(F ⊗OX L⊗d) = 0 for all p > 0.

Proof. Checking whether Rpf∗(F ⊗ L⊗d) is zero can be done étale locally on Y ,
see Equation (51.3.1.1). Hence we may assume Y is the spectrum of a Noetherian
ring. In this case X is a scheme and the result follows from Cohomology of Schemes,
Lemma 29.15.4. �

Lemma 51.19.2. Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S with Y locally Noetherian. Let F be a coherent OX-module.
Then Rif∗F is a coherent OY -module for all i ≥ 0.

Proof. We first remark that X is a locally Noetherian algebraic space by Mor-
phisms of Spaces, Lemma 49.23.5. Hence the statement of the lemma makes sense.
Moreover, computing Rif∗F commutes with étale localization on Y (Properties of
Spaces, Lemma 48.24.2) and checking whether Rif∗F coherent can be done étale
locally on Y (Lemma 51.11.2). Hence we may assume that Y = Spec(A) is a
Noetherian affine scheme.

Assume Y = Spec(A) is an affine scheme. Note that f is locally of finite presentation
(Morphisms of Spaces, Lemma 49.27.7). Thus it is of finite presentation, hence X
is Noetherian (Morphisms of Spaces, Lemma 49.27.6). Thus Lemma 51.13.6 applies
to the category of coherent modules of X. For a coherent sheaf F on X we say
P holds if and only if Rif∗F is a coherent module on Spec(A). We will show
that conditions (1), (2), and (3) of Lemma 51.13.6 hold for this property thereby
finishing the proof of the lemma.

Verification of condition (1). Let

0→ F1 → F2 → F3 → 0

be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then the
higher direct images of the third are sandwiched in this exact complex between two
coherent sheaves. Hence these higher direct images are also coherent by Lemmas
51.11.3 and 51.11.4. Hence property P holds for the third as well.
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Verification of condition (2). This follows immediately from the fact that Rif∗(F1⊕
F2) = Rif∗F1⊕Rif∗F2 and that a summand of a coherent module is coherent (see
lemmas cited above).

Verification of condition (3). Let i : Z → X be a closed immersion with Z reduced
and |Z| irreducible. Set g = f ◦ i : Z → Spec(A). Let G be a coherent module on
Z whose scheme theoretic support is equal to Z such that Rpg∗G is coherent for
all p. Then F = i∗G is a coherent module on X whose support scheme theoretic
support is Z such that Rpf∗F = Rpg∗G. To see this use the Leray spectral sequence
(Cohomology on Sites, Lemma 21.14.7) and the fact that Rqi∗G = 0 for q > 0 by
Lemma 51.7.2 and the fact that a closed immersion is affine. (Morphisms of Spaces,
Lemma 49.20.6). Thus we reduce to finding a coherent sheaf G on Z with support
equal to Z such that Rpg∗G is coherent for all p.

We apply Lemma 51.17.1 to the morphism Z → Spec(A). Thus we get a diagram

Z

g
##

Z ′

g′

��

π
oo

i
// Pn

A

{{
Spec(A)

with π : Z ′ → Z proper surjective and i an immersion. Since Z → Spec(A)
is proper we conclude that g′ is proper (Morphisms of Spaces, Lemma 49.37.4).
Hence i is a closed immersion (Morphisms of Spaces, Lemmas 49.37.6 and 49.12.3).
It follows that the morphism i′ = (i, π) : Pn

A×Spec(A)Z
′ = Pn

Z is a closed immersion
(Morphisms of Spaces, Lemma 49.4.6). Set

L = i∗OPnA
(1) = (i′)∗OPnZ

(1)

We may apply Lemma 51.19.1 to L and π as well as L and g′. Hence for all d� 0 we
have Rpπ∗L⊗d = 0 for all p > 0 and Rp(g′)∗L⊗d = 0 for all p > 0. Set G = π∗L⊗d.
By the Leray spectral sequence (Cohomology on Sites, Lemma 21.14.7) we have

Ep,q2 = Rpg∗R
qπ∗L⊗d ⇒ Rp+q(g′)∗L⊗d

and by choice of d the only nonzero terms in Ep,q2 are those with q = 0 and the
only nonzero terms of Rp+q(g′)∗L⊗d are those with p = q = 0. This implies that
Rpg∗G = 0 for p > 0 and that g∗G = (g′)∗L⊗n. Applying Cohomology of Schemes,
Lemma 29.17.1 we see that g∗G = (g′)∗L⊗d is coherent.

We still have to check that the support of G is Z. This follows from the fact that L⊗d
has lots of global sections. We spell it out here. Note that L⊗d is globally generated
for all d ≥ 0 because the same is true forOPn(d). Pick a point z ∈ Z ′ mapping to the
generic point ξ of Z which we can do as π is surjective. (Observe that Z does indeed
have a generic point as |Z| is irreducible and Z is Noetherian, hence quasi-separated,
hence |Z| is a sober topological space by Properties of Spaces, Lemma 48.12.4.) Pick
s ∈ Γ(Z ′,L⊗d) which does not vanish at z. Since Γ(Z,G) = Γ(Z ′,L⊗d) we may
think of s as a global section of G. Choose a geometric point z of Z ′ lying over z
and denote ξ = g′ ◦ z the corresponding geometric point of Z. The adjunction map

(g′)∗G = (g′)∗g′∗L⊗d −→ L⊗d

induces a map of stalks Gξ → Lz, see Properties of Spaces, Lemma 48.27.5. More-

over the adjunction map sends the pullback of s (viewed as a section of G) to s
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(viewed as a section of L⊗d). Thus the image of s in the vector space which is the
source of the arrow

Gξ ⊗ κ(ξ) −→ L⊗dz ⊗ κ(z)

isn’t zero since by choice of s the image in the target of the arrow is nonzero.
Hence ξ is in the support of G (Morphisms of Spaces, Lemma 49.15.2). Since |Z| is
irreducible and Z is reduced we conclude that the scheme theoretic support of G is
all of Z as desired. �

Remark 51.19.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y locally Noetherian. Then X
is locally Noetherian (Morphisms of Spaces, Lemma 49.23.5). Let F be a coherent
OX -module. Assume the scheme theoretic support Z of F is proper over Y . we
claim Rpf∗F is a coherent OY -module for all p ≥ 0. Namely, Let i : Z → X be the
closed immersion and write F = i∗G for some coherent module G on Z (Lemma
51.11.7). Denoting g : Z → S the composition f ◦ i we see that Rpg∗G is coherent
on S by Lemma 51.19.2. On the other hand, Rqi∗G = 0 for q > 0 (Lemma 51.11.9).
By Cohomology on Sites, Lemma 21.14.7 we get Rpf∗F = Rpg∗G and the claim.

Lemma 51.19.4. Let A be a Noetherian ring. Let f : X → Spec(A) be a proper
morphism of algebraic spaces. Let F be a coherent OX-module. Then Hi(X,F) is
finite A-module for all i ≥ 0.

Proof. This is just the affine case of Lemma 51.19.2. Namely, by Lemma 51.3.2
we know that Rif∗F is a quasi-coherent sheaf. Hence it is the quasi-coherent sheaf
associated to the A-module Γ(Spec(A), Rif∗F) = Hi(X,F). The equality holds by
Cohomology on Sites, Lemma 21.14.6 and vanishing of higher cohomology groups of
quasi-coherent modules on affine schemes (Cohomology of Schemes, Lemma 29.2.2).
By Lemma 51.11.2 we see Rif∗F is a coherent sheaf if and only if Hi(X,F) is an
A-module of finite type. Hence Lemma 51.19.2 gives us the conclusion. �

Lemma 51.19.5. Let A be a Noetherian ring. Let B be a finitely generated graded
A-algebra. Let f : X → Spec(A) be a proper morphism of algebraic spaces. Set

B = f∗B̃. Let F be a quasi-coherent graded B-module of finite type. For every
p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.

Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms of Spaces, Lemma 49.37.3.
Also, B is a finitely generated A-algebra, and hence Noetherian (Algebra, Lemma
10.30.1). This implies that X ′ is a Noetherian algebraic space (Morphisms of
Spaces, Lemma 49.27.6). Note thatX ′ is the relative spectrum of the quasi-coherent
OX -algebra B by Morphisms of Spaces, Lemma 49.20.7. Since F is a quasi-coherent
B-module we see that there is a unique quasi-coherent OX′ -module F ′ such that
π∗F ′ = F , see Morphisms of Spaces, Lemma 49.20.10. Since F is finite type as a
B-module we conclude that F ′ is a finite type OX′ -module (details omitted). In
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other words, F ′ is a coherent OX′ -module (Lemma 51.11.2). Since the morphism
π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)

by Lemma 51.7.2 and Cohomology on Sites, Lemma 21.14.6. Thus the lemma
follows from Lemma 51.19.4. �

51.20. The theorem on formal functions

This section is the analogue of Cohomology of Schemes, Section 29.18. We encour-
age the reader to read that section first.

Situation 51.20.1. Here A is a Noetherian ring and I ⊂ A is an ideal. Also,
f : X → Spec(A) is a proper morphism of algebraic spaces and F is a coherent
sheaf on X.

In this situation we denote InF the quasi-coherent submodule of F generated as an
OX -module by products of local sections of F and elements of In. In other words,

it is the image of the map f∗Ĩ ⊗OX F → F .

Lemma 51.20.2. In Situation 51.20.1. Set B =
⊕

n≥0 I
n. Then for every p ≥ 0

the graded B-module
⊕

n≥0H
p(X, InF) is a finite B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 51.19.5. �

Lemma 51.20.3. In Situation 51.20.1. For every p ≥ 0 there exists an integer
c ≥ 0 such that

(1) the multiplication map In−c ⊗ Hp(X, IcF) → Hp(X, InF) is surjective
for all n ≥ c, and

(2) the image of Hp(X, In+mF)→ Hp(X, InF) is contained in the submodule
Im−cHp(X, InF) for all n ≥ 0, m ≥ c.

Proof. By Lemma 51.20.2 we can find d1, . . . , dt ≥ 0, and xi ∈ Hp(X, IdiF)
such that

⊕
n≥0H

p(X, InF) is generated by x1, . . . , xt over B =
⊕

n≥0 I
n. Take

c = max{di}. It is clear that (1) holds. For (2) let b = max(0, n− c). Consider the
commutative diagram of A-modules

In+m−c−b ⊗ Ib ⊗Hp(X, IcF) //

��

In+m−c ⊗Hp(X, IcF) // Hp(X, In+mF)

��
In+m−c−b ⊗Hp(X, InF) // Hp(X, InF)

By part (1) of the lemma the composition of the horizontal arrows is surjective if
n+m ≥ c. On the other hand, it is clear that n+m− c− b ≥ m− c. Hence part
(2). �

Lemma 51.20.4. In Situation 51.20.1. Fix p ≥ 0.

(1) There exists a c1 ≥ 0 such that for all n ≥ c1 we have

Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−c1Hp(X,F).

http://stacks.math.columbia.edu/tag/08AV
http://stacks.math.columbia.edu/tag/08AW
http://stacks.math.columbia.edu/tag/08AX
http://stacks.math.columbia.edu/tag/08AY


3356 51. COHOMOLOGY OF ALGEBRAIC SPACES

(2) The inverse system

(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 12.27.2).
(3) In fact for any p and n there exists a c2(n) ≥ n such that

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

for all k ≥ c2(n).

Proof. Let c1 = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
51.20.3 for Hp and Hp+1. We will use this constant in the proofs of (1), (2) and
(3).

Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0

From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))

Hence by our choice of c1 we see that this is contained in In−c1Hp(X,F) for n ≥ c1.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.

Let us prove part (3). Fix an n throughout the rest of the proof. Consider the
commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X, InF) // Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF)

Hp(X, In+mF) //

OO

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

OO

Hp+1(X, In+mF)

a

OO

If m ≥ c1 we see that the image of a is contained in Im−c1Hp+1(X, InF). By the
Artin-Rees lemma (see Algebra, Lemma 10.49.3) there exists an integer c3(n) such
that

INHp+1(X, InF) ∩ Im(δ) ⊂ δ
(
IN−c3(n)Hp(X,F/InF)

)
for all N ≥ c3(n). As Hp(X,F/InF) is annihilated by In, we see that if m ≥
c3(n) + c1 + n, then

Im(Hp(X,F/In+mF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

In other words, part (3) holds with c2(n) = c3(n) + c1 + n. �

Theorem 51.20.5 (Theorem on formal functions). In Situation 51.20.1. Fix p ≥
0. The system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

http://stacks.math.columbia.edu/tag/08AZ
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where the left hand side is the completion of the A-module Hp(X,F) with respect to
the ideal I, see Algebra, Section 10.93. Moreover, this is in fact a homeomorphism
for the limit topologies.

Proof. In fact, this follows immediately from Lemma 51.20.4. We spell out the
details. Set M = Hp(X,F) and Mn = Hp(X,F/InF). Denote Nn = Im(M →
Mn). By the description of the limit in Homology, Section 12.27 we have

limnMn = {(xn) ∈
∏

Mn | ϕi(xn) = xn−1, n = 2, 3, . . .}

Pick an element x = (xn) ∈ limnMn. By Lemma 51.20.4 part (3) we have xn ∈ Nn
for all n since by definition xn is the image of some xn+m ∈ Mn+m for all m. By
Lemma 51.20.4 part (1) we see that there exists a factorization

M → Nn →M/In−c1M

of the reduction map. Denote yn ∈ M/In−c1M the image of xn for n ≥ c1. Since
for n′ ≥ n the composition M → Mn′ → Mn is the given map M → Mn we see
that yn′ maps to yn under the canonical map M/In

′−c1M → M/In−c1M . Hence
y = (yn+c1) defines an element of limnM/InM . We omit the verification that y
maps to x under the map

M∧ = limnM/InM −→ limnMn

of the lemma. We also omit the verification on topologies. �

Lemma 51.20.6. Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian
and complete with respect to I. Let f : X → Spec(A) be a proper morphism of
algebraic spaces. Let F be a coherent sheaf on X. Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 51.20.5)
in the case of a complete Noetherian base ring. Namely, in this case the A-module
Hp(X,F) is finite (Lemma 51.19.4) hence I-adically complete (Algebra, Lemma
10.93.2) and we see that completion on the left hand side is not necessary. �

Lemma 51.20.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S and let F be a quasi-coherent sheaf on Y . Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.

Let y be a geometric point of Y . Consider the “infinitesimal neighbourhoods”

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny )

cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)
∧
y
∼= limnH

p(Xn,Fn)

as O∧Y,y-modules.

http://stacks.math.columbia.edu/tag/08B0
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Proof. This is just a reformulation of a special case of the theorem on formal
functions, Theorem 51.20.5. Let us spell it out. Note that OY,y is a Noetherian local
ring, see Properties of Spaces, Lemma 48.22.4. Consider the canonical morphism
c : Spec(OY,y)→ Y . This is a flat morphism as it identifies local rings. Denote f ′ :
X ′ → Spec(OY,y) the base change of f to this local ring. We see that c∗Rpf∗F =
Rpf ′∗F ′ by Lemma 51.10.1. Moreover, we have canonical identifications Xn = X ′n
for all n ≥ 1.

Hence we may assume that Y = Spec(A) is the spectrum of a strictly henselian Noe-
therian local ring A with maximal ideal m and that y → Y is equal to Spec(A/m)→
Y . It follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F)

because (Y, y) is an initial object in the category of étale neighbourhoods of y. The
morphisms cn are each closed immersions. Hence their base changes in are closed
immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF . By the Leray spectral

sequence for in, and Lemma 51.11.9 we see that

Hp(Xn,Fn) = Hp(X, in,∗F) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit
in the statement of the lemma and we win. �

Here is a lemma which we will generalize later to fibres of dimension > 0, namely
the next lemma.

Lemma 51.20.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) Xy has discrete underlying topological space.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. Let κ(y) be the residue field of the local ring of OY,y. As in Lemma 51.20.7
we set Xy = X1 = Spec(κ(y))×Y X. By Morphisms of Spaces, Lemma 49.32.8 the
morphism f : X → Y is quasi-finite at each of the points of the fibre of X → Y over
y. It follows that Xy → y is separated and quasi-finite. Hence Xy is a scheme by
Morphisms of Spaces, Proposition 49.44.2. Since it is quasi-compact its underlying
topological space is a finite discrete space. Then it is an affine scheme by Schemes,
Lemma 25.11.7. By Lemma 51.16.1 it follows that the algebraic spaces Xn are
affine schemes as well. Moreover, the underlying topological of each Xn is the same
as that of X1. Hence it follows that Hp(Xn,Fn) = 0 for all p > 0. Hence we see
that (Rpf∗F)∧y = 0 by Lemma 51.20.7. Note that Rpf∗F is coherent by Lemma
51.19.2 and hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma 10.93.2 this
implies that (Rpf∗F)y = 0. �

Lemma 51.20.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.
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Proof. Let κ(y) be the residue field of the local ring of OY,y. As in Lemma
51.20.7 we set Xy = X1 = Spec(κ(y))×Y X. Moreover, the underlying topological
space of each infinitesimal neighbourhood Xn is the same as that of Xy. Hence
Hp(Xn,Fn) = 0 for all p > d by Lemma 51.9.1. Hence we see that (Rpf∗F)∧y = 0
by Lemma 51.20.7 for p > d. Note that Rpf∗F is coherent by Lemma 51.19.2 and
hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma 10.93.2 this implies
that (Rpf∗F)y = 0. �

51.21. Applications of the theorem on formal functions

We will add more here as needed.

Lemma 51.21.1. (For a more general version see More on Morphisms of Spaces,
Lemma 58.24.5). Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian. The following are equivalent

(1) f is finite, and
(2) f is proper and |Xk| is a discrete space for every morphism Spec(k)→ Y

where k is a field.

Proof. A finite morphism is proper according to Morphisms of Spaces, Lemma
49.41.9. A finite morphism is quasi-finite according to Morphisms of Spaces, Lemma
49.41.8. A quasi-finite morphism has discrete fibres Xk, see Morphisms of Spaces,
Lemma 49.26.5. Hence a finite morphism is proper and has discrete fibres Xk.

Assume f is proper with discrete fibres Xk. We want to show f is finite. In fact it
suffices to prove f is affine. Namely, if f is affine, then it follows that f is integral
by Morphisms of Spaces, Lemma 49.41.7 whereupon it follows from Morphisms of
Spaces, Lemma 49.41.6 that f is finite.

To show that f is affine we may assume that Y is affine, and our goal is to show that
X is affine too. Since f is proper we see that X is separated and quasi-compact.
We will show that for any coherent OX -module F we have H1(X,F) = 0. This
implies that H1(X,F) = 0 for every quasi-coherent OX -module F by Lemmas
51.14.1 and 51.4.1. Then it follows that X is affine from Proposition 51.15.9. By
Lemma 51.20.8 we conclude that the stalks of R1f∗F are zero for all geometric
points of Y . In other words, R1f∗F = 0. Hence we see from the Leray Spectral
Sequence for f that H1(X,F) = H1(Y, f∗F). Since Y is affine, and f∗F is quasi-
coherent (Morphisms of Spaces, Lemma 49.11.2) we conclude H1(Y, f∗F) = 0 from
Cohomology of Schemes, Lemma 29.2.2. Hence H1(X,F) = 0 as desired. �

As a consequence we have the following useful result.

Lemma 51.21.2. (For a more general version see More on Morphisms of Spaces,
Lemma 58.24.6). Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y is locally Noetherian,
(2) f is proper, and
(3) |Xy| is finite.

Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→
V is finite.
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Proof. The morphism f is quasi-finite at all the geometric points of X lying over
y by Morphisms of Spaces, Lemma 49.32.8. By Morphisms of Spaces, Lemma
49.32.7 the set of points at which f is quasi-finite is an open subspace U ⊂ X. Let
Z = X \ U . Then y 6∈ f(Z). Since f is proper the set f(Z) ⊂ Y is closed. Choose
any open neighbourhood V ⊂ Y of y with Z ∩ V = ∅. Then f−1(V )→ V is locally
quasi-finite and proper. Hence f−1(V ) → V has discrete fibres Xk (Morphisms of
Spaces, Lemma 49.26.5) which are quasi-compact hence finite. Thus f−1(V )→ V
is finite by Lemma 51.21.1. �
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CHAPTER 52

Limits of Algebraic Spaces

52.1. Introduction

In this chapter we put material related to limits of algebraic spaces. A first topic is
the characterization of algebraic spaces F locally of finite presentation over the base
S as limit preserving functors. We continue with a study of limits of inverse systems
over directed partially ordered sets with affine transition maps. We discuss absolute
Noetherian approximation for quasi-compact and quasi-separated algebraic spaces
following [CLO12]. Another approach is due to David Rydh (see [Ryd08]) whose
results also cover absolute Noetherian approximation for certain algebraic stacks.

52.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

52.3. Morphisms of finite presentation

In this section we generalize Limits, Proposition 31.5.1 to morphisms of algebraic
spaces. The motivation for the following definition comes from the proposition just
cited.

Definition 52.3.1. Let S be a scheme.

(1) A functor F : (Sch/S)oppfppf → Sets is said to be locally of finite presentation
or limit preserving if for every affine scheme T over S which is a limit
T = limTi of a directed inverse system of affine schemes Ti over S, we
have

F (T ) = colimF (Ti).

We sometimes say that F is locally of finite presentation over S.
(2) Let F,G : (Sch/S)oppfppf → Sets. A transformation of functors a : F → G

is locally of finite presentation if for every scheme T over S and every
y ∈ G(T ) the functor

Fy : (Sch/T )oppfppf −→ Sets, T ′/T 7−→ {x ∈ F (T ′) | a(x) = y|T ′}

is locally of finite presentation over T 1. We sometimes say that F is
relatively limit preserving over G.

1The characterization (2) in Lemma 52.3.2 may be easier to parse.
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The functor Fy is in some sense the fiber of a : F → G over y, except that it is a
presheaf on the big fppf site of T . A formula for this functor is:

(52.3.1.1) Fy = F |(Sch/T )fppf×G|(Sch/T )fppf
∗

Here ∗ is the final object in the category of (pre)sheaves on (Sch/T )fppf (see Sites,
Example 7.10.2) and the map ∗ → G|(Sch/T )fppf is given by y. Note that if j :
(Sch/T )fppf → (Sch/S)fppf is the localization functor, then the formula above
becomes Fy = j−1F ×j−1G ∗ and j!Fy is just the fiber product F ×G,y T . (See Sites,
Section 7.24, for information on localization, and especially Sites, Remark 7.24.9
for information on j! for presheaves.)

At this point we temporarily have two definitions of what it means for a morphism
X → Y of algebraic spaces over S to be locally of finite presentation. Namely,
one by Morphisms of Spaces, Definition 49.27.1 and one using that X → Y is
a transformation of functors so that Definition 52.3.1 applies. We will show in
Proposition 52.3.9 that these two definitions agree.

Lemma 52.3.2. Let S be a scheme. Let a : F → G be a transformation of functors
(Sch/S)oppfppf → Sets. The following are equivalent

(1) F is relatively limit preserving over G, and
(2) for every every affine scheme T over S which is a limit T = limTi of a

directed inverse system of affine schemes Ti over S the diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) // G(T )

is a fibre product diagram.

Proof. Assume (1). Consider T = limi∈I Ti as in (2). Let (y, xT ) be an element of
the fibre product colimiG(Ti)×G(T ) F (T ). Then y comes from yi ∈ G(Ti) for some
i. Consider the functor Fyi on (Sch/Ti)fppf as in Definition 52.3.1. We see that
xT ∈ Fyi(T ). Moreover T = limi′≥i Ti′ is a directed system of affine schemes over
Ti. Hence (1) implies that xT the image of a unique element x of colimi′≥i Fyi(Ti′).
Thus x is the unique element of colimF (Ti) which maps to the pair (y, xT ). This
proves that (2) holds.

Assume (2). Let T be a scheme and yT ∈ G(T ). We have to show that FyT is limit
preserving. Let T ′ = limi∈I T

′
i be an affine scheme over T which is the directed

limit of affine scheme T ′i over T . Let xT ′ ∈ FyT . Pick i ∈ I which is possible as I is
a directed partially ordered set. Denote yi ∈ F (T ′i ) the image of yT ′ . Then we see
that (yi, xT ′) is an element of the fibre product colimiG(T ′i ) ×G(T ′) F (T ′). Hence
by (2) we get a unique element x of colimi F (T ′i ) mapping to (yi, xT ′). It is clear
that x defines an element of colimi Fy(T ′i ) mapping to xT ′ and we win. �

Lemma 52.3.3. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. If a and b are
locally of finite presentation, then

b ◦ a : F −→ H

is locally of finite presentation.
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Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 52.3.2. Consider the
diagram

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) //

b

��

G(T )

b

��
colimiH(Ti) // H(T )

By assumption the two squares are fibre product squares. Hence the outer rectangle
is a fibre product diagram too which proves the lemma. �

Lemma 52.3.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a is locally of finite presentation, then the base change a′ is locally of finite
presentation.

Proof. Omitted. Hint: This is formal. �

Lemma 52.3.5. Let T be an affine scheme which is written as a limit T = limi∈I Ti
of a directed inverse system of affine schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard fppf covering of T , see Topolo-
gies, Definition 33.7.5. Then there exists an index i and a standard fppf
covering Vi = {Vi,j → Ti}j=1,...,m whose base change T ×Ti Vi to T is
isomorphic to V.

(2) Let Vi, V ′i be a pair of standard fppf coverings of Ti. If f : T ×Ti V →
T ×Ti V ′i is a morphism of coverings of T , then there exists an index i′ ≥ i
and a morphism fi′ : Ti′ ×Ti V → Ti′ ×Ti V ′i whose base change to T is f .

(3) If f, g : V → V ′i are morphisms of standard fppf coverings of Ti whose base
changes fT , gT to T are equal then there exists an index i′ ≥ i such that
fTi′ = gTi′ .

In other words, the category of standard fppf coverings of T is the colimit over I of
the categories of standard fppf coverings of Ti

Proof. By Limits, Lemma 31.9.1 the category of schemes of finite presentation
over T is the colimit over I of the categories of finite presentation over Ti. By
Limits, Lemmas 31.7.2 and 31.7.6 the same is true for category of schemes which
are affine, flat and of finite presentation over T . To finish the proof of the lemma it
suffices to show that if {Vj,i → Ti}j=1,...,m is a finite family of flat finitely presented
morphisms with Vj,i affine, and the base change

∐
j T×TiVj,i → T is surjective, then

for some i′ ≥ i the morphism
∐
Ti′ ×Ti Vj,i → Ti′ is surjective. Denote Wi′ ⊂ Ti′ ,

resp. W ⊂ T the image. Of course W = T by assumption. Since the morphisms
are flat and of finite presentation we see that Wi is a quasi-compact open of Ti,
see Morphisms, Lemma 28.26.9. Moreover, W = T ×Ti Wi (formation of image
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commutes with base change). Hence by Limits, Lemma 31.3.8 we conclude that
Wi′ = Ti′ for some large enough i′ and we win. �

Lemma 52.3.6. Let S be a scheme contained in Schfppf . Let F : (Sch/S)oppfppf →
Sets be a functor. If F is locally of finite presentation over S then its sheafification
F# is locally of finite presentation over S.

Proof. Assume F is locally of finite presentation. It suffices to show that F+ is
locally of finite presentation, since F# = (F+)+, see Sites, Theorem 7.10.10. Let T
be an affine scheme over S, and let T = limTi be written as the directed limit of an
inverse system of affine S schemes. Recall that F+(T ) is the colimit of Ȟ0(V, F )
where the limit is over all coverings of T in (Sch/S)fppf . Any fppf covering of an
affine scheme can be refined by a standard fppf covering, see Topologies, Lemma
33.7.4. Hence we can write

F+(T ) = colimV standard covering T Ȟ
0(V, F ).

By Lemma 52.3.5 we may rewrite this as

colimi∈I colimVi standard covering Ti Ȟ
0(T ×Ti Vi, F ).

(The order of the colimits is irrelevant by Categories, Lemma 4.14.9.) Given a
standard fppf covering Vi = {Vj → Ti}j=1,...,m of Ti we see that

T ×Ti Vj = limi′≥i Ti′ ×T Vj
by Limits, Lemma 31.2.3, and similarly

T ×Ti (Vj ×Ti Vj′) = limi′≥i Ti′ ×T (Vj ×Ti Vj′).

As the presheaf F is locally of finite presentation this means that

Ȟ0(T ×Ti Vi, F ) = colimi′≥i Ȟ
0(Ti′ ×Ti Vi, F ).

Hence the colimit expression for F+(T ) above collapses to

colimi∈I colimV standard covering Ti Ȟ
0(V, F ). = colimi∈I F

+(Ti).

In other words F+(T ) = colimi F
+(Ti) and hence the lemma holds. �

Lemma 52.3.7. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) F is a sheaf, and
(2) there exists an fppf covering {Uj → S}j∈J such that F |(Sch/Uj)fppf is

locally of finite presentation.

Then F is locally of finite presentation.

Proof. Let T be an affine scheme over S. Let I be a directed partially ordered set,
and let Ti be an inverse system of affine schemes over S such that T = limTi. We
have to show that the canonical map colimF (Ti)→ F (T ) is bijective.

Choose some 0 ∈ I and choose a standard fppf covering {V0,k → T0}k=1,...,m which
refines the pullback {Uj×S T0 → T0} of the given fppf covering of S. For each i ≥ 0
we set Vi,k = Ti ×T0

V0,k, and we set Vk = T ×T0
V0,k. Note that Vk = limi≥0 Vi,k,

see Limits, Lemma 31.2.3.

Suppose that x, x′ ∈ colimF (Ti) map to the same element of F (T ). Say x, x′ are
given by elements xi, x

′
i ∈ F (Ti) for some i ∈ I (we may choose the same i for
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both as I is directed). By assumption (2) and the fact that xi, x
′
i map to the same

element of F (T ) this implies that

xi|Vi′,k = x′i|Vi′,k
for some suitably large i′ ∈ I. We can choose the same i′ for each k as k ∈
{1, . . . ,m} ranges over a finite set. Since {Vi′,k → Ti′} is an fppf covering and F
is a sheaf this implies that xi|Ti′ = x′i|Ti′ as desired. This proves that the map
colimF (Ti)→ F (T ) is injective.

To show surjectivity we argue in a similar fashion. Let x ∈ F (T ). By assumption
(2) for each k we can choose a i such that x|Vk comes from an element xi,k ∈ F (Vi,k).
As before we may choose a single i which works for all k. By the injectivity proved
above we see that

xi,k|Vi′,k×Ti′ Vi′,l = xi,l|Vi′,k×Ti′ Vi′,l
for some large enough i′. Hence by the sheaf condition of F the elements xi,k|Vi′,k
glue to an element xi′ ∈ F (Ti′) as desired. �

Lemma 52.3.8. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets be functors. If a : F → G is a transformation which is locally of finite presenta-
tion, then the induced transformation of sheaves F# → G# is of finite presentation.

Proof. Suppose that T is a scheme and y ∈ G#(T ). We have to show the functor
F#
y : (Sch/T )oppfppf → Sets constructed from F# → G# and y as in Definition

52.3.1 is locally of finite presentation. By Equation (52.3.1.1) we see that F#
y is a

sheaf. Choose an fppf covering {Vj → T}j∈J such that y|Vj comes from an element

yj ∈ F (Vj). Note that the restriction of F# to (Sch/Vj)fppf is just F#
yj . If we

can show that F#
yj is locally of finite presentation then Lemma 52.3.7 guarantees

that F#
y is locally of finite presentation and we win. This reduces us to the case

y ∈ G(T ).

Let y ∈ G(T ). In this case we claim that F#
y = (Fy)#. This follows from Equation

(52.3.1.1). Thus this case follows from Lemma 52.3.6. �

Proposition 52.3.9. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. The following are equivalent:

(1) The morphism f is a morphism of algebraic spaces which is locally of finite
presentation, see Morphisms of Spaces, Definition 49.27.1.

(2) The morphism f : X → Y is locally of finite presentation as a transfor-
mation of functors, see Definition 52.3.1.

Proof. Assume (1). Let T be a scheme and let y ∈ Y (T ). We have to show that
T×XY is locally of finite presentation over T in the sense of Definition 52.3.1. Hence
we are reduced to proving that if X is an algebraic space which is locally of finite
presentation over S as an algebraic space, then it is locally of finite presentation as
a functor X : (Sch/S)oppfppf → Sets. To see this choose a presentation X = U/R, see
Spaces, Definition 47.9.3. It follows from Morphisms of Spaces, Definition 49.27.1
that both U and R are schemes which are locally of finite presentation over S.
Hence by Limits, Proposition 31.5.1 we have

U(T ) = colimU(Ti), R(T ) = colimR(Ti)
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whenever T = limi Ti in (Sch/S)fppf . It follows that the presheaf

(Sch/S)oppfppf −→ Sets, W 7−→ U(W )/R(W )

is locally of finite presentation. Hence by Lemma 52.3.6 its sheafification X = U/R
is locally of finite presentation too.

Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Next,
choose a scheme U and a surjective étale morphism U → V ×Y X. By Lemma
52.3.4 the transformation of functors V ×Y X → V is locally of finite presentation.
By Morphisms of Spaces, Lemma 49.36.8 the morphism of algebraic spaces U →
V ×Y X is locally of finite presentation, hence locally of finite presentation as a
transformation of functors by the first part of the proof. By Lemma 52.3.3 the
composition U → V ×Y X → V is locally of finite presentation as a transformation
of functors. Hence the morphism of schemes U → V is locally of finite presentation
by Limits, Proposition 31.5.1 (modulo a set theoretic remark, see last paragraph of
the proof). This means, by definition, that (1) holds.

Set theoretic remark. Let U → V be a morphism of (Sch/S)fppf . In the statement
of Limits, Proposition 31.5.1 we characterize U → V as being locally of finite
presentation if for all directed inverse systems (Ti, fii′) of affine schemes over V
we have U(T ) = colimV (Ti), but in the current setting we may only consider
affine schemes Ti over V which are (isomorphic to) an object of (Sch/S)fppf . So
we have to make sure that there are enough affines in (Sch/S)fppf to make the
proof work. Inspecting the proof of (2) ⇒ (1) of Limits, Proposition 31.5.1 we see
that the question reduces to the case that U and V are affine. Say U = Spec(A)
and V = Spec(B). By construction of (Sch/S)fppf the spectrum of any ring of
cardinality ≤ |B| is isomorphic to an object of (Sch/S)fppf . Hence it suffices to
observe that in the ”only if” part of the proof of Algebra, Lemma 10.123.2 only
A-algebras of cardinality ≤ |B| are used. �

Remark 52.3.10. Here is an important special case of Proposition 52.3.9. Let
S be a scheme. Let X be an algebraic space over S. Then X is locally of finite
presentation over S if and only if X, as a functor (Sch/S)opp → Sets, is limit
preserving. Compare with Limits, Remark 31.5.2.

52.4. Limits of algebraic spaces

The following lemma explains how we think of limits of algebraic spaces in this
chapter. We will use (without further mention) that the base change of an affine
morphism of algebraic spaces is affine (see Morphisms of Spaces, Lemma 49.20.5).

Lemma 52.4.1. Let S be a scheme. Let I be a directed partially ordered set. Let
(Xi, fii′) be an inverse system over I in the category of algebraic spaces over S. If
the morphisms fii′ : Xi → Xi′ are affine, then the limit X = limiXi (as an fppf
sheaf) is an algebraic space. Moreover,

(1) each of the morphisms fi : X → Xi is affine,
(2) for any i ∈ I and any morphism of algebraic spaces T → Xi we have

X ×Xi T = limi′≥iXi′ ×Xi T.

as algebraic spaces over S.
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Proof. Part (2) is a formal consequence of the existence of the limit X = limXi as
an algebraic space over S. Choose an element 0 ∈ I (this is possible as a directed
partially ordered set is nonempty). Choose a scheme U0 and a surjective étale
morphism U0 → X0. Set R0 = U0 ×X0

U0 so that X0 = U0/R0. For i ≥ 0 set
Ui = Xi ×X0

U0 and Ri = Xi ×X0
R0 = Ui ×Xi Ui. By Limits, Lemma 31.2.2

we see that U = limi≥0 Ui and R = limi≥0Ri are schemes. Moreover, the two
morphisms s, t : R → U are the base change of the two projections R0 → U0 by
the morphism U → U0, in particular étale. The morphism R → U ×S U defines
an equivalence relation as directed a limit of equivalence relations is an equivalence
relation. Hence the morphism R → U ×S U is an étale equivalence relation. We
claim that the natural map

(52.4.1.1) U/R −→ limXi

is an isomorphism of fppf sheaves on the category of schemes over S. The claim
implies X = limXi is an algebraic space by Spaces, Theorem 47.10.5.

Let Z be a scheme and let a : Z → limXi be a morphism. Then a = (ai) where
ai : Z → Xi. Set W0 = Z ×a0,X0

U0. Note that W0 = Z ×ai,Xi Ui for all i ≥ 0 by
our choice of Ui → Xi above. Hence we obtain a morphism W0 → limi≥0 Ui = U .
Since W0 → Z is surjective and étale, we conclude that (52.4.1.1) is a surjective
map of sheaves. Finally, suppose that Z is a scheme and that a, b : Z → U/R are
two morphisms which are equalized by (52.4.1.1). We have to show that a = b.
After replacing Z by the members of an fppf covering we may assume there exist
morphisms a′, b′ : Z → U which give rise to a and b. The condition that a, b are
equalized by (52.4.1.1) means that for each i ≥ 0 the compositions a′i, b

′
i : Z → U →

Ui are equal as morphisms into Ui/Ri = Xi. Hence (a′i, b
′
i) : Z → Ui ×S Ui factors

through Ri, say by some morphism ci : Z → Ri. Since R = limi≥0Ri we see that
c = lim ci : Z → R is a morphism which shows that a, b are equal as morphisms of
Z into U/R.

Part (1) follows as we have seen above that Ui ×Xi X = U and U → Ui is affine by
construction. �

Lemma 52.4.2. Let S be a scheme. Let I be a directed partially ordered set.
Let (Xi, fii′) be an inverse system over I of algebraic spaces over S with affine
transition maps. Let X = limiXi. Let 0 ∈ I. Suppose that T → X0 is a morphism
of algebraic spaces. Then

T ×X0
X = limi≥0 T ×X0

Xi

as algebraic spaces over S.

Proof. The limit X is an algebraic space by Lemma 52.4.1. The equality is formal,
see Categories, Lemma 4.14.9. �

52.5. Descending properties

This section is the analogue of Limits, Section 31.3.

Situation 52.5.1. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms (Lemma 52.4.1).
We assume that Xi is quasi-compact and quasi-separated for all i ∈ I. We also
choose an element 0 ∈ I.
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The following lemma holds a little bit more generally (namely when we just assume
each Xi is a decent algebraic space).

Lemma 52.5.2. In Situation 52.5.1 we have |X| = lim |Xi|.

Proof. There is a canonical map |X| → lim |Xi|. Choose an affine scheme U0 and
a surjective étale morphism U0 → X0. Set Ui = Xi ×X0

U0 and U = X ×X0
U0.

Set Ri = Ui ×Xi Ui and R = U ×X U . Recall that U = limUi and R = limRi, see
proof of Lemma 52.4.1. Recall that |X| = |U |/|R| and |Xi| = |Ui|/|Ri|. By Limits,
Lemma 31.3.2 we have |U | = lim |Ui| and |R| = lim |Ri|.
Surjectivity of |X| → lim |Xi|. Let (xi) ∈ lim |Xi|. Denote Si ⊂ |Ui| the inverse
image of xi. This is a finite nonempty set by Properties of Spaces, Lemma 48.12.3.
Hence limSi is nonempty, see Categories, Lemma 4.21.5. Let (ui) ∈ limSi ⊂
lim |Ui|. By the above this determines a point u ∈ |U | which maps to an x ∈ |X|
mapping to the given element (xi) of lim |Xi|.
Injectivity of |X| → lim |Xi|. Suppose that x, x′ ∈ |X| map to the same point of
lim |Xi|. Choose lifts u, u′ ∈ |U | and denote ui, u

′
i ∈ |Ui| the images. For each i let

Ti ⊂ |Ri| be the set of points mapping to (ui, u
′
i) ∈ |Ui| × |Ui|. This is a finite set

by Properties of Spaces, Lemma 48.12.3 which is nonempty as we’ve assumed that
x and x′ map to the same point of Xi. Hence limTi is nonempty, see Categories,
Lemma 4.21.5. As before let r ∈ |R| = lim |Ri| be a point corresponding to an
element of limTi. Then r maps to (u, u′) in |U | × |U | by construction and we see
that x = x′ in |X| as desired. �

Lemma 52.5.3. In Situation 52.5.1, if each Xi is nonempty, then |X| is nonempty.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set
Ui = Xi ×X0

U0 and U = X ×X0
U0. Then each Ui is a nonempty affine scheme.

Hence U = limUi is nonempty (Limits, Lemma 31.3.4) and thus X is nonempty. �

Lemma 52.5.4. Notation and assumptions as in Situation 52.5.1. Suppose that
F0 is a quasi-coherent sheaf on X0. Set Fi = f∗0iF0 for i ≥ 0 and set F = f∗0F0.
Then

Γ(X,F) = colimi≥0 Γ(Xi,Fi)

Proof. Choose a surjective étale morphism U0 → X0 where U0 is an affine scheme
(Properties of Spaces, Lemma 48.6.3). Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0

and Ri = R0 ×X0
Xi. In the proof of Lemma 52.4.1 we have seen that there

exists a presentation X = U/R with U = limUi and R = limRi. Note that Ui
and U are affine and that Ri and R are quasi-compact and separated (as Xi is
quasi-separated). Hence Limits, Lemma 31.3.3 implies that

F(U) = colimFi(Ui) and F(R) = colimFi(Ri).
The lemma follows as Γ(X,F) = Ker(F(U) → F(R)) and similarly Γ(Xi,Fi) =
Ker(Fi(Ui)→ Fi(Ri)) �

Lemma 52.5.5. Notation and assumptions as in Situation 52.5.1. For any quasi-
compact open subspace U ⊂ X there exists an i and a quasi-compact open Ui ⊂ Xi

whose inverse image in X is U .

Proof. Follows formally from the construction of limits in Lemma 52.4.1 and the
corresponding result for schemes: Limits, Lemma 31.3.8. �
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The following lemma will be superseded by the stronger Lemma 52.6.9.

Lemma 52.5.6. Notation and assumptions as in Situation 52.5.1. Let f0 : Y0 →
Z0 be a morphism of algebraic spaces over X0. Assume (a) Y0 → X0 and Z0 → X0

are representable, (b) Y0, Z0 quasi-compact and quasi-separated, (c) f0 locally of
finite presentation, and (d) Y0 ×X0 X → Z0 ×X0 X an isomorphism. Then there
exists an i ≥ 0 such that Y0 ×X0

Xi → Z0 ×X0
Xi is an isomorphism.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
Set Ui = U0 ×X0

Xi and U = U0 ×X0
X. Apply Limits, Lemma 31.7.9 to see

that Y0 ×X0
Ui → Z0 ×X0

Ui is an isomorphism of schemes for some i ≥ 0 (details
omitted). As Ui → Xi is surjective étale, it follows that Y0 ×X0

Xi → Z0 ×X0
Xi is

an isomorphism (details omitted). �

Lemma 52.5.7. Notation and assumptions as in Situation 52.5.1. If X is sepa-
rated, then Xi is separated for some i ∈ I.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
For i ≥ 0 set Ui = U0 ×X0 Xi and set U = U0 ×X0 X. Note that Ui and U are
affine schemes which come equipped with surjective étale morphisms Ui → Xi and
U → X. Set Ri = Ui ×Xi Ui and R = U ×X U with projections si, ti : Ri → Ui
and s, t : R → U . Note that Ri and R are quasi-compact separated schemes (as
the algebraic spaces Xi and X are quasi-separated). The maps si : Ri → Ui
and s : R → U are of finite type. By definition Xi is separated if and only
if (ti, si) : Ri → Ui × Ui is a closed immersion, and since X is separated by
assumption, the morphism (t, s) : R→ U × U is a closed immersion. Since R→ U
is of finite type, there exists an i such that the morphism R → Ui × U is a closed
immersion (Limits, Lemma 31.3.13). Fix such an i ∈ I. Apply Limits, Lemma
31.7.4 to the system of morphisms Ri′ → Ui × Ui′ for i′ ≥ i (this is permissible as
indeed Ri′ = Ri ×Ui×Ui Ui × Ui′) to see that Ri′ → Ui × Ui′ is a closed immersion
for i′ sufficiently large. This implies immediately that Ri′ → Ui′ × Ui′ is a closed
immersion finishing the proof of the lemma. �

Lemma 52.5.8. Notation and assumptions as in Situation 52.5.1. If X is affine,
then there exists an i such that Xi is affine.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set U = U0 ×X0

X and Ui = U0 ×X0
Xi for i ≥ 0. Since the transition

morphisms are affine, the algebraic spaces Ui and U are affine. Thus U → X is an
étale morphism of affine schemes. Hence we can write X = Spec(A), U = Spec(B)
and

B = A[x1, . . . , xn]/(g1, . . . , gn)

such that ∆ = det(∂gλ/∂xµ) is invertible in B, see Algebra, Lemma 10.138.2. Set
Ai = OXi(Xi). We have A = colimAi by Lemma 52.5.4. After increasing 0 we
may assume we have g1,i, . . . , gn,i ∈ Ai[x1, . . . , xn] mapping to g1, . . . , gn. Set

Bi = Ai[x1, . . . , xn]/(g1,i, . . . , gn,i)

for all i ≥ 0. Increasing 0 if necessary we may assume that ∆i = det(∂gλ,i/∂xµ) is
invertible in Bi for all i ≥ 0. Thus Ai → Bi is an étale ring map. After increasing
0 we may assume also that Spec(Bi) → Spec(Ai) is surjective, see Limits, Lemma
31.7.11. Increasing 0 yet again we may choose elements h1,i, . . . , hn,i ∈ OUi(Ui)
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which map to the classes of x1, . . . , xn in B = OU (U) and such that gλ,i(hν,i) = 0
in OUi(Ui). Thus we obtain a commutative diagram

(52.5.8.1)

Xi

��

Uioo

��
Spec(Ai) Spec(Bi)oo

By construction Bi = B0 ⊗A0
Ai and B = B0 ⊗A0

A. Consider the morphism

f0 : U0 −→ X0 ×Spec(A0) Spec(B0)

This is a morphism of quasi-compact and quasi-separated algebraic spaces rep-
resentable, separated and étale over X0. The base change of f0 to X is an iso-
morphism by our choices. Hence Lemma 52.5.6 guarantees that there exists an i
such that the base change of f0 to Xi is an isomorphism, in other words the di-
agram (52.5.8.1) is cartesian. Thus Descent, Lemma 34.35.1 applied to the fppf
covering {Spec(Bi)→ Spec(Ai)} combined with Descent, Lemma 34.33.1 give that
Xi → Spec(Ai) is representable by a scheme affine over Spec(Ai) as desired. (Of
course it then also follows that Xi = Spec(Ai) but we don’t need this.) �

Lemma 52.5.9. Notation and assumptions as in Situation 52.5.1. If X is a
scheme, then there exists an i such that Xi is a scheme.

Proof. Choose a finite affine open covering X =
⋃
Wj . By Lemma 52.5.5 we can

find an i ∈ I and open subspaces Wj,i ⊂ Xi whose base change to X is Wj → X.
By Lemma 52.5.8 we may assume that each Wj,i is an affine scheme. This means
that Xi is a scheme (see for example Properties of Spaces, Section 48.10). �

Lemma 52.5.10. Let S be a scheme. Let B be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over B with affine transition
morphisms. Let Y → X be a morphism of algebraic spaces over B.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y → B locally
of finite type, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → B locally of finite
type, and Y quasi-compact, then Y → Xi is an immersion for i large
enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → B locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and
Y → B is locally of finite presentation, then Y → Xi is an isomorphism
for i large enough.

(4) If Y → X is a monomorphism, Xi quasi-separated, Y → B locally of
finite type, and Y quasi-compact, then Y → Xi is a monomorphism for i
large enough.

Proof. Proof of (1). Choose 0 ∈ I. As X0 is quasi-compact, we can choose an
affine scheme W and an étale morphism W → B such that the image of |X0| → |B|
is contained in |W | → |B|. Choose an affine scheme U0 and an étale morphism
U0 → X0 ×B W such that U0 → X0 is surjective. (This is possible by our choice
of W and the fact that X0 is quasi-compact; details omitted.) Let V → Y , resp.
U → X, resp. Ui → Xi be the base change of U0 → X0 (for i ≥ 0). It suffices to
prove that V → Ui is a closed immersion for i sufficiently large. Thus we reduce
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to proving the result for V → U = limUi over W . This follows from the case of
schemes, which is Limits, Lemma 31.3.13.

Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open subspace X ′0 ⊂ X0 such
that Y → X0 factors through X ′0. After replacing Xi by the inverse image of X ′0
for i ≥ 0 we may assume all X ′i are quasi-compact and quasi-separated. Let U ⊂ X
be a quasi-compact open such that Y → X factors through a closed immersion
Y → U (U exists as Y is quasi-compact). By Lemma 52.5.5 we may assume that
U = limUi with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is
a closed immersion for some i. Thus (2) holds.

Proof of (3). Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale
morphism U0 → X0. Set Ui = Xi ×X0

U0, U = X ×X0
U0 = Y ×X0

U0. Then
U = limUi is a limit of affine schemes, the transition maps of the system are closed
immersions, and U → U0 is of finite presentation (because U → B is locally of
finite presentation and U0 → B is locally of finite type and Morphisms of Spaces,
Lemma 49.27.9). Thus we’ve reduced to the following algebra fact: If A = limAi
is a directed colimit of R-algebras with surjective transition maps and A of finite
presentation over A0, then A = Ai for some i. Namely, write A = A0/(f1, . . . , fn).
Pick i such that f1, . . . , fn map to zero under the surjective map A0 → Ai.

Proof of (4). Set Zi = Y ×Xi Y . As the transition morphisms Xi′ → Xi are
affine hence separated, the transition morphisms Zi′ → Zi are closed immersions,
see Morphisms of Spaces, Lemma 49.4.5. We have limZi = Y ×X Y = Y as
Y → X is a monomorphism. Choose 0 ∈ I. Since Y → X0 is locally of finite type
(Morphisms of Spaces, Lemma 49.23.6) the morphism Y → Z0 is locally of finite
presentation (Morphisms of Spaces, Lemma 49.27.10). The morphisms Zi → Z0

are locally of finite type (they are closed immersions). Finally, Zi = Y ×Xi Y is
quasi-compact as Xi is quasi-separated and Y is quasi-compact. Thus part (3)
applies to Y = limi≥0 Zi over Z0 and we conclude Y = Zi for some i. This proves
(4) and the lemma. �

Lemma 52.5.11. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y is quasi-separated,
(2) Xi is quasi-compact and quasi-separated,
(3) the morphism X → Y is separated.

Then Xi → Y is separated for all i large enough.

Proof. Let 0 ∈ I. Choose an affine scheme W and an étale morphism W → Y such
that the image of |W | → |Y | contains the image of |X0| → |Y |. This is possible
as X0 is quasi-compact. It suffices to check that W ×Y Xi → W is separated
for some i ≥ 0 because the diagonal of W ×Y Xi over W is the base change of
Xi → Xi ×Y Xi by the surjective étale morphism (Xi ×Y Xi)×Y W → Xi ×Y Xi.
Since Y is quasi-separated the algebraic spaces W ×Y Xi are quasi-compact (as
well as quasi-separated). Thus we may base change to W and assume Y is an
affine scheme. When Y is an affine scheme, we have to show that Xi is a separated
algebraic space for i large enough and we are given that X is a separated algebraic
space. Thus this case follows from Lemma 52.5.7. �
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Lemma 52.5.12. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → Y affine.

Then Xi → Y is affine for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y .
Then X ×Y W is affine and it suffices to check that Xi ×Y W is affine for some i
(Morphisms of Spaces, Lemma 49.20.3). This follows from Lemma 52.5.8. �

Lemma 52.5.13. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → Y locally of finite type
(5) X → Y integral.

Then Xi → Y is finite for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is finite over W and it suffices to check that Xi ×Y W is finite over W
for some i (Morphisms of Spaces, Lemma 49.41.3). By Lemma 52.5.9 this reduces
us to the case of schemes. In the case of schemes it follows from Limits, Lemma
31.3.16. �

Lemma 52.5.14. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → Y locally of finite type
(5) X → Y is a closed immersion.

Then Xi → Y is a closed immersion for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X×Y W is a closed subspace of W and it suffices to check that Xi×Y W is a closed
subspace W for some i (Morphisms of Spaces, Lemma 49.12.1). By Lemma 52.5.9
this reduces us to the case of schemes. In the case of schemes it follows from Limits,
Lemma 31.3.17. �

52.6. Descending properties of morphisms

This section is the analogue of Section 52.5 for properties of morphisms. We will
work in the following situation.

Situation 52.6.1. Let S be a scheme. Let B = limBi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms (Lemma 52.4.1).
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Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of algebraic spaces over B0. Assume
B0, X0, Y0 are quasi-compact and quasi-separated. Let fi : Xi → Yi be the base
change of f0 to Bi and let f : X → Y be the base change of f0 to B.

Lemma 52.6.2. With notation and assumptions as in Situation 52.6.1. If

(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0

X0.
Diagram

U0

��

// V0

��
X0

// Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is étale
if and only if Ui → Vi is étale and similarly X → Y is étale if and only if U → V
is étale (Morphisms of Spaces, Definition 49.36.1). Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from Limits,
Lemma 31.7.8. �

Lemma 52.6.3. With notation and assumptions as in Situation 52.6.1. If

(1) f is surjective,
(2) f0 is locally of finite presentation,

then fi is surjective for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0

// Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y
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Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
the limit of the morphisms Ui → Vi is U → V , and the morphisms Ui → Xi ×Yi Vi
and U → X×Y V are surjective (as base changes of U0 → X0×Y0 V0). In particular,
we see that Xi → Yi is surjective if and only if Ui → Vi is surjective and similarly
X → Y is surjective if and only if U → V is surjective. Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from the case
of schemes (Limits, Lemma 31.7.11). �

Lemma 52.6.4. Notation and assumptions as in Situation 52.6.1. If

(1) f is universally injective,
(2) f0 is locally of finite type,

then fi is universally injective for some i ≥ 0.

Proof. Recall that a morphism X → Y is universally injective if and only if the
diagonal X → X ×Y X is surjective (Morphisms of Spaces, Definition 49.19.3 and
Lemma 49.19.2). Observe that X0 → X0 ×Y0

X0 is of locally of finite presentation
(Morphisms of Spaces, Lemma 49.27.10). Hence the lemma follows from Lemma
52.6.3 by considering the morphism X0 → X0 ×Y0 X0. �

Lemma 52.6.5. Notation and assumptions as in Situation 52.6.1. If f is affine,
then fi is affine for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0

Yi and V = V0×Y0
Y . Since f is affine we see that V ×YX = limVi×YiXi

is affine. By Lemma 52.5.8 we see that Vi ×Yi Xi is affine for some i ≥ 0. For this
i the morphism fi is affine (Morphisms of Spaces, Lemma 49.20.3). �

Lemma 52.6.6. Notation and assumptions as in Situation 52.6.1. If

(1) f is finite,
(2) f0 is locally of finite type,

then fi is finite for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0

Yi and V = V0×Y0
Y . Since f is finite we see that V ×Y X = limVi×YiXi

is a scheme finite over V . By Lemma 52.5.8 we see that Vi×Yi Xi is affine for some
i ≥ 0. Increasing i if necessary we find that Vi ×Yi Xi → Vi is finite by Limits,
Lemma 31.7.3. For this i the morphism fi is finite (Morphisms of Spaces, Lemma
49.41.3). �

Lemma 52.6.7. Notation and assumptions as in Situation 52.6.1. If

(1) f is a closed immersion,
(2) f0 is locally of finite type,

then fi is a closed immersion for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0 ×Y0

Yi and V = V0 ×Y0
Y . Since f is a closed immersion we see that

V ×Y X = limVi ×Yi Xi is a closed subscheme of the affine scheme V . By Lemma
52.5.8 we see that Vi ×Yi Xi is affine for some i ≥ 0. Increasing i if necessary we
find that Vi×Yi Xi → Vi is a closed immersion by Limits, Lemma 31.7.4. For this i
the morphism fi is a closed immersion (Morphisms of Spaces, Lemma 49.41.3). �
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Lemma 52.6.8. Notation and assumptions as in Situation 52.6.1. If f is sepa-
rated, then fi is separated for some i ≥ 0.

Proof. Apply Lemma 52.6.7 to the diagonal morphism ∆X0/Y0
: X0 → X0×Y0

X0.
(Diagonal morphisms are locally of finite type and the fibre product X0 ×Y0

X0 is
quasi-compact and quasi-separated. Some details omitted.) �

Lemma 52.6.9. Notation and assumptions as in Situation 52.6.1. If

(1) f is a isomorphism,
(2) f0 is locally of finite presentation,

then fi is a isomorphism for some i ≥ 0.

Proof. Being an isomorphism is equivalent to being étale, universally injective,
and surjective, see Morphisms of Spaces, Lemma 49.45.2. Thus the lemma follows
from Lemmas 52.6.2, 52.6.3, and 52.6.4. �

Lemma 52.6.10. Notation and assumptions as in Situation 52.6.1. If

(1) f is a monomorphism,
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism is a monomorphism if and only if the diagonal is
an isomorphism. The morphism X0 → X0 ×Y0 X0 is locally of finite presentation
by Morphisms of Spaces, Lemma 49.27.10. Since X0 ×Y0 X0 is quasi-compact and
quasi-separated we conclude from Lemma 52.6.9 that ∆i : Xi → Xi ×Yi Xi is an
isomorphism for some i ≥ 0. For this i the morphism fi is a monomorphism. �

Lemma 52.6.11. Notation and assumptions as in Situation 52.6.1. Let F0 be a
quasi-coherent OX0

-module and denote Fi the pullback to Xi and F the pullback to
X. If

(1) F is flat over Y ,
(2) F0 is of finite presentation, and
(3) f0 is locally of finite presentation,

then Fi is flat over Yi for some i ≥ 0. In particular, if f0 is locally of finite
presentation and f is flat, then fi is flat for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0

// Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y
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Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Fi is flat over Yi if
and only if Fi|Ui is flat over Vi and similarly F is flat over Y if and only if F|U is
flat over V (Morphisms of Spaces, Definition 49.28.1). Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from Limits,
Lemma 31.9.3. �

Lemma 52.6.12. Assumptions and notation as in Situation 52.6.1. If

(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = Yi×Y0 V0 and V = Y ×Y0 V0. It suffices to prove that the base change of fi to
Vi is proper, see Morphisms of Spaces, Lemma 49.37.2. Thus we may assume Y0 is
affine.

By Lemma 52.6.8 we see that fi is separated for some i ≥ 0. Replacing 0 by i
we may assume that f0 is separated. Observe that f0 is quasi-compact. Thus f0

is separated and of finite type. By Cohomology of Spaces, Lemma 51.17.1 we can
choose a diagram

X0

  

X ′0

��

π
oo // Pn

Y0

}}
Y0

where X ′0 → Pn
Y0

is an immersion, and π : X ′0 → X0 is proper and surjective.
Introduce X ′ = X ′0 ×Y0

Y and X ′i = X ′0 ×Y0
Yi. By Morphisms of Spaces, Lemmas

49.37.4 and 49.37.3 we see that X ′ → Y is proper. Hence X ′ → Pn
Y is a closed im-

mersion (Morphisms of Spaces, Lemma 49.37.6). By Morphisms of Spaces, Lemma
49.37.7 it suffices to prove that X ′i → Yi is proper for some i. By Lemma 52.6.7
we find that X ′i → Pn

Yi
is a closed immersion for i large enough. Then X ′i → Yi is

proper and we win. �

52.7. Descending relative objects

The following lemma is typical of the type of results in this section.

Lemma 52.7.1. Let S be a scheme. Let I be a directed partially ordered set. Let
(Xi, fii′) be an inverse system over I of algebraic spaces over S. Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limiXi. Then the category of algebraic spaces of finite presentation over
X is the colimit over I of the categories of algebraic spaces of finite presentation
over Xi.

Proof. Pick 0 ∈ I. Choose a surjective étale morphism U0 → X0 where U0 is
an affine scheme (Properties of Spaces, Lemma 48.6.3). Set Ui = Xi ×X0

U0. Set
R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote si, ti : Ri → Ui and s, t : R → U
the two projections. In the proof of Lemma 52.4.1 we have seen that there exists
a presentation X = U/R with U = limUi and R = limRi. Note that Ui and
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U are affine and that Ri and R are quasi-compact and separated (as Xi is quasi-
separated). Let Y be an algebraic space over S and let Y → X be a morphism of
finite presentation. Set V = U×XY . This is an algebraic space of finite presentation
over U . Choose an affine scheme W and a surjective étale morphism W → V . Then
W → Y is surjective étale as well. Set R′ = W×YW so that Y = W/R′ (see Spaces,
Section 47.9). Note that W is a scheme of finite presentation over U and that R′ is a
scheme of finite presentation over R (details omitted). By Limits, Lemma 31.9.1 we
can find an index i and a morphism of schemes Wi → Ui of finite presentation whose
base change to U gives W → U . Similarly we can find, after possibly increasing
i, a scheme R′i of finite presentation over Ri whose base change to R is R′. The
projection morphisms s′, t′ : R′ →W are morphisms over the projection morphisms
s, t : R → U . Hence we can view s′, resp. t′ as a morphism between schemes of
finite presentation over U (with structure morphism R′ → U given by R′ → R
followed by s, resp. t). Hence we can apply Limits, Lemma 31.9.1 again to see
that, after possibly increasing i, there exist morphisms s′i, t

′
i : R′i →Wi, whose base

change to U is S′, t′. By Limits, Lemmas 31.7.8 and 31.7.10 we may assume that
s′i, t

′
i are étale and that j′i : R′i → Wi ×Xi Wi is a monomorphism (here we view j′i

as a morphism of schemes of finite presentation over Ui via one of the projections
– it doesn’t matter which one). Setting Yi = Wi/R

′
i (see Spaces, Theorem 47.10.5)

we obtain an algebraic space of finite presentation over Xi whose base change to X
is isomorphic to Y .

This shows that every algebraic space of finite presentation over X comes from an
algebraic space of finite presentation over some Xi, i.e., it shows that the functor
of the lemma is essentially surjective. To show that it is fully faithful, consider
an index 0 ∈ I and two algebraic spaces Y0, Z0 of finite presentation over X0.
Set Yi = Xi ×X0

Y0, Y = X ×X0
Y0, Zi = Xi ×X0

Z0, and Z = X ×X0
Z0.

Let α : Y → Z be a morphism of algebraic spaces over X. Choose a surjective
étale morphism V0 → Y0 where V0 is an affine scheme. Set Vi = V0 ×Y0 Yi and
V = V0×Y0 Y which are affine schemes endowed with surjective étale morphisms to
Yi and Y . The composition V → Y → Z → Z0 comes from a (essentially unique)
morphism Vi → Z0 for some i ≥ 0 by Proposition 52.3.9 (applied to Z0 → X0 which
is of finite presentation by assumption). After increasing i the two compositions

Vi ×Yi Vi → Vi → Z0

are equal as this is true in the limit. Hence we obtain a (essentially unique) mor-
phism Yi → Z0. Since this is a morphism over X0 it induces a morphism into
Zi = Z0 ×X0 Xi as desired. �

Lemma 52.7.2. With notation and assumptions as in Lemma 52.7.1. The category
of OX-modules of finite presentation is the colimit over I of the categories OXi-
modules of finite presentation.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote
si, ti : Ri → Ui and s, t : R → U the two projections. In the proof of Lemma
52.4.1 we have seen that there exists a presentation X = U/R with U = limUi and
R = limRi. Note that Ui and U are affine and that Ri and R are quasi-compact
and separated (as Xi is quasi-separated). Moreover, it is also true that R ×s,U,t
R = colimRi ×si,Ui,ti Ri. Thus we know that QCoh(OU ) = colim QCoh(OUi),
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QCoh(OR) = colim QCoh(ORi), and QCoh(OR×s,U,tR) = colim QCoh(ORi×si,Ui,tiRi)
by Limits, Lemma 31.9.2. We have QCoh(OX) = QCoh(U,R, s, t, c) and QCoh(OXi) =
QCoh(Ui, Ri, si, ti, ci), see Properties of Spaces, Proposition 48.30.1. Thus the re-
sult follows formally. �

52.8. Absolute Noetherian approximation

The following result is [CLO12, Theorem 1.2.2]. A key ingredient in the proof is
Decent Spaces, Lemma 50.8.5.

Proposition 52.8.1. Let X be a quasi-compact and quasi-separated algebraic space
over Spec(Z). There exist a directed partially ordered set I and an inverse system
of algebraic spaces (Xi, fii′) over I such that

(1) the transition morphisms fii′ are affine
(2) each Xi is quasi-separated and of finite type over Z, and
(3) X = limXi.

Proof. We apply Decent Spaces, Lemma 50.8.5 to get open subspaces Up ⊂ X,
schemes Vp, and morphisms fp : Vp → Up with properties as stated. Note that
fn : Vn → Un is an étale morphism of algebraic spaces whose restriction to the
inverse image of Tn = (Vn)red is an isomorphism. Hence fn is an isomorphism,
for example by Morphisms of Spaces, Lemma 49.45.2. In particular Un is a quasi-
compact and separated scheme. Thus we can write Un = limUn,i as a directed
limit of schemes of finite type over Z with affine transition morphisms, see Limits,
Proposition 31.4.4. Thus, applying descending induction on p, we see that we have
reduced to the problem posed in the following paragraph.

Here we have U ⊂ X, U = limUi, Z ⊂ X, and f : V → X with the following
properties

(1) X is a quasi-compact and quasi-separated algebraic space,
(2) V is a quasi-compact and separated scheme,
(3) U ⊂ X is a quasi-compact open subspace,
(4) (Ui, gii′) is a directed system of quasi-separated algebraic spaces of finite

type over Z with affine transition morphisms whose limit is U ,
(5) Z ⊂ X is a closed subspace such that |X| = |U | q |Z|,
(6) f : V → X is a surjective étale morphism such that f−1(Z) → Z is an

isomorphism.

Problem: Show that the conclusion of the proposition holds for X.

Note that W = f−1(U) ⊂ V is a quasi-compact open subscheme étale over U .
Hence we may apply Lemmas 52.7.1 and 52.6.2 to find an index 0 ∈ I and an étale
morphism W0 → U0 of finite presentation whose base change to U produces W .
Setting Wi = W0 ×U0

Ui we see that W = limi≥0Wi. After increasing 0 we may
assume the Wi are schemes, see Lemma 52.5.9. Moreover, Wi is of finite type over
Z.

Apply Limits, Lemma 31.4.3 to W = limi≥0Wi and the inclusion W ⊂ V . Replace
I by the directed partially ordered set J found in that lemma. This allows us to
write V as a directed limit V = limVi of finite type schemes over Z with affine
transition maps such that each Vi contains Wi as an open subscheme (compatible

http://stacks.math.columbia.edu/tag/07SU
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with transition morphisms). For each i we can form the push out

Wi
//

∆

��

Vi

��
Wi ×Ui Wi

// Ri

in the category of schemes. Namely, the left vertical and upper horizontal arrows are
open immersions of schemes. In other words, we can construct Ri as the glueing
of Vi and Wi ×Ui Wi along the common open Wi (see Schemes, Section 25.14).
Note that the étale projection maps Wi ×Ui Wi → Wi extend to étale morphisms
si, ti : Ri → Vi. It is clear that the morphism ji = (ti, si) : Ri → Vi × Vi is
an étale equivalence relation on Vi. Note that Wi ×Ui Wi is quasi-compact (as
Ui is quasi-separated and Wi quasi-compact) and Vi is quasi-compact, hence Ri is
quasi-compact. For i ≥ i′ the diagram

(52.8.1.1)

Ri //

si

��

Ri′

si′

��
Vi // Vi′

is cartesian because

(Wi′ ×Ui′ Wi′)×Ui′ Ui = Wi′ ×Ui′ Ui ×Ui Ui ×Ui′ Wi′ = Wi ×Ui Wi.

Consider the algebraic space Xi = Vi/Ri (see Spaces, Theorem 47.10.5). As Vi is
of finite type over Z and Ri is quasi-compact we see that Xi is quasi-separated and
of finite type over Z (see Properties of Spaces, Lemma 48.6.5 and Morphisms of
Spaces, Lemmas 49.8.5 and 49.23.4). As the construction of Ri above is compatible
with transition morphisms, we obtain morphisms of algebraic spaces Xi → Xi′ for
i ≥ i′. The commutative diagrams

Vi //

��

Vi′

��
Xi

// Xi′

are cartesian as (52.8.1.1) is cartesian, see Groupoids, Lemma 38.18.7. Since Vi →
Vi′ is affine, this implies that Xi → Xi′ is affine, see Morphisms of Spaces, Lemma
49.20.3. Thus we can form the limit X ′ = limXi by Lemma 52.4.1. We claim that
X ∼= X ′ which finishes the proof of the proposition.

Proof of the claim. Set R = limRi. By construction the algebraic space X ′ comes
equipped with a surjective étale morphism V → X ′ such that

V ×X′ V ∼= R

(use Lemma 52.4.1). By construction limWi ×Ui Wi = W ×U W and V = limVi
so that R is the union of W ×U W and V glued along W . Property (6) implies the
projections V ×X V → V are isomorphisms over f−1(Z) ⊂ V . Hence the scheme
V ×X V is the union of the opens ∆V/X(V ) and W ×U W which intersect along
∆W/X(W ). We conclude that there exists a unique isomorphism R ∼= V ×X V
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compatible with the projections to V . Since V → X and V → X ′ are surjective
étale we see that

X = V/V ×X V = V/R = V/V ×X′ V = X ′

by Spaces, Lemma 47.9.1 and we win. �

52.9. Applications

The following lemma can also be deduced directly from Decent Spaces, Lemma
50.8.5 without passing through absolute Noetherian approximation.

Lemma 52.9.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Every quasi-coherent OX-module is a filtered colimit of
finitely presented OX-modules.

Proof. We may view as an algebraic space over Spec(Z), see Spaces, Definition
47.16.2 and Properties of Spaces, Definition 48.3.1. Thus we may apply Proposition
52.8.1 and write X = limXi with Xi of finite presentation over Z. Thus Xi

is a Noetherian algebraic space, see Morphisms of Spaces, Lemma 49.27.6. The
morphism X → Xi is affine, see Lemma 52.4.1. Conclusion by Cohomology of
Spaces, Lemma 51.14.2. �

The rest of this section consists of straightforward applications of Lemma 52.9.1.

Lemma 52.9.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a quasi-coherent OX-module. Then F is the
directed colimit of its finite type quasi-coherent submodules.

Proof. If G,H ⊂ F are finite type quasi-coherent OX -submodules then the image
of G ⊕H → F is another finite type quasi-coherent OX -submodule which contains
both of them. In this way we see that the system is directed. To show that F is the
colimit of this system, write F = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 52.9.1. Then the images Gi = Im(Fi → F)
are finite type quasi-coherent subsheaves of F . Since F is the colimit of these the
result follows. �

Lemma 52.9.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a finite type quasi-coherent OX-module. Then we
can write F = limFi where each Fi is an OX-module of finite presentation and all
transition maps Fi → Fi′ surjective.

Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 52.9.1). We claim that Gi → F is surjective for some i. Namely, choose an
étale surjection U → X where U is an affine scheme. Choose finitely many sections
sk ∈ F(U) generating F|U . Since U is affine we see that sk is in the image of
Gi → F for i large enough. Hence Gi → F is surjective for i large enough. Choose
such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write K = colimKa
as the filtered colimit of its finite type quasi-coherent submodules (Lemma 52.9.2).
Then F = colimGi/Ka is a solution to the problem posed by the lemma. �

Let X be an algebraic space. In the following lemma we use the notion of a finitely
presented quasi-coherent OX-algebra A. This means that for every affine U =

Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is of finite presentation as an R-algebra.

http://stacks.math.columbia.edu/tag/07V9
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Lemma 52.9.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX-algebra. Then A is a directed
colimit of finitely presented quasi-coherent OX-algebras.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 52.9.1. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j
where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 52.9.2. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . �

Let X be an algebraic space. In the following lemma we use the notion of a quasi-
coherent OX-algebra A of finite type. This means that for every affine U = Spec(R)

étale over X we have A|U = Ã where A is a (commutative) R-algebra which is of
finite type as an R-algebra.

Lemma 52.9.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX-algebra. Then A is the
directed colimit of its finite type quasi-coherent OX-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 52.9.2. �

Let X be an algebraic space. In the following lemma we use the notion of a finite
(resp. integral) quasi-coherent OX-algebra A. This means that for every affine

U = Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is finite (resp. integral) as an R-algebra.

Lemma 52.9.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a finite quasi-coherent OX-algebra. Then A =
colimAi is a directed colimit of finite and finitely presented quasi-coherent OX-
algebras with surjective transition maps.

Proof. By Lemma 52.9.3 there exists a finitely presented OX -module F and a
surjection F → A. Using the algebra structure we obtain a surjection

Sym∗OX (F) −→ A

Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 52.9.2). Set

Ai = Sym∗OX (F)/(Ei)

where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗OX (F).
Then each Ai is a finitely presented OX -algebra, the transition maps are surjective,
and A = colimAi. To finish the proof we still have to show that Ai is a finite OX -
algebra for i sufficiently large. To do this we choose an étale surjective map U → X
where U is an affine scheme. Take generators f1, . . . , fm ∈ Γ(U,F). As A(U)
is a finite OX(U)-algebra we see that for each j there exists a monic polynomial
Pj ∈ O(U)[T ] such that Pj(fj) is zero in A(U). Since A = colimAi by construction,
we have Pj(fj) = 0 in Ai(U) for all sufficiently large i. For such i the algebras Ai
are finite. �

http://stacks.math.columbia.edu/tag/082A
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Lemma 52.9.7. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be an integral quasi-coherent OX-algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX-subalgebras, and
(2) A is a directed colimit of finite and finitely presented OX-algebras.

Proof. By Lemma 52.9.5 we have A = colimAi where Ai ⊂ A runs through the
quasi-coherent OX -sub algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (use Algebra, Lemma 10.35.5 on affine schemes étale over
X). This proves (1).

To prove (2), write A = colimFi as a colimit of finitely presented OX -modules
using Lemma 52.9.1. For each i, let Ji be the kernel of the map

Sym∗OX (Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗OX (Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗OX (Fi)/Ji are finite (see above).
Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 51.4.3. This induces a
map

Aik = Sym∗OX (Fi)/(Eik) −→ Sym∗OX (Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
52.9.6). Finally, we have

colimAik = colimAi = A

Namely, the first equality was shown in the proof of Lemma 52.9.6 and the second
equality because A is the colimit of the modules Fi. �

Lemma 52.9.8. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open. Let F be a quasi-
coherent OX-module. Let G ⊂ F|U be a quasi-coherent OU -submodule which is of
finite type. Then there exists a quasi-coherent submodule G′ ⊂ F which is of finite
type such that G′|U = G.

Proof. Denote j : U → X the inclusion morphism. As X is quasi-separated
and U quasi-compact, the morphism j is quasi-compact. Hence j∗G ⊂ j∗F|U
are quasi-coherent modules on X (Morphisms of Spaces, Lemma 49.11.2). Let
H = Ker(j∗G ⊕ F → j∗F|U ). Then H|U = G. By Lemma 52.9.2 we can find a
finite type quasi-coherent submodule H′ ⊂ H such that H′|U = H|U = G. Set
G′ = Im(H′ → F) to conclude. �
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52.10. Relative approximation

The title of this section refers to the following result.

Lemma 52.10.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Y is quasi-separated.

Then X = limXi is a limit of a directed system of algebraic spaces Xi of finite
presentation over Y with affine transition morphisms over Y .

Proof. Since |f |(|X|) is quasi-compact we may replace Y by a quasi-compact open
subspace whose set of points contains |f |(|X|). Hence we may assume Y is quasi-
compact as well. Write X = limXa and Y = limYb as in Proposition 52.8.1,
i.e., with Xa and Yb of finite type over Z and with affine transition morphisms.
By Proposition 52.3.9 we find that for each b there exists an a and a morphism
fa,b : Xa → Yb making the diagram

X

��

// Y

��
Xa

// Yb

commute. Moreover the same proposition implies that, given a second triple
(a′, b′, fa′,b′), there exists an a′′ ≥ a′ such that the compositions Xa′′ → Xa → Xb

and Xa′′ → Xa′ → Xb′ → Xb are equal. Consider the set of triples (a, b, fa,b)
endowed with the partial ordering

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b′ ≥ b, and fa′,b′ ◦ ha,a′ = gb′,b ◦ fa,b
where ha,a′ : Xa → Xa′ and gb′,b : Yb′ → Yb are the transition morphisms. The
remarks above show that this system is directed. It follows formally from the
equalities X = limXa and Y = limYb that

X = lim(a,b,fa,b)Xa ×fa,b,Yb Y.

where the limit is over our directed system above. The transition morphisms Xa×Yb
Y → Xa′ ×Yb′ Y are affine as the composition

Xa ×Yb Y → Xa ×Yb′ Y → Xa′ ×Yb′ Y

where the first morphism is a closed immersion (by Morphisms of Spaces, Lemma
49.4.5) and the second is a base change of an affine morphism (Morphisms of Spaces,
Lemma 49.20.5) and the composition of affine morphisms is affine (Morphisms of
Spaces, Lemma 49.20.4). The morphisms fa,b are of finite presentation (Morphisms
of Spaces, Lemmas 49.27.7 and 49.27.9) and hence the base changes Xa×fa,b,SbS →
S are of finite presentation (Morphisms of Spaces, Lemma 49.27.3). �

52.11. Finite type closed in finite presentation

This section is the analogue of Limits, Section 31.8.

Lemma 52.11.1. Let S be a scheme. Let f : X → Y be an affine morphism
of algebraic spaces over S. If Y quasi-compact and quasi-separated, then X is a
directed limit X = limXi with each Xi affine and of finite presentation over Y .

http://stacks.math.columbia.edu/tag/09NS
http://stacks.math.columbia.edu/tag/0870


3386 52. LIMITS OF ALGEBRAIC SPACES

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 52.9.4 we
can write A = colimAi as a directed colimit of finitely presented OY -algebras Ai.
Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 49.20.8. By construction

Xi → Y is affine and of finite presentation and X = limXi. �

Lemma 52.11.2. Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then
X can be written as a directed limit X = limXi where Xi are finite and of finite
presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma
52.9.7 we can writeA = colimAi as a directed colimit of finite and finitely presented
OY -algebras Ai. Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 49.20.8.

By construction Xi → Y is finite and of finite presentation and X = limXi. �

Lemma 52.11.3. Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = limXi where the transition maps are closed
immersions and the objects Xi are finite and of finite presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma
52.9.6 we can write A = colimAi as a directed colimit of finite and finitely pre-
sented OY -algebras Ai with surjective transition maps. Set Xi = Spec

Y
(Ai), see

Morphisms of Spaces, Definition 49.20.8. By construction Xi → Y is finite and of
finite presentation, the transition maps are closed immersions, and X = limXi. �

Lemma 52.11.4. Let S be a scheme. Let f : X → Y be a closed immersion
of algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then
X can be written as a directed limit X = limXi where the transition maps are
closed immersions and the morphisms Xi → Y are closed immersions of finite
presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subspace of Y . By Lemma 52.9.2 we can write I = colim Ii as the filtered colimit
of its finite type quasi-coherent submodules. Let Xi be the closed subspace of X
cut out by Ii. Then Xi → Y is a closed immersion of finite presentation, and
X = limXi. Some details omitted. �

Lemma 52.11.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is locally of finite type and quasi-affine, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ over Y .

Proof. By Morphisms of Spaces, Lemma 49.21.6 we can find a factorization X →
Z → Y where X → Z is a quasi-compact open immersion and Z → Y is affine.
Write Z = limZi with Zi affine and of finite presentation over Y (Lemma 52.11.1).
For some 0 ∈ I we can find a quasi-compact open U0 ⊂ Z0 such that X is isomorphic
to the inverse image of U0 in Z (Lemma 52.5.5). Let Ui be the inverse image of U0

in Zi, so U = limUi. By Lemma 52.5.10 we see that X → Ui is a closed immersion
for some i large enough. Setting X ′ = Ui finishes the proof. �
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Lemma 52.11.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume:

(1) f is of locally of finite type.
(2) X is quasi-compact and quasi-separated, and
(3) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ of algebraic spaces over Y .

Proof. By Proposition 52.8.1 we can write X = limiXi with Xi quasi-separated
of finite type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider
the commutative diagram

X //

!!

Xi,Y
//

��

Xi

��
Y // Spec(Z)

Note thatXi is of finite presentation over Spec(Z), see Morphisms of Spaces, Lemma
49.27.7. Hence the base change Xi,Y → Y is of finite presentation by Morphisms
of Spaces, Lemma 49.27.3. Observe that limXi,Y = X×Y and that X → X×Y is
a monomorphism. By Lemma 52.5.10 we see that X → Xi,Y is a monomorphism
for i large enough. Fix such an i. Note that X → Xi,Y is locally of finite type
(Morphisms of Spaces, Lemma 49.23.6) and a monomorphism, hence separated and
locally quasi-finite (Morphisms of Spaces, Lemma 49.26.10). Hence X → Xi,Y is
representable. Hence X → Xi,Y is quasi-affine because we can use the principle
Spaces, Lemma 47.5.8 and the result for morphisms of schemes More on Morphisms,
Lemma 36.31.2. Thus Lemma 52.11.5 gives a factorization X → X ′ → Xi,Y with
X → X ′ a closed immersion and X ′ → Xi,Y of finite presentation. Finally, X ′ →
Y is of finite presentation as a composition of morphisms of finite presentation
(Morphisms of Spaces, Lemma 49.27.2). �

Proposition 52.11.7. Let S be a scheme. f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is of finite type and separated, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a
closed immersion X → X ′ over Y .

Proof. By Lemma 52.11.6 there is a closed immersion X → Z with Z/Y of finite
presentation. Let I ⊂ OZ be the quasi-coherent sheaf of ideals defining X as a
closed subscheme of Y . By Lemma 52.9.2 we can write I as a directed colimit
I = colima∈A Ia of its quasi-coherent sheaves of ideals of finite type. Let Xa ⊂ Z
be the closed subspace defined by Ia. These form an inverse system indexed by A.
The transition morphisms Xa → Xa′ are affine because they are closed immersions.
Each Xa is quasi-compact and quasi-separated since it is a closed subspace of Z and
Z is quasi-compact and quasi-separated by our assumptions. We have X = limaXa

as follows directly from the fact that I = colima∈A Ia. Each of the morphisms
Xa → Z is of finite presentation, see Morphisms, Lemma 28.22.7. Hence the
morphisms Xa → Y are of finite presentation. Thus it suffices to show that Xa → Y
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is separated for some a ∈ A. This follows from Lemma 52.5.11 as we have assumed
that X → Y is separated. �

52.12. Approximating proper morphisms

Lemma 52.12.1. Let S be a scheme. Let f : X → Y be a proper morphism
of algebraic spaces over S with Y quasi-compact and quasi-separated. Then X =
limXi with Xi → Y proper and of finite presentation.

Proof. By Proposition 52.11.7 we can find a closed immersion X → X ′ with
X ′ separated and of finite presentation over Y . By Lemma 52.11.4 we can write
X = limXi with Xi → X ′ a closed immersion of finite presentation. We claim that
for all i large enough the morphism Xi → Y is proper which finishes the proof.

To prove this we may assume that Y is an affine scheme, see Morphisms of Spaces,
Lemma 49.37.2. Next, we use the weak version of Chow’s lemma, see Cohomology
of Spaces, Lemma 51.17.1, to find a diagram

X ′

!!

X ′′

��

π
oo // Pn

Y

}}
Y

where X ′′ → Pn
Y is an immersion, and π : X ′′ → X ′ is proper and surjective.

Denote X ′i ⊂ X ′′, resp. π−1(X) the scheme theoretic inverse image of Xi ⊂ X ′,
resp. X ⊂ X ′. Then limX ′i = π−1(X). Since π−1(X) → Y is proper (Morphisms
of Spaces, Lemmas 49.37.4), we see that π−1(X) → Pn

Y is a closed immersion
(Morphisms of Spaces, Lemmas 49.37.6 and 49.12.3). Hence for i large enough we
find that X ′i → Pn

Y is a closed immersion by Lemma 52.5.14. Thus X ′i is proper
over Y . For such i the morphism Xi → Y is proper by Morphisms of Spaces,
Lemma 49.37.7. �

Lemma 52.12.2. Let f : X → Y be a proper morphism of algebraic spaces over
Z with Y quasi-compact and quasi-separated. Then (X → Y ) = lim(Xi → Yi) with
Yi of finite presentation over Z and Xi → Yi proper and of finite presentation.

Proof. By Lemma 52.12.1 we can write X = limk∈K Xk with Xk → Y proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition
52.8.1) we can write Y = limj∈J Yj with Yj of finite presentation over Z. For
each k there exists a j and a morphism Xk,j → Yj of finite presentation with
Xk
∼= Y ×Yj Xk,j as algebraic spaces over Y , see Lemma 52.7.1. After increasing

j we may assume Xk,j → Yj is proper, see Lemma 52.6.12. The set I will be
consist of these pairs (k, j) and the corresponding morphism is Xk,j → Yj . For
every k′ ≥ k we can find a j′ ≥ j and a morphism Xj′,k′ → Xj,k over Yj′ → Yj
whose base change to Y gives the morphism Xk′ → Xk (follows again from Lemma
52.7.1). These morphisms form the transition morphisms of the system. Some
details omitted. �

Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms of Spaces, Definition 49.15.4.

Lemma 52.12.3. Assumptions and notation as in Situation 52.6.1. Let F0 be a
quasi-coherent OX0

-module. Denote F and Fi the pullbacks of F0 to X and Xi.
Assume
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(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms
of Spaces, Lemma 49.15.2 this guarantees that Xi is the support of Fi and X is
the support of F . Then, if Z ⊂ X denotes the scheme theoretic support of F ,
we see that Z → X is a universal homeomorphism. We conclude that X → Y is
proper as this is true for Z → Y by assumption, see Morphisms, Lemma 28.42.8.
By Lemma 52.6.12 we see that Xi → Y is proper for some i. Then it follows that
the scheme theoretic support Zi of Fi is proper over Y by Morphisms of Spaces,
Lemmas 49.37.5 and 49.37.4. �

52.13. Embedding into affine space

Some technical lemmas to be used in the proof of Chow’s lemma later.

Lemma 52.13.1. Let S be a scheme. Let f : U → X be a morphism of algebraic
spaces over S. Assume U is an affine scheme, f is locally of finite type, and X
quasi-separated and locally separated. Then there exists an immersion U → An

X

over X.

Proof. Say U = Spec(A). Write A = colimAi as a filtered colimit of finite type
Z-subalgebras. For each i the morphism U → Ui = Spec(Ai) induces a morphism

U −→ X × Ui
over X. In the limit the morphism U → X × U is an immersion as X is locally
separated, see Morphisms of Spaces, Lemma 49.4.6. By Lemma 52.5.10 we see
that U → X × Ui is an immersion for some i. Since Ui is isomorphic to a closed
subscheme of An

Z the lemma follows. �

Remark 52.13.2. We have seen in Examples, Section 82.22 that Lemma 52.13.1
does not hold if we drop the assumption that X be locally separated. This raises
the question: Does Lemma 52.13.1 hold if we drop the assumption that X be
quasi-separated? If you know the answer, please email stacks.project@gmail.com.

Lemma 52.13.3. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume X Noetherian and f of finite presentation. Then there
exists a dense open V ⊂ Y and an immersion V → An

X .

Proof. The assumptions imply that Y is Noetherian (Morphisms of Spaces, Lemma
49.27.6). Then Y is quasi-separated, hence has a dense open subscheme (Properties
of Spaces, Proposition 48.10.3). Thus we may assume that Y is a Noetherian
scheme. By removing intersections of irreducible components of Y (use Topology,
Lemma 5.8.2 and Properties, Lemma 27.5.5) we may assume that Y is a disjoint
union of irreducible Noetherian schemes. Since there is an immersion

An
X qAm

X −→ A
max(n,m)+1
X

(details omitted) we see that it suffices to prove the result in case Y is irreducible.

Assume Y is an irreducible scheme. Let T ⊂ |X| be the closure of the image of
f : Y → X. Note that since |Y | and |X| are sober topological spaces (Properties
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of Spaces, Lemma 48.12.4) T is irreducible with a unique generic point ξ which is
the image of the generic point η of Y . Let I ⊂ X be a quasi-coherent sheaf of
ideals cutting out the reduced induced space structure on T (Properties of Spaces,
Definition 48.9.5). Since OY,η is an Artinian local ring we see that for some n > 0 we
have f−1InOY,η = 0. As f−1IOY is a finite type quasi-coherent ideal we conclude
that f−1InOV = 0 for some nonempty open V ⊂ Y . Let Z ⊂ X be the closed
subspace cut out by In. By construction V → Y → X factors through Z. Because
An
Z → An

X is an immersion, we may replace X by Z and Y by V . Hence we reach
the situation where Y and X are irreducible and Y → X maps the generic point of
Y onto the generic point of X.

Assume Y and X are irreducible, Y is a scheme, and Y → X maps the generic
point of Y onto the generic point of X. By Properties of Spaces, Proposition 48.10.3
X has a dense open subscheme U ⊂ X. Choose a nonempty affine open V ⊂ Y
whose image in X is contained in U . By Morphisms, Lemma 28.40.2 we may factor
V → U as V → An

U → U . Composing with An
U → An

X we obtain the desired
immersion. �

52.14. Sections with support in a closed subset

This section is the analogue of Properties, Section 27.22.

Lemma 52.14.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U ⊂ X be an open subspace. The following are equivalent:

(1) U → X is quasi-compact,
(2) U is quasi-compact, and
(3) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that
|X| \ |U | = |V (I)|.

Proof. Let W be an affine scheme and let ϕ : W → X be a surjective étale
morphism, see Properties of Spaces, Lemma 48.6.3. If (1) holds, then ϕ−1(U)→W
is quasi-compact, hence ϕ−1(U) is quasi-compact, hence U is quasi-compact (as
|ϕ−1(U)| → |U | is surjective). If (2) holds, then ϕ−1(U) is quasi-compact because ϕ
is quasi-compact since X is quasi-separated (Morphisms of Spaces, Lemma 49.8.9).
Hence ϕ−1(U)→W is a quasi-compact morphism of schemes by Properties, Lemma
27.22.1. It follows that U → X is quasi-compact by Morphisms of Spaces, Lemma
49.8.7. Thus (1) and (2) are equivalent.

Assume (1) and (2). By Properties of Spaces, Lemma 48.9.3 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subspace
structure on |X| \ |U |. Note that J |U = OU which is an OU -modules of finite
type. As U is quasi-compact it follows from Lemma 52.9.2 that there exists a
quasi-coherent subsheaf I ⊂ J which is of finite type and has the property that
I|U = J |U . Then |X|\ |U | = |V (I)| and we obtain (3). Conversely, if I is as in (3),
then ϕ−1(U) ⊂W is a quasi-compact open by the lemma for schemes (Properties,
Lemma 27.22.1) applied to ϕ−1I on W . Thus (2) holds. �

Lemma 52.14.2. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let F be a quasi-coherent OX-module.
Consider the sheaf of OX-modules F ′ which associates to every object U of Xétale

the module
F ′(U) = {s ∈ F(U) | Is = 0}
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Assume I is of finite type. Then

(1) F ′ is a quasi-coherent sheaf of OX-modules,
(2) for affine U in Xétale we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 27.22.2. �

Definition 52.14.3. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-coherent
OX -module. The subsheaf F ′ ⊂ F defined in Lemma 52.14.2 above is called the
subsheaf of sections annihilated by I.

Lemma 52.14.4. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let I ⊂ OY be a quasi-coherent
sheaf of ideals of finite type. Let F be a quasi-coherent OX-module. Let F ′ ⊂ F be
the subsheaf of sections annihilated by f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf
of sections annihilated by I.

Proof. Omitted. Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent (Morphisms of Spaces, Lemma 49.11.2) so that
Lemma 52.14.2 applies to I and f∗F . �

Next we come to the sheaf of sections supported in a closed subset. Again this isn’t
always a quasi-coherent sheaf, but if the complement of the closed is “retrocompact”
in the given algebraic space, then it is.

Lemma 52.14.5. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset and let U ⊂ X be the open subspace such that T q |U | =
|X|. Let F be a quasi-coherent OX-module. Consider the sheaf of OX-modules F ′
which associates to every object ϕ : W → X of Xétale the module

F ′(W ) = {s ∈ F(W ) | the support of s is contained in |ϕ|−1(T )}
If U → X is quasi-compact, then

(1) for W affine there exist a finitely generated ideal I ⊂ OX(W ) such that
|ϕ|−1(T ) = V (I),

(2) for W and I as in (1) we have F ′(W ) = {x ∈ F(W ) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX-modules.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 27.22.5. �

Definition 52.14.6. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset whose complement corresponds to an open subspace
U ⊂ X with quasi-compact inclusion morphism U → X. Let F be a quasi-coherent
OX -module. The quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 52.14.5 above
is called the subsheaf of sections supported on T .

Lemma 52.14.7. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let T ⊂ |Y | be a closed
subset. Assume |Y | \T corresponds to an open subspace V ⊂ Y such that V → Y is
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quasi-compact. Let F be a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf
of sections supported on |f |−1T . Then f∗F ′ ⊂ f∗F is the subsheaf of sections
supported on T .

Proof. Omitted. Hints: |X| \ |f |−1T is the support of the open subspace U =
f−1V ⊂ X. Since V → Y is quasi-compact, so is U → X (by base change).
The assumption that f is quasi-compact and quasi-separated implies that f∗F is
quasi-coherent. Hence Lemma 52.14.5 applies to T and f∗F as well as to |f |−1T
and F . The equality of the given quasi-coherent modules is immediate from the
definitions. �

52.15. Characterizing affine spaces

This section is the analogue of Limits, Section 31.10.

Lemma 52.15.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is surjective and finite, and assume that X is affine.
Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 47.16.2). Note that a finite morphism is affine
and universally closed, see Morphisms of Spaces, Lemma 49.41.7. By Morphisms
of Spaces, Lemma 49.9.8 we see that Y is a separated algebraic space. As f is
surjective and X is quasi-compact we see that Y is quasi-compact.

By Lemma 52.11.3 we can write X = limXa with each Xa → Y finite and of
finite presentation. By Lemma 52.5.8 we see that Xa is affine for a large enough.
Hence we may and do assume that f : X → Y is finite, surjective, and of finite
presentation.

By Proposition 52.8.1 we may write Y = limYi as a directed limit of algebraic
spaces of finite presentation over Z. By Lemma 52.7.1 we can find 0 ∈ I and a
morphism X0 → Y0 of finite presentation such that Xi = X0 ×Y0

Yi for i ≥ 0 and
such that X = limiXi. By Lemma 52.6.6 we see that Xi → Yi is finite for i large
enough. By Lemma 52.6.3 we see that Xi → Yi is surjective for i large enough. By
Lemma 52.5.8 we see that Xi is affine for i large enough. Hence for i large enough
we can apply Cohomology of Spaces, Lemma 51.16.1 to conclude that Yi is affine.
This implies that Y is affine and we conclude. �

Proposition 52.15.2. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Assume that f is surjective and integral, and assume that
X is affine. Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 47.16.2). Note that integral morphisms are affine
and universally closed, see Morphisms of Spaces, Lemma 49.41.7. By Morphisms
of Spaces, Lemma 49.9.8 we see that Y is a separated algebraic space. As f is
surjective and X is quasi-compact we see that Y is quasi-compact.

Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OY -algebras, see
Morphisms of Spaces, Lemma 49.11.2. By Lemma 52.9.1 we can writeA = colimi Fi
as a filtered colimit of finite type OY -modules. Let Ai ⊂ A be the OY -subalgebra
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generated by Fi. Since the map of algebras OY → A is integral, we see that each
Ai is a finite quasi-coherent OY -algebra. Hence

Xi = Spec
Y

(Ai) −→ Y

is a finite morphism of algebraic spaces. (Insert future reference to Spec construc-
tion for algebraic spaces here.) It is clear that X = limiXi. Hence by Lemma 52.5.8
we see that for i sufficiently large the scheme Xi is affine. Moreover, since X → Y
factors through each Xi we see that Xi → Y is surjective. Hence we conclude that
Y is affine by Lemma 52.15.1. �

The following corollary of the result above can be found in [CLO12].

Lemma 52.15.3. Let S be a scheme. Let X be an algebraic space over S. If Xred

is a scheme, then X is a scheme.

Proof. Let U ′ ⊂ Xred be an open affine subscheme. Let U ⊂ X be the open
subspace corresponding to the open |U ′| ⊂ |Xred| = |X|. Then U ′ → U is surjective
and integral. Hence U is affine by Proposition 52.15.2. Thus every point is contained
in an open subscheme of X, i.e., X is a scheme. �

Lemma 52.15.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is integral and induces a bijection |X| → |Y |. Then X is
a scheme if and only if Y is a scheme.

Proof. An integral morphism is representable by definition, hence if Y is a scheme,
so is X. Conversely, assume that X is a scheme. Let U ⊂ X be an affine open. An
integral morphism is closed and |f | is bijective, hence |f |(|U |) ⊂ |Y | is open as the
complement of |f |(|X| \ |U |). Let V ⊂ Y be the open subspace with |V | = |f |(|U |),
see Properties of Spaces, Lemma 48.4.8. Then U → V is integral and surjective,
hence V is an affine scheme by Proposition 52.15.2. This concludes the proof. �

Lemma 52.15.5. Let S be a scheme. Let f : X → B and B′ → B be morphisms
of algebraic spaces over S. Assume

(1) B′ → B is a closed immersion,
(2) |B′| → |B| is bijective,
(3) X ×B B′ → B′ is a closed immersion, and
(4) X → B is of finite type or B′ → B is of finite presentation.

Then f : X → B is a closed immersion.

Proof. Assumptions (1) and (2) imply that Bred = B′red. Set X ′ = X×BB′. Then
X ′ → X is closed immersion and X ′red = Xred. Let U → B be an étale morphism
with U affine. Then X ′ ×B U → X ×B U is a closed immersion of algebraic spaces
inducing an isomorphism on underlying reduced spaces. Since X ′×B U is a scheme
(as B′ → B and X ′ → B′ are representable) so is X ×B U by Lemma 52.15.3.
Hence X → B is representable too. Thus we reduce to the case of schemes, see
Morphisms, Lemma 28.45.5. �

52.16. Finite cover by a scheme

As an application of Zariski’s main theorem and the limit results of this chapter, we
prove that given any quasi-compact and quasi-separated algebraic space X, there
is a scheme Y and a surjective, finite morphism Y → X. The following lemma will
be obsoleted by the full result later on.
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Lemma 52.16.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S.

(1) There exists a surjective integral morphism Y → X where Y is a scheme,
(2) given a surjective étale morphism U → X we may choose Y → X such

that for every y ∈ Y there is an open neighbourhood V ⊂ Y such that
V → X factors through U .

Proof. Part (1) is the special case of part (2) where U = X. Choose a surjective
étale morphism U ′ → U where U ′ is a scheme. It is clear that we may replace U
by U ′ and hence we may assume U is a scheme. Since X is quasi-compact, there
exist finitely many affine opens Ui ⊂ U such that U ′ =

∐
Ui → X is surjective.

After replacing U by U ′ again, we see that we may assume U is affine. Since X
is quasi-separated, hence reasonable, there exists an integer d bounding the degree
of the geometric fibres of U → X (see Decent Spaces, Lemma 50.5.1). We will
prove the lemma by induction on d for all quasi-compact and separated schemes U
mapping surjective and étale onto X. If d = 1, then U = X and the result holds
with Y = U . Assume d > 1.

We apply Morphisms of Spaces, Lemma 49.46.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Note that

U ×X Y = U qW
where the first summand is the image of U → U×XY (which is closed by Morphisms
of Spaces, Lemma 49.4.6 and open because it is étale as a morphism between
algebraic spaces étale over Y ) and the second summand is the (open and closed)
complement. The image V ⊂ Y of W is an open subspace containing Y \ U .

The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since |U | ⊂ |Y | is dense, it
holds for all geometric points of Y for example by Decent Spaces, Lemma 50.8.1
(the degree of the fibres of a quasi-compact étale morphism does not go up under
specialization). Thus we may apply the induction hypothesis to W → V and find a
surjective integral morphism Z → V with Z a scheme, which Zariski locally factors
through W . Choose a factorization Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′

open immersion (Morphisms of Spaces, Lemma 49.46.2). After replacing Z ′ by the
scheme theoretic closure of Z in Z ′ we may assume that Z is scheme theoretically
dense in Z ′. After doing this we have Z ′ ×Y V = Z. Finally, let T ⊂ Y be the
induced closed subspace structure on Y \ V . Consider the morphism

Z ′ q T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that
the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point.
If z 6∈ Z, then z maps to a point of Y \V ⊂ U and we find a neighbourhood of z on
which the morphism factors through U . If z ∈ Z, then we have a neighbourhood
V ⊂ Z which factors through W ⊂ U ×X Y and hence through U . �
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Proposition 52.16.2. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S.

(1) There exists a surjective finite morphism Y → X of finite presentation
where Y is a scheme,

(2) given a surjective étale morphism U → X we may choose Y → X such
that for every y ∈ Y there is an open neighbourhood V ⊂ Y such that
V → X factors through U .

Proof. Part (1) is the special case of (2) with U = X. Let Y → X be as in Lemma
52.16.1. Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors

through U . We can write Y = limYi with Yi → X finite and of finite presentation,
see Lemma 52.11.2. For large enough i the algebraic space Yi is a scheme, see
Lemma 52.5.9. For large enough i we can find affine opens Vi,j ⊂ Yi whose inverse
image in Y recovers Vj , see Lemma 52.5.5. For even larger i the morphisms Vj → U
over X come from morphisms Vi,j → U over X, see Proposition 52.3.9. This finishes
the proof. �
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CHAPTER 53

Divisors on Algebraic Spaces

53.1. Introduction

In this chapter we study divisors on algebraic spaces and related topics. A basic
reference for algebraic spaces is [Knu71].

53.2. Effective Cartier divisors

For some reason it seem convenient to define the notion of an effective Cartier
divisor before anything else. Note that in Morphisms of Spaces, Section 49.13 we
discussed the correspondence between closed subspaces and quasi-coherent sheaves
of ideals. Moreover, in Properties of Spaces, Section 48.28, we discussed properties
of quasi-coherent modules, in particular “locally generated by 1 element”. These
references show that the following definition is compatible with the definition for
schemes.

Definition 53.2.1. Let S be a scheme. Let X be an algebraic space over S.

(1) A locally principal closed subspace of X is a closed subspace whose sheaf
of ideals is locally generated by 1 element.

(2) An effective Cartier divisor on X is a closed subspace D ⊂ X such that
the ideal sheaf ID ⊂ OX is an invertible OX -module.

Thus an effective Cartier divisor is a locally principal closed subspace, but the
converse is not always true. Effective Cartier divisors are closed subspaces of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is not a zerodivisor. In particular they are nowhere dense.

Lemma 53.2.2. Let S be a scheme. Let X be an algebraic space over S. Let
D ⊂ X be a closed subspace. The following are equivalent:

(1) The subspace D is an effective Cartier divisor on X.
(2) For some scheme U and surjective étale morphism U → X the inverse

image D ×X U is an effective Cartier divisor on U .
(3) For every scheme U and every étale morphism U → X the inverse image

D ×X U is an effective Cartier divisor on U .
(4) For every x ∈ |D| there exists an étale morphism (U, u) → (X,x) of

pointed algebraic spaces such that U = Spec(A) and D×XU = Spec(A/(f))
with f ∈ A not a zerodivisor.

Proof. The equivalence of (1) – (3) follows from Definition 53.2.1 and the references
preceding it. Assume (1) and let x ∈ |D|. Choose a scheme W and a surjective
étale morphism W → X. Choose w ∈ D ×X W mapping to x. By (3) D ×X W is
an effective Cartier divisor on W . Hence we can find affine étale neighbourhood U
by choosing an affine open neighbourhood of w in W as in Divisors, Lemma 30.9.2.

3397
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Assume (2). Then we see that ID|U is invertible by Divisors, Lemma 30.9.2. Since
we can find an étale covering of X by the collection of all such U and X \ D, we
conclude that ID is an invertible OX -module. �

Lemma 53.2.3. Let S be a scheme. Let X be an algebraic space over S. Let
Z ⊂ X be a locally principal closed subspace. Let U = X \ Z. Then U → X is an
affine morphism.

Proof. The question is étale local on X, see Morphisms of Spaces, Lemmas 49.20.3
and Lemma 53.2.2. Thus this follows from the case of schemes which is Divisors,
Lemma 30.9.3. �

Lemma 53.2.4. Let S be a scheme. Let X be an algebraic space over S. Let
D ⊂ X be an effective Cartier divisor. Let U = X \D. Then U → X is an affine
morphism and U is scheme theoretically dense in X.

Proof. Affineness is Lemma 53.2.3. The density question is étale local on X by
Morphisms of Spaces, Definition 49.17.3. Thus this follows from the case of schemes
which is Divisors, Lemma 30.9.4. �

Lemma 53.2.5. Let S be a scheme. Let X be an algebraic space over S. Let
D ⊂ X be an effective Cartier divisor. Let x ∈ |D|. If dimx(X) < ∞, then
dimx(D) < dimx(X).

Proof. Both the definition of an effective Cartier divisor and of the dimension of
an an algebraic space at a point (Properties of Spaces, Definition 48.8.1) are étale
local. Hence this lemma follows from the case of schemes which is Divisors, Lemma
30.9.5. �

Definition 53.2.6. Let S be a scheme. Let X be an algebraic space over S. Given
effective Cartier divisors D1, D2 on X we set D = D1 + D2 equal to the closed
subspace of X corresponding to the quasi-coherent sheaf of ideals ID1

ID2
⊂ OS .

We call this the sum of the effective Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

Lemma 53.2.7. The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Étale locally this reduces to the following simple algebra fact: if
f1, f2 ∈ A are nonzerodivisors of a ring A, then f1f2 ∈ A is a nonzerodivisor. �

Lemma 53.2.8. Let S be a scheme. Let X be an algebraic space over S. Let Z, Y
be two closed subspaces of X with ideal sheaves I and J . If IJ defines an effective
Cartier divisor D ⊂ X, then Z and Y are effective Cartier divisors and D = Z+Y .

Proof. By Lemma 53.2.2 this reduces to the case of schemes which is Divisors,
Lemma 30.9.9. �

Recall that we have defined the inverse image of a closed subspace under any mor-
phism of algebraic spaces in Morphisms of Spaces, Definition 49.13.2.

Lemma 53.2.9. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a locally principal closed subspace. Then the inverse
image f−1(Z) is a locally principal closed subspace of X ′.
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Proof. Omitted. �

Definition 53.2.10. Let S be a scheme. Let f : X ′ → X be a morphism of
algebraic spaces over S. Let D ⊂ X be an effective Cartier divisor. We say the
pullback of D by f is defined if the closed subspace f−1(D) ⊂ X ′ is an effective
Cartier divisor. In this case we denote it either f∗D or f−1(D) and we call it the
pullback of the effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice.

Lemma 53.2.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let D ⊂ Y be an effective Cartier divisor. The pullback of D by f
is defined in each of the following cases:

(1) f is flat, and
(2) add more here as needed.

Proof. Omitted. �

Lemma 53.2.12. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D1, D2 be effective Cartier divisors on X. If the pullbacks of
D1 and D2 are defined then the pullback of D = D1 + D2 is defined and f∗D =
f∗D1 + f∗D2.

Proof. Omitted. �

Definition 53.2.13. Let S be a scheme. Let X be an algebraic space over S and
let D ⊂ X be an effective Cartier divisor. The invertible sheaf OX(D) associated
to D is given by

OX(D) := HomOX (ID,OX) = I⊗−1
D .

The canonical section, usually denoted 1 or 1D, is the global section of OX(D)
corresponding to the inclusion mapping ID → OX .

Lemma 53.2.14. Let S be a scheme. Let X be an algebraic space over S. Let D1,
D2 be effective Cartier divisors on X. Let D = D1 + D2. Then there is a unique
isomorphism

OX(D1)⊗OX OX(D2) −→ OX(D)

which maps 1D1
⊗ 1D2

to 1D.

Proof. Omitted. �

Definition 53.2.15. Let S be a scheme. Let X be an algebraic space over S. Let
L be an invertible sheaf on X. A global section s ∈ Γ(X,L) is called a regular
section if the map OX → L, f 7→ fs is injective.

Lemma 53.2.16. Let S be a scheme. Let X be an algebraic space over S. Let
f ∈ Γ(X,OX). The following are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.
(3) for any affine U = Spec(A) étale over X the restriction f |U is a nonze-

rodivisor of A, and
(4) there exists a scheme U and a surjective étale morphism U → X such that

f |U is a regular section of OU .
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Proof. Omitted. �

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules on Sites, Lemma 18.31.2 for the dual invertible sheaf.)

Definition 53.2.17. Let S be a scheme. Let X be an algebraic space over S.
Let L be an invertible sheaf. Let s ∈ Γ(X,L). The zero scheme of s is the closed
subspace Z(s) ⊂ X defined by the quasi-coherent sheaf of ideals I ⊂ OX which is
the image of the map s : L⊗−1 → OX .

Lemma 53.2.18. Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible OX-module. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of
this ordered set.

(2) For any morphism of algebraic spaces f : Y → X over S we have f∗s = 0
in Γ(Y, f∗L) if and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subspace of X.
(4) The zero scheme Z(s) is an effective Cartier divisor on X if and only if

s is a regular section of L.

Proof. Omitted. �

Lemma 53.2.19. Let S be a scheme. Let X be an algebraic space over S.

(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique
isomorphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX-module and a regular global section

}
Proof. Omitted. �

53.3. Relative Proj

This section revisits the construction of the relative proj in the setting of algebraic
spaces. The material in this section corresponds to the material in Constructions,
Section 26.16 and Divisors, Section 30.16 in the case of schemes.

Situation 53.3.1. Here S is a scheme, X is an algebraic space over S, and A is a
quasi-coherent graded OX -algebra.

In Situation 53.3.1 we are going to define a functor F : (Sch/S)oppfppf → Sets which

will turn out to be an algebraic space. We will follow (mutatis mutandis) the
procedure of Constructions, Section 26.16. First, given a scheme T over S we
define a quadruple over T to be a system (d, f : T → S,L, ψ)

(1) d ≥ 1 is an integer,
(2) f : T → X is a morphism over S,
(3) L is an invertible OT -module, and
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(4) ψ : f∗A(d) →
⊕

n≥0 L⊗n is a homomorphism of graded OT -algebras such
that f∗Ad → L is surjective.

We say two quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent1 if and only
if we have f = f ′ and for some positive integer m = ad = a′d′ there exists an
isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m) and ψ′|f∗A(m)

agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn. Given a quadruple (d, f,L, ψ)

and a morphism h : T ′ → T we have the pullback (d, f ◦ h, h∗L, h∗ψ). Pullback
preserves the equivalence relation. Finally, for a quasi-compact scheme T over S we
set

F (T ) = the set of equivalence classes of quadruples over T

and for an arbitrary scheme T over S we set

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . Thus
we have defined our functor

(53.3.1.1) F : Schopp −→ Sets

There is a morphism F → X of functors sending the quadruple (d, f,L, ψ) to f .

Lemma 53.3.2. In Situation 53.3.1. The functor F above is an algebraic space.
For any morphism g : Z → X where Z is a scheme there is a canonical isomorphism
Proj

Z
(g∗A) = Z ×X F compatible with further base change.

Proof. It suffices to prove the second assertion, see Spaces, Lemma 47.11.1. Let
g : Z → X be a morphism where Z is a scheme. Let F ′ be the functor of quadruples
associated to the graded quasi-coherent OZ-algebra g∗A. Then there is a canonical
isomorphism F ′ = Z ×X F , sending a quadruple (d, f : T → Z,L, ψ) for F ′ to
(d, g ◦ f,L, ψ) (details omitted, see proof of Constructions, Lemma 26.16.1). By
Constructions, Lemmas 26.16.4, 26.16.5, and 26.16.6 and Definition 26.16.7 we see
that F ′ is representable by Proj

Z
(g∗A). �

The lemma above tells us the following definition makes sense.

Definition 53.3.3. Let S be a scheme. Let X be an algebraic space over S. Let
A be a quasi-coherent sheaf of graded OX -algebras. The relative homogeneous
spectrum of A over X, or the homogeneous spectrum of A over X, or the relative
Proj of A over X is the algebraic space F over X of Lemma 53.3.2. We denote it
π : Proj

X
(A)→ X.

In particular the structure morphism of the relative Proj is representable by con-
struction. We can also think about the relative Proj via glueing. Let ϕ : U → X be
a surjective étale morphism, where U is a scheme. Set R = U×X U with projection
morphisms s, t : R→ U . By Lemma 53.3.2 there exists a canonical isomorphism

γ : Proj
U

(ϕ∗A) −→ Proj
X

(A)×X U

1This definition is motivated by Constructions, Lemma 26.16.4. The advantage of choosing
this one is that it clearly defines an equivalence relation.
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over U . Let α : t∗ϕ∗A → s∗ϕ∗A be the canonical isomorphism of Properties of
Spaces, Proposition 48.30.1. Then the diagram

Proj
U

(ϕ∗A)×U,s R Proj
R

(s∗ϕ∗A)

induced by α

��

Proj
X

(A)×X R

s∗γ

55

t∗γ

))
Proj

U
(ϕ∗A)×U,t R Proj

R
(t∗ϕ∗A)

is commutative (the equal signs come from Constructions, Lemma 26.16.10). Thus,
if we denote AU , AR the pullback of A to U , R, then P = Proj

X
(A) has an

étale covering by the scheme PU = Proj
U

(AU ) and PU ×P PU is equal to PR =

Proj
R

(AR). Using these remarks we can argue in the usual fashion using étale
localization to transfer results on the relative proj from the case of schemes to the
case of algebraic spaces.

Lemma 53.3.4. In Situation 53.3.1. The relative Proj comes equipped with a
quasi-coherent sheaf of Z-graded algebras

⊕
n∈ZOProj

X
(A)(n) and a canonical ho-

momorphism of graded algebras

ψ : π∗A −→
⊕

n≥0
OProj

X
(A)(n)

whose base change to any scheme over X agrees with Constructions, Lemma 26.15.5.

Proof. As in the discussion following Definition 53.3.3 choose a scheme U and a
surjective étale morphism U → X, set R = U ×X U with projections s, t : R→ U ,
AU = A|U , AR = A|R, and π : P = Proj

X
(A) → X, πU : PU = Proj

U
(AU )

and πR : PR = Proj
U

(AR). By the Constructions, Lemma 26.15.5 we have a

quasi-coherent sheaf of Z-graded OPU -algebras
⊕

n∈ZOPU (n) and a canonical map
ψU : π∗UAU →

⊕
n≥0OPU (n) and similarly for PR. By Constructions, Lemma

26.16.10 the pullback of OPU (n) and ψU by either projection PR → PU is equal
to OPR(n) and ψR. By Properties of Spaces, Proposition 48.30.1 we obtain OP (n)
and ψ. We omit the verification of compatibility with pullback to arbitrary schemes
over X. �

Having constructed the relative Proj we turn to some basic properties.

Lemma 53.3.5. Let S be a scheme. Let g : X ′ → X be a morphism of algebraic
spaces over S and let A be a quasi-coherent sheaf of graded OX-algebras. Then
there is a canonical isomorphism

r : Proj
X′

(g∗A) −→ X ′ ×X Proj
X

(A)

as well as a corresponding isomorphism

θ : r∗pr∗2

(⊕
d∈Z
OProj

X
(A)(d)

)
−→

⊕
d∈Z
OProj

X′
(g∗A)(d)

of Z-graded OProj
X′

(g∗A)-algebras.
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Proof. Let F be the functor (53.3.1.1) and let F ′ be the corresponding functor
defined using g∗A on X ′. We claim there is a canonical isomorphism r : F ′ →
X ′ ×X F of functors (and of course r is the isomorphism of the lemma). It suffices
to construct the bijection r : F ′(T )→ X ′(T )×X(T )F (T ) for quasi-compact schemes
T over S. First, if ξ = (d′, f ′,L′, ψ′) is a quadruple over T for F ′, then we can set
r(ξ) = (f ′, (d′, g ◦ f ′,L′, ψ′)). This makes sense as (g ◦ f ′)∗A(d) = (f ′)∗(g∗A)(d).
The inverse map sends the pair (f ′, (d, f,L, ψ)) to the quadruple (d, f ′,L, ψ). We
omit the proof of the final assertion (hint: reduce to the case of schemes by étale
localization and apply Constructions, Lemma 26.16.10). �

Lemma 53.3.6. In Situation 53.3.1 the morphism π : Proj
X

(A)→ X is separated.

Proof. By Morphisms of Spaces, Lemma 49.4.12 and the construction of the rel-
ative Proj this follows from the case of schemes which is Constructions, Lemma
26.16.9. �

Lemma 53.3.7. In Situation 53.3.1. If one of the following holds

(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then π : Proj
X

(A)→ X is quasi-compact.

Proof. By Morphisms of Spaces, Lemma 49.8.7 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.16.1. �

Lemma 53.3.8. In Situation 53.3.1. If A is of finite type as a sheaf of OX-
algebras, then π : Proj

X
(A)→ X is of finite type.

Proof. By Morphisms of Spaces, Lemma 49.23.4 and the construction of the rela-
tive Proj this follows from the case of schemes which is Divisors, Lemma 30.16.2. �

Lemma 53.3.9. In Situation 53.3.1. If OX → A0 is an integral algebra map2 and
A is of finite type as an A0-algebra, then π : Proj

X
(A)→ X is universally closed.

Proof. By Morphisms of Spaces, Lemma 49.9.5 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.16.3. �

Lemma 53.3.10. In Situation 53.3.1. The following conditions are equivalent

(1) A0 is a finite type OX-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OX-module and A is of finite type as an OX-algebra.

If these conditions hold, then π : Proj
X

(A)→ X is proper.

Proof. By Morphisms of Spaces, Lemma 49.37.2 and the construction of the rela-
tive Proj this follows from the case of schemes which is Divisors, Lemma 30.16.3. �

Lemma 53.3.11. Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent sheaf of graded OX-modules generated as an A0-algebra by A1.
With P = Proj

X
(A) we have

2In other words, the integral closure of OX in A0, see Morphisms of Spaces, Definition
49.43.2, equals A0.
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(1) P represents the functor F1 which associates to T over S the set of iso-
morphism classes of triples (f,L, ψ), where f : T → X is a morphism
over S, L is an invertible OT -module, and ψ : f∗A →

⊕
n≥0 L⊗n is a

map of graded OT -algebras inducing a surjection f∗A1 → L,
(2) the canonical map π∗A1 → OP (1) is surjective, and
(3) each OP (n) is invertible and the multiplication maps induce isomorphisms
OP (n)⊗OP OP (m) = OP (n+m).

Proof. Omitted. See Constructions, Lemma 26.16.11 for the case of schemes. �

53.4. Functoriality of relative proj

This section is the analogue of Constructions, Section 26.18.

Lemma 53.4.1. Let S be a scheme. Let X be an algebraic space over S. Let
ψ : A → B be a map of quasi-coherent graded OX-algebras. Set P = Proj

X
(A)→ X

and Q = Proj
X

(B) → X. There is a canonical open subspace U(ψ) ⊂ Q and a
canonical morphism of algebraic spaces

rψ : U(ψ) −→ P

over X and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗ψ

(⊕
d∈Z
OP (d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any scheme W étale
over X the triple

(U(ψ)×X W, rψ|U(ψ)×XW : U(ψ)×X W → P ×X W, θ|U(ψ)×XW )

is equal to the triple associated to ψ : A|W → B|W of Constructions, Lemma
26.18.1.

Proof. This lemma follows from étale localization and the case of schemes, see
discussion following Definition 53.3.3. Details omitted. �

Lemma 53.4.2. Let S be a scheme. Let X be an algebraic space over S. Let A,
B, and C be quasi-coherent graded OX-algebras. Set P = Proj

X
(A), Q = Proj

X
(B)

and R = Proj
X

(C). Let ϕ : A → B, ψ : B → C be graded OX-algebra maps. Then
we have

U(ψ ◦ ϕ) = r−1
ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have

θψ ◦ r∗ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 53.4.3. With hypotheses and notation as in Lemma 53.4.1 above. Assume
Ad → Bd is surjective for d� 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ R is a closed immersion, and
(3) the maps θ : r∗ψOP (n) → OQ(n) are surjective but not isomorphisms in

general (even if A → B is surjective).
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Proof. Follows from the case of schemes (Constructions, Lemma 26.18.3) by étale
localization. �

Lemma 53.4.4. With hypotheses and notation as in Lemma 53.4.1 above. Assume
Ad → Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is an isomorphism, and
(3) the maps θ : r∗ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 26.18.4) by étale
localization. �

Lemma 53.4.5. With hypotheses and notation as in Lemma 53.4.1 above. Assume
Ad → Bd is surjective for d� 0 and that A is generated by A1 over A0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is a closed immersion, and
(3) the maps θ : r∗ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 26.18.5) by étale
localization. �

53.5. Closed subspaces of relative proj

Some auxiliary lemmas about closed subspaces of relative proj. This section is the
analogue of Divisors, Section 30.17.

Lemma 53.5.1. Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent graded OX-algebra. Let π : P = Proj

X
(A)→ X be the relative

Proj of A. Let i : Z → P be a closed subspace. Denote I ⊂ A the kernel of the
canonical map

A −→
⊕

d≥0
π∗ ((i∗OZ)(d))

If π is quasi-compact, then there is an isomorphism Z = Proj
X

(A/I).

Proof. The morphism π is separated by Lemma 53.3.6. As π is quasi-compact,
π∗ transforms quasi-coherent modules into quasi-coherent modules, see Morphisms
of Spaces, Lemma 49.11.2. Hence I is a quasi-coherent OX -module. In particular,
B = A/I is a quasi-coherent graded OX -algebra. The functoriality morphism
Z ′ = Proj

X
(B) → Proj

X
(A) is everywhere defined and a closed immersion, see

Lemma 53.4.3. Hence it suffices to prove Z = Z ′ as closed subspaces of P .

Having said this, the question is étale local on the base and we reduce to the case
of schemes (Divisors, Lemma 30.17.1) by étale localization. �

In case the closed subspace is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 53.5.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX-algebra. Let π : P =
Proj

X
(A) → X be the relative Proj of A. Let i : Z → P be a closed subscheme.

If π is quasi-compact and i of finite presentation, then there exists a d > 0 and a
quasi-coherent finite type OX-submodule F ⊂ Ad such that Z = Proj

X
(A/FA).
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Proof. The reader can redo the arguments used in the case of schemes. However,
we will show the lemma follows from the case of schemes by a trick. Let I ⊂ A
be the quasi-coherent graded ideal cutting out Z of Lemma 53.5.1. Choose an
affine scheme U and a surjective étale morphism U → X, see Properties of Spaces,
Lemma 48.6.3. By the case of schemes (Divisors, Lemma 30.17.2) there exists a
d > 0 and a quasi-coherent finite type OU -submodule F ′ ⊂ Id|U ⊂ Ad|U such that
Z ×X U is equal to Proj

U
(A|U/F ′A|U ). By Limits of Spaces, Lemma 52.9.2 we

can find a finite type quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|U . Let
Z ′ = Proj

X
(A/FA). Then Z ′ → P is a closed immersion (Lemma 53.4.5) and

Z ⊂ Z ′ as FA ⊂ I. On the other hand, Z ′ ×X U ⊂ Z ×X U by our choice of F .
Thus Z = Z ′ as desired. �

Lemma 53.5.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX-algebra. Let π : P =
Proj

X
(A)→ X be the relative Proj of A. Let i : Z → X be a closed subspace. Let

U ⊂ X be an open. Assume that

(1) π is quasi-compact,
(2) i of finite presentation,
(3) |U | ∩ |π|(|i|(|Z|)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OX-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OX-submodule F ⊂ Ad
with (a) Z = Proj

X
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. We use the same trick as in the proof of Lemma 53.5.2 to reduce to the case
of schemes. Let I ⊂ A be the quasi-coherent graded ideal cutting out Z of Lemma
53.5.1. Choose an affine scheme W and a surjective étale morphism W → X, see
Properties of Spaces, Lemma 48.6.3. By the case of schemes (Divisors, Lemma
30.17.3) there exists a d > 0 and a quasi-coherent finite type OW -submodule F ′ ⊂
Id|W ⊂ Ad|W such that (a) Z ×X W is equal to Proj

W
(A|W /F ′A|W ) and (b) the

support of Ad|W /F ′ is disjoint from U ×X W . By Limits of Spaces, Lemma 52.9.2
we can find a finite type quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|W .
Let Z ′ = Proj

X
(A/FA). Then Z ′ → P is a closed immersion (Lemma 53.4.5) and

Z ⊂ Z ′ as FA ⊂ I. On the other hand, Z ′ ×X W ⊂ Z ×X W by our choice of
F . Thus Z = Z ′. Finally, we see that Ad/F is supported on X \ U as Ad|W /F|W
is a quotient of Ad|W /F ′ which is supported on W \ U ×X W . Thus the lemma
follows. �

53.6. Blowing up

Blowing up is an important tool in algebraic geometry.

Definition 53.6.1. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals, and let Z ⊂ X be the closed subscheme
corresponding to I (Morphisms of Spaces, Lemma 49.13.1). The blowing up of X
along Z, or the blowing up of X in the ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blow up is the inverse image b−1(Z). Sometimes Z
is called the center of the blowup.
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We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” algebraic space over X such
that the inverse image of Z is an effective Cartier divisor.

If b : X ′ → X is the blow up of X in Z, then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded OX -algebra
which is generated in degree 1, see Lemma 53.3.11.

Lemma 53.6.2. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let U = Spec(A) be an affine scheme
étale over X and let I ⊂ A be the ideal corresponding to I|U . If X ′ → X is the
blow up of X in I, then there is a canonical isomorphism

U ×X X ′ = Proj(
⊕

d≥0
Id)

of schemes over U , where the right hand side is the homogeneous spectrum of the
Rees algebra of I in A. Moreover, U ×X X ′ has an affine open covering by spectra
of the affine blowup algebras A[ Ia ].

Proof. Note that the restriction I|U is equal to the pullback of I via the morphism
U → X, see Properties of Spaces, Section 48.24. Thus the lemma follows on
combining Lemma 53.3.2 with Divisors, Lemma 30.18.2. �

Lemma 53.6.3. Let S be a scheme. Let X1 → X2 be a flat morphism of algebraic
spaces over S. Let Z2 ⊂ X2 be a closed subspace. Let Z1 be the inverse image of
Z2 in X1. Let X ′i be the blow up of Zi in Xi. Then there exists a cartesian diagram

X ′1 //

��

X ′2

��
X1

// X2

of algebraic spaces over S.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1 (see Mor-
phisms of Spaces, Definition 49.13.2 and discussion following the definition). By
Lemma 53.3.5 we see that X1 ×X2

X ′2 is the relative Proj of
⊕

n≥0 g
∗In2 . Be-

cause g is flat the map g∗In2 → OX1
is injective with image In1 . Thus we see that

X1 ×X2
X ′2 = X ′1. �

Lemma 53.6.4. Let S be a scheme. Let X be an algebraic space over S. Let
Z ⊂ X be a closed subspace. The blowing up b : X ′ → X of Z in X has the
following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,

(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 53.6.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 30.18.4. �
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Lemma 53.6.5 (Universal property blowing up). Let S be a scheme. Let X be
an algebraic space over S. Let Z ⊂ X be a closed subspace. Let C be the full
subcategory of (Spaces/X) consisting of Y → X such that the inverse image of Z
is an effective Cartier divisor on Y . Then the blowing up b : X ′ → X of Z in X is
a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 53.6.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and let ID
be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible OY -module.
This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras. (We observe

that IdD = I⊗dD as D is an effective Cartier divisor.) By Lemma 53.3.11. the triple
(f : Y → X, ID, ψ) defines a morphism Y → X ′ over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
53.2.4. Thus the morphism Y → X ′ is unique by Morphisms of Spaces, Lemma
49.17.8 (also b is separated by Lemma 53.3.6). �

Lemma 53.6.6. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be an effective Cartier divisor. The blowup of X in Z is the identity morphism of
X.

Proof. Immediate from the universal property of blowups (Lemma 53.6.5). �

Lemma 53.6.7. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. If X is reduced, then the blow up X ′

of X in I is reduced.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 53.6.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 30.18.8. �

Lemma 53.6.8. Let S be a scheme. Let X be an algebraic space over S. Let
b : X ′ → X be a blow up of X in a closed subspace. For any effective Cartier
divisor D on X the pullback b−1D is defined (see Definition 53.2.10).

Proof. By Lemmas 53.6.2 and 53.2.2 this reduces to the following algebra fact:
Let A be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the
image of x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ].
Then amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence
y/an is zero in A[ Ia ] as desired. �

Lemma 53.6.9. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX and J be quasi-coherent sheaves of ideals. Let b : X ′ → X be the blowing
up of X in I. Let b′ : X ′′ → X ′ be the blowing up of X ′ in b−1JOX′ . Then
X ′′ → X is canonically isomorphic to the blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 53.6.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 53.6.8. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective Cartier
divisor). Consider the effective Cartier divisor E′′ = E′+(b′)−1E. By construction
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the ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to Lemma 53.6.5
there is a canonical morphism from X ′′ to the blowup c : Y → X of X in IJ .
Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY defines an
effective Cartier divisor, see Lemma 53.2.8. Thus a morphism c′ : Y → X ′ over X
by Lemma 53.6.5. Then (c′)−1b−1JOY = c−1JOY which also defines an effective
Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the verification
that this morphism is inverse to the morphism X ′′ → Y constructed earlier. �

Lemma 53.6.10. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let b : X ′ → X be the blowing up of X
in the ideal sheaf I. If I is of finite type, then b : X ′ → X is a proper morphism.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 53.6.3) we can prove each of
these statements after base change to U (see Morphisms of Spaces, Lemma 49.37.2).
This reduces us to the case of schemes. In this case the morphism b is projective
by Divisors, Lemma 30.18.11 hence proper by Morphisms, Lemma 28.43.5. �

Lemma 53.6.11. Let S be a scheme and let X be an algebraic space over S.
Assume X is quasi-compact and quasi-separated. Let Z ⊂ X be a closed subspace
of finite presentation. Let b : X ′ → X be the blowing up with center Z. Let Z ′ ⊂ X ′
be a closed subspace of finite presentation. Let X ′′ → X ′ be the blowing up with
center Z ′. There exists a closed subspace Y ⊂ X of finite presentation, such that

(1) |Y | = |Z| ∪ |b|(|Z ′|), and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms of Spaces,
Lemma 49.27.12. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is

a quasi-compact open subspace of X by Limits of Spaces, Lemma 52.14.1. Since
b−1(X \Z)→ X \Z is an isomorphism (Lemma 53.6.4) the same result shows that
b−1(X \Z) \Z ′ is quasi-compact open subspace in X ′. Hence U = X \ (Z ∪ b(Z ′))
is quasi-compact open subspace in X. By Lemma 53.5.3 there exist a d > 0 and a
finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA) and such that the

support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite
type quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent
confusion. Since Id/J and O/Id are supported on |X| \ |U | we see that |V (J )|
is contained in |X| \ |U |. Conversely, as J ⊂ Id we see that |Z| ⊂ |V (J )|. Over
X \Z ∼= X ′\b−1(Z) the sheaf of ideals J cuts out Z ′ (see displayed formula below).
Hence |V (J )| equals |Z| ∪ |b|(|Z ′|). It follows that also |V (IJ )| = |Z| ∪ |b|(|Z ′|).
Moreover, IJ is an ideal of finite type as a product of two such. We claim that
X ′′ → X is isomorphic to the blowing up of X in IJ which finishes the proof of
the lemma by setting Y = V (IJ ).

First, recall that the blow up of X in IJ is the same as the blow up of X ′ in
b−1JOX′ , see Lemma 53.6.9. Hence it suffices to show that the blow up of X ′ in
b−1JOX′ agrees with the blow up of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′
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as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 53.6.6 and 53.6.9.

To see the displayed equality of the ideals we may work locally. With notation A,
I, a ∈ I as in Lemma 53.6.2 we see that F corresponds to an R-submodule M ⊂ Id
mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)

means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. �

53.7. Strict transform

This section is the analogue of Divisors, Section 30.19. Let S be a scheme, let B
be an algebraic space over S, and let Z ⊂ B be a closed subspace. Let b : B′ → B
be the blowing up of B in Z and denote E ⊂ B′ the exceptional divisor E = b−1Z.
In the following we will often consider an algebraic space X over B and form the
cartesian diagram

pr−1
B′E

//

��

X ×B B′ prX
//

prB′

��

X

f

��
E // B′ // B

Since E is an effective Cartier divisor (Lemma 53.6.4) we see that pr−1
B′E ⊂ X×BB′

is locally principal (Lemma 53.2.9). Thus the inclusion morphism of the comple-
ment of pr−1

B′E in X×BB′ is affine and in particular quasi-compact (Lemma 53.2.3).
Consequently, for a quasi-coherent OX×BB′ -module G the subsheaf of sections sup-
ported on |pr−1

B′E| is a quasi-coherent submodule, see Limits of Spaces, Lemma
52.14.5. If G is a quasi-coherent sheaf of algebras, e.g., G = OX×BB′ , then this
subsheaf is an ideal of G.

Definition 53.7.1. With Z ⊂ B and f : X → B as above.

(1) Given a quasi-coherent OX -module F the strict transform of F with re-
spect to the blowup of B in Z is the quotient F ′ of pr∗XF by the submodule

of sections supported on |pr−1
B′E|.

(2) The strict transform of X is the closed subscheme X ′ ⊂ X ×B B′ cut out
by the quasi-coherent ideal of sections of OX×BB′ supported on |pr−1

B′E|.

Note that taking the strict transform along a blowup depends on the closed subspace
used for the blowup (and not just on the morphism B′ → B).

Lemma 53.7.2 (Étale localization and strict transform). In the situation of Defi-
nition 53.7.1. Let

U //

��

X

��
V // B

be a commutative diagram of morphisms with U and V schemes and étale horizontal
arrows. Let V ′ → V be the blowup of V in Z ×B V . Then

(1) V ′ = V ×B B′ and the maps V ′ → B′ and U ×V V ′ → X ×B B′ are étale,
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(2) the strict transform U ′ of U relative to V ′ → V is equal to X ′×X U where
X ′ is the strict transform of X relative to B′ → B, and

(3) for a quasi-coherent OX-module F the restriction of the strict transform
F ′ to U ×V V ′ is the strict transform of F|U relative to V ′ → V .

Proof. Part (1) follows from the fact that blowup commutes with flat base change
(Lemma 53.6.3), the fact that étale morphisms are flat, and that the base change of
an étale morphism is étale. Part (3) then follows from the fact that taking the sheaf
of sections supported on a closed commutes with pullback by étale morphisms, see
Limits of Spaces, Lemma 52.14.5. Part (2) follows from (3) applied to F = OX . �

Lemma 53.7.3. In the situation of Definition 53.7.1.

(1) The strict transform X ′ of X is the blowup of X in the closed subspace
f−1Z of X.

(2) For a quasi-coherent OX-module F the strict transform F ′ is canonically
isomorphic to the pushforward along X ′ → X×BB′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 53.6.5) there exists a commutative diagram

X ′′ //

��

X

��
B′ // B

whence a morphism i : X ′′ → X ×B B′. The first assertion of the lemma is that
i is a closed immersion with image X ′. The second assertion of the lemma is that
F ′ = i∗F ′′ where F ′′ is the strict transform of F with respect to the blowing up
X ′′ → X. We can check these assertions étale locally on X, hence we reduce to the
case of schemes (Divisors, Lemma 30.19.2). Some details omitted. �

Lemma 53.7.4. In the situation of Definition 53.7.1.

(1) If X is flat over B at all points lying over Z, then the strict transform of
X is equal to the base change X ×B B′.

(2) Let F be a quasi-coherent OX-module. If F is flat over B at all points
lying over Z, then the strict transform F ′ of F is equal to the pullback
pr∗XF .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 30.19.3)
by étale localization (Lemma 53.7.2). �

Lemma 53.7.5. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let b : B′ → B be the blowing up of Z in B. Let g : X → Y
be an affine morphism of spaces over B. Let F be a quasi-coherent sheaf on X. Let
g′ : X ×B B′ → Y ×B B′ be the base change of g. Let F ′ be the strict transform of
F relative to b. Then g′∗F ′ is the strict transform of g∗F .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 30.19.4)
by étale localization (Lemma 53.7.2). �

Lemma 53.7.6. Let S be a scheme. Let B be an algebraic space over S. Let
Z ⊂ B be a closed subspace. Let D ⊂ B be an effective Cartier divisor. Let Z ′ ⊂ B
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be the closed subspace cut out by the product of the ideal sheaves of Z and D. Let
B′ → B be the blowup of B in Z.

(1) The blowup of B in Z ′ is isomorphic to B′ → B.
(2) Let f : X → B be a morphism of algebraic spaces and let F be a quasi-

coherent OX-module. If the subsheaf of F of sections supported on |f−1D|
is zero, then the strict transform of F relative to the blowing up in Z agrees
with the strict transform of F relative to the blowing up of B in Z ′.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 30.19.5)
by étale localization (Lemma 53.7.2). �

Lemma 53.7.7. Let S be a scheme. Let B be an algebraic space over S. Let
Z ⊂ B be a closed subspace. Let b : B′ → B be the blowing up with center Z. Let
Z ′ ⊂ B′ be a closed subspace. Let B′′ → B′ be the blowing up with center Z ′. Let
Y ⊂ B be a closed subscheme such that |Y | = |Z| ∪ |b|(|Z ′|) and the composition
B′′ → B is isomorphic to the blowing up of B in Y . In this situation, given any
scheme X over B and F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of F with respect to the blowup B′ → B of B in Z, and

(2) the strict transform of X with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of X with respect to the blowup B′ → B of B in Z.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 30.19.6)
by étale localization (Lemma 53.7.2). �

Lemma 53.7.8. In the situation of Definition 53.7.1. Suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after
any base change T → B. Then the strict transforms of F ′i relative to any blowup
B′ → B form a short exact sequence 0→ F ′1 → F ′2 → F ′3 → 0 too.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 30.19.7)
by étale localization (Lemma 53.7.2). �

53.8. Admissible blowups

To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 53.8.1. Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. A morphism X ′ → X is called a U -admissible blowup
if there exists a closed immersion Z → X of finite presentation with Z disjoint from
U such that X ′ is isomorphic to the blow up of X in Z.

We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms of Spaces, Lemma 49.27.12. In particular, a U -
admissible blowup is a proper morphism, see Lemma 53.6.10. Note that there can
be multiple centers which give rise to the same morphism. Hence the requirement
is just the existence of some center disjoint from U which produces X ′. Finally, as
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the morphism b : X ′ → X is an isomorphism over U (see Lemma 53.6.4) we will
often abuse notation and think of U as an open subspace of X ′ as well.

Lemma 53.8.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let b : X ′ →
X be a U -admissible blowup. Let X ′′ → X ′ be a U -admissible blowup. Then the
composition X ′′ → X is a U -admissible blowup.

Proof. Immediate from the more precise Lemma 53.6.11. �

Lemma 53.8.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U, V ⊂ X be quasi-compact open subspaces. Let b : V ′ → V
be a U ∩ V -admissible blowup. Then there exists a U -admissible blowup X ′ → X
whose restriction to V is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩ V and such that V ′ is isomorphic to the blow up of V in I.
Let I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU
and whose restriction to V is I. By Limits of Spaces, Lemma 52.9.8 there exists a
finite type quasi-coherent sheaf of ideals J ⊂ OX whose restriction to U ∪ V is I ′.
The lemma follows. �

Lemma 53.8.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let bi :
Xi → X, i = 1, . . . , n be U -admissible blowups. There exists a U -admissible blowup
b : X ′ → X such that (a) b factors as X ′ → Xi → X for i = 1, . . . , n and (b) each
of the morphisms X ′ → Xi is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that
V (Ii) is disjoint from U and such that Xi is isomorphic to the blow up of X in Ii.
Set I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors
through bi by Lemma 53.6.9. �

Lemma 53.8.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U, V be quasi-compact disjoint open subspaces of X.
Then there exist a U ∪ V -admissible blowup b : X ′ → X such that X ′ is a disjoint
union of open subspaces X ′ = X ′1 qX ′2 with b−1(U) ⊂ X ′1 and b−1(V ) ⊂ X ′2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \ U = V (I), resp. X \ V = V (J ), see Limits of Spaces, Lemma 52.14.1. Then
|V (IJ )| = |X|. Hence IJ is a locally nilpotent sheaf of ideals. Since I and J are
of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I+J . This is U ∪V -admissible as |V (I+J )| = |X|\|U |∪|V |.
We will show that X ′ is a disjoint union of open subspaces X ′ = X ′1qX ′2 as in the
statement of the lemma.

Since |V (I + J )| is the complement of |U ∪ V | we conclude that V ∪ U is scheme
theoretically dense in X ′, see Lemmas 53.6.4 and 53.2.4. Thus if such a decompo-
sition X ′ = X ′1 qX ′2 into open and closed subspaces exists, then X ′1 is the scheme
theoretic closure of U in X ′ and similarly X ′2 is the scheme theoretic closure of
V in X ′. Since U → X ′ and V → X ′ are quasi-compact taking scheme theoretic
closures commutes with étale localization (Morphisms of Spaces, Lemma 49.16.3).
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Hence to verify the existence of X ′1 and X ′2 we may work étale locally on X. This
reduces us to the case of schemes which is treated in the proof of Divisors, Lemma
30.20.5. �
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CHAPTER 54

Algebraic Spaces over Fields

54.1. Introduction

This chapter is the analogue of the chapter on varieties in the setting of algebraic
spaces. A reference for algebraic spaces is [Knu71].

54.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

54.3. Geometric components

Lemma 54.3.1. Let k be an algebraically closed field. Let A, B be strictly henselian
local k-algebras with residue field equal to k. Let C be the strict henselization of
A⊗k B at the maximal ideal mA ⊗k B +A⊗k mB. Then the minimal primes of C
correspond 1-to-1 to pairs of minimal primes of A and B.

Proof. First note that a minimal prime r of C maps to a minimal prime p in A
and to a minimal prime q of B because the ring maps A → C and B → C are
flat (by going down for flat ring map Algebra, Lemma 10.38.17). Hence it suffices
to show that the strict henselization of (A/p ⊗k B/q)mA⊗kB+A⊗kmB has a unique
minimal prime ideal. By Algebra, Lemma 10.145.30 the rings A/p, B/q are strictly
henselian. Hence we may assume that A and B are strictly henselian local domains
and our goal is to show that C has a unique minimal prime. By Properties of
Spaces, Lemma 48.21.3. we see that the integral closure A′ of A in its fraction field
is a normal local domain with residue field k and similarly for the integral closure
B′ of B into its fraction field. By Algebra, Lemma 10.153.4 we see that A′ ⊗k B′
is a normal ring. Hence its localization

R = (A′ ⊗k B′)mA′⊗kB′+A′⊗kmB′
is a normal local domain. Note that A⊗k B → A′⊗k B′ is integral (hence gong up
holds – Algebra, Lemma 10.35.20) and that mA′ ⊗k B′ + A′ ⊗k mB′ is the unique
maximal ideal of A′ ⊗k B′ lying over mA ⊗k B +A⊗k mB . Hence we see that

R = (A′ ⊗k B′)mA⊗kB+A⊗kmB

by Algebra, Lemma 10.40.11. It follows that

(A⊗k B)mA⊗kB+A⊗kmB −→ R

3417
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3418 54. ALGEBRAIC SPACES OVER FIELDS

is integral. We conclude that R is the integral closure of (A ⊗k B)mA⊗kB+A⊗kmB
in its fraction field, and by Properties of Spaces, Lemma 48.21.3 once again we
conclude that C has a unique prime ideal. �

54.4. Generically finite morphisms

This section discusses for morphisms of algebraic spaces the material discussed in
Morphisms, Section 28.47 and Varieties, Section 32.24 for morphisms of schemes.

Lemma 54.4.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is quasi-separated of finite type and Y is decent. Let
y ∈ |Y | be a generic point of an irreducible component of |Y |. The following are
equivalent:

(1) the set f−1({y}) is finite,
(2) X → Y is quasi-finite at all points of |X| over y,
(3) there exists an open subspace Y ′ ⊂ Y with y ∈ |Y ′| such that Y ′×YX → Y ′

is finite.

Proof. Since Y is decent and f is quasi-separated, we see that X is decent too;
to see this use Decent Spaces, Lemmas 50.15.2 and 50.15.5. Hence Decent Spaces,
Lemma 50.16.10 applies and we see that (1) implies (2). On the other hand, we
see that (2) implies (1) by Morphisms of Spaces, Lemma 49.26.9. The same lemma
also shows that (3) implies (1).

Assume the equivalent conditions of (1) and (2). Choose an affine scheme V and
an étale morphism V → Y mapping a point v ∈ V to y. Then v is a generic point
of an irreducible component of V by Decent Spaces, Lemma 50.10.8. Choose an
affine scheme U and a surjective étale morphism U → V ×Y X. Then U → V is of
finite type. The morphism U → V is quasi-finite at every point lying over v by (2).
It follows that the fibre of U → V over v is finite (Morphisms, Lemma 28.21.14).
By Morphisms, Lemma 28.47.1 after shrinking V we may assume that U → V is
finite. Let

R = U ×V×YX U

Since f is quasi-separated, we see that V ×Y X is quasi-separated and hence R is
a quasi-compact scheme. Moreover the morphisms R → V is quasi-finite as the
composition of an étale morphism R → U and a finite morphism U → V . Hence
we may apply Morphisms, Lemma 28.47.1 once more and after shrinking V we
may assume that R → V is finite as well. This of course implies that the two
projections R → V are finite étale. It follows that V/R = V ×Y X is an affine
scheme, see Groupoids, Proposition 38.21.8. By Morphisms, Lemma 28.42.8 we
conclude that V ×Y X → V is proper and by Morphisms, Lemma 28.44.10 we
conclude that V ×Y X → V is finite. Finally, we let Y ′ ⊂ Y be the open subspace
of Y corresponding to the image of |V | → |Y |. By Morphisms of Spaces, Lemma
49.41.3 we conclude that Y ′ ×Y X → Y ′ is finite as the base change to V is finite
and as V → Y ′ is a surjective étale morphism. �

Lemma 54.4.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is quasi-separated and locally of finite type and Y is
quasi-separated. Let y ∈ |Y | be a generic point of an irreducible component of |Y |.
The following are equivalent:

(1) the set f−1({y}) is finite,
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(2) there exist open subspaces X ′ ⊂ X and Y ′ ⊂ Y with f(X ′) ⊂ Y ′, y ∈ |Y ′|,
and f−1({y}) ⊂ |X ′| such that f |X′ : X ′ → Y ′ is finite.

Proof. This is just an application of Lemma 54.4.1. we may first replace Y by a
quasi-compact open subspace containing y. If (1) holds, then we can find a quasi-
compact open subspace X ′ ⊂ X containing f−1({y}). Since Y is quasi-separated,
the morphism f |X′ : X ′ → Y is quasi-compact and quasi-separated (Morphisms of
Spaces, Lemma 49.8.9). Applying Lemma 54.4.1 to f |X′ : X ′ → Y we see that (2)
holds. We omit the proof that (2) implies (1). �

Lemma 54.4.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type, Y is locally Noetherian, and X is
a decent algebraic space. Let y ∈ Y be a point such that the dimension of the local
ring at y is ≤ 1. Assume in addition one of the following conditions is satisfied

(1) for every generic point x of an irreducible component of |X| the transcen-
dence degree of x/f(x) is 0,

(2) for every generic point x of an irreducible component of |X| such that
f(x) y the transcendence degree of x/f(x) is 0,

(3) f is quasi-finite at every generic point of |X|,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. Observe thatX is locally Noetherian (Morphisms of Spaces, Lemma 49.23.5)
and hence |X| is locally Noetherian (Properties of Spaces, Lemma 48.22.2). Since X
is decent |X| is also a sober topological space (Decent Spaces, Proposition 50.10.6).
The set of points at which morphism is quasi-finite is open (Morphisms of Spaces,
Lemma 49.26.2). A dense open of a sober locally Noetherian topological space
contains all generic point of irreducible components, hence (4) implies (3). Condi-
tion (3) implies condition (1) for example by Morphisms of Spaces, Lemma 49.31.3
applied to X → Y → Y . Condition (1) implies condition (2). Thus it suffices to
prove the lemma in case (2) holds.

We want to reduce the proof to the case of schemes. To do this we choose a
commutative diagram

U //

g

��

X

f

��
V // Y

where U , V are schemes and where the horizontal arrows are étale. Say v ∈ V
maps to y. Let u ∈ U be a generic point of an irreducible component of U . Then
dim(OU,u) = 0 which implies that x = f(u) is a generic point of an irreducible
component of |X| by Decent Spaces, Lemma 50.10.8. Moreover, if g(u)  v,
then of course f(x)  y. Thus we see that κ(u)/κ(g(u)) is a field extension of
transcendence degree 0. In other words, assumption (2) of Varieties, Lemma 32.24.1
is satisfied for g : U → V and v ∈ V . We conclude that g is quasi-finite at all points
of U lying over v as desired. �

Lemma 54.4.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper, Y is locally Noetherian, and X is a decent
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algebraic space. Let y ∈ Y be a point such that the dimension of the local ring at y
is ≤ 1. Assume in addition one of the following conditions is satisfied

(1) for every generic point x of an irreducible component of |X| the transcen-
dence degree of x/f(x) is 0,

(2) for every generic point x of an irreducible component of |X| such that
f(x) y the transcendence degree of x/f(x) is 0,

(3) f is quasi-finite at every generic point of |X|,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then there exists an open subspace Y ′ ⊂ Y containing y such that Y ′ ×Y X → Y ′

is finite.

Proof. By Lemma 54.4.3 the morphism f is quasi-finite at every point lying over y.
Let Spec(k)→ Y be any morphism from the spectrum of a field in the equivalence
class of y. Then |Xk| is a discrete space (Decent Spaces, Lemma 50.16.10). Since
Xk is quasi-compact as f is proper we conclude that |Xk| is finite. Thus we can
apply Cohomology of Spaces, Lemma 51.21.2 to conclude. �

54.5. Integral algebraic spaces

We have not yet defined the notion of an integral algebraic space. The problem
is that begin integral is not an étale local property of schemes. We could use the
property, that X is reduced and |X| is irreducible, given in Properties, Lemma
27.3.4 to define integral algebraic spaces. In this case the algebraic space described
in Spaces, Example 47.14.9 would be integral which does not seem right. To avoid
this type of patholopgy we will in addition assume that X is a decent algebraic
space, although perhaps a weaker alternative exists.

Definition 54.5.1. Let S be a scheme. We say an algebraic space X over S is
integral if it is reduced, decent, and |X| is irreducible.

In this case the irreducible topological space |X| is sober (Decent Spaces, Propo-
sition 50.10.6). Hence it has a unique generic point x. Then x is contained in
the schematic locus of X (Decent Spaces, Theorem 50.9.2) and we can look at its
residue field as a substitute for the function field of X (not yet defined; insert future
reference here).

The following lemma characterizes dominant morphisms of finite degree between
integral algebraic spaces.

Lemma 54.5.2. Let S be a scheme. Let X, Y be integral algebraic spaces over
S Let x ∈ |X| and y ∈ |Y | be the generic points. Let f : X → Y be locally of
finite type. Assume f is dominant (Morphisms of Spaces, Definition 49.18.1). The
following are equivalent:

(1) the transcendence degree of x/y is 0,
(2) the extension κ(x) ⊃ κ(y) (see proof) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V

and f |U : U → V is finite,
(4) f is quasi-finite at x, and
(5) x is the only point of |X| mapping to y.

If f is separated, or if f is quasi-compact, then these are also equivalent to

http://stacks.math.columbia.edu/tag/0AD4
http://stacks.math.columbia.edu/tag/0AD5


54.6. MODIFICATIONS AND ALTERATIONS 3421

(6) there exists a nonempty affine open V ⊂ Y such that f−1(V ) → V is
finite.

Proof. By elementary topology, we see that f(x) = y as f is dominant. Let Y ′ ⊂ Y
be the schematic locus of Y and let X ′ ⊂ f−1(Y ′) be the schematic locus of X. By
the discussion above, using Decent Spaces, Proposition 50.10.6 and Decent Spaces,
Theorem 50.9.2, we see that x ∈ |X ′| and y ∈ |Y |. Then f |X′ : X ′ → Y ′ is a
morphism of integral schemes which is locally of finite type. Thus we see that (1),
(2), (3) are equivalent by Morphisms, Lemma 28.47.4.

Condition (4) implies condition (1) by Morphisms of Spaces, Lemma 49.31.3 applied
that X → Y → Y . On the other hand, condition (3) implies condition (4) as a
finite morphism is quasi-finite and as x ∈ U because x is the generic point. Thus
(1) – (4) are equivalent.

Assume the equivalent conditions (1) – (4). Suppose that x′ 7→ y. Then x x′ is
a specialization in the fibre of |X| → |Y | over y. If x′ 6= x, then f is not quasi-finite
at x by Decent Spaces, Lemma 50.16.9. Hence x = x′ and (5) holds. Conversely, if
(5) holds, then (5) holds for the morphism of schemes X ′ → Y ′ (see above) and we
can use Morphisms, Lemma 28.47.4 to see that (1) holds.

Observe that (6) implies the equivalent conditions (1) – (5) without any further
assumptions on f . Assume (1) – (5) hold. To prove (6) we may shrink Y and
assume that Y is an affine scheme and that there exists an affine open U ⊂ X such
that U → Y is finite.

Assume f is quasi-compact. Then Z = X \ U is a quasi-compact closed subspace
of X such that y 6∈ f(Z). Then there exists an open neighbourhood of y which
is disjoint from f(Z) (details omitted; hint: use a variant of Morphisms, Lemma
28.8.3). After shrinking Y we obtain X = U .

Assume f separated. Then U → X has closed image by Morphisms of Spaces,
Lemma 49.37.6. Since |X| is irreducible we get U = X. �

Definition 54.5.3. Let S be a scheme. Let X and Y be integral algebraic spaces
over S. Let f : X → Y be locally of finite type and dominant. Assume any of the
equivalent conditions (1) – (5) of Lemma 54.5.2. Let x ∈ |X| and y ∈ |Y | be the
generic points. Then the positive integer

deg(X/Y ) = [κ(x) : κ(y)]

is called the degree of X over Y .

54.6. Modifications and alterations

Using our notion of an integral algebraic space we can define a modification as
follows.

Definition 54.6.1. Let S be a scheme. Let X be an integral algebraic space. A
modification of X is a birational proper morphism f : X ′ → X of algebraic spaces
over S with X ′ integral.

For birational morphisms of algebraic spaces, see Decent Spaces, Definition 50.18.1.

Lemma 54.6.2. Let f : X ′ → X be a modification as in Definition 54.6.1. There
exists a nonempty open U ⊂ X such that f−1(U)→ U is an isomorphism.

http://stacks.math.columbia.edu/tag/0AD6
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Proof. By Lemma 54.5.2 there exists a nonempty U ⊂ X such that f−1(U)→ U
is finite. By generic flatness (Morphisms of Spaces, Proposition 49.30.1) we may
assume f−1(U) → U is flat and of finite presentation. So f−1(U) → U is finite
locally free (Morphisms of Spaces, Lemma 49.42.6). Since f is birational, the degree
of X ′ over X is 1. Hence f−1(U) → U is finite locally free of degree 1, in other
words it is an isomorphism. �

Definition 54.6.3. Let S be a scheme. Let X be an integral algebraic space over
S. An alteration of X is a proper dominant morphism f : Y → X of algebraic
spaces over S with Y integral such that f−1(U) → U is finite for some nonempty
open U ⊂ X.

If f : Y → X is a dominant and proper morphism between integral algebraic spaces,
then it is an alteration as soon as the induced extension of residue fields in generic
points is finite. Here is the precise statement.

Lemma 54.6.4. Let S be a scheme. Let f : X → Y be a proper dominant mor-
phism of integral algebraic spaces over S. Then f is an alteration if and only if any
of the equivalent conditions (1) – (6) of Lemma 54.5.2 hold.

Proof. Immediate consequence of the lemma referenced in the statement. �

54.7. Schematic locus

We have already proven a number of results on the schematic locus of an algebraic
space in Properties of Spaces, Sections 48.10 and 48.11 and Decent Spaces, Section
50.9.

Lemma 54.7.1. Let X be an algebraic space over some base scheme S. In each of
the following cases X is a scheme:

(1) X is quasi-compact and quasi-separated and dim(X) = 0,
(2) X is locally of finite type over a field k and dim(X) = 0,
(3) X is Noetherian and dim(X) = 0, and
(4) add more here.

Proof. Cases (2) and (3) follow immediately from case (1) but we will give a
separate proofs of (2) and (3) as these proofs use significantly less theory.

Proof of (3). Let U be an affine scheme and let U → X be an étale morphism. Set
R = U ×X U . The two projection morphisms s, t : R → U are étale morphisms of
schemes. By Properties of Spaces, Definition 48.8.2 we see that dim(U) = 0 and
dim(R) = 0. Since R is a locally Noetherian scheme of dimension 0, we see that R
is a disjoint union of spectra of Artinian local rings (Properties, Lemma 27.10.3).
Since we assumed that X is Noetherian (so quasi-separated) we conclude that R
is quasi-compact. Hence R is an affine scheme (use Schemes, Lemma 25.6.8). The
étale morphisms s, t : R → U induce finite residue field extensions. Hence s and
t are finite by Algebra, Lemma 10.52.3 (small detail omitted). Thus Groupoids,
Proposition 38.21.8 shows that X = U/R is an affine scheme.

Proof of (2) – almost identical to the proof of (4). Let U be an affine scheme and
let U → X be an étale morphism. Set R = U×X U . The two projection morphisms
s, t : R → U are étale morphisms of schemes. By Properties of Spaces, Definition
48.8.2 we see that dim(U) = 0 and similarly dim(R) = 0. On the other hand,
the morphism U → Spec(k) is locally of finite type as the composition of the étale
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morphism U → X and X → Spec(k), see Morphisms of Spaces, Lemmas 49.23.2
and 49.36.9. Similarly, R → Spec(k) is locally of finite type. Hence by Varieties,
Lemma 32.13.2 we see that U and R are disjoint unions of spectra of local Artinian
k-algebras finite over k. The same thing is therefore true of U ×Spec(k) U . As

R = U ×X U −→ U ×Spec(k) U

is a monomorphism, we see that R is a finite(!) union of spectra of finite k-algebras.
It follows that R is affine, see Schemes, Lemma 25.6.8. Applying Varieties, Lemma
32.13.2 once more we see that R is finite over k. Hence s, t are finite, see Morphisms,
Lemma 28.44.12. Thus Groupoids, Proposition 38.21.8 shows that the open sub-
space U/R of X is an affine scheme. Since the schematic locus of X is an open
subspace (see Properties of Spaces, Lemma 48.10.1), and since U → X was an
arbitrary étale morphism from an affine scheme we conclude that X is a scheme.

Proof of (1). By Cohomology of Spaces, Lemma 51.9.1 we have vanishing of higher
cohomology groups for all quasi-coherent sheaves F on X. Hence X is affine (in
particular a scheme) by Cohomology of Spaces, Proposition 51.15.9. �

Please compare the following lemma to Decent Spaces, Lemma 50.16.8.

Lemma 54.7.2. Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is locally quasi-finite over k,
(2) X is locally of finite type over k and has dimension 0,
(3) X is a scheme and is locally quasi-finite over k,
(4) X is a scheme and is locally of finite type over k and has dimension 0,

and
(5) X is a disjoint union of spectra of Artinian local k-algebras A over k with

dimk(A) <∞.

Proof. Because we are over a field relative dimension of X/k is the same as the
dimension of X. Hence by Morphisms of Spaces, Lemma 49.32.6 we see that (1) and
(2) are equivalent. Hence it follows from Lemma 54.7.1 (and trivial implications)
that (1) – (4) are equivalent. Finally, Varieties, Lemma 32.13.2 shows that (1) –
(4) are equivalent with (5). �

Lemma 54.7.3. Let k be a field. Let f : X → Y be a monomorphism of algebraic
spaces over k. If Y is locally quasi-finite over k so is X.

Proof. Assume Y is locally quasi-finite over k. By Lemma 54.7.2 we see that
Y =

∐
Spec(Ai) where each Ai is an Artinian local ring finite over k. By Decent

Spaces, Lemma 50.17.1 we see that X is a scheme. Consider Xi = f−1(Spec(Ai)).
Then Xi has either one or zero points. If Xi has zero points there is nothing to
prove. If Xi has one point, then Xi = Spec(Bi) with Bi a zero dimensional local
ring and Ai → Bi is an epimorphism of rings. In particular Ai/mAi = Bi/mAiBi
and we see that Ai → Bi is surjective by Nakayama’s lemma, Algebra, Lemma
10.19.1 (because mAi is a nilpotent ideal!). Thus Bi is a finite local k-algebra, and
we conclude by Lemma 54.7.2 that X → Spec(k) is locally quasi-finite. �

The following lemma tells us that a quasi-separated algebraic space is a scheme
away from codimension 1.
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Lemma 54.7.4. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. If X is quasi-separated and x is a generic point of an irreducible component
of |X|, then there exists an open subspace of X containing x which is a scheme.

Proof. We can replace X by an quasi-compact neighbourhood of x, hence we may
assume X is quasi-compact and quasi-separated. Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and fp : Vp → Up and Tp = Up \ Up+1 as in Decent Spaces, Lemma 50.8.5. Then
x ∈ Tp for a unique p. Let v ∈ f−1

p (Tp) be the corresponding point. Note that
v is a generic point of an irreducible component of Vp by Decent Spaces, Lemma
50.10.8. Since Up+1 is quasi-compact and fp : Vp → Up is a quasi-compact mor-
phism (Morphisms of Spaces, Lemma 49.8.9), we see that f−1

p (Tp) = Vp\f−1
p (Up+1)

is a constructible closed subset of Vp. Hence an open neighbourhood W of v ∈ Vp is
contained in f−1

p (Tp), see Properties, Lemma 27.2.2. Then fp(W ) ⊂ X is an open
neighbourhood of x and fp|W : W → fp(W ) is an étale morphism which induces
an isomorphism on the reductions (by our choice of the stratification). It follows
that W → fp(W ) is an isomorphism (Morphisms of Spaces, Lemma 49.45.2). This
concludes the proof. �

The following lemma says that a separated locally Noetherian algebraic space is a
scheme in codimension 1, i.e., away from codimension 2.

Lemma 54.7.5. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. If X is separated, locally Noetherian, and the dimension of the local ring
of X at x is ≤ 1 (Properties of Spaces, Definition 48.20.2), then there exists an
open subspace of X containing x which is a scheme.

Proof. (Please see the remark below for a different approach avoiding the material
on finite groupoids.) We can replace X by an quasi-compact neighbourhood of
x, hence we may assume X is quasi-compact, separated, and Noetherian. There
exists a scheme U and a finite surjective morphism U → X, see Limits of Spaces,
Proposition 52.16.2. Let R = U ×X U . Then j : R → U ×S U is an equivalence
relation and we obtain a groupoid scheme (U,R, s, t, c) over S with s, t finite and
U Noetherian and separated. Let {u1, . . . , un} ⊂ U be the set of points mapping
to x. Then dim(OU,ui) ≤ 1 by Decent Spaces, Lemma 50.10.9.

By More on Groupoids, Lemma 39.13.10 there exists an R-invariant affine open
W ⊂ U containing the orbit {u1, . . . , un}. Since U → X is finite surjective the
continuous map |U | → |X| is closed surjective, hence submersive by Topology,
Lemma 5.5.5. Thus f(W ) is open and there is an open subspace X ′ ⊂ X with f :
W → X ′ a surjective finite morphism. Then X ′ is an affine scheme by Cohomology
of Spaces, Lemma 51.16.1 and the proof is finished. �

Remark 54.7.6. Here is a sketch of a proof of Lemma 54.7.5 which avoids using
More on Groupoids, Lemma 39.13.10.

Step 1. We may assume X is a reduced Noetherian separated algebraic space (for
example by Cohomology of Spaces, Lemma 51.16.1 or by Limits of Spaces, Lemma
52.15.3) and we may choose a finite surjective morphism Y → X where Y is a
Noetherian scheme (by Limits of Spaces, Proposition 52.16.2).
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Step 2. After replacing X by an open neighbourhood of x, there exists a birational
finite morphism X ′ → X and a closed subscheme Y ′ ⊂ X ′×X Y such that Y ′ → X ′

is surjective finite locally free. Namely, because X is reduced there is a dense open
subspace U ⊂ X over which Y is flat (Morphisms of Spaces, Proposition 49.30.1).

Then we can choose a U -admissible blow up b : X̃ → X such that the strict
transform Ỹ of Y is flat over X̃, see More on Morphisms of Spaces, Lemma 58.28.1.
(An alternative is to use Hilbert schemes if one wants to avoid using the result on

blow ups). Then we let X ′ ⊂ X̃ be the scheme theoretic closure of b−1(U) and

Y ′ = X ′×X̃ Ỹ . Since x is a codimension 1 point, we see that X ′ → X is finite over
a neighbourhood of x (Lemma 54.4.4).

Step 3. After shrinking X to a smaller neighbourhood of x we get that X ′ is a
scheme. This holds because Y ′ is a scheme and Y ′ → X ′ being finite locally free
and because every finite set of codimension 1 points of Y ′ is contained in an affine
open. Use Properties of Spaces, Proposition 48.11.1 and Varieties, Proposition
32.22.7.

Step 4. There exists an affine open W ′ ⊂ X ′ containing all points lying over x
which is the inverse image of an open subspace of X. To prove this let Z ⊂ X be
the closure of the set of points where X ′ → X is not an isomorphism. We may
assume x ∈ Z otherwise we are already done. Then x is a generic point of an
irreducible component of Z and after shrinking X we may assume Z is an affine
scheme (Lemma 54.7.4). Then the inverse image Z ′ ⊂ X ′ is an affine scheme as well.
Say x1, . . . , xn ∈ Z ′ are the points mapping to x. Then we can find an affine open
W ′ in X ′ whose intersection with Z ′ is the inverse image of a principal open of Z
containing x. Namely, we first pick an affine open W ′ ⊂ X ′ containing x1, . . . , xn
using Varieties, Proposition 32.22.7. Then we pick a principal open D(f) ⊂ Z
containing x whose inverse image D(f |Z′) is contained in W ′ ∩ Z ′. Then we pick
f ′ ∈ Γ(W ′,OW ′) restricting to f |Z′ and we replace W ′ by D(f ′) ⊂ W ′. Since
X ′ → X is an isomorphism away from Z ′ → Z the choice of W ′ guarantees that
the image W ⊂ X of W ′ is open with inverse image W ′ in X ′.

Step 5. Then W ′ → W is a finite surjective morphism and W is a scheme by
Cohomology of Spaces, Lemma 51.16.1 and the proof is complete.

54.8. Geometrically connected algebraic spaces

If X is a connected algebraic space over a field, then it can happen that X be-
comes disconnected after extending the ground field. This does not happen for
geometrically connected schemes.

Definition 54.8.1. Let X be an algebraic space over the field k. We say X is
geometrically connected over k if the base change Xk′ is connected for every field
extension k′ of k.

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected algebraic spaces are nonempty.

Lemma 54.8.2. Let X be an algebraic space over the field k. Let k ⊂ k′ be a
field extension. Then X is geometrically connected over k if and only if Xk′ is
geometrically connected over k′.
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Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k ⊂ k′′ there exists a common field extension k′ ⊂ k′′′ and k′′ ⊂ k′′′. As the mor-
phism Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. �

Lemma 54.8.3. Let k be a field. Let X, Y be algebraic spaces over k. Assume X
is geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. Let y ∈ |Y | be represented by a morphism Spec(K) → Y be a morphism
where K is a field. The fibre of |X ×k Y | → |Y | over y is the image of |YK | →
|X ×k Y | by Properties of Spaces, Lemma 48.4.3. Thus these fibres are connected
by our assumption that Y is geometrically connected. By Morphisms of Spaces,
Lemma 49.6.6 the map |p| is open. Thus we may apply Topology, Lemma 5.6.5 to
conclude. �

Lemma 54.8.4. Let k ⊂ k′ be an extension of fields. Let X be an algebraic space
over k. Assume k separably algebraically closed. Then the morphism Xk′ → X
induces a bijection of connected components. In particular, X is geometrically
connected over k if and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically
connected over k, see Algebra, Lemma 10.46.4. Hence Z = Spec(k′) is geometrically
connected over k by Varieties, Lemma 32.5.5. Since Xk′ = Z ×k X the result is a
special case of Lemma 54.8.3. �

Lemma 54.8.5. Let k be a field. Let X be an algebraic space over k. Let k be a
separable algebraic closure of k. Then X is geometrically connected if and only if
the base change Xk is connected.

Proof. Assume Xk is connected. Let k ⊂ k′ be a field extension. There exists a

field extension k ⊂ k′ such that k′ embeds into k
′

as an extension of k. By Lemma
54.8.4 we see that Xk

′ is connected. Since Xk
′ → Xk′ is surjective we conclude

that Xk′ is connected as desired. �

Let k be a field. Let k ⊂ k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)

of the opposite group on the scheme Spec(k). Let X be an algebraic space over k.
Since Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces
a canonical action

(54.8.5.1) Gal(k/k)opp ×Xk −→ Xk.
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Lemma 54.8.6. Let k be a field. Let X be an algebraic space over k. Let k be
a (possibly infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open.
Then

(1) there exists a finite subextension k ⊂ k′ ⊂ k and a quasi-compact open
V ′ ⊂ Xk′ such that V = (V ′)k,

(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all
σ ∈ H.

Proof. Choose a scheme U and a surjective étale morphism U → X. Choose a
quasi-compact open W ⊂ Uk whose image in Xk is V . This is possible because
|Uk| → |Xk| is continuous and because |Uk| has a basis of quasi-compact opens. We
can apply Varieties, Lemma 32.5.9 to W ⊂ Uk to obtain the lemma. �

Lemma 54.8.7. Let k be a field. Let k ⊂ k be a (possibly infinite) Galois extension.
Let X be an algebraic space over k. Let T ⊂ |Xk| have the following properties

(1) T is a closed subset of |Xk|,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ |X| whose inverse image in |Xk′ | is T .

Proof. Let T ⊂ |X| be the image of T . Since |Xk| → |X| is surjective, the

statement means that T is closed and that its inverse image is T . Choose a scheme
U and a surjective étale morphism U → X. By the case of schemes (see Varieties,
Lemma 32.5.10) there exists a closed subset T ′ ⊂ |U | whose inverse image in |Uk|
is the inverse image of T . Since |Uk| → |Xk| is surjective, we see that T ′ is the
inverse image of T via |U | → |X|. By our construction of the topology on |X| this
means that T is closed. In the same manner one sees that T is the inverse image
of T . �

Lemma 54.8.8. Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k ⊂ k′ the scheme Xk′ is con-

nected.

Proof. This proof is identical to the proof of Varieties, Lemma 32.5.11 except that
we replace Varieties, Lemma 32.5.7 by Lemma 54.8.5, we replace Varieties, Lemma
32.5.9 by Lemma 54.8.6, and we replace Varieties, Lemma 32.5.10 by Lemma 54.8.7.
We urge the reader to read that proof in stead of this one.

It follows immediately from the definition that (1) implies (2). Assume that X is
not geometrically connected. Let k ⊂ k be a separable algebraic closure of k. By
Lemma 54.8.5 it follows that Xk is disconnected. Say Xk = U q V with U and V
open, closed, and nonempty algebraic subspaces of Xk.

Suppose that W ⊂ X is any quasi-compact open subspace. Then Wk ∩ U and

Wk ∩ V are open and closed subspaces of Wk. In particular Wk ∩ U and Wk ∩ V
are quasi-compact, and by Lemma 54.8.6 both Wk∩U and Wk∩V are defined over

a finite subextension and invariant under an open subgroup of Gal(k/k). We will
use this without further mention in the following.
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Pick W0 ⊂ X quasi-compact open subspace such that both W0,k ∩U and W0,k ∩ V
are nonempty. Choose a finite subextension k ⊂ k′ ⊂ k and a decomposition
W0,k′ = U ′0 q V ′0 into open and closed subsets such that W0,k ∩ U = (U ′0)k and

W0,k ∩ V = (V ′0)k. Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k ∩ U) =

W0,k ∩ U and similarly for V .

Having chosen W0, k′ as above, for every quasi-compact open subspace W ⊂ X we
set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed subspaces. Also, by construction Wk̄ = UW q VW .

We claim that if W ⊂W ′ ⊂ X are quasi-compact open subspaces, then Wk∩UW ′ =
UW and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U q V is a disjoint union of

open and closed subsets. It is clear that V is nonempty as it is constructed by taking
unions (locally). On the other hand, U is nonempty since it contains W0 ∩ U by
construction. Finally, U, V ⊂ Xk̄ are closed andH-invariant by construction. Hence
by Lemma 54.8.7 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed U ′, V ′ ⊂ Xk′ .
Clearly Xk′ = U ′ q V ′ and we see that Xk′ is disconnected as desired. �

54.9. Spaces smooth over fields

Lemma 54.9.1. Let k be a field. Let X be an algebraic space smooth over k. Then
X is a regular algebraic space.

Proof. Choose a scheme U and a surjective étale morphism U → X. The mor-
phism U → Spec(k) is smooth as a composition of an étale (hence smooth) mor-
phism and a smooth morphism (see Morphisms of Spaces, Lemmas 49.36.6 and
49.34.2). Hence U is regular by Varieties, Lemma 32.15.3. By Properties of Spaces,
Definition 48.7.2 this means that X is regular. �

Lemma 54.9.2. Let k be a field. Let X be an algebraic space smooth over Spec(k).
The set of x ∈ |X| which are image of morphisms Spec(k′)→ X with k′ ⊃ k finite
separable is dense in |X|.

Proof. Choose a scheme U and a surjective étale morphism U → X. The mor-
phism U → Spec(k) is smooth as a composition of an étale (hence smooth) mor-
phism and a smooth morphism (see Morphisms of Spaces, Lemmas 49.36.6 and
49.34.2). Hence we can apply Varieties, Lemma 32.15.6 to see that the closed
points of U whose residue fields are finite separable over k are dense. This implies
the lemma by our definition of the topology on |X|. �
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CHAPTER 55

Topologies on Algebraic Spaces

55.1. Introduction

In this chapter we introduce some topologies on the category of algebraic spaces.
Compare with the material in [Gro71], [BLR90], [LMB00] and [Knu71]. Before
doing so we would like to point out that there are many different choices of sites
(as defined in Sites, Definition 7.6.2) which give rise to the same notion of sheaf on
the underlying category. Hence our choices may be slightly different from those in
the references but ultimately lead to the same cohomology groups, etc.

55.2. The general procedure

In this section we explain a general procedure for producing the sites we will be
working with. This discussion will make little or no sense unless the reader has
read Topologies, Section 33.2.

Let S be a base scheme. Take any category Schα constructed as in Sets, Lemma
3.9.2 starting with S and any set of schemes over S you want to be included. Choose
any set of coverings Covfppf on Schα as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of fppf coverings. Let Schfppf denote the big fppf site
so obtained, and let (Sch/S)fppf denote the corresponding big fppf site of S. (The
above is entirely as prescribed in Topologies, Section 33.7.)

Given choices as above the category of algebraic spaces over S has a set of iso-
morphism classes. One way to see this is to use the fact that any algebraic space
over S is of the form U/R for some étale equivalence relation j : R → U ×S U
with U,R ∈ Ob((Sch/S)fppf ), see Spaces, Lemma 47.9.1. Hence we can find a full
subcategory Spaces/S of the category of algebraic spaces over S which has a set of
objects such that each algebraic space is isomorphic to an object of Spaces/S. We
fix a choice of such a category.

In the sections below, given a topology τ , the big site (Spaces/S)τ (resp. the big
site (Spaces/X)τ of an algebraic space X over S) has as underlying category the
category Spaces/S (resp. the subcategory Spaces/X of Spaces/S, see Categories,
Example 4.2.13). The procedure for turning this into a site is as usual by defining
a class of τ -coverings and using Sets, Lemma 3.11.1 to choose a sufficiently large
set of coverings which defines the topology.

We point out that the small étale site Xétale of an algebraic space X has already
been defined in Properties of Spaces, Definition 48.15.1. Its objects are schemes
étale over X, of which there are plenty by definition of an algebraic spaces. However,
a more natural site, from the perspective of this chapter (compare Topologies,
Definition 33.4.8) is the site Xspaces,étale of Properties of Spaces, Definition 48.15.2.
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These two sites define the same topos, see Properties of Spaces, Lemma 48.15.3.
We will not redefine these in this chapter; instead we will simply use them.

Finally, we intend not to define the Zariski sites, since these do not seem particularly
useful (although the Zariski topology is occasionally useful).

55.3. Fpqc topology

We briefly discuss the notion of an fpqc covering of algebraic spaces. Please compare
with Topologies, Section 33.8. We will show in Descent on Spaces, Proposition
56.4.1 that quasi-coherent sheaves descent along these.

Definition 55.3.1. Let S be a scheme, and let X be an algebraic space over S. An
fpqc covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
such that each fi is flat and such that for every affine scheme Z and morphism
h : Z → X there exists a standard fpqc covering {gj : Zj → Z}j=1,...,n which
refines the family {Xi ×X Z → Z}i∈I .

In other words, there exists indices i1, . . . , in ∈ I and morphisms hj : Uj → Xij

such that fij ◦ hj = h ◦ gj . Note that if X and all Xi are representable, this is the
same as a fpqc covering of schemes by Topologies, Lemma 33.8.11.

Lemma 55.3.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X ′ → X is an isomorphism then {X ′ → X} is an fpqc covering of X.
(2) If {Xi → X}i∈I is an fpqc covering and for each i we have an fpqc covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is an fpqc covering.

(3) If {Xi → X}i∈I is an fpqc covering and X ′ → X is a morphism of
algebraic spaces then {X ′ ×X Xi → X ′}i∈I is an fpqc covering.

Proof. Part (1) is clear. Consider g : X ′ → X and {Xi → X}i∈I an fpqc covering
as in (3). By Morphisms of Spaces, Lemma 49.28.4 the morphisms X ′×XXi → X ′

are flat. If h′ : Z → X ′ is a morphism from an affine scheme towards X ′, then
set h = g ◦ h′ : Z → X. The assumption on {Xi → X}i∈I means there exists
a standard fpqc covering {Zj → Z}j=1,...,n and morphisms Zj → Xi(j) covering
h for certain i(j) ∈ I. By the universal property of the fibre product we obtain
morphisms Zj → X ′ ×X Xi(j) over h′ also. Hence {X ′ ×X Xi → X ′}i∈I is an fpqc
covering. This proves (3).

Let {Xi → X}i∈I and {Xij → Xi}j∈Ji be as in (2). Let h : Z → X be a
morphism from an affine scheme towards X. By assumption there exists a standard
fpqc covering {Zj → Z}j=1,...,n and morphisms hj : Zj → Xi(j) covering h for
some indices i(j) ∈ I. By assumption there exist standard fpqc coverings {Zj,l →
Zj}l=1,...,n(j) and morphisms Zj,l → Xi(j)j(l) covering hj for some indices j(l) ∈
Ji(j). By Topologies, Lemma 33.8.10 the family {Zj,l → Z} is a standard fpqc
covering. Hence we conclude that {Xij → X}i∈I,j∈Ji is an fpqc covering. �

Lemma 55.3.3. Let S be a scheme, and let X be an algebraic space over S.
Suppose that {fi : Xi → X}i∈I is a family of morphisms of algebraic spaces with
target X. Let U → X be a surjective étale morphism from a scheme towards X.
Then {fi : Xi → X}i∈I is an fpqc covering of X if and only if {U ×X Xi → U}i∈I
is an fpqc covering of U .
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Proof. If {Xi → X}i∈I is an fpqc covering, then so is {U ×X Xi → U}i∈I by
Lemma 55.3.2. Assume that {U×XXi → U}i∈I is an fpqc covering. Let h : Z → X
be a morphism from an affine scheme towards X. Then we see that U ×X Z → Z
is a surjective étale morphism of schemes, in particular open. Hence we can find
finitely many affine opens W1, . . . ,Wt of U ×X Z whose images cover Z. For each
j we may apply the condition that {U ×X Xi → U}i∈I is an fpqc covering to the
morphism Wj → U , and obtain a standard fpqc covering {Wjl →Wj} which refines
{Wj ×X Xi → Wj}i∈I . Hence {Wjl → Z} is a standard fpqc covering of Z (see
Topologies, Lemma 33.8.10) which refines {Z ×X Xi → X} and we win. �

Lemma 55.3.4. Let S be a scheme, and let X be an algebraic space over S.
Suppose that U = {fi : Xi → X}i∈I is an fpqc covering of X. Then there exists a
refinement V = {gi : Ti → X} of U which is an fpqc covering such that each Ti is
a scheme.

Proof. Omitted. Hint: For each i choose a scheme Ti and a surjective étale mor-
phism Ti → Xi. Then check that {Ti → X} is an fpqc covering. �

To be continued...

55.4. Fppf topology

In this section we discuss the notion of an fppf covering of algebraic spaces, and
we define the big fppf site of an algebraic space. Please compare with Topologies,
Section 33.7.

Definition 55.4.1. Let S be a scheme, and let X be an algebraic space over S. An
fppf covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
over S such that each fi is flat and locally of finite presentation and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 33.7.1. In particular, if X and all
the Xi are schemes, then we recover the usual notion of an fppf covering of schemes.

Lemma 55.4.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X ′ → X is an isomorphism then {X ′ → X} is an fppf covering of X.
(2) If {Xi → X}i∈I is an fppf covering and for each i we have an fppf covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is an fppf covering.

(3) If {Xi → X}i∈I is an fppf covering and X ′ → X is a morphism of
algebraic spaces then {X ′ ×X Xi → X ′}i∈I is an fppf covering.

Proof. Omitted. �

Lemma 55.4.3. Let S be a scheme, and let X be an algebraic space over S.
Suppose that U = {fi : Xi → X}i∈I is an fppf covering of X. Then there exists a
refinement V = {gi : Ti → X} of U which is an fppf covering such that each Ti is
a scheme.

Proof. Omitted. Hint: For each i choose a scheme Ti and a surjective étale mor-
phism Ti → Xi. Then check that {Ti → X} is an fppf covering. �
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Lemma 55.4.4. Let S be a scheme. Let {fi : Xi → X}i∈I be an fppf covering of
algebraic spaces over S. Then the map of sheaves∐

Xi −→ X

is surjective.

Proof. This follows from Spaces, Lemma 47.5.9. See also Spaces, Remark 47.5.2
in case you are confused about the meaning of this lemma. �

To be continued...

55.5. Syntomic topology

In this section we discuss the notion of a syntomic covering of algebraic spaces,
and we define the big syntomic site of an algebraic space. Please compare with
Topologies, Section 33.6.

Definition 55.5.1. Let S be a scheme, and let X be an algebraic space over S.
A syntomic covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic
spaces over S such that each fi is syntomic and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 33.6.1. In particular, if X and
all the Xi are schemes, then we recover the usual notion of a syntomic covering of
schemes.

Lemma 55.5.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X ′ → X is an isomorphism then {X ′ → X} is a syntomic covering of
X.

(2) If {Xi → X}i∈I is a syntomic covering and for each i we have a syntomic
covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a syntomic covering.

(3) If {Xi → X}i∈I is a syntomic covering and X ′ → X is a morphism of
algebraic spaces then {X ′ ×X Xi → X ′}i∈I is a syntomic covering.

Proof. Omitted. �

To be continued...

55.6. Smooth topology

In this section we discuss the notion of a smooth covering of algebraic spaces, and we
define the big smooth site of an algebraic space. Please compare with Topologies,
Section 33.5.

Definition 55.6.1. Let S be a scheme, and let X be an algebraic space over S.
A smooth covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic
spaces over S such that each fi is smooth and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.
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This is exactly the same as Topologies, Definition 33.5.1. In particular, if X and
all the Xi are schemes, then we recover the usual notion of a smooth covering of
schemes.

Lemma 55.6.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X ′ → X is an isomorphism then {X ′ → X} is a smooth covering of X.
(2) If {Xi → X}i∈I is a smooth covering and for each i we have a smooth

covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a smooth covering.
(3) If {Xi → X}i∈I is a smooth covering and X ′ → X is a morphism of

algebraic spaces then {X ′ ×X Xi → X ′}i∈I is a smooth covering.

Proof. Omitted. �

To be continued...

55.7. Étale topology

In this section we discuss the notion of a étale covering of algebraic spaces, and
we define the big étale site of an algebraic space. Please compare with Topologies,
Section 33.4.

Definition 55.7.1. Let S be a scheme, and let X be an algebraic space over S. A
étale covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
over S such that each fi is étale and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 33.4.1. In particular, if X and all
the Xi are schemes, then we recover the usual notion of a étale covering of schemes.

Lemma 55.7.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X ′ → X is an isomorphism then {X ′ → X} is a étale covering of X.
(2) If {Xi → X}i∈I is a étale covering and for each i we have a étale covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a étale covering.

(3) If {Xi → X}i∈I is a étale covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is a étale covering.

Proof. Omitted. �

To be continued...

55.8. Zariski topology

In Spaces, Section 47.12 we introduced the notion of a Zariski covering of an al-
gebraic space by open subspaces. Here is the corresponding notion with open
subspaces replaces by open immersions.

Definition 55.8.1. Let S be a scheme, and let X be an algebraic space over S.
A Zariski covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic
spaces over S such that each fi is an open immersion and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.
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Although Zariski coverings are occasionally useful the corresponding topology on
the category of algebraic spaces is really too coarse, and not particularly useful.
Still, it does define a site.

Lemma 55.8.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X ′ → X is an isomorphism then {X ′ → X} is a Zariski covering of X.
(2) If {Xi → X}i∈I is a Zariski covering and for each i we have a Zariski

covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a Zariski covering.
(3) If {Xi → X}i∈I is a Zariski covering and X ′ → X is a morphism of

algebraic spaces then {X ′ ×X Xi → X ′}i∈I is a Zariski covering.

Proof. Omitted. �
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CHAPTER 56

Descent and Algebraic Spaces

56.1. Introduction

In the chapter on topologies on algebraic spaces (see Topologies on Spaces, Section
55.1) we introduced étale, fppf, smooth, syntomic and fpqc coverings of algebraic
spaces. In this chapter we discuss what kind of structures over algebraic spaces
can be descended through such coverings. See for example [Gro95a], [Gro95b],
[Gro95e], [Gro95f], [Gro95c], and [Gro95d].

56.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

56.3. Descent data for quasi-coherent sheaves

This section is the analogue of Descent, Section 34.2 for algebraic spaces. It makes
sense to read that section first.

Definition 56.3.1. Let S be a scheme. Let {fi : Xi → X}i∈I be a family of
morphisms of algebraic spaces over S with fixed target X.

(1) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the
given family is given by a quasi-coherent sheaf Fi on Xi for each i ∈ I,
an isomorphism of quasi-coherent OXi×XXj -modules ϕij : pr∗0Fi → pr∗1Fj
for each pair (i, j) ∈ I2 such that for every triple of indices (i, j, k) ∈ I3

the diagram

pr∗0Fi

pr∗01ϕij $$

pr∗02ϕik

// pr∗2Fk

pr∗1Fj
pr∗12ϕjk

::

of OXi×XXj×XXk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, ϕij)→ (F ′i , ϕ′ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OXi -modules ψi : Fi → F ′i such that all the

3439
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diagrams

pr∗0Fi ϕij
//

pr∗0ψi

��

pr∗1Fj

pr∗1ψj

��
pr∗0F ′i

ϕ′ij // pr∗1F ′j

commute.

Lemma 56.3.2. Let S be a scheme. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J
be families of morphisms of algebraic spaces over S with fixed targets. Let (g, α :
I → J, (gi)) : U → V be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1. Let (Fj , ϕjj′) be a descent datum for quasi-coherent sheaves with
respect to the family {Vj → V }j∈J . Then

(1) The system (
g∗iFα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , ϕjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′i)) of families of maps with

fixed target with g = g′ there exists a functorial isomorphism of descent
data

(g∗iFα(i), (gi × gi′)∗ϕα(i)α(i′)) ∼= ((g′i)
∗Fα′(i), (g′i × g′i′)∗ϕα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗iFα(i) → (g′i)
∗Fα′(i) which give the isomor-

phism of descent data in part (3) are the pullbacks of the maps ϕα(i)α′(i) by the
morphisms (gi, g

′
i) : Ui → Vα(i) ×V Vα′(i). �

Let g : U → V be a morphism of algebraic spaces. The lemma above tells us
that there is a well defined pullback functor between the categories of descent data
relative to families of maps with target V and U provided there is a morphism
between those families of maps which “lives over g”.

Definition 56.3.3. Let S be a scheme. Let {Ui → U}i∈I be a family of morphisms
of algebraic spaces over S with fixed target.

(1) Let F be a quasi-coherent OU -module. We call the unique descent on F
datum with respect to the covering {U → U} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Ui → U} is called the
canonical descent datum. Notation: (F|Ui , can).

(3) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the
given family is said to be effective if there exists a quasi-coherent sheaf F
on U such that (Fi, ϕij) is isomorphic to (F|Ui , can).

Lemma 56.3.4. Let S be a scheme. Let U be an algebraic space over S. Let
{Ui → U} be a Zariski covering of U , see Topologies on Spaces, Definition 55.8.1.
Any descent datum on quasi-coherent sheaves for the family U = {Ui → U} is
effective. Moreover, the functor from the category of quasi-coherent OU -modules to
the category of descent data with respect to {Ui → U} is fully faithful.

Proof. Omitted. �
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56.4. Fpqc descent of quasi-coherent sheaves

The main application of flat descent for modules is the corresponding descent state-
ment for quasi-coherent sheaves with respect to fpqc-coverings.

Proposition 56.4.1. Let S be a scheme. Let {Xi → X} be an fpqc covering of
algebraic spaces over S, see Topologies on Spaces, Definition 55.3.1. Any descent
datum on quasi-coherent sheaves for {Xi → X} is effective. Moreover, the functor
from the category of quasi-coherent OX-modules to the category of descent data with
respect to {Xi → X} is fully faithful.

Proof. This is more or less a formal consequence of the corresponding result for
schemes, see Descent, Proposition 34.5.2. Here is a strategy for a proof:

(1) The fact that {Xi → X} is a refinement of the trivial covering {X → X}
gives, via Lemma 56.3.2, a functor QCoh(OX) → DD({Xi → X}) from
the category of quasi-coherent OX -modules to the category of descent
data for the given family.

(2) In order to prove the proposition we will construct a quasi-inverse functor
back : DD({Xi → X})→ QCoh(OX).

(3) Applying again Lemma 56.3.2 we see that there is a functor DD({Xi →
X}) → DD({Tj → X}) if {Tj → X} is a refinement of the given family.
Hence in order to construct the functor back we may assume that each Xi

is a scheme, see Topologies on Spaces, Lemma 55.3.4. This reduces us to
the case where all the Xi are schemes.

(4) A quasi-coherent sheaf on X is by definition a quasi-coherent OX -module
on Xétale. Now for any U ∈ Ob(Xétale) we get an fppf covering {Ui ×X
Xi → U} by schemes and a morphism g : {Ui ×X Xi → U} → {Xi → X}
of coverings lying over U → X. Given a descent datum ξ = (Fi, ϕij) we
obtain a quasi-coherent OU -module Fξ,U corresponding to the pullback
g∗ξ of Lemma 56.3.2 to the covering of U and using effectivity for fppf
covering of schemes, see Descent, Proposition 34.5.2.

(5) Check that ξ 7→ Fξ,U is functorial in ξ. Omitted.
(6) Check that ξ 7→ Fξ,U is compatible with morphisms U → U ′ of the site

Xétale, so that the system of sheaves Fξ,U corresponds to a quasi-coherent
Fξ on Xétale, see Properties of Spaces, Lemma 48.27.3. Details omitted.

(7) Check that back : ξ 7→ Fξ is quasi-inverse to the functor constructed in
(1). Omitted.

This finishes the proof. �

56.5. Descent of finiteness properties of modules

This section is the analogue for the case of algebraic spaces of Descent, Section
34.6. The goal is to show that one can check a quasi-coherent module has a certain
finiteness conditions by checking on the members of a covering. We will repeatedly
use the following proof scheme. Suppose that X is an algebraic space, and that
{Xi → X} is a fppf (resp. fpqc) covering. Let U → X be a surjective étale morphism
such that U is a scheme. Then there exists an fppf (resp. fpqc) covering {Yj → X}
such that

(1) {Yj → X} is a refinement of {Xi → X},
(2) each Yj is a scheme, and
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(3) each morphism Yj → X factors though U , and
(4) {Yj → U} is an fppf (resp. fpqc) covering of U .

Namely, first refine {Xi → X} by an fppf (resp. fpqc) covering such that each
Xi is a scheme, see Topologies on Spaces, Lemma 55.4.3, resp. Lemma 55.3.4.
Then set Yi = U ×X Xi. A quasi-coherent OX -module F is of finite type, of
finite presentation, etc if and only if the quasi-coherent OU -module F|U is of finite
type, of finite presentation, etc. Hence we can use the existence of the refinement
{Yj → X} to reduce the proof of the following lemmas to the case of schemes. We
will indicate this by saying that “the result follows from the case of schemes by étale
localization”.

Lemma 56.5.1. Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX-module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗i F
is a finite type OXi-module. Then F is a finite type OX-module.

Proof. This follows from the case of schemes, see Descent, Lemma 34.6.1, by étale
localization. �

Lemma 56.5.2. Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX-module. Let {fi : Xi → X}i∈I be an fpqc covering such that each
f∗i F is an OXi-module of finite presentation. Then F is an OX-module of finite
presentation.

Proof. This follows from the case of schemes, see Descent, Lemma 34.6.3, by étale
localization. �

Lemma 56.5.3. Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX-module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗i F
is a flat OXi-module. Then F is a flat OX-module.

Proof. This follows from the case of schemes, see Descent, Lemma 34.6.5, by étale
localization. �

Lemma 56.5.4. Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX-module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗i F
is a finite locally free OXi-module. Then F is a finite locally free OX-module.

Proof. This follows from the case of schemes, see Descent, Lemma 34.6.6, by étale
localization. �

The definition of a locally projective quasi-coherent sheaf can be found in Properties
of Spaces, Section 48.29. It is also proved there that this notion is preserved under
pullback.

Lemma 56.5.5. Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX-module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗i F
is a locally projective OXi-module. Then F is a locally projective OX-module.

Proof. This follows from the case of schemes, see Descent, Lemma 34.6.7, by étale
localization. �

We also add here two results which are related to the results above, but are of a
slightly different nature.
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Lemma 56.5.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Assume f is a finite mor-
phism. Then F is an OX-module of finite type if and only if f∗F is an OY -module
of finite type.

Proof. As f is finite it is representable. Choose a scheme V and a surjective
étale morphism V → Y . Then U = V ×Y X is a scheme with a surjective étale
morphism towards X and a finite morphism ψ : U → V (the base change of f).
Since ψ∗(F|U ) = f∗F|V the result of the lemma follows immediately from the
schemes version which is Descent, Lemma 34.6.9. �

Lemma 56.5.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Assume f is finite and of
finite presentation. Then F is an OX-module of finite presentation if and only if
f∗F is an OY -module of finite presentation.

Proof. As f is finite it is representable. Choose a scheme V and a surjective
étale morphism V → Y . Then U = V ×Y X is a scheme with a surjective étale
morphism towards X and a finite morphism ψ : U → V (the base change of f).
Since ψ∗(F|U ) = f∗F|V the result of the lemma follows immediately from the
schemes version which is Descent, Lemma 34.6.10. �

56.6. Fpqc coverings

This section is the analogue of Descent, Section 34.9. At the moment we do not
know if all of the material for fpqc coverings of schemes holds also for algebraic
spaces.

Lemma 56.6.1. Let S be a scheme. Let {fi : Ti → T}i∈I be an fpqc covering of
algebraic spaces over S. Suppose that for each i we have an open subspace Wi ⊂ Ti
such that for all i, j ∈ I we have pr−1

0 (Wi) = pr−1
1 (Wj) as open subspaces of

Ti×T Tj. Then there exists a unique open subspace W ⊂ T such that Wi = f−1
i (W )

for each i.

Proof. By Topologies on Spaces, Lemma 55.3.4 we may assume each Ti is a scheme.
Choose a scheme U and a surjective étale morphism U → T . Then {Ti×T U → U}
is an fpqc covering of U and Ti ×T U is a scheme for each i. Hence we see that
the collection of opens Wi ×T U comes from a unique open subscheme W ′ ⊂ U
by Descent, Lemma 34.9.2. As U → X is open we can define W ⊂ X the Zariski
open which is the image of W ′, see Properties of Spaces, Section 48.4. We omit the
verification that this works, i.e., that Wi is the inverse image of W for each i. �

Lemma 56.6.2. Let S be a scheme. Let {Ti → T} be an fpqc covering of algebraic
spaces over S, see Topologies on Spaces, Definition 55.3.1. Then given an algebraic
space B over S the sequence

MorS(T,B) // ∏
i MorS(Ti, B)

//
//
∏
i,j MorS(Ti ×T Tj , B)

is an equalizer diagram. In other words, every representable functor on the category
of algebraic spaces over S satisfies the sheaf condition for fpqc coverings.

Proof. We know this is true if {Ti → T} is an fpqc covering of schemes, see
Properties of Spaces, Proposition 48.14.1. This is the key fact and we encourage
the reader to skip the rest of the proof which is formal. Choose a scheme U and a
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surjective étale morphism U → T . Let Ui be a scheme and let Ui → Ti ×T U be a
surjective étale morphism. Then {Ui → U} is an fpqc covering. This follows from
Topologies on Spaces, Lemmas 55.3.2 and 55.3.3. By the above we have the result
for {Ui → U}.
What this means is the following: Suppose that bi : Ti → B is a family of morphisms
with bi ◦ pr0 = bj ◦ pr1 as morphisms Ti ×T Tj → B. Then we let ai : Ui → B
be the composition of Ui → Ti with bi. By what was said above we find a unique
morphism a : U → X such that ai is the composition of a with Ui → U . The
uniqueness guarantees that a ◦ pr0 = a ◦ pr1 as morphisms U ×T U → B. Then
since T = U/(U ×T U) as a sheaf, we find that a comes from a unique morphism
b : T → B. Chasing diagrams we find that b is the morphism we are looking for. �

56.7. Descent of finiteness properties of morphisms

The following type of lemma is occasionally useful.

Lemma 56.7.1. Let S be a scheme. Let X → Y → Z be morphism of algebraic
spaces. Let P be one of the following properties of morphisms of algebraic spaces
over S: flat, locally finite type, locally finite presentation. Assume that X → Z has
P and that X → Y is a surjection of sheaves on (Sch/S)fppf . Then Y → Z is P .

Proof. Choose a scheme W and a surjective étale morphism W → Z. Choose a
scheme V and a surjective étale morphism V →W ×Z Y . Choose a scheme U and a
surjective étale morphism U → V ×YX. By assumption we can find an fppf covering
{Vi → V } and lifts Vi → X of the morphism Vi → Y . Since U → X is surjective
étale we see that over the members of the fppf covering {Vi ×X U → V } we have
lifts into U . Hence U → V induces a surjection of sheaves on (Sch/S)fppf . By our
definition of what it means to have property P for a morphism of algebraic spaces
(see Morphisms of Spaces, Definition 49.28.1, Definition 49.23.1, and Definition
49.27.1) we see that U → W has P and we have to show V → W has P . Thus
we reduce the question to the case of morphisms of schemes which is treated in
Descent, Lemma 34.10.8. �

A more standard case of the above lemma is the following. (The version with “flat”
follows from Morphisms of Spaces, Lemma 49.29.5.)

Lemma 56.7.2. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that f
is surjective, flat, and locally of finite presentation and assume that p is locally of fi-
nite presentation (resp. locally of finite type). Then q is locally of finite presentation
(resp. locally of finite type).

Proof. Since {X → Y } is an fppf covering, it induces a surjection of fppf sheaves
(Topologies on Spaces, Lemma 55.4.4) and the lemma is a special case of Lemma
56.7.1. On the other hand, an easier argument is to deduce it from the analogue
for schemes. Namely, the problem is étale local on B and Y (Morphisms of Spaces,
Lemmas 49.23.4 and 49.27.4). Hence we may assume that B and Y are affine
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schemes. Since |X| → |Y | is open (Morphisms of Spaces, Lemma 49.28.6), we
can choose an affine scheme U and an étale morphism U → X such that the
composition U → Y is surjective. In this case the result follows from Descent,
Lemma 34.10.3. �

Lemma 56.7.3. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that

(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemmas 49.33.4, 49.34.4, and 49.36.2).
Hence we may assume that B and Y are affine schemes. Since |X| → |Y | is open
(Morphisms of Spaces, Lemma 49.28.6), we can choose an affine scheme U and an
étale morphism U → X such that the composition U → Y is surjective. In this
case the result follows from Descent, Lemma 34.10.4. �

Actually we can strengthen this result as follows.

Lemma 56.7.4. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that

(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemmas 49.34.4 and 49.36.2). Hence we
may assume that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms
of Spaces, Lemma 49.28.6), we can choose an affine scheme U and an étale morphism
U → X such that the composition U → Y is surjective. In this case the result
follows from Descent, Lemma 34.10.5. �

Lemma 56.7.5. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that

(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.
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Then both q and f are syntomic.

Proof. We deduce this from the analogue for schemes. Namely, the problem is
étale local on B and Y (Morphisms of Spaces, Lemma 49.33.4). Hence we may
assume that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms of
Spaces, Lemma 49.28.6), we can choose an affine scheme U and an étale morphism
U → X such that the composition U → Y is surjective. In this case the result
follows from Descent, Lemma 34.10.7. �

56.8. Descending properties of spaces

In this section we put some results of the following kind.

Lemma 56.8.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. If f is flat at x and X is geometrically unibranch at
x, then Y is geometrically unibranch at f(x).

Proof. Consider the map of étale local rings OY,f(x) → OX,x. By Morphisms of
Spaces, Lemma 49.28.8 this is flat. Hence if OX,x has a unique minimal prime, so
does OY,f(x) (by going down, see Algebra, Lemma 10.38.17). �

Lemma 56.8.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is flat and surjective and X is reduced, then Y is reduced.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . As f is surjective and
flat, the morphism of schemes U → V is surjective and flat. In this way we reduce
the problem to the case of schemes (as reducedness of X and Y is defined in terms
of reducedness of U and V , see Properties of Spaces, Section 48.7). The case of
schemes is Descent, Lemma 34.15.1. �

Lemma 56.8.3. Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is locally Noetherian, then Y is
locally Noetherian.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . As f is surjective, flat,
and locally of finite presentation the morphism of schemes U → V is surjective,
flat, and locally of finite presentation. In this way we reduce the problem to the
case of schemes (as being locally Noetherian for X and Y is defined in terms of
being locally Noetherian of U and V , see Properties of Spaces, Section 48.7). In
the case of schemes the result follows from Descent, Lemma 34.12.1. �

Lemma 56.8.4. Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is regular, then Y is regular.

Proof. By Lemma 56.8.3 we know that Y is locally Noetherian. Choose a scheme
V and a surjective étale morphism V → Y . It suffices to prove that the local rings
of V are all regular local rings, see Properties, Lemma 27.9.2. Choose a scheme
U and a surjective étale morphism U → X ×Y V . As f is surjective and flat the
morphism of schemes U → V is surjective and flat. By assumption U is a regular
scheme in particular all of its local rings are regular (by the lemma above). Hence
the lemma follows from Algebra, Lemma 10.106.9. �
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56.9. Descending properties of morphisms

In this section we introduce the notion of when a property of morphisms of algebraic
spaces is local on the target in a topology. Please compare with Descent, Section
34.18.

Definition 56.9.1. Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}. We say P
is τ local on the base, or τ local on the target, or local on the base for the τ -topology if
for any τ -covering {Yi → Y }i∈I of algebraic spaces and any morphism of algebraic
spaces f : X → Y we have

f has P ⇔ each Yi ×Y X → Yi has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the target then it is preserved by base changes
by morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 56.9.2. Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
Let P be a property of morphisms of algebraic spaces over S which is τ local on
the target. Let f : X → Y have property P. For any morphism Y ′ → Y which is
flat, resp. flat and locally of finite presentation, resp. syntomic, resp. étale, the base
change f ′ : Y ′ ×Y X → Y ′ of f has property P.

Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. �

A simple often used consequence of the above is that if f : X → Y has property P
which is τ -local on the target and f(X) ⊂ V for some open subspace V ⊂ Y , then
also the induced morphism X → V has P. Proof: The base change f by V → Y
gives X → V .

Lemma 56.9.3. Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale}. Let
P be a property of morphisms of algebraic spaces over S which is τ local on the
target. For any morphism of algebraic spaces f : X → Y over S there exists a
largest open subspace W (f) ⊂ Y such that the restriction XW (f) → W (f) has P.
Moreover,

(1) if g : Y ′ → Y is a morphism of algebraic spaces which is flat and locally
of finite presentation, syntomic, smooth, or étale and the base change
f ′ : XY ′ → Y ′ has P, then g factors through W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth,
or étale, then W (f ′) = g−1(W (f)), and

(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is

the base change of f by Yi → Y .

Proof. Consider the union Wset ⊂ |Y | of the images g(|Y ′|) ⊂ |Y | of morphisms
g : Y ′ → Y with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P.

Since such a morphism g is open (see Morphisms of Spaces, Lemma 49.28.6) we
see that Wset is an open subset of |Y |. Denote W ⊂ Y the open subspace whose
underlying set of points is Wset, see Properties of Spaces, Lemma 48.4.8. Since P
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is local in the τ topology the restriction XW →W has property P because we are
given a covering {Y ′ → W} of W such that the pullbacks have P. This proves
the existence and proves that W (f) has property (1). To see property (2) note
that W (f ′) ⊃ g−1(W (f)) because P is stable under base change by flat and locally
of finite presentation, syntomic, smooth, or étale morphisms, see Lemma 56.9.2.
On the other hand, if Y ′′ ⊂ Y ′ is an open such that XY ′′ → Y ′′ has property P,
then Y ′′ → Y factors through W by construction, i.e., Y ′′ ⊂ g−1(W (f)). This
proves (2). Assertion (3) follows from (2) because each morphism Yi → Y is flat
and locally of finite presentation, syntomic, smooth, or étale by our definition of a
τ -covering. �

Lemma 56.9.4. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. Assume

(1) if Xi → Yi, i = 1, 2 have property P so does X1 qX2 → Y1 q Y2,
(2) a morphism of algebraic spaces f : X → Y has property P if and only if for

every affine scheme Z and morphism Z → Y the base change Z×Y X → Z
of f has property P, and

(3) for any surjective flat morphism of affine schemes Z ′ → Z over S and a
morphism f : X → Z from an algebraic space to Z we have

f ′ : Z ′ ×Z X → Z ′ has P ⇒ f has P.

Then P is fpqc local on the base.

Proof. If P has property (2), then it is automatically stable under any base change.
Hence the direct implication in Definition 56.9.1.

Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be
a morphism of algebraic spaces over S. Assume each base change fi : Yi×Y X → Yi
has property P. Our goal is to show that f has P. Let Z be an affine scheme, and
let Z → Y be a morphism. By (2) it suffices to show that the morphism of algebraic
spaces Z ×Y X → Z has P. Since {Yi → Y }i∈I is an fpqc covering we know there
exists a standard fpqc covering {Zj → Z}j=1,...,n and morphisms Zj → Yij over Y
for suitable indices ij ∈ I. Since fij has P we see that

Zj ×Y X = Zj ×Yij (Yij ×Y X) −→ Zj

has P as a base change of fij (see first remark of the proof). Set Z ′ =
∐
j=1,...,n Zj ,

so that Z ′ → Z is a flat and surjective morphism of affine schemes over S. By (1)
we conclude that Z ′×Y X → Z ′ has property P. Since this is the base change of the
morphism Z ×Y X → Z by the morphism Z ′ → Z we conclude that Z ×Y X → Z
has property P as desired. �

56.10. Descending properties of morphisms in the fpqc topology

In this section we find a large number of properties of morphisms of algebraic spaces
which are local on the base in the fpqc topology. Please compare with Descent,
Section 34.19 for the case of morphisms of schemes.

Lemma 56.10.1. Let S be a scheme. The property P(f) =“f is quasi-compact”
is fpqc local on the base on algebraic spaces over S.
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Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.8.7. Let Z ′ → Z be a surjective
flat morphism of affine schemes over S. Let f : X → Z be a morphism of algebraic
spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is quasi-compact. We
have to show that f is quasi-compact. To see this, using Morphisms of Spaces,
Lemma 49.8.7 again, it is enough to show that for every affine scheme Y and
morphism Y → Z the fibre product Y ×Z X is quasi-compact. Here is a picture:

(56.10.1.1)

Y ×Z Z ′ ×Z X

��

//

''

Z ′ ×Z X

f ′

��

##
Y ×Z X

��

// X

f

��

Y ×Z Z ′ //

''

Z ′

$$
Y // Z

Note that all squares are cartesian and the bottom square consists of affine schemes.
The assumption that f ′ is quasi-compact combined with the fact that Y ×Z Z ′ is
affine implies that Y ×Z Z ′ ×Z X is quasi-compact. Since

Y ×Z Z ′ ×Z X −→ Y ×Z X
is surjective as a base change of Z ′ → Z we conclude that Y ×ZX is quasi-compact,
see Morphisms of Spaces, Lemma 49.8.5. This finishes the proof. �

Lemma 56.10.2. Let S be a scheme. The property P(f) =“f is quasi-separated”
is fpqc local on the base on algebraic spaces over S.

Proof. A base change of a quasi-separated morphism is quasi-separated, see Mor-
phisms of Spaces, Lemma 49.4.4. Hence the direct implication in Definition 56.9.1.

Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi×Y X → Yi
is quasi-separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is quasi-compact. The base change of a fpqc covering is an fpqc covering, see
Topologies on Spaces, Lemma 55.3.2 hence {Yi ×Y (X ×Y X) → X ×Y X} is an
fpqc covering of algebraic spaces. Moreover, each ∆i is the base change of the
morphism ∆ : X → X ×Y X. Hence it follows from Lemma 56.10.1 that ∆ is
quasi-compact, i.e., f is quasi-separated. �

Lemma 56.10.3. Let S be a scheme. The property P(f) =“f is universally closed”
is fpqc local on the base on algebraic spaces over S.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.9.5. Let Z ′ → Z be a surjective
flat morphism of affine schemes over S. Let f : X → Z be a morphism of algebraic
spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is universally closed.
We have to show that f is universally closed. To see this, using Morphisms of
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Spaces, Lemma 49.9.5 again, it is enough to show that for every affine scheme Y and
morphism Y → Z the map |Y ×ZX| → |Y | is closed. Consider the cube (56.10.1.1).
The assumption that f ′ is universally closed implies that |Y ×ZZ ′×ZX| → |Y ×ZZ ′|
is closed. As Y ×Z Z ′ → Y is surjective and flat as a base change of Z ′ → Z we see
the map |Y ×ZZ ′| → |Y | is submersive, see Morphisms, Lemma 28.26.10. Moreover
the map

|Y ×Z Z ′ ×Z X| −→ |Y ×Z Z ′| ×|Y | |Y ×Z X|
is surjective, see Properties of Spaces, Lemma 48.4.3. It follows by elementary
topology that |Y ×Z X| → |Y | is closed. �

Lemma 56.10.4. Let S be a scheme. The property P(f) =“f is universally open”
is fpqc local on the base on algebraic spaces over S.

Proof. The proof is the same as the proof of Lemma 56.10.3. �

Lemma 56.10.5. The property P(f) =“f is surjective” is fpqc local on the base.

Proof. Omitted. (Hint: Use Properties of Spaces, Lemma 48.4.3.) �

Lemma 56.10.6. The property P(f) =“f is universally injective” is fpqc local on
the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.9.5. Let Z ′ → Z be a flat
surjective morphism of affine schemes over S and let f : X → Z be a morphism from
an algebraic space to Z. Assume that the base change f ′ : X ′ → Z ′ is universally
injective. Let K be a field, and let a, b : Spec(K)→ X be two morphisms such that
f ◦ a = f ◦ b. As Z ′ → Z is surjective there exists a field extension K ⊂ K ′ and a
morphism Spec(K ′)→ Z ′ such that the following solid diagram commutes

Spec(K ′)

))
a′,b′ $$

��

X ′ //

��

Z ′

��
Spec(K)

a,b // X // Z

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram
commute. Since X ′ → Z ′ is universally injective we get a′ = b′. This forces a = b as
{Spec(K ′) → Spec(K)} is an fpqc covering, see Properties of Spaces, Proposition
48.14.1. Hence f is universally injective as desired. �

Lemma 56.10.7. The property P(f) =“f is locally of finite type” is fpqc local on
the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.23.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is locally of
finite type. We have to show that f is locally of finite type. Let U be a scheme
and let U → X be surjective and étale. By Morphisms of Spaces, Lemma 49.23.4
again, it is enough to show that U → Z is locally of finite type. Since f ′ is locally
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of finite type, and since Z ′ ×Z U is a scheme étale over Z ′ ×Z X we conclude (by
the same lemma again) that Z ′ ×Z U → Z ′ is locally of finite type. As {Z ′ → Z}
is an fpqc covering we conclude that U → Z is locally of finite type by Descent,
Lemma 34.19.8 as desired. �

Lemma 56.10.8. The property P(f) =“f is locally of finite presentation” is fpqc
local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.27.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is locally of
finite presentation. We have to show that f is locally of finite presentation. Let
U be a scheme and let U → X be surjective and étale. By Morphisms of Spaces,
Lemma 49.27.4 again, it is enough to show that U → Z is locally of finite presenta-
tion. Since f ′ is locally of finite presentation, and since Z ′ ×Z U is a scheme étale
over Z ′×ZX we conclude (by the same lemma again) that Z ′×Z U → Z ′ is locally
of finite presentation. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is
locally of finite presentation by Descent, Lemma 34.19.9 as desired. �

Lemma 56.10.9. The property P(f) =“f is of finite type” is fpqc local on the
base.

Proof. Combine Lemmas 56.10.1 and 56.10.7. �

Lemma 56.10.10. The property P(f) =“f is of finite presentation” is fpqc local
on the base.

Proof. Combine Lemmas 56.10.1, 56.10.2 and 56.10.8. �

Lemma 56.10.11. The property P(f) =“f is flat” is fpqc local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.28.5. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is flat. We
have to show that f is flat. Let U be a scheme and let U → X be surjective and
étale. By Morphisms of Spaces, Lemma 49.28.5 again, it is enough to show that
U → Z is flat. Since f ′ is flat, and since Z ′ ×Z U is a scheme étale over Z ′ ×Z X
we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is flat. As {Z ′ → Z}
is an fpqc covering we conclude that U → Z is flat by Descent, Lemma 34.19.13 as
desired. �

Lemma 56.10.12. The property P(f) =“f is an open immersion” is fpqc local on
the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.12.1. Consider a cartesian
diagram

X ′ //

��

X

��
Z ′ // Z
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of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine
schemes, and X ′ → Z ′ is an open immersion. We have to show that X → Z is an
open immersion. Note that |X ′| ⊂ |Z ′| corresponds to an open subscheme U ′ ⊂ Z ′
(isomorphic to X ′) with the property that pr−1

0 (U ′) = pr−1
1 (U ′) as open subschemes

of Z ′ ×Z Z ′. Hence there exists an open subscheme U ⊂ Z such that X ′ = (Z ′ →
Z)−1(U), see Descent, Lemma 34.9.2. By Properties of Spaces, Proposition 48.14.1
we see that X satisfies the sheaf condition for the fpqc topology. Now we have the
fpqc covering U = {U ′ → U} and the element U ′ → X ′ → X ∈ Ȟ0(U , X). By the
sheaf condition we obtain a morphism U → X such that

U ′ //

∼=
��

��

U

��

��

X ′ //

��

X

��
Z ′ // Z

is commutative. On the other hand, we know that for any scheme T pver S and
T -valued point T → X the composition T → X → Z is a morphism such that
Z ′ ×Z T → Z ′ factors through U ′. Clearly this means that T → Z factors through
U . In other words the map of sheaves U → X is bijective and we win. �

Lemma 56.10.13. The property P(f) =“f is an isomorphism” is fpqc local on the
base.

Proof. Combine Lemmas 56.10.5 and 56.10.12. �

Lemma 56.10.14. The property P(f) =“f is affine” is fpqc local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.20.3. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′×Z X → Z ′ is affine. Let
X ′ be a scheme representing Z ′ ×Z X. We obtain a canonical isomorphism

ϕ : X ′ ×Z Z ′ −→ Z ′ ×Z X ′

since both schemes represent the algebraic space Z ′ ×Z Z ′ ×Z X. This is a descent
datum for X ′/Z ′/Z, see Descent, Definition 34.30.1 (verification omitted, compare
with Descent, Lemma 34.35.1). Since X ′ → Z ′ is affine this descent datum is
effective, see Descent, Lemma 34.33.1. Thus there exists a scheme Y → Z over
Z and an isomorphism ψ : Z ′ ×Z Y → X ′ compatible with descent data. Of
course Y → Z is affine (by construction or by Descent, Lemma 34.19.16). Note
that Y = {Z ′ ×Z Y → Y } is a fpqc covering, and interpreting ψ as an element of
X(Z ′×ZY ) we see that ψ ∈ Ȟ0(Y, X). By the sheaf condition for X with respect to
this covering (see Properties of Spaces, Proposition 48.14.1) we obtain a morphism
Y → X. By construction the base change of this to Z ′ is an isomorphism, hence an
isomorphism by Lemma 56.10.13. This proves that X is representable by an affine
scheme and we win. �

Lemma 56.10.15. The property P(f) =“f is a closed immersion” is fpqc local on
the base.
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Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.12.1. Consider a cartesian
diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine
schemes, and X ′ → Z ′ is a closed immersion. We have to show that X → Z is
a closed immersion. The morphism X ′ → Z ′ is affine. Hence by Lemma 56.10.14
we see that X is a scheme and X → Z is affine. It follows from Descent, Lemma
34.19.17 that X → Z is a closed immersion as desired. �

Lemma 56.10.16. The property P(f) =“f is separated” is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Morphisms of
Spaces, Lemma 49.4.4. Hence the direct implication in Definition 56.9.1.

Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi×Y X → Yi
is separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is a closed immersion. The base change of a fpqc covering is an fpqc covering,
see Topologies on Spaces, Lemma 55.3.2 hence {Yi ×Y (X ×Y X) → X ×Y X} is
an fpqc covering of algebraic spaces. Moreover, each ∆i is the base change of the
morphism ∆ : X → X ×Y X. Hence it follows from Lemma 56.10.15 that ∆ is a
closed immersion, i.e., f is separated. �

Lemma 56.10.17. The property P(f) =“f is proper” is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 56.10.3, 56.10.16 and 56.10.9. �

Lemma 56.10.18. The property P(f) =“f is quasi-affine” is fpqc local on the
base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.21.3. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′×ZX → Z ′ is quasi-affine.
Let X ′ be a scheme representing Z ′ ×Z X. We obtain a canonical isomorphism

ϕ : X ′ ×Z Z ′ −→ Z ′ ×Z X ′

since both schemes represent the algebraic space Z ′ ×Z Z ′ ×Z X. This is a descent
datum for X ′/Z ′/Z, see Descent, Definition 34.30.1 (verification omitted, compare
with Descent, Lemma 34.35.1). Since X ′ → Z ′ is quasi-affine this descent datum
is effective, see Descent, Lemma 34.34.1. Thus there exists a scheme Y → Z over
Z and an isomorphism ψ : Z ′×Z Y → X ′ compatible with descent data. Of course
Y → Z is quasi-affine (by construction or by Descent, Lemma 34.19.18). Note
that Y = {Z ′ ×Z Y → Y } is a fpqc covering, and interpreting ψ as an element of
X(Z ′×ZY ) we see that ψ ∈ Ȟ0(Y, X). By the sheaf condition for X (see Properties
of Spaces, Proposition 48.14.1) we obtain a morphism Y → X. By construction
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the base change of this to Z ′ is an isomorphism, hence an isomorphism by Lemma
56.10.13. This proves that X is representable by a quasi-affine scheme and we
win. �

Lemma 56.10.19. The property P(f) =“f is a quasi-compact immersion” is fpqc
local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemmas 49.12.1 and 49.8.7. Consider a
cartesian diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine
schemes, and X ′ → Z ′ is a quasi-compact immersion. We have to show that
X → Z is a closed immersion. The morphism X ′ → Z ′ is quasi-affine. Hence
by Lemma 56.10.18 we see that X is a scheme and X → Z is quasi-affine. It
follows from Descent, Lemma 34.19.19 that X → Z is a quasi-compact immersion
as desired. �

Lemma 56.10.20. The property P(f) =“f is integral” is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed
morphism. See Morphisms of Spaces, Lemma 49.41.7. Hence the lemma follows on
combining Lemmas 56.10.3 and 56.10.14. �

Lemma 56.10.21. The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral, morphism which is
locally of finite type. See Morphisms of Spaces, Lemma 49.41.6. Hence the lemma
follows on combining Lemmas 56.10.7 and 56.10.20. �

Lemma 56.10.22. The properties P(f) =“f is locally quasi-finite” and P(f) =“f
is quasi-finite” are fpqc local on the base.

Proof. We have already seen that “quasi-compact” is fpqc local on the base, see
Lemma 56.10.1. Hence it is enough to prove the lemma for “locally quasi-finite”.
We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 49.26.6. Let Z ′ → Z be a surjective flat
morphism of affine schemes over S. Let f : X → Z be a morphism of algebraic
spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is locally quasi-finite.
We have to show that f is locally quasi-finite. Let U be a scheme and let U → X be
surjective and étale. By Morphisms of Spaces, Lemma 49.26.6 again, it is enough
to show that U → Z is locally quasi-finite. Since f ′ is locally quasi-finite, and since
Z ′×ZU is a scheme étale over Z ′×ZX we conclude (by the same lemma again) that
Z ′ ×Z U → Z ′ is locally quasi-finite. As {Z ′ → Z} is an fpqc covering we conclude
that U → Z is locally quasi-finite by Descent, Lemma 34.19.22 as desired. �

Lemma 56.10.23. The property P(f) =“f is syntomic” is fpqc local on the base.
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Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.33.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is syntomic.
We have to show that f is syntomic. Let U be a scheme and let U → X be sur-
jective and étale. By Morphisms of Spaces, Lemma 49.33.4 again, it is enough to
show that U → Z is syntomic. Since f ′ is syntomic, and since Z ′×Z U is a scheme
étale over Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is
syntomic. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is syntomic
by Descent, Lemma 34.19.24 as desired. �

Lemma 56.10.24. The property P(f) =“f is smooth” is fpqc local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.34.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is smooth.
We have to show that f is smooth. Let U be a scheme and let U → X be surjective
and étale. By Morphisms of Spaces, Lemma 49.34.4 again, it is enough to show
that U → Z is smooth. Since f ′ is smooth, and since Z ′×Z U is a scheme étale over
Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is smooth.
As {Z ′ → Z} is an fpqc covering we conclude that U → Z is smooth by Descent,
Lemma 34.19.25 as desired. �

Lemma 56.10.25. The property P(f) =“f is unramified” is fpqc local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.35.5. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′×ZX → Z ′ is unramified.
We have to show that f is unramified. Let U be a scheme and let U → X be surjec-
tive and étale. By Morphisms of Spaces, Lemma 49.35.5 again, it is enough to show
that U → Z is unramified. Since f ′ is unramified, and since Z ′ ×Z U is a scheme
étale over Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is
unramified. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is unramified
by Descent, Lemma 34.19.26 as desired. �

Lemma 56.10.26. The property P(f) =“f is étale” is fpqc local on the base.

Proof. We will use Lemma 56.9.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 49.36.2. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is étale. We
have to show that f is étale. Let U be a scheme and let U → X be surjective and
étale. By Morphisms of Spaces, Lemma 49.36.2 again, it is enough to show that
U → Z is étale. Since f ′ is étale, and since Z ′×Z U is a scheme étale over Z ′×Z X
we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is étale. As {Z ′ → Z}
is an fpqc covering we conclude that U → Z is étale by Descent, Lemma 34.19.27
as desired. �

Lemma 56.10.27. The property P(f) =“f is finite locally free” is fpqc local on
the base.
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Proof. Being finite locally free is equivalent to being finite, flat and locally of
finite presentation (Morphisms of Spaces, Lemma 49.42.6). Hence this follows from
Lemmas 56.10.21, 56.10.11, and 56.10.8. �

Lemma 56.10.28. The property P(f) =“f is a monomorphism” is fpqc local on
the base.

Proof. Let f : X → Y be a morphism of algebraic spaces. Let {Yi → Y } be
an fpqc covering, and assume each of the base changes fi : Xi → Yi of f is a
monomorphism. We have to show that f is a monomorphism.

First proof. Note that f is a monomorphism if and only if ∆ : X → X ×Y X is an
isomorphism. By applying this to fi we see that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is an isomorphism. The base change of an fpqc covering is an fpqc covering, see
Topologies on Spaces, Lemma 55.3.2 hence {Yi ×Y (X ×Y X) → X ×Y X} is an
fpqc covering of algebraic spaces. Moreover, each ∆i is the base change of the
morphism ∆ : X → X ×Y X. Hence it follows from Lemma 56.10.13 that ∆ is an
isomorphism, i.e., f is a monomorphism.

Second proof. Let V be a scheme, and let V → Y be a surjective étale morphism.
If we can show that V ×Y X → V is a monomorphism, then it follows that X → Y
is a monomorphism. Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G

if c is a surjection of sheaves, and a is injective, then also d is injective. This reduces
the problem to the case where Y is a scheme. Moreover, in this case we may assume
that the algebraic spaces Yi are schemes also, since we can always refine the covering
to place ourselves in this situation, see Topologies on Spaces, Lemma 55.3.4.

Assume {Yi → Y } is an fpqc covering of schemes. Let a, b : T → X be two
morphisms such that f ◦ a = f ◦ b. We have to show that a = b. Since fi is a
monomorphism we see that ai = bi, where ai, bi : Yi ×Y T → Xi are the base
changes. In particular the compositions Yi ×Y T → T → X are equal. Since
{Yi×Y T → T} is an fpqc covering we deduce that a = b from Properties of Spaces,
Proposition 48.14.1. �

56.11. Descending properties of morphisms in the fppf topology

In this section we find some properties of morphisms of algebraic spaces for which
we could not (yet) show they are local on the base in the fpqc topology which,
however, are local on the base in the fppf topology.

Lemma 56.11.1. The property P(f) =“f is an immersion” is fppf local on the
base.

Proof. Let f : X → Y be a morphism of algebraic spaces. Let {Yi → Y }i∈I be an
fppf covering of Y . Let fi : Xi → Yi be the base change of f .

If f is an immersion, then each fi is an immersion by Spaces, Lemma 47.12.3. This
proves the direct implication in Definition 56.9.1.
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Conversely, assume each fi is an immersion. By Morphisms of Spaces, Lemma
49.10.7 this implies each fi is separated. By Morphisms of Spaces, Lemma 49.26.7
this implies each fi is locally quasi-finite. Hence we see that f is locally quasi-
finite and separated, by applying Lemmas 56.10.16 and 56.10.22. By Morphisms of
Spaces, Lemma 49.45.1 this implies that f is representable!

By Morphisms of Spaces, Lemma 49.12.1 it suffices to show that for every scheme
Z and morphism Z → Y the base change Z ×Y X → Z is an immersion. By
Topologies on Spaces, Lemma 55.4.3 we can find an fppf covering {Zi → Z} by
schemes which refines the pullback of the covering {Yi → Y } to Z. Hence we see
that Z ×Y X → Z (which is a morphism of schemes according to the result of the
preceding paragraph) becomes an immersion after pulling back to the members of
an fppf (by schemes) of Z. Hence Z ×Y X → Z is an immersion by the result for
schemes, see Descent, Lemma 34.20.1. �

Lemma 56.11.2. The property P(f) =“f is locally separated” is fppf local on the
base.

Proof. A base change of a locally separated morphism is locally separated, see
Morphisms of Spaces, Lemma 49.4.4. Hence the direct implication in Definition
56.9.1.

Let {Yi → Y }i∈I be an fppf covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi×Y X → Yi
is locally separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is an immersion. The base change of a fppf covering is an fppf covering, see Topolo-
gies on Spaces, Lemma 55.4.2 hence {Yi ×Y (X ×Y X) → X ×Y X} is an fppf
covering of algebraic spaces. Moreover, each ∆i is the base change of the morphism
∆ : X → X ×Y X. Hence it follows from Lemma 56.11.1 that ∆ is a immersion,
i.e., f is locally separated. �

56.12. Properties of morphisms local on the source

In this section we define what it means for a property of morphisms of algebraic
spaces to be local on the source. Please compare with Descent, Section 34.22.

Definition 56.12.1. Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}. We say P
is τ local on the source, or local on the source for the τ -topology if for any morphism
f : X → Y of algebraic spaces over S, and any τ -covering {Xi → X}i∈I of algebraic
spaces we have

f has P ⇔ each Xi → Y has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the source then it is preserved by precomposing
with morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 56.12.2. Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth,
étale}. Let P be a property of morphisms of algebraic spaces over S which is τ
local on the source. Let f : X → Y have property P. For any morphism a : X ′ →
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X which is flat, resp. flat and locally of finite presentation, resp. syntomic, resp.
smooth, resp. étale, the composition f ◦ a : X ′ → Y has property P.

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. �

Lemma 56.12.3. Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth,
étale}. Suppose that P is a property of morphisms of schemes over S which is
étale local on the source-and-target. Denote Pspaces the corresponding property of
morphisms of algebraic spaces over S, see Morphisms of Spaces, Definition 49.22.2.
If P is local on the source for the τ -topology, then Pspaces is local on the source for
the τ -topology.

Proof. Let f : X → Y be a morphism of of algebraic spaces over S. Let {Xi →
X}i∈I be a τ -covering of algebraic spaces. Choose a scheme V and a surjective
étale morphism V → Y . Choose a scheme U and a surjective étale morphism
U → X ×Y V . For each i choose a scheme Ui and a surjective étale morphism
Ui → Xi ×X U .

Note that {Xi×XU → U}i∈I is a τ -covering. Note that each {Ui → Xi×XU} is an
étale covering, hence a τ -covering. Hence {Ui → U}i∈I is a τ -covering of algebraic
spaces over S. But since U and each Ui is a scheme we see that {Ui → U}i∈I is a
τ -covering of schemes over S.

Now we have

f has Pspaces ⇔ U → V has P
⇔ each Ui → V has P
⇔ each Xi → Y has Pspaces.

the first and last equivalence by the definition of Pspaces the middle equivalence
because we assumed P is local on the source in the τ -topology. �

56.13. Properties of morphisms local in the fpqc topology on the source

Here are some properties of morphisms that are fpqc local on the source.

Lemma 56.13.1. The property P(f) =“f is flat” is fpqc local on the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.28.1
and Descent, Lemma 34.23.1. �

56.14. Properties of morphisms local in the fppf topology on the source

Here are some properties of morphisms that are fppf local on the source.

Lemma 56.14.1. The property P(f) =“f is locally of finite presentation” is fppf
local on the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.27.1
and Descent, Lemma 34.24.1. �

Lemma 56.14.2. The property P(f) =“f is locally of finite type” is fppf local on
the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.23.1
and Descent, Lemma 34.24.2. �

http://stacks.math.columbia.edu/tag/06ER
http://stacks.math.columbia.edu/tag/06ET
http://stacks.math.columbia.edu/tag/06EV
http://stacks.math.columbia.edu/tag/06EW


56.17. PROPERTIES OF MORPHISMS LOCAL IN THE ÉTALE TOPOLOGY ON THE SOURCE3459

Lemma 56.14.3. The property P(f) =“f is open” is fppf local on the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.6.2
and Descent, Lemma 34.24.3. �

Lemma 56.14.4. The property P(f) =“f is universally open” is fppf local on the
source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.6.2
and Descent, Lemma 34.24.4. �

56.15. Properties of morphisms local in the syntomic topology on the
source

Here are some properties of morphisms that are syntomic local on the source.

Lemma 56.15.1. The property P(f) =“f is syntomic” is syntomic local on the
source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.33.1
and Descent, Lemma 34.25.1. �

56.16. Properties of morphisms local in the smooth topology on the
source

Here are some properties of morphisms that are smooth local on the source.

Lemma 56.16.1. The property P(f) =“f is smooth” is smooth local on the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.34.1
and Descent, Lemma 34.26.1. �

56.17. Properties of morphisms local in the étale topology on the
source

Here are some properties of morphisms that are étale local on the source.

Lemma 56.17.1. The property P(f) =“f is étale” is étale local on the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.36.1
and Descent, Lemma 34.27.1. �

Lemma 56.17.2. The property P(f) =“f is locally quasi-finite” is étale local on
the source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.26.1
and Descent, Lemma 34.27.2. �

Lemma 56.17.3. The property P(f) =“f is unramified” is étale local on the
source.

Proof. Follows from Lemma 56.12.3 using Morphisms of Spaces, Definition 49.35.1
and Descent, Lemma 34.27.3. �
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56.18. Properties of morphisms smooth local on source-and-target

Let P be a property of morphisms of algebraic spaces. There is an intuitive meaning
to the phrase “P is smooth local on the source and target”. However, it turns out
that this notion is not the same as asking P to be both smooth local on the source
and smooth local on the target. We have discussed a similar phenomenon (for the
étale topology and the category of schemes) in great detail in Descent, Section 34.28
(for a quick overview take a look at Descent, Remark 34.28.8). However, there is
an important difference between the case of the smooth and the étale topology. To
see this difference we encourage the reader to ponder the difference between De-
scent, Lemma 34.28.4 and Lemma 56.18.2 as well as the difference between Descent,
Lemma 34.28.5 and Lemma 56.18.3. Namely, in the étale setting the choice of the
étale “covering” of the target is immaterial, whereas in the smooth setting it is not.

Definition 56.18.1. Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. We say P is smooth local on source-and-target if

(1) (stable under precomposing with smooth maps) if f : X → Y is smooth
and g : Y → Z has P, then g ◦ f has P,

(2) (stable under smooth base change) if f : X → Y has P and Y ′ → Y is
smooth, then the base change f ′ : Y ′ ×Y X → Y ′ has P, and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P,
(b) for every x ∈ |X| there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with smooth vertical arrows and u ∈ |U | with a(u) = x such that h
has P.

The above serves as our definition. In the lemmas below we will show that this
is equivalent to P being local on the target, local on the source, and stable under
post-composing by smooth morphisms.

Lemma 56.18.2. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is smooth local on source-and-target. Then

(1) P is smooth local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with smooth morphisms: if f : X → Y

has P and g : Y → Z is smooth, then g ◦ f has P, and

Proof. We write everything out completely.

Proof of (1). Let f : X → Y be a morphism of algebraic spaces over S. Let
{Xi → X}i∈I be a smooth covering of X. If each composition hi : Xi → Y has
P, then for each |x| ∈ X we can find an i ∈ I and a point xi ∈ |Xi| mapping to
x. Then (Xi, xi) → (X,x) is a smooth morphism of pairs, and idY : Y → Y is a
smooth morphism, and hi is as in part (3) of Definition 56.18.1. Thus we see that
f has P. Conversely, if f has P then each Xi → Y has P by Definition 56.18.1
part (1).
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Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let
{Yi → Y }i∈I be a smooth covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi
for the base change of f . If each hi : Xi → Yi has P, then for each x ∈ |X| we pick
an i ∈ I and a point xi ∈ |Xi| mapping to x. Then (Xi, xi) → (X,x) is a smooth
morphism of pairs, Yi → Y is smooth, and hi is as in part (3) of Definition 56.18.1.
Thus we see that f has P. Conversely, if f has P, then each Xi → Yi has P by
Definition 56.18.1 part (2).

Proof of (3). Assume f : X → Y has P and g : Y → Z is smooth. For every
x ∈ |X| we can think of (X,x)→ (X,x) as a smooth morphism of pairs, Y → Z is
a smooth morphism, and h = f is as in part (3) of Definition 56.18.1. Thus we see
that g ◦ f has P. �

The following lemma is the analogue of Morphisms, Lemma 28.15.4.

Lemma 56.18.3. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is smooth local on source-and-target. Let f : X → Y be a
morphism of algebraic spaces over S. The following are equivalent:

(a) f has property P,
(b) for every x ∈ |X| there exists a smooth morphism of pairs a : (U, u) →

(X,x), a smooth morphism b : V → Y , and a morphism h : U → V such
that f ◦ a = b ◦ h and h has P,

(c) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b smooth and a surjective the morphism h has P,
(d) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V smooth the morphism h has P,
(e) there exists a smooth covering {Yi → Y }i∈I such that each base change

Yi ×Y X → Yi has P,
(f) there exists a smooth covering {Xi → X}i∈I such that each composition

Xi → Y has P,
(g) there exists a smooth covering {Yi → Y }i∈I and for each i ∈ I a smooth

covering {Xij → Yi×Y X}j∈Ji such that each morphism Xij → Yi has P.

Proof. The equivalence of (a) and (b) is part of Definition 56.18.1. The equivalence
of (a) and (e) is Lemma 56.18.2 part (2). The equivalence of (a) and (f) is Lemma
56.18.2 part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent
to (g).

It is clear that (c) implies (b). If (b) holds, then for any x ∈ |X| we can choose a
smooth morphism of pairs ax : (Ux, ux)→ (X,x), a smooth morphism bx : Vx → Y ,
and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has P. Then
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h =
∐
hx :

∐
Ux →

∐
Vx with a =

∐
ax and b =

∐
bx is a diagram as in (c). (Note

that h has property P as {Vx →
∐
Vx} is a smooth covering and P is smooth local

on the target.) Thus (b) is equivalent to (c).

Now we know that (a), (b), (c), (e), (f), and (g) are equivalent. Suppose (a) holds.
Let U, V, a, b, h be as in (d). Then X×Y V → V has P as P is stable under smooth
base change, whence U → V has P as P is stable under precomposing with smooth
morphisms. Conversely, if (d) holds, then setting U = X and V = Y we see that f
has P. �

Lemma 56.18.4. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. Assume

(1) P is smooth local on the source,
(2) P is smooth local on the target, and
(3) P is stable under postcomposing with smooth morphisms: if f : X → Y

has P and Y ⊂ Z is a smooth morphism then X → Z has P.

Then P is smooth local on the source-and-target.

Proof. Let P be a property of morphisms of algebraic spaces which satisfies con-
ditions (1), (2) and (3) of the lemma. By Lemma 56.12.2 we see that P is stable
under precomposing with smooth morphisms. By Lemma 56.9.2 we see that P is
stable under smooth base change. Hence it suffices to prove part (3) of Definition
56.18.1 holds.

More precisely, suppose that f : X → Y is a morphism of algebraic spaces over S
which satisfies Definition 56.18.1 part (3)(b). In other words, for every x ∈ X there
exists a smooth morphism ax : Ux → X, a point ux ∈ |Ux| mapping to x, a smooth
morphism bx : Vx → Y , and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx
and hx has P. The proof of the lemma is complete once we show that f has P.
Set U =

∐
Ux, a =

∐
ax, V =

∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a

commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b smooth, a surjective. Note that h has P as each hx does and P is smooth
local on the target. Because a is surjective and P is smooth local on the source,
it suffices to prove that b ◦ h has P. This follows as we assumed that P is stable
under postcomposing with a smooth morphism and as b is smooth. �

Remark 56.18.5. Using Lemma 56.18.4 and the work done in the earlier sections
of this chapter it is easy to make a list of types of morphisms which are smooth
local on the source-and-target. In each case we list the lemma which implies the
property is smooth local on the source and the lemma which implies the property
is smooth local on the target. In each case the third assumption of Lemma 56.18.4
is trivial to check, and we omit it. Here is the list:

(1) flat, see Lemmas 56.13.1 and 56.10.11,
(2) locally of finite presentation, see Lemmas 56.14.1 and 56.10.8,
(3) locally finite type, see Lemmas 56.14.2 and 56.10.7,
(4) universally open, see Lemmas 56.14.4 and 56.10.4,
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(5) syntomic, see Lemmas 56.15.1 and 56.10.23,
(6) smooth, see Lemmas 56.16.1 and 56.10.24,
(7) add more here as needed.

56.19. Descent data for spaces over spaces

This section is the analogue of Descent, Section 34.30 for algebraic spaces. Most of
the arguments in this section are formal relying only on the definition of a descent
datum.

Definition 56.19.1. Let S be a scheme. Let f : Y → X be a morphism of
algebraic spaces over S.

(1) Let V → Y be a morphism of algebraic spaces. A descent datum for
V/Y/X is an isomorphism ϕ : V ×X Y → Y ×X V of algebraic spaces over
Y ×X Y satisfying the cocycle condition that the diagram

V ×X Y ×X Y
ϕ01

((

ϕ02

// Y ×X Y ×X V

Y ×X Y ×X Y

ϕ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/Y, ϕ) is a descent datum relative to Y → X.
(3) A morphism f : (V/Y, ϕ)→ (V ′/Y, ϕ′) of descent data relative to Y → X

is a morphism f : V → V ′ of algebraic spaces over Y such that the diagram

V ×X Y
ϕ
//

f×idY
��

Y ×X V

idY ×f
��

V ′ ×X Y
ϕ′ // Y ×X V ′

commutes.

Remark 56.19.2. Let S be a scheme. Let Y → X be a morphism of algebraic
spaces over S. Let (V/Y, ϕ) be a descent datum relative to Y → X. We may think
of the isomorphism ϕ as an isomorphism

(Y ×X Y )×pr0,Y V −→ (Y ×X Y )×pr1,Y V

of algebraic spaces over Y ×X Y . So loosely speaking one may think of ϕ as a map
ϕ : pr∗0V → pr∗1V

1. The cocycle condition then says that pr∗02ϕ = pr∗12ϕ ◦pr∗01ϕ. In
this way it is very similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

Definition 56.19.3. Let S be a scheme. Let {Xi → X}i∈I be a family of mor-
phisms of algebraic spaces over S with fixed target X.

(1) A descent datum (Vi, ϕij) relative to the family {Xi → X} is given by an
algebraic space Vi over Xi for each i ∈ I, an isomorphism ϕij : Vi×XXj →

1Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions
56.19.1 and 56.19.3 we should have the opposite direction to what was done in Definition 56.3.1

by the general principle that “functions” and “spaces” are dual.
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Xi ×X Vj of algebraic spaces over Xi ×X Xj for each pair (i, j) ∈ I2 such
that for every triple of indices (i, j, k) ∈ I3 the diagram

Vi ×X Xj ×X Xk

pr∗01ϕij

))

pr∗02ϕik

// Xi ×X Xj ×X Vk

Xi ×X Vj ×X Xk

pr∗12ϕjk
55

of algebraic spaces over Xi ×X Xj ×X Xk commutes (with obvious nota-
tion).

(2) A morphism ψ : (Vi, ϕij)→ (V ′i , ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms ψi : Vi → V ′i of algebraic spaces over Xi such
that all the diagrams

Vi ×X Xj ϕij
//

ψi×id

��

Xi ×X Vj

id×ψj
��

V ′i ×X Xj

ϕ′ij // Xi ×X V ′j

commute.

Remark 56.19.4. Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms
of algebraic spaces over S with fixed target X. Let (Vi, ϕij) be a descent datum
relative to {Xi → X}. We may think of the isomorphisms ϕij as isomorphisms

(Xi ×X Xj)×pr0,Xi Vi −→ (Xi ×X Xj)×pr1,Xj Vj

of algebraic spaces over Xi ×X Xj . So loosely speaking one may think of ϕij as an
isomorphism pr∗0Vi → pr∗1Vj over Xi ×X Xj . The cocycle condition then says that
pr∗02ϕik = pr∗12ϕjk ◦ pr∗01ϕij . In this way it is very similar to the case of a descent
datum on quasi-coherent sheaves.

The reason we will usually work with the version of a family consisting of a single
morphism is the following lemma.

Lemma 56.19.5. Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms
of algebraic spaces over S with fixed target X. Set Y =

∐
i∈I Xi. There is a

canonical equivalence of categories

category of descent data
relative to the family {Xi → X}i∈I

−→ category of descent data
relative to Y/X

which maps (Vi, ϕij) to (V, ϕ) with V =
∐
i∈I Vi and ϕ =

∐
ϕij.

Proof. Observe that Y ×X Y =
∐
ij Xi×X Xj and similarly for higher fibre prod-

ucts. Giving a morphism V → Y is exactly the same as giving a family Vi → Xi.
And giving a descent datum ϕ is exactly the same as giving a family ϕij . �

Lemma 56.19.6. Pullback of descent data. Let S be a scheme.

(1) Let

Y ′
f
//

a′

��

Y

a

��
X ′

h // X
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be a commutative diagram of algebraic spaces over S. The construction

(V → Y, ϕ) 7−→ f∗(V → Y, ϕ) = (V ′ → Y ′, ϕ′)

where V ′ = Y ′ ×Y V and where ϕ′ is defined as the composition

V ′ ×X′ Y ′ (Y ′ ×Y V )×X′ Y ′ (Y ′ ×X′ Y ′)×Y×XY (V ×X Y )

id×ϕ
��

Y ′ ×X′ V ′ Y ′ ×X′ (Y ′ ×Y V ) (Y ′ ×X Y ′)×Y×XY (Y ×X V )

defines a functor from the category of descent data relative to Y → X to
the category of descent data relative to Y ′ → X ′.

(2) Given two morphisms fi : Y ′ → Y , i = 0, 1 making the diagram commute
the functors f∗0 and f∗1 are canonically isomorphic.

Proof. We omit the proof of (1), but we remark that the morphism ϕ′ is the
morphism (f × f)∗ϕ in the notation introduced in Remark 56.19.2. For (2) we
indicate which morphism f∗0V → f∗1V gives the functorial isomorphism. Namely,
since f0 and f1 both fit into the commutative diagram we see there is a unique
morphism r : Y ′ → Y ×X Y with fi = pri ◦ r. Then we take

f∗0V = Y ′ ×f0,Y V

= Y ′ ×pr0◦r,Y V

= Y ′ ×r,Y×XY (Y ×X Y )×pr0,Y V
ϕ−→ Y ′ ×r,Y×XY (Y ×X Y )×pr1,Y V

= Y ′ ×pr1◦r,Y V

= Y ′ ×f1,Y V

= f∗1V

We omit the verification that this works. �

Definition 56.19.7. With S,X,X ′, Y, Y ′, f, a, a′, h as in Lemma 56.19.6 the func-
tor

(V, ϕ) 7−→ f∗(V, ϕ)

constructed in that lemma is called the pullback functor on descent data.

Lemma 56.19.8. Let S be a scheme. Let U ′ = {X ′i → X ′}i∈I′ and U = {Xj →
X}i∈I be families of morphisms with fixed target. Let α : I ′ → I, g : X ′ → X
and gi : X ′i → Xα(i) be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1.

(1) Let (Vi, ϕij) be a descent datum relative to the family U . The system(
g∗i Vα(i), (gi × gj)∗ϕα(i)α(j)

)
(with notation as in Remark 56.19.4) is a descent datum relative to U ′.

(2) This construction defines a functor between the category of descent data
relative to U and the category of descent data relative to U ′.

(3) Given a second β : I ′ → I, h : X ′ → X and h′i : X ′i → Xβ(i) morphism of
families of maps with fixed target, then if g = h the two resulting functors
between descent data are canonically isomorphic.
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(4) These functors agree, via Lemma 56.19.5, with the pullback functors con-
structed in Lemma 56.19.6.

Proof. This follows from Lemma 56.19.6 via the correspondence of Lemma 56.19.5.
�

Definition 56.19.9. With U ′ = {X ′i → X ′}i∈I′ , U = {Xi → X}i∈I , α : I ′ → I,
g : X ′ → X, and gi : X ′i → Xα(i) as in Lemma 56.19.8 the functor

(Vi, ϕij) 7−→ (g∗i Vα(i), (gi × gj)∗ϕα(i)α(j))

constructed in that lemma is called the pullback functor on descent data.

If U and U ′ have the same target X, and if U ′ refines U (see Sites, Definition 7.8.1)
but no explicit pair (α, gi) is given, then we can still talk about the pullback functor
since we have seen in Lemma 56.19.8 that the choice of the pair does not matter
(up to a canonical isomorphism).

Definition 56.19.10. Let S be a scheme. Let f : Y → X be a morphism of
algebraic spaces over S.

(1) Given an algebraic space U over X we have the trivial descent datum of
U relative to id : X → X, namely the identity morphism on U .

(2) By Lemma 56.19.6 we get a canonical descent datum on Y ×X U relative
to Y → X by pulling back the trivial descent datum via f . We often
denote (Y ×X U, can) this descent datum.

(3) A descent datum (V, ϕ) relative to Y/X is is called effective if (V, ϕ)
is isomorphic to the canonical descent datum (Y ×X U, can) for some
algebraic space U over X.

Thus being effective means there exists an algebraic space U over X and an iso-
morphism ψ : V → Y ×X U over Y such that ϕ is equal to the composition

V ×X Y
ψ×idY−−−−→ Y ×X U ×S Y = Y ×X Y ×X U

idY ×ψ−1

−−−−−−→ Y ×X V

There is a slight problem here which is that this definition (in spirit) conflicts with
the definition given in Descent, Definition 34.30.10 in case Y and X are schemes.
However, it will always be clear from context which version we mean.

Definition 56.19.11. Let S be a scheme. Let {Xi → X} be a family of morphisms
of algebraic spaces over S with fixed target X.

(1) Given an algebraic space U over X we have a canonical descent datum on
the family of algebraic spaces Xi×X U by pulling back the trivial descent
datum for U relative to {id : S → S}. We denote this descent datum
(Xi ×X U, can).

(2) A descent datum (Vi, ϕij) relative to {Xi → S} is called effective if there
exists an algebraic space U over X such that (Vi, ϕij) is isomorphic to
(Xi ×X U, can).

56.20. Descent data in terms of sheaves

This section is the analogue of Descent, Section 34.35. It is slightly different as
algebraic spaces are already sheaves.
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Lemma 56.20.1. Let S be a scheme. Let {Xi → X}i∈I be an fpppf covering
of algebraic spaces over S (Topologies on Spaces, Definition 55.4.1). There is an
equivalence of categories{

descent data (Vi, ϕij)
relative to {Xi → X}

}
↔

sheaves F on (Sch/S)fppf endowed
with a map F → X such that each
Xi ×X F is an algebraic space

 .

Moreover,

(1) the algebraic space Xi ×X F on the right hand side corresponds to Vi on
the left hand side, and

(2) the sheaf F is an algebraic space2 if and only if the corresponding descent
datum (Xi, ϕij) is effective.

Proof. Let us construct the functor from right to left. Let F → X be a map of
sheaves on (Sch/S)fppf such that each Vi = Xi ×X F is an algebraic space. We
have the projection Vi → Xi. Then both Vi ×X Xj and Xi ×X Vj represent the
sheaf Xi ×X F ×X Xj and hence we obtain an isomorphism

ϕii′ : Vi ×X Xj → Xi ×X Vj

It is straightforward to see that the maps ϕij are morphisms over Xi ×X Xj and
satisfy the cocycle condition. The functor from right to left is given by this con-
struction F 7→ (Vi, ϕij).

Let us construct a functor from left to right. The isomorphisms ϕij give isomor-
phisms

ϕij : Vi ×X Xj −→ Xi ×X Vj

over Xi ×Xj . Set F equal to the coequalizer in the following diagram∐
i,i′ Vi ×X Xj

pr0 //

pr1◦ϕij
//
∐
i Vi

// F

The cocycle condition guarantees that F comes with a map F → X and that Xi×X
F is isomorphic to Vi. The functor from left to right is given by this construction
(Vi, ϕij) 7→ F .

We omit the verification that these constructions are mutually quasi-inverse func-
tors. The final statements (1) and (2) follow from the constructions. �

56.21. Other chapters
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2We will see later that this is always the case if I is not too large, see Bootstrap, Lemma
62.11.2.
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CHAPTER 57

Derived Categories of Spaces

57.1. Introduction

In this chapter we discuss derived categories of modules on algebraic spaces. There
do not seem to be good introductory references addressing this topic; it is covered
in the literature by referring to papers dealing with derived categories of modules
on algebraic stacks, for example see [Ols07b].

57.2. Conventions

If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.

If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
space (X,OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

57.3. Generalities

In this section we put some general results on cohomology of unbounded complexes
of modules on algebraic spaces.

Lemma 57.3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Given an étale morphism V → Y , set U = V ×Y X and denote
g : U → V the projection morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Cohomology on Sites, Lemma 21.20.1. Hence
the result follows from Properties of Spaces, Lemma 48.24.2. �

Definition 57.3.2. Let S be a scheme. Let X be an algebraic space over S. Let
E be an object of D(OX). Let T ⊂ |X| be a closed subset. We say E is supported
on T if the cohomology sheaves Hi(E) are supported on T .

57.4. Derived category of quasi-coherent modules on the small étale
site

Let X be a scheme. In this section we show that DQCoh(OX) can be defined in
terms of the small étale site Xétale of X. Denote Oétale the structure sheaf on
Xétale. Consider the morphism of ringed sites

(57.4.0.1) ε : (Xétale,Oétale) −→ (XZar,OX).

denoted idsmall,étale,Zar in Descent, Lemma 34.7.5.

3469
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Lemma 57.4.1. The morphism ε of (57.4.0.1) is a flat morphism of ringed sites.
In particular the functor ε∗ : Mod(OX) → Mod(Oétale) is exact. Moreover, if
ε∗F = 0, then F = 0.

Proof. The second assertion follows from the first by Modules on Sites, Lemma
18.30.2. To prove the first assertion we have to show that Oétale is a flat ε−1OX -
module. To do this it suffices to check OX,x → Oétale,x is flat for any geometric

point x of X, see Modules on Sites, Lemma 18.38.2, Sites, Lemma 7.33.1, and Étale
Cohomology, Remarks 44.29.11. By Étale Cohomology, Lemma 44.33.1 we see that
Oétale,x is the strict henselization of OX,x. Thus OX,x → Oétale,x is faithfully flat
by More on Algebra, Lemma 15.34.1. The final statement follows also: if ε∗F = 0,
then

0 = ε∗Fx = Fx ⊗OX,x Oétale
(Modules on Sites, Lemma 18.35.4) for all geometric points x. By faithful flatness
of OX,x → Oétale,x we conclude Fx = 0 for all x ∈ X. �

Let X be a scheme. Notation as in (57.4.0.1). Recall that ε∗ : QCoh(OX) →
QCoh(Oétale) is an equivalence by Descent, Proposition 34.7.11 and Remark 34.7.6.
Moreover, QCoh(Oétale) forms a Serre subcategory of Mod(Oétale) by Descent,
Lemma 34.7.13. Hence we can let DQCoh(Oétale) be the triangulated subcategory of
D(Oétale) whose objects are the complexes with quasi-coherent cohomology sheaves,
see Derived Categories, Section 13.13. The functor ε∗ is exact (Lemma 57.4.1) hence
induces ε∗ : D(OX)→ D(Oétale) and since pullbacks of quasi-coherent modules are
quasi-coherent also ε∗ : DQCoh(OX)→ DQCoh(Oétale).

Lemma 57.4.2. Let X be a scheme. The functor ε∗ : DQCoh(OX)→ DQCoh(Oétale)
defined above is an equivalence.

Proof. We will prove this by showing the functor Rε∗ : D(Oétale) → D(OX)
induces a quasi-inverse.

Every quasi-coherent Oétale-module H is of the form ε∗F for some quasi-coherent
OX -module F , see Descent, Proposition 34.7.11. Since F = ε∗H in this case (as ε∗ is
the restriction to XZar ⊂ Xétale) we conclude that the adjunction map ε∗ε∗H → H
is an isomorphism for all quasi-coherent Oétale-modules H.

Let E be an object of DQCoh(Oétale) and denote Hi = Hi(E) its ith cohomology
sheaf. Let B be the set of affine objects of Xétale. Then Hp(U,Hi) = 0 for all
p > 0, all i ∈ Z, and all U ∈ B, see Descent, Proposition 34.7.10 and Cohomology
of Schemes, Lemma 29.2.2. According to Cohomology on Sites, Lemma 21.22.3 this
implies E is represented by a K-injective complex I• and I• = lim I•n where each I•n
is a bounded below complex of injectives, the maps in the system . . .→ I•2 → I•1 are
termwise split surjections, and each I•n is quasi-isomorphic to τ≥−nE. In particular,

Rε∗E = ε∗I• = lim ε∗I•n
For every U ∈ B we have

Hm(I•n(U)) =

{
Hm(U) if m ≥ −n

0 if m < n

by the vanishing of Hp(U,Hi) for p > 0, the spectral sequence Derived Categories,
Lemma 13.21.3, and the fact that τ≥−nE ∼= I•n. Hence we can apply Homology,
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Lemma 12.27.7 to the sequence of complexes

limn Im−2
n (U)→ limn Im−1

n (U)→ limn Imn (U)→ limn Im+1
n (U)

to conclude that Hm(I•(U)) = Hm(U) for U ∈ B. Since ε∗ is restriction to XZar

we see, on applying the above to U ⊂ X affine open, that Hm(ε∗I•) = ε∗Hm. Thus
Rε∗ indeed gives rise to a functor

Rε∗ : DQCoh(Oétale) −→ DQCoh(OX)

For our object E of DQCoh(Oétale) above the adjunction map ε∗Rε∗E → E is an
isomorphism as we’ve seen that the cohomology sheaves of Rε∗E are ε∗Hm and
we have ε∗ε∗Hm = Hm (see above). For F ∈ DQCoh(OX) the adjunction map
F → Rε∗ε

∗F is an isomorphism for the same reason, i.e., because the cohomology
sheaves of Rε∗ε

∗F are isomorphic to ε∗H
m(ε∗F ) = ε∗ε

∗Hm(F ) = Hm(F ). �

57.5. Derived category of quasi-coherent modules

Let S be a scheme. Lemma 57.4.2 shows that the category DQCoh(OS) can be
defined in terms of complexes of OS-modules on the scheme S or by complexes of
O-modules on the small étale site of S. Hence the following definition is compatible
with the definition in the case of schemes.

Definition 57.5.1. Let S be a scheme. Let X be an algebraic space over S. The
derived category of OX-modules with quasi-coherent cohomology sheaves is denoted
DQCoh(OX).

This makes sense by Properties of Spaces, Lemma 48.27.7 and Derived Categories,
Section 13.13. Thus we obtain a canonical functor

(57.5.1.1) D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (13.13.1.1).

Observe that a flat morphism f : Y → X of algebraic spaces induces an exact
functor f∗ : Mod(OX) → Mod(OY ), see Morphisms of Spaces, Lemma 49.28.9
and Modules on Sites, Lemma 18.30.2. In particular Lf∗ : D(OX) → D(OY )
is computed on any representative complex (Derived Categories, Lemma 13.17.8).
We will write Lf∗ = f∗ when f is flat and we have Hi(f∗E) = f∗Hi(E) for E in
D(OX) in this case. We will use this often when f is étale. Of course in the étale
case the pullback functor is just the restriction to Yétale, see Properties of Spaces,
Equation (48.24.1.1).

Lemma 57.5.2. Let S be a scheme. Let X be an algebraic space over S. Let E be
an object of D(OX). The following are equivalent

(1) E is in DQCoh(OX),
(2) for every étale morphism ϕ : U → X where U is an affine scheme ϕ∗E is

an object of DQCoh(OU ),
(3) for every étale morphism ϕ : U → X where U is a scheme ϕ∗E is an

object of DQCoh(OU ),
(4) there exists a surjective étale morphism ϕ : U → X where U is a scheme

such that ϕ∗E is an object of DQCoh(OU ), and
(5) there exists a surjective étale morphism of algebraic spaces f : Y → X

such that Lf∗E is an object of DQCoh(OY ).
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Proof. This follows immediately from the discussion preceding the lemma and
Properties of Spaces, Lemma 48.27.6. �

Lemma 57.5.3. Let S be a scheme. Let X be an algebraic space over S. Then
DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 19.13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any Grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Properties of Spaces, Lemma 48.27.7. �

Lemma 57.5.4. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).

Proof. Choose a diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. Since
a∗ ◦ Lf∗ = Lh∗ ◦ b∗ the result follows from Lemma 57.5.2 and the case of schemes
which is Derived Categories of Schemes, Lemma 35.3.6. �

Lemma 57.5.5. Let S be a scheme. Let X be an algebraic space over S. For
objects K,L of DQCoh(OX) the derived tensor product K ⊗L L is in DQCoh(OX).

Proof. Let ϕ : U → X be a surjective étale morphism from a scheme U . Since
ϕ∗(K ⊗L

OX L) = ϕ∗K ⊗L
OU ϕ

∗L we see from Lemma 57.5.2 that this follows from
the case of schemes which is Derived Categories of Schemes, Lemma 35.3.7. �

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

Lemma 57.5.6. Let S be a scheme. Let X be an algebraic space over S. Let E be
an object of DQCoh(OX). Then there exists an inverse system I•n of complexes of
OX-modules such that

(1) I• = limn I•n represents E,
(2) I•n is a bounded below complex of injectives,
(3) I• → I•n induces an identification τ≥−nE → I•n in D(OX),
(4) the transition maps I•n+1 → I•n are termwise split surjections, and
(5) I• is a K-injective complex of OX-modules.

Moreover, E is the derived limit of the inverse system of its canonical truncations
τ≥−nE.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine objects of Xétale. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all U ∈ B
as U is an affine scheme. See discussion in Cohomology of Spaces, Section 51.3 and
Cohomology of Schemes, Lemma 29.2.2. Thus the lemma follows from Cohomology
on Sites, Lemmas 21.22.3 and 21.22.4. �
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Lemma 57.5.7. Let S be a scheme. Let X be an algebraic space over S. Let
F : Mod(OX)→ Ab be a functor and N ≥ 0 an integer. Assume that

(1) F is left exact,
(2) F commutes with countable direct products,
(3) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX) the maps RpF (E) → RpF (τ≥p−N+1E) are isomor-
phisms.

Proof. Let E be an object ofDQCoh(OX). By shifting the complex we see it suffices
to prove the assertion for p = 0. Choose I• = lim I•n as in Lemma 57.5.6. As I• is
K-injective RF (E) is represented by F (I•). As F commutes with countable direct
products, and since the maps Imn → Imn−1 are split surjections, we get F (I•) =
limF (I•n). The cohomology of

(57.5.7.1) F (I−2
n )→ F (I−1

n )→ F (I0
n)→ F (I1

n)

in degree 0, resp. −1 is equal to R0F (τ≥−nE), resp. R−1F (τ≥−nE) because I•n is a
bounded below complex of injectives representing τ≥−nE. We have a distinguished
triangle

H−n(E)[n]→ τ≥−nE → τ≥−n+1E → H−n(E)[n+ 1]

(Derived Categories, Remark 13.12.4) in D(OX). Since H−n(E) is quasi-coherent
we have

RpF (H−n(E)[n]) = Rp+nF (H−n(E)) = 0

for p+ n ≥ N and

RpF (H−n(E)[n+ 1]) = Rp+n+1F (H−n(E)) = 0

for p+ n+ 1 ≥ N . We conclude that

RpF (τ≥−nE)→ RpF (τ≥−n+1E)

is an isomorphism for all n � p and an isomorphism for n ≥ N for p = 0. Thus
Homology, Lemma 12.27.7 applies to the system of sequences (57.5.7.1) and we
conclude that R0F (E) = limR0F (τ≥−nE). By the above the system R0F (τ≥−nE)
is constant starting with n = N − 1 as desired. �

57.6. Total direct image

The following lemma is the analogue of Cohomology of Spaces, Lemma 51.7.1.

Lemma 57.6.1. Let S be a scheme. Let f : X → Y be a quasi-separated and
quasi-compact morphism of algebraic spaces over S.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If Y is quasi-compact, there exists an integer N = N(X,Y, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m > N .

(3) In fact, if Y is quasi-compact we can find N = N(X,Y, f) such that for
every morphism of algebraic spaces Y ′ → Y the same conclusion holds for
the functor R(f ′)∗ where f ′ : X ′ → Y ′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that Rf∗E
has quasi-coherent cohomology sheaves. This question is local on Y , hence we may
assume Y is quasi-compact. Pick N = N(X,Y, f) as in Cohomology of Spaces,
Lemma 51.7.1. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F and all
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p ≥ N . In particular, for any affine object V of Yétale we have Hp(V ×Y X,F) = 0
for p ≥ N , see Cohomology of Spaces, Lemma 51.3.3.

Let E be an object of DQCoh(OX). Choose I• = lim I•n as in Lemma 57.5.6. As I•
is K-injective Rf∗E is represented by f∗I• = lim f∗I•n. Let V be an affine object
of Yétale. The cohomology Hm(f∗I•n(V )) of

f∗Im−1
n (V )→ f∗Imn (V )→ f∗Im+1

n (V )

is equal toHm(V ×YX, τ≥−nE) because I•n is a bounded below complex of injectives
representing τ≥−nE. We have a distinguished triangle

H−n(E)[n]→ τ≥−nE → τ≥−n+1E → H−n(E)[n+ 1]

in D(OX). Since H−n(E) is quasi-coherent we have Hm(V ×Y X,H−n(E)[n]) = 0
for n+m ≥ N by our choice of N . Similarly, Hm(V ×Y X,H−n(E)[n+ 1]) = 0 for
n+m+ 1 ≥ N . We conclude that

Hm(f∗I•n(V ))→ Hm(f∗I•n−1(V ))

is an isomorphism for all n ≥ N −m. Thus Cohomology on Sites, Lemma 21.22.1
applies to show that the mth cohomology sheaf of lim f∗I•n agrees with the mth
cohomology sheaf of f∗I•n for n ≥ N − m. Since these cohomology sheaves are
quasi-coherent by Cohomology of Spaces, Lemma 51.3.2 we get (1).

Finally, we show that (2) and (3) hold with our choice of N . Namely, the stabi-
lization proven above gives that Hm(Rf∗E) is equal to Hm(Rf∗(τ≥−nE)) for all n
large enough which means we can work with objects in D+(OX) in order to prove
(2) and (3). In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 13.21.3) and the vanishing of Rpf∗H
q(E) for p ≥ N

to conclude. Some details omitted. �

Lemma 57.6.2. Let S be a scheme. Let f : X → Y be a quasi-separated and
quasi-compact morphism of algebraic spaces over S. Then Rf∗ : DQCoh(OX) →
DQCoh(OS) commutes with direct sums.

Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕
Ei. We want

to show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 57.6.1.
Then R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited.
Observe that τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 13.21.3) to reduce to the case of a direct sum of
quasi-coherent sheaves. This case is handled by Cohomology of Spaces, Lemma
51.4.2. �
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Remark 57.6.3. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of representable algebraic spaces X and Y over S. Let
f0 : X0 → Y0 be a morphism of schemes representing f (awkward but temporary
notation). Then we claim the diagrams

DQCoh(OX0
)

Rf0,∗

��

Lemma 57.4.2
DQCoh(OX)

Rf∗

��
DQCoh(OY0

)
Lemma 57.4.2

DQCoh(OY )

(Lemma 57.6.1 and Derived Categories of Schemes, Lemma 35.4.1) and

DQCoh(OX0
)

Lemma 57.4.2
DQCoh(OX)

DQCoh(OY0
)

Lf∗0

OO

Lemma 57.4.2
DQCoh(OY )

Lf∗

OO

(Lemma 57.5.4 and Derived Categories of Schemes, Lemma 35.3.6) are commu-
tative. The result for Lf∗ and Lf∗0 follows as the equivalences DQCoh(OX0

) →
DQCoh(OX) and DQCoh(OY0

) → DQCoh(OY ) of Lemma 57.4.2 come from pulling
back by the (flat) morphisms of ringed sites ε : Xétale → X0,Zar and ε : Yétale →
Y0,Zar and the diagram of ringed sites

X0,Zar

f0

��

Xétaleε
oo

f

��
Y0,Zar Yétale

εoo

is commutative (details omitted). In fact the commutativity of the first diagram
also follows as the proof of Lemma 57.4.2 shows that the functor Rε∗ gives the
equivalences DQCoh(OX)→ DQCoh(OX0

) and DQCoh(OY )→ DQCoh(OY0
).

Lemma 57.6.4. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then Rf∗ : DQCoh(OX) → DQCoh(OY ) reflects isomor-
phisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is
an isomorphism if Rf∗α is an isomorphism. We may check this on cohomology
sheaves. In particular, the question is étale local on Y . Hence we may assume Y
and therefore X is affine. In this case the problem reduces to the case of schemes
(Derived Categories of Schemes, Lemma 35.4.3) via Lemma 57.4.2 and Remark
57.6.3. �

Lemma 57.6.5. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. For E in DQCoh(OY ) we have Rf∗Lf

∗E = E ⊗L
OY f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Spaces, Lemma 51.7.2). There is a canonical map E⊗L f∗OX = E⊗LRf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on Y . Hence
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we may assume Y and therefore X is affine. In this case the problem reduces to the
case of schemes (Derived Categories of Schemes, Lemma 35.4.4) via Lemma 57.4.2
and Remark 57.6.3. �

57.7. Derived category of coherent modules

Let S be a scheme. Let X be a locally Noetherian algebraic space over S. In
this case the category Coh(OX) ⊂ Mod(OX) of coherent OX -modules is a weak
Serre subcategory, see Homology, Section 12.9 and Cohomology of Spaces, Lemma
51.11.3. Denote

DCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 13.13. Thus we obtain a canonical functor

(57.7.0.1) D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (13.13.1.1).

Lemma 57.7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is Noetherian. Let E be an
object of Db

Coh(OX) such that the scheme theoretic support of Hi(E) is proper over
Y for all i. Then Rf∗E is an object of Db

Coh(OY ).

Proof. Consider the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 13.21.3. By assumption and Cohomology of Spaces,
Remark 51.19.3 the sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coherent,
i.e., E ∈ DCoh(OS). Boundedness from below is trivial. Boundedness from above
follows from Cohomology of Spaces, Lemma 51.7.1 or from Lemma 57.6.1. �

57.8. Induction principle

In this section we discuss an induction principle for algebraic spaces analogues
to what is Cohomology of Schemes, Lemma 57.8.3 for schemes. To formulate it
we introduce the notion of an elementary distinguished square; this terminology
is borrowed from [MV99]. The principle as formulated here is implicit in the
paper [GR71] by Raynaud and Gruson. A related principle for algebraic stacks is
[Ryd10, Theorem D] by David Rydh.

Definition 57.8.1. Let S be a scheme. A commutative diagram

U ×W V //

��

V

f

��
U

j // W

of algebraic spaces over S is called an elementary distinguished square if

(1) U is an open subspace of W and j is the inclusion morphism,
(2) f is étale, and
(3) setting T = W \ U (with reduced induced subspace structure) the mor-

phism f−1(T )→ T is an isomorphism.

We will indicate this by saying: “Let (U ⊂ W, f : V → W ) be an elementary
distinguished square.”

http://stacks.math.columbia.edu/tag/08GK
http://stacks.math.columbia.edu/tag/08GM


57.8. INDUCTION PRINCIPLE 3477

Note that if (U ⊂ W, f : V → W ) is an elementary distinguished square, then we
have W = U ∪ f(V ). Thus {U → W,V → W} is an étale covering of W . It turns
out that these étale coverings have nice properties and that in some sense there are
“enough” of them.

Lemma 57.8.2. Let S be a scheme. Let (U ⊂ W, f : V → W ) be an elementary
distinguished square of algebraic spaces over S.

(1) If V ′ ⊂ V and U ⊂ U ′ ⊂W are open subspaces and W ′ = U ′∪f(V ′) then
(U ′ ⊂W ′, f |V ′ : V ′ →W ′) is an elementary distinguished square.

(2) If p : W ′ → W is a morphism of algebraic spaces, then (p−1(U) ⊂
W ′, V ×W W ′ →W ′) is an elementary distinguished square.

Proof. Omitted. �

Lemma 57.8.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P be a property of the quasi-compact and quasi-separated
objects of Xspaces,étale. Assume that

(1) P holds for every affine object of Xspaces,étale,
(2) for every elementary distinguished square (U ⊂W, f : V →W ) such that

(a) W is a quasi-compact and quasi-separated object of Xspaces,étale,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,

then P holds for W .

Then P holds for every quasi-compact and quasi-separated object of Xspaces,étale

and in particular for X.

Proof. We first claim that P holds for every representable quasi-compact and
quasi-separated object of Xspaces,étale. Namely, suppose that U → X is étale and
U is a quasi-compact and quasi-separated scheme. By assumption (1) property P
holds for every affine open of U . Moreover, if W,V ⊂ U are quasi-compact open
with V affine and P holds for W , V , and W ∩V , then P holds for W ∪V by (2) (as
the pair (W ⊂ W ∪ V, V → W ∪ V ) is an elementary distinguished square). Thus
P holds for U by the induction principle for schemes, see Cohomology of Schemes,
Lemma 29.4.1.

To finish the proof it suffices to prove P holds for X (because we can simply replace
X by any quasi-compact and quasi-separated object of Xspaces,étale we want to
prove the result for). We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 50.8.5. We will prove
that P holds for Up by descending induction on p. Note that P holds for Un+1

by (1) as an empty algebraic space is affine. Assume P holds for Up+1. Note that
(Up+1 ⊂ Up, fp : Vp → Up) is an elementary distinguished square, but (2) may not
apply as Vp may not be affine. However, as Vp is a quasi-compact scheme we may
choose a finite affine open covering Vp = Vp,1 ∪ . . . ∪ Vp,m. Set Wp,0 = Up+1 and

Wp,i = Up+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . ,m. These are quasi-compact open subspaces of X. Then we have

Up+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Up
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and the pairs

(Wp,0 ⊂Wp,1, fp|Vp,1), (Wp,1 ⊂Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 57.8.2. Note that P holds for each
Vp,1 (as affine schemes) and for Wp,i×Wp,i+1Vp,i+1 as this is a quasi-compact open of
Vp,i+1 and hence P holds for it by the first paragraph of this proof. Thus (2) applies
to each of these and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Up. �

Lemma 57.8.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let B ⊂ Ob(Xspaces,étale). Let P be a property of the
elements of B. Assume that

(1) every W ∈ B is quasi-compact and quasi-separated,
(2) if W ∈ B and U ⊂W is quasi-compact open, then U ∈ B,
(3) if V ∈ Ob(Xspaces,étale) is affine, then (a) V ∈ B and (b) P holds for V ,
(4) for every elementary distinguished square (U ⊂W, f : V →W ) such that

(a) W ∈ B,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,

then P holds for W .

Then P holds for every W ∈ B.

Proof. This is proved in exactly the same manner as the proof of Lemma 57.8.3.
(We remark that (4)(d) makes sense as U×W V is a quasi-compact open of V hence
an element of B by conditions (2) and (3).) �

Remark 57.8.5. How to choose the collection B in Lemma 57.8.4? Here are some
examples:

(1) If X is quasi-compact and separated, then we can choose B to be the
set of quasi-compact and separated objects of Xspaces,étale. Then X ∈ B
and B satisfies (1), (2), and (3)(a). With this choice of B Lemma 57.8.4
reproduces Lemma 57.8.3.

(2) If X is quasi-compact with affine diagonal, then we can choose B to be
the set of objects of Xspaces,étale which are quasi-compact and have affine
diagonal. Again X ∈ B and B satisfies (1), (2), and (3)(a).

(3) If X is quasi-compact and quasi-separated, then the smallest subset B
which contains X and satisfies (1), (2), and (3)(a) is given by the rule
W ∈ B if and only if either W is a quasi-compact open subspace of X, or
W is a quasi-compact open of an affine object of Xspaces,étale.

Here is a variant where we extend the truth from an open to larger opens.

Lemma 57.8.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open subspace. Let P be a
property of quasi-compact open subspaces of X. Assume that

(1) P holds for W , and
(2) for every elementary distinguished square (W1 ⊂ W2, f : V → W2) where

such that
(a) W1, W2 are quasi-compact open subspaces of X,
(b) W ⊂W1,
(c) V is affine, and
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(d) P holds for W1,
then P holds for W2.

Then P holds for X.

Proof. We can deduce this from Lemma 57.8.4, but instead we will give a direct
argument by eplicitly redoing the proof of Lemma 57.8.3. We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 50.8.5. We will prove
that P holds for Wp = W ∪ Up by descending induction on p. This will finish the
proof as W1 = X. Note that P holds for Wn+1 = W ∩Un+1 = W by (1). Assume P
holds for Wp+1. Observe that Wp\Wp+1 (with reduced induced subspace structure)
is a closed subspace of Up \Up+1. Since (Up+1 ⊂ Up, fp : Vp → Up) is an elementary
distinguished square, the same is true for (Wp+1 ⊂Wp, fp : Vp →Wp). However (2)
may not apply as Vp may not be affine. However, as Vp is a quasi-compact scheme
we may choose a finite affine open covering Vp = Vp,1∪ . . .∪Vp,m. Set Wp,0 = Wp+1

and

Wp,i = Wp+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . ,m. These are quasi-compact open subspaces of X containing W .
Then we have

Wp+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Wp

and the pairs

(Wp,0 ⊂Wp,1, fp|Vp,1), (Wp,1 ⊂Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 57.8.2. Now (2) applies to each of
these and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Wp. �

57.9. Mayer-Vietoris

In this section we prove that an elementary distinguished triangle gives rise to
various Mayer-Vietoris sequences.

Let S be a scheme. Let U → X be an étale morphism of algebraic spaces over S. In
Properties of Spaces, Section 48.25 it was shown that Uspaces,étale = Xspaces,étale/U
compatible with structure sheaves. Hence in this situation we often think of the
morphism jU : U → X as a localization morphism (see Modules on Sites, Definition
18.19.1). In particular we think of pullback j∗U as restriction to U and we often
denote it by |U ; this is compatible with Properties of Spaces, Equation (48.24.1.1).
In particular we see that

(57.9.0.1) (F|U )u = Fx
if u is a geometric point of U and x the image of u in X. Moreover, restriction
has an exact left adjoint jU !, see Modules on Sites, Lemmas 18.19.2 and 18.19.3.
Finally, recall that if G is an OX -module, then

(57.9.0.2) (jU !G)x =
⊕

u
Gu

for any geometric point x : Spec(k) → X where the direct sum is over those
morphism u : Spec(k) → U such that jU ◦ u = x, see Modules on Sites, Lemma
18.37.1 and Properties of Spaces, Lemma 48.16.13.
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Lemma 57.9.1. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S.

(1) For a sheaf of OX-modules F we have a short exact sequence

0→ jU×XV !F|U×XV → jU !F|U ⊕ jV !F|V → F → 0

(2) For an object E of D(OX) we have a distinguished triangle

jU×XV !E|U×XV → jU !E|U ⊕ jV !E|V → E → jU×XV !E|U×XV [1]

in D(OX).

Proof. To show the sequence of (1) is exact we may check on stalks at geometric
points by Properties of Spaces, Theorem 48.16.12. Let x be a geometric point of X.
By Equations (57.9.0.1) and (57.9.0.2) taking stalks at x we obtain the sequence

0→
⊕

(u,v)
Fx →

⊕
u
Fx ⊕

⊕
v
Fx → Fx → 0

This sequence is exact because for every x there either is exactly one u mapping to
x, or there is no u and exactly one v mapping to x.

Proof of (2). We have seen in Cohomology on Sites, Section 21.20 that the restric-
tion functors and the extension by zero functors on derived categories are computed
by just applying the functor to any complex. Let E• be a complex of OX -modules
representing E. The distinguished triangle of the lemma is the distinguished trian-
gle associated (by Derived Categories, Section 13.12 and especially Lemma 13.12.1)
to the short exact sequence of complexes of OX -modules

0→ jU×XV !E•|U×XV → jU !E•|U ⊕ jV !E•|V → E• → 0

which is short exact by (1). �

Lemma 57.9.2. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S.

(1) For every sheaf of OX-modules F we have a short exact sequence

0→ F → jU,∗F|U ⊕ jV,∗F|V → jU×XV,∗F|U×XV → 0

(2) For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU×XV,∗E|U×XV → E[1]

in D(OX).

Proof. Let W be an object of Xétale. We claim the sequence

0→ F(W )→ F(W ×X U)⊕F(W ×X V )→ F(W ×X U ×X V )

is exact and that an element of the last group can locally on W be lifted to the
middle one. By Lemma 57.8.2 the pair (W ×X U ⊂ W,V ×X W → W ) is an
elementary distinguished square. Thus we may assume W = X and it suffices to
prove the same thing for

0→ F(X)→ F(U)⊕F(V )→ F(U ×X V )

We have seen that

0→ jU×XV !OU×XV → jU !OU ⊕ jV !OV → OX → 0

is a exact sequence of OX -modules in Lemma 57.9.1 and applying the right ex-
act functor HomOX (−,F) gives the sequence above. This also means that the
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obstruction to lifting s ∈ F(U ×X V ) to an element of F(U) ⊕ F(V ) lies in
Ext1

OX (OX ,F) = H1(X,F). By locality of cohomology (Cohomology on Sites,
Lemma 21.8.3) this obstruction vanishes étale locally on X and the proof of (1) is
complete.

Proof of (2). Choose a K-injective complex I• representing E whose terms In
are injective objects of Mod(OX), see Injectives, Theorem 19.12.6. Then I•|U is
a K-injective complex (Cohomology on Sites, Lemma 21.20.1). Hence RjU,∗E|U is
represented by jU,∗I•|U . Similarly for V and U ×X V . Hence the distinguished
triangle of the lemma is the distinguished triangle associated (by Derived Cate-
gories, Section 13.12 and especially Lemma 13.12.1) to the short exact sequence of
complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×XV,∗I•|U×XV → 0.

This sequence is exact by (1). �

Lemma 57.9.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let (U ⊂ X,V → X) be an elementary distinguished square. Denote
a = f |U : U → Y , b = f |V : V → Y , and c = f |U×XV : U ×X V → Y the
restrictions. For every object E of D(OX) there exists a distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U×XV )→ Rf∗E[1]

in D(OY ). This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is
an injective object of Mod(OX) for all n, see Injectives, Theorem 19.12.6. Then
Rf∗E is computed by f∗I•. Similarly for U , V , and U ∩V by Cohomology on Sites,
Lemma 21.20.1. Hence the distinguished triangle of the lemma is the distinguished
triangle associated (by Derived Categories, Section 13.12 and especially Lemma
13.12.1) to the short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U×XV → 0.

To see this is a short exact sequence of complexes we argue as follows. Pick an
injective object I of Mod(OX). Apply f∗ to the short exact sequence

0→ I → jU,∗I|U ⊕ jV,∗I|V → jU×XV,∗I|U×XV → 0

of Lemma 57.9.2 and use that R1f∗I = 0 to get a short exact sequence

0→ f∗I → f∗jU,∗I|U ⊕ f∗jV,∗I|V → f∗jU×XV,∗I|U×XV → 0

The proof is finished by observing that a∗ = f∗jU,∗ and similarly for b∗ and c∗. �

Lemma 57.9.4. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S. For objects E, F of D(OX) we
have a Mayer-Vietoris sequence

. . . // Ext−1(EU×XV , FU×XV )

qq
Hom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU×XV , FU×XV )

where the subscripts denote restrictions to the relevant opens and the Hom’s are
taken in the relevant derived categories.
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Proof. Use the distinguished triangle of Lemma 57.9.1 to obtain a long exact se-
quence of Hom’s (from Derived Categories, Lemma 13.4.2) and use that Hom(jU !E|U , F ) =
Hom(E|U , F |U ) by Cohomology on Sites, Lemma 21.20.2. �

Lemma 57.9.5. Let S be a scheme. Let j : U → X be a étale morphism of
algebraic spaces over S. Given an étale morphism V → Y , set W = V ×X U and
denote jW : W → V the projection morphism. Then (j!E)|V = jW !(E|W ) for E in
D(OU ).

Proof. This is true because (j!F)|V = jW !(F|W ) for an OX -module F as follows
immediately from the construction of the functors j! and jW !, see Modules on Sites,
Lemma 18.19.2. �

Lemma 57.9.6. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Set T = |X| \ |U |.

(1) If E is an object of D(OX) supported on T , then (a) E → Rj∗(E|V ) and
(b) j!(E|V )→ E are isomorphisms.

(2) If F is an object of D(OV ) supported on j−1T , then (a) F → (j!F )|V , (b)
(Rj∗F )|V → F , and (c) j!F → Rj∗F are isomorphisms.

Proof. Let E be an object of D(OX) whose cohomology sheaves are supported on
T . Then we see that E|U = 0 and E|U×XV = 0 as T doesn’t meet U and j−1T
doesn’t meet U×X V . Thus (1)(a) follows from Lemma 57.9.2. In exactly the same
way (1)(b) follows from Lemma 57.9.1.

Let F be an object of D(OV ) whose cohomology sheaves are supported on j−1T .
By Lemma 57.3.1 we have (Rj∗F )|U = RjW,∗(F |W ) = 0 because F |W = 0 by our
assumption. Similarly (j!F )|U = jW !(F |W ) = 0 by Lemma 57.9.5. Thus j!F and
Rj∗F are supported on T and (j!F )|V and (Rj∗F )|V are supported on j−1(T ).
To check that the maps (2)(a), (b), (c) are isomorphisms in the derived category,
it suffices to check that these map induce isomorphisms on stalks of cohomology
sheaves at geometric points of T and j−1(T ) by Properties of Spaces, Theorem
48.16.12. This we may do after replacing X by V , U by U ×X V , V by V ×X V
and F by F |V×XV (restriction via first projection), see Lemmas 57.3.1, 57.9.5, and
57.8.2. Since V ×X V → V has a section this reduces (2) to the case that j : V → X
has a section.

Assume j has a section σ : X → V . Set V ′ = σ(X). This is an open subspace of
V . Set U ′ = j−1(U). This is another open subspace of V . Then (U ′ ⊂ V, V ′ → V )
is an elementary distinguished square. Observe that F |U ′ = 0 and F |V ′∩U ′ = 0
because F is supported on j−1(T ). Denote j′ : V ′ → V the open immersion and
jV ′ : V ′ → X the composition V ′ → V → X which is the inverse of σ. Set
F ′ = σ∗F . The distinguished triangles of Lemmas 57.9.1 and 57.9.2 show that
F = j′!(F |V ′) and F = Rj′∗(F |V ′). It follows that j!F = j!j

′
!(F |V ′) = jV ′!F = F ′

because jV ′ : V ′ → X is an isomorphism and the inverse of σ. Similarly, Rj∗F =
Rj∗Rj

′
∗F = RjV ′,∗F = F ′. This proves (2)(c). To prove (2)(a) and (2)(b) it suffices

to show that F = F ′|V . This is clear because both F and F ′|V restrict to zero on
U ′ and U ′ ∩ V ′ and the same object on V ′. �

We can glue complexes!

Lemma 57.9.7. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S. Suppose given
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(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),
(4) an isomorphism c : A|U×XV → B|U×XV

such that

a|U×XV = b|U×XV ◦ c.
Then there exists a morphism F → E in D(OX) whose restriction to U is isomor-
phic to a and whose restriction to V is isomorphic to b.

Proof. Denote jU , jV , jU×XV the corresponding morphisms towards X. Choose
a distinguished triangle

F → RjU,∗A⊕RjV,∗B → RjU×XV,∗(B|U×XV )→ F [1]

Here the mapRjV,∗B → RjU×XV,∗(B|U×XV ) is the obvious one. The mapRjU,∗A→
RjU×XV,∗(B|U×XV ) is the composition of RjU,∗A → RjU×XV,∗(A|U×XV ) with
RjU×XV,∗c. Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU×XV,∗(B|U×XV ))|U → F |U [1]

Denote j : U ×X V → U . Compatibility of restriction and total direct im-
age (Lemma 57.3.1) shows that both (RjV,∗B)|U and (RjU×XV,∗(B|U×XV ))|U are
canonically isomorphic to Rj∗(B|U×XV ). Hence the second arrow of the last dis-
played equation has a section, and we conclude that the morphism F |U → A is an
isomorphism.

To see that the morphism F |V → B is an isomorphism we will use a trick. Namely,
choose a distinguished triangle

F |V → B → B′ → F [1]|V
in D(OV ). Since F |U → A is an isomorphism, and since we have the isomorphism
c : A|U×XV → B|U×XV the restriction of F |V → B is an isomorphism over U×X V .
Thus B′ is supported on j−1

V (T ) where T = |X| \ |U |. On the other hand, there is
a morphism of distinguished triangles

F //

��

RjU,∗F |U ⊕RjV,∗F |V //

��

RjU×XV,∗F |U×XV //

��

F [1]

��
F // RjU,∗A⊕RjV,∗B // RjU×XV,∗(B|U×XV ) // F [1]

The all of the vertical maps in this diagram are isomorphisms, except for the
map RjV,∗F |V → RjV,∗B, hence that is an isomorphism too (Derived Categories,
Lemma 13.4.3). This implies that RjV,∗B

′ = 0. Hence B′ = 0 by Lemma 57.9.6.

The existence of the morphism F → E follows from the Mayer-Vietoris sequence
for Hom, see Lemma 57.9.4. �

57.10. The coherator

Let S be a scheme. Let X be an algebraic space over S. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any algebraic space X and moreover the adjunction mapping QX(F) → F
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is an isomorphism for every quasi-coherent module F , see Properties of Spaces,
Proposition 48.30.2. Since QX is left exact (as a right adjoint) we can consider its
right derived extension

RQX : D(OX) −→ D(QCoh(OX)).

As this functor is constructed by applying QX to a K-injective replacement we see
that RQX is a right adjoint to the canonical functor D(QCoh(OX))→ D(OX).

Lemma 57.10.1. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )). This functor has the property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Spaces, Lemma 51.7.2. Hence f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 13.17.8. For any complex ofOX -modules F• there is a canonical
map f∗F• → Rf∗F•. To finish the proof we show this is a quasi-isomorphism when
F• is a complex with each Fn quasi-coherent. The statement is étale local on Y
hence we may assume Y affine. As an affine morphism is representable we reduce
to the case of schemes by the compatibility of Remark 57.6.3. The case of schemes
is Derived Categories of Schemes, Lemma 35.6.1. �

Lemma 57.10.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) f is quasi-compact, quasi-separated, and flat, and
(2) denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))

the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Then RQY ◦Rf∗ = Φ ◦RQX .

Proof. Since f is quasi-compact and quasi-separated, we see that f∗ preserve
quasi-coherence, see Morphisms of Spaces, Lemma 49.11.2. Recall that QCoh(OX)
is a Grothendieck abelian category (Properties of Spaces, Proposition 48.30.2).
Hence any K in D(QCoh(OX)) can be represented by a K-injective complex I• of
QCoh(OX), see Injectives, Theorem 19.12.6. Then we can define Φ(K) = f∗I•.
Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY ))→ D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY )→
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D(OX) is left adjoint to Rf∗ : D(OX)→ D(OY ), see Cohomology on Sites, Lemma
21.19.1. Similarly, the functor f∗ : D(QCoh(OY ))→ D(QCoh(OX)) is left adjoint
to Φ : D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 13.28.4.

Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)

= HomD(OX)(f
∗A,E)

= HomD(QCoh(OX))(f
∗A,RQX(E))

= HomD(QCoh(OY ))(A,Φ(RQX(E)))

This implies what we want. �

Lemma 57.10.3. Let S be a scheme. Let X be an affine algebraic space over S.
Set A = Γ(X,OX). Then

(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-
coherent OX-module associated to the A-module Γ(X,F),

(2) RQX : D(OX) → D(QCoh(OX)) is the functor which sends E to the
complex of quasi-coherent OX-modules associated to the object RΓ(X,E)
of D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (57.5.1.1).

Proof. Let X0 = Spec(A) be the affine scheme representing X. Recall that there
is a morphism of ringed sites ε : Xétale → X0,Zar which induces equivalences

QCoh(OX)
ε∗ //

QCoh(OX0
),

ε∗
oo

see Lemma 57.4.2. Hence we see that QX = ε∗ ◦QX0 ◦ ε∗ by uniqueness of adjoint
functors. Hence (1) follows from the description of QX0

in Derived Categories
of Schemes, Lemma 35.6.3 and the fact that Γ(X0, ε∗F) = Γ(X,F). Part (2)
follows from (1) and the fact that the functor from A-modules to quasi-coherent
OX -modules is exact. The third assertion now follows from the result for schemes
(Derived Categories of Schemes, Lemma 35.6.3) and Lemma 57.4.2. �

Proposition 57.10.4. Let S be a scheme. Let X be a quasi-compact algebraic
space over S with affine diagonal. Then the functor (57.5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. We first use the induction principle to prove iX is fully faithful. Let B ⊂
Ob(Xspaces,étale) be the set of objects which are quasi-compact and have affine
diagonal. For U ∈ B let P (U) = “the functor iU : D(QCoh(OU ))→ DQCoh(OU ) is
fully faithful”. By Remark 57.8.5 conditions (1), (2), and (3)(a) of Lemma 57.8.4
hold and we are left with proving (3)(b) and (4). Condition (3)(b) holds by Lemma
57.10.3.

Let (U ⊂W,V →W ) be an elementary distinguished square with V affine. Assume
that P holds for U , V , and U ×W V . We have to show that P holds for W . We
may replace X by W , i.e., we may assume W = X (we do this just to simplify the
notation).
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Suppose that A,B are objects of D(QCoh(OX)). We want to show that

HomD(QCoh(OX))(A,B) −→ HomD(OX)(iX(A), iX(B))

is bijective. Let T = |X| \ |U |.

Assume first iX(B) is supported on T . In this case the map

iX(B)→ RjV,∗(iX(B)|V ) = RjV,∗(iV (B|V ))

is a quasi-isomorphism (Lemma 57.9.6). The morphism V → X is affine as V is
affine and X has affine diagonal (Morphisms of Spaces, Lemma 49.20.11). Thus
we have an object jV,∗(B|V ) in QCoh(OX) and an isomorphism iX(jV,∗(B|V )) →
RjV,∗(iV (B|V )) in D(OX) (Lemma 57.10.1). Moreover, jV,∗ and −|V are adjoint
functors on the derived categories of quasi-coherent modules, see proof Lemma
57.10.2. The adjunction map B → jV,∗(B|V ) becomes an isomorphism after apply-
ing iX , whence is an isomorphism in D(QCoh(OX)). Hence

MorD(QCoh(OX))(A,B) = MorD(QCoh(OX))(A, jV,∗(B|V ))

= MorD(QCoh(OV ))(A|V , B|V )

= MorD(OV )(iV (A|V ), iV (B|V ))

= MorD(OX)(iX(A), RjV,∗(iV (B|V )))

= MorD(OX)(iX(A), iX(B))

as desired.

In general, choose any complex B• of quasi-coherent OX -modules representing B.
Next, choose any quasi-isomorphism s : B•|U → C• of complexes of quasi-coherent
modules on U . As jU : U → X is quasi-compact and quasi-separated the functor
jU,∗ transforms quasi-coherent modules into quasi-coherent modules (Morphisms of
Spaces, Lemma 49.11.2). Thus there is a canonical map B• → jU,∗(B•|U )→ jU,∗C•
of complexes of quasi-coherent modules on X. Set B′′ = jU,∗C• in D(QCoh(OX))
and choose a distinguished triangle

B → B′′ → B′ → B•[1]

in D(QCoh(OX)). Since the first arrow of the triangle restricts to an isomorphism
over U we see that B′ is supported on T . Hence in the diagram

HomD(QCoh(OX))(A,B
′[−1]) //

��

HomD(OX)(iX(A), iX(B′)[−1])

��
HomD(QCoh(OX))(A,B) //

��

HomD(OX)(iX(A), iX(B))

��
HomD(QCoh(OX))(A,B

′′) //

��

HomD(OX)(iX(A), iX(B′′))

��
HomD(QCoh(OX))(A,B

′) // HomD(OX)(iX(A), iX(B′))

we have exact columns and the top and bottom horizontal arrows are bijective.
Finally, choose a complex A• of quasi-coherent modules representing A.
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Let α : iX(A) → iX(B) be a morphism between in D(OX). The restriction α|U
comes from a morphism in D(QCoh(OU )) by assumption. Hence there exists a
choice of s : B•|U → C• as above such that α|U is represented by an actual map of
complexes A•|U → C•. This corresponds to a map of complexes A → jU,∗C•. In
other words, the image of α in HomD(OX)(iX(A), iX(B′′)) comes from an element
of HomD(QCoh(OX))(A,B

′′). A diagram chase then shows that α comes from a
morphismA→ B inD(QCoh(OX)). Finally, suppose that a : A→ B is a morphism
of D(QCoh(OX)) which becomes zero in D(OX). After choosing B• suitably, we
may assume a is represented by a morphism of complexes a• : A• → B•. Since
P holds for U the restriction a•|U is zero in D(QCoh(OU )). Thus we can choose
s such that s ◦ a•|U : A•|U → C• is homotopic to zero. Applying the functor
jU,∗ we conclude that A• → jU,∗C• is homotopic to zero. Thus a maps to zero in
HomD(QCoh(OX))(A,B

′′). Thus we may assume that a is the image of an element of
b ∈ HomD(QCoh(OX))(A,B

′[−1]). The image of b in HomD(OX)(iX(A), iX(B′)[−1])
comes from a γ ∈ HomD(OX)(A,B

′′[−1]) (as a maps to zero in the group on the
right). Since we’ve seen above the horizontal arrows are surjective, we see that γ
comes from a c in HomD(QCoh(OX))(A,B

′′[−1]) which implies a = 0 as desired.

Since iX is fully faithful with right adjoint RQX we see that RQX ◦ iX = id (Cate-
gories, Lemma 4.24.3). To finish the proof we show that for any E in DQCoh(OX)
the map iX(RQX(E))→ E is an isomorphism. Choose a distinguished triangle

iX(RQX(E))→ E → E′ → iX(RQX(E))[1]

in DQCoh(OX). A formal argument using the above shows that iX(RQX(E′)) = 0.
Thus it suffices to prove that for E ∈ DQCoh(OX) the condition iX(RQX(E)) = 0
implies that E = 0. Consider an étale morphism j : V → X with V affine. By
Lemmas 57.10.3, 57.10.1, and 57.10.2 we have

Rj∗(E|V ) = Rj∗(iV (RQV (E|V ))) = iX(j∗(RQV (E|V ))) = iX(RQX(Rj∗(E|V )))

Choose a distinguished triangle

E → Rj∗(E|V )→ E′ → E[1]

Apply RQX to get a distinguished triangle

0→ RQX(Rj∗(E|V ))→ RQX(E′)→ 0[1]

in other words the map in the middle is an isomorphism. Combined with the
string of equalities above we find that our first distinghuished triangle becomes a
distinguished triangle

E → iX(RQX(E′))→ E′ → E[1]

where the middle morphism is the adjunction map. However, the composition E →
E′ is zero, hence E → iX(RQX(E′)) is zero by adjunction! Since this morphism is
isomorphic to the morphism E → Rj∗(E|V ) adjoint to id : E|V → E|V we conclude
that E|V is zero. Since this holds for all affine V étale over X we conlude E is zero
as desired. �

Remark 57.10.5. Analyzing the proof of Proposition 57.10.4 we see that we have
shown the following. Let X be a quasi-compact and quasi-separated scheme. Sup-
pose that for every étale morphism j : V → X with V affine the right derived
functor

Φ : D(QCoh(OU ))→ D(QCoh(OX))
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of the left exact functor j∗ : QCoh(OV ) → QCoh(OX) fits into a commutative
diagram

D(QCoh(OV ))

Φ

��

iV
// DQCoh(OV )

Rj∗

��
D(QCoh(OX))

iX // DQCoh(OX)

Then the functor (57.5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

57.11. The coherator for Noetherian spaces

We need a little bit more about injective modules to treat the case of a Noetherian
algebraic space.

Lemma 57.11.1. Let S be a Noetherian affine scheme. Every injective object of
QCoh(OS) is a filtered colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → S)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Let S = Spec(A). Let J be an injective object of QCoh(OS). Since
QCoh(OS) is equivalent to the category of A-modules we see that J is equal to

J̃ for some injective A-module J . By Dualizing Complexes, Proposition 43.5.9 we
can write J =

⊕
Eα with Eα indecomposable and therefore isomorphic to the

injective hull of a reside field at a point. Thus (because finite disjoint unions of
Artinian schemes are Artinian) we may assume that J is the injective hull of κ(p)
for some prime p of A. Then J =

⋃
J [pn] where J [pn] is the injective hull of κ(p)

over A/p
nAp, see Dualizing Complexes, Lemma 43.7.3. Thus J̃ is the colimit of

the sheaves (Zn → X)∗Gn where Zn = Spec(Ap/p
nAp) and Gn the coherent sheaf

associated to the finite A/p
nAp-module J [pn]. Finiteness follows from Dualizing

Complexes, Lemma 43.6.1. �

Lemma 57.11.2. Let S be an affine scheme. Let X be a Noetherian algebraic
space over S. Every injective object of QCoh(OX) is a direct summand of a filtered
colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → X)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Choose an affine scheme U and a surjective étale morphism j : U → X
(Properties of Spaces, Lemma 48.6.3). Then U is a Noetherian affine scheme.
Choose an injective object J ′ of QCoh(OU ) such that there exists an injection
J |U → J ′. Then

J → j∗J ′

is an injective morphism in QCoh(OX), hence identifies J as a direct summand
of j∗J ′. Thus the result follows from the corresponding result for J ′ proved in
Lemma 57.11.1. �
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Lemma 57.11.3. Let S be a scheme. Let f : X → Y be a flat, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. If J is an injective object of
QCoh(OX), then f∗J is an injective object of QCoh(OY ).

Proof. Since f is quasi-compact and quasi-separated, the functor f∗ transforms
quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma
49.11.2). The functor f∗ is a left adjoint to f∗ which transforms injections into
injections. Hence the result follows from Homology, Lemma 12.25.1 �

Lemma 57.11.4. Let S be a scheme. Let X be a Noetherian algebraic space over
S. If J is an injective object of QCoh(OX), then

(1) Hp(U,J |U ) = 0 for p > 0 and for every quasi-compact and quasi-separated
algebraic space U étale over X,

(2) for any morphism f : X → Y of algebraic spaces over S with Y quasi-
separated we have Rpf∗J = 0 for p > 0.

Proof. Proof of (1). Write J as a direct summand of colimFi with Fi = (Zi →
X)∗Gi as in Lemma 57.11.2. It is clear that it suffices to prove the vanishing for
colimFi. Since pullback commutes with colimits and since U is quasi-compact and
quasi-separated, it suffices to prove Hp(U,Fi|U ) = 0 for p > 0, see Cohomology of
Spaces, Lemma 51.4.1. Observe that Zi → X is an affine morphism, see Morphisms
of Spaces, Lemma 49.20.12. Thus

Fi|U = (Zi ×X U → U)∗G′i = R(Zi ×X U → U)∗G′i
where G′i is the pullback of Gi to Zi ×X U , see Cohomology of Spaces, Lemma
51.10.2. Since Zi ×X U is affine we conlude that G′i has no higher cohomology on
Zi ×X U . By the Leray spectral sequence we conclude the same thing is true for
Fi|U (Cohomology on Sites, Lemma 21.14.6).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let V → Y
be an étale morphism with V affine. Then V ×Y X → X is an étale morphism
and V ×Y X is a quasi-compact and quasi-separated algebraic space étale over X
(details omitted). Hence Hp(V ×Y X,J ) is zero by part (1). Since Rpf∗J is the
sheaf associated to the presheaf V 7→ Hp(V ×Y X,J ) the result is proved. �

Lemma 57.11.5. Let S be a scheme. Let f : X → Y be a morphism of Noetherian
algebraic spaces over S. Then f∗ on quasi-coherent sheaves has a right derived
extension Φ : D(QCoh(OX))→ D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian the morphism is quasi-compact and quasi-
separated (see Morphisms of Spaces, Lemma 49.8.9). Thus f∗ preserve quasi-
coherence, see Morphisms of Spaces, Lemma 49.11.2. Next, Let K be an object of
D(QCoh(OX)). Since QCoh(OX) is a Grothendieck abelian category (Properties of
Spaces, Proposition 48.30.2), we can represent K by a K-injective complex I• such

http://stacks.math.columbia.edu/tag/09TK
http://stacks.math.columbia.edu/tag/09TL
http://stacks.math.columbia.edu/tag/09TM


3490 57. DERIVED CATEGORIES OF SPACES

that each In is an injective object of QCoh(OX), see Injectives, Theorem 19.12.6.
Thus we see that the functor Φ is defined by setting

Φ(K) = f∗I•

where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this it suffices to prove the map induces an
isomorphism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X,Y, f) be as
in Lemma 57.6.1. Consider the short exact sequence

0→ σ≥m−N−1I• → I• → σ≤m−N−2I• → 0

of complexes of quasi-coherent sheaves on X. By Lemma 57.6.1 we see that the
cohomology sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we see
that Rmf∗I• is isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may assume
that I• is a bounded below complex of injective objects of QCoh(OX). This case
follows from Leray’s acyclicity lemma (Derived Categories, Lemma 13.17.7) with
required vanishing because of Lemma 57.11.4. �

Proposition 57.11.6. Let S be a scheme. Let X be a Noetherian algebraic space
over S. Then the functor (57.5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. This follows using the exact same argument as in the proof of Proposition
57.10.4 using Lemma 57.11.5. See discussion in Remark 57.10.5. �

57.12. Pseudo-coherent and perfect complexes

In this section we study the general notions defined in Cohomology on Sites, Sec-
tions 21.33, 21.34, 21.35, and 21.36 for the étale site of an algebraic space. In
particular we match this with what happens for schemes.

First we compare the notion of a pseudo-coherent complex on a scheme and on its
associated small étale site.

Lemma 57.12.1. Let X be a scheme. Let F be an OX-module. The following are
equivalent

(1) F is of finite type as an OX-module, and
(2) ε∗F is of finite type as an Oétale-module on the small étale site of X.

Here ε is as in (57.4.0.1).

Proof. The implication (1) ⇒ (2) is a general fact, see Modules on Sites, Lemma
18.23.4. Assume (2). By assumption there exists an étale covering {fi : Xi → X}
such that ε∗F|(Xi)étale is generated by finitely many sections. Let x ∈ X. We will
show that F is generated by finitely many sections in a neighbourhood of x. Say x is
in the image of Xi → X and denote X ′ = Xi. Let s1, . . . , sn ∈ Γ(X ′, ε∗F|X′étale) be

generating sections. As ε∗F = ε−1F ⊗ε−1OX Oétale we can find an étale morphism
X ′′ → X ′ such that x is in the image of X ′ → X and such that si|X′′ =

∑
sij ⊗aij

for some sections sij ∈ ε−1F(X ′′) and aij ∈ Oétale(X ′′). Denote U ⊂ X the image
of X ′′ → X. This is an open subscheme as f ′′ : X ′′ → X is étale (Morphisms,
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Lemma 28.37.13). After possibly shrinking X ′′ more we may assume sij come from
elements tij ∈ F(U) as follows from the construction of the inverse image functor
ε−1. Now we claim that tij generate F|U which finishes the proof of the lemma.

Namely, the corresponding map O⊕NU → F|U has the property that its pullback
by f ′′ to X ′′ is surjective. Since f ′′ : X ′′ → U is a surjective flat morphism of
schemes, this implies that O⊕NU → F|U is surjective by looking at stalks and using
that OU,f ′′(z) → OX′′,z is faithfully flat for all z ∈ X ′′. �

In the situation above the morphism of sites ε is flat hence defines a pullback on
complexes of modules.

Lemma 57.12.2. Let X be a scheme. Let E be an object of D(OX). The following
are equivalent

(1) E is m-pseudo-coherent, and
(2) ε∗E is m-pseudo-coherent on the small étale site of X.

Here ε is as in (57.4.0.1).

Proof. The implication (1) ⇒ (2) is a general fact, see Cohomology on Sites,
Lemma 21.34.3. Assume ε∗E is m-pseudo-coherent. We will use without further
mention that ε∗ is an exact functor and that therefore

ε∗Hi(E) = Hi(ε∗E).

To show that E is m-pseudo-coherent we may work locally on X, hence we may
assume that X is quasi-compact (for example affine). Since X is quasi-compact
every étale covering {Ui → X} has a finite refinement. Thus we see that ε∗E is
an object of D−(Oétale), see comments following Cohomology on Sites, Definition
21.34.1. By Lemma 57.4.1 it follows that E is an object of D−(OX).

Let n ∈ Z be the largest integer such that Hn(E) is nonzero; then n is also the
largest integer such that Hn(ε∗E) is nonzero. We will prove the lemma by induction
on n −m. If n < m, then the lemma is clearly true. If n ≥ m, then Hn(ε∗E) is
a finite Oétale-module, see Cohomology on Sites, Lemma 21.34.7. Hence Hn(E) is
a finite OX -module, see Lemma 57.12.1. After replacing X by the members of an
open covering, we may assume there exists a surjection O⊕tX → Hn(E). We may

locally on X lift this to a map of complexes α : O⊕tX [−n] → E (details omitted).
Choose a distinguished triangle

O⊕tX [−n]→ E → C → O⊕tX [−n+ 1]

Then C has vanishing cohomology in degrees ≥ n. On the other hand, the complex
ε∗C is m-pseudo-coherent, see Cohomology on Sites, Lemma 21.34.4. Hence by
induction we see that C is m-pseudo-coherent. Applying Cohomology on Sites,
Lemma 21.34.4 once more we conclude. �

Lemma 57.12.3. Let X be a scheme. Let E be an object of D(OX). Then

(1) E has tor amplitude in [a, b] if and only if ε∗E has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if ε∗E has finite tor dimension.

Here ε is as in (57.4.0.1).

Proof. The easy implication follows from the general result contained in Cohomol-
ogy on Sites, Lemma 21.35.4 (and the fact that the small étale site of X has enough

points, see Étale Cohomology, Remarks 44.29.11). For the converse, assume that
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ε∗E has tor amplitude in [a, b] Let F be an OX -module. As ε is a flat morphism of
ringed sites (Lemma 57.4.1) we have

ε∗(E ⊗L
OX F) = ε∗E ⊗L

Oétale ε
∗F

Thus the (assumed) vanishing of cohomology sheaves on the right hand side implies
the desired vanishing of the cohomology sheaves of E⊗L

OX F via Lemma 57.4.1. �

Lemma 57.12.4. Let X be a scheme. Let E be an object of D(OX). Then E is a
perfect object of D(OX) if and only if ε∗E is a perfect object of D(Oétale). Here ε
is as in (57.4.0.1).

Proof. The easy implication follows from the general result contained in Cohomol-
ogy on Sites, Lemma 21.36.5 (and the fact that the small étale site of X has enough

points, see Étale Cohomology, Remarks 44.29.11). For the converse, we can use the
equivalence of Cohomology on Sites, Lemma 21.36.4 and the corresponding results
for pseudo-coherent and complexes of finite tor dimension, namely Lemmas 57.12.2
and 57.12.3. Some details omitted. �

Lemma 57.12.5. Let S be a scheme. Let X be an algebraic space over S. If E is
an m-pseudo-coherent object of D(OX), then Hi(E) is a quasi-coherent OX-module
for i > m. If E is pseudo-coherent, then E is an object of DQCoh(OX).

Proof. LocallyHi(E) is isomorphic toHi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. �

Lemma 57.12.6. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let E be an object of DQCoh(OX). For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i� 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−Coh(OX).

Proof. As X is quasi-compact we can find an affine scheme U and a surjective
étale morphism U → X (Properties of Spaces, Lemma 48.6.3). Observe that U
is Noetherian. Note that E is m-pseudo-coherent if and only if E|U is m-pseudo-
coherent (follows from the definition or from Cohomology on Sites, Lemma 21.34.2).
Similarly, Hi(E) is coherent if and only if Hi(E)|U = Hi(E|U ) is coherent (see Co-
homology of Spaces, Lemma 51.11.2). Thus we may assume that X is representable.

If X is representable by a scheme X0 then (Lemma 57.4.2) we can write E = ε∗E0

where E0 is an object of DQCoh(OX0) and ε : Xétale → (X0)Zar is as in (57.4.0.1).
In this case E is m-pseudo-coherent if and only if E0 is by Lemma 57.12.2. Similarly,
Hi(E0) is of finite type (i.e., coherent) if and only if Hi(E) is by Lemma 57.12.1.
Finally, Hi(E0) = 0 if and only if Hi(E) = 0 by Lemma 57.4.1. Thus we reduce to
the case of schemes which is Derived Categories of Schemes, Lemma 35.9.4. �

Lemma 57.12.7. Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let E be an object of DQCoh(OX). Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX F) = 0 for i 6∈ [a, b].
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Proof. It is clear that (1) implies (2). Assume (2). Let j : U → X be an étale
morphism with U affine. As X is quasi-separated j : U → X is quasi-compact
and separated, hence j∗ transforms quasi-coherent modules into quasi-coherent
modules (Morphisms of Spaces, Lemma 49.11.2). Thus the functor QCoh(OX) →
QCoh(OU ) is essentially surjective. It follows that condition (2) implies the van-
ishing of Hi(E|U ⊗L

OU G) for i 6∈ [a, b] for all quasi-coherent OU -modules G. Since
it suffices to prove that E|U has tor amplitude in [a, b] we reduce to the case where
X is representable.

If X is representable by a scheme X0 then (Lemma 57.4.2) we can write E = ε∗E0

where E0 is an object of DQCoh(OX0
) and ε : Xétale → (X0)Zar is as in (57.4.0.1).

For every quasi-coherent module F0 on X0 the module ε∗F0 is quasi-coherent on
X and

Hi(E ⊗L
OX ε

∗F0) = ε∗Hi(E0 ⊗L
OX0
F0)

as ε is flat (Lemma 57.4.1). Moreover, the vanishing of these sheaves for i 6∈
[a, b] implies the same thing for Hi(E0 ⊗L

OX0
F0) by the same lemma. Thus we’ve

reduced the problem to the case of schemes which is treated in Derived Categories
of Schemes, Lemma 35.9.6. �

Lemma 57.12.8. Let X be a scheme. Let E,F be objects of D(OX). Assume
either

(1) E is pseudo-coherent and F lies in D+(OX), or
(2) E is perfect and F arbitrary,

then there is a canonical isomorphism

ε∗RHom(E,F ) −→ RHom(ε∗E, ε∗F )

Here ε is as in (57.4.0.1).

Proof. Recall that ε is flat (Lemma 57.4.1) and hence ε∗ = Lε∗. There is a
canonical map from left to right by Cohomology on Sites, Remark 21.26.9. To see
this is an isomorphism we can work locally, i.e., we may assume X is an affine
scheme.

In case (1) we can represent E by a bounded above complex E• of finite free OX -
modules, see Derived Categories of Schemes, Lemma 35.11.2. We may also represent
F by a bounded below complex F• of OX -modules. Applying Cohomology, Lemma
20.35.10 we see that RHom(E,F ) is represented by the complex with terms⊕

n=−p+q
HomOX (Ep,Fq)

Applying Cohomology on Sites, Lemma 21.33.10 we see that RHom(ε∗E, ε∗F ) is
represented by the complex with terms⊕

n=−p+q
HomOétale(ε

∗Ep, ε∗Fq)

Thus the statement of the lemma boils down to the true fact that the canonical
map

ε∗HomOX (E ,F) −→ HomOétale(ε
∗E , ε∗F)

is an isomorphism for any OX -module F and finite free OX -module E .

In case (2) we can represent E by a strictly perfect complex E• of OX -modules,
use Derived Categories of Schemes, Lemmas 35.3.4 and 35.9.7 and the fact that a
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perfect complex of modules is represented by a finite complex of finite projective
modules. Thus we can do the exact same proof as above, replacing the reference to
Cohomology, Lemma 20.35.10 by a reference to Cohomology, Lemma 20.35.9. �

Lemma 57.12.9. Let S be a scheme. Let X be an algebraic space over S. Let
L,K be objects of D(OX). If either

(1) L in D+
QCoh(OX) and K is pseudo-coherent,

(2) L in DQCoh(OX) and K is perfect,

then RHom(K,L) is in DQCoh(OX).

Proof. This follows from the analogue for schemes (Derived Categories of Schemes,
Lemma 35.9.8) via the criterion of Lemma 57.5.2, the criterion of Lemmas 57.12.2
and 57.12.4, and the result of Lemma 57.12.8. �

57.13. Approximation by perfect complexes

In this section we continue the discussion started in Derived Categories of Schemes,
Section 35.12.

Definition 57.13.1. Let S be a scheme. Let X be an algebraic space over S.
Consider triples (T,E,m) where

(1) T ⊂ |X| is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P )→ Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Please read the remarks following
Derived Categories of Schemes, Definition 35.12.1 to see why.

Definition 57.13.2. Let S be a scheme. Let X be an algebraic space over S. We
say approximation by perfect complexes holds on X if for any closed subset T ⊂ |X|
such that the morphism X \T → X is quasi-compact there exists an integer r such
that for every triple (T,E,m) as in Definition 57.13.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

Lemma 57.13.3. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic space over S. Let E be a perfect object of D(OV )
supported on j−1(T ) where T = |X| \ |U |. Then Rj∗E is a perfect object of D(OX).

Proof. Being perfect is local on Xétale. Thus it suffices to check that Rj∗E is
perfect when restricted to U and V . We have Rj∗E|V = E by Lemma 57.9.6 which
is perfect. We have Rj∗E|U = 0 because E|V \j−1(T ) = 0 (use Lemma 57.3.1). �

Lemma 57.13.4. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Let T be a closed subset of |X| \ |U |
and let (T,E,m) be a triple as in Definition 57.13.1. If

(1) approximation holds for (j−1T,E|V ,m), and
(2) the sheaves Hi(E) for i ≥ m are supported on T ,
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then approximation holds for (T,E,m).

Proof. Let P → E|V be an approximation of the triple (j−1T,E|V ,m) over V .
Then Rj∗P is a perfect object of D(OX) by Lemma 57.13.3. On the other hand,
Rj∗P = j!P by Lemma 57.9.6. We see that j!P is supported on T for example by
(57.9.0.2). Hence we obtain an approximation Rj∗P = j!P → j!(E|V )→ E. �

Lemma 57.13.5. Let S be a scheme. Let X be an algebraic space over S which
is representable by an affine scheme. Then approximation holds for every triple
(T,E,m) as in Definition 57.13.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Let X0 be an affine scheme representing X. Let T0 ⊂ X0 by the closed
subset corresponding to T . Let ε : Xétale → X0,Zar be the morphism (57.4.0.1). We
may write E = ε∗E0 for some object E0 of DQCoh(OX0), see Lemma 57.4.2. Then
E0 is m-pseudo-coherent, see Lemma 57.12.2. Comparing stalks of cohomology
sheaves (see proof of Lemma 57.4.1) we see that Hi(E0) is supported on T0 for
i ≥ m − r + 1. By Derived Categories of Schemes, Lemma 35.12.4 there exists an
approximation P0 → E0 of (T0, E0,m). By Lemma 57.12.4 we see that P = ε∗P0 is
a perfect object of D(OX). Pulling back we obtain an approximation P = ε∗P0 →
ε∗E0 = E as desired. �

Lemma 57.13.6. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume U quasi-compact, V affine,
and U×X V quasi-compact. If approximation by perfect complexes holds on U , then
approximation by perfect complexes holds on X.

Proof. Let T ⊂ |X| be a closed subset with X \T → X quasi-compact. Let rU be
the integer of Definition 57.13.2 adapted to the pair (U, T ∩ |U |). Set T ′ = T \ |U |.
Endow T ′ with the induced reduced subspace structure. Since |T ′| is contained in
|X| \ |U | we see that j−1(T ′) → T ′ is an isomorphism. Moreover, V \ j−1(T ′) is
quasi-compact as it is the fibre product of U ×X V with X \ T over X and we’ve
assumed U ×X V quasi-compact and X \ T → X quasi-compact. Let r′ be the
number of affines needed to cover V \ j−1(T ′). We claim that r = max(rU , r

′)
works for the pair (X,T ).

To see this choose a triple (T,E,m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
(m− r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′.
Hence Lemma 57.13.5 guarantees the existence of an approximation P → E|V
of (T ′, E|V ,m) on V . Applying Lemma 57.13.4 we see that (T ′, E,m) can be
approximated. Such an approximation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ |U |, E|U ,m). This in
particular gives a surjection Ht(P ) → Ht(E|U ). In the rest of the proof we will
use the equivalence of Lemma 57.4.2 (and the compatibilities of Remark 57.6.3) for
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the representable algebraic spaces V and U ×X V . We will also use the fact that
(m− r)-pseudo-coherence, resp. perfectness on the Zariski site and étale site agree,
see Lemmas 57.12.2 and 57.12.4. Thus we can use the results of Derived Categories
of Schemes, Section 35.11 for the open immersion U×X V ⊂ V . In this way Derived
Categories of Schemes, Lemma 35.11.8 implies there exists a perfect object Q in
D(OV ) supported on j−1(T ) and an isomorphism Q|U×XV → (P ⊕ P [1])|U×XV .
By Derived Categories of Schemes, Lemma 35.11.5 we can replace Q by Q⊗L I and
assume that the map

Q|U×XV −→ (P ⊕ P [1])|U×XV −→ P |U×XV −→ E|U×XV
lifts to Q → E|V . By Lemma 57.9.7 we find an morphism a : R → E of D(OX)
such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to Q → E|V .
Thus R is perfect and supported on T and the map Ht(R) → Ht(E) is surjective
on restriction to U . Choose a distinguised triangle

R→ E → E′ → R[1]

Then E′ is (m−r)-pseudo-coherent (Cohomology on Sites, Lemma 21.34.4), Hi(E′)|U =
0 for i ≥ t, and Hi(E′) is supported on T for i ≥ m− r. By induction we find an
approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distringuished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′

and R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology on Sites, Lemma 21.36.6)
supported on T . An easy diagram chase shows that R′′ → E is the desired approx-
imation. �

Theorem 57.13.7. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Then approximation by perfect complexes holds
on X.

Proof. This follows from the induction principle of Lemma 57.8.3 and Lemmas
57.13.6 and 57.13.5. �

57.14. Generating derived categories

This section is the analogue of Derived Categories of Schemes, Section 35.13. How-
ever, we first prove the following lemma which is the analogue of Derived Categories
of Schemes, Lemma 35.11.9.

Lemma 57.14.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open. Let T ⊂ |X| be a
closed subset such that X \ T → X is a quasi-compact morphism. Let E be an
object of DQCoh(OX). Let α : P → E|W be a map where P is a perfect object of
D(OW ) supported on T ∩W . Then there exists a map β : R → E where R is a
perfect object of D(OX) supported on T such that P is a direct summand of R|W
in D(OW ) compatible α and β|W .
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Proof. We will use the induction principle of Lemma 57.8.6 to prove this. Thus we
immediately reduce to the case where we have an elementary distinguished square
(W ⊂ X, f : V → X) with V affine and P → E|W as in the statement of the
lemma. In the rest of the proof we will use Lemma 57.4.2 (and the compatibilities
of Remark 57.6.3) for the representable algebraic spaces V and W ×X V . We will
also use the fact that perfectness on the Zariski site and étale site agree, see Lemma
57.12.4.

By Derived Categories of Schemes, Lemma 35.11.8 we can choose a perfect object Q
in D(OV ) supported on f−1T and an isomorphism Q|W×XV → (P ⊕ P [1])|W×XV .
By Derived Categories of Schemes, Lemma 35.11.5 we can replace Q by Q ⊗L I
(still supported on f−1T ) and assume that the map

Q|W×XV → (P ⊕ P [1])|W×V −→ P |W×XV −→ E|W×XV
lifts to Q → E|V . By Lemma 57.9.7 we find an morphism a : R → E of D(OX)
such that a|W is isomorphic to P ⊕ P [1]→ E|W and a|V isomorphic to Q→ E|V .
Thus R is perfect and supported on T as desired. �

Remark 57.14.2. The proof of Lemma 57.14.1 shows that

R|W = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]

for some m ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf of R|W
equals that of P . By repeating the construction for the map P⊕n1 [1] ⊕ . . . ⊕
P⊕nm [m] → R|W , taking cones, and using induction we can achieve equality of
cohomology sheaves of R|W and P above any given degree.

Lemma 57.14.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W be a quasi-compact open subspace of X. Let P be a
perfect object of D(OW ). Then P is a direct summand of the restriction of a perfect
object of D(OX).

Proof. Special case of Lemma 57.14.1. �

Theorem 57.14.4. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. The category DQCoh(OX) can be generated by a
single perfect object. More precisely, there exists a perfect object P of D(OX) such
that for E ∈ DQCoh(OX) the following are equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Lemma 57.8.3

If X is affine, then OX is a perfect generator. This follows from Lemma 57.4.2 and
Derived Categories of Schemes, Lemma 35.3.4.

Assume that (U ⊂ X, f : V → X) is an elementary distinguished square with
U quasi-compact such that the theorem holds for U and V is an affine scheme.
Let P be a perfect object of D(OU ) which is a generator for DQCoh(OU ). Using
Lemma 57.14.3 we may choose a perfect object Q of D(OX) whose restriction to
U is a direct sum one of whose summands is P . Say V = Spec(A). Let Z ⊂ V
be the reduced closed subscheme which is the inverse image of X \ U and maps
isomorphically to it (see Definition 57.8.1). This is a retrocompact closed subset
of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be
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the perfect object corresponding to the Koszul complex on f1, . . . , fr over A. Note
that since K is supported on Z, the pushforward K ′ = Rf∗K is a perfect object
of D(OX) whose restriction to V is K (see Lemmas 57.13.3 and 57.9.6). We claim
that Q⊕K ′ is a generator for DQCoh(OX).

Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Lemma 57.9.6 we have K ′ = f!K and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Derived Categories of Schemes, Lemma 35.13.2 (using also Lemma 57.4.2)
the vanishing of these groups implies that E|V is isomorphic to R(U ×X V →
V )∗E|U×XV . This implies that E = R(U → X)∗E|U (small detail omitted). If this
is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

The following result is an strengthening of Theorem 57.14.4 proved using exactly the
same methods. Let T ⊂ |X| be a closed subset where X is an algebraic space. Let’s
denote DT (OX) the strictly full, saturated, triangulated subcategory consisting of
complexes whose cohomology sheaves are supported on T .

Lemma 57.14.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. With notation as above, the category DQCoh,T (OX) is generated by a
single perfect object.

Proof. We will prove this using the induction principle of Lemma 57.8.3. The
property is true for representable quasi-compact and quasi-separated objects of the
site Xspaces,étale by Derived Categories of Schemes, Lemma 35.13.5.

Assume that (U ⊂ X, f : V → X) is an elementary distinguished square such that
the lemma holds for U and V is affine. To finish the proof we have to show that
the result holds for X. Let P be a perfect object of D(OU ) supported on T ∩ U
which is a generator for DQCoh,T∩U (OU ). Using Lemma 57.14.1 we may choose
a perfect object Q of D(OX) supported on T whose restriction to U is a direct
sum one of whose summands is P . Write V = Spec(B). Let Z = X \ U . Then
f−1Z is a closed subset of V such that V \ f−1Z is quasi-compact. As X is quasi-
separated, it follows that f−1Z ∩ f−1T = f−1(Z ∩ T ) is a closed subset of V such
that W = V \ f−1(Z ∩ T ) is quasi-compact. Thus we can choose g1, . . . , gs ∈ B
such that f−1(Z ∩ T ) = V (g1, . . . , gr). Let K ∈ D(OV ) be the perfect object
corresponding to the Koszul complex on g1, . . . , gs over B. Note that since K is
supported on f−1(Z ∩ T ) ⊂ V closed, the pushforward K ′ = R(V → X)∗K is
a perfect object of D(OX) whose restriction to V is K (see Lemmas 57.13.3 and
57.9.6). We claim that Q⊕K ′ is a generator for DQCoh,T (OX).

Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from
any shift of Q ⊕ K ′ into E. By Lemma 57.9.6 we have K ′ = R(V → X)!K and
hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )
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Thus by Derived Categories of Schemes, Lemma 35.13.2 we have E|V = Rj∗E|W
where j : W → V is the inclusion. Picture

W
j

// V Z ∩ Too

��
V \ f−1Z

j′

OO

j′′

::

Z

bb

Since E is supported on T we see that E|W is supported on f−1T ∩W = f−1T ∩
(V \ f−1Z) which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj
′
∗(E|U∩V )) = Rj′′∗ (E|U∩V )

Here the second equality is part (1) of Cohomology, Lemma 20.30.9 which applies
because V is a scheme and E has quasi-coherent cohomology sheaves hence push-
forward along the quasi-compact open immersion j′ agrees with pushforward on
the underlying schemes, see Remark 57.6.3. This implies that E = R(U → X)∗E|U
(small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

57.15. Compact and perfect objects

This section is the analogue of Derived Categories of Schemes, Section 35.14.

Proposition 57.15.1. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. An object of DQCoh(OX) is compact if and only
if it is perfect.

Proof. By Cohomology on Sites, Lemma 21.39.1 the perfect objects even define
compact objects of D(OX). Conversely, let K be a compact object of DQCoh(OX).
To show that K is perfect, it suffices to show that K|U is perfect for every affine
scheme U étale over X, see Cohomology on Sites, Lemma 21.36.2. Observe that
j : U → X is a quasi-compact and separated morphism. Hence Rj∗ : DQCoh(OU )→
DQCoh(OX) commutes with direct sums, see Lemma 57.6.2. Thus the adjointness
of restriction to U and Rj∗ implies that K|U is a perfect object of DQCoh(OU ).
Hence we reduce to the case that X is affine, in particular a quasi-compact and
quasi-separated scheme. Via Lemma 57.4.2 and 57.12.4 we reduce to the case of
schemes, i.e., to Derived Categories of Schemes, Proposition 35.14.1. �

The following result is a strengthening of Proposition 57.15.1. Let T ⊂ |X| be
a closed subset where X is an algebraic space. As before DT (OX) denotes the
the strictly full, saturated, triangulated subcategory consisting of complexes whose
cohomology sheaves are supported on T . Since taking direct sums commutes with
taking cohomology sheaves, it follows that DT (OX) has direct sums and that they
are equal to direct sums in D(OX).

Lemma 57.15.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. An object of DQCoh,T (OX) is compact if and only if it is perfect as an
object of D(OX).
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Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Cohomology on Sites, Lemma 21.39.1 the
perfect objects define compact objects of D(OX) hence a fortiori of any subcategory
preserved under taking direct sums. For the converse we will use there exists
a generator E ∈ DQCoh,T (OX) which is a perfect complex of OX -modules, see
Lemma 57.14.5. Hence by the above, E is compact. Then it follows from Derived
Categories, Proposition 13.34.6 that E is a classical generator of the full subcategory
of compact objects of DQCoh,T (OX). Thus any compact object can be constructed
out of E by a finite sequence of operations consisting of (a) taking shifts, (b) taking
finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these
operations preserves the property of being perfect and the result follows. �

The following lemma is an application of the ideas that go into the proof of the
preceding lemma.

Lemma 57.15.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that the complement
U ⊂ X is quasi-compact. Let α : P → E be a morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX-modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. Set D = DQCoh,T (OX). In both cases the complex K = RHom(P,E)
is an object of D. See Lemma 57.12.9 for quasi-coherence. It is clear that K is
supported on T as formation of RHom commutes with restriction to opens. The
map α defines an element of H0(K) = HomD(OX)(OX [0],K). Then it suffices to
prove the result for the map α : OX [0]→ K.

Let E ∈ D be a perfect generator, see Lemma 57.14.5. Write

K = hocolimKn

as in Derived Categories, Lemma 13.34.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn also in
D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α. By Derived Categories, Lemma 13.34.4
applied to the morphism OX [0]→ Kn in the ambient category D(OX) we see that
αn factors as OX [0]→ Q→ Kn where Q is an object of 〈E〉. We conclude that Q
is a perfect complex supported on T .

Choose a distinguished triangle

I → OX [0]→ Q→ I[1]

By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. �

57.16. Derived categories as module categories

The section is the analogue of Derived Categories of Schemes, Section 35.15.
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Lemma 57.16.1. Let S be a scheme. Let X be an algebraic space over S. Let
K• be a complex of OX-modules whose cohomology sheaves are quasi-coherent. Let
(E, d) = HomCompdg(OX)(K

•,K•) be the endomorphism differential graded algebra.
Then the functor

−⊗L
E K

• : D(E, d) −→ D(OX)

of Differential Graded Algebra, Lemma 22.25.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property P . Let F• be a
filtration on P as in Differential Graded Algebra, Section 22.13. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. �

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 57.16.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K, L be objects of D(OX) with K perfect and L in
Db

QCoh(OX). Then ExtnD(OX)(K,L) is nonzero for only a finite number of n.

Proof. Since K is perfect we have

ExtiD(OX)(K,L) = Hi(X,K∧ ⊗L
OX L)

where K∧ is the “dual” perfect complex to K, see Cohomology on Sites, Lemma
21.36.9. Note that P = K∧ ⊗L

OX L is in DQCoh(X) by Lemmas 57.5.5 and 57.12.5
(to see that a perfect complex has quasi-coherent cohomology sheaves). On the
other hand, the spectral sequence

Ep,q1 = Hp(K∧ ⊗L
OX H

q(L))⇒ Hp+q(K∧ ⊗L
OX L) = Hp+q(P ),

the boundedness of L, and the finite tor amplitude of K∧ show that P has only
finitely many nonzero cohomology sheaves. It follows that Hn(X,P ) = 0 for n� 0.
But also Hn(X,P ) = 0 for n � 0 by Cohomology of Spaces, Lemma 51.6.3 and
the spectral sequence expressing Hn(X,P •) in terms of Hp(X,Hq(P •)) using that
the cohomology sheaves of P are quasi-coherent. �

The following is the analogue of Derived Categories of Schemes, Theorem 35.15.3.

Theorem 57.16.3. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Then there exist a differential graded algebra
(E, d) with only a finite number of nonzero cohomology groups Hi(E) such that
DQCoh(OX) is equivalent to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gen-
erates DQCoh(OX). Such a thing exists by Theorem 57.14.4 and the existence of
K-injective resolutions. We will show the theorem holds with

(E,d) = HomCompdg(OX)(K
•,K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 22.25. Since K• is K-injective we
have

(57.16.3.1) Hn(E) = ExtnD(OX)(K
•,K•)
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for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 57.16.2.
Consider the functor

−⊗L
E K

• : D(E,d) −→ D(OX)

of Differential Graded Algebra, Lemma 22.25.3. Since K• is perfect, it defines a
compact object of D(OX), see Proposition 57.15.1. Combined with (57.16.3.1) the
functor above is fully faithful as follows from Differential Graded Algebra, Lemmas
22.25.5. It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E,d)

by Differential Graded Algebra, Lemmas 22.25.4 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma
57.16.1 that we obtain

−⊗L
E K

• : D(E,d) −→ DQCoh(OX)

and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 13.7.2. �

57.17. Cohomology and base change, IV

This section is the analogue of Derived Categories of Schemes, Section 35.16.

Lemma 57.17.1. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. For E in DQCoh(OX) and K
in DQCoh(OY ) we have

Rf∗(E)⊗L
OY K = Rf∗(E ⊗L

OX Lf
∗K)

Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY K → Rf∗(E ⊗L

OX
Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L
OY K) = Lf∗(Rf∗(E))⊗L

OX Lf
∗K −→ E ⊗L

OX Lf
∗K

coming from the map Lf∗Rf∗E → E. See Cohomology on Sites, Lemmas 21.18.4
and 21.19.1. To check it is an isomorphism we may work étale locally on Y . Hence
we reduce to the case that Y is an affine scheme.

Suppose that K =
⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If

the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗ and
⊗L preserve direct sums by construction and Rf∗ commutes with direct sums (for
complexes with quasi-coherent cohomology sheaves) by Lemma 57.6.2. Moreover,
suppose that K → L→M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K,L,M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is an
equivalence by Lemma 57.4.2 and Derived Categories of Schemes, Lemma 35.3.4.

Let T be the property for K ∈ D(A) that the statement of the lemma holds for K̃.
The discussion above and More on Algebra, Remark 15.45.11 shows that it suffices
to prove T holds for A[k]. This finishes the proof, as the statement of the lemma
is clear for shifts of the structure sheaf. �
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Definition 57.17.2. Let S be a scheme. Let B be an algebraic space over S. Let
X, Y be algebraic spaces over B. We say X and Y are Tor independent over B if
and only if for every commutative diagram

Spec(k)

y

�� b ##

x
// X

��
Y // B

of geometric points the rings OX,x and OY,y are Tor independent over OB,b (see

More on Algebra, Definition 15.47.1).

The following lemma shows in particular that this definition agrees with our defi-
nition in the case of representable algebraic spaces.

Lemma 57.17.3. Let S be a scheme. Let B be an algebraic space over S. Let X,
Y be algebraic spaces over B. The following are equivalent

(1) X and Y are Tor independent over B,
(2) for every commutative diagram

U

��

// W

��

V

��

oo

X // B Yoo

with étale vertical arrows U and V are Tor independent over W ,
(3) for some commutative diagram as in (2) with (a) W → B étale surjective,

(b) U → X ×B W étale surjective, (c) V → Y ×B W étale surjective, the
spaces U and V are Tor independent over W , and

(4) for some commutative diagram as in (3) with U , V , W schemes, the
schemes U and V are Tor independent over W in the sense of Derived
Categories of Schemes, Definition 35.16.2.

Proof. For an étale morphism ϕ : U → X of algebraic spaces and geometric point
u the map of local rings OX,ϕ(u) → OU,u is an isomorphism. Hence the equivalence
of (1) and (2) follows. So does the implication (1) ⇒ (3). Assume (3) and pick a
diagram of geometric points as in Definition 57.17.2. The assumptions imply that
we can first lift b to a geometric point w of W , then lift the geometric point (x, b) to
a geometric point u of U , and finally lift the geometric point (y, b) to a geometric
point v of V . Use Properties of Spaces, Lemma 48.16.4 to find the lifts. Using
the remark on local rings above we conclude that the condition of the definition is
satisfied for the given diagram.

Having made these initial points, it is clear that (4) comes down to the state-
ment that Definition 57.17.2 agrees with Derived Categories of Schemes, Definition
35.16.2 when X, Y , and B are schemes.

Let x, b, y be as in Definition 57.17.2 lying over the points x, y, b. Recall that
OX,x = OshX,x (Properties of Spaces, Lemma 48.19.1) and similarly for the other
two. By Algebra, Lemma 10.145.28 we see that OX,x is a strict henselization of
OX,x ⊗OB,b OB,b. In particular, the ring map

OX,x ⊗OB,b OB,b −→ OX,x

http://stacks.math.columbia.edu/tag/08IP
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is flat (More on Algebra, Lemma 15.34.1). By More on Algebra, Lemma 15.47.3
we see that

Tor
OB,b
i (OX,x,OY,y)⊗OX,x⊗OB,bOY,y (OX,x ⊗OB,b OY,y) = Tor

OB,b
i (OX,x,OY,y)

Hence it follows that if X and Y are Tor independent over B as schemes, then X
and Y are Tor independent as algebraic spaces over B.

For the converse, we may assume X, Y , and B are affine. Observe that the ring
map

OX,x ⊗OB,b OY,y −→ OX,x ⊗OB,b OY,y
is flat by the observations given above. Moreover, the image of the map on spectra
includes all primes s ⊂ OX,x⊗OB,bOY,y lying over mx and my. Hence from this and
the displayed formula of Tor’s above we see that if X and Y are Tor independent
over B as algebraic spaces, then

Tor
OB,b
i (OX,x,OY,y)s = 0

for all i > 0 and all s as above. By More on Algebra, Lemma 15.47.4 applied to
the ring maps Γ(B,OB)→ Γ(X,OX) and Γ(B,OB)→ Γ(X,OX) this implies that
X and Y are Tor independent over B. �

Lemma 57.17.4. Let S be a scheme. Let g : Y ′ → Y be a morphism of algebraic
spaces over S. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic spaces over S. Consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′

g // Y

If X and Y ′ are Tor independent over Y , then for all E ∈ DQCoh(OX) we have
Rf ′∗Lh

∗E = Lg∗Rf∗E.

Proof. For any object E of D(OX) we can use Cohomology on Sites, Remark
21.19.2 to get a canonical base change map Lg∗Rf∗E → Rf ′∗Lh

∗E. To check
this is an isomorphism we may work étale locally on Y ′. Hence we may assume
g : Y ′ → Y is a morphism of affine schemes. In particular, g is affine and it suffices
to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lh

∗E = Rf∗(Rh∗Lh
∗E)

is an isomorphism, see Lemma 57.6.4 (and use Lemmas 57.5.4, 57.5.5, and 57.6.1
to see that the objects Rf ′∗Lh

∗E and Lg∗Rf∗E have quasi-coherent cohomology
sheaves). Note that h is affine as well (Morphisms of Spaces, Lemma 49.20.5). By
Lemma 57.6.5 the map becomes a map

Rf∗E ⊗L
OY g∗OY ′ −→ Rf∗(E ⊗L

OX h∗OX′)
Observe that h∗OX′ = f∗g∗OY ′ . Thus by Lemma 57.17.1 it suffices to prove that
Lf∗g∗OY ′ = f∗g∗OY ′ . This follows from our assumption that X and Y ′ are Tor
independent over Y . Namely, to check it we may work étale locally on X, hence we
may also assume X is affine. Say X = Spec(A), Y = Spec(R) and Y ′ = Spec(R′).
Our assumption implies that A and R′ are Tor independent over R (see Lemma

57.17.3 and More on Algebra, Lemma 15.47.4), i.e., TorRi (A,R′) = 0 for i > 0. In
other words A⊗L

RR
′ = A⊗RR′ which exactly means that Lf∗g∗OY ′ = f∗g∗OY ′ . �

http://stacks.math.columbia.edu/tag/08IR


57.17. COHOMOLOGY AND BASE CHANGE, IV 3505

The following two lemmas remain true if we replace G with a bounded complex of
quasi-coherent OX -modules each flat over S.

Lemma 57.17.5. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let E ∈ DQCoh(OX). Let G
be a quasi-coherent OX-module flat over Y . Then formation of

Rf∗(E ⊗L
OX G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′

g // Y

in other words X ′ = Y ′ ×Y X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗(E ⊗L
OX G) = Rf ′∗(E

′ ⊗L
OX′ G

′)

To prove this, note that in Cohomology on Sites, Remark 21.19.2 we have con-
structed an arrow

Lg∗Rf∗(E ⊗L
OX G) −→ R(f ′)∗(Lh

∗(E ⊗L
OX G)) = R(f ′)∗(E

′ ⊗L
OX′ lh

∗G))

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗(E ⊗L
OX G) −→ Rf ′∗(E

′ ⊗L
OX′ G

′)

To check this map is an isomorphism we may work étale locally on Y ′. Hence we
may assume g : Y ′ → Y is a morphism of affine schemes. In this case, we will
use the induction principle to prove this map is always an isomorphism for any
quasi-compact and quasi-separated algebraic space X over Y (Lemma 57.8.3).

If X is a scheme (for example affine), then the result holds. Namekly, E comes
from an object of the derived category of the underlying scheme by Lemma 57.4.2.
Furthermore, the constructions Rf∗ (derived pushforward) and Lg∗ (derived pull-
back) are (in the current situation) compatible with pulling back from the Zariski
site (Remark 57.6.3). Thus in this case the result follows from the case of schemes
which is Derived Categories of Schemes, Lemma 35.16.4.

The induction step. Let (U ⊂ X, f : V → X) be an elementary distinguished square
with U , V , U ×X V quasi-compact such that the result holds for the restriction of
E and G to U , V , and U ×X V . Denote a = f |U , b = f |V and c = f |U×XV . Let
a′ : U ′ → Y ′, b′ : V ′ → Y ′ and c′ : U ′×X′ V ′ → Y ′ be the base changes of a, b, and
c. Note that formation of RHom commutes with restriction (Cohomology on Sites,
Lemma 21.26.3). Set H = E ⊗L

OX G and H ′ = E′⊗L
OX′ G

′. Using the distinguished

triangles from relative Mayer-Vietoris (Lemma 57.9.3) we obtain a commutative
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diagram

Lg∗Rf∗H //

��

Rf ′∗H
′

��
Lg∗Ra∗H|U ⊕ Lg∗Rb∗H|V //

��

Ra′∗H
′|U ′ ⊕Rb′∗H ′|V ′

��
Lg∗Rc∗H|U×XV //

��

Rc′∗H
′|U ′×X′V ′

��
Lg∗Rf∗H[1] // Rf ′∗H

′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 13.4.3) and the proof of the lemma is finished. �

Lemma 57.17.6. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let E ∈ D(OX) be perfect.
Let G be a quasi-coherent OX-module flat over Y . Then formation of

Rf∗RHom(E,G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′

g // Y

in other words X ′ = Y ′ ×Y X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗RHom(E,G) = Rf ′∗RHom(E′,G′)

To prove this, note that in Cohomology on Sites, Remark 21.26.10 we have con-
structed an arrow

Lg∗Rf∗RHom(E,G) −→ R(f ′)∗RHom(Lh∗E,Lh∗G)

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗RHom(E,G)→ Rf ′∗RHom(E′,G′)

With these preliminaries out of the way, we deduce the result from Lemma 57.17.5.
Namely, since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology on Sites, Lemma 21.36.9, such that RHom(E,G) = Edual ⊗L

OX G. We
omit the verification that the base change map of Lemma 57.17.5 for Edual agrees
with the base change map for E constructed above. �
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57.18. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation.

Lemma 57.18.1. Let S be a scheme. Let Y be a Noetherian algebraic space over
S. Let f : X → Y be a morphism of algebraic spaces which is locally of finite type
and quasi-separated. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the scheme theoretic support of Hi(E) is proper over Y for all i,
(3) E has finite tor dimension as an object of D(f−1OY ).

Then Rf∗E is a perfect object of D(OY ).

Proof. By Lemma 57.7.1 we see that Rf∗E is an object of Db
Coh(OY ). Hence

Rf∗E is pseudo-coherent (Lemma 57.12.6). Hence it suffices to show that Rf∗E
has finite tor dimension, see Cohomology on Sites, Lemma 21.36.4. By Lemma
57.12.7 it suffices to check that Rf∗(E)⊗L

OY F has universally bounded cohomology
for all quasi-coherent sheaves F on Y . Bounded from above is clear as Rf∗(E) is
bounded from above. Let T ⊂ X be the union of the supports of Hi(E) for all
i. Then T is proper over Y by assumptions (1) and (2). In particular there exists
a quasi-compact open subspace X ′ ⊂ X containing T . Setting f ′ = f |X′ we have
Rf∗(E) = Rf ′∗(E|X′) because E restricts to zero on X \ T . Thus we may replace
X by X ′ and assume f is quasi-compact. We have assumed f is quasi-separated.
Thus

Rf∗(E)⊗L
OY F = Rf∗

(
E ⊗L

OX Lf
∗F
)

= Rf∗

(
E ⊗L

f−1OY f
−1F

)
by Lemma 57.17.1 and Cohomology on Sites, Lemma 21.18.5. By assumption (3)
the complex E ⊗L

f−1OY f
−1F has cohomology sheaves in a given finite range, say

[a, b]. Then Rf∗ of it has cohomology in the range [a,∞) and we win. �

57.19. Computing Ext groups and base change

The results in this section will be used to verify one of Artin’s criteria for Quot
functors, Hilbert schemes, and other moduli problems.

Lemma 57.19.1. Let S be a scheme. Let B be a Noetherian algebraic space over
S. Let f : X → B be a morphism of algebraic spaces which is locally of finite type
and quasi-separated. Let E ∈ D(OX) be perfect. Let G be a coherent OX-module
flat over B with scheme theoretic support proper over B. Then K = Rf∗(E⊗L

OX G)
is a perfect object of D(OB) and there are functorial isomorphisms

Hi(B,K ⊗L
OB F) −→ Hi(X,E ⊗L

OX (G ⊗OX f∗F))

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. We have

G ⊗L
OX Lf

∗F = G ⊗L
f−1OB f

−1F = G ⊗f−1OB f
−1F = G ⊗OX f∗F

http://stacks.math.columbia.edu/tag/08IS
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the first equality by Cohomology on Sites, Lemma 21.18.5, the second as G is a flat
f−1OB-module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX (G ⊗OX f∗F)) = Hi(X,E ⊗L

OX G ⊗
L
OX Lf

∗F)

= Hi(B,Rf∗(E ⊗L
OX G ⊗

L
OX Lf

∗F))

= Hi(B,Rf∗(E ⊗L
OX G)⊗L

OB F)

= Hi(B,K ⊗L
OB F)

The first equality by the above, the second by Leray (Cohomology on Sites, Remark
21.14.4), and the third equality by Lemma 57.17.1. The object K is perfect by
Lemma 57.18.1. We check the lemma applies. Locally E is isomorphic to a finite
complex of finite free OX -modules. Hence locally E⊗L

OX G is isomorphic to a finite
complex whose terms are finite direct sums of copies of G. This immediately implies
the hypotheses on the cohomology sheaves Hi(E ⊗L

OX G). The hypothesis on finite

tor dimension follows as G is flat over f−1OB .

The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit into commutative
diagrams

Hi(B,K ⊗L
OB F3) //

δ

��

Hi(X,E ⊗L
OX (G ⊗OX f∗F3))

δ

��
Hi+1(B,K ⊗L

OB F1) // Hi+1(X,E ⊗L
OX (G ⊗OX f∗F1))

where the boundary maps come from the distinguished triangle

K ⊗L
OB F1 → K ⊗L

OB F2 → K ⊗L
OB F3 → K ⊗L

OB F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX f∗F1 → G ⊗OX f∗F2 → G ⊗OX f∗F3 → 0

This sequence is exact because G is flat over B. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 57.19.2. Let S be a scheme. Let B be a Noetherian algebraic space over
S. Let f : X → B be a morphism of algebraic spaces which is locally of finite type
and quasi-separated. Let E ∈ D(OX) be perfect. Let G be a coherent OX-module
flat over B with scheme theoretic support proper over B. Then

K = Rf∗RHom(E,G)

is a perfect object of D(OB) and there are functorial isomorphisms

Hi(B,K ⊗L
OB F) −→ ExtiOX (E,G ⊗OX f∗F)

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. Since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology on Sites, Lemma 21.36.9. Observe that RHom(E,G) = Edual ⊗L

OX G
and that

ExtiOX (E,G ⊗OX f∗F) = Hi(X,Edual ⊗L
OX (G ⊗OX f∗F))

by construction of Edual. Thus the perfectness of K and the isomorphisms follow
from the corresponding results of Lemma 57.19.1 applied to Edual and G.
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The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit into commutative
diagrams

Hi(B,K ⊗L
OB F3) //

δ

��

ExtiOX (E,G ⊗OX f∗F3)

δ

��
Hi+1(B,K ⊗L

OB F1) // Exti+1
OX (E,G ⊗OX f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OB F1 → K ⊗L

OB F2 → K ⊗L
OB F3 → K ⊗L

OB F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX f∗F1 → G ⊗OX f∗F2 → G ⊗OX f∗F3 → 0

This sequence is exact because G is flat over B. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 57.19.3. Let S be a scheme. Let B be a Noetherian algebraic space over
S. Let f : X → B be a morphism of algebraic spaces which is locally of finite type
and quasi-separated. Let E ∈ D(OX) and G an OX-module. Assume

(1) E ∈ D−Coh(OX), and
(2) G is a coherent OX-module flat over B with scheme theoretic support

proper over B.

Then for every m ∈ Z there exists a perfect object K of D(OB) and functorial maps

αiF : ExtiOX (E,G ⊗OX f∗F) −→ Hi(B,K ⊗L
OB F)

for F quasi-coherent on B compatible with boundary maps (see proof) such that αiF
is an isomorphism for i ≤ m.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X,E,−m− 1) (possible by Theorem 57.13.7). Then the induced map

ExtiOX (E,G ⊗OX f∗F) −→ ExtiOX (P,G ⊗OX f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

ExtiOX (C,G ⊗OX f∗F) resp. Exti+1
OX (C,G ⊗OX f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in
degrees ≥ −m− 1 these Ext-groups are zero for i ≤ m+ 1 by Derived Categories,
Lemma 13.27.3. This reduces us to the case that E is a perfect complex which is
Lemma 57.19.2.

The statement on boundaries is explained in the proof of Lemma 57.19.2. �
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57.20. Limits and derived categories

In this section we collect some results about the derived category of an algebraic
space which is the limit of an inverse system of algebraic spaces. More precisely,
we will work in the following setting.

Situation 57.20.1. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms fi′i : Xi′ → Xi.
We denote fi : X → Xi the projection. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I. We also choose an element 0 ∈ I.

Lemma 57.20.2. In Situation 57.20.1. Let E0 and K0 be objects of D(OX0
). Set

Ei = Lf∗i0E0 and Ki = Lf∗i0K0 for i ≥ 0 and set E = Lf∗0E0 and K = Lf∗0K0.
Then the map

colimi≥0 HomD(OXi )(Ei,Ki) −→ HomD(OX)(E,K)

is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OX0
), or

(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OX0
) has finite tor dimension.

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the canonical map

colimi≥0 HomD(OUi )(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = X ×X0
U0 and Ui = Xi ×X0

U0. We will prove P
holds for each U0 by the induction principle of Lemma 57.8.3. Condition (2) of this
lemma follows immediately from Mayer-Vietoris for hom in the derived category,
see Lemma 57.9.4. Thus it suffices to prove the lemma when X0 is affine.

If X0 is affine, then the result follows from the case of schemes, see Derived Cate-
gories of Schemes, Lemma 35.19.2. To see this use the equivalence of Lemma 57.4.2
and use the translation of properties explained in Lemmas 57.12.2, 57.12.3, and
57.12.4. �

Lemma 57.20.3. In Situation 57.20.1 the category of perfect objects of D(OX) is
the colimit of the categories of perfect objects of D(OXi).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the functor

colimi≥0Dperf (OUi) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and
where U = X ×X0

U0 and Ui = Xi ×X0
U0. We will prove P holds for every U0 by

the induction principle of Lemma 57.8.3. First, we observe that we already know
the functor is fully faithful by Lemma 57.20.2. Thus it suffices to prove essential
surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have
an elementary distinguished square (U0 ⊂ X0, V0 → X0) and that P holds for U0,
V0, and U0×X0 V0. Let E be a perfect object of D(OX). We can find i ≥ 0 and EU,i
perfect on Ui and EV,i perfect on Vi whose pullback to U and V are isomorphic to
E|U and E|V . Denote

a : EU,i → (R(X → Xi)∗E)|Ui and b : EV,i → (R(X → Xi)∗E)|Vi
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the maps adjoint to the isomorphisms L(U → Ui)
∗EU,i → E|U and L(V →

Vi)
∗EV,i → E|V . By fully faithfulness, after increasing i, we can find an isomor-

phism c : EU,i|Ui×XiVi → EV,i|Ui×XiVi which pulls back to the identifications

L(U → Ui)
∗EU,i|U×XV → E|U×XV → L(V → Vi)

∗EV,i|U×XV .

Apply Lemma 57.9.7 to get an object Ei on Xi and a map d : Ei → R(X → Xi)∗E
which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is
perfect and that d is adjoint to an isomorphism L(X → Xi)

∗Ei → E.

Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when X0 is affine. This follows from the case of schemes, see
Derived Categories of Schemes, Lemma 35.19.3. To see this use the equivalence of
Lemma 57.4.2 and use the translation of Lemma 57.12.4. �

57.21. Cohomology and base change, V

A final section on cohomology and base change continueing the discussion of Sec-
tions 57.17 and 57.18. An easy to grok special case is given in Remark 57.21.2.

Lemma 57.21.1. Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G be a finitely presented OX-module, flat over Y , with support proper over Y .
Then

K = Rf∗(E ⊗L
OX G)

is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 57.17.5. Thus it suffices to show
that K is a perfect object. If Y is Noetherian, then this follows from Lemma
57.19.1. We will reduce to this case by Noetherian approximation. We encourage
the reader to skip the rest of this proof.

The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 52.7.1 there exists an i and an algebraic space Xi of finite presentation over
Ri whose base change to R is X. By Limits of Spaces, Lemma 52.7.2 we may
assume after increasing i, that there exists a finitely presented OXi-module Gi
whose pullback to X is G. After increasing i we may assume Gi is flat over Ri, see
Limits of Spaces, Lemma 52.6.11. After increasing i we may assume the support
of Gi is proper over Ri, see Limits of Spaces, Lemma 52.12.3. Finally, by Lemma
57.12.4 we may, after increasing i, assume there exists a perfect object Ei of D(OXi)
whose pullback to X is E. Applying Lemma 57.19.1 to Xi → Spec(Ri), Ei, Gi and
using the base change property already shown we obtain the result. �

Remark 57.21.2. Let R be a ring. Let X be an algebraic space of finite presen-
tation over R. Let G be a finitely presented OX -module flat over R with scheme
theoretic support proper over R. By Lemma 57.21.1 there exists a finite complex
of finite projective R-modules M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.
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Lemma 57.21.3. Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G be a finitely presented OX-module, flat over Y , with support proper over Y .
Then

K = Rf∗RHom(E,G)

is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 57.17.6. Thus it suffices to show
that K is a perfect object. If Y is Noetherian, then this follows from Lemma
57.19.2. We will reduce to this case by Noetherian approximation. We encourage
the reader to skip the rest of this proof.

The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 52.7.1 there exists an i and an algebraic space Xi of finite presentation over
Ri whose base change to R is X. By Limits of Spaces, Lemma 52.7.2 we may
assume after increasing i, that there exists a finitely presented OXi-module Gi
whose pullback to X is G. After increasing i we may assume Gi is flat over Ri, see
Limits of Spaces, Lemma 52.6.11. After increasing i we may assume the support
of Gi is proper over Ri, see Limits of Spaces, Lemma 52.12.3. Finally, by Lemma
57.12.4 we may, after increasing i, assume there exists a perfect object Ei of D(OXi)
whose pullback to X is E. Applying Lemma 57.19.2 to Xi → Spec(Ri), Ei, Gi and
using the base change property already shown we obtain the result. �
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CHAPTER 58

More on Morphisms of Spaces

58.1. Introduction

In this chapter we continue our study of properties of morphisms of algebraic spaces.
A fundamental reference is [Knu71].

58.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

58.3. Radicial morphisms

It turns out that a radicial morphism is not the same thing as a universally injective
morphism, contrary to what happens with morphisms of schemes. In fact it is a bit
stronger.

Definition 58.3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is radicial if for any morphism Spec(K) → Y where K
is a field the reduction (Spec(K)×Y X)red is either empty or representable by the
spectrum of a purely inseparable field extension of K.

Lemma 58.3.2. A radicial morphism of algebraic spaces is universally injective.

Proof. Let S be a scheme. Let f : X → Y be a radicial morphism of algebraic
spaces over S. It is clear from the definition that given a morphism Spec(K)→ Y
there is at most one lift of this morphism to a morphism into X. Hence we conclude
that f is universally injective by Morphisms of Spaces, Lemma 49.19.2. �

Example 58.3.3. It is no longer true that universally injective is equivalent to
radicial. For example the morphism

X = [Spec(Q)/Gal(Q/Q)] −→ S = Spec(Q)

of Spaces, Example 47.14.7 is universally injective, but is not radicial in the sense
above.

Nonetheless it is often the case that the reverse implication holds.

Lemma 58.3.4. Let S be a scheme. Let f : X → Y be a universally injective
morphism of algebraic spaces over S.

(1) If f is decent then f is radicial.
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(2) If f is quasi-separated then f is radicial.
(3) If f is locally separated then f is radicial.

Proof. Let P be a property of morphisms of algebraic spaces which is stable under
base change and composition and holds for closed immersions. Assume f : X → Y
has P and is universally injective. Then, in the situation of Definition 58.3.1 the
morphism (Spec(K)×Y X)red → Spec(K) is universally injective and has P. This
reduces the problem of proving

P + universally injective⇒ radicial

to the problem of proving that any nonempty reduced algebraic space X over field
whose structure morphism X → Spec(K) is universally injective and P is repre-
sentable by the spectrum of a field. Namely, then X → Spec(K) will be a morphism
of schemes and we conclude by the equivalence of radicial and universally injective
for morphisms of schemes, see Morphisms, Lemma 28.12.2.

Let us prove (1). Assume f is decent and universally injective. By Decent Spaces,
Lemmas 50.15.4, 50.15.6, and 50.15.2 (to see that an immersion is decent) we see
that the discussion in the first paragraph applies. Let X be a nonempty decent
reduced algebraic space universally injective over a field K. In particular we see that
|X| is a singleton. By Decent Spaces, Lemma 50.12.1 we conclude that X ∼= Spec(L)
for some extension K ⊂ L as desired.

A quasi-separated morphism is decent, see Decent Spaces, Lemma 50.15.2. Hence
(1) implies (2).

Let us prove (3). Recall that the separation axioms are stable under base change and
composition and that closed immersions are separated, see Morphisms of Spaces,
Lemmas 49.4.4, 49.4.8, and 49.10.7. Thus the discussion in the first paragraph of
the proof applies. Let X be a reduced algebraic space universally injective and
locally separated over a field K. In particular |X| is a singleton hence X is quasi-
compact, see Properties of Spaces, Lemma 48.5.2. We can find a surjective étale
morphism U → X with U affine, see Properties of Spaces, Lemma 48.6.3. Consider
the morphism of schemes

j : U ×X U −→ U ×Spec(K) U

As X → Spec(K) is universally injective j is surjective, and as X → Spec(K) is
locally separated j is an immersion. A surjective immersion is a closed immersion,
see Schemes, Lemma 25.10.4. Hence R = U ×X U is affine as a closed subscheme
of an affine scheme. In particular R is quasi-compact. It follows that X = U/R is
quasi-separated, and the result follows from (2). �

Remark 58.3.5. Let X → Y be a morphism of algebraic spaces. For some appli-
cations (of radicial morphisms) it is enough to require that for every Spec(K)→ Y
where K is a field

(1) the space |Spec(K)×Y X| is a singleton,
(2) there exists a monomorphism Spec(L)→ Spec(K)×Y X, and
(3) K ⊂ L is purely inseparable.

If needed later we will may call such a morphism weakly radicial. For example if
X → Y is a surjective weakly radicial morphism then X(k) → Y (k) is surjective
for every algebraically closed field k. Note that the base change XQ → Spec(Q) of
the morphism in Example 58.3.3 is weakly radicial, but not radicial. The analogue
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of Lemma 58.3.4 is that if X → Y has property (β) and is universally injective,
then it is weakly radicial (proof omitted).

Lemma 58.3.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is locally of finite type,
(2) for every étale morphism V → Y the map |X ×Y V | → |V | is injective.

Then f is universally injective.

Proof. The question is étale local on Y by Morphisms of Spaces, Lemma 49.19.6.
Hence we may assume that Y is a scheme. Then Y is in particular decent and by
Decent Spaces, Lemma 50.16.9 we see that f is locally quasi-finite. Let y ∈ Y be a
point and let Xy be the scheme theoretic fibre. Assume Xy is not empty. By Spaces
over Fields, Lemma 54.7.2 we see that Xy is a scheme which is locally quasi-finite
over κ(y). Since |Xy| ⊂ |X| is the fibre of |X| → |Y | over y we see that Xy has a
unique point x. The same is true for Xy ×Spec(κ(y)) Spec(k) for any finite separable
extension κ(y) ⊂ k because we can realize k as the residue field at a point lying over
y in an étale scheme over Y , see see More on Morphisms, Lemma 36.27.2. Thus
Xy is geometrically connected, see Varieties, Lemma 32.5.11. This implies that the
finite extension κ(y) ⊂ κ(x) is purely inseparable.

We conclude (in the case that Y is a scheme) that for every y ∈ Y either the
fibre Xy is empty, or (Xy)red = Spec(κ(x)) with κ(y) ⊂ κ(x) purely inseparable.
Hence f is radicial (some details omitted), whence universally injective by Lemma
58.3.2. �

58.4. Conormal sheaf of an immersion

Let S be a scheme. Let i : Z → X be a closed immersion of algebraic spaces over
S. Let I ⊂ OX be the corresponding quasi-coherent sheaf of ideals, see Morphisms
of Spaces, Lemma 49.13.1. Consider the short exact sequence

0→ I2 → I → I/I2 → 0

of quasi-coherent sheaves on X. Since the sheaf I/I2 is annihilated by I it cor-
responds to a sheaf on Z by Morphisms of Spaces, Lemma 49.14.1. This quasi-
coherent OZ-module is the conormal sheaf of Z in X and is often denoted I/I2 by
the abuse of notation mentioned in Morphisms of Spaces, Section 49.14.

In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i
as the conormal sheaf of the closed immersion i : Z → X \ ∂Z, see Morphisms of
Spaces, Remark 49.12.4. It is often denoted I/I2 where I is the ideal sheaf of the
closed immersion i : Z → X \ ∂Z.

Definition 58.4.1. Let i : Z → X be an immersion. The conormal sheaf CZ/X of

Z in X or the conormal sheaf of i is the quasi-coherent OZ-module I/I2 described
above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted NZ/X . We will not follow this
convention since we would like to reserve the notation NZ/X for the normal sheaf
of the immersion. It is defined as

NZ/X = HomOZ (CZ/X ,OZ) = HomOZ (I/I2,OZ)
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provided the conormal sheaf is of finite presentation (otherwise the normal sheaf
may not even be quasi-coherent). We will come back to the normal sheaf later
(insert future reference here).

Lemma 58.4.2. Let S be a scheme. Let i : Z → X be an immersion. Let
ϕ : U → X be an étale morphism where U is a scheme. Set ZU = U ×X Z which
is a locally closed subscheme of U . Then

CZ/X |ZU = CZU/U
canonically and functorially in U .

Proof. Let T ⊂ X be a closed subspace such that i defines a closed immersion
into X \ T . Let I be the quasi-coherent sheaf of ideals on X \ T defining Z.
Then the lemma just states that I|U\ϕ−1(T ) is the sheaf of ideals of the immersion

ZU → U \ϕ−1(T ). This is clear from the construction of I in Morphisms of Spaces,
Lemma 49.13.1. �

Lemma 58.4.3. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a commutative diagram of algebraic spaces over S. Assume i, i′ immersions.
There is a canonical map of OZ-modules

f∗CZ′/X′ −→ CZ/X
Proof. First find open subspaces U ′ ⊂ X ′ and U ⊂ X such that g(U) ⊂ U ′ and
such that i(Z) ⊂ U and i(Z ′) ⊂ U ′ are closed (proof existence omitted). Replacing
X by U and X ′ by U ′ we may assume that i and i′ are closed immersions. Let
I ′ ⊂ OX′ and I ⊂ OX be the quasi-coherent sheaves of ideals associated to i′ and
i, see Morphisms of Spaces, Lemma 49.13.1. Consider the composition

g−1I ′ → g−1OX′
g]−→ OX → OX/I = i∗OZ

Since g(i(Z)) ⊂ Z ′ we conclude this composition is zero (see statement on factor-
izations in Morphisms of Spaces, Lemma 49.13.1). Thus we obtain a commutative
diagram

0 // I // OX // i∗OZ // 0

0 // g−1I ′ //

OO

g−1OX′ //

OO

g−1i′∗OZ′ //

OO

0

The lower row is exact since g−1 is an exact functor. By exactness we also see that
(g−1I ′)2 = g−1((I ′)2). Hence the diagram induces a map g−1(I ′/(I ′)2) → I/I2.
Pulling back (using i−1 for example) to Z we obtain i−1g−1(I ′/(I ′)2) → CZ/X .

Since i−1g−1 = f−1(i′)−1 this gives a map f−1CZ′/X′ → CZ/X , which induces the
desired map. �

Lemma 58.4.4. Let S be a scheme. The conormal sheaf of Definition 58.4.1, and
its functoriality of Lemma 58.4.3 satisfy the following properties:
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(1) If Z → X is an immersion of schemes over S, then the conormal sheaf
agrees with the one from Morphisms, Definition 28.33.1.

(2) If in Lemma 58.4.3 all the spaces are schemes, then the map f∗CZ′/X′ →
CZ/X is the same as the one constructed in Morphisms, Lemma 28.33.3.

(3) Given a commutative diagram

Z
i
//

f

��

X

g

��
Z ′

i′ //

f ′

��

X ′

g′

��
Z ′′

i′′ // X ′′

then the map (f ′ ◦ f)∗CZ′′/X′′ → CZ/X is the same as the composition of
f∗CZ′/X′ → CZ/X with the pullback by f of (f ′)∗CZ′′/X′′ → CZ′/X′

Proof. Omitted. Note that Part (1) is a special case of Lemma 58.4.2. �

Lemma 58.4.5. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a fibre product diagram of algebraic spaces over S. Assume i, i′ immersions.
Then the canonical map f∗CZ′/X′ → CZ/X of Lemma 58.4.3 is surjective. If g is
flat, then it is an isomorphism.

Proof. Choose a commutative diagram

U //

��

X

��
U ′ // X ′

where U , U ′ are schemes and the horizontal arrows are surjective and étale, see
Spaces, Lemma 47.11.4. Then using Lemmas 58.4.2 and 58.4.4 we see that the
question reduces to the case of a morphism of schemes. In the schemes case this is
Morphisms, Lemma 28.33.4. �

Lemma 58.4.6. Let S be a scheme. Let Z → Y → X be immersions of algebraic
spaces. Then there is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 58.4.3 and i : Z → Y is the first morphism.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. Via
Lemmas 58.4.2 and 58.4.4 the exactness of the sequence translates immediately
into the exactness of the corresponding sequence for the immersions of schemes
Z ×X U → Y ×X U → U . Hence the lemma follows from Morphisms, Lemma
28.33.5. �
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58.5. The normal cone of an immersion

Let S be a scheme. Let i : Z → X be a closed immersion of algebraic spaces over S.
Let I ⊂ OX be the corresponding quasi-coherent sheaf of ideals, see Morphisms of
Spaces, Lemma 49.13.1. Consider the quasi-coherent sheaf of graded OX -algebras⊕

n≥0 In/In+1. Since the sheaves In/In+1 are each annihilated by I this graded
algebra corresponds to a quasi-coherent sheaf of graded OZ-algebras by Morphisms
of Spaces, Lemma 49.14.1. This quasi-coherent graded OZ-algebra is called the
conormal algebra of Z in X and is often simply denoted

⊕
n≥0 In/In+1 by the

abuse of notation mentioned in Morphisms of Spaces, Section 49.14.

In case i : Z → X is a (locally closed) immersion we define the conormal algebra of
i as the conormal algebra of the closed immersion i : Z → X \ ∂Z, see Morphisms
of Spaces, Remark 49.12.4. It is often denoted

⊕
n≥0 In/In+1 where I is the ideal

sheaf of the closed immersion i : Z → X \ ∂Z.

Definition 58.5.1. Let i : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of i is the quasi-coherent sheaf of graded OZ-
algebras

⊕
n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ
and CZ/X,n is a quasi-coherent OZ-module characterized by the property

(58.5.1.1) i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that
there is a canonical surjective map

(58.5.1.2) Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent graded OZ-algebras which is an isomorphism in degrees 0 and 1.

Lemma 58.5.2. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Let ϕ : U → X be an étale morphism where U is a scheme. Set
ZU = U ×X Z which is a locally closed subscheme of U . Then

CZ/X,∗|ZU = CZU/U,∗
canonically and functorially in U .

Proof. Let T ⊂ X be a closed subspace such that i defines a closed immersion into
X \ T . Let I be the quasi-coherent sheaf of ideals on X \ T defining Z. Then the
lemma follows from the fact that I|U\ϕ−1(T ) is the sheaf of ideals of the immersion

ZU → U \ϕ−1(T ). This is clear from the construction of I in Morphisms of Spaces,
Lemma 49.13.1. �

Lemma 58.5.3. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a commutative diagram of algebraic spaces over S. Assume i, i′ immersions.
There is a canonical map of graded OZ-algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
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Proof. First find open subspaces U ′ ⊂ X ′ and U ⊂ X such that g(U) ⊂ U ′ and
such that i(Z) ⊂ U and i(Z ′) ⊂ U ′ are closed (proof existence omitted). Replacing
X by U and X ′ by U ′ we may assume that i and i′ are closed immersions. Let
I ′ ⊂ OX′ and I ⊂ OX be the quasi-coherent sheaves of ideals associated to i′ and
i, see Morphisms of Spaces, Lemma 49.13.1. Consider the composition

g−1I ′ → g−1OX′
g]−→ OX → OX/I = i∗OZ

Since g(i(Z)) ⊂ Z ′ we conclude this composition is zero (see statement on factor-
izations in Morphisms of Spaces, Lemma 49.13.1). Thus we obtain a commutative
diagram

0 // I // OX // i∗OZ // 0

0 // g−1I ′ //

OO

g−1OX′ //

OO

g−1i′∗OZ′ //

OO

0

The lower row is exact since g−1 is an exact functor. By exactness we also see
that (g−1I ′)n = g−1((I ′)n) for all n ≥ 1. Hence the diagram induces a map
g−1((I ′)n/(I ′)n+1) → In/In+1. Pulling back (using i−1 for example) to Z we
obtain i−1g−1((I ′)n/(I ′)n+1)→ CZ/X,n. Since i−1g−1 = f−1(i′)−1 this gives maps

f−1CZ′/X′,n → CZ/X,n, which induce the desired map. �

Lemma 58.5.4. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a cartesion square of algebraic spaces over S with i, i′ immersions. Then the
canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 58.5.3 is surjective. If g is flat, then
it is an isomorphism.

Proof. We may check the statement after étale localizing X ′. In this case we may
assume X ′ → X is a morphism of schemes, hence Z and Z ′ are schemes and the
result follows from the case of schemes, see Divisors, Lemma 30.11.4. �

We use the same conventions for cones and vector bundles over algebraic spaces
as we do for schemes (where we use the conventions of EGA), see Constructions,
Sections 26.7 and 26.6. In particular, a vector bundle is a very general gadget (and
not locally isomorphic to an affine space bundle).

Definition 58.5.5. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. The normal cone CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)

see Morphisms of Spaces, Definition 49.20.8. The normal bundle of Z in X is the
vector bundle

NZX = Spec
Z

(Sym(CZ/X))
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Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z.
Moreover, the canonical surjection (58.5.1.2) of graded algebras defines a canonical
closed immersion

(58.5.5.1) CZX −→ NZX

of cones over Z.

58.6. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 10.127), the corresponding section in the
chapter on morphism of schemes (Morphisms, Section 28.34) as well as Modules
on Sites, Section 18.32. We first show that the notion of sheaf of differentials for
a morphism of schemes agrees with the corresponding morphism of small étale
(ringed) sites.

To clearly state the following lemma we temporarily go back to denoting Fa
the sheaf of OXétale -modules associated to a quasi-coherent OX -module F on the
scheme X, see Descent, Definition 34.7.2.

Lemma 58.6.1. Let f : X → Y be a morphism of schemes. Let fsmall : Xétale →
Yétale be the associated morphism of small étale sites, see Descent, Remark 34.7.4.
Then there is a canonical isomorphism

(ΩX/Y )a = ΩXétale/Yétale

compatible with universal derivations. Here the first module is the sheaf on Xétale

associated to the quasi-coherent OX-module ΩX/Y , see Morphisms, Definition 28.34.1,
and the second module is the one from Modules on Sites, Definition 18.32.3.

Proof. Let h : U → X be an étale morphism. In this case the natural map
h∗ΩX/Y → ΩU/Y is an isomorphism, see More on Morphisms, Lemma 36.7.7. This
means that there is a natural OYétale -derivation

da : OXétale −→ (ΩX/Y )a

since we have just seen that the value of (ΩX/Y )a on any object U of Xétale is canon-
ically identified with Γ(U,ΩU/Y ). By the universal property of dX/Y : OXétale →
ΩXétale/Yétale there is a unique OXétale -linear map c : ΩXétale/Yétale → (ΩX/Y )a such
that da = c ◦ dX/Y .

Conversely, suppose that F is an OXétale -module and D : OXétale → F is a OYétale -
derivation. Then we can simply restrict D to the small Zariski site XZar of X.
Since sheaves on XZar agree with sheaves on X, see Descent, Remark 34.7.3, we
see that D|XZar : OX → F|XZar is just a “usual” Y -derivation. Hence we obtain
a map ψ : ΩX/Y −→ F|XZar such that D|XZar = ψ ◦ d. In particular, if we apply
this with F = ΩXétale/Yétale we obtain a map

c′ : ΩX/Y −→ ΩXétale/Yétale |XZar
Consider the morphism of ringed sites idsmall,étale,Zar : Xétale → XZar discussed
in Descent, Remark 34.7.4 and Lemma 34.7.5. Since the restriction functor F 7→
F|XZar is equal to idsmall,étale,Zar,∗, since id∗small,étale,Zar is left adjoint to idsmall,étale,Zar,∗
and since (ΩX/Y )a = id∗small,étale,ZarΩX/Y we see that c′ is adjoint to a map

c′′ : (ΩX/Y )a −→ ΩXétale/Yétale .

http://stacks.math.columbia.edu/tag/04CS
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We claim that c′′ and c′ are mutually inverse. This claim finishes the proof of the
lemma. To see this it is enough to show that c′′(d(f)) = dX/Y (f) and c(dX/Y (f)) =
d(f) if f is a local section of OX over an open of X. We omit the verification. �

This clears the way for the following definition. For an alternative, see Remark
58.6.5.

Definition 58.6.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The sheaf of differentials ΩX/Y of X over Y is sheaf of differentials
(Modules on Sites, Definition 18.32.10) for the morphism of ringed topoi

(fsmall, f
]) : (Xétale,OX)→ (Yétale,OY )

of Properties of Spaces, Lemma 48.18.3. The universal Y -derivation will be denoted
dX/Y : OX → ΩX/Y .

By Lemma 58.6.1 this does not conflict with the already existing notion in case X
and Y are representable. From now on, if X and Y are representable, we no longer
distinguish between the sheaf of differentials defined above and the one defined in
Morphisms, Definition 28.34.1. We want to relate this to the usual modules of
differentials for morphisms of schemes. Here is the key lemma.

Lemma 58.6.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Consider any commutative diagram

U

a

��

ψ
// V

b
��

X
f // Y

where the vertical arrows are étale morphisms of algebraic spaces. Then

ΩX/Y |Uétale = ΩU/V

In particular, if U , V are schemes, then this is equal to the usual sheaf of differen-
tials of the morphism of schemes U → V .

Proof. By Properties of Spaces, Lemma 48.15.10 and Equation (48.15.10.1) we
may think of the restriction of a sheaf on Xétale to Uétale as the pullback by asmall.
Similarly for b. By Modules on Sites, Lemma 18.32.6 we have

ΩX/Y |Uétale = ΩOUétale/a
−1
smallf

−1
smallOYétale

Since a−1
smallf

−1
smallOYétale = ψ−1

smallb
−1
smallOYétale = ψ−1

smallOVétale we see that the
lemma holds. �

Lemma 58.6.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then ΩX/Y is a quasi-coherent OX-module.

Proof. Choose a diagram as in Lemma 58.6.3 with a and b surjective and U and V
schemes. Then we see that ΩX/Y |U = ΩU/V which is quasi-coherent (for example
by Morphisms, Lemma 28.34.7). Hence we conclude that ΩX/Y is quasi-coherent
by Properties of Spaces, Lemma 48.27.6. �

Remark 58.6.5. Now that we know that ΩX/Y is quasi-coherent we can attempt to
construct it in another manner. For example we can use the result of Properties of
Spaces, Section 48.30 to construct the sheaf of differentials by glueing. For example
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if Y is a scheme and if U → X is a surjective étale morphism from a scheme towards
X, then we see that ΩU/Y is a quasi-coherent OU -module, and since s, t : R → U
are étale we get an isomorphism

α : s∗ΩU/Y → ΩR/Y → t∗ΩU/Y

by using Morphisms, Lemma 28.35.16. You check that this satisfies the cocycle
condition and you’re done. If Y is not a scheme, then you define ΩU/Y as the
cokernel of the map (U → Y )∗ΩY/S → ΩU/S , and proceed as before. This two step
process is a little bit ugly. Another possibility is to glue the sheaves ΩU/V for any
diagram as in Lemma 58.6.3 but this is not very elegant either. Both approaches
will work however, and will give a slightly more elementary construction of the
sheaf of differentials.

Lemma 58.6.6. Let S be a scheme. Let

X ′

��

f
// X

��
Y ′ // Y

be a commutative diagram of algebraic spaces. The map f ] : OX → f∗OX′ composed
with the map f∗dX′/Y ′ : f∗OX′ → f∗ΩX′/Y ′ is a Y -derivation. Hence we obtain a
canonical map of OX-modules ΩX/Y → f∗ΩX′/Y ′ , and by adjointness of f∗ and f∗

a canonical OX′-module homomorphism

cf : f∗ΩX/Y −→ ΩX′/Y ′ .

It is uniquely characterized by the property that f∗dX/Y (t) mapsto dX′/Y ′(f
∗t) for

any local section t of OX .

Proof. This is a special case of Modules on Sites, Lemma 18.32.11. �

Lemma 58.6.7. Let S be a scheme. Let

X ′′

��

g
// X ′

��

f
// X

��
Y ′′ // Y ′ // Y

be a commutative diagram of algebraic spaces over S. Then we have

cf◦g = cg ◦ g∗cf
as maps (f ◦ g)∗ΩX/Y → ΩX′′/Y ′′ .

Proof. Omitted. Hint: Use the characterization of cf , cg, cf◦g in terms of the effect
these maps have on local sections. �

Lemma 58.6.8. Let S be a scheme. Let f : X → Y , g : Y → B be morphisms of
algebraic spaces over S. Then there is a canonical exact sequence

f∗ΩY/B → ΩX/B → ΩX/Y → 0

where the maps come from applications of Lemma 58.6.6.

Proof. Follows from the schemes version, see Morphisms, Lemma 28.34.9, of this
result via étale localization, see Lemma 58.6.3. �
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Lemma 58.6.9. Let S be a scheme. If X → Y is an immersion of algebraic spaces
over S then ΩX/S is zero.

Proof. Follows from the schemes version, see Morphisms, Lemma 28.34.14, of this
result via étale localization, see Lemma 58.6.3. �

Lemma 58.6.10. Let S be a scheme. Let B be an algebraic space over S. Let
i : Z → X be an immersion of algebraic spaces over B. There is a canonical exact
sequence

CZ/X → i∗ΩX/B → ΩZ/B → 0

where the first arrow is induced by dX/B and the second arrow comes from Lemma
58.6.6.

Proof. This is the algebraic spaces version of Morphisms, Lemma 28.34.15 and
will be a consequence of that lemma by étale localization, see Lemmas 58.6.3 and
58.4.2. However, we should make sure we can define the first arrow globally. Hence
we explain the meaning of “induced by dX/B” here. Namely, we may assume that
i is a closed immersion after replacing X by an open subspace. Let I ⊂ OX be the
quasi-coherent sheaf of ideals corresponding to Z ⊂ X. Then dX/S : I → ΩX/S
maps the subsheaf I2 ⊂ I to IΩX/S . Hence it induces a map I/I2 → ΩX/S/IΩX/S
which is OX/I-linear. By Morphisms of Spaces, Lemma 49.14.1 this corresponds
to a map CZ/X → i∗ΩX/S as desired. �

Lemma 58.6.11. Let S be a scheme. Let B be an algebraic space over S. Let
i : Z → X be an immersion of schemes over B, and assume i (étale locally) has a
left inverse. Then the canonical sequence

0→ CZ/X → i∗ΩX/B → ΩZ/B → 0

of Lemma 58.6.10 is (étale locally) split exact.

Proof. Clarification: we claim that if g : X → Z is a left inverse of i, then i∗cg
is a right inverse of the map i∗ΩX/B → ΩZ/B . Having said this, the result follows
from the corresponding result for morphisms of schemes by étale localization, see
Lemmas 58.6.3 and 58.4.2. �

Lemma 58.6.12. Let S be a scheme. Let X → Y be a morphism of algebraic
spaces over S. Let g : Y ′ → Y be a morphism of algebraic spaces over S. Let
X ′ = XY ′ be the base change of X. Denote g′ : X ′ → X the projection. Then the
map

(g′)∗ΩX/Y → ΩX′/Y ′

of Lemma 58.6.6 is an isomorphism.

Proof. Follows from the schemes version, see Morphisms, Lemma 28.34.10 and
étale localization, see Lemma 58.6.3. �

Lemma 58.6.13. Let S be a scheme. Let f : X → B and g : Y → B be morphisms
of algebraic spaces over S with the same target. Let p : X ×B Y → X and q :
X ×B Y → Y be the projection morphisms. The maps from Lemma 58.6.6

p∗ΩX/S ⊕ q∗ΩY/S −→ ΩX×SY/S

give an isomorphism.
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Proof. Follows from the schemes version, see Morphisms, Lemma 28.34.11 and
étale localization, see Lemma 58.6.3. �

Lemma 58.6.14. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then ΩX/Y is a finite type OX-module.

Proof. Follows from the schemes version, see Morphisms, Lemma 28.34.12 and
étale localization, see Lemma 58.6.3. �

Lemma 58.6.15. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then ΩX/Y is an OX-module of finite
presentation.

Proof. Follows from the schemes version, see Morphisms, Lemma 28.34.13 and
étale localization, see Lemma 58.6.3. �

58.7. Topological invariance of the étale site

We show that the site Xspaces,étale is a “topological invariant”. It then follows that
Xétale, which consists of the representable objects in Xspaces,étale, is a topological
invariant too, see Lemma 58.7.2.

Theorem 58.7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is integral, universally injective and surjective. The
functor

V 7−→ VX = X ×Y V
defines an equivalence of categories Yspaces,étale → Xspaces,étale.

Proof. The morphism f is representable and a universal homeomorphism, see Mor-
phisms of Spaces, Section 49.47.

We first prove that the functor is faithful. Suppose that V ′, V are objects of
Yspaces,étale and that a, b : V ′ → V are distinct morphisms over Y . Since V ′, V
are étale over Y the equalizer

E = V ′ ×(a,b),V×Y V,∆V/Y
V

of a, b is étale over Y also. Hence E → V ′ is an étale monomorphism (i.e., an open
immersion) which is an isomorphism if and only if it is surjective. Since X → Y is
a universal homeomorphism we see that this is the case if and only if EX = V ′X ,
i.e., if and only if aX = bX .

Next, we prove that the functor is fully faithful. Suppose that V ′, V are objects of
Yspaces,étale and that c : V ′X → VX is a morphism over X. We want to construct a
morphism a : V ′ → V over Y such that aX = c. Let a′ : V ′′ → V ′ be a surjective
étale morphism such that V ′′ is a separated algebraic space. If we can construct a
morphism a′′ : V ′′ → V such that a′′X = c ◦ a′X , then the two compositions

V ′′ ×V ′ V ′′
pri−−→ V ′′

a′′−−→ V

will be equal by the faithfulness of the functor proved in the first paragraph. Hence
a′′ will factor through a unique morphism a : V ′ → V as V ′ is (as a sheaf) the
quotient of V ′′ by the equivalence relation V ′′ ×V ′ V ′′. Hence we may assume that
V ′ is separated. In this case the graph

Γc ⊂ (V ′ ×Y V )X
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is open and closed (details omitted). Since X → Y is a universal homeomorphism,
there exists an open and closed subspace Γ ⊂ V ′ ×Y V such that ΓX = Γc. The
projection Γ→ V ′ is an étale morphism whose base change to X is an isomorphism.
Hence Γ → V ′ is étale, universally injective, and surjective, so an isomorphism
by Morphisms of Spaces, Lemma 49.45.2. Thus Γ is the graph of a morphism
a : V ′ → V as desired.

Finally, we prove that the functor is essentially surjective. Suppose that U is
an object of Xspaces,étale. We have to find an object V of Yspaces,étale such that
VX ∼= U . Let U ′ → U be a surjective étale morphism such that U ′ ∼= V ′X and
U ′ ×U U ′ ∼= V ′′X for some objects V ′′, V ′ of Yspaces,étale. Then by fully faithfulness
of the functor we obtain morphisms s, t : V ′′ → V ′ with tX = pr0 and sX = pr1 as
morphisms U ′×U U ′ → U ′. Using that (pr0,pr1) : U ′×U U ′ → U ′×S U ′ is an étale
equivalence relation, and that U ′ → V ′ and U ′×UU ′ → V ′′ are universally injective
and surjective we deduce that (t, s) : V ′′ → V ′×SV ′ is an étale equivalence relation.
Then the quotient V = V ′/V ′′ (see Spaces, Theorem 47.10.5) is an algebraic space
V over Y . There is a morphism V ′ → V such that V ′′ = V ′×V V ′. Thus we obtain
a morphism V → Y (see Descent on Spaces, Lemma 56.6.2). On base change
to X we see that we have a morphism U ′ → VX and a compatible isomorphism
U ′ ×VX U ′ = U ′ ×U U ′, which implies that VX ∼= U (by the lemma just cited once
more).

Pick a scheme W and a surjective étale morphism W → Y . Pick a scheme U ′

and a surjective étale morphism U ′ → U ×X WX . Note that U ′ and U ′ ×U U ′ are
schemes étale over X whose structure morphism to X factors through the scheme
WX . Hence by Étale Cohomology, Theorem 44.46.1 there exist schemes V ′, V ′′ étale
over W whose base change to WX is isomorphic to respectively U ′ and U ′ ×U U ′.
This finishes the proof. �

Lemma 58.7.2. With assumption and notation as in Theorem 58.7.1 the equiva-
lence of categories Yspaces,étale → Xspaces,étale restricts to an equivalence of cate-
gories Yétale → Xétale.

Proof. This is just the statement that given an object V ∈ Yspaces,étale we have
V is a scheme if and only if V ×Y X is a scheme. Since V ×Y X → V is integral,
universally injective, and surjective (as a base change of X → Y ) this follows from
Limits of Spaces, Lemma 52.15.4. �

Remark 58.7.3. A universal homeomorphism of algebraic spaces need not be
representable, see Morphisms of Spaces, Example 49.47.3. The argument in the
proof of Theorem 58.7.1 above cannot be used in this case. In fact we do not
know whether given a universal homeomorphism of algebraic spaces f : X → Y
the categories Xspaces,étale and Yspaces,étale are equivalent. If you do, please email
stacks.project@gmail.com.

58.8. Thickenings

The following terminology may not be completely standard, but it is convenient.

Definition 58.8.1. Thickenings. Let S be a scheme.

(1) We say an algebraic space X ′ is a thickening of an algebraic space X if X
is a closed subspace of X ′ and the associated topological spaces are equal.
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(2) We say X ′ is a first order thickening of X if X is a closed subspace of
X ′ and the quasi-coherent sheaf of ideals I ⊂ OX′ defining X has square
zero.

(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings
is a morphism f ′ : X ′ → Y ′ such that f(X) ⊂ Y , i.e., such that f ′|X
factors through the closed subspace Y . In this situation we set f = f ′|X :
X → Y and we say that (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of
thickenings.

(4) Let B be an algebraic space. We similarly define thickenings over B, and
morphisms of thickenings over B. This means that the spaces X,X ′, Y, Y ′

above are algebraic spaces endowed with a structure morphism to B, and
that the morphisms X → X ′, Y → Y ′ and f ′ : X ′ → Y ′ are morphisms
over B.

The fundamental equivalence. Note that if X ⊂ X ′ is a thickening, then X → X ′

is integral and universally bijective. This implies that

(58.8.1.1) Xspaces,étale = X ′spaces,étale

via the pullback functor, see Theorem 58.7.1. Hence we may think of OX′ as a
sheaf on Xspaces,étale. Thus a canonical equivalence of locally ringed topoi

(58.8.1.2) (Sh(X ′spaces,étale),OX′) ∼= (Sh(Xspaces,étale),OX′)
Below we will frequently combine this with the fully faithfulness result of Properties
of Spaces, Theorem 48.26.4. For example the closed immersion iX : X → X ′

corresponds to the surjective map i]X : OX′ → OX .

Let S be a scheme, and let B be an algebraic space over S. Let (f, f ′) : (X ⊂
X ′) → (Y ⊂ Y ′) be a morphism of thickenings over B. Note that the diagram of
continuous functors

Xspaces,étale Yspaces,étaleoo

X ′spaces,étale

OO

Y ′spaces,étale

OO

oo

is commutative and the vertical arrows are equivalences. Hence fspaces,étale, fsmall,
f ′spaces,étale, and f ′small all define the same morphism of topoi. Thus we may think
of

(f ′)] : f−1
spaces,étaleOY ′ −→ OX′

as a map of sheaves of OB-algebras fitting into the commutative diagram

f−1
spaces,étaleOY

f]
// // OX

f−1
spaces,étaleOY ′

(f ′)] //

i]Y

OO

OX′

i]X

OO

Here iX : X → X ′ and iY : Y → Y ′ are the names of the given closed immersions.

Lemma 58.8.2. Let S be a scheme. Let B be an algebraic space over S. Let
X ⊂ X ′ and Y ⊂ Y ′ be thickenings of algebraic spaces over B. Let f : X → Y be
a morphism of algebraic spaces over B. Given any map of OB-algebras

α : f−1
spaces,étaleOY ′ → OX′
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such that

f−1
spaces,étaleOY

f]
// // OX

f−1
spaces,étaleOY ′

α //

i]Y

OO

OX′

i]X

OO

commutes, there exists a unique morphism of (f, f ′) of thickenings over B such that
α = (f ′)].

Proof. To find f ′, by Properties of Spaces, Theorem 48.26.4, all we have to do is
show that the morphism of ringed topoi

(fspaces,étale, α) : (Sh(Xspaces,étale),OX′) −→ (Sh(Yspaces,étale),OY ′)

is a morphism of locally ringed topoi. This follows directly from the definition of
morphisms of locally ringed topoi (Modules on Sites, Definition 18.39.8), the fact
that (f, f ]) is a morphism of locally ringed topoi (Properties of Spaces, Lemma
48.26.1), that α fits into the given commutative diagram, and the fact that the

kernels of i]X and i]Y are locally nilpotent. Finally, the fact that f ′ ◦ iX = iY ◦f fol-
lows from the commutativity of the diagram and another application of Properties
of Spaces, Theorem 48.26.4. We omit the verification that f ′ is a morphism over
B. �

Lemma 58.8.3. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. For any open subspace U ⊂ X there exists a unique open subspace U ′ ⊂ X ′
such that U = X ×X′ U ′.

Proof. Let U ′ → X ′ be the object of X ′spaces,étale corresponding to the object U →
X of Xspaces,étale via (58.8.1.1). The morphism U ′ → X ′ is étale and universally
injective, hence an open immersion, see Morphisms of Spaces, Lemma 49.45.2. �

Finite order thickenings. Let iX : X → X ′ be a thickening of algebraic spaces. Any

local section of the kernel I = Ker(i]X) ⊂ OX′ is locally nilpotent. Let us say that
X ⊂ X ′ is a finite order thickening if the ideal sheaf I is “globally” nilpotent, i.e.,
if there exists an n ≥ 0 such that In+1 = 0. Technically the class of finite order
thickenings X ⊂ X ′ is much easier to handle than the general case. Namely, in this
case we have a filtration

0 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′

and we see that X ′ is filtered by closed subspaces

X = X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over B. Using simple in-
duction arguments many results proved for first order thickenings can be rephrased
as results on finite order thickenings.

Lemma 58.8.4. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. Let U be an affine object of Xspaces,étale. Then

Γ(U,OX′)→ Γ(U,OX)

is surjective where we think of OX′ as a sheaf on Xspaces,étale via (58.8.1.2).
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Proof. Let U ′ → X ′ be the étale morphism of algebraic spaces such that U =
X ×X′ U ′, see Theorem 58.7.1. By Limits of Spaces, Lemma 52.15.1 we see that
U ′ is an affine scheme. Hence Γ(U,OX′) = Γ(U ′,OU ′)→ Γ(U,OU ) is surjective as
U → U ′ is a closed immersion of affine schemes. Below we give a direct proof for
finite order thickenings which is the case most used in practice. �

Proof for finite order thickenings. We may assume thatX ⊂ X ′ is a first order
thickening by the principle explained above. Denote I the kernel of the surjection
OX′ → OX . As I is a quasi-coherentOX′ -module and since I2 = 0 by the definition
of a first order thickening we may apply Morphisms of Spaces, Lemma 49.14.1 to
see that I is a quasi-coherent OX -module. Hence the lemma follows from the long
exact cohomology sequence associated to the short exact sequence

0→ I → OX′ → OX → 0

and the fact that H1
étale(U, I) = 0 as I is quasi-coherent, see Descent, Proposition

34.7.10 and Cohomology of Schemes, Lemma 29.2.2. �

Lemma 58.8.5. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. If X is (representable by) a scheme, then so is X ′.

Proof. Note that X ′red = Xred. Hence if X is a scheme, then X ′red is a scheme.
Thus the result follows from Limits of Spaces, Lemma 52.15.3. Below we give
a direct proof for finite order thickenings which is the case most often used in
practice. �

Proof for finite order thickenings. It suffices to prove this when X ′ is a first
order thickening of X. By Properties of Spaces, Lemma 48.10.1 there is a largest
open subspace of X ′ which is a scheme. Thus we have to show that every point x of
|X ′| = |X| is contained in an open subspace of X ′ which is a scheme. Using Lemma
58.8.3 we may replace X ⊂ X ′ by U ⊂ U ′ with x ∈ U and U an affine scheme.
Hence we may assume that X is affine. Thus we reduce to the case discussed in
the next paragraph.

Assume X ⊂ X ′ is a first order thickening where X is an affine scheme. Set
A = Γ(X,OX) and A′ = Γ(X ′,OX′). By Lemma 58.8.4 the map A → A′ is
surjective. The kernel I is an ideal of square zero. By Properties of Spaces, Lemma
48.31.1 we obtain a canonical morphism f : X ′ → Spec(A′) which fits into the
following commutative diagram

X // X ′

f

��
Spec(A) // Spec(A′)

Because the horizontal arrows are thickenings it is clear that f is universally injec-
tive and surjective. Hence it suffices to show that f is étale, since then Morphisms
of Spaces, Lemma 49.45.2 will imply that f is an isomorphism.

To prove that f is étale choose an affine scheme U ′ and an étale morphism U ′ →
X ′. It suffices to show that U ′ → X ′ → Spec(A′) is étale, see Properties of
Spaces, Definition 48.13.2. Write U ′ = Spec(B′). Set U = X ×X′ U ′. Since U
is a closed subspace of U ′, it is a closed subscheme, hence U = Spec(B) with
B′ → B surjective. Denote J = Ker(B′ → B) and note that J = Γ(U, I) where
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I = Ker(OX′ → OX) on Xspaces,étale as in the proof of Lemma 58.8.4. The
morphism U ′ → X ′ → Spec(A′) induces a commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

Now, since I is a quasi-coherent OX -module we have I = (Ĩ)a, see Descent, Def-
inition 34.7.2 for notation and Descent, Proposition 34.7.11 for why this is true.
Hence we see that J = I⊗AB. Finally, note that A→ B is étale as U → X is étale
as the base change of the étale morphism U ′ → X ′. We conclude that A′ → B′ is
étale by Algebra, Lemma 10.138.12. �

Lemma 58.8.6. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. The functor

V ′ 7−→ V = X ×X′ V ′

defines an equivalence of categories X ′étale → Xétale.

Proof. The functor V ′ 7→ V defines an equivalence of categories X ′spaces,étale →
Xspaces,étale, see Theorem 58.7.1. Thus it suffices to show that V is a scheme if and
only if V ′ is a scheme. This is the content of Lemma 58.8.5. �

First order thickening are described as follows.

Lemma 58.8.7. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Consider a short exact sequence

0→ I → A → OX → 0

of sheaves on Xétale where A is a sheaf of f−1OB-algebras, A → OX is a surjection
of sheaves of f−1OB-algebras, and I is its kernel. If

(1) I is an ideal of square zero in A, and
(2) I is quasi-coherent as an OX-module

then there exists a first order thickening X ⊂ X ′ over B and an isomorphism
OX′ → A of f−1OB-algebras compatible with the surjections to OX .

Proof. In this proof we redo some of the arguments used in the proofs of Lemmas
58.8.4 and 58.8.5. We first handle the case B = S = Spec(Z). Let U be an affine
scheme, and let U → X be étale. Then

0→ I(U)→ A(U)→ OX(U)→ 0

is exact as H1(Uétale, I) = 0 as I is quasi-coherent, see Descent, Proposition 34.7.10
and Cohomology of Schemes, Lemma 29.2.2. If V → U is a morphism of affine
objects of Xspaces,étale then

I(V ) = I(U)⊗OX(U) OX(V )

since I is a quasi-coherent OX -module, see Descent, Proposition 34.7.11. Hence
A(U) → A(V ) is an étale ring map, see Algebra, Lemma 10.138.12. Hence we see
that

U 7−→ U ′ = Spec(A(U))
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is a functor fromXaffine,étale to the category of affine schemes and étale morphisms.
In fact, we claim that this functor can be extended to a functor U 7→ U ′ on all of
Xétale. To see this, if U is an object of Xétale, note that

0→ I|UZar → A|UZar → OX |UZar → 0

and I|UZar is a quasi-coherent sheaf on U , see Descent, Proposition 34.7.14. Hence
by More on Morphisms, Lemma 36.2.2 we obtain a first order thickening U ⊂ U ′

of schemes such that OU ′ is isomorphic to A|UZar . It is clear that this construction
is compatible with the construction for affines above.

Choose a presentation X = U/R, see Spaces, Definition 47.9.3 so that s, t : R→ U
define an étale equivalence relation. Applying the functor above we obtain an étale
equivalence relation s′, t′ : R′ → U ′ in schemes. Consider the algebraic space X ′ =
U ′/R′ (see Spaces, Theorem 47.10.5). The morphism X = U/R→ U ′/R′ = X ′ is a
first order thickening. Consider OX′ viewed as a sheaf on Xétale. By construction
we have an isomorphism

γ : OX′ |Uétale −→ A|Uétale
such that s−1γ agrees with t−1γ on Rétale. Hence by Properties of Spaces, Lemma
48.15.13 this implies that γ comes from a unique isomorphism OX′ → A as desired.

To handle the case of a general base algebraic space B, we first construct X ′ as an
algebraic space over Z as above. Then we use the isomorphism OX′ → A to define
f−1OB → OX′ . According to Lemma 58.8.2 this defines a morphism X ′ → B
compatible with the given morphism X → B and we are done. �

Lemma 58.8.8. Let S be a scheme. Let Y ⊂ Y ′ be a thickening of algebraic spaces
over S. Let X ′ → Y ′ be a morphism and set X = Y ×Y ′ X ′. Then (X ⊂ X ′) →
(Y ⊂ Y ′) is a morphism of thickenings. If Y ⊂ Y ′ is a first (resp. finite order)
thickening, then X ⊂ X ′ is a first (resp. finite order) thickening.

Proof. Omitted. �

Lemma 58.8.9. Let S be a scheme. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of thickenings of algebraic spaces over S. Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open, and
(9) add more here.

Proof. Observe that Y → Y ′ and X → X ′ are integral and universal homeomor-
phisms. This immediately implies parts (2), (3), (4), (7), and (8). Part (1) follows
from Limits of Spaces, Proposition 52.15.2 which tells us that there is a 1-to-1
correspondence between affine schemes étale over X and X ′ and between affine
schemes étale over Y and Y ′. Part (5) follows from (1) and (4) by Morphisms of
Spaces, Lemma 49.41.7. Finally, note that

X ×Y X = X ×Y ′ X → X ×Y ′ X ′ → X ′ ×Y ′ X ′
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is a thickening (the two arrows are thickenings by Lemma 58.8.8). Hence applying
(3) and (4) to the morphism (X ⊂ X ′) → (X ×Y X → X ′ ×Y ′ X ′) we obtain
(6). �

Lemma 58.8.10. Let (f, f ′) : (X ⊂ X ′)→ (S ⊂ S′) be a morphism of thickenings
such that X = S ×S′ X ′. If S ⊂ S′ is a finite order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(5) f is unramified if and only if f ′ is unramified,
(6) f is proper if and only if f ′ is proper,
(7) f is a finite morphism if and only if f ′ is an finite morphism, and
(8) add more here.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′ ×Y ′ V ′. Set V = Y ×Y ′ V ′
and U = X ×X′ U ′. Then for étale local properties of morphisms we can reduce to
the morphism of thickenings of schemes (U ⊂ U ′)→ (V ⊂ V ′) and apply More on
Morphisms, Lemma 36.2.5. This proves (2), (3), (4), and (5).

The properties of morphisms in (1), (6), (7) are stable under base change, hence if
f ′ has property P, then so does f . See Spaces, Lemma 47.12.3, and Morphisms of
Spaces, Lemmas 49.37.3, 49.41.5.

The interesting direction in (1), (6), (7) to assume that f has the property and de-
duce that f ′ has it too. By induction on the order of the thickening we may assume
that S ⊂ S′ is a first order thickening, see discussion on finite order thickenings
above.

Proof of (1). Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Set
V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′ and U = X ×Y V . Then U → V is a closed
immersion, which implies that U is a scheme, which in turn implies that U ′ is a
scheme (Lemma 58.8.5). Thus we can apply the lemma in the case of schemes to
(U ⊂ U ′)→ (V ⊂ V ′) to conclude.

Proof of (6). Follows by combining (2) with results of Lemma 58.8.9 and the fact
that proper equals quasi-compact + separated + locally of finite type + universally
closed.

Proof of (7). Follows by combining (2) with results of Lemma 58.8.9 and using
the fact that finite equals integral + locally of finite type (Morphisms, Lemma
28.44.4). �

58.9. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that
i : Z → X be an immersion of algebraic spaces. Choose an open subspace U ⊂ X
such that i identifies Z with a closed subspace Z ⊂ U (see Morphisms of Spaces,
Remark 49.12.4). Let I ⊂ OU be the quasi-coherent sheaf of ideals defining Z
in U , see Morphisms of Spaces, Lemma 49.13.1. Then we can consider the closed
subspace Z ′ ⊂ U defined by the quasi-coherent sheaf of ideals I2.
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Definition 58.9.1. Let i : Z → X be an immersion of algebraic spaces. The first
order infinitesimal neighbourhood of Z in X is the first order thickening Z ⊂ Z ′

over X described above.

This thickening has the following universal property (which will assuage any fears
that the construction above depends on the choice of the open U).

Lemma 58.9.2. Let i : Z → X be an immersion of algebraic spaces. The first
order infinitesimal neighbourhood Z ′ of Z in X has the following universal property:
Given any commutative diagram

Z

i

��

T
a

oo

��
X T ′

boo

where T ⊂ T ′ is a first order thickening over X, there exists a unique morphism
(a′, a) : (T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X.

Proof. Let U ⊂ X be the open subspace used in the construction of Z ′, i.e., an
open such that Z is identified with a closed subspace of U cut out by the quasi-
coherent sheaf of ideals I. Since |T | = |T ′| we see that |b|(|T ′|) ⊂ |U |. Hence
we can think of b as a morphism into U , see Properties of Spaces, Lemma 48.4.9.
Let J ⊂ OT ′ be the square zero quasi-coherent sheaf of ideals cutting out T .
By the commutativity of the diagram we have b|T = i ◦ a where i : Z → U is
the closed immersion. We conclude that b](b−1I) ⊂ J by Morphisms of Spaces,
Lemma 49.13.1. As T ′ is a first order thickening of T we see that J 2 = 0 hence
b](b−1(I2)) = 0. By Morphisms of Spaces, Lemma 49.13.1 this implies that b
factors through Z ′. Letting a′ : T ′ → Z ′ be this factorization we win. �

Lemma 58.9.3. Let i : Z → X be an immersion of algebraic spaces. Let Z ⊂ Z ′

be the first order infinitesimal neighbourhood of Z in X. Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Lemma 58.4.3. This map is
an isomorphism.

Proof. This is clear from the construction of Z ′ above. �

58.10. Formally smooth, étale, unramified transformations

Recall that a ring map R→ A is called formally smooth, resp. formally étale, resp.
formally unramified (see Algebra, Definition 10.133.1, resp. Definition 10.143.1,
resp. Definition 10.141.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO
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where I ⊂ B is an ideal of square zero, there exists a, resp. exists a unique, resp.
exists at most one dotted arrow which makes the diagram commute. This moti-
vates the following analogue for morphisms of algebraic spaces, and more generally
functors.

Definition 58.10.1. Let S be a scheme. Let a : F → G be a transformation of
functors F,G : (Sch/S)oppfppf → Sets. Consider commutative solid diagrams of the
form

F

a

��

T

i
��

oo

G T ′oo

``

where T and T ′ are affine schemes and i is a closed immersion defined by an ideal
of square zero.

(1) We say a is formally smooth if given any solid diagram as above there
exists a dotted arrow making the diagram commute1.

(2) We say a is formally étale if given any solid diagram as above there exists
exactly one dotted arrow making the diagram commute.

(3) We say a is formally unramified if given any solid diagram as above there
exists at most one dotted arrow making the diagram commute.

Lemma 58.10.2. Let S be a scheme. Let a : F → G be a transformation of
functors F,G : (Sch/S)oppfppf → Sets. Then a is formally étale if and only if a is
both formally smooth and formally unramified.

Proof. Formal from the definition. �

Lemma 58.10.3. Composition.

(1) A composition of formally smooth transformations of functors is formally
smooth.

(2) A composition of formally étale transformations of functors is formally
étale.

(3) A composition of formally unramified transformations of functors is for-
mally unramified.

Proof. This is formal. �

Lemma 58.10.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

(1) If a is formally smooth, then the base change a′ is formally smooth.
(2) If a is formally étale, then the base change a′ is formally étale.
(3) If a is formally unramified, then the base change a′ is formally unramified.

1This is just one possible definition that one can make here. Another slightly weaker condition
would be to require that the dotted arrow exists fppf locally on T ′. This weaker notion has in

some sense better formal properties.

http://stacks.math.columbia.edu/tag/049S
http://stacks.math.columbia.edu/tag/04G4
http://stacks.math.columbia.edu/tag/049T
http://stacks.math.columbia.edu/tag/049U


3536 58. MORE ON MORPHISMS OF SPACES

Proof. This is formal. �

Lemma 58.10.5. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F →
G be a representable transformation of functors.

(1) If a is smooth then a is formally smooth.
(2) If a is étale, then a is formally étale.
(3) If a is unramified, then a is formally unramified.

Proof. Consider a solid commutative diagram

F

a

��

T

i
��

oo

G T ′oo

``

as in Definition 58.10.1. Then F ×G T ′ is a scheme smooth (resp. étale, resp.
unramified) over T ′. Hence by More on Morphisms, Lemma 36.9.7 (resp. Lemma
36.6.9, resp. Lemma 36.4.8) we can fill in (resp. uniquely fill in, resp. fill in in at
most one way) the dotted arrow in the diagram

F ×G T ′

��

T

i

��

oo

T ′ T ′oo

dd

an hence we also obtain the corresponding assertion in the first diagram. �

Lemma 58.10.6. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. Assume that a is
representable, surjective, and étale.

(1) If b is formally smooth, then b ◦ a is formally smooth.
(2) If b is formally étale, then b ◦ a is formally étale.
(3) If b is formally unramified, then b ◦ a is formally unramified.

Conversely, consider a solid commutative diagram

G

b

��

T

i
��

oo

H T ′oo

``

with T ′ an affine scheme over S and i : T → T ′ a closed immersion defined by an
ideal of square zero.

(4) If b ◦ a is formally smooth, then for every t ∈ T there exists an étale
morphism of affines U ′ → T ′ and a morphism U ′ → G such that

G

b

��

Too T ×T ′ U ′

��

oo

H T ′oo U ′

ii

oo

commutes and t is in the image of U ′ → T ′.
(5) If b ◦ a is formally unramified, then there exists at most one dotted arrow

in the diagram above, i.e., b is formally unramified.
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(6) If b ◦ a is formally étale, then there exists exactly one dotted arrow in the
diagram above, i.e., b is formally étale.

Proof. Assume b is formally smooth (resp. formally étale, resp. formally unram-
ified). Since an étale morphism is both smooth and unramified we see that a is
representable and smooth (resp. étale, resp. unramified). Hence parts (1), (2) and
(3) follow from a combination of Lemma 58.10.5 and Lemma 58.10.3.

Assume that b ◦ a is formally smooth. Consider a diagram as in the statement of
the lemma. Let W = F ×G T . By assumption W is a scheme surjective étale over
T . By Étale Morphisms, Theorem 40.15.2 there exists a scheme W ′ étale over T ′

such that W = T ×T ′ W ′. Choose an affine open subscheme U ′ ⊂ W ′ such that t
is in the image of U ′ → T ′. Because b ◦ a is formally smooth we see that the exist
morphisms U ′ → F such that

F

b◦a
��

Woo T ×T ′ U ′

��

oo

H T ′oo U ′

ii

oo

commutes. Taking the composition U ′ → F → G gives a map as in part (5) of the
lemma.

Assume that f, g : T ′ → G are two dotted arrows fitting into the diagram of the
lemma. Let W = F ×G T . By assumption W is a scheme surjective étale over T .
By Étale Morphisms, Theorem 40.15.2 there exists a scheme W ′ étale over T ′ such
that W = T ×T ′ W ′. Since a is formally étale the compositions

W ′ → T ′
f−→ G and W ′ → T ′

g−→ G

lift to morphisms f ′, g′ : W ′ → F (lift on affine opens and glue by uniqueness).
Now if b ◦ a : F → H is formally unramified, then f ′ = g′ and hence f = g as
W ′ → T ′ is an étale covering. This proves part (6) of the lemma.

Assume that b ◦ a is formally étale. Then by part (4) we can étale locally on T ′

find a dotted arrow fitting into the diagram and by part (5) this dotted arrow is
unique. Hence we may glue the local solutions to get assertion (6). Some details
omitted. �

Remark 58.10.7. It is tempting to think that in the situation of Lemma 58.10.6
we have “b formally smooth” ⇔ “b ◦ a formally smooth”. However, this is likely
not true in general.

Lemma 58.10.8. Let S be a scheme. Let F,G,H : (Sch/S)oppfppf → Sets. Let
a : F → G, b : G → H be transformations of functors. Assume b is formally
unramified.

(1) If b ◦ a is formally unramified then a is formally unramified.
(2) If b ◦ a is formally étale then a is formally étale.
(3) If b ◦ a is formally smooth then a is formally smooth.

Proof. Let T ⊂ T ′ be a closed immersion of affine schemes defined by an ideal
of square zero. Let g′ : T ′ → G and f : T → F be given such that g′|T = a ◦ f .
Because b is formally unramified, there is a one to one correspondence between

{f ′ : T ′ → F | f = f ′|T and a ◦ f ′ = g′}
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and
{f ′ : T ′ → F | f = f ′|T and b ◦ a ◦ f ′ = b ◦ g′}.

From this the lemma follows formally. �

58.11. Formally unramified morphisms

In this section we work out what it means that a morphism of algebraic spaces is
formally unramified.

Definition 58.11.1. Let S be a scheme. A morphism f : X → Y of algebraic
spaces over S is said to be formally unramified if it is formally unramified as a
transformation of functors as in Definition 58.10.1.

We will not restate the results proved in the more general setting of formally unram-
ified transformations of functors in Section 58.10. It turns out we can characterize
this property in terms of vanishing of the module of relative differentials, see Lemma
58.11.6.

Lemma 58.11.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally unramified,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y
where U and V are schemes and the vertical arrows are étale the morphism
of schemes ψ is formally unramified (as in More on Morphisms, Definition
36.4.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is
formally unramified.

Proof. Assume f is formally unramified. By Lemma 58.10.5 the morphisms U →
X and V → Y are formally unramified. Thus by Lemma 58.10.3 the composition
U → Y is formally unramified. Then it follows from Lemma 58.10.8 that U → V
is formally unramified. Thus (1) implies (2). And (2) implies (3) trivially

Assume given a diagram as in (3). By Lemma 58.10.5 the morphism V → Y is
formally unramified. Thus by Lemma 58.10.3 the composition U → Y is formally
unramified. Then it follows from Lemma 58.10.6 that X → Y is formally unrami-
fied, i.e., (1) holds. �

Lemma 58.11.3. Let S be a scheme. If f : X → Y is a formally unramified
morphism of algebraic spaces over S, then given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of algebraic spaces over S there exists at
most one dotted arrow making the diagram commute. In other words, in Definition
58.11.1 the condition that T be an affine scheme may be dropped.
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Proof. This is true because there exists a surjective étale morphism U ′ → T ′ where
U ′ is a disjoint union of affine schemes (see Properties of Spaces, Lemma 48.6.1)
and a morphism T ′ → X is determined by its restriction to U ′. �

Lemma 58.11.4. A composition of formally unramified morphisms is formally
unramified.

Proof. This is formal. �

Lemma 58.11.5. A base change of a formally unramified morphism is formally
unramified.

Proof. This is formal. �

Lemma 58.11.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally unramified, and
(2) ΩX/Y = 0.

Proof. This is a combination of Lemma 58.11.2, More on Morphisms, Lemma
36.4.7, and Lemma 58.6.3. �

Lemma 58.11.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is unramified,
(2) the morphism f is locally of finite type and ΩX/Y = 0, and
(3) the morphism f is locally of finite type and formally unramified.

Proof. Choose a diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale and surjective. Then
we see

f unramified⇔ ψ unramified

⇔ ψ locally finite type and ΩU/V = 0

⇔ f locally finite type and ΩX/Y = 0

⇔ f locally finite type and formally unramified

Here we have used Morphisms, Lemma 28.36.2 and Lemma 58.11.6. �

Lemma 58.11.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified.

Moreover, in this case f is also representable, separated, and locally quasi-finite.
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Proof. We have seen in Lemma 58.11.7 that being formally unramified and locally
of finite type is the same thing as being unramified. Hence (4) is equivalent to (2).
A monomorphism is certainly formally unramified hence (3) implies (4). It is clear
that (1) implies (3). Finally, if (2) holds, then ∆ : X → X ×Y X is both an open
immersion (Morphisms of Spaces, Lemma 49.35.9) and surjective (Morphisms of
Spaces, Lemma 49.19.2) hence an isomorphism, i.e., f is a monomorphism. In this
way we see that (2) implies (1). Finally, we see that f is representable, separated,
and locally quasi-finite by Morphisms of Spaces, Lemmas 49.26.10 and 49.45.1. �

Lemma 58.11.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is a closed immersion,
(2) f is universally closed, unramified, and a monomorphism,
(3) f is universally closed, unramified, and universally injective,
(4) f is universally closed, locally of finite type, and a monomorphism,
(5) f is universally closed, universally injective, locally of finite type, and

formally unramified.

Proof. The equivalence of (2) – (5) follows immediately from Lemma 58.11.8.
Moreover, if (2) – (5) are satisfied then f is representable. Similarly, if (1) is
satisfied then f is representable. Hence the result follows from the case of schemes,
see Étale Morphisms, Lemma 40.7.2. �

58.12. Universal first order thickenings

Let S be a scheme. Let h : Z → X be a morphism of algebraic spaces over S. A
universal first order thickening of Z over X is a first order thickening Z ⊂ Z ′ over X
such that given any first order thickening T ⊂ T ′ over X and a solid commutative
diagram

(58.12.0.1)

Z

~~

T

  

a
oo

Z ′

''

T ′
a′oo

b
ww

X

there exists a unique dotted arrow making the diagram commute. Note that in
this situation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over
X. Thus if a universal first order thickening exists, then it is unique up to unique
isomorphism. In general a universal first order thickening does not exist, but if h is
formally unramified then it does. Before we prove this, let us show that a universal
first order thickening in the category of schemes is a universal first order thickening
in the category of algebraic spaces.

Lemma 58.12.1. Let S be a scheme. Let h : Z → X be a morphism of algebraic
spaces over S. Let Z ⊂ Z ′ be a first order thickening over X. The following are
equivalent

(1) Z ⊂ Z ′ is a universal first order thickening,
(2) for any diagram (58.12.0.1) with T ′ a scheme a unique dotted arrow exists

making the diagram commute, and
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(3) for any diagram (58.12.0.1) with T ′ an affine scheme a unique dotted
arrow exists making the diagram commute.

Proof. The implications (1) ⇒ (2) ⇒ (3) are formal. Assume (3) a assume given
an arbitrary diagram (58.12.0.1). Choose a presentation T ′ = U ′/R′, see Spaces,
Definition 47.9.3. We may assume that U ′ =

∐
U ′i is a disjoint union of affines,

so R′ = U ′ ×T ′ U ′ =
∐
i,j U

′
i ×′T U ′j . For each pair (i, j) choose an affine open

covering U ′i ×′T U ′j =
⋃
k R
′
ijk. Denote Ui, Rijk the fibre products with T over

T ′. Then each Ui ⊂ U ′i and Rijk ⊂ R′ijk is a first order thickening of affine
schemes. Denote ai : Ui → Z, resp. aijk : Rijk → Z the composition of a : T → Z
with the morphism Ui → T , resp. Rijk → T . By (3) applied to ai : Ui → Z
we obtain unique morphisms a′i : U ′i → Z ′. By (3) applied to aijk we see that
the two compositions R′ijk → R′i → Z ′ and R′ijk → R′j → Z ′ are equal. Hence

a′ =
∐
a′i : U ′ =

∐
U ′i → Z ′ descends to the quotient sheaf T ′ = U ′/R′ and we

win. �

Lemma 58.12.2. Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S. If Z ⊂ Z ′ is a universal first order thickening of Z over Y and
Y → X is formally étale, then Z ⊂ Z ′ is a universal first order thickening of Z
over X.

Proof. This is formal. Namely, by Lemma 58.12.1 it suffices to consider solid
commutative diagrams (58.12.0.1) with T ′ an affine scheme. The composition T →
Z → Y lifts uniquely to T ′ → Y as Y → X is assumed formally étale. Hence the
fact that Z ⊂ Z ′ is a universal first order thickening over Y produces the desired
morphism a′ : T ′ → Z ′. �

Lemma 58.12.3. Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S. Assume Z → Y is étale.

(1) If Y ⊂ Y ′ is a universal first order thickening of Y over X, then the
unique étale morphism Z ′ → Y ′ such that Z = Y ×Y ′ Z ′ (see Theorem
58.7.1) is a universal first order thickening of Z over X.

(2) If Z → Y is surjective and (Z ⊂ Z ′)→ (Y ⊂ Y ′) is an étale morphism of
first order thickenings over X and Z ′ is a universal first order thickening
of Z over X, then Y ′ is a universal first order thickening of Y over X.

Proof. Proof of (1). By Lemma 58.12.1 it suffices to consider solid commutative
diagrams (58.12.0.1) with T ′ an affine scheme. The composition T → Z → Y lifts
uniquely to T ′ → Y ′ as Y ′ is the universal first order thickening. Then the fact
that Z ′ → Y ′ is étale implies (see Lemma 58.10.5) that T ′ → Y ′ lifts to the desired
morphism a′ : T ′ → Z ′.

Proof of (2). Let T ⊂ T ′ be a first order thickening over X and let a : T → Y be a
morphism. Set W = T ×Y Z and denote c : W → Z the projection Let W ′ → T ′

be the unique étale morphism such that W = T ×T ′ W ′, see Theorem 58.7.1. Note
that W ′ → T ′ is surjective as Z → Y is surjective. By assumption we obtain a
unique morphism c′ : W ′ → Z ′ over X restricting to c on W . By uniqueness the
two restrictions of c′ to W ′×T ′W ′ are equal (as the two restrictions of c to W×TW
are equal). Hence c′ descends to a unique morphism a′ : T ′ → Y ′ and we win. �
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Lemma 58.12.4. Let S be a scheme. Let h : Z → X be a formally unramified
morphism of algebraic spaces over S. There exists a universal first order thickening
Z ⊂ Z ′ of Z over X.

Proof. Choose any commutative diagram

V

��

// U

��
Z // X

where V and U are schemes and the vertical arrows are étale. Note that V → U is a
formally unramified morphism of schemes, see Lemma 58.11.2. Combining Lemma
58.12.1 and More on Morphisms, Lemma 36.5.1 we see that a universal first order
thickening V ⊂ V ′ of V over U exists. By Lemma 58.12.2 part (1) V ′ is a universal
first order thickening of V over X.

Fix a scheme U and a surjective étale morphism U → X. The argument above
shows that for any V → Z étale with V a scheme such that V → Z → X factors
through U a universal first order thickening V ⊂ V ′ of V over X exists (but does not
depend on the chosen factorization of V → X through U). Now we may choose V
such that V → Z is surjective étale (see Spaces, Lemma 47.11.4). Then R = V ×ZV
a scheme étale over Z such that R → X factors through U also. Hence we obtain
universal first order thickenings V ⊂ V ′ and R ⊂ R′ over X. As V ⊂ V ′ is a
universal first order thickening, the two projections s, t : R→ V lift to morphisms
s′, t′ : R′ → V ′. By Lemma 58.12.3 as R′ is the universal first order thickening of
R over X these morphisms are étale. Then (t′, s′) : R′ → V ′ is an étale equivalence
relation and we can set Z ′ = V ′/R′. Since V ′ → Z ′ is surjective étale and v′ is the
universal first order thickening of V over X we conclude from Lemma 58.12.2 part
(2) that Z ′ is a universal first order thickening of Z over X. �

Definition 58.12.5. Let S be a scheme. Let h : Z → X be a formally unramified
morphism of algebraic spaces over S.

(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′
constructed in Lemma 58.12.4.

(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal
first order thickening Z ′ over X.

We often denote the conormal sheaf CZ/X in this situation.

Thus we see that there is a short exact sequence of sheaves

0→ CZ/X → OZ′ → OZ → 0

on Zétale and CZ/X is a quasi-coherent OZ-module. The following lemma proves
that there is no conflict between this definition and the definition in case Z → X
is an immersion.

Lemma 58.12.6. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then

(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infini-

tesimal neighbourhood of Z in X of Definition 58.9.1,
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(3) the conormal sheaf of i in the sense of Definition 58.4.1 agrees with the
conormal sheaf of i in the sense of Definition 58.12.5.

Proof. An immersion of algebraic spaces is by definition a representable morphism.
Hence by Morphisms, Lemmas 28.36.7 and 28.36.8 an immersion is unramified (via
the abstract principle of Spaces, Lemma 47.5.8). Hence it is formally unramified
by Lemma 58.11.7. The other assertions follow by combining Lemmas 58.9.2 and
58.9.3 and the definitions. �

Lemma 58.12.7. Let S be a scheme. Let Z → X be a formally unramified mor-
phism of algebraic spaces over S. Then the universal first order thickening Z ′ is
formally unramified over X.

Proof. Let T ⊂ T ′ be a first order thickening of affine schemes over X. Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Set T0 = c−1(Z) ⊂ T and T ′a = a−1(Z) (scheme
theoretically). Since Z ′ is a first order thickening of Z, we see that T ′ is a first
order thickening of T ′a. Moreover, since c = a|T we see that T0 = T ∩ T ′a (scheme
theoretically). As T ′ is a first order thickening of T it follows that T ′a is a first order
thickening of T0. Now a|T ′a and b|T ′a are morphisms of T ′a into Z ′ over X which agree
on T0 as morphisms into Z. Hence by the universal property of Z ′ we conclude
that a|T ′a = b|T ′a . Thus a and b are morphism from the first order thickening T ′ of
T ′a whose restrictions to T ′a agree as morphisms into Z. Thus using the universal
property of Z ′ once more we conclude that a = b. In other words, the defining
property of a formally unramified morphism holds for Z ′ → X as desired. �

Lemma 58.12.8. Let S be a scheme Consider a commutative diagram of algebraic
spaces over S

Z
h
//

f

��

X

g

��
W

h′ // Y

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thickening
of Z over X. Let W ⊂ W ′ be the universal first order thickening of W over Y .
There exists a canonical morphism (f, f ′) : (Z,Z ′) → (W,W ′) of thickenings over
Y which fits into the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal
sheaves f∗CW/Y → CZ/X .
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Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Lemma 58.4.3 applied to (Z ⊂ Z ′)→ (W ⊂
W ′). �

Lemma 58.12.9. Let S be a scheme. Let

Z
h
//

f

��

X

g

��
W

h′ // Y

be a fibre product diagram of algebraic spaces over S with h′ formally unramified.
Then h is formally unramified and if W ⊂W ′ is the universal first order thickening
of W over Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening
of Z over X. In particular the canonical map f∗CW/Y → CZ/X of Lemma 58.12.8
is surjective.

Proof. The morphism h is formally unramified by Lemma 58.11.5. It is clear that
X ×Y W ′ is a first order thickening. It is straightforward to check that it has the
universal property because W ′ has the universal property (by mapping properties
of fibre products). See Lemma 58.4.5 for why this implies that the map of conormal
sheaves is surjective. �

Lemma 58.12.10. Let S be a scheme. Let

Z
h
//

f

��

X

g

��
W

h′ // Y

be a fibre product diagram of algebraic spaces over S with h′ formally unramified
and g flat. In this case the corresponding map Z ′ → W ′ of universal first order
thickenings is flat, and f∗CW/Y → CZ/X is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms of Spaces, Lemma
49.28.4. Hence the first statement follows from the description of W ′ in Lemma
58.12.9. It is clear that X ×Y W ′ is a first order thickening. It is straightforward
to check that it has the universal property because W ′ has the universal property
(by mapping properties of fibre products). See Lemma 58.4.5 for why this implies
that the map of conormal sheaves is an isomorphism. �

Lemma 58.12.11. Taking the universal first order thickenings commutes with étale
localization. More precisely, let h : Z → X be a formally unramified morphism of
algebraic spaces over a base scheme S. Let

V

��

// U

��
Z // X

be a commutative diagram with étale vertical arrows. Let Z ′ be the universal first
order thickening of Z over X. Then V → U is formally unramified and the universal
first order thickening V ′ of V over U is étale over Z ′. In particular, CZ/X |V = CV/U .
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Proof. The first statement is Lemma 58.11.2. The compatibility of universal first
order thickenings is a consequence of Lemmas 58.12.2 and 58.12.3. �

Lemma 58.12.12. Let S be a scheme. Let B be an algebraic space over S. Let
h : Z → X be a formally unramified morphism of algebraic spaces over B. Let
Z ⊂ Z ′ be the universal first order thickening of Z over X with structure morphism
h′ : Z ′ → X. The canonical map

dh′ : (h′)∗ΩX/B → ΩZ′/B

induces an isomorphism h∗ΩX/B → ΩZ′/B ⊗OZ .

Proof. The map ch′ is the map defined in Lemma 58.6.6. If i : Z → Z ′ is the given
closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S ⊗ OZ . Checking that it
is an isomorphism reduces to the case of schemes by étale localization, see Lemma
58.12.11 and Lemma 58.6.3. In this case the result is More on Morphisms, Lemma
36.5.9. �

Lemma 58.12.13. Let S be a scheme. Let B be an algebraic space over S. Let
h : Z → X be a formally unramified morphism of algebraic spaces over B. There
is a canonical exact sequence

CZ/X → h∗ΩX/B → ΩZ/B → 0.

The first arrow is induced by dZ′/B where Z ′ is the universal first order neighbour-
hood of Z over X.

Proof. We know that there is a canonical exact sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Lemma 58.6.10. Hence the result follows on applying Lemma 58.12.12. �

Lemma 58.12.14. Let S be a scheme. Let

Z
i
//

j   

X

��
Y

be a commutative diagram of algebraic spaces over S where i and j are formally
unramified. Then there is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 58.12.8 and the second from Lemma
58.12.13.

Proof. Since the maps have been defined, checking the sequence is exact reduces
to the case of schemes by étale localization, see Lemma 58.12.11 and Lemma 58.6.3.
In this case the result is More on Morphisms, Lemma 36.5.11. �

Lemma 58.12.15. Let S be a scheme. Let Z → Y → X be formally unramified
morphisms of algebraic spaces over S.

(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is
the universal first order thickening of Y over X, then there is a morphism
Z ′ → Y ′ and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .
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(2) There is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 58.12.8 and i : Z → Y is the first
morphism.

Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 58.12.8. The assertion
that Y ×Y ′ Z ′ is the universal first order thickening of Z over Y is clear from the
universal properties of Z ′ and Y ′. By Lemma 58.4.6 we have an exact sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0

where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Lemma 58.4.5 there exists
a surjection h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities CY/Y ′ = CY/X ,
CZ/Z′ = CZ/X , and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. �

58.13. Formally étale morphisms

In this section we work out what it means that a morphism of algebraic spaces is
formally étale.

Definition 58.13.1. Let S be a scheme. A morphism f : X → Y of algebraic
spaces over S is said to be formally étale if it is formally étale as a transformation
of functors as in Definition 58.10.1.

We will not restate the results proved in the more general setting of formally étale
transformations of functors in Section 58.10.

Lemma 58.13.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally étale,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale the morphism
of schemes ψ is formally étale (as in More on Morphisms, Definition
36.6.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is
formally étale.

Proof. Assume f is formally étale. By Lemma 58.10.5 the morphisms U → X
and V → Y are formally étale. Thus by Lemma 58.10.3 the composition U → Y is
formally étale. Then it follows from Lemma 58.10.8 that U → V is formally étale.
Thus (1) implies (2). And (2) implies (3) trivially

Assume given a diagram as in (3). By Lemma 58.10.5 the morphism V → Y
is formally étale. Thus by Lemma 58.10.3 the composition U → Y is formally
étale. Then it follows from Lemma 58.10.6 that X → Y is formally étale, i.e., (1)
holds. �
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Lemma 58.13.3. Let S be a scheme. Let f : X → Y be a formally étale morphism
of algebraic spaces over S. Then given any solid commutative diagram

X

f

��

T

i
��

aoo

Y T ′oo

``

where T ⊂ T ′ is a first order thickening of algebraic spaces over Y there exists ex-
actly one dotted arrow making the diagram commute. In other words, in Definition
58.13.1 the condition that T be affine may be dropped.

Proof. Let U ′ → T ′ be a surjective étale morphism where U ′ =
∐
U ′i is a disjoint

union of affine schemes. Let Ui = T ×T ′ U ′i . Then we get morphisms a′i : U ′i → X
such that a′i|Ui equals the composition Ui → T → X. By uniqueness (see Lemma
58.11.3) we see that a′i and a′j agree on the fibre product U ′i ×T ′ U ′j . Hence

∐
a′i :

U ′ → X descends to give a unique morphism a′ : T ′ → X. �

Lemma 58.13.4. A composition of formally étale morphisms is formally étale.

Proof. This is formal. �

Lemma 58.13.5. A base change of a formally étale morphism is formally étale.

Proof. This is formal. �

Lemma 58.13.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S The following are equivalent:

(1) f is formally étale,
(2) f is formally unramified and the universal first order thickening of X over

Y is equal to X,
(3) f is formally unramified and CX/Y = 0, and
(4) ΩX/Y = 0 and CX/Y = 0.

Proof. Actually, the last assertion only make sense because ΩX/Y = 0 implies that
CX/Y is defined via Lemma 58.11.6 and Definition 58.12.5. This also makes it clear
that (3) and (4) are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified.
Hence we may assume f is formally unramified. The equivalence of (1), (2), and
(3) follow from the universal property of the universal first order thickening X ′

of X over S and the fact that X = X ′ ⇔ CX/Y = 0 since after all by definition
CX/Y = CX/X′ is the ideal sheaf of X in X ′. �

Lemma 58.13.7. An unramified flat morphism is formally étale.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 36.6.7
and étale localization, see Lemmas 58.11.2 and 58.13.2 and Morphisms of Spaces,
Lemma 49.28.5. �

Lemma 58.13.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.
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Proof. Follows from the case of schemes, see More on Morphisms, Lemma 36.6.9
and étale localization, see Lemma 58.13.2 and Morphisms of Spaces, Lemmas
49.27.4 and 49.36.2. �

58.14. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a
map. Throughout this section we use that a sheaf on a thickening X ′ of X can be
seen as a sheaf on X, see Equations (58.8.1.1) and (58.8.1.2).

Lemma 58.14.1. Let S be a scheme. Let B be an algebraic space over S. Let
X ⊂ X ′ and Y ⊂ Y ′ be two first order thickenings of algebraic spaces over B. Let
(a, a′), (b, b′) : (X ⊂ X ′) → (Y ⊂ Y ′) be two morphisms of thickenings over B.
Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Lemma 58.4.3) are equal.

Then the map (a′)] − (b′)] factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is an OB-derivation.

Proof. Instead of working on Y we work on X. The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutive diagram with exact
rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)]

OO

(b′)]

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of the OB-algebra
maps (a′)] and (b′)] is an OB-derivation from a−1OY to CX/X′ . By adjointness of

the functors a−1 and a∗ this is the same thing as an OB-derivation from OY into
a∗CX/X′ . Some details omitted. �

Note that in the situation of the lemma above we may write D as

(58.14.1.1) D = dY/B ◦ θ

where θ is an OY -linear map θ : ΩY/B → a∗CX/X′ . Of course, then by adjunction
again we may view θ as an OX -linear map θ : a∗ΩY/B → CX/X′ .

Lemma 58.14.2. Let S be a scheme. Let B be an algebraic space over S. Let
(a, a′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a morphism of first order thickenings over B.
Let

θ : a∗ΩY/B → CX/X′
be an OX-linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂
X ′) → (Y ⊂ Y ′) such that (1) and (2) of Lemma 58.14.1 hold and the derivation
D and θ are related by Equation (58.14.1.1).

Proof. Consider the map

α = (a′)] +D : a−1OY ′ → OX′
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where D is as in Equation (58.14.1.1). As D is an OB-derivation it follows that α

is a map of sheaves of OB-algebras. By construction we have i]X ◦α = a] ◦ i]Y where
iX : X → X ′ and iY : Y → Y ′ are the given closed immersions. By Lemma 58.8.2
we obtain a unique morphism (a, b′) : (X ⊂ X ′)→ (Y ⊂ Y ′) of thickenings over B
such that α = (b′)]. Setting b = a we win. �

Lemma 58.14.3. Let S be a scheme. Let B be an algebraic space over S. Let
X ⊂ X ′ and Y ⊂ Y ′ be first order thickenings over B. Assume given a morphism
a : X → Y and a map A : a∗CY/Y ′ → CX/X′ of OX-modules. For an object U ′ of
(X ′)spaces,étale with U = X ×X′ U ′ consider morphisms a′ : U ′ → Y ′ such that

(1) a′ is a morphism over B,
(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Then the rule

(58.14.3.1) U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}
defines a sheaf of sets on (X ′)spaces,étale.

Proof. Denote F the rule of the lemma. The restriction mapping F(U ′)→ F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition
in place it is clear that F is a sheaf since morphisms of algebraic spaces satisfy étale
descent, see Descent on Spaces, Lemma 56.6.2. �

Lemma 58.14.4. Same notation and assumptions as in Lemma 58.14.3. We iden-
tify sheaves on X and X ′ via (58.8.1.1). There is an action of the sheaf

HomOX (a∗ΩY/B , CX/X′)
on the sheaf (58.14.3.1). Moreover, the action is simply transitive for any object
U ′ of (X ′)spaces,étale over which the sheaf (58.14.3.1) has a section.

Proof. This is a combination of Lemmas 58.14.1, 58.14.2, and 58.14.3. �

Remark 58.14.5. A special case of Lemmas 58.14.1, 58.14.2, 58.14.3, and 58.14.4
is where Y = Y ′. In this case the map A is always zero. The sheaf of Lemma
58.14.3 is just given by the rule

U ′ 7→ {a′ : U ′ → Y over S with a′|U = a|U}
and we act on this by the sheaf HomOX (a∗ΩY/B , CX/X′). The action of a local
section θ on a′ is sometimes indicated by θ · a′. Note that this means nothing else
than the fact that (a′)] and (θ · a′)] differ by a derivation D which is related to θ
by Equation (58.14.1.1).

58.15. Infinitesimal deformations of algebraic spaces

The following simple lemma is often a convenient tool to check whether an infini-
tesimal deformation of a map is flat.

Lemma 58.15.1. Let S be a scheme. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of first order thickenings of algebraic spaces over S. Assume that f is
flat. Then the following are equivalent

(1) f ′ is flat and X = Y ×Y ′ X ′, and
(2) the canonical map f∗CY/Y ′ → CX/X′ is an isomorphism.
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Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′ ×Y ′ V ′. Set U = X ×X′ U ′
and V = Y ×Y ′ V ′. According to our definition of a flat morphism of algebraic
spaces we see that the induced map g : U → V is a flat morphism of schemes and
that f ′ is flat if and only if the corresponding morphism g′ : U ′ → V ′ is flat. Also,
X = Y ×Y ′ X ′ if and only if U = V ×V ′ V ′. Finally, the map f∗CY/Y ′ → CX/X′
is an isomorphism if and only if g∗CV/V ′ → CU/U ′ is an isomorphism. Hence the
lemma follows from its analogue for morphisms of schemes, see More on Morphisms,
Lemma 36.8.1. �

58.16. Formally smooth morphisms

In this section we introduce the notion of a formally smooth morphism X → Y of
algebraic spaces. Such a morphism is characterized by the property that T -valued
points of X lift to infinitesimal thickenings of T provided T is affine. The main
result is that a morphism which is formally smooth and locally of finite presentation
is smooth, see Lemma 58.16.6. It turns out that this criterion is often easier to use
than the Jacobian criterion.

Definition 58.16.1. Let S be a scheme. A morphism f : X → Y of algebraic
spaces over S is said to be formally smooth if it is formally smooth as a transfor-
mation of functors as in Definition 58.10.1.

In the cases of formally unramified and formally étale morphisms the condition that
T ′ be affine could be dropped, see Lemmas 58.11.3 and 58.13.3. This is no longer
true in the case of formally smooth morphisms. In fact, a slightly more natural
condition would be that we should be able to fill in the dotted arrow étale locally
on T ′. In fact, analyzing the proof of Lemma 58.16.6 shows that this would be
equivalent to the definition as it currently stands. It is also true that requiring
the existence of the dotted arrow fppf locally on T ′ would be sufficient, but that is
slightly more difficult to prove.

We will not restate the results proved in the more general setting of formally smooth
transformations of functors in Section 58.10.

Lemma 58.16.2. A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. �

Lemma 58.16.3. A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 10.133.2 for the algebraic version. �

Lemma 58.16.4. Let f : X → S be a morphism of schemes. Then f is formally
étale if and only if f is formally smooth and formally unramified.

Proof. Omitted. �

Here is a helper lemma which will be superseded by Lemma 58.16.9.

Lemma 58.16.5. Let S be a scheme. Let

U

��

ψ
// V

��
X

f // Y
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be a commutative diagram of morphisms of algebraic spaces over S. If the vertical
arrows are étale and f is formally smooth, then ψ is formally smooth.

Proof. By Lemma 58.10.5 the morphisms U → X and V → Y are formally étale.
By Lemma 58.10.3 the composition U → Y is formally smooth. By Lemma 58.10.8
we see ψ : U → V is formally smooth. �

The following lemma is the main result of this section. It implies, combined with
Limits of Spaces, Proposition 52.3.9, that we can recognize whether a morphism
of algebraic spaces f : X → Y is smooth in terms of “simple” properties of the
transformation of functors X → Y .

Lemma 58.16.6 (Infinitesimal lifting criterion). Let S be a scheme. Let f : X → Y
be a morphism of algebraic spaces over S. The following are equivalent:

(1) The morphism f is smooth.
(2) The morphism f is locally of finite presentation, and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a commutative diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale and surjective. By
Lemma 58.16.5 we see ψ : U → V is formally smooth. By Morphisms of Spaces,
Lemma 49.27.4 the morphism ψ is locally of finite presentation. Hence by the case
of schemes the morphism ψ is smooth, see More on Morphisms, Lemma 36.9.7.
Hence f is smooth, see Morphisms of Spaces, Lemma 49.34.4.

Conversely, assume that f : X → Y is smooth. Consider a solid commutative
diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 58.16.1. We will show the dotted arrow exists thereby proving
that f is formally smooth. Let F be the sheaf of sets on (T ′)spaces,étale of Lemma
58.14.3, see also Remark 58.14.5. Let

H = HomOT (a∗ΩX/Y , CT/T ′)

be the sheaf of OT -modules on Tétale introduced in Lemma 58.14.4. The action
H × F → F turns F into a pseudo H-torsor, see Cohomology on Sites, Definition
21.5.1. Our goal is to show that F is a trivial H-torsor. There are two steps: (I)
To show that F is a torsor we have to show that F has étale locally a section. (II)
To show that F is the trivial torsor it suffices to show that H1(Tétale,H) = 0, see
Cohomology on Sites, Lemma 21.5.3.
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First we prove (I). To see this choose a commutative diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale and surjective. As f
is assumed smooth we see that ψ is smooth and hence formally smooth by Lemma
58.10.5. By the same lemma the morphism V → Y is formally étale. Thus by
Lemma 58.10.3 the composition U → Y is formally smooth. Then (I) follows from
Lemma 58.10.6 part (4).

Finally we prove (II). By Lemma 58.6.15 we see that ΩX/S is of finite presentation.
Hence a∗ΩX/S is of finite presentation (see Properties of Spaces, Section 48.28).
Hence the sheaf H = HomOT (a∗ΩX/Y , CT/T ′) is quasi-coherent by Properties of
Spaces, Lemma 48.27.7. Thus by Descent, Proposition 34.7.10 and Cohomology of
Schemes, Lemma 29.2.2 we have

H1(Tspaces,étale,H) = H1(Tétale,H) = H1(T,H) = 0

as desired. �

We do a bit more work to show that being formally smooth is étale local on the
source. To begin we show that a formally smooth morphism has a nice sheaf of
differentials. The notion of a locally projective quasi-coherent module is defined in
Properties of Spaces, Section 48.29.

Lemma 58.16.7. Let S be a scheme. Let f : X → Y be a formally smooth
morphism of algebraic spaces over S. Then ΩX/Y is locally projective on X.

Proof. Choose a diagram

U

��

ψ
// V

��
X

f // Y

where U and V are affine(!) schemes and the vertical arrows are étale. By Lemma
58.16.5 we see ψ : U → V is formally smooth. Hence Γ(V,OV ) → Γ(U,OU )
is a formally smooth ring map, see More on Morphisms, Lemma 36.9.6. Hence
by Algebra, Lemma 10.133.7 the Γ(U,OU )-module ΩΓ(U,OU )/Γ(V,OV ) is projective.
Hence ΩU/V is locally projective, see Properties, Section 27.19. Since ΩX/Y |U =
ΩU/V we see that ΩX/Y is locally projective too. (Because we can find an étale
covering of X by the affine U ’s fitting into diagrams as above – details omitted.) �

Lemma 58.16.8. Let T be an affine scheme. Let F , G be quasi-coherent OT -
modules on Tétale. Consider the internal hom sheaf H = HomOT (F ,G) on Tétale.
If F is locally projective, then H1(Tétale,H) = 0.

Proof. By the definition of a locally projective sheaf on an algebraic space (see
Properties of Spaces, Definition 48.29.2) we see that FZar = F|TZar is a locally
projective sheaf on the scheme T . Thus FZar is a direct summand of a free
OTZar -module. Whereupon we conclude (as F = (FZar)a, see Descent, Propo-
sition 34.7.11) that F is a direct summand of a free OT -module on Tétale. Hence
we may assume that F =

⊕
i∈I OT is a free module. In this case H =

∏
i∈I G
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is a product of quasi-coherent modules. By Cohomology on Sites, Lemma 21.12.5
we conclude that H1 = 0 because the cohomology of a quasi-coherent sheaf on an
affine scheme is zero, see Descent, Proposition 34.7.10 and Cohomology of Schemes,
Lemma 29.2.2. �

Lemma 58.16.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally smooth,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y
where U and V are schemes and the vertical arrows are étale the morphism
of schemes ψ is formally smooth (as in More on Morphisms, Definition
36.4.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is
formally smooth.

Proof. We have seen that (1) implies (2) and (3) in Lemma 58.16.5. Assume (3).
The proof that f is formally smooth is entirely similar to the proof of (1) ⇒ (2) of
Lemma 58.16.6.

Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 58.16.1. We will show the dotted arrow exists thereby proving
that f is formally smooth. Let F be the sheaf of sets on (T ′)spaces,étale of Lemma
58.14.3, see also Remark 58.14.5. Let

H = HomOT (a∗ΩX/Y , CT/T ′)
be the sheaf of OT -modules on Tétale introduced in Lemma 58.14.4. The action
H × F → F turns F into a pseudo H-torsor, see Cohomology on Sites, Definition
21.5.1. Our goal is to show that F is a trivial H-torsor. There are two steps: (I)
To show that F is a torsor we have to show that F has étale locally a section. (II)
To show that F is the trivial torsor it suffices to show that H1(Tétale,H) = 0, see
Cohomology on Sites, Lemma 21.5.3.

First we prove (I). To see this consider a diagram (which exists because we are
assuming (3))

U

��

ψ
// V

��
X

f // Y
where U and V are schemes, the vertical arrows are étale and surjective, and ψ is
formally smooth. By Lemma 58.10.5 the morphism V → Y is formally étale. Thus
by Lemma 58.10.3 the composition U → Y is formally smooth. Then (I) follows
from Lemma 58.10.6 part (4).
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Finally we prove (II). By Lemma 58.16.7 we see that ΩU/V locally projective. Hence
ΩX/Y is locally projective, see Descent on Spaces, Lemma 56.5.5. Hence a∗ΩX/Y
is locally projective, see Properties of Spaces, Lemma 48.29.3. Hence

H1(Tétale,H) = H1(Tétale,HomOT (a∗ΩX/Y , CT/T ′) = 0

by Lemma 58.16.8 as desired. �

Lemma 58.16.10. The property P(f) =“f is formally smooth” is fpqc local on
the base.

Proof. Let f : X → Y be a morphism of algebraic spaces over a scheme S. Choose
an index set I and diagrams

Ui

��

ψi

// Vi

��
X

f // Y

with étale vertical arrows and Ui, Vi affine schemes. Moreover, assume that
∐
Ui →

X and
∐
Vi → Y are surjective, see Properties of Spaces, Lemma 48.6.1. By Lemma

58.16.9 we see that f is formally smooth if and only if each of the morphisms
ψi are formally smooth. Hence we reduce to the case of a morphism of affine
schemes. In this case the result follows from Algebra, Lemma 10.133.15. Some
details omitted. �

Lemma 58.16.11. Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms
of algebraic spaces over S. Assume f is formally smooth. Then

0→ f∗ΩY/Z → ΩX/Z → ΩX/Z → 0

Lemma 58.6.8 is short exact.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 36.9.9,
by étale localization, see Lemmas 58.16.9 and 58.6.3. �

Lemma 58.16.12. Let S be a scheme. Let B be an algebraic space over S. Let
h : Z → X be a formally unramified morphism of algebraic spaces over B. Assume
that Z is formally smooth over B. Then the canonical exact sequence

0→ CZ/X → i∗ΩX/B → ΩZ/B → 0

of Lemma 58.12.13 is short exact.

Proof. Let Z → Z ′ be the universal first order thickening of Z over X. From the
proof of Lemma 58.12.13 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/B ⊗OZ → ΩZ/B → 0.

Since Z → S is formally smooth we can étale locally on Z ′ find a left inverse Z ′ → Z
over B to the inclusion map Z → Z ′. Thus the sequence is étale locally split, see
Lemma 58.6.11. �

Lemma 58.16.13. Let S be a scheme. Let

Z
i
//

j   

X

f

��
Y

http://stacks.math.columbia.edu/tag/06CS
http://stacks.math.columbia.edu/tag/06BI
http://stacks.math.columbia.edu/tag/06BJ
http://stacks.math.columbia.edu/tag/06BK


58.17. SMOOTHNESS OVER A NOETHERIAN BASE 3555

be a commutative diagram of algebraic spaces over S where i and j are formally
unramified and f is formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0

of Lemma 58.12.14 is exact and locally split.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 58.12.13 here
is a canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′

b // Y

The sequence above is identified with the sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

via our definitions concerning conormal sheaves of formally unramified morphisms.
Let U ′′ → Z ′′ be an étale morphism with U ′′ affine. Denote U → Z and U ′ → Z ′

the corresponding affine schemes étale over Z and Z ′. As f is formally smooth
there exists a morphism h : U ′′ → X which agrees with i on U and such that f ◦ h
equals b|U ′′ . Since Z ′ is the universal first order thickening we obtain a unique
morphism g : U ′′ → Z ′ such that g = a ◦ h. The universal property of Z ′′ implies
that k ◦ g is the inclusion map U ′′ → Z ′′. Hence g is a left inverse to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map
CZ/Z′′ → CZ/Z′ over U . �

58.17. Smoothness over a Noetherian base

This section is the analogue of More on Morphisms, Section 36.10.

Lemma 58.17.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Assume that Y is locally Noetherian and f locally of
finite type. The following are equivalent:

(1) f is smooth at x,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

Y Spec(B′)
βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square
zero, and α mapping the closed point of Spec(B) to x there exists a dotted
arrow making the diagram commute, and

(3) same as in (2) but with B′ → B ranging over small extensions (see Alge-
bra, Definition 10.136.1).
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Proof. Condition (1) means there is an open subspace X ′ ⊂ X such that X ′ → Y
is smooth. Hence (1) implies conditions (2) and (3) by Lemma 58.16.6. Condition
(2) implies condition (3) trivially. Assume (3). Choose a commutative diagram

X

��

Uoo

��
Y Voo

with U and V affine, horizontal arrows étale and such that there is a point u ∈ U
mapping to x. Next, consider a diagram

X

��

Uoo

��

Spec(B)

i

��

α
oo

Y Voo Spec(B′)
βoo

as in (3) but for u ∈ U → V . Let γ : Spec(B′)→ X be the arrow we get from our
assumption that (3) holds for X. Because U → X is étale and hence formally étale
(Lemma 58.13.8) the morphism γ has a unique lift to U compatible with α. Then
because V → Y is étale hence formally étale this lift is compatible with β. Hence
(3) holds for u ∈ U → V and we conclude that U → V is smooth at u by More
on Morphisms, Lemma 36.10.1. This proves that X → Y is smooth at x, thereby
finishing the proof. �

Sometimes it is useful to know that one only needs to check the lifting criterion
for small extensions “centered” at points of finite type (see Morphisms of Spaces,
Section 49.25).

Lemma 58.17.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f locally of finite type. The
following are equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

Y Spec(B′)
βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite
type (!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 58.16.6) says
f is formally smooth and (2) holds.

Assume f is not smooth. The set of points x ∈ X where f is not smooth forms
a closed subset T of |X|. By Morphisms of Spaces, Lemma 49.25.6, there exists a
point x ∈ T ⊂ X with x ∈ Xft-pts. Choose a commutative diagram

X

��

Uoo

��

u_

��
Y Voo v
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with U and V affine, horizontal arrows étale and such that there is a point u ∈ U
mapping to x. Then u is a finite type point of U . Since U → V is not smooth at
the point u, by More on Morphisms, Lemma 36.10.1 there is a diagram

X

��

Uoo

��

Spec(B)

i

��

α
oo

Y Voo Spec(B′)
βoo

cc

with B′ → B a small extension of (Artinian) local rings such that the residue field
of B is equal to κ(v) and such that the dotted arrow does not exist. Since U → V
is of finite type, we see that v is a finite type point of V . By Morphisms, Lemma
28.17.2 the morphism β is of finite type, hence the composition Spec(B) → Y is
of finite type also. Arguing exactly as in the proof of Lemma 58.17.1 (using that
U → X and V → Y are étale hence formally étale) we see that there cannot be an
arrow Spec(B)→ X fitting into the outer rectangle of the last displayed diagram.
In other words, (2) doesn’t hold and the proof is complete. �

Here is a useful application.

Lemma 58.17.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y locally Noetherian. Let
Z ⊂ Y be a closed subspace with nth infinitesimal neighbourhood Zn ⊂ Y . Set
Xn = Zn ×Y X.

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over
a point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma
58.17.1 part (3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence
the morphism β factors through Zn and α factors through Xn for a suitable n.
Thus the lifting property for Xn → Zn kicks in to get the desired dotted arrow
in the diagram. This proves (1). Part (2) follows from (1) and the fact that a
morphism is étale if and only if it is smooth of relative dimension 0. �

58.18. Openness of the flat locus

This section is analogue of More on Morphisms, Section 36.12. Note that we have
defined the notion of flatness for quasi-coherent modules on algebraic spaces in
Morphisms of Spaces, Section 49.29.

Theorem 58.18.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Assume f is locally of finite
presentation and that F is an OX-module which is locally of finite presentation.
Then

{x ∈ |X| : F is flat over Y at x}

is open in |X|.
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Proof. Choose a commutative diagram

U

p

��

α
// V

q

��
X

a // Y

with U , V schemes and p, q surjective and étale as in Spaces, Lemma 47.11.4. By
More on Morphisms, Theorem 36.12.1 the set U ′ = {u ∈ |U | : p∗F is flat over V at u}
is open in U . By Morphisms of Spaces, Definition 49.29.2 the image of U ′ in |X| is
the set of the theorem. Hence we are done because the map |U | → |X| is open, see
Properties of Spaces, Lemma 48.4.6. �

Lemma 58.18.2. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

be a cartesian diagram of algebraic spaces over S. Let F be a quasi-coherent OX-
module. Assume g is flat, f is locally of finite presentation, and F is locally of
finite presentation. Then

{x′ ∈ |X ′| : (g′)∗F is flat over Y ′ at x′}

is the inverse image of the open subset of Theorem 58.18.1 under the continuous
map |g′| : |X ′| → |X|.

Proof. This follows from Morphisms of Spaces, Lemma 49.29.3. �

58.19. Critère de platitude par fibres

Let S be a scheme. Consider a commutative diagram of algebraic spaces over S

X
f

//

g
  

Y

h��
Z

and a quasi-coherent OX -module F . Given a point x ∈ |X| we consider the question
as to whether F is flat over Y at x. If F is flat over Z at x, then the theorem below
states this question is intimately related to the question of whether the restriction
of F to the fibre of X → Z over g(x) is flat over the fibre of Y → Z over g(x). To
make sense out of this we offer the following preliminary lemma.

Lemma 58.19.1. In the situation above the following are equivalent

(1) Pick a geometric point x of X lying over x. Set y = f ◦ x and z = g ◦ x.
Then the module Fx/mzFx is flat over OY,y/mzOY,y.

(2) Pick a morphism x : Spec(K) → X in the equivalence class of x. Set
z = g ◦ x, Xz = Spec(K) ×z,Z X, Yz = Spec(K) ×z,Z Y , and Fz the
pullback of F to Xz. Then Fz is flat at x over Yz (as defined in Morphisms
of Spaces, Definition 49.29.2).
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(3) Pick a commutative diagram

U

a

tt

//

  

V

b
tt ~~

X
f

//

g
  

Y

h��

W

c

ttZ

where U, V,W are schemes, and a, b, c are étale, and a point u ∈ U map-
ping to x. Let w ∈ W be the image of u. Let Fw be the pullback of F to
the fibre Uw of U →W at w. Then Fw is flat over Vw at u.

Proof. Note that in (2) the morphism x : Spec(K) → X defines a K-rational
point of Xz, hence the statement makes sense. Moreover, the condition in (2) is
independent of the choice of Spec(K) → X in the equivalence class of x (details
omitted; this will also follow from the arguments below because the other conditions
do not depend on this choice). Also note that we can always choose a diagram as
in (3) by: first choosing a scheme W and a surjective étale morphism W → Z, then
choosing a scheme V and a surjective étale morphism V → W ×Z Y , and finally
choosing a scheme U and a surjective étale morphism U → V ×Y X. Having made
these choices we set U → W equal to the composition U → V → W and we can
pick a point u ∈ U mapping to x because the morphism U → X is surjective.

Suppose given both a diagram as in (3) and a geometric point x : Spec(k)→ X as
in (1). By Properties of Spaces, Lemma 48.16.4 we can choose a geometric point
u : Spec(k) → U lying over u such that x = a ◦ u. Denote v : Spec(k) → V
and w : Spec(k) → W the induced geometric points of V and W . In this setting
we know that OX,x = OshU,u and similarly for Y and Z, see Properties of Spaces,
Lemma 48.19.1. In the same vein we have

Fx = (a∗F)u ⊗OU,u OshU,u
see Properties of Spaces, Lemma 48.27.4. Note that the stalk of Fw at u is given
by

(Fw)u = (a∗F)u/mw(a∗F)u

and the local ring of Vw at v is given by

OVw,v = OV,v/mwOV,v.

Since mz = mwOZ,z = mwOshW,w we see that

Fx/mzFx = (a∗F)u ⊗OU,u OX,x/mzOX,x
= (Fw)u ⊗OUw,u O

sh
U,u/mwOshU,u

= (Fw)u ⊗OUw,u O
sh
Uw,u

= (Fw)u

the penultimate equality by Algebra, Lemma 10.145.30 and the last equality by
Properties of Spaces, Lemma 48.27.4. The same arguments applied to the structure
sheaves of V and Y show that

OshVw,v = OshV,v/mwOshV,v = OY,y/mzOY,y.
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OK, and now we can use Morphisms of Spaces, Lemma 49.29.1 to see that (1) is
equivalent to (3).

Finally we prove the equivalence of (2) and (3). To do this we pick a field extension

K̃ of K and and a morphism x̃ : Spec(K̃) → U which lies over u (this is possible

because u ×X,x Spec(K) is a nonempty scheme). Set z̃ : Spec(K̃) → U → W be
the composition. We obtain a commutative diagram

Uw ×w z̃
a

tt

//

##

Vw ×w z̃

b
ss {{

Xz
f

//

g
  

Yz

h
~~

z̃

c

ssz

where z = Spec(K) and w = Spec(κ(w)). Now it is clear that Fw and Fz pull back
to the same module on Uw ×w z̃. This leads to a commutative diagram

Xz

��

Uw ×w z̃oo

��

// Uw

��
Yz Vw ×w z̃oo // Vw

both of whose squares are cartesian and whose bottom horizontal arrows are flat:
the lower left horizontal arrow is the composition of the morphism Y ×Z z̃ →
Y ×Z z = Yz (base change of a flat morphism), the étale morphism V ×Z z̃ → Y ×Z z̃,
and the étale morphism V ×W z̃ → V ×Z z̃. Thus it follows from Morphisms of
Spaces, Lemma 49.29.3 that

Fz flat at x over Yz ⇔ F|Uw×w z̃ flat at x̃ over Vw ×w z̃ ⇔ Fw flat at u over Vw

and we win. �

Definition 58.19.2. Let S be a scheme. Let X → Y → Z be morphisms of
algebraic spaces over S. Let F be a quasi-coherent OX -module. Let x ∈ |X| be a
point and denote z ∈ |Z| its image.

(1) We say the restriction of F to its fibre over z is flat at x over the fibre of
Y over z if the equivalent conditions of Lemma 58.19.1 are satisfied.

(2) We say the fibre of X over z is flat at x over the fibre of Y over z if the
equivalent conditions of Lemma 58.19.1 hold with F = OX .

(3) We say the fibre of X over z is flat over the fibre of Y over z if for all
x ∈ |X| lying over z the fibre of X over z is flat at x over the fibre of Y
over z

With this definition in hand we can state a version of the criterion as follows. The
Noetherian version can be found in Section 58.20.

Theorem 58.19.3. Let S be a scheme. Let f : X → Y and Y → Z be a morphisms
of algebraic spaces over S. Let F be a quasi-coherent OX-module. Assume

(1) X is locally of finite presentation over Z,
(2) F an OX-module of finite presentation, and
(3) Y is locally of finite type over Z.

http://stacks.math.columbia.edu/tag/05WZ
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Let x ∈ |X| and let y ∈ |Y | and z ∈ |Z| be the images of x. If Fx 6= 0, then the
following are equivalent:

(1) F is flat over Z at x and the restriction of F to its fibre over z is flat at
x over the fibre of Y over z, and

(2) Y is flat over Z at y and F is flat over Y at x.

Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Choose a diagram as in Lemma 58.19.1 part (3). It follows from the defini-
tions that this reduces to the corresponding theorem for the morphisms of schemes
U → V → W , the quasi-coherent sheaf a∗F , and the point u ∈ U . Thus the theo-
rem follows from the corresponding result for schemes which is More on Morphisms,
Theorem 36.13.2. �

Lemma 58.19.4. Let S be a scheme. Let f : X → Y and Y → Z be a morphism
of algebraic spaces over S. Assume

(1) X is locally of finite presentation over Z,
(2) X is flat over Z,
(3) for every z ∈ |Z| the fibre of X over z is flat over the fibre of Y over z,

and
(4) Y is locally of finite type over Z.

Then f is flat. If f is also surjective, then Y is flat over Z.

Proof. This is a special case of Theorem 58.19.3. �

Lemma 58.19.5. Let S be a scheme. Let f : X → Y and Y → Z be morphisms
of algebraic spaces over S. Let F be a quasi-coherent OX-module. Assume

(1) X is locally of finite presentation over Z,
(2) F an OX-module of finite presentation,
(3) F is flat over Z, and
(4) Y is locally of finite type over Z.

Then the set

A = {x ∈ |X| : F flat at x over Y }.
is open in |X| and its formation commutes with arbitrary base change: If Z ′ → Z
is a morphism of algebraic spaces, and A′ is the set of points of X ′ = X ×Z Z ′
where F ′ = F ×Z Z ′ is flat over Y ′ = Y ×Z Z ′, then A′ is the inverse image of A
under the continuous map |X ′| → |X|.

Proof. One way to prove this is to translate the proof as given in More on Mor-
phisms, Lemma 36.13.4 into the category of algebraic spaces. Instead we will prove
this by reducing to the case of schemes. Namely, choose a diagram as in Lemma
58.19.1 part (3) such that a, b, and c are surjective. It follows from the defini-
tions that this reduces to the corresponding theorem for the morphisms of schemes
U → V → W , the quasi-coherent sheaf a∗F , and the point u ∈ U . The only
minor point to make is that given a morphism of algebraic spaces Z ′ → Z we
choose a scheme W ′ and a surjective étale morphism W ′ → W ×Z Z ′. Then we
set U ′ = W ′ ×W U and V ′ = W ′ ×W V . We write a′, b′, c′ for the morphisms from
U ′, V ′,W ′ to X ′, Y ′, Z ′. In this case A, resp. A′ are images of the open subsets of
U , resp. U ′ associated to a∗F , resp. (a′)∗F ′. This indeed does reduce the lemma
to More on Morphisms, Lemma 36.13.4. �

http://stacks.math.columbia.edu/tag/05X1
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Lemma 58.19.6. Let S be a scheme. Let f : X → Y and Y → Z be a morphism
of algebraic spaces over S. Assume

(1) X is locally of finite presentation over Z,
(2) X is flat over Z, and
(3) Y is locally of finite type over Z.

Then the set
{x ∈ |X| : X flat at x over Y }.

is open in |X| and its formation commutes with arbitrary base change Z ′ → Z.

Proof. This is a special case of Lemma 58.19.5. �

58.20. Flatness over a Noetherian base

Here is the “Critère de platitude par fibres” in the Noetherian case.

Theorem 58.20.1. Let S be a scheme. Let f : X → Y and Y → Z be a morphisms
of algebraic spaces over S. Let F be a quasi-coherent OX-module. Assume

(1) X, Y , Z locally Noetherian, and
(2) F a coherent OX-module.

Let x ∈ |X| and let y ∈ |Y | and z ∈ |Z| be the images of x. If Fx 6= 0, then the
following are equivalent:

(1) F is flat over Z at x and the restriction of F to its fibre over z is flat at
x over the fibre of Y over z, and

(2) Y is flat over Z at y and F is flat over Y at x.

Proof. Choose a diagram as in Lemma 58.19.1 part (3). It follows from the defini-
tions that this reduces to the corresponding theorem for the morphisms of schemes
U → V → W , the quasi-coherent sheaf a∗F , and the point u ∈ U . Thus the theo-
rem follows from the corresponding result for schemes which is More on Morphisms,
Theorem 36.13.1. �

Lemma 58.20.2. Let S be a scheme. Let f : X → Y and Y → Z be a morphism
of algebraic spaces over S. Assume

(1) X, Y , Z locally Noetherian,
(2) X is flat over Z,
(3) for every z ∈ |Z| the fibre of X over z is flat over the fibre of Y over z.

Then f is flat. If f is also surjective, then Y is flat over Z.

Proof. This is a special case of Theorem 58.20.1. �

Just like for checking smoothness, if the base is Noetherian it suffices to check
flatness over Artinian rings. Here is a sample statement.

Lemma 58.20.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let X be
an algebraic space locally of finite presentation over S = Spec(A). For n ≥ 1 set
Sn = Spec(A/In) and Xn = Sn ×S X. Let F be coherent OX-module. If for every
n ≥ 1 the pullback Fn of F to X is flat over Sn, then the (open) locus where F is
flat over X contains the inverse image of V (I) under X → S.

Proof. The locus where F is flat over S is open in |X| by Theorem 58.18.1. The
statement is insensitive to replacing X by the members of an étale covering, hence
we may assume X is an affine scheme. In this case the result follows immediately
from Algebra, Lemma 10.95.11. Some details omitted. �
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58.21. Normalization revisited

Normalization commutes with smooth base change.

Lemma 58.21.1. Let S be a scheme. Let f : Y → X be a smooth morphism
of algebraic spaces over S. Let A be a quasi-coherent sheaf of OX-algebras. The
integral closure of OY in f∗A is equal to f∗A′ where A′ ⊂ A is the integral closure
of OX in A.

Proof. By our construction of the integral closure, see Morphisms of Spaces, Def-
inition 49.43.2, this reduces immediately to the case where X and Y are affine. In
this case the result is Algebra, Lemma 10.140.4. �

Lemma 58.21.2 (Normalization commutes with smooth base change). Let S be a
scheme. Let

Y2
//

��

Y1

f

��
X2

ϕ // X1

be a fibre square of algebraic spaces over S. Assume f is quasi-compact and quasi-
separated and ϕ is smooth. Let Yi → X ′i → Xi be the normalization of Xi in Yi.
Then X ′2

∼= X2 ×X1
X ′1.

Proof. The base change of the factorization Y1 → X ′1 → X1 to X2 is a factorization
Y2 → X2 ×X1

X ′1 → X1 and X2 ×X1
X ′1 → X1 is integral (Morphisms of Spaces,

Lemma 49.41.5). Hence we get a morphism h : X ′2 → X2 ×X1
X ′1 by the universal

property of Morphisms of Spaces, Lemma 49.43.5. Observe that X ′2 is the relative
spectrum of the integral closure of OX2 in f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the
integral closure of OX2 , then X2 ×X1 X

′
1 is the relative spectrum of ϕ∗A′ as the

construction of the relative spectrum commutes with arbitrary base change. By
Cohomology of Spaces, Lemma 51.10.1 we know that f2,∗OY2

= ϕ∗f1,∗OY1
. Hence

the result follows from Lemma 58.21.1. �

58.22. Slicing Cohen-Macaulay morphisms

Let S be a scheme. Let X be an algebraic space over S. Let f1, . . . , fr ∈ Γ(X,OX).
In this case we denote V (f1, . . . , fr) the closed subspace of X cut out by f1, . . . , fr.
More precisely, we can define V (f1, . . . , fr) as the closed subspace of X correspond-
ing to the quasi-coherent sheaf of ideals generated by f1, . . . , fr, see Morphisms of
Spaces, Lemma 49.13.1. Alternatively, we can choose a presentation X = U/R and
consider the closed subscheme Z ⊂ U cut out by f1|U, . . . , fr|U . It is clear that Z
is an R-invariant (see Groupoids, Definition 38.17.1) closed subscheme and we may
set V (f1, . . . , fr) = Z/RZ .

Lemma 58.22.1. Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

where X → Y is a morphism of algebraic spaces over S which is flat and locally of
finite presentation, and where k is a field over S. Let f1, . . . , fr ∈ Γ(X,OX) and
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z ∈ |F | such that f1, . . . , fr map to a regular sequence in the local ring OF,z. Then,
after replacing X by an open subspace containing p(z), the morphism

V (f1, . . . , fr) −→ Y

is flat and locally of finite presentation.

Proof. Set Z = V (f1, . . . , fr). It is clear that Z → X is locally of finite presenta-
tion, hence the composition Z → Y is locally of finite presentation, see Morphisms
of Spaces, Lemma 49.27.2. Hence it suffices to show that Z → Y is flat in a neigh-
bourhood of p(z). Let k ⊂ k′ be an extension field. Then F ′ = F ×Spec(k) Spec(k′)
is surjective and flat over F , hence we can find a point z′ ∈ |F ′| mapping to z
and the local ring map OF,z → OF ′,z′ is flat, see Morphisms of Spaces, Lemma
49.28.8. Hence the image of f1, . . . , fr in OF ′,z′ is a regular sequence too, see Alge-
bra, Lemma 10.67.7. Thus, during the proof we may replace k by an extension field.
In particular, we may assume that z ∈ |F | comes from a section z : Spec(k) → F
of the structure morphism F → Spec(k).

Choose a scheme V and a surjective étale morphism V → Y . Choose a scheme U
and a surjective étale morphism U → X ×Y V . After possibly enlarging k once
more we may assume that Spec(k) → F → X factors through U (as U → X is
surjective). Let u : Spec(k) → U be such a factorization and denote v ∈ V the
image of u. Note that the morphisms

Uv ×Spec(κ(v)) Spec(k) = U ×V Spec(k)→ U ×Y Spec(k)→ F

are étale (the first as the base change of V → V ×Y V and the second as the base
change of U → X). Moreover, by construction the point u : Spec(k) → U gives
a point of the left most space which maps to z on the right. Hence the elements
f1, . . . , fr map to a regular sequence in the local ring on the right of the following
map

OUv,u −→ OUv×Spec(κ(v)Spec(k),u = OU×V Spec(k),u.

But since the displayed arrow is flat (combine More on Flatness, Lemma 37.2.5 and
Morphisms of Spaces, Lemma 49.28.8) we see from Algebra, Lemma 10.67.7 that
f1, . . . , fr maps to a regular sequence in OUv,u. By More on Morphisms, Lemma
36.18.2 we conclude that the morphism of schemes

V (f1, . . . , fr)×X U = V (f1|U , . . . , fr|U )→ V

is flat in an open neighbourhood U ′ of u. Let X ′ ⊂ X be the open subspace
corresponding to the image of |U ′| → |X| (see Properties of Spaces, Lemmas 48.4.6
and 48.4.8). We conclude that V (f1, . . . , fr) ∩ X ′ → Y is flat (see Morphisms of
Spaces, Definition 49.28.1) as we have the commutative diagram

V (f1, . . . , fr)×X U ′

a

��

// V

b

��
V (f1, . . . , fr) ∩X ′ // Y

with a, b étale and a surjective. �
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58.23. Étale localization of morphisms

The section is the analogue of More on Morphisms, Section 36.30.

Lemma 58.23.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. Let x1, . . . , xn ∈ |X| mapping to y. Assume that

(1) f is locally of finite type,
(2) f is separated,
(3) f is quasi-finite at x1, . . . , xn, and
(4) f is quasi-compact or Y is decent.

Then there exists an étale morphism (U, u)→ (Y, y) of pointed algebraic spaces and
a decomposition

U ×Y X = W q V
into open and closed subspaces such that the morphism V → U is finite, every point
of the fibre of |V | → |U | over u maps to an xi, and the fibre of |W | → |U | over u
contains no point mapping to an xi.

Proof. Let (U, u)→ (Y, y) be an étale morphism of algebraic spaces and consider
the set of w ∈ |U ×Y X| mapping to u ∈ |U | and one of the xi ∈ |X|. By Decent
Spaces, Lemma 50.16.4 (if f is of finite type) or Decent Spaces, Lemma 50.16.5 (if
Y is decent) this set is finite. It follows that we may replace f by the base change
U ×Y X → U and x1, . . . , xn by the set of these w. In particular we may and do
assume that Y is an affine scheme, whence X is a separated algebraic space.

Choose an affine scheme Z and an étale morphism Z → X such that x1, . . . , xn
are in the image of |Z| → |X|. The fibres of |Z| → |X| are finite, see Properties of
Spaces, Lemma 48.12.3 (or the more general discussion in Decent Spaces, Section
50.6). Let {z1, . . . , zm} ⊂ |Z| be the preimage of {x1, . . . , xn}. By More on Mor-
phisms, Lemma 36.30.4 there exists an étale morphism (U, u) → (Y, y) such that
U ×Y Z = Z1 q Z2 with Z1 → U finite and (Z1)y = {z1, . . . , zm}. We may assume
that U is affine and hence Z1 is affine too.

Since f is separated, the image V of Z1 → X is both open and closed (Morphisms
of Spaces, Lemma 49.37.6). Set W = X \V to get a decomposition as in the lemma.
To finish the proof we have to show that V → U is finite. As Z1 → V is surjective
and étale, V is the quotient of Z1 by the étale equivalence relation R = Z1 ×V Z1,
see Spaces, Lemma 47.9.1. Since f is separated, V → U is separated and R is closed
in Z1 ×U Z1. Since Z1 → U is finite, the projections s, t : R→ Z1 are finite. Thus
V is an affine scheme by Groupoids, Proposition 38.21.8. By Morphisms, Lemma
28.42.8 we conclude that V → U is proper and by Morphisms, Lemma 28.44.10 we
conclude that V → U is finite, thereby finishing the proof. �

Lemma 58.23.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X| with image y ∈ |Y |. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) f is quasi-finite at x.

Then there exists an étale morphism (U, u)→ (Y, y) of pointed algebraic spaces and
a decomposition

U ×Y X = W q V
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into open and closed subspaces such that the morphism V → U is finite and there
exists a point v ∈ |V | which maps to x in |X| and u in |U |.

Proof. Pick a scheme U , a point u ∈ U , and an étale morphism U → Y mapping
u to y. There exists a point x′ ∈ |U ×Y X| mapping to x in |X| and u in |U |
(Properties of Spaces, Lemma 48.4.3). To finish, apply Lemma 58.23.1 to the
morphism U ×Y X → U and the point x′. It applies because U is a scheme and
hence u comes from the monomorphism Spec(κ(u))→ U . �

58.24. Zariski’s Main Theorem

In this section we apply the results of the previous section to prove Zariski’s main
theorem for morphisms of algebraic spaces. This section is the analogue of More
on Morphisms, Section 36.31.

Lemma 58.24.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is of finite type and separated. Let Y ′ be the normalization of
Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that

(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms of Spaces, Lemma 49.32.7 there is an open subspace U ⊂ X
corresponding to the points of |X| where f is quasi-finite. We have to prove

(a) the image of |U | → |Y ′| is |U ′| for some open subspace U ′ of Y ′,
(b) U = f−1(U ′), and
(c) U → U ′ is an isomorphism.

Since formation of U commutes with arbitrary base change (Morphisms of Spaces,
Lemma 49.32.7), since formation of the normalization Y ′ commutes with smooth
base change (Lemma 58.21.2), since étale morphisms are open, and since “being
an isomorphism” is fpqc local on the base (Descent on Spaces, Lemma 56.10.13),
it suffices to prove (a), (b), (c) étale locally on Y (some details omitted). Thus we
may assume Y is an affine scheme. This implies that Y ′ is an (affine) scheme as
well.

Let x ∈ |U |. Claim: there exists an open neighbourhood f ′(x) ∈ V ⊂ Y ′ such
that (f ′)−1V → V is an isomorphism. We first prove the claim implies the lemma.
Namely, then (f ′)−1V ∼= V is a scheme (as an open of Y ′), locally of finite type
over Y (as an open subspace of X), and for v ∈ V the residue field extension
κ(v) ⊃ κ(ν(v)) is algebraic (as V ⊂ Y ′ and Y ′ is integral over Y ). Hence the fibres
of V → Y are discrete (Morphisms, Lemma 28.21.2) and (f ′)−1V → Y is locally
quasi-finite (Morphisms, Lemma 28.21.8). This implies (f ′)−1V ⊂ U and V ⊂ U ′.
Since x was arbitrary we see that (a), (b), and (c) are true.

Let y = f(x) ∈ |Y |. Let (T, t) → (Y, y) be an étale morphism of pointed schemes.
Denote by a subscript T the base change to T . Let z ∈ XT be a point in the fibre
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Xt lying over x. Note that UT ⊂ XT is the set of points where fT is quasi-finite,
see Morphisms of Spaces, Lemma 49.32.7. Note that

XT
f ′T−−→ Y ′T

νT−−→ T

is the normalization of T in XT , see Lemma 58.21.2. Suppose that the claim holds
for z ∈ UT ⊂ XT → Y ′T → T , i.e., suppose that we can find an open neighbourhood
f ′T (z) ∈ V ′ ⊂ Y ′T such that (f ′T )−1V ′ → V ′ is an isomorphism. The morphism
Y ′T → Y ′ is étale hence the image V ⊂ Y ′ of V ′ is open. Observe that f ′(x) ∈ V
as f ′T (z) ∈ V ′. Observe that

(f ′T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as Y ′T×Y ′X = XT ). Since the left vertical arrow is an isomorphism
and {V ′ → V } is a étale covering, we conclude that the right vertical arrow is an
isomorphism by Descent on Spaces, Lemma 56.10.13. In other words, the claim
holds for x ∈ U ⊂ X → Y ′ → Y .

By the result of the previous paragraph to prove the claim for x ∈ |U |, we may
replace Y by an étale neighbourhood T of y = f(x) and x by any point lying over
x in T ×Y X. Thus we may assume there is a decomposition

X = V qW

into open and closed subspaces where V → Y is finite and x ∈ V , see Lemma
58.23.1. Since X is a disjoint union of V and W over Y and since V → Y is finite
we see that the normalization of Y in X is the morphism

X = V qW −→ V qW ′ −→ S

where W ′ is the normalization of Y in W , see Morphisms of Spaces, Lemmas
49.43.6, 49.41.6, and 49.43.7. The claim follows and we win. �

The following lemma is a duplicate of Morphisms of Spaces, Lemma 49.46.2. The
reason for having two copies of the same lemma is that the proofs are somewhat
different. The proof given below rests on Zariski’s Main Theorem for nonrepre-
sentable morphisms of algebraic spaces as presented above, whereas the proof of
Morphisms of Spaces, Lemma 49.46.2 rests on Morphisms of Spaces, Proposition
49.44.2 to reduce to the case of morphisms of schemes.

Lemma 58.24.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization
of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.
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Proof. This follows from Lemma 58.24.1. Namely, by that lemma there exists
an open subspace U ′ ⊂ Y ′ such that (f ′)−1(U ′) = X (!) and X → U ′ is an
isomorphism! In other words, f ′ is an open immersion. Note that f ′ is quasi-
compact as f is quasi-compact and ν : Y ′ → Y is separated (Morphisms of Spaces,
Lemma 49.8.8). Hence for every affine scheme Z and morphism Z → Y the fibre
product Z ×Y X is a quasi-compact open subscheme of the affine scheme Z ×Y Y ′.
Hence f is quasi-affine by definition. �

Lemma 58.24.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-finite and separated and assume that Y is quasi-
compact and quasi-separated. Then there exists a factorization

X

f   

j
// T

π
��

Y

where j is a quasi-compact open immersion and π is finite.

Proof. Let X → Y ′ → Y be as in the conclusion of Lemma 58.24.2. By Limits
of Spaces, Lemma 52.9.7 we can write ν∗OY ′ = colimi∈I Ai as a directed colimit
of finite quasi-coherent OX -algebras Ai ⊂ ν∗OY ′ . Then πi : Ti = Spec

Y
(Ai) → Y

is a finite morphism for each i. Note that the transition morphisms Ti′ → Ti are
affine and that Y ′ = limTi.

By Limits of Spaces, Lemma 52.5.5 there exists an i and a quasi-compact open
Ui ⊂ Ti whose inverse image in Y ′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse
image of Ui in Ti′ . Then X ∼= f ′(X) = limi′≥i Ui′ , see Limits of Spaces, Lemma
52.4.1. By Limits of Spaces, Lemma 52.5.10 we see that X → Ui′ is a closed
immersion for some i′ ≥ i. (In fact X ∼= Ui′ for sufficiently large i′ but we don’t
need this.) Hence X → Ti′ is an immersion. By Morphisms of Spaces, Lemma
49.12.6 we can factor this as X → T → Ti′ where the first arrow is an open
immersion and the second a closed immersion. Thus we win. �

Lemma 58.24.4. With notation and hypotheses as in Lemma 58.24.3. Assume
moreover that f is locally of finite presentation. Then we can choose the factoriza-
tion such that T is finite and of finite presentation over Y .

Proof. By Limits of Spaces, Lemma 52.11.3 we can write T = limTi where all Ti
are finite and of finite presentation over Y and the transition morphisms Ti′ → Ti
are closed immersions. By Limits of Spaces, Lemma 52.5.5 there exists an i and
an open subscheme Ui ⊂ Ti whose inverse image in T is X. By Limits of Spaces,
Lemma 52.5.10 we see that X ∼= Ui for large enough i. Replacing T by Ti finishes
the proof. �

Lemma 58.24.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is finite,
(2) f is proper and locally quasi-finite,
(3) f is proper and |Xk| is a discrete space for every morphism Spec(k)→ Y

where k is a field,
(4) f is universally closed, separated, locally of finite type and |Xk| is a dis-

crete space for every morphism Spec(k)→ Y where k is a field.
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Proof. We have (1) ⇒ (2) by Morphisms of Spaces, Lemmas 49.41.9, 49.41.8. We
have (2) ⇒ (3) by Morphisms of Spaces, Lemma 49.26.5. By definition (3) implies
(4).

Assume (4). Since f is universally closed it is quasi-compact (Morphisms of Spaces,
Lemma 49.9.7). Pick a point y of |Y |. We represent y by a morphism Spec(k) →
Y . Note that |Xk| is finite discrete as a quasi-compact discrete space. The map
|Xk| → |X| surjects onto the fibre of |X| → |Y | over y (Properties of Spaces,
Lemma 48.4.3). By Morphisms of Spaces, Lemma 49.32.8 we see that X → Y is
quasi-finite at all the points of the fibre of |X| → |Y | over y. Choose an elementary
étale neighbourhood (U, u)→ (Y, y) and decomposition XU = V

∐
W as in Lemma

58.23.1 adapted to all the points of |X| lying over y. Note that Wu = ∅ because we
used all the points in the fibre of |X| → |Y | over y. Since f is universally closed we
see that the image of |W | in |U | is a closed set not containing u. After shrinking
U we may assume that W = ∅. In other words we see that XU = V is finite over
U . Since y ∈ |Y | was arbitrary this means there exists a family {Ui → Y } of étale
morphisms whose images cover Y such that the base changes XUi → Ui are finite.
We conclude that f is finite by Morphisms of Spaces, Lemma 49.41.3. �

As a consequence we have the following useful result.

Lemma 58.24.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. Assume

(1) f is proper, and
(2) f is quasi-finite at all x ∈ |X| lying over y (Decent Spaces, Lemma

50.16.10).

Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. By Morphisms of Spaces, Lemma 49.32.7 the set of points at which f is
quasi-finite is an open U ⊂ X. Let Z = X \ U . Then y 6∈ f(Z). Since f is
proper the set f(Z) ⊂ Y is closed. Choose any open neighbourhood V ⊂ Y of
y with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence
f−1(V )→ V is finite by Lemma 58.24.5. �

Lemma 58.24.7. Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B

be a commutative diagram of morphism of algebraic spaces over S. Let b ∈ B and
let Spec(k)→ B be a morphism in the equivalence class of b. Assume

(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,
(3) one of the following is true

(a) the image of |Xk| → |Yk| is finite,
(b) the image of |f |−1({b}) in |Y | is finite and B is decent.

Then there is an open subspace B′ ⊂ B containing b such that XB′ → YB′ factors
through a closed subspace Z ⊂ YB′ finite over B′.
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Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms of Spaces,
Section 49.16. By Morphisms of Spaces, Lemma 49.37.8 the morphism X → Z is
surjective and Z → B is proper. Thus

{x ∈ |X| lying over b} → {z ∈ |Z| lying over b}

and |Xk| → |Zk| are surjective. We see that either (3)(a) or (3)(b) imply that Z →
B is quasi-finite all all points of |Z| lying over b by Decent Spaces, Lemma 50.16.10.
Hence Z → B is finite in an open neighbourhood of b by Lemma 58.24.6. �

58.25. Stein factorization

Stein factorization is the statement that a proper morphism f : X → S with
f∗OX = OS has connected fibres.

Lemma 58.25.1. Let S be a scheme. Let f : X → Y be a universally closed, quasi-
compact and quasi-separated morphism of algebraic spaces over S. There exists a
factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:

(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated and
surjective,

(2) the morphism π : Y ′ → Y is integral,
(3) we have f ′∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X as defined in Morphisms of Spaces,
Definition 49.43.3.

Proof. We just define Y ′ as the normalization of Y in X, so (5) and (2) hold
automatically. By Morphisms of Spaces, Lemma 49.43.8 we see that (4) holds.
The morphism f ′ is universally closed by Morphisms of Spaces, Lemma 49.37.6. It
is quasi-compact by Morphisms of Spaces, Lemma 49.8.8 and quasi-separated by
Morphisms of Spaces, Lemma 49.4.10.

To show the remaining statements we may assume the base Y is affine (as taking
normalization commutes with étale localization). Say Y = Spec(R). Then Y ′ =
Spec(A) with A = Γ(X,OX) an integral R-algebra. Thus it is clear that f ′∗OX
is OY ′ (because f ′∗OX is quasi-coherent, by Morphisms of Spaces, Lemma 49.11.2,

and hence equal to Ã). This proves (3).

Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image
of f ′ is a closed subset V (I) ⊂ S′ = Spec(A). Pick h ∈ I. Then h|X = f ](h) is a
global section of the structure sheaf of X which vanishes at every point. As X is
quasi-compact this means that h|X is a nilpotent section, i.e., hn|X = 0 for some
n > 0. But A = Γ(X,OX), hence hn = 0. In other words I is contained in the
radical ideal of A and we conclude that V (I) = S′ as desired. �

Let f : X → Y be a morphism of algebraic spaces and let y : Spec(k) → Y
be a geometric point. Then the fibre of f over y is the algebraic space Xy =
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X ×Y,y Spec(k) over k. If Y is a scheme and y ∈ Y is a point, then we denote
Xy = X ×Y Spec(κ(y)) the fibre as usual.

Lemma 58.25.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Then Xy is connected, if and only if
for every étale neighbourhood (V, v)→ (Y, y) where V is a scheme the base change
XV → V has connected fibre Xv.

Proof. Since the category of étale neighbourhoods of y is cofiltered and contains a
cofinal collection of schemes (Properties of Spaces, Lemma 48.16.3) we may replace
Y by one of these neighbourhoods and assume that Y is a scheme. Let y ∈ Y
be the point corresponding to y. Then Xy is geometrically connected over κ(y) if
and only if Xy is connected and if and only if (Xy)k′ is connected for every finite
separable extension k′ of κ(y). See Spaces over Fields, Section 54.8 and especially
Lemma 54.8.8. By More on Morphisms, Lemma 36.27.2 there exists an affine étale
neighbourhood (V, v) → (Y, y) such that κ(s) ⊂ κ(u) is identified with κ(s) ⊂ k′

any given finite separable extension. The lemma follows. �

Theorem 58.25.3 (Stein factorization; Noetherian case). Let S be a scheme. Let
f : X → Y be a proper morphism of algebraic spaces over S with Y locally Noe-
therian. There exists a factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:

(1) the morphism f ′ is proper with connected geometric fibres,
(2) the morphism π : Y ′ → Y is finite,
(3) we have f ′∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X, see Morphisms, Definition 28.48.3.

Proof. Let f = π ◦ f ′ be the factorization of Lemma 58.25.1. Note that besides
the conclusions of Lemma 58.25.1 we also have that f ′ is separated (Morphisms of
Spaces, Lemma 49.4.10) and finite type (Morphisms of Spaces, Lemma 49.23.6).
Hence f ′ is proper. By Cohomology of Spaces, Lemma 51.19.2 we see that f∗OX
is a coherent OY -module. Hence we see that π is finite, i.e., (2) holds.

This proves all but the most interesting assertion, namely that the geometric fibres
of f ′ are connected. It is clear from the discussion above that we may replace Y by
Y ′. Then Y is locally Noetherian, f : X → Y is proper, and f∗OX = OY . Let y be
a geometric point of Y . At this point we apply the theorem on formal functions,
more precisely Cohomology of Spaces, Lemma 51.20.7. It tells us that

O∧Y,y = limnH
0(Xn,OXn)

where Xn = Spec(OY,y/mny ) ×Y X. Note that X1 = Xy → Xn is a (finite order)
thickening and hence the underlying topological space of Xn is equal to that of Xy.
Thus, if Xy = T1

∐
T2 is a disjoint union of nonempty open and closed subspaces,

then similarly Xn = T1,n

∐
T2,n for all n. And this in turn means H0(Xn,OXn)

contains a nontrivial idempotent e1,n, namely the function which is identically 1
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on T1,n and identically 0 on T2,n. It is clear that e1,n+1 restricts to e1,n on Xn.
Hence e1 = lim e1,n is a nontrivial idempotent of the limit. This contradicts the
fact that O∧Y,y is a local ring. Thus the assumption was wrong, i.e., Xy is connected
as desired. �

Theorem 58.25.4 (Stein factorization; general case). Let S be a scheme. Let
f : X → Y be a proper morphism of algebraic spaces over S. There exists a
factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:

(1) the morphism f ′ is proper with connected geometric fibres,
(2) the morphism π : Y ′ → Y is integral,
(3) we have f ′∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X, see Morphisms, Definition 28.48.3.

Proof. We may apply Lemma 58.25.1 to get the morphism f ′ : X → Y ′. Note that
besides the conclusions of Lemma 58.25.1 we also have that f ′ is separated (Mor-
phisms of Spaces, Lemma 49.4.10) and finite type (Morphisms of Spaces, Lemma
49.23.6). Hence f ′ is proper. At this point we have proved all of the statements
except for the statement that f ′ has connected geometric fibres.

It is clear from the discussion that we may replace Y by Y ′. Then f : X → Y is
proper and f∗OX = OY . Note that these conditions are preserved under flat base
change (Morphisms of Spaces, Lemma 49.37.3 and Cohomology of Spaces, Lemma
51.10.1). Let y be a geometric point of Y . By Lemma 58.25.2 and the remark just
made we reduce to the case where Y is a scheme, y ∈ Y is a point, f : X → Y is a
proper algebraic space over Y with f∗OX = OY , and we have to show the fibre Xy

is connected. Replacing Y by an affine neighbourhood of y we may assume that
Y = Spec(R) is affine. Then f∗OX = OY signifies that the ring map R→ Γ(X,OX)
is bijective.

By Limits of Spaces, Lemma 52.12.2 we can write (X → Y ) = lim(Xi → Yi)
with Xi → Yi proper and of finite presentation and Yi Noetherian. For i large
enough Yi is affine (Limits of Spaces, Lemma 52.5.8). Say Yi = Spec(Ri). Let
R′i = Γ(Xi,OXi). Observe that we have ring maps Ri → R′i → R. Namely, we
have the first because Xi is an algebraic space over Ri and the second because we
have X → Xi and R = Γ(X,OX). Note that R = colimR′i by Limits of Spaces,
Lemma 52.5.4. Then

X

��

// Xi

��
Y // Y ′i // Yi

is commutative with Y ′i = Spec(R′i). Let y′i ∈ Y ′i be the image of y. We have
Xy = limXi,y′i

because X = limXi, Y = limY ′i , and κ(y) = colimκ(y′i). Now let
Xy = U q V with U and V open and closed. Then U, V are the inverse images of
opens Ui, Vi in Xi,y′i

(Limits of Spaces, Lemma 52.5.5). By Theorem 58.25.3 the
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fibres of Xi → Y ′i are connected, hence either U or V is empty. This finishes the
proof. �

58.26. Extending properties from an open

In this section we collect a number of results of the form: If f : X → Y is a flat
morphism of algebraic spaces and f satisfies some property over a dense open of
Y , then f satisfies the same property over all of Y .

Lemma 58.26.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX-module. Let V ⊂ Y be an open
subspace. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over Y ,
(3) V → Y is quasi-compact and scheme theoretically dense,
(4) F|f−1V is of finite presentation.

Then F is of finite presentation.

Proof. It suffices to prove the pullback of F to a scheme surjective and étale over
X is of finite presentation. Hence we may assume X is a scheme. Similarly, we
can replace Y by a scheme surjective and étale and over Y (the inverse image of
V in this scheme is scheme theoretically dense, see Morphisms of Spaces, Section
49.17). Thus we reduce to the case of schemes which is More on Flatness, Lemma
37.10.11. �

Lemma 58.26.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let V ⊂ Y be an open subspace. Assume

(1) f is locally of finite type and flat,
(2) V → Y is quasi-compact and scheme theoretically dense,
(3) f |f−1V : f−1V → V is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The proof is identical to the proof of Lemma 58.26.1 except one uses More
on Flatness, Lemma 37.10.12. �

Lemma 58.26.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let V ⊂ Y be an open subspace. Let d ≥ 0. Assume

(1) f is flat and locally of finite presentation,
(2) V ⊂ Y is scheme theoretically dense, and
(3) f |f−1V : f−1V → V has relative dimension ≤ d.

Then f : X → Y has relative dimension ≤ d.

Proof. By definition the property of having relative dimension ≤ d can be checked
on an étale covering, see Morphisms of Spaces, Sections 49.31. Thus it suffices to
prove f has relative dimension ≤ d after replacing X by a scheme surjective and
étale over X. Similarly, we can replace Y by a scheme surjective and étale and
over Y . The inverse image of V in this scheme is scheme theoretically dense, see
Morphisms of Spaces, Section 49.17. Since a scheme theoretically dense open of a
scheme is in particular dense, we reduce to the case of schemes which is More on
Morphisms, Lemma 36.17.8. �

http://stacks.math.columbia.edu/tag/0876
http://stacks.math.columbia.edu/tag/0877
http://stacks.math.columbia.edu/tag/0878


3574 58. MORE ON MORPHISMS OF SPACES

Lemma 58.26.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let V ⊂ Y be an open subspace. If

(1) f is separated, locally of finite type, and flat,
(2) f−1(V )→ V is an isomorphism, and
(3) V → Y is quasi-compact and scheme theoretically dense,

then f is an open immersion.

Proof. Applying Lemma 58.26.2 we see that f is locally of finite presentation.
Applying Lemma 58.26.3 we see that f has relative dimension ≤ 0. By Morphisms
of Spaces, Lemma 49.32.6 this implies that f is locally quasi-finite. By Morphisms
of Spaces, Lemma 49.45.1 this implies that f is representable. By Descent on
Spaces, Lemma 56.10.12 we can check whether f is an open immersion étale locally
on Y . Hence we may assume that Y is a scheme. Since f is representable, we
reduce to the case of schemes which is More on Morphisms, Lemma 36.31.4. �

58.27. Blowing up and flatness

Instead of redoing the work in More on Flatness, Section 37.27 we prove an analogue
of More on Flatness, Lemma 37.27.6 which tells us that the problem of finding a
suitable blowup is often étale local on the base.

Lemma 58.27.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let ϕ : W → X be a quasi-compact separated étale mor-
phism. Let U ⊂ X be a quasi-compact open subspace. Let I ⊂ OU be a finite type
quasi-coherent sheaf of ideals such that V (I) ∩ ϕ−1(U) = ∅. Then there exists a
finite type quasi-coherent sheaf of ideals J ⊂ OX such that

(1) V (J ) ∩ U = ∅, and
(2) ϕ−1(J )OW = II ′ for some finite type quasi-coherent ideal I ′ ⊂ OW .

Proof. Choose a factorization W → Y → X where j : W → Y is a quasi-compact
open immersion and π : Y → X is a finite morphism of finite presentation (Lemma
58.24.4). Let V = j(W ) ∪ π−1(U) ⊂ Y . Note that I on W ∼= j(W ) and Oπ−1(U)

glue to a finite type quasi-coherent sheaf of ideals I1 ⊂ OV . By Limits of Spaces,
Lemma 52.9.8 there exists a finite type quasi-coherent sheaf of ideals I2 ⊂ OY such
that I2|V = I1. In other words, I2 ⊂ OY is a finite type quasi-coherent sheaf of
ideals such that V (I2) is disjoint from π−1(U) and j−1I2 = I. Denote i : Z → Y
the corresponding closed immersion which is of finite presentation (Morphisms of
Spaces, Lemma 49.27.12). In particular the composition τ = π ◦ i : Z → X is finite
and of finite presentation (Morphisms of Spaces, Lemmas 49.27.2 and 49.41.4).

Let F = τ∗OZ which we think of as a quasi-coherent OX -module. By Descent on
Spaces, Lemma 56.5.7 we see that F is a finitely presented OX -module. Let J =
Fit0(F). (Insert reference to fitting modules on ringed topoi here.) This is a finite
type quasi-coherent sheaf of ideals on X (as F is of finite presentation, see More on
Algebra, Lemma 15.5.4). Part (1) of the lemma holds because |τ |(|Z|)∩ |U | = ∅ by
our choice of I2 and because the 0th fitting ideal of the trivial module equals the
structure sheaf. To prove (2) note that ϕ−1(J )OW = Fit0(ϕ∗F) because taking
fitting ideals commutes with base change. On the other hand, as ϕ : W → X
is separated and étale we see that (1, j) : W → W ×X Y is an open and closed
immersion. Hence W ×Y Z = V (I) q Z ′ for some finite and finitely presented
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morphism of algebraic spaces τ ′ : Z ′ →W . Thus we see that

Fit0(ϕ∗F) = Fit0((W ×Y Z →W )∗OW×Y Z)

= Fit0(OW /I) · Fit0(τ ′∗OZ′)
= I · Fit0(τ ′∗OZ′)

the second equality by More on Algebra, Lemma 15.5.4 translated in sheaves on
ringed topoi. Setting I ′ = Fit0(τ ′∗OZ′) finishes the proof of the lemma. �

Theorem 58.27.2. Let S be a scheme. Let B be a quasi-compact and quasi-
separated algebraic space over S. Let X be an algebraic space over B. Let F be a
quasi-coherent module on X. Let U ⊂ B be a quasi-compact open subspace. Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over B,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

Then there exists a U -admissible blowup B′ → B such that the strict transform F ′
of F is an OX×BB′-module of finite presentation and flat over B′.

Proof. Choose an affine scheme V and a surjective étale morphism V → X. Be-
cause strict transform commutes with étale localization (Divisors on Spaces, Lemma
53.7.2) it suffices to prove the result with X replaced by V . Hence we may assume
that X → B is representable (in addition to the hypotheses of the lemma).

Assume that X → B is representable. Choose an affine scheme W and a surjective
étale morphism ϕ : W → B. Note that X×BW is a scheme. By the case of schemes
(More on Flatness, Theorem 37.27.8) we can find a finite type quasi-coherent sheaf
of ideals I ⊂ OW such that (a) |V (I)| ∩ |ϕ−1(U)| = ∅ and (b) the strict transform
of F|X×BW with respect to the blowing up W ′ →W in I becomes flat over W ′ and
is a module of finite presentation. Choose a finite type sheaf of ideals J ⊂ OB as
in Lemma 58.27.1. Let B′ → B be the blowing up of J . We claim that this blow
up works. Namely, it is clear that B′ → B is U -admissible by our choice of ideal
J . Moreover, the base change B′ ×B W →W is the blowup of W in ϕ−1J = II ′
(compatibility of blowup with flat base change, see Divisors on Spaces, Lemma
53.6.3). Hence there is a factorization

W ×B B′ →W ′ →W

where the first morphism is a blowup as well, see Divisors on Spaces, Lemma
53.6.9). The restriction of F ′ (which lives on B′ ×B X) to W ×B B′ ×B X is the
strict transform of F|X×BW (Divisors on Spaces, Lemma 53.7.2) and hence is the
twice repeated strict transform of F|X×BW by the two blowups displayed above
(Divisors on Spaces, Lemma 53.7.7). After the first blow up our sheaf is already
flat over the base and of finite presentation (by construction). Whence this holds
after the second strict transform as well (since this is a pullback by Divisors on
Spaces, Lemma 53.7.4). Thus we see that the restriction of F ′ to an étale cover of
B′ ×B X has the desired properties and the theorem is proved. �

58.28. Applications

In this section we apply the result on flattening by blowing up.
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Lemma 58.28.1. Let S be a scheme. Let B be a quasi-compact and quasi-separated
algebraic space over S. Let X be an algebraic space over B. Let U ⊂ B be a quasi-
compact open subspace. Assume

(1) X → B is of finite type and quasi-separated, and
(2) XU → U is flat and locally of finite presentation.

Then there exists a U -admissible blowup B′ → B such that the strict transform of
X is flat and of finite presentation over B′.

Proof. Let B′ → B be a U -admissible blowup. Note that the strict transform of
X is quasi-compact and quasi-separated over B′ as X is quasi-compact and quasi-
separated overB. Hence we only need to worry about finding a U -admissible blowup
such that the strict transform becomes flat and locally of finite presentation. We
cannot directly apply Theorem 58.27.2 becauseX is not locally of finite presentation
over B.

Choose an affine scheme V and a surjective étale morphism V → X. (This is
possible as X is quasi-compact as a finite type space over the quasi-compact space
B.) Then it suffices to show the result for the morphism V → B (as strict transform
commutes with étale localization, see Divisors on Spaces, Lemma 53.7.2). Hence we
may assume that X → B is separated as well as finite type. In this case we can find
a closed immersion i : X → Y with Y → B separated and of finite presentation,
see Limits of Spaces, Proposition 52.11.7.

Apply Theorem 58.27.2 to F = i∗OX on Y/B. We find a U -admissible blowup B′ →
B such that that strict transform of F is flat over B′ and of finite presentation. Let
X ′ be the strict transform of X under the blowup B′ → B. Let i′ : X ′ → Y ×BB′ be
the induced morphism. Since taking strict transform commutes with pushforward
along affine morphisms (Divisors on Spaces, Lemma 53.7.5), we see that i′∗OX′
is flat over B′ and of finite presentation as a OY×BB′ -module. Thus X ′ → B′

is flat and locally of finite presentation. This implies the lemma by our earlier
remarks. �

Lemma 58.28.2. Let S be a scheme. Let ϕ : X → B be a morphism of algebraic
spaces over S. Assume ϕ is of finite type with B quasi-compact and quasi-separated.
Let U ⊂ B be a quasi-compact open subspace such that ϕ−1U → U is an isomor-
phism. Then there exists a U -admissible blowup B′ → B such that U is scheme
theoretically dense in B′ and such that the strict transform X ′ of X is isomorphic
to an open subspace of B′.

Proof. As the composition of U -admissible blowups is U -admissible (Divisors on
Spaces, Lemma 53.8.2) we can proceed in stages. Pick a finite type quasi-coherent
sheaf of ideals I ⊂ OB with |B| \ |U | = |V (I)|. Replace B by the blowup of B in I
and X by the strict transform of X. After this replacement B \U is the support of
an effective Cartier divisor D (Divisors on Spaces, Lemma 53.6.4). In particular U
is scheme theoretically dense in B (Divisors on Spaces, Lemma 53.2.4). Next, we
do another U -admissible blowup to get to the situation where X → B is flat and
of finite presentation, see Lemma 58.28.1. Note that U is still scheme theoretically
dense in B. Hence X → B is an open immersion by Lemma 58.26.4. �

The following lemma says that a modification can be dominated by a blowup.
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Lemma 58.28.3. Let S be a scheme. Let ϕ : X → B be a proper morphism of
algebraic spaces over S. Assume B quasi-compact and quasi-separated. Let U ⊂ B
be a quasi-compact open subspace such that ϕ−1U → U is an isomorphism. Then
there exists a U -admissible blowup B′ → B which dominates X, i.e., such that there
exists a factorization B′ → X → B of the blowup morphism.

Proof. By Lemma 58.28.2 we may find a U -admissible blowup B′ → B such that
the strict transform X ′ is an open subspace of B′ and U is scheme theoretically
dense in B′. Since X ′ → B′ is proper we see that |X ′| is closed in |B′|. As U ⊂ B′
is dense X ′ = B′. �

58.29. Chow’s lemma

In this section we prove some variants of Chow’s lemma. Since we have yet to define
projective morphisms of algebraic spaces, the statements will involve representable
proper morphisms, rather than projective ones.

Lemma 58.29.1. Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let U → X1 and U → X2 be open immersions of algebraic
spaces over Y and assume U , X1, X2 of finite type and separated over Y . Then
there exists a commutative diagram

X ′1

��

// X X ′2oo

��
X1 Uoo

`` OO >>

// X2

of algebraic spaces over Y where X ′i → Xi is a U -admissible blowup, X ′i → X is
an open immersion, and X is separated and finite type over Y .

Proof. Throughout the proof all the algebraic spaces will be separated of finite type
over Y . This in particular implies these algebraic spaces and the morphisms between
them will be quasi-compact and quasi-separated. We will use that if U → W is
an immersion of such spaces over Y , then the scheme theoretic image Z of U in
W is a closed subspace of W and U → Z is an open immersion, U ⊂ Z is scheme
theoretically dense, and |U | ⊂ |Z| is dense. See Morphisms of Spaces, Lemma
49.17.7.

Let X12 ⊂ X1 ×Y X2 be the scheme theoretic image of U → X1 ×Y X2. We
claim the projections pi : X12 → Xi induce isomorphisms p−1

i (U) → U . Namely,

pi : X12 → Xi is separated and U → X12 is a section of pi. Hence U → p−1
i (U)

is a closed immersion (Morphisms of Spaces, Lemma 49.4.6) as well as scheme
theoretically dense whence an isomorphism. Choose a U -admissible blowup Xi

i →
Xi such that the strict transform Xi

12 of X12 is isomorphic to an open subspace
of Xi

i , see Lemma 58.28.2. Let Ii ⊂ OXi be the corresponding finite type quasi-
coherent sheaf of ideals. Recall that Xi

12 → X12 is the blowup in p−1
i IiOX12

. Let

X ′12 be the blowup of X12 in p−1
1 I1p

−1
2 I2OX12 . We obtain a commutative diagram

X ′12

��

// X2
12

��
X1

12
// X12
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where all the morphisms are U -admissible blowing ups. Choose a finite type quasi-
coherent sheaf of ideals Ji on Xi

i extending the pull back of I1−i to Xi
12 (see Limits

of Spaces, Lemma 52.9.8). Let X ′i → Xi
i be the blowing up in Ji. By construction

X ′12 ⊂ X ′i is an open subspace and the diagram

X ′12

��

// X ′i

��
Xi

12
// Xi

i

is commutative with vertical arrows blowing ups and horizontal arrows open immer-
sions. Note that X ′12 → X ′1×Y X ′2 is an immersion and proper (use that X ′12 → X12

is proper and X12 → X1 ×Y X2 is closed and X ′1 ×Y X ′2 → X1 ×Y X2 is separated
and apply Morphisms of Spaces, Lemma 49.37.6). Thus X ′12 → X ′1×Y X ′2 is a closed
immersion. It follows that if we define X by glueing X ′1 and X ′2 along the common
open subspace X ′12, then X → Y is of finite type and separated (details omitted).
As compositions of U -admissible blowups are U -admissible blowups (Divisors on
Spaces, Lemma 53.8.2) the lemma is proved. �

Lemma 58.29.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let U ⊂ X be an open subscheme. Assume

(1) U is quasi-compact,
(2) Y is quasi-compact and quasi-separated,
(3) there exists an immersion U → Pn

Y over Y ,
(4) f is of finite type and separated.

Then there exists a commutative diagram

X ′

��

// X
′

��
X // Y

where X ′ → X is a U -admissible blowup, X ′ → X
′

is an open immersion, and

X
′ → Y is a proper and representable morphism of algebraic spaces.

Proof. Let Z ⊂ Pn
Y be the scheme theoretic image of the immersion U → Pn

Y .
Since U → Pn

Y is quasi-compact we see that U ⊂ Z is a (scheme theoretically) dense
open subspace (Morphisms of Spaces, Lemma 49.17.7). Apply Lemma 58.29.1 to
find a diagram

X ′

��

// X
′

Z ′oo

��
X Uoo

`` OO >>

// Z

with properties as listed in the statement of that lemma. Since Z ′ → Z → Y is

proper we see that Z ′ ⊂ X
′

is closed (see Morphisms of Spaces, Lemma 49.37.6).

After replacing X
′

by a further U -admissible blowup we may assume that U is

scheme theoretically dense in X
′

(details omitted; use Divisors on Spaces, Lemmas

53.6.4 and 53.2.4). It follows that Z ′ = X
′

and the lemma is proved. �
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Lemma 58.29.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f separated, of finite type, and Y Noetherian. Then there
exists a commutative diagram

X ′

��

// X
′

��
X // Y

where X ′ → X is a U -admissible blowup for some dense open U ⊂ X, the mor-

phism X ′ → X
′

is an open immersion, and X
′ → Y is a proper and representable

morphism of algebraic spaces.

Proof. By Limits of Spaces, Lemma 52.13.3 there exists a dense open subspace
U ⊂ X and an immersion U → An

Y over Y . Composing with the open immersion
An
Y → Pn

Y we obtain a situation as in Lemma 58.29.2 and the result follows. �

Remark 58.29.4. In Lemma 58.29.2 the morphism X
′ → Y is a composition

X
′ → Z → Pn

Y → Y

where b : X
′ → Z is a U -admissible blowing up (in particular b|U : U → b(U) is an

isomorphism onto an open subspace of Z) and where Z → Pn
Y is a closed immersion.

This is immediate from the proof. It follows that the morphism X
′ → Y obtained

in the statement of Lemma 58.29.3 has a factorization of this type as well.

The following result is [Knu71, IV Theorem 3.1]. Note that the immersion X ′ →
Pn
Y is quasi-compact, hence can be factored as X ′ → X

′ → Pn
Y where the first

morphism is an open immersion and the second morphism a closed immersion
(Morphisms of Spaces, Lemma 49.17.7).

Lemma 58.29.5 (Chow’s lemma). Let S be a scheme. Let f : X → Y be a
morphism of algebraic spaces over S. Assume f separated of finite type, and Y
separated and Noetherian. Then there exists a commutative diagram

X ′

��

// Pn
Y

��
X // Y

where X ′ → X is a U -admissible blowup for some dense open U ⊂ X and the
morphism X ′ → Pn

Y is an immersion.

Proof. In this first paragraph of the proof we reduce the lemma to the case where
Y is of finite type over Spec(Z). We may and do replace the base scheme S by
Spec(Z). We can write Y = limYi as a directed limit of separated algebraic spaces
of finite type over Spec(Z), see Limits of Spaces, Proposition 52.8.1 and Lemma
52.5.7. For all i sufficiently large we can find a separated finite type morphism
Xi → Yi such that X = Y ×Yi Xi, see Limits of Spaces, Lemmas 52.7.1 and 52.6.8.
Let η1, . . . , ηn be the generic points of the irreducible components of |X| (X is
Noetherian as a finite type separated algebraic space over the Noetherian algebraic
space Y and therefore |X| is a Noetherian topological space). By Limits of Spaces,
Lemma 52.5.2 we find that the images of η1, . . . , ηn in |Xi| are distinct for i large
enough. We may replace Xi by the scheme theoretic image of the (quasi-compact,
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in fact affine) morphism X → Xi. After this replacement we see that the images
of η1, . . . , ηn in |Xi| are the generic points of the irreducible components of |Xi|,
see Morphisms of Spaces, Lemma 49.16.3. Having said this, suppose we can find a
diagram

X ′i

��

// Pn
Yi

��
Xi

// Y

where X ′i → Xi is a Ui-admissible blowup for some dense open Ui ⊂ Xi and the
morphism X ′i → Pn

Yi
is an immersion. Then the strict transform X ′ → X of X

relative to X ′i → Xi is a U -admissible blowing up where U ⊂ X is the inverse image
of Ui in X. Because of our carefuly chosen index i it follows that η1, . . . , ηn ∈ |U |
and U ⊂ X is dense. Moreover, X ′ → Pn

Y is an immersion as X ′ is closed in
X ′i ×Xi X = X ′i ×Yi Y which comes with an immersion into Pn

Y . Thus we have
reduced to the situation of the following paragraph.

Assume that Y is separated of finite type over Spec(Z). Then X → Spec(Z) is
separated of finite type as well. We apply Lemma 58.29.3 to find a diagram

X ′

��

// X
′

��
X // Spec(Z)

where X ′ → X is a U -admissible blowup for some dense open U ⊂ X and X ′ → X
′

is an open immersion and X
′ → Spec(Z) is representable and proper. In fact, by

Remark 58.29.4 we see that X
′ → Spec(Z) can be factored as

X
′ → Z → Pn

Z → Spec(Z).

where the first morphism is a U -admissible blowing up, the second morphism is a
closed immersion, and the third morphism is the structure morphism. Note that Z

has an ample invertible sheaf, namely OPn(1)|Z . Hence X
′ → Z is a H-projective

morphism by Morphisms, Lemma 28.43.13. It follows that X
′ → Spec(Z) is H-

projective by Morphisms, Lemma 28.43.7. Thus there exists a closed immersion

X
′ → Pn

Spec(Z). It follows that the diagonal map X ′ → Y × Pn
Spec(Z) = Pn

Y is an

immersion and we win. �

58.30. Variants of Chow’s Lemma

In this section we prove a number of variants of Chow’s lemma dealing with mor-
phisms between non-Noetherian algebraic spaces. The Noetherian versions are
Lemma 58.29.3 and Lemma 58.29.5.

Lemma 58.30.1. Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let f : X → Y be a separated morphism of finite type. Then
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there exists a commutative diagram

X ′

��

// X
′

��
X // Y

where X ′ → X is proper surjective, X ′ → X
′

is an open immersion, and X
′ → Y

is proper and representable morphism of algebraic spaces.

Proof. By Limits of Spaces, Proposition 52.11.7 we can find a closed immersion
X → X1 where X1 is separated and of finite presentation over Y . Clearly, if we
prove the assertion for X1 → Y , then the result follows for X. Hence we may
assume that X is of finite presentation over Y .

We may and do replace the base scheme S by Spec(Z). Write Y = limi Yi as a
directed limit of quasi-separated algebraic spaces of finite type over Spec(Z), see
Limits of Spaces, Proposition 52.8.1. By Limits of Spaces, Lemma 52.7.1 we can find
an index i ∈ I and a scheme Xi → Yi of finite presentation so that X = Y ×Yi Xi.
By Limits of Spaces, Lemma 52.6.8 we may assume that Xi → Yi is separated.
Clearly, if we prove the assertion for Xi over Yi, then the assertion holds for X.
The case Xi → Yi is treated by Lemma 58.29.3. �

Lemma 58.30.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f separated of finite type, and Y separated and quasi-
compact. Then there exists a commutative diagram

X ′

��

// Pn
Y

��
X // Y

where X ′ → X is proper surjective morphism and the morphism X ′ → Pn
Y is an

immersion.

Proof. By Limits of Spaces, Proposition 52.11.7 we can find a closed immersion
X → X1 where X1 is separated and of finite presentation over Y . Clearly, if we
prove the assertion for X1 → Y , then the result follows for X. Hence we may
assume that X is of finite presentation over Y .

We may and do replace the base scheme S by Spec(Z). Write Y = limi Yi as a
directed limit of quasi-separated algebraic spaces of finite type over Spec(Z), see
Limits of Spaces, Proposition 52.8.1. By Limits of Spaces, Lemma 52.5.7 we may
assume that Yi is separated for all i. By Limits of Spaces, Lemma 52.7.1 we can find
an index i ∈ I and a scheme Xi → Yi of finite presentation so that X = Y ×Yi Xi.
By Limits of Spaces, Lemma 52.6.8 we may assume that Xi → Yi is separated.
Clearly, if we prove the assertion for Xi over Yi, then the assertion holds for X.
The case Xi → Yi is treated by Lemma 58.29.5. �

58.31. Grothendieck’s existence theorem

In this section we discuss Grothendieck’s existence theorem for algebraic spaces.
Instead of developing a theory of “formal algebraic spaces” we temporarily develop
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a bit of language that replaces the notion of a “coherent module on a Noetherian
adic formal space”.

Let S be a scheme. Let X be a Noetherian algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Below we will consider inverse systems (Fn) of
coherent OX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism α : (Fn)→ (Gn) of such inverse systems is simply a compatible system
of morphisms αn : Fn → Gn. Let us denote the category of these inverse systems
with Coh(X, I). We will develop some theory regarding these systems that will
parallel to the corresponding results in the case of schemes, see Cohomology of
Schemes, Sections 29.21, 29.22, and 29.23.

Functoriality. Let f : X → Y be a morphism of Noetherian algebraic spaces over a
scheme S, and let J ⊂ OY be a quasi-coherent sheaf of ideals. Set I = f−1JOX .
In this situation there is a functor

f∗ : Coh(Y,J ) −→ Coh(X, I)

which sends (Gn) to (f∗Gn). Compare with Cohomology of Schemes, Lemma
29.22.1. If f is étale, then we may think of this as simply the restriction of the
system to X, see Properties of Spaces, Equation 48.24.1.1.

Étale descent. Let S be a scheme. Let U0 → X be a surjective étale morphism of
Noetherian algebraic spaces. Set U1 = U0 ×X U0 and U2 = U0 ×X U0 ×X U0. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Set Ii = I|Ui . In this situation we
obtain a diagram of categories

Coh(X, I) // Coh(U0, I0) //// Coh(U1, I1)
////// Coh(U2, I2)

an the first arrow presents Coh(X, I) as the homotopy limit of the right part of
the diagram. More precisely, given a descent datum, i.e., a pair ((Gn), ϕ) where
(Gn) is an object of Coh(U0, I0) and ϕ : pr∗0(Gn) → pr∗1(Gn) is an isomorphism
in Coh(U1, I1) satisfying the cocycle condition in Coh(U2, I2), then there exists
a unique object (Fn) of Coh(X, I) whose associated canonical descent datum is
isomorphic to ((Gn), ϕ). Compare with Descent on Spaces, Definition 56.3.3. The
proof of this statement follows immediately by applying Descent on Spaces, Propo-
sition 56.4.1 to the descent data (Gn, ϕn) for varying n.

Lemma 58.31.1. Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) Exactness in Coh(X, I) can be checked étale locally.
(3) For any flat morphism f : X ′ → X of Noetherian algebraic spaces the

functor f∗ : Coh(X, I)→ Coh(X ′, f−1IOX′) is exact.

Proof. Proof of (1). Choose an affine scheme U0 and a surjective étale mor-
phism U0 → X. Set U1 = U0 ×X U0 and U2 = U0 ×X U0 ×X U0 as in our
discussion of étale descent above. The categories Coh(Ui, Ii) are abelian (Coho-
mology of Schemes, Lemma 29.21.2) and the pullback functors are exact func-
tors Coh(U0, I0) → Coh(U1, I1) and Coh(U1, I1) → Coh(U2, I2) (Cohomology of
Schemes, Lemma 29.22.1). The lemma then follows formally from the description
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of Coh(X, I) as a category of descent data. Some details omitted; compare with
the proof of Groupoids, Lemma 38.12.6.

Part (2) follows immediately from the discussion in the previous paragraph. In the
situation of (3) choose a commutative diagram

U ′

��

// U

��
X ′ // X

where U ′ and U are affine schemes and the vertical morphisms are surjective étale.
Then U ′ → U is a flat morphism of Noetherian schemes (Morphisms of Spaces,
Lemma 49.28.5) whence the pullback functor Coh(U, IOU ) → Coh(U ′, IOU ′) is
exact by Cohomology of Schemes, Lemma 29.22.1. Since we can check exactness in
Coh(X,OX) on U and similarly for X ′, U ′ the assertion follows. �

Lemma 58.31.2. Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals. A map (Fn) → (Gn) is
surjective in Coh(X, I) if and only if F1 → G1 is surjective.

Proof. We can check on an affine étale cover of X by Lemma 58.31.1. Thus we
reduce to the case of schemes which is Cohomology of Schemes, Lemma 29.21.3. �

Let S be a scheme. Let X be a Noetherian algebraic space over S and let I ⊂ OX
be a quasi-coherent sheaf of ideals. There is a functor

(58.31.2.1) Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherent OX -module F the object F∧ = (F/InF) of
Coh(X, I).

Lemma 58.31.3. The functor (58.31.2.1) is exact.

Proof. It suffices to check this étale locally on X, see Lemma 58.31.1. Thus we
reduce to the case of schemes which is Cohomology of Schemes, Lemma 29.21.5. �

Lemma 58.31.4. Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals. Let F , G be coherent OX-
modules. Set H = HomOX (F ,G). Then

limH0(X,H/InH) = MorCoh(X,I)(F∧,G∧).

Proof. Since H is a sheaf on Xétale and since we have étale descent for objects
of Coh(X, I) it suffices to prove this étale locally. Thus we reduce to the case of
schemes which is Cohomology of Schemes, Lemma 29.21.6. �

We introduce the setting that we will focus on throughout the rest of this section.

Situation 58.31.5. Here A is a Noetherian ring complete with respect to an ideal
I. Also f : X → Spec(A) is a finite type separated morphism of algebraic spaces
and I = IOX .

In this situation we denote

Cohsupport proper over A(OX)
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be the full subcategory of Coh(OX) consisting of those coherent OX -modules whose
scheme theoretic support is proper over Spec(A). Similarly, we let

Cohsupport proper over A(X, I)

be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that
the scheme theoretic support of F1 is proper over Spec(A). Since the support
of a quotient module is contained in the support of the module, it follows that
(58.31.2.1) induces a functor

(58.31.5.1) Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)

Our first result is that this functor is fully faithful.

Lemma 58.31.6. In Situation 58.31.5. Let F , G be coherent OX-modules. Assume
that the intersection of the scheme theoretic supports of F and G is proper over
Spec(A). Then the map

MorCoh(OX)(F ,G) −→ MorCoh(X,I)(F∧,G∧)

coming from (58.31.2.1) is a bijection. In particular, (58.31.5.1) is fully faithful.

Proof. Let H = HomOX (G,F). This is a coherent OX -module because its restric-
tion of schemes étale over X is coherent by Modules, Lemma 17.19.4. By Lemma
58.31.4 the map

limnH
0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)

is bijective. Let i : Z → X be the scheme theoretic support of H. It is clear that Z
is a closed subspace contained in the intersection of the scheme theoretic supports
of F and G. Hence Z → Spec(A) is proper by assumption. Write H = i∗H′ for
some coherent OZ-module H′. We have i∗(H′/InH′) = H/InH. Hence we obtain

limnH
0(X,H/InH) = limnH

0(Z,H′/InH′)
= H0(Z,H′)
= H0(X,H)

= MorCoh(OX)(F ,G)

the second equality by the theorem on formal functions functions (Cohomology of
Spaces, Lemma 51.20.6). This proves the lemma. �

Remark 58.31.7. Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I,K ⊂ OX be quasi-coherent sheaves of ideals. Let α : (Fn) → (Gn) be
a morphism of Coh(X, I). Given an affine scheme U = Spec(A) and a surjective
étale morphism U → X denote I,K ⊂ A the ideals corresponding to the restrictions
I|U ,K|U . Denote αU : M → N of finite A∧-modules which corresponds to α|U via
Cohomology of Schemes, Lemma 29.21.1. We claim the following are equivalent

(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are anni-
hilated by Kt for all n ≥ 1,

(2) for any (or some) affine open Spec(A) = U ⊂ X as above the modules
Ker(αU ) and Coker(αU ) are annihilated by Kt for some integer t ≥ 1.

If these equivalent conditions hold we will say that α is a map whose kernel and
cokernel are annihilated by a power of K. To see the equivalence we refer to Coho-
mology of Schemes, Remark 29.22.2.
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Lemma 58.31.8. Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals. Let G be a coherent OX-
module, (Fn) an object of Coh(X, I), and α : (Fn)→ G∧ a map whose kernel and
cokernel are annihilated by a power of I. Then there exists a unique (up to unique
isomorphism) triple (F , a, β) where

(1) F is a coherent OX-module,
(2) a : F → G is an OX-module map whose kernel and cokernel are annihi-

lated by a power of I,
(3) β : (Fn)→ F∧ is an isomorphism, and
(4) α = a∧ ◦ β.

Proof. The uniqueness and étale descent for objects of Coh(X, I) and Coh(OX)
implies it suffices to construct (F , a, β) étale locally on X. Thus we reduce to the
case of schemes which is Cohomology of Schemes, Lemma 29.22.3. �

Lemma 58.31.9. In Situation 58.31.5. Let K ⊂ OX be a quasi-coherent sheaf of
ideals. Let Xe ⊂ X be the closed subspace cut out by Ke. Let Ie = IOXe . Let (Fn)
be an object of Cohsupport proper over A(X, I). Assume

(1) the functor Cohsupport proper over A(OXe)→ Cohsupport proper over A(Xe, Ie)
is an equivalence for all e ≥ 1, and

(2) there exists an object H of Cohsupport proper over A(OX) and a map α :
(Fn)→ H∧ whose kernel and cokernel are annihilated by a power of K.

Then (Fn) is in the essential image of (58.31.5.1).

Proof. During this proof we will use without further mention that for a closed
immersion i : Z → X the functor i∗ gives an equivalence between the category of
coherent modules on Z and coherent modules on X annihilated by the ideal sheaf
of Z, see Cohomology of Spaces, Lemma 51.11.8. In particular we think of

Cohsupport proper over A(OXe) ⊂ Cohsupport proper over A(OX)

as the full subcategory of consisting of modules annihilated by Ke and

Cohsupport proper over A(Xe, Ie) ⊂ Cohsupport proper over A(X, I)

as the full subcategory of of objects annihilated by Ke. Moreover (1) tells us these
two categories are equivalent under the completion functor (58.31.5.1).

Applying this equivalence we get a coherent OX -module Ge annihilated by Ke cor-
responding to the system (Fn/KeFn) of Cohsupport proper over A(X, I). The maps
Fn/Ke+1Fn → Fn/KeFn correspond to canonical maps Ge+1 → Ge which in-
duce isomorphisms Ge+1/KeGe+1 → Ge. We obtain an object (Ge) of the category
Cohsupport proper over A(X,K). The map α induces a system of maps

Fn/KeFn −→ H/(In +Ke)H

whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1
be an integer, which exists by assumption (2), such that Kt annihilates the kernel
and cokernel of all the maps Fn → H/InH. Then K2t annihilates the kernel and
cokernel of the maps Fn/KeFn → H/(In+Ke)H (details omitted; see Cohomology
of Schemes, Remark 29.22.2). Whereupon we conclude that K4t annihilates the
kernel and the cokernel of the maps

Ge −→ H/KeH,
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(details omitted; see Cohomology of Schemes, Remark 29.22.2). We apply Lemma
58.31.8 to obtain a coherent OX -module F , a map a : F → H and an isomor-
phism β : (Ge) → (F/KeF) in Coh(X,K). Working backwards, for a given n the
triple (F/InF , a mod In, β mod In) is a triple as in the lemma for the morphism
αn mod Ke : (Fn/KeFn) → (H/(In + Ke)H) of Coh(X,K). Thus the uniqueness
in Lemma 58.31.8 gives a canonical isomorphism F/InF → Fn compatible with
all the morphisms in sight.

To finish the proof of the lemma we still have to show that the scheme theoretic
support of F is proper over A. By construction the kernel of a : F → H is
annihilated by a power of K. Hence the support of this kernel is contained in the
support of G1. Since G1 is an object of Cohsupport proper over A(OX1) we see this is
proper over A. Combined with the fact that the support of H is proper over A we
conclude that the support of F is proper over A (some details omitted). �

Lemma 58.31.10. Let S be a scheme. Let f : X → Y be a representable proper
morphism of Noetherian algebraic spaces over S. Let J ,K ⊂ OY be quasi-coherent
sheaves of ideals. Assume f is an isomorphism over V = Y \ V (K). Set I =
f−1JOX . Let (Gn) be an object of Coh(Y,J ), let F be a coherent OX-module, and
let β : (f∗Gn)→ F∧ be an isomorphism in Coh(X, I). Then there exists a map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.

Proof. Since f is a proper morphism we see that f∗F is a coherent OY -module
(Cohomology of Spaces, Lemma 51.19.2). Thus the statement of the lemma makes
sense. Consider the compositions

γn : Gn → f∗f
∗Gn → f∗(F/InF).

Here the first map is the adjunction map and the second is f∗βn. We claim that
there exists a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

equal γn for all n. Because of the uniqueness and étale descent for Coh(Y,J ) it
suffices to prove this étale locally on Y . Thus we may assume Y is the spectrum of
a Noetherian ring. As f is representable we see that X is a scheme as well. Thus
we reduce to the case of schemes, see proof of Cohomology of Schemes, Lemma
29.22.5. �

Theorem 58.31.11 (Grothendieck’s existence theorem). In Situation 58.31.5 the
functor (58.31.5.1) is an equivalence.

Proof. We will use the equivalence of categories of Cohomology of Spaces, Lemma
51.11.8 without further mention in the proof of the theorem. By Lemma 58.31.6 the
functor is fully faithful. Thus we need to prove the functor is essentially surjective.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that the
statement holds for every object (Fn) of Cohsupport proper over A(X, I) annihilated
by K. We want to show (0) is in Ξ. If not, then since X is Noetherian there exists
a maximal quasi-coherent sheaf of ideals K not in Ξ, see Cohomology of Spaces,
Lemma 51.12.1. After replacing X by the closed subscheme of X corresponding
to K we may assume that every nonzero K is in Ξ. Let (Fn) be an object of
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Cohsupport proper over A(X, I). We will show that this object is in the essential image,
thereby completing the proof of the theorem.

Apply Chow’s lemma (Lemma 58.29.5) to find a proper surjective morphism f :
Y → X which is an isomorphism over a dense open U ⊂ X such that Y is H-quasi-
projective over A. Note that Y is a scheme and f representable. Choose an open
immersion j : Y → Y ′ with Y ′ projective over A, see Morphisms, Lemma 28.43.11.
Let Tn be the scheme theoretic support of Fn. Note that |Tn| = |T1|, hence Tn
is proper over A for all n (Morphisms of Spaces, Lemma 49.37.7). Then f∗Fn is
supported on the closed subscheme f−1Tn which is proper over A (by Morphisms
of Spaces, Lemma 49.37.4 and properness of f). In particular, the composition
f−1Tn → Y → Y ′ is closed (Morphisms, Lemma 28.42.7). Let T ′n ⊂ Y ′ be the cor-
responding closed subscheme; it is contained in the open subscheme Y and equal
to f−1Tn as a closed subscheme of Y . Let F ′n be the coherent OY ′ -module cor-
responding to f∗Fn viewed as a coherent module on Y ′ via the closed immersion
f−1Tn = T ′n ⊂ Y ′. Then (F ′n) is an object of Coh(Y ′, IOY ′). By the projec-
tive case of Grothendieck’s existence theorem (Cohomology of Schemes, Lemma
29.21.9) there exists a coherent OY ′-module F ′ and an isomorphism (F ′)∧ ∼= (F ′n)
in Coh(Y ′, IOY ′). Let Z ′ ⊂ Y ′ be the scheme theoretic support of F ′. Since
F ′/IF ′ = F ′1 we see that Z ′ ∩ V (IOY ′) = T ′1 set-theoretically. The structure mor-
phism p′ : Y ′ → Spec(A) is proper, hence p′(Z ′ ∩ (Y ′ \ Y )) is closed in Spec(A). If
nonempty, then it would contain a point of V (I) as I is contained in the radical of A
(Algebra, Lemma 10.93.11). But we’ve seen above that Z ′ ∩ (p′)−1V (I) = T ′1 ⊂ Y
hence we conclude that Z ′ ⊂ Y . Thus F ′|Y is supported on a closed subscheme of
Y proper over A.

Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement
X \ U . By Cohomology of Spaces, Lemma 51.19.2 the OX -module H = f∗F ′ is
coherent and by Lemma 58.31.10 there exists a morphism α : (Fn) → H∧ in the
category Cohsupport proper over A(X, I) whose kernel and cokernel are annihilated by
a power of K. Let Z0 ⊂ X be the scheme theoretic support of H. It is clear that
|Z0| ⊂ f(|Z ′|). Hence Z0 → Spec(A) is proper (Morphisms of Spaces, Lemma
49.37.7). Thus H is an object of Cohsupport proper over A(OX). Since each of the
sheaves of ideals Ke is an element of Ξ we see that the assumptions of Lemma
58.31.9 are satisfied and we conclude. �

Remark 58.31.12 (Unwinding Grothendieck’s existence theorem). Let A be a
Noetherian ring complete with respect to an ideal I. Write S = Spec(A) and
Sn = Spec(A/In). Let X → S be a morphism of algebraic spaces that is separated
and of finite type. For n ≥ 1 we set Xn = X ×S Sn. Picture:

X1
i1
//

��

X2
i2
//

��

X3
//

��

. . . X

��
S1

// S2
// S3

// . . . S

In this situation we consider systems (Fn, ϕn) where

(1) Fn is a coherent OXn-module,
(2) ϕn : i∗nFn+1 → Fn is an isomorphism, and
(3) Supp(F1) is proper over S1.
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Theorem 58.31.11 says that the completion functor

coherent OX -modules F
with support proper over A

−→ systems (Fn)
as above

is an equivalence of categories. In the special case that X is proper over A we can
omit the conditions on the supports.

58.32. Grothendieck’s algebraization theorem

This section is the analogue of Cohomology of Schemes, Section 29.23. However,
this section is missing the result on algebraization of deformations of proper alge-
braic spaces endowed with ample invertible sheaves, as a proper algebraic space
which comes with an ample invertible sheaf is a scheme. Our first result is a trans-
lation of Grothendieck’s existence theorem in terms of closed subschemes and finite
morphisms.

Lemma 58.32.1. Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a morphism of algebraic
spaces that is separated and of finite type. For n ≥ 1 we set Xn = X×SSn. Suppose
given a commutative diagram

Z1
//

��

Z2
//

��

Z3
//

��

. . .

X1
i1 // X2

i2 // X3
// . . .

of algebraic spaces with cartesian squares. Assume that

(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of algebraic spaces Z → X such that Zn =
Z ×S Sn for all n ≥ 1. Moreover, Z is proper over S.

Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in the
statement are cartesian we see that the base change of jn to X1 is j1. Thus Limits of
Spaces, Lemma 52.15.5 shows that jn is a closed immersion. Set Fn = jn,∗OZn , so
that j]n is a surjection OXn → Fn. Again using that the squares are cartesian we see
that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence theorem, as
reformulated in Remark 58.31.12, tells us there exists a map OX → F of coherent
OX -modules whose restriction to Xn recovers OXn → Fn. Moreover, the support
of F is proper over S. As the completion functor is exact (Lemma 58.31.3) we see
that OX → F is surjective. Thus F = OX/J for some quasi-coherent sheaf of
ideals J . Setting Z = V (J ) finishes the proof. �

Lemma 58.32.2. Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a morphism of algebraic
spaces that is separated and of finite type. For n ≥ 1 we set Xn = X×SSn. Suppose
given a commutative diagram

Y1
//

��

Y2
//

��

Y3
//

��

. . .

X1
i1 // X2

i2 // X3
// . . .
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of algebraic spaces with cartesian squares. Assume that

(1) Y1 → X1 is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of algebraic spaces Y → X such that Yn =
Y ×S Sn for all n ≥ 1. Moreover, Y is proper over S.

Proof. Let’s write fn : Yn → Xn for the vertical morphisms. As the squares
in the statement are cartesian we see that the base change of fn to X1 is f1.
Thus Lemma 58.8.10 shows that fn is a finite morphism. Set Fn = fn,∗OYn .
Using that the squares are cartesian we see that the pullback of Fn+1 to Xn is
Fn. Hence Grothendieck’s existence theorem, as reformulated in Remark 58.31.12,
tells us there exists a coherent OX -module F whose restriction to Xn recovers
Fn. Moreover, the support of F is proper over S. As the completion functor is fuly
faithful (Theorem 58.31.11) we see that the multiplication maps Fn⊗OXn Fn → Fn
fit together to give an algebra structure on F . Setting Y = Spec

X
(F) finishes the

proof. �

Lemma 58.32.3. Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X, Y be algebraic spaces over S.
For n ≥ 1 we set Xn = X ×S Sn and Yn = Y ×S Sn. Suppose given a compatible
system of commutative diagrams

Xn+1

##

gn+1

// Yn+1

{{
Xn

66

  

gn
// Yn

55

||

Sn+1

Sn

55

Assume that

(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of algebraic spaces g : X → Y over S such
that gn is the base change of g to Sn.

Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Morphisms of Spaces, Lemma 49.4.7). Thus by Lemma
58.32.1 there exists a closed subspace Z ⊂ X×SY proper over S whose base change
to Sn recovers Xn ⊂ Xn×SYn. The first projection p : Z → X is a proper morphism
(as Z is proper over S, see Morphisms of Spaces, Lemma 49.37.6) whose base change
to Sn is an isomorphism for all n. In particular, p : Z → X is quasi-finite on an
open subspace of Z containing every point of Z0 for example by Morphisms of
Spaces, Lemma 49.32.7. As Z is proper over S this open neighbourhood is all of
Z. We conclude that p : Z → X is finite by Zariski’s main theorem (for example
apply Lemma 58.24.3 and use properness of Z over X to see that the immersion
is a closed immersion). Applying the equivalence of Theorem 58.31.11 we see that
p∗OZ = OX as this is true modulo In for all n. Hence p is an isomorphism and
we obtain the morphism g as the composition X ∼= Z → Y . We omit the proof of
uniqueness. �
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58.33. Regular immersions

This section is the analogue of Divisors, Section 30.13 for morphisms of algebraic
spaces. The reader is encouraged to read up on regular immersions of schemes in
that section first.

In Divisors, Section 30.13 we defined four types of regular immersions for morphisms
of schemes. Of these only three are (as far as we know) local on the target for the
étale topology; as usual plain old regular immersions aren’t. This is why for mor-
phisms of algebraic spaces we cannot actually define regular immersions. (These
kinds of annoyances prompted Grothendieck and his school to replace original no-
tion of a regular immersion by a Koszul-regular immersions, see [BGI71, Exposee
VII, Definition 1.4].) But we can define Koszul-regular, H1-regular, and quasi-
regular immersions. Another remark is that since Koszul-regular immersions are
not preserved by arbitrary base change, we cannot use the strategy of Morphisms
of Spaces, Section 49.3 to define them. Similarly, as Koszul-regular immersions are
not étale local on the source, we cannot use Morphisms of Spaces, Lemma 49.22.1
to define them either. We replace this lemma instead by the following.

Lemma 58.33.1. Let P be a property of morphisms of schemes which is étale local
on the target. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Consider commutative diagrams

X ×Y V

��

// V

��
X

f // Y

where V is a scheme and V → Y is étale. The following are equivalent

(1) for any diagram as above the projection X×Y V → V has property P, and
(2) for some diagram as above with V → Y surjective the projection X×Y V →

V has property P.

If X and Y are representable, then this is also equivalent to f (as a morphism of
schemes) having property P.

Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is
immediate. Assume

X ×Y V

��

// V

��
X

f // Y

X ×Y V ′

��

// V ′

��
X

f // Y

are two diagrams as in the lemma. Assume V → Y is surjective and X ×Y V → V
has property P. To show that (2) implies (1) we have to prove that X ×Y V ′ → V ′

has P. To do this consider the diagram

X ×Y V

��

(X ×Y V )×X (X ×Y V ′)oo

��

// X ×Y V ′

��
V V ×Y V ′oo // V ′

By our assumption that P is étale local on the source, we see that P is preserved
under étale base change, see Descent, Lemma 34.18.2. Hence if the left vertical
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arrow has P the so does the middle vertical arrow. Since U×XU ′ → U ′ is surjective
and étale (hence defines an étale covering of U ′) this implies (as P is assumed local
for the étale topology on the target) that the left vertical arrow has P.

If X and Y are representable, then we can take idY : Y → Y as our étale covering
to see the final statement of the lemma is true. �

Note that “being a Koszul-regular (resp. H1-regular, resp. quasi-regular) immer-
sion” is a property of morphisms of schemes which is fpqc local on the target, see
Descent, Lemma 34.19.30. Hence the following definition now makes sense.

Definition 58.33.2. Let S be a scheme. Let i : X → Y be a morphism of algebraic
spaces over S.

(1) We say i is a Koszul-regular immersion if i is representable and the equiv-
alent conditions of Lemma 58.33.1 hold with P(f) =“f is a Koszul-regular
immersion”.

(2) We say i is an H1-regular immersion if i is representable and the equiv-
alent conditions of Lemma 58.33.1 hold with P(f) =“f is an H1-regular
immersion”.

(3) We say i is a quasi-regular immersion if i is representable and the equiv-
alent conditions of Lemma 58.33.1 hold with P(f) =“f is a quasi-regular
immersion”.

Lemma 58.33.3. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. We have the following implications: i is Koszul-regular ⇒ i is
H1-regular ⇒ i is quasi-regular.

Proof. Via the definition this lemma immediately reduces to Divisors, Lemma
30.13.2. �

Lemma 58.33.4. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Assume X is locally Noetherian. Then i is Koszul-regular ⇔ i is
H1-regular ⇔ i is quasi-regular.

Proof. Via Definition 58.33.2 (and the definition of a locally Noetherian algebraic
space in Properties of Spaces, Section 48.7) this immediately translates to the case
of schemes which is Divisors, Lemma 30.13.3. �

Lemma 58.33.5. Let S be a scheme. Let i : Z → X be a Koszul-regular, H1-
regular, or quasi-regular immersion of algebraic spaces over S. Let X ′ → X be a
flat morphism of algebraic spaces over S. Then the base change i′ : Z ×X X ′ → X ′

is a Koszul-regular, H1-regular, or quasi-regular immersion.

Proof. Via Definition 58.33.2 (and the definition of a flat morphism of algebraic
spaces in Morphisms of Spaces, Section 49.28) this lemma reduces to the case of
schemes, see Divisors, Lemma 30.13.4. �

Lemma 58.33.6. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then i is a quasi-regular immersion if and only if the following
conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (58.5.1.2) is an isomorphism.
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Proof. Follows from the case of schemes (Divisors, Lemma 30.13.5) via étale lo-
calization (use Definition 58.33.2 and Lemma 58.5.2). �

Lemma 58.33.7. Let S be a scheme. Let Z → Y → X be immersions of algebraic
spaces over S. Assume that Z → Y is H1-regular. Then the canonical sequence of
Lemma 58.4.6

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and (étale) locally split.

Proof. Since CZ/Y is finite locally free (see Lemma 58.33.6 and Lemma 58.33.3) it
suffices to prove that the sequence is exact. It suffices to show that the first map is
injective as the sequence is already right exact in general. After étale localization
on X this reduces to the case of schemes, see Divisors, Lemma 30.13.6. �

A composition of quasi-regular immersions may not be quasi-regular, see Algebra,
Remark 10.68.8. The other types of regular immersions are preserved under com-
position.

Lemma 58.33.8. Let S be a scheme. Let i : Z → Y and j : Y → X be immersions
of algebraic spaces over S.

(1) If i and j are Koszul-regular immersions, so is j ◦ i.
(2) If i and j are H1-regular immersions, so is j ◦ i.
(3) If i is an H1-regular immersion and j is a quasi-regular immersion, then

j ◦ i is a quasi-regular immersion.

Proof. Immediate from the case of schemes, see Divisors, Lemma 30.13.7. �

Lemma 58.33.9. Let S be a scheme. Let i : Z → Y and j : Y → X be immersions
of algebraic spaces over S. Assume that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Lemma 58.4.6 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. Immediate from the case of schemes, see Divisors, Lemma 30.13.8. �

Lemma 58.33.10. Let S be a scheme. Let i : Z → Y and j : Y → X be
immersions of algebraic spaces over S. Assume X is locally Noetherian. The
following are equivalent

(1) i and j are Koszul regular immersions,
(2) i and j ◦ i are Koszul regular immersions,
(3) j ◦ i is a Koszul regular immersion and the conormal sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and locally split.

Proof. Immediate from the case of schemes, see Divisors, Lemma 30.13.9. �
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58.34. Pseudo-coherent morphisms

This section is the analogue of More on Morphisms, Section 36.40 for morphisms
of schemes. The reader is encouraged to read up on pseudo-coherent morphisms of
schemes in that section first.

The property “pseudo-coherent” of morphisms of schemes is étale local on the
source-and-target. To see this use More on Morphisms, Lemmas 36.40.9 and
36.40.12 and Descent, Lemma 34.28.6. By Morphisms of Spaces, Lemma 49.22.1
we may define the notion of a pseudo-coherent morphism of algebraic spaces as fol-
lows and it agrees with the already existing notion defined in More on Morphisms,
Section 36.40 when the algebraic spaces in question are representable.

Definition 58.34.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is pseudo-coherent if the equivalent conditions of Morphisms of
Spaces, Lemma 49.22.1 hold with P =“pseudo-coherent”.

(2) Let x ∈ |X|. We say f is pseudo-coherent at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is pseudo-coherent.

Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent
in general.

Lemma 58.34.2. A flat base change of a pseudo-coherent morphism is pseudo-
coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.40.3. �

Lemma 58.34.3. A composition of pseudo-coherent morphisms is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.40.4. �

Lemma 58.34.4. A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. �

Lemma 58.34.5. A flat morphism which is locally of finite presentation is pseudo-
coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.40.6. �

Lemma 58.34.6. Let f : X → Y be a morphism of algebraic spaces pseudo-
coherent over a base algebraic space B. Then f is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.40.7. �

Lemma 58.34.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If Y is locally Noetherian, then f is pseudo-coherent if and only if
f is locally of finite type.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.40.8. �
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58.35. Perfect morphisms

This section is the analogue of More on Morphisms, Section 36.41 for morphisms
of schemes. The reader is encouraged to read up on perfect morphisms of schemes
in that section first.

The property “perfect” of morphisms of schemes is étale local on the source-and-
target. To see this use More on Morphisms, Lemmas 36.41.10 and 36.41.12 and
Descent, Lemma 34.28.6. By Morphisms of Spaces, Lemma 49.22.1 we may define
the notion of a perfect morphism of algebraic spaces as follows and it agrees with
the already existing notion defined in More on Morphisms, Section 36.41 when the
algebraic spaces in question are representable.

Definition 58.35.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is perfect if the equivalent conditions of Morphisms of Spaces,
Lemma 49.22.1 hold with P =“perfect”.

(2) Let x ∈ |X|. We say f is perfect at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is perfect.

Note that a perfect morphism is pseudo-coherent, hence locally of finite presenta-
tion. Beware that a base change of a perfect morphism is not perfect in general.

Lemma 58.35.2. A flat base change of a perfect morphism is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.41.3. �

Lemma 58.35.3. A composition of perfect morphisms is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.41.4. �

Lemma 58.35.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.41.5. �

58.36. Local complete intersection morphisms

This section is the analogue of More on Morphisms, Section 36.42 for morphisms
of schemes. The reader is encouraged to read up on local complete intersection
morphisms of schemes in that section first.

The property “being a local complete intersection morphism” of morphisms of
schemes is étale local on the source-and-target. To see this use More on Mor-
phisms, Lemmas 36.42.12 and 36.42.13 and Descent, Lemma 34.28.6. By Mor-
phisms of Spaces, Lemma 49.22.1 we may define the notion of a local complete
intersection morphism of algebraic spaces as follows and it agrees with the already
existing notion defined in More on Morphisms, Section 36.42 when the algebraic
spaces in question are representable.
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Definition 58.36.1. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f is a Koszul morphism, or that f is a local complete intersection
morphism if the equivalent conditions of Morphisms of Spaces, Lemma
49.22.1 hold with P(f) =“f is a local complete intersection morphism”.

(2) Let x ∈ |X|. We say f is Koszul at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is a local complete intersection
morphism.

In some sense the defining property of a local complete intersection morphism is
the result of the following lemma.

Lemma 58.36.2. Let S be a scheme. Let f : X → Y be a local complete inter-
section morphism of algebraic spaces over S. Let P be an algebraic space smooth
over Y . Let U → X be an étale morphism of algebraic spaces and let i : U → P an
immersion of algebraic spaces over Y . Picture:

X

  

Uoo

��

i
// P

��
Y

Then i is a Koszul-regular immersion of algebraic spaces.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme W and a surjective étale morphism W → P ×Y V . Set U ′ = U ×P W ,
which is a scheme étale over U . We have to show that U ′ → W is a Koszul-
regular immersion of schemes, see Definition 58.33.2. By Definition 58.36.1 above
the morphism of schemes U ′ → V is a local complete intersection morphism. Hence
the result follows from More on Morphisms, Lemma 36.42.3. �

It seems like a good idea to collect here some properties in common with all Koszul
morphisms.

Lemma 58.36.3. Let S be a scheme. Let f : X → Y be a local complete intersec-
tion morphism of algebraic spaces over S. Then

(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.42.4. �

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 58.36.4. A flat base change of a local complete intersection morphism is
a local complete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.42.6. �

Lemma 58.36.5. A composition of local complete intersection morphisms is a local
complete intersection morphism.
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Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.42.7. �

Lemma 58.36.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 36.42.8. �

Lemma 58.36.7. Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that both p and q are flat and locally of finite
presentation. Then there exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X|
is the set of points where f is Koszul. Moreover, for any morphism of algebraic
spaces Z ′ → Z, if f ′ : X ′ → Y ′ is the base change of f by Z ′ → Z, then U(f ′) is
the inverse image of U(f) under the projection X ′ → X.

Proof. This lemma is the analogue of More on Morphisms, Lemma 36.42.14 and
in fact we will deduce the lemma from it. By Definition 58.36.1 the set {x ∈ |X| :
f is Koszul at x} is open in |X| hence by Properties of Spaces, Lemma 48.4.8 it
corresponds to an open subspace U(f) of X. Hence we only need to prove the final
statement.

Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme
V and a surjective étale morphism V → W ×Z Y . Choose a scheme U and a
surjective étale morphism U → V ×Y X. Finally, choose a scheme W ′ and a
surjective étale morphism W ′ →W ×Z Z ′. Set V ′ = W ′×W V and U ′ = W ′×W U ,
so that we obtain surjective étale morphisms V ′ → Y ′ and U ′ → X ′. We will use
without further mention an étale morphism of algebraic spaces induces an open
map of associated topological spaces (see Properties of Spaces, Lemma 48.13.7).
Note that by definition U(f) is the image in |X| of the set T of points in U where
the morphism of schemes U → V is Koszul. Similarly, U(f ′) is the image in |X ′|
of the set T ′ of points in U ′ where the morphism of schemes U ′ → V ′ is Koszul.
Now, by construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned More on Mor-
phisms, Lemma 36.42.14 applies to show that T ′ is the inverse image of T . Since
|U ′| → |X ′| is surjective this implies the lemma. �

Lemma 58.36.8. Let S be a scheme. Let f : X → Y be a local complete intersec-
tion morphism of algebraic spaces over S. Then f is unramified if and only if f is
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formally unramified and in this case the conormal sheaf CX/Y is finite locally free
on X.

Proof. This follows from the corresponding result for morphisms of schemes, see
More on Morphisms, Lemma 36.42.15, by étale localization, see Lemma 58.12.11.
(Note that in the situation of this lemma the morphism V → U is unramified and
a local complete intersection morphism by definition.) �

Lemma 58.36.9. Let S be a scheme. Let Z → Y → X be formally unramified
morphisms of algebraic spaces over S. Assume that Z → Y is a local complete
intersection morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Lemma 58.4.6 is short exact.

Proof. Choose a scheme U and a surjective étale morphism U → X. Choose a
scheme V and a surjective étale morphism V → U ×X Y . Choose a scheme W and
a surjective étale morphism W → V ×Y Z. By Lemma 58.12.11 the morphisms
W → V and V → U are formally unramified. Moreover the sequence i∗CY/X →
CZ/X → CZ/Y → 0 restricts to the corresponding sequence i∗CV/U → CW/U →
CW/V → 0 for W → V → U . Hence the result follows from the result for schemes
(More on Morphisms, Lemma 36.42.16) as by definition the morphism W → V is
a local complete intersection morphism. �

58.37. When is a morphism an isomorphism?

More generally we can ask: “When does a morphism have property P?” A more
precise question is the following. Suppose given a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Does there exist a monomorphism of algebraic spaces W → Z
with the following two properties:

(1) the base change fW : XW → YW has property P, and
(2) any morphism Z ′ → Z of algebraic spaces factors through W if and only

if the base change fZ′ : XZ′ → YZ′ has property P.

In many cases, if W → Z exists, then it is an immersion, open immersion, or closed
immersion.

The answer to this question may depend on auxiliary properties of the morphisms
f , p, and q. An example is P(f) =“f is flat” which we have discussed for morphisms
of schemes in the case Y = S in great detail in the chapter “More on Flatness”,
starting with More on Flatness, Section 37.19.

Lemma 58.37.1. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z
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of algebraic spaces. Assume that p is locally of finite type and closed. Then there
exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors through W
if and only if the base change fZ′ : XZ′ → YZ′ is unramified.

Proof. By Morphisms of Spaces, Lemma 49.35.10 there exists an open subspace
U(f) ⊂ X which is the set of points where f is unramified. Moreover, formation of
U(f) commutes with arbitrary base change. Let W ⊂ Z be the open subspace (see
Properties of Spaces, Lemma 48.4.8) with underlying set of points

|W | = |Z| \ |p| (|X| \ |U(f)|)

i.e., z ∈ |Z| is a point of W if and only if f is unramified at every point of X above
z. Note that this is open because we assumed that p is closed. Since the formation
of U(f) commutes with arbitrary base change we immediately see (using Properties
of Spaces, Lemma 48.4.9) that W has the desired universal property. �

Lemma 58.37.2. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that

(1) p is locally of finite type,
(2) p is closed, and
(3) p2 : X ×Y X → Z is closed.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is unramified and
universally injective.

Proof. After replacing Z by the open subspace found in Lemma 58.37.1 we may
assume that f is already unramified; note that this does not destroy assumption (2)
or (3). By Morphisms of Spaces, Lemma 49.35.9 we see that ∆X/Y : X → X×Y X is
an open immersion. This remains true after any base change. Hence by Morphisms
of Spaces, Lemma 49.19.2 we see that fZ′ is universally injective if and only if the
base change of the diagonal XZ′ → (X ×Y X)Z′ is an isomorphism. Let W ⊂ Z be
the open subspace (see Properties of Spaces, Lemma 48.4.8) with underlying set of
points

|W | = |Z| \ |p2|
(
|X ×Y X| \ Im(|∆X/Y |)

)
i.e., z ∈ |Z| is a point of W if and only if the fibre of |X ×Y X| → |Z| over z is in
the image of |X| → |X ×Y X|. Then it is clear from the discussion above that the
restriction p−1(W )→ q−1(W ) of f is unramified and universally injective.

Conversely, suppose that fZ′ is unramified and universally injective. In order to
show that Z ′ → Z factors through W it suffices to show that |Z ′| → |Z| has image
contained in |W |, see Properties of Spaces, Lemma 48.4.9. Hence it suffices to
prove the result when Z ′ is the spectrum of a field. Denote z ∈ |Z| the image of
|Z ′| → |Z|. The discussion above shows that

|XZ′ | −→ |(X ×Y X)Z′ |

http://stacks.math.columbia.edu/tag/05X9
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is surjective. By Properties of Spaces, Lemma 48.4.3 in the commutative diagram

|XZ′ |

��

// |(X ×Y X)Z′ |

��
|p|−1({z}) // |p2|−1({z})

the vertical arrows are surjective. It follows that z ∈ |W | as desired. �

Lemma 58.37.3. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that

(1) p is locally of finite type,
(2) p is universally closed, and
(3) q : Y → Z is separated.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is a closed immersion.

Proof. We will use the characterization of closed immersions as universally closed,
unramified, and universally injective morphisms, see Lemma 58.11.9. First, note
that since p is universally closed and q is separated, we see that f is universally
closed, see Morphisms of Spaces, Lemma 49.37.6. It follows that any base change of
f is universally closed, see Morphisms of Spaces, Lemma 49.9.3. Thus to finish the
proof of the lemma it suffices to prove that the assumptions of Lemma 58.37.2 are
satisfied. The projection pr0 : X ×Y X → X is universally closed as a base change
of f , see Morphisms of Spaces, Lemma 49.9.3. Hence X ×Y X → Z is universally
closed as a composition of universally closed morphisms (see Morphisms of Spaces,
Lemma 49.9.4). This finishes the proof of the lemma. �

Lemma 58.37.4. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that

(1) p is locally of finite presentation,
(2) p is flat,
(3) p is closed, and
(4) q is locally of finite type.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is flat.

Proof. By Lemma 58.19.6 the set

A = {x ∈ |X| : X flat at x over Y }.
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is open in |X| and its formation commutes with arbitrary base change. Let W ⊂ Z
be the open subspace (see Properties of Spaces, Lemma 48.4.8) with underlying set
of points

|W | = |Z| \ |p| (|X| \A)

i.e., z ∈ |Z| is a point of W if and only if the whole fibre of |X| → |Z| over z
is contained in A. This is open because p is closed. Since the formation of A
commutes with arbitrary base change it follows that W works. �

Lemma 58.37.5. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that

(1) p is locally of finite presentation,
(2) p is flat,
(3) p is closed,
(4) q is locally of finite type, and
(5) q is closed.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is surjective and flat.

Proof. By Lemma 58.37.4 we may assume that f is flat. Note that f is locally
of finite presentation by Morphisms of Spaces, Lemma 49.27.9. Hence f is open,
see Morphisms of Spaces, Lemma 49.28.6. Let W ⊂ Z be the open subspace (see
Properties of Spaces, Lemma 48.4.8) with underlying set of points

|W | = |Z| \ |q| (|Y | \ |f |(|X|)) .
in other words for z ∈ |Z| we have z ∈ |W | if and only if the whole fibre of
|Y | → |Z| over z is in the image of |X| → |Y |. Since q is closed this set is open
in |Z|. The morphism XW → YW is surjective by construction. Finally, suppose
that XZ′ → YZ′ is surjective. In order to show that Z ′ → Z factors through W
it suffices to show that |Z ′| → |Z| has image contained in |W |, see Properties of
Spaces, Lemma 48.4.9. Hence it suffices to prove the result when Z ′ is the spectrum
of a field. Denote z ∈ |Z| the image of |Z ′| → |Z|. By Properties of Spaces, Lemma
48.4.3 in the commutative diagram

|XZ′ |

��

// |YZ′ |

��
|p|−1({z}) // |q|−1({z})

the vertical arrows are surjective. It follows that z ∈ |W | as desired. �

Lemma 58.37.6. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z
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of algebraic spaces. Assume that

(1) p is locally of finite presentation,
(2) p is flat,
(3) p is universally closed,
(4) q is locally of finite type,
(5) q is closed, and
(6) q is separated.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is an isomorphism.

Proof. By Lemma 58.37.5 there exists an open subspace W1 ⊂ Z such that fZ′ is
surjective and flat if and only if Z ′ → Z factors through W1. By Lemma 58.37.3
there exists an open subspace W2 ⊂ Z such that fZ′ is a closed immersion if
and only if Z ′ → Z factors through W2. We claim that W = W1 ∩ W2 works.
Certainly, if fZ′ is an isomorphism, then Z ′ → Z factors through W . Hence it
suffices to show that fW is an isomorphism. By construction fW is a surjective flat
closed immersion. In particular fW is representable. Since a surjective flat closed
immersion of schemes is an isomorphism (see Morphisms, Lemma 28.27.1) we win.
(Note that actually fW is locally of finite presentation, whence open, so you can
avoid the use of this lemma if you like.) �

Lemma 58.37.7. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that

(1) p is flat and locally of finite presentation,
(2) p is closed, and
(3) q is flat and locally of finite presentation,

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is a local complete
intersection morphism.

Proof. By Lemma 58.36.7 there exists an open subspace U(f) ⊂ X which is the set
of points where f is Koszul. Moreover, formation of U(f) commutes with arbitrary
base change. Let W ⊂ Z be the open subspace (see Properties of Spaces, Lemma
48.4.8) with underlying set of points

|W | = |Z| \ |p| (|X| \ |U(f)|)
i.e., z ∈ |Z| is a point of W if and only if f is Koszul at every point of X above z.
Note that this is open because we assumed that p is closed. Since the formation of
U(f) commutes with arbitrary base change we immediately see (using Properties
of Spaces, Lemma 48.4.9) that W has the desired universal property. �

58.38. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and
sheaves of differentials. In some sense these are all realizations of the triangle of
cotangent complexes associated to composable morphisms of algebraic spaces.
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In the sequences below each of the maps are as constructed in either Lemma 58.6.6
or Lemma 58.12.8. Let S be a scheme. Let g : Z → Y and f : Y → X be morphisms
of algebraic spaces over S.

(1) There is a canonical exact sequence

g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,

see Lemma 58.6.8. If g : Z → Y is formally smooth, then this sequence is
a short exact sequence, see Lemma 58.16.11.

(2) If g is formally unramified, then there is a canonical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,

see Lemma 58.12.13. If f ◦ g : Z → X is formally smooth, then this
sequence is a short exact sequence, see Lemma 58.16.12.

(3) if g and f ◦ g are formally unramified, then there is a canonical exact
sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,

see Lemma 58.12.14. If f : Y → X is formally smooth, then this sequence
is a short exact sequence, see Lemma 58.16.13.

(4) if g and f are formally unramified, then there is a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.

see Lemma 58.12.15. If g : Z → Y is a local complete intersection mor-
phism, then this sequence is a short exact sequence, see Lemma 58.36.9.
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CHAPTER 59

Pushouts of Algebraic Spaces

59.1. Introduction

The goal of this chapter is to discuss pushouts in the category of algebraic spaces.
This can be done with varying assumptions. A fairly general pushout construction is
given in [TT13]: one of the morphisms is affine and the other is a closed immersion.
We discuss a particular case of this in Section 59.2 where we assume one of the
morphisms is affine and the other is a thickening, a situation that often comes up
in deformation theory.

In Sections 59.3 and 59.4 we discuss diagrams

f−1(X \ Z) //

��

Y

f

��
X \ Z // X

where f is a quasi-compact and quasi-separated morphism of algebraic spaces,
Z → X is a closed immersion of finite presentation, the map f−1(Z) → Z is an
isomorphism, and f is flat along f−1(Z). In this situation we glue quasi-coherent
modules on X \Z and Y (in Section 59.3) to quasi-coherent modules on X and we
glue algebraic spaces over X \ Z and Y (in Section 59.4) to algebraic spaces over
X.

In Section 59.5 we discuss how proper birational morphisms of Noetherian algebraic
spaces give rise to coequalizer diagrams in algebraic spaces in some sense.

59.2. Pushouts in the category of algebraic spaces

This section is analogue of More on Morphisms, Section 36.11. We first prove a
general result on colimits and algebraic spaces. To do this we discuss a bit of
notation. Let S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram (see
Categories, Section 4.14). For each i we may consider the small étale site Xi,étale.
For each morphism i→ j of I we have the morphism Xi → Xj and hence a pullback
functor Xj,étale → Xi,étale. Hence we obtain a pseudo functor from Iopp into the
2-category of categories. Denote

limiXi,étale

the 2-limit (see insert future reference here). What does this mean concretely? An
object of this limit is a system of étale morphisms Ui → Xi over I such that for

3605
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each i→ j in I the diagram

Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Sup-
pose that fi : Xi → T is a family of morphisms such that for each i→ j the com-
position Xi → Xj → T is equal to fi. Then we get a functor Tétale → limXi,étale.
With this notation in hand we can formulate our lemma.

Lemma 59.2.1. Let S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram
as above. Assume that

(1) X = colimXi exists in the category of schemes,
(2)

∐
Xi → X is surjective,

(3) if U → X is étale and Ui = Xi ×X U , then U = colimUi in the category
of schemes, and

(4) the functor Xétale → limXi,étale is an equivalence.

Then X = colimXi in the category of algebraic spaces over S also.

Proof. Let Z be an algebraic space over S. Suppose that fi : Xi → Z is a family
of morphisms such that for each i → j the composition Xi → Xj → Z is equal to
fi. We have to construct a morphism of algebraic spaces f : X → Z such that we
can recover fi as the composition Xi → X → Z. Let W → Z be a surjective étale
morphism of a scheme to Z. For each i set Ui = W×Z,fiXi and denote hi : Ui →W
the projection. Then Ui → Xi forms an object of limXi,étale. By assumption (4) we
can find an étale morphism U → X and (functorial) isomorphisms Ui = Xi ×X U .
By assumption (3) there exists a morphism h : U →W such that the compositions
Ui → U →W are hi. Let g : U → Z be the composition of h with the map W → Z.
To finish the proof we have to show that g : U → Z descends to a morphism X → Z.
To do this, consider the morphism (h, h) : U ×X U → W ×Z W . Composing with
Ui ×Xi Ui → U ×X U we obtain (hi, hi) which factors through W ×Z W . Since
U ×X U is the colimit of the schemes Ui ×Xi Ui by (3) we see that (h, h) factors
through W ×Z W . Hence the two compositions U ×X U → U → W → Z are
equal. Because each Ui → Xi is surjective and assumption (2) we see that U → X
is surjective. As Z is a sheaf for the étale topology, we conclude that g : U → Z
descends to f : X → Z as desired. �

Lemma 59.2.2. Let S be a scheme. Let X → X ′ be a thickening of schemes over
S and let X → Y be an affine morphism of schemes over S. Let Y ′ = Y qX X ′ be
the pushout in the category of schemes (see More on Morphisms, Lemma 36.11.1).
Then Y ′ is also a pushout in the category of algebraic spaces over S.

Proof. This is an immediate consequence of Lemma 59.2.1 and More on Mor-
phisms, Lemmas 36.11.1, 36.11.2, and 36.11.4. �

Lemma 59.2.3. Let S be a scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S.

http://stacks.math.columbia.edu/tag/07SX
http://stacks.math.columbia.edu/tag/07SY
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Then there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y qX X ′

in the category of algebraic spaces over S. Moreover Y ′ = Y qX X ′ is a thickening
of Y and

OY ′ = OY ×f∗OX f ′∗OX′
as sheaves on Yétale = (Y ′)étale.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
V ×Y X. This is a scheme affine over V with a surjective étale morphism U → X.
By More on Morphisms of Spaces, Lemma 58.8.6 there exists a U ′ → X ′ surjective
étale with U = U ′ ×X′ X. In particular the morphism of schemes U → U ′ is a
thickening too. Apply More on Morphisms, Lemma 36.11.1 to obtain a pushout
V ′ = V qU U ′ in the category of schemes.

We repeat this procedure to construct a pushout

U ×X U

��

// U ′ ×X′ U ′

��
V ×Y V // R′

in the category of schemes. Consider the morphisms

U ×X U → U → V ′, U ′ ×X′ U ′ → U ′ → V ′, V ×Y V → V → V ′

where we use the first projection in each case. Clearly these glue to give a morphism
t′ : R′ → V ′ which is étale by More on Morphisms, Lemma 36.11.4. Similarly,
we obtain s′ : R′ → V ′ étale. The morphism j′ = (t′, s′) : R′ → V ′ ×S V ′
is unramified (as t′ is étale) and a monomorphism when restricted to the closed
subscheme V ×Y V ⊂ R′. As V ×Y V ⊂ R′ is a thickening it follows that j′

is a monomorphism too. Finally, j′ is an equivalence relation as we can use the
functoriality of pushouts of schemes to construct a morphism c′ : R′×s′,V ′,t′R′ → R′

(details omitted). At this point we set Y ′ = U ′/R′, see Spaces, Theorem 47.10.5.

We have morphisms X ′ = U ′/U ′ ×X′ U ′ → V ′/R′ = Y ′ and Y = V/V ×Y V →
V ′/R′ = Y ′. By construction these fit into the commutative diagram

X //

f

��

X ′

f ′

��
Y // Y ′

Since Y → Y ′ is a thickening we have Yétale = (Y ′)étale, see More on Morphisms of
Spaces, Lemma 58.8.6. The commutativity of the diagram gives a map of sheaves

OY ′ −→ OY ×f∗OX f ′∗OX′

on this set. By More on Morphisms, Lemma 36.11.1 this map is an isomorphism
when we restrict to the scheme V ′, hence it is an isomorphism.
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To finish the proof we show that the diagram above is a pushout in the category of
algebraic spaces. To see this, let Z be an algebraic space and let a′ : X ′ → Z and
b : Y → Z be morphisms of algebraic spaces. By Lemma 59.2.2 we obtain a unique
morphism h : V ′ → Z fitting into the commutative diagrams

U ′

��

// V ′

h

��
X ′

a′ // Z

and

V //

��

V ′

h

��
Y

b // Z

The uniqueness shows that h◦t′ = h◦s′. Hence h factors uniquely as V ′ → Y ′ → Z
and we win. �

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 4.29.3.

Lemma 59.2.4. Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S. Let
Y ′ = Y qX X ′ be the pushout (see Lemma 59.2.3). Base change gives a functor

F : (Spaces/Y ′) −→ (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

given by V ′ 7−→ (V ′×Y ′Y, V ′×Y ′X ′, 1) which sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)

(Sch/X ′). The functor F has a left adjoint

G : (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′) −→ (Spaces/Y ′)

which sends the triple (V,U ′, ϕ) to the pushout V q(V×YX) U
′ in the category of

algebraic spaces over S. The functor G sends (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) into
(Sch/Y ′).

Proof. The proof is completely formal. Since the morphisms X → X ′ and X → Y
are representable it is clear that F sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′) (Sch/X ′).

Let us construct G. Let (V,U ′, ϕ) be an object of the fibre product category. Set
U = U ′×X′X. Note that U → U ′ is a thickening. Since ϕ : V ×Y X → U ′×X′X =
U is an isomorphism we have a morphism U → V over X → Y which identifies
U with the fibre product X ×Y V . In particular U → V is affine, see Morphisms
of Spaces, Lemma 49.20.5. Hence we can apply Lemma 59.2.3 to get a pushout
V ′ = V qU U ′. Denote V ′ → Y ′ the morphism we obtain in virtue of the fact that
V ′ is a pushout and because we are given morphisms V → Y and U ′ → X ′ agreeing
on U as morphisms into Y ′. Setting G(V,U ′, ϕ) = V ′ gives the functor G.

If (V,U ′, ϕ) is an object of (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) then U = U ′ ×X′ X is a
scheme too and we can form the pushout V ′ = V qU U ′ in the category of schemes
by More on Morphisms, Lemma 36.11.1. By Lemma 59.2.2 this is also a pushout in
the category of schemes, hence G sends (Sch/Y )×(Sch/Y ′) (Sch/X ′) into (Sch/Y ′).

Let us prove that G is a left adjoint to F . Let Z be an algebraic space over Y ′. We
have to show that

Mor(V ′, Z) = Mor((V,U ′, ϕ), F (Z))

where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X ′. Then (g, f ′) is an element of the

http://stacks.math.columbia.edu/tag/07VY


59.2. PUSHOUTS IN THE CATEGORY OF ALGEBRAIC SPACES 3609

right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, ϕ) → F (Z) is an element of the right hand side. We may consider

the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z,
resp. Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the
universal property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element
of the left hand side. We omit the verification that these constructions are mutually
inverse. �

Lemma 59.2.5. Let S be a scheme. Let

A //

��

C

��

// E

��
B // D // F

be a commutative diagram of algebraic spaces over S. Assume that A,B,C,D
and A,B,E, F form cartesian squares and that B → D is surjective étale. Then
C,D,E, F is a cartesian square.

Proof. This is formal. �

Lemma 59.2.6. In the situation of Lemma 59.2.4 the functor F ◦G is isomorphic
to the identity functor.

Proof. We will prove that F ◦G is isomorphic to the identity by reducing this to
the corresponding statement of More on Morphisms, Lemma 36.11.2.

Choose a scheme Y1 and a surjective étale morphism Y1 → Y . Set X1 = Y1 ×Y X.
This is a scheme affine over Y1 with a surjective étale morphism X1 → X. By
More on Morphisms of Spaces, Lemma 58.8.6 there exists a X ′1 → X ′ surjective
étale with X1 = X ′1 ×X′ X. In particular the morphism of schemes X1 → X ′1 is
a thickening too. Apply More on Morphisms, Lemma 36.11.1 to obtain a pushout
Y ′1 = Y1 qX1

X ′1 in the category of schemes. In the proof of Lemma 59.2.3 we
constructed Y ′ as a quotient of an étale equivalence relation on Y ′1 such that we
get a commutative diagram

(59.2.6.1)

X //

��

X ′

��

X1
//

��

>>

X ′1

��

>>

Y // Y ′

Y1
//

>>

Y ′1

>>

where all squares except the front and back squares are cartesian (the front and
back squares are pushouts) and the northeast arrows are surjective étale. Denote
F1, G1 the functors constructed in More on Morphisms, Lemma 36.11.2 for the

http://stacks.math.columbia.edu/tag/07VZ
http://stacks.math.columbia.edu/tag/07W0
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front square. Then the diagram of categories

(Sch/Y ′1)
F1

//

��

(Sch/Y1)×(Sch/Y ′1 ) (Sch/X ′1)

��

G1oo

(Spaces/Y ′)
F
// (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

Goo

is commutative by simple considerations regarding base change functors and the
agreement of pushouts in schemes with pushouts in spaces of Lemma 59.2.2.

Let (V,U ′, ϕ) be an object of (Spaces/Y ) ×(Spaces/Y ′) (Spaces/X ′). Denote U =
U ′ ×X′ X so that G(V,U ′, ϕ) = V qU U ′. Choose a scheme V1 and a surjective
étale morphism V1 → Y1 ×Y V . Set U1 = V1 ×Y X. Then

U1 = V1 ×Y X −→ (Y1 ×Y V )×Y X = X1 ×Y V = X1 ×X X ×Y V = X1 ×X U

is surjective étale too. By More on Morphisms of Spaces, Lemma 58.8.6 there exists
a thickening U1 → U ′1 and a surjective étale morphism U ′1 → X ′1 ×X′ U ′ whose
base change to X1 ×X U is the displayed morphism. At this point (V1, U

′
1, ϕ1)

is an object of (Sch/Y1) ×(Sch/Y ′1 ) (Sch/X ′1). In the proof of Lemma 59.2.3 we
constructed G(V,U ′, ϕ) = V qU U ′ as a quotient of an étale equivalence relation on
G1(V1, U

′
1, ϕ1) = V1 qU1

U ′1 such that we get a commutative diagram

(59.2.6.2)

U //

��

U ′

��

U1
//

��

??

U ′1

��

66

V // G(V,U ′, ϕ)

V1
//

??

G1(V1, U
′
1, ϕ1)

77

where all squares except the front and back squares are cartesian (the front and back
squares are pushouts) and the northeast arrows are surjective étale. In particular

G1(V1, U
′
1, ϕ1)→ G(V,U ′, ϕ)

is surjective étale.

Finally, we come to the proof of the lemma. We have to show that the adjunction
mapping (V,U ′, ϕ) → F (G(V,U ′, ϕ)) is an isomorphism. We know (V1, U

′
1, ϕ1) →

F1(G1(V1, U
′
1, ϕ1)) is an isomorphism by More on Morphisms, Lemma 36.11.2. Re-

call that F and F1 are given by base change. Using the properties of (59.2.6.2) and
Lemma 59.2.5 we see that V → G(V,U ′, ϕ)×Y ′ Y and U ′ → G(V,U ′, ϕ)×Y ′X ′ are
isomorphisms, i.e., (V,U ′, ϕ)→ F (G(V,U ′, ϕ)) is an isomorphism. �

Lemma 59.2.7. Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S. Let
Y ′ = Y qX X ′ be the pushout (see Lemma 59.2.3). Let V ′ → Y ′ be a morphism of

http://stacks.math.columbia.edu/tag/08KV
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algebraic spaces over S. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and U = X ×Y ′ V ′.
There is an equivalence of categories between

(1) quasi-coherent OV ′-modules flat over Y ′, and
(2) the category of triples (G,F ′, ϕ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′-module flat over X, and
(c) ϕ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, ϕ). Then

(a) G′ is a finite type OV ′-module if and only if G and F ′ are finite type OY
and OU ′-modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′-module of
finite presentation if and only if G and F ′ are OY and OU ′-modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, ϕ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines étale over V ′ and Y ′ we
recover the equivalence of More on Algebra, Lemma 15.4.12. Details omitted.

Parts (a) and (b) reduce by étale localization (Properties of Spaces, Section 48.28)
to the case where V ′ and Y ′ are affine in which case the result follows from More
on Algebra, Lemmas 15.4.11 and 15.4.13. �

Lemma 59.2.8. In the situation of Lemma 59.2.6. If V ′ = G(V,U ′, ϕ) for some
triple (V,U ′, ϕ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y

and U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′))→W ′ is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of spaces flat over Y ′ and the category of triples (V,U ′, ϕ) with V → Y and U ′ → X ′

flat.

Proof. Choose a diagram (59.2.6.1) as in the proof of Lemma 59.2.6.

Proof of (1) – (5). Let (V,U ′, ϕ) be an object of (Spaces/Y )×(Spaces/Y ′)(Spaces/X ′).
Construct a diagram (59.2.6.2) as in the proof of Lemma 59.2.6. Then the base
change of G(V,U ′, ϕ) → Y ′ to Y ′1 is G1(V1, U

′
1, ϕ1) → Y ′1 . Hence (1) – (5) follow

immediately from the corresponding statements of More on Morphisms, Lemma
36.11.4 for schemes.

Suppose that W ′ → Y ′ is flat. Choose a scheme W ′1 and a surjective étale morphism
W ′1 → Y ′1 ×Y ′ W ′. Observe that W ′1 → W ′ is surjective étale as a composition of
surjective étale morphisms. We know that G1(F1(W ′1)) → W ′1 is an isomorphism

http://stacks.math.columbia.edu/tag/07W3
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by More on Morphisms, Lemma 36.11.4 applied to W ′1 over Y ′1 and the front of
the diagram (with functors G1 and F1 as in the proof of Lemma 59.2.6). Then
the construction of G(F (W ′)) (as a pushout, i.e., as constructed in Lemma 59.2.3)
shows that G1(F1(W ′1)) → G(F (W )) is surjective étale. Whereupon we conclude
that G(F (W ))→W is étale, see for example Properties of Spaces, Lemma 48.13.3.
But G(F (W ))→W is an isomorphism on underlying reduced algebraic spaces (by
construction), hence it is an isomorphism. �

59.3. Formal glueing of quasi-coherent modules

This section is the analogue of More on Algebra, Section 15.63. In the case of
morphisms of schemes, the result can be found in the paper by Joyet [Joy96];
this is a good place to start reading. For a discussion of applications to descent
problems for stacks, see the paper by Moret-Bailly [MB96]. In the case of an
affine morphism of schemes there is a statement in the appendix of the paper
[FR70] but one needs to add the hypothesis that the closed subscheme is cut out
by a finitely generated ideal (as in the paper by Joyet) since otherwise the result
does not hold. A generalization of this material to (higher) derived categories with
potential applications to nonflat situations can be found in [Bha14, Section 5].

We start with a lemma on abelian sheaves supported on closed subsets.

Lemma 59.3.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and
universally injective. Let y be a geometric point of Y and x = f(y). We have

(Rf∗Q)x = Qy

in D(Ab) for any object Q of D(Yétale) supported on |f−1Z|.

Proof. Consider the commutative diagram of algebraic spaces

f−1Z
i′
//

f ′

��

Y

f

��
Z

i // X

By Cohomology of Spaces, Lemma 51.8.4 we can write Q = Ri′∗K
′ for some object

K ′ of D(f−1Zétale). By Morphisms of Spaces, Lemma 49.47.5 we have K ′ =
(f ′)−1K with K = Rf ′∗K

′. Then we have Rf∗Q = Rf∗Ri
′
∗K
′ = Ri∗Rf

′
∗K
′ =

Ri∗K. Let z be the geometric point of Z corresponding to x and let z′ be the
geometric point of f−1Z corresponding to y. We obtain the result of the lemma as
follows

Qy = (Ri′∗K
′)y = K ′z′ = (f ′)−1Kz′ = Kz = Ri∗Kx = Rf∗Qx

The middle equality holds because of the description of the stalk of a pullback given
in Properties of Spaces, Lemma 48.16.9. �

Lemma 59.3.2. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and
universally injective. Let y be a geometric point of Y and x = f(y). Let G be an
abelian sheaf on Y . Then the map of two term complexes

(f∗Gx → (f ◦ j′)∗(G|V )x) −→ (Gy → j′∗(G|V )y)

http://stacks.math.columbia.edu/tag/0AEQ
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induces an isomorphism on kernels and an injection on cokernels. Here V = Y \
f−1Z and j′ : V → Y is the inclusion.

Proof. Choose a distinguished triangle

G → Rj′∗G|V → Q→ G[1]

n D(Yétale). The cohomology sheaves of Q are supported on |f−1Z|. We apply Rf∗
and we obtain

Rf∗G → Rf∗Rj
′
∗G|V → Rf∗Q→ Rf∗G[1]

Taking stalks at x we obtain an exact sequence

0→ (R−1f∗Q)x → f∗Gx → (f ◦ j′)∗(G|V )x → (R0f∗Q)x

We can compare this with the exact sequence

0→ H−1(Q)y → Gy → j′∗(G|V )y → H0(Q)y

Thus we see that the lemma follows because Qy = Rf∗Qx by Lemma 59.3.1. �

Lemma 59.3.3. Let S be a scheme. Let X be an algebraic space over S. Let
f : Y → X be a quasi-compact and quasi-separated morphism. Let x be a geometric
point of X and let Spec(OX,x) → X be the canonical morphism. For a quasi-
coherent module G on Y we have

f∗Gx = Γ(Y ×X Spec(OX,x), p∗F)

where p : Y ×X Spec(OX,x)→ Y is the projection.

Proof. Observe that f∗Gx = Γ(Spec(OX,x), h∗f∗G) where h : Spec(OX,x) → X.
Hence the result is true because h is flat so that Cohomology of Spaces, Lemma
51.10.1 applies. �

Lemma 59.3.4. Let S be a scheme. Let X be an algebraic space over S. Let
i : Z → X be a closed immersion of finite presentation. Let Q ∈ DQCoh(OX) be
supported on |Z|. Let x be a geometric point of X and let Ix ⊂ OX,x be the stalk of
the ideal sheaf of Z. Then the cohomology modules Hn(Qx) are Ix-power torsion
(see More on Algebra, Definition 15.62.1).

Proof. Choose an affine scheme U and an étale morphism U → X such that x lifts
to a geometric point u of U . Then we can replace X by U , Z by U ×X Z, Q by
the restriction Q|U , and x by u. Thus we may assume that X = Spec(A) is affine.
Let I ⊂ A be the ideal defining Z. Since i : Z → X is of finite presentation, the
ideal I = (f1, . . . , fr) is finitely generated. The object Q comes from a complex
of A-modules M•, see Derived Categories of Spaces, Lemma 57.4.2 and Derived
Categories of Schemes, Lemma 35.3.4. Since the cohomology sheaves of Q are
supported on Z we see that the localization M•f is acyclic for each f ∈ I. Take

x ∈ Hp(M•). By the above we can find ni such that fnii x = 0 in Hp(M•) for each i.
Then with n =

∑
ni we see that In annihilates x. Thus Hp(M•) is I-power torsion.

Since the ring map A→ OX,x is flat and since Ix = IOX,x we conclude. �

Lemma 59.3.5. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. Assume f−1Z → Z is an iso-
morphism and that f is flat in every point of f−1Z. For any Q in DQCoh(OY )
supported on |f−1Z| we have Lf∗Rf∗Q = Q.
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Proof. We show the canonical map Lf∗Rf∗Q→ Q is an isomorphism by checking
on stalks at y. If y is not in f−1Z, then both sides are zero and the result is true.
Assume the image x of y is in Z. By Lemma 59.3.1 we have Rf∗Qx = Qy and since
f is flat at y we see that

(Lf∗Rf∗Q)y = (Rf∗Q)x ⊗OX,x OY,y = Qy ⊗OX,x OY,y

Thus we have to check that the canonical map

Qy ⊗OX,x OY,y −→ Qy

is an isomorphism in the derived category. Let Ix ⊂ OX,x be the stalk of the
ideal sheaf defining Z. Since Z → X is locally of finite presentation this ideal is
finitely generated and the cohomology groups of Qy are Iy = IxOY,y-power torsion
by Lemma 59.3.4 applied to Q on Y . It follows that they are also Ix-power torsion.
The ring map OX,x → OY,y is flat and induces an isomorphism after dividing by Ix
and Iy because we assumed that f−1Z → Z is an isomorphism. Hence we see that
the cohomology modules of Qy⊗OX,x OY,y are equal to the cohomology modules of
Qy by More on Algebra, Lemma 15.63.2 which finishes the proof. �

Situation 59.3.6. Here S is a base scheme, f : Y → X is a quasi-compact and
quasi-separated morphism of algebraic spaces over S, and Z → X is a closed
immersion of finite presentation. We assume that f−1(Z) → Z is an isomorphism
and that f is flat in every point x ∈ |f−1Z|. We set U = X \Z and V = Y \f−1(Z).
Picture

V
j′
//

f |V
��

Y

f

��
U

j // X

In Situation 59.3.6 we define QCoh(Y → X,Z) as the category of triples (H,G, ϕ)
where H is a quasi-coherent sheaf of OU -modules, G is a quasi-coherent sheaf of
OY -modules, and ϕ : f∗H → G|V is an isomorphism of OV -modules. There is a
canonical functor

(59.3.6.1) QCoh(OX) −→ QCoh(Y → X,Z)

which maps F to the system (F|U , f∗F , can). By analogy with the proof given
in the affine case, we construct a functor in the opposite direction. To an object
(H,G, ϕ) we assign the OX -module

(59.3.6.2) Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )

Observe that j and j′ are quasi-compact morphisms as Z → X is of finite pre-
sentation. Hence f∗, j∗, and (f ◦ j′)∗ transform quasi-coherent modules into
quasi-coherent modules (Morphisms of Spaces, Lemma 49.11.2). Thus the mod-
ule (59.3.6.2) is quasi-coherent.

Lemma 59.3.7. In Situation 59.3.6. The functor (59.3.6.2) is right adjoint to the
functor (59.3.6.1).

Proof. This follows easily from the adjointness of f∗ to f∗ and j∗ to j∗. Details
omitted. �
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Lemma 59.3.8. In Situation 59.3.6. Let X ′ → X be a flat morphism of algebraic
spaces. Set Z ′ = X ′ ×X Z and Y ′ = X ′ ×X Y . The pullbacks QCoh(OX) →
QCoh(OX′) and QCoh(Y → X,Z) → QCoh(Y ′ → X ′, Z ′) are compatible with the
functors (59.3.6.2) and 59.3.6.1).

Proof. This is true because pullback commutes with pullback and because flat pull-
back commutes with pushforward along quasi-compact and quasi-separated mor-
phisms, see Cohomology of Spaces, Lemma 51.10.1. �

Proposition 59.3.9. In Situation 59.3.6 the functor (59.3.6.1) is an equivalence
with quasi-inverse given by (59.3.6.2).

Proof. We first treat the special case where X and Y are affine schemes and
where the morphism f is flat. Say X = Spec(R) and Y = Spec(S). Then f
corresponds to a flat ring map R → S. Moreover, Z ⊂ X is cut out by a finitely
generated ideal I ⊂ R. Choose generators f1, . . . , ft ∈ I. By the description of
quasi-coherent modules in terms of modules (Schemes, Section 25.7), we see that
the category QCoh(Y → X,Z) is canonically equivalent to the category Glue(R→
S, f1, . . . , ft) of More on Algebra, Remark 15.63.10 such that the functors (59.3.6.1)
and (59.3.6.2) correspond to the functors Can and H0. Hence the result follows
from More on Algebra, Proposition 15.63.15 in this case.

We return to the general case. Let F be a quasi-coherent module on X. We will
show that

α : F −→ Ker (j∗F|U ⊕ f∗f∗F → (f ◦ j′)∗f∗F|V )

is an isomorphism. Let (H,G, ϕ) be an object of QCoh(Y → X,Z). We will show
that

β : f∗Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ G

and

γ : j∗Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ H

are isomorphisms. To see these statements are true it suffices to look at stalks. Let
y be a geometric point of Y mapping to the geometric point x of X.

Fix an object (H,G, ϕ) of QCoh(Y → X,Z). By Lemma 59.3.2 and a diagram
chase (omitted) the canonical map

Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )x −→ Ker(j∗Hx ⊕ Gy → j′∗Gy)

is an isomorphism.

In particular, if y is a geometric point of V , then we see that j′∗Gy = Gy and
hence that this kernel is equal to Hx. This easily implies that αx, βx, and βy are
isomorphisms in this case.

Next, assume that y is a point of f−1Z. Let Ix ⊂ OX,x, resp. Iy ⊂ OY,y be
the stalk of the ideal cutting out Z, resp. f−1Z. Then Ix is a finitely generated
ideal, Iy = IxOY,y, and OX,x → OY,y is a flat local homomorphism inducing an
isomorphism OX,x/Ix = OY,y/Iy. At this point we can bootstrap using the diagram
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of categories

QCoh(OX)
(59.3.6.1)

//

��

QCoh(Y → X,Z)

��

(59.3.6.2)
zz

ModOX,x
Can // Glue(OX,x → OY,y, f1, . . . , ft)

H0

ee

Namely, as in the first paragraph of the proof we identify

Glue(OX,x → OY,y, f1, . . . , ft) = QCoh(Spec(OY,y)→ Spec(OX,x), V (Ix))

The right vertical functor is given by pullback, and it is clear that the inner square
is commutative. Our computation of the stalk of the kernel in the third paragraph
of the proof combined with Lemma 59.3.3 implies that the outer square (using the
curved arrows) commutes. Thus we conclude using the case of a flat morphism of
affine schemes which we handled in the first paragraph of the proof. �

Lemma 59.3.10. In Situation 59.3.6 the functor Rf∗ induces an equivalence be-
tween DQCoh,|f−1Z|(OY ) and DQCoh,|Z|(OX) with quasi-inverse given by Lf∗.

Proof. Since f is quasi-compact and quasi-separated we see that Rf∗ defines
a functor from DQCoh,|f−1Z|(OY ) to DQCoh,|Z|(OX), see Derived Categories of
Spaces, Lemma 57.6.1. By Derived Categories of Spaces, Lemma 57.5.4 we see
that Lf∗ maps DQCoh,|Z|(OX) into DQCoh,|f−1Z|(OY ). In Lemma 59.3.5 we have
seen that Lf∗Rf∗Q = Q for Q in DQCoh,|f−1Z|(OY ). By the dual of Derived Cate-
gories, Lemma 13.7.2 to finish the proof it suffices to show that Lf∗K = 0 implies
K = 0 for K in DQCoh,|Z|(OX). This follows from the fact that f is flat at all

points of f−1Z and the fact that f−1Z → Z is surjective. �

Lemma 59.3.11. In Situation 59.3.6 there exists an fpqc covering {Xi → X}i∈I
refining the family {U → X,Y → X}.

Proof. For the definition and general properties of fpqc coverings we refer to
Topologies, Section 33.8. In particular, we can first choose an étale covering
{Xi → X} with Xi affine and by base changing Y , Z, and U to each Xi we reduce
to the case where X is affine. In this case U is quasi-compact and hence a finite
union U = U1 ∪ . . .∪Un of affine opens. Then Z is quasi-compact hence also f−1Z
is quasi-compact. Thus we can choose an affine scheme W and an étale morphism
h : W → Y such that h−1f−1Z → f−1Z is surjective. Say W = Spec(B) and
h−1f−1Z = V (J) where J ⊂ B is an ideal of finite type. By Pro-étale Cohomol-
ogy, Lemma 46.5.1 there exists a localization B → B′ such that points of Spec(B′)
correspond exactly to points of W = Spec(B) specializing to h−1f−1Z = V (J).
It follows that the composition Spec(B′) → Spec(B) = W → Y → X is flat as
by assumption f : Y → X is flat at all the points of f−1Z. Then {Spec(B′) →
X,U1 → X, . . . , Un → X} is an fpqc covering by Topologies, Lemma 33.8.2. �
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59.4. Formal glueing of algebraic spaces

In Situation 59.3.6 we consider the category Spaces(X → Y, Z) of commutative
diagrams of algebraic spaces over S of the form

U ′

��

V ′oo

��

// Y ′

��
U Voo // Y

where both squares are cartesian. There is a canonical functor

(59.4.0.1) Spaces/X −→ Spaces(Y → X,Z)

which maps X ′ → X to the morphisms U ×X X ′ ← V ×X X ′ → Y ×X X ′.

Lemma 59.4.1. In Situation 59.3.6 the functor (59.4.0.1) restricts to an equiva-
lence

(1) from the category of algebraic spaces affine over X to the full subcategory of
Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y affine,

(2) from the category of closed immersions X ′ → X to the full subcategory of
Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y closed immersions, and

(3) same statement as in (2) for finite morphisms.

Proof. The category of algebraic spaces affine over X is equivalent to the category
of quasi-coherent sheaves A of OX -algebras. The full subcategory of Spaces(Y →
X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and Y ′ → Y affine is
equivalent to the category of algebra objects of QCoh(Y → X,Z). In both cases
this follows from Morphisms of Spaces, Lemma 49.20.7 with quasi-inverse given by
the relative spectrum construction (Morphisms of Spaces, Definition 49.20.8) which
commutes with arbitrary base change. Thus part (1) of the lemma follows from
Proposition 59.3.9.

Fully faithfulness in part (2) follows from part (1). For essential surjectivity, we
reduce by part (1) to proving that X ′ → X is a closed immersion if and only if
both U ×X X ′ → U and Y ×X X ′ → Y are closed immersions. By Lemma 59.3.11
{U → X,Y → X} can be refined by an fpqc covering. Hence the result follows
from Descent on Spaces, Lemma 56.10.15.

For (3) use the argument proving (2) and Descent on Spaces, Lemma 56.10.21. �

Lemma 59.4.2. In Situation 59.3.6 the functor (59.4.0.1) reflects isomorphisms.

Proof. By a formal argument with base change, this reduces to the following ques-
tion: A morphism a : X ′ → X of algebraic spaces such that U ×X X ′ → U and
Y ×XX ′ → Y are isomorphisms, is an isomorphism. The family {U → X,Y → X}
can be refined by an fpqc covering by Lemma 59.3.11. Hence the result follows
from Descent on Spaces, Lemma 56.10.13. �

Lemma 59.4.3. In Situation 59.3.6 the functor (59.4.0.1) is fully faithful on al-
gebraic spaces separated over X. More precisely, it induces a bijection

MorX(X ′1, X
′
2) −→ MorSpaces(Y→X,Z)(F (X ′1), F (X ′2))

whenever X ′2 → X is separated.
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Proof. Since X ′2 → X is separated, the graph i : X ′1 → X ′1 ×X X ′2 of a morphism
X ′1 → X ′2 over X is a closed immersion, see Morphisms of Spaces, Lemma 49.4.6.
Moreover a closed immersion i : T → X ′1 ×X X ′2 is the graph of a morphism if and
only if pr1 ◦ i is an isomorphism. The same is true for

(1) the graph of a morphism U ×X X ′1 → U ×X X ′2 over U ,
(2) the graph of a morphism V ×X X ′1 → V ×X X ′2 over V , and
(3) the graph of a morphism Y ×X X ′1 → Y ×X X ′2 over Y .

Moreover, if morphisms as in (1), (2), (3) fit together to form a morphism in
the category Spaces(Y → X,Z), then these graphs fit together to give an object
of Spaces(Y ×X (X ′1 ×X X ′2) → X ′1 ×X X ′2, Z ×X (X ′1 ×X X ′2)) whose triple of
morphisms are closed immersions. The proof is finished by applying Lemmas 59.4.1
and 59.4.2. �

59.5. Coequalizers and glueing

Let X be a Noeterian algebraic space and Z → X a closed subscheme. Let X ′ → X
be the blowing up in Z. In this section we show that X can be recovered from X ′,
Zn and glueing data where Zn is the nth infinitesimal neighbourhood of Z in X.

Lemma 59.5.1. Let S be a scheme. Let

Y
g

//

  

X

~~
B

be a commutative diagram of algebraic spaces over S. Assume B Noeterian, g
proper and surjective, and X → B separated of finite type. Let R = Y ×X Y with
projection morphisms t, s : R → Y . There exists a coequalizer X ′ of s, t : R → Y
in the category of algebraic spaces separated over B. The morphism X ′ → X is a
finite universal homeomorphism.

Proof. Denote h : R→ X the given morphism. The sheaves

g∗OY and h∗OR
are coherentOX -algebras (Cohomology of Spaces, Lemma 51.19.2). TheX-morphisms
s, t induce OX -agebra maps s], t] from the first to the second. Set

A = Equalizer
(
s], t] : g∗OY −→ h∗OR

)
Then A is a coherent OX -algebra and we can define

X ′ = Spec
X

(A)

as in Morphisms of Spaces, Definition 49.20.8. By Morphisms of Spaces, Remark
49.20.9 and functoriality of the Spec construction there is a factorization

Y −→ X ′ −→ X

and the morphism g′ : Y → X ′ equalizes s and t. Since A is a coherent OX -module
it is clear that X ′ → X is a finite morphism of algebraic spaces. Since the surjective
morphism g : Y → X factors through X ′ we see that X ′ → X is surjective.

To check that X ′ → X is a universal homeomorphism, it suffices to check that it
is universally injective (as we’ve already seen that it is universally surjective and
universally closed). To check this it suffices to check that |X ′ ×X U | → |U | is
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injective, for all U → X étale, see More on Morphisms of Spaces, Lemma 58.3.6. It
suffices to check this in all cases where U is an affine scheme (minor detail omitted).
Since the construction of X ′ commutes with étale localization, we may replace U
by X. Hence it suffices to check that |X ′| → |X| is injective when X is moreover
an affine scheme. First observe that |Y | → |X ′| is surjective, because g′ : Y → X ′

is proper by Morphisms of Spaces, Lemma 49.37.6 (hence the image is closed) and
OX′ ⊂ g′∗OY by construction. Thus if x1, x2 ∈ |X ′| map to the same point in |X|,
then we can lift x1, x2 to points y1, y2 ∈ |Y | mapping to the same point of |X|.
Then we can find an r ∈ |R| with s(r) = y1 and t(r) = y2, see Properties of Spaces,
Lemma 48.4.3). Since g′ coequalizes s and t we conclude that x1 = x2 as desired.

To prove that X ′ is the coequalizer, let W → B be a separated morphism of
algebraic spaces over S and let a : Y → W be a morphism over B which equalizes
s and t. We will show that a factors in a unique manner through the morphism
g′ : Y → X ′. We will first reduce this to the case where W → B is separated
of finite type by a limit argument (we recommend the reader skip this argument).
Since Y is quasi-compact we can find a quasi-compact open subspace W ′ ⊂ W
such that a factors through W ′. After replacing W by W ′ we may assume W is
quasi-compact. By Limits of Spaces, Lemma 52.10.1 we can write W = limi∈IWi

as a cofiltered limit with affine transition morphisms with Wi of finite type over
B. After shrinking I we may assume Wi → B is separated as well, see Limits of
Spaces, Lemma 52.6.8. Since W = limWi we have a = lim ai for some morphisms
ai : Y →Wi. If we can prove ai factors through g′ for all i, then the same thing is
true for a. This proves the reduction to the case of a finite type W .

Assume we have a : Y →W equalizing s and t with W → B separated and of finite
type. Consider

Γ ⊂ X ×B W
the scheme theoretic image of (g, a) : Y → X ×BW . Since g is proper we conclude
Y → Γ is surjective and the projection p : Γ → X is proper, see Morphisms of
Spaces, Lemma 49.37.8. Since both g and a equalize s and t, the morphism Y → Γ
also equalizes s and t.

We claim that p : Γ → X is a universal homeomorphism. As in the proof of the
corresponding fact for X ′ → X, it suffices to show that p is universally injective. By
More on Morphisms of Spaces, Lemma 58.3.6 it suffices to check |Γ ×X U | → |U |
is injective for every U → X étale. It suffices to check this for U affine (minor
details omitted). Taking scheme theoretic image commutes with étale localization
(Morphisms of Spaces, Lemma 49.16.3). Hence we may replace X by V and we
conclude it suffices to show that |Γ| → |X| is injective. If γ1, γ2 ∈ |Γ| map to the
same point in |X|, then we can lift γ1, γ2 to points y1, y2 ∈ |Y | mapping to the
same point of |X| (by surjectivity of Y → Γ we’ve seen above). Then we can find
an r ∈ |R| with s(r) = y1 and t(r) = y2, see Properties of Spaces, Lemma 48.4.3).
Since Y → Γ coequalizes s and t we conclude that γ1 = γ2 as desired.

As a proper universal homeomorphism the morphism p is finite (see for example
More on Morphisms of Spaces, Lemma 58.24.5). We conclude that

Γ = Spec(p∗OΓ).

Since Y → Γ equalizes s and t the map p∗OΓ → g∗OY factors through A and
we obtain a morphism X ′ → Γ by functoriality of the Spec construction. We can
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compose this morphism with the projection q : Γ→W to get the desired morphism
X ′ →W . We omit the proof of uniqueness of the factorization. �

We will work in the following situation.

Situation 59.5.2. Let S be a scheme. Let X → B be a separated finite type
morphism of algebraic spaces over S with B Noetherian. Let Z → X be a closed
immersion and let U ⊂ X be the complementary open subspace. Finally, let f :
X ′ → X be a proper morphism of algebraic spaces such that f−1(U) → U is an
isomorphism.

Lemma 59.5.3. In Situation 59.5.2 let Y = X ′ q Z and R = Y ×X Y with
projections t, s : R → Y . There exists a coequalizer X1 of s, t : R → Y in the
category of algebraic spaces separated over B. The morphism X1 → X is a finite
universal homeomorphism, an isomorphism over U and Z → X lifts to X1.

Proof. Existence of X1 and the fact that X1 → X is a finite universal homeomor-
phism is a special case of Lemma 59.5.1. The formation of X1 commutes with étale
localization on X (see proof of Lemma 59.5.1). Thus the morphisms Xn → X are
isomorphisms over U . It is immediate from the construction that Z → X lifts to
X1. �

In Situation 59.5.2 for n ≥ 1 let Zn ⊂ X be the nth order infinitesimal neighbour-
hood of Z in X, i.e., the closed subscheme defined by the nth power of the sheaf
of ideals cutting out Z. Consider Yn = X ′ q Zn and Rn = Yn ×X Yn and the
coequalizer

Rn
//
// Yn // Xn

// X

as in Lemma 59.5.3. The maps Yn → Yn+1 and Rn → Rn+1 induce morphisms

(59.5.3.1) X1 → X2 → X3 → . . .→ X

Each of these morphisms is a universal homeomorphism as the morphisms Xn → X
are universal homeomorphisms.

Lemma 59.5.4. In (59.5.3.1) for all n large enough, there exists an m such that
Xn → Xn+m factors through a closed immersion X → Xn+m.

Proof. Let’s look a bit more closely at the construction of Xn and how it changes
as we increase n. We have Xn = Spec(An) where An is the equalizer of s]n and

t]n going from gn,∗OYn to hn,∗ORn . Here gn : Yn = X ′ q Zn → X and hn : Rn =
Yn ×X Yn → X are the given morphisms. Let I ⊂ OX be the coherent sheaf of
ideals corresponding to Z. Then

gn,∗OYn = f∗OX′ ×OX/In

Similarly, we have a decomposition

Rn = X ′ ×X X ′ qX”×X Zn q Zn ×X Zn

Denote fn : X ′ ×X Zn → X the restriction of f and denote

A = Equalizer( f∗OX′
//
// (f × f)∗OX′×XX′ )

Then we see that

An = Equalizer( A×OX/In
//
// fn,∗OX′×XZn )
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We have canonical maps

OX → . . .→ A3 → A2 → A1

of coherent OX -algebras. The statement of the lemma means that for n large
enough there exists an m ≥ 0 such that the image of An+m → An is isomorphic to
OX .

Since Xn → X is an isomorphism over U we see that the kernel of OX → An is
supported on |Z|. Since X is Noetherian, the sequence of kernels Jn = Ker(OX →
An) stabilizes (Cohomology of Spaces, Lemma 51.12.1). Say Jn0 = Jn0+1 = . . . =
J . By Cohomology of Spaces, Lemma 51.12.2 we find that ItJ = 0 for some t ≥ 0.
On the other hand, there is an OX -algebra map An → OX/In and hence J ⊂ In
for all n. By Artin-Rees (Cohomology of Spaces, Lemma 51.12.3) we find that
J ∩ In ⊂ In−cJ for some c ≥ 0 and all n� 0. We conclude that J = 0.

Pick n ≥ n0 as in the previous paragraph. Then OX → An is injective. Hence
it now suffices to find m ≥ 0 such that the image of An+m → An is equal to the
image of OX . Observe that An sits in a short exact sequence

0→ Ker(A → fn,∗OX′×XZn)→ An → OX/In → 0

and similarly for An+m. Hence it suffices to show

Ker(A → fn+m,∗OX′×XZn+m) ⊂ Im(In → A)

for some m ≥ 0. To do this we may work étale locally on X and since X is
Noetherian we may assume that X is a Noetherian affine scheme. Say X = Spec(R)

and I corresponds to the ideal I ⊂ R. Let A = Ã for a finite R-algebra A. Let

f∗OX′ = B̃ for a finite R-algebra B. Then R → A ⊂ B and these maps become
isomorphisms on inverting any element of I.

Note that fn,∗OX′×XZn is equal to f∗(OX′/InOX′) in the notation used in Coho-
mology of Spaces, Section 51.20. By Cohomology of Spaces, Lemma 51.20.4 we see
that there exists a c ≥ 0 such that

Ker(B → Γ(X, f∗(OX′/In+m+cOX′))
is contained in In+mB. On the other hand, as R→ B is finite and an isomorphism
after inverting any element of I we see that In+mB ⊂ Im(In → B) for m large
enough (can be chosen independent of n). This finishes the proof as A ⊂ B. �

Remark 59.5.5. The meaning of Lemma 59.5.4 is the the system X1 → X2 →
X3 → . . . is essentially constant with value X. See Categories, Definition 4.22.1.
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CHAPTER 60

Groupoids in Algebraic Spaces

60.1. Introduction

This chapter is devoted to generalities concerning groupoids in algebraic spaces.
We recommend reading the beautiful paper [KM97] by Keel and Mori.

A lot of what we say here is a repeat of what we said in the chapter on groupoid
schemes, see Groupoids, Section 38.1. The discussion of quotient stacks is new here.

60.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

We continue our convention to label projection maps starting with index 0, so we
have pr0 : X ×S Y → X and pr1 : X ×S Y → Y .

60.3. Notation

Let S be a scheme; this will be our base scheme and all algebraic spaces will be
over S. Let B be an algebraic space over S; this will be our base algebraic space,
and often other algebraic spaces, and schemes will be over B. If we say that X is
an algebraic space over B, then we mean that X is an algebraic space over S which
comes equipped with structure morphism X → B. Moreover, we try to reserve the
letter T to denote a “test” scheme over B. In other words T is a scheme which
comes equipped with a structure morphism T → B. In this situation we denote
X(T ) for the set of T -valued points of X over B. In a formula:

X(T ) = MorB(T,X).

Similarly, given a second algebraic space Y over B we set

X(Y ) = MorB(Y,X).

Suppose we are given algebraic spaces X, Y over B as above and a morphism
f : X → Y over B. For any scheme T over B we get an induced map of sets

f : X(T ) −→ Y (T )

which is functorial in the scheme T over B. As f is a map of sheaves on (Sch/S)fppf
over the sheaf B it is clear that f determines and is determined by this rule. More
generally, we use the same notation for maps between fibre products. For example,
if X, Y , Z are algebraic spaces over B, and if m : X×B Y → Z×BZ is a morphism
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of algebraic spaces over B, then we think of m as corresponding to a collection of
maps between T -valued points

X(T )× Y (T ) −→ Z(T )× Z(T ).

And so on and so forth.

Finally, given two maps f, g : X → Y of algebraic spaces over B, if the induced
maps f, g : X(T ) → Y (T ) are equal for every scheme T over B, then f = g, and
hence also f, g : X(Z)→ Y (Z) are equal for every third algebraic space Z over B.
Hence, for example, to check the axioms for an group algebraic space G over B, it
suffices to check commutativity of diagram on T -valued points where T is a scheme
over B as we do in Definition 60.5.1 below.

60.4. Equivalence relations

Please refer to Groupoids, Section 38.3 for notation.

Definition 60.4.1. Let B → S as in Section 60.3. Let U be an algebraic space
over B.

(1) A pre-relation on U over B is any morphism j : R→ U ×B U of algebraic
spaces over B. In this case we set t = pr0 ◦ j and s = pr1 ◦ j, so that
j = (t, s).

(2) A relation on U over B is a monomorphism j : R→ U ×B U of algebraic
spaces over B.

(3) A pre-equivalence relation is a pre-relation j : R → U ×B U such that
the image of j : R(T ) → U(T ) × U(T ) is an equivalence relation for all
schemes T over B.

(4) We say a morphism R→ U ×B U of algebraic spaces over B is an equiva-
lence relation on U over B if and only if for every T over B the T -valued
points of R define an equivalence relation on the set of T -valued points of
U .

In other words, an equivalence relation is a pre-equivalence relation such that j is
a relation.

Lemma 60.4.2. Let B → S as in Section 60.3. Let U be an algebraic space over
B. Let j : R → U ×B U be a pre-relation. Let g : U ′ → U be a morphism of
algebraic spaces over B. Finally, set

R′ = (U ′ ×B U ′)×U×BU R
j′−→ U ′ ×B U ′

Then j′ is a pre-relation on U ′ over B. If j is a relation, then j′ is a relation.
If j is a pre-equivalence relation, then j′ is a pre-equivalence relation. If j is an
equivalence relation, then j′ is an equivalence relation.

Proof. Omitted. �

Definition 60.4.3. Let B → S as in Section 60.3. Let U be an algebraic space
over B. Let j : R → U ×B U be a pre-relation. Let g : U ′ → U be a morphism
of algebraic spaces over B. The pre-relation j′ : R′ → U ′ ×B U ′ is called the
restriction, or pullback of the pre-relation j to U ′. In this situation we sometimes
write R′ = R|U ′ .

http://stacks.math.columbia.edu/tag/043C
http://stacks.math.columbia.edu/tag/043D
http://stacks.math.columbia.edu/tag/043E
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Lemma 60.4.4. Let B → S as in Section 60.3. Let j : R → U ×B U be a pre-
relation of algebraic spaces over B. Consider the relation on |U | defined by the
rule

x ∼ y ⇔ ∃ r ∈ |R| : t(r) = x, s(r) = y.

If j is a pre-equivalence relation then this is an equivalence relation.

Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ |R| with t(r) = x, s(r) = y and
pick r′ ∈ |R| with t(r′) = y, s(r′) = z. We may pick a field K such that r and r′

can be represented by morphisms r, r′ : Spec(K) → R with s ◦ r = t ◦ r′. Denote
x = t◦r, y = s◦r = t◦r′, and z = s◦r′, so x, y, z : Spec(K)→ U . By construction
(x, y) ∈ j(R(K)) and (y, z) ∈ j(R(K)). Since j is a pre-equivalence relation we see
that also (x, z) ∈ j(R(K)). This clearly implies that x ∼ z.

The proof that ∼ is reflexive and symmetric is omitted. �

60.5. Group algebraic spaces

Please refer to Groupoids, Section 38.4 for notation.

Definition 60.5.1. Let B → S as in Section 60.3.

(1) A group algebraic space over B is a pair (G,m), where G is an algebraic
space over B and m : G ×B G → G is a morphism of algebraic spaces
over B with the following property: For every scheme T over B the pair
(G(T ),m) is a group.

(2) A morphism ψ : (G,m) → (G′,m′) of group algebraic spaces over B is a
morphism ψ : G→ G′ of algebraic spaces over B such that for every T/B
the induced map ψ : G(T )→ G′(T ) is a homomorphism of groups.

Let (G,m) be a group algebraic space over the algebraic space B. By the discus-
sion in Groupoids, Section 38.4 we obtain morphisms of algebraic spaces over B
(identity) e : B → G and (inverse) i : B → B such that for every T the quadruple
(G(T ),m, e, i) satisfies the axioms of a group.

Let (G,m), (G′,m′) be group algebraic spaces over B. Let f : G → G′ be a
morphism of algebraic spaces over B. It follows from the definition that f is a
morphism of group algebraic spaces over B if and only if the following diagram is
commutative:

G×B G
f×f
//

m

��

G′ ×B G′

m

��
G

f // G′

Lemma 60.5.2. Let B → S as in Section 60.3. Let (G,m) be a group alge-
braic space over B. Let B′ → B be a morphism of algebraic spaces. The pullback
(GB′ ,mB′) is a group algebraic space over B′.

Proof. Omitted. �

60.6. Properties of group algebraic spaces

In this section we collect some simple properties of group algebraic spaces which
hold over any base.

http://stacks.math.columbia.edu/tag/043F
http://stacks.math.columbia.edu/tag/043H
http://stacks.math.columbia.edu/tag/043I
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Lemma 60.6.1. Let S be a scheme. Let B be an algebraic space over S. Let G be
a group algebraic space over B. Then G → B is separated (resp. quasi-separated,
resp. locally separated) if and only if the identity morphism e : B → G is a closed
immersion (resp. quasi-compact, resp. an immersion).

Proof. We recall that by Morphisms of Spaces, Lemma 49.4.7 we have that e is
a closed immersion (resp. quasi-compact, resp. an immersion) if G → B is sepa-
rated (resp. quasi-separated, resp. locally separated). For the converse, consider
the diagram

G
∆G/B

//

��

G×B G

(g,g′)7→m(i(g),g′)

��
B

e // G

It is an exercise in the functorial point of view in algebraic geometry to show that
this diagram is cartesian. In other words, we see that ∆G/B is a base change of
e. Hence if e is a closed immersion (resp. quasi-compact, resp. an immersion) so
is ∆G/B , see Spaces, Lemma 47.12.3 (resp. Morphisms of Spaces, Lemma 49.8.3,
resp. Spaces, Lemma 47.12.3). �

60.7. Examples of group algebraic spaces

If G → S is a group scheme over the base scheme S, then the base change GB to
any algebraic space B over S is an group algebraic space over B by Lemma 60.5.2.
We will frequently use this in the examples below.

Example 60.7.1 (Multiplicative group algebraic space). Let B → S as in Section
60.3. Consider the functor which associates to any scheme T over B the group
Γ(T,O∗T ) of units in the global sections of the structure sheaf. This is representable
by the group algebraic space

Gm,B = B ×S Gm,S

over B. Here Gm,S is the multiplicative group scheme over S, see Groupoids,
Example 38.5.1.

Example 60.7.2 (Roots of unity as a group algebraic space). Let B → S as in Sec-
tion 60.3. Let n ∈ N. Consider the functor which associates to any scheme T over
B the subgroup of Γ(T,O∗T ) consisting of nth roots of unity. This is representable
by the group algebraic space

µn,B = B ×S µn,S
over B. Here µn,S is the group scheme of nth roots of unity over S, see Groupoids,
Example 38.5.2.

Example 60.7.3 (Additive group algebraic space). Let B → S as in Section 60.3.
Consider the functor which associates to any scheme T over B the group Γ(T,OT )
of global sections of the structure sheaf. This is representable by the group algebraic
space

Ga,B = B ×S Ga,S

over B. Here Ga,S is the additive group scheme over S, see Groupoids, Example
38.5.3.

http://stacks.math.columbia.edu/tag/06P6
http://stacks.math.columbia.edu/tag/043J
http://stacks.math.columbia.edu/tag/043K
http://stacks.math.columbia.edu/tag/043L
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Example 60.7.4 (General linear group algebraic space). Let B → S as in Section
60.3. Let n ≥ 1. Consider the functor which associates to any scheme T over B
the group

GLn(Γ(T,OT ))

of invertible n× n matrices over the global sections of the structure sheaf. This is
representable by the group algebraic space

GLn,B = B ×S GLn,S

over B. Here Gm,S is the general linear group scheme over S, see Groupoids,
Example 38.5.4.

Example 60.7.5. Let B → S as in Section 60.3. Let n ≥ 1. The determinant
defines a morphisms of group algebraic spaces

det : GLn,B −→ Gm,B

over B. It is the base change of the determinant morphism over S from Groupoids,
Example 38.5.5.

Example 60.7.6 (Constant group algebraic space). Let B → S as in Section 60.3.
Let G be an abstract group. Consider the functor which associates to any scheme T
over B the group of locally constant maps T → G (where T has the Zariski topology
and G the discrete topology). This is representable by the group algebraic space

GB = B ×S GS
over B. Here GS is the constant group scheme introduced in Groupoids, Example
38.5.6.

60.8. Actions of group algebraic spaces

Please refer to Groupoids, Section 38.8 for notation.

Definition 60.8.1. Let B → S as in Section 60.3. Let (G,m) be a group algebraic
space over B. Let X be an algebraic space over B.

(1) An action of G on the algebraic space X/B is a morphism a : G×BX → X
over B such that for every scheme T over B the map a : G(T )×X(T )→
X(T ) defines the structure of a G(T )-set on X(T ).

(2) Suppose that X, Y are algebraic spaces over B each endowed with an
action of G. An equivariant or more precisely a G-equivariant morphism
ψ : X → Y is a morphism of algebraic spaces over B such that for every
T over B the map ψ : X(T )→ Y (T ) is a morphism of G(T )-sets.

In situation (1) this means that the diagrams

(60.8.1.1) G×B G×B X
1G×a

//

m×1X

��

G×B X

a

��
G×B X

a // X

G×B X a
// X

X

e×1X

OO

1X

::

are commutative. In situation (2) this just means that the diagram

G×B X
id×f

//

a

��

G×B Y

a

��
X

f // Y

http://stacks.math.columbia.edu/tag/043M
http://stacks.math.columbia.edu/tag/043N
http://stacks.math.columbia.edu/tag/043O
http://stacks.math.columbia.edu/tag/043Q
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commutes.

Definition 60.8.2. Let B → S, G → B, and X → B as in Definition 60.8.1. Let
a : G×B X → X be an action of G on X/B. We say the action is free if for every
scheme T over B the action a : G(T )×X(T )→ X(T ) is a free action of the group
G(T ) on the set X(T ).

Lemma 60.8.3. Situation as in Definition 60.8.2, The action a is free if and only
if

G×B X → X ×B X, (g, x) 7→ (a(g, x), x)

is a monomorphism of algebraic spaces.

Proof. Immediate from the definitions. �

60.9. Principal homogeneous spaces

This section is the analogue of Groupoids, Section 38.9. We suggest reading that
section first.

Definition 60.9.1. Let S be a scheme. Let B be an algebraic space over S. Let
(G,m) be a group algebraic space over B. Let X be an algebraic space over B, and
let a : G×B X → X be an action of G on X.

(1) We say X is a pseudo G-torsor or that X is formally principally homo-
geneous under G if the induced morphism G×B X → X ×B X, (g, x) 7→
(a(g, x), x) is an isomorphism.

(2) A pseudo G-torsor X is called trivial if there exists an G-equivariant iso-
morphism G→ X over B where G acts on G by left multiplication.

It is clear that if B′ → B is a morphism of algebraic spaces then the pullback XB′

of a pseudo G-torsor over B is a pseudo GB′ -torsor over B′.

Lemma 60.9.2. In the situation of Definition 60.9.1.

(1) The algebraic space X is a pseudo G-torsor if and only if for every scheme
T over B the set X(T ) is either empty or the action of the group G(T )
on X(T ) is simply transitive.

(2) A pseudo G-torsor X is trivial if and only if the morphism X → B has a
section.

Proof. Omitted. �

Definition 60.9.3. Let S be a scheme. Let B be an algebraic space over S. Let
(G,m) be a group algebraic space over B. Let X be a pseudo G-torsor over B.

(1) We say X is a principal homogeneous space, or more precisely a principal
homogeneous G-space over B if there exists a fpqc covering1 {Bi → B}i∈I
such that eachXBi → Bi has a section (i.e., is a trivial pseudoGBi-torsor).

(2) Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We say X is a G-torsor
in the τ topology, or a τ G-torsor, or simply a τ torsor if there exists a τ
covering {Bi → B}i∈I such that each XBi → Bi has a section.

1The default type of torsor in Groupoids, Definition 38.9.3 is a pseudo torsor which is trivial

on an fpqc covering. Since G, as an algebraic space, can be seen a sheaf of groups there already is a

notion of a G-torsor which corresponds to fppf-torsor, see Lemma 60.9.4. Hence we use “principal
homogeneous space” for a pseudo torsor which is fpqc locally trivial, and we try to avoid using

the word torsor in this situation.

http://stacks.math.columbia.edu/tag/06P8
http://stacks.math.columbia.edu/tag/06P9
http://stacks.math.columbia.edu/tag/04TW
http://stacks.math.columbia.edu/tag/04TX
http://stacks.math.columbia.edu/tag/04TY
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(3) If X is a G-torsor, then we say that it is quasi-isotrivial if it is a torsor
for the étale topology.

(4) If X is a G-torsor, then we say that it is locally trivial if it is a torsor for
the Zariski topology.

We sometimes say “let X be a G-principal homogeneous space over B” to indicate
that X is an algebraic space over B equipped with an action of G which turns it
into a principal homogeneous space over B. Next we show that this agrees with
the notation introduced earlier when both apply.

Lemma 60.9.4. Let S be a scheme. Let (G,m) be a group algebraic space over S.
Let X be an algebraic space over S, and let a : G×S X → X be an action of G on
X. Then X is a G-torsor in the fppf-topology in the sense of Definition 60.9.3 if
and only if X is a G-torsor on (Sch/S)fppf in the sense of Cohomology on Sites,
Definition 21.5.1.

Proof. Omitted. �

60.10. Equivariant quasi-coherent sheaves

Please compare with Groupoids, Section 38.10.

Definition 60.10.1. Let B → S as in Section 60.3. Let (G,m) be a group algebraic
space over B, and let a : G×B X → X be an action of G on the algebraic space X
over B. An G-equivariant quasi-coherent OX-module, or simply a equivariant quasi-
coherent OX-module, is a pair (F , α), where F is a quasi-coherent OX -module, and
α is a OG×BX -module map

α : a∗F −→ pr∗1F
where pr1 : G×B X → X is the projection such that

(1) the diagram

(1G × a)∗pr∗2F pr∗12α
// pr∗2F

(1G × a)∗a∗F

(1G×a)∗α

OO

(m× 1X)∗a∗F

(m×1X)∗α

OO

is a commutative in the category of OG×BG×BX -modules, and
(2) the pullback

(e× 1X)∗α : F −→ F
is the identity map.

For explanation compare with the relevant diagrams of Equation (60.8.1.1).

Note that the commutativity of the first diagram guarantees that (e× 1X)∗α is an
idempotent operator on F , and hence condition (2) is just the condition that it is
an isomorphism.

Lemma 60.10.2. Let B → S as in Section 60.3. Let G be a group algebraic space
over B. Let f : X → Y be a G-equivariant morphism between algebraic spaces over
B endowed with G-actions. Then pullback f∗ given by (F , α) 7→ (f∗F , (1G× f)∗α)
defines a functor from the category of G-equivariant sheaves on X to the category
of quasi-coherent G-equivariant sheaves on Y .

Proof. Omitted. �

http://stacks.math.columbia.edu/tag/04TZ
http://stacks.math.columbia.edu/tag/043T
http://stacks.math.columbia.edu/tag/043U
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60.11. Groupoids in algebraic spaces

Please refer to Groupoids, Section 38.11 for notation.

Definition 60.11.1. Let B → S as in Section 60.3.

(1) A groupoid in algebraic spaces over B is a quintuple (U,R, s, t, c) where U
and R are algebraic spaces over B, and s, t : R→ U and c : R×s,U,tR→ R
are morphisms of algebraic spaces over B with the following property: For
any scheme T over B the quintuple

(U(T ), R(T ), s, t, c)

is a groupoid category.
(2) A morphism f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) of groupoids in algebraic

spaces over B is given by morphisms of algebraic spaces f : U → U ′ and f :
R→ R′ over B with the following property: For any scheme T over B the
maps f define a functor from the groupoid category (U(T ), R(T ), s, t, c)
to the groupoid category (U ′(T ), R′(T ), s′, t′, c′).

Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. Note that there are
unique morphisms of algebraic spaces e : U → R and i : R → R over B such that
for every scheme T over B the induced map e : U(T )→ R(T ) is the identity, and i :
R(T )→ R(T ) is the inverse of the groupoid category. The septuple (U,R, s, t, c, e, i)
satisfies commutative diagrams corresponding to each of the axioms (1), (2)(a),
(2)(b), (3)(a) and (3)(b) of Groupoids, Section 38.11. Conversely given a septuple
with this property the quintuple (U,R, s, t, c) is a groupoid in algebraic spaces over
B. Note that i is an isomorphism, and e is a section of both s and t. Moreover,
given a groupoid in algebraic spaces over B we denote

j = (t, s) : R −→ U ×B U

which is compatible with our conventions in Section 60.4 above. We sometimes
say “let (U,R, s, t, c, e, i) be a groupoid in algebraic spaces over B” to stress the
existence of identity and inverse.

Lemma 60.11.2. Let B → S as in Section 60.3. Given a groupoid in algebraic
spaces (U,R, s, t, c) over B the morphism j : R → U ×B U is a pre-equivalence
relation.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 60.11.3. Let B → S as in Section 60.3. Given an equivalence relation
j : R → U over B there is a unique way to extend it to a groupoid in algebraic
spaces (U,R, s, t, c) over B.

Proof. Omitted. This is a nice exercise in the definitions. �

http://stacks.math.columbia.edu/tag/043W
http://stacks.math.columbia.edu/tag/043X
http://stacks.math.columbia.edu/tag/043Y
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Lemma 60.11.4. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. In the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0

oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top (which
is really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. �

Lemma 60.11.5. Let B → S be as in Section 60.3. Let (U,R, s, t, c, e, i) be a
groupoid in algebraic spaces over B. The diagram

(60.11.5.1) R×t,U,t R
pr1 //

pr0

//

pr0×c◦(i,1)

��

R
t //

idR

��

U

idU

��
R×s,U,t R

c //

pr0

//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid.
Note that, in terms of groupoids, the top left vertical arrow assigns to a pair of
morphisms (α, β) with the same target, the pair of morphisms (α, α−1 ◦ β). In any
groupoid this defines a bijection between Arrows×t,Ob,tArrows and Arrows×s,Ob,t

Arrows. Hence the second assertion of the lemma. The last assertion follows from
Lemma 60.11.4. �

60.12. Quasi-coherent sheaves on groupoids

Please compare with Groupoids, Section 38.12.

Definition 60.12.1. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. A quasi-coherent module on (U,R, s, t, c) is a pair (F , α),
where F is a quasi-coherent OU -module, and α is a OR-module map

α : t∗F −→ s∗F

such that

http://stacks.math.columbia.edu/tag/043Z
http://stacks.math.columbia.edu/tag/0450
http://stacks.math.columbia.edu/tag/0441
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(1) the diagram

pr∗1t
∗F

pr∗1α
// pr∗1s

∗F

pr∗0s
∗F c∗s∗F

pr∗0t
∗F

pr∗0α

ee

c∗t∗F
c∗α

::

is a commutative in the category of OR×s,U,tR-modules, and
(2) the pullback

e∗α : F −→ F
is the identity map.

Compare with the commutative diagrams of Lemma 60.11.4.

The commutativity of the first diagram forces the operator e∗α to be idempotent.
Hence the second condition can be reformulated as saying that e∗α is an isomor-
phism. In fact, the condition implies that α is an isomorphism.

Lemma 60.12.2. Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme over
S. If (F , α) is a quasi-coherent module on (U,R, s, t, c) then α is an isomorphism.

Proof. Pull back the commutative diagram of Definition 60.12.1 by the morphism
(i, 1) : R → R ×s,U,t R. Then we see that i∗α ◦ α = s∗e∗α. Pulling back by the
morphism (1, i) we obtain the relation α ◦ i∗α = t∗e∗α. By the second assumption
these morphisms are the identity. Hence i∗α is an inverse of α. �

Lemma 60.12.3. Let B → S as in Section 60.3. Consider a morphism f :
(U,R, s, t, c)→ (U ′, R′, s′, t′, c′) of groupoid in algebraic spaces over B. Then pull-
back f∗ given by

(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) to
the category of quasi-coherent sheaves on (U,R, s, t, c).

Proof. Omitted. �

Lemma 60.12.4. Let B → S be as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. The category of quasi-coherent modules on (U,R, s, t, c)
has colimits.

Proof. Let i 7→ (Fi, αi) be a diagram over the index category I. We can form
the colimit F = colimFi which is a quasi-coherent sheaf on U , see Properties
of Spaces, Lemma 48.27.7. Since colimits commute with pullback we see that
s∗F = colim s∗Fi and similarly t∗F = colim t∗Fi. Hence we can set α = colimαi.
We omit the proof that (F , α) is the colimit of the diagram in the category of
quasi-coherent modules on (U,R, s, t, c). �

Lemma 60.12.5. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. If s, t are flat, then the category of quasi-coherent modules
on (U,R, s, t, c) is abelian.

http://stacks.math.columbia.edu/tag/077W
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Proof. Let ϕ : (F , α)→ (G, β) be a homomorphism of quasi-coherent modules on
(U,R, s, t, c). Since s is flat we see that

0→ s∗Ker(ϕ)→ s∗F → s∗G → s∗Coker(ϕ)→ 0

is exact and similarly for pullback by t. Hence α and β induce isomorphisms κ :
t∗Ker(ϕ) → s∗Ker(ϕ) and λ : t∗Coker(ϕ) → s∗Coker(ϕ) which satisfy the cocycle
condition. Then it is straightforward to verify that (Ker(ϕ), κ) and (Coker(ϕ), λ)
are a kernel and cokernel in the category of quasi-coherent modules on (U,R, s, t, c).
Moreover, the condition Coim(ϕ) = Im(ϕ) follows because it holds over U . �

60.13. Crystals in quasi-coherent sheaves

Let (I,Φ, j) be a pair consisting of a set I and a pre-relation j : Φ→ I×I. Assume
given for every i ∈ I a scheme Xi and for every φ ∈ Φ a morphisms of schemes
fφ : Xi′ → Xi where j(φ) = (i, i′). Set X = ({Xi}i∈I , {fφ}φ∈Φ). Define a crystal in
quasi-coherent modules on X as a rule which associates to every i ∈ Ob(I) a quasi-
coherent sheaf Fi on Xi and for every φ ∈ Φ with j(φ) = (i, i′) an isomorphism

αφ : f∗φFi −→ Fi′
of quasi-coherent sheaves on Xi′ . These crystals in quasi-coherent modules form
an additive category CQC(X)2. This category has colimits (proof is the same as
the proof of Lemma 60.12.4). If all the morphisms fφ are flat, then CQC(X) is
abelian (proof is the same as the proof of Lemma 60.12.5). Let κ be a cardinal.
We say that a crystal in quasi-coherent modules F on X is κ-generated if each Fi
is κ-generated (see Properties, Definition 27.21.1).

Lemma 60.13.1. In the situation above, if all the morphisms fφ are flat, then
there exists a cardinal κ such that every object ({Fi}i∈I , {αφ}φ∈Φ) of CQC(X) is
the directed colimit of its κ-generated submodules.

Proof. In the lemma and in this proof a submodule of ({Fi}i∈I , {αφ}φ∈Φ) means
the data of a quasi-coherent submodule Gi ⊂ Fi for all i such that αφ(f∗φGi) = Gi′
as subsheaves of Fi′ for all φ ∈ Φ. This makes sense because since fφ is flat the
pullback f∗φ is exact, i.e., preserves subsheaves. The proof will be a variant to the
proof of Properties, Lemma 27.21.3. We urge the reader to read that proof first.

We claim that it suffices to prove the lemma in case all the schemes Xi are affine.
To see this let

J =
∐

i∈I
{U ⊂ Xi affine open}

and let

Ψ =
∐

φ∈Φ
{(U, V ) | U ⊂ Xi, V ⊂ Xi′ affine open with fφ(U) ⊂ V }∐∐
i∈I
{(U,U ′) | U,U ′ ⊂ Xi affine open with U ⊂ U ′}

endowed with the obvious map Ψ → J × J . Then our (F , α) induces a crystal in
quasi-coherent sheaves ({Hj}j∈J , {βψ}ψ∈Ψ) on Y = (J,Ψ) by setting H(i,U) = Fi|U

2We could single out a set of triples φ, φ′, φ′′ ∈ Φ with j(φ) = (i, i′), j(φ′) = (i′, i′′), and

j(φ′′) = (i, i′′) such that fφ′′ = fφ ◦fφ′ and require that αφ′ ◦f∗φ′αφ = αφ′′ for these triples. This

would define an additive subcategory. For example the data (I,Φ) could be the set of objects and
arrows of an index category and X could be a diagram of schemes over this index category. The
result of Lemma 60.13.1 immediately gives the corresponding result in the subcategory.

http://stacks.math.columbia.edu/tag/077Z
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for (i, U) ∈ J and setting βψ for ψ ∈ Ψ equal to the restriction of αφ to U if
ψ = (φ,U, V ) and equal to id : (Fi|U ′)|U → Fi|U when ψ = (i, U, U ′). More-
over, submodules of ({Hj}j∈J , {βψ}ψ∈Ψ) correspond 1-to-1 with submodules of
({Fi}i∈I , {αφ}φ∈Φ). We omit the proof (hint: use Sheaves, Section 6.30). More-
over, it is clear that if κ works for Y , then the same κ works for X (by the definition
of κ-generated modules). Hence it suffices to proof the lemma for crystals in quasi-
coherent sheaves on Y .

Assume that all the schemes Xi are affine. Let κ be an infinite cardinal larger than
the cardinality of I or Φ. Let ({Fi}i∈I , {αφ}φ∈Φ) be an object of CQC(X). For
each i write Xi = Spec(Ai) and Mi = Γ(Xi,Fi). For every φ ∈ Φ with j(φ) = (i, i′)
the map αφ translates into an Ai′ -module isomorphism

αφ : Mi ⊗Ai Ai′ −→Mi′

Using the axiom of choice choose a rule

(φ,m) 7−→ S(φ,m′)

where the source is the collection of pairs (φ,m′) such that φ ∈ Φ with j(φ) = (i, i′)
and m′ ∈Mi′ and where the output is a finite subset S(φ,m′) ⊂Mi so that

m′ = αφ

(∑
m∈S(φ,m′)

m⊗ a′m
)

for some a′m ∈ Ai′ .
Having made these choices we claim that any section of any Fi over any Xi is
in a κ-generated submodule. To see this suppose that we are given a collection
S = {Si}i∈I of subsets Si ⊂Mi each with cardinality at most κ. Then we define a
new collection S ′ = {S′i}i∈I with

S′i = Si ∪
⋃

(φ,m′), j(φ)=(i,i′), m′∈Si′
S(φ,m′)

Note that each S′i still has cardinality at most κ. Set S(0) = S, S(1) = S ′ and by

induction S(n+1) = (S(n))′. Then set S
(∞)
i =

⋃
n≥0 S

(n)
i and S(∞) = {S(∞)

i }i∈I .
By construction, for every φ ∈ Φ with j(φ) = (i, i′) and every m′ ∈ S(∞)

i′ we can

write m′ as a finite linear combination of images αφ(m⊗ 1) with m ∈ S(∞)
i . Thus

we see that setting Ni equal to the Ai-submodule of Mi generated by S
(∞)
i the

corresponding quasi-coherent submodules Ñi ⊂ Fi form a κ-generated submodule.
This finishes the proof. �

Lemma 60.13.2. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. If s, t are flat, then there exists a set T and a family of
objects (Ft, αt)t∈T of QCoh(U,R, s, t, c) such that every object (F , α) is the directed
colimit of its submodules isomorphic to one of the objects (Ft, αt).

Proof. This lemma is a generalization of Groupoids, Lemma 38.13.6 which deals
with the case of a groupoid in schemes. We can’t quite use the same argument, so
we use the material on “crystals of quasi-coherent sheaves” we developed above.

Choose a scheme W and a surjective étale morphism W → U . Choose a scheme
V and a surjective étale morphism V → W ×U,s R. Choose a scheme V ′ and a
surjective étale morphism V ′ → R×t,U W . Consider the collection of schemes

I = {W,W ×U W,V, V ′, V ×R V ′}

http://stacks.math.columbia.edu/tag/0780
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and the set of morphisms of schemes

Φ = {pri : W ×U W →W,V →W,V ′ →W,V ×R V ′ → V, V ×R V ′ → V ′}

Set X = (I,Φ). Recall that we have defined a category CQC(X) of crystals of
quasi-coherent sheaves on X. There is a functor

QCoh(U,R, s, t, c) −→ CQC(X)

which assigns to (F , α) the sheaf F|W on W , the sheaf F|W×UW on W ×U W ,
the pullback of F via V → W ×U,s R → W → U on V , the pullback of F via
V ′ → R ×t,U W → W → U on V ′, and finally the pullback of F via V ×R V ′ →
V → W ×U,s R → W → U on V ×R V ′. As comparison maps {αφ}φ∈Φ we
use the obvious ones (coming from associativity of pullbacks) except for the map
φ = prV ′ : V ×R V ′ → V ′ we use the pullback of α : t∗F → s∗F to V ×R V ′. This
makes sense because of the following commutative diagram

V ×R V ′

zz $$
V

$$

��

V ′

zz

��

R

s

��

t

��

W

$$

W

zz
U

The functor displayed above isn’t an equivalence of categories. However, since W →
U is surjective étale it is faithful3. Since all the morphisms in the diagram above
are flat we see that it is an exact functor of abelian categories. Moreover, we claim
that given (F , α) with image ({Fi}i∈I , {αφ}φ∈Φ) there is a 1-to-1 correspondence
between quasi-coherent submodules of (F , α) and ({Fi}i∈I , {αφ}φ∈Φ). Namely,
given a submodule of ({Fi}i∈I , {αφ}φ∈Φ) compatibility of the submodule over W
with the projection maps W ×UW →W will guarantee the submodule comes from
a quasi-coherent submodule of F (by Properties of Spaces, Proposition 48.30.1)
and compatibility with αprV ′ will insure this subsheaf is compatible with α (details
omitted).

Choose a cardinal κ as in Lemma 60.13.1 for the system X = (I,Φ). It is clear from
Properties, Lemma 27.21.2 that there is a set of isomorphism classes of κ-generated
crystals in quasi-coherent sheaves on X. Hence the result is clear. �

60.14. Groupoids and group spaces

Please compare with Groupoids, Section 38.14.

3In fact the functor is fully faithful, but we won’t need this.
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Lemma 60.14.1. Let B → S as in Section 60.3. Let (G,m) be a group algebraic
space over B with identity eG and inverse iG. Let X be an algebraic space over B
and let a : G×B X → X be an action of G on X over B. Then we get a groupoid
in algebraic spaces (U,R, s, t, c, e, i) over B in the following manner:

(1) We set U = X, and R = G×B X.
(2) We set s : R→ U equal to (g, x) 7→ x.
(3) We set t : R→ U equal to (g, x) 7→ a(g, x).
(4) We set c : R×s,U,t R→ R equal to ((g, x), (g′, x′)) 7→ (m(g, g′), x′).
(5) We set e : U → R equal to x 7→ (eG(x), x).
(6) We set i : R→ R equal to (g, x) 7→ (iG(g), a(g, x)).

Proof. Omitted. Hint: It is enough to show that this works on the set level.
For this use the description above the lemma describing g as an arrow from v to
a(g, v). �

Lemma 60.14.2. Let B → S as in Section 60.3. Let (G,m) be a group algebraic
space over B. Let X be an algebraic space over B and let a : G ×B X → X be
an action of G on X over B. Let (U,R, s, t, c) be the groupoid in algebraic spaces
constructed in Lemma 60.14.1. The rule (F , α) 7→ (F , α) defines an equivalence
of categories between G-equivariant OX-modules and the category of quasi-coherent
modules on (U,R, s, t, c).

Proof. The assertion makes sense because t = a and s = pr1 as morphisms R =
G×BX → X, see Definitions 60.10.1 and 60.12.1. Using the translation in Lemma
60.14.1 the commutativity requirements of the two definitions match up exactly. �

60.15. The stabilizer group algebraic space

Please compare with Groupoids, Section 38.15. Given a groupoid in algebraic spaces
we get a group algebraic space as follows.

Lemma 60.15.1. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. The algebraic space G defined by the cartesian square

G //

��

R

j=(t,s)

��
U

∆ // U ×B U

is a group algebraic space over U with composition law m induced by the composition
law c.

Proof. This is true because in a groupoid category the set of self maps of any
object forms a group. �

Since ∆ is a monomorphism we see that G = j−1(∆U/B) is a subsheaf of R.

Thinking of it in this way, the structure morphism G = j−1(∆U/B)→ U is induced
by either s or t (it is the same), and m is induced by c.

Definition 60.15.2. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. The group algebraic space j−1(∆U/B) → U is called
the stabilizer of the groupoid in algebraic spaces (U,R, s, t, c).

http://stacks.math.columbia.edu/tag/0444
http://stacks.math.columbia.edu/tag/0445
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http://stacks.math.columbia.edu/tag/0448
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In the literature the stabilizer group algebraic space is often denoted S (because
the word stabilizer starts with an “s” presumably); we cannot do this since we have
already used S for the base scheme.

Lemma 60.15.3. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B, and let G/U be its stabilizer. Denote Rt/U the algebraic
space R seen as an algebraic space over U via the morphism t : R→ U . There is a
canonical left action

a : G×U Rt −→ Rt

induced by the composition law c.

Proof. In terms of points over T/B we define a(g, r) = c(g, r). �

60.16. Restricting groupoids

Please refer to Groupoids, Section 38.16 for notation.

Lemma 60.16.1. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let g : U ′ → U be a morphism of algebraic spaces.
Consider the following diagram

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′
g // U

where all the squares are fibre product squares. Then there is a canonical com-
position law c′ : R′ ×s′,U ′,t′ R′ → R′ such that (U ′, R′, s′, t′, c′) is a groupoid in
algebraic spaces over B and such that U ′ → U , R′ → R defines a morphism
(U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoids in algebraic spaces over B. Moreover,
for any scheme T over B the functor of groupoids

(U ′(T ), R′(T ), s′, t′, c′)→ (U(T ), R(T ), s, t, c)

is the restriction (see Groupoids, Section 38.16) of (U(T ), R(T ), s, t, c) via the map
U ′(T )→ U(T ).

Proof. Omitted. �

Definition 60.16.2. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let g : U ′ → U be a morphism of algebraic spaces over
B. The morphism of groupoids in algebraic spaces (U ′, R′, s′, t′, c′)→ (U,R, s, t, c)
constructed in Lemma 60.16.1 is called the restriction of (U,R, s, t, c) to U ′. We
sometime use the notation R′ = R|U ′ in this case.

Lemma 60.16.3. The notions of restricting groupoids and (pre-)equivalence rela-
tions defined in Definitions 60.16.2 and 60.4.3 agree via the constructions of Lem-
mas 60.11.2 and 60.11.3.

http://stacks.math.columbia.edu/tag/0449
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Proof. What we are saying here is that R′ of Lemma 60.16.1 is also equal to

R′ = (U ′ ×B U ′)×U×BU R −→ U ′ ×B U ′

In fact this might have been a clearer way to state that lemma. �

60.17. Invariant subspaces

In this section we discuss briefly the notion of an invariant subspace.

Definition 60.17.1. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over the base B.

(1) We say an open subspace W ⊂ U is R-invariant if t(s−1(W )) ⊂W .
(2) A locally closed subspace Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z)

as locally closed subspaces of R.
(3) A monomorphism of algebraic spaces T → U is R-invariant if T ×U,tR =

R×s,U T as algebraic spaces over R.

For an open subspace W ⊂ U the R-invariance is also equivalent to requiring that
s−1(W ) = t−1(W ). If W ⊂ U is R-invariant then the restriction of R to W is
just RW = s−1(W ) = t−1(W ). Similarly, if Z ⊂ U is an R-invariant locally closed
subspace, then the restriction of R to Z is just RZ = s−1(Z) = t−1(Z).

Lemma 60.17.2. Let B → S as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B.

(1) If s and t are open, then for every open W ⊂ U the open s(t−1(W )) is
R-invariant.

(2) If s and t are open and quasi-compact, then U has an open covering con-
sisting of R-invariant quasi-compact open subspaces.

Proof. Assume s and t open and W ⊂ U open. Since s is open we see that
W ′ = s(t−1(W )) is an open subspace of U . Now it is quite easy to using the
functorial point of view that this is an R-invariant open subset of U , but we are
going to argue this directly by some diagrams, since we think it is instructive. Note
that t−1(W ′) is the image of the morphism

A := t−1(W )×s|t−1(W ),U,t
R

pr1−−→ R

and that s−1(W ′) is the image of the morphism

B := R×s,U,s|t−1(W )
t−1(W )

pr0−−→ R.

The algebraic spaces A, B on the left of the arrows above are open subspaces of
R×s,U,t R and R×s,U,s R respectively. By Lemma 60.11.4 the diagram

R×s,U,t R

pr1

$$

(pr1,c)
// R×s,U,s R

pr0

zz
R

is commutative, and the horizontal arrow is an isomorphism. Moreover, it is clear
that (pr1, c)(A) = B. Hence we conclude s−1(W ′) = t−1(W ′), and W ′ is R-
invariant. This proves (1).

Assume now that s, t are both open and quasi-compact. Then, if W ⊂ U is a quasi-
compact open, then also W ′ = s(t−1(W )) is a quasi-compact open, and invariant

http://stacks.math.columbia.edu/tag/044F
http://stacks.math.columbia.edu/tag/044G
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by the discussion above. Letting W range over images of affines étale over U we
see (2). �

60.18. Quotient sheaves

Let S be a scheme, and let B be an algebraic space over S. Let j : R → U ×B U
be a pre-relation over B. For each scheme S′ over S we can take the equivalence
relation ∼S′ generated by the image of j(S′) : R(S′) → U(S′) × U(S′). Hence we
get a presheaf

(60.18.0.1)
(Sch/S)oppfppf −→ Sets,

S′ 7−→ U(S′)/ ∼S′
Note that since j is a morphism of algebraic spaces over B and into U ×B U there
is a canonical transformation of presheaves from the presheaf (60.18.0.1) to B.

Definition 60.18.1. Let B → S and the pre-relation j : R→ U×BU be as above.
In this setting the quotient sheaf U/R associated to j is the sheafification of the
presheaf (60.18.0.1) on (Sch/S)fppf . If j : R → U ×B U comes from the action of
a group algebraic space G over B on U as in Lemma 60.14.1 then we denote the
quotient sheaf U/G.

This means exactly that the diagram

R
//
// U // U/R

is a coequalizer diagram in the category of sheaves of sets on (Sch/S)fppf . Again
there is a canonical map of sheaves U/R→ B as j is a morphism of algebraic spaces
over B into U ×B U .

Remark 60.18.2. A variant of the construction above would have been to sheafify
the functor

(Spaces/B)oppfppf −→ Sets,

X 7−→ U(X)/ ∼X
where now ∼X⊂ U(X)× U(X) is the equivalence relation generated by the image
of j : R(X) → U(X) × U(X). Here of course U(X) = MorB(X,U) and R(X) =
MorB(X,R). In fact, the result would have been the same, via the identifications
of (insert future reference in Topologies of Spaces here).

Definition 60.18.3. In the situation of Definition 60.18.1. We say that the pre-
relation j has a quotient representable by an algebraic space if the sheaf U/R is
an algebraic space. We say that the pre-relation j has a representable quotient if
the sheaf U/R is representable by a scheme. We will say a groupoid in algebraic
spaces (U,R, s, t, c) over B has a representable quotient (resp. quotient representable
by an algebraic space if the quotient U/R with j = (t, s) is representable (resp. an
algebraic space).

If the quotient U/R is representable by M (either a scheme or an algebraic space
over S), then it comes equipped with a canonical structure morphism M → B as
we’ve seen above.

The following lemma characterizes M representing the quotient. It applies for
example if U →M is flat, of finite presentation and surjective, and R ∼= U ×M U .

Lemma 60.18.4. In the situation of Definition 60.18.1. Assume there is an alge-
braic space M over S, and a morphism U →M such that

http://stacks.math.columbia.edu/tag/044J
http://stacks.math.columbia.edu/tag/044K
http://stacks.math.columbia.edu/tag/044L
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(1) the morphism U →M equalizes s, t,
(2) the map U →M is a surjection of sheaves, and
(3) the induced map (t, s) : R→ U ×M U is a surjection of sheaves.

In this case M represents the quotient sheaf U/R.

Proof. Condition (1) says that U → M factors through U/R. Condition (2) says
that U/R→M is surjective as a map of sheaves. Condition (3) says that U/R→M
is injective as a map of sheaves. Hence the lemma follows. �

The following lemma is wrong if we do not require j to be a pre-equivalence relation
(but just a pre-relation say).

Lemma 60.18.5. Let S be a scheme. Let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-equivalence relation over B. For a scheme S′ over S and
a, b ∈ U(S′) the following are equivalent:

(1) a and b map to the same element of (U/R)(S′), and
(2) there exists an fppf covering {fi : Si → S′} of S′ and morphisms ri : Si →

R such that a ◦ fi = s ◦ ri and b ◦ fi = t ◦ ri.
In other words, in this case the map of sheaves

R −→ U ×U/R U

is surjective.

Proof. Omitted. Hint: The reason this works is that the presheaf (60.18.0.1) in
this case is really given by T 7→ U(T )/j(R(T )) as j(R(T )) ⊂ U(T ) × U(T ) is an
equivalence relation, see Definition 60.4.1. �

Lemma 60.18.6. Let S be a scheme. Let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B and g : U ′ → U a morphism of algebraic
spaces over B. Let j′ : R′ → U ′ ×B U ′ be the restriction of j to U ′. The map of
quotient sheaves

U ′/R′ −→ U/R

is injective. If U ′ → U is surjective as a map of sheaves, for example if {g : U ′ → U}
is an fppf covering (see Topologies on Spaces, Definition 55.4.1), then U ′/R′ → U/R
is an isomorphism of sheaves.

Proof. Suppose ξ, ξ′ ∈ (U ′/R′)(S′) are sections which map to the same section of
U/R. Then we can find an fppf covering S = {Si → S′} of S′ such that ξ|Si , ξ′|Si
are given by ai, a

′
i ∈ U ′(Si). By Lemma 60.18.5 and the axioms of a site we may

after refining T assume there exist morphisms ri : Si → R such that g ◦ ai = s ◦ ri,
g ◦ a′i = t ◦ ri. Since by construction R′ = R ×U×SU (U ′ ×S U ′) we see that
(ri, (ai, a

′
i)) ∈ R′(Si) and this shows that ai and a′i define the same section of

U ′/R′ over Si. By the sheaf condition this implies ξ = ξ′.

If U ′ → U is a surjective map of sheaves, then U ′/R′ → U/R is surjective also.
Finally, if {g : U ′ → U} is a fppf covering, then the map of sheaves U ′ → U is
surjective, see Topologies on Spaces, Lemma 55.4.4. �

Lemma 60.18.7. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let g : U ′ → U a morphism
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of algebraic spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) to
U ′. The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If the composition

U ′ ×g,U,t R pr1

//

h

((
R

s
// U

is a surjection of fppf sheaves then the map is bijective. This holds for example if
{h : U ′×g,U,tR→ U} is an fppf-covering, or if U ′ → U is a surjection of sheaves,
or if {g : U ′ → U} is a covering in the fppf topology.

Proof. Injectivity follows on combining Lemmas 60.11.2 and 60.18.6. To see sur-
jectivity (see Sites, Section 7.12 for a characterization of surjective maps of sheaves)
we argue as follows. Suppose that T is a scheme and σ ∈ U/R(T ). There exists a
covering {Ti → T} such that σ|Ti is the image of some element fi ∈ U(Ti). Hence
we may assume that σ if the image of f ∈ U(T ). By the assumption that h is a
surjection of sheaves, we can find an fppf covering {ϕi : Ti → T} and morphisms
fi : Ti → U ′×g,U,tR such that f ◦ϕi = h◦fi. Denote f ′i = pr0 ◦fi : Ti → U ′. Then
we see that f ′i ∈ U ′(Ti) maps to g ◦f ′i ∈ U(Ti) and that g ◦f ′i ∼Ti h◦fi = f ◦ϕi no-
tation as in (60.18.0.1). Namely, the element of R(Ti) giving the relation is pr1 ◦fi.
This means that the restriction of σ to Ti is in the image of U ′/R′(Ti)→ U/R(Ti)
as desired.

If {h} is an fppf covering, then it induces a surjection of sheaves, see Topologies on
Spaces, Lemma 55.4.4. If U ′ → U is surjective, then also h is surjective as s has a
section (namely the neutral element e of the groupoid scheme). �

60.19. Quotient stacks

In this section and the next few sections we describe a kind of generalization of
Section 60.18 above and Groupoids, Section 38.18. It is different in the following
way: We are going to take quotient stacks instead of quotient sheaves.

Let us assume we have a scheme S, and algebraic space B over S and a groupoid
in algebraic spaces (U,R, s, t, c) over B. Given these data we consider the functor

(60.19.0.1)
(Sch/S)oppfppf −→ Groupoids

S′ 7−→ (U(S′), R(S′), s, t, c)

By Categories, Example 4.35.1 this “presheaf in groupoids” corresponds to a cate-
gory fibred in groupoids over (Sch/S)fppf . In this chapter we will denote this

[U/pR]→ (Sch/S)fppf

where the subscript p is there to distinguish from the quotient stack.

Definition 60.19.1. Quotient stacks. Let B → S be as above.

(1) Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. The quotient
stack

p : [U/R] −→ (Sch/S)fppf

of (U,R, s, t, c) is the stackification (see Stacks, Lemma 8.9.1) of the cate-
gory fibred in groupoids [U/pR] over (Sch/S)fppf associated to (60.19.0.1).
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(2) Let (G,m) be a group algebraic space over B. Let a : G ×B X → X be
an action of G on an algebraic space over B. The quotient stack

p : [X/G] −→ (Sch/S)fppf

is the quotient stack associated to the groupoid in algebraic spaces (X,G×B
X, s, t, c) over B of Lemma 60.14.1.

Thus [U/R] and [X/G] are stacks in groupoids over (Sch/S)fppf . These stacks
will be very important later on and hence it makes sense to give a detailed de-
scription. Recall that given an algebraic space X over S we use the notation
SX → (Sch/S)fppf to denote the stack in sets associated to the sheaf X, see Cate-
gories, Lemma 4.36.6 and Stacks, Lemma 8.6.2.

Lemma 60.19.2. Assume B → S and (U,R, s, t, c) as in Definition 60.19.1 (1).
There are canonical 1-morphisms π : SU → [U/R], and [U/R] → SB of stacks
in groupoids over (Sch/S)fppf . The composition SU → SB is the 1-morphism
associated to the structure morphism U → B.

Proof. During this proof let us denote [U/pR] the category fibred in groupoids
associated to the presheaf in groupoids (60.19.0.1). By construction of the stacki-
fication there is a 1-morphism [U/pR] → [U/R]. The 1-morphism SU → [U/R] is
simply the composition SU → [U/pR]→ [U/R], where the first arrow associates to
the scheme S′/S and morphism x : S′ → U over S the object x ∈ U(S′) of the fibre
category of [U/pR] over S′.

To construct the 1-morphism [U/R]→ SB it is enough to construct the 1-morphism
[U/pR]→ SB , see Stacks, Lemma 8.9.2. On objects over S′/S we just use the map

U(S′) −→ B(S′)

coming from the structure morphism U → B. And clearly, if a ∈ R(S′) is an
“arrow” with source s(a) ∈ U(S′) and target t(a) ∈ U(S′), then since s and t are
morphisms over B these both map to the same element a of B(S′). Hence we can
map an arrow a ∈ R(S′) to the identity morphism of a. (This is good because the
fibre category (SB)S′ only contains identities.) We omit the verification that this
rule is compatible with pullback on these split fibred categories, and hence defines
a 1-morphism [U/pR]→ SB as desired.

We omit the verification of the last statement. �

Lemma 60.19.3. Assumptions and notation as in Lemma 60.19.2. There exists
a canonical 2-morphism α : π ◦ s→ π ◦ t making the diagram

SR s
//

t

��

SU

π

��
SU

π // [U/R]

2-commutative.

Proof. Let S′ be a scheme over S. Let r : S′ → R be a morphism over S. Then
r ∈ R(S′) is an isomorphism between the objects s ◦ r, t ◦ r ∈ U(S′). Moreover,
this construction is compatible with pullbacks. This gives a canonical 2-morphism
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αp : πp ◦ s → πp ◦ t where πp : SU → [U/pR] is as in the proof of Lemma 60.19.2.
Thus even the diagram

SR s
//

t

��

SU
πp

��
SU

πp // [U/pR]

is 2-commutative. Thus a fortiori the diagram of the lemma is 2-commutative. �

Remark 60.19.4. In future chapters we will use the ambiguous notation where
instead of writing SX for the stack in sets associated to X we simply write X.
Using this notation the diagram of Lemma 60.19.3 becomes the familiar diagram

R
s
//

t

��

U

π

��
U

π // [U/R]

In the following sections we will show that this diagram has many good properties.
In particular we will show that it is a 2-fibre product (Section 60.21) and that it is
close to being a 2-coequalizer of s and t (Section 60.22).

60.20. Functoriality of quotient stacks

A morphism of groupoids in algebraic spaces gives an associated morphism of quo-
tient stacks.

Lemma 60.20.1. Let S be a scheme. Let B be an algebraic space over S. Let
f : (U,R, s, t, c) → (U ′, R′, s′, t′, c′) be a morphism of groupoids in algebraic spaces
over B. Then f induces a canonical 1-morphism of quotient stacks

[f ] : [U/R] −→ [U ′/R′].

Proof. Denote [U/pR] and [U ′/pR
′] the categories fibred in groupoids over the base

site (Sch/S)fppf associated to the functors (60.19.0.1). It is clear that f defines
a 1-morphism [U/pR] → [U ′/pR

′] which we can compose with the stackyfication
functor for [U ′/R′] to get [U/pR] → [U ′/R′]. Then, by the universal property
of the stackyfication functor [U/pR] → [U/R], see Stacks, Lemma 8.9.2 we get
[U/R]→ [U ′/R′]. �

Let B → S and f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) be as in Lemma 60.20.1. In this
situation, we define a third groupoid in algebraic spaces over B as follows, using
the language of T -valued points where T is a (varying) scheme over B:

(1) U ′′ = U ×f,U ′,t′ R′ so that a T -valued point is a pair (u, r′) with f(u) =
t′(r′),

(2) R′′ = R×f◦s,U ′,t′R′ so that a T -valued point is a pair (r, r′) with f(s(r)) =
t′(r′),

(3) s′′ : R′′ → U ′′ is given by s′′(r, r′) = (s(r), r′),
(4) t′′ : R′′ → U ′′ is given by t′′(r, r′) = (t(r), c′(f(r), r′)),
(5) c′′ : R′′×s′′,U ′′,t′′R′′ → R′′ is given by c′′((r1, r

′
1), (r2, r

′
2)) = (c(r1, r2), r′2).
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The formula for c′′ makes sense as s′′(r1, r
′
1) = t′′(r2, r

′
2). It is clear that c′′ is

associative. The identity e′′ is given by e′′(u, r) = (e(u), r). The inverse of (r, r′) is
given by (i(r), c′(f(r), r′)). Thus we do indeed get a groupoid in algebraic spaces
over B.

Clearly the maps U ′′ → U and R′′ → R define a morphism g : (U ′′, R′′, s′′, t′′, c′′)→
(U,R, s, t, c) of groupoids in algebraic spaces over B. Moreover, the maps U ′′ → U ′,
(u, r′) 7→ s′(r′) and R′′ → U ′, (r, r′) 7→ s′(r′) show that in fact (U ′′, R′′, s′′, t′′, c′′)
is a groupoid in algebraic spaces over U ′.

Lemma 60.20.2. Notation and assumption as in Lemma 60.20.1. Let (U ′′, R′′, s′′, t′′, c′′)
be the groupoid in algebraic spaces over B constructed above. There is a 2-commutative
square

[U ′′/R′′]

��

[g]
// [U/R]

[f ]

��
SU ′ // [U ′/R′]

which identifies [U ′′/R′′] with the 2-fibre product.

Proof. The maps [f ] and [g] come from an application of Lemma 60.20.1 and the
other two maps come from Lemma 60.19.2 (and the fact that (U ′′, R′′, s′′, t′′, c′′)
lives over U ′). To show the 2-fibre product property, it suffices to prove the lemma
for the diagram

[U ′′/pR
′′]

��

[g]
// [U/pR]

[f ]

��
SU ′ // [U ′/pR′]

of categories fibred in groupoids, see Stacks, Lemma 8.9.3. In other words, it suffices
to show that an object of the 2-fibre product SU×[U ′/pR′] [U/pR] over T corresponds
to a T -valued point of U ′′ and similarly for morphisms. And of course this is exactly
how we constructed U ′′ and R′′ in the first place.

In detail, an object of SU ×[U ′/pR′] [U/pR] over T is a triple (u′, u, r′) where u′ is a
T -valued point of U ′, u is a T -valued point of U , and r′ is a morphism from u′ to
f(u) in [U ′/R′]T , i.e., r′ is a T -valued point of R with s′(r′) = u′ and t′(r′) = f(u).
Clearly we can forget about u′ without losing information and we see that these
objects are in one-to-one correspondence with T -valued points of R′′.

Similarly for morphisms: Let (u′1, u1, r
′
1) and (u′2, u2, r

′
2) be two objects of the fibre

product over T . Then a morphism from (u′2, u2, r
′
2) to (u′1, u1, r

′
1) is given by (1, r)

where 1 : u′1 → u′2 means simply u′1 = u′2 (this is so because SU is fibred in sets), and
r is a T -valued point of R with s(r) = u2, t(r) = u1 and moreover c′(f(r), r′2) = r′1.
Hence the arrow

(1, r) : (u′2, u2, r
′
2)→ (u′1, u1, r

′
1)

is completely determined by knowing the pair (r, r′2). Thus the functor of arrows is
represented by R′′, and moreover the morphisms s′′, t′′, and c′′ clearly correspond
to source, target and composition in the 2-fibre product SU ×[U ′/pR′] [U/pR]. �
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60.21. The 2-cartesian square of a quotient stack

In this section we compute the Isom-sheaves for a quotient stack and we deduce
that the defining diagram of a quotient stack is a 2-fibre product.

Lemma 60.21.1. Assume B → S, (U,R, s, t, c) and π : SU → [U/R] are as in
Lemma 60.19.2. Let S′ be a scheme over S. Let x, y ∈ Ob([U/R]S′) be objects
of the quotient stack over S′. If x = π(x′) and y = π(y′) for some morphisms
x′, y′ : S′ → U , then

Isom(x, y) = S′ ×(y′,x′),U×SU R

as sheaves over S′.

Proof. Let [U/pR] be the category fibred in groupoids associated to the presheaf in
groupoids (60.19.0.1) as in the proof of Lemma 60.19.2. By construction the sheaf
Isom(x, y) is the sheaf associated to the presheaf Isom(x′, y′). On the other hand,
by definition of morphisms in [U/pR] we have

Isom(x′, y′) = S′ ×(y′,x′),U×SU R

and the right hand side is an algebraic space, therefore a sheaf. �

Lemma 60.21.2. Assume B → S, (U,R, s, t, c), and π : SU → [U/R] are as in
Lemma 60.19.2. The 2-commutative square

SR s
//

t

��

SU

π

��
SU

π // [U/R]

of Lemma 60.19.3 is a 2-fibre product of stacks in groupoids of (Sch/S)fppf .

Proof. According to Stacks, Lemma 8.5.6 the lemma makes sense. It also tells us
that we have to show that the functor

SR −→ SU ×[U/R] SU

which maps r : T → R to (T, t(r), s(r), α(r)) is an equivalence, where the right hand
side is the 2-fibre product as described in Categories, Lemma 4.30.3. This is, after
spelling out the definitions, exactly the content of Lemma 60.21.1. (Alternative
proof: Work out the meaning of Lemma 60.20.2 in this situation will give you the
result also.) �

Lemma 60.21.3. Assume B → S and (U,R, s, t, c) are as in Definition 60.19.1
(1). For any scheme T over S and objects x, y of [U/R] over T the sheaf Isom(x, y)
on (Sch/T )fppf has the following property: There exists a fppf covering {Ti → T}i∈I
such that Isom(x, y)|(Sch/Ti)fppf is representable by an algebraic space.

Proof. Follows immediately from Lemma 60.21.1 and the fact that both x and y
locally in the fppf topology come from objects of SU by construction of the quotient
stack. �
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60.22. The 2-coequalizer property of a quotient stack

On a groupoid we have the composition, which leads to a cocycle condition for the
canonical 2-morphism of the lemma above. To give the precise formulation we will
use the notation introduced in Categories, Sections 4.26 and 4.27.

Lemma 60.22.1. Assumptions and notation as in Lemmas 60.19.2 and 60.19.3.
The vertical composition of

SR×s,U,tR

π◦s◦pr1=π◦s◦c

++�� α?idpr1

π◦t◦pr1=π◦s◦pr0

// 33

π◦t◦pr0=π◦t◦c
�� α?idpr0

[U/R]

is the 2-morphism α ? idc. In a formula α ? idc = (α ? idpr0
) ◦ (α ? idpr1

).

Proof. We make two remarks:

(1) The formula α ? idc = (α ? idpr0
) ◦ (α ? idpr1

) only makes sense if you
realize the equalities π ◦ s ◦ pr1 = π ◦ s ◦ c, π ◦ t ◦ pr1 = π ◦ s ◦ pr0,
and π ◦ t ◦ pr0 = π ◦ t ◦ c. Namely, the second one implies the vertical
composition ◦ makes sense, and the other two guarantee the two sides of
the formula are 2-morphisms with the same source and target.

(2) The reason the lemma holds is that composition in the category fibred
in groupoids [U/pR] associated to the presheaf in groupoids (60.19.0.1)
comes from the composition law c : R×s,U,t R→ R.

We omit the proof of the lemma. �

Note that, in the situation of the lemma, we actually have the equalities s◦pr1 = s◦c,
t ◦ pr1 = s ◦ pr0, and t ◦ pr0 = t ◦ c before composing with π. Hence the formula
in the lemma below makes sense in exactly the same way that the formula in the
lemma above makes sense.

Lemma 60.22.2. Assumptions and notation as in Lemmas 60.19.2 and 60.19.3.
The 2-commutative diagram of Lemma 60.19.3 is a 2-coequalizer in the following
sense: Given

(1) a stack in groupoids X over (Sch/S)fppf ,
(2) a 1-morphism f : SU → X , and
(3) a 2-arrow β : f ◦ s→ f ◦ t

such that
β ? idc = (β ? idpr0

) ◦ (β ? idpr1
)

then there exists a 1-morphism [U/R]→ X which makes the diagram

SR s
//

t

��

SU

��
f

��

SU //

f
))

[U/R]

""
X

2-commute.

http://stacks.math.columbia.edu/tag/044T
http://stacks.math.columbia.edu/tag/044U


60.23. EXPLICIT DESCRIPTION OF QUOTIENT STACKS 3647

Proof. Suppose given X , f and β as in the lemma. By Stacks, Lemma 8.9.2
it suffices to construct a 1-morphism g : [U/pR] → X . First we note that the
1-morphism SU → [U/pR] is bijective on objects. Hence on objects we can set
g(x) = f(x) for x ∈ Ob(SU ) = Ob([U/pR]). A morphism ϕ : x→ y of [U/pR] arises
from a commutative diagram

S2

h

��

x
//

ϕ
  

U

R

s

OO

t

��
S1

y // U.

Thus we can set g(ϕ) equal to the composition

f(x)

--

f(s ◦ ϕ) (f ◦ s)(ϕ)
β // (f ◦ t)(ϕ) f(ϕ ◦ t) f(y ◦ h)

��
f(y).

The vertical arrow is the result of applying the functor f to the canonical morphism
y ◦ h→ y in SU (namely, the strongly cartesian morphism lifting h with target y).
Let us verify that f so defined is compatible with composition, at least on fibre
categories. So let S′ be a scheme over S, and let a : S′ → R×s,U,tR be a morphism.
In this situation we set x = s ◦ pr1 ◦ a = s ◦ c ◦ a, y = t ◦ pr1 ◦ a = s ◦ pr0 ◦ a, and
z = t ◦ pr0 ◦ a = t ◦ pr0 ◦ c to get a commutative diagram

x
c◦a

//

pr1◦a ��

z

y

pr0◦a

??

in the fibre category [U/pR]S′ . Moreover, any commutative triangle in this fibre
category has this form. Then we see by our definitions above that f maps this to
a commutative diagram if and only if the diagram

(f ◦ s)(c ◦ a)
β
// (f ◦ t)(c ◦ a)

(f ◦ s)(pr1 ◦ a)

β

((

(f ◦ t)(pr0 ◦ a)

(f ◦ t)(pr1 ◦ a) (f ◦ s)(pr0 ◦ a)

β
66

is commutative which is exactly the condition expressed by the formula in the
lemma. We omit the verification that f maps identities to identities and is com-
patible with composition for arbitrary morphisms. �

60.23. Explicit description of quotient stacks

In order to formulate the result we need to introduce some notation. Assume B → S
and (U,R, s, t, c) are as in Definition 60.19.1 (1). Let T be a scheme over S. Let
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T = {Ti → T}i∈I be an fppf covering. A [U/R]-descent datum relative to T is
given by a system (ui, rij) where

(1) for each i a morphism ui : Ti → U , and
(2) for each i, j a morphism rij : Ti ×T Tj → R

such that

(a) as morphisms Ti ×T Tj → U we have

s ◦ rij = ui ◦ pr0 and t ◦ rij = uj ◦ pr1,

(b) as morphisms Ti ×T Tj ×T Tk → R we have

c ◦ (rjk ◦ pr12, rij ◦ pr01) = rik ◦ pr02.

A morphism (ui, rij) → (u′i, r
′
ij) between two [U/R]-descent data over the same

covering T is a collection (ri : Ti → R) such that

(α) as morphisms Ti → U we have

ui = s ◦ ri and u′i = t ◦ ri
(β) as morphisms Ti ×T Tj → R we have

c ◦ (r′ij , ri ◦ pr0) = c ◦ (rj ◦ pr1, rij).

There is a natural composition law on morphisms of descent data relative to a fixed
covering and we obtain a category of descent data. This category is a groupoid.
Finally, if T ′ = {T ′j → T}j∈J is a second fppf covering which refines T then there is
a notion of pullback of descent data. This is particularly easy to describe explicitly
in this case. Namely, if α : J → I and ϕj : T ′j → Tα(i) is the morphism of coverings,
then the pullback of the descent datum (ui, rii′) is simply

(uα(i) ◦ ϕj , rα(j)α(j′) ◦ ϕj × ϕj′).
Pullback defined in this manner defines a functor from the category of descent data
over T to the category of descend data over T ′.
Lemma 60.23.1. Assume B → S and (U,R, s, t, c) are as in Definition 60.19.1
(1). Let π : SU → [U/R] be as in Lemma 60.19.2. Let T be a scheme over S.

(1) for every object x of the fibre category [U/R]T there exists an fppf covering
{fi : Ti → T}i∈I such that f∗i x

∼= π(ui) for some ui ∈ U(Ti),
(2) the composition of the isomorphisms

π(ui ◦ pr0) = pr∗0π(ui) ∼= pr∗0f
∗
i x
∼= pr∗1f

∗
j x
∼= pr∗1π(uj) = π(uj ◦ pr1)

are of the form π(rij) for certain morphisms rij : Ti ×T Tj → R,
(3) the system (ui, rij) forms a [U/R]-descent datum as defined above,
(4) any [U/R]-descent datum (ui, rij) arises in this manner,
(5) if x corresponds to (ui, rij) as above, and y ∈ Ob([U/R]T ) corresponds to

(u′i, r
′
ij) then there is a canonical bijection

Mor[U/R]T (x, y)←→
{

morphisms (ui, rij)→ (u′i, r
′
ij)

of [U/R]-descent data

}
(6) this correspondence is compatible with refinements of fppf coverings.

Proof. Statement (1) is part of the construction of the stackyfication. Part (2) fol-
lows from Lemma 60.21.1. We omit the verification of (3). Part (4) is a translation
of the fact that in a stack all descent data are effective. We omit the verifications
of (5) and (6). �
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60.24. Restriction and quotient stacks

In this section we study what happens to the quotient stack when taking a restric-
tion.

Lemma 60.24.1. Notation and assumption as in Lemma 60.20.1. The morphism
of quotient stacks

[f ] : [U/R] −→ [U ′/R′]

is fully faithful if and only if R is the restriction of R via the morphism f : U → U ′.

Proof. Let x, y be objects of [U/R] over a scheme T/S. Let x′, y′ be the images
of x, y in the category [U ′/′R]T . The functor [f ] is fully faithful if and only if the
map of sheaves

Isom(x, y) −→ Isom(x′, y′)

is an isomorphism for every T, x, y. We may test this locally on T (in the fppf
topology). Hence, by Lemma 60.23.1 we may assume that x, y come from a, b ∈
U(T ). In that case we see that x′, y′ correspond to f ◦ a, f ◦ b. By Lemma 60.21.1
the displayed map of sheaves in this case becomes

T ×(a,b),U×BU R −→ T ×f◦a,f◦b,U ′×BU ′ R′.

This is an isomorphism if R is the restriction, because in that case R = (U ×B
U)×U ′×BU ′ R′, see Lemma 60.16.3 and its proof. Conversely, if the last displayed
map is an isomorphism for all T, a, b, then it follows that R = (U×BU)×U ′×BU ′R′,
i.e., R is the restriction of R′. �

Lemma 60.24.2. Notation and assumption as in Lemma 60.20.1. The morphism
of quotient stacks

[f ] : [U/R] −→ [U ′/R′]

is an equivalence if and only if

(1) (U,R, s, t, c) is the restriction of (U ′, R′, s′, t′, c′) via f : U → U ′, and
(2) the map

U ×f,U ′,t′ R′ pr1

//

h

((
R′

s′
// U ′

is a surjection of sheaves.

Part (2) holds for example if {h : U ×f,U ′,t′ R′ → U ′} is an fppf covering, or if
f : U → U ′ is a surjection of sheaves, or if {f : U → U ′} is an fppf covering.

Proof. We already know that part (1) is equivalent to fully faithfulness by Lemma
60.24.1. Hence we may assume that (1) holds and that [f ] is fully faithful. Our
goal is to show, under these assumptions, that [f ] is an equivalence if and only if
(2) holds. We may use Stacks, Lemma 8.4.8 which characterizes equivalences.

Assume (2). We will use Stacks, Lemma 8.4.8 to prove [f ] is an equivalence.
Suppose that T is a scheme and x′ ∈ Ob([U ′/R′]T ). There exists a covering
{gi : Ti → T} such that g∗i x

′ is the image of some element a′i ∈ U ′(Ti), see
Lemma 60.23.1. Hence we may assume that x′ is the image of a′ ∈ U ′(T ). By
the assumption that h is a surjection of sheaves, we can find an fppf covering
{ϕi : Ti → T} and morphisms bi : Ti → U ×g,U ′,t′ R′ such that a′ ◦ ϕi = h ◦ bi.
Denote ai = pr0 ◦ bi : Ti → U . Then we see that ai ∈ U(Ti) maps to f ◦ai ∈ U ′(Ti)

http://stacks.math.columbia.edu/tag/046S
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and that f ◦ai ∼=Ti h◦ bi = a′ ◦ϕi, where ∼=Ti denotes isomorphism in the fibre cat-
egory [U ′/R′]Ti . Namely, the element of R′(Ti) giving the isomorphism is pr1 ◦ bi.
This means that the restriction of x to Ti is in the essential image of the functor
[U/R]Ti → [U ′/R′]Ti as desired.

Assume [f ] is an equivalence. Let ξ′ ∈ [U ′/R′]U ′ denote the object corresponding
to the identity morphism of U ′. Applying Stacks, Lemma 8.4.8 we see there exists
an fppf covering U ′ = {g′i : U ′i → U ′} such that (g′i)

∗ξ′ ∼= [f ](ξi) for some ξi in
[U/R]U ′i . After refining the covering U ′ (using Lemma 60.23.1) we may assume ξi
comes from a morphism ai : U ′i → U . The fact that [f ](ξi) ∼= (g′i)

∗ξ′ means that,
after possibly refining the covering U ′ once more, there exist morphisms r′i : U ′i → R′

with t′ ◦ r′i = f ◦ ai and s′ ◦ r′i = idU ′ ◦ g′i. Picture

U

f

��

U ′iai
oo

r′i

~~
g′i
��

U ′ R′
t′oo s′ // U ′

Thus (ai, r
′
i) : U ′i → U ×g,U ′,t′ R′ are morphisms such that h ◦ (ai, r

′
i) = g′i and we

conclude that {h : U ×g,U ′,t′ R′ → U ′} can be refined by the fppf covering U ′ which
means that h induces a surjection of sheaves, see Topologies on Spaces, Lemma
55.4.4.

If {h} is an fppf covering, then it induces a surjection of sheaves, see Topologies on
Spaces, Lemma 55.4.4. If U ′ → U is surjective, then also h is surjective as s has a
section (namely the neutral element e of the groupoid in algebraic spaces). �

Lemma 60.24.3. Notation and assumption as in Lemma 60.20.1. Assume that

R

s

��

f
// R′

s′

��
U

f // U ′

is cartesian. Then

SU

��

// [U/R]

[f ]

��
SU ′ // [U ′/R′]

is a 2-fibre product square.

Proof. Applying the inverse isomorphisms i : R → R and i′ : R′ → R′ to the
(first) cartesian diagram of the statement of the lemma we see that

R

t

��

f
// R′

t′

��
U

f // U ′
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is cartesian as well. By Lemma 60.20.2 we have a 2-fibre square

[U ′′/R′′]

��

// [U/R]

��
SU ′ // [U ′/R′]

where U ′′ = U ×f,U ′,t′ R′ and R′′ = R ×f◦s,U ′,t′ R′. By the above we see that
(t, f) : R→ U ′′ is an isomorphism, and that

R′′ = R×f◦s,U ′,t′ R′ = R×s,U U ×f,U ′,t′ R′ = R×s,U,t ×R.
Explicitly the isomorphism R ×s,U,t R → R′′ is given by the rule (r0, r1) 7→
(r0, f(r1)). Moreover, s′′, t′′, c′′ translate into the maps

R×s,U,t R→ R, s′′(r0, r1) = r1, t′′(r0, r1) = c(r0, r1)

and
c′′ : (R×s,U,t R)×s′′,R,t′′ (R×s,U,t R) −→ R×s,U,t R,

((r0, r1), (r2, r3)) 7−→ (c(r0, r2), r3).

Precomposing with the isomorphism

R×s,U,s R −→ R×s,U,t R, (r0, r1) 7−→ (c(r0, i(r1)), r1)

we see that t′′ and s′′ turn into pr0 and pr1 and that c′′ turns into pr02 : R ×s,U,s
R ×s,U,s R → R ×s,U,s R. Hence we see that there is an isomorphism [U ′′/R′′] ∼=
[R/R ×s,U,s R] where as a groupoid in algebraic spaces (R,R ×s,U,s R, s′′, t′′, c′′)
is the restriction of the trivial groupoid (U,U, id, id, id) via s : R → U . Since
s : R→ U is a surjection of fppf sheaves (as it has a right inverse) the morphism

[U ′′/R′′] ∼= [R/R×s,U,s R] −→ [U/U ] = SU
is an equivalence by Lemma 60.24.2. This proves the lemma. �

60.25. Inertia and quotient stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section
8.7. The actual construction, in the setting of fibred categories, and some of its
properties is in Categories, Section 4.32.

Lemma 60.25.1. Assume B → S and (U,R, s, t, c) as in Definition 60.19.1 (1).
Let G/U be the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i), see
Definition 60.15.2. Set R′ = R×s,U G and set

(1) s′ : R′ → G, (r, g) 7→ g,
(2) t′ : R′ → G, (r, g) 7→ c(r, c(g, i(r))),
(3) c′ : R′ ×s′,G,t′ R′ → R′, ((r1, g1), (r2, g2) 7→ (c(r1, r2), g1).

Then (G,R′, s′, t′, c′) is a groupoid in algebraic spaces over B and

I[U/R] = [G/R′].

i.e., the associated quotient stack is the inertia stack of [U/R].

Proof. By Stacks, Lemma 8.8.5 it suffices to prove that I[U/pR] = [G/pR
′]. Let T

be a scheme over S. Recall that an object of the inertia fibred category of [U/pR]
over T is given by a pair (x, g) where x is an object of [U/pR] over T and g is an
automorphism of x in its fibre category over T . In other words, x : T → U and
g : T → R such that x = s ◦ g = t ◦ g. This means exactly that g : T → G.

http://stacks.math.columbia.edu/tag/06PB
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A morphism in the inertia fibred category from (x, g) → (y, h) over T is given by
r : T → R such that s(r) = x, t(r) = y and c(r, g) = c(h, r), see the commutative
diagram in Categories, Lemma 4.32.1. In a formula

h = c(r, c(g, i(r))) = c(c(r, g), i(r)).

The notation s(r), etc is a short hand for s ◦ r, etc. The composition of r1 :
(x2, g2)→ (x1, g1) and r2 : (x1, g1)→ (x2, g2) is c(r1, r2) : (x1, g1)→ (x3, g3).

Note that in the above we could have written g in stead of (x, g) for an object
of I[U/pR] over T as x is the image of g under the structure morphism G → U .
Then the morphisms g → h in I[U/pR] over T correspond exactly to morphisms
r′ : T → R′ with s′(r′) = g and t′(r′) = h. Moreover, the composition corresponds
to the rule explained in (3). Thus the lemma is proved. �

Lemma 60.25.2. Assume B → S and (U,R, s, t, c) as in Definition 60.19.1 (1).
Let G/U be the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i), see
Definition 60.15.2. There is a canonical 2-cartesian diagram

SG //

��

SU

��
I[U/R]

// [U/R]

of stacks in groupoids of (Sch/S)fppf .

Proof. By Lemma 60.24.3 it suffices to prove that the morphism s′ : R′ → G
of Lemma 60.25.1 isomorphic to the base change of s by the structure morphism
G→ U . This base change property is clear from the construction of s′. �

60.26. Gerbes and quotient stacks

In this section we relate quotient stacks to the discussion Stacks, Section 8.11 and
especially gerbes as defined in Stacks, Definition 8.11.4. The stacks in groupoids
occurring in this section are generally speaking not algebraic stacks!

Lemma 60.26.1. Notation and assumption as in Lemma 60.20.1. The morphism
of quotient stacks

[f ] : [U/R] −→ [U ′/R′]

turns [U/R] into a gerbe over [U ′/R′] if f : U → U ′ and R → R′|U are surjective
maps of fppf sheaves. Here R′|U is the restriction of R′ to U via f : U → U ′.

Proof. We will verify that Stacks, Lemma 8.11.3 properties (2) (a) and (2) (b)
hold. Property (2)(a) holds because U → U ′ is a surjective map of sheaves (use
Lemma 60.23.1 to see that objects in [U ′/R′] locally come from U ′). To prove (2)(b)
let x, y be objects of [U/R] over a scheme T/S. Let x′, y′ be the images of x, y in
the category [U ′/′R]T . Condition (2)(b) requires us to check the map of sheaves

Isom(x, y) −→ Isom(x′, y′)

on (Sch/T )fppf is surjective. To see this we may work fppf locally on T and assume
that come from a, b ∈ U(T ). In that case we see that x′, y′ correspond to f ◦a, f ◦b.
By Lemma 60.21.1 the displayed map of sheaves in this case becomes

T ×(a,b),U×BU R −→ T ×f◦a,f◦b,U ′×BU ′ R′ = T ×(a,b),U×BU R
′|U .
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Hence the assumption that R → R′|U is a surjective map of fppf sheaves on
(Sch/S)fppf implies the desired surjectivity. �

Lemma 60.26.2. Let S be a scheme. Let B be an algebraic space over S. Let
G be a group algebraic space over B. Endow B with the trivial action of G. The
morphism

[B/G] −→ SB
(Lemma 60.19.2) turns [B/G] into a gerbe over B.

Proof. Immediate from Lemma 60.26.1 as the morphisms B → B and B×BG→ B
are surjective as morphisms of sheaves. �

60.27. Quotient stacks and change of big site

We suggest skipping this section on a first reading. Pullbacks of stacks are defined
in Stacks, Section 8.12.

Lemma 60.27.1. Suppose given big sites Schfppf and Sch′fppf . Assume that

Schfppf is contained in Sch′fppf , see Topologies, Section 33.10. Let S ∈ Ob(Schfppf ).
Let B,U,R ∈ Sh((Sch/S)fppf ) be algebraic spaces, and let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let f : (Sch′/S)fppf → (Sch/S)fppf the morphism of
sites corresponding to the inclusion functor u : Schfppf → Sch′fppf . Then we have
a canonical equivalence

[f−1U/f−1R] −→ f−1[U/R]

of stacks in groupoids over (Sch′/S)fppf .

Proof. Note that f−1B, f−1U, f−1R ∈ Sh((Sch′/S)fppf ) are algebraic spaces by
Spaces, Lemma 47.15.1 and hence (f−1U, f−1R, f−1s, f−1t, f−1c) is a groupoid in
algebraic spaces over f−1B. Thus the statement makes sense.

The category up[U/pR] is the localization of the category upp[U/pR] at right multi-
plicative system I of morphisms. An object of upp[U/pR] is a triple

(T ′, φ : T ′ → T, x)

where T ′ ∈ Ob((Sch′/S)fppf ), T ∈ Ob((Sch/S)fppf ), φ is a morphism of schemes
over S, and x : T → U is a morphism of sheaves on (Sch/S)fppf . Note that the
morphism of schemes φ : T ′ → T is the same thing as a morphism φ : T ′ → u(T ),
and since u(T ) represents f−1T it is the same thing as a morphism T ′ → f−1T .
Moreover, as f−1 on algebraic spaces is fully faithful, see Spaces, Lemma 47.15.2,
we may think of x as a morphism x : f−1T → f−1U as well. From now on we will
make such identifications without further mention. A morphism

(a, a′, α) : (T ′1, φ1 : T ′1 → T1, x1) −→ (T ′2, φ2 : T ′2 → T2, x2)

of upp[U/pR] is a commutative diagram

U

T ′1

a′

��

φ1

// T1

a

��

x1

??

α
// R

t

��

s

OO

T ′2
φ2 // T2

x2 // U
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and such a morphism is an element of I if and only if T ′1 = T ′2 and a′ = id. We
define a functor

upp[U/pR] −→ [f−1U/pf
−1R]

by the rules
(T ′, φ : T ′ → T, x) 7−→ (x ◦ φ : T ′ → f−1U)

on objects and
(a, a′, α) 7−→ (α ◦ φ1 : T ′1 → f−1R)

on morphisms as above. It is clear that elements of I are transformed into isomor-
phisms as (f−1U, f−1R, f−1s, f−1t, f−1c) is a groupoid in algebraic spaces over
f−1B. Hence this functor factors in a canonical way through a functor

up[U/pR] −→ [f−1U/pf
−1R]

Applying stackification we obtain a functor of stacks

f−1[U/R] −→ [f−1U/f−1R]

over (Sch′/S)fppf , as by Stacks, Lemma 8.12.11 the stack f−1[U/R] is the stacki-
fication of up[U/pR].

At this point we have a morphism of stacks, and to verify that it is an equivalence it
suffices to show that it is fully faithful and that objects are locally in the essential
image, see Stacks, Lemmas 8.4.7 and 8.4.8. The statement on objects holds as
f−1R admits a surjective étale morphism f−1W → f−1R for some object W of
(Sch/S)fppf . To show that the functor is “full”, it suffices to show that morphisms
are locally in the image of the functor which holds as f−1U admits a surjective
étale morphism f−1W → f−1U for some object W of (Sch/S)fppf . We omit the
proof that the functor is faithful. �

60.28. Separation conditions

This really means conditions on the morphism j : R → U ×B U when given a
groupoid in algebraic spaces (U,R, s, t, c) over B. As in the previous section we
first formulate the corresponding diagram.

Lemma 60.28.1. Let B → S be as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let G→ U be the stabilizer group algebraic space. The
commutative diagram

R

∆R/U×BU

��

f 7→(f,s(f))
// R×s,U U

��

// U

��
R×(U×BU) R

(f,g) 7→(f,f−1◦g) // R×s,U G // G

the two left horizontal arrows are isomorphisms and the right square is a fibre
product square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. �

Lemma 60.28.2. Let B → S be as in Section 60.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let G→ U be the stabilizer group algebraic space.

(1) The following are equivalent
(a) j : R→ U ×B U is separated,
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(b) G→ U is separated, and
(c) e : U → G is a closed immersion.

(2) The following are equivalent
(a) j : R→ U ×B U is locally separated,
(b) G→ U is locally separated, and
(c) e : U → G is an immersion.

(3) The following are equivalent
(a) j : R→ U ×B U is quasi-separated,
(b) G→ U is quasi-separated, and
(c) e : U → G is quasi-compact.

Proof. The group algebraic space G → U is the base change of R → U ×B U by
the diagonal morphism U → U ×B U , see Lemma 60.15.1. Hence if j is separated
(resp. locally separated, resp. quasi-separated), then G → U is separated (resp.
locally separated, resp. quasi-separated). See Morphisms of Spaces, Lemma 49.4.4.
Thus (a) ⇒ (b) in (1), (2), and (3).

Conversely, if G → U is separated (resp. locally separated, resp. quasi-separated),
then the morphism e : U → G, as a section of the structure morphism G → U is
a closed immersion (resp. an immersion, resp. quasi-compact), see Morphisms of
Spaces, Lemma 49.4.7. Thus (b) ⇒ (c) in (1), (2), and (3).

If e is a closed immersion (resp. an immersion, resp. quasi-compact) then by the
result of Lemma 60.28.1 (and Spaces, Lemma 47.12.3, and Morphisms of Spaces,
Lemma 49.8.3) we see that ∆R/U×BU is a closed immersion (resp. an immersion,
resp. quasi-compact). Thus (c) ⇒ (a) in (1), (2), and (3). �
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CHAPTER 61

More on Groupoids in Spaces

61.1. Introduction

This chapter is devoted to advanced topics on groupoids in algebraic spaces. Even
though the results are stated in terms of groupoids in algebraic spaces, the reader
should keep in mind the 2-cartesian diagram

(61.1.0.1)

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 60.19.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

61.2. Notation

We continue to abide by the conventions and notation introduced in Groupoids in
Spaces, Section 60.3.

61.3. Useful diagrams

We briefly restate the results of Groupoids in Spaces, Lemmas 60.11.4 and 60.11.5
for easy reference in this chapter. Let S be a scheme. Let B be an algebraic
space over S. Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. In the
commutative diagram

(61.3.0.2)

U

R

s

��

t

::

R×s,U,t Rpr0

oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.
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The diagram

(61.3.0.3)

R×t,U,t R
pr1 //

pr0

//

pr0×c◦(i,1)

��

R
t //

idR

��

U

idU

��
R×s,U,t R

c //

pr0

//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

61.4. Properties of groupoids

This section is the analogue of More on Groupoids, Section 39.5. The reader is
strongly encouraged to read that section first.

The following lemma is the analogue of More on Groupoids, Lemma 39.5.4.

Lemma 61.4.1. Let B → S be as in Section 61.2. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be a
property of morphisms of algebraic spaces which is τ -local on the target (Descent on
Spaces, Definition 56.9.1). Assume {s : R→ U} and {t : R→ U} are coverings for
the τ -topology. Let W ⊂ U be the maximal open subspace such that s−1(W )→ W
has property P. Then W is R-invariant (Groupoids in Spaces, Definition 60.17.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 56.9.3. In Diagram (61.3.0.2) let W1 ⊂ R be the maximal
open subscheme over which the morphism pr1 : R ×s,U,t R → R has property
P. It follows from the aforementioned Descent on Spaces, Lemma 56.9.3 and the
assumption that {s : R → U} and {t : R → U} are coverings for the τ -topology
that t−1(W ) = W1 = s−1(W ) as desired. �

Lemma 61.4.2. Let B → S be as in Section 61.2. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let G → U be its stabilizer group algebraic space. Let
τ ∈ {fppf, étale, smooth, syntomic}. Let P be a property of morphisms of algebraic
spaces which is τ -local on the target. Assume {s : R → U} and {t : R → U} are
coverings for the τ -topology. Let W ⊂ U be the maximal open subspace such that
GW → W has property P. Then W is R-invariant (see Groupoids in Spaces,
Definition 60.17.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 56.9.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)

is an isomorphism of algebraic spaces over R (where ◦ denotes composition in
the groupoid). Hence s−1(W ) = t−1(W ) by the properties of W proved in the
aforementioned Descent on Spaces, Lemma 56.9.3. �

http://stacks.math.columbia.edu/tag/044Z
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61.5. Comparing fibres

This section is the analogue of More on Groupoids, Section 39.6. The reader is
strongly encouraged to read that section first.

Lemma 61.5.1. Let B → S be as in Section 61.2. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. Let K be a field and let r, r′ : Spec(K)→ R be morphisms
such that t ◦ r = t ◦ r′ : Spec(K) → U . Set u = s ◦ r, u′ = s ◦ r′ and denote
Fu = Spec(K) ×u,U,s R and Fu′ = Spec(K) ×u′,U,s R the fibre products. Then
Fu ∼= Fu′ as algebraic spaces over K.

Proof. We use the properties and the existence of Diagram (61.3.0.2). There
exists a morphism ξ : Spec(K) → R ×s,U,t R with pr0 ◦ ξ = r and c ◦ ξ = r′.
Let r̃ = pr1 ◦ ξ : Spec(K) → R. Then looking at the bottom two squares of
Diagram (61.3.0.2) we see that both Fu and Fu′ are identified with the algebraic
space Spec(K)×r̃,R,pr1

(R×s,U,t R). �

Actually, in the situation of the lemma the morphisms of pairs s : (R, r) → (U, u)
and s : (R, r′)→ (U, u′) are locally isomorphic in the τ -topology, provided {s : R→
U} is a τ -covering. We will insert a precise statement here if needed.

61.6. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(61.6.0.1)

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′
g // U

of a restriction. See Groupoids in Spaces, Lemma 60.16.1.

Lemma 61.6.1. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let g : U ′ → U be a morphism
of algebraic spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c)
via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition
and arbitrary base change, see Morphisms of Spaces, Lemmas 49.23.2 and 49.23.3.
Hence (1) is clear from Diagram (61.6.0.1). For the other cases, see Morphisms of
Spaces, Lemmas 49.27.2, 49.27.3, 49.28.3, and 49.28.4. �

http://stacks.math.columbia.edu/tag/0452
http://stacks.math.columbia.edu/tag/04RP


3660 61. MORE ON GROUPOIDS IN SPACES

61.7. Properties of groups over fields and groupoids on fields

The reader is advised to first look at the corresponding sections for groupoid
schemes, see Groupoids, Section 38.7 and More on Groupoids, Section 39.9.

Situation 61.7.1. Here S is a scheme, k is a field over S, and (G,m) is a group
algebraic spaces over Spec(k).

Situation 61.7.2. Here S is a scheme, B is an algebraic space, and (U,R, s, t, c)
is a groupoid in algebraic spaces over B with U = Spec(k) for some field k.

Note that in Situation 61.7.1 we obtain a groupoid in algebraic spaces

(61.7.2.1) (Spec(k), G, p, p,m)

where p : G → Spec(k) is the structure morphism of G, see Groupoids in Spaces,
Lemma 60.14.1. This is a situation as in Situation 61.7.2. We will use this without
further mention in the rest of this section.

Lemma 61.7.3. In Situation 61.7.2 the composition morphism c : R×s,U,tR→ R
is flat and universally open. In Situation 61.7.1 the group law m : G×k G→ G is
flat and universally open.

Proof. The composition is isomorphic to the projection map pr1 : R×t,U,t R→ R
by Diagram (61.3.0.3). The projection is flat as a base change of the flat morphism
t and open by Morphisms of Spaces, Lemma 49.6.6. The second assertion follows
immediately from the first because m matches c in (61.7.2.1). �

Note that the following lemma applies in particular when working with either quasi-
separated or locally separated algebraic spaces (Decent Spaces, Lemma 50.13.2).

Lemma 61.7.4. In Situation 61.7.2 assume R is a decent space. Then R is a
separated algebraic space. In Situation 61.7.1 assume that G is a decent algebraic
space. Then G is separated algebraic space.

Proof. We first prove the second assertion. By Groupoids in Spaces, Lemma 60.6.1
we have to show that e : S → G is a closed immersion. This follows from Decent
Spaces, Lemma 50.12.4.

Next, we prove the second assertion. To do this we may replace B by S. By the
paragraph above the stabilizer group scheme G → U is separated. By Groupoids
in Spaces, Lemma 60.28.2 the morphism j = (t, s) : R→ U ×S U is separated. As
U is the spectrum of a field the scheme U ×S U is affine (by the construction of
fibre products in Schemes, Section 25.17). Hence R is separated, see Morphisms of
Spaces, Lemma 49.4.9. �

http://stacks.math.columbia.edu/tag/06DX
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Lemma 61.7.5. In Situation 61.7.2. Let k ⊂ k′ be a field extension, U ′ = Spec(k′)
and let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defin-
ing diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U
all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.

Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, sur-
jective and flat. The morphisms s, t : R → U and the morphism U ′ → U are
universally open by Morphisms, Lemma 28.24.4. Since R is not empty and U is
the spectrum of a field the morphisms s, t : R → U are surjective and flat. Then
you conclude by using Morphisms of Spaces, Lemmas 49.5.5, 49.5.4, 49.6.4, 49.20.5,
49.20.4, 49.28.4, and 49.28.3. �

Lemma 61.7.6. In Situation 61.7.2. For any point r ∈ |R| there exist

(1) a field extension k ⊂ k′ with k′ algebraically closed,
(2) a point r′ : Spec(k′) → R′ where (U ′, R′, s′, t′, c′) is the restriction of

(U,R, s, t, c) via Spec(k′)→ Spec(k)

such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′ ◦ r′, t′ ◦ r′ : Spec(k′)→ Spec(k′) are automorphisms.

Proof. Let’s represent r by a morphism r : Spec(K) → R for some field K. To
prove the lemma we have to find an algebraically closed field k′ and a commutative
diagram

k′ k′
1

oo

k′

τ

OO

K

σ

``

k
s

oo

i

__

k

i

``

t

OO

where s, t : k → K are the field maps coming from s ◦ r and t ◦ r. In the proof of
More on Groupoids, Lemma 39.9.5 it is shown how to construct such a diagram. �

Lemma 61.7.7. In Situation 61.7.2. If r : Spec(k)→ R is a morphism such that
s ◦ r, t ◦ r are automorphisms of Spec(k), then the map

R −→ R, x 7−→ c(r, x)

is an automorphism R→ R which maps e to r.

Proof. Proof is identical to the proof of More on Groupoids, Lemma 39.9.6. �

http://stacks.math.columbia.edu/tag/06E1
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Lemma 61.7.8. In Situation 61.7.2 the algebraic space R is geometrically uni-
branch. In Situation 61.7.1 the algebraic space G is geometrically unibranch.

Proof. Let r ∈ |R|. We have to show that R is geometrically unibranch at r.
Combining Lemma 61.7.5 with Descent on Spaces, Lemma 56.8.1 we see that it
suffices to prove this in case k is algebraically closed and r comes from a morphism
r : Spec(k)→ R such that s◦ r and t◦ r are automorphisms of Spec(k). By Lemma
61.7.7 we reduce to the case that r = e is the identity of R and k is algebraically
closed.

Assume r = e and k is algebraically closed. Let A = OR,e be the étale local ring
of R at e and let C = OR×s,U,tR,(e,e) be the étale local ring of R ×s,U,t R at (e, e).
By Spaces over Fields, Lemma 54.3.1 the minimal prime ideals q of C correspond
1-to-1 to pairs of minimal primes p, p′ ⊂ A. On the other hand, the composition
law induces a flat ring map

A
c]

// C q

A⊗s],k,t] A

OO

p⊗A+A⊗ p′

_

Note that (c])−1(q) contains both p and p′ as the diagrams

A
c]

// C

A⊗s],k k

OO

A⊗s],k,t] A
1⊗e]oo

OO A
c]

// C

k ⊗k,t] A

OO

A⊗s],k,t] A
e]⊗1oo

OO

commute by (61.3.0.2). Since c] is flat (as c is a flat morphism by Lemma 61.7.3),
we see that (c])−1(q) is a minimal prime of A. Hence p = (c])−1(q) = p′. �

In the following lemma we use dimension of algebraic spaces (at a point) as defined
in Properties of Spaces, Section 48.8. We also use the dimension of the local ring
defined in Properties of Spaces, Section 48.20 and transcendence degree of points,
see Morphisms of Spaces, Section 49.31.

Lemma 61.7.9. In Situation 61.7.2 assume s, t are locally of finite type. For all
r ∈ |R|

(1) dim(R) = dimr(R),
(2) the transcendence degree of r over Spec(k) via s equals the transcendence

degree of r over Spec(k) via t, and
(3) if the transcendence degree mentioned in (2) is 0, then dim(R) = dim(OR,r).

Proof. Let r ∈ |R|. Denote trdeg(r/sk) the transcendence degree of r over Spec(k)
via s. Choose an étale morphism ϕ : V → R where V is a scheme and v ∈ V
mapping to r. Using the definitions mentioned above the lemma we see that

dimr(R) = dimv(V ) = dim(OV,v) + trdegs(k)(κ(v)) = dim(OR,r) + trdeg(r/sk)

and similarly for t (the second equality by Morphisms, Lemma 28.29.1). Hence we
see that trdeg(r/sk) = trdeg(r/tk), i.e., (2) holds.

Let k ⊂ k′ be a field extension. Note that the restriction R′ of R to Spec(k′) (see
Lemma 61.7.5) is obtained from R by two base changes by morphisms of fields.

http://stacks.math.columbia.edu/tag/06E4
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Thus Morphisms of Spaces, Lemma 49.32.3 shows the dimension of R at a point
is unchanged by this operation. Hence in order to prove (1) we may assume, by
Lemma 61.7.6, that r is represented by a morphism r : Spec(k) → R such that
both s ◦ r and t ◦ r are automorphisms of Spec(k). In this case there exists an
automorphism R → R which maps r to e (Lemma 61.7.7). Hence we see that
dimr(R) = dime(R) for any r. By definition this means that dimr(R) = dim(R).

Part (3) is a formal consequence of the results obtained in the discussion above. �

Lemma 61.7.10. In Situation 61.7.1 assume G locally of finite type. For all
g ∈ |G|

(1) dim(G) = dimg(G),
(2) if the transcendence degree of g over k is 0, then dim(G) = dim(OG,g).

Proof. Immediate from Lemma 61.7.9 via (61.7.2.1). �

Lemma 61.7.11. In Situation 61.7.2 assume s, t are locally of finite type. Let
G = Spec(k)×∆,Spec(k)×BSpec(k),t×s R be the stabilizer group algebraic space. Then
we have dim(R) = dim(G).

Proof. Since G and R are equidimensional (see Lemmas 61.7.9 and 61.7.10) it
suffices to prove that dime(R) = dime(G). Let V be an affine scheme, v ∈ V , and
let ϕ : V → R be an étale morphism of schemes such that ϕ(v) = e. Note that V is
a Noetherian scheme as s◦ϕ is locally of finite type as a composition of morphisms
locally of finite type and as V is quasi-compact (use Morphisms of Spaces, Lemmas
49.23.2, 49.36.8, and 49.27.5 and Morphisms, Lemma 28.16.6). Hence V is locally
connected (see Properties, Lemma 27.5.5 and Topology, Lemma 5.8.6). Thus we
may replace V by the connected component containing v (it is still affine as it
is an open and closed subscheme of V ). Set T = Vred equal to the reduction of
V . Consider the two morphisms a, b : T → Spec(k) given by a = s ◦ ϕ|T and
b = t ◦ ϕ|T . Note that a, b induce the same field map k → κ(v) because ϕ(v) = e!
Let ka ⊂ Γ(T,OT ) be the integral closure of a](k) ⊂ Γ(T,OT ). Similarly, let
kb ⊂ Γ(T,OT ) be the integral closure of b](k) ⊂ Γ(T,OT ). By Varieties, Proposition
32.18.1 we see that ka = kb. Thus we obtain the following commutative diagram

k

a

"" ++
ka = kb // Γ(T,OT ) // κ(v)

k

b

<< 33

As discussed above the long arrows are equal. Since ka = kb → κ(v) is injective we
conclude that the two morphisms a and b agree. Hence T → R factors through G.
It follows that Rred = Gred in an open neighbourhood of e which certainly implies
that dime(R) = dime(G). �

61.8. No rational curves on groups

In this section we prove that there are no nonconstant morphisms from P1 to a
group scheme.

http://stacks.math.columbia.edu/tag/06FE
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Lemma 61.8.1. Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y and g : X → Z be morphisms of algebraic spaces over B. Assume

(1) Y → B is separated,
(2) g is surjective, flat, and locally of finite presentation,
(3) there is a scheme theoretically dense open V ⊂ Z such that f |g−1(V ) :

g−1(V )→ Y factors through V .

Then f factors through g.

Proof. Set R = X×ZX. By (2) we see that Z = X/R as sheaves. Also (2) implies
that the inverse image of V in R is scheme theoretically dense in R (Morphisms of
Spaces, Lemma 49.28.11). The we see that the two compositions R→ X → Y are
equal by Morphisms of Spaces, Lemma 49.17.8. The lemma follows. �

Lemma 61.8.2. Let k be a field. Let n ≥ 1 and let (P1
k)n be the n-fold self product

over Spec(k). Let f : (P1
k)n → Z be a morphism of algebraic spaces over k. If Z is

separated of finite type over k, then f factors as

(P1
k)n

projection−−−−−−−→ (P1
k)m

finite−−−−→ Z.

Proof. We may assume k is algebraically closed (details omitted); we only do this
so we may argue using rational points, but the reader can work around this if she/he
so desires. In the proof products are over k. The automorphism group algebraic
space of (P1

k)n contains G = (GL2,k)n. If C ⊂ (P1
k)n is a closed subvariety (in

particular irreducible over k) which is mapped to a point, then we can apply More
on Morphisms of Spaces, Lemma 58.24.7 to the morphism

G× C → G× Z, (g, c) 7→ (g, f(g · c))
over G. Hence g(C) is mapped to a point for g ∈ G(k) lying in a Zariski open
U ⊂ G. Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) are k-valued points of (P1

k)n.
Let I ⊂ {1, . . . , n} be the set of indices i such that xi = yi. Then

{g(x) | g(y) = y, g ∈ U(k)}
is Zariski dense in the fibre of the projection πI : (P1

k)n →
∏
i∈I P1

k (exercise).
Hence if x, y ∈ C(k) are distinct, we conclude that f maps the whole fibre of πI
containing x, y to a single point. Moreover, the U(k)-orbit of C meets a Zariski
open set of fibres of πI . By Lemma 61.8.1 the morphism f factors through πI .
After repeating this process finitely many times we reach the stage where all fibres
of f over k points are finite. In this case f is finite by More on Morphisms of
Spaces, Lemma 58.24.6 and the fact that k points are dense in Z (Spaces over
Fields, Lemma 54.9.2). �

Lemma 61.8.3. Let k be a field. Let G be a separated group algebraic space locally
of finite type over k. There does not exist a nonconstant morphism f : P1

k → G
over Spec(k).

Proof. Assume f is nonconstant. Consider the morphisms

P1
k ×Spec(k) . . .×Spec(k) P1

k −→ G, (t1, . . . , tn) 7−→ f(g1) . . . f(gn)

where on the right hand side we use multiplication in the group. By Lemma 61.8.2
and the assumption that f is nonconstant this morphism is finite onto its image.
Hence dim(G) ≥ n for all n, which is impossible by Lemma 61.7.10 and the fact
that G is locally of finite type over k. �
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61.9. The finite part of a morphism

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. For
an algebraic space or a scheme T over S consider pairs (a, Z) where

(61.9.0.1)
a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace
such that pr0|Z : Z → T is finite.

Suppose h : T ′ → T is a morphism of algebraic spaces over S and (a, Z) is a pair
over T . Set a′ = a ◦ h and Z ′ = (h× idX)−1(Z) = T ′ ×T Z. Then the pair (a′, Z ′)
satisfies (1), (2) over T ′. This follows as finite morphisms are preserved under base
change, see Morphisms of Spaces, Lemma 49.41.5. Thus we obtain a functor

(61.9.0.2)
(X/Y )fin : (Sch/S)opp −→ Sets

T 7−→ {(a, Z) as above}
For applications we are mainly interested in this functor (X/Y )fin when f is sep-
arated and locally of finite type. To get an idea of what this is all about, take a
look at Remark 61.9.6.

Lemma 61.9.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then we have

(1) The presheaf (X/Y )fin satisfies the sheaf condition for the fppf topology.
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T, (X/Y )fin) = {(a, Z) satisfying 61.9.0.1}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering (by
algebraic spaces). Let si = (ai, Zi) be pairs over Ti satisfying 61.9.0.1 such that we
have si|Ti×TTj = sj |Ti×TTj . First, this implies in particular that ai and aj define
the same morphism Ti×T Tj → Y . By Descent on Spaces, Lemma 56.6.2 we deduce
that there exists a unique morphism a : T → Y such that ai equals the composition
Ti → T → Y . Second, this implies that Zi ⊂ Ti ×Y X are open subspaces whose
inverse images in (Ti×T Tj)×Y X are equal. Since {Ti×Y X → T ×Y X} is an fppf
covering we deduce that there exists a unique open subspace Z ⊂ T ×Y X which
restricts back to Zi over Ti, see Descent on Spaces, Lemma 56.6.1. We claim that
the projection Z → T is finite. This follows as being finite is local for the fpqc
topology, see Descent on Spaces, Lemma 56.10.21.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair satisfying conditions 61.9.0.1.

Let v : T → (X/Y )fin be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ (X/Y )fin(U) corresponds to a
pair (aU , ZU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , ZU ) by s and t agree.
Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, Z) over T .

Conversely, let (a, Z) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, Z)|U gives rise to a transformation of functors
v : hU → (X/Y )fin by the Yoneda lemma (Categories, Lemma 4.3.5). As the

http://stacks.math.columbia.edu/tag/04PE


3666 61. MORE ON GROUPOIDS IN SPACES

two pullbacks s∗(a, Z)|U and t∗(a, Z)|U are equal, we see that v coequalizes the
two maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 47.9.1 and since (X/Y )fin is an fppf sheaf by (1) we conclude that v factors
through a map T → (X/Y )fin.

We omit the verification that the two constructions above are mutually inverse. �

Lemma 61.9.2. Let S be a scheme. Consider a commutative diagram

X ′
j

//

  

X

~~
Y

of algebraic spaces over S. If j is an open immersion, then there is a canonical
injective map of sheaves j : (X ′/Y )fin → (X/Y )fin.

Proof. If (a, Z) is a pair over T for X ′/Y , then (a, j(Z)) is a pair over T for
X/Y . �

Lemma 61.9.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let X ′ ⊂ X be the maximal open sub-
space over which f is locally quasi-finite, see Morphisms of Spaces, Lemma 49.32.7.
Then (X/Y )fin = (X ′/Y )fin.

Proof. Lemma 61.9.2 gives us an injective map (X ′/Y )fin → (X/Y )fin. Mor-
phisms of Spaces, Lemma 49.32.7 assures us that formation of X ′ commutes with
base change. Hence everything comes down to proving that if Z ⊂ X is a open
subspace such that f |Z : Z → Y is finite, then Z ⊂ X ′. This is true because a finite
morphism is locally quasi-finite, see Morphisms of Spaces, Lemma 49.41.8. �

Lemma 61.9.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let T be an algebraic space over S, and let (a, Z) be a pair as in
61.9.0.1. If f is separated, then Z is closed in T ×Y X.

Proof. A finite morphism of algebraic spaces is universally closed by Morphisms
of Spaces, Lemma 49.41.9. Since f is separated so is the morphism T ×Y X → T ,
see Morphisms of Spaces, Lemma 49.4.4. Thus the closedness of Z follows from
Morphisms of Spaces, Lemma 49.37.6. �

Remark 61.9.5. Let f : X → Y be a separated morphism of algebraic spaces.
The sheaf (X/Y )fin comes with a natural map (X/Y )fin → Y by mapping the
pair (a, Z) ∈ (X/Y )fin(T ) to the element a ∈ Y (T ). We can use Lemma 61.9.4 to
define operations

?i : (X/Y )fin ×Y (X/Y )fin −→ (X/Y )fin

by the rules

?1 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∪ Z2)

?2 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∩ Z2)

?3 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 \ Z2)

?4 : ((a, Z1), (a, Z2)) 7−→ (a, Z2 \ Z1).

The reason this works is that Z1 ∩ Z2 is both open and closed inside Z1 and Z2

(which also implies that Z1 ∪ Z2 is the disjoint union of the other three pieces).
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Thus we can think of (X/Y )fin as an F2-algebras (without unit) over Y with
multiplication given by ss′ = ?2(s, s′), and addition given by

s+ s′ = ?1(?3(s, s′), ?4(s, s′))

which boils down to taking the symmetric difference. Note that in this sheaf of
algebras 0 = (1Y , ∅) and that indeed s+ s = 0 for any local section s. If f : X → Y
is finite, then this algebra has a unit namely 1 = (1Y , X) and ?3(s, s′) = s(1 + s′),
and ?4(s, s′) = (1 + s)s′.

Remark 61.9.6. Let f : X → Y be a separated, locally quasi-finite morphism of
schemes. In this case the sheaf (X/Y )fin is closely related to the sheaf f!F2 (insert
future reference here) on Yétale. Namely, if V → Y is étale, and s ∈ Γ(V, f!F2),
then s ∈ Γ(V ×Y X,F2) is a section with proper support Z = Supp(s) over V .
Since f is also locally quasi-finite we see that the projection Z → V is actually
finite. Since the support of a section of a constant abelian sheaf is open we see that
the pair (V → Y, Supp(s)) satisfies 61.9.0.1. In fact, f!F2

∼= (X/Y )fin|Yétale in this
case which also explains the F2-algebra structure introduced in Remark 61.9.5.

Lemma 61.9.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The diagonal of (X/Y )fin → Y

(X/Y )fin −→ (X/Y )fin ×Y (X/Y )fin

is representable (by schemes) and an open immersion and the “absolute” diagonal

(X/Y )fin −→ (X/Y )fin × (X/Y )fin

is representable (by schemes).

Proof. The second statement follows from the first as the absolute diagonal is the
composition of the relative diagonal and a base change of the diagonal of Y (which
is representable by schemes), see Spaces, Section 47.3. To prove the first assertion
we have to show the following: Given a scheme T and two pairs (a, Z1) and (a, Z2)
over T with identical first component satisfying 61.9.0.1 there is an open subscheme
V ⊂ T with the following property: For any morphism of schemes h : T ′ → T we
have

h(T ′) ⊂ V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
Let us construct V . Note that Z1∩Z2 is open in Z1 and in Z2. Since pr0|Zi : Zi → T
is finite, hence proper (see Morphisms of Spaces, Lemma 49.41.9) we see that

E = pr0|Z1
(Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2

(Z2 \ Z1 ∩ Z2))

is closed in T . Now it is clear that V = T \ E works. �

Lemma 61.9.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Suppose that U is a scheme, U → Y is an étale morphism and
Z ⊂ U ×Y X is an open subspace finite over U . Then the induced morphism
U → (X/Y )fin is étale.

Proof. This is formal from the description of the diagonal in Lemma 61.9.7 but
we write it out since it is an important step in the development of the theory. We
have to check that for any scheme T over S and a morphism T → (X/Y )fin the
projection map

T ×(X/Y )fin U −→ T
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is étale. Note that

T ×(X/Y )fin U = (X/Y )fin ×((X/Y )fin×Y (X/Y )fin) (T ×Y U)

Applying the result of Lemma 61.9.7 we see that T×(X/Y )finU is represented by an
open subscheme of T ×Y U . As the projection T ×Y U → T is étale by Morphisms
of Spaces, Lemma 49.36.4 we conclude. �

Lemma 61.9.9. Let S be a scheme. Let

X ′

��

// X

��
Y ′ // Y

be a fibre product square of algebraic spaces over S. Then

(X ′/Y ′)fin

��

// (X/Y )fin

��
Y ′ // Y

is a fibre product square of sheaves on (Sch/S)fppf .

Proof. It follows immediately from the definitions that the sheaf (X ′/Y ′)fin is
equal to the sheaf Y ′ ×Y (X/Y )fin. �

Lemma 61.9.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated and locally quasi-finite, then there exists a scheme
U étale over Y and a surjective étale morphism U → (X/Y )fin over Y .

Proof. Note that the assertion makes sense by the result of Lemma 61.9.7 on the
diagonal of (X/Y )fin, see Spaces, Lemma 47.5.10. Let V be a scheme and let
V → Y be a surjective étale morphism. By Lemma 61.9.9 the morphism (V ×Y
X/V )fin → (X/Y )fin is a base change of the map V → Y and hence is surjective
and étale, see Spaces, Lemma 47.5.5. Hence it suffices to prove the lemma for
(V ×Y X/V )fin. (Here we implicitly use that the composition of representable,
surjective, and étale transformations of functors is again representable, surjective,
and étale, see Spaces, Lemmas 47.3.2 and 47.5.4, and Morphisms, Lemmas 28.11.2
and 28.37.3.) Note that the properties of being separated and locally quasi-finite
are preserved under base change, see Morphisms of Spaces, Lemmas 49.4.4 and
49.26.4. Hence V ×Y X → V is separated and locally quasi-finite as well, and
by Morphisms of Spaces, Proposition 49.44.2 we see that V ×Y X is a scheme as
well. Thus we may assume that f : X → Y is a separated and locally quasi-finite
morphism of schemes.

Pick a point y ∈ Y . Pick x1, . . . , xn ∈ X points lying over y. Pick an étale
neighbourhood a : (U, u)→ (Y, y) and a decomposition

U ×S X = W
∐ ∐

i=1,...,n

∐
j=1,...,mj

Vi,j

as in More on Morphisms, Lemma 36.30.5. Pick any subset

I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.
Given these choices we obtain a pair (a, Z) with Z =

⋃
(i,j)∈I Vi,j which satisfies

conditions 61.9.0.1. In other words we obtain a morphism U → (X/Y )fin. The
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construction of this morphism depends on all the things we picked above, so we
should really write

U(y, n, x1, . . . , xn, a, I) −→ (X/Y )fin

This morphism is étale by Lemma 61.9.8.

Claim: The disjoint union of all of these is surjective onto (X/Y )fin. It is clear
that if the claim holds, then the lemma is true.

To show surjectivity we have to show the following (see Spaces, Remark 47.5.2):
Given a scheme T over S, a point t ∈ T , and a map T → (X/Y )fin we can find a
datum (y, n, x1, . . . , xn, a, I) as above such that t is in the image of the projection
map

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin T −→ T.

To prove this we may clearly replace T by Spec(κ(t)) and T → (X/Y )fin by the

composition Spec(κ(t))→ T → (X/Y )fin. In other words, we may assume that T
is the spectrum of an algebraically closed field.

Let T = Spec(k) be the spectrum of an algebraically closed field k. The morphism
T → (X/Y )fin is given by a pair (T → Y,Z) satisfying conditions 61.9.0.1. Here
is a picture:

Z

��

// X

��
Spec(k) T // Y

Let y ∈ Y be the image point of T → Y . Since Z is finite over k it has finitely
many points. Thus there exist finitely many points x1, . . . , xn ∈ X such that the
image of Z in X is contained in {x1, . . . , xn}. Choose a : (U, u) → (Y, y) adapted
to y and x1, . . . , xn as above, which gives the diagram

W
∐ ∐

i=1,...,n

∐
j=1,...,mj

Vi,j

��

// X

��
U // Y.

Since k is algebraically closed and κ(y) ⊂ κ(u) is finite separable we may fac-
tor the morphism T = Spec(k) → Y through the morphism u = Spec(κ(u)) →
Spec(κ(y)) = y ⊂ Y . With this choice we obtain the commutative diagram:

Z

��

// W
∐ ∐

i=1,...,n

∐
j=1,...,mj

Vi,j

��

// X

��
Spec(k) // U // Y

We know that the image of the left upper arrow ends up in
∐
Vi,j . Recall also that

Z is an open subscheme of Spec(k) ×Y X by definition of (X/Y )fin and that the
right hand square is a fibre product square. Thus we see that

Z ⊂
∐

i=1,...,n

∐
j=1,...,mj

Spec(k)×U Vi,j

is an open subscheme. By construction (see More on Morphisms, Lemma 36.30.5)
each Vi,j has a unique point vi,j lying over u with purely inseparable residue field
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extension κ(u) ⊂ κ(vi,j). Hence each scheme Spec(k)×U Vi,j has exactly one point.
Thus we see that

Z =
∐

(i,j)∈I
Spec(k)×U Vi,j

for a unique subset I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Unwinding the definitions
this shows that

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin T

with I as found above is nonempty as desired. �

Proposition 61.9.11. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S which is separated and locally of finite type. Then (X/Y )fin
is an algebraic space. Moreover, the morphism (X/Y )fin → Y is étale.

Proof. By Lemma 61.9.3 we may replace X by the open subscheme which is locally
quasi-finite over Y . Hence we may assume that f is separated and locally quasi-
finite. We will check the three conditions of Spaces, Definition 47.6.1. Condition
(1) follows from Lemma 61.9.1. Condition (2) follows from Lemma 61.9.7. Finally,
condition (3) follows from Lemma 61.9.10. Thus (X/Y )fin is an algebraic space.
Moreover, that lemma shows that there exists a commutative diagram

U //

��

(X/Y )fin

zz
Y

with horizontal arrow surjective and étale and south-east arrow étale. By Properties
of Spaces, Lemma 48.13.3 this implies that the south-west arrow is étale as well. �

Remark 61.9.12. The condition that f be separated cannot be dropped from
Proposition 61.9.11. An example is to take X the affine line with zero doubled, see
Schemes, Example 25.14.3, Y = A1

k the affine line, and X → Y the obvious map.
Recall that over 0 ∈ Y there are two points 01 and 02 in X. Thus (X/Y )fin has
four points over 0, namely ∅, {01}, {02}, {01, 02}. Of these four points only three
can be lifted to an open subscheme of U ×Y X finite over U for U → Y étale,
namely ∅, {01}, {02}. This shows that (X/Y )fin if representable by an algebraic
space is not étale over Y . Similar arguments show that (X/Y )fin is really not an
algebraic space. Details omitted.

Remark 61.9.13. Let Y = A1
R be the affine line over the real numbers, and let

X = Spec(C) mapping to the R-rational point 0 in Y . In this case the morphism
f : X → Y is finite, but it is not the case that (X/Y )fin is a scheme. Namely,
one can show that in this case the algebraic space (X/Y )fin is isomorphic to the
algebraic space of Spaces, Example 47.14.2 associated to the extension R ⊂ C.
Thus it is really necessary to leave the category of schemes in order to represent
the sheaf (X/Y )fin, even when f is a finite morphism.

Lemma 61.9.14. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated, flat, and locally of finite presentation. In this case

(1) (X/Y )fin → Y is separated, representable, and étale, and
(2) if Y is a scheme, then (X/Y )fin is (representable by) a scheme.
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Proof. Since f is in particular separated and locally of finite type (see Morphisms
of Spaces, Lemma 49.27.5) we see that (X/Y )fin is an algebraic space by Propo-
sition 61.9.11. To prove that (X/Y )fin → Y is separated we have to show the
following: Given a scheme T and two pairs (a, Z1) and (a, Z2) over T with identical
first component satisfying 61.9.0.1 there is a closed subscheme V ⊂ T with the
following property: For any morphism of schemes h : T ′ → T we have

h factors through V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
In the proof of Lemma 61.9.7 we have seen that V = T ′ \ E is an open subscheme
of T ′ with closed complement

E = pr0|Z1
(Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2

(Z2 \ Z1 ∩ Z2)) .

Thus everything comes down to showing that E is also open. By Lemma 61.9.4
we see that Z1 and Z2 are closed in T ′ ×Y X. Hence Z1 \ Z1 ∩ Z2 is open in
Z1. As f is flat and locally of finite presentation, so is pr0|Z1

. This is true as
Z1 is an open subspace of the base change T ′ ×Y X, and Morphisms of Spaces,
Lemmas 49.27.3 and Lemmas 49.28.4. Hence pr0|Z1

is open, see Morphisms of
Spaces, Lemma 49.28.6. Thus pr0|Z1 (Z1 \ Z1 ∩ Z2)) is open and it follows that E
is open as desired.

We have already seen that (X/Y )fin → Y is étale, see Proposition 61.9.11. Hence
now we know it is locally quasi-finite (see Morphisms of Spaces, Lemma 49.36.5)
and separated, hence representable by Morphisms of Spaces, Lemma 49.45.1. The
final assertion is clear (if you like you can use Morphisms of Spaces, Proposition
49.44.2). �

Variant: Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let σ : Y → X be a section of f . For an algebraic space or a scheme T
over S consider pairs (a, Z) where

(61.9.14.1)

a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace

such that pr0|Z : Z → T is finite and
(1T , σ ◦ a) : T → T ×Y X factors through Z.

We will denote (X/Y, σ)fin the subfunctor of (X/Y )fin parametrizing these pairs.

Lemma 61.9.15. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let σ : Y → X be a section of f . Consider the transformation of
functors

t : (X/Y, σ)fin −→ (X/Y )fin.

defined above. Then

(1) t is representable by open immersions,
(2) if f is separated, then t is representable by open and closed immersions,
(3) if (X/Y )fin is an algebraic space, then (X/Y, σ)fin is an algebraic space

and an open subspace of (X/Y )fin, and
(4) if (X/Y )fin is a scheme, then (X/Y, σ)fin is an open subscheme of it.

Proof. Omitted. Hint: Given a pair (a, Z) over T as in (61.9.0.1) the inverse image
of Z by (1T , σ◦a) : T → T ×Y X is the open subscheme of T we are looking for. �
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3672 61. MORE ON GROUPOIDS IN SPACES

61.10. Finite collections of arrows

Let C be a groupoid, see Categories, Definition 4.2.5. As discussed in Groupoids,
Section 38.11 this corresponds to a septuple (Ob,Arrows, s, t, c, e, i).

Using this data we can make another groupoid Cfin as follows:

(1) An object of Cfin consists of a finite subset Z ⊂ Arrows with the following
properties:
(a) s(Z) = {u} is a singleton, and
(b) e(u) ∈ Z.

(2) A morphism of Cfin consists of a pair (Z, z), where Z is an object of Cfin
and z ∈ Z.

(3) The source of (Z, z) is Z.
(4) The target of (Z, z) is t(Z, z) = {z′ ◦ z−1; z′ ∈ Z}.
(5) Given (Z1, z1), (Z2, z2) such that s(Z1, z1) = t(Z2, z2) the composition

(Z1, z1) ◦ (Z2, z2) is (Z2, z1 ◦ z2).

We omit the verification that this defines a groupoid. Pictorially an object of Cfin
can be viewed as a diagram

•

•e ::

??

//

��

•

•
To make a morphism of Cfin you pick one of the arrows and you precompose the
other arrows by its inverse. For example if we pick the middle horizontal arrow
then the target is the picture

•

• •oo

OO

e
zz

��
•

Note that the cardinalities of s(Z, z) and t(Z, z) are equal. So Cfin is really a
countable disjoint union of groupoids.

61.11. The finite part of a groupoid

In this section we are going to use the idea explained in Section 61.10 to take the
finite part of a groupoid in algebraic spaces.

Let S be a scheme. Let B be an algebraic space over S. Let (U,R, s, t, c, e, i)
be a groupoid in algebraic spaces over B. Assumption: The morphisms s, t are
separated and locally of finite type. This notation and assumption will we be fixed
throughout this section.

Denote Rs the algebraic space R seen as an algebraic space over U via s. Let
U ′ = (Rs/U, e)fin. Since s is separated and locally of finite type, by Proposition
61.9.11 and Lemma 61.9.15, we see that U ′ is an algebraic space endowed with an
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étale morphism g : U ′ → U . Moreover, by Lemma 61.9.1 there exists a universal
open subspace Zuniv ⊂ R×s,U,gU ′ which is finite over U ′ and such that (1U ′ , e◦g) :
U ′ → R ×s,U,g U ′ factors through Zuniv. Moreover, by Lemma 61.9.4 the open
subspace Zuniv is also closed in R×s,U ′,g U . Picture so far:

Zuniv

�� %%
R×s,U,g U ′

��

// U ′

g

��
R

s // U

Let T be a scheme over B. We see that a T -valued point of Zuniv may be viewed
as a triple (u, Z, z) where

(1) u : T → U is a T -valued point of U ,
(2) Z ⊂ R ×s,U,u T is an open and closed subspace finite over T such that

(e ◦ u, 1T ) factors through it, and
(3) z : T → R is a T -valued point of R with s ◦ z = u and such that (z, 1T )

factors through Z.

Having said this, it is morally clear from the discussion in Section 61.10 that we
can turn (Zuniv, U

′) into a groupoid in algebraic spaces over B. To make sure will
define the morphisms s′, t′, c′, e′, i′ one by one using the functorial point of view.
(Please don’t read this before reading and understanding the simple construction
in Section 61.10.)

The morphism s′ : Zuniv → U ′ corresponds to the rule

s′ : (u, Z, z) 7→ (u, Z).

The morphism t′ : Zuniv → U ′ is given by the rule

t′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z)).

The entry c(Z, i ◦ z) makes sense as the map c(−, i ◦ z) : R×s,U,u T → R×s,U,t◦z T
is an isomorphism with inverse c(−, z). The morphism e′ : U ′ → Zuniv is given by
the rule

e′ : (u, Z) 7→ (u, Z, (e ◦ u, 1T )).

Note that this makes sense by the requirement that (e ◦ u, 1T ) factors through Z.
The morphism i′ : Zuniv → Zuniv is given by the rule

i′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z), i ◦ z).

Finally, composition is defined by the rule

c′ : ((u1, Z1, z1), (u2, Z2, z2)) 7→ (u2, Z2, z1 ◦ z2).

We omit the verification that the axioms of a groupoid in algebraic spaces hold for
(U ′, Zuniv, s

′, t′, c′, e′, i′).

A final piece of information is that there is a canonical morphism of groupoids

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)
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Namely, the morphism U ′ → U is the morphism g : U ′ → U which is defined by
the rule (u, Z) 7→ u. The morphism Zuniv → R is defined by the rule (u, Z, z) 7→ z.
This finishes the construction. Let us summarize our findings as follows.

Lemma 61.11.1. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c, e, i) be a groupoid in algebraic spaces over B. Assume the morphisms
s, t are separated and locally of finite type. There exists a canonical morphism

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

of groupoids in algebraic spaces over B where

(1) g : U ′ → U is identified with (Rs/U, e)fin → U , and
(2) Zuniv ⊂ R×s,U,gU ′ is the universal open (and closed) subspace finite over

U ′ which contains the base change of the unit e.

Proof. See discussion above. �

61.12. Étale localization of groupoid schemes

In this section we prove results similar to [KM97, Proposition 4.2]. We try to be
a bit more general, and we try to avoid using Hilbert schemes by using the finite
part of a morphism instead. The goal is to ”split” a groupoid in algebraic spaces
over a point after étale localization. Here is the definition (very similar to [KM97,
Definition 4.1]).

Definition 61.12.1. Let S be a scheme. Let B be an algebraic space over S Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let u ∈ |U | be a point.

(1) We say R is split over u if there exists an open subspace P ⊂ R such that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {r ∈ |R| : s(r) = u, t(r) = u} ⊂ P .

The choice of such a P will be called a splitting of R over u.
(2) We say R is quasi-split over u if there exists an open subspace P ⊂ R

such that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) e(u) ∈ |P |1.

The choice of such a P will be called a quasi-splitting of R over u.

Note the similarity of the conditions on P to the conditions on pairs in (61.9.0.1).
In particular, if s, t are separated, then P is also closed in R (see Lemma 61.9.4).

Suppose we start with a groupoid in algebraic spaces (U,R, s, t, c) over B and a
point u ∈ |U |. Since the goal is to split the groupoid after étale localization we
may as well replace U by an affine scheme (what we mean is that this is harmless
for any possible application). Moreover, the additional hypotheses we are going
to have to impose will force R to be a scheme at least in a neighbourhood of
{r ∈ |R| : s(r) = u, t(r) = u} or e(u). This is why we start with a groupoid scheme
as described below. However, our technique of proof leads us outside of the category
of schemes, which is why we have formulated a splitting for the case of groupoids
in algebraic spaces above. On the other hand, we know of no applications but the

1This condition is implied by (a).
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case where the morphisms s, t are also flat and of finite presentation, in which case
we end up back in the category of schemes.

Situation 61.12.2. (Assumptions for splitting.) Let S be a scheme. Let (U,R, s, t, c)
be a groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type,
(3) the set {r ∈ R : s(r) = u, t(r) = u} is finite, and
(4) s is quasi-finite at each point of the set in (3).

Note that assumptions (3) and (4) are implied by the assumption that the fibre
s−1({u}) is finite, see Morphisms, Lemma 28.21.7.

Situation 61.12.3. (Assumptions for quasi-splitting.) Let S be a scheme. Let
(U,R, s, t, c) be a groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type, and
(3) s is quasi-finite at e(u).

It turns out that for applications to the existence theorems for algebraic spaces the
case of quasi-splittings is sufficient. In fact, it is for us somehow a more natural case
to consider, as in the stacks project there are no finiteness conditions on the diagonal
of an algebraic space, hence the assumption that {r ∈ R : s(r) = u, t(r) = u} is
finite need not hold even for a presentation X = U/R of an algebraic space X.

Lemma 61.12.4. Assumptions and notation as in Situation 61.12.2. Then there
exists an algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u))→
U ′ lying over u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′

splits over u′.

Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

61.11.1. Recall that R′ = R×(U×SU) (U ′×SU ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Z ⊂ R×s,U,g U ′ is open and R′ → R×s,U,g U ′ is étale (as a base
change of U ′ → U) we see that Zuniv → R′ is an open immersion. By construction
the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma.
Set Fu = R ×s,U Spec(κ(u)). The set {r ∈ R : s(r) = u, t(r) = u} is finite by
assumption and Fu → Spec(κ(u)) is quasi-finite at each of its elements. Hence we
can find a decomposition into open and closed subschemes

Fu = Zu
∐

Rest

for some scheme Zu finite over κ(u) whose support is {r ∈ R : s(r) = u, t(r) = u}.
Note that e(u) ∈ Zu. Hence by the construction of U ′ in Section 61.11 (u, Zu)
defines a Spec(κ(u))-valued point u′ of U ′.

We still have to show that the set {r′ ∈ |R′| : s′(r′) = u′, t′(r′) = u′} is contained in
|Zuniv|. Pick any point r′ in this set and represent it by a morphism r′ : Spec(k)→
R′. Denote z : Spec(k) → R the composition of r′ with the map R′ → R. Since
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κ(u) = κ(u′), and since s′(r′) = u′, t(r′) = u′ no information is lost by considering
the point z rather than the point r′, i.e., we can recover r′ from the point z. For
example z is an element of the set {r ∈ R : s(r) = u, t(r) = u} by our assumption
on r′. The composition s ◦ z : Spec(k)→ U factors through u, so we may think of
s ◦ z as a morphism Spec(k)→ Spec(κ(u)). Hence we can consider the triple

(s ◦ z, Zu ×Spec(κ(u)),s◦z Spec(k), z)

where Zu is as above. This defines a Spec(k)-valued point of Zuniv above whose
image under the map Zuniv → R′ is the point r′ by the relationship between z and
r′ mentioned above. This finishes the proof. �

Lemma 61.12.5. Assumptions and notation as in Situation 61.12.3. Then there
exists an algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u))→
U ′ lying over u : Spec(κ(u))→ U such that the restriction R′ = R|U ′ of R to U ′ is
quasi-split over u′.

Proof. The proof is almost exactly the same as the proof of Lemma 61.12.4. Let
f : (U ′, Zuniv, s

′, t′, c′)→ (U,R, s, t, c) be as constructed in Lemma 61.11.1. Recall
that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) : Zuniv → R′

of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Z ⊂ R×s,U,g U ′ is open and R′ → R×s,U,g U ′ is étale (as a base
change of U ′ → U) we see that Zuniv → R′ is an open immersion. By construction
the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u))→ U as in the statement of the lemma. Set
Fu = R×s,U Spec(κ(u)). The morphism Fu → Spec(κ(u)) is quasi-finite at e(u) by
assumption. Hence we can find a decomposition into open and closed subschemes

Fu = Zu
∐

Rest

for some scheme Zu finite over κ(u) whose support is e(u). Hence by the construc-
tion of U ′ in Section 61.11 (u, Zu) defines a Spec(κ(u))-valued point u′ of U ′. To
finish the proof we have to show that e′(u′) ∈ Zuniv which is clear. �

Finally, when we add additional assumptions we obtain schemes.

Lemma 61.12.6. Assumptions and notation as in Situation 61.12.2. Assume in
addition that s, t are flat and locally of finite presentation. Then there exists a
scheme U ′, a separated étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u
with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to U ′ splits over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 61.12.4
because in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas
61.9.14 and 61.9.15. �

Lemma 61.12.7. Assumptions and notation as in Situation 61.12.3. Assume in
addition that s, t are flat and locally of finite presentation. Then there exists a
scheme U ′, a separated étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u
with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to U ′ is quasi-split over
u′.
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Proof. This follows from the construction of U ′ in the proof of Lemma 61.12.5
because in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas
61.9.14 and 61.9.15. �

In fact we can obtain affine schemes by applying an earlier result on finite locally
free groupoids.

Lemma 61.12.8. Assumptions and notation as in Situation 61.12.2. Assume in
addition that s, t are flat and locally of finite presentation and that U is affine.
Then there exists an affine scheme U ′, an étale morphism U ′ → U , and a point
u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to
U ′ splits over u′.

Proof. Let U ′ → U and u′ ∈ U ′ be the étale morphism of schemes we found
in Lemma 61.12.6. Let P ⊂ R′ be the splitting of R′ over u′. By More on
Groupoids, Lemma 39.8.1 the morphisms s′, t′ : R′ → U ′ are flat and locally of
finite presentation. They are finite by assumption. Hence s′, t′ are finite locally
free, see Morphisms, Lemma 28.46.2. In particular t(s−1(u′)) is a finite set of
points {u′1, u′2, . . . , u′n} of U ′. Choose a quasi-compact open W ⊂ U ′ containing
each u′i. As U is affine the morphism W → U is quasi-compact (see Schemes,
Lemma 25.19.2). The morphism W → U is also locally quasi-finite (see Mor-
phisms, Lemma 28.37.6) and separated. Hence by More on Morphisms, Lemma
36.31.2 (a version of Zariski’s Main Theorem) we conclude that W is quasi-affine.
By Properties, Lemma 27.27.5 we see that {u′1, . . . , u′n} are contained in an affine
open of U ′. Thus we may apply Groupoids, Lemma 38.22.1 to conclude that there
exists an affine P -invariant open U ′′ ⊂ U ′ which contains u′.

To finish the proof denote R′′ = R|U ′′ the restriction of R to U ′′. This is the same
as the restriction of R′ to U ′′. As P ⊂ R′ is an open and closed subscheme, so is
P |U ′′ ⊂ R′′. By construction the open subscheme U ′′ ⊂ U ′ is P -invariant which
means that P |U ′′ = (s′|P )−1(U ′′) = (t′|P )−1(U ′′) (see discussion in Groupoids,
Section 38.17) so the restrictions of s′′ and t′′ to P |U ′′ are still finite. The sub
groupoid scheme P |U ′′ is still a splitting of R′′ over u′′; above we verified (a),
(b) and (c) holds as {r′ ∈ R′ : t′(r′) = u′, s′(r′) = u′} = {r′′ ∈ R′′ : t′′(r′′) =
u′, s′′(r′′) = u′} trivially. The lemma is proved. �

Lemma 61.12.9. Assumptions and notation as in Situation 61.12.3. Assume in
addition that s, t are flat and locally of finite presentation and that U is affine.
Then there exists an affine scheme U ′, an étale morphism U ′ → U , and a point
u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to
U ′ is quasi-split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 61.12.8
except that “splitting” needs to be replaced by “quasi-splitting” (2 times) and that
the reference to Lemma 61.12.6. needs to be replaced by a reference to Lemma
61.12.7. �

61.13. Other chapters
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CHAPTER 62

Bootstrap

62.1. Introduction

In this chapter we use the material from the preceding sections to give criteria under
which a presheaf of sets on the category of schemes is an algebraic space. Some
of this material comes from the work of Artin, see [Art69b], [Art70], [Art73],
[Art71b], [Art71a], [Art69a], [Art69c], and [Art74]. However, our method will
be to use as much as possible arguments similar to those of the paper by Keel and
Mori, see [KM97].

62.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

62.3. Morphisms representable by algebraic spaces

Here we define the notion of one presheaf being relatively representable by algebraic
spaces over another, and we prove some properties of this notion.

Definition 62.3.1. Let S be a scheme contained in Schfppf . Let F , G be presheaves
on Schfppf/S. We say a morphism a : F → G is representable by algebraic spaces
if for every U ∈ Ob((Sch/S)fppf ) and any ξ : U → G the fiber product U ×ξ,G F is
an algebraic space.

Here is a sanity check.

Lemma 62.3.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is representable by algebraic spaces.

Proof. This is formal. It relies on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 47.7.3. �

Lemma 62.3.3. Let S be a scheme. Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic
spaces so is a′.

3679
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Proof. Omitted. Hint: This is formal. �

Lemma 62.3.4. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is a sheaf, then so
is F .

Proof. (Same as the proof of Spaces, Lemma 47.3.5.) Let {ϕi : Ti → T} be a
covering of the site (Sch/S)fppf . Let si ∈ F (Ti) which satisfy the sheaf condition.
Then σi = a(si) ∈ G(Ti) satisfy the sheaf condition also. Hence there exists a
unique σ ∈ G(T ) such that σi = σ|Ti . By assumption F ′ = hT ×σ,G,a F is a sheaf.
Note that (ϕi, si) ∈ F ′(Ti) satisfy the sheaf condition also, and hence come from
some unique (idT , s) ∈ F ′(T ). Clearly s is the section of F we are looking for. �

Lemma 62.3.5. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. Then ∆F/G : F → F×GF
is representable by algebraic spaces.

Proof. (Same as the proof of Spaces, Lemma 47.3.6.) Let U be a scheme. Let
ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ = a(ξ1) = a(ξ2) ∈ G(U). By assumption there
exist an algebraic space V and a morphism V → U representing the fibre product
U ×ξ′,GF . In particular, the elements ξ1, ξ2 give morphisms f1, f2 : U → V over U .
Because V represents the fibre product U ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2
we see that if g : U ′ → U is a morphism then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that U×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2)U which
is an algebraic space. �

The proof of Lemma 62.3.6 below is actually slightly tricky. Namely, we cannot
use the argument of the proof of Spaces, Lemma 47.11.1 because we do not yet
know that a composition of transformations representable by algebraic spaces is
representable by algebraic spaces. In fact, we will use this lemma to prove that
statement.

Lemma 62.3.6. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is an algebraic space,
then so is F .

Proof. We have seen in Lemma 62.3.4 that F is a sheaf.

Let U be a scheme and let U → G be a surjective étale morphism. In this case
U ×G F is an algebraic space. Let W be a scheme and let W → U ×G F be a
surjective étale morphism.

First we claim that W → F is representable. To see this let X be a scheme and let
X → F be a morphism. Then

W ×F X = W ×U×GF U ×G F ×F X = W ×U×GF (U ×G X)

Since both U ×G F and G are algebraic spaces we see that this is a scheme.

Next, we claim that W → F is surjective and étale (this makes sense now that we
know it is representable). This follows from the formula above since both W →
U ×GF and U → G are étale and surjective, hence W ×U×GF (U ×GX)→ U ×GX
and U ×G X → X are surjective and étale, and the composition of surjective étale
morphisms is surjective and étale.
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Set R = W ×F W . By the above R is a scheme and the projections t, s : R → W
are étale. It is clear that R is an equivalence relation, and W → F is a surjection
of sheaves. Hence R is an étale equivalence relation and F = W/R. Hence F is an
algebraic space by Spaces, Theorem 47.10.5. �

Lemma 62.3.7. Let S be a scheme. Let a : F → G be a map of presheaves on
(Sch/S)fppf . Suppose a : F → G is representable by algebraic spaces. If X is an
algebraic space over S, and X → G is a map of presheaves then X ×G F is an
algebraic space.

Proof. By Lemma 62.3.3 the transformation X ×G F → X is representable by
algebraic spaces. Hence it is an algebraic space by Lemma 62.3.6. �

Lemma 62.3.8. Let S be a scheme. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a and b are representable by algebraic
spaces, so is b ◦ a.

Proof. Let T be a scheme over S, and let T → H be a morphism. By assumption
T ×H G is an algebraic space. Hence by Lemma 62.3.7 we see that T ×H F =
(T ×H G)×G F is an algebraic space as well. �

Lemma 62.3.9. Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable by algebraic spaces.

Proof. Write a1× a2 as the composition F1×F2 → G1×F2 → G1×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 62.3.8 and 62.3.3. �

Lemma 62.3.10. Let S be a scheme. Let a : F → G and b : G → H be transfor-
mations of functors (Sch/S)oppfppf → Sets. Assume

(1) ∆ : G→ G×H G is representable by algebraic spaces, and
(2) b ◦ a : F → H is representable by algebraic spaces.

Then a is representable by algebraic spaces.

Proof. Let U be a scheme over S and let ξ ∈ G(U). Then

U ×ξ,G,a F = (U ×b(ξ),H,b◦a F )×(ξ,a),(G×HG),∆ G

Hence the result using Lemma 62.3.7. �

Lemma 62.3.11. Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf for the Zariski topology on (Sch/S)fppf ,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an fppf sheaf,
(b) each Fi → F is representable by algebraic spaces,
(c)

∐
Fi → F becomes surjective after fppf sheafification.

Then F is an fppf sheaf.
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Proof. Let T ∈ Ob((Sch/S)fppf ) and let s ∈ F (T ). By (2)(c) there exists an fppf
covering {Tj → T} such that s|Tj is a section of Fα(j) for some α(j) ∈ I. Let
Wj ⊂ T be the image of Tj → T which is an open subscheme Morphisms, Lemma
28.26.9. By (2)(b) we see Fα(j) ×F,s|Wj Wj → Wj is a monomorphism of algebraic

spaces through which Tj factors. Since {Tj →Wj} is an fppf covering, we conclude
that Fα(j) ×F,s|Wj Wj = Wj , in other words s|Wj ∈ Fα(j)(Wj). Hence we conclude

that
∐
Fi → F is surjective for the Zariski topology.

Let {Tj → T} be an fppf covering in (Sch/S)fppf . Let s, s′ ∈ F (T ) with s|Tj = s′|Tj
for all j. We want to show that s, s′ are equal. As F is a Zariski sheaf by (1) we
may work Zariski locally on T . By the result of the previous paragraph we may
assume there exist i such that s ∈ Fi(T ). Then we see that s′|Tj is a section of Fi.
By (2)(b) we see Fi ×F,s′ T → T is a monomorphism of algebraic spaces through
which all of the Tj factor. Hence we conclude that s′ ∈ Fi(T ). Since Fi is a sheaf
for the fppf topology we conclude that s = s′.

Let {Tj → T} be an fppf covering in (Sch/S)fppf and let sj ∈ F (Tj) such that
sj |Tj×TTj′ = sj′ |Tj×TTj′ . By assumption (2)(b) we may refine the covering and

assume that sj ∈ Fα(j)(Tj) for some α(j) ∈ I. Let Wj ⊂ T be the image of Tj → T
which is an open subscheme Morphisms, Lemma 28.26.9. Then {Tj → Wj} is an
fppf covering. Since Fα(j) is a sub presheaf of F we see that the two restrictions of
sj to Tj ×Wj

Tj agree as elements of Fα(j)(Tj ×Wj
Tj). Hence, the sheaf condition

for Fα(j) implies there exists a s′j ∈ Fα(j)(Wj) whose restriction to Tj is sj . For
a pair of indices j and j′ the sections s′j |Wj∩Wj′ and s′j′ |Wj∩Wj′ of F agree by the
result of the previous paragraph. This finishes the proof by the fact that F is a
Zariski sheaf. �

62.4. Properties of maps of presheaves representable by algebraic
spaces

Here is the definition that makes this work.

Definition 62.4.1. Let S be a scheme. Let a : F → G be a map of presheaves
on (Sch/S)fppf which is representable by algebraic spaces. Let P be a property of
morphisms of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 56.9.1.

In this case we say that a has property P if for every scheme U and ξ : U → G the
resulting morphism of algebraic spaces U ×G F → U has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.

The definition above applies1 for example to the properties of being “surjective”,
“quasi-compact”, “étale”, “flat”, “separated”, “(locally) of finite type”, “(locally)

1Being preserved under base change holds by Morphisms of Spaces, Lemmas 49.5.5, 49.8.3,

49.36.4, 49.28.4, 49.4.4, 49.23.3, 49.26.4, 49.27.3, 49.37.3, and Spaces, Lemma 47.12.3. Being
fppf local on the base holds by Descent on Spaces, Lemmas 56.10.5, 56.10.1, 56.10.26, 56.10.11,

56.10.16, 56.10.9, 56.10.22, 56.10.8, 56.10.17, and 56.10.15.
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quasi-finite”, “(locally) of finite presentation”, “proper”, and “a closed immersion”.
In other words, a is surjective (resp. quasi-compact, étale, flat, separated, (locally)
of finite type, (locally) quasi-finite, (locally) of finite presentation, proper, a closed
immersion) if for every scheme T and map ξ : T → G the morphism of algebraic
spaces T ×ξ,G F → T is surjective (resp. quasi-compact, étale, flat, separated,
(locally) of finite type, (locally) quasi-finite, (locally) of finite presentation, proper,
a closed immersion).

Next, we check consistency with the already existing notions. By Lemma 62.3.2
any morphism between algebraic spaces over S is representable by algebraic spaces.
And by Morphisms of Spaces, Lemma 49.5.3 (resp. 49.8.7, 49.36.2, 49.28.5, 49.4.12,
49.23.4, 49.26.6, 49.27.4, 49.37.2, 49.12.1) the definition of surjective (resp. quasi-
compact, étale, flat, separated, (locally) of finite type, (locally) quasi-finite, (locally)
of finite presentation, proper, closed immersion) above agrees with the already
existing definition of morphisms of algebraic spaces.

Some formal lemmas follow.

Lemma 62.4.2. Let S be a scheme. Let P be a property as in Definition 62.4.1.
Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic
spaces and has P so does a′.

Proof. Omitted. Hint: This is formal. �

Lemma 62.4.3. Let S be a scheme. Let P be a property as in Definition 62.4.1,
and assume P is stable under composition. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a, b are representable by algebraic spaces
and has P so does b ◦ a.

Proof. Omitted. Hint: See Lemma 62.3.8 and use stability under composition. �

Lemma 62.4.4. Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Let P be a property as
in Definition 62.4.1 which is stable under composition. If a1 and a2 have property
P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 62.3.9. Proof omitted. �

Lemma 62.4.5. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G

be a transformation of functors representable by algebraic spaces. Let P, P ′ be
properties as in Definition 62.4.1. Suppose that for any morphism f : X → Y of
algebraic spaces over S we have P(f) ⇒ P ′(f). If a has property P, then a has
property P ′.

Proof. Formal. �
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Lemma 62.4.6. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves. Let
a : F → G be representable by algebraic spaces, flat, locally of finite presentation,
and surjective. Then a : F → G is surjective as a map of sheaves.

Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G.
By assumption T ′ = F ×G T is an algebraic space and the morphism T ′ → T is a
flat, locally of finite presentation, and surjective morphism of algebraic spaces. Let
U → T ′ be a surjective étale morphism, where U is a scheme. Then by the definition
of flat morphisms of algebraic spaces the morphism of schemes U → T is flat.
Similarly for “locally of finite presentation”. The morphism U → T is surjective
also, see Morphisms of Spaces, Lemma 49.5.3. Hence we see that {U → T} is an
fppf covering such that g|U ∈ G(U) comes from an element of F (U), namely the
map U → T ′ → F . This proves the map is surjective as a map of sheaves, see Sites,
Definition 7.12.1. �

62.5. Bootstrapping the diagonal

Lemma 62.5.1. Let S be a scheme. If F is a presheaf on (Sch/S)fppf . The
following are equivalent:

(1) ∆F : F → F × F is representable by algebraic spaces,
(2) for every scheme T any map T → F is representable by algebraic spaces,

and
(3) for every algebraic space X any map X → F is representable by algebraic

spaces.

Proof. Assume (1). Let X → F be as in (3). Let T be a scheme, and let T → F
be a morphism. Then we have

T ×F X = (T ×S X)×F×F,∆ F

which is an algebraic space by Lemma 62.3.7 and (1). Hence X → F is repre-
sentable, i.e., (3) holds. The implication (3) ⇒ (2) is trivial. Assume (2). Let T
be a scheme, and let (a, b) : T → F × F be a morphism. Then

F ×∆F ,F×F T = T ×a,F,b T
which is an algebraic space by assumption. Hence ∆F is representable by algebraic
spaces, i.e., (1) holds. �

In particular if F is a presheaf satisfying the equivalent conditions of the lemma,
then for any morphism X → F where X is an algebraic space it makes sense to say
that X → F is surjective (resp. étale, flat, locally of finite presentation) by using
Definition 62.4.1.

Before we actually do the bootstrap we prove a fun lemma.

Lemma 62.5.2. Let S be a scheme. Let

E
a
//

f

��

F

g

��
H

b // G

be a cartesian diagram of sheaves on (Sch/S)fppf , so E = H ×G F . If

(1) g is representable by algebraic spaces, surjective, flat, and locally of finite
presentation, and
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(2) a is representable by algebraic spaces, separated, and locally quasi-finite

then b is representable (by schemes) as well as separated and locally quasi-finite.

Proof. Let T be a scheme, and let T → G be a morphism. We have to show that
T ×GH is an algebraic space, and that the morphism T ×GH → T is separated and
locally quasi-finite. Thus we may base change the whole diagram to T and assume
that G is a scheme. In this case F is an algebraic space. Let U be a scheme,
and let U → F be a surjective étale morphism. Then U → F is representable,
surjective, flat and locally of finite presentation by Morphisms of Spaces, Lemmas
49.36.7 and 49.36.8. By Lemma 62.3.8 U → G is surjective, flat and locally of
finite presentation also. Note that the base change E ×F U → U of a is still
separated and locally quasi-finite (by Lemma 62.4.2). Hence we may replace the
upper part of the diagram of the lemma by E ×F U → U . In other words, we may
assume that F → G is a surjective, flat morphism of schemes which is locally of
finite presentation. In particular, {F → G} is an fppf covering of schemes. By
Morphisms of Spaces, Proposition 49.44.2 we conclude that E is a scheme also. By
Descent, Lemma 34.35.1 the fact that E = H ×G F means that we get a descent
datum on E relative to the fppf covering {F → G}. By More on Morphisms,
Lemma 36.37.1 this descent datum is effective. By Descent, Lemma 34.35.1 again
this implies that H is a scheme. By Descent, Lemmas 34.19.5 and 34.19.22 it now
follows that b is separated and locally quasi-finite. �

Here is the result that the section title refers to.

Lemma 62.5.3. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) the presheaf F is a sheaf,
(2) there exists an algebraic space X and a map X → F which is representable

by algebraic spaces, surjective, flat and locally of finite presentation.

Then ∆F is representable (by schemes).

Proof. Let U → X be a surjective étale morphism from a scheme towards X.
Then U → X is representable, surjective, flat and locally of finite presentation by
Morphisms of Spaces, Lemmas 49.36.7 and 49.36.8. By Lemma 62.4.3 the composi-
tion U → F is representable by algebraic spaces, surjective, flat and locally of finite
presentation also. Thus we see that R = U ×F U is an algebraic space, see Lemma
62.3.7. The morphism of algebraic spaces R→ U ×S U is a monomorphism, hence
separated (as the diagonal of a monomorphism is an isomorphism, see Morphisms
of Spaces, Lemma 49.10.2). Since U → F is locally of finite presentation, both
morphisms R → U are locally of finite presentation, see Lemma 62.4.2. Hence
R → U ×S U is locally of finite type (use Morphisms of Spaces, Lemmas 49.27.5
and 49.23.6). Altogether this means that R → U ×S U is a monomorphism which
is locally of finite type, hence a separated and locally quasi-finite morphism, see
Morphisms of Spaces, Lemma 49.26.10.

Now we are ready to prove that ∆F is representable. Let T be a scheme, and let
(a, b) : T → F × F be a morphism. Set

T ′ = (U ×S U)×F×F T.
Note that U ×S U → F ×F is representable by algebraic spaces, surjective, flat and
locally of finite presentation by Lemma 62.4.4. Hence T ′ is an algebraic space, and
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the projection morphism T ′ → T is surjective, flat, and locally of finite presentation.
Consider Z = T ×F×F F (this is a sheaf) and

Z ′ = T ′ ×U×SU R = T ′ ×T Z.
We see that Z ′ is an algebraic space, and Z ′ → T ′ is separated and locally quasi-
finite by the discussion in the first paragraph of the proof which showed that R
is an algebraic space and that the morphism R → U ×S U has those properties.
Hence we may apply Lemma 62.5.2 to the diagram

Z ′ //

��

T ′

��
Z // T

and we conclude. �

Here is a variant of the result above.

Lemma 62.5.4. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Let X be a scheme and let X → F be representable by algebraic spaces and locally
quasi-finite. Then X → F is representable (by schemes).

Proof. Let T be a scheme and let T → F be a morphism. We have to show that
the algebraic space X ×F T is representable by a scheme. Consider the morphism

X ×F T −→ X ×Spec(Z) Spec(A)

Since X ×F T → T is locally quasi-finite, so is the displayed arrow (Morphisms of
Spaces, Lemma 49.26.8). On the other hand, the displayed arrow is a monomor-
phism and hence separated (Morphisms of Spaces, Lemma 49.10.3). Thus X ×F T
is a scheme by Morphisms of Spaces, Proposition 49.44.2. �

62.6. Bootstrap

We warn the reader right away that the result of this section will be superseded by
the stronger Theorem 62.10.1. On the other hand, the theorem in this section is
quite a bit easier to prove and still provides quite a bit of insight into how things
work, especially for those readers mainly interested in Deligne-Mumford stacks.

In Spaces, Section 47.6 we defined an algebraic space as a sheaf in the fppf topol-
ogy whose diagonal is representable, and such that there exist a surjective étale
morphism from a scheme towards it. In this section we show that a sheaf in the
fppf topology whose diagonal is representable by algebraic spaces and which has
an étale surjective covering by an algebraic space is also an algebraic space. In
other words, the category of algebraic spaces is an enlargement of the category of
schemes by those fppf sheaves F which have a representable diagonal and an étale
covering by a scheme. The result of this section says that doing the same process
again starting with the category of algebraic spaces, does not lead to yet another
category.

Another motivation for the material in this section is that it will guarantee later
that a Deligne-Mumford stack whose inertia stack is trivial is equivalent to an
algebraic space, see Algebraic Stacks, Lemma 71.13.2.

Here is the main result of this section (as we mentioned above this will be superseded
by the stronger Theorem 62.10.1).
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Theorem 62.6.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) the presheaf F is a sheaf,
(2) the diagonal morphism F → F × F is representable by algebraic spaces,

and
(3) there exists an algebraic space X and a map X → F which is surjective,

and étale.

Then F is an algebraic space.

Proof. We will use the remarks directly below Definition 62.4.1 without further
mention. In the situation of the theorem, let U → X be a surjective étale morphism
from a scheme towards X. By Lemma 62.3.8 U → F is surjective and étale also.
Hence the theorem boils down to proving that ∆F is representable. This follows
immediately from Lemma 62.5.3. On the other hand we can circumvent this lemma
and show directly F is an algebraic space as in the next paragraph.

Let U be a scheme, and let U → F be surjective and étale. Set R = U ×F U , which
is an algebraic space (see Lemma 62.5.1). The morphism of algebraic spaces R →
U ×S U is a monomorphism, hence separated (as the diagonal of a monomorphism
is an isomorphism). Moreover, since U → F is étale, we see that R → U is étale,
by Lemma 62.4.2. In particular, we see that R → U is locally quasi-finite, see
Morphisms of Spaces, Lemma 49.36.5. We conclude that also R → U ×S U is
locally quasi-finite by Morphisms of Spaces, Lemma 49.26.8. Hence Morphisms
of Spaces, Proposition 49.44.2 applies and R is a scheme. Hence F = U/R is an
algebraic space according to Spaces, Theorem 47.10.5. �

62.7. Finding opens

First we prove a lemma which is a slight improvement and generalization of Spaces,
Lemma 47.10.2 to quotient sheaves associated to groupoids.

Lemma 62.7.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let g : U ′ → U be a morphism. Assume

(1) the composition

U ′ ×g,U,t R pr1

//

h

((
R

s
// U

has an open image W ⊂ U , and
(2) the resulting map h : U ′ ×g,U,t R → W defines a surjection of sheaves in

the fppf topology.

Let R′ = R|U ′ be the restriction of R to U . Then the map of quotient sheaves

U ′/R′ → U/R

in the fppf topology is representable, and is an open immersion.

Proof. Note that W is an R-invariant open subscheme of U . This is true because
the set of points of W is the set of points of U which are equivalent in the sense
of Groupoids, Lemma 38.3.4 to a point of g(U ′) ⊂ U (the lemma applies as j :
R → U ×S U is a pre-equivalence relation by Groupoids, Lemma 38.11.2). Also
g : U ′ → U factors through W . Let R|W be the restriction of R to W . Then it
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follows that R′ is also the restriction of R|W to U ′. Hence we can factor the map
of sheaves of the lemma as

U ′/R′ −→W/R|W −→ U/R

By Groupoids, Lemma 38.18.6 we see that the first arrow is an isomorphism of
sheaves. Hence it suffices to show the lemma in case g is the immersion of an
R-invariant open into U .

Assume U ′ ⊂ U is an R-invariant open and g is the inclusion morphism. Set
F = U/R and F ′ = U ′/R′. By Groupoids, Lemma 38.18.5 or 38.18.6 the map
F ′ → F is injective. Let ξ ∈ F (T ). We have to show that T ×ξ,F F ′ is representable
by an open subscheme of T . There exists an fppf covering {fi : Ti → T} such that
ξ|Ti is the image via U → U/R of a morphism ai : Ti → U . Set Vi = s−1

i (U ′). We
claim that Vi ×T Tj = Ti ×T Vj as open subschemes of Ti ×T Tj .

As ai ◦pr0 and aj ◦pr1 are morphisms Ti×T Tj → U which both map to the section
ξ|Ti×TTj ∈ F (Ti ×T Tj) we can find an fppf covering {fijk : Tijk → Ti ×T Tj} and
morphisms rijk : Tijk → R such that

ai ◦ pr0 ◦ fijk = s ◦ rijk, aj ◦ pr1 ◦ fijk = t ◦ rijk,

see Groupoids, Lemma 38.18.4. Since U ′ is R-invariant we have s−1(U ′) = t−1(U ′)
and hence f−1

ijk(Vi ×T Tj) = f−1
ijk(Ti ×T Vj). As {fijk} is surjective this implies

the claim above. Hence by Descent, Lemma 34.9.2 there exists an open subscheme
V ⊂ T such that f−1

i (V ) = Vi. We claim that V represents T ×ξ,F F ′.

As a first step, we will show that ξ|V lies in F ′(V ) ⊂ F (V ). Namely, the family of
morphisms {Vi → V } is an fppf covering, and by construction we have ξ|Vi ∈ F ′(Vi).
Hence by the sheaf property of F ′ we get ξ|V ∈ F ′(V ). Finally, let T ′ → T be a
morphism of schemes and that ξ|T ′ ∈ F ′(T ′). To finish the proof we have to show
that T ′ → T factors through V . We can find a fppf covering {T ′j → T ′}j∈J and
morphisms bj : T ′j → U ′ such that ξ|T ′j is the image via U ′ → U/R of bj . Clearly,

it is enough to show that the compositions T ′j → T factor through V . Hence we
may assume that ξ|T ′ is the image of a morphism b : T ′ → U ′. Now, it is enough
to show that T ′ ×T Ti → Ti factors through Vi. Over the scheme T ′ ×T Ti the
restriction of ξ is the image of two elements of (U/R)(T ′ ×T Ti), namely ai ◦ pr1,
and b ◦ pr0, the second of which factors through the R-invariant open U ′. Hence
by Groupoids, Lemma 38.18.4 there exists a covering {hk : Zk → T ′ ×T Ti} and
morphisms rk : Zk → R such that ai ◦ pr1 ◦ hk = s ◦ rk and b ◦ pr0 ◦ hk = t ◦ rk. As
U ′ is an R-invariant open the fact that b has image in U ′ then implies that each
ai ◦ pr1 ◦ hk has image in U ′. It follows from this that T ′ ×T Ti → Ti has image in
Vi by definition of Vi which concludes the proof. �

62.8. Slicing equivalence relations

In this section we explain how to “improve” a given equivalence relation by slicing.
This is not a kind of “étale slicing” that you may be used to but a much coarser
kind of slicing.

Lemma 62.8.1. Let S be a scheme. Let j : R→ U×SU be an equivalence relation
on schemes over S. Assume s, t : R→ U are flat and locally of finite presentation.
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Then there exists an equivalence relation j′ : R′ → U ′ ×S U ′ on schemes over S,
and an isomorphism

U ′/R′ −→ U/R

induced by a morphism U ′ → U which maps R′ into R such that s′, t′ : R→ U are
flat, locally of finite presentation and locally quasi-finite.

Proof. We will prove this lemma in several steps. We will use without further
mention that an equivalence relation gives rise to a groupoid scheme and that
the restriction of an equivalence relation is an equivalence relation, see Groupoids,
Lemmas 38.3.2, 38.11.3, and 38.16.3.

Step 1: We may assume that s, t : R → U are locally of finite presentation and
Cohen-Macaulay morphisms. Namely, as in More on Groupoids, Lemma 39.7.1 let
g : U ′ → U be the open subscheme such that t−1(U ′) ⊂ R is the maximal open
over which s : R→ U is Cohen-Macaulay, and denote R′ the restriction of R to U ′.
By the lemma cited above we see that

t−1(U ′) U ′ ×g,U,t R pr1

//

h

((
R

s
// U

is surjective. Since h is flat and locally of finite presentation, we see that {h} is a
fppf covering. Hence by Groupoids, Lemma 38.18.6 we see that U ′/R′ → U/R is
an isomorphism. By the construction of U ′ we see that s′, t′ are Cohen-Macaulay
and locally of finite presentation.

Step 2. Assume s, t are Cohen-Macaulay and locally of finite presentation. Let
u ∈ U be a point of finite type. By More on Groupoids, Lemma 39.11.4 there exists
an affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) h is flat, locally of finite presentation and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation and

locally quasi-finite.

Here we have used the notation introduced in More on Groupoids, Situation 39.11.1.

Step 3. For each point u ∈ U which is of finite type choose a gu : U ′u → U as in Step
2 and denote R′u the restriction of R to U ′u. Denote hu = s◦pr1 : U ′u×gu,U,tR→ U .
Set U ′ =

∐
u∈U U

′
u, and g =

∐
gu. Let R′ be the restriction of R to U as above.

We claim that the pair (U ′, g) works2. Note that

R′ =
∐

u1,u2∈U
(U ′u1

×gu1 ,U,t
R)×R (R×s,U,gu2

U ′u2
)

=
∐

u1,u2∈U
(U ′u1

×gu1
,U,t R)×hu1

,U,gu2
U ′u2

Hence the projection s′ : R′ → U ′ =
∐
U ′u2

is flat, locally of finite presentation
and locally quasi-finite as a base change of

∐
hu1 . Finally, by construction the

2Here we should check that U ′ is not too large, i.e., that it is isomorphic to an object of the

category Schfppf , see Section 62.2. This is a purely set theoretical matter; let us use the notion

of size of a scheme introduced in Sets, Section 3.9. Note that each U ′u has size at most the size of
U and that the cardinality of the index set is at most the cardinality of |U | which is bounded by

the size of U . Hence U ′ is isomorphic to an object of Schfppf by Sets, Lemma 3.9.9 part (6).
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morphism h : U ′ ×g,U,t R→ U is equal to
∐
hu hence its image contains all points

of finite type of U . Since each hu is flat and locally of finite presentation we
conclude that h is flat and locally of finite presentation. In particular, the image
of h is open (see Morphisms, Lemma 28.26.9) and since the set of points of finite
type is dense (see Morphisms, Lemma 28.17.7) we conclude that the image of h
is U . This implies that {h} is an fppf covering. By Groupoids, Lemma 38.18.6
this means that U ′/R′ → U/R is an isomorphism. This finishes the proof of the
lemma. �

62.9. Quotient by a subgroupoid

We need one more lemma before we can do our final bootstrap. Let us discuss what
is going on in terms of “plain” groupoids before embarking on the scheme theoretic
version.

Let C be a groupoid, see Categories, Definition 4.2.5. As discussed in Groupoids,
Section 38.11 this corresponds to a quintuple (Ob,Arrows, s, t, c). Suppose we are
given a subset P ⊂ Arrows such that (Ob, P, s|P , t|P , c|P ) is also a groupoid and
such that there are no nontrivial automorphisms in P . Then we can construct the
quotient groupoid (Ob,Arrows, s, t, c) as follows:

(1) Ob = Ob/P is the set of P -isomorphism classes,
(2) Arrows = P\Arrows/P is the set of arrows in C up to pre-composing and

post-composing by arrows of P ,
(3) the source and target maps s, t : P\Arrows/P → Ob/P are induced by

s, t,
(4) composition is defined by the rule c(a, b) = c(a, b) which is well defined.

In fact, it turns out that the original groupoid (Ob,Arrows, s, t, c) is canonically
isomorphic to the restriction (see discussion in Groupoids, Section 38.16) of the
groupoid (Ob,Arrows, s, t, c) via the quotient map g : Ob → Ob. Recall that this
means that

Arrows = Ob×g,Ob,t Arrows×s,Ob,g Ob

which holds as P has no nontrivial automorphisms. We omit the details.

The following lemma holds in much greater generality, but this is the version we
use in the proof of the final bootstrap (after which we can more easily prove the
more general versions of this lemma).

Lemma 62.9.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let P → R be monomorphism of schemes. Assume that

(1) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid scheme,
(2) s|P , t|P : P → U are finite locally free,
(3) j|P : P → U ×S U is a monomorphism.
(4) U is affine, and
(5) j : R→ U ×S U is separated and locally quasi-finite,

Then U/P is representable by an affine scheme U , the quotient morphism U → U
is finite locally free, and P = U ×U U . Moreover, R is the restriction of a groupoid

scheme (U,R, s, t, c) on U via the quotient morphism U → U .

Proof. Conditions (1), (2), (3), and (4) and Groupoids, Proposition 38.21.8 imply
the affine scheme U representing U/P exists, the morphism U → U is finite locally
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free, and P = U ×U U . The identification P = U ×U U is such that t|P = pr0 and
s|P = pr1, and such that composition is equal to pr02 : U ×U U ×U U → U ×U U .
A product of finite locally free morphisms is finite locally free (see Spaces, Lemma
47.5.7 and Morphisms, Lemmas 28.46.4 and 28.46.3). To get R we are going to
descend the scheme R via the finite locally free morphism U ×S U → U ×S U .
Namely, note that

(U ×S U)×(U×SU) (U ×S U) = P ×S P

by the above. Thus giving a descent datum (see Descent, Definition 34.30.1) for
R/U ×S U/U ×S U consists of an isomorphism

ϕ : R×(U×SU),t×t (P ×S P ) −→ (P ×S P )×s×s,(U×SU) R

over P ×S P satisfying a cocycle condition. We define ϕ on T -valued points by the
rule

ϕ : (r, (p, p′)) 7−→ ((p, p′), p−1 ◦ r ◦ p′)

where the composition is taken in the groupoid category (U(T ), R(T ), s, t, c). This
makes sense because for (r, (p, p′)) to be a T -valued point of the source of ϕ it
needs to be the case that t(r) = t(p) and s(r) = t(p′). Note that this map is an
isomorphism with inverse given by ((p, p′), r′) 7→ (p ◦ r′ ◦ (p′)−1, (p, p′)). To check
the cocycle condition we have to verify that ϕ02 = ϕ12 ◦ ϕ01 as maps over

(U×SU)×(U×SU) (U×SU)×(U×SU) (U×SU) = (P ×SP )×s×s,(U×SU),t×t (P ×SP )

By explicit calculation we see that

ϕ02 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), (p1 ◦ p2)−1 ◦ r ◦ (p′1 ◦ p′2))

ϕ01 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), p−1

1 ◦ r ◦ p′1, (p2, p
′
2))

ϕ12 ((p1, p
′
1), r, (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), p−1

2 ◦ r ◦ p′2)

(with obvious notation) which implies what we want. As j is separated and locally
quasi-finite by (5) we may apply More on Morphisms, Lemma 36.37.1 to get a
scheme R→ U ×S U and an isomorphism

R→ R×(U×SU) (U ×S U)

which identifies the descent datum ϕ with the canonical descent datum onR×(U×SU)

(U ×S U), see Descent, Definition 34.30.10.

Since U ×S U → U ×S U is finite locally free we conclude that R → R is finite
locally free as a base change. Hence R → R is surjective as a map of sheaves on
(Sch/S)fppf . Our choice of ϕ implies that given T -valued points r, r′ ∈ R(T ) these

have the same image in R if and only if p−1 ◦ r ◦ p′ for some p, p′ ∈ P (T ). Thus R
represents the sheaf

T 7−→ R(T ) = P (T )\R(T )/P (T )

with notation as in the discussion preceding the lemma. Hence we can define the
groupoid structure on (U = U/P,R = P\R/P ) exactly as in the discussion of the
“plain” groupoid case. It follows from this that (U,R, s, t, c) is the pullback of this
groupoid structure via the morphism U → U . This concludes the proof. �
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62.10. Final bootstrap

The following result goes quite a bit beyond the earlier results.

Theorem 62.10.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Any one of the following conditions implies that F is an algebraic space:

(1) F = U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such
that s, t are flat and locally of finite presentation, and j = (t, s) : R →
U ×S U is an equivalence relation,

(2) F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t
are flat and locally of finite presentation, and j = (t, s) : R → U ×S U is
an equivalence relation,

(3) F is a sheaf and there exists an algebraic space U and a morphism U → F
which is which is representable by algebraic spaces, surjective, flat and
locally of finite presentation,

(4) F is a sheaf and there exists a scheme U and a morphism U → F which
is which is representable (by algebraic spaces or schemes), surjective, flat
and locally of finite presentation,

(5) F is a sheaf, ∆F is representable by algebraic spaces, and there exists an
algebraic space U and a morphism U → F which is surjective, flat, and
locally of finite presentation, or

(6) F is a sheaf, ∆F is representable, and there exists a scheme U and a mor-
phism U → F which is surjective, flat, and locally of finite presentation.

Proof. Trivial observations: (6) is a special case of (5) and (4) is a special case
of (3). We first prove that cases (5) and (3) reduce to case (1). Namely, by
bootstrapping the diagonal Lemma 62.5.3 we see that (3) implies (5). In case (5)
we set R = U ×F U which is an algebraic space by assumption. Moreover, by
assumption both projections s, t : R → U are surjective, flat and locally of finite
presentation. The map j : R → U ×S U is clearly an equivalence relation. By
Lemma 62.4.6 the map U → F is a surjection of sheaves. Thus F = U/R which
reduces us to case (1).

Next, we show that (1) reduces to (2). Namely, let (U,R, s, t, c) be a groupoid
in algebraic spaces over S such that s, t are flat and locally of finite presentation,
and j = (t, s) : R → U ×S U is an equivalence relation. Choose a scheme U ′

and a surjective étale morphism U ′ → U . Let R′ = R|U ′ be the restriction of R
to U ′. By Groupoids in Spaces, Lemma 60.18.6 we see that U/R = U ′/R′. Since
s′, t′ : R′ → U ′ are also flat and locally of finite presentation (see More on Groupoids
in Spaces, Lemma 61.6.1) this reduces us to the case where U is a scheme. As j is
an equivalence relation we see that j is a monomorphism. As s : R → U is locally
of finite presentation we see that j : R → U ×S U is locally of finite type, see
Morphisms of Spaces, Lemma 49.23.6. By Morphisms of Spaces, Lemma 49.26.10
we see that j is locally quasi-finite and separated. Hence if U is a scheme, then R is
a scheme by Morphisms of Spaces, Proposition 49.44.2. Thus we reduce to proving
the theorem in case (2).

Assume F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t are
flat and locally of finite presentation, and j = (t, s) : R→ U ×S U is an equivalence
relation. By Lemma 62.8.1 we reduce to that case where s, t are flat, locally of
finite presentation, and locally quasi-finite. Let U =

⋃
i∈I Ui be an affine open

http://stacks.math.columbia.edu/tag/04S6
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covering (with index set I of cardinality ≤ than the size of U to avoid set theoretic
problems later – most readers can safely ignore this remark). Let (Ui, Ri, si, ti, ci)
be the restriction of R to Ui. It is clear that si, ti are still flat, locally of finite
presentation, and locally quasi-finite as Ri is the open subscheme s−1(Ui)∩ t−1(Ui)
of R and si, ti are the restrictions of s, t to this open. By Lemma 62.7.1 (or the
simpler Spaces, Lemma 47.10.2) the map Ui/Ri → U/R is representable by open
immersions. Hence if we can show that Fi = Ui/Ri is an algebraic space, then∐
i∈I Fi is an algebraic space by Spaces, Lemma 47.8.3. As U =

⋃
Ui is an open

covering it is clear that
∐
Fi → F is surjective. Thus it follows that U/R is an

algebraic space, by Spaces, Lemma 47.8.4. In this way we reduce to the case where
U is affine and s, t are flat, locally of finite presentation, and locally quasi-finite and
j is an equivalence.

Assume (U,R, s, t, c) is a groupoid scheme over S, with U affine, such that s, t are
flat, locally of finite presentation, and locally quasi-finite, and j is an equivalence
relation. Choose u ∈ U . We apply More on Groupoids in Spaces, Lemma 61.12.9
to u ∈ U,R, s, t, c. We obtain an affine scheme U ′, an étale morphism g : U ′ → U ,
a point u′ ∈ U ′ with κ(u) = κ(u′) such that the restriction R′ = R|U ′ is quasi-
split over u′. Note that the image g(U ′) is open as g is étale and contains u′.
Hence, repeatedly applying the lemma, we can find finitely many points ui ∈ U ,
i = 1, . . . , n, affine schemes U ′i , étale morphisms gi : U ′i → U , points u′i ∈ U ′i with
g(u′i) = ui such that (a) each restriction R′i is quasi-split over some point in U ′i
and (b) U =

⋃
i=1,...,n gi(U

′
i). Now we rerun the last part of the argument in the

preceding paragraph: Using Lemma 62.7.1 (or the simpler Spaces, Lemma 47.10.2)
the map U ′i/R

′
i → U/R is representable by open immersions. If we can show that

Fi = U ′i/R
′
i is an algebraic space, then

∐
i∈I Fi is an algebraic space by Spaces,

Lemma 47.8.3. As {gi : U ′i → U} is an étale covering it is clear that
∐
Fi → F

is surjective. Thus it follows that U/R is an algebraic space, by Spaces, Lemma
47.8.4. In this way we reduce to the case where U is affine and s, t are flat, locally of
finite presentation, and locally quasi-finite, j is an equivalence, and R is quasi-split
over u for some u ∈ U .

Assume (U,R, s, t, c) is a groupoid scheme over S, with U affine, u ∈ U such that
s, t are flat, locally of finite presentation, and locally quasi-finite and j = (t, s) :
R → U ×S U is an equivalence relation and R is quasi-split over u. Let P ⊂ R
be a quasi-splitting of R over u. By Lemma 62.9.1 we see that (U,R, s, t, c) is the
restriction of a groupoid (U,R, s, t, c) by a surjective finite locally free morphism
U → U such that P = U×UU . Note that s, t are the base changes of the morphisms

s, t by U → U . As {U → U} is an fppf covering we conclude s, t are flat, locally of
finite presentation, and locally quasi-finite, see Descent, Lemmas 34.19.13, 34.19.9,
and 34.19.22. Consider the commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian
diagram. By the equality we see the inner square is cartesian. Since P is open
in R (by definition of a quasi-splitting) we conclude that e is an open immersion
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by Descent, Lemma 34.19.14. An application of Groupoids, Lemma 38.18.5 shows
that U/R = U/R. Hence we have reduced to the case where (U,R, s, t, c) is a
groupoid scheme over S, with U affine, u ∈ U such that s, t are flat, locally of finite
presentation, and locally quasi-finite and j = (t, s) : R→ U ×S U is an equivalence
relation and e : U → R is an open immersion!

But of course, if e is an open immersion and s, t are flat and locally of finite
presentation then the morphisms t, s are étale. For example you can see this by
applying More on Groupoids, Lemma 39.4.1 which shows that ΩR/U = 0 which in
turn implies that s, t : R → U is G-unramified (see Morphisms, Lemma 28.36.2),
which in turn implies that s, t are étale (see Morphisms, Lemma 28.37.16). And if
s, t are étale then finally U/R is an algebraic space by Spaces, Theorem 47.10.5. �

62.11. Applications

As a first application we obtain the following fundamental fact:

A sheaf which is fppf locally an algebraic space is an algebraic space.

This is the content of the following lemma. Note that assumption (2) is equivalent to
the condition that F |(Sch/Si)fppf is an algebraic space, see Spaces, Lemma 47.16.4.
Assumption (3) is a set theoretic condition which may be ignored by those not
worried about set theoretic questions.

Lemma 62.11.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.

Let {Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi × F is an algebraic space, and
(3)

∐
i∈I Fi is an algebraic space (see Spaces, Lemma 47.8.3).

Then F is an algebraic space.

Proof. Consider the morphism
∐
Fi → F . This is the base change of

∐
Si → S via

F → S. Hence it is representable, locally of finite presentation, flat and surjective
by our definition of an fppf covering and Lemma 62.4.2. Thus Theorem 62.10.1
applies to show that F is an algebraic space. �

As a second application we obtain

Any fppf descent datum for algebraic spaces is effective.

This is the content of the following lemma.

Lemma 62.11.2. Let S be a scheme. Let {Xi → X}i∈I be an fppf covering of
algebraic spaces over S. Assume I is countable3. Then any descent datum for
algebraic spaces relative to {Xi → X} is effective.

Proof. By Descent on Spaces, Lemma 56.20.1 this translates into the statement
that an fppf sheaf F endowed with a map F → X is an algebraic space provided
that each F ×X Xi is an algebraic space. The restriction on the cardinality of I
implies that coproducts of algebraic spaces indexed by I are algebraic spaces, see
Spaces, Lemma 47.8.3 and Sets, Lemma 3.9.9. The morphism∐

F ×X Xi −→ F

3We can allow larger index sets here if we can bound the size of the algebraic spaces which
we are descending. If we ever need this we will add a more precise statement here.

http://stacks.math.columbia.edu/tag/04SK
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is representable by algebraic spaces (as the base change of
∐
Xi → X, see Lemma

62.3.3), and surjective, flat, and locally of finite presentation (as the base change of∐
Xi → X, see Lemma 62.4.2). Hence the lemma follows from Theorem 62.10.1.

�

Here is a different type of application.

Lemma 62.11.3. Let S be a scheme. Let a : F → G and b : G → H be transfor-
mations of functors (Sch/S)oppfppf → Sets. Assume

(1) F,G,H are sheaves,
(2) a : F → G is representable by algebraic spaces, flat, locally of finite pre-

sentation, and surjective, and
(3) b ◦ a : F → H is representable by algebraic spaces.

Then b is representable by algebraic spaces.

Proof. Let U be a scheme over S and let ξ ∈ H(U). We have to show that U×ξ,HG
is an algebraic space. On the other hand, we know that U ×ξ,H F is an algebraic
space and that U ×ξ,H F → U ×ξ,H G is representable by algebraic spaces, flat,
locally of finite presentation, and surjective as a base change of the morphism a
(see Lemma 62.4.2). Thus the result follows from Theorem 62.10.1. �

Here is a special case of Lemma 62.11.1 where we do not need to worry about set
theoretical issues.

Lemma 62.11.4. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.

Let {Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi × F is an algebraic space, and
(3) the morphisms Fi → Si are of finite type.

Then F is an algebraic space.

Proof. We will use Lemma 62.11.1 above. To do this we will show that the as-
sumption that Fi is of finite type over Si to prove that the set theoretic condition
in the lemma is satisfied (after perhaps refining the given covering of S a bit). We
suggest the reader skip the rest of the proof.

If S′i → Si is a morphism of schemes then

hS′i × F = hS′i ×hSi hSi × F = hS′i ×hSi Fi
is an algebraic space of finite type over S′i, see Spaces, Lemma 47.7.3 and Morphisms
of Spaces, Lemma 49.23.3. Thus we may refine the given covering. After doing this
we may assume: (a) each Si is affine, and (b) the cardinality of I is at most the
cardinality of the set of points of S. (Since to cover all of S it is enough that each
point is in the image of Si → S for some i.)

Since each Si is affine and each Fi of finite type over Si we conclude that Fi is
quasi-compact. Hence by Properties of Spaces, Lemma 48.6.3 we can find an affine
Ui ∈ Ob((Sch/S)fppf ) and a surjective étale morphism Ui → Fi. The fact that
Fi → Si is locally of finite type then implies that Ui → Si is locally of finite
type, and in particular Ui → S is locally of finite type. By Sets, Lemma 3.9.7
we conclude that size(Ui) ≤ size(S). Since also |I| ≤ size(S) we conclude that∐
i∈I Ui is isomorphic to an object of (Sch/S)fppf by Sets, Lemma 3.9.5 and the

http://stacks.math.columbia.edu/tag/0AMP
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construction of Sch. This implies that
∐
Fi is an algebraic space by Spaces, Lemma

47.8.3 and we win. �

Lemma 62.11.5. Assume B → S and (U,R, s, t, c) are as in Groupoids in Spaces,
Definition 60.19.1 (1). For any scheme T over S and objects x, y of [U/R] over T
the sheaf Isom(x, y) on (Sch/T )fppf is an algebraic space.

Proof. By Groupoids in Spaces, Lemma 60.21.3 there exists an fppf covering {Ti →
T}i∈I such that Isom(x, y)|(Sch/Ti)fppf is an algebraic space for each i. By Spaces,
Lemma 47.16.4 this means that each Fi = hSi × Isom(x, y) is an algebraic space.
Thus to prove the lemma we only have to verify the set theoretic condition that∐
Fi is an algebraic space of Lemma 62.11.1 above to conclude. To do this we

use Spaces, Lemma 47.8.3 which requires showing that I and the Fi are not “too
large”. We suggest the reader skip the rest of the proof.

Choose U ′ ∈ Ob(Sch/S)fppf and a surjective étale morphism U ′ → U . Let R′ be
the restriction of R to U ′. Since [U/R] = [U ′/R′] we may, after replacing U by U ′,
assume that U is a scheme. (This step is here so that the fibre products below are
over a scheme.)

Note that if we refine the covering {Ti → T} then it remains true that each Fi is an
algebraic space. Hence we may assume that each Ti is affine. Since Ti → T is locally
of finite presentation, this then implies that size(Ti) ≤ size(T ), see Sets, Lemma
3.9.7. We may also assume that the cardinality of the index set I is at most the
cardinality of the set of points of T since to get a covering it suffices to check that
each point of T is in the image. Hence |I| ≤ size(T ). Choose W ∈ Ob((Sch/S)fppf )
and a surjective étale morphism W → R. Note that in the proof of Groupoids in
Spaces, Lemma 60.21.3 we showed that Fi is representable by Ti×(yi,xi),U×BUR for
some xi, yi : Ti → U . Hence now we see that Vi = Ti ×(yi,xi),U×BU W is a scheme
which comes with an étale surjection Vi → Fi. By Sets, Lemma 3.9.6 we see that

size(Vi) ≤ max{size(Ti), size(W )} ≤ max{size(T ), size(W )}

Hence, by Sets, Lemma 3.9.5 we conclude that

size(
∐

i∈I
Vi) ≤ max{|I|, size(T ), size(W )}.

Hence we conclude by our construction of Sch that
∐
i∈I Vi is isomorphic to an

object V of (Sch/S)fppf . This verifies the hypothesis of Spaces, Lemma 47.8.3 and
we win. �

Lemma 62.11.6. Let S be a scheme. Consider an algebraic space F of the form
F = U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such that s, t
are flat and locally of finite presentation, and j = (t, s) : R→ U ×S U is an equiv-
alence relation. Then U → F is surjective, flat, and locally of finite presentation.

Proof. This is almost but not quite a triviality. Namely, by Groupoids in Spaces,
Lemma 60.18.5 and the fact that j is a monomorphism we see that R = U ×F U .
Choose a scheme W and a surjective étale morphism W → F . As U → F is a
surjection of sheaves we can find an fppf covering {Wi → W} and maps Wi → U
lifting the morphisms Wi → F . Then we see that

Wi ×F U = Wi ×U U ×F U = Wi ×U,t R

http://stacks.math.columbia.edu/tag/04TB
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and the projection Wi ×F U → Wi is the base change of t : R → U hence flat
and locally of finite presentation, see Morphisms of Spaces, Lemmas 49.28.4 and
49.27.3. Hence by Descent on Spaces, Lemmas 56.10.11 and 56.10.8 we see that
U → F is flat and locally of finite presentation. It is surjective by Spaces, Remark
47.5.2. �

Lemma 62.11.7. Let S be a scheme. Let X → B be a morphism of algebraic
spaces over S. Let G be a group algebraic space over B and let a : G ×B X → X
be an action of G on X/B. If

(1) a is a free action, and
(2) G→ B is flat and locally of finite presentation,

then X/G (see Groupoids in Spaces, Definition 60.18.1) is an algebraic space and
X → X/G is surjective, flat, and locally of finite presentation.

Proof. The fact that X/G is an algebraic space is immediate from Theorem 62.10.1
and the definitions. Namely, X/G = X/R where R = G ×B X. The morphisms
s, t : G ×B X → X are flat and locally of finite presentation (clear for s as a base
change of G → B and by symmetry using the inverse it follows for t) and the
morphism j : G ×B X → X ×B X is a monomorphism by Groupoids in Spaces,
Lemma 60.8.3 as the action is free. The assertions about the morphism X → X/G
follow from Lemma 62.11.6. �

Lemma 62.11.8. Let {Si → S}i∈I be a covering of (Sch/S)fppf . Let G be a group
algebraic space over S, and denote Gi = GSi the base changes. Suppose given

(1) for each i ∈ I an fppf Gi-torsor Xi over Si, and
(2) for each i, j ∈ I a GSi×SSj -equivariant isomorphism ϕij : Xi ×S Sj →

Si ×S Xj satisfying the cocycle condition over every Si ×S Sj ×S Sj.
Then there exists an fppf G-torsor X over S whose base change to Si is isomorphic
to Xi such that we recover the descent datum ϕij.

Proof. We may think of Xi as a sheaf on (Sch/Si)fppf , see Spaces, Section 47.16.
By Sites, Section 7.25 the descent datum (Xi, ϕij) is effective in the sense that
there exists a unique sheaf X on (Sch/S)fppf which recovers the algebraic spaces
Xi after restricting back to (Sch/Si)fppf . Hence we see that Xi = hSi × X. By
Lemma 62.11.1 we see that X is an algebraic space, modulo verifying that

∐
Xi

is an algebraic space which we do at the end of the proof. By the equivalence of
categories in Sites, Lemma 7.25.3 the action maps Gi ×Si Xi → Xi glue to give
a map a : G ×S X → X. Now we have to show that a is an action and that
X is a pseudo-torsor, and fppf locally trivial (see Groupoids in Spaces, Definition
60.9.3). These may be checked fppf locally, and hence follow from the corresponding
properties of the actions Gi ×Si Xi → Xi. Hence the lemma is true.

We suggest the reader skip the rest of the proof, which is purely set theoretical.
Pick coverings {Sij → Sj}j∈Ji of (Sch/S)fppf which trivialize the Gi torsors Xi

(possible by assumption, and Topologies, Lemma 33.7.7 part (1)). Then {Sij →
S}i∈I,j∈Ji is a covering of (Sch/S)fppf and hence we may assume that each Xi

is the trivial torsor! Of course we may also refine the covering further, hence we
may assume that each Si is affine and that the index set I has cardinality bounded
by the cardinality of the set of points of S. Choose U ∈ Ob((Sch/S)fppf ) and a
surjective étale morphism U → G. Then we see that Ui = U ×S Si comes with an

http://stacks.math.columbia.edu/tag/06PH
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étale surjective morphism to Xi
∼= Gi. By Sets, Lemma 3.9.6 we see size(Ui) ≤

max{size(U), size(Si)}. By Sets, Lemma 3.9.7 we have size(Si) ≤ size(S). Hence
we see that size(Ui) ≤ max{size(U), size(S)} for all i ∈ I. Together with the bound
on |I| we found above we conclude from Sets, Lemma 3.9.5 that size(

∐
Ui) ≤

max{size(U), size(S)}. Hence Spaces, Lemma 47.8.3 applies to show that
∐
Xi is

an algebraic space which is what we had to prove. �

62.12. Algebraic spaces in the étale topology

Let S be a scheme. Instead of working with sheaves over the big fppf site (Sch/S)fppf
we could work with sheaves over the big étale site (Sch/S)étale. All of the material in
Algebraic Spaces, Sections 47.3 and 47.5 makes sense for sheaves over (Sch/S)étale.
Thus we get a second notion of algebraic spaces by working in the étale topology.
This notion is (a priori) weaker then the notion introduced in Algebraic Spaces,
Definition 47.6.1 since a sheaf in the fppf topology is certainly a sheaf in the étale
topology. However, the notions are equivalent as is shown by the following lemma.

Lemma 62.12.1. Denote the common underlying category of Schfppf and Schétale
by Schα (see Topologies, Remark 33.9.1). Let S be an object of Schα.

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and étale.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 47.6.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding prop-
erties (2) and (3) of Algebraic Spaces, Definition 47.6.1 are independent of the
topology. This is true because these properties involve only the notion of a fibre
product of presheaves, maps of presheaves, the notion of a representable transfor-
mation of functors, and what it means for such a transformation to be surjective
and étale. Thus all we have to prove is that an étale sheaf F with properties (2)
and (3) is also an fppf sheaf.

To do this, let R = U ×F U . By (2) the presheaf R is representable by a scheme
and by (3) the projections R → U are étale. Thus j : R → U ×S U is an étale
equivalence relation. Moreover U → F identifies F as the quotient of U by R
for the étale topology: (a) if T → F is a morphism, then {T ×F U → T} is an
étale covering, hence U → F is a surjection of sheaves for the étale topology, (b)
if a, b : T → U map to the same section of F , then (a, b) : T → R hence a and b
have the same image in the quotient of U by R for the étale topology. Next, let
U/R denote the quotient sheaf in the fppf topology which is an algebraic space by
Spaces, Theorem 47.10.5. Thus we have morphisms (transformations of functors)

U → F → U/R.

By the aforementioned Spaces, Theorem 47.10.5 the composition is representable,
surjective, and étale. Hence for any scheme T and morphism T → U/R the fibre
product V = T ×U/R U is a scheme surjective and étale over T . In other words,
{V → U} is an étale covering. This proves that U → U/R is surjective as a map
of sheaves in the étale topology. It follows that F → U/R is surjective as a map of

http://stacks.math.columbia.edu/tag/076M
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sheaves in the étale topology. On the other hand, the map F → U/R is injective
(as a map of presheaves) since R = U×U/RU again by Spaces, Theorem 47.10.5. It
follows that F → U/R is an isomorphism of étale sheaves, see Sites, Lemma 7.12.2
which concludes the proof. �

In fact, it suffices to have a smooth cover by a scheme and it suffices to assume the
diagonal is representable by algebraic spaces.

Lemma 62.12.2. Denote the common underlying category of Schfppf and Schétale
by Schα (see Topologies, Remark 33.9.1). Let S be an object of Schα.

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable by algebraic spaces, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and smooth.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 47.6.1.

Proof. The proof mirrors the proof of Lemma 62.12.1. Let R = U×F U . By (2) the
presheaf R is an algebraic space and by (3) the projections R→ U are smooth and
surjective. Denote (U,R, s, t, c) the groupoid associated to the equivalence relation
j : R → U ×S U (see Groupoids in Spaces, Lemma 60.11.3). By Theorem 62.10.1
we see that X = U/R (quotient in the fppf-topology) is an algebraic space. Using
that the smooth topology and the étale topology have the same sheaves (by More
on Morphisms, Lemma 36.28.7) we see the map U → F identifies F as the quotient
of U by R for the smooth topology (details omitted). Thus we have morphisms
(transformations of functors)

U → F → X.

By Lemma 62.11.6 we see that U → X is surjective, flat and locally of finite
presentation. By Groupoids in Spaces, Lemma 60.18.5 (and the fact that j is a
monomorphism) we have R = U ×X U . By Descent on Spaces, Lemma 56.10.24
we conclude that U → X is smooth and surjective (as the projections R → U are
smooth and surjective and {U → X} is an fppf covering). Hence for any scheme T
and morphism T → X the fibre product T×XU is an algebraic space surjective and
smooth over T . Choose a scheme V and a surjective étale morphism V → T ×X U .
Then {V → T} is a smooth covering such that V → T → X lifts to a morphism
V → U . This proves that U → X is surjective as a map of sheaves in the smooth
topology. It follows that F → X is surjective as a map of sheaves in the smooth
topology. On the other hand, the map F → X is injective (as a map of presheaves)
since R = U ×X U . It follows that F → X is an isomorphism of smooth (= étale)
sheaves, see Sites, Lemma 7.12.2 which concludes the proof. �
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CHAPTER 63

Quotients of Groupoids

63.1. Introduction

This chapter is devoted to generalities concerning groupoids and their quotients
(as far as they exist). There is a lot of literature on this subject, see for example
[MFK94], [Ses72], [Kol97], [KM97], [Kol08] and many more.

63.2. Conventions and notation

In this chapter the conventions and notation are those introduced in Groupoids in
Spaces, Sections 60.2 and 60.3.

63.3. Invariant morphisms

Definition 63.3.1. Let S be a scheme, and let B be an algebraic space over S.
Let j = (t, s) : R→ U ×B U be a pre-relation of algebraic spaces over B. We say a
morphism φ : U → X of algebraic spaces over B is R-invariant if the diagram

R
s
//

t

��

U

φ

��
U

φ // X

is commutative. If j : R → U ×B U comes from the action of a group algebraic
space G on U over B as in Groupoids in Spaces, Lemma 60.14.1, then we say that
φ is G-invariant.

In other words, a morphism U → X is R-invariant if it equalizes s and t. We can
reformulate this in terms of associated quotient sheaves as follows.

Lemma 63.3.2. Let S be a scheme, and let B be an algebraic space over S. Let
j = (t, s) : R→ U×BU be a pre-relation of algebraic spaces over B. A morphism of
algebraic spaces φ : U → X is R-invariant if and only if it factors as U → U/R→
X.

Proof. This is clear from the definition of the quotient sheaf in Groupoids in
Spaces, Section 60.18. �

Lemma 63.3.3. Let S be a scheme, and let B be an algebraic space over S. Let
j = (t, s) : R→ U×B U be a pre-relation of algebraic spaces over B. Let U → X be
an R-invariant morphism of algebraic spaces over B. Let X ′ → X be any morphism
of algebraic spaces.

(1) Setting U ′ = X ′ ×X U , R′ = X ′ ×X R we obtain a pre-relation j′ : R′ →
U ′ ×B U ′.

3701
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(2) The pre-relation j′ : R′ → U ′ ×B U ′ is the restriction of j : R→ U ×B U
via U ′ → U , see Groupoids in Spaces, Definition 60.4.3.

(3) If j is a relation, then j′ is a relation.
(4) If j is a pre-equivalence relation, then j′ is a pre-equivalence relation.
(5) If j is an equivalence relation, then j′ is an equivalence relation.
(6) If j comes from a groupoid in algebraic spaces (U,R, s, t, c) over B, then j′

comes from the restriction of this groupoid to U ′, see Groupoids in Spaces,
Definition 60.16.2.

(7) If j comes from the action of a group algebraic space G/B on U as in
Groupoids in Spaces, Lemma 60.14.1 then j′ comes from the induced ac-
tion of G on U ′.

Proof. Omitted. Hint: Functorial point of view combined with the picture:

R′ = X ′ ×X R

��

//

&&

X ′ ×X U = U ′

��

&&
R

��

// U

��

U ′ = X ′ ×X U //

&&

X ′

&&
U // X

�

Definition 63.3.4. In the situation of Lemma 63.3.3 we call j′ : R′ → U ′ ×B U ′
the pullback of the pre-relation j to X ′. We say it is a flat pullback if X ′ → X is a
flat morphism of algebraic spaces.

63.4. Categorical quotients

This is the most basic kind of quotient one can consider.

Definition 63.4.1. Let S be a scheme, and let B be an algebraic space over S.
Let j = (t, s) : R→ U ×B U be pre-relation in algebraic spaces over B.

(1) We say a morphism φ : U → X of algebraic spaces over B is a categorical
quotient if it is R-invariant, and for every R-invariant morphism ψ : U →
Y of algebraic spaces over B there exists a unique morphism χ : X → Y
such that ψ = φ ◦ χ.

(2) Let C be a full subcategory of the category of algebraic spaces over B.
Assume U , R are objects of C. In this situation we say a morphism
φ : U → X of algebraic spaces over B is a categorical quotient in C if
X ∈ Ob(C), and φ is R-invariant, and for every R-invariant morphism
ψ : U → Y with Y ∈ Ob(C) there exists a unique morphism χ : X → Y
such that ψ = φ ◦ χ.

(3) If B = S and C is the category of schemes over S, then we say U → X is
a categorical quotient in the category of schemes, or simply a categorical
quotient in schemes.
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We often single out a category C of algebraic spaces over B by some separation
axiom, see Example 63.4.3 for some standard cases. Note that if φ : U → X is
a categorical quotient if and only if U → X is a coequalizer for the morphisms
t, s : R→ U in the category. Hence we immediately deduce the following lemma.

Lemma 63.4.2. Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation in algebraic spaces over B. If a categorical
quotient in the category of algebraic spaces over B exists, then it is unique up
to unique isomorphism. Similarly for categorical quotients in full subcategories of
Spaces/B.

Proof. See Categories, Section 4.11. �

Example 63.4.3. Let S be a scheme, and let B be an algebraic space over S. Here
are some standard examples of categories C that we often come up when applying
Definition 63.4.1:

(1) C is the category of all algebraic spaces over B,
(2) B is separated and C is the category of all separated algebraic spaces over

B,
(3) B is quasi-separated and C is the category of all quasi-separated algebraic

spaces over B,
(4) B is locally separated and C is the category of all locally separated alge-

braic spaces over B,
(5) B is decent and C is the category of all decent algebraic spaces over B,

and
(6) S = B and C is the category of schemes over S.

In this case, if φ : U → X is a categorical quotient then we say U → X is (1)
a categorical quotient, (2) a categorical quotient in separated algebraic spaces, (3)
a categorical quotient in quasi-separated algebraic spaces, (4) a categorical quotient
in locally separated algebraic spaces, (5) a categorical quotient in decent algebraic
spaces, (6) a categorical quotient in schemes.

Definition 63.4.4. Let S be a scheme, and let B be an algebraic space over S.
Let C be a full subcategory of the category of algebraic spaces over B closed under
fibre products. Let j = (t, s) : R → U ×B U be pre-relation in C, and let U → X
be an R-invariant morphism with X ∈ Ob(C).

(1) We say U → X is a universal categorical quotient in C if for every mor-
phism X ′ → X in C the morphism U ′ = X ′×X U → X ′ is the categorical
quotient in C of the pullback j′ : R′ → U ′ of j.

(2) We say U → X is a uniform categorical quotient in C if for every flat
morphism X ′ → X in C the morphism U ′ = X ′ ×X U → X ′ is the
categorical quotient in C of the pullback j′ : R′ → U ′ of j.

Lemma 63.4.5. In the situation of Definition 63.4.1. If φ : U → X is a categor-
ical quotient and U is reduced, then X is reduced. The same holds for categorical
quotients in a category of spaces C listed in Example 63.4.3.

Proof. Let Xred be the reduction of the algebraic space X. Since U is reduced the
morphism φ : U → X factors through i : Xred → X (insert future reference here).
Denote this morphism by φred : U → Xred. Since φ ◦ s = φ ◦ t we see that also
φred ◦ s = φred ◦ t (as i : Xred → X is a monomorphism). Hence by the universal
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property of φ there exists a morphism χ : X → Xred such that φred = φ ◦ χ. By
uniqueness we see that i ◦ χ = idX and χ ◦ i = idXred . Hence i is an isomorphism
and X is reduced.

To show that this argument works in a category C one just needs to show that the
reduction of an object of C is an object of C. We omit the verification that this
holds for each of the standard examples. �

63.5. Quotients as orbit spaces

Let j = (t, s) : R → U ×B U be a pre-relation. If j is a pre-equivalence relation,
then loosely speaking the “orbits” of R on U are the subsets t(s−1({u})) of U .
However, if j is just a pre-relation, then we need to take the equivalence relation
generated by R.

Definition 63.5.1. Let S be a scheme, and let B be an algebraic space over S.
Let j : R → U ×B U be a pre-relation over B. If u ∈ |U |, then the orbit, or more
precisely the R-orbit of u is

Ou =

u
′ ∈ |U | :

∃n ≥ 1, ∃u0, . . . , un ∈ |U | such that
for all i ∈ {0, . . . , n− 1} either

ui = ui+1 or
∃r ∈ |R|, s(r) = ui, t(r) = ui+1 or
∃r ∈ |R|, t(r) = ui, s(r) = ui+1


It is clear that these are the equivalence classes of an equivalence relation, i.e., we
have u′ ∈ Ou if and only if u ∈ Ou′ . The following lemma is a reformulation of
Groupoids in Spaces, Lemma 60.4.4.

Lemma 63.5.2. Let B → S as in Section 63.2. Let j : R → U ×B U be a
pre-equivalence relation of algebraic spaces over B. Then

Ou = {u′ ∈ |U | such that ∃r ∈ |R|, s(r) = u, t(r) = u′}.

Proof. By the aforementioned Groupoids in Spaces, Lemma 60.4.4 we see that the
orbits Ou as defined in the lemma give a disjoint union decomposition of |U |. Thus
we see they are equal to the orbits as defined in Definition 63.5.1. �

Lemma 63.5.3. In the situation of Definition 63.5.1. Let φ : U → X be an R-
invariant morphism of algebraic spaces over B. Then |φ| : |U | → |X| is constant
on the orbits.

Proof. To see this we just have to show that φ(u) = φ(u′) for all u, u′ ∈ |U | such
that there exists an r ∈ |R| such that s(r) = u and t(r) = u′. And this is clear
since φ equalizes s and t. �

There are several problems with considering the orbits Ou ⊂ |U | as a tool for
singling out properties of quotient maps. One issue is the following. Suppose that
Spec(k)→ B is a geometric point of B. Consider the canonical map

U(k) −→ |U |.
Then it is usually not the case that the equivalence classes of the equivalence relation
generated by j(R(k)) ⊂ U(k)×U(k) are the inverse images of the orbits Ou ⊂ |U |.
A silly example is to take S = B = Spec(Z), U = R = Spec(k) with s = t = idk.
Then |U | = |R| is a single point but U(k)/R(k) is enormous. A more interesting
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example is to take S = B = Spec(Q), choose some of number fields K ⊂ L, and
set U = Spec(L) and R = Spec(L ⊗K L) with obvious maps s, t : R → U . In this
case |U | still has just one point, but the quotient

U(k)/R(k) = Hom(K, k)

consists of more than one element. We conclude from both examples that if U → X
is an R-invariant map and if we want it to “separate orbits” we get a much stronger
and interesting notion by considering the induced maps U(k)→ X(k) and ask that
those maps separate orbits.

There is an issue with this too. Namely, suppose that S = B = Spec(R), U =
Spec(C), and R = Spec(C)qSpec(K) for some field extension σ : C→ K. Let the
maps s, t be given by the identity on the component Spec(C), but by σ, σ ◦τ on the
second component where τ is complex conjugation. If K is a nontrivial extension
of C, then the two points 1, τ ∈ U(C) are not equivalent under j(R(C)). But after
choosing an extension C ⊂ Ω of sufficiently large cardinality (for example larger
than the cardinality of K) then the images of 1, τ ∈ U(C) in U(Ω) do become
equivalent! It seems intuitively clear that this happens either because s, t : R→ U
are not locally of finite type or because the cardinality of the field k is not large
enough.

Keeping this in mind we make the following definition.

Definition 63.5.4. Let S be a scheme, and let B be an algebraic space over S.
Let j : R → U ×B U be a pre-relation over B. Let Spec(k) → B be a geometric
point of B.

(1) We say u, u′ ∈ U(k) are weakly R-equivalent if they are in the same
equivalence class for the equivalence relation generated by the relation
j(R(k)) ⊂ U(k)× U(k).

(2) We say u, u′ ∈ U(k) are R-equivalent if for some overfield k ⊂ Ω the
images in U(Ω) are weakly R-equivalent.

(3) The weak orbit, or more precisely the weak R-orbit of u ∈ U(k) is set of
all elements of U(k) which are weakly R-equivalent to u.

(4) The orbit, or more precisely the R-orbit of u ∈ U(k) is set of all elements
of U(k) which are R-equivalent to u.

It turns out that in good cases orbits and weak orbits agree, see Lemma 63.5.7. The
following lemma illustrates the difference in the special case of a pre-equivalence
relation.

Lemma 63.5.5. Let S be a scheme, and let B be an algebraic space over S. Let
Spec(k)→ B be a geometric point of B. Let j : R→ U ×B U be a pre-equivalence
relation over B. In this case the weak orbit of u ∈ U(k) is simply

{u′ ∈ U(k) such that ∃r ∈ R(k), s(r) = u, t(r) = u′}

and the orbit of u ∈ U(k) is

{u′ ∈ U(k) : ∃ field extension k ⊂ K, ∃ r ∈ R(K), s(r) = u, t(r) = u′}

Proof. This is true because by definition of a pre-equivalence relation the image
j(R(k)) ⊂ U(k)× U(k) is an equivalence relation. �

http://stacks.math.columbia.edu/tag/048Q
http://stacks.math.columbia.edu/tag/048R


3706 63. QUOTIENTS OF GROUPOIDS

Let us describe the recipe for turning any pre-relation into a pre-equivalence rela-
tion. We will use the morphisms

(63.5.5.1)
jdiag : U −→ U ×B U, u 7−→ (u, u)
jflip : R −→ U ×B U, r 7−→ (s(r), t(r))
jcomp : R×s,U,t R −→ U ×B U, (r, r′) 7−→ (t(r), s(r′))

We define j1 = (t1, s1) : R1 → U ×B U to be the morphism

j q jdiag q jflip : R q U qR −→ U ×B U

with notation as in Equation (63.5.5.1). For n > 1 we set

jn = (tn, sn) : Rn = R1 ×s1,U,tn−1
Rn−1 −→ U ×B U

where tn comes from t1 precomposed with projection onto R1 and sn comes from
sn−1 precomposed with projection onto Rn−1. Finally, we denote

j∞ = (t∞, s∞) : R∞ =
∐

n≥1
Rn −→ U ×B U.

Lemma 63.5.6. Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation over B. Then j∞ : R∞ → U ×B U is a
pre-equivalence relation over B. Moreover

(1) φ : U → X is R-invariant if and only if it is R∞-invariant,
(2) the canonical map of quotient sheaves U/R → U/R∞ (see Groupoids in

Spaces, Section 60.18) is an isomorphism,
(3) weak R-orbits agree with weak R∞-orbits,
(4) R-orbits agree with R∞-orbits,
(5) if s, t are locally of finite type, then s∞, t∞ are locally of finite type,
(6) add more here as needed.

Proof. Omitted. Hint for (5): Any property of s, t which is stable under composi-
tion and stable under base change, and Zariski local on the source will be inherited
by s∞, t∞. �

Lemma 63.5.7. Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation over B. Let Spec(k) → B be a geometric point
of B.

(1) If s, t : R → U are locally of finite type then weak R-equivalence on U(k)
agrees with R-equivalence, and weak R-orbits agree with R-orbits on U(k).

(2) If k has sufficiently large cardinality then weak R-equivalence on U(k)
agrees with R-equivalence, and weak R-orbits agree with R-orbits on U(k).

Proof. We first prove (1). Assume s, t locally of finite type. By Lemma 63.5.6 we
may assume that R is a pre-equivalence relation. Let k be an algebraically closed
field over B. Suppose u, u′ ∈ U(k) are R-equivalent. Then for some extension field
k ⊂ Ω there exists a point r ∈ R(Ω) mapping to (u, u′) ∈ (U ×B U)(Ω), see Lemma
63.5.5. Hence

Z = R×j,U×BU,(u,u′) Spec(k)

is nonempty. As s is locally of finite type we see that also j is locally of finite type,
see Morphisms of Spaces, Lemma 49.23.6. This implies Z is a nonempty algebraic
space locally of finite type over the algebraically closed field k (use Morphisms of
Spaces, Lemma 49.23.3). Thus Z has a k-valued point, see Morphisms of Spaces,
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Lemma 49.24.1. Hence we conclude there exists a r ∈ R(k) with j(r) = (u, u′), and
we conclude that u, u′ are R-equivalent as desired.

The proof of part (2) is the same, except that it uses Morphisms of Spaces, Lemma
49.24.2 instead of Morphisms of Spaces, Lemma 49.24.1. This shows that the
assertion holds as soon as |k| > λ(R) with λ(R) as introduced just above Morphisms
of Spaces, Lemma 49.24.1. �

In the following definition we use the terminology “k is a field over B” to mean
that Spec(k) comes equipped with a morphism Spec(k)→ B.

Definition 63.5.8. Let S be a scheme, and let B be an algebraic space over S.
Let j : R→ U ×B U be a pre-relation over B.

(1) We say φ : U → X is set-theoretically R-invariant if and only if the
map U(k) → X(k) equalizes the two maps s, t : R(k) → U(k) for every
algebraically closed field k over B.

(2) We say φ : U → X separates orbits, or separates R-orbits if it is set-
theoretically R-invariant and φ(u) = φ(u′) in X(k) implies that u, u′ ∈
U(k) are in the same orbit for every algebraically closed field k over B.

In Example 63.5.12 we show that being set-theoretically invariant is “too weak” a
notion in the category of algebraic spaces. A more geometric reformulation of what
it means to be set-theoretically invariant or to separate orbits is in Lemma 63.5.17.

Lemma 63.5.9. In the situation of Definition 63.5.8. A morphism φ : U → X is
set-theoretically R-invariant if and only if for any algebraically closed field k over
B the map U(k)→ X(k) is constant on orbits.

Proof. This is true because the condition is supposed to hold for all algebraically
closed fields over B. �

Lemma 63.5.10. In the situation of Definition 63.5.8. An invariant morphism is
set-theoretically invariant.

Proof. This is immediate from the definitions. �

Lemma 63.5.11. In the situation of Definition 63.5.8. Let φ : U → X be a
morphism of algebraic spaces over B. Assume

(1) φ is set-theoretically R-invariant,
(2) R is reduced, and
(3) X is locally separated over B.

Then φ is R-invariant.

Proof. Consider the equalizer

Z = R×(φ,φ)◦j,X×BX,∆X/B
X

algebraic space. Then Z → R is an immersion by assumption (3). By assumption
(1) |Z| → |R| is surjective. This implies that Z → R is a bijective closed immersion
(use Schemes, Lemma 25.10.4) and by assumption (2) we conclude that Z = R. �

Example 63.5.12. There exist reduced quasi-separated algebraic spaces X, Y and
a pair of morphisms a, b : Y → X which agree on all k-valued points but are not
equal. To get an example take Y = Spec(k[[x]]) and

X = A1
k

/(
∆q {(x,−x) | x 6= 0}

)

http://stacks.math.columbia.edu/tag/048V
http://stacks.math.columbia.edu/tag/048W
http://stacks.math.columbia.edu/tag/048X
http://stacks.math.columbia.edu/tag/048Y
http://stacks.math.columbia.edu/tag/048Z
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the algebraic space of Spaces, Example 47.14.1. The two morphisms a, b : Y → X
come from the two maps x 7→ x and x 7→ −x from Y to A1

k = Spec(k[x]). On the
generic point the two maps are the same because on the open part x 6= 0 of the space
X the functions x and −x are equal. On the closed point the maps are obviously
the same. It is also true that a 6= b. This implies that Lemma 63.5.11 does not
hold with assumption (3) replaced by the assumption that X be quasi-separated.
Namely, consider the diagram

Y

−1

��

1
// Y

a

��
Y

a // X

then the composition a◦ (−1) = b. Hence we can set R = Y , U = Y , s = 1, t = −1,
φ = a to get an example of a set-theoretically invariant morphism which is not
invariant.

The example above is instructive because the map Y → X even separates orbits.
It shows that in the category of algebraic spaces there are simply too many set-
theoretically invariant morphisms lying around. Next, let us define what it means
for R to be a set-theoretic equivalence relation, while remembering that we need to
allow for field extensions to make this work correctly.

Definition 63.5.13. Let S be a scheme, and let B be an algebraic space over S.
Let j : R→ U ×B U be a pre-relation over B.

(1) We say j is a set-theoretic pre-equivalence relation if

u ∼R u′ ⇔
∃ field extension k ⊂ K, ∃ r ∈ R(K),

s(r) = u, t(r) = u′

defines an equivalence relation on U(k) for all algebraically closed fields k
over B.

(2) We say j is a set-theoretic equivalence relation if j is universally injective
and a set-theoretic pre-equivalence relation.

Let us reformulate this in more geometric terms.

Lemma 63.5.14. In the situation of Definition 63.5.13. The following are equiv-
alent:

(1) The morphism j is a set-theoretic pre-equivalence relation.
(2) The subset j(|R|) ⊂ |U ×B U | contains the image of |j′| for any of the

morphisms j′ as in Equation (63.5.5.1).
(3) For every algebraically closed field k over B of sufficiently large cardinality

the subset j(R(k)) ⊂ U(k)× U(k) is an equivalence relation.

If s, t are locally of finite type these are also equivalent to

(4) For every algebraically closed field k over B the subset j(R(k)) ⊂ U(k)×
U(k) is an equivalence relation.

Proof. Assume (2). Let k be an algebraically closed field over B. We are going to
show that ∼R is an equivalence relation. Suppose that ui : Spec(k) → U , i = 1, 2
are k-valued points of U . Suppose that (u1, u2) is the image of a K-valued point

http://stacks.math.columbia.edu/tag/0490
http://stacks.math.columbia.edu/tag/0491
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r ∈ R(K). Consider the solid commutative diagram

Spec(K ′) //

��

Spec(k)

(u2,u1)

��

Spec(K)

��

oo

R
j // U ×B U R

jflipoo

We also denote r ∈ |R| the image of r. By assumption the image of |jflip| is
contained in the image of |j|, in other words there exists a r′ ∈ |R| such that
|j|(r′) = |jflip|(r). But note that (u2, u1) is in the equivalence class that defines
|j|(r′) (by the commutativity of the solid part of the diagram). This means there
exists a field extension k ⊂ K ′ and a morphism r′ : Spec(K) → R (abusively
denoted r′ as well) with j ◦ r′ = (u2, u1) ◦ i where i : Spec(K ′) → Spec(K) is
the obvious map. In other words the dotted part of the diagram commutes. This
proves that ∼R is a symmetric relation on U(k). In the similar way, using that the
image of |jdiag| is contained in the image of |j| we see that ∼R is reflexive (details
omitted).

To show that ∼R is transitive assume given ui : Spec(k) → U , i = 1, 2, 3 and field
extensions k ⊂ Ki and points ri : Spec(Ki)→ R, i = 1, 2 such that j(r1) = (u1, u2)
and j(r1) = (u2, u3). Then we may choose a commutative diagram of fields

K K2
oo

K1

OO

koo

OO

and we may think of r1, r2 ∈ R(K). We consider the commutative solid diagram

Spec(K ′) //

��

Spec(k)

(u1,u3)

��

Spec(K)

(r1,r2)

��

oo

R
j // U ×B U R×s,U,t R

jcompoo

By exactly the same reasoning as in the first part of the proof, but this time using
that |jcomp|((r1, r2)) is in the image of |j|, we conclude that a field K ′ and dotted
arrows exist making the diagram commute. This proves that ∼R is transitive and
concludes the proof that (2) implies (1).

Assume (1) and let k be an algebraically closed field over B whose cardinality is
larger than λ(R), see Morphisms of Spaces, Lemma 49.24.2. Suppose that u ∼R u′
with u, u′ ∈ U(k). By assumption there exists a point in |R| mapping to (u, u′) ∈
|U ×B U |. Hence by Morphisms of Spaces, Lemma 49.24.2 we conclude there exists
an r ∈ R(k) with j(r) = (u, u′). In this way we see that (1) implies (3).

Assume (3). Let us show that Im(|jcomp|) ⊂ Im(|j|). Pick any point c ∈ |R×s,U,tR|.
We may represent this by a morphism c : Spec(k)→ R×s,U,tR, with k over B having
sufficiently large cardinality. By assumption we see that jcomp(c) ∈ U(k)×U(k) =
(U ×B U)(k) is also the image j(r) for some r ∈ R(k). Hence jcomp(c) = j(r) in
|U ×B U | as desired (with r ∈ |R| the equivalence class of r). The same argument
shows also that Im(|jdiag|) ⊂ Im(|j|) and Im(|jflip|) ⊂ Im(|j|) (details omitted). In
this way we see that (3) implies (2). At this point we have shown that (1), (2) and
(3) are all equivalent.
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It is clear that (4) implies (3) (without any assumptions on s, t). To finish the
proof of the lemma we show that (1) implies (4) if s, t are locally of finite type.
Namely, let k be an algebraically closed field over B. Suppose that u ∼R u′ with
u, u′ ∈ U(k). By assumption the algebraic space Z = R ×j,U×BU,(u,u′) Spec(k) is
nonempty. On the other hand, since j = (t, s) is locally of finite type the morphism
Z → Spec(k) is locally of finite type as well (use Morphisms of Spaces, Lemmas
49.23.6 and 49.23.3). Hence Z has a k point by Morphisms of Spaces, Lemma
49.24.1 and we conclude that (u, u′) ∈ j(R(k)) as desired. This finishes the proof
of the lemma. �

Lemma 63.5.15. In the situation of Definition 63.5.13. The following are equiv-
alent:

(1) The morphism j is a set-theoretic equivalence relation.
(2) The morphism j is universally injective and j(|R|) ⊂ |U ×B U | contains

the image of |j′| for any of the morphisms j′ as in Equation (63.5.5.1).
(3) For every algebraically closed field k over B of sufficiently large cardinality

the map j : R(k)→ U(k)×U(k) is injective and its image is an equivalence
relation.

If j is decent, or locally separated, or quasi-separated these are also equivalent to

(4) For every algebraically closed field k over B the map j : R(k) → U(k) ×
U(k) is injective and its image is an equivalence relation.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) follow from Lemma 63.5.14
and the definitions. The same lemma shows that (3) implies j is a set-theoretic
pre-equivalence relation. But of course condition (3) also implies that j is uni-
versally injective, see Morphisms of Spaces, Lemma 49.19.2, so that j is indeed a
set-theoretic equivalence relation. At this point we know that (1), (2), (3) are all
equivalent.

Condition (4) implies (3) without any further hypotheses on j. Assume j is decent,
or locally separated, or quasi-separated and the equivalent conditions (1), (2), (3)
hold. By More on Morphisms of Spaces, Lemma 58.3.4 we see that j is radicial.
Let k be any algebraically closed field over B. Let u, u′ ∈ U(k) with u ∼R u′. We
see that R ×U×BU,(u,u′) Spec(k) is nonempty. Hence, as j is radicial, its reduction

is the spectrum of a field purely inseparable over k. As k = k we see that it is the
spectrum of k. Whence a point r ∈ R(k) with t(r) = u and s(r) = u′ as desired. �

Lemma 63.5.16. Let S be a scheme, and let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B.

(1) If j is a pre-equivalence relation, then j is a set-theoretic pre-equivalence
relation. This holds in particular when j comes from a groupoid in alge-
braic spaces, or from an action of a group algebraic space on U .

(2) If j is an equivalence relation, then j is a set-theoretic equivalence relation.

Proof. Omitted. �

Lemma 63.5.17. Let B → S be as in Section 63.2. Let j : R → U ×B U be a
pre-relation. Let φ : U → X be a morphism of algebraic spaces over B. Consider

http://stacks.math.columbia.edu/tag/049X
http://stacks.math.columbia.edu/tag/0492
http://stacks.math.columbia.edu/tag/049Y
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the diagram

(U ×X U)×(U×BU) R

q

��

p
// R

j

��
U ×X U

c // U ×B U
Then we have:

(1) The morphism φ is set-theoretically invariant if and only if p is surjective.
(2) If j is a set-theoretic pre-equivalence relation then φ separates orbits if

and only if p and q are surjective.
(3) If p and q are surjective, then j is a set-theoretic pre-equivalence relation

(and φ separates orbits).
(4) If φ is R-invariant and j is a set-theoretic pre-equivalence relation, then

φ separates orbits if and only if the induced morphism R → U ×X U is
surjective.

Proof. Assume φ is set-theoretically invariant. This means that for any alge-
braically closed field k over B and any r ∈ R(k) we have φ(s(r)) = φ(t(r)). Hence
((φ(t(r)), φ(s(r))), r) defines a point in the fibre product mapping to r via p. This
shows that p is surjective. Conversely, assume p is surjective. Pick r ∈ R(k). As p
is surjective, we can find a field extension k ⊂ K and a K-valued point r̃ of the fibre
product with p(r̃) = r. Then q(r̃) ∈ U ×X U maps to (t(r), s(r)) in U ×B U and we
conclude that φ(s(r)) = φ(t(r)). This proves that φ is set-theoretically invariant.

The proofs of (2), (3), and (4) are omitted. Hint: Assume k is an algebraically
closed field over B of large cardinality. Consider the associated diagram of sets

(U(k)×X(k) U(k))×U(k)×U(k) R(k)

q

��

p
// R(k)

j

��
U(k)×X(k) U(k)

c // U(k)× U(k)

By the lemmas above the equivalences posed in (2), (3), and (4) become set-
theoretic questions related to the diagram we just displayed, using that surjectivity
translates into surjectivity on k-valued points by Morphisms of Spaces, Lemma
49.24.2. �

Because we have seen above that the notion of a set-theoretically invariant mor-
phism is a rather weak one in the category of algebraic spaces, we define an orbit
space for a pre-relation as follows.

Definition 63.5.18. Let B → S as in Section 63.2. Let j : R → U ×B U be a
pre-relation. We say φ : U → X is an orbit space for R if

(1) φ is R-invariant,
(2) φ separates R-orbits, and
(3) φ is surjective.

The definition of separating R-orbits involves a discussion of points with values in
algebraically closed fields. But as we’ve seen in many cases this just corresponds
to the surjectivity of certain canonically associated morphisms of algebraic spaces.
We summarize some of the discussion above in the following characterization of
orbit spaces.

http://stacks.math.columbia.edu/tag/0493
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Lemma 63.5.19. Let B → S as in Section 63.2. Let j : R → U ×B U be a set-
theoretic pre-equivalence relation. A morphism φ : U → X is an orbit space for R
if and only if

(1) φ ◦ s = φ ◦ t, i.e., φ is invariant,
(2) the induced morphism (t, s) : R→ U ×X U is surjective, and
(3) the morphism φ : U → X is surjective.

This characterization applies for example if j is a pre-equivalence relation, or comes
from a groupoid in algebraic spaces over B, or comes from the action of a group
algebraic space over B on U .

Proof. Follows immediately from Lemma 63.5.17 part (4). �

In the following lemma it is (probably) not good enough to assume just that the
morphisms s, t are locally of finite type. The reason is that it may happen that
some map φ : U → X is an orbit space, yet is not locally of finite type. In that case
U(k)→ X(k) may not be surjective for all algebraically closed fields k over B.

Lemma 63.5.20. Let B → S as in Section 63.2. Let j = (t, s) : R → U ×B U be
a pre-relation. Assume R,U are locally of finite type over B. Let φ : U → X be an
R-invariant morphism of algebraic spaces over B. Then φ is an orbit space for R
if and only if the natural map

U(k)/
(
equivalence relation generated by j(R(k))

)
−→ X(k)

is bijective for all algebraically closed fields k over B.

Proof. Note that since U , R are locally of finite type over B all of the morphisms
s, t, j, φ are locally of finite type, see Morphisms of Spaces, Lemma 49.23.6. We will
also use without further mention Morphisms of Spaces, Lemma 49.24.1. Assume
φ is an orbit space. Let k be any algebraically closed field over B. Let x ∈ X(k).
Consider U ×φ,X,x Spec(k). This is a nonempty algebraic space which is locally of
finite type over k. Hence it has a k-valued point. This shows the displayed map
of the lemma is surjective. Suppose that u, u′ ∈ U(k) map to the same element
of X(k). By Definition 63.5.8 this means that u, u′ are in the same R-orbit. By
Lemma 63.5.7 this means that they are equivalent under the equivalence relation
generated by j(R(k)). Thus the displayed morphism is injective.

Conversely, assume the displayed map is bijective for all algebraically closed fields
k over B. This condition clearly implies that φ is surjective. We have already
assumed that φ is R-invariant. Finally, the injectivity of all the displayed maps
implies that φ separates orbits. Hence φ is an orbit space. �

63.6. Coarse quotients

We only add this here so that we can later say that coarse quotients correspond to
coarse moduli spaces (or moduli schemes).

Definition 63.6.1. Let S be a scheme and B an algebraic space over S. Let
j : R→ U ×B U be a pre-relation. A morphism φ : U → X of algebraic spaces over
B is called a coarse quotient if

(1) φ is a categorical quotient, and
(2) φ is an orbit space.

http://stacks.math.columbia.edu/tag/049Z
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If S = B, U , R are all schemes, then we say a morphism of schemes φ : U → X is
a coarse quotient in schemes if

(1) φ is a categorical quotient in schemes, and
(2) φ is an orbit space.

In many situations the algebraic spaces R and U are locally of finite type over B
and the orbit space condition simply means that

U(k)/
(
equivalence relation generated by j(R(k))

) ∼= X(k)

for all algebraically closed fields k. See Lemma 63.5.20. If j is also a (set-theoretic)
pre-equivalence relation, then the condition is simply equivalent to U(k)/j(R(k))→
X(k) being bijective for all algebraically closed fields k.

63.7. Topological properties

Let S be a scheme and B an algebraic space over S. Let j : R → U ×B U be a
pre-relation. We say a subset T ⊂ |U | is R-invariant if s−1(T ) = t−1(T ) as subsets
of |R|. Note that if T is closed, then it may not be the case that the corresponding
reduced closed subspace of U is R-invariant (as in Groupoids in Spaces, Definition
60.17.1) because the pullbacks s−1(T ), t−1(T ) may not be reduced. Here are some
conditions that we can consider for an invariant morphism φ : U → X.

Definition 63.7.1. Let S be a scheme and B an algebraic space over S. Let
j : R → U ×B U be a pre-relation. Let φ : U → X be an R-invariant morphism of
algebraic spaces over B.

(1) The morphism φ is submersive.
(2) For any R-invariant closed subset Z ⊂ |U | the image φ(Z) is closed in
|X|.

(3) Condition (2) holds and for any pair of R-invariant closed subsets Z1, Z2 ⊂
|U | we have

φ(Z1 ∩ Z2) = φ(Z1) ∩ φ(Z2)

(4) The morphism (t, s) : R→ U ×X U is universally submersive.

For each of these properties we can also require them to hold after any flat pullback,
or after any pullback, see Definition 63.3.4. In this case we say condition (1), (2),
(3), or (4) holds uniformly or universally.

63.8. Invariant functions

In some cases it is convenient to pin down the structure sheaf of a quotient by
requiring any invariant function to be a local section of the structure sheaf of the
quotient.

Definition 63.8.1. Let S be a scheme and B an algebraic space over S. Let
j : R → U ×B U be a pre-relation. Let φ : U → X be an R-invariant morphism.
Denote φ′ = φ ◦ s = φ ◦ t : R→ X.

(1) We denote (φ∗OU )R the OX -sub-algebra of φ∗OU which is the equalizer
of the two maps

φ∗OU
φ∗s

]

//

φ∗t
]

// φ
′
∗OR

http://stacks.math.columbia.edu/tag/04A4
http://stacks.math.columbia.edu/tag/04AA
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on Xétale. We sometimes call this the sheaf of R-invariant functions on
X.

(2) We say the functions on X are the R-invariant functions on U if the
natural map OX → (φ∗OU )R is an isomorphism.

Of course we can require this property holds after any (flat or any) pullback, leading
to a (uniform or) universal notion. This condition is often thrown in with other
conditions in order to obtain a (more) unique quotient. And of course a good
deal of motivation for the whole subject comes from the following special case:
U = Spec(A) is an affine scheme over a field S = B = Spec(k) and where R = G×U ,
with G an affine group scheme over k. In this case you have the option of taking
for the quotient:

X = Spec(AG)

so that at least the condition of the definition above is satisfied. Even though this is
a nice thing you can do it is often not the right quotient; for example if U = GLn,k
and G is the group of upper triangular matrices, then the above gives X = Spec(k),
whereas a much better quotient (namely the flag variety) exists.

63.9. Good quotients

Especially when taking quotients by group actions the following definition is useful.

Definition 63.9.1. Let S be a scheme and B an algebraic space over S. Let
j : R→ U ×B U be a pre-relation. A morphism φ : U → X of algebraic spaces over
B is called a good quotient if

(1) φ is invariant,
(2) φ is affine,
(3) φ is surjective,
(4) condition (3) holds universally, and
(5) the functions on X are the R-invariant functions on U .

In [Ses72] Seshadri gives almost the same definition, except that instead of (4) he
simply requires the condition (3) to hold – he does not require it to hold universally.

63.10. Geometric quotients

This is Mumford’s definition of a geometric quotient (at least the definition from
the first edition of GIT; as far as we can tell later editions changed “universally
submersive” to “submersive”).

Definition 63.10.1. Let S be a scheme and B an algebraic space over S. Let
j : R→ U ×B U be a pre-relation. A morphism φ : U → X of algebraic spaces over
B is called a geometric quotient if

(1) φ is an orbit space,
(2) condition (1) holds universally, i.e., φ is universally submersive, and
(3) the functions on X are the R-invariant functions on U .

63.11. Other chapters
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CHAPTER 64

Simplicial Spaces

64.1. Introduction

This chapter develops some theory concerning simplicial topological spaces, simpli-
cial ringed spaces, simplicial schemes, and simplicial algebraic spaces. The theory
of simplicial spaces sometimes allows one to prove local to global principles which
appear difficult to prove in other ways. Some example applications can be found
in the papers [Fal03], [Kie72], and [Del74b].

We assume throughout that the reader is familiar with the basic concepts and results
of the chapter Simplical Methods, see Simplicial, Section 14.1. In particular, we
continue to write X and not X• for a simplicial object.

64.2. Simplicial topological spaces

A simplicial space is a simplicial object in the category of topological spaces where
morphisms are continuous maps of topological spaces. (We will use “simplicial
algebraic space” to refer to simplicial objects in the category of algebraic spaces.)
We may picture a simplicial space X as follows

X2

//
//
//
X1

//
//oo

oo
X0

oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of
as a “projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal
map repeating the jth coordinate.

Let X be a simplicial space. We associate a site XZar
1 to X as follows.

(1) An object of XZar is an open U of Xn for some n,
(2) a morphism U → V of XZar is given by a ϕ : [m] → [n] where n,m are

such that U ⊂ Xn, V ⊂ Xm and ϕ is such that X(ϕ)(U) ⊂ V , and
(3) a covering {Ui → U} in XZar means that U,Ui ⊂ Xn are open, the maps

Ui → U are given by id : [n]→ [n], and U =
⋃
Ui.

Note that in particular, if U → V is a morphism of XZar give by ϕ, then X(ϕ) :
Xn → Xm does in fact induce a continuous map U → V of topological spaces.
It is clear that the above is a special case of a construction that associates to any
diagram of topological spaces a site. We formulate the obligatory lemma.

Lemma 64.2.1. Let X be a simplicial space. Then XZar as defined above is a site.

Proof. Omitted. �

1This notation is similar to the notation in Sites, Example 7.6.4 and Topologies, Definition
33.3.7.

3717
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Let X be a simplicial space. Let F be a sheaf on XZar. It is clear from the definition
of coverings, that the restriction of F to the opens of Xn defines a sheaf Fn on the
topological space Xn. For every ϕ : [m] → [n] the restriction maps of F for pairs
U ⊂ Xn, V ⊂ Xm with X(ϕ)(U) ⊂ V , define an X(ϕ)-map F(ϕ) : Fm → Fn, see
Sheaves, Definition 6.21.7. Moreover, given ϕ : [m]→ [n] and ψ : [l]→ [m] we have

F(ψ) ◦ F(ϕ) = F(ϕ ◦ ψ)

(LHS uses composition of f -maps, see Sheaves, Definition 6.21.9). Clearly, the
converse is true as well: if we have a system ({Fn}n≥0, {F(ϕ)}ϕ∈Arrows(∆)) as above,
satisfying the displayed equalities, then we obtain a sheaf on XZar.

Lemma 64.2.2. Let X be a simplicial space. There is an equivalence of categories
between

(1) Sh(XZar), and
(2) category of systems (Fn,F(ϕ)) described above.

Proof. See discussion above. �

Lemma 64.2.3. Let f : Y → X be a morphism of simplicial spaces. Then the
functor u : XZar → YZar which associates to the open U ⊂ Xn the open f−1

n (U) ⊂
Yn defines a morphism of sites fZar : YZar → XZar.

Proof. It is clear that u is a continuous functor. Hence we obtain functors fZar,∗ =

us and f−1
Zar = us, see Sites, Section 7.15. To see that we obtain a morphism of

sites we have to show that us is exact. We will use Sites, Lemma 7.15.5 to see this.
Let V ⊂ Yn be an open subset. The category IuV (see Sites, Section 7.5) consists of
pairs (U,ϕ) where ϕ : [m] → [n] and U ⊂ Xm open such that Y (ϕ)(V ) ⊂ f−1

m (U).
Moreover, a morphism (U,ϕ) → (U ′, ϕ′) is given by a ψ : [m′] → [m] such that
X(ψ)(U) ⊂ U ′ and ϕ ◦ ψ = ϕ′. It is our task to show that IuV is cofiltered.

We verify the conditions of Categories, Definition 4.20.1. Condition (1) holds be-
cause (Xn, id[n]) is an object. Let (U,ϕ) be an object. The condition Y (ϕ)(V ) ⊂
f−1
m (U) is equivalent to V ⊂ f−1

n (X(ϕ)−1(U)). Hence we obtain a morphism
(X(ϕ)−1(U), id[n]) → (U,ϕ) given by setting ψ = ϕ. Moreover, given a pair of
objects of the form (U, id[n]) and (U ′, id[n]) we see there exists an object, namely
(U ∩ U ′, id[n]), which maps to both of them. Thus condition (2) holds. To verify
condition (3) suppose given two morphisms a, a′ : (U,ϕ)→ (U ′, ϕ′) given by ψ,ψ′ :
[m′] → [m]. Then precomposing with the morphism (X(ϕ)−1(U), id[n]) → (U,ϕ)
given by ϕ equalizes a, a′ because ϕ ◦ ψ = ϕ′ = ϕ ◦ ψ′. This finishes the proof. �

Lemma 64.2.4. Let f : Y → X be a morphism of simplicial spaces. In terms of
the description of sheaves in Lemma 64.2.2 the morphism fZar of Lemma 64.2.3
can be described as follows.

(1) If G is a sheaf on Y , then (fZar,∗G)n = fn,∗Gn.

(2) If F is a sheaf on X, then (f−1
ZarF)n = f−1

n Fn.

Proof. The first part is immediate from the definitions. For the second part, note
that in the proof of Lemma 64.2.3 we have shown that for a V ⊂ Yn open the
category (IuV )opp contains as a cofinal subcategory the category of opens U ⊂ Xn

with f−1
n (U) ⊃ V and morphisms given by inclusions. Hence we see that the re-

striction of upF to opens of Yn is the presheaf fn,pFn as defined in Sheaves, Lemma

6.21.3. Since f−1
ZarF = usF is the sheafification of upF and since sheafification uses
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only coverings and since coverings in YZar use only inclusions between opens on
the same Yn, the result follows from the fact that f−1

n Fn is (correspondingly) the
sheafification of fn,pFn, see Sheaves, Section 6.21. �

Let X be a topological space. In Sites, Example 7.6.4 we denoted XZar the site
consisting of opens of X with inclusions as morphisms and coverings given by open
coverings. We identify the topos Sh(XZar) with the category of sheaves on X.

Lemma 64.2.5. Let X be a simplicial space. The functor Xn,Zar → XZar, U 7→ U
is continuous and cocontinuous. The associated morphism of topoi g : Sh(Xn) →
Sh(XZar) satisfies

(1) g−1 associates to the sheaf F on X the sheaf Fn on Xn,
(2) g−1 has a left adjoint gSh! which commutes with finite connected limits,
(3) g−1 : Ab(XZar) → Ab(Xn) has a left adjoint g! : Ab(Xn) → Ab(XZar)

which is exact.

Proof. Besides the properties of our functor mentioned in the statement, the cate-
gory Xn,Zar has fibre products and equalizers and the functor commutes with them
(beware that XZar does not have all fibre products). Hence the lemma follows from
the discussion in Sites, Sections 7.19 and 7.20 and Modules on Sites, Section 18.16.
More precisely, Sites, Lemmas 7.20.1, 7.20.5, and 7.20.6 and Modules on Sites,
Lemmas 18.16.2 and 18.16.3. �

Lemma 64.2.6. Let X be a simplicial space. If I is an injective abelian sheaf on
XZar, then In is an injective abelian sheaf on Xn.

Proof. This follows from Homology, Lemma 12.25.1 and Lemma 64.2.5. �

Lemma 64.2.7. Let f : Y → X be a morphism of simplicial spaces. Then

Sh(Yn)

��

fn

// Sh(Xn)

��
Sh(YZar)

fZar // Sh(XZar)

is a commutative diagram of topoi.

Proof. Direct from the description of pullback functors in Lemmas 64.2.4 and
64.2.5. �

Let X be a topological space. Denote X• the constant simplicial topological space
with value X. By Lemma 64.2.2 a sheaf on X•,Zar is the same thing as a cosimplicial
object in the category of sheaves on X.

Lemma 64.2.8. Let X be a topological space. Let X• be the constant simplical
topological space with value X. The functor

X•,Zar −→ XZar, U 7−→ U

is continuous and cocontinuous and defines a morphism of topoi g : Sh(X•,Zar)→
Sh(X) as well as a left adjoint g! to g−1. We have

(1) g−1 associates to a sheaf on X the constant cosimplicial sheaf on X,
(2) g! associates to a sheaf F on X•,Zar the sheaf F0, and
(3) g∗ associates to a sheaf F on X•,Zar the equalizer of the two maps F0 →
F1.

http://stacks.math.columbia.edu/tag/09W0
http://stacks.math.columbia.edu/tag/09W1
http://stacks.math.columbia.edu/tag/09W2
http://stacks.math.columbia.edu/tag/09W3


3720 64. SIMPLICIAL SPACES

Proof. The statements about the functor are straightforward to verify. The exis-
tence of g and g! follow from Sites, Lemmas 7.20.1 and 7.20.5. The description of
g−1 is immediate from Sites, Lemma 7.20.5. The description of g∗ and g! follows
as the functors given are right and left adjoint to g−1. �

Lemma 64.2.9. Let Y be a simplicial space and X a topological space. Let a :
Y → X be an augmentation (Simplicial, Definition 14.19.1). There is a canonical
morphism of topoi

a : Sh(YZar)→ Sh(X)

which comes from composing the morphism aZar : Sh(YZar) → Sh(X•,Zar) of
Lemma 64.2.3 with the morphism g : Sh(X•,Zar)→ Sh(X) of Lemma 64.2.8.

Proof. This lemma proves itself. �

Lemma 64.2.10. Let X be a simplicial topological space. The complex of abelian
presheaves on XZar

. . .→ ZX2
→ ZX1

→ ZX0

with boundary
∑

(−1)idni is a resolution of the constant presheaf Z.

Proof. Let U ⊂ Xm be an object of XZar. Then the value of the complex above
on U is the complex of abelian groups

. . .→ Z[Mor∆([2], [m])]→ Z[Mor∆([1], [m])]→ Z[Mor∆([0], [m])]

In other words, this is the complex associated to the free abelian group on the simpli-
cial set ∆[m], see Simplicial, Example 14.11.2. Since ∆[m] is homotopy equivalent
to ∆[0], see Simplicial, Example 14.25.7, and since “taking free abelian groups” is a
functor, we see that the complex above is homotopy equivalent to the free abelian
group on ∆[0] (Simplicial, Remark 14.25.4 and Lemma 14.26.2). This complex is
acyclic in positive degrees and equal to Z in degree 0. �

Lemma 64.2.11. Let X be a simplicial topological space. Let F be an abelian sheaf
on X. There is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Xp,Fp)
converging to Hp+q(XZar,F). This spectral sequence is functorial in F .

Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Iq(Xp)

and first differential given by the alternating sum along the maps dp+1
i -maps Iqp →

Iqp+1, see Lemma 64.2.2. Note that

Ap,q = Γ(Xp, Iqp) = MorPSh(hXp , Iq) = MorPAb(ZXp , Iq)
Hence it follows from Lemma 64.2.10 and Cohomology on Sites, Lemma 21.11.1
that the rows of the double complex are exact in positive degrees and evaluate to
Γ(XZar, Iq) in degree 0. On the other hand, since restriction is exact (Lemma
64.2.5) the map

Fp → I•p
is a resolution. The sheaves Iqp are injective abelian sheaves on Xp (Lemma 64.2.6).
Hence the cohomology of the columns computes the groups Hq(Xp,Fp). We con-
clude by applying Homology, Lemmas 12.22.6 and 12.22.7. �
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64.3. Simplicial sites and topoi

It seems natural to define a simplicial site as a simplicial object in the (big) category
whose objects are sites and whose morphisms are morphisms of sites. See Sites,
Definitions 7.6.2 and 7.15.1 with composition of morphisms as in Sites, Lemma
7.15.3. But here are some variants one might want to consider: (a) we could work
with cocontinuous functors (see Sites, Sections 7.19 and 7.20) between sites instead,
(b) we could work in a suitable 2-category of sites where one introduces the notion
of a 2-morphism between morphisms of sites, (c) we could work in a 2-category
constructed out of cocontinuous functors. Instead of picking one of these variants
as a definition we will simply develop theory as needed.

Certainly a simplicial topos should probably be defined as a pseudo-functor from
∆opp into the 2-category of topoi. See Categories, Definition 4.27.5 and Sites,
Section 7.16 and 7.35. We will try to avoid working with such a beast if possible.

Let C be a simplicial object in the category whose objects are sites and whose
morphisms are morphisms of sites. This means that for every morphism ϕ : [m]→
[n] of ∆ we have a morphism of sites fϕ : Cn → Cm. This morphism is given by a
continuous functor in the oppsite direction which we will denote uϕ : Cm → Cn.

Lemma 64.3.1. Let C be a simplicial object in the category of sites. With notation
as above we construct a site Csite as follows.

(1) An object of Csite is an object U of Cn for some n,
(2) a morphism (ϕ, f) : U → V of Csite is given by a map ϕ : [m]→ [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : U → uϕ(V ) of Cn, and
(3) a covering {(id, fi) : Ui → U} in Csite is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (ϕ, f) : U → V with (ψ, g) : V → W is given by (ϕ ◦
ψ, uϕ(g) ◦ f). This uses that uϕ ◦ uψ = uϕ◦ψ.

Let {(id, fi) : Ui → U} be a covering as in (3) and let (ϕ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(ϕ,g),U,(id,fi) Ui = W ×g,uϕ(U),uϕ(fi) uϕ(Ui)

in the category Csite. This makes sense as by our definition of morphisms of sites,
the required fibre products in Cm exist since uϕ transforms coverings into coverings.
The same reasoning implies the claim (details omitted). Thus we see that the
collection of coverings is stable under base change. The other axioms of a site are
immediate. �

Let C be a simplicial object in the category whose objects are sites and whose
morphisms are cocontinuous functors. This means that for every morphism ϕ :
[m]→ [n] of ∆ we have a cocontinuous functor denoted uϕ : Cn → Cm.

Lemma 64.3.2. Let C be a simplicial object in the category whose objects are sites
and whose morphisms are cocontinuous functors. With notation as above, assume
the functors uϕ : Cn → Cm have property P of Sites, Remark 7.19.5. Then we can
construct a site Csite as follows.

(1) An object of Csite is an object U of Cn for some n,
(2) a morphism (ϕ, f) : U → V of Csite is given by a map ϕ : [m]→ [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : uϕ(U)→ V of Cm, and
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(3) a covering {(id, fi) : Ui → U} in Csite is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (ϕ, f) : U → V with (ψ, g) : V →W is given by (ϕ ◦ ψ, g ◦
uψ(f)). This uses that uψ ◦ uϕ = uϕ◦ψ.

Let {(id, fi) : Ui → U} be a covering as in (3) and let (ϕ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(ϕ,g),U,(id,fi) Ui = W ×g,U,fi Ui
in the category Csite where the right hand side is the object of Cm defined in Sites,
Remark 7.19.5 which exists by property P . Compatibility of this type of fibre
product with compositions of functors implies the claim (details omitted). Since
the family {W ×g,U,fi Ui →W} is a covering of Cm by property P we see that the
collection of coverings is stable under base change. The other axioms of a site are
immediate. �

Situation 64.3.3. Here we have one of the following two cases

(A) C is a simplicial object in the category whose objects are sites and whose
morphisms are morphisms of sites. For every morphism ϕ : [m] → [n]
of ∆ we have a morphism of sites fϕ : Cn → Cm given by a continuous
functor uϕ : Cm → Cn.

(B) C is a simplicial object in the category whose objects are sites and whose
morphisms are cocontinuous functors having property P of Sites, Remark
7.19.5. For every morphism ϕ : [m] → [n] of ∆ we have a cocontinuous
functor uϕ : Cn → Cm which induces a morphism of topoi fϕ : Sh(Cn) →
Sh(Cm).

As usual we will denote f−1
ϕ and fϕ,∗ the pullback and pushforward. We let Csite

denote the site defined in Lemma 64.3.1 (case A) or Lemma 64.3.2 (case B).

Let C be as in Situation 64.3.3. Let F be a sheaf on Csite. It is clear from the
definition of coverings, that the restriction of F to the objects of Cn defines a sheaf
Fn on the site Cn. For every ϕ : [m] → [n] the restriction maps of F along the
morphisms (ϕ, f) : U → V with U ∈ Ob(Cn) and V ∈ Ob(Cm) define an element
F(ϕ) of

MorSh(Cm)(Fm, fϕ,∗Fn) = MorSh(Cn)(f
−1
ϕ Fm,Fn)

Moreover, given ϕ : [m]→ [n] and ψ : [l]→ [m] we have

f−1
ϕ F(ψ) ◦ F(ϕ) = F(ϕ ◦ ψ)

Clearly, the converse is true as well: if we have a system ({Fn}n≥0, {F(ϕ)}ϕ∈Arrows(∆))
as above, satisfying the displayed equalities, then we obtain a sheaf on Csite.

Lemma 64.3.4. In Situation 64.3.3 there is an equivalence of categories between

(1) Sh(Csite), and
(2) category of systems (Fn,F(ϕ)) described above.

In particular, the topos Sh(Csite) only depends on the topoi Sh(Cn) and the mor-
phisms of topoi fϕ.

Proof. See discussion above. �

Lemma 64.3.5. In Situation 64.3.3 the functor Cn → Csite, U 7→ U is continuous
and cocontinuous. The associated morphism of topoi g : Sh(Cn)→ Sh(Csite) satisfies
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(1) g−1 associates to the sheaf F on Csite the sheaf Fn on Cn,
(2) g−1 has a left adjoint gSh! which commutes with finite connected limits,

and
(3) g−1 : Ab(Csite)→ Ab(Cn) has a left adjoint g! : Ab(Cn)→ Ab(Csite) which

is exact.

Proof. It is clear that functor Cn → Csite is continuous and cocontinuous. Hence
part (1) and the existence of gSh! and g! follows from Sites, Lemmas 7.20.1 and
7.20.5 and Modules on Sites, Lemmas 18.16.2 and 18.16.4.

Next, we come to the exactness properties of gSh! and g!. Perhaps the most straight-
forward way to prove this is to give a formula for these functors. If G is a sheaf on
Cn, then we claim H = gSh! G is the sheaf on Csite whose degree m part is the sheaf

Hm =
∐

ϕ:[n]→[m]
f−1
ϕ G

Given a map ψ : [m]→ [m′] the mapH(ψ) : f−1
ψ Hm → Hm′ is given on components

by the identifications

f−1
ψ f−1

ϕ G → f−1
ψ◦ϕG

Observe that given a map a : H → F of sheaves on Csite we obtain a map G → Fn
corresponding to the restriction of an to the component G in Hn. Conversely, given
b : G → Hn we can define a : H → F by letting am be the map which on components

f−1
ϕ G → Fm

uses the maps adjoint to F(ϕ) ◦ f−1
ϕ b. We omit the arguments showing these two

constructions give mutually inverse maps

MorSh(Cn)(G,Fn) = MorSh(Csite)(H,F)

thus verifying the claim above. If G is an abelian sheaf on Cn, then g!G is the abelian
sheaf on Csite whose degree m part is the sheaf⊕

ϕ:[n]→[m]
f−1
ϕ G

with transition maps defined exactly as above. By definition of the site Csite we see
that these functors have the desired exactness properties and we conclude. �

Lemma 64.3.6. In Situation 64.3.3. If I is an injective abelian sheaf on Csite,
then In is an injective abelian sheaf on Cn.

Proof. This follows from Homology, Lemma 12.25.1 and Lemma 64.3.5. �

Let C be as in Situation 64.3.3. In statement of the following lemmas we will let
gn : Cn → Csite be the functor of Lemma 64.3.5. If ϕ : [m] → [n] is a morphism of
∆, then the diagram of topoi

Sh(Cn)

gn %%

fϕ

// Sh(Cm)

gmyy
Sh(Csite)

is not commutative, but there is a 2-morphism gn → gm ◦fϕ coming from the maps
F(ϕ) : f−1

ϕ Fm → Fn. See Sites, Section 7.35.
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Lemma 64.3.7. In Situation 64.3.3 and with notation as above there is a complex

. . .→ g2!Z→ g1!Z→ g0!Z

of abelian sheaves on Csite which forms a resolution of the constant sheaf with value
Z on Csite.

Proof. We will use the description of the functors gn! in the proof of Lemma
64.3.5 without further mention. As maps of the complex we take

∑
(−1)idni where

dni : gn!Z → gn−1!Z is the adjoint to the map Z →
⊕

[n−1]→[n] Z = g−1
n gn−1!Z

corresponding to the factor labeled with δni : [n − 1] → [n]. Then g−1
m applied to

the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

on Cm. In other words, this is the complex associated to the free abelian sheaf on
the simplicial set ∆[m], see Simplicial, Example 14.11.2. Since ∆[m] is homotopy
equivalent to ∆[0], see Simplicial, Example 14.25.7, and since “taking free abelian
sheaf on” is a functor, we see that the complex above is homotopy equivalent to the
free abelian sheaf on ∆[0] (Simplicial, Remark 14.25.4 and Lemma 14.26.2). This
complex is acyclic in positive degrees and equal to Z in degree 0. �

Lemma 64.3.8. In Situation 64.3.3. Let F be an abelian sheaf on Csite. There is
a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Fp)
converging to Hp+q(Csite,F). This spectral sequence is functorial in F .

Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Γ(Cp, Iqp)

and first differential given by the alternating sum along the maps dp+1
i -maps Iqp →

Iqp+1, see Lemma 64.3.4. Note that

Ap,q = Γ(Cp, Iqp) = MorAb(Csite)(gp!Z, I
q)

Hence it follows from Lemma 64.3.7 that the rows of the double complex are exact
in positive degrees and evaluate to Γ(Csite, Iq) in degree 0. On the other hand,
since restriction is exact (Lemma 64.3.5) the map

Fp → I•p
is a resolution. The sheaves Iqp are injective abelian sheaves on Cp (Lemma 64.3.6).
Hence the cohomology of the columns computes the groups Hq(Cp,Fp). We con-
clude by applying Homology, Lemmas 12.22.6 and 12.22.7. �

64.4. Simplicial semi-representable objects

Let C be a site. Recall that SR(C) denotes the category of semi-representable
objects of C. See Hypercoverings, Definition 24.2.1. For an object K = {Ui}i∈I of
SR(C) we will use the notation

C/K =
∐

i∈I
C/Ui

and we will call it the localization of C at K. There is a natural structure of a site
on this category, with coverings inherited from the localizations C/Ui (and whence
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from C). If f : K → L is a morphism of SR(C), then we obtain a cocontinuous
functor

f : C/K −→ C/L
by applying the construction of Sites, Lemma 7.24.7 to the components. More
precisely, if f = (α, fi) where K = {Ui}i∈I , L = {Vj}j∈J , α : I → J , and fi :
Ui → Vα(i) then f maps the component C/Ui into the component C/Vα(i) via the
construction of the aforementioned lemma.

Let K be a simplicial object of SR(C). By the construction above we obtain a
simplicial object n 7→ C/Kn in the category whose objects are sites and whose
morphisms are cocontinuous functors of sites. Since these localization functors
satisfy the assumption of Lemma 64.3.2 by Sites, Remark 7.24.10 we obtain a site
(C/K)site.

We can describe this site explicitly as follows. Say Kn = {Un,i}i∈In and that for
ϕ : [m] → [n] the morphism K(ϕ) : Kn → Km is given by a(ϕ) : In → Im and
fϕ,i : Un,i → Um,a(ϕ)(i) for i ∈ In. Then we have

(1) an object of C/K corresponds to an object (U/Un,i) of C/Un,i for some n
and some i ∈ In,

(2) a morphism between U and V is a pair (ϕ, f) where ϕ : [m] → [n] with
U/Un,i and V/Um,a(ϕ)(i) and f : U → V is a morphism of C such that

U
f

//

��

V

��
Un,i

fϕ,i // Um,a(ϕ)(i)

is commutative, and
(3) a covering {(id, fj) : Uj → U} is given by an n and i ∈ In and objects

U/Un,i, Uj/Un,i such that {fj : Uj → U} is a covering of C.

Lemma 64.4.1. Let C be a site. Let K be a simplicial object of SR(C). If C has fibre
products, then C/K can also be viewed as a simplicial object in the category whose
objects are sites and whose morphisms are morphisms of sites. The construction of
Lemma 64.3.1 then produces the same site as the construction above.

Proof. Given a morphism of objects U → V of C the localization morphism j :
C/U → C/U is a left adjoint to the base change functor C/V → C/U . The base
change functor is continuous and induces the same morphism of topoi as j. See
Sites, Lemma 7.26.3. Argueing as above we can use this to define a morphism of
sites C/A → C/B given any morphism A → B of SR(C). Applying this to the
morphisms of the simplicial object K we obtain simplicial object (C/K)′ in the
category of sites with morphisms of sites. Let (C/K)′site be the site constructed
in Lemma 64.3.1. Since the base change functors are adjoint to the localization
functors, we find that (C/K)′site is the same as the category (C/K)site. Equality of
the sets of coverings is immediate from the definitions. �

Let C be a site. Let L = {Vi} be an object of SR(C). There is a continuous
and cocontinuous localization functor j : C/K → C which is the product of the
localization functors C/Vi → C. We obtain functors j−1, j∗, j

Sh
! , and j! exactly

as in Sites, Section 7.24 and Modules on Sites, Section 18.19. Given a simplicial
object K of SR(C) we obtain a family of localization functors jn : C/Kn → C.
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Lemma 64.4.2. Let C be a site. Let K be a simplicial object of SR(C). The forgetful
functor (C/K)site → C is continuous and cocontinuous and induces a morphism of
topoi

g : Sh((C/K)site) −→ Sh(C)
as well as functors gSh! and g! left adjoint to g−1 on sheaves of sets and abelian
groups with the following properties:

(1) the functor g−1 associates to a sheaf F on C the sheaf on (C/K)site wich
in degree n is equal to j−1

n F ,
(2) the functor g∗ associates to a sheaf G on (C/K)site the equalizer of the

two maps j0,∗G0 → j1,∗G1,

Proof. The functor is continuous and cocontinuous by our choice of coverings and
our description of (certain) fibre products in (C/K)site in the proof of Lemma
64.3.2. Details omitted. Thus we obtain a morphism of topoi and functors gSh! and
g!, see Sites, Section 7.20 and Modules on Sites, Section 18.16. The description of
g−1 is immediate from the definition as the compostion C/Kn → C/K → C is the
localization morphism jn.

Proof of (2). Let F be a sheaf on C and let G be a sheaf on (C/K)site. A map
a : g−1F → G corresponds to a system of maps an : j−1

n F → Gn on C/Kn by
Lemma 64.3.4. Taking n = 0 we get a map j−1

0 F → G0 which is adjoint to a map
a0 : F → j0,∗G0. Since a0 is compatible with a1 via the two maps j0,∗G0 → j1,∗G1

we see that a0 maps into the equalizer. Conversely, given a map a0 : F → j0,∗G0

into the equalizer we can pick, for any n, one of the maps j0,∗G0 → jn,∗Gn and
compose to get a well defined map an : F → jn,∗Gn. These fit together to define a
map of sheaves g−1F → G. �

Lemma 64.4.3. Let C be a site with equalizers and fibre products. Let G be a
presheaf of sets on C. Let K be a hypercovering of G, see Hypercoverings, Definition
24.5.1. Then we have a canonical isomorphism

RΓ(G, E) = RΓ((C/K)site, g
−1E)

for E ∈ D+(C). If K is a hypercovering, then RΓ(E) = RΓ((C/K)site, g
−1E).

Proof. First, let I be an injective abelian sheaf on C. Then the spectral sequence
of Lemma 64.3.8 for the sheaf g−1I degenerates as (g−1I)p is the restriction of I
to C/Kp which is injective by Cohomology on Sites, Lemma 21.8.1 (extended in the
obvious manner to localization at semi-representable objects of C). Thus we see
that the complex

I(K0)→ I(K1)→ I(K2)→ . . .

computes RΓ((C/K)site, g
−1I). This is exactly the Čech complex of I with respect

to the simplicial object K of SR(C) as defined in Hypercoverings, Section 24.4.
Thus Hypercoverings, Lemma 24.5.3 shows that this complex computes RΓ(G, I)
(which has zero higher cohomology groups as I is injective). In other words, we
have H0(G, I) = H0((C/K)site, I) and Hp(G, I) = Hp((C/K)site, I) = 0 for all
p > 0.

The lemma now follows formally. Namely, let A ∈ D+(C) be arbitrary. We can rep-
resent A by a bounded below complex I• of injective abelian sheaves. By Leray’s
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acyclicity lemma (Derived Categories, Lemma 13.17.7) RΓ((C/K)site, A) is com-
puted by the complex Γ((C/K)site, g

−1I•) and RΓ(G, A) is computed by Γ(G, I•).
Since these complexes are the same we obtain the conclusion.

The final statement refers to the special case where G = ∗ is the final object in the
category of presheaves on C. �

Lemma 64.4.4. Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X, see Hypercoverings, Definition 24.2.6. Then we have a
canonical isomorphism

RΓ(X,E) = RΓ((C/K)site, g
−1E)

for E ∈ D+(C).

Proof. If C also has equalizers, then this is a special case of Lemma 64.4.3 because
a hypercovering of X is a hypercovering of hX by Hypercoverings, Lemma 24.2.10.

This also uses that Hq(hX ,F) = Hq(h#
X ,F) = Hq(X,F), see discussion in Hyper-

coverings, Section 24.5 and Cohomology on Sites, Section 21.13. In general (when
C does not have equalizers) one proves this using exactly the same argument as
in the proof of Lemma 64.4.3 but substituting Hypercoverings, Lemma 24.4.2 for
Hypercoverings, Lemma 24.5.3. �

64.5. Hypercovering in a site

In the previous section we worked out, in great generality, how hypercoverings give
rise to simplicial sites and how cohomology of (say) constant sheaves on this site
computes the cohomology of the object the hypercovering is augmented towards.
In this section we explain what this means in a special case.

Let C be a site with fibre products. Let X be an object of C and let X• be a
simplicial object of C. Assume we have an augmentation

a : X• → X

The discussion above turns this into a morphism of topoi

g : (C/X•)site −→ C/X

Here an object of the site (C/X•)site is given by a U/Xn and a morphism (ϕ, f) :
U/Xn → V/Xm is given by a morphism ϕ : [m] → [n] in ∆ and a morphism
f : U → V such that the diagram

U
f
//

��

V

��
Xn

ϕ // Xm

is commutative. The morphism of topoi g is given by the cocontinuous functor
U/Xn 7→ U/X. That’s all folks!

Thus we may translate some of the results above to this setting. For example, let
us say that the augmentation is a hypercovering if the following hold

(1) {X0 → X} is a covering of C,
(2) {X1 → X0 ×X X0} is a covering of C,
(3) {Xn+1 → (cosknsknX•)n+1} is a covering of C for n ≥ 1.

http://stacks.math.columbia.edu/tag/09X7
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The category C/X has all finite limits, hence the coskeleta used in the formulation
above exist.

Lemma 64.5.1. In the situation above assume that X• is a hypercovering of X.
Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/X•)site, g−1E)

for E ∈ D+(C/X).

Proof. This is a special case of Lemma 64.4.4. �

64.6. Proper hypercoverings in topology

Let’s work in the category LC of Hausdorff and locally quasi-compact topological
spaces and continuous maps, see Cohomology on Sites, Section 21.23. Let X be
an object of LC and let X• be a simplicial object of LC. Assume we have an
augmentation

a : X• → X

We say that X• is a proper hypercovering of X if

(1) X0 → X is a proper surjective map,
(2) X1 → X0 ×X X0 is a proper surjective map,
(3) Xn+1 → (cosknsknX•)n+1 is a proper surjective map for n ≥ 1.

The category LC has all finite limits, hence the coskeleta used in the formulation
above exist.

Principle: Proper hypercoverings can be used to compute cohomology.

A key idea behind the proof of the principle is to find a topology on LC which is
stronger than the usual one such that (A) a surjective proper map defines a covering,
and (B) cohomology of usual sheaves with respect to this stronger topology agrees
with the usual cohomology. Properties (A) and (B) hold for the qc topology, see
Cohomology on Sites, Section 21.23. Once we have (A) and (B) we deduce the
principle via a combination of the spectral sequences of Hypercoverings, Lemma
24.4.3 and Lemma 64.2.11. The following lemma is just a first step.

Lemma 64.6.1. In the situation above, let F be an abelian sheaf on X. Let Fn
be the pullback to Xn. If X• is a proper hypercovering of X, then there exists a
canonical spectral sequence

Ep,q1 = Hq(Xp,Fp)
converging to Hp+q(X,F).

Proof. By Cohomology on Sites, Lemma 21.23.6 we have

H∗(X,F) = H∗(LCqc/X, ε
−1π−1F).

Since a proper surjective map defines a qc covering (Cohomology on Sites, Lemma
21.23.7) we see that X• → X is a hypercovering in the site LCqc as in Section 64.5.
Thus we have

RΓ(X,F) = RΓ(LCqc/X, ε
−1π−1F) = RΓ((LC/X•)site, g

−1ε−1π−1F)

by Lemma 64.5.1. By Lemma 64.3.8 there is a spectral sequence with

Ep,q1 = Hq(LCqc/Xp, (g
−1ε−1π−1F)p)
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converging to the cohomology of g−1ε−1π−1F . Finally, the restriction (g−1ε−1π−1F)p
is just the restriction to LCqc/Xp of ε−1π−1F which by Cohomology on Sites,
Lemma 21.23.5 is the pullback of Fp to LCqc/Xp. By Cohomology on Sites, Lemma
21.23.6 again we conclude that

Hq(LCqc/Xp, (g
−1ε−1π−1F)p) = Hq(Xp,Fp)

and the proof is finished. �

Lemma 64.6.2. In the situation above, let F be an abelian sheaf on X. Let F• be
the pullback of F via a : X• → X. If X• is a proper hypercovering of X, then

H∗(X,F) = H∗((X•)Zar,F•)

Proof. Consider the continuous functor

(X•)Zar −→ (LCqc/X•)site, U 7−→ U

We obtain a commutative diagram of topoi

Sh((LCqc/X•)site)

g

��

// Sh((X•)Zar)

g

��
Sh(LCqc/X)

π◦ε // Sh(XZar)

Thus our sheaf F gives rise to a compatible collection of abelian sheaves in each
topos. In the proof of Lemma 64.6.1 we have seen that the sheaf F has the same
cohomology as the sheaf ε−1π−1F and g−1ε−1π−1F . On the other hand, the terms
of the spectral sequence of Lemma 64.2.11 for F• are the same as those in the
statement and proof of Lemma 64.6.1. A simple argument with spectral sequences
then shows that the map

RΓ((X•)Zar,F•) −→ RΓ((LCqc/X•)site, g
−1ε−1π−1F)

is an isomorphism. Some details omitted. �

Lemma 64.6.3. In the situation above, assume a : X• → X gives a proper hyper-
covering of X. Then for all K ∈ D+(X)

K → Ra∗(a
−1K)

is an isomorphism where a : Sh((X•)Zar)→ Sh(X) is as in Lemma 64.2.9.

Proof. Observe that for any abelian sheaf F on X the sheaf Rqa∗(a
−1F) is the

sheaf associated to the presheaf

U 7→ Hq((U•)Zar, a
−1F) = Hq(U,F)

where U• = a−1(U). The last equality holds by Lemma 64.6.2. Thus Rqa∗(a
−1F)

is zero for q > 0 and equal to F for q = 0. This proves the result in case K
consists of a single abelian sheaf in a single degree. The general case follows from
this immediately. �
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64.7. Simplicial schemes

A simplicial scheme is a simplicial object in the category of schemes, see Simplicial,
Definition 14.3.1. Recall that a simplicial scheme looks like

X2

//
//
//
X1

//
//oo

oo
X0

oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of
as a “projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal
map repeating the jth coordinate.

64.8. Descent in terms of simplicial schemes

Cartesian morphisms are defined as follows.

Definition 64.8.1. Let a : Y → X be a morphism of simplicial schemes. We say
a is cartesian, or that Y is cartesian over X, if for every morphism ϕ : [n] → [m]
of ∆ the corresponding diagram

Ym a
//

Y (ϕ)

��

Xm

X(ϕ)

��
Yn

a // Xn

is a fibre square in the category of schemes.

Cartesian morphisms are related to descent data. First we prove a general lemma
describing the category of cartesian simplicial schemes over a fixed simplicial scheme.
In this lemma we denote f∗ : Sch/X → Sch/Y the base change functor associated
to a morphism of schemes Y → X.

Lemma 64.8.2. Let X be a simplicial scheme. The category of simplicial schemes
cartesian over X is equivalent to the category of pairs (V, ϕ) where V is a scheme
over X0 and

ϕ : V ×X0,d1
1
X1 −→ X1 ×d1

0,X0
V

is an isomorphism over X1 such that (s0
0)∗ϕ = idV and such that

(d2
1)∗ϕ = (d2

0)∗ϕ ◦ (d2
2)∗ϕ

as morphisms of schemes over X2.

Proof. The statement of the displayed equality makes sense because d1
1 ◦ d2

2 =
d1

1 ◦ d2
1, d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see

Simplicial, Remark 14.3.3 hence we can picture these maps as follows

X2 ×d1
1◦d2

0,X0
V

(d2
0)∗ϕ

// X2 ×d1
0◦d2

0,X0
V

X2 ×d1
0◦d2

2,X0
V X2 ×d1

0◦d2
1,X0

V

X2 ×d1
1◦d2

2,X0
V

(d2
2)∗ϕ

hh

X2 ×d1
1◦d2

1,X0
V

(d2
1)∗ϕ
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and the condition signifies the diagram is commutative. It is clear that given a
simplicial scheme Y cartesian over X we can set V = Y0 and ϕ equal to the
composition

V ×X0,d1
1
X1 = Y0 ×X0,d1

1
X1 = Y1 = X1 ×X0,d1

0
Y0 = X1 ×X0,d1

0
V

of identifications given by the cartesian structure. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 34.3 from which we
borrow the notation τni : [0] → [n], 0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j.
Namely, given a pair (V, ϕ) as in the lemma we set Yn = Xn ×X(τnn ),X0

V . Then
given β : [n]→ [m] we define V (β) : Ym → Yn as the pullback by X(τmβ(n)m) of the

map ϕ postcomposed by the projection Xm ×X(β),Xn Yn → Yn. This makes sense
because

Xm ×X(τm
β(n)m

),X1
X1 ×d1

1,X0
V = Xm ×X(τmm ),X0

V = Ym

and

Xm ×X(τm
β(n)m

),X1
X1 ×d1

0,X0
V = Xm ×X(τm

β(n)
),X0

V = Xm ×X(β),Xn Yn.

We omit the verification that the commutativity of the displayed diagram above
implies the maps compose correctly. We also omit the verification that the two
functors are quasi-inverse to each other. �

Definition 64.8.3. Let f : X → S be a morphism of schemes. The simplicial
scheme associated to f , denoted (X/S)•, is the functor ∆opp → Sch, [n] 7→ X ×S
. . .×S X described in Simplicial, Example 14.3.5.

Thus (X/S)n is the (n + 1)-fold fibre product of X over S. The morphism d1
0 :

X×SX → X is the map (x0, x1) 7→ x1 and the morphism d1
1 is the other projection.

The morphism s0
0 is the diagonal morphism X → X ×S X.

Lemma 64.8.4. Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes. Set V = Y0 considered as a scheme
over X. The morphisms d1

0, d
1
1 : Y1 → Y0 and the morphism π1 : Y1 → X ×S X

induce isomorphisms

V ×S X Y1

(d1
1,pr1◦π1)oo (pr0◦π1,d

1
0) // X ×S V.

Denote ϕ : V ×S X → X ×S V the resulting isomorphism. Then the pair (V, ϕ) is
a descent datum relative to X → S.

Proof. This is a special case of (part of) Lemma 64.8.2 as the displayed equation of
that lemma is equivalent to the cocycle condition of Descent, Definition 34.30.1. �

Lemma 64.8.5. Let f : X → S be a morphism of schemes. The construction

category of cartesian
schemes over (X/S)•

−→ category of descent data
relative to X/S

of Lemma 64.8.4 is an equivalence of categories.

Proof. The functor from left to right is given in Lemma 64.8.4. Hence this is a
special case of Lemma 64.8.2. �
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We may reinterpret the pullback of Descent, Lemma 34.30.6 as follows. Suppose
given a morphism of simplicial schemes f : X ′ → X and a cartesian morphism of
simplicial schemes Y → X. Then the fibre product (viewed as a “pullback”)

f∗Y = Y ×X X ′

of simplicial schemes is a simplicial scheme cartesian over X ′. Suppose given a
commutative diagram of morphisms of schemes

X ′
f
//

��

X

��
S′ // S.

This gives rise to a morphism of simplicial schemes

f• : (X ′/S′)• −→ (X/S)•.

We claim that the “pullback” f∗• along the morphism f• : (X ′/S′)• → (X/S)•
corresponds via Lemma 64.8.5 with the pullback defined in terms of descent data
in the aforementioned Descent, Lemma 34.30.6.

64.9. Quasi-coherent modules on simplicial schemes

In the following definition we make use of the description of sheaves on a simplicial
space given in Lemma 64.2.2.

Definition 64.9.1. Let S be a scheme. Let U be a simplicial scheme over S.

(1) A quasi-coherent sheaf on U is given by a sheaf of OU -modules F such
that Fn is quasi-coherent for all n ≥ 0.

(2) A quasi-coherent sheaf F on U is cartesian if and only if all the maps
F(ϕ) : Fn → Fm induce isomorphisms U(ϕ)∗Fn → Fm.

The property on pullbacks needs only be checked for the degeneracies.

Lemma 64.9.2. Let S be a scheme. Let U be a simplicial scheme over S. Let F
be a quasi-coherent module on U . Then F is cartesian if and only if the induced
maps (dnj )∗Fn−1 → Fn are isomorphisms.

Proof. The category ∆ is generated by the morphisms the morphisms δnj and σnj ,
see Simplicial, Lemma 14.2.2. Hence we only need to check the maps (dnj )∗Fn−1 →
Fn and (snj )∗Fn+1 → Fn are isomorphisms, see Simplicial, Lemma 14.3.2 for nota-

tion. But dn+1
j ◦ snj = idUn so it the result for dn+1

j implies the result for snj . �

Lemma 64.9.3. Let S be a scheme. Let U be a simplicial scheme over S. The
category of cartesian quasi-coherent modules over U is equivalent to the category of
pairs (F , α) where F is a quasi-coherent module over U0 and

α : (d1
1)∗F −→ (d1

0)∗F

is an isomorphism such that (s0
0)∗α = idF and such that

(d2
1)∗α = (d2

0)∗α ◦ (d2
2)∗α

on X2.
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Proof. The statement of the displayed equality makes sense because d1
1 ◦ d2

2 =
d1

1 ◦ d2
1, d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see

Simplicial, Remark 14.3.3 hence we can picture these maps as follows

(d2
0)∗(d1

1)∗F
(d2

0)∗α

// (d2
0)∗(d1

0)∗F

(d2
2)∗(d1

0)∗F (d2
1)∗(d1

0)∗F

(d2
2)∗(d1

1)∗F
(d2

2)∗α

gg

(d2
1)∗(d1

1)∗F
(d2

1)∗α
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and the condition signifies the diagram is commutative. It is clear that given a
cartesian quasi-coherent sheaf F we can set F = F0 and α equal to the composition

(d0
1)∗F0 = F1 = (d0

0)∗F0

of identifications given by the cartesian structure. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 34.3 from which we
borrow the notation τni : [0] → [n], 0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j.
Namely, given a pair (F , α) as in the lemma we set Fn = X(τnn )∗F . Then given
β : [n] → [m] we define F(β) : Fn → Fm as the pullback by X(τmβ(n)m) of the

map α precomposed with the canonical X(β)-map Fn → X(β)∗Fn. We omit the
verification that the commutativity of the displayed diagram above implies the
maps compose correctly. We also omit the verification that the two functors are
quasi-inverse to each other. �

Lemma 64.9.4. Let f : V → U be a morphism of simplicial schemes. Given
a cartesian quasi-coherent module F on U the pullback f∗F is a cartesian quasi-
coherent module on V .

Proof. This is immediate from the definitions. �

Lemma 64.9.5. Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un are
quasi-compact and quasi-separated. For a cartesian quasi-coherent module G on V
the pushforward f∗G is a cartesian quasi-coherent module on U .

Proof. If F = f∗G, then Fn = fn,∗Gn and the maps F(ϕ) are defined using the base
change maps, see Cohomology, Section 20.18. The sheaves Fn are quasi-coherent
by Schemes, Lemma 25.24.1. The base change maps along the degeneracies dnj are
isomorphisms by Cohomology of Schemes, Lemma 29.5.2. Hence we are done by
Lemma 64.9.2. �

Lemma 64.9.6. Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un
are quasi-compact and quasi-separated. Then f∗ and f∗ form an adjoint pair of
functors between the categories of cartesian quasi-coherent modules on U and V .

Proof. We have seen in Lemmas 64.9.4 and 64.9.5 that the statement makes sense.
The adjointness property follows immediately from the fact that each f∗n is adjoint
to fn,∗. �
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Lemma 64.9.7. Let f : X → S be a morphism of schemes which has a section2.
Let (X/S)• be the simplicial scheme associated to X → S, see Definition 64.8.3.
Then pullback defines an equivalence between the category of quasi-coherent OS-
modules and the category of cartesian quasi-coherent modules on (X/S)•.

Proof. Let σ : S → X be a section of f . Let (F , α) be a pair as in Lemma 64.9.3.
Set G = σ∗F . Consider the diagram

X
(σ◦f,1)

//

f

��

X ×S X
pr0

��

pr1

// X

S
σ // X

Note that pr0 = d1
1 and pr1 = d1

0. Hence we see that (σ ◦ f, 1)∗α defines an
isomorphism

f∗G = (σ ◦ f, 1)∗pr∗0F −→ (σ ◦ f, 1)∗pr∗1F = F

We omit the verification that this isomorphism is compatible with α and the canon-
ical isomorphism pr∗0f

∗G → pr∗1f
∗G. �

64.10. Groupoids and simplicial schemes

Given a groupoid in schemes we can build a simplicial scheme. It will turn out that
the category of quasi-coherent sheaves on a groupoid is equivalent to the category
of cartesian quasi-coherent sheaves on the associated simplicial scheme.

Lemma 64.10.1. Let (U,R, s, t, c, e, i) be a groupoid scheme over S. There exists
a simplicial scheme X over S with the following properties

(1) X0 = U , X1 = R, X2 = R×s,U,t R,
(2) s0

0 = e : X0 → X1,
(3) d1

0 = s : X1 → X0, d1
1 = t : X1 → X0,

(4) s1
0 = (e ◦ t, 1) : X1 → X2, s1

1 = (1, e ◦ t) : X1 → X2,
(5) d2

0 = pr1 : X2 → X1, d2
1 = c : X2 → X1, d2

2 = pr0, and
(6) X = cosk2sk2X.

For all n we have Xn = R ×s,U,t . . . ×s,U,t R with n factors. The map dnj : Xn →
Xn−1 is given on functors of points by

(r1, . . . , rn) 7−→ (r1, . . . , c(rj , rj+1), . . . , rn)

for 1 ≤ j ≤ n − 1 whereas dn0 (r1, . . . , rn) = (r2, . . . , rn) and dnn(r1, . . . , rn) =
(r1, . . . , rn−1).

Proof. We only have to verify that the rules prescribed in (1), (2), (3), (4), (5)
define a 2-truncated simplicial scheme U ′ over S, since then (6) allows us to set
X = cosk2U

′, see Simplicial, Lemma 14.18.2. Using the functor of points approach,

2In fact, it would be enough to assume that f has fpqc locally on S a section, since we have
descent of quasi-coherent modules by Descent, Section 34.5.
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all we have to verify is that if (Ob,Arrows, s, t, c, e, i) is a groupoid, then

Arrows×s,Ob,t Arrows

pr0

��
c

��
pr1

��
Arrows

t

��
s

��

1,e

OO
e,1

OO

Ob

e

OO

is a 2-truncated simplicial set. We omit the details.

Finally, the description of Xn for n > 2 follows by induction from the description of
X0, X1, X2, and Simplicial, Remark 14.18.9 and Lemma 14.18.6. Alternately, one
shows that cosk2 applied to the 2-truncated simplicial set displayed above gives a
simplicial set whose nth term equals Arrows×s,Ob,t . . .×s,Ob,tArrows with n factors
and degeneracy maps as given in the lemma. Some details omitted. �

Lemma 64.10.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let X be the simplicial scheme over S constructed in Lemma 64.10.1. Then the
category of quasi-coherent modules on (U,R, s, t, c) is equivalent to the category of
cartesian quasi-coherent modules on X.

Proof. This is clear from Lemma 64.9.3 and Groupoids, Definition 38.12.1. �

In the following lemma we will use the concept of a cartesian morphism V → U of
simplicial schemes as defined in Definition 64.8.1.

Lemma 64.10.3. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Let
X be the simplicial scheme over S constructed in Lemma 64.10.1. Let (R/U)•
be the simplicial scheme associated to s : R → U , see Definition 64.8.3. There
exists a cartesian morphism t• : (R/U)• → X of simplicial schemes with low degree
morphisms given by

R×s,U,s R×s,U,s R
pr12

//

pr02

//

pr01

//

(r0,r1,r2) 7→(r0◦r−1
1 ,r1◦r−1

2 )

��

R×s,U,s R pr1

//

pr0

//

(r0,r1)7→r0◦r−1
1

��

R

t

��
R×s,U,t R

pr1

//

c
//

pr0

//
R s

//

t
//
U

Proof. For arbitrary n we define (R/U)• → Xn by the rule

(r0, . . . , rn) −→ (r0 ◦ r−1
1 , . . . , rn−1 ◦ r−1

n )

Compatibility with degeneracy maps is clear from the description of the degen-
eracies in Lemma 64.10.1. We omit the verification that the maps respect the
morphisms snj . Groupoids, Lemma 38.11.5 (with the roles of s and t reversed)
shows that the two right squares are cartesian. In exactly the same manner one
shows all the other squares are cartesian too. Hence the morphism is cartesian. �

http://stacks.math.columbia.edu/tag/07TP
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64.11. Descent data give equivalence relations

In Section 64.8 we saw how descent data relative to X → S can be formulated in
terms of cartesian simplicial schemes over (X/S)•. Here we link this to equivalence
relations as follows.

Lemma 64.11.1. Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes, see Definitions 64.8.1 and 64.8.3.
Then the morphism

j = (d1
1, d

1
0) : Y1 → Y0 ×S Y0

defines an equivalence relation on Y0 over S, see Groupoids, Definition 38.3.1.

Proof. Note that j is a monomorphism. Namely the composition Y1 → Y0×SY0 →
Y0 ×S X is an isomorphism as π is cartesian.

Consider the morphism

(d2
2, d

2
0) : Y2 → Y1 ×d1

0,Y0,d1
1
Y1.

This works because d0 ◦ d2 = d1 ◦ d0, see Simplicial, Remark 14.3.3. Also, it is a
morphism over (X/S)2. It is an isomorphism because Y → (X/S)• is cartesian.
Note for example that the right hand side is isomorphic to Y0×π0,X,pr1

(X×SX×S
X) = X ×S Y0 ×S X because π is cartesian. Details omitted.

As in Groupoids, Definition 38.3.1 we denote t = pr0 ◦ j = d1
1 and s = pr1 ◦ j = d1

0.
The isomorphism above, combined with the morphism d2

1 : Y2 → Y1 give us a
composition morphism

c : Y1 ×s,Y0,t Y1 −→ Y1

over Y0 ×S Y0. This immediately implies that for any scheme T/S the relation
Y1(T ) ⊂ Y0(T )× Y0(T ) is transitive.

Reflexivity follows from the fact that the restriction of the morphism j to the
diagonal ∆ : X → X ×S X is an isomorphism (again use the cartesian property of
π).

To see symmetry we consider the morphism

(d2
2, d

2
1) : Y2 → Y1 ×d1

1,Y0,d1
1
Y1.

This works because d1 ◦ d2 = d1 ◦ d1, see Simplicial, Remark 14.3.3. It is an
isomorphism because Y → (X/S)• is cartesian. Note for example that the right
hand side is isomorphic to Y0 ×π0,X,pr0

(X ×S X ×S X) = Y0 ×S X ×S X because
π is cartesian. Details omitted.

Let T/S be a scheme. Let a ∼ b for a, b ∈ Y0(T ) be synonymous with (a, b) ∈ Y1(T ).
The isomorphism (d2

2, d
2
1) above implies that if a ∼ b and a ∼ c, then b ∼ c.

Combined with reflexivity this shows that ∼ is an equivalence relation. �

64.12. An example case

In this section we show that disjoint unions of spectra of Artinian rings can be
descended along a quasi-compact surjective flat morphism of schemes.

http://stacks.math.columbia.edu/tag/024E
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Lemma 64.12.1. Let X → S be a morphism of schemes. Suppose Y → (X/S)•
is a cartesian morphism of simplicial schemes. For y ∈ Y0 a point define

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}
as a subset of Y0. Then y ∈ Ty and Ty ∩ Ty′ 6= ∅ ⇒ Ty = Ty′ .

Proof. Combine Lemma 64.11.1 and Groupoids, Lemma 38.3.4. �

Lemma 64.12.2. Let X → S be a morphism of schemes. Suppose Y → (X/S)•
is a cartesian morphism of simplicial schemes. Let y ∈ Y0 be a point. If X → S is
quasi-compact, then

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}
is a quasi-compact subset of Y0.

Proof. Let Fy be the scheme theoretic fibre of d1
1 : Y1 → Y0 at y. Then we see

that Ty is the image of the morphism

Fy //

��

Y1

d1
0 //

d1
1

��

Y0

y // Y0

Note that Fy is quasi-compact. This proves the lemma. �

Lemma 64.12.3. Let X → S be a quasi-compact flat surjective morphism. Let
(V, ϕ) be a descent datum relative to X → S. If V is a disjoint union of spectra of
Artinian rings, then (V, ϕ) is effective.

Proof. Let Y → (X/S)• be the cartesian morphism of simplicial schemes corre-
sponding to (V, ϕ) by Lemma 64.8.5. Observe that Y0 = V . Write V =

∐
i∈I Spec(Ai)

with each Ai local Artinian. Moreover, let vi ∈ V be the unique closed point of
Spec(Ai) for all i ∈ I. Write i ∼ j if and only if vi ∈ Tvj with notation as in Lemma
64.12.1 above. By Lemmas 64.12.1 and 64.12.2 this is an equivalence relation with
finite equivalence classes. Let I = I/ ∼. Then we can write V =

∐
i∈I Vi with

Vi =
∐
i∈i Spec(Ai). By construction we see that ϕ : V ×S X → X ×S V maps the

open and closed subspaces Vi×SX into the open and closed subspaces X×S Vi. In
other words, we get descent data (Vi, ϕi), and (V, ϕ) is the coproduct of them in the
category of descent data. Since each of the Vi is a finite union of spectra of Artinian
local rings the morphism Vi → X is affine, see Morphisms, Lemma 28.13.13. Since
{X → S} is an fpqc covering we see that all the descent data (Vi, ϕi) are effective
by Descent, Lemma 34.33.1. �

To be sure, the lemma above has very limited applicability!

64.13. Other chapters
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CHAPTER 65

Formal Algebraic Spaces

65.1. Introduction

Formal schemes were introduced in [DG67]. A more general version of formal
schemes was introduced in [McQ02] and another in [Yas09]. Formal algebraic
spaces were introduced in [Knu71]. Related material and much besides can be
found in [Abb10] and [FK]. This chapter introduces the notion of formal algebraic
spaces we will work with. Our definition is general enough to allow most classes of
formal schemes/spaces in the literature as full subcategories.

Although we do discuss the comparison of some of these alternative theories with
ours, we do not always give full details when it is not necessary for the logical
development of the theory.

Besides introducing formal algebraic spaces, we also prove a few very basic proper-
ties and we discuss a few types of morphisms.

65.2. Formal schemes à la EGA

In this section we review the construction of formal schemes in [DG67]. This
notion, although very useful in algebraic geometry, may not always be the correct
one to consider. Perhaps it is better to say that in the setup of the theory a
number of choices are made, where for different purposes others might work better.
And indeed in the literature one can find many different closely related theories
adapted to the problem the authors may want to consider. Still, one of the major
advantages of the theory as sketched here is that one gets to work with definite
geometric objects.

Before we start we should point out an issue with the sheaf condition for sheaves of
topological rings or more generally sheaves of topological spaces. Namely, the big
categories

(1) category of topological spaces,
(2) category of topological abelian groups,
(3) category of topological rings,
(4) category of topological modules over a given topological ring,

endowed with their natural forgetful functors to Sets are not examples of types of
algebraic structures as defined in Sheaves, Section 6.15. Thus we cannot blithely
apply to them the machinery developed in that chapter. On the other hand, each
of the categories listed above has products, so we can define the notion of a sheaf
as in Sheaves, Definition 6.9.1. Moreover, products still commute with the forgetful
functor to Sets so the underlying presheaf of sets of a sheaf of topological spaces
(for example) is a sheaf of sets. The key difference is that for an open covering

3739
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U =
⋃
i∈I Ui the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

has to be an equalizer diagram in the category of topological spaces, groups, rings,
modules, i.e., that the first map identifies F(U) with a subspace of

∏
i∈I F(Ui)

which is endowed with the product topology.

The stalk Fx of a sheaf F of topological spaces, abelian groups, rings, or modules
at a point x ∈ X is defined as the colimit over open neighbourhoods

Fx = colimx∈U F(U)

in the corresponding category, which is the same as taking the colimit on the level
of underlying sheaves of sets, groups, rings, or modules but comes equipped with a
topology (the colimit topology). One can sheafify presheaves of topological spaces,
abelian groups, rings, or modules and taking stalks commutes with this operation,
see Remark 65.2.4.

Let f : X → Y be a continuous map of topological spaces. There is a functor f∗
from the category of sheaves of topological spaces, abelian groups, rings, modules,
to the corresponding category of sheaves on Y which is defined by setting f∗F(V ) =
F(f−1V ) as usual. (We delay discussing the pullback in this setting till later.) We
define the notion of an f -map ξ : G → F between a sheaf of topological spaces
G on Y and a sheaf of topological spaces F on X in exactly the same manner
as in Sheaves, Definition 6.21.7 with the additional constraint that ξV : G(V ) →
F(f−1V ) be continuous for every open V ⊂ Y . We have

{f -maps from G to F} = MorSh(Y,Top)(G, f∗F)

as in Sheaves, Lemma 6.21.8. Similarly for sheaves of topological abelian groups,
rings, modules. Finally, let ξ : G → F be an f -map as above. Then given x ∈ X
with image y = f(x) there is a continuous map

ξx : Gy −→ Fx
of stalks defined in exactly the same manner as in the discussion following Sheaves,
Definition 6.21.9.

Using the discussion above, we can define a category LTRS of “locally topologically
ringed spaces”. An object is a pair (X,OX) consisting of a topological space X
and a sheaf of topological rings OX whose stalks OX,x are local rings (if one forgets
about the topology). A morphism (X,OX) → (Y,OY ) of LTRS is a pair (f, f ])
where f : X → Y is a continuous map of topological spaces and f ] : OY → OX is
an f -map such that for every x ∈ X the induced map

f ]x : OY,f(x) −→ OX,x
is a local homomorphism of local rings (forgetting about the topologies). The
composition works in exactly the same manner as composition of morphisms of
locally ringed spaces.

Assume now that the topological space X has a basis consisting of quasi-compact
opens. Given a sheaf G of sets, abelian groups, rings, modules over a ring, one
can endow G with the structure of a sheaf of topological spaces, abelian groups,
rings, modules. Namely, if U ⊂ X is quasi-compact open, we endow F(U) with
the discrete topology. If U ⊂ X is arbitrary, then we choose an open covering U =
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i∈I Ui by quasi-compact opens and we endow F(U) with the induced topology

from
∏
i∈I F(Ui) (as we should do according to our discussion above). The reader

may verify (omitted) that we obtain a sheaf of topological spaces, groups, rings,
modules in this fashion. Let us say that a sheaf of topological spaces, groups, rings,
modules is pseudo-discrete if the topology on F(U) is discrete for every quasi-
compact open U ⊂ X. Then the construction given above is an adjoint to the
forgetful functor and induces an equivalence between the category of sheaves of
sets and the category of pseudo-discrete sheaves of topological space (similarly for
groups, rings, modules).

Grothendieck and Dieudonné first define formal affine schemes. These correspond
to admissible topological rings A, see More on Algebra, Definition 15.26.1. Namely,
given A one considers a fundamental system Iλ of ideals of definition for the ring
A. (In any admissible topological ring the family of all ideals of definition forms
a fundamental system.) For each λ we can consider the scheme Spec(A/Iλ). For
Iλ ⊂ Iµ the induced morphism

Spec(A/Iµ)→ Spec(A/Iλ)

is a thickening because Inµ ⊂ Iλ for some n. Another way to see this, is to notice
that the image of each of the maps

Spec(A/Iλ)→ Spec(A)

is a homeomorphism onto the set of open prime ideals of A. This motivates the
definition

Spf(A) = {open prime ideals p ⊂ A}
endowed with the topology coming from Spec(A). For each λ we can consider
the structure sheaf OSpec(A/Iλ as a sheaf on Spf(A). Let Oλ be the corresponding
pseudo-discrete sheaf of topological rings, see above. Then we set

OSpf(A) = limOλ
where the limit is taken in the category of sheaves of topological rings. The pair
(Spf(A),OSpf(A)) is called the formal spectrum of A.

At this point one should check several things. The first is that the stalks OSpf(A),x

are local rings (forgetting about the topology). The second is that given f ∈ A, for
the corresponding open D(f) ∩ Spf(A) we have

Γ(D(f) ∩ Spf(A),OSpf(A)) = A{f} = lim(A/Iλ)f

as topological rings where Iλ is a fundamental system of ideals of definition as above.
Moreover, the ring A{f} is admissible too and (Spf(Af ),OSpf(A{f})) is isomorphic to

(D(f)∩ Spf(A),OSpf(A)|D(f)∩Spf(A)). Finally, given a pair of admissible topological
rings A,B we have

(65.2.0.1) MorLTRS((Spf(B),OSpf(B)), (Spf(A),OSpf(A))) = Homcont(A,B)

where LTRS is the category of “locally topologically ringed spaces” as defined
above.

Having said this, in [DG67] a formal scheme is defined as a pair (X,OX) where X
is a topological space and OX is a sheaf of topological rings such that every point
has an open neighbourhood isomorphic (in LTRS) to an affine formal scheme. A
morphism of formal schemes f : (X,OX)→ (Y,OY) is a morphism in the category
LTRS.
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Let A be a ring endowed with the discrete topology. Then A is admissible and
the formal scheme Spf(A) is equal to Spec(A). The structure sheaf OSpf(A) is the
pseudo-discrete sheaf of topological rings associated to OSpec(A), in other words, its
underlying sheaf of rings is equal toOSpec(A) and the ringOSpf(A)(U) = OSpec(A)(U)
over a quasi-compact open U has the discrete topology, but not in general. Thus
we can associate to every affine scheme a formal affine scheme. In exactly the same
manner we can start with a general scheme (X,OX) and associate to it (X,O′X)
where O′X is the pseudo-discrete sheaf of topological rings whose underlying sheaf of
rings is OX . This construction is compatible with morphisms and defines a functor

(65.2.0.2) Schemes −→ Formal Schemes

It follows in a straightforward manner from (65.2.0.1) that this functor is fully
faithful.

Let X be a formal scheme. Let us define the size of the formal scheme by the
formula size(X) = max(ℵ0, κ1, κ2) where κ1 is the cardinality of the formal affine
opens of X and κ2 is the supremum of the cardinalities of OX(U) where U ⊂ X is
such a formal affine open.

Lemma 65.2.1. Choose a category of schemes Schα as in Sets, Lemma 3.9.2.
Given a formal scheme X let

hX : (Schα)opp −→ Sets, hX(S) = MorFormal Schemes(S,X)

be its functor of points. Then we have

MorFormal Schemes(X,Y) = MorPSh(Schα)(hX, hY)

provided the size of X is not too large.

Proof. First we observe that hX satisfies the sheaf property for the Zariski topol-
ogy for any formal scheme X (see Schemes, Definition 25.15.3). This follows from
the local nature of morphisms in the category of formal schemes. Also, for an open
immersion V→W of formal schemes, the corresponding transformation of functors
hV → hW is injective and representable by open immersions (see Schemes, Defi-
nition 25.15.3). Choose an open covering X =

⋃
Ui of a formal scheme by affine

formal schemes Ui. Then the collection of functors hUi covers hX (see Schemes,
Definition 25.15.3). Finally, note that

hUi ×hX
hUj = hUi∩Uj

Hence in order to give a map hX → hY is equivalent to giving a family of maps
hUi → hY which agree on overlaps. Thus we can reduce the bijectivity (resp.
injectivity) of the map of the lemma to bijectivity (resp. injectivity) for the pairs
(Ui,Y) and injectivity (resp. nothing) for (Ui ∩ Uj ,Y). In this way we reduce to
the case where X is an affine formal scheme. Say X = Spf(A) for some admissible
topological ring A. Also, choose a fundamental system of ideals of definition Iλ ⊂ A.

We can also localize on Y. Namely, suppose that V ⊂ Y is an open formal sub-
scheme and ϕ : hX → hY. Then

hV ×hY,ϕ hX → hX

is representable by open immersions. Pulling back to Spec(A/Iλ) for all λ we
find an open subscheme Uλ ⊂ Spec(A/Iλ). However, for Iλ ⊂ Iµ the morphism

http://stacks.math.columbia.edu/tag/0AI1
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Spec(A/Iλ) → Spec(A/Iµ) pulls back Uµ to Uλ. Thus these glue to give an open
formal subscheme U ⊂ X. A straightforward argument (omitted) shows that

hU = hV ×hY
hX

In this way we see that given an open covering Y =
⋃

Vj and a transformation
of functors ϕ : hX → hY we obtain a corresponding open covering of X. Since X
is affine, we can refine this covering by a finite open covering X = U1 ∪ . . . ∪ Un
by affine formal subschemes. In other words, for each i there is a j and a map
ϕi : hUi → hVj

such that

hUi ϕi
//

��

hVj

��
hX

ϕ // hY

commutes. With a few additional arguments (which we omit) this implies that it
suffices to prove the bijectivity of the lemma in case both X and Y are affine formal
schemes.

Assume X and Y are affine formal schemes. Say X = Spf(A) and Y = Spf(B). Let
ϕ : hX → hY be a transformation of functors. Let Iλ ⊂ A be a fundamental system
of ideals of definition. The canonical inclusion morphism iλ : Spec(A/Iλ) → X
maps to a morphism ϕ(iλ) : Spec(A/Iλ)→ Y. By (65.2.0.1) this corresponds to a
continuous map χλ : B → A/Iλ. Since ϕ is a transformation of functors it follows
that for Iλ ⊂ Iµ the composition B → A/Iλ → A/Iµ is equal to χµ. In other words
we obtain a ring map

χ = limχλ : B −→ limA/Iλ = A

This is a continuous homomorphism because the inverse image of Iλ is open for
all λ (as A/Iλ has the discrete topology and χλ is continuous). Thus we obtain
a morphism Spf(χ) : X → Y by (65.2.0.1). We omit the verification that this
construction is the inverse to the map of the lemma in this case.

Set theoretic remarks. To make this work on the given category of schemes Schα
we just have to make sure all the schemes used in the proof above are isomorphic
to objects of Schα. In fact, a careful analysis shows that it suffices if the schemes
Spec(A/Iλ) occurring above are isomorphic to objects of Schα. For this it certainly
suffices to assume the size of X is at most the size of a scheme contained in Schα. �

Lemma 65.2.2. Let X be a formal scheme. The functor of points hX (see Lemma
65.2.1) satisfies the sheaf condition for fpqc coverings.

Proof. Topologies, Lemma 33.8.13 reduces us to the case of a Zariski covering and
a covering {Spec(S) → Spec(R)} with R → S faithfully flat. We observed in the
proof of Lemma 65.2.1 that hX satisfies the sheaf condition for Zariski coverings.

Suppose that R → S is a faithfully flat ring map. Denote π : Spec(S) → Spec(R)
the corresponding morphism of schemes. It is surjective and flat. Let f : Spec(S)→
X be a morphism such that f◦pr1 = f◦pr2 as maps Spec(S⊗RS)→ X. By Descent,
Lemma 34.9.1 we see that as a map on the underlying sets f is of the form f = g◦π
for some (set theoretic) map g : Spec(R) → X. By Morphisms, Lemma 28.26.10
and the fact that f is continuous we see that g is continuous.

http://stacks.math.columbia.edu/tag/0AI2
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Pick y ∈ Spec(R). Choose U ⊂ X an affine formal open subscheme containing g(y).
Say U = Spf(A) for some admissible topological ring A. By the above we may
choose an r ∈ R such that x ∈ D(r) ⊂ g−1(U). The restriction of f to π−1(D(r))
into U corresponds to a continuous ring map A→ Sr by (65.2.0.1). The two induced
ring maps A → Sr ⊗Rr Sr = (S ⊗R S)r are equal by assumption on f . Note that
Rr → Sr is faithfully flat. By Descent, Lemma 34.3.6 the equalizer of the two
arrows Sr → Sr ⊗Rr Sr is Rr. We conclude that A→ Sr factors uniquely through
a map A → Sr which is also continuous as it has the same (open) kernel as the
map A→ Sr. This map in turn gives a morphism D(r)→ U by (65.2.0.1).

What have we proved so far? We have shown that for any y ∈ Spec(R) there exists
a standard affine open y ∈ D(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) :

π−1(D(r)) → X factors uniquely though some morphism D(r) → X. We omit the
verification that these morphisms glue to the desired morphism Spec(R)→ X. �

Remark 65.2.3 (McQuillan’s variant). There is a variant of the construction of
formal schemes due to McQuillan, see [McQ02]. He suggests a slight weakening of
the condition of admissibility. Namely, recall that an admissible topological ring is
a complete (and separated by our conventions) topological ring A which is linearly
topologized such that there exists an ideal of definition: an open ideal I such that
any neighbourhood of 0 contains In. McQuillan works with what we will call weakly
admissible topological rings. A weakly admissible topological ring A is a complete
(and separated by our conventions) topological ring which is linearly topologized
such that there exists an weak ideal of definition: an open ideal I such that for
all f ∈ I we have fn → 0 for n → ∞. Similarly to the admissible case, if I is a
weak ideal of definition and J ⊂ A is an open ideal, then I ∩ J is a weak ideal of
definition. Thus the weak ideals of definition form a fundamental system of open
neighbourhoods of 0 and one can proceed along much the same route as above to
define a larger category of formal schemes based on this notion. The analogues of
Lemmas 65.2.1 and 65.2.2 still hold in this setting (with the same proof).

Remark 65.2.4 (Sheafification of presheaves of topological spaces). In this remark
we briefly discuss sheafification of presheaves of topological spaces. The exact same
arguments work for presheaves of topological abelian groups, topological rings, and
topological modules (over a given topological ring). In order to do this in the correct
generality let us work over a site C. The reader who is interested in the case of
(pre)sheaves over a topological space X should think of objects of C as the opens of
X, of morphisms of C as inclusions of opens, and of coverings in C as coverings in X,
see Sites, Example 7.6.4. Denote Sh(C,Top) the category of sheaves of topological
spaces on C and denote PSh(C,Top) the category of presheaves of topological spaces
on C. Let F be a presheaf of topological spaces on C. The sheafification F# should
satisfy the formula

MorPSh(C,Top)(F ,G) = MorSh(C,Top)(F#,G)

functorially in G from Sh(C,Top). In other words, we are trying to construct the
left adjoint to the inclusion functor Sh(C,Top) → Sh(C,Top). We first claim that
Sh(C,Top) has limits and that the inclusion functor commutes with them. Namely,
given a category I and a functor i 7→ Gi into Sh(C,Top) we simply define

(limGi)(U) = limGi(U)

http://stacks.math.columbia.edu/tag/0AI3
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where we take the limit in the category of topological spaces (Topology, Lemma
5.13.1). This defines a sheaf because limits commute with limits (Categories,
Lemma 4.14.9) and in particular products and equalizers (which are the opera-
tions used in the sheaf axiom). Finally, a morphism of presheaves from F → limGi
is clearly the same thing as a compatible system of morphisms F → Gi. In other
words, the object limGi is the limit in the category of presheaves of topological
spaces and a fortiori in the category of sheaves of topological spaces. Our second
claim is that any morphism of presheaves F → G with G an object of Sh(C,Top)
factors through a subsheaf G′ ⊂ G whose size is bounded. Here we define the size
|H| of a sheaf of topological spaces H to be the cardinal supU∈Ob(C) |H(U)|. To
prove our claim we let

G′(U) =

{
s ∈ G(U)

∣∣∣∣ there exists a covering {Ui → U}i∈I
such that s|Ui ∈ Im(F(Ui)→ G(Ui))

}
We endow G′(U) with the induced topology. Then G′ is a sheaf of topological spaces
(details omitted) and G′ → G is a morphism through which the given map F → G
factors. Moreover, the size of G′ is bounded by some cardinal κ depending only on
C and the presheaf F (hint: use that coverings in C form a set by our conventions).
Putting everything together we see that the assumptions of Categories, Theorem
4.40.3 are satisfied and we obtain sheafification as the left adjoint of the inclusion
functor from sheaves to presheaves. Finally, let p be a point of the site C given by
a functor u : C → Sets, see Sites, Definition 7.31.2. For a topological space M the
presheaf defined by the rule

U 7→ Map(u(U),M) =
∏

x∈u(U)
M

endowed with the product topology is a sheaf of topological spaces. Hence the exact
same argument as given in the proof of Sites, Lemma 7.31.5 shows that Fp = F#

p ,
in other words, sheafification commutes with taking stalks at a point.

65.3. Conventions and notation

The conventions from now on will be similar to the conventions in Properties of
Spaces, Section 48.2. Thus from now on the standing assumption is that all schemes
are contained in a big fppf site Schfppf . And all rings A considered have the
property that Spec(A) is (isomorphic) to an object of this big site. For topological
rings A we assume only that all discrete quotients have this property (but usually
we assume more, compare with Remark 65.7.6).

Let S be a scheme and let X be a “space” over S, i.e., a sheaf on (Sch/S)fppf . In
this chapter we will write X ×S X for the product of X with itself in the category
of sheaves on (Sch/S)fppf instead of X ×X. Moreover, if X and Y are “spaces”
then we say ”let f : X → Y be a morphism” to indicate that f is a natural
transformation of functors, i.e., a map of sheaves on (Sch/S)fppf . Similarly, if U
is a scheme over S and X is a “space” over S, then we say ”let f : U → X be a
morphism” or ”let g : X → U be a morphism” to indicate that f or g is a map of
sheaves hU → X or X → hU where hU is as in Categories, Example 4.3.4.

65.4. Topological rings and modules

This section is a continuation of More on Algebra, Section 15.26. Let R be a
topological ring and let M be a linearly topologized R-module. When we say “let
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Mλ be a fundamental system of open submodules” we will mean that each Mλ is an
open submodule and that any neighbourhood of 0 contains one of the Mλ. In other
words, this means that Mλ is a fundamental system of neighbourhoods of 0 in M
consisting of submodules. Similarly, if R is a linearly topologized ring, then we say
“let Iλ be a fundamental system of open ideals” to mean that Iλ is a fundamental
system of neighbourhoods of 0 in R consisting of ideals.

Example 65.4.1. Let R be a linearly topologized ring and let M be a linearly
topologized A-module. Let Iλ be a fundamental system of open ideals in R and
let Mµ be a fundamental system of open submodules of M . The continuity of
+ : M ×M →M is automatic and the continuity of R×M →M signifies

∀f, x, µ ∃λ, ν, (f + Iλ)(x+Mν) ⊂ fx+Mµ

Since fMν + IλMν ⊂Mµ if Mν ⊂Mµ we see that the condition is equivalent to

∀x, µ ∃λ Iλx ⊂Mµ

However, it need not be the case that given µ there is a λ such that IλM ⊂ Mµ.
For example, consider R = k[[t]] with the t-adic topology and M =

⊕
n∈NR with

fundamental system of open submodules given by

Mm =
⊕

n∈N
tnmR

Since every x ∈M has finitely many nonzero coordinates we see that, given m and
x there exists a k such that tkx ∈Mm. Thus M is a linearly topologized R-module,
but it isn’t true that given m there is a k such that tkM ⊂Mm. On the other hand,
if R→ S is a continuous map of linearly topologized rings, then the corresponding
statement does hold, i.e., for every open ideal J ⊂ S there exists an open ideal
I ⊂ R such that IS ⊂ J (as the reader can easily deduce from continuity of the
map R→ S).

Lemma 65.4.2. Let R be a topological ring. Let M be a linearly topologized R-
module and let Mλ, λ ∈ Λ be a fundamental system of open submodules. Let N ⊂M
be a submodule. The closure of N is

⋂
λ∈Λ(N +Mλ).

Proof. Since each N + Mλ is open, it is also closed. Hence the intersection is
closed. If x ∈ M is not in the closure of N , then (x + Mλ) ∩ N = 0 for some λ.
Hence x 6∈ N +Mλ. This proves the lemma. �

Unless otherwise mentioned we endow submodules and quotient modules with the
induced topology. Let M be a linearly topologized module over a topological ring
R, and let 0 → N → M → Q → 0 is a short exact sequence of R-modules. If Mλ

is a fundamental system of open submodules of M , then N ∩Mλ is a fundamental
system of open submodules of N . If π : M → Q is the quotient map, then π(Mλ)
is a fundamental system of open submodules of Q. In particular these induced
topologies are linear topologies.

Lemma 65.4.3. Let R be a topological ring. Let M be a linearly topologized R-
module. Let N ⊂M be a submodule. Then

(1) 0→ N∧ →M∧ → (M/N)∧ is exact, and
(2) N∧ is the closure of the image of N →M∧.

http://stacks.math.columbia.edu/tag/0AMR
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Proof. Let Mλ, λ ∈ Λ be a fundamental system of open submodules. Then N∩Mλ

is a fundamental system of open submodules of N and Mλ+N/N is a fundamental
system of open submodules ofM/N . Thus we see that (1) follows from the exactness
of the sequences

0→ N/N ∩Mλ →M/Mλ →M/(Mλ +N)→ 0

and the fact that taking limits commutes with limits. The second statement follows
from this and the fact that N → N∧ has dense image and that the kernel of
M∧ → (M/N)∧ is closed. �

Lemma 65.4.4. Let R be a topological ring. Let M be a complete, linearly topolo-
gized R-module. Let N ⊂M be a closed submodule. If M has a countable fundamen-
tal system of neighbourhoods of 0, then M/N is complete and the map M →M/N
is open.

Proof. Let Mn, n ∈ N be a fundamental system of open submodules of M . We
may assume Mn+1 ⊂ Mn for all n. The (Mn + N)/N is a fundamental system in
M/N . Hence we have to show that M/N = limM/(Mn +N). Consider the short
exact sequences

0→ N/N ∩Mn →M/Mn →M/(Mn +N)→ 0

Since the transition maps of the system {N/N ∩Mn} are surjective we see that
M = limM/Mn (by completeness of M) surjects onto limM/(Mn+N) by Algebra,
Lemma 10.83.4. As N is closed we see that the kernel of M → limM/(Mn + N)
is N (see Lemma 65.4.2). Finally, M →M/N is open by definition of the quotient
topology. �

Lemma 65.4.5. Let R be a topological ring. Let M be a linearly topologized R-
module. Let N ⊂ M be a submodule. Assume M has a countable fundamental
system of neighbourhoods of 0. Then

(1) 0→ N∧ →M∧ → (M/N)∧ → 0 is exact,
(2) N∧ is the closure of the image of N →M∧,
(3) M∧ → (M/N)∧ is open.

Proof. We have 0→ N∧ →M∧ → (M/N)∧ is exact and statement (2) by Lemma
65.4.3. This produces a canonical map c : M∧/N∧ → (M/N)∧. The module
M∧/N∧ is complete and M∧ →M∧/N∧ is open by Lemma 65.4.4. By the universal
property of completion we obtain a canonical map b : (M/N)∧ → M∧/N∧. Then
b and c are mutually inverse as they are on a dense subset. �

Definition 65.4.6. Let R be a topological ring. Let M and N be linearly topol-
ogized R-modules. The tensor product of M and N is the (usual) tensor product
M ⊗R N endowed with the linear topology defined by declaring

Im(Mµ ⊗R N +M ⊗R Nν −→M ⊗R N)

to be a fundamental system of open submodules, where Mµ ⊂ M and Nν ⊂ N
run through fundamental systems of open submodules in M and N . The completed
tensor product

M⊗̂RN = limM ⊗R N/(Mµ ⊗R N +M ⊗R Nν) = limM/Mµ ⊗R N/Nν
is the completion of the tensor product.

http://stacks.math.columbia.edu/tag/0AMT
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Observe that the topology on R is immaterial for the construction of the tensor
product or the completed tensor product. If R → A and R → B are continu-
ous maps of linearly topologized rings, then the construction above gives a tensor
product A⊗R B and a completed tensor product A⊗̂RB.

We record here the notions introduced in Remark 65.2.3.

Definition 65.4.7. Let A be a linearly topologized ring.

(1) An element f ∈ A is called topologically nilpotent if fn → 0 as n→∞.
(2) A weak ideal of definition for A is an open ideal I ⊂ A consisting entirely

of topologically nilpotent elements.
(3) We say A is weakly pre-admissible if A has a weak ideal of definition.
(4) We say A is weakly admissible if A is weakly pre-admissible and complete1.

Given a weak ideal of definition I in a linearly topologized ring A and an open ideal
J the intersection I∩J is a weak ideal of definition. Hence if there is one weak ideal
of definition, then there is a fundamental system of open ideals consisting of weak
ideals of definition. In particular, given a weakly admissible topological ring A then
A = limA/Iλ where {Iλ} is a fundamental system of weak ideals of definition.

Lemma 65.4.8. Let ϕ : A→ B be a continuous map of linearly topologized rings.

(1) If f ∈ A is topologically nilpotent, then ϕ(f) is topologically nilpotent.
(2) If I ⊂ A consists of topologically nilpotent elements, then the closure of

ϕ(I)B consists of topologically nilpotent elements.

Proof. Part (1) is clear. Let g be an element of the closure of ϕ(I)B. Let J ⊂ B
be an open ideal. We have to show ge ∈ J for some e. We have g ∈ ϕ(I)B + J by
Lemma 65.4.2. Hence g =

∑
i=1,...,n fibi + h for some fi ∈ I, bi ∈ B and h ∈ J .

Pick ei such that ϕ(feii ) ∈ J . Then ge1+...+en+1 ∈ J . �

Definition 65.4.9. Let ϕ : A → B be a continuous map of linearly topologized
rings. We say ϕ is taut2 if for every open ideal I ⊂ A the closure of the ideal ϕ(I)B
is open and these closures form a fundamental system of open ideals.

If ϕ : A→ B is a continuous map of linearly topologized rings and Iλ a fundamental
system of open ideals of A, then ϕ is taut if and only if the closures of IλB are
open and form a fundamental system of open ideals in A.

Lemma 65.4.10. Let ϕ : A → B be a continuous map of weakly admissible topo-
logical rings. The following are equivalent

(1) ϕ is taut,
(2) for every weak ideal of definition I ⊂ A the closure of ϕ(I)B is a weak

ideal of definition of B and these form a fundamental system of weak ideals
of definition of B.

Proof. It is clear that (2) implies (1). The other implication follows from Lemma
65.4.8. �

Lemma 65.4.11. Let A → B be a continuous map of linearly topologized rings.
Let I ⊂ A be an ideal. The closure of IB is the kernel of B → B⊗̂AA/I.

1By our conventions this includes separated.
2This is nonstandard notation. The definition generalizes to modules, by saying a linearly

topologized A-module M is A-taut if for every open ideal I ⊂ A the closure of IM in M is open

and these closures form a fundamental system of neighbourhoods of 0 in M .
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Proof. Let Jµ be a fundamental system of open ideals of B. The closure of IB is⋂
(IB + Jλ) by Lemma 65.4.2. Let Iµ be a fundamental system of open ideals in

A. Then

B⊗̂AA/I = lim(B/Jλ ⊗A A/(Iµ + I)) = limB/(Jλ + IµB + IB)

Since A → B is continuous, for every λ there is a µ such that IµB ⊂ Jλ, see
discussion in Example 65.4.1. Hence the limit can be written as limB/(Jλ + IB)
and the result is clear. �

Lemma 65.4.12. Let ϕ : A → B be a continuous homomorphism of linearly
topologized rings. If

(1) ϕ is taut,
(2) ϕ has dense image,
(3) A is complete,
(4) B is separated, and
(5) A has a countable fundamental system of neighbourhoods of 0.

Then ϕ is surjective and open, B is complete, and B = A/K for some closed ideal
K ⊂ A.

Proof. We may choose a sequence of open ideals A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . which
form a fundamental system of neighbourhoods of 0. For each i let Ji ⊂ B be the
closure of ϕ(Ii)B. As ϕ is taut we see that these form a fundamental system of
open ideals of B. Set I0 = A and J0 = B. Let n ≥ 0 and let yn ∈ Jn. Since Jn+1

is the closure of ϕ(In)B we can write

yn =
∑

t
ϕ(ft)bt + y′n+1

for some ft ∈ In, bt ∈ B, and y′n+1 ∈ Jn+1. Since ϕ has dense image we can choose
at ∈ A with ϕ(at) = bt mod Jn+1. Thus

yn = ϕ(fn) + yn+1

with fn =
∑
ftat ∈ In and yn+1 = y′n+1 +

∑
ft(bt − ϕ(at)) ∈ Jn+1. Thus, starting

with any y = y0 ∈ B, we can find by induction a sequence fm ∈ Im, m ≥ 0 such
that

y = y0 = ϕ(f0 + f1 + . . .+ fn) + yn+1

with yn+1 ∈ Jn+1. Since A is complete we see that

x = x0 = f0 + f1 + f2 + . . .

exists. Since the partial sums approximate x in A, since ϕ is continuous, and since
B is separated we find that ϕ(x) = y because above we’ve shown that the images
of the partial sums approximate y in B. Thus ϕ is surjective. In exactly the same
manner we find that ϕ(In) = Jn for all n ≥ 1. This proves the lemma. �

The next lemma says “ϕ is taut” if and only if “ϕ is adic” for continuous maps
ϕ : A → B between adic rings if A has a finitely generated ideal of definition. In
some sense the previously introduced notion of tautness for continuous ring maps
supersedes the notion of an adic map between adic rings. See also Section 65.17.

Lemma 65.4.13. Let ϕ : A→ B be a continuous map of linearly topologized rings.
Let I ⊂ A be an ideal. Assume

(1) I is finitely generated,
(2) A has the I-adic topology,

http://stacks.math.columbia.edu/tag/0APT
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(3) B is complete, and
(4) ϕ is taut.

Then the topology on B is the I-adic topology.

Proof. Let Jn be the closure of ϕ(In)B in B. Since B is complete we have B =
limB/Jn. LetB′ = limB/InB be the I-adic completion ofB. By Algebra, Lemmas
10.93.6 and 10.93.7, the I-adic topology on B′ is complete and B′/InB′ = B/InB.
Thus the ring map B′ → B is continuous and has dense image as B′ → B/InB →
B/Jn is surjective for all n. Finally, the map B′ → B is taut because (InB′)B =
InB and A → B is taut. By Lemma 65.4.12 we see that B′ → B is open and
surjective which implies the lemma. �

65.5. Affine formal algebraic spaces

In this section we introduce affine formal algebraic spaces. These will in fact be the
same as what are called affine formal schemes in [BD]. However, we will call them
affine formal algebraic spaces, in order to prevent confusion with the notion of an
affine formal scheme as defined in [DG67].

Recall that a thickening of schemes is a closed immersion which induces a surjection
on underlying topological spaces, see More on Morphisms, Definition 36.2.1.

Definition 65.5.1. Let S be a scheme. We say a sheaf X on (Sch/S)fppf is an
affine formal algebraic space if there exist

(1) a directed partially ordered set Λ,
(2) a system (Xλ, fλµ) over Λ in (Sch/S)fppf where

(a) each Xλ is affine,
(b) each fλµ : Xλ → Xµ is a thickening,

such that
X ∼= colimλ∈ΛXλ

as fppf sheaves and X satisfies a set theoretic condition (see Remark 65.7.6). A
morphism of affine formal algebraic spaces over S is a map of sheaves.

Observe that the system (Xλ, fλµ) is not part of the data. Suppose that U is a
quasi-compact scheme over S. Since the transition maps are monomorphisms, we
see that

X(U) = colimXλ(U)

by Sites, Lemma 7.11.2. Thus the fppf sheafification inherent in the colimit of the
definition is a Zariski sheafification which does not do anything for quasi-compact
schemes.

Lemma 65.5.2. Let S be a scheme. If X is an affine formal algebraic space over
S, then the diagonal morphism ∆ : X → X ×S X is representable and a closed
immersion.

Proof. Suppose given U → X and V → X where U, V are schemes over S. Let us
show that U ×X V is representable. Write X = colimXλ as in Definition 65.5.1.
The discussion above shows that Zariski locally on U and V the morphisms factors
through some Xλ. In this case U ×X V = U ×Xλ V which is a scheme. Thus the
diagonal is representable, see Spaces, Lemma 47.5.10. Given (a, b) : W → X ×S X
where W is a scheme over S consider the map X×∆,X×SX,(a,b)W →W . As before
locally on W the morphisms a and b map into the affine scheme Xλ for some λ and

http://stacks.math.columbia.edu/tag/0AI7
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then we get the morphism Xλ ×∆λ,Xλ×SXλ,(a,b) W → W . This is the base change
of ∆λ : Xλ → Xλ ×S Xλ which is a closed immersion as Xλ → S is separated
(because Xλ is affine). Thus X → X ×S X is a closed immersion. �

A morphism of schemes X → X ′ is a thickening if it is a closed immersion and
induces a surjection on underlying sets of points, see (More on Morphisms, Defini-
tion 36.2.1). Hence the property of being a thickening is preserved under arbitrary
base change and fpqc local on the target, see Spaces, Section 47.4. Thus Spaces,
Definition 47.5.1 applies to “thickening” and we know what it means for a repre-
sentable transformation F → G of presheaves on (Sch/S)fppf to be a thickening.
We observe that this does not clash with our definition (More on Morphisms of
Spaces, Definition 58.8.1) of thickenings in case F and G are algebraic spaces.

Lemma 65.5.3. Let Xλ, λ ∈ Λ and X = colimXλ be as in Definition 65.5.1. Then
Xλ → X is representable and a thickening.

Proof. The statement makes sense by the discussion in Spaces, Section 47.3 and
47.5. By Lemma 65.5.2 the morphisms Xλ → X are representable. Given U → X
where U is a scheme, then the discussion following Definition 65.5.1 shows that
Zariski locally on U the morphism factors through some Xµ with λ ≤ µ. In this
case U×XXλ = U×XµXλ so that U×XXλ → U is a base change of the thickening
Xλ → Xµ. �

Lemma 65.5.4. Let Xλ, λ ∈ Λ and X = colimXλ be as in Definition 65.5.1. If
Y is a quasi-compact algebraic space over S, then any morphism Y → X factors
through an Xλ.

Proof. Choose an affine scheme V and a surjective étale morphism V → Y . The
composition V → Y → X factors through Xλ for some λ by the discussion following
Definition 65.5.1. Since V → Y is a surjection of sheaves, we conclude. �

Lemma 65.5.5. Let S be a scheme. Let X be a sheaf on (Sch/S)fppf . Then X is
an affine formal algebraic space if and only if the following hold

(1) any morphism U → X where U is an affine scheme over S factors through
a morphism T → X which is representable and a thickening with T an
affine scheme over S, and

(2) a set theoretic condition as in Remark 65.7.6.

Proof. It follows from Lemmas 65.5.3 and 65.5.4 that an affine formal algebraic
space satisfies (1) and (2). In order to prove the converse we may assume X is
not empty. Let Λ be the category of representable morphisms T → X which are
thickenings where T is an affine scheme over S. This category is directed. Since X
is not empty, Λ contains at least one object. If T → X and T ′ → X are in Λ, then
we can factor T q T ′ → X through T ′′ → X in Λ. Between any two objects of Λ
there is a unique arrow or none. Thus Λ is a directed partially ordered set and by
assumption X = colimT→X in Λ T . �

For a general affine formal algebraic space X there is no guarantee that X has
enough functions to separate points (for example). See Examples, Section 82.62.
To characterize those that do we offer the following lemma.

Lemma 65.5.6. Let S be a scheme. Let X be an fppf sheaf on (Sch/S)fppf which
satisfies the set theoretic condition of Remark 65.7.6. The following are equivalent:
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(1) there exists a weakly admissible topological ring A over S (see Remark
65.2.3) such that X = colimI⊂A weak ideal of definition Spec(A/I),

(2) X is an affine formal algebraic space and there exists an S-algebra A and
a map X → Spec(A) such that for a closed immersion T → X with T an
affine scheme the composition T → Spec(A) is a closed immersion,

(3) X is an affine formal algebraic space and there exists an S-algebra A and
a map X → Spec(A) such that for a closed immersion T → X with T a
scheme the composition T → Spec(A) is a closed immersion,

(4) X is an affine formal algebraic space and for some choice of X = colimXλ

as in Definition 65.5.1 the projections lim Γ(Xλ,OXλ)→ Γ(Xλ,OXλ) are
surjective,

(5) X is an affine formal algebraic space and for any choice of X = colimXλ

as in Definition 65.5.1 the projections lim Γ(Xλ,OXλ)→ Γ(Xλ,OXλ) are
surjective.

Moreover, the weakly admissible topological ring is A = lim Γ(Xλ,OXλ) endowed
with its limit topology and the weak ideals of definition classify exactly the mor-
phisms T → X which are representable and thickenings.

Proof. It is clear that (5) implies (4).

Assume (4) for X = colimXλ as in Definition 65.5.1. Set A = lim Γ(Xλ,OXλ). Let
T → X be a closed immersion with T a scheme (note that T → X is representable
by Lemma 65.5.2). Since Xλ → X is a thickening, so is Xλ ×X T → T . On the
other hand, Xλ×X T → Xλ is a closed immersion, hence Xλ×X T is affine. Hence
T is affine by Limits, Proposition 31.10.2. Then T → X factors through Xλ for
some λ by Lemma 65.5.4. Thus A → Γ(Xλ,O) → Γ(T,O) is surjective. In this
way we see that (3) holds.

It is clear that (3) implies (2).

Assume (2) for A and X → Spec(A). Write X = colimXλ as in Definition 65.5.1.
Then Aλ = Γ(Xλ,O) is a quotient of A by assumption (2). Hence A∧ = limAλ is
a complete topological ring, see discussion in More on Algebra, Section 15.26. The
maps A∧ → Aλ are surjective as A → Aλ is. We claim that for any λ the kernel
Iλ ⊂ A∧ of A∧ → Aλ is a weak ideal of definition. Namely, it is open by definition
of the limit topology. If f ∈ Iλ, then for any µ ∈ Λ the image of f in Aµ is zero
in all the residue fields of the points of Xµ. Hence it is a nilpotent element of Aµ.
Hence some power fn ∈ Iµ. Thus fn → 0 as n→ 0. Thus A∧ is weakly admissible.
Finally, suppose that I ⊂ A∧ is a weak ideal of definition. Then I ⊂ A∧ is open
and hence there exists some λ such that I ⊃ Iλ. Thus we obtain a morphism
Spec(A∧/I)→ Spec(Aλ)→ X. Then it follows that X = colim Spec(A∧/I) where
now the colimit is over all weak ideals of definition. Thus (1) holds.

Assume (1). In this case it is clear that X is an affine formal algebraic space. Let
X = colimXλ be any presentation as in Definition 65.5.1. For each λ we can find a
weak ideal of definition I ⊂ A such that Xλ → X factors through Spec(A/I)→ X,
see Lemma 65.5.4. Then Xλ = Spec(A/Iλ) with I ⊂ Iλ. Conversely, for any weak
ideal of definition I ⊂ A the morphism Spec(A/I)→ X factors through Xλ for some
λ, i.e., Iλ ⊂ I. It follows that each Iλ is a weak ideal of definition and that they
form a cofinal subset of the set of weak ideals of definition. Hence A = limA/I =
limA/Iλ and we see that (5) is true and moreover that A = lim Γ(Xλ,OXλ). �
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With this lemma in hand we can make the following definition.

Definition 65.5.7. Let S be a scheme. Let X be an affine formal algebraic space
over S. We say X is McQuillan if X satisfies the equivalent conditions of Lemma
65.5.6. Let A be the weakly admissible topological ring associated to X. We say

(1) X is classical if X is McQuillan and A is admissible,
(2) X is adic if X is McQuillan and A is adic,
(3) X is adic* if X is McQuillan, A is adic, and A has a finitely generated

ideal of definition, and
(4) X is Noetherian if X is McQuillan and A is both Noetherian and adic.

In [FK] they use the terminology “of finite ideal type” for the property that an
adic topological ring A contains a finitely generated ideal of definition.

Remark 65.5.8. The classical affine formal algebraic spaces correspond to the
affine formal schemes considered in EGA ([DG67]). To explain this we assume our
base scheme is Spec(Z). Let X = Spf(A) be an affine formal scheme. Let hX be
its functor of points as in Lemma 65.2.1. Then hX = colimhSpec(A/I) where the
colimit is over the collection of ideals of definition of the admissible topological ring
A. This follows from (65.2.0.1) when evaluating on affine schemes and it suffices to
check on affine schemes as both sides are fppf sheaves, see Lemma 65.2.2. Thus hX
is an affine formal algebraic space. In fact, it is a classical affine formal algebraic
space by Definition 65.5.7. Thus Lemma 65.2.1 tells us the category of affine formal
schemes is equivalent to the category of classical affine formal algebraic spaces.

Having made the connection with affine formal schemes above, it seems natural to
make the following definition.

Definition 65.5.9. Let S be a scheme. Let A be a weakly admissible topological
ring over S, see Definition 65.4.73. The formal spectrum of A is the affine formal
algebraic space

Spf(A) = colim Spec(A/I)

where the colimit is over the set of weak ideals of definition of A and taken in the
category Sh((Sch/S)fppf ).

Such a formal spectrum is McQuillan by construction and conversely every McQuil-
lan affine formal algebraic space is isomorphic to a formal spectrum. To be sure,
in our theory there exist affine formal algebraic spaces which are not the formal
spectrum of any weakly admissible topological ring. Following [Yas09] we could
introduce S-pro-rings to be pro-objects in the category of S-algebras, see Cate-
gories, Remark 4.22.4. Then every affine formal algebraic space over S would be
the formal spectrum of such an S-pro-ring. We will not do this and instead we will
work directly with the corresponding affine formal algebraic spaces.

The construction of the formal spectrum is functorial. To explain this let ϕ : B → A
be a continuous map of weakly admissible topological rings over S. Then

Spf(ϕ) : Spf(B)→ Spf(A)

3See More on Algebra, Definition 15.26.1 for the classical case and see Remark 65.2.3 for a
discussion of differences.
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is the unique morphism of affine formal algebraic spaces such that the diagrams

Spec(B/J)

��

// Spec(A/I)

��
Spf(B) // Spf(A)

commute for all weak ideals of definition I ⊂ A and J ⊂ B with ϕ(I) ⊂ J . Since
continuity of ϕ implies that for every weak ideal of definition J ⊂ B there is a
weak ideal of definition I ⊂ A with the required property, we see that the required
commutativities uniquely determine and define Spf(ϕ).

Lemma 65.5.10. Let S be a scheme. Let A, B be weakly admissible topological
rings over S. Any morphism f : Spf(B)→ Spf(A) of affine formal algebraic spaces
over S is equal to Spf(f ]) for a unique continuous S-algebra map f ] : A→ B.

Proof. Let f : Spf(B)→ Spf(A) be as in the lemma. Let J ⊂ B be a weak ideal of
definition. By Lemma 65.5.4 there exists a weak ideal of definition I ⊂ A such that
Spec(B/J) → Spf(B) → Spf(A) factors through Spec(A/I). By Schemes, Lemma
25.6.4 we obtain an S-algebra map A/I → B/J . These maps are compatible for
varying J and define the map f ] : A → B. This map is continuous because for
every weak ideal of definition J ⊂ B there is a weak ideal of definition I ⊂ A such
that f ](I) ⊂ J . The equality f = Spf(f ]) holds by our choice of the ring maps
A/I → B/J which make up f ]. �

Lemma 65.5.11. Let S be a scheme. Let f : X → Y be a map of presheaves
on (Sch/S)fppf . If X is an affine formal algebraic space and f is representable by
algebraic spaces and locally quasi-finite, then f is representable (by schemes).

Proof. Let T be a scheme over S and T → Y a map. We have to show that
the algebraic space X ×Y T is a scheme. Write X = colimXλ as in Definition
65.5.1. Let W ⊂ X×Y T be a quasi-compact open subspace. The restriction of the
projection X ×Y T → X to W factors through Xλ for some λ. Then

W → Xλ ×S T
is a monomorphism (hence separated) and locally quasi-finite (because W → X×Y
T → T is locally quasi-finite by our assumption on X → Y , see Morphisms of
Spaces, Lemma 49.26.8). HenceW is a scheme by Morphisms of Spaces, Proposition
49.44.2. Thus X ×Y T is a scheme by Properties of Spaces, Lemma 48.10.1. �

65.6. Countably indexed affine formal algebraic spaces

These are the affine formal algebraic spaces as in the following lemma.

Lemma 65.6.1. Let S be a scheme. Let X be an affine formal algebraic space over
S. The following are equivalent

(1) there exists a system X1 → X2 → X3 → . . . of thickenings of affine
schemes over S such that X = colimXn,

(2) there exists a choice X = colimXλ as in Definition 65.5.1 such that Λ is
countable.

Proof. This follows from the observation that a countable directed partially or-
dered set has a cofinal subset isomorphic to (N,≥). See proof of Algebra, Lemma
10.83.3. �
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Definition 65.6.2. Let S be a scheme. Let X be an affine formal algebraic space
over S. We say X is countably indexed if the equivalent conditions of Lemma 65.6.1
are satisfied.

In the language of [BD] this is expressed by saying that X is an ℵ0-ind scheme.

Lemma 65.6.3. Let X be an affine formal algebraic space over a scheme S.

(1) If X is Noetherian, then X is adic*.
(2) If X is adic*, then X is adic.
(3) If X is adic, then X is countably indexed.
(4) If X is countably indexed, then X is McQuillan.

Proof. Parts (1) and (2) are immediate from the definitions.

Proof of (3). By definition there exists an adic topological ring A such that X =
colim Spec(A/I) where the colimit is over the ideals of definition of A. As A is adic,
there exits an ideal I such that {In} forms a fundamental system of neighbourhoods
of 0. Then each In is an ideal of definition and X = colim Spec(A/In). Thus X is
countably indexed.

Proof of (4). Write X = limXn for some system X1 → X2 → X3 → . . . of
thickenings of affine schemes over S. Then

A = lim Γ(Xn,OXn)

surjects onto each Γ(Xn,OXn) because the transition maps are surjections as the
morphisms Xn → Xn+1 are closed immersions. �

Lemma 65.6.4. Let S be a scheme. Let X be a presheaf on (Sch/S)fppf . The
following are equivalent

(1) X is a countably indexed affine formal algebraic space,
(2) X = Spf(A) where A is a weakly admissible topological S-algebra which

has a countable fundamental system of neighbourhoods of 0,
(3) X = Spf(A) where A is a weakly admissible topological S-algebra which

has a fundamental system A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of weak ideals of
definition,

(4) X = Spf(A) where A is a complete topological S-algebra with a funda-
mental system of open neighbourhoods of 0 given by a countable sequence
A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of ideals such that In/In+1 is locally nilpotent,
and

(5) X = Spf(A) where A = limB/Jn with the limit topology where B ⊃ J1 ⊃
J2 ⊃ J3 ⊃ . . . is a sequence of ideals in an S-algebra B with Jn/Jn+1

locally nilpotent.

Proof. Assume (1). By Lemma 65.6.3 we can write X = Spf(A) where A is a
weakly admissible topological S-algebra. For any presentation X = colimXn as in
Lemma 65.6.1 part (1) we see that A = limAn with Xn = Spec(An) and An = A/In
for some weak ideal of definition In ⊂ A. This follows from the final statement of
Lemma 65.5.6 which moreover implies that {In} is a fundamental system of open
neighbourhoods of 0. Thus we have a sequence

A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . .
of weak ideals of definition with A = limA/In. In this way we see that condition
(1) implies each of the conditions (2) – (5).

http://stacks.math.columbia.edu/tag/0AIJ
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Assume (5). First note that the limit topology on A = limB/Jn is a linearly
topologized, complete topology, see More on Algebra, Section 15.26. If f ∈ A maps
to zero in B/J1, then some power maps to zero in B/J2 as its image in J1/J2 is
nilpotent, then a further power maps to zero in J2/J3, etc, etc. In this way we
see the open ideal Ker(A→ B/J1) is a weak ideal of definition. Thus A is weakly
admissible. In this way we see that (5) implies (2).

It is clear that (4) is a special case of (5) by taking B = A. It is clear that (3) is a
special case of (2).

AssumeA is as in (2). Let En be a countable fundamental system of neighbourhoods
of 0 in A. Since A is a weakly admissible topological ring we can find open ideals
In ⊂ En. We can also choose a weak ideal of definition J ⊂ A. Then J ∩ In is
a fundamental system of weak ideals of definition of A and we get X = Spf(A) =
colim Spec(A/(J ∩ In)) which shows that X is a countably indexed affine formal
algebraic space. �

Lemma 65.6.5. Let S be a scheme. Let X be an affine formal algebraic space.
The following are equivalent

(1) X is Noetherian,
(2) X is adic* and for some choice of X = colimXλ as in Definition 65.5.1

the schemes Xλ are Noetherian,
(3) X is adic* and for a closed immersion T → X with T a scheme, T is

Noetherian.

Proof. This follows from the fact that if A is a ring complete with respect to a
finitely generated ideal I, then A is Noetherian if and only if A/I is Noetherian,
see Algebra, Lemma 10.93.9. Details omitted. �

65.7. Formal algebraic spaces

We take a break from our habit of introducing new concepts first for rings, then
for schemes, and then for algebraic spaces, by introducing formal algebraic spaces
without first introducing formal schemes. The general idea will be that a formal
algebraic space is a sheaf in the fppf topology which étale locally is an affine formal
scheme in the sense of [BD]. Related material can be found in [Yas09].

In the definition of a formal algebraic space we are going to borrow some terminol-
ogy from Bootstrap, Sections 62.3 and 62.4.

Definition 65.7.1. Let S be a scheme. We say a sheaf X on (Sch/S)fppf is a
formal algebraic space if there exist a family of maps {Xi → X}i∈I of sheaves such
that

(1) Xi is an affine formal algebraic space,
(2) Xi → X is representable by algebraic spaces and étale,
(3)

∐
Xi → X is surjective as a map of sheaves

and X satisfies a set theoretic condition (see Remark 65.7.6). A morphism of formal
algebraic spaces over S is a map of sheaves.

Discussion. Sanity check: an affine formal algebraic space is a formal algebraic
space. In the situation of the definition the morphisms Xi → X are representable
(by schemes), see Lemma 65.5.11. By Bootstrap, Lemma 62.4.6 we could instead of
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asking
∐
Xi → X to be surjective as a map of sheaves, require that it be surjective

(which makes sense because it is representable).

Our notion of a formal algebraic space is very general. In fact, even affine formal
algebraic spaces as defined above are very nasty objects. However, they do have an
underlying reduced algebraic space as the following lemma demonstrates.

Lemma 65.7.2. Let S be a scheme. Let X be a formal algebraic space over S.
There exists a reduced algebraic space Xred and a representable morphism Xred →
X which is a thickening. A morphism U → X with U a reduced algebraic space
factors uniquely through Xred.

Proof. First assume that X is an affine formal algebraic space. Say X = colimXλ

as in Definition 65.5.1. Since the transition morphisms are thickenings, the affine
schemes Xλ all have isomorphic reductions Xred. The morphism Xred → X is
representable and a thickening by Lemma 65.5.3 and the fact that compositions
of thickenings are thickenings. We omit the verification of the universal property
(use Schemes, Definition 25.12.5, Schemes, Lemma 25.12.6, Properties of Spaces,
Definition 48.9.5, and Properties of Spaces, Lemma 48.9.4).

Let X and {Xi → X}i∈I be as in Definition 65.7.1. For each i let Xi,red → Xi

be the reduction as constructed above. For i, j ∈ I the projection Xi,red ×X
Xj → Xi,red is an étale (by assumption) morphism of schemes (by Lemma 65.5.11).
Hence Xi,red×X Xj is reduced (see Descent, Lemma 34.14.1). Thus the projection
Xi,red ×X Xj → Xj factors through Xj,red by the universal property. We conclude
that

Rij = Xi,red ×X Xj = Xi,red ×X Xj,red = Xi ×X Xj,red

because the morphisms Xi,red → Xi are injections of sheaves. Set U =
∐
Xi,red, set

R =
∐
Rij , and denote s, t : R → U the two projections. As a sheaf R = U ×X U

and s and t are étale. Then (t, s) : R → U defines an étale equivalence relation
by our observations above. Thus Xred = U/R is an algebraic space by Spaces,
Theorem 47.10.5. By construction the diagram∐

Xi,red
//

��

∐
Xi

��
Xred

// X

is cartesian. Since the right vertical arrow is étale surjective and the top horizontal
arrow is representable and a thickening we conclude that Xred → X is representable
by Bootstrap, Lemma 62.5.2 (to verify the assumptions of the lemma use that
a surjective étale morphism is surjective, flat, and locally of finite presentation
and use that thickenings are separated and locally quasi-finite). Then we can use
Spaces, Lemma 47.5.6 to conclude that Xred → X is a thickening (use that being
a thickening is equivalent to being a surjective closed immersion).

Finally, suppose that U → X is a morphism with U a reduced algebraic space over
S. Then each Xi ×X U is étale over U and therefore reduced (by our definition of
reduced algebraic spaces in Properties of Spaces, Section 48.7). Then Xi×XU → Xi

factors throughXi,red. Hence U → X factors throughXred because {Xi×XU → U}
is an étale covering. �

http://stacks.math.columbia.edu/tag/0AIN
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Lemma 65.7.3. Let S be a scheme. If X is a formal algebraic space over S, then
the diagonal morphism ∆ : X → X×SX is representable, a monomorphism, locally
quasi-finite, locally of finite type, and separated.

Proof. Suppose given U → X and V → X with U, V schemes over S. Then
U ×X V is a sheaf. Choose {Xi → X} as in Definition 65.7.1. For every i the
morphism

(U ×X Xi)×Xi (V ×X Xi) = (U ×X V )×X Xi → U ×X V

is representable and étale as a base change of Xi → X and its source is a scheme (use
Lemmas 65.5.2 and 65.5.11). These maps are jointly surjective hence U ×X V is an
algebraic space by Bootstrap, Theorem 62.10.1. The morphism U ×X V → U ×S V
is a monomorphism. It is also locally quasi-finite, because on precomposing with
the morphism displayed above we obtain the composition

(U ×X Xi)×Xi (V ×X Xi)→ (U ×X Xi)×S (V ×X Xi)→ U ×S V
which is locally quasi-finite as a composition of a closed immersion (Lemma 65.5.2)
and an étale morphism, see Descent on Spaces, Lemma 56.17.2. Hence we conclude
that U ×X V is a scheme by Morphisms of Spaces, Proposition 49.44.2. Thus ∆ is
representable, see Spaces, Lemma 47.5.10.

Let W → X×SX be a morphism where W is a scheme over S. For each i consider
the diagram

W ×(X×SX) Xi

��

// W ×(X×SX) (Xi ×S Xi)

��
W ×(X×SX) X // W

The vertical arrows are étale because Xi → X is étale. The top horizontal arrow
is a closed immersion by Lemma 65.5.2. Because the maps Xi → X are jointly
surjective, this certainly implies that the lower horizontal arrow is locally of finite
type, see Morphisms of Spaces, Lemma 49.23.4. Since it is clearly a monomorphism,
we conclude that it is locally quasi-finite (Morphisms of Spaces, Lemma 49.26.10).
It is separated because any monomorphism is separated (Morphisms of Spaces,
Lemma 49.10.3). This finishes the proof. �

Lemma 65.7.4. Let S be a scheme. Let f : X → Y be a morphism from an
algebraic space over S to a formal algebraic space over S. Then f is representable
by algebraic spaces.

Proof. Let Z → Y be a morphism where Z is a scheme over S. We have to show
that X ×Y Z is an algebraic space. Choose a scheme U and a surjective étale
morphism U → X. Then U ×Y Z → X ×Y Z is representable surjective étale
(Spaces, Lemma 47.5.5) and U ×Y Z is a scheme by Lemma 65.7.3. Hence the
result by Bootstrap, Theorem 62.10.1. �

Remark 65.7.5. Modulo set theoretic issues the category of formal schemes à la
EGA (see Section 65.2) is equivalent to a full subcategory of the category of formal
algebraic spaces. To explain this we assume our base scheme is Spec(Z). By Lemma
65.2.2 the functor of points hX associated to a formal scheme X is a sheaf in the fppf
topology. By Lemma 65.2.1 the assignment X 7→ hX is a fully faithful embedding
of the category of formal schemes into the category of fppf sheaves. Given a formal

http://stacks.math.columbia.edu/tag/0AIP
http://stacks.math.columbia.edu/tag/0AIQ
http://stacks.math.columbia.edu/tag/0AIR


65.8. COLIMITS OF ALGEBRAIC SPACES ALONG THICKENINGS 3759

scheme X we choose an open covering X =
⋃
Xi with Xi affine formal schemes.

Then hXi is an affine formal algebraic space by Remark 65.5.8. The morphisms
hXi → hX are representable and open immersions. Thus {hXi → hX} is a family as
in Definition 65.7.1 and we see that hX is a formal algebraic space.

Remark 65.7.6. Let S be a scheme and let (Sch/S)fppf be a big fppf site as in
Topologies, Definition 33.7.8. As our set theoretic condition on X in Definitions
65.5.1 and 65.7.1 we take: there exist objects U,R of (Sch/S)fppf , a morphism
U → X which is a surjection of fppf sheaves, and a morphism R → U ×X U
which is a surjection of fppf sheaves. In other words, we require our sheaf to be a
coequalizer of two maps between representable sheaves. Here are some observations
which imply this notion behaves reasonably well:

(1) Suppose X = colimλ∈ΛXλ and the system satisfies conditions (1) and (2)
of Definition 65.5.1. Then U =

∐
λ∈ΛXλ → X is a surjection of fppf

sheaves. Moreover, U ×X U is a closed subscheme of U ×S U by Lemma
65.5.2. Hence if U is representable by an object of (Sch/S)fppf then
U ×S U is too (see Sets, Lemma 3.9.9) and the set theoretic condition is
satisfied. This is always the case if Λ is countable, see Sets, Lemma 3.9.9.

(2) Sanity check. Let {Xi → X}i∈I be as in Definition 65.7.1 (with the
set theoretic condition as formulated above) and assume that each Xi

is actually an affine scheme. Then X is an algebraic space. Namely, if
we choose a larger big fppf site (Sch′/S)fppf such that U ′ =

∐
Xi and

R′ =
∐
Xi×XXj are representable by objects in it, then X ′ = U ′/R′ will

be an object of the category of algebraic spaces for this choice. Then an
application of Spaces, Lemma 47.15.2 shows that X is an algebraic space
for (Sch/S)fppf .

(3) Let {Xi → X}i∈I be a family of maps of sheaves satisfying conditions (1),
(2), (3) of Definition 65.7.1. For each i we can pick Ui ∈ Ob((Sch/S)fppf )
and Ui → Xi which is a surjection of sheaves. Thus if I is not too large (for
example countable) then U =

∐
Ui → X is a surjection of sheaves and U

is representable by an object of (Sch/S)fppf . To get R ∈ Ob((Sch/S)fppf )
surjecting onto U×XU it suffices to assume the diagonal ∆ : X → X×SX
is not too wild, for example this always works if the diagonal of X is quasi-
compact, i.e., X is quasi-separated.

65.8. Colimits of algebraic spaces along thickenings

A special type of formal algebraic space is one which can globally be written as a
cofiltered colimit of algebraic spaces along thickenings as in the following lemma.
We will see later (in Section 65.13) that any quasi-compact and quasi-separated
formal algebraic space is such a global colimit.

Lemma 65.8.1. Let S be a scheme. Suppose given a directed partially ordered set
Λ and a system of algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is
a thickening. Then X = colimλ∈ΛXλ is a formal algebraic space over S.

Proof. Since we take the colimit in the category of fppf sheaves, we see that X is
a sheaf. Choose and fix λ ∈ Λ. Choose an étale covering {Xi,λ → Xλ} where Xi is
an affine scheme over S, see Properties of Spaces, Lemma 48.6.1. For each µ ≥ λ
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there exists a cartesian diagram

Xi,λ
//

��

Xi,µ

��
Xλ

// Xµ

with étale vertical arrows, see More on Morphisms of Spaces, Theorem 58.7.1 (this
also uses that a thickening is a surjective closed immersion which satisfies the con-
ditions of the theorem). Moreover, these diagrams are unique up to unique isomor-
phism and hence Xi,µ = Xµ ×Xµ′ Xi,µ′ for µ′ ≥ µ. The morphisms Xi,µ → Xi,µ′

is a thickening as a base change of a thickening. Each Xi,µ is an affine scheme
by Limits of Spaces, Proposition 52.15.2 and the fact that Xi,λ is affine. Set
Xi = colimµ≥λXi,µ. Then Xi is an affine formal algebraic space. The morphism
Xi → X is étale because given an affine scheme U any U → X factors through Xµ

for some µ ≥ λ (details omitted). In this way we see that X is a formal algebraic
space. �

Let S be a scheme. Let X be a formal algebraic space over S. How does one prove
or check that X is a global colimit as in Lemma 65.8.1? To do this we look for maps
i : Z → X where Z is an algebraic space over S and i is surjective and a closed
immersion, in other words, i is a thickening. This makes sense as i is representable
by algebraic spaces (Lemma 65.7.4) and we can use Bootstrap, Definition 62.4.1 as
before.

Remark 65.8.2 (Weak ideals of definition). Let X be a formal scheme in the
sense of McQuillan, see Remark 65.2.3. An weak ideal of definition for X is an
ideal sheaf I ⊂ OX such that for all U ⊂ X affine formal open subscheme the ideal
I(U) ⊂ OX(U) is a weak ideal of definition of the weakly admissible topological
ring OX(U). It suffices to check the condition on the members of an affine open
covering. There is a one-to-one correspondence

{weak ideals of definition for X} ↔ {thickenings i : Z → hX as above}

This correspondence associates to I the scheme Z = (X,OX/I) together with the
obvious morphism to X. A fundamental system of weak ideals of definition is a
collection of weak ideals of definition Iλ such that on every affine open formal
subscheme U ⊂ X the ideals

Iλ = Iλ(U) ⊂ A = Γ(U,OX)

form a fundamental system of weak ideals of definition of the weakly admissible
topological ring A. It suffices to check on the members of an affine open covering.
We conclude that the formal algebraic space hX associated to the McQuillan formal
scheme X is a colimit of schemes as in Lemma 65.8.1 if and only if there exists a
fundamental system of weak ideals of definition for X.

Remark 65.8.3 (Ideals of definition). Let X be a formal scheme à la EGA. An
ideal of definition for X is an ideal sheaf I ⊂ OX such that for all U ⊂ X affine formal
open subscheme the ideal I(U) ⊂ OX(U) is an ideal of definition of the admissible
topological ring OX(U). It suffices to check the condition on the members of an
affine open covering. We do not get the same correspondence between ideals of
definition and thickenings Z → X as in Remark 65.8.2. A fundamental system of
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ideals of definition is a collection of ideals of definition Iλ such that on every affine
open formal subscheme U ⊂ X the ideals

Iλ = Iλ(U) ⊂ A = Γ(U,OX)

form a fundamental system of ideals of definition of the admissible topological
ring A. It suffices to check on the members of an affine open covering. Suppose
that X is quasi-compact and that {Iλ}λ∈Λ is a fundamental system of weak ideals
of definition. If A is an admissible topological ring A then all sufficiently small
open ideals are ideals of definition (namely any open ideal contained in an ideal of
definition is an ideal of definition). Thus since we only need to check on the finitely
many members of an affine open covering we see that Iλ is an ideal of definition
for λ sufficiently large. Using the discussion in Remark 65.8.2 we conclude that
the formal algebraic space hX associated to the quasi-compact formal scheme X à
la EGA is a colimit of schemes as in Lemma 65.8.1 if and only if there exists a
fundamental system of ideals of definition for X.

65.9. Completion along a closed subset

Our notion of a formal algebraic space is well adapted to taking the completion
along a closed.

Lemma 65.9.1. Let S be a scheme. Let X be an affine scheme over S. Let
T ⊂ |X| be a closed subset. Then the functor

(Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a McQuillan affine formal algebraic space.

Proof. Say X = Spec(A) and T corresponds to the radical ideal I ⊂ A. Let
U = Spec(B) be an affine scheme over S and let f : U → X be an element of F (U).
Then f corresponds to a ring map ϕ : A→ B such that every prime of B contains
ϕ(I)B. Thus every element of ϕ(I) is nilpotent in B, see Algebra, Lemma 10.16.2.
Setting J = Ker(ϕ) we conclude that I/J is a locally nilpotent ideal in A/J .
Equivalently, V (J) = V (I) = T . In other words, the functor of the lemma equals
colim Spec(A/J) where the colimit is over the collection of ideals J with V (J) = T .
Thus our functor is an affine formal algebraic space. It is McQuillan (Definition
65.5.7) because the maps A→ A/J are surjective and hence A∧ = limA/J → A/J
is surjective, see Lemma 65.5.6. �

Lemma 65.9.2. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. Then the functor

(Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a formal algebraic space.

Proof. Denote F the functor. Let {Ui → U} be an fppf covering. Then
∐
|Ui| →

|U | is surjective. Since X is an fppf sheaf, it follows that F is an fppf sheaf.

Let {gi : Xi → X} be an étale covering such that Xi is affine for all i, see Properties
of Spaces, Lemma 48.6.1. The morphisms F ×X Xi → F are étale (see Spaces,
Lemma 47.5.5) and the map

∐
F ×X Xi → F is a surjection of sheaves. Thus it

suffices to prove that F ×XXi is an affine formal algebraic space. A U -valued point
of F ×X Xi is a morphism U → Xi whose image is contained in the closed subset
g−1
i (T ) ⊂ |Xi|. Thus this follows from Lemma 65.9.1. �
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Definition 65.9.3. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. The formal algebraic space of Lemma 65.9.2 is called
the completion of X along T .

In [DG67, Chapter I, Section 10.8] the notation X/T is used to denote the com-
pletion and we will occasionally use this notation as well. Let f : X → X ′ be a
morphism of algebraic spaces over a scheme S. Suppose that T ⊂ |X| and T ′ ⊂ |X ′|
are closed subsets such that |f |(T ) ⊂ T ′. Then it is clear that f defines a morphism
of formal algebraic spaces

X/T −→ X ′/T ′

between the completions.

Lemma 65.9.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let T ⊂ |Y | be a closed subset and let T ′ = |f |−1(T ) ⊂ |X|. Then
X/T ′ → Y/T is representable by algebraic spaces.

Proof. Namely, suppose that V → Y is a morphism from a scheme into Y such
that |V | maps into T . Then V ×Y X → X is a morphism of algebraic spaces such
that |V ×Y X| maps into T ′. Hence the functor V ×Y/T ′ X/T is represented by

V ×Y X and we see that the lemma holds. �

The following lemma is due to Ofer Gabber.

Lemma 65.9.5. Let S be a scheme. Let X = Spec(A) be an affine scheme over
S. Let T ⊂ X be a closed subscheme.

(1) If the formal completion X/T is countably indexed and there exist count-
ably many f1, f2, f3, . . . ∈ A such that T = V (f1, f2, f3, . . .), then X/T is
adic*.

(2) The conclusion of (1) is wrong if we omit the assumption that T can be
cut out by countably many functions in X.

Proof. The assumption that X/T is countably indexed means that there exists a
sequence of ideals

A ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . .
with V (Jn) = T such that every ideal J ⊂ A with V (J) = T there exists an n such
that J ⊃ Jn.

To construct an example for (2) let ω1 be the first uncountable ordinal. Let k be a
field and let A be the k-algebra generated by xα, α ∈ ω1 and yαβ with α ∈ β ∈ ω1

subject to the relations xα = yαβxβ . Let T = V (xα). Let Jn = (xnα). If J ⊂ A
is an ideal such that V (J) = T , then xnαα ∈ J for some nα ≥ 1. One of the sets
{α | nα = n} must be unbounded in ω1. Then the relations imply that Jn ⊂ J .

To see that (2) holds it now suffices to show that A∧ = limA/Jn is not a ring
complete with respect to a finitely generated ideal. For γ ∈ ω1 let Aγ be the
quotient of A by the ideal generated by xα, α ∈ γ and yαβ , α ∈ γ. As A/J1 is
reduced, every topologically nilpotent element f of limA/Jn is in J∧1 = limJ1/Jn.
This means f is an infinite series involving only a countable number of generators.
Hence f dies in A∧γ = limAγ/JnAγ for some γ. Note that A∧ → A∧γ is continuous
and open by Lemma 65.4.5. If the topology on A∧ was I-adic for some finitely
generated ideal I ⊂ A∧, then I would go to zero in some A∧γ . This would mean
that A∧γ is discrete, which is not the case as there is a surjective continuous and
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open (by Lemma 65.4.5) map A∧γ → k[[t]] given by xα 7→ t, yαβ 7→ 1 for γ = α or
γ ∈ α.

Before we prove (1) we first prove the following: If I ⊂ A∧ is a finitely generated
ideal whose closure Ī is open, then I = Ī. Since V (J2

n) = T there exists an m
such that J2

n ⊃ Jm. Thus, we may assume that J2
n ⊃ Jn+1 for all n by passing to

a subsequence. Set J∧n = limk≥n Jn/Jk ⊂ A∧. Since the closure Ī =
⋂

(I + J∧n )
(Lemma 65.4.2) is open we see that there exists an m such that I + J∧n ⊃ J∧m for
all n ≥ m. Fix such an m. We have

J∧n−1I + J∧n+1 ⊃ J∧n−1(I + J∧n+1) ⊃ J∧n−1J
∧
m ⊃ J∧n

for all n ≥ m+1. Namely, the first inclusion is trivial. The second was shown above.
The third as Jn−1Jm ⊃ J2

n−1 ⊃ Jn, hence J∧n−1J
∧
m ⊃ J∧n . Say I = (g1, . . . , gt). Pick

f ∈ J∧m+1. Using the displayed inclusions above, valid for all n ≥ m + 1, we can
write by induction on c ≥ 0

f =
∑

fi,cgi mod J∧m+1+c

with fi,c ∈ J∧m and fi,c ≡ fi,c−1 mod J∧m+c. It follows that IJ∧m ⊃ J∧m+1. Combined
with I + J∧m+1 ⊃ J∧m we conclude that I is open.

Proof of (1). Assume T = V (f1, f2, f3, . . .). Let Im ⊂ A∧ be the ideal generated by
f1, . . . , fm. Case I: For some m the closure of Im is open. Then Im is open by the
result of the previous paragraph. Since in A∧ the product of open ideals is open,
we see that Ikm is open for all k. As each element of Im is topologically nilpotent,
we conclude that Im is an ideal of definition which proves that A∧ is adic with a
finitely generated ideal of definition, i.e., X is adic*.

Case II. For all m the closure Īm of Im is not open. Then the topology on A∧/Īm
is not discrete. This means we can pick φ(m) ≥ m such that

Im(Jφ(m) → A/(f1, . . . , fm)) 6= Im(Jφ(m)+1 → A/(f1, . . . , fm))

To see this we have used that A∧/(Īm + J∧n ) = A/((f1, . . . , fm) + Jn). Choose
exponents ei > 0 such that feii ∈ Jφ(m)+1 for 0 < m < i. Let J = (fe11 , fe22 , fe33 , . . .).
Then V (J) = T . We claim that J 6⊃ Jn for all n which is a contradiction proving
Case II does not occur. Namely, the image of J in A/(f1, . . . , fm) is contained in
the image of Jφ(m)+1 which is properly contained in the image of Jm. �

65.10. Fibre products

Obligatory section about fibre products of formal algebraic spaces.

Lemma 65.10.1. Let S be a scheme. Let {Xi → X}i∈I be a family of maps of
sheaves on (Sch/S)fppf . Assume (a) Xi is a formal algebraic space over S, (b)
Xi → X is representable by algebraic spaces and étale, and (c)

∐
Xi → X is a

surjection of sheaves. Then X is a formal algebraic space over S.

Proof. For each i pick {Xij → Xi}j∈Ji as in Definition 65.7.1. Then {Xij →
X}i∈I,j∈Ji is a family as in Definition 65.7.1 for X. �

Lemma 65.10.2. Let S be a scheme. Let X,Y be formal algebraic spaces over
S and let Z be a sheaf whose diagonal is representable by algebraic spaces. Then
X ×Z Y is a formal algebraic space.
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Proof. Choose {Xi → X} and {Yj → Y } as in Definition 65.7.1. Then {Xi ×Z
Yj → X ×Z Y } is a family of maps which are representable by algebraic spaces and
étale. Thus Lemma 65.10.1 tells us it suffices to show that X ×Z Y is a formal
algebraic space when X and Y are affine formal algebraic spaces.

Assume X and Y are affine formal algebraic spaces. Write X = colimXλ and
Y = colimYµ as in Definition 65.5.1. Then X ×Z Y = colimXλ ×Z Yµ. Each
Xλ ×Z Yµ is an algebraic space. For λ ≤ λ′ and µ ≤ µ′ the morphism

Xλ ×Z Yµ → Xλ ×Z Yµ′ → Xλ′ ×Z Yµ′
is a thickening as a composition of base changes of thickenings. Thus we conclude
by applying Lemma 65.8.1. �

Lemma 65.10.3. Let S be a scheme. The category of formal algebraic spaces over
S has fibre products.

Proof. Special case of Lemma 65.10.2 because formal algebraic spaces have repre-
sentable diagonals, see Lemma 65.7.3. �

We have already proved the following lemma (without knowing that fibre products
exist).

Lemma 65.10.4. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The diagonal morphism ∆ : X → X×Y X is representable
(by schemes), a monomorphism, locally quasi-finite, locally of finite type, and sep-
arated.

Proof. Let T be a scheme and let T → X ×Y X be a morphism. Then

T ×(X×YX) X = T ×(X×SX) X

Hence the result follows immediately from Lemma 65.7.3. �

65.11. Separation axioms for formal algebraic spaces

This section is about “absolute” separation conditions on formal algebraic spaces.
We will discuss separation conditions for morphisms of formal algebraic spaces later.

Lemma 65.11.1. Let S be a scheme. Let X be a formal algebraic space over S.
The following are equivalent

(1) the reduction of X (Lemma 65.7.2) is a quasi-separated algebraic space,
(2) for U → X, V → X with U , V quasi-compact schemes the fibre product

U ×X V is quasi-compact,
(3) for U → X, V → X with U , V affine the fibre product U ×X V is quasi-

compact.

Proof. Observe that U ×X V is a scheme by Lemma 65.7.3. Let Ured, Vred, Xred

be the reduction of U, V,X. Then

Ured ×Xred Vred = Ured ×X Vred → U ×X V

is a thickening of schemes. From this the equivalence of (1) and (2) is clear, keeping
in mind the analogous lemma for algebraic spaces, see Properties of Spaces, Lemma
48.3.3. We omit the proof of the equivalence of (2) and (3). �

Lemma 65.11.2. Let S be a scheme. Let X be a formal algebraic space over S.
The following are equivalent
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(1) the reduction of X (Lemma 65.7.2) is a separated algebraic space,
(2) for U → X, V → X with U , V affine the fibre product U ×X V is affine

and

O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.

Proof. If (2) holds, then Xred is a separated algebraic space by applying Properties
of Spaces, Lemma 48.3.3 to morphisms U → Xred and V → Xred with U, V affine
and using that U ×Xred V = U ×X V .

Assume (1). Let U → X and V → X be as in (2). Observe that U ×X V is a
scheme by Lemma 65.7.3. Let Ured, Vred, Xred be the reduction of U, V,X. Then

Ured ×Xred Vred = Ured ×X Vred → U ×X V

is a thickening of schemes. It follows that (U ×X V )red = (Ured ×Xred Vred)red. In
particular, we see that (U ×X V )red is an affine scheme and that

O(U)⊗Z O(V ) −→ O((U ×X V )red)

is surjective, see Properties of Spaces, Lemma 48.3.3. Then U ×X V is affine by
Limits of Spaces, Proposition 52.15.2. On the other hand, the morphism U×X V →
U × V of affine schemes is the composition

U ×X V = X ×(X×SX) (U ×S V )→ U ×S V → U × V
The first morphism is a monomorphism and locally of finite type (Lemma 65.7.3).
The second morphism is an immersion (Schemes, Lemma 25.21.10). Hence the
composition is a monomorphism which is locally of finite type. On the other hand,
the composition is integral as the map on underlying reduced affine schemes is
a closed immersion by the above and hence universally closed (use Morphisms,
Lemma 28.44.7). Thus the ring map

O(U)⊗Z O(V ) −→ O(U ×X V )

is an epimorphism which is integral of finite type hence finite hence surjective (use
Morphisms, Lemma 28.44.4 and Algebra, Lemma 10.103.6). �

Definition 65.11.3. Let S be a scheme. Let X be a formal algebraic space over
S. We say

(1) X is quasi-separated if the equivalent conditions of Lemma 65.11.1 are
satisfied.

(2) X is separated if the equivalent conditions of Lemma 65.11.2 are satisfied.

The following lemma implies in particular that the completed tensor product of
weakly admissible topological rings is a weakly admissible topological ring.

Lemma 65.11.4. Let S be a scheme. Let X → Z and Y → Z be morphisms of
formal algebraic spaces over S. Assume Z separated.

(1) If X and Y are affine formal algebraic spaces, then so is X ×Z Y .
(2) If X and Y are McQuillan affine formal algebraic spaces, then so is X×Z

Y .
(3) If X, Y , and Z are McQuillan formal algebraic spaces corresponding to

the weakly admissible topological S-algebras A, B, and C, then X ×Z Y
corresponds to A⊗̂CB.
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Proof. Write X = colimXλ and Y = colimYµ as in Definition 65.5.1. Then
X×Z Y = colimXλ×Z Yµ. Since Z is separated the fibre products are affine, hence
we see that (1) holds. Assume X and Y corresponds to the weakly admissible
topological S-algebras A and B and Xλ = Spec(A/Iλ) and Yµ = Spec(B/Jµ).
Then

Xλ ×Z Yµ → Xλ × Yµ → Spec(A⊗B)

is a closed immersion. Thus one of the conditions of Lemma 65.5.6 holds and we
conclude that X ×Z Y is McQuillan. If also Z is McQuillan corresponding to C,
then

Xλ ×Z Yµ = Spec(A/Iλ ⊗C B/Jµ)

hence we see that the weakly admissible topological ring corresponding to X ×Z Y
is the completed tensor product (see Definition 65.4.6). �

Lemma 65.11.5. Let S be a scheme. Let X be a formal algebraic space over S.
Let U → X be a morphism where U is a separated algebraic space over S. Then
U → X is separated.

Proof. The statement makes sense because U → X is representable by algebraic
spaces (Lemma 65.7.4). Let T be a scheme and T → X a morphism. We have to
show that U ×X T → T is separated. Since U ×X T → U ×S T is a monomorphism,
it suffices to show that U ×S T → T is separated. As this is the base change
of U → S this follows. We used in the argument above: Morphisms of Spaces,
Lemmas 49.4.4, 49.4.8, 49.10.3, and 49.4.11. �

65.12. Quasi-compact formal algebraic spaces

Here is the characterization of quasi-compact formal algebraic spaces.

Lemma 65.12.1. Let S be a scheme. Let X be a formal algebraic space over S.
The following are equivalent

(1) the reduction of X (Lemma 65.7.2) is a quasi-compact algebraic space,
(2) we can find {Xi → X}i∈I as in Definition 65.7.1 with I finite,
(3) there exists a morphism Y → X representable by algebraic spaces which

is étale and surjective and where Y is an affine formal algebraic space.

Proof. Omitted. �

Definition 65.12.2. Let S be a scheme. Let X be a formal algebraic space over
S. We say X is quasi-compact if the equivalent conditions of Lemma 65.12.1 are
satisfied.

Lemma 65.12.3. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) the induced map fred : Xred → Yred between reductions (Lemma 65.7.2)
is a quasi-compact morphism of algebraic spaces,

(2) for every quasi-compact scheme T and morphism T → Y the fibre product
X ×Y T is a quasi-compact formal algebraic space,

(3) for every affine scheme T and morphism T → Y the fibre product X×Y T
is a quasi-compact formal algebraic space, and

(4) there exists a covering {Yj → Y } as in Definition 65.7.1 such that each
X ×Y Yj is a quasi-compact formal algebraic space.
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Proof. Omitted. �

Definition 65.12.4. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. We say f is quasi-compact if the equivalent conditions of
Lemma 65.12.3 are satisfied.

This agrees with the already existing notion when the morphism is representable
by algebraic spaces (and in particular when it is representable).

Lemma 65.12.5. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S which is representable by algebraic spaces. Then f is quasi-
compact in the sense of Definition 65.12.4 if and only if f is quasi-compact in the
sense of Bootstrap, Definition 62.4.1.

Proof. This is immediate from the definitions and Lemma 65.12.3. �

65.13. Quasi-compact and quasi-separated formal algebraic spaces

The following result is due to Yasuda, see [Yas09, Proposition 3.32].

Lemma 65.13.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
formal algebraic space over S. Then X = colimXλ for a system of algebraic spaces
(Xλ, fλµ) over a directed partially ordered set Λ where each fλµ : Xλ → Xµ is a
thickening.

Proof. By Lemma 65.12.1 we may choose an affine formal algebraic space Y and
a representable surjective étale morphism Y → X. Write Y = colimYλ as in
Definition 65.5.1.

Pick λ ∈ Λ. Then Yλ×X Y is a scheme by Lemma 65.5.11. The reduction (Lemma
65.7.2) of Yλ ×X Y is equal to the reduction of Yred ×Xred Yred which is quasi-
compact as X is quasi-separated and Yred is affine. Therefore Yλ ×X Y is a quasi-
compact scheme. Hence there exists a µ ≥ λ such that pr2 : Yλ ×X Y → Y
factors through Yµ, see Lemma 65.5.4. Let Zλ be the scheme theoretic image of
the morphism pr2 : Yλ ×X Y → Yµ. This is independent of the choice of µ and
we can and will think of Zλ ⊂ Y as the scheme theoretic image of the morphism
pr2 : Yλ×X Y → Y . Observe that Zλ is also equal to the scheme theoretic image of
the morphism pr1 : Y ×X Yλ → Y since this is isomorphic to the morphism used to
define Zλ. We claim that Zλ×X Y = Y ×X Zλ as subfunctors of Y ×X Y . Namely,
since Y → X is étale we see that Zλ ×X Y is the scheme theoretic image of the
morphism

pr13 = pr1 × idY : Y ×X Yλ ×X Y −→ Y ×X Y

by Morphisms of Spaces, Lemma 49.16.3. By the same token, Y ×X Zλ is the
scheme theoretic image of the morphism

pr13 = idY × pr2 : Y ×X Yλ ×X Y −→ Y ×X Y

The claim follows. Then Rλ = Zλ ×X Y = Y ×X Zλ together with the morphism
Rλ → Zλ ×S Zλ defines an étale equivalence relation. In this way we obtain an
algebraic space Xλ = Zλ/Rλ. By construction the diagram

Zλ //

��

Y

��
Xλ

// X

http://stacks.math.columbia.edu/tag/0AJC
http://stacks.math.columbia.edu/tag/0AM2
http://stacks.math.columbia.edu/tag/0AJE


3768 65. FORMAL ALGEBRAIC SPACES

is cartesian (because X is the coequalizer of the two projections R = Y ×X Y → Y ,
because Zλ ⊂ Y is R-invariant, and because Rλ is the restriction of R to Zλ). Hence
Xλ → X is representable and a closed immersion, see Spaces, Lemma 47.11.3. On
the other hand, since Yλ ⊂ Zλ we see that (Xλ)red = Xred, in other words, Xλ → X
is a thickening. Finally, we claim that

X = colimXλ

We have Y ×X Xλ = Zλ ⊃ Yλ. Every morphism T → X where T is a scheme over
S lifts étale locally to a morphism into Y which lifts étale locally into a morphism
into some Yλ. Hence T → X lifts étale locally on T to a morphism into Xλ. This
finishes the proof. �

Remark 65.13.2. In this remark we translate the statement and proof of Lemma
65.13.1 into the language of formal schemes à la EGA. Looking at Remark 65.8.3
we see that the lemma can be translated as follows

(∗) Every quasi-compact and quasi-separated formal scheme has a fundamen-
tal system of ideals of definition.

To prove this we first use the induction principle (reformulated for quasi-compact
and quasi-separated formal schemes) of Cohomology of Schemes, Lemma 29.4.1 to
reduce to the following situation: X = U ∪V with U, V open formal subschemes,
with V affine, and the result is true for U, V, and U∩V. Pick any ideals of definition
I ⊂ OU and J ⊂ OV. By our assumption that we have a fundamental system of
ideals of definition on U and V and because U ∩ V is quasi-compact, we can find
ideals of definition I ′ ⊂ I and J ′ ⊂ J such that

I ′|U∩V ⊂ J |U∩V and J ′|U∩V ⊂ I|U∩V
Let U → U ′ → U and V → V ′ → V be the closed immersions determined by the
ideals of definition I ′ ⊂ I ⊂ OU and J ′ ⊂ J ⊂ OU. Let U ∩ V denote the open
subscheme of V whose underlying topological space is that of U ∩V. Similarly for
U ∩V. Then we consider

ZU = scheme theoretic image of U q (U ∩ V ) −→ U ′

and
ZV = scheme theoretic image of (U ∩V)q V −→ V ′

Since taking scheme theoretic images of quasi-compact morphisms commutes with
restriction to opens (Morphisms, Lemma 28.6.3) we see that ZU∩V = U∩ZV . Thus
ZU and ZV glue to a scheme Z which comes equipped with a morphism Z → X.
Analogous to the discussion in Remark 65.8.2 we see that Z corresponds to a weak
ideal of definition IZ ⊂ OX. Note that U ⊂ ZU ⊂ Z and that V ⊂ ZV ⊂ Z. Thus
the collection of all IZ constructed in this manner forms a fundamental system of
weak ideals of definition. Hence a subfamily gives a fundamental system of ideals
of definition, see Remark 65.8.3.

65.14. Morphisms representable by algebraic spaces

Let f : X → Y be a morphism of formal algebraic spaces which is representable
by algebraic spaces. For these types of morphisms we have a lot of theory at our
disposal, thanks to the work done in the chapters on algebraic spaces.

Lemma 65.14.1. The composition of morphisms representable by algebraic spaces
is representable by algebraic spaces. The same holds for representable (by schemes).
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Proof. See Bootstrap, Lemma 62.3.8. �

Lemma 65.14.2. A base change of a morphism representable by algebraic spaces
is representable by algebraic spaces. The same holds for representable (by schemes).

Proof. See Bootstrap, Lemma 62.3.3. �

Lemma 65.14.3. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. If g ◦ f : X → Z is representable by algebraic
spaces, then f : X → Y is representable by algebraic spaces.

Proof. Note that the diagonal of Y → Z is representable by Lemma 65.10.4. Thus
U → V is representable by algebraic spaces by Bootstrap, Lemma 62.3.10. �

The property of being representable by algebraic spaces is local on the source and
the target.

Lemma 65.14.4. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent:

(1) the morphism f is representable by algebraic spaces,
(2) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces, the vertical arrows are repre-
sentable by algebraic spaces, U → X is surjective étale, and U → V is
representable by algebraic spaces,

(3) for any commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces and the vertical arrows are rep-
resentable by algebraic spaces, the morphism U → V is representable by
algebraic spaces,

(4) there exists a covering {Yj → Y } as in Definition 65.7.1 and for each j a
covering {Xji → Yj ×Y X} as in Definition 65.7.1 such that Xji → Yj is
representable by algebraic spaces for each j and i,

(5) there exist a covering {Xi → X} as in Definition 65.7.1 and for each
i a factorization Xi → Yi → Y where Yi is an affine formal algebraic
space, Yi → Y is representable by algebraic spaces, such that Xi → Yi is
representable by algebraic spaces, and

(6) add more here.

Proof. It is clear that (1) implies (2) because we can take U = X and V = Y .
Conversely, (2) implies (1) by Bootstrap, Lemma 62.11.3 applied to U → X → Y .

Assume (1) is true and consider a diagram as in (3). Then U → Y is representable
by algebraic spaces (as the composition U → X → Y , see Bootstrap, Lemma
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62.3.8) and factors through V . Thus U → V is representable by algebraic spaces
by Lemma 65.14.3.

It is clear that (3) implies (2). Thus now (1) – (3) are equivalent.

Observe that the condition in (4) makes sense as the fibre product Yj ×Y X is a
formal algebraic space by Lemma 65.10.3. It is clear that (4) implies (5).

Assume Xi → Yi → Y as in (5). Then we set V =
∐
Yi and U =

∐
Xi to see that

(5) implies (2).

Finally, assume (1) – (3) are true. Thus we can choose any covering {Yj → Y } as
in Definition 65.7.1 and for each j any covering {Xji → Yj ×Y X} as in Definition
65.7.1. Then Xij → Yj is representable by algebraic spaces by (3) and we see that
(4) is true. This concludes the proof. �

Lemma 65.14.5. Let S be a scheme. Let Y be an affine formal algebraic space
over S. Let f : X → Y be a map of sheaves on (Sch/S)fppf which is representable
by algebraic spaces. Then X is a formal algebraic space.

Proof. Write Y = colimYλ as in Definition 65.5.1. For each λ the fibre product
X ×Y Yλ is an algebraic space. Hence X = colimX ×Y Yλ is a formal algebraic
space by Lemma 65.8.1. �

Lemma 65.14.6. Let S be a scheme. Let Y be a formal algebraic space over S. Let
f : X → Y be a map of sheaves on (Sch/S)fppf which is representable by algebraic
spaces. Then X is a formal algebraic space.

Proof. Let {Yi → Y } be as in Definition 65.7.1. Then X×Y Yi → X is a family of
morphisms representable by algebraic spaces, étale, and jointly surjective. Thus it
suffices to show that X ×Y Yi is a formal algebraic space, see Lemma 65.10.1. This
follows from Lemma 65.14.5. �

Lemma 65.14.7. Let S be a scheme. Let f : X → Y be a morphism of affine
formal algebraic spaces which is representable by algebraic spaces. Then f is repre-
sentable (by schemes) and affine.

Proof. The first assertion follows from Lemma 65.5.11. Write Y = colimYµ and
X = colimXλ as in Definition 65.5.1. For the second, let T → Y be a morphism
where T is a scheme over S. We have to show that X×Y T → T is affine, see Spaces,
Definition 47.5.1. To do this we may assume that T is affine and we have to prove
that X ×Y T is affine. In this case T → Y factors through Yµ → Y for some µ,
see Lemma 65.5.4. Since f is quasi-compact we see that X ×Y T is quasi-compact
(Lemma 65.12.3). Hence X ×Y T → X factors through Xλ for some λ. Similarly
Xλ → Y factors through Yµ after increasing µ. Then X ×Y T = Xλ ×Yµ T . We
conclude as fibre products of affine schemes are affine. �

Lemma 65.14.8. Let S be a scheme. Let Y be an affine formal algebraic space.
Let f : X → Y be a map of sheaves on (Sch/S)fppf which is representable and
affine. Then

(1) X is an affine formal algebraic space.
(2) if Y is countably indexed, then X is countably indexed.
(3) if Y is adic*, then X is adic*,
(4) if Y is Noetherian and f is (locally) of finite type, then X is Noetherian.
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Proof. Proof of (1). Write Y = colimλ∈Λ Yλ as in Definition 65.5.1. Since f
is representable and affine, the fibre products Xλ = Yλ ×Y X are affine. And
X = colimYλ ×Y X. Thus X is an affine formal algebraic space.

Proof of (2). If Y is countably indexed, then in the argument above we may assume
Λ is countable. Then we immediately see that X is countably indexed too.

Proof of (3). Assume Y is adic*. Then Y = Spf(B) for some adic topological
ring B which has a finitely generated ideal J such that {Jn} is a fundamental
system of open ideals. Of course, then Y = colim Spec(B/Jn). The schemes
X ×Y Spec(B/Jn) are affine and we can write X ×Y Spec(B/Jn) = Spec(An).
Then X = colim Spec(An). The B-algebra maps An+1 → An are surjective and
induce isomorphisms An+1/J

nAn+1 → An. By Algebra, Lemma 10.94.1 the ring
A = limAn is J-adically complete and A/JnA = An. Hence X = Spf(A∧) is adic*.

Proof of (4). Combining (3) with Lemma 65.6.3 we see that X is adic*. Thus
we can use the criterion of Lemma 65.6.5. First, it tells us the affine schemes
Yλ are Noetherian. Then Xλ → Yλ is of finite type, hence Xλ is Noetherian too
(Morphisms, Lemma 28.16.6). Then the criterion tells us X is Noetherian and the
proof is complete. �

Lemma 65.14.9. Let S be a scheme. Let f : X → Y be a morphism of affine
formal algebraic spaces which is representable by algebraic spaces. Then

(1) if Y is countably indexed, then X is countably indexed.
(2) if Y is adic*, then X is adic*,
(3) if Y is Noetherian and f is (locally) of finite type, then X is Noetherian.

Proof. Combine Lemmas 65.14.7 and 65.14.8. �

Lemma 65.14.10. Let S be a scheme. Let ϕ : A → B be a continuous map of
weakly admissible topological rings over S. The following are equivalent

(1) Spf(ϕ) : Spf(B)→ Spf(A) is representable by algebraic spaces,
(2) Spf(ϕ) : Spf(B)→ Spf(A) is representable (by schemes),
(3) ϕ is taut, see Definition 65.4.9.

Proof. Parts (1) and (2) are equivalent by Lemma 65.14.7.

Assume the equivalent conditions (1) and (2) hold. If I ⊂ A is a weak ideal of
definition, then Spec(A/I) → Spf(A) is representable and a thickening (this is
clear from the construction of the formal spectrum but it also follows from Lemma
65.5.6). Then Spec(A/I)×Spf(A) Spf(B)→ Spf(B) is representable and a thickening
as a base change. Hence by Lemma 65.5.6 there is a weak ideal of definition
J(I) ⊂ B such that Spec(A/I) ×Spf(A) Spf(B) = Spec(B/J(I)) as subfunctors of
Spf(B). We obtain a cartesian diagram

Spec(B/J(I))

��

// Spec(A/I)

��
Spf(B) // Spf(A)

By Lemma 65.11.4 we see that B/J(I) = B⊗̂AA/I. It follows that J(I) is the
closure of the ideal ϕ(I)B, see Lemma 65.4.11. Since Spf(A) = colim Spec(A/I)
with I as above, we find that Spf(B) = colim Spec(B/J(I)). Thus the ideals J(I)
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form a fundamental system of weak ideals of definition (see Lemma 65.5.6). Hence
(3) holds.

Assume (3) holds. For a weak ideal of definition I ⊂ A denote J(I) the closure
of ϕ(I)B. By Lemma 65.4.8 the ideal J(I) is a weak ideal of definition of B.
Using Lemmas 65.11.4 and 65.4.11 we see that the diagram displayed above is
cartesian. Since every morphism T → Spf(A) with T quasi-compact factors through
Spec(A/I) for some weak ideal of definition I (Lemma 65.5.4) we conclude that
Spf(ϕ) is representable, i.e., (2) holds. This finishes the proof. �

Example 65.14.11. Let B be a weakly admissible topological ring. Let B → A
be a ring map (no topology). Then we can can consider

A∧ = limA/JA

where the limit is over all weak ideals of definition J of B. Then A∧ (endowed with
the limit topology) is a complete linearly topologized ring. The (open) kernel I of
the surjection A∧ → A/JA is the closure of JA∧, see Lemma 65.4.2. By Lemma
65.4.8 we see that I consists of topologically nilpotent elements. Thus I is a weak
ideal of definition of A∧ and we conclude A∧ is a weakly admissible topological
ring. Thus ϕ : B → A∧ is taut map of weakly admissible topological rings and

Spf(A∧) −→ Spf(B)

is a special case of the phenomenon studied in Lemma 65.14.10.

Remark 65.14.12 (Warning). Lemma 65.14.10 does not mean that given a mor-
phism f : X → Y of affine formal algebraic spaces with f representable and Y
McQuillan we have that X is McQuillan.

The warning above notwithstanding, we do have the following result.

Lemma 65.14.13. Let S be a scheme. Let f : X → Y be a morphism of affine
formal algebraic spaces over S. Assume

(1) Y is McQuillan, i.e., equal to Spf(B) for some weakly admissible topolog-
ical S-algebra B, and

(2) f : Y → X is representable by algebraic spaces and étale.

Then there exists an étale ring map B → A such that

Y = Spf(A∧) where A∧ = limA/JA

with J ⊂ B running over the weak ideals of definition of B. In particular, Y is
McQuillan.

Proof. Choose a weak ideal of definition J0 ⊂ B. Set Y0 = Spec(B/J0) and
X0 = Y0×Y X. Then X0 → Y0 is an étale morphism of affine schemes (see Lemma
65.14.7). Say X0 = Spec(A0). By Algebra, Lemma 10.138.11 we can find an
étale algebra map B → A such that A0

∼= A/J0A. Consider an ideal of definition
J ⊂ J0. As above we may write Spec(B/J) ×Y X = Spec(Ā) for some étale ring
map B/J → Ā. Then both B/J → Ā and B/J → A/JA are étale ring maps lifting
the étale ring map B/J0 → A0. By More on Algebra, Lemma 15.7.2 there is a
unique B/J-algebra isomorphism ϕJ : A/JA→ Ā lifting the identification modulo
J0. Since the maps ϕJ are unique they are compatible for varying J . Thus

X = colim Spec(B/J)×Y X = colim Spec(A/JA)

and we see that the lemma holds. �
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Lemma 65.14.14. With notation and assumptions as in Lemma 65.14.13. The
following are equivalent

(1) f : X → Y is surjective,
(2) B → A is faithfully flat,
(3) for every weak ideal of definition J ⊂ B the ring map B → A/JA is

faithfully flat, and
(4) for some weak ideal of definition J ⊂ B the ring map B → A/JA is

faithfully flat.

Proof. Let J ⊂ B be an ideal of definition. As every element of J is topologically
nilpotent, we see that every element of 1+J is a unit. It follows that J is contained in
the Jacobson radical of B (Algebra, Lemma 10.18.1). Hence a flat ring map B → A
is faithfully flat if and only if B/J → A/JA is faithfully flat (Algebra, Lemma
10.38.15). In this way we see that (2) – (4) are equivalent. If (1) holds, then for every
weak ideal of definition J ⊂ B the morphism Spec(A/JA) = Spec(B/J) ×Y X →
Spec(B/J) is surjective which implies (3). Conversely, assume (3). A morphism
T → Y with T quasi-compact factors through Spec(B/J) for some ideal of definition
J of B (Lemma 65.5.4). Hence X ×Y T = Spec(A/JA) ×Spec(B/J) T → T is
surjective as a base change of the surjective morphism Spec(A/JA)→ Spec(B/J).
Thus (1) holds. �

65.15. Types of formal algebraic spaces

In this section we define Noetherian, adic*, and countably indexed formal algebraic
spaces. The types adic, classical, and McQuillan are missing as we do not know
how to prove the analogue of the following lemmas for those cases.

Lemma 65.15.1. Let S be a scheme. Let X → Y be a morphism of affine formal
schemes which is representable by algebraic spaces, surjective, and flat. Then X is
countably indexed if and only if Y is countably indexed.

Proof. Assume X is countably indexed. We write X = colimXn as in Lemma
65.6.1. Write Y = colimYλ as in Definition 65.5.1. For every n we can pick a λn
such that Xn → Y factors through Yλn , see Lemma 65.5.4. On the other hand, for
every λ the scheme Yλ ×Y X is affine (Lemma 65.14.7) and hence Yλ ×Y X → X
factors through Xn for some n (Lemma 65.5.4). Picture

Yµ ×Y X //

��

%%
Yλ ×Y X //

��

Xn
//

��

X

��
Yµ //

99Yλ // Yλn // Y

If we can show the dotted arrow exists, then we conclude that Y = colimYλn and Y
is countably indexed. To do this we pick a µ such that we have the solid arrows in
the diagram. Say Yµ = Spec(Bµ), the closed subscheme Yλ corresponds to J ⊂ Bµ,
and the closed subscheme Yλn corresponds to J ′ ⊂ Bµ. We are trying to show that
J ⊂ J ′. By the diagram above we know JAµ ⊂ J ′Aµ where Yµ ×Y X = Spec(Aµ).
Since X → Y is surjective and flat the morphism Yλ ×Y X → Yλ is a faithfully
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flat morphism of affine schemes, hence Bµ → Aµ is faithfully flat. Thus J ⊂ J ′ as
desired.

Assume Y is countably indexed. Then X is countably indexed by Lemma 65.14.9.
�

Lemma 65.15.2. Let S be a scheme. Let X → Y be a morphism of affine formal
schemes which is representable by algebraic spaces, surjective, and flat. Then X is
adic* if and only if Y is adic*.

Proof. Assume Y is adic*. Then X is adic* by Lemma 65.14.9.

Assume X is adic*. Write X = Spf(A) for some adic ring A which has a finitely
generated ideal I such that {In} is a fundamental system of open ideals. By Lemmas
65.15.1 we see that Y is countably indexed. Thus, by Lemma 65.6.4, we can write
Y = Spf(B) where B is a weakly admissible topological ring with a countable
fundamental system {Jm} of weak ideals of definition. Set Ym = Spec(B/Jm) so
that Y = colimYm. The scheme Ym ×Y X is affine (Lemma 65.14.7) and we have
X = colimYm×Y X. Say Ym×Y X = Spec(Am) so that B/Jm → Am is a faithfully
flat ring map. It follows from Lemma 65.11.4 that Ker(A → Am) is the closure of
JmA.

Choose n ≥ 1. There exists an m such that Spec(A/In)→ Y factors through Ym.
In terms of ideals

(65.15.2.1) ∀n ∃m, JmA ⊂ In.
Choose m ≥ 1. We can find an n such that the morphism Spec(Am) → X factors
through Spec(A/In). In terms of ideals

(65.15.2.2) ∀m ∃n, In ⊂ Ker(A→ Am).

Fix an m. Pick n such that In ⊂ Ker(A → Am) (65.15.2.2). Choose generators
f1, . . . , fr of I. For any E = (e1, . . . , er) with |E| =

∑
ei = n write

fe11 . . . ferr =
∑

gE,jaE,j + δE

with gE,j ∈ Jm, aE,j ∈ A, and δE ∈ In+1 (possible by the above). Let J = (gE,j) ⊂
B. Then we see that

In ⊂ JA+ In+1

As I is contained in the radical of A and In is finitely generated we see that In ⊂ JA
by Algebra, Lemma 10.19.1.

We first apply what we just proved as follows: since In ⊂ JmA we see that JmA
is open in A, hence closed, hence Ker(A → Am) = JmA, in other words, Am =
A/JmA. This holds for every m.

Next, we pick m with JmA ⊂ I (65.15.2.1). Then choose J ⊂ Jm with In ⊂ JA ⊂ I
as above. For every k ≥ 1 we define bk = Ker(B → A/JkA). For every k there
exists an m′ with Jm′ ⊂ bk as we have Ink ⊂ JkA and we can apply (65.15.2.1). On
the other hand, for every m′ there exists a k such that Ik ⊂ Jm′A because Jm′A is
open. Then bk maps to zero in A/Jm′A which is faithfully flat over B/Jm′ . Hence
bk ⊂ Jm′ . In other words, we see that the topology on B is defined by the sequence
of ideals bk. Note that Jk ⊂ bk which implies that bkA = JkA. In other words, we
have reduced the problem to the situation discussed in the following paragraph.

http://stacks.math.columbia.edu/tag/0AKT


65.15. TYPES OF FORMAL ALGEBRAIC SPACES 3775

We are given a ring map B → A where

(1) B is a weakly admissible topological ring with a fundamental system J1 ⊃
J2 ⊃ J3 ⊃ . . . of ideals of definition,

(2) A is a ring complete with respect to a finitely generated ideal I,
(3) we have JkA = Ik for all k, and
(4) B/Jk → A/Ik is faithfully flat.

Pick g1, . . . , gr ∈ J1 whose images in A/I2 generate I/I2; this is possible because
J1A/J2A = I/I2. Then for all k ≥ 1 we see that the elements gE = ge11 . . . gerr with
|E| = k are in Jk and their classes in Jk/Jk+1 map to generators of Ik/Ik+1. Since
B/Jk+1 → A/Ik+1 and B/Jk → A/Ik are flat we see that

Jk/Jk+1 ⊗B/J1
A/I = Jk/Jk+1 ⊗B/Jk+1

A/Ik+1 → Ik/Ik+1

is an isomorphism (see More on Morphisms, Lemma 36.8.1). Since B/J1 → A/I
is faithfully flat, we conclude that the classes of the elements gE , |E| = k generate
Jk/Jk+1. We claim that Jk = (gE , |E| = k). Namely, suppose that xk ∈ Jk. By
the above we can write

xk =
∑
|E|=k

bE,0g
E + xk+1

with xk+1 ∈ Jk+1 and some bE,0 ∈ B. Now we can write xk+1 as follows

xk+1 =
∑
|E|=k

(∑
|E′|=1

bE,E′g
E′
)
gE + xk+2

because every multi-index of degree k+ 1 is a sum of a multi-index of degree k and
a multi-index of degree 1. Continuing in this manner we can find bE,E′ ∈ B such
that for every l > 1 we have

xk =
∑
|E|=k

(∑
0≤|E′|<l

bE,E′g
E′
)
gE + xk+l

with some xk+l ∈ Jk+l. Then we can finally define

bE =
∑

E′
bE,E′g

E′

as an element in B and we see that xk =
∑
bEg

E as desired. This finishes the
proof as now J1 is finitely generated and Jk = Jk1 for all k ≥ 1. �

Lemma 65.15.3. Let S be a scheme. Let X → Y be a morphism of affine formal
schemes which is representable by algebraic spaces, surjective, flat, and (locally) of
finite type. Then X is Noetherian if and only if Y is Noetherian.

Proof. Observe that a Noetherian affine formal algebraic space is adic*, see Lemma
65.6.3. Thus by Lemma 65.15.2 we may assume that both X and Y are adic*. We
will use the criterion of Lemma 65.6.5 to see that the lemma holds. Namely, write
Y = colimYn as in Lemma 65.6.1. For each n set Xn = Yn ×Y X. Then Xn

is an affine scheme (Lemma 65.14.7) and X = colimXn. Each of the morphisms
Xn → Yn is faithfully flat and of finite type. Thus the lemma follows from the fact
that in this situation Xn is Noetherian if and only if Yn is Noetherian, see Algebra,
Lemma 10.152.1 (to go down) and Algebra, Lemma 10.30.1 (to go up). �

Lemma 65.15.4. Let S be a scheme. Let P ∈ {countably indexed, adic∗, Noetherian}.
Let X be a formal algebraic space over S. The following are equivalent
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(1) if Y is an affine formal algebraic space and f : Y → X is representable
by algebraic spaces and étale, then Y has property P ,

(2) for some {Xi → X}i∈I as in Definition 65.7.1 each Xi has property P .

Proof. It is clear that (1) implies (2). Assume (2) and let Y → X be as in (1).
Since the fibre products Xi ×Y X are formal algebraic spaces (Lemma 65.10.2) we
can pick coverings {Xij → Xi ×X Y } as in Definition 65.7.1. Since Y is quasi-
compact, there exist (i1, j1), . . . , (in, jn) such that

Xi1j1 q . . .qXinjn −→ Y

is surjective. Then Xikjk → Xik is representable by algebraic spaces and étale hence
Xikjk has property P by Lemma 65.14.9. Then Xi1j1q. . .qXinjn is an affine formal
algebraic space with property P (small detail omitted on finite disjoint unions of
affine formal algebraic spaces). Hence we conclude by applying one of Lemmas
65.15.1, 65.15.2, and 65.15.3. �

The previous lemma clears the way for the following definition.

Definition 65.15.5. Let S be a scheme. Let X be a formal algebraic space over
S. We say X is locally countably indexed, locally adic*, or locally Noetherian if the
equivalent conditions of Lemma 65.15.4 hold for the corresponding property.

The formal completion of a locally Noetherian algebraic space along a closed is a
locally Noetherian formal algebraic space.

Lemma 65.15.6. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. Let X/T be the formal completion of X along T .

(1) If X \ T → X is quasi-compact, then X/T is locally adic*.
(2) If X is locally Noetherian, then X/T is locally Noetherian.

Proof. Choose a surjective étale morphism U → X with U =
∐
Ui a disjoint

union of affine schemes, see Properties of Spaces, Lemma 48.6.1. Let Ti ⊂ Ui be
the inverse image of T . We have X/T×XUi = (Ui)/Ti (small detail omitted). Hence
{(Ui)/Ti → X/T } is a covering as in Definition 65.7.1. Moreover, if X \ T → X is
quasi-compact, so is Ui \ Ti → Ui and if X is locally Noetherian, so is Ui. Thus it
suffices to prove the lemma in case X is affine.

Assume X = Spec(A) is affine and X \T → X is quasi-compact. Then there exists
a finitely generated ideal I = (f1, . . . , fr) ⊂ A cutting out T (Algebra, Lemma
10.28.1). If Z = Spec(B) is an affine scheme and g : Z → X is a morphism with
g(Z) ⊂ T (set theoretically), then g](fi) is nilpotent in B for each i. Thus In maps
to zero in B for some n. Hence we see that X/T = colim Spec(A/In) and X is
adic*.

Assume X = Spec(A) is affine with A Noetherian. By the above we see that
X/T = Spf(A∧) where A∧ is the I-adic completion of A with respect to some ideal
I ⊂ A. Then X/T is Noetherian because A∧ is so, see Algebra, Lemma 10.93.10. �

65.16. Morphisms and continuous ring maps

In this section we denote WAdm the category of weakly admissible topological rings
and continuous ring homomorphisms. We define full subcategories

WAdm ⊃WAdmcount ⊃WAdmadic∗ ⊃WAdmNoeth

whose objects are
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(1) WAdmcount: those weakly admissible topological rings A which have a
countable fundamental system of neighbourhoods of 0,

(2) WAdmadic∗: the adic topological rings which have a finitely generated
ideal of definition, and

(3) WAdmNoeth: the adic topological rings which are Noetherian.

Clearly, the formal spectra of these types of rings are the basic building blocks of
locally countably indexed, locally adic*, and locally Noetherian formal algebraic
spaces.

We briefly review the relationship between morphisms of countably indexed, affine
formal algebraic spaces and morphisms of WAdmcount. Let S be a scheme. Let X
and Y be countably indexed, affine formal algebraic spaces. Write X = Spf(A) and
Y = Spf(B) topological S-algebras A and B in WAdmcount, see Lemma 65.6.4. By
Lemma 65.5.10 there is a 1-to-1 correspondence between morphisms f : X → Y
and continuous maps

ϕ : B −→ A

of topological S-algebras. The relationship is given by f 7→ f ] and ϕ 7→ Spf(ϕ).

Let S be a scheme. Let f : X → Y be a morphism of locally countably indexed
formal algebraic spaces. Consider a commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces and U → X and V → Y representable
by algebraic spaces and étale. By Definition 65.15.5 (and hence via Lemma 65.15.4)
we see that U and V are countably indexed affine formal algebraic spaces. By the
discussion in the previous paragraph we see that U → V is isomorphic to Spf(ϕ)
for some continuous map

ϕ : B −→ A

of topological S-algebras in WAdmcount.

Lemma 65.16.1. Let A ∈ Ob(WAdm). Let A→ A′ be a ring map (no topology).
Let (A′)∧ = limI⊂A w.i.dA

′/IA′ be the object of WAdm constructed in Example
65.14.11.

(1) If A is in WAdmcount, so is (A′)∧.

(2) If A is in WAdmadic∗, so is (A′)∧.

(3) If A is in WAdmNoeth and A′ is Noetherian, then (A′)∧ is in WAdmNoeth.

Proof. Part (1) is clear from the construction. Assume A has a finitely generated
ideal of definition I ⊂ A. Then In(A′)∧ = Ker((A′)∧ → A′/InA′) by Algebra,
Lemmas 10.93.6 and 10.93.7. Thus I(A′)∧ is a finitely generated ideal of definition
and we see that (2) holds. Finally, assume that A is Noetherian and adic. By
(2) we know that (A′)∧ is adic. By Algebra, Lemma 10.93.10 we see that (A′)∧ is
Noetherian. Hence (3) holds. �

http://stacks.math.columbia.edu/tag/0ANB
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Let P be a property of morphisms of WAdmcount. Consider commutative diagrams

(65.16.1.1)

A // (A′)∧

B //

ϕ

OO

(B′)∧

ϕ′

OO

satisfying the following conditions

(1) A and B are objects of WAdmcount,
(2) A→ A′ and B → B′ are étale ring maps,
(3) (A′)∧ = limA′/IA′, resp. (B′)∧ = limB′/JB′ where I ⊂ A, resp. J ⊂ B

runs through the weakly admissible ideals of definition of A, resp. B,
(4) ϕ : A→ B and ϕ′ : (A′)∧ → (B′)∧ are continuous.

By Lemma 65.16.1 the topological rings (A′)∧ and (B′)∧ are objects of WAdmcount.
We say P is a local property if the following axioms hold:

(1) for any diagram (65.16.1.1) we have P (ϕ)⇒ P (ϕ′),
(2) for any diagram (65.16.1.1) with A→ A′ faithfully flat we have P (ϕ′)⇒

P (ϕ),
(3) if P (A→ Bi) for i = 1, . . . , n, then P (A→

∏
i=1,...,nBi).

Axiom (3) makes sense as WAdmcount has finite products.

Lemma 65.16.2. Let S be a scheme. Let f : X → Y be a morphism of locally
countably indexed formal algebraic spaces over S. Let P be a local property of
morphisms of WAdmcount. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a morphism of WAdmcount with property P ,

(2) there exists a covering {Yj → Y } as in Definition 65.7.1 and for each
j a covering {Xji → Yj ×Y X} as in Definition 65.7.1 such that each

Xji → Yj corresponds to a morphism of WAdmcount with property P , and
(3) there exist a covering {Xi → X} as in Definition 65.7.1 and for each

i a factorization Xi → Yi → Y where Yi is an affine formal algebraic
space, Yi → Y is representable by algebraic spaces and étale, and Xi → Yi
corresponds to a morphism of WAdmcount with property P .

Proof. It is clear that (1) implies (2) and that (2) implies (3). Assume {Xi → X}
and Xi → Yi → Y as in (3) and let a diagram as in (1) be given. Since Yi ×Y V is
a formal algebraic space (Lemma 65.10.2) we may pick coverings {Yij → Yi ×Y V }
as in Definition 65.7.1. For each (i, j) we may similarly choose coverings we can
pick coverings {Xijk → Yij ×Yi Xi ×X U} as in Definition 65.7.1. Since U is quasi-
compact we can choose (i1, j1, k1), . . . , (in, jn, kn) such that

Xi1j1k1
q . . .qXinjnkn −→ U

http://stacks.math.columbia.edu/tag/0ANG
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is surjective. For s = 1, . . . , n consider the commutative diagram

Xisjsks

xx �� &&
X

��

Xis
oo

��

Xis ×X Uoo

��

Yisjs

xx &&

Xis ×X U

��

// U

��

// X

��
Y Yisoo Yis ×Y Voo Yis ×Y V // V // Y

Let us say that P holds for a morphism of countably indexed affine formal al-
gebraic spaces if it holds for the corresponding morphism of WAdmcount. Ob-
serve that the maps Xisjsks → Xis , Yisjs → Yi are given by completions of
étale ring maps, see Lemma 65.14.13. Hence we see that P (Xis → Yis) implies
P (Xisjsks → Yisjs) by axiom (1). By axiom (2) (and the fact that identities are
faithfully flat ring maps) we conclude that P (Xisjsks → V ) holds. By axiom (3) we
find that P (

∐
s=1,...,nXisjsks → V ) holds. Since the morphism

∐
Xisjsks → U is

surjective by construction, the corresponding morphism of WAdmcount is the com-
pletion of a faithfully flat étale ring map, see Lemma 65.14.14. One more application
of axiom (2) implies that P (U → V ) is true as desired. �

Remark 65.16.3 (Variant for adic-star). Let P be a property of morphisms of

WAdmadic∗. We say P is a local property if axioms (1), (2), (3), hold for diagrams

(65.16.1.1) with ϕ a morphism of WAdmadic∗. In exactly the same way we obtain
a variant of Lemma 65.16.2 for morphisms between locally adic* formal algebraic
spaces over S.

Remark 65.16.4 (Variant for Noetherian). Let P be a property of morphisms of

WAdmNoeth. We say P is a local property if axioms (1), (2), (3), hold for diagrams

(65.16.1.1) with ϕ a morphism of WAdmNoeth. In exactly the same way we ob-
tain a variant of Lemma 65.16.2 for morphisms between locally Noetherian formal
algebraic spaces over S.

Lemma 65.16.5. Let B → A be an arrow of WAdmcount. The following are
equivalent

(a) B → A is taut (Definition 65.4.9),
(b) for B ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . . a fundamental system of weak ideals of

definitions there exist a commutative diagram

A // . . . // A3
// A2

// A1

B //

OO

. . . // B/J3
//

OO

B/J2
//

OO

B/J1

OO

such that An+1/JnAn+1 = An and A = limAn as topological ring.

Moreover, these equivalent conditions define a local property, i.e., they satisfy ax-
ioms (1), (2), (3).

Proof. The equivalence of (a) and (b) is immediate. Below we will give an algebraic
proof of the axioms, but it turns out we’ve already proven them. Namely, using
Lemma 65.14.10 (a) and (b) translate to saying the corresponding morphism of
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affine formal schemes is representable, and this condition is “étale local on the
source and target” by Lemma 65.14.4.

Let a diagram (65.16.1.1) be given. By Example 65.14.11 the maps A→ (A′)∧ and
B → (B′)∧ satisfy (a) and (b).

Assume (a) and (b) hold for ϕ. Let J ⊂ B be a weak ideal of definition. Then the
closure of JA, resp. J(B′)∧ is a weak ideal of definition I ⊂ A, resp. J ′ ⊂ (B′)∧.
Then the closure of I(A′)∧ is a weak ideal of definition I ′ ⊂ (A′)∧. A topological
argument shows that I ′ is also the closure of J(A′)∧ and of J ′(A′)∧. Finally, as J
runs over a fundamental system of weak ideals of definition of B so do the ideals I
and I ′ in A and (A′)∧. It follows that (a) holds for ϕ′. This proves (1).

Assume A → A′ is faithfully flat and that (a) and (b) hold for ϕ′. Let J ⊂ B be
a weak ideal of definition. Using (a) and (b) for the maps B → (B′)∧ → (A′)∧ we
find that the closure I ′ of J(A′)∧ is a weak ideal of definition. In particular, I ′ is
open and hence the inverse image of I ′ in A is open. Now we have (explanation
below)

A ∩ I ′ = A ∩
⋂

(J(A′)∧ + Ker((A′)∧ → A′/I0A
′))

= A ∩
⋂

Ker((A′)∧ → A′/JA′ + I0A
′)

=
⋂

(JA+ I0)

which is the closure of JA by Lemma 65.4.2. The intersections are over weak
ideals of definition I0 ⊂ A. The first equality because a fundamental system of
neighbourhoods of 0 in (A′)∧ are the kernels of the maps (A′)∧ → A′/I0A

′. The
second equality is trivial. The third equality because A → A′ is faithfully flat,
see Algebra, Lemma 10.79.11. Thus the closure of JA is open. By Lemma 65.4.8
the closure of JA is a weak ideal of definition of A. Finally, given a weak ideal
of definition I ⊂ A we can find J such that J(A′)∧ is contained in the closure of
I(A′)∧ by property (a) for B → (B′)∧ and ϕ′. Thus we see that (a) holds for ϕ.
This proves (2).

We omit the proof of (3). �

Lemma 65.16.6. Let P =”taut” viewed as a property of morphisms of WAdmcount.
Then under the assumptions of Lemma 65.16.2 the equivalent conditions (1), (2),
and (3) are also equivalent to the condition

(4) f is representable by algebraic spaces.

Proof. Property P is a local property by Lemma 65.16.5. By Lemma 65.14.10
condition P on morphisms of WAdmcount corresponds to “representable by alge-
braic spaces” for the corresponding morphisms of countably indexed affine formal
algebraic spaces. Thus the lemma follows from Lemma 65.14.4. �

65.17. Adic morphisms

Suppose that ϕ : A→ B is a continuous map between adic topological rings. One
says ϕ is adic if there exists an ideal of definition I ⊂ A such that the topology on
B is I-adic. However, this is not a good notion unless we assume A has a finitely
generated ideal of definition. In this case, the condition is equivalent to ϕ being
taut, see Lemma 65.4.13.
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Let P be the property of morphisms ϕ : A→ B of WAdmadic∗ defined by

P (ϕ) = “ϕ is adic” = “ϕ is taut”

(see above for the equivalence). Since WAdmadic∗ is a full subcategory of WAdmcount

it follows trivially from Lemma 65.16.5 that P is a local property on morphisms
of WAdmadic∗, see Remark 65.16.3. Combining Lemmas 65.16.2 and 65.16.6 we
obtain the result stated in the next paragraph.

Let S be a scheme. Let f : X → Y be a morphism of locally adic* formal algebraic
spaces over S. Then the following are equivalent

(1) f is representable by algebraic spaces (in other words, the equivalent con-
ditions of Lemma 65.14.4 hold),

(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to an adic map in WAdmadic∗ (in other words, the equivalent conditions
of Lemma 65.16.2 hold with P as above).

In this situation we will sometimes say that f is an adic morphism. Here it is
understood that this notion is only defined for morphisms between formal algebraic
spaces which are locally adic*.

Definition 65.17.1. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume X and Y are locally adic*. We say f is an adic
morphism if f is representable by algebraic spaces. See discussion above.

65.18. Morphisms of finite type

Due to how things are setup in the Stacks project, the following is really the correct
thing to do and stronger notions should have a different name.

Definition 65.18.1. Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S.

(1) We say f is locally of finite type if f is representable by algebraic spaces
and is locally of finite type in the sense of Bootstrap, Definition 62.4.1.

(2) We say f is of finite type if f is locally of finite type and quasi-compact
(Definition 65.12.4).

We will discuss the relationship between finite type morphisms of certain formal
algebraic spaces and continuous ring maps A→ B which are topologically of finite
type in Restricted Power Series, Section 66.3.

Lemma 65.18.2. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is of finite type,
(2) f is representable by algebraic spaces and is of finite type in the sense of

Bootstrap, Definition 62.4.1.
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Proof. This follows from Bootstrap, Lemma 62.4.5, the implication “quasi-compact
+ locally of finite type⇒ finite type” for morphisms of algebraic spaces, and Lemma
65.12.5. �

Lemma 65.18.3. The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. See Bootstrap, Lemma 62.4.3 and use Morphisms of Spaces, Lemma 49.23.2.
�

Lemma 65.18.4. A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. See Bootstrap, Lemma 62.4.2 and use Morphisms of Spaces, Lemma 49.23.3.
�

Lemma 65.18.5. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then
f : X → Y is locally of finite type.

Proof. By Lemma 65.14.3 we see that f is representable by algebraic spaces. Let
T be a scheme and let T → Z be a morphism. Then we can apply Morphisms of
Spaces, Lemma 49.23.6 to the morphisms T ×Z X → T ×Z Y → T of algebraic
spaces to conclude. �

Being locally of finite type is local on the source and the target.

Lemma 65.18.6. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent:

(1) the morphism f is locally of finite type,
(2) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces, the vertical arrows are repre-
sentable by algebraic spaces and étale, U → X is surjective, and U → V
is locally of finite type,

(3) for any commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces and vertical arrows representable
by algebraic spaces and étale, the morphism U → V is locally of finite
type,

(4) there exists a covering {Yj → Y } as in Definition 65.7.1 and for each j a
covering {Xji → Yj ×Y X} as in Definition 65.7.1 such that Xji → Yj is
locally of finite type for each j and i,
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(5) there exist a covering {Xi → X} as in Definition 65.7.1 and for each i a
factorization Xi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, such that Xi → Yi
is locally of finite type, and

(6) add more here.

Proof. In each of the 5 cases the morphism f : X → Y is representable by algebraic
spaces, see Lemma 65.14.4. We will use this below without further mention.

It is clear that (1) implies (2) because we can take U = X and V = Y . Conversely,
assume given a diagram as in (2). Let T be a scheme and let T → Y be a morphism.
Then we can consider

U ×Y T

��

// V ×Y T

��
X ×Y T // T

The vertical arrows are étale and the top horizontal arrow is locally of finite type as
base changes of such morphisms. Hence by Morphisms of Spaces, Lemma 49.23.4
we conclude that X ×Y T → T is locally of finite type. In other words (1) holds.

Assume (1) is true and consider a diagram as in (3). Then U → Y is locally of
finite type (as the composition U → X → Y , see Bootstrap, Lemma 62.4.3). Let
T be a scheme and let T → V be a morphism. Then the projection T ×V U → U
factors as

T ×V U = (T ×Y U)×(V×Y V ) V → T ×Y U → U

The second arrow is locally of finite type (see above) and the first is the base change
of the diagonal V → V ×Y V which is locally of finite type by Lemma 65.10.4.

It is clear that (3) implies (2). Thus now (1) – (3) are equivalent.

Observe that the condition in (4) makes sense as the fibre product Yj ×Y X is a
formal algebraic space by Lemma 65.10.3. It is clear that (4) implies (5).

Assume Xi → Yi → Y as in (5). Then we set V =
∐
Yi and U =

∐
Xi to see that

(5) implies (2).

Finally, assume (1) – (3) are true. Thus we can choose any covering {Yj → Y } as
in Definition 65.7.1 and for each j any covering {Xji → Yj ×Y X} as in Definition
65.7.1. Then Xij → Yj is locally of finite type by (3) and we see that (4) is true.
This concludes the proof. �

Example 65.18.7. Let S be a scheme. Let A be a weakly admissible topological
ring over S. Let A→ A′ be a finite type ring map. Then

(A′)∧ = limI⊂A w.i.d.A
′/IA′

is a weakly admissible ring and the corresponding morphism Spf((A′)∧)→ Spf(A)
is representable, see Example 65.14.11. If T → Spf(A) is a morphism where T
is a quasi-compact scheme, then this factors through Spec(A/I) for some weak
ideal of definition I ⊂ A (Lemma 65.5.4). Then T ×Spf(A) Spf((A′)∧) is equal to
T ×Spec(A/I) Spec(A′/IA′) and we see that Spf((A′)∧)→ Spf(A) is of finite type.

Lemma 65.18.8. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. If Y is locally Noetherian and f locally of finite type, then
X is locally Noetherian.
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Proof. Pick {Yj → Y } and {Xij → Yj×Y X} as in Lemma 65.18.6. Then it follows
from Lemma 65.14.8 that each Xij is Noetherian. This proves the lemma. �

Lemma 65.18.9. Let S be a scheme. Let f : X → Y and Z → Y be morphisms
of formal algebraic spaces over S. If Z is locally Noetherian and f locally of finite
type, then Z ×Y X is locally Noetherian.

Proof. The morphism Z ×Y X → Z is locally of finite type by Lemma 65.18.4.
Hence this follows from Lemma 65.18.8. �

Lemma 65.18.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ⊂ |Y | be a closed subset and let
T ′ = |f |−1(T ) ⊂ |X|. Then X/T ′ → Y/T is locally of finite type.

Proof. Namely, suppose that V → Y is a morphism from a scheme into Y such
that |V | maps into T . In the proof of Lemma 65.9.4 we have seen that V ×Y X → X
is an algebraic space representing V ×Y/T ′ X/T . Since V ×Y X → V is locally of

finite type (by Morphisms of Spaces, Lemma 49.23.3) we conclude. �

65.19. Monomorphisms

Here is the definition.

Definition 65.19.1. Let S be a scheme. A morphism of formal algebraic spaces
over S is called a monomorphism if it is an injective map of sheaves.

An example is the following. Let X be an algebraic space and let T ⊂ |X| be
a closed subset. Then the morphism X/T → X from the formal completion of
X along T to X is a monomorphism. In particular, monomorphisms of formal
algebraic spaces are in general not representable.

65.20. Closed immersions

Here is the definition.

Definition 65.20.1. Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S. We say f is a closed immersion if f is representable by
algebraic spaces and a closed immersion in the sense of Bootstrap, Definition 62.4.1.

Lemma 65.20.2. Let S be a scheme. Let X be a McQuillan affine formal algebraic
space over S. Let f : Y → X be a closed immersion of formal algebraic spaces over
S. Then Y is a McQuillan affine formal algebraic space and f corresponds to
a continuous homomorphism A → B of weakly admissible topological S-algebras
which is taut, has closed kernel, and has dense image.

Proof. Write X = Spf(A) where A is a weakly admissible topological ring. Let
Iλ be a fundamental system of weakly admissible ideals of definition in A. Then
Y ×X Spec(A/Iλ) is a closed subscheme of Spec(A/Iλ) and hence affine (Definition
65.20.1). Say Y×XSpec(A/Iλ) = Spec(Bλ). The ring map A/Iλ → Bλ is surjective.
Hence the projections

B = limBλ −→ Bλ

are surjective as the compositions A → B → Bλ are surjective. It follows that Y
is McQuillan by Lemma 65.5.6. The ring map A→ B is taut by Lemma 65.14.10.
The kernel is closed because B is complete and A → B is continuous. Finally, as
A→ Bλ is surjective for all λ we see that the image of A in B is dense. �
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Even though we have the result above, in general we do not know how closed
immersions behave when the target is a McQuillan affine formal algebraic space,
see Restricted Power Series, Remark 66.3.4.

Example 65.20.3. Let S be a scheme. Let A be a weakly admissible topological
ring over S. Let K ⊂ A be a closed ideal. Setting

B = (A/K)∧ = limI⊂A w.i.d.A/(I +K)

the morphism Spf(B) → Spf(A) is representable, see Example 65.14.11. If T →
Spf(A) is a morphism where T is a quasi-compact scheme, then this factors through
Spec(A/I) for some weak ideal of definition I ⊂ A (Lemma 65.5.4). Then T ×Spf(A)

Spf(B) is equal to T ×Spec(A/I) Spec(A/(K + I)) and we see that Spf(B)→ Spf(A)
is a closed immersion. The kernel of A → B is K as K is closed, but beware that
in general the ring map A→ B = (A/K)∧ need not be surjective.

65.21. Separation axioms for morphisms

This section is the analogue of Morphisms of Spaces, Section 49.4 for morphisms
of formal algebraic spaces.

Definition 65.21.1. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.
(2) We say f is quasi-separated if ∆X/Y is quasi-compact.

Since ∆X/Y is representable (by schemes) by Lemma 65.10.4 we can test this by
considering morphisms T → X ×Y X from affine schemes T and checking whether

E = T ×X×YX X −→ T

is quasi-compact or a closed immersion, see Lemma 65.12.5 or Definition 65.20.1.
Note that the scheme E is the equalizer of two morphisms a, b : T → X which agree
as morphisms into Y and that E → T is a monomorphism and locally of finite type.

Lemma 65.21.2. All of the separation axioms listed in Definition 65.21.1 are
stable under base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of formal algebraic spaces. Let
f ′ : X ′ → Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change
of ∆X/Y by the morphism X ′ ×Y ′ X ′ → X ×Y X. Each of the properties of the
diagonal used in Definition 65.21.1 is stable under base change. Hence the lemma
is true. �

Lemma 65.21.3. Let S be a scheme. Let f : X → Z, g : Y → Z and Z → T
be morphisms of formal algebraic spaces over S. Consider the induced morphism
i : X ×Z Y → X ×T Y . Then

(1) i is representable (by schemes), locally of finite type, locally quasi-finite,
separated, and a monomorphism,

(2) if Z → T is separated, then i is a closed immersion, and
(3) if Z → T is quasi-separated, then i is quasi-compact.
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Proof. By general category theory the following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z

is a fibre product diagram. Hence i is the base change of the diagonal morphism
∆Z/T . Thus the lemma follows from Lemma 65.10.4. �

Lemma 65.21.4. All of the separation axioms listed in Definition 65.21.1 are
stable under composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of formal algebraic spaces to
which the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.
Our separation axiom is defined by requiring the diagonal to have some property
P. By Lemma 65.21.3 above we see that the second arrow also has this property.
Hence the lemma follows since the composition of (representable) morphisms with
property P also is a morphism with property P. �

Lemma 65.21.5. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Let P be any of the separation axioms of Definition 65.21.1.
The following are equivalent

(1) f is P,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is P,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(4) for every affine scheme Z and every morphism Z → Y the formal algebraic

space Z ×Y X is P (see Definition 65.11.3),
(5) there exists a covering {Yj → Y } as in Definition 65.7.1 such that the

base change Yj ×Y X → Yj has P for all j.

Proof. We will repeatedly use Lemma 65.21.2 without further mention. In partic-
ular, it is clear that (1) implies (2) and (2) implies (3).

Assume (3) and let Z → Y be a morphism where Z is an affine scheme. Let U , V
be affine schemes and let a : U → Z ×Y X and b : V → Z ×Y X be morphisms.
Then

U ×Z×YX V = (Z ×Y X)×∆,(Z×YX)×Z(Z×YX) (U ×Z V )

and we see that this is quasi-compact if P =“quasi-separated” or an affine scheme
equipped with a closed immersion into U ×Z V if P =“separated”. Thus (4) holds.

Assume (4) and let Z → Y be a morphism where Z is an affine scheme. Let U , V
be affine schemes and let a : U → Z ×Y X and b : V → Z ×Y X be morphisms.
Reading the argument above backwards, we see that U ×Z×YX V → U ×Z V is
quasi-compact if P =“quasi-separated” or a closed immersion if P =“separated”.
Since we can find an étale covering of Z ×Y X by U and V as above, we find that
the corresponding morphisms

U ×Z V → (Z ×Y X)×Z (Z ×Y X)

http://stacks.math.columbia.edu/tag/0ARR
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form an étale covering by affines. Hence we conclude that ∆ : (Z ×Y X)→ (Z ×Y
X)×Z (Z ×Y X) is quasi-compact, resp. a closed immersion. Thus (3) holds.

Let us prove that (3) implies (5). Assume (3) and let {Yj → Y } be as in Definition
65.7.1. We have to show that the morphisms

∆j : Yj ×Y X −→ (Yj ×Y X)×Yj (Yj ×Y X) = Yj ×Y X ×Y X

has the corresponding property (i.e., is quasi-compact or a closed immersion). Write
Yj = colimYj,λ as in Definition 65.5.1. Replacing Yj by Yj,λ in the formula above, we
have the property by our assumption that (3) holds. Since the displayed arrow is the
colimit of the arrows ∆j,λ and since we can test whether ∆j has the corresponding
property by testing after base change by affine schemes mapping into Yj×Y X×Y X,
we conclude by Lemma 65.5.4.

Let us prove that (5) implies (1). Let {Yj → Y } be as in (5). Then we have the
fibre product diagram ∐

Yj ×Y X //

��

X

��∐
Yj ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is quasi-compact or a closed immersion. It fol-
lows from Spaces, Lemma 47.5.6 that also the right vertical arrow is quasi-compact
or a closed immersion. �

65.22. Proper morphisms

Here is the definition we will use.

Definition 65.22.1. Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S. We say f is proper if f is representable by algebraic spaces
and is proper in the sense of Bootstrap, Definition 62.4.1.

It follows from the definitions that a proper morphism is of finite type.

Lemma 65.22.2. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is proper,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is proper,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is proper,
(4) for every affine scheme Z and every morphism Z → Y the formal algebraic

space Z ×Y X is an algebraic space proper over Z,
(5) there exists a covering {Yj → Y } as in Definition 65.7.1 such that the

base change Yj ×Y X → Yj is proper for all j.

Proof. Omitted. �
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65.23. Formal algebraic spaces and fpqc coverings

This section is the analogue of Properties of Spaces, Section 48.14. Please read that
section first.

Lemma 65.23.1. Let S be a scheme. Let X be a formal algebraic space over S.
Then X satisfies the sheaf property for the fpqc topology.

Proof. The proof is identical to the proof of Properties of Spaces, Proposition
48.14.1. Since X is a sheaf for the Zariski topology it suffices to show the following.
Given a surjective flat morphism of affines f : T ′ → T we have: X(T ) is the
equalizer of the two maps X(T ′)→ X(T ′ ×T T ′). See Topologies, Lemma 33.8.13.

Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Lemma 65.7.3 the morphism ∆X/S is a representable monomorphism. Hence
E → T is a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f implies
that T ′ → T factors (uniquely) through E. Consider the commutative diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

Since the projection T ′×T E → T ′ is a monomorphism with a section we conclude it
is an isomorphism. Hence we conclude that E → T is an isomorphism by Descent,
Lemma 34.19.15. This means a = b as desired.

Next, let c : T ′ → X be a morphism such that the two compositions T ′ ×T T ′ →
T ′ → X are the same. We have to find a morphism a : T → X whose composition
with T ′ → T is c. Choose a formal affine scheme U and an étale morphism U → X
such that the image of |U | → |Xred| contains the image of |c| : |T ′| → |Xred|.
This is possible by Definition 65.7.1, Properties of Spaces, Lemma 48.4.6, the fact
that a finite union of formal affine algebraic spaces is a formal affine algebraic
space, and the fact that |T ′| is quasi-compact (small argument omitted). The
morphism U → X is representable by schemes (Lemma 65.5.11) and separated
(Lemma 65.11.5). Thus

V = U ×X,c T ′ −→ T ′

is an étale and separated morphism of schemes. It is also surjective by our choice
of U → X (if you do not want to argue this you can replace U by a disjoint union
of formal affine algebraic spaces so that U → X is surjective everything else still
works as well). The fact that c ◦ pr0 = c ◦ pr1 means that we obtain a descent
datum on V/T ′/T (Descent, Definition 34.30.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0
(T ′ ×T T ′)

= (T ′ ×T T ′)×c◦pr1,X U

= (T ′ ×T T ′)×T ′ V

The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 36.46.4
(because étale morphisms are locally quasi-finite, see Morphisms, Lemma 28.37.6).
By More on Groupoids, Lemma 39.14.3 the descent datum is effective. Say W → T

http://stacks.math.columbia.edu/tag/0AQD
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is a morphism such that there is an isomorphism α : T ′×TW → V compatible with
the given descent datum on V and the canonical descent datum on T ′×T W . Then
W → T is surjective and étale (Descent, Lemmas 34.19.6 and 34.19.27). Consider
the composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions c′ ◦ (pr0, 1), c′ ◦ (pr1, 1) : (T ′ ×T T ′)×T W → T ′ ×T W → U
agree by our choice of α and the corresponding property of c (computation omitted).
Hence b′ descends to a morphism b : W → U by Descent, Lemma 34.9.3. The
diagram

T ′ ×T W //

��

W
b
// U

��
T ′

c // X

is commutative. What this means is that we have proved the existence of a étale
locally on T , i.e., we have an a′ : W → X. However, since we have proved unique-
ness in the first paragraph, we find that this étale local solutions satisfy the glueing
condition, i.e., we have pr∗0a

′ = pr∗1a
′ as elements of X(W ×T W ). Since X is an

étale sheaf we find an unique a ∈ X(T ) restricting to a′ on W . �

65.24. Maps out of affine formal schemes

We prove a few results that will be useful later. In the paper [Bha14] the reader
can find very general results of a similar nature.

Lemma 65.24.1. Let S be a scheme. Let A be a weakly admissible topological
S-algebra. Let X be an affine scheme over S. Then the natural map

MorS(Spec(A), X) −→ MorS(Spf(A), X)

is bijective.

Proof. If X is affine, say X = Spec(B), then we see from Lemma 65.5.10 that
morphisms Spf(A) → Spec(B) correspond to continuous S-algebra maps B → A
whereB has the discrete topology. These are just S-algebra maps, which correspond
to morphisms Spec(A)→ Spec(B). �

Lemma 65.24.2. Let S be a scheme. Let A be a weakly admissible topological
S-algebra such that A/I is a local ring for some weak ideal of definition I ⊂ A. Let
X be a scheme over S. Then the natural map

MorS(Spec(A), X) −→ MorS(Spf(A), X)

is bijective.

Proof. Let ϕ : Spf(A) → X be a morphism. Since Spec(A/I) is local we see
that ϕ maps Spec(A/I) into an affine open U ⊂ X. However, this then implies
that Spec(A/J) maps into U for every ideal of definition J . Hence we may apply
Lemma 65.24.1 to see that ϕ comes from a morphism Spec(A) → X. This proves
surjectivity of the map. We omit the proof of injectivity. �

Lemma 65.24.3. Let S be a scheme. Let R be a complete local Noetherian S-
algebra. Let X be an algebraic space over S. Then the natural map

MorS(Spec(R), X) −→ MorS(Spf(R), X)
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is bijective.

Proof. Let m be the maximal ideal of R. We have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above.

Injectivity: Let x, x′ : Spec(R) → X be two morphisms mapping to the same
element in the right hand side. Consider the fibre product

T = Spec(R)×(x,x′),X×SX,∆ X

Then T is a scheme and T → Spec(R) is locally of finite type, monomorphism,
separated, and locally quasi-finite, see Morphisms of Spaces, Lemma 49.4.1. In
particular T is locally Noetherian, see Morphisms, Lemma 28.16.6. Let t ∈ T be
the unique point mapping to the closed point of Spec(R) which exists as x and
x′ agree over R/m. Then R → OT,t is a local ring map of Noetherian rings such
that R/mn → OT,t/mnOT,t is an isomorphism for all n (because x and x′ agree
over Spec(R/mn) for all n). Since OT,t maps injectively into its completion (see
Algebra, Lemma 10.49.4) we conclude that R = OT,t. Hence x and x′ agree over
R.

Surjectivity: Let (xn) be an element of the right hand side. Choose a scheme U
and a surjective étale morphism U → X. Denote x0 : Spec(k)→ X the morphism
induced on the residue field k = R/m. The morphism of schemes U×X,x0

Spec(k)→
Spec(k) is surjective étale. Thus U ×X,x0

Spec(k) is a nonempty disjoint union of
spectra of finite separable field extensions of k, see Morphisms, Lemma 28.37.7.
Hence we can find a finite separable field extension k ⊂ k′ and a k′-point u0 :
Spec(k′)→ U such that

Spec(k′)

��

u0

// U

��
Spec(k)

x0 // X

commutes. Let R ⊂ R′ be the finite étale extension of Noetherian complete local
rings which induces k ⊂ k′ on residue fields (see Algebra, Lemmas 10.145.8 and
10.145.10). Denote x′n the restriction of xn to Spec(R′/mnR′). By More on Mor-
phisms of Spaces, Lemma 58.13.8 we can find an element (u′n) ∈ lim MorS(Spec(R′/mnR′), U)
mapping to (x′n). By Lemma 65.24.2 the family (u′n) comes from a unique mor-
phism u′ : Spec(R′) → U . Denote x′ : Spec(R′) → X the composition. Note that
R′ ⊗R R′ is a finite product of spectra of Noetherian complete local rings to which
our current discussion applies. Hence the diagram

Spec(R′ ⊗R R′) //

��

Spec(R′)

x′

��
Spec(R′)

x′ // X

is commutative by the injectivity shown above and the fact that x′n is the restriction
of xn which is defined over R/mn. Since {Spec(R′)→ Spec(R)} is an fppf covering
we conclude that x′ descends to a morphism x : Spec(R)→ X. We omit the proof
that xn is the restriction of x to Spec(R/mn). �
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CHAPTER 66

Restricted Power Series

66.1. Introduction

In this chapter we discuss algebras topologically of finite type over pre-adic topo-
logical rings and their homomorphisms. Many of the results discussed here can be
found in the paper [Elk73]. Other general references for this chapter are [DG67],
[Abb10], and [FK].

66.2. Restricted power series

Let A be a topological ring complete with respect to a linear topology (More on
Algebra, Definition 15.26.1). Let Iλ be a fundamental system of open ideals. Let
r ≥ 0 be an integer. In this setting one often denotes

A{x1, . . . , xr} = limλA/Iλ[x1, . . . , xr] = limλ(A[x1, . . . , xr]/IλA[x1, . . . , xr])

endowed with the limit topology. In other words, this is the completion of the poly-
nomial ring with respect to the ideals Iλ. We can think of elements of A{x1, . . . , xr}
as power series

f =
∑

E=(e1,...,er)
aEx

e1
1 . . . xerr

in x1, . . . , xr with coefficients aE ∈ A which tend to zero in the topology of A. In
other words, for any λ all but a finite number of aE are in Iλ. For this reason
elements of A{x1, . . . , xr} are sometimes called restricted power series. Sometimes
this ring is denoted A〈x1, . . . , xr〉; we will refrain from using this notation.

Remark 66.2.1 (Universal property restricted power series). Let A → C be a
continuous map of complete linearly topologized rings. Then any A-algebra map
A[x1, . . . xr] → C extends uniquely to a continuous map A{x1, . . . , xr} → C on
restricted power series.

Remark 66.2.2. Let A be a ring and let I ⊂ A be an ideal. If A is I-adically com-
plete, then the I-adic completion A[x1, . . . , xr]

∧ of A[x1, . . . , xr] is the restricted
power series ring over A as a ring. However, it is not clear that A[x1, . . . , xr]

∧

is I-adically complete. We think of the topology on A{x1, . . . , xr} as the limit
topology (which is always complete) whereas we often think of the topology on
A[x1, . . . , xr]

∧ as the I-adic topology (not always complete). If I is finitely gener-
ated, then A{x1, . . . , xr} = A[x1, . . . , xr]

∧ as topological rings, see Algebra, Lem-
mas 10.93.6 and 10.93.7.

66.3. Algebras topologically of finite type

Here is our definition. This definition is not generally agreed upon. Many authors
impose further conditions, often because they are only interested in specific types
of rings and not the most general case.

3793
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Definition 66.3.1. Let A→ B be a continuous map of topological rings (More on
Algebra, Definition 15.26.1). We say B is topologically of finite type over A if there
exists an A-algebra map A[x1, . . . , xn]→ B whose image is dense in B.

If A is a complete, linearly topologized ring, then the restricted power series ring
A{x1, . . . , xr} is topologically of finite type over A. For continuous taut maps of
weakly admissible topological rings, this notion corresponds exactly to morphisms
of finite type between the associated affine formal algebraic spaces.

Lemma 66.3.2. Let S be a scheme. Let ϕ : A→ B be a continuous map of weakly
admissible topological rings over S. The following are equivalent

(1) Spf(ϕ) : Spf(B)→ Spf(A) is of finite type,
(2) ϕ is taut and B is topologically of finite type over A.

Proof. We can use Formal Spaces, Lemma 65.14.10 to relate tautness of ϕ to
representability of Spf(ϕ). We will use this without further mention below. Note
that X = colim Spec(A/I) and Y = colim Spec(B/J(I)) where I ⊂ A runs over the
weak ideals of definition of A and J(I) is the closure of IB in B.

Assume (2). Choose a ring map A[x1, . . . , xr] → B whose image is dense. Then
A[x1, . . . , xr]→ B → B/J(I) has dense image too which means that it is surjective.
Therefore B/J(I) is of finite type over A/I. Let T → X be a morphism with T
a quasi-compact scheme. Then T → X factors through Spec(B/I) for some I
(Formal Spaces, Lemma 65.5.4). Then T ×X Y = T ×Spec(A/I) Spec(B/J(I)), see
proof of Formal Spaces, Lemma 65.14.10. Henc T ×Y X → T is of finite type as the
base change of the morphism Spec(B/J(I)) → Spec(A/I) which is of finite type.
Thus (1) is true.

Assume (1). Pick any I ⊂ A as above. Since Spec(A/I) ×X Y = Spec(B/J(I))
we see that A/I → B/J(I) is of finite type. Choose b1, . . . , br ∈ B mapping
to generators of B/J(I) over A/I. We claim that the image of the ring map
A[x1, . . . , xr] → B sending xi to bi is dense. To prove this, let I ′ ⊂ I be a second
weak ideal of definition. Then we have

B/(J(I ′) + IB) = B/J(I)

because J(I) is the closure of IB and because J(I ′) is open. Hence we may apply
Algebra, Lemma 10.122.8 to see that A/I ′[x1, . . . , xr]→ B/J(I ′) is surjective Thus
(2) is true, concluding the proof. �

Let A be a topological ring complete with respect to a linear topology. Let Iλ be a
fundamental system of open ideals. Let C be the category of systems (Bλ) where

(1) Bλ is a finite type A/Iλ-algebra, and
(2) Bµ → Bλ is an A/Iµ-algebra homomorphism which induces an isomor-

phism Bµ/IλBµ → Bλ.

Morphisms in C are given by systems of homomorphisms.

Lemma 66.3.3. Let S be a scheme. Let X be an affine formal scheme over S. As-
sume X is McQuillan and let A be the weakly admissible topological ring associated
to X. Then there is an anti-equivalence of categories between

(1) the category C introduced above, and
(2) the category of maps Y → X of finite type of affine formal algebraic spaces.
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Proof. Let Iλ be a fundamental system of weakly admissible ideals of definition
in A. Then Y ×X Spec(A/Iλ) is affine (Formal Spaces, Definition 65.18.1 and
Lemma 65.14.7). Say Y ×X Spec(A/Iλ) = Spec(Bλ). Then (Bλ) is an object of
C. Conversely, given a system (Bλ) we can set Y = colim Spec(Bλ). Some details
omitted. �

Remark 66.3.4. Let A be a weakly admissible topological ring and let Iλ be a
fundamental system of weak ideals of definition. Let X = Spf(A), in other words,
X is a McQuillan affine formal algebraic space. Let f : Y → X be a morphism of
affine formal algebraic spaces. In general it will not be true that Y is McQuillan.
More specifically, we can ask the following questions:

(1) Assume that f : Y → X is a closed immersion. Then Y is McQuillan
and f corresponds to a continuous map ϕ : A → B of weakly admissible
topological rings which is taut, whose kernel K ⊂ A is a closed ideal,
and whose image ϕ(A) is dense in B, see Formal Spaces, Lemma 65.20.2.
What conditions on A guarantee that B = (A/K)∧ as in Formal Spaces,
Example 65.20.3?

(2) What conditions on A guarantee that closed immersions f : Y → X
correspond to quotients A/K of A by closed ideals, in other words, the
corresponding continuous map ϕ is surjective and open?

(3) Suppose that f : Y → X is of finite type. Then we get Y = colim Spec(Bλ)
where (Bλ) is an object of C by Lemma 66.3.3. In this case it is true that
there exists a fixed integer r such that Bλ is generated by r elements over
A/Iλ for all λ (hint: use Algebra, Lemma 10.122.8). However, it is not
clear that the projections limBλ → Bλ are surjective, i.e., it is not clear
that Y is McQuillan. Is there an example where Y is not McQuillan?

(4) Suppose that f : Y → X is of finite type and Y is McQuillan. Then
f corresponds to a continuous map ϕ : A → B of weakly admissible
topological rings. In fact ϕ is taut and B is topologically of finite type
over A, see Lemma 66.3.2. In other words, f factors as

Y −→ Ar
X −→ X

where the first arrow is a closed immersion of McQuillan affine formal
algebraic spaces. However, then questions (1) and (2) are in force for
Y → Ar

X .

Below we will answer these questions when X is countably indexed, i.e., when
A has a countable fundamental system of open ideals. If you have answers to
these questions in greater generality, or if you have counter examples, please email
stacks.project@gmail.com.

Lemma 66.3.5. Let S be a scheme. Let X be a countably indexed affine formal
algebraic space over S. Let f : Y → X be a closed immersion of formal algebraic
spaces over S. Then Y is a countably indexed affine formal algebraic space and
f corresponds to A → A/K where A is an object of WAdmcount and K ⊂ A is a
closed ideal.

Proof. we can use Formal Spaces, Lemmas 65.6.4, 65.14.8, and 65.20.2 to reduce
to a morphism A→ B of WAdmcount which is taut and has dense image. To finish
the proof we apply Formal Spaces, Lemma 65.4.12. �
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Lemma 66.3.6. Let B → A be an arrow of WAdmcount, see Formal Spaces, Section
65.16. The following are equivalent

(a) B → A is taut and B/J → A/I is of finite type for every weak ideal of
definition J ⊂ B where I ⊂ A is the closure of JA,

(b) B → A is taut and B/J → A/I is of finite type for some weak ideal of
definition J ⊂ B with I ⊂ A the closure of JA,

(c) B → A is taut and A is topologically of finite type over B,
(d) A is isomorphic to a quotient of B{x1, . . . , xn} by a closed ideal.

Moreover, these equivalent conditions define a local property, i.e., they satisfy For-
mal Spaces, Axioms (1), (2), (3).

Proof. The implications (a) ⇒ (b), (c) ⇒ (a), (d) ⇒ (c) are straightforward from
the definitions. Assume (b) holds and let J ⊂ B and I ⊂ A be as in (b). Choose a
commutative diagram

A // . . . // A3
// A2

// A1

B //

OO

. . . // B/J3
//

OO

B/J2
//

OO

B/J1

OO

such that An+1/JnAn+1 = An and such that A = limAn as in Formal Spaces,
Lemma 65.16.5. We may assume J = J1 by replacing J1 by J1 +J if necessary. Let
α1, . . . , αn ∈ A1 be generators of A1 over B/J1 = B/J . Since A is a countable limit
of a system with surjective transition maps, we can find a1, . . . , an ∈ A mapping
to α1, . . . , αn in A1. By Remark 66.2.1 we find a continuous map B{x1, . . . , xn} →
A mapping xi to ai. This map induces surjections B/Jm[x1, . . . , xn] → Am by
Algebra, Lemma 10.122.8. For m ≥ 1 we obtain a short exact sequence

0→ Km → B/Jm[x1, . . . , xn]→ Am → 0

The induced transition mapsKm+1 → Km are surjective because Am+1/JmAm+1 =
Am. Hence the inverse limit of these short exact sequences is exact, see Algebra,
Lemma 10.83.4. Since B{x1, . . . , xn} = limB/Jm[x1, . . . , xn] and A = limAm we
conclude that B{x1, . . . , xn} → A is surjective. As A is complete the kernel is a
closed ideal. In this way we see that (a), (b), (c), and (d) are equivalent.

Let a diagram as in Formal Spaces, Diagram (65.16.1.1) be given. By Formal
Spaces, Example 65.18.7 the maps A→ (A′)∧ and B → (B′)∧ satisfy (a), (b), (c),
and (d). Moreover, by Formal Spaces, Lemma 65.16.5 in order to prove Formal
Spaces, Axioms (1) and (2) we may assume both A → B and (B′)∧ → (A′)∧

are taut. Now pick a weak ideal of definition J ⊂ B. Let J ′ ⊂ (B′)∧, I ⊂ A,
I ′ ⊂ (A′)∧ be the closure of J(B′)∧, JA, J(A′)∧. By what was said above, it
suffices to consider the commutative diagram

A/I // (A′)∧/I ′

B/J //

ϕ

OO

(B′)∧/J ′

ϕ′

OO

and to show (1) ϕ finite type ⇒ ϕ′ finite type, and (2) if A→ A′ is faithfully flat,
then ϕ′ finite type ⇒ ϕ finite type. Note that (B′)∧/J ′ = B′/JB′ and (A′)∧/I ′ =
A′/IA′ by the construction of the topologies on (B′)∧ and (A′)∧. In particular
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the horizontal maps in the diagram are étale. Part (1) now follows from Algebra,
Lemma 10.6.2 and part (2) from Descent, Lemma 34.10.2 as the ring map A/I →
(A′)∧/I ′ = A′/IA′ is faithfully flat and étale.

We omit the proof of Formal Spaces, Axiom (3). �

Lemma 66.3.7. Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces. Assume Y countably indexed. The following are equivalent

(1) f is locally of finite type,
(2) f is of finite type,
(3) f corresponds to a morphism B → A of WAdmcount satisfying the equiv-

alent conditions of Lemma 66.3.6.

Proof. Since X and Y are affine it is clear that conditions (1) and (2) are equiv-
alent. In cases (1) and (2) we see that X is countably indexed as well by Formal
Spaces, Lemma 65.14.8. Write X = Spf(A) and Y = Spf(B) for topological S-
algebras A and B in WAdmcount, see Formal Spaces, Lemma 65.6.4. By Formal
Spaces, Lemma 65.5.10 we see that f corresponds to a continuous map B → A.
Hence now the result follows from Lemma 66.3.2. �

Lemma 66.3.8. Let P be the property of morphisms of WAdmcount defined by
the equivalent conditions (a), (b), (c), and (d) of Lemma 66.3.6. Then under the
assumptions of Formal Spaces, Lemma 65.16.2 the equivalent conditions (1), (2),
and (3) are also equivalent to the condition

(4) f is locally of finite type.

Proof. By Lemma 66.3.7 the condition on morphisms of WAdmcount translates
into morphisms of countably indexed, affine formal algebraic spaces being of finite
type. Thus the lemma follows from Formal Spaces, Lemma 65.18.6. �

66.4. Two categories

Let A be a ring and let I ⊂ A be an ideal. In this section ∧ will mean I-adic
completion. Set An = A/In so that the I-adic completion of A is A∧ = limAn.
Let C be the category

(66.4.0.1) C =


systems (Bn, Bn+1 → Bn)n∈N where

Bn is a finite type An-algebra,
Bn+1 → Bn is an An+1-algebra map
which induces Bn+1/I

nBn+1
∼= Bn


Morphisms in C are given by systems of homomorphisms. Let C′ be the category

(66.4.0.2) C′ =

{
A-algebras B which are I-adically complete
such that B/IB is of finite type over A/I

}
Morphisms in C′ are A-algebra maps. There is a functor

(66.4.0.3) C′ −→ C, B 7−→ (B/InB)

Indeed, since B/IB is of finite type over A/I the ring maps An = A/In → B/InB
are of finite type (apply Algebra, Lemma 10.19.1 to a ring map A/In[x1, . . . , xr]→
B/InB such that the images of x1, . . . , xr generate B/IB over A/I).
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Lemma 66.4.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor

C −→ C′, (Bn) 7−→ B = limBn

is a quasi-inverse to (66.4.0.3). The completions A[x1, . . . , xr]
∧ are in C′ and any

object of C′ is of the form

B = A[x1, . . . , xr]
∧/J

for some ideal J ⊂ A[x1, . . . , xr]
∧.

Proof. Let (Bn) be an object of C. By Algebra, Lemma 10.94.1 we see that
B = limBn is I-adically complete and B/InB = Bn. Hence we see that B is
an object of C′ and that we can recover the object (Bn) by taking the quotients.
Conversely, if B is an object of C′, then B = limB/InB by assumption. Thus
B 7→ (B/InB) is a quasi-inverse to the functor of the lemma.

Since A[x1, . . . , xr]
∧ = limAn[x1, . . . , xr] it is an object of C′ by the first statement

of the lemma. Finally, let B be an object of C′. Choose b1, . . . , br ∈ B whose
images in B/IB generate B/IB as an algebra over A/I. Since B is I-adically
complete, the A-algebra map A[x1, . . . , xr] → B, xi 7→ bi extends to an A-algebra
map A[x1, . . . , xr]

∧ → B. To finish the proof we have to show this map is surjec-
tive which follows from Algebra, Lemma 10.93.1 as our map A[x1, . . . , xr] → B is
surjective modulo I and as B = B∧. �

We warn the reader that, in case A is not Noetherian, the quotient of an object of
C′ may not be an object of C′. See Examples, Lemma 82.7.1. Next we show this
does not happen when A is Noetherian.

Lemma 66.4.2. Let A be a Noetherian ring and let I ⊂ A be an ideal. Then

(1) every object of the category C′, in particular the completion A[x1, . . . , xr]
∧,

is Noetherian,
(2) if B is an object of C′ and J ⊂ B is an ideal, then B/J is an object of C′.

Proof. To see (1) by Lemma 66.4.1 we reduce to the case of the completion of the
polynomial ring. This case follows from Algebra, Lemma 10.93.10 as A[x1, . . . , xr]
is Noetherian (Algebra, Lemma 10.30.1). Part (2) follows from Algebra, Lemma
10.93.2 which tells us that ever finite B-module is IB-adically complete. �

Remark 66.4.3 (Base change). Let ϕ : A1 → A2 be a ring map and let Ii ⊂ Ai
be ideals such that ϕ(Ic1) ⊂ I2 for some c ≥ 1. This induces ring maps A1,cn =
A1/I

cn
1 → A2/I

n
2 = A2,n for all n ≥ 1. Let Ci be the category (66.4.0.1) for (Ai, Ii).

There is a base change functor

(66.4.3.1) C1 −→ C2, (Bn) 7−→ (Bcn ⊗A1,cn
A2,n)

Let C′i be the category (66.4.0.2) for (Ai, Ii). If I2 is finitely generated, then there
is a base change functor

(66.4.3.2) C′1 −→ C′2, B 7−→ (B ⊗A1
A2)∧

because in this case the completion is complete (Algebra, Lemma 10.93.7). If both
I1 and I2 are finitely generated, then the two base change functors agree via the
functors (66.4.0.3) which are equivalences by Lemma 66.4.1.
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Remark 66.4.4 (Base change by closed immersion). Let A be a Noetherian ring
and I ⊂ A an ideal. Let a ⊂ A be an ideal. Denote Ā = A/a. Let Ī ⊂ Ā be
an ideal such that IcĀ ⊂ Ī and Īd ⊂ IĀ for some c, d ≥ 1. In this case the base
change functor (66.4.3.2) for (A, I) to (Ā, Ī) is given by B 7→ B̄ = B/aB. Namely,
we have

(66.4.4.1) B̄ = (B ⊗A Ā)∧ = (B/aB)∧ = B/aB

the last equality because any finite B-module is I-adically complete by Algebra,
Lemma 10.93.2 and if annihilated by a also Ī-adically complete by Algebra, Lemma
10.93.14.

66.5. A naive cotangent complex

Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an A-algebra which
is I-adically complete such that A/I → B/IB is of finite type, i.e., an object of
(66.4.0.2). By Lemma 66.4.2 we can write

B = A[x1, . . . , xr]
∧/J

for some finitely generated ideal J . For a choice of presentation as above we define
the naive cotangent complex in this setting by the formula

(66.5.0.2) NL∧B/A = (J/J2 −→
⊕

Bdxi)

with terms sitting in degrees −1 and 0 where the map sends the residue class of
g ∈ J to the differential dg =

∑
(∂g/∂xi)dxi. Here the partial derivative is taken

by thinking of g as a power series. The following lemma shows that NL∧B/A is well

defined in D(B), i.e., independent of the chosen presentation, although this could
be shown directly by comparing presentations as in Algebra, Section 10.129.

Lemma 66.5.1. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an
object of (66.4.0.2). Then NL∧B/A = R limNLBn/An in D(B).

Proof. In fact, the presentation B = A[x1, . . . , xr]
∧/J defines presentations

Bn = B/InB = An[x1, . . . , xr]/Jn

where

Jn = JAn[x1, . . . , xr] = J/(J ∩ InA[x1, . . . , xr]
∧)

By Artin-Rees (Algebra, Lemma 10.49.2) in the Noetherian ring A[x1, . . . , xr]
∧

(Lemma 66.4.2) we see that we have canonical surjections

J/InJ → Jn → J/In−cJ, n ≥ c

for some c ≥ 0. It follows that lim Jn/J
2
n = J/J2 as any finite A[x1, . . . , xr]

∧-
module is I-adically complete (Algebra, Lemma 10.93.2). Thus

NL∧B/A = lim(Jn/J
2
n −→

⊕
Bndxi)

(termwise limit) and the transition maps in the system are termwise surjective. The
two term complex Jn/J

2
n −→

⊕
Bndxi represents NLBn/An by Algebra, Section

10.129. It follows that NL∧B/A represents R limNLBn/An in the derived category by
More on Algebra, Lemma 15.61.9. �
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Lemma 66.5.2. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B → C
be morphism of (66.4.0.2). Then there is an exact sequence

C ⊗B H0(NL∧B/A) // H0(NL∧C/A) // H0(NL∧C/B) // 0

H−1(NL∧B/A⊗BC) // H−1(NL∧C/A) // H−1(NL∧C/B)

kk

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . Note that (B, IB) is a pair

consisting of a Noetherian ring and an ideal, and C is in the corresponding category
(66.4.0.2) for this pair. Hence we can choose a presentation C = B[y1, . . . , ys]

∧/J ′.
Combinging these presentations gives a presentation

C = A[x1, . . . , xr, y1, . . . , ys]
∧/K

Then the reader verifies that we obtain a commutative diagram

0 //⊕Cdxi //⊕Cdxi ⊕
⊕
Cdyj //⊕Cdyj // 0

J/J2 ⊗B C //

OO

K/K2 //

OO

J ′/(J ′)2 //

OO

0

with exact rows. Note that the vertical arrow on the left hand side is the tensor
product of the arrow defining NL∧B/A with idC . The lemma follows by applying the

snake lemma (Algebra, Lemma 10.4.1). �

Lemma 66.5.3. With assumptions as in Lemma 66.5.2 assume that B/InB →
C/InC is a local complete intersection homomorphism for all n. Then H−1(NL∧B/A⊗BC)→
H−1(NL∧C/A) is injective.

Proof. By More on Algebra, Lemma 15.23.6 we see that this holds for the map
between naive cotangent complexes of the situation modulo In for all n. In other
words, we obtain a distinguished triangle in D(C/InC) for every n. Using Lemma
66.5.1 this implies the lemma; details omitted. �

Maps in the derived category out of a complex such as (66.5.0.2) are easy to un-
derstand by the result of the following lemma.

Lemma 66.5.4. Let R be a ring. Let M• be a complex of modules over R with
M i = 0 for i > 0 and M0 a projective R-module. Let K• be a second complex.

(1) If Ki = 0 for i ≤ −2, then HomD(R)(M
•,K•) = HomK(R)(M

•,K•),

(2) If Ki = 0 for i ≤ −3 and α ∈ HomD(R)(M
•,K•) composed with K• →

K−2[2] comes from an R-module map a : M−2 → K−2 with a ◦ d−3
M = 0,

then α can be represented by a map of complexes a• : M• → K• with
a−2 = a.

(3) In (2) for any second map of complexes (a′)• : M• → K• representing α
with a = (a′)−2 there exist h′ : M0 → K−1 and h : M−1 → K−2 such
that

h ◦ d−2
M = 0, (a′)−1 = a−1 + d−2

K ◦ h+ h′ ◦ d−1
M , (a′)0 = a0 + d−1

K ◦ h
′
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Proof. Set F 0 = M0. Choose a free R-module F−1 and a surjection F−1 →
M−1. Choose a free R-module F−2 and a surjection F−2 → M−2 ×M−1 F−1.
Continuing in this way we obtain a quasi-isomorphism p• : F • → M• which is
termwise surjective and with F i free for all i.

Proof of (1). By Derived Categories, Lemma 13.19.8 we have

HomD(R)(M
•,K•) = HomK(R)(F

•,K•)

If Ki = 0 for i ≤ −2, then any morphism of complexes F • → K• factors through
p•. Similarly, any homotopy {hi : F i → Ki−1} factors through p•. Thus (1) holds.

Proof of (2). Choose b• : F • → K• representing α. The composition of α with
K• → K−2[2] is represented by b−2 : F−2 → K−2. As this is homotopic to
a ◦ p−2 : F−2 → M−2 → K−2, there is a map h : F−1 → K−2 such that b−2 =
a ◦ p−2 + h ◦ d−2

F . Adjusting b• by h viewed as a homotopy from F • to K•, we
find that b−2 = a ◦ p−2. Hence b−2 factors through p−2. Since F 0 = M0 the kernel
of p−2 surjects onto the kernel of p−1 (for example because the kernel of p• is an
acyclic complex or by a diagram chase). Hence b−1 necessarily factors through p−1

as well and we see that (2) holds for these factorizations and a0 = b0.

Proof of (3) is omitted. Hint: There is a homotopy between a• ◦ p• and (a′)• ◦ p•
and we argue as before that this homotopy factors through p•. �

Lemma 66.5.5. Let R be a ring. Let M• be a two term complex M−1 →M0 over
R. If ϕ,ψ ∈ EndD(R)(M

•) are zero on Hi(M•), then ϕ ◦ ψ = 0.

Proof. Apply Derived Categories, Lemma 13.12.5 to see that ϕ◦ψ factors through
τ≤−2M

• = 0. �

66.6. Rig-étale homomorphisms

In this and some of the later sections we will study ring maps as in Lemma 66.6.1.
Condition (4) is one of the conditions used in [Art70] to define modifications.
Ring maps like this are sometimes called rig-étale or rigid-étale ring maps in the
literature. These and the analogously defined rig-smooth ring maps were studied
in [Elk73]. A detailed exposition can also be found in [Abb10]. Our main goal
will be to show that rig-étale ring maps are completions of finite type algebras, a
result very similar to results found in Elkik’s paper [Elk73].

Lemma 66.6.1. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be
an object of (66.4.0.2). The following are equivalent

(1) there exists a c ≥ 0 such that multiplication by a on NL∧B/A is zero in

D(B) for all a ∈ Ic,
(2) there exits a c ≥ 0 such that Hi(NL∧B/A), i = −1, 0 is annihilated by Ic,

(3) there exists a c ≥ 0 such that Hi(NLBn/An), i = −1, 0 is annihlated by Ic

for all n ≥ 1,
(4) B = A[x1, . . . , xr]

∧/J and for every a ∈ I there exists a c ≥ 0 such that
(a) ac annihilates H0(NL∧B/A), and

(b) there exist f1, . . . , fr ∈ J such that acJ ⊂ (f1, . . . , fr) + J2.

Proof. The equivalence of (1) and (2) follows from Lemma 66.5.5. The equivalence
of (1) + (2) and (3) follows from Lemma 66.5.1. Some details omitted.
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Assume the equivalent conditions (1), (2), (3) holds and let B = A[x1, . . . , xr]
∧/J

be a presentation (see Lemma 66.4.1). Let a ∈ I. Let c be such that multplication
by ac is zero on NL∧B/A which exists by (1). By Lemma 66.5.4 there exists a map

α :
⊕
Bdxi → J/J2 such that d ◦ α and α ◦ d are both multiplication by ac. Let

fi ∈ J be an element whose class modulo J2 is equal to α(dxi). Then we see that
(4)(a), (b) hold.

Assume (4) holds. Say I = (a1, . . . , at). Let ci ≥ 0 be the integer such that
(4)(a), (b) hold for acii . Then we see that I

∑
ci annihilates H0(NL∧B/A). Let

fi,1, . . . , fi,r ∈ J be as in (4)(b) for ai. Consider the composition

B⊕r → J/J2 →
⊕

Bdxi

where the jth basis vector is mapped to the class of fi,j in J/J2. By (4)(a) and

(b) the cokernel of the composition is annihilated by a2ci
i . Thus this map is sur-

jective after inverting acii , and hence an isomorphism (Algebra, Lemma 10.15.4).
Thus the kernel of B⊕r →

⊕
Bdxi is ai-power torsion, and hence H−1(NL∧B/A) =

Ker(J/J2 →
⊕
Bdxi) is ai-power torsion. Since B is Noetherian (Lemma 66.4.2),

all modules including H−1(NL∧B/A) are finite. Thus adii annihilates H−1(NL∧B/A)

for some di ≥ 0. It follows that I
∑
di annihilates H−1(NL∧B/A) and we see that (2)

holds. �

Lemma 66.6.2. Let A be a Noetherian ring and let I be an ideal. Let B be a finite
type A-algebra.

(1) If Spec(B)→ Spec(A) is étale over Spec(A) \ V (I), then B∧ satisfies the
equivalent conditions of Lemma 66.6.1.

(2) If B∧ satisfies the equivalent conditions of Lemma 66.6.1, then there exists
g ∈ 1 + IB such that Spec(Bg) is étale over Spec(A) \ V (I).

Proof. Assume B∧ satisfies the equivalent conditions of Lemma 66.6.1. The naive
cotangent complex NLB/A is a complex of finite type B-modules and hence H−1

and H0 are finite B-modules. Completion is an exact functor on finite B-modules
(Algebra, Lemma 10.93.3) and NL∧B∧/A is the completion of the complex NLB/A
(this is easy to see by choosing presentations). Hence the assumption implies there
exists a c ≥ 0 such that H−1/InH−1 and H0/InH0 are annihilated by Ic for all
n. By Nakayama’s lemma (Algebra, Lemma 10.19.1) this means that IcH−1 and
IcH0 are annihilated by an element of the form g = 1 + x with x ∈ IB. After
inverting g (which does not change the quotients B/InB) we see that NLB/A has
cohomology annihilated by Ic. Thus A → B is étale at any prime of B not lying
over V (I) by the definition of étale ring maps, see Algebra, Definition 10.138.1.

Conversely, assume that Spec(B) → Spec(A) is étale over Spec(A) \ V (I). Then
for every a ∈ I there exists a c ≥ 0 such that multiplication by ac is zero NLB/A.

Since NL∧B∧/A is the derived completion of NLB/A (see Lemma 66.5.1) it follows

that B∧ satisfies the equivalent conditions of Lemma 66.6.1. �

Lemma 66.6.3. Assume the map (A1, I1)→ (A2, I2) is as in Remark 66.4.3 with
A1 and A2 Noetherian. Let B1 be in (66.4.0.2) for (A1, I1). Let B2 be the base
change of B1. If multiplication by f1 ∈ B1 on NL∧B1/A1

is zero in D(B1), then

multiplication by the image f2 ∈ B2 on NL∧B2/A2
is zero in D(B2).
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Proof. Choose a presentation B1 = A1[x1, . . . , xr]
∧/J1. Since A2/I

n
2 [x1, . . . , xr] =

A1/I
cn
1 [x1, . . . , xr]⊗A1/Icn1

A2/I
n
2 we have

A2[x1, . . . , xr]
∧ = (A1[x1, . . . , xr]

∧ ⊗A1 A2)∧

where we use I2-adic completion on both sides (but of course I1-adic completion
for A1[x1, . . . , xr]

∧). Set J2 = J1A2[x1, . . . , xr]
∧. Arguing similarly we get the

presentation

B2 = (B1 ⊗A1
A2)∧

= lim
A1/I

cn
1 [x1, . . . , xr]

J1(A1/Icn1 [x1, . . . , xr])
⊗A1/Icn1

A2/I
n
2

= lim
A2/I

n
2 [x1, . . . , xr]

J2(A2/In2 [x1, . . . , xr])

= A2[x1, . . . , xr]
∧/J2

for B2 over A2. Consider the commutative diagram

NL∧B1/A1
:

��

J1/J
2
1 d

//

��

⊕
B1dxi

��
NL∧B2/A2

: J2/J
2
2

//⊕B2dxi

The induced arrow J1/J
2
1 ⊗B1

B2 → J2/J
2
2 is surjective because J2 is generated by

the image of J1. By Lemma 66.5.4 there is a map α1 :
⊕
Bdxi → J1/J

2
1 such that

f1id⊕
B1dxi = d ◦ α1 and f1idJ1/J2

1
= α1 ◦ d. We define α2 :

⊕
B1dxi → J2/J

2
2 by

mapping dxi to the image of α1(dxi) in J2/J
2
2 . Because the image of the vertical

arrows contains generators of the modules J2/J
2
2 and

⊕
B2dxi it follows that α2

also defines a homotopy between multiplication by f2 and the zero map. �

Lemma 66.6.4. Let A be a Noetherian ring and I an ideal. Let B be a finite
type A-algebra. Let B∧ → C be a surjective ring map with kernel J . If J/J2 is
annihilated by Ic for some c ≥ 0, then C is isomorphic to the completion of a finite
type A-algebra.

Proof. Since B∧ is Noetherian (Lemma 66.4.2), we see that J is a finitely generated
ideal. Hence we conclude from Algebra, Lemma 10.20.5 that

Spec(C) \ V (IC) −→ Spec(B∧) \ V (IB∧)

is an open and closed immersion. Let V ⊂ Spec(B∧) \ V (IB∧) be the complement
of the image viewed as an open and closed subscheme. Let Z ⊂ Spec(B∧) be the
scheme theoretic closure of V . Write Z = Spec(C ′). Then

Spec(C × C ′) = Spec(C)q Z −→ Spec(B∧)

is a finite morphism of schemes which is an isomorphism away from V (IB∧). Hence
the corresponding ring map B∧ → C×C ′ is finite and becomes an isomorphism on
inverting any element of I. By More on Algebra, Proposition 15.63.15 and Remark
15.63.19 applied to B → B∧ and the finitely generated ideal IB, we conclude
that C × C ′ is isomorphic to D ⊗B B∧ for some finite B-algebra D. (The reader
can also prove this using Pushouts of Spaces, Lemma 59.4.1.) Then D/ID ∼=
C/IC × C ′/IC ′. Let e ∈ D/ID be the idempotent corresponding to the factor
C/IC. By More on Algebra, Lemma 15.6.9 there exists an étale ring map B →

http://stacks.math.columbia.edu/tag/0ALR
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B′ which induces an isomorphism B/IB → B′/IB′ such that D′ = D ⊗B B′

contains an idempotent e lifting e. Since C × C ′ is I-adically complete the pair
(C × C ′, IC × IC ′) is henselian (More on Algebra, Lemma 15.7.3). Thus we can
factor the map B → C × C ′ through B′. DOing so we may replace B by B′ and
D by D′. Then we find that D = De ×D1−e = D/(1− e)×D/(e) is a product of
finite type A-algebras and the completion of the first part is C and the completion
of the second part is C ′. �

Lemma 66.6.5. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be a
finite type A-algebra such that Spec(B) → Spec(A) is étale over Spec(A) \ V (I).
Let C be a Noetherian A-algebra. Then any A-algebra map B∧ → C∧ of I-adic
completions comes from a unique A-algebra map

B −→ Ch

where Ch is the henselization of the pair (C, IC) as in More on Algebra, Lemma
15.7.13. Moreover, any A-algebra homomorphism B → Ch factors through some
étale C-algebra C ′ such that C/IC → C ′/IC ′ is an isomorphism.

Proof. Uniqueness follows from the fact that Ch is a subring of C∧, see for example
More on Algebra, Lemma 15.7.16. The final assertion follows from the fact that Ch

is the filtered colimit of these C-algebras C ′, see proof of More on Algebra, Lemma
15.7.13. Having said this we now turn to the proof of existence.

Let ϕ : B∧ → C∧ be the given map. This defines a section

σ : (B ⊗A C)∧ −→ C∧

of the completion of the map C → B ⊗A C. We may replace (A, I,B,C, ϕ) by
(C, IC,B ⊗A C,C, σ). In this way we see that we may assume that A = C.

Proof of existence in the case A = C. In this case the map ϕ : B∧ → A∧ is
necessarily surjective. By Lemmas 66.6.2 and 66.5.2 we see that the cohomology
groups of NL∧A∧/ϕB∧ are annihilated by a power of I. Since ϕ is surjective, this

implies that Ker(ϕ)/Ker(ϕ)2 is annihilated by a power of I. Hence ϕ : B∧ → A∧ is
the completion of a finite type B-algebra B → D, see Lemma 66.6.4. Hence A→ D
is a finite type algebra map which induces an isomorphism A∧ → D∧. By Lemma
66.6.2 we may replace D by a localization and assume that A → D is étale away
from V (I). Since A∧ → D∧ is an isomorphism, we see that Spec(D) → Spec(A)
is also étale in a neighbourhood of V (ID) (for example by More on Morphisms,
Lemma 36.10.3). Thus Spec(D)→ Spec(A) is étale. Therefore D maps to Ah and
the lemma is proved. �

66.7. Rig-étale morphisms

We can use the notion introduced in the previous section to define a new type of
morphism of locally Noetherian formal algebraic spaces. Before we do so, we have
to check it is a local property.

Lemma 66.7.1. For morphisms A→ B of the category WAdmNoeth consider the
condition P =“for some ideal of definition I of A the topology on B is the I-adic
topology, the ring map A/I → B/IB is of finite type and A → B satisfies the
equivalent conditions of Lemma 66.6.1”. Then P is a local property, see Formal
Spaces, Remark 65.16.4.

http://stacks.math.columbia.edu/tag/0AKJ
http://stacks.math.columbia.edu/tag/0AQL
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Proof. We have to show that Formal Spaces, Axioms (1), (2), and (3) hold for
maps between Noetherian adic rings. For a Noetherian adic ring A with ideal of
definition I we have A{x1, . . . , xr} = A[x1, . . . , xr]

∧ as topological A-algebras (see
Remark 66.2.2). We will use without further mention that we know the axioms
hold for the property “B is a quotient of A[x1, . . . , xr]

∧”, see Lemma 66.3.6.

Let a diagram as in Formal Spaces, Diagram (65.16.1.1) be given with A and B in

the category WAdmNoeth. Pick an ideal of definition I ⊂ A. By the remarks above
the topology on each ring in the diagram is the I-adic topology. Since A → A′

and B → B′ are étale we see that NL∧(A′)∧/A and NL∧(B′)∧/B are zero. By Lemmas
66.5.2 and 66.5.3 we get

Hi(NL∧(B′)∧/(A′)∧) ∼= Hi(NL∧(B′)∧/A) and Hi(NL∧B/A⊗B(B′)∧) ∼= Hi(NL∧(B′)∧/A)

for i = −1, 0. Since B is Noetherian the ring map B → B′ → (B′)∧ is flat
(Algebra, Lemma 10.93.3) hence the tensor product comes out. Moreover, as B is
I-adically complete, then if B → B′ is faithfully flat, so is B → (B′)∧. From these
observations Formal Spaces, Axioms (1) and (2) follow immediately.

We omit the proof of Formal Spaces, Axiom (3). �

Definition 66.7.2. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is rig-étale if f satisfies the
equivalent conditions of Formal Spaces, Lemma 65.16.2 (in the setting of locally
Noetherian formal algebraic spaces, see Formal Spaces, Remark 65.16.3) for the
property P of Lemma 66.7.1.

To be sure, a rig-étale morphism is locally of finite type.

Lemma 66.7.3. A rig-étale morphism of locally Noetherian formal algebraic spaces
is locally of finite type.

Proof. The property P in Lemma 66.7.1 implies the equivalent conditions (a), (b),
(c), and (d) in Lemma 66.3.6. Hence this follows from Lemma 66.3.8. �

66.8. Glueing rings along a principal ideal

In this situation we prove some results about the categories C and C′ of Section
66.4 in case A is a Noetherian ring and I = (a) is a principal ideal.

Remark 66.8.1 (Linear approximation). Let A be a ring and I ⊂ A be a finitely
generated ideal. Let C be an I-adically completeA-algebra. Let ψ : A[x1, . . . , xr]

∧ →
C be a continuous A-algebra map. Suppose given δi ∈ C, i = 1, . . . , r. Then we
can consider

ψ′ : A[x1, . . . , xr]
∧ → C, xi 7−→ ψ(xi) + δi

see Remark 66.2.1. Then we have

ψ′(g) = ψ(g) +
∑

ψ(∂g/∂xi)δi + ξ

with error term ξ ∈ (δiδj). This follows by writing g as a power series and working
term by term. Convergence is automatic as the coefficients of g tend to zero. Details
omitted.

http://stacks.math.columbia.edu/tag/0AQM
http://stacks.math.columbia.edu/tag/0AQN
http://stacks.math.columbia.edu/tag/0AK3


3806 66. RESTRICTED POWER SERIES

Lemma 66.8.2. Let A be a Noetherian ring and I = (a) a principal ideal. Let B be
an objects of (66.4.0.2). Assume given an integer c ≥ 0 such that multiplication by
ac on NL∧B/A is zero in D(B). Let C be an I-adically complete A-algebra such that

a is a nonzerodivisor on C. Let n > 2c. For any An-algebra map ψn : B/anB →
C/anC there exists an A-algebra map ϕ : B → C such that ψn mod an−c = ϕ mod
an−c.

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . Choose a lift

ψ : A[x1, . . . , xr]
∧ → C

of ψn. Then ψ(J) ⊂ anC and ψ(J2) ⊂ a2nC which determines a linear map

J/J2 −→ anC/a2nC, g 7−→ ψ(g)

By assumption and Lemma 66.5.4 there is a B-module map
⊕
Bdxi → anC/a2nC,

dxi 7→ δi such that acψ(g) =
∑
ψ(∂g/∂xi)δi for all g ∈ J . Write δi = −acδ′i

for some δ′i ∈ an−cC. Since a is a nonzerodivisor on C we see that ψ(g) =
−
∑
ψ(∂g/∂xi)δ

′
i in C/a2n−cC. Then we look at the map

ψ′ : A[x1, . . . , xr]
∧ → C, xi 7−→ ψ(xi) + δ′i

A computation with power series (see Remark 66.8.1) shows that ψ′(J) ⊂ a2n−2cC.
Since n > 2c we see that n′ = 2n − 2c = n + (n − 2c) > n. Thus we obtain a

morphism ψn′ : B/an
′
B → C/an

′
C agreeing with ψn modulo an−c. Continuing in

this fashion and taking the limit into C = limC/atC we obtain the lemma. �

Lemma 66.8.3. Let A be a Noetherian ring and I = (a) a principal ideal. Let B be
an object of (66.4.0.2). Assume given an integer c ≥ 0 such that multiplication by
ac on NL∧B/A is zero in D(B). Let C be an I-adically complete A-algebra. Assume

given an integer d ≥ 0 such that C[a∞]∩adC = 0. Let n > max(2c, c+d). For any
An-algebra map ψn : B/anB → C/anC there exists an A-algebra map ϕ : B → C
such that ψn mod an−c = ϕ mod an−c.

If C is Noetherian we have C[a∞] = C[ae] for some e ≥ 0. By Artin-Rees (Algebra,
Lemma 10.49.2) there exists an integer f such that anC ∩C[a∞] ⊂ an−fC[a∞] for
all n ≥ f . Then d = e + f is an integer as in the lemma. This argument works in
particular if C is an object of (66.4.0.2) by Lemma 66.4.2.

Proof. Let C → C ′ be the quotient of C by C[a∞]. The A-algebra C ′ is I-adically
complete by Algebra, Lemma 10.93.15 and the fact that

⋂
(C[a∞] + anC) = C[a∞]

because for n ≥ d the sum C[a∞] + anC is direct. For m ≥ d the diagram

0 // C[a∞] //

��

C //

��

C ′ //

��

0

0 // C[a∞] // C/amC // C ′/amC ′ // 0

has exact rows. Thus C is the fibre product of C ′ and C/amC over C ′/amC ′. Thus
the lemma now follows formally from the lifting result of Lemma 66.8.2. �

Lemma 66.8.4. Let A be a Noetherian ring and I = (a) a principal ideal. Let B
be an object of (66.4.0.2). Assume given an integer c ≥ 0 such that multiplication
by ac on NL∧B/A is zero in D(B). Then there exists a finite type A-algebra C and

an isomorphism B ∼= C∧.

http://stacks.math.columbia.edu/tag/0AK6
http://stacks.math.columbia.edu/tag/0AK7
http://stacks.math.columbia.edu/tag/0ALS


66.9. GLUEING RINGS ALONG AN IDEAL 3807

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . By Lemma 66.5.4 we can

find a map α :
⊕
Bdxi → J/J2 such that d ◦ α and α ◦ d are both multiplication

by ac. Pick an element fi ∈ J whose class modulo J2 is equal to α(dxi). Then we
see that dfi = acdxi in

⊕
dxi. In particular we have a ring map

A[x1, . . . , xr]
∧/(f1, . . . , fr,∆(f1, . . . , fr)− arc) −→ B

where ∆(f1, . . . , fr) ∈ A[x1, . . . , xr]
∧ is the determinant of the matrix of partial

derivatives of the fi.

Pick a large integer N . Pick F1, . . . , Fr ∈ A[x1, . . . , xr] such that Fi − fi ∈
INA[x1, . . . , xr]

∧. Set

C = A[x1, . . . , xr, z]/(F1, . . . , Fr, z∆(F1, . . . , Fr)− arc)

We claim that multplication by a2rc is zero on NLC/A in D(C). Namely, the
determinant of the matrix of the partial derivatives of the r + 1 generators of the
ideal of C with respect to the variables x1, . . . , xr+1, z is ∆(F1, . . . , Fr)

2. Since
∆(F1, . . . , Fr) divides arc we in C the claim follows for example from Algebra,
Lemma 10.14.4. Let C∧ be the I-adic completion of C. Since NL∧C∧/A is the I-adic

completion of NLC/A we conclude that multiplication by a2rc is zero on NL∧C∧/A
as well.

By construction there is a (surjective) map ψN : C/INC → B/INB sending xi to
xi and z to 1. By Lemma 66.8.3 (with the roles of B and C reversed) for N large
enough we get a map ϕ : C∧ → B which agrees with ψN modulo IN−2rc.

Since ϕ : C∧ → B is surjective modulo I we see that it is surjective (for example
use Algebra, Lemma 10.93.1). By construction and assumption the naive cotangent
complexes NL∧C∧/A and NL∧B/A have cohomology annihilated by a fixed power of

a. Thus the same thing is true for NL∧B/C∧ by Lemma 66.5.2. Since ϕ is surjective

we conclude that Ker(ϕ)/Ker(ϕ)2 is annihilated by a power of a. The result of the
lemma now follows from Lemma 66.6.4. �

66.9. Glueing rings along an ideal

Let A be a Noetherian ring. Let I ⊂ A be an ideal. In this section we study
I-adically complete A-algebras which are, in some vague sense, étale over the com-
plement of V (I) in Spec(A).

Lemma 66.9.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let t be the
minimal number of generators for I. Let C be a Noetherian I-adically complete
A-algebra. There exists an integer d ≥ 0 depending only on I ⊂ A → C with the
following property: given

(1) c ≥ 0 and B in (66.4.0.2) such that for a ∈ Ic multiplication by a on
NL∧B/A is zero in D(B),

(2) an integer n > 2tmax(c, d),
(3) an A/In-algebra map ψn : B/InB → C/InC,

there exists a map ϕ : B → C of A-algebras such that ψn mod Im−c = ϕ mod Im−c

with m = bnt c.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1,

http://stacks.math.columbia.edu/tag/0AK9
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then the lemma follows from Lemma 66.8.3 because 2 max(c, d) ≥ max(2c, c + d).
Assume t > 1.

Set m = bnt c as in the lemma. Set Ā = A/(amt ). Consider the ideal Ī =

(ā1, . . . , āt−1) in Ā. Set C̄ = C/(amt ). Note that C̄ is a Ī-adically complete Noe-
therian Ā-algebra (use Algebra, Lemmas 10.93.2 and 10.93.14). Let d̄ be the integer
for Ī ⊂ Ā→ C̄ which exists by induction hypothesis.

Let d1 ≥ 0 be an integer such that C[a∞t ] ∩ ad1
t C = 0 as in Lemma 66.8.3 (see

discussion following the lemma and before the proof).

We claim the lemma holds with d = max(d̄, d1). To see this, let c,B, n, ψn be as in
the lemma.

Note that Ī ⊂ IĀ. Hence by Lemma 66.6.3 multiplication by an element of Īc on
the cotangent complex of B̄ = B/(amt ) is zero in D(B̄). Also, we have

Īn−m+1 ⊃ InĀ

Thus ψn gives rise to a map

ψ̄n−m+1 : B̄/Īn−m+1B̄ −→ C̄/Īn−m+1C̄

Since n > 2tmax(c, d) and d ≥ d̄ we see that

n−m+ 1 ≥ (t− 1)n/t > 2(t− 1) max(c, d) ≥ 2(t− 1) max(c, d̄)

Hence we can find a morphism ϕm : B̄ → C̄ agreeing with ψ̄n−m+1 modulo the

ideal Īm
′−c where m′ = bn−m+1

t−1 c.

Since m ≥ n/t > 2 max(c, d) ≥ 2 max(c, d1) ≥ max(2c, c+d1), we can apply Lemma
66.8.3 for the ring map A → B and the ideal (at) to find a morphism ϕ : B → C
agreeing modulo am−ct with ϕm.

All in all we find ϕ : B → C which agrees with ψn modulo

(am−ct ) + (a1, . . . , at−1)m
′−c ⊂ Imin(m−c,m′−c)

We leave it to the reader to see that min(m − c,m′ − c) = m − c. This concludes
the proof. �

Lemma 66.9.2. Let A be a Noetherian ring and I ⊂ A an ideal. Let J ⊂ A be a
nilpotent ideal. Consider a diagram

C // C/JC

B0

OO

A //

OO

A/J

OO

whose vertical arrows are of finite type such that

(1) Spec(C)→ Spec(A) is étale over Spec(A) \ V (I),
(2) Spec(B0)→ Spec(A/J) is étale over Spec(A/J) \ V ((I + J)/J), and
(3) B0 → C/JC is étale and induces an isomorphism B0/IB0 = C/(I+J)C.

http://stacks.math.columbia.edu/tag/0ALT
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Then we can fill in the diagram

C // C/JC

B

OO

// B0

OO

A //

OO

A/J

OO

with A → B of finite type, B/JB = B0, B → C étale, and Spec(B) → Spec(A)
étale over Spec(A) \ V (I).

Proof. By induction on the smallest n such that Jn = 0 we reduce to the case
J2 = 0. Denote by a subscript zero the base change of objects to A0 = A/J . Since
J2 = 0 we see that JC is a C0-module.

Consider the canonical map

γ : J ⊗A0
C0 −→ JC

Since Spec(C)→ Spec(A) is étale over the complement of V (I) (and hence flat) we
see that γ is an isomorphism away from V (IC0), see More on Morphisms, Lemma
36.8.1. In particular, the kernel and cokernel of γ are annihilated by a power of I
(use that C0 is Noetherian and that the modules in question are finite). Observe
that J ⊗A0

C0 = (J ⊗A0
B0)⊗B0

C0. Hence by More on Algebra, Lemma 15.63.16
there exists a unique B0-module homomorphism

c : J ⊗A0
B0 → N

with c⊗ idC0 = γ and Ker(γ) = Ker(c) and Coker(γ) = Coker(c). Moreover, N is
a finite B0-module, see More on Algebra, Remark 15.63.19.

Choose a presentation B0 = A[x1, . . . , xr]/K. To construct B we try to find the
dotted arrow m fitting into the following pushout diagram

0 // N // B // B0
// 0

0 // K/K2 //

m

OO

A[x1, . . . , xr]/K
2 //

OO

A[x1, . . . , xr]/K // 0

J ⊗A0
B0

OO

>>

where the curved arrow is the map c constructed above and the map J ⊗A0
B0 →

K/K2 is the obvious one.

As B0 → C0 is étale we can write C0 = B0[y1, . . . , yr]/(g0,1, . . . , g0,r) such that the
determinant of the partial derivatives of the g0,j is invertible in C0, see Algebra,
Lemma 10.138.2. We combine this with the chosen presentation of B0 to get a
presentation C0 = A[x1, . . . , xr, y1, . . . , ys]/L. Choose a lift ψ : A[xi, yj ] → C of
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the map to C0. Then it is the case that C fits into the diagram

0 // JC // C // C0
// 0

0 // L/L2 //

µ

OO

A[xi, yj ]/L
2 //

OO

A[xi, yj ]/L // 0

J ⊗A0 C0

OO

??

where the curved arrow is the map γ constructed above and the map J ⊗A0
C0 →

L/L2 is the obvious one. By our choice of presentations and the fact that C0 is a
complete intersection over B0 we have

L/L2 = K/K2 ⊗B0 C0 ⊕
⊕

C0gj

where gj ∈ L is any lift of g0,j , see More on Algebra, Lemma 15.23.6.

Consider the three term complex

K• : J ⊗A0
B0 → K/K2 →

⊕
B0dxi

where the second arrow is the differential in the naive cotangent complex of B0

over A for the given presentation and the last term is placed in degree 0. Since
Spec(B0) → Spec(A0) is étale away from V (I) the cohomology modules of this
complex are supported on V (IB0). Namely, for a ∈ I after inverting a we can
apply More on Algebra, Lemma 15.23.6 for the ring maps Aa → A0,a → B0,a and
use that NLA0,a/Aa = Ja and NLB0,a/A0,a

= 0 (some details omitted). Hence these
cohomology groups are annihilated by a power of I.

Similarly, consider the three term complex

L• : J ⊗A0
C0 → L/L2 →

⊕
C0dxi ⊕

⊕
C0dyj

By our direct sum decomposition of L/L2 above and the fact that the the determi-
nant of the partial derivatives of the g0,j is invertible in C0 we see that the natural
map K• → L• induces a quasi-isomorphism

K• ⊗B0
C0 −→ L•

Applying Dualizing Complexes, Lemma 43.8.14 we find that

(66.9.2.1) HomD(B0)(K
•, E) = HomD(C0)(L

•, E ⊗B0
C0)

for any object E ∈ D(B0).

The maps idJ⊗A0
C0

and µ define an element in

HomD(C0)(L
•, (J ⊗A0

C0 → JC))

(the target two term complex is placed in degree −2 and −1) such that the com-
position with the map to J ⊗A0

C0[2] is the element in HomD(C0)(L
•, J ⊗A0

C0[2])
corresponding to idJ⊗A0

C0
. Picture

J ⊗A0 C0
//

idJ⊗A0
C0

��

L/L2 //

µ

��

⊕
C0dxi ⊕

⊕
C0dyj

J ⊗A0 C0
γ // JC
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Applying (66.9.2.1) we obtain a unique element

ξ ∈ HomD(B0)(K
•, (J ⊗A0 B0 → N))

Its composition with the map to J⊗A0
B0[2] is the element in HomD(C0)(K

•, J⊗A0

B0[2]) corresponding to idJ⊗A0
B0 . By Lemma 66.5.4 we can find a map of complexes

K• → (J⊗A0 B0 → N) representing ξ and equal to idJ⊗A0
B0 in degree −2. Denote

m : K/K2 → N the degree −1 part of this map. Picture

J ⊗A0 B0
//

idJ⊗A0
B0

��

K/K2 //

m

��

⊕
B0dxi

J ⊗A0 B0
c // N

Thus we can use m to create an algebra B by push out as explained above. However,
we may still have to change m a bit to make sure that B maps to C in the correct
manner.

Denote m ⊗ idC0 ⊕ 0 : L/L2 → JC the map coming from the direct sum de-
composition of L/L2 (see above), using that N ⊗B0 C0 = JC, and using 0 on the
second factor. By our choice of m above the maps of complexes (idJ⊗A0

C0
, µ, 0) and

(idJ⊗A0
C0 ,m⊗ idC0 ⊕ 0, 0) define the same element of HomD(C0)(L

•, (J ⊗A0
C0 →

JC)). By Lemma 66.5.4 there exist maps h : L−1 → J ⊗A0
C0 and h′ : L0 → JC

which define a homotopy between (idJ⊗A0
C0 , µ, 0) and (idJ⊗A0

C0 ,m⊗ idC0 ⊕ 0, 0).
Picture

J ⊗A0 C0
//

idJ⊗A0
C0

��

K/K2 ⊗B0
C0 ⊕

⊕
C0gj

h

uu

//

µ

��
m⊗idC0

⊕0

��

⊕
C0dxi ⊕

⊕
C0dyj

h′

tt
J ⊗A0

C0
γ // JC

Since h precomposed with d−2
L is zero it defines an element in HomD(C0)(L

•, J ⊗A0

C0[1]) which comes from a unique element χ of HomD(B0)(K
•, J ⊗A0 B0[1]) by

(66.9.2.1). Applying Lemma 66.5.4 again we represent χ by a map g : K/K2 →
J ⊗A0

B0. Then the base change g ⊗ idC0
and h differ by a homotopy h′′ : L0 →

J ⊗A0
C. Hence if we modify m into m+ c ◦ g, then we find that m⊗ idC0

⊕ 0 and
µ just differ by a map h′ : L0 → JC.

Changing our choice of the map ψ : A[xi, yj ]→ C by sending xi to ψ(xi) + h′(dxi)
and sending yj to ψ(yj) + h′(dyj), we find a commutative diagram

N // JC

K/K2 //

m

OO

L/L2

µ

OO

J ⊗A0
B0

OO
c

>>

// J ⊗A0
C0

OO
γ

``

At this point we can define B as the pushout in the first commutative diagram of
the proof. The commutativity of the diagram just displayed, shows that there is
an A-algebra map B → C compatible with the given map N = JB → JC. As
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N ⊗B0
C0 = JC it follows from More on Morphisms, Lemma 36.8.1 that B → C

is flat. From this it easily follows that it is étale. We omit the proof of the other
properties as they are mostly self evident at this point. �

Lemma 66.9.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be
an object of (66.4.0.2). Assume there is an integer c ≥ 0 such that for a ∈ Ic

multiplication by a on NL∧B/A is zero in D(B). Then there exists a finite type

A-algebra C and an isomorphism B ∼= C∧.

In Section 66.10 we will give a simpler proof of this result in case A is a G-ring.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then
the lemma follows from Lemma 66.8.4. Assume t > 1.

For any m ≥ 1 set Ām = A/(amt ). Consider the ideal Īm = (ā1, . . . , āt−1) in Ām.
Let Bm = B/(amt ) be the base change of B for the map (A, I) → (Ām, Īm), see
(66.4.4.1). By Lemma 66.6.3 the assumption of the lemma holds for Īm ⊂ Ām →
Bm.

By induction hypothesis (on t) we can find a finite type Ām-algebra Cm and a map
Cm → Bm which induces an isomorphism C∧m

∼= Bm where the completion is with
respect to Īm. By Lemma 66.6.2 we may assume that Spec(Cm) → Spec(Ām) is
étale over Spec(Ām) \ V (Īm).

We claim that we may choose Am → Cm → Bm as in the previous paragraph such
that moreover there are isomorphisms Cm/(a

m−1
t ) → Cm−1 compatible with the

given A-algebra structure and the maps to Bm−1 = Bm/(a
m−1
t ). Namely, first fix a

choice of A1 → C1 → B1. Suppose we have found Cm−1 → Cm−2 → . . .→ C1 with
the desired properties. Note that Cm/(a

m−1
t ) is étale over Spec(Ām−1) \ V (Īm−1).

Hence by Lemma 66.6.5 there exists an étale extension Cm−1 → C ′m−1 which in-

duces an isomorphism modulo Īm−1 and an Ām−1-algebra map Cm/(a
m−1
t ) →

C ′m−1 inducing the isomorphism Bm/(a
m−1
t ) → Bm−1 on completions. Note that

Cm/(a
m−1
t ) → C ′m−1 is étale over the complement of V (Īm−1) by Morphisms,

Lemma 28.37.18 and over V (Īm−1) induces an isomorphism on completions hence
is étale there too (for example by More on Morphisms, Lemma 36.10.3). Thus
Cm/(a

m−1
t ) → C ′m−1 is étale. By the topological invariance of étale morphisms

(Étale Morphisms, Theorem 40.15.2) there exists an étale ring map Cm → C ′m such
that Cm/(a

m−1
t ) → C ′m−1 is isomorphic to Cm/(a

m−1
t ) → C ′m/(a

m−1
t ). Observe

that the Īm-adic completion of C ′m is equal to the Īm-adic completion of Cm, i.e.,
to Bm (details omitted). We apply Lemma 66.9.2 to the diagram

C ′m // C ′m/(a
m−1
t )

C ′′m

==

// Cm−1

OO

Ām //

OO

aa

Ām−1

OO

http://stacks.math.columbia.edu/tag/0AKA
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to see that there exists a “lift” of C ′′m of Cm−1 to an algebra over Ām with all the
desired properties.

By construction (Cm) is an object of the category (66.4.0.1) for the principal ideal
(at). Thus the inverse limit B′ = limCm is an (at)-adically complete A-algebra
such that B′/atB

′ is of finite type over A/(at), see Lemma 66.4.1. By construction
the I-adic completion of B′ is isomorphic to B (details omitted). Consider the
complex NL∧B′/A constructed using the (at)-adic topology. Choosing a presentation

for B′ (which induces a similar presentation for B) the reader immediately sees that
NL∧B′/A⊗B′B = NL∧B/A. Since at ∈ I and since the cohomology modules of NL∧B′/A
are finite B′-modules (hence complete for the at-adic topology), we conclude that
act acts as zero on these cohomologies as the same thing is true by assumption for
NL∧B/A. Thus multiplication by a2c

t is zero on NL∧B′/A by Lemma 66.5.5. Hence

finally, we may apply Lemma 66.8.4 to (at) ⊂ A→ B′ to finish the proof. �

Lemma 66.9.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be
an I-adically complete A-algebra with A/I → B/IB of finite type. The equivalent
conditions of Lemma 66.6.1 are also equivalent to

(5) there exists a finite type A-algebra C with Spec(C) → Spec(A) is étale
over Spec(A) \ V (I) such that B ∼= C∧.

Proof. First, assume conditions (1) – (4) hold. Then there exists a finite type A-
algebra C with such that B ∼= C∧ by Lemma 66.9.3. In other words, Bn = C/InC.
The naive cotangent complex NLC/A is a complex of finite type C-modules and

hence H−1 and H0 are finite C-modules. By assumption there exists a c ≥ 0 such
that H−1/InH−1 and H0/InH0 are annihilated by Ic for some n. By Nakayama’s
lemma this means that IcH−1 and IcH0 are annihilated by an element of the form
f = 1 + x with x ∈ IC. After inverting f (which does not change the quotients
Bn = C/InC) we see that NLC/A has cohomology annihilated by Ic. Thus A→ C
is étale at any prime of C not lying over V (I) by the definition of étale ring maps,
see Algebra, Definition 10.138.1.

Conversely, assume that A→ C of finite type is given such that Spec(C)→ Spec(A)
is étale over Spec(A) \ V (I). Then for every a ∈ I there exists an c ≥ 0 such that
multiplication by ac is zero NLC/A. Since NL∧C∧/A is the derived completion of

NLC/A (see Lemma 66.5.1) it follows that B = C∧ satisfies the equivalent conditions
of Lemma 66.6.1. �

66.10. In case the base ring is a G-ring

If the base ring A is a Noetherian G-ring, then some of the material above simplifies
somewhat and we obtain some additional results.

Proof of Lemma 66.9.3 in case A is a G-ring. This proof is easier in that it
does not depend on the somewhat delicate deformation theory argument given in
the proof of Lemma 66.9.2, but of course it requires a very strong assumption on
the Noetherian ring A.

Choose a presentation B = A[x1, . . . , xr]
∧/J . Choose generators g1, . . . , gm ∈ J .

Choose generators k1, . . . , kt of the module of relations between g1, . . . , gm, i.e.,
such that

(A[x1, . . . , xr]
∧)⊕t

k1,...,kt−−−−−→ (A[x1, . . . , xr]
∧)⊕m

g1,...,gm−−−−−→ A[x1, . . . , xr]
∧

http://stacks.math.columbia.edu/tag/0AKG
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is exact in the middle. Write ki = (ki1, . . . , kim) so that we have

(66.10.0.1)
∑

kijgj = 0

for i = 1, . . . , t. Let Ic = (a1, . . . , as). For each l ∈ {1, . . . , s} we know that
multiplication by al on NL∧B/A is zero in D(B). By Lemma 66.5.4 we can find a

map αl :
⊕
Bdxi → J/J2 such that d ◦αl and αl ◦ d are both multiplication by al.

Pick an element fl,i ∈ J whose class modulo J2 is equal to αl(dxi). Then we have
for all l = 1, . . . , s and i = 1, . . . , r that

(66.10.0.2)
∑

i′
(∂fl,i/∂xi′)dxi′ = aldxi +

∑
hj
′,i′

l,i gj′dxi′

for some hj
′,i′

l,i ∈ A[x1, . . . , xr]
∧. We also have for j = 1, . . . ,m and l = 1, . . . , s

that

(66.10.0.3) algj =
∑

hil,jfl,i +
∑

hj
′,j′′

l,j gj′gj′′

for some hil,j and hj
′,j′′

l,j in A[x1, . . . , xr]
∧. Of course, since fl,i ∈ J we can write for

l = 1, . . . , s and i = 1, . . . , r

(66.10.0.4) fl,i =
∑

hjl,igj

for some hjl,i in A[x1, . . . , xr]
∧.

Let A[x1, . . . , xr]
h be the henselization of the pair (A[x1, . . . , xr], IA[x1, . . . , xr]),

see More on Algebra, Lemma 15.7.13. Since A is a Noetherian G-ring, so is
A[x1, . . . , xr], see More on Algebra, Proposition 15.39.10. Hence we have approx-
imation for the map A[x1, . . . , xr]

h → A[x1, . . . , xr]
∧ with respect to the ideal

generated by I, see Smoothing Ring Maps, Lemma 16.14.1. Choose a large integer
M . Choose

Gj ,Kij , Fl,i, H
i
l,j , H

j′,j′′

l,j , Hj
l,i ∈ A[x1, . . . , xr]

h

such that analogues of equations (66.10.0.1), (66.10.0.3), and (66.10.0.4) hold for
these elements in A[x1, . . . , xr]

h, i.e.,∑
KijGj = 0, alGj =

∑
Hi
l,jFl,i +

∑
Hj′,j′′

l,j Gj′Gj′′ , Fl,i =
∑

Hj
l,iGj

and such that we have

Gj−gj ,Kij−kij , Fl,i−fl,i, Hi
l,j−hil,j , H

j′,j′′

l,j −hj
′,j′′

l,j , Hj
l,i−h

j
l,i ∈ I

MA[x1, . . . , xr]
h

where we take liberty of thinking of A[x1, . . . , xr]
h as a subring of A[x1, . . . , xr]

∧.
Note that we cannot guarantee that the analogue of (66.10.0.2) holds inA[x1, . . . , xr]

h,
because it is not a polynomial equation. But since taking partial derivatives is A-
linear, we do get the analogue modulo IM . More precisely, we see that

(66.10.0.5)
∑

i′
(∂Fl,i/∂xi′)dxi′ − aldxi −

∑
hj
′,i′

l,i Gj′dxi′ ∈ IMA[x1, . . . , xr]
∧

for l = 1, . . . , s and i = 1, . . . , r.

With these choices, consider the ring

Ch = A[x1, . . . , xr]
h/(G1, . . . , Gr)

and denote C∧ its I-adic completion, namely

C∧ = A[x1, . . . , xr]
∧/J ′, J ′ = (G1, . . . , Gr)A[x1, . . . , xr]

∧
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In the following paragraphs we esthablish the fact that C∧ is isomorphic to B.
Then in the final paragraph we deal with show that Ch comes from a finite type
algebra over A as in the statement of the lemma.

First consider the cokernel

Ω = Coker(J ′/(J ′)2 −→
⊕

C∧dxi)

This C∧ module is generated by the images of the elements dxi. Since Fl,i ∈ J ′
by the analogue of (66.10.0.4) we see from (66.10.0.5) we see that aldxi ∈ IMΩ.
As Ic = (al) we see that IcΩ ⊂ IMΩ. Since M > c we conclude that IcΩ = 0 by
Algebra, Lemma 10.19.1.

Next, consider the kernel

H1 = Ker(J ′/(J ′)2 −→
⊕

C∧dxi)

By the analogue of (66.10.0.3) we see that alJ
′ ⊂ (Fl,i) + (J ′)2. On the other

hand, the determinant ∆l of the matrix (∂Fl,i/∂xi′) satisfies ∆l = arl mod IMC∧

by (66.10.0.5). It follows that ar+1
l H1 ⊂ IMH1 (some details omitted; use Algebra,

Lemma 10.14.4). Now (ar+1
1 , . . . , ar+1

s ) ⊃ I(sr+1)c. Hence I(sr+1)cH1 ⊂ IMH1 and

since M > (sr + 1)c we conclude that I(sr+1)cH1 = 0.

By Lemma 66.5.5 we conclude that multiplication by an element of I2(sr+1)c on
NL∧C∧/A is zero (note that the bound does not depend on M or the choice of the

approximation, as long as M is large enough). Since Gj−gj is in the ideal generated
by IM we see that there is an isomorphism

ψM : C∧/IMC∧ → B/IMB

As M is large enough we can use Lemma 66.9.1 with d = d(I ⊂ A→ B), with C∧

playing the role of B, with 2(rs+ 1)c instead of c, to find a morphism

ψ : C∧ −→ B

which agrees with ψM modulo Iq−2(rs+1)c where q is the quotent of M by the
number of generators of I. We claim ψ is an isomorphism. Since C∧ and B are
I-adically complete the map ψ is surjective because it is surjective modulo I (see
Algebra, Lemma 10.93.1). On the other hand, as M is large enough we see that

GrI(C
∧) ∼= GrI(B)

as graded GrI(A[x1, . . . , xr]
∧)-modules by More on Algebra, Lemma 15.3.2. Since

ψ is compatible with this isomorphism as it agrees with ψM modulo I, this means
that GrI(ψ) is an isomorphism. As C∧ and B are I-adically complete, it follows
that ψ is an isomorphism.

This paragraph serves to deal with the issue that Ch is not of finite type over A.
Namely, the ring A[x1, . . . , xr]

h is a filtered colimit of étale A[x1, . . . , xr] algebras
A′ such that A/I[x1, . . . , xr] → A′/IA′ is an isomorphism (see proof of More on
Algebra, Lemma 15.7.13). Pick an A′ such that G1, . . . , Gm are the images of
G′1, . . . , G

′
m ∈ A′. Setting C = A′/(G′1, . . . , G

′
m) we get the finite type algebra we

were looking for. �

The following lemma isn’t true in general if A is not a G-ring but just Noether-
ian. Namely, if (A,m) is local and I = m, then the lemma is equivalent to Artin
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approximation for Ah (as in Smoothing Ring Maps, Theorem 16.13.1) which does
not hold for every Noetherian local ring.

Lemma 66.10.1. Let A be a Noetherian G-ring. Let I ⊂ A be an ideal. Let
B,C be finite type A-algebras. For any A-algebra map ϕ : B∧ → C∧ of I-adic
completions and any N ≥ 1 there exist

(1) an étale ring map C → C ′ which induces an isomorphism C/IC →
C ′/IC ′,

(2) an A-algebra map ϕ : B → C ′

such that ϕ and ψ agree modulo IN into C∧ = (C ′)∧.

Proof. The statement of the lemma makes sense as C → C ′ is flat (Algebra,
Lemma 10.138.3) hence induces an isomorphism C/InC → C ′/InC ′ for all n (More
on Algebra, Lemma 15.63.2) and hence an isomorphism on completions. Let Ch

be the henselization of the pair (C, IC), see More on Algebra, Lemma 15.7.13.
Then Ch is the filtered colimit of the algebras C ′ and the maps C → C ′ → Ch

induce isomorphism on completions (More on Algebra, Lemma 15.7.16). Thus it
suffices to prove there exists an A-algebra map B → Ch which is congruent to ψ
modulo IN . Write B = A[x1, . . . , xn]/(f1, . . . , fm). The ring map ψ corresponds
to elements ĉ1, . . . , ĉn ∈ C∧ with fj(ĉ1, . . . , ĉn) = 0 for j = 1, . . . ,m. Namely, as A
is a Noetherian G-ring, so is C, see More on Algebra, Proposition 15.39.10. Thus
Smoothing Ring Maps, Lemma 16.14.1 applies to give elements c1, . . . , cn ∈ Ch

such that fj(c1, . . . , cn) = 0 for j = 1, . . . ,m and such that ĉi − ci ∈ INCh. This
determines the map B → Ch as desired. �

66.11. Rig-surjective morphisms

For morphisms locally of finite type between locally Noetherian formal algebraic
spaces a definition borrowed from [Art70] can be used. See Remark 66.11.10 for a
discussion of what to do in more general cases.

Definition 66.11.1. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume that X and Y are locally Noetherian and that f
is locally of finite type. We say f is rig-surjective if for every solid diagram

Spf(R′) //

��

X

f

��
Spf(R)

p // Y

where R is a complete discrete valuation ring and where p is an adic morphism there
exists an extension of complete discrete valuation rings R ⊂ R′ and a morphism
Spf(R′)→ X making the displayed diagram commute.

We prove a few lemmas to explain what this means.

Lemma 66.11.2. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f
and g locally of finite type. Then if f and g are rig-surjective, so is g ◦ f .

Proof. Follows in a straightforward manner from the definitions (and Formal
Spaces, Lemma 65.18.3). �

http://stacks.math.columbia.edu/tag/0AK4
http://stacks.math.columbia.edu/tag/0AQQ
http://stacks.math.columbia.edu/tag/0AQR
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Lemma 66.11.3. Let S be a scheme. Let f : X → Y and Z → Y be morphisms of
formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f and
g locally of finite type. If f is rig-surjective, then the base change Z ×Y X → Z is
too.

Proof. Follows in a straightforward manner from the definitions (and Formal
Spaces, Lemmas 65.18.9 and 65.18.4). �

Lemma 66.11.4. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X, Y , Z locally Noetherian and f and
g locally of finite type. If g ◦ f : X → Z is rig-surjective, so is g : Y → Z.

Proof. Immediate from the definition. �

Lemma 66.11.5. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces which is representable by algebraic spaces, étale, and surjective.
Assume X and Y locally Noetherian. Then f is rig-surjective.

Proof. Let p : Spf(R) → Y be an adic morphism where R is a complete discrete
valuation ring. Let Z = Spf(R) ×Y X. Then Z → Spf(R) is representable by
algebraic spaces, étale, and surjective. Hence Z is nonempty. Pick a nonempty
affine formal algebraic space V and an étale morphism V → Z (possible by our
definitions). Then V → Spf(R) corresponds to R → A∧ where R → A is an étale
ring map, see Formal Spaces, Lemma 65.14.13. Since A∧ 6= 0 (as V 6= ∅) we can
find a maximal ideal m of A lying over mR. Then Am is a discrete valuation ring
(More on Algebra, Lemma 15.33.4). Then R′ = A∧m is a complete discrete valuation
ring (More on Algebra, Lemma 15.32.5). Applying Formal Spaces, Lemma 65.5.10.
we find the desired morphism Spf(R′)→ V → Z → X. �

Remark 66.11.6. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces which is locally of finite type. The upshot of
the lemmas above is that we may check whether f : X → Y is rig-surjective, étale
locally on Y . For example, suppose that {Yi → Y } is a covering as in Formal
Spaces, Definition 65.7.1. Then f is rig-surjective if and only if fi : X×Y Yi → Yi is
rig-surjective. Namely, if f is rig-surjective, so is any base change (Lemma 66.11.3).
Conversely, if all fi are rig-surjective, so is

∐
fi :

∐
X ×Y Yi →

∐
Yi. By Lemma

66.11.5 the morphism
∐
Yi → Y is rig-surjective. Hence

∐
X ×Y Yi → Y is rig-

surjective (Lemma 66.11.2). Since this morphism factors through X → Y we see
that X → Y is rig-surjective by Lemma 66.11.4.

Lemma 66.11.7. Let S be a scheme. Let f : X → Y be a proper surjective
morphism of locally Noetherian algebraic spaces over S. Let T ⊂ |Y | be a closed
subset and let T ′ = |f |−1(T ) ⊂ |X|. Then X/T ′ → Y/T is rig-surjective.

Proof. The statement makes sense by Formal Spaces, Lemmas 65.15.6 and 65.18.10.
Let Yj → Y be a jointly surjective family of étale morphism where Yj is an affine
scheme for each j. Denote Tj ⊂ Yj the inverse image of T . Then {(Yj)/Tj → Y/T } is
a covering as in Formal Spaces, Definition 65.7.1. Moreover, setting Xj = Yj ×Y X
and T ′j ⊂ |Xj | the inverse image of T , we have

(Xj)/T ′j = (Yj)/Tj ×(Y/T ) X/T ′

By the discussion in Remark 66.11.6 we reduce to the case where Y is an affine
Noetherian scheme treated in the next paragraph.

http://stacks.math.columbia.edu/tag/0AQS
http://stacks.math.columbia.edu/tag/0AQT
http://stacks.math.columbia.edu/tag/0AQU
http://stacks.math.columbia.edu/tag/0AQV
http://stacks.math.columbia.edu/tag/0AQW
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Assume Y = Spec(A) where A is a Noetherian ring. This implies that Y/T =
Spf(A∧) where A∧ is the I-adic completion of A for some ideal I ⊂ A. Let p :
Spf(R) → Spf(A∧) be an adic morphism where R is a complete discrete valuation
ring. Let K be the field of fractions of R. Consider the composition A→ A∧ → R.
Since X → Y is surjective, the fibre XK = Spec(K) ×Y X is nonempty. Thus we
may choose an affine scheme U and an étale morphism U → X such that UK is
nonempty. Let u ∈ UK be a closed point (possible as UK is affine). By Morphisms,
Lemma 28.21.3 the residue field L = κ(u) is a finite extension of K. Let R′ ⊂ L be
the integral closure of R in L. By More on Algebra, Remark 15.68.5 we see that R′ is
a discrete valuation ring. Because X → Y is proper we see that the given morphism
Spec(L) = u → UK → XK → X extends to a morphism Spec(R′) → X over the
given morphism Spec(R)→ Y (Decent Spaces, Lemma 50.14.5). By commutativity
of the diagram the induced morphisms Spec(R′/mnR′)→ X are points of X/T ′ and
we find

Spf((R′)∧) = colim Spec(R′/mnR′) −→ X/T ′

as desired (note that (R′)∧ is a complete discrete valuation ring by More on Algebra,
Lemma 15.32.5; in fact in the current situation R′ = (R′)∧ but we do not need
this). �

Lemma 66.11.8. Let A be a Noetherian ring complete with respect to an ideal I.
Let B be an I-adically complete A-algebra. If A/In → B/InB is of finite type and
flat for all n and faithfully flat for n = 1, then Spf(B)→ Spf(A) is rig-surjective.

Proof. We will use without further mention that morphisms between formal spec-
tra are given by continuous maps between the corresponding topological rings, see
Formal Spaces, Lemma 65.5.10. Let ϕ : A → R be a continuous map into a com-
plete discrete valuation ring A. This implies that ϕ(I) ⊂ mR. On the other hand,
since we only need to produce the lift ϕ′ : B′ → R′ in the case that ϕ corresponds
to an adic morphism, we may assume that ϕ(I) 6= 0. Thus we may consider the
base change C = B⊗̂AR, see Remark 66.4.3 for example. Then C is an mR-adically
complete R-algebra such that C/mnRC is of finite type and flat over R/mnR and such
that C/mRC is nonzero. Pick any maximal ideal m ⊂ C lying over mR. By flat-
ness (which implies going down) we see that Spec(Cm) \ V (mRCm) is a nonempty
open. Hence We can pick a prime q ⊂ m such that q defines a closed point of
Spec(Cm) \ {m} and such that q 6∈ V (ICm), see Properties, Lemma 27.6.4. Then
C/q is a dimension 1-local domain and we can find C/q ⊂ R′ with R′ a discrete
valuation ring (Algebra, Lemma 10.115.12). By construction mRR

′ ⊂ mR′ and we
see that C → R′ extends to a continuous map C → (R′)∧ (in fact we can pick R′

such that R′ = (R′)∧ in our current situation but we do not need this). Since the
completion of a discrete valuation ring is a discrete valuation ring, we see that the
assumption gives a commutative diagram of rings

(R′)∧ Coo Boo

R

OO

Roo

OO

Aoo

OO

which gives the desired lift. �

Lemma 66.11.9. Let A be a Noetherian ring complete with respect to an ideal I.
Let B be an I-adically complete A-algebra. Assume that
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(1) the I-torsion in A is 0,
(2) A/In → B/InB is flat and of finite type for all n.

Then Spf(B) → Spf(A) is rig-surjective if and only if A/I → B/IB is faithfully
flat.

Proof. Faithful flatness implies rig-surjectivity by Lemma 66.11.8. To prove the
converse we will use without further mention that the vanishing of I-torsion is
equivalent to the vanising of I-power torsion (More on Algebra, Lemma 15.62.3).
We will also use without further mention that morphisms between formal spectra
are given by continuous maps between the corresponding topological rings, see
Formal Spaces, Lemma 65.5.10.

Assume Spf(B) → Spf(A) is rig-surjective. Choose a maximal ideal I ⊂ m ⊂ A.
The open U = Spec(Am)\V (Im) of Spec(A) is nonempty as the Im-torsion of Am is
zero (use Algebra, Lemma 10.61.4). Thus we can find a prime q ⊂ m which defines
a point of U (i.e., I 6⊂ q) and which corresponds to a closed point of Spec(A) \ m,
see Properties, Lemma 27.6.4. Then A/q is a dimension 1-local domain and we
can find A/q ⊂ R with R a discrete valuation ring (Algebra, Lemma 10.115.12).
By construction IR ⊂ mR and we see that A → R extends to a continuous map
A → R∧ (in fact R = R∧ in our situation but we do not need this). Since the
completion of a discrete valuation ring is a discrete valuation ring, we see that the
assumption gives a commutative diagram of rings

R′ Boo

R∧

OO

Aoo

OO

Thus we find a prime ideal of B lying over m. It follows that Spec(B/IB) →
Spec(A/I) is surjective, whence A/I → B/IB is faithfully flat (Algebra, Lemma
10.38.15). �

Remark 66.11.10. The condition as formulated in Definition 66.11.1 is not right
for morphisms of locally adic* formal algebraic spaces. For example, if A =
(
⋃
n≥1 k[t1/n])∧ where the completion is the t-adic completion, then there are no

adic morphisms Spf(R) → Spf(A) where R is a complete discrete valuation ring.
Thus any morphism X → Spf(A) would be rig-surjective, but since A is a domain
and t ∈ A is not zero, we want to think of A as having at least one “rig-point”,
and we do not want to allow X = ∅. To cover this particular case, one can consider
adic morphisms

Spf(R) −→ Y

where R is a valuation ring complete with respect to a principal ideal J whose
radical is mR =

√
J . In this case the value group of R can be embedded into (R,+)

and one obtains the point of view used by Berkovich in defining an analytic space
associated to Y , see [Ber90]. Another approach is championed by Huber. In his
theory, one drops the hypothesis that Spec(R/J) is a singleton, see [Hub93a].

Lemma 66.11.11. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume X and Y are locally Noetherian, f locally of finite type,
and f a monomorphism. Then f is rig surjective if and only if every adic morphism
Spf(R)→ Y where R is a complete discrete valuation ring factors through X.
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Proof. One direction is trivial. For the other, suppose that Spf(R)→ Y is an adic
morphism such that there exists an extension of complete discrete valuation rings
R ⊂ R′ with Spf(R′)→ Spf(R)→ X factoring through Y . Then Spec(R′/mnRR

′)→
Spec(R/mnR) is surjective and flat, hence the morphisms Spec(R/mnR) → X factor
through X as X satisfies the sheaf condition for fpqc coverings, see Formal Spaces,
Lemma 65.23.1. In other words, Spf(R)→ Y factors through X. �

66.12. Algebraization

In this section we prove a generalization of the result on dilatations from the paper
of Artin [Art70]. We first reformulate the algebra results proved above into the
language of formal algebraic spaces.

Let S be a scheme. Let V be a locally Noetherian formal algebraic space over
S. We denote CV the category of formal algebraic spaces W over V such that the
structure morphism W → V is rig-étale.

Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X| be a closed
subset. Recall that X/T denotes the formal completion of X along T , see Formal
Spaces, Section 65.9. More generally, for any algebraic space Y over X we denote
Y/T the completion of Y along the inverse image of T in |Y |, so that Y/T is a formal
algebraic space over X/T .

Lemma 66.12.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. If Y → X is morphism of algebraic spaces
which is locally of finite type and étale over X \ T , then Y/T → X/T is rig-étale,
i.e., Y/T is an object of CX/T defined above.

Proof. Choose a surjective étale morphism U → X with U =
∐
Ui a disjoint

union of affine schemes, see Properties of Spaces, Lemma 48.6.1. For each i choose
a surjective étale morphism Vi → Y ×X Ui where Vi =

∐
Vij is a disjoint union of

affines. Write Ui = Spec(Ai) and Vij = Spec(Bij). Let Ii ⊂ Ai be an ideal cutting
out the inverse image of T in Ui. Then we may apply Lemma 66.6.2 to see that
the map of Ii-adic completions A∧i → B∧ij has the property P of Lemma 66.7.1.
Since {Spf(A∧i )→ X/T } and {Spf(Bij)→ Y/T } are coverings as in Formal Spaces,
Definition 65.7.1 we see that Y/T → X/T is rig-étale by definition. �

Lemma 66.12.2. Let X be a Noetherian affine scheme. Let T ⊂ X be a closed
subset. Let U be an affine scheme and let U → X a finite type morphism étale over
X \T . Let V be a Noetherian affine scheme over X. For any morphism c′ : V/T →
U/T over X/T there exists an étale morphism b : V ′ → V of affine schemes which
induces an isomorphism b/T : V ′/T → V/T and a morphism a : V ′ → U such that

c′ = a/T ◦ b−1
/T .

Proof. This is a reformulation of Lemma 66.6.5. �

Lemma 66.12.3. Let X be a Noetherian affine scheme. Let T ⊂ X be a closed
subset. Let W → X/T be a rig-étale morphism of formal algebraic spaces with W an
affine formal algebraic space. Then there exists an afffine scheme U , a finite type
morphism U → X étale over X \ T such that W ∼= U/T . Moreover, if W → X/T is
étale, then U → X is étale.
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Proof. The existence of U is a restatement of Lemma 66.9.4. The final statement
follows from More on Morphisms, Lemma 36.10.3. �

Let S be a scheme. Let X be a locally Noetherian algebraic space over S and let
T ⊂ |X| be a closed subset. Let us denote CX,T the category of algebraic spaces Y
over X such that the structure morphism f : Y → X is locally of finite type and
an isomorphism over the complement of T . Formal completion defines a functor

(66.12.3.1) FX,T : CX,T −→ CX/T , (f : Y → X) 7−→ (f/T : Y/T → X/T )

see Lemma 66.12.1.

Lemma 66.12.4. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of algebraic spaces. Let T ⊂ |X| be closed. Assume that

(1) X is locally Noetherian,
(2) g is a monomorphism and locally of finite type,
(3) f |X\T : X \ T → Y factors through g, and
(4) f/T : X/T → Y factors trough g,

then f factors through g.

Proof. Consider the fibre product E = X ×Y Z → X. By assumption the the
open immersion X \T → X factors through E and any morphism ϕ : X ′ → X with
|ϕ|(|X ′|) ⊂ T factors through E as well, see Formal Spaces, Section 65.9. By More
on Morphisms of Spaces, Lemma 58.17.3 this implies that E → X is étale at every
point of E mapping to a point of T . Hence E → X is an étale monomorphism,
hence an open immersion (Morphisms of Spaces, Lemma 49.45.2). Then it follows
that E = X since our assumptions imply that |X| = |E|. �

Lemma 66.12.5. Let S be a scheme. Let X, Y be locally Noetherian algebraic
spaces over S. Let T ⊂ |X| and T ′ ⊂ |Y | be closed subsets. Let a, b : X → Y be
morphisms of algebraic spaces over S such that a|X\T = b|X\T , such that |a|(T ) ⊂
T ′ and |b|(T ) ⊂ T ′, and such that a/T = b/T as morphisms X/T → Y/T ′ . Then
a = b.

Proof. Let E be the equalizer of a and b. Then E is an algebraic space and
E → X is locally of finite type and a monomorphism, see Morphisms of Spaces,
Lemma 49.4.1. Our assumptions imply we can apply Lemma 66.12.4 to the two
morphisms f = id : X → X and g : E → X and the closed subset T of |X|. �

Lemma 66.12.6. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let s, t : R → U be two morphisms of
algebraic spaces over X. Assume

(1) R, U are locally of finite type over X,
(2) the base change of s and t to X \ T is an étale equivalence relation, and
(3) the formal completion (t/T , s/T ) : R/T → U/T ×X/T U/T is an equivalence

relation too.

Then (t, s) : R→ U ×X U is an étale equivalence relation.

Proof. The morphisms s, t : R → U are étale over X \ T by assumption. Since
the formal completions of the maps s, t : R → U are étale, we see that s and t
are étale for example by More on Morphisms, Lemma 36.10.3. Applying Lemma
66.12.4 to the morphisms id : R×U×XU R→ R×U×XU R and ∆ : R→ R×U×XU R
we conclude that (t, s) is a monomorphism. Applying it again to (t ◦ pr0, s ◦ pr1) :
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R ×s,U,t R → U ×X U and (t, s) : R → U ×X U we find that “transitivity” holds.
We omit the proof of the other two axioms of an equivalence relation. �

Remark 66.12.7. Let S, X, and T ⊂ |X| be as in (66.12.3.1). Let U → X be an
algebraic space over X such that U → X is locally of finite type and étale outside
of T . We will construct a factorization

U −→ Y −→ X

with Y in CX,T such that U/T → Y/T is an isomorphism. We may assume the image
of U → X contains X \T , otherwise we replace U by U q (X \T ). For an algebraic
space Z over X, let us denote Z◦ the open subspace which is the inverse image of
X \ T . Let

R = U qU◦ (U ×X U)◦

be the pushout of U◦ → U and the diagonal morphism U◦ → U◦ ×X U◦ = (U ×X
U)◦. Since U◦ → X is étale, the diagonal is an open immersion and we see that
R is an algebraic space (this follows for example from Spaces, Lemma 47.8.4). The
two projections (U ×X U)◦ → U extend to R and we obtain two étale morphisms
s, t : R → U . Checking on each piece separatedly we find that R is an étale
equivalence relation on U . Set Y = U/R which is an algebraic space by Bootstrap,
Theorem 62.10.1. Since U◦ → X \ T is a surjective étale morphism and since
R◦ = U◦ ×X\T U◦ we see that Y ◦ → X \ T is an isomorphism. In other words,
Y → X is an object of CX,T . On the other hand, the morphism U → Y induces
an isomorphism U/T → Y/T . Namely, the formal completion of R along the inverse
image of T is equal to the formal completion of U along the inverse image of T by
our choice of R. By our construction of the formal completion in Formal Spaces,
Section 65.9 we conclude that U/T = Y/T .

Lemma 66.12.8. Let S be a scheme. Let X be a Noetherian affine algebraic space
over S. Let T ⊂ |X| be a closed subset. Then the functor FX,T is an equivalence.

Before we prove this lemma let us discuss an example. Suppose that S = Spec(k),
X = A1

k, and T = {0}. Then X/T = Spf(k[[x]]). Let W = Spf(k[[x]] × k[[x]]).
Then the corresponding Y is the affine line with zero doubled (Schemes, Example
25.14.3). Moreover, this is the output of the construction in Remark 66.12.7 starting
with U = X qX.

Proof. For any scheme or algebraic space Z over X, let us denote Z0 ⊂ Z the in-
verse image of T with the induced reduced closed subscheme or subspace structure.
Note that Z0 = (Z/T )red is the reduction of the formal completion.

The functor FX,T is faithful by Lemma 66.12.5.

Let Y, Y ′ be objects of CX,T and let a′ : Y/T → Y ′/T be a morphism in CX/T . To

prove FX,T is fully faithful, we will construct a morphism a : Y → Y ′ in CX,T such
that a′ = a/T .

Let U be an affine scheme and let U → Y be an étale morphism. Because U is
affine, U0 is affine and the image of U0 → Y0 → Y ′0 is a quasi-compact subspace
of |Y ′0 |. Thus we can choose an affine scheme V and an étale morphism V → Y ′

such that the image of |V0| → |Y ′0 | contains this quasi-compact subset. Consider
the formal algebraic space

W = U/T ×Y ′
/T
V/T
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By our choice of V the above, the map W → U/T is surjective. Thus there exists
an affine formal algebraic space W ′ and an étale morphism W ′ → W such that
W ′ → W → U/T is surjective. Then W ′ → U/T is étale. By Lemma 66.12.3
W ′ = U ′/T for U ′ → U étale and U ′ affine. Write V = Spec(C). By Lemma

66.12.2 there exists an étale morphism U ′′ → U ′ of affines which is an isomorphism
on completions and a morphism U ′′ → V whose completion is the composition
U ′′/T → U ′/T →W → V/T . Thus we get

Y ←− U ′′ −→ Y ′

over X agreeing with the given map on formal completions such that the image of
U ′′0 → Y0 is the same as the image of U0 → Y0.

Taking a disjoint union of U ′′ as constructed in the previous paragraph, we find a
scheme U , an étale morphism U → Y , and a morphism b : U → Y ′ over X, such
that the diagram

U/T

��

b/T

!!
Y/T

a′ // Y ′/T

is commutative and such that U0 → Y0 is surjective. Taking a disjoint union with
the open X \T (which is also open in Y and Y ′), we find that we may even assume
that U → Y is a surjective étale morphism. Let R = U ×Y U . Then the two
compositions R → U → Y ′ agree both over X \ T and after formal completion
along T , whence are equal by Lemma 66.12.5. This means exactly that b factors as
U → Y → Y ′ to give us our desired morphism a : Y → Y ′.

Essential surjectivity. Let W be an object of CX/T . We prove W is in the essential
image in a number of steps.

Step 1: W is an affine formal algebraic space. Then we can find U → X of finite
type and étale over X \ T such that U/T is isomorphic to W , see Lemma 66.12.3.
Thus we see that W is in the essential image by the construction in Remark 66.12.7.

Step 2: W is separated. Choose {Wi →W} as in Formal Spaces, Definition 65.7.1.
By Step 1 the formal algebraic spaces Wi and Wi ×W Wj are in the essential
image. Say Wi = (Yi)/T and Wi ×W Wj = (Yij)/T . By fully faithfulness we
obtain morphisms tij : Yij → Yi and sij : Yij → Yj matching the projections
Wi ×W Wj →Wi and Wi ×W Wj →Wj . Set R =

∐
Yij and U =

∐
Yi and denote

s =
∐
sij : R → U and t =

∐
tij : R → U . Applying Lemma 66.12.6 we find

that (t, s) : R → U ×X U is an étale equivalence relation. Thus we can take the
quotient Y = U/R and it is an algebraic space, see Bootstrap, Theorem 62.10.1.
Since completion commutes with fibre products and taking quotient sheaves, we
find that Y/T ∼= W in CX/T .

Step 3: W is general. Choose {Wi → W} as in Formal Spaces, Definition 65.7.1.
The formal algebraic spaces Wi and Wi ×W Wj are separated. Hence by Step 2
the formal algebraic spaces Wi and Wi×W Wj are in the essential image. Then we
argue exactly as in the previous paragraph to see that W is in the essential image
as well. This concludes the proof. �



3824 66. RESTRICTED POWER SERIES

Theorem 66.12.9. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset. The functor FX,T (66.12.3.1) is an
equivalence.

Proof. The theorem is essentially a formal consequence of Lemma 66.12.8. We
give the details but we encourage the reader to think it through for themselves.
Let g : U → X be a surjective étale morphism with U =

∐
Ui and each Ui affine.

Denote FU,T the functor for U and the inverse image of T in |U |.

Since U =
∐
Ui both the category CU,T and the category CU/T decompose as a

product of categories, one for each i. Since the functors FUi,T are equivalences for
all i by the lemma we find that the same is true for FU,T .

Since FU,T is faithful, it follows that FX,T is faithful too. Namely, if a, b : Y → Y ′

are morphisms in CX,T such that a/T = b/T , then we find on pulling back that
the base changes aU , bU : U ×X Y → U ×X Y ′ are equal. Since U ×X Y → Y is
surjective étale, this implies that a = b.

At this point we know that FX,T is faithful for every situation as in the theorem.
Let R = U ×X U where U is as above. Let t, s : R → U be the projections. Since
X is Noetherian, so is R. Thus the functor FR,T (defined in the obvious manner)
is faithful. Let Y → X and Y ′ → X be objects of CX,T . Let a′ : Y/T → Y ′/T be a

morphism in the category CX/T . Taking the base change to U we obtain a morphism

a′U : (U ×X Y )/T → (U ×X Y ′)/T in the category CU/T . Since the functor FU,T is

fully faithful we obtain a morphism aU : U ×X Y → U ×X Y ′ with FU,T (aU ) = a′U .
Since s∗(a′U ) = t∗(a′U ) and since FR,T is faithful, we find that s∗(aU ) = t∗(aU ).
Since

R×X Y
//
// U ×X Y // Y

is an equalizer diagram of sheaves, we find that aU descends to a morphism a :
Y → Y ′. We omit the proof that FX,T (a) = a′.

At this point we know that FX,T is faithful for every situation as in the theorem.
To finish the proof we show that FX,T is essentially surjective. Let W → X/T be
an object of CX/T . Then U ×X W is an object of CU/T . By the affine case we

find an object V → U of CU,T and an isomorphism α : FU,T (V ) → U ×X W in
CU/T . By fully faithfulness of FR,T we find a unique morphism h : s∗V → t∗V in

the category CR,T such that FR,T (h) corresponds, via the isomorphism α, to the
canonical descent datum on U ×X W in the category CR/T . Using faithfulness of
our functor on R×s,U,tR we see that h satisfies the cocycle condition. We conclude,
for example by the much more general Bootstrap, Lemma 62.11.2, that there exists
an object Y → X of CX,T and an isomorphism β : U ×X Y → V such that the
descent datum h corresponds, via β, to the canonical descent datum on U ×X Y .
We omit the verification that FX,T (Y ) is isomorphic to W ; hint: in the category of
formal algebraic spaces there is descent for morphisms along étale coverings. �

We are often interested as to whether the output of the construction of Theorem
66.12.9 is a separated algebraic space. In the next few lemmas we match properties
of Y → X and the corresponding completion Y/T → X/T .

Lemma 66.12.10. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of
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the category CX/T and let Y → X be the object corresponding to W via Theorem
66.12.9. Then Y → X is quasi-compact if and only if W → X/T is so.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms of
Spaces, Lemma 49.8.7 as well as Formal Spaces, Lemma 65.12.3. If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give
a family of formal affine coverings as in Formal Spaces, Definition 65.7.1. Thus we
may and do assume X is affine.

Let V → Y be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union of

affines. Then V/T → Y/T = W is a surjective étale morphism. Thus if Y is quasi-
compact, we can choose J is finite, and we conclude that W is quasi-compact.
Conversely, if W is quasi-compact, then we can find a finite subset J ′ ⊂ J such
that

∐
j∈J′(Vj)/T →W is surjective. Then it follows that

(X \ T )q
∐

j∈J′
Vj −→ Y

is surjective. This either follows from the construction of Y in the proof of Lemma
66.12.8 or it follows since we have

|Y | = |X \ T | q |Wred|
as Y/T = W . �

Lemma 66.12.11. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of
the category CX/T and let Y → X be the object corresponding to W via Theorem
66.12.9. Then Y → X is quasi-separated if and only if W → X/T is so.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms of
Spaces, Lemma 49.4.12 as well as Formal Spaces, Lemma 65.21.5, If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give
a family of formal affine coverings as in Formal Spaces, Definition 65.7.1. Thus we
may and do assume X is affine.

Let V → Y be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union

of affines. Then Y is quasi-separated if and only if Vj ×Y Vj′ is quasi-compact
for all j, j′ ∈ J . Similarly, W is quasi-separated if and only if (Vj ×Y Vj′)/T =
(Vj)/T ×Y/T (Vj′)/T is quasi-compact for all j, j′ ∈ J . Since X is Noetherian affine,
we see that

(Vj ×Y Vj′)×X (X \ T )

is quasi-compact. Hence we conclude the equvalence holds by the equality

|Vj ×Y Vj′ | = |(Vj ×Y Vj′)×X (X \ T )| q |(Vj ×Y Vj′)/T |
and the fact that the second summand is closed in the left hand side. �

Lemma 66.12.12. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of
the category CX/T and let Y → X be the object corresponding to W via Theorem
66.12.9. Then Y → X is separated if and only if W → X/T is separated and
∆ : W →W ×X/T W is rig-surjective.
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Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms of
Spaces, Lemma 49.4.12 as well as Formal Spaces, Lemma 65.21.5. If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give
a family of formal affine coverings as in Formal Spaces, Definition 65.7.1. Thus we
may and do assume X is affine. In the proof of both directions we may assume
that Y → X and W → X/T are quasi-separated by Lemma 66.12.11.

Proof of easy direction. Assume Y → X is separated. Then Y → Y ×X Y is a
closed immersion and it follows that W → W ×X/T W is a closed immersion too,
i.e., we see that W → X/T is separated. Let

p : Spf(R) −→W ×X/T W = (Y ×X Y )/T

be an adic morphism where R is a complete discrete valuation ring with fraction
field K. The composition into Y ×X Y corresponds to a morphism g : Spec(R)→
Y ×X Y , see Formal Spaces, Lemma 65.24.3. Since p is an adic morphism, so is the
composition Spf(R)→ X. Thus we see that g(Spec(K)) is a point of

(Y ×X Y )×X (X \ T ) ∼= X \ T ∼= Y ×X (X \ T )

(small detail omitted). Hence this lifts to a K-point of Y and we obtain a commu-
taive diagram

Spec(K) //

��

Y

��
Spec(R) //

99

Y ×X Y

Since Y → X was assumed separated we find the dotted arrow exists (Cohomology
of Spaces, Lemma 51.18.1). Applying the functor completion along T we find that
p can be lifted to a morphism into W , i.e., W →W ×X/T W is rig-surjective.

Proof of hard direction. Assume W → X/T separated and W → W ×X/T W
rig-surjective. By Cohomology of Spaces, Lemma 51.18.1 and Remark 51.18.3 it
suffices to show that given any commtutative diagram

Spec(K) //

��

Y

��
Spec(R)

g //

99

Y ×X Y

where R is a complete discrete valuation ring with fraction field K, there is at most
one dotted arrow making the diagram commute. Let h : Spec(R) → X be the
composition of g with the morphism Y ×X Y → X. There are three cases: Case I:
h(Spec(R)) ⊂ (X \T ). This case is trivial because Y ×X (X \T ) = X \T . Case II:
h maps Spec(R) into T . This case follows from our assumption that W → X/T is
separated. Namely, if T denotes the reduced induced closed subspace structure on
T , then h factors through T and

W ×X/T T = Y ×X T −→ T

is separated by assumption (and for example Formal Spaces, Lemma 65.21.5) which
implies we get the lifting property by Cohomology of Spaces, Lemma 51.18.1 applied
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to the displayed arrow. Case III: h(Spec(K)) is not in T but h maps the closed
point of Spec(R) into T . In this case the corresponding morphism

g/T : Spf(R) −→ (Y ×X Y )/T = W ×X/T W

is an adic morphism (detail omitted). Hence our assumption that W →W ×X/T W
be rig-surjective implies we can lift g/T to a morphism e : Spf(R) → W = Y/T
(see Lemma 66.11.11 for why we do not need to extend R). Algebraizing the
composition Spf(R)→ Y using Formal Spaces, Lemma 65.24.3 we find a morphism
Spec(R)→ Y lifing g as desired. �

Lemma 66.12.13. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of
the category CX/T and let Y → X be the object corresponding to W via Theorem
66.12.9. Then Y → X is proper if and only if the following conditions hold

(1) W → X/T is proper,
(2) W → X/T is rig-surjective, and
(3) ∆ : W →W ×X/T W is rig-surjective.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms of
Spaces, Lemma 49.37.2 as well as Formal Spaces, Lemma 65.22.2. If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give
a family of formal affine coverings as in Formal Spaces, Definition 65.7.1. Thus we
may and do assume X is affine. In the proof of both directions we may assume that
Y → X and W → X/T are separated and quasi-compact and that W →W×X/TW
is rig-surjective by Lemmas 66.12.10 and 66.12.12.

Proof of the easy direction. Assume Y → X is proper. Then Y/T = Y ×X X/T →
X/T is proper too. Let

p : Spf(R) −→ X/T

be an adic morphism where R is a complete discrete valuation ring with fraction
field K. Then p corresponds to a morphism g : Spec(R) → X, see Formal Spaces,
Lemma 65.24.3. Since p is an adic morphism, we have p(Spec(K)) 6∈ T . Since
Y → X is an isomorphism over X \ T we can lift to X and obtain a commutative
diagram

Spec(K) //

��

Y

��
Spec(R) //

;;

X

Since Y → X was assumed proper we find the dotted arrow exists. (Cohomology
of Spaces, Lemma 51.18.2). Applying the functor completion along T we find that
p can be lifted to a morphism into W , i.e., W → X/T is rig-surjective.

Proof of hard direction. Assume W → X/T proper, W →W×X/T W rig-surjective,
and W → X/T rig-surjective. By Cohomology of Spaces, Lemma 51.18.2 and

http://stacks.math.columbia.edu/tag/0ARX


3828 66. RESTRICTED POWER SERIES

Remark 51.18.3 it suffices to show that given any commtutative diagram

Spec(K) //

��

Y

��
Spec(R)

g //

;;

X

where R is a complete discrete valuation ring with fraction field K, there is a dotted
arrow making the diagram commute. Let h : Spec(R) → X be the composition of
g with the morphism Y ×X Y → X. There are three cases: Case I: h(Spec(R)) ⊂
(X \ T ). This case is trivial because Y ×X (X \ T ) = X \ T . Case II: h maps
Spec(R) into T . This case follows from our assumption that W → X/T is proper.
Namely, if T denotes the reduced induced closed subspace structure on T , then h
factors through T and

W ×X/T T = Y ×X T −→ T

is proper by assumption which implies we get the lifting property by Cohomology of
Spaces, Lemma 51.18.2 applied to the displayed arrow. Case III: h(Spec(K)) is not
in T but h maps the closed point of Spec(R) into T . In this case the corresponding
morphism

g/T : Spf(R) −→ Y/T = W

is an adic morphism (detail omitted). Hence our assumption that W → X/T be
rig-surjective implies we can lift g/T to a morphism e : Spf(R′) → W = Y/T
for some extension of complete discrete valuation rings R ⊂ R′. Algebraizing the
composition Spf(R′)→ Y using Formal Spaces, Lemma 65.24.3 we find a morphism
Spec(R′)→ Y lifing g. By the discussion in Cohomology of Spaces, Remark 51.18.3
this is sufficient to conclude that Y → X is proper. �

66.13. Application to modifications

Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In
this section we will consider the category

(66.13.0.1)

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U)→ U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X → X ′

compatible with the structure morphisms over S.

Let A → B be a local homomorphism of local Noetherian rings such that mB =√
mAB. Then base change along the morphism Spec(B)→ Spec(A) gives a functor

from the category (66.13.0.1) for A to the category (66.13.0.1) for B.

Lemma 66.13.1. Let (A,m, κ) be a Noetherian local ring with m-adic completion
A∧. Then base change defines an equivalence of categories between the category
(66.13.0.1) for A with the category (66.13.0.1) for the completion A∧.

Proof. Set S = Spec(A) as in (66.13.0.1) and T = V (m). Similarly, Write S′ =
Spec(A∧) and T ′ = V (m∧). The morphism S′ → S defines an isomorphism S′/T ′ →
S/T of formal completions. Let CS,T , CS/T , CS′

/T ′
, and CS′,T ′ be the corresponding

http://stacks.math.columbia.edu/tag/0AE5
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categories as used in (66.12.3.1). By Theorem 66.12.9 (in fact we only need the
affine case treated in Lemma 66.12.8) we see that

CS,T = CS/T = CS′
/T ′

= CS′,T ′

Note that f : X → S is an object of (66.13.0.1) if and only if f : X → S is an object
of CS,T and f is proper. Hence, to finish the proof we have to show that an object
f : X → S of CS,T is proper over S if and only if the base change f ′ : X ′ → S′

is proper over S′. This you can deduce from Lemma 66.12.13 (translating the
properness into properties of the formal completion which lives in CS/T = CS′

/T ′
),

or you can deduce it from Descent on Spaces, Lemma 56.10.17. �

Lemma 66.13.2. Let A→ B be a local map of local Noetherian rings such that

(1) A→ B is flat,
(2) mB = mAB, and
(3) κ(mA) = κ(mB)

(equivalently, A→ B induces an isomorphism on completions, see More on Algebra,
Lemma 15.32.7). Then the base change functor from the category (66.13.0.1) for
A to the category (66.13.0.1) for B is an equivalence.

Proof. This follows immediately from Lemma 66.13.1. �

Lemma 66.13.3. Let (A,m, κ) be a Noetherian local ring. Let f : X → S be
an object of (66.13.0.1). Then there exists a U -admissible blowup S′ → S which
dominates X.

Proof. Special case of More on Morphisms of Spaces, Lemma 58.28.3. �

Let (A,m, κ) be a Noetherian local ring. Let A∧ be the completion of A. Set
S∧ = Spec(A∧), S = Spec(A) and let U∧ ⊂ S∧, U ⊂ S be the complement of the
closed point. Picture

U∧ //

��

S∧

��
U // S

This is a cartesian square of schemes.

Lemma 66.13.4. With assumption and notation as above. If Y → S∧ is a U∧-
admissible blowup, then there exists a U -admissible blowup X → S such that Y =
X ×S S∧.

Proof. By definition there exists an ideal J ⊂ A∧ such that V (J) = {mA∧} and
such that Y is the blowup of S∧ in the closed subscheme defined by J , see Divisors,
Definition 30.20.1. Since A∧ is Noetherian this implies mnA∧ ⊂ J for some n.
Since A∧/mnA∧ = A/mn we find an ideal mn ⊂ I ⊂ A such that J = IA∧. Let
X → S be the blowup in I. Since A→ A∧ is flat we conclude that the base change
of X is Y by Divisors, Lemma 30.18.3. �

66.14. Other chapters

Preliminaries

(1) Introduction

(2) Conventions
(3) Set Theory
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CHAPTER 67

Resolution of Surfaces

67.1. Introduction

This chapter discusses resolution of singularities of surfaces following Lipman [Lip78]
and following the exposition in [Art86].

67.2. A trace map in positive characteristic

In this section p will be a prime number. Let R be an Fp-algebra. Let M be an R-
module and let D : R→M be a derivation. Given an a ∈ R set A = R[x]/(xp−a).
Define an R-linear map

Trx,D : ΩA/R −→M

by the rule

xidx 7−→
{

0 if 0 ≤ i ≤ p− 2,
D(a) if i = p− 1

This makes sense as ΩA/R is a free R-module with basis xidx, 0 ≤ i ≤ p− 1. The
following lemma implies that the trace map is well defined, i.e., independent of the
choice of the coordinate x.

Lemma 67.2.1. Let ϕ : R[x]/(xp− a)→ R[y]/(yp− b) be an R-algebra homomor-
phism. Then Trx,D = Try,D ◦ ϕ.

Proof. Say ϕ(x) = λ0 + λ1y + . . . + λp−1y
p−1 with λi ∈ R. The condition that

mapping x to λ0 + λ1y + . . . + λp−1y
p−1 induces an R-algebra homomorphism

R[x]/(xp − a)→ R[y]/(yp − b) is equivalent to the condition that

a = λp0 + λp1b+ . . .+ λpp−1b
p−1

in the ring R. Consider the polynomial ring

Runiv = Fp[b, λ0, . . . , λp−1]

with the element a = λp0 + λp1b + . . . + λpp−1b
p−1 and with its universal derivation

given by
Duniv = d : Runiv −→Muniv = ΩRuniv/Fp

Consider the universal algebra map ϕuniv : Runiv[x]/(xp − a) → Runiv[y]/(yp − b)
given by mapping x to λ0 + λ1y + . . .+ λp−1y

p−1. We obtain a canonical maps

Runiv −→ R, Muniv −→M

compatible with derivations by sending b, λi to b, λi and sending db,dλi toD(b), D(λi).
By construction the maps

Runiv[x]/(xp − a)→ R[x]/(xp − a), Runiv[y]/(yp − b)→ R[y]/(yp − b)
are compatible with the trace maps. Hence it suffices to prove the lemma for the
map ϕuniv. We will do this by evaluating Try,D(ϕ(x)idϕ(x)) for i = 0, . . . , p− 1.

3831
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The case 0 ≤ i ≤ p− 2. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)i(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)

in the ring R[y]/(yp − b). We have to show that the coefficient of yp−1 is zero. For
this it suffices to show that the expression above as a polynomial in y has vanishing
coefficients in front of the powers ypk−1. Then we write our polynomial as

d

(i+ 1)dy
(λ0 + λ1y + . . .+ λp−1y

p−1)i+1

and indeed the coefficients of ykp−1 are all zero.

The case i = p− 1. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)p−1(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)

in the ring R[y]/(yp − b). To finish the proof we have to show that the coef-
ficient of yp−1 times D(b) is D(a). Here we use that R is S/pS where S =
Z[b, ξj , λ0, . . . , λp−1, ξij ]. Then the above, as a polynomial in y, is equal to

d

pdy
(λ0 + λ1y + . . .+ λp−1y

p−1)p

Since d
dy (ypk) = pkypk−1 it suffices to understand the coefficients of ypk in the

polynomial (λ0 + λ1y + . . .+ λp−1y
p−1)p modulo p. The sum of these terms gives

λp0 + λp1y
p + . . .+ λpp−1y

p(p−1) mod p

Whence we see that we obtain after applying the operator d
pdy and after reducing

modulo yp − b the value

λp1 + 2λp2b+ . . .+ (p− 1)λp−1b
p−2

for the coefficient of yp−1 we wanted to compute. Now because a = λp0 +λp1b+ . . .+
λpp−1b

p−1 in R we obtain that

D(a) = (λp1 + 2λp2b+ . . .+ (p− 1)λpp−1b
p−2)D(b)

in R. This proves that the coefficient of yp−1 is as desired. �

Lemma 67.2.2. Let R be a Noetherian normal domain with fraction field K. Let
a ∈ K be an element such that there exists a derivation D : R→ R with D(a) 6= 0.
Then the integral closure of R in L = K[x]/(xp − a) is finite over R.

Proof. After replacing x by fx and a by fpa for some f ∈ R we may assume
a ∈ R. Hence also D(a) ∈ R. We will show by induction on i ≤ p− 1 that if

y = a0 + a1x+ . . .+ aix
i, aj ∈ K

is integral over R, then D(a)iaj ∈ R. Thus the integral closure is contained in the
finite R-module with basis D(a)−p+1xj , j = 0, . . . , p − 1. Since R is Noetherian
this proves the lemma.

If i = 0, then y = a0 is integral over R if and only if a0 ∈ R and the statement is
true. Suppose the statement holds for some i < p− 1 and suppose that

y = a0 + a1x+ . . .+ ai+1x
i+1, aj ∈ K

is integral over R. Then

yp = ap0 + ap1a+ . . .+ api+1a
i+1
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is an element of R (as it is in K and integral over R). Applying D we obtain

(ap1 + 2ap2a+ . . .+ (i+ 1)api+1a
i)D(a)

is in R. Hence it follows that

D(a)a1 + 2D(a)a2x+ . . .+ (i+ 1)D(a)ai+1x
i

is integral over R. By induction we find D(a)i+1aj ∈ R for j = 1, . . . , i+ 1. (Here
we use that 1, . . . , i + 1 are invertible.) Hence D(a)i+1a0 is also in R because it
is the difference of y and

∑
j>0D(a)i+1ajx

j which are integral over R (since x is

integral over R as a ∈ R). �

67.3. Modifications

Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In
this section we will consider the category

(67.3.0.1)

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U)→ U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X →
X ′ compatible with the structure morphisms over S. In Restricted Power Series,
Section 66.13 we have seen that this category only depends on the completion of
A and we have proven some elementary properties of objects in this category. In
this section we specifically study cases where dim(A) ≤ 2 or where the dimension
of the closed fibre is at most 1.

Lemma 67.3.1. Let (A,m, κ) be a 2-dimensional Noetherian local domain such
that U = Spec(A)\{m} is a normal scheme. Then any modification f : X → S (as
in Spaces over Fields, Definition 54.6.1) is a morphism as in (67.3.0.1).

Proof. Let f : X → S be a modification. We have to show that f−1(U)→ U is an
isomorphism. By Spaces over Fields, Lemma 54.6.2 there exists a nonempty open
V ⊂ S such that f−1(V ) → V is an isomorphism. Since X is integral we see that
f−1(V ) is dense in X. Note that every closed point u of U has codimension 1, i.e.,
that dim(OU,u) = 1. Thus we may apply Spaces over Fields, Lemma 54.4.4 to see
that f−1(U) → U is finite. In particular f−1(U) is a scheme. Then f−1(U) → U
is an isomorphism, see Morphisms, Lemma 28.48.16. �

Lemma 67.3.2. Let (A,m, κ) be a Noetherian local ring. Let g : X → Y be a
morphism in the category (67.3.0.1). If the induced morphism Xκ → Yκ of special
fibres is a closed immersion, then g is a closed immersion.

Proof. This is a special case of More on Morphisms of Spaces, Lemma 58.37.3. �

Lemma 67.3.3. Let (A,m, κ) be a complete Noetherian local ring. Let X be an
algebraic space over Spec(A). If X → Spec(A) is proper and dim(Xκ) ≤ 1, then X
is a scheme projective over A.

Proof. By Spaces over Fields, Lemma 54.7.5 the algebraic space Xκ is a scheme.
Hence Xκ is a proper scheme of dimension ≤ 1 over κ. By Varieties, Lemma 32.23.4
we see that Xκ is H-projective over κ. Let L be an ample invertible sheaf on Xκ.
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We are going to show that L lifts to a compatible system {Ln} of invertible sheaves
on the nth infinitesimal neighbourhoods

Xn = X ×Spec(A) Spec(A/mn)

of Xκ = X1. Recall that the étale sites of Xκ and all Xn are canonically equivalent,
see More on Morphisms of Spaces, Lemma 58.8.6. In the rest of the proof we do
not distinguish between sheaves on Xn and sheaves on Xm or Xκ. Suppose, given
a lift Ln to Xn. We consider the exact sequence

1→ (1 + mnOX/mn+1OX)∗ → O∗Xn+1
→ O∗Xn → 1

of sheaves on Xn+1. We have (1+mnOX/mn+1OX)∗ ∼= mnOX/mn+1OX as abelian
sheaves on Xn+1. The class of Ln in H1(Xn,O∗Xn) (see Cohomology on Sites,

Lemma 21.7.1) can be lifted to an element of H1(Xn+1,O∗Xn+1
) if and only if

the obstruction in H2(Xn+1,m
nOX/mn+1OX) is zero. Note that mnOX/mn+1OX

is a quasi-coherent OXκ-module on Xκ. Hence its étale cohomology agrees with
its cohomology on the scheme Xκ, see Descent, Proposition 34.7.10. However,
as Xκ is a Noetherian scheme of dimension ≤ 1 this cohomology group vanishes
(Cohomology, Proposition 20.21.6).

By Grothendieck’s algebraization theorem (Cohomology of Schemes, Theorem 29.23.4)
we find a projective morphism of schemes Y → Spec(A) and a compatible system
of isomorphisms Xn → Yn. (Here we use the assumption that A is complete.) By
More on Morphisms of Spaces, Lemma 58.32.3 we see that X ∼= Y and the proof is
complete. �

Lemma 67.3.4. If (A,m, κ) is a complete Noetherian local domain of dimension
2, then every modification of Spec(A) is projective over A.

Proof. By Lemma 67.3.3 it suffices to show that the special fibre of any modifica-
tion X of Spec(A) has dimension ≤ 1. Let U → X be an étale morphism with U
affine. Since X → Spec(A) is a modification (Spaces over Fields, Definition 54.6.1)
we see that a dense open of U is étale over A. In particular, every generic point
η of an irreducible component U ′ of U maps to the generic point of Spec(A) and
f.f.(A) ⊂ κ(η) is finite separable. If u ∈ U ′ is a closed point lying over m ∈ Spec(A),
then by the dimension formula we see that

dim(OU ′,u) ≤ dim(A) = 2,

see Morphisms, Lemma 28.31.1. Since η 6∈ U ′κ, the dimension of U ′κ can be at most
1 as desired. �

67.4. Quadratic transformations

In this section we study what happens when we blow up a nonsingular point on a
surface. We hesitate the formally define such a morphism as a quadratic transfor-
mation as on the one hand often other names are used and on the other hand the
phrase “quadratic transformation” is sometimes used with a different meaning.

Lemma 67.4.1. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. There is a closed immersion

r : X −→ P1
S

http://stacks.math.columbia.edu/tag/0AGN
http://stacks.math.columbia.edu/tag/0AGQ


67.4. QUADRATIC TRANSFORMATIONS 3835

over S such that OX(1) = r∗OP1
S
(1) and such that r|E : E → P1

κ is an isomor-

phism.

Proof. As A is regular of dimension 2 we can write m = (x, y). Then x and
y placed in degree 1 generate the Rees algebra

⊕
n≥0 m

n over A. Recall that

X = Proj(
⊕

n≥0 m
n), see Divisors, Lemma 30.18.2. Thus the surjection

A[T0, T1] −→
⊕

n≥0
mn, T0 7→ x, T1 7→ y

of graded A-algebras induces a closed immersion r : X → P1
S = Proj(A[T0, T1])

such that OX(1) = r∗OP1
S
(1), see Constructions, Lemma 26.11.5. To prove the

final statement note that(⊕
n≥0

mn
)
⊗A κ =

⊕
n≥0

mn/mn+1 ∼= κ[x, y]

a polynomial algebra, see Algebra, Lemma 10.102.1. This proves that the fibre of
X → S over Spec(κ) is equal to Proj(κ[x, y]) = P1

κ, see Constructions, Lemma
26.11.6. Recall that E is the closed subscheme of X defined by mOX , i.e., E = Xκ.
By our choice of the morphism r we see that r|E in fact produces the identification
of E = Xκ with the special fibre of P1

S → S. �

Lemma 67.4.2. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Then X is an irreducible regular scheme.

Proof. Observe thatX is integral by Divisors, Lemma 30.18.7 and Algebra, Lemma
10.102.2. To seeX is regular it suffices to check thatOX,x is regular for closed points
x ∈ X, see Properties, Lemma 27.9.2. Let x ∈ X be a closed point. Since f is
proper x maps to m, i.e., x is a point of the exceptional divisor E. Then E is an
effective Cartier divisor and E ∼= P1

κ. Thus if f ∈ mx ⊂ OX,x is a local equation
for E, then OX,x/(f) ∼= OP1

κ,x
. Since P1

κ is covered by two affine opens which are
the spectrum of a polynomial ring over κ, we see that OP1

κ,x
is regular by Algebra,

Lemma 10.110.1. We conclude by Algebra, Lemma 10.102.7. �

Lemma 67.4.3. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Let F be a quasi-coherent OX-module.

(1) Hp(X,F) = 0 for p 6∈ {0, 1},
(2) H1(X,OX(n)) = 0 for n ≥ −1,
(3) H1(X,F) = 0 if F or F(1) is globally generated,
(4) H0(X,OX(n)) = mmax(0,n),
(5) lengthAH

1(X,OX(n)) = −n(−n− 1)/2 if n < 0.

Proof. If m = (x, y), then X is covered by the spectra of the affine blowup algebras
A[mx ] and A[my ] because x and y placed in degree 1 generate the Rees algebra

⊕
mn

over A. See Divisors, Lemma 30.18.2 and Constructions, Lemma 26.8.9. Since
X is separated by Constructions, Lemma 26.8.8 we see that cohomology of quasi-
coherent sheaves vanishes in degrees ≥ 2 by Cohomology of Schemes, Lemma 29.4.2.

Let i : E → X be the exceptional divisor, see Divisors, Definition 30.18.1. Recall
that OX(−E) = OX(1) is f -relatively ample, see Divisors, Lemma 30.18.4. Hence
we know that H1(X,OX(−nE)) = 0 for some n > 0, see Cohomology of Schemes,
Lemma 29.15.4. Consider the filtration

OX(−nE) ⊂ OX(−(n− 1)E) ⊂ . . . ⊂ OX(−E) ⊂ OX ⊂ OX(E)

http://stacks.math.columbia.edu/tag/0AGR
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The succesive quotients are the sheaves

OX(−tE)/OX(−(t+ 1)E) = OX(t)/I(t) = i∗OE(t)

where I = OX(−E) is the ideal sheaf of E. By Lemma 67.4.1 we have E = P1
κ and

OE(1) indeed corresponds to the usual Serre twist of the structure sheaf on P1.
Hence the cohomology of OE(t) vanishes in degree 1 for t ≥ −1, see Cohomology of
Schemes, Lemma 29.8.1. Since this is equal to H1(X, i∗OE(t)) (by Cohomology of
Schemes, Lemma 29.2.4) we find that H1(X,OX(−(t+ 1)E))→ H1(X,OX(−tE))
is surjective for t ≥ −1. Hence

0 = H1(X,OX(−nE)) −→ H1(X,OX(−tE)) = H1(X,OX(t))

is surjective for t ≥ −1 which proves (2).

Let F be globally generated. This means there exists a short exact sequence

0→ G →
⊕

i∈I
OX → F → 0

Note that H1(X,
⊕

i∈I OX) =
⊕

i∈I H
1(X,OX) by Cohomology, Lemma 20.20.1.

By part (2) we have H1(X,OX) = 0. If F(1) is globally generated, then we can
find a surjection

⊕
i∈I OX(−1)→ F and argue in a similar fashion. In other words,

part (3) follows from part (2).

For part (4) we note that for all n large enough we have Γ(X,OX(n)) = mn, see
Cohomology of Schemes, Lemma 29.15.3. If n ≥ 0, then we can use the short exact
sequence

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0

and the vanishing of H1 for the sheaf on the left to get a commutative diagram

0 // mmax(0,n) //

��

mmax(0,n−1) //

��

mmax(0,n)/mmax(0,n−1) //

��

0

0 // Γ(X,OX(n)) // Γ(X,OX(n− 1)) // Γ(E,OE(n− 1)) // 0

with exact rows. In fact, the rows are exact also for n < 0 because in this case the
groups on the right are zero. In the proof of Lemma 67.4.1 we have seen that the
right vertical arrow is an isomorphism (details omitted). Hence if the left vertical
arrow is an isomorphism, so is the middle one. In this way we see that (4) holds
by descending induction on n.

Finally, we prove (5) by descending induction on n and the sequences

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0

Namely, for n ≥ −1 we already know H1(X,OX(n)) = 0. Since

H1(X, i∗OE(−2)) = H1(E,OE(−2)) = H1(P1
κ,O(−2)) ∼= κ

by Cohomology of Schemes, Lemma 29.8.1 which has length 1 as an A-module, we
conclude from the long exact cohomology sequence that (5) holds for n = −2. And
so on and so forth. �

Lemma 67.4.4. Let (A,m) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Let mn ⊂ I ⊂ m be an ideal. Let d ≥ 0
be the largest integer such that

IOX ⊂ OX(−dE)

http://stacks.math.columbia.edu/tag/0AGT
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where E is the exceptional divisor. Set I ′ = IOX(dE) ⊂ OX . Then d > 0, the
sheaf OX/I ′ is supported in finitely many closed points x1, . . . , xr of X, and

lengthA(A/I) > lengthAΓ(X,OX/I ′)

≥
∑

i=1,...,r
lengthOX,xi

(OX,xi/I ′xi)

Proof. Since I ⊂ m we see that every element of I vanishes on E. Thus we see
that d ≥ 1. On the other hand, since mn ⊂ I we see that d ≤ n. Consider the short
exact sequence

0→ IOX → OX → OX/IOX → 0

Since IOX is globally generated, we see that H1(X, IOX) = 0 by Lemma 67.4.3.
Hence we obtain a surjection A/I → Γ(X,OX/IOX). Consider the short exact
sequence

0→ OX(−dE)/IOX → OX/IOX → OX/OX(−dE)→ 0

By Divisors, Lemma 30.9.24 we see that OX(−dE)/IOX is supported in finitely
many closed points of X. In particular, this coherent sheaf has vanishing higher
cohomology groups (detail omitted). Thus in the following diagram

A/I

��
0 // Γ(X,OX(−dE)/IOX) // Γ(X,OX/IOX) // Γ(X,OX/OX(−dE)) // 0

the bottom row is exact and the vertical arrow surjective. We have

lengthAΓ(X,OX(−dE)/IOX) < lengthA(A/I)

since Γ(X,OX/OX(−dE)) is nonzero. Namely, the image of 1 ∈ Γ(X,OX) is
nonzero as d > 0.

To finish the proof we translate the results above into the statements of the lemma.
Since OX(dE) is invertible we have

OX/I ′ = OX(−dE)/IOX ⊗OX OX(dE).

Thus OX/I ′ and OX(−dE)/IOX are supported in the same set of finitely many
closed points, say x1, . . . , xr ∈ E ⊂ X. Moreover we obtain

Γ(X,OX(−dE)/IOX) =
⊕
OX(−dE)xi/IOX,xi ∼=

⊕
OX,xi/I ′xi = Γ(X,OX/I ′)

because an invertible module over a local ring is trivial. Thus we obtain the strict
inequality. We also get the second because

lengthA(OX,xi/I ′xi) ≥ lengthOX,xi
(OX,xi/I ′xi)

as is immediate from the definition of length. �

67.5. Quadratic transformations of spaces

Using the result above we can prove that blowups in points dominate any modifi-
cation of a regular 2 dimensional algebraic space.

Let X be a decent algebraic space over some base scheme S. Let x ∈ |X| be a
closed point. By Decent Spaces, Lemma 50.12.5 we can represent x by a closed
immersion i : Spec(k)→ X. Then the blowing up of X at x means the blowing up
of X in the closed subspace Z = i(Spec(k)) ⊂ X.
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Lemma 67.5.1. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x
and (2) the local ring of X at x has dimension 2. Let I ⊂ OX be a quasi-coherent
sheaf of ideals such that OX/I is supported on T . Then there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T such that IOXn is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Pick an étale morphism U → X where U is a scheme
with points ui ∈ U lying over xi. By Decent Spaces, Lemma 50.10.3 the points ui
are closed points. After shrinking U we may assume these are the only points of U
mapping to T . The local rings OU,ui are regular local of dimension 2, see Properties
of Spaces, Definitions 48.23.2 and 48.20.2. Let Ii ⊂ OU,ui be the stalk of I|U at ui.
Set

ni = lengthOU,ui
(OU,ui/Ii)

This is finite as OX/I is supported on T and hence OU,ui/Ii has support equal to
{mui} (see Algebra, Lemma 10.61.3). We are going to use induction on

∑
ni. If

ni = 0 for all i, then I = OX and we are done.

Suppose ni > 0. Let X ′ → X be the blowing up of X in xi (see discussion above
the lemma). Since U → X is étale and ui is the unique point of U lying over x we
see that U ′ = U ×X X ′ is the blowup of U in ui, see Divisors on Spaces, Lemma
53.6.3. Since Spec(OU,ui)→ U is flat we see that U ′ ×U Spec(OU,ui) is the blowup
of the ring OU,ui in the maximal ideal. Hence both squares in the commutative
diagram

Proj(
⊕

d≥0 m
d
ui)

//

��

U ′

��

// X ′

��
Spec(OU,ui) // U // X

are cartesian. Let E ⊂ X ′, E′ ⊂ U ′, E′′ ⊂ Proj(
⊕

d≥0 m
d
ui) be the exceptional

divisors. Let d ≥ 1 be the integer found in Lemma 67.4.4 for the ideal Ii ⊂ OU,ui .
Since the horizontal arrows in the diagram are flat, since E′′ → E is surjective, and
since E′′ is the pullback of E, we see that

IOX′ ⊂ OX′(−dE)

(some details omitted). Set I ′ = IOX′(dE) ⊂ OX′ . Then we see that OX′/I ′ is
supported in finitely many closed points T ′ ⊂ |X ′| because this holds over X \ {xi}
and for the pullback to Proj(

⊕
d≥0 m

d
ui). The final assertion of Lemma 67.4.4 tells

us that the sum of the lengths of the stalks OU ′,u′/I ′OU ′,u′ for u′ lying over ui is
< ni. Hence the sum of the lengths has decreased.

By induction hypothesis, there exists a sequence

X ′n → . . .→ X ′1 → X ′

of blowups at closed points lying over T ′ such that I ′OX′n is invertible. Since

I ′OX′(−dE) = IOX′ , we see that IOX′n = I ′OX′n(−d(f ′)−1E) where f ′ : X ′n →
X ′ is the composition. Note that (f ′)−1E is an effective Cartier divisor by Divisors
on Spaces, Lemma 53.6.8. Thus we are done by Divisors on Spaces, Lemma 53.2.7.

�
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Lemma 67.5.2. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and
(2) the local ring of X at x has dimension 2. Let f : Y → X be a proper morphism
of algebraic spaces which is an isomorphism over U = X \ T . Then there exists a
sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T and a factorization Xn → Y → X of the composition.

Proof. By More on Morphisms of Spaces, Lemma 58.28.3 there exists a U -admissible
blowup X ′ → X which dominates Y → X. Hence we may assume there exists an
ideal sheaf I ⊂ OX such that OX/I is supported on T and such that Y is the
blowing up of X in I. By Lemma 67.5.1 there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing
up (Divisors on Spaces, Lemma 53.6.5) we find the desired factorization. �

67.6. Examples

Some examples related to the results earlier in this chapter.

Example 67.6.1. Let k be a field. The ring A = k[x, y, z]/(xr + ys + zt) is a UFD
for r, s, t pairwise coprime integers. Namely, since xr + ys + zt is irreducible A is a
domain. The element z is a prime element, i.e., generates a prime ideal in A. On
the other hand, if r = 1 + ers for some e, then

A[1/z] ∼= k[x′, y′, 1/z]

where x′ = x/zes, y′ = y/zet and z = (x′)r + (y′)s. Thus A[1/z] is a localization of
a polynomial ring and hence a UFD. It follows from an argument of Nagata that
A is a UFD. See Algebra, Lemma 10.116.7. A similar argument can be given if r is
not congruent to 1 modulo rs.

Example 67.6.2. The ring A = C[[x, y, z]]/(xr + ys + zt) is not a UFD when
r < s < t are pairwise coprime integers and not equal to 2, 3, 5. For example
consider the special case A = C[[x, y, z]]/(x2 + y5 + z7). Consider the maps

ψζ : C[[x, y, z]]/(x2 + y5 + z7)→ C[[t]]

given by

x 7→ t7, y 7→ t3, z 7→ −ζt2(1 + t)1/7

where ζ is a 7th root of unity. The kernel pζ of ψζ is a height one prime, hence if
A is a UFD, then it is principal, say given by fζ ∈ C[[x, y, z]]. Note that V (x3 −
y7) =

⋃
V (pζ) and A/(x3 − y7) is reduced away from the closed point. Hence, still

assuming A is a UFD, we would obtain∏
ζ
fζ = u(x3 − y7) + a(x2 + y5 + z7) in C[[x, y, z]]

for some unit u ∈ C[[x, y, z]] and some element a ∈ C[[x, y, z]]. After scaling by a
constant we may assume u(0, 0, 0) = 1. Note that the left hand side vanishes to
order 7. Hence a = −x mod m2. But then we get a term xy5 on the right hand
side which does not occur on the left hand side. A contradiction.

http://stacks.math.columbia.edu/tag/0AHI
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Example 67.6.3. There exists an excellent 2-dimensional Noetherian local ring
and a modification X → S = Spec(A) which is not a scheme. We sketch a con-
struction. Let X be a normal surface over C with a unique singular point x ∈ X.
Assume that there exists a resolution π : X ′ → X such that the exceptional fibre
C = π−1(x)red is a smooth projective curve. Furthermore, assume there exists a
point c ∈ C such that if OC(nc) is in the image of Pic(X ′)→ Pic(C), then n = 0.
Then we let X ′′ → X ′ be the blowing up in the nonsingular point c. Let C ′ ⊂ X ′′
be the strict transform of C and let E ⊂ X ′′ be the exceptional fibre. By Artin’s
results ([Art70]; use for example [Mum61] to see that the normal bundle of C ′ is
negative) we can blow down the curve C ′ in X ′′ to obtain an algebraic space X ′′′.
Picture

X ′′

}} ""
X ′

!!

X ′′′

||
X

We claim that X ′′′ is not a scheme. This provides us with our example because
X ′′′ is a scheme if and only if the base change of X ′′′ to A = OX,x is a scheme
(details omitted). If X ′′′ where a scheme, then the image of C ′ in X ′′′ would
have an affine neighbourhood. The complement of this neighbourhood would be an
effective Cartier divisor on X ′′′ (because X ′′′ is nonsingular apart from 1 point).
This effective Cartier divisor would correspond to an effective Cartier divisor on
X ′′ meeting E and avoiding C ′. Taking the image in X ′ we obtain an effective
Cartier divisor meeting C (set theoretically) in c. This is impossible as no multiple
of c is the restriction of a Cartier divisor by assumption.

To finish we have to find such a singular surface X. We can just take X to be the
affine surface given by

x3 + y3 + z3 + x4 + y4 + z4 = 0

in A3
C = Spec(C[x, y, z]) and singular point (0, 0, 0). Then (0, 0, 0) is the only

singular point. Blowing up X in the maximal ideal corresponding to (0, 0, 0) we
find three charts each isomorphic to the smooth affine surface

1 + s3 + t3 + x(1 + s4 + t4) = 0

which is nonsingular with exceptional divisor C given by x = 0. The reader will
recognize C as an elliptic curve. Finally, the surface X is rational as projection
from (0, 0, 0) shows, or because in the equation for the blow up we can solve for x.
Finally, the Picard group of a nonsingular rational surface is countable, whereas the
Picard group of an elliptic curve over the complex numbers is uncountable. Hence
we can find a closed point c as indicated.

67.7. Other chapters
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CHAPTER 68

Formal Deformation Theory

68.1. Introduction

This chapter develops formal deformation theory in a form applicable later in
the stacks project, closely following Rim [GRR72, Exposee VI] and Schlessinger
[Sch68]. We strongly encourage the reader new to this topic to read the paper
by Schlessinger first, as it is sufficiently general for most applications, and Sch-
lessinger’s results are indeed used in most papers that use this kind of formal
deformation theory.

Let Λ be a complete Noetherian local ring with residue field k, and let CΛ denote
the category of Artinian local Λ-algebras with residue field k. Given a functor
F : CΛ → Sets such that F (k) is a one element set, Schlessinger’s paper introduced
conditions (H1)-(H4) such that:

(1) F has a “hull” if and only if (H1)-(H3) hold.
(2) F is prorepresentable if and only (H1)-(H4) hold.

The purpose of this chapter is to generalize these results in two ways exactly as is
done in Rim’s paper:

(A) The functor F is replaced by a category F cofibered in groupoids over CΛ,
see Section 68.3.

(B) We let Λ be a Noetherian ring and Λ→ k a finite ring map to a field. The
category CΛ is the category of Artinian local Λ-algebras A endowed with
a given identification A/mA = k.

The analogue of the condition that F (k) is a one element set is that F(k) is the
trivial groupoid. If F satisfies this condition then we say it is a predeformation
category, but in general we do not make this assumption. Rim’s paper [GRR72,
Exposee VI] is the original source for the results in this document. We also mention
the useful paper [TV10], which discusses deformation theory with groupoids but
in less generality than we do here.

An important role is played by the “completion” ĈΛ of the category CΛ. An object

of ĈΛ is a Noetherian complete local Λ-algebra R whose residue field is identified

with k, see Section 68.4. On the one hand CΛ ⊂ ĈΛ is a strictly full subcategory

and on the other hand ĈΛ is a full subcategory of the category of pro-objects of CΛ.
A functor CΛ → Sets is prorepresentable if it is isomorphic to the restriction of a

representable functor R = MorĈΛ(R,−) to CΛ where R ∈ Ob(ĈΛ).

Categories cofibred in groupoids are dual to categories fibred in groupoids; we intro-
duced them in Section 68.5. A smooth morphism of categories cofibred in groupoids
over CΛ is one that satisfies the infinitesimal lifting criterion for objects, see Sec-
tion 68.8. This is analogous to the definition of a formally smooth ring map, see
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Algebra, Definition 10.133.1 and is exactly dual to the notion in Criteria for Rep-
resentability, Section 74.6. This is an important notion as we eventually want to
prove that certain kinds of categories cofibred in groupoids have a smooth prorepre-
sentable presentation, much like the characterization of algebraic stacks in Algebraic
Stacks, Sections 71.16 and 71.17. A versal formal object of a category F cofibred in

groupoids over CΛ is an object ξ ∈ F̂(R) of the completion such that the associated
morphism ξ : R→ F is smooth.

In Section 68.9, we define conditions (S1) and (S2) on F generalizing Schlessinger’s
(H1) and (H2). The analogue of Schlessinger’s (H3)—the condition that F has finite
dimensional tangent space—is not given a name. A key step in the development
of the theory is the existence of versal formal objects for predeformation categories
satisfying (S1), (S2) and (H3), see Lemma 68.12.4. Schlessinger’s notion of a hull

for a functor F : CΛ → Sets is, in our terminology, a versal formal object ξ ∈ F̂ (R)
such that the induced map of tangent spaces dξ : TR → TF is an isomorphism.
In the literature a hull is often called a “miniversal” object. We do not do so, and
here is why. It can happen that a functor has a versal formal object without having
a hull. Moreover, we show in Section 68.13 that if a predeformation category has
a versal formal object, then it always has a minimal one (as defined in Definition
68.13.4) which is unique up to isomorphism, see Lemma 68.13.5. But it can happen
that the minimal versal formal object does not induce an isomorphism on tangent
spaces! (See Examples 68.14.3 and 68.14.8.)

Keeping in mind the differences pointed out above, Theorem 68.14.5 is the direct
generalization of (1) above: it recovers Schlessinger’s result in the case that F is
a functor and it characterizes minimal versal formal objects, in the presence of
conditions (S1) and (S2), in terms of the map dξ : TR→ TF on tangent spaces.

In Section 68.15, we define Rim’s condition (RS) on F generalizing Schlessinger’s
(H4). A deformation category is defined as a predeformation category satisfying
(RS). The analogue to prorepresentable functors are the categories cofibred in
groupoids over CΛ which have a presentation by a smooth prorepresentable groupoid
in functors on CΛ, see Definitions 68.19.1, 68.20.1, and 68.21.1. This notion of a pre-
sentation takes into account the groupoid structure of the fibers of F . In Theorem
68.24.4 we prove that F has a presentation by a smooth prorepresentable groupoid
in functors if and only if F has a finite dimensional tangent space and finite dimen-
sional infinitesimal automorphism space. This is the generalization of (2) above:
it reduces to Schlessinger’s result in the case that F is a functor. There is a final
Section 68.25 where we discuss how to use minimal versal formal objects to produce
a (unique up to isomorphism) minimal presentation by a smooth prorepresentable
groupoid in functors.

We also find the following conceptual explanation for Schlessinger’s conditions. If
a predeformation category F satisfies (RS), then the associated functor of isomor-
phism classes F : CΛ → Sets satisfies (H1) and (H2) (Lemmas 68.15.6 and 68.9.5).
Conversely, if a functor F : CΛ → Sets arises naturally as the functor of isomorphism
classes of a category F cofibered in groupoids, then it seems to happen in practice
that an argument showing F satisfies (H1) and (H2) will also show F satisfies (RS)
(see Artin’s Axioms, Section 75.22 for examples). Moreover, if F satisfies (RS),
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then condition (H4) for F has a simple interpretation in terms of extending auto-
morphisms of objects of F (Lemma 68.15.7). These observations suggest that (RS)
should be regarded as the fundamental deformation theoretic glueing condition.

68.2. Notation and Conventions

A ring is commutative with 1. The maximal ideal of a local ring A is denoted by
mA. The set of positive integers is denoted by N = {1, 2, 3, . . .}. If U is an object
of a category C, we denote by U the functor MorC(U,−) : C → Sets, see Remarks
68.5.2 (12). Warning: this may conflict with the notation in other chapters where
sometimes use U to denote hU (−) = MorC(−, U).

Throughout this chapter Λ is a Noetherian ring and Λ → k is a finite ring map
from Λ to a field. The kernel of this map is denoted mΛ and the image k′ ⊂ k.
It turns out that mΛ is a maximal ideal, k′ = Λ/mΛ is a field, and the extension
k′ ⊂ k is finite. See discussion surrounding (68.3.3.1).

68.3. The base category

Motivation. An important application of formal deformation theory is to criteria
for representability by algebraic spaces. Suppose given a locally Noetherian base
change S and a functor F : (Sch/S)oppfppf → Sets. Let k be a finite type field over S,

i.e., we are given a finite type morphism Spec(k)→ S. One of Artin’s criteria is that
for any element x ∈ F (Spec(k)) the predeformation functor associated to the triple
(S, k, x) should be prorepresentable. By Morphisms, Lemma 28.17.1 the condition
that k is of finite type over S means that there exists an affine open Spec(Λ) ⊂ S
such that k is a finite Λ-algebra. This motivates why we work throughout this
chapter with a base category as follows.

Definition 68.3.1. Let Λ be a Noetherian ring and let Λ→ k be a finite ring map
where k is a field. We define CΛ to be the category with

(1) objects are pairs (A,ϕ) where A is an Artinian local Λ-algebra and where
ϕ : A/mA → k is a Λ-algebra isomorphism, and

(2) morphisms f : (B,ψ) → (A,ϕ) are local Λ-algebra homomorphisms such
that ϕ ◦ (f mod m) = ψ.

We say we are in the classical case if Λ is a Noetherian complete local ring and k
is its residue field.

Note that if Λ → k is surjective and if A is an Artinian local Λ-algebra, then the
identification ϕ, if it exists, is unique. Moreover, in this case any Λ-algebra map
A→ B is going to be compatible with the identifications. Hence in this case CΛ is
just the category of local Artinian Λ-algebras whose residue field “is” k. By abuse
of notation we also denote objects of CΛ simply A in the general case. Moreover,
we will often write A/m = k, i.e., we will pretend all rings in CΛ have residue field k
(since all ring maps in CΛ are compatible with the given identifications this should
never cause any problems). Throughout the rest of this chapter the base ring Λ and
the field k are fixed. The category CΛ will be the base category for the cofibered
categories considered below.

Definition 68.3.2. Let f : B → A be a ring map in CΛ. We say f is a small exten-
sion if it is surjective and Ker(f) is a nonzero principal ideal which is annihilated
by mB .

http://stacks.math.columbia.edu/tag/06GC
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By the following lemma we can often reduce arguments involving surjective ring
maps in CΛ to the case of small extensions.

Lemma 68.3.3. Let f : B → A be a surjective ring map in CΛ. Then f can be
factored as a composition of small extensions.

Proof. Let I be the kernel of f . The maximal ideal mB is nilpotent since B is
Artinian, say mnB = 0. Hence we get a factorization

B = B/Imn−1
B → B/Imn−2

B → . . .→ B/I ∼= A

of f into a composition of surjective maps whose kernels are annihilated by the
maximal ideal. Thus it suffices to prove the lemma when f itself is such a map, i.e.
when I is annihilated by mB . In this case I is a k-vector space, which has finite
dimension, see Algebra, Lemma 10.51.6. Take a basis x1, . . . , xn of I as a k-vector
space to get a factorization

B → B/(x1)→ . . .→ B/(x1, . . . , xn) ∼= A

of f into a composition of small extensions. �

The next lemma says that we can compute the length of a module over a local Λ-
algebra with residue field k in terms of the length over Λ. To explain the notation
in the statement, let k′ ⊂ k be the image of our fixed finite ring map Λ → k.
Note that k/k′ is a finite extension of rings. Hence k′ is a field and k′/k is a finite
extension, see Algebra, Lemma 10.35.16. Moreover, as Λ → k′ is surjective we see
that its kernel is a maximal ideal mΛ. Thus

(68.3.3.1) [k : k′] = [k : Λ/mΛ] <∞

and in the classical case we have k = k′. The notation k′ = Λ/mΛ will be fixed
throughout this chapter.

Lemma 68.3.4. Let A be a local Λ-algebra with residue field k. Let M be an
A-module. Then [k : k′]lengthA(M) = lengthΛ(M). In the classical case we have
lengthA(M) = lengthΛ(M).

Proof. If M is a simple A-module then M ∼= k as an A-module, see Algebra,
Lemma 10.50.10. In this case lengthA(M) = 1 and lengthΛ(M) = [k′ : k], see Alge-
bra, Lemma 10.50.6. If lengthA(M) is finite, then the result follows on choosing a
filtration of M by A-submodules with simple quotients using additivity, see Alge-
bra, Lemma 10.50.3. If lengthA(M) is infinite, the result follows from the obvious
inequality lengthA(M) ≤ lengthΛ(M). �

Lemma 68.3.5. Let A→ B be a ring map in CΛ. The following are equivalent

(1) f is surjective,
(2) mA/m

2
A → mB/m

2
B is surjective, and

(3) mA/(mΛA+ m2
A)→ mB/(mΛB + m2

B) is surjective.

Proof. For any ring map f : A → B in CΛ we have f(mA) ⊂ mB for example
because mA, mB is the set of nilpotent elements of A, B. Suppose f is surjective.
Let y ∈ mB . Choose x ∈ A with f(x) = y. Since f induces an isomorphism
A/mA → B/mB we see that x ∈ mA. Hence the induced map mA/m

2
A → mB/m

2
B

is surjective. In this way we see that (1) implies (2).

http://stacks.math.columbia.edu/tag/06GE
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It is clear that (2) implies (3). The map A → B gives rise to a canonical commu-
tative diagram

mΛ/m
2
Λ ⊗k′ k //

��

mA/m
2
A

//

��

mA/(mΛA+ m2
A) //

��

0

mΛ/m
2
Λ ⊗k′ k // mB/m2

B
// mB/(mΛB + m2

B) // 0

with exact rows. Hence if (3) holds, then so does (2).

Assume (2). To show that A → B is surjective it suffices by Nakayama’s lemma
(Algebra, Lemma 10.19.1) to show that A/mA → B/mAB is surjective. (Note that
mA is a nilpotent ideal.) As k = A/mA = B/mB it suffices to show that mAB → mB
is surjective. Applying Nakayama’s lemma once more we see that it suffices to see
that mAB/mAmB → mB/m

2
B is surjective which is what we assumed. �

If A→ B is a ring map in CΛ, then the map mA/(mΛA+m2
A)→ mB/(mΛB +m2

B)
is the map on relative cotangent spaces. Here is a formal definition.

Definition 68.3.6. Let R → S be a local homomorphism of local rings. The
relative cotangent space1 of R over S is the S/mS-vector space mS/(mRS + m2

S).

If f1 : A1 → A and f2 : A2 → A are two ring maps, then the fiber product A1×AA2

is the subring of A1 × A2 consisting of elements whose two projections to A are
equal. Throughout this chapter we will be considering conditions involving such
a fiber product when f1 and f2 are in CΛ. It isn’t always the case that the fibre
product is an object of CΛ.

Example 68.3.7. Let p be a prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn)
and let k = Fp(x1, . . . , xn) with map Λ → k given by ti 7→ xpi . Let A = k[ε] =
k[x]/(x2). Then A is an object of CΛ. Suppose that D : k → k is a derivation of k
over Λ, for example D = ∂/∂xi. Then the map

fD : k −→ k[ε], a 7→ a+D(a)ε

is a morphism of CΛ. Set A1 = A2 = k and set f1 = f∂/∂x1
and f2(a) = a. Then

A1 ×A A2 = {a ∈ k | ∂/∂x1(a) = 0} which does not surject onto k. Hence the fibre
product isn’t an object of CΛ.

It turns out that this problem can only occur if the residue field extension k′ ⊂ k
(68.3.3.1) is inseparable and neither f1 nor f2 is surjective.

Lemma 68.3.8. Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ. Then:

(1) If f1 or f2 is surjective, then A1 ×A A2 is in CΛ.
(2) If f2 is a small extension, then so is A1 ×A A2 → A1.
(3) If the field extension k′ ⊂ k is separable, then A1 ×A A2 is in CΛ.

Proof. The ring A1 ×A A2 is a Λ-algebra via the map Λ→ A1 ×A A2 induced by
the maps Λ→ A1 and Λ→ A2. It is a local ring with unique maximal ideal

mA1
×mA mA2

= Ker(A1 ×A A2 −→ k)

1Caution: We will see later that in our general setting the tangent space of an object A ∈ CΛ
over Λ should not be defined simply as the k-linear dual of the relative cotangent space. In fact,

the correct definition of the relative cotangent space is ΩS/R ⊗S S/mS .
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A ring is Artinian if and only if it has finite length as a module over itself, see
Algebra, Lemma 10.51.6. Since A1 and A2 are Artinian, Lemma 68.3.4 implies
lengthΛ(A1) and lengthΛ(A2), and hence lengthΛ(A1 × A2), are all finite. As
A1 ×A A2 ⊂ A1 × A2 is a Λ-submodule, this implies lengthA1×AA2

(A1 ×A A2) ≤
lengthΛ(A1 ×A A2) is finite. So A1 ×A A2 is Artinian. Thus the only thing that is
keeping A1×AA2 from being an object of CΛ is the possibility that its residue field
maps to a proper subfield of k via the map A1 ×A A2 → A→ A/mA = k above.

Proof of (1). If f2 is surjective, then the projection A1 ×A A2 → A1 is surjective.
Hence the composition A1 ×A A2 → A1 → A1/mA1 = k is surjective and we
conclude that A1 ×A A2 is an object of CΛ.

Proof of (2). If f2 is a small extension then A2 → A and A1 ×A A2 → A1 are
both surjective with the same kernel. Hence the kernel of A1 ×A A2 → A1 is a
1-dimensional k-vector space and we see that A1 ×A A2 → A1 is a small extension.

Proof of (3). Choose x ∈ k such that k = k′(x) (see Fields, Lemma 9.18.1). Let
P ′(T ) ∈ k′[T ] be the minimal polynomial of x over k′. Since k/k′ is separable we
see that dP/dT (x) 6= 0. Choose a monic P ∈ Λ[T ] which maps to P ′ under the
surjective map Λ[T ]→ k′[T ]. Because A,A1, A2 are henselian, see Algebra, Lemma
10.145.11, we can find x, x1, x2 ∈ A,A1, A2 with P (x) = 0, P (x1) = 0, P (x2) = 0
and such that the image of x, x1, x2 in k is x. Then (x1, x2) ∈ A1 ×A A2 because
x1, x2 map to x ∈ A by uniqueness, see Algebra, Lemma 10.145.2. Hence the
residue field of A1 ×A A2 contains a generator of k over k′ and we win. �

Next we define essential surjections in CΛ. A necessary and sufficient condition for
a surjection in CΛ to be essential is given in Lemma 68.3.12.

Definition 68.3.9. Let f : B → A be a ring map in CΛ. We say f is an essential
surjection if it has the following properties:

(1) f is surjective.
(2) If g : C → B is a ring map in CΛ such that f ◦ g is surjective, then g is

surjective.

Using Lemma 68.3.5, we can characterize essential surjections in CΛ as follows.

Lemma 68.3.10. Let f : B → A be a ring map in CΛ. The following are equivalent

(1) f is an essential surjection,
(2) the map B/m2

B → A/m2
A is an essential surjection, and

(3) the map B/(mΛB + m2
B)→ A/(mΛA+ m2

A) is an essential surjection.

Proof. Assume (3). Let C → B be a ring map in CΛ such that C → A is surjective.
Then C → A/(mΛA+m2

A) is surjective too. We conclude that C → B/(mΛB+m2
B)

is surjective by our assumption. Hence C → B is surjective by applying Lemma
68.3.5 (2 times).

Assume (1). Let C → B/(mΛB + m2
B) be a morphism of CΛ such that C →

A/(mΛA+ m2
A) is surjective. Set C ′ = C ×B/(mΛB+m2

B) B which is an object of CΛ
by Lemma 68.3.8. Note that C ′ → A/(mΛA+m2

A) is still surjective, hence C ′ → A
is surjective by Lemma 68.3.5. Thus C ′ → B is surjective by our assumption. This
implies that C ′ → B/(mΛB + m2

B) is surjective, which implies by the construction
of C ′ that C → B/(mΛB + m2

B) is surjective.

http://stacks.math.columbia.edu/tag/06GF
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In the first paragraph we proved (3) ⇒ (1) and in the second paragraph we proved
(1) ⇒ (3). The equivalence of (2) and (3) is a special case of the equivalence of (1)
and (3), hence we are done. �

To analyze essential surjections in CΛ a bit more we introduce some notation. Sup-
pose that A is an object of CΛ. There is a canonical exact sequence

(68.3.10.1) mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0

see Algebra, Lemma 10.127.9. Note that Ωk/Λ = Ωk/k′ with k′ as in (68.3.3.1). Let
H1(Lk/Λ) be the first homology module of the naive cotangent complex of k over
Λ, see Algebra, Definition 10.129.1. Then we can extend (68.3.10.1) to the exact
sequence

(68.3.10.2) H1(Lk/Λ)→ mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0,

see Algebra, Lemma 10.129.4. If B → A is a ring map in CΛ then we obtain a
commutative diagram

(68.3.10.3)

H1(Lk/Λ) // mB/m2
B dB

//

��

ΩB/Λ ⊗B k //

��

Ωk/Λ // 0

H1(Lk/Λ) // mA/m2
A

dA // ΩA/Λ ⊗A k // Ωk/Λ // 0

with exact rows.

Lemma 68.3.11. There is a canonical map

mΛ/m
2
Λ −→ H1(Lk/Λ).

If k′ ⊂ k is separable (for example if the characteristic of k is zero), then this map
induces an isomorphism mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). If k = k′ (for example in the

classical case), then mΛ/m
2
Λ = H1(Lk/Λ). The composition

mΛ/m
2
Λ −→ H1(Lk/Λ) −→ mA/m

2
A

comes from the canonical map mΛ → mA.

Proof. Note that H1(Lk′/Λ) = mΛ/m
2
Λ as Λ→ k′ is surjective with kernel mΛ. The

map arises from functoriality of the naive cotangent complex. If k′ ⊂ k is separable,
then k′ → k is an étale ring map, see Algebra, Lemma 10.138.4. Thus its naive
cotangent complex has trivial homology groups, see Algebra, Definition 10.138.1.
Then Algebra, Lemma 10.129.4 applied to the ring maps Λ→ k′ → k implies that
mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). We omit the proof of the final statement. �

Lemma 68.3.12. Let f : B → A be a ring map in CΛ. Notation as in (68.3.10.3).

(1) The equivalent conditions of Lemma 68.3.10 characterizing when f is sur-
jective are also equivalent to
(a) Im(dB)→ Im(dA) is surjective, and
(b) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is surjective.

(2) The following are equivalent
(a) f is an essential surjection,
(b) the map Im(dB)→ Im(dA) is an isomorphism, and
(c) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is an isomorphism.

http://stacks.math.columbia.edu/tag/06S9
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(3) If k/k′ is separable, then f is an essential surjection if and only if the
map mB/(mΛB + m2

B)→ mA/(mΛA+ m2
A) is an isomorphism.

(4) If f is a small extension, then f is not essential if and only if f has a
section s : A→ B in CΛ with f ◦ s = idA.

Proof. Proof of (1). It follows from (68.3.10.3) that (1)(a) and (1)(b) are equiv-
alent. Also, if A → B is surjective, then (1)(a) and (1)(b) hold. Assume (1)(a).
Since the kernel of dA is the image of H1(Lk/Λ) which also maps to mB/m

2
B we con-

clude that mB/m
2
B → mA/m

2
A is surjective. Hence B → A is surjective by Lemma

68.3.5. This finishes the proof of (1).

Proof of (2). The equivalence of (2)(b) and (2)(c) is immediate from (68.3.10.3).

Assume (2)(b). Let g : C → B be a ring map in CΛ such that f ◦g is surjective. We
conclude that mC/m

2
C → mA/m

2
A is surjective by Lemma 68.3.5. Hence Im(dC)→

Im(dA) is surjective and by the assumption we see that Im(dC) → Im(dB) is sur-
jective. It follows that C → B is surjective by (1).

Assume (2)(a). Then f is surjective and we see that ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is

surjective. Let K be the kernel. Note that K = dB(Ker(mB/m
2
B → mA/m

2
A)) by

(68.3.10.3). Choose a splitting

ΩB/Λ ⊗B k = ΩA/Λ ⊗A k ⊕K

of k-vector space. The map d : B → ΩB/Λ induces via the projection onto K a
map D : B → K. Set C = {b ∈ B | D(b) = 0}. The Leibniz rule shows that this
is a Λ-subalgebra of B. Let x ∈ k. Choose x ∈ B mapping to x. If D(x) 6= 0,
then we can find an element y ∈ mB such that D(y) = D(x). Hence x − y ∈ C
is an element which maps to x. Thus C → k is surjective and C is an object of
CΛ. Similarly, pick ω ∈ Im(dA). We can find x ∈ mB such that dB(x) maps to ω
by (1). If D(x) 6= 0, then we can find an element y ∈ mB which maps to zero in
mA/m

2
A such that D(y) = D(x). Hence z = x− y is an element of mC whose image

dC(z) ∈ ΩC/k⊗C k maps to ω. Hence Im(dC)→ Im(dA) is surjective. We conclude
that C → A is surjective by (1). Hence C → B is surjective by assumption. Hence
D = 0, i.e., K = 0, i.e., (2)(c) holds. This finishes the proof of (2).

Proof of (3). If k′/k is separable, then H1(Lk/Λ) = mΛ/m
2
Λ ⊗k′ k, see Lemma

68.3.11. Hence Im(dA) = mA/(mΛA + m2
A) and similarly for B. Thus (3) follows

from (2).

Proof of (4). A section s of f is not surjective (by definition a small extension
has nontrivial kernel), hence f is not essentially surjective. Conversely, assume f
is a small surjection but not an essential surjection. Choose a ring map C → B
in CΛ which is not surjective, such that C → A is surjective. Let C ′ ⊂ B be the
image of C → B. Then C ′ 6= B but C ′ surjects onto A. Since f : B → A is a
small extension, lengthC(B) = lengthC(A) + 1. Thus lengthC(C ′) ≤ lengthC(A)
since C ′ is a proper subring of B. But C ′ → A is surjective, so in fact we must
have lengthC(C ′) = lengthC(A) and C ′ → A is an isomorphism which gives us our
section. �

Example 68.3.13. Let Λ = k[[x]] be the power series ring in 1 variable over k. Set
A = k and B = Λ/(x2). Then B → A is an essential surjection by Lemma 68.3.12

http://stacks.math.columbia.edu/tag/06SA
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because it is a small extension and the map B → A does not have a right inverse
(in the category CΛ). But the map

k ∼= mB/m
2
B −→ mA/m

2
A = 0

is not an isomorphism. Thus in Lemma 68.3.12 (3) it is necessary to consider the
map of relative cotangent spaces mB/(mΛB + m2

B)→ mA/(mΛA+ m2
A).

68.4. The completed base category

The following “completion” of the category CΛ will serve as the base category of
the completion of a category cofibered in groupoids over CΛ (Section 68.7).

Definition 68.4.1. Let Λ be a Noetherian ring and let Λ→ k be a finite ring map

where k is a field. We define ĈΛ to be the category with

(1) objects are pairs (R,ϕ) where R is a Noetherian complete local Λ-algebra
and where ϕ : R/mR → k is a Λ-algebra isomorphism, and

(2) morphisms f : (S, ψ) → (R,ϕ) are local Λ-algebra homomorphisms such
that ϕ ◦ (f mod m) = ψ.

As in the discussion following Definition 68.3.1 we will usually denote an object of ĈΛ
simply R, with the identification R/mR = k understood. In this section we discuss

some basic properties of objects and morphisms of the category ĈΛ paralleling our
discussion of the category CΛ in the previous section.

Our first observation is that any object A ∈ CΛ is an object of ĈΛ as an Artinian
local ring is always Noetherian and complete with respect to its maximal ideal
(which is after all a nilpotent ideal). Moreover, it is clear from the definitions that

CΛ ⊂ ĈΛ is the strictly full subcategory consisting of all Artinian rings. As it turns

out, conversely every object of ĈΛ is a limit of objects of CΛ.

Suppose that R is an object of ĈΛ. Consider the rings Rn = R/mnR for n ∈ N. These
are Noetherian local rings with a unique nilpotent prime ideal, hence Artinian, see
Algebra, Proposition 10.59.6. The ring maps

. . .→ Rn+1 → Rn → . . .→ R2 → R1 = k

are all surjective. Completeness of R by definition means that R = limRn. If

f : R→ S is a ring map in ĈΛ then we obtain a system of ring maps fn : Rn → Sn
whose limit is the given map.

Lemma 68.4.2. Let f : R→ S be a ring map in ĈΛ. The following are equivalent

(1) f is surjective,
(2) the map mR/m

2
R → mS/m

2
S is surjective, and

(3) the map mR/(mΛR+ m2
R)→ mS/(mΛS + m2

S) is surjective.

Proof. Note that for n ≥ 2 we have the equality of relative cotangent spaces

mR/(mΛR+ m2
R) = mRn/(mΛRn + m2

Rn)

and similarly for S. Hence by Lemma 68.3.5 we see that Rn → Sn is surjective for
all n. Now let Kn be the kernel of Rn → Sn. Then the sequences

0→ Kn → Rn → Sn → 0

http://stacks.math.columbia.edu/tag/06GW
http://stacks.math.columbia.edu/tag/06GZ


3852 68. FORMAL DEFORMATION THEORY

form an exact sequence of directed inverse systems. The system (Kn) is Mittag-
Leffler since each Kn is Artinian. Hence by Algebra, Lemma 10.83.4 taking limits
preserves exactness. So limRn → limSn is surjective, i.e., f is surjective. �

Lemma 68.4.3. The category ĈΛ admits pushouts.

Proof. Let R → S1 and R → S2 be morphisms of ĈΛ. Consider the ring C =
S1⊗RS2. This ring has a finitely generated maximal ideal m = mS1

⊗S2 +S1⊗mS2

with residue field k. Set C∧ equal to the completion of C with respect to m. Then
C∧ is a Noetherian ring complete with respect to the maximal ideal m∧ = mC∧

whose residue field is identified with k, see Algebra, Lemma 10.93.9. Hence C∧ is

an object of ĈΛ. Then S1 → C∧ and S2 → C∧ turn C∧ into a pushout over R in

ĈΛ (details omitted). �

We will not need the following lemma.

Lemma 68.4.4. The category ĈΛ admits coproducts of pairs of objects.

Proof. Let R and S be objects of ĈΛ. Consider the ring C = R ⊗Λ S. There is
a canonical surjective map C → R ⊗Λ S → k ⊗Λ k → k where the last map is the
multiplication map. The kernel of C → k is a maximal ideal m. Note that m is
generated by mRC, mSC and finitely many elements of C which map to generators
of the kernel of k ⊗Λ k → k. Hence m is a finitely generated ideal. Set C∧ equal
to the completion of C with respect to m. Then C∧ is a Noetherian ring complete
with respect to the maximal ideal m∧ = mC∧ with residue field k, see Algebra,

Lemma 10.93.9. Hence C∧ is an object of ĈΛ. Then R → C∧ and S → C∧ turn

C∧ into a coproduct in ĈΛ (details omitted). �

An empty coproduct in a category is an initial object of the category. In the classical

case ĈΛ has an initial object, namely Λ itself. More generally, if k′ = k, then the
completion Λ∧ of Λ with respect to mΛ is an initial object. More generally still,

if k′ ⊂ k is separable, then ĈΛ has an initial object too. Namely, choose a monic
polynomial P ∈ Λ[T ] such that k ∼= k′[T ]/(P ′) where p′ ∈ k′[T ] is the image of P .
Then R = Λ∧[T ]/(P ) is an initial object, see proof of Lemma 68.3.8.

If R is an initial object as above, then we have CΛ = CR and ĈΛ = ĈR which
effectively brings the whole discussion in this chapter back to the classical case.
But, if k′ ⊂ k is inseparable, then an initial object does not exist.

Lemma 68.4.5. Let S be an object of ĈΛ. Then dimk DerΛ(S, k) <∞.

Proof. Let x1, . . . , xn ∈ mS map to a k-basis for the relative cotangent space
mS/(mΛS +m2

S). Choose y1, . . . , ym ∈ S whose images in k generate k over k′. We
claim that dimk DerΛ(S, k) ≤ n+m. To see this it suffices to prove that if D(xi) = 0
and D(yj) = 0, then D = 0. Let a ∈ S. We can find a polynomial P =

∑
λJy

J

with λJ ∈ Λ whose image in k is the same as the image of a in k. Then we see
that D(a−P ) = D(a)−D(P ) = D(a) by our assumption that D(yj) = 0 for all j.
Thus we may assume a ∈ mS . Write a =

∑
aixi with ai ∈ S. By the Leibniz rule

D(a) =
∑

xiD(ai) +
∑

aiD(xi) =
∑

xiD(ai)

as we assumed D(xi) = 0. We have
∑
xiD(ai) = 0 as multiplication by xi is zero

on k. �
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Lemma 68.4.6. Let f : R→ S be a morphism of ĈΛ. If DerΛ(S, k)→ DerΛ(R, k)
is injective, then f is surjective.

Proof. If f is not surjective, then mS/(mRS + m2
S) is nonzero by Lemma 68.4.2.

Then also Q = S/(f(R)+mRS+m2
S) is nonzero. Note that Q is a k = R/mR-vector

space via f . We turn Q into an S-module via S → k. The quotient map D : S → Q
is an R-derivation: if a1, a2 ∈ S, we can write a1 = f(b1) + a′1 and a2 = f(b2) + a′2
for some b1, b2 ∈ R and a′1, a

′
2 ∈ mS . Then bi and ai have the same image in k for

i = 1, 2 and

a1a2 = (f(b1) + a′1)(f(b2) + a′2)

= f(b1)a′2 + f(b2)a′1

= f(b1)(f(b2) + a′2) + f(b2)(f(b1) + a′1)

= f(b1)a2 + f(b2)a1

in Q which proves the Leibniz rule. Hence D : S → Q is a Λ-derivation which is
zero on composing with R→ S. Since Q 6= 0 there also exist derivations D : S → k
which are zero on composing with R → S, i.e., DerΛ(S, k) → DerΛ(R, k) is not
injective. �

Lemma 68.4.7. Let R be an object of ĈΛ. Let (Jn) be a decreasing sequence of
ideals such that mnR ⊂ Jn. Set J =

⋂
Jn. Then the sequence (Jn/J) defines the

mR/J -adic topology on R/J .

Proof. It is clear that mnR/J ⊂ Jn/J . Thus it suffices to show that for every n

there exists an N such that JN/J ⊂ mnR/J . This is equivalent to JN ⊂ mnR + J .

For each n the ring R/mnR is Artinian, hence there exists a Nn such that

JNn + mnR = JNn+1 + mnR = . . .

Set En = (JNn + mnR)/mnR. Set E = limEn ⊂ limR/mnR = R. Note that E ⊂ J
as for any f ∈ E and any m we have f ∈ Jm + mnR for all n � 0, so f ∈ Jm by
Artin-Rees, see Algebra, Lemma 10.49.4. Since the transition maps En → En−1

are all surjective, we see that J surjects onto En. Hence for N = Nn works. �

Lemma 68.4.8. Let . . . → A3 → A2 → A1 be a sequence of surjective ring maps

in CΛ. If dimk(mAn/m
2
An

) is bounded, then S = limAn is an object in ĈΛ and the
ideals In = Ker(S → An) define the mS-adic topology on S.

Proof. We will use freely that the maps S → An are surjective for all n. Note
that the maps mAn+1

/m2
An+1

→ mAn/m
2
An

are surjective, see Lemma 68.4.2. Hence

for n sufficiently large the dimension dimk(mAn/m
2
An

) stabilizes to an integer, say
r. Thus we can find x1, . . . , xr ∈ mS whose images in An generate mAn . Moreover,
pick y1, . . . , yt ∈ S whose images in k generate k over Λ. Then we get a ring
map P = Λ[z1, . . . , zr+t] → S, zi 7→ xi and zr+j 7→ yj such that the composition
P → S → An is surjective for all n. Let m ⊂ P be the kernel of P → k. Let

R = P∧ be the m-adic completion of P ; this is an object of ĈΛ. Since we still
have the compatible system of (surjective) maps R → An we get a map R → S.
Set Jn = Ker(R → An). Set J =

⋂
Jn. By Lemma 68.4.7 we see that R/J =

limR/Jn = limAn = S and that the ideals Jn/J = In define the m-adic topology.

(Note that for each n we have mNnR ⊂ Jn for some Nn and not necessarily Nn = n,
so a renumbering of the ideals Jn may be necessary before applying the lemma.) �
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Lemma 68.4.9. Let R′, R ∈ Ob(ĈΛ). Suppose that R = R′ ⊕ I for some ideal
I of R. Let x1, . . . , xr ∈ I map to a basis of I/mRI. Set S = R′[[X1, . . . , Xr]]
and consider the R′-algebra map S → R mapping Xi to xi. Assume that for every
n � 0 the map S/mnS → R/mnR has a left inverse in CΛ. Then S → R is an
isomorphism.

Proof. As R = R′ ⊕ I we have

mR/m
2
R = mR′/m

2
R′ ⊕ I/mRI

and similarly

mR/m
2
R = mR′/m

2
R′ ⊕

⊕
kXi

Hence for n > 1 the map S/mnS → R/mnR induces an isomorphism on cotangent
spaces. Thus a left inverse hn : R/mnR → S/mnS is surjective by Lemma 68.4.2.
Since hn is injective as a left inverse it is an isomorphism. Thus the canonical
surjections S/mnS → R/mnR are all isomorphisms and we win. �

68.5. Categories cofibered in groupoids

In developing the theory we work with categories cofibered in groupoids. We assume
as known the definition and basic properties of categories fibered in groupoids, see
Categories, Section 4.33.

Definition 68.5.1. Let C be a category. A category cofibered in groupoids over C
is a category F equipped with a functor p : F → C such that Fopp is a category
fibered in groupoids over Copp via popp : Fopp → Copp.

Explicitly, p : F → C is cofibered in groupoids if the following two conditions hold:

(1) For every morphism f : U → V in C and every object x lying over U ,
there is a morphism x→ y of F lying over f .

(2) For every pair of morphisms a : x → y and b : x → z of F and any
morphism f : p(y)→ p(z) such that p(b) = f ◦ p(a), there exists a unique
morphism c : y → z of F lying over f such that b = c ◦ a.

Remarks 68.5.2. Everything about categories fibered in groupoids translates di-
rectly to the cofibered setting. The following remarks are meant to fix notation.
Let C be a category.

(1) We often omit the functor p : F → C from the notation.
(2) The fiber category over an object U in C is denoted by F(U). Its ob-

jects are those of F lying over U and its morphisms are those of F lying
over idU . If x, y are objects of F(U), we sometimes write MorU (x, y) for
MorF(U)(x, y).

(3) The fibre categories F(U) are groupoids, see Categories, Lemma 4.33.2.
Hence the morphisms in F(U) are all isomorphisms. We sometimes write
AutU (x) for MorF(U)(x, x).

(4) Let F be a category cofibered in groupoids over C, let f : U → V be a
morphism in C, and let x ∈ Ob(F(U)). A pushforward of x along f is a
morphism x→ y of F lying over f . A pushforward is unique up to unique
isomorphism (see the discussion following Categories, Definition 4.31.1).
We sometimes write x→ f∗x for “the” pushforward of x along f .
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(5) A choice of pushforwards for F is the choice of a pushforward of x along f
for every pair (x, f) as above. We can make such a choice of pushforwards
for F by the axiom of choice.

(6) Let F be a category cofibered in groupoids over C. Given a choice of
pushforwards for F , there is an associated pseudo-functor C → Groupoids.
We will never use this construction so we give no details.

(7) A morphism of categories cofibered in groupoids over C is a functor com-
muting with the projections to C. If F and F ′ are categories cofibered in
groupoids over C, we denote the morphisms from F to F ′ by MorC(F ,F ′).

(8) Categories cofibered in groupoids form a (2, 1)-category Cof(C). Its 1-
morphisms are the morphisms described in (7). If p : F → C and p′ :
F ′ → C are categories cofibered in groupoids and ϕ,ψ : F → F ′ are 1-
morphisms, then a 2-morphism t : ϕ→ ψ is a morphism of functors such
that p′(tx) = idp(x) for all x ∈ Ob(F).

(9) Let F : C → Groupoids be a functor. There is a category cofibered in
groupoids F → C associated to F as follows. An object of F is a pair
(U, x) where U ∈ Ob(C) and x ∈ Ob(F (U)). A morphism (U, x)→ (V, y)
is a pair (f, a) where f ∈ MorC(U, V ) and a ∈ MorF (V )(F (f)(x), y). The
functor F → C sends (U, x) to U . See Categories, Section 4.35.

(10) Let F be cofibered in groupoids over C. For U ∈ Ob(C) set F(U) equal to
the set of isomorphisms classes of the category F(U). If f : U → V is a
morphism of C, then we obtain a map of sets F(U)→ F(V ) by mapping
the isomorphism class of x to the isomorphism class of a pushforward f∗x
of x see (4). Then F : C → Sets is a functor. Similarly, if ϕ : F → G is a
morphism of cofibered categories, we denote by ϕ : F → G the associated
morphism of functors.

(11) Let F : C → Sets be a functor. We can think of a set as a discrete
category, i.e., as a groupoid with only identity morphisms. Then the
construction (9) associates to F a category cofibered in sets. This defines
a fully faithful embedding of the category of functors C → Sets to the
category of categories cofibered in groupoids over C. We identify the
category of functors with its image under this embedding. Hence if F :
C → Sets is a functor, we denote the associated category cofibered in
sets also by F ; and if ϕ : F → G is a morphism of functors, we denote
still by ϕ the corresponding morphism of categories cofibered in sets, and
vice-versa. See Categories, Section 4.36.

(12) Let U be an object of C. We write U for the functor MorC(U,−) : C →
Sets. This defines a fully faithful embedding of Copp into the category of
functors C → Sets. Hence, if f : U → V is a morphism, we are justified in
denoting still by f the induced morphism V → U , and vice-versa.

(13) Fiber products of categories cofibered in groupoids: If F → H and G →
H are morphisms of categories cofibered in groupoids over CΛ, then a
construction of their 2-fiber product is given by the construction for their
2-fiber product as categories over CΛ, as described in Categories, Lemma
4.30.3.

(14) Restricting the base category: Let p : F → C be a category cofibered in
groupoids, and let C′ be a full subcategory of C. The restriction F|C′ is the
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full subcategory of F whose objects lie over objects of C′. It is a category
cofibered in groupoids via the functor p|C′ : F|C′ → C′.

68.6. Prorepresentable functors and predeformation categories

Our basic goal is to understand categories cofibered in groupoids over CΛ and ĈΛ.

Since CΛ is a full subcategory of ĈΛ we can restrict categories cofibred in groupoids

over ĈΛ to CΛ, see Remarks 68.5.2 (14). In particular we can do this with functors,
in particular with representable functors. The functors on CΛ one obtains in this
way are called prorepresentable functors.

Definition 68.6.1. Let F : CΛ → Sets be a functor. We say F is prorepresentable

if there exists an isomorphism F ∼= R|CΛ of functors for some R ∈ Ob(ĈΛ).

Note that if F : CΛ → Sets is prorepresentable by R ∈ Ob(ĈΛ), then

F (k) = MorĈΛ(R, k) = {∗}

is a singleton. The categories cofibered in groupoids over CΛ that are arise in
deformation theory will often satisfy an analogous condition.

Definition 68.6.2. A predeformation category F is a category cofibered in groupoids
over CΛ such that F(k) is equivalent to a category with a single object and a single
morphism, i.e., F(k) contains at least one object and there is a unique morphism
between any two objects. A morphism of predeformation categories is a morphism
of categories cofibered in groupoids over CΛ.

A feature of a predeformation category is the following. Let x0 ∈ Ob(F(k)). Then
every object of F comes equipped with a unique morphism to x0. Namely, if x is
an object of F over A, then we can choose a pushforward x→ q∗x where q : A→ k
is the quotient map. There is a unique isomorphism q∗x→ x0 and the composition
x→ q∗x→ x0 is the desired morphism.

Remark 68.6.3. We say that a functor F : CΛ → Sets is a predeformation functor
if the associated cofibered set is a predeformation category, i.e. if F (k) is a one
element set. Thus if F is a predeformation category, then F is a predeformation
functor.

Remark 68.6.4. Let p : F → CΛ be a category cofibered in groupoids, and let
x ∈ Ob(F(k)). We denote by Fx the category of objects over x. An object of Fx is
an arrow y → x. A morphism (y → x)→ (z → x) in Fx is a commutative diagram

y //

��

z

��
x

There is a forgetful functor Fx → F . We define the functor px : Fx → CΛ as the

composition Fx → F
p−→ CΛ. Then px : Fx → CΛ is a predeformation category

(proof omitted). In this way we can pass from an arbitrary category cofibered in
groupoids over CΛ to a predeformation category at any x ∈ Ob(F(k)).
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68.7. Formal objects and completion categories

In this section we discuss how to go between categories cofibred in groupoids over

CΛ to categories cofibred in groupoids over ĈΛ and vice versa.

Definition 68.7.1. Let F be a category cofibered in groupoids over CΛ. The

category F̂ of formal objects of F is the category with the following objects and
morphisms.

(1) A formal object ξ = (R, ξn, fn) of F consists of an object R of ĈΛ, and
a collection indexed by n ∈ N of objects ξn of F(R/mnR) and morphisms

fn : ξn+1 → ξn lying over the projection R/mn+1
R → R/mnR.

(2) Let ξ = (R, ξn, fn) and η = (S, ηn, gn) be formal objects of F . A morphism

a : ξ → η of formal objects consists of a map a0 : R → S in ĈΛ and a
collection an : ξn → ηn of morphisms of F lying over R/mnR → S/mnS ,
such that for every n the diagram

ξn+1
fn

//

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

The category of formal objects comes with a functor p̂ : F̂ → ĈΛ which sends an
object (R, ξn, fn) to R and a morphism (R, ξn, fn)→ (S, ηn, gn) to the map R→ S.

Lemma 68.7.2. Let p : F → CΛ be a category cofibered in groupoids. Then

p̂ : F̂ → ĈΛ is a category cofibered in groupoids.

Proof. Let R → S be a ring map in ĈΛ. Let (R, ξn, fn) be an object of F̂ . For
each n choose a pushforward ξn → ηn of ξn along R/mnR → S/mnS . For each n there

exists a unique morphism gn : ηn+1 → ηn in F lying over S/mn+1
S → S/mnS such

that

ξn+1

��

fn

// ξn

��
ηn+1

gn // ηn

commutes (by the first axiom of a category cofibred in groupoids). Hence we obtain
a morphism (R, ξn, fn) → (S, ηn, gn) lying over R → S, i.e., the first axiom of a

category cofibred in groupoids holds for F̂ . To see the second axiom suppose that
we have morphisms a : (R, ξn, fn) → (S, ηn, gn) and b : (R, ξn, fn) → (T, θn, hn) in

F̂ and a morphism c0 : S → T in ĈΛ such that c0 ◦ a0 = b0. By the second axiom
of a category cofibred in groupoids for F we obtain unique maps cn : ηn → θn
lying over S/mnS → T/mnT such that cn ◦ an = bn. Setting c = (cn)n≥0 gives the

desired morphism c : (S, ηn, gn) → (T, θn, hn) in F̂ (we omit the verification that
hn ◦ cn+1 = cn ◦ gn). �

Definition 68.7.3. Let p : F → CΛ be a category cofibered in groupoids. The

category cofibered in groupoids p̂ : F̂ → ĈΛ is called the completion of F .
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If F is a category cofibered in groupoids over CΛ, we have defined F̂(R) for R ∈
Ob(ĈΛ) in terms of the filtration of R by powers of its maximal ideal. But suppose
I = (In) is a filtration of R by ideals inducing the mR-adic topology. We define

F̂I(R) to be the category with the following objects and morphisms:

(1) An object is a collection (ξn, fn)n∈N of objects ξn of F(R/In) and mor-
phisms fn : ξn+1 → ξn lying over the projections R/In+1 → R/In.

(2) A morphism a : (ξn, fn) → (ηn, gn) consists of a collection an : ξn → ηn
of morphisms in F(R/In), such that for every n the diagram

ξn+1
fn //

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

Lemma 68.7.4. In the situation above, F̂I(R) is equivalent to the category F̂(R).

Proof. An equivalence F̂I(R) → F̂(R) can be defined as follows. For each n, let

m(n) be the least m that Im ⊂ mnR. Given an object (ξn, fn) of F̂I(R), let ηn
be the pushforward of ξm(n) along R/Im(n) → R/mnR. Let gn : ηn+1 → ηn be the

unique morphism of F lying over R/mn+1
R → R/mnR such that

ξm(n+1)
fm(n)◦...◦fm(n+1)−1

//

��

ξm(n)

��
ηn+1

gn // ηn

commutes (existence and uniqueness is guaranteed by the axioms of a cofibred

category). The functor F̂I(R) → F̂(R) sends (ξn, fn) to (R, ηn, gn). We omit the
verification that this is indeed an equivalence of categories. �

Remark 68.7.5. Let p : F → CΛ be a category cofibered in groupoids. Suppose

that for each R ∈ Ob(ĈΛ) we are given a filtration IR of R by ideals. If IR
induces the mR-adic topology on R for all R, then one can define a category F̂I
by mimicking the definition of F̂ . This category comes equipped with a morphism

p̂I : F̂I → ĈΛ making it into a category cofibered in groupoids such that F̂I(R)

is isomorphic to F̂IR(R) as defined above. The categories cofibered in groupoids

F̂I and F̂ are equivalent, by using over an object R ∈ Ob(ĈΛ) the equivalence of
Lemma 68.7.4.

Remark 68.7.6. Let F : CΛ → Sets be a functor. Identifying functors with

cofibered sets, the completion of F is the functor F̂ : ĈΛ → Sets given by F̂ (S) =
limF (S/mnS). This agrees with the definition in Schlessinger’s paper [Sch68].

Remark 68.7.7. Let F be a category cofibred in groupoids over CΛ. We claim
that there is a canonical equivalence

can : F̂ |CΛ −→ F .

Namely, let A ∈ Ob(CΛ) and let (A, ξn, fn) be an object of F̂ |CΛ(A). Since A is
Artinian there is a minimal m ∈ N such that mmA = 0. Then can sends (A, ξn, fn)

http://stacks.math.columbia.edu/tag/06H6
http://stacks.math.columbia.edu/tag/06H7
http://stacks.math.columbia.edu/tag/06H8
http://stacks.math.columbia.edu/tag/06SJ


68.7. FORMAL OBJECTS AND COMPLETION CATEGORIES 3859

to ξm. This functor is an equivalence of categories cofibered in groupoids by Cate-
gories, Lemma 4.33.8 because it is an equivalence on all fibre categories by Lemma
68.7.4 and the fact that the mA-adic topology on a local Artinian ring A comes

from the zero ideal. We will frequently identify F with a full subcategory of F̂ via
a quasi-inverse to the functor can.

Remark 68.7.8. Let ϕ : F → G be a morphism of categories cofibered in groupoids

over CΛ. Then there is an induced morphism ϕ̂ : F̂ → Ĝ of categories cofibered

in groupoids over ĈΛ. It sends an object ξ = (R, ξn, fn) of F̂ to (R,ϕ(ξn), ϕ(fn)),
and it sends a morphism (a0 : R → S, an : ξn → ηn) between objects ξ and η of

F̂ to (a0 : R → S, ϕ(an) : ϕ(ξn) → ϕ(ηn)). Finally, if t : ϕ → ϕ′ is a 2-morphism
between 1-morphisms ϕ,ϕ′ : F → G of categories cofibred in groupoids, then we
obtain a 2-morphism t̂ : ϕ̂ → ϕ̂′. Namely, for ξ = (R, ξn, fn) as above we set

t̂ξ = (tϕ(ξn)). Hence completion defines a functor between 2-categories

̂ : Cof(CΛ) −→ Cof(ĈΛ)

from the 2-category of categories cofibred in groupoids over CΛ to the 2-category of

categories cofibred in groupoids over ĈΛ.

Remark 68.7.9. We claim the completion functor of Remark 68.7.8 and the re-

striction functor |CΛ : Cof(ĈΛ)→ Cof(CΛ) of Remarks 68.5.2 (14) are “2-adjoint” in

the following precise sense. Let F ∈ Ob(Cof(CΛ)) and let G ∈ Ob(Cof(ĈΛ)). Then
there is an equivalence of categories

Φ : MorCΛ(G|CΛ ,F) −→ MorĈΛ(G, F̂)

To describe this equivalence, we define canonical morphisms G → Ĝ|CΛ and F̂ |CΛ →
F as follows

(1) Let R ∈ Ob(ĈΛ)) and let ξ be an object of the fiber category G(R). Choose
a pushforward ξ → ξn of ξ to R/mnR for each n ∈ N, and let fn : ξn+1 → ξn

be the induced morphism. Then G → Ĝ|CΛ sends ξ to (R, ξn, fn).

(2) This is the equivalence can : F̂ |CΛ → F of Remark 68.7.7.

Having said this, the equivalence Φ : MorCΛ(G|CΛ ,F)→ MorĈΛ(G, F̂) sends a mor-

phism ϕ : G|CΛ → F to

G → Ĝ|CΛ
ϕ̂−→ F̂

There is a quasi-inverse Ψ : MorĈΛ(G, F̂) → MorCΛ(G|CΛ ,F) to Φ which sends

ψ : G → F̂ to

G|CΛ
ψ|CΛ−−−→ F̂|CΛ → F .

We omit the verification that Φ and Ψ are quasi-inverse. We also do not address
functoriality of Φ (because it would lead into 3-category territory which we want
to avoid at all cost).

Remark 68.7.10. For a category C we denote by CofSet(C) the category of
cofibered sets over C. It is a 1-category isomorphic the category of functors C →
Sets. See Remarks 68.5.2 (11). The completion and restriction functors restrict to

functors ̂ : CofSet(CΛ) → CofSet(ĈΛ) and |CΛ : CofSet(ĈΛ) → CofSet(CΛ) which
we denote by the same symbols. As functors on the categories of cofibered sets,
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completion and restriction are adjoints in the usual 1-categorical sense: the same
construction as in Remark 68.7.9 defines a functorial bijection

MorCΛ(G|CΛ , F ) −→ MorĈΛ(G, F̂ )

for F ∈ Ob(CofSet(CΛ)) and G ∈ Ob(CofSet(ĈΛ)). Again the map F̂ |CΛ → F is an
isomorphism.

Remark 68.7.11. Let G : ĈΛ → Sets be a functor that commutes with limits.

Then the map G→ Ĝ|CΛ described in Remark 68.7.9 is an isomorphism. Indeed, if

S is an object of ĈΛ, then we have canonical bijections

Ĝ|CΛ(S) = limnG(S/mnS) = G(limn S/m
n
S) = G(S).

In particular, if R is an object of ĈΛ then R = R̂|CΛ because the representable
functor R commutes with limits by definition of limits.

Remark 68.7.12. Let R be an object of ĈΛ. It defines a functor R : ĈΛ → Sets
as described in Remarks 68.5.2 (12). As usual we identify this functor with the
associated cofibered set. If F is a cofibered category over CΛ, then there is an
equivalence of categories

(68.7.12.1) MorCΛ(R|CΛ ,F) −→ F̂(R).

It is given by the composition

MorCΛ(R|CΛ ,F)
Φ−→ MorĈΛ(R, F̂)

∼−→ F̂(R)

where Φ is as in Remark 68.7.9 and the second equivalence comes from the 2-
Yoneda lemma (the cofibered analogue of Categories, Lemma 4.39.1). Explicitly,
the equivalence sends a morphism ϕ : R|CΛ → F to the formal object (R,ϕ(R →
R/mnR), ϕ(fn)) in F̂(R), where fn : R/mn+1

R → R/mnR is the projection.

Assume a choice of pushforwards for F has been made. Given any ξ ∈ Ob(F̂(R))
we construct an explicit ξ : R|CΛ → F which maps to ξ under (68.7.12.1). Namely,
say ξ = (R, ξn, fn). An object α in R|CΛ is the same thing as a morphism α : R→ A

of ĈΛ with A Artinian. Let m ∈ N be minimal such that mmA = 0. Then α factors
through a unique αm : R/mmR → A and we can set ξ(α) = αm,∗ξm. We omit
the description of ξ on morphisms and we omit the proof that ξ maps to ξ via
(68.7.12.1).

Assume a choice of pushforwards for F̂ has been made. In this case the proof of
Categories, Lemma 4.39.1 gives an explicit quasi-inverse

ι : F̂(R) −→ MorĈΛ(R, F̂)

to the 2-Yoneda equivalence which takes ξ to the morphism ι(ξ) : R → F̂ sending
f ∈ R(S) = MorCΛ(R,S) to f∗ξ. A quasi-inverse to (68.7.12.1) is then

F̂(R)
ι−→ MorĈΛ(R, F̂)

Ψ−→ MorCΛ(R|CΛ ,F)

where Ψ is as in Remark 68.7.9. Given ξ ∈ Ob(F̂(R)) we have Ψ(ι(ξ)) ∼= ξ where ξ
is as in the previous paragraph, because both are mapped to ξ under the equivalence

of categories (68.7.12.1). Using R = R̂|CΛ (see Remark 68.7.11) and unwinding the
definitions of Φ and Ψ we conclude that ι(ξ) is isomorphic to the completion of ξ.
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Remark 68.7.13. Let F be a category cofibred in groupoids over CΛ. Let ξ =
(R, ξi, fn) and η = (S, ηn, gn) be formal objects of F . Let a = (an) : ξ → η be a

morphism of formal objects, i.e., a morphism of F̂ . Let f = p̂(a) = a0 : R → S be

the projection of a in ĈΛ. Then we obtain a 2-commutative diagram

R|CΛ

ξ !!

S|CΛf
oo

η
}}

F

where ξ and η are the morphisms constructed in Remark 68.7.12. To see this let
α : S → A be an object of S|CΛ (see loc. cit.). Let m ∈ N be minimal such that
mmA = 0. We get a commutative diagram

R

f

��

// R/mmR

fm

��

βm

""
S // S/mmS

αm // A

such that the bottom arrows compose to give α. Then η(α) = αm,∗ηm and ξ(α◦f) =
βm,∗ξm. The morphism am : ξm → ηm lies over fm hence we obtain a canonical
morphism

ξ(α ◦ f) = βm,∗ξm −→ η(α) = αm,∗ηm

lying over idA such that

ξm //

am

��

βm,∗ξm

��
ηm // αm,∗ηm

commutes by the axioms of a category cofibred in groupoids. This defines a trans-
formation of functors ξ ◦ f → η which witnesses the 2-commutativity of the first
diagram of this remark.

Remark 68.7.14. According to Remark 68.7.12, giving a formal object ξ of F
is equivalent to giving a prorepresentable functor U : CΛ → Sets and a morphism
U → F .

68.8. Smooth morphisms

In this section we discuss smooth morphisms of categories cofibered in groupoids
over CΛ.

Definition 68.8.1. Let ϕ : F → G be a morphism of categories cofibered in
groupoids over CΛ. We say ϕ is smooth if it satisfies the following condition: Let
B → A be a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈ Ob(F(A)), and
y → ϕ(x) be a morphism lying over B → A. Then there exists x′ ∈ Ob(F(B)),
a morphism x′ → x lying over B → A, and a morphism ϕ(x′) → y lying over
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id : B → B, such that the diagram

ϕ(x′) //

##

y

��
ϕ(x)

commutes.

Lemma 68.8.2. Let ϕ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Then ϕ is smooth if the condition in Definition 68.8.1 is assumed to hold
only for small extensions B → A.

Proof. Let B → A be a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈
Ob(F(A)), and y → ϕ(x) be a morphism lying over B → A. By Lemma 68.3.3 we
can factor B → A into small extensions B = Bn → Bn−1 → . . . → B0 = A. We
argue by induction on n. If n = 1 the result is true by assumption. If n > 1, then
denote f : B = Bn → Bn−1 and denote g : Bn−1 → B0 = A. Choose a pushforward
y → f∗y of y along f , so that the morphism y → ϕ(x) factors as y → f∗y → ϕ(x).
By the induction hypothesis we can find xn−1 → x lying over g : Bn−1 → A and
a : ϕ(xn−1)→ f∗y lying over id : Bn−1 → Bn−1 such that

ϕ(xn−1)
a
//

$$

f∗y

��
ϕ(x)

commutes. We can apply the assumption to the composition y → ϕ(xn−1) of
y → f∗y with a−1 : f∗y → ϕ(xn−1). We obtain xn → xn−1 lying over Bn → Bn−1

and ϕ(xn)→ y lying over id : Bn → Bn so that the diagram

ϕ(xn) //

��

y

��
ϕ(xn−1)

a //

$$

f∗y

��
ϕ(x)

commutes. Then the composition xn → xn−1 → x and ϕ(xn) → y are the mor-
phisms required by the definition of smoothness. �

Remark 68.8.3. Let ϕ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Let B → A be a ring map in CΛ. Choices of pushforwards along B → A for
objects in the fiber categories F(B) and G(B) determine functors F(B) → F(A)
and G(B)→ G(A) fitting into a 2-commutative diagram

F(B)
ϕ //

��

G(B)

��
F(A)

ϕ // G(A).
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Hence there is an induced functor F(B) → F(A) ×G(A) G(B). Unwinding the
definitions shows that ϕ : F → G is smooth if and only if this induced functor
is essentially surjective whenever B → A is surjective (or equivalently, by Lemma
68.8.2, whenever B → A is a small extension).

Remark 68.8.4. The characterization of smooth morphisms in Remark 68.8.3 is
analogous to Schlessinger’s notion of a smooth morphism of functors, cf. [Sch68,
Definition 2.2.]. In fact, when F and G are cofibered in sets then our notion is
equivalent to Schlessinger’s. Namely, in this case let F,G : CΛ → Sets be the
corresponding functors, see Remarks 68.5.2 (11). Then F → G is smooth if and
only if for every surjection of rings B → A in CΛ the map F (B)→ F (A)×G(A)G(B)
is surjective.

Remark 68.8.5. Let F be a category cofibered in groupoids over CΛ. Then the
morphism F → F is smooth.

If R → S is a ring map ĈΛ, then there is an induced morphism S → R between

the functors S,R : ĈΛ → Sets. In this situation, smoothness of the restriction
S|CΛ → R|CΛ is a familiar notion:

Lemma 68.8.6. Let R → S be a ring map in ĈΛ. Then the induced morphism
S|CΛ → R|CΛ is smooth if and only if S is a power series ring over R.

Proof. Assume S is a power series ring over R. Say S = R[[x1, . . . , xn]]. Smooth-
ness of S|CΛ → R|CΛ means the following (see Remark 68.8.4): Given a surjective
ring map B → A in CΛ, a ring map R→ B, a ring map S → A such that the solid
diagram

S //

��

A

R

OO

// B

OO

is commutative then a dotted arrow exists making the diagram commute. (Note
the similarity with Algebra, Definition 10.133.1.) To construct the dotted arrow
choose elements bi ∈ B whose images in A are equal to the images of xi in A. Note
that bi ∈ mB as xi maps to an element of mA. Hence there is a unique R-algebra
map R[[x1, . . . , xn]] → B which maps xi to bi and which can serve as our dotted
arrow.

Conversely, assume S|CΛ → R|CΛ is smooth. Let x1, . . . , xn ∈ S be elements whose
images form a basis in the relative cotangent space mS/(mRS + m2

S) of S over R.
Set T = R[[X1, . . . , Xn]]. Note that both

S/(mRS + m2
S) ∼= R/mR[x1, . . . , xn]/(xixj)

and

T/(mRT + m2
T ) ∼= R/mR[X1, . . . , Xn]/(XiXj).

Let S/(mRS + m2
S) → T/(mRT + m2

T ) be the local R-algebra isomorphism given
by mapping the class of xi to the class of Xi. Let f1 : S → T/(mRT + m2

T ) be
the composition S → S/(mRS + m2

S) → T/(mRT + m2
T ). The assumption that

S|CΛ → R|CΛ is smooth means we can lift f1 to a map f2 : S → T/m2
T , then

to a map f3 : S → T/m3
T , and so on, for all n ≥ 1. Thus we get an induced

map f : S → T = limT/mnT of local R-algebras. By our choice of f1, the map f
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induces an isomorphism mS/(mRS+m2
S)→ mT /(mRT +m2

T ) of relative cotangent
spaces. Hence f is surjective by Lemma 68.4.2 (where we think of f as a map in

ĈR). Choose preimages yi ∈ S of Xi ∈ T under f . As T is a power series ring
over R there exists a local R-algebra homomorphism s : T → S mapping Xi to
yi. By construction f ◦ s = id. Then s is injective. But s induces an isomorphism
on relative cotangent spaces since f does, so it is also surjective by Lemma 68.4.2
again. Hence s and f are isomorphisms. �

Smooth morphisms satisfy the following functorial properties.

Lemma 68.8.7. Let ϕ : F → G and ψ : G → H be morphisms of categories
cofibered in groupoids over CΛ.

(1) If ϕ and ψ are smooth, then ψ ◦ ϕ is smooth.
(2) If ϕ is essentially surjective and ψ ◦ ϕ is smooth, then ψ is smooth.
(3) If G′ → G is a morphism of categories cofibered in groupoids and ϕ is

smooth, then F ×G G′ → G′ is smooth.

Proof. Statements (1) and (2) follow immediately from the definitions. Proof of
(3) omitted. Hints: use the formulation of smoothness given in Remark 68.8.3 and
use that F ×G G′ is the 2-fibre product, see Remarks 68.5.2 (13). �

Lemma 68.8.8. Let ϕ : F → G be a smooth morphism of categories cofibered
in groupoids over CΛ. Assume ϕ : F(k) → G(k) is essentially surjective. Then

ϕ : F → G and ϕ̂ : F̂ → Ĝ are essentially surjective.

Proof. Let y be an object of G lying overA ∈ Ob(CΛ). Let y → y0 be a pushforward
of y along A → k. By the assumption on essential surjectivity of ϕ : F(k) →
G(k) there exist an object x0 of F lying over k and an isomorphism y0 → ϕ(x0).
Smoothness of ϕ implies there exists an object x of F over A whose image ϕ(x) is
isomorphic to y. Thus ϕ : F → G is essentially surjective.

Let η = (R, ηn, gn) be an object of Ĝ. We construct an object ξ of F̂ with an
isomorphism η → ϕ(ξ). By the assumption on essential surjectivity of ϕ : F(k)→
G(k), there exists a morphism η1 → ϕ(ξ1) in G(k) for some ξ1 ∈ Ob(F(k)). The

morphism η2
g1−→ η1 → ϕ(ξ1) lies over the surjective ring map R/m2

R → k, hence by
smoothness of ϕ there exists ξ2 ∈ Ob(F(R/m2

R)), a morphism f1 : ξ2 → ξ1 lying
over R/m2

R → k, and a morphism η2 → ϕ(ξ2) such that

ϕ(ξ2)
ϕ(f1) // ϕ(ξ1)

η2

OO

g1 // η1

OO

commutes. Continuing in this way we construct an object ξ = (R, ξn, fn) of F̂ and

a morphism η → ϕ(ξ) = (R,ϕ(ξn), ϕ(fn)) in Ĝ(R). �

Remark 68.8.9. Let p : F → CΛ be a category cofibered in groupoids. We can
consider CΛ as the trivial category cofibered in groupoids over CΛ, and then p is a
morphism of categories cofibered in groupoids over CΛ. We say F is smooth if its
structure morphism p is smooth. This is the “absolute” notion of smoothness for a
category cofibered in groupoids over CΛ.
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Example 68.8.10. Let R ∈ Ob(ĈΛ). When is R|CΛ smooth? In the classical
case this means that R is a power series ring over Λ, see Lemma 68.8.6. (Strictly

speaking this uses that Λ|CΛ = CΛ because Λ is an initial object of ĈΛ in the classical
case.) In the general case we can construct examples as follows. Pick an integer
n ≥ 0 and a maximal ideal m ⊂ Λ[x1, . . . , xn] lying over mΛ so that

k′ = Λ/mΛ −→ Λ[x1, . . . , xn]/m

is isomorphic to k′ → k. Fix such an identification k = Λ[x1, . . . , xn]/m. Set
R = Λ[x1, . . . , xn]∧ equal to the m-adic completion of Λ[x1, . . . , xn]. Then R is an

object of ĈΛ. Namely, it is a complete local Noetherian ring (see Algebra, Lemma
10.93.10) and its residue field is identified with k. We claim that R|CΛ is smooth.
To see this we have to show: Given a surjection B → A in CΛ and a map R → A
there exists a lift of this map to B. This is clear as we can first lift the composition
Λ[x1, . . . , xn] → R → A to a map Λ[x1, . . . , xn] → B and then observe that this
latter map factors through the completion R as B is complete (being Artinian).
In fact, it turns out that whenever R|CΛ is smooth, then R is isomorphic to a
completion of a smooth algebra over Λ, but we won’t use this.

Example 68.8.11. Here is a more explicit example of an R as in Example 68.8.10.
Let p be a prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn) and let k =
Fp(x1, . . . , xn) with map Λ→ k given by ti 7→ xpi . Then we can take

R = Λ[x1, . . . , xn]∧(xp1−t1,...,x
p
n−tn)

We cannot do “better” in this example, i.e., we cannot approximate CΛ by a smaller

smooth object of ĈΛ (one can argue that the dimension of R has to be at least n
since the map ΩR/Λ ⊗R k → Ωk/Λ is surjective). We will discuss this phenomenon
later in more detail.

Remark 68.8.12. Suppose F is a predeformation category admitting a smooth
morphism ϕ : U → F from a predeformation category U . Then by Lemma 68.8.8 ϕ
is essentially surjective, so by Lemma 68.8.7 p : F → CΛ is smooth if and only if the

composition U ϕ−→ F p−→ CΛ is smooth, i.e. F is smooth if and only if U is smooth.

Later we are interested in producing smooth morphisms from prorepresentable func-
tors to predeformation categories F . By the discussion in Remark 68.7.12 these
morphisms correspond to certain formal objects of F More precisely, these are the
so-called versal formal objects of F .

Definition 68.8.13. Let F be a category cofibered in groupoids. Let ξ be a

formal object of F lying over R ∈ Ob(ĈΛ). We say ξ is versal if the corresponding
morphism ξ : R|CΛ → F of Remark 68.7.12 is smooth.

Remark 68.8.14. Let F be a category cofibered in groupoids over CΛ, and let ξ
be a formal object of F . It follows from the definition of smoothness that versality
of ξ is equivalent to the following condition: If

y

��
ξ // x
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is a diagram in F̂ such that y → x lies over a surjective map B → A of Artinian
rings (we may assume it is a small extension), then there exists a morphism ξ → y
such that

y

��
ξ //

@@

x

commutes. In particular, the condition that ξ be versal does not depend on the
choices of pushforwards made in the construction of ξ : R|CΛ → F in Remark
68.7.12.

Lemma 68.8.15. Let F be a predeformation category. Let ξ be a versal formal

object of F . For any formal object η of F̂ , there exists a morphism ξ → η.

Proof. By assumption the morphism ξ : R|CΛ → F is smooth. Then ι(ξ) : R→ F̂
is the completion of ξ, see Remark 68.7.12. By Lemma 68.8.8 there exists an object

f of R such that ι(ξ)(f) = η. Then f is a ring map f : R → S in ĈΛ. And
ι(ξ)(f) = η means that f∗ξ ∼= η which means exactly that there is a morphism
ξ → η lying over f . �

68.9. Schlessinger’s conditions

In the following we often consider fibre products A1 ×A A2 of rings in the category
CΛ. We have seen in Example 68.3.7 that such a fibre product may not always be
an object of CΛ. However, in virtually all cases below one of the two maps Ai → A
is surjective and A1 ×A A2 will be an object of CΛ by Lemma 68.3.8. We will use
this result without further mention.

We denote by k[ε] the ring of dual numbers over k. More generally, for a k-vector
space V , we denote by k[V ] the k-algebra whose underlying vector space is k ⊕ V
and whose multiplication is given by (a, v) · (a′, v′) = (aa′, av′+a′v). When V = k,
k[V ] is the ring of dual numbers over k. For any finite dimensional k-vector space
V the ring k[V ] is in CΛ.

Definition 68.9.1. Let F be a category cofibered in groupoids over CΛ. We define
conditions (S1) and (S2) on F as follows:

(S1) Every diagram in F

x2

��
x1

// x

lying over

A2

��
A1

// A

in CΛ with A2 → A surjective can be completed to a commutative diagram

y //

��

x2

��
x1

// x

lying over

A1 ×A A2
//

��

A2

��
A1

// A.
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(S2) The condition of (S1) holds for diagrams in F lying over a diagram in CΛ
of the form

k[ε]

��
A // k.

Moreover, if we have two commutative diagrams in F

y
c
//

a

��

xε

e

��
x

d // x0

and

y′
c′
//

a′

��

xε

e

��
x

d // x0

lying over

A×k k[ε] //

��

k[ε]

��
A // k

then there exists a morphism b : y → y′ in F(A×kk[ε]) such that a = a′◦b.

We can partly explain the meaning of conditions (S1) and (S2) in terms of fibre
categories. Suppose that f1 : A1 → A and f2 : A2 → A are ring maps in CΛ with
f2 surjective. Denote pi : A1 ×A A2 → Ai the projection maps. Assume a choice
of pushforwards for F has been made. Then the commutative diagram of rings
translates into a 2-commutative diagram

F(A1 ×A A2)
p2,∗
//

p1,∗

��

F(A2)

f2,∗

��
F(A1)

f1,∗ // F(A)

of fibre categories whence a functor

(68.9.1.1) F(A1 ×A A2)→ F(A1)×F(A) F(A2)

into the 2-fibre product of categories. Condition (S1) requires that this functor be
essentially surjective. The first part of condition (S2) requires that this functor
be a essentially surjective if f2 equals the map k[ε] → k. Moreover in this case,
the second part of (S2) implies that two objects which become isomorphic in the
target are isomorphic in the source (but it is not equivalent to this statement). The
advantage of stating the conditions as in the definition is that no choices have to
be made.

Lemma 68.9.2. Let F be a category cofibered in groupoids over CΛ. Then F
satisfies (S1) if the condition of (S1) is assumed to hold only when A2 → A is a
small extension.

Proof. Proof omitted. Hints: apply Lemma 68.3.3 and use induction similar to
the proof of Lemma 68.8.2. �

Remark 68.9.3. When F is cofibered in sets, conditions (S1) and (S2) are exactly
conditions (H1) and (H2) from Schlessinger’s paper [Sch68]. Namely, for a functor
F : CΛ → Sets, conditions (S1) and (S2) state:

(S1) If A1 → A and A2 → A are maps in CΛ with A2 → A surjective, then the
induced map F (A1 ×A A2)→ F (A1)×F (A) F (A2) is surjective.

(S2) If A→ k is a map in CΛ, then the induced map F (A×kk[ε])→ F (A)×F (k)

F (k[ε]) is bijective.
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The injectivity of the map F (A ×k k[ε]) → F (A) ×F (k) F (k[ε]) comes from the
second part of condition (S2) and the fact that morphisms are identities.

Lemma 68.9.4. Let F be a category cofibred in groupoids over CΛ. If F satisfies
(S2), then the condition of (S2) also holds when k[ε] is replaced by k[V ] for any
finite dimensional k-vector space V .

Proof. In the case that F is cofibred in sets, i.e., corresponds to a functor F :
CΛ → Sets this follows from the description of (S2) for F in Remark 68.9.3 and the
fact that k[V ] ∼= k[ε] ×k . . . ×k k[ε] with dimk V factors. The case of functors is
what we will use in the rest of this chapter.

We prove the general case by induction on dim(V ). If dim(V ) = 1, then k[V ] ∼= k[ε]
and the result holds by assumption. If dim(V ) > 1 we write V = V ′ ⊕ kε. Pick a
diagram

xV

��
x // x0

lying over

k[V ]

��
A // k

Choose a morphism xV → xV ′ lying over k[V ] → k[V ′] and a morphism xV → xε
lying over k[V ]→ k[ε]. Note that the morphism xV → x0 factors as xV → xV ′ → x0

and as xV → xε → x0. By induction hypothesis we can find a diagram

y′

��

// xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

This gives us a commutative diagram

xε

��
y′ // x0

lying over

k[ε]

��
A×k k[V ′] // k

Hence by (S2) we get a commutative diagram

y

��

// xε

��
y′ // x0

lying over

(A×k k[V ′])×k k[ε]

��

// k[ε]

��
A×k k[V ′] // k

Note that (A×k k[V ′])×k k[ε] = A×k k[V ′⊕ kε] = A×k k[V ]. We claim that y fits
into the correct commutative diagram. To see this we let y → yV be a morphism
lying over A ×k k[V ] → k[V ]. We can factor the morphisms y → y′ → xV ′ and
y → xε through the morphism y → yV (by the axioms of categories cofibred in
groupoids). Hence we see that both yV and xV fit into commutative diagrams

yV //

��

xε

��
xV ′ // x0

and

xV //

��

xε

��
xV ′ // x0
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and hence by the second part of (S2) there exists an isomorphism yV → xV com-
patible with yV → xV ′ and xV → xV ′ and in particular compatible with the maps
to x0. The composition y → yV → xV then fits into the required commutative
diagram

y //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

In this way we see that the first part of (S2) holds with k[ε] replaced by k[V ].

To prove the second part suppose given two commutative diagrams

y //

��

xV

��
x // x0

and

y′ //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

We will use the morphisms xV → xV ′ → x0 and xV → xε → x0 introduced in the
first paragraph of the proof. Choose morphisms y → yV ′ and y′ → y′V ′ lying over
A ×k k[V ] → A ×k k[V ′]. The axioms of a cofibred category imply we can find
commutative diagrams

yV ′ //

��

xV ′

��
x // x0

and

y′V ′
//

��

xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

By induction hypothesis we obtain an isomorphism b : yV ′ → y′V ′ compatible with
the morphisms yV ′ → x and y′V ′ → x, in particular compatible with the morphisms
to x0. Then we have commutative diagrams

y //

��

xε

��
y′V ′

// x0

and

y′ //

��

xε

��
y′V ′

// x0

lying over

A×k k[ε]

��

// k[ε]

��
A // k

where the morphism y → y′V ′ is the composition y → yV ′
b−→ y′V ′ and where the

morphisms y → xε and y′ → xε are the compositions of the maps y → xV and
y′ → xV with the morphism xV → xε. Then the second part of (S2) guarantees the
existence of an isomorphism y → y′ compatible with the maps to y′V ′ , in particular
compatible with the maps to x (because b was compatible with the maps to x). �

Lemma 68.9.5. Let F be a category cofibered in groupoids over CΛ.

(1) If F satisfies (S1), then so does F .
(2) If F satisfies (S2), then so does F provided at least one of the following

conditions is satisfied
(a) F is a predeformation category,
(b) the category F(k) is a set or a setoid, or
(c) for any morphism xε → x0 of F lying over k[ε]→ k the pushforward

map Autk[ε](xε)→ Autk(x0) is surjective.
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Proof. Assume F has (S1). Suppose we have ring maps fi : Ai → A in CΛ with
f2 surjective. Let xi ∈ F(Ai) such that the pushforwards f1,∗(x1) and f2,∗(x2) are
isomorphic. Then we can denote x an object of F over A isomorphic to both of
these and we obtain a diagram as in (S1). Hence we find an object y of F over
A1 ×A A2 whose pushforward to A1, resp. A2 is isomorphic to x1, resp. x2. In this
way we see that (S1) holds for F .

Assume F has (S2). The first part of (S2) for F follows as in the argument above.
The second part of (S2) for F signifies that the map

F(A×k k[ε])→ F(A)×F(k) F(k[ε])

is injective for any ring A in CΛ. Suppose that y, y′ ∈ F(A ×k k[ε]). Using the
axioms of cofibred categories we can choose commutative diagrams

y
c
//

a

��

xε

e

��
x

d // x0

and

y′
c′
//

a′

��

x′ε

e′

��
x′

d′ // x′0

lying over

A×k k[ε]

��

// k[ε]

��
A // k

Assume that there exist isomorphisms α : x → x′ in F(A) and β : xε → x′ε in
F(k[ε]). This also means there exists an isomorphism γ : x0 → x′0 compatible with
α. To prove (S2) for F we have to show that there exists an isomorphism y → y′

in F(A ×k k[ε]). By (S2) for F such a morphism will exist if we can choose the
isomorphisms α and β and γ such that

x

α

��

// x0

γ

��

xε

β

��

e
oo

x′ // x′0 x′ε
e′oo

is commutative (because then we can replace x by x′ and xε by x′ε in the previous
displayed diagram). The left hand square commutes by our choice of γ. We can
factor e′ ◦ β as γ′ ◦ e for some second map γ′ : x0 → x′0. Now the question is
whether we can arrange it so that γ = γ′? This is clear if F(k) is a set, or a setoid.
Moreover, if Autk[ε](xε)→ Autk(x0) is surjective, then we can adjust the choice of

β by precomposing with an automorphism of xε whose image is γ−1 ◦ γ′ to make
things work. �

Lemma 68.9.6. Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let Fx0

be the category cofibred in groupoids over CΛ constructed in
Remark 68.6.4.

(1) If F satisfies (S1), then so does Fx0
.

(2) If F satisfies (S2), then so does Fx0
.

Proof. Any diagram as in Definition 68.9.1 in Fx0
gives rise to a diagram in F

and the output of condition (S1) or (S2) for this diagram in F can be viewed as an
output for Fx0

as well. �

http://stacks.math.columbia.edu/tag/06SQ


68.9. SCHLESSINGER’S CONDITIONS 3871

Lemma 68.9.7. Let p : F → CΛ be a category cofibered in groupoids. Consider a
diagram of F

y //

a

��

xε

e

��
x

d // x0

lying over

A×k k[ε] //

��

k[ε]

��
A // k.

in CΛ. Assume F satisfies (S2). Then there exists a morphism s : x → y with
a ◦ s = idx if and only if there exists a morphism sε : x→ xε with e ◦ sε = d.

Proof. The “only if” direction is clear. Conversely, assume there exists a morphism
sε : x → xε with e ◦ sε = d. Note that p(sε) : A → k[ε] is a ring map compatible
with the map A→ k. Hence we obtain

σ = (idA, p(sε)) : A→ A×k k[ε].

Choose a pushforward x→ σ∗x. By construction we can factor sε as x→ σ∗x→ xε.
Moreover, as σ is a section of A ×k k[ε] → A, we get a morphism σ∗x → x such
that x→ σ∗x→ x is idx. Because e ◦ sε = d we find that the diagram

σ∗x //

��

xε

e

��
x

d // x0

is commutative. Hence by (S2) we obtain a morphism σ∗x → y such that σ∗x →
y → x is the given map σ∗x → x. The solution to the problem is now to take
a : x→ y equal to the composition x→ σ∗x→ y. �

Lemma 68.9.8. Consider a commutative diagram in a predeformation category F
y //

��

x2

a2

��
x1

a1 // x

lying over

A1 ×A A2
//

��

A2

f2

��
A1

f1 // A

in CΛ where f2 : A2 → A is a small extension. Assume there is a map h : A1 → A2

such that f2 = f1 ◦ h. Let I = Ker(f2). Consider the ring map

g : A1 ×A A2 −→ k[I] = k ⊕ I, (u, v) 7−→ u⊕ (v − h(u))

Choose a pushforward y → g∗y. Assume F satisfies (S2). If there exists a morphism
x1 → g∗y, then there exists a morphism b : x1 → x2 such that a1 = a2 ◦ b.

Proof. Note that idA1
× g : A1 ×A A2 → A1 ×k k[I] is an isomorphism and that

k[I] ∼= k[ε]. Hence we have a diagram

y //

��

g∗y

��
x1

// x0

lying over

A1 ×k k[ε] //

��

k[ε]

��
A1

// k.

where x0 is an object of F lying over k (every object of F has a unique morphism
to x0, see discussion following Definition 68.6.2). If we have a morphism x1 → g∗y
then Lemma 68.9.7 provides us with a section s : x1 → y of the map y → x1.
Composing this with the map y → x2 we obtain b : x1 → x2 which has the
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property that a1 = a2 ◦ b because the diagram of the lemma commutes and because
s is a section. �

68.10. Tangent spaces of functors

Let R be a ring. We write ModR for the category of R-modules and ModfgR for the
category of finitely generated R-modules.

Definition 68.10.1. Let L : ModfgR → ModR, resp. L : ModR → ModR be a

functor. We say that L is R-linear if for every pair of objects M,N of ModfgR , resp.
ModR the map

L : HomR(M,N) −→ HomR(L(M), L(N))

is a map of R-modules.

Remark 68.10.2. One can define the notion of an R-linearity for any functor
between categories enriched over ModR. We made the definition specifically for

functors L : ModfgR → ModR and L : ModR → ModR because these are the cases
that we have needed so far.

Remark 68.10.3. If L : ModfgR → ModR is an R-linear functor, then L preserves
finite products and sends the zero module to the zero module, see Homology, Lemma

12.3.7. On the other hand, if a functor ModfgR → Sets preserves finite products and
sends the zero module to a one element set, then it has a unique lift to a R-linear
functor, see Lemma 68.10.4.

Lemma 68.10.4. Let L : ModfgR → Sets, resp. L : ModR → Sets be a functor.
Suppose L(0) is a one element set and L preserves finite products. Then there

exists a unique R-linear functor L̃ : ModfgR → ModR, resp. L̃ : ModfgR → ModR,
such that

ModR
forget

""
ModfgR

L̃

::

L // Sets

resp.

ModR
forget

##
ModR

L̃

::

L // Sets

commutes.

Proof. We only prove this in case L : ModfgR → Sets. Let M be a finitely generated

R-module. We define L̃(M) to be the set L(M) with the following R-module
structure.

Multiplication: If r ∈ R, multiplication by r on L(M) is defined to be the map
L(M)→ L(M) induced by the multiplication map r· : M →M .

Addition: The sum map M×M →M : (m1,m2) 7→ m1 +m2 induces a map L(M×
M)→ L(M). By assumption L(M×M) is canonically isomorphic to L(M)×L(M).
Addition on L(M) is defined by the map L(M)× L(M) ∼= L(M ×M)→ L(M).

Zero: There is a unique map 0 → M . The zero element of L(M) is the image of
L(0)→ L(M).

We omit the verification that this defines an R-module L̃(M), the unique such that
is R-linearly functorial in M . �
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Lemma 68.10.5. Let L1, L2 : ModfgR → Sets be functors that take 0 to a one
element set and preserve finite products. Let t : L1 → L2 be a morphism of functors.

Then t induces a morphism t̃ : L̃1 → L̃2 between the functors guaranteed by Lemma

68.10.4, which is given simply by t̃M = tM : L̃1(M) → L̃2(M) for each M ∈
Ob(ModfgR ). In other words, tM : L̃1(M)→ L̃2(M) is a map of R-modules.

Proof. Omitted. �

In the case R = K is a field, a K-linear functor L : ModfgK → ModK is determined
by its value L(K).

Lemma 68.10.6. Let K be a field. Let L : ModfgK → ModK be a K-linear functor.

Then L is isomorphic to the functor L(K)⊗K − : ModfgK → ModK .

Proof. For V ∈ Ob(ModfgK ), the isomorphism L(K) ⊗K V → L(V ) is given on
pure tensors by x⊗ v 7→ L(fv)(x), where fv : K → V is the K-linear map sending
1 7→ v. When V = K, this is the isomorphism L(K) ⊗K K → L(K) given by
multiplication by K. For general V , it is an isomorphism by the case V = K and
the fact that L commutes with finite products (Remark 68.10.3). �

For a ring R and an R-module M , let R[M ] be the R-algebra whose underlying R-
module is R⊕M and whose multiplication is given by (r,m) · (r′,m′) = (rr′, rm′+
r′m). When M = R this is the ring of dual numbers over R, which we denote by
R[ε].

Now let S be a ring and assume R is an S-algebra. Then the assignment M 7→ R[M ]
determines a functor ModR → S-Alg/R, where S-Alg/R denotes the category of
S-algebras over R. Note that S-Alg/R admits finite products: if A1 → R and
A2 → R are two objects, then A1 ×R A2 is a product.

Lemma 68.10.7. Let R be an S-algebra. Then the functor ModR → S-Alg/R
described above preserves finite products.

Proof. This is merely the statement that if M and N are R-modules, then the
map R[M ×N ]→ R[M ]×R R[N ] is an isomorphism in S-Alg/R. �

Lemma 68.10.8. Let R be an S-algebra, and let C be a strictly full subcategory of

S-Alg/R containing R[M ] for all M ∈ Ob(ModfgR ). Let F : C → Sets be a functor.

Suppose that F (R) is a one element set and that for any M,N ∈ Ob(ModfgR ), the
induced map

F (R[M ]×R R[N ])→ F (R[M ])× F (R[N ])

is a bijection. Then F (R[M ]) has a natural R-module structure for any M ∈
Ob(ModfgR ).

Proof. Note that R ∼= R[0] and R[M ]×RR[N ] ∼= R[M×N ] hence R and R[M ]×R
R[N ] are objects of C by our assumptions on C. Thus the conditions on F make
sense. The functor ModR → S-Alg/R of Lemma 68.10.7 restricts to a functor

ModfgR → C by the assumption on C. Let L be the composition ModfgR → C → Sets,
i.e., L(M) = F (R[M ]). Then L preserves finite products by Lemma 68.10.7 and
the assumption on F . Hence Lemma 68.10.4 shows that L(M) = F (R[M ]) has a

natural R-module structure for any M ∈ Ob(ModfgR ). �
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Definition 68.10.9. Let C be a category as in Lemma 68.10.8. Let F : C → Sets
be a functor such that F (R) is a one element set. The tangent space TF of F is
F (R[ε]).

When F : C → Sets satisfies the hypotheses of Lemma 68.10.8, the tangent space
TF has a natural R-module structure.

Example 68.10.10. Since CΛ contains all k[V ] for finite dimensional vector spaces
V we see that Definition 68.10.9 applies with S = Λ, R = k, C = CΛ, and F : CΛ →
Sets a predeformation functor. The tangent space is TF = F (k[ε]).

Example 68.10.11. Let us work out the tangent space of Example 68.10.10 when

F : CΛ → Sets is a prorepresentable functor, say F = S|CΛ for S ∈ Ob(ĈΛ). Then F
commutes with arbitrary limits and thus satisfies the hypotheses of Lemma 68.10.8.
We compute

TF = F (k[ε]) = MorCΛ(S, k[ε]) = DerΛ(S, k)

and more generally for a finite dimensional k-vector space V we have

F (k[V ]) = MorCΛ(S, k[V ]) = DerΛ(S, V ).

Explicitly, a Λ-algebra map f : S → k[V ] compatible with the augmentations
q : S → k and k[V ]→ k corresponds to the derivation D defined by s 7→ f(s)−q(s).
Conversely, a Λ-derivation D : S → V corresponds to f : S → k[V ] in CΛ defined
by the rule f(s) = q(s) + D(s). Since these identifications are functorial we see
that the k-vector spaces structures on TF and DerΛ(S, k) correspond (see Lemma
68.10.5). It follows that dimk TF is finite by Lemma 68.4.5.

Example 68.10.12. The computation of Example 68.10.11 simplifies in the clas-
sical case. Namely, in this case the tangent space of the functor F = S|CΛ is simply
the relative cotangent space of S over Λ, in a formula TF = TS/Λ. In fact, this
works more generally when the field extension k′ ⊂ k is separable. See Exercises,
Exercise 83.28.2.

Lemma 68.10.13. Let F,G : C → Sets be functors satisfying the hypotheses
of Lemma 68.10.8. Let t : F → G be a morphism of functors. For any M ∈
Ob(ModfgR ), the map tR[M ] : F (R[M ]) → G(R[M ]) is a map of R-modules, where
F (R[M ]) and G(R[M ]) are given the R-module structure from Lemma 68.10.8. In
particular, tR[ε] : TF → TG is a map of R-modules.

Proof. Follows from Lemma 68.10.5. �

Example 68.10.14. Suppose that f : R → S is a ring map in ĈΛ. Set F = R|CΛ
and G = S|CΛ . The ring map f induces a transformation of functors G → F . By
Lemma 68.10.13 we get a k-linear map TG→ TF . This is the map

TG = DerΛ(S, k) −→ DerΛ(R, k) = TF

as follows from the canonical identifications F (k[V ]) = DerΛ(R, V ) and G(k[V ]) =
DerΛ(S, V ) of Example 68.10.11 and the rule for computing the map on tangent
spaces.

Lemma 68.10.15. Let F : C → Sets be a functor satisfying the hypotheses of
Lemma 68.10.8. Assume R = K is a field. Then F (K[V ]) ∼= TF ⊗K V for any
finite dimensional K-vector space V .

Proof. Follows from Lemma 68.10.6. �
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68.11. Tangent spaces of predeformation categories

We will define tangent spaces of predeformation functors using the general Defini-
tion 68.10.9. We have spelled this out in Example 68.10.10. It applies to predefor-
mation categories by looking at the associated functor of isomorphism classes.

Definition 68.11.1. Let F be a predeformation category. The tangent space TF
of F is the set F(k[ε]) of isomorphism classes of objects in the fiber category F(k[ε]).

Thus TF is nothing but the tangent space of the associated functor F : CΛ → Sets.
It has a natural vector space structure when F satisfies (S2), or, in fact, as long as
F does.

Lemma 68.11.2. Let F be a predeformation category such that F satisfies (S2).
Then TF has a natural k-vector space structure. For any finite dimensional vector
space V we have F(k[V ]) = TF ⊗k V functorially in V .

Proof. Let us write F = F : CΛ → Sets. This is a predeformation functor and F
satisfies (S2). By Lemma 68.9.4 (and the translation of Remark 68.9.3) we see that

F (A×k k[V ]) −→ F (A)× F (k[V ])

is a bijection for every finite dimensional vector space V and every A ∈ Ob(CΛ). In
particular, if A = k[W ] then we see that F (k[W ] ×k k[V ]) = F (k[W ]) × F (k[V ]).
In other words, the hypotheses of Lemma 68.10.8 hold and we see that TF = TF
has a natural k-vector space structure. The final assertion follows from Lemma
68.10.15. �

A morphism of predeformation categories induces a map on tangent spaces.

Definition 68.11.3. Let ϕ : F → G be a morphism predeformation categories. The
differential dϕ : TF → TG of ϕ is the map obtained by evaluating the morphism
of functors ϕ : F → G at A = k[ε].

Lemma 68.11.4. Let ϕ : F → G be a morphism predeformation categories. As-
sume F and G both satisfy (S2). Then dϕ : TF → TG is k-linear.

Proof. In the proof of Lemma 68.11.2 we have seen that F and G satisfy the
hypotheses of Lemma 68.10.8. Hence the lemma follows from Lemma 68.10.13. �

Remark 68.11.5. We can globalize the notions of tangent space and differential
to arbitrary categories cofibered in groupoids as follows. Let F be a category
cofibered in groupoids over CΛ, and let x ∈ Ob(F(k)). As in Remark 68.6.4, we
get a predeformation category Fx. We define the tangent space TxF of F at x
to be the tangent space TFx of Fx. Similarly, if ϕ : F → G is a morphism
of categories cofibered in groupoids over CΛ and x ∈ Ob(F(k)), then there is an
induced morphism ϕx : Fx → Gϕ(x). We define the differential dxϕ : TxF → Tϕ(x)G
of ϕ at x to be the map dϕx : TFx → TGϕ(x). If both F and G satisfy (S2) then
all of these tangent spaces have a natural k-vector space structure and all the
differentials dxϕ : TxF → Tϕ(x)G are k-linear (use Lemmas 68.9.6 and 68.11.4).

The following observations are uninteresting in the classical case or when k′ ⊂ k is
a separable field extension, because then DerΛ(k, k) and DerΛ(V, k) are zero. There
is a canonical identification

MorCΛ(k, k[ε]) = DerΛ(k, k).
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Namely, for D ∈ DerΛ(k, k) let fD : k → k[ε] be the map a 7→ a + D(a)ε. More
generally, given a finite dimensional vector space V over k we have

MorCΛ(k, k[V ]) = DerΛ(k, V )

and we will use the same notation fD for the map associated to the derivation D.
We also have

MorCΛ(k[W ], k[V ]) = Homk(V,W )⊕DerΛ(k, V )

where (ϕ,D) corresponds to the map fϕ,D : a + w 7→ a + ϕ(w) + D(a). We will
sometimes write f1,D : a+v → a+v+D(a) for the automorphism of k[V ] determined
by the derivation D : k → V . Note that f1,D ◦ f1,D′ = f1,D+D′ .

Let F be a predeformation category over CΛ. Let x0 ∈ Ob(F(k)). By the above
there is a canonical map

γV : DerΛ(k, V ) −→ F(k[V ])

defined by D 7→ fD,∗(x0). Moreover, there is an action

aV : DerΛ(k, V )×F(k[V ]) −→ F(k[V ])

defined by (D,x) 7→ f1,D,∗(x). These two maps are compatible, i.e., f1,D,∗fD′,∗x0 =
fD+D′,∗x0 as follows from a computation of the compositions of these maps. Note
that the maps γV and aV are independent of the choice of x0 as there is a unique
x0 up to isomorphism.

Lemma 68.11.6. Let F be a predeformation category over CΛ. If F has (S2) then
the maps γV are k-linear and we have aV (D,x) = x+ γV (D).

Proof. In the proof of Lemma 68.11.2 we have seen that the functor V 7→ F(k[V ])
transforms 0 to a singleton and products to products. The same is true of the
functor V 7→ DerΛ(k, V ). Hence γV is linear by Lemma 68.10.5. Let D : k → V be
a Λ-derivation. Set D1 : k → V ⊕2 equal to a 7→ (D(a), 0). Then

k[V × V ]
+

//

f1,D1

��

k[V ]

f1,D

��
k[V × V ]

+ // k[V ]

commutes. Unwinding the definitions and using that F (V × V ) = F (V ) × F (V )
this means that aD(x1)+x2 = aD(x1 +x2) for all x1, x2 ∈ F (V ). Thus it suffices to
show that aV (D, 0) = 0 + γV (D) where 0 ∈ F (V ) is the zero vector. By definition
this is the element f0,∗(x0). Since fD = f1,D ◦ f0 the desired result follows. �

A special case of the constructions above are the map

(68.11.6.1) γ : DerΛ(k, k) −→ TF

and the action

(68.11.6.2) a : DerΛ(k, k)× TF −→ TF

http://stacks.math.columbia.edu/tag/06SU
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defined for any predeformation category F . Note that if ϕ : F → G is a morphism
of predeformation categories, then we get commutative diagrams

DerΛ(k, k)
γ
//

γ
%%

TF

dϕ

��
TG

and

DerΛ(k, k)× TF
a
//

1×dϕ
��

TF

dϕ

��
DerΛ(k, k)× TG a // TG

68.12. Versal formal objects

The existence of a versal formal object forces F to have property (S1).

Lemma 68.12.1. Let F be a predeformation category. Assume F has a versal
formal object. Then F satisfies (S1).

Proof. Let ξ be a versal formal object of F . Let

x2

��
x1

// x

be a diagram in F such that x2 → x lies over a surjective ring map. Since the natural

morphism F̂ |CΛ
∼−→ F is an equivalence (see Remark 68.7.7), we can consider this

diagram also as a diagram in F̂ . By Lemma 68.8.15 there exists a morphism ξ → x1,
so by Remark 68.8.14 we also get a morphism ξ → x2 making the diagram

ξ //

��

x2

��
x1

// x

commute. If x1 → x and x2 → x lie above ring maps A1 → A and A2 → A then
taking the pushforward of ξ to A1×AA2 gives an object y as required by (S1). �

In the case that our cofibred category satisfies (S1) and (S2) we can characterize
the versal formal objects as follows.

Lemma 68.12.2. Let F be a predeformation category satisfying (S1) and (S2).
Let ξ be a formal object of F corresponding to ξ : R|CΛ → F , see Remark 68.7.12.
Then ξ is versal if and only if the following two conditions hold:

(1) the map dξ : TR|CΛ → TF on tangent spaces is surjective, and

(2) given a diagram in F̂

y

��
ξ // x

lying over

B

f

��
R // A

http://stacks.math.columbia.edu/tag/06SY
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in ĈΛ with B → A a small extension of Artinian rings, then there exists
a ring map R→ B such that

B

f

��
R

??

// A

commutes.

Proof. If ξ is versal then (1) holds by Lemma 68.8.8 and (2) holds by Remark
68.8.14. Assume (1) and (2) hold. By Remark 68.8.14 we must show that given a

diagram in F̂ as in (2), there exists ξ → y such that

y

��
ξ

@@

// x

commutes. Let b : R → B be the map guaranteed by (2). Denote y′ = b∗ξ and
choose a factorization ξ → y′ → x lying over R → B → A of the given morphism
ξ → x. By (S1) we obtain a commutative diagram

z //

��

y

��
y′ // x

lying over

B ×A B

��

// B

f

��
B

f // A.

Set I = Ker(k). Let g : B ×A B → k[I] be the ring map (u, v) 7→ u ⊕ (v − u),
cf. Lemma 68.9.8. By (1) there exists a morphism ξ → g∗z which lies over a ring
map i : R → k[ε]. Choose an Artinian quotient b1 : R → B1 such that both
b : R → B and i : R → k[ε] factor through R → B1, i.e., giving h : B1 → B and
i′ : B1 → k[ε]. Choose a pushforward y1 = b1,∗ξ, a factorization ξ → y1 → y′

lying over R → B1 → B of ξ → y′, and a factorization ξ → y1 → g∗z lying over
R→ B1 → k[ε] of ξ → g∗z. Applying (S1) once more we obtain

z1
//

��

z //

��

y

��
y1

// y′ // x

lying over

B1 ×A B

��

// B ×A B //

��

B

f

��
B1

// B // A.

Note that the map g : B1 ×A B → k[I] of Lemma 68.9.8 (defined using h) is the
composition of B1 ×A B → B ×A B and the map g above. By construction there
exists a morphism y1 → g∗z1

∼= g∗z! Hence Lemma 68.9.8 applies (to the outer
rectangles in the diagrams above) to give a morphism y1 → y and precomposing
with ξ → y1 gives the desired morphism ξ → y. �

If F has property (S1) then the “largest quotient where a lift exists” exists. Here
is a precise statement.

Lemma 68.12.3. Let F be a category cofibred in groupoids over CΛ which has (S1).
Let B → A be a surjection in CΛ with kernel I annihilated by mB. Let x ∈ F(A).
The set of ideals

J = {J ⊂ I | there exists an y → x lying over B/J → A}

http://stacks.math.columbia.edu/tag/06SZ
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has a smallest element.

Proof. Note that J is nonempty as I ∈ J . Also, if J ∈ J and J ⊂ J ′ ⊂ I then
J ′ ∈ J because we can pushforward the object y to an object y′ over B/J ′. Let J
and K be elements of the displayed set. We claim that J ∩K ∈ J which will prove
the lemma. Since I is a k-vector space we can find an ideal J ⊂ J ′ ⊂ I such that
J ∩K = J ′ ∩K and such that J ′ +K = I. By the above we may replace J by J ′

and assume that J +K = I. In this case

A/(J ∩K) = A/J ×A/I A/K.
Hence the existence of an element z ∈ F(A/(J∩K)) mapping to x follows, via (S1),
from the existence of the elements we have assumed exist over A/J and A/K. �

We will improve on the following result later.

Lemma 68.12.4. Let F be a category cofibred in groupoids over CΛ. Assume the
following conditions hold:

(1) F is a predeformation category.
(2) F satisfies (S1).
(3) F satisfies (S2).
(4) dimk TF is finite.

Then F has a versal formal object.

Proof. Assume (1), (2), (3), and (4) hold. Choose an object R ∈ Ob(ĈΛ) such
that R|CΛ is smooth, see Example 68.8.10. Let r = dimk TF and put S =
R[[X1, . . . , Xr]].

We are going to inductively construct for n ≥ 2 pairs (Jn, fn−1 : ξn → ξn−1) where
Jn ⊂ S is an decreasing sequence of ideals and fn−1 : ξn → ξn−1 is a morphism of
F lying over the projection S/Jn → S/Jn−1.

Step 1. Let J1 = mS . Let ξ1 be the unique (up to unique isomorphism) object of
F over k = S/J1 = S/mS

Step 2. Let J2 = m2
S + mRS. Then S/J2 = k[V ] with V = kX1 ⊕ . . . ⊕ kXr By

(S2) for F we get a bijection

F(S/J2) −→ TF ⊗k V,
see Lemmas 68.9.5 and 68.11.2. Choose a basis θ1, . . . , θr for TF and set ξ2 =∑
θi ⊗Xi ∈ Ob(F(S/J2)). The point of this choice is that

dξ2 : MorCΛ(S/J2, k[ε]) −→ TF
is surjective. Let f1 : ξ2 → ξ1 be the unique morphism.

Induction step. Assume (Jn, fn−1 : ξn → ξn−1) has been constructed for some
n ≥ 2. There is a minimal element Jn+1 of the set of ideals J ⊂ S satisfying: (a)
mSJn ⊂ J ⊂ Jn and (b) there exists a morphism ξn+1 → ξn lying over S/J →
S/Jn, see Lemma 68.12.3. Let fn : ξn+1 → ξn be any morphism of F lying over
S/Jn+1 → S/Jn.

Set J =
⋂
Jn. Set S = S/J . Set Jn = Jn/J . By Lemma 68.4.7 the sequence of

ideals (Jn) induces the mS-adic topology on S. Since (ξn, fn) is an object of F̂I(S),

where I is the filtration (Jn) of S, we see that (ξn, fn) induces an object ξ of F̂(S).
see Lemma 68.7.4.

http://stacks.math.columbia.edu/tag/06IW
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We prove ξ is versal. For versality it suffices to check conditions (1) and (2) of
Lemma 68.12.2. Condition (1) follows from our choice of ξ2 in Step 2 above. Sup-

pose given a diagram in F̂

y

��
η // x

lying over

B

f

��
S // A

in ĈΛ with f : B → A a small extension of Artinian rings. We have to show there
is a map S → B fitting into the diagram on the right. Choose n such that S → A
factors through S → S/Jn. This is possible as the sequence (Jn) induces the mS-

adic topology as we saw above. The pushforward of ξ along S → S/Jn is ξn. We
may factor ξ → x as ξ → ξn → x hence we get a diagram in F

y

��
ξn // x

lying over

B

f

��
S/Jn // A.

To check condition (2) of Lemma 68.12.2 it suffices to complete the diagram

S/Jn+1

��

// B

f

��
S/Jn // A

or equivalently, to complete the diagram

S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn.

If p1 has a section we are done. If not, by Lemma 68.3.8 (2) p1 is a small
extension, so by Lemma 68.3.12 (4) p1 is an essential surjection. Recall that
S = R[[X1, . . . , Xr]] and that we chose R such that R|CΛ is smooth. Hence there ex-
ists a map h : R→ B lifting the map R→ S → S/Jn → A. By the universal prop-
erty of a power series ring there is an R-algebra map h : S = R[[X1, . . . , X2]]→ B
lifting the given map S → S/Jn → A. This induces a map g : S → S/Jn ×A B
making the solid square in the diagram

S

��

g
// S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn

commute. Then g is a surjection since p1 is an essential surjection. We claim the
ideal K = Ker(g) of S satisfies conditions (a) and (b) of the construction of Jn+1

in the induction step above. Namely, K ⊂ Jn is clear and mSJn ⊂ K as p1 is a
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small extension; this proves (a). By (S1) applied to

y

��
ξn // x,

there exists a lifting of ξn to S/K ∼= S/Jn ×A B, so (b) holds. Since Jn+1 was the
minimal ideal with properties (a) and (b) this implies Jn+1 ⊂ K. Thus the desired
map S/Jn+1 → S/K ∼= S/Jn ×A B exists. �

68.13. Minimal versal formal objects

We do a little bit of work to try and understand (non)uniqueness of versal formal
objects. It turns out that if a predeformation category has a versal formal object,
then it has a minimal versal formal object and any two such are isomorphic. More-
over, all versal formal objects are “more or less” the same up to replacing the base
ring by a power series extension.

Let F be a category cofibred in groupoids over CΛ. For every object x of F lying
over A ∈ Ob(CΛ) consider the category Sx with objects

Ob(Sx) = {x′ → x | x′ → x lies over A′ ⊂ A}
and morphisms are morphisms over x. For every y → x in F lying over f : B → A
in CΛ there is a functor f∗ : Sy → Sx defined as follows: Given y′ → y lying over
B′ ⊂ B set A′ = f(B′) and let y′ → x′ be over B′ → f(B′) be the pushforward of
y′. By the axioms of a category cofibred in groupoids we obtain a unique morphism
x′ → x lying over f(B′)→ A such that

y′

��

// x′

��
y // x

commutes. Then x′ → x is an object of Sx. We say an object x′ → x of Sx is
minimal if any morphism (x′1 → x) → (x′ → x) in Sx is an isomorphism, i.e.,
x′ and x′1 are defined over the same subring of A. Since A has finite length as a
Λ-module we see that minimal objects always exist.

Lemma 68.13.1. Let F be a category cofibred in groupoids over CΛ which has (S1).

(1) For y → x in F a minimal object in Sy maps to a minimal object of Sx.
(2) For y → x in F lying over a surjection f : B → A in CΛ every minimal

object of Sx is the image of a minimal object of Sy.

Proof. Proof of (1). Say y → x lies over f : B → A. Let y′ → y lying over B′ ⊂ B
be a minimal object of Sy. Let

y′

��

// x′

��
y // x

lying over

B′

��

// f(B′)

��
B // A

be as in the construction of f∗ above. Suppose that (x′′ → x) → (x′ → x) is
a morphism of Sx with x′′ → x′ lying over A′′ ⊂ f(B′). By (S1) there exists

http://stacks.math.columbia.edu/tag/06T1
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y′′ → y′ lying over B′ ×f(B′) A
′′ → B′. Since y′ → y is minimal we conclude that

B′ ×f(B′) A
′′ → B′ is an isomorphism, which implies that A′′ = f(B′), i.e., x′ → x

is minimal.

Proof of (2). Suppose f : B → A is surjective and y → x lies over f . Let
x′ → x be a minimal object of Sx lying over A′ ⊂ A. By (S1) there exists y′ → y
lying over B′ = f−1(A′) = B ×A A′ → B whose image in Sx is x′ → x. So
f∗(y

′ → y) = x′ → x. Choose a morphism (y′′ → y)→ (y′ → y) in Sy with y′′ → y
a minimal object (this is possible by the remark on lengths above the lemma). Then
f∗(y

′′ → y) is an object of Sx which maps to x′ → x (by functoriality of f∗) hence
is isomorphic to x′ → x by minimality of x′ → x. �

Lemma 68.13.2. Let F be a category cofibred in groupoids over CΛ which has (S1).
Let ξ be a versal formal object of F lying over R. There exists a morphism ξ′ → ξ
lying over R′ ⊂ R with the following minimality properties

(1) for every f : R→ A with A ∈ Ob(CΛ) the pushforwards

ξ′

��

// x′

��
ξ // x

lying over

R′

��

// f(R′)

��
R // A

produce a minimal object x′ → x of Sx, and
(2) for any morphism of formal objects ξ′′ → ξ′ the corresponding morphism

R′′ → R′ is surjective.

Proof. Write ξ = (R, ξn, fn). Set R′1 = k and ξ′1 = ξ1. Suppose that we have
constructed minimal objects ξ′m → ξm of Sξm lying over R′m ⊂ R/mmR for m ≤ n
and morphisms f ′m : ξ′m+1 → ξ′m compatible with fm for m ≤ n − 1. By Lemma

68.13.1 (2) there exists a minimal object ξ′n+1 → ξn+1 lying over R′n+1 ⊂ R/mn+1
R

whose image is ξ′n → ξn over R′n ⊂ R/mnR. This produces the commutative diagram

ξ′n+1
f ′n

//

��

ξ′n

��
ξn+1

fn // ξn

by construction. Moreover the ring map R′n+1 → R′n is surjective. Set R′ =
limnR

′
n. Then R′ → R is injective.

However, it isn’t a priori clear that R′ is Noetherian. To prove this we use that ξ

is versal. Namely, versality implies that there exists a morphism ξ → ξ′n in F̂ , see
Lemma 68.8.15. The corresponding map R→ R′n has to be surjective (as ξ′n → ξn
is minimal in Sξn). Thus the dimensions of the cotangent spaces are bounded and

Lemma 68.4.8 implies R′ is Noetherian, i.e., an object of ĈΛ. By Lemma 68.7.4
(plus the result on filtrations of Lemma 68.4.8) the sequence of elements ξ′n defines
a formal object ξ′ over R′ and we have a map ξ′ → ξ.

By construction (1) holds for R → R/mnR for each n. Since each R → A as in (1)
factors through R→ R/mnR → A we see that (1) for x′ → x over f(R) ⊂ A follows
from the minimality of ξ′n → ξn over R′n → R/mnR by Lemma 68.13.1 (1).

http://stacks.math.columbia.edu/tag/06T2
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If R′′ → R′ as in (2) is not surjective, then R′′ → R′ → R′n would not be surjective
for some n and ξ′n → ξn wouldn’t be minimal, a contradiction. This contradiction
proves (2). �

Lemma 68.13.3. Let F be a category cofibred in groupoids over CΛ which has (S1).
Let ξ be a versal formal object of F lying over R. Let ξ′ → ξ be a morphism of
formal objects lying over R′ ⊂ R as constructed in Lemma 68.13.2. Then

R ∼= R′[[x1, . . . , xr]]

is a power series ring over R′. Moreover, ξ′ is a versal formal object too.

Proof. By Lemma 68.8.15 there exists a morphism ξ → ξ′. By Lemma 68.13.2 the
corresponding map f : R → R′ induces a surjection f |R′ : R′ → R′. This is an
isomorphism by Algebra, Lemma 10.30.8. Hence I = Ker(f) is an ideal of R such
that R = R′ ⊕ I. Let x1, . . . , xn ∈ I be elements which form a basis for I/mRI.
Consider the map S = R′[[X1, . . . , Xr]] → R mapping Xi to xi. For every n ≥ 1
we get a surjection of Artinian R′-algebras B = S/mnS → R/mnR = A. Denote
y ∈ Ob(F(B), resp. x ∈ Ob(F(A)) the pushforward of ξ′ along R′ → S → B, resp.
R′ → S → A. Note that x is also the pushforward of ξ along R → A as ξ is the
pushforward of ξ′ along R′ → R. Thus we have a solid diagram

y

��
ξ //

@@

x

lying over

S/mnS

��
R //

==

R/mnR

Because ξ is versal, using Remark 68.8.14 we obtain the dotted arrows fitting into
these diagrams. In particular, the maps S/mnS → R/mnR have sections hn : R/mnR →
S/mnS . It follows from Lemma 68.4.9 that S → R is an isomorphism.

As ξ is a pushforward of ξ′ along R′ → R we obtain from Remark 68.7.13 a com-
mutative diagram

R|CΛ //

ξ !!

R′|CΛ

ξ′||
F

Since R′ → R has a left inverse (namely R→ R/I = R′) we see that R|CΛ → R′|CΛ
is essentially surjective. Hence by Lemma 68.8.7 we see that ξ′ is smooth, i.e., ξ′ is
a versal formal object. �

Motivated by the preceding lemmas we make the following definition.

Definition 68.13.4. Let F be a predeformation category. We say a versal formal
object ξ of F is minimal2 if for any morphism of formal objects ξ′ → ξ the underlying
map on rings is surjective. Sometimes a minimal versal formal object is called
miniversal.

2This may be nonstandard terminology. Many authors tie this notion in with properties of
tangent spaces. We will make the link in Section 68.14.
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The work in this section shows this definition is reasonable. First of all, the existence
of a versal formal object implies that F has (S1). Then the preceding lemmas show
there exists a minimal versal formal object. Finally, any two minimal versal formal
objects are isomorphic. Here is a summary of our results (with detailed proofs).

Lemma 68.13.5. Let F be a predeformation category which has a versal formal
object. Then

(1) F has a minimal versal formal object,
(2) minimal versal objects are unique up to isomorphism, and
(3) any versal object is the pushforward of a minimal versal object along a

power series ring extension.

Proof. Suppose F has a versal formal object ξ over R. Then it satisfies (S1), see
Lemma 68.12.1. Let ξ′ → ξ over R′ ⊂ R be any of the morphisms constructed in
Lemma 68.13.2. By Lemma 68.13.3 we see that ξ′ is versal, hence it is a minimal
versal formal object (by construction). This proves (1). Also, R ∼= R′[[x1, . . . , xn]]
which proves (3).

Suppose that ξi/Ri are two minimal versal formal objects. By Lemma 68.8.15 there
exist morphisms ξ1 → ξ2 and ξ2 → ξ1. The corresponding ring maps f : R1 → R2

and g : R2 → R1 are surjective by minimality. Hence the compositions g ◦f : R1 →
R1 and f ◦ g : R2 → R2 are isomorphisms by Algebra, Lemma 10.30.8. Thus f
and g are isomorphisms whence the maps ξ1 → ξ2 and ξ2 → ξ1 are isomorphisms

(because F̂ is cofibred in groupoids by Lemma 68.7.2). This proves (2) and finishes
the proof of the lemma. �

68.14. Miniversal formal objects and tangent spaces

The general notion of minimality introduced in Definition 68.13.4 can sometimes
be deduced from the behaviour on tangent spaces. Let ξ be a formal object of the
predeformation category F and let ξ : R|CΛ → F be the corresponding morphism.
Then we can consider the following the condition

(68.14.0.1) dξ : DerΛ(R, k)→ TF is bijective

and the condition

(68.14.0.2) dξ : DerΛ(R, k)→ TF is bijective on DerΛ(k, k)-orbits.

Here we are using the identification TR|CΛ = DerΛ(R, k) of Example 68.10.11 and
the action (68.11.6.2) of derivations on the tangent spaces. If k′ ⊂ k is separable,
then DerΛ(k, k) = 0 and the two conditions are equivalent. It turns out that, in the
presence of condition (S2) a versal formal object is minimal if and only if ξ satisfies
(68.14.0.2). Moreover, if ξ satisfies (68.14.0.1), then F satisfies (S2).

Lemma 68.14.1. Let F be a predeformation category. Let ξ be a versal formal
object of F such that (68.14.0.2) holds. Then ξ is a minimal versal formal object.
In particular, such ξ are unique up to isomorphism.

Proof. If ξ is not minimal, then there exists a morphism ξ′ → ξ lying over R′ → R
such that R = R′[[x1, . . . , xn]] with n > 0, see Lemma 68.13.5. Thus dξ factors as

DerΛ(R, k)→ DerΛ(R′, k)→ TF

http://stacks.math.columbia.edu/tag/06T5
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and we see that (68.14.0.2) cannot hold because D : f 7→ ∂/∂x1(f) mod mR is an
element of the kernel of the first arrow which is not in the image of DerΛ(k, k) →
DerΛ(R, k). �

Lemma 68.14.2. Let F be a predeformation category. Let ξ be a versal formal
object of F such that (68.14.0.1) holds. Then

(1) F satisfies (S1).
(2) F satisfies (S2).
(3) dimk TF is finite.

Proof. Condition (S1) holds by Lemma 68.12.1. The first part of (S2) holds since
(S1) holds. Let

y
c
//

a

��

xε

e

��
x

d // x0

and

y′
c′
//

a′

��

xε

e

��
x

d // x0

lying over

A×k k[ε] //

��

k[ε]

��
A // k

be diagrams as in the second part of (S2). As above we can find morphisms b : ξ → y
and b′ : ξ → y′ such that

ξ
b′ //

b

��

y′

a′

��
y

a // x

commutes. Let p : F → CΛ denote the structure morphism. Say p̂(ξ) = R, i.e., ξ

lies over R ∈ Ob(ĈΛ). We see that the pushforward of ξ via p(c) ◦ p(b) is xε and
that the pushforward of ξ via p(c′) ◦ p(b′) is xε. Since ξ satisfies (68.14.0.1), we see
that p(c) ◦ p(b) = p(c′) ◦ p(b′) as maps R → k[ε]. Hence p(b) = p(b′) as maps from
R → A×k k[ε]. Thus we see that y and y′ are isomorphic to the pushforward of ξ
along this map and we get a unique morphism y → y′ over A ×k k[ε] compatible
with b and b′ as desired.

Finally, by Example 68.10.11 we see dimk TF = dimk TR|CΛ is finite. �

Example 68.14.3. There exist predeformation categories which have a versal for-
mal object satisfying (68.14.0.2) but which do not satisfy (S2). A quick example is
to take F = k[ε]/G where G ⊂ AutCΛ(k[ε]) is a finite nontrivial subgroup. Namely,

the map k[ε] → F is smooth, but the tangent space of F does not have a natural

k-vector space structure (as it is a quotient of a k-vector space by a finite group).

Lemma 68.14.4. Let F be a predeformation category satisfying (S2) which has a
versal formal object. Then its minimal versal formal object satisfies (68.14.0.2).

Proof. Let ξ be a minimal versal formal object for F , see Lemma 68.13.5. Say ξ

lies over R ∈ Ob(ĈΛ). In order to parse (68.14.0.2) we point out that TF has a
natural k-vector space structure (see Lemma 68.11.2), that dξ : DerΛ(R, k)→ TF
is linear (see Lemma 68.11.4), and that the action of DerΛ(k, k) is given by addition
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(see Lemma 68.11.6). Consider the diagram

Homk(mR/m
2
R, k)

K // DerΛ(R, k)
dξ

//

OO

TF

DerΛ(k, k)

OO 77

The vector space K is the kernel of dξ. Note that the middle column is exact in the
middle as it is dual to the sequence (68.3.10.1). If (68.14.0.2) fails, then we can find
a nonzero element D ∈ K which does not map to zero in Homk(mR/m

2
R, k). This

means there exists an t ∈ mR such that D(t) = 1. Set R′ = {a ∈ R | D(a) = 0}.
As D is a derivation this is a subring of R. Since D(t) = 1 we see that R′ → k is
surjective (compare with the proof of Lemma 68.3.12). Note that mR′ = Ker(D :
mR → k) is an ideal of R and m2

R ⊂ mR′ . Hence

mR/m
2
R = mR′/m

2
R + kt

which implies that the map

R′/m2
R ×k k[ε]→ R/m2

R

sending ε to t is an isomorphism. In particular there is a map R/m2
R → R′/m2

R.

Let ξ → y be a morphism lying over R → R/m2
R. Let y → x be a morphism lying

over R/m2
R → R′/m2

R. Let y → xε be a morphism lying over R/m2
R → k[ε]. Let x0

be the unique (up to unique isomorphism) object of F over k. By the axioms of a
category cofibred in groupoids we obtain a commutative diagram

y //

��

xε

��
x // x0

lying over

R′/m2
R ×k k[ε] //

��

k[ε]

��
R′/m2

R
// k.

Because D ∈ K we see that xε is isomorphic to 0 ∈ F(k[ε]), i.e., xε is the pushfor-
ward of x0 via k → k[ε], a 7→ a. Hence by Lemma 68.9.7 we see that there exists a
morphism x→ y. Since lengthΛ(R′/m2

R) < lengthΛ(R/m2
R) the corresponding ring

map R′/m2
R → R/m2

R is not surjective. This contradicts the minimality of ξ/R, see
part (1) of Lemma 68.13.2. This contradiction shows that such a D cannot exist,
hence we win. �

Theorem 68.14.5. Let F be a predeformation category. Consider the following
conditions

(1) F has a minimal versal formal object satisfying (68.14.0.1),
(2) F has a minimal versal formal object satisfying (68.14.0.2),
(3) the following conditions hold:

(a) F satisfies (S1).
(b) F satisfies (S2).
(c) dimk TF is finite.
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We always have

(1)⇒ (3)⇒ (2).

If k′ ⊂ k is separable, then all three are equivalent.

Proof. Lemma 68.14.2 shows that (1) ⇒ (3). Lemmas 68.12.4 and 68.14.4 show
that (3)⇒ (2). If k′ ⊂ k is separable then DerΛ(k, k) = 0 and we see that (68.14.0.1)
= (68.14.0.2), i.e., (1) is the same as (2).

An alternative proof of (3) ⇒ (1) in the classical case is to add a few words to the
proof of Lemma 68.12.4 to see that one can right away construct a versal object
which satisfies (68.14.0.1) in this case. This avoids the use of Lemma 68.12.4 in the
classical case. Details omitted. �

Remark 68.14.6. When F is a predeformation functor, the condition dimk TF <
∞ is precisely condition (H3) from Schlessinger’s paper. In the classical case (or the
case where k′ ⊂ k is separable), Theorem 68.14.5 recovers Schlessinger’s theorem
on the existence of “hulls”. In our terminology a hull is a versal formal object ξ for
a predeformation functor such that dξ is an isomorphism.

Remark 68.14.7. Let F be a predeformation category satisfying (S1), (S2), and
dimk TF < ∞. Then F also satisfies (S1), (S2), and dimk TF < ∞, see Lemma
68.9.5. Thus, if k′ ⊂ k is separable, then F has a hull (see Remark 68.14.6). In
fact, if ξ is a minimal versal object for F lying over R, then the composition

R|CΛ −→ F −→ F

is smooth and identifies tangent spaces, i.e., the image ξ of ξ in F is a hull. This
follows from the fact that F → F identifies tangent spaces.

Example 68.14.8. In Example 68.8.10 we constructed objects R ∈ ĈΛ such that
R|CΛ is smooth. We can reformulate this as follows. Let F = CΛ considered as
cofibred in groupoids via the identity functor. In other words, F is the category
cofibred in sets corresponding to the functor F : A 7→ {∗} (this is the final object
in the category of functors CΛ → Sets). The condition that R|CΛ is smooth means
exactly that R|CΛ → F is smooth, i.e., that ξ = ∗ is a formal versal object of
F over R. Hence F has a versal formal object. In fact, it is easy to see that F
satisfies condition (3) of Theorem 68.14.5. The theorem implies that (2) holds.

This means we can find a minimal versal formal object ∗ ∈ F̂(S) over some S ∈ ĈΛ
such that d∗ : DerΛ(S, k)→ 0 is bijective on DerΛ(k, k)-orbits. Clearly this means
that the injection DerΛ(k, k) → DerΛ(S, k) is also surjective. In other words, the
exact sequence (68.3.10.2) turns into a pair of isomorphisms

H1(Lk/Λ) = mS/m
2
S and ΩS/Λ ⊗S k = Ωk/Λ.

(The first arrow is injective because of the formal smoothness of S over Λ; details
omitted.) Of course the existence of such a ring S can be proved directly by
judiciously slicing the ring R constructed in Example 68.8.10.

68.15. Rim-Schlessinger conditions and deformation categories

There is a very natural property of categories fibred in groupoids over CΛ which is
easy to check in practice and which implies Schlessinger’s properties (S1) and (S2)
we have introduced earlier.
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Definition 68.15.1. Let F be a category cofibered in groupoids over CΛ. We say
that F satisfies condition (RS) if for every diagram in F

x2

��
x1

// x

lying over

A2

��
A1

// A

in CΛ with A2 → A surjective, there exists a fiber product x1 ×x x2 in F such that
the diagram

x1 ×x x2
//

��

x2

��
x1

// x

lies over

A1 ×A A2
//

��

A2

��
A1

// A.

Lemma 68.15.2. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Given a commutative diagram in F

y //

��

x2

��
x1

// x

lying over

A1 ×A A2
//

��

A2

��
A1

// A.

with A2 → A surjective, then it is a fiber square.

Proof. Since F satisfies (RS), there exists a fiber product diagram

x1 ×x x2
//

��

x2

��
x1

// x

lying over

A1 ×A A2
//

��

A2

��
A1

// A.

The induced map y → x1 ×x x2 lies over id : A1 ×A A1 → A1 ×A A1, hence it is an
isomorphism. �

Lemma 68.15.3. Let F be a category cofibered in groupoids over CΛ. Then F
satisfies (RS) if the condition in Definition 68.15.1 is assumed to hold only when
A2 → A is a small extension.

Proof. Apply Lemma 68.3.3. The proof is similar to that of Lemma 68.8.2. �

Lemma 68.15.4. Let F be a category cofibered in groupoids over CΛ. The following
are equivalent

(1) F satisfies (RS),
(2) the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) see (68.9.1.1) is an

equivalence of categories whenever A2 → A is surjective, and
(3) same as in (2) whenever A2 → A is a small extension.

Proof. Assume (1). By Lemma 68.15.2 we see that every object of F(A1 ×A A2)
is of the form x1 ×x x2. Moreover

MorA1×AA2
(x1 ×x x2, y1 ×y y2) = MorA1

(x1, y1)×MorA(x,y) MorA2
(x2, y2).

Hence we see that F(A1 ×A A2) is a 2-fibre product of F(A1) with F(A2) over
F(A) by Categories, Remark 4.29.5. In other words, we see that (2) holds.
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The implication (2) ⇒ (3) is immediate.

Assume (3). Let q1 : A1 → A and q2 : A2 → A be given with q2 a small ex-
tension. We will use the description of the 2-fibre product F(A1) ×F(A) F(A2)
from Categories, Remark 4.29.5. Hence let y ∈ F(A1 ×A A2) correspond to
(x1, x2, x, a1 : x1 → x, a2 : x2 → x). Let z be an object of F lying over C.
Then

MorF (z, y) = {(f, α) | f : C → A1 ×A A2, α : f∗z → y}
= {(f1, f2, α1, α2) | fi : C → Ai, αi : fi,∗z → xi,

q1 ◦ f1 = q2 ◦ f2, q1,∗α1 = q2,∗α2}
= MorF (z, x1)×MorF (z,x) MorF (z, x2)

whence y is a fibre product of x1 and x2 over x. Thus we see that F satisfies (RS)
in case A2 → A is a small extension. Hence (RS) holds by Lemma 68.15.3. �

Remark 68.15.5. When F is cofibered in sets, condition (RS) is exactly condition
(H4) from Schlessinger’s paper [Sch68, Theorem 2.11]. Namely, for a functor
F : CΛ → Sets, condition (RS) states: If A1 → A and A2 → A are maps in CΛ with
A2 → A surjective, then the induced map F (A1 ×A A2) → F (A1) ×F (A) F (A2) is
bijective.

Lemma 68.15.6. Let F be a category cofibered in groupoids over CΛ. The condition
(RS) for F implies both (S1) and (S2) for F .

Proof. Using the reformulation of Lemma 68.15.4 and the explanation of (S1)
following Definition 68.9.1 it is immediate that (RS) implies (S1). This proves the
first part of (S2). The second part of (S2) follows because Lemma 68.15.2 tells us
that y = x1×d,x0,e x2 = y′ if y, y′ are as in the second part of the definition of (S2)
in Definition 68.9.1. (In fact the morphism y → y′ is compatible with both a, a′

and c, c′!) �

The following lemma is the analogue of Lemma 68.9.5. Recall that if F is a category
cofibred in groupoids over CΛ and x is an object of F lying over A, then we denote
AutA(x) = MorA(x, x) = MorF(A)(x, x). If x′ → x is a morphism of F lying over
A′ → A then there is a well defined map of groups AutA′(x

′)→ AutA(x).

Lemma 68.15.7. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). The following conditions are equivalent:

(1) F satisfies (RS).
(2) Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective.

The induced map of sets of isomorphism classes

F(A1)×F(A) F(A2)→ F(A1)×F(A) F(A2)

is injective.
(3) For every morphism x′ → x in F lying over a surjective ring map A′ → A,

the map AutA′(x
′)→ AutA(x) is surjective.

(4) For every morphism x′ → x in F lying over a small extension A′ → A,
the map AutA′(x

′)→ AutA(x) is surjective.

Proof. We prove that (1) is equivalent to (2) and (2) is equivalent to (3). The
equivalence of (3) and (4) follows from Lemma 68.3.3.
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Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective. By
Remark 68.15.5 we see F satisfies (RS) if and only if the map

F(A1 ×A A2)→ F(A1)×F(A) F(A2)

is bijective for any such f1, f2. This map is at least surjective since that is the
condition of (S1) and F satisfies (S1) by Lemmas 68.15.6 and 68.9.5. Moreover,
this map factors as

F(A1 ×A A2) −→ F(A1)×F(A) F(A2) −→ F(A1)×F(A) F(A2),

where the first map is a bijection since

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)

is an equivalence by (RS) for F . Hence (1) is equivalent to (2).

Assume (2) holds. Let x′ → x be a morphism in F lying over a surjective ring map
f : A′ → A. Let a ∈ AutA(x). The objects

(x′, x′, a : x→ x), (x′, x′, id : x→ x)

of F(A′) ×F(A) F(A′) have the same image in F(A′) ×F(A) F(A′). By (2) there

exists maps b1, b2 : x′ → x′ such that

x
a
//

f∗b1

��

x

f∗b2

��
x

id // x

commutes. Hence b−1
2 ◦ b1 ∈ AutA′(x

′) has image a ∈ AutA(x). Hence (3) holds.

Assume (3) holds. Suppose

(x1, x2, a : (f1)∗x1 → (f2)∗x2), (x′1, x
′
2, a
′ : (f1)∗x

′
1 → (f2)∗x

′
2)

are objects of F(A1) ×F(A) F(A2) with the same image in F(A1) ×F(A) F(A2).

Then there are morphisms b1 : x1 → x′1 in F(A1) and b2 : x2 → x′2 in F(A2). By
(3) we can modify b2 by an automorphism of x2 over A2 so that the diagram

(f1)∗x1 a
//

(f1)∗b1

��

(f2)∗x2

(f2)∗b2

��
(f1)∗x

′
1

a′ // (f2)∗x
′
2.

commutes. This proves (x1, x2, a) ∼= (x′1, x
′
2, a
′) in F(A1)×F(A) F(A2). Hence (2)

holds. �

Finally we define the notion of a deformation category.

Definition 68.15.8. A deformation category is a predeformation category F satis-
fying (RS). A morphism of deformation categories is a morphism of categories over
CΛ.

Remark 68.15.9. We say that a functor F : CΛ → Sets is a deformation functor if
the associated cofibered set is a deformation category, i.e. if F (k) is a one element
set and F satisfies (RS). If F is a deformation category, then F is a predeformation
functor but not necessarily a deformation functor, as Lemma 68.15.7 shows.
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Example 68.15.10. A prorepresentable functor F is a deformation functor. Namely,

suppose R ∈ Ob(ĈΛ) and F (A) = MorĈΛ(R,A). There is a unique morphism

R→ k, so F (k) is a one element set. Since

HomΛ(R,A1 ×A A2) = HomΛ(R,A1)×HomΛ(R,A) HomΛ(R,A2)

the same is true for maps in ĈΛ and we see that F has (RS).

The following is one of our typical remarks on passing from a category cofibered
in groupoids to the predeformation category at a point over k: it says that this
process preserves (RS).

Lemma 68.15.11. Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let Fx0 be the category cofibred in groupoids over CΛ constructed in
Remark 68.6.4. If F satisfies (RS), then so does Fx0

. In particular, Fx0
is a

deformation category.

Proof. Any diagram as in Definition 68.15.1 in Fx0
gives rise to a diagram in F

and the output of (RS) for this diagram in F can be viewed as an output for Fx0

as well. �

The following lemma is the analogue of the fact that 2-fibre products of algebraic
stacks are algebraic stacks.

Lemma 68.15.12. Let

H×F G //

��

G

g

��
H

f // F

be 2-fibre product of categories cofibered in groupoids over CΛ. If F ,G,H all satisfy
(RS), then H×F G satisfies (RS).

Proof. If A is an object of CΛ, then an object of the fiber category of H×F G over
A is a triple (u, v, a) where u ∈ H(A), v ∈ G(A), and a : f(u)→ g(v) is a morphism
in F(A). Consider a diagram in H×F G

(u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

lying over

A2

��
A1

// A

in CΛ with A2 → A surjective. Since H and G satisfy (RS), there are fiber products
u1 ×u u2 and v1 ×v v2 lying over A1 ×A A2. Since F satisfies (RS), Lemma 68.15.2
shows

f(u1 ×u u2) //

��

f(u2)

��
f(u1) // f(u)

and

g(v1 ×v v2) //

��

g(v2)

��
g(v1) // g(v)
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are both fiber squares in F . Thus we can view a1 ×a a2 as a morphism from
f(u1 ×u u2) to g(v1 ×v v2) over A1 ×A A2. It follows that

(u1 ×u u2, v1 ×v v2, a1 ×a a2)

��

// (u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

is a fiber square in H×F G as desired. �

68.16. Lifts of objects

The content of this section is that the tangent space has a principal homogeneous
action on the set of lifts along a small surjection in the case of a deformation
category.

Definition 68.16.1. Let F be a category cofibered in groupoids over CΛ. Let
f : A′ → A be a map in CΛ. Let x ∈ F(A). The category Lift(x, f) of lifts of x
along f is the category with the following objects and morphisms.

(1) Objects: A lift of x along f is a morphism x′ → x lying over f .
(2) Morphisms: A morphism of lifts from a1 : x′1 → x to a2 : x′2 → x is a

morphism b : x′1 → x′2 in F(A′) such that a2 = a1 ◦ b.
The set Lift(x, f) of lifts of x along f is the set of isomorphism classes of Lift(x, f).

Remark 68.16.2. When the map f : A′ → A is clear from the context, we may
write Lift(x,A′) and Lift(x,A′) in place of Lift(x, f) and Lift(x, f).

Remark 68.16.3. Let F be a category cofibred in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let V be a finite dimensional vector space. Then Lift(x0, k[V ]) is the
set of isomorphism classes of Fx0

(k[V ]) where Fx0
is the predeformation category

of objects in F lying over x0, see Remark 68.6.4. Hence if F satisfies (S2), then so
does Fx0

(see Lemma 68.9.6) and by Lemma 68.11.2 we see that

Lift(x0, k[V ]) = TFx0
⊗k V

as k-vector spaces.

Remark 68.16.4. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let

A1 ×A A2
//

��

A2

��
A1

// A

be a fibre square in CΛ such that either A1 → A or A2 → A is surjective. Let
x ∈ Ob(F(A)). Given lifts x1 → x and x2 → x of x to A1 and A2, we get by (RS)
a lift x1 ×x x2 → x of x to A1 ×A A2. Conversely, by Lemma 68.15.2 any lift of x
to A1 ×A A2 is of this form. Hence a bijection

Lift(x,A1)× Lift(x,A2) −→ Lift(x,A1 ×A A2).

Similarly, if x1 → x is a fixed lifting of x to A1, then there is a bijection

Lift(x1, A1 ×A A2) −→ Lift(x,A2).
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Now let

A′1 ×A A2
//

��

A1 ×A A2
//

��

A2

��
A′1 // A1

// A

be a composition of fibre squares in CΛ with both A′1 → A1 and A1 → A surjective.
Let x1 → x be a morphism lying over A1 → A. Then by the above we have
bijections

Lift(x1, A
′
1 ×A A2) = Lift(x1, A

′
1)× Lift(x1, A1 ×A A2)

= Lift(x1, A
′
1)× Lift(x,A2).

Lemma 68.16.5. Let F be a deformation category. Let A′ → A be a surjective ring
map in CΛ whose kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). If Lift(x,A′)
is nonempty, then there is a free and transitive action of TF ⊗k I on Lift(x,A′).

Proof. Consider the ring map g : A′ ×A A′ → k[I] defined by the rule g(a1, a2) =
a1 ⊕ a2 − a1 (compare with Lemma 68.9.8). There is an isomorphism

A′ ×A A′
∼−→ A′ ×k k[I]

given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections of A′ ×A A′ and
A′ ×k k[I] to A. Thus there is a bijection

(68.16.5.1) Lift(x,A′ ×A A′) −→ Lift(x,A′ ×k k[I])

By Remark 68.16.4 there is a bijection

(68.16.5.2) Lift(x,A′)× Lift(x,A′) −→ Lift(x,A′ ×A A′)

There is a commutative diagram

A′ ×k k[I] //

��

A×k k[I] //

��

k[I]

��
A′ // A // k.

Thus if we choose a pushforward x → x0 of x along A → k, we obtain by the end
of Remark 68.16.4 a bijection

(68.16.5.3) Lift(x,A′ ×k k[I]) −→ Lift(x,A′)× Lift(x0, k[I])

Composing (68.16.5.2), (68.16.5.1), and (68.16.5.3) we get a bijection

Φ : Lift(x,A′)× Lift(x,A′) −→ Lift(x,A′)× Lift(x0, k[I]).

This bijection commutes with the projections on the first factors. By Remark
68.16.3 we see that Lift(x0, k[I]) = TF ⊗k I. If pr2 is the second projection of
Lift(x,A′)× Lift(x,A′), then we get a map

a = pr2 ◦ Φ−1 : Lift(x,A′)× (TF ⊗k I) −→ Lift(x,A′).

Unwinding all the above we see that a(x′ → x, θ) is the unique lift x′′ → x such that
g∗(x

′, x′′) = θ in Lift(x0, k[I]) = TF ⊗k I. To see this is an action of TF ⊗k I on
Lift(x,A′) we have to show the following: if x′, x′′, x′′′ are lifts of x and g∗(x

′, x′′) =

http://stacks.math.columbia.edu/tag/06JI
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θ, g∗(x
′′, x′′′) = θ′, then g∗(x

′, x′′′) = θ + θ′. This follows from the commutative
diagram

A′ ×A A′ ×A A′
(a1,a2,a3)7→(g(a1,a2),g(a2,a3))

//

(a1,a2,a3)7→g(a1,a3)

,,

k[I]×k k[I] = k[I × I]

+

��
k[I]

The action is free and transitive because Φ is bijective. �

Remark 68.16.6. The action of Lemma 68.16.5 is functorial. Let ϕ : F → G be
a morphism of deformation categories. Let A′ → A be a surjective ring map whose
kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). In this situation ϕ induces the
vertical arrows in the following commutative diagram

Lift(x,A′)× (TF ⊗k I)

(ϕ,dϕ⊗idI)

��

// Lift(x,A′)

ϕ

��
Lift(ϕ(x), A′)× (TG ⊗k I) // Lift(ϕ(x), A′)

The commutativity follows as each of the maps (68.16.5.2), (68.16.5.1), and (68.16.5.3)
of the proof of Lemma 68.16.5 gives rise to a similar commutative diagram.

68.17. Schlessinger’s theorem on prorepresentable functors

We deduce Schlessinger’s theorem characterizing prorepresentable functors on CΛ.

Lemma 68.17.1. Let F,G : CΛ → Sets be deformation functors. Let ϕ : F → G
be a smooth morphism which induces an isomorphism dϕ : TF → TG of tangent
spaces. Then ϕ is an isomorphism.

Proof. We prove F (A)→ G(A) is a bijection for all A ∈ Ob(CΛ) by induction on
lengthA(A). For A = k the statement follows from the assumption that F and G
are deformation functors. Suppose that the statement holds for rings of length less
than n and let A′ be a ring of length n. Choose a small extension f : A′ → A. We
have a commutative diagram

F (A′) //

F (f)

��

G(A′)

G(f)

��
F (A)

∼ // G(A)

where the map F (A) → G(A) is a bijection. By smoothness of F → G, F (A′) →
G(A′) is surjective (Lemma 68.8.8). Thus we can check bijectivity by checking it on
fibers F (f)−1(x)→ G(f)−1(ϕ(x)) for x ∈ F (A) such that F (f)−1(x) is nonempty.
These fibers are precisely Lift(x,A′) and Lift(ϕ(x), A′) and by assumption we have
an isomorphism dϕ⊗ id : TF ⊗kKer(f)→ TG⊗kKer(f). Thus, by Lemma 68.16.5
and Remark 68.16.6, for x ∈ F (A) such that F (f)−1(x) is nonempty the map
F (f)−1(x)→ G(f)−1(ϕ(x)) is a map of sets commuting with free transitive actions
by TF ⊗k Ker(f). Hence it is bijective. �

Note that in case k′ ⊂ k is separable condition (c) in the theorem below is empty.
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Theorem 68.17.2. Let F : CΛ → Sets be a functor. Then F is prorepresentable
if and only if (a) F is a deformation functor, (b) dimk TF is finite, and (c) γ :
DerΛ(k, k)→ TF is injective.

Proof. Assume F is prorepresentable byR ∈ ĈΛ. We see F is a deformation functor
by Example 68.15.10. We see dimk TF is finite by Example 68.10.11. Finally,
DerΛ(k, k) → TF is identified with DerΛ(k, k) → DerΛ(R, k) by Example 68.10.14
which is injective because R→ k is surjective.

Conversely, assume (a), (b), and (c) hold. By Lemma 68.15.6 we see that (S1) and
(S2) hold. Hence by Theorem 68.14.5 there exists a minimal versal formal object ξ
of F such that (68.14.0.2) holds. Say ξ lies over R. The map

dξ : DerΛ(R, k)→ TF

is bijective on DerΛ(k, k)-orbits. Since the action of DerΛ(k, k) on the left hand
side is free by (c) and Lemma 68.11.6 we see that the map is bijective. Thus we
see that ξ is an isomorphism by Lemma 68.17.1. �

68.18. Infinitesimal automorphisms

Let F be a category cofibered in groupoids over CΛ. Given a morphism x′ → x in
F lying over A′ → A, there is an induced homomorphism

AutA′(x
′)→ AutA(x).

Lemma 68.15.7 says that the cokernel of this homomorphism determines whether
condition (RS) on F passes to F . In this section we study the kernel of this
homomorphism. We will see that it also gives a measure of how far F is from F .

Definition 68.18.1. Let F be a category cofibered in groupoids over CΛ. Let
x′ → x be a morphism in F lying over A′ → A. The group of infinitesimal
automorphisms of x′ over x is the kernel of AutA′(x

′) → AutA(x). Notation
Inf(x′/x) = Ker(AutA′(x

′)→ AutA(x)).

Definition 68.18.2. Let F be a category cofibered in groupoids over CΛ. Let
x0 ∈ Ob(F(k)). Assume a choice of pushforward x0 → x′0 of x0 along the map
k → k[ε], a 7→ a has been made. Then there is a unique map x′0 → x0 such that
x0 → x′0 → x0 is the identity on x0. The group of infinitesimal automorphisms of
x0 is Infx0(F) := Inf(x′0/x0).

Remark 68.18.3. Up to isomorphism, Infx0(F) does not depend on the choice
of pushforward x0 → x′0. Moreover, if y0 ∈ F(k) and x0

∼= y0 in F(k), then
Infx0

(F) ∼= Infy0
(F).

Remark 68.18.4. When F is a predeformation category, Autk(x0) is trivial and
hence Infx0

(F) = Autk[ε](x
′
0).

We will see that Infx0(F) has a natural k-vector space structure when F satisfies
(RS). At the same time, we will see that if F satisfies (RS), then the infinitesimal
automorphisms Inf(x′/x) of a morphism x′ → x lying over a small extension are
governed by Infx0

(F), where x0 is a pushforward of x to F(k). In order to do this,
we introduce the automorphism functor for any object x ∈ Ob(F) as follows.
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Definition 68.18.5. Let p : F → C be a category cofibered in groupoids over an
arbitrary base category C. Assume a choice of pushforwards has been made. Let
x ∈ Ob(F) and let U = p(x). Let U/C denote the category of objects under U . The
automorphism functor of x is the functor Aut(x) : U/C → Sets sending an object
f : U → V to AutV (f∗x) and sending a morphism

V ′ // V

U
f ′

``

f

??

to the homomorphism AutV ′(f
′
∗x)→ AutV (f∗x) coming from the unique morphism

f ′∗x→ f∗x lying over V ′ → V and compatible with x→ f ′∗x and x→ f∗x.

We will be concerned with the automorphism functors of objects in a category
cofibered in groupoids F over CΛ. If A ∈ Ob(CΛ), then the category A/CΛ is nothing
but the category CA, i.e. the category defined in Section 68.3 where we take Λ = A
and k = A/mA. Hence the automorphism functor of an object x ∈ Ob(F(A)) is a
functor Aut(x) : CA → Sets.

The following lemma could be deduced from Lemma 68.15.12 by thinking about
the “inertia” of a category cofibred in groupoids, see for example Stacks, Section
8.7 and Categories, Section 4.32. However, it is easier to see it directly.

Lemma 68.18.6. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x ∈ Ob(F(A)). Then Aut(x) : CA → Sets satisfies (RS).

Proof. It follows that Aut(x) satisfies (RS) from the fully faithfulness of the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) in Lemma 68.15.4. �

Lemma 68.18.7. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x ∈ Ob(F(A)). Let x0 be a pushforward of x to F(k).

(1) Tidx0
Aut(x) has a natural k-vector space structure such that addition

agrees with composition in Tidx0
Aut(x). In particular, composition in

Tidx0
Aut(x) is commutative.

(2) There is a canonical isomorphism Tidx0
Aut(x)→ Tidx0

Aut(x0) of k-vector
spaces.

Proof. We apply Remark 68.6.4 to the functor Aut(x) : CA → Sets and the element
idx0

∈ Aut(x)(k) to get a predeformation functor F = Aut(x)idx0
. By Lemmas

68.18.6 and 68.15.11 F is a deformation functor. By definition Tidx0
Aut(x) =

TF = F (k[ε]) which has a natural k-vector space structure specified by Lemma
68.10.8.

Addition is defined as the composition

F (k[ε])× F (k[ε]) −→ F (k[ε]×k k[ε]) −→ F (k[ε])

where the first map is the inverse of the bijection guaranteed by (RS) and the second
is induced by the k-algebra map k[ε]×k k[ε]→ k[ε] which maps (ε, 0) and (0, ε) to
ε. If A → B is a ring map in CΛ, then F (A) → F (B) is a homomorphism where
F (A) = Aut(x)idx0

(A) and F (B) = Aut(x)idx0
(B) are groups under composition.

We conclude that + : F (k[ε])×F (k[ε])→ F (k[ε]) is a homomorphism where F (k[ε])
is regarded as a group under composition. With id ∈ F (k[ε]) the unit element we see
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that +(v, id) = +(id, v) = v for any v ∈ F (k[ε]) because (id, v) is the pushforward
of v along the ring map k[ε] → k[ε] ×k k[ε] with ε 7→ (ε, 0). In general, given a
group G with multiplication ◦ and + : G × G → G is a homomorphism such that
+(g, 1) = +(1, g) = g, where 1 is the identity of G, then + = ◦. This shows addition
in the k-vector space structure on F (k[ε]) agrees with composition.

Finally, (2) is a matter of unwinding the definitions. Namely Tidx0
Aut(x) is the

set of automorphisms α of the pushforward of x along A → k → k[ε] which are
trivial modulo ε. On the other hand Tidx0

Aut(x0) is the set of automorphisms of

the pushforward of x0 along k → k[ε] which are trivial modulo ε. Since x0 is the
pushforward of x along A→ k the result is clear. �

Remark 68.18.8. We point out some basic relationships between infinitesimal
automorphism groups, liftings, and tangent spaces to automorphism functors. Let
F be a category cofibered in groupoids over CΛ. Let x′ → x be a morphism lying
over a ring map A′ → A. Let x0 be a pushforward of x to F(k). Then from the
definitions we have an equality

Inf(x′/x) = Lift(idx, A
′)

where the liftings are of idx as an object of Aut(x′). If x0 ∈ Ob(F(k)) and x′0 is
the pushforward to F(k[ε]), then applying this to x′0 → x0 we get

Infx0
(F) = Lift(idx0

, k[ε]) = Tidx0
Aut(x0),

the last equality following directly from the definitions.

Lemma 68.18.9. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x0 ∈ Ob(F(k)). Then Infx0

(F) is equal as a set to Tidx0
Aut(x0), and so

has a natural k-vector space structure such that addition agrees with composition of
automorphisms.

Proof. The equality of sets is as in the end of Remark 68.18.8 and the statement
about the vector space structure follows from Lemma 68.18.7. �

Lemma 68.18.10. Let ϕ : F → G be a morphism of categories cofibred in groupoids
over CΛ satisfying (RS). Let x0 ∈ Ob(F(k)). Then ϕ induces a k-linear map
Infx0

(F)→ Infϕ(x0)(G).

Proof. It is clear that ϕ induces a morphism from Aut(x0) → Aut(ϕ(x0)) which
maps the identity to the identity. Hence this follows from the result for tangent
spaces, see Lemma 68.11.4. �

Lemma 68.18.11. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x′ → x be a morphism lying over a surjective ring map A′ → A with
kernel I annihilated by mA′ . Let x0 be a pushforward of x to F(k). Then Inf(x′/x)
has a free and transitive action by Tidx0

Aut(x′)⊗k I = Infx0
(F)⊗k I.

Proof. This is just the analogue of Lemma 68.16.5 in the setting of automorphism
sheaves. To be precise, we apply Remark 68.6.4 to the functor Aut(x′) : CA′ → Sets
and the element idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x′)idx0

.
By Lemmas 68.18.6 and 68.15.11 F is a deformation functor. Hence Lemma 68.16.5
gives a free and transitive action of TF⊗k I on Lift(idx, A

′), because as Lift(idx, A
′)

is a group it is always nonempty. Note that we have equalities of vector spaces

TF = Tidx0
Aut(x′)⊗k I = Infx0

(F)⊗k I
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by Lemma 68.18.7. The equality Inf(x′/x) = Lift(idx, A
′) of Remark 68.18.8 finishes

the proof. �

Lemma 68.18.12. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x′ → x be a morphism in F lying over a surjective ring map. Let x0 be
a pushforward of x to F(k). If Infx0

(F) = 0 then Inf(x′/x) = 0.

Proof. Follows from Lemmas 68.3.3 and 68.18.11. �

Lemma 68.18.13. Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x0 ∈ Ob(F(k)). Then Infx0

(F) = 0 if and only if the natural morphism

Fx0 → Fx0 of categories cofibered in groupoids is an equivalence.

Proof. The morphism Fx0
→ Fx0

is an equivalence if and only if Fx0
is fibered in

setoids, cf. Categories, Section 4.37 (a setoid is by definition a groupoid in which
the only automorphism of any object is the identity). We prove that Infx0(F) = 0
if and only if this condition holds for Fx0 . Obviously if Fx0 is fibered in setoids
then Infx0

(F) = 0. Conversely assume Infx0
(F) = 0. Let A be an object of CΛ.

Then by Lemma 68.18.12, Inf(x/x0) = 0 for any object x → x0 of Fx0
(A). Since

by definition Inf(x/x0) equals the group of automorphisms of x → x0 in Fx0
(A),

this proves Fx0(A) is a setoid. �

Lemma 68.18.14. Let f : H → F and g : G → F be 1-morphisms of deformation
categories. Then

(1) W = H×F G is a deformation category
(2) let w0 ∈ Ob(W(k)) and let x0, y0, z0 be the image of w0 in F ,H,G. Then

we have a 6-term exact sequence of vector spaces

0→ Infw0
(W)→ Infy0

(H)⊕ Infz0(G)→ Infx0
(F)→ TW → TH⊕ TG → TF

Proof. Part (1) follows from Lemma 68.15.12 and the fact that W(k) is the fibre
product of two setoids with a unique isomorphism class over a setoid with a unique
isomorphism class.

Part (2). We apply Lemmas 68.11.4 and 68.18.10 to get all the linear maps except
for the “boundary map” δ : Infx0

(F)→ TW. We will insert suitable signs later.

Construction of δ. Choose a pushforward w0 → w′0 along k → k[ε]. Denote x′0, y
′
0, z
′
0

the images of w′0 in F ,H,G. In particular we obtain isomorphisms b′ : f(y′0)→ x′0
and c′ : x′0 → g(z′0). Denote b : f(y0) → x0 and c : x0 → g(z0) the pushforwards
along k[ε] → k. Observe that this means w′0 = (k[ε], y′0, z

′
0, c
′ ◦ b′) and w0 =

(k, y0, z0, c ◦ b) in terms of the explicit form of the fibre product of categories, see
Remarks 68.5.2 (13). Given α : x′0 → x′0 we set δ(α) = (k[ε], y′0, z

′
0, c
′◦α◦b′) which is

indeed an object ofW over k[ε] and comes with a morphism (k[ε], y′0, z
′
0, c
′◦α◦b′)→

w0 over k[ε] → k as α pushes forward to the identity over k. More generally, for
any k-vector space V we can define a map

Lift(idx0
, k[V ]) −→ Lift(w0, k[V ])

using exactly the same formulae. This construction is functorial in the vector space
V (details omitted). Hence δ is k-linear by an application of Lemma 68.10.5.

Having constructed these maps it is straightforward to show the sequence is exact.
Injectivity of the first map comes from the fact that f×g :W → F×G is faithful. If
(β, γ) ∈ Infy0

(H)⊕Infz0(G) map to the same element of Infx0
(F) then (β, γ) defines
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an automorphism of w′0 = (k[ε], y′0, z
′
0, c
′ ◦ b′) whence exactness at the second spot.

If α as above gives the trivial deformation (k[ε], y′0, z
′
0, c
′ ◦ α ◦ b′) of w0, then the

isomorphism w′0 = (k[ε], y′0, z
′
0, c
′ ◦ b′) → (k[ε], y′0, z

′
0, c
′ ◦ α ◦ b′) produces a pair

(β, γ) which is a preimage of α. If w = (k[ε], y, z, φ) is a deformation of w0 such
that y′0

∼= y and z ∼= z′0 then the map

f(y′0)→ f(y)
φ−→ g(z)→ g(z′0)

is an α which maps to w under δ. Finally, if y and z are deformations of y0 and z0

and there exists an isomorphism φ : f(y) → g(z) of deformations of f(y0) = x0 =
g(z0) then we get a preimage w = (k[ε], y, z, φ) of (x, y) in TW. This finishes the
proof. �

68.19. Groupoids in functors on an arbitrary category

We begin with generalities on groupoids in functors on an arbitrary category. In the
next section we will pass to the category CΛ. For clarity we shall sometimes refer
to an ordinary groupoid, i.e., a category whose morphisms are all isomorphisms, as
a groupoid category.

Definition 68.19.1. Let C be a category. The category of groupoids in functors
on C is the category with the following objects and morphisms.

(1) Objects: A groupoid in functors on C is a quintuple (U,R, s, t, c) where
U,R : C → Sets are functors and s, t : R → U and c : R ×s,U,t R → R
are morphisms with the following property: For any object T of C, the
quintuple

(U(T ), R(T ), s, t, c)

is a groupoid category.
(2) Morphisms: A morphism (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoids

in functors on C consists of morphisms U → U ′ and R → R′ with the
following property: For any object T of C, the induced maps U(T ) →
U ′(T ) and R(T )→ R′(T ) define a functor between groupoid categories

(U(T ), R(T ), s, t, c)→ (U ′(T ), R′(T ), s′, t′, c′).

Remark 68.19.2. A groupoid in functors on C amounts to the data of a functor
C → Groupoids, and a morphism of groupoids in functors on C amounts to a mor-
phism of the corresponding functors C → Groupoids (where Groupoids is regarded
as a 1-category). However, for our purposes it is more convenient to use the termi-
nology of groupoids in functors. In fact, thinking of a groupoid in functors as the
corresponding functor C → Groupoids, or equivalently as the category cofibered in
groupoids associated to that functor, can lead to confusion (Remark 68.21.2).

Remark 68.19.3. Let (U,R, s, t, c) be a groupoid in functors on a category C.
There are unique morphisms e : U → R and i : R → R such that for every
object T of C, e : U(T ) → R(T ) sends x ∈ U(T ) to the identity morphism on x
and i : R(T ) → R(T ) sends a ∈ U(T ) to the inverse of a in the groupoid category
(U(T ), R(T ), s, t, c). We will sometimes refer to s, t, c, e, and i as “source”, “target”,
“composition”, “identity”, and “inverse”.

Definition 68.19.4. Let C be a category. A groupoid in functors on C is rep-
resentable if it is isomorphic to one of the form (U,R, s, t, c) where U and R are
objects of C and the pushout R qs,U,t R exists.
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Remark 68.19.5. Hence a representable groupoid in functors on C is given by
objects U and R of C and morphisms s, t : U → R and c : R→ Rqs,U,tR such that
(U,R, s, t, c) satisfies the condition of Definition 68.19.1. The reason for requiring
the existence of the pushout R

∐
s,U,tR is so that the composition morphism c is

defined at the level of morphisms in C. This requirement will always be satisfied

below when we consider representable groupoids in functors on ĈΛ, since by Lemma

68.4.3 the category ĈΛ admits pushouts.

Remark 68.19.6. We will say “let (U,R, s, t, c) be a groupoid in functors on C”
to mean that we have a representable groupoid in functors. Thus this means that
U and R are objects of C, there are morphisms s, t : U → R, the pushout Rqs,U,tR
exists, there is a morphism c : R → R qs,U,t R, and (U,R, s, t, c) is a groupoid in
functors on C.

We introduce notation for restriction of groupoids in functors. This will be relevant

below in situations where we restrict from ĈΛ to CΛ.

Definition 68.19.7. Let (U,R, s, t, c) be a groupoid in functors on a category C.
Let C′ be a subcategory of C. The restriction (U,R, s, t, c)|C′ of (U,R, s, t, c) to C′
is the groupoid in functors on C′ given by (U |C′ , R|C′ , s|C′ , t|C′ , c|C′).

Remark 68.19.8. In the situation of Definition 68.19.7, we often denote s|C′ , t|C′ , c|C′
simply by s, t, c.

Definition 68.19.9. Let (U,R, s, t, c) be a groupoid in functors on a category C.
(1) The assignment T 7→ (U(T ), R(T ), s, t, c) determines a functor C → Groupoids.

The quotient category cofibered in groupoids [U/R] → C is the category
cofibered in groupoids over C associated to this functor (as in Remarks
68.5.2 (9)).

(2) The quotient morphism U → [U/R] is the morphism of categories cofibered
in groupoids over C defined by the rules
(a) x ∈ U(T ) maps to the object (T, x) ∈ Ob([U/R](T )), and
(b) x ∈ U(T ) and f : T → T ′ give rise to the morphism (f, idU(f)(x)) :

(T, x)→ (T,U(f)(x)) lying over f : T → T ′.

68.20. Groupoids in functors on the base category

In this section we discuss groupoids in functors on CΛ. Our eventual goal is to
show that prorepresentable groupoids in functors on CΛ serve as “presentations”
for well-behaved deformation categories in the same way that smooth groupoids
in algebraic spaces serve as presentations for algebraic stacks, cf. Algebraic Stacks,
Section 71.16.

Definition 68.20.1. A groupoid in functors on CΛ is prorepresentable if it is isomor-
phic to (R0, R1, s, t, c)|CΛ for some representable groupoid in functors (R0, R1, s, t, c)

on the category ĈΛ.

Let (U,R, s, t, c) be a groupoid in functors on CΛ. Taking completions, we get a

quintuple (Û , R̂, ŝ, t̂, ĉ). By Remark 68.7.10 completion as a functor on CofSet(CΛ)
is a right adjoint, so it commutes with limits. In particular, there is a canonical
isomorphism

̂R×s,U,t R −→ R̂×ŝ,Û ,t̂ R̂,
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so ĉ can be regarded as a functor R̂×ŝ,Û ,t̂ R̂→ R̂. Then (Û , R̂, ŝ, t̂, ĉ) is a groupoid

in functors on ĈΛ, with identity and inverse morphisms being the completions of
those of (U,R, s, t, c).

Definition 68.20.2. Let (U,R, s, t, c) be a groupoid in functors on CΛ. The com-

pletion (U,R, s, t, c)∧ of (U,R, s, t, c) is the groupoid in functors (Û , R̂, ŝ, t̂, ĉ) on ĈΛ
described above.

Remark 68.20.3. Let (U,R, s, t, c) be a groupoid in functors on CΛ. Then there
is a canonical isomorphism (U,R, s, t, c)∧|CΛ ∼= (U,R, s, t, c), see Remark 68.7.7.

On the other hand, let (U,R, s, t, c) be a groupoid in functors on ĈΛ such that

U,R : ĈΛ → Sets both commute with limits, e.g. if U,R are representable. Then
there is a canonical isomorphism ((U,R, s, t, c)|CΛ)∧ ∼= (U,R, s, t, c). This follows
from Remark 68.7.11.

Lemma 68.20.4. Let (U,R, s, t, c) be a groupoid in functors on CΛ.

(1) (U,R, s, t, c) is prorepresentable if and only if its completion is repre-

sentable as a groupoid in functors on ĈΛ.
(2) (U,R, s, t, c) is prorepresentable if and only if U and R are prorepre-

sentable.

Proof. Part (1) follows from Remark 68.20.3. For (2), the “only if” direction is
clear from the definition of a prorepresentable groupoid in functors. Conversely,
assume U and R are prorepresentable, say U ∼= R0|CΛ and R ∼= R1|CΛ for objects

R0 and R1 of ĈΛ. Since R0
∼= R̂0|CΛ and R1

∼= R̂1|CΛ by Remark 68.7.11 we see that

the completion (U,R, s, t, c)∧ is a groupoid in functors of the form (R0, R1, ŝ, t̂, ĉ).

By Lemma 68.4.3 the pushout R1 ×ŝ,R1,t̂
R1 exists. Hence (R0, R1, ŝ, t̂, ĉ) is a

representable groupoid in functors on ĈΛ. Finally, the restriction (R0, R1, s, t, c)|CΛ
gives back (U,R, s, t, c) by Remark 68.20.3 hence (U,R, s, t, c) is prorepresentable
by definition. �

68.21. Smooth groupoids in functors on the base category

The notion of smoothness for groupoids in functors on CΛ is defined as follows.

Definition 68.21.1. Let (U,R, s, t, c) be a groupoid in functors on CΛ. We say
(U,R, s, t, c) is smooth if s, t : R→ U are smooth.

Remark 68.21.2. We note that this terminology is potentially confusing: if (U,R, s, t, c)
is a smooth groupoid in functors, then the quotient [U/R] need not be a smooth
category cofibred in groupoids as defined in Remark 68.8.9. However smoothness
of (U,R, s, t, c) does imply (in fact is equivalent to) smoothness of the quotient
morphism U → [U/R] as we shall see in Lemma 68.21.4.

Remark 68.21.3. Let (R0, R1, s, t, c)|CΛ be a prorepresentable groupoid in functors
on CΛ. Then (R0, R1, s, t, c)|CΛ is smooth if and only if R1 is a power series over R0

via both s and t. This follows from Lemma 68.8.6.

Lemma 68.21.4. Let (U,R, s, t, c) be a groupoid in functors on CΛ. The following
are equivalent:

(1) The groupoid in functors (U,R, s, t, c) is smooth.
(2) The morphism s : R→ U is smooth.
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(3) The morphism t : R→ U is smooth.
(4) The quotient morphism U → [U/R] is smooth.

Proof. Statement (2) is equivalent to (3) since the inverse i : R→ R of (U,R, s, t, c)
is an isomorphism and t = s ◦ i. By definition (1) is equivalent to (2) and (3)
together, hence it is equivalent to either of them individually.

Finally we prove (2) is equivalent to (4). Unwinding the definitions:

(2) Smoothness of s : R→ U amounts to the following condition: If f : B →
A is a surjective ring map in CΛ, a ∈ R(A), and y ∈ U(B) such that
s(a) = U(f)(y), then there exists a′ ∈ R(B) such that R(f)(a′) = a and
s(a′) = y.

(4) Smoothness of U → [U/R] amounts to the following condition: If f : B →
A is a surjective ring map in CΛ and (f, a) : (B, y)→ (A, x) is a morphism
of [U/R], then there exists x′ ∈ U(B) and b ∈ R(B) with s(b) = x′,
t(b) = y such that c(a,R(f)(b)) = e(x). Here e : U → R denotes the
identity and the notation (f, a) is as in Remarks 68.5.2 (9); in particular
a ∈ R(A) with s(a) = U(f)(y) and t(a) = x.

If (4) holds and f, a, y as in (2) are given, let x = t(a) so that we have a morphism
(f, a) : (B, y) → (A, x). Then (4) produces x′ and b, and a′ = i(b) satisfies the
requirements of (2). Conversely, assume (2) holds and let (f, a) : (B, y)→ (A, x) as
in (4) be given. Then (2) produces a′ ∈ R(B), and x′ = t(a′) and b = i(a′) satisfy
the requirements of (4). �

68.22. Deformation categories as quotients of groupoids in functors

We discuss conditions on a groupoid in functors on CΛ which guarantee that the
quotient is a deformation category, and we calculate the tangent and infinitesimal
automorphism spaces of such a quotient.

Lemma 68.22.1. Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume
U and R satisfy (RS). Then [U/R] satisfies (RS).

Proof. Let

(A2, x2)

(f2,a2)

��
(A1, x1)

(f1,a1) // (A, x)

be a diagram in [U/R] such that f2 : A2 → A is surjective. The notation is as in
Remarks 68.5.2 (9). Hence f1 : A1 → A, f2 : A2 → A are maps in CΛ, x ∈ U(A),
x1 ∈ U(A1), x2 ∈ U(A2), and a1, a2 ∈ R(A) with s(a1) = U(f1)(x1), t(a1) = x and
s(a2) = U(f2)(x2), t(a2) = x. We construct a fiber product lying over A1 ×A A2

for this diagram in [U/R] as follows.

Let a = c(i(a1), a2), where i : R→ R is the inverse morphism. Then a ∈ R(A), x2 ∈
U(A2) and s(a) = U(f2)(x2). Hence an element (a, x2) ∈ R(A)×s,U(A),U(f2)U(A2).
By smoothness of s : R→ U there is an element ã ∈ R(A2) with R(f2)(ã) = a and
s(ã) = x2. In particular U(f2)(t(ã)) = t(a) = U(f1)(x1). Thus x1 and t(ã) define
an element

(x1, t(ã)) ∈ U(A1)×U(A) U(A2).

http://stacks.math.columbia.edu/tag/06KT


68.23. PRESENTATIONS OF CATEGORIES COFIBERED IN GROUPOIDS 3903

By the assumption that U satisfies (RS), we have an identification U(A1) ×U(A)

U(A2) = U(A1 ×A A2). Let us denote x1 × t(ã) ∈ U(A1 ×A A2) the element
corresponding to (x1, t(ã)) ∈ U(A1) ×U(A) U(A2). Let p1, p2 be the projections of
A1 ×A A2. We claim

(A1 ×A A2, x1 × t(ã))

(p1,e(x1))

��

(p2,i(ã))
// (A2, x2)

(f2,a2)

��
(A1, x1)

(f1,a1) // (A, x)

is a fiber square in [U/R]. (Note e : U → R denotes the identity.)

The diagram is commutative because c(a2, R(f2)(i(ã))) = c(a2, i(a)) = a1. To
check it is a fiber square, let

(B, z)

(g1,b1)

��

(g2,b2)
// (A2, x2)

(f2,a2)

��
(A1, x1)

(f1,a1) // (A, x)

be a commutative diagram in [U/R]. We will show there is a unique morphism
(g, b) : (B, z) → (A1 ×A A2, x1 × t(ã)) compatible with the morphisms to (A1, x1)
and (A2, x2). We must take g = (g1, g2) : B → A1 ×A A2. Since by assumption
R satisfies (RS), we have an identification R(A1 ×A A2) = R(A1) ×R(A) R(A2).
Hence we can write b = (b′1, b

′
2) for some b′1 ∈ R(A1), b′2 ∈ R(A2) which agree

in R(A). Then ((g1, g2), (b′1, b
′
2)) : (B, z) → (A1 ×A A2, x1 × t(ã)) will commute

with the projections if and only if b′1 = b1 and b′2 = c(ã, b2) proving unicity and
existence. �

Lemma 68.22.2. Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume
U and R are deformation functors. Then:

(1) The quotient [U/R] is a deformation category.
(2) The tangent space of [U/R] is

T [U/R] = Coker(ds− dt : TR→ TU).

(3) Let x0 be the unique object of [U/R](k). The space of infinitesimal auto-
morphisms of [U/R] is

Infx0
([U/R]) = Ker(ds⊕ dt : TR→ TU ⊕ TU).

Proof. Since U and R are deformation functors [U/R] is a predeformation category.
Since (RS) holds for deformation functors by definition we see that (RS) holds for
[U/R] by Lemma 68.22.1. Hence [U/R] is a deformation category. Statements (2)
and (3) follow directly from the definitions. �

68.23. Presentations of categories cofibered in groupoids

A presentation is defined as follows.

Definition 68.23.1. Let F be a category cofibered in groupoids over a category C.
Let (U,R, s, t, c) be a groupoid in functors on C. A presentation of F by (U,R, s, t, c)
is an equivalence ϕ : [U/R]→ F of categories cofibered in groupoids over C.

The following two general lemmas will be used to get presentations.
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Lemma 68.23.2. Let F be category cofibered in groupoids over a category C. Let
U : C → Sets be a functor. Let f : U → F be a morphism of categories cofibered in
groupoids over C. Define R, s, t, c as follows:

(1) R : C → Sets is the functor U ×f,F,f U .
(2) t, s : R→ U are the first and second projections, respectively.
(3) c : R ×s,U,t R → R is the morphism given by projection onto the first

and last factors of U ×f,F,f U ×f,F,f U under the canonical isomorphism
R×s,U,t R→ U ×f,F,f U ×f,F,f U .

Then (U,R, s, t, c) is a groupoid in functors on C.

Proof. Omitted. �

Lemma 68.23.3. Let F be category cofibered in groupoids over a category C. Let
U : C → Sets be a functor. Let f : U → F be a morphism of categories cofibered in
groupoids over C. Let (U,R, s, t, c) be the groupoid in functors on C constructed from
f : U → F in Lemma 68.23.2. Then there is a natural morphism [f ] : [U/R]→ F
such that:

(1) [f ] : [U/R]→ F is fully faithful.
(2) [f ] : [U/R] → F is an equivalence if and only if f : U → F is essentially

surjective.

Proof. Omitted. �

68.24. Presentations of deformation categories

According to the next lemma, a smooth morphism from a predeformation functor to
a predeformation category F gives rise to a presentation of F by a smooth groupoid
in functors.

Lemma 68.24.1. Let F be a category cofibered in groupoids over CΛ. Let U : CΛ →
Sets be a functor. Let f : U → F be a smooth morphism of categories cofibered in
groupoids. Then:

(1) If (U,R, s, t, c) is the groupoid in functors on CΛ constructed from f : U →
F in Lemma 68.23.2, then (U,R, s, t, c) is smooth.

(2) If f : U(k) → F(k) is essentially surjective, then the morphism [f ] :
[U/R]→ F of Lemma 68.23.3 is an equivalence.

Proof. From the construction of Lemma 68.23.2 we have a commutative diagram

R = U ×f,F,f U s
//

t

��

U

f

��
U

f // F

where t, s are the first and second projections. So t, s are smooth by Lemma 68.8.7.
Hence (1) holds.

If the assumption of (2) holds, then by Lemma 68.8.8 the morphism f : U → F is
essentially surjective. Hence by Lemma 68.23.3 the morphism [f ] : [U/R] → F is
an equivalence. �
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Lemma 68.24.2. Let F be a deformation category. Let U : CΛ → Sets be a
deformation functor. Let f : U → F be a morphism of categories cofibered in
groupoids. Let u0 be the unique element of U(k). Then U×f,F,f U is a deformation
functor with tangent space fitting into an exact sequence of k-vector spaces

0→ Inff(u0)(F)→ T (U ×f,F,f U)→ TU ⊕ TU

Proof. Follows from Lemma 68.18.14 and the fact that Infu0
(U) = (0). �

Lemma 68.24.3. Let F be a deformation category. Let U : CΛ → Sets be a
prorepresentable functor. Let f : U → F be a morphism of categories cofibered
in groupoids. Let (U,R, s, t, c) be the groupoid in functors on CΛ constructed from
f : U → F in Lemma 68.23.2. Assume dimk Infx0

(F) is finite for x0 ∈ Ob(F(k)).
Then (U,R, s, t, c) is prorepresentable.

Proof. Note that U is a deformation functor by Example 68.15.10. By Lemma
68.24.2 we see that R = U ×f,F,f U is a deformation functor whose tangent
space TR = T (U ×f,F,f U) sits in an exact sequence 0 → Infx0

(F) → TR →
TU ⊕ TU . Since we have assumed the first space has finite dimension and since
TU has finite dimension by Example 68.10.11 we see that dimTR < ∞. The
map γ : DerΛ(k, k) → TR see (68.11.6.1) is injective because its composition with
TR → TU is injective by Theorem 68.17.2 for the prorepresentable functor U .
Thus R is prorepresentable by Theorem 68.17.2. It follows from Lemma 68.20.4
that (U,R, s, t, c) is prorepresentable. �

Theorem 68.24.4. Let F be a category cofibered in groupoids over CΛ. Then F
admits a presentation by a smooth prorepresentable groupoid in functors on CΛ if
and only if the following conditions hold:

(1) F is a deformation category.
(2) dimk TF is finite.
(3) dimk Infx0

(F) is finite for some x0 ∈ Ob(F(k)).

Proof. Recall that a prorepresentable functor is a deformation functor, see Ex-
ample 68.15.10. Thus if F is equivalent to a smooth prorepresentable groupoid in
functors, then conditions (1), (2), and (3) follow from Lemma 68.22.2 (1), (2), and
(3).

Conversely, assume conditions (1), (2), and (3) hold. Condition (1) implies that
(S1) and (S2) are satisfied, see Lemma 68.15.6. By Lemma 68.12.4 there exists a
versal formal object ξ. Setting U = R|CΛ the associated map ξ : U → F is smooth
(this is the definition of a versal formal object). Let (U,R, s, t, c) be the groupoid
in functors constructed in Lemma 68.23.2 from the map ξ. By Lemma 68.24.1 we
see that (U,R, s, t, c) is a smooth groupoid in functors and that [U/R] → F is an
equivalence. By Lemma 68.24.3 we see that (U,R, s, t, c) is prorepresentable. Hence
[U/R]→ F is the desired presentation of F . �

68.25. Remarks regarding minimality

The main theorem of this chapter is Theorem 68.24.4 above. It describes com-
pletely those categories cofibred in groupoids over CΛ which have a presentation by
a smooth prorepresentable groupoid in functors. In this section we briefly discuss
how the minimality discussed in Sections 68.13 and 68.14 can be used to obtain a
“minimal” smooth prorepresentable presentation.
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Definition 68.25.1. Let (U,R, s, t, c) be a smooth prorepresentable groupoid in
functors on CΛ.

(1) We say (U,R, s, t, c) is normalized if the groupoid (U(k[ε]), R(k[ε]), s, t, c) is
totally disconnected, i.e., there are no morphisms between distinct objects.

(2) We say (U,R, s, t, c) is minimal if the U → [U/R] is given by a minimal
versal formal object of [U/R].

The difference between the two notions is related to the difference between condi-
tions (68.14.0.1) and (68.14.0.2) and disappears when k′ ⊂ k is separable. Also a
normalized smooth prorepresentable groupoid in functors is minimal as the follow-
ing lemma shows. Here is a precise statement.

Lemma 68.25.2. Let (U,R, s, t, c) be a smooth prorepresentable groupoid in func-
tors on CΛ.

(1) (U,R, s, t, c) is normalized if and only if the morphism U → [U/R] induces
an isomorphism on tangent spaces, and

(2) (U,R, s, t, c) is minimal if and only if the kernel of TU → T [U/R] is
contained in the image of DerΛ(k, k)→ TU .

Proof. Part (1) follows immediately from the definitions. To see part (2) set F =
[U/R]. Since F has a presentation it is a deformation category, see Theorem 68.24.4.
In particular it satisfies (RS), (S1), and (S2), see Lemma 68.15.6. Recall that
minimal versal formal objects are unique up to isomorphism, see Lemma 68.13.5.
By Theorem 68.14.5 a minimal versal object induces a map ξ : R|CΛ → F satisfying
(68.14.0.2). Since U ∼= R|CΛ over F we see that TU → TF = T [U/R] satisfies the
property as stated in the lemma. �

The quotient of a minimal prorepresentable groupoid in functors on CΛ does not
admit autoequivalences which are not automorphisms. To prove this, we first note
the following lemma.

Lemma 68.25.3. Let U : CΛ → Sets be a prorepresentable functor. Let ϕ : U →
U be a morphism such that dϕ : TU → TU is an isomorphism. Then ϕ is an
isomorphism.

Proof. If U ∼= R|CΛ for some R ∈ Ob(ĈΛ), then completing ϕ gives a morphism

R → R. If f : R → R is the corresponding morphism in ĈΛ, then f induces an
isomorphism DerΛ(R, k)→ DerΛ(R, k), see Example 68.10.14. In particular f is a
surjection by Lemma 68.4.6. As a surjective endomorphism of a Noetherian ring is
an isomorphism (see Algebra, Lemma 10.30.8) we conclude f , hence R→ R, hence
ϕ : U → U is an isomorphism. �

Lemma 68.25.4. Let (U,R, s, t, c) be a minimal smooth prorepresentable groupoid
in functors on CΛ. If ϕ : [U/R]→ [U/R] is an equivalence of categories cofibered in
groupoids, then ϕ is an isomorphism.

Proof. A morphism ϕ : [U/R] → [U/R] is the same thing as a morphism ϕ :
(U,R, s, t, c)→ (U,R, s, t, c) of groupoids in functors over CΛ as defined in Definition
68.19.1. Denote φ : U → U and ψ : R→ R the corresponding morphisms. Because
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the diagram

DerΛ(k, k)

γ
&&

γ
xx

TU
dφ

//

��

TU

��
T [U/R]

dϕ // T [U/R]

is commutative, since dϕ is bijective, and since we have the characterization of
minimality in Lemma 68.25.2 we conclude that dφ is injective (hence bijective by
dimension reasons). Thus φ : U → U is an isomorphism by Lemma 68.25.3. We
can use a similar argument, using the exact sequence

0→ Infx0([U/R])→ TR→ TU ⊕ TU
of Lemma 68.24.2 to prove that ψ : R → R is an isomorphism. But is also a
consequence of the fact that R = U×[U/R]U and that ϕ and φ are isomorphisms. �

Lemma 68.25.5. Let (U,R, s, t, c) and (U ′, R′, s′, t′, c′) be minimal smooth prorep-
resentable groupoids in functors on CΛ. If ϕ : [U/R]→ [U ′/R′] is an equivalence of
categories cofibered in groupoids, then ϕ is an isomorphism.

Proof. Let ψ : [U ′/R′]→ [U/R] be a quasi-inverse to ϕ. Then ψ ◦ϕ and ϕ ◦ψ are
isomorphisms by Lemma 68.25.4, hence ϕ and ψ are isomorphisms. �

The following lemma summarizes some of the things we have seen earlier in this
chapter.

Lemma 68.25.6. Let F be a deformation category such that dimk TF < ∞ and
dimk Infx0

(F) < ∞ for some x0 ∈ Ob(F(k)). Then there exists a minimal versal

formal object ξ of F . Say ξ lies over R ∈ Ob(ĈΛ). Let U = R|CΛ . Let f = ξ : U →
F be the associated morphism. Let (U,R, s, t, c) be the groupoid in functors on CΛ
constructed from f : U → F in Lemma 68.23.2. Then (U,R, s, t, c) is a minimal
smooth prorepresentable groupoid in functors on CΛ and there is an equivalence
[U/R]→ F .

Proof. As F is a deformation category it satisfies (S1) and (S2), see Lemma
68.15.6. By Lemma 68.12.4 there exists a versal formal object. By Lemma 68.13.5
there exists a minimal versal formal object ξ/R as in the statement of the lemma.
Setting U = R|CΛ the associated map ξ : U → F is smooth (this is the definition of
a versal formal object). Let (U,R, s, t, c) be the groupoid in functors constructed
in Lemma 68.23.2 from the map ξ. By Lemma 68.24.1 we see that (U,R, s, t, c) is
a smooth groupoid in functors and that [U/R]→ F is an equivalence. By Lemma
68.24.3 we see that (U,R, s, t, c) is prorepresentable. Finally, (U,R, s, t, c) is min-
imal because U → [U/R] = F corresponds to the minimal versal formal object
ξ. �

Presentations by minimal prorepresentable groupoids in functors satisfy the follow-
ing uniqueness property.

Lemma 68.25.7. Let F be category cofibered in groupoids over CΛ. Assume there
exist presentations of F by minimal smooth prorepresentable groupoids in functors
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(U,R, s, t, c) and (U ′, R′, s′, t′, c′). Then (U,R, s, t, c) and (U ′, R′, s′, t′, c′) are iso-
morphic.

Proof. Follows from Lemma 68.25.5 and the observation that a morphism [U/R]→
[U ′/R′] is the same thing as a morphism of groupoids in functors (by our explicit
construction of [U/R] in Definition 68.19.9). �

In summary we have proved the following theorem.

Theorem 68.25.8. Let F be a category cofibered in groupoids over CΛ. Consider
the following conditions

(1) F admits a presentation by a normalized smooth prorepresentable groupoid
in functors on CΛ,

(2) F admits a presentation by a smooth prorepresentable groupoid in functors
on CΛ,

(3) F admits a presentation by a minimal smooth prorepresentable groupoid
in functors on CΛ, and

(4) F satisfies the following conditions
(a) F is a deformation category.
(b) dimk TF is finite.
(c) dimk Infx0

(F) is finite for some x0 ∈ Ob(F(k)).

Then (2), (3), (4) are equivalent and are implied by (1). If k′ ⊂ k is separable,
then (1), (2), (3), (4) are all equivalent. Furthermore, the minimal smooth prorep-
resentable groupoids in functors which provide a presentation of F are unique up
to isomorphism.

Proof. We see that (1) implies (3) and is equivalent to (3) if k′ ⊂ k is separable
from Lemma 68.25.2. It is clear that (3) implies (2). We see that (2) implies (4) by
Theorem 68.24.4. We see that (4) implies (3) by Lemma 68.25.6. This proves all
the implications. The final uniqueness statement follows from Lemma 68.25.7. �

68.26. Change of residue field

In this section we quickly discuss what happens if we replace the residue field k by
a finite extension. Let Λ be a Noetherian ring and let Λ → k be a finite ring map
where k is a field. Throughout this whole chapter we have used CΛ to denote the
category of Artinian local Λ-algebras whose residue field is identified with k, see
Definition 68.3.1. However, since in this section we will discuss what happen when
we change k we will instead use the notation CΛ,k to indicate the dependence on k.

Situation 68.26.1. Let Λ be a Noetherian ring and let Λ→ k → l be a finite ring
maps where k and l are fields. Thus k ⊂ l is a finite extensions of fields. A typical
object of CΛ,l will be denoted B and a typical object of CΛ,k will be denoted A. We
define

(68.26.1.1) CΛ,l −→ CΛ,k, B 7−→ B ×l k

Given a category cofibred in groupoids p : F → CΛ,k we obtain an associated
category cofibred in groupoids

pl/k : Fl/k −→ CΛ,l
by setting Fl/k(B) = F(B ×l k).

http://stacks.math.columbia.edu/tag/06TE
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The functor (68.26.1.1) makes sense: because B ×l k ⊂ B we have

[k : k′] lengthB×lk(B ×l k) = lengthΛ(B ×l k)

≤ lengthΛ(B)

= [l : k′] lengthB(B) <∞

(see Lemma 68.3.4) hence B ×l k is Artinian (see Algebra, Lemma 10.51.6). Thus
B×lk is an Artinian local ring with residue field k. Note that (68.26.1.1) commutes
with fibre products

(B1 ×B B2)×l k = (B1 ×l k)×(B×lk) (B2 ×l k)

and transforms surjective ring maps into surjective ring maps. We use the “expen-
sive” notation Fl/k to prevent confusion with the construction of Remark 68.6.4.
Here are some elementary observations.

Lemma 68.26.2. With notation and assumptions as in Situation 68.26.1.

(1) We have Fl/k = (F)l/k.
(2) If F is a predeformation category, then Fl/k is a predeformation category.
(3) If F satisfies (S1), then Fl/k satisfies (S1).
(4) If F satisfies (S2), then Fl/k satisfies (S2).
(5) If F satisfies (RS), then Fl/k satisfies (RS).

Proof. Part (1) is immediate from the definitions.

Since Fl/k(l) = F(k) part (2) follows from the definition, see Definition 68.6.2.

Part (3) follows as the functor (68.26.1.1) commutes with fibre products and trans-
forms surjective maps into surjective maps, see Definition 68.9.1.

Part (4). To see this consider a diagram

l[ε]

��
B // l

in CΛ,l as in Definition 68.9.1. Applying the functor (68.26.1.1) we obtain

k[lε]

��
B ×l k // k

where lε denotes the finite dimensional k-vector space lε ⊂ l[ε]. According to
Lemma 68.9.4 the condition of (S2) for F also holds for this diagram. Hence (S2)
holds for Fl/k.

Part (5) follows from the characterization of (RS) in Lemma 68.15.4 part (2) and
the fact that (68.26.1.1) commutes with fibre products. �

The following lemma applies in particular when F satisfies (S2) and is a predefor-
mation category, see Lemma 68.9.5.

http://stacks.math.columbia.edu/tag/07WA


3910 68. FORMAL DEFORMATION THEORY

Lemma 68.26.3. With notation and assumptions as in Situation 68.26.1. Assume
F is a predeformation category and F satisfies (S2). Then there is a canonical l-
vector space isomorphism

TF ⊗k l −→ TFl/k
of tangent spaces.

Proof. By Lemma 68.26.2 we may replace F by F . Moreover we see that TF ,
resp. TFl/k has a canonical k-vector space structure, resp. l-vector space structure,
see Lemma 68.11.2. Then

TFl/k = Fl/k(l[ε]) = F(k[lε]) = TF ⊗k l
the last equality by Lemma 68.11.2. More generally, given a finite dimensional
l-vector space V we have

Fl/k(l[V ]) = F(k[Vk]) = TF ⊗k Vk
where Vk denotes V seen as a k-vector space. We conclude that the functors
V 7→ Fl/k(l[V ]) and V 7→ TF ⊗k Vk are canonically identified as functors to the
category of sets. By Lemma 68.10.4 we see there is at most one way to turn either
functor into an l-linear functor. Hence the isomorphisms are compatible with the
l-vector space structures and we win. �

Lemma 68.26.4. With notation and assumptions as in Situation 68.26.1. Assume
F is a deformation category. Let x0 ∈ Ob(F(k)) and denote xl,0 the corresponding
object of Fl/k over l. Then there is a canonical l-vector space isomorphism

Infx0
(F)⊗k l −→ Infxl,0(Fl/k)

of infinitesimal automorphism spaces.

Proof. Recall that the vector space structure on Infx0(F) comes from identifying
it with the tangent space of the functor Aut(x0) which is defined on the category
Ck,k of Artinian local k-algebras with residue field k. Similarly, Infxl,0(Fl/k) is the
tangent space of Aut(xl,0) which is defined on the category Cl,l of Artinian local
l-algebras with residue field l. Unwinding the definitions we see that Aut(xl,0) is
the restriction of Aut(x0)l/k (which lives on Ck,l) to Cl,l. Since there is no difference
between the tangent space of Aut(x0)l/k seen as a functor on Ck,l or Cl,l, the lemma
follows from Lemma 68.26.3 and the fact that Aut(x0) satisfies (RS) by Lemma
68.18.6 (whence we have (S2) by Lemma 68.15.6). �

Lemma 68.26.5. With notation and assumptions as in Situation 68.26.1. If F →
G is a smooth morphism of categories cofibred in groupoids over CΛ,k, then Fl/k →
Gl/k is a smooth morphism of categories cofibred in groupoids over CΛ,l.

Proof. This follows immediately from the definitions and the fact that (68.26.1.1)
preserves surjections. �

There are many more things you can say about the relationship between F and
Fl/k (in particular about the relationship between versal deformations) and we will
add these here as needed.

68.27. Other chapters

Preliminaries (1) Introduction
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CHAPTER 69

Deformation Theory

69.1. Introduction

The goal of this chapter is to give a (relatively) gentle introduction to deformation
theory of modules, morphisms, etc. In this chapter we deal with those results that
can be proven using the naive cotangent complex. In the chapter on the cotangent
complex we will extend these results a little bit. The advanced reader may wish to
consult the treatise by Illusie on this subject, see [Ill72].

69.2. Deformations of rings and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a surjective ring map A′ → A whose kernel is an ideal I of
square zero. Moreover we assume given a ring map A → B, a B-module N , and
an A-module map c : I → N . In this section we ask ourselves whether we can find
the question mark fitting into the following diagram

(69.2.0.1)

0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a surjection of A′-algebras B′ → B whose kernel is identified with N such that
A′ → B′ induces the given map c. We will say B′ is a solution to (69.2.0.1).

Lemma 69.2.1. Given a commutative diagram

0 // N2
// B′2 // B2

// 0

0 // I2

c2

OO

// A′2

OO

// A2

OO

// 0

0 // N1

GG

// B′1 // B1

GG

// 0

0 // I1

GG

c1

OO

// A′1

GG

OO

// A1

GG

OO

// 0

with front and back solutions to (69.2.0.1) we have

(1) There exist a canonical element in Ext1B1
(NLB1/A1

, N2) whose vanishing
is a necessary and sufficient condition for the existence of a ring map
B′1 → B′2 fitting into the diagram.

3913
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(2) If there exists a map B′1 → B′2 fitting into the diagram the set of all such
maps is a principal homogeneous space under HomB1(ΩB1/A1

, N2).

Proof. Let E = B1 viewed as a set. Consider the surjection A1[E] → B1 with
kernel J used to define the naive cotangent complex by the formula

NLB1/A1
= (J/J2 → ΩA1[E]/A1

⊗A1[E] B1)

in Algebra, Section 10.129. Since ΩA1[E]/A1
⊗B1 is a free B1-module we have

Ext1
B1

(NLB1/A1
, N2) =

HomB1
(J/J2, N2)

HomB1(ΩA1[E]/A1
⊗B1, N2)

We will construct an obstruction in the module on the right. Let J ′ = Ker(A′1[E]→
B1). Note that there is a surjection J ′ → J whose kernel is I1A1[E]. For every
e ∈ E denote xe ∈ A1[E] the corresponding variable. Choose a lift ye ∈ B′1 of
the image of xe in B1 and a lift ze ∈ B′2 of the image of xe in B2. These choices
determine A′1-algebra maps

A′1[E]→ B′1 and A′1[E]→ B′2

The first of these gives a map J ′ → N1, f ′ 7→ f ′(ye) and the second gives a map
J ′ → N2, f ′ 7→ f ′(ze). A calculation shows that these maps annihilate (J ′)2.
Because the left square of the diagram (involving c1 and c2) commutes we see that
these maps agree on I1A1[E] as maps into N2. Observe that B′1 is the pushout
of J ′ → A′1[B1] and J ′ → N1. Thus, if the maps J ′ → N1 → N2 and J ′ → N2

agree, then we obtain a map B′1 → B′2 fitting into the diagram. Thus we let the
obstruction be the class of the map

J/J2 → N2, f 7→ f ′(ze)− ν(f ′(ye))

where ν : N1 → N2 is the given map and where f ′ ∈ J ′ is a lift of f . This is
well defined by our remarks above. Note that we have the freedom to modify our
choices of ze into ze + δ2,e and ye into ye + δ1,e for some δi,e ∈ Ni. This will modify
the map above into

f 7→ f ′(ze + δ2,e)− ν(f ′(ye + δ1,e)) = f ′(ze)− ν(f ′(ze)) +
∑

(δ2,e − ν(δ1,e))
∂f

∂xe

This means exactly that we are modifying the map J/J2 → N2 by the composition
J/J2 → ΩA1[E]/A1

⊗ B1 → N2 where the second map sends dxe to δ2,e − ν(δ1,e).
Thus our obstruction is well defined and is zero if and only if a lift exists.

Part (2) comes from the observation that given two maps ϕ,ψ : B′1 → B′2 fitting
into the diagram, then ϕ − ψ factors through a map D : B1 → N2 which is an
A1-derivation:

D(fg) = ϕ(f ′g′)− ψ(f ′g′)

= ϕ(f ′)ϕ(g′)− ψ(f ′)ψ(g′)

= (ϕ(f ′)− ψ(f ′))ϕ(g′) + ψ(f ′)(ϕ(g′)− ψ(g′))

= gD(f) + fD(g)

Thus D corresponds to a unique B1-linear map ΩB1/A1
→ N2. Conversely, given

such a linear map we get a derivation D and given a ring map ψ : B′1 → B′2 fitting
into the diagram the map ψ +D is another ring map fitting into the diagram. �
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The naive cotangent complex isn’t good enough to contain all information regarding
obstructions to finding solutions to (69.2.0.1). However, if the ring map is a local
complete intersection, then the obstruction vanishes. This is a kind of lifting result;
observe that for syntomic ring maps we have proved a rather strong lifting result
in Smoothing Ring Maps, Proposition 16.4.2.

Lemma 69.2.2. If A → B is a local complete intersection ring map, then there
exists a solution to (69.2.0.1).

Proof. Write B = A[x1, . . . , xn]/J . Let J ′ ⊂ A′[x1, . . . , xn] be the inverse im-
age of J . Denote I[x1, . . . , xn] the kernel of A′[x1, . . . , xn] → A[x1, . . . , xn]. By
More on Algebra, Lemma 15.22.5 we have I[x1, . . . , xn]∩ (J ′)2 = J ′I[x1, . . . , xn] =
JI[x1, . . . , xn]. Hence we obtain a short exact sequence

0→ I ⊗A B → J ′/(J ′)2 → J/J2 → 0

Since J/J2 is projective (More on Algebra, Lemma 15.22.3) we can choose a split-
ting of this sequence

J ′/(J ′)2 = I ⊗A B ⊕ J/J2

Let (J ′)2 ⊂ J ′′ ⊂ J ′ be the elements which map to the second summand in the
decomposition above. Then

0→ I ⊗A B → A′[x1, . . . , xn]/J ′′ → B → 0

is a solution to (69.2.0.1) with N = I ⊗A B. The general case is obtained by doing
a pushout along the given map I ⊗A B → N . �

Lemma 69.2.3. If there exists a solution to (69.2.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1B(NLB/A, N).

Proof. We observe right away that given two solutions B′1 and B′2 to (69.2.0.1) we
obtain by Lemma 69.2.1 an obstruction element o(B′1, B

′
2) ∈ Ext1

B(NLB/A, N) to
the existence of a map B′1 → B′2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution B′ and an element
ξ ∈ Ext1

B(NLB/A, N) we can find a second solution B′ξ such that o(B′, B′ξ) = ξ.

Let E = B viewed as a set. Consider the surjection A[E]→ B with kernel J used
to define the naive cotangent complex by the formula

NLB/A = (J/J2 → ΩA[E]/A ⊗A[E] B)

in Algebra, Section 10.129. Since ΩA[E]/A ⊗B is a free B-module we have

Ext1
B(NLB/A, N) =

HomB(J/J2, N)

HomB(ΩA[E]/A ⊗B,N)

Thus we may represent ξ as the class of a morphism δ : J/J2 → N .

For every e ∈ E denote xe ∈ A[E] the corresponding variable. Choose a lift ye ∈ B′
of the image of xe in B. These choices determine an A′-algebra map ϕ : A′[E]→ B′.
Let J ′ = Ker(A′[E] → B). Observe that ϕ induces a map ϕ|J′ : J ′ → N and that

http://stacks.math.columbia.edu/tag/08S6
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B′ is the pushout, as in the following diagram

0 // N // B′ // B // 0

0 // J ′

ϕ|J′

OO

// A′[E]

OO

// B

=

OO

// 0

Let ψ : J ′ → N be the sum of the map ϕ|J′ and the composition

J ′ → J ′/(J ′)2 → J/J2 δ−→ N.

Then the pushout along ψ is an other ring extension B′ξ fitting into a diagram as

above. A calculation shows that o(B′, B′ξ) = ξ as desired. �

Lemma 69.2.4. Let A be a ring and let I be an A-module.

(1) The set of extensions of rings 0 → I → A′ → A → 0 where I is an ideal
of square zero is canonically bijective to Ext1A(NLA/Z, I).

(2) Given a ring map A → B, a B-module N , an A-module map c : I → N ,
and given extensions of rings with square zero kernels:
(a) 0→ I → A′ → A→ 0 corresponding to α ∈ Ext1A(NLA/Z, I), and

(b) 0→ N → B′ → B → 0 corresponding to β ∈ Ext1B(NLB/Z, N)
then there is a map A′ → B′ fitting into a diagram (69.2.0.1) if and only
if β and α map to the same element of Ext1A(NLA/Z, N).

Proof. To prove this we apply the previous results where we work over 0 → 0 →
Z→ Z→ 0, in order words, we work over the extension of Z by 0. Part (1) follows
from Lemma 69.2.3 and the fact that there exists a solution, namely I ⊕ A. Part
(2) follows from Lemma 69.2.1 and a compatibility between the constructions in
the proofs of Lemmas 69.2.3 and 69.2.1 whose statement and proof we omit. �

69.3. Thickenings of ringed spaces

In the following few sections we will use the following notions:

(1) A sheaf of ideals I ⊂ OX′ on a ringed space (X ′,OX′) is locally nilpotent
if any local section of I is locally nilpotent. Compare with Algebra, Item
29.

(2) A thickening of ringed spaces is a morphism i : (X,OX) → (X ′,OX′) of
ringed spaces such that
(a) i induces a homeomorphism X → X ′,
(b) the map i] : OX′ → i∗OX is surjective, and
(c) the kernel of i] is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed spaces is a thickening i : (X,OX) →
(X ′,OX′) of ringed spaces such that Ker(i]) has square zero.

(4) It is clear how to define morphisms of thickenings, morphisms of thicken-
ings over a base ringed space, etc.

If i : (X,OX) → (X ′,OX′) is a thickening of ringed spaces then we identify the
underlying topological spaces and think of OX , OX′ , and I = Ker(i]) as sheaves
on X = X ′. We obtain a short exact sequence

0→ I → OX′ → OX → 0

http://stacks.math.columbia.edu/tag/08S8
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of OX′ -modules. By Modules, Lemma 17.13.4 the category of OX -modules is equiv-
alent to the category of OX′ -modules annihilated by I. In particular, if i is a first
order thickening, then I is a OX -module.

Situation 69.3.1. A morphism of thickenings (f, f ′) is given by a commutative
diagram

(69.3.1.1)

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS)

t // (S′,OS′)

of ringed spaces whose horizontal arrows are thickenings. In this situation we set
I = Ker(i]) ⊂ OX′ and J = Ker(t]) ⊂ OS′ . As f = f ′ on underlying topological
spaces we will identify the (topological) pullback functors f−1 and (f ′)−1. Observe
that (f ′)] : f−1OS′ → OX′ induces in particular a map f−1J → I and therefore a
map of OX′ -modules

(f ′)∗J −→ I
If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes
a map f∗J → I.

Definition 69.3.2. In Situation 69.3.1 we say that (f, f ′) is a strict morphism of
thickenings if the map (f ′)∗J −→ I is surjective.

The following lemma in particular shows that a morphism (f, f ′) : (X ⊂ X ′) →
(S ⊂ S′) of thickenings of schemes is strict if and only if X = S ×S′ X ′.

Lemma 69.3.3. In Situation 69.3.1 the morphism (f, f ′) is a strict morphism of
thickenings if and only if (69.3.1.1) is cartesian in the category of ringed spaces.

Proof. Omitted. �

69.4. Modules on first order thickenings of ringed spaces

In this section we discuss some preliminaries to the deformation theory of modules.
Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed spaces. We will
freely use the notation introduced in Section 69.3, in particular we will identify the
underlying topological spaces. In this section we consider short exact sequences

(69.4.0.1) 0→ K → F ′ → F → 0

of OX′ -modules, where F , K are OX -modules and F ′ is an OX′ -module. In this
situation we have a canonical OX -module map

cF ′ : I ⊗OX F −→ K

where I = Ker(i]). Namely, given local sections f of I and s of F we set cF ′(f⊗s) =
fs′ where s′ is a local section of F ′ lifting s.

Lemma 69.4.1. Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (69.4.0.1) and maps ϕ : F → G and ψ : K → L.

http://stacks.math.columbia.edu/tag/08KZ
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(1) If there exists an OX′-module map ϕ′ : F ′ → G′ compatible with ϕ and ψ,
then the diagram

I ⊗OX F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗OX G

cG′ // L

is commutative.
(2) The set of OX′-module maps ϕ′ : F ′ → G′ compatible with ϕ and ψ is, if

nonempty, a principal homogeneous space under HomOX (F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if ϕ′ and
ϕ′′ are two maps F ′ → G′ compatible with ϕ and ψ, then ϕ′ − ϕ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomOX (F ,L) by Modules,
Lemma 17.13.4. Conversely, given an element α of this group we can add the
composition (as displayed above with α in the middle) to ϕ′. Some details omitted.

�

Lemma 69.4.2. Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (69.4.0.1) and maps ϕ : F → G and ψ : K → L. Assume the diagram

I ⊗OX F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗OX G

cG′ // L

is commutative. Then there exists an element

o(ϕ,ψ) ∈ Ext1OX (F ,L)

whose vanishing is a necessary and sufficient condition for the existence of a map
ϕ′ : F ′ → G′ compatible with ϕ and ψ.

Proof. We can construct explicitly an extension

0→ L → H → F → 0

by taking H to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ ϕ,1−−→ G

in the middle (with obvious notation). A calculation with local sections using the
assumption that the diagram of the lemma commutes shows that H is annihilated
by I. Hence H defines a class in

Ext1
OX (F ,L) ⊂ Ext1

OX′ (F ,L)

Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and
the pullback of the extension G′ via ϕ (calculations omitted). Thus the vanishing
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of the class of H is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

ϕ′

��

F //

ϕ

��

0

0 // L // G′ // G // 0

as desired. �

Lemma 69.4.3. Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX-modules F , K and an OX-linear map c : I ⊗OX F → K.
If there exists a sequence (69.4.0.1) with cF ′ = c then the set of isomorphism classes
of these extensions is principal homogeneous under Ext1OX (F ,K).

Proof. Assume given extensions

0→ K → F ′1 → F → 0 and 0→ K → F ′2 → F → 0

with cF ′1 = cF ′2 = c. Then the difference (in the extension group, see Homology,
Section 12.6) is an extension

0→ K → E → F → 0

where E is annihilated by I (local computation omitted). Hence the sequence is an
extension of OX -modules, see Modules, Lemma 17.13.4. Conversely, given such an
extension E we can add the extension E to the OX′ -extension F ′ without affecting
the map cF ′ . Some details omitted. �

Lemma 69.4.4. Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX-modules F , K and an OX-linear map c : I ⊗OX F → K.
Then there exists an element

o(F ,K, c) ∈ Ext2OX (F ,K)

whose vanishing is a necessary and sufficient condition for the existence of a se-
quence (69.4.0.1) with cF ′ = c.

Proof. We first show that if K is an injective OX -module, then there does exist a
sequence (69.4.0.1) with cF ′ = c. To do this, choose a flat OX′ -module H′ and a
surjection H′ → F (Modules, Lemma 17.16.6). Let J ⊂ H′ be the kernel. Since
H′ is flat we have

I ⊗OX′ H
′ = IH′ ⊂ J ⊂ H′

Observe that the map

IH′ = I ⊗OX′ H
′ −→ I ⊗OX′ F = I ⊗OX F

annihilates IJ . Namely, if f is a local section of I and s is a local section of H,
then fs is mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗OX F

c // K

http://stacks.math.columbia.edu/tag/08L7
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a diagram of OX -modules. If K is injective as an OX -module, then we obtain the
dotted arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local
calculation shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0

is a solution to the problem posed by the lemma.

General case. Choose an embedding K ⊂ K′ with K′ an injective OX -module. Let
Q be the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0

Denote c′ : I⊗OX F → K′ be the composition. By the paragraph above there exists
a sequence

0→ K′ → E ′ → F → 0

as in (69.4.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero,
hence the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0

as in (69.4.0.1) with cD′ = 0. This means exactly that D′ is annihilated by I, in
other words, the D′ is an extension of OX -modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
OX (F ,Q) = Ext2

OX (F ,K)

(the equality holds by the long exact cohomology sequence associated to the exact
sequence above and the vanishing of higher ext groups into the injective module
K′). If o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))

so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0

with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout
of F ′ by the map K → K′ is isomorphic to E ′ by Lemma 69.4.3 and the vanishing
of higher ext groups into the injective module K′. This gives a diagram as above,
which implies that D′ is split as an extension, i.e., the class o(F ,K, c) is zero. �

Remark 69.4.5. Let (X,OX) be a ringed space. A first order thickening i :
(X,OX) → (X ′,OX′) is said to be trivial if there exists a morphism of ringed
spaces π : (X ′,OX′) → (X,OX) which is a left inverse to i. The choice of such
a morphism π is called a trivialization of the first order thickening. Given π we
obtain a splitting

(69.4.5.1) OX′ = OX ⊕ I
as sheaves of algebras on X by using π] to split the surjection OX′ → OX . Con-
versely, such a splitting determines a morphism π. The category of trivialized first
order thickenings of (X,OX) is equivalent to the category of OX -modules.

http://stacks.math.columbia.edu/tag/08L9
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Remark 69.4.6. Let i : (X,OX)→ (X ′,OX′) be a trivial first order thickening of
ringed spaces and let π : (X ′,OX′)→ (X,OX) be a trivialization. Then given any
triple (F ,K, c) consisting of a pair of OX -modules and a map c : I ⊗OX F → K we
may set

F ′c,triv = F ⊕K
and use the splitting (69.4.5.1) associated to π and the map c to define the OX′ -
module structure and obtain an extension (69.4.0.1). We will call F ′c,triv the trivial
extension of F by K corresponding to c and the trivialization π. Given any extension
F ′ as in (69.4.0.1) we can use π] : OX → OX′ to think of F ′ as an OX -module
extension, hence a class ξF ′ in Ext1

OX (F ,K). Lemma 69.4.3 assures that F ′ 7→ ξF ′

induces a bijection{
isomorphism classes of extensions
F ′ as in (69.4.0.1) with c = cF ′

}
−→ Ext1

OX (F ,K)

Moreover, the trivial extension F ′c,triv maps to the zero class.

Remark 69.4.7. Let (X,OX) be a ringed space. Let (X,OX) → (X ′i,OX′i), i =

1, 2 be first order thickenings with ideal sheaves Ii. Let h : (X ′1,OX′1)→ (X ′2,OX′2)
be a morphism of first order thickenings of (X,OX). Picture

(X,OX)

xx &&
(X ′1,OX′1)

h // (X ′2,OX′2)

Observe that h] : OX′2 → OX′1 in particular induces an OX -module map I2 → I1.
Let F be an OX -module. Let (Ki, ci), i = 1, 2 be a pair consisting of an OX -module
Ki and a map ci : Ii⊗OXF → Ki. Assume furthermore given a map of OX -modules
K2 → K1 such that

I2 ⊗OX F c2
//

��

K2

��
I1 ⊗OX F

c1 // K1

is commutative. Then there is a canonical functoriality{
F ′2 as in (69.4.0.1) with
c2 = cF ′2 and K = K2

}
−→

{
F ′1 as in (69.4.0.1) with
c1 = cF ′1 and K = K1

}
Namely, thinking of all sheaves OX , OX′i , F , Ki, etc as sheaves on X, we set given

F ′2 the sheaf F ′1 equal to the pushout, i.e., fitting into the following diagram of
extensions

0 // K2
//

��

F ′2 //

��

F // 0

0 // K1
// F ′1 // F // 0

We omit the construction of the OX′1 -module structure on the pushout (this uses
the commutativity of the diagram involving c1 and c2).

http://stacks.math.columbia.edu/tag/08LB
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Remark 69.4.8. Let (X,OX), (X,OX) → (X ′i,OX′i), Ii, and h : (X ′1,OX′1) →
(X ′2,OX′2) be as in Remark 69.4.7. Assume that we are given given trivializations
πi : X ′i → X such that π1 = h ◦ π2. In other words, assume h is a morphism of
trivialized first order thickening of (X,OX). Let (Ki, ci), i = 1, 2 be a pair consisting
of an OX -module Ki and a map ci : Ii ⊗OX F → Ki. Assume furthermore given a
map of OX -modules K2 → K1 such that

I2 ⊗OX F c2
//

��

K2

��
I1 ⊗OX F

c1 // K1

is commutative. In this situation the construction of Remark 69.4.6 induces a
commutative diagram

{F ′2 as in (69.4.0.1) with c2 = cF ′2 and K = K2}

��

// Ext1
OX (F ,K2)

��
{F ′1 as in (69.4.0.1) with c1 = cF ′1 and K = K1} // Ext1

OX (F ,K1)

where the vertical map on the right is given by functoriality of Ext and the map
K2 → K1 and the vertical map on the left is the one from Remark 69.4.7.

Remark 69.4.9. Let (X,OX) be a ringed space. We define a sequence of mor-
phisms of first order thickenings

(X ′1,OX′1)→ (X ′2,OX′2)→ (X ′3,OX′3)

of (X,OX) to be a complex if the corresponding maps between the ideal sheaves
Ii give a complex of OX -modules I3 → I2 → I1 (i.e., the composition is zero).
In this case the composition (X ′1,OX′1) → (X ′3,OX′3) factors through (X,OX) →
(X ′3,OX′3), i.e., the first order thickening (X ′1,OX′1) of (X,OX) is trivial and comes
with a canonical trivialization π : (X ′1,OX′1)→ (X,OX).

We say a sequence of morphisms of first order thickenings

(X ′1,OX′1)→ (X ′2,OX′2)→ (X ′3,OX′3)

of (X,OX) is a short exact sequence if the corresponding maps between ideal sheaves
is a short exact sequence

0→ I3 → I2 → I1 → 0

of OX -modules.

Remark 69.4.10. Let (X,OX) be a ringed space. Let F be an OX -module. Let

(X ′1,OX′1)→ (X ′2,OX′2)→ (X ′3,OX′3)

be a complex first order thickenings of (X,OX), see Remark 69.4.9. Let (Ki, ci),
i = 1, 2, 3 be pairs consisting of an OX -module Ki and a map ci : Ii ⊗OX F → Ki.
Assume given a short exact sequence of OX -modules

0→ K3 → K2 → K1 → 0

http://stacks.math.columbia.edu/tag/08LD
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such that

I2 ⊗OX F c2
//

��

K2

��
I1 ⊗OX F

c1 // K1

and

I3 ⊗OX F c3
//

��

K3

��
I2 ⊗OX F

c2 // K2

are commutative. Finally, assume given an extension

0→ K2 → F ′2 → F → 0

as in (69.4.0.1) with K = K2 of OX′2 -modules with cF ′2 = c2. In this situation
we can apply the functoriality of Remark 69.4.7 to obtain an extension F ′1 on
X ′1 (we’ll describe F ′1 in this special case below). By Remark 69.4.6 using the
canonical splitting π : (X ′1,OX′1) → (X,OX) of Remark 69.4.9 we obtain ξF ′1 ∈
Ext1

OX (F ,K1). Finally, we have the obstruction

o(F ,K3, c3) ∈ Ext2
OX (F ,K3)

see Lemma 69.4.4. In this situation we claim that the canonical map

∂ : Ext1
OX (F ,K1) −→ Ext2

OX (F ,K3)

coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′1 to the
obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → K where K is an injective OX -
module. We can lift j to a map j′ : K2 → K. Set E ′2 = j′∗F ′2 equal to the pushout
of F ′2 by j′ so that cE′2 = j′ ◦ c2. Picture:

0 // K2
//

j′

��

F ′2 //

��

F //

��

0

0 // K // E ′2 // F // 0

Set E ′3 = E ′2 but viewed as an OX′3-module via OX′3 → OX′2 . Then cE′3 = j ◦ c3. The
proof of Lemma 69.4.4 constructs o(F ,K3, c3) as the boundary of the class of the
extension of OX -modules

0→ K/K3 → E ′3/K3 → F → 0

On the other hand, note that F ′1 = F ′2/K3 hence the class ξF ′1 is the class of the
extension

0→ K2/K3 → F ′2/K3 → F → 0

seen as a sequence of OX -modules using π] where π : (X ′1,OX′1)→ (X,OX) is the
canonical splitting. Thus finally, the claim follows from the fact that we have a
commutative diagram

0 // K2/K3
//

��

F ′2/K3
//

��

F //

��

0

0 // K/K3
// E ′3/K3

// F // 0

which is OX -linear (with the OX -module structures given above).
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69.5. Infinitesimal deformations of modules on ringed spaces

Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed spaces. We freely
use the notation introduced in Section 69.3. Let F ′ be an OX′ -module and set
F = i∗F ′. In this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0

of OX′ -modules. Since I2 = 0 the OX′ -module structure on IF ′ comes from
a unique OX -module structure. Thus the sequence above is an extension as in
(69.4.0.1). As a special case, if F ′ = OX′ we have i∗OX′ = OX and IOX′ = I and
we recover the sequence of structure sheaves

0→ I → OX′ → OX → 0

Lemma 69.5.1. Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′-modules. Set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be
an OX-linear map. The set of lifts of ϕ to an OX′-linear map ϕ′ : F ′ → G′ is, if
nonempty, a principal homogeneous space under HomOX (F , IG′).

Proof. This is a special case of Lemma 69.4.1 but we also give a direct proof. We
have short exact sequences of modules

0→ I → OX′ → OX → 0 and 0→ IG′ → G′ → G → 0

and similarly for F ′. Since I has square zero the OX′ -module structure on I and
IG′ comes from a unique OX -module structure. It follows that

HomOX′ (F
′, IG′) = HomOX (F , IG′) and HomOX′ (F

′,G) = HomOX (F ,G)

The lemma now follows from the exact sequence

0→ HomOX′ (F
′, IG′)→ HomOX′ (F

′,G′)→ HomOX′ (F
′,G)

see Homology, Lemma 12.5.8. �

Lemma 69.5.2. Let (f, f ′) be a morphism of first order thickenings of ringed spaces
as in Situation 69.3.1. Let F ′ be an OX′-module and set F = i∗F ′. Assume that
F is flat over S and that (f, f ′) is a strict morphism of thickenings (Definition
69.3.2). Then the following are equivalent

(1) F ′ is flat over S′, and
(2) the canonical map f∗J ⊗OX F → IF ′ is an isomorphism.

Moreover, in this case the maps

f∗J ⊗OX F → I ⊗OX F → IF ′

are isomorphisms.

Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thicken-
ings. Hence the final statement is a consequence of (2).

Proof of the equivalence of (1) and (2). We may check these conditions at stalks.
Let x ∈ X ⊂ X ′ be a point with image s = f(x) ∈ S ⊂ S′. Set A′ = OS′,s,
B′ = OX′,x, A = OS,s, and B = OX,x. Then A = A′/J and B = B′/I for some
square zero ideals. Since (f, f ′) is a strict morphism of thickenings we have I = JB′.
Let M ′ = F ′x and M = Fx. Then M ′ is a B′-module and M is a B-module. Since
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F = i∗F ′ we see that the kernel of the surjection M ′ → M is IM ′ = JM ′. Thus
we have a short exact sequence

0→ JM ′ →M ′ →M → 0

Using Sheaves, Lemma 6.26.4 and Modules, Lemma 17.15.1 to identify stalks of
pullbacks and tensor products we see that the stalk at x of the canonical map of
the lemma is the map

(J ⊗A B)⊗B M = J ⊗AM = J ⊗A′ M ′ −→ JM ′

The assumption that F is flat over S signifies that M is a flat A-module.

Assume (1). Flatness implies TorA
′

1 (M ′, A) = 0 by Algebra, Lemma 10.72.7. This
means J ⊗A′M ′ →M ′ is injective by Algebra, Remark 10.72.8. Hence J ⊗AM →
JM ′ is an isomorphism.

Assume (2). Then J⊗A′M ′ →M ′ is injective. Hence TorA
′

1 (M ′, A) = 0 by Algebra,
Remark 10.72.8. Hence M ′ is flat over A′ by Algebra, Lemma 10.95.8. �

Lemma 69.5.3. Let (f, f ′) be a morphism of first order thickenings as in Situation
69.3.1. Let F ′, G′ be OX′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an OX-linear map. Assume that G′ is flat over S′ and that (f, f ′) is a strict
morphism of thickenings. The set of lifts of ϕ to an OX′-linear map ϕ′ : F ′ → G′
is, if nonempty, a principal homogeneous space under

HomOX (F ,G ⊗OX f∗J )

Proof. Combine Lemmas 69.5.1 and 69.5.2. �

Lemma 69.5.4. Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an OX-linear map. There exists an element

o(ϕ) ∈ Ext1OX (Li∗F ′, IG′)
whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an OX′-linear map ϕ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 69.5.1 that the vanishing of the bound-
ary of ϕ via the map

HomOX (F ,G) = HomOX′ (F
′,G) −→ Ext1

OX′ (F
′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
OX′ (F

′, IG′) = Ext1
OX (Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology, Lemma
20.29.1). �

Lemma 69.5.5. Let (f, f ′) be a morphism of first order thickenings as in Situation
69.3.1. Let F ′, G′ be OX′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an OX-linear map. Assume that F ′ and G′ are flat over S′ and that (f, f ′) is a
strict morphism of thickenings. There exists an element

o(ϕ) ∈ Ext1OX (F ,G ⊗OX f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an OX′-linear map ϕ′ : F ′ → G′.
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First proof. This follows from Lemma 69.5.4 as we claim that under the assump-
tions of the lemma we have

Ext1
OX (Li∗F ′, IG′) = Ext1

OX (F ,G ⊗OX f∗J )

Namely, we have IG′ = G ⊗OX f∗J by Lemma 69.5.2. On the other hand, observe
that

H−1(Li∗F ′) = Tor
OX′
1 (F ′,OX)

(local computation omitted). Using the short exact sequence

0→ I → OX′ → OX → 0

we see that this Tor1 is computed by the kernel of the map I ⊗OX F → IF ′ which
is zero by the final assertion of Lemma 69.5.2. Thus τ≥−1Li

∗F ′ = F . On the other
hand, we have

Ext1
OX (Li∗F ′, IG′) = Ext1

OX (τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 13.17.1. �

Second proof. We can apply Lemma 69.4.2 as follows. Note that K = I ⊗OX F
and L = I ⊗OX G by Lemma 69.5.2, that cF ′ = 1 ⊗ 1 and cG′ = 1 ⊗ 1 and taking
ψ = 1⊗ϕ the diagram of the lemma commutes. Thus o(ϕ) = o(ϕ, 1⊗ϕ) works. �

Lemma 69.5.6. Let (f, f ′) be a morphism of first order thickenings as in Situation
69.3.1. Let F be an OX-module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over S. If there exists a pair (F ′, α) consisting of an OX′-module F ′
flat over S′ and an isomorphism α : i∗F ′ → F , then the set of isomorphism classes
of such pairs is principal homogeneous under Ext1OX (F , I ⊗OX F).

Proof. If we assume there exists one such module, then the canonical map

f∗J ⊗OX F → I ⊗OX F

is an isomorphism by Lemma 69.5.2. Apply Lemma 69.4.3 with K = I ⊗OX F and
c = 1. By Lemma 69.5.2 the corresponding extensions F ′ are all flat over S′. �

Lemma 69.5.7. Let (f, f ′) be a morphism of first order thickenings as in Situation
69.3.1. Let F be an OX-module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over S. There exists an OX′-module F ′ flat over S′ with i∗F ′ ∼= F , if
and only if

(1) the canonical map f∗J ⊗OX F → I ⊗OX F is an isomorphism, and
(2) the class o(F , I⊗OX F , 1) ∈ Ext2OX (F , I⊗OX F) of Lemma 69.4.4 is zero.

Proof. This follows immediately from the characterization of OX′ -modules flat
over S′ of Lemma 69.5.2 and Lemma 69.4.4. �

69.6. Application to flat modules on flat thickenings of ringed spaces

Consider a commutative diagram

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS)

t // (S′,OS′)
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of ringed spaces whose horizontal arrows are first order thickenings as in Situation
69.3.1. Set I = Ker(i]) ⊂ OX′ and J = Ker(t]) ⊂ OS′ . Let F be an OX -module.
Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over S.

Note that (1) + (2) imply that I = f∗J (apply Lemma 69.5.2 to OX′). The theory
of the preceding section is especially nice under these assumptions. We summarize
the results already obtained in the following lemma.

Lemma 69.6.1. In the situation above.

(1) There exists an OX′-module F ′ flat over S′ with i∗F ′ ∼= F , if and only if
the class o(F , f∗J ⊗OX F , 1) ∈ Ext2OX (F , f∗J ⊗OX F) of Lemma 69.4.4
is zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is
principal homogeneous under Ext1OX (F , f∗J ⊗OX F).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0OX (F , f∗J ⊗OX F).

Proof. Part (1) follows from Lemma 69.5.7 as we have seen above that I = f∗J .
Part (2) follows from Lemma 69.5.6. Part (3) follows from Lemma 69.5.3. �

Situation 69.6.2. Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
Consider a commutative diagram

(X ′1,O′1)
h
//

f ′1
��

(X ′2,O′2) //

f ′2
��

(X ′3,O′3)

f ′3
��

(S′1,OS′1) // (S′2,OS′2) // (S′3,OS′3)

where (a) the top row is a short exact sequence of first order thickenings of X, (b)
the lower row is a short exact sequence of first order thickenings of S, (c) each f ′i
restricts to f , (d) each pair (f, f ′i) is a strict morphism of thickenings, and (e) each
f ′i is flat. Finally, let F ′2 be an O′2-module flat over S′2 and set F = F ′2|X . Let
π : X ′1 → X be the canonical splitting (Remark 69.4.9).

Lemma 69.6.3. In Situation 69.6.2 the modules π∗F and h∗F ′2 are O′1-modules
flat over S′1 restricting to F on X. Their difference (Lemma 69.6.1) is an element
θ of Ext1OX (F , f∗J1 ⊗OX F) whose boundary in Ext2OX (F , f∗J3 ⊗OX F) equals the
obstruction (Lemma 69.6.1) to lifting F to an O′3-module flat over S′3.

Proof. Note that both π∗F and h∗F ′2 restrict to F on X and that the kernels of
π∗F → F and h∗F ′2 → F are given by f∗J1 ⊗OX F . Hence flatness by Lemma
69.5.2. Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗OX F → f∗J2 ⊗OX F → f∗J1 ⊗OX F → 0

is short exact due to the assumptions in Situation 69.6.2 and the fact that F is flat
over S. The statement on the obstruction class is a direct translation of the result
of Remark 69.4.10 to this particular situation. �

http://stacks.math.columbia.edu/tag/08VR
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69.7. Deformations of ringed spaces and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a first order thickening t : (S,OS) → (S′,OS′) of ringed
spaces. We denote J = Ker(t]) and we identify the underlying topological spaces
of S and S′. Moreover we assume given a morphism of ringed spaces f : (X,OX)→
(S,OS), an OX -module G, and an f -map c : J → G of sheaves of modules (Sheaves,
Definition 6.21.7 and Section 6.26). In this section we ask ourselves whether we can
find the question mark fitting into the following diagram

(69.7.0.1)

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

(where the vertical arrows are f -maps) and moreover how unique the solution is (if it
exists). More precisely, we look for a first order thickening i : (X,OX)→ (X ′,OX′)
and a morphism of thickenings (f, f ′) as in (69.3.1.1) where Ker(i]) is identified
with G such that (f ′)] induces the given map c. We will say X ′ is a solution to
(69.7.0.1).

Lemma 69.7.1. Assume given a commutative diagram of morphisms ringed spaces

(69.7.1.1)

(X2,OX2
)

i2
//

f2

��
g

��

(X ′2,OX′2)

f ′2

��
(S2,OS2)

t2 //

��

(S′2,OS′2)

��

(X1,OX1
)

i1
//

f1

��

(X ′1,OX′1)

f ′1

��
(S1,OS1)

t1 // (S′1,OS′1)

whose horizontal arrows are first order thickenings. Set Gj = Ker(i]j) and assume
given a g-map ν : G1 → G2 of modules giving rise to the commutative diagram

(69.7.1.2)

0 // G2
// OX′2 // OX2

// 0

0 // J2

c2

OO

// OS′2

OO

// OS2

OO

// 0

0 // G1

FF

// OX′1 // OX1

EE

// 0

0 // J1

FF

c1

OO

// OS′1

EE

OO

// OS1

EE

OO

// 0

with front and back solutions to (69.7.0.1).

http://stacks.math.columbia.edu/tag/08U8
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(1) There exist a canonical element in Ext1OX2
(Lg∗NLX1/S1

,G2) whose van-

ishing is a necessary and sufficient condition for the existence of a mor-
phism of ringed spaces X ′2 → X ′1 fitting into (69.7.1.1) compatibly with
ν.

(2) If there exists a morphism X ′2 → X ′1 fitting into (69.7.1.1) compatibly with
ν the set of all such morphisms is a principal homogeneous space under

HomOX1
(ΩX1/S1

, g∗G2) = HomOX2
(g∗ΩX1/S1

,G2) = Ext0OX2
(Lg∗NLX1/S1

,G2).

Proof. The naive cotangent complex NLX1/S1
is defined in Modules, Definition

17.24.4. The equalities in the last statement of the lemma follow from the fact that
g∗ is adjoint to g∗, the fact that H0(NLX1/S1

) = ΩX1/S1
(by construction of the

naive cotangent complex) and the fact that Lg∗ is the left derived functor of g∗.

Thus we will work with the groups ExtkOX2
(Lg∗NLX1/S1

,G2), k = 0, 1 in the rest

of the proof. We first argue that we can reduce to the case where the underlying
topological spaces of all ringed spaces in the lemma is the same.

To do this, observe that g−1NLX1/S1
is equal to the naive cotangent complex of the

homomorphism of sheaves of rings g−1f−1
1 OS1 → g−1OX1 , see Modules, Lemma

17.24.3. Moreover, the degree 0 term of NLX1/S1
is a flat OX1

-module, hence the
canonical map

Lg∗NLX1/S1
−→ g−1NLX1/S1

⊗g−1OX1
OX2

induces an isomorphism on cohomology sheaves in degrees 0 and −1. Thus we may
replace the Ext groups of the lemma with

Extkg−1OX1
(g−1NLX1/S1

,G2) = Extkg−1OX1
(NLg−1OX1

/g−1f−1
1 OS1

,G2)

The set of morphism of ringed spaces X ′2 → X ′1 fitting into (69.7.1.1) compatibly
with ν is in one-to-one bijection with the set of homomorphisms of g−1f−1

1 OS′1-

algebras g−1OX′1 → OX′2 which are compatible with f ] and ν. In this way we see
that we may assume we have a diagram (69.7.1.2) of sheaves on X and we are
looking to find a homomorphism of sheaves of rings OX′1 → OX′2 fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces
are the same, i.e., we have a diagram (69.7.1.2) of sheaves on a space X and we are
looking for homomorphisms of sheaves of rings OX′1 → OX′2 fitting into it. As ext

groups we will use ExtkOX1
(NLOX1

/OS1
,G2), k = 0, 1.

Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = OX′1 ×OX2
OX′2

This comes with a surjective map α : E → OX1
and hence we can use NL(α) instead

of NLOX1
/OS1

, see Modules, Lemma 17.24.2. Set

I ′ = Ker(OS′1 [E ]→ OX1
) and I = Ker(OS1

[E ]→ OX1
)

There is a surjection I ′ → I whose kernel is J1OS′1 [E ]. We obtain two homomor-
phisms of OS′2 -algebras

a : OS′1 [E ]→ OX′1 and b : OS′1 [E ]→ OX′2
which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate
(I ′)2. Moreover a and b agree on J1OS′1 [E ] as maps into G2 because the left hand



3930 69. DEFORMATION THEORY

square of (69.7.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a
well defined OX1 -linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)− ν(b(f ′)) where f ′ is a lift
of f to a local section of I ′. We let [ξ] ∈ Ext1

OX1
(NL(α),G2) be the image (see

below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOS1
[E]/OS1

⊗OS1
[E] OX1 .

Observe that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]

Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for
some map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings
ϕ : OX′1 → OX′2 fitting into (69.7.1.2). In this case consider the map OS′1 [E ]→ G2,
f ′ 7→ b(f ′)−ϕ(a(f ′)). A calculation shows this annihilates J1OS′1 [E ] and induces a
derivation OS1 [E ] → G2. The resulting linear map Ω → G2 witnesses the fact that
[ξ] = 0 in this case.

Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω→ G2 be a OX1
-linear map such that

ξ is equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OS′1 [E ]→ OX′2
annihilates I ′ and hence defines a map OX′1 → OX′2 fitting into (69.7.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as
the proof of (2) of Lemma 69.2.1. �

Lemma 69.7.2. Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings. Let G be a B-module. Let ξ ∈ Ext1B(NLB/A,G). There exists a

map of sheaves of sets α : E → B such that ξ ∈ Ext1B(NL(α),G) is the class of a
map I/I2 → G (see proof for notation).

Proof. Recall that given α : E → B such that A[E ] → B is surjective with kernel
I the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomorphic to
NLB/A, see Modules, Lemma 17.24.2. Observe moreover, that Ω = ΩA[E]/A⊗A[E]B
is the sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In other words, Ω is

the free B-module on the sheaf of sets E and in particular there is a canonical map
E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive
cotangent complex). The obstruction to writing ξ as the class of a map I/I2 → G is
an element in Ext1

B(Ω,G). Say this is represented by the extension 0→ G → H →
Ω→ 0 of B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an
induced map α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B.
The pullback of ξ under the quasi-isomorphism NL(α′) → NL(α) maps to zero in
Ext1

B(Ω′,G) because the pullback of the extension H by the map Ω′ → Ω is split as
Ω′ is the free B-module on the sheaf of sets E ′ and since by construction there is a
commutative diagram

E ′ //

��

E

��
H // Ω

http://stacks.math.columbia.edu/tag/08UB
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This finishes the proof. �

Lemma 69.7.3. If there exists a solution to (69.7.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1OX (NLX/S ,G).

Proof. We observe right away that given two solutions X ′1 and X ′2 to (69.7.0.1)
we obtain by Lemma 69.7.1 an obstruction element o(X ′1, X

′
2) ∈ Ext1

OX (NLX/S ,G)
to the existence of a map X ′1 → X ′2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution X ′ and an element
ξ ∈ Ext1

OX (NLX/S ,G) we can find a second solution X ′ξ such that o(X ′, X ′ξ) = ξ.

Pick α : E → OX as in Lemma 69.7.2 for the class ξ. Consider the surjec-
tion f−1OS [E ] → OX with kernel I and corresponding naive cotangent complex
NL(α) = (I/I2 → Ωf−1OS [E]/f−1OS ⊗f−1OS [E] OX). By the lemma ξ is the class of

a morphism δ : I/I2 → G. After replacing E by E ×OX OX′ we may also assume
that α factors through a map α′ : E → OX′ .

These choices determine an f−1OS′ -algebra map ϕ : OS′ [E ] → OX′ . Let I ′ =
Ker(ϕ). Observe that ϕ induces a map ϕ|I′ : I ′ → G and that OX′ is the pushout,
as in the following diagram

0 // G // OX′ // OX // 0

0 // I ′
ϕ|I′

OO

// f−1OS′ [E ]

OO

// OX

=

OO

// 0

Let ψ : I ′ → G be the sum of the map ϕ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.

Then the pushout along ψ is an other ring extension OX′ξ fitting into a diagram as

above. A calculation (omitted) shows that o(X ′, X ′ξ) = ξ as desired. �

Lemma 69.7.4. Let (S,OS) be a ringed space and let J be an OS-module.

(1) The set of extensions of sheaves of rings 0→ J → OS′ → OS → 0 where
J is an ideal of square zero is canonically bijective to Ext1OS (NLS/Z,J ).

(2) Given a morphism of ringed spaces f : (X,OX)→ (S,OS), an OX-module
G, an f -map c : J → G, and given extensions of sheaves of rings with
square zero kernels:
(a) 0→ J → OS′ → OS → 0 corresponding to α ∈ Ext1OS (NLS/Z,J ),

(b) 0→ G → OX′ → OX → 0 corresponding to β ∈ Ext1OX (NLX/Z,G)
then there is a morphism X ′ → S′ fitting into a diagram (69.7.0.1) if and
only if β and α map to the same element of Ext1OX (Lf∗NLS/Z,G).

Proof. To prove this we apply the previous results where we work over the base
ringed space (∗,Z) with trivial thickening. Part (1) follows from Lemma 69.7.3 and
the fact that there exists a solution, namely J ⊕OS . Part (2) follows from Lemma
69.7.1 and a compatibility between the constructions in the proofs of Lemmas 69.7.3
and 69.7.1 whose statement and proof we omit. �

http://stacks.math.columbia.edu/tag/08UC
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69.8. Thickenings of ringed topoi

This section is the analogue of Section 69.3 for ringed topoi. In the following few
sections we will use the following notions:

(1) A sheaf of ideals I ⊂ O′ on a ringed topos (Sh(D),O′) is locally nilpotent
if any local section of I is locally nilpotent.

(2) A thickening of ringed topoi is a morphism i : (Sh(C),O) → (Sh(D),O′)
of ringed topoi such that
(a) i∗ is an equivalence Sh(C)→ Sh(D),
(b) the map i] : O′ → i∗O is surjective, and
(c) the kernel of i] is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed topoi is a thickening i : (Sh(C),O) →
(Sh(D),O′) of ringed topoi such that Ker(i]) has square zero.

(4) It is clear how to define morphisms of thickenings of ringed topoi, mor-
phisms of thickenings of ringed topoi over a base ringed topos, etc.

If i : (Sh(C),O) → (Sh(D),O′) is a thickening of ringed topoi then we identify the
underlying topoi and think of O, O′, and I = Ker(i]) as sheaves on C. We obtain
a short exact sequence

0→ I → O′ → O → 0

of O′-modules. By Modules on Sites, Lemma 18.25.1 the category of O-modules is
equivalent to the category of O′-modules annihilated by I. In particular, if i is a
first order thickening, then I is a O-module.

Situation 69.8.1. A morphism of thickenings of ringed topoi (f, f ′) is given by a
commutative diagram

(69.8.1.1)

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB)

t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are thickenings. In this situation we set
I = Ker(i]) ⊂ O′ and J = Ker(t]) ⊂ OB′ . As f = f ′ on underlying topoi we will
identify the pullback functors f−1 and (f ′)−1. Observe that (f ′)] : f−1OB′ → O′
induces in particular a map f−1J → I and therefore a map of O′-modules

(f ′)∗J −→ I

If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes
a map f∗J → I.

Definition 69.8.2. In Situation 69.8.1 we say that (f, f ′) is a strict morphism of
thickenings if the map (f ′)∗J −→ I is surjective.

69.9. Modules on first order thickenings of ringed topoi

In this section we discuss some preliminaries to the deformation theory of modules.
Let i : (Sh(C,O)→ (Sh(D),O′) be a first order thickening of ringed topoi. We will
freely use the notation introduced in Section 69.8, in particular we will identify the
underlying topological topoi. In this section we consider short exact sequences

(69.9.0.1) 0→ K → F ′ → F → 0

http://stacks.math.columbia.edu/tag/08M7
http://stacks.math.columbia.edu/tag/08M9
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of O′-modules, where F , K are O-modules and F ′ is an O′-module. In this situation
we have a canonical O-module map

cF ′ : I ⊗O F −→ K

where I = Ker(i]). Namely, given local sections f of I and s of F we set cF ′(f⊗s) =
fs′ where s′ is a local section of F ′ lifting s.

Lemma 69.9.1. Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (69.9.0.1) and maps ϕ : F → G and ψ : K → L.

(1) If there exists an O′-module map ϕ′ : F ′ → G′ compatible with ϕ and ψ,
then the diagram

I ⊗O F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗O G

cG′ // L
is commutative.

(2) The set of O′-module maps ϕ′ : F ′ → G′ compatible with ϕ and ψ is, if
nonempty, a principal homogeneous space under HomO(F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if ϕ′ and
ϕ′′ are two maps F ′ → G′ compatible with ϕ and ψ, then ϕ′ − ϕ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomO(F ,L) by Modules
on Sites, Lemma 18.25.1. Conversely, given an element α of this group we can add
the composition (as displayed above with α in the middle) to ϕ′. Some details
omitted. �

Lemma 69.9.2. Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (69.9.0.1) and maps ϕ : F → G and ψ : K → L. Assume the diagram

I ⊗O F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗O G

cG′ // L

is commutative. Then there exists an element

o(ϕ,ψ) ∈ Ext1O(F ,L)

whose vanishing is a necessary and sufficient condition for the existence of a map
ϕ′ : F ′ → G′ compatible with ϕ and ψ.

Proof. We can construct explicitly an extension

0→ L → H → F → 0

http://stacks.math.columbia.edu/tag/08MC
http://stacks.math.columbia.edu/tag/08MD
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by taking H to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ ϕ,1−−→ G
in the middle (with obvious notation). A calculation with local sections using the
assumption that the diagram of the lemma commutes shows that H is annihilated
by I. Hence H defines a class in

Ext1
O(F ,L) ⊂ Ext1

O′(F ,L)

Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and
the pullback of the extension G′ via ϕ (calculations omitted). Thus the vanishing
of the class of H is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

ϕ′

��

F //

ϕ

��

0

0 // L // G′ // G // 0

as desired. �

Lemma 69.9.3. Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given O-modules F , K and an O-linear map c : I⊗OF → K.
If there exists a sequence (69.9.0.1) with cF ′ = c then the set of isomorphism classes
of these extensions is principal homogeneous under Ext1O(F ,K).

Proof. Assume given extensions

0→ K → F ′1 → F → 0 and 0→ K → F ′2 → F → 0

with cF ′1 = cF ′2 = c. Then the difference (in the extension group, see Homology,
Section 12.6) is an extension

0→ K → E → F → 0

where E is annihilated by I (local computation omitted). Hence the sequence is an
extension of O-modules, see Modules on Sites, Lemma 18.25.1. Conversely, given
such an extension E we can add the extension E to the O′-extension F ′ without
affecting the map cF ′ . Some details omitted. �

Lemma 69.9.4. Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given O-modules F , K and an O-linear map c : I⊗OF → K.
Then there exists an element

o(F ,K, c) ∈ Ext2O(F ,K)

whose vanishing is a necessary and sufficient condition for the existence of a se-
quence (69.9.0.1) with cF ′ = c.

Proof. We first show that if K is an injective O-module, then there does exist a
sequence (69.9.0.1) with cF ′ = c. To do this, choose a flat O′-module H′ and a
surjection H′ → F (Modules on Sites, Lemma 18.28.6). Let J ⊂ H′ be the kernel.
Since H′ is flat we have

I ⊗O′ H′ = IH′ ⊂ J ⊂ H′

Observe that the map

IH′ = I ⊗O′ H′ −→ I ⊗O′ F = I ⊗O F

http://stacks.math.columbia.edu/tag/08ME
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annihilates IJ . Namely, if f is a local section of I and s is a local section of H,
then fs is mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗O F

c // K

a diagram of O-modules. If K is injective as an O-module, then we obtain the
dotted arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local
calculation shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0

is a solution to the problem posed by the lemma.

General case. Choose an embedding K ⊂ K′ with K′ an injective O-module. Let
Q be the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0

Denote c′ : I ⊗O F → K′ be the composition. By the paragraph above there exists
a sequence

0→ K′ → E ′ → F → 0

as in (69.9.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero,
hence the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0

as in (69.9.0.1) with cD′ = 0. This means exactly that D′ is annihilated by I, in
other words, the D′ is an extension of O-modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
O(F ,Q) = Ext2

O(F ,K)

(the equality holds by the long exact cohomology sequence associated to the exact
sequence above and the vanishing of higher ext groups into the injective module
K′). If o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))

so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0

with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout
of F ′ by the map K → K′ is isomorphic to E ′ by Lemma 69.9.3 and the vanishing
of higher ext groups into the injective module K′. This gives a diagram as above,
which implies that D′ is split as an extension, i.e., the class o(F ,K, c) is zero. �
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Remark 69.9.5. Let (Sh(C),O) be a ringed topos. A first order thickening i :
(Sh(C),O) → (Sh(D),O′) is said to be trivial if there exists a morphism of ringed
topoi π : (Sh(D),O′) → (Sh(C),O) which is a left inverse to i. The choice of such
a morphism π is called a trivialization of the first order thickening. Given π we
obtain a splitting

(69.9.5.1) O′ = O ⊕ I

as sheaves of algebras on C by using π] to split the surjection O′ → O. Conversely,
such a splitting determines a morphism π. The category of trivialized first order
thickenings of (Sh(C),O) is equivalent to the category of O-modules.

Remark 69.9.6. Let i : (Sh(C),O)→ (Sh(D),O′) be a trivial first order thickening
of ringed topoi and let π : (Sh(D),O′)→ (Sh(C),O) be a trivialization. Then given
any triple (F ,K, c) consisting of a pair of O-modules and a map c : I ⊗O F → K
we may set

F ′c,triv = F ⊕K
and use the splitting (69.9.5.1) associated to π and the map c to define the O′-
module structure and obtain an extension (69.9.0.1). We will call F ′c,triv the trivial
extension of F by K corresponding to c and the trivialization π. Given any extension
F ′ as in (69.9.0.1) we can use π] : O → O′ to think of F ′ as an O-module extension,
hence a class ξF ′ in Ext1

O(F ,K). Lemma 69.9.3 assures that F ′ 7→ ξF ′ induces a
bijection {

isomorphism classes of extensions
F ′ as in (69.9.0.1) with c = cF ′

}
−→ Ext1

O(F ,K)

Moreover, the trivial extension F ′c,triv maps to the zero class.

Remark 69.9.7. Let (Sh(C),O) be a ringed topos. Let (Sh(C),O)→ (Sh(Di),O′i),
i = 1, 2 be first order thickenings with ideal sheaves Ii. Let h : (Sh(D1),O′1) →
(Sh(D2),O′2) be a morphism of first order thickenings of (Sh(C),O). Picture

(Sh(C),O)

ww ''
(Sh(D1),O′1)

h // (Sh(D2),O′2)

Observe that h] : O′2 → O′1 in particular induces an O-module map I2 → I1. Let
F be an O-module. Let (Ki, ci), i = 1, 2 be a pair consisting of an O-module Ki
and a map ci : Ii ⊗O F → Ki. Assume furthermore given a map of O-modules
K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. Then there is a canonical functoriality{
F ′2 as in (69.9.0.1) with
c2 = cF ′2 and K = K2

}
−→

{
F ′1 as in (69.9.0.1) with
c1 = cF ′1 and K = K1

}
Namely, thinking of all sheaves O, O′i, F , Ki, etc as sheaves on C, we set given
F ′2 the sheaf F ′1 equal to the pushout, i.e., fitting into the following diagram of
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extensions

0 // K2
//

��

F ′2 //

��

F // 0

0 // K1
// F ′1 // F // 0

We omit the construction of the O′1-module structure on the pushout (this uses the
commutativity of the diagram involving c1 and c2).

Remark 69.9.8. Let (Sh(C),O), (Sh(C),O)→ (Sh(Di),O′i), Ii, and h : (Sh(D1),O′1)→
(Sh(D2),O′2) be as in Remark 69.9.7. Assume that we are given given trivializations
πi : (Sh(Di),O′i) → (Sh(C),O) such that π1 = h ◦ π2. In other words, assume h is
a morphism of trivialized first order thickenings of (Sh(C),O). Let (Ki, ci), i = 1, 2
be a pair consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki. Assume
furthermore given a map of O-modules K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. In this situation the construction of Remark 69.9.6 induces a
commutative diagram

{F ′2 as in (69.9.0.1) with c2 = cF ′2 and K = K2}

��

// Ext1
O(F ,K2)

��
{F ′1 as in (69.9.0.1) with c1 = cF ′1 and K = K1} // Ext1

O(F ,K1)

where the vertical map on the right is given by functoriality of Ext and the map
K2 → K1 and the vertical map on the left is the one from Remark 69.9.7.

Remark 69.9.9. Let (Sh(C),O) be a ringed topos. We define a sequence of mor-
phisms of first order thickenings

(Sh(D1),O′1)→ (Sh(D2),O′2)→ (Sh(D3),O′3)

of (Sh(C),O) to be a complex if the corresponding maps between the ideal sheaves
Ii give a complex of O-modules I3 → I2 → I1 (i.e., the composition is zero). In this
case the composition (Sh(D1),O′1) → (Sh(D3),O′3) factors through (Sh(C),O) →
(Sh(D3),O′3), i.e., the first order thickening (Sh(D1),O′1) of (Sh(C),O) is trivial and
comes with a canonical trivialization π : (Sh(D1),O′1)→ (Sh(C),O).

We say a sequence of morphisms of first order thickenings

(Sh(D1),O′1)→ (Sh(D2),O′2)→ (Sh(D3),O′3)

of (Sh(C),O) is a short exact sequence if the corresponding maps between ideal
sheaves is a short exact sequence

0→ I3 → I2 → I1 → 0

of O-modules.
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Remark 69.9.10. Let (Sh(C),O) be a ringed topos. Let F be an O-module. Let

(Sh(D1),O′1)→ (Sh(D2),O′2)→ (Sh(D3),O′3)

be a complex first order thickenings of (Sh(C),O), see Remark 69.9.9. Let (Ki, ci),
i = 1, 2, 3 be pairs consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki.
Assume given a short exact sequence of O-modules

0→ K3 → K2 → K1 → 0

such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

and

I3 ⊗O F c3
//

��

K3

��
I2 ⊗O F

c2 // K2

are commutative. Finally, assume given an extension

0→ K2 → F ′2 → F → 0

as in (69.9.0.1) with K = K2 of O′2-modules with cF ′2 = c2. In this situation we
can apply the functoriality of Remark 69.9.7 to obtain an extension F ′1 of O′1-
modules (we’ll describe F ′1 in this special case below). By Remark 69.9.6 using
the canonical splitting π : (Sh(D1),O′1) → (Sh(C),O) of Remark 69.9.9 we obtain
ξF ′1 ∈ Ext1

O(F ,K1). Finally, we have the obstruction

o(F ,K3, c3) ∈ Ext2
O(F ,K3)

see Lemma 69.9.4. In this situation we claim that the canonical map

∂ : Ext1
O(F ,K1) −→ Ext2

O(F ,K3)

coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′1 to the
obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → K where K is an injective O-
module. We can lift j to a map j′ : K2 → K. Set E ′2 = j′∗F ′2 equal to the pushout
of F ′2 by j′ so that cE′2 = j′ ◦ c2. Picture:

0 // K2
//

j′

��

F ′2 //

��

F //

��

0

0 // K // E ′2 // F // 0

Set E ′3 = E ′2 but viewed as an O′3-module via O′3 → O′2. Then cE′3 = j ◦ c3. The
proof of Lemma 69.9.4 constructs o(F ,K3, c3) as the boundary of the class of the
extension of O-modules

0→ K/K3 → E ′3/K3 → F → 0

On the other hand, note that F ′1 = F ′2/K3 hence the class ξF ′1 is the class of the
extension

0→ K2/K3 → F ′2/K3 → F → 0
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seen as a sequence of O-modules using π] where π : (Sh(D1),O′1) → (Sh(C),O) is
the canonical splitting. Thus finally, the claim follows from the fact that we have
a commutative diagram

0 // K2/K3
//

��

F ′2/K3
//

��

F //

��

0

0 // K/K3
// E ′3/K3

// F // 0

which is O-linear (with the O-module structures given above).

69.10. Infinitesimal deformations of modules on ringed topi

Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of ringed topoi. We
freely use the notation introduced in Section 69.8. Let F ′ be an O′-module and set
F = i∗F ′. In this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0

of O′-modules. Since I2 = 0 the O′-module structure on IF ′ comes from a unique
O-module structure. Thus the sequence above is an extension as in (69.9.0.1). As
a special case, if F ′ = O′ we have i∗O′ = O and IO′ = I and we recover the
sequence of structure sheaves

0→ I → O′ → O → 0

Lemma 69.10.1. Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Let F ′, G′ be O′-modules. Set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an O-linear map. The set of lifts of ϕ to an O′-linear map ϕ′ : F ′ → G′ is, if
nonempty, a principal homogeneous space under HomO(F , IG′).

Proof. This is a special case of Lemma 69.9.1 but we also give a direct proof. We
have short exact sequences of modules

0→ I → O′ → O → 0 and 0→ IG′ → G′ → G → 0

and similarly for F ′. Since I has square zero the O′-module structure on I and
IG′ comes from a unique O-module structure. It follows that

HomO′(F ′, IG′) = HomO(F , IG′) and HomO′(F ′,G) = HomO(F ,G)

The lemma now follows from the exact sequence

0→ HomO′(F ′, IG′)→ HomO′(F ′,G′)→ HomO′(F ′,G)

see Homology, Lemma 12.5.8. �

Lemma 69.10.2. Let (f, f ′) be a morphism of first order thickenings of ringed
topoi as in Situation 69.8.1. Let F ′ be an O′-module and set F = i∗F ′. Assume
that F is flat over OB and that (f, f ′) is a strict morphism of thickenings (Definition
69.8.2). Then the following are equivalent

(1) F ′ is flat over OB′ , and
(2) the canonical map f∗J ⊗O F → IF ′ is an isomorphism.

Moreover, in this case the maps

f∗J ⊗O F → I ⊗O F → IF ′

are isomorphisms.
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Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thicken-
ings. Hence the final statement is a consequence of (2).

Proof of the equivalence of (1) and (2). By definition flatness overOB means flatness
over f−1OB. Similarly for flatness over f−1OB′ . Note that the strictness of (f, f ′)
and the assumption that F = i∗F ′ imply that

F = F ′/(f−1J )F ′

as sheaves on C. Moreover, observe that f∗J ⊗O F = f−1J ⊗f−1OB F . Hence the
equivalence of (1) and (2) follows from Modules on Sites, Lemma 18.28.13. �

Lemma 69.10.3. Let (f, f ′) be a morphism of first order thickenings of ringed
topoi as in Situation 69.8.1. Let F ′ be an O′-module and set F = i∗F ′. Assume
that F ′ is flat over OB′ and that (f, f ′) is a strict morphism of thickenings. Then
the following are equivalent

(1) F ′ is an O′-module of finite presentation, and
(2) F is an O-module of finite presentation.

Proof. The implication (1) ⇒ (2) follows from Modules on Sites, Lemma 18.23.4.
For the converse, assume F of finite presentation. We may and do assume that
C = C′. By Lemma 69.10.2 we have a short exact sequence

0→ I ⊗OX F → F ′ → F → 0

Let U be an object of C such that F|U has a presentation

O⊕mU → O⊕nU → F|U → 0

After replacing U by the members of a covering we may assume the map O⊕nU →
F|U lifts to a map (O′U )⊕n → F ′|U . The induced map I⊕n → I ⊗ F is surjective
by right exactness of ⊗. Thus after replacing U by the members of a covering we
can find a lift (O′|U )⊕m → (O′|U )⊕n of the given map O⊕mU → O⊕nU such that

(O′U )⊕m → (O′U )⊕n → F ′|U → 0

is a complex. Using right exactness of ⊗ once more it is seen that this complex is
exact. �

Lemma 69.10.4. Let (f, f ′) be a morphism of first order thickenings as in Sit-
uation 69.8.1. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let
ϕ : F → G be an O-linear map. Assume that G′ is flat over OB′ and that (f, f ′)
is a strict morphism of thickenings. The set of lifts of ϕ to an O′-linear map
ϕ′ : F ′ → G′ is, if nonempty, a principal homogeneous space under

HomO(F ,G ⊗O f∗J )

Proof. Combine Lemmas 69.10.1 and 69.10.2. �

Lemma 69.10.5. Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let
ϕ : F → G be an O-linear map. There exists an element

o(ϕ) ∈ Ext1O(Li∗F ′, IG′)

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an O′-linear map ϕ′ : F ′ → G′.
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Proof. It is clear from the proof of Lemma 69.10.1 that the vanishing of the bound-
ary of ϕ via the map

HomO(F ,G) = HomO′(F ′,G) −→ Ext1
O′(F ′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
O′(F ′, IG′) = Ext1

O(Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology on Sites,
Lemma 21.19.1). �

Lemma 69.10.6. Let (f, f ′) be a morphism of first order thickenings as in Sit-
uation 69.8.1. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let
ϕ : F → G be an O-linear map. Assume that F ′ and G′ are flat over OB′ and that
(f, f ′) is a strict morphism of thickenings. There exists an element

o(ϕ) ∈ Ext1O(F ,G ⊗O f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an O′-linear map ϕ′ : F ′ → G′.

First proof. This follows from Lemma 69.10.5 as we claim that under the assump-
tions of the lemma we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(F ,G ⊗O f∗J )

Namely, we have IG′ = G ⊗O f∗J by Lemma 69.10.2. On the other hand, observe
that

H−1(Li∗F ′) = TorO
′

1 (F ′,O)

(local computation omitted). Using the short exact sequence

0→ I → O′ → O → 0

we see that this Tor1 is computed by the kernel of the map I ⊗OF → IF ′ which is
zero by the final assertion of Lemma 69.10.2. Thus τ≥−1Li

∗F ′ = F . On the other
hand, we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 13.17.1. �

Second proof. We can apply Lemma 69.9.2 as follows. Note that K = I ⊗O F
and L = I ⊗O G by Lemma 69.10.2, that cF ′ = 1 ⊗ 1 and cG′ = 1 ⊗ 1 and taking
ψ = 1⊗ϕ the diagram of the lemma commutes. Thus o(ϕ) = o(ϕ, 1⊗ϕ) works. �

Lemma 69.10.7. Let (f, f ′) be a morphism of first order thickenings as in Situa-
tion 69.8.1. Let F be an O-module. Assume (f, f ′) is a strict morphism of thick-
enings and F flat over OB. If there exists a pair (F ′, α) consisting of an O′-module
F ′ flat over OB′ and an isomorphism α : i∗F ′ → F , then the set of isomorphism
classes of such pairs is principal homogeneous under Ext1O(F , I ⊗O F).

Proof. If we assume there exists one such module, then the canonical map

f∗J ⊗O F → I ⊗O F

is an isomorphism by Lemma 69.10.2. Apply Lemma 69.9.3 with K = I ⊗O F and
c = 1. By Lemma 69.10.2 the corresponding extensions F ′ are all flat over OB′ . �
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Lemma 69.10.8. Let (f, f ′) be a morphism of first order thickenings as in Sit-
uation 69.8.1. Let F be an O-module. Assume (f, f ′) is a strict morphism of
thickenings and F flat over OB. There exists an O′-module F ′ flat over OB′ with
i∗F ′ ∼= F , if and only if

(1) the canonical map f∗J ⊗O F → I ⊗O F is an isomorphism, and
(2) the class o(F , I ⊗O F , 1) ∈ Ext2O(F , I ⊗O F) of Lemma 69.9.4 is zero.

Proof. This follows immediately from the characterization of O′-modules flat over
OB′ of Lemma 69.10.2 and Lemma 69.9.4. �

69.11. Application to flat modules on flat thickenings of ringed topoi

Consider a commutative diagram

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB)

t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are first order thickenings as in Situation
69.8.1. Set I = Ker(i]) ⊂ O′ and J = Ker(t]) ⊂ OB′ . Let F be an O-module.
Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over OB.

Note that (1) + (2) imply that I = f∗J (apply Lemma 69.10.2 to O′). The theory
of the preceding section is especially nice under these assumptions. We summarize
the results already obtained in the following lemma.

Lemma 69.11.1. In the situation above.

(1) There exists an O′-module F ′ flat over OB′ with i∗F ′ ∼= F , if and only
if the class o(F , f∗J ⊗O F , 1) ∈ Ext2O(F , f∗J ⊗O F) of Lemma 69.9.4 is
zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is
principal homogeneous under Ext1O(F , f∗J ⊗O F).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0O(F , f∗J ⊗O F).

Proof. Part (1) follows from Lemma 69.10.8 as we have seen above that I = f∗J .
Part (2) follows from Lemma 69.10.7. Part (3) follows from Lemma 69.10.4. �

Situation 69.11.2. Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed
topoi. Consider a commutative diagram

(Sh(C′1),O′1)
h
//

f ′1
��

(Sh(C′2),O′2) //

f ′2
��

(Sh(C′3),O′3)

f ′3
��

(Sh(B′1),OB′1) // (Sh(B′2),OB′2) // (Sh(B′3),OB′3)

where (a) the top row is a short exact sequence of first order thickenings of (Sh(C),O),
(b) the lower row is a short exact sequence of first order thickenings of (Sh(B),OB),
(c) each f ′i restricts to f , (d) each pair (f, f ′i) is a strict morphism of thickenings,
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and (e) each f ′i is flat. Finally, let F ′2 be an O′2-module flat over OB′2 and set
F = F ′2⊗O. Let π : (Sh(C′1),O′1)→ (Sh(C),O) be the canonical splitting (Remark
69.9.9).

Lemma 69.11.3. In Situation 69.11.2 the modules π∗F and h∗F ′2 are O′1-modules
flat over OB′1 restricting to F on (Sh(C),O). Their difference (Lemma 69.11.1)

is an element θ of Ext1O(F , f∗J1 ⊗O F) whose boundary in Ext2O(F , f∗J3 ⊗O F)
equals the obstruction (Lemma 69.11.1) to lifting F to an O′3-module flat over OB′3 .

Proof. Note that both π∗F and h∗F ′2 restrict to F on (Sh(C),O) and that the
kernels of π∗F → F and h∗F ′2 → F are given by f∗J1 ⊗O F . Hence flatness by
Lemma 69.10.2. Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗O F → f∗J2 ⊗O F → f∗J1 ⊗O F → 0

is short exact due to the assumptions in Situation 69.11.2 and the fact that F is
flat over OB. The statement on the obstruction class is a direct translation of the
result of Remark 69.9.10 to this particular situation. �

69.12. Deformations of ringed topoi and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a first order thickening t : (Sh(B),OB) → (Sh(B′),OB′) of
ringed topoi. We denote J = Ker(t]) and we identify the underlying topoi of B
and B′. Moreover we assume given a morphism of ringed topoi f : (Sh(C),O) →
(Sh(B),OB), an O-module G, and a map f−1J → G of sheaves of f−1OB-modules.
In this section we ask ourselves whether we can find the question mark fitting into
the following diagram

(69.12.0.1)

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a
first order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings
(f, f ′) as in (69.8.1.1) where Ker(i]) is identified with G such that (f ′)] induces the
given map c. We will say (Sh(C′),O′) is a solution to (69.12.0.1).

Lemma 69.12.1. Assume given a commutative diagram of morphisms ringed topoi

(69.12.1.1)

(Sh(C2),O2)
i2
//

f2

��
g

~~

(Sh(C′2),O′2)

f ′2
��

(Sh(B2),OB2)
t2 //

~~

(Sh(B′2),OB′2)

~~

(Sh(C1),O1)
i1
//

f1

��

(Sh(C′1),O′1)

f ′1
��

(Sh(B1),OB1
)

t1 // (Sh(B′1),OB′1)
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whose horizontal arrows are first order thickenings. Set Gj = Ker(i]j) and assume

given a map of g−1O1-modules ν : g−1G1 → G2 giving rise to the commutative
diagram

(69.12.1.2)

0 // G2
// O′2 // O2

// 0

0 // f−1
2 J2

c2

OO

// f−1
2 OB′2

OO

// f−1
2 OB2

OO

// 0

0 // G1

CC

// O′1 // O1

CC

// 0

0 // f−1
1 J1

CC

c1

OO

// f−1
1 OB′1

CC

OO

// f−1
1 OB1

CC

OO

// 0

with front and back solutions to (69.12.0.1). (The north-north-west arrows are
maps on C2 after applying g−1 to the source.)

(1) There exist a canonical element in Ext1O2
(Lg∗NLO1/OB1

,G2) whose van-
ishing is a necessary and sufficient condition for the existence of a mor-
phism of ringed topoi (Sh(C′2),O′2)→ (Sh(C′1),O′1) fitting into (69.12.1.1)
compatibly with ν.

(2) If there exists a morphism (Sh(C′2),O′2)→ (Sh(C′1),O′1) fitting into (69.12.1.1)
compatibly with ν the set of all such morphisms is a principal homogeneous
space under

HomO1
(ΩO1/OB1

, g∗G2) = HomO2
(g∗ΩO1/OB1

,G2) = Ext0O2
(Lg∗NLO1/OB1

,G2).

Proof. The proof of this lemma is identical to the proof of Lemma 69.7.1. We urge
the reader to read that proof instead of this one. We will identify the underlying
topoi for every thickening in sight (we have already used this convention in the
statement). The equalities in the last statement of the lemma are immediate from

the definitions. Thus we will work with the groups ExtkO2
(Lg∗NLO1/OB1

,G2), k =
0, 1 in the rest of the proof. We first argue that we can reduce to the case where
the underlying topos of all ringed topoi in the lemma is the same.

To do this, observe that g−1NLO1/OB1
is equal to the naive cotangent complex of

the homomorphism of sheaves of rings g−1f−1
1 OB1

→ g−1O1, see Modules on Sites,
Lemma 18.32.5. Moreover, the degree 0 term of NLO1/OB1

is a flat O1-module,
hence the canonical map

Lg∗NLO1/OB1
−→ g−1NLO1/OB1

⊗g−1O1
O2

induces an isomorphism on cohomology sheaves in degrees 0 and −1. Thus we may
replace the Ext groups of the lemma with

Extkg−1O1
(g−1NLO1/OB1

,G2) = Extkg−1O1
(NLg−1O1/g−1f−1

1 OB1
,G2)

The set of morphism of ringed topoi (Sh(C′2),O′2)→ (Sh(C′1),O′1) fitting into (69.12.1.1)
compatibly with ν is in one-to-one bijection with the set of homomorphisms of
g−1f−1

1 OB′1-algebras g−1O′1 → O′2 which are compatible with f ] and ν. In this way
we see that we may assume we have a diagram (69.12.1.2) of sheaves on a site C
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(with f1 = f2 = id on underlying topoi) and we are looking to find a homomorphism
of sheaves of rings O′1 → O′2 fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces are
the same, i.e., we have a diagram (69.12.1.2) of sheaves on a site C (with f1 = f2 = id
on underlying topoi) and we are looking for homomorphisms of sheaves of rings

O′1 → O′2 fitting into it. As ext groups we will use ExtkO1
(NLO1/OB1

,G2), k = 0, 1.

Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = O′1 ×O2
O′2

This comes with a surjective map α : E → O1 and hence we can use NL(α) instead
of NLO1/OB1

, see Modules on Sites, Lemma 18.34.2. Set

I ′ = Ker(OB′1 [E ]→ O1) and I = Ker(OB1
[E ]→ O1)

There is a surjection I ′ → I whose kernel is J1OB′1 [E ]. We obtain two homomor-
phisms of OB′2-algebras

a : OB′1 [E ]→ O′1 and b : OB′1 [E ]→ O′2
which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate
(I ′)2. Moreover a and b agree on J1OB′1 [E ] as maps into G2 because the left hand
square of (69.12.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a
well defined O1-linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)−ν(b(f ′)) where f ′ is a lift of
f to a local section of I ′. We let [ξ] ∈ Ext1

O1
(NL(α),G2) be the image (see below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOB1
[E]/OB1

⊗OB1
[E] O1.

Observe that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]

Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for
some map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings
ϕ : O′1 → O′2 fitting into (69.12.1.2). In this case consider the map O′1[E ] → G2,
f ′ 7→ b(f ′)−ϕ(a(f ′)). A calculation shows this annihilates J1OB′1 [E ] and induces a
derivation OB1 [E ] → G2. The resulting linear map Ω → G2 witnesses the fact that
[ξ] = 0 in this case.

Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω→ G2 be a O1-linear map such that
ξ is equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OB′1 [E ] −→ O′2
annihilates I ′ and hence defines a map O′1 → O′2 fitting into (69.12.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as
the proof of (2) of Lemma 69.2.1. �

Lemma 69.12.2. Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. Let G be a B-module. Let ξ ∈ Ext1B(NLB/A,G). There exists a map

of sheaves of sets α : E → B such that ξ ∈ Ext1B(NL(α),G) is the class of a map
I/I2 → G (see proof for notation).

http://stacks.math.columbia.edu/tag/08UJ
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Proof. Recall that given α : E → B such that A[E ] → B is surjective with ker-
nel I the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomor-
phic to NLB/A, see Modules on Sites, Lemma 18.34.2. Observe moreover, that
Ω = ΩA[E]/A⊗A[E] B is the sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In

other words, Ω is the free B-module on the sheaf of sets E and in particular there
is a canonical map E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive
cotangent complex). The obstruction to writing ξ as the class of a map I/I2 → G is
an element in Ext1

B(Ω,G). Say this is represented by the extension 0→ G → H →
Ω→ 0 of B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an
induced map α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B.
The pullback of ξ under the quasi-isomorphism NL(α′) → NL(α) maps to zero in
Ext1

B(Ω′,G) because the pullback of the extension H by the map Ω′ → Ω is split as
Ω′ is the free B-module on the sheaf of sets E ′ and since by construction there is a
commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. �

Lemma 69.12.3. If there exists a solution to (69.12.0.1), then the set of isomor-
phism classes of solutions is principal homogeneous under Ext1O(NLO/OB ,G).

Proof. We observe right away that given two solutions O′1 and O′2 to (69.12.0.1)
we obtain by Lemma 69.12.1 an obstruction element o(O′1,O′2) ∈ Ext1

O(NLO/OB ,G)
to the existence of a map O′1 → O′2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution O′ and an element
ξ ∈ Ext1

O(NLO/OB ,G) we can find a second solution O′ξ such that o(O′,O′ξ) = ξ.

Pick α : E → O as in Lemma 69.12.2 for the class ξ. Consider the surjection
f−1OB[E ]→ O with kernel I and corresponding naive cotangent complex NL(α) =
(I/I2 → Ωf−1OB[E]/f−1OB⊗f−1OB[E]O). By the lemma ξ is the class of a morphism

δ : I/I2 → G. After replacing E by E ×O O′ we may also assume that α factors
through a map α′ : E → O′.
These choices determine an f−1OB′ -algebra map ϕ : OB′ [E ]→ O′. Let I ′ = Ker(ϕ).
Observe that ϕ induces a map ϕ|I′ : I ′ → G and that O′ is the pushout, as in the
following diagram

0 // G // O′ // O // 0

0 // I ′
ϕ|I′

OO

// f−1OB′ [E ]

OO

// O

=

OO

// 0

Let ψ : I ′ → G be the sum of the map ϕ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.
Then the pushout along ψ is an other ring extension O′ξ fitting into a diagram as

above. A calculation (omitted) shows that o(O′,O′ξ) = ξ as desired. �

http://stacks.math.columbia.edu/tag/08UK
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Lemma 69.12.4. Let (Sh(B),OB) be a ringed topos and let J be an OB-module.

(1) The set of extensions of sheaves of rings 0→ J → OB′ → OB → 0 where
J is an ideal of square zero is canonically bijective to Ext1OB(NLOB/Z,J ).

(2) Given a morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-
module G, an f−1OB-module map c : f−1J → G, and given extensions of
sheaves of rings with square zero kernels:
(a) 0→ J → OB′ → OB → 0 corresponding to α ∈ Ext1OB(NLOB/Z,J ),

(b) 0→ G → O′ → O → 0 corresponding to β ∈ Ext1O(NLO/Z,G)
then there is a morphism (Sh(C),O′) → (Sh(B,OB′) fitting into a di-
agram (69.12.0.1) if and only if β and α map to the same element of
Ext1O(Lf∗NLOB/Z,G).

Proof. To prove this we apply the previous results where we work over the base
ringed topos (Sh(∗),Z) with trivial thickening. Part (1) follows from Lemma 69.12.3
and the fact that there exists a solution, namely J ⊕ OB. Part (2) follows from
Lemma 69.12.1 and a compatibility between the constructions in the proofs of
Lemmas 69.12.3 and 69.12.1 whose statement and proof we omit. �
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CHAPTER 70

The Cotangent Complex

70.1. Introduction

The goal of this chapter is to construct the cotangent complex of a ring map, of a
morphism of schemes, and of a morphism of algebraic spaces. Some references are
the notes [Qui], the paper [Qui70], and the books [And67] and [Ill72].

70.2. Advice for the reader

In writing this chapter we have tried to minimize the use of simplicial techniques.
We view the choice of a resolution P• of a ring B over a ring A as a tool to calculating
the homology of abelian sheaves on the category CB/A, see Remark 70.5.5. This is
similar to the role played by a “good cover” to compute cohomology using the
Čech complex. To read a bit on homology on categories, please visit Cohomology
on Sites, Section 21.29. The derived lower shriek functor Lπ! is to homology what
RΓ(CB/A,−) is to cohomology. The category CB/A, studied in Section 70.4, is the
opposite of the category of factorizations A → P → B where P is a polynomial
algebra over A. This category comes with maps of sheaves of rings

A −→ O −→ B

where over the object U = (P → B) we have O(U) = P . It turns out that we
obtain the cotangent complex of B over A as

LB/A = Lπ!(ΩO/A ⊗O B)

see Lemma 70.4.3. We have consistently tried to use this point of view to prove the
basic properties of cotangent complexes of ring maps. In particular, all of the results
can be proven without relying on the existence of standard resolutions, although we
have not done so. The theory is quite satisfactory, except that perhaps the proof of
the fundamental triangle (Proposition 70.7.4) uses just a little bit more theory on
derived lower shriek functors. To provide the reader with an alternative, we give a
rather complete sketch of an approach to this result based on simple properties of
standard resolutions in Remarks 70.7.5 and 70.7.6.

Our approach to the cotangent complex for morphisms of ringed topoi, morphisms
of schemes, morphisms of algebraic spaces, etc is to deduce as much as possible
from the case of “plain ring maps” discussed above.

70.3. The cotangent complex of a ring map

Let A be a ring. Let AlgA be the category of A-algebras. Consider the pair of adjoint
functors (F, i) where i : AlgA → Sets is the forgetful functor and F : Sets → AlgA
assigns to a set E the polynomial algebra A[E] on E over A. LetX• be the simplicial
object of Fun(AlgA,AlgA) constructed in Simplicial, Section 14.32.

3949
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Consider an A-algebra B. Denote P• = X•(B) the resulting simplicial A-algebra.
Recall that P0 = A[B], P1 = A[A[B]], and so on. In particular each term Pn is a
polynomial A-algebra. Recall also that there is an augmentation

ε : P• −→ B

where we view B as a constant simplicial A-algebra.

Definition 70.3.1. Let A→ B be a ring map. The standard resolution of B over
A is the augmentation ε : P• → A with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

It will turn out that we can use the standard resolution to compute left derived
functors in certain settings.

Definition 70.3.2. The cotangent complex LB/A of a ring map A → B is the
complex of B-modules associated to the simplicial B-module

ΩP•/A ⊗P•,ε B

where ε : P• → B is the standard resolution of B over A.

In Simplicial, Section 14.22 we associate a chain complex to a simplicial module,
but here we work with cochain complexes. Thus the term L−nB/A in degree −n is

the B-module ΩPn/A ⊗Pn,εn B and LmB/A = 0 for m > 0.

Remark 70.3.3. Let A → B be a ring map. Let A be the category of arrows
ψ : C → B of A-algebras and let S be the category of maps E → B where E is a
set. There are adjoint functors i : A → S (the forgetful functor) and F : S → A
which sends E → B to A[E] → B. Let X• be the simplicial object of Fun(A,A)
constructed in Simplicial, Section 14.32. The diagram

A

��

// Soo

��
AlgA // Setsoo

commutes. It follows that X•(idB : B → B) is equal to the standard resolution of
B over A.

Lemma 70.3.4. Let Ai → Bi be a system of ring maps over a directed index set
I. Then colimLAi/Bi = LcolimAi/ colimBi .

Proof. This is true because the forgetful functor i : A-Alg → Sets and its adjoint
F : Sets → A-Alg commute with filtered colimits. Moreover, the functor B/A 7→
ΩB/A does as well (Algebra, Lemma 10.127.4). �

70.4. Simplicial resolutions and derived lower shriek

Let A → B be a ring map. Consider the category of A-algebra maps α : P → B
where P is a polynomial algebra over A (in some set1 of variables). Let C = CB/A

1It suffices to consider sets of cardinality at most the cardinality of B.

http://stacks.math.columbia.edu/tag/08PM
http://stacks.math.columbia.edu/tag/08PN
http://stacks.math.columbia.edu/tag/08PP
http://stacks.math.columbia.edu/tag/08S9
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denote the opposite of this category. The reason for taking the opposite is that we
want to think of objects (P, α) as corresponding to the diagram of affine schemes

Spec(B)

��

// Spec(P )

yy
Spec(A)

We endow C with the chaotic topology (Sites, Example 7.6.6), i.e., we endow C with
the structure of a site where coverings are given by identities so that all presheaves
are sheaves. Moreover, we endow C with two sheaves of rings. The first is the sheaf
O which sends to object (P, α) to P . Then second is the constant sheaf B, which
we will denote B. We obtain the following diagram of morphisms of ringed topoi

(70.4.0.1)

(Sh(C), B)
i
//

π

��

(Sh(C),O)

(Sh(∗), B)

The morphism i is the identity on underlying topoi and i] : O → B is the obvious
map. The map π is as in Cohomology on Sites, Example 21.29.1. An important
role will be played in the following by the derived functors Li∗ : D(O) −→ D(B)
left adjoint to Ri∗ = i∗ : D(B) → D(O) and Lπ! : D(B) −→ D(B) left adjoint to
π∗ = π−1 : D(B)→ D(B).

Lemma 70.4.1. With notation as above let P• be a simplicial A-algebra endowed
with an augmentation ε : P• → B. Assume each Pn is a polynomial algebra over A
and ε is a trivial Kan fibration on underlying simplicial sets. Then

Lπ!(F) = F(P•, ε)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. We will use the criterion of Cohomology on Sites, Lemma 21.29.7 to prove
this. Given an object U = (Q, β) of C we have to show that

S• = MorC((Q, β), (P•, ε))

is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is
possible by our choice of the category C). We see that

S• = MorSets((E, β|E), (P•, ε))

Let ∗ be the constant simplicial set on a singleton. For b ∈ B let Fb,• be the
simplicial set defined by the cartesian diagram

Fb,• //

��

P•

ε

��
∗ b // B

With this notation S• =
∏
e∈E Fβ(e),•. Since we assumed ε is a trivial Kan fibration

we see that Fb,• → ∗ is a trivial Kan fibration (Simplicial, Lemma 14.29.3). Thus
S• → ∗ is a trivial Kan fibration (Simplicial, Lemma 14.29.6). Therefore S• is
homotopy equivalent to ∗ (Simplicial, Lemma 14.29.8). �

http://stacks.math.columbia.edu/tag/08PS
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In particular, we can use the standard resolution of B over A to compute derived
lower shriek.

Lemma 70.4.2. Let A → B be a ring map. Let ε : P• → B be the standard
resolution of B over A. Let π be as in (70.4.0.1). Then

Lπ!(F) = F(P•, ε)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

First proof. We will apply Lemma 70.4.1. Since the terms Pn are polynomial
algebras we see the first assumption of that lemma is satisfied. The second assump-
tion is proved as follows. By Simplicial, Lemma 14.32.5 the map ε is a homotopy
equivalence of underlying simplicial sets. By Simplicial, Lemma 14.30.9 this implies
ε induces a quasi-isomorphism of associated complexes of abelian groups. By Sim-
plicial, Lemma 14.30.8 this implies that ε is a trivial Kan fibration of underlying
simplicial sets. �

Second proof. We will use the criterion of Cohomology on Sites, Lemma 21.29.7.
Let U = (Q, β) be an object of C. We have to show that

S• = MorC((Q, β), (P•, ε))

is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is
possible by our choice of the category C). Using the notation of Remark 70.3.3 we
see that

S• = MorS((E → B), i(P• → B))

By Simplicial, Lemma 14.32.5 the map i(P• → B) → i(B → B) is a homotopy
equivalence in S. Hence S• is homotopy equivalent to

MorS((E → B), (B → B)) = {∗}

as desired. �

Lemma 70.4.3. Let A→ B be a ring map. Let π and i be as in (70.4.0.1). There
is a canonical isomorphism

LB/A = Lπ!(Li
∗ΩO/A) = Lπ!(i

∗ΩO/A) = Lπ!(ΩO/A ⊗O B)

in D(B).

Proof. For an object α : P → B of the category C the module ΩP/A is a free P -
module. Thus ΩO/A is a flat O-module. Hence Li∗ΩO/A = i∗ΩO/A is the sheaf of
B-modules which associates to α : P → A the B-module ΩP/A⊗P,α B. By Lemma
70.4.2 we see that the right hand side is computed by the value of this sheaf on
the standard resolution which is our definition of the left hand side (Definition
70.3.2). �

Lemma 70.4.4. If A → B is a ring map, then Lπ!(π
−1M) = M with π as in

(70.4.0.1).

Proof. This follows from Lemma 70.4.1 which tells us Lπ!(π
−1M) is computed by

(π−1M)(P•, ε) which is the constant simplicial object on M . �

Lemma 70.4.5. If A→ B is a ring map, then H0(LB/A) = ΩB/A.

http://stacks.math.columbia.edu/tag/08PT
http://stacks.math.columbia.edu/tag/08PU
http://stacks.math.columbia.edu/tag/08QE
http://stacks.math.columbia.edu/tag/08QF
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Proof. We will prove this by a direct calculation. We will use the identification of
Lemma 70.4.3. There is clearly a map from ΩO/A ⊗ B to the constant sheaf with
value ΩB/A. Thus this map induces a map

H0(LB/A) = H0(Lπ!(ΩO/A ⊗B)) = π!(ΩO/A ⊗B)→ ΩB/A

By choosing an object P → B of CB/A with P → B surjective we see that this map
is surjective (by Algebra, Lemma 10.127.6). To show that it is injective, suppose
that P → B is an object of CB/A and that ξ ∈ ΩP/A⊗P B is an element which maps
to zero in ΩB/A. We first choose factorization P → P ′ → B such that P ′ → B
is surjective and P ′ is a polynomial algebra over A. We may replace P by P ′.
If B = P/I, then the kernel ΩP/A ⊗P B → ΩB/A is the image of I/I2 (Algebra,
Lemma 10.127.9). Say ξ is the image of f ∈ I. Then we consider the two maps
a, b : P ′ = P [x]→ P , the first of which maps x to 0 and the second of which maps
x to f (in both cases P [x]→ B maps x to zero). We see that ξ and 0 are the image
of dx ⊗ 1 in ΩP ′/A ⊗P ′ B. Thus ξ and 0 have the same image in the colimit (see
Cohomology on Sites, Example 21.29.1) π!(ΩO/A ⊗B) as desired. �

Lemma 70.4.6. If B is a polynomial algebra over the ring A, then with π as in
(70.4.0.1) we have that π! is exact and π!F = F(B → B).

Proof. This follows from Lemma 70.4.1 which tells us the constant simplicial al-
gebra on B can be used to compute Lπ!. �

Lemma 70.4.7. If B is a polynomial algebra over the ring A, then LB/A is quasi-
isomorphic to ΩB/A[0].

Proof. Immediate from Lemmas 70.4.3 and 70.4.6. �

70.5. Constructing a resolution

In the Noetherian finite type case we can construct a “small” simplicial resolution
for finite type ring maps.

Lemma 70.5.1. Let A be a Noetherian ring. Let A → B be a finite type ring
map. Let A be the category of A-algebra maps C → B. Let n ≥ 0 and let P• be a
simplicial object of A such that

(1) P• → B is a trivial Kan fibration of simplicial sets,
(2) Pk is finite type over A for k ≤ n,
(3) P• = cosknsknP• as simplicial objects of A.

Then Pn+1 is a finite type A-algebra.

Proof. Although the proof we give of this lemma is straightforward, it is a bit
messy. To clarify the idea we explain what happens for low n before giving the
proof in general. For example, if n = 0, then (3) means that P1 = P0 ×B P0. Since
the ring map P0 → B is surjective, this is of finite type over A by More on Algebra,
Lemma 15.4.1.

If n = 1, then (3) means that

P2 = {(f0, f1, f2) ∈ P 3
1 | d0f0 = d0f1, d1f0 = d0f2, d1f1 = d1f2}

where the equalities take place in P0. Observe that the triple

(d0f0, d1f0, d1f1) = (d0f1, d0f2, d1f2)

http://stacks.math.columbia.edu/tag/08QG
http://stacks.math.columbia.edu/tag/08QH
http://stacks.math.columbia.edu/tag/08PW
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is an element of the fibre product P0 ×B P0 ×B P0 over B because the maps di :
P1 → P0 are morphisms over B. Thus we get a map

ψ : P2 −→ P0 ×B P0 ×B P0

The fibre of ψ over an element (g0, g1, g2) ∈ P0 ×B P0 ×B P0 is the set of triples
(f0, f1, f2) of 1-simplices with (d0, d1)(f0) = (g0, g1), (d0, d1)(f1) = (g0, g2), and
(d0, d1)(f2) = (g1, g2). As P• → B is a trivial Kan fibration the map (d0, d1) :
P1 → P0 ×B P0 is surjective. Thus we see that P2 fits into the cartesian diagram

P2

��

// P 3
1

��
P0 ×B P0 ×B P0

// (P0 ×B P0)3

By More on Algebra, Lemma 15.4.2 we conclude. The general case is similar, but
requires a bit more notation.

The case n > 1. By Simplicial, Lemma 14.18.14 the condition P• = cosknsknP•
implies the same thing is true in the category of simplicial A-algebras and hence
in the category of sets (as the forgetful functor from A-algebras to sets commutes
with limits). Thus

Pn+1 = Mor(∆[n+ 1], P•) = Mor(skn∆[n+ 1], sknP•)

by Simplicial, Lemma 14.11.3 and Equation (14.18.0.1). We will prove by induction
on 1 ≤ k < m ≤ n+ 1 that the ring

Qk,m = Mor(skk∆[m], skkP•)

is of finite type over A. The case k = 1, 1 < m ≤ n + 1 is entirely similar to the
discussion above in the case n = 1. Namely, there is a cartesian diagram

Q1,m

��

// PN1

��
P0 ×B . . .×B P0

// (P0 ×B P0)N

where N =
(
m+1

2

)
. We conclude as before.

Let 1 ≤ k0 ≤ n and assume Qk,m is of finite type over A for all 1 ≤ k ≤ k0 and
k < m ≤ n+ 1. For k0 + 1 < m ≤ n+ 1 we claim there is a cartesian square

Qk0+1,m

��

// PNk0+1

��
Qk0,m

// QNk0,k0+1

where N is the number of nondegenerate (k0 +1)-simplices of ∆[m]. Namely, to see
this is true, think of an element of Qk0+1,m as a function f from the (k0+1)-skeleton
of ∆[m] to P•. We can restrict f to the k0-skeleton which gives the left vertical
map of the diagram. We can also restrict to each nondegenerate (k0 + 1)-simplex
which gives the top horizontal arrow. Moreover, to give such an f is the same thing
as giving its restriction to k0-skeleton and to each nondegenerate (k0 + 1)-face,
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provided these agree on the overlap, and this is exactly the content of the diagram.
Moreover, the fact that P• → B is a trivial Kan fibration implies that the map

Pk0
→ Qk0,k0+1 = Mor(∂∆[k0 + 1], P•)

is surjective as every map ∂∆[k0 + 1] → B can be extended to ∆[k0 + 1] → B for
k0 ≥ 1 (small argument about constant simplicial sets omitted). Since by induction
hypothesis the rings Qk0,m, Qk0,k0+1 are finite type A-algebras, so is Qk0+1,m by
More on Algebra, Lemma 15.4.2 once more. �

Proposition 70.5.2. Let A be a Noetherian ring. Let A→ B be a finite type ring
map. There exists a simplicial A-algebra P• with an augmentation ε : P• → B such
that each Pn is a polynomial algebra of finite type over A and such that ε is a trivial
Kan fibration of simplicial sets.

Proof. Let A be the category of A-algebra maps C → B. In this proof our
simplicial objects and skeleton and coskeleton functors will be taken in this category.

Choose a polynomial algebra P0 of finite type over A and a surjection P0 → B. As
a first approximation we take P• = cosk0(P0). In other words, P• is the simplicial
A-algebra with terms Pn = P0×A . . .×AP0. (In the final paragraph of the proof this
simplicial object will be denoted P 0

• .) By Simplicial, Lemma 14.31.3 the map P• →
B is a trivial Kan fibration of simplicial sets. Also, observe that P• = cosk0sk0P•.

Suppose for some n ≥ 0 we have constructed P• (in the final paragraph of the proof
this will be Pn• ) such that

(a) P• → B is a trivial Kan fibration of simplicial sets,
(b) Pk is a finitely generated polynomial algebra for 0 ≤ k ≤ n, and
(c) P• = cosknsknP•

By Lemma 70.5.1 we can find a finitely generated polynomial algebra Q over A
and a surjection Q→ Pn+1. Since Pn is a polynomial algebra the A-algebra maps
si : Pn → Pn+1 lift to maps s′i : Pn → Q. Set d′j : Q→ Pn equal to the composition
of Q → Pn+1 and dj : Pn+1 → Pn. We obtain a truncated simplicial object P ′• of
A by setting P ′k = Pk for k ≤ n and P ′n+1 = Q and morphisms d′i = di and s′i = si
in degrees k ≤ n − 1 and using the morphisms d′j and s′i in degree n. Extend this
to a full simplicial object P ′• of A using coskn+1. By functoriality of the coskeleton
functors there is a morphism P ′• → P• of simplicial objects extending the given
morphism of (n+ 1)-truncated simplicial objects. (This morphism will be denoted
Pn+1
• → Pn• in the final paragraph of the proof.)

Note that conditions (b) and (c) are satisfied for P ′• with n replaced by n+ 1. We
claim the map P ′• → P• satisfies assumptions (1), (2), (3), and (4) of Simplicial,
Lemmas 14.31.1 with n+1 instead of n. Conditions (1) and (2) hold by construction.
By Simplicial, Lemma 14.18.14 we see that we have P• = coskn+1skn+1P• and
P ′• = coskn+1skn+1P

′
• not only in A but also in the category of A-algebras, whence

in the category of sets (as the forgetful functor from A-algebras to sets commutes
with all limits). This proves (3) and (4). Thus the lemma applies and P ′• → P• is
a trivial Kan fibration. By Simplicial, Lemma 14.29.4 we conclude that P ′• → B is
a trivial Kan fibration and (a) holds as well.

To finish the proof we take the inverse limit P• = limPn• of the sequence of simplicial
algebras

. . .→ P 2
• → P 1

• → P 0
•

http://stacks.math.columbia.edu/tag/08PX
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constructed above. The map P• → B is a trivial Kan fibration by Simplicial,
Lemma 14.29.5. However, the construction above stabilizes in each degree to a
fixed finitely generated polynomial algebra as desired. �

Lemma 70.5.3. Let A be a Noetherian ring. Let A → B be a finite type ring
map. Let π, B be as in (70.4.0.1). If F is an B-module such that F(P, α) is a
finite B-module for all α : P = A[x1, . . . , xn]→ B, then the cohomology modules of
Lπ!(F) are finite B-modules.

Proof. By Lemma 70.4.1 and Proposition 70.5.2 we can compute Lπ!(F) by a
complex constructed out of the values of F on finite type polynomial algebras. �

Lemma 70.5.4. Let A be a Noetherian ring. Let A→ B be a finite type ring map.
Then Hn(LB/A) is a finite B-module for all n ∈ Z.

Proof. Apply Lemmas 70.4.3 and 70.5.3. �

Remark 70.5.5 (Resolutions). Let A → B be any ring map. Let us call an
augmented simplicial A-algebra ε : P• → B a resolution of B over A if each Pn is
a polynomial algebra and ε is a trivial Kan fibration of simplicial sets. If P• → B
is an augmentation of a simplicial A-algebra with each Pn a polynomial algebra
surjecting onto B, then the following are equivalent

(1) ε : P• → B is a resolution of B over A,
(2) ε : P• → B is a quasi-isomorphism on associated complexes,
(3) ε : P• → B induces a homotopy equivalence of simplicial sets.

To see this use Simplicial, Lemmas 14.29.8, 14.30.9, and 14.30.8. A resolution P• of
B over A gives a cosimplicial object U• of CB/A as in Cohomology on Sites, Lemma
21.29.7 and it follows that

Lπ!F = F(P•)

functorially in F , see Lemma 70.4.1. The (formal part of the) proof of Proposi-
tion 70.5.2 shows that resolutions exist. We also have seen in the first proof of
Lemma 70.4.2 that the standard resolution of B over A is a resolution (so that
this terminology doesn’t lead to a conflict). However, the argument in the proof
of Proposition 70.5.2 shows the existence of resolutions without appealing to the
simplicial computations in Simplicial, Section 14.32. Moreover, for any choice of
resolution we have a canonical isomorphism

LB/A = ΩP•/A ⊗P•,ε B
in D(B) by Lemma 70.4.3. The freedom to choose an arbitrary resolution can be
quite useful.

Lemma 70.5.6. Let A→ B be a ring map. Let π, O, B be as in (70.4.0.1). For
any O-module F we have

Lπ!(F) = Lπ!(Li
∗F) = Lπ!(F ⊗L

O B)

in D(Ab).

Proof. It suffices to verify the assumptions of Cohomology on Sites, Lemma 21.29.12
hold for O → B on CB/A. We will use the results of Remark 70.5.5 without further
mention. Choose a resolution P• of B over A to get a suitable cosimplicial object
U• of CB/A. Since P• → B induces a quasi-isomorphism on associated complexes
of abelian groups we see that Lπ!O = B. On the other hand Lπ!B is computed by

http://stacks.math.columbia.edu/tag/08PY
http://stacks.math.columbia.edu/tag/08PZ
http://stacks.math.columbia.edu/tag/08QI
http://stacks.math.columbia.edu/tag/08QJ
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B(U•) = B. This verifies the second assumption of Cohomology on Sites, Lemma
21.29.12 and we are done with the proof. �

Lemma 70.5.7. Let A→ B be a ring map. Let π, O, B be as in (70.4.0.1). We
have

Lπ!(O) = Lπ!(B) = B and LB/A = Lπ!(ΩO/A ⊗O B) = Lπ!(ΩO/A)

in D(Ab).

Proof. This is just an application of Lemma 70.5.6 (and the first equality on the
right is Lemma 70.4.3). �

Here is a special case of the fundamental triangle that is easy to prove.

Lemma 70.5.8. Let A → B → C be ring maps. If B is a polynomial algebra
over A, then there is a distinguished triangle LB/A ⊗L

B C → LC/A → LC/B →
LB/A ⊗L

B C[1] in D(C).

Proof. We will use the observations of Remark 70.5.5 without further mention.
Choose a resolution ε : P• → C of C over B (for example the standard resolution).
SinceB is a polynomial algebra overA we see that P• is also a resolution of C overA.
Hence LC/A is computed by ΩP•/A⊗P•,εC and LC/B is computed by ΩP•/B⊗P•,εC.
Since for each n we have the short exact sequence 0 → ΩB/A ⊗B Pn → ΩPn/A →
ΩPn/B (Algebra, Lemma 10.133.9) and since LB/A = ΩB/A[0] (Lemma 70.4.7) we
obtain the result. �

Example 70.5.9. Let A→ B be a ring map. In this example we will construct an
“explicit” resolution P• of B over A of length 2. To do this we follow the procedure
of the proof of Proposition 70.5.2, see also the discussion in Remark 70.5.5.

We choose a surjection P0 = A[ui] → B where ui is a set of variables. Choose
generators ft ∈ P0, t ∈ T of the ideal Ker(P0 → B). We choose P1 = A[ui, xt] with
face maps d0 and d1 the unique A-algebra maps with dj(ui) = ui and d0(xt) = 0 and
d1(xt) = ft. The map s0 : P0 → P1 is the unique A-algebra map with s0(ui) = ui.
It is clear that

P1
d0−d1−−−−→ P0 → B → 0

is exact, in particular the map (d0, d1) : P1 → P0 ×B P0 is surjective. Thus, if P•
denotes the 1-truncated simplicial A-algebra given by P0, P1, d0, d1, and s0, then
the augmentation cosk1(P•) → B is a trivial Kan fibration. The next step of the
procedure in the proof of Proposition 70.5.2 is to choose a polynomial algebra P2

and a surjection

P2 −→ cosk1(P•)2

Recall that

cosk1(P•)2 = {(g0, g1, g2) ∈ P 3
1 | d0(g0) = d0(g1), d1(g0) = d0(g2), d1(g1) = d1(g2)}

Thinking of gi ∈ P1 as a polynomial in xt the conditions are

g0(0) = g1(0), g0(ft) = g2(0), g1(ft) = g2(ft)

Thus cosk1(P•)2 contains the elements yt = (xt, xt, ft) and zt = (0, xt, xt). Every
element G in cosk1(P•)2 is of the form G = H + (0, 0, g) where H is in the image
of A[ui, yt, zt] → cosk1(P•)2. Here g ∈ P1 is a polynomial with vanishing constant
term such that g(ft) = 0 in P0. Observe that

http://stacks.math.columbia.edu/tag/08QK
http://stacks.math.columbia.edu/tag/08SA
http://stacks.math.columbia.edu/tag/09D4
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(1) g = xtxt′ − ftxt′ and
(2) g =

∑
rtxt with rt ∈ P0 if

∑
rtft = 0 in P0

are elements of P1 of the desired form. Let

Rel = Ker(
⊕

t∈T
P0 −→ P0), (rt) 7−→

∑
rtft

We set P2 = A[ui, yt, zt, vr, wt,t′ ] where r = (rt) ∈ Rel, with map

P2 −→ cosk1(P•)2

given by yt 7→ (xt, xt, ft), zt 7→ (0, xt, xt), vr 7→ (0, 0,
∑
rtxt), and wt,t′ 7→

(0, 0, xtxt′ − ftxt′). A calculation (omitted) shows that this map is surjective.
Our choice of the map displayed above determines the maps d0, d1, d2 : P2 → P1.
Finally, the procedure in the proof of Proposition 70.5.2 tells us to choose the maps
s0, s1 : P1 → P2 lifting the two maps P1 → cosk1(P•)2. It is clear that we can take
si to be the unique A-algebra maps determined by s0(xt) = yt and s1(xt) = zt.

70.6. Functoriality

In this section we consider a commutative square

(70.6.0.1)

B // B′

A

OO

// A′

OO

of ring maps. We claim there is a canonical B-linear map of complexes

LB/A −→ LB′/A′

associated to this diagram. Namely, if P• → B is the standard resolution of B over
A and P ′• → B′ is the standard resolution of B′ over A′, then there is a canonical
map P• → P ′• of simplicial A-algebras compatible with the augmentations P• → B
and P ′• → B′. This can be seen in terms of the construction of standard resolutions
in Simplicial, Section 14.32 but in the special case at hand it probably suffices to
say simply that the maps

P0 = A[B] −→ A′[B′] = P ′0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′1,

and so on are given by the given maps A → A′ and B → B′. The desired map
LB/A → LB′/A′ then comes from the associated maps ΩPn/A → ΩP ′n/A′ .

Another description of the functoriality map can be given as follows. Let C = CB/A
and C′ = C′B′/A be the categories considered in Section 70.4. There is a functor

u : C −→ C′, (P, α) 7−→ (P ⊗A A′, c ◦ (α⊗ 1))

where c : B ⊗A A′ → B′ is the obvious map. As discussed in Cohomology on
Sites, Example 21.29.3 we obtain a morphism of topoi g : Sh(C) → Sh(C′) and a
commutative diagram of maps of ringed topoi

(70.6.0.2)

(Sh(C), B)

π

��

(Sh(C′), B′)

π

��

h
oo

g
// (Sh(C), B′)

π′

��
(Sh(∗), B) (Sh(∗), B′)

foo // (Sh(∗), B′)
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Here h is the identity on underlying topoi and given by the ring map B → B′ on
sheaves of rings. By Cohomology on Sites, Remark 21.28.7 given F on C and F ′
on C′ and a transformation t : F → g−1F ′ we obtain a canonical map Lπ!(F) →
Lπ′!(F ′). If we apply this to the sheaves

F : (P, α) 7→ ΩP/A ⊗P B, F ′ : (P ′, α′) 7→ ΩP ′/A′ ⊗P ′ B′,

and the transformation t given by the canonical maps

ΩP/A ⊗P B −→ ΩP⊗AA′/A′ ⊗P⊗AA′ B
′

to get a canonical map

Lπ!(ΩO/A ⊗O B) −→ Lπ′!(ΩO′/A′ ⊗O′ B′)

By Lemma 70.4.3 this gives LB/A → LB′/A′ . We omit the verification that this
map agrees with the map defined above in terms of simplicial resolutions.

Lemma 70.6.1. Assume (70.6.0.1) induces a quasi-isomorphism B ⊗L
A A

′ = B′.
Then, with notation as in (70.6.0.2) and F ′ ∈ Ab(C′), we have Lπ!(g

−1F ′) =
Lπ′!(F ′).

Proof. We use the results of Remark 70.5.5 without further mention. We will
apply Cohomology on Sites, Lemma 21.29.8. Let P• → B be a resolution. If we
can show that u(P•) = P• ⊗A A′ → B′ is a quasi-isomorphism, then we are done.
The complex of A-modules s(P•) associated to P• (viewed as a simplicial A-module)
is a free A-module resolution of B. Namely, Pn is a free A-module and s(P•)→ B
is a quasi-isomorphism. Thus B ⊗L

A A
′ is computed by s(P•)⊗A A′ = s(P• ⊗A A′).

Therefore the assumption of the lemma signifies that ε′ : P• ⊗A A′ → B′ is a
quasi-isomorphism. �

The following lemma in particular applies when A→ A′ is flat and B′ = B ⊗A A′
(flat base change).

Lemma 70.6.2. If (70.6.0.1) induces a quasi-isomorphism B ⊗L
A A

′ = B′, then
the functoriality map induces an isomorphism

LB/A ⊗L
B B

′ −→ LB′/A′

Proof. We will use the notation introduced in Equation (70.6.0.2). We have

LB/A ⊗L
B B

′ = Lπ!(ΩO/A ⊗O B)⊗L
B B

′ = Lπ!(Lh
∗(ΩO/A ⊗O B))

the first equality by Lemma 70.4.3 and the second by Cohomology on Sites, Lemma
21.29.6. Since ΩO/A is a flat O-module, we see that ΩO/A⊗OB is a flat B-module.

Thus Lh∗(ΩO/A ⊗O B) = ΩO/A ⊗O B′ which is equal to g−1(ΩO′/A′ ⊗O′ B′) by
inspection. we conclude by Lemma 70.6.1 and the fact that LB′/A′ is computed by
Lπ′!(ΩO′/A′ ⊗O′ B′). �

Remark 70.6.3. Suppose that we are given a square (70.6.0.1) such that there
exists an arrow κ : B → A′ making the diagram commute:

B
β
//

κ   

B′

A

OO

α // A′

OO

http://stacks.math.columbia.edu/tag/08QP
http://stacks.math.columbia.edu/tag/08QQ
http://stacks.math.columbia.edu/tag/08SB
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In this case we claim the functoriality map P• → P ′• is homotopic to the composition
P• → B → A′ → P ′•. Namely, using κ the functoriality map factors as

P• → PA′/A′,• → P ′•

where PA′/A′,• is the standard resolution of A′ over A′. Since A′ is the polynomial
algebra on the empty set over A′ we see from Simplicial, Lemma 14.32.5 that the
augmentation εA′/A′ : PA′/A′,• → A′ is a homotopy equivalence of simplicial rings.
Observe that the homotopy inverse map c : A′ → PA′/A′,• constructed in the proof
of that lemma is just the structure morphism, hence we conclude what we want
because the two compositions

P• // PA′/A′,•
id //

c◦εA′/A′
// PA′/A′,• // P ′•

are the two maps discussed above and these are homotopic (Simplicial, Remark
14.25.5). Since the second map P• → P ′• induces the zero map ΩP•/A → ΩP ′•/A′ we
conclude that the functoriality map LB/A → LB′/A′ is homotopic to zero in this
case.

Lemma 70.6.4. Let A→ B and A→ C be ring maps. Then the map LB×C/A →
LB/A ⊕ LC/A is an isomorphism in D(B × C).

Proof. Although this lemma can be deduced from the fundamental triangle we will
give a direct and elementary proof of this now. Factor the ring map A→ B×C as
A → A[x] → B × C where x 7→ (1, 0). By Lemma 70.5.8 we have a distinguished
triangle

LA[x]/A ⊗L
A[x] (B × C)→ LB×C/A → LB×C/A[x] → LA[x]/A ⊗L

A[x] (B × C)[1]

in D(B × C). Similarly we have the distinguished triangles

LA[x]/A ⊗L
A[x] B → LB/A → LB/A[x] → LA[x]/A ⊗L

A[x] B[1]

LA[x]/A ⊗L
A[x] C → LC/A → LC/A[x] → LA[x]/A ⊗L

A[x] C[1]

Thus it suffices to prove the result for B×C over A[x]. Note that A[x]→ A[x, x−1] is
flat, that (B×C)⊗A[x]A[x, x−1] = B⊗A[x]A[x, x−1], and that C⊗A[x]A[x, x−1] = 0.
Thus by base change (Lemma 70.6.2) the map LB×C/A[x] → LB/A[x] ⊕ LC/A[x]

becomes an isomorphism after inverting x. In the same way one shows that the
map becomes an isomorphism after inverting x− 1. This proves the lemma. �

70.7. The fundamental triangle

In this section we consider a sequence of ring maps A→ B → C. It is our goal to
show that this triangle gives rise to a distinguished triangle

(70.7.0.1) LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C). This will be proved in Proposition 70.7.4. For an alternative approach
see Remark 70.7.5.

Consider the category CC/B/A wich is the opposite of the category whose objects
are (P → B,Q→ C) where

(1) P is a polynomial algebra over A,
(2) P → B is an A-algebra homomorphism,
(3) Q is a polynomial algebra over P , and

http://stacks.math.columbia.edu/tag/08SC
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(4) Q→ C is a P -algebra-homomorphism.

We take the opposite as we want to think of (P → B,Q→ C) as corresponding to
the commutative diagram

Spec(C)

��

// Spec(Q)

��
Spec(B)

��

// Spec(P )

yy
Spec(A)

Let CB/A, CC/A, CC/B be the categories considered in Section 70.4. There are
functors

u1 : CC/B/A → CB/A, (P → B,Q→ C) 7→ (P → B)
u2 : CC/B/A → CC/A, (P → B,Q→ C) 7→ (Q→ C)
u3 : CC/B/A → CC/B , (P → B,Q→ C) 7→ (Q⊗P B → C)

These functors induce corresponding morphisms of topoi gi. Let us denote Oi =
g−1
i O so that we get morphisms of ringed topoi

(70.7.0.2)
g1 : (Sh(CC/B/A),O1) −→ (Sh(CB/A),O)
g2 : (Sh(CC/B/A),O2) −→ (Sh(CC/A),O)
g3 : (Sh(CC/B/A),O3) −→ (Sh(CC/B),O)

Let us denote π : Sh(CC/B/A) → Sh(∗), π1 : Sh(CB/A) → Sh(∗), π2 : Sh(CC/A) →
Sh(∗), and π3 : Sh(CC/B) → Sh(∗), so that π = πi ◦ gi. We will obtain our
distinguished triangle from the identification of the cotangent complex in Lemma
70.4.3 and the following lemmas.

Lemma 70.7.1. With notation as in (70.7.0.2) set

Ω1 = ΩO/A ⊗O B on CB/A
Ω2 = ΩO/A ⊗O C on CC/A
Ω3 = ΩO/B ⊗O C on CC/B

Then we have a canonical short exact sequence of sheaves of C-modules

0→ g−1
1 Ω1 ⊗B C → g−1

2 Ω2 → g−1
3 Ω3 → 0

on CC/B/A.

Proof. Recall that g−1
i is gotten by simply precomposing with ui. Given an object

U = (P → B,Q→ C) we have a split short exact sequence

0→ ΩP/A ⊗Q→ ΩQ/A → ΩQ/P → 0

for example by Algebra, Lemma 10.133.9. Tensoring with C over Q we obtain a
short exact sequence

0→ ΩP/A ⊗ C → ΩQ/A ⊗ C → ΩQ/P ⊗ C → 0

We have ΩP/A⊗C = ΩP/A⊗B⊗C whence this is the value of g−1
1 Ω1⊗BC on U . The

module ΩQ/A⊗C is the value of g−1
2 Ω2 on U . We have ΩQ/P ⊗C = ΩQ⊗PB/B ⊗C

by Algebra, Lemma 10.127.12 hence this is the value of g−1
3 Ω3 on U . Thus the

short exact sequence of the lemma comes from assigning to U the last displayed
short exact sequence. �

http://stacks.math.columbia.edu/tag/08QU
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Lemma 70.7.2. With notation as in (70.7.0.2) suppose that C is a polynomial
algebra over B. Then Lπ!(g

−1
3 F) = Lπ3,!F = π3,!F for any abelian sheaf F on

CC/B
Proof. Write C = B[E] for some set E. Choose a resolution P• → B of B over
A. For every n consider the object Un = (Pn → B,Pn[E] → C) of CC/B/A. Then
U• is a cosimplicial object of CC/B/A. Note that u3(U•) is the constant cosimplicial
object of CC/B with value (C → C). We will prove that the object U• of CC/B/A
satisfies the hypotheses of Cohomology on Sites, Lemma 21.29.7. This implies the
lemma as it shows that Lπ!(g

−1
3 F) is computed by the constant simplicial abelian

group F(C → C) which is the value of Lπ3,!F = π3,!F by Lemma 70.4.6.

Let U = (β : P → B, γ : Q→ C) be an object of CC/B/A. We may write P = A[S]
and Q = A[S q T ] by the definition of our category CC/B/A. We have to show that

MorCC/B/A(U•, U)

is homotopy equivalent to a singleton simplicial set ∗. Observe that this simplicial
set is the product ∏

s∈S
Fs ×

∏
t∈T

F ′t

where Fs is the corresponding simplicial set for Us = (A[{s}] → B,A[{s}] → C)
and F ′t is the corresponding simplicial set for Ut = (A→ B,A[{t}]→ C). Namely,
the object U is the product

∏
Us ×

∏
Ut in CC/B/A. It suffices each Fs and F ′t is

homotopy equivalent to ∗, see Simplicial, Lemma 14.25.10. The case of Fs follows
as P• → B is a trivial Kan fibration (as a resolution) and Fs is the fibre of this
map over β(s). (Use Simplicial, Lemmas 14.29.3 and 14.29.8). The case of F ′t is
more interesting. Here we are saying that the fibre of

P•[E] −→ C = B[E]

over γ(t) ∈ C is homotopy equivalent to a point. In fact we will show this map is
a trivial Kan fibration. Namely, P• → B is a trivial can fibration. For any ring R
we have

R[E] = colimΣ⊂Map(E,Z≥0) finite

∏
I∈Σ

R

(filtered colimit). Thus the displayed map of simplicial sets is a filtered colimit of
trivial Kan fibrations, whence a trivial Kan fibration by Simplicial, Lemma 14.29.7.

�

Lemma 70.7.3. With notation as in (70.7.0.2) we have Lgi,! ◦ g−1
i = id for i =

1, 2, 3 and hence also Lπ! ◦ g−1
i = Lπi,! for i = 1, 2, 3.

Proof. Proof for i = 1. We claim the functor CC/B/A is a fibred category over CB/A
Namely, suppose given (P → B,Q → C) and a morphism (P ′ → B) → (P → B)
of CB/A. Recall that this means we have an A-algebra homomorphism P → P ′

compatible with maps to B. Then we set Q′ = Q ⊗P P ′ with induced map to C
and the morphism

(P ′ → B,Q′ → C) −→ (P → B,Q→ C)

in CC/B/A (note reversal arrows again) is strongly cartesian in CC/B/A over CB/A.
Moreover, observe that the fibre category of u1 over P → B is the category CC/P .
Let F be an abelian sheaf on CB/A. Since we have a fibred category we may apply

Cohomology on Sites, Lemma 21.30.2. Thus Lng1,!g
−1
1 F is the (pre)sheaf which

http://stacks.math.columbia.edu/tag/08QV
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assigns to U ∈ Ob(CB/A) the nth homology of g−1
1 F restricted to the fibre category

over U . Since these restrictions are constant the desired result follows from Lemma
70.4.4 via our identifications of fibre categories above.

The case i = 2. We claim CC/B/A is a fibred category over CC/A is a fibred category.
Namely, suppose given (P → B,Q → C) and a morphism (Q′ → C) → (Q → C)
of CC/A. Recall that this means we have a B-algebra homomorphism Q → Q′

compatible with maps to C. Then

(P → B,Q′ → C) −→ (P → B,Q→ C)

is strongly cartesian in CC/B/A over CC/A. Note that the fibre category of u2 over
Q → C has an final (beware reversal arrows) object, namely, (A → B,Q → C).
Let F be an abelian sheaf on CC/A. Since we have a fibred category we may

apply Cohomology on Sites, Lemma 21.30.2. Thus Lng2,!g
−1
2 F is the (pre)sheaf

which assigns to U ∈ Ob(CC/A) the nth homology of g−1
1 F restricted to the fibre

category over U . Since these restrictions are constant the desired result follows
from Cohomology on Sites, Lemma 21.29.5 because the fibre categories all have
final objects.

The case i = 3. In this case we will apply Cohomology on Sites, Lemma 21.30.3
to u = u3 : CC/B/A → CC/B and F ′ = g−1

3 F for some abelian sheaf F on CC/B .

Suppose U = (Q → C) is an object of CC/B . Then IU = CQ/B/A (again beware

of reversal of arrows). The sheaf F ′U is given by the rule (P → B,Q → Q) 7→
F(Q⊗PB → C). In other words, this sheaf is the pullback of a sheaf on CQ/C via the

morphism Sh(CQ/B/A)→ Sh(CQ/B). Thus Lemma 70.7.2 shows that Hn(IU ,F ′U ) =

0 for n > 0 and equal to F(Q → C) for n = 0. The aforementioned Cohomology
on Sites, Lemma 21.30.3 implies that Lg3,!(g

−1
3 F) = F and the proof is done. �

Proposition 70.7.4. Let A→ B → C be ring maps. There is a canonical distin-
guished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C).

Proof. Consider the short exact sequence of sheaves of Lemma 70.7.1 and apply
the derived functor Lπ! to obtain a distinguished triangle

Lπ!(g
−1
1 Ω1 ⊗B C)→ Lπ!(g

−1
2 Ω2)→ Lπ!(g

−1
3 Ω3)→ Lπ!(g

−1
1 Ω1 ⊗B C)[1]

in D(C). Using Lemmas 70.7.3 and 70.4.3 we see that the second and third terms
agree with LC/A and LC/B and the first one equals

Lπ1,!(Ω1 ⊗B C) = Lπ1,!(Ω1)⊗L
B C = LB/A ⊗L

B C

The first equality by Cohomology on Sites, Lemma 21.29.6 (and flatness of Ω1 as a
sheaf of modules over B) and the second by Lemma 70.4.3. �

Remark 70.7.5. We sketch an alternative, perhaps simpler, proof of the existence
of the fundamental triangle. Let A → B → C be ring maps and assume that
B → C is injective. Let P• → B be the standard resolution of B over A and let
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Q• → C be the standard resolution of C over B. Picture

P• : A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo // B

Q• : A[A[A[C]]]
//
//
//
A[A[C]]

//
//oo

oo
A[C]oo // C

Observe that since B → C is injective, the ring Qn is a polynomial algebra over Pn
for all n. Hence we obtain a cosimplicial object in CC/B/A (beware reversal arrows).

Now set Q• = Q•⊗P• B. The key to the proof of Proposition 70.7.4 is to show that
Q• is a resolution of C over B. This follows from Cohomology on Sites, Lemma
21.29.12 applied to C = ∆, O = P•, O′ = B, and F = Q• (this uses that Qn is flat
over Pn; see Cohomology on Sites, Remark 21.29.11 to relate simplicial modules to
sheaves). The key fact implies that the distinguished triangle of Proposition 70.7.4
is the distinguished triangle associated to the short exact sequence of simplicial
C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B ⊗Q• C → 0

which is deduced from the short exact sequences 0 → ΩPn/A ⊗Pn Qn → ΩQn/A →
ΩQn/Pn → 0 of Algebra, Lemma 10.133.9. Namely, by Remark 70.5.5 and the key
fact the complex on the right hand side represents LC/B in D(C).

If B → C is not injective, then we can use the above to get a fundamental triangle
for A → B → B × C. Since LB×C/B → LB/B ⊕ LC/B and LB×C/A → LB/A ⊕
LC/A are quasi-isomorphism in D(B ×C) (Lemma 70.6.4) this induces the desired
distinguished triangle in D(C) by tensoring with the flat ring map B × C → C.

Remark 70.7.6. Let A → B → C be ring maps with B → C injective. Recall
the notation P•, Q•, Q• of Remark 70.7.5. Let R• be the standard resolution of
C over B. In this remark we explain how to get the canonical identification of
ΩQ•/B ⊗Q• C with LC/B = ΩR•/B ⊗R• C. Let S• → B be the standard resolution

of B over B. Note that the functoriality map S• → R• identifies Rn as a polynomial
algebra over Sn because B → C is injective. For example in degree 0 we have the
map B[B] → B[C], in degree 1 the map B[B[B]] → B[B[C]], and so on. Thus
R• = R• ⊗S• B is a simplicial polynomial algebra over B as well and it follows (as
in Remark 70.7.5) from Cohomology on Sites, Lemma 21.29.12 that R• → C is a
resolution. Since we have a commutative diagram

Q• // R•

P•

OO

// S•

OO

// B

we obtain a canonical map Q• = Q• ⊗P• B → R•. Thus the maps

LC/B = ΩR•/B ⊗R• C −→ ΩR•/B ⊗R• C ←− ΩQ•/B ⊗Q• C

are quasi-isomorphisms (Remark 70.5.5) and composing one with the inverse of the
other gives the desired identification.
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70.8. Localization and étale ring maps

In this section we study what happens if we localize our rings. Let A → A′ → B
be ring maps such that B = B ⊗L

A A
′. This happens for example if A′ = S−1A is

the localization of A at a multiplicative subset S ⊂ A. In this case for an abelian
sheaf F ′ on CB/A′ the homology of g−1F ′ over CB/A agrees with the homology of
F ′ over CB/A′ , see Lemma 70.6.1 for a precise statement.

Lemma 70.8.1. Let A → A′ → B be ring maps such that B = B ⊗L
A A

′. Then
LB/A = LB/A′ in D(B).

Proof. According to the discussion above (i.e., using Lemma 70.6.1) and Lemma
70.4.3 we have to show that the sheaf given by the rule (P → B) 7→ ΩP/A⊗P B on
CB/A is the pullback of the sheaf given by the rule (P → B) 7→ ΩP/A′ ⊗P B. The

pullback functor g−1 is given by precomposing with the functor u : CB/A → CB/A′ ,
(P → B) 7→ (P ⊗A A′ → B). Thus we have to show that

ΩP/A ⊗P B = ΩP⊗AA′/A′ ⊗(P⊗AA′) B

By Algebra, Lemma 10.127.12 the right hand side is equal to

(ΩP/A ⊗A A′)⊗(P⊗AA′) B

Since P is a polynomial algebra over A the module ΩP/A is free and the equality is
obvious. �

Lemma 70.8.2. Let A→ B be a ring map such that B = B⊗L
AB. Then LB/A = 0

in D(B).

Proof. This is true because LB/A = LB/B = 0 by Lemmas 70.8.1 and 70.4.7. �

Lemma 70.8.3. Let A → B be a ring map such that TorAi (B,B) = 0 for i > 0
and such that LB/B⊗AB = 0. Then LB/A = 0 in D(B).

Proof. By Lemma 70.6.2 we see that LB/A ⊗L
B (B ⊗A B) = LB⊗AB/B . Now we

use the distinguished triangle (70.7.0.1)

LB⊗AB/B ⊗
L
(B⊗AB) B → LB/B → LB/B⊗AB → LB⊗AB/B ⊗

L
(B⊗AB) B[1]

associated to the ring maps B → B⊗AB → B and the vanishing of LB/B (Lemma
70.4.7) and LB/B⊗AB (assumed) to see that

0 = LB⊗AB/B ⊗
L
(B⊗AB) B = LB/A ⊗L

B (B ⊗A B)⊗L
(B⊗AB) B = LB/A

as desired. �

Lemma 70.8.4. The cotangent complex LB/A is zero in each of the following cases:

(1) A → B and B ⊗A B → B are flat, i.e., A → B is weakly étale (More on
Algebra, Definition 15.67.1),

(2) A→ B is a flat epimorphism of rings,
(3) B = S−1A for some multiplicative subset S ⊂ A,
(4) A→ B is unramified and flat,
(5) A→ B is étale,
(6) A→ B is a filtered colimit of ring maps for which the cotangent complex

vanishes,
(7) B is a henselization of a local ring of A,
(8) B is a strict henselization of a local ring of A, and
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(9) add more here.

Proof. In case (1) we may apply Lemma 70.8.2 to the surjective flat ring map
B ⊗A B → B to conclude that LB⊗AB/B = 0 and then we use Lemma 70.8.3 to
conclude. The cases (2) – (5) are each special cases of (1). Part (6) follows from
Lemma 70.3.4. Parts (7) and (8) follows from the fact that (strict) henselizations
are filtered colimits of étale ring extensions of A, see Algebra, Lemmas 10.145.21
and 10.145.27. �

Lemma 70.8.5. Let A → B → C be ring maps such that LC/B = 0. Then

LC/A = LB/A ⊗L
B C.

Proof. This is a trivial consequence of the distinguished triangle (70.7.0.1). �

Lemma 70.8.6. Let A→ B be ring maps and S ⊂ A, T ⊂ B multiplicative subsets
such that S maps into T . Then LT−1B/S−1A = LB/A ⊗B T−1B in D(T−1B).

Proof. Lemma 70.8.5 shows that LT−1B/A = LB/A ⊗B T−1B and Lemma 70.8.1
shows that LT−1B/A = LT−1B/S−1A. �

Lemma 70.8.7. Let A → B be a local ring homomorphism of local rings. Let
Ah → Bh, resp. Ash → Bsh be the induced maps of henselizations, resp. strict
henselizations. Then

LBh/Ah = LBh/A = LB/A ⊗L
B B

h resp. LBsh/Ash = LBsh/A = LB/A ⊗L
B B

sh

in D(Bh), resp. D(Bsh).

Proof. The complexes LAh/A, LAsh/A, LBh/B , and LBsh/B are all zero by Lemma

70.8.4. Using the fundamental distinguished triangle (70.7.0.1) for A → B → Bh

we obtain LBh/A = LB/A⊗L
BB

h. Using the fundamental triangle for A→ Ah → Bh

we obtain LBh/Ah = LBh/A. Similarly for strict henselizations. �

70.9. Smooth ring maps

Let C → B be a surjection of rings with kernel I. Let us call such a ring map
“weakly quasi-regular” if I/I2 is a flat B-module and TorC∗ (B,B) is the exterior
algebra on I/I2. The generalization to “smooth ring maps” of what is done in
Lemma 70.8.4 for “étale ring maps” is to look at flat ring maps A → B such that
the multiplication map B ⊗A B → B is weakly quasi-regular. For the moment we
just stick to smooth ring maps.

Lemma 70.9.1. If A→ B is a smooth ring map, then LB/A = ΩB/A[0].

Proof. We have the agreement in cohomological degree 0 by Lemma 70.4.5. Thus
it suffices to prove the other cohomology groups are zero. It suffices to prove this
locally on Spec(B) as LBg/A = (LB/A)g for g ∈ B by Lemma 70.8.5. Thus we may
assume that A→ B is standard smooth (Algebra, Lemma 10.132.10), i.e., that we
can factor A → B as A → A[x1, . . . , xn] → B with A[x1, . . . , xn] → B étale. In
this case Lemmas 70.8.4 and Lemma 70.8.5 show that LB/A = LA[x1,...,xn]/A ⊗ B
whence the conclusion by Lemma 70.4.7. �
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70.10. Comparison with the naive cotangent complex

The naive cotangent complex was introduced in Algebra, Section 10.129.

Remark 70.10.1. Let A → B be a ring map. Working on CB/A as in Section
70.4 let J ⊂ O be the kernel of O → B. Note that Lπ!(J ) = 0 by Lemma 70.5.7.
Set Ω = ΩO/A ⊗O B so that LB/A = Lπ!(Ω) by Lemma 70.4.3. It follows that
Lπ!(J → Ω) = Lπ!(Ω) = LB/A. Thus, for any object U = (P → B) of CB/A we
obtain a map

(70.10.1.1) (J → ΩP/A ⊗P B) −→ LB/A

where J = Ker(P → B) in D(A), see Cohomology on Sites, Remark 21.29.4.
Continuing in this manner, note that Lπ!(J ⊗L

O B) = Lπ!(J ) = 0 by Lemma

70.5.6. Since TorO0 (J , B) = J /J 2 the spectral sequence

Hp(CB/A,TorOq (J , B))⇒ Hp+q(CB/A,J ⊗L
O B) = 0

(dual of Derived Categories, Lemma 13.21.3) implies that H0(CB/A,J /J 2) = 0

and H1(CB/A,J /J 2) = 0. It follows that the complex of B-modules J /J 2 → Ω

satisfies τ≥−1Lπ!(J /J 2 → Ω) = τ≥−1LB/A. Thus, for any object U = (P → B) of
CB/A we obtain a map

(70.10.1.2) (J/J2 → ΩP/A ⊗P B) −→ τ≥−1LB/A

in D(B), see Cohomology on Sites, Remark 21.29.4.

The first case is where we have a surjection of rings.

Lemma 70.10.2. Let A → B be a surjective ring map with kernel I. Then
H0(LB/A) = 0 and H−1(LB/A) = I/I2. This isomorphism comes from the map
(70.10.1.2) for the object (A→ B) of CB/A.

Proof. We will show below (using the surjectivity of A → B) that there exists a
short exact sequence

0→ π−1(I/I2)→ J /J 2 → Ω→ 0

of sheaves on CB/A. Taking Lπ! and the associated long exact sequence of homology,

and using the vanishing of H1(CB/A,J /J 2) and H0(CB/A,J /J 2) shown in Remark
70.10.1 we obtain what we want using Lemma 70.4.4.

What is left is to verify the local statement mentioned above. For every object
U = (P → B) of CB/A we can choose an isomorphism P = A[E] such that the
map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U) is equal to
J = IP + (e; e ∈ E). The value on U of the short sequence of sheaves above is the
sequence

0→ I/I2 → J/J2 → ΩP/A ⊗P B → 0

Verification omitted (hint: the only tricky point is that IP ∩J2 = IJ ; which follows
for example from More on Algebra, Lemma 15.21.8). �

Lemma 70.10.3. Let A → B be a ring map. Then τ≥−1LB/A is canonically
quasi-isomorphic to the naive cotangent complex.
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Proof. Consider P = A[B] → B with kernel I. The naive cotangent complex
NLB/A of B over A is the complex I/I2 → ΩP/A ⊗P B, see Algebra, Definition
10.129.1. Observe that in (70.10.1.2) we have already constructed a canonical map

c : NLB/A −→ τ≥−1LB/A

Consider the distinguished triangle (70.7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → (LP/A ⊗L

P B)[1]

associated to the ring maps A → A[B] → B. We know that LP/A = ΩP/A[0] =
NLP/A inD(P ) (Lemma 70.4.7 and Algebra, Lemma 10.129.3) and that τ≥−1LB/P =

I/I2[1] = NLB/P in D(B) (Lemma 70.10.2 and Algebra, Lemma 10.129.6). To
show c is a quasi-isomorphism it suffices by Algebra, Lemma 10.129.4 and the long
exact cohomology sequence associated to the distinguished triangle to show that
the maps LP/A → LB/A → LB/P are compatible on cohomology groups with the
corresponding maps NLP/A → NLB/A → NLB/P of the naive cotangent complex.
We omit the verification. �

Remark 70.10.4. We can make the comparison map of Lemma 70.10.3 explicit
in the following way. Let P• be the standard resolution of B over A. Let I =
Ker(A[B] → B). Recall that P0 = A[B]. The map of the lemma is given by the
commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2
B //

��

ΩP1/A ⊗P1
B //

��

ΩP0/A ⊗P0
B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0

B

We construct the downward arrow with target I/I2 by sending df ⊗ b to the class
of (d0(f)−d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two face maps of the
simplicial structure. This makes sense as d0 − d1 maps P1 into I = Ker(P0 → B).
We omit the verification that this rule is well defined. Our map is compatible with
the differential ΩP1/A ⊗P1

B → ΩP0/A ⊗P0
B as this differential maps df ⊗ b to

d(d0(f)− d1(f))⊗ b. Moreover, the differential ΩP2/A⊗P2
B → ΩP1/A⊗P1

B maps
df⊗b to d(d0(f)−d1(f)+d2(f))⊗b which are annihilated by our downward arrow.
Hence a map of complexes. We omit the verification that this is the same as the
map of Lemma 70.10.3.

Remark 70.10.5. Adopt notation as in Remark 70.10.1. The arguments given
there show that the differential

H2(CB/A,J /J 2) −→ H0(CB/A,TorO1 (J , B))

of the spectral sequence is an isomorphism. Let C′B/A denote the full subcategory

of CB/A consisting of surjective maps P → B. The agreement of the cotangent
complex with the naive cotangent complex (Lemma 70.10.3) shows that we have
an exact sequence of sheaves

0→ H1(LB/A)→ J /J 2 d−→ Ω→ H2(LB/A)→ 0

on C′B/A. It follows that Ker(d) and Coker(d) on the whole category CB/A have van-

ishing higher homology groups, since these are computed by the homology groups
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of constant simplicial abelian groups by Lemma 70.4.1. Hence we conclude that

Hn(CB/A,J /J 2)→ Hn(LB/A)

is an isomorphism for all n ≥ 2. Combined with the remark above we obtain the
formula H2(LB/A) = H0(CB/A,TorO1 (J , B)).

70.11. A spectral sequence of Quillen

In this section we discuss a spectral sequence relating derived tensor product to the
cotangent complex.

Lemma 70.11.1. Notation and assumptions as in Cohomology on Sites, Example
21.29.1. Assume C has a cosimplicial object as in Cohomology on Sites, Lemma
21.29.7. Let F be a flat B-module such that H0(C,F) = 0. Then Hl(C,Symk

B(F)) =
0 for l < k.

Proof. We drop the subscript B from tensor products, wedge powers, and sym-
metric powers. We will prove the lemma by induction on k. The cases k = 0, 1
follow from the assumptions. If k > 1 consider the exact complex

. . .→ ∧2F ⊗ Symk−2F → F ⊗ Symk−1F → SymkF → 0

with differentials as in the Koszul complex. If we think of this as a resolution of
SymkF , then this gives a first quadrant spectral sequence

Ep,q1 = Hp(C,∧q+1F ⊗ Symk−q−1F)⇒ Hp+q(C,Symk(F))

By Cohomology on Sites, Lemma 21.29.10 we have

Lπ!(∧q+1F ⊗ Symk−q−1F) = Lπ!(∧q+1F)⊗L
B Lπ!(Symk−q−1F))

It follows (from the construction of derived tensor products) that the induction
hypothesis combined with the vanishing of H0(C,∧q+1(F)) = 0 will prove what we
want. This is true because ∧q+1(F) is a quotient of F⊗q+1 and H0(C,F⊗q+1) is a
quotient of H0(C,F)⊗q+1 which is zero. �

Remark 70.11.2. In the situation of Lemma 70.11.1 one can show thatHk(C,Symk(F)) =

∧kB(H1(C,F)). Namely, it can be deduced from the proof that Hk(C,Symk(F)) is
the Sk-coinvariants of

H−k(Lπ!(F)⊗L
B Lπ!(F)⊗L

B . . .⊗L
B Lπ!(F)) = H1(C,F)⊗k

Thus our claim is that this action is given by the usual action of Sk on the tensor
product multiplied by the sign character. To prove this one has to work through
the sign conventions in the definition of the total complex associated to a multi-
complex. We omit the verification.

Lemma 70.11.3. Let A be a ring. Let P = A[E] be a polynomial ring. Set

I = (e; e ∈ E) ⊂ P . The maps TorPi (A, In+1)→ TorPi (A, In) are zero for all i and
n.

Proof. Denote xe ∈ P the variable corresponding to e ∈ E. A free resolution of A
over P is given by the Koszul complex K• on the xe. Here Ki has basis given by
wedges e1∧ . . .∧ei, e1, . . . , ei ∈ E and d(e) = xe. Thus K•⊗P In = InK• computes

TorPi (A, In). Observe that everything is graded with deg(xe) = 1, deg(e) = 1, and
deg(a) = 0 for a ∈ A. Suppose ξ ∈ In+1Ki is a cocycle homogeneous of degree m.
Note that m ≥ i+ 1 +n. Then ξ = dη for some η ∈ Ki+1 as K• is exact in degrees

http://stacks.math.columbia.edu/tag/08RD
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> 0. (The case i = 0 is left to the reader.) Now deg(η) = m ≥ i + 1 + n. Hence
writing η in terms of the basis we see the coordinates are in In. Thus ξ maps to
zero in the homology of InK• as desired. �

Theorem 70.11.4 (Quillen spectral sequence). Let A → B be a surjective ring
map. Consider the sheaf Ω = ΩO/A⊗O B of B-modules on CB/A, see Section 70.4.
Then there is a spectral sequence with E1-page

Ep,q1 = H−p−q(CB/A,Symp
B(Ω))⇒ TorA−p−q(B,B)

with dr of bidegree (r,−r + 1). Moreover, Hi(CB/A,Symk
B(Ω)) = 0 for i < k.

Proof. Let I ⊂ A be the kernel of A → B. Let J ⊂ O be the kernel of O → B.
Then IO ⊂ J . Set K = J /IO and O = O/IO.

For every object U = (P → B) of CB/A we can choose an isomorphism P = A[E]
such that the map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U)
is equal to J = IP+(e; e ∈ E). Moreover O(U) = B[E] and K = K(U) = (e; e ∈ E)
is the ideal generated by the variables in the polynomial ring B[E]. In particular
it is clear that

K/K2 d−→ ΩP/A ⊗P B
is a bijection. In other words, Ω = K/K2 and Symk

B(Ω) = Kk/Kk+1. Note that
π!(Ω) = ΩB/A = 0 (Lemma 70.4.5) as A → B is surjective (Algebra, Lemma
10.127.5). By Lemma 70.11.1 we conclude that

Hi(CB/A,Kk/Kk+1) = Hi(CB/A,Symk
B(Ω)) = 0

for i < k. This proves the final statement of the theorem.

The approach to the theorem is to note that

B ⊗L
A B = Lπ!(O)⊗L

A B = Lπ!(O ⊗L
A B) = Lπ!(O)

The first equality by Lemma 70.5.7, the second equality by Cohomology on Sites,
Lemma 21.29.6, and the third equality as O is flat over A. The sheaf O has a
filtration

. . . ⊂ K3 ⊂ K2 ⊂ K ⊂ O
This induces a filtration F on a complex C representing Lπ!(O) with F pC repre-
senting Lπ!(Kp) (construction of C and F omitted). Consider the spectral sequence
of Homology, Section 12.21 associated to (C,F ). It has E1-page

Ep,q1 = H−p−q(CB/A,Kp/Kp+1) ⇒ H−p−q(CB/A,O) = TorA−p−q(B,B)

and differentials Ep,qr → Ep+r,q−r+1
r . To show convergence we will show that for

every k there exists a c such that Hi(CB/A,Kn) = 0 for i < k and n > c2.

Given k ≥ 0 set c = k2. We claim that

Hi(CB/A,Kn+c)→ Hi(CB/A,Kn)

is zero for i < k and all n ≥ 0. Note that Kn/Kn+c has a finite filtration whose
successive quotients Km/Km+1, n ≤ m < n + c have Hi(CB/A,Km/Km+1) = 0 for

i < n (see above). Hence the claim implies Hi(CB/A,Kn+c) = 0 for i < k and all
n ≥ k which is what we need to show.

2A posteriori the “correct” vanishing Hi(CB/A,Kn) = 0 for i < n can be concluded.

http://stacks.math.columbia.edu/tag/08RF
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Proof of the claim. Recall that for any O-module F the map F → F ⊗L
O B induces

an isomorphism on applying Lπ!, see Lemma 70.5.6. Consider the map

Kn+k ⊗L
O B −→ Kn ⊗L

O B

We claim that this map induces the zero map on cohomology sheaves in degrees
0,−1, . . . ,−k + 1. If this second claim holds, then the k-fold composition

Kn+c ⊗L
O B −→ Kn ⊗L

O B

factors through τ≤−kKn ⊗L
O B hence induces zero on Hi(CB/A,−) = Liπ!(−) for

i < k, see Derived Categories, Lemma 13.12.5. By the remark above this means
the same thing is true for Hi(CB/A,Kn+c)→ Hi(CB/A,Kn) which proves the (first)
claim.

Proof of the second claim. The statement is local, hence we may work over an
object U = (P → B) as above. We have to show the maps

TorPi (B,Kn+k)→ TorPi (B,Kn)

are zero for i < k. There is a spectral sequence

TorPa (P/IP,Tor
P/IP
b (B,Kn))⇒ TorPa+b(B,K

n),

see More on Algebra, Example 15.48.2. Thus it suffices to prove the maps

Tor
P/IP
i (B,Kn+1)→ Tor

P/IP
i (B,Kn)

are zero for all i. This is Lemma 70.11.3. �

Remark 70.11.5. In the situation of Theorem 70.11.4 let I = Ker(A→ B). Then

H−1(LB/A) = H1(CB/A,Ω) = I/I2, see Lemma 70.10.2. HenceHk(CB/A,Symk(Ω)) =

∧kB(I/I2) by Remark 70.11.2. Thus the E1-page looks like

B
0
0 I/I2

0 H−2(LB/A)
0 H−3(LB/A) ∧2(I/I2)
0 H−4(LB/A) H3(CB/A,Sym2(Ω))
0 H−5(LB/A) H4(CB/A,Sym2(Ω)) ∧3(I/I2)

with horizontal differential. Thus we obtain edge maps TorAi (B,B)→ H−i(LB/A),

i > 0 and ∧iB(I/I2)→ TorAi (B,B). Finally, we have TorA1 (B,B) = I/I2 and there
is a five term exact sequence

TorA3 (B,B)→ H−3(LB/A)→ ∧2
B(I/I2)→ TorA2 (B,B)→ H−2(LB/A)→ 0

of low degree terms.

Remark 70.11.6. Let A→ B be a ring map. Let P• be a resolution of B over A
(Remark 70.5.5). Set Jn = Ker(Pn → B). Note that

TorPn2 (B,B) = TorPn1 (Jn, B) = Ker(Jn ⊗Pn Jn → J2
n).

Hence H2(LB/A) is canonically equal to

Coker(TorP1
2 (B,B)→ TorP0

2 (B,B))

http://stacks.math.columbia.edu/tag/08RG
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by Remark 70.10.5. To make this more explicit we choose P2, P1, P0 as in Example
70.5.9. We claim that

TorP1
2 (B,B) = ∧2(

⊕
t∈T

B) ⊕
⊕

t∈T
J0 ⊕ TorP0

2 (B,B)

Namely, the basis elements xt∧xt′ of the first summand corresponds to the element
xt⊗xt′−xt′⊗xt of J1⊗P1

J1. For f ∈ J0 the element xt⊗f of the second summand
corresponds to the element xt ⊗ s0(f)− s0(f)⊗ xt of J1 ⊗P1 J1. Finally, the map

TorP0
2 (B,B) → TorP1

2 (B,B) is given by s0. The map d0 − d1 : TorP1
2 (B,B) →

TorP0
2 (B,B) is zero on the last summand, maps xt⊗ f to f ⊗ ft− ft⊗ f , and maps

xt ∧ xt′ to ft ⊗ ft′ − ft′ ⊗ ft. All in all we conclude that there is an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0

In this way we obtain a direct proof of a consequence of Quillen’s spectral sequence
discussed in Remark 70.11.5.

70.12. Comparison with Lichtenbaum-Schlessinger

Let A → B be a ring map. In [LS67] there is a fairly explicit determination
of τ≥−2LB/A which is often used in calculations of versal deformation spaces of
singularities. The construction follows. Choose a polynomial algebra P over A and
a surjection P → B with kernel I. Choose generators ft, t ∈ T for I which induces a
surjection F =

⊕
t∈T P → I with F a free P algebra. Let Rel ⊂ F be the kernel of

F → I, in other words Rel is the set of relations among the ft. Let TrivRel ⊂ Rel
be the submodule of trivial relations, i.e., the submodule of Rel generated by the
elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .). Consider the complex of B-modules

(70.12.0.1) Rel/TrivRel −→ F ⊗P B −→ ΩP/A ⊗P B

where the last term is placed in degree 0. The first map is the obvious one and the
second map sends the basis element corresponding to t ∈ T to dft ⊗ 1.

Definition 70.12.1. Let A → B be a ring map. Let M be a (B,B)-bimodule
over A. An A-biderivation is an A-linear map λ : B → M such that λ(xy) =
xλ(y) + λ(x)y.

For a polynomial algebra the biderivations are easy to describe.

Lemma 70.12.2. Let P = A[S] be a polynomial ring over A. Let M be a (P, P )-
bimodule over A. Given ms ∈ M for s ∈ S, there exists a unique A-biderivation
λ : P →M mapping s to ms for s ∈ S.

Proof. We set

λ(s1 . . . st) =
∑

s1 . . . si−1msisi+1 . . . st

in M . Extending by A-linearity we obtain a biderivation. �

Here is the comparison statement. The reader may also read about this in [And74,
page 206, Proposition 12] or in the paper [DRGV92] which extends the complex
(70.12.0.1) by one term and the comparison to τ≥−3.

Lemma 70.12.3. In the situation above denote L the complex (70.12.0.1). There is
a canonical map LB/A → L in D(A) which induces an isomorphism τ≥−2LB/A → L
in D(B).

http://stacks.math.columbia.edu/tag/09CE
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Proof. Let P• → B be a resolution of B over A (Remark 70.5.5). We will identify
LB/A with ΩP•/A ⊗B. To construct the map we make some choices.

Choose an A-algebra map ψ : P0 → P compatible with the given maps P0 → B
and P → B.

Write P1 = A[S] for some set S. For s ∈ S we may write

ψ(d0(s)− d1(s)) =
∑

ps,tft

for some ps,t ∈ P . Think of F =
⊕

t∈T P as a (P1, P1)-bimodule via the maps
(ψ ◦ d0, ψ ◦ d1). By Lemma 70.12.2 we obtain a unique A-biderivation λ : P1 → F
mapping s to the vector with coordinates ps,t. By construction the composition

P1 −→ F −→ P

sends f ∈ P1 to ψ(d0(f) − d1(f)) because the map f 7→ ψ(d0(f) − d1(f)) is an
A-biderivation agreeing with the composition on generators.

For g ∈ P2 we claim that λ(d0(g)− d1(g) + d2(g)) is an element of Rel. Namely, by
the last remark of the previous paragraph the image of λ(d0(g)− d1(g) + d2(g)) in
P is

ψ((d0 − d1)(d0(g)− d1(g) + d2(g)))

which is zero by Simplicial, Section 14.22).

The choice of ψ determines a map

dψ ⊗ 1 : ΩP0/A ⊗B −→ ΩP/A ⊗B
Composing λ with the map F → F ⊗ B gives a usual A-derivation as the two
P1-module structures on F ⊗B agree. Thus λ determines a map

λ : ΩP1/A ⊗B −→ F ⊗B
Finally, We obtain a B-linear map

q : ΩP2/A ⊗B −→ Rel/TrivRel

by mapping dg to the class of λ(d0(g)− d1(g) + d2(g)) in the quotient.

The diagram

ΩP3/A ⊗B //

��

ΩP2/A ⊗B //

q

��

ΩP1/A ⊗B //

λ

��

ΩP0/A ⊗B

dψ⊗1

��
0 // Rel/TrivRel // F ⊗B // ΩP/A ⊗B

commutes (calculation omitted) and we obtain the map of the lemma. By Remark
70.10.4 and Lemma 70.10.3 we see that this map induces isomorphismsH1(LB/A)→
H1(L) and H0(LB/A)→ H0(L).

It remains to see that our map LB/A → L induces an isomorphism H2(LB/A) →
H2(L). Choose a resolution of B over A with P0 = P = A[ui] and then P1 and P2

as in Example 70.5.9. In Remark 70.11.6 we have constructed an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0

where P0 = P and J0 = Ker(P → B) = I. Calculating the Tor group using the
short exact sequences 0 → I → P → B → 0 and 0 → Rel → F → I → 0 we find
that TorP2 (B,B) = Ker(Rel ⊗ B → F ⊗ B). The image of the map ∧2

B(I/I2) →
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TorP2 (B,B) under this identification is exactly the image of TrivRel⊗B. Thus we
see that H2(LB/A) ∼= H2(L).

Finally, we have to check that our map LB/A → L actually induces this iso-
morphism. We will use the notation and results discussed in Example 70.5.9
and Remarks 70.11.6 and 70.10.5 without further mention. Pick an element ξ
of TorP0

2 (B,B) = Ker(I ⊗P I → I2). Write ξ =
∑
ht′,tft′ ⊗ ft for some ht′,t ∈ P .

Tracing through the exact sequences above we find that ξ corresponds to the
image in Rel ⊗ B of the element r ∈ Rel ⊂ F =

⊕
t∈T P with tth coordi-

nate rt =
∑
t′∈T ht′,tft′ . On the other hand, ξ corresponds to the element of

H2(LB/A) = H2(Ω) which is the image via d : H2(J /J 2) → H2(Ω) of the bound-
ary of ξ under the 2-extension

0→ TorO2 (B,B)→ J ⊗O J → J → J /J 2 → 0

We compute the successive transgressions of our element. First we have

ξ = (d0 − d1)(−
∑

s0(ht′,tft′)⊗ xt)

and next we have ∑
s0(ht′,tft′)xt = d0(vr)− d1(vr) + d2(vr)

by our choice of the variables v in Example 70.5.9. We may choose our map λ
above such that λ(ui) = 0 and λ(xt) = −et where et ∈ F denotes the basis vector
corresponding to t ∈ T . Hence the construction of our map q above sends dvr to

λ(
∑

s0(ht′,tft′)xt) =
∑

t

(∑
t′
ht′,tft′

)
et

matching the image of ξ in Rel ⊗ B (the two minus signs we found above cancel
out). This agreement finishes the proof. �

Remark 70.12.4 (Functoriality of the Lichtenbaum-Schlessinger complex). Con-
sider a commutative square

A′ // B′

A

OO

// B

OO

of ring maps. Choose a factorization

A′ // P ′ // B′

A

OO

// P

OO

// B

OO

with P a polynomial algebra over A and P ′ a polynomial algebra over A′. Choose
generators ft, t ∈ T for Ker(P → B). For t ∈ T denote f ′t the image of ft in P ′.
Choose f ′s ∈ P ′ such that the elements f ′t for t ∈ T ′ = T q S generate the kernel
of P ′ → B′. Set F =

⊕
t∈T P and F ′ =

⊕
t′∈T ′ P

′. Let Rel = Ker(F → P ) and
Rel′ = Ker(F ′ → P ′) where the maps are given by multiplication by ft, resp. f ′t
on the coordinates. Finally, set TrivRel, resp. TrivRel′ equal to the submodule
of Rel, resp. TrivRel generated by the elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .) for

http://stacks.math.columbia.edu/tag/09D7
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t, t′ ∈ T , resp. T ′. Having made these choices we obtain a canonical commutative
diagram

L′ : Rel′/TrivRel′ // F ′ ⊗P ′ B′ // ΩP ′/A′ ⊗P ′ B′

L :

OO

Rel/TrivRel //

OO

F ⊗P B //

OO

ΩP/A ⊗P B

OO

Moreover, tracing through the choices made in the proof of Lemma 70.12.3 the
reader sees that one obtains a commutative diagram

LB′/A′ // L′

LB/A //

OO

L

OO

70.13. The cotangent complex of a local complete intersection

If A → B is a local complete intersection map, then LB/A is a perfect complex.
The key to proving this is the following lemma.

Lemma 70.13.1. Let A = Z[x]→ B = Z be the ring map which sends x to 0. Let
I = (x) ⊂ A. Then LB/A is quasi-isomorphic to I/I2[1].

Proof. There are several ways to prove this. For example one can explicitly con-
struct a resolution of B over A and compute. Or one can use the spectral sequence
of Quillen (Theorem 70.11.4) and the vanishing of TorAi (B,B) for i > 1. Finally,
one can use (70.7.0.1) which is what we will do here. Namely, consider the distin-
guished triangle

LZ[x]/Z ⊗Z[x] Z→ LZ/Z → LZ/Z[x] → LZ[x]/Z ⊗Z[x] Z[1]

The complex LZ[x]/Z is quasi-isomorphic to ΩZ[x]/Z by Lemma 70.4.7. The complex
LZ/Z is zero in D(Z) by Lemma 70.8.4. Thus we see that LB/A has only one nonzero
cohomology group which is as described in the lemma by Lemma 70.10.2. �

Lemma 70.13.2. Let A→ B be a surjective ring map whose kernel I is generated
by a regular sequence. Then LB/A is quasi-isomorphic to I/I2[1].

Proof. This is true if I = (0). If I = (f) is generated by a single nonzerodivisor,
then consider the ring map Z[x]→ A which sends x to f . By assumption we have
B = A⊗L

Z[x] Z. Thus we obtain LB/A = I/I2[1] from Lemmas 70.6.2 and 70.13.1.

We prove the general case by induction. Suppose that we have I = (f1, . . . , fr)
where f1, . . . , fr is a regular sequence. Set C = A/(f1, . . . , fr−1). By induction the
result is true for A→ C and C → B. We have a distinguished triangle (70.7.0.1)

LC/A ⊗L
C B → LB/A → LB/C → LC/A ⊗L

C B[1]

which shows that LB/A has only one nonzero cohomology group which is as de-
scribed in the lemma by Lemma 70.10.2. �

Lemma 70.13.3. Let A → B be a surjective ring map whose kernel I is Koszul.
Then LB/A is quasi-isomorphic to I/I2[1].

http://stacks.math.columbia.edu/tag/08SI
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Proof. Flat locally on Spec(A) the ideal I is generated by a regular sequence, see
More on Algebra, Lemma 15.21.17. Hence this follows from Lemma 70.6.2 and flat
descent. �

Proposition 70.13.4. Let A → B be a local complete intersection map. Then
LB/A is a perfect complex with tor amplitude in [−1, 0].

Proof. Choose a surjection P = A[x1, . . . , xn] → B with kernel J . By Lemma
70.10.3 we see that J/J2 →

⊕
Bdxi is quasi-isomorphic to τ≥−1LB/A. Note that

J/J2 is finite projective (More on Algebra, Lemma 15.22.3), hence τ≥−1LB/A is
a perfect complex with tor amplitude in [−1, 0]. Thus it suffices to show that
Hi(LB/A) = 0 for i 6∈ [−1, 0]. This follows from (70.7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → LP/A ⊗L

P B[1]

and Lemma 70.13.3 to see that Hi(LB/P ) is zero unless i ∈ {−1, 0}. (We also use
Lemma 70.4.7 for the term on the left.) �

70.14. Tensor products and the cotangent complex

Let R be a ring and let A, B be R-algebras. In this section we discuss LA⊗RB/R.
Most of the information we want is contained in the following diagram
(70.14.0.1)

LA/R ⊗L
A (A⊗R B) // LA⊗RB/B // E

LA/R ⊗L
A (A⊗R B) // LA⊗RB/R //

OO

LA⊗RB/A

OO

LB/R ⊗L
B (A⊗R B)

OO

LB/R ⊗L
B (A⊗R B)

OO

Explanation: The middle row is the fundamental triangle (70.7.0.1) for the ring
maps R→ A→ A⊗RB. The middle column is the fundamental triangle (70.7.0.1)
for the ring maps R→ B → A⊗RB. Next, E is an object of D(A⊗RB) which “fits”
into the upper right corner, i.e., which turns both the top row and the right column
into distinguished triangles. Such an E exists by Derived Categories, Proposition
13.4.21 applied to the lower left square (with 0 placed in the missing spot). To
be more explicit, we could for example define E as the cone (Derived Categories,
Definition 13.9.1) of the map of complexes

LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B) −→ LA⊗RB/R

and get the two maps with target E by an application of TR3. In the Tor indepen-
dent case the object E is zero.

Lemma 70.14.1. If A and B are Tor independent R-algebras, then the object E
in (70.14.0.1) is zero. In this case we have

LA⊗RB/R = LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B)

which is represented by the complex LA/R ⊗R B ⊕ LB/R ⊗R A of A⊗R B-modules.

http://stacks.math.columbia.edu/tag/08SL
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Proof. The first two statements are immediate from Lemma 70.6.2. The last
statement follows as LA/R is a complex of free A-modules, hence LA/R⊗L

A (A⊗RB)
is represented by LA/R ⊗A (A⊗R B) = LA/R ⊗R B �

In general we can say this about the object E.

Lemma 70.14.2. Let R be a ring and let A, B be R-algebras. The object E in
(70.14.0.1) satisfies

Hi(E) =

{
0 if i ≥ −1

TorR1 (A,B) if i = −2

Proof. We use the description of E as the cone on LB/R⊗L
B (A⊗RB)→ LA⊗RB/A.

By Lemma 70.12.3 the canonical truncations τ≥−2LB/R and τ≥−2LA⊗RB/A are com-
puted by the Lichtenbaum-Schlessinger complex (70.12.0.1). These isomorphisms
are compatible with functoriality (Remark 70.12.4). Thus in this proof we work
with the Lichtenbaum-Schlessinger complexes.

Choose a polynomial algebra P over R and a surjection P → B. Choose generators
ft ∈ P , t ∈ T of the kernel of this surjection. Let Rel ⊂ F =

⊕
t∈T P be the

kernel of the map F → P which maps the basis vector corresponding to t to ft. Set
PA = A ⊗R P and FA = A ⊗R F = PA ⊗P F . Let RelA be the kernel of the map
FA → PA. Using the exact sequence

0→ Rel→ F → P → B → 0

and standard short exact sequences for Tor we obtain an exact sequence

A⊗R Rel→ RelA → TorR1 (A,B)→ 0

Note that PA → A⊗R B is a surjection whose kernel is generated by the elements
1 ⊗ ft in PA. Denote TrivRelA ⊂ RelA the PA-submodule generated by the ele-
ments (. . . , 1⊗ ft′ , 0, . . . , 0,−1⊗ ft⊗ 1, 0, . . .). Since TrivRel⊗R A→ TrivRelA is
surjective, we find a canonical exact sequence

A⊗R (Rel/TrivRel)→ RelA/TrivRelA → TorR1 (A,B)→ 0

The map of Lichtenbaum-Schlessinger complexes is given by the diagram

RelA/TrivRelA // FA ⊗PA (A⊗R B) // ΩPA/A⊗RB ⊗PA (A⊗R B)

Rel/TrivRel //

−2

OO

F ⊗P B //

−1

OO

ΩP/A ⊗P B

0

OO

Note that vertical maps −1 and −0 induce an isomorphism after applying the
functor A ⊗R − = PA ⊗P − to the source and the vertical map −2 gives exactly
the map whose cokernel is the desired Tor module as we saw above. �

70.15. Deformations of ring maps and the cotangent complex

This section is the continuation of Deformation Theory, Section 69.2 which we urge
the reader to read first. We start with a surjective ring map A′ → A whose kernel
is an ideal I of square zero. Moreover we assume given a ring map A → B, a

http://stacks.math.columbia.edu/tag/09DB
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B-module N , and an A-module map c : I → N . In this section we ask ourselves
whether we can find the question mark fitting into the following diagram

(70.15.0.1)

0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a surjection of A′-algebras B′ → B whose kernel is identified with N such that
A′ → B′ induces the given map c. We will say B′ is a solution to (70.15.0.1).

Lemma 70.15.1. In the situation above we have

(1) There is a canonical element ξ ∈ Ext2B(LB/A, N) whose vanishing is
a sufficient and necessary condition for the existence of a solution to
(70.15.0.1).

(2) If there exists a solution, then then the set of isomorphism classes of
solutions is principal homogeneous under Ext1B(LB/A, N).

(3) Given a solution B′, the set of automorphisms of B′ fitting into (70.15.0.1)
is canonically isomorphic to Ext0B(LB/A, N).

Proof. Via the identificationsNLB/A = τ≥−1LB/A (Lemma 70.10.3) andH0(LB/A) =
ΩB/A (Lemma 70.4.5) we have seen parts (2) and (3) in Deformation Theory, Lem-
mas 69.2.1 and 69.2.3.

Proof of (1). We will use the results of Deformation Theory, Lemma 69.2.4 with-
out further mention. Let α ∈ Ext1

A(NLA/Z, I) be the element corresponding to
the isomorphism class of A′. The existence of B′ corresponds to an element
β ∈ Ext1

B(NLB/Z, N) which maps to the image of α in Ext1
A(NLA/Z, N). Note

that

Ext1
A(NLA/Z, N) = Ext1

A(LA/Z, N) = Ext1
B(LA/Z ⊗L

A B,N)

and

Ext1
B(NLB/Z, N) = Ext1

B(LB/Z, N)

by Lemma 70.10.3. Since the distinguished triangle (70.7.0.1) for Z→ A→ B gives
rise to a long exact sequence

. . .→ Ext1
B(LB/Z, N)→ Ext1

B(LA/Z ⊗L
A B,N)→ Ext2

B(LB/A, N)→ . . .

we obtain the result with ξ the image of α. �

70.16. The Atiyah class of a module

Let A → B be a ring map. Let M be a B-module. Let P → B be an object of
CB/A (Section 70.4). Consider the extension of principal parts

0→ ΩP/A ⊗P M → P 1
P/A(M)→M → 0

see Algebra, Lemma 10.128.6. This sequence is functorial in P by Algebra, Remark
10.128.7. Thus we obtain a short exact sequence of sheaves of O-modules

0→ ΩO/A ⊗O M → P 1
O/A(M)→M → 0

http://stacks.math.columbia.edu/tag/08SP
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on CB/A. We have Lπ!(ΩO/A ⊗O M) = LB/A ⊗B M = LB/A ⊗L
B M by Lemma

70.4.2 and the flatness of the terms of LB/A. We have Lπ!(M) = M by Lemma
70.4.4. Thus a distinguished triangle

(70.16.0.1) LB/A ⊗L
B M → Lπ!

(
P 1
O/A(M)

)
→M → LB/A ⊗L

B M [1]

in D(B). Here we use Cohomology on Sites, Remark 21.29.13 to get a distinguished
triangle in D(B) and not just in D(A).

Definition 70.16.1. Let A→ B be a ring map. Let M be a B-module. The map
M → LB/A ⊗L

B M [1] in (70.16.0.1) is called the Atiyah class of M .

70.17. The cotangent complex

In this section we discuss the cotangent complex of a map of sheaves of rings on
a site. In later sections we specialize this to obtain the cotangent complex of a
morphism of ringed topoi, a morphism of ringed spaces, a morphism of schemes, a
morphism of algebraic space, etc.

Let C be a site and let Sh(C) denote the associated topos. Let A denote a sheaf of
rings on C. Let A-Alg be the category of A-algebras. Consider the pair of adjoint
functors (F, i) where i : A-Alg → Sh(C) is the forgetful functor and F : Sh(C) →
A-Alg assigns to a sheaf of sets E the polynomial algebra A[E ] on E over A. Let
X• be the simplicial object of Fun(A-Alg,A-Alg) constructed in Simplicial, Section
14.32.

Now assume that A → B is a homomorphism of sheaves of rings. Then B is an
object of the category A-Alg. Denote P• = X•(B) the resulting simplicial A-
algebra. Recall that P0 = A[B], P1 = A[A[B]], and so on. Recall also that there is
an augmentation

ε : P• −→ B

where we view B as a constant simplicial A-algebra.

Definition 70.17.1. Let C be a site. Let A → B be a homomorphism of sheaves
of rings on C. The standard resolution of B over A is the augmentation ε : P• → B
with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

With this definition in hand the cotangent complex of a map of sheaves of rings is
defined as follows. We will use the module of differentials as defined in Modules on
Sites, Section 18.32.

Definition 70.17.2. Let C be a site. Let A → B be a homomorphism of sheaves
of rings on C. The cotangent complex LB/A is the complex of B-modules associated
to the simplicial module

ΩP•/A ⊗P•,ε B

where ε : P• → B is the standard resolution of B over A. We usually think of LB/A
as an object of D(B).

http://stacks.math.columbia.edu/tag/09DE
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These constructions satisfy a functoriality similar to that discussed in Section 70.6.
Namely, given a commutative diagram

(70.17.2.1)

B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes

LB/A −→ LB′/A′

constructed as follows. If P• → B is the standard resolution of B over A and
P ′• → B′ is the standard resolution of B′ over A′, then there is a canonical map
P• → P ′• of simplicial A-algebras compatible with the augmentations P• → B and
P ′• → B′. The maps

P0 = A[B] −→ A′[B′] = P ′0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′1
and so on are given by the given maps A → A′ and B → B′. The desired map
LB/A → LB′/A′ then comes from the associated maps on sheaves of differentials.

Lemma 70.17.3. Let f : Sh(D) → Sh(C) be a morphism of topoi. Let A → B be
a homomorphism of sheaves of rings on C. Then f−1LB/A = Lf−1B/f−1A.

Proof. The diagram

A-Alg

f−1

��

// Sh(C)oo

f−1

��
f−1A-Alg // Sh(D)oo

commutes. �

Lemma 70.17.4. Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. Then Hi(LB/A) is the sheaf associated to the presheaf U 7→ Hi(LB(U)/A(U)).

Proof. Let C′ be the site we get by endowing C with the chaotic topology (presheaves
are sheaves). There is a morphism of topoi f : Sh(C) → Sh(C′) where f∗ is the in-
clusion of sheaves into presheaves and f−1 is sheafification. By Lemma 70.17.3 it
suffices to prove the result for C′, i.e., in case C has the chaotic topology.

If C carries the chaotic topology, then LB/A(U) is equal to LB(U)/A(U) because

A-Alg

sections over U

��

// Sh(C)oo

sections over U

��
A(U)-Alg // Setsoo

commutes. �

Remark 70.17.5. It is clear from the proof of Lemma 70.17.4 that for any U ∈
Ob(C) there is a canonical map LB(U)/A(U) → LB/A(U) of complexes of B(U)-
modules. Moreover, these maps are compatible with restriction maps and the
complex LB/A is the sheafification of the rule U 7→ LB(U)/A(U).

Lemma 70.17.6. Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. Then H0(LB/A) = ΩB/A.

http://stacks.math.columbia.edu/tag/08SV
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Proof. Follows from Lemmas 70.17.4 and 70.4.5 and Modules on Sites, Lemma
18.32.4. �

Lemma 70.17.7. Let C be a site. Let A → B and A → B′ be homomorphisms of
sheaves of rings on C. Then

LB×B′/A −→ LB/A ⊕ LB′/A
is an isomorphism in D(B × B′).

Proof. By Lemma 70.17.4 it suffices to prove this for ring maps. In the case of
rings this is Lemma 70.6.4. �

The fundamental triangle for the cotangent complex of sheaves of rings is an easy
consequence of the result for homomorphisms of rings.

Lemma 70.17.8. Let D be a site. Let A → B → C be homomorphisms of sheaves
of rings on D. There is a canonical distinguished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C).

Proof. We will use the method described in Remarks 70.7.5 and 70.7.6 to construct
the triangle; we will freely use the results mentioned there. As in those remarks we
first construct the triangle in case B → C is an injective map of sheaves of rings. In
this case we set

(1) P• is the standard resolution of B over A,
(2) Q• is the standard resolution of C over A,
(3) R• is the standard resolution of C over B,
(4) S• is the standard resolution of B over B,
(5) Q• = Q• ⊗P• B, and
(6) R• = R• ⊗S• B.

The distinguished triangle is the distinguished triangle associated to the short exact
sequence of simplicial C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B ⊗Q• C → 0

The first two terms are equal to the first two terms of the triangle of the state-
ment of the lemma. The identification of the last term with LC/B uses the quasi-
isomorphisms of complexes

LC/B = ΩR•/B ⊗R• C −→ ΩR•/B ⊗R• C ←− ΩQ•/B ⊗Q• C

All the constructions used above can first be done on the level of presheaves and then
sheafified. Hence to prove sequences are exact, or that map are quasi-isomorphisms
it suffices to prove the corresponding statement for the ring maps A(U)→ B(U)→
C(U) which are known. This finishes the proof in the case that B → C is injective.

In general, we reduce to the case where B → C is injective by replacing C by B × C
if necessary. This is possible by the argument given in Remark 70.7.5 by Lemma
70.17.7. �

Lemma 70.17.9. Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. If p is a point of C, then (LB/A)p = LBp/Ap .

Proof. This is a special case of Lemma 70.17.3. �

http://stacks.math.columbia.edu/tag/08SY
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For the construction of the naive cotangent complex and its properties we refer to
Modules on Sites, Section 18.34.

Lemma 70.17.10. Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. There is a canonical map LB/A → NLB/A which identifies the naive
cotangent complex with the truncation τ≥−1LB/A.

Proof. Let P• be the standard resolution of B over A. Let I = Ker(A[B] → B).
Recall that P0 = A[B]. The map of the lemma is given by the commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2
B //

��

ΩP1/A ⊗P1
B //

��

ΩP0/A ⊗P0
B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0

B

We construct the downward arrow with target I/I2 by sending a local section df⊗b
to the class of (d0(f) − d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two
face maps of the simplicial structure. This makes sense as d0 − d1 maps P1 into
I = Ker(P0 → B). We omit the verification that this rule is well defined. Our map
is compatible with the differential ΩP1/A ⊗P1 B → ΩP0/A ⊗P0 B as this differential
maps a local section df ⊗ b to d(d0(f) − d1(f)) ⊗ b. Moreover, the differential
ΩP2/A⊗P2

B → ΩP1/A⊗P1
B maps a local section df⊗b to d(d0(f)−d1(f)+d2(f))⊗b

which are annihilated by our downward arrow. Hence a map of complexes.

To see that our map induces an isomorphism on the cohomology sheaves H0 and
H−1 we argue as follows. Let C′ be the site with the same underlying category as
C but endowed with the chaotic topology. Let f : Sh(C)→ Sh(C′) be the morphism
of topoi whose pullback functor is sheafification. Let A′ → B′ be the given map,
but thought of as a map of sheaves of rings on C′. The construction above gives a
map LB′/A′ → NLB′/A′ on C′ whose value over any object U of C′ is just the map

LB(U)/A(U) → NLB(U)/A(U)

of Remark 70.10.4 which induces an isomorphism onH0 andH−1. Since f−1LB′/A′ =

LB/A (Lemma 70.17.3) and f−1NLB′/A′ = NLB/A (Modules on Sites, Lemma
18.34.3) the lemma is proved. �

70.18. The Atiyah class of a sheaf of modules

Let C be a site. Let A → B be a homomorphism of sheaves of rings. Let F be a
sheaf of B-modules. Let P• → B be the standard resolution of B over A (Section
70.17). For every n ≥ 0 consider the extension of principal parts

(70.18.0.1) 0→ ΩPn/A ⊗Pn F → P
1
Pn/A(F)→ F → 0

see Modules on Sites, Lemma 18.33.6. The functoriality of this construction (Mod-
ules on Sites, Remark 18.33.7) tells us (70.18.0.1) is the degree n part of a short
exact sequence of simplicial P•-modules (Cohomology on Sites, Section 21.31). Us-
ing the functor Lπ! : D(P•)→ D(B) of Cohomology on Sites, Remark 21.31.3 (here
we use that P• → A is a resolution) we obtain a distinguished triangle

(70.18.0.2) LB/A ⊗L
B F → Lπ!

(
P1
P•/A(F)

)
→ F → LB/A ⊗L

B F [1]

in D(B).

http://stacks.math.columbia.edu/tag/08US
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Definition 70.18.1. Let C be a site. Let A → B be a homomorphism of sheaves of
rings. Let F be a sheaf of B-modules. The map F → LB/A ⊗L

B F [1] in (70.18.0.2)
is called the Atiyah class of F .

70.19. The cotangent complex of a morphism of ringed spaces

The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.

Definition 70.19.1. Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
The cotangent complex Lf of f is Lf = LOX/f−1OS . We will also use the notation
Lf = LX/S = LOX/OS .

More precisely, this means that we consider the cotangent complex (Definition
70.17.2) of the homomorphism f ] : f−1OS → OX of sheaves of rings on the site
associated to the topological space X (Sites, Example 7.6.4).

Lemma 70.19.2. Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
Then H0(LX/S) = ΩX/S.

Proof. Special case of Lemma 70.17.6. �

Lemma 70.19.3. Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then there is a canonical distinguished triangle

Lf∗LY/Z → LX/Z → LX/Y → Lf∗LY/Z [1]

in D(OX).

Proof. Set h = g ◦ f so that h−1OZ = f−1g−1OZ . By Lemma 70.17.3 we have
f−1LY/Z = Lf−1OY /h−1OZ and this is a complex of flat f−1OY -modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma
70.17.8 with A = h−1OZ , B = f−1OY , and C = OX . �

Lemma 70.19.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
There is a canonical map LX/Y → NLX/Y which identifies the naive cotangent
complex with the truncation τ≥−1LX/Y .

Proof. Special case of Lemma 70.17.10. �

70.20. Deformations of ringed spaces and the cotangent complex

This section is the continuation of Deformation Theory, Section 69.7 which we urge
the reader to read first. We briefly recall the setup. We have a first order thickening
t : (S,OS) → (S′,OS′) of ringed spaces with J = Ker(t]), a morphism of ringed
spaces f : (X,OX) → (S,OS), an OX -module G, and an f -map c : J → G of
sheaves of modules. We ask whether we can find the question mark fitting into the
following diagram

(70.20.0.1)

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a first order thickening i : (X,OX) → (X ′,OX′) and a morphism of thickenings
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(f, f ′) as in Deformation Theory, Equation (69.3.1.1) where Ker(i]) is identified
with G such that (f ′)] induces the given map c. We will say X ′ is a solution to
(70.20.0.1).

Lemma 70.20.1. In the situation above we have

(1) There is a canonical element ξ ∈ Ext2OX (LX/S ,G) whose vanishing is
a sufficient and necessary condition for the existence of a solution to
(70.20.0.1).

(2) If there exists a solution, then then the set of isomorphism classes of
solutions is principal homogeneous under Ext1OX (LX/S ,G).

(3) Given a solution X ′, the set of automorphisms of X ′ fitting into (70.20.0.1)
is canonically isomorphic to Ext0OX (LX/S ,G).

Proof. Via the identificationsNLX/S = τ≥−1LX/S (Lemma 70.19.4) andH0(LX/S) =
ΩX/S (Lemma 70.19.2) we have seen parts (2) and (3) in Deformation Theory, Lem-
mas 69.7.1 and 69.7.3.

Proof of (1). We will use the results of Deformation Theory, Lemma 69.7.4 with-
out further mention. Let α ∈ Ext1

OS (NLS/Z,J ) be the element corresponding
to the isomorphism class of S′. The existence of X ′ corresponds to an element
β ∈ Ext1

OX (NLX/Z,G) which maps to the image of α in Ext1
OX (Lf∗NLS/Z,G).

Note that

Ext1
OX (Lf∗NLS/Z,G) = Ext1

OX (Lf∗LS/Z,G)

and

Ext1
OX (NLX/Z,G) = Ext1

OX (LX/Z,G)

by Lemma 70.19.4. The distinguished triangle of Lemma 70.19.3 for X → S →
(∗,Z) gives rise to a long exact sequence

. . .→ Ext1
OX (LX/Z,G)→ Ext1

OX (Lf∗LS/Z,G)→ Ext2
OX (LX/S ,G)→ . . .

We obtain the result with ξ the image of α. �

70.21. The cotangent complex of a morphism of ringed topoi

The cotangent complex of a morphism of ringed topoi is defined in terms of the
cotangent complex we defined above.

Definition 70.21.1. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi. The cotangent complex Lf of f is Lf = LOC/f−1OD . We sometimes
write Lf = LOC/OD .

This definition applies to many situations, but it doesn’t always produce the thing
one expects. For example, if f : X → Y is a morphism of schemes, then f induces a
morphism of big étale sites fbig : (Sch/X)étale → (Sch/Y )étale which is a morphism
of ringed topoi (Descent, Remark 34.7.4). However, Lfbig = 0 since (fbig)

] is an
isomorphism. On the other hand, if we take Lf where we think of f as a morphism
between the underlying Zariski ringed topoi, then Lf does agree with the cotangent
complex LX/Y (as defined below) whose zeroth cohomology sheaf is ΩX/Y .

Lemma 70.21.2. Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
Then H0(Lf ) = Ωf .

Proof. Special case of Lemma 70.17.6. �
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Lemma 70.21.3. Let f : (Sh(C1),O1) → (Sh(C2),O2) and g : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. Then there is a canonical distinguished
triangle

Lf∗Lg → Lg◦f → Lf → Lf∗Lg[1]

in D(O1).

Proof. Set h = g ◦ f so that h−1O3 = f−1g−1O3. By Lemma 70.17.3 we have
f−1Lg = Lf−1O2/h−1O3

and this is a complex of flat f−1O2-modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma
70.17.8 with A = h−1O3, B = f−1O2, and C = O1. �

Lemma 70.21.4. Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
There is a canonical map Lf → NLf which identifies the naive cotangent complex
with the truncation τ≥−1Lf .

Proof. Special case of Lemma 70.17.10. �

70.22. Deformations of ringed topoi and the cotangent complex

This section is the continuation of Deformation Theory, Section 69.12 which we
urge the reader to read first. We briefly recall the setup. We have a first order
thickening t : (Sh(B),OB) → (Sh(B′),OB′) of ringed topoi with J = Ker(t]), a
morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-module G, and a
map f−1J → G of sheaves of f−1OB-modules. We ask whether we can find the
question mark fitting into the following diagram

(70.22.0.1)

0 // G // ? // OX // 0

0 // f−1J

c

OO

// f−1OS′

OO

// f−1OS

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a
first order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings
(f, f ′) as in Deformation Theory, Equation (69.8.1.1) where Ker(i]) is identified
with G such that (f ′)] induces the given map c. We will say (Sh(C′),O′) is a
solution to (70.22.0.1).

Lemma 70.22.1. In the situation above we have

(1) There is a canonical element ξ ∈ Ext2O(Lf ,G) whose vanishing is a suffi-
cient and necessary condition for the existence of a solution to (70.22.0.1).

(2) If there exists a solution, then then the set of isomorphism classes of
solutions is principal homogeneous under Ext1O(Lf ,G).

(3) Given a solution X ′, the set of automorphisms of X ′ fitting into (70.22.0.1)
is canonically isomorphic to Ext0O(Lf ,G).

Proof. Via the identifications NLf = τ≥−1Lf (Lemma 70.21.4) and H0(LX/S) =
ΩX/S (Lemma 70.21.2) we have seen parts (2) and (3) in Deformation Theory,
Lemmas 69.12.1 and 69.12.3.

Proof of (1). We will use the results of Deformation Theory, Lemma 69.12.4 without
further mention. Denote

p : (Sh(C),O)→ (Sh(∗),Z) and q : (Sh(B),OB)→ (Sh(∗),Z).
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Let α ∈ Ext1
OB(NLq,J ) be the element corresponding to the isomorphism class of

OB′ . The existence of O′ corresponds to an element β ∈ Ext1
O(NLp,G) which maps

to the image of α in Ext1
OX (Lf∗NLq,G). Note that

Ext1
OX (Lf∗NLq,G) = Ext1

OX (Lf∗Lq,G)

and

Ext1
OX (NLp,G) = Ext1

OX (Lp,G)

by Lemma 70.21.4. The distinguished triangle of Lemma 70.21.3 for p = q ◦ f gives
rise to a long exact sequence

. . .→ Ext1
OX (Lp,G)→ Ext1

OX (Lf∗Lq,G)→ Ext2
OX (Lf ,G)→ . . .

We obtain the result with ξ the image of α. �

70.23. The cotangent complex of a morphism of schemes

As promised above we define the cotangent complex of a morphism of schemes as
follows.

Definition 70.23.1. Let f : X → Y be a morphism of schemes. The cotangent
complex LX/Y of X over Y is the cotangent complex of f as a morphism of ringed
spaces (Definition 70.19.1).

In particular, the results of Section 70.19 apply to cotangent complexes of mor-
phisms of schemes. The next lemma shows this definition is compatible with the
definition for ring maps and it also implies that LX/Y is an object of DQCoh(OX).

Lemma 70.23.2. Let f : X → Y be a morphism of schemes. Let U = Spec(A) ⊂
X and V = Spec(B) ⊂ Y be affine opens such that f(U) ⊂ V . There is a canonical
map

L̃B/A −→ LX/Y |U
of complexes which is an isomorphism in D(OU ). This map is compatible with
restricting to smaller affine opens of X and Y .

Proof. By Remark 70.17.5 there is a canonical map of complexes LOX(U)/f−1OY (U) →
LX/Y (U) of B = OX(U)-modules, which is compatible with further restrictions.

Using the canonical map A → f−1OY (U) we obtain a canonical map LB/A →
LB/A(U) of B-modules. Using the universal property of the ˜ functor (see Schemes,
Lemma 25.7.1) we obtain a map as in the statement of the lemma. We may check
this map is an isomorphism on cohomology sheaves by checking it induces isomor-
phisms on stalks. This follows immediately from Lemmas 70.17.9 and 70.8.6 (and
the description of the stalks of OX and f−1OY at a point p ∈ Spec(B) as Bp and Aq

where q = A ∩ p; references used are Schemes, Lemma 25.5.4 and Sheaves, Lemma
6.21.5). �

Lemma 70.23.3. Let Λ be a ring. Let X be a scheme over Λ. Then

LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on X.
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Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)→ (∗,Λ)
be the obvious morphism. By the distinguished triangle of Lemma 70.19.3 it suffices
to show that Lq = 0. To see this it suffices to show for p ∈ Spec(Λ) that

(Lq)p = LOSpec(Λ),p/Λ = LΛp/Λ

(Lemma 70.17.9) is zero which follows from Lemma 70.8.4. �

70.24. The cotangent complex of a scheme over a ring

Let Λ be a ring and let X be a scheme over Λ. Write LX/ Spec(Λ) = LX/Λ which is
justified by Lemma 70.23.3. In this section we give a description of LX/Λ similar to
Lemma 70.4.3. Namely, we construct a category CX/Λ fibred over XZar and endow
it with a sheaf of (polynomial) Λ-algebras O such that

LX/Λ = Lπ!(ΩO/Λ ⊗O OX).

We will later use the category CX/Λ to construct a naive obstruction theory for the
stack of coherent sheaves.

Let Λ be a ring. Let X be a scheme over Λ. Let CX/Λ be the category whose objects
are commutative diagrams

(70.24.0.1)

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where

(1) U is an open subscheme of X,
(2) there exists an isomorphism A = Spec(P ) where P is a polynomial algebra

over Λ (on some set of variables).

In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms
are given by commutative diagrams. Recall that XZar denotes the small Zariski
site X. There is a forgetful functor

u : CX/Λ → XZar, (U → A) 7→ U

Observe that the fibre category over U is canonically equivalent to the category
COX(U)/Λ introduced in Section 70.4.

Lemma 70.24.1. In the situation above the category CX/Λ is fibred over XZar.

Proof. Given an object U → A of CX/Λ and a morphism U ′ → U of XZar consider
the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Λ is strongly cartesian over
XZar. �

We endow CX/Λ with the topology inherited from XZar (see Stacks, Section 8.10).
The functor u defines a morphism of topoi π : Sh(CX/Λ) → Sh(XZar). The site
CX/Λ comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

http://stacks.math.columbia.edu/tag/08V9
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We obtain morphisms of ringed topoi

(70.24.1.1)

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 21.28.1. An
important role will be played in the following by the derived functors Li∗ : D(O) −→
D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX)
left adjoint to π∗ = π−1 : D(OX) → D(OX). We can compute Lπ! thanks to our
earlier work.

Remark 70.24.2. In the situation above, for every U ⊂ X open let P•,U be the
standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U is a
cosimplicial object of the fibre category COX(U)/Λ of CX/Λ over U . Moreover, as
discussed in Remark 70.5.5 we have that A•,U is a cosimplicial object of COX(U)/Λ

as in Cohomology on Sites, Lemma 21.29.7. Since the construction U 7→ A•,U
is functorial in U , given any (abelian) sheaf F on CX/Λ we obtain a complex of
presheaves

U 7−→ F(A•,U )

whose cohomology groups compute the homology of F on the fibre category. We
conclude by Cohomology on Sites, Lemma 21.30.2 that the sheafification computes
Lnπ!(F). In other words, the complex of sheaves whose term in degree −n is the
sheafification of U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.

Lemma 70.24.3. In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li
∗ΩO/Λ) = Lπ!(i

∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude
the second and third equalities of the statement of the lemma hold.

By Remark 70.24.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification
of the complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U OX(U) = LOX(U)/Λ

using notation as in Remark 70.24.2. Now Remark 70.17.5 shows that Lπ!(ΩO/Λ⊗O
OX) computes the cotangent complex of the map of rings Λ→ OX on X. This is
what we want by Lemma 70.23.3. �

70.25. The cotangent complex of a morphism of algebraic spaces

We define the cotangent complex of a morphism of algebraic spaces using the as-
sociated morphism between the small étale sites.
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Definition 70.25.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The cotangent complex LX/Y of X over Y is the cotangent complex
of the morphism of ringed topoi fsmall between the small étale sites of X and Y
(see Properties of Spaces, Lemma 48.18.3 and Definition 70.21.1).

In particular, the results of Section 70.21 apply to cotangent complexes of mor-
phisms of algebraic spaces. The next lemmas show this definition is compatible
with the definition for ring maps and for schemes and that LX/Y is an object of
DQCoh(OX).

Lemma 70.25.2. Let S be a scheme. Consider a commutative diagram

U

p

��

g
// V

q

��
X

f // Y

of algebraic spaces over S with p and q étale. Then there is a canonical identification
LX/Y |Uétale = LU/V in D(OU ).

Proof. Formation of the cotangent complex commutes with pullback (Lemma
70.17.3) and we have p−1

smallOX = OU and g−1
smallOVétale = p−1

smallf
−1
smallOYétale

because q−1
smallOYétale = OVétale (Properties of Spaces, Lemma 48.24.1). Tracing

through the definitions we conclude that LX/Y |Uétale = LU/V . �

Lemma 70.25.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y representable by schemes X0 and Y0. Then there
is a canonical identification LX/Y = ε∗LX0/Y0

in D(OX) where ε is as in Derived
Categories of Spaces, Section 57.4 and LX0/Y0

is as in Definition 70.23.1.

Proof. Let f0 : X0 → Y0 be the morphism of schemes corresponding to f . There
is a canonical map ε−1f−1

0 OY0 → f−1
smallOY compatible with ε] : ε−1OX0 → OX

because there is a commutative diagram

X0,Zar

f0

��

Xétaleε
oo

f

��
Y0,Zar Yétale

εoo

see Derived Categories of Spaces, Remark 57.6.3. Thus we obtain a canonical map

ε−1LX0/Y0
= ε−1LOX0

/f−1
0 OY0

= Lε−1OX0
/ε−1f−1

0 OY0
−→ LOX/f−1

smallOY
= LX/Y

by the functoriality discussed in Section 70.17 and Lemma 70.17.3. To see that
the induced map ε∗LX0/Y0

→ LX/Y is an isomorphism we may check on stalks at
geometric points (Properties of Spaces, Theorem 48.16.12). We will use Lemma
70.17.9 to compute the stalks. Let x : Spec(k) → X0 be a geometric point lying
over x ∈ X0, with y = f ◦ x lying over y ∈ Y0. Then

LX/Y,x = LOX,x/OY,y

and
(ε∗LX0/Y0

)x = LX0/Y0,x ⊗OX0,x
OX,x = LOX0,x

/OY0,y
⊗OX0,x

OX,x
Some details omitted (hint: use that the stalk of a pullback is the stalk at the image
point, see Sites, Lemma 7.33.1, as well as the corresponding result for modules, see
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Modules on Sites, Lemma 18.35.4). Observe that OX,x is the strict henselization
of OX0,x and similarly for OY,y (Properties of Spaces, Lemma 48.19.1). Thus the
result follows from Lemma 70.8.7. �

Lemma 70.25.4. Let Λ be a ring. Let X be an algebraic space over Λ. Then

LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on Xétale.

Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)étale →
(∗,Λ) be the obvious morphism. By the distinguished triangle of Lemma 70.21.3 it
suffices to show that Lq = 0. To see this it suffices to show (Properties of Spaces,
Theorem 48.16.12) for a geometric point t : Spec(k)→ Spec(Λ) that

(Lq)t = LOSpec(Λ)étale,t
/Λ

(Lemma 70.17.9) is zero. Since OSpec(Λ)étale,t
is a strict henselization of a local ring

of Λ (Properties of Spaces, Lemma 48.19.1) this follows from Lemma 70.8.4. �

70.26. The cotangent complex of an algebraic space over a ring

Let Λ be a ring and let X be an algebraic space over Λ. Write LX/ Spec(Λ) = LX/Λ
which is justified by Lemma 70.25.4. In this section we give a description of LX/Λ
similar to Lemma 70.4.3. Namely, we construct a category CX/Λ fibred over Xétale

and endow it with a sheaf of (polynomial) Λ-algebras O such that

LX/Λ = Lπ!(ΩO/Λ ⊗O OX).

We will later use the category CX/Λ to construct a naive obstruction theory for the
stack of coherent sheaves.

Let Λ be a ring. Let X be an algebraic space over Λ. Let CX/Λ be the category
whose objects are commutative diagrams

(70.26.0.1)

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where

(1) U is a scheme,
(2) U → X is étale,
(3) there exists an isomorphism A = Spec(P ) where P is a polynomial algebra

over Λ (on some set of variables).

In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms
are given by commutative diagrams. Recall that Xétale denotes the small étale site
of X whose objects are schemes étale over X. There is a forgetful functor

u : CX/Λ → Xétale, (U → A) 7→ U

Observe that the fibre category over U is canonically equivalent to the category
COX(U)/Λ introduced in Section 70.4.

Lemma 70.26.1. In the situation above the category CX/Λ is fibred over Xétale.
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Proof. Given an object U → A of CX/Λ and a morphism U ′ → U of Xétale

consider the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A
and U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Λ is strongly cartesian
over Xétale. �

We endow CX/Λ with the topology inherited from Xétale (see Stacks, Section 8.10).
The functor u defines a morphism of topoi π : Sh(CX/Λ) → Sh(Xétale). The site
CX/Λ comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(70.26.1.1)

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(Xétale),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 21.28.1. An
important role will be played in the following by the derived functors Li∗ : D(O) −→
D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX)
left adjoint to π∗ = π−1 : D(OX) → D(OX). We can compute Lπ! thanks to our
earlier work.

Remark 70.26.2. In the situation above, for every object U → X of Xétale let P•,U
be the standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U
is a cosimplicial object of the fibre category COX(U)/Λ of CX/Λ over U . Moreover, as
discussed in Remark 70.5.5 we have that A•,U is a cosimplicial object of COX(U)/Λ

as in Cohomology on Sites, Lemma 21.29.7. Since the construction U 7→ A•,U
is functorial in U , given any (abelian) sheaf F on CX/Λ we obtain a complex of
presheaves

U 7−→ F(A•,U )

whose cohomology groups compute the homology of F on the fibre category. We
conclude by Cohomology on Sites, Lemma 21.30.2 that the sheafification computes
Lnπ!(F). In other words, the complex of sheaves whose term in degree −n is the
sheafification of U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.

Lemma 70.26.3. In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li
∗ΩO/Λ) = Lπ!(i

∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude
the second and third equalities of the statement of the lemma hold.

By Remark 70.26.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification
of the complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U OX(U) = LOX(U)/Λ
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using notation as in Remark 70.26.2. Now Remark 70.17.5 shows that Lπ!(ΩO/Λ⊗O
OX) computes the cotangent complex of the map of rings Λ→ OX on Xétale. This
is what we want by Lemma 70.25.4. �

70.27. Fibre products of algebraic spaces and the cotangent complex

Let S be a scheme. Let X → B and Y → B be morphisms of algebraic spaces pver
S. Consider the fibre product X×B Y with projection morphisms p : X×B Y → X
and q : X×B Y → Y . In this section we discuss LX×BY/B . Most of the information
we want is contained in the following diagram

(70.27.0.1)

Lp∗LX/B // LX×BY/Y // E

Lp∗LX/B // LX×BY/B //

OO

LX×BY/X

OO

Lq∗LY/B

OO

Lq∗LY/B

OO

Explanation: The middle row is the fundamental triangle of Lemma 70.21.3 for the
morphisms X×B Y → X → B. The middle column is the fundamental triangle for
the morphisms X×B Y → Y → B. Next, E is an object of D(OX×BY ) which “fits”
into the upper right corner, i.e., which turns both the top row and the right column
into distinguished triangles. Such an E exists by Derived Categories, Proposition
13.4.21 applied to the lower left square (with 0 placed in the missing spot). To
be more explicit, we could for example define E as the cone (Derived Categories,
Definition 13.9.1) of the map of complexes

Lp∗LX/B ⊕ Lq∗LY/B −→ LX×BY/B

and get the two maps with target E by an application of TR3. In the Tor indepen-
dent case the object E is zero.

Lemma 70.27.1. In the situation above, if X and Y are Tor independent over B,
then the object E in (70.27.0.1) is zero. In this case we have

LX×BY/B = Lp∗LX/B ⊕ Lq∗LY/B
Proof. Choose a scheme W and a surjective étale morphsm W → B. Choose a
scheme U and a surjective étale morphism U → X ×BW . Choose a scheme V and
a surjective étale morphism V → Y ×BW . Then U ×W V → X ×B Y is surjective
étale too. Hence it suffices to prove that the restriction of E to U ×W V is zero. By
Lemma 70.25.3 and Derived Categories of Spaces, Lemma 57.17.3 this reduces us
to the case of schemes. Taking suitable affine opens we reduce to the case of affine
schemes. Using Lemma 70.23.2 we reduce to the case of a tensor product of rings,
i.e., to Lemma 70.14.1. �

In general we can say the following about the object E.

Lemma 70.27.2. Let S be a scheme. Let X → B and Y → B be morphisms
of algebraic spaces over S. The object E in (70.27.0.1) satisfies Hi(E) = 0 for
i = 0,−1 and for a geometric point (x, y) : Spec(k)→ X ×B Y we have

H−2(E)(x,y) = TorR1 (A,B)⊗A⊗RB C
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where R = OB,b, A = OX,x, B = OY,y, and C = OX×BY,(x,y).

Proof. The formation of the cotangent complex commutes with taking stalks and
pullbacks, see Lemmas 70.17.9 and 70.17.3. Note that C is a henselization of A⊗RB.
LC/R = LA⊗RB/R ⊗A⊗RB C by the results of Section 70.8. Thus the stalk of E at
our geometric point is the cone of the map LA/R ⊗ C → LA⊗RB/R ⊗ C. Therefore
the results of the lemma follow from the case of rings, i.e., Lemma 70.14.2. �
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CHAPTER 71

Algebraic Stacks

71.1. Introduction

This is where we define algebraic stacks and make some very elementary obser-
vations. The general philosophy will be to have no separation conditions whatso-
ever and add those conditions necessary to make lemmas, propositions, theorems
true/provable. Thus the notions discussed here differ slightly from those in other
places in the literature, e.g., [LMB00].

This chapter is not an introduction to algebraic stacks. For an informal discussion
of algebraic stacks, please take a look at Introducing Algebraic Stacks, Section 81.1.

71.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on
algebraic spaces. For convenience we repeat them here.

We work in a suitable big fppf site Schfppf as in Topologies, Definition 33.7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . We discuss
what changes if you change the big fppf site in Section 71.18.

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 33.7.8. The
absolute case can be recovered by taking S = Spec(Z).

If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T,U).

Note that any fpqc covering is a universal effective epimorphism, see Descent,
Lemma 34.9.3. Hence the topology on Schfppf is weaker than the canonical topol-
ogy and all representable presheaves are sheaves.

71.3. Notation

We use the letters S, T, U, V,X, Y to indicate schemes. We use the letters X ,Y,Z
to indicate categories (fibred, fibred in groupoids, stacks, ...) over (Sch/S)fppf . We
use small case letters f , g for functors such as f : X → Y over (Sch/S)fppf . We
use capital F , G, H for algebraic spaces over S, and more generally for presheaves
of sets on (Sch/S)fppf . (In future chapters we will revert to using also X, Y , etc
for algebraic spaces.)

The reason for these choices is that we want to clearly distinguish between the
different types of objects in this chapter, to build the foundations.

3995
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71.4. Representable categories fibred in groupoids

Let S be a scheme contained in Schfppf . The basic object of study in this chapter
will be a category fibred in groupoids p : X → (Sch/S)fppf , see Categories, Def-
inition 4.33.1. We will often simply say “let X be a category fibred in groupoids
over (Sch/S)fppf” to indicate this situation. A 1-morphism X → Y of categories
in groupoids over (Sch/S)fppf will be a 1-morphism in the 2-category of categories
fibred in groupoids over (Sch/S)fppf , see Categories, Definition 4.33.6. It is simply
a functor X → Y over (Sch/S)fppf . We recall this is really a (2, 1)-category and
that all 2-fibre products exist.

Let X be a category fibred in groupoids over (Sch/S)fppf . Recall that X is said to
be representable if there exists a scheme U ∈ Ob((Sch/S)fppf ) and an equivalence

j : X −→ (Sch/U)fppf

of categories over (Sch/S)fppf , see Categories, Definition 4.38.1. We will sometimes
say that X is representable by a scheme to distinguish from the case where X is
representable by an algebraic space (see below).

If X ,Y are fibred in groupoids and representable by U, V , then we have

(71.4.0.1) MorCat/(Sch/S)fppf (X ,Y)
/

2-isomorphism = MorSch/S(U, V )

see Categories, Lemma 4.38.3. More precisely, any 1-morphism X → Y gives rise
to a morphism U → V . Conversely, given a morphism of schemes U → V over
S there exists a 1-morphism φ : X → Y which gives rise to U → V and which is
unique up to unique 2-isomorphism.

71.5. The 2-Yoneda lemma

Let U ∈ Ob((Sch/S)fppf ), and let X be a category fibred in groupoids over
(Sch/S)fppf . We will frequently use the 2-Yoneda lemma, see Categories, Lemma
4.39.1. Technically it says that there is an equivalence of categories

MorCat/(Sch/S)fppf ((Sch/U)fppf ,X ) −→ XU , f 7−→ f(U/U).

It says that 1-morphisms (Sch/U)fppf → X correspond to objects x of the fibre
category XU . Namely, given a 1-morphism f : (Sch/U)fppf → X we obtain the
object x = f(U/U) ∈ Ob(XU ). Conversely, given a choice of pullbacks for X
as in Categories, Definition 4.31.6, and an object x of XU , we obtain a functor
(Sch/U)fppf → X defined by the rule

(ϕ : V → U) 7−→ ϕ∗x

on objects. By abuse of notation we use x : (Sch/U)fppf → X to indicate this
functor. It indeed has the property that x(U/U) = x and moreover, given any
other functor f with f(U/U) = x there exists a unique 2-isomorphism x → f .
In other words the functor x is well determined by the object x up to unique
2-isomorphism.

We will use this without further mention in the following.
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71.6. Representable morphisms of categories fibred in groupoids

Let X , Y be categories fibred in groupoids over (Sch/S)fppf . Let f : X → Y
be a representable 1-morphism, see Categories, Definition 4.39.5. This means
that for every U ∈ Ob((Sch/S)fppf ) and any y ∈ Ob(YU ) the 2-fibre product
(Sch/U)fppf ×y,Y X is representable. Choose a representing object Vy and an
equivalence

(Sch/Vy)fppf −→ (Sch/U)fppf ×y,Y X .
The projection (Sch/Vy)fppf → (Sch/U)fppf ×Y Y → (Sch/U)fppf comes from a
morphism of schemes fy : Vy → U , see Section 71.4. We represent this by the
diagram

(71.6.0.2)

Vy //

fy

��

(Sch/Vy)fppf

��

// X

f

��
U // (Sch/U)fppf

y // Y

where the squiggly arrows represent the 2-Yoneda embedding. Here are some lem-
mas about this notion that work in great generality (namely, they work for cate-
gories fibred in groupoids over any base category which has fibre products).

Lemma 71.6.1. Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism
of schemes. Then the 1-morphism induced by f

(Sch/X)fppf −→ (Sch/Y )fppf

is a representable 1-morphism.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf
has fibre products. �

Lemma 71.6.2. Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences. Then f is representable if and only if f ′ is
representable.

Proof. Omitted. �

Lemma 71.6.3. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y, g : Y → Z be representable
1-morphisms. Then

g ◦ f : X −→ Z
is a representable 1-morphism.

Proof. This is entirely formal and works in any category. �

http://stacks.math.columbia.edu/tag/02ZR
http://stacks.math.columbia.edu/tag/0456
http://stacks.math.columbia.edu/tag/02ZS
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Lemma 71.6.4. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y be a representable 1-morphism.
Let g : Z → Y be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

Then the base change f ′ is a representable 1-morphism.

Proof. This is entirely formal and works in any category. �

Lemma 71.6.5. Let S be a scheme contained in Schfppf . Let Xi,Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be
representable 1-morphisms. Then

f1 × f2 : X1 ×X2 −→ Y1 × Y2

is a representable 1-morphism.

Proof. Write f1× f2 as the composition X1×X2 → Y1×X2 → Y1×Y2. The first
arrow is the base change of f1 by the map Y1 × X2 → Y1, and the second arrow
is the base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal
consequence of Lemmas 71.6.3 and 71.6.4. �

71.7. Split categories fibred in groupoids

Let S be a scheme contained in Schfppf . Recall that given a “presheaf of groupoids”

F : (Sch/S)oppfppf −→ Groupoids

we get a category fibred in groupoids SF over (Sch/S)fppf , see Categories, Example
4.35.1. Any category fibred in groupoids isomorphic (!) to one of these is called a
split category fibred in groupoids. Any category fibred in groupoids is equivalent to
a split one.

If F is a presheaf of sets then SF is fibred in sets, see Categories, Definition 4.36.2,
and Categories, Example 4.36.5. The rule F 7→ SF is in some sense fully faithful
on presheaves, see Categories, Lemma 4.36.6. If F,G are presheaves, then

SF×G = SF ×(Sch/S)fppf SG

and if F → H and G→ H are maps of presheaves of sets, then

SF×HG = SF ×SH SG

where the right hand sides are 2-fibre products. This is immediate from the defini-
tions as the fibre categories of SF ,SG,SH have only identity morphisms.

An even more special case is where F = hX is a representable presheaf. In this
case we have ShX = (Sch/X)fppf , see Categories, Example 4.36.7.

We will use the notation SF without further mention in the following.

http://stacks.math.columbia.edu/tag/02ZT
http://stacks.math.columbia.edu/tag/02ZU
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71.8. Categories fibred in groupoids representable by algebraic spaces

A slightly weaker notion than being representable is the notion of being repre-
sentable by algebraic spaces which we discuss in this section. This discussion might
have been avoided had we worked with some category Spacesfppf of algebraic spaces
instead of the category Schfppf . However, it seems to us natural to consider the
category of schemes as the natural collection of “test objects” over which the fibre
categories of an algebraic stack are defined.

In analogy with Categories, Definitions 4.38.1 we make the following definition.

Definition 71.8.1. Let S be a scheme contained in Schfppf . A category fibred in
groupoids p : X → (Sch/S)fppf is called representable by an algebraic space over
S if there exists an algebraic space F over S and an equivalence j : X → SF of
categories over (Sch/S)fppf .

We continue our abuse of notation in suppressing the equivalence j whenever we
encounter such a situation. It follows formally from the above that if X is repre-
sentable (by a scheme), then it is representable by an algebraic space. Here is the
analogue of Categories, Lemma 4.38.2.

Lemma 71.8.2. Let S be a scheme contained in Schfppf . Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Then X is representable by an algebraic space over
S if and only if the following conditions are satisfied:

(1) X is fibred in setoids1, and
(2) the presheaf U 7→ Ob(XU )/∼= is an algebraic space.

Proof. Omitted, but see Categories, Lemma 4.38.2. �

If X ,Y are fibred in groupoids and representable by algebraic spaces F,G over S,
then we have

(71.8.2.1) MorCat/(Sch/S)fppf (X ,Y)
/

2-isomorphism = MorSch/S(F,G)

see Categories, Lemma 4.37.6. More precisely, any 1-morphism X → Y gives rise to
a morphism F → G. Conversely, give a morphism of sheaves F → G over S there
exists a 1-morphism φ : X → Y which gives rise to F → G and which is unique up
to unique 2-isomorphism.

71.9. Morphisms representable by algebraic spaces

In analogy with Categories, Definition 4.39.5 we make the following definition.

Definition 71.9.1. Let S be a scheme contained in Schfppf . A 1-morphism f :
X → Y of categories fibred in groupoids over (Sch/S)fppf is called representable by
algebraic spaces if for any U ∈ Ob((Sch/S)fppf ) and any y : (Sch/U)fppf → Y the
category fibred in groupoids

(Sch/U)fppf ×y,Y X

over (Sch/U)fppf is representable by an algebraic space over U .

1This means that it is fibred in groupoids and objects in the fibre categories have no nontrivial
automorphisms, see Categories, Definition 4.36.2.

http://stacks.math.columbia.edu/tag/04SV
http://stacks.math.columbia.edu/tag/02ZX
http://stacks.math.columbia.edu/tag/02ZW
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Choose an algebraic space Fy over U which represents (Sch/U)fppf×y,YX . We may
think of Fy as an algebraic space over S which comes equipped with a canonical
morphism fy : Fy → U over S, see Spaces, Section 47.16. Here is the diagram

(71.9.1.1)

Fy

fy

��

(Sch/U)fppf ×y,Y Xoo

pr0

��

pr1

// X

f

��
U (Sch/U)fppfoo y // Y

where the squiggly arrows represent the construction which associates to a stack
fibred in setoids its associated sheaf of isomorphism classes of objects. The right
square is 2-commutative, and is a 2-fibre product square.

Here is the analogue of Categories, Lemma 4.39.7.

Lemma 71.9.2. Let S be a scheme contained in Schfppf . Let f : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf . The following are
necessary and sufficient conditions for f to be representable by algebraic spaces:

(1) for each scheme U/S the functor fU : XU −→ YU between fibre categories
is faithful, and

(2) for each U and each y ∈ Ob(YU ) the presheaf

(h : V → U) 7−→ {(x, φ) | x ∈ Ob(XV ), φ : h∗y → f(x)}/ ∼=
is an algebraic space over U .

Here we have made a choice of pullbacks for Y.

Proof. This follows from the description of fibre categories of the 2-fibre products
(Sch/U)fppf×y,YX in Categories, Lemma 4.39.3 combined with Lemma 71.8.2. �

Here are some lemmas about this notion that work in great generality.

Lemma 71.9.3. Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences. Then f is representable by algebraic spaces if
and only if f ′ is representable by algebraic spaces.

Proof. Omitted. �

Lemma 71.9.4. Let S be an object of Schfppf . Let f : X → Y be a 1-morphism
of categories fibred in groupoids over S. If X and Y are representable by algebraic
spaces over S, then the 1-morphism f is representable by algebraic spaces.

Proof. Omitted. This relies only on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 47.7.3. �

Lemma 71.9.5. Let S be an object of Schfppf . Let a : F → G be a map of
presheaves of sets on (Sch/S)fppf . Denote a′ : SF → SG the associated map of
categories fibred in sets. Then a is representable by algebraic spaces (see Bootstrap,
Definition 62.3.1) if and only if a′ is representable by algebraic spaces.

http://stacks.math.columbia.edu/tag/02ZY
http://stacks.math.columbia.edu/tag/0457
http://stacks.math.columbia.edu/tag/02ZZ
http://stacks.math.columbia.edu/tag/0458
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Proof. Omitted. �

Lemma 71.9.6. Let S be an object of Schfppf . Let f : X → Y be a 1-morphism of
categories fibred in setoids over (Sch/S)fppf . Let F , resp. G be the presheaf which
to T associates the set of isomorphism classes of objects of XT , resp. YT . Let
a : F → G be the map of presheaves corresponding to f . Then a is representable by
algebraic spaces (see Bootstrap, Definition 62.3.1) if and only if f is representable
by algebraic spaces.

Proof. Omitted. Hint: Combine Lemmas 71.9.3 and 71.9.5. �

Lemma 71.9.7. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable
by algebraic spaces. Let g : Z → Y be any 1-morphism. Consider the fibre product
diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
Then the base change f ′ is a 1-morphism representable by algebraic spaces.

Proof. This is formal. �

Lemma 71.9.8. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y, g : Z → Y be 1-morphisms.
Assume

(1) f is representable by algebraic spaces, and
(2) Z is representable by an algebraic space over S.

Then the 2-fibre product Z ×g,Y,f X is representable by an algebraic space.

Proof. This is a reformulation of Bootstrap, Lemma 62.3.6. First note that Z×g,Y,f
X is fibred in setoids over (Sch/S)fppf . Hence it is equivalent to SF for some
presheaf F on (Sch/S)fppf , see Categories, Lemma 4.37.5. Moreover, let G be an
algebraic space which represents Z. The 1-morphism Z ×g,Y,f X → Z is repre-
sentable by algebraic spaces by Lemma 71.9.7. And Z ×g,Y,f X → Z corresponds
to a morphism F → G by Categories, Lemma 4.37.6. Then F → G is representable
by algebraic spaces by Lemma 71.9.6. Hence Bootstrap, Lemma 62.3.6 implies that
F is an algebraic space as desired. �

Let S, X , Y, Z, f , g be as in Lemma 71.9.8. Let F and G be algebraic spaces
over S such that F represents Z ×g,Y,f X and G represents Z. The 1-morphism
f ′ : Z ×g,Y,f X → Z corresponds to a morphism f ′ : F → G of algebraic spaces by
(71.8.2.1). Thus we have the following diagram

(71.9.8.1)

F

f ′

��

Z ×g,Y,f Xoo

��

// X

f

��
G Zoo g // Y

where the squiggly arrows represent the construction which associates to a stack
fibred in setoids its associated sheaf of isomorphism classes of objects. The middle
square is 2-commutative with equivalences as horizontal arrows.

http://stacks.math.columbia.edu/tag/04SY
http://stacks.math.columbia.edu/tag/0302
http://stacks.math.columbia.edu/tag/0300
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Lemma 71.9.9. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . If f : X → Y, g : Y → Z are 1-morphisms
representable by algebraic spaces, then

g ◦ f : X −→ Z
is a 1-morphism representable by algebraic spaces.

Proof. This follows from Lemma 71.9.8. Details omitted. �

Lemma 71.9.10. Let S be a scheme contained in Schfppf . Let Xi,Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be
1-morphisms representable by algebraic spaces. Then

f1 × f2 : X1 ×X2 −→ Y1 × Y2

is a 1-morphism representable by algebraic spaces.

Proof. Write f1× f2 as the composition X1×X2 → Y1×X2 → Y1×Y2. The first
arrow is the base change of f1 by the map Y1 × X2 → Y1, and the second arrow
is the base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal
consequence of Lemmas 71.9.9 and 71.9.7. �

71.10. Properties of morphisms representable by algebraic spaces

Here is the definition that makes this work.

Definition 71.10.1. Let S be a scheme contained in Schfppf . Let f : X → Y
be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume f is
representable by algebraic spaces. Let P be a property of morphisms of algebraic
spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 56.9.1.

In this case we say that f has property P if for every U ∈ Ob((Sch/S)fppf ) and
any y ∈ YU the resulting morphism of algebraic spaces fy : Fy → U , see diagram
(71.9.1.1), has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
target. This is not because the definition doesn’t make sense otherwise; rather it
is because we may want to give a different definition which is better suited to the
property we have in mind.

Lemma 71.10.2. Let S be an object of Schfppf . Let P be as in Definition 71.10.1.
Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences and f (or equivalently f ′) is representably by
algebraic spaces. Then f has P if and only if f ′ has P.

Proof. Note that this makes sense by Lemma 71.9.3. Proof omitted. �

http://stacks.math.columbia.edu/tag/0301
http://stacks.math.columbia.edu/tag/0303
http://stacks.math.columbia.edu/tag/03YK
http://stacks.math.columbia.edu/tag/0459
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Here is a sanity check.

Lemma 71.10.3. Let S be a scheme contained in Schfppf . Let a : F → G be a
map of presheaves on (Sch/S)fppf . Let P be as in Definition 71.10.1. Assume a is
representable by algebraic spaces. Then a : F → G has property P (see Bootstrap,
Definition 62.4.1) if and only if the corresponding morphism SF → SG of categories
fibred in groupoids has property P.

Proof. Note that the lemma makes sense by Lemma 71.9.5. Proof omitted. �

Lemma 71.10.4. Let S be an object of Schfppf . Let P be as in Definition 71.10.1.
Let f : X → Y be a 1-morphism of categories fibred in setoids over (Sch/S)fppf .
Let F , resp. G be the presheaf which to T associates the set of isomorphism classes
of objects of XT , resp. YT . Let a : F → G be the map of presheaves corresponding
to f . Then a has P if and only if f has P.

Proof. The lemma makes sense by Lemma 71.9.6. The lemma follows on combining
Lemmas 71.10.2 and 71.10.3. �

Lemma 71.10.5. Let S be a scheme contained in Schfppf . Let X , Y, Z be cate-
gories fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition
71.10.1 which is stable under composition. Let f : X → Y, g : Y → Z be 1-
morphisms which are representable by algebraic spaces. If f and g have property P
so does g ◦ f : X → Z.

Proof. Note that the lemma makes sense by Lemma 71.9.9. Proof omitted. �

Lemma 71.10.6. Let S be a scheme contained in Schfppf . Let X ,Y,Z be cate-
gories fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition
71.10.1. Let f : X → Y be a 1-morphism representable by algebraic spaces. Let
g : Z → Y be any 1-morphism. Consider the 2-fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
If f has P, then the base change f ′ has P.

Proof. The lemma makes sense by Lemma 71.9.7. Proof omitted. �

Lemma 71.10.7. Let S be a scheme contained in Schfppf . Let X ,Y,Z be cate-
gories fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition
71.10.1. Let f : X → Y be a 1-morphism representable by algebraic spaces. Let
g : Z → Y be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
Assume that for every scheme U and object x of YU , there exists an fppf covering
{Ui → U} such that x|Ui is in the essential image of the functor g : ZUi → YUi . In
this case, if f ′ has P, then f has P.

Proof. Proof omitted. Hint: Compare with the proof of Spaces, Lemma 47.5.6. �

http://stacks.math.columbia.edu/tag/045A
http://stacks.math.columbia.edu/tag/04TC
http://stacks.math.columbia.edu/tag/045B
http://stacks.math.columbia.edu/tag/045C
http://stacks.math.columbia.edu/tag/045D
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Lemma 71.10.8. Let S be a scheme contained in Schfppf . Let P be a property
as in Definition 71.10.1 which is stable under composition. Let Xi,Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be 1-
morphisms representable by algebraic spaces. If f1 and f2 have property P so does
f1 × f2 : X1 ×X2 → Y1 × Y2.

Proof. The lemma makes sense by Lemma 71.9.10. Proof omitted. �

Lemma 71.10.9. Let S be a scheme contained in Schfppf . Let X , Y be categories
fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable
by algebraic spaces. Let P, P ′ be properties as in Definition 71.10.1. Suppose that
for any morphism of algebraic spaces a : F → G we have P(a) ⇒ P ′(a). If f has
property P then f has property P ′.

Proof. Formal. �

Lemma 71.10.10. Let S be a scheme contained in Schfppf . Let j : X → Y
be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is
representable by algebraic spaces and a monomorphism (see Definition 71.10.1 and
Descent on Spaces, Lemma 56.10.28). Then j is fully faithful on fibre categories.

Proof. We have seen in Lemma 71.9.2 that j is faithful on fibre categories. Con-
sider a scheme U , two objects u, v of XU , and an isomorphism t : j(u)→ j(v) in YU .
We have to construct an isomorphism in XU between u and v. By the 2-Yoneda
lemma (see Section 71.5) we think of u, v as 1-morphisms u, v : (Sch/U)fppf → X
and we consider the 2-fibre product

(Sch/U)fppf ×j◦v,Y X .
By assumption this is representable by an algebraic space Fj◦v, over U and the mor-
phism Fj◦v → U is a monomorphism. But since (1U , v, 1j(v)) gives a 1-morphism
of (Sch/U)fppf into the displayed 2-fibre product, we see that Fj◦v = U (here we
use that if V → U is a monomorphism of algebraic spaces which has a section, then
V = U). Therefore the 1-morphism projecting to the first coordinate

(Sch/U)fppf ×j◦v,Y X → (Sch/U)fppf

is an equivalence of fibre categories. Since (1U , u, t) and (1U , v, 1j(v)) give two
objects in ((Sch/U)fppf ×j◦v,Y X )U which have the same first coordinate, there
must be a 2-morphism between them in the 2-fibre product. This is by definition a
morphism t̃ : u→ v such that j(t̃) = t. �

Here is a characterization of those categories fibred in groupoids for which the
diagonal is representable by algebraic spaces.

Lemma 71.10.11. Let S be a scheme contained in Schfppf . Let X be a category
fibred in groupoids over (Sch/S)fppf . The following are equivalent:

(1) the diagonal X → X ×X is representable by algebraic spaces,
(2) for every scheme U over S, and any x, y ∈ Ob(XU ) the sheaf Isom(x, y)

is representable by an algebraic space over U ,
(3) for every scheme U over S, and any x ∈ Ob(XU ) the associated 1-

morphism x : (Sch/U)fppf → X is representable by algebraic spaces,
(4) for every pair of schemes T1, T2 over S, and any xi ∈ Ob(XTi), i = 1, 2

the 2-fibre product (Sch/T1)fppf ×x1,X ,x2
(Sch/T2)fppf is representable by

an algebraic space,

http://stacks.math.columbia.edu/tag/045E
http://stacks.math.columbia.edu/tag/045F
http://stacks.math.columbia.edu/tag/05UK
http://stacks.math.columbia.edu/tag/045G
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(5) for every representable category fibred in groupoids U over (Sch/S)fppf
every 1-morphism U → X is representable by algebraic spaces,

(6) for every pair T1, T2 of representable categories fibred in groupoids over
(Sch/S)fppf and any 1-morphisms xi : Ti → X , i = 1, 2 the 2-fibre product
T1 ×x1,X ,x2

T2 is representable by an algebraic space,
(7) for every category fibred in groupoids U over (Sch/S)fppf which is repre-

sentable by an algebraic space every 1-morphism U → X is representable
by algebraic spaces,

(8) for every pair T1, T2 of categories fibred in groupoids over (Sch/S)fppf
which are representable by algebraic spaces, and any 1-morphisms xi :
Ti → X the 2-fibre product T1 ×x1,X ,x2

T2 is representable by an algebraic
space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.2.5 and the
definitions. Let us prove the equivalence of (1) and (3). Write C = (Sch/S)fppf
for the base category. We will use some of the observations of the proof of the
similar Categories, Lemma 4.39.8. We will use the symbol ∼= to mean “equivalence
of categories fibred in groupoids over C = (Sch/S)fppf”. Assume (1). Suppose
given U and x as in (3). For any scheme V and y ∈ Ob(XV ) we see (compare
reference above) that

C/U ×x,X ,y C/V ∼= (C/U ×S V )×(x,y),X×X ,∆ X
which is representable by an algebraic space by assumption. Conversely, assume
(3). Consider any scheme U over S and a pair (x, x′) of objects of X over U . We
have to show that X ×∆,X×X ,(x,x′) U is representable by an algebraic space. This
is clear because (compare reference above)

X ×∆,X×X ,(x,x′) C/U ∼= (C/U ×x,X ,x′ C/U)×C/U×SU,∆ C/U
and the right hand side is representable by an algebraic space by assumption and
the fact that the category of algebraic spaces over S has fibre products and contains
U and S.

The equivalences (3)⇔ (4), (5)⇔ (6), and (7)⇔ (8) are formal. The equivalences
(3)⇔ (5) and (4)⇔ (6) follow from Lemma 71.9.3. Assume (3), and let U → X be
as in (7). To prove (7) we have to show that for every scheme V and 1-morphism
y : (Sch/V )fppf → X the 2-fibre product (Sch/V )fppf ×y,X U is representable by
an algebraic space. Property (3) tells us that y is representable by algebraic spaces
hence Lemma 71.9.8 implies what we want. Finally, (7) directly implies (3). �

In the situation of the lemma, for any 1-morphism x : (Sch/U)fppf → X as in
the lemma, it makes sense to say that x has property P, for any property as in
Definition 71.10.1. In particular this holds for P = “surjective”, P = “smooth”,
and P = “étale”, see Descent on Spaces, Lemmas 56.10.5, 56.10.24, and 56.10.26.
We will use these three cases in the definitions of algebraic stacks below.

71.11. Stacks in groupoids

Let S be a scheme contained in Schfppf . Recall that a category p : X → (Sch/S)fppf
over (Sch/S)fppf is said to be a stack in groupoids (see Stacks, Definition 8.5.1) if
and only if

(1) p : X → C is fibred in groupoids over (Sch/S)fppf ,
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(2) for all U ∈ Ob((Sch/S)fppf ), for all x, y ∈ Ob(XU ) the presheaf Isom(x, y)
is a sheaf on the site (Sch/U)fppf , and

(3) for all coverings U = {Ui → U} in (Sch/S)fppf , all descent data (xi, φij)
for U are effective.

For examples see Examples of Stacks, Section 72.8 ff.

71.12. Algebraic stacks

Here is the definition of an algebraic stack. We remark that condition (2) implies
we can make sense out of the condition in part (3) that (Sch/U)fppf → X is smooth
and surjective, see discussion following Lemma 71.10.11.

Definition 71.12.1. Let S be a base scheme contained in Schfppf . An algebraic
stack over S is a category

p : X → (Sch/S)fppf

over (Sch/S)fppf with the following properties:

(1) The category X is a stack in groupoids over (Sch/S)fppf .
(2) The diagonal ∆ : X → X ×X is representable by algebraic spaces.
(3) There exists a scheme U ∈ Ob((Sch/S)fppf ) and a 1-morphism (Sch/U)fppf →
X which is surjective and smooth2.

There are some differences with other definitions found in the literature.

The first is that we require X to be a stack in groupoids in the fppf topology,
whereas in many references the étale topology is used. It somehow seems to us that
the fppf topology is the natural topology to work with. In the end the resulting
2-category of algebraic stacks ends up being the same. This is explained in Criteria
for Representability, Section 74.19.

The second is that we only require the diagonal map of X to be representable by
algebraic spaces, whereas in most references some other conditions are imposed.
Our point of view is to try to prove a certain number of the results that follow only
assuming that the diagonal of X be representable by algebraic spaces, and simply
add an additional hypothesis wherever this is necessary. It has the added benefit
that any algebraic space (as defined in Spaces, Definition 47.6.1) gives rise to an
algebraic stack.

The third is that in some papers it is required that there exists a scheme U and a
surjective and étale morphism U → X . In the groundbreaking paper [DM69] where
algebraic stacks were first introduced Deligne and Mumford used this definition and
showed that the moduli stack of stable genus g > 1 curves is an algebraic stack
which has an étale covering by a scheme. Michael Artin, see [Art74], realized
that many natural results on algebraic stacks generalize to the case where one only
assume a smooth covering by a scheme. Hence our choice above. To distinguish
the two cases one sees the terms “Deligne-Mumford stack” and “Artin stack” used
in the literature. We will reserve the term “Artin stack” for later use (insert future
reference here), and continue to use “algebraic stack”, but we will use “Deligne-
Mumford stack” to indicate those algebraic stacks which have an étale covering by
a scheme.

2In future chapters we will denote this simply U → X as is customary in the literature.
Another good alternative would be to formulate this condition as the existence of a representable

category fibred in groupoids U and a surjective smooth 1-morphism U → X .

http://stacks.math.columbia.edu/tag/026O
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Definition 71.12.2. Let S be a scheme contained in Schfppf . Let X be an alge-
braic stack over S. We say X is a Deligne-Mumford stack if there exists a scheme
U and a surjective étale morphism (Sch/U)fppf → X .

We will compare our notion of a Deligne-Mumford stack with the notion as defined
in the paper by Deligne and Mumford later (see insert future reference here).

The category of algebraic stacks over S forms a 2-category. Here is the precise
definition.

Definition 71.12.3. Let S be a scheme contained in Schfppf . The 2-category of
algebraic stacks over S is the sub 2-category of the 2-category of categories fibred
in groupoids over (Sch/S)fppf (see Categories, Definition 4.33.6) defined as follows:

(1) Its objects are those categories fibred in groupoids over (Sch/S)fppf which
are algebraic stacks over S.

(2) Its 1-morphisms f : X → Y are any functors of categories over (Sch/S)fppf ,
as in Categories, Definition 4.30.1.

(3) Its 2-morphisms are transformations between functors over (Sch/S)fppf ,
as in Categories, Definition 4.30.1.

In other words this 2-category is the full sub 2-category of Cat/(Sch/S)fppf whose
objects are algebraic stacks. Note that every 2-morphism is automatically an iso-
morphism. Hence this is actually a (2, 1)-category and not just a 2-category.

We will see later (insert future reference here) that this 2-category has 2-fibre
products.

Similar to the remark above the 2-category of algebraic stacks over S is a full sub
2-category of the 2-category of categories fibred in groupoids over (Sch/S)fppf . It
turns out that it is closed under equivalences. Here is the precise statement.

Lemma 71.12.4. Let S be a scheme contained in Schfppf . Let X , Y be categories
over (Sch/S)fppf . Assume X , Y are equivalent as categories over (Sch/S)fppf .
Then X is an algebraic stack if and only if Y is an algebraic stack. Similarly, X is
a Deligne-Mumford stack if and only if Y is a Deligne-Mumford stack.

Proof. Assume X is an algebraic stack (resp. a Deligne-Mumford stack). By
Stacks, Lemma 8.5.4 this implies that Y is a stack in groupoids over Schfppf .
Choose an equivalence f : X → Y over Schfppf . This gives a 2-commutative
diagram

X
f

//

∆X
��

Y

∆Y

��
X × X

f×f // Y × Y
whose horizontal arrows are equivalences. This implies that ∆Y is representable by
algebraic spaces according to Lemma 71.9.3. Finally, let U be a scheme over S, and
let x : (Sch/U)fppf → X be a 1-morphism which is surjective and smooth (resp.
étale). Considering the diagram

(Sch/U)fppf
id
//

x

��

(Sch/U)fppf

f◦x
��

X
f // Y

http://stacks.math.columbia.edu/tag/03YO
http://stacks.math.columbia.edu/tag/03YP
http://stacks.math.columbia.edu/tag/03YQ
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and applying Lemma 71.10.2 we conclude that x◦ f is surjective and smooth (resp.
étale) as desired. �

71.13. Algebraic stacks and algebraic spaces

In this section we discuss some simple criteria which imply that an algebraic stack
is an algebraic space. The main result is that this happens exactly when objects of
fibre categories have no nontrivial automorphisms. This is not a triviality! Before
we come to this we first do a sanity check.

Lemma 71.13.1. Let S be a scheme contained in Schfppf .

(1) A category fibred in groupoids p : X → (Sch/S)fppf which is representable
by an algebraic space is a Deligne-Mumford stack.

(2) If F is an algebraic space over S, then the associated category fibred in
groupoids p : SF → (Sch/S)fppf is a Deligne-Mumford stack.

(3) If X ∈ Ob((Sch/S)fppf ), then (Sch/X)fppf → (Sch/S)fppf is a Deligne-
Mumford stack.

Proof. It is clear that (2) implies (3). Parts (1) and (2) are equivalent by Lemma
71.12.4. Hence it suffices to prove (2). First, we note that SF is stack in sets since
F is a sheaf (Stacks, Lemma 8.6.3). A fortiori it is a stack in groupoids. Second
the diagonal morphism SF → SF × SF is the same as the morphism SF → SF×F
which comes from the diagonal of F . Hence this is representable by algebraic spaces
according to Lemma 71.9.4. Actually it is even representable (by schemes), as the
diagonal of an algebraic space is representable, but we do not need this. Let U
be a scheme and let hU → F be a surjective étale morphism. We may think of
this a surjective étale morphism of algebraic spaces. Hence by Lemma 71.10.3 the
corresponding 1-morphism (Sch/U)fppf → SF is surjective and étale. �

The following result says that a Deligne-Mumford stack whose inertia is trivial
“is” an algebraic space. This lemma will be obsoleted by the stronger Proposition
71.13.3 below which says that this holds more generally for algebraic stacks...

Lemma 71.13.2. Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. The following are equivalent

(1) X is a Deligne-Mumford stack and is a stack in setoids,
(2) X is a Deligne-Mumford stack such that the canonical 1-morphism IX →
X is an equivalence, and

(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.7.2. The
implication (3)⇒ (1) follows from Lemma 71.13.1. Finally, assume (1). By Stacks,
Lemma 8.6.3 there exists a sheaf F on (Sch/S)fppf and an equivalence j : X → SF .
By Lemma 71.9.5 the fact that ∆X is representable by algebraic spaces, means
that ∆F : F → F × F is representable by algebraic spaces. Let U be a scheme,
and let x : (Sch/U)fppf → X be a surjective étale morphism. The composition
j ◦ x : (Sch/U)fppf → SF corresponds to a morphism hU → F of sheaves. By
Bootstrap, Lemma 62.5.1 this morphism is representable by algebraic spaces. Hence
by Lemma 71.10.4 we conclude that hU → F is surjective and étale. Finally, we
apply Bootstrap, Theorem 62.6.1 to see that F is an algebraic space. �

http://stacks.math.columbia.edu/tag/03YS
http://stacks.math.columbia.edu/tag/045H
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Proposition 71.13.3. Let S be a scheme contained in Schfppf . Let X be an
algebraic stack over S. The following are equivalent

(1) X is a stack in setoids,
(2) the canonical 1-morphism IX → X is an equivalence, and
(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.7.2. The im-
plication (3) ⇒ (1) follows from Lemma 71.13.2. Finally, assume (1). By Stacks,
Lemma 8.6.3 there exists an equivalence j : X → SF where F is a sheaf on
(Sch/S)fppf . By Lemma 71.9.5 the fact that ∆X is representable by algebraic
spaces, means that ∆F : F → F ×F is representable by algebraic spaces. Let U be
a scheme and let x : (Sch/U)fppf → X be a surjective smooth morphism. The com-
position j ◦ x : (Sch/U)fppf → SF corresponds to a morphism hU → F of sheaves.
By Bootstrap, Lemma 62.5.1 this morphism is representable by algebraic spaces.
Hence by Lemma 71.10.4 we conclude that hU → F is surjective and smooth. In
particular it is surjective, flat and locally of finite presentation (by Lemma 71.10.9
and the fact that a smooth morphism of algebraic spaces is flat and locally of finite
presentation, see Morphisms of Spaces, Lemmas 49.34.5 and 49.34.7). Finally, we
apply Bootstrap, Theorem 62.10.1 to see that F is an algebraic space. �

71.14. 2-Fibre products of algebraic stacks

The 2-category of algebraic stacks has products and 2-fibre products. The first
lemma is really a special case of Lemma 71.14.3 but its proof is slightly easier.

Lemma 71.14.1. Let S be a scheme contained in Schfppf . Let X , Y be algebraic
stacks over S. Then X ×(Sch/S)fppf Y is an algebraic stack, and is a product in the
2-category of algebraic stacks over S.

Proof. An object of X ×(Sch/S)fppf Y over T is just a pair (x, y) where x is an
object of XT and y is an object of YT . Hence it is immediate from the definitions
that X ×(Sch/S)fppf Y is a stack in groupoids. If (x, y) and (x′, y′) are two objects
of X ×(Sch/S)fppf Y over T , then

Isom((x, y), (x′, y′)) = Isom(x, x′)× Isom(y, y′).

Hence it follows from the equivalences in Lemma 71.10.11 and the fact that the cat-
egory of algebraic spaces has products that the diagonal of X×(Sch/S)fppf Y is repre-
sentable by algebraic spaces. Finally, suppose that U, V ∈ Ob((Sch/S)fppf ), and let
x, y be surjective smooth morphisms x : (Sch/U)fppf → X , y : (Sch/Y )fppf → Y.
Note that

(Sch/U ×S V )fppf = (Sch/U)fppf ×(Sch/S)fppf (Sch/V )fppf .

The object (pr∗Ux, pr∗V y) of X ×(Sch/S)fppf Y over (Sch/U ×S V )fppf thus defines a
1-morphism

(Sch/U ×S V )fppf −→ X ×(Sch/S)fppf Y

which is the composition of base changes of x and y, hence is surjective and smooth,
see Lemmas 71.10.6 and 71.10.5. We conclude that X ×(Sch/S)fppf Y is indeed an
algebraic stack. We omit the verification that it really is a product. �

http://stacks.math.columbia.edu/tag/04SZ
http://stacks.math.columbia.edu/tag/04TE
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Lemma 71.14.2. Let S be a scheme contained in Schfppf . Let Z be a stack in
groupoids over (Sch/S)fppf whose diagonal is representable by algebraic spaces. Let
X , Y be algebraic stacks over S. Let f : X → Z, g : Y → Z be 1-morphisms of
stacks in groupoids. Then the 2-fibre product X ×f,Z,g Y is an algebraic stack.

Proof. We have to check conditions (1), (2), and (3) of Definition 71.12.1. The
first condition follows from Stacks, Lemma 8.5.6.

The second condition we have to check is that the Isom-sheaves are representable by
algebraic spaces. To do this, suppose that T is a scheme over S, and u, v are objects
of (X ×f,Z,g Y)T . By our construction of 2-fibre products (which goes all the way
back to Categories, Lemma 4.30.3) we may write u = (x, y, α) and v = (x′, y′, α′).
Here α : f(x)→ g(y) and similarly for α′. Then it is clear that

Isom(u, v)

��

// Isom(y, y′)

φ7→g(φ)◦α
��

Isom(x, x′)
ψ 7→α′◦f(ψ) // Isom(f(x), g(y′))

is a cartesian diagram of sheaves on (Sch/T )fppf . Since by assumption the sheaves
Isom(y, y′), Isom(x, x′), Isom(f(x), g(y′)) are algebraic spaces (see Lemma 71.10.11)
we see that Isom(u, v) is an algebraic space.

Let U, V ∈ Ob((Sch/S)fppf ), and let x, y be surjective smooth morphisms x :
(Sch/U)fppf → X , y : (Sch/Y )fppf → Y. Consider the morphism

(Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf −→ X ×f,Z,g Y.

As the diagonal of Z is representable by algebraic spaces the source of this arrow
is representable by an algebraic space F , see Lemma 71.10.11. Moreover, the mor-
phism is the composition of base changes of x and y, hence surjective and smooth,
see Lemmas 71.10.6 and 71.10.5. Choosing a scheme W and a surjective étale mor-
phism W → F we see that the composition of the displayed 1-morphism with the
corresponding 1-morphism

(Sch/W )fppf −→ (Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf

is surjective and smooth which proves the last condition. �

Lemma 71.14.3. Let S be a scheme contained in Schfppf . Let X ,Y,Z be algebraic
stacks over S. Let f : X → Z, g : Y → Z be 1-morphisms of algebraic stacks. Then
the 2-fibre product X ×f,Z,g Y is an algebraic stack. It is also the 2-fibre product in
the 2-category of algebraic stacks over (Sch/S)fppf .

Proof. The fact that X ×f,Z,g Y is an algebraic stack follows from the stronger
Lemma 71.14.2. The fact that X ×f,Z,g Y is a 2-fibre product in the 2-category of
algebraic stacks over S follows formally from the fact that the 2-category of algebraic
stacks over S is a full sub 2-category of the 2-category of stacks in groupoids over
(Sch/S)fppf . �

71.15. Algebraic stacks, overhauled

Some basic results on algebraic stacks.

http://stacks.math.columbia.edu/tag/04TF
http://stacks.math.columbia.edu/tag/04T2
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Lemma 71.15.1. Let S be a scheme contained in Schfppf . Let f : X → Y be
a 1-morphism of algebraic stacks over S. Let V ∈ Ob((Sch/S)fppf ). Let y :
(Sch/V )fppf → Y be surjective and smooth. Then there exists an object U ∈
Ob((Sch/S)fppf ) and a 2-commutative diagram

(Sch/U)fppf a
//

x

��

(Sch/V )fppf

y

��
X

f // Y
with x surjective and smooth.

Proof. First choose W ∈ Ob((Sch/S)fppf ) and a surjective smooth 1-morphism
z : (Sch/W )fppf → X . As Y is an algebraic stack we may choose an equivalence

j : SF −→ (Sch/W )fppf ×f◦z,Y,y (Sch/V )fppf

where F is an algebraic space. By Lemma 71.10.6 the morphism SF → (Sch/W )fppf
is surjective and smooth as a base change of y. Hence by Lemma 71.10.5 we see
that SF → X is surjective and smooth. Choose an object U ∈ Ob((Sch/S)fppf )
and a surjective étale morphism U → F . Then applying Lemma 71.10.5 once more
we obtain the desired properties. �

This lemma is a generalization of Proposition 71.13.3.

Lemma 71.15.2. Let S be a scheme contained in Schfppf . Let f : X → Y be a
1-morphism of algebraic stacks over S. The following are equivalent:

(1) for U ∈ Ob((Sch/S)fppf ) the functor f : XU → YU is faithful,
(2) the functor f is faithful, and
(3) f is representable by algebraic spaces.

Proof. Parts (1) and (2) are equivalent by general properties of 1-morphisms of
categories fibred in groupoids, see Categories, Lemma 4.33.8. We see that (3)
implies (2) by Lemma 71.9.2. Finally, assume (2). Let U be a scheme. Let y ∈
Ob(YU ). We have to prove that

W = (Sch/U)fppf ×y,Y X
is representable by an algebraic space over U . Since (Sch/U)fppf is an algebraic
stack we see from Lemma 71.14.3 that W is an algebraic stack. On the other hand
the explicit description of objects of W as triples (V, x, α : y(V ) → f(x)) and the
fact that f is faithful, shows that the fibre categories of W are setoids. Hence
Proposition 71.13.3 guarantees that W is representable by an algebraic space. �

Lemma 71.15.3. Let S be a scheme contained in Schfppf . Let u : U → X be a
1-morphism of stacks in groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective and smooth,

then X is an algebraic stack over S.

Proof. We have to show that ∆ : X → X ×X is representable by algebraic spaces,
see Definition 71.12.1. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf
the associated representable fibre categories. Suppose given 1-morphisms fi : Ti →
X . According to Lemma 71.10.11 it suffices to prove that the 2-fibered product

http://stacks.math.columbia.edu/tag/04T1
http://stacks.math.columbia.edu/tag/04Y5
http://stacks.math.columbia.edu/tag/05UL
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T1 ×X T2 is representable by an algebraic space. By Stacks, Lemma 8.6.8 this
is in any case a stack in setoids. Thus T1 ×X T2 corresponds to some sheaf F
on (Sch/S)fppf , see Stacks, Lemma 8.6.3. Let U be the algebraic space which
represents U . By assumption

T ′i = U ×u,X ,fi Ti
is representable by an algebraic space T ′i over S. Hence T ′1 ×U T ′2 is representable
by the algebraic space T ′1 ×U T ′2. Consider the commutative diagram

T1 ×X T2
//

��

T1

��

T ′1 ×U T ′2

88

//

��

T ′1

??

��

T2
// X

T ′2 //

88

U

??

In this diagram the bottom square, the right square, the back square, and the
front square are 2-fibre products. A formal argument then shows that T ′1 ×U T ′2 →
T1 ×X T2 is the “base change” of U → X , more precisely the diagram

T ′1 ×U T ′2

��

// U

��
T1 ×X T2

// X

is a 2-fibre square. Hence T ′1 ×U T ′2 → F is representable by algebraic spaces,
smooth, and surjective, see Lemmas 71.9.6, 71.9.7, 71.10.4, and 71.10.6. Therefore
F is an algebraic space by Bootstrap, Theorem 62.10.1 and we win. �

An application of Lemma 71.15.3 is that something which is an algebraic space over
an algebraic stack is an algebraic stack. This is the analogue of Bootstrap, Lemma
62.3.6. Actually, it suffices to assume the morphism X → Y is “algebraic”, as we
will see in Criteria for Representability, Lemma 74.8.2.

Lemma 71.15.4. Let S be a scheme contained in Schfppf . Let X → Y be a
morphism of stacks in groupoids over (Sch/S)fppf . Assume that

(1) X → Y is representable by algebraic spaces, and
(2) Y is an algebraic stack over S.

Then X is an algebraic stack over S.

Proof. Let V → Y be a surjective smooth 1-morphism from a representable stack
in groupoids to Y. This exists by Definition 71.12.1. Then the 2-fibre product
U = V ×Y X is representable by an algebraic space by Lemma 71.9.8. The 1-
morphism U → X is representable by algebraic spaces, smooth, and surjective, see
Lemmas 71.9.7 and 71.10.6. By Lemma 71.15.3 we conclude that X is an algebraic
stack. �

http://stacks.math.columbia.edu/tag/05UM
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Lemma 71.15.5. Let S be a scheme contained in Schfppf . Let j : X → Y be
a 1 morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is
representable by algebraic spaces and a monomorphism3. Then, if Y is a stack in
groupoids (resp. an algebraic stack), so is X .

Proof. We prove that X is a stack. The case of algebraic stacks will then follow
from Lemma 71.15.4. It suffices to check effectiveness of descent for X . Fix a
scheme T and an fppf covering {fi : Ti → T}. Suppose we have objects xi of the
fibre categories XTi together with a descent datum. Then since Y is a stack, there
exists an object y in the fibre category YT such that f∗i (y) ' j(xi) in YTi . By
hypothesis, the 2-fibered product

X ×j,Y,y (Sch/T )fppf

is representable by an algebraic space U such that the induced morphism U → T
is a monomorphism of algebraic spaces. By the universal property of the 2-fibre
product and the fact that f∗i (y) ∼= j(xi), we have that fi : Ti → T factors through
U → T for all i. Hence U → T is a monomorphism of fppf sheaves, but also
surjective as {fi : Ti → T} is a covering. We conclude that U = T . Thus y comes
from some object x of the fibre category XT . We have f∗i x

∼= xi in the fibre category
XTi as the functor j is fully faithful on fibre categories, see Lemma 71.10.10. �

71.16. From an algebraic stack to a presentation

Given an algebraic stack over S we obtain a groupoid in algebraic spaces over S
whose associated quotient stack is the algebraic stack.

Recall that if (U,R, s, t, c) is a groupoid in algebraic spaces over S then [U/R]
denotes the quotient stack associated to this datum, see Groupoids in Spaces, Def-
inition 60.19.1. In general [U/R] is not an algebraic stack. In particular the stack
[U/R] occurring in the following lemma is in general not algebraic.

Lemma 71.16.1. Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. Let U be an algebraic stack over S which is representable by an
algebraic space. Let f : U → X be a 1-morphism. Then

(1) the 2-fibre product R = U ×f,X ,f U is representable by an algebraic space,
(2) there is a canonical equivalence

U ×f,X ,f U ×f,X ,f U = R×pr1,U,pr0
R,

(3) the projection pr02 induces via (2) a 1-morphism

pr02 : R×pr1,U,pr0
R −→ R

(4) let U , R be the algebraic spaces representing U ,R and t, s : R → U and
c : R ×s,U,t R → U are the morphisms corresponding to the 1-morphisms
pr0, pr1 : R → U and pr02 : R×pr1,U,pr0

R → R above, then the quintuple
(U,R, s, t, c) is a groupoid in algebraic spaces over S,

(5) the morphism f induces a canonical 1-morphism fcan : [U/R] → X of
stacks in groupoids over (Sch/S)fppf , and

(6) the 1-morphism fcan : [U/R]→ X is fully faithful.

3For example an open immersion.

http://stacks.math.columbia.edu/tag/05UN
http://stacks.math.columbia.edu/tag/04T4
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Proof. Proof of (1). By definition ∆X is representable by algebraic spaces so
Lemma 71.10.11 applies to show that U → X is representable by algebraic spaces.
Hence the result follows from Lemma 71.9.8.

Let T be a scheme over S. By construction of the 2-fibre product (see Categories,
Lemma 4.30.3) we see that the objects of the fibre category RT are triples (a, b, α)
where a, b ∈ Ob(UT ) and α : f(a)→ f(b) is a morphism in the fibre category XT .

Proof of (2). The equivalence comes from repeatedly applying Categories, Lemmas
4.29.8 and 4.29.10. Let us identify U ×X U ×X U with (U ×X U) ×X U . If T is
a scheme over S, then on fibre categories over T this equivalence maps the object
((a, b, α), c, β) on the left hand side to the object ((a, b, α), (b, c, β)) of the right
hand side.

Proof of (3). The 1-morphism pr02 is constructed in the proof of Categories, Lemma
4.29.9. In terms of the description of objects of the fibre category above we see that
((a, b, α), (b, c, β)) maps to (a, c, β ◦ α).

Unfortunately, this is not compatible with our conventions on groupoids where we
always have j = (t, s) : R → U , and we “think” of a T -valued point r of R as a
morphism r : s(r)→ t(r). However, this does not affect the proof of (4), since the
opposite of a groupoid is a groupoid. But in the proof of (5) it is responsible for
the inverses in the displayed formula below.

Proof of (4). Recall that the sheaf U is isomorphic to the sheaf T 7→ Ob(UT )/∼=, and
similarly for R, see Lemma 71.8.2. It follows from Categories, Lemma 4.37.8 that
this description is compatible with 2-fibre products so we get a similar matching
of R ×pr1,U,pr0

R and R ×s,U,t R. The morphisms t, s : R → U and c : R ×s,U,t
R → R we get from the general equality (71.8.2.1). Explicitly these maps are the
transformations of functors that come from letting pr0, pr0, pr02 act on isomorphism
classes of objects of fibre categories. Hence to show that we obtain a groupoid in
algebraic spaces it suffices to show that for every scheme T over S the structure

(Ob(UT )/∼=,Ob(RT )/∼=,pr1,pr0,pr02)

is a groupoid which is clear from our description of objects of RT above.

Proof of (5). We will eventually apply Groupoids in Spaces, Lemma 60.22.2 to
obtain the functor [U/R] → X . Consider the 1-morphism f : U → X . We have a
2-arrow τ : f ◦ pr1 → f ◦ pr0 by definition of R as the 2-fibre product. Namely, on
an object (a, b, α) of R over T it is the map α−1 : b→ a. We claim that

τ ◦ idpr02
= (τ ? idpr0

) ◦ (τ ? idpr1
).

This identity says that given an object ((a, b, α), (b, c, β)) of R×pr1,U,pr0
R over T ,

then the composition of

c
β−1

// b
α−1
// a

is the same as the arrow (β ◦ α)−1 : a → c. This is clearly true, hence the claim
holds. In this way we see that all the assumption of Groupoids in Spaces, Lemma
60.22.2 are satisfied for the structure (U ,R,pr0,pr1,pr02) and the 1-morphism f
and the 2-morphism τ . Except, to apply the lemma we need to prove this holds for
the structure (SU ,SR, s, t, c) with suitable morphisms.

Now there should be some general abstract nonsense argument which transfer these
data between the two, but it seems to be quite long. Instead, we use the following
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trick. Pick a quasi-inverse j−1 : SU → U of the canonical equivalence j : U → SU
which comes from U(T ) = Ob(UT )/∼=. This just means that for every scheme T/S
and every object a ∈ UT we have picked out a particular element of its isomorphism
class, namely j−1(j(a)). Using j−1 we may therefore see SU as a subcategory of
U . Having chosen this subcategory we can consider those objects (a, b, α) of RT
such that a, b are objects of (SU )T , i.e., such that j−1(j(a)) = a and j−1(j(b)) = b.
Then it is clear that this forms a subcategory of R which maps isomorphically to
SR via the canonical equivalence R → SR. Moreover, this is clearly compatible
with forming the 2-fibre product R×pr1,U,pr0

R. Hence we see that we may simply
restrict f to SU and restrict τ to a transformation between functors SR → X . Hence
it is clear that the displayed equality of Groupoids in Spaces, Lemma 60.22.2 holds
since it holds even as an equality of transformations of functors R×pr1,U,pr0

R → X
before restricting to the subcategory SR×s,U,tR.

This proves that Groupoids in Spaces, Lemma 60.22.2 applies and we get our desired
morphism of stacks fcan : [U/R] → X . We briefly spell out how fcan is defined in
this special case. On an object a of SU over T we have fcan(a) = f(a), where we
think of SU ⊂ U by the chosen embedding above. If a, b are objects of SU over
T , then a morphism ϕ : a → b in [U/R] is by definition an object of the form
ϕ = (b, a, α) of R over T . (Note switch.) And the rule in the proof of Groupoids
in Spaces, Lemma 60.22.2 is that

(71.16.1.1) fcan(ϕ) =
(
f(a)

α−1

−−→ f(b)
)
.

Proof of (6). Both [U/R] and X are stacks. Hence given a scheme T/S and objects
a, b of [U/R] over T we obtain a transformation of fppf sheaves

Isom(a, b) −→ Isom(fcan(a), fcan(b))

on (Sch/T )fppf . We have to show that this is an isomorphism. We may work fppf
locally on T , hence we may assume that a, b come from morphisms a, b : T → U .
By the embedding SU ⊂ U above we may also think of a, b as objects of U over T .
In Groupoids in Spaces, Lemma 60.21.1 we have seen that the left hand sheaf is
represented by the algebraic space

R×(t,s),U×SU,(b,a) T

over T . On the other hand, the right hand side is by Stacks, Lemma 8.2.5 equal to
the sheaf associated to the following stack in setoids:

X ×X×X ,(f◦b,f◦a) T = X ×X×X ,(f,f) (U ×U)×U×U,(b,a) T = R×(pr0,pr1),U×U,(b,a) T

which is representable by the fibre product displayed above. At this point we have
shown that the two Isom-sheaves are isomorphic. Our 1-morphism fcan : [U/R]→
X induces this isomorphism on Isom-sheaves by Equation (71.16.1.1). �

We can use the previous very abstract lemma to produce presentations.

Lemma 71.16.2. Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. Let U be an algebraic space over S. Let f : SU → X be a surjective
smooth morphism. Let (U,R, s, t, c) be the groupoid in algebraic spaces and fcan :
[U/R]→ X be the result of applying Lemma 71.16.1 to U and f . Then

(1) the morphisms s, t are smooth, and
(2) the 1-morphism fcan : [U/R]→ X is an equivalence.

http://stacks.math.columbia.edu/tag/04T5
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Proof. The morphisms s, t are smooth by Lemmas 71.10.2 and 71.10.3. As the
1-morphism f is smooth and surjective it is clear that given any scheme T and any
object a ∈ Ob(XT ) there exists a smooth and surjective morphism T ′ → T such
that a|′T comes from an object of [U/R]T ′ . Since fcan : [U/R]→ X is fully faithful,
we deduce that [U/R] → X is essentially surjective as descent data on objects are
effective on both sides, see Stacks, Lemma 8.4.8. �

Remark 71.16.3. If the morphism f : SU → X of Lemma 71.16.2 is only assumed
surjective, flat and locally of finite presentation, then it will still be the case that
fcan : [U/R]→ X is an equivalence. In this case the morphisms s, t will be flat and
locally of finite presentation, but of course not smooth in general.

Lemma 71.16.2 suggests the following definitions.

Definition 71.16.4. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. We say (U,R, s, t, c) is a
smooth groupoid4 if s, t : R→ U are smooth morphisms of algebraic spaces.

Definition 71.16.5. Let X be an algebraic stack over S. A presentation of X
is given by a smooth groupoid (U,R, s, t, c) in algebraic spaces over S, and an
equivalence f : [U/R]→ X .

We have seen above that every algebraic stack has a presentation. Our next task
is to show that every smooth groupoid in algebraic spaces over S gives rise to an
algebraic stack.

71.17. The algebraic stack associated to a smooth groupoid

In this section we start with a smooth groupoid in algebraic spaces and we show
that the associated quotient stack is an algebraic stack.

Lemma 71.17.1. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
groupoid in algebraic spaces over S. Then the diagonal of [U/R] is representable by
algebraic spaces.

Proof. It suffices to show that the Isom-sheaves are algebraic spaces, see Lemma
71.10.11. This follows from Bootstrap, Lemma 62.11.5. �

Lemma 71.17.2. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
smooth groupoid in algebraic spaces over S. Then the morphism SU → [U/R] is
smooth and surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf

is surjective and smooth. We already know that the left hand side is representable
by an algebraic space F , see Lemmas 71.17.1 and 71.10.11. Hence we have to show
the corresponding morphism F → T of algebraic spaces is surjective and smooth.
Since we are working with properties of morphisms of algebraic spaces which are
local on the target in the fppf topology we may check this fppf locally on T . By
construction, there exists an fppf covering {Ti → T} of T such that x|(Sch/Ti)fppf

4This terminology might be a bit confusing: it does not imply that [U/R] is smooth over
anything.

http://stacks.math.columbia.edu/tag/04WY
http://stacks.math.columbia.edu/tag/04TH
http://stacks.math.columbia.edu/tag/04TI
http://stacks.math.columbia.edu/tag/04WZ
http://stacks.math.columbia.edu/tag/04X0
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comes from a morphism xi : Ti → U . (Note that F ×T Ti represents the 2-fibre
product SU ×[U/R] (Sch/Ti)fppf so everything is compatible with the base change
via Ti → T .) Hence we may assume that x comes from x : T → U . In this case we
see that

SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU )×SU (Sch/T )fppf = SR ×SU (Sch/T )fppf

The first equality by Categories, Lemma 4.29.10 and the second equality by Groupoids
in Spaces, Lemma 60.21.2. Clearly the last 2-fibre product is represented by the
algebraic space F = R ×s,U,x T and the projection R ×s,U,x T → T is smooth as
the base change of the smooth morphism of algebraic spaces s : R → U . It is also
surjective as s has a section (namely the identity e : U → R of the groupoid). This
proves the lemma. �

Here is the main result of this section.

Theorem 71.17.3. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be
a smooth groupoid in algebraic spaces over S. Then the quotient stack [U/R] is an
algebraic stack over S.

Proof. We check the three conditions of Definition 71.12.1. By construction we
have that [U/R] is a stack in groupoids which is the first condition.

The second condition follows from the stronger Lemma 71.17.1.

Finally, we have to show there exists a scheme W over S and a surjective smooth
1-morphism (Sch/W )fppf −→ X . First choose W ∈ Ob((Sch/S)fppf ) and a sur-
jective étale morphism W → U . Note that this gives a surjective étale morphism
SW → SU of categories fibred in sets, see Lemma 71.10.3. Of course then SW → SU
is also surjective and smooth, see Lemma 71.10.9. Hence SW → SU → [U/R] is
surjective and smooth by a combination of Lemmas 71.17.2 and 71.10.5. �

71.18. Change of big site

In this section we briefly discuss what happens when we change big sites. The
upshot is that we can always enlarge the big site at will, hence we may assume any
set of schemes we want to consider is contained in the big fppf site over which we
consider our algebraic space. We encourage the reader to skip this section.

Pullbacks of stacks is defined in Stacks, Section 8.12.

Lemma 71.18.1. Suppose given big sites Schfppf and Sch′fppf . Assume that

Schfppf is contained in Sch′fppf , see Topologies, Section 33.10. Let S be an ob-

ject of Schfppf . Let Let f : (Sch′/S)fppf → (Sch/S)fppf the morphism of sites
corresponding to the inclusion functor u : (Sch/S)fppf → (Sch′/S)fppf . Let X be a
stack in groupoids over (Sch/S)fppf .

(1) if X is representable by some X ∈ Ob((Sch/S)fppf ), then f−1X is repre-
sentable too, in fact it is representable by the same scheme X, now viewed
as an object of (Sch′/S)fppf ,

(2) if X is representable by F ∈ Sh((Sch/S)fppf ) which is an algebraic space,
then f−1X is representable by the algebraic space f−1F ,

(3) if X is an algebraic stack, then f−1X is an algebraic stack, and
(4) if X is a Deligne-Mumford stack, then f−1X is a Deligne-Mumford stack

too.

http://stacks.math.columbia.edu/tag/04TK
http://stacks.math.columbia.edu/tag/04X2
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Proof. Let us prove (3). By Lemma 71.16.2 we may write X = [U/R] for some
smooth groupoid in algebraic spaces (U,R, s, t, c). By Groupoids in Spaces, Lemma
60.27.1 we see that f−1[U/R] = [f−1U/f−1R]. Of course (f−1U, f−1R, f−1s, f−1t, f−1c)
is a smooth groupoid in algebraic spaces too. Hence (3) is proved.

Now the other cases (1), (2), (4) each mean that X has a presentation [U/R]
of a particular kind, and hence translate into the same kind of presentation for
f−1X = [f−1U/f−1R]. Whence the lemma is proved. �

It is not true (in general) that the restriction of an algebraic space over the bigger
site is an algebraic space over the smaller site (simply by reasons of cardinality).
Hence we can only ever use a simple lemma of this kind to enlarge the base category
and never to shrink it.

Lemma 71.18.2. Suppose Schfppf is contained in Sch′fppf . Let S be an object
of Schfppf . Denote Algebraic-Stacks/S the 2-category of algebraic spaces over S
defined using Schfppf . Similarly, denote Algebraic-Stacks′/S the 2-category of al-
gebraic spaces over S defined using Sch′fppf . The rule X 7→ f−1X of Lemma 71.18.1
defines a functor of 2-categories

Algebraic-Stacks/S −→ Algebraic-Stacks′/S

which defines equivalences of morphism categories

MorAlgebraic-Stacks/S(X ,Y) −→ MorAlgebraic-Stacks′/S(f−1X , f−1Y)

for every objects X ,Y of Algebraic-Stacks/S. An object X ′ of Algebraic-Stacks′/S
is equivalence to f−1X for some X in Algebraic-Stacks/S if and only if it has a
presentation X = [U ′/R′] with U ′, R′ isomorphic to f−1U , f−1R for some U,R ∈
Spaces/S.

Proof. The statement on morphism categories is a consequence of the more general
Stacks, Lemma 8.12.12. The characterization of the “essential image” follows from
the description of f−1 in the proof of Lemma 71.18.1. �

71.19. Change of base scheme

In this section we briefly discuss what happens when we change base schemes. The
upshot is that given a morphism S → S′ of base schemes, any algebraic stack over
S can be viewed as an algebraic stack over S′.

Lemma 71.19.1. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. The constructions A and B of Stacks, Section 8.13 above give isomorphisms
of 2-categories{

2-category of algebraic
stacks X over S

}
↔

 2-category of pairs (X ′, f) consisting of an
algebraic stack X ′ over S′ and a morphism

f : X ′ → (Sch/S)fppf of algebraic stacks over S′


Proof. The statement makes sense as the functor j : (Sch/S)fppf → (Sch/S′)fppf
is the localization functor associated to the object S/S′ of (Sch/S′)fppf . By Stacks,
Lemma 8.13.2 the only thing to show is that the constructions A and B preserve
the subcategories of algebraic stacks. For example, if X = [U/R] then construction
A applied to X just produces X ′ = X . Conversely, if X ′ = [U ′/R′] the morphism p
induces morphisms of algebraic spaces U ′ → S and R′ → S, and then X = [U ′/R′]
but now viewed as a stack over S. Hence the lemma is clear. �

http://stacks.math.columbia.edu/tag/04X3
http://stacks.math.columbia.edu/tag/04X5
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Definition 71.19.2. Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. If p : X → (Sch/S)fppf is an algebraic stack over S, then X viewed as an
algebraic stack over S′ is the algebraic stack

X −→ (Sch/S′)fppf

gotten by applying construction A of Lemma 71.19.1 to X .

Conversely, what if we start with an algebraic stack X ′ over S′ and we want to get
an algebraic stack over S? Well, then we consider the 2-fibre product

X ′S = (Sch/S)fppf ×(Sch/S′)fppf X
′

which is an algebraic stack over S′ according to Lemma 71.14.3. Moreover, it comes
equipped with a natural 1-morphism p : X ′S → (Sch/S)fppf and hence by Lemma
71.19.1 it corresponds in a canonical way to an algebraic stack over S.

Definition 71.19.3. Let Schfppf be a big fppf site. Let S → S′ be a morphism
of this site. Let X ′ be an algebraic stack over S′. The change of base of X ′ is the
algebraic space X ′S over S described above.
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CHAPTER 72

Examples of Stacks

72.1. Introduction

This is a discussion of examples of stacks in algebraic geometry. Some of them
are algebraic stacks, some are not. We will discuss which are algebraic stacks in a
later chapter. This means that in this chapter we mainly worry about the descent
conditions. See [Vis04] for example.

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 76.1 for an explanation.

72.2. Notation

In this chapter we fix a suitable big fppf site Schfppf as in Topologies, Definition
33.7.6. So, if not explicitly stated otherwise all schemes will be objects of Schfppf .
We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 33.7.8. The
absolute case can be recovered by taking S = Spec(Z).

72.3. Examples of stacks

We first give some important examples of stacks over (Sch/S)fppf .

72.4. Quasi-coherent sheaves

We define a category QCoh as follows:

(1) An object of QCoh is a pair (X,F), whereX/S is an object of (Sch/S)fppf ,
and F is a quasi-coherent OX -module, and

(2) a morphism (f, ϕ) : (Y,G) → (X,F) is a pair consisting of a morphism
f : Y → X of schemes over S and an f -map (see Sheaves, Section 6.26)
ϕ : F → G.

(3) The composition of morphisms

(Z,H)
(g,ψ)−−−→ (Y,G)

(f,φ)−−−→ (X,F)

is (f ◦ g, ψ ◦ φ) where ψ ◦ φ is the composition of f -maps.

Thus QCoh is a category and

p : QCoh→ (Sch/S)fppf , (X,F) 7→ X

is a functor. Note that the fibre category of QCoh over a scheme X is just the
category QCoh(OX) of quasi-coherent OX -modules. We remark for later use that

4021
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given (X,F), (Y,G) ∈ Ob(QCoh) we have

(72.4.0.1) MorQCoh((Y,G), (X,F)) =
∐

f∈MorS(Y,X)
MorQCoh(OY )(f

∗F ,G)

See the discussion on f -maps of modules in Sheaves, Section 6.26.

The category QCoh is not a stack over (Sch/S)fppf because its collection of objects
is a proper class. On the other hand we will see that it does satisfy all the axioms
of a stack. We will get around the set theoretical issue in Section 72.5.

Lemma 72.4.1. A morphism (f, ϕ) : (Y,G) → (X,F) of QCoh is strongly carte-
sian if and only if the map ϕ induces an isomorphism f∗F → G.

Proof. Let (X,F) ∈ Ob(QCoh). Let f : Y → X be a morphism of (Sch/S)fppf .
Note that there is a canonical f -map c : F → f∗F and hence we get a morphism
(f, c) : (Y, f∗F) → (X,F). We claim that (f, c) is strongly cartesian. Namely, for
any object (Z,H) of QCoh we have

MorQCoh((Z,H), (Y, f∗F)) =
∐

g∈MorS(Z,Y )
MorQCoh(OZ)(g

∗f∗F ,H)

=
∐

g∈MorS(Z,Y )
MorQCoh(OZ)((f ◦ g)∗F ,H)

= MorQCoh((Z,H), (X,F))×MorS(Z,X) MorS(Z, Y )

where we have used Equation (72.4.0.1) twice. This proves that the condition of
Categories, Definition 4.31.1 holds for (f, c), and hence our claim is true. Now
by Categories, Lemma 4.31.2 we see that isomorphisms are strongly cartesian and
compositions of strongly cartesian morphisms are strongly cartesian which proves
the “if” part of the lemma. For the converse, note that given (X,F) and f : Y → X,
if there exists a strongly cartesian morphism lifting f with target (X,F) then it has
to be isomorphic to (f, c) (see discussion following Categories, Definition 4.31.1).
Hence the ”only if” part of the lemma holds. �

Lemma 72.4.2. The functor p : QCoh→ (Sch/S)fppf satisfies conditions (1), (2)
and (3) of Stacks, Definition 8.4.1.

Proof. It is clear from Lemma 72.4.1 that QCoh is a fibred category over (Sch/S)fppf .
Given covering U = {Xi → X}i∈I of (Sch/S)fppf the functor

QCoh(OT ) −→ DD(U)

is fully faithful and essentially surjective, see Descent, Proposition 34.5.2. Hence
Stacks, Lemma 8.4.2 applies to show that QCoh satisfies all the axioms of a stack.

�

72.5. The stack of finitely generated quasi-coherent sheaves

It turns out that we can get a stack of quasi-coherent sheaves if we only consider
finite type quasi-coherent modules. Let us denote

pfg : QCohfg → (Sch/S)fppf

the full subcategory of QCoh over (Sch/S)fppf consisting of pairs (T,F) such that
F is a quasi-coherent OT -module of finite type.

Lemma 72.5.1. The functor pfg : QCohfg → (Sch/S)fppf satisfies conditions (1),
(2) and (3) of Stacks, Definition 8.4.1.
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Proof. We will verify assumptions (1), (2), (3) of Stacks, Lemma 8.4.3 to prove
this. By Lemma 72.4.1 a morphism (Y,G)→ (X,F) is strongly cartesian if and only
if it induces an isomorphism f∗F → G. By Modules, Lemma 17.9.2 the pullback of
a finite type OX -module is of finite type. Hence assumption (1) of Stacks, Lemma
8.4.3 holds. Assumption (2) holds trivially. Finally, to prove assumption (3) we
have to show: If F is a quasi-coherent OX -module and {fi : Xi → X} is an fppf
covering such that each f∗i F is of finite type, then F is of finite type. Considering
the restriction of F to an affine open of X this reduces to the following algebra
statement: Suppose that R→ S is a finitely presented, faithfully flat ring map and
M an R-module. If M ⊗R S is a finitely generated S-module, then M is a finitely
generated R-module. A stronger form of the algebra fact can be found in Algebra,
Lemma 10.80.2. �

Lemma 72.5.2. Let (X,OX) be a ringed space.

(1) The category of finite type OX-modules has a set of isomorphism classes.
(2) The category of finite type quasi-coherent OX-modules has a set of iso-

morphism classes.

Proof. Part (2) follows from part (1) as the category in (2) is a full subcategory
of the category in (1). Consider any open covering U : X =

⋃
i∈I Ui. Denote

ji : Ui → X the inclusion maps. Consider any map r : I → N. If F is an OX -
module whose restriction to Ui is generated by at most r(i) sections from F(Ui),
then F is a quotient of the sheaf

HU,r =
⊕

i∈I
ji,!O⊕r(i)Ui

By definition, if F is of finite type, then there exists some open covering with U
whose index set is I = X such that this condition is true. Hence it suffices to show
that there is a set of possible choices for U (obvious), a set of possible choices for
r : I → N (obvious), and a set of possible quotient modules of HU,r for each U
and r. In other words, it suffices to show that given an OX -module H there is at
most a set of isomorphism classes of quotients. This last assertion becomes obvious
by thinking of the kernels of a quotient map H → F as being parametrized by a
subset of the power set of

∏
U⊂X openH(U). �

Lemma 72.5.3. There exists a subcategory QCohfg,small ⊂ QCohfg with the fol-
lowing properties:

(1) the inclusion functor QCohfg,small → QCohfg is fully faithful and essen-
tially surjective, and

(2) the functor pfg,small : QCohfg,small → (Sch/S)fppf turns QCohfg,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 72.5.1 and 72.5.2 that pfg : QCohfg → (Sch/S)fppf
satisfies (1), (2) and (3) of Stacks, Definition 8.4.1 as well as the additional condi-
tion (4) of Stacks, Remark 8.4.9. Hence we obtain QCohfg,small from the discussion
in that remark. �

We will often perform the replacement

QCohfg  QCohfg,small

without further remarking on it, and by abuse of notation we will simply denote
QCohfg this replacement.
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Remark 72.5.4. Note that the whole discussion in this section works if we want
to consider those quasi-coherent sheaves which are locally generated by at most κ
sections, for some infinite cardinal κ, e.g., κ = ℵ0.

72.6. Algebraic spaces

We define a category Spaces as follows:

(1) An object of Spaces is a morphism X → U of algebraic spaces over S,
where U is representable by an object of (Sch/S)fppf , and

(2) a morphism (f, g) : (X → U)→ (Y → V ) is a commutative diagram

X

��

f
// Y

��
U

g // V

of morphisms of algebraic spaces over S.

Thus Spaces is a category and

p : Spaces→ (Sch/S)fppf , (X → U) 7→ U

is a functor. Note that the fibre category of Spaces over a scheme U is just the
category Spaces/U of algebraic spaces over U (see Topologies on Spaces, Section
55.2). Hence we sometimes think of an object of Spaces as a pair X/U consisting of
a scheme U and an algebraic space X over U . We remark for later use that given
(X/U), (Y/V ) ∈ Ob(Spaces) we have

(72.6.0.1) MorSpaces(X/U, Y/V ) =
∐

g∈MorS(U,V )
MorSpaces/U (X,U ×g,V Y )

The category Spaces is almost, but not quite a stack over (Sch/S)fppf . The problem
is a set theoretical issue as we will explain below.

Lemma 72.6.1. A morphism (f, g) : X/U → Y/V of Spaces is strongly cartesian
if and only if the map f induces an isomorphism X → U ×g,V Y .

Proof. Let Y/V ∈ Ob(Spaces). Let g : U → V be a morphism of (Sch/S)fppf .
Note that the projection p : U ×g,V Y → Y gives rise a morphism (p, g) : U ×g,V
Y/U → Y/V of Spaces. We claim that (p, g) is strongly cartesian. Namely, for any
object Z/W of Spaces we have

MorSpaces(Z/W,U ×g,V Y/U) =
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×h,U U ×g,V Y )

=
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×g◦h,V Y )

= MorSpaces(Z/W, Y/V )×MorS(W,V ) MorS(W,U)

where we have used Equation (72.6.0.1) twice. This proves that the condition of
Categories, Definition 4.31.1 holds for (p, g), and hence our claim is true. Now
by Categories, Lemma 4.31.2 we see that isomorphisms are strongly cartesian and
compositions of strongly cartesian morphisms are strongly cartesian which proves
the “if” part of the lemma. For the converse, note that given Y/V and g : U → V ,
if there exists a strongly cartesian morphism lifting g with target Y/V then it has
to be isomorphic to (p, g) (see discussion following Categories, Definition 4.31.1).
Hence the ”only if” part of the lemma holds. �
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Lemma 72.6.2. The functor p : Spaces→ (Sch/S)fppf satisfies conditions (1) and
(2) of Stacks, Definition 8.4.1.

Proof. It is follows from Lemma 72.6.1 that Spaces is a fibred category over
(Sch/S)fppf which proves (1). Suppose that {Ui → U}i∈I is a covering of (Sch/S)fppf .
Suppose that X,Y are algebraic spaces over U . Finally, suppose that ϕi : XUi →
YUi are morphisms of Spaces/Ui such that ϕi and ϕj restrict to the same morphisms
XUi×UUj → YUi×UUj of algebraic spaces over Ui ×U Uj . To prove (2) we have to
show that there exists a unique morphism ϕ : X → Y over U whose base change
to Ui is equal to ϕi. As a morphism from X to Y is the same thing as a map of
sheaves this follows directly from Sites, Lemma 7.25.1. �

Remark 72.6.3. Ignoring set theoretical difficulties1 Spaces also satisfies descent
for objects and hence is a stack. Namely, we have to show that given

(1) an fppf covering {Ui → U}i∈I ,
(2) for each i ∈ I an algebraic space Xi/Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj×U Uk,

there exists an algebraic space X/U and isomorphisms XUi
∼= Xi over Ui recovering

the isomorphisms ϕij . First, note that by Sites, Lemma 7.25.2 there exists a sheaf
X on (Sch/U)fppf recovering the Xi and the ϕij . Then by Bootstrap, Lemma
62.11.1 we see that X is an algebraic space (if we ignore the set theoretic condition
of that lemma). We will use this argument in the next section to show that if we
consider only algebraic spaces of finite type, then we obtain a stack.

72.7. The stack of finite type algebraic spaces

It turns out that we can get a stack of spaces if we only consider spaces of finite
type. Let us denote

pft : Spacesft → (Sch/S)fppf

the full subcategory of Spaces over (Sch/S)fppf consisting of pairs X/U such that
X → U is a morphism of finite type.

Lemma 72.7.1. The functor pft : Spacesft → (Sch/S)fppf satisfies the conditions
(1), (2) and (3) of Stacks, Definition 8.4.1.

Proof. We are going to write this out in ridiculous detail (which may make it hard
to see what is going on).

We have seen in Lemma 72.6.1 that a morphism (f, g) : X/U → Y/V of Spaces is
strongly cartesian if the induced morphism f : X → U ×V Y is an isomorphism.
Note that if Y → V is of finite type then also U×V Y → U is of finite type, see Mor-
phisms of Spaces, Lemma 49.23.3. So if (f, g) : X/U → Y/V of Spaces is strongly
cartesian in Spaces and Y/V is an object of Spacesft then automatically also X/U
is an object of Spacesft, and of course (f, g) is also strongly cartesian in Spacesft.
In this way we conclude that Spacesft is a fibred category over (Sch/S)fppf . This
proves (1).

1The difficulty is not that Spaces is a proper class, since by our definition of an algebraic

space over S there is only a set worth of isomorphism classes of algebraic spaces over S. It is
rather that arbitrary disjoint unions of algebraic spaces may end up being too large, hence lie

outside of our chosen “partial universe” of sets.
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The argument above also shows that the inclusion functor Spacesft → Spaces trans-
forms strongly cartesian morphisms into strongly cartesian morphisms. In other
words Spacesft → Spaces is a 1-morphism of fibred categories over (Sch/S)fppf .

Let U ∈ Ob((Sch/S)fppf ). Let X,Y be algebraic spaces of finite type over U . By
Stacks, Lemma 8.2.3 we obtain a map of presheaves

MorSpacesft(X,Y ) −→ MorSpaces(X,Y )

which is an isomorphism as Spacesft is a full subcategory of Spaces. Hence the left
hand side is a sheaf, because in Lemma 72.6.2 we showed the right hand side is a
sheaf. This proves (2).

To prove condition (3) of Stacks, Definition 8.4.1 we have to show the following:
Given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj×U Uk,

there exists an algebraic space X of finite type over U and isomorphisms XUi
∼= Xi

over Ui recovering the isomorphisms ϕij . By Sites, Lemma 7.25.2 there exists a
sheaf X on (Sch/U)fppf recovering the Xi and the ϕij . Then by Bootstrap, Lemma
62.11.4 we see that X is an algebraic space. By Descent on Spaces, Lemma 56.10.8
we see that X → U is of finite type which concludes the proof. �

Lemma 72.7.2. There exists a subcategory Spacesft,small ⊂ Spacesft with the
following properties:

(1) the inclusion functor Spacesft,small → Spacesft is fully faithful and essen-
tially surjective, and

(2) the functor pft,small : Spacesft,small → (Sch/S)fppf turns Spacesft,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 72.7.1 that pfg : QCohfg → (Sch/S)fppf satisfies
(1), (2) and (3) of Stacks, Definition 8.4.1. The additional condition (4) of Stacks,
Remark 8.4.9 holds because every algebraic space X over S is of the form U/R
for U,R ∈ Ob((Sch/S)fppf ), see Spaces, Lemma 47.9.1. Thus there is only a set
worth of isomorphism classes of objects. Hence we obtain Spacesft,small from the
discussion in that remark. �

We will often perform the replacement

Spacesft  Spacesft,small

without further remarking on it, and by abuse of notation we will simply denote
Spacesft this replacement.

Remark 72.7.3. Note that the whole discussion in this section works if we want
to consider those algebraic spaces X/U which are locally of finite type such that the
inverse image in X of an affine open of U can be covered by countably many affines.
If needed we can also introduce the notion of a morphism of κ-type (meaning some
bound on the number of generators of ring extensions and some bound on the
cardinality of the affines over a given affine in the base) where κ is a cardinal, and
then we can produce a stack

Spacesκ −→ (Sch/S)fppf

http://stacks.math.columbia.edu/tag/04UE
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in exactly the same manner as above (provided we make sure that Sch is large
enough depending on κ).

72.8. Examples of stacks in groupoids

The examples above are examples of stacks which are not stacks in groupoids. In
the rest of this chapter we give algebraic geometric examples of stacks in groupoids.

72.9. The stack associated to a sheaf

Let F : (Sch/S)oppfppf → Sets be a presheaf. We obtain a category fibred in sets

pF : SF → (Sch/S)fppf ,

see Categories, Example 4.36.5. This is a stack in sets if and only if F is a sheaf,
see Stacks, Lemma 8.6.3.

72.10. The stack in groupoids of finitely generated quasi-coherent
sheaves

Let p : QCohfg → (Sch/S)fppf be the stack introduced in Section 72.5 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : QCoh′fg → (Sch/S)fppf by the procedure of Categories, Lemma 4.33.3, see

Stacks, Lemma 8.5.3. In this particular case this simply means QCoh′fg has the
same objects as QCohfg but the morphisms are pairs (f, g) : (U,F) → (U ′,F ′)
where g is an isomorphism g : f∗F ′ → F .

72.11. The stack in groupoids of finite type algebraic spaces

Let p : Spacesft → (Sch/S)fppf be the stack introduced in Section 72.7 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : Spaces′ft → (Sch/S)fppf by the procedure of Categories, Lemma 4.33.3, see

Stacks, Lemma 8.5.3. In this particular case this simply means Spaces′ft has the
same objects as Spacesft, i.e., finite type morphisms X → U where X is an algebraic
space over S and U is a scheme over S. But the morphisms (f, g) : X/U → Y/V
are now commutative diagrams

X

��

f
// Y

��
U

g // V

which are cartesian.

72.12. Quotient stacks

Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. In this case the quotient
stack

[U/R] −→ (Sch/S)fppf

is a stack in groupoids by construction, see Groupoids in Spaces, Definition 60.19.1.
It is even the case that the Isom-sheaves are representable by algebraic spaces, see
Bootstrap, Lemma 62.11.5. These quotient stacks are of fundamental importance
to the theory of algebraic stacks.
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A special case of the construction above is the quotient stack

[X/G] −→ (Sch/S)fppf

associated to a datum (B,G/B,m,X/B, a). Here

(1) B is an algebraic space over S,
(2) (G,m) is a group algebraic space over B,
(3) X is an algebraic space over B, and
(4) a : G×B X → X is an action of G on X over B.

Namely, by Groupoids in Spaces, Definition 60.19.1 the stack in groupoids [X/G]
is the quotient stack [X/G×BX] given above. It behooves us to spell out what the
category [X/G] really looks like. We will do this in Section 72.14.

72.13. Classifying torsors

We want to carefuly explain a number of variants of what it could mean to study
the stack of torsors for a group algebraic space G or a sheaf of groups G.

72.13.1. Torsors for a sheaf of groups. Let G be a sheaf of groups on
(Sch/S)fppf . For U ∈ Ob((Sch/S)fppf ) we denote G|U the restriction of G to
(Sch/U)fppf . We define a category G-Torsors as follows:

(1) An object of G-Torsors is a pair (U,F) where U is an object of (Sch/S)fppf
and F is a G|U -torsor, see Cohomology on Sites, Definition 21.5.1.

(2) A morphism (U,F) → (V,H) is given by a pair (f, α), where f : U → V
is a morphism of schemes over S, and α : f−1H → F is an isomorphism
of G|U -torsors.

Thus G-Torsors is a category and

p : G-Torsors −→ (Sch/S)fppf , (U,F) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the category of
G|U -torsors which is a groupoid.

Lemma 72.13.2. Up to a replacement as in Stacks, Remark 8.4.9 the functor

p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Let {Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we
are given a G|Ui-torsor Fi, and for each i, j ∈ I an isomorphism ϕij : Fi|Ui×UUj →
Fj |Ui×UUj of G|Ui×UUj -torsors satisfying a suitable cocycle condition on Ui ×U
Uj ×U Uk. Then by Sites, Section 7.25 we obtain a sheaf F on (Sch/U)fppf whose
restriction to each Ui recovers Fi as well as recovering the descent data. By the
equivalence of categories in Sites, Lemma 7.25.3 the action maps G|Ui × Fi → Fi
glue to give a map a : G|U ×F → F . Now we have to show that a is an action and
that F becomes a G|U -torsor. Both properties may be checked locally, and hence
follow from the corresponding properties of the actions G|Ui×Fi → Fi. This proves
that descent for objects holds in G-Torsors. Some details omitted. �
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72.13.3. Variant on torsors for a sheaf. The construction of Subsection
72.13.1 can be generalized slightly. Namely, let G → B be a map of sheaves on
(Sch/S)fppf and let

m : G ×B G −→ G
be a group law on G/B. In other words, the pair (G,m) is a group object of the topos
Sh((Sch/S)fppf )/B. See Sites, Section 7.29 for information regarding localizations
of topoi. In this setting we can define a category G/B-Torsors as follows (where we
use the Yoneda embedding to think of schemes as sheaves):

(1) An object of G/B-Torsors is a triple (U, b,F) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a section of B over U , and
(c) F is a U ×b,B G-torsor over U .

(2) A morphism (U, b,F) → (U ′, b′,F ′) is given by a pair (f, g), where f :
U → U ′ is a morphism of schemes over S such that b = b′ ◦ f , and
g : f−1F ′ → F is an isomorphism of U ×b,B G-torsors.

Thus G/B-Torsors is a category and

p : G/B-Torsors −→ (Sch/S)fppf , (U, b,F) 7−→ U

is a functor. Note that the fibre category of G/B-Torsors over U is the disjoint
union over b : U → B of the categories of U ×b,B G-torsors, hence is a groupoid.

In the special case B = S we recover the category G-Torsors introduced in Subsec-
tion 72.13.1.

Lemma 72.13.4. Up to a replacement as in Stacks, Remark 8.4.9 the functor

p : G/B-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. This proof is a repeat of the proof of Lemma 72.13.2. The reader is
encouraged to read that proof first since the notation is less cumbersome. The
most difficult part of the proof is to show that we have descent for objects. Let
{Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we are given a
pair (bi,Fi) consisting of a morphism bi : Ui → B and a Ui ×bi,B G-torsor Fi, and
for each i, j ∈ I we have bi|Ui×UUj = bj |Ui×UUj and we are given an isomorphism
ϕij : Fi|Ui×UUj → Fj |Ui×UUj of (Ui ×U Uj) ×B G-torsors satisfying a suitable co-
cycle condition on Ui ×U Uj ×U Uk. Then by Sites, Section 7.25 we obtain a sheaf
F on (Sch/U)fppf whose restriction to each Ui recovers Fi as well as recovering
the descent data. By the sheaf axiom for B the morphisms bi come from a unique
morphism b : U → B. By the equivalence of categories in Sites, Lemma 7.25.3 the
action maps (Ui ×bi,B G) ×Ui Fi → Fi glue to give a map (U ×b,B G) × F → F .
Now we have to show that this is an action and that F becomes a U ×b,B G-torsor.
Both properties may be checked locally, and hence follow from the corresponding
properties of the actions on the Fi. This proves that descent for objects holds in
G/B-Torsors. Some details omitted. �

72.13.5. Principal homogeneous spaces. Let B be an algebraic space over
S. Let G be a group algebraic space over B. We define a category G-Principal as
follows:

(1) An object of G-Principal is a triple (U, b,X) where

http://stacks.math.columbia.edu/tag/04UM
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(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) X is a principal homogeneous GU -space over U whereGU = U×b,BG.

See Groupoids in Spaces, Definition 60.9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of principal homogeneous GU -spaces.

Thus G-Principal is a category and

p : G-Principal −→ (Sch/S)fppf , (U, b,X) 7−→ U

is a functor. Note that the fibre category of G-Principal over U is the disjoint union
over b : U → B of the categories of principal homogeneous U ×b,B G-spaces, hence
is a groupoid.

In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is a principal homogeneous GU -space over U . Moreover, morphisms
are simply cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Remark 72.13.6. We conjecture that up to a replacement as in Stacks, Remark
8.4.9 the functor

p : G-Principal −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf . This would follow if one could show
that given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) an group algebraic space H over U ,
(3) for every i a principal homogeneous HUi-space Xi over Ui, and
(4) H-equivariant isomorphisms ϕij : Xi,Ui×UUj → Xj,Ui×UUj satisfying the

cocycle condition,

there exists a principal homogeneous H-space X over U which recovers (Xi, ϕij).
The technique of the proof of Bootstrap, Lemma 62.11.8 reduces this to a set
theoretical question, so the reader who ignores set theoretical questions will “know”
that the result is true. In http://math.columbia.edu/~dejong/wordpress/?p=

591 there is a suggestion as to how to approach this problem.

72.13.7. Variant on principal homogeneous spaces. Let S be a scheme.
Let B = S. Let G be a group scheme over B = S. In this setting we can define a
full subcategory G-Principal-Schemes ⊂ G-Principal whose objects are pairs (U,X)
where U is an object of (Sch/S)fppf andX → U is a principal homogeneousG-space
over U which is representable, i.e., a scheme.

It is in general not the case that G-Principal-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist principal homoge-
neous spaces which are not schemes, hence descent for objects will not be satisfied
in general.
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72.13.8. Torsors in fppf topology. Let B be an algebraic space over S. Let
G be a group algebraic space over B. We define a category G-Torsors as follows:

(1) An object of G-Torsors is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism, and
(c) X is an fppf GU -torsor over U where GU = U ×b,B G.

See Groupoids in Spaces, Definition 60.9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of GU -torsors.

Thus G-Torsors is a category and

p : G-Torsors −→ (Sch/S)fppf , (U, a,X) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the disjoint union
over b : U → B of the categories of fppf U ×b,B G-torsors, hence is a groupoid.

In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is an fppf GU -torsor over U . Moreover, morphisms are simply
cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Lemma 72.13.9. Up to a replacement as in Stacks, Remark 8.4.9 the functor

p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects, which is Bootstrap, Lemma 62.11.8. We omit the proof of axioms (1) and
(2) of Stacks, Definition 8.5.1. �

Lemma 72.13.10. Let B be an algebraic space over S. Let G be a group algebraic
space over B. Denote G, resp. B the algebraic space G, resp. B seen as a sheaf on
(Sch/S)fppf . The functor

G-Torsors −→ G/B-Torsors

which associates to a triple (U, b,X) the triple (U, b,X ) where X is X viewed as a
sheaf is an equivalence of stacks in groupoids over (Sch/S)fppf .

Proof. We will use the result of Stacks, Lemma 8.4.8 to prove this. The functor is
fully faithful since the category of algebraic spaces over S is a full subcategory of
the category of sheaves on (Sch/S)fppf . Moreover, all objects (on both sides) are
locally trivial torsors so condition (2) of the lemma referenced above holds. Hence
the functor is an equivalence. �

http://stacks.math.columbia.edu/tag/04US
http://stacks.math.columbia.edu/tag/04UT
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72.13.11. Variant on torsors in fppf topology. Let S be a scheme. Let
B = S. Let G be a group scheme over B = S. In this setting we can define a
full subcategory G-Torsors-Schemes ⊂ G-Torsors whose objects are pairs (U,X)
where U is an object of (Sch/S)fppf and X → U is an fppf G-torsor over U which
is representable, i.e., a scheme.

It is in general not the case that G-Torsors-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist fppf G-torsors which
are not schemes, hence descent for objects will not be satisfied in general.

72.14. Quotients by group actions

At this point we have introduced enough notation that we can work out in more
detail what the stacks [X/G] of Section 72.12 look like.

Situation 72.14.1. Here

(1) S is a scheme contained in Schfppf ,
(2) B is an algebraic space over S,
(3) (G,m) is a group algebraic space over B,
(4) π : X → B is an algebraic space over B, and
(5) a : G×B X → X is an action of G on X over B.

In this situation we construct a category [[X/G]]2 as follows:

(1) An object of [[X/G]] consists of a quadruple (U, b, P, ϕ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S,
(c) P is an fppf GU -torsor over U where GU = U ×b,B G, and
(d) ϕ : P → X is a G-equivariant morphism fitting into the commutative

diagram

P

��

ϕ
// X

��
U

b // B

(2) A morphism of [[X/G]] is a pair (f, g) : (U, b, P, ϕ)→ (U ′, b′, P ′, ϕ′) where
f : U → U ′ is a morphism of schemes over B and g : P → P ′ is a G-
equivariant morphism over f which induces an isomorphism P ∼= U ×f,U ′
P ′, and has the property that ϕ = ϕ′ ◦ g. In other words (f, g) fits into
the following commutative diagram

P

�� ϕ

**

g // P ′

��

ϕ′

&&
U

b
**

f // U ′

b′

&&

X

��
B

2The notation [[X/G]] with double brackets serves to distinguish this category from the stack
[X/G] introduced earlier. In Proposition 72.14.3 we show that the two are canonically equivalent.

Afterwards we will use the notation [X/G] to indicate either.

http://stacks.math.columbia.edu/tag/04WL
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Thus [[X/G]] is a category and

p : [[X/G]] −→ (Sch/S)fppf , (U, b, P, ϕ) 7−→ U

is a functor. Note that the fibre category of [[X/G]] over U is the disjoint union over
b ∈ MorS(U,B) of U ×b,B G-torsors P endowed with a G-equivariant morphism to
X. Hence the fibre categories of [[X/G]] are groupoids.

Note that the functor

[[X/G]] −→ G-Torsors, (U, b, P, ϕ) 7−→ (U, b, P )

is a 1-morphism of categories over (Sch/S)fppf .

Lemma 72.14.2. Up to a replacement as in Stacks, Remark 8.4.9 the functor

p : [[X/G]] −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Suppose that {Ui → U}i∈I is a covering in (Sch/S)fppf . Let ξi =
(Ui, bi, Pi, ϕi) be objects of [[X/G]] over Ui, and let ϕij : pr∗0ξi → pr∗1ξj be a
descent datum. This in particular implies that we get a descent datum on the
triples (Ui, bi, Pi) for the stack in groupoids G-Torsors by applying the functor
[[X/G]]→ G-Torsors above. We have seen that G-Torsors is a stack in groupoids
(Lemma 72.13.9). Hence we may assume that bi = b|Ui for some morphism
b : U → B, and that Pi = Ui ×U P for some fppf GU = U ×b,B G-torsor P
over U . The morphisms ϕi are compatible with the canonical descent datum on
the restrictions Ui ×U P and hence define a morphism ϕ : P → X. (For example
you can use Sites, Lemma 7.25.3 or you can use Descent on Spaces, Lemma 56.6.2
to get ϕ.) This proves descent for objects. We omit the proof of axioms (1) and
(2) of Stacks, Definition 8.5.1. �

Proposition 72.14.3. In Situation 72.14.1 there exists a canonical equivalence

[X/G] −→ [[X/G]]

of stacks in groupoids over (Sch/S)fppf .

Proof. We write this out in detail, to make sure that all the definitions work out
in exactly the correct manner. Recall that [X/G] is the quotient stack associated
to the groupoid in algebraic spaces (X,G ×B X, s, t, c), see Groupoids in Spaces,
Definition 60.19.1. This means that [X/G] is the stackification of the category
fibred in groupoids [X/pG] associated to the functor

(Sch/S)fppf −→ Groupoids, U 7−→ (X(U), G(U)×B(U) X(U), s, t, c)

where s(g, x) = x, t(g, x) = a(g, x), and c((g, x), (g′, x′)) = (m(g, g′), x′). By the
construction of Categories, Example 4.35.1 an object of [X/pG] is a pair (U, x)
with x ∈ X(U) and a morphism (f, g) : (U, x) → (U ′, x′) of [X/pG] is given by a
morphism of schemes f : U → U ′ and an element g ∈ G(U) such that a(g, x) = x′◦f .
Hence we can define a 1-morphism of stacks in groupoids

Fp : [X/pG] −→ [[X/G]]

by the following rules: On objects we set

Fp(U, x) = (U, π ◦ x,G×B,π◦x U, a ◦ (idG × x))

http://stacks.math.columbia.edu/tag/0370
http://stacks.math.columbia.edu/tag/04WM
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This makes sense because the diagram

G×B,π◦x U

��

idG×x
// G×B,π X a

// X

π

��
U

π◦x // B

commutes, and the two horizontal arrows are G-equivariant if we think of the fibre
products as trivial G-torsors over U , resp. X. On morphisms (f, g) : (U, x) →
(U ′, x′) we set Fp(f, g) = (f,Rg) where Rg denotes right translation by g. More
precisely, the morphism of Fp(f, g) : Fp(U, x)→ Fp(U

′, x′) is given by the cartesian
diagram

G×B,π◦x U

��

Rg

// G×B,π◦x′ U ′

��
U

f // U ′

where Rg on T -valued points is given by

Rg(g
′, u) = (m(g′, g), f(u))

To see that this works we have to verify that

a ◦ (idG × x) = a ◦ (idG × x′) ◦Rg
which is true because the right hand side applied to the T -valued point (g′, u) gives

a((idG × x′)(m(g′, g), f(u))) = a(m(g′, g), x′(f(u)))

= a(g′, a(g, x′(f(u))))

= a(g′, x(u))

because a(g, x) = x′ ◦ f as desired.

By the universal property of stackification from Stacks, Lemma 8.9.2 we obtain a
canonical extension F : [X/G] → [[X/G]] of the 1-morphism Fp above. We first
prove that F is fully faithful. To do this, since both source and target are stacks in
groupoids, it suffices to prove that the Isom-sheaves are identified under F . Pick a
scheme U and objects ξ, ξ′ of [X/G] over U . We want to show that

F : Isom [X/G](ξ, ξ
′) −→ Isom [[X/G]](F (ξ), F (ξ′))

is an isomorphism of sheaves. To do this it suffices to work locally on U , and hence
we may assume that ξ, ξ′ come from objects (U, x), (U, x′) of [X/pG] over U ; this
follows directly from the construction of the stackification, and it is also worked
out in detail in Groupoids in Spaces, Section 60.23. Either by directly using the
description of morphisms in [X/pG] above, or using Groupoids in Spaces, Lemma
60.21.1 we see that in this case

Isom [X/G](ξ, ξ
′) = U ×(x,x′),X×SX,(s,t) (G×B X)

A T -valued point of this fibre product corresponds to a pair (u, g) with u ∈ U(T ),
and g ∈ G(T ) such that a(g, x◦u) = x′◦u. (Note that this implies π◦x◦u = π◦x′◦
u.) On the other hand, a T -valued point of Isom [[X/G]](F (ξ), F (ξ′)) by definition
corresponds to a morphism u : T → U such that π ◦ x ◦ u = π ◦ x′ ◦ u : T → B and
an isomorphism

R : G×B,π◦x◦u T −→ G×B,π◦x′◦u T
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of trivial GT -torsors compatible with the given maps to X. Since the torsors are
trivial we see that R = Rg (right multiplication) by some g ∈ G(T ). Compatibility
with the maps a ◦ (1G, x ◦ u), a ◦ (1G, x

′ ◦ u) : G ×B T → X is equivalent to the
condition that a(g, x ◦ u) = x′ ◦ u. Hence we obtain the desired equality of Isom-
sheaves.

Now that we know that F is fully faithful we see that Stacks, Lemma 8.4.8 applies.
Thus to show that F is an equivalence it suffices to show that objects of [[X/G]]
are fppf locally in the essential image of F . This is clear as fppf torsors are locally
trivial, and hence we win. �

Remark 72.14.4. Let S be a scheme. Let G be an abstract group. Let X be
an algebraic space over S. Let G → AutS(X) be a group homomorphism. In this
setting we can define [[X/G]] similarly to the above as follows:

(1) An object of [[X/G]] consists of a triple (U,P, ϕ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) P is a sheaf on (Sch/U)fppf which comes with an action of G that

turns it into a torsor under the constant sheaf with value G, and
(c) ϕ : P → X is a G-equivariant map of sheaves.

(2) A morphism (f, g) : (U,P, ϕ) → (U ′, P ′, ϕ′) is given by a morphism of
schemes f : T → T ′ and a G-equivariant isomorphism g : P → f−1P ′

such that ϕ = ϕ′ ◦ g.

In exactly the same manner as above we obtain a functor

[[X/G]] −→ (Sch/S)fppf

which turns [[X/G]] into a stack in groupoids over (Sch/S)fppf . The constant
sheaf G is (provided the cardinality of G is not too large) representable by GS
on (Sch/S)fppf and this version of [[X/G]] is equivalent to the stack [[X/GS ]]
introduced above.

72.15. The Picard stack

Let S be a scheme. Let π : X → B be a morphism of algebraic spaces over S. We
define a category PicX/B as follows:

(1) An object is a triple (U, b,L), where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) L is in invertible sheaf on the base change XU = U ×b,B X.

(2) A morphism (f, g) : (U, b,L) → (U ′, b′,L′) is given by a morphism of
schemes f : U → U ′ over B and an isomorphism g : f∗L′ → L.

The composition of (f, g) : (U, b,L) → (U ′, b′,L′) with (f ′, g′) : (U ′, b′,L′) →
(U ′′, b′′,L′′) is given by (f ◦ f ′, g ◦ f∗(g′)). Thus we get a category PicX/B and

p : PicX/B −→ (Sch/S)fppf , (U, b,L) 7−→ U

is a functor. Note that the fibre category of PicX/B over U is the disjoint union
over b ∈ MorS(U,B) of the categories of invertible sheaves on XU = U ×b,B X.
Hence the fibre categories are groupoids.

Lemma 72.15.1. Up to a replacement as in Stacks, Remark 8.4.9 the functor

PicX/B −→ (Sch/S)fppf

http://stacks.math.columbia.edu/tag/0371
http://stacks.math.columbia.edu/tag/04WN
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defines a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, bi,Li) be an object of
PicX/B lying over U , and let ϕij : pr∗0ξi → pr∗1ξj be a descent datum. This implies
in particular that the morphisms bi are the restrictions of a morphism b : U → B.
Write XU = U ×b,B X and Xi = Ui ×bi,B X = Ui ×U U ×b,B X = Ui ×U XU .
Observe that Li is an invertible OXi-module. Note that {Xi → XU} forms an fppf
covering as well. Moreover, the descent datum ϕij translates into a descent datum
on the invertible sheaves Li relative to the fppf covering {Xi → XU}. Hence by
Descent on Spaces, Proposition 56.4.1 we obtain a unique invertible sheaf L on XU

which recovers Li and the descent data over Xi. The triple (U, b,L) is therefore
the object of PicX/B over U we were looking for. Details omitted. �

72.16. Examples of inertia stacks

Here are some examples of inertia stacks.

Example 72.16.1. Let S be a scheme. Let G be a commutative group. Let X → S
be a scheme over S. Let a : G ×X → X be an action of G on X. For g ∈ G we
denote g : X → X the corresponding automorphism. In this case the inertia stack
of [X/G] (see Remark 72.14.4) is given by

I[X/G] =
∐

g∈G
[Xg/G],

where, given an element g of G, the symbol Xg denotes the scheme Xg = {x ∈ X |
g(x) = x}. In a formula Xg is really the fibre product

Xg = X ×(1,1),X×SX,(g,1) X.

Indeed, for any S-scheme T , a T -point on the inertia stack of [X/G] consists of a
triple (P/T, φ, α) consisting of a G-torsor P → T together with a G-equivariant
isomorphism φ : P → X, together with an automorphism α of P → T over T such
that φ ◦ α = φ. Since G is a sheaf of commutative groups, α is, locally in the fppf
topology over T , given by multiplication by some element g ofG. The condition that
φ ◦α = φ means that φ factors through the inclusion of Xg in X, i.e., φ is obtained
by composing that inclusion with a morphism P → Xγ . The above discussion
allows us to define a morphism of fibred categories I[X/G] →

∐
g∈G[Xg/G] given on

T -points by the discussion above. We omit showing that this is an equivalence.

Example 72.16.2. Let X → S be a morphism of schemes. Assume that for any
T → S the base change fT : XT → T has the property that the map OT → fT,∗OXT
is an isomorphism. (This implies that f is cohomologically flat in dimension 0
(insert future reference here) but is stronger.) Consider the Picard stack PicX/S ,
see Section 72.15. The points of its inertia stack over an S-scheme T consist of
pairs (L, α) where L is a line bundle on XT and α is an automorphism of that line
bundle. I.e., we can think of α as an element of H0(XT ,OXT )× = H0(T,O∗T ) by
our condition. Note that H0(T,O∗T ) = Gm,S(T ), see Groupoids, Example 38.5.1.
Hence the inertia stack of PicX/S is

IPicX/S = Gm,S ×S PicX/S .

as a stack over (Sch/S)fppf .

http://stacks.math.columbia.edu/tag/0374
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72.17. Finite Hilbert stacks

We formulate this in somewhat greater generality than is perhaps strictly needed.
Fix a 1-morphism

F : X −→ Y
of stacks in groupoids over (Sch/S)fppf . For each integer d ≥ 1 consider a category
Hd(X/Y) defined as follows:

(1) An object (U,Z, y, x, α) where U,Z are objects of in (Sch/S)fppf and Z
is a finite locally free of degree d over U , where y ∈ Ob(YU ), x ∈ Ob(XZ)
and α : y|Z → F (x) is an isomorphism3.

(2) A morphism (U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) is given by a morphism of
schemes f : U → U ′, a morphism of schemes g : Z → Z ′ which induces an
isomorphism Z → Z ′ ×U U ′, and isomorphisms b : y → f∗y′, a : x→ g∗x′

inducing a commutative diagram

y|Z α
//

b|Z
��

F (x)

F (a)

��
f∗y′|Z

α′ // F (g∗x′)

It is clear from the definitions that there is a canonical forgetful functor

p : Hd(X/Y) −→ (Sch/S)fppf

which assigns to the quintuple (U,Z, y, x, α) the scheme U and to the morphism
(f, g, b, a) : (U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) the morphism f : U → U ′.

Lemma 72.17.1. The category Hd(X/Y) endowed with the functor p above defines
a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, Zi, yi, xi, αi) be an object
of Hd(X/Y) lying over Ui, and let ϕij : pr∗0ξi → pr∗1ξj be a descent datum. First,
observe that ϕij induces a descent datum (Zi/Ui, ϕij) which is effective by Descent,
Lemma 34.33.1 This produces a scheme Z/U which is finite locally free of degree d
by Descent, Lemma 34.19.28. From now on we identify Zi with Z×U Ui. Next, the
objects yi in the fibre categories YUi descend to an object y in YU because Y is a

3 This means the data gives rise, via the 2-Yoneda lemma (Categories, Lemma 4.39.1), to a

2-commutative diagram

(Sch/Z)fppf x
//

��

X

F

��
(Sch/U)fppf

y // Y

of stacks in groupoids over (Sch/S)fppf . Alternatively, we may picture α as a 2-morphism

(Sch/Z)fppf

y◦(Z→U)

**

F◦x

44�� α Y.

http://stacks.math.columbia.edu/tag/05WB


4038 72. EXAMPLES OF STACKS

stack in groupoids. Similarly the objects xi in the fibre categories XZi descend to an
object x in XZ because X is a stack in groupoids. Finally, the given isomorphisms

αi : (y|Z)Zi = yi|Zi −→ F (xi) = F (x|Zi)
glue to a morphism α : y|Z → F (x) as the Y is a stack and hence IsomY(y|Z , F (x))
is a sheaf. Details omitted. �

Definition 72.17.2. We will denote Hd(X/Y) the degree d finite Hilbert stack of
X over Y constructed above. If Y = S we write Hd(X ) = Hd(X/Y). If X = Y = S
we denote it Hd.

Note that given F : X → Y as above we have the following natural 1-morphisms of
stacks in groupoids over (Sch/S)fppf :

(72.17.2.1)

Hd(X )

%%

Hd(X/Y)

��

oo // Y

Hd
Each of the arrows is given by a ”forgetful functor”.

Lemma 72.17.3. The 1-morphism Hd(X/Y)→ Hd(X ) is faithful.

Proof. To check that Hd(X/Y) → Hd(X ) is faithful it suffices to prove that it is
faithful on fibre categories. Suppose that ξ = (U,Z, y, x, α) and ξ′ = (U,Z ′, y′, x′, α′)
are two objects of Hd(X/Y) over the scheme U . Let (g, b, a), (g′, b′, a′) : ξ → ξ′

be two morphisms in the fibre category of Hd(X/Y) over U . The image of these
morphisms in Hd(X ) agree if and only if g = g′ and a = a′. Then the commutative
diagram

y|Z α
//

b|Z , b′|Z
��

F (x)

F (a)=F (a′)

��
y′|Z

α′ // F (g∗x′) = F ((g′)∗x′)

implies that b|Z = b′|Z . Since Z → U is finite locally free of degree d we see
{Z → U} is an fppf covering, hence b = b′. �
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CHAPTER 73

Sheaves on Algebraic Stacks

73.1. Introduction

There is a myriad of ways to think about sheaves on algebraic stacks. In this chapter
we discuss one approach, which is particularly well adapted to our foundations for
algebraic stacks. Whenever we introduce a type of sheaves we will indicate the
precise relationship with similar notions in the literature. The goal of this chapter
is to state those results that are either obviously true or straightforward to prove
and leave more intricate constructions till later.

In fact, it turns out that to develop a fully fledged theory of constructible étale
sheaves and/or an adequate discussion of derived categories of complexesO-modules
whose cohomology sheaves are quasi-coherent takes a significant amount of work,
see [Ols07b]. We will return to this in Cohomology of Stacks, Section 79.1.

In the literature and in research papers on sheaves on algebraic stacks the lisse-étale
site of an algebraic stack often plays a prominent role. However, it is a problematic
beast, because it turns out that a morphism of algebraic stacks does not induce a
morphism of lisse-étale topoi. We have therefore made the design decision to avoid
any mention of the lisse-étale site as long as possible. Arguments that traditionally
use the lisse-étale site will be replaced by an argument using a Čech covering in the
site Xsmooth defined below.

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 76.1 for an explanation.

73.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 71.2. For convenience we repeat
them here.

We work in a suitable big fppf site Schfppf as in Topologies, Definition 33.7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . We record
what changes if you change the big fppf site elsewhere (insert future reference here).

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 33.7.8. The
absolute case can be recovered by taking S = Spec(Z).
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4042 73. SHEAVES ON ALGEBRAIC STACKS

73.3. Presheaves

In this section we define presheaves on categories fibred in groupoids over (Sch/S)fppf ,
but most of the discussion works for categories over any base category. This section
also serves to introduce the notation we will use later on.

Definition 73.3.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) A presheaf on X is a presheaf on the underlying category of X .
(2) A morphism of presheaves on X is a morphism of presheaves on the un-

derlying category of X .

We denote PSh(X ) the category of presheaves on X .

This defines presheaves of sets. Of course we can also talk about presheaves of
pointed sets, abelian groups, groups, monoids, rings, modules over a fixed ring,
and lie algebras over a fixed field, etc. The category of abelian presheaves, i.e.,
presheaves of abelian groups, is denoted PAb(X ).

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Recall that this means just that f is a functor over (Sch/S)fppf . The material in
Sites, Section 7.18 provides us with a pair of adjoint functors1

(73.3.1.1) fp : PSh(Y) −→ PSh(X ) and pf : PSh(X ) −→ PSh(Y).

The adjointness is

MorPSh(X )(f
pG,F) = MorPSh(Y)(G, pfF)

where F ∈ Ob(PSh(X )) and G ∈ Ob(PSh(Y)). We call fpG the pullback of G. It
follows from the definitions that

fpG(x) = G(f(x))

for any x ∈ Ob(X ). The presheaf pfF is called the pushforward of F . It is described
by the formula

(pfF)(y) = limf(x)→y F(x).

The rest of this section should probably be moved to the chapter on sites and in
any case should be skipped on a first reading.

Lemma 73.3.2. Let f : X → Y and g : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . Then (g ◦ f)p = fp ◦ gp and there is a canonical
isomorphism p(g◦f)→ pg◦pf compatible with with adjointness of (fp, pf), (gp, pg),
and ((g ◦ f)p, p(g ◦ f)).

Proof. Let H be a presheaf on Z. Then (g ◦ f)pH = fp(gpH) is given by the
equalities

(g ◦ f)pH(x) = H((g ◦ f)(x)) = H(g(f(x))) = fp(gpH)(x).

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation p(g◦f)→ pg◦pf . Let F be a presheaf on X . If z
is an object of Z then we get a category J of quadruples (x, f(x)→ y, y, g(y)→ z)
and a category I of pairs (x, g(f(x)) → z). There is a canonical functor J → I

1These functors will be denoted f−1 and f∗ after Lemma 73.4.4 has been proved.

http://stacks.math.columbia.edu/tag/06TJ
http://stacks.math.columbia.edu/tag/06TL


73.3. PRESHEAVES 4043

sending the object (x, α : f(x)→ y, y, β : g(y)→ z) to (x, β ◦ f(α) : g(f(x))→ z).
This gives the arrow in

(p(g ◦ f)F)(z) = limg(f(x))→z F(x)

= limI F
→ limJ F

= limg(y)→z

(
limf(x)→y F(x)

)
= (pg ◦ pfF)(x)

by Categories, Lemma 4.14.8. We omit the verification that this is compatible with
restriction maps. An alternative to this direct construction is to define p(g ◦ f) ∼=
pg ◦ pf as the unique map compatible with the adjointness properties. This also
has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf), (gp, pg), and ((g ◦ f)p, p(g ◦ f)) means
that given presheaves H and F as above we have a commutative diagram

MorPSh(X )(f
pgpH,F) MorPSh(Y)(g

pH, pfF) MorPSh(Y)(H, pgpfF)

MorPSh(X )((g ◦ f)pG,F) MorPSh(Y)(G, p(g ◦ f)F)

OO

Proof omitted. �

Lemma 73.3.3. Let f, g : X → Y be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . Let t : f → g be a 2-morphism of categories fibred in groupoids
over (Sch/S)fppf . Assigned to t there are canonical isomorphisms of functors

tp : gp −→ fp and pt : pf −→ pg

which compatible with adjointness of (fp, pf) and (gp, pg) and with vertical and
horizontal composition of 2-morphisms.

Proof. Let G be a presheaf on Y. Then tp : gpG → fpG is given by the family of
maps

gpG(x) = G(g(x))
G(tx)−−−→ G(f(x)) = fpG(x)

parametrized by x ∈ Ob(X ). This makes sense as tx : f(x) → g(x) and G is
a contravariant functor. We omit the verification that this is compatible with
restriction mappings.

To define the transformation pt for y ∈ Ob(Y) define fyI, resp. gyI to be the category
of pairs (x, ψ : f(x)→ y), resp. (x, ψ : g(x)→ y), see Sites, Section 7.18. Note that
t defines a functor yt : gyI → f

yI given by the rule

(x, g(x)→ y) 7−→ (x, f(x)
tx−→ g(x)→ y).

Note that for F a presheaf on X the composition of yt with F : fyIopp → Sets,
(x, f(x) → y) 7→ F(x) is equal to F : gyIopp → Sets. Hence by Categories, Lemma
4.14.8 we get for every y ∈ Ob(Y) a canonical map

(pfF)(y) = limf
yI F −→ limg

yI F = (pgF)(y)

We omit the verification that this is compatible with restriction mappings. An
alternative to this direct construction is to define pt as the unique map compatible

http://stacks.math.columbia.edu/tag/06TM
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with the adjointness properties of the pairs (fp, pf) and (gp, pg) (see below). This
also has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf) and (gp, pg) means that given presheaves
G and F as above we have a commutative diagram

MorPSh(X )(f
pG,F)

−◦tp

��

MorPSh(Y)(G, pfF)

pt◦−
��

MorPSh(X )(g
pG,F) MorPSh(Y)(G, pgF)

Proof omitted. Hint: Work through the proof of Sites, Lemma 7.18.2 and observe
the compatibility from the explicit description of the horizontal and vertical maps
in the diagram.

We omit the verification that this is compatible with vertical and horizontal com-
positions. Hint: The proof of this for tp is straightforward and one can conclude
that this holds for the pt maps using compatibility with adjointness. �

73.4. Sheaves

We first make an observation that is important and trivial (especially for those
readers who do not worry about set theoretical issues).

Consider a big fppf site Schfppf as in Topologies, Definition 33.7.6 and denote its
underlying category Schα. Besides being the underlying category of a fppf site, the
category Schα can also can serve as the underlying category for a big Zariski site,
a big étale site, a big smooth site, and a big syntomic site, see Topologies, Remark
33.9.1. We denote these sites SchZar, Schétale, Schsmooth, and Schsyntomic. In this
situation, since we have defined the big Zariski site (Sch/S)Zar of S, the big étale
site (Sch/S)étale of S, the big smooth site (Sch/S)smooth of S, the big syntomic site
(Sch/S)syntomic of S, and the big fppf site (Sch/S)fppf of S as the localizations
(see Sites, Section 7.24) SchZar/S, Schétale/S, Schsmooth/S, Schsyntomic/S, and
Schfppf/S of these (absolute) big sites we see that all of these have the same
underlying category, namely Schα/S.

It follows that if we have a category p : X → (Sch/S)fppf fibred in groupoids,
then X inherits a Zariski, étale, smooth, syntomic, and fppf topology, see Stacks,
Definition 8.10.2.

Definition 73.4.1. Let X be a category fibred in groupoids over (Sch/S)fppf .

(1) The associated Zariski site, denoted XZar, is the structure of site on X
inherited from (Sch/S)Zar.

(2) The associated étale site, denoted Xétale, is the structure of site on X
inherited from (Sch/S)étale.

(3) The associated smooth site, denoted Xsmooth, is the structure of site on X
inherited from (Sch/S)smooth.

(4) The associated syntomic site, denoted Xsyntomic, is the structure of site
on X inherited from (Sch/S)syntomic.

(5) The associated fppf site, denoted Xfppf , is the structure of site on X
inherited from (Sch/S)fppf .

http://stacks.math.columbia.edu/tag/06TP
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This definition makes sense by the discussion above. If X is an algebraic stack, the
literature calls Xfppf (or a site equivalent to it) the big fppf site of X and similarly
for the other ones. We may occasionally use this terminology to distinguish this
construction from others.

Remark 73.4.2. We only use this notation when the symbol X refers to a category
fibred in groupoids, and not a scheme, an algebraic space, etc. In this way we will
avoid confusion with the small étale site of a scheme, or algebraic space which is
denoted Xétale (in which case we use a roman capital instead of a calligraphic one).

Now that we have these topologies defined we can say what it means to have a
sheaf on X , i.e., define the corresponding topoi.

Definition 73.4.3. Let X be a category fibred in groupoids over (Sch/S)fppf . Let
F be a presheaf on X .

(1) We say F is a Zariski sheaf, or a sheaf for the Zariski topology if F is a
sheaf on the associated Zariski site XZar.

(2) We say F is an étale sheaf, or a sheaf for the étale topology if F is a sheaf
on the associated étale site Xétale.

(3) We say F is a smooth sheaf, or a sheaf for the smooth topology if F is a
sheaf on the associated smooth site Xsmooth.

(4) We say F is a syntomic sheaf, or a sheaf for the syntomic topology if F is
a sheaf on the associated syntomic site Xsyntomic.

(5) We say F is an fppf sheaf, or a sheaf, or a sheaf for the fppf topology if F
is a sheaf on the associated fppf site Xfppf .

A morphism of sheaves is just a morphism of presheaves. We denote these categories
of sheaves Sh(XZar), Sh(Xétale), Sh(Xsmooth), Sh(Xsyntomic), and Sh(Xfppf ).

Of course we can also talk about sheaves of pointed sets, abelian groups, groups,
monoids, rings, modules over a fixed ring, and lie algebras over a fixed field, etc. The
category of abelian sheaves, i.e., sheaves of abelian groups, is denoted Ab(Xfppf )
and similarly for the other topologies. If X is an algebraic stack, then Sh(Xfppf )
is equivalent (modulo set theoretical problems) to what in the literature would be
termed the category of sheaves on the big fppf site of X . Similar for other topologies.
We may occasionally use this terminology to distinguish this construction from
others.

Since the topologies are listed in increasing order of strength we have the following
strictly full inclusions

Sh(Xfppf ) ⊂ Sh(Xsyntomic) ⊂ Sh(Xsmooth) ⊂ Sh(Xétale) ⊂ Sh(XZar) ⊂ PSh(X )

We sometimes write Sh(Xfppf ) = Sh(X ) and Ab(Xfppf ) = Ab(X ) in accordance
with our terminology that a sheaf on X is an fppf sheaf on X .

With this setup functoriality of these topoi is straightforward, and moreover, is
compatible with the inclusion functors above.

Lemma 73.4.4. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functors pf
and fp of (73.3.1.1) transform τ sheaves into τ sheaves and define a morphism of
topoi f : Sh(Xτ )→ Sh(Yτ ).

Proof. This follows immediately from Stacks, Lemma 8.10.3. �

http://stacks.math.columbia.edu/tag/06TQ
http://stacks.math.columbia.edu/tag/06TR
http://stacks.math.columbia.edu/tag/06TS
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In other words, pushforward and pullback of presheaves as defined in Section 73.3
also produces pushforward and pullback of τ -sheaves. Having said all of the above
we see that we can write fp = f−1 and pf = f∗ without any possibility of confusion.

Definition 73.4.5. Let f : X → Y be a morphism of categories fibred in groupoids
over (Sch/S)fppf . We denote

f = (f−1, f∗) : Sh(Xfppf ) −→ Sh(Yfppf )

the associated morphism of fppf topoi constructed above. Similarly for the associ-
ated Zariski, étale, smooth, and syntomic topoi.

As discussed in Sites, Section 7.43 the same formula (on the underlying sheaf of
sets) defines pushforward and pullback for sheaves (for one of our topologies) of
pointed sets, abelian groups, groups, monoids, rings, modules over a fixed ring, and
lie algebras over a fixed field, etc.

73.5. Computing pushforward

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Let F be a presheaf on X . Let y ∈ Ob(Y). We can compute f∗F(y) in the following
way. Suppose that y lies over the scheme V and using the 2-Yoneda lemma think
of y as a 1-morphism. Consider the projection

pr : (Sch/V )fppf ×y,Y X −→ X

Then we have a canonical identification

(73.5.0.1) f∗F(y) = Γ
(

(Sch/V )fppf ×y,Y X , pr−1F
)

Namely, objects of the 2-fibre product are triples (h : U → V, x, f(x) → h∗y).
Dropping the h from the notation we see that this is equivalent to the data of an
object x of X and a morphism α : f(x)→ y of Y. Since f∗F(y) = limf(x)→y F(x)
by definition the equality follows.

As a consequence we have the following “base change” result for pushforwards.
This result is trivial and hinges on the fact that we are using “big” sites.

Lemma 73.5.1. Let S be a scheme. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′

g // Y

be a 2-cartesian diagram of categories fibred in groupoids over S. Then we have a
canonical isomorphism

g−1f∗F −→ f ′∗(g
′)−1F

functorial in the presheaf F on X .

Proof. Given an object y′ of Y ′ over V there is an equivalence

(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

Hence by (73.5.0.1) a bijection g−1f∗F(y′)→ f ′∗(g
′)−1F(y′). We omit the verifica-

tion that this is compatible with restriction mappings. �

http://stacks.math.columbia.edu/tag/06TT
http://stacks.math.columbia.edu/tag/075B
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In the case of a representable morphism of categories fibred in groupoids this for-
mula (73.5.0.1) simplifies. We suggest the reader skip the rest of this section.

Lemma 73.5.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The following are equivalent

(1) f is representable, and
(2) for every y ∈ Ob(Y) the functor X opp → Sets, x 7→ MorY(f(x), y) is

representable.

Proof. According to the discussion in Algebraic Stacks, Section 71.6 we see that f
is representable if and only if for every y ∈ Ob(Y) lying over U the 2-fibre product
(Sch/U)fppf ×y,Y X is representable, i.e., of the form (Sch/Vy)fppf for some scheme
Vy over U . Objects in this 2-fibre products are triples (h : V → U, x, α : f(x) →
h∗y) where α lies over idV . Dropping the h from the notation we see that this is
equivalent to the data of an object x of X and a morphism f(x) → y. Hence the
2-fibre product is representable by Vy and f(xy) → y where xy is an object of X
over Vy if and only if the functor in (2) is representable by xy with universal object
a map f(xy)→ y. �

Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. Assume f is representable.
For every y ∈ Ob(Y) we choose an object u(y) ∈ Ob(X ) representing the functor
x 7→ MorY(f(x), y) of Lemma 73.5.2 (this is possible by the axiom of choice). The
objects come with canonical morphisms f(u(y)) → y by construction. For every
morphism β : y′ → y in Y we obtain a unique morphism u(β) : u(y′)→ u(y) in X
such that the diagram

f(u(y′))

��

f(u(β))
// f(u(y))

��
y′ // y

commutes. In other words, u : Y → X is a functor. In fact, we can say a little bit
more. Namely, suppose that V ′ = q(y′), V = q(y), U ′ = p(u(y′)) and U = p(u(y)).
Then

U ′
p(u(β))

//

��

U

��
V ′

q(β) // V

is a fibre product square. This is true because U ′ → U represents the base change
(Sch/V ′)fppf ×y′,Y X → (Sch/V )fppf ×y,Y X of V ′ → V .

Lemma 73.5.3. Let f : X → Y be a representable 1-morphism of categories fi-
bred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Then the functor u : Yτ → Xτ is continuous and defines a morphism of sites
Xτ → Yτ which induces the same morphism of topoi Sh(Xτ ) → Sh(Yτ ) as the

http://stacks.math.columbia.edu/tag/06W7
http://stacks.math.columbia.edu/tag/06W8
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morphism f constructed in Lemma 73.4.4. Moreover, f∗F(y) = F(u(y)) for any
presheaf F on X .

Proof. Let {yi → y} be a τ -covering in Y. By definition this simply means that
{q(yi)→ q(y)} is a τ -covering of schemes. By the final remark above the lemma we
see that {p(u(yi)) → p(u(y))} is the base change of the τ -covering {q(yi) → q(y)}
by p(u(y)) → q(y), hence is itself a τ -covering by the axioms of a site. Hence
{u(yi)→ u(y)} is a τ -covering of X . This proves that u is continuous.

Let’s use the notation up, us, u
p, us of Sites, Sections 7.5 and 7.14. If we can show

the final assertion of the lemma, then we see that f∗ = up = us (by continuity of u
seen above) and hence by adjointness f−1 = us which will prove us is exact, hence
that u determines a morphism of sites, and the equality will be clear as well. To
see that f∗F(y) = F(u(y)) note that by definition

f∗F(y) = (pfF)(y) = limf(x)→y F(x).

Since u(y) is a final object in the category the limit is taken over we conclude. �

73.6. The structure sheaf

Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. The 2-category of categories fibred in groupoids over
(Sch/S)fppf has a final object, namely, id : (Sch/S)fppf → (Sch/S)fppf and p is
a 1-morphism from X to this final object. Hence any presheaf G on (Sch/S)fppf
gives a presheaf p−1G on X defined by the rule p−1G(x) = G(p(x)). Moreover, the
discussion in Section 73.4 shows that p−1G is a τ sheaf whenever G is a τ -sheaf.

Recall that the site (Sch/S)fppf is a ringed site with structure sheaf O defined by
the rule

(Sch/S)opp −→ Rings, U/S 7−→ Γ(U,OU )

see Descent, Definition 34.7.2.

Definition 73.6.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
The structure sheaf of X is the sheaf of rings OX = p−1O.

For an object x of X lying over U we have OX (x) = O(U) = Γ(U,OU ). Needless to
say OX is also a Zariski, étale, smooth, and syntomic sheaf, and hence each of the
sites XZar, Xétale, Xsmooth, Xsyntomic, and Xfppf is a ringed site. This construction
is functorial as well.

Lemma 73.6.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a canon-
ical identification f−1OX = OY which turns f : Sh(Xτ )→ Sh(Yτ ) into a morphism
of ringed topoi.

Proof. Denote p : X → (Sch/S)fppf and q : Y → (Sch/S)fppf the structural
functors. Then q = p ◦ f , hence q−1 = f−1 ◦ p−1 by Lemma 73.3.2. The result
follows. �

Remark 73.6.3. In the situation of Lemma 73.6.2 the morphism of ringed topoi
f : Sh(Xτ ) → Sh(Yτ ) is flat as is clear from the equality f−1OX = OY . This is a
bit counter intuitive, for example because a closed immersion of algebraic stacks is
typically not flat (as a morphism of algebraic stacks). However, exactly the same

http://stacks.math.columbia.edu/tag/06TV
http://stacks.math.columbia.edu/tag/06TW
http://stacks.math.columbia.edu/tag/06TX
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thing happens when taking a closed immersion i : X → Y of schemes: in this case
the associated morphism of big τ -sites i : (Sch/X)τ → (Sch/Y )τ also is flat.

73.7. Sheaves of modules

Since we have a structure sheaf we have modules.

Definition 73.7.1. Let X be a category fibred in groupoids over (Sch/S)fppf .

(1) A presheaf of modules on X is a presheaf of OX -modules. The category
of presheaves of modules is denoted PMod(OX ).

(2) We say a presheaf of modules F is an OX -module, or more precisely a
sheaf of OX -modules if F is an fppf sheaf. The category of OX -modules
is denoted Mod(OX ).

These (pre)sheaves of modules occur in the literature as (pre)sheaves of OX -modules
on the big fppf site of X . We will occasionally use this terminology if we want to
distinguish these categories from others. We will also encounter presheaves of mod-
ules which are sheaves in the Zariski, étale, smooth, or syntomic topologies (without
necessarily being sheaves). If need be these will be denoted Mod(Xétale,OX ) and
similarly for the other topologies.

Next, we address functoriality – first for presheaves of modules. Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. The functors f−1, f∗ on abelian
presheaves extend to functors
(73.7.1.1)

f−1 : PMod(OY) −→ PMod(OX ) and f∗ : PMod(OY) −→ PMod(OX )

This is immediate for f−1 because f−1G(x) = G(f(x)) which is a module over
OY(f(x)) = O(q(f(x))) = O(p(x)) = OX (x). Alternatively it follows because
f−1OY = OX and because f−1 commutes with limits (on presheaves). Since f∗ is
a right adjoint it commutes with all limits (on presheaves) in particular products.
Hence we can extend f∗ to a functor on presheaves of modules as in the proof of
Modules on Sites, Lemma 18.12.1. We claim that the functors (73.7.1.1) form an
adjoint pair of functors:

MorPMod(OX )(f
−1G,F) = MorPMod(OY)(G, f∗F).

As f−1OY = OX this follows from Modules on Sites, Lemma 18.12.3 by endowing
X and Y with the chaotic topology.

Next, we discuss functoriality for modules, i.e., for sheaves of modules in the fppf
topology. Denote by f also the induced morphism of ringed topoi, see Lemma
73.6.2 (for the fppf topologies right now). Note that the functors f−1 and f∗
of (73.7.1.1) preserve the subcategories of sheaves of modules, see Lemma 73.4.4.
Hence it follows immediately that

(73.7.1.2) f−1 : Mod(OY) −→ Mod(OX ) and f∗ : Mod(OY) −→ Mod(OX )

http://stacks.math.columbia.edu/tag/06WB
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form an adjoint pair of functors:

MorMod(OX )(f
−1G,F) = MorMod(OY)(G, f∗F).

By uniqueness of adjoints we conclude that f∗ = f−1 where f∗ is as defined in
Modules on Sites, Section 18.13 for the morphism of ringed topoi f above. Of
course we could have seen this directly because f∗(−) = f−1(−) ⊗f−1OY OX and

because f−1OY = OX .

Similarly for sheaves of modules in the Zariski, étale, smooth, syntomic topology.

73.8. Representable categories

In this short section we compare our definitions with what happens in case the
algebraic stacks in question are representable.

Lemma 73.8.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S). Assume X is representable by a scheme X. For τ ∈ {Zar, étale, smooth,
syntomic, fppf} there is a canonical equivalence

(Xτ ,OX ) = ((Sch/X)τ ,OX)

of ringed sites.

Proof. This follows by choosing an equivalence (Sch/X)τ → X of categories fibred
in groupoids over (Sch/S)fppf and using the functoriality of the construction X  
Xτ . �

Lemma 73.8.2. Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over S. Assume X , Y are representable by schemes X, Y .
Let f : X → Y be the morphism of schemes corresponding to f . For τ ∈ {Zar,
étale, smooth, syntomic, fppf} the morphism of ringed topoi f : (Sh(Xτ ),OX ) →
(Sh(Xτ ),OX ) agrees with the morphisms of ringed topoi f : (Sh((Sch/X)τ ),OX)→
(Sh((Sch/Y )τ ),OY ) via the identifications of Lemma 73.8.1.

Proof. Follows by unwinding the definitions. �

73.9. Restriction

A trivial but useful observation is that the localization of a category fibred in
groupoids at an object is equivalent to the big site of the scheme it lies over.

Lemma 73.9.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x).
The functor p induces an equivalence of sites Xτ/x→ (Sch/U)τ .

Proof. Note that (Sch/U)τ is the localization of the site (Sch/S)fppf at the object
U . It follows from Categories, Definition 4.33.1 that the rule x′/x 7→ p(x′)/p(x)
defines an equivalence of categories Xτ/x→ (Sch/U)τ . Whereupon it follows from
Stacks, Definition 8.10.2 that coverings of x′ in Xτ/x are in bijective correspondence
with coverings of p(x′) in (Sch/U)τ . �

We use the lemma above to talk about the pullback and the restriction of a
(pre)sheaf to a scheme.

Definition 73.9.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let x ∈ Ob(X ) lying over U = p(x). Let F be a presheaf on X .

http://stacks.math.columbia.edu/tag/075I
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(1) The pullback x−1F of F is the restriction F|(X/x) viewed as a presheaf on
(Sch/U)fppf via the equivalence X/x→ (Sch/U)fppf of Lemma 73.9.1.

(2) The restriction of F to Uétale is x−1F|Uétale , abusively written F|Uétale .

This notation makes sense because to the object x the 2-Yoneda lemma, see Alge-
braic Stacks, Section 71.5 associates a 1-morphism x : (Sch/U)fppf → X/x which
is quasi-inverse to p : X/x → (Sch/U)fppf . Hence x−1F truly is the pullback of
F via this 1-morphism. In particular, by the material above, if F is a sheaf (or a
Zariski, étale, smooth, syntomic sheaf), then x−1F is a sheaf on (Sch/U)fppf (or
on (Sch/U)Zar, (Sch/U)étale, (Sch/U)smooth, (Sch/U)syntomic).

Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let ϕ : x → y
be a morphism of X lying over the morphism of schemes a : U → V . Recall
that a induces a morphism of small étale sites asmall : Uétale → Vétale, see Étale
Cohomology, Section 44.34. Let F be a presheaf on X . Let F|Uétale and F|Vétale
be the restrictions of F via x and y. There is a natural comparison map

(73.9.2.1) cϕ : F|Vétale −→ asmall,∗(F|Uétale)
of presheaves on Uétale. Namely, if V ′ → V is étale, set U ′ = V ′ ×V U and define
cϕ on sections over V ′ via

asmall,∗(F|Uétale)(V ′) F|Uétale(U ′) F(x′)

F|Vétale(V ′)

cϕ

OO

F(y′)

F(ϕ′)

OO

Here ϕ′ : x′ → y′ is a morphism of X fitting into a commutative diagram

x′ //

ϕ′

��

x

ϕ

��
y′ // y

lying over

U ′ //

��

U

a

��
V ′ // V

The existence and uniqueness of ϕ′ follow from the axioms of a category fibred in
groupoids. We omit the verification that cϕ so defined is indeed a map of presheaves
(i.e., compatible with restriction mappings) and that it is functorial in F . In case
F is a sheaf for the étale topology we obtain a comparison map

(73.9.2.2) cϕ : a−1
small(F|Vétale) −→ F|Uétale

which is also denoted cϕ as indicated (this is the customary abuse of notation in
not distinguishing between adjoint maps).

Lemma 73.9.3. Let F be an étale sheaf on X → (Sch/S)fppf .

(1) If ϕ : x→ y and ψ : y → z are morphisms of X lying over a : U → V and
b : V →W , then the composition

a−1
small(b

−1
small(F|Wétale

))
a−1
smallcψ−−−−−−→ a−1

small(F|Vétale)
cϕ−→ F|Uétale

is equal to cψ◦ϕ via the identification

(b ◦ a)−1
small(F|Wétale

) = a−1
small(b

−1
small(F|Wétale

)).

(2) If ϕ : x → y lies over an étale morphism of schemes a : U → V , then
(73.9.2.2) is an isomorphism.

http://stacks.math.columbia.edu/tag/075D
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(3) Suppose f : Y → X is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf and y is an object of Y lying over the scheme U with image
x = f(y). Then there is a canonical identification f−1F|Uétale = F|Uétale .

(4) Moreover, given ψ : y′ → y in Y lying over a : U ′ → U the comparison
map cψ : a−1

small(F
−1F|Uétale) → F−1F|U ′étale is equal to the comparison

map cf(ψ) : a−1
smallF|Uétale → F|U ′étale via the identifications in (3).

Proof. The verification of these properties is omitted. �

Next, we turn to the restriction of (pre)sheaves of modules.

Lemma 73.9.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U =
p(x). The equivalence of Lemma 73.9.1 extends to an equivalence of ringed sites
(Xτ/x,OX |x)→ ((Sch/U)τ ,O).

Proof. This is immediate from the construction of the structure sheaves. �

Let X be a category fibred in groupoids over (Sch/S)fppf . Let F be a (pre)sheaf
of modules on X as in Definition 73.7.1. Let x be an object of X lying over U .
Then Lemma 73.9.4 guarantees that the restriction x−1F is a (pre)sheaf of modules
on (Sch/U)fppf . We will sometimes write x∗F = x−1F in this case. Similarly, if
F is a sheaf for the Zariski, étale, smooth, or syntomic topology, then x−1F is
as well. Moreover, the restriction F|Uétale = x−1F|Uétale to U is a presheaf of
OUétale -modules. If F is a sheaf for the étale topology, then F|Uétale is a sheaf of
modules. Moreover, if ϕ : x→ y is a morphism of X lying over a : U → V then the

comparison map (73.9.2.2) is compatible with a]small (see Descent, Remark 34.7.4)
and induces a comparison map

(73.9.4.1) cϕ : a∗small(F|Vétale) −→ F|Uétale
of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 73.9.3
hold in the setting of étale sheaves of modules as well. We will use this in the
following without further mention.

Lemma 73.9.5. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. The site Xτ has enough points.

Proof. By Sites, Lemma 7.37.5 we have to show that there exists a family of objects
x of X such that Xτ/x has enough points and such that the sheaves h#

x cover the

final object of the category of sheaves. By Lemma 73.9.1 and Étale Cohomology,
Lemma 44.30.1 we see that Xτ/x has enough points for every object x and we
win. �

73.10. Restriction to algebraic spaces

In this section we consider sheaves on categories representable by algebraic spaces.
The following lemma is the analogue of Topologies, Lemma 33.4.13 for algebraic
spaces.

Lemma 73.10.1. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. Assume X is representably by an algebraic space F . Then there exists a
continuous and cocontinuous functor Fétale → Xétale which induces a morphism of
ringed sites

πF : (Xétale,OX ) −→ (Fétale,OF )

http://stacks.math.columbia.edu/tag/06W9
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and a morphism of ringed topoi

iF : (Sh(Fétale),OF ) −→ (Sh(Xétale),OX )

such that πF ◦ iF = id. Moreover πF,∗ = i−1
F .

Proof. Choose an equivalence j : SF → X , see Algebraic Stacks, Sections 71.7 and
71.8. An object of Fétale is a scheme U together with an étale morphism ϕ : U → F .
Then ϕ is an object of SF over U . Hence j(ϕ) is an object of X over U . In this
way j induces a functor u : Fétale → X . It is clear that u is continuous and
cocontinuous for the étale topology on X . Since j is an equivalence, the functor u
is fully faithful. Also, fibre products and equalizers exist in Fétale and u commutes
with them because these are computed on the level of underlying schemes in Fétale.
Thus Sites, Lemmas 7.20.5, 7.20.6, and 7.20.7 apply. In particular u defines a
morphism of topoi iF : Sh(Fétale) → Sh(Xétale) and there exists a left adjoint iF,!
of i−1

F which commutes with fibre products and equalizers.

We claim that iF,! is exact. If this is true, then we can define πF by the rules

π−1
F = iF,! and πF,∗ = i−1

F and everything is clear. To prove the claim, note that
we already know that iF,! is right exact and preserves fibre products. Hence it
suffices to show that iF,!∗ = ∗ where ∗ indicates the final object in the category of
sheaves of sets. Let U be a scheme and let ϕ : U → F be surjective and étale. Set
R = U ×F U . Then

hR
//
// hU // ∗

is a coequalizer diagram in Sh(Fétale). Using the right exactness of iF,!, using
iF,! = (up )#, and using Sites, Lemma 7.5.6 we see that

hu(R)
//
// hu(U)

// iF,!∗

is a coequalizer diagram in Sh(Fétale). Using that j is an equivalence and that
F = U/R it follows that the coequalizer in Sh(Xétale) of the two maps hu(R) →
hu(U) is ∗. We omit the proof that these morphisms are compatible with structure
sheaves. �

Assume X is an algebraic stack represented by the algebraic space F . Let j : SF →
X be an equivalence and denote u : Fétale → Xétale the functor of the proof of
Lemma 73.10.1 above. Given a sheaf F on Xétale we have

πF,∗F(U) = i−1
F F(U) = F(u(U)).

This is why we often think of i−1
F as a restriction functor similarly to Definition

73.9.2 and to the restriction of a sheaf on the big étale site of a scheme to the small
étale site of a scheme. We often use the notation

(73.10.1.1) F|Fétale = i−1
F F = πF,∗F

in this situation.

Lemma 73.10.2. Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over (Sch/S)fppf . Assume X , Y are representable by algebraic
spaces F , G. Denote f : F → G the induced morphism of algebraic spaces, and

http://stacks.math.columbia.edu/tag/073N
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fsmall : Fétale → Gétale the corresponding morphism of ringed topoi. Then

(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF )

fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi.

Proof. This is similar to Topologies, Lemma 33.4.16 (3) but there is a small snag
due to the fact that F → G may not be representable by schemes. In particular we
don’t get a commutative diagram of ringed sites, but only a commutative diagram
of ringed topoi.

Before we start the proof proper, we choose equivalences j : SF → X and j′ :
SG → Y which induce functors u : Fétale → X and u′ : Gétale → Y as in the
proof of Lemma 73.10.1. Because of the 2-functoriality of sheaves on categories
fibred in groupoids over Schfppf (see discussion in Section 73.3) we may assume
that X = SF and Y = SG and that f : SF → SG is the functor associated to the
morphism f : F → G. Correspondingly we will omit u and u′ from the notation,
i.e., given an object U → F of Fétale we denote U/F the corresponding object of
X . Similarly for G.

Let G be a sheaf on Xétale. To prove (2) we compute πG,∗f∗G and fsmall,∗πF,∗G.
To do this let V → G be an object of Gétale. Then

πG,∗f∗G(V ) = f∗G(V/G) = Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

see (73.5.0.1). The fibre product in the formula is

(Sch/V )fppf ×Y X = (Sch/V )fppf ×SG SF = SV×GF
i.e., it is the split category fibred in groupoids associated to the algebraic space
V ×G F . And pr−1G is a sheaf on SV×GF for the étale topology.

In particular, if V ×G F is representable, i.e., if it is a scheme, then πG,∗f∗G(V ) =
G(V ×G F/F ) and also

fsmall,∗πF,∗G(V ) = πF,∗G(V ×G F ) = G(V ×G F/F )

which proves the desired equality in this special case.

In general, choose a scheme U and a surjective étale morphism U → V ×G F . Set
R = U ×V×GF U . Then U/V ×G F and R/V ×G F are objects of the fibre product
category above. Since pr−1G is a sheaf for the étale topology on SV×GF the diagram

Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

// pr−1G(U/V ×G F )
//
// pr−1G(R/V ×G F )

is an equalizer diagram. Note that pr−1G(U/V×GF ) = G(U/F ) and pr−1G(R/V×G
F ) = G(R/F ) by the definition of pullbacks. Moreover, by the material in Proper-
ties of Spaces, Section 48.15 (especially, Properties of Spaces, Remark 48.15.4 and
Lemma 48.15.7) we see that there is an equalizer diagram

fsmall,∗πF,∗G(V ) // πF,∗G(U/F )
//
// πF,∗G(R/F )
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Since we also have πF,∗G(U/F ) = G(U/F ) and πF,∗G(U/F ) = G(U/F ) we obtain
a canonical identification fsmall,∗πF,∗G(V ) = πG,∗f∗G(V ). We omit the proof that
this is compatible with restriction mappings and that it is functorial in G. �

Let f : X → Y and f : F → G be as in the second part of the lemma above. A
consequence of the lemma, using (73.10.1.1), is that

(73.10.2.1) (f∗F)|Gétale = fsmall,∗(F|Fétale)
for any sheaf F on Xétale. Moreover, if F is a sheaf of O-modules, then (73.10.2.1)
is an isomorphism of OG-modules on Gétale.

Finally, suppose that we have a 2-commutative diagram

U a //

f ��

|� ϕ

V
g

��
X

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf , that F is a sheaf
on Xétale, and that U ,V are representable by algebraic spaces U, V . Then we obtain
a comparison map

(73.10.2.2) cϕ : a−1
small(g

−1F|Vétale) −→ f−1F|Uétale
where a : U → V denotes the morphism of algebraic spaces corresponding to a.
This is the analogue of (73.9.2.2). We define cϕ as the adjoint to the map

g−1F|Vétale −→ asmall,∗(f
−1F|Uétale) = (a∗f

−1F)|Vétale
(equality by (73.10.2.1)) which is the restriction to V (73.10.1.1) of the map

g−1F → a∗a
−1g−1F = a∗f

−1F
where the last equality uses the 2-commutativity of the diagram above. In case F
is a sheaf of OX -modules cϕ induces a comparison map

(73.10.2.3) cϕ : a∗small(g
∗F|Vétale) −→ f∗F|Uétale

of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 73.9.3
hold in this setting as well.

73.11. Quasi-coherent modules

At this point we can apply the general definition of a quasi-coherent module to the
situation discussed in this chapter.

Definition 73.11.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
A quasi-coherent module on X , or a quasi-coherent OX -module is a quasi-coherent
module on the ringed site (Xfppf ,OX ) as in Modules on Sites, Definition 18.23.1.
The category of quasi-coherent sheaves on X is denoted QCoh(OX ).

If X is an algebraic stack, then this definition agrees with all definitions in the
literature in the sense that QCoh(OX ) is equivalent (modulo set theoretic issues) to
any variant of this category defined in the literature. For example, we will match
our definition with the definition in [Ols07b, Definition 6.1] in Cohomology on
Stacks, Lemma 73.11.5. We will also see alternative constructions of this category
later on.

http://stacks.math.columbia.edu/tag/06WG
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In general (as is the case for morphisms of schemes) the pushforward of quasi-
coherent sheaf along a 1-morphism is not quasi-coherent. Pullback does preserve
quasi-coherence.

Lemma 73.11.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(OY) → Mod(OX ) pre-
serves quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 18.23.4. �

It turns out that quasi-coherent sheaves have a very simple characterization in
terms of their pullbacks. See also Lemma 73.11.5 for a characterization in terms of
restrictions.

Lemma 73.11.3. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a sheaf of OX -modules. Then F is quasi-coherent if and only if x∗F is a
quasi-coherent sheaf on (Sch/U)fppf for every object x of X with U = p(x).

Proof. By Lemma 73.11.2 the condition is necessary. Conversely, since x∗F is just
the restriction to Xfppf/x we see that it is sufficient directly from the definition of
a quasi-coherent sheaf (and the fact that the notion of being quasi-coherent is an
intrinsic property of sheaves of modules, see Modules on Sites, Section 18.18). �

Although there is a variant for the Zariski topology, it seems that the étale topology
is the natural topology to use in the following definition.

Definition 73.11.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let F be a presheaf of OX -modules. We say F is locally quasi-coherent2 if F is a
sheaf for the étale topology and for every object x of X the restriction x∗F|Uétale
is a quasi-coherent sheaf. Here U = p(x).

We use LQCoh(OX ) to indicate the category of locally quasi-coherent modules. We
now have the following diagram of categories of modules

QCoh(OX ) //

��

Mod(OX )

��
LQCoh(OX ) // Mod(Xétale,OX )

where the arrows are strictly full embeddings. It turns out that many results
for quasi-coherent sheaves have a counter part for locally quasi-coherent modules.
Moreover, from many points of view (as we shall see later) this is a natural category
to consider. For example the quasi-coherent sheaves are exactly those locally quasi-
coherent modules that are “cartesian”, i.e., satisfy the second condition of the
lemma below.

Lemma 73.11.5. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be a presheaf of OX -modules. Then F is quasi-coherent if and only if the following
two conditions hold

(1) F is locally quasi-coherent, and
(2) for any morphism ϕ : x → y of X lying over f : U → V the comparison

map cϕ : f∗smallF|Vétale → F|Uétale of (73.9.4.1) is an isomorphism.

2This is nonstandard notation.
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Proof. Assume F is quasi-coherent. Then F is a sheaf for the fppf topology, hence
a sheaf for the étale topology. Moreover, any pullback of F to a ringed topos is
quasi-coherent, hence the restrictions x∗F|Uétale are quasi-coherent. This proves F
is locally quasi-coherent. Let y be an object of X with V = p(y). We have seen
that X/y = (Sch/V )fppf . By Descent, Proposition 34.7.11 it follows that y∗F is
the quasi-coherent module associated to a (usual) quasi-coherent module FV on
the scheme V . Hence certainly the comparison maps (73.9.4.1) are isomorphisms.

Conversely, suppose that F satisfies (1) and (2). Let y be an object of X with
V = p(y). Denote FV the quasi-coherent module on the scheme V corresponding
to the restriction y∗F|Vétale which is quasi-coherent by assumption (1), see Descent,
Proposition 34.7.11. Condition (2) now signifies that the restrictions x∗F|Uétale for
x over y are each isomorphic to the (étale sheaf associated to the) pullback of FV
via the corresponding morphism of schemes U → V . Hence y∗F is the sheaf on
(Sch/V )fppf associated to FV . Hence it is quasi-coherent (by Descent, Proposition
34.7.11 again) and we see that F is quasi-coherent on X by Lemma 73.11.3. �

Lemma 73.11.6. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(Yétale,OY)→ Mod(Xétale,OX )
preserves locally quasi-coherent sheaves.

Proof. Let G be locally quasi-coherent on Y. Choose an object x of X lying over
the scheme U . The restriction x∗f∗G|Uétale equals (f ◦ x)∗G|Uétale hence is a quasi-
coherent sheaf by assumption on G. �

Lemma 73.11.7. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The category LQCoh(OX ) has colimits and they agree with colimits in the
category Mod(Xétale,OX ).

(2) The category LQCoh(OX ) is abelian with kernels and cokernels computed
in Mod(Xétale,OX ), in other words the inclusion functor is exact.

(3) Given a short exact sequence 0→ F1 → F2 → F3 → 0 of Mod(Xétale,OX )
if two out of three are locally quasi-coherent so is the third.

(4) Given F ,G in LQCoh(OX ) the tensor product F⊗OX G in Mod(Xétale,OX )
is an object of LQCoh(OX ).

(5) Given F ,G in LQCoh(OX ) with F locally of finite presentation on Xétale
the sheaf HomOX (F ,G) in Mod(Xétale,OX ) is an object of LQCoh(OX ).

Proof. Each of these statements follows from the corresponding statement of De-
scent, Lemma 34.7.13. For example, suppose that I → LQCoh(OX ), i 7→ Fi is a
diagram. Consider the object F = colimi Fi of Mod(Xétale,OX ). For any object x of
X with U = p(x) the pullback functor x∗ commutes with all colimits as it is a left ad-
joint. Hence x∗F = colimi x

∗Fi. Similarly we have x∗F|Uétale = colimi x
∗Fi|Uétale .

Now by assumption each x∗Fi|Uétale is quasi-coherent, hence the colimit is quasi-
coherent by the aforementioned Descent, Lemma 34.7.13. This proves (1).

It follows from (1) that cokernels exist in LQCoh(OX ) and agree with the cokernels
computed in Mod(Xétale,OX ). Let ϕ : F → G be a morphism of LQCoh(OX ) and
let K = Ker(ϕ) computed in Mod(Xétale,OX ). If we can show that K is a locally
quasi-coherent module, then the proof of (2) is complete. To see this, note that
kernels are computed in the category of presheaves (no sheafification necessary).
Hence K|Uétale is the kernel of the map F|Uétale → G|Uétale , i.e., is the kernel of a

http://stacks.math.columbia.edu/tag/06WL
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map of quasi-coherent sheaves on Uétale whence quasi-coherent by Descent, Lemma
34.7.13. This proves (2).

Parts (3), (4), and (5) follow in exactly the same way. Details omitted. �

In the generality discussed here the category of quasi-coherent sheaves is not abelian.
See Examples, Section 82.12. Here is what we can prove without any further work.

Lemma 73.11.8. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The category QCoh(OX ) has colimits and they agree with colimits in the
category Mod(OX ) as well as with colimits in the category LQCoh(OX ).

(2) Given F ,G in QCoh(OX ) the tensor product F ⊗OX G in Mod(OX ) is an
object of QCoh(OX ).

(3) Given F ,G in QCoh(OX ) with F locally of finite presentation on Xfppf
the sheaf HomOX (F ,G) in Mod(OX ) is an object of QCoh(OX ).

Proof. Let I → QCoh(OX ), i 7→ Fi be a diagram. Consider the object F =
colimi Fi of Mod(OX ). For any object x of X with U = p(x) the pullback functor
x∗ commutes with all colimits as it is a left adjoint. Hence x∗F = colimi x

∗Fi
in Mod((Sch/U)fppf ,O). We conclude from Descent, Lemma 34.7.13 that x∗F is
quasi-coherent, hence F is quasi-coherent, see Lemma 73.11.3. Thus we see that
QCoh(OX ) has colimits and they agree with colimits in the category Mod(OX ). In
particular the (fppf) sheaf F is also the colimit of the diagram in Mod(Xétale,OX ),
hence F is also the colimit in LQCoh(OX ). This proves (1).

Parts (2) and (3) are proved in the same way. Details omitted. �

73.12. Stackification and sheaves

It turns out that the category of sheaves on a category fibred in groupoids only
“knows about” the stackification.

Lemma 73.12.1. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then the morphism
of topoi f : Sh(Xfppf )→ Sh(Yfppf ) is an equivalence.

Proof. We may assume Y is the stackification of X . We claim that f : X → Y
is a special cocontinuous functor, see Sites, Definition 7.28.2 which will prove the
lemma. By Stacks, Lemma 8.10.3 the functor f is continuous and cocontinuous.
By Stacks, Lemma 8.8.1 we see that conditions (3), (4), and (5) of Sites, Lemma
7.28.1 hold. �

Lemma 73.12.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then f∗ induces
equivalences Mod(OX )→ Mod(OY) and QCoh(OX )→ QCoh(OY).

Proof. We may assume Y is the stackification of X . The first assertion is clear
from Lemma 73.12.1 and OX = f−1OY . Pullback of quasi-coherent sheaves are
quasi-coherent, see Lemma 73.11.2. Hence it suffices to show that if f∗G is quasi-
coherent, then G is. To see this, let y be an object of Y. Translating the condition
that Y is the stackification of X we see there exists an fppf covering {yi → y} in Y
such that yi ∼= f(xi) for some xi object of X . Say xi and yi lie over the scheme Ui.
Then f∗G being quasi-coherent, means that x∗i f

∗G is quasi-coherent. Since x∗i f
∗G

is isomorphic to y∗i G (as sheaves on (Sch/Ui)fppf we see that y∗i G is quasi-coherent.

http://stacks.math.columbia.edu/tag/06WN
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It follows from Modules on Sites, Lemma 18.23.3 that the restriction of G to Y/y
is quasi-coherent. Hence G is quasi-coherent by Lemma 73.11.3. �

73.13. Quasi-coherent sheaves and presentations

In Groupoids in Spaces, Definition 60.12.1 we have the defined the notion of a quasi-
coherent module on an arbitrary groupoid. The following (formal) proposition tells
us that we can study quasi-coherent sheaves on quotient stacks in terms of quasi-
coherent modules on presentations.

Proposition 73.13.1. Let (U,R, s, t, c) be a groupoid in algebraic spaces over S.
Let X = [U/R] be the quotient stack. The category of quasi-coherent modules on X
is equivalent to the category of quasi-coherent modules on (U,R, s, t, c).

Proof. Denote QCoh(U,R, s, t, c) the category of quasi-coherent modules on the
groupoid (U,R, s, t, c). We will construct quasi-inverse functors

QCoh(OX )←→ QCoh(U,R, s, t, c).

According to Lemma 73.12.2 the stackification map [U/pR]→ [U/R] (see Groupoids
in Spaces, Definition 60.19.1) induces an equivalence of categories of quasi-coherent
sheaves. Thus it suffices to prove the lemma with X = [U/pR].

Recall that an object x = (T, u) of X = [U/pR] is given by a scheme T and a
morphism u : T → U . A morphism (T, u)→ (T ′, u′) is given by a pair (f, r) where
f : T → T ′ and r : T → R with s ◦ r = u and t ◦ r = u′ ◦ f . Let us call a special
morphism any morphism of the form (f, e ◦ u′ ◦ f) : (T, u′ ◦ f) → (T ′, u′). The
category of (T, u) with special morphisms is just the category of schemes over U .

Let F be a quasi-coherent sheaf on X . Then we obtain for every x = (T, u)
a quasi-coherent sheaf F(T,u) = x∗F|Tétale on T . Moreover, for any morphism
(f, r) : x = (T, u)→ (T ′, u′) = x′ we obtain a comparison isomorphism

c(f,r) : f∗smallF(T ′,u′) −→ F(T,u)

see Lemma 73.11.5. Moreover, these isomorphisms are compatible with composi-
tions, see Lemma 73.9.3. If U , R are schemes, then we can construct the quasi-
coherent sheaf on the groupoid as follows: First the object (U, id) corresponds to
a quasi-coherent sheaf F(U,id) on U . Next, the isomorphism α : t∗smallF(U,id) →
s∗smallF(U,id) comes from

(1) the morphism (R, idR) : (R, s) → (R, t) in the category [U/pR] which
produces an isomorphism F(R,t) → F(R,s),

(2) the special morphism (R, s) → (U, id) which produces an isomorphism
s∗smallF(U,id) → F(R,s), and

(3) the special morphism (R, t) → (U, id) which produces an isomorphism
t∗smallF(U,id) → F(R,t).

The cocycle condition for α follows from the condition that (U,R, s, t, c) is groupoid,
i.e., that composition is associative (details omitted).

To do this in general, i.e., when U and R are algebraic spaces, it suffices to ex-
plain how to associate to an algebraic space (W,u) over U a quasi-coherent sheaf
F(W,u) and to construct the comparison maps for morphisms between these. We
set F(W,u) = x∗F|Wétale

where x is the 1-morphism SW → SU → [U/pR] and the
comparison maps are explained in (73.10.2.3).

http://stacks.math.columbia.edu/tag/06WT
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Conversely, suppose that (G, α) is a quasi-coherent module on (U,R, s, t, c). We are
going to define a presheaf of modules F on X as follows. Given an object (T, u) of
[U/pR] we set

F(T, u) := Γ(T, u∗smallG).

Given a morphism (f, r) : (T, u)→ (T ′, u′) we get a map

F(T ′, u′) = Γ(T ′, (u′)∗smallG)

→ Γ(T, f∗small(u
′)∗smallG) = Γ(T, (u′ ◦ f)∗smallG)

= Γ(T, (t ◦ r)∗smallG) = Γ(T, r∗smallt
∗
smallG)

→ Γ(T, r∗smalls
∗
smallG) = Γ(T, (s ◦ r)∗smallG)

= Γ(T, u∗smallG)

= F(T, u)

where the first arrow is pullback along f and the second arrow is α. Note that if
(T, r) is a special morphism, then this map is just pullback along f as e∗smallα = id
by the axioms of a sheaf of quasi-coherent modules on a groupoid. The cocycle
condition implies that F is a presheaf of modules (details omitted). It is immediate
from the definition that F is quasi-coherent when pulled back to (Sch/T )fppf (by
the simple description of the restriction maps of F in case of a special morphism).

We omit the verification that the functors constructed above are quasi-inverse to
each other. �

We finish this section with a technical lemma on maps out of quasi-coherent sheaves.
It is an analogue of Schemes, Lemma 25.7.1. We will see later (Criteria for Repre-
sentability, Theorem 74.17.2) that the assumptions on the groupoid imply that X
is an algebraic stack.

Lemma 73.13.2. Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. As-
sume s, t are flat and locally of finite presentation. Let X = [U/R] be the quotient
stack. Denote π : SU → X the quotient map. Let F be a quasi-coherent OX -module,
and let H be any object of Mod(OX ). The map

HomOX (F ,H) −→ HomOU (x∗F|Uétale , x∗H|Uétale), φ 7−→ x∗φ|Uétale
is injective and its image consists of exactly those ϕ : x∗F|Uétale → x∗H|Uétale which
give rise to a commutative diagram

s∗small(x
∗F|Uétale) //

s∗smallϕ

��

(x ◦ s)∗F|Rétale = (x ◦ t)∗F|Rétale t∗small(x
∗F|Uétale)oo

t∗smallϕ

��
s∗small(x

∗H|Uétale) // (x ◦ s)∗H|Rétale = (x ◦ t)∗H|Rétale t∗small(x
∗H|Uétale)oo

of modules on Rétale where the horizontal arrows are the comparison maps (73.10.2.3).

Proof. According to Lemma 73.12.2 the stackification map [U/pR] → [U/R] (see
Groupoids in Spaces, Definition 60.19.1) induces an equivalence of categories of
quasi-coherent sheaves and of fppf O-modules. Thus it suffices to prove the lemma
with X = [U/pR]. By Proposition 73.13.1 and its proof there exists a quasi-coherent
module (G, α) on (U,R, s, t, c) such that F is given by the rule F(T, u) = Γ(T, u∗G).
In particular x∗F|Uétale = G and it is clear that the map of the statement of the

http://stacks.math.columbia.edu/tag/076S
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lemma is injective. Moreover, given a map ϕ : G → x∗H|Uétale and given any object
y = (T, u) of [U/pR] we can consider the map

F(y) = Γ(T, u∗G)
u∗smallϕ−−−−−→ Γ(T, u∗smallx

∗H|Uétale)→ Γ(T, y∗H|Tétale) = H(y)

where the second arrow is the comparison map (73.9.4.1) for the sheaf H. This
assignment is compatible with the restriction mappings of the sheaves F and G
for morphisms of [U/pR] if the cocycle condition of the lemma is satisfied. Proof
omitted. Hint: the restriction maps of F are made explicit in terms of (G, α) in the
proof of Proposition 73.13.1. �

73.14. Quasi-coherent sheaves on algebraic stacks

Let X be an algebraic stack over S. By Algebraic Stacks, Lemma 71.16.2 we can
find an equivalence [U/R]→ X where (U,R, s, t, c) is a smooth groupoid in algebraic
spaces. Then

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)

where the second equivalence is Proposition 73.13.1. Hence the category of quasi-
coherent sheaves on an algebraic stack is equivalent to the category of quasi-coherent
modules on a smooth groupoid in algebraic spaces. In particular, by Groupoids in
Spaces, Lemma 60.12.5 we see that QCoh(OX ) is abelian!

There is something slightly disconcerting about our current setup. It is that the
fully faithful embedding

QCoh(OX ) −→ Mod(OX )

is in general not exact. However, exactly the same thing happens for schemes: for
most schemes X the embedding

QCoh(OX) ∼= QCoh((Sch/X)fppf ,OX) −→ Mod((Sch/X)fppf ,OX)

isn’t exact, see Descent, Lemma 34.7.13. Parenthetically, the example in the
proof of Descent, Lemma 34.7.13 shows that in general the strictly full embedding
QCoh(OX )→ LQCoh(OX ) isn’t exact either.

We collect all the positive results obtained so far in a single statement.

Lemma 73.14.1. Let X be an algebraic stack over S.

(1) If [U/R]→ X is a presentation of X then there is a canonical equivalence
QCoh(OX ) ∼= QCoh(U,R, s, t, c).

(2) The category QCoh(OX ) is abelian.
(3) The category QCoh(OX ) has colimits and they agree with colimits in the

category Mod(OX ).
(4) Given F ,G in QCoh(OX ) the tensor product F ⊗OX G in Mod(OX ) is an

object of QCoh(OX ).
(5) Given F ,G in QCoh(OX ) with F locally of finite presentation on Xfppf

the sheaf HomOX (F ,G) in Mod(OX ) is an object of QCoh(OX ).

Proof. Properties (3), (4), and (5) were proven in Lemma 73.11.8. Part (1) is
Proposition 73.13.1. Part (2) follows from Groupoids in Spaces, Lemma 60.12.5 as
discussed above. �

Proposition 73.14.2. Let X be an algebraic stack over S.

http://stacks.math.columbia.edu/tag/06WV
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(1) The category QCoh(OX ) is a Grothendieck abelian category. Consequently,
QCoh(OX ) has enough injectives and all limits.

(2) The inclusion functor QCoh(OX )→ Mod(OX ) has a right adjoint3

Q : Mod(OX ) −→ QCoh(OX )

such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Proper-
ties, Proposition 27.21.4 and the case of algebraic spaces, see Properties of Spaces,
Proposition 48.30.2. We advise the reader to read either of those proofs first.

Part (1) means QCoh(OX ) (a) has all colimits, (b) filtered colimits are exact, and
(c) has a generator, see Injectives, Section 19.10. By Lemma 73.14.1 colimits in
QCoh(OX) exist and agree with colimits in Mod(OX). By Modules on Sites, Lemma
18.14.2 filtered colimits are exact. Hence (a) and (b) hold.

Choose a presentation X = [U/R] so that (U,R, s, t, c) is a smooth groupoid in
algebraic spaces and in particular s and t are flat morphisms of algebraic spaces.
By Lemma 73.14.1 above we have QCoh(OX ) = QCoh(U,R, s, t, c). By Groupoids
in Spaces, Lemma 60.13.2 there exists a set T and a family (Ft)t∈T of quasi-coherent
sheaves on X such that every quasi-coherent sheaf on X is the directed colimit of
its subsheaves which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 19.11.6 and
Lemma 19.13.2.

Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX ) we consider the functor

QCoh(OX )opp −→ Sets, G 7−→ HomX (G,F)

This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 19.13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial
isomorphism HomX (G,F) = HomX (G, Q(F)) for G in QCoh(OX ). By the Yoneda
lemma (Categories, Lemma 4.3.5) the construction F  Q(F) is functorial in
F . By construction Q is a right adjoint to the inclusion functor. The fact that
Q(F)→ F is an isomorphism when F is quasi-coherent is a formal consequence of
the fact that the inclusion functor QCoh(OX )→ Mod(OX ) is fully faithful. �

73.15. Cohomology

Let S be a scheme and let X be a category fibred in groupoids over (Sch/S)fppf .
For any τ ∈ {Zariski, étale, smooth, syntomic, fppf} the categories Ab(Xτ ) and
Mod(Xτ ,OX ) have enough injectives, see Injectives, Theorems 19.7.4 and 19.8.4.
Thus we can use the machinery of Cohomology on Sites, Section 21.3 to define the
cohomology groups

Hp(Xτ ,F) = Hp
τ (X ,F) and Hp(x,F) = Hp

τ (x,F)

for any x ∈ Ob(X ) and any object F of Ab(Xτ ) or Mod(Xτ ,OX ). Moreover, if
f : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf ,
then we obtain the higher direct images Rif∗F in Ab(Yτ ) or Mod(Yτ ,OY). Of

3This functor is sometimes called the coherator.
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course, as explained in Cohomology on Sites, Section 21.4 there are also derived
versions of Hp(−) and Rif∗.

Lemma 73.15.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) be
an object lying over the scheme U . Let F be an object of Ab(Xτ ) or Mod(Xτ ,OX ).
Then

Hp
τ (x,F) = Hp((Sch/U)τ , x

−1F)

and if τ = étale, then we also have

Hp
étale(x,F) = Hp(Uétale,F|Uétale).

Proof. The first statement follows from Cohomology on Sites, Lemma 21.8.1 and
the equivalence of Lemma 73.9.4. The second statement follows from the first
combined with Étale Cohomology, Lemma 44.20.5. �

73.16. Injective sheaves

The pushforward of an injective abelian sheaf or module is injective.

Lemma 73.16.1. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.

(1) f∗I is injective in Ab(Yτ ) for I injective in Ab(Xτ ), and
(2) f∗I is injective in Mod(Yτ ,OY) for I injective in Mod(Xτ ,OX ).

Proof. This follows formally from the fact that f−1 is an exact left adjoint of f∗,
see Homology, Lemma 12.25.1. �

In the rest of this section we prove that pullback f−1 has a left adjoint f! on abelian
sheaves and modules. If f is representable (by schemes or by algebraic spaces), then
it will turn out that f! is exact and f−1 will preserve injectives. We first prove a
few preliminary lemmas about fibre products and equalizers in categories fibred in
groupoids and their behaviour with respect to morphisms.

Lemma 73.16.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The category X has fibre products.
(2) If the Isom-presheaves of X are representable by algebraic spaces, then X

has equalizers.
(3) If X is an algebraic stack (or more generally a quotient stack), then X

has equalizers.

Proof. Part (1) follows Categories, Lemma 4.33.14 as (Sch/S)fppf has fibre prod-
ucts.

Let a, b : x → y be morphisms of X . Set U = p(x) and V = p(y). The category
of schemes has equalizers hence we can let W → U be the equalizer of p(a) and
p(b). Denote c : z → x a morphism of X lying over W → U . The equalizer
of a and b, if it exists, is the equalizer of a ◦ c and b ◦ c. Thus we may assume
that p(a) = p(b) = f : U → V . As X is fibred in groupoids, there exists a unique
automorphism i : x→ x in the fibre category of X over U such that a◦ i = b. Again
the equalizer of a and b is the equalizer of idx and i. Recall that the IsomX (x) is
the presheaf on (Sch/U)fppf which to V/U associates the set of automorphisms of
x|V in the fibre category of X over V , see Stacks, Definition 8.2.2. If IsomX (x)
is representable by an algebraic space G → U , then we see that idx and i define
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morphisms e, i : U → G over U . Set V = U ×e,G,i U , which by Morphisms of
Spaces, Lemma 49.4.7 is a scheme. Then it is clear that x|V → x is the equalizer
of the maps idx and i in X . This proves (2).

If X = [U/R] for some groupoid in algebraic spaces (U,R, s, t, c) over S, then
the hypothesis of (2) holds by Bootstrap, Lemma 62.11.5. If X is an algebraic
stack, then we can choose a presentation [U/R] ∼= X by Algebraic Stacks, Lemma
71.16.2. �

Lemma 73.16.3. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) The functor f transforms fibre products into fibre products.
(2) If f is faithful, then f transforms equalizers into equalizers.

Proof. By Categories, Lemma 4.33.14 we see that a fibre product in X is any
commutative square lying over a fibre product diagram in (Sch/S)fppf . Similarly
for Y. Hence (1) is clear.

Let x → x′ be the equalizer of two morphisms a, b : x′ → x′′ in X . We will show
that f(x) → f(x′) is the equalizer of f(a) and f(b). Let y → f(x) be a morphism
of Y equalizing f(a) and f(b). Say x, x′, x′′ lie over the schemes U,U ′, U ′′ and y
lies over V . Denote h : V → U ′ the image of y → f(x) in the category of schemes.
The morphism y → f(x) is isomorphic to f(h∗x′)→ f(x′) by the axioms of fibred
categories. Hence, as f is faithful, we see that h∗x′ → x′ equalizes a and b. Thus
we obtain a unique morphism h∗x′ → x whose image y = f(h∗x′) → f(x) is the
desired morphism in Y. �

Lemma 73.16.4. Let f : X → Y, g : Z → Y be faithful 1-morphisms of categories
fibred in groupoids over (Sch/S)fppf .

(1) the functor X ×Y Z → Y is faithful, and
(2) if X ,Z have equalizers, so does X ×Y Z.

Proof. We think of objects in X ×Y Z as quadruples (U, x, z, α) where α : f(x)→
g(z) is an isomorphism over U , see Categories, Lemma 4.30.3. A morphism (U, x, z, α)→
(U ′, x′, z′, α′) is a pair of morphisms a : x → x′ and b : z → z′ compatible with α
and α′. Thus it is clear that if f and g are faithful, so is the functor X ×Y Z → Y.
Now, suppose that (a, b), (a′, b′) : (U, x, z, α) → (U ′, x′, z′, α′) are two morphisms
of the 2-fibre product. Then consider the equalizer x′′ → x of a and a′ and the
equalizer z′′ → z of b and b′. Since f commutes with equalizers (by Lemma 73.16.3)
we see that f(x′′)→ f(x) is the equalizer of f(a) and f(a′). Similarly, g(z′′)→ g(z)
is the equalizer of g(b) and g(b′). Picture

f(x′′) //

α′′

��

f(x)

α

��

f(a) //
f(a′)

// f(x′)

α′

��
g(z′′) // g(z)

g(b) //
g(b′)

// g(z′)

It is clear that the dotted arrow exists and is an isomorphism. However, it is not
a priori the case that the image of α′′ in the category of schemes is the identity
of its source. On the other hand, the existence of α′′ means that we can assume
that x′′ and z′′ are defined over the same scheme and that the morphisms x′′ → x
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http://stacks.math.columbia.edu/tag/06X0
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and z′′ → z have the same image in the category of schemes. Redoing the diagram
above we see that the dotted arrow now does project to an identity morphism and
we win. Some details omitted. �

As we are working with big sites we have the following somewhat counter intuitive
result (which also holds for morphisms of big sites of schemes). Warning: This
result isn’t true if we drop the hypothesis that f is faithful.

Lemma 73.16.5. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f−1 :
Ab(Yτ ) → Ab(Xτ ) has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). If f is faithful and X
has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Ab(Xτ ) for I injective in Ab(Yτ ).

Proof. By Stacks, Lemma 8.10.3 the functor f is continuous and cocontinuous.
Hence by Modules on Sites, Lemma 18.16.2 the functor f−1 : Ab(Yτ ) → Ab(Xτ )
has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). To see (1) we apply Modules on Sites,
Lemma 18.16.3 and to see that the hypotheses of that lemma are satisfied use Lem-
mas 73.16.2 and 73.16.3 above. Part (2) follows from this formally, see Homology,
Lemma 12.25.1. �

Lemma 73.16.6. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f∗ :
Mod(Yτ ,OY)→ Mod(Xτ ,OX ) has a left adjoint f! : Mod(Xτ ,OX )→ Mod(Yτ ,OY)
which agrees with the functor f! of Lemma 73.16.5 on underlying abelian sheaves.
If f is faithful and X has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Mod(Xτ ,OX ) for I injective in Mod(Yτ ,OX ).

Proof. Recall that f is a continuous and cocontinuous functor of sites and that
f−1OY = OX . Hence Modules on Sites, Lemma 18.40.1 implies f∗ has a left
adjoint fMod

! . Let x be an object of X lying over the scheme U . Then f induces
an equivalence of ringed sites

X/x −→ Y/f(x)

as both sides are equivalent to (Sch/U)τ , see Lemma 73.9.4. Modules on Sites,
Remark 18.40.2 shows that f! agrees with the functor on abelian sheaves.

Assume now that X has equalizers and that f is faithful. Lemma 73.16.5 tells
us that f! is exact. Finally, Homology, Lemma 12.25.1 implies the statement on
pullbacks of injective modules. �

73.17. The Čech complex

To compute the cohomology of a sheaf on an algebraic stack we compare it to the
cohomology of the sheaf restricted to coverings of the given algebraic stack.
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http://stacks.math.columbia.edu/tag/06X2


4066 73. SHEAVES ON ALGEBRAIC STACKS

Throughout this section the situation will be as follows. We are given a 1-morphism
of categories fibred in groupoids

(73.17.0.1)

U
f

//

q %%

X

pyy
(Sch/S)fppf

We are going to think about U as a “covering” of X . Hence we want to consider
the simplicial object

U ×X U ×X U
////// U ×X U //// U

in the category of categories fibred in groupoids over (Sch/S)fppf . However, since
this is a (2, 1)-category and not a category, we should say explicitly what we mean.
Namely, we let Un be the category with objects (u0, . . . , un, x, α0, . . . , αn) where
αi : f(ui) → x is an isomorphism in X . We denote fn : Un → X the 1-morphism
which assigns to (u0, . . . , un, x, α0, . . . , αn) the object x. Note that U0 = U and
f0 = f . Given a map ϕ : [m] → [n] we consider the 1-morphism Uϕ : Un −→ Un
given by

(u0, . . . , un, x, α0, . . . , αn) 7−→ (uϕ(0), . . . , uϕ(n), x, αϕ(0), . . . , αϕ(n))

on objects. All of these 1-morphisms compose correctly on the nose (no 2-morphisms
required) and all of these 1-morphisms are 1-morphisms over X . We denote U• this
simplicial object. If F is a presheaf of sets on X , then we obtain a cosimplicial set

Γ(U0, f
−1
0 F) //// Γ(U1, f

−1
1 F)

// //// Γ(U2, f
−1
2 F)

Here the arrows are the pullback maps along the given morphisms of the simplicial
object. If F is a presheaf of abelian groups, this is a cosimplicial abelian group.

Let U → X be as above and let F be an abelian presheaf on X . The Čech complex
associated to the situation is denoted Č•(U → X ,F). It is the cochain complex
associated to the cosimplicial abelian group above, see Simplicial, Section 14.24. It
has terms

Čn(U → X ,F) = Γ(Un, f−1
n F).

The boundary maps are the maps

dn =
∑n+1

i=0
(−1)iδn+1

i : Γ(Un, f−1
n F) −→ Γ(Un+1, f

−1
n+1F)

where δn+1
i corresponds to the map [n] → [n + 1] omitting the index i. Note that

the map Γ(X ,F) → Γ(U0, f
−1
0 F0) is in the kernel of the differential d0. Hence we

define the extended Čech complex to be the complex

. . .→ 0→ Γ(X ,F)→ Γ(U0, f
−1
0 F0)→ Γ(U1, f

−1
1 F1)→ . . .

with Γ(X ,F) placed in degree −1. The extended Čech complex is acyclic if and
only if the canonical map

Γ(X ,F)[0] −→ Č•(U → X ,F)

is a quasi-isomorphism of complexes.

Lemma 73.17.1. Generalities on Čech complexes.
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(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,

then there is a morphism of Čech complexes

Č•(U → X ,F) −→ Č•(V → Y, e−1F)

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated Čech complexes are

isomorphic,

Proof. In the situation of (1) let t : f ◦ h → e ◦ g be a 2-morphism. The map on
complexes is given in degree n by pullback along the 1-morphisms Vn → Un given
by the rule

(v0, . . . , vn, y, β0, . . . , βn) 7−→ (h(v0), . . . , h(vn), e(y), e(β0) ◦ tv0 , . . . , e(βn) ◦ tvn).

For (2), note that pullback on global sections is an isomorphism for any presheaf
of sets when the pullback is along an equivalence of categories. Part (3) follows on
combining (1) and (2). �

Lemma 73.17.2. If there exists a 1-morphism s : X → U such that f ◦ s is
2-isomorphic to idX then the extended Čech complex is homotopic to zero.

Proof. Set U ′ = U ×X X equal to the fibre product as described in Categories,
Lemma 4.30.3. Set f ′ : U ′ → X equal to the second projection. Then U → U ′,
u 7→ (u, f(x), 1) is an equivalence over X , hence we may replace (U , f) by (U ′, f ′)
by Lemma 73.17.1. The advantage of this is that now f ′ has a section s′ such that
f ′ ◦ s′ = idX on the nose. Namely, if t : s ◦ f → idX is a 2-isomorphism then we
can set s′(x) = (s(x), x, tx). Thus we may assume that f ◦ s = idX .

In the case that f ◦ s = idX the result follows from general principles. We give
the homotopy explicitly. Namely, for n ≥ 0 define sn : Un → Un+1 to be the
1-morphism defined by the rule on objects

(u0, . . . , un, x, α0, . . . , αn) 7−→ (u0, . . . , un, s(x), x, α0, . . . , αn, idx).

Define

hn+1 : Γ(Un+1, f
−1
n+1F) −→ Γ(Un, f−1

n F)

as pullback along sn. We also set s−1 = s and h0 : Γ(U0, f
−1
0 F) → Γ(X ,F) equal

to pullback along s−1. Then the family of maps {hn}n≥0 is a homotopy between 1

and 0 on the extended Čech complex. �

73.18. The relative Čech complex

Let f : U → X be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf
as in (73.17.0.1). Consider the associated simplicial object U• and the maps fn :
Un → X . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Finally, suppose that F is
a sheaf (of sets) on Xτ . Then

f0,∗f
−1
0 F

// // f1,∗f
−1
1 F

// //// f2,∗f
−1
2 F

http://stacks.math.columbia.edu/tag/06X6
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is a cosimplicial sheaf on Xτ where we use the pullback maps introduced in Sites,
Section 7.44. If F is an abelian sheaf, then fn,∗f

−1
n F form a cosimplicial abelian

sheaf on Xτ . The associated complex (see Simplicial, Section 14.24)

. . .→ 0→ f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is called the relative Čech complex associated to the situation. We will denote this
complex K•(f,F). The extended relative Čech complex is the complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

with F in degree −1. The extended relative Čech complex is acyclic if and only if
the map F [0]→ K•(f,F) is a quasi-isomorphism of complexes of sheaves.

Remark 73.18.1. We can define the complex K•(f,F) also if F is a presheaf, only
we cannot use the reference to Sites, Section 7.44 to define the pullback maps. To
explain the pullback maps, suppose given a commutative diagram

V

g ��

h
// U

f��
X

of categories fibred in groupoids over (Sch/S)fppf and a presheaf G on U we can
define the pullback map f∗G → g∗h

−1G as the composition

f∗G −→ f∗h∗h
−1G = g∗h

−1G

where the map comes from the adjunction map G → h∗h
−1G. This works because

in our situation the functors h∗ and h−1 are adjoint in presheaves (and agree with
their counter parts on sheaves). See Sections 73.3 and 73.4.

Lemma 73.18.2. Generalities on relative Čech complexes.

(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism e−1K•(f,F)→ K•(g, e−1F).

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated relative Čech com-

plexes are isomorphic,

Proof. Literally the same as the proof of Lemma 73.17.1 using the pullback maps
of Remark 73.18.1. �

Lemma 73.18.3. If there exists a 1-morphism s : X → U such that f ◦ s is
2-isomorphic to idX then the extended relative Čech complex is homotopic to zero.

Proof. Literally the same as the proof of Lemma 73.17.2. �

http://stacks.math.columbia.edu/tag/06X8
http://stacks.math.columbia.edu/tag/06X9
http://stacks.math.columbia.edu/tag/06XA


73.18. THE RELATIVE ČECH COMPLEX 4069

Remark 73.18.4. Let us “compute” the value of the relative Čech complex on an
object x of X . Say p(x) = U . Consider the 2-fibre product diagram (which serves
to introduce the notation g : V → Y)

V

g

��

(Sch/U)fppf ×x,X U //

��

U

f

��
Y (Sch/U)fppf

x // X

Note that the morphism Vn → Un of the proof of Lemma 73.17.1 induces an equiv-
alence Vn = (Sch/U)fppf ×x,X Un. Hence we see from (73.5.0.1) that

Γ(x,K•(f,F)) = Č•(V → Y, x−1F)

In words: The value of the relative Čech complex on an object x of X is the Čech
complex of the base change of f to X/x ∼= (Sch/U)fppf . This implies for example
that Lemma 73.17.2 implies Lemma 73.18.3 and more generally that results on the
(usual) Čech complex imply results for the relative Čech complex.

Lemma 73.18.5. Let
V
g

��

h
// U

f

��
Y e // X

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf and let F be
an abelian presheaf on X . Then the map e−1K•(f,F) → K•(g, e−1F) of Lemma
73.18.2 is an isomorphism of complexes of abelian presheaves.

Proof. Let y be an object of Y lying over the scheme T . Set x = e(y). We are
going to show that the map induces an isomorphism on sections over y. Note that

Γ(y, e−1K•(f,F)) = Γ(x,K•(f,F)) = Č•((Sch/T )fppf×x,XU → (Sch/T )fppf , x
−1F)

by Remark 73.18.4. On the other hand,

Γ(y,K•(g, e−1F)) = Č•((Sch/T )fppf ×y,Y V → (Sch/T )fppf , y
−1e−1F)

also by Remark 73.18.4. Note that y−1e−1F = x−1F and since the diagram is
2-cartesian the 1-morphism

(Sch/T )fppf ×y,Y V → (Sch/T )fppf ×x,X U
is an equivalence. Hence the map on sections over y is an isomorphism by Lemma
73.17.1. �

Exactness can be checked on a “covering”.

Lemma 73.18.6. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let

F → G → H
be a complex in Ab(Xτ ). Assume that

(1) for every object x of X there exists a covering {xi → x} in Xτ such that
each xi is isomorphic to f(ui) for some object ui of U , and

(2) f−1F → f−1G → f−1H is exact.

Then the sequence F → G → H is exact.
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Proof. Let x be an object of X lying over the scheme T . Consider the sequence
x−1F → x−1G → x−1H of abelian sheaves on (Sch/T )τ . It suffices to show this
sequence is exact. By assumption there exists a τ -covering {Ti → T} such that x|Ti
is isomorphic to f(ui) for some object ui of U over Ti and moreover the sequence
u−1
i f−1F → u−1

i f−1G → u−1
i f−1H of abelian sheaves on (Sch/Ti)τ is exact. Since

u−1
i f−1F = x−1F|(Sch/Ti)τ we conclude that the sequence x−1F → x−1G → x−1H

become exact after localizing at each of the members of a covering, hence the
sequence is exact. �

Proposition 73.18.7. Let f : U → X be a 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. If

(1) F is an abelian sheaf on Xτ , and
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,

then the extended relative Čech complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is exact in Ab(Xτ ).

Proof. By Lemma 73.18.6 it suffices to check exactness after pulling back to U . By
Lemma 73.18.5 the pullback of the extended relative Čech complex is isomorphic
to the extend relative Čech complex for the morphism U ×X U → U and an abelian
sheaf on Uτ . Since there is a section ∆U/X : U → U ×X U exactness follows from
Lemma 73.18.3. �

Using this we can construct the Čech-to-cohomology spectral sequence as follows.
We first give a technical, precise version. In the next section we give a version that
applies only to algebraic stacks.

Lemma 73.18.8. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian groups

Ep,q2 = Hq((Up)τ , f−1
p F)⇒ Hp+q(Xτ ,F)

converging to the cohomology of F in the τ -topology.

Proof. Before we start the proof we make some remarks. By Lemma 73.16.4 (and
induction) all of the categories fibred in groupoids Up have equalizers and all of the
morphisms fp : Up → X are faithful. Let I be an injective object of Ab(Xτ ). By
Lemma 73.16.5 we see f−1

p I is an injective object of Ab((Up)τ ). Hence fp,∗f
−1
p I is

an injective object of Ab(Xτ ) by Lemma 73.16.1. Hence Proposition 73.18.7 shows
that the extended relative Čech complex

. . .→ 0→ I → f0,∗f
−1
0 I → f1,∗f

−1
1 I → f2,∗f

−1
2 I → . . .
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is an exact complex in Ab(Xτ ) all of whose terms are injective. Taking global
sections of this complex is exact and we see that the Čech complex Č•(U → X , I)
is quasi-isomorphic to Γ(Xτ , I)[0].

With these preliminaries out of the way consider the two spectral sequences asso-
ciated to the double complex (see Homology, Section 12.22)

Č•(U → X , I•)

where F → I• is an injective resolution in Ab(Xτ ). The discussion above shows that
Homology, Lemma 12.22.7 applies which shows that Γ(Xτ , I•) is quasi-isomorphic
to the total complex associated to the double complex. By our remarks above
the complex f−1

p I• is an injective resolution of f−1
p F . Hence the other spectral

sequence is as indicated in the lemma. �

To be sure there is a version for modules as well.

Lemma 73.18.9. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of Γ(OX )-modules

Ep,q2 = Hq((Up)τ , f∗pF)⇒ Hp+q(Xτ ,F)

converging to the cohomology of F in the τ -topology.

Proof. The proof of this lemma is identical to the proof of Lemma 73.18.8 except
that it uses an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 73.16.6
instead of Lemma 73.16.5. �

Here is a lemma that translates a more usual kind of covering in the kinds of
coverings we have encountered above.

Lemma 73.18.10. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) Assume that f is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Then for any object y of Y there exists an
fppf covering {yi → y} and objects xi of X such that f(xi) ∼= yi in Y.

(2) Assume that f is representable by algebraic spaces, surjective, and smooth.
Then for any object y of Y there exists an étale covering {yi → y} and
objects xi of X such that f(xi) ∼= yi in Y.

Proof. Proof of (1). Suppose that y lies over the scheme V . We may think of y as
a morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective,
flat, and locally of finite presentation. Choose a scheme U and a surjective étale
morphism U → W . Then U → V is also surjective, flat, and locally of finite
presentation (see Morphisms of Spaces, Lemmas 49.36.7, 49.36.8, 49.5.4, 49.27.2,
and 49.28.3). Hence {U → V } is an fppf covering. Denote x the object of X over
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U corresponding to the 1-morphism (Sch/U)fppf → X . Then {f(x) → y} is the
desired fppf covering of Y.

Proof of (1). Suppose that y lies over the scheme V . We may think of y as a
morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective
and smooth. Choose a scheme U and a surjective étale morphism U → W . Then
U → V is also surjective and smooth (see Morphisms of Spaces, Lemmas 49.36.6,
49.5.4, and 49.34.2). Hence {U → V } is a smooth covering. By More on Morphisms,
Lemma 36.28.7 there exists an étale covering {Vi → V } such that each Vi → V
factors through U . Denote xi the object of X over Vi corresponding to the 1-
morphism

(Sch/Vi)fppf → (Sch/U)fppf → X .
Then {f(xi)→ y} is the desired étale covering of Y. �

Lemma 73.18.11. Let f : U → X and g : X → Y be composable 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian sheaves on Yτ
Ep,q2 = Rq(g ◦ fp)∗f−1

p F ⇒ Rp+qg∗F
where all higher direct images are computed in the τ -topology.

Proof. Note that the assumptions on f : U → X and F are identical to those in
Lemma 73.18.8. Hence the preliminary remarks made in the proof of that lemma
hold here also. These remarks imply in particular that

0→ g∗I → (g ◦ f0)∗f
−1
0 I → (g ◦ f1)∗f

−1
1 I → . . .

is exact if I is an injective object of Ab(Xτ ). Having said this, consider the two
spectral sequences of Homology, Section 12.22 associated to the double complex
C•,• with terms

Cp,q = (g ◦ fp)∗Iq

where F → I• is an injective resolution in Ab(Xτ ). The first spectral sequence
implies, via Homology, Lemma 12.22.7, that g∗I• is quasi-isomorphic to the total
complex associated to C•,•. Since f−1

p I• is an injective resolution of f−1
p F (see

Lemma 73.16.5) the second spectral sequence has terms Ep,q2 = Rq(g ◦ fp)∗f−1
p F

as in the statement of the lemma. �

Lemma 73.18.12. Let f : U → X and g : X → Y be composable 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
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(4) the functor f is faithful.

Then there is a first quadrant spectral sequence in Mod(Yτ ,OY)

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. The proof is identical to the proof of Lemma 73.18.11 except that it uses an
injective resolution in Mod(Xτ ,OX ) and it uses Lemma 73.16.6 instead of Lemma
73.16.5. �

73.19. Cohomology on algebraic stacks

Let X be an algebraic stack over S. In the sections above we have seen how to
define sheaves for the étale, ..., fppf topologies on X . In fact, we have constructed
a site Xτ for each τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a notion of
an abelian sheaf F on these sites. In the chapter on cohomology of sites we have
explained how to define cohomology. Putting all of this together, let’s define the
derived global sections

RΓZar(X ,F), RΓétale(X ,F), . . . , RΓfppf (X ,F)

as Γ(Xτ , I•) where F → I• is an injective resolution in Ab(Xτ ). The ith cohomology
group is the ith cohomology of the total derived cohomology. We will denote this

Hi
Zar(X ,F), Hi

étale(X ,F), . . . ,Hi
fppf (X ,F).

It will turn out that Hi
étale = Hi

smooth because of More on Morphisms, Lemma
36.28.7. If F is a presheaf of OX -modules which is a sheaf in the τ -topology,
then we use injective resolutions in Mod(Xτ ,OX ) to compute total derived global
sections and cohomology groups; of course the end result is quasi-isomorphic resp.
isomorphic by the general fact Cohomology on Sites, Lemma 21.12.4.

So far our only tool to compute cohomology groups is the result on Čech complexes
proved above. We rephrase it here in the language of algebraic stacks for the étale
and the fppf topology. Let f : U → X be a 1-morphism of algebraic stacks. Recall
that

fp : Up = U ×X . . .×X U −→ X
is the structure morphism where there are (p+ 1)-factors. Also, recall that a sheaf
on X is a sheaf for the fppf topology. Note that if U is an algebraic space, then f :
U → X is representable by algebraic spaces, see Algebraic Stacks, Lemma 71.10.11.
Thus the proposition applies in particular to a smooth cover of the algebraic stack
X by a scheme.

Proposition 73.19.1. Let f : U → X be a 1-morphism of algebraic stacks.

(1) Let F be an abelian étale sheaf on X . Assume that f is representable by
algebraic spaces, surjective, and smooth. Then there is a spectral sequence

Ep,q2 = Hq
étale(Up, f

−1
p F)⇒ Hp+q

étale(X ,F)

(2) Let F be an abelian sheaf on X . Assume that f is representable by alge-
braic spaces, surjective, flat, and locally of finite presentation. Then there
is a spectral sequence

Ep,q2 = Hq
fppf (Up, f−1

p F)⇒ Hp+q
fppf (X ,F)
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Proof. To see this we will check the hypotheses (1) – (4) of Lemma 73.18.8. The
1-morphism f is faithful by Algebraic Stacks, Lemma 71.15.2. This proves (4).
Hypothesis (3) follows from the fact that U is an algebraic stack, see Lemma 73.16.2.
To see (2) apply Lemma 73.18.10. Condition (1) is satisfied by fiat. �

73.20. Higher direct images and algebraic stacks

Let g : X → Y be a 1-morphism of algebraic stacks over S. In the sections above
we have constructed a morphism of ringed topoi g : Sh(Xτ ) → Sh(Yτ ) for each
τ ∈ {Zar, étale, smooth, syntomic, fppf}. In the chapter on cohomology of sites
we have explained how to define higher direct images. Hence the derived direct
image Rg∗F is defined as g∗I• where F → I• is an injective resolution in Ab(Xτ ).
The ith higher direct image Rig∗F is the ith cohomology of the derived direct
image. Important: it matters which topology τ is used here!

If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we use
injective resolutions in Mod(Xτ ,OX ) to compute derived direct image and higher
direct images.

So far our only tool to compute the higher direct images of g∗ is the result on Čech
complexes proved above. This requires the choice of a “covering” f : U → X . If
U is an algebraic space, then f : U → X is representable by algebraic spaces, see
Algebraic Stacks, Lemma 71.10.11. Thus the proposition applies in particular to a
smooth cover of the algebraic stack X by a scheme.

Proposition 73.20.1. Let f : U → X and g : X → Y be composable 1-morphisms
of algebraic stacks.

(1) Assume that f is representable by algebraic spaces, surjective and smooth.
(a) If F is in Ab(Xétale) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Ab(Yétale) with higher direct images computed in the étale topology.
(b) If F is in Mod(Xétale,OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Mod(Yétale,OY).
(2) Assume that f is representable by algebraic spaces, surjective, flat, and

locally of finite presentation.
(a) If F is in Ab(X ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Ab(Y) with higher direct images computed in the fppf topology.
(b) If F is in Mod(OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Mod(OY).

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 73.18.11 and
Lemma 73.18.12. The 1-morphism f is faithful by Algebraic Stacks, Lemma 71.15.2.
This proves (4). Hypothesis (3) follows from the fact that U is an algebraic stack,
see Lemma 73.16.2. To see (2) apply Lemma 73.18.10. Condition (1) is satisfied by
fiat in all four cases. �

http://stacks.math.columbia.edu/tag/072G
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Here is a description of higher direct images for a morphism of algebraic stacks.

Lemma 73.20.2. Let S be a scheme. Let f : X → Y be a 1-morphism of algebraic
stacks4 over S. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F be an
object of Ab(Xτ ) or Mod(Xτ ,OX ). Then the sheaf Rif∗F is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
Here y is a typical object of Y lying over the scheme V .

Proof. Choose an injective resolution F [0]→ I•. By the formula for pushforward
(73.5.0.1) we see that Rif∗F is the sheaf associated to the presheaf which associates
to y the cohomology of the complex

Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii−1
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii+1
)

Since pr−1 is exact, it suffices to show that pr−1 preserves injectives. This follows
from Lemmas 73.16.5 and 73.16.6 as well as the fact that pr is a representable
morphism of algebraic stacks (so that pr is faithful by Algebraic Stacks, Lemma
71.15.2 and that (Sch/V )fppf ×y,Y X has equalizers by Lemma 73.16.2). �

Here is a trivial base change result.

Lemma 73.20.3. Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′

g // Y
be a 2-cartesian diagram of algebraic stacks over S. Then the base change map is
an isomorphism

g−1Rf∗F −→ Rf ′∗(g
′)−1F

functorial for F in Ab(Xτ ) or F in Mod(Xτ ,OX ).

Proof. The isomorphism g−1f∗F = f ′∗(g
′)−1F is Lemma 73.5.1 (and it holds for

arbitrary presheaves). For the derived direct images, there is a base change map
because the morphisms g and g′ are flat, see Cohomology on Sites, Section 21.15.
To see that this map is a quasi-isomorphism we can use that for an object y′ of Y ′
over a scheme V there is an equivalence

(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

We conclude that the induced map g−1Rif∗F → Rif ′∗(g
′)−1F is an isomorphism

by Lemma 73.20.2. �

4This result should hold for any 1-morphism of categories fibred in groupoids over
(Sch/S)fppf .

http://stacks.math.columbia.edu/tag/075G
http://stacks.math.columbia.edu/tag/075H
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73.21. Comparison

In this section we collect some results on comparing cohomology defined using stacks
and using algebraic spaces.

Lemma 73.21.1. Let S be a scheme. Let X be an algebraic stack over S repre-
sentable by the algebraic space F .

(1) I|Fétale is injective in Ab(Fétale) for I injective in Ab(Xétale), and
(2) I|Fétale is injective in Mod(Fétale,OF ) for I injective in Mod(Xétale,O).

Proof. This follows formally from the fact that the restriction functor πF,∗ =

i−1
F (see Lemma 73.10.1) is an exact left adjoint of iF,∗, see Homology, Lemma

12.25.1. �

Lemma 73.21.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
stacks over S. Assume X , Y are representable by algebraic spaces F , G. Denote
f : F → G the induced morphism of algebraic spaces.

(1) For any F ∈ Ab(Xétale) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)
in D(Gétale).

(2) For any object F of Mod(Xétale,OX ) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)
in D(OG).

Proof. Follows immediately from Lemma 73.21.1 and (73.10.2.1) on choosing an
injective resolution of F . �

Lemma 73.21.3. Let S be a scheme. Consider a 2-fibre product square

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y
of algebraic stacks over S. Assume that f is representable by algebraic spaces and
that Y ′ is representable by an algebraic space G′. Then X ′ is representable by an
algebraic space F ′ and denoting f ′ : F ′ → G′ the induced morphism of algebraic
spaces we have

g−1(Rf∗F)|G′étale = Rf ′small,∗((g
′)−1F|F ′étale)

for any F in Ab(Xétale) or in Mod(Xétale,OX )

Proof. Follows formally on combining Lemmas 73.20.3 and 73.21.2. �

73.22. Change of topology

Here is a technical lemma which tells us that the fppf cohomology of a locally quasi-
coherent sheaf is equal to its étale cohomology provided the comparison maps are
isomorphisms for morphisms of X lying over flat morphisms.

Lemma 73.22.1. Let S be a scheme. Let X be an algebraic stack over S. Let F
be a presheaf of OX -modules. Assume

(a) F is locally quasi-coherent, and

http://stacks.math.columbia.edu/tag/075L
http://stacks.math.columbia.edu/tag/075N
http://stacks.math.columbia.edu/tag/075P
http://stacks.math.columbia.edu/tag/076T
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(b) for any morphism ϕ : x→ y of X which lies over a morphism of schemes
f : U → V which is flat and locally of finite presentation the comparison
map cϕ : f∗smallF|Vétale → F|Uétale of (73.9.4.1) is an isomorphism.

Then F is a sheaf for the fppf topology.

Proof. Let {xi → x} be an fppf covering of X lying over the fppf covering
{fi : Ui → U} of schemes over S. By assumption the restriction G = F|Uétale is
quasi-coherent and the comparison maps f∗i,smallG → F|Ui,étale are isomorphisms.

Hence the sheaf condition for F and the covering {xi → x} is equivalent to the
sheaf condition for Ga on (Sch/U)fppf and the covering {Ui → U} which holds by
Descent, Lemma 34.7.1. �

Lemma 73.22.2. Let S be a scheme. Let X be an algebraic stack over S. Let F
be a presheaf OX -module such that

(a) F is locally quasi-coherent, and
(b) for any morphism ϕ : x→ y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation, the comparison
map cϕ : f∗smallF|Vétale → F|Uétale of (73.9.4.1) is an isomorphism.

Then F is an OX -module and we have the following

(1) If ε : Xfppf → Xétale is the comparison morphism, then Rε∗F = ε∗F .
(2) The cohomology groups Hp

fppf (X ,F) are equal to the cohomology groups
computed in the étale topology on X . Similarly for the cohomology groups
Hp
fppf (x,F) and the derived versions RΓ(X ,F) and RΓ(x,F).

(3) If f : X → Y is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf then Rif∗F is equal to the fppf-sheafification of the higher
direct image computed in the étale cohomology. Similarly for derived push-
forward.

Proof. The assertion that F is an OX -module follows from Lemma 73.22.1. Note
that ε is a morphism of sites given by the identity functor on X . The sheaf Rpε∗F
is therefore the sheaf associated to the presheaf x 7→ Hp

fppf (x,F), see Cohomology

on Sites, Lemma 21.8.4. To prove (1) it suffices to show that Hp
fppf (x,F) = 0

for p > 0 whenever x lies over an affine scheme U . By Lemma 73.15.1 we have
Hp
fppf (x,F) = Hp((Sch/U)fppf , x

−1F). Combining Descent, Lemma 34.8.4 with
Cohomology of Schemes, Lemma 29.2.2 we see that these cohomology groups are
zero.

We have seen above that ε∗F and F are the sheaves on Xétale and Xfppf corre-
sponding to the same presheaf on X (and this is true more generally for any sheaf
in the fppf topology on X ). We often abusively identify F and ε∗F and this is the
sense in which parts (2) and (3) of the lemma should be understood. Thus part
(2) follows formally from (1) and the Leray spectral sequence, see Cohomology on
Sites, Lemma 21.14.6.

Finally we prove (3). The sheaf Rif∗F (resp. Rfétale,∗F) is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
where τ is fppf (resp. étale), see Lemma 73.20.2. Note that pr−1F satisfies prop-
erties (a) and (b) also (by Lemmas 73.11.6 and 73.9.3), hence these two presheaves
are equal by (2). This immediately implies (3). �

http://stacks.math.columbia.edu/tag/075R
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We will use the following lemma to compare étale cohomology of sheaves on alge-
braic stacks with cohomology on the lisse-étale topos.

Lemma 73.22.3. Let S be a scheme. Let X be an algebraic stack over S. Let
τ = étale (resp. τ = fppf). Let X ′ ⊂ X be a full subcategory with the following
properties

(1) if x → x′ is a morphism of X which lies over a smooth (resp. flat and
locally finitely presented) morphism of schemes and x′ ∈ Ob(X ′), then
x ∈ Ob(X ′), and

(2) there exists an object x ∈ Ob(X ′) lying over a scheme U such that the
associated 1-morphism x : (Sch/U)fppf → X is smooth and surjective.

We get a site X ′τ by declaring a covering of X ′ to be any family of morphisms
{xi → x} in X ′ which is a covering in Xτ . Then the inclusion functor X ′ → Xτ is
fully faithful, cocontinuous, and continuous, whence defines a morphism of topoi

g : Sh(X ′τ ) −→ Sh(Xτ )

and Hp(X ′τ , g−1F) = Hp(Xτ ,F) for all p ≥ 0 and all F ∈ Ab(Xτ ).

Proof. Note that assumption (1) implies that if {xi → x} is a covering of Xτ and
x ∈ Ob(X ′), then we have xi ∈ Ob(X ′). Hence we see that X ′ → X is continuous
and cocontinuous as the coverings of objects of X ′τ agree with their coverings seen
as objects of Xτ . We obtain the morphism g and the functor g−1 is identified with
the restriction functor, see Sites, Lemma 7.20.5.

In particular, if {xi → x} is a covering in X ′τ , then for any abelian sheaf F on X
then

Ȟp({xi → x}, g−1F) = Ȟp({xi → x},F)

Thus if I is an injective abelian sheaf on Xτ then we see that the higher Čech coho-
mology groups are zero (Cohomology on Sites, Lemma 21.11.2). HenceHp(x, g−1I) =
0 for all objects x of X ′ (Cohomology on Sites, Lemma 21.11.9). In other words
injective abelian sheaves on Xτ are right acyclic for the functor H0(x, g−1−). It
follows that Hp(x, g−1F) = Hp(x,F) for all F ∈ Ab(X ) and all x ∈ Ob(X ′).
Choose an object x ∈ X ′ lying over a scheme U as in assumption (2). In particular
X/x→ X is a morphism of algebraic stacks which representable by algebraic spaces,
surjective, and smooth. (Note that X/x is equivalent to (Sch/U)fppf , see Lemma
73.9.1.) The map of sheaves

hx −→ ∗
in Sh(Xτ ) is surjective. Namely, for any object x′ of X there exists a τ -covering
{x′i → x′} such that there exist morphisms x′i → x, see Lemma 73.18.10. Since g is
exact, the map of sheaves

g−1hx −→ ∗ = g−1∗
in Sh(X ′τ ) is surjective also. Let hx,n be the (n + 1)-fold product hx × . . . × hx.
Then we have spectral sequences

(73.22.3.1) Ep,q1 = Hq(hx,p,F)⇒ Hp+q(Xτ ,F)

and

(73.22.3.2) Ep,q1 = Hq(g−1hx,p, g
−1F)⇒ Hp+q(X ′τ , g−1F)

see Cohomology on Sites, Lemma 21.13.2.

http://stacks.math.columbia.edu/tag/07AK
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Case I: X has a final object x which is also an object of X ′. This case follows
immediately from the discussion in the second paragraph above.

Case II: X is representable by an algebraic space F . In this case the sheaves hx,n are
representable by an object xn in X . (Namely, if SF = X and x : U → F is the given
object, then hx,n is representable by the object U×F . . .×FU → F of SF .) It follows
that Hq(hx,p,F) = Hq(xp,F). The morphisms xn → x lie over smooth morphisms
of schemes, hence xn ∈ X ′ for all n. Hence Hq(g−1hx,p, g

−1F) = Hq(xp, g
−1F).

Thus in the two spectral sequences (73.22.3.1) and (73.22.3.2) above the Ep,q1 terms
agree by the discussion in the second paragraph. The lemma follows in Case II as
well.

Case III: X is an algebraic stack. We claim that in this case the cohomology groups
Hq(hx,p,F) and Hq(g−1hx,n, g

−1F) agree by Case II above. Once we have proved
this the result will follow as before.

Namely, consider the category X/hx,n, see Sites, Lemma 7.29.3. Since hx,n is the
(n+1)-fold product of hx an object of this category is an (n+2)-tuple (y, s0, . . . , sn)
where y is an object of X and each si : y → x is a morphism of X . This is a category
over (Sch/S)fppf . There is an equivalence

X/hx,n −→ (Sch/U)fppf ×X . . .×X (Sch/U)fppf =: Un
over (Sch/S)fppf . Namely, if x : (Sch/U)fppf → X also denotes the 1-morphism
associated with x and p : X → (Sch/S)fppf the structure functor, then we can think
of (y, s0, . . . , sn) as (y, f0, . . . , fn, α0, . . . , αn) where y is an object of X , fi : p(y)→
p(x) is a morphism of schemes, and αi : y → x(fi) an isomorphism. The category
of 2n+3-tuples (y, f0, . . . , fn, α0, . . . , αn) is an incarnation of the (n+1)-fold fibred
product Un of algebraic stacks displayed above, as we discussed in Section 73.17.
By Cohomology on Sites, Lemma 21.13.3 we have

Hp(Un,F|Un) = Hp(X/hx,n,F|X/hx,n) = Hp(hx,n,F).

Finally, we discuss the “primed” analogue of this. Namely, X ′/hx,n corresponds,
via the equivalence above to the full subcategory U ′n ⊂ Un consisting of those
tuples (y, f0, . . . , fn, α0, . . . , αn) with y ∈ X ′. Hence certainly property (1) of the
statement of the lemma holds for the inclusion U ′n ⊂ Un. To see property (2) choose
an object ξ = (y, s0, . . . , sn) which lies over a scheme W such that (Sch/W )fppf →
Un is smooth and surjective (this is possible as Un is an algebraic stack). Then
(Sch/W )fppf → Un → (Sch/U)fppf is smooth as a composition of base changes of
the morphism x : (Sch/U)fppf → X , see Algebraic Stacks, Lemmas 71.10.6 and
71.10.5. Thus axiom (1) for X implies that y is an object of X ′ whence ξ is an
object of U ′n. Using again

Hp(U ′n,F|U ′n) = Hp(X ′/hx,n,F|X ′/hx,n) = Hp(g−1hx,n, g
−1F).

we now can use Case II for U ′n ⊂ Un to conclude. �

73.23. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory

(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves



4080 73. SHEAVES ON ALGEBRAIC STACKS

(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces

(51) Cohomology of Algebraic
Spaces

(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic

Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index



CHAPTER 74

Criteria for Representability

74.1. Introduction

The purpose of this chapter is to find criteria guaranteeing that a stack in groupoids
over the category of schemes with the fppf topology is an algebraic stack. His-
torically, this often involved proving that certain functors were representable, see
Grothendieck’s lectures [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and
[Gro95d]. This explains the title of this chapter. Another important source of this
material comes from the work of Artin, see [Art69b], [Art70], [Art73], [Art71b],
[Art71a], [Art69a], [Art69c], and [Art74].

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 76.1 for an explanation.

74.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 71.2.

74.3. What we already know

The analogue of this chapter for algebraic spaces is the chapter entitled “Bootstrap”,
see Bootstrap, Section 62.1. That chapter already contains some representability
results. Moreover, some of the preliminary material treated there we already have
worked out in the chapter on algebraic stacks. Here is a list:

(1) We discuss morphisms of presheaves representable by algebraic spaces in
Bootstrap, Section 62.3. In Algebraic Stacks, Section 71.9 we discuss
the notion of a 1-morphism of categories fibred in groupoids being repre-
sentable by algebraic spaces.

(2) We discuss properties of morphisms of presheaves representable by alge-
braic spaces in Bootstrap, Section 62.4. In Algebraic Stacks, Section 71.10
we discuss the notion of a 1-morphism of categories fibred in groupoids
being representable by algebraic spaces.

(3) We proved that if F is a sheaf whose diagonal is representable by algebraic
spaces and which has an étale covering by an algebraic space, then F is an
algebraic space, see Bootstrap, Theorem 62.6.1. (This is a weak version
of the result in the next item on the list.)

(4) We proved that if F is a sheaf and if there exists an algebraic space U and
a morphism U → F which is representable by algebraic spaces, surjective,
flat, and locally of finite presentation, then F is an algebraic space, see
Bootstrap, Theorem 62.10.1.
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(5) We have also proved the “smooth” analogue of (4) for algebraic stacks:
If X is a stack in groupoids over (Sch/S)fppf and if there exists a stack
in groupoids U over (Sch/S)fppf which is representable by an algebraic
space and a 1-morphism u : U → X which is representable by algebraic
spaces, surjective, and smooth then X is an algebraic stack, see Algebraic
Stacks, Lemma 71.15.3.

Our first task now is to prove the analogue of (4) for algebraic stacks in general; it
is Theorem 74.16.1.

74.4. Morphisms of stacks in groupoids

This section is preliminary and should be skipped on a first reading.

Lemma 74.4.1. Let X → Y → Z be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . If X → Z and Y → Z are representable by algebraic spaces and
étale so is X → Y.

Proof. Let U be a representable category fibred in groupoids over S. Let f : U → Y
be a 1-morphism. We have to show that X ×Y U is representable by an algebraic
space and étale over U . Consider the composition h : U → Z. Then

X ×Z U −→ Y ×Z U

is a 1-morphism between categories fibres in groupoids which are both representable
by algebraic spaces and both étale over U . Hence by Properties of Spaces, Lemma
48.13.6 this is represented by an étale morphism of algebraic spaces. Finally, we
obtain the result we want as the morphism f induces a morphism U → Y×Z U and
we have

X ×Y U = (X ×Z U)×(Y×ZU) U .
�

Lemma 74.4.2. Let X ,Y,Z be stacks in groupoids over (Sch/S)fppf . Suppose
that X → Y and Z → Y are 1-morphisms. If

(1) Y, Z are representable by algebraic spaces Y , Z over S,
(2) the associated morphism of algebraic spaces Y → Z is surjective, flat and

locally of finite presentation, and
(3) Y ×Z X is a stack in setoids,

then X is a stack in setoids.

Proof. This is a special case of Stacks, Lemma 8.6.10. �

The following lemma is the analogue of Algebraic Stacks, Lemma 71.15.3 and will
be superseded by the stronger Theorem 74.16.1.

Lemma 74.4.3. Let S be a scheme. Let u : U → X be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective, flat and locally of finite

presentation,

then ∆ : X → X ×X representable by algebraic spaces.

http://stacks.math.columbia.edu/tag/05XK
http://stacks.math.columbia.edu/tag/05XL
http://stacks.math.columbia.edu/tag/05XW
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Proof. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf the associated
representable fibre categories. Suppose given 1-morphisms fi : Ti → X . According
to Algebraic Stacks, Lemma 71.10.11 it suffices to prove that the 2-fibered product
T1 ×X T2 is representable by an algebraic space. By Stacks, Lemma 8.6.8 this
is in any case a stack in setoids. Thus T1 ×X T2 corresponds to some sheaf F
on (Sch/S)fppf , see Stacks, Lemma 8.6.3. Let U be the algebraic space which
represents U . By assumption

T ′i = U ×u,X ,fi Ti
is representable by an algebraic space T ′i over S. Hence T ′1 ×U T ′2 is representable
by the algebraic space T ′1 ×U T ′2. Consider the commutative diagram

T1 ×X T2
//

��

T1

��

T ′1 ×U T ′2

88

//

��

T ′1

??

��

T2
// X

T ′2 //

88

U

??

In this diagram the bottom square, the right square, the back square, and the
front square are 2-fibre products. A formal argument then shows that T ′1 ×U T ′2 →
T1 ×X T2 is the “base change” of U → X , more precisely the diagram

T ′1 ×U T ′2

��

// U

��
T1 ×X T2

// X

is a 2-fibre square. Hence T ′1 ×U T ′2 → F is representable by algebraic spaces,
flat, locally of finite presentation and surjective, see Algebraic Stacks, Lemmas
71.9.6, 71.9.7, 71.10.4, and 71.10.6. Therefore F is an algebraic space by Bootstrap,
Theorem 62.10.1 and we win. �

Lemma 74.4.4. Let X be a category fibred in groupoids over (Sch/S)fppf . The
following are equivalent

(1) ∆∆ : X → X ×X×X X is representable by algebraic spaces,
(2) for every 1-morphism V → X ×X with V representable (by a scheme) and

the fibre product Y = X ×∆,X×X V has diagonal representable by algebraic
spaces.

Proof. Although this is a bit of a brain twister, it is completely formal. Namely,
recall that X ×X×X X = IX is the inertia of X and that ∆∆ is the identity section
of IX , see Categories, Section 4.32. Thus condition (1) says the following: Given a
scheme V , an object x of X over V , and a morphism α : x→ x of XV the condition
“α = idx” defines an algebraic space over V . (In other words, there exists a
monomorphism of algebraic spaces W → V such that a morphism of schemes
f : T → V factors through W if and only if f∗α = idf∗x.)

http://stacks.math.columbia.edu/tag/07WG
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On the other hand, let V be a scheme and let x, y be objects of X over V . Then
(x, y) define a morphism V = (Sch/V )fppf → X × X . Next, let h : V ′ → V be
a morphism of schemes and let α : h∗x → h∗y and β : h∗x → h∗y be morphisms
of XV ′ . Then (α, β) define a morphism V ′ = (Sch/V )fppf → Y × Y. Condition
(2) now says that (with any choices as above) the condition “α = β” defines an
algebraic space over V .

To see the equivalence, given (α, β) as in (2) we see that (1) implies that “α−1 ◦β =
idh∗x” defines an algebraic space. The implication (2) ⇒ (1) follows by taking
h = idV and β = idx. �

74.5. Limit preserving on objects

Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is limit preserving on objects if the following
condition holds: Given any data consisting of

(1) an affine scheme U = limi∈I Ui which is written as the directed limit of
affine schemes Ui over S,

(2) an object yi of Y over Ui for some i,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x)→ yi|U ,

then there exists an i′ ≥ i, an object xi′ of X over Ui′ , an isomorphism β : xi′ |U → x,
and an isomorphism γi′ : p(xi′)→ yi|Ui′ such that

(74.5.0.1)

p(xi′ |U )

p(β)

��

γi′ |U
// (yi|Ui′ )|U

p(x)
γ // yi|U

commutes. In this situation we say that “(i′, xi′ , β, γi′) is a solution to the problem
posed by our data (1), (2), (3), (4)”. The motivation for this definition comes from
Limits of Spaces, Lemma 52.3.2.

Lemma 74.5.1. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is limit preserving on objects, then so
is the base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes
Ui over S, let zi be an object of Z over Ui for some i, let w be an object of
X ×Y Z over U , and let δ : p′(w) → zi|U be an isomorphism. We may write
w = (U, x, z, α) for some object x of X over U and object z of Z over U and
isomorphism α : p(x) → q(z). Note that p′(w) = z hence δ : z → zi|U . Set
yi = q(zi) and γ = q(δ) ◦ α : p(x)→ yi|U . As p is limit preserving on objects there
exists an i′ ≥ i and an object xi′ of X over Ui′ as well as isomorphisms β : xi′ |U → x
and γi′ : p(xi′)→ yi|Ui′ such that (74.5.0.1) commutes. Then we consider the object
wi′ = (Ui′ , xi′ , zi|Ui′ , γi′) of X ×Y Z over Ui′ and define isomorphisms

wi′ |U = (U, xi′ |U , zi|U , γi′ |U )
(β,δ−1)−−−−−→ (U, x, z, α) = w

and

p′(wi′) = zi|Ui′
id−→ zi|Ui′ .

These combine to give a solution to the problem. �
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Lemma 74.5.2. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are limit preserving on objects, then so
is the composition q ◦ p.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S, let zi be an object of Z over Ui for some i, let x be an object of X over U ,
and let γ : q(p(x)) → zi|U be an isomorphism. As q is limit preserving on objects
there exist an i′ ≥ i, an object yi′ of Y over Ui′ , an isomorphism β : yi′ |U → p(x),
and an isomorphism γi′ : q(yi′)→ zi|Ui′ such that (74.5.0.1) is commutative. As p
is limit preserving on objects there exist an i′′ ≥ i′, an object xi′′ of X over Ui′′ , an
isomorphism β′ : xi′′ |U → x, and an isomorphism γ′i′′ : p(xi′′) → yi′ |Ui′′ such that
(74.5.0.1) is commutative. The solution is to take xi′′ over Ui′′ with isomorphism

q(p(xi′′))
q(γ′

i′′ )−−−−→ q(yi′)|Ui′′
γi′ |Ui′′−−−−→ zi|Ui′′

and isomorphism β′ : xi′′ |U → x. We omit the verification that (74.5.0.1) is com-
mutative. �

Lemma 74.5.3. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is limit preserving on objects, and
(2) p is locally of finite presentation (see Algebraic Stacks, Definition 71.10.1).

Proof. Assume (2). Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S, let yi be an object of Y over Ui for some i, let x be an object of X over U ,
and let γ : p(x)→ yi|U be an isomorphism. Let Xyi denote an algebraic space over
Ui representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,p X .

Note that ξ = (U,U → Ui, x, γ
−1) defines an object of this 2-fibre product over

U . Via the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xyi over
Ui. By Limits of Spaces, Proposition 52.3.9 there exists an i′ ≥ i and a morphism
fi′ : Ui′ → Xyi such that fξ is the composition of fi′ and the projection morphism
U → Ui′ . Also, the 2-Yoneda lemma tells us that fi′ corresponds to an object ξi′ =
(Ui′ , Ui′ → Ui, xi′ , α) of the displayed 2-fibre product over Ui′ whose restriction to
U recovers ξ. In particular we obtain an isomorphism γ : xi′ |U → x. Note that
α : yi|Ui′ → p(xi′). Hence we see that taking xi′ , the isomorphism γ : xi′ |U → x,
and the isomorphism β = α−1 : p(xi′)→ yi|Ui′ is a solution to the problem.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy

be an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,pX .
We have to show that Xy → T is locally of finite presentation. To do this we may
use Limits of Spaces, Proposition 52.3.9 in the form described in Limits of Spaces,
Remark 52.3.10. Hence it suffices to show that given an affine scheme U = limi∈I Ui
written as the directed limit of affine schemes over T , then Xy(U) = colimiXy(Ui).
Pick any i ∈ I and set yi = y|Ui . Also denote i′ an element of I which is bigger
than or equal to i. By the 2-Yoneda lemma morphisms U → Xy over T correspond
bijectively to isomorphism classes of pairs (x, α) where x is an object of X over U
and α : y|U → p(x) is an isomorphism. Of course giving α is, up to an inverse,
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the same thing as giving an isomorphism γ : p(x)→ yi|U . Similarly for morphisms
Ui′ → Xy over T . Hence (1) guarantees that

Xy(U) = colimi′≥iXy(Ui′)

in this situation and we win. �

Lemma 74.5.4. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Assume p is representable by algebraic spaces and an open im-
mersion. Then p is limit preserving on objects.

Proof. This follows from Lemma 74.5.3 and (via the general principle Algebraic
Stacks, Lemma 71.10.9) from the fact that an open immersion of algebraic spaces
is locally of finite presentation, see Morphisms of Spaces, Lemma 49.27.11. �

Let S be a scheme. In the following lemma we need the notion of the size of an
algebraic space X over S. Namely, given a cardinal κ we will say X has size(X) ≤ κ
if and only if there exists a scheme U with size(U) ≤ κ (see Sets, Section 3.9) and
a surjective étale morphism U → X.

Lemma 74.5.5. Let S be a scheme. Let κ = size(T ) for some T ∈ Ob((Sch/S)fppf ).
Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf
such that

(1) Y → (Sch/S)fppf is limit preserving on objects,
(2) for an affine scheme V locally of finite presentation over S and y ∈

Ob(YV ) the fibre product (Sch/V )fppf ×y,Y X is representable by an alge-
braic space of size ≤ κ1,

(3) X and Y are stacks for the Zariski topology.

Then f is representable by algebraic spaces.

Proof. Let V be a scheme over S and y ∈ YV . We have to prove (Sch/V )fppf ×y,Y
X is representable by an algebraic space.

Case I: V is affine and maps into an affine open Spec(Λ) ⊂ S. Then we can write
V = limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra,
Lemma 10.123.1. Then y comes from an object yi over Vi for some i by assumption
(1). By assumption (3) the fibre product (Sch/Vi)fppf ×yi,Y X is representable by
an algebraic space Zi. Then (Sch/V )fppf ×y,Y X is representable by Z ×Vi V .

Case II: V is general. Choose an affine open covering V =
⋃
i∈I Vi such that each

Vi maps into an affine open of S. We first claim that Z = (Sch/V )fppf ×y,Y X is
a stack in setoids for the Zariski topology. Namely, it is a stack in groupoids for
the Zariski topology by Stacks, Lemma 8.5.6. Then suppose that z is an object
of Z over a scheme T . Denote g : T → V the morphism corresponding to the
projection of z in (Sch/V )fppf . Consider the Zariski sheaf I = IsomZ(z, z). By
Case I we see that I |g−1(Vi) = ∗ (the singleton sheaf). Hence I = ∗. Thus Z
is fibred in setoids. To finish the proof we have to show that the Zariski sheaf
Z : T 7→ Ob(ZT )/ ∼= is an algebraic space, see Algebraic Stacks, Lemma 71.8.2.
There is a map p : Z → V (transformation of functors) and by Case I we know that
Zi = p−1(Vi) is an algebraic space. The morphisms Zi → Z are representable by
open immersions and

∐
Zi → Z is surjective (in the Zariski topology). Hence Z is

1The condition on size can be dropped by those ignoring set theoretic issues.
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a sheaf for the fppf topology by Bootstrap, Lemma 62.3.11. Thus Spaces, Lemma
47.8.4 applies and we conclude that Z is an algebraic space2. �

Lemma 74.5.6. Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let P be a property of morphisms of algebraic
spaces as in Algebraic Stacks, Definition 71.10.1. If

(1) f is representable by algebraic spaces,
(2) Y → (Sch/S)fppf is limit preserving on objects,
(3) for an affine scheme V locally of finite presentation over S and y ∈ YV

the resulting morphism of algebraic spaces fy : Fy → V , see Algebraic
Stacks, Equation (71.9.1.1), has property P.

Then f has property P.

Proof. Let V be a scheme over S and y ∈ YV . We have to show that Fy → V
has property P. Since P is fppf local on the base we may assume that V is an
affine scheme which maps into an affine open Spec(Λ) ⊂ S. Thus we can write
V = limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra,
Lemma 10.123.1. Then y comes from an object yi over Vi for some i by assumption
(2). By assumption (3) the morphism Fyi → Vi has property P. As P is stable
under arbitrary base change and since Fy = Fyi ×Vi V we conclude that Fy → V
has property P as desired. �

74.6. Formally smooth on objects

Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is formally smooth on objects if the following
condition holds: Given any data consisting of

(1) a first order thickening U ⊂ U ′ of affine schemes over S,
(2) an object y′ of Y over U ′,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x)→ y′|U ,

then there exists an object x′ of X over U ′ with an isomorphism β : x′|U → x and
an isomorphism γ′ : p(x′)→ y′ such that

(74.6.0.1)

p(x′|U )

p(β)

��

γ′|U
// y′|U

p(x)
γ // y′|U

commutes. In this situation we say that “(x′, β, γ′) is a solution to the problem
posed by our data (1), (2), (3), (4)”.

Lemma 74.6.1. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is formally smooth on objects, then
so is the base change p′ : X ×Y Z → Z of p by q.

2 To see that the set theoretic condition of that lemma is satisfied we argue as follows:

First choose the open covering such that |I| ≤ size(V ). Next, choose schemes Ui of size ≤
max(κ, size(V )) and surjective étale morphisms Ui → Zi; we can do this by assumption (2) and
Sets, Lemma 3.9.6 (details omitted). Then Sets, Lemma 3.9.9 implies that

∐
Ui is an object of

(Sch/S)fppf . Hence
∐
Zi is an algebraic space by Spaces, Lemma 47.8.3.
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Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes over
S, let z′ be an object of Z over U ′, let w be an object of X ×Y Z over U , and let
δ : p′(w)→ z′|U be an isomorphism. We may write w = (U, x, z, α) for some object
x of X over U and object z of Z over U and isomorphism α : p(x) → q(z). Note
that p′(w) = z hence δ : z → z|U . Set y′ = q(z′) and γ = q(δ) ◦ α : p(x) → y′|U .
As p is formally smooth on objects there exists an object x′ of X over U ′ as well
as isomorphisms β : x′|U → x and γ′ : p(x′) → y′ such that (74.6.0.1) commutes.
Then we consider the object w = (U ′, x′, z′, γ′) of X ×Y Z over U ′ and define
isomorphisms

w′|U = (U, x′|U , z′|U , γ′|U )
(β,δ−1)−−−−−→ (U, x, z, α) = w

and

p′(w′) = z′
id−→ z′.

These combine to give a solution to the problem. �

Lemma 74.6.2. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are formally smooth on objects, then so
is the composition q ◦ p.

Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes
over S, let z′ be an object of Z over U ′, let x be an object of X over U , and let
γ : q(p(x)) → z′|U be an isomorphism. As q is formally smooth on objects there
exist an object y′ of Y over U ′, an isomorphism β : y′|U → p(x), and an isomorphism
γ′ : q(y′) → z′ such that (74.6.0.1) is commutative. As p is formally smooth on
objects there exist an object x′ of X over U ′, an isomorphism β′ : x′|U → x, and
an isomorphism γ′′ : p(x′) → y′ such that (74.6.0.1) is commutative. The solution
is to take x′ over U ′ with isomorphism

q(p(x′))
q(γ′′)−−−→ q(y′)

γ′−→ z′

and isomorphism β′ : x′|U → x. We omit the verification that (74.6.0.1) is commu-
tative. �

Note that the class of formally smooth morphisms of algebraic spaces is stable
under arbitrary base change and local on the target in the fpqc topology, see More
on Morphisms of Spaces, Lemma 58.16.3 and 58.16.10. Hence condition (2) in the
lemma below makes sense.

Lemma 74.6.3. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is formally smooth on objects, and
(2) p is formally smooth (see Algebraic Stacks, Definition 71.10.1).

Proof. Assume (2). Let U ⊂ U ′ be a first order thickening of affine schemes
over S, let y′ be an object of Y over U ′, let x be an object of X over U , and let
γ : p(x) → y′|U be an isomorphism. Let Xy′ denote an algebraic space over U ′

representing the 2-fibre product

(Sch/U ′)fppf ×y′,Y,p X .
Note that ξ = (U,U → U ′, x, γ−1) defines an object of this 2-fibre product over U .
Via the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xy′ over U ′. As
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Xy′ → U ′ is formally smooth by assumption there exists a morphism f ′ : U ′ → Xy′

such that fξ is the composition of f ′ and the morphism U → U ′. Also, the 2-
Yoneda lemma tells us that f ′ corresponds to an object ξ′ = (U ′, U ′ → U ′, x′, α)
of the displayed 2-fibre product over U ′ whose restriction to U recovers ξ. In
particular we obtain an isomorphism γ : x′|U → x. Note that α : y′ → p(x′).
Hence we see that taking x′, the isomorphism γ : x′|U → x, and the isomorphism
β = α−1 : p(x′)→ y′ is a solution to the problem.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy be
an algebraic space over T representing the 2-fibre product (Sch/T )fppf×y,Y,pX . We
have to show that Xy → T is formally smooth. Hence it suffices to show that given
a first order thickening U ⊂ U ′ of affine schemes over T , then Xy(U ′)→ Xy(U ′) is
surjective (morphisms in the category of algebraic spaces over T ). Set y′ = y|U ′ .
By the 2-Yoneda lemma morphisms U → Xy over T correspond bijectively to
isomorphism classes of pairs (x, α) where x is an object of X over U and α : y|U →
p(x) is an isomorphism. Of course giving α is, up to an inverse, the same thing as
giving an isomorphism γ : p(x)→ y′|U . Similarly for morphisms U ′ → Xy over T .
Hence (1) guarantees the surjectivity of Xy(U ′)→ Xy(U ′) in this situation and we
win. �

74.7. Surjective on objects

Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is surjective on objects if the following condi-
tion holds: Given any data consisting of

(1) a field k over S, and
(2) an object y of Y over Spec(k),

then there exists an extension k ⊂ K of fields over S, an object x of X over Spec(K)
such that p(x) ∼= y|Spec(K).

Lemma 74.7.1. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is surjective on objects, then so is the
base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let z be an object of Z over a field k. As p is surjective
on objects there exists an extension k ⊂ K and an object x of X over K and an
isomorphism α : p(x) → q(z)|Spec(K). Then w = (Spec(K), x, z|Spec(K), α) is an
object of X ×Y Z over K with p′(w) = z|Spec(K). �

Lemma 74.7.2. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are surjective on objects, then so is the
composition q ◦ p.

Proof. This is formal. Let z be an object of Z over a field k. As q is surjective on
objects there exists a field extension k ⊂ K and an object y of Y over K such that
q(y) ∼= x|Spec(K). As p is surjective on objects there exists a field extension K ⊂ L
and an object x of X over L such that p(x) ∼= y|Spec(L). Then the field extension
k ⊂ L and the object x of X over L satisfy q(p(x)) ∼= z|Spec(L) as desired. �

Lemma 74.7.3. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:
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(1) p is surjective on objects, and
(2) p is surjective (see Algebraic Stacks, Definition 71.10.1).

Proof. Assume (2). Let k be a field and let y be an object of Y over k. Let Xy

denote an algebraic space over k representing the 2-fibre product

(Sch/ Spec(k))fppf ×y,Y,p X .
As we’ve assumed that p is surjective we see that Xy is not empty. Hence we can
find a field extension k ⊂ K and a K-valued point x of Xy. Via the 2-Yoneda
lemma this corresponds to an object x of X over K together with an isomorphism
p(x) ∼= y|Spec(K) and we see that (1) holds.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy

be an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,pX .
We have to show that Xy → T is surjective. By Morphisms of Spaces, Definition
49.5.2 we have to show that |Xy| → |T | is surjective. This means exactly that given
a field k over T and a morphism t : Spec(k) → T there exists a field extension
k ⊂ K and a morphism x : Spec(K)→ Xy such that

Spec(K)

��

x
// Xy

��
Spec(k)

t // T

commutes. By the 2-Yoneda lemma this means exactly that we have to find k ⊂ K
and an object x of X over K such that p(x) ∼= t∗y|Spec(K). Hence (1) guarantees
that this is the case and we win. �

74.8. Algebraic morphisms

The following notion is occasionally useful.

Definition 74.8.1. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf . We say that F is algebraic if for every scheme T
and every object ξ of Y over T the 2-fibre product

(Sch/T )fppf ×ξ,Y X
is an algebraic stack over S.

With this terminology in place we have the following result that generalizes Alge-
braic Stacks, Lemma 71.15.4.

Lemma 74.8.2. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) Y is an algebraic stack, and
(2) F is algebraic (see above),

then X is an algebraic stack.

Proof. By assumption (1) there exists a scheme T and an object ξ of Y over
T such that the corresponding 1-morphism ξ : (Sch/T )fppf → Y is smooth an
surjective. Then U = (Sch/T )fppf×ξ,YX is is an algebraic stack by assumption (2).
Choose a scheme U and a surjective smooth 1-morphism (Sch/U)fppf → U . The
projection U −→ X is, as the base change of the morphism ξ : (Sch/T )fppf → Y,

http://stacks.math.columbia.edu/tag/06CF
http://stacks.math.columbia.edu/tag/05XY


74.9. SPACES OF SECTIONS 4091

surjective and smooth, see Algebraic Stacks, Lemma 71.10.6. Then the composition
(Sch/U)fppf → U → X is surjective and smooth as a composition of surjective and
smooth morphisms, see Algebraic Stacks, Lemma 71.10.5. Hence X is an algebraic
stack by Algebraic Stacks, Lemma 71.15.3. �

Lemma 74.8.3. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf . If X is an algebraic stack and ∆ : Y → Y × Y is
representable by algebraic spaces, then F is algebraic.

Proof. Choose a representable stack in groupoids U and a surjective smooth 1-
morphism U → X . Let T be a scheme and let ξ be an object of Y over T . The
morphism of 2-fibre products

(Sch/T )fppf ×ξ,Y U −→ (Sch/T )fppf ×ξ,Y X
is representable by algebraic spaces, surjective, and smooth as a base change of
U → X , see Algebraic Stacks, Lemmas 71.9.7 and 71.10.6. By our condition on
the diagonal of Y we see that the source of this morphism is representable by an
algebraic space, see Algebraic Stacks, Lemma 71.10.11. Hence the target is an
algebraic stack by Algebraic Stacks, Lemma 71.15.3. �

74.9. Spaces of sections

Given morphisms W → Z → U we can consider the functor that associates to a
scheme U ′ over U the set of sections σ : ZU ′ →WU ′ of the base change WU ′ → ZU ′

of the morphism W → Z. In this section we prove some preliminary lemmas on
this functor.

Lemma 74.9.1. Let Z → U be a finite morphism of schemes. Let W be an
algebraic space and let W → Z be a surjective étale morphism. Then there exists a
surjective étale morphism U ′ → U and a section

σ : ZU ′ →WU ′

of the morphism WU ′ → ZU ′ .

Proof. We may choose a separated scheme W ′ and a surjective étale morphism
W ′ → W . Hence after replacing W by W ′ we may assume that W is a separated
scheme. Write f : W → Z and π : Z → U . Note that f ◦π : W → U is separated as
W is separated (see Schemes, Lemma 25.21.14). Let u ∈ U be a point. Clearly it
suffices to find an étale neighbourhood (U ′, u′) of (U, u) such that a section σ exists
over U ′. Let z1, . . . , zr be the points of Z lying above u. For each i choose a point
wi ∈ W which maps to zi. We may pick an étale neighbourhood (U ′, u′) → (U, u)
such that the conclusions of More on Morphisms, Lemma 36.30.5 hold for both
Z → U and the points z1, . . . , zr and W → U and the points w1, . . . , wr. Hence,
after replacing (U, u) by (U ′, u′) and relabeling, we may assume that all the field
extensions κ(u) ⊂ κ(zi) and κ(u) ⊂ κ(wi) are purely inseparable, and moreover
that there exist disjoint union decompositions

Z = V1 q . . .q Vr qA, W = W1 q . . .qWr qB
by open and closed subschemes with zi ∈ Vi, wi ∈Wi and Vi → U , Wi → U finite.
After replacing U by U \ π(A) we may assume that A = ∅, i.e., Z = V1 q . . .q Vr.
After replacing Wi by Wi ∩ f−1(Vi) and B by B ∪

⋃
Wi ∩ f−1(Z \ Vi) we may

assume that f maps Wi into Vi. Then fi = f |Wi
: Wi → Vi is a morphism of
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schemes finite over U , hence finite (see Morphisms, Lemma 28.44.12). It is also
étale (by assumption), f−1

i ({zi}) = wi, and induces an isomorphism of residue
fields κ(zi) = κ(wi) (because both are purely inseparable extensions of κ(u) and

κ(zi) ⊂ κ(wi) is separable as f is étale). Hence by Étale Morphisms, Lemma 40.14.2
we see that fi is an isomorphism in a neighbourhood V ′i of zi. Since π : Z → U is
closed, after shrinking U , we may assume that Wi → Vi is an isomorphism. This
proves the lemma. �

Lemma 74.9.2. Let Z → U be a finite locally free morphism of schemes. Let W
be an algebraic space and let W → Z be an étale morphism. Then the functor

F : (Sch/U)oppfppf −→ Sets,

defined by the rule

U ′ 7−→ F (U ′) = {σ : ZU ′ →WU ′ section of WU ′ → ZU ′}
is an algebraic space and the morphism F → U is étale.

Proof. Assume first that W → Z is also separated. Let U ′ be a scheme over U and
let σ ∈ F (U ′). By Morphisms of Spaces, Lemma 49.4.7 the morphism σ is a closed
immersion. Moreover, σ is étale by Properties of Spaces, Lemma 48.13.6. Hence
σ is also an open immersion, see Morphisms of Spaces, Lemma 49.45.2. In other
words, Zσ = σ(ZU ′) ⊂WU ′ is an open subspace such that the morphism Zσ → ZU ′

is an isomorphism. In particular, the morphism Zσ → U ′ is finite. Hence we obtain
a transformation of functors

F −→ (W/U)fin, σ 7−→ (U ′ → U,Zσ)

where (W/U)fin is the finite part of the morphism W → U introduced in More on
Groupoids in Spaces, Section 61.9. It is clear that this transformation of functors
is injective (since we can recover σ from Zσ as the inverse of the isomorphism
Zσ → ZU ′). By More on Groupoids in Spaces, Proposition 61.9.11 we know that
(W/U)fin is an algebraic space étale over U . Hence to finish the proof in this case
it suffices to show that F → (W/U)fin is representable and an open immersion.
To see this suppose that we are given a morphism of schemes U ′ → U and an open
subspace Z ′ ⊂WU ′ such that Z ′ → U ′ is finite. Then it suffices to show that there
exists an open subscheme U ′′ ⊂ U ′ such that a morphism T → U ′ factors through
U ′′ if and only if Z ′ ×U ′ T maps isomorphically to Z ×U ′ T . This follows from
More on Morphisms of Spaces, Lemma 58.37.6 (here we use that Z → B is flat and
locally of finite presentation as well as finite). Hence we have proved the lemma in
case W → Z is separated as well as étale.

In the general case we choose a separated scheme W ′ and a surjective étale mor-
phism W ′ →W . Note that the morphisms W ′ →W and W → Z are separated as
their source is separated. Denote F ′ the functor associated to W ′ → Z → U as in
the lemma. In the first paragraph of the proof we showed that F ′ is representable
by an algebraic space étale over U . By Lemma 74.9.1 the map of functors F ′ → F
is surjective for the étale topology on Sch/U . Moreover, if U ′ and σ : ZU ′ → WU ′

define a point ξ ∈ F (U ′), then the fibre product

F ′′ = F ′ ×F,ξ U ′

is the functor on Sch/U ′ associated to the morphisms

W ′U ′ ×WU′ ,σ ZU ′ → ZU ′ → U ′.
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Since the first morphism is separated as a base change of a separated morphism, we
see that F ′′ is an algebraic space étale over U ′ by the result of the first paragraph.
It follows that F ′ → F is a surjective étale transformation of functors, which is
representable by algebraic spaces. Hence F is an algebraic space by Bootstrap,
Theorem 62.10.1. Since F ′ → F is an étale surjective morphism of algebraic spaces
it follows that F → U is étale because F ′ → U is étale. �

74.10. Relative morphisms

Let S be a scheme. Let Z → B and X → B be morphisms of algebraic spaces over
S. Given a scheme T we can consider pairs (a, b) where a : T → B is a morphism
and b : T ×a,B Z → T ×a,B X is a morphism over T . Picture

(74.10.0.1)

T ×a,B Z

$$

b
// T ×a,B X

zz

Z

��

X

��
T

a // B

Of course, we can also think of b as a morphism b : T ×a,B Z → X such that

T ×a,B Z //

��

b **
Z

��

X

��
T

a // B

commutes. In this situation we can define a functor

(74.10.0.2) MorB(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B,
in which case we drop a from the notation.

Lemma 74.10.1. Let S be a scheme. Let Z → B and X → B be morphisms of
algebraic spaces over S. Then

(1) MorB(Z,X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T,MorB(Z,X)) = {(a, b) as in (74.10.0.1)}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of T
(as in Topologies on Spaces, Section 55.4). Suppose that (ai, bi) ∈ MorB(Z,X)(Ti)
such that (ai, bi)|Ti×TTj = (aj , bj)|Ti×TTj for all i, j. Then by Descent on Spaces,
Lemma 56.6.2 there exists a unique morphism a : T → B such that ai is the
composition of Ti → T and a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering
too and the same lemma implies there exists a unique morphism b : T ×a,B Z →
T ×a,B X such that bi is the composition of Ti ×ai,B Z → T ×a,B Z and b. Hence
(a, b) ∈ MorB(Z,X)(T ) restricts to (ai, bi) over Ti for all i.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair (a, b) fitting into (74.10.0.1).

Let v : T → MorB(Z,X) be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ MorB(Z,X)(U) corresponds
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to a pair (aU , bU ) over U . Let R = U ×T U with projections t, s : R → U . As
v is a transformation of functors we see that the pullbacks of (aU , bU ) by s and t
agree. Hence, since {U → T} is an fppf covering, we may apply the result of the
first paragraph that deduce that there exists a unique pair (a, b) over T .

Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors
v : hU → MorB(Z,X) by the Yoneda lemma (Categories, Lemma 4.3.5). As the
two pullbacks s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two
maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 47.9.1 and since MorB(Z,X) is an fppf sheaf by (1) we conclude that v
factors through a map T → MorB(Z,X).

We omit the verification that the two constructions above are mutually inverse. �

Lemma 74.10.2. Let S be a scheme. Let Z → B, X → B, and B′ → B be
morphisms of algebraic spaces over S. Set Z ′ = B′×B Z and X ′ = B′×BX. Then

MorB′(Z
′, X ′) = B′ ×B MorB(Z,X)

in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The
equality as sheaves follows from this because both sides are sheaves according to
Lemma 74.10.1 and the fact that a fibre product of sheaves is the same as the
corresponding fibre product of pre-sheaves (i.e., functors). �

Lemma 74.10.3. Let S be a scheme. Let Z → B and X ′ → X → B be morphisms
of algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then MorB(Z,X ′) → MorB(Z,X) is representable by algebraic spaces and étale.
If X ′ → X is also surjective, then MorB(Z,X ′)→ MorB(Z,X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of MorB(Z,X)(U). We
have to prove that the functor

hU ×ξ,MorB(Z,X) MorB(Z,X ′)

is representable by an algebraic space étale over U . Set ZU = U ×a,B Z and
W = ZU ×b,X X ′. Then W → ZU → U is as in Lemma 74.9.2 and the sheaf F
defined there is identified with the fibre product displayed above. Hence the first
assertion of the lemma. The second assertion follows from this and Lemma 74.9.1
which guarantees that F → U is surjective in the situation above. �

Lemma 74.10.4. Let Z → B and X → B be morphisms of affine schemes. As-
sume Γ(Z,OZ) is a finite free Γ(B,OB)-module. Then MorB(Z,X) is representable
by an affine scheme over B.

Proof. Write B = Spec(R). Choose a basis {e1, . . . , em} for Γ(Z,OZ). Finally,
choose a presentation

Γ(X,OX) = R[{xi}i∈I ]/({fk}k∈K).

We will denote xi the image of xi in this quotient. Write

P = R[{aij}i∈I,1≤j≤m].

http://stacks.math.columbia.edu/tag/05Y4
http://stacks.math.columbia.edu/tag/05Y5
http://stacks.math.columbia.edu/tag/05Y6


74.10. RELATIVE MORPHISMS 4095

Consider the R-algebra map

Ψ : R[{xi}i∈I ] −→ P ⊗R Γ(Z,OZ), xi 7−→
∑

j
aij ⊗ ej .

Write Ψ(fk) =
∑
ckj ⊗ ej with ckj ∈ P . Finally, denote J ⊂ P the ideal generated

by the elements ckj , k ∈ K, 1 ≤ j ≤ m. We claim that W = Spec(P/J) represents
the functor MorB(Z,X).

First, note that by construction P/J is an R-algebra, hence a morphism auniv :
W → B. Second, by construction the map Ψ factors through Γ(X,OX), hence we
obtain an P/J-algebra homomorphism

P/J ⊗R Γ(X,OX) −→ P/J ⊗R Γ(Z,OZ)

which determines a morphism buniv : W ×auniv,B Z → W ×auniv,B X. By the
Yoneda lemma the pair (auniv, buniv) determines a transformation of functors W →
MorB(Z,X) which we claim is an isomorphism. To show that it is an isomorphism
it suffices to show that it induces a bijection of sets W (T )→ MorB(Z,X)(T ) over
any affine scheme T .

Suppose T = Spec(R′) is an affine scheme and (a, b) ∈ MorB(Z,X)(T ), then a
defines an R-algebra structure on R′ and b defines an R′-algebra map

b] : R′ ⊗R Γ(X,OX) −→ R′ ⊗R Γ(Z,OZ).

In particular we can write b](1 ⊗ xi) =
∑
αij ⊗ ej for some αij ∈ R′. This

corresponds to an R-algebra map P → R′ determined by the rule aij 7→ αij .
This map factors through the quotient P/J by the construction of the ideal J to
give a map P/J → R′. This in turn corresponds to a morphism T →W such that
(a, b) is the pullback of (auniv, buniv). Some details omitted. �

Proposition 74.10.5. Let S be a scheme. Let Z → B and X → B be morphisms
of algebraic spaces over S. If Z → B is finite locally free then MorB(Z,X) is an
algebraic space.

Proof. Choose a scheme B′ =
∐
B′i which is a disjoint union of affine schemes B′i

and an étale surjective morphism B′ → B. We may also assume that B′i ×B Z
is the spectrum of a ring which is finite free as a Γ(B′i,OB′i)-module. By Lemma

74.10.2 and Spaces, Lemma 47.5.5 the morphism MorB′(Z
′, X ′) → MorB(Z,X)

is surjective étale. Hence by Bootstrap, Theorem 62.10.1 it suffices to prove the
proposition when B = B′ is a disjoint union of affine schemes B′i so that each
B′i ×B Z is finite free over B′i. Then it actually suffices to prove the result for the
restriction to each B′i. Thus we may assume that B is affine and that Γ(Z,OZ) is
a finite free Γ(B,OB)-module.

Choose a scheme X ′ which is a disjoint union of affine schemes and a surjective
étale morphism X ′ → X. By Lemma 74.10.3 the morphism MorB(Z,X ′) →
MorB(Z,X) is representable by algebraic spaces, étale, and surjective. Hence by
Bootstrap, Theorem 62.10.1 it suffices to prove the proposition when X is a dis-
joint union of affine schemes. This reduces us to the case discussed in the next
paragraph.

Assume X =
∐
i∈I Xi is a disjoint union of affine schemes, B is affine, and that

Γ(Z,OZ) is a finite free Γ(B,OB)-module. For any finite subset E ⊂ I set

FE = MorB(Z,
∐

i∈E
Xi).
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By Lemma 74.10.4 we see that FE is an algebraic space. Consider the morphism∐
E⊂I finite

FE −→ MorB(Z,X)

Each of the morphisms FE → MorB(Z,X) is an open immersion, because it is
simply the locus parametrizing pairs (a, b) where b maps into the open subscheme∐
i∈E Xi of X. Moreover, if T is quasi-compact, then for any pair (a, b) the image

of b is contained in
∐
i∈E Xi for some E ⊂ I finite. Hence the displayed arrow is in

fact an open covering and we win3 by Spaces, Lemma 47.8.4. �

74.11. Restriction of scalars

Suppose X → Z → B are morphisms of algebraic spaces over S. Given a scheme T
we can consider pairs (a, b) where a : T → B is a morphism and b : T ×a,B Z → X
is a morphism over Z. Picture

(74.11.0.1)

X

��
T ×a,B Z

��

b

::

// Z

��
T

a // B

In this situation we can define a functor

(74.11.0.2) ResZ/B(X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B,
in which case we drop a from the notation.

Lemma 74.11.1. Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. Then

(1) ResZ/B(X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T,ResZ/B(X)) = {(a, b) as in (74.11.0.1)}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of T
(as in Topologies on Spaces, Section 55.4). Suppose that (ai, bi) ∈ ResZ/B(X)(Ti)
such that (ai, bi)|Ti×TTj = (aj , bj)|Ti×TTj for all i, j. Then by Descent on Spaces,
Lemma 56.6.2 there exists a unique morphism a : T → B such that ai is the
composition of Ti → T and a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering
too and the same lemma implies there exists a unique morphism b : T ×a,B Z → X
such that bi is the composition of Ti ×ai,B Z → T ×a,B Z and b. Hence (a, b) ∈
ResZ/B(X)(T ) restricts to (ai, bi) over Ti for all i.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair (a, b) fitting into (74.11.0.1).

3Modulo some set theoretic arguments. Namely, we have to show that
∐
FE is an algebraic

space. This follows because |I| ≤ size(X) and size(FE) ≤ size(X) as follows from the explicit

description of FE in the proof of Lemma 74.10.4. Some details omitted.
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Let v : T → ResZ/B(X) be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ ResZ/B(X)(U) corresponds to
a pair (aU , bU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , bU ) by s and t agree.
Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, b) over T .

Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors
v : hU → ResZ/B(X) by the Yoneda lemma (Categories, Lemma 4.3.5). As the
two pullbacks s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two
maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 47.9.1 and since ResZ/B(X) is an fppf sheaf by (1) we conclude that v
factors through a map T → ResZ/B(X).

We omit the verification that the two constructions above are mutually inverse. �

Of course the sheaf ResZ/B(X) comes with a natural transformation of functors
ResZ/B(X)→ B. We will use this without further mention in the following.

Lemma 74.11.2. Let S be a scheme. Let X → Z → B and B′ → B be morphisms
of algebraic spaces over S. Set Z ′ = B′ ×B Z and X ′ = B′ ×B X. Then

ResZ′/B′(X
′) = B′ ×B ResZ/B(X)

in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The
equality as sheaves follows from this because both sides are sheaves according to
Lemma 74.11.1 and the fact that a fibre product of sheaves is the same as the
corresponding fibre product of pre-sheaves (i.e., functors). �

Lemma 74.11.3. Let S be a scheme. Let X ′ → X → Z → B be morphisms of
algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then ResZ/B(X ′) → ResZ/B(X) is representable by algebraic spaces and étale. If
X ′ → X is also surjective, then ResZ/B(X ′)→ ResZ/B(X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of ResZ/B(X)(U). We
have to prove that the functor

hU ×ξ,ResZ/B(X) ResZ/B(X ′)

is representable by an algebraic space étale over U . Set ZU = U ×a,B Z and
W = ZU ×b,X X ′. Then W → ZU → U is as in Lemma 74.9.2 and the sheaf F
defined there is identified with the fibre product displayed above. Hence the first
assertion of the lemma. The second assertion follows from this and Lemma 74.9.1
which guarantees that F → U is surjective in the situation above. �

At this point we can use the lemmas above to prove that ResZ/B(X) is an algebraic
space whenever Z → B is finite locally free in almost exactly the same way as in
the proof that MorB(Z,X) is an algebraic spaces, see Proposition 74.10.5. Instead
we will directly deduce this result from the following lemma and the fact that
MorB(Z,X) is an algebraic space.
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Lemma 74.11.4. Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. The following diagram

MorB(Z,X) // MorB(Z,Z)

ResZ/B(X) //

OO

B

idZ

OO

is a cartesian diagram of sheaves on (Sch/S)fppf .

Proof. Omitted. Hint: Exercise in the functorial point of view in algebraic geom-
etry. �

Proposition 74.11.5. Let S be a scheme. Let X → Z → B be morphisms of
algebraic spaces over S. If Z → B is finite locally free then ResZ/B(X) is an
algebraic space.

Proof. By Proposition 74.10.5 the functors MorB(Z,X) and MorB(Z,Z) are al-
gebraic spaces. Hence this follows from the cartesian diagram of Lemma 74.11.4
and the fact that fibre products of algebraic spaces exist and are given by the
fibre product in the underlying category of sheaves of sets (see Spaces, Lemma
47.7.2). �

74.12. Finite Hilbert stacks

In this section we prove some results concerning the finite Hilbert stacks Hd(X/Y)
introduced in Examples of Stacks, Section 72.17.

Lemma 74.12.1. Consider a 2-commutative diagram

X ′
G
//

F ′

��

X

F

��
Y ′ H // Y

of stacks in groupoids over (Sch/S)fppf with a given 2-isomorphism γ : H ◦ F ′ →
F ◦G. In this situation we obtain a canonical 1-morphism Hd(X ′/Y ′)→ Hd(X/Y).
This morphism is compatible with the forgetful 1-morphisms of Examples of Stacks,
Equation (72.17.2.1).

Proof. We map the object (U,Z, y′, x′, α′) to the object (U,Z,H(y′), G(x′), γ?idH?
α′) where ? denotes horizontal composition of 2-morphisms, see Categories, Defi-
nition 4.26.1. To a morphism (f, g, b, a) : (U1, Z1, y

′
1, x
′
1, α
′
1) → (U2, Z2, y

′
2, x
′
2, α
′
2)

we assign (f, g,H(b), G(a)). We omit the verification that this defines a functor
between categories over (Sch/S)fppf . �

Lemma 74.12.2. In the situation of Lemma 74.12.1 assume that the given square
is 2-cartesian. Then the diagram

Hd(X ′/Y ′) //

��

Hd(X/Y)

��
Y ′ // Y

is 2-cartesian.
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Proof. We get a 2-commutative diagram by Lemma 74.12.1 and hence we get a
1-morphism (i.e., a functor)

Hd(X ′/Y ′) −→ Y ′ ×Y Hd(X/Y)

We indicate why this functor is essentially surjective. Namely, an object of the
category on the right hand side is given by a scheme U over S, an object y′ of Y ′U ,
an object (U,Z, y, x, α) of Hd(X/Y) over U and an isomorphism H(y′)→ y in YU .
The assumption means exactly that there exists an object x′ of X ′Z such that there
exist isomorphisms G(x′) ∼= x and α′ : y′|Z → F ′(x′) compatible with α. Then we
see that (U,Z, y′, x′, α′) is an object of Hd(X ′/Y ′) over U . Details omitted. �

Lemma 74.12.3. In the situation of Lemma 74.12.1 assume

(1) Y ′ = Y and H = idY ,
(2) G is representable by algebraic spaces and étale.

Then Hd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. If G
is also surjective, then Hd(X ′/Y)→ Hd(X/Y) is surjective.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object of Hd(X/Y) over
U . We have to prove that the 2-fibre product

(74.12.3.1) (Sch/U)fppf ×ξ,Hd(X/Y) Hd(X ′/Y)

is representable by an algebraic space étale over U . An object of this over U ′

corresponds to an object x′ in the fibre category of X ′ over ZU ′ such that G(x′) ∼=
x|ZU′ . By assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic space W such that the projection W → Z is étale.
Then (74.12.3.1) is representable by the algebraic space F parametrizing sections of
W → Z over U introduced in Lemma 74.9.2. Since F → U is étale we conclude that
Hd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. Finally, if
X ′ → X is surjective also, then W → Z is surjective, and hence F → U is surjective
by Lemma 74.9.1. Thus in this case Hd(X ′/Y)→ Hd(X/Y) is also surjective. �

Lemma 74.12.4. In the situation of Lemma 74.12.1. Assume that G, H are
representable by algebraic spaces and étale. Then Hd(X ′/Y ′) → Hd(X/Y) is rep-
resentable by algebraic spaces and étale. If also H is surjective and the induced
functor X ′ → Y ′ ×Y X is surjective, then Hd(X ′/Y ′)→ Hd(X/Y) is surjective.

Proof. Set X ′′ = Y ′ ×Y X . By Lemma 74.4.1 the 1-morphism X ′ → X ′′ is rep-
resentable by algebraic spaces and étale (in particular the condition in the second
statement of the lemma that X ′ → X ′′ be surjective makes sense). We obtain a
2-commutative diagram

X ′ //

��

X ′′ //

��

X

��
Y ′ // Y ′ // Y

It follows from Lemma 74.12.2 that Hd(X ′′/Y ′) is the base change of Hd(X/Y) by
Y ′ → Y. In particular we see that Hd(X ′′/Y ′) → Hd(X/Y) is representable by
algebraic spaces and étale, see Algebraic Stacks, Lemma 71.10.6. Moreover, it is
also surjective if H is. Hence if we can show that the result holds for the left square

http://stacks.math.columbia.edu/tag/05YG
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in the diagram, then we’re done. In this way we reduce to the case where Y ′ = Y
which is the content of Lemma 74.12.3. �

Lemma 74.12.5. Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume that ∆ : Y → Y × Y is representable by algebraic spaces.
Then

Hd(X/Y) −→ Hd(X )× Y
see Examples of Stacks, Equation (72.17.2.1) is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, p, x, 1) be an object of Hd(X ) =
Hd(X/S) over U . Here p is just the structure morphism of U . The fifth component
1 exists and is unique since everything is over S. Also, let y be an object of Y over
U . We have to show the 2-fibre product

(74.12.5.1) (Sch/U)fppf ×ξ×y,Hd(X )×Y Hd(X/Y)

is representable by an algebraic space. To explain why this is so we introduce

I = IsomY(y|Z , F (x))

which is an algebraic space over Z by assumption. Let a : U ′ → U be a scheme
over U . What does it mean to give an object of the fibre category of (74.12.5.1)
over U ′? Well, it means that we have an object ξ′ = (U ′, Z ′, y′, x′, α′) of Hd(X/Y)
over U ′ and isomorphisms (U ′, Z ′, p′, x′, 1) ∼= (U,Z, p, x, 1)|U ′ and y′ ∼= y|U ′ . Thus
ξ′ is isomorphic to (U ′, U ′ ×a,U Z, a∗y, x|U ′×a,UZ , α) for some morphism

α : a∗y|U ′×a,UZ −→ F (x|U ′×a,UZ)

in the fibre category of Y over U ′ ×a,U Z. Hence we can view α as a morphism
b : U ′×a,U Z → I. In this way we see that (74.12.5.1) is representable by ResZ/U (I)
which is an algebraic space by Proposition 74.11.5. �

The following lemma is a (partial) generalization of Lemma 74.12.3.

Lemma 74.12.6. Let F : X → Y and G : X ′ → X be 1-morphisms of stacks
in groupoids over (Sch/S)fppf . If G is representable by algebraic spaces, then the
1-morphism

Hd(X ′/Y) −→ Hd(X/Y)

is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object of Hd(X/Y) over
U . We have to prove that the 2-fibre product

(74.12.6.1) (Sch/U)fppf ×ξ,Hd(X/Y) Hd(X ′/Y)

is representable by an algebraic space étale over U . An object of this over a : U ′ →
U corresponds to an object x′ of X ′ over U ′ ×a,U Z such that G(x′) ∼= x|U ′×a,UZ .
By assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic space X over Z. It follows that (74.12.6.1) is
representable by ResZ/U (X), which is an algebraic space by Proposition 74.11.5. �

http://stacks.math.columbia.edu/tag/05YH
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Lemma 74.12.7. Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces and locally of finite
presentation. Then

p : Hd(X/Y)→ Y
is limit preserving on objects.

Proof. This means we have to show the following: Given

(1) an affine scheme U = limi Ui which is written as the directed limit of affine
schemes Ui over S,

(2) an object yi of Y over Ui for some i, and
(3) an object Ξ = (U,Z, y, x, α) of Hd(X/Y) over U such that y = yi|U ,

then there exists an i′ ≥ i and an object Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) of Hd(X/Y)
over Ui′ with Ξi′ |U = Ξ and yi′ = yi|Ui′ . Namely, the last two equalities will take
care of the commutativity of (74.5.0.1).

Let Xyi → Ui be an algebraic space representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,F X .

Note that Xyi → Ui is locally of finite presentation by our assumption on F . Write
Ξ. It is clear that ξ = (Z,Z → Ui, x, α) is an object of the 2-fibre product displayed
above, hence ξ gives rise to a morphism fξ : Z → Xyi of algebraic spaces over Ui
(since Xyi is the functor of isomorphisms classes of objects of (Sch/Ui)fppf×y,Y,FX ,
see Algebraic Stacks, Lemma 71.8.2). By Limits, Lemmas 31.9.1 and 31.7.7 there
exists an i′ ≥ i and a finite locally free morphism Zi′ → Ui′ of degree d whose base
change to U is Z. By Limits of Spaces, Proposition 52.3.9 we may, after replacing
i′ by a bigger index, assume there exists a morphism fi′ : Zi′ → Xyi such that

Z

��

//

fξ

((
Zi′

��

fi′
// Xyi

��
U // Ui′ // Ui

is commutative. We set Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) where

(1) yi′ is the object of Y over Ui′ which is the pullback of yi to Ui′ ,
(2) xi′ is the object of X over Zi′ corresponding via the 2-Yoneda lemma to

the 1-morphism

(Sch/Zi′)fppf → SXyi → (Sch/Ui)fppf ×yi,Y,F X → X

where the middle arrow is the equivalence which defines Xyi (notation as
in Algebraic Stacks, Sections 71.8 and 71.7).

(3) αi′ : yi′ |Zi′ → F (xi′) is the isomorphism coming from the 2-commutativity
of the diagram

(Sch/Zi′)fppf //

))

(Sch/Ui)fppf ×yi,Y,F X //

��

X

F

��
(Sch/Ui′)fppf // Y

http://stacks.math.columbia.edu/tag/06CH
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Recall that fξ : Z → Xyi was the morphism corresponding to the object ξ =
(Z,Z → Ui, x, α) of (Sch/Ui)fppf ×yi,Y,F X over Z. By construction fi′ is the
morphism corresponding to the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′). As fξ =
fi′ ◦ (Z → Zi′) we see that the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′) pulls back to ξ
over Z. Thus xi′ pulls back to x and αi′ pulls back to α. This means that Ξi′ pulls
back to Ξ over U and we win. �

74.13. The finite Hilbert stack of a point

Let d ≥ 1 be an integer. In Examples of Stacks, Definition 72.17.2 we defined a
stack in groupoids Hd. In this section we prove that Hd is an algebraic stack. We
will throughout assume that S = Spec(Z). The general case will follow from this by
base change. Recall that the fibre category of Hd over a scheme T is the category
of finite locally free morphisms π : Z → T of degree d. Instead of classifying these
directly we first study the quasi-coherent sheaves of algebras π∗OZ .

Let R be a ring. Let us temporarily make the following definition: A free d-
dimensional algebra over R is given by a commutative R-algebra structure m on
R⊕d such that e1 = (1, 0, . . . , 0) is a unit4. We think of m as an R-linear map

m : R⊕d ⊗R R⊕d −→ R⊕d

such that m(e1, x) = m(x, e1) = x and such that m defines a commutative and
associative ring structure. If we write m(ei, ej) =

∑
akijek then we see this boils

down to the conditions
∑
l a
l
ija

m
lk =

∑
l a
m
il a

l
jk ∀i, j, k,m

akij = akji ∀i, j, k
aji1 = δij ∀i, j

where δij is the Kronecker δ-function. OK, so let’s define

Runiv = Z[akij ]/J

where the ideal J is the ideal generated by the relations displayed above. Denote

muniv : R⊕duniv ⊗Runiv R
⊕d
univ −→ R⊕duniv

the free d-dimensional algebra m over Runiv whose structure constants are the
classes of akij modulo J . Then it is clear that given any free d-dimensional algebra
m over a ring R there exists a unique Z-algebra homomorphism ψ : Runiv → R
such that ψ∗muniv = m (this means that m is what you get by applying the base
change functor −⊗Runiv R to muniv). In other words, setting X = Spec(Runiv) we
obtain a canonical identification

X(T ) = {free d-dimensional algebras m over R}

for varying T = Spec(R). By Zariski localization we obtain the following seemingly
more general identification

(74.13.0.1) X(T ) = {free d-dimensional algebras m over Γ(T,OT )}

for any scheme T .

4It may be better to think of this as a pair consisting of a multiplication map m : R⊕d ⊗R
R⊕d → R⊕d and a ring map ψ : R→ R⊕d satisfying a bunch of axioms.
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Next we talk a little bit about isomorphisms of free d-dimensional R-algebras.
Namely, suppose that m, m′ are two free d-dimensional algebras over a ring R. An
isomorphism from m to m′ is given by an invertible R-linear map

ϕ : R⊕d −→ R⊕d

such that ϕ(e1) = e1 and such that

m ◦ ϕ⊗ ϕ = ϕ ◦m′.
Note that we can compose these so that the collection of free d-dimensional algebras
over R becomes a category. In this way we obtain a functor

(74.13.0.2) FAd : Schoppfppf −→ Groupoids

from the category of schemes to groupoids: to a scheme T we associate the set of
free d-dimensional algebras over Γ(T,OT ) endowed with the structure of a category
using the notion of isomorphisms just defined.

The above suggests we consider the functor G in groups which associates to any
scheme T the group

G(T ) = {g ∈ GLd(Γ(T,OT )) | g(e1) = e1}
It is clear that G ⊂ GLd (see Groupoids, Example 38.5.4) is the closed subgroup
scheme cut out by the equations x11 = 1 and xi1 = 0 for i > 1. Hence G is a
smooth affine group scheme over Spec(Z). Consider the action

a : G×Spec(Z) X −→ X

which associates to a T -valued point (g,m) with T = Spec(R) on the left hand side
the free d-dimensional algebra over R given by

a(g,m) = g−1 ◦m ◦ g ⊗ g.
Note that this means that g defines an isomorphism m→ a(g,m) of d-dimensional
free R-algebras. We omit the verification that a indeed defines an action of the
group scheme G on the scheme X.

Lemma 74.13.1. The functor in groupoids FAd defined in (74.13.0.2) is isomor-
phic (!) to the functor in groupoids which associates to a scheme T the category
with

(1) set of objects is X(T ),
(2) set of morphisms is G(T )×X(T ),
(3) s : G(T )×X(T )→ X(T ) is the projection map,
(4) t : G(T )×X(T )→ X(T ) is a(T ), and
(5) composition G(T )×X(T )×s,X(T ),tG(T )×X(T )→ G(T )×X(T ) is given

by ((g,m), (g′,m′)) 7→ (gg′,m′).

Proof. We have seen the rule on objects in (74.13.0.1). We have also seen above
that g ∈ G(T ) can be viewed as a morphism from m to a(g,m) for any free d-
dimensional algebra m. Conversely, any morphism m→ m′ is given by an invertible
linear map ϕ which corresponds to an element g ∈ G(T ) such that m′ = a(g,m). �

In fact the groupoid (X,G×X, s, t, c) described in the lemma above is the groupoid
associated to the action a : G ×X → X as defined in Groupoids, Lemma 38.14.1.
Since G is smooth over Spec(Z) we see that the two morphisms s, t : G×X → X
are smooth: by symmetry it suffices to prove that one of them is, and s is the base

http://stacks.math.columbia.edu/tag/05YP
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change of G → Spec(Z). Hence (G × X,X, s, t, c) is a smooth groupoid scheme,
and the quotient stack [X/G] is an algebraic stack by Algebraic Stacks, Theorem
71.17.3.

Proposition 74.13.2. The stack Hd is equivalent to the quotient stack [X/G]
described above. In particular Hd is an algebraic stack.

Proof. Note that by Groupoids in Spaces, Definition 60.19.1 the quotient stack
[X/G] is the stackification of the category fibred in groupoids associated to the
“presheaf in groupoids” which associates to a scheme T the groupoid

(X(T ), G(T )×X(T ), s, t, c).

Since this “presheaf in groupoids” is isomorphic to FAd by Lemma 74.13.1 it suf-
fices to prove that the Hd is the stackification of (the category fibred in groupoids
associated to the “presheaf in groupoids”) FAd. To do this we first define a functor

Spec : FAd −→ Hd
Recall that the fibre category of Hd over a scheme T is the category of finite locally
free morphisms Z → T of degree d. Thus given a scheme T and a free d-dimensional
Γ(T,OT )-algebra m we may assign to this the object

Z = Spec
T

(A)

of Hd,T where A = O⊕dT endowed with a OT -algebra structure via m. Moreover, if
m′ is a second such free d-dimensional Γ(T,OT )-algebra and if ϕ : m → m′ is an

isomorphism of these, then the induced OT -linear map ϕ : O⊕dT → O⊕dT induces an
isomorphism

ϕ : A′ −→ A
of quasi-coherent OT -algebras. Hence

Spec
T

(ϕ) : Spec
T

(A) −→ Spec
T

(A′)
is a morphism in the fibre category Hd,T . We omit the verification that this con-
struction is compatible with base change so we get indeed a functor Spec : FAd →
Hd as claimed above.

To show that Spec : FAd → Hd induces an equivalence between the stackification
of FAd and Hd it suffices to check that

(1) Isom(m,m′) = Isom(Spec(m),Spec(m′)) for any m,m′ ∈ FAd(T ).
(2) for any scheme T and any object Z → T of Hd,T there exists a covering
{Ti → T} such that Z|Ti is isomorphic to Spec(m) for some m ∈ FAd(Ti),
and

see Stacks, Lemma 8.9.1. The first statement follows from the observation that any
isomorphism

Spec
T

(A) −→ Spec
T

(A′)
is necessarily given by a global invertible matrix g when A = A′ = O⊕dT as modules.
To prove the second statement let π : Z → T be a finite locally free morphism of
degree d. Then A is a locally free sheaf OT -modules of rank d. Consider the
element 1 ∈ Γ(T,A). This element is nonzero in A⊗OT,t κ(t) for every t ∈ T since
the scheme Zt = Spec(A ⊗OT,t κ(t)) is nonempty being of degree d > 0 over κ(t).
Thus 1 : OT → A can locally be used as the first basis element (for example you can
use Algebra, Lemma 10.76.3 parts (1) and (2) to see this). Thus, after localizing

http://stacks.math.columbia.edu/tag/05YQ
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on T we may assume that there exists an isomorphism ϕ : A → O⊕dT such that
1 ∈ Γ(A) corresponds to the first basis element. In this situation the multiplication
map A ⊗OT A → A translates via ϕ into a free d-dimensional algebra m over
Γ(T,OT ). This finishes the proof. �

74.14. Finite Hilbert stacks of spaces

The finite Hilbert stack of an algebraic space is an algebraic stack.

Lemma 74.14.1. Let S be a scheme. Let X be an algebraic space over S. Then
Hd(X) is an algebraic stack.

Proof. The 1-morphism

Hd(X) −→ Hd
is representable by algebraic spaces according to Lemma 74.12.6. The stack Hd is
an algebraic stack according to Proposition 74.13.2. Hence Hd(X) is an algebraic
stack by Algebraic Stacks, Lemma 71.15.4. �

This lemma allows us to bootstrap.

Lemma 74.14.2. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf such that

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat, and locally of finite

presentation.

Then Hd(X/Y) is an algebraic stack.

Proof. Choose a representable stack in groupoids U over S and a 1-morphism
f : U → Hd(X ) which is representable by algebraic spaces, smooth, and surjective.
This is possible because Hd(X ) is an algebraic stack by Lemma 74.14.1. Consider
the 2-fibre product

W = Hd(X/Y)×Hd(X ),f U .

Since U is representable (in particular a stack in setoids) it follows from Examples
of Stacks, Lemma 72.17.3 and Stacks, Lemma 8.6.7 that W is a stack in setoids.
The 1-morphism W → Hd(X/Y) is representable by algebraic spaces, smooth, and
surjective as a base change of the morphism f (see Algebraic Stacks, Lemmas 71.9.7
and 71.10.6). Thus, if we can show that W is representable by an algebraic space,
then the lemma follows from Algebraic Stacks, Lemma 71.15.3.

The diagonal of Y is representable by algebraic spaces according to Lemma 74.4.3.
We may apply Lemma 74.12.5 to see that the 1-morphism

Hd(X/Y) −→ Hd(X )× Y

is representable by algebraic spaces. Consider the 2-fibre product

V = Hd(X/Y)×(Hd(X )×Y),f×F (U × X ).

The projection morphism V → U × X is representable by algebraic spaces as a
base change of the last displayed morphism. Hence V is an algebraic space (see

http://stacks.math.columbia.edu/tag/05YS
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Bootstrap, Lemma 62.3.6 or Algebraic Stacks, Lemma 71.9.8). The 1-morphism
V → U fits into the following 2-cartesian diagram

V

��

// X

F

��
W // Y

because

Hd(X/Y)×(Hd(X )×Y),f×F (U × X ) = (Hd(X/Y)×Hd(X ),f U)×Y,F X .

Hence V → W is representable by algebraic spaces, surjective, flat, and locally of
finite presentation as a base change of F . It follows that the same thing is true
for the corresponding sheaves of sets associated to V and W, see Algebraic Stacks,
Lemma 71.10.4. Thus we conclude that the sheaf associated to W is an algebraic
space by Bootstrap, Theorem 62.10.1. �

74.15. LCI locus in the Hilbert stack

Please consult Examples of Stacks, Section 72.17 for notation. Fix a 1-morphism F :
X −→ Y of stacks in groupoids over (Sch/S)fppf . Assume that F is representable
by algebraic spaces. Fix d ≥ 1. Consider an object (U,Z, y, x, α) of Hd. There is
an induced 1-morphism

(Sch/Z)fppf −→ (Sch/U)fppf ×y,Y,F X

(by the universal property of 2-fibre products) which is representable by a morphism
of algebraic spaces over U . Namely, since F is representable by algebraic spaces,
we may choose an algebraic space Xy over U which represents the 2-fibre product
(Sch/U)fppf ×y,Y,F X . Since α : y|Z → F (x) is an isomorphism we see that
ξ = (Z,Z → U, x, α) is an object of the 2-fibre product (Sch/U)fppf ×y,Y,F X over
Z. Hence ξ gives rise to a morphism xα : Z → Xy of algebraic spaces over U as
Xy is the functor of isomorphisms classes of objects of (Sch/U)fppf ×y,Y,F X , see
Algebraic Stacks, Lemma 71.8.2. Here is a picture
(74.15.0.1)

Z
xα
//

  

Xy

��
U

(Sch/Z)fppf

))

x,α
// (Sch/U)fppf ×y,Y,F X //

��

X

F

��
(Sch/U)fppf

y // Y

We remark that if (f, g, b, a) : (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) is a morphism
between objects of Hd, then the morphism x′α′ : Z ′ → X ′y′ is the base change of

the morphism xα by the morphism g : U ′ → U (details omitted).

Now assume moreover that F is flat and locally of finite presentation. In this
situation we define a full subcategory

Hd,lci(X/Y) ⊂ Hd(X/Y)

consisting of those objects (U,Z, y, x, α) of Hd(X/Y) such that the corresponding
morphism xα : Z → Xy is unramified and a local complete intersection morphism
(see Morphisms of Spaces, Definition 49.35.1 and More on Morphisms of Spaces,
Definition 58.36.1 for definitions).
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Lemma 74.15.1. Let S be a scheme. Fix a 1-morphism F : X −→ Y of stacks
in groupoids over (Sch/S)fppf . Assume F is representable by algebraic spaces, flat,
and locally of finite presentation. Then Hd,lci(X/Y) is a stack in groupoids and the
inclusion functor

Hd,lci(X/Y) −→ Hd(X/Y)

is representable and an open immersion.

Proof. Let Ξ = (U,Z, y, x, α) be an object of Hd. It follows from the remark
following (74.15.0.1) that the pullback of Ξ by U ′ → U belongs to Hd,lci(X/Y) if
and only if the base change of xα is unramified and a local complete intersection
morphism. Note that Z → U is finite locally free (hence flat, locally of finite
presentation and universally closed) and that Xy → U is flat and locally of finite
presentation by our assumption on F . Then More on Morphisms of Spaces, Lemmas
58.37.1 and 58.37.7 imply exists an open subscheme W ⊂ U such that a morphism
U ′ → U factors through W if and only if the base change of xα via U ′ → U is
unramified and a local complete intersection morphism. This implies that

(Sch/U)fppf ×Ξ,Hd(X/Y) Hd,lci(X/Y)

is representable by W . Hence the final statement of the lemma holds. The first
statement (that Hd,lci(X/Y) is a stack in groupoids) follows from this an Algebraic
Stacks, Lemma 71.15.5. �

Local complete intersection morphisms are “locally unobstructed”. This holds in
much greater generality than the special case that we need in this chapter here.

Lemma 74.15.2. Let U ⊂ U ′ be a first order thickening of affine schemes. Let
X ′ be an algebraic space flat over U ′. Set X = U ×U ′ X ′. Let Z → U be finite
locally free of degree d. Finally, let f : Z → X be unramified and a local complete
intersection morphism. Then there exists a commutative diagram

(Z ⊂ Z ′)

&&

(f,f ′)

// (X ⊂ X ′)

xx
(U ⊂ U ′)

of algebraic spaces over U ′ such that Z ′ → U ′ is finite locally free of degree d and
Z = U ×U ′ Z ′.

Proof. By More on Morphisms of Spaces, Lemma 58.36.8 the conormal sheaf CZ/X
of the unramified morphism Z → X is a finite locally free OZ-module and by More
on Morphisms of Spaces, Lemma 58.36.9 we have an exact sequence

0→ i∗CX/X′ → CZ/X′ → CZ/X → 0

of conormal sheaves. Since Z is affine this sequence is split. Choose a splitting

CZ/X′ = i∗CX/X′ ⊕ CZ/X
Let Z ⊂ Z ′′ be the universal first order thickening of of Z over X ′ (see More on
Morphisms of Spaces, Section 58.12). Denote I ⊂ OZ′′ the quasi-coherent sheaf of
ideals corresponding to Z ⊂ Z ′′. By definition we have CZ/X′ is I viewed as a sheaf
on Z. Hence the splitting above determines a splitting

I = i∗CX/X′ ⊕ CZ/X

http://stacks.math.columbia.edu/tag/06CL
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Let Z ′ ⊂ Z ′′ be the closed subscheme cut out by CZ/X ⊂ I viewed as a quasi-
coherent sheaf of ideals on Z ′′. It is clear that Z ′ is a first order thickening of
Z and that we obtain a commutative diagram of first order thickenings as in the
statement of the lemma.

Since X ′ → U ′ is flat and since X = U ×U ′ X ′ we see that CX/X′ is the pullback
of CU/U ′ to X, see More on Morphisms of Spaces, Lemma 58.15.1. Note that by
construction CZ/Z′ = i∗CX/X′ hence we conclude that CZ/Z′ is isomorphic to the
pullback of CU/U ′ to Z. Applying More on Morphisms of Spaces, Lemma 58.15.1
once again (or its analogue for schemes, see More on Morphisms, Lemma 36.8.1) we
conclude that Z ′ → U ′ is flat and that Z = U ×U ′ Z ′. Finally, More on Morphisms,
Lemma 36.8.3 shows that Z ′ → U ′ is finite locally free of degree d. �

Lemma 74.15.3. Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces, flat, and locally of
finite presentation. Then

p : Hd,lci(X/Y)→ Y
is formally smooth on objects.

Proof. We have to show the following: Given

(1) an object (U,Z, y, x, α) of Hd,lci(X/Y) over an affine scheme U ,
(2) a first order thickening U ⊂ U ′, and
(3) an object y′ of Y over U ′ such that y′|U = y,

then there exists an object (U ′, Z ′, y′, x′, α′) of Hd,lci(X/Y) over U ′ with Z =
U ×U ′ Z ′, with x = x′|Z , and with α = α′|U . Namely, the last two equalities will
take care of the commutativity of (74.6.0.1).

Consider the morphism xα : Z → Xy constructed in Equation (74.15.0.1). De-
note similarly X ′y′ the algebraic space over U ′ representing the 2-fibre product

(Sch/U ′)fppf ×y′,Y,F X . By assumption the morphism X ′y′ → U ′ is flat (and locally

of finite presentation). As y′|U = y we see that Xy = U×U ′X ′y′ . Hence we may ap-

ply Lemma 74.15.2 to find Z ′ → U ′ finite locally free of degree d with Z = U×U ′ Z ′
and with Z ′ → X ′y′ extending xα. By construction the morphism Z ′ → X ′y′ corre-

sponds to a pair (x′, α′). It is clear that (U ′, Z ′, y′, x′, α′) is an object of Hd(X/Y)
over U ′ with Z = U ×U ′ Z ′, with x = x′|Z , and with α = α′|U . As we’ve seen in
Lemma 74.15.1 that Hd,lci(X/Y) ⊂ Hd(X/Y) is an “open substack” it follows that
(U ′, Z ′, y′, x′, α′) is an object of Hd,lci(X/Y) as desired. �

Lemma 74.15.4. Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces, flat, surjective, and
locally of finite presentation. Then∐

d≥1
Hd,lci(X/Y) −→ Y

is surjective on objects.

Proof. It suffices to prove the following: For any field k and object y of Y over
Spec(k) there exists an integer d ≥ 1 and an object (U,Z, y, x, α) of Hd,lci(X/Y)
with U = Spec(k). Namely, in this case we see that p is surjective on objects in the
strong sense that an extension of the field is not needed.

Denote Xy the algebraic space over U = Spec(k) representing the 2-fibre product
(Sch/U ′)fppf ×y′,Y,F X . By assumption the morphism Xy → Spec(k) is surjective
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and locally of finite presentation (and flat). In particular Xy is nonempty. Choose a
nonempty affine scheme V and an étale morphism V → Xy. Note that V → Spec(k)
is (flat), surjective, and locally of finite presentation (by Morphisms of Spaces,
Definition 49.27.1). Pick a closed point v ∈ V where V → Spec(k) is Cohen-
Macaulay (i.e., V is Cohen-Macaulay at v), see More on Morphisms, Lemma 36.17.5.
Applying More on Morphisms, Lemma 36.18.4 we find a regular immersion Z → V
with Z = {v}. This implies Z → V is a closed immersion. Moreover, it follows
that Z → Spec(k) is finite (for example by Algebra, Lemma 10.118.1). Hence
Z → Spec(k) is finite locally free of some degree d. Now Z → Xy is unramified
as the composition of an closed immersion followed by an étale morphism (see
Morphisms of Spaces, Lemmas 49.35.3, 49.36.10, and 49.35.8). Finally, Z → Xy

is a local complete intersection morphism as a composition of a regular immersion
of schemes and an étale morphism of algebraic spaces (see More on Morphisms,
Lemma 36.42.9 and Morphisms of Spaces, Lemmas 49.36.6 and 49.34.8 and More
on Morphisms of Spaces, Lemmas 58.36.6 and 58.36.5). The morphism Z → Xy

corresponds to an object x of X over Z together with an isomorphism α : y|Z →
F (x). We obtain an object (U,Z, y, x, α) of Hd(X/Y). By what was said above
about the morphism Z → Xy we see that it actually is an object of the subcategory
Hd,lci(X/Y) and we win. �

74.16. Bootstrapping algebraic stacks

The following theorem is one of the main results of this chapter.

Theorem 74.16.1. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf . If

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat and locally of finite

presentation,

then Y is an algebraic stack.

Proof. By Lemma 74.4.3 we see that the diagonal of Y is representable by algebraic
spaces. Hence we only need to verify the existence of a 1-morphism f : V → Y
of stacks in groupoids over (Sch/S)fppf with V representable and f surjective and
smooth. By Lemma 74.14.2 we know that∐

d≥1
Hd(X/Y)

is an algebraic stack. It follows from Lemma 74.15.1 and Algebraic Stacks, Lemma
71.15.5 that ∐

d≥1
Hd,lci(X/Y)

is an algebraic stack as well. Choose a representable stack in groupoids V over
(Sch/S)fppf and a surjective and smooth 1-morphism

V −→
∐

d≥1
Hd,lci(X/Y).

We claim that the composition

V −→
∐

d≥1
Hd,lci(X/Y) −→ Y
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is smooth and surjective which finishes the proof of the theorem. In fact, the
smoothness will be a consequence of Lemmas 74.12.7 and 74.15.3 and the surjec-
tivity a consequence of Lemma 74.15.4. We spell out the details in the following
paragraph.

By construction V →
∐
d≥1Hd,lci(X/Y) is representable by algebraic spaces, surjec-

tive, and smooth (and hence also locally of finite presentation and formally smooth
by the general principle Algebraic Stacks, Lemma 71.10.9 and More on Morphisms
of Spaces, Lemma 58.16.6). Applying Lemmas 74.5.3, 74.6.3, and 74.7.3 we see that
V →

∐
d≥1Hd,lci(X/Y) is limit preserving on objects, formally smooth on objects,

and surjective on objects. The 1-morphism
∐
d≥1Hd,lci(X/Y)→ Y is

(1) limit preserving on objects: this is Lemma 74.12.7 for Hd(X/Y) → Y
and we combine it with Lemmas 74.15.1, 74.5.4, and 74.5.2 to get it for
Hd,lci(X/Y)→ Y,

(2) formally smooth on objects by Lemma 74.15.3, and
(3) surjective on objects by Lemma 74.15.4.

Using Lemmas 74.5.2, 74.6.2, and 74.7.2 we conclude that the composition V →
Y is limit preserving on objects, formally smooth on objects, and surjective on
objects. Using Lemmas 74.5.3, 74.6.3, and 74.7.3 we see that V → Y is locally of
finite presentation, formally smooth, and surjective. Finally, using (via the general
principle Algebraic Stacks, Lemma 71.10.9) the infinitesimal lifting criterion (More
on Morphisms of Spaces, Lemma 58.16.6) we see that V → Y is smooth and we
win. �

74.17. Applications

Our first task is to show that the quotient stack [U/R] associated to a “flat and
locally finitely presented groupoid” is an algebraic stack. See Groupoids in Spaces,
Definition 60.19.1 for the definition of the quotient stack. The following lemma is
preliminary and is the analogue of Algebraic Stacks, Lemma 71.17.2.

Lemma 74.17.1. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be
a groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite
presentation. Then the morphism SU → [U/R] is flat, locally of finite presentation,
and surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf

is surjective and smooth. We already know that the left hand side is representable
by an algebraic space F , see Algebraic Stacks, Lemmas 71.17.1 and 71.10.11. Hence
we have to show the corresponding morphism F → T of algebraic spaces is surjec-
tive, locally of finite presentation, and flat. Since we are working with properties
of morphisms of algebraic spaces which are local on the target in the fppf topology
we may check this fppf locally on T . By construction, there exists an fppf covering
{Ti → T} of T such that x|(Sch/Ti)fppf comes from a morphism xi : Ti → U . (Note
that F ×T Ti represents the 2-fibre product SU ×[U/R] (Sch/Ti)fppf so everything is
compatible with the base change via Ti → T .) Hence we may assume that x comes
from x : T → U . In this case we see that

SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU )×SU (Sch/T )fppf = SR ×SU (Sch/T )fppf
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The first equality by Categories, Lemma 4.29.10 and the second equality by Groupoids
in Spaces, Lemma 60.21.2. Clearly the last 2-fibre product is represented by the
algebraic space F = R ×s,U,x T and the projection R ×s,U,x T → T is flat and
locally of finite presentation as the base change of the flat locally finitely presented
morphism of algebraic spaces s : R → U . It is also surjective as s has a section
(namely the identity e : U → R of the groupoid). This proves the lemma. �

Here is the first main result of this section.

Theorem 74.17.2. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be
a groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite
presentation. Then the quotient stack [U/R] is an algebraic stack over S.

Proof. We check the two conditions of Theorem 74.16.1 for the morphism

(Sch/U)fppf −→ [U/R].

The first is trivial (as U is an algebraic space). The second is Lemma 74.17.1. �

74.18. When is a quotient stack algebraic?

In Groupoids in Spaces, Section 60.19 we have defined the quotient stack [U/R]
associated to a groupoid (U,R, s, t, c) in algebraic spaces. Note that [U/R] is a stack
in groupoids whose diagonal is representable by algebraic spaces (see Bootstrap,
Lemma 62.11.5 and Algebraic Stacks, Lemma 71.10.11) and such that there exists
an algebraic space U and a 1-morphism (Sch/U)fppf → [U/R] which is an “fppf
surjection” in the sense that it induces a map on presheaves of isomorphism classes
of objects which becomes surjective after sheafification. However, it is not the case
that that [U/R] is an algebraic stack in general. This is not a contradiction with
Theorem 74.16.1 as the 1-morphism (Sch/U)fppf → [U/R] is not representable
by algebraic spaces in general, and if it is it may not be flat and locally of finite
presentation.

The easiest way to make examples of non-algebraic quotient stacks is to look at
quotients of the form [S/G] where S is a scheme and G is a group scheme over S
acting trivially on S. Namely, we will see below (Lemma 74.18.3) that if [S/G] is
algebraic, then G→ S has to be flat and locally of finite presentation. An explicit
example can be found in Examples, Section 82.44.

Lemma 74.18.1. Let S be a scheme and let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. The quotient stack [U/R]
is an algebraic stack if and only if there exists a morphism of algebraic spaces
g : U ′ → U such that

(1) the composition U ′ ×g,U,t R→ R
s−→ U is a surjection of sheaves, and

(2) the morphisms s′, t′ : R′ → U ′ are flat and locally of finite presentation
where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via g.

Proof. First, assume that g : U ′ → U satisfies (1) and (2). Property (1) implies
that [U ′/R′] → [U/R] is an equivalence, see Groupoids in Spaces, Lemma 60.24.2.
By Theorem 74.17.2 the quotient stack [U ′/R′] is an algebraic stack. Hence [U/R]
is an algebraic stack too, see Algebraic Stacks, Lemma 71.12.4.
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Conversely, assume that [U/R] is an algebraic stack. We may choose a scheme W
and a surjective smooth 1-morphism

f : (Sch/W )fppf −→ [U/R].

By the 2-Yoneda lemma (Algebraic Stacks, Section 71.5) this corresponds to an
object ξ of [U/R] over W . By the description of [U/R] in Groupoids in Spaces,
Lemma 60.23.1 we can find a surjective, flat, locally finitely presented morphism
b : U ′ → W of schemes such that ξ′ = b∗ξ corresponds to a morphism g : U ′ → U .
Note that the 1-morphism

f ′ : (Sch/U ′)fppf −→ [U/R].

corresponding to ξ′ is surjective, flat, and locally of finite presentation, see Alge-
braic Stacks, Lemma 71.10.5. Hence (Sch/U ′)fppf ×[U/R] (Sch/U ′)fppf which is
represented by the algebraic space

Isom [U/R](pr∗0ξ
′,pr∗1ξ

′) = (U ′ ×S U ′)×(g◦pr0,g◦pr1),U×SU R = R′

(see Groupoids in Spaces, Lemma 60.21.1 for the first equality; the second is the
definition of restriction) is flat and locally of finite presentation over U ′ via both s′

and t′ (by base change, see Algebraic Stacks, Lemma 71.10.6). By this description
of R′ and by Algebraic Stacks, Lemma 71.16.1 we obtain a canonical fully faithful
1-morphism [U ′/R′] → [U/R]. This 1-morphism is essentially surjective because
f ′ is flat, locally of finite presentation, and surjective (see Stacks, Lemma 8.4.8);
another way to prove this is to use Algebraic Stacks, Remark 71.16.3. Finally,
we can use Groupoids in Spaces, Lemma 60.24.2 to conclude that the composition

U ′ ×g,U,t R→ R
s−→ U is a surjection of sheaves. �

Lemma 74.18.2. Let S be a scheme and let B be an algebraic space over S. Let
G be a group algebraic space over B. Let X be an algebraic space over B and let
a : G×B X → X be an action of G on X over B. The quotient stack [X/G] is an
algebraic stack if and only if there exists a morphism of algebraic spaces ϕ : X ′ → X
such that

(1) G×B X ′ → X, (g, x′) 7→ a(g, ϕ(x′)) is a surjection of sheaves, and
(2) the two projections X ′′ → X ′ of the algebraic space X ′′ given by the rule

T 7−→ {(x′1, g, x′2) ∈ (X ′ ×B G×B X ′)(T ) | ϕ(x′1) = a(g, ϕ(x′2))}

are flat and locally of finite presentation.

Proof. This lemma is a special case of Lemma 74.18.1. Namely, the quotient stack
[X/G] is by Groupoids in Spaces, Definition 60.19.1 equal to the quotient stack
[X/G×BX] of the groupoid in algebraic spaces (X,G×BX, s, t, c) associated to the
group action in Groupoids in Spaces, Lemma 60.14.1. There is one small observation
that is needed to get condition (1). Namely, the morphism s : G×B X → X is the
second projection and the morphism t : G ×B X → X is the action morphism a.

Hence the morphism h : U ′×g,U,tR→ R
s−→ U from Lemma 74.18.1 corresponds to

the morphism

X ′ ×ϕ,X,a (G×B X)
pr1−−→ X

in the current setting. However, because of the symmetry given by the inverse of
G this morphism is isomorphic to the morphism

(G×B X)×pr1,X,ϕ X
′ a−→ X
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of the statement of the lemma. Details omitted. �

Lemma 74.18.3. Let S be a scheme and let B be an algebraic space over S. Let
G be a group algebraic space over B. Endow B with the trivial action of G. Then
the quotient stack [B/G] is an algebraic stack if and only if G is flat and locally of
finite presentation over B.

Proof. If G is flat and locally of finite presentation over B, then [B/G] is an
algebraic stack by Theorem 74.17.2.

Conversely, assume that [B/G] is an algebraic stack. By Lemma 74.18.2 and be-
cause the action is trivial, we see there exists an algebraic space B′ and a morphism
B′ → B such that (1) B′ → B is a surjection of sheaves and (2) the projections

B′ ×B G×B B′ → B′

are flat and locally of finite presentation. Note that the base change B′ ×B G ×B
B′ → G ×B B′ of B′ → B is a surjection of sheaves also. Thus it follows from
Descent on Spaces, Lemma 56.7.1 that the projection G ×B B′ → B′ is flat and
locally of finite presentation. By (1) we can find an fppf covering {Bi → B} such
that Bi → B factors through B′ → B. Hence G×B Bi → Bi is flat and locally of
finite presentation by base change. By Descent on Spaces, Lemmas 56.10.11 and
56.10.8 we conclude that G→ B is flat and locally of finite presentation. �

74.19. Algebraic stacks in the étale topology

Let S be a scheme. Instead of working with stacks in groupoids over the big fppf
site (Sch/S)fppf we could work with stacks in groupoids over the big étale site
(Sch/S)étale. All of the material in Algebraic Stacks, Sections 71.4, 71.5, 71.6,
71.7, 71.8, 71.9, 71.10, and 71.11 makes sense for categories fibred in groupoids
over (Sch/S)étale. Thus we get a second notion of an algebraic stack by working in
the étale topology. This notion is (a priori) weaker then the notion introduced in
Algebraic Stacks, Definition 71.12.1 since a stack in the fppf topology is certainly
a stack in the étale topology. However, the notions are equivalent as is shown by
the following lemma.

Lemma 74.19.1. Denote the common underlying category of Schfppf and Schétale
by Schα (see Sheaves on Stacks, Section 73.4 and Topologies, Remark 33.9.1). Let
S be an object of Schα. Let

p : X → Schα/S

be a category fibred in groupoids with the following properties:

(1) X is a stack in groupoids over (Sch/S)étale,
(2) the diagonal ∆ : X → X ×X is representable by algebraic spaces5, and
(3) there exists U ∈ Ob(Schα/S) and a 1-morphism (Sch/U)étale → X which

is surjective and smooth.

Then X is an algebraic stack in the sense of Algebraic Stacks, Definition 71.12.1.

5Here we can either mean sheaves in the étale topology whose diagonal is representable and
which have an étale surjective covering by a scheme or algebraic spaces as defined in Algebraic

Spaces, Definition 47.6.1. Namely, by Bootstrap, Lemma 62.12.1 there is no difference.
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Proof. Note that properties (2) and (3) of the lemma and the corresponding prop-
erties (2) and (3) of Algebraic Stacks, Definition 71.12.1 are independent of the
topology. This is true because these properties involve only the notion of a 2-
fibre product of categories fibred in groupoids, 1- and 2-morphisms of categories
fibred in groupoids, the notion of a 1-morphism of categories fibred in groupoids
representable by algebraic spaces, and what it means for such a 1-morphism to be
surjective and smooth. Thus all we have to prove is that an étale stack in groupoids
X with properties (2) and (3) is also an fppf stack in groupoids.

Using (2) let R be an algebraic space representing

(Schα/U)×X (Schα/U)

By (3) the projections s, t : R → U are smooth. Exactly as in the proof of Alge-
braic Stacks, Lemma 71.16.1 there exists a groupoid in spaces (U,R, s, t, c) and a
canonical fully faithful 1-morphism [U/R]étale → X where [U/R]étale is the étale
stackification of presheaf in groupoids

T 7−→ (U(T ), R(T ), s(T ), t(T ), c(T ))

Claim: If V → T is a surjective smooth morphism from an algebraic space V to
a scheme T , then there exists an étale covering {Ti → T} refining the covering
{V → T}. This follows from More on Morphisms, Lemma 36.28.7 or the more
general Sheaves on Stacks, Lemma 73.18.10. Using the claim and arguing exactly as
in Algebraic Stacks, Lemma 71.16.2 it follows that [U/R]étale → X is an equivalence.

Next, let [U/R] denote the quotient stack in the fppf topology which is an algebraic
stack by Algebraic Stacks, Theorem 71.17.3. Thus we have 1-morphisms

U → [U/R]étale → [U/R].

Both U → [U/R]étale ∼= X and U → [U/R] are surjective and smooth (the
first by assumption and the second by the theorem) and in both cases the fibre
product U ×X U and U ×[U/R] U is representable by R. Hence the 1-morphism
[U/R]étale → [U/R] is fully faithful (since morphisms in the quotient stacks are
given by morphisms into R, see Groupoids in Spaces, Section 60.23).

Finally, for any scheme T and morphism t : T → [U/R] the fibre product V =
T ×U/R U is an algebraic space surjective and smooth over T . By the claim above
there exists an étale covering {Ti → T}i∈I and morphisms Ti → V over T . This
proves that the object t of [U/R] over T comes étale locally from U . We conclude
that [U/R]étale → [U/R] is an equivalence of stacks in groupoids over (Sch/S)étale
by Stacks, Lemma 8.4.8. This concludes the proof. �
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CHAPTER 75

Artin’s axioms

75.1. Introduction

In this chapter we discuss Artin’s axioms for the representability of functors by
algebraic spaces. As references we suggest the papers [Art69b], [Art70], [Art74].

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 76.1 for an explanation.

75.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 71.2. In this chapter the base scheme
S will often be locally Noetherian (although we will always reiterate this condition
when stating results).

75.3. Predeformation categories

Let S be a locally Noetherian base scheme. Let

p : X −→ (Sch/S)fppf

be a category fibred in groupoids. Let k be a field and let Spec(k) → S be a
morphism of finite type (see Morphisms, Lemma 28.17.1). We will sometimes simply
say that k is a field of finite type over S. Let x0 be an object of X lying over Spec(k).
Given S, X , k, and x0 we will construct a predeformation category, as defined in
Formal Deformation Theory, Definition 68.6.2. The construction will resemble to
construction of Formal Deformation Theory, Remark 68.6.4.

First, by Morphisms, Lemma 28.17.1 we may pick an affine open Spec(Λ) ⊂ S such
that Spec(k) → S factors through Spec(Λ) and the associated ring map Λ → k
is finite. This provides us with the category CΛ, see Formal Deformation Theory,
Definition 68.3.1. The category CΛ, up to canonical equivalence, does not depend
on the choice of the affine open Spec(Λ) of S. Namely, CΛ is equivalent to the
opposite of the category of factorizations

(75.3.0.1) Spec(k)→ Spec(A)→ S

of the structure morphism such that A is an Artinian local ring and such that
Spec(k) → Spec(A) corresponds to a ring map A → k which identifies k with the
residue field of A.

We let F = FX ,k,x0
be the category whose
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(1) objects are morphisms x0 → x of X where p(x) = Spec(A) with A an
Artinian local ring and p(x0)→ p(x)→ S a factorization as in (75.3.0.1),
and

(2) morphisms (x0 → x)→ (x0 → x′) are commutative diagrams

x x′oo

x0

`` >>

in X . (Note the reversal of arrows.)

If x0 → x is an object of F then writing p(x) = Spec(A) we obtain an object A of
CΛ. We often say that x0 → x or x lies over A. A morphism of F between objects
x0 → x lying over A and x0 → x′ lying over A′ corresponds to a morphism x′ → x
of X , hence a morphism p(x′ → x) : Spec(A′)→ Spec(A) which in turn corresponds
to a ring map A→ A′. As X is a category over the category of schemes over S we
see that A→ A′ is Λ-algebra homomorphism. Thus we obtain a functor

(75.3.0.2) p : F = FX ,k,x0 −→ CΛ.

We will use the notation F(A) to denote the fibre category over an object A of CΛ.
An object of F(A) is simply a morphism x0 → x of X such that x lies over Spec(A)
and x0 → x lies over Spec(k)→ Spec(A).

Lemma 75.3.1. The functor p : F → CΛ defined above is a predeformation cate-
gory.

Proof. We have to show that F is (a) cofibred in groupoids over CΛ and (b)
that F(k) is a category equivalent to a category with a single object and a single
morphism.

Proof of (a). The fibre categories of F over CΛ are groupoids as the fibre categories
of X are groupoids. Let A→ A′ be a morphism of CΛ and let x0 → x be an object of
F(A). Because X is fibred in groupoids, we can find a morphism x′ → x lying over
Spec(A′) → Spec(A). Since the composition A → A′ → k is equal the given map
A → k we see (by uniqueness of pullbacks up to isomorphism) that the pullback
via Spec(k)→ Spec(A′) of x′ is x0, i.e., that there exists a morphism x0 → x′ lying
over Spec(k)→ Spec(A′) compatible with x0 → x and x′ → x. This proves that F
has pushforwards. We conclude by (the dual of) Categories, Lemma 4.33.2.

Proof of (b). If A = k, then Spec(k) = Spec(A) and since X is fibred in groupoids
over (Sch/S)fppf we see that given any object x0 → x in F(k) the morphism x0 → x
is an isomorphism. Hence every object of F(k) is isomorphic to x0 → x0. Clearly
the only self morphism of x0 → x0 in F is the identity. �

Let S be a locally Noetherian base scheme. Let F : X → Y be a 1-morphism
between categories fibred in groupoids over (Sch/S)fppf . Let k is a field of finite
type over S. Let x0 be an object of X lying over Spec(k). Set y0 = F (x0) which is
an object of Y lying over Spec(k). Then F induces a functor

(75.3.1.1) F : FX ,k,x0
−→ FY,k,y0

of categories cofibred over CΛ. Namely, to the object x0 → x of FX ,k,x0
(A) we

associate the object F (x0)→ F (x) of FY,k,y0
(A).

http://stacks.math.columbia.edu/tag/07T5
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Lemma 75.3.2. Let S be a locally Noetherian scheme. Let F : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf which is formally
smooth on objects (see Criteria for Representability, Section 74.6). Then for every
finite type field k over S and for every object x0 of X over k the functor (75.3.1.1)
is smooth in the sense of Formal Deformation Theory, Definition 68.8.1.

Proof. This is a matter of unwinding the definitions. Details omitted. �

Lemma 75.3.3. Let S be a locally Noetherian scheme. Let

W

��

// Z

��
X // Y

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf . Let k be a
finite type field over S and w0 an object of W over k. Let x0, z0, y0 be the images
of w0 under the morphisms in the diagram. Then

FW,k,w0

��

// FZ,k,z0

��
FX ,k,x0

// FY,k,y0

is a fibre product of predeformation categories.

Proof. This is a matter of unwinding the definitions. Details omitted. �

75.4. Pushouts and stacks

In this section we show that algebraic stacks behave well with respect to certain
pushouts. The results in this section hold over any base scheme.

The following lemma is also correct when Y , X ′, X, Y ′ are algebraic spaces, see
(insert future reference here).

Lemma 75.4.1. Let S be a scheme. Let

X //

��

X ′

��
Y // Y ′

be a pushout in the category of schemes over S where X → X ′ is a thickening and
X → Y is affine, see More on Morphisms, Lemma 36.11.1. Let Z be an algebraic
stack over S. Then the functor of fibre categories

ZY ′ −→ ZY ×ZX ZX′

is an equivalence of categories.

Proof. Let y′ be an object of left hand side. The sheaf Isom(y′, y′) on the category
of schemes over Y ′ is representable by an algebraic space I over Y ′, see Algebraic
Stacks, Lemma 71.10.11. We conclude that the functor of the lemma is fully faithful
as Y ′ is the pushout in the category of algebraic spaces as well as the category of
schemes, see Pushouts of Spaces, Lemma 59.2.2.

http://stacks.math.columbia.edu/tag/07WK
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Let (y, x′, f) be an object of the right hand side. Here f : y|X → x′|X is an
isomorphism. To finish the proof we have to construct an object y′ of ZY ′ whose
restrictions to Y and X ′ agree with y and x′ in a manner compatible with ϕ. In
fact, it suffices to construct y′ fppf locally on Y ′, see Stacks, Lemma 8.4.8. Choose a
representable algebraic stack W and a surjective smooth morphism W → Z. Then

(Sch/Y )fppf ×y,Z W and (Sch/X ′)fppf ×x′,Z W
are algebraic stacks representable by algebraic spaces V and U ′ smooth over Y and
X ′. The isomorphism f induces an isomorphism ϕ : V ×Y X → U ′ ×X′ X over
X. By Pushouts of Spaces, Lemmas 59.2.3 and 59.2.8 we see that the pushout
V ′ = V qV×YX U ′ is an algebraic space smooth over Y ′ whose base change to Y
and X ′ recovers V and U ′ in a manner compatible with ϕ.

Let W be the algebraic space representing W. The projections V → W and U ′ →
W agree as morphisms over V ×Y X ∼= U ′ ×X′ X hence the universal property of
the pushout determines a morphism of algebraic spaces V ′ →W . Choose a scheme
Y ′1 and a surjective étale morphism Y ′1 → V ′. Set Y1 = Y ×Y ′ Y ′1 , X ′1 = X ′ ×Y ′ Y ′1 ,
X1 = X ×Y ′ Y ′1 . The composition

(Sch/Y ′1)→ (Sch/V ′)→ (Sch/W ) =W → Z
corresponds by the 2-Yoneda lemma to an object y′1 of Z over Y ′1 whose restriction
to Y1 and X ′1 agrees with y|Y1

and x′|X′1 in a manner compatible with f |X1
. Thus

we have constructed our desired object smooth locally over Y ′ and we win. �

75.5. The Rim-Schlessinger condition

The motivation for the following definition comes from Lemma 75.4.1 and Formal
Deformation Theory, Definition 68.15.1 and Lemma 68.15.4.

Definition 75.5.1. Let S be a locally Noetherian scheme. Let Z be a category
fibred in groupoids over (Sch/S)fppf . We say Z satisfies condition (RS) if for every
pushout

X //

��

X ′

��
Y // Y ′ = Y qX X ′

in the category of schemes over S where

(1) X, X ′, Y , Y ′ are spectra of local Artinian rings,
(2) X, X ′, Y , Y ′ are of finite type over S, and
(3) X → X ′ (and hence Y → Y ′) is a closed immersion

the functor of fibre categories

ZY ′ −→ ZY ×ZX ZX′

is an equivalence of categories.

If A is an Artinian local ring with residue field k, then any morphism Spec(A)→ S
is affine and of finite type if and only if the induced morphism Spec(k) → S is of
finite type, see Morphisms, Lemmas 28.13.13 and 28.17.2.

Lemma 75.5.2. Let X be an algebraic stack over a locally Noetherian base S.
Then X satisfies (RS).

http://stacks.math.columbia.edu/tag/07WP
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Proof. Immediate from the definitions and Lemma 75.4.1. �

Lemma 75.5.3. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If X , Y, and Z satisfy (RS),
then so does X ×Y Z.

Proof. This is formal. Let

X //

��

X ′

��
Y // Y ′ = Y qX X ′

be a diagram as in Definition 75.5.1. We have to show that

(X ×Y Z)Y ′ −→ (X ×Y Z)Y ×(X×YZ)X (X ×Y Z)X′

is an equivalence. Using the definition of the 2-fibre product this becomes

(75.5.3.1) XY ′ ×YY ′ ZY ′ −→ (XY ×YY ZY )×(XX×YXZX) (XX′ ×YX′ ZX′).

We are given that each of the functors

XY ′ → XY ×YY ZY , YY ′ → XX ×YX ZX , ZY ′ → XX′ ×YX′ ZX′

are equivalences. An object of the right hand side of (75.5.3.1) is a system

((xY , zY , φY ), (xX′ , zX′ , φX′), (α, β)).

Then (xY , xY ′ , α) is isomorphic to the image of an object xY ′ in XY ′ and (zY , zY ′ , β)
is isomorphic to the image of an object zY ′ of ZY ′ . The pair of morphisms (φY , φX′)
corresponds to a morphism ψ between the images of xY ′ and zY ′ in YY ′ . Then
(xY ′ , zY ′ , ψ) is an object of the left hand side of (75.5.3.1) mapping to the given
object of the right hand side. This proves that (75.5.3.1) is essentially surjective.
We omit the proof that it is fully faithful. �

75.6. Deformation categories

We match the notation introduced above with the notation from the chapter “For-
mal Deformation Theory”.

Lemma 75.6.1. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf satisfying (RS). For any field k of finite type over S
and any object x0 of X lying over k the predeformation category p : FX ,k,x0

→ CΛ
(75.3.0.2) is a deformation category, see Formal Deformation Theory, Definition
68.15.8.

Proof. Set F = FX ,k,x0 . Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ
with f2 surjective. We have to show that the functor

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)

is an equivalence, see Formal Deformation Theory, Lemma 68.15.4. Set X =
Spec(A), X ′ = Spec(A2), Y = Spec(A1) and Y ′ = Spec(A1 ×A A2). Note that

http://stacks.math.columbia.edu/tag/07WR
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Y ′ = Y qXX ′ in the category of schemes, see More on Morphisms, Lemma 36.11.1.
We know that in the diagram of functors of fibre categories

XY ′ //

��

XY ×XX XX′

��
XSpec(k) XSpec(k)

the top horizontal arrow is an equivalence by Definition 75.5.1. Since F(B) is the
category of objects of XSpec(B) with an identification with x0 over k we win. �

Remark 75.6.2. Let S be a locally Noetherian scheme. Let X be fibred in
groupoids over (Sch/S)fppf . Let k be a field of finite type over S and x0 an
object of X over k. Let p : F → CΛ be as in (75.3.0.2). If F is a deformation
category, i.e., if F satisfies the Rim-Schlessinger condition (RS), then we see that
F satisfies Schlessingers conditions (S1) and (S2) by Formal Deformation Theory,
Lemma 68.15.6. Let F be the functor of isomorphism classes, see Formal Defor-
mation Theory, Remarks 68.5.2 (10). Then F satisfies (S1) and (S2) as well, see
Formal Deformation Theory, Lemma 68.9.5. This holds in particular in the situa-
tion of Lemma 75.6.1.

75.7. Change of field

This section is the analogue of Formal Deformation Theory, Section 68.26. As
pointed out there, to discuss what happens under change of field we need to write
CΛ,k instead of CΛ. In the following lemma we use the notation Fl/k introduced in
Formal Deformation Theory, Situation 68.26.1.

Lemma 75.7.1. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let k be a field of finite type over S and let k ⊂ l
be a finite extension. Let x0 be an object of F lying over Spec(k). Denote xl,0 the
restriction of x0 to Spec(l). Then there is a canonical functor

(FX ,k,x0
)l/k −→ FX ,l,xl,0

of categories cofibred in groupoids over CΛ,l. If X satisfies (RS), then this functor
is an equivalence.

Proof. Consider a factorization

Spec(l)→ Spec(B)→ S

as in (75.3.0.1). By definition we have

(FX ,k,x0)l/k(B) = FX ,k,x0(B ×l k)

see Formal Deformation Theory, Situation 68.26.1. Thus an object of this is a
morphism x0 → x of X lying over the morphism Spec(k)→ Spec(B×lk). Choosing
pullback functor for X we can associate to x0 → x the morphism xl,0 → xB where
xB is the restriction of x to Spec(B) (via the morphism Spec(B) → Spec(B ×l k)
coming from B×l k ⊂ B). This construction is functorial in B and compatible with
morphisms.

http://stacks.math.columbia.edu/tag/07WV
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Next, assume X satisfies (RS). Consider the diagrams

l Boo

k

OO

B ×l koo

OO

and

Spec(l)

��

// Spec(B)

��
Spec(k) // Spec(B ×l k)

The diagram on the left is a fibre product of rings. The diagram on the right
is a pushout in the category of schemes, see More on Morphisms, Lemma 36.11.1.
These schemes are all of finite type over S (see remarks following Definition 75.5.1).
Hence (RS) kicks in to give an equivalence of fibre categories

XSpec(B×lk) −→ XSpec(k) ×XSpec(l)
XSpec(B)

This implies that the functor defined above gives an equivalence of fibre categories.
Hence the functor is an equivalence on categories cofibred in groupoids by (the dual
of) Categories, Lemma 4.33.8. �

75.8. Tangent spaces

Let S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let k be a field of finite type over S and let x0 be an object of X
over k. In Formal Deformation Theory, Section 68.11 we have defined the tangent
space

(75.8.0.1) TFX ,k,x0 =

{
isomorphism classes of morphisms
x0 → x over Spec(k)→ Spec(k[ε])

}
of the predeformation category FX ,k,x0

. In Formal Deformation Theory, Section
68.18 we have defined

(75.8.0.2) Infx0
(FX ,k,x0

) = Ker
(
AutSpec(k[ε])(x

′
0)→ AutSpec(k)(x0)

)
where x′0 is the pullback of x0 to Spec(k[ε]). If X satisfies the Rim-Schlessinger
condition (RS), then TFX ,k,x0

comes equipped with a natural k-vector space struc-
ture by Formal Deformation Theory, Lemma 68.11.2 (assumptions hold by Lemma
75.6.1 and Remark 75.6.2). Moreover, Formal Deformation Theory, Lemma 68.18.9
shows that Infx0

(FX ,k,x0
) has a natural k-vector space structure such that addition

agrees with composition of automorphisms. A natural condition is to ask these
vector spaces to have finite dimension.

The following lemma tells us this is true if X is locally of finite type over S (see
Morphisms of Stacks, Section 78.13).

Lemma 75.8.1. Let S be a locally Noetherian scheme. Assume

(1) X is an algebraic stack,
(2) U is a scheme locally of finite type over S, and
(3) (Sch/U)fppf → X is a smooth surjective morphism.

Then, for any F = FX ,k,x0
as in Section 75.3 the tangent space TF and infinitesi-

mal automorphism space Infx0
(F) have finite dimension over k

Proof. Let us write U = (Sch/U)fppf . By our definition of algebraic stacks the
1-morphism U → X is representable by algebraic spaces. Hence in particular the
2-fibre product

Ux0
= (Sch/ Spec(k))fppf ×X U

http://stacks.math.columbia.edu/tag/07X1
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is representable by an algebraic space Ux0
over Spec(k). Then Ux0

→ Spec(k)
is smooth and surjective (in particular Ux0 is nonempty). By Spaces over Fields,
Lemma 54.9.2 we can find a finite extension l ⊃ k and a point Spec(l)→ Ux0 over
k. We have

(FX ,k,x0)l/k = FX ,l,xl,0
by Lemma 75.7.1 and the fact that X satisfies (RS). Thus we see that

TF ⊗k l ∼= TFX ,l,xl,0 and Infx0
(F)⊗k l ∼= Infxl,0(FX ,l,xl,0)

by Formal Deformation Theory, Lemmas 68.26.3 and 68.26.4 (these are applicable
by Lemmas 75.5.2 and 75.6.1 and Remark 75.6.2). Hence it suffices to prove that
TFX ,l,xl,0 and Infxl,0(FX ,l,xl,0) have finite dimension over l. Note that xl,0 comes
from a point u0 of U over l.

We interrupt the flow of the argument to show that the lemma for infinitesimal
automorphisms follows from the lemma for tangent spaces. Namely, letR = U×XU .
Let r0 be the l-valued point (u0, u0, idx0

) of R. Combining Lemma 75.3.3 and
Formal Deformation Theory, Lemma 68.24.2 we see that

Infxl,0(FX ,l,xl,0) ⊂ TFR,k,r0
Note that R is an algebraic stack, see Algebraic Stacks, Lemma 71.14.2. Also, R
is representably by an algebraic space R smooth over U (via either projection, see
Algebraic Stacks, Lemma 71.16.2). Hence, choose an scheme U ′ and a surjective
étale morphism U ′ → R we see that U ′ is smooth over U , hence locally of finite
type over S. As (Sch/U ′)fppf → R is surjective and smooth, we have reduced the
question to the case of tangent spaces.

The functor (75.3.1.1)

FU,l,u0 −→ FX ,l,xl,0
is smooth by Lemma 75.3.2 and Criteria for Representability, Lemma 74.6.3. The
induced map on tangent spaces

TFU,l,u0 −→ TFX ,l,xl,0
is l-linear (by Formal Deformation Theory, Lemma 68.11.4) and surjective (as
smooth maps of predeformation categories induce surjective maps on tangent spaces
by Formal Deformation Theory, Lemma 68.8.8). Hence it suffices to prove that the
tangent space of the deformation space associated to the representable algebraic
stack U at the point u0 is finite dimensional. Let Spec(R) ⊂ U be an affine open
such that u0 : Spec(l) → U factors through Spec(R) and such that Spec(R) → S
factors through Spec(Λ) ⊂ S. Let mR ⊂ R be the kernel of the Λ-algebra map
ϕ0 : R→ l corresponding to u0. Note that R, being of finite type over the Noether-
ian ring Λ, is a Noetherian ring. Hence mR = (f1, . . . , fn) is a finitely generated
ideal. We have

TFU,l,u0
= {ϕ : R→ l[ε] | ϕ is a Λ-algebra map and ϕ mod ε = ϕ0}

An element of the right hand side is determined by its values on f1, . . . , fn hence
the dimension is at most n and we win. Some details omitted. �

Lemma 75.8.2. Let S be a locally Noetherian scheme. Let p : X → Y and
q : Z → Y be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf .
Assume X , Y, Z satisfy (RS). Let k be a field of finite type over S and let w0 be
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an object of W = X ×Y Z over k. Denote x0, y0, z0 the objects of X ,Y,Z you get
from w0. Then there is a 6-term exact sequence

0 // Infw0
(FW,k,W0

) // Infx0
(FX ,k,x0

)⊕ Infz0(FZ,k,z0) // Infy0
(FY,k,y0

)

rr
TFW,k,w0

// TFX ,k,x0 ⊕ TFZ,k,z0 // TFY,k,y0

of k-vector spaces.

Proof. Apply Lemmas 75.3.3 and 75.6.1 and Formal Deformation Theory, Lemma
68.18.14. �

75.9. Formal objects

In this section we transfer some of the notions already defined in the chapter “For-
mal Deformation Theory” to the current setting. In the following we will say “R
is an S-algebra” to indicate that R is a ring endowed with a morphism of schemes
Spec(R)→ S.

Definition 75.9.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids.

(1) A formal object ξ = (R, ξn, fn) of X consists of a Noetherian complete
local S-algebra R, objects ξn of X lying over Spec(R/mnR), and morphisms
ξn → ξn+1 of X lying over Spec(R/mn)→ Spec(R/mn+1) such that R/m
is a field of finite type over S.

(2) A morphism of formal objects a : ξ = (R, ξn, fn)→ η = (T, ηn, gn) is given
by morphisms an : ξn → ηn such that for every n the diagram

ξn+1
fn

//

an+1

��

ξn

an

��
ηn+1

gn // ηn

is commutative. Applying the functor p we obtain a compatible collection
of morphisms Spec(R/mnR) → Spec(T/mnT ) and hence a morphism a0 :
Spec(R)→ Spec(T ) over S. We say that a lies over a0.

Thus we obtain a category of formal object of X . If F : X → Y is a 1-morphism of
categories fibred in groupoids over (Sch/S)fppf , then F induces a functor between
categories of formal objects as well.

Given a formal object ξ = (R, ξn, fn), set k = R/m and x0 = ξ1. Then the formal
object ξ defines a formal object ξ of FX ,k,x0

as defined in Formal Deformation
Theory, Definition 68.7.1. We will use the terminology introduced in that chapter.
In particular, we will say that ξ is versal if ξ (as a formal object of F) is versal
in the sense of Formal Deformation Theory, Definition 68.8.13. We briefly spell
out here what this means. Suppose given a morphism x0 → y lying over a closed
immersion Spec(k)→ Spec(A) where A is an Artinian local ring with residue field
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k. Then versality implies there exists an n ≥ 1 and a commutative diagram

y

{{
ξn ξ1 = x0

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

Please compare with Formal Deformation Theory, Remark 68.8.14.

Lemma 75.9.2. Let S be a locally Noetherian scheme. Let F : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Let η = (R, ηn, gn) be
a formal object of Y and let ξ1 be an object of X with F (ξ1) ∼= η1. If F is formally
smooth on objects (see Criteria for Representability, Section 74.6), then there exists
a formal object ξ = (R, ξn, fn) of X such that F (ξ) ∼= η.

Proof. Note that each of the morphisms Spec(R/mn) → Spec(R/mn+1) is a first
order thickening of affine schemes over S. Hence the assumption on F means
that we can successively lift ξ1 to objects ξ2, ξ3, . . . of X endowed with compatible
isomorphisms ηn|Spec(R/mn−1)

∼= ηn−1 and F (ηn) ∼= ξn. �

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Suppose that x is an object of X over R, where R is a Noe-
therian complete local S-algebra with residue field of finite type over S. Then
we can consider the system of restrictions ξn = x|Spec(R/mn) endowed with the
natural morphisms ξ1 → ξ2 → . . . coming from transitivity of restriction. Thus
ξ = (R, ξn, ξn → ξn+1) is a formal object of X . This construction is functorial in
the object x. Thus we obtain a functor
(75.9.2.1)objects x of X such that p(x) = Spec(R)

where R is Noetherian complete local
with R/m of finite type over S

 −→ {
formal objects of X

}
To be precise the left hand side is the full subcategory of X consisting of objects
as indicated and the right hand side is the category of formal objects of X as in
Definition 75.9.1.

Definition 75.9.3. Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . A formal object ξ = (R, ξn, fn) of X is called
effective if it is in the essential image of the functor (75.9.2.1).

If the category fibred in groupoids is an algebraic stack, then every formal object
is effective as follows from the next lemma.

Lemma 75.9.4. Let S be a locally Noetherian scheme. Let X be an algebraic stack
over S. The functor (75.9.2.1) is an equivalence.

Proof. Case I: X is representable (by a scheme). Say X = (Sch/X)fppf for some
scheme X over S. Unwinding the definitions we have to prove the following: Given
a Noetherian complete local S-algebra R with R/m of finite type over S we have

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective. This follows from Formal Spaces, Lemma 65.24.2.

http://stacks.math.columbia.edu/tag/07X5
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Case II. X is representable by an algebraic space. Say X is representable by X.
Again we have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above. This is Formal Spaces, Lemma 65.24.3.

Case III: General case of an algebraic stack. A general remark is that the left and
right hand side of (75.9.2.1) are categories fibred in groupoids over the category
of affine schemes over S which are spectra of Noetherian complete local rings with
residue field of finite type over S. We will also see in the proof below that they
form stacks for a certain topology on this category.

We first prove fully faithfulness. Let R be a Noetherian complete local S-algebra
with k = R/m of finite type over S. Let x, x′ be objects of X over R. As X is an
algebraic stack Isom(x, x′) is representable by an algebraic space I over Spec(R),
see Algebraic Stacks, Lemma 71.10.11. Applying Case II to I over Spec(R) implies
immediately that (75.9.2.1) is fully faithful on fibre categories over Spec(R). Hence
the functor is fully faithful by Categories, Lemma 4.33.8.

Essential surjectivity. Let ξ = (R, ξn, fn) be a formal object of X . Choose a scheme
U over S and a surjective smooth morphism f : (Sch/U)fppf → X . For every n
consider the fibre product

(Sch/Spec(R/mn))fppf ×ξn,X ,f (Sch/U)fppf

By assumption this is representable by an algebraic space Vn surjective and smooth
over Spec(R/mn). The morphisms fn : ξn → ξn+1 induce cartesian squares

Vn+1

��

Vn

��

oo

Spec(R/mn+1) Spec(R/mn)oo

of algebraic spaces. By Spaces over Fields, Lemma 54.9.2 we can find a finite
separable extension k ⊂ k′ and a point v′1 : Spec(k′) → V1 over k. Let R ⊂ R′

be the finite étale extension whose residue field extension is k ⊂ k′ (exists and is
unique by Algebra, Lemmas 10.145.8 and 10.145.10). By the infinitesimal lifting
criterion of smoothness (see More on Morphisms of Spaces, Lemma 58.16.6) applied
to Vn → Spec(R/mn) for n = 2, 3, 4, . . . we can successively find morphisms v′n :
Spec(R′/(m′)n)→ Vn over Spec(R/mn) fitting into commutive diagrams

Spec(R′/(m′)n+1)

v′n+1

��

Spec(R′/(m′)n)

v′n
��

oo

Vn+1 Vnoo

Composing with the projection morphisms Vn → U we obtain a compatible system
of morphisms u′n : Spec(R′/(m′)n) → U . By Case I the family (u′n) comes from a
unique morphism u′ : Spec(R′) → U . Denote x′ the object of X over Spec(R′) we
get by applying the 1-morphism f to u′. By construction, there exists a morphism
of formal objects

(75.9.2.1)(x′) = (R′, x′|Spec(R′/(m′)n), . . .) −→ (R, ξn, fn)
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lying over Spec(R′) → Spec(R). Note that R′ ⊗R R′ is a finite product of spectra
of Noetherian complete local rings to which our current discussion applies. Denote
p0, p1 : Spec(R′ ⊗R R′) → Spec(R′) the two projections. By the fully faithfulness
shown above there exists a canonical isomorphism ϕ : p∗0x

′ → p∗1x
′ because we

have such isomorphisms over Spec((R′ ⊗R R′)/mn(R′ ⊗R R′)). We omit the proof
that the isomorphism ϕ satisfies the cocycle condition (see Stacks, Definition 8.3.1).
Since {Spec(R′) → Spec(R)} is an fppf covering we conclude that x′ descends to
an object x of X over Spec(R). We omit the proof that xn is the restriction of x
to Spec(R/mn). �

Lemma 75.9.5. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If the functor (75.9.2.1) is an
equivalence for X , Y, and Z, then it is and equivalence for X ×Y Z.

Proof. The left and the right hand side of (75.9.2.1) for X ×Y Z are simply the
2-fibre products of the left and the right hand side of (75.9.2.1) for X , Z over Y.
Hence the result follows as taking 2-fibre products is compatible with equivalences
of categories, see Categories, Lemma 4.29.7. �

75.10. Approximation

A fundamental insight of Michael Artin is that you can approximate objects of a
limit preserving stack. Namely, given an object x of the stack over a Noetherian
complete local ring, you can find an object xA over an algebraic ring which is “close
to” x. Here an algebraic ring means a finite type S-algebra and close means adically
close. In this section we present this in a simple, yet general form.

To formulate the result we need to pull together some definitions from different
places in the stacks project. First, in Criteria for Representability, Section 74.5
we introduced limit preserving on objects for 1-morphisms of categories fibred in
groupoids over the category of schemes. In More on Algebra, Definition 15.39.1 we
defined the notion of a G-ring. Let S be a locally Noetherian scheme. Let A be
an S-algebra. We say that A is of finite type over S or is a finite type S-algebra if
Spec(A)→ S is of finite type. In this case A is a Noetherian ring. Finally, given a
ring A and ideal I we denote GrI(A) =

⊕
In/In+1.

Lemma 75.10.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let x be an object of X lying over Spec(R) where
R is a Noetherian complete local ring with residue field k of finite type over S. Let
s ∈ S be the image of Spec(k)→ S. Assume that (a) OS,s is a G-ring and (b) p is
limit preserving on objects. Then for every integer N ≥ 1 there exist

(1) a finite type S-algebra A,
(2) a maximal ideal mA ⊂ A,
(3) an object xA of X over Spec(A),
(4) an S-isomorphism R/mNR

∼= A/mNA ,
(5) an isomorphism x|Spec(R/mNR )

∼= xA|Spec(A/mNA ) compatible with (4), and

(6) an isomorphism GrmR(R) ∼= GrmA(A) of graded k-algebras.

Proof. Choose an affine open Spec(Λ) ⊂ S such that k is a finite Λ-algebra, see
Morphisms, Lemma 28.17.1. We may and do replace S by Spec(Λ).

We may write R as a directed colimit R = colimCj where each Cj is a finite
type Λ-algebra (see Algebra, Lemma 10.123.1). By assumption (b) the object x is

http://stacks.math.columbia.edu/tag/07X9
http://stacks.math.columbia.edu/tag/07XB
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isomorphic to the restriction of an object over one of the Cj . Hence we may choose
a finite type Λ-algebra C, a Λ-algebra map C → R, and an object xC of X over
Spec(C) such that x = xC |Spec(R). The choice of C is a bookkeeping device and
could be avoided. For later use, let us write C = Λ[y1, . . . , yu]/(f1, . . . , fv) and we
denote ai ∈ R the image of yi under the map C → R. Set mC = C ∩mR.

Choose a Λ-algebra surjection Λ[x1, . . . , xs] → k and denote m′ the kernel. By
the universal property of polynomial rings we may lift this to a Λ-algebra map
Λ[x1, . . . , xs] → R. We add some variables (i.e., we increase s a bit) mapping to
generators of mR. Having done this we see that Λ[x1, . . . , xs]→ R/m2

R is surjective.
Then we see that

(75.10.1.1) P = Λ[x1, . . . , xs]
∧
m′ −→ R

is a surjective map of Noetherian complete local rings, see for example Formal
Deformation Theory, Lemma 68.4.2.

Choose lifts ai ∈ P of ai we found above. Choose generators b1, . . . , br ∈ P for the
kernel of (75.10.1.1). Choose cji ∈ P such that

fj(a1, . . . , au) =
∑

cjibi

in P which is possible by the choices made so far. Choose generators

k1, . . . , kt ∈ Ker(P⊕r
(b1,...,br)−−−−−−→ P )

and write ki = (ki1, . . . , kir) and K = (kij) so that

P⊕t
K−→ P⊕r

(b1,...,br)−−−−−−→ P → R→ 0

is an exact sequence of P -modules. In particular we have
∑
kijbj = 0. After

possibly increasing N we may assume N − 1 works in the Artin-Rees lemma for
the first two maps of this exact sequence (see More on Algebra, Section 15.3 for
terminology).

By assumption OS,s = ΛΛ∩m′ is a G-ring. Hence by More on Algebra, Proposition
15.39.10 the ring Λ[x1, . . . , xs]m′ is a G-ring. Hence by Smoothing Ring Maps,
Theorem 16.13.2 there exist an étale ring map

Λ[x1, . . . , xs]m′ → B,

a maximal ideal mB of B lying over m′, and elements a′i, b
′
i, c
′
ij , k

′
ij ∈ B′ such that

(1) κ(m′) = κ(mB) which implies that Λ[x1, . . . , xs]m′ ⊂ BmB ⊂ P and P is
identified with the completion of B at mB , see remark preceding Smooth-
ing Ring Maps, Theorem 16.13.2,

(2) ai − a′i, bi − b′i, cij − c′ij , kij − k′ij ∈ (m′)NP , and
(3) fj(a

′
1, . . . , a

′
u) =

∑
c′jib
′
i and

∑
k′ijb

′
j = 0.

Set A = B/(b′1, . . . , b
′
r) and denote mA the image of mB in A. (Note that A is

essentially of finite type over Λ; at the end of the proof we will show how to obtain
an A which is of finite type over Λ.) There is a ring map C → A sending yi 7→ a′i
because the a′i satisfy the desired equations modulo (b′1, . . . , b

′
r). Note that A/mNA =

R/mNR as quotients of P = B∧ by property (2) above. Set xA = xC |Spec(A). Since
the maps

C → A→ A/mNA
∼= R/mNR and C → R→ R/mNR
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are equal we see that xA and x agree modulo mNR via the isomorphism A/mNA =
R/mNR . At this point we have shown properties (1) – (5) of the statement of the
lemma. To see (6) note that

P⊕t
K−→ P⊕r

(b1,...,br)−−−−−−→ P and P⊕t
K′−−→ P⊕r

(b′1,...,b
′
r)−−−−−−→ P

are two complexes of P -modules which are congruent modulo (m′)N with the first
one being exact. By our choice of N above we see from More on Algebra, Lemma
15.3.2 that R = P/(b1, . . . , br) and P/(b′1, . . . , b

′
r) = B∧/(b′1, . . . , b

′
r) = A∧ have

isomorphic associated graded algebras, which is what we wanted to show.

This last paragraph of the proof serves to clean up the issue that A is essentially
of finite type over S and not yet of finite type. The construction above gives
A = B/(b′1, . . . , b

′
r) and mA ⊂ A with B étale over Λ[x1, . . . , xs]m′ . Hence A is of

finite type over the Noetherian ring Λ[x1, . . . , xs]m′ . Thus we can write A = (A0)m′

for some finite type Λ[x1, . . . , xn] algebra A0. Then A = colim(A0)f where f ∈
Λ[x1, . . . , xn] \ m′, see Algebra, Lemma 10.9.9. Because p : X → (Sch/S)fppf is
limit preserving on objects, we see that xA comes from some object x(A0)f over
Spec((A0)f ) for an f as above. After replacing A by (A0)f and xA by x(A0)f and
mA by (A0)f ∩mA the proof is finished. �

75.11. Versality

In the previous section we explained how to approximate objects over complete
local rings by algebraic objects. But in order to show that a stack X is an algebraic
stack, we need to find smooth 1-morphisms from schemes towards X . Since we are
not going to assume a priori that X has a representable diagonal, we cannot even
speak about smooth morphisms towards X . Instead, borrowing terminology from
deformation theory, we will introduce versal objects.

Let S be a locally Noetherian scheme. Let U be a scheme over S with structure
morphism U → S locally of finite type. Let u0 ∈ U be a finite type point of
U , see Morphisms, Definition 28.17.3. Set k = κ(u0). Note that the composition
Spec(k) → S is also of finite type, see Morphisms, Lemma 28.16.3. Let p : X →
(Sch/S)fppf be a category fibred in groupoids. Let x be an object of X which lies
over U . Denote x0 the pullback of x by u0. By the 2-Yoneda lemma x corresponds
to a 1-morphism

x : (Sch/U)fppf −→ X ,
see Algebraic Stacks, Section 71.5. We obtain a morphism of predeformation cate-
gories

(75.11.0.2) x̂ : F(Sch/U)fppf ,k,u0
−→ FX ,k,x0

,

over CΛ see (75.3.1.1).

Definition 75.11.1. Let S be a locally Noetherian scheme. Let X be fibred in
groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let
x be an object of X lying over U . Let u0 be finite type point of U . We say x
is versal at u0 if the morphism x̂ (75.11.0.2) is smooth, see Formal Deformation
Theory, Definition 68.8.1.

This definition matches our notion of versality for formal objects of X in the fol-
lowing way. Observe that OU,u0

is a Noetherian local S-algebra with residue field

http://stacks.math.columbia.edu/tag/07XF
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k. Hence R = O∧U,u0
is an object of C∧Λ , see Formal Deformation Theory, Definition

68.4.1. There is an identification of predeformation categories

R|CΛ = F(Sch/U)fppf ,k,u0
,

see Formal Deformation Theory, Remark 68.7.12 for notation. Namely, given an
Artinian local S-algebra A with residue field identified with k we have

MorC∧Λ (R,A) = {ϕ ∈ MorS(Spec(A), U) | ϕ|Spec(k) = u0}
Let ξ be the formal object of X over R associated to x|Spec(R), see (75.9.2.1). Then

R|CΛ = F(Sch/U)fppf ,k,u0

x̂−→ FX ,k,x0 ,

corresponds to ξ via the correspondence between formal objects and morphisms of
Formal Deformation Theory, Equation (68.7.12.1). In other words, we see that

x is versal at u0 ⇔ ξ is versal

It turns out that this notion is well behaved with respect to field extensions.

Lemma 75.11.2. Let S, X , U , x, u0 be as in Definition 75.11.1. Let l be a field
and let ul,0 : Spec(l)→ U be a morphism with image u0 such that k = κ(u0) ⊂ l is
finite. Set xl,0 = x0|Spec(l). If X satisfies (RS) and x is versal at u0, then

F(Sch/U)fppf ,l,ul,0 −→ FX ,l,xl,0
is smooth.

Proof. Note that (Sch/U)fppf satisfies (RS) by Lemma 75.5.2. Hence the functor
of the lemma is the functor

(F(Sch/U)fppf ,k,u0
)l/k −→ (FX ,k,x0)l/k

associated to x̂, see Lemma 75.7.1. Hence the lemma follows from Formal Defor-
mation Theory, Lemma 68.26.5. �

We restate the approximation result in terms of versal objects.

Lemma 75.11.3. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object of X with
ξ1 lying over Spec(k)→ S with image s ∈ S. Assume

(1) ξ is versal,
(2) ξ is effective,
(3) OS,s is a G-ring, and
(4) p : X → (Sch/S)fppf is limit preserving on objects.

Then there exist a morphism of finite type U → S, a finite type point u0 ∈ U with
residue field k, and an object x of X over U such that x is versal at u0 and such
that x|Spec(k)

∼= ξ1.

Proof. Choose an object xR of X lying over Spec(R) whose associated formal
object is ξ. Let N = 2 and apply Lemma 75.10.1. We obtain A,mA, ξA, . . .. Let
η = (A∧, ηn, gn) be the formal object associated to ξA|Spec(A∧). We have a diagram

η

��
ξ //

;;

ξ2 = η2

lying over

A∧

��
R //

88

R/m2
R = A/m2

A

http://stacks.math.columbia.edu/tag/07XG
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The versality of ξ means exactly that we can find the dotted arrows in the diagrams,
because we can successively find morphisms ξ → η3, ξ → η4, and so on by Formal
Deformation Theory, Remark 68.8.14. The corresponding ring map R → A∧ is
surjective by Formal Deformation Theory, Lemma 68.4.2. On the other hand, we
have dimk m

n
R/m

n+1
R = dimk m

n
A/m

n+1
A for all n by construction. Hence R/mnR

and A/mnA have the same (finite) length as Λ-modules by additivity of length and
Formal Deformation Theory, Lemma 68.3.4. It follows that R/mnR → A/mnA is an
isomorphism for all n, hence R → A∧ is an isomorphism. Thus η is isomorphic to
a versal object, hence versal itself. �

Example 75.11.4. In this example we show that the local ring OS,s has to be a
G-ring in order for the result of Lemma 75.11.3 to be true. Namely, let Λ be a
Noetherian ring and let m be a maximal ideal of Λ. Set R = Λ∧m. Let Λ→ C → R
be a factorization with C of finite type over Λ. Set S = Spec(Λ), U = S \ {m}, and
S′ = U q Spec(C). Consider the functor F : (Sch/S)oppfppf → Sets defined by the
rule

F (T ) =

{
∗ if T → S factors through S′

∅ else

Let X = SF is the category fibred in sets associated to F , see Algebraic Stacks,
Section 71.7. Then X → (Sch/S)fppf is limit preserving on objects and there exists
an effective, versal formal object ξ over R. Hence if the conclusion of Lemma 75.11.3
holds for X , then there exists a finite type ring map Λ → A and a maximal ideal
mA lying over m such that

(1) κ(m) = κ(mA),
(2) Λ→ A and mA satisfy condition (4) of Algebra, Lemma 10.136.2, and
(3) there exists a Λ-algebra map C → A.

Thus Λ→ A is smooth at mA by the lemma cited. Slicing A we may assume that
Λ → A is étale at mA, see for example More on Morphisms, Lemma 36.28.5 or
argue directly. Write C = Λ[y1, . . . , yn]/(f1, . . . , fm). Then C → R corresponds to
a solution in R of the system of equations f1 = . . . = fm = 0, see Smoothing Ring
Maps, Section 16.13. Thus if the conclusion of Lemma 75.11.3 holds for every X
as above, then a system of equations which has a solution in R has a solution in
the henselization of Λm. In other words, the approximation property holds for Λhm.
This implies that Λhm is a G-ring (insert future reference here; see also discussion in
Smoothing Ring Maps, Section 16.1) which in turn implies that Λm is a G-ring.

75.12. Axioms

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Here are the axioms we will consider on X .

[-1] a set theoretic condition1 to be ignored by readers who are not interested
in set theoretical issues,

[0] X is a stack in groupoids for the étale topology,
[1] X is limit preserving,
[2] X satisfies the Rim-Schlessinger condition (RS),

1The condition is the following: the supremum of all the cardinalities |Ob(XSpec(k))/ ∼= |
and |Arrows(XSpec(k))| where k runs over the finite type fields over S is ≤ than the size of some

object of (Sch/S)fppf .

http://stacks.math.columbia.edu/tag/07XI
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[3] the spaces TFX ,k,x0
and Infx0

(FX ,k,x0
) are finite dimensional for every k

and x0, see (75.8.0.1) and (75.8.0.2),
[4] the functor (75.9.2.1) is an equivalence,
[5] X and ∆ : X → X ×X satisfy openness of versality.

We still have to define the meaning of “limit preserving” and “openness of versality”.

75.13. Limit preserving

The morphism p : X → (Sch/S)fppf is limit preserving on objects, as defined in
Criteria for Representability, Section 74.5, if the functor of the definition below is
essentially surjective. However, the example in Examples, Section 82.45 shows that
this isn’t equivalent to being limit preserving.

Definition 75.13.1. Let S be a scheme. Let X be a category fibred in groupoids
over (Sch/S)fppf . We say X is limit preserving if for every affine scheme T over S
which is a limit T = limTi of a directed inverse system of affine schemes Ti over S,
we have an equivalence

colimXTi −→ XT
of fibre categories.

We spell out what this means. First, given objects x, y of X over Ti we should have

MorXT (x|T , y|T ) = colimi′≥i MorXT ′
i
(x|T ′i , y|T ′i )

and second every object of XT is isomorphic to the restriction of an object over Ti
for some i. Note that the first condition means that the presheaves IsomX (x, y)
(see Stacks, Definition 8.2.2) are limit preserving.

Lemma 75.13.2. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-
morphisms of categories fibred in groupoids over (Sch/S)fppf .

(1) If X → (Sch/S)fppf and Z → (Sch/S)fppf are limit preserving on objects
and Y is limit preserving, then X ×Y Z → (Sch/S)fppf is limit preserving
on objects.

(2) If X , Y, and Z are limit preserving, then so is X ×Y Z.

Proof. This is formal. Proof of (1). Let T = limi∈I Ti be the directed limit of
affine schemes Ti over S. We will prove that the functor colimXTi → XT is essen-
tially surjective. Recall that an object of the fibre product over T is a quadruple
(T, x, z, α) where x is an object of X lying over T , z is an object of Z lying over T ,
and α : p(x)→ q(z) is a morphism in the fibre category of Y over T . By assumption
on X and Z we can find an i and objects xi and zi over Ti such that xi|T ∼= T and
zi|T ∼= z. Then α corresponds to an isomorphism p(xi)|T → q(zi)|T which comes
from an isomorphism αi′ : p(xi)|Ti′ → q(zi)|Ti′ by our assumption on Y. After
replacing i by i′, xi by xi|Ti′ , and zi by zi|Ti′ we see that (Ti, xi, zi, αi) is an object
of the fibre product over Ti which restricts to an object isomorphic to (T, x, z, α)
over T as desired.

We omit the arguments showing that colimXTi → XT is fully faithful in (2). �

Lemma 75.13.3. Let S be a scheme. Let X be an algebraic stack over S. Then
the following are equivalent

(1) X is a stack in setoids and X → (Sch/S)fppf is limit preserving on objects,
(2) X is a stack in setoids and limit preserving,

http://stacks.math.columbia.edu/tag/07XL
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(3) X is representable by an algebraic space locally of finite presentation.

Proof. Under each of the three assumptions X is representable by an algebraic
space X over S, see Algebraic Stacks, Proposition 71.13.3. It is clear that (1) and
(2) are equivalent as a functor between setoids is an equivalence if and only if it is
surjective on isomorphism classes. Finally, (1) and (3) are equivalent by Limits of
Spaces, Proposition 52.3.9. �

75.14. Openness of versality

Next, we come to openness of versality.

Definition 75.14.1. Let S be a locally Noetherian scheme.

(1) Let X be a category fibred in groupoids over (Sch/S)fppf . We say X
satisfies openness of versality if given a scheme U locally of finite type
over S, an object x of X over U , and a finite type point u0 ∈ U such that
x is versal at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U
such that x is versal at every finite type point of U ′.

(2) Let f : Y → X be a 1-morphism of categories fibred in groupoids. We say
f satisfies openness of versality if given a morphism of schemes V → U
locally of finite type over S, an object x of X over U , an object y of Y over
V , a morphism α : f(y) → x of X over V → U , and a finite type point
v0 of V such that (y, α) is versal at v0 as an object of Y ×X (Sch/U)fppf ,
then there exists an open neighbourhood v0 ∈ V ′ ⊂ V such that (y, α) is
versal at every finite type point of V ′.

Openness of versality is often the hardest to check. The following example shows
that requiring this is necessary however.

Example 75.14.2. Let k be a field and set Λ = k[s, t]. Consider the functor
F : Λ-algebras −→ Sets defined by the rule

F (A) =

∗ if there exist f1, . . . , fn ∈ A such that
A = (s, t, f1, . . . , fn) and fis = 0 ∀i

∅ else

Geometrically F (A) = ∗ means there exists a quasi-compact open neighbourhood
W of V (s, t) ⊂ Spec(A) such that s|W = 0. Let X ⊂ (Sch/Spec(Λ))fppf be
the full subcategory consisting of schemes T which have an affine open covering
T =

⋃
Spec(Aj) with F (Aj) = ∗ for all j. Then X satisfies [0], [1], [2], [3], and [4]

but not [5]. Namely, over U = Spec(k[s, t]/(s)) there exists an object x which is
versal at u0 = (s, t) but not at any other point. Details omitted.

Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . In the following two lemmas we will use the
following property

(75.14.2.1)
for all fields k of finite type over S and all x0 ∈ Ob(XSpec(k)) the
map FX ,k,x0

→ FY,k,f(x0) of predeformation categories is smooth

We formulate some lemmas around this concept. First we link it with (openness
of) versality.

http://stacks.math.columbia.edu/tag/07XQ
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Lemma 75.14.3. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let
x be an object of X over U . Assume that x is versal at every finite type point of U
and that X satisfies (RS). Then x : (Sch/U)fppf → X satisfies (75.14.2.1).

Proof. Let Spec(l) → U be a morphism with l of finite type over S. Then the
image u0 ∈ U is a finite type point of U and κ(u0) ⊂ l is a finite extension, see
discussion in Morphisms, Section 28.17. Hence we see that FX ,k,ul,0 → FY,k,xl,0 is
smooth by Lemma 75.11.2. �

Lemma 75.14.4. Let S be a locally Noetherian scheme. Let f : X → Y and
g : Y → Z be composable 1-morphisms of categories fibred in groupoids over
(Sch/S)fppf . If f and g satisfy (75.14.2.1) so does g ◦ f .

Proof. This is formal. �

Lemma 75.14.5. Let S be a locally Noetherian scheme. Let f : X → Y and
Z → Y be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f
satisfies (75.14.2.1) so does the projection X ×Y Z → Z.

Proof. Follows immediately from Lemma 75.3.3 and Formal Deformation Theory,
Lemma 68.8.7. �

Lemma 75.14.6. Let S be a locally Noetherian scheme. Let f : X → Y be a
1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f is formally
smooth on objects, then f satisfies (75.14.2.1). If f is representable by algebraic
spaces and smooth, then f satisfies (75.14.2.1).

Proof. The first statement is equivalent to Lemma 75.3.2. The second follows from
this and Criteria for Representability, Lemma 74.6.3. �

Lemma 75.14.7. Let S be a locally Noetherian scheme. Let f : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume

(1) f is representable by algebraic spaces,
(2) f satisfies (75.14.2.1),
(3) X → (Sch/S)fppf is limit preserving on objects, and
(4) Y is limit preserving.

Then f is smooth.

Proof. The key ingredient of the proof is More on Morphisms, Lemma 36.10.1
which (almost) says that a morphism of schemes of finite type over S satisfying
(75.14.2.1) is a smooth morphism. The other arguments of the proof are essentially
bookkeeping.

Let V be a scheme over S and let y be an object of Y over V . Let Z be an
algebraic space representing the 2-fibre product Z = X ×f,X ,y (Sch/V )fppf . We
have to show that the projection morphism Z → V is smooth, see Algebraic Stacks,
Definition 71.10.1. In fact, it suffices to do this when V is an affine scheme locally
of finite presentation over S, see Criteria for Representability, Lemma 74.5.6. Then
(Sch/V )fppf is limit preserving by Lemma 75.13.3. Hence Z → S is locally of finite
presentation by Lemmas 75.13.2 and 75.13.3. Choose a scheme W and a surjective
étale morphism W → Z. Then W is locally of finite presentation over S.

http://stacks.math.columbia.edu/tag/07XT
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Since f satisfies (75.14.2.1) we see that so does Z → (Sch/V )fppf , see Lemma
75.14.5. Next, we see that (Sch/W )fppf → Z satisfies (75.14.2.1) by Lemma
75.14.6. Thus the composition

(Sch/W )fppf → Z → (Sch/V )fppf

satisfies (75.14.2.1) by Lemma 75.14.4. More on Morphisms, Lemma 36.10.1 shows
that the composition W → Z → V is smooth at every finite type point w0 of W .
Since the smooth locus is open we conclude that W → V is a smooth morphism
of schemes by Morphisms, Lemma 28.17.7. Thus we conclude that Z → V is a
smooth morphism of algebraic spaces by definition. �

The lemma below is how we will use openness of versality.

Lemma 75.14.8. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let k be a finite type field over S and let x0 be
an object of X over Spec(k) with image s ∈ S. Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [1], [2], [3], [4], and openness of versality, and
(3) OS,s is a G-ring.

Then there exist a morphism of finite type U → S and an object x of X over U
such that

x : (Sch/U)fppf −→ X
is smooth and such that there exists a finite type point u0 ∈ U whose residue field
is k and such that x|u0

∼= x0.

Proof. By axiom [2], Lemma 75.6.1, and Remark 75.6.2 we see that FX ,k,x0 sat-
isfies (S1) and (S2). Since also the tangent space has finite dimension by axiom
[3] we deduce from Formal Deformation Theory, Lemma 68.12.4 that FX ,k,x0

has a
versal formal object ξ. By axiom [4] ξ is effective. By axiom [1] and Lemma 75.11.3
there exists a morphism of finite type U → S, an object x of X over U , and a finite
type point u0 of U with residue field k such that x is versal at u0 and such that
x|Spec(k)

∼= x0. By openness of versality we may shrink U and assume that x is
versal at every finite type point u0 of U . We claim that

x : (Sch/U)fppf −→ X

is smooth which proves the lemma. Namely, by Lemma 75.14.3 x satisfies (75.14.2.1)
whereupon Lemma 75.14.7 finishes the proof. �

75.15. Axioms for functors

Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Denote X = SF the
category fibred in sets associated to F , see Algebraic Stacks, Section 71.7. In this
section we provide a translation between the material above as it applies to X , to
statements about F .

Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sets be a functor.

Let k be a field of finite type over S. Let x0 ∈ F (Spec(k)). The associated
predeformation category (75.3.0.2) corresponds to the functor

Fk,x0
: CΛ −→ Sets, A 7−→ {x ∈ F (Spec(A)) | x|Spec(k) = x0}.

http://stacks.math.columbia.edu/tag/07XY
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Recall that we do not distinguish between categories cofibred in sets over CΛ and
functor CΛ → Sets, see Formal Deformation Theory, Remarks 68.5.2 (11). Given a
transformation of functors a : F → G, setting y0 = a(x0) we obtain a morphism

Fk,x0
−→ Gk,y0

see (75.3.1.1). Lemma 75.3.2 tells us that if a : F → G is formally smooth (in the
sense of More on Morphisms of Spaces, Definition 58.10.1), then Fk,x0

−→ Gk,y0
is

smooth as in Formal Deformation Theory, Remark 68.8.4.

Lemma 75.4.1 says that if Y ′ = Y qX X ′ in the category of schemes over S where
X → X ′ is a thickening and X → Y is affine, then the map

F (Y qX X ′)→ F (Y )×F (X) F (X ′)

is a bijection, provided that F is an algebraic space. We say a general functor
F satisfies the Rim-Schlessinger condition or we say F satisfies (RS) if given any
pushout Y ′ = Y qX X ′ where Y,X,X ′ are spectra of Artinian local rings of finite
type over S, then

F (Y qX X ′)→ F (Y )×F (X) F (X ′)

is a bijection. Thus every algebraic space satisfies (RS).

Lemma 75.6.1 says that given a functor F which satisfies (RS), then all Fk,x0
are

deformation functors as in Formal Deformation Theory, Definition 68.15.8, i.e., they
satisfy (RS) as in Formal Deformation Theory, Remark 68.15.5. In particular the
tangent space

TFk,x0
= {x ∈ F (Spec(k[ε])) | x|Spec(k) = x0}

has the structure of a k-vector space by Formal Deformation Theory, Lemma
68.11.2.

Lemma 75.8.1 says that an algebraic space F locally of finite type over S gives rise
to deformation functors Fk,x0 with finite dimensional tangent spaces TFk,x0 .

A formal object2 ξ = (R, ξn) of F consists of a Noetherian complete local S-
algebra R whose residue field is of finite type over S, together with elements
ξn ∈ F (Spec(R/mn)) such that ξn+1|Spec(R/mn) = ξn. A formal object ξ defines a
formal object ξ of FR/m,ξ1 . We say ξ is versal if and only if it is versal in the sense
of Formal Deformation Theory, Definition 68.8.13. A formal object ξ = (R, ξn) is
called effective if there exists an x ∈ F (Spec(R)) such that ξn = x|Spec(R/mn) for all
n ≥ 1. Lemma 75.9.4 says that if F is an algebraic space, then every formal object
is effective.

Let U be a scheme locally of finite type over S and let x ∈ F (U). Let u0 ∈
U be a finite type point. We say that x is versal at u0 if and only if ξ =
(O∧U,u0

, x|Spec(OU,u0
/mnu0

)) is a versal formal object in the sense described above.

Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sch be a functor.
Here are the axioms we will consider on F .

[-1] a set theoretic condition3 to be ignored by readers who are not interested
in set theoretical issues,

[0] F is a sheaf for the étale topology,

2This is what Artin calls a formal deformation.
3The condition is the following: the supremum of all the cardinalities |F (Spec(k))| where k

runs over the finite type fields over S is ≤ than the size of some object of (Sch/S)fppf .
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[1] F is limit preserving,
[2] F satisfies the Rim-Schlessinger condition (RS),
[3] every tangent space TFk,x0 is finite dimensional,
[4] every formal object is effective,
[5] F satisfies openness of versality.

Here limit preserving is the notion defined in Limits of Spaces, Definition 52.3.1
and openness of versality means the following: Given a scheme U locally of finite
type over S, given x ∈ F (U), and given a finite type point u0 ∈ U such that x is
versal at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is
versal at every finite type point of U ′.

75.16. Algebraic spaces

The following is our first main result on algebraic spaces.

Proposition 75.16.1. Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf →
Sets be a functor. Assume that

(1) ∆ : F → F × F is representable by algebraic spaces,
(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S.

Then F is an algebraic space.

Proof. Lemma 75.14.8 applies to F . Using this we choose, for every finite type
field k over S and x0 ∈ F (Spec(k)), an affine scheme Uk,x0 of finite type over
S and a smooth morphism Uk,x0

→ F such that there exists a finite type point
uk,x0

∈ Uk,x0
with residue field k such that x0 is the image of uk,x0

. Then

U =
∐

k,x0

Uk,x0 −→ F

is smooth4. To finish the proof it suffices to show this map is surjective, see Boot-
strap, Lemma 62.12.2 (this is where we use axiom [0]). By Criteria for Repre-
sentability, Lemma 74.5.6 it suffices to show that U ×F V → V is surjective for
those V → F where V is an affine scheme locally of finite presentation over S. Since
U ×F V → V is smooth the image is open. Hence it suffices to show that the image
of U×F V → V contains all finite type points of V , see Morphisms, Lemma 28.17.7.
Let v0 ∈ V be a finite type point. Then k = κ(v0) is a finite type field over S. De-

note x0 the composition Spec(k)
v0−→ V → F . Then (uk,x0

, v0) : Spec(k)→ U ×F V
is a point mapping to v0 and we win. �

Lemma 75.16.2. Let S be a locally Noetherian scheme. Let a : F → G be a
transformation of functors F,G : (Sch/S)oppfppf → Sets. Assume that

(1) a is injective,
(2) F satisfies axioms [0], [1], [2], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S,
(4) G is an algebraic space locally of finite type over S,

Then F is an algebraic space.

4Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we

have a bound on the index set by axiom [-1], see Sets, Lemma 3.9.9.
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Proof. By Lemma 75.8.1 the functor G satisfies [3]. As F → G is injective, we
conclude that F also satisfies [3]. Moreover, as F → G is injective, we see that given
schemes U , V and morphisms U → F and V → F , then U ×F V = U ×G V . Hence
∆ : F → F × F is representable (by schemes) as this holds for G by assumption.
Thus Proposition 75.16.1 applies5. �

75.17. Algebraic stacks

Proposition 75.17.2 is our first main result on algebraic stacks.

Lemma 75.17.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf

be a category fibred in groupoids. Assume that

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4] (see Section 75.12),
(3) X satisfies openness of versality, and
(4) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. Lemma 75.14.8 applies to X . Using this we choose, for every finite type
field k over S and every isomorphism class of object x0 ∈ Ob(XSpec(k)), an affine
scheme Uk,x0 of finite type over S and a smooth morphism (Sch/Uk,x0)fppf → X
such that there exists a finite type point uk,x0 ∈ Uk,x0 with residue field k such that
x0 is the image of uk,x0

. Then

(Sch/U)fppf → X , with U =
∐

k,x0

Uk,x0

is smooth6. To finish the proof it suffices to show this map is surjective, see Criteria
for Representability, Lemma 74.19.1 (this is where we use axiom [0]). By Crite-
ria for Representability, Lemma 74.5.6 it suffices to show that (Sch/U)fppf ×X
(Sch/V )fppf → (Sch/V )fppf is surjective for those y : (Sch/V )fppf → X where V
is an affine scheme locally of finite presentation over S. By assumption (1) the fibre
product (Sch/U)fppf ×X (Sch/V )fppf is representable by an algebraic space W .
Then W → V is smooth, hence the image is open. Hence it suffices to show that
the image of W → V contains all finite type points of V , see Morphisms, Lemma
28.17.7. Let v0 ∈ V be a finite type point. Then k = κ(v0) is a finite type field
over S. Denote x0 = y|Spec(k) the pullback of y by v0. Then (uk,x0

, v0) will give a
morphism Spec(k)→W whose composition with W → V is v0 and we win. �

Proposition 75.17.2. Let S be a locally Noetherian scheme. Let p : X →
(Sch/S)oppfppf be a category fibred in groupoids. Assume that

(1) ∆∆ : X → X ×X×X X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4], and [5] (see Section 75.12),
(3) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. We first prove that ∆ : X → X × X is representable by algebraic spaces.
To do this it suffices to show that

Y = X ×∆,X×X ,y (Sch/V )fppf

5The set theoretic condition [-1] holds for F as it holds for G. Details omitted.
6Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we

have a bound on the index set by axiom [-1], see Sets, Lemma 3.9.9.
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is representable by an algebraic space for any affine scheme V locally of finite
presentation over S and object y of X ×X over V , see Criteria for Representability,
Lemma 74.5.57. Observe that Y is fibred in setoids (Stacks, Lemma 8.2.5) and let
Y : (Sch/S)oppfppf → Sets, T 7→ Ob(YT )/ ∼= be the functor of isomorphism classes.
We will apply Proposition 75.16.1 to see that Y is an algebraic space.

Note that ∆Y : Y → Y × Y (and hence also Y → Y × Y ) is representably by
algebraic spaces by condition (1) and Criteria for Representability, Lemma 74.4.4.
Observe that Y is a sheaf for the étale topology by Stacks, Lemmas 8.6.3 and
8.6.7, i.e., property [0] holds. Also Y is limit preserving by Lemma 75.13.2, i.e.,
we have [1]. Note that Y has (RS), i.e., axiom [2] holds, by Lemmas 75.5.2 and
75.5.3. Axiom [3] for Y follows from Lemmas 75.8.1 and 75.8.2. Axiom [4] follows
from Lemmas 75.9.4 and 75.9.5. Axiom [5] for Y follows directly from openness
of versality for ∆X which is part of axiom [5] for X . Thus all the assumptions of
Proposition 75.16.1 are satisfied and Y is an algebraic space.

At this point it follows from Lemma 75.17.1 that X is an algebraic stack. �

75.18. Infinitesimal deformations

In this section we discuss a generalization of the notion of the tangent space in-
troduced in Section 75.8. To do this intelligently, we borrow some notation from
Formal Deformation Theory, Sections 68.10, 68.16, and 68.18.

Let S be a scheme. Let X be a category fibred in groupoids over (Sch/S)fppf .
Given a homomorphism A′ → A of S-algebras and an object x of X over Spec(A)
we write Lift(x,A′) for the category of lifts of x to Spec(A′). An object of Lift(x,A′)
is a morphism x → x′ of X lying over Spec(A) → Spec(A′) and morphisms of
Lift(x,A′) are defined as commutative diagrams. The set of isomorphism classes
of Lift(x,A′) is denoted Lift(x,A′). See Formal Deformation Theory, Definition
68.16.1 and Remark 68.16.2. If A′ → A is surjective with locally nilpotent kernel
we call an element x′ of Lift(x,A′) a (infinitesimal) deformation of x. In this case
the group of infinitesimal automorphisms of x′ over x is the kernel

Inf(x′/x) = Ker
(

AutXSpec(A′)(x
′)→ AutXSpec(A)

(x)
)

Note that an element of Inf(x′/x) is the same thing as a lift of idx over Spec(A′)
for (the category fibred in sets associated to) AutX (x′). Compare with Formal
Deformation Theory, Definition 68.18.1 and Formal Deformation Theory, Remark
68.18.8.

If M is an A-module we denote A[M ] the A-algebra whose underlying A-module
is A⊕M and whose multiplication is given by (a,m) · (a′,m′) = (aa′, am′ + a′m).
When M = A this is the ring of dual numbers over A, which we denote A[ε]
as is customary. There is an A-algebra map A[M ] → A. The pullback of x to
Spec(A[M ]) is called the trivial deformation of x to Spec(A[M ]).

7The set theoretic condition in Criteria for Representability, Lemma 74.5.5 will hold: the size
of the algebraic space Y representing Y is suitably bounded. Namely, Y → S will be locally of

finite type and Y will satisfy axiom [-1]. Details omitted.
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Lemma 75.18.1. Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let

B′ // B

A′

OO

// A

OO

be a commutative diagram of S-algebras. Let x be an object of X over Spec(A), let
y be an object of Y over Spec(B), and let φ : f(x)|Spec(B) → y be a morphism of Y
over Spec(B). Then there is a canonical functor

Lift(x,A′) −→ Lift(y,B′)

of categories of lifts induced by f and φ. The construction is compatible with com-
positions of 1-morphisms of categories fibred in groupoids in an obvious manner.

Proof. This lemma proves itself. �

In the rest of this chapter the following strictly stronger version of the Rim-
Schlessinger conditions will play an important role.

Definition 75.18.2. Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . We say X satisfies condition (RS*) if given
an affine open Spec(Λ) ⊂ S and a fibre product diagram

B′ // B

A′ = A×B B′

OO

// A

OO

of Λ-algebras, with B′ → B surjective with square zero kernel, the functor of fibre
categories

XSpec(A′) −→ XSpec(A) ×XSpec(B)
XSpec(B′)

is an equivalence of categories.

We make some observations: with A→ B ← B′ as in Definition 75.18.2

(1) if A, B, B′ are of finite type over Λ and B is finite over A, then A′ is of
finite type over Λ, see More on Algebra, Lemma 15.4.1,

(2) we have Spec(A′) = Spec(A)qSpec(B) Spec(B′) in the category of schemes,
see More on Morphisms, Lemma 36.11.1,

(3) if X is an algebraic stack, then X satisfies (RS*) by Lemma 75.4.1, and
(4) if X satisfies (RS*), then X satisfies (RS) because (RS) covers exactly

those cases of (RS*) where A, B, B′ are Artinian local.

Let S be a locally Noetherian base. Let X be a category fibred in groupoids over
(Sch/S)fppf . We define a category whose objects are pairs (x,A′ → A) where

(1) A′ → A is a surjection of S-algebras whose kernel is an ideal of square
zero such that Spec(A) maps into an affine open of S, and

(2) x is an object of X lying over Spec(A).

http://stacks.math.columbia.edu/tag/07Y7
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A morphism (y,B′ → B)→ (x,A′ → A) is given by a commutative diagram

B′ // B

A′

OO

// A

OO

of S-algebras together with a morphism x|Spec(B) → y over Spec(B). Let us call
this the category of deformation situations.

Lemma 75.18.3. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume X satisfies condition (RS*). Let A be an
S-algebra such that Spec(A) → S maps into an affine open and let x be an object
of X over Spec(A).

(1) There exists an A-linear functor Infx : ModA → ModA such that given a
deformation situation (x,A′ → A) and a lift x′ there is an isomorphism
Infx(I)→ Inf(x′/x) where I = Ker(A′ → A).

(2) There exists an A-linear functor Tx : ModA → ModA such that
(a) given M in ModA there is a bijection Tx(M)→ Lift(x,A[M ]),
(b) given a deformation situation (x,A′ → A) there is an action

Tx(I)× Lift(x,A′)→ Lift(x,A′)

where I = Ker(A′ → A). It is simply transitive if Lift(x,A′) 6= ∅.

Proof. To define Infx, resp. Tx we consider the functors

ModA −→ Sets, M −→ Lift(idx, A[M ]), resp. M −→ Lift(x,A[M ])

(for the first consider lifts of idx as automorphisms of the trivial deformation of x
to A[M ]) and we apply Formal Deformation Theory, Lemma 68.10.4. This lemma
is applicable, since (RS*) tells us that

Lift(x,A[M ×N ]) = Lift(x,A[M ])× Lift(x,A[N ])

as categories (and trivial deformations match up too).

Let (x,A′ → A) be a deformation situation. Consider the ring map g : A′×AA′ →
A[I] defined by the rule g(a1, a2) = a1 ⊕ a2 − a1. There is an isomorphism

A′ ×A A′ −→ A′ ×A A[I]

given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections to A. Thus applying
(RS*) twice we find equivalences of categories

Lift(x,A′)× Lift(x,A′) = Lift(x,A′ ×A A′)
= Lift(x,A′ ×A A[I])

= Lift(x,A′)× Lift(x,A[I])

Using these maps and projection onto the last factor of the last product we see that
we obtain “difference maps”

Inf(x′/x)× Inf(x′/x) −→ Infx(I) and Lift(x,A′)× Lift(x,A′) −→ Tx(I)

http://stacks.math.columbia.edu/tag/07Y9
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These difference maps satisfy the transitivity rule “(x′1−x′2) + (x′2−x′3) = x′1−x′3”
because

A′ ×A A′ ×A A′
(a1,a2,a3)7→(g(a1,a2),g(a2,a3))

//

(a1,a2,a3)7→g(a1,a3)

,,

A[I]×A A[I] = A[I × I]

+

��
A[I]

is commutative. Inverting the string of equivalences above we obtain an action
which is free and transitive provided Inf(x′/x), resp. Lift(x,A′) is nonempty. Note
that Inf(x′/x) is always nonempty as it is a group. �

Remark 75.18.4 (Functoriality). Assumptions and notation as in Lemma 75.18.3.
Suppose A→ B is a ring map and y = x|Spec(B). Let M ∈ ModA, N ∈ ModB and
let M → N an A-linear map. Then there are canonical maps Infx(M) → Infy(N)
and Tx(M)→ Ty(N) simply because there is a pullback functor

Lift(x,A[M ])→ Lift(y,B[N ])

coming from the ring map A[M ] → B[N ]. Similarly, given a morphism of de-
formation situations (y,B′ → B) → (x,A′ → A) we obtain a pullback functor
Lift(x,A′) → Lift(y,B′). Since the construction of the action, the addition, and
the scalar multiplication on Infx and Tx use only morphisms in the categories of
lifts (see proof of Formal Deformation Theory, Lemma 68.10.4) we see that the
constructions above are functorial. In other words we obtain A-linear maps

Infx(M)→ Infy(N) and Tx(M)→ Ty(N)

such that the diagrams

Infy(J) // Inf(y′/y)

Infx(I) //

OO

Inf(x′/x)

OO

and

Ty(J)× Lift(y,B′) // Lift(y,B′)

Tx(I)× Lift(x,A′) //

OO

Lift(x,A′)

OO

commute. Here I = Ker(A′ → A), J = Ker(B′ → B), x′ is a lift of x to A′ (which
may not always exist) and y′ = x′|Spec(B′).

Remark 75.18.5 (Automorphisms). Assumptions and notation as in Lemma 75.18.3.
Let x′, x′′ be lifts of x to A′. Then we have a composition map

Inf(x′′/x)×MorLift(x,A′)(x
′, x′′)× Inf(x′/x) −→ MorLift(x,A′)(x

′, x′′).

Since Lift(x,A′) is a groupoid, if MorLift(x,A′)(x
′, x′′) is nonempty, then this defines

a simply transitive left action of Inf(x′/x) on MorLift(x,A′)(x
′, x′′) and a simply tran-

sitive right action by Inf(x′/x). Now the lemma says that Inf(x′/x) = Infx(I) =
Inf(x′′/x). We claim that the two actions described above agree via these identifi-
cations. Namely, either x′ 6∼= x′′ in which the claim is clear, or x′ ∼= x′′ and in that
case we may assume that x′′ = x′ in which case the result follows from the fact
that Inf(x′/x) is commutative. In particular, we obtain a well defined action

Infx(I)×MorLift(x,A′)(x
′, x′′) −→ MorLift(x,A′)(x

′, x′′)

which is simply transitive as soon as MorLift(x,A′)(x
′, x′′) is nonempty.
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Remark 75.18.6 (Canonical element). Assumptions and notation as in Lemma
75.18.3. Choose an affine open Spec(Λ) ⊂ S such that Spec(A) → S corresponds
to a ring map Λ→ A. Consider the ring map

A −→ A[ΩA/Λ], a 7−→ (a,dA/Λ(a))

Pulling back x along the corresponding morphism Spec(A[ΩA/Λ]) → Spec(A) we
obtain a deformation xcan of x over A[ΩA/Λ]. We call this the canonical element

xcan ∈ Tx(ΩA/Λ) = Lift(x,A[ΩA/Λ]).

Next, assume that Λ → A is of finite type and let k = κ(p) be a residue field at a
finite type point u0 of U = Spec(A). Let x0 = x|u0

. By (RS*) and the fact that
A[k] = A ×k k[k] the space Tx(k) is the tangent space to the deformation functor
FX ,k,x0

. Via

TFU,k,u0
= DerΛ(A, k) = HomA(ΩA/Λ, k)

(see Formal Deformation Theory, Example 68.10.11) and functoriality of Tx the
canonical element produces the map on tangent spaces induced by the object x
over U . Namely, θ ∈ TFU,k,u0 maps to Tx(θ)(xcan) in Tx(k) = TFX ,k,x0 .

Remark 75.18.7 (Canonical automorphism). Let S be a locally Noetherian scheme.
Let X be a category fibred in groupoids over (Sch/S)fppf . Assume X satisfies con-
dition (RS*). Let A be an S-algebra such that Spec(A) → S maps into an affine
open and let x, y be objects of X over Spec(A). Further, let A→ B be a ring map
and let α : x|Spec(B) → y|Spec(B) be a morphism of X over Spec(B). Consider the
ring map

B −→ B[ΩB/A], b 7−→ (b,dB/A(b))

Pulling back α along the corresponding morphism Spec(B[ΩB/A]) → Spec(B) we
obtain a morphism αcan between the pullbacks of x and y over B[ΩB/A]. On
the other hand, we can pullback α by the morphism Spec(B[ΩB/A]) → Spec(B)
corresponding to the injection of B into the first summand of B[ΩB/A]. By the
discussion of Remark 75.18.5 we can take the difference

ϕ(x, y, α) = αcan − α|Spec(B[ΩB/A]) ∈ Infx|Spec(B)
(ΩB/A).

We will call this the canonical automorphism. It depends on all the ingredients A,
x, y, A→ B and α.

Remark 75.18.8. Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . Let A be an S-algebra such that Spec(A)→ S
maps into an affine open. There is a notion of a short exact sequence

(x,A′1 → A)→ (x,A′2 → A)→ (x,A′3 → A)

of deformation situations: we ask the corresponding maps between the kernels
Ii = Ker(A′i → A) give a short exact sequence

0→ I3 → I2 → I1 → 0

of A-modules. Note that in this case the map A′3 → A′1 factors through A, hence
there is a canonical isomorphism A′1 = A[I1].
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75.19. Obstruction theories

In this section we describe what an obstruction theory is. Contrary to the spaces of
infinitesimal deformations and infinitesimal automorphisms, an obstruction theory
is an additional piece of data. The formulation is motivated by the results of Lemma
75.18.3 and Remark 75.18.4.

Definition 75.19.1. Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . An obstruction theory is given by the following data

(1) for every S-algebra A such that Spec(A) → S maps into an affine open
and every object x of X over Spec(A) an A-linear functor

Ox : ModA → ModA

of obstruction modules,
(2) for (x,A) as in (1), a ring map A → B, M ∈ ModA, N ∈ ModB , and an

A-linear map M → N an induced A-linear map Ox(M)→ Oy(N) where
y = x|Spec(B), and

(3) for every deformation situation (x,A′ → A) an obstruction element ox(A′) ∈
Ox(I) where I = Ker(A′ → A).

These data are subject to the following conditions

(i) the functoriality maps turn the obstruction modules into a functor from
the category of triples (x,A,M) to sets,

(ii) for every morphism of deformation situations (y,B′ → B)→ (x,A′ → A)
the element ox(A′) maps to oy(B′), and

(iii) we have

Lift(x,A′) 6= ∅ ⇔ ox(A′) = 0

for every deformation situation (x,A′ → A).

This last condition explains the terminology. The module Ox(A′) is called the ob-
struction module. The element ox(A′) is the obstruction. Most obstruction theories
have additional properties, and in order to make them useful additional conditions
are needed. Moreover, this is just a sample definition, for example in the definition
we could consider only deformation situations of finite type over S.

One of the main reasons for introducing obstruction theories is to check openness
of versality. The initial idea to do this is due to Artin, see the papers of Artin
mentioned in the introduction. It has been taken up for example in the work by
Flenner [Fle81], Hall [Hal12], Hall and Rydh [HR12], Olsson [Ols06a], Olsson
and Starr [OS03], and Lieblich [Lie06a] (random order of references). Moreover,
for particular categories fibred in groupoids, often authors develop a little bit of
theory adapted to the problem at hand. We will develop this theory later (insert
future reference here).

Example 75.19.2. Let S = Spec(Λ) for some Noetherian ring Λ. Let W → S be a
morphism of schemes. Let F be a quasi-coherent OW -module flat over S. Consider
the functor

F : (Sch/S)oppfppf −→ Sets, T/S −→ H0(WT ,FT )

where WT = T ×S W is the base change and FT is the pullback of F to WT . If
T = Spec(A) we will write WT = WA, etc. Let X → (Sch/S)fppf be the category
fibred in groupoids associated to F . Then X has an obstruction theory. Namely,
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(1) given A over Λ and x ∈ H0(WA,FA) we set Ox(M) = H1(WA,FA⊗AM),
(2) given a deformation situation (x,A′ → A) we let ox(A′) ∈ Ox(A) be the

image of x under the boundary map

H0(WA,FA) −→ H1(WA,FA ⊗A I)

coming from the short exact sequence of modules

0→ FA ⊗A I → FA′ → FA → 0.

We have omitted some details, in particular the construction of the short exact
sequence above (it uses that WA and WA′ have the same underlying topological
space) and the explanation for why flatness of F over S implies that the sequence
above is short exact.

Example 75.19.3 (Key example). Let S = Spec(Λ) for some Noetherian ring Λ.
Say X = (Sch/X)fppf with X = Spec(R) and R = Λ[x1, . . . , xn]/J . The naive
cotangent complex NLR/Λ is (canonically) homotopy equivalent to

J/J2 −→
⊕

i=1,...,n
Rdxi,

see Algebra, Lemma 10.129.2. Consider a deformation situation (x,A′ → A). De-
note I the kernel of A′ → A. The object x corresponds to (a1, . . . , an) with ai ∈ A
such that f(a1, . . . , an) = 0 in A for all f ∈ J . Set

Ox(A′) = HomR(J/J2, I)/HomR(R⊕n, I)

= Ext1
R(NLR/Λ, I)

= Ext1
A(NLR/Λ⊗RA, I).

Choose lifts a′i ∈ A′ of ai in A. Then ox(A′) is the class of the map J/J2 → I
defined by sending f ∈ J to f(a′1, . . . , a

′
n) ∈ I. We omit the verification that ox(A′)

is independent of choices. It is clear that if ox(A′) = 0 then the map lifts. Finally,
functoriality is straightforward. Thus we obtain an obstruction theory. We observe
that ox(A′) can be described a bit more canonically as the composition

NLR/Λ → NLA/Λ → NLA/A′ = I[1]

in D(A), see Algebra, Lemma 10.129.6 for the last identification.

75.20. Naive obstruction theories

The title of this section refers to the fact that we will use the naive cotangent
complex in this section. Let (x,A′ → A) be a deformation situation for a given
category fibred in groupoids over a locally Noetherian scheme S. The key Example
75.19.3 suggests that any obstruction theory should be closely related to maps in
D(A) with target the naive cotangent complex of A. Working this out we find a
criterion for versality in Lemma 75.20.3 which leads to a criterion for openness of
versality in Lemma 75.20.4. We introduce a notion of a naive obstruction theory
in Definition 75.20.5 to try to formalize the notion a bit further.

In the following we will use the naive cotangent complex as defined in Algebra,
Section 10.129. In particular, if A′ → A is a surjection of Λ-algebras with square
zero kernel I, then there are maps

NLA′/Λ → NLA/Λ → NLA/A′
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whose composition is homotopy equivalent to zero (see Algebra, Remark 10.129.5).
This doesn’t form a distinguished triangle in general as we are using the naive
cotangent complex and not the full one. There is a homotopy equivalenceNLA/A′ →
I[1] (the complex consisting of I placed in degree−1, see Algebra, Lemma 10.129.6).
Finally, note that there is a canonical map NLA/Λ → ΩA/Λ.

Lemma 75.20.1. Let A→ k be a ring map with k a field. Let E ∈ D−(A). Then
ExtiA(E, k) = Homk(H−i(E ⊗L k), k).

Proof. Omitted. Hint: Replace E by a bounded above complex of free A-modules
and compute both sides. �

Lemma 75.20.2. Let Λ → A → k be finite type ring maps of Noetherian rings
with k = κ(p) for some prime p of A. Let ξ : E → NLA/Λ be morphism of D−(A)

such that H−1(ξ ⊗L k) is not surjective. Then there exists a surjection A′ → A of
Λ-algebras such that

(a) I = Ker(A′ → A) has square zero and is isomorphic to k as an A-module,
(b) ΩA′/Λ ⊗ k = ΩA/Λ ⊗ k, and
(c) E → NLA/A′ is zero.

Proof. Let f ∈ A, f 6∈ p. Suppose that A′′ → Af satisfies (a), (b), (c) for the
induced map E ⊗A Af → NLAf/Λ, see Algebra, Lemma 10.129.13. Then we can
set A′ = A′′ ×Af A and get a solution. Namely, it is clear that A′ → A satisfies
(a) because Ker(A′ → A) = Ker(A′′ → A) = I. Pick f ′′ ∈ A′′ lifting f . Then the
localization of A′ at (f ′′, f) is isomorphic to A′′ (for example by More on Algebra,
Lemma 15.4.3). Thus (b) and (c) are clear for A′ too. In this way we see that we
may replace A by the localization Af (finitely many times). In particular (after
such a replacement) we may assume that p is a maximal ideal of A, see Morphisms,
Lemma 28.17.1.

Choose a presentation A = Λ[x1, . . . , xn]/J . Then NLA/Λ is (canonically) homo-
topy equivalent to

J/J2 −→
⊕

i=1,...,n
Adxi,

see Algebra, Lemma 10.129.2. After localizing if necessary (using Nakayama’s
lemma) we can choose generators f1, . . . , fm of J such that fj ⊗ 1 form a ba-
sis for J/J2 ⊗A k. Moreover, after renumbering, we can assume that the im-
ages of df1, . . . ,dfr form a basis for the image of J/J2 ⊗ k →

⊕
kdxi and that

dfr+1, . . . ,dfm map to zero in
⊕
kdxi. With these choices the space

H−1(NLA/Λ⊗L
Ak) = H−1(NLA/Λ⊗Ak)

has basis fr+1⊗ 1, . . . , fm⊗ 1. Changing basis once again we may assume that the
image of H−1(ξ ⊗L k) is contained in the k-span of fr+1 ⊗ 1, . . . , fm−1 ⊗ 1. Set

A′ = Λ[x1, . . . , xn]/(f1, . . . , fm−1, pfm)

By construction A′ → A satisfies (a). Since dfm maps to zero in
⊕
kdxi we see

that (b) holds. Finally, by construction the induced map E → NLA/A′ = I[1]

induces the zero map H−1(E ⊗L
A k)→ I ⊗A k. By Lemma 75.20.1 we see that the

composition is zero. �

The following lemma is our key technical result.
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Lemma 75.20.3. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine
scheme of finite type over S which maps into an affine open Spec(Λ). Let x be an
object of X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′)
if and only if E → NLA/Λ → NLA/A′ is zero, and

(ii) there is an isomorphism of functors Tx(−)→ Ext0A(E,−) such that E →
NLA/Λ → Ω1

A/Λ corresponds to the canonical element (see Remark 75.18.6).

Let u0 ∈ U be a finite type point with residue field k = κ(u0). Consider the following
statements

(1) x is versal at u0, and
(2) ξ : E → NLA/Λ induces a surjection H−1(E ⊗L

A k) → H−1(NLA/Λ⊗L
Ak)

and an injection H0(E ⊗L
A k)→ H0(NLA/Λ⊗L

Ak).

Then we always have (2) ⇒ (1) and we have (1) ⇒ (2) if u0 is a closed point.

Proof. Let p = Ker(A→ k) be the prime corresponding to u0.

Assume that x versal at u0 and that u0 is a closed point of U . If H−1(ξ ⊗L
A k) is

not surjective, then let A′ → A be an extension with kernel I as in Lemma 75.20.2.
Because u0 is a closed point, we see that I is a finite A-module, hence that A′ is a
finite type Λ-algebra (this fails if u0 is not closed). In particular A′ is Noetherian.
By property (c) for A′ and (i) for ξ we see that x lifts to an object x′ over A′.
Let p′ ⊂ A′ be kernel of the surjective map to k. By Artin-Rees (Algebra, Lemma
10.49.2) there exists an n > 1 such that (p′)n ∩ I = 0. Then we see that

B′ = A′/(p′)n −→ A/pn = B

is a small, essential extension of local Artinian rings, see Formal Deformation The-
ory, Lemma 68.3.12. On the other hand, as x is versal at u0 and as x′|Spec(B′) is a
lift of x|Spec(B), there exists an integer m ≥ n and a map q : A/pm → B′ such that
the composition A/pm → B′ → B is the quotient map. Since the maximal ideal of
B′ has nth power equal to zero, this q factors through B which contradicts the fact
that B′ → B is an essential surjection. This contradiction shows that H−1(ξ⊗L

A k)
is surjective.

Assume that x versal at u0. By Lemma 75.20.1 the map H0(ξ ⊗L
A k) is dual to the

map Ext0
A(NLA/Λ, k)→ Ext0

A(E, k). Note that

Ext0
A(NLA/Λ, k) = DerΛ(A, k) and Tx(k) = Ext0

A(E, k)

Condition (ii) assures us the map Ext0
A(NLA/Λ, k) → Ext0

A(E, k) sends a tangent
vector θ to U at u0 to the corresponding infinitesimal deformation of x0, see Remark
75.18.6. Hence if x is versal, then this map is surjective, see Formal Deformation
Theory, Lemma 68.12.2. Hence H0(ξ ⊗L

A k) is injective. This finishes the proof of
(1) ⇒ (2) in case u0 is a closed point.

For the rest of the proof assume H−1(E ⊗L
A k) → H−1(NLA/Λ⊗L

Ak) is surjective

and H0(E ⊗L
A k) → H0(NLA/Λ⊗L

Ak) injective. Set R = A∧p and let η be the
formal object over R associated to x|Spec(R). The map dη on tangent spaces is

surjective because it is identified with the dual of the injective map H0(E ⊗L
A

k)→ H0(NLA/Λ⊗L
Ak) (see previous paragraph). According to Formal Deformation

Theory, Lemma 68.12.2 it suffices to prove the following: Let C ′ → C be a small

http://stacks.math.columbia.edu/tag/07YM


75.20. NAIVE OBSTRUCTION THEORIES 4149

extension of finite type Artinian local Λ-algebras with residue field k. Let R→ C be
a Λ-algebra map compatible with identifications of residue fields. Let y = x|Spec(C)

and let y′ be a lift of y to C ′. To show: we can lift the Λ-algebra map R → C to
R→ C ′.

Observe that it suffices to lift the Λ-algebra map A → C. Let I = Ker(C ′ → C).
Note that I is a 1-dimensional k-vector space. The obstruction ob to lifting A→ C
is an element of Ext1

A(NLA/Λ, I), see Example 75.19.3. By Lemma 75.20.1 and our
assumption the map ξ induces an injection

Ext1
A(NLA/Λ, I) −→ Ext1

A(E, I)

By the construction of ob and (i) the image of ob in Ext1
A(E, I) is the obstruction

to lifting x to A ×C C ′. By (RS*) the fact that y/C lifts to y′/C ′ implies that x
lifts to A×C C ′. Hence ob = 0 and we are done. �

The key lemma above allows us to conclude that we have openness of versality in
some cases.

Lemma 75.20.4. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine
scheme of finite type over S which maps into an affine open Spec(Λ). Let x be an
object of X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′)
if and only if E → NLA/Λ → NLA/A′ is zero,

(ii) there is an isomorphism of functors Tx(−)→ Ext0A(E,−) such that E →
NLA/Λ → Ω1

A/Λ corresponds to the canonical element (see Remark 75.18.6),

(iii) the cohomology groups of E are finite A-modules.

If x is versal at a closed point u0 ∈ U , then there exists an open neighbourhood
u0 ∈ U ′ ⊂ U such that x is versal at every finite type point of U ′.

Proof. Let C be the cone of ξ so that we have a distinguished triangle

E → NLA/Λ → C → E[1]

in D−(A). By Lemma 75.20.3 the assumption that x is versal at u0 implies that
H−1(C ⊗L k) = 0. By More on Algebra, Lemma 15.56.16 there exists an f ∈ A
not contained in the prime corresponding to u0 such that H−1(C ⊗L

A M) = 0 for
any Af -module M . Using Lemma 75.20.3 again we see that we have versality for
all finite type points of the open D(f) ⊂ U . �

The technical lemmas above suggest the following definition.

Definition 75.20.5. Let S be a locally Noetherian base. Let X be a category
fibred in groupoids over (Sch/S)fppf . Assume that X satisfies (RS*). A naive
obstruction theory is given by the following data

(1) for every S-algebra A such that Spec(A) → S maps into an affine open
Spec(Λ) ⊂ S and every object x of X over Spec(A) we are given an object
Ex ∈ D−(A) and a map ξx : E → NLA/Λ,

(2) given (x,A) as in (1) there are transformations of functors

Infx(−)→ Ext−1
A (Ex,−) and Tx(−)→ Ext0

A(Ex,−)

(3) for (x,A) as in (1) and a ring map A → B setting y = x|Spec(B) there is
a functoriality map Ex → Ey in D(A).
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These data are subject to the following conditions

(i) in the situation of (3) the diagram

Ey
ξy

// NLB/Λ

Ex

OO

ξx // NLA/Λ

OO

is commutative in D(A),
(ii) given (x,A) as in (1) and A → B → C setting y = x|Spec(B) and z =

x|Spec(C) the composition of the functoriality maps Ex → Ey and Ey → Ez
is the functoriality map Ex → Ez,

(iii) the maps of (2) are isomorphisms compatible with the functoriality maps
and the maps of Remark 75.18.4,

(iv) the composition Ex → NLA/Λ → ΩA/Λ corresponds to the canonical

element of Tx(ΩA/Λ) = Ext0(Ex,ΩA/Λ), see Remark 75.18.6,
(v) given a deformation situation (x,A′ → A) with I = Ker(A′ → A) the

composition Ex → NLA/Λ → NLA/A′ is zero in

HomA(Ex, NLA/Λ) = Ext0
A(Ex, NLA/A′) = Ext1

A(Ex, I)

if and only if x lifts to A′.

Thus we see in particular that we obtain an obstruction theory as in Section 75.19
by setting Ox(−) = Ext1

A(Ex,−).

Lemma 75.20.6. Let S and X be as in Definition 75.20.5 and let X be endowed
with a naive obstruction theory. Let A → B and y → x be as in (3). Let k be a
B-algebra which is a field. Then the functoriality map Ex → Ey induces bijections

Hi(Ex ⊗L
A k)→ Hi(Ey ⊗L

A k)

for i = 0, 1.

Proof. Let z = x|Spec(k). Then (RS*) implies that

Lift(x,A[k]) = Lift(z, k[k]) and Lift(y,B[k]) = Lift(z, k[k])

because A[k] = A ×k k[k] and B[k] = B ×k k[k]. Hence the properties of a naive
obstruction theory imply that the functoriality map Ex → Ey induces bijections

ExtiA(Ex, k)→ ExtiB(Ey, k) for i = −1, 0. By Lemma 75.20.1 our maps Hi(Ex ⊗L
A

k) → Hi(Ey ⊗L
A k), i = 0, 1 induce isomorphisms on dual vector spaces hence are

isomorphisms. �

Lemma 75.20.7. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf

be a category fibred in groupoids. Assume that X satisfies (RS*) and that X has
a naive obstruction theory. Then openness of versality holds for X provided the
complexes Ex of Definition 75.20.5 have finitely generated cohomology groups for
pairs (A, x) where A is of finite type over S.

Proof. Let U be a scheme locally of finite type over S, let x be an object of X over
U , and let u0 be a finite type point of U such that x is versal at u0. We may first
shrink U to an affine scheme such that u0 is a closed point and such that U → S
maps into an affine open Spec(Λ). Say U = Spec(A). Let ξx : Ex → NLA/Λ be the
obstruction map. At this point we may apply Lemma 75.20.4 to conclude. �

http://stacks.math.columbia.edu/tag/07YT
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75.21. A dual notion

Let (x,A′ → A) be a deformation situation for a given category X fibred in
groupoids over a locally Noetherian scheme S. Assume X has an obstruction the-
ory, see Definition 75.19.1. In practice one often has a complex K• of A-modules
and isomorphisms of functors

Infx(−)→ H0(K• ⊗L
A −), Tx(−)→ H1(K• ⊗L

A −), Ox(−)→ H2(K• ⊗L
A −)

In this section we formalize this a little bit and show how this leads to a verification
of openness of versality in some cases.

Example 75.21.1. Let Λ, S,W,F be as in Example 75.19.2. Assume that W → S
is proper and F coherent. By Cohomology of Schemes, Remark 29.20.2 there exists
a finite complex of finite projective Λ-modules N• which universally computes the
cohomology of F . In particular the obstruction spaces from Example 75.19.2 are
Ox(M) = H1(N• ⊗Λ M). Hence with K• = N• ⊗Λ A[−1] we see that Ox(M) =
H2(K• ⊗L

AM).

Situation 75.21.2. Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . Assume that X has (RS*) so that we can
speak of the functor Tx(−), see Lemma 75.18.3. Let U = Spec(A) be an affine
scheme of finite type over S which maps into an affine open Spec(Λ). Let x be an
object of X over U . Assume we are given

(1) a complex of A-modules K•,
(2) a transformation of functors Tx(−)→ H1(K• ⊗L

A −),
(3) for every deformation situation (x,A′ → A) with kernel I = Ker(A′ → A)

an element ox(A′) ∈ H2(K• ⊗L
A I)

satisfying the following (minimal) conditions

(i) the transformation Tx(−)→ H1(K• ⊗L
A −) is an isomorphism,

(ii) given a morphism (x,A′′ → A) → (x,A′ → A) of deformation situations
the element ox(A′) maps to the element ox(A′′) via the map H2(K• ⊗L

A

I)→ H2(K• ⊗L
A I
′) where I ′ = Ker(A′′ → A), and

(iii) x lifts to an object over Spec(A′) if and only if ox(A′) = 0.

It is possible to incorporate infinitesimal automorphisms as well, but we refrain
from doing so in order to get the sharpest possible result.

In Situation 75.21.2 an important role will be played by K•⊗L
ANLA/Λ. Suppose we

are given an element ξ ∈ H1(K•⊗L
ANLA/Λ). Then (1) for any surjection A′ → A of

Λ-algebras with kernel I of square zero the canonical map NLA/Λ → NLA/A′ = I[1]

sends ξ to an element ξA′ ∈ H2(K• ⊗L
A I) and (2) the map NLA/Λ → ΩA/Λ sends

ξ to an element ξcan of H1(K• ⊗L
A ΩA/Λ).

Lemma 75.21.3. In Situation 75.21.2. Assume furthermore that

(iv) given a short exact sequence of deformation situations as in Remark 75.18.8
and a lift x′2 ∈ Lift(x,A′2) then ox(A′3) ∈ H2(K• ⊗L

A I3) equals ∂θ where
θ ∈ H1(K• ⊗L

A I1) is the element corresponding to x′2|Spec(A′1) via A′1 =

A[I1] and the given map Tx(−)→ H1(K• ⊗L
A −).

In this case there exists an element ξ ∈ H1(K• ⊗L
A NLA/Λ) such that

(1) for every deformation situation (x,A′ → A) we have ξA′ = ox(A′), and

http://stacks.math.columbia.edu/tag/07YW
http://stacks.math.columbia.edu/tag/07YX
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(2) ξcan matches the canonical element of Remark 75.18.6 via the given trans-
formation Tx(−)→ H1(K• ⊗L

A −).

Proof. Choose a α : Λ[x1, . . . , xn] → A with kernel J . Write P = Λ[x1, . . . , xn].
In the rest of this proof we work with

NL(α) = (J/J2 −→
⊕

Adxi)

which is permissible by Algebra, Lemma 10.129.2 and More on Algebra, Lemma
15.45.1. Consider the element ox(P/J2) ∈ H2(K• ⊗L

A J/J2) and consider the
quotient

C = (P/J2 ×
⊕

Adxi)/(J/J
2)

where J/J2 is embedded diagonally. Note that C → A is a surjection with kernel⊕
Adxi. Moreover there is a section A → C to C → A given by mapping the

class of f ∈ P to the class of (f, df) in the pushout. For later use, denote xC the
pullback of x along the corresponding morphism Spec(C)→ Spec(A). Thus we see
that ox(C) = 0. We conclude that ox(P/J2) maps to zero in H2(K•⊗L

A

⊕
Adxi). It

follows that there exists some element ξ ∈ H1(K•⊗L
ANL(α)) mapping to ox(P/J2).

Note that for any deformation situation (x,A′ → A) there exists a Λ-algebra map
P/J2 → A′ compatible with the augmentations to A. Hence the element ξ satis-
fies the first property of the lemma by construction and property (ii) of Situation
75.21.2.

Note that our choice of ξ was well defined up to the choice of an element of
H1(K• ⊗L

A

⊕
Adxi). We will show that after modifying ξ by an element of the

aforementioned group we can arrange it so that the second assertion of the lemma
is true. Let C ′ ⊂ C be the image of P/J2 under the Λ-algebra map P/J2 → C
(inclusion of first factor). Observe that Ker(C ′ → A) = Im(J/J2 →

⊕
Adxi). Set

C = A[ΩA/Λ]. The map P/J2 ×
⊕
Adxi → C, (f,

∑
fidxi) 7→ (f mod J,

∑
fidxi)

factors through a surjective map C → C. Then

(x,C → A)→ (x,C → A)→ (x,C ′ → A)

is a short exact sequence of deformation situations. The associated splitting C =
A[ΩA/Λ] (from Remark 75.18.8) equals the given splitting above. Moreover, the

section A → C composed with the map C → C is the map (1,d) : A → A[ΩA/Λ]
of Remark 75.18.6. Thus xC restricts to the canonical element xcan of Tx(ΩA/Λ) =

Lift(x,A[ΩA/Λ]). By condition (iv) we conclude that ox(P/J2) maps to ∂xcan in

H1(K• ⊗L
A Im(J/J2 →

⊕
Adxi))

By construction ξ maps to ox(P/J2). It follows that xcan and ξcan map to the
same element in the displayed group which means (by the long exact cohomology
sequence) that they differ by an element of H1(K• ⊗L

A

⊕
Adxi) as desired. �

Lemma 75.21.4. In Situation 75.21.2 assume that (iv) of Lemma 75.21.3 holds
and that K• is a perfect object of D(A). In this case, if x is versal at a closed point
u0 ∈ U then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal
at every finite type point of U ′.

http://stacks.math.columbia.edu/tag/07YZ
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Proof. We may assume that K• is a finite complex of finite projective A-modules.
Thus the derived tensor product with K• is the same as simply tensoring with K•.
Let E• be the dual perfect complex to K•, see More on Algebra, Lemma 15.56.21.
(So En = HomA(K−n, A) with differentials the transpose of the differentials of
K•.) Let E ∈ D−(A) denote the object represented by the complex E•[−1]. Let
ξ ∈ H1(Tot(K• ⊗A NLA/Λ)) be the element constructed in Lemma 75.21.3 and
denote ξ : E = E•[−1] → NLA/Λ the corresponding map (loc.cit.). We claim that
the pair (E, ξ) satisfies all the assumptions of Lemma 75.20.4 which finishes the
proof.

Namely, assumption (i) of Lemma 75.20.4 follows from conclusion (1) of Lemma
75.21.3 and the fact that H2(K• ⊗L

A −) = Ext1(E,−) by loc.cit. Assumption
(ii) of Lemma 75.20.4 follows from conclusion (2) of Lemma 75.21.3 and the fact
that H1(K• ⊗L

A −) = Ext0(E,−) by loc.cit. Assumption (iii) of Lemma 75.20.4 is
clear. �

75.22. Examples of deformation problems

List of things that should go here:

(1) Describe the general outline of an example.
(2) Deformations of schemes:

(a) The Rim-Schlessinger condition.
(b) Computing the tangent space.
(c) Computing the infinitesimal deformations.
(d) The deformation category of an affine hypersurface.

(3) Deformations of representations of abstract groups.
(4) Deformations of representations of topological groups (e.g., profinite ones).
(5) Deformations of sheaves (for example fix X/S, a finite type point s of S,

and a quasi-coherent sheaf Fs over Xs).
(6) Deformations of algebraic spaces (very similar to deformations of schemes;

maybe even easier?).
(7) Deformations of maps (eg morphisms between schemes; you can fix both

or one of the target and/or source).
(8) Add more here.

75.23. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra

(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes



4154 75. ARTIN’S AXIOMS

(25) Schemes
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CHAPTER 76

Quot and Hilbert Spaces

76.1. Introduction

The purpose of this chapter is to write about Quot and Hilbert functors and to prove
that these are algebraic spaces provided certain technical conditions are satisfied.
In this chapter we will discuss this in the setting of algebraic space. A reference is
Grothendieck’s lectures, see [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c],
and [Gro95d]. Another reference is the paper [OS03]; this paper discusses the
more general case of Quot and Hilbert spaces associated to a morphism of algebraic
stacks which we will discuss in another chapter, see (insert future reference here).

In the case of Hilbert spaces there is a more general notion of “Hilbert stacks”
which we will discuss in a separate chapter, see (insert future reference here).

We have intentionally placed this chapter, as well as the chapters “Examples
of Stacks”, “Sheaves on Algebraic Stacks”, “Criteria for Representability”, and
“Artin’s Axioms” before the general development of the theory of algebraic stacks.
The reason for this is that starting with the next chapter (see Properties of Stacks,
Section 77.2) we will no longer distinguish between a scheme and the algebraic
stack it gives rise to. Thus our language will become more flexible and easier for
a human to parse, but also less precise. These first few chapters, including the
initial chapter “Algebraic Stacks”, lay the groundwork that later allow us to ignore
some of the very technical distinctions between different ways of thinking about
algebraic stacks. But especially in the chapters “Artin’s Axioms” and “Criteria
of Representability” we need to be very precise about what objects exactly we are
working with, as we are trying to show that certain constructions produce algebraic
stacks or algebraic spaces.

Unfortunately, this means that some of the notation, conventions and terminology
is awkward and may seem backwards to the more experienced reader. We hope the
reader will forgive us!

76.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

4155
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76.3. The Hom functor

In this section we study the functor of homomorphisms defined below.

Situation 76.3.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F , G be quasi-coherent OX -modules. For any scheme T over
B we will denote FT and GT the base changes of F and G to T , in other words,
the pullbacks via the projection morphism XT = X ×B T → X. We consider the
functor

(76.3.1.1) Hom(F ,G) : (Sch/B)opp −→ Sets, T −→ HomOXT (FT ,GT )

In Situation 76.3.1 we sometimes think of the functor Hom(F ,G) as a functor

Hom(F ,G) : (Sch/S)opp −→ Sets

endowed with a morphism Hom(F ,G) → B. Namely, if T is a scheme over S,
then an element of Hom(F ,G)(T ) consists of a pair (h, u), where h is a morphism
h : T → B and u : FT → GT is an OXT -module map where XT = T ×h,B X and
FT and GT are the pullbacks to XT . In particular, when we say that Hom(F ,G) is
an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets is
an algebraic space.

Lemma 76.3.2. In Situation 76.3.1 the functor Hom(F ,G) satisfies the sheaf prop-
erty for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X×STi and Fi = uTi and Gi = GTi . Note that {Xi → XT }i∈I is an fpqc covering of
XT , see Topologies on Spaces, Lemma 55.3.2. Thus a family of maps ui : Fi → Gi
such that ui and uj restrict to the same map on XTi×TTj comes from a unique map
u : FT → GT by descent (Descent on Spaces, Proposition 56.4.1). �

Remark 76.3.3. In Situation 76.3.1 let B′ → B be a morphism of algebraic spaces
over S. Set X ′ = X ×B B′ and denote F ′, G′ the pullback of F , G to X ′. Then we
obtain a functor Hom(F ′,G′) : (Sch/B′)opp → Sets associated to the base change
f ′ : X ′ → B′. For a scheme T over B′ it is clear that we have

Hom(F ′,G′)(T ) = Hom(F ,G)(T )

where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. This trivial remark will occasionally be useful to change the base
algebraic space.

Lemma 76.3.4. In Situation 76.3.1 let {Xi → X}i∈I be an fppf covering and for
each i, j ∈ I let {Xijk → Xi×X Xj} be an fppf covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. Similarly define Gi and Gijk. For every scheme T
over B the diagram

Hom(F ,G)(T ) // ∏
i Hom(Fi,Gi)(T )

pr∗0 //

pr∗1

//
∏
i,j,k Hom(Fijk,Gijk)(T )

presents the first arrow as the equalizer of the other two.

Proof. Let ui : Fi,T → Gi,T be an element in the equalizer of pr∗0 and pr∗1. Since
the base change of an fppf covering is an fppf covering (Topologies on Spaces,
Lemma 55.4.2) we see that {Xi,T → XT }i∈I and {Xijk,T → Xi,T ×XT Xj,T } are

http://stacks.math.columbia.edu/tag/08JT
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fppf coverings. Applying Descent on Spaces, Proposition 56.4.1 we first conclude
that ui and uj restrict to the same morphism over Xi,T ×XT Xj,T , whereupon a
second application shows that there is a unique morphism u : FT → GT restricting
to ui for each i. This finishes the proof. �

Lemma 76.3.5. In Situation 76.3.1. If F is of finite presentation and f is quasi-
compact and quasi-separated, then Hom(F ,G) is limit preserving.

Proof. Let T = limi∈I Ti be a directed limit of affine B-schemes. We have to show
that

Hom(F ,G)(T ) = colim Hom(F ,G)(Ti)

Pick 0 ∈ I. We may replace B by T0, X by XT0
, F by FT0

, G by GT0
, and I by

{i ∈ I | i ≥ 0}. See Remark 76.3.3. Thus we may assume B = Spec(R) is affine.

When B is affine, then X is quasi-compact and quasi-separated. Choose a surjective
étale morphism U → X where U is an affine scheme (Properties of Spaces, Lemma
48.6.3). Since X is quasi-separated, the scheme U ×X U is quasi-compact and
we may choose a surjective étale morphism V → U ×X U where V is an affine
scheme. Applying Lemma 76.3.4 we see that Hom(F ,G) is the equalizer of two
maps between

Hom(F|U ,G|U ) and Hom(F|V ,G|V )

This reduces us to the case that X is affine.

In the affine case the statement of the lemma reduces to the following problem:
Given a ring map R → A, two A-modules M , N and a directed system of R-
algebras C = colimCi. When is it true that the map

colim HomA⊗RCi(M ⊗R Ci, N ⊗R Ci) −→ HomA⊗RC(M ⊗R C,N ⊗R C)

is bijective? By Algebra, Lemma 10.123.3 this holds if M ⊗R C is of finite presen-
tation over A⊗R C, i.e., when M is of finite presentation over A. �

Lemma 76.3.6. Let S be a scheme. Let B be an algebraic space over S. Let
i : X ′ → X be a closed immersion of algebraic spaces over B. Let F be a quasi-
coherent OX-module and let G′ be a quasi-coherent OX′-module. Then

Hom(F , i∗G′) = Hom(i∗F ,G′)
as functors on (Sch/B).

Proof. Let g : T → B be a morphism where T is a scheme. Denote iT : X ′T → XT

the base change of i. Denote h : XT → X and h′ : X ′T → X ′ the projections.
Observe that (h′)∗i∗F = i∗Th

∗F . As a closed immersion is affine (Morphisms of
Spaces, Lemma 49.20.6) we have h∗i∗G = iT,∗(h

′)∗G by Cohomology of Spaces,
Lemma 51.10.2. Thus we have

Hom(F , i∗G′)(T ) = HomOXT (h∗F , h∗i∗G′)
= HomOXT (h∗F , iT,∗(h′)∗G)

= HomOX′
T

(i∗Th
∗F , (h′)∗G)

= HomOX′
T

((h′)∗i∗F , (h′)∗G)

= Hom(i∗F ,G′)(T )

as desired. The middle equality follows from the adjointness of the functors iT,∗
and i∗T . �
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Lemma 76.3.7. Let S be a scheme. Let B be an algebraic space over S. Let K be
a pseudo-coherent object of D(OB).

(1) If for all g : T → B in (Sch/B) the cohomology sheaf H−1(Lg∗K) is zero,
then the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T,H0(Lg∗K))

is an algebraic space affine and of finite presentation over B.
(2) If for all g : T → B in (Sch/B) the cohomology sheaves Hi(Lg∗K) are

zero for i < 0, then K is perfect with tor amplitude in [0, b] for some b ≥ 0
and the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T, Lg∗K)

is an algebraic space affine and of finite presentation over B.

Proof. Under the assumptions of (2) we have H0(T, Lg∗K) = H0(T,H0(Lg∗K)).
Let us prove that the rule T 7→ H0(T,H0(Lg∗K)) satisfies the sheaf property for
the fppf topology. To do this assume we have an fppf covering {hi : Ti → T} of
a scheme g : T → B over B. Set gi = g ◦ hi. Note that since hi is flat, we have
Lh∗i = h∗i and h∗i commutes with taking cohomology. Hence

H0(Ti, H
0(Lg∗iK)) = H0(Ti, H

0(h∗iLg
∗K)) = H0(T, h∗iH

0(Lg∗K))

Similarly for the pullback to Ti×T Tj . Since Lg∗K is a pseudo-coherent complex on
T (Cohomology on Sites, Lemma 21.34.3) the cohomology sheaf F = H0(Lg∗K) is
quasi-coherent (Derived Categories of Spaces, Lemma 57.12.5). Hence by Descent
on Spaces, Proposition 56.4.1 we see that

H0(T,F) = Ker(
∏

H0(Ti, h
∗
iF)→

∏
H0(Ti, h

∗
iF))

In this way we see that the rules in (1) and (2) satisfy the sheaf property for fppf
coverings. This mean we may apply Bootstrap, Lemma 62.11.4 it suffices to prove
the representability étale locally on B. Moreover, we may check whether the end
result is affine and of finite presentation étale locally on B, see Morphisms of Spaces,
Lemmas 49.20.3 and 49.27.4. Hence we may assume that B is an affine scheme.

Assume B = Spec(A) is an affine scheme. By the results of Derived Categories
of Spaces, Lemmas 57.12.5, 57.4.2, and 57.12.2 we deduce that in the rest of the
proof we may think of K as a perfect object of the derived category of complexes of
modules on B in the Zariski topology. By Derived Categories of Schemes, Lemmas
35.9.1, 35.3.4, and 35.9.3 we can find a pseudo-coherent complex M• of A-modules
such that K is the corresponding object of D(OB). Our assumption on pullbacks
implies that M• ⊗L

A κ(p) has vanishing H−1 for all primes p ⊂ A. By More on
Algebra, Lemma 15.56.16 we can write

M• = τ≥0M
• ⊕ τ≤−1M

•

with τ≥0M
• perfect with Tor amplitude in [0, b] for some b ≥ 0 (here we also have

used More on Algebra, Lemmas 15.56.11 and 15.51.13). Note that in case (2) we
also see that τ≤−1M

• = 0 in D(A) whence M• and K are perfect with tor amplitude
in [0, b]. For any B-scheme g : T → B we have

H0(T,H0(Lg∗K)) = H0(T,H0(Lg∗τ≥0K))

http://stacks.math.columbia.edu/tag/08JX
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(by the dual of Derived Categories, Lemma 13.17.1) hence we may replace K by
τ≥0K and correspondingly M• by τ≥0M

•. In other words, we may assume M• has
tor amplitude in [0, b].

Assume M• has tor amplitude in [0, b]. We may assume M• is a bounded above
complex of finite free A-modules (by our definition of pseudo-coherent complexes,
see More on Algebra, Definition 15.50.1 and the discussion following the definition).
By More on Algebra, Lemma 15.51.2 we see that M = Coker(M−1 → M0) is flat.
By Algebra, Lemma 10.75.2 we see that M is finite locally free. Hence M• is
quasi-isomorphic to

M →M1 →M2 → . . .→Md → 0 . . .

Note that this is a K-flat complex (Cohomology, Lemma 20.27.8), hence derived
pullback of K via a morphism T → B is computed by the complex

g∗M̃ → g∗M̃1 → . . .

Thus it suffices to show that the functor

(g : T → B) 7−→ Ker(Γ(T, g∗M̃)→ Γ(T, g∗(M̃1))

is representable by an affine scheme of finite presentation over B.

We may still replace B by the members of an affine open covering in order to prove
this last statement. Hence we may assume that M is finite free (recall that M1 is
finite free to begin with). Write M = A⊕n and M1 = A⊕m. Let the map M →M1

be given by the m × n matrix (aij) with coefficients in A. Then M̃ = O⊕nB and

M̃1 = O⊕mB . Thus the functor above is equal to the functor

(g : T → B) 7−→ {(f1, . . . , fn) ∈ Γ(T,OT ) |
∑

g](aijfi = 0, j = 1, . . . ,m}

Clearly this is representable by the affine scheme

Spec
(
A[x1, . . . , xn]/(

∑
aijxi; j = 1, . . . ,m)

)
and the lemma has been proved. �

The functor Hom(F ,G) is representable in a number of situations. All of our results
will be based on the following basic case. The proof of this lemma as given below
is in some sense the natural generalization to the proof of [DG67, III, Cor 7.7.8].

Lemma 76.3.8. In Situation 76.3.1 assume that

(1) B is a Noetherian algebraic space,
(2) f is locally of finite type and quasi-separated,
(3) F is a finite type OX-module, and
(4) G is a finite type OX-module, flat over B, with scheme theoretic support

proper over B.

Then the functor Hom(F ,G) is representable by an algebraic space affine and of
finite presentation over B.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → F by a perfect complex P
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of the triple (X,F , 0), see Derived Categories of Spaces, Definition 57.13.1 and
Theorem 57.13.7). Then the induced map

HomOX (F ,G) −→ HomD(OX)(P,G)

is an isomorphism because P → F induces an isomorphism H0(P ) → F and
Hi(P ) = 0 for i > 0. Moreover, for any morphism g : T → B denote h : XT =
T ×B X → X the projection and set PT = Lh∗P . Then it is equally true that

HomOXT (FT ,GT ) −→ HomD(OXT )(PT ,GT )

is an isomorphism, as PT = Lh∗P → Lh∗F → FT induces an isomorphism
H0(PT ) → FT (because h∗ is right exact and Hi(P ) = 0 for i > 0). Thus it
suffices to prove the result for the functor

T 7−→ HomD(OXT )(PT ,GT ).

By the Leray spectral sequence (see Cohomology on Sites, Remark 21.14.4) we have

HomD(OXT )(PT ,GT ) = H0(XT , RHom(PT ,GT )) = H0(T,RfT,∗RHom(PT ,GT ))

where fT : XT → T is the base change of f . By Derived Categories of Spaces,
Lemma 57.17.6 we have

RfT,∗RHom(PT ,GT ) = Lg∗Rf∗RHom(P,G).

By Derived Categories of Spaces, Lemma 57.19.2 the object K = Rf∗RHom(P,G)
of D(OB) is perfect. This means we can apply Lemma 76.3.7 as long as we
can prove that the cohomology sheaf Hi(Lg∗K) is 0 for all i < 0 and g : T →
B as above. This is clear from the last displayed formula as the cohomology
sheaves of RfT,∗RHom(PT ,GT ) are zero in negative degrees due to the fact that
RHom(PT ,GT ) has vanishing cohomology sheaves in negative degrees as PT is per-
fect with vanishing cohomology sheaves in positive degrees. �

Here is a cheap consequence of Lemma 76.3.8.

Proposition 76.3.9. In Situation 76.3.1 assume that

(1) f is of finite presentation, and
(2) G is a finitely presented OX-module, flat over B, with scheme theoretic

support proper over B.

Then the functor Hom(F ,G) is representable by an algebraic space affine over B.
If F is of finite presentation, then Hom(F ,G) is of finite presentation over B.

Proof. By Lemma 76.3.2 the functor Hom(F ,G) satisfies the sheaf property for
fppf coverings. This mean we may1 apply Bootstrap, Lemma 62.11.1 to check
the representability étale locally on B. Moreover, we may check whether the end
result is affine or of finite presentation étale locally on B, see Morphisms of Spaces,
Lemmas 49.20.3 and 49.27.4. Hence we may assume that B is an affine scheme.

Assume B is an affine scheme. As f is of finite presentation, it follows X is quasi-
compact and quasi-separated. Thus we can write F = colimFi as a filtered colimit
of OX -modules of finite presentation (Limits of Spaces, Lemma 52.9.1). It is clear
that

Hom(F ,G) = lim Hom(Fi,G)

1We omit the verification of the set theoretical condition (3) of the referenced lemma.
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Hence if we can show that each Hom(Fi,G) is representable by an affine scheme,
then we see that the same thing holds for Hom(F ,G). Use the material in Limits,
Section 31.2 and Limits of Spaces, Section 52.4. Thus we may assume that F is of
finite presentation.

Say B = Spec(R). Write R = colimRi with each Ri a finite type Z-algebra. Set
Bi = Spec(Ri). By the results of Limits of Spaces, Lemmas 52.7.1 and 52.7.2 we
can find an i, a morphism of algebraic spaces Xi → Bi, and finitely presented
OXi-modules Fi and Gi such that the base change of (Xi,Fi,Gi) to B recovers
(X,F ,G). By Limits of Spaces, Lemma 52.6.11 we may, after increasing i, assume
that Gi is flat over Bi. By Limits of Spaces, Lemma 52.12.3 we may similarly
assume the scheme theoretic support of Gi is proper over Bi. At this point we can
apply Lemma 76.3.8 to see that Hi = Hom(Fi,Gi) is an algebraic space affine of
finite presentation over Bi. Pulling back to B (using Remark 76.3.3) we see that
Hi ×Bi B = Hom(F ,G) and we win. �

76.4. The Isom functor

In Situation 76.3.1 we can consider the subfunctor

Isom(F ,G) ⊂ Hom(F ,G)

whose value on a scheme T over B is the set of invertible OXT -homomorphisms
u : FT → GT . In this brief section we quickly point out some properties of this
functor.

Lemma 76.4.1. In Situation 76.3.1 the functor Isom(F ,G) satisfies the sheaf prop-
erty for the fpqc topology.

Proof. We have already seen that Hom(F ,G) satisfies the sheaf property. Hence
it remains to show the following: Given an fpqc covering {Ti → T}i∈I of schemes
over B and an OXT -linear map u : FT → GT such that uTi is an isomorphism
for all i, then u is an isomorphism. Since {Xi → XT }i∈I is an fpqc covering of
XT , see Topologies on Spaces, Lemma 55.3.2, this follows from Descent on Spaces,
Proposition 56.4.1. �

Proposition 76.4.2. In Situation 76.3.1 assume that

(1) f is of finite presentation, and
(2) F and G are finitely presented OX-modules, flat over B, with scheme

theoretic support proper over B.

Then the functor Isom(F ,G) is representable by an algebraic space affine of finite
presentation over B.

Proof. We will use the abbreviations H = Hom(F ,G), I = Hom(F ,F), H ′ =
Hom(G,F), and I ′ = Hom(G,G). By Proposition 76.3.9 the functors H, I, H ′, I ′

are algebraic spaces and the morphisms H → B, I → B, H ′ → B, and I ′ → B are
affine and of finite presentation. The composition of maps gives a morphism

c : H ′ ×B H −→ I ×B I ′, (u′, u) 7−→ (u ◦ u′, u′ ◦ u)

of algebraic spaces over B. Since I ×B I ′ → B is separated, the section σ : B →
I ×B I ′ corresponding to (idF , idG) is a closed immersion (Morphisms of Spaces,
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Lemma 49.4.7). Moreover, σ is of finite presentation (Morphisms of Spaces, Lemma
49.27.9). Hence

Isom(F ,G) = (H ′ ×B H)×c,I×BI′,σ B
is an algebraic space affine of finite presentation over B as well. Some details
omitted. �

76.5. The stack of coherent sheaves

In this section we prove that the stack of coherent sheaves on X/B is algebraic
under suitable hypotheses. This is a special case of [Lie06b, Theorem 2.1.1] which
treats the case of the stack of coherent sheaves on an Artin stack over a base.

Situation 76.5.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. We denote CohX/B the
category whose objects are triples (T, g,F) where

(1) T is a scheme over S,
(2) g : T → B is a morphism over S, and setting XT = T ×g,B X
(3) F is a quasi-coherent OXT -module of finite presentation, flat over T , with

scheme theoretic support proper over T .

A morphism (T, g,F)→ (T ′, g′,F ′) is given by a pair (h, ϕ) where

(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) ϕ : (h′)∗F ′ → F is an isomorphism of OXT -modules where h′ : XT → XT ′

is the base change of h.

Thus CohX/B is a category and the rule

p : CohX/B −→ (Sch/S)fppf , (T, g,F) 7−→ T

is a functor. For a scheme T over S we denote CohX/B,T the fibre category of p
over T . These fibre categories are groupoids.

Lemma 76.5.2. In Situation 76.5.1 the functor p : CohX/B −→ (Sch/S)fppf is
fibred in groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2)
of Categories, Definition 4.33.1. Given an object (T ′, g′,F ′) of CohX/B and a
morphism h : T → T ′ of schemes over S we can set g = h ◦ g′ and F = (h′)∗F ′
where h′ : XT → XT ′ is the base change of h. Then it is clear that we obtain a
morphism (T, g,F)→ (T ′, g′,F ′) of CohX/B lying over h. This proves (1). For (2)
suppose we are given morphisms

(h1, ϕ1) : (T1, g1,F1)→ (T, g,F) and (h2, ϕ2) : (T2, g2,F2)→ (T, g,F)

of CohX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can let ϕ
be the composition

(h′)∗F2
(h′)∗ϕ−1

2−−−−−−→ (h′)∗(h2)∗F = (h1)∗F ϕ1−→ F1

to obtain the morphism (h, ϕ) : (T1, g1,F1)→ (T2, g2,F2) that witnesses the truth
of condition (2). �

Lemma 76.5.3. In Situation 76.5.1. Denote X = CohX/B. Then ∆ : X → X ×X
is representable by algebraic spaces.
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Proof. Consider two objects x = (T, g,F) and y = (T, h,G) of X over a scheme T .
We have to show that IsomX (x, y) is representable by an algebraic space over T ,
see Algebraic Stacks, Lemma 71.10.11. If for a : T ′ → T the restrictions x|T ′ and
y|T ′ are isomorphic in the fibre category XT ′ , then g ◦ a = h ◦ a. Hence there is a
transformation of presheaves

IsomX (x, y) −→ Equalizer(g, h)

Since the diagonal of B is representable by schemes this equalizer is a scheme. Thus
we may replace T by this equalizer and the sheaves F and G by their pullbacks.
Thus we may assume g = h. In this case we have IsomX (x, y) = Isom(F ,G) and
the result follows from Proposition 76.4.2. �

Lemma 76.5.4. In Situation 76.5.1 the functor p : CohX/B −→ (Sch/S)fppf is a
stack in groupoids.

Proof. To prove that CohX/B is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on
Isom follows from Lemma 76.5.3, see Algebraic Stacks, Lemma 71.10.11. Let us
prove the statement on descent data. Suppose that {ai : Ti → T} is an fppf covering
of schemes over S. Let (ξi, ϕij) be a descent datum for {Ti → T} with values in
CohX/B . For each i we can write ξi = (Ti, gi,Fi). Denote pr0 : Ti ×T Tj → Ti
and pr1 : Ti ×T Tj → Tj the projections. The condition that ξi|Ti×TTj = ξj |Ti×TTj
implies in particular that gi ◦ pr0 = gj ◦ pr1. Thus there exists a unique morphism
g : T → B such that gi = g ◦ ai, see Descent on Spaces, Lemma 56.6.2. Denote
XT = T ×g,B X. Set Xi = XTi = Ti ×gi,B X = Ti ×ai,T XT and

Xij = XTi ×XT XTj = Xi ×XT Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi,Fi)
by pr0 : Ti×T Tj → Ti is given by (Ti×T Tj , gi ◦pr0,pr∗iFi). Hence a descent datum
for {Ti → T} in CohX/B is given by the objects (Ti, g ◦ ai,Fi) and for each pair i, j
an isomorphism of OXij -modules

ϕij : pr∗iFi −→ pr∗jFj
satisfying the cocycle condition over (the pullback of X to) Ti ×T Tj ×T Tk. Ok,
and now we simply use that {Xi → XT } is an fppf covering so that we can view
(Fi, ϕij) as a descent datum for this covering. By Descent on Spaces, Proposition
56.4.1 this descent datum is effective and we obtain a quasi-coherent sheaf F over
XT restricting to Fi on Xi. By Morphisms of Spaces, Lemma 49.29.5 we see that
F is flat over T and Descent on Spaces, Lemma 56.5.2 guarantees that Q is of finite
presentation as an OXT -module. Finally, by Descent on Spaces, Lemma 56.10.17
we see that the scheme theoretic support of F is proper over T as we’ve assume the
scheme theoretic support of Fi is proper over Ti (note that taking scheme theoretic
support commutes with flat base change by Morphisms of Spaces, Lemma 49.28.10).
In this way and we obtain our desired object over T . �

Remark 76.5.5. In Situation 76.5.1 the rule (T, g,F) 7→ (T, g) defines a 1-morphism

CohX/B −→ SB
of categories fibred in groupoids (see Lemma 76.5.4, Algebraic Stacks, Section 71.7,
and Examples of Stacks, Section 72.9). Let B′ → B be a morphism of algebraic
spaces over S. Let SB′ → SB be the associated 1-morphism of stacks fibred in
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sets. Set X ′ = X ×B B′. We obtain a stack in groupoids CohX′/B′ → (Sch/S)fppf
associated to the base change f ′ : X ′ → B′. In this situation the diagram

CohX′/B′ //

��

CohX/B

��
SB′ // SB

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemma 76.5.6. In Situation 76.5.1 assume that B → S is locally of finite pre-
sentation. Then p : CohX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms,
Definition 75.13.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to an
object (T, h,F) of CohX/B,T the object h of B(T ) gives us a commutative diagram
of fibre categories

colim CohX/B,Ti
//

��

CohX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assume
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
52.3.10 that the bottom horizontal arrow is an equivalence. This means that we
may assume T = limTi be a filtered limit of affine schemes over B. Denote gi :
Ti → B and g : T → B the corresponding morphisms. Set Xi = Ti ×gi,B X and
XT = T ×g,B X. Observe that XT = colimXi and that the algebraic spaces Xi

and XT are quasi-separated and quasi-compact (as they are of finite presentation
over the affines Ti and T ). By Limits of Spaces, Lemma 52.7.2 we see that

colim FP(Xi) = FP(XT ).

where FP(W ) is short hand for the category of finitely presented OW -modules. The
results of Limits of Spaces, Lemmas 52.6.11 and 52.12.3 tell us the same thing is
true if we replace FP(Xi) and FP(XT ) by the full subcategory of objects flat over
Ti and T with scheme theoretic support proper over Ti and T . This proves the
lemma. �

Lemma 76.5.7. In Situation 76.5.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 36.11.1. Then the functor on
fibre categories

CohX/B,Y ′ −→ CohX/B,Y ×CohX/B,Z CohX/B,Z′

is an equivalence.
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Proof. Observe that the corresponding map

B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 59.2.2. Thus using the commutative
diagram

CohX/B,Y ′ //

��

CohX/B,Y ×CohX/B,Z CohX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 76.5.5 we may
replace B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′. In this case
the statement follows from Pushouts of Spaces, Lemma 59.2.7. �

Lemma 76.5.8. Let
X

��

i
// X ′

��
T // T ′

be a cartesian square of algebraic spaces where T → T ′ is a first order thickening.
Let F ′ be an OX′-module flat over T ′. Set F = i∗F ′. The following are equivalent

(1) F is a quasi-coherent OX′-module of finite presentation,
(2) F is an OX′-module of finite presentation,
(3) F is a quasi-coherent OX-module of finite presentation,
(4) F is an OX-module of finite presentation,

Proof. Recall that a finitely presented module is quasi-coherent hence the equiv-
alence of (1) and (2) and (3) and (4). The equivalence of (2) and (4) is a special
case of Deformation Theory, Lemma 69.10.3. �

Lemma 76.5.9. In Situation 76.5.1 assume that S is a locally Noetherian scheme
and B → S is locally of finite presentation. Let k be a finite type field over S and
let x0 = (Spec(k), g0,G0) be an object of X = CohX/B over k. Then the spaces
TFX ,k,x0 and Infx0

(FX ,k,x0) (Artin’s Axioms, Section 75.8) are finite dimensional.

Proof. Observe that by Lemma 76.5.7 our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section 75.18. In particular X satisfies (RS).
Hence all associated predeformation categories are deformation categories (Artin’s
Axioms, Lemma 75.6.1) and the statement makes sense.

In this paragraph we show that we can reduce to the case B = Spec(k). Set
X0 = Spec(k)×g0,B X and denote X0 = CohX0/k. In Remark 76.5.5 we have seen
that X0 is the 2-fibre product of X with Spec(k) over B as categories fibred in
groupoids over (Sch/S)fppf . Thus by Artin’s Axioms, Lemma 75.8.2 we reduce
to proving that B, Spec(k), and X0 have finite dimensional tangent spaces and
infinitesimal automorphism spaces. The tangent space of B and Spec(k) are finite
dimensional by Artin’s Axioms, Lemma 75.8.1 and of course these have vanishing
Inf. Thus it suffices to deal with X0.

Let k[ε] be the dual numbers over k. Let Spec(k[ε])→ B be the composition of g0 :
Spec(k) → B and the morphism Spec(k[ε]) → Spec(k) coming from the inclusion
k → k[ε]. Set X0 = Spec(k)×BX and Xε = Spec(k[ε])×BX. Observe that Xε is a
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first order thickening of X0 flat over the first order thickening Spec(k)→ Spec(k[ε]).
Unwinding the definitions and using Lemma 76.5.8 we see that TFX0,k,x0 is the set
of lifts of G0 to a flat module on Xε. By Deformation Theory, Lemma 69.11.1 we
conclude that

TFX0,k,x0
= Ext1

OX0
(G0,G0)

Here we have used the identification εk[ε] ∼= k of k[ε]-modules. Using Deformation
Theory, Lemma 69.11.1 once more we see that

Infx0
(FX ,k,x0

) = Ext0
OX0

(G0,G0)

These spaces are finite dimensional over k as G0 has support proper over Spec(k).
Namely, X0 is of finite presentation over Spec(k), hence Noetherian. Since G0 is
of finite presentation it is a coherent OX0

-module. Thus we may apply Derived
Categories of Spaces, Lemma 57.19.3 to conclude the desired finiteness. �

Lemma 76.5.10. In Situation 76.5.1 assume that S is a locally Noetherian scheme
and that f : X → B is separated. Let X = CohX/B. Then the functor Artin’s
Axioms, Equation (75.9.2.1) is an equivalence.

Proof. Let A be an S-algebra which is a complete local Noetherian ring with
maximal ideal m whose residue field k is of finite type over S. We have to show
that the category of objects over A is equivalent to the category of formal objects
over A. Since we know this holds for the category SB fibred in sets associated to B
by Artin’s Axioms, Lemma 75.9.4, it suffices to prove this for those objects lying
over a given morphism Spec(A)→ B.

Set XA = Spec(A)×BX and Xn = Spec(A/mn)×BX. By Grothendieck’s existence
theorem (More on Morphisms of Spaces, Theorem 58.31.11) we see that the category
of coherent modules F on XA with support proper over Spec(A) is equivalent to the
category of systems (Fn) of coherent modules Fn on Xn with support proper over
Spec(A/mn). The equivalence sends F to the system (F ⊗AA/mn). See discussion
in More on Morphisms of Spaces, Remark 58.31.12. To finish the proof of the
lemma, it suffices to show that F is flat over A if and only if all F ⊗AA/mn are flat
over A/mn. This follows from More on Morphisms of Spaces, Lemma 58.20.3. �

Lemma 76.5.11. In Situation 76.5.1 assume that S is a locally Noetherian scheme,
S = B, and f : X → B is flat. Let X = CohX/B. Then we have openness of
versality for X (see Artin’s Axioms, Definition 75.14.1).

Proof. Let U → S be of finite type morphism of schemes, x an object of X over
U and u0 ∈ U a finite type point such that x is versal at u0. After shrinking
U we may assume that u0 is a closed point (Morphisms, Lemma 28.17.1) and
U = Spec(A) with U → S mapping into an affine open Spec(Λ) of S. We will use
Artin’s Axioms, Lemma 75.21.4 to prove the lemma. Let F be the coherent module
on XA = Spec(A)×S X flat over A corresponding to the given object x.

According to Deformation Theory, Lemma 69.11.1 we have an isomorphism of func-
tors

Tx(M) = Ext1
XA(F ,F ⊗AM)

and given any surjection A′ → A of Λ-algebras with square zero kernel I we have
an obstruction class

ξA′ ∈ Ext2
XA(F ,F ⊗A I)
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This uses that for any A′ → A as above the base change XA′ = Spec(A′)×BX is flat
over A′. Apply Derived Categories of Spaces, Lemma 57.19.3 to the computation
of the Ext groups ExtiXA(F ,F ⊗A M) for i ≤ m with m = 2. We find a perfect
object K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(F ,F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
75.21.2. Finally, condition (iv) of Artin’s Axioms, Lemma 75.21.3 holds by Defor-
mation Theory, Lemma 69.11.3. Thus Artin’s Axioms, Lemma 75.21.4 does indeed
apply and the lemma is proved. �

Theorem 76.5.12 (Algebraicity of stack coherent sheaves). Let S be a scheme.
Let f : X → B be morphism of algebraic spaces over S. Assume that f is of finite
presentation, separated, and flat2. Then CohX/B is an algebraic stack over S.

Proof. Set X = CohX/B . We have seen that X is a stack in groupoids over
(Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 76.5.4 and
76.5.3). Hence it suffices to find a scheme W and a surjective and smooth morphism
W → X .

Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal
to the 2-fibre product of X with the category fibred in sets associated to B′ over
the category fibred in sets associated to B (Remark 76.5.5). By the material in
Algebraic Stacks, Section 71.10 the morphism X ′ → X is surjective and étale.
Hence it suffices to prove the result for X ′. In other words, we may assume B is a
scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 71.19. Thus we may assume S = B.

Assume S = B. Choose an affine open covering S =
⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is of finite presentation and flat and whose base
change to Λ is X. See Limits of Spaces, Lemmas 52.7.1 and 52.6.11. If we show
that CohXi/ Spec(Λi) is an algebraic stack, then it follows by base change (Remark
76.5.5 and Algebraic Stacks, Section 71.19) that X is an algebraic stack. Thus we
may assume that Λ is a finite type Z-algebra.

Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), and (4) of Artin’s Axioms, Lemma 75.17.1 to conclude that
X is an algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition
15.39.12. Hence all local rings of S are G-rings. Thus (4) holds. By Lemma 76.5.11
we have that X satisfies openness of versality, hence (3) holds. To check (2) we have
to verify axioms [-1], [0], [1], [2], [3], and [4] of Artin’s Axioms, Section 75.12. We

2This assumption is not necessary. See discussion in Section 76.6.

http://stacks.math.columbia.edu/tag/08WC
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omit the verification of [-1] and axioms [0], [1], [2], [3], [4] correspond respectively to
Lemmas 76.5.4, 76.5.6, 76.5.7, 76.5.9, and 76.5.10. Finally, condition (1) is Lemma
76.5.3. This finishes the proof of the theorem. �

76.6. The stack of coherent sheaves in the non-flat case

In Theorem 76.5.12 the assumption that f : X → B is flat is not necessary. In this
section we explain where this assumption is used in the proof and one way to get
around it.

For a different approach to this problem the reader may wish to consult [Art69b]
and follow the method discussed in the papers [OS03], [Lie06b], [Ols05], [HR13],
[HR10], [Ryd11]. Some of these papers deal with the more general case of the
stack of coherent sheaves on an algebraic stack over an algebraic stack and others
deal with similar problems in the case of Hilbert stacks or Quot functors. Our
strategy will be to show algebraicity of some cases of Hilbert stacks and Quot
functors as a consequence of the algebraicity of the stack of coherent sheaves.

The only step in the proof of Theorem 76.5.12 which uses flatness is in the appli-
cation of Lemma 76.5.11. The lemma is used to construct an obstruction theory
as in Artin’s Axioms, Section 75.21. The proof of the lemma relies on Deforma-
tion Theory, Lemmas 69.11.1 and 69.11.3 from Deformation Theory, Section 69.11.
This is how the assumption that f is flat comes about. Before we go on, note that
results (2) and (3) of Deformation Theory, Lemmas 69.11.1 do hold without the
assumption that f is flat as they rely on Deformation Theory, Lemmas 69.10.7.
and 69.10.4 which do not have any flatness assumptions.

Before we give the details we give some motivation for the construction from derived
algebraic geometry, since we think it will clarify what follows. Let A be a finite type
algebra over the locally Noetherian base S. Denote X⊗LA a “derived base change”
of X to A and denote i : XA → X ⊗L A the canonical inclusion morphism. The
object X ⊗LA does not (yet) have a definition in the Stacks project; we may think
of it as the algebraic space XA endowed with a simplicial sheaf of rings OX⊗LA

whose homology sheaves are

Hi(OX⊗LA) = TorOSi (OX , A).

The morphism X ⊗LA→ Spec(A) is flat (the terms of the simplicial sheaf of rings
being A-flat), so the usual material for deformations of flat modules applies to it.
Thus we see that we get an obstruction theory using the groups

ExtiX⊗LA(i∗F , i∗F ⊗AM)

where i = 0, 1, 2 for inf auts, inf defs, obstructions. Note that a flat deformation of
i∗F to X ⊗L A′ is automatically of the form i′∗F ′ where F ′ is a flat deformation of
F . By adjunction of the functors Li∗ and i∗ = Ri∗ these ext groups are equal to

ExtiXA(Li∗(i∗F),F ⊗AM)

Thus we obtain obstruction groups of exactly the same form as in the proof of
Lemma 76.5.11 with the only change being that one replaces the first occurrence
of F by the complex Li∗(i∗F).

Below we prove the non-flat version of the lemma by a “direct” construction of
E(F) = Li∗(i∗F) and direct proof of its relationship to the deformation theory
of F . In fact, it suffices to construct τ≥−2E(F), as we are only interested in the
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ext groups ExtiXA(Li∗(i∗F),F ⊗A M) for i = 0, 1, 2. We can even identify the
cohomology sheaves

Hi(E(F)) =


0 if i > 0
F if i = 0
0 if i = −1

TorOS1 (OX , A)⊗OX F if i = −2

This observation will guide our construction of E(F) in the remarks below.

Remark 76.6.1 (Direct construction). Let S be a scheme. Let f : X → B be
a morphism of algebraic spaces over S. Let U be another algebraic space over B.
Denote q : X×B U → U the second projection. Consider the distinguished triangle

Lq∗LU/B → LX×BU/B → E → Lq∗LU/B [1]

of Cotangent, Section 70.27. For any sheaf F of OX×BU -modules we have the
Atiyah class

F → LX×BU/B ⊗
L
OX×BU

F [1]

see Cotangent, Section 70.18. We can compose this with the map to E and choose
a distinguished triangle

E(F)→ F → F ⊗L
OX×BU

E[1]→ E(F)[1]

in D(OX×BU ). By construction the Atiyah class lifts to a map

eF : E(F) −→ Lq∗LU/B ⊗L
OX×BU

F [1]

fitting into a morphism of distinguished triangles

F ⊗L Lq∗LU/B [1] // F ⊗L LX×BU/B [1] // F ⊗L E[1]

E(F) //

eF

OO

F //

Atiyah

OO

F ⊗L E[1]

=

OO

Given S,B,X, f, U,F we fix a choice of E(F) and eF .

Remark 76.6.2 (Construction of obstruction class). With notation as in Remark
76.6.1 let i : U → U ′ be a first order thickening of U over B. Let I ⊂ OU ′ be the
quasi-coherent sheaf of ideals cutting out B in B′. The fundamental triangle

Li∗LU ′/B → LU/B → LU/U ′ → Li∗LU ′/B [1]

together with the map LU/U ′ → I[1] determine a map eU ′ : LU/B → I[1]. Com-
bined with the map eF of the previous remark we obtain

(idF ⊗ Lq∗eU ′) ∪ eF : E(F) −→ F ⊗OX×BU q
∗I[2]

(we have also composed with the map from the derived tensor product to the usual
tensor product). In other words, we obtain an element

ξU ′ ∈ Ext2
OX×BU

(E(F),F ⊗OX×BU q
∗I)

Lemma 76.6.3. In the situation of Remark 76.6.2 assume that F is flat over U .
Then the vanishing of the class ξU ′ is a necessary and sufficient condition for the
existence of a OX×BU ′-module F ′ flat over U ′ with i∗F ′ ∼= F .

http://stacks.math.columbia.edu/tag/09DN
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Proof (sketch). We will use the criterion of Deformation Theory, Lemma 69.10.8.
We will abbreviate O = OX×BU and O′ = OX×BU ′ . Consider the short exact
sequence

0→ I → OU ′ → OU → 0.

Let J ⊂ O′ be the quasi-coherent sheaf of ideals cutting out X×BU . By the above
we obtain an exact sequence

TorOB1 (OX ,OU )→ q∗I → J → 0

where the TorOB1 (OX ,OU ) is an abbreviation for

Torh
−1OB

1 (p−1OX , q−1OU )⊗(p−1OX⊗h−1OB
q−1OU ) O.

Tensoring with F we obtain the exact sequence

F ⊗O TorOB1 (OX ,OU )→ F ⊗O q∗I → F ⊗O J → 0

(Note that the roles of the letters I and J are reversed relative to the notation in
Deformation Theory, Lemma 69.10.8.) Condition (1) of the lemma is that the last
map above is an isomorphism, i.e., that the first map is zero. The vanishing of this
map may be checked on stalks at geometric points z = (x, u) : Spec(k)→ X ×B U .
Set R = OB,b, A = OX,x, B = OU,u, and C = Oz. By Cotangent, Lemma 70.27.2

and the defining triangle for E(F) we see that

H−2(E(F))z = Fz ⊗ TorR1 (A,B)

The map ξU ′ therefore induces a map

Fz ⊗ TorR1 (A,B) −→ Fz ⊗B Iu

We claim this map is the same as the stalk of the map described above (proof
omitted; this is a purely ring theoretic statement). Thus we see that condition (1)
of Deformation Theory, Lemma 69.10.8 is equivalent to the vanishing H−2(ξU ′) :
H−2(E(F))→ F ⊗ I.

To finish the proof we show that, assuming that condition (1) is satisfied, condition
(2) is equivalent to the vanising of ξU ′ . In the rest of the proof we write F ⊗ I to
denote F ⊗O q∗I = F ⊗O J . A consideration of the spectral sequence

Exti(H−j(E(F)),F ⊗ I)⇒ Exti+j(E(F),F ⊗ I)

using that H0(E(F)) = F and H−1(E(F)) = 0 shows that there is an exact
sequence

0→ Ext2(F ,F ⊗ I)→ Ext2(E(F),F ⊗ I)→ Hom(H−2(E(F)),F ⊗ I)

Thus our element ξU ′ is an element of Ext2(F ,F⊗I). The proof is finished by show-
ing this element agrees with the element of Deformation Theory, Lemma 69.10.8 a
verification we omit. �

Lemma 76.6.4. In Situation 76.5.1 assume that S is a locally Noetherian scheme
and S = B. Let X = CohX/B. Then we have openness of versality for X (see
Artin’s Axioms, Definition 75.14.1).

http://stacks.math.columbia.edu/tag/09DR
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Proof (sketch). Let U → S be of finite type morphism of schemes, x an object
of X over U and u0 ∈ U a finite type point such that x is versal at u0. After
shrinking U we may assume that u0 is a closed point (Morphisms, Lemma 28.17.1)
and U = Spec(A) with U → S mapping into an affine open Spec(Λ) of S. We will
use Artin’s Axioms, Lemma 75.21.4 to prove the lemma. Let F be the coherent
module on XA = Spec(A)×S X flat over A corresponding to the given object x.

Choose E(F) and eF as in Remark 76.6.1. The description of the cohomology
sheaves of E(F) shows that

Ext1(E(F),F ⊗AM) = Ext1(F ,F ⊗AM)

for any A-module M . Using this and using Deformation Theory, Lemma 69.10.7
we have an isomorphism of functors

Tx(M) = Ext1
XA(E(F),F ⊗AM)

By Lemma 76.6.3 given any surjection A′ → A of Λ-algebras with square zero kernel
I we have an obstruction class

ξA′ ∈ Ext2
XA(E(F),F ⊗A I)

Apply Derived Categories of Spaces, Lemma 57.19.3 to the computation of the Ext
groups ExtiXA(E(F),F⊗AM) for i ≤ m with m = 2. We omit the verification that

E(F) is in D−Coh; hint: use Cotangent, Lemma 70.5.4. We find a perfect object
K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(E(F),F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
75.21.2. Finally, condition (iv) of Artin’s Axioms, Lemma 75.21.3 holds by a variant
of Deformation Theory, Lemma 69.11.3 whose formulation and proof we omit. Thus
Artin’s Axioms, Lemma 75.21.4 applies and the lemma is proved. �

Theorem 76.6.5 (Algebraicity of stack coherent sheaves; general case). Let S be
a scheme. Let f : X → B be morphism of algebraic spaces over S. Assume that f
is of finite presentation and separated. Then CohX/B is an algebraic stack over S.

Proof. Identical to the proof of Theorem 76.5.12 except that we substitute Lemma
76.6.4 for Lemma 76.5.11. �

76.7. Flattening functors

This section is the analogue of More on Flatness, Section 37.19. We urge the reader
to skip this section on a first reading.

Situation 76.7.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let u : F → G be a homomorphism of quasi-coherent OX -modules.
For any scheme T over B we will denote uT : FT → GT the base change of u to T , in
other words, uT is the pullback of u via the projection morphism XT = X ×B T →
X. In this situation we can consider the functor

(76.7.1.1) Fiso : (Sch/B)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

http://stacks.math.columbia.edu/tag/09DS
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In Situation 76.7.1 we sometimes think of the functors Fiso, Finj , Fsurj , and Fzero
as functors (Sch/S)opp → Sets endowed with a morphism Fiso → B, Finj → B,
Fsurj → B, and Fzero → B. Namely, if T is a scheme over S, then an element
h ∈ Fiso(T ) is just a morphism h : T → B, i.e., an element h ∈ B(T ), such that
the base change of u via h is an isomorphism. In particular, when we say that Fiso
is an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets
is an algebraic space.

Lemma 76.7.2. In Situation 76.7.1. Each of the functors Fiso, Finj, Fsurj, Fzero
satisfies the sheaf property for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies on Spaces, Lemma 55.3.2. In particular, for every x ∈ |XT | there exists
an i ∈ I and an xi ∈ |Xi| mapping to x. Since OXT ,x → OXi,xi is flat, hence
faithfully flat (see Morphisms of Spaces, Section 49.28). we conclude that (ui)xi is
injective, surjective, bijective, or zero if and only if (uT )x is injective, surjective,
bijective, or zero. The lemma follows. �

Lemma 76.7.3. In Situation 76.7.1 let X ′ → X be a flat morphism of algebraic
spaces. Denote u′ : F ′ → G′ the pullback of u to X ′. Denote F ′iso, F

′
inj, F

′
surj,

F ′zero the functors on Sch/B associated to u′.

(1) If G is of finite type and the image of |X ′| → |X| contains the support of
G, then Fsurj = F ′surj and Fzero = F ′zero.

(2) If F is of finite type and the image of |X ′| → |X| contains the support of
F , then Finj = F ′inj and Fzero = F ′zero.

(3) If F and G are of finite type and the image of |X ′| → |X| contains the
supports of F and G, then Fiso = F ′iso.

Proof. let v : H → E be a map of quasi-coherent modules on an algebraic space
Y and let ϕ : Y ′ → Y be a surjective flat morphism of algebraic spaces, then v is
an isomorphism, injective, surjective, or zero if and only if ϕ∗v is an isomorphism,
injective, surjective, or zero. Namely, for every y ∈ |Y | there exists a y′ ∈ |Y ′| and
the map of local rings OY,y → OY ′,y′ is faithfully flat (see Morphisms of Spaces,

Section 49.28). Of course, to check for injectivity or being zero it suffices to look
at the points in the support of H, and to check for surjectivity it suffices to look
at points in the support of E . Moreover, under the finite type assumptions as in
the statement of the lemma, taking the supports commutes with base change, see
Morphisms of Spaces, Lemma 49.15.2. Thus the lemma is clear. �

Recall that we’ve defined the scheme theoretic support of a finite type quasi-
coherent module in Morphisms of Spaces, Definition 49.15.4.

Lemma 76.7.4. In Situation 76.7.1.

(1) If G is of finite type and the scheme theoretic support of G is quasi-compact
over B, then Fsurj is limit preserving.

(2) If F of finite type and the scheme theoretic support of F is quasi-compact
over B, then Fzero is limit preserving.

(3) If F is of finite type, G is of finite presentation, and the scheme theo-
retic supports of F and G are quasi-compact over B, then Fiso is limit
preserving.

http://stacks.math.columbia.edu/tag/083H
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Proof. Proof of (1). Let i : Z → X be the scheme theoretic support of G and think
of G as a finite type quasi-coherent module on Z. We may replace X by Z and u by
the map i∗F → G (details omitted). Hence we may assume f is quasi-compact and G
of finite type. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume
that uT is surjective. Set Xi = XTi = X×S Ti and ui = uTi : Fi = FTi → Gi = GTi .
To prove (1) we have to show that ui is surjective for some i. Pick 0 ∈ I and replace
I by {i | i ≥ 0}. Since f is quasi-compact we see X0 is quasi-compact. Hence
we may choose a surjective étale morphism ϕ0 : W0 → X0 where W0 is an affine
scheme. Set W = W0×T0

T and Wi = W0×T0
Ti for i ≥ 0. These are affine schemes

endowed with a surjective étale morphisms ϕ : W → XT and ϕi : Wi → Xi. Note
that W = limWi. Hence ϕ∗uT is surjective and it suffices to prove that ϕ∗i ui is
surjective for some i. Thus we have reduced the problem to the affine case which
is Algebra, Lemma 10.123.3 part (2).

Proof of (2). Assume F is of finite type with scheme theoretic support Z ⊂ B
quasi-compact over B. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is zero. Set Xi = Ti×BX and denote ui : Fi → Gi the pullback.
Choose 0 ∈ I and replace I by {i | i ≥ 0}. Set Z0 = Z ×X X0. By Morphisms
of Spaces, Lemma 49.15.2 the support of Fi is |Z0|. Since |Z0| is quasi-compact
we can find an affine scheme W0 and an étale morphism W0 → X0 such that
|Z0| ⊂ Im(|W0| → |X0|). Set W = W0 ×T0 T and Wi = W0 ×T0 Ti for i ≥ 0. These
are affine schemes endowed with étale morphisms ϕ : W → XT and ϕi : Wi → Xi.
Note that W = limWi and that the support of FT and Fi is contained in the image
of |W | → |XT | and |Wi| → |Xi|. Now ϕ∗uT is injective and it suffices to prove that
ϕ∗i ui is injective for some i. Thus we have reduced the problem to the affine case
which is Algebra, Lemma 10.123.3 part (1).

Proof of (3). This can be proven in exactly the same manner as in the previous two
paragraphs using Algebra, Lemma 10.123.3 part (3). We can also deduce it from
(1) and (2) as follows. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is an isomorphism. By part (1) there exists an 0 ∈ I such
that uT0

is surjective. Set K = Ker(uT0
) and consider the map of quasi-coherent

modules v : K → FT0
. For i ≥ 0 the base change vTi is zero if and only if ui is

an isomorphism. Moreover, vT is zero. Since GT0 is of finite presentation, FT0 is of
finite type, and uT0 is surjective we conclude that K is of finite type (Modules on
Sites, Lemma 18.24.1). It is clear that the support of K is contained in the support
of FT0

which is quasi-compact over T0. Hence we can apply part (2) to see that vTi
is zero for some i. �

Lemma 76.7.5. Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let u : F → G be a map of quasi-coherent OX-modules. Assume G flat over
S. Let T → S be a quasi-compact morphism of schemes such that the base change
uT is zero. Then exists a closed subscheme Z ⊂ S such that (a) T → S factors
through Z and (b) the base change uZ is zero. If F is a finite type OX-module and
the scheme theoretic support of F is quasi-compact, then we can take Z → S of
finite presentation.

Proof. Let U → X be a surjective étale morphism of algebraic spaces where U =∐
Ui is a disjoint union of affine schemes (see Properties of Spaces, Lemma 48.6.1).

By Lemma 76.7.3 we see that we may replace X by U . In other words, we may
assume that X =

∐
Xi is a disjoint union of affine schemes Xi. Suppose that we can

http://stacks.math.columbia.edu/tag/083K
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prove the lemma for ui = u|Xi . Then we find a closed subscheme Zi ⊂ S such that
T → S factors through Zi and ui,Zi is zero. If Zi = Spec(R/Ii) ⊂ Spec(R) = S,
then taking Z = Spec(R/

∑
Ii) works. Thus we may assume that X = Spec(A) is

affine.

Choose a finite affine open covering T = T1 ∪ . . . ∪ Tm. It is clear that we may
replace T by

∐
j=1,...,m Tj . Hence we may assume T is affine. Say T = Spec(R′).

Let u : M → N be the homomorphisms of A-modules corresponding to u : F → G.
Then N is a flat R-module as G is flat over S. The assumption of the lemma means
that the composition

M ⊗R R′ → N ⊗R R′

is zero. Let z ∈M . By Lazard’s theorem (Algebra, Theorem 10.78.4) and the fact
that ⊗ commutes with colimits we can find free R-module Fz, an element z̃ ∈ Fz,
and a map Fz → N such that u(z) is the image of z̃ and z̃ maps to zero in Fz⊗RR′.
Choose a basis {ez,α} of Fz and write z̃ =

∑
fz,αez,α with fz,α ∈ R. Let I ⊂ R

be the ideal generated by the elements fz,α with z ranging over all elements of M .
By construction I maps to zero in R′ and the elements z̃ map to zero in Fz/IFz
whence in N/IN . Thus Z = Spec(R/I) is a solution to the problem in this case.

Assume F is of finite type with quasi-compact scheme theoretic support. Write
Z = Spec(R/I). Write I =

⋃
Iλ as a filtered union of finitely generated ideals. Set

Zλ = Spec(R/Iλ), so Z = colimZλ. Since uZ is zero, we see that uZλ is zero for
some λ by Lemma 76.7.4. This finishes the proof of the lemma. �

Lemma 76.7.6. Let A be a ring. Let u : M → N be a map of A-modules. If N is
projective as an A-module, then there exists an ideal I ⊂ A such that for any ring
map ϕ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is zero, and
(2) ϕ(I) = 0.

Proof. As M is projective we can find a projective A-module C such that F =
N ⊕ C is a free R-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we
see that we may assume N is free. In this case let I be the ideal of A generated by
coefficients of all the elements of Im(u) with respect to some (fixed) basis of N . �

It would be interesting to find a simple direct proof of the following lemma using
the result of Lemma 76.7.5. A “classical” proof of this lemma when f : X → B is a
projective morphism and B a Noetherian scheme would be: (a) choose a relatively
ample invertible sheaf OX(1), (b) set un : f∗F(n) → f∗G(n), (c) observe that
f∗G(n) is a finite locally free sheaf for all n � 0, and (d) Fzero is represented by
the vanishing locus of un for some n� 0.

Lemma 76.7.7. In Situation 76.7.1. Assume

(1) f is locally of finite presentation,
(2) G is an OX-module of finite presentation flat over B,
(3) the scheme theoretic support of G is proper over B.

Then the functor Fzero is an algebraic space and Fzero → B is a closed immersion.
If F is of finite type, then Fzero → B is of finite presentation.

Proof. In order to prove that Fzero is an algebraic space, it suffices to show that
Fzero → B is representable, see Spaces, Lemma 47.11.1. Let B′ → B be a morphism
where B′ is a scheme and let u′ : F ′ → G′ be the pullback of u to X ′ = XB′ . Then

http://stacks.math.columbia.edu/tag/083L
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the associated functor F ′zero equals Fzero ×B B′. This reduces us to the case that
B is a scheme.

Assume B is a scheme. We will show that Fzero is representable by a closed sub-
scheme of B. By Lemma 76.7.2 and Descent, Lemmas 34.33.2 and 34.35.1 the
question is local for the étale topology on B. Let b ∈ B. We first replace B by
an affine neighbourhood of b. Denote Z ⊂ X the scheme theoretic support of G.
Denote Zb ⊂ Xb the fibre of Z ⊂ X → B over b. The space |Zb| is quasi-compact
by the last assumption of the lemma. Choose an affine scheme U and an étale
morphism ϕ : U → X such that |Zb| ⊂ Im(|U | → |X|). After replacing B by an
affine elementary étale neighbourhood of b and replacing U by some affine U ′ étale
over U with U ′b → Ub surjective, we may assume that Γ(U,ϕ∗G) is a projective
Γ(B,OB)-module, see More on Flatness, Lemma 37.11.5. Since Z → B is proper
the image of

|Z| \ Im(|U | → |X|)
in |B| is a closed subset not containing b. Hence, after replacing B by an affine
open containing b, we may assume that |Z| ⊂ Im(|U | → |X|). (To be sure, after
this replacement it is still true that Γ(U,ϕ∗G) is a projective Γ(B,OB)-module.)
By Lemma 76.7.3 we see that Fzero is the same as the corresponding functor for
the map ϕ∗F → ϕ∗G. This case follows immediately from Lemma 76.7.6.

We still have to show that Fzero → B is of finite presentation if F is of finite
type. Let F ′ ⊂ G be the image of u and denote F ′zero the functor corresponding to
F ′ → G. Then Fzero = F ′zero and the scheme theoretic support of F ′ is a closed
subspace of the scheme theoretic support of G, hence proper over B. Thus Lemma
76.7.4 implies that Fzero = F ′zero is limit preserving over B. We conclude by Limits
of Spaces, Proposition 52.3.9. �

The following result is a variant of More on Flatness, Theorem 37.22.3.

Lemma 76.7.8. In Situation 76.7.1. Assume

(1) f is locally of finite presentation,
(2) F is locally of finite presentation and flat over B,
(3) the scheme theoretic support of F is proper over B, and
(4) u is surjective.

Then the functor Fiso is an algebraic space and Fiso → B is a closed immersion.
If G is of finite presentation, then Fiso → B is of finite presentation.

Proof. Let K = Ker(u) and apply Lemma 76.7.7 to K → F . Note that K is of
finite type if G is of finite presentation, see Modules on Sites, Lemma 18.24.1. �

We will use the following (easy) result when discussing the Quot functor.

Lemma 76.7.9. In Situation 76.7.1. Assume

(1) f is locally of finite presentation,
(2) G is of finite type,
(3) the scheme theoretic support of G is proper over B.

Then Fsurj is an algebraic space and Fsurj → B is an open immersion.

Proof. Consider Coker(u). Observe that Coker(uT ) = Coker(u)T for any T/B.
Note that formation of the support of a finite type quasi-coherent module commutes
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with pullback (Morphisms of Spaces, Lemma 49.15.1). Hence Fsurj is representable
by the open subspace of B corresponding to the open set

|B| \ |f |(Supp(Coker(u)))

see Properties of Spaces, Lemma 48.4.8. This is an open because |f | is closed on
Supp(G) and Supp(Coker(u)) is a closed subset of Supp(G). �

76.8. The functor of quotients

In this section we discuss some generalities regarding the functor QF/X/B defined
below. The notation QuotF/X/B is reserved for a subfunctor of QF/X/B . We urge
the reader to skip this section on a first reading.

Situation 76.8.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over B
we will denote XT the base change of X to T and FT the pullback of F via the
projection morphism XT = X ×S T → X. Given such a T we set

QF/X/B(T ) =

{
quotients FT → Q where Q is a quasi-coherent
OXT -module of finite presentation, flat over T

}
We identify quotients if they have the same kernel. Suppose that T ′ → T is a
morphism of schemes over B and FT → Q is an element of QF/X/B(T ). Then the

pullback Q′ = (XT ′ → XT )∗Q is a quasi-coherent OXT ′ -module of finite presenta-
tion flat over T ′ (see Properties of Spaces, Section 48.28 and Morphisms of Spaces,
Lemma 49.29.3). Thus we obtain a functor

(76.8.1.1) QF/X/B : (Sch/B)opp −→ Sets

This is the functor of quotients of F/X/B.

In Situation 76.8.1 we sometimes think of QF/X/B as a functor (Sch/S)opp → Sets
endowed with a morphism QF/X/S → B. Namely, if T is a scheme over S, then we

can think of an element of QF/X/B as a pair (h,Q) where h a morphism h : T → B,

i.e., an element h ∈ B(T ), and Q is a T -flat quotient FT → Q of finite presentation
on XT = X ×B,h T . In particular, when we say that QF/X/S is an algebraic space,

we mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Remark 76.8.2. In Situation 76.8.1 let B′ → B be a morphism of algebraic spaces
over S. Set X ′ = X ×B B′ and denote F ′ the pullback of F to X ′. Thus we have
the functor QF ′/X′/B′ on the category of schemes over B′. For a scheme T over B′

it is clear that we have

QF ′/X′/B′(T ) = QF/X/B(T )

where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. This trivial remark will occasionally be useful to change the base
algebraic space.

Remark 76.8.3. Let S be a scheme, X an algebraic space over S, and F a quasi-
coherent OX -module. Suppose that {fi : Xi → X}i∈I is an fpqc covering and for
each i, j ∈ I we are given an fpqc covering {Xijk → Xi ×X Xj}. In this situation
we have a bijection{

quotients F → Q where
Q is a quasi-coherent

}
−→

families of quotients f∗i F → Qi where
Qi is quasi-coherent and Qi and Qj
restrict to the same quotient on Xijk
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Namely, let (f∗i F → Qi)i∈I be an element of the right hand side. Then since
{Xijk → Xi ×X Xj} is an fpqc covering we see that the pullbacks of Qi and Qj
restrict to the same quotient of the pullback of F to Xi×XXj (by fully faithfulness
in Descent on Spaces, Proposition 56.4.1). Hence we obtain a descent datum for
quasi-coherent modules with respect to {Xi → X}i∈I . By Descent on Spaces,
Proposition 56.4.1 we find a map of quasi-coherent OX -modules F → Q whose
restriction to Xi recovers the given maps f∗i F → Qi. Since the family of morphisms
{Xi → X} is jointly surjective and flat, for every point x ∈ |X| there exists an i
and a point xi ∈ |Xi| mapping to x. Note that the induced map on local rings
OX,x → OXi,xi is faithfully flat, see Morphisms of Spaces, Section 49.28. Thus we
see that F → Q is surjective.

Lemma 76.8.4. In Situation 76.8.1. The functor QF/X/B satisfies the sheaf prop-
erty for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and Fi = FTi . Note that {Xi → XT }i∈I is an fpqc covering of XT

(Topologies on Spaces, Lemma 55.3.2) and that XTi×TTi′ = Xi ×XT Xi′ . Suppose
that Fi → Qi is a collection of elements of QF/X/B(Ti) such that Qi and Qi′
restrict to the same element of QF/X/B(Ti ×T Ti′). By Remark 76.8.3 we obtain
a surjective map of quasi-coherent OXT -modules FT → Q whose restriction to Xi

recovers the given quotients. By Morphisms of Spaces, Lemma 49.29.5 we see that
Q is flat over T . Finally, Descent on Spaces, Lemma 56.5.2 guarantees that Q is of
finite presentation as an OXT -module. �

Lemma 76.8.5. In Situation 76.8.1 let {Xi → X}i∈I be an fppf covering and for
each i, j ∈ I let {Xijk → Xi×X Xj} be an fppf covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. For every scheme T over B the diagram

QF/X/B(T ) // ∏
iQFi/Xi/B(T )

pr∗0 //

pr∗1

//
∏
i,j,kQFijk/Xijk/B(T )

presents the first arrow as the equalizer of the other two.

Proof. Let Fi,T → Qi be an element in the equalizer of pr∗0 and pr∗1. By Remark
76.8.3 we obtain a surjection FT → Q of quasi-coherent OXT -modules whose re-
striction to Xi,T recovers Fi → Qi. By Morphisms of Spaces, Lemma 49.29.5 we
see that Q is flat over T as desired. �

Lemma 76.8.6. In Situation 76.8.1 assume also that (a) f is quasi-compact and
quasi-separated and (b) F is of finite presentation. Then the functor QF/X/B is
limit preserving in the following sense: If T = limTi is a directed limit of affine
schemes over B, then QF/X/B(T ) = colim QF/X/B(Ti).

Proof. Let T = limTi be as in the statement of the lemma. Choose i0 ∈ I and
replace I by {i ∈ I | i ≥ i0}. We may set B = S = Ti0 and we may replace X
by XT0 and F by the pullback to XT0 . Then XT = limXTi , see Limits of Spaces,
Lemma 52.4.1. Let FT → Q be an element of QF/X/B(T ). By Limits of Spaces,
Lemma 52.7.2 there exists an i and a map FTi → Qi of OXTi -modules of finite
presentation whose pullback to XT is the given quotient map.

We still have to check that, after possibly increasing i, the map FTi → Qi is
surjective and Qi is flat over Ti. To do this, choose an affine scheme U and a
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surjective étale morphism U → X (see Properties of Spaces, Lemma 48.6.3). We
may check surjectivity and flatness over Ti after pulling back to the étale cover
UTi → XTi (by definition). This reduces us to the case where X = Spec(B0) is
an affine scheme of finite presentation over B = S = T0 = Spec(A0). Writing
Ti = Spec(Ai), then T = Spec(A) with A = colimAi we have reached the following
algebra problem. Let Mi → Ni be a map of finitely presented B0 ⊗A0

Ai-modules
such that Mi ⊗Ai A → Ni ⊗Ai A is surjective and Ni ⊗Ai A is flat over A. Show
that for some i′ ≥ i Mi⊗AiAi′ → Ni⊗AiAi′ is surjective and Ni⊗AiAi′ is flat over
A. The first follows from Algebra, Lemma 10.123.3 and the second from Algebra,
Lemma 10.156.1. �

Lemma 76.8.7. In Situation 76.8.1 assume X → B locally of finite presentation.
Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over B where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 36.11.1. Then the natural map

QF/X/B(Y ′) −→ QF/X/B(Y )×QF/X/B(Z) QF/X/B(Z ′)

is bijective.

Proof. We first argue that it suffices to prove this when all the schemes and alge-
braic spaces in sight are affine schemes. Let Y ′ =

⋃
Y ′i be an affine open covering

and let Yi, Z
′
i, and Zi be the corresponding (affine) opens of Y , Z ′, and Z. Since

QF/X/B satisfies the sheaf property for the fpqc topology (Lemma 76.8.4), it suffices
to prove the result of the lemma for the diagrams

Zi //

��

Z ′i

��
Yi // Y ′i

and

Zi ∩ Zj //

��

Z ′i ∩ Z ′j

��
Yi ∩ Yj // Y ′i ∩ Y ′j

This reduces us to the case where the schemes Y ′, Y , Z ′, Z are separated and a
second application of this argument to the case where Y ′, Y , Z ′, Z are affine.

Assume Y ′ (and hence also Y , Z ′, and Z) is affine. By Remark 76.8.2 we may
replace B by Y ′ and X by X ×B Y ′, and F by the pullback. Thus we may assume
B = Y ′.

Assume B = Y ′ (and hence also Y , Z ′, and Z) is affine. Choose an étale covering
{Xi → X}i∈I with each Xi affine and similarly choose étale coverings {Xijk →
Xi×XXj} with each Xijk affine (Properties of Spaces, Lemma 48.6.1). By Lemma
76.8.5 it suffices to prove the lemma for each of the functors associated to Xi and
Xijk. Hence we may assume X is affine as well. This reduces the lemma to More
on Algebra, Remark 15.4.15. �

http://stacks.math.columbia.edu/tag/08IW


76.9. THE QUOT FUNCTOR 4179

76.9. The quot functor

In this section we prove the Quot functor is representable by an algebraic space.

Situation 76.9.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over B
we will denote XT the base change of X to T and FT the pullback of F via the
projection morphism XT = X ×S T → X. Given such a T we set

QuotF/X/B(T ) =

quotients FT → Q where Q is a quasi-coherent
OXT -module of finite presentation, flat over T
with scheme theoretic support proper over T


This is a subfunctor of QF/X/T discussed in Section 76.8. Thus we obtain a functor

(76.9.1.1) QuotF/X/B : (Sch/B)opp −→ Sets

This is the quot functor associated to F/X/B.

In Situation 76.9.1 we may think of QuotF/X/B as a functor (Sch/S)opp → Sets
endowed with a morphism QuotF/X/S → B. Namely, if T is a scheme over S, then

we can think of an element of QuotF/X/B as a pair (h,Q) where h a morphism

h : T → B, i.e., an element h ∈ B(T ), and Q is a finitely presented, T -flat quotient
FT → Q on XT = X ×B,h T with support proper over T . In particular, when we
say that QuotF/X/S is an algebraic space, we mean that the corresponding functor

(Sch/S)opp → Sets is an algebraic space.

Lemma 76.9.2. In Situation 76.9.1. The functor QuotF/X/B satisfies the sheaf
property for the fpqc topology.

Proof. In Lemma 76.8.4 we have seen that the functor QF/X/S is a sheaf. Recall

that for a scheme T over S the subset QuotF/X/S(T ) ⊂ QF/X/S(T ) picks out those
quotients whose support is proper over T . This defines a subsheaf by the result of
Descent on Spaces, Lemma 56.10.17 (combined with Morphisms of Spaces, Lemma
49.28.10) which shows that taking scheme theoretic support commutes with flat
base change). �

Proposition 76.9.3. Let S be a scheme. Let f : X → B be a morphism of
algebraic spaces over S. Let F be a quasi-coherent sheaf on X. If f is of finite
presentation and separated, then QuotF/X/B is an algebraic space. If F is of finite
presentation, then QuotF/X/B → B is locally of finite presentation.

Proof. Note that QuotF/X/B is a sheaf in the fppf topology. Let QuotF/X/B be
the stack in groupoids corresponding to QuotF/X/S , see Algebraic Stacks, Section
71.7. By Algebraic Stacks, Proposition 71.13.3 it suffices to show that QuotF/X/B
is an algebraic stack. Consider the 1-morphism of stacks in groupoids

QuotF/X/S −→ CohX/B

on (Sch/S)fppf which associates to the quotient FT → Q the coherent sheaf Q. By
Theorem 76.6.5 we know that CohX/B is an algebraic stack. By Algebraic Stacks,
Lemma 71.15.4 it suffices to show that this 1-morphism is representable by algebraic
spaces.
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Let T be a scheme over S and let the object (h,G) of CohX/B over T correspond
to a 1-morphism ξ : (Sch/T )fppf → CohX/B . The 2-fibre product

Z = (Sch/T )fppf ×ξ,CohX/B QuotF/X/S

is a stack in setoids, see Stacks, Lemma 8.6.7. The corresponding sheaf of sets (i.e.,
functor, see Stacks, Lemmas 8.6.7 and 8.6.2) assigns to a scheme T ′/T the set of
surjections u : FT ′ → GT ′ of quasi-coherent modules on XT ′ . Thus we see that
Z is representable by an open subspace (by Lemma 76.7.9) of the algebraic space
Hom(FT ,G) from Proposition 76.3.9. �
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CHAPTER 77

Properties of Algebraic Stacks

77.1. Introduction

Please see Algebraic Stacks, Section 71.1 for a brief introduction to algebraic stacks,
and please read some of that chapter for our foundations of algebraic stacks. The in-
tent is that in that chapter we are careful to distinguish between schemes, algebraic
spaces, algebraic stacks, and starting with this chapter we employ the customary
abuse of language where all of these concepts are used interchangeably.

The goal of this chapter is to introduce some basic notions and properties of al-
gebraic stacks. A fundamental reference for the case of quasi-separated algebraic
stacks with representable diagonal is [LMB00].

77.2. Conventions and abuse of language

We choose a big fppf site Schfppf . All schemes are contained in Schfppf . And all
rings A considered have the property that Spec(A) is (isomorphic) to an object of
this big site.

We also fix a base scheme S, by the conventions above an element of Schfppf . The
reader who is only interested in the absolute case can take S = Spec(Z).

Here are our conventions regarding algebraic stacks:

(1) When we say algebraic stack we will mean an algebraic stacks over S, i.e.,
a category fibred in groupoids p : X → (Sch/S)fppf which satisfies the
conditions of Algebraic Stacks, Definition 71.12.1.

(2) We will say f : X → Y is a morphism of algebraic stacks to indicate a 1-
morphism of algebraic stacks over S, i.e., a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf , see Algebraic Stacks, Definition 71.12.3.

(3) A 2-morphism α : f → g will indicate a 2-morphism in the 2-category of
algebraic stacks over S, see Algebraic Stacks, Definition 71.12.3.

(4) Given morphisms X → Z and Y → Z of algebraic stacks we abusively
call the 2-fibre product X ×Z Y the fibre product.

(5) We will write X ×S Y for the product of the algebraic stacks X , Y.
(6) We will often abuse notation and say two algebraic stacks X and Y are

isomorphic if they are equivalent in this 2-category.

Here are our conventions regarding algebraic spaces.

(1) If we say X is an algebraic space then we mean that X is an algebraic space
over S, i.e., X is a presheaf on (Sch/S)fppf which satisfies the conditions
of Spaces, Definition 47.6.1.

(2) A morphism of algebraic spaces f : X → Y is a morphism of algebraic
spaces over S as defined in Spaces, Definition 47.6.3.
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(3) We will not distinguish between an algebraic space X and the algebraic
stack SX → (Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma
71.13.1.

(4) In particular, a morphism f : X → Y from X to an algebraic stack
Y means a morphism f : SX → Y of algebraic stacks. Similarly for
morphisms Y → X.

(5) Moreover, given an algebraic stack X we say X is an algebraic space
to indicate that X is representable by an algebraic space, see Algebraic
Stacks, Definition 71.8.1.

(6) We will use the following notational convention: If we indicate an algebraic
stack by a roman capital (such as X,Y, Z,A,B, . . .) then it will be the
case that its inertia stack is trivial, and hence it is an algebraic space, see
Algebraic Stacks, Proposition 71.13.3.

Here are our conventions regarding schemes.

(1) If we say X is a scheme then we mean that X is a scheme over S, i.e., X
is an object of (Sch/S)fppf .

(2) By a morphism of schemes we mean a morphism of schemes over S.
(3) We will not distinguish between a scheme X and the algebraic stack
SX → (Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma 71.13.1.

(4) In particular, a morphism f : X → Y from a scheme X to an algebraic
stack Y means a morphism f : SX → Y of algebraic stacks. Similarly for
morphisms Y → X.

(5) Moreover, given an algebraic stack X we say X is a scheme to indicate
that X is representable, see Algebraic Stacks, Section 71.4.

Here are our conventions regarding morphism of algebraic stacks:

(1) A morphism f : X → Y of algebraic stacks is representable, or repre-
sentable by schemes if for every scheme T and morphism T → Y the fibre
product T ×Y X is a scheme. See Algebraic Stacks, Section 71.6.

(2) A morphism f : X → Y of algebraic stacks is representable by algebraic
spaces if for every scheme T and morphism T → Y the fibre product
T ×Y X is an algebraic space. See Algebraic Stacks, Definition 71.9.1. In
this case Z ×Y X is an algebraic space whenever Z → Y is a morphism
whose source is an algebraic space, see Algebraic Stacks, Lemma 71.9.8.

Note that every morphism X → Y from an algebraic space to an algebraic stack is
representable by algebraic spaces, see Algebraic Stacks, Lemma 71.10.11. We will
use this basic result without further mention.

77.3. Properties of morphisms representable by algebraic spaces

We will study properties of (arbitrary) morphisms of algebraic stacks in its own
chapter. For morphisms representable by algebraic spaces we know what it means
to be surjective, smooth, or étale, etc. This applies in particular to morphisms
X → Y from algebraic spaces to algebraic stacks. In this section, we recall how
this works, we list the properties to which this applies, and we prove a few easy
lemmas.

Our first lemma says a morphism is representable by algebraic spaces if it is so after
a base change by a flat, locally finitely presented, surjective morphism.
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Lemma 77.3.1. Let f : X → Y be a morphism of algebraic stacks. Let W be an
algebraic space and let W → Y be surjective, locally of finite presentation, and flat.
The following are equivalent

(1) f is representable by algebraic spaces, and
(2) W ×Y X is an algebraic space.

Proof. The implication (1) ⇒ (2) is Algebraic Stacks, Lemma 71.9.8. Conversely,
let W → Y be as in (2). To prove (1) it suffices to show that f is faithful on
fibre categories, see Algebraic Stacks, Lemma 71.15.2. Assumption (2) implies in
particular that W ×Y X → W is faithful. Hence the faithfulness of f follows from
Stacks, Lemma 8.6.9. �

Let P be a property of morphisms of algebraic spaces which is fppf local on the
target and preserved by arbitrary base change. Let f : X → Y be a morphism of
algebraic stacks representable by algebraic spaces. Then we say f has property P
if and only if for every scheme T and morphism T → Y the morphism of algebraic
spaces T ×Y X → T has property P , see Algebraic Stacks, Definition 71.10.1.

It turns out that if f : X → Y is representable by algebraic spaces and has property
P , then for any morphism of algebraic stacks Y ′ → Y the base change Y ′×YX → Y ′
has property P , see Algebraic Stacks, Lemmas 71.9.7 and 71.10.6. If the property
P is preserved under compositions, then this holds also in the setting of morphisms
of algebraic stacks representable by algebraic spaces, see Algebraic Stacks, Lemmas
71.9.9 and 71.10.5. Moreover, in this case products X1×X2 → Y1×Y2 of morphisms
representable by algebraic spaces having property P have property P, see Algebraic
Stacks, Lemma 71.10.8.

Finally, if we have two properties P, P ′ of morphisms of algebraic spaces which are
fppf local on the target and preserved by arbitrary base change and if P (f) ⇒
P ′(f) for every morphism f , then the same implication holds for the corresponding
property of morphisms of algebraic stacks representable by algebraic spaces, see
Algebraic Stacks, Lemma 71.10.9. We will use this without further mention in the
following and in the following chapters.

The discussion above applies to each of the following properties of morphisms of
algebraic spaces

(1) quasi-compact, see Morphisms of Spaces, Lemma 49.8.3 and Descent on
Spaces, Lemma 56.10.1,

(2) quasi-separated, see Morphisms of Spaces, Lemma 49.4.4 and Descent on
Spaces, Lemma 56.10.2,

(3) universally closed, see Morphisms of Spaces, Lemma 49.9.3 and Descent
on Spaces, Lemma 56.10.3,

(4) universally open, see Morphisms of Spaces, Lemma 49.6.3 and Descent on
Spaces, Lemma 56.10.4,

(5) surjective, see Morphisms of Spaces, Lemma 49.5.5 and Descent on Spaces,
Lemma 56.10.5,

(6) universally injective, see Morphisms of Spaces, Lemma 49.19.5 and De-
scent on Spaces, Lemma 56.10.6,

(7) locally of finite type, see Morphisms of Spaces, Lemma 49.23.3 and De-
scent on Spaces, Lemma 56.10.7,
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(8) locally of finite presentation, see Morphisms of Spaces, Lemma 49.27.3
and Descent on Spaces, Lemma 56.10.8,

(9) finite type, see Morphisms of Spaces, Lemma 49.23.3 and Descent on
Spaces, Lemma 56.10.9,

(10) finite presentation, see Morphisms of Spaces, Lemma 49.27.3 and Descent
on Spaces, Lemma 56.10.10,

(11) flat, see Morphisms of Spaces, Lemma 49.28.4 and Descent on Spaces,
Lemma 56.10.11,

(12) open immersion, see Morphisms of Spaces, Section 49.12 and Descent on
Spaces, Lemma 56.10.12,

(13) isomorphism, see Descent on Spaces, Lemma 56.10.13,
(14) affine, see Morphisms of Spaces, Lemma 49.20.5 and Descent on Spaces,

Lemma 56.10.14,
(15) closed immersion, see Morphisms of Spaces, Section 49.12 and Descent on

Spaces, Lemma 56.10.15,
(16) separated, see Morphisms of Spaces, Lemma 49.4.4 and Descent on Spaces,

Lemma 56.10.16,
(17) proper, see Morphisms of Spaces, Lemma 49.37.3 and Descent on Spaces,

Lemma 56.10.17,
(18) quasi-affine, see Morphisms of Spaces, Lemma 49.21.5 and Descent on

Spaces, Lemma 56.10.18,
(19) integral, see Morphisms of Spaces, Lemma 49.41.5 and Descent on Spaces,

Lemma 56.10.20,
(20) finite, see Morphisms of Spaces, Lemma 49.41.5 and Descent on Spaces,

Lemma 56.10.21,
(21) (locally) quasi-finite, see Morphisms of Spaces, Lemma 49.26.4 and De-

scent on Spaces, Lemma 56.10.22,
(22) syntomic, see Morphisms of Spaces, Lemma 49.33.3 and Descent on Spaces,

Lemma 56.10.23,
(23) smooth, see Morphisms of Spaces, Lemma 49.34.3 and Descent on Spaces,

Lemma 56.10.24,
(24) unramified, see Morphisms of Spaces, Lemma 49.35.4 and Descent on

Spaces, Lemma 56.10.25,
(25) étale, see Morphisms of Spaces, Lemma 49.36.4 and Descent on Spaces,

Lemma 56.10.26,
(26) finite locally free, see Morphisms of Spaces, Lemma 49.42.5 and Descent

on Spaces, Lemma 56.10.27,
(27) monomorphism, see Morphisms of Spaces, Lemma 49.10.5 and Descent on

Spaces, Lemma 56.10.28,
(28) immersion, see Morphisms of Spaces, Section 49.12 and Descent on Spaces,

Lemma 56.11.1,
(29) locally separated, see Morphisms of Spaces, Lemma 49.4.4 and Descent

on Spaces, Lemma 56.11.2,

Lemma 77.3.2. Let P be a property of morphisms of algebraic spaces as above.
Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
The following are equivalent:

(1) f has P ,
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(2) for every algebraic space Z and morphism Z → Y the morphism Z×YX →
Z has P .

Proof. The implication (2) ⇒ (1) is immediate. Assume (1). Let Z → Y be as in
(2). Choose a scheme U and a surjective étale morphism U → Z. By assumption
the morphism U ×Y X → U has P . But the diagram

U ×Y X

��

// Z ×Y X

��
U // Z

is cartesian, hence the right vertical arrow has P as {U → Z} is an fppf covering. �

The following lemma tells us it suffices to check P after a base change by a surjective,
flat, locally finitely presented morphism.

Lemma 77.3.3. Let P be a property of morphisms of algebraic spaces as above. Let
f : X → Y be a morphism of algebraic stacks representable by algebraic spaces. Let
W be an algebraic space and let W → Y be surjective, locally of finite presentation,
and flat. Set V = W ×Y X . Then

(f has P )⇔ (the projection V →W has P ).

Proof. The implication from left to right follows from Lemma 77.3.2. Assume
V → W has P . Let T be a scheme, and let T → Y be a morphism. Consider the
commutative diagram

T ×Y X

��

T ×Y W

��

oo // W

��
T T ×Y Voo // V

of algebraic spaces. The squares are cartesian. The bottom left morphism is a
surjective, flat morphism which is locally of finite presentation, hence {T×YV → T}
is an fppf covering. Hence the fact that the right vertical arrow has property P
implies that the left vertical arrow has property P . �

Lemma 77.3.4. Let P be a property of morphisms of algebraic spaces as above.
Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
Let Z → Y be a morphism of algebraic stacks which is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Set W = Z ×Y X . Then

(f has P )⇔ (the projection W → Z has P ).

Proof. Choose an algebraic space W and a morphism W → Z which is surjective,
flat, and locally of finite presentation. By the discussion above the composition
W → Y is also surjective, flat, and locally of finite presentation. Denote V =
W ×Z W = V ×Y X . By Lemma 77.3.3 we see that f has P if and only if V →W
does and that W → Z has P if and only if V →W does. The lemma follows. �

Lemma 77.3.5. Let P be a property of morphisms of algebraic spaces as above.
Let X → Y and Y → Z be morphisms of algebraic stacks representable by algebraic
spaces. Assume

(1) X → Y is surjective, flat, and locally of finite presentation,
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(2) the composition has P , and
(3) P is local on the source in the fppf topology.

Then Y → Z has property P .

Proof. Let Z be a scheme and let Z → Z be a morphism. Set X = X ×Z Z,
Y = Y ×Z Z. By (1) {X → Y } is an fppf covering of algebraic spaces and by (2)
X → Z has property P . By (3) this implies that Y → Z has property P and we
win. �

Lemma 77.3.6. Let g : X ′ → X be a morphism of algebraic stacks which is
representable by algebraic spaces. Let [U/R] → X be a presentation. Set U ′ =
U ×X X ′, and R′ = R ×X X ′. Then there exists a groupoid in algebraic spaces of
the form (U ′, R′, s′, t′, c′), a presentation [U ′/R′]→ X ′, and the diagram

[U ′/R′]

[pr]

��

// X ′

g

��
[U/R] // X

is 2-commutative where the morphism [pr] comes from a morphism of groupoids
pr : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c).

Proof. Since U → Y is surjective and smooth, see Algebraic Stacks, Lemma 71.17.2
the base change U ′ → X ′ is also surjective and smooth. Hence, by Algebraic Stacks,
Lemma 71.16.2 it suffices to show that R′ = U ′ ×X ′ U ′ in order to get a smooth
groupoid (U ′, R′, s′, t′, c′) and a presentation [U ′/R′]→ X ′. Using that R = V ×YV
(see Groupoids in Spaces, Lemma 60.21.2) this follows from

R′ = U ×X U ×X X ′ = (U ×X X ′)×X ′ (U ×X X ′)
see Categories, Lemmas 4.29.8 and 4.29.10. Clearly the projection morphisms U ′ →
U and R′ → R give the desired morphism of groupoids pr : (U ′, R′, s′, t′, c′) →
(U,R, s, t, c). Hence the morphism [pr] of quotient stacks by Groupoids in Spaces,
Lemma 60.20.1.

We still have to show that the diagram 2-commutes. It is clear that the diagram

U ′

prU

��

f ′
// X ′

g

��
U

f // X
2-commutes where prU : U ′ → U is the projection. There is a canonical 2-arrow
τ : f ◦t→ f ◦s in Mor(R,X ) coming from R = U×X U , t = pr0, and s = pr1. Using
the isomorphism R′ → U ′×X ′U ′ we get similarly an isomorphism τ ′ : f ′◦t′ → f ′◦s′.
Note that g ◦ f ′ ◦ t′ = f ◦ t ◦ prR and g ◦ f ′ ◦ s′ = f ◦ s ◦ prR, where prR : R′ → R
is the projection. Thus it makes sense to ask if

(77.3.6.1) τ ? idprR = idg ? τ
′.

Now we make two claims: (1) if Equation (77.3.6.1) holds, then the diagram 2-
commutes, and (2) Equation (77.3.6.1) holds. We omit the proof of both claims.
Hints: part (1) follows from the construction of f = fcan and f ′ = f ′can in Al-
gebraic Stacks, Lemma 71.16.1. Part (2) follows by carefuly working through the
definitions. �
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Remark 77.3.7. Let Y be an algebraic stack. Consider the following 2-category:

(1) An object is a morphism f : X → Y which is representable by algebraic
spaces,

(2) a 1-morphism (g, β) : (f1 : X1 → Y) → (f2 : X2 → Y) consists of a
morphism g : X1 → X2 and a 2-morphism β : f1 → f2 ◦ g, and

(3) a 2-morphism between (g, β), (g′, β′) : (f1 : X1 → Y) → (f2 : X2 → Y) is
a 2-morphism α : g → g′ such that (idf2 ? α) ◦ β = β′.

Let us denote this 2-category Spaces/Y by analogy with the notation of Topolo-
gies on Spaces, Section 55.2. Now we claim that in this 2-category the morphism
categories

MorSpaces/Y((f1 : X1 → Y), (f2 : X2 → Y))

are all setoids. Namely, a 2-morphism α is a rule which to each object x1 of X1

assigns an isomorphism αx1
: g(x1) −→ g′(x1) in the relevant fibre category of X2

such that the diagram

f2(x1)
βx1

yy

β′x1

%%
f2(g(x1))

f2(αx1
)

// f2(g′(x1))

commutes. But since f2 is faithful (see Algebraic Stacks, Lemma 71.15.2) this
means that if αx1 exists, then it is unique! In other words the 2-category Spaces/Y
is very close to being a category. Namely, if we replace 1-morphisms by isomorphism
classes of 1-morphisms we obtain a category. We will often perform this replacement
without further mention.

77.4. Points of algebraic stacks

Let X be an algebraic stack. Let K,L be two fields and let p : Spec(K) → X and
q : Spec(L)→ X be morphisms. We say that p and q are equivalent if there exists
a field Ω and a 2-commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K)

p // X .

Lemma 77.4.1. The notion above does indeed define an equivalence relation on
morphisms from spectra of fields into the algebraic stack X .

Proof. It is clear that the relation is reflexive and symmetric. Hence we have to
prove that it is transitive. This comes down to the following: Given a diagram

Spec(Ω)
b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K)

p // X Spec(K ′)
p′oo

with both squares 2-commutative we have to show that p is equivalent to p′. By
the 2-Yoneda lemma (see Algebraic Stacks, Section 71.5) the morphisms p, p′, and
q are given by objects x, x′, and y in the fibre categories of X over Spec(K),
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Spec(K ′), and Spec(L). The 2-commutativity of the squares means that there are
isomorphisms α : a∗x → b∗y and α′ : (a′)∗x′ → (b′)∗y in the fibre categories of
X over Spec(Ω) and Spec(Ω′). Choose any field Ω′′ and embeddings Ω → Ω′′ and
Ω′ → Ω′′ agreeing on L. Then we can extend the diagram above to

Spec(Ω′′)

c

xx
q′

��

c′

&&
Spec(Ω)

b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K)

p // X Spec(K ′)
p′oo

with commutative triangles and

(q′)∗(α′)−1 ◦ (q′)∗α : (a ◦ c)∗x −→ (a′ ◦ c′)∗x′

is an isomorphism in the fibre category over Spec(Ω′′). Hence p is equivalent to p′

as desired. �

Definition 77.4.2. Let X be an algebraic stack. A point of X is an equivalence
class of morphisms from spectra of fields into X . The set of points of X is denoted
|X |.

This agrees with our definition of points of algebraic spaces, see Properties of Spaces,
Definition 48.4.1. Moreover, for a scheme we recover the usual notion of points,
see Properties of Spaces, Lemma 48.4.2. If f : X → Y is a morphism of algebraic
stacks then there is an induced map |f | : |X | → |Y| which maps a representa-
tive x : Spec(K) → X to the representative f ◦ x : Spec(K) → Y. This is well
defined: namely 2-isomorphic 1-morphisms remain 2-isomorphic after pre- or post-
composing by a 1-morphism because you can horizontally pre- or post-compose by
the identity of the given 1-morphism. This holds in any (strict) (2, 1)-category. If

X

��

// Y

��
W // Z

is a 2-commutative diagram of algebraic stacks, then the diagram of sets

|X |

��

// |Y|

��
|W| // |Z|

is commutative. In particular, if X → Y is an equivalence then |X | → |Y| is a
bijection.

Lemma 77.4.3. Let

Z ×Y X //

��

X

��
Z // Y
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be a fibre product of algebraic stacks. Then the map of sets of points

|Z ×Y X| −→ |Z| ×|Y| |X |

is surjective.

Proof. Namely, suppose given fieldsK, L and morphisms Spec(K)→ X , Spec(L)→
Z, then the assumption that they agree as elements of |Y| means that there is a
common extension K ⊂ M and L ⊂ M such that Spec(M)→ Spec(K)→ X → Y
and Spec(M) → Spec(L) → Z → Y are 2-isomorphic. And this is exactly the
condition which says you get a morphism Spec(M)→ Z ×Y X . �

Lemma 77.4.4. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent:

(1) |f | : |X | → |Y| is surjective, and
(2) f is surjective.

Proof. Assume (1). Let T → Y be a morphism whose source is a scheme. To
prove (2) we have to show that the morphism of algebraic spaces T ×Y X → T is
surjective. By Morphisms of Spaces, Definition 49.5.2 this means we have to show
that |T ×Y X| → |T | is surjective. Applying Lemma 77.4.3 we see that this follows
from (1).

Conversely, assume (2). Let y : Spec(K)→ Y be a morphism from the spectrum of a
field into Y. By assumption the morphism Spec(K)×y,Y X → Spec(K) of algebraic
spaces is surjective. By Morphisms of Spaces, Definition 49.5.2 this means there
exists a field extension K ⊂ K ′ and a morphism Spec(K ′)→ Spec(K)×y,Y X such
that the left square of the diagram

Spec(K ′) //

��

Spec(K)×y,Y X

��

// X

��
Spec(K) Spec(K)

y // Y

is commutative. This shows that |X| → |Y| is surjective. �

Here is a lemma explaining how to compute the set of points in terms of a presen-
tation.

Lemma 77.4.5. Let X be an algebraic stack. Let X = [U/R] be a presentation of
X , see Algebraic Stacks, Definition 71.16.5. Then the image of |R| → |U | × |U | is
an equivalence relation and |X | is the quotient of |U | by this equivalence relation.

Proof. The assumption means that we have a smooth groupoid (U,R, s, t, c) in
algebraic spaces, and an equivalence f : [U/R] → X . We may assume X = [U/R].
The induced morphism p : U → X is smooth and surjective, see Algebraic Stacks,
Lemma 71.17.2. Hence |U | → |X | is surjective by Lemma 77.4.4. Note that R =
U ×X U , see Groupoids in Spaces, Lemma 60.21.2. Hence Lemma 77.4.3 implies
the map

|R| −→ |U | ×|X | |U |
is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X |. Combining these two
statements we get the result of the lemma. �
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Remark 77.4.6. The result of Lemma 77.4.5 can be generalized as follows. Let
X be an algebraic stack. Let U be an algebraic space and let f : U → X be a
surjective morphism (which makes sense by Section 77.3). Let R = U ×X U , let
(U,R, s, t, c) be the groupoid in algebraic spaces, and let fcan : [U/R] → X be
the canonical morphism as constructed in Algebraic Stacks, Lemma 71.16.1. Then
the image of |R| → |U | × |U | is an equivalence relation and |X | = |U |/|R|. The
proof of Lemma 77.4.5 works without change. (Of course in general [U/R] is not
an algebraic stack, and in general fcan is not an isomorphism.)

Lemma 77.4.7. There exists a unique topology on the sets of points of algebraic
stacks with the following properties:

(1) for every morphism of algebraic stacks X → Y the map |X | → |Y| is
continuous, and

(2) for every morphism U → X which is flat and locally of finite presentation
with U an algebraic space the map of topological spaces |U | → |X | is
continuous and open.

Proof. Choose a morphism p : U → X which is surjective, flat, and locally of
finite presentation with U an algebraic space. Such exist by the definition of an
algebraic stack, as a smooth morphism is flat and locally of finite presentation (see
Morphisms of Spaces, Lemmas 49.34.5 and 49.34.7). We define a topology on |X |
by the rule: W ⊂ |X | is open if and only if |p|−1(W ) is open in |U |. To show that
this is independent of the choice of p, let p′ : U ′ → X be another morphism which
is surjective, flat, locally of finite presentation from an algebraic space to X . Set
U ′′ = U ×X U ′ so that we have a 2-commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are surjective, flat, locally of finite presentation we see
that U ′′ → U ′ and U ′′ → U are surjective, flat and locally of finite presentation,
see Lemma 77.3.2. Hence the maps |U ′′| → |U ′| and |U ′′| → |U | are continuous,
open and surjective, see Morphisms of Spaces, Definition 49.5.2 and Lemma 49.28.6.
This clearly implies that our definition is independent of the choice of p : U → X .

Let f : X → Y be a morphism of algebraic stacks. By Algebraic Stacks, Lemma
71.15.1 we can find a 2-commutative diagram

U

x

��

a
// V

y

��
X

f // Y

with surjective smooth vertical arrows. Consider the associated commutative dia-
gram

|U |

|x|
��

|a|
// |V |

|y|
��

|X |
|f | // |Y|
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of sets. If W ⊂ |Y| is open, then by the definition above this means exactly that
|y|−1(W ) is open in |V |. Since |a| is continuous we conclude that |a|−1|y|−1(W ) =
|x|−1|f |−1(W ) is open in |W | which means by definition that |f |−1(W ) is open in
|X |. Thus |f | is continuous.

Finally, we have to show that if U is an algebraic space, and U → X is flat and
locally of finite presentation, then |U | → |X | is open. Let V → X be surjective,
flat, and locally of finite presentation with V an algebraic space. Consider the
commutative diagram

|U ×X V | e
//

f
&&

|U | ×|X | |V |

c

��

d
// |V |

b

��
|U | a // |X |

Now the morphism U ×X V → U is surjective, i.e, f : |U ×X V | → |U | is surjective.
The left top horizontal arrow is surjective, see Lemma 77.4.3. The morphism U ×X
V → V is flat and locally of finite presentation, hence d◦e : |U×X V | → |V | is open,
see Morphisms of Spaces, Lemma 49.28.6. Pick W ⊂ |U | open. The properties
above imply that b−1(a(W )) = (d ◦ e)(f−1(W )) is open, which by construction
means that a(W ) is open as desired. �

Definition 77.4.8. Let X be an algebraic stack. The underlying topological space
of X is the set of points |X | endowed with the topology constructed in Lemma
77.4.7.

This definition does not conflict with the already existing topology on |X | if X is
an algebraic space.

Lemma 77.4.9. Let X be an algebraic stack. Every point of |X | has a fundamental
system of quasi-compact open neighbourhoods. In particular |X | is locally quasi-
compact in the sense of Topology, Definition 5.12.1.

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U → |X | of topological spaces. Namely, if U →
X is surjective and smooth, then Lemma 77.4.7 guarantees that |U | → |X | is
continuous, surjective, and open. �

77.5. Surjective morphisms

Let f : X → Y be a morphism of algebraic stacks which is representable by algebraic
spaces. In Section 77.3 we have already defined what it means for f to be surjective.
In Lemma 77.4.4 we have seen that this is equivalent to requiring |f | : |X | → |Y|
to be surjective. This clears the way for the following definition.

Definition 77.5.1. Let f : X → Y be a morphism of algebraic stacks. We say f
is surjective if the map |f | : |X | → |Y| of associated topological spaces is surjective.

Here are some lemmas.

Lemma 77.5.2. The composition of surjective morphisms is surjective.

Proof. Omitted. �

Lemma 77.5.3. The base change of a surjective morphism is surjective.
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Proof. Omitted. Hint: Use Lemma 77.4.3. �

Lemma 77.5.4. Let f : X → Y be a morphism of algebraic stacks. Let Y ′ → Y be
a surjective morphism of algebraic stacks. If the base change f ′ : Y ′ ×Y X → Y ′ of
f is surjective, then f is surjective.

Proof. Immediate from Lemma 77.4.3. �

Lemma 77.5.5. Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
surjective so is Y → Z.

Proof. Immediate. �

77.6. Quasi-compact algebraic stacks

The following definition is equivalent with the definition for algebraic spaces by
Properties of Spaces, Lemma 48.5.2.

Definition 77.6.1. Let X be an algebraic stack. We say X is quasi-compact if and
only if |X | is quasi-compact.

Lemma 77.6.2. Let X be an algebraic stack. The following are equivalent:

(1) X is quasi-compact,
(2) there exists a surjective smooth morphism U → X with U a quasi-compact

scheme,
(3) there exists a surjective smooth morphism U → X with U a quasi-compact

algebraic space, and
(4) there exists a surjective morphism U → X of algebraic stacks such that U

is quasi-compact.

Proof. We will use Lemma 77.4.4. Suppose U and U → X are as in (4). Then
since |U| → |X | is surjective and continuous we conclude that |X | is quasi-compact.
Thus (4) implies (1). The implications (2) ⇒ (3) ⇒ (4) are immediate. Assume
(1), i.e., X is quasi-compact, i.e., that |X | is quasi-compact. Choose a scheme U
and a surjective smooth morphism U → X . Then since |U | → |X | is open we see
that there exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X| is surjective
(and still smooth). Hence (2) holds. �

Lemma 77.6.3. A finite disjoint union of quasi-compact algebraic stacks is a quasi-
compact algebraic stack.

Proof. This is clear from the corresponding topological fact. �

77.7. Properties of algebraic stacks defined by properties of schemes

Any smooth local property of schemes gives rise to a corresponding property of
algebraic stacks via the following lemma. Note that a property of schemes which
is smooth local is also étale local as any étale covering is also a smooth covering.
Hence for a smooth local property P of schemes we know what it means to say that
an algebraic space has P , see Properties of Spaces, Section 77.7.

Lemma 77.7.1. Let P be a property of schemes which is local in the smooth topol-
ogy, see Descent, Definition 34.11.1. Let X be an algebraic stack. The following
are equivalent
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(1) for some scheme U and some surjective smooth morphism U → X the
scheme U has property P,

(2) for every scheme U and every smooth morphism U → X the scheme U
has property P,

(3) for some algebraic space U and some surjective smooth morphism U → X
the algebraic space U has property P, and

(4) for every algebraic space U and every smooth morphism U → X the alge-
braic space U has property P.

If X is a scheme this is equivalent to P(U). If X is an algebraic space this is
equivalent to X having property P.

Proof. Let U → X surjective and smooth with U an algebraic space. Let V → X
be a smooth morphism with V an algebraic space. Choose schemes U ′ and V ′ and
surjective étale morphisms U ′ → U and V ′ → V . Finally, choose a scheme W and a
surjective étale morphism W → V ′×X U ′. Then W → V ′ and W → U ′ are smooth
morphisms of schemes as compositions of étale and smooth morphisms of algebraic
spaces, see Morphisms of Spaces, Lemmas 49.36.6 and 49.34.2. Moreover, W → V ′

is surjective as U ′ → X is surjective. Hence, we have

P(U)⇔ P(U ′)⇒ P(W )⇒ P(V ′)⇔ P(V )

where the equivalences are by definition of property P for algebraic spaces, and the
two implications come from Descent, Definition 34.11.1. This proves (3) ⇒ (4).

The implications (2) ⇒ (1), (1) ⇒ (3), and (4) ⇒ (2) are immediate. �

Definition 77.7.2. Let X be an algebraic stack. Let P be a property of schemes
which is local in the smooth topology. We say X has property P if any of the
equivalent conditions of Lemma 77.7.1 hold.

Remark 77.7.3. Here is a list of properties which are local for the smooth topology
(keep in mind that the fpqc, fppf, and syntomic topologies are stronger than the
smooth topology):

(1) locally Noetherian, see Descent, Lemma 34.12.1,
(2) Jacobson, see Descent, Lemma 34.12.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 34.13.1,
(4) Cohen-Macaulay, see Descent, Lemma 34.13.2,
(5) reduced, see Descent, Lemma 34.14.1,
(6) normal, see Descent, Lemma 34.14.2,
(7) locally Noetherian and (Rk), see Descent, Lemma 34.14.3,
(8) regular, see Descent, Lemma 34.14.4,
(9) Nagata, see Descent, Lemma 34.14.5.

Any smooth local property of germs of schemes gives rise to a corresponding prop-
erty of algebraic stacks. Note that a property of germs which is smooth local is
also étale local. Hence for a smooth local property of germs of schemes P we know
what it means to say that an algebraic space X has property P at x ∈ |X|, see
Properties of Spaces, Section 77.7.

Lemma 77.7.4. Let X be an algebraic stack. Let x ∈ |X | be a point of X . Let
P be a property of germs of schemes which is smooth local, see Descent, Definition
34.17.1. The following are equivalent
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(1) for any smooth morphism U → X with U a scheme and u ∈ U with
a(u) = x we have P(U, u),

(2) for some smooth morphism U → X with U a scheme and some u ∈ U
with a(u) = x we have P(U, u),

(3) for any smooth morphism U → X with U an algebraic space and u ∈ |U |
with a(u) = x the algebraic space U has property P at u, and

(4) for some smooth morphism U → X with U a an algebraic space and some
u ∈ |U | with a(u) = x the algebraic space U has property P at u.

If X is representable, then this is equivalent to P(X , x). If X is an algebraic space
then this is equivalent to X having property P at x.

Proof. Let a : U → X and u ∈ |U | as in (3). Let b : V → X be another smooth
morphism with V an algebraic space and v ∈ |V | with b(v) = x also. Choose a
scheme U ′, an étale morphism U ′ → U and u′ ∈ U ′ mapping to u. Choose a scheme
V ′, an étale morphism V ′ → V and v′ ∈ V ′ mapping to v. By Lemma 77.4.3 there
exists a point w ∈ |V ′ ×X U ′| mapping to u′ and v′. Choose a scheme W and a
surjective étale morphism W → V ′ ×X U ′. We may choose a w ∈ |W | mapping
to w (see Properties of Spaces, Lemma 48.4.4). Then W → V ′ and W → U ′ are
smooth morphisms of schemes as compositions of étale and smooth morphisms of
algebraic spaces, see Morphisms of Spaces, Lemmas 49.36.6 and 49.34.2. Hence

P(U, u)⇔ P(U ′, u′)⇔ P(W,w)⇔ P(V ′, v′)⇔ P(V, v)

The outer two equivalences by Properties of Spaces, Definition 48.7.5 and the other
two by what it means to be a smooth local property of germs of schemes. This
proves (4) ⇒ (3).

The implications (1) ⇒ (2), (2) ⇒ (4), and (3) ⇒ (1) are immediate. �

Definition 77.7.5. Let P be a property of germs of schemes which is smooth local.
Let X be an algebraic stack. Let x ∈ |X |. We say X has property P at x if any of
the equivalent conditions of Lemma 77.7.4 holds.

77.8. Monomorphisms of algebraic stacks

We define a monomorphism of algebraic stacks in the following way. We will see in
Lemma 77.8.4 that this is compatible with the corresponding 2-category theoretic
notion.

Definition 77.8.1. Let f : X → Y be a morphism of algebraic stacks. We say f
is a monomorphism if it is representable by algebraic spaces and a monomorphism
in the sense of Section 77.3.

First some basic lemmas.

Lemma 77.8.2. Let X → Y be a morphism of algebraic stacks. Let Z → Y be a
monomorphism. Then Z ×Y X → X is a monomorphism.

Proof. This follows from the general discussion in Section 77.3. �

Lemma 77.8.3. Compositions of monomorphisms of algebraic stacks are monomor-
phisms.

Proof. This follows from the general discussion in Section 77.3 and Morphisms of
Spaces, Lemma 49.10.4. �
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Lemma 77.8.4. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent:

(1) f is a monomorphism,
(2) f is fully faithful,
(3) the diagonal ∆f : X → X ×Y X is an equivalence, and
(4) there exists an algebraic space W and a surjective, flat morphism W → Y

which is locally of finite presentation such that V = X×YW is an algebraic
space, and the morphism V →W is a monomorphism of algebraic spaces.

Proof. The equivalence of (1) and (4) follows from the general discussion in Section
77.3 and in particular Lemmas 77.3.1 and 77.3.3.

The equivalence of (2) and (3) is Categories, Lemma 4.33.9.

Assume the equivalent conditions (2) and (3). Then f is representable by algebraic
spaces according to Algebraic Stacks, Lemma 71.15.2. Moreover, the 2-Yoneda
lemma combined with the fully faithfulness implies that for every scheme T the
functor

Mor(T,X ) −→ Mor(T,Y)

is fully faithful. Hence given a morphism y : T → Y there exists up to unique
2-isomorphism at most one morphism x : T → X such that y ∼= f ◦x. In particular,
given a morphism of schemes h : T ′ → T there exists at most one lift h̃ : T ′ →
T ×Y X of h. Thus T ×Y X → T is a monomorphism of algebraic spaces, which
proves that (1) holds.

Finally, assume that (1) holds. Then for any scheme T and morphism y : T → Y the
fibre product T ×Y X is an algebraic space, and T ×Y X → T is a monomorphism.
Hence there exists up to unique isomorphism exactly one pair (x, α) where x : T →
X is a morphism and α : f ◦x→ y is a 2-morphism. Applying the 2-Yoneda lemma
this says exactly that f is fully faithful, i.e., that (2) holds. �

Lemma 77.8.5. A monomorphism of algebraic stacks induces an injective map of
sets of points.

Proof. Let f : X → Y be a monomorphism of algebraic stacks. Suppose that
xi : Spec(Ki)→ X be morphisms such that f ◦x1 and f ◦x2 define the same element
of |Y|. Applying the definition we find a common extension Ω with corresponding
morphisms ci : Spec(Ω)→ Spec(Ki) and a 2-isomorphism β : f ◦x1◦c1 → f ◦x1◦c2.
As f is fully faithful, see Lemma 77.8.4, we can lift β to an isomorphism α :
f ◦x1 ◦c1 → f ◦x1 ◦c2. Hence x1 and x2 define the same point of |X | as desired. �

77.9. Immersions of algebraic stacks

Immersions of algebraic stacks are defined as follows.

Definition 77.9.1. Immersions.

(1) A morphism of algebraic stacks is called an open immersion if it is repre-
sentable, and an open immersion in the sense of Section 77.3.

(2) A morphism of algebraic stacks is called a closed immersion if it is repre-
sentable, and a closed immersion in the sense of Section 77.3.

(3) A morphism of algebraic stacks is called an immersion if it is representable,
and an immersion in the sense of Section 77.3.
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This is not the most convenient way to think about immersions for us. For us it
is a little bit more convenient to think of an immersion as a morphism of algebraic
stacks which is representable by algebraic spaces and is an immersion in the sense
of Section 77.3. Similarly for closed and open immersions. Since this is clearly
equivalent to the notion just defined we shall use this characterization without
further mention. We prove a few simple lemmas about this notion.

Lemma 77.9.2. Let X → Y be a morphism of algebraic stacks. Let Z → Y be
a (closed, resp. open) immersion. Then Z ×Y X → X is a (closed, resp. open)
immersion.

Proof. This follows from the general discussion in Section 77.3. �

Lemma 77.9.3. Compositions of immersions of algebraic stacks are immersions.
Similarly for closed immersions and open immersions.

Proof. This follows from the general discussion in Section 77.3 and Spaces, Lemma
47.12.2. �

Lemma 77.9.4. Let f : X → Y be a morphism of algebraic stacks. let W be an
algebraic space and let W → Y be a surjective, flat morphism which is locally of
finite presentation. The following are equivalent:

(1) f is an (open, resp. closed) immersion, and
(2) V = W ×Y X is an algebraic space, and V →W is an (open, resp. closed)

immersion.

Proof. This follows from the general discussion in Section 77.3 and in particular
Lemmas 77.3.1 and 77.3.3. �

Lemma 77.9.5. An immersion is a monomorphism.

Proof. See Morphisms of Spaces, Lemma 49.10.7. �

The following two lemmas explain how to think about immersions in terms of
presentations.

Lemma 77.9.6. Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces. Let
i : Z → [U/R] be an immersion. Then there exists an R-invariant locally closed
subspace Z ⊂ U and a presentation [Z/RZ ] → Z where RZ is the restriction of R
to Z such that

[Z/RZ ]

$$

// Z

i}}
[U/R]

is 2-commutative. If i is a closed (resp. open) immersion then Z is a closed (resp.
open) subspace of U .

Proof. By Lemma 77.3.6 we get a commutative diagram

[U ′/R′]

$$

// Z

}}
[U/R]
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where U ′ = Z ×[U/R] U and R′ = Z ×[U/R] R. Since Z → [U/R] is an immersion
we see that U ′ → U is an immersion of algebraic spaces. Let Z ⊂ U be the locally
closed subspace such that U ′ → U factors through Z and induces an isomorphism
U ′ → Z. It is clear from the construction of R′ that R′ = U ′ ×U,t R = R ×s,U U ′.
This implies that Z ∼= U ′ is R-invariant and that the image of R′ → R identifies R′

with the restriction RZ = s−1(Z) = t−1(Z) of R to Z. Hence the lemma holds. �

Lemma 77.9.7. Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces. Let
X = [U/R] be the associated algebraic stack, see Algebraic Stacks, Theorem 71.17.3.
Let Z ⊂ U be an R-invariant locally closed subspace. Then

[Z/RZ ] −→ [U/R]

is an immersion of algebraic stacks, where RZ is the restriction of R to Z. If Z ⊂ U
is open (resp. closed) then the morphism is an open (resp. closed) immersion of
algebraic stacks.

Proof. Recall that by Groupoids in Spaces, Definition 60.17.1 (see also discussion
following the definition) we have RZ = s−1(Z) = t−1(Z) as locally closed subspaces
of R. Hence the two morphisms RZ → Z are smooth as base changes of s and
t. Hence (Z,RZ , s|RZ , t|RZ , c|RZ×s,Z,tRZ ) is a smooth groupoid in algebraic spaces,
and we see that [Z/RZ ] is an algebraic stack, see Algebraic Stacks, Theorem 71.17.3.
The assumptions of Groupoids in Spaces, Lemma 60.24.3 are all satisfied and it
follows that we have a 2-fibre square

Z

��

// [Z/RZ ]

��
U // [U/R]

It follows from this and Lemma 77.3.1 that [Z/RZ ] → [U/R] is representable by
algebraic spaces, whereupon it follows from Lemma 77.3.3 that the right vertical
arrow is an immersion (resp. closed immersion, resp. open immersion) if and only
if the left vertical arrow is. �

We can define open, closed, and locally closed substacks as follows.

Definition 77.9.8. Let X be an algebraic stack.

(1) An open substack of X is a strictly full subcategory X ′ ⊂ X such that X ′
is an algebraic stack and X ′ → X is an open immersion.

(2) A closed substack of X is a strictly full subcategory X ′ ⊂ X such that X ′
is an algebraic stack and X ′ → X is a closed immersion.

(3) A locally closed substack of X is a strictly full subcategory X ′ ⊂ X such
that X ′ is an algebraic stack and X ′ → X is an immersion.

This definition should be used with caution. Namely, if f : X → Y is an equivalence
of algebraic stacks and X ′ ⊂ X is an open substack, then it is not necessarily the
case that the subcategory f(X ′) is an open substack of Y. The problem is that it
may not be a strictly full subcategory; but this is also the only problem. Here is a
formal statement.

Lemma 77.9.9. For any immersion i : Z → X there exists a unique locally closed
substack X ′ ⊂ X such that i factors as the composition of an equivalence i′ : Z → X ′

http://stacks.math.columbia.edu/tag/04YN
http://stacks.math.columbia.edu/tag/04YM
http://stacks.math.columbia.edu/tag/0506


4200 77. PROPERTIES OF ALGEBRAIC STACKS

followed by the inclusion morphism X ′ → X . If i is a closed (resp. open) immersion,
then X ′ is a closed (resp. open) substack of X .

Proof. Omitted. �

Lemma 77.9.10. Let [U/R] → X be a presentation of an algebraic stack. There
is a canonical bijection

R-invariant locally closed subspaces Z of U ↔ locally closed substacks Z of X

where if Z corresponds to Z, then [Z/RZ ] → Z is a presentation fitting into a
2-commutative diagram with the given presentation of X . Similarly for closed sub-
stacks and open substacks.

Proof. Omitted. Hints: Use Lemma 77.9.6 to go from right to left and Lemma
77.9.7 from left to right. �

Lemma 77.9.11. Let X be an algebraic stack. The rule U 7→ |U| defines an
inclusion preserving bijection between open substacks of X and open subsets of |X |.

Proof. Choose a presentation [U/R] → X , see Algebraic Stacks, Lemma 71.16.2.
By Lemma 77.9.10 we see that open substacks correspond to R-invariant open
subschemes of U . On the other hand Lemmas 77.4.5 and 77.4.7 guarantee these
correspond bijectively to open subsets of |X |. �

Lemma 77.9.12. Let X be an algebraic stack. Let U be an algebraic space and
U → X a surjective smooth morphism. For an open immersion V ↪→ U , there
exists an algebraic stack Y, an open immersion Y → X , and a surjective smooth
morphism V → Y.

Proof. We define a category fibred in groupoids Y by letting the fiber category
YT over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all
y ∈ Ob(XT ) such that the projection morphism V ×X ,y T → T surjective. Now for
any morphism x : T → X , the 2-fibred product T ×x,X Y has fiber category over
T ′ consisting of triples (f : T ′ → T, y ∈ XT ′ , f∗x ' y) such that V ×X ,y T ′ → T ′

is surjective. Note that T ×x,X Y is fibered in setoids since Y → X is faithful (see
Stacks, Lemma 8.6.7). Now the isomorphism f∗x ' y gives the diagram

V ×X ,y T ′

��

// V ×X ,x T //

��

V

��
T ′

f // T
x // X

where both squares are cartesian. The morphism V ×X ,x T → T is smooth by base
change, and hence open. Let T0 ⊂ T be its image. From the cartesian squares we
deduce that V ×X ,y T ′ → T ′ is surjective if and only if f lands in T0. Therefore
T ×x,X Y is representable by T0, so the inclusion Y → X is an open immersion. By
Algebraic Stacks, Lemma 71.15.5 we conclude that Y is an algebraic stack. Lastly
if we denote the morphism V → X by g, we have V ×X V → V is surjective (the
diagonal gives a section). Hence g is in the image of YV → XV , i.e., we obtain a
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morphism g′ : V → Y fitting into the commutative diagram

V //

g′

��

U

��
Y // X

Since V ×g,X Y → V is a monomorphism, it is in fact an isomorphism since (1, g′)
defines a section. Therefore g′ : V → Y is a smooth morphism, as it is the base
change of the smooth morphism g : V → X . It is surjective by our construction of
Y which finishes the proof of the lemma. �

Lemma 77.9.13. Let X be an algebraic stack and Xi ⊂ X a collection of open
substacks indexed by i ∈ I. Then there exists an open substack, which we denote⋃
i∈I Xi ⊂ X , such that the Xi are open substacks covering it.

Proof. We define a fibred subcategory X ′ =
⋃
i∈I Xi by letting the fiber category

over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all
x ∈ Ob(XT ) such that the morphism

∐
i∈I(Xi ×X T ) → T is surjective. Let

xi ∈ Ob((Xi)T ). Then (xi, 1) gives a section of Xi ×X T → T , so we have an
isomorphism. Thus Xi ⊂ X ′ is a full subcategory. Now let x ∈ Ob(XT ). Then
Xi ×X T is representable by an open subscheme Ti ⊂ T . The 2-fibred product
X ′ ×X T has fiber over T ′ consisting of (y ∈ XT ′ , f : T ′ → T, f∗x ' y) such
that

∐
(Xi ×X ,y T ′) → T ′ is surjective. The isomorphism f∗x ' y induces an

isomorphism Xi ×X ,y T ′ ' Ti ×T T ′. Then the Ti ×T T ′ cover T ′ if and only if f
lands in

⋃
Ti. Therefore we have a diagram

Ti //

��

⋃
Ti //

��

T

��
Xi // X ′ // X

with both squares cartesian. By Algebraic Stacks, Lemma 71.15.5 we conclude that
X ′ ⊂ X is algebraic and an open substack. It is also clear from the cartesian squares
above that the morphism

∐
i∈I Xi → X ′ which finishes the proof of the lemma. �

Lemma 77.9.14. Let X be an algebraic stack and X ′ ⊂ X a quasi-compact open
substack. Suppose that we have a collection of open substacks Xi ⊂ X indexed by
i ∈ I such that X ′ ⊂

⋃
i∈I Xi, where we define the union as in Lemma 77.9.13.

Then there exists a finite subset I ′ ⊂ I such that X ′ ⊂
⋃
i∈I′ Xi.

Proof. Since X is algebraic, there exists a scheme U with a surjective smooth
morphism U → X . Let Ui ⊂ U be the open subscheme representing Xi ×X U and
U ′ ⊂ U the open subscheme representing X ′ ×X U . By hypothesis, U ′ ⊂

⋃
i∈I Ui.

From the proof of Lemma 77.6.2, there is a quasi-compact open V ⊂ U ′ such that
V → X ′ is a surjective smooth morphism. Therefore there exists a finite subset
I ′ ⊂ I such that V ⊂

⋃
i∈I′ Ui. We claim that X ′ ⊂

⋃
i∈I′ Xi. Take x ∈ Ob(X ′T )

for T ∈ Ob((Sch/S)fppf ). Since X ′ → X is a monomorphism, we have cartesian
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squares

V ×X T //

��

T

x

��

T

x

��
V // X ′ // X

By base change, V ×X T → T is surjective. Therefore
⋃
i∈I′ Ui ×X T → T is also

surjective. Let Ti ⊂ T be the open subscheme representing Xi ×X T . By a formal
argument, we have a Cartesian square

Ui ×Xi Ti //

��

U ×X T

��
Ti // T

where the vertical arrows are surjective by base change. Since Ui×Xi Ti ' Ui×X T ,
we find that

⋃
i∈I′ Ti = T . Hence x is an object of (

⋃
i∈I′ Xi)T by definition of

the union. Observe that the inclusion X ′ ⊂
⋃
i∈I′ Xi is automatically an open

substack. �

Lemma 77.9.15. Let X be an algebraic stack. Let Xi, i ∈ I be a set of open
substacks of X . Assume

(1) X =
⋃
i∈I Xi, and

(2) each Xi is an algebraic space.

Then X is an algebraic space.

Proof. Apply Stacks, Lemma 8.6.10 to the morphism
∐
i∈I Xi → X and the mor-

phism id : X → X to see that X is a stack in setoids. Hence X is an algebraic
space, see Algebraic Stacks, Proposition 71.13.3. �

Lemma 77.9.16. Let X be an algebraic stack. Let Xi, i ∈ I be a set of open
substacks of X . Assume

(1) X =
⋃
i∈I Xi, and

(2) each Xi is a scheme

Then X is a scheme.

Proof. By Lemma 77.9.15 we see that X is an algebraic space. Since any algebraic
space has a largest open subspace which is a scheme, see Properties of Spaces,
Lemma 48.10.1 we see that X is a scheme. �

The following lemma is the analogue of More on Groupoids, Lemma 39.5.1.

Lemma 77.9.17. Let P,Q,R be properties of morphisms of algebraic spaces. As-
sume

(1) P,Q,R are fppf local on the target and stable under arbitrary base change,
(2) smooth⇒ R,
(3) for any morphism f : X → Y which has Q there exists a largest open

subspace W (P, f) ⊂ X such that f |W (P,f) has P, and
(4) for any morphism f : X → Y which has Q, and any morphism Y ′ → Y

which has R we have Y ′ ×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′

is the base change of f .
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Let f : X → Y be a morphisms of algebraic stacks representable by algebraic spaces.
Assume f has Q. Then

(A) there exists a largest open substack X ′ ⊂ X such that f |X ′ has P, and
(B) if Z → Y is a morphism of algebraic stacks representable by algebraic

spaces which has R then Z ×Y X ′ is the largest open substack of Z ×Y X
over which the base change idZ × f has property P.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Set U =
V ×Y X and let f ′ : U → V be the base change of f . The morphism of algebraic
spaces f ′ : U → V has property Q. Thus we obtain the open W (P, f ′) ⊂ U
by assumption (3). Note that U ×X U = (V ×Y V ) ×Y X hence the morphism
f ′′ : U ×X U → V ×Y V is the base change of f via either projection V ×Y V → V .
By our choice of V these projections are smooth, hence have property R by (2).
Thus by (4) we see that the inverse images of W (P, f ′) under the two projections
pri : U ×X U → U agree. In other words, W (P, f ′) is an R-invariant subspace of U
(where R = U ×X U). Let X ′ be the open substack of X corresponding to W (P, f)
via Lemma 77.9.6. By construction W (P, f ′) = X ′ ×Y V hence f |X ′ has property
P by Lemma 77.3.3. Also, X ′ is the largest open substack such that f |X ′ has P as
the same maximality holds for W (P, f). This proves (A).

Finally, if Z → Y is a morphism of algebraic stacks representable by algebraic
spaces which has R then we set T = V ×Y Z and we see that T → V is a morphism
of algebraic spaces having property R. Set f ′T : T ×V U → T the base change of
f ′. By (4) again we see that W (P, f ′T ) is the inverse image of W (P, f) in T ×V U .
This implies (B); some details omitted. �

Remark 77.9.18. Warning: Lemma 77.9.17 should be used with care. For ex-
ample, it applies to P =“flat”, Q =“empty”, and R =“flat and locally of finite
presentation”. But given a morphism of algebraic spaces f : X → Y the largest
open subspace W ⊂ X such that f |W is flat is not the set of points where f is flat!

Remark 77.9.19. Notwithstanding the warning in Remark 77.9.18 there are some
cases where Lemma 77.9.17 can be used without causing ambiguity. We give a
list. In each case we omit the verification of assumptions (1) and (2) and we give
references which imply (3) and (4). Here is the list:

(1) Q =“locally of finite type”, R = ∅, and P =“relative dimension ≤ d”.
See Morphisms of Spaces, Definition 49.31.2 and Morphisms of Spaces,
Lemmas 49.32.4 and 49.32.3.

(2) Q =“locally of finite type”, R = ∅, and P =“locally quasi-finite”. This
is the case d = 0 of the previous item, see Morphisms of Spaces, Lemma
49.32.6. On the other hand, properties (3) and (4) are spelled out in
Morphisms of Spaces, Lemma 49.32.7.

(3) Q =“locally of finite type”, R = ∅, and P =“unramified”. This is Mor-
phisms of Spaces, Lemma 49.35.10.

(4) Q =“locally of finite presentation”, R =“flat and locally of finite pre-
sentation”, and P =“flat”. See More on Morphisms of Spaces, Theorem
58.18.1 and Lemma 58.18.2. Note that here W (P, f) is always exactly the
set of points where the morphism f is flat because we only consider this
open when f has Q (see loc.cit.).
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(5) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“étale”. This follows on combining (3) and (4) because
an unramified morphism which is flat and locally of finite presentation is
étale, see Morphisms of Spaces, Lemma 49.36.12.

(6) Add more here as needed (compare with the longer list at More on Groupoids,
Remark 39.5.3).

77.10. Reduced algebraic stacks

We have already defined reduced algebraic stacks in Section 77.7.

Lemma 77.10.1. Let X be an algebraic stack. Let T ⊂ |X | be a closed subset.
There exists a unique closed substack Z ⊂ X with the following properties: (a) we
have |Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective smooth morphism, where U is an algebraic
space. Set R = U ×X U , so that there is a presentation [U/R]→ X , see Algebraic
Stacks, Lemma 71.16.2. As usual we denote s, t : R→ U the two smooth projection
morphisms. By Lemma 77.4.5 we see that T corresponds to a closed subset T ′ ⊂ |U |
such that |s|−1(T ′) = |t|−1(T ′). Let Z ⊂ U be the reduced induced algebraic space
structure on T ′, see Properties of Spaces, Definition 48.9.5. The fibre products
Z ×U,t R and R ×s,U Z are closed subspaces of R (Spaces, Lemma 47.12.3). The
projections Z ×U,t R→ Z and R×s,U Z → Z are smooth by Morphisms of Spaces,
Lemma 49.34.3. Thus as Z is reduced, it follows that Z ×U,t R and R ×s,U Z are
reduced, see Remark 77.7.3. Since

|Z ×U,t R| = |t|−1(T ′) = |s|−1(T ′) = R×s,U Z

we conclude from the uniqueness in Properties of Spaces, Lemma 48.9.3 that
Z ×U,t R = R ×s,U Z. Hence Z is an R-invariant closed subspace of U . By
the correspondence of Lemma 77.9.10 (and its proof) we obtain a closed substack
Z ⊂ Z with a presentation [Z/RZ ] → Z. Then |Z| = |Z|/|RZ | = |T ′|/ ∼ is the
given closed subset T . We omit the proof of unicity. �

Lemma 77.10.2. Let X be an algebraic stack. If X ′ ⊂ X is a closed substack, X
is reduced and |X ′| = |X |, then X ′ = X .

Proof. Choose a presentation [U/R]→ X with U a scheme. As X is reduced, we
see that U is reduced (by definition of reduced algebraic stacks). By Lemma 77.9.10
X ′ corresponds to an R-invariant closed subscheme Z ⊂ U . But now |Z| ⊂ |U | is
the inverse image of |X ′|, and hence |Z| = |U |. Hence Z is a closed subscheme
of U whose underlying sets of points agree. By Schemes, Lemma 25.12.6 the map
idU : U → U factors through Z → U , and hence Z = U , i.e., X ′ = X . �

Lemma 77.10.3. Let X , Y be algebraic stacks. Let Z ⊂ X be a closed substack
Assume Y is reduced. A morphism f : Y → X factors through Z if and only if
f(|Y|) ⊂ |Z|.

Proof. Assume f(|Y|) ⊂ |Z|. Consider Y ×X Z → Y. There is an equivalence
Y ×X Z → Y ′ where Y ′ is a closed substack of Y, see Lemmas 77.9.2 and 77.9.9.
Using Lemmas 77.4.3, 77.8.5, and 77.9.5 we see that |Y ′| = |Y|. Hence we have
reduced the lemma to Lemma 77.10.2. �
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Definition 77.10.4. Let X be an algebraic stack. Let Z ⊂ |X | be a closed subset.
An algebraic stack structure on Z is given by a closed substack Z of X with |Z| equal
to Z. The reduced induced algebraic stack structure on Z is the one constructed in
Lemma 77.10.1. The reduction Xred of X is the reduced induced algebraic stack
structure on |X |.

In fact we can use this to define the reduced induced algebraic stack structure on
a locally closed subset.

Remark 77.10.5. Let X be an algebraic stack. Let T ⊂ |X | be a locally closed
subset. Let ∂T be the boundary of T in the topological space |X |. In a formula

∂T = T \ T.
Let U ⊂ X be the open substack of X with |U| = |X | \ ∂T , see Lemma 77.9.11.
Let Z be the reduced closed substack of U with |Z| = T obtained by taking the
reduced induced closed subspace structure, see Definition 77.10.4. By construction
Z → U is a closed immersion of algebraic stacks and U → X is an open immersion,
hence Z → X is an immersion of algebraic stacks by Lemma 77.9.3. Note that Z
is a reduced algebraic stack and that |Z| = T as subsets of |X|. We sometimes say
Z is the reduced induced substack structure on T .

77.11. Residual gerbes

In the stacks project we would like to define the residual gerbe of an algebraic stack
X at a point x ∈ |X | to be a monomorphism of algebraic stacks mx : Zx → X where
Zx is a reduced algebraic stack having a unique point which is mapped by mx to
x. It turns out that there are many issues with this notion; existence is not clear
in general and neither is uniqueness. We resolve the uniqueness issue by imposing
a slightly stronger condition on the algebraic stacks Zx. We discuss this in more
detail by working through a few simple lemmas regarding reduced algebraic stacks
having a unique point.

Lemma 77.11.1. Let Z be an algebraic stack. Let k be a field and let Spec(k)→ Z
be surjective and flat. Then any morphism Spec(k′) → Z where k′ is a field is
surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 49.29.5 (via the discussion in Section
77.3) that Spec(k′) → Z is flat. It is clear that it is surjective as by assumption
|Z| is a singleton. �

Lemma 77.11.2. Let Z be an algebraic stack. The following are equivalent

(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k) → Z where k is a field,

and
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(3) there exists a locally of finite type, surjective, flat morphism Spec(k)→ Z
where k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective smooth
morphism. Then W is a reduced scheme. Let η ∈W be a generic point of an irre-
ducible component of W . Since W is reduced we have OW,η = κ(η). It follows that
the canonical morphism η = Spec(κ(η))→W is flat. We see that the composition
η → Z is flat (see Morphisms of Spaces, Lemma 49.28.3). It is also surjective as
|Z| is a singleton. In other words (2) holds.

Assume (2). Let W be a scheme and let W → Z be a surjective smooth morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
is an algebraic space smooth over k, hence regular (see Spaces over Fields, Lemma
54.9.1) and in particular reduced. Since W ×Z Spec(k)→ W is surjective and flat
we conclude that W is reduced (Descent on Spaces, Lemma 56.8.2). In other words
(1) holds.

It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and a smooth morphism W → Z. Pick a closed point w ∈W and set k = κ(w).
The composition

Spec(k)
w−→W −→ Z

is locally of finite type by Morphisms of Spaces, Lemmas 49.23.2 and 49.34.6. It is
also flat and surjective by Lemma 77.11.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic stacks
than the preceding lemma.

Lemma 77.11.3. Let Z be an algebraic stack. The following are equivalent

(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→
Z where k is a field.

Proof. Assume (2) holds. By Lemma 77.11.2 we see that Z is reduced and |Z|
is a singleton. Let W be a scheme and let W → Z be a surjective smooth mor-
phism. Choose a field k and a locally finitely presented, surjective, flat morphism
Spec(k)→ Z. ThenW×ZSpec(k) is an algebraic space smooth over k, hence locally
Noetherian (see Morphisms of Spaces, Lemma 49.23.5). SinceW×ZSpec(k)→W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude thatW is locally Noetherian (Descent on Spaces,
Lemma 56.8.3). In other words (1) holds.

Assume (1). Pick a nonempty affine scheme W and a smooth morphism W → Z.
Pick a closed point w ∈ W and set k = κ(w). Because W is locally Noetherian
the morphism w : Spec(k) → W is of finite presentation, see Morphisms, Lemma
28.22.7. Hence the composition

Spec(k)
w−→W −→ Z

is locally of finite presentation by Morphisms of Spaces, Lemmas 49.27.2 and
49.34.5. It is also flat and surjective by Lemma 77.11.1. Hence (2) holds. �

Lemma 77.11.4. Let Z ′ → Z be a monomorphism of algebraic stacks. Assume
there exists a field k and a locally finitely presented, surjective, flat morphism
Spec(k)→ Z. Then either Z ′ is empty or Z ′ → Z is an equivalence.
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Proof. We may assume that Z ′ is nonempty. In this case the fibre product T =
Z ′×Z Spec(k) is nonempty, see Lemma 77.4.3. Now T is an algebraic space and the
projection T → Spec(k) is a monomorphism. Hence T = Spec(k), see Morphisms
of Spaces, Lemma 49.10.8. We conclude that Spec(k) → Z factors through Z ′.
Suppose the morphism z : Spec(k) → Z is given by the object ξ over Spec(k).
We have just seen that ξ is isomorphic to an object ξ′ of Z ′ over Spec(k). Since
z is is surjective, flat, and locally of finite presentation we see that every object
of Z over any scheme is fppf locally isomorphic to a pullback of ξ, hence also to
a pullback of ξ′. By descent of objects for stacks in groupoids this implies that
Z ′ → Z is essentially surjective (as well as fully faithful, see Lemma 77.8.4). Hence
we win. �

Lemma 77.11.5. Let Z be an algebraic stack. Assume Z satisfies the equivalent
conditions of Lemma 77.11.2. Then there exists a unique strictly full subcategory
Z ′ ⊂ Z such that Z ′ is an algebraic stack which satisfies the equivalent conditions of
Lemma 77.11.3. The inclusion morphism Z ′ → Z is a monomorphism of algebraic
stacks.

Proof. The last part is immediate from the first part and Lemma 77.8.4. Pick a
field k and a morphism Spec(k) → Z which is surjective, flat, and locally of finite
type. Set U = Spec(k) and R = U ×Z U . The projections s, t : R → U are locally
of finite type. Since U is the spectrum of a field, it follows that s, t are flat and
locally of finite presentation (by Morphisms of Spaces, Lemma 49.27.7). We see
that Z ′ = [U/R] is an algebraic stack by Criteria for Representability, Theorem
74.17.2. By Algebraic Stacks, Lemma 71.16.1 we obtain a canonical morphism

f : Z ′ −→ Z
which is fully faithful. Hence this morphism is representable by algebraic spaces,
see Algebraic Stacks, Lemma 71.15.2 and a monomorphism, see Lemma 77.8.4. By
Criteria for Representability, Lemma 74.17.1 the morphism U → Z ′ is surjective,
flat, and locally of finite presentation. Hence Z ′ is an algebraic stack which satisfies
the equivalent conditions of Lemma 77.11.3. By Algebraic Stacks, Lemma 71.12.4
we may replace Z ′ by its essential image in Z. Hence we have proved all the
assertions of the lemma except for the uniqueness of Z ′ ⊂ Z. Suppose that Z ′′ ⊂ Z
is a second such algebraic stack. Then the projections

Z ′ ←− Z ′ ×Z Z ′′ −→ Z ′′

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma
77.4.3. Hence the two projections are isomorphisms by Lemma 77.11.4 and we
win. �

Example 77.11.6. Here is an example where the morphism constructed in Lemma
77.11.5 isn’t an isomorphism. This example shows that imposing that residual
gerbes are locally Noetherian is necessary in Definition 77.11.8. In fact, the example
is even an algebraic space! Let Gal(Q/Q) be the absolute Galois group of Q with
the pro-finite topology. Let

U = Spec(Q)×Spec(Q) Spec(Q) = Gal(Q/Q)× Spec(Q)

(we omit a precise explanation of the meaning of the last equal sign). Let G
denote the absolute Galois group Gal(Q/Q) with the discrete topology viewed as a
constant group scheme over Spec(Q), see Groupoids, Example 38.5.6. Then G acts
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freely and transitively on U . Let X = U/G, see Spaces, Definition 47.14.4. Then X
is a non-noetherian reduced algebraic space with exactly one point. Furthermore,
X has a (locally) finite type point:

x : Spec(Q) −→ U −→ X

Indeed, every point of U is actually closed! As X is an algebraic space over Q it
follows that x is a monomorphism. So x is the morphism constructed in Lemma
77.11.5 but x is not an isomorphism. In fact Spec(Q)→ X is the residual gerbe of
X at x.

It will turn out later that under mild assumptions on the algebraic stack X the
equivalent conditions of the following lemma are satisfied for every point x ∈ |X |
(insert future reference here).

Lemma 77.11.7. Let X be an algebraic stack. Let x ∈ |X | be a point. The
following are equivalent

(1) there exists an algebraic stack Z and a monomorphism Z → X such that
|Z| is a singleton and such that the image of |Z| in |X | is x,

(2) there exists a reduced algebraic stack Z and a monomorphism Z → X
such that |Z| is a singleton and such that the image of |Z| in |X | is x,

(3) there exists an algebraic stack Z, a monomorphism f : Z → X , and a
surjective flat morphism z : Spec(k) → Z where k is a field such that
x = f(z).

Moreover, if these conditions hold, then there exists a unique strictly full subcategory
Zx ⊂ X such that Zx is a reduced, locally Noetherian algebraic stack and |Zx| is a
singleton which maps to x via the map |Zx| → |X |.

Proof. If Z → X is as in (1), then Zred → X is as in (2). (See Section 77.10
for the notion of the reduction of an algebraic stack.) Hence (1) implies (2). It is
immediate that (2) implies (1). The equivalence of (2) and (3) is immediate from
Lemma 77.11.2.

At this point we’ve seen the equivalence of (1) – (3). Pick a monomorphism f : Z →
X as in (2). Note that this implies that f is fully faithful, see Lemma 77.8.4. Denote
Z ′ ⊂ X the essential image of the functor f . Then f : Z → Z ′ is an equivalence
and hence Z ′ is an algebraic stack, see Algebraic Stacks, Lemma 71.12.4. Apply
Lemma 77.11.5 to get a strictly full subcategory Zx ⊂ Z ′ as in the statement of
the lemma. This proves all the statements of the lemma except for uniqueness.

In order to prove the uniqueness suppose that Zx ⊂ X and Z ′x ⊂ X are two strictly
full subcategories as in the statement of the lemma. Then the projections

Z ′x ←− Z ′x ×X Zx −→ Zx
are monomorphisms. The algebraic stack in the middle is nonempty by Lemma
77.4.3. Hence the two projections are isomorphisms by Lemma 77.11.4 and we
win. �

Having explained the above we can now make the following definition.

Definition 77.11.8. Let X be an algebraic stack. Let x ∈ |X |.
(1) We say the residual gerbe of X at x exists if the equivalent conditions (1),

(2), and (3) of Lemma 77.11.7 hold.
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(2) If the residual gerbe of X at x exists, then the residual gerbe of X at x1

is the strictly full subcategory Zx ⊂ X constructed in Lemma 77.11.7.

In particular we know that Zx (if it exists) is a locally Noetherian, reduced algebraic
stack and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.

We will see in Morphisms of Stacks, Lemma 78.19.10 that Zx is a gerbe. It turns
out that Zx is a regular algebraic stack as follows from the following lemma.

Lemma 77.11.9. A reduced, locally Noetherian algebraic stack Z such that |Z| is
a singleton is regular.

Proof. Let W → Z be a surjective smooth morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 77.11.3). The algebraic space T = W ×Z Spec(k) is smooth over k in
particular regular, see Spaces over Fields, Lemma 54.9.1. Since T → W is locally
of finite presentation, flat, and surjective it follows that W is regular, see Descent
on Spaces, Lemma 56.8.4. By definition this means that Z is regular. �

Lemma 77.11.10. Let X be an algebraic stack. Let x ∈ |X |. Assume that the
residual gerbe Zx of X exists. Let f : Spec(K) → X be a morphism where K is a
field in the equivalence class of x. Then f factors through the inclusion morphism
Zx → X .

Proof. Choose a field k and a surjective flat locally finite presentation morphism
Spec(k) → Zx. Set T = Spec(K) ×X Zx. By Lemma 77.4.3 we see that T is
nonempty. As Zx → X is a monomorphism we see that T → Spec(K) is a monomor-
phism. Hence by Morphisms of Spaces, Lemma 49.10.8 we see that T = Spec(K)
which proves the lemma. �

Lemma 77.11.11. Let X be an algebraic stack. Let x ∈ |X |. Let Z be an algebraic
stack satisfying the equivalent conditions of Lemma 77.11.3 and let Z → X be a
monomorphism such that the image of |Z| → |X | is x. Then the residual gerbe Zx
of X at x exists and Z → X factors as Z → Zx → X where the first arrow is an
equivalence.

Proof. Let Zx ⊂ X be the full subcategory corresponding to the essential image
of the functor Z → X . Then Z → Zx is an equivalence, hence Zx is an algebraic
stack, see Algebraic Stacks, Lemma 71.12.4. Since Zx inherits all the properties of
Z from this equivalence it is clear from the uniqueness in Lemma 77.11.7 that Zx
is the residual gerbe of X at x. �

1This clashes with [LMB00] in spirit, but not in fact. Namely, in Chapter 11 they associate

to any point on any quasi-separated algebraic stack a gerbe (not necessarily algebraic) which they

call the residual gerbe. We will see in Morphisms of Stacks, Lemma 78.21.1 that on a quasi-
separated algebraic stack every point has a residual gerbe in our sense which is then equivalent

to theirs. For more information on this topic see [Ryd10, Appendix B].
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77.12. Dimension of a stack

We can define the dimension of an algebraic stack X at a point x, using the notion of
dimension of an algebraic space at a point (Properties of Spaces, Definition 48.8.1).
In the following lemma the output may be∞ either because X is not quasi-compact
or because we run into the phenomenon described in Examples, Section 82.14.

Lemma 77.12.1. Let X be a locally Noetherian algebraic stack over a scheme S.
Let x ∈ |X | be a point of X . Let [U/R] → X be a presentation (Algebraic Stacks,
Definition 71.16.5) where U is a scheme. Let u ∈ U be a point that maps to x. Let
e : U → R be the “identity” map and let s : R → U be the “source” map, which is
a smooth morphism of algebraic spaces. Let Ru be the fiber of s : R → U over u.
The element

dimx(X ) = dimu(U)− dime(u)(Ru) ∈ Z ∪∞
is independent of the choice of presentation and the point u over x.

Proof. Since R → U is smooth, the scheme Ru is smooth over κ(u) and hence
has finite dimension. On the other hand, the scheme U is locally Noetherian, but
this does not guarantee that dimu(U) is finite. Thus the difference is an element of
Z ∪ {∞}.
Let [U ′/R′] → X and u′ ∈ U ′ be a second presentation where U ′ is a scheme and
u′ maps to x. Consider the algebraic space P = U ×X U ′. By Lemma 77.4.3 there
exists a p ∈ |P | mapping to u and u′. Since P → U and P ′ → U ′ are smooth we
see that dimp(P ) = dimu(U) + dimp(Pu) and dimp(P ) = dimu′(U

′) + dimp(Pu′),
see Morphisms of Spaces, Lemma 49.34.9. Note that

R′u′ = Spec(κ(u′))×X U ′ and Pu = Spec(κ(u))×X U ′

Let us represent p ∈ |P | by a morphism Spec(Ω)→ P . Since p maps to both u and
u′ it induces a 2-morphism between the compositions Spec(Ω)→ Spec(κ(u′))→ X
and Spec(Ω)→ Spec(κ(u))→ X which in turn defines an isomorphism

Spec(Ω)×Spec(κ(u′)) R
′
u′
∼= Spec(Ω)×Spec(κ(u)) Pu

as algebraic spaces over Spec(Ω) mapping the Ω-rational point (1, e′(u′)) to (1, p)
(some details omitted). We conclude that

dime′(u′)(R
′
u′) = dimp(Pu)

by Morphisms of Spaces, Lemma 49.32.3. By symmetry we have dime(u)Ru) =
dimp(Pu′). Putting everything together we obtain the independence of choices. �

We can use the lemma above to make the following definition.

Definition 77.12.2. Let X be a locally Noetherian algebraic stack over a scheme
S. Let x ∈ |X | be a point of X . Let [U/R] → X be a presentation (Algebraic
Stacks, Definition 71.16.5) where U is a scheme and let u ∈ U be a point that maps
to x. We define the dimension of X at x to be the element dimx(X ) ∈ Z∪∞ such
that

dimx(X ) = dimu(U)− dime(u)(Ru).

with notation as in Lemma 77.12.1.

The dimension of a stack at a point agrees with the usual notion when X is a scheme
(Topology, Definition 5.9.1), or more generally when X is a locally Noetherian
algebraic space (Properties of Spaces, Definition 48.8.1).

http://stacks.math.columbia.edu/tag/0AFM
http://stacks.math.columbia.edu/tag/0AFN


77.13. OTHER CHAPTERS 4211

Definition 77.12.3. Let S be a scheme. Let X be a locally Noetherian algebraic
stack over S. The dimension dim(X ) of X is defined to be

dim(X ) = supx∈|X| dimx(X )

This definition of dimension agrees with the usual notion if X is a scheme (Proper-
ties, Lemma 27.10.2) or an algebraic space (Properties of Spaces, Definition 48.8.2).

Remark 77.12.4. If X is a nonempty stack of finite type over a field, then dim(X )
is an integer. For an arbitrary locally Noetherian algebraic stack X , dim(X ) is in
Z ∪ {±∞}, and dim(X ) = −∞ if and only if X is empty.

Example 77.12.5. Let X be a scheme of finite type over a field k, and let G be
a group scheme of finite type over k which acts on X. Then the dimension of the
quotient stack [X/G] is equal to dim(X) − dim(G). In particular, the dimension
of the classifying stack BG = [Spec(k)/G] is − dim(G). Thus the dimension of an
algebraic stack can be a negative integer, in contrast to what happens for schemes
or algebraic spaces.
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CHAPTER 78

Morphisms of Algebraic Stacks

78.1. Introduction

In this chapter we introduce some types of morphisms of algebraic stacks. A refer-
ence in the case of quasi-separated algebraic stacks with representable diagonal is
[LMB00].

The goal is to extend the definition of each of the types of morphisms of algebraic
spaces to morphisms of algebraic stacks. Each case is slightly different and it seems
best to treat them all separately.

For morphisms of algebraic stacks which are representable by algebraic spaces we
have already defined a large number of types of morphisms, see Properties of Stacks,
Section 77.3. For each corresponding case in this chapter we have to make sure the
definition in the general case is compatible with the definition given there.

78.2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 77.2.

78.3. Properties of diagonals

The diagonal of an algebraic stack is closely related to the Isom-sheaves, see Al-
gebraic Stacks, Lemma 71.10.11. By the second defining property of an algebraic
stack these Isom-sheaves are always algebraic spaces.

Lemma 78.3.1. Let X be an algebraic stack. Let T be a scheme and let x, y be
objects of the fibre category of X over T . Then the morphism IsomX (x, y)→ T is
locally of finite type.

Proof. By Algebraic Stacks, Lemma 71.16.2 we may assume that X = [U/R] for
some smooth groupoid in algebraic spaces. By Descent on Spaces, Lemma 56.10.7
it suffices to check the property fppf locally on T . Thus we may assume that x, y
come from morphisms x′, y′ : T → U . By Groupoids in Spaces, Lemma 60.21.1
we see that in this case IsomX (x, y) = T ×(y′,x′),U×SU R. Hence it suffices to
prove that R → U ×S U is locally of finite type. This follows from the fact that
the composition s : R → U ×S U → U is smooth (hence locally of finite type,
see Morphisms of Spaces, Lemmas 49.34.5 and 49.27.5) and Morphisms of Spaces,
Lemma 49.23.6. �

Lemma 78.3.2. Let X be an algebraic stack. Let T be a scheme and let x, y be
objects of the fibre category of X over T . Then

(1) IsomX (y, y) is a group algebraic space over T , and
(2) IsomX (x, y) is a pseudo torsor for IsomX (y, y) over T .

4213
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Proof. See Groupoids in Spaces, Definitions 60.5.1 and 60.9.1. The lemma follows
immediately from the fact that X is a stack in groupoids. �

Let f : X → Y be a morphism of algebraic stacks. The diagonal of f is the
morphism

∆f : X −→ X ×Y X
Here are two properties that every diagonal morphism has.

Lemma 78.3.3. Let f : X → Y be a morphism of algebraic stacks. Then

(1) ∆f is representable by algebraic spaces, and
(2) ∆f is locally of finite type.

Proof. Let T be a scheme and let a : T → X ×Y X be a morphism. By definition
of the fibre product and the 2-Yoneda lemma the morphism a is given by a triple
a = (x, x′, α) where x, x′ are objects of X over T , and α : f(x) → f(x′) is a
morphism in the fibre category of Y over T . By definition of an algebraic stack
the sheaves IsomX (x, x′) and IsomY(f(x), f(x′)) are algebraic spaces over T . In
this language α defines a section of the morphism IsomY(f(x), f(x′)) → T . A T ′-
valued point of X ×X×YX ,a T for T ′ → T a scheme over T is the same thing as an
isomorphism x|T ′ → x′|T ′ whose image under f is α|T ′ . Thus we see that

(78.3.3.1)

X ×X×YX ,a T

��

// IsomX (x, x′)

��
T

α // IsomY(f(x), f(x′))

is a fibre square of sheaves over T . In particular we see that X ×X×YX ,a T is an
algebraic space which proves part (1) of the lemma.

To prove the second statement we have to show that the left vertical arrow of
Diagram (78.3.3.1) is locally of finite type. By Lemma 78.3.1 the algebraic space
IsomX (x, x′) and is locally of finite type over T . Hence the right vertical arrow
of Diagram (78.3.3.1) is locally of finite type, see Morphisms of Spaces, Lemma
49.23.6. We conclude by Morphisms of Spaces, Lemma 49.23.3. �

Lemma 78.3.4. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. Then

(1) ∆f is representable (by schemes),
(2) ∆f is locally of finite type,
(3) ∆f is a monomorphism,
(4) ∆f is separated, and
(5) ∆f is locally quasi-finite.

Proof. We have already seen in Lemma 78.3.3 that ∆f is representable by algebraic
spaces. Hence the statements (2) – (5) make sense, see Properties of Stacks, Section
77.3. Also Lemma 78.3.3 guarantees (2) holds. Let T → X ×Y X be a morphism
and contemplate Diagram (78.3.3.1). By Algebraic Stacks, Lemma 71.9.2 the right
vertical arrow is injective as a map of sheaves, i.e., a monomorphism of algebraic
spaces. Hence also the morphism T ×X×YX X → T is a monomorphism. Thus
(3) holds. We already know that T ×X×YX X → T is locally of finite type. Thus
Morphisms of Spaces, Lemma 49.26.10 allows us to conclude that T ×X×YX X → T
is locally quasi-finite and separated. This proves (4) and (5). Finally, Morphisms
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of Spaces, Proposition 49.44.2 implies that T ×X×YX X is a scheme which proves
(1). �

Lemma 78.3.5. Let f : X → Y be a morphism of algebraic stacks representable
by algebraic spaces. Then the following are equivalent

(1) f is separated,
(2) ∆f is a closed immersion,
(3) ∆f is proper, or
(4) ∆f is universally closed.

Proof. The statements “f is separated”, “∆f is a closed immersion”, “∆f is uni-
versally closed”, and “∆f is proper” refer to the notions defined in Properties of
Stacks, Section 77.3. Choose a scheme V and a surjective smooth morphism V → Y.
Set U = X ×Y V which is an algebraic space by assumption, and the morphism
U → X is surjective and smooth. By Categories, Lemma 4.29.14 and Properties
of Stacks, Lemma 77.3.3 we see that for any property P (as in that lemma) we
have: ∆f has P if and only if ∆U/V : U → U ×V U has P . Hence the equivalence
of (2), (3) and (4) follows from Morphisms of Spaces, Lemma 49.37.9 applied to
U → V . Moreover, if (1) holds, then U → V is separated and we see that ∆U/V is
a closed immersion, i.e., (2) holds. Finally, assume (2) holds. Let T be a scheme,
and a : T → Y a morphism. Set T ′ = X ×Y T . To prove (1) we have to show that
the morphism of algebraic spaces T ′ → T is separated. Using Categories, Lemma
4.29.14 once more we see that ∆T ′/T is the base change of ∆f . Hence our assump-
tion (2) implies that ∆T ′/T is a closed immersion, hence T ′ → T is separated as
desired. �

Lemma 78.3.6. Let f : X → Y be a morphism of algebraic stacks representable
by algebraic spaces. Then the following are equivalent

(1) f is quasi-separated,
(2) ∆f is quasi-compact, or
(3) ∆f is finite type.

Proof. The statements “f is quasi-separated”, “∆f is quasi-compact”, and “∆f is
finite type” refer to the notions defined in Properties of Stacks, Section 77.3. Note
that (2) and (3) are equivalent in view of the fact that ∆f is locally of finite type
by Lemma 78.3.4 (and Algebraic Stacks, Lemma 71.10.9). Choose a scheme V and
a surjective smooth morphism V → Y. Set U = X ×Y V which is an algebraic
space by assumption, and the morphism U → X is surjective and smooth. By
Categories, Lemma 4.29.14 and Properties of Stacks, Lemma 77.3.3 we see that we
have: ∆f is quasi-compact if and only if ∆U/V : U → U ×V U is quasi-compact. If
(1) holds, then U → V is quasi-separated and we see that ∆U/V is quasi-compact,
i.e., (2) holds. Assume (2) holds. Let T be a scheme, and a : T → Y a morphism.
Set T ′ = X ×Y T . To prove (1) we have to show that the morphism of algebraic
spaces T ′ → T is quasi-separated. Using Categories, Lemma 4.29.14 once more we
see that ∆T ′/T is the base change of ∆f . Hence our assumption (2) implies that
∆T ′/T is quasi-compact, hence T ′ → T is quasi-separated as desired. �

Lemma 78.3.7. Let f : X → Y be a morphism of algebraic stacks representable
by algebraic spaces. Then the following are equivalent

(1) f is locally separated, and
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(2) ∆f is an immersion.

Proof. The statements “f is locally separated”, and “∆f is an immersion” refer
to the notions defined in Properties of Stacks, Section 77.3. Proof omitted. Hint:
Argue as in the proofs of Lemmas 78.3.5 and 78.3.6. �

78.4. Separation axioms

Let X = [U/R] be a presentation of an algebraic stack. Then the properties of
the diagonal of X over S, are the properties of the morphism j : R → U ×S U .
For example, if X = [S/G] for some smooth group G in algebraic spaces over S
then j is the structure morphism G→ U . Hence the diagonal is not automatically
separated itself (contrary to what happens in the case of schemes and algebraic
spaces). To say that [S/G] is quasi-separated over S should certainly imply that
G→ S is quasi-compact, but we hesitate to say that [S/G] is quasi-separated over S
without also requiring the morphism G→ S to be quasi-separated. In other words,
requiring the diagonal morphism to be quasi-compact does not really agree with
our intuition for a “quasi-separated algebraic stack”, and we should also require
the diagonal itself to be quasi-separated.

What about “separated algebraic stacks”? We have seen in Morphisms of Spaces,
Lemma 49.37.9 that an algebraic space is separated if and only if the diagonal is
proper. This is the condition that is usually used to define separated algebraic
stacks too. In the example [S/G] → S above this means that G → S is a proper
group scheme. This means algebraic stacks of the form [Spec(k)/E] are proper
over k where E is an elliptic curve over k (insert future reference here). In certain
situations it may be more natural to assume the diagonal is finite.

Definition 78.4.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is DM if ∆f is unramified1.
(2) We say f is quasi-DM if ∆f is locally quasi-finite2.
(3) We say f is separated if ∆f is proper.
(4) We say f is quasi-separated if ∆f is quasi-compact and quasi-separated.

In this definition we are using that ∆f is representable by algebraic spaces and
we are using Properties of Stacks, Section 77.3 to make sense out of imposing
conditions on ∆f . We note that these definitions do not conflict with the already
existing notions if f is representable by algebraic spaces, see Lemmas 78.3.6 and
78.3.5. There is an interesting way to characterize these conditions by looking at
higher diagonals, see Lemma 78.6.4.

Definition 78.4.2. Let X be an algebraic stack over the base scheme S. Denote
p : X → S the structure morphism.

1The letters DM stand for Deligne-Mumford. If f is DM then given any scheme T and any

morphism T → Y the fibre product XT = X ×Y T is an algebraic stack over T whose diagonal is
unramified, i.e., XT is DM. This implies XT is a Deligne-Mumford stack, see Theorem 78.15.6. In
other words a DM morphism is one whose “fibres” are Deligne-Mumford stacks. This hopefully

at least motivates the terminology.
2If f is quasi-DM, then the “fibres” XT of X → Y are quasi-DM. An algebraic stack X is quasi-

DM exactly if there exists a scheme U and a surjective flat morphism U → X of finite presentation
which is locally quasi-finite, see Theorem 78.15.3. Note the similarity to being Deligne-Mumford,

which is defined in terms of having an étale covering by a scheme.
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(1) We say X is DM over S if p : X → S is DM.
(2) We say X is quasi-DM over S if p : X → S is quasi-DM.
(3) We say X is separated over S if p : X → S is separated.
(4) We say X is quasi-separated over S if p : X → S is quasi-separated.
(5) We say X is DM if X is DM3 over Spec(Z).
(6) We say X is quasi-DM if X is quasi-DM over Spec(Z).
(7) We say X is separated if X is separated over Spec(Z).
(8) We say X is quasi-separated if X is quasi-separated over Spec(Z).

In the last 4 definitions we view X as an algebraic stack over Spec(Z) via Algebraic
Stacks, Definition 71.19.2.

Thus in each case we have an absolute notion and a notion relative to our given base
scheme (mention of which is usually suppressed by our abuse of notation introduced
in Properties of Stacks, Section 77.2). We will see that (1) ⇔ (5) and (2) ⇔ (6)
in Lemma 78.4.13. We spend some time proving some standard results on these
notions.

Lemma 78.4.3. Let f : X → Y be a morphism of algebraic stacks.

(1) If f is separated, then f is quasi-separated.
(2) If f is DM, then f is quasi-DM.
(3) If f is representable by algebraic spaces, then f is DM.

Proof. To see (1) note that a proper morphism of algebraic spaces is quasi-compact
and quasi-separated, see Morphisms of Spaces, Definition 49.37.1. To see (2) note
that an unramified morphism of algebraic spaces is locally quasi-finite, see Mor-
phisms of Spaces, Lemma 49.35.7. Finally (3) follows from Lemma 78.3.4. �

Lemma 78.4.4. All of the separation axioms listed in Definition 78.4.1 are stable
under base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic stacks. Let
f ′ : Y ′ ×Y X → Y ′ be the base change of f by Y ′ → Y. Then ∆f ′ is the base
change of ∆f by the morphism X ′ ×Y′ X ′ → X ×Y X , see Categories, Lemma
4.29.14. By the results of Properties of Stacks, Section 77.3 each of the properties
of the diagonal used in Definition 78.4.1 is stable under base change. Hence the
lemma is true. �

Lemma 78.4.5. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
a surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X →W has one of the separation properties of Definition
78.4.1 then so does f .

Proof. Denote g : W ×Y X →W the base change. Then ∆g is the base change of
∆f by the morphism q : W ×Y (X ×Y X ) → X ×Y X . Since q is the base change
of W → Y we see that q is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Hence the result follows from Properties of Stacks,
Lemma 77.3.4. �

Lemma 78.4.6. Let S be a scheme. The property of being quasi-DM over S, quasi-
separated over S, or separated over S (see Definition 78.4.2) is stable under change
of base scheme, see Algebraic Stacks, Definition 71.19.3.

3Theorem 78.15.6 shows that this is equivalent to X being a Deligne-Mumford stack.
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Proof. Follows immediately from Lemma 78.4.4. �

Lemma 78.4.7. Let f : X → Z, g : Y → Z and Z → T be morphisms of algebraic
stacks. Consider the induced morphism i : X ×Z Y → X ×T Y. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if ∆Z/T is quasi-separated, then i is quasi-separated,
(3) if ∆Z/T is separated, then i is separated,
(4) if Z → T is DM, then i is unramified,
(5) if Z → T is quasi-DM, then i is locally quasi-finite,
(6) if Z → T is separated, then i is proper, and
(7) if Z → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. The following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z

is a 2-fibre product diagram, see Categories, Lemma 4.29.13. Hence i is the base
change of the diagonal morphism ∆Z/T . Thus the lemma follows from Lemma
78.3.3, and the material in Properties of Stacks, Section 77.3. �

Lemma 78.4.8. Let T be an algebraic stack. Let g : X → Y be a morphism of
algebraic stacks over T . Consider the graph i : X → X ×T Y of g. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if Y → T is DM, then i is unramified,
(3) if Y → T is quasi-DM, then i is locally quasi-finite,
(4) if Y → T is separated, then i is proper, and
(5) if Y → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 78.4.7 applied to the morphism X =
X ×Y Y → X ×T Y. �

Lemma 78.4.9. Let f : X → T be a morphism of algebraic stacks. Let s : T → X
be a morphism such that f ◦ s is 2-isomorphic to idT . Then

(1) s is representable by algebraic spaces and locally of finite type,
(2) if f is DM, then s is unramified,
(3) if f is quasi-DM, then s is locally quasi-finite,
(4) if f is separated, then s is proper, and
(5) if f is quasi-separated, then s is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 78.4.8 applied to g = s and Y = T in
which case i : T → T ×T X is 2-isomorphic to s. �

Lemma 78.4.10. All of the separation axioms listed in Definition 78.4.1 are stable
under composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X .
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Our separation axiom is defined by requiring the diagonal to have some property P.
By Lemma 78.4.7 above we see that the second arrow also has this property. Hence
the lemma follows since the composition of morphisms which are representable by
algebraic spaces with property P also is a morphism with property P, see our
general discussion in Properties of Stacks, Section 77.3 and Morphisms of Spaces,
Lemmas 49.35.3, 49.26.3, 49.37.4, 49.8.4, and 49.4.8. �

Lemma 78.4.11. Let f : X → Y be a morphism of algebraic stacks over the base
scheme S.

(1) If Y is DM over S and f is DM, then X is DM over S.
(2) If Y is quasi-DM over S and f is quasi-DM, then X is quasi-DM over S.
(3) If Y is separated over S and f is separated, then X is separated over S.
(4) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-

separated over S.
(5) If Y is DM and f is DM, then X is DM.
(6) If Y is quasi-DM and f is quasi-DM, then X is quasi-DM.
(7) If Y is separated and f is separated, then X is separated.
(8) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.

Proof. Parts (1), (2), (3), and (4) follow immediately from Lemma 78.4.10 and
Definition 78.4.2. For (5), (6), (7), and (8) think of X and Y as algebraic stacks
over Spec(Z) and apply Lemma 78.4.10. Details omitted. �

The following lemma is a bit different to the analogue for algebraic spaces. To
compare take a look at Morphisms of Spaces, Lemma 49.4.10.

Lemma 78.4.12. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.

(1) If g ◦ f is DM then so is f .
(2) If g ◦ f is quasi-DM then so is f .
(3) If g ◦ f is separated and ∆g is separated, then f is separated.
(4) If g ◦ f is quasi-separated and ∆g is quasi-separated, then f is quasi-

separated.

Proof. Consider the factorization

X → X ×Y X → X ×Z X

of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces, see Lemmas 78.3.3 and 78.4.7. Hence for any scheme T and morphism
T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X×ZX ) T −→ B = (X ×Y X )×(X×ZX ) T −→ T.

If g ◦ f is DM (resp. quasi-DM), then the composition A→ T is unramified (resp.
locally quasi-finite). Hence (1) (resp. (2)) follows on applying Morphisms of Spaces,
Lemma 49.35.11 (resp. Morphisms of Spaces, Lemma 49.26.8). This proves (1) and
(2).

Proof of (4). Assume g ◦ f is quasi-separated and ∆g is quasi-separated. Consider
the factorization

X → X ×Y X → X ×Z X
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of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces and the second one is quasi-separated, see Lemmas 78.3.3 and 78.4.7. Hence
for any scheme T and morphism T → X×YX we get morphisms of algebraic spaces

A = X ×(X×ZX ) T −→ B = (X ×Y X )×(X×ZX ) T −→ T

such that B → T is quasi-separated. The composition A→ T is quasi-compact and
quasi-separated as we have assumed that g ◦ f is quasi-separated. Hence A → B
is quasi-separated by Morphisms of Spaces, Lemma 49.4.10. And A→ B is quasi-
compact by Morphisms of Spaces, Lemma 49.8.8. Thus f is quasi-separated.

Proof of (3). Assume g ◦ f is separated and ∆g is separated. Consider the factor-
ization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces and the second one is separated, see Lemmas 78.3.3 and 78.4.7. Hence for
any scheme T and morphism T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X×ZX ) T −→ B = (X ×Y X )×(X×ZX ) T −→ T

such that B → T is separated. The composition A → T is proper as we have
assumed that g ◦ f is quasi-separated. Hence A → B is proper by Morphisms of
Spaces, Lemma 49.37.6 which means that f is separated. �

Lemma 78.4.13. Let X be an algebraic stack over the base scheme S.

(1) X is DM ⇔ X is DM over S.
(2) X is quasi-DM ⇔ X is quasi-DM over S.
(3) If X is separated, then X is separated over S.
(4) If X is quasi-separated, then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic stacks over the base scheme S.

(5) If X is DM over S, then f is DM.
(6) If X is quasi-DM over S, then f is quasi-DM.
(7) If X is separated over S and ∆Y/S is separated, then f is separated.
(8) If X is quasi-separated over S and ∆Y/S is quasi-separated, then f is

quasi-separated.

Proof. Parts (5), (6), (7), and (8) follow immediately from Lemma 78.4.12 and
Spaces, Definition 47.13.2. To prove (3) and (4) think of X and Y as algebraic
stacks over Spec(Z) and apply Lemma 78.4.12. Similarly, to prove (1) and (2),
think of X as an algebraic stack over Spec(Z) consider the morphisms

X −→ X ×S X −→ X ×Spec(Z) X
Both arrows are representable by algebraic spaces. The second arrow is unramified
and locally quasi-finite as the base change of the immersion ∆S/Z. Hence the
composition is unramified (resp. locally quasi-finite) if and only if the first arrow
is unramified (resp. locally quasi-finite), see Morphisms of Spaces, Lemmas 49.35.3
and 49.35.11 (resp. Morphisms of Spaces, Lemmas 49.26.3 and 49.26.8). �

Lemma 78.4.14. Let X be an algebraic stack. Let W be an algebraic space, and
let f : W → X be a surjective, flat, locally finitely presented morphism.

(1) If f is unramified (i.e., étale, i.e., X is Deligne-Mumford), then X is DM.
(2) If f is locally quasi-finite, then X is quasi-DM.

http://stacks.math.columbia.edu/tag/050N
http://stacks.math.columbia.edu/tag/06MB


78.5. INERTIA STACKS 4221

Proof. Note that if f is unramified, then it is étale by Morphisms of Spaces, Lemma
49.36.12. This explains the parenthetical remark in (1). Assume f is unramified
(resp. locally quasi-finite). We have to show that ∆X : X → X × X is unramified
(resp. locally quasi-finite). Note that W ×W → X ×X is also surjective, flat, and
locally of finite presentation. Hence it suffices to show that

W ×X×X ,∆X X = W ×X W −→W ×W

is unramified (resp. locally quasi-finite), see Properties of Stacks, Lemma 77.3.3.
By assumption the morphism pri : W ×X W → W is unramified (resp. locally
quasi-finite). Hence the displayed arrow is unramified (resp. locally quasi-finite)
by Morphisms of Spaces, Lemma 49.35.11 (resp. Morphisms of Spaces, Lemma
49.26.8). �

Lemma 78.4.15. A monomorphism of algebraic stacks is separated and DM. The
same is true for immersions of algebraic stacks.

Proof. If f : X → Y is a monomorphism of algebraic stacks, then ∆f is an
isomorphism, see Properties of Stacks, Lemma 77.8.4. Since an isomorphism of
algebraic spaces is proper and unramified we see that f is separated and DM. The
second assertion follows from the first as an immersion is a monomorphism, see
Properties of Stacks, Lemma 77.9.5. �

Lemma 78.4.16. Let X be an algebraic stack. Let x ∈ |X |. Assume the residual
gerbe Zx of X at x exists. If X is DM, resp. quasi-DM, resp. separated, resp.
quasi-separated, then so is Zx.

Proof. This is true because Zx → X is a monomorphism hence DM and separated
by Lemma 78.4.15. Apply Lemma 78.4.11 to conclude. �

78.5. Inertia stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section
8.7. The actual construction, in the setting of fibred categories, and some of its
properties is in Categories, Section 4.32.

Lemma 78.5.1. Let X be an algebraic stack. Then the inertia stack IX is an
algebraic stack as well. The morphism

IX −→ X

is representable by algebraic spaces and locally of finite type. More generally, let
f : X → Y be a morphism of algebraic stacks. Then the morphism

IX/Y −→ X

is representable by algebraic spaces and locally of finite type.

Proof. By Categories, Lemma 4.32.1 there are equivalences

IX → X ×∆,X×SX ,∆ X and IX/Y → X ×∆,X×YX ,∆ X

which shows that the inertia stacks are algebraic stacks. Let T → X be a morphism
given by the object x of the fibre category of X over T . Then we get a 2-fibre product
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square

IsomX (x, x)

��

// IX

��
T

x // X
This follows immediately from the definition of IX . Since IsomX (x, x) is always an
algebraic space locally of finite type over T (see Lemma 78.3.1) we conclude that
IX → X is representable by algebraic spaces and locally of finite type. Finally, for
the relative inertia we get

IsomX (x, x)

��

Koo

��

// IX/Y

��
IsomY(f(x), f(x)) T

eoo x // X

with both squares 2-fibre products. This follows from Categories, Lemma 4.32.3.
The left vertical arrow is a morphism of algebraic spaces locally of finite type over
T , and hence is locally of finite type, see Morphisms of Spaces, Lemma 49.23.6.
Thus K is an algebraic space and K → T is locally of finite type. This proves the
assertion on the relative inertia. �

Remark 78.5.2. Let X be an algebraic stack. In Properties of Stacks, Remark
77.3.7 we have seen that the 2-category of morphisms X ′ → X representable by
algebraic spaces with target X forms a category. In this category the inertia stack
of X is a group object. Recall that an object of IX is just a pair (x, α) where x is
an object of X and α is an automorphism of x in the fibre category of X that x
lives in. The composition

c : IX ×X IX −→ IX
is given by the rule on objects

((x, α), (x′, α′), β) 7→ (x, α ◦ β−1 ◦ α′ ◦ β)

which makes sense as β : x → x′ is an isomorphism in the fibre category by our
definition of fibre products. The neutral element e : X → IX is given by the functor
x 7→ (x, idx). We omit the proof that the axioms of a group object hold. There is
a variant of this remark for relative inertia stacks.

Let X be an algebraic stack and let IX be its inertia stack. We have seen in the
proof of Lemma 78.5.1 that for any scheme T and object x of X over T there is a
canonical cartesian square

IsomX (x, x)

��

// IX

��
T

x // X

The group structure on IX discussed in Remark 78.5.2 induces the group structure
on IsomX (x, x) of Lemma 78.3.2. This allows us to define the sheaf IsomX also for
morphisms from algebraic spaces to X . We formalize this in the following definition.
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Definition 78.5.3. Let X be an algebraic stack and let X be an algebraic space.
Let x : X → X be a morphism. We set

IsomX (x, x) = X ×x,X IX
We endow it with the structure of a group algebraic space over X by pulling
back the composition law discussed in Remark 78.5.2. We will sometimes refer
to IsomX (x, x) as the sheaf of automorphisms of x.

As a variant we may occasionally use the notation IsomX (x, y) when given two
morphisms x, y : X → X . This will mean simply the algebraic space

(X ×x,X ,y X)×X×X,∆X
X.

Then it is true, as in Lemma 78.3.2, that IsomX (x, y) is a pseudo torsor for
IsomX (x, x) over X. We omit the verification.

Lemma 78.5.4. Let π : X → X be a morphism from an algebraic stack to an
algebraic space. Let f : X ′ → X be a morphism of algebraic spaces. Set X ′ =
X ′ ×X X . Then both squares in the diagram

IX ′ //

Categories, Equation (4.32.2.1)

��

X ′ //

��

X ′

��
IX // X // X

are fibre product squares.

Proof. The inertia stack IX ′ is the defined as the category of pairs (x′, α′) where
x′ is an object of X ′ and α′ is an automorphism of x′ in its fibre category over
(Sch/S)fppf , see Categories, Section 4.32. Suppose that x′ lies over the scheme
U and maps to the object x of X . By the construction of the 2-fibre product in
Categories, Lemma 4.30.3 we see that x′ = (U, a′, x, 1) where a′ : U → X ′ is a
morphism and 1 indicates that f ◦ a′ = π ◦ x as morphisms U → X. Moreover we
have IsomX ′(x

′, x′) = IsomX (x, x) as sheaves on U (by the very construction of the
2-fibre product). This implies that the left square is a fibre product square (details
omitted). �

Lemma 78.5.5. Let f : X → Y be a monomorphism of algebraic stacks. Then the
diagram

IX //

��

X

��
IY // Y

is a fibre product square.

Proof. This follows immediately from the fact that f is fully faithful (see Properties
of Stacks, Lemma 77.8.4) and the definition of the inertia in Categories, Section
4.32. Namely, an object of IX over a scheme T is the same thing as a pair (x, α)
consisting of an object x of X over T and a morphism α : x → x in the fibre
category of X over T . As f is fully faithful we see that α is the same thing as a
morphism β : f(x) → f(x) in the fibre category of Y over T . Hence we can think
of objects of IX over T as triples ((y, β), x, γ) where y is an object of Y over T ,
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β : y → y in YT and γ : y → f(x) is an isomorhism over T , i.e., an object of
IY ×Y X over T . �

Lemma 78.5.6. Let X be an algebraic stack. Let [U/R]→ X be a presentation. Let
G/U be the stabilizer group algebraic space associated to the groupoid (U,R, s, t, c).
Then

G

��

// U

��
IX // X

is a fibre product diagram.

Proof. Immediate from Groupoids in Spaces, Lemma 60.25.2. �

78.6. Higher diagonals

Let f : X → Y be a morphism of algebraic stacks. In this situation it makes sense
to consider not only the diagonal

∆f : X → X ×Y X
but also the diagonal of the diagonal, i.e., the morphism

∆∆f
: X −→ X ×(X×YX ) X

Because of this we sometimes use the following terminology. We denote ∆f,0 =
f the zeroth diagonal, we denote ∆f,1 = ∆f the first diagonal, and we denote
∆f,2 = ∆∆f

the second diagonal. Note that ∆f,1 is representable by algebraic
spaces and locally of finite type, see Lemma 78.3.3. Hence ∆f,2 is representable, a
monomorphism, locally of finite type, separated, and locally quasi-finite, see Lemma
78.3.4.

We can describe the second diagonal using the relative inertia stack. Namely, the
fibre product X ×(X×YX ) X is equivalent to the relative inertia stack IX/Y by
Categories, Lemma 4.32.1. Moreover, via this identification the second diagonal
becomes the neutral section

e : X → IX/Y
of the relative inertia stack. Moreover, recall from the proof of Lemma 78.5.1 that
given a morphism x : T → X the fibre product T ×x,X IX/Y is given as the kernel
K of the homomorphism of group algebraic spaces

IsomX (x, x) −→ IsomY(f(x), f(x))

over T . The morphism e corresponds to the neutral section e : T → K in this
situation.

Lemma 78.6.1. Let f : X → Y be a morphism of algebraic stacks. Then f is rep-
resentable by algebraic spaces if and only if the second diagonal is an isomorphism.

Proof. Namely, f is representable by algebraic spaces if and only if f is faithful,
see Algebraic Stacks, Lemma 71.15.2. On the other hand, f is faithful if and only
if for every object x of X over a scheme T the functor f induces an injection
IsomX (x, x) → IsomY(f(x), f(x)), which happens if and only if the kernel K is
trivial, which happens if and only if e : T → K is an isomorphism for every
x : T → X . Since K = T ×x,X IX/Y as discussed above, this proves the lemma. �
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This lemma leads to the following hierarchy for morphisms of algebraic stacks.

Lemma 78.6.2. A morphism f : X → Y of algebraic stacks is

(1) a monomorphism if and only if ∆f,1 is an isomorphism,
(2) representable by algebraic spaces if and only if ∆f,1 is a monomorphism,
(3) the second diagonal ∆f,2 is always a monomorphism.

Proof. Recall from Properties of Stacks, Lemma 77.8.4 that a morphism of alge-
braic stacks is a monomorphism if and only if its diagonal is an isomorphism of
stacks. Thus Lemma 78.6.1 can be rephrased as saying that a morphism is rep-
resentable by algebraic spaces if the diagonal is a monomorphism. In particular,
it shows that condition (3) of Lemma 78.3.4 is actually an if and only if, i.e., a
morphism of algebraic stacks is representable by algebraic spaces if and only if its
diagonal is a monomorphism. �

Lemma 78.6.3. Let f : X → Y be a morphism of algebraic stacks. Then

(1) ∆f,1 separated ⇔ ∆f,2 closed immersion ⇔ ∆f,2 proper ⇔ ∆f,2 univer-
sally closed,

(2) ∆f,1 quasi-separated ⇔ ∆f,2 finite type ⇔ ∆f,2 quasi-compact, and
(3) ∆f,1 locally separated ⇔ ∆f,2 immersion.

Proof. Follows from Lemmas 78.3.5, 78.3.6, and 78.3.7 applied to ∆f,1. �

The following lemma is kind of cute and it may suggest a generalization of these
conditions to higher algebraic stacks.

Lemma 78.6.4. Let f : X → Y be a morphism of algebraic stacks. Then

(1) f is separated if and only if ∆f,1 and ∆f,2 are universally closed, and
(2) f is quasi-separated if and only if ∆f,1 and ∆f,2 are quasi-compact.
(3) f is quasi-DM if and only if ∆f,1 and ∆f,2 are locally quasi-finite.
(4) f is DM if and only if ∆f,1 and ∆f,2 are unramified.

Proof. Proof of (1). Assume that ∆f,2 and ∆f,1 are universally closed. Then ∆f,1

is separated and universally closed by Lemma 78.6.3. By Morphisms of Spaces,
Lemma 49.9.7 and Algebraic Stacks, Lemma 71.10.9 we see that ∆f,1 is quasi-
compact. Hence it is quasi-compact, separated, universally closed and locally of
finite type (by Lemma 78.3.3) so proper. This proves “⇐” of (1). The proof of the
implication in the other direction is omitted.

Proof of (2). This follows immediately from Lemma 78.6.3.

Proof of (3). This follows from the fact that ∆f,2 is always locally quasi-finite by
Lemma 78.3.4 applied to ∆f = ∆f,1.

Proof of (4). This follows from the fact that ∆f,2 is always unramified as Lemma
78.3.4 applied to ∆f = ∆f,1 shows that ∆f,2 is locally of finite type and a monomor-
phism. See More on Morphisms of Spaces, Lemma 58.11.8. �

78.7. Quasi-compact morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 77.3 we have defined what it means for f to be
quasi-compact. Here is another characterization.
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Lemma 78.7.1. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent:

(1) f is quasi-compact, and
(2) for every quasi-compact algebraic stack Z and any morphism Z → Y the

algebraic stack Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic stacks with Z
quasi-compact. By Properties of Stacks, Lemma 77.6.2 there exists a quasi-compact
scheme U and a surjective smooth morphism U → Z. Since f is representable by
algebraic spaces and quasi-compact we see by definition that U×YX is an algebraic
space, and that U ×Y X → U is quasi-compact. Hence U ×Y X is a quasi-compact
algebraic space. The morphism U ×Y X → Z ×Y X is smooth and surjective (as
the base change of the smooth and surjective morphism U → Z). Hence Z ×Y X
is quasi-compact by another application of Properties of Stacks, Lemma 77.6.2

Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to show
that the morphism of algebraic spaces p : Z ×Y X → Z is quasi-compact. Let
U ⊂ Z be affine open. Then p−1(U) = U ×Y Z and the algebraic space U ×Y Z
is quasi-compact by assumption (2). Hence p is quasi-compact, see Morphisms of
Spaces, Lemma 49.8.7. �

This motivates the following definition.

Definition 78.7.2. Let f : X → Y be a morphism of algebraic stacks. We say f is
quasi-compact if for every quasi-compact algebraic stack Z and morphism Z → Y
the fibre product Z ×Y X is quasi-compact.

By Lemma 78.7.1 above this agrees with the already existing notion for morphisms
of algebraic stacks representable by algebraic spaces. In particular this notion
agrees with the notions already defined for morphisms between algebraic stacks
and schemes.

Lemma 78.7.3. The base change of a quasi-compact morphism of algebraic stacks
by any morphism of algebraic stacks is quasi-compact.

Proof. Omitted. �

Lemma 78.7.4. The composition of a pair of quasi-compact morphisms of algebraic
stacks is quasi-compact.

Proof. Omitted. �

Lemma 78.7.5. Let
X

f
//

p
��

Y

q
��

Z
be a 2-commutative diagram of morphisms of algebraic stacks. If f is surjective and
p is quasi-compact, then q is quasi-compact.

Proof. Let T be a quasi-compact algebraic stack, and let T → Z be a morphism.
By Properties of Stacks, Lemma 77.5.3 the morphism T ×ZX → T ×ZY is surjective
and by assumption T ×Z X is quasi-compact. Hence T ×Z Y is quasi-compact by
Properties of Stacks, Lemma 77.6.2. �
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Lemma 78.7.6. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.
If g ◦ f is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y.
The first map is quasi-compact by Lemma 78.4.9 because it is a section of the quasi-
separated morphism X ×Z Y → X (a base change of g, see Lemma 78.4.4). The
second map is quasi-compact as it is the base change of f , see Lemma 78.7.3. And
compositions of quasi-compact morphisms are quasi-compact, see Lemma 78.7.4.

�

Lemma 78.7.7. Let f : X → Y be a morphism of algebraic stacks.

(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then

f is quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic stacks is

quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 78.7.6. Part (2) follows from (1) and Lemma
78.4.12. For (3) let X → Y and Z → Y be morphisms of quasi-compact and
quasi-separated algebraic stacks. Then X ×Y Z → Z is quasi-compact and quasi-
separated as a base change of X → Y using (2) and Lemmas 78.7.3 and 78.4.4.
Hence X ×Y Z is quasi-compact and quasi-separated as an algebraic stack quasi-
compact and quasi-separated over Z, see Lemmas 78.4.11 and 78.7.4. �

78.8. Noetherian algebraic stacks

We have already defined locally Noetherian algebraic stacks in Properties of Stacks,
Section 77.7.

Definition 78.8.1. Let X be an algebraic stack. We say X is Noetherian if X is
quasi-compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic stack X is not just quasi-compact and locally
Noetherian, but also quasi-separated. In the language of Section 78.6 if we denote
p : X → Spec(Z) the “absolute” structure morphism (i.e., the structure morphism
of X viewed as an algebraic stack over Z), then

X Noetherian⇔ X locally Noetherian and ∆p,0,∆p,1,∆p,2 quasi-compact.

This will later mean that an algebraic stack of finite type over a Noetherian algebraic
stack is not automatically Noetherian.

78.9. Open morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 77.3 we have defined what it means for f to be
universally open. Here is another characterization.

Lemma 78.9.1. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent

(1) f is universally open, and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.
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Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a
surjective smooth morphism V → Z. By assumption the morphism V ×Y X → V
of algebraic spaces is universally open, in particular the map |V ×Y X| → |V | is
open. By Properties of Stacks, Section 77.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is open it follows that the right
vertical arrow is open. This proves (2). The implication (2)⇒ (1) follows from the
definitions. �

Thus we may use the following natural definition.

Definition 78.9.2. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is open if the map of topological spaces |X | → |Y| is open.
(2) We say f is universally open if for every morphism of algebraic stacks
Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|

is open, i.e., the base change Z ×Y X → Z is open.

Lemma 78.9.3. The base change of a universally open morphism of algebraic
stacks by any morphism of algebraic stacks is universally open.

Proof. This is immediate from the definition. �

Lemma 78.9.4. The composition of a pair of (universally) open morphisms of
algebraic stacks is (universally) open.

Proof. Omitted. �

78.10. Submersive morphisms

Definition 78.10.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is submersive4 if the continuous map |X | → |Y| is submersive,
see Topology, Definition 5.5.3.

(2) We say f is universally submersive if for every morphism of algebraic
stacks Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

4This is very different from the notion of a submersion of differential manifolds.
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78.11. Universally closed morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 77.3 we have defined what it means for f to be
universally closed. Here is another characterization.

Lemma 78.11.1. Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent

(1) f is universally closed, and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a
surjective smooth morphism V → Z. By assumption the morphism V ×Y X → V
of algebraic spaces is universally closed, in particular the map |V ×Y X| → |V | is
closed. By Properties of Stacks, Section 77.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) ⇒ (1) follows from
the definitions. �

Thus we may use the following natural definition.

Definition 78.11.2. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is closed if the map of topological spaces |X | → |Y| is closed.
(2) We say f is universally closed if for every morphism of algebraic stacks
Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|

is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 78.11.3. The base change of a universally closed morphism of algebraic
stacks by any morphism of algebraic stacks is universally closed.

Proof. This is immediate from the definition. �

Lemma 78.11.4. The composition of a pair of (universally) closed morphisms of
algebraic stacks is (universally) closed.

Proof. Omitted. �
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78.12. Types of morphisms smooth local on source-and-target

Given a property of morphisms of algebraic spaces which is smooth local on the
source-and-target, see Descent on Spaces, Definition 56.18.1 we may use it to define
a corresponding property of morphisms of algebraic stacks, namely by imposing
either of the equivalent conditions of the lemma below.

Lemma 78.12.1. Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target. Let f : X → Y be a morphism of algebraic
stacks. Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y

where U and V are algebraic spaces and the vertical arrows are smooth. The fol-
lowing are equivalent

(1) for any diagram as above such that in addition U → X ×Y V is smooth
the morphism h has property P, and

(2) for some diagram as above with a : U → X surjective the morphism h has
property P.

If X and Y are representable by algebraic spaces, then this is also equivalent to
f (as a morphism of algebraic spaces) having property P. If P is also preserved
under any base change, and fppf local on the base, then for morphisms f which are
representable by algebraic spaces this is also equivalent to f having property P in
the sense of Properties of Stacks, Section 77.3.

Proof. Let us prove the implication (1) ⇒ (2). Pick an algebraic space V and
a surjective and smooth morphism V → Y. Pick an algebraic space U and a
surjective and smooth morphism U → X ×Y V . Note that U → X is surjective and
smooth as well, as a composition of the base change X ×Y V → X and the chosen
map U → X ×Y V . Hence we obtain a diagram as in (1). Thus if (1) holds, then
h : U → V has property P, which means that (2) holds as U → X is surjective.

Conversely, assume (2) holds and let U, V, a, b, h be as in (2). Next, let U ′, V ′, a′, b′, h′

be any diagram as in (1). Picture

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y
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To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the commutative diagram

U

h

��

U ×X U ′

��

oo

(h,h′)

~~

// U ′

h′

��

U ×Y V ′

cc

��
V V ×Y V ′oo // V ′

of algebraic spaces. Note that the horizontal arrows are smooth as base changes of
the smooth morphisms V → Y, V ′ → Y, U → X , and U ′ → X . Note that

U ×X U ′

��

// U ′

��
U ×Y V ′ // X ×Y V ′

is cartesian, hence the left vertical arrow is smooth as U ′, V ′, a′, b′, h′ is as in (1).
Since P is local on the target we see that the base change U ×Y V ′ → V ×Y V ′ has
P and hence after precomposing by the smooth morphism U ×X U ′ → U ×Y V ′
the morphism we conclude (h, h′) has P. Finally, since U ×X U ′ → U ′ is surjective
this implies that h′ has P as P is local on the source-and-target. This finishes the
proof of the equivalence of (1) and (2).

If X and Y are representable, then Descent on Spaces, Lemma 56.18.3 applies which
shows that (1) and (2) are equivalent to f having P.

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property
P. The left vertical arrow is smooth and surjective and the right vertical arrow is
smooth. Thus Descent on Spaces, Lemma 56.18.3 kicks in and shows that Z×YX →
Z has property P. �

Definition 78.12.2. Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target. We say a morphism f : X → Y of algebraic
stacks has property P if the equivalent conditions of Lemma 78.12.1 hold.

Remark 78.12.3. Let P be a property of morphisms of algebraic spaces which
is smooth local on the source-and-target and stable under composition. Then the
property of morphisms of algebraic stacks defined in Definition 78.12.2 is stable
under composition. Namely, let f : X → Y and g : Y → Z be morphisms of
algebraic stacks having property P. Choose an algebraic space W and a surjective
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smooth morphism W → Z. Choose an algebraic space V and a surjective smooth
morphism V → Y×ZW . Finally, choose an algebraic space U and a surjective and
smooth morphism U → X ×Y V . Then the morphisms V → W and U → V have
property P by definition. Whence U → W has property P as we assumed that P
is stable under composition. Thus, by definition again, we see that g ◦ f : X → Z
has property P.

Remark 78.12.4. Let P be a property of morphisms of algebraic spaces which
is smooth local on the source-and-target and stable under base change. Then the
property of morphisms of algebraic stacks defined in Definition 78.12.2 is stable
under base change. Namely, let f : X → Y and g : Y ′ → Y be morphisms of
algebraic stacks and assume f has property P. Choose an algebraic space V and a
surjective smooth morphism V → Y. Choose an algebraic space U and a surjective
smooth morphism U → X ×Y V . Finally, choose an algebraic space V ′ and a
surjective and smooth morphism V ′ → Y ′ ×Y V . Then the morphism U → V has
property P by definition. Whence V ′ ×V U → V ′ has property P as we assumed
that P is stable under base change. Considering the diagram

V ′ ×V U //

��

Y ′ ×Y X //

��

X

��
V ′ // Y ′ // Y

we see that the left top horizontal arrow is smooth and surjective, whence by
definition we see that the projection Y ′ ×Y X → Y ′ has property P.

Remark 78.12.5. Let P,P ′ be properties of morphisms of algebraic spaces which
are smooth local on the source-and-target and stable under base change. Suppose
that we have P ⇒ P ′ for morphisms of algebraic spaces. Then we also have
P ⇒ P ′ for the properties of morphisms of algebraic stacks defined in Definition
78.12.2 using P and P ′. This is clear from the definition.

78.13. Morphisms of finite type

The property “locally of finite type” of morphisms of algebraic spaces is smooth
local on the source-and-target, see Descent on Spaces, Remark 56.18.5. It is also
stable under base change and fpqc local on the target, see Morphisms of Spaces,
Lemma 49.23.3 and Descent on Spaces, Lemma 56.10.7. Hence, by Lemma 78.12.1
above, we may define what it means for a morphism of algebraic spaces to be locally
of finite type as follows and it agrees with the already existing notion defined in
Properties of Stacks, Section 77.3 when the morphism is representable by algebraic
spaces.

Definition 78.13.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f locally of finite type if the equivalent conditions of Lemma 78.12.1
hold with P = locally of finite type.

(2) We say f is of finite type if it is locally of finite type and quasi-compact.

Lemma 78.13.2. The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. Combine Remark 78.12.3 with Morphisms of Spaces, Lemma 49.23.2. �
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Lemma 78.13.3. A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. Combine Remark 78.12.4 with Morphisms of Spaces, Lemma 49.23.3. �

Lemma 78.13.4. An immersion is locally of finite type.

Proof. Follows from Morphisms of Spaces, Lemma 49.23.7. �

Lemma 78.13.5. Let f : X → Y be a morphism of algebraic stacks. If f is locally
of finite type and Y is locally Noetherian, then X is locally Noetherian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes, V → Y is surjective and
smooth, and U → V ×Y X is surjective and smooth. Then U → V is locally of
finite type. If Y is locally Noetherian, then V is locally Noetherian. By Morphisms,
Lemma 28.16.6 we see that U is locally Noetherian, which means that X is locally
Noetherian. �

The following two lemmas will be improved on later (after we have discussed mor-
phisms of algebraic stacks which are locally of finite presentation).

Lemma 78.13.6. Let f : X → Y be a morphism of algebraic stacks. Let W → Y
be a surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X →W is locally of finite type, then f is locally of finite
type.

Proof. Choose an algebraic space V and a surjective smooth morphism V → Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
have to show that U → V is locally of finite presentation. Now we base change
everything by W → Y: Set U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and
Y ′ = W ×Y Y = W . Then it is still true that U ′ → V ′ ×Y′ X ′ is smooth by base
change. Hence by our definition of locally finite type morphisms of algebraic stacks
and the assumption that X ′ → Y ′ is locally of finite type, we see that U ′ → V ′ is
locally of finite type. Then, since V ′ → V is surjective, flat, and locally of finite
presentation as a base change of W → Y we see that U → V is locally of finite type
by Descent on Spaces, Lemma 56.10.7 and we win. �

Lemma 78.13.7. Let X → Y → Z be morphisms of algebraic stacks. Assume
X → Z is locally of finite type and that X → Y is representable by algebraic spaces,
surjective, flat, and locally of finite presentation. Then Y → Z is locally of finite
type.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Set U = V ×Y X which is an algebraic space. We know that U → V is surjective,
flat, and locally of finite presentation and that U → W is locally of finite type.
Hence the lemma reduces to the case of morphisms of algebraic spaces. The case
of morphisms of algebraic spaces is Descent on Spaces, Lemma 56.14.2. �
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Lemma 78.13.8. Let f : X → Y, g : Y → Z be morphisms of algebraic stacks. If
g ◦ f : X → Z is locally of finite type, then f : X → Y is locally of finite type.

Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrow W → Z is surjective and smooth,
the arrow V → Y ×Z W is surjective and smooth, and the arrow U → X ×Y V
is surjective and smooth. Then also U → X ×Z V is surjective and smooth (as a
composition of a surjective and smooth morphism with a base change of such). By
definition we see that U → W is locally of finite type. Hence U → V is locally of
finite type by Morphisms, Lemma 28.16.8 which in turn means (by definition) that
X → Y is locally of finite type. �

78.14. Points of finite type

Let X be an algebraic stack. A finite type point x ∈ |X | is a point which can be
represented by a morphism Spec(k)→ X which is locally of finite type. Finite type
points are a suitable replacement of closed points for algebraic spaces and algebraic
stacks. There are always “enough of them” for example.

Lemma 78.14.1. Let X be an algebraic stack. Let x ∈ |X |. The following are
equivalent:

(1) There exists a morphism Spec(k) → X which is locally of finite type and
represents x.

(2) There exists a scheme U , a closed point u ∈ U , and a smooth morphism
ϕ : U → X such that ϕ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u))→ U is of finite type,
and U → X is representable and locally of finite type (by Morphisms of Spaces,
Lemmas 49.36.8 and 49.27.5). Hence we see (1) holds by Lemma 78.13.2.

Conversely, assume Spec(k) → X is locally of finite type and represents x. Let
U → X be a surjective smooth morphism where U is a scheme. By assumption
U ×X Spec(k)→ U is a morphism of algebraic spaces which is locally of finite type.
Pick a finite type point v of U ×X Spec(k) (there exists at least one, see Morphisms
of Spaces, Lemma 49.25.3). By Morphisms of Spaces, Lemma 49.25.4 the image
u ∈ U of v is a finite type point of U . Hence by Morphisms, Lemma 28.17.4 after
shrinking U we may assume that u is a closed point of U , i.e., (2) holds. �

Definition 78.14.2. Let X be an algebraic stack. We say a point x ∈ |X | is a
finite type point5 if the equivalent conditions of Lemma 78.14.1 are satisfied. We
denote Xft-pts the set of finite type points of X .

We can describe the set of finite type points as follows.

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite
type point”.

http://stacks.math.columbia.edu/tag/06U9
http://stacks.math.columbia.edu/tag/06FX
http://stacks.math.columbia.edu/tag/06FY


78.14. POINTS OF FINITE TYPE 4235

Lemma 78.14.3. Let X be an algebraic stack. We have

Xft-pts =
⋃

ϕ:U→X smooth
|ϕ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes
smooth over X or over all affine schemes smooth over X .

Proof. Immediate from Lemma 78.14.1. �

Lemma 78.14.4. Let f : X → Y be a morphism of algebraic stacks. If f is locally
of finite type, then f(Xft-pts) ⊂ Yft-pts.

Proof. Take x ∈ Xft-pts. Represent x by a locally finite type morphism x :
Spec(k) → X . Then f ◦ x is locally of finite type by Lemma 78.13.2. Hence
f(x) ∈ Yft-pts. �

Lemma 78.14.5. Let f : X → Y be a morphism of algebraic stacks. If f is locally
of finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 78.14.4. Let y ∈ |Y| be a finite type
point. Represent y by a morphism Spec(k)→ Y which is locally of finite type. As
f is surjective the algebraic stack Xk = Spec(k)×Y X is nonempty, therefore has a
finite type point x ∈ |Xk| by Lemma 78.14.3. Now Xk → X is a morphism which
is locally of finite type as a base change of Spec(k) → Y (Lemma 78.13.3). Hence
the image of x in X is a finite type point by Lemma 78.14.4 which maps to y by
construction. �

Lemma 78.14.6. Let X be an algebraic stack. For any locally closed subset T ⊂ |X |
we have

T 6= ∅ ⇒ T ∩ Xft-pts 6= ∅.
In particular, for any closed subset T ⊂ |X | we see that T ∩ Xft-pts is dense in T .

Proof. Let i : Z → X be the reduced induced substack structure on T , see Prop-
erties of Stacks, Remark 77.10.5. An immersion is locally of finite type, see Lemma
78.13.4. Hence by Lemma 78.14.4 we see Zft-pts ⊂ Xft-pts∩T . Finally, any nonempty
affine scheme U with a smooth morphism towards Z has at least one closed point,
hence Z has at least one finite type point by Lemma 78.14.3. The lemma fol-
lows. �

Here is another, more technical, characterization of a finite type point on an al-
gebraic stack. It tells us in particular that the residual gerbe of X at x exists
whenever x is a finite type point!

Lemma 78.14.7. Let X be an algebraic stack. Let x ∈ |X |. The following are
equivalent:

(1) x is a finite type point,
(2) there exists an algebraic stack Z whose underlying topological space |Z|

is a singleton, and a morphism f : Z → X which is locally of finite type
such that {x} = |f |(|Z|), and

(3) the residual gerbe Zx of X at x exists and the inclusion morphism Zx → X
is locally of finite type.
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Proof. (All of the morphisms occurring in this paragraph are representable by
algebraic spaces, hence the conventions and results of Properties of Stacks, Section
77.3 are applicable.) Assume x is a finite type point. Choose an affine scheme U ,
a closed point u ∈ U , and a smooth morphism ϕ : U → X with ϕ(u) = x, see
Lemma 78.14.3. Set u = Spec(κ(u)) as usual. Set R = u ×X u so that we obtain
a groupoid in algebraic spaces (u,R, s, t, c), see Algebraic Stacks, Lemma 71.16.1.
The projection morphisms R→ u are the compositions

R = u×X u→ u×X U → u×X X = u

where the first arrow is of finite type (a base change of the closed immersion of
schemes u → U) and the second arrow is smooth (a base change of the smooth
morphism U → X ). Hence s, t : R → u are locally of finite type (as compositions,
see Morphisms of Spaces, Lemma 49.23.2). Since u is the spectrum of a field, it
follows that s, t are flat and locally of finite presentation (by Morphisms of Spaces,
Lemma 49.27.7). We see that Z = [u/R] is an algebraic stack by Criteria for
Representability, Theorem 74.17.2. By Algebraic Stacks, Lemma 71.16.1 we obtain
a canonical morphism

f : Z −→ X

which is fully faithful. Hence this morphism is representable by algebraic spaces, see
Algebraic Stacks, Lemma 71.15.2 and a monomorphism, see Properties of Stacks,
Lemma 77.8.4. It follows that the residual gerbe Zx ⊂ X of X at x exists and
that f factors through an equivalence Z → Zx, see Properties of Stacks, Lemma
77.11.11. By construction the diagram

u

��

// U

��
Z

f // X

is commutative. By Criteria for Representability, Lemma 74.17.1 the left vertical
arrow is surjective, flat, and locally of finite presentation. Consider

u×X U

��

// Z ×X U //

��

U

��
u // Z

f // X

As u → X is locally of finite type, we see that the base change u ×X U → U is
locally of finite type. Moreover, u ×X U → Z ×X U is surjective, flat, and locally
of finite presentation as a base change of u → Z. Thus {u ×X U → Z ×X U} is
an fppf covering of algebraic spaces, and we conclude that Z ×X U → U is locally
of finite type by Descent on Spaces, Lemma 56.14.1. By definition this means that
f is locally of finite type (because the vertical arrow Z ×X U → Z is smooth as a
base change of U → X and surjective as Z has only one point). Since Z = Zx we
see that (3) holds.

It is clear that (3) implies (2). If (2) holds then x is a finite type point of X by
Lemma 78.14.4 and Lemma 78.14.6 to see that Zft-pts is nonempty, i.e., the unique
point of Z is a finite type point of Z. �
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78.15. Special presentations of algebraic stacks

The following lemma gives a criterion for when a “slice” of a presentation is still
flat over the algebraic stack.

Lemma 78.15.1. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite
presentation. Let f1, . . . , fr ∈ Γ(U,OU ) and z ∈ |F | such that f1, . . . , fr map to a
regular sequence in the local ring OF,z. Then, after replacing U by an open subspace
containing p(z), the morphism

V (f1, . . . , fr) −→ X

is flat and locally of finite presentation.

Proof. Choose a scheme W and a surjective smooth morphism W → X . Choose an
extension of fields k ⊂ k′ and a morphism w : Spec(k′)→W such that Spec(k′)→
W → X is 2-isomorphic to Spec(k′) → Spec(k) → X . This is possible as W → X
is surjective. Consider the commutative diagram

U

��

U ×X Wpr0

oo

��

F ′
p′

oo

��
X Woo Spec(k′)oo

both of whose squares are cartesian. By our choice of w we see that F ′ = F×Spec(k)

Spec(k′). Thus F ′ → F is surjective and we can choose a point z′ ∈ |F ′| mapping to
z. Since F ′ → F is flat we see that OF,z → OF ′,z′ is flat, see Morphisms of Spaces,
Lemma 49.28.8. Hence f1, . . . , fr map to a regular sequence in OF ′,z′ , see Algebra,
Lemma 10.67.7. Note that U ×X W →W is a morphism of algebraic spaces which
is flat and locally of finite presentation. Hence by More on Morphisms of Spaces,
Lemma 58.22.1 we see that there exists an open subspace U ′ of U ×X W containing
p(z′) such that the intersection U ′∩(V (f1, . . . , fr)×XW ) is flat and locally of finite
presentation over W . Note that pr0(U ′) is an open subspace of U containing p(z)
as pr0 is smooth hence open. Now we see that U ′ ∩ (V (f1, . . . , fr)×X W ) → X is
flat and locally of finite presentation as the composition

U ′ ∩ (V (f1, . . . , fr)×X W )→W → X .

Hence Properties of Stacks, Lemma 77.3.5 implies pr0(U ′) ∩ V (f1, . . . , fr) → X is
flat and locally of finite presentation as desired. �

Lemma 78.15.2. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo
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where U is an algebraic space, k is a field, and U → X is locally of finite type. Let
z ∈ |F | be such that dimz(F ) = 0. Then, after replacing U by an open subspace
containing p(z), the morphism

U −→ X
is locally quasi-finite.

Proof. Since f : U → X is locally of finite type there exists a maximal open
W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is locally quasi-finite,
see Properties of Stacks, Remark 77.9.19 (2). Hence all we need to do is prove
that p(z) is a point of W (f). Moreover, the remark referenced above also shows
the formation of W (f) commutes with arbitrary base change by a morphism which
is representable by algebraic spaces. Hence it suffices to show that the morphism
F → Spec(k) is locally quasi-finite at z. This follows immediately from Morphisms
of Spaces, Lemma 49.32.6. �

A quasi-DM stack has a locally quasi-finite “covering” by a scheme.

Theorem 78.15.3. Let X be an algebraic stack. The following are equivalent

(1) X is quasi-DM, and
(2) there exists a scheme W and a surjective, flat, locally finitely presented,

locally quasi-finite morphism W → X .

Proof. The implication (2) ⇒ (1) is Lemma 78.4.14. Assume (1). Let x ∈ |X |
be a finite type point. We will produce a scheme over X which “works” in a
neighbourhood of x. At the end of the proof we will take the disjoint union of all
of these to conclude.

Let U be an affine scheme, U → X a smooth morphism, and u ∈ U a closed point
which maps to x, see Lemma 78.14.1. Denote u = Spec(κ(u)) as usual. Consider
the following commutative diagram

u

��

Roo

��
U

��

F

��

p
oo

X uoo

with both squares fibre product squares, in particular R = u ×X u. In the proof
of Lemma 78.14.7 we have seen that (u,R, s, t, c) is a groupoid in algebraic spaces
with s, t locally of finite type. Let G → u be the stabilizer group algebraic space
(see Groupoids in Spaces, Definition 60.15.2). Note that

G = R×(u×u) u = (u×X u)×(u×u) u = X ×X×X u.
As X is quasi-DM we see that G is locally quasi-finite over u. By More on Groupoids
in Spaces, Lemma 61.7.11 we have dim(R) = 0.

Let e : u→ R be the identity of the groupoid. Thus both compositions u→ R→ u
are equal to the identity morphism of u. Note that R ⊂ F is a closed subspace
as u ⊂ U is a closed subscheme. Hence we can also think of e as a point of F .
Consider the maps of étale local rings

OU,u
p]−→ OF,e −→ OR,e

http://stacks.math.columbia.edu/tag/06MF
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Note that OR,e has dimension 0 by the result of the first paragraph. On the other
hand, the kernel of the second arrow is p](mu)OF,e as R is cut out in F by mu.
Thus we see that

mz =
√
p](mu)OF,e

On the other hand, as the morphism U → X is smooth we see that F → u is
a smooth morphism of algebraic spaces. This means that F is a regular alge-
braic space (Spaces over Fields, Lemma 54.9.1). Hence OF,e is a regular local ring
(Properties of Spaces, Lemma 48.23.1). Note that a regular local ring is Cohen-
Macaulay (Algebra, Lemma 10.102.3). Let d = dim(OF,e). By Algebra, Lemma
10.100.10 we can find f1, . . . , fd ∈ OU,u whose images ϕ(f1), . . . , ϕ(fd) form a reg-
ular sequence in OF,z. By Lemma 78.15.1 after shrinking U we may assume that
Z = V (f1, . . . , fd) → X is flat and locally of finite presentation. Note that by
construction FZ = Z ×X u is a closed subspace of F = U ×X u, that e is a point of
this closed subspace, and that

dim(OFZ ,e) = 0.

By Morphisms of Spaces, Lemma 49.32.1 it follows that dime(FZ) = 0 because the
transcendence degree of e relative to u is zero. Hence it follows from Lemma 78.15.2
that after possibly shrinking U the morphism Z → X is locally quasi-finite.

We conclude that for every finite type point x of X there exists a locally quasi-
finite, flat, locally finitely presented morphism fx : Zx → X with x in the image of
|fx|. Set W =

∐
x Zx and f =

∐
fx. Then f is flat, locally of finite presentation,

and locally quasi-finite. In particular the image of |f | is open, see Properties of
Stacks, Lemma 77.4.7. By construction the image contains all finite type points
of X , hence f is surjective by Lemma 78.14.6 (and Properties of Stacks, Lemma
77.4.4). �

Lemma 78.15.4. Let Z be a DM, locally Noetherian, reduced algebraic stack
with |Z| a singleton. Then there exists a field k and a surjective étale morphism
Spec(k)→ Z.

Proof. By Properties of Stacks, Lemma 77.11.3 there exists a field k and a surjec-
tive, flat, locally finitely presented morphism Spec(k) → Z. Set U = Spec(k) and
R = U×Z U so we obtain a groupoid in algebraic spaces (U,R, s, t, c), see Algebraic
Stacks, Lemma 71.9.2. Note that by Algebraic Stacks, Remark 71.16.3 we have an
equivalence

fcan : [U/R] −→ Z
The projections s, t : R → U are locally of finite presentation. As Z is DM we see
that the stabilizer group algebraic space

G = U ×U×U R = U ×U×U (U ×Z U) = U ×X×X ,∆X X

is unramified over U . In particular dim(G) = 0 and by More on Groupoids in
Spaces, Lemma 61.7.11 we have dim(R) = 0. This implies that R is a scheme, see
Spaces over Fields, Lemma 54.7.1. By Varieties, Lemma 32.13.2 we see that R (and
also G) is the disjoint union of spectra of Artinian local rings finite over k via either
s or t. Let P = Spec(A) ⊂ R be the open and closed subscheme whose underlying
point is the identity e of the groupoid scheme (U,R, s, t, c). As s◦e = t◦e = idSpec(k)

we see that A is an Artinian local ring whose residue field is identified with k via
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either s] : k → A or t] : k → A. Note that s, t : Spec(A) → Spec(k) are finite (by
the lemma referenced above). Since G→ Spec(k) is unramified we see that

G ∩ P = P ×U×U U = Spec(A⊗k⊗k k)

is unramified over k. On the other hand A ⊗k⊗k k is local as a quotient of A and
surjects onto k. We conclude that A ⊗k⊗k k = k. It follows that P → U × U is
universally injective (as P has only one point with residue field k, unramified (by
the computation of the fibre over the unique image point above), and of finite type

(because s, t are) hence a monomorphism (see Étale Morphisms, Lemma 40.7.1).
Thus s|P , t|P : P → U define a finite flat equivalence relation. Thus we may apply
Groupoids, Proposition 38.21.8 to conclude that U/P exists and is a scheme U .
Moreover, U → U is finite locally free and P = U ×U U . In fact U = Spec(k0)
where k0 ⊂ k is the ring of R-invariant functions. As k is a field it follows from the
definition Groupoids, Equation (38.21.0.1) that k0 is a field.

We claim that

(78.15.4.1) Spec(k0) = U = U/P → [U/R] = Z

is the desired surjective étale morphism. It follows from Properties of Stacks,
Lemma 77.11.1 that this morphism is surjective. Thus it suffices to show that
(78.15.4.1) is étale6. Instead of proving the étaleness directly we first apply Boot-
strap, Lemma 62.9.1 to see that there exists a groupoid scheme (U,R, s, t, c) such
that (U,R, s, t, c) is the restriction of (U,R, s, t, c) via the quotient morphism U →
U . (We verified all the hypothesis of the lemma above except for the assertion that
j : R→ U ×U is separated and locally quasi-finite which follows from the fact that
R is a separated scheme locally quasi-finite over k.) Since U → U is finite locally
free we see that [U/R]→ [U/R] is an equivalence, see Groupoids in Spaces, Lemma
60.24.2.

Note that s, t are the base changes of the morphisms s, t by U → U . As {U → U} is
an fppf covering we conclude s, t are flat, locally of finite presentation, and locally
quasi-finite, see Descent, Lemmas 34.19.13, 34.19.9, and 34.19.22. Consider the
commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian
diagram. By the equality we see the inner square is cartesian. Since P is open in
R we conclude that e is an open immersion by Descent, Lemma 34.19.14.

But of course, if e is an open immersion and s, t are flat and locally of finite
presentation then the morphisms t, s are étale. For example you can see this by
applying More on Groupoids, Lemma 39.4.1 which shows that ΩR/U = 0 implies

that s, t : R → U is unramified (see Morphisms, Lemma 28.36.2), which in turn
implies that s, t are étale (see Morphisms, Lemma 28.37.16). Hence Z = [U/R] is

6We urge the reader to find his/her own proof of this fact. In fact the argument has a lot
in common with the final argument of the proof of Bootstrap, Theorem 62.10.1 hence probably

should be isolated into its own lemma somewhere.
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an étale presentation of the algebraic stack Z and we conclude that U → Z is étale
by Properties of Stacks, Lemma 77.3.3. �

Lemma 78.15.5. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite
presentation. Let z ∈ |F | be such that F → Spec(k) is unramified at z. Then, after
replacing U by an open subspace containing p(z), the morphism

U −→ X
is étale.

Proof. Since f : U → X is flat and locally of finite presentation there exists a
maximal open W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is étale,
see Properties of Stacks, Remark 77.9.19 (5). Hence all we need to do is prove
that p(z) is a point of W (f). Moreover, the remark referenced above also shows
the formation of W (f) commutes with arbitrary base change by a morphism which
is representable by algebraic spaces. Hence it suffices to show that the morphism
F → Spec(k) is étale at z. Since it is flat and locally of finite presentation as a
base change of U → X and since F → Spec(k) is unramified at z by assumption,
this follows from Morphisms of Spaces, Lemma 49.36.12. �

A DM stack is a Deligne-Mumford stack.

Theorem 78.15.6. Let X be an algebraic stack. The following are equivalent

(1) X is DM,
(2) X is Deligne-Mumford, and
(3) there exists a scheme W and a surjective étale morphism W → X .

Proof. Recall that (3) is the definition of (2), see Algebraic Stacks, Definition
71.12.2. The implication (3) ⇒ (1) is Lemma 78.4.14. Assume (1). Let x ∈ |X |
be a finite type point. We will produce a scheme over X which “works” in a
neighbourhood of x. At the end of the proof we will take the disjoint union of all
of these to conclude.

By Lemma 78.14.7 the residual gerbe Zx of X at x exists and Zx → X is locally of
finite type. By Lemma 78.4.16 the algebraic stack Zx is DM. By Lemma 78.15.4
there exists a field k and a surjective étale morphism z : Spec(k) → Zx. In par-
ticular the composition x : Spec(k)→ X is locally of finite type (by Morphisms of
Spaces, Lemmas 49.23.2 and 49.36.9).

Pick a scheme U and a smooth morphism U → X such that x is in the image of
|U | → |X |. Consider the following fibre square

U

��

Foo

��
X Spec(k)

xoo
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in other words F = U ×X ,x Spec(k). By Properties of Stacks, Lemma 77.4.3 we see
that F is nonempty. As Zx → X is a monomorphism we have

Spec(k)×z,Zx,z Spec(k) = Spec(k)×x,X ,x Spec(k)

with étale projection maps to Spec(k) by construction of z. Since

F ×U F = (Spec(k)×X Spec(k))×Spec(k) F

we see that the projections maps F ×U F → F are étale as well. It follows that
∆F/U : F → F ×U F is étale (see Morphisms of Spaces, Lemma 49.36.11). By
Morphisms of Spaces, Lemma 49.45.2 this implies that ∆F/U is an open immersion,
which finally implies by Morphisms of Spaces, Lemma 49.35.9 that F → U is
unramified.

Pick a nonempty affine scheme V and an étale morphism V → F . (This could be
avoided by working directly with F , but it seems easier to explain what’s going on
by doing so.) Picture

U

��

Foo

��

Voo

{{
X Spec(k)

xoo

Then V → Spec(k) is a smooth morphism of schemes and V → U is an unramified
morphism of schemes (see Morphisms of Spaces, Lemmas 49.34.2 and 49.35.3). Pick
a closed point v ∈ V with k ⊂ κ(v) finite separable, see Varieties, Lemma 32.15.6.
Let u ∈ U be the image point. The local ring OV,v is regular (see Varieties, Lemma
32.15.3) and the local ring homomorphism

ϕ : OU,u −→ OV,v
coming from the morphism V → U is such that ϕ(mu)OV,v = mv, see Mor-
phisms, Lemma 28.36.14. Hence we can find f1, . . . , fd ∈ OU,u such that the images
ϕ(f1), . . . , ϕ(fd) form a basis for mv/m

2
v over κ(v). Since OV,v is a regular local

ring this implies that ϕ(f1), . . . , ϕ(fd) form a regular sequence in OV,v (see Alge-
bra, Lemma 10.102.3). After replacing U by an open neighbourhood of u we may
assume f1, . . . , fd ∈ Γ(U,OU ). After replacing U by a possibly even smaller open
neighbourhood of u we may assume that V (f1, . . . , fd) → X is flat and locally of
finite presentation, see Lemma 78.15.1. By construction

V (f1, . . . , fd)×X Spec(k)←− V (f1, . . . , fd)×X V
is étale and V (f1, . . . , fd)×XV is the closed subscheme T ⊂ V cut out by f1|V , . . . , fd|V .
Hence by construction v ∈ T and

OT,v = OV,v/(ϕ(f1), . . . , ϕ(fd)) = κ(v)

a finite separable extension of k. It follows that T → Spec(k) is unramified at v, see
Morphisms, Lemma 28.36.14. By definition of an unramified morphism of algebraic
spaces this means that V (f1, . . . , fd) ×X Spec(k) → Spec(k) is unramified at the
image of v in V (f1, . . . , fd) ×X Spec(k). Applying Lemma 78.15.5 we see that on
shrinking U to yet another open neighbourhood of u the morphism V (f1, . . . , fd)→
X is étale.

We conclude that for every finite type point x of X there exists an étale morphism
fx : Wx → X with x in the image of |fx|. Set W =

∐
xWx and f =

∐
fx. Then
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f is étale. In particular the image of |f | is open, see Properties of Stacks, Lemma
77.4.7. By construction the image contains all finite type points of X , hence f is
surjective by Lemma 78.14.6 (and Properties of Stacks, Lemma 77.4.4). �

78.16. Quasi-finite morphisms

The property “locally quasi-finite” of morphisms of algebraic spaces is not smooth
local on the source-and-target so we cannot use the material in Section 78.12 to
define locally quasi-finite morphisms of algebraic stacks. We do already know what
it means for a morphism of algebraic stacks representable by algebraic spaces to
be locally quasi-finite, see Properties of Stacks, Section 77.3. To find a condition
suitable for general morphisms we make the following observation.

Lemma 78.16.1. Let f : X → Y be a morphism of algebraic stacks. Assume f is
representable by algebraic spaces. The following are equivalent

(1) f is locally quasi-finite, and
(2) f is locally of finite type and for every morphism Spec(k)→ Y where k is

a field the space |Spec(k)×Y X| is discrete.

Proof. Assume (1). In this case the morphism of algebraic spaces Xk → Spec(k)
is locally quasi-finite as a base change of f . Hence |Xk| is discrete by Morphisms
of Spaces, Lemma 49.26.5. Conversely, assume (2). Pick a surjective smooth mor-
phism V → Y where V is a scheme. It suffices to show that the morphism of
algebraic spaces V ×Y X → V is locally quasi-finite, see Properties of Stacks,
Lemma 77.3.3. The morphism V ×Y X → V is locally of finite type by assumption.
For any morphism Spec(k)→ V where k is a field

Spec(k)×V (V ×Y X ) = Spec(k)×Y X
has a discrete space of points by assumption. Hence we conclude that V ×Y X → V
is locally quasi-finite by Morphisms of Spaces, Lemma 49.26.5. �

A morphism of algebraic stacks which is representable by algebraic spaces is quasi-
DM, see Lemma 78.4.3. Combined with the lemma above we see that the following
definition does not conflict with all of the already existing notion in the case of
morphisms representable by algebraic spaces.

Definition 78.16.2. Let f : X → Y be a morphism of algebraic stacks. We say f
is locally quasi-finite if f is quasi-DM, locally of finite type, and for every morphism
Spec(k)→ Y where k is a field the space |Xk| is discrete.

The condition that f be quasi-DM is natural. For example, let k be a field and
consider the morphism π : [Spec(k)/Gm] → Spec(k) which has singleton fibres
and is locally of finite type. As we will see later this morphism is smooth of
relative dimension −1, and we’d like our locally quasi-finite morphisms to have
relative dimension 0. Also, note that the section Spec(k) → [Spec(k)/Gm] does
not have discrete fibres, hence is not locally quasi-finite, and we’d like to have the
following permanence property for locally quasi-finite morphisms: If f : X → X ′ is
a morphism of algebraic stacks locally quasi-finite over the algebraic stack Y, then
f is locally quasi-finite (in fact something a bit stronger holds, see Lemma 78.16.8).

Another justification for the definition above is Lemma 78.16.7 below which charac-
terizes being locally quasi-finite in terms of the existence of suitable “presentations”
or “coverings” of X and Y.
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Lemma 78.16.3. A base change of a locally quasi-finite morphism is locally quasi-
finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 78.4.4 and for locally
finite type morphisms in Lemma 78.13.3. It is immediate that the condition on
fibres is inherited by a base change. �

Lemma 78.16.4. Let X → Spec(k) be a locally quasi-finite morphism where X is
an algebraic stack and k is a field. Let f : V → X be a locally quasi-finite morphism
where V is a scheme. Then V → Spec(k) is locally quasi-finite.

Proof. By Lemma 78.13.2 we see that V → Spec(k) is locally of finite type. As-
sume, to get a contradiction, that V → Spec(k) is not locally quasi-finite. Then
there exists a nontrivial specialization v  v′ of points of V , see Morphisms,
Lemma 28.21.6. In particular trdegk(κ(v)) > trdegk(κ(v′)), see Morphisms, Lemma
28.29.6. Because |X | is discrete we see that |f |(v) = |f |(v′). Consider R = V ×X V .
Then R is an algebraic space and the projections s, t : R→ V are locally quasi-finite
as base changes of V → X (which is representable by algebraic spaces so this follows
from the discussion in Properties of Stacks, Section 77.3). By Properties of Stacks,
Lemma 77.4.3 we see that there exists an r ∈ |R| such that s(r) = v and t(r) = v′.
By Morphisms of Spaces, Lemma 49.31.3 we see that the transcendence degree of
v/k is equal to the transcendence degree of r/k is equal to the transcendence degree
of v′/k. This contradiction proves the lemma. �

Lemma 78.16.5. A composition of a locally quasi-finite morphisms is locally quasi-
finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 78.4.10 and for
locally finite type morphisms in Lemma 78.13.2. Let X → Y and Y → Z be locally
quasi-finite. Let k be a field and let Spec(k)→ Z be a morphism. It suffices to show
that |Xk| is discrete. By Lemma 78.16.3 the morphisms Xk → Yk and Yk → Spec(k)
are locally quasi-finite. In particular we see that Yk is a quasi-DM algebraic stack,
see Lemma 78.4.13. By Theorem 78.15.3 we can find a scheme V and a surjective,
flat, locally finitely presented, locally quasi-finite morphism V → Yk. By Lemma
78.16.4 we see that V is locally quasi-finite over k, in particular |V | is discrete. The
morphism V ×YkXk → Xk is surjective, flat, and locally of finite presentation hence
|V ×Yk Xk| → |Xk| is surjective and open. Thus it suffices to show that |V ×Yk Xk|
is discrete. Note that V is a disjoint union of spectra of Artinian local k-algebras
Ai with residue fields ki, see Varieties, Lemma 32.13.2. Thus it suffices to show
that each

|Spec(Ai)×Yk Xk| = |Spec(ki)×Yk Xk| = |Spec(ki)×Y X|
is discrete, which follows from the assumption that X → Y is locally quasi-finite. �

Before we characterize locally quasi-finite morphisms in terms of coverings we do
it for quasi-DM morphisms.

Lemma 78.16.6. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is quasi-DM,
(2) for any morphism V → Y with V an algebraic space there exists a sur-

jective, flat, locally finitely presented, locally quasi-finite morphism U →
X ×Y V where U is an algebraic space, and
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(3) there exist algebraic spaces U , V and a morphism V → Y which is surjec-
tive, flat, and locally of finite presentation, and a morphism U → X ×Y V
which is surjective, flat, locally of finite presentation, and locally quasi-
finite.

Proof. The implication (2) ⇒ (3) is immediate.

Assume (1) and let V → Y be as in (2). Then X ×Y V → V is quasi-DM, see
Lemma 78.4.4. By Lemma 78.4.3 the algebraic space V is DM, hence quasi-DM.
Thus X×YV is quasi-DM by Lemma 78.4.11. Hence we may apply Theorem 78.15.3
to get the morphism U → X ×Y V as in (2).

Assume (3). Let V → Y and U → X ×Y V be as in (3). To prove that f is
quasi-DM it suffices to show that X ×Y V → V is quasi-DM, see Lemma 78.4.5. By
Lemma 78.4.14 we see that X ×Y V is quasi-DM. Hence X ×Y V → V is quasi-DM
by Lemma 78.4.13 and (1) holds. This finishes the proof of the lemma. �

Lemma 78.16.7. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is locally quasi-finite,
(2) f is quasi-DM and for any morphism V → Y with V an algebraic space

and any locally quasi-finite morphism U → X×YV where U is an algebraic
space the morphism U → V is locally quasi-finite,

(3) for any morphism V → Y from an algebraic space V there exists a sur-
jective, flat, locally finitely presented, and locally quasi-finite morphism
U → X ×Y V where U is an algebraic space such that U → V is locally
quasi-finite,

(4) there exists algebraic spaces U , V , a surjective, flat, and locally of finite
presentation morphism V → Y, and a morphism U → X ×Y V which is
surjective, flat, locally of finite presentation, and locally quasi-finite such
that U → V is locally quasi-finite.

Proof. Assume (1). Then f is quasi-DM by assumption. Let V → Y and U →
X ×Y V be as in (2). By Lemma 78.16.5 the composition U → X ×Y V → V is
locally quasi-finite. Thus (1) implies (2).

Assume (2). Let V → Y be as in (3). By Lemma 78.16.6 we can find an algebraic
space U and a surjective, flat, locally finitely presented, locally quasi-finite mor-
phism U → X ×Y V . By (2) the composition U → V is locally quasi-finite. Thus
(2) implies (3).

It is immediate that (3) implies (4).

Assume (4). We will prove (1) holds, which finishes the proof. By Lemma 78.16.6
we see that f is quasi-DM. To prove that f is locally of finite type it suffices to
prove that g : X ×Y V → V is locally of finite type, see Lemma 78.13.6. Then it
suffices to check that g precomposed with h : U → X ×Y V is locally of finite type,
see Lemma 78.13.7. Since g ◦h : U → V was assumed to be locally quasi-finite this
holds, hence f is locally of finite type. Finally, let k be a field and let Spec(k)→ Y
be a morphism. Then V ×Y Spec(k) is a nonempty algebraic space which is locally
of finite presentation over k. Hence we can find a finite extension k ⊂ k′ and a

http://stacks.math.columbia.edu/tag/06UF
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morphism Spec(k′)→ V such that

Spec(k′) //

��

V

��
Spec(k) // Y

commutes (details omitted). Then Xk′ → Xk is representable (by schemes), surjec-
tive, and finite locally free. In particular |Xk′ | → |Xk| is surjective and open. Thus
it suffices to prove that |Xk′ | is discrete. Since

U ×V Spec(k′) = U ×X×YV Xk′

we see that U×V Spec(k′)→ Xk′ is surjective, flat, and locally of finite presentation
(as a base change of U → X ×Y V ). Hence |U×V Spec(k′)| → |Xk′ | is surjective and
open. Thus it suffices to show that |U ×V Spec(k′)| is discrete. This follows from
the fact that U → V is locally quasi-finite (either by our definition above or from
the original definition for morphisms of algebraic spaces, via Morphisms of Spaces,
Lemma 49.26.5). �

Lemma 78.16.8. Let X → Y → Z be morphisms of algebraic stacks. Assume
that X → Z is locally quasi-finite and Y → Z is quasi-DM. Then X → Y is locally
quasi-finite.

Proof. Write X → Y as the composition

X −→ X ×Z Y −→ Y
The second arrow is locally quasi-finite as a base change of X → Z, see Lemma
78.16.3. The first arrow is locally quasi-finite by Lemma 78.4.8 as Y → Z is quasi-
DM. Hence X → Y is locally quasi-finite by Lemma 78.16.5. �

78.17. Flat morphisms

The property “being flat” of morphisms of algebraic spaces is smooth local on the
source-and-target, see Descent on Spaces, Remark 56.18.5. It is also stable under
base change and fpqc local on the target, see Morphisms of Spaces, Lemma 49.28.4
and Descent on Spaces, Lemma 56.10.11. Hence, by Lemma 78.12.1 above, we may
define what it means for a morphism of algebraic spaces to be flat as follows and
it agrees with the already existing notion defined in Properties of Stacks, Section
77.3 when the morphism is representable by algebraic spaces.

Definition 78.17.1. Let f : X → Y be a morphism of algebraic stacks. We say f
is flat if the equivalent conditions of Lemma 78.12.1 hold with P = flat.

Lemma 78.17.2. The composition of flat morphisms is flat.

Proof. Combine Remark 78.12.3 with Morphisms of Spaces, Lemma 49.28.3. �

Lemma 78.17.3. A base change of a flat morphism is flat.

Proof. Combine Remark 78.12.4 with Morphisms of Spaces, Lemma 49.28.4. �

Lemma 78.17.4. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective flat morphism of algebraic stacks. If the base change Z ×Y X → Z
is flat, then f is flat.
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Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Then W → Z is surjective and flat (Morphisms of Spaces, Lemma 49.34.7) hence
W → Y is surjective and flat (by Properties of Stacks, Lemma 77.5.2 and Lemma
78.17.2). Since the base change of Z ×Y X → Z by W → Z is a flat morphism
(Lemma 78.17.3) we may replace Z by W .

Choose an algebraic space V and a surjective smooth morphism V → Y. Choose
an algebraic space U and a surjective smooth morphism U → V ×Y X . We have
to show that U → V is flat. Now we base change everything by W → Y: Set
U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W . Then it is
still true that U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by our definition
of flat morphisms of algebraic stacks and the assumption that X ′ → Y ′ is flat, we
see that U ′ → V ′ is flat. Then, since V ′ → V is surjective as a base change of
W → Y we see that U → V is flat by Morphisms of Spaces, Lemma 49.29.3 (2) and
we win. �

Lemma 78.17.5. Let X → Y → Z be morphisms of algebraic stacks. If X → Z
is flat and X → Y is surjective and flat, then Y → Z is flat.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
know that U → V is flat and that U →W is flat. Also, as X → Y is surjective we
see that U → V is surjective (as a composition of surjective morphisms). Hence the
lemma reduces to the case of morphisms of algebraic spaces. The case of morphisms
of algebraic spaces is Morphisms of Spaces, Lemma 49.29.5. �

78.18. Morphisms of finite presentation

The property “locally of finite presentation” of morphisms of algebraic spaces is
smooth local on the source-and-target, see Descent on Spaces, Remark 56.18.5. It
is also stable under base change and fpqc local on the target, see Morphisms of
Spaces, Lemma 49.27.3 and Descent on Spaces, Lemma 56.10.8. Hence, by Lemma
78.12.1 above, we may define what it means for a morphism of algebraic spaces to be
locally of finite presentation as follows and it agrees with the already existing notion
defined in Properties of Stacks, Section 77.3 when the morphism is representable
by algebraic spaces.

Definition 78.18.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f locally of finite presentation if the equivalent conditions of
Lemma 78.12.1 hold with P = locally of finite presentation.

(2) We say f is of finite presentation if it is locally of finite presentation,
quasi-compact, and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation.

Lemma 78.18.2. The composition of finitely presented morphisms is of finite pre-
sentation. The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 78.12.3 with Morphisms of Spaces, Lemma 49.27.2. �

Lemma 78.18.3. A base change of a finitely presented morphism is of finite pre-
sentation. The same holds for morphisms which are locally of finite presentation.
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Proof. Combine Remark 78.12.4 with Morphisms of Spaces, Lemma 49.27.3. �

Lemma 78.18.4. A morphism which is locally of finite presentation is locally of
finite type. A morphism of finite presentation is of finite type.

Proof. Combine Remark 78.12.5 with Morphisms of Spaces, Lemma 49.27.5. �

Lemma 78.18.5. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks
If g ◦f is locally of finite presentation and g is locally of finite type, then f is locally
of finite presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → Y ×Z W .
Choose an algebraic space U and a surjective smooth morphism U → X ×Y V .
The lemma follows upon applying Morphisms of Spaces, Lemma 49.27.9 to the
morphisms U → V →W . �

Lemma 78.18.6. An open immersion is locally of finite presentation.

Proof. Follows from Morphisms of Spaces, Lemma 49.27.11. �

Lemma 78.18.7. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the
base change Z ×Y X → Z is locally of finite presentation, then f is locally of finite
presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Then W → Z is surjective, flat, and locally of finite presentation (Morphisms of
Spaces, Lemmas 49.34.7 and 49.34.5) hence W → Y is surjective, flat, and locally
of finite presentation (by Properties of Stacks, Lemma 77.5.2 and Lemmas 78.17.2
and 78.18.2). Since the base change of Z ×Y X → Z by W → Z is locally of finite
presentation (Lemma 78.17.3) we may replace Z by W .

Choose an algebraic space V and a surjective smooth morphism V → Y. Choose an
algebraic space U and a surjective smooth morphism U → V ×YX . We have to show
that U → V is locally of finite presentation. Now we base change everything by
W → Y: Set U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W .
Then it is still true that U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by
our definition of locally finitely presented morphisms of algebraic stacks and the
assumption that X ′ → Y ′ is locally of finite presentation, we see that U ′ → V ′ is
locally of finite presentation. Then, since V ′ → V is surjective, flat, and locally of
finite presentation as a base change of W → Y we see that U → V is locally of
finite presentation by Descent on Spaces, Lemma 56.10.8 and we win. �

Lemma 78.18.8. Let X → Y → Z be morphisms of algebraic stacks. If X → Z
is locally of finite presentation and X → Y is surjective, flat, and locally of finite
presentation, then Y → Z is locally of finite presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
know that U → V is flat and locally of finite presentation and that U → W is
locally of finite presentation. Also, as X → Y is surjective we see that U → V is
surjective (as a composition of surjective morphisms). Hence the lemma reduces
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to the case of morphisms of algebraic spaces. The case of morphisms of algebraic
spaces is Descent on Spaces, Lemma 56.14.1. �

Lemma 78.18.9. Let f : X → Y be a morphism of algebraic stacks which is
surjective, flat, and locally of finite presentation. Then for every scheme U and
object y of Y over U there exists an fppf covering {Ui → U} and objects xi of X
over Ui such that f(xi) ∼= y|Ui in YUi .

Proof. We may think of y as a morphism U → Y. By Properties of Stacks, Lemma
77.5.3 and Lemmas 78.18.3 and 78.17.3 we see that X ×Y U → U is surjective, flat,
and locally of finite presentation. Let V be a scheme and let V → X ×Y U smooth
and surjective. Then V → X ×Y U is also surjective, flat, and locally of finite
presentation (see Morphisms of Spaces, Lemmas 49.34.7 and 49.34.5). Hence also
V → U is surjective, flat, and locally of finite presentation, see Properties of Stacks,
Lemma 77.5.2 and Lemmas 78.18.2, and 78.17.2. Hence {V → U} is the desired
fppf covering and x : V → X is the desired object. �

Lemma 78.18.10. Let fj : Xj → X , j ∈ J be a family of morphisms of algebraic
stacks which are each flat and locally of finite presentation and which are jointly
surjective, i.e., |X | =

⋃
|Xi|. Then for every scheme U and object x of X over U

there exists an fppf covering {Ui → U}i∈I , a map a : I → J , and objects xi of Xa(i)

over Ui such that fa(i)(xi) ∼= y|Ui in XUi .

Proof. Apply Lemma 78.18.9 to the morphism
∐
j∈J Xj → X . (There is a slight

set theoretic issue here – due to our setup of things – which we ignore.) To finish,
note that a morphism xi : Ui →

∐
j∈J Xj is given by a disjoint union decomposition

Ui =
∐
Ui,j and morphisms Ui,j → Xj . Then the fppf covering {Ui,j → U} and

the morphisms Ui,j → Xj do the job. �

Lemma 78.18.11. Let f : X → Y be flat and locally of finite presentation. Then
|f | : |X | → |Y| is open.

Proof. Choose a scheme V and a smooth surjective morphism V → Y. Choose a
scheme U and a smooth surjective morphism U → V ×Y X . By assumption the
morphism of schemes U → V is flat and locally of finite presentation. Hence U → V
is open by Morphisms, Lemma 28.26.9. By construction of the topology on |Y| the
map |V | → |Y| is open. The map |U | → |X | is surjective. The result follows from
these facts by elementary topology. �

78.19. Gerbes

An important type of algebraic stack are the stacks of the form [B/G] where B is an
algebraic space and G is a flat and locally finitely presented group algebraic space
over B (acting trivially on B), see Criteria for Representability, Lemma 74.18.3. It
turns out that an algebraic stack is a gerbe when it locally in the fppf topology is
of this form, see Lemma 78.19.8. In this section we briefly discuss this notion and
the corresponding relative notion.

Definition 78.19.1. Let f : X → Y be a morphism of algebraic stacks. We say X
is a gerbe over Y if X is a gerbe over Y as stacks in groupoids over (Sch/S)fppf ,
see Stacks, Definition 8.11.4. We say an algebraic stack X is a gerbe if there exists
a morphism X → X where X is an algebraic space which turns X into a gerbe over
X.
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The condition that X be a gerbe over Y is defined purely in terms of the topology
and category theory underlying the given algebraic stacks; but as we will see later
this condition has geometric consequences. For example it implies that X → Y is
surjective, flat, and locally of finite presentation, see Lemma 78.19.7. The absolute
notion is trickier to parse, because it may not be at first clear that X is well
determined. Actually, it is.

Lemma 78.19.2. Let X be an algebraic stack. If X is a gerbe, then the sheafifica-
tion of the presheaf

(Sch/S)oppfppf → Sets, U 7→ Ob(XU )/∼=

is an algebraic space and X is a gerbe over it.

Proof. (In this proof the abuse of language introduced in Section 78.2 really pays
off.) Choose a morphism π : X → X where X is an algebraic space which turns
X into a gerbe over X. It suffices to prove that X is the sheafification of the
presheaf F displayed in the lemma. It is clear that there is a map c : F → X.
We will use Stacks, Lemma 8.11.3 properties (2)(a) and (2)(b) to see that the map
c# : F# → X is surjective and injective, hence an isomorphism, see Sites, Lemma
7.12.2. Surjective: Let T be a scheme and let f : T → X. By property (2)(a) there
exists an fppf covering {hi : Ti → T} and morphisms xi : Ti → X such that f ◦ hi
corresponds to π ◦ xi. Hence we see that f |Ti is in the image of c. Injective: Let T
be a scheme and let x, y : T → X be morphisms such that c ◦ x = c ◦ y. By (2)(b)
we can find a covering {Ti → T} and morphisms x|Ti → y|Ti in the fibre category
XTi . Hence the restrictions x|Ti , y|Ti are equal in F(Ti). This proves that x, y give
the same section of F# over T as desired. �

Lemma 78.19.3. Let

X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If X is a gerbe over Y, then X ′ is a gerbe
over Y ′.

Proof. Immediate from the definitions and Stacks, Lemma 8.11.5. �

Lemma 78.19.4. Let X → Y and Y → Z be morphisms of algebraic stacks. If X
is a gerbe over Y and Y is a gerbe over Z, then X is a gerbe over Z.

Proof. Immediate from Stacks, Lemma 8.11.6. �

Lemma 78.19.5. Let

X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If Y ′ → Y is surjective, flat, and locally of
finite presentation and X ′ is a gerbe over Y ′, then X is a gerbe over Y.

Proof. Follows immediately from Lemma 78.18.9 and Stacks, Lemma 8.11.7. �
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Lemma 78.19.6. Let π : X → U be a morphism from an algebraic stack to an
algebraic space and let x : U → X be a section of π. Set G = IsomX (x, x), see
Definition 78.5.3. If X is a gerbe over U , then

(1) there is a canonical equivalence of stacks in groupoids

xcan : [U/G] −→ X .
where [U/G] is the quotient stack for the trivial action of G on U ,

(2) G→ U is flat and locally of finite presentation, and
(3) U → X is surjective, flat, and locally of finite presentation.

Proof. Set R = U ×x,X ,x U . The morphism R → U × U factors through the
diagonal ∆U : U → U × U as it factors through U ×U U = U . Hence R = G
because

G = IsomX (x, x)

= U ×x,X IX
= U ×x,X (X ×∆,X×SX ,∆ X )

= (U ×x,X ,x U)×U×U,∆U
U

= R×U×U,∆U
U

= R

for the fourth equality use Categories, Lemma 4.29.12. Let t, s : R → U be the
projections. The composition law c : R ×s,U,t R → R constructed on R in Al-
gebraic Stacks, Lemma 71.16.1 agrees with the group law on G (proof omitted).
Thus Algebraic Stacks, Lemma 71.16.1 shows we obtain a canonical fully faithful
1-morphism

xcan : [U/G] −→ X
of stacks in groupoids over (Sch/S)fppf . To see that it is an equivalence it suffices
to show that it is essentially surjective. To do this it suffices to show that any
object of X over a scheme T comes fppf locally from x via a morphism T → U ,
see Stacks, Lemma 8.4.8. However, this follows the condition that π turns X into
a gerbe over X, see property (2)(a) of Stacks, Lemma 8.11.3.

By Criteria for Representability, Lemma 74.18.3 we conclude that G → U is flat
and locally of finite presentation. Finally, U → X is surjective, flat, and locally of
finite presentation by Criteria for Representability, Lemma 74.17.1. �

Lemma 78.19.7. Let π : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) X is a gerbe over Y, and
(2) there exists an algebraic space U , a group algebraic space G flat and locally

of finite presentation over U , and a surjective, flat, and locally finitely
presented morphism U → Y such that X ×Y U ∼= [U/G] over U .

Proof. Assume (2). By Lemma 78.19.5 to prove (1) it suffices to show that [U/G]
is a gerbe over U . This is immediate from Groupoids in Spaces, Lemma 60.26.2.

Assume (1). Any base change of π is a gerbe, see Lemma 78.19.3. As a first step
we choose a scheme V and a surjective smooth morphism V → Y. Thus we may
assume that π : X → V is a gerbe over a scheme. This means that there exists an
fppf covering {Vi → V } such that the fibre category XVi is nonempty, see Stacks,
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Lemma 8.11.3 (2)(a). Note that U =
∐
Vi → U is surjective, flat, and locally of

finite presentation. Hence we may replace V by U and assume that π : X → U is a
gerbe over a scheme U and that there exists an object x of X over U . By Lemma
78.19.6 we see that X = [U/G] over U for some flat and locally finitely presented
group algebraic space G over U . �

Lemma 78.19.8. Let π : X → Y be a morphism of algebraic stacks. If X is a
gerbe over Y, then π is surjective, flat, and locally of finite presentation.

Proof. By Properties of Stacks, Lemma 77.5.4 and Lemmas 78.17.4 and 78.18.7 it
suffices to prove to the lemma after replacing π by a base change with a surjective,
flat, locally finitely presented morphism Y ′ → Y. By Lemma 78.19.7 we may
assume Y = U is an algebraic space and X = [U/G] over U . Then U → [U/G] is
surjective, flat, and locally of finite presentation, see Lemma 78.19.6. This implies
that π is surjective, flat, and locally of finite presentation by Properties of Stacks,
Lemma 77.5.5 and Lemmas 78.17.5 and 78.18.8. �

Proposition 78.19.9. Let X be an algebraic stack. The following are equivalent

(1) X is a gerbe, and
(2) IX → X is flat and locally of finite presentation.

Proof. Assume (1). Choose a morphism X → X into an algebraic space X which
turns X into a gerbe over X. Let X ′ → X is a surjective, flat, locally finitely
presented morphism and set X ′ = X ′ ×X X . Note that X ′ is a gerbe over X ′ by
Lemma 78.19.3. Then both squares in

IX ′ //

��

X ′ //

��

X ′

��
IX // X // X

are fibre product squares, see Lemma 78.5.4. Hence to prove IX → X is flat and
locally of finite presentation it suffices to do so after such a base change by Lemmas
78.17.4 and 78.18.7. Thus we can apply Lemma 78.19.7 to assume that X = [U/G].
By Lemma 78.19.6 we see G is flat and locally of finite presentation over U and
that x : U → [U/G] is surjective, flat, and locally of finite presentation. Moreover,
the pullback of IX by x is G and we conclude that (2) holds by descent again, i.e.,
by Lemmas 78.17.4 and 78.18.7.

Conversely, assume (2). Choose a smooth presentation X = [U/R], see Algebraic
Stacks, Section 71.16. Denote G → U the stabilizer group algebraic space of the
groupoid (U,R, s, t, c, e, i), see Groupoids in Spaces, Definition 60.15.2. By Lemma
78.5.6 we see that G→ U is flat and locally of finite presentation as a base change
of IX → X , see Lemmas 78.17.3 and 78.18.3. Consider the following action

a : G×U,t R→ R, (g, r) 7→ c(g, r)

of G on R. This action is free on T -valued points for any scheme T as R is a
groupoid. Hence R′ = R/G is an algebraic space and the quotient morphism
π : R → R′ is surjective, flat, and locally of finite presentation by Bootstrap,
Lemma 62.11.7. The projections s, t : R → U are G-invariant, hence we obtain
morphisms s′, t′ : R′ → U such that s = s′ ◦ π and t = t′ ◦ π. Since s, t : R → U
are flat and locally of finite presentation we conclude that s′, t′ are flat and locally
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of finite presentation, see Morphisms of Spaces, Lemmas 49.29.5 and Descent on
Spaces, Lemma 56.14.1. Consider the morphism

j′ = (t′, s′) : R′ −→ U × U.
We claim this is a monomorphism. Namely, suppose that T is a scheme and that
a, b : T → R′ are morphisms which have the same image in U × U . By definition
of the quotient R′ = R/G there exists an fppf covering {hj : Tj → T} such that
a ◦ hj = π ◦ aj and b ◦ hj = π ◦ bj for some morphisms aj , bj : Tj → R. Since
aj , bj have the same image in U × U we see that gj = c(aj , i(bj)) is a Tj-valued
point of G such that c(gj , bj) = aj . In other words, aj and bj have the same image
in R′ and the claim is proved. Since j : R → U × U is a pre-equivalence relation
(see Groupoids in Spaces, Lemma 60.11.2) and R → R′ is surjective (as a map of
sheaves) we see that j′ : R′ → U × U is an equivalence relation. Hence Bootstrap,
Theorem 62.10.1 shows that X = U/R′ is an algebraic space. Finally, we claim
that the morphism

X = [U/R] −→ X = U/R′

turns X into a gerbe over X. This follows from Groupoids in Spaces, Lemma
60.26.1 as R → R′ is surjective, flat, and locally of finite presentation (if needed
use Bootstrap, Lemma 62.4.6 to see this implies the required hypothesis). �

At this point we have developed enough machinery to prove that residual gerbes
(when they exist) are gerbes.

Lemma 78.19.10. Let Z be a reduced, locally Noetherian algebraic stack such that
|Z| is a singleton. Then Z is a gerbe over a reduced, locally Noetherian algebraic
space Z with |Z| a singleton.

Proof. By Properties of Stacks, Lemma 77.11.3 there exists a surjective, flat, lo-
cally finitely presented morphism Spec(k) → Z where k is a field. Then IZ ×Z
Spec(k) → Spec(k) is representable by algebraic spaces and locally of finite type
(as a base change of IZ → Z, see Lemmas 78.5.1 and 78.13.3). Therefore it is
locally of finite presentation, see Morphisms of Spaces, Lemma 49.27.7. Of course
it is also flat as k is a field. Hence we may apply Lemmas 78.17.4 and 78.18.7 to
see that IZ → Z is flat and locally of finite presentation. We conclude that Z is
a gerbe by Proposition 78.19.9. Let π : Z → Z be a morphism to an algebraic
space such that Z is a gerbe over Z. Then π is surjective, flat, and locally of finite
presentation by Lemma 78.19.8. Hence Spec(k)→ Z is surjective, flat, and locally
of finite presentation as a composition, see Properties of Stacks, Lemma 77.5.2 and
Lemmas 78.17.2 and 78.18.2. Hence by Properties of Stacks, Lemma 77.11.3 we see
that |Z| is a singleton and that Z is locally Noetherian and reduced. �

Lemma 78.19.11. Let f : X → Y be a morphism of algebraic stacks. If X is a
gerbe over Y then the map |X | → |Y| is a homeomorphism of topological spaces.

Proof. Let k be a field and let y be an object of Y over Spec(k). By Stacks, Lemma
8.11.3 property (2)(a) there exists an fppf covering {Ti → Spec(k)} and objects xi
of X over Ti with f(xi) ∼= y|Ti . Choose an i such that Ti 6= ∅. Choose a morphism
Spec(K) → Ti for some field K. Then k ⊂ K and xi|K is an object of X lying
over y|K . Thus we see that |Y| → |X |. is surjective. The map |Y| → |X | is also
injective. Namely, if x, x′ are objects of X over Spec(k) whose images f(x), f(x′)
become isomorphic (over an extension) in Y, then Stacks, Lemma 8.11.3 property
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(2)(b) guarantees the existence of an extension of k over which x and x′ become
isomorphic (details omitted). Hence |X | → |Y| is continuous and bijective and
it suffices to show that it is also open. This follows from Lemmas 78.19.8 and
78.18.11. �

The following lemma tells us that residual gerbes exist for all points on any algebraic
stack which is a gerbe.

Lemma 78.19.12. Let X be an algebraic stack. If X is a gerbe then for every
x ∈ |X | the residual gerbe of X at x exists.

Proof. Let π : X → X be a morphism from X into an algebraic space X which
turns X into a gerbe overX. Let Zx → X be the residual space ofX at x, see Decent
Spaces, Definition 50.11.6. Let Z = X ×X Zx. By Lemma 78.19.3 the algebraic
stack Z is a gerbe over Zx. Hence |Z| = |Zx| (Lemma 78.19.11) is a singleton.
Since Z → Zx is locally of finite presentation as a base change of π (see Lemmas
78.19.8 and 78.18.3) we see that Z is locally Noetherian, see Lemma 78.13.5. Thus
the residual gerbe Zx of X at x exists and is equal to Zx = Zred the reduction
of the algebraic stack Z. Namely, we have seen above that |Zred| is a singleton
mapping to x ∈ |X |, it is reduced by construction, and it is locally Noetherian (as
the reduction of a locally Noetherian algebraic stack is locally Noetherian, details
omitted). �

78.20. Stratification by gerbes

The goal of this section is to show that many algebraic stacks X have a “stratifica-
tion” by locally closed substacks Xi ⊂ X such that each Xi is a gerbe. This shows
that in some sense gerbes are the building blocks out of which any algebraic stack
is constructed. Note that by stratification we only mean that

|X | =
⋃

i
|Xi|

is a stratification of the topological space associated to X and nothing more (in
this section). Hence it is harmless to replace X by its reduction (see Properties of
Stacks, Section 77.10) in order to study this stratification.

The following proposition tells us there is (almost always) a dense open substack
of the reduction of X

Proposition 78.20.1. Let X be a reduced algebraic stack such that IX → X is
quasi-compact. Then there exists a dense open substack U ⊂ X which is a gerbe.

Proof. According to Proposition 78.19.9 it is enough to find a dense open substack
U such that IU → U is flat and locally of finite presentation. Note that IU =
IX ×X U , see Lemma 78.5.4.

Choose a presentation X = [U/R]. Let G → U be the stabilizer group algebraic
space of the groupoid R. By Lemma 78.5.6 we see that G→ U is the base change of
IX → X hence quasi-compact (by assumption) and locally of finite type (by Lemma
78.5.1). Let W ⊂ U be the largest open (possibly empty) subscheme such that the
restriction GW → W is flat and locally of finite presentation (we omit the proof
that W exists; hint: use that the properties are local). By Morphisms of Spaces,
Proposition 49.30.1 we see that W ⊂ U is dense. Note that W ⊂ U is R-invariant
by More on Groupoids in Spaces, Lemma 61.4.2. Hence W corresponds to an open
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substack U ⊂ X by Properties of Stacks, Lemma 77.9.10. Since |U | → |X | is open
and |W | ⊂ |U | is dense we conclude that U is dense in X . Finally, the morphism
IU → U is flat and locally of finite presentation because the base change by the
surjective smooth morphism W → U is the morphism GW → W which is flat and
locally of finite presentation by construction. See Lemmas 78.17.4 and 78.18.7. �

The above proposition immediately implies that any point has a residual gerbe on
an algebraic stack with quasi-compact inertia, as we will show in Lemma 78.21.1.
It turns out that there doesn’t always exist a finite stratification by gerbes. Here
is an example.

Example 78.20.2. Let k be a field. Take U = Spec(k[x0, x1, x2, . . .]) and let Gm

act by t(x0, x1, x2, . . .) = (tx0, t
px1, t

p2

x2, . . .) where p is a prime number. Let
X = [U/Gm]. This is an algebraic stack. There is a stratification of X by strata

(1) X0 is where x0 is not zero,
(2) X1 is where x0 is zero but x1 is not zero,
(3) X2 is where x0, x1 are zero, but x2 is not zero,
(4) and so on, and
(5) X∞ is where all the xi are zero.

Each stratum is a gerbe over a scheme with group µpi for Xi and Gm for X∞. The
strata are reduced locally closed substacks. There is no coarser stratification with
the same properties.

Nonetheless, using transfinite induction we can use Proposition 78.20.1 find possibly
infinite stratifications by gerbes...!

Lemma 78.20.3. Let X be an algebraic stack such that IX → X is quasi-compact.
Then there exists a well-ordered index set I and for every i ∈ I a reduced locally
closed substack Ui ⊂ X such that

(1) each Ui is a gerbe,
(2) we have |X | =

⋃
i∈I |Ui|,

(3) Ti = |X | \
⋃
i′<i |Ui′ | is closed in |X | for all i ∈ I, and

(4) |Ui| is open in Ti.

We can moreover arrange it so that either (a) |Ui| ⊂ Ti is dense, or (b) Ui is quasi-
compact. In case (a), if we choose Ui as large as possible (see proof for details),
then the stratification is canonical.

Proof. Let T ⊂ |X | be a nonempty closed subset. We are going to find (resp.
choose) for every such T a reduced locally closed substack U(T ) ⊂ X with |U(T )| ⊂
T open dense (resp. nonempty quasi-compact). Namely, by Properties of Stacks,
Lemma 77.10.1 there exists a unique reduced closed substack X ′ ⊂ X such that
T = |X ′|. Note that IX ′ = IX ×X X ′ by Lemma 78.5.5. Hence IX ′ → X ′ is
quasi-compact as a base change, see Lemma 78.7.3. Therefore Proposition 78.20.1
implies there exists a dense maximal (see proof proposition) open substack U ⊂ X ′
which is a gerbe. In case (a) we set U(T ) = U (this is canonical) and in case (b) we
simply choose a nonempty quasi-compact open U(T ) ⊂ U , see Properties of Stacks,
Lemma 77.4.9 (we can do this for all T simultaneously by the axiom of choice).

By transfinite induction we construct for every ordinal α a closed subset Tα ⊂ |X |.
For α = 0 we set T0 = |X |. Given Tα set

Tα+1 = Tα \ |U(Tα)|.
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If β is a limit ordinal we set

Tβ =
⋂

α<β
Tα.

We claim that Tα = ∅ for all α large enough. Namely, assume that Tα 6= ∅ for all α.
Then we obtain an injective map from the class of ordinals into the set of subsets
of |X | which is a contradiction.

The claim implies the lemma. Namely, let

I = {α | Uα 6= ∅}.
This is a well-ordered set by the claim. For i = α ∈ I we set Ui = Uα. So Ui
is a reduced locally closed substack and a gerbe, i.e., (1) holds. By construction
Ti = Tα if i = α ∈ I, hence (3) holds. Also, (4) and (a) or (b) hold by our choice of
U(T ) as well. Finally, to see (2) let x ∈ |X |. There exists a smallest ordinal β with
x 6∈ Tβ (because the ordinals are well-ordered). In this case β has to be a successor
ordinal by the definition of Tβ for limit ordinals. Hence β = α+ 1 and x ∈ |U(Tα)|
and we win. �

Remark 78.20.4. We can wonder about the order type of the canonical stratifica-
tions which occur as output of the stratifications of type (a) constructed in Lemma
78.20.3. A natural guess is that the well-ordered set I has cardinality at most ℵ0. We
have no idea if this is true or false. If you do please email stacks.project@gmail.com.

78.21. Existence of residual gerbes

In this section we prove that residual gerbes (as defined in Properties of Stacks,
Definition 77.11.8) exist on many algebraic stacks. First, here is the promised
application of Proposition 78.20.1.

Lemma 78.21.1. Let X be an algebraic stack such that IX → X is quasi-compact.
Then the residual gerbe of X at x exists for every x ∈ |X |.

Proof. Let T = {x} ⊂ |X | be the closure of x. By Properties of Stacks, Lemma
77.10.1 there exists a reduced closed substack X ′ ⊂ X such that T = |X ′|. Note
that IX ′ = IX ×X X ′ by Lemma 78.5.5. Hence IX ′ → X ′ is quasi-compact as a
base change, see Lemma 78.7.3. Therefore Proposition 78.20.1 implies there exists
a dense open substack U ⊂ X ′ which is a gerbe. Note that x ∈ |U| because {x} ⊂ T
is a dense subset too. Hence a residual gerbe Zx ⊂ U of U at x exists by Lemma
78.19.12. It is immediate from the definitions that Zx → X is a residual gerbe of
X at x. �

If the stack is quasi-DM then residual gerbes exist too. In particular, residual
gerbes always exist for Delinge-Mumford stacks.

Lemma 78.21.2. Let X be a quasi-DM algebraic stack. Then the residual gerbe
of X at x exists for every x ∈ |X |.

Proof. Choose a scheme U and a surjective, flat, locally finite presented, and
locally quasi-finite morphism U → X , see Theorem 78.15.3. Set R = U ×X U . The
projections s, t : R→ U are surjective, flat, locally of finite presentation, and locally
quasi-finite as base changes of the morphism U → X . There is a canonical morphism
[U/R]→ X (see Algebraic Stacks, Lemma 71.16.1) which is an equivalence because
U → X is surjective, flat, and locally of finite presentation, see Algebraic Stacks,
Remark 71.16.3. Thus we may assume that X = [U/R] where (U,R, s, t, c) is a
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groupoid in algebraic spaces such that s, t : R → U are surjective, flat, locally of
finite presentation, and locally quasi-finite. Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let

R′ = U ′ ×X U ′ = R×(U×U) (U ′ × U ′)
Because U ′ → U is a monomorphism we see that both projections s′, t′ : R′ → U ′

factor as a monomorphism followed by a locally quasi-finite morphism. Hence, as
U ′ is a disjoint union of spectra of fields, using Spaces over Fields, Lemma 54.7.3
we conclude that the morphisms s′, t′ : R′ → U ′ are locally quasi-finite. Again
since U ′ is a disjoint union of spectra of fields, the morphisms s′, t′ are also flat.
Finally, s′, t′ locally quasi-finite implies s′, t′ locally of finite type, hence s′, t′ locally
of finite presentation (because U ′ is a disjoint union of spectra of fields in particular
locally Noetherian, so that Morphisms of Spaces, Lemma 49.27.7 applies). Hence
Z = [U ′/R′] is an algebraic stack by Criteria for Representability, Theorem 74.17.2.
As R′ is the restriction of R by U ′ → U we see Z → X is a monomorphism by
Groupoids in Spaces, Lemma 60.24.1 and Properties of Stacks, Lemma 77.8.4. Since
Z → X is a monomorphism we see that |Z| → |X | is injective, see Properties of
Stacks, Lemma 77.8.5. By Properties of Stacks, Lemma 77.4.3 we see that

|U ′| = |Z ×X U ′| −→ |Z| ×|X | |U ′|
is surjective which implies (by our choice of U ′) that |Z| → |X | has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., Z is reduced and locally Noetherian. This means that the essential
image of Z → X is the residual gerbe of X at x, see Properties of Stacks, Lemma
77.11.11. �

78.22. Smooth morphisms

The property “being smooth” of morphisms of algebraic spaces is smooth local on
the source-and-target, see Descent on Spaces, Remark 56.18.5. It is also stable
under base change and fpqc local on the target, see Morphisms of Spaces, Lemma
49.34.3 and Descent on Spaces, Lemma 56.10.24. Hence, by Lemma 78.12.1 above,
we may define what it means for a morphism of algebraic spaces to be smooth
as follows and it agrees with the already existing notion defined in Properties of
Stacks, Section 77.3 when the morphism is representable by algebraic spaces.

Definition 78.22.1. Let f : X → Y be a morphism of algebraic stacks. We say f
is smooth if the equivalent conditions of Lemma 78.12.1 hold with P = smooth.

Lemma 78.22.2. The composition of smooth morphisms is smooth.

Proof. Combine Remark 78.12.3 with Morphisms of Spaces, Lemma 49.34.2. �

Lemma 78.22.3. A base change of a smooth morphism is smooth.

Proof. Combine Remark 78.12.4 with Morphisms of Spaces, Lemma 49.34.3. �

78.23. Other chapters
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CHAPTER 79

Cohomology of Algebraic Stacks

79.1. Introduction

In this chapter we write about cohomology of algebraic stacks. This mean in par-
ticular cohomology of quasi-coherent sheaves, i.e., we prove analogues of the results
in the chapters entitled “Cohomology of Schemes” and “Cohomology of Algebraic
Spaces”. The results in this chapter are different from those in [LMB00] mainly
because we consistently use the “big sites”. Before reading this chapter please
take a quick look at the chapter “Sheaves on Algebraic Stacks” in order to become
familiar with the terminology introduced there, see Sheaves on Stacks, Section 73.1.

79.2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 77.2.

79.3. Notation

Different topologies. If we indicate an algebraic stack by a calligraphic letter, such
as X ,Y,Z, then the notation XZar,Xétale,Xsmooth,Xsyntomic,Xfppf indicates the
site introduced in Sheaves on Stacks, Definition 73.4.1. (Think “big site”.) Corre-
spondingly the structure sheaf of X is a sheaf on Xfppf . On the other hand, alge-
braic spaces and schemes are usually indicated by roman capitals, such as X,Y, Z,
and in this case Xétale indicates the small étale site of X (as defined in Topologies,
Definition 33.4.8 or Properties of Spaces, Definition 48.15.1). It seems that the
distinction should be clear enough.

The default topology is the fppf topology. Hence we will sometimes say “sheaf
on X” or “sheaf of OX ” modules when we mean sheaf on Xfppf or object of
Mod(Xfppf ,OX ).

If f : X → Y is a morphism of algebraic stacks, then the functors f∗ and f−1

defined on presheaves preserves sheaves for any of the topologies mentioned above.
In particular when we discuss the pushforward or pullback of a sheaf we don’t
have to mention which topology we are working with. The same isn’t true when
we compute cohomology groups and/or higher direct images. In this case we will
always mention which topology we are working with.

Suppose that f : X → Y is a morphism from an algebraic space X to an algebraic
stack Y. Let G be a sheaf on Yτ for some topology τ . In this case f−1G is a sheaf
for the τ topology on SX (the algebraic stack associated to X) because (by our
conventions) f really is a 1-morphism f : SX → Y. If τ = étale or stronger, then
we write f−1G|Xétale to denote the restriction to the étale site of X, see Sheaves on

4261
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Stacks, Section 73.21. If G is an OX -module we sometimes write f∗G and f∗G|Xétale
instead.

79.4. Pullback of quasi-coherent modules

Let f : X → Y be a morphism of algebraic stacks. It is a very general fact that
quasi-coherent modules on ringed topoi are compatible with pullbacks. In particular
the pullback f∗ preserves quasi-coherent modules and we obtain a functor

f∗ : QCoh(OY) −→ QCoh(OX ),

see Sheaves on Stacks, Lemma 73.11.2. In general this functor isn’t exact, but if f
is flat then it is.

Lemma 79.4.1. If f : X → Y is a flat morphism of algebraic stacks then f∗ :
QCoh(OY)→ QCoh(OX ) is an exact functor.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Choose
a scheme U and a surjective smooth morphism U → V ×Y X . Then U → X is
still smooth and surjective as a composition of two such morphisms. From the
commutative diagram

U

��

f ′
// V

��
X

f // Y
we obtain a commutative diagram

QCoh(OU ) QCoh(OV )oo

QCoh(OX )

OO

QCoh(OY)oo

OO

of abelian categories. Our proof that the bottom two categories in this diagram
are abelian showed that the vertical functors are faithful exact functors (see proof
of Sheaves on Stacks, Lemma 73.14.1). Since f ′ is a flat morphism of schemes (by
our definition of flat morphisms of algebraic stacks) we see that (f ′)∗ is an exact
functor on quasi-coherent sheaves on V . Thus we win. �

79.5. The key lemma

The following lemma is the basis for our understanding of higher direct images
of certain types of sheaves of modules. There are two versions: one for the étale
topology and one for the fppf topology.

Lemma 79.5.1. Let M be a rule which associates to every algebraic stack X a
subcategory MX of Mod(Xétale,OX ) such that

(1) MX is a weak Serre subcategory of Mod(Xétale,OX ) (see Homology, Def-
inition 12.9.1) for all algebraic stacks X ,

(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ maps
MX into MY ,

(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fi|(|Xi|), then an object F of Mod(Xétale,OX ) is in MX if and

only if f∗i F is in MXi for all i, and

http://stacks.math.columbia.edu/tag/076X
http://stacks.math.columbia.edu/tag/076Z
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(4) if f : Y → X is a morphism of algebraic stacks such that X and Y are
representable by affine schemes, then Rif∗ maps MY into MX .

Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic
stacks Rif∗ mapsMY intoMX . (Higher direct images computed in étale topology.)

Proof. Let f : Y → X be a quasi-compact and quasi-separated morphism of alge-
braic stacks and let F be an object of MY . Choose a surjective smooth morphism
U → X where U is representable by a scheme. By Sheaves on Stacks, Lemma
73.20.3 taking higher direct images commutes with base change. Assumption (2)
shows that the pullback of F to U ×X Y is in MU×XY because the projection
U ×X Y → Y is smooth as a base change of a smooth morphism. Hence (3) shows
we may replace Y → X by the projection U ×X Y → U . In other words, we may
assume that X is representable by a scheme. Using (3) once more, we see that
the question is Zariski local on X , hence we may assume that X is representable
by an affine scheme. Since f is quasi-compact this implies that also Y is quasi-
compact. Thus we may choose a surjective smooth morphism g : V → Y where V
is representable by an affine scheme.

In this situation we have the spectral sequence

Ep,q2 = Rq(f ◦ gp)∗g∗pF ⇒ Rp+qf∗F
of Sheaves on Stacks, Proposition 73.20.1. Recall that this is the spectral sequence
associated to a double complex. By assumption (1) we may use Homology, Remark
12.22.8. Note that the morphisms

gp : Vp = V ×Y . . .×Y V −→ Y
are smooth as compositions of base changes of the smooth morphism g. Thus the
sheaves g∗pF are in MVp by (2). Hence it suffices to prove that the higher direct
images of objects of MVp under the morphisms

Vp = V ×Y . . .×Y V −→ X
are in MX . The algebraic stacks Vp are quasi-compact and quasi-separated by
Morphisms of Stacks, Lemma 78.7.7. Of course each Vp is representable by an
algebraic space (the diagonal of the algebraic stack Y is representable by algebraic
spaces). This reduces us to the case where Y is representable by an algebraic space
and X is representable by an affine scheme.

In the situation where Y is representable by an algebraic space and X is repre-
sentable by an affine scheme, we choose anew a surjective smooth morphism V → Y
where V is representable by an affine scheme. Going through the argument above
once again we once again reduce to the morphisms Vp → X . But in the current
situation the algebraic stacks Vp are representable by quasi-compact and quasi-
separated schemes (bacause the diagonal of an algebraic space is representable by
schemes).

Thus we may assume Y is representable by a scheme and X is representable by
an affine scheme. Choose (again) a surjective smooth morphism V → Y where V
is representable by an affine scheme. In this case all the algebraic stacks Vp are
representable by separated schemes (because the diagonal of a scheme is separated).

Thus we may assume Y is representable by a separated scheme and X is repre-
sentable by an affine scheme. Choose (yet again) a surjective smooth morphism
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V → Y where V is representable by an affine scheme. In this case all the algebraic
stacks Vp are representable by affine schemes (because the diagonal of a separated
scheme is a closed immersion hence affine) and this case is handled by assumption
(4). This finishes the proof. �

Here is the version for the fppf topology.

Lemma 79.5.2. Let M be a rule which associates to every algebraic stack X a
subcategory MX of Mod(OX ) such that

(1) MX is a weak Serre subcategory of Mod(OX ) for all algebraic stacks X ,
(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ maps
MX into MY ,

(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fi|(|Xi|), then an object F of Mod(OX ) is in MX if and only if

f∗i F is in MXi for all i, and
(4) if f : Y → X is a morphism of algebraic stacks and X and Y are repre-

sentable by affine schemes, then Rif∗ maps MY into MX .

Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic
stacks Rif∗ maps MY into MX . (Higher direct images computed in fppf topology.)

Proof. Identical to the proof of Lemma 79.5.1. �

79.6. Locally quasi-coherent modules

Let X be an algebraic stack. Let F be a presheaf of OX -modules. We can ask
whether F is locally quasi-coherent, see Sheaves on Stacks, Definition 73.11.4.
Briefly, this means F is an OX -module for the étale topology such that for any
morphism f : U → X the restriction f∗F|Uétale is quasi-coherent on Uétale. (The
actual definition is slightly different, but equivalent.) A useful fact is that

LQCoh(OX ) ⊂ Mod(Xétale,OX )

is a weak Serre subcategory, see Sheaves on Stacks, Lemma 73.11.7.

Lemma 79.6.1. Let X be an algebraic stack. Let fj : Xj → X be a family of
smooth morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of

OX -modules on Xétale. If each f−1
j F is locally quasi-coherent, then so is F .

Proof. We may replace each of the algebraic stacks Xj by a scheme Uj (using that
any algebraic stack has a smooth covering by a scheme and that compositions of
smooth morphisms are smooth, see Morphisms of Stacks, Lemma 78.22.2). The
pullback of F to (Sch/Uj)étale is still locally quasi-coherent, see Sheaves on Stacks,
Lemma 73.11.6. Then f =

∐
fj : U =

∐
Uj → X is a surjective smooth morphism.

Let x be an object of X . By Sheaves on Stacks, Lemma 73.18.10 there exists an étale
covering {xi → x}i∈I such that each xi lifts to an object ui of (Sch/U)étale. This
just means that x, xi live over schemes V , Vi, that {Vi → V } is an étale covering,
and that xi comes from a morphism ui : Vi → U . The restriction x∗iF|Vi,étale is
equal to the restriction of f∗F to Vi,étale, see Sheaves on Stacks, Lemma 73.9.3.
Hence x∗F|Vétale is a sheaf on the small étale site of V which is quasi-coherent when
restricted to Vi,étale for each i. This implies that it is quasi-coherent (as desired),
for example by Properties of Spaces, Lemma 48.27.6. �

http://stacks.math.columbia.edu/tag/0770
http://stacks.math.columbia.edu/tag/075Y
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Lemma 79.6.2. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a locally quasi-coherent OX -module on Xétale. Then
Rif∗F (computed in the étale topology) is a locally quasi-coherent on Yétale.

Proof. We will use Lemma 79.5.1 to prove this. We will check its assumptions (1)
– (4). Parts (1) and (2) follows from Sheaves on Stacks, Lemma 73.11.7. Part (3)
follows from Lemma 79.6.1. Thus it suffices to show (4).

Suppose f : X → Y is a morphism of algebraic stacks such that X and Y are
representable by affine schemes X and Y . Choose any object y of Y lying over a
scheme V . For clarity, denote V = (Sch/V )fppf the algebraic stack corresponding
to V . Consider the cartesian diagram

Z

��

g
//

f ′

��

X

f

��
V

y // Y

Thus Z is representable by the scheme Z = V ×Y X and f ′ is quasi-compact and
separated (even affine). By Sheaves on Stacks, Lemma 73.21.3 we have

Rif∗F|Vétale = Rif ′small,∗
(
g∗F|Zétale

)
The right hand side is a quasi-coherent sheaf on Vétale by Cohomology of Spaces,
Lemma 51.3.2. This implies the left hand side is quasi-coherent which is what we
had to prove. �

Lemma 79.6.3. Let X be an algebraic stack. Let fj : Xj → X be a family of flat
and locally finitely presented morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |).

Let F be a sheaf of OX -modules on Xfppf . If each f−1
j F is locally quasi-coherent,

then so is F .

Proof. First, suppose there is a morphism a : U → X which is surjective, flat,
locally of finite presentation, quasi-compact, and quasi-separated such that a∗F is
locally quasi-coherent. Then there is an exact sequence

0→ F → a∗a
∗F → b∗b

∗F

where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition
73.18.7 and Lemma 73.18.10. Moreover, the pullback b∗F is the pullback of a∗F
via one of the projection morphisms, hence is locally quasi-coherent (Sheaves on
Stacks, Lemma 73.11.6). The modules a∗a

∗F and b∗b
∗F are locally quasi-coherent

by Lemma 79.6.2. (Note that a∗ and b∗ don’t care about which topology is used
to calculate them.) We conclude that F is locally quasi-coherent, see Sheaves on
Stacks, Lemma 73.11.7.

We are going to reduce the proof of the general case the the situation in the first
paragraph. Let x be an object of X lying over the scheme U . We have to show that
F|Uétale is a quasi-coherent OU -module. It suffices to do this (Zariski) locally on U ,
hence we may assume that U is affine. By Morphisms of Stacks, Lemma 78.18.10
there exists an fppf covering {ai : Ui → U} such that each x◦ai factors through some
fj . Hence a∗iF is locally quasi-coherent on (Sch/Ui)fppf . After refining the covering
we may assume {Ui → U}i=1,...,n is a standard fppf covering. Then x∗F is an fppf
module on (Sch/U)fppf whose pullback by the morphism a : U1 q . . . q Un → U

http://stacks.math.columbia.edu/tag/075Z
http://stacks.math.columbia.edu/tag/07AP


4266 79. COHOMOLOGY OF ALGEBRAIC STACKS

is locally quasi-coherent. Hence by the first paragraph we see that x∗F is locally
quasi-coherent, which certainly implies that F|Uétale is quasi-coherent. �

79.7. Flat comparison maps

Let X be an algebraic stack and let F be an object of Mod(Xétale,OX ). Given an
object x of X lying over the scheme U the restriction F|Uétale is the restriction of
x−1F to the small étale site of U , see Sheaves on Stacks, Definition 73.9.2. Next,
let ϕ : x→ x′ be a morphism of X lying over a morphism of schemes f : U → U ′.
Thus a 2-commutative diagram

U

x
��

f
// U ′

x′~~
X

Associated to ϕ we obtain a comparison map between restrictions

(79.7.0.1) cϕ : f∗small(F|U ′étale) −→ F|Uétale
see Sheaves on Stacks, Equation (73.9.4.1). In this situation we can consider the
following property of F .

Definition 79.7.1. Let X be an algebraic stack and let F in Mod(Xétale,OX ).
We say F has the flat base change property1 if and only if cϕ is an isomorphism
whenever f is flat.

Here is a lemma with some properties of this notion.

Lemma 79.7.2. Let X be an algebraic stack. Let F be an OX -module on Xétale.
(1) If F has the flat base change property then for any morphism g : Y → X

of algebraic stacks, the pullback g∗F does too.
(2) The full subcategory of Mod(Xétale,OX ) consisting of modules with the flat

base change property is a weak Serre subcategory.
(3) Let fi : Xi → X be a family of smooth morphisms of algebraic stacks such

that |X | =
⋃
i |fi|(|Xi|). If each f∗i F has the flat base change property

then so does F .
(4) The category of OX -modules on Xétale with the flat base change property

has colimits and they agree with colimits in Mod(Xétale,OX ).

Proof. Let g : Y → X be as in (1). Let y be an object of Y lying over a scheme
V . By Sheaves on Stacks, Lemma 73.9.3 we have (g∗F)|Vétale = F|Vétale . Moreover
a comparison mapping for the sheaf g∗F on Y is a special case of a comparison
map for the sheaf F on X , see Sheaves on Stacks, Lemma 73.9.3. In this way (1)
is clear.

Proof of (2). We use the characterization of weak Serre subcategories of Homology,
Lemma 12.9.3. Kernels and cokernels of maps between sheaves having the flat base
change property also have the flat base change property. This is clear because
f∗small is exact for a flat morphism of schemes and since the restriction functors
(−)|Uétale are exact (because we are working in the étale topology). Finally, if
0 → F1 → F2 → F3 → 0 is a short exact sequence of Mod(Xétale,OX ) and the
outer two sheaves have the flat base change property then the middle one does as

1This may be nonstandard notation.

http://stacks.math.columbia.edu/tag/0762
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well, again because of the exactness of f∗small and the restriction functors (and the
5 lemma).

Proof of (3). Let fi : Xi → X be a jointly surjective family of smooth morphisms of
algebraic stacks and assume each f∗i F has the flat base change property. By part
(1), the definition of an algebraic stack, and the fact that compositions of smooth
morphisms are smooth (see Morphisms of Stacks, Lemma 78.22.2) we may assume
that each Xi is representable by a scheme. Let ϕ : x → x′ be a morphism of X
lying over a flat morphism a : U → U ′ of schemes. By Sheaves on Stacks, Lemma
73.18.10 there exists a jointly surjective family of étale morphisms U ′i → U ′ such
that U ′ → U ′ → X factors through Xi. Thus we obtain commutative diagrams

Ui = U ×U ′ U ′i ai
//

��

U ′i
x′i

//

��

Xi

fi

��
U

a // U ′
x′ // X

Note that each ai is a flat morphism of schemes as a base change of a. Denote
ψi : xi → x′i the morphism of Xi lying over ai with target x′i. By assumption the
comparison maps cψi : (ai)

∗
small

(
f∗i F|(U ′i)étale

)
→ f∗i F|(Ui)étale is an isomorphism.

Because the vertical arrows U ′i → U ′ and Ui → U are étale, the sheaves f∗i F|(U ′i)étale
and f∗i F|(Ui)étale are the restrictions of F|U ′étale and F|Uétale and the map cψi is the

restriction of cϕ to (Ui)étale, see Sheaves on Stacks, Lemma 73.9.3. Since {Ui → U}
is an étale covering, this implies that the comparison map cϕ is an isomorphism
which is what we wanted to prove.

Proof of (4). Let I → Mod(Xétale,OX ), i 7→ Fi be a diagram and assume each Fi
has the flat base change property. Recall that colimi Fi is the sheafification of the
presheaf colimit. As we are using the étale topology, it is clear that

(colimi Fi)|Uétale = colimi Fi|Uétale

As f∗small commutes with colimits (as a left adjoint) we see that (4) holds. �

Lemma 79.7.3. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be an object of Mod(Xétale,OX ) which is locally quasi-
coherent and has the flat base change property. Then each Rig∗F (computed in the
étale topology) has the flat base change property.

Proof. We will use Lemma 79.5.1 to prove this. For every algebraic stack X let
MX denote the full subcategory of Mod(Xétale,OX ) consisting of locally quasi-
coherent sheaves with the flat base change property. Once we verify conditions (1)
– (4) of Lemma 79.5.1 the lemma will follow. Properties (1), (2), and (3) follow
from Sheaves on Stacks, Lemmas 73.11.6 and 73.11.7 and Lemmas 79.6.1 and 79.7.2.
Thus it suffices to show part (4).

Suppose f : X → Y is a morphism of algebraic stacks such that X and Y are
representable by affine schemes X and Y . In this case, suppose that ψ : y → y′ is
a morphism of Y lying over a flat morphism b : V → V ′ of schemes. For clarity
denote V = (Sch/V )fppf and V ′ = (Sch/V ′)fppf the corresponding algebraic stacks.

http://stacks.math.columbia.edu/tag/0765
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Consider the diagram of algebraic stacks

Z

f ′′

��

a
// Z ′

x′
//

f ′

��

X

f

��
V b // V ′

y′ // Y
with both squares cartesian. As f is representable by schemes (and quasi-compact
and separated – even affine) we see that Z and Z ′ are representable by schemes Z
and Z ′ and in fact Z = V ×V ′ Z ′. Since F has the flat base change property we
see that

a∗small
(
F|Z′étale

)
−→ F|Zétale

is an isomorphism. Moreover,

Rif∗F|V ′étale = Ri(f ′)small,∗
(
F|Z′étale

)
and

Rif∗F|Vétale = Ri(f ′′)small,∗
(
F|Zétale

)
by Sheaves on Stacks, Lemma 73.21.3. Hence we see that the comparison map

cψ : b∗small(R
if∗F|V ′étale) −→ Rif∗F|Vétale

is an isomorphism by Cohomology of Spaces, Lemma 51.10.1. Thus Rif∗F has the
flat base change property. Since Rif∗F is locally quasi-coherent by Lemma 79.6.2
we win. �

Proposition 79.7.4. Summary of results on locally quasi-coherent modules having
the flat base change property.

(1) Let X be an algebraic stack. If F is an object of Mod(Xétale,OX ) which
is locally quasi-coherent and has the flat base change property, then F is
a sheaf for the fppf topology, i.e., it is an object of Mod(OX ).

(2) The category of modules which are locally quasi-coherent and have the flat
base change property is a weak Serre subcategory MX of both Mod(OX )
and Mod(Xétale,OX ).

(3) Pullback f∗ along any morphism of algebraic stacks f : X → Y induces a
functor f∗ :MY →MX .

(4) If f : X → Y is a quasi-compact and quasi-separated morphism of alge-
braic stacks and F is an object of MX , then
(a) the derived direct image Rf∗F and the higher direct images Rif∗F

can be computed in either the étale or the fppf topology with the same
result, and

(b) each Rif∗F is an object of MY .
(5) The categoryMX has colimits and they agree with colimits in Mod(Xétale,OX )

as well as in Mod(OX ).

Proof. Part (1) is Sheaves on Stacks, Lemma 73.22.1.

Part (2) for the embedding MX ⊂ Mod(Xétale,OX ) we have seen in the proof
of Lemma 79.7.3. Let us prove (2) for the embedding MX ⊂ Mod(OX ). Let
ϕ : F → G be a morphism between objects of MX . Since Ker(ϕ) is the same
whether computed in the étale or the fppf topology, we see that Ker(ϕ) is in MX
by the étale case. On the other hand, the cokernel computed in the fppf topology
is the fppf sheafification of the cokernel computed in the étale topology. However,

http://stacks.math.columbia.edu/tag/0771


79.7. FLAT COMPARISON MAPS 4269

this étale cokernel is inMX hence an fppf sheaf by (1) and we see that the cokernel
is in MX . Finally, suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence in Mod(OX ) (i.e., using the fppf topology) with F1, F2 inMX .
In order to show that F2 is an object of MX it suffices to show that the sequence
is also exact in the étale topology. To do this it suffices to show that any element
of H1

fppf (x,F1) becomes zero on the members of an étale covering of x (for any

object x of X ). This is true because H1
fppf (x,F1) = H1

étale(x,F1) by Sheaves on
Stacks, Lemma 73.22.2 and because of locality of cohomology, see Cohomology on
Sites, Lemma 21.8.3. This proves (2).

Part (3) follows from Lemma 79.7.2 and Sheaves on Stacks, Lemma 73.11.6.

Part (4)(b) for Rif∗F computed in the étale cohomology follows from Lemma
79.7.3. Whereupon part (4)(a) follows from Sheaves on Stacks, Lemma 73.22.2
combined with (1) above.

Part (5) for the étale topology follows from Sheaves on Stacks, Lemma 73.11.7 and
Lemma 79.7.2. The fppf version then follows as the colimit in the étale topology is
already an fppf sheaf by part (1). �

Lemma 79.7.5. Let X be an algebraic stack. With MX the category of locally
quasi-coherent modules with the flat base change property.

(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If each

f−1
j F is in MXi , then F is in MX .

(2) Let fj : Xj → X be a family of flat and locally finitely presented morphisms
of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules

on Xfppf . If each f−1
j F is in MXi , then F is in MX .

Proof. Part (1) follows from a combination of Lemmas 79.6.1 and 79.7.2. The
proof of (2) is analogous to the proof of Lemma 79.6.3. Let F of a sheaf of OX -
modules on Xfppf .

First, suppose there is a morphism a : U → X which is surjective, flat, locally
of finite presentation, quasi-compact, and quasi-separated such that a∗F is locally
quasi-coherent and has the flat base change property. Then there is an exact se-
quence

0→ F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition
73.18.7 and Lemma 73.18.10. Moreover, the pullback b∗F is the pullback of a∗F
via one of the projection morphisms, hence is locally quasi-coherent and has the
flat base change property, see Proposition 79.7.4. The modules a∗a

∗F and b∗b
∗F

are locally quasi-coherent and have the flat base change property by Proposition
79.7.4. We conclude that F is locally quasi-coherent and has the flat base change
property by Proposition 79.7.4.

Choose a scheme U and a surjective smooth morphism x : U → X . By part (1)
it suffices to show that x∗F is locally quasi-coherent and has the flat base change
property. Again by part (1) it suffices to do this (Zariski) locally on U , hence we
may assume that U is affine. By Morphisms of Stacks, Lemma 78.18.10 there exists
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an fppf covering {ai : Ui → U} such that each x ◦ ai factors through some fj .
Hence the module a∗iF on (Sch/Ui)fppf is locally quasi-coherent and has the flat
base change property. After refining the covering we may assume {Ui → U}i=1,...,n

is a standard fppf covering. Then x∗F is an fppf module on (Sch/U)fppf whose
pullback by the morphism a : U1 q . . . q Un → U is locally quasi-coherent and has
the flat base change property. Hence by the previous paragraph we see that x∗F
is locally quasi-coherent and has the flat base change property as desired. �

79.8. Parasitic modules

The following definition is compatible with Descent, Definition 34.8.1.

Definition 79.8.1. Let X be an algebraic stack. A presheaf of OX -modules F is
parasitic if we have F(x) = 0 for any object x of X which lies over a scheme U such
that the corresponding morphism x : U → X is flat.

Here is a lemma with some properties of this notion.

Lemma 79.8.2. Let X be an algebraic stack. Let F be a presheaf of OX -modules.

(1) If F is parasitic and g : Y → X is a flat morphism of algebraic stacks,
then g∗F is parasitic.

(2) For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have
(a) the τ sheafification of a parasitic presheaf of modules is parasitic, and
(b) the full subcategory of Mod(Xτ ,OX ) consisting of parasitic modules

is a Serre subcategory.
(3) Suppose F is a sheaf for the étale topology. Let fi : Xi → X be a family

of smooth morphisms of algebraic stacks such that |X | =
⋃
i |fi|(|Xi|). If

each f∗i F is parasitic then so is F .
(4) Suppose F is a sheaf for the fppf topology. Let fi : Xi → X be a family of

flat and locally finitely presented morphisms of algebraic stacks such that
|X | =

⋃
i |fi|(|Xi|). If each f∗i F is parasitic then so is F .

Proof. To see part (1) let y be an object of Y which lies over a scheme V such that
the corresponding morphism y : V → Y is flat. Then g(y) : V → Y → X is flat as
a composition of flat morphisms (see Morphisms of Stacks, Lemma 78.17.2) hence
F(g(y)) is zero by assumption. Since g∗F = g−1F(y) = F(g(y)) we conclude g∗F
is parasitic.

To see part (2)(a) note that if {xi → x} is a τ -covering of X , then each of the
morphisms xi → x lies over a flat morphism of schemes. Hence if x lies over a
scheme U such that x : U → X is flat, so do all of the objects xi. Hence the
presheaf F+ (see Sites, Section 7.10) is parasitic if the presheaf F is parasitic. This
proves (2)(a) as the sheafification of F is (F+)+.

Let F be a parasitic τ -module. It is immediate from the definitions that any
submodule of F is parasitic. On the other hand, if F ′ ⊂ F is a submodule, then it
is equally clear that the presheaf x 7→ F(x)/F ′(x) is parasitic. Hence the quotient
F/F ′ is a parasitic module by (2)(a). Finally, we have to show that given a short
exact sequence 0 → F1 → F2 → F3 → 0 with F1 and F3 parasitic, then F2 is
parasitic. This follows immediately on evaluating on x lying over a scheme flat over
X . This proves (2)(b), see Homology, Lemma 12.9.2.
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Let fi : Xi → X be a jointly surjective family of smooth morphisms of algebraic
stacks and assume each f∗i F is parasitic. Let x be an object of X which lies over
a scheme U such that x : U → X is flat. Consider a surjective smooth covering
Wi → U ×x,X Xi. Denote yi : Wi → Xi the projection. It follows that {fi(yi)→ x}
is a covering for the smooth topology on X . Since a composition of flat morphisms
is flat we see that f∗i F(yi) = 0. On the other hand, as we saw in the proof of
(1), we have f∗i F(yi) = F(fi(yi)). Hence we see that for some smooth covering
{xi → x}i∈I in X we have F(xi) = 0. This implies F(x) = 0 because the smooth
topology is the same as as the étale topology, see More on Morphisms, Lemma
36.28.7. Namely, {xi → x}i∈I lies over a smooth covering {Ui → U}i∈I of schemes.
By the lemma just referenced there exists an étale covering {Vj → U}j∈J which
refines {Ui → U}i∈I . Denote x′j = x|Vj . Then {x′j → x} is an étale covering in X
refining {xi → x}i∈I . This means the map F(x)→

∏
j∈J F(x′j), which is injective

as F is a sheaf in the étale topology, factors through F(x)→
∏
i∈I F(xi) which is

zero. Hence F(x) = 0 as desired.

Proof of (4): omitted. Hint: similar, but simpler, than the proof of (3). �

Parasitic modules are preserved under absolutely any pushforward.

Lemma 79.8.3. Let τ ∈ {étale, fppf}. Let X be an algebraic stack. Let F be a
parasitic object of Mod(Xτ ,OX ).

(1) Hi
τ (X ,F) = 0 for all i.

(2) Let f : X → Y be a morphism of algebraic stacks. Then Rif∗F (computed
in τ -topology) is a parasitic object of Mod(Yτ ,OY).

Proof. We first reduce (2) to (1). By Sheaves on Stacks, Lemma 73.20.2 we see
that Rif∗F is the sheaf associated to the presheaf

y 7−→ Hi
τ

(
V ×y,Y X , pr−1F

)
Here y is a typical object of Y lying over the scheme V . By Lemma 79.8.2 it suffices
to show that these cohomology groups are zero when y : V → Y is flat. Note that
pr : V ×y,Y X → X is flat as a base change of y. Hence by Lemma 79.8.2 we see
that pr−1F is parasitic. Thus it suffices to prove (1).

To see (1) we can use the spectral sequence of Sheaves on Stacks, Proposition
73.19.1 to reduce this to the case where X is an algebraic stack representable by an
algebraic space. Note that in the spectral sequence each f−1

p F = f∗pF is a parasitic
module by Lemma 79.8.2 because the morphisms fp : Up = U ×X . . . ×X U → X
are flat. Reusing this spectral sequence one more time (as in the proof of the key
Lemma 79.5.1) we reduce to the case where the algebraic stack X is representable by
a scheme X. Then Hi

τ (X ,F) = Hi((Sch/X)τ ,F). In this case the vanishing follows
easily from an argument with Čech coverings, see Descent, Lemma 34.8.2. �

The following lemma is one of the major reasons we care about parasitic modules.
To understand the statement, recall that the functors QCoh(OX )→ Mod(Xétale,OX )
and QCoh(OX )→ Mod(OX ) aren’t exact in general.

Lemma 79.8.4. Let X be an algebraic stack. Let F• be an exact complex in
QCoh(OX ). Then the cohomology sheaves of F• in either the étale or the fppf
topology are parasitic OX -modules.
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Proof. Let x : U → X be a flat morphism where U is a scheme. Then x∗F• is
exact by Lemma 79.4.1. Hence the restriction x∗F•|Uétale is exact which is what
we had to prove. �

79.9. Quasi-coherent modules, I

We have seen that the category of quasi-coherent modules on an algebraic stack is
equivalent to the category of quasi-coherent modules on a presentation, see Sheaves
on Stacks, Section 73.14. This fact is the basis for the following.

Lemma 79.9.1. Let X be an algebraic stack. Let MX be the category of locally
quasi-coherent modules with the flat base change property, see Proposition 79.7.4.
The inclusion functor i : QCoh(OX )→MX has a right adjoint

Q :MX → QCoh(OX )

such that Q ◦ i is the identity functor.

Proof. Choose a scheme U and a surjective smooth morphism f : U → X . Set
R = U ×X U so that we obtain a smooth groupoid (U,R, s, t, c) in algebraic spaces
with the property that X = [U/R], see Algebraic Stacks, Lemma 71.16.2. We may
and do replace X by [U/R]. In the proof of Sheaves on Stacks, Proposition 73.13.1
we constructed a functor

q1 : QCoh(U,R, s, t, c) −→ QCoh(OX ).

The construction of the inverse functor in the proof of Sheaves on Stacks, Proposi-
tion 73.13.1 works for objects of MX and induces a functor

q2 :MX −→ QCoh(U,R, s, t, c).

Namely, if F is an object of MX the we set

q2(F) = (f∗F|Uétale , α)

where α is the isomorphism

t∗small(f
∗F|Uétale)→ t∗f∗F|Rétale → s∗f∗F|Rétale → s∗small(f

∗F|Uétale)
where the outer two morphisms are the comparison maps. Note that q2(F) is
quasi-coherent precisely because F is locally quasi-coherent (and we used the flat
base change property in the construction of the descent datum α). We omit the
verification that the cocycle condition (see Groupoids in Spaces, Definition 60.12.1)
holds. We define Q = q1 ◦ q2. Let F be an object ofMX and let G be an object of
QCoh(OX ). We have

MorMX (i(G),F) = MorQCoh(U,R,s,t,c)(q2(G), q2(F))

= MorQCoh(OX )(G, Q(F))

where the first equality is Sheaves on Stacks, Lemma 73.13.2 and the second equality
holds because q1 and q2 are inverse equivalences of categories. The assertion Q◦ i ∼=
id is a formal consequence of the fact that i is fully faithful. �

Lemma 79.9.2. Let X be an algebraic stack. Let Q : MX → QCoh(OX ) be the
functor constructed in Lemma 79.9.1.

(1) The kernel of Q is exactly the collection of parasitic objects of MX .
(2) For any object F ofMX both the kernel and the cokernel of the adjunction

map Q(F)→ F are parasitic.
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(3) The functor Q is exact.

Proof. Write X = [U/R] as in the proof of Lemma 79.9.1. Let F be an object of
MX . It is clear from the proof of Lemma 79.9.1 that F is in the kernel of Q if and
only if F|Uétale = 0. In particular, if F is parasitic then F is in the kernel. Next,
let x : V → X be a flat morphism, where V is a scheme. Set W = V ×X U and
consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗small is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain
p∗smallF|Uétale ∼= q∗smallF|Vétale . Thus if F is in the kernel of Q, then F|Vétale = 0
which completes the proof of (1).

Part (2) follows from the discussion above and the fact that the map Q(F) → F
becomes an isomorphism after restricting to Uétale.

To see part (3) note that Q is left exact as a right adjoint. Suppose that 0→ F →
G → H → 0 is a short exact sequence in MX . Let E = Coker(Q(G) → Q(H)) in
QCoh(OX ). Since QCoh(OX ) → MX is a left adjoint it is right exact. Hence we
see that Q(G) → Q(H) → E → 0 is exact in MX . Using Lemma 79.8.4 we find
that the top row of the following commutative diagram has parasitic cohomology
sheaves at Q(F) and Q(G):

0 // Q(F) //

a

��

Q(G) //

b

��

Q(H) //

c

��

E //

��

0

0 // F // G // H // 0

The bottom row is exact and the vertical arrows a, b, c have parasitic kernel and
cokernels by part (2). It follows that E is parasitic: in the quotient category of
Mod(OX )/Parasitic (see Homology, Lemma 12.9.6 and Lemma 79.8.2) we see that
a, b, c are isomorphisms and that the top row becomes exact. As it is also quasi-
coherent, we conclude that E is zero because E = Q(E) = 0 by part (1). �

79.10. Pushforward of quasi-coherent modules

Let f : X → Y be a morphism of algebraic stacks. Consider the pushforward

f∗ : Mod(OX ) −→ Mod(OY)

It turns out that this functor almost never preserves the subcategories of quasi-
coherent sheaves. For example, consider the morphism of schemes

j : X = A2
k \ {0} −→ A2

k = Y.

Associated to this we have the corresponding morphism of algebraic stacks

f = jbig : X = (Sch/X)fppf → (Sch/Y )fppf = Y
The pushforward f∗OX of the structure sheaf has global sections k[x, y]. Hence if
f∗OX is quasi-coherent on Y then we would have f∗OX = OY . However, consider
T = Spec(k) → A2

k = Y mapping to 0. Then Γ(T, f∗OX ) = 0 because X ×Y T =
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∅ whereas Γ(T,OY) = k. On the positive side, we know from Cohomology of
Schemes, Lemma 29.5.2 that for any flat morphism T → Y we have the equality
Γ(T, f∗OX ) = Γ(T,OY) (this uses that j is quasi-compact and quasi-separated).

Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. We work around the problem mentioned above using the following three
observations:

(1) f∗ does preserve locally quasi-coherent modules (Lemma 79.6.2),
(2) f∗ transforms a quasi-coherent sheaf into a locally quasi-coherent sheaf

whose flat comparison maps are isomorphisms (Lemma 79.7.3), and
(3) locally quasi-coherent OY -modules with the flat base change property give

rise to quasi-coherent modules on a presentation of Y and hence quasi-
coherent modules on Y, see Sheaves on Stacks, Section 73.14.

Thus we obtain a functor

fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)

which is a right adjoint to f∗ : QCoh(OY)→ QCoh(OX ) such that moreover

Γ(y, f∗F) = Γ(y, fQCoh,∗F)

for any y ∈ Ob(Y) such that the associated 1-morphism y : V → Y is flat, see (in-
sert future reference here). Moreover, a similar construction will produce functors
RifQCoh,∗. However, these results will not be sufficient to produce a total direct
image functor (of complexes with quasi-coherent cohomology sheaves).

Proposition 79.10.1. Let f : X → Y be a quasi-compact and quasi-separated
morphism of algebraic stacks. The functor f∗ : QCoh(OY) → QCoh(OX ) has a
right adjoint

fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)

which can be defined as the composition

QCoh(OX )→MX
f∗−→MY

Q−→ QCoh(OY)

where the functors f∗ and Q are as in Proposition 79.7.4 and Lemma 79.9.1. More-
over, if we define RifQCoh,∗ as the composition

QCoh(OX )→MX
Rif∗−−−→MY

Q−→ QCoh(OY)

then the sequence of functors {RifQCoh,∗}i≥0 forms a cohomological δ-functor.

Proof. This is a combination of the results mentioned in the statement. The
adjointness can be shown as follows: Let F be a quasi-coherent OX -module and let
G be a quasi-coherent OY -module. Then we have

MorQCoh(OX )(f
∗G,F) = MorMY (G, f∗F)

= MorQCoh(OY)(G, Q(f∗F))

= MorQCoh(OY)(G, fQCoh,∗F)

the first equality by adjointness of f∗ and f∗ (for arbitrary sheaves of modules).
By Proposition 79.7.4 we see that f∗F is an object of MY (and can be computed
in either the fppf or étale topology) and we obtain the second equality by Lemma
79.9.1. The third equality is the definition of fQCoh,∗.
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To see that {RifQCoh,∗}i≥0 is a cohomological δ-functor as defined in Homology,
Definition 12.11.1 let

0→ F1 → F2 → F3 → 0

be a short exact sequence of QCoh(OX ). This sequence may not be an exact
sequence in Mod(OX ) but we know that it is up to parasitic modules, see Lemma
79.8.4. Thus we may break up the sequence into short exact sequences

0→ P1 → F1 → I2 → 0
0→ I2 → F2 → Q2 → 0
0→ P2 → Q2 → I3 → 0
0→ I3 → F3 → P3 → 0

of Mod(OX ) with Pi parasitic. Note that each of the sheaves Pj , Ij , Qj is an object
of MX , see Proposition 79.7.4. Applying Rif∗ we obtain long exact sequences

0→ f∗P1 → f∗F1 → f∗I2 → R1f∗P1 → . . .
0→ f∗I2 → f∗F2 → f∗Q2 → R1f∗I2 → . . .
0→ f∗P2 → f∗Q2 → f∗I3 → R1f∗P2 → . . .
0→ f∗I3 → f∗F3 → f∗P3 → R1f∗I3 → . . .

where are the terms are objects ofMY by Proposition 79.7.4. By Lemma 79.8.3 the
sheaves Rif∗Pj are parasitic, hence vanish on applying the functor Q, see Lemma
79.9.2. Since Q is exact the maps

Q(Rif∗F3) ∼= Q(Rif∗I3) ∼= Q(Rif∗Q2)→ Q(Ri+1f∗I2) ∼= Q(Ri+1f∗F1)

can serve as the connecting map which turns the family of functors {RifQCoh,∗}i≥0

into a cohomological δ-functor. �

Lemma 79.10.2. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a quasi-coherent sheaf on X . Then there exists a
spectral sequence with E2-page

Ep,q2 = Hp(Y, RqfQCoh,∗F)

converging to Hp+q(X ,F).

Proof. By Cohomology on Sites, Lemma 21.14.5 the Leray spectral sequence with

Ep,q2 = Hp(Y, Rqf∗F)

converges to Hp+q(X ,F). The kernel and cokernel of the adjunction map

RqfQCoh,∗F −→ Rqf∗F

are parasitic modules on Y (Lemma 79.9.2) hence have vanishing cohomology
(Lemma 79.8.3). It follows formally that Hp(Y, RqfQCoh,∗F) = Hp(Y, Rqf∗F)
and we win. �

Lemma 79.10.3. Let f : X → Y and g : Y → Z be quasi-compact and quasi-
separated morphisms of algebraic stacks. Let F be a quasi-coherent sheaf on X .
Then there exists a spectral sequence with E2-page

Ep,q2 = RpgQCoh,∗(R
qfQCoh,∗F)

converging to Rp+q(g ◦ f)QCoh,∗F .
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Proof. By Cohomology on Sites, Lemma 21.14.7 the Leray spectral sequence with

Ep,q2 = Rpg∗(R
qf∗F)

converges to Rp+q(g ◦ f)∗F . By the results of Proposition 79.7.4 all the terms
of this spectral sequence are objects of MZ . Applying the exact functor QZ :
MZ → QCoh(OZ) we obtain a spectral sequence in QCoh(OZ) covering to Rp+q(g◦
f)QCoh,∗F . Hence the result follows if we can show that

QZ(Rpg∗(R
qf∗F)) = QZ(Rpg∗(QX (Rqf∗F))

This follows from the fact that the kernel and cokernel of the map

QX (Rqf∗F) −→ Rqf∗F

are parasitic (Lemma 79.9.2) and that Rpg∗ transforms parasitic modules into par-
asitic modules (Lemma 79.8.3). �

To end this section we make explicit the spectral sequences associated to a smooth
covering by a scheme. Please compare with Sheaves on Stacks, Sections 73.19 and
73.20.

Proposition 79.10.4. Let f : U → X be a morphism of algebraic stacks. Assume
f is representable by algebraic spaces, surjective, flat, and locally of finite presen-
tation. Let F be a quasi-coherent OX -module. Then there is a spectral sequence

Ep,q2 = Hq(Up, f∗pF)⇒ Hp+q(X ,F)

where fp is the morphism U ×X . . .×X U → X (p+ 1 factors).

Proof. This is a special case of Sheaves on Stacks, Proposition 73.19.1. �

Proposition 79.10.5. Let f : U → X and g : X → Y be composable morphisms
of algebraic stacks. Assume that

(1) f is representable by algebraic spaces, surjective, flat, locally of finite pre-
sentation, quasi-compact, and quasi-separated, and

(2) g is quasi-compact and quasi-separated.

If F is in QCoh(OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)QCoh,∗f
∗
pF ⇒ Rp+qgQCoh,∗F

in QCoh(OY).

Proof. Note that each of the morphisms fp : U ×X . . .×X U → X is quasi-compact
and quasi-separated, hence g ◦ fp is quasi-compact and quasi-separated, hence the
assertion makes sense (i.e., the functors Rq(g ◦ fp)QCoh,∗ are defined). There is a
spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

by Sheaves on Stacks, Proposition 73.20.1. Applying the exact functor QY :MY →
QCoh(OY) gives the desired spectral sequence in QCoh(OY). �

http://stacks.math.columbia.edu/tag/0784
http://stacks.math.columbia.edu/tag/0785
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79.11. The lisse-étale and the flat-fppf sites

In the book [LMB00] many of the results above are proved using the lisse-étale
site of an algebraic stack. We define this site here. In Examples, Section 82.50
we show that the lisse-étale site isn’t functorial. We also define its analogue, the
flat-fppf site, which is better suited to the development of algebraic stacks as given
in the stacks project (because we use the fppf topology as our base topology). Of
course the flat-fppf site isn’t functorial either.

Definition 79.11.1. Let X be an algebraic stack.

(1) The lisse-étale site of X is the full subcategory Xlisse,étale2 of X whose
objects are those x ∈ Ob(X ) lying over a scheme U such that x : U → X
is smooth. A covering of Xlisse,étale is a family of morphisms {xi → x}i∈I
of Xlisse,étale which forms a covering of Xétale.

(2) The flat-fppf site of X is the full subcategory Xflat,fppf of X whose objects
are those x ∈ Ob(X ) lying over a scheme U such that x : U → X is flat. A
covering of Xflat,fppf is a family of morphisms {xi → x}i∈I of Xflat,fppf
which forms a covering of Xfppf .

We denote OXlisse,étale the restriction of OX to the lisse-étale site and similarly for
OXflat,fppf . The relationship between the lisse-étale site and the étale site is as
follows (we mainly stick to “topological” properties in this lemma).

Lemma 79.11.2. Let X be an algebraic stack.

(1) The inclusion functor Xlisse,étale → Xétale is fully faithful, continuous and
cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xlisse,étale) −→ Sh(Xétale)
with g−1 given by restriction,

(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id→ g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id→ g−1g! is an isomorphism, and
(f) we have g−1OX = OXlisse,étale hence g induces a flat morphism of

ringed topoi such that g−1 = g∗.
(2) The inclusion functor Xflat,fppf → Xfppf is fully faithful, continuous and

cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xflat,fppf ) −→ Sh(Xfppf )

with g−1 given by restriction,
(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id→ g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id→ g−1g! is an isomorphism, and
(f) we have g−1OX = OXflat,fppf hence g induces a flat morphism of

ringed topoi such that g−1 = g∗.

2In the literature the site is denoted Lis-ét(X ) or Lis-Et(X ) and the associated topos is
denoted Xlis-ét or Xlis-et. In the stacks project our convention is to name the site and denote the

corresponding topos by Sh(C).
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Proof. In both cases it is immediate that the functor is fully faithful, continuous,
and cocontinuous (see Sites, Definitions 7.14.1 and 7.19.1). Hence properties (a),
(b), (c) follow from Sites, Lemmas 7.20.5 and 7.20.7. Parts (d), (e) follow from
Modules on Sites, Lemmas 18.16.2 and 18.16.4. Part (f) is immediate. �

Lemma 79.11.3. Let X be an algebraic stack. Notation as in Lemma 79.11.2.

(1) There exists a functor

g! : Mod(Xlisse,étale,OXlisse,étale) −→ Mod(Xétale,OX )

which is left adjoint to g∗. Moreover it agrees with the functor g! on
abelian sheaves and g∗g! = id.

(2) There exists a functor

g! : Mod(Xflat,fppf ,OXflat,fppf ) −→ Mod(Xfppf ,OX )

which is left adjoint to g∗. Moreover it agrees with the functor g! on
abelian sheaves and g∗g! = id.

Proof. In both cases, the existence of the functor g! follows from Modules on Sites,
Lemma 18.40.1. To see that g! agrees with the functor on abelian sheaves we will
show the maps Modules on Sites, Equation (18.40.2.1) are isomorphisms.

Lisse-étale case. Let x ∈ Ob(Xlisse,étale) lying over a scheme U with x : U → X
smooth. Consider the induced fully faithful functor

g′ : Xlisse,étale/x −→ Xétale/x

The right hand side is identified with (Sch/U)étale and the left hand side with
the full subcategory of schemes U ′/U such that the composition U ′ → U → X is

smooth. Thus Étale Cohomology, Lemma 44.50.2 applies.

Flat-fppf case. Let x ∈ Ob(Xflat,fppf ) lying over a scheme U with x : U → X flat.
Consider the induced fully faithful functor

g′ : Xflat,fppf/x −→ Xfppf/x

The right hand side is identified with (Sch/U)fppf and the left hand side with the
full subcategory of schemes U ′/U such that the composition U ′ → U → X is flat.

Thus Étale Cohomology, Lemma 44.50.2 applies.

In both cases the equality g∗g! = id follows from g∗ = g−1 and the equality for
abelian sheaves in Lemma 79.11.2. �

Lemma 79.11.4. Let X be an algebraic stack. Notation as in Lemmas 79.11.2
and 79.11.3.

(1) We have g!OXlisse,étale = OX .
(2) We have g!OXflat,fppf = OX .

Proof. In this proof we write C = Xétale (resp. C = Xfppf ) and we denote C′ =
Xlisse,étale (resp. C′ = Xflat,fppf ). Then C′ is a full subcategory of C. In this proof
we will think of objects V of C as schemes over X and objects U of C′ as schemes
smooth (resp. flat) over X . Finally, we write O = OX and O′ = OXlisse,étale
(resp. O′ = OXflat,fppf ). In the notation above we have O(V ) = Γ(V,OV ) and
O′(U) = Γ(U,OU ). Consider the O-module homomorphism g!O′ → O adjoint to
the identification O′ = g−1O.
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Recall that g!O′ is the sheaf associated to the presheaf gp!O′ given by the rule

V 7−→ colimV→U O′(U)

where the colimit is taken in the category of abelian groups (Modules on Sites,
Definition 18.16.1). Below we will use frequently that if

V → U → U ′

are morphisms and if f ′ ∈ O′(U ′) restricts to f ∈ O′(U), then (V → U, f) and
(V → U ′, f ′) define the same element of the colimit. Also, g!O′ → O maps the
element (V → U, f) simply to the pullback of f to V .

To see that g!O′ → O is surjective it suffices to show that 1 ∈ Γ(C,O) is locally in
the image. Choose an object U of C′ corresponding to a surjective smooth morphism
U → X . Then viewing U both as an object of C′ and C we see that (U → U, 1) is
an element of the colimit above which maps to 1 ∈ O(U). Since U surjects onto
the final object of Sh(C) we conclude g!O′ → O is surjective.

Suppose that s ∈ g!O′(V ) is a section mapping to zero in O(V ). To finish the proof
we have to show that s is zero. After replacing V by the members of a covering we
may assume s is an element of the colimit

colimV→U O′(U)

Say s =
∑

(ϕi, si) is a finite sum with ϕi : V → Ui, Ui smooth (resp. flat) over X ,
and si ∈ Γ(Ui,OUi). Choose a scheme W surjective étale over the algebraic space
U = U1 ×X . . .×X Un. Note that W is still smooth (resp. flat) over X , i.e., defines
an object of C′. The fibre product

V ′ = V ×(ϕ1,...,ϕn),U W

is surjective étale over V , hence it suffices to show that s maps to zero in g!O′(V ′).
Note that the restriction

∑
(ϕi, si)|V ′ corresponds to the sum of the pullbacks of

the functions si to W . In other words, we have reduced to the case of (ϕ, s) where
ϕ : V → U is a morphism with U in C′ and s ∈ O′(U) restricts to zero in O(V ).
By the commutative diagram

V
(ϕ,0)

//

ϕ

''

U ×A1

U

(id,0)

OO

we see that ((ϕ, 0) : V → U ×A1,pr∗2x) represents zero in the colimit above. Hence
we may replace U by U × A1, ϕ by (ϕ, 0) and s by pr∗1s + pr∗2x. Thus we may
assume that the vanishing locus Z : s = 0 in U of s is smooth (resp. flat) over X .
Then we see that (V → Z, 0) and (ϕ, s) have the same value in the colimit, i.e., we
see that the element s is zero as desired. �

The lisse-étale and the flat-fppf sites can be used to characterize parasitic modules
as follows.

Lemma 79.11.5. Let X be an algebraic stack.

(1) Let F be an OX -module with the flat base change property on Xétale. The
following are equivalent
(a) F is parasitic, and
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(b) g∗F = 0 where g : Sh(Xlisse,étale) → Sh(Xétale) is as in Lemma
79.11.2.

(2) Let F be an OX -module on Xfppf . The following are equivalent
(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xflat,fppf ) → Sh(Xfppf ) is as in Lemma

79.11.2.

Proof. Part (2) is immediate from the definitions (this is one of the advantages
of the flat-fppf site over the lisse-étale site). The implication (1)(a) ⇒ (1)(b) is
immediate as well. To see (1)(b) ⇒ (1)(a) let U be a scheme and let x : U → X
be a surjective smooth morphism. Then x is an object of the lisse-étale site of X .
Hence we see that (1)(b) implies that F|Uétale = 0. Let V → X be an flat morphism
where V is a scheme. Set W = U ×X V and consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗small is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain
p∗smallF|Uétale ∼= q∗smallF|Vétale . Thus if F is in the kernel of g∗, then F|Vétale = 0
as desired. �

The lisse-étale site is functorial for smooth morphisms of algebraic stacks and the
flat-fppf site is functorial for flat morphisms of algebraic stacks.

Lemma 79.11.6. Let f : X → Y be a morphism of algebraic stacks.

(1) If f is smooth, then f restricts to a continuous and cocontinuous functor
Xlisse,étale → Ylisse,étale which gives a morphism of ringed topoi fitting
into the following commutative diagram

Sh(Xlisse,étale)
g′

//

f ′

��

Sh(Xétale)

f

��
Sh(Ylisse,étale)

g // Sh(Yétale)

We have f ′∗(g
′)−1 = g−1f∗ and g′!(f

′)−1 = f−1g!.
(2) If f is flat, then f restricts to a continuous and cocontinuous functor
Xflat,fppf → Yflat,fppf which gives a morphism of ringed topoi fitting
into the following commutative diagram

Sh(Xflat,fppf )
g′
//

f ′

��

Sh(Xfppf )

f

��
Sh(Yflat,fppf )

g // Sh(Yfppf )

We have f ′∗(g
′)−1 = g−1f∗ and g′!(f

′)−1 = f−1g!.

Proof. The initial statement comes from the fact that if x ∈ Ob(X ) lies over a
scheme U such that x : U → X is smooth (resp. flat) and if f is smooth (resp. flat)
then f(x) : U → Y is smooth (resp. flat), see Morphisms of Stacks, Lemmas 78.22.2
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and 78.17.2. The induced functor Xlisse,étale → Ylisse,étale (resp. Xflat,fppf →
Yflat,fppf ) is continuous and cocontinuous by our definition of coverings in these
categories. Finally, the commutativity of the diagram is a consequence of the fact
that the horizontal morphisms are given by the inclusion functors (see Lemma
79.11.2) and Sites, Lemma 7.20.2.

To show that f ′∗(g
′)−1 = g−1f∗ let F be a sheaf on Xétale (resp. Xfppf ). There is

a canonical pullback map

g−1f∗F −→ f ′∗(g
′)−1F

see Sites, Section 7.44. We claim this map is an isomorphism. To prove this pick
an object y of Ylisse,étale (resp. Yflat,fppf ). Say y lies over the scheme V such that
y : V → Y is smooth (resp. flat). Since g−1 is the restriction we find that(

g−1f∗F
)

(y) = Γ(V ×y,Y X , pr−1F)

by Sheaves on Stacks, Equation (73.5.0.1). Let (V ×y,Y X )′ ⊂ V ×y,Y X be the
full subcategory consisting of objects z : W → V ×y,Y X such that the induced
morphism W → X is smooth (resp. flat). Denote

pr′ : (V ×y,Y X )′ −→ Xlisse,étale (resp. Xflat,fppf )

the restriction of the functor pr used in the formula above. Exactly the same
argument that proves Sheaves on Stacks, Equation (73.5.0.1) shows that for any
sheaf H on Xlisse,étale (resp. Xflat,fppf ) we have

(79.11.6.1) f ′∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

Since (g′)−1 is restriction we see that(
f ′∗(g

′)−1F
)

(y) = Γ((V ×y,Y X )′, pr−1F|(V×y,YX )′)

By Sheaves on Stacks, Lemma 73.22.3 we see that

Γ((V ×y,Y X )′, pr−1F|(V×y,YX )′) = Γ(V ×y,Y X , pr−1F)

are equal as desired; although we omit the verification of the assumptions of the
lemma we note that the fact that V → Y is smooth (resp. flat) is used to verify the
second condition.

Finally, the equality g′!(f
′)−1 = f−1g! follows formally from the equality f ′∗(g

′)−1 =
g−1f∗ by the adjointness of f−1 and f∗, the adjointness of g! and g−1, and their
“primed” versions. �

79.12. Quasi-coherent modules, II

In this section we explain how to think of quasi-coherent modules on an algebraic
stack in terms of its lisse-étale or flat-fppf site.

Lemma 79.12.1. Let X be an algebraic stack.

(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If each

f−1
j F is quasi-coherent, then so is F .

(2) Let fj : Xj → X be a family of flat and locally finitely presented morphisms
of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules

on Xfppf . If each f−1
j F is quasi-coherent, then so is F .
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Proof. Proof of (1). We may replace each of the algebraic stacks Xj by a scheme
Uj (using that any algebraic stack has a smooth covering by a scheme and that
compositions of smooth morphisms are smooth, see Morphisms of Stacks, Lemma
78.22.2). The pullback of F to (Sch/Uj)étale is still locally quasi-coherent, see
Sheaves on Stacks, Lemma 73.11.2. Then f =

∐
fj : U =

∐
Uj → X is a smooth

surjective morphism. Let x : V → X be an object of X . By Sheaves on Stacks,
Lemma 73.18.10 there exists an étale covering {xi → x}i∈I such that each xi lifts
to an object ui of (Sch/U)étale. This just means that xi lives over a scheme Vi, that
{Vi → V } is an étale covering, and that xi comes from a morphism ui : Vi → U .
Then x∗iF = u∗i f

∗F is quasi-coherent. This implies that x∗F on (Sch/V )étale is
quasi-coherent, for example by Modules on Sites, Lemma 18.23.3. By Sheaves on
Stacks, Lemma 73.11.3 we see that F is quasi-coherent.

Proof of (2). This is proved using exactly the same argument, which we fully write
out here. We may replace each of the algebraic stacks Xj by a scheme Uj (using
that any algebraic stack has a smooth covering by a scheme and that flat and
locally finite presented morphisms are preserved by composition, see Morphisms of
Stacks, Lemmas 78.17.2 and 78.18.2). The pullback of F to (Sch/Uj)étale is still
locally quasi-coherent, see Sheaves on Stacks, Lemma 73.11.2. Then f =

∐
fj :

U =
∐
Uj → X is a surjective, flat, and locally finitely presented morphism. Let

x : V → X be an object of X . By Sheaves on Stacks, Lemma 73.18.10 there exists
an fppf covering {xi → x}i∈I such that each xi lifts to an object ui of (Sch/U)étale.
This just means that xi lives over a scheme Vi, that {Vi → V } is an fppf covering,
and that xi comes from a morphism ui : Vi → U . Then x∗iF = u∗i f

∗F is quasi-
coherent. This implies that x∗F on (Sch/V )étale is quasi-coherent, for example by
Modules on Sites, Lemma 18.23.3. By Sheaves on Stacks, Lemma 73.11.3 we see
that F is quasi-coherent. �

We recall that we have defined the notion of a quasi-coherent module on any ringed
topos in Modules on Sites, Section 18.23.

Lemma 79.12.2. Let X be an algebraic stack. Notation as in Lemma 79.11.2.

(1) Let H be a quasi-coherent OXlisse,étale-module on the lisse-étale site of X .
Then g!H is a quasi-coherent module on X .

(2) Let H be a quasi-coherent OXflat,fppf -module on the flat-fppf site of X .
Then g!H is a quasi-coherent module on X .

Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By
Modules on Sites, Definition 18.23.1 there exists an étale (resp. fppf) covering {Ui →
U}i∈I such that each pullback f−1

i H has a global presentation (see Modules on
Sites, Definition 18.17.1). Here fi : Ui → X is the composition Ui → U → X which
is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 73.9.2 and the discussion following.) Since
each fi is smooth (resp. flat) by Lemma 79.11.6 we see that f−1

i g!H = gi,!(f
′
i)
−1H.

Using Lemma 79.12.1 we reduce the statement of the lemma to the case where H
has a global presentation. Say we have⊕

j∈J
O −→

⊕
i∈I
O −→ H −→ 0

of O-modules where O = OXlisse,étale (resp. O = OXflat,fppf ). Since g! commutes
with arbitrary colimits (as a left adjoint functor, see Lemma 79.11.3 and Categories,
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Lemma 4.24.4) we conclude that there exists an exact sequence⊕
j∈J

g!O −→
⊕

i∈I
g!O −→ g!H −→ 0

Finally, Lemma 79.11.4 shows that g!O = OX and we win. �

Lemma 79.12.3. Let X be an algebraic stack. Let MX be the category of locally
quasi-coherent OX -modules with the flat base change property.

(1) With g as in Lemma 79.11.2 for the lisse-étale site we have
(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1

//
QCoh(Xlisse,étale,OXlisse,étale)

g!

oo

(b) if F is in MX then g−1F is in QCoh(Xlisse,étale,OXlisse,étale) and

(c) Q(F) = g!g
−1F where Q is as in Lemma 79.9.1.

(2) With g as in Lemma 79.11.2 for the flat-fppf site we have
(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1

//
QCoh(Xflat,fppf ,OXflat,fppf )

g!

oo

(b) if F is in MX then g−1F is in QCoh(Xflat,fppf ,OXflat,fppf ) and

(c) Q(F) = g!g
−1F where Q is as in Lemma 79.9.1.

Proof. Pullback by any morphism of ringed topoi preserves categories of quasi-
coherent modules, see Modules on Sites, Lemma 18.23.4. Hence g−1 preserves the
categories of quasi-coherent modules. The same is true for g! by Lemma 79.12.2.
We know that H → g−1g!H is an isomorphism by Lemma 79.11.2. Conversely, if
F is in QCoh(OX ) then the map g!g

−1F → F is a map of quasi-coherent modules
on X whose restriction to any scheme smooth over X is an isomorphism. Then the
discussion in Sheaves on Stacks, Sections 73.13 and 73.14 (comparing with quasi-
coherent modules on presentations) shows it is an isomorphism. This proves (1)(a)
and (2)(a).

Let F be an object of MX . By Lemma 79.9.2 the kernel and cokernel of the
map Q(F) → F are parasitic. Hence by Lemma 79.11.5 and since g∗ = g−1

is exact, we conclude g∗Q(F) → g∗F is an isomorphism. Thus g∗F is quasi-
coherent. This proves (1)(b) and (2)(b). Finally, (1)(c) and (2)(c) follow because
g!g
∗Q(F)→ Q(F) is an isomorphism by our arguments above. �

Remark 79.12.4. Let X be an algebraic stack. The results of Lemmas 79.9.1 and
79.9.2 imply that

QCoh(OX ) =MX /Parasitic ∩MX
in words: the category of quasi-coherent modules is the category of locally quasi-
coherent modules with the flat base change property divided out by the Serre
subcategory consisting of parasitic objects. See Homology, Lemma 12.9.6. The
existence of the inclusion functor i : QCoh(OX )→MX which is left adjoint to the
quotient functor means that MX → QCoh(OX ) is a Bousfield colocalization or a
right Bousfield localization (insert future reference here). Our next goal is to show
a similar result holds on the level of derived categories.

Lemma 79.12.5. Let X be an algebraic stack.

http://stacks.math.columbia.edu/tag/07B1
http://stacks.math.columbia.edu/tag/07B2
http://stacks.math.columbia.edu/tag/07B4


4284 79. COHOMOLOGY OF ALGEBRAIC STACKS

(1) QCoh(OXlisse,étale) is a weak Serre subcategory of Mod(OXlisse,étale).
(2) QCoh(OXflat,fppf ) is a weak Serre subcategory of Mod(OXflat,fppf ).

Proof. We will verify conditions (1), (2), (3), (4) of Homology, Lemma 12.9.3.
Since 0 is a quasi-coherent module on any ringed site we see that (1) holds. By def-
inition QCoh(O) is a strictly full subcategory Mod(O), so (2) holds. Let ϕ : G → F
be a morphism of quasi-coherent modules on Xlisse,étale or Xflat,fppf . We have
g∗g!F = F and similarly for G and ϕ, see Lemma 79.11.3. By Lemma 79.12.2 we
see that g!F and g!G are quasi-coherent OX -modules. Hence we see that Ker(g!ϕ)
and Coker(g!ϕ) are quasi-coherent modules on X . Since g∗ is exact (see Lemma
79.11.2) we see that g∗Ker(g!ϕ) = Ker(g∗g!ϕ) = Ker(ϕ) and g∗Coker(g!ϕ) =
Coker(g∗g!ϕ) = Coker(ϕ) are quasi-coherent too (see Lemma 79.12.3). This proves
(3).

Finally, suppose that
0→ F → E → G → 0

is an extension of OXlisse,étale -modules (resp. OXflat,fppf -modules) with F and G
quasi-coherent. We have to show that E is quasi-coherent on Xlisse,étale (resp.
Xflat,fppf ). We strongly urge the reader to write out what this means on a napkin
and prove it him/herself rather than reading the somewhat labyrinthine proof that
follows. By Lemma 79.12.3 this is true if and only if g!E is quasi-coherent. By
Lemmas 79.12.1 and Lemma 79.11.6 we may check this after replacing X by a
smooth (resp. fppf) cover. Choose a scheme U and a smooth surjective morphism
U → X . By definition there exists an étale (resp. fppf) covering {Ui → U}i
such that G has a global presentation over each Ui. Replacing X by Ui (which is
permissible by the discussion above) we may assume that the site Xlisse,étale (resp.
Xflat,fppf ) has a final object U (in other words X is representable by the scheme
U) and that G has a global presentation⊕

j∈J
O −→

⊕
i∈I
O −→ G −→ 0

of O-modules where O = OXlisse,étale (resp. O = OXflat,fppf ). Let E ′ be the pullback
of E via the map

⊕
i∈I O → G. Then we see that E is the cokernel of a map⊕

j∈J O → E ′ hence by property (3) which we proved above, it suffices to prove

that E ′ is quasi-coherent. Consider the exact sequence

L1g!

(⊕
i∈I
O
)
→ g!F → g!E ′ → g!

(⊕
i∈I
O
)
→ 0

where L1g! is the first left derived functor of g! : Mod(OXlisse,étale)→ Mod(Xétale,OX )
(resp. g! : Mod(Xflat,fppf ,OXflat,fppf ) → Mod(Xfppf ,OX )). This derived functor
exists by Cohomology on Sites, Lemma 21.27.1. Moreover, since O = jU !OU we
have Lg!O = g!O = OX also by Cohomology on Sites, Lemma 21.27.1. Thus the
left hand term vanishes and we obtain a short exact sequence

0→ g!F → g!E ′ →
⊕

i∈I
OX → 0

By Proposition 79.7.4 it follows that g!E ′ is locally quasi-coherent with the flat
base change property. Finally, Lemma 79.12.3 implies that E ′ = g−1g!E ′ is quasi-
coherent as desired. �
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CHAPTER 80

Derived Categories of Stacks

80.1. Introduction

In this chapter we write about derived categories associated to algebraic stacks.
This means in particular derived categories of quasi-coherent sheaves, i.e., we prove
analogues of the results on schemes (see Derived Categories of Schemes, Section
35.1) and algebraic spaces (see Derived Categories of Spaces, Section 57.1). The
results in this chapter are different from those in [LMB00] mainly because we
consistently use the “big sites”. Before reading this chapter please take a quick
look at the chapters “Sheaves on Algebraic Stacks” and “Cohomology of Algebraic
Stacks” where the terminology we use here is introduced.

80.2. Conventions, notation, and abuse of language

We continue to use the conventions and the abuse of language introduced in Proper-
ties of Stacks, Section 77.2. We use notation as explained in Cohomology of Stacks,
Section 79.3.

80.3. The lisse-étale and the flat-fppf sites

The section is the analogue of Cohomology of Stacks, Section 79.11 for derived
categories.

Lemma 80.3.1. Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemmas 79.11.2 and 79.11.3.

(1) The functor g! : Ab(Xlisse,étale)→ Ab(Xétale) has a left derived functor

Lg! : D(Xlisse,étale) −→ D(Xétale)
which is left adjoint to g−1 and such that g−1Lg! = id.

(2) The functor g! : Mod(Xlisse,étale,OXlisse,étale) → Mod(Xétale,OX ) has a
left derived functor

Lg! : D(OXlisse,étale) −→ D(Xétale,OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
(3) The functor g! : Ab(Xflat,fppf )→ Ab(Xfppf ) has a left derived functor

Lg! : D(Xflat,fppf ) −→ D(Xfppf )

which is left adjoint to g−1 and such that g−1Lg! = id.
(4) The functor g! : Mod(Xflat,fppf ,OXflat,fppf )→ Mod(Xfppf ,OX ) has a left

derived functor

Lg! : D(OXflat,fppf ) −→ D(OX )

which is left adjoint to g∗ and such that g∗Lg! = id.

4287
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Warning: It is not clear (a priori) that Lg! on modules agrees with Lg! on abelian
sheaves, see Cohomology on Sites, Remark 21.27.2.

Proof. The existence of the functor Lg! and adjointness to g∗ is Cohomology on
Sites, Lemma 21.27.1. (For the case of abelian sheaves use the constant sheaf Z
as the structure sheaves.) Moreover, it is computed on a complex H• by taking
a suitable left resolution K• → H• and applying the functor g! to K•. Since
g−1g!K• = K• by Cohomology of Stacks, Lemmas 79.11.3 and 79.11.2 we see that
the final assertion holds in each case. �

Lemma 80.3.2. With assumptions and notation as in Cohomology of Stacks,
Lemma 79.11.6. We have

g−1 ◦Rf∗ = Rf ′∗ ◦ (g′)−1 and L(g′)! ◦ (f ′)−1 = f−1 ◦ Lg!

on unbounded derived categories (both for the case of modules and for the case of
abelian sheaves).

Proof. Let F be an abelian sheaf on Xétale (resp. Xfppf ). We first show that the
canonical (base change) map

g−1Rf∗F −→ Rf ′∗(g
′)−1F

is an isomorphism. To do this let y be an object of Ylisse,étale (resp. Yflat,fppf ).
Say y lies over the scheme V such that y : V → Y is smooth (resp. flat). Since g−1

is the restriction we find that(
g−1Rpf∗F

)
(y) = Hp

τ (V ×y,Y X , pr−1F)

where τ = étale (resp. τ = fppf), see Sheaves on Stacks, Lemma 73.20.2. By
Cohomology of Stacks, Equation (79.11.6.1) for any sheaf H on Xlisse,étale (resp.
Xflat,fppf )

f ′∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

An object of (V ×y,Y X )′ can be seen as a pair (x, ϕ) where x is an object of
Xlisse,étale (resp. Xflat,fppf ) and ϕ : f(x) → y is a morphism in Y. We can also
think of ϕ as a section of (f ′)−1hy over x. Thus (V ×Y X )′ is the localization of the
site Xlisse,étale (resp. Xflat,fppf ) at the sheaf of sets (f ′)−1hy, see Sites, Lemma
7.29.3. The morphism

pr′ : (V ×y,Y X )′ → Xlisse,étale (resp. pr′ : (V ×y,Y X )′ → Xflat,fppf )

is the localization morphism. In particular, the pullback (pr′)−1 preserves injective
abelian sheaves, see Cohomology on Sites, Lemma 21.13.3. At this point exactly
the same argument as in Sheaves on Stacks, Lemma 73.20.2 shows that

(80.3.2.1) Rpf ′∗H(y) = Hp
τ ((V ×y,Y X )′, (pr′)−1H)

where τ = étale (resp. τ = fppf). Since (g′)−1 is given by restriction we conclude
that

(Rpf ′∗(g
′)∗F) (y) = Hp

τ ((V ×y,Y X )′, pr−1F|(V×y,YX )′)

Finally, we can apply Sheaves on Stacks, Lemma 73.22.3 to see that

Hp
τ ((V ×y,Y X )′, pr−1F|(V×y,YX )′) = Hp

τ (V ×y,Y X , pr−1F)

are equal as desired; although we omit the verification of the assumptions of the
lemma we note that the fact that V → Y is smooth (resp. flat) is used to verify the
second condition.
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The rest of the proof is formal. Since cohomology of abelian groups and sheaves of
modules agree we also conclude that g−1Rf∗F = Rf ′∗(g

′)−1F when F is a sheaf of
modules on Xétale (resp. Xfppf ).

Next we show that for G (either sheaf of modules or abelian groups) on Ylisse,étale
(resp. Yflat,fppf ) the canonical map

L(g′)!(f
′)−1G → f−1Lg!G

is an isomorphism. To see this it is enough to prove for any injective sheaf I on
Xétale (resp. Xfppf ) that the induced map

Hom(L(g′)!(f
′)−1G, I[n])← Hom(f−1Lg!G, I[n])

is an isomorphism for all n ∈ Z. (Hom’s taken in suitable derived categories.) By
the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and their “primed”
versions this follows from the isomorphism g−1Rf∗I → Rf ′∗(g

′)−1I proved above.

In the case of a bounded complex G• (of modules or abelian groups) on Ylisse,étale
(resp. Yfppf ) the canonical map

(80.3.2.2) L(g′)!(f
′)−1G• → f−1Lg!G•

is an isomorphism as follows from the case of a sheaf by the usual arguments
involving truncations and the fact that the functors L(g′)!(f

′)−1 and f−1Lg! are
exact functors of triangulated categories.

Suppose that G• is a bounded above complex (of modules or abelian groups) on
Ylisse,étale (resp. Yfppf ). The canonical map (80.3.2.2) is an isomorphism because
we can use the stupid truncations σ≥−n (see Homology, Section 12.13) to write
G• as a colimit G• = colimG•n of bounded complexes. This gives a distinguished
triangle ⊕

n≥1
G•n →

⊕
n≥1
G•n → G• → . . .

and each of the functors L(g′)!, (f ′)−1, f−1, Lg! commutes with direct sums (of
complexes).

If G• is an arbitrary complex (of modules or abelian groups) on Ylisse,étale (resp.
Yfppf ) then we use the canonical truncations τ≤n (see Homology, Section 12.13) to
write G• as a colimit of bounded above complexes and we repeat the argument of
the paragraph above.

Finally, by the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and
their “primed” versions we conclude that the first identity of the lemma follows
from the second in full generality. �

Lemma 80.3.3. Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemma 79.11.2.

(1) Let H be a quasi-coherent OXlisse,étale-module on the lisse-étale site of X .
For all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with
the flat base change property on X .

(2) Let H be a quasi-coherent OXflat,fppf -module on the flat-fppf site of X .
For all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with
the flat base change property on X .

http://stacks.math.columbia.edu/tag/07B3
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Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By
Modules on Sites, Definition 18.23.1 there exists an étale (resp. fppf) covering {Ui →
U}i∈I such that each pullback f−1

i H has a global presentation (see Modules on
Sites, Definition 18.17.1). Here fi : Ui → X is the composition Ui → U → X which
is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 73.9.2 and the discussion following.) After
refining the covering we may assume each Ui is an affine scheme. Since each fi is
smooth (resp. flat) by Lemma 80.3.2 we see that f−1

i Lg!H = Lgi,!(f
′
i)
−1H. Using

Cohomology of Stacks, Lemma 79.7.5 we reduce the statement of the lemma to the
case where H has a global presentation and where X = (Sch/X)fppf for some affine
scheme X = Spec(A).

Say our presentation looks like⊕
j∈J
O −→

⊕
i∈I
O −→ H −→ 0

where O = OXlisse,étale (resp. O = OXflat,fppf ). Note that the site Xlisse,étale (resp.
Xflat,fppf ) has a final object, namely X/X which is quasi-compact (see Cohomology
on Sites, Section 21.16). Hence we have

Γ(
⊕

i∈I
O) =

⊕
i∈I

A

by Sites, Lemma 7.11.2. Hence the map in the presentation corresponds to a similar
presentation ⊕

j∈J
A −→

⊕
i∈I

A −→M −→ 0

of an A-module M . Moreover, H is equal to the restriction to the lisse-étale (resp.
flat-fppf) site of the quasi-coherent sheaf Ma associated to M . Choose a resolution

. . .→ F2 → F1 → F0 →M → 0

by free A-modules. The complex

. . .O ⊗A F2 → O⊗A F1 → O⊗A F0 → H→ 0

is a resolution of H by free O-modules because for each object U/X of Xlisse,étale
(resp. Xflat,fppf ) the structure morphism U → X is flat. Hence by construction
the value of Lg!H is

. . .→ OX ⊗A F2 → OX ⊗A F1 → OX ⊗A F0 → 0→ . . .

Since this is a complex of quasi-coherent modules on Xétale (resp. Xfppf ) it follows
from Cohomology of Stacks, Proposition 79.7.4 that Hp(Lg!H) is quasi-coherent.

�

80.4. Derived categories of quasi-coherent modules

Let X be an algebraic stack. As the inclusion functor QCoh(OX )→ Mod(OX ) isn’t
exact, we cannot define DQCoh(OX ) as the full subcategory of D(OX ) consisting of
complexes with quasi-coherent cohomology sheaves. In stead we define the category
as follows.

Definition 80.4.1. Let X be an algebraic stack. LetMX ⊂ Mod(OX ) denote the
category of locally quasi-coherent OX -modules with the flat base change property.
Let PX ⊂ MX be the full subcategory consisting of parasitic objects. We define
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the derived category of OX -modules with quasi-coherent cohomology sheaves as the
Verdier quotient1

DQCoh(OX ) = DMX (OX )/DPX (OX )

This definition makes sense: By Cohomology of Stacks, Proposition 79.7.4 we see
that MX is a weak Serre subcategory of Mod(OX ) hence DMX (OX ) is a strictly
full, saturated triangulated subcategory of D(OX ), see Derived Categories, Lemma
13.13.1. Since parasitic modules form a Serre subcategory of Mod(OX ) (by Co-
homology of Stacks, Lemma 79.8.2) we see that PX = Parasitic ∩MX is a weak
Serre subcategory of Mod(OX ) and hence DPX (OX ) is a strictly full, saturated
triangulated subcategory of D(OX ). Since clearly

DPX (OX ) ⊂ DMX (OX )

we conclude that the first is a strictly full, saturated triangulated subcategory of the
second. Hence the Verdier quotient exists. A morphism a : E → E′ of DMX (OX )
becomes an isomorphism in DQCoh(OX ) if and only if the cone C(a) has parasitic
cohomology sheaves, see Derived Categories, Section 13.6 and especially Lemma
13.6.10.

Consider the functors

DMX (OX )
Hi−−→MX

Q−→ QCoh(OX )

Note that Q annihilates the subcategory PX , see Cohomology of Stacks, Lemma
79.9.2. By Derived Categories, Lemma 13.6.8 we obtain a cohomological functor

(80.4.1.1) Hi : DQCoh(OX ) −→ QCoh(OX )

Moreover, note that E ∈ DQCoh(OX ) is zero if and only if Hi(E) = 0 for all i ∈ Z.

Note that the categories PX and MX are also weak Serre subcategories of the
abelian category Mod(Xétale,OX ) of modules in the étale topology, see Cohomol-
ogy of Stacks, Proposition 79.7.4 and Lemma 79.8.2. Hence the statement of the
following lemma makes sense.

Lemma 80.4.2. Let X be an algebraic stack. The comparison morphism ε :
Xfppf → Xétale induces a commutative diagram

DPX (OX ) // DMX (OX ) // D(OX )

DPX (Xétale,OX ) //

ε∗

OO

DMX (Xétale,OX ) //

ε∗

OO

D(Xétale,OX )

ε∗

OO

Moreover, the left two vertical arrows are equivalences of triangulated categories,
hence we also obtain an equivalence

DMX (Xétale,OX )/DPX (Xétale,OX ) −→ DQCoh(OX )

Proof. Since ε∗ is exact it is clear that we obtain a diagram as in the statement of
the lemma. We will show the middle vertical arrow is an equivalence by applying
Cohomology on Sites, Lemma 21.22.6 to the following situation: C = X , τ = fppf ,
τ ′ = étale, O = OX , A = MX , and B is the set of objects of X lying over affine
schemes. To see the lemma applies we have to check conditions (1), (2), (3), (4).

1This definition is different from the one in the literature, see [Ols07b, 6.3], but it agrees
with that definition by Lemma 80.4.3.
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Conditions (1) and (2) are clear from the discussion above (explicitly this follows
from Cohomology of Stacks, Proposition 79.7.4). Condition (3) holds because every
scheme has a Zariski open covering by affines. Condition (4) follows from Descent,
Lemma 34.8.4.

We omit the verification that the equivalence of categories ε∗ : DMX (Xétale,OX )→
DMX (OX ) induces an equivalence of the subcategories of complexes with parasitic
cohomology sheaves. �

It turns out that DQCoh(OX ) is the same as the derived category of complexes of
modules with quasi-coherent cohomology sheaves on the lisse-étale or flat-fppf site.

Lemma 80.4.3. Let X be an algebraic stack. Let F• be an object of DMX (OX ).

(1) With g as in Cohomology of Stacks, Lemma 79.11.2 for the lisse-étale site
we have
(a) g−1F• is in DQCoh(OXlisse,étale),

(b) g−1F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DMX (Xétale,OX ) for H• in DQCoh(OXlisse,étale), and

(d) the functors g−1 and Lg! define mutually inverse functors

DQCoh(OX )
g−1

//
DQCoh(OXlisse,étale)

Lg!

oo

(2) With g as in Cohomology of Stacks, Lemma 79.11.2 for the flat-fppf site
we have
(a) g−1F• is in DQCoh(OXlisse,étale),
(b) g−1F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DMX (OX ) for H• in DQCoh(OXflat,fppf ), and

(d) the functors g−1 and Lg! define mutually inverse functors

DQCoh(OX )
g−1

//
DQCoh(OXflat,fppf )

Lg!

oo

Proof. The functor g−1 is exact, hence (a) and (b) follow from Cohomology of
Stacks, Lemmas 79.12.3 and 79.11.5.

The construction of Lg! in Lemma 80.3.1 (via Cohomology on Sites, Lemma 21.27.1
which in turn uses Derived Categories, Proposition 13.28.2) shows that Lg! on any
object H• of D(OXlisse,étale) is computed as

Lg!H• = colim g!K•n = g! colimK•n
(termwise colimits) where the quasi-isomorphism colimK•n → H• induces quasi-
isomorphismsK•n → τ≤nH•. SinceMX ⊂ Mod(Xétale,OX ) (resp.MX ⊂ Mod(OX ))
is preserved under colimits we see that it suffices to prove (c) on bounded above
complexes H• in DQCoh(OXlisse,étale) (resp. DQCoh(OXflat,fppf )). In this case to
show that Hn(Lg!H•) is in MX we can argue by induction on the integer m such
that Hi = 0 for i > m. If m < n, then Hn(Lg!H•) = 0 and the result holds. In
general consider the distinguished triangle

τ≤m−1H• → H• → Hm(H•)[−m]→ . . .

(Derived Categories, Remark 13.12.4) and apply the functor Lg!. Since MX is a
weak Serre subcategory of the module category it suffices to prove (c) for two out
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of three. We have the result for Lg!τ≤m−1H• by induction and we have the result
for Lg!H

m(H•)[−m] by Lemma 80.3.3. Whence (c) holds.

Let us prove (2)(d). By (a) and (b) the functor g−1 = g∗ induces a functor

c : DQCoh(OX ) −→ DQCoh(OXflat,fppf )

see Derived Categories, Lemma 13.6.8. Thus we have the following diagram of
triangulated categories

DMX (OX )

g−1

((

q
// DQCoh(OX )

c
vv

DQCoh(OXflat,fppf )
Lg!

hh

where q is the quotient functor, the inner triangle is commutative, and g−1Lg! = id.
For any object of E of DMX (OX ) the map a : Lg!g

−1E → E maps to a quasi-
isomorphism in D(OXflat,fppf ). Hence the cone on a maps to zero under g−1 and
by (b) we see that q(a) is an isomorphism. Thus q ◦ Lg! is a quasi-inverse to c.

In the case of the lisse-étale site exactly the same argument as above proves that

DMX (Xétale,OX )/DPX (Xétale,OX )

is equivalent to DQCoh(OXlisse,étale). Applying the last equivalence of Lemma 80.4.2
finishes the proof. �

The following lemma tells us that the quotient functor DMX (OX ) → DQCoh(OX )
is a Bousfield colocalization (insert future reference here).

Lemma 80.4.4. Let X be an algebraic stack. Let E be an object of DMX (OX ).
There exists a canonical distinguished triangle

E′ → E → P → E′[1]

in DMX (OX ) such that P is in DPX (OX ) and

HomD(OX )(E
′, P ′) = 0

for all P ′ in DPX (OX ).

Proof. Consider the morphism of ringed topoi g : Sh(Xflat,fppf ) −→ Sh(Xfppf ).
Set E′ = Lg!g

−1E and let P be the cone on the adjunction map E′ → E. Since
g−1E′ → g−1E is an isomorphism we see that P is an object ofDPX (OX ) by Lemma
80.4.3 (2)(b). Finally, Hom(E′, P ′) = Hom(Lg!g

−1E,P ′) = Hom(g−1E, g−1P ′) =
0 as g−1P ′ = 0.

Uniqueness. Suppose that E′′ → E → P ′ is a second distinguished triangle as in
the statement of the lemma. Since Hom(E′, P ′) = 0 the morphism E′ → E factors
as E′ → E′′ → E, see Derived Categories, Lemma 13.4.2. Similarly, the morphism
E′′ → E factors as E′′ → E′ → E. Consider the composition ϕ : E′ → E′ of the
maps E′ → E′′ and E′′ → E′. Note that ϕ− 1 : E′ → E′ fits into the commutative
diagram

E′

ϕ−1

��

// E

0

��
E′ // E
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hence factors through P [−1] → E. Since Hom(E′, P [−1]) = 0 we see that ϕ = 1.
Whence the maps E′ → E′′ and E′′ → E′ are inverse to each other. �

80.5. Derived pushforward of quasi-coherent modules

As a first application of the material above we construct the derived pushforward.
In Examples, Section 82.51 the reader can find an example of a quasi-compact and
quasi-separated morphism f : X → Y of algebraic stacks such that the direct image
functor Rf∗ does not induce a functor DQCoh(OX )→ DQCoh(OY). Thus restricting
to bounded below complexes is necessary.

Proposition 80.5.1. Let f : X → Y be a quasi-compact and quasi-separated
morphism of algebraic stacks. The functor Rf∗ induces a commutative diagram

D+
PX (OX ) //

Rf∗

��

D+
MX (OX ) //

Rf∗

��

D(OX )

Rf∗

��
D+
PY (OY) // D+

MY (OY) // D(OY)

and hence induces a functor

RfQCoh,∗ : D+
QCoh(OX ) −→ D+

QCoh(OY)

on quotient categories. Moreover, the functor RifQCoh of Cohomology of Stacks,
Proposition 79.10.1 are equal to Hi ◦RfQCoh,∗ with Hi as in (80.4.1.1).

Proof. We have to show that Rf∗E is an object of D+
MY (OY) for E in D+

MX (OX ).
This follows from Cohomology of Stacks, Proposition 79.7.4 and the spectral se-
quence Rif∗H

j(E)⇒ Ri+jf∗E. The case of parasitic modules works the same way
using Cohomology of Stacks, Lemma 79.8.3. The final statement is clear from the
definition of Hi in (80.4.1.1). �

80.6. Derived pullback of quasi-coherent modules

Derived pullback of complexes with quasi-coherent cohomology sheaves exists in
general.

Proposition 80.6.1. Let f : X → Y be a morphism of algebraic stacks. The exact
functor f∗ induces a commutative diagram

DMX (OX ) // D(OX )

DMY (OY) //

f∗

OO

D(OY)

f∗

OO

The composition

DMY (OY)
f∗−→ DMX (OX )

qX−−→ DQCoh(OX )

is left deriveable with respect to the localization DMY (OY) → DQCoh(OY) and we
may define Lf∗QCoh as its left derived functor

Lf∗QCoh : DQCoh(OY) −→ DQCoh(OX )
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(see Derived Categories, Definitions 13.15.2 and 13.15.9). If f is quasi-compact
and quasi-separated, then Lf∗QCoh and RfQCoh,∗ satisfy the following adjointness:

HomDQCoh(OX )(Lf
∗
QCohA,B) = HomDQCoh(OY)(A,RfQCoh,∗B)

for A ∈ DQCoh(OY) and B ∈ D+
QCoh(OX ).

Proof. To prove the first statement, we have to show that f∗E is an object of
DMX (OX ) for E in DMY (OY). Since f∗ = f−1 is exact this follows immediately
from the fact that f∗ maps MY into MX .

Set D = DMY (OY). Let S be the collection of morphisms in D whose cone is an
object of DPY (OY). Set D′ = DQCoh(OX ). Set F = qX ◦ f∗ : D → D′. Then
D, S,D′, F are as in Derived Categories, Situation 13.15.1 and Definition 13.15.2.
Let us prove that LF (E) is defined for any object E of D. Namely, consider the
triangle

E′ → E → P → E′[1]

constructed in Lemma 80.4.4. Note that s : E′ → E is an element of S. We claim
that E′ computes LF . Namely, suppose that s′ : E′′ → E is another element of S,
i.e., fits into a triangle E′′ → E → P ′ → E′′[1] with P ′ in DPY (OY). By Lemma
80.4.4 (and its proof) we see that E′ → E factors through E′′ → E. Thus we see
that E′ → E is cofinal in the system S/E. Hence it is clear that E′ computes LF .

To see the final statement, write B = qX (H) and A = qY(E). Choose E′ → E as
above. We will use on the one hand that RfQCoh,∗(B) = qY(Rf∗H) and on the
other that Lf∗QCoh(A) = qX (f∗E′).

HomDQCoh(OX )(Lf
∗
QCohA,B) = HomDQCoh(OX )(qX (f∗E′), qX (H))

= colimH→H′ HomD(OX )(f
∗E′, H ′)

= colimH→H′ HomD(OY)(E
′, Rf∗H

′)

= HomD(OY)(E
′, Rf∗H)

= HomDQCoh(OY)(A,RfQCoh,∗B)

Here the colimit is over morphisms s : H → H ′ in D+
MX (OX ) whose cone P (s) is an

object of D+
PX (OX ). The first equality we’ve seen above. The second equality holds

by construction of the Verdier quotient. The third equality holds by Cohomology
on Sites, Lemma 21.19.1. Since Rf∗P (s) is an object of D+

PY (OY) by Proposition

80.5.1 we see that HomD(OY)(E
′, Rf∗P (s)) = 0. Thus the fourth equality holds.

The final equality holds by construction of E′. �
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CHAPTER 81

Introducing Algebraic Stacks

81.1. Why read this?

We give a very informal introduction to algebraic stacks aimed at graduate students
and advanced undergraduates. The goal is to quickly introduce a simple language
which you can use to think about local and global properties of your favorite moduli
problem. Having done this it should be possible to ask yourself well-posed questions
about moduli problems and to start solving them, whilst assuming a general theory
exists. If you end up with an interesting result, you can go back to the general
theory in the other parts of the stacks project and fill in the gaps as needed.

The point of view we take here is very close to the point of view taken in [KM85]
and [Mum65].

81.2. Preliminary

Let S be a scheme. An elliptic curve over S is a triple (E, f, 0) where E is a scheme
and f : E → S and 0 : S → E are morphisms of schemes such that

(1) f : E → S is proper, smooth of relative dimension 1,
(2) for every s ∈ S the fibre Es is a connected curve of genus 1, i.e., H0(Es,O)

and H1(Es,O) both are 1-dimensional κ(s)-vector spaces, and
(3) 0 is a section of f .

Given elliptic curves (E, f, 0)/S and (E′, f ′, 0′)/S′ a morphism of elliptic curves
over a : S → S′ is a morphism α : E → E′ such that the diagram

E
α

//

f

��

E′

f ′

��
S

0

77

a // S′

0′

ff

is commutative and the inner square is cartesian, in other words the morphism α
induces an isomorphism E → S ×S′ E′. We are going to define the stack of elliptic
curves M1,1. In the rest of the stacks project we work out the method introduced
in Deligne and Mumford’s paper [DM69] which consists in presenting M1,1 as a
category endowed with a functor

p :M1,1 −→ Sch, (E, f, 0)/S 7−→ S

This means you work with fibred categories over the categories of schemes, topolo-
gies, stacks fibred in groupoids, coverings, etc, etc. In this chapter we throw all of
that out of the window and we think about it a bit differently – probably closer to
how the initiators of the theory started thinking about it themselves.

4297
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81.3. The moduli stack of elliptic curves

Here is what we are going to do:

(1) Start with your favorite category of schemes Sch.
(2) Add a new symbol M1,1.
(3) A morphism S →M1,1 is an elliptic curve (E, f, 0) over S.
(4) A diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

is commutative if and only if there exists a morphism α : E → E′ of
elliptic curves over a : S → S′. We say α witnesses the commutativity of
the diagram.

(5) Note that commutative diagrams glue as follows

S
a

//

(E,f,0)
))

S′

(E′,F ′,0′)

��

a′
// S′′

(E′′,F ′′,0′′)uu
M1,1

because α′ ◦ α witnesses the commutativity of the outer triangle if α and
α′ witness the commutativity of the left and right triangles.

(6) The composition

S
a−→ S′

(E′,f ′,0′)−−−−−−→M1,1

is given by (E′ ×S′ S, f ′ ×S′ S, 0′ ×S′ S).

At the end of this procedure we have enlarged the category Sch of schemes with
exactly one object...

Except that we haven’t defined what a morphism fromM1,1 to a scheme T is. The
answer is that it is the weakest possible notion such that compositions make sense.
Thus a morphism F :M1,1 → T is a rule which to every elliptic curve (E, f, 0)/S
associates a morphism F (E, f, 0) : S → T such that given any commutative diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

the diagram

S
a

//

F (E,f,0) ��

S′

F (E′,F ′,0′)��
T

is commutative also. An example is the j-invariant

j :M1,1 −→ A1
Z

which you may have heard of. Aha, so now we’re done...
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Except, no we’re not! We still have to define a notion of morphismsM1,1 →M1,1.
This we do in exactly the same way as before, i.e., a morphism F :M1,1 →M1,1

is a rule which to every elliptic curve (E, f, 0)/S associates another elliptic curve
F (E, f, 0) preserving commutativity of diagrams as above. However, since I don’t
know of a nontrivial example of such a functor, I’ll just define the set of morphisms
from M1,1 to itself to consist of the identity for now.

I hope you see how to add other objects to this enlarged category. Somehow it seems
intuitively clear that given any “well-behaved” moduli problem we can perform the
construction above and add an object to our category. In fact, much of modern
day algebraic geometry takes place in such a universe where Sch is enlarged with
countably many (explicitly constructed) moduli stacks.

You may object that the category we obtain isn’t a category because there is a
“vagueness” about when diagrams commute and which combinations of diagrams
continue to commute as we have to produce a witness to the commutativity. How-
ever, it turns out that this, the idea of having witnesses to commutativity, is a valid
approach to 2-categories! Thus we stick with it.

81.4. Fibre products

The question we pose here is what should be the fibre product

?

""||
S

(E,f,0) !!

S′

(E′,f ′,0′)||
M1,1

The answer: A morphism from a scheme T into ? should be a triple (a, a′, α) where
a : T → S, a′ : T → S′ are morphisms of schemes and where α : E ×S,a T →
E′×S′,a′ T is an isomorphism of elliptic curves over T . This makes sense because of
our definition of composition and commutative diagrams earlier in the discussion.

Lemma 81.4.1 (Key fact). The functor Schopp → Sets, T 7→ {(a, a′, α) as above}
is representable by a scheme S ×M1,1 S

′.

Proof. Idea of proof. Relate this functor to

IsomS×S′(E × S′, S × E′)
and use Grothendieck’s theory of Hilbert schemes. �

Remark 81.4.2. We have the formula S ×M1,1
S′ = (S × S′) ×M1,1×M1,1

M1,1.
Hence the key fact is a property of the diagonal ∆M1,1

of M1,1.

In any case the key fact allows us to make the following definition.

Definition 81.4.3. We say a morphism S →M1,1 is smooth if for every morphism
S′ →M1,1 the projection morphism

S ×M1,1 S
′ −→ S′

is smooth.

http://stacks.math.columbia.edu/tag/072M
http://stacks.math.columbia.edu/tag/072N
http://stacks.math.columbia.edu/tag/072P
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Note that this is compatible with the notion of a smooth morphism of schemes as
the base change of a smooth morphism is smooth. Moreover, it is clear how to
extend this definition to other properties of morphisms into M1,1 (or your own
favorite moduli stack). In particular we will use it below for surjective morphisms.

81.5. The definition

We’ll formulate it as a definition and not as a result since we expect the reader to
try out other cases (not just the stack M1,1 and not just Sch the category of all
schemes).

Definition 81.5.1. We say M1,1 is an algebraic stack if and only if

(1) We have descent for objects for the étale topology on Sch.
(2) The key fact holds.
(3) there exists a surjective and smooth morphism S →M1,1.

The first condition is a “sheaf property”. We’re going to spell it out since there is
a technical point we should make. Suppose given a scheme S and an étale covering
{Si → S} and morphisms ei : Si →M1,1 such that the diagrams

Si ×S Sj

ei◦pr1 $$

id
// Si ×S Sj

ej◦pr2zz
M1,1

commute. The sheaf condition does not guarantee the existence of a morphism
e : S → M1,1 in this situation. Namely, we need to pick witnesses αij for the
diagrams above and require that

pr∗02αik = pr12αjk ◦ pr∗01αij

as witnesses over Si ×S Sj ×S Sk. I think it is clear what this means... If not, then
I’m afraid you’ll have to read some of the material on categories fibred in groupoids,
etc. In any case, the displayed equation is often called the cocycle condition. A
more precise statement of the “sheaf property” is: given {Si → S}, ei : Si →M1,1

and witnesses αij satisfying the cocycle condition, there exists a unique (up to
unique isomorphism) e : S →M1,1 with ei ∼= e|Si recovering the αij .

As you can see even formulating a precise statement takes a bit of work. The proof
of this “sheaf property” relies on a fundamental technique in algebraic geometry,
namely descent theory. My suggestion is to initially simply accept the “sheaf prop-
erty” holds, and see what it implies in practice. In fact, a certain amount of mental
agility is required to boil the “sheaf property” down to a manageable statement
that you can fit on a napkin. Perhaps the simplest variant which is already a bit
interesting is the following: Suppose we have a Galois extension K ⊂ L of fields
with Galois group G = Gal(L/K). Set T = Spec(L) and S = Spec(K). Then
{T → S} is an étale covering. Let (E, f, 0) be an elliptic curve over L. (Yes, this
just means that E ⊂ P2

L is given by a Weierstrass equation and 0 is the usual point
at infinity.) Denote Eσ = E ×T,Spec(σ) T the base change. (Yes, this corresponds

to applying σ to the coefficients of the Weierstrass equation, or is it σ−1?) Now,
suppose moreover that for every σ ∈ G we are given an isomorphism

ασ : E −→ Eσ

http://stacks.math.columbia.edu/tag/072R
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over T . The cocycle condition above means in this situation that

(ατ )σ ◦ ασ = ατσ

for σ, τ ∈ G. If you’ve ever done any group cohomology then this should be familiar.
Anyway, the “glueing” condition on M1,1 says that if you have a solution to this
set of equations, then there exists an elliptic curve E′ over S such that E ∼= E×S T
(it says a little bit more because it also tells you how to recover the ασ).

Challenge: Can you prove this entirely using only elliptic curves defined in terms
of Weierstrass equations?

81.6. A smooth cover

The last thing we have to do is find a smooth cover ofM1,1. In fact, in some sense
the existence of a smooth cover implies1 the key fact! In the case of elliptic curves
we use the Weierstrass equation to construct one.

Set
W = Spec(Z[a1, a2, a3, a4, a6, 1/∆])

where ∆ ∈ Z[a1, a2, a3, a4, a6] is a certain polynomial (see below). Set

P2
W ⊃ EW : zy2 + a1xyz + a3yz

2 = x3 + a2x
2z + a4xz

3 + a6z
3.

Denote fW : EW → W the projection. Finally, denote 0W : W → EW the section
of fW given by (0 : 1 : 0). It turns out that there is a degree 12 homogeneous
polynomial ∆ in ai where deg(ai) = i such that EW →W is smooth. You can find
it explicitly by computing partials of the Weierstrass equation – of course you can
also look it up. You can also use pari/gp to compute it for you. Here it is

∆ = −a6a
6
1 + a4a3a

5
1 + ((−a2

3 − 12a6)a2 + a2
4)a4

1+

(8a4a3a2 + (a3
3 + 36a6a3))a3

1+

((−8a2
3 − 48a6)a2

2 + 8a2
4a2 + (−30a4a

2
3 + 72a6a4))a2

1+

(16a4a3a
2
2 + (36a3

3 + 144a6a3)a2 − 96a2
4a3)a1+

(−16a2
3 − 64a6)a3

2 + 16a2
4a

2
2 + (72a4a

2
3 + 288a6a4)a2+

− 27a4
3 − 216a6a

2
3 − 64a3

4 − 432a2
6

You may recognize the last two terms from the case y2 = x3 + Ax + B having
discriminant −64A3 − 432B2 = −16(4A3 + 27B2).

Lemma 81.6.1. The morphism W
(EW ,fW ,0W )−−−−−−−−→M1,1 is smooth and surjective.

Proof. Surjectivity follows from the fact that every elliptic curve over a field has a
Weierstrass equation. We give a very rough sketch of one way to prove smoothness.
Consider the sub group scheme

H =


u2 s 0

0 u3 0
r t 1

∣∣∣∣∣∣ u unit
s, r, t arbitrary

 ⊂ GL3,Z

1This is a bit of a cheat because in checking the smoothness you have to prove something very

close to the key fact – after all smoothness is defined in terms of fibre products. The advantage is
that you only have to prove the existence of these fibre products in the case that on one side you

have the morphism that you are trying to show provides the smooth cover.

http://stacks.math.columbia.edu/tag/072T
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There is an action H ×W → W of H on the Weierstrass scheme W . To find the
equations for this action write out what a coordinate change given by a matrix
in H does to the general Weierstrass equation. Then it turns out the following
statements hold

(1) any elliptic curve (E, f, 0)/S has Zariski locally on S a Weierstrass equa-
tion,

(2) any two Weierstrass equations for (E, f, 0) differ (Zariski locally) by an
element of H.

Considering the fibre product S×M1,1
W = IsomS×W (E×W,S×EW ) we conclude

that this means that the morphism W →M1,1 is an H-torsor. Since H → Spec(Z)
is smooth, and since torsors over smooth group schemes are smooth we win. �

Remark 81.6.2. The argument sketched above actually shows thatM1,1 = [W/H]
is a global quotient stack. It is true about 50% of the time that an argument proving
a moduli stack is algebraic will show that it is a global quotient stack.

81.7. Properties of algebraic stacks

Ok, so now we know that M1,1 is an algebraic stack. What can we do with this?
Well, it isn’t so much the fact that it is an algebraic stack that helps us here, but
more the point of view that properties ofM1,1 should be encoded in the properties
of morphisms S →M1,1, i.e., in families of elliptic curves. We list some examples

Local properties:

M1,1 → Spec(Z) is smooth⇔W → Spec(Z) is smooth

Idea. Local properties of an algebraic stack are encoded in the local properties of
its smooth cover.

Global properties:

M1,1 is quasi-compact⇐W is quasi-compact
M1,1 is irreducible⇐W is irreducible

Idea. Some global properties of an algebraic stack can be read off from the corre-
sponding property of a suitable2 smooth cover.

Quasi-coherent sheaves:

QCoh(OM1,1
) = H-equivariant quasi-coherent modules on W

Idea. On the one hand a quasi-coherent module on M1,1 should correspond to a
quasi-coherent sheaf FS,e on S for each morphism e : S →M1,1. In particular for
the morphism (EW , fW , 0W ) : W → M1,1. Since this morphism is H-equivariant
we see the quasi-coherent module FW we obtain is H-equivariant. Conversely,
given an H-equivariant module we can recover the sheaves FS,e by descent theory
starting with the observation that S ×e,M1,1

W is an H-torsor.

Picard group:

Pic(M1,1) = PicH(W ) = Z/12Z

2I suppose that it is possible an irreducible algebraic stack exists which doesn’t have an
irreducible smooth cover – but if so it is going to be quite nasty!

http://stacks.math.columbia.edu/tag/072U
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Idea. We have seen the first equality above. Note that Pic(W ) = 0 because the
ring Z[a1, a2, a3, a4, a6, 1/∆] has trivial class group. There is an exact sequence

Z∆→ PicH(A5
Z)→ PicH(W )→ 0

The middle group equals Hom(H,Gm) = Z. The image ∆ is 12 because ∆ has
degree 12. This argument is roughly correct, see [FO10].

Étale cohomology: Let Λ be a ring. There is a first quadrant spectral sequence
converging to Hp+q

étale(M1,1,Λ) with E2-page

Ep,q2 = Hq
étale(W ×H × . . .×H,Λ) (p factors H)

Idea. Note that

W ×M1,1
W ×M1,1

. . .×M1,1
W = W ×H × . . .×H

because W →M1,1 is a H-torsor. The spectral sequence is the Čech-to-cohomology
spectral sequence for the smooth cover {W → M1,1}. For example we see that
H0
étale(M1,1,Λ) = Λ because W is connected, and H1

étale(M1,1,Λ) = 0 because
H1
étale(W,Λ) = 0 (of course this requires a proof). Of course, the smooth covering

W →M1,1 may not be “optimal” for the computation of étale cohomology.
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CHAPTER 82

Examples

82.1. Introduction

This chapter will contain examples which illuminate the theory.

82.2. An empty limit

This example is due to Waterhouse, see [Wat72]. Let S be an uncountable set.
For every finite subset T ⊂ S consider the set MT of injective maps T → N. For
T ⊂ T ′ ⊂ S finite the restriction MT ′ →MT is surjective. Thus we have a directed
inverse system with surjective transition maps. But limMT = ∅ as an element in
the limit would define an injective map S → N.

82.3. A zero limit

Let (Si)i∈I be a directed inverse system of nonempty sets with surjective transition
maps and with limSi = ∅, see Section 82.2. Let K be a field and set

Vi =
⊕

s∈Si
K

Then the transition maps Vi → Vj are surjective for i ≥ j. However, limVi = 0.
Namely, if v = (vi) is an element of the limit, then the support of vi would be a
finite subset Ti ⊂ Si with limTi 6= ∅, see Categories, Lemma 4.21.5.

For each i consider the unique K-linear map Vi → K which sends each basis vector
s ∈ Si to 1. Let Wi ⊂ Vi be the kernel. Then

0→ (Wi)→ (Vi)→ (K)→ 0

is a nonsplit short exact sequence of inverse systems of vector spaces over the
directed partially ordered set I. Hence Wi is a directed system of K-vector spaces
with surjective transition maps, vanishing limit, and nonvanishing R1 lim.

82.4. Non-quasi-compact inverse limit of quasi-compact spaces

Let N denote the set of natural numbers. For every integer n, let In denote the set
of all natural numbers > n. Define Tn to be the unique topology on N with basis
{1}, . . . , {n}, In. Denote by Xn the topological space (N, Tn). For each m < n, the
identity map,

fn,m : Xn −→ Xm

is continuous. Obviously for m < n < p, the composition fp,n ◦ fn,m equals fp,m.
So ((Xn), (fn,m)) is a directed inverse system of quasi-compact topological spaces.

Let T be the discrete topology on N, and let X be (N, T ). Then for every integer
n, the identity map,

fn : X −→ Xn

4305
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is continuous. We claim that this is the inverse limit of the directed system above.
Let (Y, S) be any topological space. For every integer n, let

gn : (Y, S) −→ (N, Tn)

be a continuous map. Assume that for every m < n we have fn,m ◦ gn = gm, i.e.,
the system (gn) is compatible with the directed system above. In particular, all of
the set maps gn are equal to a common set map

g : Y −→ N.

Moreover, for every integer n, since {n} is open in Xn, also g−1({n}) = g−1
n ({n}) is

open in Y . Therefore the set map g is continuous for the topology S on Y and the
topology T on N. Thus (X, (fn)) is the inverse limit of the directed system above.

However, clearly X is not quasi-compact, since the infinite open covering by single-
ton sets has no inverse limit.

Lemma 82.4.1. There exists an inverse system of quasi-compact topological spaces
over N whose limit is not quasi-compact.

Proof. See discussion above. �

82.5. A nonintegral connected scheme whose local rings are domains

We give an example of an affine scheme X = Spec(A) which is connected, all of
whose local rings are domains, but which is not integral. Connectedness of X means
A has no nontrivial idempotents, see Algebra, Lemma 10.20.3. The local rings of
X are domains if, whenever fg = 0 in A, every point of X has a neighborhood
where either f or g vanishes. As long as A is not a domain, then X is not integral
(Properties, Definition 27.3.1).

Roughly speaking, the construction is as follows: let X0 be the cross (the union of
coordinate axes) on the affine plane. Then let X1 be the (reduced) full preimage
of X0 on the blow-up of the plane (X1 has three rational components forming a
chain). Then blow up the resulting surface at the two singularities of X1, and let
X2 be the reduced preimage of X1 (which has five rational components), etc. Take
X to be the inverse limit. The only problem with this construction is that blow-ups
glue in a projective line, so X1 is not affine. Let us correct this by glueing in an
affine line instead (so our scheme will be an open subset in what was described
above).

Here is a completely algebraic construction: For every k ≥ 0, let Ak be the following
ring: its elements are collections of polynomials pi ∈ C[x] where i = 0, . . . , 2k such
that pi(1) = pi+1(0). Set Xk = Spec(Ak). Observe that Xk is a union of 2k+1 affine
lines that meet transversally in a chain. Define a ring homomorphism Ak → Ak+1

by

(p0, . . . , p2k) 7−→ (p0, p0(1), p1, p1(1), . . . , p2k),

in other words, every other polynomial is constant. This identifies Ak with a subring
of Ak+1. Let A be the direct limit of Ak (basically, their union). Set X = Spec(A).
For every k, we have a natural embedding Ak → A, that is, a map X → Xk. Each
Ak is connected but not integral; this implies that A is connected but not integral.
It remains to show that the local rings of A are domains.

http://stacks.math.columbia.edu/tag/09ZK
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Take f, g ∈ A with fg = 0 and x ∈ X. Let us construct a neighborhood of x
on which one of f and g vanishes. Choose k such that f, g ∈ Ak−1 (note the
k − 1 index). Let y be the image of x in Xk. It suffices to prove that y has a
neighborhood on which either f or g viewed as sections of OXk vanishes. If y is a
smooth point of Xk, that is, it lies on only one of the 2k + 1 lines, this is obvious.
We can therefore assume that y is one of the 2k singular points, so two components
of Xk pass through y. However, on one of these two components (the one with odd
index), both f and g are constant, since they are pullbacks of functions on Xk−1.
Since fg = 0 everywhere, either f or g (say, f) vanishes on the other component.
This implies that f vanishes on both components, as required.

82.6. Noncomplete completion

Let R be a ring and let m be a maximal ideal. Consider the completion

R∧ = limR/mn.

Note that R∧ is a local ring with maximal ideal m′ = Ker(R∧ → R/m). Namely,
if x = (xn) ∈ R∧ is not in m′, then y = (x−1

n ) ∈ R∧ satisfies xy = 1, whence R∧

is local by Algebra, Lemma 10.17.2. Now it is always true that R∧ complete in its
limit topology (see the discussion in More on Algebra, Section 15.26). But beyond
that, we have the following questions:

(1) Is it true that mR∧ = m′?
(2) Is R∧ viewed as an R∧-module m′-adically complete?
(3) Is R∧ viewed as an R-module m-adically complete?

It turns out that of these questions all have a negative answer. The example below
was taken from an unpublished note of Bart de Smit and Hendrik Lenstra. See also
[Bou61, Exercise III.2.12] and [Yek11, Example 1.8]

Let k be a field, R = k[x1, x2, x3, . . .], and m = (x1, x2, x3, . . .). We will think of an
element f of R∧ as a (possibly) infinite sum

f =
∑

aIx
I

(using multi-index notation) such that for each d ≥ 0 there are only finitely many
nonzero aI for |I| = d. The maximal ideal m′ ⊂ R∧ is the collection of f with zero
constant term. In particular, the element

f = x1 + x2
2 + x3

3 + . . .

is in m′ but not in mR∧ which shows that (1) is false in this example. Note that we
do have mR∧ ⊂ m′. Hence, R∧ is not m-adically complete as an R-module, then
it is also not m′-adically complete. To show that R∧ is not m-adically complete
(as an R-module) it suffices to show that K2 = Ker(R∧ → R/m2) is not equal to
m2R∧, see Algebra, Lemma 10.93.6. Note that an element of m2R∧ ⊂ (m′)2 can be
written as a finite sum

(82.6.0.1)
∑

i=1,...,t
figi

with fi, gi ∈ R∧ having vanishing constant terms. To get an example we are going
to choose an z ∈ K2 of the form

z = z1 + z2 + z3 + . . .

with the following properties
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(1) there exist sequences 1 < d1 < d2 < d3 < . . . and 0 < n1 < n2 < n3 < . . .
such that zi ∈ k[xni , xni+1, . . . , xni+1−1] homogeneous of degree di, and

(2) in the ring k[[xni , xni+1, . . . , xni+1−1]] the element zi cannot be written as
a sum (82.6.0.1) with t ≤ i.

Clearly this implies that z is not in (m′)2 because the image of the relation (82.6.0.1)
in the ring k[[xni , xni+1, . . . , xni+1−1]] for i large enough would produce a contra-
diction. Hence it suffices to prove that for all t > 0 there exists a d � 0 and an
integer n such that we can find an homogeneous element z ∈ k[x1, . . . , xn] of degree
d which cannot be written as a sum (82.6.0.1) for the given t in k[[x1, . . . , xn]]. Take
n > 2t and any d > 1 prime to the characteristic of p and set z =

∑
i=1,...,n x

d
i .

Then the vanishing locus of the ideal

(
∂z

∂x1
, . . . ,

∂z

∂xn
) = (dxd−1

1 , . . . , dxd−1
n )

consists of one point. On the other hand,

∂(
∑
i=1,...,t figi)

∂xj
∈ (f1, . . . , ft, g1, . . . , gt)

by the Leibniz rule and hence the vanishing locus of these derivatives contains at
least

V (f1, . . . , ft, g1, . . . , gt) ⊂ Spec(k[[x1, . . . , xn]]).

Hence this is a contradiction as the dimension of V (f1, . . . , ft, g1, . . . , gt) is at least
n− 2t ≥ 1.

Lemma 82.6.1. There exists a local ring R and a maximal ideal m such that the
completion R∧ of R with respect to m has the following properties

(1) R∧ is local, but its maximal ideal is not equal to mR∧,
(2) R∧ is not a complete local ring, and
(3) R∧ is not m-adically complete as an R-module.

Proof. This follows from the discussion above as (with R = k[x1, x2, x3, . . .]) the
completion of the localization Rm is equal to the completion of R. �

82.7. Noncomplete quotient

Let k be a field. Let

R = k[t, z1, z2, z3, . . . , w1, w2, w3, . . . , x]/(zit− xiwi, ziwj)

Note that in particular zizjt = 0 in this ring. Any element f of R can be uniquely
written as a finite sum

f =
∑

i=0,...,d
fix

i

where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . More-
over, if f is written in this way, then f ∈ (xn) if and only if fi = 0 for i < n. So x
is a nonzerodivisor and

⋂
(xn) = 0. Let R∧ be the completion of R with respect to

the ideal (x). Note that R∧ is (x)-adically complete, see Algebra, Lemma 10.93.7.
By the above we see that an element of R∧ can be uniquely written as an infinite
sum

f =
∑∞

i=0
fix

i

http://stacks.math.columbia.edu/tag/05JC
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where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . Consider
the element

f =
∑∞

i=1
xiwi = xw1 + x2w2 + x3w3 + . . .

i.e., we have fn = wn. Note that f ∈ (t, xn) for every n because xmwm ∈ (t) for
all m. We claim that f 6∈ (t). To prove this assume that tg = f where g =

∑
glx

l

in canonical form as above. Since tzizj = 0 we may as well assume that none of
the gl have terms involving the products zizj . Examining the process to get tg in
canonical form we see the following: Given any term cm of gl where c ∈ k and m
is a monomial in t, zi, wj and we make the following replacement

(1) if the monomial m does not involve any zi, then ctm is a term of fl, and
(2) if the monomial m does involve a zi then it is equal to m = zi and we see

that cwi is term of fl+i.

Since g0 is a polynomial only finitely many of the variables zi occur in it. Pick n
such that zn does not occur in g0. Then the rules above show that wn does not
occur in fn which is a contradiction. It follows that R∧/(t) is not complete, see
Algebra, Lemma 10.93.15.

Lemma 82.7.1. There exists a ring R complete with respect to a principal ideal I
and a principal ideal J such that R/J is not I-adically complete.

Proof. See discussion above. �

82.8. Completion is not exact

A quick example is the following. Suppose that R = k[t]. Let P = K =
⊕

n∈NR
and M =

⊕
n∈NR/(tn). Then there is a short exact sequence 0 → K → P →

M → 0 where the first map is given by multiplication by tn on the nth summand.
We claim that 0 → K∧ → P∧ → M∧ → 0 is not exact in the middle. Namely,
ξ = (t2, t3, t4, . . .) ∈ P∧ maps to zero in M∧ but is not in the image of K∧ → P∧,
because it would be the image of (t, t, t, . . .) which is not an element of K∧.

A “smaller” example is the following. In the situation of Lemma 82.7.1 the short
exact sequence 0 → J → R → R/J → 0 does not remain exact after completion.
Namely, if f ∈ J is a generator, then f : R → J is surjective, hence R → J∧

is surjective, hence the image of J∧ → R is (f) = J but the fact that R/J is
noncomplete means that the kernel of the surjection R→ (R/J)∧ is strictly bigger
than J , see Algebra, Lemmas 10.93.1 and 10.93.15. By the same token the sequence
R→ R→ R/(f)→ 0 does not remain exact on completion.

Lemma 82.8.1. Completion is not an exact functor in general; it is not even right
exact in general. This holds even when I is finitely generated on the category of
finitely presented modules.

Proof. See discussion above. �

82.9. The category of complete modules is not abelian

Let R be a ring and let I ⊂ R be a finitely generated ideal. Consider the category A
of I-adically complete R-modules, see Algebra, Definition 10.93.5. Let ϕ : M → N
be a morphism of A. The cokernel of ϕ in A is the completion (Coker(ϕ))∧ of the
usual cokernel (as I is finitely generated this completion is complete, see Algebra,
Lemma 10.93.7). Let K = Ker(ϕ). We claim that K is complete and hence is the

http://stacks.math.columbia.edu/tag/05JE
http://stacks.math.columbia.edu/tag/05JG
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kernel of ϕ in A. Namely, let K∧ be the completion. As M is complete we obtain
a factorization

K → K∧ →M
ϕ−→ N

Since ϕ is continuous for the I-adic topology, K → K∧ has dense image, and
K = Ker(ϕ) we conclude that K∧ maps into K. Thus K∧ = K ⊕ C and K is a
direct summand of a complete module, hence complete.

We will give an example that shows that Im 6= Coim in general. We take R = Zp =
limn Z/pnZ to be the ring of p-adic integers and we take I = (p). Consider the
map

diag(1, p, p2, . . .) :
(⊕

n≥1
Zp

)∧
−→

∏
n≥1

Zp

where the left hand side is the p-adic completion of the direct sum. Hence an
element of the left hand side is a vector (x1, x2, x3, . . .) with xi ∈ Zp with p-adic
valuation vp(xi) → ∞ as i → ∞. This maps to (x1, px2, p

2x3, . . .). Hence we
see that (1, p, p2, . . .) is in the closure of the image but not in the image. By our
description of kernels and cokernels above it is clear that Im 6= Coim for this map.

Lemma 82.9.1. Let R be a ring and let I ⊂ R be a finitely generated ideal.
The category of I-adically complete R-modules has kernels and cokernels but is not
abelian in general.

Proof. See above. �

82.10. The category of derived complete modules

Let A be a ring and let I be an ideal. Consider the category C of derived complete
modules as defined in More on Algebra, Definition 15.64.4. By More on Algebra,
Lemma 15.64.6 we see that C is abelian.

Let T be a set and let Mt, t ∈ T be a family of derived complete modules. We claim
that in general

⊕
Mt is not a complete module. For a specific example, let A = Zp

and I = (p) and M =
⊕

n∈N Zp. The map from M to its p-adic completion isn’t
surjective. This means that M cannot be derived complete as this would imply
otherwise, see More on Algebra, Lemma 15.64.3.

Assume I is finitely generated. Let ∧ : D(A) → D(A) denote the derived com-
pletion functor, see More on Algebra, Lemma 15.64.9. We claim that

M = H0((
⊕

Mt)
∧) ∈ Ob(C)

is a direct sum of Mt in the category C. Note that for E a derived complete object
of D(A) we have

HomD(A)((
⊕

Mt)
∧, E) = HomD(A)(

⊕
Mt, E) =

∏
HomD(A)(Mt, E)

Note that the right hand side is zero if Hi(E) = 0 for i < 1. In particular, applying
this with E = τ≥1(

⊕
Mt)

∧ which is derived complete by More on Algebra, Lemma
15.64.6 we see that the canonical map (

⊕
Mt)

∧ → τ≥1(
⊕
Mt)

∧ is zero, in other

http://stacks.math.columbia.edu/tag/07JR
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words, we have Hi((
⊕
Mt)

∧) = 0 for i ≥ 1. Then, for an object N ∈ C we see that

HomC(M,N) = HomD(A)((
⊕

Mt)
∧, N)

=
∏

HomA(Mt, N)

=
∏

HomC(Mt, N)

as desired. This implies that C has all colimits, see Categories, Lemma 4.14.11. In
fact, arguing similarly as above we see that given a system Mt in C over a partially
ordered set T the colimit in C is equal to H0((colimMt)

∧) where the inner colimit
is the colimit in the category of A-modules.

However, we claim that filtered colimits are not exact in the category C. Namely,
suppose that A = Zp and I = (p). One has inclusions fn : Zp/pZp → Zp/p

nZp of
p-adically complete A-modules given by multiplication by pn−1. There are commu-
tative diagrams

Zp/pZp
fn

//

1

��

Zp/p
nZp

p

��
Zp/pZp

fn+1// Zp/pn+1Zp

Now take the colimit of these inclusions in the category C derived to get Zp/pZp →
0. Namely, the colimit in ModA of the system on the right is Qp/Zp. The reader
can directly compute that (Qp/Zp)

∧ = Zp[1] in D(A). Thus H0 = 0 which proves
our claim.

Lemma 82.10.1. Let A be a ring and let I ⊂ A be an ideal. The category C of
derived complete modules is abelian and the inclusion functor F : C → ModA is
exact and commutes with arbitrary limits. If I is finitely generated, then C has
arbitrary direct sums and colimits, but F does not commute with these in general.
Finally, filtered colimits are not exact in C in general, hence C is not a Grothendieck
abelian category.

Proof. See discussion above. �

82.11. Nonflat completions

In this section we give some examples of completions which are not exact.

Lemma 82.11.1. Let R be a ring. Let M be an R-module which is countable.
Then M is a finite R-module if and only if M ⊗R RN →MN is surjective.

Proof. If M is a finite module, then the map is surjective by Algebra, Proposi-
tion 10.86.2. Conversely, assume the map is surjective. Let m1,m2,m3, . . . be an
enumeration of the elements of M . Let

∑
j=1,...,m xj ⊗ aj be an element of the

tensor product mapping to the element (mn) ∈MN. Then we see that x1, . . . , xm
generate M over R as in the proof of Algebra, Proposition 10.86.2. �

Lemma 82.11.2. Let R be a countable ring. Let M be a countable R-module.
Then M is finitely presented if and only if the canonical map M ⊗R RN →MN is
an isomorphism.

http://stacks.math.columbia.edu/tag/0ARD
http://stacks.math.columbia.edu/tag/0AL9
http://stacks.math.columbia.edu/tag/0ALA
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Proof. If M is a finitely presented module, then the map is an isomorphism by
Algebra, Proposition 10.86.3. Conversely, assume the map is an isomorphism. By
Lemma 82.11.1 the module M is finite. Choose a surjection R⊕m →M with kernel
K. Then K is countable as a submodule of R⊕m. Arguing as in the proof of
Algebra, Proposition 10.86.3 we see that K ⊗R RN → KN is surjective. Hence
we conclude that K is a finite R-module by Lemma 82.11.1. Thus M is finitely
presented. �

Lemma 82.11.3. Let R be a countable ring. Then R is coherent if and only if RN

is a flat R-module.

Proof. If R is coherent, then RN is a flat module by Algebra, Proposition 10.87.5.
Assume RN is flat. Let I ⊂ R be a finitely generated ideal. To prove the lemma we
show that I is finitely presented as an R-module. Namely, the map I⊗RRN → RN

is injective as RN is flat and its image is IN by Lemma 82.11.1. Thus we conclude
by Lemma 82.11.2. �

Let R be a countable ring. Observe that R[[x]] is isomorphic to RN as an R-module.
By Lemma 82.11.3 we see that R→ R[[x]] is flat if and only if R is coherent. There
are plenty of noncoherent countable rings, for example

R = k[y, z, a1, b1, a2, b2, a3, b3, . . .]/(a1y + b1z, a2y + b2z, a3y + b3z, . . .)

where k is a countable field. This ring is not coherent because the ideal (y, z) of R
is not a finitely presented R-module. Note that R[[x]] is the completion of R[x] by
the principal ideal (x).

Lemma 82.11.4. There exists a ring such that the completion R[[x]] of R[x] at
(x) is not flat over R and a fortiori not flat over R[x].

Proof. See discussion above. �

Next, we will construct an example where the completion of a localization is nonflat.
To do this consider the ring

R = k[y, z, a1, a2, a3, . . .]/(yai, aiaj)

Denote f ∈ R the residue class of z. We claim the ring map

(82.11.4.1) R[[x]] −→ Rf [[x]]

isn’t flat. Let I be the kernel of y : R[[x]]→ R[[x]]. A typical element g of I looks
like g =

∑
gn,mamx

n where gn,m ∈ k[z] and for a given n only a finite number
of nonzero gn,m. Let J be the kernel of y : Rf [[x]] → Rf [[x]]. We claim that
J 6= IRf [[x]]. Namely, if this were true then we would have∑

z−nanx
n =

∑
i=1,...,m

higi

for some m ≥ 1, gi ∈ I, and hi ∈ Rf [[x]]. Say hi = h̄i mod (y, a1, a2, a3, . . .) with
h̄i ∈ k[z, 1/z][[x]]. Looking at the coefficient of an and using the description of the
elements gi above we would get

z−nxn =
∑

h̄iḡi,n

for some ḡi,n ∈ k[z][[x]]. This would mean that all z−nxn are contained in the finite
k[z][[x]]-module generated by the elements h̄i. Since k[z][[x]] is Noetherian this
implies that the R[z][[x]]-submodule of k[z, 1/z][[x]] generated by 1, z−1x, z−2x2, . . .

http://stacks.math.columbia.edu/tag/0ALB
http://stacks.math.columbia.edu/tag/0ALC
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is finite. By Algebra, Lemma 10.35.2 we would conclude that z−1x is integral over
k[z][[x]] which is absurd. On the other hand, if (82.11.4.1) were flat, then we would

get J = IRf [[x]] by tensoring the exact sequence 0 → I → R[[x]]
y−→ R[[x]] with

Rf [[x]].

Lemma 82.11.5. There exists a ring A complete with respect to a principal ideal
I and an element f ∈ A such that the I-adic completion A∧f of Af is not flat over
A.

Proof. Set A = R[[x]] and I = (x) and observe that Rf [[x]] is the completion of
R[[x]]f . �

82.12. Nonabelian category of quasi-coherent modules

In Sheaves on Stacks, Section 73.11 we defined the category of quasi-coherent mod-
ules on a category fibred in groupoids over Sch. Although we show in Sheaves
on Stacks, Section 73.14 that this category is abelian for algebraic stacks, in this
section we show that this is not the case for formal algebraic spaces.

Namely, consider Zp viewed as topological ring using the p-adic topology. Let
X = Spf(Zp), see Formal Spaces, Definition 65.5.9. Then X is a sheaf in sets on
(Sch/Z)fppf and gives rise to a stack in setoids X , see Stacks, Lemma 8.6.2. Thus
the discussion of Sheaves on Stacks, Section 73.14 applies.

Let F be a quasi-coherent module on X . Since X = colim Spec(Z/pnZ) it is clear
from Sheaves on Stacks, Lemma 73.11.5 that F is given by a sequence (Fn) where

(1) Fn is a quasi-coherent module on Spec(Z/pnZ), and
(2) the transition maps give isomorphisms Fn = Fn+1/p

nFn+1.

Converting into modules we see that F corresponds to a system (Mn) where each
Mn is an abelian group annihilated by pn and the transition maps induce isomor-
phisms Mn = Mn+1/p

nMn+1. In this situation the module M = limMn is a
p-adically complete module and Mn = M/pnM , see Algebra, Lemma 10.94.1. We
conclude that the category of quasi-coherent modules on X is equivalent to the
category of p-adically complete abelian groups. This category is not abelian, see
Section 82.9.

Lemma 82.12.1. The category of quasi-coherent1 modules on a formal algebraic
space X is not abelian in general, even if X is a Noetherian affine formal algebraic
space.

Proof. See discussion above. �

82.13. Regular sequences and base change

We are going to construct a ring R with a regular sequence (x, y, z) such that there
exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.

To construct our example we first construct a peculiar module E over the ring
k[x, y, z] where k is any field. Namely, E will be a push-out as in the following

1With quasi-coherent modules as defined above. Due to how things are setup in the Stacks
project, this is really the correct definition; as seen above our definition agrees with what one

would naively have defined to be quasi-coherent modules on Spf(A), namely complete A-modules.

http://stacks.math.columbia.edu/tag/0ALE
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diagram

xk[x,y,z,y−1]
xyk[x,y,z]

//

z/x

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]

//

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

��
k[x,y,z,y−1]
yzk[x,y,z]

// E // k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

where the rows are short exact sequences (we dropped the outer zeros due to type-
setting problems). Another way to describe E is as

E = {(f, g) | f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1]}/ ∼

where (f, g) ∼ (f ′, g′) if and only if there exists a h ∈ k[x, y, z, y−1] such that

f = f ′ + xh mod yk[x, y, z, x−1], g = g′ − zh mod yzk[x, y, z]

We claim: (a) x : E → E is injective, (b) y : E/xE → E/xE is injective, (c)
E/(x, y)E = 0, (d) there exists a nonzero element δ ∈ E/zE such that xδ = yδ = 0.

To prove (a) suppose that (f, g) is a pair that gives rise to an element of E and
that (xf, xg) ∼ 0. Then there exists a h ∈ k[x, y, z, y−1] such that xf + xh ∈
yk[x, y, z, x−1] and xg − zh ∈ yzk[x, y, z]. We may assume that h =

∑
ai,j,kx

iyjzk

is a sum of monomials where only j ≤ 0 occurs. Then xg − zh ∈ yzk[x, y, z]
implies that only i > 0 occurs, i.e., h = xh′ for some h′ ∈ k[x, y, z, y−1]. Then
(f, g) ∼ (f +xh′, g− zh′) and we see that we may assume that g = 0 and h = 0. In
this case xf ∈ yk[x, y, z, x−1] implies f ∈ yk[x, y, z, x−1] and we see that (f, g) ∼ 0.
Thus x : E → E is injective.

Since multiplication by x is an isomorphism on k[x,y,z,x−1,y−1]
yk[x,y,z,x−1] we see that E/xE is

isomorphic to

k[x, y, z, y−1]

yzk[x, y, z] + xk[x, y, z, y−1] + zk[x, y, z, y−1]
=

k[x, y, z, y−1]

xk[x, y, z, y−1] + zk[x, y, z, y−1]

and hence multiplication by y is an isomorphism on E/xE. This clearly implies (b)
and (c).

Let e ∈ E be the equivalence class of (1, 0). Suppose that e ∈ zE. Then there exist
f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1], and h ∈ k[x, y, z, y−1] such that

1 + zf + xh ∈ yk[x, y, z, x−1], 0 + zg − zh ∈ yzk[x, y, z].

This is impossible: the monomial 1 cannot occur in zf , nor in xh. On the other
hand, we have ye = 0 and xe = (x, 0) ∼ (0,−z) = z(0,−1). Hence setting δ equal
to the congruence class of e in E/zE we obtain (d).

Lemma 82.13.1. There exists a local ring R and a regular sequence x, y, z (in the
maximal ideal) such that there exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.

Proof. Let R = k[x, y, z]⊕E where E is the module above considered as a square
zero ideal. Then it is clear that x, y, z is a regular sequence in R, and that the
element δ ∈ E/zE ⊂ R/zR gives an element with the desired properties. To get a
local example we may localize R at the maximal ideal m = (x, y, z, E). The sequence
x, y, z remains a regular sequence (as localization is exact), and the element δ
remains nonzero as it is supported at m. �

http://stacks.math.columbia.edu/tag/0640
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Lemma 82.13.2. There exists a local homomorphism of local rings A→ B and a
regular sequence x, y in the maximal ideal of B such that B/(x, y) is flat over A,
but such that the images x, y of x, y in B/mAB do not form a regular sequence, nor
even a Koszul-regular sequence.

Proof. Set A = k[z](z) and let B = (k[x, y, z]⊕E)(x,y,z,E). Since x, y, z is a regular
sequence in B, see proof of Lemma 82.13.1, we see that x, y is a regular sequence
in B and that B/(x, y) is a torsion free A-module, hence flat. On the other hand,
there exists a nonzero element δ ∈ B/mAB = B/zB which is annihilated by x, y.
Hence H2(K•(B/mAB, x, y)) 6= 0. Thus x, y is not Koszul-regular, in particular it
is not a regular sequence, see More on Algebra, Lemma 15.21.2. �

82.14. A Noetherian ring of infinite dimension

A Noetherian local ring has finite dimension as we saw in Algebra, Proposition
10.59.8. But there exist Noetherian rings of infinite dimension. See [Nag62b,
Appendix, Example 1].

Namely, let k be a field, and consider the ring

R = k[x1, x2, x3, . . .].

Let pi = (x2i−1 , x2i−1+1, . . . , x2i−1) for i = 1, 2, . . . which are prime ideals of R. Let
S be the multiplicative subset

S =
⋂

i≥1
(R \ pi).

Consider the ring A = S−1R. We claim that

(1) The maximal ideals of the ring A are the ideals mi = piA.
(2) We have Ami = Rpi which is a Noetherian local ring of dimension 2i.
(3) The ring A is Noetherian.

Hence it is clear that this is the example we are looking for. Details omitted.

82.15. Local rings with nonreduced completion

In Algebra, Example 10.115.4 we gave an example of a characteristic p Noetherian
local domain R of dimension 1 whose completion is nonreduced. In this section
we present the example of [FR70, Proposition 3.1] which gives a similar ring in
characteristic zero.

Let C{x} be the ring of convergent power series over the field C of complex numbers.
The ring of all power series C[[x]] is its completion. Let K = C{x}[1/x] = f.f.(B)
be the field of convergent Laurent series. The K-module ΩK/C of algebraic differ-
entials of K over C is an infinite dimensional K-vector space (proof omitted). We
may choose fn ∈ xC{x}, n ≥ 1 such that dx, df1,df2, . . . are part of a basis of
ΩK/C. Thus we can find a C-derivation

D : C{x} −→ C((x))

such that D(x) = 0 and D(fi) = x−n. Let

A = {f ∈ C{x} | D(f) ∈ C[[x]]}
We claim that

(1) C{x} is integral over A,
(2) A is a local domain,

http://stacks.math.columbia.edu/tag/0641
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(3) dim(A) = 1,
(4) the maximal ideal of A is generated by x and xf1,
(5) A is Noetherian, and
(6) the completion of A is equal to the ring of dual numbers over C[[x]].

Since the dual numbers are nonreduced the ring A gives the example.

Note that if 0 6= f ∈ xC{x} then we may write D(f) = h/fn for some n ≥ 0 and
h ∈ C[[x]]. Hence D(fn+1/(n + 1)) ∈ C[[x]] and D(fn+2/(n + 2)) ∈ C[[x]]. Thus
we see fn+1, fn+2 ∈ A! In particular we see (1) holds. We also conclude that the
fraction field of A is equal to the fraction field of C{x}. It also follows immediately
that A∩xC{x} is the set of nonunits of A, hence A is a local domain of dimension 1.
If we can show (4) then it will follow that A is Noetherian (proof omitted). Suppose
that f ∈ A ∩ xC{x}. Write D(f) = h, h ∈ C[[x]]. Write h = c + xh′ with c ∈ C,
h′ ∈ C[[x]]. Then D(f−cxf1) = c+xh′−c = xh′. On the other hand f−cxf1 = xg
with g ∈ C{x}, but by the computation above we have D(g) = h′ ∈ C[[x]] and
hence g ∈ A. Thus f = cxf1 + xg ∈ (x, xf1) as desired.

Finally, why is the completion of A nonreduced? Denote Â the completion of A.
Of course this maps surjectively to the completion C[[x]] of C{x} because x ∈ A.

Denote this map ψ : Â → C[[x]]. Above we saw that mA = (x, xf1) and hence
D(mnA) ⊂ (xn−1) by an easy computation. Thus D : A→ C[[x]] is continuous and

gives rise to a continuous derivation D̂ : Â → C[[x]] over ψ. Hence we get a ring
map

ψ + εD̂ : Â −→ C[[x]][ε].

Since Â is a one dimensional Noetherian complete local ring, if we can show this
arrow is surjective then it will follow that Â is nonreduced. Actually the map is an
isomorphism but we omit the verification of this. The subring C[x](x) ⊂ A gives

rise to a map i : C[[x]] → Â on completions such that i ◦ ψ = id and such that
D ◦ i = 0 (as D(x) = 0 by construction). Consider the elements xnfn ∈ A. We
have

(ψ + εD)(xnfn) = xnfn + ε

for all n ≥ 1. Surjectivity easily follows from these remarks.

82.16. A non catenary Noetherian local ring

Even though there is a succesful dimension theory of Noetherian local rings there
are non-catenary Noetherian local rings. An example may be found in [Nag62b,
Appendix, Example 2]. In fact, we will present this example in the simplest case.
Namely, we will construct a local Noetherian domain A of dimension 2 which is
not universally catenary. (Note that A is automatically catenary, see Exercises,
Exercise 83.12.2.) The existence of a Noetherian local ring which is not universally
catenary implies the existence of a Noetherian local ring which is not catenary –
and we spell this out at the end of this section in the particular example at hand.

Let k be a field, and consider the formal power series ring k[[x]] in one variable over
k. Let

z =
∑∞

i=1
aix

i
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be a formal power series. We assume z as an element of the Laurent series field
k((x)) = f.f.(k[[x]]) is transcendental over k(x). Put

zj = x−j(z −
∑

i=1,...,j−1
aix

i) =
∑∞

i=j
aix

i−j ∈ k[[x]].

Note that z = z1. Let R be the subring of k[[x]] generated by x, z and all of the
zj , in other words

R = k[x, z1, z2, z3, . . .] ⊂ k[[x]].

Consider the ideals m = (x) and n = (x− 1, z1, z2, . . .) of R.

We have x(zj+1 + aj) = zj . Hence R/m = k and m is a maximal ideal. Moreover,
any element of R not in m maps to a unit in k[[x]] and hence Rm ⊂ k[[x]]. In fact
it is easy to deduce that Rm is a discrete valuation ring and residue field k.

We claim that

R/(x− 1) = k[x, z1, z2, z3, . . .]/(x− 1) ∼= k[z].

Namely, the relation above implies that (x− 1)(zj+1 + aj) = −zj+1 − aj + zj , and
hence we may express the class of zj+1 in terms of zj in the quotient R/(x − 1).
Since the fraction field of R has transcendence degree 2 over k by construction we
see that z is transcendental over k in R/(x− 1), whence the desired isomorphism.
Hence n = (x− 1, z) and is a maximal ideal. In fact the map

k[x, x−1, z](x−1,z) −→ Rn

is an isomorphism (since x−1 is invertible in Rn and since zj+1 = x−1zj − aj =
. . . = fj(x, x

−1, z)). This shows that Rn is a regular local ring of dimension 2 and
residue field k.

Let S be the multiplicative subset

S = (R \m) ∩ (R \ n) = R \ (m ∪ n)

and set B = S−1R. We claim that

(1) The ring B is a k-algebra.
(2) The maximal ideals of the ring B are the two ideals mB and nB.
(3) The residue fields at these maximal ideals is k.
(4) We have BmB = Rm and BnB = Rn which are Noetherian regular local

rings of dimensions 1 and 2.
(5) The ring B is Noetherian.

We omit the details of the verifications.

Whenever given a k-algebra B with the properties listed above we get an example
as follows. Take A = k + rad(B) ⊂ B, in our case rad(B) = mB + nB. It is easy
to see that B is finite over A and hence A is Noetherian by Eakin’s theorem (see
[Eak68], or [Nag62b, Appendix A1], or insert future reference here). Also A is
a local domain with the same fraction field as B and residue field k. Since the
dimension of B is 2 we see that A has dimension 2 as well, by Algebra, Lemma
10.108.4.

IfA were universally catenary then the dimension formula, Algebra, Lemma 10.109.1
would give dim(BmB) = 2 contradiction.
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Note that B is generated by one element over A. Hence B = A[x]/p for some prime
p of A[x]. Let m′ ⊂ A[x] be the maximal ideal corresponding to mB. Then on the
one hand dim(A[x]m′) = 3 and on the other hand

(0) ⊂ pA[x]m′ ⊂ m′A[x]m′

is a maximal chain of primes. Hence A[x]m′ is an example of a non catenary
Noetherian local ring.

82.17. Existence of bad local Noetherian rings

Let (A,m, κ) be a Noetherian complete local ring. In [Lec86a] it was shown that
A is the completion of a Noetherian local domain if depth(A) ≥ 1 and A contains
either Q, or Z, or Fp as a subring. This produces many examples of Noetherian
local domains with “bizarre” properties.

Applying this for example to A = C[[x, y]]/(y2) we find a Noetherian local domain
whose completion is nonreduced. Please compare with Section 82.15.

In [LLPY01] conditions were found that characterize when A is the completion of
a reduced local Noetherian ring.

In [Hei93] it was shown that A is the completion of a local Noetherian UFD R
if depth(A) ≥ 2 and A contains either Q, or Z, or Fp as a subring. In particular
R is normal (Algebra, Lemma 10.116.8) hence the henselization of R is a normal
domain too (More on Algebra, Lemma 15.34.6). Thus A as above is the completion
of a henselian Noetherian local normal domain (because the completion of R and
its henselization agree, see More on Algebra, Lemma 15.34.3).

Apply this to find a Noetherian local UFDR such thatR∧ ∼= C[[x, y, z, w]]/(wx,wy).
Note that Spec(R∧) is the union of a regular 2-dimensional and a regular 3-
dimensional component. The ring R cannot be universally catenary: Let

X −→ Spec(R)

be the blowing up of the maximal ideal. Then X is an integral scheme. There is a
closed point x ∈ X such that dim(OX,x) = 2, namely, on the level of the complete
local ring we pick x to lie on the strict transform of the 2-dimensional component
and not on the strict transform of the 3-dimensional component. By Morphisms,
Lemma 28.31.1 we see that R is not universally catenary. Please compare with
Section 82.16.

The ring above is catenary (being a 3-dimensional local Noetherian UFD). However,
in [Ogo80] the author constructs a normal local Noetherian domain R with R∧ ∼=
C[[x, y, z, w]]/(wx,wy) such that R is not catenary. See also [Hei82] and [Lec86b].

In [Hei94] it was shown that A is the completion of a local Noetherian ring R with
an isolated singularity provided A contains either Q, or Z, or Fp as a subring. Here
we say a Noetherian local ring R has an isolated singularity if Rp is a regular local
ring for all nonmaximal primes p ⊂ R.

As an aside, in [Loe03] it was shown that A is the completion of an excellent
Noetherian local domain if A is reduced, equidimensional, and no integer in A is
a zero divisor. However, this doesn’t lead to “bad” Noetherian local rings as we
obtain excellent ones!
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82.18. Non-quasi-affine variety with quasi-affine normalization

The existence of an example of this kind is mentioned in [DG67, II Remark 6.6.13].
They refer to the fifth volume of EGA for such an example, but the fifth volume
did not appear.

Let k be a field. Let Y = A2
k \{(0, 0)}. We are going to construct a finite surjective

birational morphism π : Y −→ X with X a variety over k such that X is not
quasi-affine. Namely, consider the following curves in Y :

C1 : x = 0
C2 : y = 0

Note that C1∩C2 = ∅. We choose the isomorphism ϕ : C1 → C2, (0, y) 7→ (y−1, 0).
We claim there is a unique morphism π : Y → X as above such that

C1

id //

ϕ
// Y

π // X

is a coequalizer diagram in the category of varieties (and even in the category of
schemes). Accepting this for the moment let us show that such an X cannot be
quasi-affine. Namely, it is clear that we would get

Γ(X,OX) = {f ∈ k[x, y] | f(0, y) = f(y−1, 0)} = k ⊕ (xy) ⊂ k[x, y].

In particular these functions do not separate the points (1, 0) and (−1, 0) whose
images in X (we will see below) are distinct (if the characteristic of k is not 2).

To show that X exists consider the Zariski open D(x + y) ⊂ Y of Y . This is
the spectrum of the ring k[x, y, 1/(x + y)] and the curves C1, C2 are completely
contained in D(x+ y). Moreover the morphism

C1

∐
C2 −→ D(x+ y) ∩ Y = Spec(k[x, y, 1/(x+ y)])

is a closed immersion. It follows from More on Algebra, Lemma 15.4.1 that the
ring

A = {f ∈ k[x, y, 1/(x+ y)] | f(0, y) = f(y−1, 0)}
is of finite type over k. On the other hand we have the open D(xy) ⊂ Y of Y which
is disjoint from the curves C1 and C2. It is the spectrum of the ring

B = k[x, y, 1/xy].

Note that we have Axy ∼= Bx+y (since A clearly contains the elements xyP (x, y) any
polynomial P and the element xy/(x+ y)). The scheme X is obtained by glueing
the affine schemes Spec(A) and Spec(B) using the isomorphism Axy ∼= Bx+y and
hence is clearly of finite type over k. To see that it is separated one has to show
that the ring map A ⊗k B → Bx+y is surjective. To see this use that A ⊗k B
contains the element xy/(x + y) ⊗ 1/xy which maps to 1/(x + y). The morphism
X → Y is given by the natural maps D(x+ y)→ Spec(A) and D(xy)→ Spec(B).
Since these are both finite we deduce that X → Y is finite as desired. We omit
the verification that X is indeed the coequalizer of the displayed diagram above,
however, see (insert future reference for pushouts in the category of schemes here).
Note that the morphism π : Y → X does map the points (1, 0) and (−1, 0) to
distinct points in X because the function (x+y3)/(x+y)2 ∈ A has value 1/1, resp.
−1/(−1)2 = −1 which are always distinct (unless the characteristic is 2 – please
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find your own points for characteristic 2). We summarize this discussion in the
form of a lemma.

Lemma 82.18.1. Let k be a field. There exists a variety X whose normalization
is quasi-affine but which is itself not quasi-affine.

Proof. See discussion above and (insert future reference on normalization here).
�

82.19. A locally closed subscheme which is not open in closed

This is a copy of Morphisms, Example 28.3.4. Here is an example of an immersion
which is not a composition of an open immersion followed by a closed immersion.
Let k be a field. Let X = Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1D(xn). Then

U → X is an open immersion. Consider the ideals

In = (xn1 , x
n
2 , . . . , x

n
n−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].

Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m 6= n. Hence the quasi-

coherent ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if
n 6= m. Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let
Z ⊂ U be the closed subscheme corresponding to I. Thus Z → X is an immersion.

We claim that we cannot factor Z → X as Z → Z → X, where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.

82.20. Nonexistence of suitable opens

This section complements the results of Properties, Section 27.27.

Let k be a field and let A = k[z1, z2, z3, . . .]/I where I is the ideal generated by
all pairwise products zizj , i 6= j, i, j ∈ N. Set S = Spec(A). Let s ∈ S be the
closed point corresponding to the maximal ideal (zi). We claim there is no quasi-
compact open V ⊂ S \ {s} which is dense in S \ {s}. Note that S \ {s} =

⋃
D(zi).

Each D(zi) is open and irreducible with generic point ηi. We conclude that ηi ∈ V
for all i. However, a principal affine open of S \ {s} is of the form D(f) where
f ∈ (z1, z2, . . .). Then f ∈ (z1, . . . , zn) for some n and we see that D(f) contains
only finitely many of the points ηi. Thus V cannot be quasi-compact.

Let k be a field and let B = k[x, z1, z2, z3, . . .]/J where J is the ideal generated
by the products xzi, i ∈ N and by all pairwise products zizj , i 6= j, i, j ∈ N.
Set T = Spec(B). Consider the principal open U = D(x). We claim there is no
quasi-compact open V ⊂ S such that V ∩U = ∅ and V ∪U is dense in S. Let t ∈ T
be the closed point corresponding to the maximal ideal (x, zi). The closure of U in
T is U = U ∪{t}. Hence V ⊂

⋃
iD(zi) is a quasi-compact open. By the arguments

of the previous paragraph we see that V cannot be dense in
⋃
D(zi).

Lemma 82.20.1. Nonexistence quasi-compact opens of affines:

(1) There exist an affine scheme S and affine open U ⊂ S such that there is
no quasi-compact open V ⊂ S with U ∩ V = ∅ and U ∪ V dense in S.

(2) There exists an affine scheme S and a closed point s ∈ S such that S \{s}
does not contain a quasi-compact dense open.

http://stacks.math.columbia.edu/tag/0272
http://stacks.math.columbia.edu/tag/086H
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Proof. See discussion above. �

Let X be the glueing of two copies of the affine scheme T (see above) along the
affine open U . Thus there is a morphism π : X → T and X = U1 ∪ U2 such
that π maps Ui isomorphically to T and U1 ∩ U2 isomorphically to U . Note that
X is quasi-separated (by Schemes, Lemma 25.21.7) and quasi-compact. We claim
there does not exist a separated, dense, quasi-compact open W ⊂ X. Namely,
consider the two closed points x1 ∈ U1, x2 ∈ U2 mapping to the closed point t ∈ T
introduced above. Let η̃ ∈ U1 ∩ U2 be the generic point mapping to the (unique)
generic point η of U . Note that η̃  x1 and η̃  x2 lying over the specialization
η  s. Since π|W : W → T is separated we conclude that we cannot have both x1

and x2 ∈W (by the valuative criterion of separatedness Schemes, Lemma 25.22.2).
Say x1 6∈W . Then W ∩U1 is a quasi-compact (as X is quasi-separated) dense open
of U1 which does not contain x1. Now observe that there exists an isomorphism
(T, t) ∼= (S, s) of schemes (by sending x to z1 and zi to zi+1). Hence by the first
paragraph of this section we arrive at a contradiction.

Lemma 82.20.2. There exists a quasi-compact and quasi-separated scheme X
which does not contain a separated quasi-compact dense open.

Proof. See discussion above. �

82.21. Nonexistence of quasi-compact dense open subscheme

Let X be a quasi-compact and quasi-separated algebraic space over a field k. We
know that the schematic locus X ′ ⊂ X is a dense open subspace, see Properties
of Spaces, Proposition 48.10.3. In fact, this result holds when X is reasonable,
see Decent Spaces, Proposition 50.9.1. A natural question is whether one can find
a quasi-compact dense open subscheme of X. It turns out this is not possible in
general.

Assume the characteristic of k is not 2. Let B = k[x, z1, z2, z3, . . .]/J where J is
the ideal generated by the products xzi, i ∈ N and by all pairwise products zizj ,
i 6= j, i, j ∈ N. Set U = Spec(B). Denote 0 ∈ U the closed point all of whose
coordinates are zero. Set

j : R = ∆
∐

Γ −→ U ×k U

where ∆ is the image of the diagonal morphism of U over k and

Γ = {((x, 0, 0, 0, . . .), (−x, 0, 0, 0, . . .)) | x ∈ A1
k, x 6= 0}.

It is clear that s, t : R → U are étale, and hence j is an étale equivalence relation.
The quotient X = U/R is an algebraic space (Spaces, Theorem 47.10.5). Note that
j is not an immersion because (0, 0) ∈ ∆ is in the closure of Γ. Hence X is not a
scheme. On the other hand, X is quasi-separated as R is quasi-compact. Denote
0X the image of the point 0 ∈ U . We claim that X \ {0X} is a scheme, namely

X \ {0X} = Spec
(
k[x2, x−2]

)∐
Spec (k[z1, z2, z3, . . .]/(zizj)) \ {0}

(details omitted). On the other hand, we have seen in Section 82.20 that the scheme
on the right hand side does not contain a quasi-compact dense open.

Lemma 82.21.1. There exists a quasi-compact and quasi-separated algebraic space
which does not contain a quasi-compact dense open subscheme.

http://stacks.math.columbia.edu/tag/086I
http://stacks.math.columbia.edu/tag/087I
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Proof. See discussion above. �

Using the construction of Spaces, Example 47.14.2 in the same manner as we used
the construction of Spaces, Example 47.14.1 above, one obtains an example of a
quasi-compact, quasi-separated, and locally separated algebraic space which does
not contain a quasi-compact dense open subscheme.

82.22. Affines over algebraic spaces

Suppose that f : Y → X is a morphism of schemes with f locally of finite type and
Y affine. Then there exists an immersion Y → An

X of Y into affine n-space over
X. See the slightly more general Morphisms, Lemma 28.40.2.

Now suppose that f : Y → X is a morphism of algebraic spaces with f locally of
finite type and Y an affine scheme. Then it is not true in general that we can find
an immersion of Y into affine n-space over X.

A first (nasty) counter example is Y = Spec(k) and X = [A1
k/Z] where k is a field

of characteristic zero and Z acts on A1
k by translation (n, t) 7→ t + n. Namely, for

any morphism Y → An
X over X we can pullback to the covering A1

k of X and we

get an infinite disjoint union of A1
k’s mapping into An+1

k which is not an immersion.

A second counter example is Y = A1
k → X = A1

k/R with R = {(t, t)}
∐
{(t,−t), t 6=

0}. Namely, in this case the morphism Y → An
X would be given by some regu-

lar functions f1, . . . , fn on Y and hence the fibre product of Y with the covering
An+1
k → An

X would be the scheme

{(f1(t), . . . , fn(t), t)}
∐
{(f1(t), . . . , fn(t),−t), t 6= 0}

with obvious morphism to An+1
k which is not an immersion. Note that this gives a

counter example with X quasi-separated.

Lemma 82.22.1. There exists a finite type morphism of algebraic spaces Y → X
with Y affine and X quasi-separated, such that there does not exist an immersion
Y → An

X over X.

Proof. See discussion above. �

82.23. Pushforward of quasi-coherent modules

In Schemes, Lemma 25.24.1 we proved that f∗ transforms quasi-coherent modules
into quasi-coherent modules when f is quasi-compact and quasi-separated. Here
are some examples to show that these conditions are both necessary.

Suppose that Y = Spec(A) is an affine scheme and that X =
∐
n∈N Y . We claim

that f∗OX is not quasi-coherent where f : X → Y is the obvious morphism.
Namely, for a ∈ A we have

f∗OX(D(a)) =
∏

n∈N
Aa

Hence, in order for f∗OX to be quasi-coherent we would need∏
n∈N

Aa =
(∏

n∈N
A
)
a
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for all a ∈ A. This isn’t true in general, for example if A = Z and a = 2, then
(1, 1/2, 1/4, 1/8, . . .) is an element of the left hand side which is not in the right
hand side. Note that f is a non-quasi-compact separated morphism.

Let k be a field. Set

A = k[t, z, x1, x2, x3, . . .]/(tx1z, t
2x2

2z, t
3x3

3z, . . .)

Let Y = Spec(A). Let V ⊂ Y be the open subscheme V = D(x1) ∪ D(x2) ∪ . . ..
Let X be two copies of Y glued along V . Let f : X → Y be the obvious morphism.
Then we have an exact sequence

0→ f∗OX → OY ⊕OY
(1,−1)−−−−→ j∗OV

where j : V → Y is the inclusion morphism. Since

A −→
∏

Axn

is injective (details omitted) we see that Γ(Y, f∗OX) = A. On the other hand, the
kernel of the map

At −→
∏

Atxn

is nonzero because it contains the element z. Hence Γ(D(t), f∗OX) is strictly bigger
than At because it contains (z, 0). Thus we see that f∗OX is not quasi-coherent.
Note that f is quasi-compact but non-quasi-separated.

Lemma 82.23.1. Schemes, Lemma 25.24.1 is sharp in the sense that one can
neither drop the assumption of quasi-compactness nor the assumption of quasi-
separatedness.

Proof. See discussion above. �

82.24. A nonfinite module with finite free rank 1 stalks

Let R = Q[x]. Set M =
∑
n∈N

1
x−nR as a submodule of the fraction field of R.

Then M is not finitely generated, but for every prime p of R we have Mp
∼= Rp as

an Rp-module.

82.25. A finite flat module which is not projective

This is a copy of Algebra, Remark 10.75.3. It is not true that a finite R-module
which is R-flat is automatically projective. A counter example is where R = C∞(R)
is the ring of infinitely differentiable functions on R, and M = Rm = R/I where
m = {f ∈ R | f(0) = 0} and I = {f ∈ R | ∃ε, ε > 0 : f(x) = 0 ∀x, |x| < ε}.

The morphism Spec(R/I)→ Spec(R) is also an example of a flat closed immersion
which is not open.

Lemma 82.25.1. Strange flat modules.

(1) There exists a ring R and a finite flat R-module M which is not projective.
(2) There exists a closed immersion which is flat but not open.

Proof. See discussion above. �
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82.26. A projective module which is not locally free

We give two examples. One where the rank is between 0 and 1 and one where the
rank is ℵ0.

Lemma 82.26.1. Let R be a ring. Let I ⊂ R be an ideal generated by a countable
collection of idempotents. Then I is projective as an R-module.

Proof. Say I = (e1, e2, e3, . . .) with en an idempotent of R. After inductively
replacing en+1 by en + (1 − en)en+1 we may assume that (e1) ⊂ (e2) ⊂ (e3) ⊂ . . .
and hence I =

⋃
n≥1(en) = colimn enR. In this case

HomR(I,M) = HomR(colimn enR,M) = limn HomR(enR,M) = limn enM

Note that the transition maps en+1M → enM are given by multiplication by en
are are surjective. Hence by Algebra, Lemma 10.83.4 the functor HomR(I,M) is
exact, i.e., I is a projective R-module. �

Lemma 82.26.2. Let R be a ring. Let n ≥ 1. Let M be an R-module generated
by < n elements. Then any R-module map f : R⊕n →M has a nonzero kernel.

Proof. Choose a surjection R⊕n−1 → M . We may lift the map f to a map
f ′ : R⊕n → R⊕n−1. It suffices to prove f ′ has a nonzero kernel. The map f ′ :
R⊕n → R⊕n−1 is given by a matrix A = (aij). If one of the aij is not nilpotent, say
a = aij is not, then we can replace A by the localization Aa and we may assume
aij is a unit. Since if we find a nonzero kernel after localization then there was
a nonzero kernel to start with as localization is exact, see Algebra, Proposition
10.9.12. In this case we can do a base change on both R⊕n and R⊕n−1 and reduce
to the case where

A =


1 0 0 . . .
0 a22 a23 . . .
0 a32 . . .
. . . . . .


Hence in this case we win by induction on n. If not then each aij is nilpotent. Set
I = (aij) ⊂ R. Note that Im+1 = 0 for some m ≥ 0. Let m be the largest integer
such that Im 6= 0. Then we see that (Im)⊕n is contained in the kernel of the map
and we win. �

Suppose that P ⊂ Q is an inclusion of R-modules with Q a finite R-module and P
locally free, see Algebra, Definition 10.75.1. Suppose that Q can be generated by
N elements as an R-module. Then it follows from Lemma 82.26.2 that P is finite
locally free (with the free parts having rank at most N). And in this case P is a
finite R-module, see Algebra, Lemma 10.75.2.

Combining this with the above we see that a non-finitely-generated ideal which is
generated by a countable collection of idempotents is projective but not locally free.
An explicit example is R =

∏
n∈N F2 and I the ideal generated by the idempotents

en = (1, 1, . . . , 1, 0, . . .)

where the sequence of 1’s has length n.

Lemma 82.26.3. There exists a ring R and an ideal I such that I is projective as
an R-module but not locally free as an R-module.

Proof. See above. �
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Lemma 82.26.4. Let K be a field. Let Ci, i = 1, . . . , n be smooth, projective,
geometrically irreducible curves over K. Let Pi ∈ Ci(K) be a rational point and let
Qi ∈ Ci be a point such that [κ(Qi) : K] = 2. Then [P1 × . . . × Pn] is nonzero in
A0(U1 ×K . . .×K Un) where Ui = Ci \ {Qi}.

Proof. There is a degree map deg : A0(C1 ×K . . . ×K Cn) → Z Because each Qi
has degree 2 over K we see that any zero cycle supported on the “boundary”

C1 ×K . . .×K Cn \ U1 ×K . . .×K Un

has degree divisible by 2. �

We can construct another example of a projective but not locally free module
using the lemma above as follows. Let Cn, n = 1, 2, 3, . . . be smooth, projective,
geometrically irreducible curves over Q each with a pair of points Pn, Qn ∈ Cn such
that κ(Pn) = Q and κ(Qn) is a quadratic extension of Q. Set Un = Cn \ {Qn};
this is an affine curve. Let Ln be the inverse of the ideal sheaf of Pn on Un. Note
that c1(Ln) = [Pn] in the group of zero cycles A0(Un). Set An = Γ(Un,OUn). Let
Ln = Γ(Un,Ln) which is a locally free module of rank 1 over An. Set

Bn = A1 ⊗Q A2 ⊗Q . . .⊗Q An

so that Spec(Bn) = U1 × . . .× Un all products over Spec(Q). For i ≤ n we set

Ln,i = A1 ⊗Q . . .⊗Q Mi ⊗Q . . .⊗Q An

which is a locally free Bn-module of rank 1. Note that this is also the global sections
of pr∗iLn. Set

B∞ = colimnBn and L∞,i = colimn Ln,i

Finally, set

M =
⊕

i≥1
L∞,i.

This is a direct sum of finite locally free modules, hence projective. We claim that
M is not locally free. Namely, suppose that f ∈ B∞ is a nonzero function such that
Mf is free over (B∞)f . Let e1, e2, . . . be a basis. Choose n ≥ 1 such that f ∈ Bn.
Choose m ≥ n+ 1 such that e1, . . . , en+1 are in⊕

1≤i≤m
Lm,i.

Because the elements e1, . . . , en+1 are part of a basis after a faithfully flat base
change we conclude that the chern classes

ci(pr∗1L1 ⊕ . . .⊕ pr∗mLm), i = m,m− 1, . . . ,m− n

are zero in the chow group of

D(f) ⊂ U1 × . . .× Um
Since f is the pullback of a function on U1× . . .×Un this implies in particular that

cm−n(O⊕nW ⊕ pr∗1Ln+1 ⊕ . . .⊕ pr∗m−nLm) = 0.

on the variety

W = (Cn+1 × . . .× Cm)K

over the field K = Q(C1 × . . .× Cn). In other words the cycle

[(Pn+1 × . . .× Pm)K ]

http://stacks.math.columbia.edu/tag/05WK
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is zero in the chow group of zero cycles on W . This contradicts Lemma 82.26.4
above because the points Qi, n + 1 ≤ i ≤ m induce corresponding points Q′i on
(Cn)K and as K/Q is geometrically irreducible we have [κ(Q′i) : K] = 2.

Lemma 82.26.5. There exists a countable ring R and a projective module M which
is a direct sum of countably many locally free rank 1 modules such that M is not
locally free.

Proof. See above. �

82.27. Zero dimensional local ring with nonzero flat ideal

In [Laz67] there is an example of a zero dimensional local ring with a nonzero flat
ideal. Here is the construction. Let k be a field. Let Xi, Yi, i ≥ 1 be variables.
Take R = k[Xi, Yi]/(Xi − YiXi+1, Y

2
i ). Denote xi, resp. yi the image of Xi, resp.

Yi in this ring. Note that

xi = yixi+1 = yiyi+1xi+2 = yiyi+1yi+2xi+3 = . . .

in this ring. The ring R has only one prime ideal, namely m = (xi, yi). We claim
that the ideal I = (xi) is flat as an R-module.

Note that the annihilator of xi in R is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .).
Consider the R-module M generated by elements ei, i ≥ 1 and relations ei = yiei+1.
Then M is flat as it is the colimit colimiR of copies of R with transition maps

R
y1−→ R

y2−→ R
y3−→ . . .

Note that the annihilator of ei in M is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .).
Since every element of M , resp. I can be written as fei, resp. hxi for some f, h ∈ R
we see that the map M → I, ei → xi is an isomorphism and I is flat.

Lemma 82.27.1. There exists a local ring R with a unique prime ideal and a
nonzero ideal I ⊂ R which is a flat R-module

Proof. See discussion above. �

82.28. An epimorphism of zero-dimensional rings which is not
surjective

In [Laz69] one can find the following example. Let k be a field. Consider the ring
homomorphism

k[x1, x2, . . . , z1, z2, . . .]/(x
4i

i , z
4i

i ) −→ k[x1, x2, . . . , y1, y2, . . .]/(x
4i

i , yi − xi+1y
2
i+1)

which maps xi to xi and zi to xiyi. Note that y4i+1

i is zero in the right hand side
but that y1 is not zero (details omitted). This map is not surjective: we can think
of the above as a map of Z-graded algebras by setting deg(xi) = −1, deg(zi) = 0,
and deg(yi) = 1 and then it is clear that y1 is not in the image. Finally, the map
is an epimorphism because

yi−1 ⊗ 1 = xiy
2
i ⊗ 1 = yi ⊗ xiyi = xiyi ⊗ yi = 1⊗ xiy2

i .

hence the tensor product of the target over the source is isomorphic to the target.

Lemma 82.28.1. There exists an epimorphism of local rings of dimension 0 which
is not a surjection.

Proof. See discussion above. �
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82.29. Finite type, not finitely presented, flat at prime

Let k be a field. Consider the local ring A0 = k[x, y](x,y). Denote p0,n = (y + xn +

x2n+1). This is a prime ideal. Set

A = A0[z1, z2, z3, . . .]/(znzm, zn(y + xn + x2n+1))

Note that A → A0 is a surjection whose kernel is an ideal of square zero. Hence
A is also a local ring and the prime ideals of A are in one-to-one correspondence
with the prime ideals of A0. Denote pn the prime ideal of A corresponding to p0,n.
Observe that pn is the annihilator of zn in A. Let

C = A[z]/(xz2 + z + y)[
1

2zx+ 1
]

Note that A→ C is an étale ring map, see Algebra, Example 10.132.8. Let q ⊂ C
be the maximal ideal generated by x, y, z and all zn. As A→ C is flat we see that
the annihilator of zn in C is pnC. We compute

C/pnC = A0[z]/(xz2 + z + y, y + xn + x2n+1)[1/(2zx+ 1)]

= k[x](x)[z]/(xz
2 + z − xn − x2n+1)[1/(2zx+ 1)]

= k[x](x)[z]/(z − xn)× k[x](x)[z]/(xz + xn+1 + 1)[1/(2zx+ 1)]

= k[x](x) × k(x)

because (z − xn)(xz + xn+1 + 1) = xz2 + z − xn − x2n+1. Hence we see that
pnC = rn ∩ qn with rn = pnC + (z − xn)C and qn = pnC + (xz + xn+1 + 1)C.
Since qn + rn = C we also get pnC = rnqn. It follows that qn is the annihilator
of ξn = (z − xn)zn. Observe that on the one hand rn ⊂ q, and on the other hand
qn + q = C. This follows for example because qn is a maximal ideal of C distinct
from q. Similarly we have qn + qm = C for n 6= m. At this point we let

B = Im(C −→ Cq)

We observe that the elements ξn map to zero in B as xz + xn+1 + 1 is not in q.
Denote q′ ⊂ B the image of q. By construction B is a finite type A-algebra, with
Bq′
∼= Cq. In particular we see that Bq′ is flat over A.

We claim there does not exist an element g′ ∈ B, g′ 6∈ q′ such that Bg′ is of finite
presentation over A. We sketch a proof of this claim. Choose an element g ∈ C
which maps to g′ ∈ B. Consider the map Cg → Bg′ . By Algebra, Lemma 10.6.3
we see that Bg is finitely presented over A if and only if the kernel of Cg → Bg′ is
finitely generated. But the element g ∈ C is not contained in q, hence maps to a
nonzero element of A0[z]/(xz2 + z + y). Hence g can only be contained in finitely
many of the prime ideals qn, because the primes (y + xn + x2n+1, xz + xn+1 + 1)
are an infinite collection of codimension 1 points of the 2-dimensional irreducible
Noetherian space Spec(k[x, y, z]/(xz2 + z + y)). The map⊕

g 6∈qn
C/qn −→ Cg, (cn) −→

∑
cnξn

is injective and its image is the kernel of Cg → Bg′ . We omit the proof of this
statement. (Hint: Write A = A0 ⊕ I as an A0-module where I is the kernel of
A → A0. Similarly, write C = C0 ⊕ IC. Write IC =

⊕
Czn ∼=

⊕
(C/rn ⊕ C/qn)

and study the effect of multiplication by g on the summands.) This concludes the
sketch of the proof of the claim. This also proves that Bg′ is not flat over A for any
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g′ as above. Namely, if it were flat, then the annihilator of the image of zn in Bg′

would be pnBg′ , and would not contain z − xn.

As a consequence we can answer (negatively) a question posed in [GR71, Part I,
Remarques (3.4.7) (v)]. Here is a precise statement.

Lemma 82.29.1. There exists a local ring A, a finite type ring map A → B and
a prime q lying over mA such that Bq is flat over A, and for any element g ∈ B,
g 6∈ q the ring Bg is neither finitely presented over A nor flat over A.

Proof. See discussion above. �

82.30. Finite type, flat and not of finite presentation

In this section we give some examples of ring maps and morphisms which are of
finite type and flat but not of finite presentation.

Let R be a ring which has an ideal I such that R/I is a finite flat module but not
projective, see Section 82.25 for an explicit example. Note that this means that I is
not finitely generated, see Algebra, Lemma 10.104.5. Note that I = I2, see Algebra,
Lemma 10.104.2. The base ring in our examples will be R and correspondingly the
base scheme S = Spec(R).

Consider the ring map R→ R⊕R/Iε where ε2 = 0 by convention. This is a finite,
flat ring map which is not of finite presentation. All the fibre rings are complete
intersections and geometrically irreducible.

Let A = R[x, y]/(xy, ay; a ∈ I). Note that as an R-module we have A =
⊕

i≥0Ry
i⊕⊕

j>0R/Ix
j . Hence R → A is a flat finite type ring map which is not of finite

presentation. Each fibre ring is isomorphic to either κ(p)[x, y]/(xy) or κ(p)[x].

We can turn the previous example into a projective morphism by taking B =
R[X0, X1, X2]/(X1X2, aX2; a ∈ I). In this case X = Proj(B) → S is a proper flat
morphism which is not of finite presentation such that for each s ∈ S the fibre Xs is
isomorphic either to P1

s or to the closed subscheme of P2
s defined by the vanishing

of X1X2 (this is a projective nodal curve of arithmetic genus 0).

Let M = R ⊕ R ⊕ R/I. Set B = SymR(M) the symmetric algebra on M . Set
X = Proj(B). Then X → S is a proper flat morphism, not of finite presentation
such that for s ∈ S the geometric fibre is isomorphic to either P1

s or P2
s. In

particular these fibres are smooth and geometrically irreducible.

Lemma 82.30.1. There exist examples of

(1) a flat finite type ring map with geometrically irreducible complete inter-
section fibre rings which is not of finite presentation,

(2) a flat finite type ring map with geometrically connected, geometrically re-
duced, dimension 1, complete intersection fibre rings which is not of finite
presentation,

(3) a proper flat morphism of schemes X → S each of whose fibres is isomor-
phic to either P1

s or to the vanishing locus of X1X2 in P2
s which is not of

finite presentation, and
(4) a proper flat morphism of schemes X → S each of whose fibres is isomor-

phic to either P1
s or P2

s which is not of finite presentation.

Proof. See discussion above. �
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82.31. Topology of a finite type ring map

Let A→ B be a local map of local domains. If A is Noetherian, A→ B is essentially
of finite type, and A/mA ⊂ B/mB is finite then there exists a prime q ⊂ B, q 6= mB
such that A → B/q is the localization of a quasi-finite ring map. See More on
Morphisms, Lemma 36.35.6.

In this section we give an example that shows this result is false A is no longer
Noetherian. Namely, let k be a field and set

A = {a0 + a1x+ a2x
2 + . . . | a0 ∈ k, ai ∈ k((y)) for i ≥ 1}

and
C = {a0 + a1x+ a2x

2 + . . . | a0 ∈ k[y], ai ∈ k((y)) for i ≥ 1}.
The inclusion A→ C is of finite type as C is generated by y over A. We claim that
A is a local ring with maximal ideal m = {a1x+a2x

2 + . . . ∈ A} and no prime ideals
besides (0) and m. Namely, an element f = a0 + a1x+ a2x

2 + . . . of A is invertible
as soon as a0 6= 0. If q ⊂ A is a nonzero prime ideal, and f = aix

i + . . . ∈ q,
then using properties of power series one sees that for any g ∈ k((y)) the element
gi+1xi+1 ∈ q, i.e., gx ∈ q. This proves that q = m.

As to the spectrum of the ring C, arguing in the same way as above we see that
any nonzero prime ideal contains the prime p = {a1x+ a2x

2 + . . . ∈ C} which lies
over m. Thus the only prime of C which lies over (0) is (0). Set mC = yC + p and
B = CmC . Then A→ B is the desired example.

Lemma 82.31.1. There exists a local homomorphism A → B of local domains
which is essentially of finite type and such that A/mA → B/mB is finite such that
for every prime q 6= mB of B the ring map A → B/q is not the localization of a
quasi-finite ring map.

Proof. See the discussion above. �

82.32. Pure not universally pure

Let k be a field. Let

R = k[[x, xy, xy2, . . .]] ⊂ k[[x, y]].

In other words, a power series f ∈ k[[x, y]] is in R if and only if f(0, y) is a
constant. In particular R[1/x] = k[[x, y]][1/x] and R/xR is a local ring with a
maximal ideal whose square is zero. Denote R[y] ⊂ k[[x, y]] the set of power series
f ∈ k[[x, y]] such that f(0, y) is a polynomial in y. Then R→ R[y] is a finite type
but not finitely presented ring map which induces an isomorphism after inverting
x. Also there is a surjection R[y]/xR[y] → k[y] whose kernel has square zero.
Consider the finitely presented ring map R→ S = R[t]/(xt−xy). Again R[1/x]→
S[1/x] is an isomorphism and in this case S/xS ∼= (R/xR)[t]/(xy) maps onto k[t]
with nilpotent kernel. There is a surjection S → R[y], t 7−→ y which induces an
isomorphism on inverting x and a surjection with nilpotent kernel modulo x. Hence
the kernel of S → R[y] is locally nilpotent. In particular S → R[y] is a universal
homeomorphism.

First we claim that S is an S-module which is relatively pure over R. Since on
inverting x we obtain an isomorphism we only need to check this at the maximal
ideal m ⊂ R. Since R is complete with respect to its maximal ideal it is henselian
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hence we need only check that every prime p ⊂ R, p 6= m, the unique prime q of
S lying over p satisfies mS + q 6= S. Since p 6= m it corresponds to a unique prime
ideal of k[[x, y]][1/x]. Hence either p = (0) or p = (f) for some irreducible element
f ∈ k[[x, y]] which is not associated to x (here we use that k[[x, y]] is a UFD – insert
future reference here). In the first case q = (0) and the result is clear. In the second
case we may multiply f by a unit so that f ∈ R[y] (Weierstrass preparation; details
omitted). Then it is easy to see that R[y]/fR[y] ∼= k[[x, y]]/(f) hence f defines
a prime ideal of R[y] and mR[y] + fR[y] 6= R[y]. Since S → R[y] is a universal
homeomorphism we deduce the desired result for S also.

Second we claim that S is not universally relatively pure over R. Namely, to see
this it sufffices to find a valuation ring O and a local ring map R → O such that
Spec(R[y]⊗RO)→ Spec(O) does not hit the closed point of Spec(O). Equivalently,
we have to find ϕ : R → O such that ϕ(x) 6= 0 and v(ϕ(x)) > v(ϕ(xy)) where v is
the valuation of O. (Because this means that the valuation of y is negative.) To do
this consider the ring map

R −→ {a0 + a1x+ a2x
2 + . . . | a0 ∈ k[y−1], ai ∈ k((y))}

defined in the obvious way. We can find a valuation ring O dominating the local-
ization of the right hand side at the maximal ideal (y−1, x) and we win.

Lemma 82.32.1. There exists a morphism of affine schemes of finite presentation
X → S and an OX-module F of finite presentation such that F is pure relative to
S, but not universally pure relative to S.

Proof. See discussion above. �

82.33. A formally smooth non-flat ring map

Let k be a field. Consider the k-algebra k[Q]. This is the k-algebra with basis
xα, α ∈ Q and multiplication determined by xαxβ = xα+β . (In particular x0 = 1.)
Consider the k-algebra homomorphism

k[Q] −→ k, xα 7−→ 1.

It is surjective with kernel J generated by the elements xα − 1. Let us compute
J/J2. Note that multiplication by xα on J/J2 is the identity map. Denote zα the
class of xα − 1 modulo J2. These classes generate J/J2. Since

(xα − 1)(xβ − 1) = xα+β − xα − xβ + 1 = (xα+β − 1)− (xα − 1)− (xβ − 1)

we see that zα+β = zα + zβ in J/J2. A general element of J/J2 is of the form∑
λαzα with λα ∈ k (only finitely many nonzero). Note that if the characteristic

of k is p > 0 then

0 = pzα/p = zα/p + . . .+ zα/p = zα

and we see that J/J2 = 0. If the characteristic of k is zero, then

J/J2 = Q⊗Z k ∼= k

(details omitted) is not zero.
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We claim that k[Q]→ k is a formally smooth ring map if the characteristic of k is
positive. Namely, suppose given a solid commutative diagram

k //

!!

A

k[Q]

OO

ϕ // A′

OO

with A′ → A a surjection whose kernel I has square zero. To show that k[Q]→ k
is formally smooth we have to prove that ϕ factors through k. Since ϕ(xα − 1)
maps to zero in A we see that ϕ induces a map ϕ : J/J2 → I whose vanishing is
the obstruction to the desired factorization. Since J/J2 = 0 if the characteristic
is p > 0 we get the result we want, i.e., k[Q] → k is formally smooth in this case.
Finally, this ring map is not flat, for example as the nonzerodivisor x2−1 is mapped
to zero.

Lemma 82.33.1. There exists a formally smooth ring map which is not flat.

Proof. See discussion above. �

82.34. A formally étale non-flat ring map

In this section we give a counterexample to the final sentence in [DG67, 0, Example
19.10.3(i)] (this was not one of the items caught in their later errata lists). Consider
A→ A/J for a local ring A and a nonzero proper ideal J such that J2 = J (so J isn’t
finitely generated); the valuation ring of an algebraically closed non-archimedean
field with J its maximal ideal is a source of such (A, J). These non-flat quotient
maps are formally étale. Namely, suppose given a commutative diagram

A/J // R/I

A

OO

ϕ // R

OO

where I is an ideal of the ring R with I2 = 0. Then A → R factors uniquely
through A/J because

ϕ(J) = ϕ(J2) ⊂ (ϕ(J)A)2 ⊂ I2 = 0.

Hence this also provides a counterexample to the formally étale case of the “struc-
ture theorem” for locally finite type and formally étale morphisms in [DG67, IV,
Theorem 18.4.6(i)] (but not a counterexample to part (ii), which is what people
actually use in practice). The error in the proof of the latter is that the very last
step of the proof is to invoke the incorrect [DG67, 0, Example 19.3.10(i)], which is
how the counterexample just mentioned creeps in.

Lemma 82.34.1. There exist formally étale nonflat ring maps.

Proof. See discussion above. �

82.35. A formally étale ring map with nontrivial cotangent complex

Let k be a field. Consider the ring

R = k[{xn}n≥1, {yn}n≥1]/(x1y1, x
m
nm − xn, ymnm − yn)
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Let A be the localization at the maximal ideal generated by all xn, yn and denote
J ⊂ A the maximal ideal. Set B = A/J . By construction J2 = J and hence A→ B
is formally étale (see Section 82.34). We claim that the element x1⊗y1 is a nonzero
element in the kernel of

J ⊗A J −→ J.

Namely, (A, J) is the colimit of the localizations (An, Jn) of the rings

Rn = k[xn, yn]/(xnny
n
n)

at their corresponding maximal ideals. Then x1 ⊗ y1 corresponds to the element
xnn ⊗ ynn ∈ Jn ⊗An Jn and is nonzero (by an explicit computation which we omit).
Since ⊗ commutes with colimits we conclude. By [Ill72, III Section 3.3] we see
that J is not weakly regular. Hence by [Ill72, III Proposition 3.3.3] we see that
the cotangent complex LB/A is not zero. In fact, we can be more precise. We

have H0(LB/A) = ΩB/A and H1(LB/A) = 0 because J/J2 = 0. But from the five-
term exact sequence of Quillen’s fundamental spectral sequence (see Cotangent,

Remark 70.11.5 or [Rei, Corollary 8.2.6]) and the nonvanishing of TorA2 (B,B) =
Ker(J ⊗A J → J) we conclude that H2(LB/A) is nonzero.

Lemma 82.35.1. There exists a formally étale surjective ring map A → B with
LB/A not equal to zero.

Proof. See discussion above. �

82.36. Ideals generated by sets of idempotents and localization

Let R be a ring. Consider the ring

B(R) = R[xn;n ∈ Z]/(xn(xn − 1), xnxm;n 6= m)

It is easy to show that every prime q ⊂ B(R) is either of the form

q = pB(R) + (xn;n ∈ Z)

or of the form

q = pB(R) + (xn − 1) + (xm;n 6= m,m ∈ Z).

Hence we see that

Spec(B(R)) = Spec(R)q
∐

n∈Z
Spec(R)

where the topology is not just the disjoint union topology. It has the following
properties: Each of the copies indexed by n ∈ Z is an open subscheme, namely it
is the standard open D(xn). The ”central” copy of Spec(R) is in the closure of
the union of any infinitely many of the other copies of Spec(R). Note that this
last copy of Spec(R) is cut out by the ideal (xn, n ∈ Z) which is generated by the
idempotents xn. Hence we see that if Spec(R) is connected, then the decomposition
above is exactly the decomposition of Spec(B(R)) into connected components.

Next, let A = C[x, y]/((y−x2 + 1)(y+x2− 1)). The spectrum of A consists of two
irreducible components C1 = Spec(A1), C2 = Spec(A2) with A1 = C[x, y]/(y −
x2 + 1) and A2 = C[x, y]/(y + x2 − 1). Note that these are parametrized by
(x, y) = (t, t2−1) and (x, y) = (t,−t2+1) which meet in P = (−1, 0) and Q = (1, 0).
We can make a twisted version of B(A) where we glue B(A1) to B(A2) in the
following way: Above P we let xn ∈ B(A1)⊗κ(P ) correspond to xn ∈ B(A2)⊗κ(P ),
but above Q we let xn ∈ B(A1) ⊗ κ(Q) correspond to xn+1 ∈ B(A2) ⊗ κ(Q).
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Let Btwist(A) denote the resulting A-algebra. Details omitted. By construction
Btwist(A) is Zariski locally over A isomorphic to the untwisted version. Namely,
this happens over both the principal open Spec(A) \ {P} and the principal open
Spec(A) \ {Q}. However, our choice of glueing produces enough ”monodromy”
such that Spec(Btwist(A)) is connected (details omitted). Finally, there is a central
copy of Spec(A)→ Spec(Btwist(A)) which gives a closed subscheme whose ideal is
Zariski locally on Btwist(A) cut out by ideals generated by idempotents, but not
globally (as Btwist(A) has no nontrivial idempotents).

Lemma 82.36.1. There exists an affine scheme X = Spec(A) and a closed sub-
scheme T ⊂ X such that T is Zariski locally on X cut out by ideals generated by
idempotents, but T is not cut out by an ideal generated by idempotents.

Proof. See above. �

82.37. A ring map which identifies local rings which is not ind-étale

Note that the ring map R→ B(R) constructed in Section 82.36 is a colimit of finite
products of copies of R. Hence R→ B(R) is ind-Zariski, see Pro-étale Cohomology,
Definition 46.4.1. Next, consider the ring map A → Btwist(A) constructed in
Section 82.36. Since this ring map is Zariski locally on Spec(A) isomorphic to an
ind-Zariski ring map R→ B(R) we conclude that it identifies local rings (see Pro-
étale Cohomology, Lemma 46.4.6). The discussion in Section 82.36 shows there is
a section Btwist(A) → A whose kernel is not generated by idempotents. Now, if
A → Btwist(A) were ind-étale, i.e., Btwist(A) = colimAi with A → Ai étale, then
the kernel of Ai → A would be generated by an idempotent (Algebra, Lemmas
10.138.9 and 10.138.10). This would contradict the result mentioned above.

Lemma 82.37.1. There is a ring map A→ B which identifies local rings but which
is not ind-étale. A fortiori it is not ind-Zariski.

Proof. See discussion above. �

82.38. Non flasque quasi-coherent sheaf associated to injective module

For more examples of this type see [BGI71, Exposé II, Appendix I] where Illusie
explains some examples due to Verdier.

Consider the affine scheme X = Spec(A) where

A = k[x, y, z1, z2, . . .]/(x
nzn)

is the ring from Properties, Example 27.23.2. Set I = (x) ⊂ A. Consider the quasi-
compact open U = D(x) of X. We have seen in loc. cit. that there is a section
s ∈ OX(U) which does not come from an A-module map In → A for any n ≥ 0.

Let α : A→ J be the embedding of A into an injective A-module. Let Q = J/α(A)
and denote β : J → Q the quotient map. We claim that the map

Γ(X, J̃) −→ Γ(U, J̃)

is not surjective. Namely, we claim that α(s) is not in the image. To see this, we
argue by contradiction. So assume that x ∈ J is an element which restricts to α(s)
over U . Then β(x) ∈ Q is an element which restricts to 0 over U . Hence we know
that Inβ(x) = 0 for some n, see Properties, Lemma 27.23.1. This implies that we
get a morphism ϕ : In → A, h 7→ α−1(hx). It is easy to see that this morphism
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ϕ gives rise to the section s via the map of Properties, Lemma 27.23.1 which is a
contradiction.

Lemma 82.38.1. There exists an affine scheme X = Spec(A) and an injective A-

module J such that J̃ is not a flasque sheaf on X. Even the restriction Γ(X, J̃)→
Γ(U, J̃) with U a standard open need not be surjective.

Proof. See above. �

82.39. A non-separated flat group scheme

Every group scheme over a field is separated, see Groupoids, Lemma 38.7.2. This
is not true for group schemes over a base.

Let k be a field. Let S = Spec(k[x]) = A1
k. Let G be the affine line with 0 doubled

(see Schemes, Example 25.14.3) seen as a scheme over S. Thus a fibre of G→ S is
either a singleton or a set with two elements (one in U and one in V ). Thus we can
endow these fibres with the structure of a group (by letting the element in U be
the zero of the group structure). More precisely, G has two opens U, V which map
isomorphically to S such that U ∩ V is mapped isomorphically to S \ {0}. Then

G×S G = U ×S U ∪ V ×S U ∪ U ×S V ∪ V ×S V
where each piece is isomorphic to S. Hence we can define a multiplication m :
G ×S G → G as the unique S-morphism which maps the first and the last piece
into U and the two middle pieces into V . This matches the pointwise description
given above. We omit the verification that this defines a group scheme structure.

Lemma 82.39.1. There exists a flat group scheme of finite type over the affine
line which is not separated.

Proof. See the discussion above. �

Lemma 82.39.2. There exists a flat group scheme of finite type over the infinite
dimensional affine space which is not quasi-separated.

Proof. The same construction as above can be carried out with the infinite dimen-
sional affine space S = A∞k = Spec k[x1, x2, . . .] as the base and the origin 0 ∈ S
corresponding to the maximal ideal (x1, x2, . . .) as the closed point which is doubled
in G. The resulting group scheme G → S is not quasi-separated as explained in
Schemes, Example 25.21.4. �

82.40. A non-flat group scheme with flat identity component

Let X → S be a monomorphism of schemes. Let G = SqX. Let m : G×S G→ G
be the S-morphism

G×S G = X ×S X qX qX q S −→ G = X q S
which maps the summands X ×S X and S into S and maps the summands X into
X by the identity morphism. This defines a group law. To see this we have to show
that m ◦ (m × idG) = m ◦ (idG ×m) as maps G ×S G ×S G → G. Decomposing
G ×S G ×S G into components as above, we see that we need to verify this for
the restriction to each of the 8-pieces. Each piece is isomorphic to either S, X,
X ×S X, or X ×S X ×S X. Moreover, both maps map these pieces to S, X, S,
X respectively. Having said this, the fact that X → S is a monomorphism implies
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that X×SX ∼= X and X×SX×SX ∼= X and that there is in each case exactly one
S-morphism S → S or X → X. Thus we see that m ◦ (m× idG) = m ◦ (idG ×m).
Thus taking X → S to be any nonflat monomorphism of schemes (e.g., a closed
immersion) we get an example of a group scheme over a base S whose identity
component is S (hence flat) but which is not flat.

Lemma 82.40.1. There exists a group scheme G over a base S whose identity
component is flat over S but which is not flat over S.

Proof. See discussion above. �

82.41. A non-separated group algebraic space over a field

Every group scheme over a field is separated, see Groupoids, Lemma 38.7.2. This
is not true for group algebraic spaces over a field (but see end of this section for
positive results).

Let k be a field of characteristic zero. Consider the algebraic space G = A1
k/Z

from Spaces, Example 47.14.8. By construction G is the fppf sheaf associated to
the presheaf

T 7−→ Γ(T,OT )/Z

on the category of schemes over k. The obvious addition rule on the presheaf
induces an addition m : G × G → G which turns G into a group algebraic space
over Spec(k). Note that G is not separated (and not even quasi-separated or locally
separated). On the other hand G→ Spec(k) is of finite type!

Lemma 82.41.1. There exists a group algebraic space of finite type over a field
which is not separated (and not even quasi-separated or locally separated).

Proof. See discussion above. �

Positive results: If the group algebraic space G is either quasi-separated, or locally
separated, or more generally a decent algebraic space, then G is in fact separated,
see More on Groupoids in Spaces, Lemma 61.7.4. Moreover, a finite type, separated
group algebraic space over a field is in fact a scheme (insert future reference here).
The idea of the proof is that the schematic locus is open dense, see Properties of
Spaces, Proposition 48.10.3 or Decent Spaces, Theorem 50.9.2. By translating this
open we see that every point of G has an open neighbourhood which is a scheme.

82.42. Specializations between points in fibre étale morphism

If f : X → Y is an étale, or more generally a locally quasi-finite morphism of
schemes, then there are no specializations between points of fibres, see Morphisms,
Lemma 28.21.8. However, for morphisms of algebraic spaces this doesn’t hold in
general.

To give an example, let k be a field. Set

P = k[u, u−1, y, {xn}n∈Z].

Consider the action of Z on P by k-algebra maps generated by the automorphism
τ given by the rules τ(u) = u, τ(y) = uy, and τ(xn) = xn+1. For d ≥ 1 set
Id = ((1− ud)y, xn − xn+d, n ∈ Z). Then V (Id) ⊂ Spec(P ) is the fix point locus of
τd. Let S ⊂ P be the multiplicative subset generated by y and all 1 − ud, d ∈ N.
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Then we see that Z acts freely on U = Spec(S−1P ). Let X = U/Z be the quotient
algebraic space, see Spaces, Definition 47.14.4.

Consider the prime ideals pn = (xn, xn+1, . . .) in S−1P . Note that τ(pn) = pn+1.
Hence each of these define point ξn ∈ U whose image in X is the same point x of
X. Moreover we have the specializations

. . . ξn  ξn−1  . . .

We conclude that U → X is an example of the promised type.

Lemma 82.42.1. There exists an étale morphism of algebraic spaces f : X → Y
and a nontrivial specialization of points x x′ in |X| with f(x) = f(x′) in |Y |.

Proof. See discussion above. �

82.43. A torsor which is not an fppf torsor

In Groupoids, Remark 38.9.5 we raise the question whether any G-torsor is a G-
torsor for the fppf topology. In this section we show that this is not always the
case.

Let k be a field. All schemes and stacks are over k in what follows. Let G→ Spec(k)
be the group scheme

G = (µ2,k)∞ = µ2,k ×k µ2,k ×k µ2,k ×k . . . = limn(µ2,k)n

where µ2,k is the group scheme of second roots of unity over Spec(k), see Groupoids,
Example 38.5.2. As an inverse limit of affine schemes we see that G is an affine
group scheme. In fact it is the spectrum of the ring k[t1, t2, t3, . . .]/(t

2
i − 1). The

multiplication map m : G×k G→ G is on the algebra level given by ti 7→ ti ⊗ ti.
We claim that any G-torsor over k is of the form

P = Spec(k[x1, x2, x3, . . .]/(x
2
i − ai))

for certain ai ∈ k∗ and with G-action G ×k P → P given by xi → ti ⊗ xi on the
algebra level. We omit the proof. Actually for the example we only need that P
is a G-torsor which is clear since over k′ = k(

√
a1,
√
a2, . . .) the scheme P becomes

isomorphic to G in a G-equivariant manner. Note that P is trivial if and only if
k′ = k since if P has a k-rational point then all of the ai are squares.

We claim that P is an fppf torsor if and only if the field extension k ⊂ k′ =
k(
√
a1,
√
a2, . . .) is finite. If k′ is finite over k, then {Spec(k′)→ Spec(k)} is an fppf

covering which trivializes P and we see that P is indeed an fppf torsor. Conversely,
suppose that P is a G-torsor for the fppf topology. This means that there exists an
fppf covering {Si → Spec(k)} such that each PSi is trivial. Pick an i such that Si
is not empty. Let s ∈ Si be a closed point. By Varieties, Lemma 32.12.1 the field
extension k ⊂ κ(s) is finite, and by construction Pκ(s) has a κ(s)-rational point.
Thus we see that k ⊂ k′ ⊂ κ(s) and k′ is finite over k.

To get an explicit example take k = Q and ai = i for example (or ai is the ith
prime if you like).

Lemma 82.43.1. Let S be a scheme. Let G be a group scheme over S. The stack
G-Principal classifying principal homogeneous G-spaces (see Examples of Stacks,
Subsection 72.13.5) and the stack G-Torsors classifying fppf G-torsors (see Exam-
ples of Stacks, Subsection 72.13.8) are not equivalent in general.
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Proof. The discussion above shows that the functor G-Torsors → G-Principal
isn’t essentially surjective in general. �

82.44. Stack with quasi-compact flat covering which is not algebraic

In this section we briefly describe an example due to Brian Conrad. You can find
the example online at this location. Our example is slightly different.

Let k be an algebraically closed field. All schemes and stacks are over k in what
follows. Let G → Spec(k) be an affine group scheme. In Examples of Stacks,
Proposition 72.14.3 we have seen that X = [Spec(k)/G] is a stack in groupoids
over (Sch/ Spec(k))fppf which can be described as follows. A 1-morphism T → X
corresponds by definition to an fppf GT -torsor P over T . The diagonal 1-morphism

∆ : X −→ X ×Spec(k) X

is representable and affine. The reason for this is that given any pair of GT -torsors
P1, P2 in the fppf topology over a scheme S/k the scheme Isom(P1, P2) is affine
over T . The trivial G-torsor over Spec(k) defines a 1-morphism

f : Spec(k) −→ X .

We claim that this is a surjective 1-morphism. The reason is simply that by defi-
nition for any 1-morphism T → X there exists a fppf covering {Ti → T} such that
PTi is isomorphic to the trivial GTi-torsor. Hence the compositions Ti → T → X
factor through f . Thus it is clear that the projection T ×X Spec(k)→ X is surjec-
tive (which is how we define the property that f is surjective, see Algebraic Stacks,
Definition 71.10.1). In a similar way you show that f is quasi-compact and flat
(details omitted). We also record here the observation that

Spec(k)×X Spec(k) ∼= G

as schemes over k.

Suppose there exists a surjective smooth morphism p : U → X where U is a scheme.
Consider the fibre product

W

��

// U

��
Spec(k) // X

Then we see that W is a nonempty smooth scheme over k which hence has a k-point.
This means that we can factor f through U . Hence we obtain

G ∼= Spec(k)×X Spec(k) ∼= (Spec(k)×k Spec(k))×(U×kU) (U ×X U)

and since the projections U ×X U → U were assumed smooth we conclude that
U ×X U → U ×k U is locally of finite type, see Morphisms, Lemma 28.16.8. It
follows that in this case G is locally of finite type over k. Altogether we have
proved the following lemma (which can be significantly generalized).

Lemma 82.44.1. Let k be a field. Let G be an affine group scheme over k. If the
stack [Spec(k)/G] has a smooth covering by a scheme, then G is of finite type over
k.

Proof. See discussion above. �
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To get an explicit example as in the title of this section, take for example G =
(µ2,k)∞ the group scheme of Section 82.43, which is not locally of finite type over
k. By the discussion above we see that X = [Spec(k)/G] has properties (1) and (2)
of Algebraic Stacks, Definition 71.12.1, but not property (3). Hence X is not an
algebraic stack. On the other hand, there does exists a scheme U an a surjective,
flat, quasi-compact morphism U → X , namely the morphism f : Spec(k) → X we
studied above.

82.45. Limit preserving on objects, not limit preserving

Let S be a nonempty scheme. Let G be an injective abelian sheaf on (Sch/S)fppf .
We obtain a stack in groupoids

G-Torsors −→ (Sch/S)fppf

over S, see Examples of Stacks, Lemma 72.13.2. This stack is limit preserving on
objects over (Sch/S)fppf (see Criteria for Representability, Section 74.5) because
every G-torsor is trivial. On the other hand, G-Torsors is in general not limit
preserving (see Artin’s Axioms, Definition 75.13.1) as G need not be limit preserving
as a sheaf. For example, take any nonzero injective sheaf I and set G =

∏
n∈Z I to

get an example.

Lemma 82.45.1. Let S be a nonempty scheme. There exists a stack in groupoids
p : X → (Sch/S)fppf such that p is limit preserving on objects, but X is not limit
preserving.

Proof. See discussion above. �

82.46. A non-algebraic classifying stack

Let S = Spec(Fp) and let µp denote the group scheme of pth roots of unity over S.
In Groupoids in Spaces, Section 60.19 we have introduced the quotient stack [S/µp]
and in Examples of Stacks, Section 72.14 we have shown [S/µp] is the classifying
stack for fppf µp-torsors: Given a scheme T over S the category MorS(T, [S/µp]) is
canonically equivalent to the category of fppf µp-torsors over T . Finally, in Criteria
for Representability, Theorem 74.17.2 we have seen that [S/µp] is an algebraic stack.

Now we can ask the question: “How about the category fibred in groupoids S
classifying étale µp-torsors?” (In other words S is a category over Sch/S whose
fibre category over a scheme T is the category of étale µp-torsors over T .)

The first objection is that this isn’t a stack for the fppf topology, because descent
for objects isn’t going to hold. For example the µp-torsor Spec(Fp(t)[x]/(xp − t))
over T = Spec(Fp(T )) is fppf locally trivial, but not étale locally trivial.

A fix for this first problem is to work with the étale topology and in this case
descent for objects does work. Indeed it is true that S is a stack in groupoids
over (Sch/S)étale. Moreover, it is also the case that the diagonal ∆ : S → S × S
is representable (by schemes). This is true because given two µp-torsors (whether
they be étale locally trivial or not) the sheaf of isomorphisms between them is
representable by a scheme.

Thus we can finally ask if there exists a scheme U and a smooth and surjective
1-morphism U → S. We will show in two ways that this is impossible: by a direct
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argument (which we advise the reader to skip) and by an argument using a general
result.

Direct argument (sketch): Note that the 1-morphism S → Spec(Fp) satisfies the
infinitesimal lifting criterion for formal smoothness. This is true because given a
first order infinitesimal thickening of schemes T → T ′ the kernel of µp(T

′)→ µp(T )
is isomorphic to the sections of the ideal sheaf of T in T ′, and hence H1

étale(T, µp) =
H1
étale(T

′, µp). Moreover, S is a limit preserving stack. Hence if U → S is smooth,
then U → Spec(Fp) is limit preserving and satisfies the infinitesimal lifting criterion
for formal smoothness. This implies that U is smooth over Fp. In particular U
is reduced, hence H1

étale(U, µp) = 0. Thus U → S factors as U → Spec(Fp) → S
and the first arrow is smooth. By descent of smoothness, we see that U → S being
smooth would imply Spec(Fp) → S is smooth. However, this is not the case as
Spec(Fp)×S Spec(Fp) is µp which is not smooth over Spec(Fp).

Structural argument: In Criteria for Representability, Section 74.19 we have seen
that we can think of algebraic stacks as those stacks in groupoids for the étale
topology with diagonal representable by algebraic spaces having a smooth covering.
Hence if a smooth surjective U → S exists then S is an algebraic stack, and in
particular satisfies descent in the fppf topology. But we’ve seen above that S does
not satisfies descent in the fppf topology.

Loosely speaking the arguments above show that the classifying stack in the étale
topology for étale locally trivial torsors for a group scheme G over a base B is
algebraic if and only if G is smooth over B. One of the advantages of working
with the fppf topology is that it suffices to assume that G → B is flat and locally
of finite presentation. In fact the quotient stack (for the fppf topology) [B/G] is
algebraic if and only if G→ B is flat and locally of finite presentation, see Criteria
for Representability, Lemma 74.18.3.

82.47. Sheaf with quasi-compact flat covering which is not algebraic

Consider the functor F = (P1)∞, i.e., for a scheme T the value F (T ) is the set of
f = (f1, f2, f3, . . .) where each fi : T → P1 is a morphism of schemes. Note that
P1 satisfies the sheaf property for fpqc coverings, see Descent, Lemma 34.9.3. A
product of sheaves is a sheaf, so F also satisfies the sheaf property for the fpqc
topology. The diagonal of F is representable: if f : T → F and g : S → F
are morphisms, then T ×F S is the scheme theoretic intersection of the closed
subschemes T ×fi,P1,gi S inside the scheme T × S. Consider the group scheme SL2

which comes with a surjective smooth affine morphism SL2 → P1. Next, consider
U = (SL2)∞ with its canonical (product) morphism U → F . Note that U is an
affine scheme. We claim the morphism U → F is flat, surjective, and universally
open. Namely, suppose f : T → F is a morphism. Then Z = T ×F U is the infinite
fibre product of the schemes Zi = T ×fi,P1 SL2 over T . Each of the morphisms
Zi → T is surjective smooth and affine which implies that

Z = Z1 ×T Z2 ×T Z3 ×T . . .
is a scheme flat and affine over Z. A simple limit argument shows that Z → T is
open as well.

On the other hand, we claim that F isn’t an algebraic space. Namely, if F where an
algebraic space it would be a quasi-compact and separated (by our description of
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fibre products over F ) algebraic space. Hence cohomology of quasi-coherent sheaves
would vanish above a certain cutoff (see Cohomology of Spaces, Proposition 51.6.2
and remarks preceding it). But clearly by taking the pullback of O(−2,−2, . . . ,−2)
under the projection

(P1)∞ −→ (P1)n

(which has a section) we can obtain a quasi-coherent sheaf whose cohomology is
nonzero in degree n. Altogether we obtain an answer to a question asked by Anton
Geraschenko on mathoverflow.

Lemma 82.47.1. There exists a functor F : Schopp → Sets which satisfies the sheaf
condition for the fpqc topology, has representable diagonal ∆ : F → F × F , and
such that there exists a surjective, flat, universally open, quasi-compact morphism
U → F where U is a scheme, but such that F is not an algebraic space.

Proof. See discussion above. �

82.48. Sheaves and specializations

In the following we fix a big étale site Schétale as constructed in Topologies, Defi-
nition 33.4.6. Moreover, a scheme will be an object of this site. Recall that if x, x′

are points of a scheme X we say x is a specialization of x′ or we write x′  x if
x ∈ {x′}. This is true in particular if x = x′.

Consider the functor F : Schétale → Ab defined by the following rules:

F (X) =
∏

x∈X

∏
x′∈X,x′ x,x′ 6=x

Z/2Z

Given a scheme X we denote |X| the underlying set of points. An element a ∈ F (X)
will be viewed as a map of sets |X|×|X| → Z/2Z, (x, x′) 7→ a(x, x′) which is zero if
x = x′ or if x is not a specialization of x′. Given a morphism of schemes f : X → Y
we define

F (f) : F (Y ) −→ F (X)

by the rule that for b ∈ F (Y ) we set

F (f)(b)(x, x′) =

{
0 if x is not a specialization of x′

b(f(x), f(x′)) else.

Note that this really does define an element of F (X). We claim that if f : X → Y
and g : Y → Z are composable morphisms then F (f) ◦ F (g) = F (g ◦ f). Namely,
let c ∈ F (Z) and let x′  x be a specialization of points in X, then

F (g ◦ f)(x, x′) = c(g(f(x)), g(f(x′))) = F (g)(F (f)(c))(x, x′)

because f(x′) f(x). (This also works if f(x) = f(x′).)

Let G be the sheafification of F in the étale topology.

I claim that if X is a scheme and x′  x is a specialization and x′ 6= x, then
G(X) 6= 0. Namely, let a ∈ F (X) be an element such that when we think of a as a
function |X| × |X| → Z/2Z it is nonzero at (x, x′). Let {fi : Ui → X} be an étale
covering of X. Then we can pick an i and a point ui ∈ Ui with fi(ui) = x. Since
generalizations lift along flat morphisms (see Morphisms, Lemma 28.26.8) we can
find a specialization u′i  ui with fi(u

′
i) = x′. By our construction above we see

that F (fi)(a) 6= 0. Hence a determines a nonzero element of G(X).

http://stacks.math.columbia.edu/tag/078F
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Note that if X = Spec(k) where k is a field (or more generally a ring all of whose
prime ideals are maximal), then F (X) = 0 and for every étale morphism U → X
we have F (U) = 0 because there are no specializations between distinct points in
fibres of an étale morphism. Hence G(X) = 0.

Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 36.2.1.
Then the category of schemes étale over X ′ is equivalent to the category of schemes
étale over X by the base change functor U ′ 7→ U = U ′×X′X, see Étale Cohomology,
Theorem 44.46.1. Since it is always the case that F (U) = F (U ′) in this situation
we see that also G(X) = G(X ′).

As a variant we can consider the presheaf Fn which associates to a scheme X
the collection of maps a : |X|n+1 → Z/2Z where a(x0, . . . , xn) is nonzero only if
xn  . . . x0 is a sequence of specializations and xn 6= xn−1 6= . . . 6= x0. Let Gn
be the sheaf associated to Fn. In exactly the same way as above one shows that
Gn is nonzero if dim(X) ≥ n and is zero if dim(X) < n.

Lemma 82.48.1. There exists a sheaf of abelian groups G on Schétale with the
following properties

(1) G(X) = 0 whenever dim(X) < n,
(2) G(X) is not zero if dim(X) ≥ n, and
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′).

Proof. See the discussion above. �

Remark 82.48.2. Here are some remarks:

(1) The presheaves F and Fn are separated presheaves.
(2) It turns out that F , Fn are not sheaves.
(3) One can show that G, Gn is actually a sheaf for the fppf topology.

We will prove these results if we need them.

82.49. Sheaves and constructible functions

In the following we fix a big étale site Schétale as constructed in Topologies, Defini-
tion 33.4.6. Moreover, a scheme will be an object of this site. In this section we say
that a constructible partition of a scheme X is a locally finite disjoint union decom-
position X =

∐
i∈I Xi such that each Xi ⊂ X is a locally constructible subset of X.

Locally finite means that for any quasi-compact open U ⊂ X there are only finitely
many i ∈ I such that Xi ∩ U is not empty. Note that if f : X → Y is a morphism
of schemes and Y =

∐
Yj is a constructible partition, then X =

∐
f−1(Yj) is a

constructible partition of X. Given a set S and a scheme X a constructible function
f : |X| → S is a map such that X =

∐
s∈S f

−1(s) is a constructible partition of
X. If G is an (abstract group) and a, b : |X| → G are constructible functions, then
ab : |X| → G, x 7→ a(x)b(x) is a constructible function too. The reason is that
given any two constructible partitions there is a third one refining both.

Let A be any abelian group. For any scheme X we define

F (X) =
{a : |X| → A | a is a constructible function}
{locally constant functions |X| → A}

We think of an element a of F (X) simply as a function well defined up to adding
a locally constant one. Given a morphism of schemes f : X → Y and an element
b ∈ F (Y ), then we define F (f)(b) = b ◦ f . Thus F is a presheaf on Schétale.

http://stacks.math.columbia.edu/tag/05LE
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Note that if {fi : Ui → X} is an fppf covering, and a ∈ F (X) is such that F (fi)(a) =
0 in F (Ui), then a ◦ fi is a locally constant function for each i. This means in turn
that a is a locally constant function as the morphisms fi are open. Hence a = 0 in
F (X). Thus we see that F is a separated presheaf (in the fppf topology hence a
fortiori in the étale topology).

Let G be the sheafification of F in the étale topology. Since F is separated, and
since F (X) 6= 0 for example when X is the spectrum of a discrete valuation ring,
we see that G is not zero.

Let X = Spec(k) where k is a field. Then any étale covering of X can be dominated
by a covering {Spec(k′) → Spec(k)} with k ⊂ k′ a finite separable extension of
fields. Since F (Spec(k′)) = 0 we see that G(X) = 0.

Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 36.2.1.
Then the category of schemes étale over X ′ is equivalent to the category of schemes
étale over X by the base change functor U ′ 7→ U = U ′×X′X, see Étale Cohomology,
Theorem 44.46.1. Since F (U) = F (U ′) in this situation we see that also G(X) =
G(X ′).

The sheaf G is limit preserving, see Limits of Spaces, Definition 52.3.1. Namely, let
R be a ring which is written as a directed colimit R = colimiRi of rings. Set X =
Spec(R) and Xi = Spec(Ri), so that X = limiXi. Then G(X) = colimiG(Xi). To
prove this one first proves that a constructible partition of Spec(R) comes from a
constructible partitions of some Spec(Ri). Hence the result for F . To get the result
for the sheafification, use that any étale ring map R→ R′ comes from an étale ring
map Ri → R′i for some i. Details omitted.

Lemma 82.49.1. There exists a sheaf of abelian groups G on Schétale with the
following properties

(1) G(Spec(k)) = 0 whenever k is a field,
(2) G is limit preserving,
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′), and
(4) G is not zero.

Proof. See discussion above. �

82.50. The lisse-étale site is not functorial

The lisse-étale site Xlisse,étale of X is the category of schemes smooth over X
endowed with (usual) étale coverings, see Cohomology of Stacks, Section 79.11.
Let f : X → Y be a morphism of schemes. There is a functor

u : Ylisse,étale −→ Xlisse,étale, V/Y 7−→ V ×Y X

which is continuous. Hence we obtain an adjoint pair of functors

us : Sh(Xlisse,étale) −→ Sh(Ylisse,étale), us : Sh(Ylisse,étale) −→ Sh(Xlisse,étale),

see Sites, Section 7.14. We claim that, in general, u does not define a morphism
of sites, see Sites, Definition 7.15.1. In other words, we claim that us is not left
exact in general. Note that representable presheaves are sheaves on lisse-étale sites.

http://stacks.math.columbia.edu/tag/05LH


82.51. DERIVED PUSHFORWARD OF QUASI-COHERENT MODULES 4343

Hence, by Sites, Lemma 7.14.5 we see that ushV = hV×YX . Now consider two
morphisms

V1

  

a //

b
// V2

~~
Y

of schemes V1, V2 smooth over Y . Now if us is left exact, then we would have

usEqualizer(ha, hb : hV1
→ hV2

) = Equalizer(ha×1, hb×1 : hV1×YX → hV2×YX)

We will take the morphisms a, b : V1 → V2 such that there exists no morphism from
a scheme smooth over Y into (a = b) ⊂ V1, i.e., such that the left hand side is
the empty sheaf, but such that after base change to X the equalizer is nonempty
and smooth over X. A silly example is to take X = Spec(Fp), Y = Spec(Z) and
V1 = V2 = A1

Z with morphisms a(x) = x and b(x) = x+ p. Note that the equalizer
of a and b is the fibre of A1

Z over (p).

Lemma 82.50.1. The lisse-étale site is not functorial, even for morphisms of
schemes.

Proof. See discussion above. �

82.51. Derived pushforward of quasi-coherent modules

Let k be a field of characteristic p > 0. Let S = Spec(k[x]). Let G = Z/pZ viewed
either as an abstract group or as a constant group scheme over S. Consider the
algebraic stack X = [S/G] where G acts trivially on S, see Examples of Stacks,
Remark 72.14.4 and Criteria for Representability, Lemma 74.18.3. Consider the
structure morphism

f : X −→ S

This morphism is quasi-compact and quasi-separated. Hence we get a functor

RfQCoh,∗ : D+
QCoh(OX ) −→ D+

QCoh(OS),

see Derived Categories of Stacks, Proposition 80.5.1. Let’s compute RfQCoh,∗OX .
Since DQCoh(OS) is equivalent to the derived category of k[x]-modules (see Derived
Categories of Schemes, Lemma 35.3.4) this is equivalent to computing RΓ(X ,OX ).
For this we can use the covering S → X and the spectral sequence

Hq(S ×X . . .×X S,O)⇒ Hp+q(X ,OX )

see Cohomology of Stacks, Proposition 79.10.4. Note that

S ×X . . .×X S = S ×Gp

which is affine. Thus the complex

k[x]→ Map(G, k[x])→ Map(G2, k[x])→ . . .

computes RΓ(X ,OX ). Here for ϕ ∈ Map(Gp−1, k[x]) its differential is the map
which sends (g1, . . . , gp) to

ϕ(g2, . . . , gp) +
∑p−1

i=1
(−1)iϕ(g1, . . . , gi + gi+1, . . . , gp) + (−1)pϕ(g1, . . . , gp−1).

This is just the complex computing the group cohomology of G acting trivially on
k[x] (insert future reference here). The cohomology of the cyclic group G on k[x] is

http://stacks.math.columbia.edu/tag/07BG
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exactly one copy of k[x] in each cohomological degree ≥ 0 (insert future reference
here). We conclude that

Rf∗OX =
⊕

n≥0
OS [−n]

Now, consider the complex

E =
⊕

m≥0
OX [m]

This is an object of DQCoh(OX ). We interrupt the discussion for a general result.

Lemma 82.51.1. Let X be an algebraic stack. Let K be an object of D(OX )
whose cohomology sheaves are locally quasi-coherent (Sheaves on Stacks, Definition
73.11.4) and satisfy the flat base change property (Cohomology of Stacks, Definition
79.7.1). Then there exists a distinguished triangle

K →
∏

n≥0
τ≥−nK →

∏
n≥0

τ≥−nK → K[1]

in D(OX ). In other words, K is the derived limit of its canonical truncations.

Proof. Recall that we work on the “big fppf site” Xfppf of X (by our conventions
for sheaves of OX -modules in the chapters Sheaves on Stacks and Cohomology on
Stacks). Let B be the set of objects x of Xfppf which lie over an affine scheme U .
Combining Sheaves on Stacks, Lemmas 73.22.2, 73.15.1, Descent, Lemma 34.8.4,
and Cohomology of Schemes, Lemma 29.2.2 we see that Hp(x,F) = 0 if F is
locally quasi-coherent and x ∈ B. Now the claim follows from Cohomology on
Sites, Lemma 21.22.4. �

Lemma 82.51.2. Let X be an algebraic stack. If Fn is a collection of locally quasi-
coherent sheaves with the flat base change property on X , then ⊕nFn[n]→

∏
n Fn[n]

is an isomorphism in D(OX ).

Proof. This is true because by Lemma 82.51.1 we see that the direct sum is iso-
morphic to the product. �

We continue our discussion. Since a quasi-coherent module is locally quasi-coherent
and satisfies the flat base change property (Sheaves on Stacks, Lemma 73.11.5) we
get

E =
∏

m≥0
OX [m]

Since cohomology commutes with limits we see that

Rf∗E =
∏

m≥0

(⊕
n≥0
OS [m− n]

)
Note that this complex is not an object of DQCoh(OS) because the cohomology
sheaf in degree 0 is an infinite product of copies of OS which is not even a locally
quasi-coherent OS-module.

Lemma 82.51.3. A quasi-compact and quasi-separated morphism f : X → Y of
algebraic stacks need not induce a functor Rf∗ : DQCoh(OX )→ DQCoh(OY).

Proof. See discussion above. �
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82.52. A big abelian category

The purpose of this section is to give an example of a “big” abelian category A
and objects M,N such that the collection of isomorphism classes of extensions
ExtA(M,N) is not a set. The example is due to Freyd, see [Fre64, page 131,
Exercise A].

We define A as follows. An object of A consists of a triple (M,α, f) where M is
an abelian group and α is an ordinal and f : α→ End(M) is a map. A morphism
(M,α, f)→ (M ′, α′, f ′) is given by a homomorphism of abelian groups ϕ : M →M ′

such that for any ordinal β we have

ϕ ◦ f(β) = f ′(β) ◦ ϕ
Here the rule is that we set f(β) = 0 if β is not in α and similarly we set f ′(β) equal
to zero if β is not an element of α′. We omit the verification that the category so
defined is abelian.

Consider the object Z = (Z, ∅, f), i.e., all the operators are zero. The observation is
that computed in A the group Ext1

A(Z,Z) is a proper class and not a set. Namely,
for each ordinal α we can find an extension (M,α+1, f) of Z by Z whose underlying
group is M = Z⊕ Z and where the value of f is always zero except for

f(α) =

(
0 1
0 0

)
.

This clearly produces a proper class of isomorphism classes of extensions. In partic-
ular, the derived category of A has proper classes for its collections of morphism, see
Derived Categories, Lemma 13.27.6. This means that some care has to be exercised
when defining Verdier quotients of triangulated categories.

Lemma 82.52.1. There exists a “big” abelian category A whose Ext-groups are
proper classes.

Proof. See discussion above. �

82.53. Weakly associated points and scheme theoretic density

Let k be a field. Let R = k[z, xi, yi]/(z
2, zxiyi) where i runs over the elements of

N. Note that R = R0 ⊕M0 where R0 = k[xi, yi] is a subring and M0 is an ideal of
square zero with M0

∼= R0/(xiyi) as R0-module. The prime p = (z, xi) is weakly
associated to R as an R-module (Algebra, Definition 10.65.1). Indeed, the element
z in Rp is nonzero but annihilated by pRp. On the other hand, consider the open
subscheme

U =
⋃
D(xi) ⊂ Spec(R) = S

We claim that U ⊂ S is scheme theoretically dense (Morphisms, Definition 28.7.1).
To prove this it suffices to show that OS → j∗OU is injective where j : U → S is the
inclusion morphism, see Morphisms, Lemma 28.7.5. Translated back into algebra,
we have to show that for all g ∈ R the map

Rg −→
∏

Rxig

is injective. Write g = g0 +m0 with g0 ∈ R0 and m0 ∈M0. Then Rg = Rg0
(details

omitted). Hence we may assume g ∈ R0. We may also assume g is not zero. Now
Rg = (R0)g⊕(M0)g. Since R0 is a domain, the map (R0)g →

∏
(R0)xig is injective.

http://stacks.math.columbia.edu/tag/07JT
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If g ∈ (xiyi) then (M0)g = 0 and there is nothing to prove. If g 6∈ (xiyi) then, since
(xiyi) is a radical ideal of R0, we have to show that M0 →

∏
(M0)xig is injective.

The kernel of R0 →M0 → (M0)xn is (xiyi, yn). Since (xiyi, yn) is a radical ideal, if
g 6∈ (xiyi, yn) then the kernel of R0 →M0 → (M0)xng is (xiyi, yn). As g 6∈ (xiyi, yn)
for all n � 0 we conclude that the kernel is contained in

⋂
n�0(xiyi, yn) = (xiyi)

as desired.

Second example due to Ofer Gabber. Let k be a field and let R, resp. R′ be the
ring of functions N → k, resp. the ring of eventually constant functions N → k.
Then Spec(R), resp. Spec(R′) is the Stone-Čech compactification2 βN, resp. the
one point compactification3 N∗ = N∪ {∞}. All points are weakly associated since
all primes are minimal in the rings R and R′.

Lemma 82.53.1. There exists a reduced scheme X and a schematically dense open
U ⊂ X such that some weakly associated point x ∈ X is not in U .

Proof. In the first example we have p 6∈ U by construction. In Gabber’s examples
the schemes Spec(R) or Spec(R′) are reduced. �

82.54. Example of non-additivity of traces

Let k be a field and let R = k[ε] be the ring of dual numbers over k. In other words,
R = k[x]/(x2) and ε is the congruence class of x in R. Consider the short exact
sequence of complexes

0

��

// R

ε

��

1
// R

��
R

1 // R // 0
Here the columns are the complexes, the first row is placed in degree 0, and the
second row in degree 1. Denote the first complex (i.e., the left column) by A•, the
second by B• and the third C•. We claim that the diagram

(82.54.0.1)

A•

1+ε

��

// B• //

1

��

C•

1

��
A• // B• // C•

commutes in K(R), i.e., is a diagram of complexes commuting up to homotopy.
Namely, the square on the right commutes and the one on the left is off by the
homotopy 1 : A1 → B0. On the other hand,

TrA•(1 + ε) + TrC•(1) 6= TrB•(1).

Lemma 82.54.1. There exists a ring R, a distringuished triangle (K,L,M,α, β, γ)
in the homotopy category K(R), and an endomorphism (a, b, c) of this distinguished
triangle, such that K, L, M are perfect complexes and TrK(a) + TrM (c) 6= TrL(b).

2Every element f ∈ R is of the form ue where u is a unit and e is an idempotent. Then
Algebra, Lemma 10.25.5 shows Spec(R) is Hausdorff. On the other hand, N with the discrete

topology can be viewed as a dense open subset. Given a set map N → X to a Hausdorff, quasi-
compact toplogical space X, we obtain a ring map C0(X; k)→ R where C0(X; k) is the k-algebra

of locally constant maps X → k. This gives Spec(R)→ Spec(C0(X; k)) = X proving the universal

property.
3Here one argues that there is really only one extra maximal ideal in R′.
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Proof. Consider the example above. The map γ : C• → A•[1] is given by multi-
plication by ε in degree 0, see Derived Categories, Definition 13.10.1. Hence it is
also true that

C•

��

γ
// A•[1]

��
C•

γ // A•[1]

commutes in K(R) as ε(1+ε) = ε. Thus we indeed have a morphism of distinguished
triangles. �

82.55. Being projective is not local on the base

In the chapter on descent we have seen that many properties of morphisms are
local on the base, even in the fpqc topology. See Descent, Sections 34.18, 34.19,
and 34.20. This is not true for projectivity of morphisms.

Lemma 82.55.1. The properties

P(f) =“f is projective”, and
P(f) =“f is quasi-projective”

are not Zariski local on the base. A fortiori, they are not fpqc local on the base.

Proof. Following Hironaka [Har77, Example B.3.4.1], we define a proper mor-
phism of smooth complex 3-folds f : VY → Y which is Zariski-locally projective, but
not projective. Since f is proper and not projective, it is also not quasi-projective.

Let Y be projective 3-space over the complex numbers C. Let C and D be smooth
conics in Y such that the closed subscheme C ∩D is reduced and consists of two
complex points P and Q. (For example, let C = {[x, y, z, w] : xy = z2, w = 0},
D = {[x, y, z, w] : xy = w2, z = 0}, P = [1, 0, 0, 0], and Q = [0, 1, 0, 0].) On Y −Q,
first blow up the curve C, and then blow up the strict transform of the curve D
(Divisors, Definition 30.19.1). On Y −P , first blow up the curve D, and then blow
up the strict transform of the curve C. Over Y − P −Q, the two varieties we have
constructed are canonically isomorphic, and so we can glue them over Y − P −Q.
The result is a smooth proper 3-fold VY over C. The morphism f : VY → Y is
proper and Zariski-locally projective (since it is a blow-up over Y − P and over
Y −Q), by Divisors, Lemma 30.18.11. We will show that VY is not projective over
C. That will imply that f is not projective.

To do this, let L be the inverse image in VY of a complex point of C − P − Q,
and M the inverse image of a complex point of D − P − Q. Then L and M are
isomorphic to the projective line P1

C. Next, let E be the inverse image in VY of
C ∪D ⊂ Y in VY ; thus E → C ∪D is a proper morphism, with fibers isomorphic to
P1 over (C ∪D)− {P,Q}. The inverse image of P in E is a union of two lines L0

and M0, and we have rational equivalences of cycles L ∼ L0 +M0 and M ∼M0 on
E (using that C and D are isomorphic to P1). Note the asymmetry resulting from
the order in which we blew up the two curves. Near Q, the opposite happens. So
the inverse image of Q is the union of two lines L′0 and M ′0, and we have rational
equivalences L ∼ L′0 and M ∼ L′0 + M ′0 on E. Combining these equivalences, we
find that L0 + M ′0 ∼ 0 on E and hence on VY . If VY were projective over C, it
would have an ample line bundle H, which would have degree > 0 on all curves in
VY . In particular H would have positive degree on L0 +M ′0, contradicting that the

http://stacks.math.columbia.edu/tag/08J1


4348 82. EXAMPLES

degree of a line bundle is well-defined on 1-cycles modulo rational equivalence on a
proper scheme over a field (Chow Homology, Lemma 41.20.2 and Lemma 41.29.2).
So VY is not projective over C. �

In different terminology, Hironaka’s 3-fold VY is a small resolution of the blow-up
Y ′ of Y along the reduced subscheme C ∪ D; here Y ′ has two node singularities.
If we define Z by blowing up Y along C and then along the strict transform of D,
then Z is a smooth projective 3-fold, and the non-projective 3-fold VY differs from
Z by a “flop” over Y − P .

82.56. Descent data for schemes need not be effective, even for a
projective morphism

In the chapter on descent we have seen that descent data for schemes relative
to an fpqc morphism are effective for several classes of morphisms. In particular,
affine morphisms and more generally quasi-affine morphisms satisfy descent for fpqc
coverings (Descent, Lemma 34.34.1). This is not true for projective morphisms.

Lemma 82.56.1. There is an etale covering X → S of schemes and a descent
datum (V/X,ϕ) relative to X → S such that V → X is projective, but the descent
datum is not effective in the category of schemes.

Proof. We imitate Hironaka’s example of a smooth separated complex algebraic
space of dimension 3 which is not a scheme [Har77, Example B.3.4.2].

Consider the action of the group G = Z/2 = {1, g} on projective 3-space P3 over
the complex numbers by

g[x, y, z, w] = [y, x, w, z].

The action is free outside the two disjoint lines L1 = {[x, x, z, z]} and L2 =
{[x,−x, z,−z]} in P3. Let Y = P3− (L1 ∪L2). There is a smooth quasi-projective
scheme S = Y/G over C such that Y → S is a G-torsor (Groupoids, Definition
38.9.3). Explicitly, we can define S as the image of the open subset Y in P3 under
the morphism

P3 → Proj C[x, y, z, w]G

= Proj C[u0, u1, v0, v1, v2]/(v0v1 = v2
2),

where u0 = x+y, u1 = z+w, v0 = (x−y)2, v1 = (z−w)2, and v2 = (x−y)(z−w),
and the ring is graded with u0, u1 in degree 1 and v0, v1, v2 in degree 2.

Let C = {[x, y, z, w] : xy = z2, w = 0} and D = {[x, y, z, w] : xy = w2, z = 0}.
These are smooth conic curves in P3, contained in the G-invariant open subset
Y , with g(C) = D. Also, C ∩ D consists of the two points P := [1, 0, 0, 0] and
Q := [0, 1, 0, 0], and these two points are switched by the action of G.

Let VY → Y be the scheme which over Y − P is defined by blowing up D and
then the strict transform of C, and over Y − Q is defined by blowing up C and
then the strict transform of D. (This is the same construction as in the proof of
Lemma 82.55.1, except that Y here denotes an open subset of P3 rather than all
of P3.) Then the action of G on Y lifts to an action of G on VY , which switches
the inverse images of Y − P and Y − Q. This action of G on VY gives a descent
datum (VY /Y, ϕY ) on VY relative to the G-torsor Y → S. The morphism VY → Y
is proper but not projective, as shown in the proof of Lemma 82.55.1.

http://stacks.math.columbia.edu/tag/08KF
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Let X be the disjoint union of the open subsets Y − P and Y − Q; then we have
surjective etale morphisms X → Y → S. Let V be the pullback of VY → Y to X;
then the morphism V → X is projective, since VY → Y is a blow-up over each of
the open subsets Y −P and Y −Q. Moreover, the descent datum (VY /Y, ϕY ) pulls
back to a descent datum (V/X,ϕ) relative to the etale covering X → S.

Suppose that this descent datum is effective in the category of schemes. That is,
there is a scheme U → S which pulls back to the morphism V → X together with
its descent datum. Then U would be the quotient of VY by its G-action.

V //

��

X

��
VY //

��

Y

��
U // S

Let E be the inverse image of C ∪ D ⊂ Y in VY ; thus E → C ∪ D is a proper
morphism, with fibers isomorphic to P1 over (C ∪D)− {P,Q}. The inverse image
of P in E is a union of two lines L0 and M0. It follows that the inverse image of
Q = g(P ) in E is the union of two lines L′0 = g(M0) and M ′0 = g(L0). As shown in
the proof of Lemma 82.55.1, we have a rational equivalence L0 +M ′0 = L0 +g(L0) ∼
0 on E.

By descent of closed subschemes, there is a curve L1 ⊂ U (isomorphic to P1) whose
inverse image in VY is L0 ∪ g(L0). (Use Descent, Lemma 34.33.1, noting that a
closed immersion is an affine morphism.) Let R be a complex point of L1. Since
we assumed that U is a scheme, we can choose a function f in the local ring OU,R
that vanishes at R but not on the whole curve L1. Let Dloc be an irreducible
component of the closed subset {f = 0} in Spec OU,R; then Dloc has codimension
1. The closure of Dloc in U is an irreducible divisor DU in U which contains the
point R but not the whole curve L1. The inverse image of DU in VY is an effective
divisor D which intersects L0∪g(L0) but does not contain either curve L0 or g(L0).

Since the complex 3-fold VY is smooth, O(D) is a line bundle on VY . (We use here
that a regular local ring is factorial, or in other words is a UFD.) The restriction
of O(D) to the proper surface E ⊂ VY is a line bundle which has positive degree
on the 1-cycle L0 + g(L0), by our information on D. Since L0 + g(L0) ∼ 0 on E,
this contradicts that the degree of a line bundle is well-defined on 1-cycles modulo
rational equivalence on a proper scheme over a field (Chow Homology, Lemma
41.20.2 and Lemma 41.29.2). Therefore the descent datum (V/X,ϕ) is in fact not
effective; that is, U does not exist as a scheme. �

In this example, the descent datum is effective in the category of algebraic spaces.
More precisely, U exists as a smooth separated algebraic space of dimension 3 over
C, for example by Algebraic Spaces, Lemma 47.14.3. Hironaka’s 3-fold U is a
small resolution of the blow-up S′ of the smooth quasi-projective 3-fold S along the
irreducible nodal curve (C ∪D)/G; the 3-fold S′ has a node singularity. The other
small resolution of S′ (differing from U by a “flop”) is again an algebraic space
which is not a scheme.
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82.57. Derived base change

Let R → A be a ring map. In More on Algebra, Section 15.46 we construct a
derived base change functor −⊗L

RA : D(R)→ D(A). Next, let R→ B be a second
ring map. Picture

B // B ⊗R A

R

OO

// A

OO

Given a B-moduleM the tensor productM⊗RA is a B⊗RA-module. In this section
we show there does not exist a “derived base change functor” D(B)→ D(B⊗RA).

Let k be a field. Set R = k[x, y]. Set A = R/(xy) and B = R/(x2). The object
B ⊗L

R A in D(A) is represented by

x2 : A −→ A

and we have H0(B⊗L
R A) = B⊗R A. We claim that there does not exist an object

E of D(B ⊗R A) mapping to B ⊗L
R A in D(A). Namely, for such an E the module

H0(E) would be free, hence E would decompose as H0(E)[0]⊕H−1(E)[1]. But it
is easy to see that B ⊗L

R A is not isomorphic to the sum of its cohomology groups
in D(A).

Lemma 82.57.1. Let R → A and R → B be ring maps. In general there does
not exist a functor T : D(B) → D(B ⊗R A) of triangulated categories such that a
B-module M gives an object T (M) of D(B ⊗R A) which maps to M ⊗L

R A under
the map D(B ⊗R A)→ D(A).

Proof. See discussion above. �

82.58. An interesting compact object

Let R be a ring. Let (A,d) be a differential graded R-algebra. If A = R, then
we know that every compact object of D(A,d) = D(R) is represented by a finite
complex of finite projective modules. In other words, compact objects are per-
fect, see More on Algebra, Proposition 15.57.2. The analogue in the language of
differential graded modules would be the question: “Is every compact object of
D(A,d) represented by a differential graded A-module P which is finite and graded
projective?”

For general differential graded algebras, this is not true. Namely, let k be a field of
characteristic 2 (so we don’t have to worry about signs). Let A = k[x, y]/(y2) with

(1) x of degree 0
(2) y of degree −1,
(3) d(x) = 0, and
(4) d(y) = x2 + x.

Then x : A→ A is a projector in K(A,d). Hence we see that

A = Ker(x)⊕ Im(1− x)

in K(A,d), see Differential Graded Algebra, Lemma 22.5.4 and Derived Categories,
Lemma 13.4.12. It is clear that A is a compact object of D(A,d) (see Differential
Graded Algebra, Lemma 22.26.2 for a more general statement). Then Ker(x) is a
compact object of D(A,d) as follows from Derived Categories, Lemma 13.34.2.
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Next, suppose that M is a differential graded (right) A-module representing Ker(x)
and suppose that M is finite and projective as a graded A-module. Because every
finite graded projective module over k[x, y]/(y2) is graded free, we see that M is
finite free as a graded k[x, y]/(y2)-module (i.e., when we forget the differential). We
set N = M/M(x2 + x). Consider the exact sequence

0→M
x2+x−−−→M → N → 0

Since x2 +x is of degree 0, in the center of A, and d(x2 +x) = 0 we see that this is a
short exact sequence of differential graded A-modules. Moreover, as d(y) = x2 + x
we see that the differential on N is linear. The maps

H−1(N)→ H0(M) and H0(M)→ H0(N)

are isomorphisms as H∗(M) = H0(M) = k since M ∼= Ker(x) in D(A,d). A
computation of the boundary map shows that H∗(N) = k[x, y]/(x, y2) as a graded
module; we omit the details. Since N is a free k[x, y]/(y2, x2 + x)-module we have
a resolution

. . .→ N [2]
y−→ N [1]

y−→ N → N/Ny → 0

compatible with differentials. Since N is bounded and since H0(N) = k[x, y]/(x, y2)
it follows from Homology, Lemma 12.22.6 that H0(N/Ny) = k[x]/(x). But as
N/Ny is a finite complex of free k[x]/(x2 + x) = k × k-modules, we see that its
cohomology has to have even dimension, a contradiction.

Lemma 82.58.1. There exists a differential graded algebra (A, d) and a compact
object E of D(A, d) such that E cannot be represented by a finite and graded pro-
jective differential graded A-module.

Proof. See discussion above. �

82.59. Two differential graded categories

In this section we construct two differential graded categories satisfying axioms (A),
(B), and (C) as in Differential Graded Algebra, Situation 22.20.2 whose objects do
not come with a Z-grading.

Example I. Let X be a topological space. Denote Z the constant sheaf with value
Z. Let A be an Z-torsor. In this setting we say a sheaf of abelian groups F is
A-graded if given a local section a ∈ A(U) there is a projector pa : F|U → F|U such
that whenever we have a local isomorphism Z|U → A|U then F|U =

⊕
n∈Z pn(F).

Another way to say this is that locally on X the abelian sheaf F has a Z-grading,
but on overlaps the different choices of gradings differ by a shift in degree given by
the transition functions for the torsor A. We say that a pair (F ,d) is an A-graded
complex of abelian sheaves, if F is an A-graded abelian sheaf and d : F → F is a
differential, i.e., d2 = 0 such that pa+1 ◦ d = d ◦ pa for every local section a of A.
In other words, d(pa(F)) is contained in pa+1(F).

Next, consider the category A with

(1) objects are A-graded complexes of abelian sheaves, and
(2) for objects (F ,d), (G,d) we set

HomA((F ,d), (G,d)) =
⊕

Homn(F ,G)

http://stacks.math.columbia.edu/tag/09R5
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where Homn(F ,G) is the group of maps of abelian sheaves f such that
f(pa(F)) ⊂ pa+n(G) for all local sections a of A. As differential we take
d(f) = d ◦ f − (−1)nf ◦ d, see Differential Graded Algebra, Example
22.19.6.

We omit the verification that this is indeed a differential graded category satisfying
(A), (B), and (C). All the properties may be verified locall on X where one just
recovers the differential graded category of complexes of abelian sheaves. Thus we
obtain a triangulated category K(A).

Twisted derived category of X. Observe that given an object (F ,d) of A, there is
a well defined A-graded cohomology sheaf H(F ,d). Hence it is clear what is meant
by a quasi-isomorphism in K(A). We can invert quasi-isomorphisms to obtain the
derived category D(A) of complexes of A-graded sheaves. If A is the trivial torsor,
then D(A) is equal to D(X), but for nonzero torsors, one obtains a kind of twisted
derived category of X.

Example II. Let C be a smooth curve over a perfect field k of characteristic 2.
Then ΩC/k comes endowed with a canonical square root. Namely, we can write

ΩC/k = L⊗2 such that for every local function f on C the section d(f) is equal to

s⊗2 for some local section s of L. The “reason” is that

d(a0 + a1t+ . . .+ adt
d) = (

∑
i odd

a
1/2
i t(i−1)/2)2dt

(insert future reference here). This in particular determines a canonical connection

∇can : ΩC/k −→ ΩC/k ⊗OC ΩC/k

whose 2-curvature is zero (namely, the unique connection such that the squares
have derivative equal to zero). Observe that the category of vector bundles with
connections is a tensor category, hence we also obtain canonical connections ∇can
on the invertible sheaves Ω⊗nC/k for all n ∈ Z.

Let A be the category with

(1) objects are pairs (F ,∇) consisting of a finite locally free sheaf F endowed
with a connection

∇ : F −→ F ⊗OC ΩC/k

whose 2-curvature is zero, and
(2) morphisms between (F ,∇F ) and (G,∇G) are given by

HomA((F ,∇F ), (G,∇G)) =
⊕

HomOC (F ,G ⊗OC Ω⊗nC/k)

For an element f : F → G ⊗ Ω⊗nC/k of degree n we set

d(f) = ∇G⊗Ω⊗n
C/k
◦ f + f ◦ ∇F

with suitable identifications.

We omit the verification that this forms a differential graded category with prop-
erties (A), (B), (C). Thus we obtain a triangulated homotopy category K(A).

If C = P1
k, then K(A) is the zero category. However, if C is a smooth proper curve

of genus > 1, then K(A) is not zero. Namely, suppose that N is an invertible sheaf
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of degree 0 ≤ d < g− 1 with a nonzero section σ. Then set (F ,∇F ) = (OC ,d) and
(G,∇G) = (N⊗2,∇can). We see that

Homn
A((F ,∇F ), (G,∇G)) =

 0 if n < 0
Γ(C,N⊗2) if n = 0

Γ(C,N⊗2 ⊗ ΩC/k) if n = 1

The first 0 because the degree of N⊗2⊗Ω⊗−1
C/k is negative by the condition d < g−1.

Now, the section σ⊗2 has derivative equal zero, hence the homomorphism group

HomK(A)((F ,∇F ), (G,∇G))

is nonzero.

82.60. An example of a non-algebraic Hom-stack

Let Y,Z be algebraic stacks over a scheme S. The Hom-stack MorS(Y,Z) is the
stack in groupoids over S whose category of sections over a scheme T is given by
the category

MorT (Y ×S T,Z ×S T )

whose objects are 1-morphisms and whose morphisms are 2-morphisms. We omit
the proof this this is indeed a stack in groupoids over (Sch/S)fppf (insert future
reference here). Of course, in general the Hom-stack will not be algebraic. In this
section we give an example where it is not true and where Y is representable by a
proper flat scheme over S and Z is smooth and proper over S.

Let k be an algebraically closed field which is not the algebraic closure of a finite
field. Let S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)) ⊂ S. Let f : X → S be a map
satisfying the following

(1) f is projective and flat, and its fibres are geometrically connected curves,
(2) the fibre X0 = X ×S S0 is a nodal curve with smooth irreducible compo-

nents whose dual graph has a loop consisting of rational curves,
(3) X is a regular scheme.

To make such a surface X we can take for example

X : T0T1T2 − t(T 3
0 + T 3

1 + T 3
2 ) = 0

in P2
k[[t]]. Let A0 be a non-zero abelian variety over k for example an elliptic curve.

Let A = A0×Spec(k) S be the constant abelian scheme over S associated to A0. We
will show that the stack X = MorS(X, [S/A])) is not algebraic.

Recall that [S/A] is on the one hand the quotient stack of A acting trivially on S
and on the other hand equal to the stack classifying fppf A-torsors, see Examples
of Stacks, Proposition 72.14.3. Observe that [S/A] = [Spec(k)/A0]×Spec(k) S. This
allows us to describe the fibre category over a scheme T as follows

XT = MorS(X, [S/A])T

= MorT (X ×S T, [S/A]×S T )

= MorS(X ×S T, [S/A])

= MorSpec(k)(X ×S T, [Spec(k)/A0])

for any S-scheme T . In other words, the groupoid XT is the groupoid of fppf A0-
torsors on X ×S T . Before we discuss why X is not an algebraic stack, we need a
few lemmas.
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Lemma 82.60.1. Let W be a two dimensional regular integral Noetherian scheme
with function field K. Let G→W be an abelian scheme. Then then map H1

fppf (W,G)→
H1
fppf (Spec(K), G) is injective.

Sketch of proof. Let P → W be an fppf G-torsor which is trivial in the generic
point. Then we have a morphism Spec(K)→ P over W and we can take its scheme
theoretic image Z ⊂ P . Since P → W is proper (as a torsor for a proper group
algebraic space over W ) we see that Z → W is a proper birational morphism. By
Spaces over Fields, Lemma 54.4.4 the morphism Z →W is finite away from finitely
many closed points of W . By (insert future reference on resolving indeterminacies
of morphisms by blowing quadratic transformations for surfaces) the irreducible
components of the geometric fibres of Z → W are rational curves. By More on
Groupoids in Spaces, Lemma 61.8.3 there are no nonconstant morphisms from
rational curves to group schemes or torsors over such. Hence Z → W is finite,
whence Z is a scheme and Z → W is an isomorphism by Morphisms, Lemma
28.48.16. In other words, the torsor P is trivial. �

Lemma 82.60.2. Let G be a smooth commutative group algebraic space over a
field K. Then H1

fppf (Spec(K), G) is torsion.

Proof. Every G-torsor P over Spec(K) is smooth over K as a form of G. Hence
P has a point over a finite separable extension K ⊂ L. Say [L : K] = n. Let [n](P )
denote the G-torsor whose class is n times the class of P in H1

fppf (Spec(K), G).
There is a canonical morphism

P ×Spec(K) . . .×Spec(K) P → [n](P )

of algebraic spaces over K. This morphism is symmetric as G is abelian. Hence it
factors through the quotient

(P ×Spec(K) . . .×Spec(K) P )/Sn

On the other hand, the morphism Spec(L)→ P defines a morphism

(Spec(L)×Spec(K) . . .×Spec(K) Spec(L))/Sn −→ (P ×Spec(K) . . .×Spec(K) P )/Sn

and the reader can verify that the scheme on the left has a K-rational point. Thus
we see that [n](P ) is the trivial torsor. �

To prove X = MorS(X, [S/A]) is not an algebraic stack, by Artin’s Axioms, Lemma
75.9.4, it is enough to show the following.

Lemma 82.60.3. The canonical map X (S)→ limX (Sn) is not essentially surjec-
tive.

Sketch of proof. Unwinding definitions, it is enough to check that H1(X,A0)→
limH1(Xn, A0) is not surjective. As X is regular and projective, by Lemmas 82.60.2
and 82.60.1 each A0-torsor over X is torsion. In particular, the group H1(X,A0)
is torsion. It is thus enough to show: (a) the group H1(X0, A0) is non-torsion, and
(b) the maps H1(Xn+1, A0)→ H1(Xn, A0) are surjective for all n.

Ad (a). One constructs a nontorsion A0-torsor P0 on the nodal curve X0 by glueing
trivial A0-torsors on each component of X0 using non-torsion points on A0 as the
isomorphisms over the nodes. More precisely, let x ∈ X0 be a node which occurs
in a loop consisting of rational curves. Let X ′0 → X0 be the normalization of
X0 in X0 \ {x}. Let x′, x′′ ∈ X ′0 be the two points mapping to x0. Then we take

http://stacks.math.columbia.edu/tag/0AF9
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A0×Spec(k)X
′
0 and we identify A0×x′ with A0×{x′′} using translation A0 → A0 by

a nontorsion point a0 ∈ A0(k) (there is such a nontorsion point as k is algebraically
closed and not the algebraic closure of a finite field – this is actually not trivial to
prove). One can show that the glueing is an algebraic space (in fact one can show
it is a scheme) and that it is an nontorsion A0-torsor over X0. The reason that it is
nontorsion is that if [n](P0) has a section, then that section produces a morphism
s : X ′0 → A0 such that [n](a0) = s(x′)− s(x′′) in the group law on A0(k). However,
since the irreducible components of the loop are rational to section s is constant on
them ( More on Groupoids in Spaces, Lemma 61.8.3). Hence s(x′) = s(x′′) and we
obtain a contradiction.

Ad (b). Deformation theory shows that the obstruction to deforming an A0-torsor
Pn → Xn to an A0-torsor Pn+1 → Xn+1 lies in H2(X0, ω) for a suitable vector
bundle ω on X0. The latter vanishes as X0 is a curve, proving the claim. �

Proposition 82.60.4. The stack X = MorS(X, [S/A])) is not algebraic.

Proof. See discussion above. �

Remark 82.60.5. Proposition 82.60.4 contradicts [Aok06b, Theorem 1.1]. The
problem is the non-effectivity of formal objects for MorS(X, [S/A]). The same
problem is mentioned in the Erratum [Aok06a] to [Aok06b]. Unfortunately, the
Erratum goes on the assert that MorS(Y,Z) is algebraic if Z is separated, which
also contradicts Proposition 82.60.4 as [S/A] is separated.

82.61. A counter example to Grothendieck’s existence theorem

Let k be a field and let A = k[[t]]. Let X be the glueing of U = Spec(A[x]) and
V = Spec(A[y]) by the identification

U \ {0U} −→ V \ {0V }

sending x to y where 0U ∈ U and OV ∈ V are the points corresponding to the
maximal ideals (x, t) and (y, t). SetAn = A/(tn) and setXn = X×Spec(A)Spec(An).
Let Fn be the coherent sheaf on Xn corresponding to the An[x]-module An[x]/(x) ∼=
An and the An[y] module 0 with obviuous glueing. Let I ⊂ OX be the sheaf of ideals
generate by t. Then (Fn) is an object of the category Cohsupport proper over A(X, I)
defined in Cohomology of Schemes, Section 29.21. On the other hand, this object
is not in the image of the functor Cohomology of Schemes, Equation 29.22.6.1.
Namely, if it where there would be a finite A[x]-module M , a finite A[y]-module N
and an isomorphism M [1/t] ∼= N [1/t] such that M/tnM ∼= An[x]/(x) and N/tnN =
0 for all n. It is easy to see that this is impossible.

Lemma 82.61.1. Counter examples to algebraization of coherent sheaves.

(1) Grothendieck’s existence theorem as stated in Cohomology of Schemes,
Theorem 29.22.7 is false if we drop the assumption that X → Spec(A) is
separated.

(2) The stack of coherent sheaves CohX/B of Quot, Theorems 76.6.5 and
76.5.12 is in general not algebraic if we drop the assumption that X → S
is separated

(3) The functor QuotF/X/B of Quot, Proposition 76.9.3 is not an algebraic
space in general if we drop the assumption that X → B is separated.
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Proof. Part (1) we saw above. This shows that CohX/A fails axiom [4] of Artin’s
Axioms, Section 75.12. Hence it cannot be an algebraic stack by Artin’s Axioms,
Lemma 75.9.4. In this way we see that (2) is true. To see (3), note that there are
compatible surjections OXn → Fn for all n. Thus we see that QuotOX/X/A fails

axiom [4] and we see that (3) is true as before. �

82.62. Affine formal algebraic spaces

Let K be a field and let (Vi)i∈I be a directed inverse system of nonzero vector
spaces over K with surjective transition maps and with limVi = 0, see Section
82.3. Let Ri = K ⊕ Vi as K-algebra where Vi is an ideal of square zero. Then Ri
is an inverse system of K-algebras with surjective transition maps with nilpotent
kernels and with limRi = K. The affine formal algebraic space X = colim Spec(Ri)
is an example of an affine formal algebraic space which is not McQuillan.

Let 0→Wi → Vi → K → 0 be a system of exact sequences as in Section 82.3. Let
Ai = K[Vi]/(ww

′;w,w′ ∈ Wi). Then there is a compatible system of surjections
Ai → K[t] with nilpotent kernels and the transition maps Ai → Aj are surjective
with nilpotent kernels as well. Recall that Vi is free over K with basis given by
s ∈ Si. Then, if the characteristic of K is zero, the degree d part of Ai is free
over K with basis given by sd, s ∈ Si each of which map to td. Hence the inverse
system of the degree d parts of the Ai is isomorphic to the inverse system of the
vector spaces Vi. As limVi = 0 we conclude that limAi = K, at least when the
characteris of K is zero. This gives an example of a affine formal algebraic space
whose “regular functions” do not separate points.

82.63. Flat maps are not directed limits of finitely presented flat maps

The goal of this section is to give an example of a flat ring map which is not a
filtered colimit of flat and finitely presented ring maps. In [Gab96] it is shown
that if A is a nonexcellent local ring of dimension 1 and residue characteristic zero,
then the (flat) ring map A→ A∧ to its completion is not a filtered colimit of finite
type flat ring maps. The example in this section will have a source which is an
excellent ring. We encourage the reader to submit other examples; please email
stacks.project@gmail.com if you have one.

For the construction, fix a prime p, and let A = Fp[x1, . . . , xn]. Choose an absolute
integral closure A+ of A, i.e., A+ is the integral closure of A in an algebraic closure
of its fraction field. In [HH92, §6.7] it is shown that A→ A+ is flat.

We claim that the A-algebra A+ is not a filtered colimit of finitely presented flat
A-algebras if n ≥ 3.

We sketch the argument in the case n = 3, and we leave the generalization to higher
n to the reader. It is enough to prove the analogous statement for the map R→ R+,
where R is the strict henselization of A at the origin and R+ is its absolute integral
closure. Observe that R is a henselian regular local ring whose residue field k is an
algebraic closure of Fp.

Choose an ordinary abelian surface X over k and a very ample line bundle L on
X. The section ring Γ∗(X,L) =

⊕
nH

0(X,Ln) is the coordinate ring of the affine
cone over X with respect to L. It is a normal ring for L sufficiently positive.
Let S denote the henselization of Γ∗(X,L) at vertex of the cone. Then S is a

mailto:stacks.project@gmail.com
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henselian noetherian normal domain of dimension 3. We obtain a finite injective
map R → S as the henselization of a Noether normalization for the finite type
k-algebra Γ∗(X,L). As R+ is an absolute integral closure of R, we can also fix an
embedding S → R+. Thus R+ is also the absolute integral closure of S. To show
R+ is not a filtered colimit of flat R-algebras, it suffices to show:

(1) If there exists a factorization S → P → R+ with P flat and finite type
over R, then there exists a factorization S → T → R+ with T finite flat
over R.

(2) For any factorization S → T → R+ with S → T finite, the ring T is not
R-flat.

Indeed, since S is finitely presented over R, if one could write R+ = colimi Pi as a
filtered colimit of finitely presented flat R-algebras Pi, then S → R+ would factor as
S → Pi → R+ for i� 0, which contradicts the above pair of assertions. Assertion
(1) follows from the fact that R is henselian and a slicing argument, see More on
Morphisms, Lemma 36.18.5. Part (2) was proven in [Bha12]; for the convenience
of the reader, we recall the argument.

Let U ⊂ Spec(S) be the punctured spectrum, so there are natural maps X ←
U ⊂ Spec(S). The first map gives an identification H1(U,OU ) ' H1(X,OX). By
passing to the Witt vectors of the perfection and using the Artin-Schreier sequence4,
this gives an identification H1

étale(U,Zp) ' H1
étale(X,Zp). In particular, this group

is a finite free Zp-module of rank 2 (since X is ordinary). To get a contradiction
assume there exists an R-flat T as in (2) above. Let V ⊂ Spec(T ) denote the
preimage of U , and write f : V → U for the induced finite surjective map. Since U
is normal, there is a trace map f∗Zp → Zp on Uétale whose composition with the
pullback Zp → f∗Zp is multiplication by d = deg(f). Passing to cohomology, and
using that H1

étale(U,Zp) is nontorsion, then shows that H1
étale(V,Zp) is nonzero.

Since H1
étale(V,Zp) ' limH1

étale(V,Z/p
n) as there is no R1 lim interference, the

group H1(Vétale,Z/p) must be non-zero. Since T is R-flat we have Γ(V,OV ) = T
which is strictly henselian and the Artin-Schreier sequence shows H1(V,OV ) 6= 0.
This is equivalent to H2

m(T ) 6= 0, where m ⊂ R is the maximal ideal. Thus, we
obtain a contradiction since T is finite flat (i.e., finite free) as an R-module and
H2

m(R) = 0. This contradiction proves (2).

Lemma 82.63.1. There exists a commutative ring A and a flat A-algebra B which
cannot be written as a filtered colimit of finitely presented flat A-algebras. In fact,
we may either choose A to be a finite type Fp-algebra or a 1-dimensional Noetherian
local ring with residue field of characteristic 0.

Proof. See discussion above. �

82.64. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory

(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves

4Here we use that S is a strictly henselian local ring of characteristic p and hence S → S,

f 7→ fp−f is surjective. Also S is a normal domain and hence Γ(U,OU ) = S. Thus H1
étale(U,Z/p)

is the kernel of the map H1(U,OU )→ H1(U,OU ) induced by f 7→ fp − f .
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CHAPTER 83

Exercises

83.1. Algebra

This first section just contains some assorted questions.

Exercise 83.1.1. Let A be a ring, and m a maximal ideal. In A[X] let m̃1 = (m, X)
and m̃2 = (m, X − 1). Show that

A[X]m̃1
∼= A[X]m̃2

.

Exercise 83.1.2. Find an example of a non Noetherian ring R such that every
finitely generated ideal of R is finitely presented as an R-module. (A ring is said
to be coherent if the last property holds.)

Exercise 83.1.3. Suppose that (A,m, k) is a Noetherian local ring. For any finite
A-module M define r(M) to be the minimum number of generators of M as an
A-module. This number equals dimkM/mM = dimkM ⊗A k by NAK.

(1) Show that r(M ⊗A N) = r(M)r(N).
(2) Let I ⊂ A be an ideal with r(I) > 1. Show that r(I2) < r(I)2.
(3) Conclude that if every ideal in A is a flat module, then A is a PID (or a

field).

Exercise 83.1.4. Let k be a field. Show that the following pairs of k-algebras are
not isomorphic:

(1) k[x1, . . . , xn] and k[x1, . . . , xn+1] for any n ≥ 1.
(2) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 5.
(3) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 6.

Remark 83.1.5. Of course the idea of this exercise is to find a simple argument
in each case rather than applying a “big” theorem. Nonetheless it is good to be
guided by general principles.

Exercise 83.1.6. Algebra. (Silly and should be easy.)

(1) Give an example of a ring A and a nonsplit short exact sequence of A-
modules

0→M1 →M2 →M3 → 0.

(2) Give an example of a nonsplit sequence of A-modules as above and a
faithfully flat A→ B such that

0→M1 ⊗A B →M2 ⊗A B →M3 ⊗A B → 0.

is split as a sequence of B-modules.

Exercise 83.1.7. Suppose that k is a field having a primitive nth root of unity ζ.
This means that ζn = 1, but ζm 6= 1 for 0 < m < n.
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(1) Show that the characteristic of k is prime to n.
(2) Suppose that a ∈ k is an element of k which is not an dth power in k for

any divisor d of n, in ≥ d > 1. Show that k[x]/(xn − a) is a field. (Hint:
Consider a splitting field for xn − a and use Galois theory.)

Exercise 83.1.8. Let ν : k[x] \ {0} → Z be a map with the following properties:
ν(fg) = ν(f) + ν(g) whenever f , g not zero, and ν(f + g) ≥ min(ν(f), ν(g))
whenever f , g, f + g are not zero, and ν(c) = 0 for all c ∈ k∗.

(1) Show that if f , g, and f + g are nonzero and ν(f) 6= ν(g) then we have
equality ν(f + g) = min(ν(f), ν(g)).

(2) Show that if f =
∑
aix

i, f 6= 0, then ν(f) ≥ min({iν(x)}ai 6=0). When
does equality hold?

(3) Show that if ν attains a negative value then ν(f) = −ndeg(f) for some
n ∈ N.

(4) Suppose ν(x) ≥ 0. Show that {f | f = 0, or ν(f) > 0} is a prime ideal of
k[x].

(5) Describe all possible ν.

Let A be a ring. An idempotent is an element e ∈ A such that e2 = e. The elements
1 and 0 are always idempotent. A nontrivial idempotent is an idempotent which is
not equal to zero. Two idempotents e, e′ ∈ A are called orthogonal if ee′ = 0.

Exercise 83.1.9. Let A be a ring. Show that A is a product of two nonzero rings
if and only if A has a nontrivial idempotent.

Exercise 83.1.10. Let A be a ring and let I ⊂ A be a locally nilpotent ideal. Show
that the map A→ A/I induces a bijection on idempotents. (Hint: It may be easier
to prove this when I is nilpotent. Do this first. Then use “absolute Noetherian
reduction” to reduce to the nilpotent case.)

83.2. Colimits

Definition 83.2.1. A directed partially ordered set is a nonempty set I endowed
with a partial ordering ≤ such that given any pair i, j ∈ I there exists a k ∈ I
such that i ≤ k and j ≤ k. A system of rings over I is given by a ring Ai for each
i ∈ I and a map of rings ϕij : Ai → Aj whenever i ≤ j such that the composition
Ai → Aj → Ak is equal to Ai → Ak whenever i ≤ j ≤ k.

One similarly defines systems of groups, modules over a fixed ring, vector spaces
over a field, etc.

Exercise 83.2.2. Let I be a directed partially ordered set and let (Ai, ϕij) be a
system of rings over I. Show that there exists a ring A and maps ϕi : Ai → A such
that ϕj ◦ ϕij = ϕi for all i ≤ j with the following universal property: Given any
ring B and maps ψi : Ai → B such that ψj ◦ϕij = ψi for all i ≤ j, then there exists
a unique ring map ψ : A→ B such that ψi = ψ ◦ ϕi.

Definition 83.2.3. The ring A constructed in Exercise 83.2.2 is called the colimit
of the system. Notation colimAi.

Exercise 83.2.4. Let (I,≥) be a directed partially ordered set and let (Ai, ϕij)
be a system of rings over I with colimit A. Prove that there is a bijection

Spec(A) = {(pi)i∈I | pi ⊂ Ai and pi = ϕ−1
ij (pj) ∀i ≤ j} ⊂

∏
i∈I

Spec(Ai)
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The set on the right hand side is the limit of the sets Spec(Ai). Notation lim Spec(Ai).

Exercise 83.2.5. Let (I,≥) be a directed partially ordered set and let (Ai, ϕij)
be a system of rings over I with colimit A. Suppose that Spec(Aj) → Spec(Ai) is
surjective for all i ≤ j. Show that Spec(A)→ Spec(Ai) is surjective for all i. (Hint:
You can try to use Tychonoff, but there is also a basically trivial direct algebraic
proof based on Algebra, Lemma 10.16.9.)

Exercise 83.2.6. Let A ⊂ B be an integral ring extension. Prove that Spec(B)→
Spec(A) is surjective. Use the exercises above, the fact that this holds for a finite
ring extension (proved in the lectures), and by proving that B = colimBi is a
directed colimit of finite extensions A ⊂ Bi.

Exercise 83.2.7. Let (I,≥) be a partially ordered set which is directed. Let A be
a ring and let (Ni, ϕi,i′) be a directed system of A-modules indexed by I. Suppose
that M is another A-module. Prove that

colimi∈IM ⊗A Ni ∼= M ⊗A
(

colimi∈I Ni

)
.

Definition 83.2.8. A module M over R is said to be of finite presentation over R
if it is isomorphic to the cokernel of a map of finite free modules R⊕n → R⊕m.

Exercise 83.2.9. Prove that any module over any ring is

(1) the colimit of its finitely generated submodules, and
(2) in some way a colimit of finitely presented modules.

83.3. Additive and abelian categories

Exercise 83.3.1. Let k be a field. Let C be the category of filtered vector spaces
over k, see Homology, Definition 12.16.1 for the definition of a filtered object of any
category.

(1) Show that this is an additive category (explain carefuly what the direct
sum of two objects is).

(2) Let f : (V, F ) → (W,F ) be a morphism of C. Show that f has a kernel
and cokernel (explain precisely what the kernel and cokernel of f are).

(3) Give an example of a map of C such that the canonical map Coim(f) →
Im(f) is not an isomorphism.

Exercise 83.3.2. Let R be a Noetherian domain. Let C be the category of finitely
generated torsion free R-modules.

(1) Show that this is an additive category.
(2) Let f : N → M be a morphism of C. Show that f has a kernel and

cokernel (make sure you define precisely what the kernel and cokernel of
f are).

(3) Give an example of a Noetherian domain R and a map of C such that the
canonical map Coim(f)→ Im(f) is not an isomorphism.

Exercise 83.3.3. Give an example of a category which is additive and has kernels
and cokernels but which is not as in Exercises 83.3.1 and 83.3.2.
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83.4. Flat ring maps

Exercise 83.4.1. Let S be a multiplicative subset of the ring A.

(1) For an A-module M show that S−1M = S−1A⊗AM .
(2) Show that S−1A is flat over A.

Exercise 83.4.2. Find an injection M1 →M2 of A-modules such that M1⊗N →
M2 ⊗N is not injective in the following cases:

(1) A = k[x, y] and N = (x, y) ⊂ A. (Here and below k is a field.)
(2) A = k[x, y] and N = A/(x, y).

Exercise 83.4.3. Give an example of a ring A and a finite A-module M which is
a flat but not a projective A-module.

Remark 83.4.4. If M is of finite presentation and flat over A, then M is projective
over A. Thus your example will have to involve a ring A which is not Noetherian.
I know of an example where A is the ring of C∞-functions on R.

Exercise 83.4.5. Find a flat but not free module over Z(2).

Exercise 83.4.6. Flat deformations.

(1) Suppose that k is a field and k[ε] is the ring of dual numbers k[ε] =
k[x]/(x2) and ε = x̄. Show that for any k-algebra A there is a flat k[ε]-
algebra B such that A is isomorphic to B/εB.

(2) Suppose that k = Fp = Z/pZ and

A = k[x1, x2, x3, x4, x5, x6]/(xp1, x
p
2, x

p
3, x

p
4, x

p
5, x

p
6).

Show that there exists a flat Z/p2Z-algebra B such that B/pB is isomor-
phic to A. (So here p plays the role of ε.)

(3) Now let p = 2 and consider the same question for k = F2 = Z/2Z and

A = k[x1, x2, x3, x4, x5, x6]/(x2
1, x

2
2, x

2
3, x

2
4, x

2
5, x

2
6, x1x2 + x3x4 + x5x6).

However, in this case show that there does not exist a flat Z/4Z-algebra
B such that B/2B is isomorphic to A. (Find the trick! The same example
works in arbitrary characteristic p > 0, except that the computation is
more difficult.)

Exercise 83.4.7. Let (A,m, k) be a local ring and let k ⊂ k′ be a finite field
extension. Show there exists a flat, local map of local rings A → B such that
mB = mB and B/mB is isomorphic to k′ as k-algebra. (Hint: first do the case
where k ⊂ k′ is generated by a single element.)

Remark 83.4.8. The same result holds for arbitrary field extensions k ⊂ K.

83.5. The Spectrum of a ring

Exercise 83.5.1. Compute Spec(Z) as a set and describe its topology.

Exercise 83.5.2. Let A be any ring. For f ∈ A we define D(f) := {p ⊂ A | f 6∈ p}.
Prove that the open subsets D(f) form a basis of the topology of Spec(A).

Exercise 83.5.3. Prove that the map I 7→ V (I) defines a natural bijection

{I ⊂ A with I =
√
I} −→ {T ⊂ Spec(A) closed}
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Definition 83.5.4. A topological space X is called quasi-compact if for any open
covering X =

⋃
i∈I Ui there is a finite subset {i1, . . . , in} ⊂ I such that X =

Ui1 ∪ . . . Uin .

Exercise 83.5.5. Prove that Spec(A) is quasi-compact for any ring A.

Definition 83.5.6. A topological space X is said to verify the separation axiom
T0 if for any pair of points x, y ∈ X, x 6= y there is an open subset of X containing
one but not the other. We say that X is Hausdorff if for any pair x, y ∈ X, x 6= y
there are disjoint open subsets U, V such that x ∈ U and y ∈ V .

Exercise 83.5.7. Show that Spec(A) is not Hausdorff in general. Prove that
Spec(A) is T0. Give an example of a topological space X that is not T0.

Remark 83.5.8. Usually the word compact is reserved for quasi-compact and
Hausdorff spaces.

Definition 83.5.9. A topological space X is called irreducible if X is not empty
and if X = Z1 ∪ Z2 with Z1, Z2 ⊂ X closed, then either Z1 = X or Z2 = X.
A subset T ⊂ X of a topological space is called irreducible if it is an irreducible
topological space with the topology induced from X. This definition implies T is
irreducible if and only if the closure T̄ of T in X is irreducible.

Exercise 83.5.10. Prove that Spec(A) is irreducible if and only if Nil(A) is a
prime ideal and that in this case it is the unique minimal prime ideal of A.

Exercise 83.5.11. Prove that a closed subset T ⊂ Spec(A) is irreducible if and
only if it is of the form T = V (p) for some prime ideal p ⊂ A.

Definition 83.5.12. A point x of an irreducible topological space X is called a
generic point of X if X is equal to the closure of the subset {x}.

Exercise 83.5.13. Show that in a T0 space X every irreducible closed subset has
at most one generic point.

Exercise 83.5.14. Prove that in Spec(A) every irreducible closed subset does have

a generic point. In fact show that the map p 7→ {p} is a bijection of Spec(A) with
the set of irreducible closed subsets of X.

Exercise 83.5.15. Give an example to show that an irreducible subset of Spec(Z)
does not neccesarily have a generic point.

Definition 83.5.16. A topological space X is called Noetherian if any decreasing
sequence Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . of closed subsets of X stabilizes. (It is called Artinian
if any increasing sequence of closed subsets stabilizes.)

Exercise 83.5.17. Show that if the ring A is Noetherian then the topological space
Spec(A) is Noetherian. Give an example to show that the converse is false. (The
same for Artinian if you like.)

Definition 83.5.18. A maximal irreducible subset T ⊂ X is called an irreducible
component of the space X. Such an irreducible component of X is automatically a
closed subset of X.

Exercise 83.5.19. Prove that any irreducible subset of X is contained in an irre-
ducible component of X.
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Exercise 83.5.20. Prove that a Noetherian topological space X has only finitely
many irreducible components, say X1, . . . , Xn, and that X = X1 ∪X2 ∪ . . . ∪Xn.
(Note that any X is always the union of its irreducible components, but that if
X = R with its usual topology for instance then the irreducible components of X
are the one point subsets. This is not terribly interesting.)

Exercise 83.5.21. Show that irreducible components of Spec(A) correspond to
minimal primes of A.

Definition 83.5.22. A point x ∈ X is called closed if {x} = {x}. Let x, y be
points of X. We say that x is a specialization of y, or that y is a generalization of
x if x ∈ {y}.

Exercise 83.5.23. Show that closed points of Spec(A) correspond to maximal
ideals of A.

Exercise 83.5.24. Show that p is a generalization of q in Spec(A) if and only if p ⊂
q. Characterize closed points, maximal ideals, generic points and minimal prime
ideals in terms of generalization and specialization. (Here we use the terminology
that a point of a possibly reducible topological space X is called a generic point if
it is a generic points of one of the irreducible components of X.)

Exercise 83.5.25. Let I and J be ideals of A. What is the condition for V (I) and
V (J) to be disjoint?

Definition 83.5.26. A topological space X is called connected if it is nonempty
and not the union of two nonempty disjoint open subsets. A connected component
of X is a maximal connected subset. Any point of X is contained in a connected
component of X and any connected component of X is closed in X. (But in general
a connected component need not be open in X.)

Exercise 83.5.27. Let A be a nonzero ring. Show that Spec(A) is disconnected
iff A ∼= B × C for certain nonzero rings B,C.

Exercise 83.5.28. Let T be a connected component of Spec(A). Prove that T
is stable under generalization. Prove that T is an open subset of Spec(A) if A is
Noetherian. (Remark: This is wrong when A is an infinite product of copies of F2

for example. The spectrum of this ring consists of infinitely many closed points.)

Exercise 83.5.29. Compute Spec(k[x]), i.e., describe the prime ideals in this ring,
describe the possible specializations, and describe the topology. (Work this out
when k is algebraically closed but also when k is not.)

Exercise 83.5.30. Compute Spec(k[x, y]), where k is algebraically closed. [Hint:
use the morphism ϕ : Spec(k[x, y]) → Spec(k[x]); if ϕ(p) = (0) then localize with
respect to S = {f ∈ k[x] | f 6= 0} and use result of lecture on localization and
Spec.] (Why do you think algebraic geometers call this affine 2-space?)

Exercise 83.5.31. Compute Spec(Z[y]). [Hint: as above.] (Affine 1-space over
Z.)

83.6. Localization

Exercise 83.6.1. Let A be a ring. Let S ⊂ A be a multiplicative subset. Let M
be an A-module. Let N ⊂ S−1M be an S−1A-submodule. Show that there exists
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an A-submodule N ′ ⊂ M such that N = S−1N ′. (This useful result applies in
particular to ideals of S−1A.)

Exercise 83.6.2. Let A be a ring. Let M be an A-module. Let m ∈M .

(1) Show that I = {a ∈ A | am = 0} is an ideal of A.
(2) For a prime p of A show that the image of m in Mp is zero if and only if

I 6⊂ p.
(3) Show that m is zero if and only if the image of m is zero in Mp for all

primes p of A.
(4) Show that m is zero if and only if the image of m is zero in Mm for all

maximal ideals m of A.
(5) Show that M = 0 if and only if Mm is zero for all maximal ideals m.

Exercise 83.6.3. Find a pair (A, f) where A is a domain with three or more
pairwise distinct primes and f ∈ A is an element such that the principal localization
Af = {1, f, f2, . . .}−1A is a field.

Exercise 83.6.4. Let A be a ring. Let M be a finite A-module. Let S ⊂ A be a
multiplicative set. Assume that S−1M = 0. Show that there exists an f ∈ S such
that the principal localization Mf = {1, f, f2, . . .}−1M is zero.

Exercise 83.6.5. Give an example of a triple (A, I, S) where A is a ring, 0 6=
I 6= A is a proper nonzero ideal, and S ⊂ A is a multiplicative subset such that
A/I ∼= S−1A as A-algebras.

83.7. Nakayama’s Lemma

Exercise 83.7.1. Let A be a ring. Let I be an ideal of A. Let M be an A-module.
Let x1, . . . , xn ∈M . Assume that

(1) M/IM is generated by x1, . . . , xn,
(2) M is a finite A-module,
(3) I is contained in every maximal ideal of A.

Show that x1, . . . , xn generate M . (Suggested solution: Reduce to a localization
at a maximal ideal of A using Exercise 83.6.2 and exactness of localization. Then
reduce to the statement of Nakayama’s lemma in the lectures by looking at the
quotient of M by the submodule generated by x1, . . . , xn.)

83.8. Length

Definition 83.8.1. Let A be a ring. Let M be an A-module. The length of M as
an R-module is

lengthA(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi 6= Mi+1}.
In other words, the supremum of the lengths of chains of submodules.

Exercise 83.8.2. Show that a module M over a ring A has length 1 if and only if
it is isomorphic to A/m for some maximal ideal m in A.

Exercise 83.8.3. Compute the length of the following modules over the following
rings. Briefly(!) explain your answer. (Please feel free to use additivity of the
length function in short exact sequences, see Algebra, Lemma 10.50.3).

(1) The length of Z/120Z over Z.
(2) The length of C[x]/(x100 + x+ 1) over C[x].
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(3) The length of R[x]/(x4 + 2x2 + 1) over R[x].

Exercise 83.8.4. Let A = k[x, y](x,y) be the local ring of the affine plane at
the origin. Make any assumption you like about the field k. Suppose that f =
x3 + x2y2 + y100 and g = y3 − x999. What is the length of A/(f, g) as an A-
module? (Possible way to proceed: think about the ideal that f and g generate in
quotients of the form A/mnA = k[x, y]/(x, y)n for varying n. Try to find n such that

A/(f, g) + mnA
∼= A/(f, g) + mn+1

A and use NAK.)

83.9. Singularities

Exercise 83.9.1. Let k be any field. Suppose that A = k[[x, y]]/(f) and B =
k[[u, v]]/(g), where f = xy and g = uv + δ with δ ∈ (u, v)3. Show that A and B
are isomorphic rings.

Remark 83.9.2. A singularity on a curve over a field k is called an ordinary double
point if the complete local ring of the curve at the point is of the form k′[[x, y]]/(f),
where (a) k′ is a finite separable extension of k, (b) the initial term of f has degree
two, i.e., it looks like q = ax2 + bxy+ cy2 for some a, b, c ∈ k′ not all zero, and (c) q
is a nondegenerate quadratic form over k′ (in char 2 this means that b is not zero).
In general there is one isomorphism class of such rings for each isomorphism class
of pairs (k′, q).

83.10. Hilbert Nullstellensatz

Exercise 83.10.1. A silly argument using the complex numbers! Let C be the
complex number field. Let V be a vector space over C. The spectrum of a linear
operator T : V → V is the set of complex numbers λ ∈ C such that the operator
T − λidV is not invertible.

(1) Show that C(X) = f.f.(C[X]) has uncountable dimension over C.
(2) Show that any linear operator on V has a nonempty spectrum if the

dimension of V is finite or countable.
(3) Show that if a finitely generated C-algebra R is a field, then the map

C→ R is an isomorphism.
(4) Show that any maximal ideal m of C[x1, . . . , xn] is of the form (x1 −

α1, . . . , xn − αn) for some αi ∈ C.

Remark 83.10.2. Let k be a field. Then for every integer n ∈ N and every maxi-
mal ideal m ⊂ k[x1, . . . , xn] the quotient k[x1, . . . , xn]/m is a finite field extension of
k. This will be shown later in the course. Of course (please check this) it implies a
similar statement for maximal ideals of finitely generated k-algebras. The exercise
above proves it in the case k = C.

Exercise 83.10.3. Let k be a field. Please use Remark 83.10.2.

(1) Let R be a k-algebra. Suppose that dimk R <∞ and that R is a domain.
Show that R is a field.

(2) Suppose that R is a finitely generated k-algebra, and f ∈ R not nilpotent.
Show that there exists a maximal ideal m ⊂ R with f 6∈ m.

(3) Show by an example that this statement fails when R is not of finite type
over a field.

(4) Show that any radical ideal I ⊂ C[x1, . . . , xn] is the intersection of the
maximal ideals containing it.
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Remark 83.10.4. This is the Hilbert Nullstellensatz. Namely it says that the
closed subsets of Spec(k[x1, . . . , xn]) (which correspond to radical ideals by a pre-
vious exercise) are determined by the closed points contained in them.

Exercise 83.10.5. Let A = C[x11, x12, x21, x22, y11, y12, y21, y22]. Let I be the
ideal of A generated by the entries of the matrix XY , with

X =

(
x11 x12

x21 x22

)
and Y =

(
y11 y12

y21 y22

)
.

Find the irreducible components of the closed subset V (I) of Spec(A). (I mean
describe them and give equations for each of them. You do not have to prove that
the equations you write down define prime ideals.) Hints:

(1) You may use the Hilbert Nullstellensatz, and it suffices to find irreducible
locally closed subsets which cover the set of closed points of V (I).

(2) There are two easy components.
(3) An image of an irreducible set under a continuous map is irreducible.

83.11. Dimension

Exercise 83.11.1. Construct a ring A with finitely many prime ideals having
dimension > 1.

Exercise 83.11.2. Let f ∈ C[x, y] be a nonconstant polynomial. Show that
C[x, y]/(f) has dimension 1.

Exercise 83.11.3. Let (R,m) be a Noetherian local ring. Let n ≥ 1. Let m′ =
(m, x1, . . . , xn) in the polynomial ring R[x1, . . . , xn]. Show that

dim(R[x1, . . . , xn]m′) = dim(R) + n.

83.12. Catenary rings

Definition 83.12.1. A Noetherian ring A is said to be catenary if for any triple
of prime ideals p1 ⊂ p2 ⊂ p3 we have

ht(p3/p1) = ht(p3/p2) + ht(p2/p1).

Here ht(p/q) means the height of p/q in the ring A/q.

Exercise 83.12.2. Show that a Noetherian local domain of dimension 2 is catenary.

Exercise 83.12.3. Let k be a field. Show that a finite type k-algebra is catenary.

83.13. Fraction fields

Exercise 83.13.1. Consider the domain

Q[r, s, t]/(s2 − (r − 1)(r − 2)(r − 3), t2 − (r + 1)(r + 2)(r + 3)).

Find a domain of the form Q[x, y]/(f) with isomorphic field of fractions.

83.14. Transcendence degree

Exercise 83.14.1. Let k ⊂ K ⊂ K ′ be field extensions with K ′ algebraic over
K. Prove that trdegk(K) = trdegk(K ′). (Hint: Show that if x1, . . . , xd ∈ K
are algebraically independent over k and d < trdegk(K ′) then k(x1, . . . , xd) ⊂ K
cannot be algebraic.)
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83.15. Finite locally free modules

Definition 83.15.1. Let A be a ring. Recall that a finite locally free A-module
M is a module such that for every p ∈ Spec(A) there exists an f ∈ A, f 6∈ p such
that Mf is a finite free Af -module. We say M is an invertible module if M is finite
locally free of rank 1, i.e., for every p ∈ Spec(A) there exists an f ∈ A, f 6∈ p such
that Mf

∼= Af as an Af -module.

Exercise 83.15.2. Prove that the tensor product of finite locally free modules
is finite locally free. Prove that the tensor product of two invertible modules is
invertible.

Definition 83.15.3. Let A be a ring. The class group of A, sometimes called the
Picard group of A is the set Pic(A) of isomorphism classes of invertible A-modules
endowed with a group operation defined by tensor product (see Exercise 83.15.2).

Note that the class group of A is trivial exactly when every invertible module is
isomorphic to a free module of rank 1.

Exercise 83.15.4. Show that the class groups of the following rings are trivial

(1) a polynomial ring A = k[x] where k is a field,
(2) the integers A = Z,
(3) a polynomial ring A = k[x, y] where k is a field, and
(4) the quotient k[x, y]/(xy) where k is a field.

Exercise 83.15.5. Show that the class group of the ring A = k[x, y]/(y2 − f(x))
where k is a field of characteristic not 2 and where f(x) = (x− t1) . . . (x− tn) with
t1, . . . , tn ∈ k distinct and n ≥ 3 an odd integer is not trivial. (Hint: Show that the
ideal (y, x− t1) defines a nontrivial element of Pic(A).)

Exercise 83.15.6. Let A be a ring.

(1) Suppose that M is a finite locally free A-module, and suppose that ϕ :
M → M is an endomorphism. Define/construct the trace and determi-
nant of ϕ and prove that your construction is “functorial in the triple
(A,M,ϕ)”.

(2) Show that if M,N are finite locally free A-modules, and if ϕ : M → N and
ψ : N →M then Trace(ϕ◦ψ) = Trace(ψ◦ϕ) and Det(ϕ◦ψ) = Det(ψ◦ϕ).

(3) In case M is finite locally free show that Det defines a multiplicative map
EndA(M)→ A.

Exercise 83.15.7. Now suppose that B is an A-algebra which is finite locally free
as an A-module, in other words B is a finite locally free A-algebra.

(1) Define TraceB/A and NormB/A using Trace and Det as defined above.
(2) Let b ∈ B and let π : Spec(B) → Spec(A) be the induced morphism.

Show that π(V (b)) = V (NormB/A(b)). (Recall that V (f) = {p | f ∈ p}.)
(3) (Base change.) Suppose that i : A→ A′ is a ring map. Set B′ = B⊗AA′.

Indicate why i(NormB/A(b)) equals NormB′/A′(b⊗ 1).
(4) Compute NormB/A(b) when B = A×A×A×. . .×A and b = (a1, . . . , an).

(5) Compute the norm of y − y3 under the finite flat map Q[x] → Q[y],
x→ yn. (Hint: use the “base change” A = Q[x] ⊂ A′ = Q(ζn)(x1/n).)
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83.16. Glueing

Exercise 83.16.1. Suppose that A is a ring and M is an A-module. Let fi, i ∈ I
be a collection of elements of A such that

Spec(A) =
⋃
D(fi).

(1) Show that if Mfi is a finite Afi-module, then M is a finite A-module.
(2) Show that if Mfi is a flat Afi-module, then M is a flat A-module. (This

is kind of silly if you think about it right.)

Remark 83.16.2. In algebraic geometric language this means that the property
of “being finitely generated” or “being flat” is local for the Zariski topology (in a
suitable sense). You can also show this for the property “being of finite presenta-
tion”.

Exercise 83.16.3. Suppose that A → B is a ring map. Let fi ∈ A, i ∈ I and
gj ∈ B, j ∈ J be collections of elements such that

Spec(A) =
⋃
D(fi) and Spec(B) =

⋃
D(gj).

Show that if Afi → Bfigj is of finite type for all i, j then A→ B is of finite type.

83.17. Going up and going down

Definition 83.17.1. Let φ : A → B be a homomorphism of rings. We say that
the going-up theorem holds for φ if the following condition is satisfied:

(GU) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ∈ Spec(B) lying
over p, there exists P ′ ∈ Spec(B) lying over p′ such that P ⊂ P ′.

Similarly, we say that the going-down theorem holds for φ if the following condition
is satisfied:

(GD) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ′ ∈ Spec(B) lying
over p′, there exists P ∈ Spec(B) lying over p such that P ⊂ P ′.

Exercise 83.17.2. In each of the following cases determine whether (GU), (GD)
holds, and explain why. (Use any Prop/Thm/Lemma you can find, but check the
hypotheses in each case.)

(1) k is a field, A = k, B = k[x].
(2) k is a field, A = k[x], B = k[x, y].
(3) A = Z, B = Z[1/11].
(4) k is an algebraically closed field, A = k[x, y], B = k[x, y, z]/(x2−y, z2−x).
(5) A = Z, B = Z[i, 1/(2 + i)].
(6) A = Z, B = Z[i, 1/(14 + 7i)].
(7) k is an algebraically closed field, A = k[x], B = k[x, y, 1/(xy−1)]/(y2−y).

Exercise 83.17.3. Let k be an algebraically closed field. Compute the image in
Spec(k[x, y]) of the following maps:

(1) Spec(k[x, yx−1])→ Spec(k[x, y]), where k[x, y] ⊂ k[x, yx−1] ⊂ k[x, y, x−1].
(Hint: To avoid confusion, give the element yx−1 another name.)

(2) Spec(k[x, y, a, b]/(ax− by − 1))→ Spec(k[x, y]).
(3) Spec(k[t, 1/(t− 1)])→ Spec(k[x, y]), induced by x 7→ t2, and y 7→ t3.
(4) k = C (complex numbers), Spec(k[s, t]/(s3 + t3 − 1)) → Spec(k[x, y]),

where x 7→ s2, y 7→ t2.
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Remark 83.17.4. Finding the image as above usually is done by using elimination
theory.

83.18. Fitting ideals

Exercise 83.18.1. Let R be a ring and let M be a finite R-module. Choose a
presentation ⊕

j∈J
R −→ R⊕n −→M −→ 0.

of M . Note that the map R⊕n →M is given by a sequence of elements x1, . . . , xn
of M . The elements xi are generators of M . The map

⊕
j∈J R → R⊕n is given

by a n × J matrix A with coefficients in R. In other words, A = (aij)i=1,...,n,j∈J .
The columns (a1j , . . . , anj), j ∈ J of A are said to be the relations. Any vector
(ri) ∈ R⊕n such that

∑
rixi = 0 is a linear combination of the columns of A. Of

course any finite R-module has a lot of different presentations.

(1) Show that the ideal generated by the (n − k) × (n − k) minors of A is
independent of the choice of the presentation. This ideal is the kth fitting
ideal of M . Notation Fitk(M).

(2) Show that Fit0(M) ⊂ Fit1(M) ⊂ Fit2(M) ⊂ . . .. (Hint: Use that a
determinant can be computed by expanding along a column.)

(3) Show that the following are equivalent:
(a) Fitr−1(M) = (0) and Fitr(M) = R, and
(b) M is locally free of rank r.

83.19. Hilbert functions

Definition 83.19.1. A numerical polynomial is a polynomial f(x) ∈ Q[x] such
that f(n) ∈ Z for every integer n.

Definition 83.19.2. A graded module M over a ring A is an A-module M endowed
with a direct sum decomposition

⊕
n∈ZMn into A-submodules. We will say that M

is locally finite if all of the Mn are finite A-modules. Suppose that A is a Noetherian
ring and that ϕ is a Euler-Poincaré function on finite A-modules. This means that
for every finitely generated A-module M we are given an integer ϕ(M) ∈ Z and for
every short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

we have ϕ(M) = ϕ(M ′) + ϕ(M ′). The Hilbert function of a locally finite graded
module M (with respect to ϕ) is the function χϕ(M,n) = ϕ(Mn). We say that
M has a Hilbert polynomial if there is some numerical polynomial Pϕ such that
χϕ(M,n) = Pϕ(n) for all sufficiently large integers n.

Definition 83.19.3. A graded A-algebra is a graded A-module B =
⊕

n≥0Bn
together with an A-bilinear map

B ×B −→ B, (b, b′) 7−→ bb′

that turns B into an A-algebra so that Bn ·Bm ⊂ Bn+m. Finally, a graded module
M over a graded A-algebra B is given by a graded A-module M together with a
(compatible) B-module structure such that Bn ·Md ⊂Mn+d. Now you can define
homomorphisms of graded modules/rings, graded submodules, graded ideals, exact
sequences of graded modules, etc, etc.
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Exercise 83.19.4. Let A = k a field. What are all possible Euler-Poincaré func-
tions on finite A-modules in this case?

Exercise 83.19.5. Let A = Z. What are all possible Euler-Poincaré functions on
finite A-modules in this case?

Exercise 83.19.6. Let A = k[x, y]/(xy) with k algebraically closed. What are all
possible Euler-Poincaré functions on finite A-modules in this case?

Exercise 83.19.7. Suppose that A is Noetherian. Show that the kernel of a map
of locally finite graded A-modules is locally finite.

Exercise 83.19.8. Let k be a field and let A = k and B = k[x, y] with grading
determined by deg(x) = 2 and deg(y) = 3. Let ϕ(M) = dimk(M). Compute the
Hilbert function of B as a graded k-module. Is there a Hilbert polynomial in this
case?

Exercise 83.19.9. Let k be a field and let A = k and B = k[x, y]/(x2, xy) with
grading determined by deg(x) = 2 and deg(y) = 3. Let ϕ(M) = dimk(M). Com-
pute the Hilbert function of B as a graded k-module. Is there a Hilbert polynomial
in this case?

Exercise 83.19.10. Let k be a field and let A = k. Let ϕ(M) = dimk(M).
Fix d ∈ N. Consider the graded A-algebra B = k[x, y, z]/(xd + yd + zd), where
x, y, z each have degree 1. Compute the Hilbert function of B. Is there a Hilbert
polynomial in this case?

83.20. Proj of a ring

Definition 83.20.1. Let R be a graded ring. A homogeneous ideal is simply an
ideal I ⊂ R which is also a graded submodule of R. Equivalently, it is an ideal
generated by homogeneous elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous pieces in R then fi ∈ I for each i.

Definition 83.20.2. We define the homogeneous spectrum Proj(R) of the graded
ring R to be the set of homogeneous, prime ideals p of R such that R+ 6⊂ p. Note
that Proj(R) is a subset of Spec(R) and hence has a natural induced topology.

Definition 83.20.3. Let R = ⊕d≥0Rd be a graded ring, let f ∈ Rd and assume
that d ≥ 1. We define R(f) to be the subring of Rf consisting of elements of the
form r/fn with r homogeneous and deg(r) = nd. Furthermore, we define

D+(f) = {p ∈ Proj(R)|f 6∈ p}.
Finally, for a homogeneous ideal I ⊂ R we define V+(I) = V (I) ∩ Proj(R).

Exercise 83.20.4. On the topology on Proj(R). With definitions and notation as
above prove the following statements.

(1) Show that D+(f) is open in Proj(R).
(2) Show that D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . . + gm be an element of R with gi ∈ Ri. Express

D(g) ∩ Proj(R) in terms of D+(gi), i ≥ 1 and D(g0) ∩ Proj(R). No
proof necessary.
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(4) Let g ∈ R0 be a homogeneous element of degree 0. Express D(g)∩Proj(R)
in terms of D+(fα) for a suitable family fα ∈ R of homogeneous elements
of positive degree.

(5) Show that the collection {D+(f)} of opens forms a basis for the topology
of Proj(R).

(6) Show that there is a canonical bijection D+(f) → Spec(R(f)). (Hint:
Imitate the proof for Spec but at some point thrown in the radical of an
ideal.)

(7) Show that the map from (6) is a homeomorphism.
(8) Give an example of an R such that Proj(R) is not quasi-compact. No

proof necessary.
(9) Show that any closed subset T ⊂ Proj(R) is of the form V+(I) for some

homogeneous ideal I ⊂ R.

Remark 83.20.5. There is a continuous map Proj(R) −→ Spec(R0).

Exercise 83.20.6. If R = A[X] with deg(X) = 1, show that the natural map
Proj(R)→ Spec(A) is a bijection and in fact a homeomorphism.

Exercise 83.20.7. Blowing up: part I. In this exercise R = BlI(A) = A⊕ I⊕ I2⊕
. . .. Consider the natural map b : Proj(R) → Spec(A). Set U = Spec(A) − V (I).
Show that

b : b−1(U) −→ U

is a homeomorphism. Thus we may think of U as an open subset of Proj(R). Let
Z ⊂ Spec(A) be an irreducible closed subscheme with generic point ξ ∈ Z. Assume
that ξ 6∈ V (I), in other words Z 6⊂ V (I), in other words ξ ∈ U , in other words
Z ∩ U 6= ∅. We define the strict transform Z ′ of Z to be the closure of the unique
point ξ′ lying above ξ. Another way to say this is that Z ′ is the closure in Proj(R)
of the locally closed subset Z ∩ U ⊂ U ⊂ Proj(R).

Exercise 83.20.8. Blowing up: Part II. Let A = k[x, y] where k is a field, and let
I = (x, y). Let R be the blow up algebra for A and I.

(1) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({y}) are
disjoint.

(2) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({x − y2})
are not disjoint.

(3) Find an ideal J ⊂ A such that V (J) = V (I) and such that the strict
transforms of Z1 = V ({x}) and Z2 = V ({x− y2}) are disjoint.

Exercise 83.20.9. Let R be a graded ring.

(1) Show that Proj(R) is empty if Rn = (0) for all n >> 0.
(2) Show that Proj(R) is an irreducible topological space if R is a domain

and R+ is not zero. (Recall that the empty topological space is not irre-
ducible.)

Exercise 83.20.10. Blowing up: Part III. Consider A, I and U , Z as in the
definition of strict transform. Let Z = V (p) for some prime ideal p. Let Ā = A/p
and let Ī be the image of I in Ā.

(1) Show that there exists a surjective ring map R := BlI(A)→ R̄ := BlĪ(Ā).
(2) Show that the ring map above induces a bijective map from Proj(R̄) onto

the strict transform Z ′ of Z. (This is not so easy. Hint: Use 5(b) above.)
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(3) Conclude that the strict transform Z ′ = V+(P ) where P ⊂ R is the
homogeneous ideal defined by Pd = Id ∩ p.

(4) Suppose that Z1 = V (p) and Z2 = V (q) are irreducible closed subsets
defined by prime ideals such that Z1 6⊂ Z2, and Z2 6⊂ Z1. Show that
blowing up the ideal I = p + q separates the strict transforms of Z1 and
Z2, i.e., Z ′1 ∩ Z ′2 = ∅. (Hint: Consider the homogeneous ideal P and Q
from part (c) and consider V (P +Q).)

83.21. Cohen-Macaulay rings of dimension 1

Definition 83.21.1. A Noetherian local ring A is said to be Cohen-Macaulay of
dimension d if it has dimension d and there exists a system of parameters x1, . . . , xd
for A such that xi is a nonzerodivisor in A/(x1, . . . , xi−1) for i = 1, . . . , d.

Exercise 83.21.2. Cohen-Macaulay rings of dimension 1. Part I: Theory.

(1) Let (A,m) be a local Noetherian with dimA = 1. Show that if x ∈ m is
not a zerodivisor then
(a) dimA/xA = 0, in other words A/xA is Artinian, in other words {x}

is a system of parameters for A.
(b) A is has no embedded prime.

(2) Conversely, let (A,m) be a local Noetherian ring of dimension 1. Show
that if A has no embedded prime then there exists a nonzerodivisor in m.

Exercise 83.21.3. Cohen-Macaulay rings of dimension 1. Part II: Examples.

(1) Let A be the local ring at (x, y) of k[x, y]/(x2, xy).
(a) Show that A has dimension 1.
(b) Prove that every element of m ⊂ A is a zerodivisor.
(c) Find z ∈ m such that dimA/zA = 0 (no proof required).

(2) Let A be the local ring at (x, y) of k[x, y]/(x2). Find a nonzerodivisor in
m (no proof required).

Exercise 83.21.4. Local rings of embedding dimension 1. Suppose that (A,m, k)
is a Noetherian local ring of embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Show that the function f(n) = dimk m
n/mn+1 is either constant with value 1, or

its values are
1, 1, . . . , 1, 0, 0, 0, 0, 0, . . .

Exercise 83.21.5. Regular local rings of dimension 1. Suppose that (A,m, k) is
a regular Noetherian local ring of dimension 1. Recall that this means that A has
dimension 1 and embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Let x ∈ m be any element whose class in m/m2 is not zero.

(1) Show that for every element y of m there exists an integer n such that y
can be written as y = uxn with u ∈ A∗ a unit.

(2) Show that x is a nonzerodivisor in A.
(3) Conclude that A is a domain.

Exercise 83.21.6. Let (A,m, k) be a Noetherian local ring with associated graded
Grm(A).
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(1) Suppose that x ∈ md maps to a nonzero divisor x̄ ∈ md/md+1 in degree d
of Grm(A). Show that x is a nonzerodivisor.

(2) Suppose the depth of A is at least 1. Namely, suppose that there exists
a nonzerodivisor y ∈ m. In this case we can do better: assume just that
x ∈ md maps to the element x̄ ∈ md/md+1 in degree d of Grm(A) which is
a nonzerodivisor on sufficiently high degrees: ∃N such that for all n ≥ N
the map of multiplication by x̄

mn/mn+1 −→ mn+d/mn+d+1

is injective. Then show that x is a nonzerodivisor.

Exercise 83.21.7. Suppose that (A,m, k) is a Noetherian local ring of dimension
1. Assume also that the embedding dimension of A is 2, i.e., assume that

dimk m/m
2 = 2.

Notation: f(n) = dimk m
n/mn+1. Pick generators x, y ∈ m and write Grm(A) =

k[x̄, ȳ]/I for some homogeneous ideal I.

(1) Show that there exists a homogeneous element F ∈ k[x̄, ȳ] such that I ⊂
(F ) with equality in all sufficiently high degrees.

(2) Show that f(n) ≤ n+ 1.
(3) Show that if f(n) < n+ 1 then n ≥ deg(F ).
(4) Show that if f(n) < n+ 1, then f(n+ 1) ≤ f(n).
(5) Show that f(n) = deg(F ) for all n >> 0.

Exercise 83.21.8. Cohen-Macaulay rings of dimension 1 and embedding dimen-
sion 2. Suppose that (A,m, k) is a Noetherian local ring which is Cohen-Macaulay
of dimension 1. Assume also that the embedding dimension of A is 2, i.e., assume
that

dimk m/m
2 = 2.

Notations: f , F , x, y ∈ m, I as in Ex. 6 above. Please use any results from the
problems above.

(1) Suppose that z ∈ m is an element whose class in m/m2 is a linear form
αx̄+ βȳ ∈ k[x̄, ȳ] which is coprime with f .
(a) Show that z is a nonzerodivisor on A.
(b) Let d = deg(F ). Show that mn = zn+1−dmd−1 for all sufficiently

large n. (Hint: First show zn+1−dmd−1 → mn/mn+1 is surjective by
what you know about Grm(A). Then use NAK.)

(2) What condition on k guarantees the existence of such a z? (No proof
required; it’s too easy.)
Now we are going to assume there exists a z as above. This turns out to be
a harmless assumption (in the sense that you can reduce to the situation
where it holds in order to obtain the results in parts (d) and (e) below).

(3) Now show that m` = z`−d+1md−1 for all ` ≥ d.
(4) Conclude that I = (F ).
(5) Conclude that the function f has values

2, 3, 4, . . . , d− 1, d, d, d, d, d, d, d, . . .
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Remark 83.21.9. This suggests that a local Noetherian Cohen-Macaulay ring of
dimension 1 and embedding dimension 2 is of the form B/FB, where B is a 2-
dimensional regular local ring. This is more or less true (under suitable “niceness”
properties of the ring).

83.22. Infinitely many primes

A section with a collection of strange questions on rings where infinitely many
primes are not invertible.

Exercise 83.22.1. Give an example of a finite type Z-algebra R with the following
two properties:

(1) There is no ring map R→ Q.
(2) For every prime p there exists a maximal ideal m ⊂ R such that R/m ∼= Fp.

Exercise 83.22.2. For f ∈ Z[x, u] we define fp(x) = f(x, xp) mod p ∈ Fp[x]. Give
an example of an f ∈ Z[x, u] such that the following two properties hold:

(1) There exist infinitely many p such that fp does not have a zero in Fp.
(2) For all p >> 0 the polynomial fp either has a linear or a quadratic factor.

Exercise 83.22.3. For f ∈ Z[x, y, u, v] we define fp(x, y) = f(x, y, xp, yp) mod p ∈
Fp[x, y]. Give an “interesting” example of an f such that fp is reducible for all
p >> 0. For example, f = xv − yu with fp = xyp − xpy = xy(xp−1 − yp−1) is
“uninteresting”; any f depending only on x, u is “uninteresting”, etc.

Remark 83.22.4. Let h ∈ Z[y] be a monic polynomial of degree d. Then:

(1) The map A = Z[x]→ B = Z[y], x 7→ h is finite locally free of rank d.
(2) For all primes p the map Ap = Fp[x] → Bp = Fp[y], y 7→ h(y) mod p is

finite locally free of rank d.

Exercise 83.22.5. Let h,A,B,Ap, Bp be as in the remark. For f ∈ Z[x, u]
we define fp(x) = f(x, xp) mod p ∈ Fp[x]. For g ∈ Z[y, v] we define gp(y) =
g(y, yp) mod p ∈ Fp[y].

(1) Give an example of a h and g such that there does not exist a f with the
property

fp = NormBp/Ap(gp).

(2) Show that for any choice of h and g as above there exists a nonzero f such
that for all p we have

NormBp/Ap(gp) divides fp.

If you want you can restrict to the case h = yn, even with n = 2, but it is
true in general.

(3) Discuss the relevance of this to Exercises 6 & 7 of the previous set.

Exercise 83.22.6. Unsolved problems. They may be really hard or they may be
easy. I don’t know.

(1) Is there any f ∈ Z[x, u] such that fp is irreducible for an infinite number
of p? (Hint: Yes, this happens for f(x, u) = u − x − 1 and also for
f(x, u) = u2 − x2 + 1.)
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(2) Let f ∈ Z[x, u] nonzero, and suppose degx(fp) = dp+d′ for all large p. (In
other words degu(f) = d and the coefficient c of ud in f has degx(c) = d′.)
Suppose we can write d = d1 + d2 and d′ = d′1 + d′2 with d1, d2 > 0 and
d′1, d

′
2 ≥ 0 such that for all sufficiently large p there exists a factorization

fp = f1,pf2,p

with degx(f1,p) = d1p + d′1. Is it true that f comes about via a norm
construction as in Exercise 4? (More precisely, are there a h and g such
that NormBp/Ap(gp) divides fp for all p >> 0.)

(3) Analogous question to the one in (b) but now with f ∈ Z[x1, x2, u1, u2]
irreducible and just assuming that fp(x1, x2) = f(x1, x2, x

p
1, x

p
2) mod p

factors for all p >> 0.

83.23. Filtered derived category

In order to do the exercises in this section, please read the material in Homology,
Section 12.16. We will say A is a filtered object of A, to mean that A comes
endowed with a filtration F which we omit from the notation.

Exercise 83.23.1. Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite and that each grp(I) is an injective object
of A. Show that there exists an isomorphism I ∼=

⊕
grp(I) with filtration F p(I)

corresponding to
⊕

p′≥p grp(I).

Exercise 83.23.2. Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite. Show the following are equivalent:

(1) For any solid diagram

A
α
//

��

B

��
I

of filtered objects with (i) the filtrations on A and B are finite, and (ii)
gr(α) injective the dotted arrow exists making the diagram commute.

(2) Each grpI is injective.

Note that given a morphism α : A→ B of filtered objects with finite filtrations to
say that gr(α) injective is the same thing as saying that α is a strict monomorphism
in the category Fil(A). Namely, being a monomorphism means Ker(α) = 0 and
strict means that this also implies Ker(gr(α)) = 0. See Homology, Lemma 12.16.13.
(We only use the term “injective” for a morphism in an abelian category, although it
makes sense in any additive category having kernels.) The exercises above justifies
the following definition.

Definition 83.23.3. Let A be an abelian category. Let I be a filtered object of
A. Assume the filtration on I is finite. We say I is filtered injective if each grp(I)
is an injective object of A.

We make the following definition to avoid having to keep saying “with a finite
filtration” everywhere.
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Definition 83.23.4. Let A be an abelian category. We denote Filf (A) the full sub-
category of Fil(A) whose objects consist of those A ∈ Ob(Fil(A)) whose filtration
is finite.

Exercise 83.23.5. Let A be an abelian category. Assume A has enough injectives.
Let A be an object of Filf (A). Show that there exists a strict monomorphism

α : A→ I of A into a filtered injective object I of Filf (A).

Definition 83.23.6. Let A be an abelian category. Let α : K• → L• be a mor-
phism of complexes of Fil(A). We say that α is a filtered quasi-isomorphism if for
each p ∈ Z the morphism grp(K•)→ grp(L•) is a quasi-isomorphism.

Definition 83.23.7. Let A be an abelian category. Let K• be a complex of
Filf (A). We say that K• is filtered acyclic if for each p ∈ Z the complex grp(K•)
is acyclic.

Exercise 83.23.8. Let A be an abelian category. Let α : K• → L• be a morphism
of bounded below complexes of Filf (A). (Note the superscript f .) Show that the
following are equivalent:

(1) α is a filtered quasi-isomorphism,
(2) for each p ∈ Z the map α : F pK• → F pL• is a quasi-isomorphism,
(3) for each p ∈ Z the map α : K•/F pK• → L•/F pL• is a quasi-isomorphism,

and
(4) the cone of α (see Derived Categories, Definition 13.9.1) is a filtered acyclic

complex.

Moreover, show that if α is a filtered quasi-isomorphism then α is also a usual
quasi-isomorphism.

Exercise 83.23.9. Let A be an abelian category. Assume A has enough injectives.
Let A be an object of Filf (A). Show there exists a complex I• of Filf (A), and a
morphism A[0]→ I• such that

(1) each Ip is filtered injective,
(2) Ip = 0 for p < 0, and
(3) A[0]→ I• is a filtered quasi-isomorphism.

Exercise 83.23.10. Let A be an abelian category. Assume A has enough injec-
tives. Let K• be a bounded below complex of objects of Filf (A). Show there exists

a filtered quasi-isomorphism α : K• → I• with I• a complex of Filf (A) having
filtered injective terms In, and bounded below. In fact, we may choose α such that
each αn is a strict monomorphism.

Exercise 83.23.11. Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

of complexes of Filf (A). AssumeK•, L• and I• are bounded below and assume each
In is a filtered injective object. Also assume that α is a filtered quasi-isomorphism.

(1) There exists a map of complexes β making the diagram commute up to
homotopy.
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(2) If α is a strict monomorphism in every degree then we can find a β which
makes the diagram commute.

Exercise 83.23.12. Let A be an abelian category. Let K•, K• be complexes of
Filf (A). Assume

(1) K• bounded below and filtered acyclic, and
(2) I• bounded below and consisting of filtered injective objects.

Then any morphism K• → I• is homotopic to zero.

Exercise 83.23.13. Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

of complexes of Filf (A). Assume K•, L• and I• bounded below and each In a
filtered injective object. Also assume α a filtered quasi-isomorphism. Any two
morphisms β1, β2 making the diagram commute up to homotopy are homotopic.

83.24. Regular functions

Exercise 83.24.1. In this exercise we try to see what happens with regular func-
tions over non-algebraically closed fields. Let k be a field. Let Z ⊂ kn be a Zariski
locally closed subset, i.e., there exist ideals I ⊂ J ⊂ k[x1, . . . , xn] such that

Z = {a ∈ kn | f(a) = 0 ∀ f ∈ I, ∃ g ∈ J, g(a) 6= 0}.
A function ϕ : Z → k is said to be regular if for every z ∈ Z there exists a Zariski
open neighbourhood z ∈ U ⊂ Z and polynomials f, g ∈ k[x1, . . . , xn] such that
g(u) 6= 0 for all u ∈ U and such that ϕ(u) = f(u)/g(u) for all u ∈ U .

(1) If k = k̄ and Z = kn show that regular functions are given by polynomials.
(Only do this if you haven’t seen this argument before.)

(2) If k is finite show that (a) every function ϕ is regular, (b) the ring of
regular functions is finite dimensional over k. (If you like you can take
Z = kn and even n = 1.)

(3) If k = R give an example of a regular function on Z = R which is not
given by a polynomial.

(4) If k = Qp give an example of a regular function on Z = Qp which is not
given by a polynomial.

83.25. Sheaves

A morphism f : X → Y of a category C is an monomorphism if for every pair of
morphisms a, b : W → X we have f ◦ a = f ◦ b⇒ a = b. A monomorphism in the
category of sets is an injective map of sets.

Exercise 83.25.1. Carefully prove that a map of sheaves of sets is an monomor-
phism (in the category of sheaves of sets) if and only if the induced maps on all the
stalks are injective.

A morphism f : X → Y of a category C is an isomorphism if there exists a morphism
g : Y → X such that f ◦ g = idY and g ◦ f = idX . An isomorphism in the category
of sets is a bijective map of sets.
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Exercise 83.25.2. Carefully prove that a map of sheaves of sets is an isomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are bijective.

A morphism f : X → Y of a category C is an epimorphism if for every pair of
morphisms a, b : Y → Z we have a ◦ f = b ◦ f ⇒ a = b. An epimorphism in the
category of sets is a surjective map of sets.

Exercise 83.25.3. Carefully prove that a map of sheaves of sets is an epimorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are surjective.

Exercise 83.25.4. Let f : X → Y be a map of topological spaces. Prove pushfor-
ward f∗ and pullback f−1 for sheaves of sets form an adjoint pair of functors.

Exercise 83.25.5. Let j : U → X be an open immersion. Show that j−1 has a
left adjoint j! on the category of sheaves of sets. Characterize the stalks of j!(G).
(Hint: j! is called extension by zero when you do this for abelian sheaves... )

Exercise 83.25.6. Let X = R with the usual topology. Let OX = Z/2Z
X

. Let

i : Z = {0} → X be the inclusion and let OZ = Z/2Z
Z

. Prove the following (the

first three follow from the definitions but if you are not clear on the definitions you
should elucidate them):

(1) i∗OZ is a skyscraper sheaf.
(2) There is a canonical surjective map from Z/2Z

X
→ i∗Z/2Z

Z
. Denote the

kernel I ⊂ OX .
(3) I is an ideal sheaf of OX .
(4) The sheaf I on X cannot be locally generated by sections (as in Modules,

Definition 17.8.1.)

Exercise 83.25.7. Let X be a topological space. Let F be an abelian sheaf on X.
Show that F is the quotient of a (possibly very large) direct sum of sheaves all of
whose terms are of the form

j!(ZU )

where U ⊂ X is open and ZU denotes the constant sheaf with value Z on U .

Remark 83.25.8. Let X be a topological space. In the category of abelian sheaves
the direct sum of a family of sheaves {Fi}i∈I is the sheaf associated to the presheaf
U 7→ ⊕Fi(U). Consequently the stalk of the direct sum at a point x is the direct
sum of the stalks of the Fi at x.

Exercise 83.25.9. Let X be a topological space. Suppose we are given a collection
of abelian groups Ax indexed by x ∈ X. Show that the rule U 7→

∏
x∈U Ax with

obvious restriction mappings defines a sheaf G of abelian groups. Show, by an
example, that usually it is not the case that Gx = Ax for x ∈ X.

Exercise 83.25.10. Let X, Ax, G be as in Exercise 83.25.9. Let B be a basis for
the topology of X, see Topology, Definition 5.4.1. For U ∈ B let AU be a subgroup
AU ⊂ G(U) =

∏
x∈U Ax. Assume that for U ⊂ V with U, V ∈ B the restriction

maps AV into AU . For U ⊂ X open set

F(U) =

{
(sx)x∈U

∣∣∣∣ for every x in U there exists V ∈ B
x ∈ V ⊂ U such that (sy)y∈V ∈ AV

}
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Show that F defines a sheaf of abelian groups on X. Show, by an example, that it
is usually not the case that F(U) = AU for U ∈ B.

83.26. Schemes

Let LRS be the category of locally ringed spaces. An affine scheme is an object in
LRS isomorphic in LRS to a pair of the form (Spec(A),OSpec(A)). A scheme is an
object (X,OX) of LRS such that every point x ∈ X has an open neighbourhood
U ⊂ X such that the pair (U,OX |U ) is an affine scheme.

Exercise 83.26.1. Find a 1-point locally ringed space which is not a scheme.

Exercise 83.26.2. Suppose that X is a scheme whose underlying topological space
has 2 points. Show that X is an affine scheme.

Exercise 83.26.3. Suppose that X is a scheme whose underlying topological space
is a finite discrete set. Show that X is an affine scheme.

Exercise 83.26.4. Show that there exists a non-affine scheme having three points.

Exercise 83.26.5. Suppose that X is a quasi-compact scheme. Show that X has
a closed point.

Remark 83.26.6. When (X,OX) is a ringed space and U ⊂ X is an open subset
then (U,OX |U ) is a ringed space. Notation: OU = OX |U . There is a canonical
morphisms of ringed spaces

j : (U,OU ) −→ (X,OX).

If (X,OX) is a locally ringed space, so is (U,OU ) and j is a morphism of locally
ringed spaces. If (X,OX) is a scheme so is (U,OU ) and j is a morphism of schemes.
We say that (U,OU ) is an open subscheme of (X,OX) and that j is an open im-
mersion. More generally, any morphism j′ : (V,OV )→ (X,OX) that is isomorphic
to a morphism j : (U,OU )→ (X,OX) as above is called an open immersion.

Exercise 83.26.7. Give an example of an affine scheme (X,OX) and an open
U ⊂ X such that (U,OX |U) is not an affine scheme.

Exercise 83.26.8. Given an example of a pair of affine schemes (X,OX), (Y,OY ),
an open subscheme (U,OX |U ) of X and a morphism of schemes (U,OX |U ) →
(Y,OY ) that does not extend to a morphism of schemes (X,OX)→ (Y,OY ).

Exercise 83.26.9. (This is pretty hard.) Given an example of a scheme X, and
open subscheme U ⊂ X and a closed subscheme Z ⊂ U such that Z does not
extend to a closed subscheme of X.

Exercise 83.26.10. Give an example of a scheme X, a field K, and a morphism
of ringed spaces Spec(K)→ X which is NOT a morphism of schemes.

Exercise 83.26.11. Do all the exercises in [Har77, Chapter II], Sections 1 and
2... Just kidding!

Definition 83.26.12. A scheme X is called integral if X is nonempty and for every
nonempty affine open U ⊂ X the ring Γ(U,OX) = OX(U) is a domain.

Exercise 83.26.13. Give an example of a morphism of integral schemes f : X → Y
such that the induced maps OY,f(x) → OX,x are surjective for all x ∈ X, but f is
not a closed immersion.
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Exercise 83.26.14. Give an example of a fibre product X ×S Y such that X and
Y are affine but X ×S Y is not.

Remark 83.26.15. It turns out this cannot happen with S separated. Do you
know why?

Exercise 83.26.16. Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over Q such that Spec(C)×Spec(Q) V is not integral.

Exercise 83.26.17. Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over a field k such that Spec(k′)×Spec(k) V is not reduced for
some finite field extension k ⊂ k′.

Remark 83.26.18. If your scheme is affine then dimension is the same as the
Krull dimension of the underlying ring. So you can use last semesters results to
compute dimension.

83.27. Morphisms

An important question is, given a morphism π : X → S, whether the morphism
has a section or a rational section. Here are some example exercises.

Exercise 83.27.1. Consider the morphism of schemes

π : X = Spec(C[x, t, 1/xt]) −→ S = Spec(C[t]).

(1) Show there does not exist a morphism σ : S → X such that π ◦ σ = idU .
(2) Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X

such that π ◦ σ = idU .

Exercise 83.27.2. Consider the morphism of schemes

π : X = Spec(C[x, t]/(x2 + t)) −→ S = Spec(C[t]).

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 83.27.3. Let A,B,C ∈ C[t] be nonzero polynomials. Consider the
morphism of schemes

π : X = Spec(C[x, y, t]/(A+Bx2 + Cy2)) −→ S = Spec(C[t]).

Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU . (Hint: Symbolically, write x = X/Z, y = Y/Z for some
X,Y, Z ∈ C[t] of degree ≤ d for some d, and work out the condition that this solves
the equation. Then show, using dimension theory, that if d >> 0 you can find
nonzero X,Y, Z solving the equation.)

Remark 83.27.4. Exercise 83.27.3 is a special case of “Tsen’s theorem”. Exercise
83.27.5 shows that the method is limited to low degree equations (conics when the
base and fibre have dimension 1).

Exercise 83.27.5. Consider the morphism of schemes

π : X = Spec(C[x, y, t]/(1 + tx3 + t2y3)) −→ S = Spec(C[t])

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

http://stacks.math.columbia.edu/tag/0290
http://stacks.math.columbia.edu/tag/02EZ
http://stacks.math.columbia.edu/tag/0291
http://stacks.math.columbia.edu/tag/0292
http://stacks.math.columbia.edu/tag/02F0
http://stacks.math.columbia.edu/tag/0294
http://stacks.math.columbia.edu/tag/0295
http://stacks.math.columbia.edu/tag/0296
http://stacks.math.columbia.edu/tag/02F1
http://stacks.math.columbia.edu/tag/0297


4382 83. EXERCISES

Exercise 83.27.6. Consider the schemes

X = Spec(C[{xi}8i=1, s, t]/(1+sx3
1+s2x3

2+tx3
3+stx3

4+s2tx3
5+t2x3

6+st2x3
7+s2t2x3

8))

and

S = Spec(C[s, t])

and the morphism of schemes

π : X −→ S

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 83.27.7. (For the number theorists.) Give an example of a closed sub-
scheme

Z ⊂ Spec

(
Z[x,

1

x(x− 1)(2x− 1)
]

)
such that the morphism Z → Spec(Z) is finite and surjective.

Exercise 83.27.8. If you do not like number theory, you can try the variant where
you look at

Spec

(
Fp[t, x,

1

x(x− t)(tx− 1)
]

)
−→ Spec(Fp[t])

and you try to find a closed subscheme of the top scheme which maps finite surjec-
tively to the bottom one. (There is a theoretical reason for having a finite ground
field here; although it may not be necessary in this particular case.)

Remark 83.27.9. The interpretation of the results of Exercise 83.27.7 and 83.27.8
is that given the morphism X → S all of whose fibres are nonempty, there exists a
finite surjective morphism S′ → S such that the base change XS′ → S′ does have
a section. This is not a general fact, but it holds if the base is the spectrum of a
dedekind ring with finite residue fields at closed points, and the morphism X → S
is flat with geometrically irreducible generic fibre. See Exercise 83.27.10 below for
an example where it doesn’t work.

Exercise 83.27.10. Prove there exist a f ∈ C[x, t] which is not divisible by t− α
for any α ∈ C such that there does not exist any Z ⊂ Spec(C[x, t, 1/f ]) which
maps finite surjectively to Spec(C[t]). (I think that f(x, t) = (xt − 2)(x − t + 3)
works. To show any candidate has the required property is not so easy I think.)

83.28. Tangent Spaces

Definition 83.28.1. For any ring R we denote R[ε] the ring of dual numbers. As
an R-module it is free with basis 1, ε. The ring structure comes from setting ε2 = 0.

Exercise 83.28.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a
point, let s = f(x). Consider the solid commutative diagram

Spec(κ(x)) //

''

**Spec(κ(x)[ε]) //

��

X

��
Spec(κ(s)) // S
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with the curved arrow being the canonical morphism of Spec(κ(x)) into X. If
κ(x) = κ(s) show that the set of dotted arrows which make the diagram commute
are in one to one correspondence with the set of linear maps

Homκ(x)(
mx

m2
x + msOX,x

, κ(x))

In other words: describe such a bijection. (This works more generally if κ(x) ⊃ κ(s)
is a separable algebraic extension.)

Definition 83.28.3. Let f : X → S be a morphism of schemes. Let x ∈ X. We
dub the set of dotted arrows of Exercise 83.28.2 the tangent space of X over S and
we denote it TX/S,x. An element of this space is called a tangent vector of X/S at
x.

Exercise 83.28.4. For any field K prove that the diagram

Spec(K) //

��

Spec(K[ε1])

��
Spec(K[ε2) // Spec(K[ε1, ε2]/(ε1ε2))

is a pushout diagram in the category of schemes. (Here ε2i = 0 as before.)

Exercise 83.28.5. Let f : X → S be a morphism of schemes. Let x ∈ X. Define
addition of tangent vectors, using Exercise 83.28.4 and a suitable morphism

Spec(K[ε]) −→ Spec(K[ε1, ε2]/(ε1ε2)).

Similarly, define scalar multiplication of tangent vectors (this is easier). Show that
TX/S,x becomes a κ(x)-vector space with your constructions.

Exercise 83.28.6. Let k be a field. Consider the structure morphism f : X =
A1
k → Spec(k) = S.

(1) Let x ∈ X be a closed point. What is the dimension of TX/S,x?
(2) Let η ∈ X be the generic point. What is the dimension of TX/S,η?
(3) Consider now X as a scheme over Spec(Z). What are the dimensions of

TX/Z,x and TX/Z,η?

Remark 83.28.7. Exercise 83.28.6 explains why it is necessary to consider the
tangent space of X over S to get a good notion.

Exercise 83.28.8. Consider the morphism of schemes

f : X = Spec(Fp(t)) −→ Spec(Fp(t
p)) = S

Compute the tangent space of X/S at the unique point of X. Isn’t that weird?
What do you think happens if you take the morphism of schemes corresponding to
Fp[t

p]→ Fp[t]?

Exercise 83.28.9. Let k be a field. Compute the tangent space of X/k at the
point x = (0, 0) where X = Spec(k[x, y]/(x2 − y3)).

Exercise 83.28.10. Let f : X → Y be a morphism of schemes over S. Let x ∈ X
be a point. Set y = f(x). Assume that the natural map κ(y) → κ(x) is bijective.
Show, using the definition, that f induces a natural linear map

df : TX/S,x −→ TY/S,y.

Match it with what happens on local rings via Exercise 83.28.2 in case κ(x) = κ(s).
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Exercise 83.28.11. Let k be an algebraically closed field. Let

f : An
k −→ Am

k

(x1, . . . , xn) 7−→ (f1(xi), . . . , fm(xi))

be a morphism of schemes over k. This is given by m polynomials f1, . . . , fm in n
variables. Consider the matrix

A =

(
∂fj
∂xi

)
Let x ∈ An

k be a closed point. Set y = f(x). Show that the map on tangent spaces
TAn

k/k,x
→ TAm

k /k,y
is given by the value of the matrix A at the point x.

83.29. Quasi-coherent Sheaves

Definition 83.29.1. Let X be a scheme. A sheaf F of OX -modules is quasi-
coherent if for every affine open Spec(R) = U ⊂ X the restriction F|U is of the

form M̃ for some R-module M .

It is enough to check this conditions on the members of an affine open covering of
X. See Schemes, Section 25.24 for more results.

Definition 83.29.2. Let X be a topological space. Let x, x′ ∈ X. We say x is a
specialization of x′ if and only if x ∈ {x′}.

Exercise 83.29.3. Let X be a scheme. Let x, x′ ∈ X. Let F be a quasi-coherent
sheaf of OX -modules. Suppose that (a) x is a specialization of x′ and (b) Fx′ 6= 0.
Show that Fx 6= 0.

Exercise 83.29.4. Find an example of a scheme X, points x, x′ ∈ X, a sheaf of
OX -modules F such that (a) x is a specialization of x′ and (b) Fx′ 6= 0 and Fx = 0.

Definition 83.29.5. A scheme X is called locally Noetherian if and only if for
every point x ∈ X there exists an affine open Spec(R) = U ⊂ X such that R is
Noetherian. A scheme is Noetherian if it is locally Noetherian and quasi-compact.

If X is locally Noetherian then any affine open of X is the spectrum of a Noetherian
ring, see Properties, Lemma 27.5.2.

Definition 83.29.6. Let X be a locally Noetherian scheme. Let F be a quasi-
coherent sheaf of OX -modules. We say F is coherent if for every point x ∈ X there

exists an affine open Spec(R) = U ⊂ X such that F|U is isomorphic to M̃ for some
finite R-module M .

Exercise 83.29.7. Let X = Spec(R) be an affine scheme.

(1) Let f ∈ R. Let G be a quasi-coherent sheaf of OD(f)-modules on the open
subscheme D(f). Show that G = F|U for some quasi-coherent sheaf of
OX -modules F .

(2) Let I ⊂ R be an ideal. Let i : Z → X be the closed subscheme of X
corresponding to I. Let G be a quasi-coherent sheaf of OZ-modules on
the closed subscheme Z. Show that G = i∗F for some quasi-coherent sheaf
of OX -modules F . (Why is this silly?)

(3) Assume that R is Noetherian. Let f ∈ R. Let G be a coherent sheaf
of OD(f)-modules on the open subscheme D(f). Show that G = F|U for
some coherent sheaf of OX -modules F .
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Remark 83.29.8. If U → X is a quasi-compact immersion then any quasi-coherent
sheaf on U is the restriction of a quasi-coherent sheaf on X. If X is a Noetherian
scheme, and U ⊂ X is open, then any coherent sheaf on U is the restriction of a
coherent sheaf on X. Of course the exercise above is easier, and shouldn’t use these
general facts.

83.30. Proj and projective schemes

Exercise 83.30.1. Give examples of graded rings S such that

(1) Proj(S) is affine and nonempty, and
(2) Proj(S) is integral, nonempty but not isomorphic to Pn

A for any n ≥ 0,
any ring A.

Exercise 83.30.2. Give an example of a nonconstant morphism of schemes P1
C →

P5
C over Spec(C).

Exercise 83.30.3. Give an example of an isomorphism of schemes

P1
C → Proj(C[X0, X1, X2]/(X2

0 +X2
1 +X2

2 ))

Exercise 83.30.4. Give an example of a morphism of schemes f : X → A1
C =

Spec(C[T ]) such that the (scheme theoretic) fibre Xt of f over t ∈ A1
C is (a)

isomorphic to P1
C when t is a closed point not equal to 0, and (b) not isomorphic

to P1
C when t = 0. We will call X0 the special fibre of the morphism. This can be

done in many, many ways. Try to give examples that satisfy (each of) the following
additional restraints (unless it isn’t possible):

(1) Can you do it with special fibre projective?
(2) Can you do it with special fibre irreducible and projective?
(3) Can you do it with special fibre integral and projective?
(4) Can you do it with special fibre smooth and projective?
(5) Can you do it with f a flat morphism? This just means that for every

affine open Spec(A) ⊂ X the induced ring map C[t]→ A is flat, which in
this case means that any nonzero polynomial in t is a nonzerodivisor on
A.

(6) Can you do it with f a flat and projective morphism?
(7) Can you do it with f flat, projective and special fibre reduced?
(8) Can you do it with f flat, projective and special fibre irreducible?
(9) Can you do it with f flat, projective and special fibre integral?

What do you think happens when you replace P1
C with another variety over C?

(This can get very hard depending on which of the variants above you ask for.)

Exercise 83.30.5. Let n ≥ 1 be any positive integer. Give an example of a
surjective morphism X → Pn

C with X affine.

Exercise 83.30.6. Maps of Proj. Let R and S be graded rings. Suppose we have
a ring map

ψ : R→ S

and an integer e ≥ 1 such that ψ(Rd) ⊂ Sde for all d ≥ 0. (By our conventions this
is not a homomorphism of graded rings, unless e = 1.)

(1) For which elements p ∈ Proj(S) is there a well-defined corresponding point
in Proj(R)? In other words, find a suitable open U ⊂ Proj(S) such that
ψ defines a continuous map rψ : U → Proj(R).
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(2) Give an example where U 6= Proj(S).
(3) Give an example where U = Proj(S).
(4) (Do not write this down.) Convince yourself that the continuous map

U → Proj(R) comes canonically with a map on sheaves so that rψ is a
morphism of schemes:

Proj(S) ⊃ U −→ Proj(R).

(5) What can you say about this map if R =
⊕

d≥0 Sde (as a graded ring with

Se, S2e, etc in degree 1, 2, etc) and ψ is the inclusion mapping?

Notation. Let R be a graded ring as above and let n ≥ 0 be an integer. Let
X = Proj(R). Then there is a unique quasi-coherent OX -module OX(n) on X such
that for every homogeneous element f ∈ R of positive degree we have OX |D+(f) is
the quasi-coherent sheaf associated to the R(f) = (Rf )0-module (Rf )n (=elements
homogeneous of degree n in Rf = R[1/f ]). See [Har77, page 116+]. Note that
there are natural maps

OX(n1)⊗OX OX(n2) −→ OX(n1 + n2)

Exercise 83.30.7. Pathologies in Proj. Give examples of R as above such that

(1) OX(1) is not an invertible OX -module.
(2) OX(1) is invertible, but the natural map OX(1)⊗OX OX(1)→ OX(2) is

NOT an isomorphism.

Exercise 83.30.8. Let S be a graded ring. Let X = Proj(S). Show that any finite
set of points of X is contained in a standard affine open.

Exercise 83.30.9. Let S be a graded ring. Let X = Proj(S). Let Z,Z ′ ⊂ X be
two closed subschemes. Let ϕ : Z → Z ′ be an isomorphism. Assume Z ∩ Z ′ = ∅.
Show that for any z ∈ Z there exists an affine open U ⊂ X such that z ∈ U ,
ϕ(z) ∈ U and ϕ(Z ∩U) = Z ′ ∩U . (Hint: Use Exercise 83.30.8 and something akin
to Schemes, Lemma 25.11.5.)

83.31. Morphisms from surfaces to curves

Exercise 83.31.1. Let R be a ring. Let R → k be a map from R to a field. Let
n ≥ 0. Show that

MorSpec(R)(Spec(k),Pn
R) = (kn+1 \ {0})/k∗

where k∗ acts via scalar multiplication on kn+1. From now on we denote (x0 :
. . . : xn) the morphism Spec(k)→ Pn

k corresponding to the equivalence class of the
element (x0, . . . , xn) ∈ kn+1 \ {0}.

Exercise 83.31.2. Let k be a field. Let Z ⊂ P2
k be a irreducible closed subscheme.

Show that either (a) Z is a closed point, or (b) there exists an homogeneous ir-
reducible F ∈ k[X0, X1, X2] of degree > 0 such that Z = V+(F ), or (c) Z = P2

k.
(Hint: Look on a standard affine open.)

Exercise 83.31.3. Let k be a field. Let Z1, Z2 ⊂ P2
k be irreducible closed sub-

schemes of the form V+(F ) for some homogeneous irreducible Fi ∈ k[X0, X1, X2]
of degree > 0. Show that Z1 ∩ Z2 is not empty. (Hint: Use dimension theory to
estimate the dimension of the local ring of k[X0, X1, X2]/(F1, F2) at 0.)
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Exercise 83.31.4. Show there does not exist a nonconstant morphism of schemes
P2

C → P1
C over Spec(C). Here a constant morphism is one whose image is a single

point. (Hint: If the morphism is not constant consider the fibres over 0 and ∞ and
argue that they have to meet to get a contradiction.)

Exercise 83.31.5. Let k be a field. Suppose that X ⊂ P3
k is a closed subscheme

given by a single homogeneous equation F ∈ k[X0, X1, X2, X3]. In other words,

X = Proj(k[X0, X1, X2, X3]/(F )) ⊂ P3
k

as explained in the course. Assume that

F = X0G+X1H

for some homogeneous polynomials G,H ∈ k[X0, X1, X2, X3] of positive degree.
Show that if X0, X1, G,H have no common zeros then there exists a nonconstant
morphism

X −→ P1
k

of schemes over Spec(k) which on field points (see Exercise 83.31.1) looks like
(x0 : x1 : x2 : x3) 7→ (x0 : x1) whenever x0 or x1 is not zero.

83.32. Invertible sheaves

Definition 83.32.1. Let X be a locally ringed space. An invertible OX-module on
X is a sheaf of OX -modules L such that every point has an open neighbourhood
U ⊂ X such that L|U is isomorphic to OU as OU -module. We say that L is trivial
if it is isomorphic to OX as a OX -module.

Exercise 83.32.2. General facts.

(1) Show that an invertible OX -module on a scheme X is quasi-coherent.
(2) Suppose X → Y is a morphism of ringed spaces, and L an invertible
OY -module. Show that f∗L is an invertible OX module.

Exercise 83.32.3. Algebra.

(1) Show that an invertible OX -module on an affine scheme Spec(A) corre-
sponds to an A-module M which is (i) finite, (ii) projective, (iii) locally
free of rank 1, and hence (iv) flat, and (v) finitely presented. (Feel free to
quote things from last semesters course; or from algebra books.)

(2) Suppose that A is a domain and that M is a module as in (a). Show
that M is isomorphic as an A-module to an ideal I ⊂ A such that IAp is
principal for every prime p.

Definition 83.32.4. Let R be a ring. An invertible module M is an R-module M

such that M̃ is an invertible sheaf on the spectrum of R. We say M is trivial if
M ∼= R as an R-module.

In other words, M is invertible if and only if it satisfies all of the following conditions:
it is flat, of finite presentation, projective, and locally free of rank 1. (Of course it
suffices for it to be locally free of rank 1).

Exercise 83.32.5. Simple examples.

(1) Let k be a field. Let A = k[x]. Show that X = Spec(A) has only trivial
invertible OX -modules. In other words, show that every invertible A-
module is free of rank 1.
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(2) Let A be the ring

A = {f ∈ k[x] | f(0) = f(1)}.

Show there exists a nontrivial invertible A-module, unless k = F2. (Hint:
Think about Spec(A) as identifying 0 and 1 in A1

k = Spec(k[x]).)
(3) Same question as in (2) for the ring A = k[x2, x3] ⊂ k[x] (except now

k = F2 works as well).

Exercise 83.32.6. Higher dimensions.

(1) Prove that every invertible sheaf on two dimensional affine space is trivial.
More precisely, let A2

k = Spec(k[x, y]) where k is a field. Show that every
invertible sheaf on A2

k is trivial. (Hint: One way to do this is to consider
the corresponding module M , to look at M ⊗k[x,y] k(x)[y], and then use
Exercise 83.32.5 (1) to find a generator for this; then you still have to
think. Another way to is to use Exercise 83.32.3 and use what we know
about ideals of the polynomial ring: primes of height one are generated
by an irreducible polynomial; then you still have to think.)

(2) Prove that every invertible sheaf on any open subscheme of two dimen-
sional affine space is trivial. More precisely, let U ⊂ A2

k be an open
subscheme where k is a field. Show that every invertible sheaf on U is
trivial. Hint: Show that every invertible sheaf on U extends to one on
A2
k. Not easy; but you can find it in [Har77].

(3) Find an example of a nontrivial invertible sheaf on a punctured cone over a
field. More precisely, let k be a field and let C = Spec(k[x, y, z]/(xy−z2)).
Let U = C \ {(x, y, z)}. Find a nontrivial invertible sheaf on U . Hint: It
may be easier to compute the group of isomorphism classes of invertible
sheaves on U than to just find one. Note that U is covered by the opens
Spec(k[x, y, z, 1/x]/(xy−z2)) and Spec(k[x, y, z, 1/y]/(xy−z2)) which are
“easy” to deal with.

Definition 83.32.7. Let X be a locally ringed space. The Picard group of X
is the set Pic(X) of isomorphism classes of invertible OX -modules with addition
given by tensor product. See Modules, Definition 17.21.6. For a ring R we set
Pic(R) = Pic(Spec(R)).

Exercise 83.32.8. Let R be a ring.

(1) Show that if R is a Noetherian normal domain, then Pic(R) = Pic(R[t]).
[Hint: There is a map R[t] → R, t 7→ 0 which is a left inverse to the
map R → R[t]. Hence it suffices to show that any invertible R[t]-module
M such that M/tM ∼= R is free of rank 1. Let K = f.f.(R). Pick a
trivialization K[t] → M ⊗R[t] K[t] which is possible by Exercise 83.32.5
(1). Adjust it so it agrees with the trivialization of M/tM above. Show
that it is in fact a trivialization of M over R[t] (this is where normality
comes in).]

(2) Let k be a field. Show that Pic(k[x2, x3, t]) 6= Pic(k[x2, x3]).

83.33. Čech Cohomology

Exercise 83.33.1. Čech cohomology. Here k is a field.
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(1) Let X be a scheme with an open covering U : X = U1 ∪ U2, with U1 =
Spec(k[x]), U2 = Spec(k[y]) with U1∩U2 = Spec(k[z, 1/z]) and with open
immersions U1 ∩U2 → U1 resp. U1 ∩U2 → U2 determined by x 7→ z resp.
y 7→ z (and I really mean this). (We’ve seen in the lectures that such an
X exists; it is the affine line zith zero doubled.) Compute Ȟ1(U ,O); eg.
give a basis for it as a k-vectorspace.

(2) For each element in Ȟ1(U ,O) construct an exact sequence of sheaves of
OX -modules

0→ OX → E → OX → 0

such that the boundary δ(1) ∈ Ȟ1(U ,O) equals the given element. (Part
of the problem is to make sense of this. See also below. It is also OK to
show abstractly such a thing has to exist.)

Definition 83.33.2. (Definition of delta.) Suppose that

0→ F1 → F2 → F3 → 0

is a short exact sequence of abelian sheaves on any topological space X. The
boundary map δ : H0(X,F3) → Ȟ1(X,F1) is defined as follows. Take an element
τ ∈ H0(X,F3). Choose an open covering U : X =

⋃
i∈I Ui such that for each i

there exists a section τ̃i ∈ F2 lifting the restriction of τ to Ui. Then consider the
assignment

(i0, i1) 7−→ τ̃i0 |Ui0i1 − τ̃i1 |Ui0i1 .

This is clearly a 1-coboundary in the Čech complex Č∗(U ,F2). But we observe that
(thinking of F1 as a subsheaf of F2) the RHS always is a section of F1 over Ui0i1 .
Hence we see that the assignment defines a 1-cochain in the complex Č∗(U ,F2).
The cohomology class of this 1-cochain is by definition δ(τ).

83.34. Divisors

We collect all relevant definitions here in one spot for convenience.

Definition 83.34.1. Throughout, let S be any scheme and let X be a Noetherian,
integral scheme.

(1) A Weil divisor on X is a formal linear combination Σni[Zi] of prime
divisors Zi with integer coefficients.

(2) A prime divisor is a closed subscheme Z ⊂ X, which is integral with
generic point ξ ∈ Z such that OX,ξ has dimension 1. We will use the
notation OX,Z = OX,ξ when ξ ∈ Z ⊂ X is as above. Note that OX,Z ⊂
K(X) is a subring of the function field of X.

(3) The Weil divisor associated to a rational function f ∈ K(X)∗ is the sum
ΣvZ(f)[Z]. Here vZ(f) is defined as follows
(a) If f ∈ O∗X,Z then vZ(f) = 0.

(b) If f ∈ OX,Z then

vZ(f) = lengthOX,Z (OX,Z/(f)).

(c) If f = a
b with a, b ∈ OX,Z then

vZ(f) = lengthOX,Z (OX,Z/(a))− lengthOX,Z (OX,Z/(b)).
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(4) An effective Cartier divisor on a scheme S is a closed subscheme D ⊂ S
such that every point d ∈ D has an affine open neighbourhood Spec(A) =
U ⊂ S in S so that D ∩ U = Spec(A/(f)) with f ∈ A a nonzerodivisor.

(5) The Weil divisor [D] associated to an effective Cartier divisor D ⊂ X of
our Noetherian integral scheme X is defined as the sum ΣvZ(D)[Z] where
vZ(D) is defined as follows
(a) If the generic point ξ of Z is not in D then vZ(D) = 0.
(b) If the generic point ξ of Z is in D then

vZ(D) = lengthOX,Z (OX,Z/(f))

where f ∈ OX,Z = OX,ξ is the nonzerodivisor which defines D in an
affine neighbourhood of ξ (as in (4) above).

(6) Let S be a scheme. The sheaf of total quotient rings KS is the sheaf
of OS-algebras which is the sheafification of the pre-sheaf K′ defined as
follows. For U ⊂ S open we set K′(U) = S−1

U OS(U) where SU ⊂ OS(U)
is the multiplicative subset consisting of sections f ∈ OS(U) such that the
germ of f in OS,u is a nonzerodivisor for every u ∈ U . In particular the
elements of SU are all nonzerodivisors. Thus OS is a subsheaf of KS , and
we get a short exact sequence

0→ O∗S → K∗S → K∗S/O∗S → 0.

(7) A Cartier divisor on a scheme S is a global section of the quotient sheaf
K∗S/O∗S .

(8) The Weil divisor associated to a Cartier divisor τ ∈ Γ(X,K∗X/O∗X) over
our Noetherian integral scheme X is the sum ΣvZ(τ)[Z] where vZ(τ) is
defined as by the following recipe
(a) If the germ of τ at the generic point ξ of Z is zero – in other words

the image of τ in the stalk (K∗/O∗)ξ is “zero” – then vZ(τ) = 0.
(b) Find an affine open neighbourhood Spec(A) = U ⊂ X so that τ |U is

the image of a section f ∈ K(U) and moreover f = a/b with a, b ∈ A.
Then we set

vZ(f) = lengthOX,Z (OX,Z/(a))− lengthOX,Z (OX,Z/(b)).

Remarks 83.34.2. Here are some trivial remarks.

(1) On a Noetherian integral scheme X the sheaf KX is constant with value
the function field K(X).

(2) To make sense out of the definitions above one needs to show that

lengthO(O/(ab)) = lengthO(O/(a)) + lengthO(O/(b))
for any pair (a, b) of nonzero elements of a Noetherian 1-dimensional local
domain O. This will be done in the lectures.

Exercise 83.34.3. (On any scheme.) Describe how to assign a Cartier divisor to
an effective Cartier divisor.

Exercise 83.34.4. (On an integral scheme.) Describe how to assign a Cartier
divisor D to a rational function f such that the Weil divisor associated to D and
to f agree. (This is silly.)

Exercise 83.34.5. Give an example of a Weil divisor on a variety which is not the
Weil divisor associated to any Cartier divisor.
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Exercise 83.34.6. Give an example of a Weil divisor D on a variety which is not
the Weil divisor associated to any Cartier divisor but such that nD is the Weil
divisor associated to a Cartier divisor for some n > 1.

Exercise 83.34.7. Give an example of a Weil divisor D on a variety which is not
the Weil divisor associated to any Cartier divisor and such that nD is NOT the
Weil divisor associated to a Cartier divisor for any n > 1. (Hint: Consider a cone,
for example X : xy − zw = 0 in A4

k. Try to show that D = [x = 0, z = 0] works.)

Exercise 83.34.8. On a separated scheme X of finite type over a field: Give an
example of a Cartier divisor which is not the difference of two effective Cartier
divisors. Hint: Find some X which does not have any nonempty effective Cartier
Cartier divisors for example the scheme constructed in [Har77, III Exercise 5.9].
There is even an example with X a variety – namely the variety of Exercise 83.34.9.

Exercise 83.34.9. Example of a nonprojective proper variety. Let k be a field. Let
L ⊂ P3

k be a line and let C ⊂ P3
k be a nonsingular conic. Assume that C ∩ L = ∅.

Choose an isomorphism ϕ : L→ C. Let X be the k-variety obtained by glueing C
to L via ϕ. In other words there is a surjective proper birational morphism

π : P3
k −→ X

and an open U ⊂ X such that π : π−1(U) → U is an isomorphism, π−1(U) =
P3
k \ (L ∪ C) and such that π|L = π|C ◦ ϕ. (These conditions do not yet uniquely

define X. In order to do this you need to specify the structure sheaf of X along
points of Z = X \ U .) Show X exists, is a proper variety, but is not projective.
(Hint: For existence use the result of Exercise 83.30.9. For non-projectivity use
that Pic(P3

k) = Z to show that X cannot have an ample invertible sheaf.)

83.35. Differentials

Definitions and results. Kähler differentials.

(1) Let R → A be a ring map. The module of Kähler differentials of A over
R is denoted ΩA/R. It is generated by the elements da, a ∈ A subject to
the relations:

d(a1 + a2) = da1 + da2, d(a1a2) = a1da2 + a2da1, dr = 0

The canonical universal R-derivation d : A→ ΩA/R maps a 7→ da.
(2) Consider the short exact sequence

0→ I → A⊗R A→ A→ 0

which defines the ideal I. There is a canonical derivation d : A → I/I2

which maps a to the class of a ⊗ 1 − 1 ⊗ a. This is another presentation
of the module of derivations of A over R, in other words

(I/I2,d) ∼= (ΩA/R,d).

(3) For multiplicative subsets SR ⊂ R and SA ⊂ A such that SR maps into
SA we have

ΩS−1
A A/S−1

R R = S−1
A ΩA/R.

(4) If A is a finitely presented R-algebra then ΩA/R is a finitely presented
A-module. Hence in this case the fitting ideals of ΩA/R are defined. (See
exercise set 6 of last semester.)
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(5) Let f : X → S be a morphism of schemes. There is a quasi-coherent sheaf
of OX -modules ΩX/S and a OS-linear derivation

d : OX −→ ΩX/S

such that for any affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with
f(U) ⊂ V we have

Γ(Spec(A),ΩX/S) = ΩA/R

compatibly with d.

Exercise 83.35.1. Let k[ε] be the ring of dual numbers over the field k, i.e., ε2 = 0.

(1) Consider the ring map

R = k[ε]→ A = k[x, ε]/(εx)

Show that the fitting ideals of ΩA/R are (starting with the zeroth fitting
ideal)

(ε), A,A, . . .

(2) Consider the map R = k[t] → A = k[x, y, t]/(x(y − t)(y − 1), x(x − t)).
Show that the fitting ideals of of ΩA/R in A are (assume characteristic k
is zero for simplicity)

x(2x− t)(2y − t− 1)A, (x, y, t) ∩ (x, y − 1, t), A, A, . . .

So the 0-the fitting ideal is cut out by a single element of A, the 1st fitting
ideal defines two closed points of Spec(A), and the others are all trivial.

(3) Consider the map R = k[t] → A = k[x, y, t]/(xy − tn). Compute the
fitting ideals of ΩA/R.

Remark 83.35.2. The kth fitting ideal of ΩX/S is commonly used to define the
singular scheme of the morphism X → S when X has relative dimension k over
S. But as part (a) shows, you have to be careful doing this when your family does
not have “constant” fibre dimension, e.g., when it is not flat. As part (b) shows,
flatness doesn’t guarantee it works either (and yes this is a flat family). In “good
cases” – such as in (c) – for families of curves you expect the 0-th fitting ideal to
be zero and the 1st fitting ideal to define (scheme-theoretically) the singular locus.

Exercise 83.35.3. Suppose that R is a ring and

A = k[x1, . . . , xn]/(f1, . . . , fn).

Note that we are assuming that A is presented by the same number of equations
as variables. Thus the matrix of partial derivatives

(∂fi/∂xj)

is n × n, i.e., a square matrix. Assume that its determinant is invertible as an
element in A. Note that this is exactly the condition that says that ΩA/R = (0)
in this case of n-generators and n relations. Let π : B′ → B be a surjection of
R-algebras whose kernel J has square zero (as an ideal in B′). Let ϕ : A → B
be a homomorphism of R-algebras. Show there exists a unique homomorphism of
R-algebras ϕ′ : A→ B′ such that ϕ = π ◦ ϕ′.

Exercise 83.35.4. Find a generalization of the result of the previous exercise to
the case where A = R[x, y]/(f).
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83.36. Schemes, Final Exam, Fall 2007

These were the questions in the final exam of a course on Schemes, in the Spring
of 2007 at Columbia University.

Exercise 83.36.1 (Definitions). Provide definitions of the following concepts.

(1) X is a scheme
(2) the morphism of schemes f : X → Y is finite
(3) the morphisms of schemes f : X → Y is of finite type
(4) the scheme X is Noetherian
(5) the OX -module L on the scheme X is invertible
(6) the genus of a nonsingular projective curve over an algebraically closed

field

Exercise 83.36.2. Let X = Spec(Z[x, y]), and let F be a quasi-coherent OX -
module. Suppose that F is zero when restricted to the standard affine open D(x).

(1) Show that every global section s of F is killed by some power of x, i.e.,
xns = 0 for some n ∈ N.

(2) Do you think the same is true if we do not assume that F is quasi-coherent?

Exercise 83.36.3. Suppose that X → Spec(R) is a proper morphism and that R
is a discrete valuation ring with residue field k. Suppose that X ×Spec(R) Spec(k)
is the empty scheme. Show that X is the empty scheme.

Exercise 83.36.4. Consider the projective1 variety

P1 ×P1 = P1
C ×Spec(C) P1

C

over the field of complex numbers C. It is covered by four affine pieces, corre-
sponding to pairs of standard affine pieces of P1

C. For example, suppose we use
homogeneous coordinates X0, X1 on the first factor and Y0, Y1 on the second. Set
x = X1/X0, and y = Y1/Y0. Then the 4 affine open pieces are the spectra of the
rings

C[x, y], C[x−1, y], C[x, y−1], C[x−1, y−1].

Let X ⊂ P1×P1 be the closed subscheme which is the closure of the closed subset
of the first affine piece given by the equation

y3(x4 + 1) = x4 − 1.

(1) Show that X is contained in the union of the first and the last of the 4
affine open pieces.

(2) Show that X is a nonsingular projective curve.
(3) Consider the morphism pr2 : X → P1 (projection onto the first factor).

On the first affine piece it is the map (x, y) 7→ x. Briefly explain why it
has degree 3.

(4) Compute the ramification points and ramification indices for the map
pr2 : X → P1.

(5) Compute the genus of X.

Exercise 83.36.5. Let X → Spec(Z) be a morphism of finite type. Suppose that
there is an infinite number of primes p such that X×Spec(Z) Spec(Fp) is not empty.

1The projective embedding is ((X0, X1), (Y0, Y1)) 7→ (X0Y0, X0Y1, X1Y0, X1Y1) in other
words (x, y) 7→ (1, y, x, xy).
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(1) Show that X ×Spec(Z) Spec(Q) is not empty.
(2) Do you think the same is true if we replace the condition “finite type” by

the condition “locally of finite type”?

83.37. Schemes, Final Exam, Spring 2009

These were the questions in the final exam of a course on Schemes, in the Spring
of 2009 at Columbia University.

Exercise 83.37.1. Let X be a Noetherian scheme. Let F be a coherent sheaf on
X. Let x ∈ X be a point. Assume that Supp(F) = {x}.

(1) Show that x is a closed point of X.
(2) Show that H0(X,F) is not zero.
(3) Show that F is generated by global sections.
(4) Show that Hp(X,F) = 0 for p > 0.

Remark 83.37.2. Let k be a field. Let P2
k = Proj(k[X0, X1, X2]). Any invertible

sheaf on P2
k is isomorphic to OP2

k
(n) for some n ∈ Z. Recall that

Γ(P2
k,OP2

k
(n)) = k[X0, X1, X2]n

is the degree n part of the polynomial ring. For a quasi-coherent sheaf F on P2
k set

F(n) = F ⊗O
P2
k

OP2
k
(n) as usual.

Exercise 83.37.3. Let k be a field. Let E be a vector bundle on P2
k, i.e., a finite

locally free OP2
k
-module. We say E is split if E is isomorphic to a direct sum

invertible OP2
k
-modules.

(1) Show that E is split if and only if E(n) is split.
(2) Show that if E is split then H1(P2

k, E(n)) = 0 for all n ∈ Z.
(3) Let

ϕ : OP2
k
−→ OP2

k
(1)⊕OP2

k
(1)⊕OP2

k
(1)

be given by linear forms L0, L1, L2 ∈ Γ(P2
k,OP2

k
(1)). Assume Li 6= 0 for

some i. What is the condition on L0, L1, L2 such that the cokernel of ϕ
is a vector bundle? Why?

(4) Given an example of such a ϕ.
(5) Show that Coker(ϕ) is not split (if it is a vector bundle).

Remark 83.37.4. Freely use the following facts on dimension theory (and add
more if you need more).

(1) The dimension of a scheme is the supremum of the length of chains of
irreducible closed subsets.

(2) The dimension of a finite type scheme over a field is the maximum of the
dimensions of its affine opens.

(3) The dimension of a Noetherian scheme is the maximum of the dimensions
of its irreducible components.

(4) The dimension of an affine scheme coincides with the dimension of the
corresponding ring.

(5) Let k be a field and let A be a finite type k-algebra. If A is a domain, and
x 6= 0, then dim(A) = dim(A/xA) + 1.
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Exercise 83.37.5. Let k be a field. Let X be a projective, reduced scheme over
k. Let f : X → P1

k be a morphism of schemes over k. Assume there exists an
integer d ≥ 0 such that for every point t ∈ P1

k the fibre Xt = f−1(t) is irreducible
of dimension d. (Recall that an irreducible space is not empty.)

(1) Show that dim(X) = d+ 1.
(2) Let X0 ⊂ X be an irreducible component of X of dimension d+ 1. Prove

that for every t ∈ P1
k the fibre X0,t has dimension d.

(3) What can you conclude about Xt and X0,t from the above?
(4) Show that X is irreducible.

Remark 83.37.6. Given a projective scheme X over a field k and a coherent sheaf
F on X we set

χ(X,F) =
∑

i≥0
(−1)i dimkH

i(X,F).

Exercise 83.37.7. Let k be a field. Write P3
k = Proj(k[X0, X1, X2, X3]). Let

C ⊂ P3
k be a type (5, 6) complete intersection curve. This means that there exist

F ∈ k[X0, X1, X2, X3]5 and G ∈ k[X0, X1, X2, X3]6 such that

C = Proj(k[X0, X1, X2, X3]/(F,G))

is a variety of dimension 1. (Variety implies reduced and irreducible, but feel free
to assume C is nonsingular if you like.) Let i : C → P3

k be the corresponding closed
immersion. Being a complete intersection also implies that

0 // OP3
k
(−11)

−G
F


// OP3

k
(−5)⊕OP3

k
(−6)

(F,G) // OP3
k

// i∗OC // 0

is an exact sequence of sheaves. Please use these facts to:

(1) compute χ(C, i∗OP3
k
(n)) for any n ∈ Z, and

(2) compute the dimension of H1(C,OC).

Exercise 83.37.8. Let k be a field. Consider the rings

A = k[x, y]/(xy)

B = k[u, v]/(uv)

C = k[t, t−1]× k[s, s−1]

and the k-algebra maps

A −→ C, x 7→ (t, 0), y 7→ (0, s)
B −→ C, u 7→ (t−1, 0), v 7→ (0, s−1)

It is a true fact that these maps induce isomorphisms Ax+y → C and Bu+v → C.
Hence the maps A→ C and B → C identify Spec(C) with open subsets of Spec(A)
and Spec(B). Let X be the scheme obtained by glueing Spec(A) and Spec(B) along
Spec(C):

X = Spec(A)
∐

Spec(C)
Spec(B).

As we saw in the course such a scheme exists and there are affine opens Spec(A) ⊂ X
and Spec(B) ⊂ X whose overlap is exactly Spec(C) identified with an open of each
of these using the maps above.

(1) Why is X separated?

http://stacks.math.columbia.edu/tag/02B0
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(2) Why is X of finite type over k?
(3) Compute H1(X,OX), or what is its dimension?
(4) What is a more geometric way to describe X?

83.38. Schemes, Final Exam, Fall 2010

These were the questions in the final exam of a course on Schemes, in the Fall of
2010 at Columbia University.

Exercise 83.38.1 (Definitions). Provide definitions of the following concepts.

(1) a separated scheme,
(2) a quasi-compact morphism of schemes,
(3) an affine morphism of schemes,
(4) a multiplicative subset of a ring,
(5) a Noetherian scheme,
(6) a variety.

Exercise 83.38.2. Prime avoidance.

(1) Let A be a ring. Let I ⊂ A be an ideal and let q1, q2 be prime ideals such
that I 6⊂ qi. Show that I 6⊂ q1 ∪ q2.

(2) What is a geometric interpretation of (1)?
(3) Let X = Proj(S) for some graded ring S. Let x1, x2 ∈ X. Show that

there exists a standard open D+(F ) which contains both x1 and x2.

Exercise 83.38.3. Why is a composition of affine morphisms affine?

Exercise 83.38.4 (Examples). Give examples of the following:

(1) A reducible projective scheme over a field k.
(2) A scheme with 100 points.
(3) A non-affine morphism of schemes.

Exercise 83.38.5. Chevalley’s theorem and the Hilbert Nullstellensatz.

(1) Let p ⊂ Z[x1, . . . , xn] be a maximal ideal. What does Chevalley’s theorem
imply about p ∩ Z?

(2) In turn, what does the Hilbert Nullstellensatz imply about κ(p)?

Exercise 83.38.6. Let A be a ring. Let S = A[X] as a graded A-algebra where
X has degree 1. Show that Proj(S) ∼= Spec(A) as schemes over A.

Exercise 83.38.7. Let A → B be a finite ring map. Show that Spec(B) is a
H-projective scheme over Spec(A).

Exercise 83.38.8. Give an example of a scheme X over a field k such that X is
irreducible and such that for some finite extension k ⊂ k the base change Xk′ =
X ×Spec(k) Spec(k′) is connected but reducible.

83.39. Schemes, Final Exam, Spring 2011

These were the questions in the final exam of a course on Schemes, in the Spring
of 2011 at Columbia University.

Exercise 83.39.1 (Definitions). Provide definitions of the italicized concepts.

(1) a separated scheme,
(2) a universally closed morphism of schemes,

http://stacks.math.columbia.edu/tag/069R
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http://stacks.math.columbia.edu/tag/06A0


83.39. SCHEMES, FINAL EXAM, SPRING 2011 4397

(3) A dominates B for local rings A,B contained in a common field,
(4) the dimension of a scheme X,
(5) the codimension of an irreducible closed subscheme Y of a scheme X,

Exercise 83.39.2 (Results). State something formally equivalent to the fact dis-
cussed in the course.

(1) The valuative criterion of properness for a morphism X → Y of varieties
for example.

(2) The relationship between dim(X) and the function field k(X) of X for a
variety X over a field k.

(3) Fill in the blank: The category of nonsingular projective curves over k
and nonconstant morphisms is anti-equivalent to . . . . . . . . ..

(4) Noether normalization.
(5) Jacobian criterion.

Exercise 83.39.3. Let k be a field. Let F ∈ k[X0, X1, X2] be a homogeneous form
of degree d. Assume that C = V+(F ) ⊂ P2

k is a smooth curve over k. Denote
i : C → P2

k the corresponding closed immersion.

(1) Show that there is a short exact sequence

0→ OP2
k
(−d)→ OP2

k
→ i∗OC → 0

of coherent sheaves on P2
k: tell me what the maps are and briefly why it

is exact.
(2) Conclude that H0(C,OC) = k.
(3) Compute the genus of C.
(4) Assume now that P = (0 : 0 : 1) is not on C. Prove that π : C → P1

k

given by (a0 : a1 : a2) 7→ (a0 : a1) has degree d.
(5) Assume k is algebraically closed, assume all ramification indices (the “ei”)

are 1 or 2, and assume the characteristic of k is not equal to 2. How many
ramification points does π : C → P1

k have?
(6) In terms of F , what do you think is a set of equations of the set of

ramification points of π?
(7) Can you guess KC?

Exercise 83.39.4. Let k be a field. Let X be a “triangle” over k, i.e., you get X by
glueing three copies of A1

k to each other by identifying 0 on the first copy to 1 on the
second copy, 0 on the second copy to 1 on the first copy, and 0 on the third copy to 1
on the first copy. It turns out that X is isomorphic to Spec(k[x, y]/(xy(x+y+1)));
feel free to use this. Compute the Picard group of X.

Exercise 83.39.5. Let k be a field. Let π : X → Y be a finite birational morphism
of curves with X a projective nonsingular curve over k. It follows from the material
in the course that Y is a proper curve and that π is the normalization morphism
of Y . We have also seen in the course that there exists a dense open V ⊂ Y such
that U = π−1(V ) is a dense open in X and π : U → V is an isomorphism.

(1) Show that there exists an effective Cartier divisor D ⊂ X such that D ⊂ U
and such that OX(D) is ample on X.

(2) Let D be as in (1). Show that E = π(D) is an effective Cartier divisor on
Y .

(3) Briefly indicate why

http://stacks.math.columbia.edu/tag/06A1
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(a) the map OY → π∗OX has a coherent cokernel Q which is supported
in Y \ V , and

(b) for every n there is a corresponding map OY (nE) → π∗OX(nD)
whose cokernel is isomorphic to Q.

(4) Show that dimkH
0(X,OX(nD)) − dimkH

0(Y,OY (nE)) is bounded (by
what?) and conclude that the invertible sheaf OY (nE) has lots of sections
for large n (why?).

83.40. Schemes, Final Exam, Fall 2011

These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2011 at Columbia University.

Exercise 83.40.1 (Definitions). Provide definitions of the italicized concepts.

(1) a Noetherian ring,
(2) a Noetherian scheme,
(3) a finite ring homomorphism,
(4) a finite morphism of schemes,
(5) the dimension of a ring.

Exercise 83.40.2 (Results). State something formally equivalent to the fact dis-
cussed in the course.

(1) Zariski’s Main Theorem.
(2) Noether normalization.
(3) Chinese remainder theorem.
(4) Going up for finite ring maps.

Exercise 83.40.3. Let (A,m, κ) be a Noetherian local ring whose residue field has
characteristic not 2. Suppose that m is generated by three elements x, y, z and that
x2 + y2 + z2 = 0 in A.

(1) What are the possible values of dim(A)?
(2) Give an example to show that each value is possible.
(3) Show that A is a domain if dim(A) = 2. (Hint: look at

⊕
n≥0 m

n/mn+1.)

Exercise 83.40.4. Let A be a ring. Let S ⊂ T ⊂ A be multiplicative subsets.
Assume that

{q | q ∩ S = ∅} = {q | q ∩ T = ∅}.

Show that S−1A→ T−1A is an isomorphism.

Exercise 83.40.5. Let k be an algebraically closed field. Let

V0 = {A ∈ Mat(3× 3, k) | rank(A) = 1} ⊂ Mat(3× 3, k) = k9.

(1) Show that V0 is the set of closed points of a (Zariski) locally closed subset
V ⊂ A9

k.
(2) Is V irreducible?
(3) What is dim(V )?

Exercise 83.40.6. Prove that the ideal (x2, xy, y2) in C[x, y] cannot be generated
by 2 elements.
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Exercise 83.40.7. Let f ∈ C[x, y] be a nonconstant polynomial. Show that for
some α, β ∈ C the C-algebra map

C[t] −→ C[x, y]/(f), t 7−→ αx+ βy

is finite.

Exercise 83.40.8. Show that given finitely many points p1, . . . , pn ∈ C2 the
scheme A2

C \ {p1, . . . , pn} is a union of two affine opens.

Exercise 83.40.9. Show that there exists a surjective morphism of schemes A1
C →

P1
C. (Surjective just means surjective on underlying sets of points.)

Exercise 83.40.10. Let k be an algebraically closed field. Let A ⊂ B be an
extension of domains which are both finite type k-algebras. Prove that the image
of Spec(B) → Spec(A) contains a nonempty open subset of Spec(A) using the
following steps:

(1) Prove it if A→ B is also finite.
(2) Prove it in case the fraction field of B is a finite extension of the fraction

field of A.
(3) Reduce the statement to the previous case.

83.41. Schemes, Final Exam, Fall 2013

These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2013 at Columbia University.

Exercise 83.41.1 (Definitions). Provide definitions of the italicized concepts.

(1) a radical ideal of a ring,
(2) a finite type ring homomorphism,
(3) a differential a la Weil,
(4) a scheme.

Exercise 83.41.2 (Results). State something formally equivalent to the fact dis-
cussed in the course.

(1) result on hilbert polynomials of graded modules.
(2) dimension of a Noetherian local ring (R,m) and

⊕
n≥0 m

n/mn+1.

(3) Riemann-Roch.
(4) Clifford’s theorem.
(5) Chevalley’s theorem.

Exercise 83.41.3. Let A → B be a ring map. Let S ⊂ A be a multiplicative
subset. Assume that A → B is of finite type and S−1A → S−1B is surjective.
Show that there exists an f ∈ S such that Af → Bf is surjective.

Exercise 83.41.4. Give an example of an injective local homomorphism A → B
of local rings, such that Spec(B)→ Spec(A) is not surjective.

Situation 83.41.5 (Notation plane curve). Let k be an algebraically closed field.
Let F (X0, X1, X2) ∈ k[X0, X1, X2] be an irreducible polynomial homogenenous of
degree d. We let

D = V (F ) ⊂ P2

be the projective plane curve given by the vanishing of F . Set x = X1/X0 and y =

X2/X0 and f(x, y) = X−d0 F (X0, X1, X2) = F (1, x, y). We denote K the fraction
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field of the domain k[x, y]/(f). We let C be the abstract curve corresponding to
K. Recall (from the lectures) that there is a surjective map C → D which is
bijective over the nonsingular locus of D and an isomorphism if D is nonsingular.
Set fx = ∂f/∂x and fy = ∂f/∂y. Finally, we denote ω = dx/fy = −dy/fx the
element of ΩK/k discussed in the lectures. Denote KC the divisor of zeros and poles
of ω.

Exercise 83.41.6. In Situation 83.41.5 assume d ≥ 3 and that the curve D has
exactly one singular point, namely P = (1 : 0 : 0). Assume further that we have
the expansion

f(x, y) = xy + h.o.t

around P = (0, 0). Then C has two points v and w lying over over P characterized
by

v(x) = 1, v(y) > 1 and w(x) > 1, w(y) = 1

(1) Show that the element ω = dx/fy = −dy/fx of ΩK/k has a first order
pole at both v and w. (The behaviour of ω at nonsingular points is as
discussed in the lectures.)

(2) In the lectures we have shown that ω vanishes to order d−3 at the divisor
X0 = 0 pulled back to C under the map C → D. Combined with the
information of (1) what is the degree of the divisor of zeros and poles of
ω on C?

(3) What is the genus of the curve C?

Exercise 83.41.7. In Situation 83.41.5 assume d = 5 and that the curve C = D
is nonsingular. In the lectures we have shown that the genus of C is 6 and that the
linear system KC is given by

L(KC) = {hω | h ∈ k[x, y], deg(h) ≤ 2}
where deg indicates total degree2. Let P1, P2, P3, P4, P5 ∈ D be pairwise distinct
points lying in the affine open X0 6= 0. We denote

∑
Pi = P1 + P2 + P3 + P4 + P5

the corresponding divisor of C.

(1) Describe L(KC −
∑
Pi) in terms of polynomials.

(2) What are the possibilities for l(
∑
Pi)?

Exercise 83.41.8. Write down an F as in Situation 83.41.5 with d = 100 such
that the genus of C is 0.

Exercise 83.41.9. Let k be an algebraically closed field. Let K/k be finitely
generated field extension of transcendence degree 1. Let C be the abstract curve
corresponding to K. Let V ⊂ K be a grd and let Φ : C → Pr be the corresponding
morphism. Show that the image of C is contained in a quadric3 if d is V is a
complete linear system and d is large enough relative to the genus of C. (Extra
credit: good bound on the degree needed.)

Exercise 83.41.10. Notation as in Situation 83.41.5. Let U ⊂ P2
k be the open

subscheme whose complement is D. Describe the k-algebra A = OP2
k
(U). Give an

upper bound for the number of generators of A as a k-algebra.

2We get ≤ 2 because d− 3 = 5− 3 = 2.
3A quadric is a degree 2 hypersurface, i.e., the zero set in Pr of a degree 2 homogeneous

polynomial.
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83.42. Schemes, Final Exam, Spring 2014

These were the questions in the final exam of a course on Schemes, in the Fall of
2014 at Columbia University.

Exercise 83.42.1 (Definitions). Let (X,OX) be a scheme. Provide definitions of
the italicized concepts.

(1) the local ring of X at a point x,
(2) a quasi-coherent sheaf of OX -modules,
(3) a coherent sheaf of OX -modules (please assume X is locally Noetherian,
(4) an affine open of X,
(5) a finite morphism of schemes X → Y .

Exercise 83.42.2 (Theorems). Precisely state a nontrivial fact discussed in the
lectures related to each item.

(1) on birational invariance of pluri-genera of varieties,
(2) being an affine morphism is a local property,
(3) the topology of a scheme theoretic fibre of a morphism, and
(4) valuative criterion of properness.

Exercise 83.42.3. Let X = A2
C where C is the field of complex numbers. A line

will mean a closed subscheme of X defined by one linear equation ax+ by + c = 0
for some a, b, c ∈ C with (a, b) 6= (0, 0). A curve will mean an irreducible (so
nonempty) closed subscheme C ⊂ X of dimension 1. A quadric will mean a curve
defined by one quadratic equation ax2 + bxy + cy2 + dx + ey + f = 0 for some
a, b, c, d, e, f ∈ C and (a, b, c) 6= (0, 0, 0).

(1) Find a curve C such that every line has nonempty intersection with C.
(2) Find a curve C such that every line and every quadric has nonempty

intersection with C.
(3) Show that for every curve C there exists another curve such that C∩C ′ =
∅.

Exercise 83.42.4. Let k be a field. Let b : X → A2
k be the blow up of the affine

plane in the origin. In other words, if A2
k = Spec(k[x, y]), then X = Proj(

⊕
n≥0 m

n)

where m = (x, y) ⊂ k[x, y]. Prove the following statements

(1) the scheme theoretic fibre E of b over the origin is isomorphic to P1
k,

(2) E is an effective Cartier divisor on X,
(3) the restriction of OX(−E) to E is a line bundle of degree 1.

(Recall that OX(−E) is the ideal sheaf of E in X.)

Exercise 83.42.5. Let k be a field. Let X be a projective variety over k. Show
there exists an affine variety U over k and a surjective morphism of varieties U → X.

Exercise 83.42.6. Let k be a field of characteristic p > 0 different from 2, 3.
Consider the closed subscheme X of Pn

k defined by∑
i=0,...,n

Xi = 0,
∑

i=0,...,n
X2
i = 0,

∑
i=0,...,n

X3
i = 0

For which pairs (n, p) is this variety singular?
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CHAPTER 84

A Guide to the Literature

84.1. Short introductory articles

• Barbara Fantechi: Stacks for Everybody [Fan01]
• Dan Edidin: What is a stack? [Edi03]
• Dan Edidin: Notes on the construction of the moduli space of curves

[Edi00]
• Angelo Vistoli: Intersection theory on algebraic stacks and on their moduli

spaces, and especially the appendix. [Vis89]

84.2. Classic references

• Mumford: Picard groups of moduli problems [Mum65]
Mumford never uses the term “stack” here but the concept is im-
plicit in the paper; he computes the picard group of the moduli
stack of elliptic curves.

• Deligne, Mumford: The irreducibility of the space of curves of given genus
[DM69]

This influential paper introduces “algebraic stacks” in the sense
which are now universally called Deligne-Mumford stacks (stacks
with representable diagonal which admit étale presentations by
schemes). There are many foundational results without proof.
The paper uses stacks to give two proofs of the irreducibility of
the moduli space of curves of genus g.

• Artin: Versal deformations and algebraic stacks [Art74]
This paper introduces “algebraic stacks” which generalize Deligne-
Mumford stacks and are now commonly referred to as Artin
stacks, stacks with representable diagonal which admit smooth
presentations by schemes. This paper gives deformation-theoretic
criterion known as Artin’s criterion which allows one to prove
that a given moduli stack is an Artin stack without explicitly
exhibiting a presentation.

84.3. Books and online notes

• Laumon, Moret-Bailly: Champs Algébriques [LMB00]
This book is currently the most exhaustive reference on stacks
containing many foundational results. It assumes the reader is
familiar with algebraic spaces and frequently references Knut-
son’s book [Knu71]. There is an error in chapter 12 concerning
the functoriality of the lisse-étale site of an algebraic stack. One
doesn’t need to worry about this as the error has been patched
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by Martin Olsson (see [Ols07b]) and the results in the remain-
ing chapters (after perhaps slight modification) are correct.

• The Stacks Project Authors: Stacks Project [Sta].
You are reading it!

• Anton Geraschenko: Lecture notes for Martin Olsson’s class on stacks
[Ols07a]

This course systematically develops the theory of algebraic spaces
before introducing algebraic stacks (first defined in Lecture 27!).
In addition to basic properties, the course covers the equiva-
lence between being Deligne-Mumford and having unramified
diagonal, the lisse-étale site on an Artin stack, the theory of
quasi-coherent sheaves, the Keel-Mori theorem, cohomological
descent, and gerbes (and their relation to the Brauer group).
There are also some exercises.

• Behrend, Conrad, Edidin, Fantechi, Fulton, Göttsche, and Kresch: Alge-
braic stacks, online notes for a book being currently written [BCE+07]

The aim of this book is to give a friendly introduction to stacks
without assuming a sophisticated background with a focus on
examples and applications. Unlike [LMB00], it is not assumed
that the reader has digested the theory of algebraic spaces. In-
stead, Deligne-Mumford stacks are introduced with algebraic
spaces being a special case with part of the goal being to de-
velop enough theory to prove the assertions in [DM69]. The
general theory of Artin stacks is to be developed in the second
part. Only a fraction of the book is now available on Kresch’s
website.

84.4. Related references on foundations of stacks

• Vistoli: Notes on Grothendieck topologies, fibered categories and descent
theory [Vis05]

Contains useful facts on fibered categories, stacks and descent
theory in the fpqc topology as well as rigorous proofs.

• Knutson: Algebraic Spaces [Knu71]
This book, which evolved from his PhD thesis under Michael
Artin, contains the foundations of the theory of algebraic spaces.
The book [LMB00] frequently references this text. See also
Artin’s papers on algebraic spaces: [Art69a], [Art69b], [Art69c],
[Art70], [Art71b], [Art71a], [Art73], and [Art74]

• Grothendieck et al, Théorie des Topos et Cohomologie Étale des Schémas
I, II, III also known as SGA4 [AGV71]

Volume 1 contains many general facts on universes, sites and
fibered categories. The word “champ” (French for “stack”) ap-
pears in Deligne’s Exposé XVIII.

• Jean Giraud: Cohomologie non abélienne [Gir65]
The book discusses fibered categories, stacks, torsors and gerbes
over general sites but does not discuss algebraic stacks. For
instance, if G is a sheaf of abelian groups on X, then in the
same way H1(X,G) can be identified with G-torsors, H2(X,G)
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can be identified with an appropriately defined set of G-gerbes.
When G is not abelian, then H2(X,G) is defined as the set of
G-gerbes.

• Kelly and Street: Review of the elements of 2-categories [KS74]
The category of stacks form a 2-category although a simple type
of 2-category where are 2-morphisms are invertible. This is a
reference on general 2-categories. I have never used this so I
cannot say how useful it is. Also note that [Sta] contains some
basics on 2-categories.

84.5. Papers in the literature

Below is a list of research papers which contain fundamental results on stacks and
algebraic spaces. The intention of the summaries is to indicate only the results of
the paper which contribute toward stack theory; in many cases these results are
subsidiary to the main goals of the paper. We divide the papers into categories
with some papers falling into multiple categories.

84.5.1. Deformation theory and algebraic stacks. The first three papers
by Artin do not contain anything on stacks but they contain powerful results with
the first two papers being essential for [Art74].

• Artin: Algebraic approximation of structures over complete local rings
[Art69a]

It is proved that under mild hypotheses any effective formal
deformation can be approximated: if F : (Sch/S) → (Sets) is a
contravariant functor locally of finite presentation with S finite

type over a field or excellent DVR, s ∈ S, and ξ̂ ∈ F (ÔS,s)
is an effective formal deformation, then for any n > 0, there
exists an residually trivial étale neighborhood (S′, s′) → (S, s)

and ξ′ ∈ F (S′) such that ξ′ and ξ̂ agree up to order n (ie. have
the same restriction in F (OS,s/mn)).

• Artin: Algebraization of formal moduli I [Art69b]
It is proved that under mild hypotheses any effective formal
versal deformation is algebraizable. Let F : (Sch/S) → (Sets)
be a contravariant functor locally of finite presentation with S
finite type over a field or excellent DVR, s ∈ S be a locally
closed point, Â be a complete noetherian local OS-algebra with

residue field k′ a finite extension of k(s), and ξ̂ ∈ F (Â) be an
effective formal versal deformation of an element ξ0 ∈ F (k′).
Then there is a scheme X finite type over S and a closed point
x ∈ X with residue field k(x) = k′ and an element ξ ∈ F (X)

such that there is an isomorphism ÔX,x ∼= Â identifying the

restrictions of ξ and ξ̂ in each F (Â/mn). The algebraization is

unique if ξ̂ is a universal deformation. Applications are given to
the representability of the Hilbert and Picard schemes.

• Artin: Algebraization of formal moduli. II [Art70]
Vaguely, it is shown that if one can contract a closed subset Y ′ ⊂
X ′ formally locally around Y ′, then exists a global morphism
X ′ → X contracting Y with X an algebraic space.
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• Artin: Versal deformations and algebraic stacks [Art74]
This momentous paper builds on his work in [Art69a] and
[Art69b]. This paper introduces Artin’s criterion which allows
one to prove algebraicity of a stack by verifying deformation-
theoretic properties. More precisely (but not very precisely),
Artin constructs a presentation of a limit preserving stack X
locally around a point x ∈ X (k) as follows: assuming the stack
X satisfies Schlessinger’s criterion([Sch68]), there exists a for-

mal versal deformation ξ̂ ∈ limX (Â/mn) of x. Assuming that

formal deformations are effective (i.e., X (Â)→ limX (Â/mn) is
bijective), then one obtains an effective formal versal deforma-

tion ξ ∈ X (Â). Using results in [Art69b], one produces a finite
type scheme U and an element ξU : U → X which is formally
versal at a point u ∈ U over x. Then if we assume X admits
a deformation and obstruction theory satisfying certain condi-
tions (ie. compatibility with étale localization and completion
as well as constructibility condition), then it is shown in sec-
tion 4 that formal versality is an open condition so that after
shrinking U , U → X is smooth. Artin also presents a proof that
any stack admitting an fppf presentation by a scheme admits a
smooth presentation by a scheme so that in particular one can
form quotient stacks by flat, separated, finitely presented group
schemes.

• Conrad, de Jong: Approximation of Versal Deformations [CdJ02]
This paper offers an approach to Artin’s algebraization result by
applying Popescu’s powerful result: if A is a noetherian ring and
B a noetherian A-algebra, then the map A→ B is a regular mor-
phism if and only if B is a direct limit of smooth A-algebras.
It is not hard to see that Popescu’s result implies Artin’s ap-
proximation over an arbitrary excellent scheme (the excellence

hypothesis implies that for a local ring A, the map Ah → Â
from the henselization to the completion is regular). The pa-
per uses Popescu’s result to give a “groupoid” generalization
of the main theorem in [Art69b] which is valid over arbitrary
excellent base schemes and for arbitrary points s ∈ S. In par-
ticular, the results in [Art74] hold under an arbitrary excellent
base. They discuss the étale-local uniqueness of the algebraiza-
tion and whether the automorphism group of the object acts
naturally on the henselization of the algebraization.

• Jason Starr: Artin’s axioms, composition, and moduli spaces [Sta06]
The paper establishes that Artin’s axioms for algebraization are
compatible with the composition of 1-morphisms.

• Martin Olsson: Deformation theory of representable morphism of algebraic
stacks [Ols06a]

This generalizes standard deformation theory results for mor-
phisms of schemes to representable morphisms of algebraic stacks
in terms of the cotangent complex. These results cannot be
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viewed as consequences of Illusie’s general theory as the cotan-
gent complex of a representable morphism X → X is not defined
in terms of cotangent complex of a morphism of ringed topoi
(because the lisse-étale site is not functorial).

84.5.2. Coarse moduli spaces.

• Keel, Mori: Quotients in Groupoids [KM97]
It had apparently long been “folklore” that separated Deligne-
Mumford stacks admitted coarse moduli spaces. A rigorous (al-
though terse) proof of the following theorem is presented here: if
X is an Artin stack locally of finite type over a noetherian base
scheme such that the inertia stack IX → X is finite, then there
exists a coarse moduli space φ : X → Y with φ separated and Y
an algebraic space locally of finite type over S. The hypothesis
that the inertia is finite is precisely the right condition: there
exists a coarse moduli space φ : X → Y with φ separated if and
only if the inertia is finite.

• Conrad: The Keel-Mori Theorem via Stacks [Con05b]
Keel and Mori’s paper [KM97] is written in the groupoid lan-
guage and some find it challenging to grasp. Brian Conrad
presents a stack-theoretic version of the proof which is quite
transparent although it uses the sophisticated language of stacks.
Conrad also removes the noetherian hypothesis.

• Rydh: Existence of quotients by finite groups and coarse moduli spaces
[Ryd07]

Rydh removes the hypothesis from [KM97] and [Con05b] that
X be finitely presented over some base.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [AOV08]
They define a tame Artin stack as an Artin stack with finite
inertia such that if φ : X → Y is the coarse moduli space, φ∗ is
exact on quasi-coherent sheaves. They prove that for an Artin
stack with finite inertia, the following are equivalent: X is tame
if and only if the stabilizers of X are linearly reductive if and only
if X is étale locally on the coarse moduli space a quotient of an
affine scheme by a linearly reductive group scheme. For a tame
Artin stack, the coarse moduli space is particularly nice. For
instance, the coarse moduli space commutes with arbitrary base
change while a general coarse moduli space for an Artin stack
with finite inertia will only commute with flat base change.

• Alper: Good moduli spaces for Artin stacks [Alp08]
For general Artin stacks with infinite affine stabilizer groups
(which are necessarily non-separated), coarse moduli spaces of-
ten do not exist. The simplest example is [A1/Gm]. It is defined
here that a quasi-compact morphism φ : X → Y is a good mod-
uli space if OY → φ∗OX is an isomorphism and φ∗ is exact on
quasi-coherent sheaves. This notion generalizes a tame Artin
stack in [AOV08] as well as encapsulates Mumford’s geomet-
ric invariant theory: if G is a reductive group acting linearly
on X ⊂ Pn, then the morphism from the quotient stack of the
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semi-stable locus to the GIT quotient [Xss/G] → X//G is a
good moduli space. The notion of a good moduli space has
many nice geometric properties: (1) φ is surjective, universally
closed, and universally submersive, (2) φ identifies points in Y
with points in X up to closure equivalence, (3) φ is universal
for maps to algebraic spaces, (4) good moduli spaces are sta-
ble under arbitrary base change, and (5) a vector bundle on an
Artin stack descends to the good moduli space if and only if the
representations are trivial at closed points.

84.5.3. Intersection theory.

• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces
[Vis89]

This paper develops the foundations for intersection theory with
rational coefficients for Deligne-Mumford stacks. If X is a sep-
arated Deligne-Mumford stack, the chow group A∗(X ) with ra-
tional coefficients is defined as the free abelian group of inte-
gral closed substacks of dimension k up to rational equivalence.
There is a flat pullback, a proper push-forward and a gener-
alized Gysin homomorphism for regular local embeddings. If
φ : X → Y is a moduli space (ie. a proper morphism with is
bijective on geometric points), there is an induced push-forward
A∗(X )→ Ak(Y ) which is an isomorphism.

• Edidin, Graham: Equivariant Intersection Theory [EG98]
The purpose of this article is to develop intersection theory with
integral coefficients for a quotient stack [X/G] of an action of an
algebraic group G on an algebraic space X or, in other words,
to develop a G-equivariant intersection theory of X. Equivari-
ant chow groups defined using only invariant cycles does not
produce a theory with nice properties. Instead, generalizing To-
taro’s definition in the case of BG and motivated by the fact
that if V → X is a vector bundle then Ai(X) ∼= Ai(V ) natu-
rally, the authors define AGi (X) as follows: Let dim(X) = n and
dim(G) = g. For each i, choose a l-dimensional G-representation
V where G acts freely on an open subset U ⊂ V whose com-
plement as codimension d > n − i. So XG = [X × U/G] is an
algebraic space (it can even be chosen to be a scheme). Then
they define AGi (X) = Ai+l−g(XG). For the quotient stack,
one defines Ai([X/G]) := AGi+g(X) = Ai+l(XG). In particular,
Ai([X/G]) = 0 for i > dim[X/G] = n−g but can be non-zero for
i << 0 (eg. Ai(BGm) = Z for i ≤ 0). They establish that these
equivariant Chow groups enjoy the same functorial properties
as ordinary Chow groups. Furthermore, they establish that if
[X/G] ∼= [Y/H] that Ai([X/G]) = Ai([Y/H]) so that the defini-
tion is independent on how the stack is presented as a quotient
stack.

• Kresch: Cycle Groups for Artin Stacks [Kre99]
Kresch defines Chow groups for arbitrary Artin stacks agreeing
with Edidin and Graham’s definition in [EG98] in the case of



84.5. PAPERS IN THE LITERATURE 4411

quotient stack. For algebraic stacks with affine stabilizer groups,
the theory satisfies the usual properties.

• Behrend and Fantechi: The intrinsic normal cone [BF97]
Generalizing a construction due to Li and Tian, Behrend and
Fantechi construct a virtual fundamental class for a Deligne-
Mumford stack.

84.5.4. Quotient stacks. Quotient stacks1 form a very important subclass of
Artin stacks which include almost all moduli stacks studied by algebraic geometers.
The geometry of a quotient stack [X/G] is the G-equivariant geometry of X. It
is often easier to show properties are true for quotient stacks and some results are
only known to be true for quotient stacks. The following papers address: When is
an algebraic stack a global quotient stack? Is an algebraic stack “locally” a quotient
stack?

• Laumon, Moret-Bailly: [LMB00, Chapter 6]
Chapter 6 contains several facts about the local and global struc-
ture of algebraic stacks. It is proved that an algebraic stack X
over S is a quotient stack [Y/G] with Y an algebraic space (resp.
scheme, resp. affine scheme) and G a finite group if and only
if there exists an algebraic space (resp. scheme, resp. affine
scheme) Y ′ and an finite étale morphism Y ′ → X . It is shown
that any Deligne-Mumford stack over S and x : Spec(K) →
X admits an representable, étale and separated morphism φ :
[X/G]→ X where G is a finite group acting on an affine scheme
over S such that Spec(K) = [X/G]×X Spec(K). The existence
of presentations with geometrically connected fibers is also dis-
cussed in detail.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks
[EHKV01]

First, they establish some fundamental (although not very dif-
ficult) facts concerning when a given algebraic stack (always
assumed finite type over a noetherian scheme in this paper) is a
quotient stack. For an algebraic stack X : X is a quotient stack
if and only if there exists a vector bundle V → X such that for
every geometric point, the stabilizer acts faithfully on the fiber
if and only if there exists a vector bundle V → X and a lo-
cally closed substack V 0 ⊂ V such that V 0 is representable and
surjects onto F . They establish that an algebraic stack is a quo-
tient stack if there exists finite flat cover by an algebraic space.
Any smooth Deligne-Mumford stack with generically trivial sta-
bilizer is a quotient stack. They show that a Gm-gerbe over
a noetherian scheme X corresponding to β ∈ H2(X,Gm) is a
quotient stack if and only if β is in the image of the Brauer map
Br(X) → Br′(X). They use this to produce a non-separated
Deligne-Mumford stack that is not a quotient stack.

• Totaro: The resolution property for schemes and stacks [Tot04]

1In the literature, quotient stack often means a stack of the form [X/G] with X an algebraic
space and G a subgroup scheme of GLn rather than an arbitrary flat group scheme.



4412 84. A GUIDE TO THE LITERATURE

A stack has the resolution property if every coherent sheaf is the
quotient of a vector bundle. The first main theorem is that if
X is a normal noetherian algebraic stack with affine stabilizer
groups at closed points, then the following are equivalent: (1) X
has the resolution property and (2) X = [Y/GLn] with Y quasi-
affine. In the case X is finite type over a field, then (1) and (2)
are equivalent to: (3) X = [Spec(A)/G] with G an affine group
scheme finite type over k. The implication that quotient stacks
have the resolution property was proven by Thomason. The
second main theorem is that if X is a smooth Deligne-Mumford
stack over a field which has a finite and generically trivial stabi-
lizer group IX → X and whose coarse moduli space is a scheme
with affine diagonal, then X has the resolution property. An-
other cool result states that if X is a noetherian algebraic stack
satisfying the resolution property, then X has affine diagonal if
and only if the closed points have affine stabilizer.

• Kresch: On the Geometry of Deligne-Mumford Stacks [Kre09]
This article summarizes general structure results of Deligne-
Mumford stacks (of finite type over a field) and contains some
interesting results concerning quotient stacks. It is shown that
any smooth, separated, generically tame Deligne-Mumford stack
with quasi-projective coarse moduli space is a quotient stack
[Y/G] with Y quasi-projective and G an algebraic group. If
X is a Deligne-Mumford stack whose coarse moduli space is a
scheme, then X is Zariski-locally a quotient stack if and only if
it admits a Zariski-open covering by stack quotients of schemes
by finite groups. If X is a Deligne-Mumford stack proper over a
field of characteristic 0 with coarse moduli space Y , then: Y is
projective and X is a quotient stack if and only if Y is projec-
tive and X possesses a generating sheaf if and only if X admits
a closed embedding into a smooth proper DM stack with pro-
jective coarse moduli space. This motivates a definition that
a Deligne-Mumford stack is projective if there exists a closed
embedding into a smooth, proper Deligne-Mumford stack with
projective coarse moduli space.

• Kresch, Vistoli On coverings of Deligne-Mumford stacks and surjectivity
of the Brauer map [KV04]

It is shown that in characteristic 0 and for a fixed n, the follow-
ing two statements are equivalent: (1) every smooth Deligne-
Mumford stack of dimension n is a quotient stack and (2) the
Azumaya Brauer group coincides with the cohomological Brauer
group for smooth schemes of dimension n.

• Kresch: Cycle Groups for Artin Stacks [Kre99]
It is shown that a reduced Artin stack finite type over a field
with affine stabilizer groups admits a stratification by quotient
stacks.

• Abramovich-Vistoli: Compactifying the space of stable maps [AV02]
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Lemma 2.2.3 establishes that for any separated Deligne-Mumford
stack is étale-locally on the coarse moduli space a quotient stack
[U/G] where U affine and G a finite group. [Ols06b, Theorem
2.12] shows in this argument G is even the stabilizer group.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [AOV08]
This paper shows that a tame Artin stack is étale locally on the
coarse moduli space a quotient stack of an affine by the stabilizer
group.

• Alper: On the local quotient structure of Artin stacks [Alp10]
It is conjectured that for an Artin stack X and a closed point
x ∈ X with linearly reductive stabilizer, then there is an étale
morphism [V/Gx] → X with V an algebraic space. Some evi-
dence for this conjecture is given. A simple deformation theory
argument (based on ideas in [AOV08]) shows that it is true
formally locally. A stack-theoretic proof of Luna’s étale slice
theorem is presented proving that for stacks X = [Spec(A)/G]
with G linearly reductive, then étale locally on the GIT quotient
Spec(AG), X is a quotient stack by the stabilizer.

84.5.5. Cohomology.

• Olsson: Sheaves on Artin stacks [Ols07b]
This paper develops the theory of quasi-coherent and constructible
sheaves proving basic cohomological properties. This paper cor-
rects a mistake in [LMB00] in the functoriality of the lisse-
étale site. The cotangent complex is constructed. In addition,
the following theorems are proved: Grothendieck’s Fundamental
Theorem for proper morphisms, Grothendieck’s Existence The-
orem, Zariski’s Connectness Theorem and finiteness theorem for
proper pushforwards of coherent and constructible sheaves.

• Behrend: Derived l-adic categories for algebraic stacks [Beh03]
Proves the Lefschetz trace formula for algebraic stacks.

• Behrend: Cohomology of stacks [Beh04]
Defines the de Rham cohomology for differentiable stacks and
singular cohomology for topological stacks.

• Faltings: Finiteness of coherent cohomology for proper fppf stacks [Fal03]
Proves coherence for direct images of coherent sheaves for proper
morphisms.

• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [ACV03]
The appendix contains the proper base change theorem for étale
cohomology for tame Deligne-Mumford stacks.

84.5.6. Existence of finite covers by schemes. The existence of finite
covers of Deligne-Mumford stacks by schemes is an important result. In intersection
theory on Deligne-Mumford stacks, it is an essential ingredient in defining proper
push-forward for non-representable morphisms. There are several results aboutMg

relying on the existence of a finite cover by a smooth scheme which was proven by
Looijenga. Perhaps the first result in this direction is [Ses72, Theorem 6.1] which
treats the equivariant setting.
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• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces
[Vis89]

If X is a Deligne-Mumford stack with a moduli space (ie. a
proper morphism which is bijective on geometric points), then
there exists a finite morphism X → X from a scheme X.

• Laumon, Moret-Bailly: [LMB00, Chapter 16]
As an application of Zariski’s main theorem, Theorem 16.6 es-
tablishes: if X is a Deligne-Mumford stack finite type over a
noetherian scheme, then there exists a finite, surjective, generi-
cally étale morphism Z → X with Z a scheme. It is also shown
in Corollary 16.6.2 that any noetherian normal algebraic space
is isomorphic to the algebraic space quotient X ′/G for a finite
group G acting a normal scheme X.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks
[EHKV01]

Theorem 2.7 states: if X is an algebraic stack of finite type over
a noetherian ground scheme S, then the diagonal X → X×SX is
quasi-finite if and only if there exists a finite surjective morphism
X → F from a scheme X.

• Kresch, Vistoli: On coverings of Deligne-Mumford stacks and surjectivity
of the Brauer map [KV04]

It is proved here that any smooth, separated Deligne-Mumford
stack finite type over a field with quasi-projective coarse moduli
space admits a finite, flat cover by a smooth quasi-projective
scheme.

• Olsson: On proper coverings of Artin stacks [Ols05]
Proves that if X is an Artin stack separated and finite type
over S, then there exists a proper surjective morphism X → X
from a scheme X quasi-projective over S. As an application,
Olsson proves coherence and constructibility of direct image
sheaves under proper morphisms. As an application, he proves
Grothendieck’s existence theorem for proper Artin stacks.

84.5.7. Rigidification. Rigidification is a process for removing a flat sub-
group from the inertia. For example, if X is a projective variety, the morphism
from the Picard stack to the Picard scheme is a rigidification of the group of auto-
morphism Gm.

• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [ACV03]
Let X be an algebraic stack over S and H be a flat, finitely
presented separated group scheme over S. Assume that for every
object ξ ∈ X (T ) there is an embedding H(S) ↪→ AutX (T )(ξ)
which is compatible under pullbacks in the sense that for every
arrow φ : ξ → ξ′ over f : T → T ′ and g ∈ H(T ), g ◦φ = φ ◦ f∗g.
Then there exists an algebraic stack X/H and a morphism ρ :
X → X/H which is an fppf gerbe such that for every ξ ∈ X (T ),
the morphism AutX (T )(ξ) → AutX/H(T )(ξ) is surjective with
kernel H(T ).

• Romagny: Group actions on stacks and applications [Rom05]
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Discusses how group actions behave with respect to rigidifica-
tions.

• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford
stacks [AGV08]

The appendix gives a summary of rigidification as in [ACV03]
with two alternative interpretations. This paper also contains
constructions for gluing algebraic stacks along closed substacks
and for taking roots of line bundles.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic ([AOV08])
The appendix handles the more complicated situation where the
flat subgroup stack of the inertia H ⊂ IX is normal but not
necessarily central.

84.5.8. Stacky curves.

• Abramovich, Vistoli: Compactifying the space of stable maps [AV02]
This paper introduces twisted curves. The moduli space of stable
maps from stable curves into an algebraic stack is typically not
compact. By using maps from twisted curves, the authors con-
struct a moduli stack which is proper when the target is a tame
Deligne-Mumford stack whose coarse moduli space is projective.

• Behrend, Noohi: Uniformization of Deligne-Mumford curves [BN06]
Proves a uniformization theorem of Deligne-Mumford analytic
curves.

84.5.9. Hilbert, Quot, Hom and branchvariety stacks.

• Vistoli: The Hilbert stack and the theory of moduli of families [Vis91]
If X is a algebraic stack separated and locally of finite type
over a locally noetherian and locally separated algebraic space
S, Vistoli defines the Hilbert stack Hilb(F/S) parameterizing
finite and unramified morphisms from proper schemes. It is
claimed without proof that Hilb(F/S) is an algebraic stack. As
a consequence, it is proved that with X as above, the Hom stack
HomS(T,X ) is an algebraic stack if T is proper and flat over S.

• Olsson, Starr: Quot functors for Deligne-Mumford stacks [OS03]
If X is a Deligne-Mumford stack separated and locally of fi-
nite presentation over an algebraic space S and F is a locally
finitely-presented OX -module, the quot functor Quot(F/X/S)
is represented by an algebraic space separated and locally of
finite presentation over S. This paper also defines generating
sheaves and proves existence of a generating sheaf for tame, sep-
arated Deligne-Mumford stacks which are global quotient stacks
of a scheme by a finite group.

• Olsson: Hom-stacks and Restrictions of Scalars [Ols06b]
Suppose X and Y are Artin stacks locally of finite presentation
over an algebraic space S with finite diagonal with X proper and
flat over S such that fppf-locally on S, X admits a finite finitely
presented flat cover by an algebraic space (eg. X is Deligne-
Mumford or a tame Artin stack). Then HomS(X ,Y) is an Artin
stack locally of finite presentation over S.
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• Alexeev and Knutson: Complete moduli spaces of branchvarieties ([AK10])
They define a branchvariety of Pn as a finite morphism X → Pn

from a reduced scheme X. They prove that the moduli stack of
branchvarieties with fixed Hilbert polynomial and total degrees
of i-dimensional components is a proper Artin stack with finite
stabilizer. They compare the stack of branchvarieties with the
Hilbert scheme, Chow scheme and moduli space of stable maps.

• Lieblich: Remarks on the stack of coherent algebras [Lie06b]
This paper constructs a generalization of Alexeev and Knutson’s
stack of branch-varieties over a scheme Y by building the stack
as a stack of algebras over the structure sheaf of Y . Existence
proofs of Quot and Hom spaces are given.

• Starr: Artin’s axioms, composition, and moduli spaces [Sta06]
As an application of the main result, a common generalization of
Vistoli’s Hilbert stack [Vis91] and Alexeev and Knutson’s stack
of branchvarieties [AK10] is provided. If X is an algebraic stack
locally of finite type over an an excellent scheme S with finite
diagonal, then the stackH parameterizing morphisms g : T → X
from a proper algebraic space T with a G-ample line bundle L
is an Artin stack locally of finite type over S.

• Lundkvist and Skjelnes: Non-effective deformations of Grothendieck’s
Hilbert functor [LS08]

Shows that the Hilbert functor of a non-separated scheme is not
represented since there are non-effective deformations.

84.5.10. Toric stacks. Toric stacks provide a great class of examples and a
natural testing ground for conjectures due to the dictionary between the geometry
of a toric stack and the combinatorics of its stacky fan in a similar way that toric
varieties provide examples and counterexamples in scheme theory.

• Borisov, Chen and Smith: The orbifold Chow ring of toric Deligne-Mumford
stacks [BCS05]

Inspired by Cox’s construction for toric varieties, this paper de-
fines smooth toric DM stacks as explicit quotient stacks associ-
ated to a combinatorial object called a stacky fan.

• Iwanari: The category of toric stacks [Iwa09]
This paper defines a toric triple as a smooth Deligne-Mumford
stack X with an open immersion Gm ↪→ X with dense image
(and therefore X is an orbifold) and an action X ×Gm → X .
It is shown that there is an equivalence between the 2-category
of toric triples and the 1-category of stacky fans. The relation-
ship between toric triples and the definition of smooth toric DM
stacks in [BCS05] is discussed.

• Iwanari: Integral Chow rings for toric stacks [Iwa07]
Generalizes Cox’s ∆-collections for toric varieties to toric orb-
ifolds.

• Perroni: A note on toric Deligne-Mumford stacks [Per08]
Generalizes Cox’s ∆-collections and Iwanari’s paper [Iwa07] to
general smooth toric DM stacks.

• Fantechi, Mann, and Nironi: Smooth toric DM stacks [FMN07]
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This paper defines a smooth toric DM stack as a smooth DM
stack X with the action of a DM torus T (ie. a Picard stack iso-
morphic to T×BG with G finite) having an open dense orbit iso-
morphic to T . They give a “bottom-up description” and prove
an equivalence between smooth toric DM stacks and stacky fans.

• Geraschenko and Satriano: Toric Stacks I and II [GS11a] and [GS11b]
These papers define a toric stack as the stack quotient of a toric
variety by a subgroup of its torus. A generically stacky toric
stack is defined as a torus invariant substack of a toric stack.
This definition encompasses and extends previous definitions of
toric stacks. The first paper develops a dictionary between the
combinatorics of stacky fans and the geometry of the correspond-
ing stacks. It also gives a moduli interpretation of smooth toric
stacks, generalizing the one in [Per08]. The second paper proves
an intrinsic characterization of toric stacks.

84.5.11. Theorem on formal functions and Grothendieck’s Existence
Theorem. These papers give generalizations of the theorem on formal functions
[DG67, III.4.1.5] (sometimes referred to Grothendieck’s Fundamental Theorem for
proper morphisms) and Grothendieck’s Existence Theorem [DG67, III.5.1.4].

• Knutson: Algebraic spaces [Knu71, Chapter V]
Generalizes these theorems to algebraic spaces.

• Abramovich-Vistoli: Compactifying the space of stable maps [AV02, A.1.1]
Generalizes these theorems to tame Deligne-Mumford stacks

• Olsson and Starr: Quot functors for Deligne-Mumford stacks [OS03]
Generalizes these theorems to separated Deligne-Mumford stacks.

• Olsson: On proper coverings of Artin stacks [Ols05]
Provides a generalization to proper Artin stacks.

• Conrad: Formal GAGA on Artin stacks [Con05a]
Provides a generalization to proper Artin stacks and proves a
formal GAGA theorem.

• Olsson: Sheaves on Artin stacks [Ols07b]
Provides another proof for the generalization to proper Artin
stacks.

84.5.12. Group actions on stacks. Actions of groups on algebraic stacks
naturally appear. For instance, symmetric group Sn acts on Mg,n and for an
action of a group G on a scheme X, the normalizer of G in Aut(X) acts on [X/G].
Furthermore, torus actions on stacks often appear in Gromov-Witten theory.

• Romagny: Group actions on stacks and applications [Rom05]
This paper makes precise what it means for a group to act on
an algebraic stack and proves existence of fixed points as well as
existence of quotients for actions of group schemes on algebraic
stacks. See also Romagny’s earlier note [Rom03].

84.5.13. Taking roots of line bundles. This useful construction was dis-
covered independently by Cadman and by Abramovich, Graber and Vistoli. Given
a scheme X with an effective Cartier divisor D, the rth root stack is an Artin stack
branched over X at D with a µr stabilizer over D and scheme-like away from D.
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• Charles Cadman Using Stacks to Impose Tangency Conditions on Curves
[Cad07]

• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford
stacks [AGV08]

84.5.14. Other papers.

• Lieblich: Moduli of twisted sheaves [Lie07]
This paper contains a summary of gerbes and twisted sheaves.
If X → X is a µn-gerbe with X a projective relative surface
with smooth connected geometric fibers, it is shown that the
stack of semistable X -twisted sheaves is an Artin stack locally
of finite presentation over S. This paper also develops the theory
of associated points and purity of sheaves on Artin stacks.

• Lieblich, Osserman: Functorial reconstruction theorem for stacks [LO08]
Proves some surprising and interesting results on when an alge-
braic stack can be reconstructed from its associated functor.

• David Rydh: Noetherian approximation of algebraic spaces and stacks
[Ryd08]

This paper shows that every quasi-compact algebraic stack with
quasi-finite diagonal can be approximated by a noetherian stack.
There are applications to removing the noetherian hypothesis in
results of Chevalley, Serre, Zariski and Chow.

84.6. Stacks in other fields

• Behrend and Noohi: Uniformization of Deligne-Mumford curves [BN06]
Gives an overview and comparison of topological, analytic and
algebraic stacks.

• Behrang Noohi: Foundations of topological stacks I [Noo05]
• David Metzler: Topological and smooth stacks [Met05]

84.7. Higher stacks

• Lurie: Higher topos theory [Lur09f]
• Lurie: Derived Algebraic Geometry I - V [Lur09a], [Lur09b], [Lur09c],

[Lur09d], [Lur09e]
• Toën: Higher and derived stacks: a global overview [Toë09]
• Toën and Vezzosi: Homotopical algebraic geometry I, II [TV05], [TV08]

84.8. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks

(9) Fields
(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites



84.8. OTHER CHAPTERS 4419

(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic

Spaces
(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces

(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic

Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index





CHAPTER 85

Desirables

85.1. Introduction

This is basically just a list of things that we want to put in the stacks project. As
we add material to the project continuously this is always somewhat behind the
current state of the project. In fact, it may have been a mistake to try and list
things we should add, because it seems impossible to keep it up to date.

Last updated: Thursday, May 9, 2013.

85.2. Conventions

We should have a chapter with a short list of conventions used in the document.
This chapter already exists, see Conventions, Section 2.1, but a lot more could be
added there. Especially useful would be to find “hidden” conventions and tacit
assumptions and put those there.

85.3. Sites and Topoi

We have a chapter on sites and sheaves, see Sites, Section 7.1. We have a chapter on
ringed sites (and topoi) and modules on them, see Modules on Sites, Section 18.1.
We have a chapter on cohomology in this setting, see Cohomology on Sites, Section
21.1. But a lot more could be added, especially in the chapter on cohomology.

85.4. Stacks

We have a chapter on (abstract) stacks, see Stacks, Section 8.1. It would be nice if

(1) improve the discussion on “stackyfication”,
(2) give examples of stackyfication,
(3) more examples in general,
(4) improve the discussion of gerbes.

Example result which has not been added yet: Given a sheaf of abelian groups
F over C the set of equivalence classes of gerbes with “group” F is bijective to
H2(C,F).

85.5. Simplicial methods

We have a chapter on simplicial methods, see Simplicial, Section 14.1. This has to
be reviewed and improved. The discussion of the relationship between simplicial
homotopy (also known as combinatorial homotopy) and Kan complexes should
be improved upon. Moreover, there should be a chapter on “simplicial algebraic
geometry”, where we discuss simplicial schemes, and how to think of their geometry,

4421
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cohomology, etc. Then this should be tied into the chapter on hypercoverings to
“explain” the results of this chapter in the new language.

85.6. Cohomology of schemes

There is already a chapter on cohomology of quasi-coherent sheaves, see Coho-
mology of Schemes, Section 29.1. We also have chapters on étale cohomology of
schemes, crystalline cohomology of schemes, derived categories of schemes. But
most of the material is very basic and a lot more could be added here.

85.7. Deformation theory à la Schlessinger

We have a chapter on this material, see Formal Deformation Theory, Section 68.1.
What is needed is worked out examples of the general theory, for example the case
of representations of a fixed abstract group.

85.8. Definition of algebraic stacks

An algebraic stack is a stack in groupoids over the category of schemes with the fppf
topology that has a diagonal representable by algebraic spaces and is the target of a
surjective smooth morphism from a scheme. The notion “Deligne-Mumford stack”
will be reserved for a stack as in [DM69]. We will reserve the term “Artin stack” for
a stack such as in the papers by Artin [Art69b], and [Art74]. (See also [CdJ02].)
In other words, and Artin stack will be an algebraic stack with some reasonable
finiteness and separatedness conditions.

85.9. Examples of schemes, algebraic spaces, algebraic stacks

It really is not that hard to show thatMg is an algebraic stack for g ≥ 2. We should
really have a long list of moduli problems here and prove they are all algebraic
stacks. Some of them we can prove are algebraic using Artin approximation. For
example the Kontsevich moduli space in characteristic p > 0.

Here are some items for the list of moduli problems mentioned above.

(1) Mg, i.e., moduli of smooth projective curves of genus g,

(2) Mg, i.e., moduli of stable genus g curves,
(3) Ag, i.e., principally polarized abelian schemes of genus g,
(4) M1,1, i.e., 1-pointed smooth projective genus 1 curves,
(5) Mg,n, i.e., smooth projective genus g-curves with n pairwise distinct la-

beled points,
(6) Mg,n, i.e., stable n-pointed nodal projective genus g-curves,
(7) HomS(X ,Y), moduli of morphisms (with suitable conditions on the stacks
X , Y and the base scheme S),

(8) BunG(X) = HomS(X,BG), the stack of G-bundles of the geometric Lang-
lands programme (with suitable conditions on the scheme X, the group
scheme G, and the base scheme S),

(9) PicX/S , i.e., the Picard stack associated to an algebraic stack over a base
scheme (or space).

How about the algebraic space you get from the deformation theory of a general
surface in P3 with a node? (I mean where you deform it to a general smooth surface
in P3.) Perhaps we can talk about some small dimensional examples here too. For
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example the stack where you have A1 with a B(Z/2) sitting at 0. Bugeyed covers.
And so on.

85.10. Properties of algebraic stacks

This is perhaps one of the easier projects to work on, as most of the basic theory is
there now. An interesting project is discussing the various ways of defining what a
proper algebraic stack is. Of course these things are really properties of morphisms
of stacks. We can define singularities (up to smooth factors) etc. Prove that a
connected normal stack is irreducible, etc.

85.11. Lisse étale site of an algebraic stack

This has been introduced in Cohomology of Stacks, Section 79.11. An example to
show that it is not functorial with respect to 1-morphisms of algebraic stacks is
discussed in Examples, Section 82.50. Of course a lot more could be said about
this, but it turns out to be very useful to prove things using the “big” étale site as
much as possible.

85.12. Things you always wanted to know but were afraid to ask

There are going to be lots of lemmas that you use over and over again that are
useful but aren’t really mentioned specifically in the literature, or it isn’t easy to
find references for. Bag of tricks.

Example: Given two groupoids in schemes R⇒ U and R′ ⇒ U ′ what does it mean
to have a 1-morphism [U/R]→ [U ′/R′] purely in terms of groupoids in schemes.

85.13. Quasi-coherent sheaves on stacks

These are defined and discussed in the chapter Cohomology of Stacks, Section 79.1.
Derived categories of modules are discussed in the chapter Derived Categories of
Stacks, Section 80.1. A lot more could be added to these chapters.

85.14. Flat and smooth

Artin’s theorem that having a flat surjection from a scheme is a replacement for the
smooth surjective condition. This is now available as Criteria for Representability,
Theorem 74.16.1.

85.15. Artin’s representability theorem

This is discussed in the chapter Artin’s Axioms, Section 75.1. We also have an
application, see Quot, Theorem 76.5.12. There should be a lot more applications
and the chapter itself has to be cleaned up as well.

85.16. DM stacks are finitely covered by schemes

This all begins with Gabber’s lemma I think. Somewhere in Asterisque about
Faltings proof of Mordell?

85.17. Martin Olsson’s paper on properness

This proves two notions of proper are the same. We can also discuss Faltings result
that it suffices to use DVR’s in certain cases.
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85.18. Proper pushforward of coherent sheaves

No comments yet.

85.19. Keel and Mori

See [KM97]. This material has been incorporated throughout the Stacks project.
See for example More on Groupoids, Section 39.12 and More on Groupoids in
Spaces, Section 61.12.

85.20. Add more here

Please.

85.21. Other chapters
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CHAPTER 86

Coding Style

86.1. List of style comments

These will be changed over time, but having some here now will hopefully encourage
a consistent LaTeX style. We will call “code1” the contents of the source files.

(1) Keep all lines in all tex files to at most 80 characters.
(2) Do not use indentation in the tex file. Use syntax highlighting in your

editor, instead of indentation, to visualize environments, etc.
(3) Use

\medskip\noindent

to start a new paragraph, and use

\noindent

to start a new paragraph just after an environment.
(4) Do not break the code for mathematical formulas across lines if possible.

If the complete code complete with enclosing dollar signs does not fit on
the line, then start with the first dollar sign on the first character of the
next line. If it still does not fit, find a mathematically reasonable spot to
break the code.

(5) Displayed math equations should be coded as follows

$$

...

...

$$

In other words, start with a double dollar sign on a line by itself and end
similarly.

(6) Do not use any macros. Rationale: This makes it easier to read the tex file,
and start editing an arbitrary part without having to learn innumerable
macros. And it doesn’t make it harder or more timeconsuming to write.
Of course the disadvantage is that the same mathematical object may be
TeXed differently in different places in the text, but this should be easy
to spot.

(7) The theorem environments we use are: “theorem”, “proposition”, “lemma”
(plain), “definition”, “example”, “exercise”, “situation” (definition), “re-
mark”, “remarks” (remark). Of course there is also a “proof” environ-
ment.

(8) An environment “foo” should be coded as follows

\begin{foo}

1It is all Knuth’s fault. See [Knu79].
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...

...

\end{foo}

similarly to the way displayed equations are coded.
(9) Instead of a “corollary”, just use “lemma” environment since likely the

result will be used to prove the next bigger theorem anyway.
(10) Directly following each lemma, proposition, or theorem is the proof of said

lemma, proposition, or theorem. No nested proofs please.
(11) The files preamble.tex, chapters.tex and fdl.tex are special tex files. Apart

from these, each tex file has the following structure

\input{preamble}

\begin{document}

\title{Title}

\maketitle

\tableofcontents

...

...

\input{chapters}

\bibliography{my}

\bibliographystyle{amsalpha}

\end{document}

(12) Try to add labels to lemmas, propositions, theorems, and even remarks,
exercise, and other environments. If labelling a lemma use something like

\begin{lemma}

\label{lemma-bar}

...

\end{lemma}

Similarly for all other environments. In other words, the label of a envi-
ronment named “foo” starts with “foo-”. In addition to this please make
all labels consist only of lower case letters, digits, and the symbol “-”.

(13) Never refer to “the lemma above” (or proposition, etc). Instead use:

Lemma \ref{lemma-bar} above

This means that later moving lemmas around is basically harmless.
(14) Cross-file referencing. To reference a lemma labeled “lemma-bar” in the

file foo.tex which has title “Foo”, please use the following code

Foo, Lemma \ref{foo-lemma-bar}

If this does not work, then take a look at the file preamble.tex to find the
correct expression to use. This will produce the “Foo, Lemma <link>” in
the output file so it will be clear that the link points out of the file.

(15) If at all possible avoid forward references in proof environments. (It should
be possible to write an automated test for this.)

(16) Do not start any sentence with a mathematical symbol.
(17) Do not have a sentence of the type “This follows from the following” just

before a lemma, proposition, or theorem. Every sentence ends with a
period.
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(18) State all hypotheses in each lemma, proposition, theorem. This makes it
easier for readers to see if a given lemma, proposition, or theorem applies
to their particular problem.

(19) Keep proofs short; less than 1 page in pdf or dvi. You can always achieve
this by splitting out the proof in lemmas etc.

(20) In a defining property foobar use

{\it foobar}

in the code inside the definition environment. Similarly if the definition
occurs in the text of the document. This will make it easier for the reader
to see what it is that is being defined.

(21) Put any definition that will be used outside the section it is in, in its
own definition environment. Temporary definitions may be made in the
text. A tricky case is that of mathematical constructions (which are often
definitions involving interrelated lemmas). Maybe a good solution is to
have them in their own short section so users can refer to the section
instead of a definition.

(22) Do not number equations unless they are actually being referenced some-
where in the text. We can always add labels later.

(23) In statements of lemmas, propositions and theorems and in proofs keep
the sentences short. For example, instead of “Let R be a ring and let M
be an R-module.” write “Let R be a ring. Let M be an R-module.”.
Rationale: This makes it easier to parse the trickier parts of proofs and
statements.

(24) Use the

\section

command to make sections, but try to avoid using subsections and sub-
subsections.

(25) Avoid using complicated latex constructions.

86.2. Other chapters
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(30) Divisors
(31) Limits of Schemes
(32) Varieties
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CHAPTER 87

Obsolete

87.1. Introduction

In this chapter we put some lemmas that have become “obsolete” (see [Mil17]).

87.2. Obsolete algebra lemmas

Lemma 87.2.1. Let M be an R-module of finite presentation. For any surjection
α : R⊕n →M the kernel of α is a finite R-module.

Proof. This is a special case of Algebra, Lemma 10.5.3. �

The following technical lemma says that you can lift any sequence of relations from
a fibre to the whole space of a ring map which is essentially of finite type, in a
suitable sense.

Lemma 87.2.2. Let R→ S be a ring map. Let p ⊂ R be a prime. Let q ⊂ S be a
prime lying over p. Assume Sq is essentially of finite type over Rp. Assume given

(1) an integer n ≥ 0,
(2) a prime a ⊂ κ(p)[x1, . . . , xn],
(3) a surjective κ(p)-homomorphism

ψ : (κ(p)[x1, . . . , xn])a −→ Sq/pSq,

and
(4) elements f1, . . . , fe in Ker(ψ).

Then there exist

(1) an integer m ≥ 0,
(2) and element g ∈ S, g 6∈ q,
(3) a map

Ψ : R[x1, . . . , xn, xn+1, . . . , xn+m] −→ Sg,

and
(4) elements f1, . . . , fe, fe+1, . . . , fe+m of Ker(Ψ)

such that

(1) the following diagram commutes

R[x1, . . . , xn+m]

Ψ

��

xn+j 7→0
// (κ(p)[x1, . . . , xn])a

ψ

��
Sg // Sq/pSq

,

(2) the element fi, i ≤ n maps to a unit times f i in the local ring

(κ(p)[x1, . . . , xn+m])(a,xn+1,...,xn+m),
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(3) the element fe+j maps to a unit times xn+j in the same local ring, and
(4) the induced map R[x1, . . . , xn+m]b → Sq is surjective, where b = Ψ−1(qSg).

Proof. We claim that it suffices to prove the lemma in case R and S are local with
maximal ideals p and q. Namely, suppose we have constructed

Ψ′ : Rp[x1, . . . , xn+m] −→ Sq

and f ′1, . . . , f
′
e+m ∈ Rp[x1, . . . , xn+m] with all the required properties. Then there

exists an element f ∈ R, f 6∈ p such that each ff ′k comes from an element fk ∈
R[x1, . . . , xn+m]. Moreover, for a suitable g ∈ S, g 6∈ q the elements Ψ′(xi) are
the image of elements yi ∈ Sg. Let Ψ be the R-algebra map defined by the rule
Ψ(xi) = yi. Since Ψ(fi) is zero in the localization Sq we may after possibly replacing
g assume that Ψ(fi) = 0. This proves the claim.

Thus we may assume R and S are local with maximal ideals p and q. Pick
y1, . . . , yn ∈ S such that yi mod pS = ψ(xi). Let yn+1, . . . , yn+m ∈ S be ele-
ments which generate an R-subalgebra of which S is the localization. These exist
by the assumption that S is essentially of finite type over R. Since ψ is surjective we
may write yn+j mod pS = ψ(hj) for some hj ∈ κ(p)[x1, . . . , xn]a. Write hj = gj/d,
gj ∈ κ(p)[x1, . . . , xn] for some common denominator d ∈ κ(p)[x1, . . . , xn], d 6∈ a.
Choose lifts Gj , D ∈ R[x1, . . . , xn] of gj and d. Set y′n+j = D(y1, . . . , yn)yn+j −
Gj(y1, . . . , yn). By construction y′n+j ∈ pS. It is clear that y1, . . . , yn, y

′
n, . . . , y

′
n+m

generate an R-subalgebra of S whose localization is S. We define

Ψ : R[x1, . . . , xn+m]→ S

to be the map that sends xi to yi for i = 1, . . . , n and xn+j to y′n+j for j = 1, . . . ,m.
Properties (1) and (4) are clear by construction. Moreover the ideal b maps onto
the ideal (a, xn+1, . . . , xn+m) in the polynomial ring κ(p)[x1, . . . , xn+m].

Denote J = Ker(Ψ). We have a short exact sequence

0→ Jb → R[x1, . . . , xn+m]b → Sq → 0.

The surjectivity comes from our choice of y1, . . . , yn, y
′
n, . . . , y

′
n+m above. This

implies that

Jb/pJb → κ(p)[x1, . . . , xn+m](a,xn+1,...,xn+m) → Sq/pSq → 0

is exact. By construction xi maps to ψ(xi) and xn+j maps to zero under the last
map. Thus it is easy to choose fi as in (2) and (3) of the lemma. �

Remark 87.2.3 (Projective resolutions). Let R be a ring. For any set S we let
F (S) denote the free R-module on S. Then any left R-module has the following
two step resolution

F (M ×M)⊕ F (R×M)→ F (M)→M → 0.

The first map is given by the rule

[m1,m2]⊕ [r,m] 7→ [m1 +m2]− [m1]− [m2] + [rm]− r[m].

Lemma 87.2.4. Let A → B be a finite type, flat ring map with A an integral
domain. Then B is a finitely presented A-algebra.

Proof. Special case of More on Flatness, Proposition 37.12.9. �
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Lemma 87.2.5. Let R be a domain with fraction field K. Let S = R[x1, . . . , xn]
be a polynomial ring over R. Let M be a finite S-module. Assume that M is flat
over R. If for every subring R ⊂ R′ ⊂ K, R 6= R′ the module M ⊗R R′ is finitely
presented over S ⊗R R′, then M is finitely presented over S.

Proof. This lemma is true because M is finitely presented even without the as-
sumption that M ⊗RR′ is finitely presented for every R′ as in the statement of the
lemma. This follows from More on Flatness, Proposition 37.12.9. Originally this
lemma had an erroneous proof (thanks to Ofer Gabber for finding the gap) and
was used in an alternative proof of the proposition cited. To reinstate this lemma,
we need a correct argument in case R is a local normal domain using only results
from the chapters on commutative algebra; please email stacks.project@gmail.com
if you have an argument. �

87.3. Lemmas related to ZMT

The lemmas in this section were originally used in the proof of the (algebraic version
of) Zariski’s Main Theorem, Algebra, Theorem 10.119.13.

Lemma 87.3.1. Let ϕ : R→ S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) +ϕ(a1)t+ . . .+ϕ(an)tn = 0. Set un = ϕ(an), un−1 = unt+ϕ(an−1), and so
on till u1 = u2t + ϕ(a1). Then all of un, un−1, . . . , u1 and unt, un−1t, . . . , u1t are
integral over R, and the ideals (ϕ(a0), . . . , ϕ(an)) and (un, . . . , u1) of S are equal.

Proof. We prove this by induction on n. As un = ϕ(an) we conclude from Algebra,
Lemma 10.119.1 that unt is integral over R. Of course un = ϕ(an) is integral over
R. Then un−1 = unt + ϕ(an−1) is integral over R (see Algebra, Lemma 10.35.7)
and we have

ϕ(a0) + ϕ(a1)t+ . . .+ ϕ(an−1)tn−1 + un−1t
n−1 = 0.

Hence by the induction hypothesis applied to the map S′ → S where S′ is the
integral closure of R in S and the displayed equation we see that un−1, . . . , u1 and
un−1t, . . . , u1t are all in S′ too. The statement on the ideals is immediate from the
shape of the elements and the fact that u1t+ ϕ(a0) = 0. �

Lemma 87.3.2. Let ϕ : R→ S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) +ϕ(a1)t+ . . .+ϕ(an)tn = 0. Let J ⊂ S be an ideal such that for at least one
i we have ϕ(ai) 6∈ J . Then there exists a u ∈ S, u 6∈ J such that both u and ut are
integral over R.

Proof. This is immediate from Lemma 87.3.1 since one of the elements ui will not
be in J . �

The following two lemmas are a way of describing closed subschemes of P1
R cut out

by one (nondegenerate) equation.

Lemma 87.3.3. Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree
d. Assume that for every prime p of R at least one coefficient of F is not in p. Let
S = R[X,Y ]/(F ) as a graded ring. Then for all n ≥ d the R-module Sn is finite
locally free of rank d.

Proof. The R-module Sn has a presentation

R[X,Y ]n−d → R[X,Y ]n → Sn → 0.
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Thus by Algebra, Lemma 10.76.3 it is enough to show that multiplication by F
induces an injective map κ(p)[X,Y ] → κ(p)[X,Y ] for all primes p. This is clear
from the assumption that F does not map to the zero polynomial mod p. The
assertion on ranks is clear from this as well. �

Lemma 87.3.4. Let k be a field. Let F,G ∈ k[X,Y ] be homogeneous of degrees
d, e. Assume F,G relatively prime. Then multiplication by G is injective on S =
k[X,Y ]/(F ).

Proof. This is one way to define “relatively prime”. If you have another definition,
then you can show it is equivalent to this one. �

Lemma 87.3.5. Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of
degree d. Let S = R[X,Y ]/(F ) as a graded ring. Let p ⊂ R be a prime such that
some coefficient of F is not in p. There exists an f ∈ R f 6∈ p, an integer e, and a
G ∈ R[X,Y ]e such that multiplication by G induces isomorphisms (Sn)f → (Sn+e)f
for all n ≥ d.

Proof. During the course of the proof we may replace R by Rf for f ∈ R, f 6∈ p
(finitely often). As a first step we do such a replacement such that some coefficient
of F is invertible in R. In particular the modules Sn are now locally free of rank
d for n ≥ d by Lemma 87.3.3. Pick any G ∈ R[X,Y ]e such that the image of
G in κ(p)[X,Y ] is relatively prime to the image of F (X,Y ) (this is possible for
some e). Apply Algebra, Lemma 10.76.3 to the map induced by multiplication by
G from Sd → Sd+e. By our choice of G and Lemma 87.3.4 we see Sd ⊗ κ(p) →
Sd+e ⊗ κ(p) is bijective. Thus, after replacing R by Rf for a suitable f we may
assume that G : Sd → Sd+e is bijective. This in turn implies that the image of G
in κ(p′)[X,Y ] is relatively prime to the image of F for all primes p′ of R. And then
by Algebra, Lemma 10.76.3 again we see that all the maps G : Sd → Sd+e, n ≥ d
are isomorphisms. �

Remark 87.3.6. Let R be a ring. Suppose that we have F ∈ R[X,Y ]d and
G ∈ R[X,Y ]e such that, setting S = R[X,Y ]/(F ) we have (1) Sn is finite locally
free of rank d for all n ≥ d, and (2) multiplication by G defines isomorphisms
Sn → Sn+e for all n ≥ d. In this case we may define a finite, locally free R-algebra
A as follows:

(1) as an R-module A = Sed, and
(2) multiplication A × A → A is given by the rule that H1H2 = H3 if and

only if GdH3 = H1H2 in S2ed.

This makes sense because multiplication by Gd induces a bijective map Sde → S2de.
It is easy to see that this defines a ring structure. Note the confusing fact that the
element Gd defines the unit element of the ring A.
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Lemma 87.3.7. Let R be a ring, let f ∈ R. Suppose we have S, S′ and the solid
arrows forming the following commutative diagram of rings

S′′

!!

��

R //

==

��

S

��
Rf // S′ // Sf

Assume that Rf → S′ is finite. Then we can find a finite ring map R → S′′ and
dotted arrows as in the diagram such that S′ = (S′′)f .

Proof. Namely, suppose that S′ is generated by xi over Rf , i = 1, . . . , w. Let
Pi(t) ∈ Rf [t] be a monic polynomial such that Pi(xi) = 0. Say Pi has degree
di > 0. Write Pi(t) = tdi +

∑
j<di

(aij/f
n)tj for some uniform n. Also write the

image of xi in Sf as gi/f
n for suitable gi ∈ S. Then we know that the element ξi =

fndigdii +
∑
j<di

fn(di−j)aijg
j
i of S is killed by a power of f . Hence upon increasing

n to n′, which replaces gi by fn
′−ngi we may assume ξi = 0. Then S′ is generated

by the elements fnxi, each of which is a zero of the monic polynomial Qi(t) = tdi +∑
j<di

fn(di−j)aijt
j with coefficients in R. Also, by construction Qi(f

ngi) = 0 in S.

Thus we get a finite R-algebra S′′ = R[z1, . . . , zw]/(Q1(z1), . . . , Qw(zw)) which fits
into a commutative diagram as above. The map α : S′′ → S maps zi to fngi and
the map β : S′′ → S′ maps zi to fnxi. It may not yet be the case that β induces an
isomorphism (S′′)f ∼= S′. For the moment we only know that this map is surjective.
The problem is that there could be elements h/fn ∈ (S′′)f which map to zero in S′

but are not zero. In this case β(h) is an element of S such that fNβ(h) = 0 for some
N . Thus fNh is an element ot the ideal J = {h ∈ S′′ | α(h) = 0 and β(h) = 0} of
S′′. OK, and it is easy to see that S′′/J does the job. �

87.4. Formally smooth ring maps

Lemma 87.4.1. Let R be a ring. Let S be a R-algebra. If S is of finite presentation
and formally smooth over R then S is smooth over R.

Proof. See Algebra, Proposition 10.133.13. �

87.5. Simplicial methods

Lemma 87.5.1. Assumptions and notation as in Simplicial, Lemma 14.31.1. There
exists a section g : U → V to the morphism f and the composition g ◦ f is homo-
topy equivalent to the identity on V . In particular, the morphism f is a homotopy
equivalence.

Proof. Immediate from Simplicial, Lemmas 14.31.1 and 14.29.8. �

87.6. Obsolete lemmas on schemes

Lemmas that seem superfluous.

Lemma 87.6.1. Let (R,m, κ) be a local ring. Let X ⊂ Pn
R be a closed subscheme.

Assume that R = Γ(X,OX). Then the special fibre Xk is geometrically connected.
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Proof. This is a special case of More on Morphisms, Theorem 36.36.4. �

Lemma 87.6.2. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z 6= Z0 and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
(4) There exists some coherent sheaf G on X such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. The proof is a variant on the proof of Cohomology of Schemes, Lemma
29.12.5. In exactly the same manner as in that proof we see that any coherent
sheaf whose support is strictly contained in Z0 has property P.

Consider a coherent sheaf G as in (3). By Cohomology of Schemes, Lemma 29.12.2
there exists a sheaf of ideals I on Z0 and a short exact sequence

0→ ((Z0 → X)∗I)
⊕r → G → Q→ 0

where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z. Since Q has property P we
conclude that also ((Z0 → X)∗I)

⊕r
has property P. By (2) we deduce property P

for (Z0 → X)∗I. Slotting this into the proof of Cohomology of Schemes, Lemma
29.12.5 at the appropriate point gives the lemma. Some details omitted. �

Lemma 87.6.3. Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there

exists some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. This follows from Lemma 87.6.2 in exactly the same way that Cohomology
of Schemes, Lemma 29.12.6 follows from Cohomology of Schemes, Lemma 29.12.5.

�

87.7. Functor of quotients

Lemma 87.7.1. Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let qi : F → Qi, i = 1, 2 be surjective maps of quasi-coherent OX-modules.
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Assume Q1 flat over S. Let T → S be a quasi-compact morphism of schemes such
that there exists a factorization

FT
q2,T

""

q1,T

||
Q1,T Q2,T

oo

Then exists a closed subscheme Z ⊂ S such that (a) T → S factors through Z
and (b) q1,Z factors through q2,Z . If Ker(q2) is a finite type OX-module and X
quasi-compact, then we can take Z → S of finite presentation.

Proof. Apply Quot, Lemma 76.7.5 to the map Ker(q2)→ Q1. �

87.8. Spaces and fpqc coverings

The material here was made obsolete by Gabber’s argument showing that alge-
braic spaces satisfy the sheaf condition with respect to fpqc coverings. Please visit
Properties of Spaces, Section 48.14.

Lemma 87.8.1. Let S be a scheme. Let X be an algebraic space over S. Let
{fi : Ti → T}i∈I be a fpqc covering of schemes over S. Then the map

MorS(T,X) −→
∏

i∈I
MorS(Ti, X)

is injective.

Proof. Immediate consequence of Properties of Spaces, Proposition 48.14.1. �

Lemma 87.8.2. Let S be a scheme. Let X be an algebraic space over S. Let
X =

⋃
j∈J Xj be a Zariski covering, see Spaces, Definition 47.12.5. If each Xj

satisfies the sheaf property for the fpqc topology then X satisfies the sheaf property
for the fpqc topology.

Proof. This is true because all algebraic spaces satisfy the sheaf property for the
fpqc topology, see Properties of Spaces, Proposition 48.14.1. �

Lemma 87.8.3. Let S be a scheme. Let X be an algebraic space over S. If X is
Zariski locally quasi-separated over S, then X satisfies the sheaf condition for the
fpqc topology.

Proof. Immediate consequence of the general Properties of Spaces, Proposition
48.14.1. �

Remark 87.8.4. This remark used to discuss to what extend the original proof of
Lemma 87.8.3 (of December 18, 2009) generalizes.

87.9. Very reasonable algebraic spaces

Material that is somewhat obsolete.

Lemma 87.9.1. Let S be a scheme. Let X be a reasonable algebraic space over S.
Then |X| is Kolmogorov (see Topology, Definition 5.7.4).

Proof. Follows from the definitions and Decent Spaces, Lemma 50.10.5. �
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In the rest of this section we make some remarks about very reasonable algebraic
spaces. If there exists a scheme U and a surjective, étale, quasi-compact morphism
U → X, then X is very reasonable, see Decent Spaces, Lemma 50.4.7.

Lemma 87.9.2. A scheme is very reasonable.

Proof. This is true because the identity map is a quasi-compact, surjective étale
morphism. �

Lemma 87.9.3. Let S be a scheme. Let X be an algebraic space over S. If there
exists a Zariski open covering X =

⋃
Xi such that each Xi is very reasonable, then

X is very reasonable.

Proof. This is case (ε) of Decent Spaces, Lemma 50.5.2. �

Lemma 87.9.4. An algebraic space which is Zariski locally quasi-separated is very
reasonable. In particular any quasi-separated algebraic space is very reasonable.

Proof. This is one of the implications of Decent Spaces, Lemma 50.5.1. �

Lemma 87.9.5. Let S be a scheme. Let X, Y be algebraic spaces over S. Let
Y → X be a representable morphism. If X is very reasonable, so is Y .

Proof. This is case (ε) of Decent Spaces, Lemma 50.5.3. �

Remark 87.9.6. Very reasonable algebraic spaces form a strictly larger collection
than Zariski locally quasi-separated algebraic spaces. Consider an algebraic space
of the form X = [U/G] (see Spaces, Definition 47.14.4) where G is a finite group
acting without fixed points on a non-quasi-separated scheme U . Namely, in this
case U ×X U = U ×G and clearly both projections to U are quasi-compact, hence
X is very reasonable. On the other hand, the diagonal U ×X U → U × U is not
quasi-compact, hence this algebraic space is not quasi-separated. Now, take U
the infinite affine space over a field k of characteristic 6= 2 with zero doubled, see
Schemes, Example 25.21.4. Let 01, 02 be the two zeros of U . Let G = {+1,−1},
and let −1 act by −1 on all coordinates, and by switching 01 and 02. Then [U/G]
is very reasonable but not Zariski locally quasi-separated (details omitted).

Warning: The following lemma should be used with caution, as the schemes Ui in
it are not necessarily separated or even quasi-separated.

Lemma 87.9.7. Let S be a scheme. Let X be a very reasonable algebraic space
over S. There exists a set of schemes Ui and morphisms Ui → X such that

(1) each Ui is a quasi-compact scheme,
(2) each Ui → X is étale,
(3) both projections Ui ×X Ui → Ui are quasi-compact, and
(4) the morphism

∐
Ui → X is surjective (and étale).

Proof. Decent Spaces, Definition 50.6.1 says that there exist Ui → X such that
(2), (3) and (4) hold. Fix i, and set Ri = Ui ×X Ui, and denote s, t : Ri → Ui
the projections. For any affine open W ⊂ Ui the open W ′ = t(s−1(W )) ⊂ Ui is a
quasi-compact Ri-invariant open (see Groupoids, Lemma 38.17.2). Hence W ′ is a
quasi-compact scheme, W ′ → X is étale, and W ′ ×X W ′ = s−1(W ′) = t−1(W ′) so
both projections W ′ ×X W ′ → W ′ are quasi-compact. This means the family of
W ′ → X, where W ⊂ Ui runs through the members of affine open coverings of the
Ui gives what we want. �
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87.10. Variants of cotangent complexes for schemes

This section gives an alternative construction of the cotangent complex of a mor-
phism of schemes. This section is currently in the obsolete chapter as we can get
by with the easier version discussed in Cotangent, Section 70.24 for applications.

Let f : X → Y be a morphism of schemes. Let CX/Y be the category whose objects
are commutative diagrams

(87.10.0.1)

X

��

Uoo

��

i
// A

��
Y Voo

of schemes where

(1) U is an open subscheme of X,
(2) V is an open subscheme of Y , and
(3) there exists an isomorphism A = V × Spec(P ) over V where P is a poly-

nomial algebra over Z (on some set of variables).

In other words, A is an (infinite dimensional) affine space over V . Morphisms are
given by commutative diagrams.

Notation. An object of CX/Y , i.e., a diagram (87.10.0.1), is often denoted U → A
where it is understood that (a) U is an open subscheme of X, (b) U → A is a
morphism over Y , (c) the image of the structure morphism A → Y is an open
V ⊂ Y , and (d) A→ V is an affine space. We’ll write U → A/V to indicate V ⊂ Y
is the image of A → Y . Recall that XZar denotes the small Zariski site X. There
are forgetful functors

CX/Y → XZar, (U → A) 7→ U and CX/Y 7→ YZar, (U → A/V ) 7→ V.

Lemma 87.10.1. Let X → Y be a morphism of schemes.

(1) The category CX/Y is fibred over XZar.
(2) The category CX/Y is fibred over YZar.
(3) The category CX/Y is fibred over the category of pairs (U, V ) where U ⊂ X,

V ⊂ Y are open and f(U) ⊂ V .

Proof. Ad (1). Given an object U → A of CX/Y and a morphism U ′ → U of
XZar consider the object i′ : U ′ → A of CX/Y where i′ is the composition of i and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Y is strongly cartesian over
XZar.

Ad (2). Given an object U → A/V and V ′ → V we can set U ′ = U ∩ f−1(V ′) and
A′ = V ′×V A to obtain a strongly cartesian morphism (U ′ → A′)→ (U → A) over
V ′ → V .

Ad (3). Denote (X/Y )Zar the category in (3). Given U → A/V and a morphism
(U ′, V ′)→ (U, V ) in (X/Y )Zar we can consider A′ = V ′×V A. Then the morphism
(U ′ → A′/V ′)→ (U → A/V ) is strongly cartesian in CX/Y over (X/Y )Zar. �

We obtain a topology τX on CX/Y by using the topology inherited from XZar (see
Stacks, Section 8.10). If not otherwise stated this is the topology on CX/Y we will
consider. To be precise, a family of morphisms {(Ui → Ai) → (U → A)} is a
covering of CX/Y if and only if

http://stacks.math.columbia.edu/tag/08T7
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(1) U =
⋃
Ui, and

(2) Ai = A for all i.

We obtain the same collection of sheaves if we allow Ai ∼= A in (2). The functor u
defines a morphism of topoi π : Sh(CX/Y )→ Sh(XZar).

The site CX/Y comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ O(A).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ O(U).
(3) The sheaf OY given by the rule (U → A/V ) 7→ O(V ).

We obtain morphisms of ringed topoi

(87.10.1.1)

(Sh(CX/Y ),OX)
i
//

π

��

(Sh(CX/Y ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 21.28.1. An
important role will be played in the following by the derived functors Li∗ : D(O) −→
D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX)
left adjoint to π∗ = π−1 : D(OX)→ D(OX).

Remark 87.10.2. We obtain a second topology τY on CX/Y by taking the topology
inherited from YZar. There is a third topology τX→Y where a family of morphisms
{(Ui → Ai) → (U → A)} is a covering if and only if U =

⋃
Ui, V =

⋃
Vi

and Ai ∼= Vi ×V A. This is the topology inherited from the topology on the site
(X/Y )Zar whose underlying category is the category of pairs (U, V ) as in Lemma
87.10.1 part (3). The coverings of (X/Y )Zar are families {(Ui, Vi)→ (U, V )} such
that U =

⋃
Ui and V =

⋃
Vi. There are morphisms of topoi

Sh(CX/Y ) = Sh(CX/Y , τX) Sh(CX/Y , τX→Y )oo // Sh(CX/Y , τY )

(recall that τX is our “default” topology). The pullback functors for these arrows
are sheafification and pushforward is the identity on underlying presheaves. The
diagram of topoi

Sh(XZar)

f

��

Sh(CX/Y )
π
oo Sh(CX/Y , τX→Y )oo

��
Sh(YZar) Sh(CX/Y , τY )oo

is not commutative. Namely, the pullback of a nonzero abelian sheaf on Y is a
nonzero abelian sheaf on (CX/Y , τX→Y ), but we can certainly find examples where
such a sheaf pulls back to zero on X. Note that any presheaf F on YZar gives a
sheaf F on CY/X by the rule which assigns to (U → A/V ) the set F(V ). Even

if F happens to be a sheaf it isn’t true in general that F = π−1f−1F . This is
related to the noncommutativity of the diagram above, as we can describe F as
the pushforward of the pullback of F to Sh(CX/Y , τX→Y ) via the lower horizontal
and right vertical arrows. An example is the sheaf OY . But what is true is that
there is a map F → π−1f−1F which is transformed (as we shall see later) into an
isomorphism after applying π!.

http://stacks.math.columbia.edu/tag/08TA
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87.11. Deformations and obstructions of flat modules

In this section we sketch a construction of a deformation theory for the stack of
coherent sheaves for any algebraic space X over a ring Λ. This material is obsolete
due to the improved discussion in Quot, Section 76.6.

Our setup will be the following. We assume given

(1) a ring Λ,
(2) an algebraic space X over Λ,
(3) a Λ-algebra A, set XA = X ×Spec(Λ) Spec(A), and
(4) a finitely presented OXA-module F flat over A.

In this situation we will consider all possible surjections

0→ I → A′ → A→ 0

where A′ is a Λ-algebra whose kernel I is an ideal of square zero in A′. Given A′

we obtain a first order thickening XA → XA′ of algebraic spaces over Spec(Λ). For
each of these we consider the problem of lifting F to a finitely presented module F ′
on XA′ flat over A′. We would like to replicate the results of Deformation Theory,
Lemma 69.11.1 in this setting.

To be more precise let Lift(F , A′) denote the category of pairs (F ′, α) where F ′ is a
finitely presented module on XA′ flat over A′ and α : F ′|XA → F is an isomorphism.
Morphisms (F ′1, α1) → (F ′2, α2) are isomorphisms F ′1 → F ′2 which are compatible
with α1 and α2. The set of isomorphism classes of Lift(F , A′) is denoted Lift(F , A′).

Let G be a sheaf of OX ⊗Λ A-modules on Xétale flat over A. We introduce the
category Lift(G, A′) of pairs (G′, β) where G′ is a sheaf of OX ⊗Λ A

′-modules flat
over A′ and β is an isomorphism G′ ⊗A′ A→ G.

Lemma 87.11.1. Notation and assumptions as above. Let p : XA → X denote the
projection. Given A′ denote p′ : XA′ → X the projection. The functor p′∗ induces
an equivalence of categories between

(1) the category Lift(F , A′), and
(2) the category Lift(p∗F , A′).

Proof. FIXME. �

Let H be a sheaf of O⊗ΛA-modules on CX/Λ flat over A. We introduce the category
LiftO(H, A′) whose objects are pairs (H′, γ) where H′ is a sheaf of O⊗ΛA

′-modules
flat over A′ and γ : H′ ⊗A A′ → H is an isomorphism of O ⊗Λ A-modules.

Let G be a sheaf of OX⊗ΛA-modules on Xétale flat over A. Consider the morphisms
i and π of Cotangent, Equation (70.26.1.1). Denote G = π−1(G). It is simply given
by the rule (U → A) 7→ G(U) hence it is a sheaf of OX ⊗Λ A-modules. Denote i∗G
the same sheaf but viewed as a sheaf of O ⊗Λ A-modules.

Lemma 87.11.2. Notation and assumptions as above. The functor π! induces an
equivalence of categories between

(1) the category LiftO(i∗G, A′), and
(2) the category Lift(G, A′).

Proof. FIXME. �

http://stacks.math.columbia.edu/tag/08W0
http://stacks.math.columbia.edu/tag/08W1
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Lemma 87.11.3. Notation and assumptions as in Lemma 87.11.2. Consider the
object

L = L(Λ, X,A,G) = Lπ!(Li
∗(i∗(G)))

of D(OX ⊗Λ A). Given a surjection A′ → A of Λ-algebras with square zero kernel
I we have

(1) The category Lift(G, A′) is nonempty if and only if a certain class ξ ∈
Ext2OX⊗A(L,G ⊗A I) is zero.

(2) If Lift(G, A′) is nonempty, then Lift(G, A′) is principal homogeneous under
Ext1OX⊗A(L,G ⊗A I).

(3) Given a lift G′, the set of automorphisms of G′ which pull back to idG is
canonically isomorphic to Ext0OX⊗A(L,G ⊗A I).

Proof. FIXME. �

Finally, we put everything together as follows.

Proposition 87.11.4. With Λ, X, A, F as above. There exists a canonical object
L = L(Λ, X,A,F) of D(XA) such that given a surjection A′ → A of Λ-algebras
with square zero kernel I we have

(1) The category Lift(F , A′) is nonempty if and only if a certain class ξ ∈
Ext2XA(L,F ⊗A I) is zero.

(2) If Lift(F , A′) is nonempty, then Lift(F , A′) is principal homogeneous un-
der Ext1XA(L,F ⊗A I).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0XA(L,F ⊗A I).

Proof. FIXME. �

Lemma 87.11.5. In the situation of Proposition 87.11.4, if X → Spec(Λ) is locally
of finite type and Λ is Noetherian, then L is pseudo-coherent.

Proof. FIXME. �

87.12. Modifications

Here are some obsolete results on the category of Restricted Power Series, Equation
(66.13.0.1). Please visit Restricted Power Series, Section 66.13 for the current
material.

Lemma 87.12.1. Let (A,m, κ) be a Noetherian local ring. The category of Re-
stricted Power Series, Equation (66.13.0.1) for A is equivalent to the category Re-
stricted Power Series, Equation (66.13.0.1) for the henselization Ah of A.

Proof. This is a special case of Restricted Power Series, Lemma 66.13.2. �

87.13. Duplicate references

This section is a place where we collect duplicates.

Lemma 87.13.1. Let S be a scheme. Let X be an algebraic space over S. The
map {Spec(k)→ X monomorphism} → |X| is injective.

Proof. This is a duplicate of Properties of Spaces, Lemma 48.4.11. �

http://stacks.math.columbia.edu/tag/08W2
http://stacks.math.columbia.edu/tag/08W3
http://stacks.math.columbia.edu/tag/08W4
http://stacks.math.columbia.edu/tag/0AE4
http://stacks.math.columbia.edu/tag/03IF
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Theorem 87.13.2. Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. Then there is an equivalence
of categories Sh(Sétale)→ G-Sets, F 7→ Fs.

Proof. This is a duplicate of Étale Cohomology, Theorem 44.57.3. �

Remark 87.13.3. You got here because of a duplicate tag. Please see Formal
Deformation Theory, Section 68.11 for the actual content.
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CHAPTER 88

GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document ”free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

88.1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The ”Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as ”you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if

4445
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the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as ”Acknowledgements”, ”Dedications”, ”Endorse-
ments”, or ”History”.) To ”Preserve the Title” of such a section when you
modify the Document means that it remains a section ”Entitled XYZ” according
to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
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disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

88.2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensa-
tion in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

88.3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

88.4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
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to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled ”History”, Preserve its Title, and add to it

an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

88.5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise com-
bine any sections Entitled ”Acknowledgements”, and any sections Entitled ”Dedi-
cations”. You must delete all sections Entitled ”Endorsements”.

88.6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
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extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

88.7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,
is called an ”aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

88.8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or
”History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

88.9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

88.10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any later
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version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

88.11. ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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89.1. Alphabetized definitions

(2, 1)-category in 4.28.1
(2, 1)-periodic complex in 41.3.1
(A,B)-bimodule in 10.11.6
(Rk) in 10.146.1
(Rk) in 27.12.1
(Sk) in 10.146.1
(Sk) in 27.12.1
(Sk) in 29.11.1
(Sk) in 29.11.1
(U ′, R′, s′, t′, c′) is cartesian over
(U,R, s, t, c) in 38.19.1
1-morphisms in 4.27.1
2-category of algebraic stacks over S in
71.12.3
2-category of categories fibred in
groupoids over C in 4.33.6
2-category of categories fibred in setoids
over C in 4.37.3
2-category of categories fibred in sets
over C in 4.36.3
2-category of categories over C in 4.30.1
2-category of fibred categories over C in
4.31.9
2-category of stacks in groupoids over C
in 8.5.5
2-category of stacks in setoids over C in
8.6.5
2-category of stacks over C in 8.4.5
2-category in 4.27.1
2-morphisms in 4.27.1
2-periodic complex in 41.3.1
α-small with respect to I in 19.2.4
δ is compatible with γ in 45.4.1
δ-dimension of Z in 41.7.5
δ-functor from A to D in 13.3.6
δ-functor in 12.11.1

δ(τ) in 83.33.2
δnj : [n− 1]→ [n] in 14.2.1
`-adic cohomology in 44.96.8
ε-invariant in 41.27.3
Hom(U, V ) in 14.14.1
Hom(U, V ) in 14.16.1
κ-generated in 27.21.1
Z`-sheaf in 44.96.1
A0 in 22.18.3
CΛ in 68.3.1
G-torsor in 20.5.1
G-torsor in 21.5.1
I is cofinal in J in 4.17.1
I is initial in J in 4.17.3
KX in 30.15.1
O∗ in 18.31.1
O1-derivation in 17.23.1
O1-derivation in 18.32.1
OX -module in 73.7.1
S is endowed with the topology inherited
from C in 8.10.2
SF in 4.34.2
SF in 4.35.2
X is relatively representable over Y in
4.39.5
φ lies over f in 4.30.2
Sh(C) in 7.7.5
σnj : [n+ 1]→ [n] in 14.2.1
τ G-torsor in 38.9.3
τ G-torsor in 60.9.3
τ local on the base in 34.18.1
τ local on the base in 56.9.1
τ local on the source in 34.22.1
τ local on the source in 56.12.1
τ local on the target in 34.18.1
τ local on the target in 56.9.1
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τ torsor in 38.9.3
τ torsor in 60.9.3
τ -covering in 44.20.1
Adeq((Sch/S)τ ,O) in 42.5.7
Adeq(O) in 42.5.7
Adeq(S) in 42.5.7
ModG in 44.58.1
Ext-group in 12.6.2
Filf (A) in 83.23.4
U in 7.13.3
ϕ-derivation in 17.23.1
ϕ-derivation in 18.32.1

ĈΛ in 68.4.1
A-biderivation in 70.12.1
C in 34.4.9
Cr in 44.63.2
CS/R in 10.142.2
d(M) in 10.58.8
Dc(X,Λ) in 44.90.1
Dctf (X,Λ) in 44.90.7
f has relative dimension d at x in 49.31.1
F is relatively representable over G in
4.8.2
f -ample in 28.38.1
F -crystal on X/S (relative to σ) in
45.26.2
f -map ϕ : G → F in 48.15.8
f -map ξ : G → F in 6.21.7
f -relatively ample in 28.38.1
f -relatively very ample in 28.39.1
f -very ample in 28.39.1
f−1S in 8.12.9
f∗ in 34.4.19
f∗S in 8.12.4
G-equivariant quasi-coherent OX-
module in 38.10.1
G-equivariant quasi-coherent OX-
module in 60.10.1
G-equivariant in 38.8.1
G-equivariant in 60.8.1
G-invariant in 63.3.1
G-module in 44.58.1
G-set in 44.56.1
G-torsor in the τ topology in 38.9.3
G-torsor in the τ topology in 60.9.3
G-torsor in 38.9.3
G-trace of f on P in 44.93.2
G-Sets in 44.56.1

g!F = (gp!F)# in 18.16.1
gp!F in 18.16.1
Hi+k(A•) −→ Hi(A[k]•) in 12.14.8
H1-Koszul-regular in 15.21.1
H1-regular ideal in 15.22.1
H1-regular immersion in 30.13.1
H1-regular immersion in 58.33.2
H1-regular in 30.12.2
Hi+k(A•)→ Hi(A[k]•) in 12.14.2
I-adically complete in 10.93.5
I-adically complete in 10.93.5
I-depth in 10.67.4
I-power torsion module in 15.62.1
ith extension group in 13.27.1
ith right derived functor RiF of F in
13.17.2
k-cycle associated to F in 41.10.2
k-cycle associated to Z in 41.9.2
k-cycle in 41.8.1
k-shifted chain complex A[k]• in 12.14.1
k-shifted cochain complex A[k]• in
12.14.7
k-shifted module in 22.4.3
kth fitting ideal in 15.5.3
L-function of F in 44.97.1
L-function of F in 44.97.3
M 7→M∨ in 15.42.1
M -H1-regular in 15.21.1
M -Koszul-regular in 15.21.1
m-pseudo-coherent relative to R in
15.59.4
m-pseudo-coherent relative to R in
15.59.4
m-pseudo-coherent relative to S in
36.39.2
m-pseudo-coherent relative to S in
36.39.2
m-pseudo-coherent in 15.50.1
m-pseudo-coherent in 15.50.1
m-pseudo-coherent in 20.36.1
m-pseudo-coherent in 20.36.1
m-pseudo-coherent in 21.34.1
m-pseudo-coherent in 21.34.1
M -quasi-regular in 10.68.1
M -regular sequence in I in 10.67.1
M -regular in 10.67.1
m-regular in 32.19.6
n-simplex of U in 14.11.1
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n-truncated simplicial object of C in
14.12.1
R-bilinear in 10.11.1
R-derivation in 10.127.1
R-equivalent in 63.5.4
R-invariant in 38.17.1
R-invariant in 38.17.1
R-invariant in 38.17.1
R-invariant in 60.17.1
R-invariant in 60.17.1
R-invariant in 60.17.1
R-invariant in 63.3.1
R-linear category A in 22.17.1
R-linear in 22.17.2
R-linear in 68.10.1
R-module of finite presentation in 10.5.1
R-orbit in 63.5.1
R-orbit in 63.5.4
R(f) in 83.20.3
S is a finite type R-algebra in 10.6.1
S-birational in 28.10.10
S-derivation D : OX/S → F in 45.12.1
S-derivation in 17.23.10
S-pure in 37.15.1
S-pure in 37.15.1
S-rational map from X to Y in 28.10.1
U -admissible blowup in 30.20.1
U -admissible blowup in 53.8.1
X is regular at x in 48.23.2
x lies over U in 4.30.2
Xspaces,étale in 48.15.2
Y is cartesian over X in 64.8.1
Y -derivation in 18.32.10
2-fibre product of f and g in 4.29.2
2-morphism from f to g in 7.35.1
2-morphism from f to g in 18.8.1
étale at q in 10.138.1
étale at x ∈ X in 28.37.1
étale at x ∈ X in 40.11.4
étale at x in 49.36.1
étale covering of T in 33.4.1
étale covering of X in 55.7.1
étale covering in 44.4.1
étale covering in 44.27.1
étale equivalence relation in 47.9.2
étale homomorphism of local rings in
40.11.1

étale local on source-and-target in
34.28.3
étale local on the source-and-target in
34.29.1
étale local ring of S at s in 44.33.2
étale local ring of X at x in 48.19.2
étale local in 34.17.1
étale neighborhood in 44.29.1
étale neighborhood in 48.16.2
étale neighbourhood of (S, s) in 36.27.1
étale sheaf in 73.4.3
étale topos in 44.21.1
étale topos in 48.15.6
étale in 10.138.1
étale in 28.37.1
étale in 34.16.2
étale in 40.11.4
étale in 44.26.1
étale in 48.13.2
abelian presheaf over X in 6.4.4
abelian presheaf in 44.9.1
abelian sheaf on X in 6.8.1
abelian sheaves in 44.11.4
abelian variety in 44.66.1
abelian in 12.5.1
absolute frobenius in 44.80.3
absolute Galois group in 44.57.1
absolute ramification index in 15.68.17
absolutely flat in 15.67.1
absolutely flat in 15.67.1
absolutely flat in 36.44.1
abuts to in 12.20.6
action of G on the algebraic space X/B
in 60.8.1
action of G on the scheme X/S in 38.8.1
acts freely in 47.14.4
acyclic for LF in 13.16.3
acyclic for RF in 13.16.3
acyclic in 12.12.4
acyclic in 12.12.10
additive in 12.3.1
additive in 12.3.8
adequate in 42.3.2
adequate in 42.5.1
adic constructible in 46.26.1
adic constructible in 46.27.4
adic lisse in 46.26.1
adic lisse in 46.27.4
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adic morphism in 65.17.1
adic* in 65.5.7
adic in 15.26.1
adic in 65.5.7
admissible epimorphism in 22.7.1
admissible monomorphism in 22.7.1
admissible relation in 41.2.1
admissible short exact sequence in 22.7.1
admissible in 15.26.1
admissible in 41.2.1
affine n-space over R in 26.5.1
affine n-space over S in 26.5.1
affine blowup algebra in 10.56.1
affine cone associated to A in 26.7.1
affine formal algebraic space in 65.5.1
affine scheme in 25.5.5
affine variety in 32.16.1
affine in 28.13.1
affine in 49.20.2
algebraic k-scheme in 32.13.1
algebraic closure of k in K in 9.23.9
algebraic closure in 9.10.3
algebraic extension in 9.8.1
algebraic space over S in 47.6.1
algebraic space structure on Z in 48.9.5
algebraic stack over S in 71.12.1
algebraic stack structure on Z in 77.10.4
algebraic stack in 81.5.1
algebraically closed in K in 9.23.9
algebraically closed in 9.10.1
algebraically closed in 9.10.3
algebraically independent in 9.23.1
algebraic in 9.8.1
algebraic in 9.25.1
algebraic in 44.57.1
algebraic in 74.8.1
almost cocontinuous in 7.41.3
almost integral over R in 10.36.3
alteration of X in 28.47.9
alteration of X in 54.6.3
alternating Čech complex in 20.24.1
alternating Čech complex in 51.5.2
amalgamated sum in 4.5.1
ample on X/S in 28.38.1
ample in 27.24.1
an f -power torsion module in 15.62.1
an ideal of definition of R in 10.58.1
analytically unramified in 10.150.23

analytically unramified in 10.150.23
annihilator of m in 10.39.3
annihilator of M in 10.39.3
approximation by perfect complexes
holds in 35.12.2
approximation by perfect complexes
holds in 57.13.2
approximation holds for the triple in
35.12.1
approximation holds for the triple in
57.13.1
arithmetic frobenius in 44.80.9
Artinian in 10.51.1
Artinian in 83.5.16
associated étale site in 73.4.1
associated fppf site in 73.4.1
associated graded ring in 17.21.4
associated morphism of fppf topoi in
73.4.5
associated points of X in 30.2.1
associated simple complex sA• in 12.22.3
associated smooth site in 73.4.1
associated syntomic site in 73.4.1
associated total complex in 12.22.3
associated Zariski site in 73.4.1
associated in 10.62.1
associated in 30.2.1
associates in 10.116.1
Atiyah class in 70.16.1
Atiyah class in 70.18.1
augmentation ε : U → X of U towards
an object X of C in 14.19.1
auto-associated in 15.8.1
automorphism functor of x in 68.18.5
automorphisms of E over F in 9.14.5
automorphisms of E/F in 9.14.5
Bézout domain in 15.72.5
base change of F ′ to S in 47.16.2
base change in 10.13.1
base change in 10.13.1
base change in 25.18.1
base change in 25.18.1
base change in 25.18.1
base extension along f in 34.4.15
base for the topology on X in 5.4.1
basis for the topology on X in 5.4.1
big τ -site of S in 44.20.4
big τ -topos in 44.21.1
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big étale site of S in 33.4.8
big étale site over S in 44.27.3
big étale site in 33.4.6
big affine étale site of S in 33.4.8
big affine fppf site of S in 33.7.8
big affine pro-étale site of S in 46.11.12
big affine smooth site of S in 33.5.8
big affine syntomic site of S in 33.6.8
big affine Zariski site of S in 33.3.7
big crystalline site in 45.8.4
big fppf site of S in 33.7.8
big fppf site in 33.7.6
big pro-étale site of S in 46.11.12
big pro-étale site in 46.11.8
big smooth site of S in 33.5.8
big smooth site in 33.5.6
big syntomic site of S in 33.6.8
big syntomic site in 33.6.6
big Zariski site of S in 33.3.7
big Zariski site in 33.3.5
big in 44.27.3
birational in 28.9.1
birational in 28.10.10
birational in 50.18.1
blowing up of X along Z in 30.18.1
blowing up of X along Z in 53.6.1
blowing up of X in the ideal sheaf I in
30.18.1
blowing up of X in the ideal sheaf I in
53.6.1
blowup algebra in 10.56.1
bounded above in 13.8.1
bounded below in 13.8.1
bounded derived category in 13.11.3
bounded filtered derived category in
13.14.7
bounded in 13.8.1
bounds the degrees of the fibres of f in
28.50.1
Brauer group in 11.5.2
Brauer group in 44.61.4
canonical descent datum in 8.3.5
canonical descent datum in 34.2.3
canonical descent datum in 34.30.10
canonical descent datum in 34.30.11
canonical descent datum in 56.3.3
canonical descent datum in 56.19.10
canonical descent datum in 56.19.11

canonical scheme structure on T in
28.27.3
canonical topology in 7.45.12
Cartan-Eilenberg resolution in 13.21.1
cartesian in 4.6.2
cartesian in 38.19.1
cartesian in 64.8.1
cartesian in 64.9.1
Cartier divisor in 83.34.1
categorical quotient in C in 63.4.1
categorical quotient in schemes in 63.4.1
categorical quotient in the category of
schemes in 63.4.1
categorical quotient in 63.4.1

category F̂ of formal objects of F in
68.7.1
category cofibered in groupoids over C in
68.5.1
category fibred in discrete categories in
4.36.2
category fibred in setoids in 4.37.2
category fibred in sets in 4.36.2
category of (cochain) complexes in 13.8.1
category of complexes of A in 22.19.3
category of cosimplicial objects of C in
14.5.1
category of finite filtered objects of A in
13.14.1
category of graded objects of A in 12.15.1
category of groupoids in functors on C in
68.19.1
category of sheaves of sets in 44.11.4
category of simplicial objects of C in
14.3.1
category in 4.2.1
catenary in 5.10.4
catenary in 10.101.1
catenary in 27.11.1
catenary in 83.12.1
Cech cohomology groups in 21.9.1
Cech complex in 21.9.1
centered in 10.48.1
center in 30.18.1
center in 53.6.1
central in 11.2.4
chain of irreducible closed subsets in
5.9.1
change of base of X ′ in 71.19.3
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characteristic in 9.5.1
chern classes of E on X in 41.34.1
choice of pullbacks in 4.31.6
Chow group of k-cycles module rational
equivalence on X in 41.19.1
Chow group of k-cycles on X in 41.19.1
class group of A in 83.15.3
classical case in 68.3.1
classical generator in 13.33.1
classical in 65.5.7
closed immersion of ringed spaces in
17.13.1
closed immersion in 7.42.7
closed immersion in 25.4.1
closed immersion in 25.10.2
closed immersion in 47.12.1
closed immersion in 65.20.1
closed immersion in 77.9.1
closed subgroup scheme in 38.4.3
closed subscheme in 25.10.2
closed subspace of X associated to the
sheaf of ideals I in 25.4.4
closed subspace in 47.12.1
closed substack in 77.9.8
closed subtopos in 7.42.6
closed in 5.16.2
closed in 49.9.2
closed in 78.11.2
closed in 83.5.22
coarse quotient in schemes in 63.6.1
coarse quotient in 63.6.1
cocartesian in 4.9.2
cocontinuous in 7.19.1
cocycle condition in 8.3.1
cocycle condition in 34.2.1
cocycle condition in 34.3.1
cocycle condition in 34.30.1
cocycle condition in 56.3.1
cocycle condition in 56.19.1
codimension in 5.10.1
codirected in 4.20.1
codirected in 4.20.1
coefficient ring in 10.149.4
coequalizer in 4.11.1
cofiltered in 4.20.1
cofiltered in 4.20.1
cofinal in 4.17.1
Cohen ring in 10.149.5

Cohen-Macaulay at x in 36.17.1
Cohen-Macaulay morphism in 36.17.1
Cohen-Macaulay in 10.99.1
Cohen-Macaulay in 10.99.10
Cohen-Macaulay in 10.100.1
Cohen-Macaulay in 10.100.6
Cohen-Macaulay in 27.8.1
Cohen-Macaulay in 29.11.2
Cohen-Macaulay in 83.21.1
coherent OX-module in 17.12.1
coherent module in 10.87.1
coherent ring in 10.87.1
coherent in 18.23.1
coherent in 51.11.1
coherent in 83.29.6
cohomological δ-functor in 12.11.1
cohomological in 13.3.5
cohomology modules in 41.3.1
cohomology modules in 41.3.1
coimage of f in 12.3.9
cokernel in 12.3.9
colimit in 4.14.2
colimit in 83.2.3
collapses at Er in 12.17.2
combinatorially equivalent in 7.8.2
commutative in 22.3.4
compact object in 13.34.1
compactly generated in 13.34.5
compatible with the differential graded
structure in 23.6.4
compatible with the triangulated struc-
ture in 13.5.1
complete dévissage of F/X/S at x in
37.5.2
complete dévissage of F/X/S over s in
37.5.1
complete dévissage of N/S/R at q in
37.6.4
complete dévissage of N/S/R over r in
37.6.2
complete intersection (over k) in
10.130.5
complete intersection in 23.8.5
complete local ring in 10.149.1
completed tensor product in 65.4.6
completely normal in 10.36.3
completion (U,R, s, t, c)∧ of (U,R, s, t, c)
in 68.20.2
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completion of F in 68.7.3
completion of X along T in 65.9.3
complex in 12.5.7
composition f ◦ g in 7.16.1
composition of ϕ and ψ in 6.21.9
composition of morphisms of germs in
34.16.1
composition of morphisms of ringed sites
in 18.6.1
composition of morphisms of ringed
spaces in 6.25.3
composition of morphisms of ringed
topoi in 18.7.1
composition in 4.27.1
composition in 7.15.4
compositum of K and L in Ω in 9.24.1
computes in 13.15.10
computes in 13.15.10
condition (RS) in 68.15.1
condition (RS) in 75.5.1
condition (RS*) in 75.18.2
conditions (S1) and (S2) in 68.9.1
cone π : C → S over S in 26.7.2
cone associated to A in 26.7.1
cone in 13.9.1
cone in 22.6.1
connected component in 5.6.1
connected component in 83.5.26
connected in 4.16.1
connected in 5.6.1
connected in 83.5.26
conormal algebra CZ/X,∗ of Z in X in
30.11.1
conormal algebra CZ/X,∗ of Z in X in
58.5.1
conormal algebra of f in 30.11.1
conormal algebra of i in 58.5.1
conormal module in 10.142.2
conormal sheaf CZ/X of Z in X in
28.33.1
conormal sheaf CZ/X of Z in X in 58.4.1
conormal sheaf of i in 28.33.1
conormal sheaf of i in 58.4.1
conormal sheaf of Z over X in 36.5.2
conormal sheaf of Z over X in 58.12.5
conservative in 7.37.1
constant presheaf with value A in 6.3.2
constant sheaf with value A in 6.7.4

constant sheaf with value A in 44.68.1
constant sheaf with value E in 44.68.1
constant sheaf with value M in 44.68.1
constant sheaf in 18.42.1
constant sheaf in 44.23.1
constant sheaf in 44.68.1
constant sheaf in 44.68.1
constant sheaf in 44.68.1
constructible Λ-sheaf in 46.26.1
constructible in 5.14.1
constructible in 44.69.1
constructible in 44.69.1
constructible in 44.69.1
constructible in 46.25.1
constructible in 46.27.1
content ideal of x in 15.16.1
continuous group cohomology groups in
44.58.2
continuous in 7.14.1
contravariant in 4.3.2
converges to in 12.20.6
converges in 12.20.6
converges in 12.21.7
converges in 12.22.5
converges in 12.22.5
coproduct in 4.5.1
coproduct in 4.14.6
cosimplicial abelian group in 14.5.1
cosimplicial object U of C in 14.5.1
cosimplicial set in 14.5.1
cotangent complex LX/Y of X over Y in
70.23.1
cotangent complex LX/Y of X over Y in
70.25.1
cotangent complex in 70.3.2
cotangent complex in 70.17.2
cotangent complex in 70.19.1
cotangent complex in 70.21.1
countably indexed in 65.6.2
coverings of C in 7.6.2
coverings in 44.10.2
covering in 24.2.4
covering in 24.2.4
covers F in 25.15.3
crystal in OX/S-modules in 45.11.1
crystal in finite locally free modules in
45.11.3
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crystal in quasi-coherent modules in
45.11.3
crystalline site in 45.9.1
curve in 32.23.1
curve in 44.63.6
cycle on X in 41.8.1
decent in 50.6.1
decent in 50.15.1
decomposition group in 15.68.9
decreasing filtration in 12.16.1
Dedekind domain in 10.116.11
defined in a point x ∈ X in 28.10.7
deformation category in 68.15.8
degeneracy of x in 14.11.1
degenerates at Er in 12.17.2
degenerate in 14.11.1
degree d finite Hilbert stack of X over Y
in 72.17.2
degree of X over Y in 28.47.5
degree of X over Y in 54.5.3
degree of inseparability in 9.13.7
degree in 9.7.1
degree in 28.46.1
degree in 49.42.2
Deligne-Mumford stack in 71.12.2
depth k at a point in 29.11.1
depth k at a point in 29.11.1
depth in 10.67.4
derivation in 10.127.1
derived category of (A, d) in 22.15.2
derived category of A in 13.11.3
derived category of OX -modules with
quasi-coherent cohomology sheaves in
80.4.1
derived category of OX-modules with
quasi-coherent cohomology sheaves in
57.5.1
derived colimit in 13.31.1
derived complete with respect to I in
46.14.4
derived complete with respect to I in
15.64.4
derived complete with respect to I in
15.64.4
derived limit in 13.32.1
derived tensor product in 15.45.13
derived tensor product in 20.27.13
derived tensor product in 21.17.11

descent datum (Fi, ϕij) for quasi-
coherent sheaves in 34.2.1
descent datum (Fi, ϕij) for quasi-
coherent sheaves in 56.3.1
descent datum (N,ϕ) for modules with
respect to R→ A in 34.3.1
descent datum (Vi, ϕij) relative to the
family {Xi → S} in 34.30.3
descent datum (Vi, ϕij) relative to the
family {Xi → X} in 56.19.3
descent datum (Xi, ϕij) in S relative to
the family {fi : Ui → U} in 8.3.1
descent datum for V/X/S in 34.30.1
descent datum for V/Y/X in 56.19.1
descent datum relative to X → S in
34.30.1
descent datum relative to Y → X in
56.19.1
descent datum in 44.16.1
descent datum in 44.16.5
descent morphism for modules in 34.4.15
determinant of (M,ϕ, ψ) in 41.3.4
determinant of the finite length R-
module M in 41.2.1
differential dϕ : TF → TG of ϕ in
68.11.3
differential graded algebra over R in
22.3.1
differential graded category A over R in
22.19.1
differential graded direct sum in 22.19.4
differential graded module in 22.4.1
differential object in 12.19.1
differential operator D : F → G of order
k in 18.33.1
differential operator D : M → N of or-
der k in 10.128.1
dimension function in 5.19.1
dimension of X at x in 77.12.2
dimension of X at x in 27.10.1
dimension of X at x in 48.8.1
dimension of the local ring of X at x in
48.20.2
dimension of the local ring of the fibre of
f at x in 49.31.1
dimension in 5.9.1
dimension in 27.10.1
dimension in 48.8.2
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dimension in 77.12.3
direct image functor in 7.24.1
direct image functor in 18.19.1
direct image in 44.35.1
direct image in 44.35.3
direct sum dévissage in 10.81.1
direct sum in 12.3.5
directed inverse system in 4.21.2
directed partially ordered set in 83.2.1
directed set in 10.8.1
directed system in 4.21.2
directed system in 10.8.2
directed in 4.19.1
directed in 4.19.1
directed in 4.21.2
discrete G-module in 44.58.1
discrete G-set in 44.56.1
discrete valuation ring in 10.48.13
discrete in 4.36.1
distance between M and M ′ in 10.117.5
distinguished triangle of K(A) in 13.10.1
distinguished triangles in 13.3.2
distinguished triangle in 22.8.2
divided power A-derivation in 45.6.1
divided power envelope of J in B relative
to (A, I, γ) in 45.2.2
divided power ring in 23.3.1
divided power scheme in 45.7.2
divided power structure γ in 45.7.1
divided power structure in 23.2.1
divided power structure in 23.6.1
divided power thickening of X relative to
(S, I, γ) in 45.8.1
divided power thickening in 45.5.2
divided power thickening in 45.7.3
DM over S in 78.4.2
DM in 78.4.1
DM in 78.4.2
domain of definition in 28.10.7
domain in 9.2.2
dominant in 28.8.1
dominant in 28.10.9
dominant in 49.18.1
dominates in 10.48.1
dominates in 10.85.2
double complex in 12.22.1
dual numbers in 83.28.1
dualizing complex in 43.12.1

dualizing complex in 43.16.2
effective Cartier divisor in 30.9.1
effective Cartier divisor in 53.2.1
effective Cartier divisor in 83.34.1
effective descent morphism for modules
in 34.4.15
effective epimorphism in 7.13.1
effective in 8.3.5
effective in 34.2.3
effective in 34.3.4
effective in 34.30.10
effective in 34.30.11
effective in 44.16.1
effective in 44.16.6
effective in 56.3.3
effective in 56.19.10
effective in 56.19.11
effective in 75.9.3
Eilenberg-Maclane object K(A, k) in
14.21.3
elementary étale localization of the ring
map R→ S at q in 37.6.1
elementary étale neighbourhood in
36.27.1
elementary distinguished square in 57.8.1
elementary divisor domain in 15.72.5
elementary standard in A over R in
16.3.3
embedded associated point in 30.4.1
embedded associated primes in 10.66.1
embedded component in 30.4.1
embedded point in 30.4.1
embedded primes of R in 10.66.1
embedding in 7.42.1
enough P objects in 7.39.2
enough injectives in 12.23.4
enough projectives in 12.24.4
enough weakly contractible objects in
7.39.2
epimorphism in 4.13.1
equalizer in 4.10.1
equidimensional in 5.9.4
equivalence of categories in 4.2.17
equivalence relation on U over B in
60.4.1
equivalence relation on U over S in
38.3.1
equivalent in 4.27.4
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equivalent in 13.27.4
equivalent in 28.10.1
equivalent in 44.61.3
equivariant quasi-coherent OX-module
in 38.10.1
equivariant quasi-coherent OX-module
in 60.10.1
equivariant in 38.8.1
equivariant in 60.8.1
essential extension of in 43.2.1
essential surjection in 68.3.9
essentially constant inverse system in
4.22.2
essentially constant system in 4.22.2
essentially constant in 4.22.1
essentially of finite presentation in
10.52.1
essentially of finite type in 10.52.1
essentially surjective in 4.2.9
essential in 43.2.1
essential in 43.2.1
Euler-Poincaré function in 83.19.2
everywhere defined in 13.15.9
everywhere defined in 13.15.9
exact at y in 12.5.7
exact couple in 12.18.1
exact functor in 13.3.3
exact sequences of graded modules in
83.19.3
exact in 4.23.1
exact in 12.5.7
exact in 41.3.1
excellent in 15.40.1
exceptional divisor in 30.18.1
exceptional divisor in 53.6.1
exhaustive in 12.16.1
extends in 23.4.1
extension E of B by A in 12.6.1
extension j!F of F by 0 in 6.31.5
extension j!F of F by e in 6.31.5
extension jp!F of F by 0 in 6.31.5
extension jp!F of F by e in 6.31.5
extension by 0 in 6.31.5
extension by 0 in 6.31.5
extension by zero in 18.19.1
extension by zero in 44.67.1
extension by zero in 44.67.1
extension by zero in 46.24.1

extension by zero in 46.24.1
extension of F by the empty set j!F in
6.31.3
extension of F by the empty set jp!F in
6.31.3
extension of G by the empty set in 7.24.1
extension of discrete valuation rings in
15.68.1
extension of valuation rings in 15.71.1
extremally disconnected in 5.25.1
face of x in 14.11.1
faithfully flat in 10.38.1
faithfully flat in 10.38.1
faithfully flat in 40.9.1
faithfully flat in 40.9.3
faithful in 4.2.9
family of morphisms with fixed target in
7.6.1
family of morphisms with fixed target in
44.10.1
fibre category in 4.30.2
fibre of f over s in 25.18.4
fibre product of V and W over U in
14.7.1
fibre product of V and W over U in
14.10.1
fibre product in 4.6.1
fibre product in 25.17.1
fibred category over C in 4.31.5
fibred in groupoids in 4.33.1
fibres of f are universally bounded in
28.50.1
fibres of f are universally bounded in
50.3.1
field extension in 9.6.2
field of rational functions in 28.10.5
field in 9.2.1
filtered acyclic in 13.14.2
filtered acyclic in 83.23.7
filtered complex K• of A in 12.21.1
filtered derived category of A in 13.14.5
filtered derived functor in 44.85.1
filtered differential object in 12.20.1
filtered injective in 13.26.1
filtered injective in 44.84.1
filtered injective in 83.23.3
filtered object of A in 12.16.1
filtered quasi-isomorphism in 13.14.2
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filtered quasi-isomorphism in 44.84.1
filtered quasi-isomorphism in 83.23.6
filtered in 4.19.1
filtered in 4.19.1
final object in 4.29.1
final in 4.12.1
finer in 7.45.8
finite Tor-dimension in 44.89.1
finite R-module in 10.5.1
finite free in 18.17.1
finite global dimension in 10.105.6
finite injective dimension in 15.53.1
finite locally constant in 18.42.1
finite locally constant in 44.68.1
finite locally constant in 44.68.1
finite locally free of rank r in 17.14.1
finite locally free in 10.75.1
finite locally free in 17.14.1
finite locally free in 18.23.1
finite locally free in 28.46.1
finite locally free in 49.42.2
finite locally free in 83.15.1
finite presentation at x ∈ X in 28.22.1
finite presentation at x in 49.27.1
finite presentation in 10.6.1
finite presentation in 17.11.1
finite presentation in 28.22.1
finite presentation in 83.2.8
finite projective dimension in 10.105.2
finite projective dimension in 15.52.1
finite tor dimension in 15.51.1
finite tor dimension in 15.51.1
finite tor dimension in 20.37.1
finite tor dimension in 21.35.1
finite type at x ∈ X in 28.16.1
finite type at x in 49.23.1
finite type point in 28.17.3
finite type point in 49.25.2
finite type point in 78.14.2
finite type in 10.6.1
finite type in 17.9.1
finite type in 28.16.1
finite type in 65.18.1
finitely generated R-module in 10.5.1
finitely presented R-module in 10.5.1
finitely presented relative to R in 15.58.2
finitely presented relative to S in 36.38.1
finite in 9.7.1

finite in 10.7.1
finite in 11.2.1
finite in 12.16.1
finite in 28.44.1
finite in 49.41.2
first order infinitesimal neighbourhood in
36.3.1
first order infinitesimal neighbourhood in
58.9.1
first order thickening in 36.2.1
first order thickening in 58.8.1
flabby in 20.13.1
flasque in 20.13.1
flat (resp. faithfully flat) in 40.9.1
flat at x ∈ X in 40.9.3
flat at x over Y in 49.29.2
flat at x in 17.16.3
flat at x in 17.17.1
flat at x in 49.28.1
flat at a point x ∈ X in 28.26.1
flat base change property in 79.7.1
flat group scheme in 38.4.4
flat local complete intersection over R in
10.131.1
flat over (Sh(D),O′) in 18.30.3
flat over S at a point x ∈ X in 28.26.1
flat over S in 28.26.1
flat over Y at x ∈ X in 40.9.3
flat over Y at a point x ∈ X in 17.17.3
flat over Y in 17.17.3
flat over Y in 49.29.2
flat pullback of α by f in 41.14.1
flat pullback in 63.3.4
flat-fppf site in 79.11.1
flattening stratification in 37.20.2
flattening stratification in 37.20.2
flat in 10.38.1
flat in 10.38.1
flat in 17.16.1
flat in 17.17.1
flat in 18.28.1
flat in 18.28.1
flat in 18.28.1
flat in 18.28.1
flat in 18.30.1
flat in 18.30.1
flat in 28.26.1
flat in 40.9.1



4464 89. AUTO GENERATED INDEX

flat in 40.9.3
flat in 49.28.1
flat in 78.17.1
formal algebraic space in 65.7.1
formal object ξ = (R, ξn, fn) of F in
68.7.1
formal object in 75.9.1
formal spectrum in 65.5.9
formally étale over R in 10.143.1
formally étale in 36.6.1
formally étale in 58.10.1
formally étale in 58.13.1
formally principally homogeneous under
G in 38.9.1
formally principally homogeneous under
G in 60.9.1
formally smooth for the n-adic topology
in 15.27.3
formally smooth over R in 10.133.1
formally smooth over R in 15.27.1
formally smooth in 36.9.1
formally smooth in 58.10.1
formally smooth in 58.16.1
formally unramified over R in 10.141.1
formally unramified in 36.4.1
formally unramified in 58.10.1
formally unramified in 58.11.1
fppf covering of T in 33.7.1
fppf covering of X in 55.4.1
fppf sheaf in 73.4.3
fpqc covering of T in 33.8.1
fpqc covering of X in 55.3.1
fpqc covering in 44.15.1
free O-module in 18.17.1
free abelian presheaf on G in 44.18.4
free abelian presheaf in 18.4.1
free abelian sheaf in 18.5.1
free module in 15.42.1
free in 38.8.2
free in 60.8.2
full subcategory in 4.2.10
fully faithful in 4.2.9
function field in 28.10.5
functor of R-linear categories in 22.17.2
functor of differential graded categories
over R in 22.19.2
functor of graded categories over R in
22.18.2

functorial injective embeddings in
12.23.5
functorial projective surjections in
12.24.5
functor in 4.2.8
functor in 4.27.5
G-ring in 15.39.1
G-unramified at q in 10.144.1
G-unramified at x ∈ X in 28.36.1
G-unramified at x in 49.35.1
G-unramified in 10.144.1
G-unramified in 28.36.1
G-unramified in 49.35.1
Galois cohomology groups of K with co-
efficients in M in 44.58.2
Galois cohomology groups in 44.58.2
Galois group in 9.19.3
Galois in 9.19.1
Galois in 9.25.1
generalizations lift along f in 5.18.3
generalization in 5.18.1
generalization in 83.5.22
generalizing in 5.18.3
generated by r global sections in 18.17.1
generated by finitely many global sections
in 18.17.1
generated by global sections in 17.4.1
generated by global sections in 18.17.1
generates in 9.6.6
generate in 17.4.1
generator in 13.33.1
generator in 19.10.1
generic point in 5.7.4
generic point in 83.5.12
geometric frobenius in 44.80.5
geometric frobenius in 44.80.11
geometric point lying over x in 48.16.1
geometric point in 44.29.1
geometric point in 48.16.1
geometric quotient in 63.10.1
geometrically connected over k in 10.46.3
geometrically connected in 32.5.1
geometrically connected in 54.8.1
geometrically integral over k in 10.47.1
geometrically integral in 32.7.1
geometrically irreducible over k in
10.45.6
geometrically irreducible in 32.6.1
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geometrically normal at x in 32.8.1
geometrically normal in 10.153.2
geometrically normal in 32.8.1
geometrically pointwise integral at x in
32.7.1
geometrically pointwise integral in 32.7.1
geometrically reduced at x in 32.4.1
geometrically reduced over k in 10.42.1
geometrically reduced in 32.4.1
geometrically regular at x in 32.10.1
geometrically regular over k in 32.10.1
geometrically regular in 10.154.2
geometrically unibranch at x in 48.21.2
geometrically unibranch in 48.21.2
gerbe over in 8.11.4
gerbe over in 78.19.1
gerbe in 8.11.1
gerbe in 78.19.1
germ of X at x in 34.16.1
global complete intersection over k in
10.130.1
global dimension in 10.105.6
global finite presentation in 18.17.1
global Lefschetz number in 44.92.1
global presentation in 18.17.1
global sections in 7.44.1
going down in 10.40.1
going up in 10.40.1
going-down theorem in 83.17.1
going-up theorem in 83.17.1
good quotient in 63.9.1
good stratification in 5.27.2
graded A-algebra in 83.19.3
graded category A over R in 22.18.1
graded direct sum in 22.18.4
graded functor in 22.18.2
graded ideals in 83.19.3
graded module M over a graded A-
algebra B in 83.19.3
graded module in 83.19.2
graded submodules in 83.19.3
Grassmannian over Z in 26.22.2
Grassmannian over R in 26.22.2
Grassmannian over S in 26.22.2
Grothendieck abelian category in 19.10.1
group algebraic space over B in 60.5.1
group cohomology groups in 44.58.2

group of infinitesimal automorphisms of
x′ over x in 68.18.1
group of infinitesimal automorphisms of
x0 in 68.18.2
group scheme over S in 38.4.1
groupoid in algebraic spaces over B in
60.11.1
groupoid in functors on C in 68.19.1
groupoid over S in 38.11.1
groupoid scheme over S in 38.11.1
groupoid in 4.2.5
Gysin homomorphism in 41.28.1
H-projective in 28.43.1
H-quasi-projective in 28.41.1
has coproducts of pairs of objects in 4.5.2
has enough points in 7.37.1
has fibre products in 4.6.3
has products of pairs of objects in 4.4.2
has property (β) in 50.15.1
has property (β) in 50.15.1
has property P at x in 48.7.5
has property P at x in 77.7.5
has property P in 48.7.2
has property P in 49.22.2
has property P in 77.7.2
has property P in 78.12.2
has property Q at x in 49.22.6
Hausdorff in 83.5.6
height in 10.59.2
henselian pair in 15.7.1
henselian in 10.145.1
henselian in 44.32.2
henselization of OS,s in 44.33.2
henselization of S at s in 44.33.2
henselization in 10.145.18
Herbrand quotient in 41.3.2
higher direct images in 44.35.4
Hilbert function in 83.19.2
Hilbert polynomial in 10.58.6
Hilbert polynomial in 32.19.16
Hilbert polynomial in 83.19.2
homogeneous spectrum Proj(R) in
83.20.2
homogeneous spectrum of A over S in
26.16.7
homogeneous spectrum of A over X in
53.3.3
homogeneous spectrum in 10.55.1
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homogeneous spectrum in 26.8.3
homogeneous in 83.20.1
homological in 13.3.5
homology of K in 24.3.1
homology in 12.19.3
homomorphism of differential graded al-
gebras in 22.3.2
homomorphism of differential graded
modules in 22.4.1
homomorphism of divided power rings in
23.3.1
homomorphism of divided power thicken-
ings in 45.5.2
homomorphism of systems in 10.8.7
homomorphism of topological modules in
15.26.1
homomorphism of topological rings in
15.26.1
homomorphisms of graded mod-
ules/rings in 83.19.3
homotopic in 14.25.1
homotopic in 14.27.1
homotopic in 22.5.1
homotopy between f and g in 22.5.1
homotopy category of A in 22.19.3
homotopy category in 22.5.3
homotopy colimit in 13.31.1
homotopy connecting a and b in 14.27.1
homotopy connecting a to b in 14.25.1
homotopy equivalence in 12.12.2
homotopy equivalence in 12.12.8
homotopy equivalence in 14.25.6
homotopy equivalent in 12.12.2
homotopy equivalent in 12.12.8
homotopy equivalent in 14.25.6
homotopy limit in 13.32.1
horizontal in 4.26.1
horizontal in 4.27.1
hypercovering of G in 24.5.1
hypercovering of X in 24.2.6
hypercovering in 24.5.1
ideal of definition in 15.26.1
ideal sheaf of denominators of s in
30.15.15
identifies local rings in 46.3.1
image of ϕ in 7.3.5
image of f in 12.3.9

image of the short exact sequence under
the given δ-functor in 13.3.6
immediate specialization in 5.19.1
immersion in 25.10.2
immersion in 47.12.1
immersion in 77.9.1
impurity of F above s in 37.14.2
ind-étale in 46.7.1
ind-quasi-affine in 36.46.1
ind-quasi-affine in 36.46.1
ind-Zariski in 46.4.1
indecomposable in 43.5.5
induced filtration in 12.16.1
induced filtration in 12.20.4
induced filtration in 12.21.5
inductive system over I in C in 4.21.1
inertia fibred category IS of S in 4.32.2
inertia group in 15.68.9
initial in 4.12.1
initial in 4.17.3
injective hull in 43.5.1
injective resolution of A in 13.18.1
injective resolution of K• in 13.18.1
injective-amplitude in [a, b] in 15.53.1
injective in 6.16.2
injective in 6.16.2
injective in 7.3.1
injective in 7.12.1
injective in 12.5.3
injective in 12.23.1
inseparable degree in 9.13.7
integral closure of OX in A in 28.48.2
integral closure of OX in A in 49.43.2
integral closure in 10.35.8
integral domain in 9.2.2
integral over I in 10.37.1
integral over R in 10.35.1
integrally closed in 10.35.8
integral in 10.35.1
integral in 27.3.1
integral in 28.44.1
integral in 49.41.2
integral in 54.5.1
integral in 83.26.12
interior in 5.20.1
intersection with the jth chern class of E
in 41.35.1
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intersection with the first chern class of
L in 41.25.1
inverse image f−1(Z) of the closed sub-
scheme Z in 25.17.7
inverse image f−1(Z) of the closed sub-
space Z in 49.13.2
inverse image in 44.36.1
inverse system over I in C in 4.21.1
invertible O-module in 18.31.1
invertible OX-module in 17.21.1
invertible OX-module in 83.32.1
invertible module M in 83.32.4
invertible module in 83.15.1
invertible sheaf OS(D) associated to D
in 30.9.14
invertible sheaf OX(D) associated to D
in 53.2.13
irreducible component in 5.7.1
irreducible component in 83.5.18
irreducible in 5.7.1
irreducible in 10.116.1
irreducible in 83.5.9
irreducible in 83.5.9
is essentially constant in 4.22.1
isolated point in 5.26.2
isomorphism in 4.2.4
J-0 in 15.36.1
J-1 in 15.36.1
J-2 in 15.36.1
J-2 in 28.20.1
Jacobson ring in 10.34.1
Jacobson in 5.17.1
Jacobson in 27.6.1
Japanese in 10.150.1
Japanese in 27.13.1
K-flat in 15.45.3
K-flat in 20.27.2
K-flat in 21.17.2
K-injective in 13.29.1
Kan complex in 14.30.1
Kan fibration in 14.30.1
Kaplansky dévissage in 10.81.1
Karoubian in 12.4.1
kernel of F in 13.6.5
kernel of H in 13.6.5
kernel of the functor F in 12.9.5
kernel in 12.3.9
Kolmogorov in 5.7.4

Koszul at x in 36.42.2
Koszul at x in 58.36.1
Koszul complex on f1, . . . , fr in 15.20.2
Koszul complex on f1, . . . , fr in 17.20.2
Koszul complex in 15.20.1
Koszul complex in 17.20.1
Koszul morphism in 36.42.2
Koszul morphism in 58.36.1
Koszul-regular ideal in 15.22.1
Koszul-regular immersion in 30.13.1
Koszul-regular immersion in 58.33.2
Koszul-regular in 15.21.1
Koszul-regular in 30.12.2
Krull dimension of X at x in 5.9.1
Krull dimension in 5.9.1
Krull dimension in 10.59.1
lattice in V in 10.117.3
left acyclic for F in 13.16.3
left adjoint in 4.24.1
left deriveable in 13.15.9
left derived functor LF is defined at in
13.15.2
left derived functors of F in 13.16.3
left exact in 4.23.1
left multiplicative system in 4.25.1
Leibniz rule in 10.127.1
Leibniz rule in 17.23.1
Leibniz rule in 18.32.1
length in 5.9.1
length in 10.50.1
length in 83.8.1
lies over in 44.29.1
lies over in 75.9.1
lift of x along f in 68.16.1
lift in 4.30.2
lift in 4.30.2
limit preserving in 52.3.1
limit preserving in 75.13.1
limit in 4.14.1
limit in 12.17.2
limp in 21.13.4
linearly adequate in 42.3.2
linearly disjoint over k in Ω in 9.24.2
linearly topologized in 15.26.1
linearly topologized in 15.26.1
lisse-étale site in 79.11.1
lisse in 44.96.1
lisse in 46.26.1
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local complete intersection morphism in
36.42.2
local complete intersection morphism in
58.36.1
local complete intersection over k in
10.130.1
local complete intersection over k in
28.32.1
local complete intersection in 15.23.2
local complete intersection in 23.8.5
local homomorphism of local rings in
10.17.1
local in the τ -topology in 34.11.1
local isomorphism in 46.3.1
local Lefschetz number in 44.92.2
local on the base for the τ -topology in
34.18.1
local on the base for the τ -topology in
56.9.1
local on the source for the τ -topology in
34.22.1
local on the source for the τ -topology in
56.12.1
local ring map ϕ : R→ S in 10.17.1
local ring of X at x in 25.2.1
local ring of the fibre at q in 10.108.5
local ring in 10.17.1
localization morphism in 7.24.1
localization morphism in 7.29.4
localization morphism in 18.19.1
localization morphism in 18.21.2
localization of A with respect to S in
10.9.2
localization of the ringed site (C,O) at
the object U in 18.19.1
localization of the ringed topos
(Sh(C),O) at F in 18.21.2
localization of the site C at the object U
in 7.24.1
localization of the topos Sh(C) at F in
7.29.4
localization in 10.9.6
locally P in 27.4.2
locally adic* in 65.15.5
locally algebraic k-scheme in 32.13.1
locally closed immersion in 25.10.2
locally closed subspace in 47.12.1
locally closed substack in 77.9.8

locally connected in 5.6.9
locally constant in 18.42.1
locally constant in 44.68.1
locally constant in 44.68.1
locally constant in 44.68.1
locally constructible in 5.14.1
locally countably indexed in 65.15.5
locally finite in 20.25.2
locally finite in 41.8.1
locally finite in 83.19.2
locally free in 10.75.1
locally free in 17.14.1
locally free in 18.23.1
locally generated by r sections in 18.23.1
locally generated by sections in 17.8.1
locally generated by sections in 18.23.1
locally has finite tor dimension in 20.37.1
locally has finite tor dimension in 21.35.1
locally nilpotent in 10.31.1
locally Noetherian in 5.8.1
locally Noetherian in 27.5.1
locally Noetherian in 65.15.5
locally Noetherian in 83.29.5
locally of finite presentation over S in
52.3.1
locally of finite presentation in 28.22.1
locally of finite presentation in 49.27.1
locally of finite presentation in 52.3.1
locally of finite presentation in 52.3.1
locally of finite presentation in 78.18.1
locally of finite type in 28.16.1
locally of finite type in 49.23.1
locally of finite type in 65.18.1
locally of finite type in 78.13.1
locally of type P in 28.15.2
locally principal closed subscheme in
30.9.1
locally principal closed subspace in 53.2.1
locally projective in 27.19.1
locally projective in 28.43.1
locally projective in 48.29.2
locally quasi-coherent in 45.11.1
locally quasi-coherent in 73.11.4
locally quasi-compact in 5.12.1
locally quasi-finite in 28.21.1
locally quasi-finite in 49.26.1
locally quasi-finite in 78.16.2
locally quasi-projective in 28.41.1
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locally ringed site in 18.39.4
locally ringed space (X,OX) in 25.2.1
locally ringed in 18.39.6
locally separated over S in 47.13.2
locally separated in 48.3.1
locally separated in 48.3.1
locally separated in 49.4.2
locally trivial in 38.9.3
locally trivial in 60.9.3
local in 27.4.1
local in 28.15.1
maximal Cohen-Macaulay in 10.99.6
McQuillan in 65.5.7
meromorphic function in 30.15.1
meromorphic section of F in 30.15.5
minimal polynomial in 9.9.1
minimal in 68.13.4
minimal in 68.25.1
miniversal in 68.13.4
Mittag-Leffler condition in 12.27.2
Mittag-Leffler directed system of mod-
ules in 10.85.1
Mittag-Leffler inverse system in 10.83.1
Mittag-Leffler in 10.85.6
mixed characteristic in 15.68.17
ML in 12.27.2
modification of X in 28.47.8
modification of X in 54.6.1
module of differentials in 10.127.2
module of differentials in 17.23.3
module of differentials in 18.32.3
module of Kähler differentials in 10.127.2
module of principal parts of order k in
10.128.4
module of principal parts of order k in
18.33.4
module-valued functor in 42.3.1
monomorphism in 4.13.1
monomorphism in 25.23.1
monomorphism in 49.10.1
monomorphism in 65.19.1
monomorphism in 77.8.1
morphism (A,F )→ (B,F ) of filtered ob-
jects in 12.16.1
morphism (N,ϕ) → (N ′, ϕ′) of descent
data in 34.3.1
morphism (U,R, s, t, c)→ (U ′, R′, s′, t′, c′)
of groupoids in functors on C in 68.19.1

morphism ψ : (Fi, ϕij) → (F ′i , ϕ′ij) of
descent data in 34.2.1
morphism ψ : (Fi, ϕij) → (F ′i , ϕ′ij) of
descent data in 56.3.1
morphism ψ : (G,m) → (G′,m′) of
group algebraic spaces over B in 60.5.1
morphism ψ : (G,m) → (G′,m′) of
group schemes over S in 38.4.1
morphism ψ : (Vi, ϕij)→ (V ′i , ϕ

′
ij) of de-

scent data in 34.30.3
morphism ψ : (Vi, ϕij)→ (V ′i , ϕ

′
ij) of de-

scent data in 56.19.3
morphism ψ : (Xi, ϕij) → (X ′i, ϕ

′
ij) of

descent data in 8.3.1
morphism ϕ : F → G of presheaves of
O-modules on B in 6.30.11
morphism ϕ : F → G of presheaves of
O-modules in 6.6.1
morphism ϕ : F → G of presheaves of
O-modules in 18.9.1
morphism ϕ : F → G of presheaves of
sets on B in 6.30.1
morphism ϕ : F → G of presheaves of
sets on X in 6.3.1
morphism ϕ : F → G of presheaves with
value in C in 6.5.1
morphism ϕ : F → G of presheaves with
values in C on B in 6.30.8
morphism a : ξ → η of formal objects in
68.7.1
morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes
over S in 38.11.1
morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B in 60.11.1
morphism f : (V/X,ϕ) → (V ′/X,ϕ′) of
descent data relative to X → S in 34.30.1
morphism f : (V/Y, ϕ) → (V ′/Y, ϕ′)
of descent data relative to Y → X in
56.19.1
morphism f : F → F ′ of algebraic spaces
over S in 47.6.3
morphism f : p→ p′ in 7.36.2
morphism f : X → Y of schemes over S
in 25.18.1
morphism from U to V in 7.8.1
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morphism of δ-functors from F to G in
12.11.2
morphism of G-torsors in 20.5.1
morphism of G-modules in 44.58.1
morphism of G-sets in 44.56.1
morphism of G-torsors in 21.5.1
morphism of n-truncated simplicial ob-
jects in 14.12.1
morphism of étale neighborhoods in
44.29.1
morphism of étale neighborhoods in
48.16.2
morphism of étale neighbourhoods in
36.27.1
morphism of abelian presheaves over X
in 6.4.4
morphism of affine formal algebraic
spaces in 65.5.1
morphism of affine schemes in 25.5.5
morphism of cones in 26.7.2
morphism of cosimplicial objects U →
U ′ in 14.5.1
morphism of differential objects in
12.19.1
morphism of divided power schemes in
45.7.2
morphism of divided power thickenings
of X relative to (S, I, γ) in 45.8.1
morphism of exact couples in 12.18.1
morphism of families of maps with fixed
target of C from U to V in 7.8.1
morphism of formal algebraic spaces in
65.7.1
morphism of formal objects in 75.9.1
morphism of functors in 4.2.15
morphism of germs in 34.16.1
morphism of groupoid schemes cartesian
over (U,R, s, t, c) in 38.19.1
morphism of lifts in 68.16.1
morphism of locally ringed sites in
18.39.8
morphism of locally ringed spaces in
25.2.1
morphism of locally ringed topoi in
18.39.8
morphism of module-valued functors in
42.3.1

morphism of predeformation categories
in 68.6.2
morphism of presheaves on X in 73.3.1
morphism of pseudo G-torsors in 21.5.1
morphism of ringed sites in 18.6.1
morphism of ringed spaces in 6.25.1
morphism of ringed topoi in 18.7.1
morphism of schemes in 25.9.1
morphism of sheaves of O-modules in
6.10.1
morphism of sheaves of O-modules in
18.10.1
morphism of sheaves of sets on B in
6.30.2
morphism of sheaves of sets in 6.7.1
morphism of simplicial objects U → U ′

in 14.3.1
morphism of sites in 7.15.1
morphism of spectral sequences in
12.17.1
morphism of thickenings in 36.2.1
morphism of thickenings in 58.8.1
morphism of topoi in 7.16.1
morphism of triangles in 13.3.1
morphism of vector bundles over S in
26.6.2
Morphisms of presheaves in 7.2.1
morphisms of thickenings over B in
58.8.1
morphisms of thickenings over S in
36.2.1
morphisms of type P satisfy descent for
τ -coverings in 34.32.1
morphism in 7.2.2
morphism in 44.96.1
multiplicative subset of R in 10.9.1
multiplicative system in 4.25.1
multiplicity of Z ′ in F in 41.10.2
multiplicity of Z ′ in Z in 41.9.2
multiplicity in 41.3.2
N-1 in 10.150.1
N-2 in 10.150.1
Nagata ring in 10.150.15
Nagata in 27.13.1
naive cotangent complex in 10.129.1
naive cotangent complex in 17.24.1
naive cotangent complex in 17.24.4
naive cotangent complex in 18.34.1



89.1. ALPHABETIZED DEFINITIONS 4471

naive cotangent complex in 18.34.4
naive obstruction theory in 75.20.5
natural transformation in 4.2.15
nilpotent in 10.31.1
Noetherian in 5.8.1
Noetherian in 27.5.1
Noetherian in 48.22.1
Noetherian in 65.5.7
Noetherian in 78.8.1
Noetherian in 83.5.16
Noetherian in 83.29.5
nondegenerate in 45.26.2
nonsingular in 27.9.1
nontrivial solution in 44.63.2
normal at x in 36.15.1
normal bundle in 30.11.5
normal bundle in 58.5.5
normal cone CZX in 30.11.5
normal cone CZX in 58.5.5
normal morphism in 36.15.1
normalization of X in Y in 28.48.3
normalization of X in Y in 49.43.3
normalization in 28.48.12
normalized in 68.25.1
normal in 9.14.1
normal in 9.25.1
normal in 10.36.1
normal in 10.36.10
normal in 27.7.1
nowhere dense in 5.20.1
number field in 9.7.7
numerical polynomial in 10.57.3
numerical polynomial in 83.19.1
obstruction modules in 75.19.1
obstruction theory in 75.19.1
obstruction in 75.19.1
of finite presentation relative to S in
36.38.1
of finite presentation in 18.23.1
of finite presentation in 49.27.1
of finite presentation in 78.18.1
of finite type in 18.23.1
of finite type in 49.23.1
of finite type in 78.13.1
Oka family in 10.27.2
one step dévissage of F/X/S at x in
37.4.2

one step dévissage of F/X/S over s in
37.4.1
open immersion in 7.42.7
open immersion in 25.3.1
open immersion in 25.10.2
open immersion in 47.12.1
open immersion in 77.9.1
open subgroup scheme in 38.4.3
open subscheme in 25.10.2
open subspace of (X,O) associated to U
in 6.31.2
open subspace of X associated to U in
25.3.3
open subspace in 47.12.1
open substack in 77.9.8
open subtopos in 7.42.4
openness of versality in 75.14.1
openness of versality in 75.14.1
open in 28.24.1
open in 44.105.1
open in 49.6.2
open in 78.9.2
opposite algebra in 11.2.5
opposite category in 4.3.1
opposite differential graded algebra in
22.3.3
orbit space for R in 63.5.18
orbit in 63.5.1
orbit in 63.5.4
order of vanishing along R in 10.117.2
order of vanishing of f along Z in
41.16.1
order of vanishing of s along Z in 41.23.1
ordered Čech complex in 20.24.2
p-basis of K over k in 15.35.1
p-independent over k in 15.35.1
parasitic for the τ -topology in 34.8.1
parasitic in 34.8.1
parasitic in 79.8.1
partially ordered set in 10.8.1
partition in 5.27.1
parts in 5.27.1
perfect at x in 58.35.1
perfect closure in 10.44.5
perfect ring map in 15.60.1
perfect in 10.44.1
perfect in 15.56.1
perfect in 15.56.1
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perfect in 20.38.1
perfect in 20.38.1
perfect in 21.36.1
perfect in 21.36.1
perfect in 36.41.2
perfect in 44.87.1
perfect in 58.35.1
Picard group of A in 83.15.3
Picard group of X in 83.32.7
Picard group in 17.21.6
Picard group in 18.31.4
PID in 10.116.9
point p of the site C in 7.31.2
point p in 7.50.1
point of the topos Sh(C) in 7.31.1
point in 48.4.1
point in 77.4.2
polynomial relation among the chern
classes in 41.36.1
pre-adic in 15.26.1
pre-admissible in 15.26.1
pre-equivalence relation in 38.3.1
pre-equivalence relation in 60.4.1
pre-relation in 38.3.1
pre-relation in 60.4.1
pre-triangulated category in 13.3.2
pre-triangulated subcategory in 13.3.4
preadditive in 12.3.1
predeformation category in 68.6.2
presentation of F by (U,R, s, t, c) in
68.23.1
presentation in 47.9.3
presentation in 71.16.5
preserved under arbitrary base change in
25.18.3
preserved under arbitrary base change in
25.18.3
preserved under base change in 25.18.3
preserved under base change in 25.18.3
presheaf F of sets on B in 6.30.1
presheaf F of sets on X in 6.3.1
presheaf F on X with values in C in 6.5.1
presheaf F with values in C on B in
6.30.8
presheaf of O-modules F on B in 6.30.11
presheaf of O-modules in 6.6.1
presheaf of O-modules in 18.9.1
presheaf of abelian groups on X in 6.4.4

presheaf of isomorphisms from x to y in
8.2.2
presheaf of modules on X in 73.7.1
presheaf of morphisms from x to y in
8.2.2
presheaf of sets on C in 4.3.3
presheaf of sets in 7.2.1
presheaf of sets in 44.9.1
presheaf on X in 73.3.1
presheaf in 4.3.3
presheaf in 7.2.2
prime divisor in 83.34.1
prime subfield of F in 9.5.1
prime in 10.116.1
principal divisor associated to f in
41.17.1
principal homogeneous G-space over B
in 60.9.3
principal homogeneous space in 38.9.3
principal homogeneous space in 60.9.3
principal ideal domain in 10.116.9
pro-étale covering of T in 46.11.1
product U × V exists in 14.13.1
product U × V of U and V in 14.13.1
product category in 4.2.20
product of U and V in 14.6.1
product of U and V in 14.9.1
product in 4.4.1
product in 4.14.5
profinite in 5.21.1
projective n-space over Z in 26.13.2
projective n-space over R in 26.13.2
projective n-space over S in 26.13.2
projective bundle associated to E in
26.21.1
projective cover in 43.4.1
projective dimension in 10.105.2
projective envelope in 43.4.1
projective resolution of A in 13.19.1
projective resolution of K• in 13.19.1
projective system over I in C in 4.21.1
projective variety in 32.16.1
projective-amplitude in [a, b] in 15.52.1
projective in 10.74.1
projective in 12.24.1
projective in 28.43.1
projective in 44.84.1
proper variety in 32.16.1
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property P in 47.5.1
property P in 62.4.1
property P in 71.10.1
proper in 5.16.2
proper in 28.42.1
proper in 49.37.1
proper in 65.22.1
prorepresentable in 68.6.1
prorepresentable in 68.20.1
pseudo G-torsor in 21.5.1
pseudo G-torsor in 38.9.1
pseudo G-torsor in 60.9.1
pseudo functor in 4.27.5
pseudo torsor in 21.5.1
pseudo-coherent at x in 58.34.1
pseudo-coherent relative to R in 15.59.4
pseudo-coherent relative to R in 15.59.4
pseudo-coherent relative to S in 36.39.2
pseudo-coherent relative to S in 36.39.2
pseudo-coherent ring map in 15.60.1
pseudo-coherent in 15.50.1
pseudo-coherent in 15.50.1
pseudo-coherent in 20.36.1
pseudo-coherent in 20.36.1
pseudo-coherent in 21.34.1
pseudo-coherent in 21.34.1
pseudo-coherent in 36.40.2
pseudo-coherent in 58.34.1
pullback x−1F of F in 73.9.2
pullback functor in 4.31.6
pullback functor in 8.3.4
pullback functor in 34.30.7
pullback functor in 34.30.9
pullback functor in 56.19.7
pullback functor in 56.19.9
pullback of S along f in 8.12.9
pullback of D by f is defined in 30.9.11
pullback of D by f is defined in 53.2.10
pullback of S by f in 7.45.4
pullback of the effective Cartier divisor
in 30.9.11
pullback of the effective Cartier divisor
in 53.2.10
pullbacks of meromorphic functions are
defined for f in 30.15.3
pullback in 6.26.1
pullback in 18.13.1
pullback in 38.3.3

pullback in 44.36.1
pullback in 60.4.3
pullback in 63.3.4
pure along Xs in 37.15.1
pure along Xs in 37.15.1
pure extension module in 42.8.8
pure injective resolution in 42.8.5
pure injective in 42.8.1
pure projective resolution in 42.8.5
pure projective in 42.8.1
pure relative to S in 37.15.1
pure relative to S in 37.15.1
purely inseparable in 9.13.1
purely inseparable in 9.13.1
purely inseparable in 9.25.1
purely transcendental extension in 9.23.1
pure in 10.104.1
pushforward of S along f in 8.12.4
pushforward in 6.26.1
pushforward in 7.43.1
pushforward in 18.13.1
pushforward in 41.12.1
pushforward in 44.35.1
pushforward in 44.35.3
pushout of V and W over U in 14.8.1
pushout in 4.9.1
qc covering in 21.23.2
quasi-affine in 27.15.1
quasi-affine in 28.14.1
quasi-affine in 49.21.2
quasi-coherent OX -module in 73.11.1
quasi-coherent module on (U,R, s, t, c) in
38.12.1
quasi-coherent module on (U,R, s, t, c) in
60.12.1
quasi-coherent module on X in 73.11.1
quasi-coherent sheaf of OX-modules in
17.10.1
quasi-coherent sheaf in 64.9.1
quasi-coherent in 18.23.1
quasi-coherent in 44.17.2
quasi-coherent in 45.11.1
quasi-coherent in 48.27.1
quasi-coherent in 83.29.1
quasi-compact in 5.11.1
quasi-compact in 5.11.1
quasi-compact in 7.11.1
quasi-compact in 25.19.1
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quasi-compact in 48.5.1
quasi-compact in 49.8.2
quasi-compact in 65.12.2
quasi-compact in 65.12.4
quasi-compact in 77.6.1
quasi-compact in 78.7.2
quasi-compact in 83.5.4
quasi-DM over S in 78.4.2
quasi-DM in 78.4.1
quasi-DM in 78.4.2
quasi-excellent in 15.40.1
quasi-finite at q in 10.118.3
quasi-finite at x in 49.26.1
quasi-finite at a point x ∈ X in 28.21.1
quasi-finite in 10.118.3
quasi-finite in 28.21.1
quasi-finite in 49.26.1
quasi-inverse in 4.2.17
quasi-isomorphism in 12.12.4
quasi-isomorphism in 12.12.10
quasi-isotrivial in 38.9.3
quasi-isotrivial in 60.9.3
quasi-projective variety in 32.16.1
quasi-projective in 28.41.1
quasi-proper in 5.16.2
quasi-regular ideal in 15.22.1
quasi-regular immersion in 30.13.1
quasi-regular immersion in 58.33.2
quasi-regular sequence in 10.68.1
quasi-regular in 30.12.2
quasi-separated over S in 47.13.2
quasi-separated over S in 78.4.2
quasi-separated in 25.21.3
quasi-separated in 25.21.3
quasi-separated in 48.3.1
quasi-separated in 48.3.1
quasi-separated in 49.4.2
quasi-separated in 65.11.3
quasi-separated in 65.21.1
quasi-separated in 78.4.1
quasi-separated in 78.4.2
quasi-split over u in 61.12.1
quasi-splitting of R over u in 61.12.1
quotient category D/B in 13.6.7
quotient category cofibered in groupoids
[U/R]→ C in 68.19.9
quotient filtration in 12.16.1
quotient functor in 13.6.7

quotient morphism U → [U/R] in
68.19.9
quotient of U by G in 47.14.4
quotient representable by an algebraic
space in 60.18.3
quotient representable by an algebraic
space in 60.18.3
quotient sheaf U/R in 38.18.1
quotient sheaf U/R in 60.18.1
quotient stack in 60.19.1
quotient stack in 60.19.1
quotient in 12.5.3
radicial in 28.12.1
radicial in 58.3.1
ramification index in 15.68.1
rank r in 18.31.1
rank in 10.98.4
rank in 28.46.1
rank in 49.42.2
rational function on X in 28.10.2
rational map from X to Y in 28.10.1
rationally equivalent to zero in 41.19.1
rationally equivalent in 41.19.1
reasonable in 50.6.1
reasonable in 50.15.1
reduced induced algebraic space structure
in 48.9.5
reduced induced algebraic stack structure
in 77.10.4
reduced induced scheme structure in
25.12.5
reduced in 25.12.1
reduction Xred of X in 77.10.4
reduction Xred of X in 25.12.5
reduction Xred of X in 48.9.5
Rees algebra in 10.56.1
refinement in 7.8.1
refines in 5.27.1
regular at x in 36.16.1
regular ideal in 15.22.1
regular immersion in 30.13.1
regular in codimension ≤ k in 10.146.1
regular in codimension k in 27.12.1
regular local ring in 10.59.9
regular locus in 27.14.1
regular morphism in 36.16.1
regular section in 30.9.16
regular section in 53.2.15
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regular sequence in 10.67.1
regular system of parameters in 10.59.9
regular in 10.106.7
regular in 15.30.1
regular in 27.9.1
regular in 30.12.2
regular in 30.15.11
relation in 10.8.12
relation in 38.3.1
relation in 60.4.1
relative H1-regular immersion in 30.14.2
relative assassin of F in X over S in
30.7.1
relative assassin of N over S/R in
10.64.2
relative cotangent space in 68.3.6
relative dimension ≤ d at x in 28.30.1
relative dimension ≤ d in 28.30.1
relative dimension ≤ d in 49.31.2
relative dimension d in 28.30.1
relative dimension d in 49.31.2
relative dimension of S/R at q in
10.121.1
relative dimension of in 10.121.1
relative effective Cartier divisor in
30.10.2
relative global complete intersection in
10.131.5
relative homogeneous spectrum of A over
S in 26.16.7
relative homogeneous spectrum of A over
X in 53.3.3
relative inertia of S over S ′ in 4.32.2
relative Proj of A over S in 26.16.7
relative Proj of A over X in 53.3.3
relative quasi-regular immersion in
30.14.2
relative spectrum of A over S in 26.4.5
relative spectrum of A over X in 49.20.8
relative weak assassin of F in X over S
in 30.8.1
relatively ample in 28.38.1
relatively limit preserving in 52.3.1
relatively prime in 9.11.1
relatively very ample in 28.39.1
representable by a scheme in 25.15.1
representable by algebraic spaces in
62.3.1

representable by algebraic spaces in
71.9.1
representable by an algebraic space over
S in 71.8.1
representable by open immersions in
25.15.3
representable quotient in 38.18.2
representable quotient in 38.18.2
representable quotient in 60.18.3
representable quotient in 60.18.3
representable sheaves in 7.13.3
representable in 4.3.6
representable in 4.6.4
representable in 4.8.2
representable in 4.38.1
representable in 4.39.5
representable in 25.15.1
representable in 68.19.4
residual degree in 15.68.1
residual degree in 15.71.1
residual gerbe of X at x exists in 77.11.8
residual gerbe of X at x in 77.11.8
residual space of X at x in 50.11.6
residue degree in 15.68.1
residue degree in 15.71.1
residue field of X at x in 25.2.1
resolution functor in 13.23.2
resolution of M by finite free R-modules
in 10.69.2
resolution of M by free R-modules in
10.69.2
resolution in 10.69.2
restriction (U,R, s, t, c)|C′ of (U,R, s, t, c)
to C′ in 68.19.7
restriction of (U,R, s, t, c) to U ′ in
38.16.2
restriction of (U,R, s, t, c) to U ′ in
60.16.2
restriction of F to C/U in 7.24.1
restriction of F to C/U in 18.19.1
restriction of F to Uétale in 73.9.2
restriction of G to U in 6.31.2
restriction of G to U in 6.31.2
restriction of G to U in 6.31.2
restriction to the small étale site in
33.4.14
restriction to the small pro-étale site in
46.11.18
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restriction to the small Zariski site in
33.3.14
restriction in 38.3.3
restriction in 60.4.3
retrocompact in 5.11.1
rig-étale in 66.7.2
rig-surjective in 66.11.1
right acyclic for F in 13.16.3
right adjoint in 4.24.1
right deriveable in 13.15.9
right derived functor RF is defined at in
13.15.2
right derived functors of F in 13.16.3
right exact in 4.23.1
right multiplicative system in 4.25.1
ring of rational functions on X in
28.10.3
ringed site in 18.6.1
ringed site in 44.17.2
ringed space in 6.25.1
ringed topos in 18.7.1
satisfies the existence part of the valua-
tive criterion in 25.20.3
satisfies the existence part of the valua-
tive criterion in 49.38.1
satisfies the sheaf property for the fpqc
topology in 33.8.12
satisfies the sheaf property for the fpqc
topology in 44.15.5
satisfies the sheaf property for the given
family in 33.8.12
satisfies the sheaf property for the
Zariski topology in 25.15.3
satisfies the uniqueness part of the valu-
ative criterion in 25.20.3
satisfies the uniqueness part of the valu-
ative criterion in 49.38.1
satisfies the valuative criterion in 49.38.1
saturated in 4.25.17
saturated in 13.6.1
scheme over R in 25.18.1
scheme over S in 25.18.1
scheme structure on Z in 25.12.5
scheme theoretic closure of U in X in
28.7.1
scheme theoretic closure of U in X in
49.17.3

scheme theoretic fibre Xs of f over s in
25.18.4
scheme theoretic image in 28.6.2
scheme theoretic image in 49.16.2
scheme theoretic support of F in 28.5.5
scheme theoretic support of F in 49.15.4
scheme theoretically dense in X in 28.7.1
scheme theoretically dense in X in
49.17.3
scheme in 25.9.1
semi-representable objects over X in
24.2.1
semi-representable objects in 24.2.1
separable degree in 9.12.6
separable degree in 9.13.7
separable over k in 10.41.1
separable solution in 15.69.2
separable in 9.12.2
separable in 9.12.2
separable in 9.12.2
separable in 9.25.1
separably generated over k in 10.41.1
separated group scheme in 38.4.4
separated over S in 47.13.2
separated over S in 78.4.2
separated presheaf in 44.11.1
separated in 6.11.2
separated in 7.10.9
separated in 7.47.2
separated in 12.16.1
separated in 25.21.3
separated in 25.21.3
separated in 48.3.1
separated in 48.3.1
separated in 49.4.2
separated in 65.11.3
separated in 65.21.1
separated in 78.4.1
separated in 78.4.2
separates R-orbits in 63.5.8
separates orbits in 63.5.8
Serre subcategory in 12.9.1
set-theoretic equivalence relation in
63.5.13
set-theoretic pre-equivalence relation in
63.5.13
set-theoretically R-invariant in 38.17.1
set-theoretically R-invariant in 63.5.8
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setoid in 4.37.1
sheaf F of O-modules on B in 6.30.11
sheaf F of sets on B in 6.30.2
sheaf F of sets on X in 6.7.1
sheaf F with values in C on B in 6.30.8
sheaf associated to F in 7.10.11
sheaf associated to F in 7.47.4
sheaf associated to the module M and the
ring map α in 17.10.6
sheaf associated to the module M in
17.10.6
sheaf for the étale topology in 73.4.3
sheaf for the fppf topology in 73.4.3
sheaf for the smooth topology in 73.4.3
sheaf for the syntomic topology in 73.4.3
sheaf for the Zariski topology in 73.4.3
sheaf of O-modules associated to F in
34.7.2
sheaf of O-modules associated to F in
34.7.2
sheaf of O-modules in 6.10.1
sheaf of O-modules in 18.10.1
sheaf of OX -modules in 73.7.1
sheaf of R-invariant functions on X in
63.8.1
sheaf of abelian groups on X in 6.8.1
sheaf of automorphisms of x in 78.5.3
sheaf of differentials ΩX/S of X over S
in 17.23.10
sheaf of differentials ΩX/S of X over S
in 28.34.1
sheaf of differentials ΩX/Y of X over Y
in 18.32.10
sheaf of differentials ΩX/Y of X over Y
in 58.6.2
sheaf of meromorphic functions on X in
30.15.1
sheaf of total quotient rings KS in
83.34.1
sheaf theoretically empty in 7.41.1
sheaf in 6.9.1
sheaf in 7.7.1
sheaf in 7.7.6
sheaf in 7.45.10
sheaf in 44.11.1
sheaf in 73.4.3
shift in 12.15.4
short exact sequence in 12.5.7

sieve on U generated by the morphisms
fi in 7.45.3
sieve S on U in 7.45.1
similar in 44.61.3
simple in 10.50.9
simple in 11.2.3
simple in 11.2.3
simplicial A•-module in 21.31.1
simplicial abelian group in 14.3.1
simplicial object U of C in 14.3.1
simplicial scheme associated to f in
64.8.3
simplicial set in 14.3.1
simplicial sheaf of A•-modules in 21.31.1
singular ideal of A over R in 16.3.1
singular locus in 27.14.1
site in 7.6.2
site in 44.10.2
size in 19.11.1
skew field in 11.2.2
skyscraper sheaf at x with value A in
6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 7.31.6
small τ -site of S in 44.20.4
small étale site Xétale in 48.15.1
small étale site of S in 33.4.8
small étale site over S in 44.27.3
small étale topos in 44.21.1
small étale topos in 48.15.6
small extension in 10.136.1
small extension in 68.3.2
small pro-étale site of S in 46.11.12
small Zariski site FZar in 47.12.6
small Zariski site of S in 33.3.7
small Zariski sites in 44.27.3
small Zariski topos in 44.21.1
smooth at q in 10.132.11
smooth at x ∈ X in 28.35.1
smooth at x in 49.34.1
smooth covering of T in 33.5.1
smooth covering of X in 55.6.1
smooth group scheme in 38.4.4
smooth groupoid in 71.16.4
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smooth local on source-and-target in
56.18.1
smooth local in 34.17.1
smooth of relative dimension d in
28.35.13
smooth sheaf in 73.4.3
smooth in 10.132.1
smooth in 28.35.1
smooth in 34.16.2
smooth in 49.34.1
smooth in 68.8.1
smooth in 68.21.1
smooth in 78.22.1
smooth in 81.4.3
sober in 5.7.4
solution for A ⊂ B in 15.69.2
special cocontinuous functor u from C to
D in 7.28.2
specializations lift along f in 5.18.3
specialization in 5.18.1
specialization in 83.5.22
specialization in 83.29.2
specializing in 5.18.3
spectral sequence associated to (A, d, α)
in 12.19.5
spectral sequence associated to the exact
couple in 12.18.3
spectral sequence in A in 12.17.1
spectral in 5.22.1
spectral in 5.22.1
spectrum of A over S in 26.4.5
spectrum of A over X in 49.20.8
spectrum in 10.16.1
spectrum in 25.5.3
split category fibred in groupoids in 4.35.2
split equalizer in 34.4.2
split fibred category in 4.34.2
split over u in 61.12.1
splits in 11.8.1
splitting field of P over F in 9.15.2
splitting field in 11.8.1
splitting of R over u in 61.12.1
split in 12.5.9
split in 14.17.1
stabilizer of the groupoid in algebraic
spaces (U,R, s, t, c) in 60.15.2
stabilizer of the groupoid scheme
(U,R, s, t, c) in 38.15.2

stable under base change in 28.15.1
stable under composition in 28.15.1
stable under generalization in 5.18.1
stable under specialization in 5.18.1
stack in discrete categories in 8.6.1
stack in groupoids in 8.5.1
stack in setoids in 8.6.1
stack in sets in 8.6.1
stack in 8.4.1
stalk in 44.29.6
stalk in 44.96.6
stalk in 48.16.6
standard τ -covering in 44.20.2
standard étale covering in 33.4.5
standard étale in 10.138.14
standard étale in 28.37.1
standard étale in 44.26.3
standard fppf covering in 33.7.5
standard fpqc covering in 33.8.9
standard open covering in 25.5.2
standard open covering in 25.5.2
standard open covering in 26.8.2
standard opens in 10.16.3
standard pro-étale covering in 46.11.6
standard resolution of B over A in
70.17.1
standard resolution of B over A in 70.3.1
standard shrinking in 37.4.6
standard shrinking in 37.5.5
standard smooth algebra over R in
10.132.6
standard smooth covering in 33.5.5
standard smooth in 28.35.1
standard syntomic covering in 33.6.5
standard syntomic in 28.32.1
standard Zariski covering in 33.3.4
strata in 5.27.3
stratification in 5.27.3
strict henselization of OS,s in 44.33.2
strict henselization of R with respect to
κ ⊂ κsep in 10.145.18
strict henselization of S at s in 44.33.2
strict henselization of X at x in 48.19.2
strict henselization in 10.145.18
strict map of topological spaces in 5.5.3
strict morphism of thickenings in 69.3.2
strict morphism of thickenings in 69.8.2
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strict transform of M along R → R′ in
15.18.1
strict transform in 30.19.1
strict transform in 30.19.1
strict transform in 53.7.1
strict transform in 53.7.1
strictly commutative in 22.3.4
strictly full in 4.2.10
strictly henselian in 10.145.1
strictly henselian in 44.32.6
strictly perfect in 20.35.1
strictly perfect in 21.33.1
strictly standard in A over R in 16.3.3
strict in 12.16.3
strong generator in 13.33.1
strongly C-cartesian morphism in 4.31.1
strongly cartesian morphism in 4.31.1
strongly transcendental over R in
10.119.8
structure morphism in 25.18.1
structure of site on S inherited from C
in 8.10.2
structure sheaf OSpec(R) of the spectrum
of R in 25.5.3
structure sheaf OProj(S) of the homoge-
neous spectrum of S in 26.8.3
structure sheaf of X in 73.6.1
structure sheaf of the big site (Sch/S)τ
in 34.7.2
structure sheaf in 18.6.1
structure sheaf in 18.7.1
structure sheaf in 44.23.3
structure sheaf in 48.18.2
sub 2-category in 4.27.2
subbase for the topology on X in 5.4.3
subbasis for the topology on X in 5.4.3
subcanonical in 7.13.2
subcategory in 4.2.10
subfield in 9.2.1
subfunctor H ⊂ F in 25.15.3
submersive in 5.5.3
submersive in 28.25.1
submersive in 49.7.1
submersive in 78.10.1
subobject in 12.5.3
subpresheaf in 6.16.2
subpresheaf in 7.3.3
subsheaf generated by the si in 17.4.5

subsheaf of sections annihilated by I in
27.22.3
subsheaf of sections annihilated by I in
52.14.3
subsheaf of sections supported on T in
27.22.6
subsheaf of sections supported on T in
52.14.6
subsheaf in 6.16.2
subtopos in 7.42.2
sum of the effective Cartier divisors D1

and D2 in 30.9.6
sum of the effective Cartier divisors D1

and D2 in 53.2.6
sum of the effective Cartier divisors in
41.27.5
support of F in 17.5.1
support of F in 44.31.3
support of F in 48.17.3
support of σ in 44.31.3
support of σ in 48.17.3
support of M in 10.39.1
support of s in 17.5.1
supported on T in 35.6.4
supported on T in 57.3.2
surjective in 6.16.2
surjective in 6.16.2
surjective in 7.3.1
surjective in 7.12.1
surjective in 12.5.3
surjective in 28.11.1
surjective in 49.5.2
surjective in 77.5.1
symbol associated to M,a, b in 41.4.3
symbolic power in 10.63.1
symbol in 41.2.1
syntomic at x ∈ X in 28.32.1
syntomic at x in 49.33.1
syntomic covering of T in 33.6.1
syntomic covering of X in 55.5.1
syntomic of relative dimension d in
28.32.15
syntomic sheaf in 73.4.3
syntomic in 10.131.1
syntomic in 28.32.1
syntomic in 49.33.1
system (Mi, µij) of R-modules over I in
10.8.2
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system of parameters of R in 10.59.9
system of rings in 83.2.1
system over I in C in 4.21.1
tame symbol in 41.4.5
tamely ramified in 15.68.6
tangent space TF of F in 68.11.1
tangent space TF of F in 68.10.9
tangent space of X over S in 83.28.3
tangent vector in 83.28.3
tautologically equivalent in 7.8.2
taut in 65.4.9
tensor power of L in 17.21.3
tensor product differential graded algebra
in 22.3.5
tensor product in 65.4.6
termwise split injection α : A• → B• in
13.9.4
termwise split sequence of complexes of
A in 13.9.9
termwise split surjection β : B• → C• in
13.9.4
the fibre of X over z is flat at x over the
fibre of Y over z in 58.19.2
the fibre of X over z is flat over the fibre
of Y over z in 58.19.2
the functions on X are the R-invariant
functions on U in 63.8.1
the restriction of F to its fibre over z is
flat at x over the fibre of Y over z in
58.19.2
thickenings over B in 58.8.1
thickenings over S in 36.2.1
thickening in 36.2.1
thickening in 58.8.1
topological module in 15.26.1
topological ring in 15.26.1
topological space in 48.4.7
topological space in 77.4.8
topologically nilpotent in 65.4.7
topologically of finite type over in 66.3.1
topology associated to C in 7.46.2
topology on C in 7.45.6
topos in 7.16.1
tor dimension ≤ d in 15.51.1
Tor independent over B in 57.17.2
Tor independent over R in 15.47.1
Tor independent over S in 35.16.2
tor-amplitude in [a, b] in 15.51.1

tor-amplitude in [a, b] in 20.37.1
tor-amplitude in [a, b] in 21.35.1
torsion free in 15.15.1
torsion in 15.15.1
torsion in 44.96.6
torsor in 20.5.1
torsor in 21.5.1
Tor in 20.27.14
Tor in 21.17.12
total chern class of E on X in 41.34.1
total right derived functor of F in 44.83.4
total right derived functor of G in 44.83.4
totally disconnected in 5.6.7
totally ramified in 15.68.6
tower in 9.6.3
trace in 44.75.1
trace in 44.81.1
transcendence basis in 9.23.1
transcendence degree of x/f(x) in
49.31.1
transcendence degree in 9.23.4
transition maps in 4.21.1
triangle associated to 0 → K → L →
M → 0 in 22.8.2
triangle associated to the termwise split
sequence of complexes in 13.9.9
triangle in 13.3.1
triangulated category in 13.3.2
triangulated functor in 13.3.3
triangulated subcategory in 13.3.4
trivial G-torsor in 20.5.1
trivial G-torsor in 21.5.1
trivial descent datum in 8.3.5
trivial descent datum in 34.2.3
trivial descent datum in 34.30.10
trivial descent datum in 56.3.3
trivial descent datum in 56.19.10
trivial Kan fibration in 14.29.1
trivial in 17.21.1
trivial in 38.9.1
trivial in 60.9.1
trivial in 83.32.4
twist of the structure sheaf of Proj(S) in
26.10.1
twist of the structure sheaf in 26.21.1
type of algebraic structure in 6.15.1
UFD in 10.116.4
underlying presheaf of sets of F in 6.5.2
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uniform categorical quotient in 63.4.4
uniformizer in 10.115.7
uniformly in 63.7.1
unique factorization domain in 10.116.4
universal δ-functor in 12.11.3
universal ϕ-derivation in 17.23.3
universal ϕ-derivation in 18.32.3
universal S-derivation in 28.34.1
universal Y -derivation in 18.32.10
universal Y -derivation in 58.6.2
universal categorical quotient in 63.4.4
universal effective epimorphism in 7.13.1
universal first order thickening in
10.142.2
universal first order thickening in 36.5.2
universal first order thickening in 58.12.5
universal flattening of F exists in 37.20.1
universal flattening of X exists in 37.20.1
universal homeomorphism in 28.45.1
universal homeomorphism in 49.47.2
universally S-pure in 37.15.1
universally catenary in 10.101.5
universally catenary in 28.18.1
universally closed in 5.16.2
universally closed in 25.20.1
universally closed in 49.9.2
universally closed in 78.11.2
universally exact in 10.79.1
universally injective in 10.79.1
universally injective in 28.12.1
universally injective in 34.4.5
universally injective in 49.19.3
universally Japanese in 10.150.15
universally Japanese in 27.13.1
universally open in 28.24.1
universally open in 49.6.2
universally open in 78.9.2
universally pure along Xs in 37.15.1
universally pure relative to S in 37.15.1
universally submersive in 28.25.1
universally submersive in 49.7.1
universally submersive in 78.10.1
universally in 63.7.1
unramified at q in 10.144.1
unramified at x ∈ X in 28.36.1
unramified at x in 40.3.5
unramified at x in 49.35.1

unramified cusp form on GL2(A) with
values in Λ in 44.109.1
unramified homomorphism of local rings
in 40.3.1
unramified in 10.144.1
unramified in 15.68.6
unramified in 28.36.1
unramified in 40.3.5
unramified in 49.35.1
valuation ring in 10.48.1
valuation in 10.48.13
value group in 10.48.13
value of LF at X in 13.15.2
value of RF at X in 13.15.2
value in 4.22.1
value in 4.22.1
variety in 32.3.1
variety in 44.63.6
vector bundle π : V → S over S in 26.6.2
vector bundle associated to E in 26.6.1
versal in 68.8.13
versal in 75.11.1
vertical in 4.27.1
very ample on X/S in 28.39.1
very reasonable in 50.6.1
very reasonable in 50.15.1
viewed as an algebraic space over S′ in
47.16.2
viewed as an algebraic stack over S′ in
71.19.2
w-contractible in 46.10.1
w-local in 46.2.3
w-local in 46.2.3
weak R-orbit in 63.5.4
weak dimension ≤ d in 15.67.3
weak functor in 4.27.5
weak generator in 13.33.1
weak ideal of definition in 65.4.7
weak orbit in 63.5.4
weak Serre subcategory in 12.9.1
weak solution for A ⊂ B in 15.69.2
weaker than the canonical topology in
7.13.2
weakly R-equivalent in 63.5.4
weakly étale in 15.67.1
weakly étale in 36.44.1
weakly admissible in 65.4.7
weakly associated points of X in 30.5.1
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weakly associated in 10.65.1
weakly associated in 30.5.1
weakly contractible in 7.39.2
weakly pre-admissible in 65.4.7
weakly unramified in 15.68.1
weakly unramified in 15.71.1
Weil divisor [D] associated to an effec-
tive Cartier divisor D ⊂ X in 83.34.1
Weil divisor associated to L in 41.24.1
Weil divisor associated to s in 41.24.1
Weil divisor associated to a Cartier di-
visor in 83.34.1
Weil divisor associated to a rational
function f ∈ K(X)∗ in 83.34.1
Weil divisor in 83.34.1
which associates a presheaf to a semi-
representable object in 24.2.2
Yoneda extension in 13.27.4
Zariski covering of T in 33.3.1
Zariski covering of X in 55.8.1

Zariski covering in 47.12.5
Zariski locally quasi-separated over S in
47.13.2
Zariski locally quasi-separated in 48.3.1
Zariski locally quasi-separated in 48.3.1
Zariski sheaf in 73.4.3
Zariski topos in 44.21.1
Zariski, étale, smooth, syntomic, or fppf
covering in 45.8.4
Zariski in 10.16.3
zero object in 12.3.3
zero scheme in 30.9.18
zero scheme in 53.2.17
zeroth K-group of A in 12.10.1
zeroth Čech cohomology group in 44.13.1
Čech cohomology groups in 20.10.1
Čech cohomology groups in 44.18.1
Čech complex in 20.10.1
Čech complex in 44.18.1

89.2. Definitions listed per chapter

Introduction

Conventions

Set Theory

Categories

In 4.2.1: category
In 4.2.4: isomorphism
In 4.2.5: groupoid
In 4.2.8: functor
In 4.2.9: faithful, fully faithful, essentially
surjective
In 4.2.10: subcategory, full subcategory,
strictly full
In 4.2.15: natural transformation, mor-
phism of functors
In 4.2.17: equivalence of categories,
quasi-inverse
In 4.2.20: product category
In 4.3.1: opposite category
In 4.3.2: contravariant
In 4.3.3: presheaf of sets on C, presheaf
In 4.3.6: representable
In 4.4.1: product
In 4.4.2: has products of pairs of objects

In 4.5.1: coproduct, amalgamated sum
In 4.5.2: has coproducts of pairs of ob-
jects
In 4.6.1: fibre product
In 4.6.2: cartesian
In 4.6.3: has fibre products
In 4.6.4: representable
In 4.8.2: representable, F is relatively
representable over G
In 4.9.1: pushout
In 4.9.2: cocartesian
In 4.10.1: equalizer
In 4.11.1: coequalizer
In 4.12.1: initial, final
In 4.13.1: monomorphism, epimorphism
In 4.14.1: limit
In 4.14.2: colimit
In 4.14.5: product
In 4.14.6: coproduct
In 4.16.1: connected
In 4.17.1: I is cofinal in J , cofinal
In 4.17.3: I is initial in J , initial
In 4.19.1: directed, filtered, directed, fil-
tered
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In 4.20.1: codirected, cofiltered, codi-
rected, cofiltered
In 4.21.1: system over I in C, inductive
system over I in C, inverse system over I
in C, projective system over I in C, tran-
sition maps
In 4.21.2: directed system, directed in-
verse system, directed
In 4.22.1: is essentially constant, value,
essentially constant, value
In 4.22.2: essentially constant system, es-
sentially constant inverse system
In 4.23.1: left exact, right exact, exact
In 4.24.1: left adjoint, right adjoint
In 4.25.1: left multiplicative system, right
multiplicative system, multiplicative sys-
tem
In 4.25.17: saturated
In 4.26.1: horizontal
In 4.27.1: 2-category, 1-morphisms, 2-
morphisms, vertical, composition, hori-
zontal
In 4.27.2: sub 2-category
In 4.27.4: equivalent
In 4.27.5: functor, weak functor, pseudo
functor
In 4.28.1: (2, 1)-category
In 4.29.1: final object
In 4.29.2: 2-fibre product of f and g
In 4.30.1: 2-category of categories over C
In 4.30.2: fibre category, lift, x lies over
U , lift, φ lies over f
In 4.31.1: strongly cartesian morphism,
strongly C-cartesian morphism
In 4.31.5: fibred category over C
In 4.31.6: choice of pullbacks, pullback
functor
In 4.31.9: 2-category of fibred categories
over C
In 4.32.2: relative inertia of S over S ′,
inertia fibred category IS of S
In 4.33.1: fibred in groupoids
In 4.33.6: 2-category of categories fibred
in groupoids over C
In 4.34.2: split fibred category, SF
In 4.35.2: split category fibred in
groupoids, SF
In 4.36.1: discrete

In 4.36.2: category fibred in sets, category
fibred in discrete categories
In 4.36.3: 2-category of categories fibred
in sets over C
In 4.37.1: setoid
In 4.37.2: category fibred in setoids
In 4.37.3: 2-category of categories fibred
in setoids over C
In 4.38.1: representable
In 4.39.5: representable, X is relatively
representable over Y
Topology

In 5.4.1: base for the topology on X, basis
for the topology on X
In 5.4.3: subbase for the topology on X,
subbasis for the topology on X
In 5.5.3: strict map of topological spaces,
submersive
In 5.6.1: connected, connected component
In 5.6.7: totally disconnected
In 5.6.9: locally connected
In 5.7.1: irreducible, irreducible compo-
nent
In 5.7.4: generic point, Kolmogorov,
sober
In 5.8.1: Noetherian, locally Noetherian
In 5.9.1: chain of irreducible closed sub-
sets, length, dimension, Krull dimension,
Krull dimension of X at x
In 5.9.4: equidimensional
In 5.10.1: codimension
In 5.10.4: catenary
In 5.11.1: quasi-compact, quasi-compact,
retrocompact
In 5.12.1: locally quasi-compact
In 5.14.1: constructible, locally con-
structible
In 5.16.2: closed, proper, quasi-proper,
universally closed
In 5.17.1: Jacobson
In 5.18.1: specialization, generalization,
stable under specialization, stable under
generalization
In 5.18.3: specializations lift along f ,
specializing, generalizations lift along f ,
generalizing
In 5.19.1: immediate specialization, di-
mension function
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In 5.20.1: interior, nowhere dense
In 5.21.1: profinite
In 5.22.1: spectral, spectral
In 5.25.1: extremally disconnected
In 5.26.2: isolated point
In 5.27.1: partition, parts, refines
In 5.27.2: good stratification
In 5.27.3: stratification, strata

Sheaves on Spaces

In 6.3.1: presheaf F of sets on X, mor-
phism ϕ : F → G of presheaves of sets
on X
In 6.3.2: constant presheaf with value A
In 6.4.4: presheaf of abelian groups on
X, abelian presheaf over X, morphism
of abelian presheaves over X
In 6.5.1: presheaf F on X with values in
C, morphism ϕ : F → G of presheaves
with value in C
In 6.5.2: underlying presheaf of sets of F
In 6.6.1: presheaf of O-modules, mor-
phism ϕ : F → G of presheaves of O-
modules
In 6.7.1: sheaf F of sets on X, morphism
of sheaves of sets
In 6.7.4: constant sheaf with value A
In 6.8.1: abelian sheaf on X, sheaf of
abelian groups on X
In 6.9.1: sheaf
In 6.10.1: sheaf of O-modules, morphism
of sheaves of O-modules
In 6.11.2: separated
In 6.15.1: type of algebraic structure
In 6.16.2: subpresheaf, subsheaf, injec-
tive, surjective, injective, surjective
In 6.21.7: f -map ξ : G → F
In 6.21.9: composition of ϕ and ψ
In 6.25.1: ringed space, morphism of
ringed spaces
In 6.25.3: composition of morphisms of
ringed spaces
In 6.26.1: pushforward, pullback
In 6.27.1: skyscraper sheaf at x with
value A, skyscraper sheaf, skyscraper
sheaf, skyscraper sheaf, skyscraper sheaf
In 6.30.1: presheaf F of sets on B, mor-
phism ϕ : F → G of presheaves of sets
on B

In 6.30.2: sheaf F of sets on B, morphism
of sheaves of sets on B
In 6.30.8: presheaf F with values in C on
B, morphism ϕ : F → G of presheaves
with values in C on B, sheaf F with val-
ues in C on B
In 6.30.11: presheaf of O-modules F on
B, morphism ϕ : F → G of presheaves of
O-modules on B, sheaf F of O-modules
on B
In 6.31.2: restriction of G to U , restric-
tion of G to U , open subspace of (X,O)
associated to U , restriction of G to U
In 6.31.3: extension of F by the empty
set jp!F , extension of F by the empty
set j!F
In 6.31.5: extension jp!F of F by 0, ex-
tension j!F of F by 0, extension jp!F of
F by e, extension j!F of F by e, exten-
sion by 0, extension by 0

Sites and Sheaves

In 7.2.1: presheaf of sets, Morphisms of
presheaves
In 7.2.2: presheaf, morphism
In 7.3.1: injective, surjective
In 7.3.3: subpresheaf
In 7.3.5: image of ϕ
In 7.6.1: family of morphisms with fixed
target
In 7.6.2: site, coverings of C
In 7.7.1: sheaf
In 7.7.5: Sh(C)
In 7.7.6: sheaf
In 7.8.1: morphism of families of maps
with fixed target of C from U to V, mor-
phism from U to V, refinement
In 7.8.2: combinatorially equivalent, tau-
tologically equivalent
In 7.10.9: separated
In 7.10.11: sheaf associated to F
In 7.11.1: quasi-compact
In 7.12.1: injective, surjective
In 7.13.1: effective epimorphism, univer-
sal effective epimorphism
In 7.13.2: weaker than the canonical
topology, subcanonical
In 7.13.3: representable sheaves, U
In 7.14.1: continuous
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In 7.15.1: morphism of sites
In 7.15.4: composition
In 7.16.1: topos, morphism of topoi, com-
position f ◦ g
In 7.19.1: cocontinuous
In 7.24.1: localization of the site C at the
object U , localization morphism, direct
image functor, restriction of F to C/U ,
extension of G by the empty set
In 7.28.2: special cocontinuous functor u
from C to D
In 7.29.4: localization of the topos Sh(C)
at F , localization morphism
In 7.31.1: point of the topos Sh(C)
In 7.31.2: point p of the site C
In 7.31.6: skyscraper sheaf
In 7.35.1: 2-morphism from f to g
In 7.36.2: morphism f : p→ p′

In 7.37.1: conservative, has enough
points
In 7.39.2: weakly contractible, enough
weakly contractible objects, enough P ob-
jects
In 7.41.1: sheaf theoretically empty
In 7.41.3: almost cocontinuous
In 7.42.1: embedding
In 7.42.2: subtopos
In 7.42.4: open subtopos
In 7.42.6: closed subtopos
In 7.42.7: open immersion, closed im-
mersion
In 7.43.1: pushforward
In 7.44.1: global sections
In 7.45.1: sieve S on U
In 7.45.3: sieve on U generated by the
morphisms fi
In 7.45.4: pullback of S by f
In 7.45.6: topology on C
In 7.45.8: finer
In 7.45.10: sheaf
In 7.45.12: canonical topology
In 7.46.2: topology associated to C
In 7.47.2: separated
In 7.47.4: sheaf associated to F
In 7.50.1: point p

Stacks

In 8.2.2: presheaf of morphisms from x
to y, presheaf of isomorphisms from x to
y
In 8.3.1: descent datum (Xi, ϕij) in S
relative to the family {fi : Ui →
U}, cocycle condition, morphism ψ :
(Xi, ϕij)→ (X ′i, ϕ

′
ij) of descent data

In 8.3.4: pullback functor
In 8.3.5: trivial descent datum, canonical
descent datum, effective
In 8.4.1: stack
In 8.4.5: 2-category of stacks over C
In 8.5.1: stack in groupoids
In 8.5.5: 2-category of stacks in groupoids
over C
In 8.6.1: stack in setoids, stack in sets,
stack in discrete categories
In 8.6.5: 2-category of stacks in setoids
over C
In 8.10.2: structure of site on S inherited
from C, S is endowed with the topology
inherited from C
In 8.11.1: gerbe
In 8.11.4: gerbe over
In 8.12.4: f∗S, pushforward of S along f
In 8.12.9: f−1S, pullback of S along f

Fields

In 9.2.1: field, subfield
In 9.2.2: domain, integral domain
In 9.5.1: characteristic, prime subfield of
F
In 9.6.2: field extension
In 9.6.3: tower
In 9.6.6: generates
In 9.7.1: degree, finite
In 9.7.7: number field
In 9.8.1: algebraic, algebraic extension
In 9.9.1: minimal polynomial
In 9.10.1: algebraically closed
In 9.10.3: algebraically closed, algebraic
closure
In 9.11.1: relatively prime
In 9.12.2: separable, separable, separable
In 9.12.6: separable degree
In 9.13.1: purely inseparable, purely in-
separable
In 9.13.7: separable degree, inseparable
degree, degree of inseparability
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In 9.14.1: normal
In 9.14.5: automorphisms of E over F ,
automorphisms of E/F
In 9.15.2: splitting field of P over F
In 9.19.1: Galois
In 9.19.3: Galois group
In 9.23.1: algebraically independent,
purely transcendental extension, tran-
scendence basis
In 9.23.4: transcendence degree
In 9.23.9: algebraic closure of k in K, al-
gebraically closed in K
In 9.24.1: compositum of K and L in Ω
In 9.24.2: linearly disjoint over k in Ω
In 9.25.1: algebraic, separable, purely in-
separable, normal, Galois

Commutative Algebra

In 10.5.1: finite R-module, finitely gen-
erated R-module, finitely presented R-
module, R-module of finite presentation
In 10.6.1: finite type, S is a finite type
R-algebra, finite presentation
In 10.7.1: finite
In 10.8.1: partially ordered set, directed
set
In 10.8.2: system (Mi, µij) of R-modules
over I, directed system
In 10.8.7: homomorphism of systems
In 10.8.12: relation
In 10.9.1: multiplicative subset of R
In 10.9.2: localization of A with respect
to S
In 10.9.6: localization
In 10.11.1: R-bilinear
In 10.11.6: (A,B)-bimodule
In 10.13.1: base change, base change
In 10.16.1: spectrum
In 10.16.3: Zariski, standard opens
In 10.17.1: local ring, local homomor-
phism of local rings, local ring map ϕ :
R→ S
In 10.27.2: Oka family
In 10.31.1: locally nilpotent, nilpotent
In 10.34.1: Jacobson ring
In 10.35.1: integral over R, integral
In 10.35.8: integral closure, integrally
closed
In 10.36.1: normal

In 10.36.3: almost integral over R, com-
pletely normal
In 10.36.10: normal
In 10.37.1: integral over I
In 10.38.1: flat, faithfully flat, flat, faith-
fully flat
In 10.39.1: support of M
In 10.39.3: annihilator of m, annihilator
of M
In 10.40.1: going up, going down
In 10.41.1: separably generated over k,
separable over k
In 10.42.1: geometrically reduced over k
In 10.44.1: perfect
In 10.44.5: perfect closure
In 10.45.6: geometrically irreducible over
k
In 10.46.3: geometrically connected over
k
In 10.47.1: geometrically integral over k
In 10.48.1: dominates, valuation ring,
centered
In 10.48.13: value group, valuation, dis-
crete valuation ring
In 10.50.1: length
In 10.50.9: simple
In 10.51.1: Artinian
In 10.52.1: essentially of finite type, es-
sentially of finite presentation
In 10.55.1: homogeneous spectrum
In 10.56.1: blowup algebra, Rees algebra,
affine blowup algebra
In 10.57.3: numerical polynomial
In 10.58.1: an ideal of definition of R
In 10.58.6: Hilbert polynomial
In 10.58.8: d(M)
In 10.59.1: Krull dimension
In 10.59.2: height
In 10.59.9: system of parameters of R,
regular local ring, regular system of pa-
rameters
In 10.62.1: associated
In 10.63.1: symbolic power
In 10.64.2: relative assassin of N over
S/R
In 10.65.1: weakly associated
In 10.66.1: embedded associated primes,
embedded primes of R
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In 10.67.1: M -regular, M -regular se-
quence in I, regular sequence
In 10.67.4: I-depth, depth
In 10.68.1: M -quasi-regular, quasi-
regular sequence
In 10.69.2: resolution, resolution of M by
free R-modules, resolution of M by finite
free R-modules
In 10.74.1: projective
In 10.75.1: locally free, finite locally free
In 10.79.1: universally injective, univer-
sally exact
In 10.81.1: direct sum dévissage, Kaplan-
sky dévissage
In 10.83.1: Mittag-Leffler inverse system
In 10.85.1: Mittag-Leffler directed system
of modules
In 10.85.2: dominates
In 10.85.6: Mittag-Leffler
In 10.87.1: coherent module, coherent
ring
In 10.93.5: I-adically complete, I-
adically complete
In 10.98.4: rank
In 10.99.1: Cohen-Macaulay
In 10.99.6: maximal Cohen-Macaulay
In 10.99.10: Cohen-Macaulay
In 10.100.1: Cohen-Macaulay
In 10.100.6: Cohen-Macaulay
In 10.101.1: catenary
In 10.101.5: universally catenary
In 10.104.1: pure
In 10.105.2: finite projective dimension,
projective dimension
In 10.105.6: finite global dimension,
global dimension
In 10.106.7: regular
In 10.108.5: local ring of the fibre at q
In 10.115.7: uniformizer
In 10.116.1: associates, irreducible, prime
In 10.116.4: unique factorization do-
main, UFD
In 10.116.9: principal ideal domain, PID
In 10.116.11: Dedekind domain
In 10.117.2: order of vanishing along R
In 10.117.3: lattice in V
In 10.117.5: distance between M and M ′

In 10.118.3: quasi-finite at q, quasi-finite

In 10.119.8: strongly transcendental over
R
In 10.121.1: relative dimension of S/R at
q, relative dimension of
In 10.127.1: derivation, R-derivation,
Leibniz rule
In 10.127.2: module of Kähler differen-
tials, module of differentials
In 10.128.1: differential operator D :
M → N of order k
In 10.128.4: module of principal parts of
order k
In 10.129.1: naive cotangent complex
In 10.130.1: global complete intersection
over k, local complete intersection over
k
In 10.130.5: complete intersection (over
k)
In 10.131.1: syntomic, flat local complete
intersection over R
In 10.131.5: relative global complete in-
tersection
In 10.132.1: smooth
In 10.132.6: standard smooth algebra
over R
In 10.132.11: smooth at q
In 10.133.1: formally smooth over R
In 10.136.1: small extension
In 10.138.1: étale, étale at q
In 10.138.14: standard étale
In 10.141.1: formally unramified over R
In 10.142.2: universal first order thicken-
ing, conormal module, CS/R
In 10.143.1: formally étale over R
In 10.144.1: unramified, G-unramified,
unramified at q, G-unramified at q
In 10.145.1: henselian, strictly henselian
In 10.145.18: henselization, strict
henselization of R with respect to κ ⊂
κsep, strict henselization
In 10.146.1: (Rk), regular in codimension
≤ k, (Sk)
In 10.149.1: complete local ring
In 10.149.4: coefficient ring
In 10.149.5: Cohen ring
In 10.150.1: N-1, N-2, Japanese
In 10.150.15: universally Japanese, Na-
gata ring
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In 10.150.23: analytically unramified, an-
alytically unramified
In 10.153.2: geometrically normal
In 10.154.2: geometrically regular

Brauer groups

In 11.2.1: finite
In 11.2.2: skew field
In 11.2.3: simple, simple
In 11.2.4: central
In 11.2.5: opposite algebra
In 11.5.2: Brauer group
In 11.8.1: splits, splitting field

Homological Algebra

In 12.3.1: preadditive, additive
In 12.3.3: zero object
In 12.3.5: direct sum
In 12.3.8: additive
In 12.3.9: kernel, cokernel, coimage of f ,
image of f
In 12.4.1: Karoubian
In 12.5.1: abelian
In 12.5.3: injective, surjective, subobject,
quotient
In 12.5.7: complex, exact at y, exact,
short exact sequence
In 12.5.9: split
In 12.6.1: extension E of B by A
In 12.6.2: Ext-group
In 12.9.1: Serre subcategory, weak Serre
subcategory
In 12.9.5: kernel of the functor F
In 12.10.1: zeroth K-group of A
In 12.11.1: cohomological δ-functor, δ-
functor
In 12.11.2: morphism of δ-functors from
F to G
In 12.11.3: universal δ-functor
In 12.12.2: homotopy equivalence, homo-
topy equivalent
In 12.12.4: quasi-isomorphism, acyclic
In 12.12.8: homotopy equivalence, homo-
topy equivalent
In 12.12.10: quasi-isomorphism, acyclic
In 12.14.1: k-shifted chain complex A[k]•
In 12.14.2: Hi+k(A•)→ Hi(A[k]•)
In 12.14.7: k-shifted cochain complex
A[k]•

In 12.14.8: Hi+k(A•) −→ Hi(A[k]•)
In 12.15.1: category of graded objects of
A
In 12.15.4: shift
In 12.16.1: decreasing filtration, filtered
object of A, morphism (A,F ) → (B,F )
of filtered objects, induced filtration, quo-
tient filtration, finite, separated, exhaus-
tive
In 12.16.3: strict
In 12.17.1: spectral sequence in A, mor-
phism of spectral sequences
In 12.17.2: limit, collapses at Er, degen-
erates at Er
In 12.18.1: exact couple, morphism of ex-
act couples
In 12.18.3: spectral sequence associated
to the exact couple
In 12.19.1: differential object, morphism
of differential objects
In 12.19.3: homology
In 12.19.5: spectral sequence associated
to (A, d, α)
In 12.20.1: filtered differential object
In 12.20.4: induced filtration
In 12.20.6: converges, abuts to, converges
to
In 12.21.1: filtered complex K• of A
In 12.21.5: induced filtration
In 12.21.7: converges
In 12.22.1: double complex
In 12.22.3: associated simple complex
sA•, associated total complex
In 12.22.5: converges, converges
In 12.23.1: injective
In 12.23.4: enough injectives
In 12.23.5: functorial injective embed-
dings
In 12.24.1: projective
In 12.24.4: enough projectives
In 12.24.5: functorial projective surjec-
tions
In 12.27.2: Mittag-Leffler condition, ML

Derived Categories

In 13.3.1: triangle, morphism of triangles
In 13.3.2: triangulated category, distin-
guished triangles, pre-triangulated cate-
gory
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In 13.3.3: exact functor, triangulated
functor
In 13.3.4: pre-triangulated subcategory,
triangulated subcategory
In 13.3.5: homological, cohomological
In 13.3.6: δ-functor from A to D, im-
age of the short exact sequence under the
given δ-functor
In 13.5.1: compatible with the triangu-
lated structure
In 13.6.1: saturated
In 13.6.5: kernel of F , kernel of H
In 13.6.7: quotient category D/B, quo-
tient functor
In 13.8.1: category of (cochain) com-
plexes, bounded below, bounded above,
bounded
In 13.9.1: cone
In 13.9.4: termwise split injection α :
A• → B•, termwise split surjection β :
B• → C•

In 13.9.9: termwise split sequence of
complexes of A, triangle associated to the
termwise split sequence of complexes
In 13.10.1: distinguished triangle of
K(A)
In 13.11.3: derived category of A,
bounded derived category
In 13.14.1: category of finite filtered ob-
jects of A
In 13.14.2: filtered quasi-isomorphism,
filtered acyclic
In 13.14.5: filtered derived category of A
In 13.14.7: bounded filtered derived cate-
gory
In 13.15.2: right derived functor RF is
defined at, value of RF at X, left derived
functor LF is defined at, value of LF at
X
In 13.15.9: right deriveable, everywhere
defined, left deriveable, everywhere de-
fined
In 13.15.10: computes, computes
In 13.16.3: right derived functors of F ,
left derived functors of F , right acyclic
for F , acyclic for RF , left acyclic for F ,
acyclic for LF

In 13.17.2: ith right derived functor RiF
of F
In 13.18.1: injective resolution of A, in-
jective resolution of K•

In 13.19.1: projective resolution of A,
projective resolution of K•

In 13.21.1: Cartan-Eilenberg resolution
In 13.23.2: resolution functor
In 13.26.1: filtered injective
In 13.27.1: ith extension group
In 13.27.4: Yoneda extension, equivalent
In 13.29.1: K-injective
In 13.31.1: derived colimit, homotopy col-
imit
In 13.32.1: derived limit, homotopy limit
In 13.33.1: classical generator, strong
generator, weak generator, generator
In 13.34.1: compact object
In 13.34.5: compactly generated

Simplicial Methods

In 14.2.1: δnj : [n−1]→ [n], σnj : [n+1]→
[n]
In 14.3.1: simplicial object U of C, sim-
plicial set, simplicial abelian group, mor-
phism of simplicial objects U → U ′, cat-
egory of simplicial objects of C
In 14.5.1: cosimplicial object U of
C, cosimplicial set, cosimplicial abelian
group, morphism of cosimplicial objects
U → U ′, category of cosimplicial objects
of C
In 14.6.1: product of U and V
In 14.7.1: fibre product of V and W over
U
In 14.8.1: pushout of V and W over U
In 14.9.1: product of U and V
In 14.10.1: fibre product of V and W over
U
In 14.11.1: n-simplex of U , face of x, de-
generacy of x, degenerate
In 14.12.1: n-truncated simplicial object
of C, morphism of n-truncated simplicial
objects
In 14.13.1: product U × V of U and V ,
product U × V exists
In 14.14.1: Hom(U, V )
In 14.16.1: Hom(U, V )
In 14.17.1: split
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In 14.19.1: augmentation ε : U → X of
U towards an object X of C
In 14.21.3: Eilenberg-Maclane object
K(A, k)
In 14.25.1: homotopy connecting a to b,
homotopic
In 14.25.6: homotopy equivalence, homo-
topy equivalent
In 14.27.1: homotopic, homotopy con-
necting a and b
In 14.29.1: trivial Kan fibration
In 14.30.1: Kan fibration, Kan complex

More on Algebra

In 15.5.3: kth fitting ideal
In 15.7.1: henselian pair
In 15.8.1: auto-associated
In 15.15.1: torsion, torsion free
In 15.16.1: content ideal of x
In 15.18.1: strict transform of M along
R→ R′

In 15.20.1: Koszul complex
In 15.20.2: Koszul complex on f1, . . . , fr
In 15.21.1: M -Koszul-regular, M -H1-
regular, Koszul-regular, H1-Koszul-
regular
In 15.22.1: regular ideal, Koszul-regular
ideal, H1-regular ideal, quasi-regular
ideal
In 15.23.2: local complete intersection
In 15.26.1: topological ring, topological
module, homomorphism of topological
modules, homomorphism of topological
rings, linearly topologized, linearly topol-
ogized, ideal of definition, pre-admissible,
admissible, pre-adic, adic
In 15.27.1: formally smooth over R
In 15.27.3: formally smooth for the n-
adic topology
In 15.30.1: regular
In 15.35.1: p-independent over k, p-basis
of K over k
In 15.36.1: J-0, J-1, J-2
In 15.39.1: G-ring
In 15.40.1: quasi-excellent, excellent
In 15.42.1: M 7→M∨, free module
In 15.45.3: K-flat
In 15.45.13: derived tensor product
In 15.47.1: Tor independent over R

In 15.50.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 15.51.1: tor-amplitude in [a, b], finite
tor dimension, tor dimension ≤ d, finite
tor dimension
In 15.52.1: finite projective dimension,
projective-amplitude in [a, b]
In 15.53.1: finite injective dimension,
injective-amplitude in [a, b]
In 15.56.1: perfect, perfect
In 15.58.2: finitely presented relative to
R
In 15.59.4: m-pseudo-coherent relative
to R, pseudo-coherent relative to R, m-
pseudo-coherent relative to R, pseudo-
coherent relative to R
In 15.60.1: pseudo-coherent ring map,
perfect ring map
In 15.62.1: I-power torsion module, an
f -power torsion module
In 15.64.4: derived complete with respect
to I, derived complete with respect to I
In 15.67.1: absolutely flat, weakly étale,
absolutely flat
In 15.67.3: weak dimension ≤ d
In 15.68.1: extension of discrete valua-
tion rings, ramification index, weakly un-
ramified, residual degree, residue degree
In 15.68.6: unramified, totally ramified,
tamely ramified
In 15.68.9: decomposition group, inertia
group
In 15.68.17: mixed characteristic, abso-
lute ramification index
In 15.69.2: weak solution for A ⊂ B, so-
lution for A ⊂ B, separable solution
In 15.71.1: extension of valuation rings,
weakly unramified, residual degree,
residue degree
In 15.72.5: Bézout domain, elementary
divisor domain

Smoothing Ring Maps

In 16.3.1: singular ideal of A over R
In 16.3.3: elementary standard in A over
R, strictly standard in A over R

Sheaves of Modules
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In 17.4.1: generated by global sections,
generate
In 17.4.5: subsheaf generated by the si
In 17.5.1: support of F , support of s
In 17.8.1: locally generated by sections
In 17.9.1: finite type
In 17.10.1: quasi-coherent sheaf of OX-
modules
In 17.10.6: sheaf associated to the module
M and the ring map α, sheaf associated
to the module M
In 17.11.1: finite presentation
In 17.12.1: coherent OX-module
In 17.13.1: closed immersion of ringed
spaces
In 17.14.1: locally free, finite locally free,
finite locally free of rank r
In 17.16.1: flat
In 17.16.3: flat at x
In 17.17.1: flat at x, flat
In 17.17.3: flat over Y at a point x ∈ X,
flat over Y
In 17.20.1: Koszul complex
In 17.20.2: Koszul complex on f1, . . . , fr
In 17.21.1: invertible OX-module, trivial
In 17.21.3: tensor power of L
In 17.21.4: associated graded ring
In 17.21.6: Picard group
In 17.23.1: O1-derivation, ϕ-derivation,
Leibniz rule
In 17.23.3: module of differentials, uni-
versal ϕ-derivation
In 17.23.10: S-derivation, sheaf of differ-
entials ΩX/S of X over S
In 17.24.1: naive cotangent complex
In 17.24.4: naive cotangent complex

Modules on Sites

In 18.4.1: free abelian presheaf
In 18.5.1: free abelian sheaf
In 18.6.1: ringed site, structure sheaf,
morphism of ringed sites, composition of
morphisms of ringed sites
In 18.7.1: ringed topos, structure sheaf,
morphism of ringed topoi, composition of
morphisms of ringed topoi
In 18.8.1: 2-morphism from f to g

In 18.9.1: presheaf of O-modules, mor-
phism ϕ : F → G of presheaves of O-
modules
In 18.10.1: sheaf of O-modules, mor-
phism of sheaves of O-modules
In 18.13.1: pushforward, pullback
In 18.16.1: gp!F , g!F = (gp!F)#

In 18.17.1: free O-module, finite free,
generated by global sections, generated
by r global sections, generated by finitely
many global sections, global presentation,
global finite presentation
In 18.19.1: localization of the ringed site
(C,O) at the object U , localization mor-
phism, direct image functor, restriction
of F to C/U , extension by zero
In 18.21.2: localization of the ringed
topos (Sh(C),O) at F , localization mor-
phism
In 18.23.1: locally free, finite locally free,
locally generated by sections, locally gen-
erated by r sections, of finite type, quasi-
coherent, of finite presentation, coherent
In 18.28.1: flat, flat, flat, flat
In 18.30.1: flat, flat
In 18.30.3: flat over (Sh(D),O′)
In 18.31.1: rank r, invertible O-module,
O∗
In 18.31.4: Picard group
In 18.32.1: O1-derivation, ϕ-derivation,
Leibniz rule
In 18.32.3: module of differentials, uni-
versal ϕ-derivation
In 18.32.10: Y -derivation, sheaf of dif-
ferentials ΩX/Y of X over Y , universal
Y -derivation
In 18.33.1: differential operator D : F →
G of order k
In 18.33.4: module of principal parts of
order k
In 18.34.1: naive cotangent complex
In 18.34.4: naive cotangent complex
In 18.39.4: locally ringed site
In 18.39.6: locally ringed
In 18.39.8: morphism of locally ringed
topoi, morphism of locally ringed sites
In 18.42.1: constant sheaf, locally con-
stant, finite locally constant
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Injectives

In 19.2.4: α-small with respect to I
In 19.10.1: generator, Grothendieck
abelian category
In 19.11.1: size

Cohomology of Sheaves

In 20.5.1: torsor, G-torsor, morphism of
G-torsors, trivial G-torsor
In 20.10.1: Čech complex, Čech cohomol-
ogy groups
In 20.13.1: flasque, flabby
In 20.24.1: alternating Čech complex
In 20.24.2: ordered Čech complex
In 20.25.2: locally finite
In 20.27.2: K-flat
In 20.27.13: derived tensor product
In 20.27.14: Tor
In 20.35.1: strictly perfect
In 20.36.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 20.37.1: tor-amplitude in [a, b], finite
tor dimension, locally has finite tor di-
mension
In 20.38.1: perfect, perfect

Cohomology on Sites

In 21.5.1: pseudo torsor, pseudo G-
torsor, morphism of pseudo G-torsors,
torsor, G-torsor, morphism of G-torsors,
trivial G-torsor
In 21.9.1: Cech complex, Cech cohomol-
ogy groups
In 21.13.4: limp
In 21.17.2: K-flat
In 21.17.11: derived tensor product
In 21.17.12: Tor
In 21.23.2: qc covering
In 21.31.1: simplicial A•-module, simpli-
cial sheaf of A•-modules
In 21.33.1: strictly perfect
In 21.34.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 21.35.1: tor-amplitude in [a, b], finite
tor dimension, locally has finite tor di-
mension
In 21.36.1: perfect, perfect

Differential Graded Algebra

In 22.3.1: differential graded algebra over
R
In 22.3.2: homomorphism of differential
graded algebras
In 22.3.3: opposite differential graded al-
gebra
In 22.3.4: commutative, strictly commu-
tative
In 22.3.5: tensor product differential
graded algebra
In 22.4.1: differential graded module, ho-
momorphism of differential graded mod-
ules
In 22.4.3: k-shifted module
In 22.5.1: homotopy between f and g, ho-
motopic
In 22.5.3: homotopy category
In 22.6.1: cone
In 22.7.1: admissible monomorphism, ad-
missible epimorphism, admissible short
exact sequence
In 22.8.2: triangle associated to 0 →
K → L → M → 0, distinguished tri-
angle
In 22.15.2: derived category of (A, d)
In 22.17.1: R-linear category A
In 22.17.2: functor of R-linear cate-
gories, R-linear
In 22.18.1: graded category A over R
In 22.18.2: functor of graded categories
over R, graded functor
In 22.18.3: A0

In 22.18.4: graded direct sum
In 22.19.1: differential graded category A
over R
In 22.19.2: functor of differential graded
categories over R
In 22.19.3: category of complexes of A,
homotopy category of A
In 22.19.4: differential graded direct sum

Divided Power Algebra

In 23.2.1: divided power structure
In 23.3.1: divided power ring, homomor-
phism of divided power rings
In 23.4.1: extends
In 23.6.1: divided power structure
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In 23.6.4: compatible with the differential
graded structure
In 23.8.5: complete intersection, local
complete intersection

Hypercoverings

In 24.2.1: semi-representable objects,
semi-representable objects over X
In 24.2.2: which associates a presheaf to
a semi-representable object
In 24.2.4: covering, covering
In 24.2.6: hypercovering of X
In 24.3.1: homology of K
In 24.5.1: hypercovering of G, hypercov-
ering

Schemes

In 25.2.1: locally ringed space (X,OX),
local ring of X at x, residue field of X
at x, morphism of locally ringed spaces
In 25.3.1: open immersion
In 25.3.3: open subspace of X associated
to U
In 25.4.1: closed immersion
In 25.4.4: closed subspace of X associated
to the sheaf of ideals I
In 25.5.2: standard open covering, stan-
dard open covering
In 25.5.3: structure sheaf OSpec(R) of the
spectrum of R, spectrum
In 25.5.5: affine scheme, morphism of
affine schemes
In 25.9.1: scheme, morphism of schemes
In 25.10.2: open immersion, open sub-
scheme, closed immersion, closed sub-
scheme, immersion, locally closed im-
mersion
In 25.12.1: reduced
In 25.12.5: scheme structure on Z, re-
duced induced scheme structure, reduc-
tion Xred of X
In 25.15.1: representable by a scheme,
representable
In 25.15.3: satisfies the sheaf property for
the Zariski topology, subfunctor H ⊂ F ,
representable by open immersions, cov-
ers F
In 25.17.1: fibre product

In 25.17.7: inverse image f−1(Z) of the
closed subscheme Z
In 25.18.1: scheme over S, structure
morphism, scheme over R, morphism f :
X → Y of schemes over S, base change,
base change, base change
In 25.18.3: preserved under arbitrary
base change, preserved under base
change, preserved under arbitrary base
change, preserved under base change
In 25.18.4: scheme theoretic fibre Xs of
f over s, fibre of f over s
In 25.19.1: quasi-compact
In 25.20.1: universally closed
In 25.20.3: satisfies the existence part
of the valuative criterion, satisfies the
uniqueness part of the valuative criterion
In 25.21.3: separated, quasi-separated,
separated, quasi-separated
In 25.23.1: monomorphism

Constructions of Schemes

In 26.4.5: relative spectrum of A over S,
spectrum of A over S
In 26.5.1: affine n-space over S, affine
n-space over R
In 26.6.1: vector bundle associated to E
In 26.6.2: vector bundle π : V → S over
S, morphism of vector bundles over S
In 26.7.1: cone associated to A, affine
cone associated to A
In 26.7.2: cone π : C → S over S, mor-
phism of cones
In 26.8.2: standard open covering
In 26.8.3: structure sheaf OProj(S) of the
homogeneous spectrum of S, homoge-
neous spectrum
In 26.10.1: twist of the structure sheaf of
Proj(S)
In 26.13.2: projective n-space over Z,
projective n-space over S, projective n-
space over R
In 26.16.7: relative homogeneous spec-
trum of A over S, homogeneous spec-
trum of A over S, relative Proj of A over
S
In 26.21.1: projective bundle associated
to E , twist of the structure sheaf
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In 26.22.2: Grassmannian over Z, Grass-
mannian over S, Grassmannian over R

Properties of Schemes

In 27.3.1: integral
In 27.4.1: local
In 27.4.2: locally P
In 27.5.1: locally Noetherian, Noetherian
In 27.6.1: Jacobson
In 27.7.1: normal
In 27.8.1: Cohen-Macaulay
In 27.9.1: regular, nonsingular
In 27.10.1: dimension, dimension of X
at x
In 27.11.1: catenary
In 27.12.1: regular in codimension k,
(Rk), (Sk)
In 27.13.1: Japanese, universally Japan-
ese, Nagata
In 27.14.1: regular locus, singular locus
In 27.15.1: quasi-affine
In 27.19.1: locally projective
In 27.21.1: κ-generated
In 27.22.3: subsheaf of sections annihi-
lated by I
In 27.22.6: subsheaf of sections supported
on T
In 27.24.1: ample

Morphisms of Schemes

In 28.5.5: scheme theoretic support of F
In 28.6.2: scheme theoretic image
In 28.7.1: scheme theoretic closure of U
in X, scheme theoretically dense in X
In 28.8.1: dominant
In 28.9.1: birational
In 28.10.1: equivalent, rational map from
X to Y , S-rational map from X to Y
In 28.10.2: rational function on X
In 28.10.3: ring of rational functions on
X
In 28.10.5: function field, field of rational
functions
In 28.10.7: defined in a point x ∈ X, do-
main of definition
In 28.10.9: dominant
In 28.10.10: birational, S-birational
In 28.11.1: surjective
In 28.12.1: universally injective, radicial

In 28.13.1: affine
In 28.14.1: quasi-affine
In 28.15.1: local, stable under base
change, stable under composition
In 28.15.2: locally of type P
In 28.16.1: finite type at x ∈ X, locally
of finite type, finite type
In 28.17.3: finite type point
In 28.18.1: universally catenary
In 28.20.1: J-2
In 28.21.1: quasi-finite at a point x ∈ X,
locally quasi-finite, quasi-finite
In 28.22.1: finite presentation at x ∈ X,
locally of finite presentation, finite pre-
sentation
In 28.24.1: open, universally open
In 28.25.1: submersive, universally sub-
mersive
In 28.26.1: flat at a point x ∈ X, flat
over S at a point x ∈ X, flat, flat over S
In 28.27.3: canonical scheme structure
on T
In 28.30.1: relative dimension ≤ d at x,
relative dimension ≤ d, relative dimen-
sion d
In 28.32.1: syntomic at x ∈ X, syntomic,
local complete intersection over k, stan-
dard syntomic
In 28.32.15: syntomic of relative dimen-
sion d
In 28.33.1: conormal sheaf CZ/X of Z in
X, conormal sheaf of i
In 28.34.1: sheaf of differentials ΩX/S of
X over S, universal S-derivation
In 28.35.1: smooth at x ∈ X, smooth,
standard smooth
In 28.35.13: smooth of relative dimension
d
In 28.36.1: unramified at x ∈ X, G-
unramified at x ∈ X, unramified, G-
unramified
In 28.37.1: étale at x ∈ X, étale, stan-
dard étale
In 28.38.1: relatively ample, f -relatively
ample, ample on X/S, f -ample
In 28.39.1: relatively very ample, f -
relatively very ample, very ample on
X/S, f -very ample
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In 28.41.1: quasi-projective, H-quasi-
projective, locally quasi-projective
In 28.42.1: proper
In 28.43.1: projective, H-projective, lo-
cally projective
In 28.44.1: integral, finite
In 28.45.1: universal homeomorphism
In 28.46.1: finite locally free, rank, degree
In 28.47.5: degree of X over Y
In 28.47.8: modification of X
In 28.47.9: alteration of X
In 28.48.2: integral closure of OX in A
In 28.48.3: normalization of X in Y
In 28.48.12: normalization
In 28.50.1: bounds the degrees of the fi-
bres of f , fibres of f are universally
bounded

Cohomology of Schemes

In 29.11.1: depth k at a point, depth k at
a point, (Sk), (Sk)
In 29.11.2: Cohen-Macaulay

Divisors

In 30.2.1: associated, associated points of
X
In 30.4.1: embedded associated point, em-
bedded point, embedded component
In 30.5.1: weakly associated, weakly asso-
ciated points of X
In 30.7.1: relative assassin of F in X
over S
In 30.8.1: relative weak assassin of F in
X over S
In 30.9.1: locally principal closed sub-
scheme, effective Cartier divisor
In 30.9.6: sum of the effective Cartier di-
visors D1 and D2

In 30.9.11: pullback of D by f is defined,
pullback of the effective Cartier divisor
In 30.9.14: invertible sheaf OS(D) asso-
ciated to D
In 30.9.16: regular section
In 30.9.18: zero scheme
In 30.10.2: relative effective Cartier divi-
sor
In 30.11.1: conormal algebra CZ/X,∗ of Z
in X, conormal algebra of f

In 30.11.5: normal cone CZX, normal
bundle
In 30.12.2: regular, Koszul-regular, H1-
regular, quasi-regular
In 30.13.1: regular immersion, Koszul-
regular immersion, H1-regular immer-
sion, quasi-regular immersion
In 30.14.2: relative quasi-regular immer-
sion, relative H1-regular immersion
In 30.15.1: sheaf of meromorphic func-
tions on X, KX , meromorphic function
In 30.15.3: pullbacks of meromorphic
functions are defined for f
In 30.15.5: meromorphic section of F
In 30.15.11: regular
In 30.15.15: ideal sheaf of denominators
of s
In 30.18.1: blowing up of X along Z,
blowing up of X in the ideal sheaf I, ex-
ceptional divisor, center
In 30.19.1: strict transform, strict trans-
form
In 30.20.1: U -admissible blowup

Limits of Schemes

Varieties

In 32.3.1: variety
In 32.4.1: geometrically reduced at x, ge-
ometrically reduced
In 32.5.1: geometrically connected
In 32.6.1: geometrically irreducible
In 32.7.1: geometrically pointwise inte-
gral at x, geometrically pointwise inte-
gral, geometrically integral
In 32.8.1: geometrically normal at x, ge-
ometrically normal
In 32.10.1: geometrically regular at x, ge-
ometrically regular over k
In 32.13.1: algebraic k-scheme, locally al-
gebraic k-scheme
In 32.16.1: affine variety, projective va-
riety, quasi-projective variety, proper va-
riety
In 32.19.6: m-regular
In 32.19.16: Hilbert polynomial
In 32.23.1: curve

Topologies on Schemes
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In 33.3.1: Zariski covering of T
In 33.3.4: standard Zariski covering
In 33.3.5: big Zariski site
In 33.3.7: big Zariski site of S, small
Zariski site of S, big affine Zariski site
of S
In 33.3.14: restriction to the small
Zariski site
In 33.4.1: étale covering of T
In 33.4.5: standard étale covering
In 33.4.6: big étale site
In 33.4.8: big étale site of S, small étale
site of S, big affine étale site of S
In 33.4.14: restriction to the small étale
site
In 33.5.1: smooth covering of T
In 33.5.5: standard smooth covering
In 33.5.6: big smooth site
In 33.5.8: big smooth site of S, big affine
smooth site of S
In 33.6.1: syntomic covering of T
In 33.6.5: standard syntomic covering
In 33.6.6: big syntomic site
In 33.6.8: big syntomic site of S, big
affine syntomic site of S
In 33.7.1: fppf covering of T
In 33.7.5: standard fppf covering
In 33.7.6: big fppf site
In 33.7.8: big fppf site of S, big affine fppf
site of S
In 33.8.1: fpqc covering of T
In 33.8.9: standard fpqc covering
In 33.8.12: satisfies the sheaf property for
the given family, satisfies the sheaf prop-
erty for the fpqc topology

Descent

In 34.2.1: descent datum (Fi, ϕij) for
quasi-coherent sheaves, cocycle condi-
tion, morphism ψ : (Fi, ϕij) → (F ′i , ϕ′ij)
of descent data
In 34.2.3: trivial descent datum, canoni-
cal descent datum, effective
In 34.3.1: descent datum (N,ϕ) for mod-
ules with respect to R→ A, cocycle con-
dition, morphism (N,ϕ) → (N ′, ϕ′) of
descent data
In 34.3.4: effective
In 34.4.2: split equalizer

In 34.4.5: universally injective
In 34.4.9: C
In 34.4.15: base extension along f , de-
scent morphism for modules, effective
descent morphism for modules
In 34.4.19: f∗
In 34.7.2: structure sheaf of the big site
(Sch/S)τ , sheaf of O-modules associated
to F , sheaf of O-modules associated to F
In 34.8.1: parasitic, parasitic for the τ -
topology
In 34.11.1: local in the τ -topology
In 34.16.1: germ of X at x, morphism
of germs, composition of morphisms of
germs
In 34.16.2: étale, smooth
In 34.17.1: étale local, smooth local
In 34.18.1: τ local on the base, τ local
on the target, local on the base for the
τ -topology
In 34.22.1: τ local on the source, local on
the source for the τ -topology
In 34.28.3: étale local on source-and-
target
In 34.29.1: étale local on the source-and-
target
In 34.30.1: descent datum for V/X/S,
cocycle condition, descent datum relative
to X → S, morphism f : (V/X,ϕ) →
(V ′/X,ϕ′) of descent data relative to
X → S
In 34.30.3: descent datum (Vi, ϕij) rela-
tive to the family {Xi → S}, morphism
ψ : (Vi, ϕij)→ (V ′i , ϕ

′
ij) of descent data

In 34.30.7: pullback functor
In 34.30.9: pullback functor
In 34.30.10: trivial descent datum,
canonical descent datum, effective
In 34.30.11: canonical descent datum, ef-
fective
In 34.32.1: morphisms of type P satisfy
descent for τ -coverings

Derived Categories of Schemes

In 35.6.4: supported on T
In 35.12.1: approximation holds for the
triple
In 35.12.2: approximation by perfect
complexes holds
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In 35.16.2: Tor independent over S

More on Morphisms

In 36.2.1: thickening, first order thick-
ening, morphism of thickenings, thicken-
ings over S, morphisms of thickenings
over S
In 36.3.1: first order infinitesimal neigh-
bourhood
In 36.4.1: formally unramified
In 36.5.2: universal first order thicken-
ing, conormal sheaf of Z over X
In 36.6.1: formally étale
In 36.9.1: formally smooth
In 36.15.1: normal at x, normal mor-
phism
In 36.16.1: regular at x, regular mor-
phism
In 36.17.1: Cohen-Macaulay at x, Cohen-
Macaulay morphism
In 36.27.1: étale neighbourhood of (S, s),
morphism of étale neighbourhoods, ele-
mentary étale neighbourhood
In 36.38.1: finitely presented relative to
S, of finite presentation relative to S
In 36.39.2: m-pseudo-coherent relative
to S, pseudo-coherent relative to S, m-
pseudo-coherent relative to S, pseudo-
coherent relative to S
In 36.40.2: pseudo-coherent
In 36.41.2: perfect
In 36.42.2: Koszul at x, Koszul mor-
phism, local complete intersection mor-
phism
In 36.44.1: weakly étale, absolutely flat
In 36.46.1: ind-quasi-affine, ind-quasi-
affine

More on Flatness

In 37.4.1: one step dévissage of F/X/S
over s
In 37.4.2: one step dévissage of F/X/S
at x
In 37.4.6: standard shrinking
In 37.5.1: complete dévissage of F/X/S
over s
In 37.5.2: complete dévissage of F/X/S
at x
In 37.5.5: standard shrinking

In 37.6.1: elementary étale localization of
the ring map R→ S at q
In 37.6.2: complete dévissage of N/S/R
over r
In 37.6.4: complete dévissage of N/S/R
at q
In 37.14.2: impurity of F above s
In 37.15.1: pure along Xs, universally
pure along Xs, pure along Xs, univer-
sally S-pure, universally pure relative to
S, S-pure, pure relative to S, S-pure,
pure relative to S
In 37.20.1: universal flattening of F ex-
ists, universal flattening of X exists
In 37.20.2: flattening stratification, flat-
tening stratification

Groupoid Schemes

In 38.3.1: pre-relation, relation, pre-
equivalence relation, equivalence relation
on U over S
In 38.3.3: restriction, pullback
In 38.4.1: group scheme over S, mor-
phism ψ : (G,m) → (G′,m′) of group
schemes over S
In 38.4.3: closed subgroup scheme, open
subgroup scheme
In 38.4.4: smooth group scheme, flat
group scheme, separated group scheme
In 38.8.1: action of G on the scheme
X/S, equivariant, G-equivariant
In 38.8.2: free
In 38.9.1: pseudo G-torsor, formally
principally homogeneous under G, triv-
ial
In 38.9.3: principal homogeneous space,
G-torsor, G-torsor in the τ topology, τ
G-torsor, τ torsor, quasi-isotrivial, lo-
cally trivial
In 38.10.1: G-equivariant quasi-coherent
OX-module, equivariant quasi-coherent
OX-module
In 38.11.1: groupoid scheme over
S, groupoid over S, morphism f :
(U,R, s, t, c) → (U ′, R′, s′, t′, c′) of
groupoid schemes over S
In 38.12.1: quasi-coherent module on
(U,R, s, t, c)
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In 38.15.2: stabilizer of the groupoid
scheme (U,R, s, t, c)
In 38.16.2: restriction of (U,R, s, t, c) to
U ′

In 38.17.1: set-theoretically R-invariant,
R-invariant, R-invariant, R-invariant
In 38.18.1: quotient sheaf U/R
In 38.18.2: representable quotient, repre-
sentable quotient
In 38.19.1: cartesian, (U ′, R′, s′, t′, c′)
is cartesian over (U,R, s, t, c), mor-
phism of groupoid schemes cartesian
over (U,R, s, t, c)

More on Groupoid Schemes

Étale Morphisms of Schemes

In 40.3.1: unramified homomorphism of
local rings
In 40.3.5: unramified at x, unramified
In 40.9.1: flat, faithfully flat, flat (resp.
faithfully flat)
In 40.9.3: flat over Y at x ∈ X, flat at
x ∈ X, flat, faithfully flat
In 40.11.1: étale homomorphism of local
rings
In 40.11.4: étale at x ∈ X, étale

Chow Homology and Chern Classes

In 41.2.1: admissible, symbol, admissible
relation, determinant of the finite length
R-module M
In 41.3.1: 2-periodic complex, cohomol-
ogy modules, exact, (2, 1)-periodic com-
plex, cohomology modules
In 41.3.2: multiplicity, Herbrand quotient
In 41.3.4: determinant of (M,ϕ, ψ)
In 41.4.3: symbol associated to M,a, b
In 41.4.5: tame symbol
In 41.7.5: δ-dimension of Z
In 41.8.1: locally finite, cycle on X, k-
cycle
In 41.9.2: multiplicity of Z ′ in Z, k-cycle
associated to Z
In 41.10.2: multiplicity of Z ′ in F , k-
cycle associated to F
In 41.12.1: pushforward
In 41.14.1: flat pullback of α by f

In 41.16.1: order of vanishing of f along
Z
In 41.17.1: principal divisor associated to
f
In 41.19.1: rationally equivalent to zero,
rationally equivalent, Chow group of k-
cycles on X, Chow group of k-cycles
module rational equivalence on X
In 41.23.1: order of vanishing of s along
Z
In 41.24.1: Weil divisor associated to s,
Weil divisor associated to L
In 41.25.1: intersection with the first
chern class of L
In 41.27.3: ε-invariant
In 41.27.5: sum of the effective Cartier
divisors
In 41.28.1: Gysin homomorphism
In 41.34.1: chern classes of E on X, total
chern class of E on X
In 41.35.1: intersection with the jth
chern class of E
In 41.36.1: polynomial relation among
the chern classes

Adequate Modules

In 42.3.1: module-valued functor, mor-
phism of module-valued functors
In 42.3.2: adequate, linearly adequate
In 42.5.1: adequate
In 42.5.7: Adeq(O), Adeq((Sch/S)τ ,O),
Adeq(S)
In 42.8.1: pure projective, pure injective
In 42.8.5: pure projective resolution, pure
injective resolution
In 42.8.8: pure extension module

Dualizing Complexes

In 43.2.1: essential, essential extension
of, essential
In 43.4.1: projective cover, projective en-
velope
In 43.5.1: injective hull
In 43.5.5: indecomposable
In 43.12.1: dualizing complex
In 43.16.2: dualizing complex

Étale Cohomology

In 44.4.1: étale covering
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In 44.9.1: presheaf of sets, abelian
presheaf
In 44.10.1: family of morphisms with
fixed target
In 44.10.2: site, coverings
In 44.11.1: separated presheaf, sheaf
In 44.11.4: category of sheaves of sets,
abelian sheaves
In 44.13.1: zeroth Čech cohomology group
In 44.15.1: fpqc covering
In 44.15.5: satisfies the sheaf property for
the fpqc topology
In 44.16.1: descent datum, effective
In 44.16.5: descent datum
In 44.16.6: effective
In 44.17.2: ringed site, quasi-coherent
In 44.18.1: Čech complex, Čech cohomol-
ogy groups
In 44.18.4: free abelian presheaf on G
In 44.20.1: τ -covering
In 44.20.2: standard τ -covering
In 44.20.4: big τ -site of S, small τ -site of
S
In 44.21.1: étale topos, small étale topos,
Zariski topos, small Zariski topos, big τ -
topos
In 44.23.1: constant sheaf
In 44.23.3: structure sheaf
In 44.26.1: étale
In 44.26.3: standard étale
In 44.27.1: étale covering
In 44.27.3: big étale site over S, small
étale site over S, big, small Zariski sites
In 44.29.1: geometric point, lies over,
étale neighborhood, morphism of étale
neighborhoods
In 44.29.6: stalk
In 44.31.3: support of F , support of σ
In 44.32.2: henselian
In 44.32.6: strictly henselian
In 44.33.2: étale local ring of S at s,
strict henselization of OS,s, henselization
of OS,s, strict henselization of S at s,
henselization of S at s
In 44.35.1: direct image, pushforward
In 44.35.3: direct image, pushforward
In 44.35.4: higher direct images
In 44.36.1: inverse image, pullback

In 44.56.1: G-set, discrete G-set, mor-
phism of G-sets, G-Sets
In 44.57.1: absolute Galois group, alge-
braic
In 44.58.1: G-module, discrete G-module,
morphism of G-modules, ModG
In 44.58.2: continuous group cohomology
groups, group cohomology groups, Galois
cohomology groups, Galois cohomology
groups of K with coefficients in M
In 44.61.3: similar, equivalent
In 44.61.4: Brauer group
In 44.63.2: Cr, nontrivial solution
In 44.63.6: variety, curve
In 44.66.1: abelian variety
In 44.67.1: extension by zero, extension
by zero
In 44.68.1: constant sheaf with value E,
constant sheaf, locally constant, finite lo-
cally constant, constant sheaf with value
A, constant sheaf, locally constant, fi-
nite locally constant, constant sheaf with
value M , constant sheaf, locally constant
In 44.69.1: constructible, constructible,
constructible
In 44.75.1: trace
In 44.80.3: absolute frobenius
In 44.80.5: geometric frobenius
In 44.80.9: arithmetic frobenius
In 44.80.11: geometric frobenius
In 44.81.1: trace
In 44.83.4: total right derived functor of
F , total right derived functor of G
In 44.84.1: filtered injective, projective,
filtered quasi-isomorphism
In 44.85.1: filtered derived functor
In 44.87.1: perfect
In 44.89.1: finite Tor-dimension
In 44.90.1: Dc(X,Λ)
In 44.90.7: Dctf (X,Λ)
In 44.92.1: global Lefschetz number
In 44.92.2: local Lefschetz number
In 44.93.2: G-trace of f on P
In 44.96.1: Z`-sheaf, lisse, morphism
In 44.96.6: torsion, stalk
In 44.96.8: `-adic cohomology
In 44.97.1: L-function of F
In 44.97.3: L-function of F
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In 44.105.1: open
In 44.109.1: unramified cusp form on
GL2(A) with values in Λ

Crystalline Cohomology

In 45.2.2: divided power envelope of J in
B relative to (A, I, γ)
In 45.4.1: δ is compatible with γ
In 45.5.2: divided power thickening, ho-
momorphism of divided power thicken-
ings
In 45.6.1: divided power A-derivation
In 45.7.1: divided power structure γ
In 45.7.2: divided power scheme, mor-
phism of divided power schemes
In 45.7.3: divided power thickening
In 45.8.1: divided power thickening of
X relative to (S, I, γ), morphism of di-
vided power thickenings of X relative to
(S, I, γ)
In 45.8.4: Zariski, étale, smooth, syn-
tomic, or fppf covering, big crystalline
site
In 45.9.1: crystalline site
In 45.11.1: locally quasi-coherent, quasi-
coherent, crystal in OX/S-modules
In 45.11.3: crystal in quasi-coherent
modules, crystal in finite locally free
modules
In 45.12.1: S-derivation D : OX/S → F
In 45.26.2: F -crystal on X/S (relative to
σ), nondegenerate

Pro-étale Cohomology

In 46.2.3: w-local, w-local
In 46.3.1: local isomorphism, identifies
local rings
In 46.4.1: ind-Zariski
In 46.7.1: ind-étale
In 46.10.1: w-contractible
In 46.11.1: pro-étale covering of T
In 46.11.6: standard pro-étale covering
In 46.11.8: big pro-étale site
In 46.11.12: big pro-étale site of S, small
pro-étale site of S, big affine pro-étale
site of S
In 46.11.18: restriction to the small pro-
étale site

In 46.14.4: derived complete with respect
to I
In 46.24.1: extension by zero, extension
by zero
In 46.25.1: constructible
In 46.26.1: constructible Λ-sheaf, lisse,
adic lisse, adic constructible
In 46.27.1: constructible
In 46.27.4: adic lisse, adic constructible

Algebraic Spaces

In 47.5.1: property P
In 47.6.1: algebraic space over S
In 47.6.3: morphism f : F → F ′ of alge-
braic spaces over S
In 47.9.2: étale equivalence relation
In 47.9.3: presentation
In 47.12.1: open immersion, open sub-
space, closed immersion, closed subspace,
immersion, locally closed subspace
In 47.12.5: Zariski covering
In 47.12.6: small Zariski site FZar
In 47.13.2: separated over S, locally sep-
arated over S, quasi-separated over S,
Zariski locally quasi-separated over S
In 47.14.4: acts freely, quotient of U by
G
In 47.16.2: base change of F ′ to S, viewed
as an algebraic space over S′

Properties of Algebraic Spaces

In 48.3.1: separated, locally separated,
quasi-separated, Zariski locally quasi-
separated, separated, locally separated,
quasi-separated, Zariski locally quasi-
separated
In 48.4.1: point
In 48.4.7: topological space
In 48.5.1: quasi-compact
In 48.7.2: has property P
In 48.7.5: has property P at x
In 48.8.1: dimension of X at x
In 48.8.2: dimension
In 48.9.5: algebraic space structure on
Z, reduced induced algebraic space struc-
ture, reduction Xred of X
In 48.13.2: étale
In 48.15.1: small étale site Xétale

In 48.15.2: Xspaces,étale
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In 48.15.6: étale topos, small étale topos
In 48.15.8: f -map ϕ : G → F
In 48.16.1: geometric point, geometric
point lying over x
In 48.16.2: étale neighborhood, morphism
of étale neighborhoods
In 48.16.6: stalk
In 48.17.3: support of F , support of σ
In 48.18.2: structure sheaf
In 48.19.2: étale local ring of X at x,
strict henselization of X at x
In 48.20.2: dimension of the local ring of
X at x
In 48.21.2: geometrically unibranch at x,
geometrically unibranch
In 48.22.1: Noetherian
In 48.23.2: X is regular at x
In 48.27.1: quasi-coherent
In 48.29.2: locally projective

Morphisms of Algebraic Spaces

In 49.4.2: separated, locally separated,
quasi-separated
In 49.5.2: surjective
In 49.6.2: open, universally open
In 49.7.1: submersive, universally sub-
mersive
In 49.8.2: quasi-compact
In 49.9.2: closed, universally closed
In 49.10.1: monomorphism
In 49.13.2: inverse image f−1(Z) of the
closed subspace Z
In 49.15.4: scheme theoretic support of F
In 49.16.2: scheme theoretic image
In 49.17.3: scheme theoretic closure of U
in X, scheme theoretically dense in X
In 49.18.1: dominant
In 49.19.3: universally injective
In 49.20.2: affine
In 49.20.8: relative spectrum of A over
X, spectrum of A over X
In 49.21.2: quasi-affine
In 49.22.2: has property P
In 49.22.6: has property Q at x
In 49.23.1: locally of finite type, finite
type at x, of finite type
In 49.25.2: finite type point
In 49.26.1: locally quasi-finite, quasi-
finite at x, quasi-finite

In 49.27.1: locally of finite presentation,
finite presentation at x, of finite presen-
tation
In 49.28.1: flat, flat at x
In 49.29.2: flat at x over Y , flat over Y
In 49.31.1: dimension of the local ring of
the fibre of f at x, transcendence degree
of x/f(x), f has relative dimension d at
x
In 49.31.2: relative dimension ≤ d, rela-
tive dimension d
In 49.33.1: syntomic, syntomic at x
In 49.34.1: smooth, smooth at x
In 49.35.1: unramified, unramified at x,
G-unramified, G-unramified at x
In 49.36.1: étale at x
In 49.37.1: proper
In 49.38.1: satisfies the uniqueness part
of the valuative criterion, satisfies the
existence part of the valuative criterion,
satisfies the valuative criterion
In 49.41.2: integral, finite
In 49.42.2: finite locally free, rank, degree
In 49.43.2: integral closure of OX in A
In 49.43.3: normalization of X in Y
In 49.47.2: universal homeomorphism

Decent Algebraic Spaces

In 50.3.1: fibres of f are universally
bounded
In 50.6.1: decent, reasonable, very rea-
sonable
In 50.11.6: residual space of X at x
In 50.15.1: has property (β), has property
(β), decent, reasonable, very reasonable
In 50.18.1: birational

Cohomology of Algebraic Spaces

In 51.5.2: alternating Čech complex
In 51.11.1: coherent

Limits of Algebraic Spaces

In 52.3.1: locally of finite presentation,
limit preserving, locally of finite presen-
tation over S, locally of finite presenta-
tion, relatively limit preserving
In 52.14.3: subsheaf of sections annihi-
lated by I
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In 52.14.6: subsheaf of sections supported
on T

Divisors on Algebraic Spaces

In 53.2.1: locally principal closed sub-
space, effective Cartier divisor
In 53.2.6: sum of the effective Cartier di-
visors D1 and D2

In 53.2.10: pullback of D by f is defined,
pullback of the effective Cartier divisor
In 53.2.13: invertible sheaf OX(D) asso-
ciated to D
In 53.2.15: regular section
In 53.2.17: zero scheme
In 53.3.3: relative homogeneous spectrum
of A over X, homogeneous spectrum of
A over X, relative Proj of A over X
In 53.6.1: blowing up of X along Z, blow-
ing up of X in the ideal sheaf I, excep-
tional divisor, center
In 53.7.1: strict transform, strict trans-
form
In 53.8.1: U -admissible blowup

Algebraic Spaces over Fields

In 54.5.1: integral
In 54.5.3: degree of X over Y
In 54.6.1: modification of X
In 54.6.3: alteration of X
In 54.8.1: geometrically connected

Topologies on Algebraic Spaces

In 55.3.1: fpqc covering of X
In 55.4.1: fppf covering of X
In 55.5.1: syntomic covering of X
In 55.6.1: smooth covering of X
In 55.7.1: étale covering of X
In 55.8.1: Zariski covering of X

Descent and Algebraic Spaces

In 56.3.1: descent datum (Fi, ϕij) for
quasi-coherent sheaves, cocycle condi-
tion, morphism ψ : (Fi, ϕij) → (F ′i , ϕ′ij)
of descent data
In 56.3.3: trivial descent datum, canoni-
cal descent datum, effective
In 56.9.1: τ local on the base, τ local on
the target, local on the base for the τ -
topology

In 56.12.1: τ local on the source, local on
the source for the τ -topology
In 56.18.1: smooth local on source-and-
target
In 56.19.1: descent datum for V/Y/X,
cocycle condition, descent datum relative
to Y → X, morphism f : (V/Y, ϕ) →
(V ′/Y, ϕ′) of descent data relative to
Y → X
In 56.19.3: descent datum (Vi, ϕij) rela-
tive to the family {Xi → X}, morphism
ψ : (Vi, ϕij)→ (V ′i , ϕ

′
ij) of descent data

In 56.19.7: pullback functor
In 56.19.9: pullback functor
In 56.19.10: trivial descent datum,
canonical descent datum, effective
In 56.19.11: canonical descent datum, ef-
fective

Derived Categories of Spaces

In 57.3.2: supported on T
In 57.5.1: derived category of OX-
modules with quasi-coherent cohomology
sheaves
In 57.8.1: elementary distinguished
square
In 57.13.1: approximation holds for the
triple
In 57.13.2: approximation by perfect
complexes holds
In 57.17.2: Tor independent over B

More on Morphisms of Spaces

In 58.3.1: radicial
In 58.4.1: conormal sheaf CZ/X of Z in
X, conormal sheaf of i
In 58.5.1: conormal algebra CZ/X,∗ of Z
in X, conormal algebra of i
In 58.5.5: normal cone CZX, normal
bundle
In 58.6.2: sheaf of differentials ΩX/Y of
X over Y , universal Y -derivation
In 58.8.1: thickening, first order thick-
ening, morphism of thickenings, thicken-
ings over B, morphisms of thickenings
over B
In 58.9.1: first order infinitesimal neigh-
bourhood
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In 58.10.1: formally smooth, formally
étale, formally unramified
In 58.11.1: formally unramified
In 58.12.5: universal first order thicken-
ing, conormal sheaf of Z over X
In 58.13.1: formally étale
In 58.16.1: formally smooth
In 58.19.2: the restriction of F to its fi-
bre over z is flat at x over the fibre of Y
over z, the fibre of X over z is flat at x
over the fibre of Y over z, the fibre of X
over z is flat over the fibre of Y over z
In 58.33.2: Koszul-regular immersion,
H1-regular immersion, quasi-regular im-
mersion
In 58.34.1: pseudo-coherent, pseudo-
coherent at x
In 58.35.1: perfect, perfect at x
In 58.36.1: Koszul morphism, local com-
plete intersection morphism, Koszul at x

Pushouts of Algebraic Spaces

Groupoids in Algebraic Spaces

In 60.4.1: pre-relation, relation, pre-
equivalence relation, equivalence relation
on U over B
In 60.4.3: restriction, pullback
In 60.5.1: group algebraic space over B,
morphism ψ : (G,m) → (G′,m′) of
group algebraic spaces over B
In 60.8.1: action of G on the algebraic
space X/B, equivariant, G-equivariant
In 60.8.2: free
In 60.9.1: pseudo G-torsor, formally
principally homogeneous under G, triv-
ial
In 60.9.3: principal homogeneous space,
principal homogeneous G-space over B,
G-torsor in the τ topology, τ G-torsor, τ
torsor, quasi-isotrivial, locally trivial
In 60.10.1: G-equivariant quasi-coherent
OX-module, equivariant quasi-coherent
OX-module
In 60.11.1: groupoid in algebraic spaces
over B, morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B

In 60.12.1: quasi-coherent module on
(U,R, s, t, c)
In 60.15.2: stabilizer of the groupoid in
algebraic spaces (U,R, s, t, c)
In 60.16.2: restriction of (U,R, s, t, c) to
U ′

In 60.17.1: R-invariant, R-invariant, R-
invariant
In 60.18.1: quotient sheaf U/R
In 60.18.3: quotient representable by an
algebraic space, representable quotient,
representable quotient, quotient repre-
sentable by an algebraic space
In 60.19.1: quotient stack, quotient stack

More on Groupoids in Spaces

In 61.12.1: split over u, splitting of R
over u, quasi-split over u, quasi-splitting
of R over u

Bootstrap

In 62.3.1: representable by algebraic
spaces
In 62.4.1: property P

Quotients of Groupoids

In 63.3.1: R-invariant, G-invariant
In 63.3.4: pullback, flat pullback
In 63.4.1: categorical quotient, categori-
cal quotient in C, categorical quotient in
the category of schemes, categorical quo-
tient in schemes
In 63.4.4: universal categorical quotient,
uniform categorical quotient
In 63.5.1: orbit, R-orbit
In 63.5.4: weakly R-equivalent, R-
equivalent, weak orbit, weak R-orbit, or-
bit, R-orbit
In 63.5.8: set-theoretically R-invariant,
separates orbits, separates R-orbits
In 63.5.13: set-theoretic pre-equivalence
relation, set-theoretic equivalence rela-
tion
In 63.5.18: orbit space for R
In 63.6.1: coarse quotient, coarse quo-
tient in schemes
In 63.7.1: uniformly, universally
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In 63.8.1: sheaf of R-invariant functions
on X, the functions on X are the R-
invariant functions on U
In 63.9.1: good quotient
In 63.10.1: geometric quotient

Simplicial Spaces

In 64.8.1: cartesian, Y is cartesian over
X
In 64.8.3: simplicial scheme associated to
f
In 64.9.1: quasi-coherent sheaf, cartesian

Formal Algebraic Spaces

In 65.4.6: tensor product, completed ten-
sor product
In 65.4.7: topologically nilpotent, weak
ideal of definition, weakly pre-admissible,
weakly admissible
In 65.4.9: taut
In 65.5.1: affine formal algebraic space,
morphism of affine formal algebraic
spaces
In 65.5.7: McQuillan, classical, adic,
adic*, Noetherian
In 65.5.9: formal spectrum
In 65.6.2: countably indexed
In 65.7.1: formal algebraic space, mor-
phism of formal algebraic spaces
In 65.9.3: completion of X along T
In 65.11.3: quasi-separated, separated
In 65.12.2: quasi-compact
In 65.12.4: quasi-compact
In 65.15.5: locally countably indexed, lo-
cally adic*, locally Noetherian
In 65.17.1: adic morphism
In 65.18.1: locally of finite type, finite
type
In 65.19.1: monomorphism
In 65.20.1: closed immersion
In 65.21.1: separated, quasi-separated
In 65.22.1: proper

Restricted Power Series

In 66.3.1: topologically of finite type over
In 66.7.2: rig-étale
In 66.11.1: rig-surjective

Resolution of Surfaces

Formal Deformation Theory

In 68.3.1: CΛ, classical case
In 68.3.2: small extension
In 68.3.6: relative cotangent space
In 68.3.9: essential surjection

In 68.4.1: ĈΛ
In 68.5.1: category cofibered in groupoids
over C
In 68.6.1: prorepresentable
In 68.6.2: predeformation category, mor-
phism of predeformation categories

In 68.7.1: category F̂ of formal objects
of F , formal object ξ = (R, ξn, fn) of F ,
morphism a : ξ → η of formal objects
In 68.7.3: completion of F
In 68.8.1: smooth
In 68.8.13: versal
In 68.9.1: conditions (S1) and (S2)
In 68.10.1: R-linear
In 68.10.9: tangent space TF of F
In 68.11.1: tangent space TF of F
In 68.11.3: differential dϕ : TF → TG of
ϕ
In 68.13.4: minimal, miniversal
In 68.15.1: condition (RS)
In 68.15.8: deformation category
In 68.16.1: lift of x along f , morphism of
lifts
In 68.18.1: group of infinitesimal auto-
morphisms of x′ over x
In 68.18.2: group of infinitesimal auto-
morphisms of x0

In 68.18.5: automorphism functor of x
In 68.19.1: category of groupoids in
functors on C, groupoid in func-
tors on C, morphism (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in functors
on C
In 68.19.4: representable
In 68.19.7: restriction (U,R, s, t, c)|C′ of
(U,R, s, t, c) to C′
In 68.19.9: quotient category cofibered in
groupoids [U/R] → C, quotient mor-
phism U → [U/R]
In 68.20.1: prorepresentable
In 68.20.2: completion (U,R, s, t, c)∧ of
(U,R, s, t, c)
In 68.21.1: smooth
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In 68.23.1: presentation of F by
(U,R, s, t, c)
In 68.25.1: normalized, minimal

Deformation Theory

In 69.3.2: strict morphism of thickenings
In 69.8.2: strict morphism of thickenings

The Cotangent Complex

In 70.3.1: standard resolution of B over
A
In 70.3.2: cotangent complex
In 70.12.1: A-biderivation
In 70.16.1: Atiyah class
In 70.17.1: standard resolution of B over
A
In 70.17.2: cotangent complex
In 70.18.1: Atiyah class
In 70.19.1: cotangent complex
In 70.21.1: cotangent complex
In 70.23.1: cotangent complex LX/Y of
X over Y
In 70.25.1: cotangent complex LX/Y of
X over Y

Algebraic Stacks

In 71.8.1: representable by an algebraic
space over S
In 71.9.1: representable by algebraic
spaces
In 71.10.1: property P
In 71.12.1: algebraic stack over S
In 71.12.2: Deligne-Mumford stack
In 71.12.3: 2-category of algebraic stacks
over S
In 71.16.4: smooth groupoid
In 71.16.5: presentation
In 71.19.2: viewed as an algebraic stack
over S′

In 71.19.3: change of base of X ′

Examples of Stacks

In 72.17.2: degree d finite Hilbert stack of
X over Y
Sheaves on Algebraic Stacks

In 73.3.1: presheaf on X , morphism of
presheaves on X
In 73.4.1: associated Zariski site, asso-
ciated étale site, associated smooth site,

associated syntomic site, associated fppf
site
In 73.4.3: Zariski sheaf, sheaf for the
Zariski topology, étale sheaf, sheaf for the
étale topology, smooth sheaf, sheaf for the
smooth topology, syntomic sheaf, sheaf
for the syntomic topology, fppf sheaf,
sheaf, sheaf for the fppf topology
In 73.4.5: associated morphism of fppf
topoi
In 73.6.1: structure sheaf of X
In 73.7.1: presheaf of modules on X , OX -
module, sheaf of OX -modules
In 73.9.2: pullback x−1F of F , restriction
of F to Uétale
In 73.11.1: quasi-coherent module on X ,
quasi-coherent OX -module
In 73.11.4: locally quasi-coherent

Criteria for Representability

In 74.8.1: algebraic

Artin’s axioms

In 75.5.1: condition (RS)
In 75.9.1: formal object, morphism of for-
mal objects, lies over
In 75.9.3: effective
In 75.11.1: versal
In 75.13.1: limit preserving
In 75.14.1: openness of versality, open-
ness of versality
In 75.18.2: condition (RS*)
In 75.19.1: obstruction theory, obstruc-
tion modules, obstruction
In 75.20.5: naive obstruction theory

Quot and Hilbert Spaces

Properties of Algebraic Stacks

In 77.4.2: point
In 77.4.8: topological space
In 77.5.1: surjective
In 77.6.1: quasi-compact
In 77.7.2: has property P
In 77.7.5: has property P at x
In 77.8.1: monomorphism
In 77.9.1: open immersion, closed im-
mersion, immersion
In 77.9.8: open substack, closed substack,
locally closed substack
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In 77.10.4: algebraic stack structure on
Z, reduced induced algebraic stack struc-
ture, reduction Xred of X
In 77.11.8: residual gerbe of X at x ex-
ists, residual gerbe of X at x
In 77.12.2: dimension of X at x
In 77.12.3: dimension

Morphisms of Algebraic Stacks

In 78.4.1: DM, quasi-DM, separated,
quasi-separated
In 78.4.2: DM over S, quasi-DM over
S, separated over S, quasi-separated
over S, DM, quasi-DM, separated, quasi-
separated
In 78.5.3: sheaf of automorphisms of x
In 78.7.2: quasi-compact
In 78.8.1: Noetherian
In 78.9.2: open, universally open
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baki, Vol. 5, Soc. Math. France, Paris, 1995, pp. 299–327.
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[Ogo94] , General Néron desingularization based on the idea of Popescu, J. Algebra

167 (1994), no. 1, 57–84.

[Oli70] Jean-Pierre Olivier, Descente par morphismes purs, C. R. Acad. Sci. Paris Sér. A-B
271 (1970), A821–A823.

[Oli83] , Going up along absolutely flat morphisms, J. Pure Appl. Algebra 30 (1983),

no. 1, 47–59.
[Ols05] Martin Christian Olsson, On proper coverings of Artin stacks, Adv. Math. 198 (2005),

no. 1, 93–106.

[Ols06a] , Deformation theory of representable morphisms of algebraic stacks, Math. Z.

253 (2006), no. 1, 25–62.

[Ols06b] , Hom-stacks and restriction of scalars, Duke Math. J. 134 (2006), no. 1, 139–
164.

[Ols07a] , Course notes for Math 274: Stacks, taken by Anton Geraschenko.

[Ols07b] , Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007), 55–112.
[Oor66] Frans Oort, Algebraic group schemes in characteristic zero are reduced, Invent. Math.

2 (1966), 79–80.

[OP10] Brian Osserman and Sam Payne, Lifting tropical intersections, 2010.
[OS03] Martin Christian Olsson and Jason Starr, Quot functors for Deligne-Mumford stacks,

Comm. Algebra 31 (2003), no. 8, 4069–4096, Special issue in honor of Steven L.

Kleiman.
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[Ray70] Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, vol. 169,

Spinger-Verlag, 1970.
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[VD83] Sergei Georgievich Vlèduţ and Vladimir Gershonovich Drinfel’d, The number of points

of an algebraic curve, Funktsional. Anal. i Prilozhen. 17 (1983), no. 1, 68–69.

[Ver96] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque
(1996), no. 239, xii+253, With a preface by Luc Illusie, Edited and with a note by

Georges Maltsiniotis.

[Vis89] Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces,
Invent. Math. 97 (1989), no. 3, 613–670.

[Vis91] , The Hilbert stack and the theory of moduli of families, Geometry Semi-

nars, 1988–1991 (Italian) (Bologna, 1988–1991), Univ. Stud. Bologna, Bologna, 1991,
pp. 175–181.

[Vis04] , Notes on Grothendieck topologies, fibered categories and descent theory, 2004.
[Vis05] , Grothendieck topologies, fibered categories and descent theory, Fundamental

algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence,

RI, 2005, pp. 1–104.
[War69] R. B. Warfield, Jr., Purity and algebraic compactness for modules, Pacific J. Math.

28 (1969), 699–719.

[War70] , Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25
(1970), 167–172.

[Wat72] William C. Waterhouse, An empty inverse limit, Proc. Amer. Math. Soc. 36 (1972),

618.
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